Work

Residual Stress Control and Design of Next-Generation Ultra-hard Gear Steels

Public Deposited

In high power density transmission systems, Ni-Co secondary hardening steels have shown great potential for next-generation gear applications due to their excellent strength, toughness and superior fatigue performance. Study of residual stress generation and evolution in Ferrium C61 and C67 gear steels revealed that shot peening and laser peening processes effectively produce desired beneficial residual stress in the steels for enhanced fatigue performance. Surface residual stress levels of -1.4GPa and -1.5GPa were achieved in shot peened C61 and laser peened C67, respectively, without introducing large surface roughness or defects. Higher compressive residual stress is expected in C67 according to a demonstrated correlation between attainable residual stress and material hardness. Due to the lack of appropriate shot media, dual laser peening is proposed for future peening optimization in C67. A novel non-destructive synchrotron radiation technique was implemented and applied for the first time for residual stress distribution analysis in gear steels with large composition and property gradients. Observed substantial residual stress redistributionand material microstructure change during the rolling contact fatigue screening test with extremely high 5.4GPa load indicates the unsuitability of the test as a fatigue life predictor. To exploit benefits of higher case hardness and associated residual stress, a new material and process (CryoForm70) aiming at 70Rc surface hardness was designed utilizing the systems approach based on thermodynamics and secondary hardening mechanisms. The composition design was first validated by the excellent agreement between experimental and theoretical core martensite start temperature in the prototype. A novel cryogenic deformation process was concurrently designed to increase the case martensite volume fraction from 76% to 92% for enhanced strengthening efficiency and surface hardness. High temperature vacuum carburizing was optimized for desired carbon content profiles using carbon diffusion simulation in the multi-component system. After cyclic tempering with intermediate cryogenic treatment, a case hardness of 68.5 ± 0.3Rc at 0.72 ± 0.2wt% carbon content was achieved. The design demonstrated the effectiveness of cryogenic deformation in promoting martensite transformation for high carbon and high alloy steels. Good agreement between achieved and predicted case and core hardness supports the effectiveness of the computational design approach.

Last modified
  • 07/26/2018
Creator
DOI
Subject
Keyword
Date created
Resource type
Rights statement

Relationships

Items