Work

Deformation and Fracture of Cross-linked Polymer Gels

Public Deposited

Because soft materials, particularly polymer gels, are playing a greater role in industrial and biotechnological applications today, the exploration of their mechanical behavior over a range of deformations is becoming more relevant in our daily lives. Understanding these properties is therefore necessary as a means to predict their response for specific applications. To address these concerns, this dissertation presents a set of analytic tools based on flat punch probe indentation tests to predict the response of polymer gels from a mechanical perspective over a large range of stresses and at failure. At small strains, a novel technique is developed to determine the transport properties of gels based on their measured mechanical behavior. Assuming that a polymer gel behaves in a similar manner as a porous structure, the differentiation of solvent flow from viscoelasticity of a gel network is shown to be possible utilizing a flat, circular punch and a flat, rectangular punch under oscillatory conditions. Use of the technique is demonstrated with a poly(N-isopropyl acrylamide) (pNIPAM) hydrogel. Our results indicate that solvent flow is inhibited at temperatures above the critical solution temperature of 35oC. At high stresses and fracture, the flat probe punch indentation geometry is used to understand how the structure and geometry of silicone based gels affect their mechanical properties. A delayed failure response of the gels is observed and the modes of failure are found to be dependent on the geometry of the system. The addition of a sol fraction in these gels was found to toughen the network and play an important role at these large deformations. Potential mechanisms of fracture resistance are discussed, as is the effect of geometric confinement as it relates to large scale deformation and fracture. These results lay the groundwork for understanding the mechanical response of other highly, deformable material systems utilizing this particular geometry.

Last modified
  • 08/07/2018
Creator
DOI
Subject
Keyword
Date created
Resource type
Rights statement

Relationships

Items