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Abstract

Essays in Economic Theory

Joyee Deb

This dissertation comprises three chapters, each focusing on a different question in economic

theory. The first two chapters focus on repeated games and reputations, while the third is about

large games. In “Cooperation and Community Responsibility”, I study whether cooperation can

be sustained between communities where members interact repeatedly but with different people

in the community. When communities are large and players change rivals over time, players

may not recognize each other or may have limited information about past play. Can players

cooperate in such anonymous transactions? I analyze an infinitely repeated random matching

game, where payers’ identities are unobservable and players only observe their own matches.

Players may send an unverifiable message (a name) before playing each game. I show that for any

such game, all feasible individually rational payoffs can be sustained in equilibrium if players are

sufficiently patient. In “Observability and Sorting in a Market for Names” I study the value of

reputations. I ask whether firm names can be tradeable assets when changes in name ownership

are observable? Earlier literature suggests that non-observability is critical to tradeable names.

Yet, casual empiricism suggests that shifts in name ownership are often observable. I show

how firm names can be traded under full observability. In equilibrium, even when consumers

see a reputed name being divested they continue trusting it and so, these names are tradeable.
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I also demonstrate an appealing “sorting” property. Competent firms separate themselves by

buying valuable names, or only incompetent firms use worthless names. In “Large Games of

Limited Individual Impact” (co-authored with Ehud Kalai), I study robustness properties of

equilibria. Bayesian Nash equilibria that are not ex-post stable are a poor modeling tool for many

applications. Earlier literature showed that Bayesian equilibria are ex-post stable in games with a

large number of anonymous players, with finite types and actions and continuous payoff functions.

These assumptions limit the applicability of the results in important games like market games,

location games etc. We identify a broad class of large games that satisfies ex-post stability, without

requiring finiteness or anonymity. We show that one regularity condition on payoff functions (a

version of Lipschitz continuity) can guarantee ex-post stability.
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CHAPTER 1

Cooperation and Community Responsibility:

A Folk Theorem for Repeated Matching Games with Names

1.1. Introduction

Would you lend a complete stranger $10,000? How would you get your money

back? Trusting people you don’t know . . .may sound like the height of fool-

ishness. But a modern economy depends on exactly such impersonal exchange.

Every day, people lend . . . to strangers with every expectation that they’ll be

repaid. Vendors supply goods and services, trusting that they’ll be compensated

within a reasonable time. How does it all work?

From “Even Without Law, Contracts Have a Way of Being Enforced”

New York Times, October 10, 2002

Such impersonal exchange lies at the heart of this paper. In many situations communities of agents

are involved in bilateral transactions with each other, and it may be reasonable to assume that

agents do not recognize each other or have very limited information about each other’s actions.

In such situations, how does impersonal exchange take place? Can players achieve cooperative

outcomes? This is the central question of this paper. Formally, I ask whether every feasible

and individually rational payoff vector of a two-player game can be an equilibrium outcome in

the infinitely repeated game between two communities, where players are anonymously randomly

matched to one another in every period and players do not observe the complete history of past

play.
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It is well-known that when only two players interact repeatedly, any feasible and individually

rational payoff can be sustained in equilibrium, provided players are sufficiently patient. Further,

we know that the Folk Theorem extends (under appropriate conditions) to games with N players,

with perfect monitoring, imperfect public monitoring and to certain games with private monitor-

ing. Any feasible and individually rational payoff can be achieved using a mechanism of personal

punishment. If a player deviates, her rival can credibly retaliate and punish her in the future.

The threat of future punishment deters patient players from deviating. However, these results

implicitly assume that players recognize their rivals, and so cooperation can be sustained through

the threat of personalized punishments. In interactions in large communities where players meet

each other infrequently and anonymously, personalized punishments are not possible. Players

may change partners and may not know each other’s true identities. So it is not possible for a

victim to accurately punish the culprit. Can cooperation then not be sustained?

To examine this question, I consider an infinitely repeated stage-game played between two

communities. In every period, members of one community are randomly matched to members

of the rival community.1 Each player plays the stage-game with the opponent she is randomly

matched to. Players cannot observe the entire pattern of play within the communities. I impose

the strong informational restriction that players observe only the transactions they are personally

engaged in. Further, they do not recognize each other. There is limited communication. I

only allow players to introduce themselves (announce a name) before they play in each period.

However, names are not verifiable, and the true identity of a player cannot be known through

her announced name. Players cannot communicate in any other way within their community or

communicate the identity of their past opponents. Within this setting of limited information, I

examine what payoffs can be achieved in equilibrium.2

1The assumption of two communities is not necessary. The results of this paper continue to hold if there just is one
community of agents playing the repeated anonymous random matching game. See Section 1.3.5 for more on this.
2The result would extend to environments in which more information can be transmitted.
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Achieving any feasible, individually rational payoff in equilibrium through only personalized

punishments may be difficult as players are essentially anonymous. A form of punishment that has

been used in similar settings is “community enforcement”. In community enforcement a player

who deviates is punished not necessarily by the victim but by other players in the society who

become aware of the deviation. For instance, in a prisoner’s dilemma (PD) game if a player faces a

defection, she could punish any rival in the future by switching to defection forever. By starting to

defect, she would spread the information that someone has defected. The defection action would

spread (“contagion”) throughout the population, and cooperation would eventually break down.

The credible threat of such a breakdown of cooperation can deter players from defecting in the

first place. Earlier literature (e.g. Kandori (1992), Ellison (1994)) has shown that in a PD game,

such community enforcement can be used to achieve efficiency. Why do players have the incentive

to punish even when they know that they may not be matched to the original defector and may

spread the contagion more quickly? In the PD, the maximum one-period gain from defecting is

the same as the one-period loss from not defecting to slow down the contagion. Ellison (1994)

establishes that the loss from starting the contagion is greater than the gain from slowing it down

once it has started, even without any kind of communication. Consequently, it is possible that

players fear a breakdown of cooperation enough that they will not deviate first, but do not fear

so much that they are unwilling to spread the contagion once it has begun. However, in general,

games may not have this feature and this contagious community enforcement does not work. So

far, little is known on how to attain cooperation in this setting with any game other than the

PD.3

The main result I obtain is a possibility result - a Folk Theorem for infinitely repeated random

matching games - which states that for any two-player game played between two communities, it

is possible to sustain all feasible individually rational payoffs in a sequential equilibrium, provided

3In this paper, when I refer to sustaining cooperation or cooperative outcomes, I refer to any feasible and individually
rational payoff that is not a static Nash equilibrium outcome.
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players are sufficiently patient and can announce names. I establish the result constructively by

identifying strategies that can attain any given feasible, individually rational payoff.4

Interestingly, in this paper, cooperation is sustained neither by personalized punishments nor

by community enforcement. It is no longer the case that a deviator is punished by third-parties

in her victim’s community. On the contrary, if a player cheats she is punished only by her victim,

but her entire community is held responsible for the deviation and everyone in her community is

punished by her victim. I call this form of punishment “community responsibility”.

The terminology is inspired by the community responsibility system, an institution prevalent

in medieval Europe (Greif (2006)). Under the community responsibility system, if a member of

any community defaulted or cheated, all members of her community were held legally liable for

the default. The property of any member of the defaulter’s community could be confiscated.

The system internalized the cost of a default by each of their members on other members.5 This

paper does not involve any exogenous enforcement institutions, but the equilibrium strategies

used turn out to have a similar flavor in the sense that if a member of a community deviates in

any transaction, the victim holds the entire community of the deviator liable for the deviation.

Further, in describing the utility of the community responsibility system in Europe, Greif

(2006) makes the following observation:

Communal liability . . . supported intercommunity impersonal exchange. Ex-

change did not require that the interacting merchants have knowledge about

past conduct, share expectations about trading in the future, have the ability

to transmit information about a merchant’s conduct to future trading partners,

or know a priori the personal identity of each other.

4In establishing the main result, I focus on achieving identical payoffs within a community. See Remark 2 in Section
1.3.3 for a discussion of how this can be generalized.
5See Greif (2006). “Historical evidence . . . supports the claim that the community responsibility system prevailed
throughout Europe. . . . In a charter granted to London in the early 1130s, King Henry I announced that ‘all debtors
to the citizens of London discharge these debts . . . and if they refuse to pay . . . then the citizens to whom the debts
are due may take pledges either from the borough or from the village . . . in which the debtor lives’.”
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This also captures the essence of why in the framework of this paper, community responsibility

works in games where community enforcement does not. It is important to note that informa-

tion transmission is critical to sustaining cooperation through community enforcement. Since

dishonesty needs to be punished by third-parties who were not a part of the original dishonest

transaction, information transmission is required to start the punishment. In Ellison (1994), when

a player starts deviating after observing a deviation, she transmits the information to a third-

party that a deviation has occurred. In a prisoner’s dilemma, information about the deviation can

be transmitted indirectly through the act of defection. For other games, transmission of some ver-

ifiable (“hard”) information seems to be necessary. Kandori (1992) introduces local information

processing, where information about past deviations is transmitted through labels which depend

on a player’s history of play. Takahashi (2007) allows verifiable first-order information. In this

paper I obtain a Folk Theorem for general games without introducing any hard information in the

model. Players are allowed to announce names, but names are not verifiable. There is no hard

information. Community responsibility does not require third-parties to carry out punishments

and consequently can be implemented even with these strong informational restrictions and little

transmission of information.

What is community responsibility in the context of this paper and how does it work? Consider

two communities with M players each. Players from the two communities are randomly matched

into pairs to play the stage-game. We allow players to announce their names in each period before

they play the stage-game. Think of each player as playing separate but identical games, one with

each of the M names of her rival community. A player treats her interactions with each rival

name separately and conditions play against any name on the history of play with that name.

Play with each name proceeds in blocks of length T (i.e. T interactions). Players keep track of

the stage of a block they are in separately for each possible name. Each player plays one of two

strategies of the T -fold repeated stage-game within a block. At the beginning of each block, each
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player is indifferent between the two strategies, but one of the strategies ensures a low payoff for

her opponent and the other a high payoff. So, in the first period of any block (called the plan

period), each player mixes between the two strategies in a way to ensure that her opponent gets

the target equilibrium payoff. The realized action in the plan period serves as a coordination

device and indicates the plan of play within that block. If a player plays certain actions, she is

said to send a “good” (bad) plan and play in that block proceeds according to the strategy that

is favorable (unfavorable) for the opponent. At the start of the next block, each player tailors her

rival’s continuation payoff based on the actions played in the last block, by appropriately choosing

the probability with which she sticks to or changes her chosen strategy. Players can control the

continuation payoffs of their rivals by appropriately mixing between two strategies, irrespective

of what their rival plays.

Since each player conditions play on the name announcement she hears, players may have

incentives to misreport names. We construct strategies to prevent misreporting. For any pair of

players, the second interaction in any block of length T is designated as the “signature period”

and members of a pair play actions that serve as their “signatures”. The signatures for any pair of

players are different pure actions based on the action realized in their first interaction. No player

outside a pair can observe the action realized in their first interaction, and so no one can know

what the appropriate signature action is. So, if a player outside a pair impersonates one of the

players in this pair, she can end up playing the wrong signature in case it is a signature period,

and her impersonation will get detected.

If a player observes an incorrect signature in a signature period, she knows that a deviation

has occurred, though the identity of the deviator is unknown. She holds the deviator’s entire

community responsible and punishes them all by switching to the bad plan with each of her rivals

in their next plan period. Since every player is indifferent between her two strategies at the start

of any block, she can switch to a strategy that is bad for all her opponents without affecting
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her own payoff in any way. Notice that punishments are carried out by the victim and not by

third parties. However, innocent members of the deviator’s community are held responsible and

punished. Indifference at the start of each block makes community responsibility a credible threat.

For sufficiently patient players, this threat deters impersonations and deviations from equilibrium.

At this point, it is worthwhile to ask the following question. If community responsibility

prescribes punishing everybody in the community after a deviation and does not condition pun-

ishments on names, then why do we need names? It turns out that though the names are not

used to personalize punishments off the equilibrium path, players need to use the names on the

equilibrium path to tailor the continuation payoffs of their rivals.

In an extension, I show that the Folk Theorem extends to K-player games with K > 2

communities, where players from each community are matched to form K-player groups to play

the stage-game. The same idea of community responsibility is used to attain cooperation. Each

community acts as the monitor of one other. Say community 1 is the monitor of community 2. If

a player in community 2 deviates, the player from community 1 whom she meets holds community

2 responsible and punishes all members of community 2 that she meets in the future.

1.1.1. Related Literature

This paper is related to two independent streams of literature. First, it contributes to the literature

that asks similar questions about cooperation and impersonal exchange. These questions have

been asked earlier for the prisoner’s dilemma in the framework of repeated random matching

games. Second, this paper is related to recent literature on repeated games with imperfect private

monitoring, because of methodological similarities.

1.1.1.1. Connection with Community Enforcement. Kandori (1992) is one of the early

papers that studies community enforcement. Kandori studies the repeated prisoner’s dilemma

with anonymous random matching. Players only see the transactions they are personally involved
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in and there is no other form of information transmission. It is shown that if the loss from being

cheated is large enough, and if players are sufficiently patient, efficiency can be achieved. Efficiency

is achieved through contagion. If any player faces defection, she indiscriminately defects against

any other player she meets in the future. Defection spreads like an epidemic and cooperation

breaks down. The threat of such a breakdown in cooperation helps sustain cooperation on the

equilibrium path.

Kandori (1992) also considers games beyond the prisoner’s dilemma, but requires significantly

more information in the model. He assumes the existence of a mechanism that assigns labels

to players based on their history of play. Players who have deviated or seen a deviation can be

distinguished from those who have not, by their labels. These labels naturally enable transmission

of information and cooperation can be sustained through community enforcement.

Ellison (1994) generalizes Kandori’s first result and shows that cooperation is possible in

equilibrium for any prisoner’s dilemma game using contagious strategies, with no information

transmission. Contagious strategies however critically depend on the specific structure of the

prisoner’s dilemma (PD) - in particular on symmetry and on the existence of a Nash equilibrium

in strictly dominant strategies. As mentioned earlier, in the PD, the maximum short-term gain

from deviating on the equilibrium path is the same as the short-term loss from not punishing when

a player successfully slows down the contagion. Ellison (1994) proves that the future loss from

deviating on equilibrium path is greater than the future gain from slowing down the contagion

once it has started. Consequently, it is possible to make the short-term loss / gain from following

equilibrium strategies to lie between the two future effects. This argument does not apply to a

general game.6

In a recent paper, Takahashi (2007) again considers the repeated prisoner’s dilemma game with

random matching but with a continuum of agents. Cooperation is sustained through community

6As Ellison (1994) points out, in general games this argument shows that a symmetric strategy profile (a, a) is an
equilibrium outcome if the payoff from (a, a) strictly dominates the payoff of a static Nash equilibrium (s∗, s∗) and
s∗ is a best response to a (e.g. in games with a dominant strategy equilibrium).
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enforcement but by allowing first-order information. Players have available to them the complete

history of past actions of their partner in each period.

A stark gap evident in the current literature is that little is known about games other than the

prisoner’s dilemma. This paper tries to fill this gap. I consider general two-player games being

played by communities of agents who are randomly matched in each period. I obtain the Folk

Theorem for general games under the mild informational assumption that players can announce

names, though announcements are not verifiable.

As discussed earlier, this paper is different from earlier work in that it does not use community

enforcement, but introduces the alternate route of community responsibility. Since community

enforcement involves third-party punishments, it requires information transmission. On the con-

trary, community responsibility requires only a victim (a player who directly observes a deviation)

to punish. Consequently, community responsibility requires less information transmission and we

can achieve the Folk Theorem without addition of any hard information.

This paper also goes beyond the current literature in considering repeated random matching

games with more than two players. In an extension of the main model, the Folk Theorem is shown

to also hold for K-player games played by K communities.

1.1.1.2. Connection with Repeated Games with Imperfect Private Monitoring. While

this paper’s contribution is substantively related to community enforcement, the methodological

content is closely related to recent advances in repeated games with imperfect private monitoring.

Community responsibility depends on the fact that the player who detects a deviation is will-

ing to punish the deviator’s entire community. However, the detector may not have an incentive

to punish if the punishment action either involves a short-term cost, or alters her own continuation

payoff adversely. In my equilibrium construction, punishing is not costly in either of these ways.

When a player has to punish, she is indifferent (in that period) between punishing and not pun-

ishing. Further, a player starts punishing only in periods when she is indifferent and is supposed
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to mix between all her actions on the equilibrium path. So even when a player punishes, her rival

cannot know if her action is a punishment or not. So, the punishment action cannot change her

continuation payoff. This indifference is important to the construction and is reminiscent of the

equilibrium strategies used in the literature on imperfect private monitoring.

Ely-Hörner-Olszewski (2005) study belief-free equilibria in repeated games with imperfect

private monitoring. The strategies have the special feature that in infinitely many periods, each

player is indifferent between several actions that she can play. But her actions give different

continuation payoffs to her opponent - some ensure a high payoff and others a low payoff. In

equilibrium, each player chooses actions (mixes) based on her opponent’s past play. She can

choose an action that is favorable to reward her opponent or an unfavorable one to punish her.

Hörner-Olszewski (2006) generalize this idea with “block strategies” that are characterized by

periodic indifference. Play proceeds in blocks of say T periods each. In each block of T periods,

players use one of two strategies of the T -fold repeated game. The length T is chosen so that

the average payoff of the four resulting strategy profiles surrounds the target payoff vector. For

any player, one of the two strategies guarantees her opponent a continuation payoff higher than

the target payoff, and the other guarantees her opponent a payoff strictly lower than the target

payoff. So players are not indifferent over their opponent’s choice of strategies. However, players

can be made indifferent over their own two strategies at the start of each block, by appropriately

choosing the probability of using these strategies in each block as a function of the play in the most

recently elapsed block. In fact players are indifferent between these two strategies and weakly

prefer them to all others. The target payoff is achieved by suitably choosing the probability with

which each strategy is used in the initial block of the game.

In this paper, I build on the block strategies of Hörner-Olszewski (2006). As mentioned above,

the block structure provides each player with infinitely many periods of indifference, which make

the threat of punishments credible. However, in the random matching setting of this paper,
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players need to use block strategies separately with each possible opponent they can be matched

to. They have to track what stage of a block they are in separately for each rival. This is precisely

where the names are used - to track the games with each opponent separately.

Random matching also poses other difficulties - the duration of a block (in calendar time)

between any pair of players is now random. It is not clear that it is possible for a player to adjust

her rival’s continuation payoff by just appropriately mixing her two strategies in a block, as a

function of the play in the most recently elapsed block. If a block takes a very large number of

calendar time periods, the required adjustment in payoff may not be feasible. I show that it is

actually possible to adjust continuation payoffs in a way that, in expectation, at every stage of a

block, players are indifferent between their two strategies and prefer them to all others.

A novel feature of the construction in this paper is that it is possible to convert unverifiable

information into hard information. The signature periods discussed above play exactly this role.

Even though messages (names) are unverifiable, the signatures provide players a means to ensure

that no one has an incentive to misreport their names - effectively converting the soft messages

into hard information. Further, signatures enable this verification without enriching players’

communication possibilities, but just through the actions available to players in the underlying

game. This poses challenges as playing the right signature action has potential payoff consequences

in the short-term, and continuation payoffs have to be specified to satisfy intertemporal incentives

of players.

The rest of the paper is organized as follows. Section 1.2 presents the model. In Section 1.3,

I establish the Folk Theorem and discuss its key features. In Section 1.4, I extend the result to

K > 2 communities and multilateral matching. Section 1.5 concludes. Proofs are contained in

the appendix.
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1.2. Model and Notation

Players: The game is played by two communities of players. Each community I, I ∈ {1, 2}

comprises M > 2 players7, say I := {I1, . . . , IM}. To save notation, I will often denote a generic

element of any community of players I by i.

Random Matching and Timing of Game: In each period t ∈ {1, 2, . . .}, players are randomly

matched into pairs with each member l of Community 1 facing a member l′ := mt(l) of Community

2. The matches are made independently and uniformly over time, i.e. for all histories, for all l, l′,

Pr[l′ = mt(l)] = 1
M

.8 After being matched, each member of a pair simultaneously announces a

message (“her name”). Then, they play a two-player finite stage-game. The timing of the game

is represented in Figure 1.

t t+1

Players matched

randomly.

Simultaneous name

announcement.

Play of

stage-game.

New match

occurs.

Figure 1.1. Timing of Events

Message Sets: Each community I has a set of messages NI , I ∈ {1, 2}. Let NI be the set of

names of players in community I (i.e. NI = {I1, . . . , IM}).9 For any pair of matched players, the

pair of announced messages (names) is denoted by ν ∈ N := N1 × N2. For any I, let ∆(NI)

denote the set of mixtures over messages in NI . Messages are not verifiable, in the sense that

7See Section 1.3.4 for the case M = 2.
8Unlike in earlier literature, the result does not depend on the matching being uniform or independent over time.
See Remark 1 in Section 1.3.3, for a discussion on how this assumption can be relaxed.
9An implicit assumption is that the sets of messages NI contain at least M distinct messages each. For instance, we
can allow players to be silent by interpreting some message as silence. In the exposition, I use exactly M messages
as this is the coarsest information that suffices. Also, M messages have the reasonable interpretation of player
names.
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a player cannot verify if her rival is actually announcing her name. So, the true identity of a

player cannot be known from her announced name. “Truthful reporting” by any player i means

that player i announces name i. Any other announcement by player i is called “misreporting” or

“impersonating”.

Stage-Game: The stage-game Γ has finite action sets AI , I ∈ {1, 2}. Denote an action profile

by a ∈ A := A1 × A2. For each I, let ∆(AI), I ∈ {1, 2} denote the set of mixtures of actions in

AI . Stage-game payoffs are given by a function u : A → R
2. Define F to be the convex hull

of the payoff profiles that can be achieved by pure action profiles in the stage-game. Formally,

F := conv ({(u(a) : a ∈ A}). Let v∗i denote the mixed action minmax value for any player i. For

i ∈ I, v∗i := minα−i∈∆(A−I ) maxai∈AI
ui(ai, α−i). Let F ∗ denote the individually rational and

feasible payoff set, i.e. F ∗ := {v ∈ F : vi > v∗i ∀i}. We consider games where F ∗ has non-empty

interior (Int F ∗ 6= ∅).10 Let γ := maxi,a,a′{|ui(a) − ui(a
′)|}.

All players have a common discount factor δ ∈ (0, 1). No public randomization device is

assumed. All primitives of the model are common knowledge.

Information Assumptions: Players can observe only the transactions they are personally en-

gaged in, i.e. each player knows the names that she encountered in the past and the action

profiles played with each of these names. Since names are not verifiable, she does not know the

true identity of the players she meets. She does not know what the other realized matches are

and does not observe play between other pairs of players.

Histories, Strategies and Payoffs: We define histories and strategies as follows.

Definition 1. A complete private t-period history for a player i is given by ht
i :=

{(ν1, a1), . . . ,

(νt, at)}, where (ντ , aτ ), τ ∈ {1, . . . , t} represent the name profile and action profile observed by

10Observe that this restriction is not required in standard Folk Theorems for two-player games (e.g. Fudenberg
and Maskin (1986)). It is however used in the literature on imperfect private monitoring (See Hörner-Olszewski
(2006)). Note also that this restriction implies that |Ai| ≥ 2 ∀i.
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player i in period τ . The set of complete private t-period histories is given by H t
i := (N × A)t.

The set of all possible complete private histories for player i is Hi :=
⋃∞

t=0 H t
i (H 0

i := ∅).

Definition 2. An interim private t-period history for player i is given by kt
i := {(ν1, a1), . . . ,

(νt−1, at−1), νt} where ντ and aτ , τ ∈ {1, . . . , t} represent respectively the name profile and action

profile observed by player i in period τ . The set of interim private t-period histories is given by

K t
i := H

t−1
i ×N . The set of all possible interim private histories for player i is Ki :=

⋃∞
t=1 K t

i .

Definition 3. A strategy for a player i in community I ∈ {1, 2} is a mapping σi such that,

for any i ∈ I, σi : Hi ∪ Ki → ∆(NI) ∪ ∆(AI) such that











σi(x) ∈ ∆(NI) if x ∈ Hi,

σi(x) ∈ ∆(AI) if x ∈ Ki.

Σi is the set of i’s strategies. A strategy profile σ specifies strategies for all players (i.e. σ ∈ ×iΣi).

In some abuse of notation, for ki ∈ Ki and hi ∈ Hi we let σi(ai|ki) and σi(νi|hi) denote the

probability with which i plays ai and νi conditional on history ki and hi respectively, if she is

using strategy σi. We denote equilibrium strategies by σ∗.

A player’s payoff from a given strategy profile σ in the infinitely repeated random matching

game is denoted by Ui(σ). It is the normalized sum of discounted payoffs from the stage-games

that the player plays in each period, i.e. Ui(σ) := (1 − δ)
∑∞

t=1 δ
t−1ui(a

t
i, a

t
−i).

Beliefs: Given any strategy profile σ, after any private history, we can compute the beliefs that

each player has over all the possible histories that are consistent with her observed private history.

Denote such a system of beliefs by ξ.

Definition 4. A strategy profile σ together with an associated system of beliefs ξ is said to be

an assessment. The set of all assessments is denoted by Ψ.

Solution Concept: The solution concept used here is sequential equilibrium. While sequen-

tial equilibrium (Kreps & Wilson (1982)) is formally defined for finite extensive form games, the
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notion can be extended naturally to this setting. Let Σ0 denote the set of totally mixed strate-

gies, i.e. Σ0 := {σ : ∀i,∀ki ∈ Ki,∀ai, σi(ai|ki) > 0 and ∀i,∀hi ∈ Hi,∀νi, σi(νi|hi) > 0}. In other

words, strategy profiles in Σ0 specify that in every period, players announce all the names with

a strictly positive probability and play all feasible actions with strictly positive probability. If

strategies belong to Σ0 all possible histories are reached with positive probability. Players’ beliefs

can be computed using Bayes’ Rule at all histories. Let Ψ0 denote the set of all assessments (σ, ξ)

such that σ ∈ Σ0 and ξ is derived from σ using Bayes’ Rule. We define sequential equilibrium in

the following way.

Definition 5. An assessment (σ∗, ξ∗) is said to constitute a sequential equilibrium if the

assessment is

(i) sequentially rational,

∀i,∀t,∀ht
i ∈ H t

i ,∀σ′i, Ui(σ
∗|ht

i, ξ
∗
i [ht

i]) ≥ Ui(σ
′
i, σ

∗
−i|ht

i, ξ
∗
i [ht

i]),

∀i,∀t,∀kt
i ∈ K t

i ,∀σ′i, Ui(σ
∗|kt

i , ξ
∗
i [kt

i ]) ≥ Ui(σ
′
i, σ

∗
−i|kt

i , ξ
∗
i [kt

i ]),

and

(ii) consistent in the sense that there exists a sequence of assessments {σn, ξn} ∈ Ψ0 such that

for every player, and every interim and complete private history, the sequence converges to (σ∗, ξ∗)

uniformly in t.

Later, we use the T -fold finitely repeated stage-game as well. To avoid confusing T -period

strategies with the supergame strategies, we define the following.

Definition 6. Consider the T -fold finitely repeated stage-game (ignoring the round of name

announcements). Define an action plan to be a strategy of this finitely repeated game in the

standard sense. Denote the set of all action plans by ST
i .
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1.3. The Main Result

Theorem 1. (Folk Theorem for Random Matching Games) Consider a finite two-

player game and any (v1, v2) ∈ IntF ∗. There exists a sequential equilibrium that achieves payoffs

(v1, v2) in the corresponding infinitely repeated random matching game with names with 2M play-

ers, if players are sufficiently patient.

Before formally constructing the equilibrium, I first describe the overall structure.

1.3.1. Structure of Equilibrium

Each player plays M different but identical games, one with each of the M names in the rival

community. Players report their names truthfully. So, on the equilibrium path, players really

play separate games with each of the M possible opponents. They condition their play against

any opponent only on their history of play against the same name.

1.3.1.1. T -period Blocks. Let (v1, v2) ∈ IntF ∗ be the target payoff profile. We will choose

an appropriate positive integer T . Play between members of any pair of names then proceeds in

blocks of T periods in which they meet. (Note that a block of length T for any pair of players

comprises T interactions between them, and so typically takes more than T periods in calendar

time.) In any block of T interactions, players use one of two action plans of the T -fold finitely

repeated game. One of the action plans used by a player i ensures that rival name −i cannot get

on average more than v−i, independently of what player −i plays. The other action plan ensures

that rival name −i gets on average at least v−i. In the initial period of a block (henceforth called

“plan period”), each player randomizes between these two action plans in a way that ensures that

the target payoff of her rival name is achieved in expectation. At the end of the block, by suitably

choosing the probability of sticking to or changing her action plan, each player tailors her rival’s

continuation payoff based on play in the last block. Conditional on truthful reporting of names,

the form of strategies described above will be shown to constitute an equilibrium.
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To ensure that players announce names truthfully, we need a device that enables players to

detect impersonations and provides incentives to a detector to punish them.

1.3.1.2. Detecting Impersonations. I use a device called signatures to detect impersonations.

In this paper, “detection” of an impersonation means that if a player impersonates, then with

positive probability a player in the rival community will become aware in the current period or in

the future that some deviation from equilibrium has occurred. This kind of detection along with

appropriate incentives for the detector to punish impersonations will enable cooperation.

Every pair of players designates their second interaction in each block as the “signature period”

and in this interaction, members of a pair play actions that serve as their “signatures”. The

signature depends on the action profile realized in the plan period of that block. Players use

different pure actions depending on what action profile was realized in the plan period. No player

outside the pair can observe the realized action in the plan period. Consequently, no one outside

a pair knows what the correct signature for that pair is. When a player impersonates someone,

her announced name could be in a signature period with the rival she is matched to. In this case,

with positive probability the impersonator can play the wrong signature, and so get detected.

When her rival observes the wrong signature, she knows that play is not on equilibrium path.

1.3.1.3. Community Responsibility. Now, if a player observes an incorrect signature in a

signature period with any rival, she knows that someone has deviated. The nature of the deviation

or the identity of the deviator is unknown - it is possible that her current rival reported her name

truthfully but played the wrong signature or that she met an impersonator now or previously. She

holds all the members of her rival community responsible for the deviation, and punishes them

by switching to the bad action plan (with arbitrarily high probability) with each of her rivals in

their next plan period. Note that she is indifferent between her two action plans at the start of

any block. But the continuation payoffs her rivals get are different for these two action plans,
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with one plan being strictly better than the other for her rivals. Consequently, she can punish

the entire rival community without affecting her own payoff adversely.

1.3.2. Construction of Equilibrium Strategies

Consider any payoff profile (v1, v2) ∈ IntF ∗. Pick payoff profiles wGG, wGB , wBG, wBB such that

the following conditions hold.

(1) wGG
i > vi > wBB

i ∀i ∈ {1, 2}.

(2) wGB
1 > v1 > wBG

1 .

(3) wBG
2 > v2 > wGB

2 .

These inequalities imply that there exists vi and v̄i with v∗i < vi < vi < v̄i such that the

rectangle [v1, v̄1]× [v2, v̄2] is completely contained in the interior of conv({wGG, wGB , wBG, wBB})

and further v̄1 < min{wGG
1 , wGB

1 }, v̄2 < min{wGG
1 , wBG

1 }, v1 > max{wBB
1 , wBG

1 } and v2 >

max{wBB
1 , wGB

1 }. See Figure 2 below for a pictorial representation.

b

b

u1

u2

v

v*

b

b

b

b

wGG

wGB

wBG

wBB

bv

b
v

b

v̄

Figure 1.2. Payoff Profiles

Clearly, there may not exist pure action profiles whose payoffs satisfy these relationships,

but there exist correlated actions that achieve exactly these payoffs wGG, wGB , wBG, wBB . We

can approximate these correlated actions using long enough sequences of different pure action



29

profiles. In fact, we can find finite sequences of action profiles {aGG
1 , . . . , aGG

N }, {aGB
1 , . . . , aGB

N },

{aBG
1 , . . . , aBG

N }, {aBB
1 , . . . , aBB

N } such that each vector wXY , the average discounted payoff vector

over the sequence {aXY
1 , . . . , aXY

N } satisfies the above relationships if δ is large enough.

Further, we can find ǫ ∈ (0, 1) small so that v∗i < (1 − ǫ)vi + ǫv̄i < vi < (1 − ǫ)v̄i + ǫvi. In

the equilibrium construction that follows, when I refer to an action profile aXY , I actually refer

to the finite sequence of action profiles {aXY
1 , . . . , aXY

N } described above.

1.3.2.1. Defining Strategies at Complete Histories: Name Announcements. At any

complete private history, players announce their names truthfully.

∀i,∀t,∀ht
i ∈ H

t
i , σ∗i [h

t
i] = i.

1.3.2.2. Defining Strategies at Interim Histories: Actions. Partitioning of Histories:

Now think of each player playingM separate games, one against each rival. Since players truthfully

report names in equilibrium, players can condition play on the announced name.

Definition 7. A pairwise game denoted by Γi,−i is the “game” player i plays against name

−i. Player i’s private history of length t in this pairwise game is denoted by ĥt
i,−i and comprises

the last t interactions in the supergame for player i in which she faced name −i.

Now, at any interim private history of the supergame, each player i partitions her history

into M separate pairwise histories ĥt
i,−i,−i ∈ {1, . . . ,M} corresponding to each of her pairwise

games Γi,−i. If her current rival name is j, she plays game Γi,j, i.e. for interim history kt
i =

{(ν1, a1), . . . , (νt−1, at−1), νt}, if νt
−i = j, player i plays her pairwise game Γi,j.

Since equilibrium strategies prescribe truthful name announcement, a description of how Γi,−i

is played will complete the specification of strategies on the equilibrium path for the supergame.

Play of Game Γi,−i:

For ease of exposition, fix player i and a rival name −i. Play is specified in an identical manner

for each rival name. For the rest of the section (since rival name −i is fixed), to save on notation
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I denote player i’s private histories ĥt
i,−i in the pairwise game Γi,−i by ĥt

i. Recall that a t-period

history denoted by ĥt
i specifies the action profiles played in the last t periods of this game Γi,−i,

and not in the last t calendar time periods.11 Since in equilibrium, any history ĥt
i of Γi,−i has the

same name profile in each period, we ignore names when specifying how Γi,−i is played.

The pairwise game Γi,−i proceeds in blocks of T periods (Later we define T ). In the first period

of every block (plan period), the action profile used by players i and −i serves as a coordination

device to determine play for the rest of the block. Partition the set of i’s actions into two non-

empty subsets Gi and Bi. Let ∆(Gi) and ∆(Bi) denote the set of mixtures of actions in Gi and Bi

respectively. If player i chooses an action from set Gi, she is said to send plan Pi = G. Otherwise

she is said to send plan Pi = B.

Further, choose any four pure action profiles g, b, x, y ∈ A such that gi 6= bi ∀i ∈ {1, 2}. Define

a function ψ : A → {g, b, x, y} (the signatures) mapping one-period histories (or a pair of plans)

to one of the action profiles as follows.

ψ(a) =







































g if a ∈ G1 ×G2,

b if a ∈ B1 ×B2,

x if a ∈ G1 ×B2,

y if a ∈ B1 ×G2.

Suppose the observed plans are (P1, P2). Define a set of action plans as follows.

Si :=
{

si ∈ ST
i : ∀ĥt

i =
(

a, ψ(a), (aP2,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i )
)

, a ∈ Pi ×G,

si[ĥ
1
i ] = ψi([ĥ

1
i ]) and si[ĥ

t
i] = a

P2,P1
i , t ≥ 2

}

.

Note that the set of action plans in Si restricts player i’s actions if her rival announced plan G.

In particular, action plans in Si prescribe that player i use the correct signature and play aP2,P1
i

11A period in Γi,−i is really an interaction between player i and name −i. So, when I refer to Γi,−i, I use
“interaction” and “period” interchangeably.
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if the announced plans were (P1, P2). Si does not restrict the plan that player i can announce in

the plan period or her play if her rival announced a B plan or her play after any deviations.

In equilibrium, in any T -period block of a pairwise game, players choose action plans from

Si. Players will use in fact one of two actions plans from Si, a favorable one which I denote by

sG
i and an unfavorable one which I denote by sB

i . These are defined below.

Define partially a favorable action plan sG
i such that

sG
i [∅] ∈ ∆(Gi),

sG
i [ĥ1

i ] = ψi([ĥ
1
i ]), and

∀ĥt
i =

(

a, ψ(a), (aP2 ,P1
i , a

P2,P1
−i ), . . . , (aP2,P1

i , a
P2,P1
−i )

)

, a ∈ Pi × P−i, t ≥ 1, sG
i [ĥt

i] = a
P2,P1
i .

Similarly, partially define an unfavorable action plan sB
i such that

sB
i [∅] ∈ ∆(Bi),

sB
i [ĥ1

i ] = ψi([ĥ
1
i ]),

∀ĥt
i =

(

a, ψ(a), (aP2 ,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i )
)

, a ∈ Pi × P−i, t ≥ 1, sB
i [ĥt

i] = a
P2,P1

i ,

∀t ≥ r > 1, if ĥr
i =

(

a, ψ(a), (aP2 ,P1
i , a

P2,P1
−i ), . . . , (aP2,P1

i , a
P2,P1
−i ), (aP1,P2

i , a′−i)
)

,

a ∈ Pi × P−i, a
′
−i 6= a

P2,P1

−i , then sB
i [ĥt

i] = α∗
i , and

∀t > 2, if ĥ2
i =

(

a, (ψi(a), a
′
−i)
)

, a ∈ Pi × P−i, a
′
−i 6= ψ−i(a), then sB

i [ĥt
i] = α∗

i .

Note that both action plans sG
i and sB

i belong to Si. s
G
i is an action plan in Si that prescribes

sending a G plan at the start of a block. sB
i prescribes sending plan B at the start of a block and

minmaxing when i’s rival is the first to deviate from the plan proposed in the plan period. For

any history not included in the definitions of sG
i and sB

i above, prescribe the actions arbitrarily.
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Why do we call sG
i favorable and sB

i unfavorable? Suppose player 1 uses action plan sG
1 , her

rival, player 2 gets a payoff strictly higher than v̄2 in each period, except possibly in the first two

periods. This is because as long as player 1 plays sG
1 , the payoff to player 2 that is realized in

any period except the first two is approximately wBG
2 or wGG

2 both of which are higher than v̄2.

Further, if player 1 plays sB
1 , player 2 gets a payoff strictly lower than v2 in all except at most

two periods. In the plan period and in the first period where player 2 decides to deviate, she can

potentially get a higher payoff. In all other periods, she receives wGB
2 , wBB

2 or v∗2 , all of which

are strictly lower than v2.

It is therefore possible to choose T large enough so that for some δ < 1, for all δ > δ, i’s

average payoff within the T -period block from any action plan si ∈ Si against sG
−i strictly exceeds

v̄1 and her average payoff from using any action plan si ∈ ST
i against sB

−i is strictly below v1.

Assume from here on that δ > δ.

Finally, I define two benchmark action plans which are used later to compute continuation

payoffs for every possible history within a block. Define rG
i ∈ Si to be an action plan such that

given any history ĥt
i, r

G
i |ĥt

i gives the lowest payoffs against sG
−i among all action plans in Si.

Define rB
i ∈ ST

i to be an action plan such that given any history ĥt
i, r

B
i |ĥt

i gives the highest

payoffs against sB
−i among all action plans in ST

i . Redefine v̄ and v so that v̄i := UT
i (rG

i , s
G
−i) and

vi := UT
i (rB

i , s
B
−i), where UT

i : ST
i ×ST

−i → R is the payoff function in the T -fold finitely repeated

game, where UT (·) is the appropriately discounted and normalized sum of stage-game payoffs.

Now we are equipped to specify how player i plays her pairwise game Γi,−i. We call this i’s

“partial strategy”.

Partial Strategies: Specification of Play in Γi,−i

• Initial Period of Γi,−i: In the first ever period when player i meets player −i, player i

plays sG
i with probability µ0 and sB

i with probability (1 − µ0) where µ0 solves

v−i = µ0v̄−i + (1 − µ0)v−i.
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Note that since (1 − ǫ)v−i + ǫv̄−i < v−i < ǫv−i + (1 − ǫ)v̄−i, we have µ0, 1 − µ0 ≥ ǫ.

• Plan Period of a Non-Initial Block of Γi,−i: If player i ever observed a deviation

in a signature period of an earlier block in any pairwise game, she plays strategy sB
i

with probability (1 − βl) where l is the number of deviations she has seen so far (in

the supergame) and β > 0 is small. Otherwise, she plays strategy sG
i with probability

µ and sB
i with (1 − µ) where the mixing probability µ is chosen to tailor player −i’s

continuation payoff.

How are continuation payoffs determined? Continuation payoffs are specified in a

way that makes each player indifferent between all action plans in ST
i when her opponent

plays sB
−i and indifferent between all action plans in Si when her opponent plays sG

−i.

The average payoff from playing any action plan in ST
i against the opponent’s play of

sB
−i is adjusted to be exactly vi. Similarly, the average payoff from playing any action

plan in Si against the opponent’s play of sG
−i is adjusted to be exactly v̄i. This is done

as follows.

Let c denote the current calendar time period, and let c(τ), τ ∈ {1, . . . , T} denote the

calendar time period of the τ th stage of the most recently elapsed block in the pairwise

game Γi,−i. For any history ĥT
i observed (at calendar period c) by i in the most recently

elapsed block, if sB
i was played in the last block, define rewards ωB

−i(·) as

ωB
−i(ĥ

T
i ) :=

T
∑

τ=1

πB
τ

where, πB
τ :=











1
δT+1−τ θ

B
τ M

T−τ+1 if c− c(τ) = T + 1 − τ

0 otherwise,

and θB
τ is the difference between −i’s continuation payoff in the last block from playing

rB
−i from period τ on and −i’s continuation payoff from playing the action observed by

i at τ followed by reversion to rB
−i from (τ + 1) on. Since rB

−i gives i maximal payoffs,
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θB
τ ≥ 0.

Player i chooses µ ∈ (0, 1) to solve µv̄−i + (1− µ)v−i = v−i + (1− δ)ωB
−i(ĥ

T
i ). Since T is

fixed, we can make (1− δ)ωB
−i(ĥ

T
i ) arbitrarily small, for large enough δ, and so the above

continuation payoff will be feasible.

It is worthwhile to note how these rewards make player −i indifferent between all action

plans in ST
−i when her opponent plays sB

i . Suppose at some stage τ of a block, player

−i plays an action that gives her a payoff in the current period that is lower than that

from playing rB
−i. With probability ( 1

M
)T+1−τ her next plan period with player i will be

exactly T+1−τ calendar periods later, and in that case, she will receive a proportionately

high reward θB
τ M

T+1−τ . If her next plan period is not exactly T + 1 − τ periods later,

she does not get compensated. However, in expectation, for any action that she may

choose, the loss she will suffer today (compared to the benchmark action plan rB
−i) is

exactly compensated by the reward she will get in the future.

If sG
i was played in the last block, specify punishments ωG

−i(·) as

ωG
−i(ĥ

T
i ) :=

T
∑

τ=1

πG
τ

where, πG
τ :=











1
δT+1−τ min{0, θG

τ }MT−τ+1 if c− c(τ) = T + 1 − τ

0 otherwise,

and θG
τ is the difference between −i’s continuation payoff within the last block from

playing rG
−i from time τ on and −i’s continuation payoff from playing the action observed

by i at period τ followed by reversion to rG
−i from τ + 1 on. Since rG

−i gives −i minimal

payoffs, θG
τ ≤ 0 for all actions are used by strategies in S−i.

Player i chooses µ ∈ (0, 1) to solve µv̄−i + (1−µ)v−i = v̄−i + (1− δ)ωG
−i(ĥ

T
i ). Again,

since T is fixed, we can make (1 − δ)ωG
−i(ĥ

T
i ) arbitrarily small, for large enough δ. We
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restrict attention to δ close enough to 1 so that

(1 − δ)ωB
−i(ĥ

T
i ) < ǫv−i + (1 − ǫ)v̄−i − v−i and (1 − δ)ωG

−i(ĥ
T
i ) > (1 − ǫ)v−i + ǫv̄−i − v̄−i.

• Signature Period and other Non-initial Periods: Players use the designated sig-

nature ψ(a) if a was the profile realized in the plan period of the block. For the rest of

the block, they play according to the announced plan (i.e. if the announced plans were

(P1, P2), then they play action profile aP2,P1).

This completes the specification of strategies on the equilibrium path.

1.3.2.3. Beliefs of Players. At any private history, each player believes that in every period,

she met the true owners of the names she met, and that no player has ever misreported her name.

1.3.3. Proof of Theorem 1

In this section, I show that the above strategies and beliefs constitute a sequential equilibrium.

Here I prove sequential rationality of strategies on the equilibrium path. This is done in two

steps. First, conditional on truthful reporting of names, the actions prescribed are shown to be

optimal. Second, I show that it is incentive compatible to report one’s name truthfully. The

proof of sequential rationality off the equilibrium path and consistency of beliefs is relegated to

the appendix.

As before, fix a player i and a rival −i. The partial strategy for player i in pairwise game

Γi,−i can be represented by an automaton that revises actions and states in every plan period of

Γi,−i.

Set of States: The set of states of a player i is the set of continuation payoffs for her rival −i

and is the interval [(1 − ǫ)v−i + ǫv̄−i, ǫv−i + (1 − ǫ)v̄−i].

Initial State: Player i’s initial state is the target payoff for her rival v−i.

Decision Function: When player i is in state u, she uses strategy sG
i with probability µ and sB

i
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with probability (1 − µ) where µ solves

u = µ
[

ǫv−i + (1 − ǫ)v̄−i

]

+ (1 − µ)
[

(1 − ǫ)v−i + ǫv̄−i

]

.

Transition Function: For any history ĥT
i in the last T -period block for player i, if the action

played was sG
i then at the end of the block, the state transits to v̄−i+(1−δ)ωG

−i(ĥ
T
i ). If the realized

action was sB
i the new state is v−i +(1−δ)ωB

−i(ĥ
T
i ). Recall that for δ large enough, (1−δ)ωB

−i(ĥ
T
i )

and (1 − δ)ωG
−i(ĥ

T
i ) can be made arbitrarily small, which ensures that the continuation payoff

always lies within the interval [(1 − ǫ)v−i + ǫv̄−i, ǫv−i + (1 − ǫ)v̄−i].

It can be easily seen that given i’s strategy, any strategy of player −i whose restriction belongs

to S−i is a best response. The average payoff within a block from playing rG
−i against sG

i is exactly

v̄−i, and that from playing rB
−i against sB

i is v−i. Moreover, the continuation payoffs are also v̄−i

and v−i respectively. Any player’s payoff is therefore µ0v̄−i + (1 − µ0)v−i. Note also that each

player is indifferent between all action plans in ST
i when her opponent plays sB

−i.

It remains to verify that players will truthfully report their names in equilibrium. First I

show that if a player impersonates someone else in her community, irrespective of what action

she chooses to play, she can get detected (i.e. with positive probability, someone in her rival

community will become aware that some deviation has occurred). Then, the detector will punish

the whole community of the impersonator. For sufficiently patient players, this threat is enough

to deter impersonation.

At any calendar time t, define the state of play between any pair of players to be k ∈ {1, . . . , T}

where k is the stage of the current block they are playing in their pairwise game (e.g. for a plan

period, k = 1). At time (t+ 1), they will either transit to state k + 1 with probability 1
M

, if they

happen to meet again in the next calendar time period or remain in state k. Suppose at time

t, player i1 decides to impersonate i2. Player i1 can form beliefs over the possible states of each
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of her rivals j, j ∈ {1, . . . ,M} with respect to i2, conditional on her own private history. Denote

player i1’s beliefs over the states of any pair of players by a vector (p1, . . . , pn).

Fix a member j of the rival community, whom player i1 can be matched to in the next period.

Suppose player i1 has met the sequence of names {j1, . . . , jt−1}. For any t ≥ 2, her belief over

states of j and i2 is given by

(1.1)
t−1
∑

τ=1

(1 − Ij=jτ )

(

M − 2

M − 1

)

Pτ−1
l=1

“

1−I
j=jl

”

1

M − 1
(1, 0, . . . , 0)

t−1
∏

k=τ

[

Ij=jkI + (1 − Ij=jk)H
]

,

where H =





















M−2
M−1

1
M−1 0 0 . . . 0

0 M−2
M−1

1
M−1 0 . . . 0

...

1
M−1 0 0 0 . . . M−2

M−1





















I is the T × T identity matrix, and I=jτ =











1 if j = jτ ,

0 otherwise.

To see how we obtain the above expression, note that player i1 knows that in periods when she

met rival j, it is not possible that player i2 also met j. Hence, she knows with certainty that in

these periods the state of play between players i2 and j did not change. She believes that in other

periods, the state of play would have changed according the transition matrix H. This gives the

product term in the above expression. For any given calendar period τ , player i1 can also use this

information to compute the expected state of players i2 and j conditioning on the event that i2

and j met for the first time ever in period τ . For any τ , the probability that players i2 and j met

for the first time at period τ is given by
(

M−2
M−1

)

Pτ−1
l=1

“

1−I
j=jl

”

1
M−1 . Finally, player i1 knows that

the pair i2 and j could not have met for the first time in a period that she met j herself, and so

needs to condition only on such periods when she did not meet j.
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Notice that the transition matrix H is irreducible and

(1.2) lim
q→∞

(1, 0, . . . , 0) ·Hq =

(

1

T
, . . . ,

1

T

)

.

Further it can be easily shown that the following is true.

(1.3) ∀q ≥ 1, [(1, 0, . . . , 0) ·Hq]2 > 0,

where [(1, 0, . . . , 0) ·Hq]2 represents the 2nd component of (1, 0, . . . , 0) ·Hq

It follows from (1.2) and (1.3) that for any rival j whom i1 has not met at least in one period,

there exists a lower bound φ > 0 such that the probability of j being in state 2 with i2 is at least

φ.

Now, when player i1 announces name i2, she does not know which rival she will end up meeting

that period. It follows that at t ≥ 2, player i1 assigns probability at least φ
M(M−1) to the event

that the rival she meets is in state 2 with i2. (To see why, pick a rival j′ whom i1 did not meet

in the first calendar time period (t = 1). With probability 1
M

, at time t, i1 will meet this j′ and

with probability 1
M−1 this j′ would have met i2 at t = 1 and period t could be their signature

period.)

Consequently, if player i1 announces her name to be i2, there is a minimal strictly positive

probability ǫ2 φ
M(M−1) that her impersonation gets detected. This is because if the rival she meets

is supposed to be in a signature period with i2, they should play one of the signatures g, b, x, y

depending on the realized plan in their plan period. Since players mix with probability at least

ǫ on both Plans G and B, player i1 will play the wrong signature with probability at least

ǫ2 irrespective of the action she chooses. Player i1’s rival will realize that some deviation has

occurred, and she will switch to the bad plan B (almost certainly) with each of the players in i1’s

community in their next plan period.
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Player i1 will not misreport her name if her maximal potential gain from deviating is not

greater than the minimal expected loss in continuation payoff from detection.

Player i1’s maximal current gain from misreporting =

(

1 − δ

δ +M(1 − δ)

)

γ.

Note that because of the random matching process, the effective discount factor for any player in

her pairwise games is not δ, but higher, i.e. δ
δ+M(1−δ) .

Player i1’s minimal expected loss in continuation payoff from impersonation is given by

Minimal loss from deviation ≥ φ

M(M − 1)
ǫ2(1 − β)

(

δ

δ +M(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)] .

To derive the above expression, observe that there is a minimal probability φ
M(M−1) that

players j and i2 are in a signature period. Conditional on this event, irrespective of the action i1

plays, there is a minimal probability ǫ2 that her deviation gets detected by her rival, j. Conditional

on detection, player j will switch to playing the unfavorable strategy with probability (1 − β) in

the next plan period with i1. At best, i1 and j’s plan period is (T − 1) periods away, after which

i1’s payoff in her pairwise game with j will drop from the target payoff vi to (1 − ǫ)vi + ǫv̄i.

i1 will not impersonate if her maximal current gain is outweighed by her loss in continuation

payoff i.e. if the following inequality holds.

(

1 − δ

δ +M(1 − δ)

)

γ ≤ φ

M(M − 1)
ǫ2(1 − β)

(

δ

δ +M(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)] .

For δ close enough to 1, this inequality is satisfied, and so misreporting one’s name is not a

profitable deviation at any t ≥ 2.

Now consider incentives for truth-telling in the first period of the supergame. Suppose i1

impersonates i2 and meets rival j. In the next period, with probability ǫ2

M
, i2 will meet j and

use the wrong signature, thus informing j that someone has deviated. By a similar argument as



40

above, if δ is high enough, i1’s potential current gain will be outweighed by the future loss in

continuation payoff. �

The interested reader may refer to the appendix for a formal proof of the consistency of beliefs

and sequential rationality off the equilibrium path.

Remark 1. General Matching Technologies: A distinguishing feature of this result is

that unlike earlier literature, it does not depend on the random matching being independent or

uniform. The assumption of uniform independent matching is made only for convenience. The

construction continues to work for more general matching technologies. For instance it is enough

to assume that for each player, the probability of being matched to each rival is strictly positive

and the expected time until she meets each of her rivals again is bounded.

Remark 2. Generalizable to Asymmetric Payoffs: In this result, I restrict attention to

the case where all members of a specific community get identical payoffs. With the same equilib-

rium strategies, it is possible to also achieve asymmetric payoff profiles (vi1 , . . . , viM , vj1, . . . , vjM
)

with the property that for all possible pairs of rivals i and j, (vi, vj) ∈ int(F ∗). Clearly, the

feasibility of asymmetric payoff profiles does depend on the specifics of the matching process, in

particular on the probability of meeting each rival.

Remark 3. Asymmetric Discount Factors: Unlike in earlier work (e.g. Ellison (1994)),

the assumption of a common discount factor for all players is not necessary for the equilibrium

construction of this paper.

1.3.4. Small Communities (M = 2)

An important feature that enables the above construction is that at any time, each player is

uncertain about the states that the other players are in with respect to each other. This source

of uncertainty ensures that if a player wants to impersonate somebody, she believes that she will
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get detected. This is no longer the case if we consider communities with just two members each.

Since each players knows the sequence of names she has met, she knows the sequence of names

her rivals have met (conditional on truthful revelation). So, each player knows with certainty

which period of a block any pair of her rivals is in. Since the states of one’s opponents’ play are

no longer random, the above construction does not apply.

In this section, I show that with some modification to the strategies, every feasible and indi-

vidually rational payoff is still achievable.

1.3.4.1. Equilibrium Construction. As before, play proceeds in blocks of T interactions be-

tween any pair of players, but now each block starts with “initiation periods”. The first ever

interaction between any two players is called their “game initiation period”. In this period, the

players play a coordination game. They each play two given actions (say a1 and a2 for player 1

and b1 and b2 for player 2) with equal probability. If the realized action profile is not (a1, b1), the

game is said to be initiated and players continue to play as described below. If the realized action

profile is (a1, b1), players replay the game initiation period. Once the pairwise game is initiated, it

proceeds as before in blocks of T periods. Any new block of play also starts with similar initiation

periods. In a block initiation period, players play as described above. If the realized profile is not

(a1, b1), they start playing their block action plans from the next period. Otherwise, they play

the initiation period again. Once a block is initiated, play within the block proceeds exactly as

in the earlier construction, i.e. players start the block with a plan period followed by a signature

period and then play according to the announced plan of the block. Since the pairwise game after

initiation is exactly the same as in the earlier construction, I omit a detailed description here.

The initiation periods ensure that no player can know precisely what state her rivals are in

with respect to each other. In particular, no player knows whether a given period is a signature

period for any pair of her rivals. Further, no player outside a pair can observe the action realized in

the plan period, and so is unaware of the sequence of actions that is being played. Consequently,
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if anyone outside a pair tries to impersonate one of the members of the pair, she can end up

playing the wrong action in case it is a signature period and thus get detected. If a deviation

is detected, the detector punishes the entire rival community by switching to the unfavorable

strategy with every rival in the next plan period. This threat is enough to deter deviation if

players are sufficiently patient.

Since the construction is quite similar, the details of the proof are relegated to the appendix.

1.3.5. Cooperation within a Single Community

In many applications, it may be reasonable to assume that there is only one large community of

players who interact repeatedly with each other, possibly in different roles. For example, consider

a large community of traders over the internet, where people are repeatedly involved in a two-

player game between a buyer and a seller. It is conceivable that no player is just a seller or just

a buyer. Players switch roles in the trading relationship in each period, but each time play a

trading game against another trader in the community. Can cooperation be sustained in this

slightly altered environment?

It turns out that the same equilibrium construction works for a single community of agents.

Any feasible and individually rational payoff can be sustained in equilibrium within a single

community of players in the same way, using the idea of community responsibility. To see how,

consider a community of M players, being randomly matched in every period and playing a two-

player stage-game. For ease of exposition, think of a two-player trading game played between a

buyer and a seller. Suppose players are paired randomly each period, and a public randomization

device determines the roles within each pair. (Say, players are designated buyers and sellers with

equal probability).

Each player now plays one set of games as a buyer against (M − 1) sellers and another set

of games as a seller against (M − 1) buyers. She tracks continuation payoffs separately for each
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possible opponent in exactly the same way as before. Now she treats the same name in a buyer

role and a seller role separately. If a player detects a deviation as a seller (or buyer), she switches

to a bad mood against all buyers (or sellers) at the earliest possible opportunity (i.e. at the start

of a new T -period block with each opponent).

An interesting observation is that a single community actually facilitates detection of imper-

sonations. If a player misreports her name, with positive probability she will meet the real owner

of her reported name, and in this case her rival will know with certainty that an impersonation

has occurred. This feature can be used to simplify the equilibrium strategies, and eliminate the

need for special signature periods.

1.4. Community Responsibility with Multiple Communities

So far, we have analyzed the interaction between two communities of agents who repeatedly

play a two-player game and shown that a Folk Theorem holds for sufficiently patient players. This

section establishes that the result generalizes to situations with random multilateral matching

where K > 2 communities interact. Agents from K different communities are randomly matched

to form groups of K players each (called “playgroups”). Players first simultaneously introduce

themselves, and then play a simultaneous moveK-player stage-game. It turns out it is still possible

to achieve any individually rational feasible interior payoff through community responsibility.

How does community responsibility work when there are multiple communities? In the two-

player case, each player keeps track of her rival’s continuation payoff. Her own strategy is inde-

pendent of her own continuation payoff, which is controlled by her rival. With K players, the

challenge is that we need to ensure that each player can control the payoffs of all her rivals simul-

taneously. This problem is resolved by making each community keep track of exactly one other

community. The construction can be summarized as follows.

Every player tracks separately her play with every possible K player group she could be in.

Play within any playgroup proceeds in blocks of T periods. Each community k acts as the monitor



44

of one other community, say its successor community k+1 (communityK’s successor is community

1). At the beginning of each block, each player uses one of two continuation strategies. She is

indifferent between them, but the strategy she chooses determines whether the continuation payoff

of the player of her successor community in that playgroup is high or low. So, each player’s payoff

is tracked by her monitor in a playgroup. The monitor randomizes between her two strategies at

the start of each block in a way to ensure that the target payoff of her successor is achieved. As

before, conditional on truthful announcement of names, these types of strategies can be used to

attain cooperative outcomes. As in the case of two communities, community responsibility is used

to ensure truthful announcement of names. If any player deviates from the equilibrium strategies,

she can be punished in two ways. First, the members of her specific playgroup can minmax her.

Second, her monitor can hold her whole community responsible and punish the community by

switching to the unfavorable strategy with all her playgroups at the start of the next block.

1.4.1. Model and Result

Multilateral Matching: There are K communities of agents with M > 2 members in each

community I, I ∈ {1, . . . ,K}. In each period t ∈ {1, 2, . . .}, agents are randomly matched into

groups of K members each, with one member from each community. Let G−k denote a group of

(K−1) players with members from all except the kth community. Let mt(G−k) denote the member

of the kth community who is matched to the group G−k. Matching is independent and uniform,

i.e. ∀ histories, ∀j ∈ community k,Pr[j = mt(G−k)] = 1
M

. For any player i, the set of rivals

she is matched with (say G−i) is said to constitute her playgroup. After being matched, players

announce their names. Names are not verifiable. Then, they play the K-player stage-game.

Stage-Game and Message Sets: As in the model with two communities, each community has

a directory of names NI : I ∈ {1, . . . ,K} with M names each. A name profile of a playgroup

is denoted by ν ∈ N := N1 × . . . × NK . Let ∆(NI) denote the set of mixtures of messages
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in NI . The stage-game Γ has finite action sets AI , I ∈ {1, . . . ,K}. Denote an action profile by

a ∈ A :=
∏

I AI . The set of mixtures of actions in AI is denoted by ∆(AI). Stage-game payoffs

are given by a function u : A → R
K . Define F to be the convex hull of the payoff profiles that

can be achieved by pure action profiles in the stage-game. Formally, F := conv ({u(a) : a ∈ A}).

Denote the feasible and individually rational payoff set by F ∗ := {v ∈ F : vi > v∗i ∀i}, where

v∗i is the mixed action minmax value for player i. We consider games where F ∗ has non-empty

interior (IntF ∗ 6= ∅). Let γ be defined as before. All players have discount factor δ ∈ (0, 1).

Information Assumption: Players can observe only the transactions they are personally en-

gaged in. So each player knows the names that she encountered in her playgroup in each period

and the action profiles played in that playgroup. She does not know the true identity of her

partners. She does not know the composition of other playgroups or how play proceeds in them.

The definitions of histories, strategies, action plans and sequential equilibrium can be easily

extended to this setting in a way analogous to Section 1.2.

Theorem 2. (Folk Theorem for Random Multilateral Matching Games) Consider

a finite K-player game being played by K > 2 communities of M members each in a random

matching setting. For any (v1, . . . , vK) ∈ Int(F ∗), there exists a sequential equilibrium that

achieves payoffs (v1, . . . , vK) in the infinitely repeated random matching game with names with

KM players, if players are sufficiently patient.

The equilibrium construction in the K-community case is similar to the two community case.

So the formal construction and proof of Theorem 2 are relegated to the appendix.

1.5. Conclusion

In games where large communities transact with each other, it is reasonable to assume that

players change partners over time, they do not recognize each other or have very limited infor-

mation about each other’s actions. This paper investigates whether it is possible to achieve all
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individually rational and feasible payoffs in equilibrium in such anonymous transactions. To an-

swer this question, I consider a repeated two-player game being played by two communities of

agents. In every period, each player is randomly matched to another player from the rival commu-

nity and the pair plays the two-player stage-game. Players do not recognize each other. Further,

they observe only the transactions they are personally involved in. I examine what payoffs can

be sustained in equilibrium in this setting of limited information availability.

I obtain a strong possibility result by allowing players to announce unverifiable messages in

every period. The main result is a Folk Theorem which states that for any two-player game

played between two communities, it is possible to sustain all feasible individually rational payoffs

in a sequential equilibrium, provided players are sufficiently patient. Though cooperation in

anonymous random matching games has been studied before, little was known about games other

than the prisoner’s dilemma. This paper is an attempt to fill this gap in the literature.

Earlier literature has shown that though efficiency can be achieved in a repeated PD with no

information transmission, with any other game, transmission of hard information seems necessary.

Kandori (1992) assumes the existence of labels - players who have deviated or faced deviation

can be distinguished from those who have not, by their labels. Takahashi (2007) assumes that

players know the full history of past actions of her rival. To the best of my knowledge, this paper

is the first to obtain a general Folk Theorem without adding any hard information in the model.

Though players can announce names, it is unverifiable cheap talk.

An interesting feature of the strategies I use is that cooperation is not achieved by the cus-

tomary community enforcement. In most settings with anonymous transactions, cooperation is

sustained by implementing third-party sanctions. A player who deviates is punished by other

people in the society, not necessarily by the victim. Here, cooperation is sustained by community

responsibility. A player who deviates is punished only by the victim, but the victim holds the

deviator’s entire community responsible and punishes the whole community. It is this alternate
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form of punishment that allows us to obtain the Folk Theorem in a setting with such limited

information.

An appealing feature of the equilibrium in this paper is that unlike earlier work, the construc-

tion applies to quite general matching technologies, and does not require uniform or independent

matching. I also show that the Folk Theorem extends to a setting with multiple communities

playing a K-player stage-game.

A question that remains unanswered in this paper is whether cooperation can be achieved in

a general game with even less information than is used here. Can we obtain a Folk Theorem for

general games without any transmission of information? If not, what is the minimal information

transmission which will enable impersonal exchange between two large communities? This is the

subject of future work.
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CHAPTER 2

Observability and Sorting in a Market for Names

2.1. Introduction

While describing the recent acquisition of IBM’s ThinkPad name by computer manufacturer

Lenovo, the New York Times wrote:1

When Lenovo, the Chinese personal computer maker, bought I.B.M.’s personal

computing business for USD 1.75 billion in December 2004... Lenovo executives

assumed rightly that the I.B.M. brand would still resonate in the United States

market and serve to assuage the worries of existing and prospective customers

about the I.B.M. ThinkPad line of laptops. Lenovo also realized there would be

concern among American customers about buying from a China-based company

they had never heard of.

This situation highlights two important phenomena related to firm reputations.

First, firms may publicly buy and sell their names like other valuable tradeable assets. As

in the case of Lenovo and ThinkPad, the sale of a well-established name may be public because

it is covered widely by the business press. Changes of firm ownership may be publicly known

because disclosure is mandated by law. Even when not mandated by law, we see that a new

owner may choose to make it known - haven’t we seen local restaurants announce “Under New

Management”?

Second, the market for firm names can exhibit a sorting property, in the sense that well-

established names are usually bought by good firms. Consider the example of ‘Waterman’ a

1See “Quickly Erasing I and B and M” by Glenn Rifkin & Jenna Smith, New York Times, April 12, 2006
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famous premium brand of pens which changed ownership multiple times. Each time the brand

was sold, it was bought by a well-established firm, once by Gillette in 1992 and more recently by

Rubbermaid. IBM was bought by Lenovo the largest PC manufacturer in China. When Nabisco

sold its well-known ‘Shredded Wheat’ cereal brand, the potential buyers were trusted companies,

Kraft and General Mills. In fact it must be such a sorting property that enables consumers

to trust a name even after they know it has been sold. In the Lenovo example, even after the

ThinkPad name was sold, it appears that consumers continued to trust and buy it. They must

have believed that a firm capable of buying a name such as ThinkPad was likely to be “good”,

and would continue to provide the same quality of products and services.2

The existing theory on firm reputations does not explain either of these two phenomena. On

the contrary, the standard models (e.g. Kreps 1990, Tadelis 1999) have two opposite features.

First, non-observability of name trading is a key assumption. The main result in this literature

is that names are traded in all equilibria, but this result relies critically on the non-observability

assumption which is the source of value for names. Consumers believe that the current owner is

responsible for the good name or record of the firm, and good past record generates expectation

of good future performance. Good names become tradeable because a firm can secretly buy a

good name and create expectation of good performance and earn higher revenues.

The second feature of current models is the absence of sorting equilibria. A key result is

that the trading equilibria are all pooling equilibria. It is not possible for good firms to separate

themselves from the bad firms by buying valuable names. There are always some bad firms using

valuable names in equilibrium.

This brings us to the two main questions addressed in this paper. First, can we do away with

the assumption of non-observability and develop a theory to explain why firm names are valuable

even when clients can observe changes in name ownership? Second, under what conditions and

how can the market for firm names separate good firms from bad ones?

2See “Brands Still Easier to Buy than Create” by Kenneth N. Gilpin, New York Times, September 14, 1992.
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I consider an infinite horizon economy with generations of firms and consumers interacting

in each period. Both firms and consumers live for only one period. Consumers are homogeneous

and are on the long side of the market. Firms are of two types - competent and incompetent.

Competent firms can choose to work hard or be lazy. Working hard is costly but likely to result

in good quality products or services. Laziness always results in bad quality. Incompetent firms

are always lazy and so incapable of producing good quality. Consumers buy a product or service

from the firm for which they pay upfront. At the time of purchase, consumers do not see the type

of the firm or the quality of the product. They only see the name of the firm, and must pay a

wage based on the name.

Firms choose to appear in the market under different names which they buy in a competitive

market for names. The basic intuition of the model can be understood using two types of names.

So, for most part of the paper, I focus on this case. Firms can choose to enter with new names

(N) or successful names (S). Entering with an N -name is cheaper than entering with an S-name.

After collecting the wages, competent firms can choose to work hard or be lazy. At the end of the

period, each firm’s reputation or name3 changes based on the quality of products it has provided.

Names evolve according to a fixed transition rule (potentially random) which specifies a firm’s

reputation at the end of the period, based on its original reputation and the quality of products

provided. Before retiring, a firm can sell its reputation to a new entrant.

In this environment, the existence of a market for names affects incentives of firms in two

ways. First, it influences the effort choice of the firm. The continuation payoff from selling a

valuable name can make firms work hard to produce good quality. Also, the market may give

firms incentives to buy one name rather than another one. For instance, a firm may choose to

buy a costly name because consumers pay higher wages for it, or because a costly name is more

likely to remain good and gives a higher continuation payoff.

3For the rest of the paper, I use “firm reputation” and “firm name” interchangeably.
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It is worth noting here why this setting is particularly well-suited to analyze the value of

firm names when name trading is observable. In a departure from the literature which always

considers overlapping generations of firms, I consider a model where firms and consumers are all

short-lived. Therefore it is common knowledge that name ownership changes every period. When

a consumer meets a firm, she knows that the firm bought its name before entering.

With full observability of name changes, I examine the existence of equilibria in which the

market for names both causes competent firms to work hard and sorts firms according to their

type. I define a class of equilibria called sorting high-effort equilibria (SHE) where at least one

type of firm has a strict incentive to not use one of the two names, and competent firms always

work hard. In the main result of the paper, I characterize necessary and sufficient conditions for

the existence of such sorting high-effort equilibria (SHE). I show that SHE exist provided the cost

of effort is low enough for competent firms.

Two kinds of sorting arise in equilibrium. It is possible for competent firms to separate

themselves by being the only ones buying the valuable successful names. I call these situations

“Trust S-Names equilibria”. In these equilibria, when consumers see a successful name, they trust

it to be a competent firm and pay the corresponding high price. The higher wages for an S-name

provide firms incentives to buy these names. Higher continuation payoffs from an S reputation

- provided the same reputation is maintained - give competent firms the incentive to work hard,

and guarantee that incompetent firms do not find it worthwhile to buy these names. Note that

there is effort exertion by competent firms in equilibrium even though they are sorted out from

the incompetent firms. In other words, here, unlike in earlier models, moral hazard suffices to

provide incentives to exert effort, even in the absence of adverse selection.

The second type of sorting that arises is termed “Mistrust N -Names”. Here, incompetent

firms give themselves away by being the only firms using the cheap names. Consumers treat cheap

names with mistrust and pay them corresponding low wages. Competent firms force this situation
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to arise by always buying S-names before entering the market. Note that both types of sorting

allow firms to still pool on one name. In “Trust S-Names equilibria”, S-names separate competent

firms from incompetent ones. But some competent firms may still pool with incompetent firms

on N -names. Similarly, in “Mistrust N -Names” equilibria, firms separate with N -names but may

pool on S-names. In fact it will be shown that, generically, pooling on one name is required for

the existence of high-effort equilibria in this model.

The type of sorting high-effort equilibria that arises depends on the transition rule posited.

I show that for deterministic transition rules, the only type of sorting sustainable in a market

with two names is the “Mistrust N -Names” type. Equilibria with deterministic rules have the

appealing feature that they remain equilibria even in richer information structures, for instance

when consumers observe not just a name but the full history of outcomes of a particular name.

With random transition rules, both types of sorting can arise in equilibrium, as long as the cost

of hard work is low enough. I characterize the transition rules that give rise to each of the two

types of sorting.4

I examine the relationship between observability and separation. It turns out that under

observability, the requirement for separation in equilibrium is not a restrictive one. Relaxing the

requirement for sorting does not extend the range of parameter values under which high-effort

equilibria exist.

Finally in an extension of the model, I study the welfare implications of observability of name

trades. Since I restrict attention to high-effort equilibria, the total surplus of firms and consumers

is constant across regimes. However, observability does affect consumer and firm surplus. I present

examples where observability is irrelevant, observability makes consumers better off and worse off.

4Sorting high-effort equilibria that arise with random transition rules are perhaps less appealing because they fail to
remain equilibria if consumers actually observed the full history of outcomes of a firm name. However, I conjecture
that a two-state market with random transitions may be equivalently represented by a richer market with more
states and deterministic transitions.
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The rest of the paper is structured as follows: Section 2 describes the basic model. Section

3 presents two simple examples where firm ownership changes are observable and sorting high-

effort equilibria exist. In Section 4, I consider a market with more general transition rules and

characterize the necessary and sufficient conditions under which sorting high-effort equilibria

exist. Section 5 presents an extension which allows us to compare regimes with and without

observability. Section 6 discusses the relationship between the results in this paper and those in

related literature. Section 7 concludes. Proofs of most results are in the appendix.

2.2. The Basic Model

There is a continuum of firms of unit measure. Firms live for one period only. In each period,

they meet clients who are also short-lived. Consumers are homogeneous and are on the long side of

the market. The following stage game is played by firms and consumers each period. Assume that

the same play has occurred forever into the past. At the beginning of each period, the firm enters

the market. At the time of entry, it has to choose a name for itself. After entry, the firm meets

one client who pays it an upfront wage for its service. All a client sees at the time of purchase is

the name of that particular firm. So, the wage paid depends only on the observed name. After

collecting its wage, the firm makes an action choice. It has two choices: work hard (H) or be

lazy (L). Being lazy is costless while working hard involves a cost c > 0. There are two possible

outcomes that can arise from the action chosen - good (G) or bad (B). The probability of a good

outcome given hard work is (1− ρ) with ρ ∈ (0, 1). If the firm is lazy, a bad outcome occurs with

probability 1. Firms are of two types, competent (C) or incompetent (I). A proportion φ ∈ (0, 1)

is competent. A competent firm can choose to work hard or be lazy. An incompetent firm is

incapable of working hard. After the firm takes its action, the outcome occurs, and the firm’s

name changes based on a pre-determined transition rule. The firm can sell its (changed) name

before retiring. Figure 1 describes the sequence of events in a period.
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... ...

...t=−∞ t t+1 t=∞...

Buys Name.

Enters.

Meets Client.

Gets Wage.

Takes

action.

Outcome occurs.

Name Changes.

Sells Name

and Retires.

Figure 2.1. Timing of Events within a Period

2.2.1. The Market for Firm Names

In the market for firm names, there are two kinds of names, S and N . By convention, I call

the cheaper name N and the more expensive name S. The market for names is competitive and

names trade at prices VS and VN respectively. An entrant can buy (and an exiting firm can sell) a

name of its choice from a retiring firm (to an entrant) at these prices. Without loss of generality,

normalize the price of the cheaper name VN to 0. I also assume that there is no shortage of the

cheaper name. Think of entering with an N -name to be equivalent to entering with no reputation

at all. The market is characterized by a transition rule. Define a non-random transition rule as

follows.

Definition 8. A non-random transition rule is a function f : {S,N}×{G,B} → {S,N}.

A transition rule can be thought of as a device that describes how a name evolves based on the

performance of its owner. As mentioned earlier, at the end of the period, the firm sells its name

if possible, to a new entrant and then retires. Later, I generalize the analysis by allowing random

transitions rules, which specify not a deterministic transition but a distribution over future names

based on the original name and the outcome.

The market for names affects the incentives of firms in two ways. First, it influences the effort

choice of the competent type. The expected continuation payoff from selling a valuable name can

make competent firms exert effort, even though they are short-lived. Second, the market may
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give firms incentives to buy one name rather than another. For instance, a firm may choose to

buy a costly ‘good’ name because consumers pay higher wages for ‘good’ names, or because the

transition rule is such that a ‘good’ name gives a higher continuation payoff.

Notice that changes in name ownership are trivially observable in this setting. When con-

sumers see a name, they know that the firm bought this name at the time of entry.

2.2.2. Payoffs

Firms have a discount factor of δ. The net payoff to a firm consists of the wages it receives plus

the discounted proceeds from selling its name less the price it pays to buy its name, less the cost

of effort. Clients get utility 0 from a bad outcome and utility 1 from a good one. Since clients

can observe only the firm name and cannot observe the outcome at the time of payment, they

pay firms wages equal to their expected utility conditional on the observed name, given the firms’

strategies. Denote the wages conditional on the name by wS and wN . Since clients make no real

decision in the game, they are not explicitly modeled as players in what follows.

2.2.3. Definition of Equilibrium

In this paper, we consider simple Markovian equilibria. An incompetent firm’s strategy, denoted

by µS , specifies the probability with which it chooses an S-name. A competent firm’s strategy, de-

noted by (σS , eS , eN ), specifies the probability with which it chooses an S-name and a probability

of working hard conditional on each name.

Definition 9. A steady-state equilibrium consists of strategies of firms and a price of an

S-name, VS such that

1. The strategies are optimal for the firms (given the wages), and

2. Demand equals supply in the market for S-names at price VS.
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We do not require a market clearing condition for N -names which are in unlimited supply.

We want to find equilibria in which the market for names solves the moral hazard problem and

sorts competent and incompetent firms. So we define a sorting high effort equilibrium as follows.

Definition 10. A sorting high-effort equilibrium (SHE) is a steady-state equilibrium in

which

1. There exists at least one name that is chosen by one type of firm and not by the other,

2. Each firm strictly prefers a name it chooses to one that it does not choose,

3. Competent firms strictly prefer to work hard on the equilibrium path.

This definition requires partial sorting. It turns out that the set of parameters for which SHE

exist with full sorting is non-generic. In this model, we cannot apply the standard repeated game

arguments to derive the values of names that can sustain high effort. Here, the continuation

payoff or the values of names cannot be chosen arbitrarily but must satisfy the market clearing

conditions in the market for names.

2.3. Example of SHE

In this section, I discuss two examples of sorting high-effort equilibria. These examples demon-

strate different reputational effects. In the first, incompetent firms give themselves away by being

the only firms entering with cheap N -names. I call these SHE “Mistrust Cheap Names” or “Mis-

trust N -Names” equilibria.

Definition 11. A “Mistrust N-Names” or “Mistrust Cheap Names” equilibrium is a SHE

where the incompetent type is the only one using cheap N -names. (S-names are used by both

types)

In these equilibria, S-names are used by both kinds of firms. So incompetent firms are actually

indifferent between N and S-names. On the other hand, competent firms who can work hard can
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get a better continuation payoff with an S-name, and so strictly prefer to use S-names. As a

result, clients treat cheap names with mistrust and pay low (zero) wages to a firm with a cheap

name. I show that in a market with two names and non-random transition rules, this is the

only kind of sorting that can be sustained. In the second example, I present a “Trust Expensive

Names” equilibrium, where only copetent firms buy expensive names.

Definition 12. A “Trust S-Names” or “Trust Expensive Names” equilibrium is a SHE

where the competent type is the only one using the valuable S-names. (N -names are used by both

types)

To demonstrate this effect, we consider a market with three kinds of firm names. (These

equilibria do not exist with only two names.) There is an expensive name that only competent

firms buy. The other names are used by both types of firms. In equilibrium, clients know this

and when they see this expensive name, they pay the highest possible wages. Since incompetent

firms are not capable of getting good outcomes, they do not find it worthwhile to pay the high

price of the expensive name.

2.3.1. “Mistrust Cheap Names” Equilibria: An Example

Consider the transition rules represented by the two automata in Figure 2. We will see that

with these transition rules, “Mistrust Cheap Names” equilibria can be sustained. In equilibrium,

incompetent firms will reveal their type by being the only firms with cheap N -names.

To see why, observe that under both these rules, conditional on a bad outcome N -names have

strictly better continuation payoffs than S-names. So, I-firms are willing to pay for S-names,

a price VS which is the difference between the increase in wages from using an S-name and the

decrease in the continuation payoff from using it. At this price, C-firms choose to buy S-names

and work hard. Though they can be lazy, use N -names and still earn a higher continuation payoff,
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Figure 2.2. Transitions for “Mistrust Cheap Names” equilibria

they choose not to do so, as the increase in continuation payoffs from using an N -name does not

compensate for the decrease in wages that they suffer from using it.

So, competent firms signal their competence by buying S-names and then work hard to get a

high continuation payoff. Incompetent firms either use a costless name and get a high continuation

payoff, or they impersonate competent firms and earn high wages but lose out on continuation

payoff. Proposition 1 formalizes this intuition.

Lemma 1. SHE must have C types using only S-names.

This observation enables us to prove that the above example is the only SHE sustainable with

non-random transition rules and two names. First, I introduce some notation. Any non-random

transition rule f can be represented by a vector of zero’s and one’s (f1, f2, f3, f4), where

f(S,G) =











S if f1=1

N otherwise
f(S,B) =











S if f2=1

N otherwise

f(N,G) =











S if f3=1

N otherwise
f(N,B) =











S if f4=1

N otherwise.

First consider equilibria in which C-firms use both S and N -names. For C-firm to be indifferent

between the two names, the following must be true:

(2.1) −VS + wS − c+ δ(1 − ρ)f1VS + δρf2VS = wN − c+ δ(1 − ρ)f3VS + δρf4VS .
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For the C-type to prefer working hard to being lazy on the equilibrium path, we need

(2.2) c < δ(1 − ρ)(f1 − f2)VS and c < δ(1 − ρ)(f3 − f4)VS .

For (2.2) to hold, both S and N -names must transition to an S-name after a good outcome and

to an N -name after a bad one. (i.e. f1 = 1, f2 = 0, f3 = 1 and f4 = 0). But by (2.1), this implies

(2.3) VS = wS − wN .

A sorting equilibrium requires that I-firms play S or N but not both. So, one of the following

must be true:

−VS + wS + δf2VS < (>)wN + δf4VS .

Since f2 = f4 = 0, this implies that VS > (<)wS −wN , contradicting (2.3). Next, consider sorting

equilibria in which the C-type uses only N -names. Then, the I-type must use S-names. So the

following must be true:

VS ≤ wS − wN + δVS(f2 − f4).

But, in this equilibrium, wS = 0 ≤ wN . This implies that VS ≤ 0, which is not possible. If

VS ≤ 0, this would destroy incentives for C-firms to work hard in any state. This concludes the

proof.

The intuition for the second part is that since only I-types buy S-names, there is no benefit

in wages from an S-name. I-types buy S-names only because an S-name gives a better (weakly)

continuation payoff than an N -name in case of a bad outcome. Therefore, at best an I-firm gets a

continuation payoff of δVS , but must pay VS for it. This will leave the I-firm with a non-positive

net payoff. So it cannot be that incompetent firms buy S-names. This contradicts the hypothesis.

So, in equilibrium C-types can play only S-names.
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Proposition 1. Sorting high-effort equilibria exist in the market with non-random transitions

if and only if

φ ≤ 1

1 + ρ
and c <

2δφ(1 − ρ)2

(1 + δ)(1 + φ− φρ)
.

The equilibria can be characterized as follows:

1. Competent firms buy only S-names.

2. Incompetent firms buy S-names with probability µS = 1
2 − ρφ

2(1−φ) .

3. Firms earn wages that equal the expected utility to the consumer conditional on the firm’s

name, wS = φ(1−ρ)
φ+(1−φ)µS

and wN = 0.

4. S-names trade at price VS = wS

1+δ
.

The interested reader may refer to the appendix for the proof of Proposition 1. Notice that

if the proportion of competent types is very high (i.e. for φ > 1
1+ρ

), there will be a shortage of

S-names in the market. There will be a high demand for S-names but there will be insufficient

incompetent firms creating S-names. So the market for S-names cannot clear.

When φ < 1
1+ρ

, the equilibria characterized above are partially sorting equilibria in that S-

names are bought by both types of firms, but only I-firms use N -names. At the knife-edge case

φ = 1
1+ρ

, full separation can be sustained, where C-firms use S-names and I-firms use N -names.

An important feature of this equilibrium is that it remains an equilibrium even if consumers

could observe not only the name of the firm but also the complete history of outcomes of the

name. This is an appealing property because it implies that the existence of the SHE above is

not dependent on the implementation of any specific transition rule. (Refer to Section 4.4.1 for

further discussion of this property.)

2.3.2. “Trust Expensive Names” Equilibria: An Example

Proposition 1 establishes that the only SHE that exist with two names and non-random transition

rules are of the “Mistrust Cheap Names” type. The next example therefore uses a richer market
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with three possible firm names to demonstrate “Trust Expensive Names” equilibria under non-

random transition rules. There is a valuable firm name that is bought only by competent firms.

The other names are bought by both types of firms. Competent firms work hard in equilibrium.

2.3.2.1. A Richer Market for Names. Consider a richer market for names with three names:

S1, S2 and S3. Without loss of generality, let S3 be the cheapest name with its price normalized

to 0. Denote the wages conditional on the name by w1, w2 and w3. I restrict attention again to

non-random transition rules which are functions f : {S1, S2, S3} × {G,B} → {S1, S2, S3}. An in-

competent firm’s strategy, denoted by (µ1, µ2, µ3), specifies the probability with which it chooses

S1, S2 and S3-names respectively. A competent firm’s strategy, denoted by (σ1, σ2, σ3, e1, e2, e3),

specifies the probabilities with which it chooses S1, S2 and S3-names respectively, and the prob-

ability of working hard conditional on each name. The definitions of equilibrium and sorting

high-effort equilibrium can be extended to this richer environment in a natural way.

Definition 13. A steady-state equilibrium for a given transition rule consists of strategies

of firms and prices of names V1 and V2 such that

1. The strategies are optimal for the firm (given the transition rule and the wages), and

2. Demand equals supply in the markets for S1 and S2-names at prices V1 and V2 respectively.

Definition 14. A sorting high-effort equilibrium (SHE) is a steady-state equilibrium in

which

1. There exists at least one name that is chosen by one type of firm and not by the other,

2. Each firm strictly prefers the names it chooses to those it does not choose, and

3. Competent firms choose to work hard on the equilibrium path.

Note that I assume that firms work hard on and off the equilibrium path. This is just a

convenient assumption. If this restriction were dropped, SHE would exist for a larger set of

parameters.
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We can extend the definition of “Trust Expensive Names” equilibria in a similar way.

Definition 15. A “Trust Expensive Names” equilibrium is a SHE in which there is some

valuable name that is bought only by competent firms. (The other names may be bought by both

types.)

2.3.2.2. Example. Consider transition rules given by the automaton in Figure 3 below.

3

1

2

B

B

B

G G

G

Figure 2.3. Transition for “Trust Expensive Names” Equilibria

We show that with these transition rules, “Trust Expensive Names” equilibria exist. In these

equilibria, competent firms are the only ones buying S1-names. S2 and S3-names are bought by

both types. Competent firms work hard irrespective of the name they enter with. There are

other transition rules which also give rise to SHE. Refer to the appendix for a description of all

SHE sustainable under non-random transition rules in this richer market with three names. The

necessary and sufficient conditions for such an equilibrium are as follows:

Incentive Compatibility for Name Choice

Competent firms are indifferent between S1 and S3-names.

(2.4) −V1 +w1 − c+ δ(1 − ρ)V1 = w3 − c+ δ(1 − ρ)V2 + δρV1 =⇒ V1 =
w1 − w3 − δ(1 − ρ)V2

1 + δρ− δ(1 − ρ)
.
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Competent firms are indifferent between S2 and S3-names.

(2.5) −V2 + w2 − c+ δ(1 − ρ)V2 + δρV1 = w3 − c+ δ(1 − ρ)V2 + δρV1 =⇒ V2 = w2 − w3.

Incompetent firms must strictly prefer an S3-name to an S1-name.

(2.6) w3 + δV1 > −V1 + w1 =⇒ V1 >
w1 −w3

1 + δ
.

Incompetent firms must be indifferent between S3 and S2-names.

(2.7) w3 + δV1 = −V2 +w2 + δV1 =⇒ V2 = w2 − w3.

Incentive for Competent Firms to Work Hard

Competent firms prefer working hard to being lazy irrespective of the name they enter with.

(2.8) c < δ(1 − ρ)V1 and c < δ(1 − ρ)(V2 − V1).

Market Clearing Conditions

S1 names: φσ1 = φσ1(1 − ρ) + φσ2ρ+ φ(1 − σ1 − σ2)ρ+ (1 − φ)µ2 + (1 − φ)(1 − µ2)

(2.9) =⇒ σ1 =
1 − φ+ φρ

2φρ
.

S2 names: φσ2 + (1 − φ)µ2 = φσ2(1 − ρ) + φ(1 − σ1 − σ2)(1 − ρ)

(2.10) =⇒ σ2 =
1 − ρ

2
− (1 − ρ)(1 − φ)

2φρ
− 1 − φ

φ
µ2.

Wages w1, w2, w3 just equal the expected utility to the consumer. It can be easily verified

that the above equations and inequalities admit a non-empty solution set.
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There are two interesting features of this example. First notice that when a consumer sees

an S1-name, she knows with certainty that the firm is a competent one. There is no uncertainty

about the type, and yet competent firms still choose to work hard. This is contrary to standard

reputation models in which it is the uncertainty about a player’s type that forces effort exertion.

Second, notice that a richer market for names can extend the range of equilibria. From (2.9),

we see that for σ1 to lie in the interval (0, 1), we need 1 − φ + φρ < 2φρ. In other words, the

equilibrium conditions in this example imply that φ > 1
1+ρ

. But these are precisely the conditions

for which equilibria do not exist in the first example in a market with two names. So there exist

SHE in the richer market with non-random transition rules which are not possible in the two-state

market.

2.4. Markets with General Transition Rules

With two states and non-random transition rules our ability to sustain SHE seems limited. It

is not possible to sustain “Trust S-Names” equilibria. Further, even if the cost of working hard

is very small, it is not possible to sustain SHE if there are too many competent firms (high φ)

or if the chance of failing (ρ) is high. Section 3.2 suggests one way of sustaining more SHE: by

enriching the market with more states.

An alternate approach could be to consider more general transition rules. Why might this

approach work? The following example illustrates why. With a non-random transition rule,

the original name and outcome together determine with certainty the future name of the firm.

Suppose now that N -names were ‘disadvantaged’ in the sense that even after a good outcome

N -names found it harder to become S-names. (Formally, conditional on a good outcome the

future of a firm with an N -name is determined by the realization on an independent idiosyncratic

randomization device. With a strictly positive probability, N -names remain worthless even after

a good outcome.) S-names do not suffer this disadvantage, i.e. conditional on a good outcome,

an S-name remains an S-name with certainty. Conditional on a bad outcome, any name becomes
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worthless. If such a transition rule were prevalent, a competent firm would be willing to pay a

strictly higher premium for S-names compared to an incompetent firm. An incompetent firm is

willing to pay a price up to the increase in wages it gets from an S-name. A competent firm

is willing to pay this and more. A C-firm is also willing to pay for the increase in expected

continuation payoffs from an S-name (conditional on working hard). This would be enough to

yield “Trust S-Names” equilibria, as sorting only requires that one type be willing to pay a strictly

higher premium for an S-name than the other type.

This idea leads us to ask: If we use more general transition rules, what are the conditions

under which SHE can be sustained without further enriching the market for names? This section

addresses this question. I conjecture that a two-state market with random transitions is only an

efficient way of representing a richer market with deterministic transitions. In other words, for

any SHE with random transitions in the two-state market, it is possible to find a deterministic

transition rule that can sustain an equivalent SHE in a market endowed with more names.

Definition 16. A general transition rule is a function f : {S,N}×{G,B} → ∆({S,N}),

where ∆({S,N}) represents the probability distributions over the states {S,N}. So, a general

transition rule f can be described completely by a vector (γ1, γ2, γ3, γ4), where

f(S,G) = (γ1, 1− γ1), f(S,B) = (γ2, 1− γ2, f(N,G) = (γ3, 1− γ3), f(N,B) = (γ4, 1− γ4). Here,

f(S,G) = (γ, 1 − γ) denotes that conditional on outcome G, an S-name will transition to S with

probability γ and to N with probability 1 − γ.

Notions of strategies and equilibrium are unaltered. We start with the following lemma.

Lemma 2. In any SHE, some competent firms must buy S-names.

Proof: Suppose there exists an equilibrium in which competent firms buy only N -names (the

cheap name). Sorting implies that incompetent firms must use the valuable S-names. In other
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words, an I-type prefers (at least weakly) an S-name to an N -name.

(2.11) −VS + wS + δγ2VS ≥ wN + δγ4VS .

Since in such an equilibrium wS < wN , the above expression implies that VS is negative irrespective

of the values of γ2 and γ4. This is a contradiction. 2

To see the intuition, consider the incentives for I-firms. A name affects incentives via wages or

via continuation payoffs. In an equilibrium where C-firms buy only N -names, an S-name would

give lower wages than an N -name. So the only reason for an I-type to buy an S-name is that

it gives higher continuation payoffs than an N -name, after accounting for the price paid for the

S-name. At best, an S-name will give a continuation payoff δVS , which means that net payoff

from an S-name is really negative. At worst, an N -name will give a net payoff of 0. So, it cannot

be that I-firms prefer buying S-names to N -names.

2.4.1. Characterizing the Region where SHE Exist

By the lemma above, C-firms must buy S-names and I-firms must buy N -names in SHE. This

leaves us with only two possible kinds of sorting. These are in fact the types of sorting we observed

in the examples in Section 3.

The first is “Trust S-names” sorting. Here, only competent firms buy successful names. C-

firms use both N and S-names. I-firms use only N -names. So, competent firms signal their

competence by buying S-names, and incompetent cannot impersonate competent firms by buying

S-names because the price is too high to make it worthwhile. Consumers trust an S-name when

they see it because they are certain it is owned by a competent firm.

The second type of sorting is “Mistrust N -names”. Here, only incompetent firms enter with

new names. S-names are used by both C and I-firms. Competent firms do not use N -names

because if they work hard, the costly S-names still give them a higher expected payoff than
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N -names. Consumers mistrust any N -name, because they are certain that it is owned by an

incompetent firm.

Recall that our objective is to characterize the conditions under which it is possible to find

transition rules which result in sorting high-effort equilibria. It turns out that there is a simple

characterization of the conditions for existence. SHE exist if and only if the cost of effort is low

enough.

Proposition 2. Given φ, ρ, δ, c, a sorting high-effort equilibrium exists if and only if

c < c̄ = min

{

δ(1 − φ)(1 − ρ)2

1 − φ+ δφρ
,
δ(1 − φ)(1 − ρ)2

δ(1 − φ) + φρ

}

.

The interested reader may refer to the appendix for the proof. Note that the upper bound

c̄ is decreasing in φ. In other words, as the proportion of competent firms increases, it becomes

harder to maintain a high-effort sorting equilibrium. To see why, notice first that if almost all

firms are competent, (as φ → 1) the consumer will pay very similar wages to firms with S and

N -names (i.e. (wS −wN ) → 0). In all sorting equilibria, we have seen that the price of an S-name

is always less than or equal to the difference in wages. As a result, the price of an S-name will

approach zero as well. If there is no benefit from ending up with an S-name, the incentives for

working hard will be lost.

The upper bound c̄ is also decreasing in ρ. The intuition is straightforward. If the probability

of a bad outcome conditional on working hard is reduced, competent firms have a better incentive

to work hard. At the other extreme, if hard work resulted in a bad outcome for sure (ρ = 1), there

would be no incentive to work hard, and a high-effort equilibrium would be impossible. Indeed,

at ρ = 1, c needs to be negative.

Given any cost of effort c < c̄, one may ask whether both types of SHE exist for this cost.

It turns out that the conditions for existence of “Trust S-Names” equilibria alone are more

restrictive. “Trust S-Names” equilibria exist if and only if the cost of effort is lower than a
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threshold δ(1−φ)(1−ρ)2

1−φ+φρ
. Notice that for impatient firms, this threshold is strictly smaller than c̄.

Hence, above this threshold cost, the only SHE that exist are of the “Mistrust N -Names” type.

For perfectly patient firms, the thresholds are the same, and hence both types of SHE exist for

any cost c < c̄.

2.4.1.1. HE and SHE. As an aside, let us examine the relationship between observability and

sorting. The sorting feature of equilibrium arises naturally in a model with observability of name

trades. The rough intuition is as follows: For names to be valuable, consumers must be able

to trust a good name even when they know that it has just been sold to a new owner. This is

possible if one of two situations arise: Consumers may be sure that only competent firms can buy

good names. Alternatively, consumers must believe that new names cannot be trusted, as only

incompetent firms choose to enter with new names. Successful names are valuable (tradeable) if

some form of sorting arises in equilibrium.

It turns out that under observability, sorting does not restrict the range of parameters where

high-effort equilibria exist. Define high-effort equilibrium with no sorting as follows:

Definition 17. A high-effort equilibrium without sorting (HE) is a steady-state equi-

librium in which

1. There is no name that is chosen by one type of firm and not by the other, and

2. Competent firms strictly prefer to work hard on the equilibrium path.

Proposition 3. Given φ, ρ, δ, c, a high-effort equilibrium (HE) exists if and only if

c <
δ(1 − φ)(1 − ρ)2

1 − φ+ φρ
.

The proof of this proposition is very similar to that of Proposition 2, and so is omitted. Note

that the upper bound is lower in the case of HE. This implies that the requirement for separation

in equilibrium is not a restrictive one. By relaxing the requirement of sorting, we cannot expand



69

the range of parameter values where high-effort equilibria exist. In a sense, in high-effort equilibria

under observability, we get the sorting feature for free.

Below we return to analyzing the SHE. The next two propositions characterize each type of

sorting in terms of the transition rule, costs and primitives of the environment.

2.4.2. Trust S-Names Equilibria

What kind of transition rules can create “Trust S-names” equilibria? Intuitively, transition rules

must display three properties:

(1) For C-firms to be indifferent between S and N -names, the price of an S-name must equal

the sum of increase in wages and increase in expected continuation payoffs conditional on

working hard. For I-firms to avoid S-names, the price must be higher than the increase

in wages and the increase in continuation payoff conditional on a bad outcome.

(2) Transition rules must be such that the demand for S-names equal the supply.

(3) For C-firms to have a strict incentive to work hard, transitions must be such that the

expected payoff from working hard is strictly higher than that from being lazy.

The following proposition describes these properties formally.

Proposition 4. (Trust S-Names Equilibria) High-effort “Trust S-names” equilibria exist

if and only if

1. γ3 − γ4 < γ1 − γ2

2. γ4 <
φ

1−φ
(1 − (1 − ρ)γ1 − ργ2)

3. c < δ(1 − ρ)(γ3 − γ4)
(1−φ)(1−ρ)

[φ(1−σS )+1−φ][1+δ(1−ρ)(γ3−γ1)+δρ(γ4−γ2)]

where σS = φ(1−ρ)(γ3−γ4)+γ4

φ(1−ρ)(γ3−γ1)+φρ(γ4−γ2)+φ
.

So, for a given distribution of firms φ, success rate (1 − ρ) and discount factor δ, transition

rules that satisfy (1) and (2) can sustain high-effort “Trust S-names” equilibria, if the cost of
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working hard is sufficiently low (i.e. (3) holds). The reader may refer to the appendix for the

proof. An analogous result holds for “Mistrust N -names” equilibria.

2.4.3. Mistrust N-Names Equilibria

In “Mistrust N -Names” equilibria, what must transition rules look like?

(1) For I-firms to use S and N -names, the price of an S-name must be exactly equal to the

increase in wages and increase in the continuation payoff conditional on a bad outcome.

For C-firms to not use N -names, the price of an S-name must be less than the total

increase in wages and continuation payoff conditional on hard work.

(2) The market for S-names must clear.

(3) C-firms must work hard on the equilibrium path i.e. when they buy S-names.

Proposition 5. (“Mistrust N-Names” Equilibria) High-effort “Mistrust N -names” equi-

libria exist if and only if

1. γ3 − γ4 < γ1 − γ2 <
1−γ2

φ(1−ρ)

2. γ4 >
φ

1−φ
(1 − (1 − ρ)γ1 − ργ2)

3. c < δ(1 − ρ)(γ1 − γ2)
φ(1−ρ)

[φ+(1−φ)µS ][1+δ(γ4−γ2)]

where µS = φ(1−ρ)γ1+φργ2+(1−φ)γ4−φ
(1−φ)(1+γ4−γ2) .

For a proof of the Proposition 5, the reader may refer to the appendix. The conditions for

the existence of “Mistrust N -Names” equilibria turn out to be more permissive than those for

“Trust S-Names”. In “Mistrust N -Names” equilibria competent firms use only S-names. Since

N -names are off the equilibrium path for C-firms, and it is no longer necessary to sustain high-

effort conditional on an N -name. This makes it possible to sustain high-effort and sorting for

some parameter ranges where “Trust S-Names” are unsustainable.
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2.4.4. Non-Random Transitions as a Special Case

It can be easily verified that the example of SHE with non-random transition rules described in

Section 3.1 satisfies the conditions in Proposition 5. From Propositions 4 & 5, it can be seen why

these are the only non-random rules that work. Consider all possible non-random transition rules

in the two-state market. To maintain incentives for competent firms to work hard, all rules which

do not reward an S name for a good outcome are eliminated. (i.e. rules with γ1 ≤ γ2). This

leaves possible only four transition rules.

(1, 0, 1, 0) (1, 0, 0, 0) (1, 0, 1, 1) (1, 0, 0, 1)

(a) (b) (c) (d)

Rule (a) violates Condition 1 for both types of equilibria and cannot ensure sorting. Rule (b)

destroys incentives for hard work in both types of equilibria. Rules (c) and (d) destroy effort

incentives in the “Trust S-names” case. This leaves only rules (c) and (d) as options to sustain

“Mistrust N -names” equilibria, which are precisely the ones described in Section 3.1.

2.4.4.1. Equilibrium when Clients Observe Full History of Outcomes. The SHE with

non-random transitions satisfy another interesting property. These equilibria survive in the more

standard infinitely repeated game setting where consumers can see not just the name but the full

history of outcomes for any firm name that they encounter.

To elaborate, let us consider a slightly different environment, where a name is a complete

history of outcomes (G or B) of the firms that owned it. So, when consumers see a name what

they observe is the complete history of outcomes. Note that since play has occurred for ever into

the past, consumers observe an infinite history of outcomes. The timing of the game is unaltered.

As before, firms must choose a name before they enter. Retiring firms sell their name if possible.

A new firm can choose to enter costlessly with a new name (with no history) N or with a name

bought from a retiring firm. In this setting, we want to look for sorting high-effort equilibria. In
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other words, can we find equilibria where competent firms always exert high effort, and there is

at least one kind of name which perfectly signals the type of the firm that uses it?

In this setting, since names are now just histories, firms can choose between potentially infin-

itely many different names. On the face of it, this would complicate the problem significantly. We

can simplify the problem by considering certain equivalence classes of outcome histories. Denote

the entire set of possible outcome histories by H and any arbitrary history by h. Consider two

equivalence classes of H , denoted by N and S , defined as follows:

Let N ∈ N .

h ∈ S =⇒ hB ∈ N , hG ∈ S .

h ∈ N =⇒ hB, hG ∈ S .

To illustrate, the history NGB belongs to N while NGBB belongs to S .

Clients will treat any two histories in the same equivalence class in the same way. In effect,

clients behave as if firms appear under two names N and S . It can be easily verified that the

following constitutes a steady-state equilibrium in this game.

- N -names are worthless. S -names sell at a price VS as in Proposition 1.

- C-firms always enter with S -names.

- I-firms use S -names with probability µS as in Proposition 1 and N -names with 1 − µS.

When a consumer sees a name from N , she believes that the firm must be an incompetent one

and so pays a wage of wN = 0. When she sees a name from S , she knows the firm could be a C

or an I-firm, and pays her expected utility wS as given in Proposition 1.

So, we have found an exact analog of the “Mistrust N -names” equilibrium derived in the

economy with two kinds of names and non-random transition rules. Why is this a desirable prop-

erty? In our model, a transition rule is a mechanism (conceivably managed by a mediator) that

determines the future of a firm based on its original name, realized outcome and an independent

idiosyncratic randomization. SHE that arise seem to depend critically on implementation of the
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transition rule. However, we see here that the SHE that are sustainable with non-random tran-

sitions are not really dependent on the existence of any mediator or transition mechanism. They

can arise naturally in equilibrium in a standard repeated game environment where all players can

observe the history of realized outcomes. This property does not hold for SHE under random

transitions. However, I conjecture that for any SHE in the two-state market with random tran-

sitions, an equivalent one can be derived using non-random rules in a market with a richer set of

names. In that case, we would be able to use a richer set of equivalence classes of histories and

remove the dependence of SHE on specific transition rules.

2.5. Relaxing Observability

So far, we have considered an environment where name trades are fully observable, and derived

sorting high-effort equilibria. An interesting extension would be a comparison of this environment

with one with non-observability of name ownership changes, in terms of existence of SHE and

welfare implications. A detailed examination of these issues is not included in the scope of this

paper. In this section, I present some examples to illustrate how the welfare comparisons can go

in either direction, based on the specific transitions rules being implemented and the primitives

of the environment. In the model described so far, observability is automatic. In order to make

a meaningful comparison between regimes with and without observability, we need to alter the

environment.

2.5.1. Overlapping Generations Model

Consider an economy with overlapping generations of firms. As before there are two types of

firms, competent and incompetent. A proportion φ is competent. Competent firms can choose

to work hard and incompetent firms are incapable of working hard. There are two outcomes -

good (G) and bad(B). Conditional on hard work, the probability of a good outcome is (1 − ρ),

and conditional on laziness, a good outcome never occurs.
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Each firm lives two periods. Firms can enter with N or S-names. Firms meet consumers

once in each period. Retiring firms sell their name before retiring. Consider the general random

transition rules described in Section 4. Conditional on a good outcome, an S-name remains

an S-name with probability γ1 and N -names become S with probability γ2. Conditional on a

bad outcome, S-names remain S-names with probability γ3 and N -names become S-names with

probability γ4. The timing of the game is depicted in Figure 4.

t=0

(Nascent Firm)

t=1

(Old Firm)

t=2

(Retiring Firm)

Chooses Name.

Enters.

Collects Wage.

Takes Action.

Name Changes.

Appears with

new Name.

Collects Wage.

Takes Action.

Name Changes.

Sells Name

and Retires.

Figure 2.4. Timing of Game for Overlapping Generations of Firms

In any period there are three generations of firms - nascent firms who are just entering the

market, old firms who have already lived for one period and retiring ones. Only retiring firms

can sell names to nascent firms. Old firms cannot buy or sell names. (This is just a convenient

assumption. The qualitative results are unaltered if old firms also bought names.)

At the time of entry, a firm decides what name to enter with. It can enter costlessly with

a neutral (N) name, or can buy a costly name from a retiring firm. On entering, firms meet a

consumer who pays the firm an upfront wage. Then the firm takes an action (work hard or be

lazy), and conditional on the action choice and outcome, the firm’s name changes. The firm meets

a consumer again in the second period now with his altered name. Again, he collects his wage,
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takes an action, and his name changes. Before retiring the firm sells its name (if possible) to a

nascent firm. For simplicity, we ignore discounting.

Consumers live only one period. They pay firms upfront, and so pay the expected utility

based on what they observe. In this model, we can study the two regimes with and without

observability of name ownership. In a regime of non-observability, consumers see only the name

of the firm. Under observability, they see not just the name but also the age of the firm. The age

of a nascent firm is 0 and the age of an old firm is 1. This is equivalent to full observability of

name: for instance, a nascent S-name must be a firm which just bought the name. Denote the

wages by wN,0, wN,1, wS,0, wS,1, where wa,i denotes the wage paid to a firm with name a and age

i. Notions of strategies and equilibrium are extended in the natural way.

2.5.2. Observability and Welfare: Examples

When we compare regimes of observability and non-observability, it is clear that since we consider

only high-effort equilibria the total surplus of consumers and firms is constant. The more inter-

esting question is to ask separately whether the consumers are better off under any particular

regime. Alternatively, which firms fare better under which regimes?

While a general analysis is postponed to later work, the examples presented here illustrate the

different effects that may arise. To compare meaningfully, I choose examples where equilibria exist

both under observability and non-observability. In the first example, observability is irrelevant.

The wages paid are independent of the age of the firm. In later examples I show that it is possible

for all firms to get better off under one regime or the other. I also present examples where the

preferences of the two types of firms are opposed.

2.5.2.1. Observability makes no difference. Consider a market with the following transition

rule. Conditional on a bad outcome, all names become N -names. Conditional on a good outcome,

S-names remain S-names and N -names become S with probability (1 − λ) ∈ (0, 1). Consider a
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“Trust S-Names” equilibrium. When consumers see an S-name, they know that it is a good

firm, and will pay wS,0 = wS,1 = 1 − ρ. A nascent firm with an N -name can be competent or

incompetent. Hence, the consumer pays her expected utility

wN,0 =
φ(1 − σS)(1 − ρ)

φ(1 − σS) + 1 − φ
.

For old firm with an N -name there are three possibilities. The firm may be an incompetent one,

or a competent firm who had an N -name and remained N , or a competent firm who had an

S-name but ended up with an N -name. Again, the consumer pays her expected utility

wN,1 =
φ(1 − σS)(ρ+ λ(1 − ρ)) + φσSρ

1 − φ+ φ(1 − σS)(ρ+ λ(1 − ρ)) + φσSρ
(1 − ρ).

We can solve for the high-effort sorting equilibrium. It turns out that C-firms buy S-names with

probability σS = (1−ρ)(1−λ)
1−λ+λρ

. I-firms use only N -names. The equilibrium price VS is

VS =
wS,0 − wN,0 + λ(1 − ρ)(wS,1 − wN,1)

1 − λ2(1 − ρ)2
.

What happens if we impose the condition that ownership changes cannot be observed? It turns

out that this makes no difference to the equilibrium in this market. To see why, recall that any

firm with an S-name must be competent, and so earns a wage wS,0 = wS,1 = 1 − ρ. The wages

earned by firms with N -names turns out to be

wN,0 = wN,1 =
φρ

φρ+ (1 − φ)(1 − λ+ λρ)
.

Since the wages paid are always independent of the age of the firm, making ownership changes

unobservable does not make any difference to firms or consumers.

2.5.2.2. All firms prefer one regime. Consider a market where the proportion of C-firms

φ = 0.9 and the cost of effort c = 0.1. The market has the following transition rule: Conditional



77

on a good outcome, both S and N -names become S-names. Conditional on a bad outcome, S-

names remain S with probability 0.1 and N -names become S with probability 0.2. (i.e. γ1 =

γ3 = 1, γ2 = 0.1, γ4 = 0.2).

Example 1 (All firms prefer non-observability). Let ρ = 0.1. Under these conditions, under

observability, there exists a “Trust S-names” equilibrium. If name changes were not observable,

the same equilibrium survives, and it can be verified that all firms get better off.

Example 2 (All firms prefer observability). Let ρ = 0.01. Under these conditions, under ob-

servability, there exists a “Mistrust N -names” equilibrium. If name changes were not observable,

the same equilibrium survives, but now all firms can be shown to get worse off.

The net payoff from buying or selling a name is weakly negative. The price of an S-name is

higher in a regime with observability. This implies that under observability, name trading is more

costly for any firm. A firm will prefer observability only if the sum of the wages it receives is high

enough to cover the increased cost of name trade.

2.5.2.3. Different firms prefer different regimes. Now suppose the proportion the cost of

working hard c = 0.1 and the probability of a bad outcome conditional on working hard is ρ = 0.01.

Example 3 (C-firms prefer non-observability, I-firms prefer observability). Suppose φ = 0.95.

Consider the following transition rule. Conditional on a good outcome, an S-name remains an

S-name with probability 1. Conditional on a bad outcome, an S-name remains S with probability

0.2. The corresponding transition probabilities for an N -name are 0.8 and 0.1. Under observability

there exists a “Trust S-names” equilibrium. If ownership changes were not observable, the same

equilibrium survives. C-firms get better off while I-firms lose out. However, together the firms

get better off and consequently, consumers get worse off.

Example 4 (C-firms prefer observability, I-firms prefer non-observability). Let φ = 0.5.

Consider the transition rule as above with one difference. Now conditional on a good outcome, an
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S-name remains S with probability 0.95. Under observability there exists a “Mistrust N -names”

equilibrium. If ownership changes were not observable, the same equilibrium survives. Now, C-

firms get worse off while I-firms get better off. Together, the firms get worse off and so consumers

get better off.

Observe that, in “Trust S-names equilibria”, observability makes consumers weakly better off,

while in “Mistrust N -names” equilibria with consumers get worse off under observability.

2.6. Related Literature

This paper contributes to the growing literature on firm reputations and the market for firm

reputations. Earlier work closest in spirit to this paper would include Kreps (1990) and Tadelis

(1999, 2002, 2003). In this and related work, the existence of a market for firm names plays two

roles. A tradeable name provides incentives for short-lived agents to work hard. Also, a firm

name acts as an assessment of firm’s ability, and tradeable names allow firms to buy credibility

with consumers.

Tadelis (1999, 2002, 2003) considers a general equilibrium framework where he establishes a

link between the value of the name and price of the firm’s services. Unlike this work, Tadelis

(1999, 2003) considers a model of pure adverse selection. Tadelis (2002) includes moral hazard.

One of the key insights from Tadelis’s work is that non-observability of ownership changes is key

to active name trading in all equilibria.

In the current paper, I depart from the literature by examining whether active trading of

firm names can exist with observability of ownership changes. I present a model with both

adverse selection and moral hazard and with full observability of name trading. I show that in

this environment, all high-effort equilibria involve active trading of names. However, we cannot

eliminate the ‘bad’ equilibrium in which all firms are lazy, consumers mistrust all firms, firms earn
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nothing and names are not traded. Since the ‘commitment’ type in my model is an incompetent

lazy type, this equilibrium cannot be eliminated.

In a recent paper, Hakenes and Peitz (2007) also ask the question whether firm names can be

traded when ownership changes are observable. They derive sorting equilibria with observability,

but in a model of pure adverse selection. Further, they do not allow full observability and are

able to obtain active trading only with partial observability. In their set-up, all consumers cannot

observe names of firms. Firm reputations are observable locally to a subset of consumers.

The other feature that sets this paper apart is the sorting nature of equilibrium. Sorting of

types does not arise in equilibrium in the Tadelis environment. This is a result of two opposing

effects. On one hand, good firms value good names because they can work hard and maintain

them. On the other hand, bad firms value existing good names because they cannot build a

reputation for themselves. When good firms try to separate themselves by buying good names,

the second effect overwhelms the first and bad firms value good names more than good firms.

Mailath and Samuelson (2001) also consider a market for firm reputations in which types

cannot get sorted. They show that names of intermediate value are more likely to be bought

by good firms and names with extreme reputations are more likely to be bought by bad firms.

Very good names are more attractive to bad firms who will gain by depleting the high reputation.

Intermediate names are bought by good firms, because they can build up the reputation. These

names are not bought by bad firms, because there is less value to to be depleted. Good firms find

it too expensive to buy a bad name and build up its reputation from scratch.

In this paper, I am able to derive equilibria with sorting of types. I show two types of sorting:

some equilibria where competent firms can differentiate themselves by being the only ones buying

valuable names, and other equilibria where incompetent firms give themselves away by being the

only firms using worthless names.
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2.7. Conclusion

In this paper, I raise two questions central to the literature on firm names and reputations.

First, I ask whether firm names can be tradeable assets even when changes in name ownership

are observable to the consumer. Second, I ask if the market for firm names can act as a sorting

device and separate competent firms from incompetent ones.

I consider an infinite horizon economy with generations of firms and consumers interacting in

each period. Firms can be competent or incompetent. Firms choose to enter the market under

different names which they buy in a competitive market for names. Changes in name ownership

are fully observable. There are two kinds of names available. Consumers buy a product from the

firm for which they pay upfront. At the time of purchase, consumers only observe the name of the

firm. After collecting their payment, firms provide their services. At the end of the period, each

firm’s name changes according to a fixed transition rule (potentially random) which determines

the future of a name based on its original name, realized quality of services, and an idiosyncratic

randomization. Before retiring, a firm can sell its name to a new entrant.

With full observability of name changes, I examine the existence of equilibria in which the

market for names both makes competent firms work hard and sorts firms according to their type.

I define a class of equilibria called sorting high-effort equilibria (SHE) where at least one type

of firm has a strict incentive to not use one of the two names, and competent firms always work

hard. In the main result of the paper, I characterize necessary and sufficient conditions for the

existence of such sorting high-effort equilibria (SHE). I show that SHE exist provided the cost of

effort is low enough for competent firms.

I also show that the market for firm reputations can act as an effective sorting device that

separates competent firms from incompetent ones. Some names can perfectly signal the type of

the firm that owns it. Two kinds of sorting may arise in equilibrium. It is possible for competent

firms to separate themselves by being the only ones buying the valuable successful names. I call



81

these situations “Trust S-Names equilibria”. In these equilibria, when consumers see a successful

name, they trust it to be a competent firm and pay the corresponding high price. The second type

of sorting that arises is termed “Mistrust N -Names”. Here, incompetent firms give themselves

away by being the only firms using the cheap names. Consumers treat cheap names with mistrust

and pay them corresponding low wages. Competent firms force this situation to arise by always

buying S-names before entering the market.
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CHAPTER 3

Large Games with Limited Individual Impact (Joint with Ehud

Kalai)

3.1. Introduction

Consider a simple location choice game. N players decide simultaneously where to live in a

linear city. Players are of different types (wealth levels) and want to live near other players who

have similar wealth levels. Player types are drawn independently, and players do not observe other

players’ types before choosing their locations. So players choose their location based on their own

wealth and the prior belief about others’ wealth. In this context (and many similar situations),

Bayesian Nash equilibrium may not be a good solution concept. If we view an equilibrium as

a steady state of an ongoing rational interactive process, we should require some ‘stability’ in

our solution concept. In this game, if relocation costs are low, players will want to revise their

Bayesian Nash equilibrium actions after they observe the realized wealth levels of their opponents.

A reasonable, intuitive notion of equilibrium in this game should imply some ‘ex-post stability’ and

preclude such relocation. Under what general conditions of the underlying game, will Bayesian

Nash equilibria have this ex-post stability property? This is the central question of the paper.

Robustness of equilibria have been of interest both in theoretical and applied contexts. Ex-

post stability relates to important issues in economic applications, and is known to imply several

desirable properties of equilibria. For instance, ex-post stability implies that a purification result

holds (Kalai 2004, Cartwright and Wooders, 2006). In certain large market games, ex-post stable

Nash equilibria exhibit a strong rational expectations property, when types are drawn indepen-

dently. In the implementation literature, it implies that the revelation principle holds. (Green and
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Laffont, 1987). Recently, the robustness properties of equilibria have also been of much interest

in the literature that lies in the interface of economics and computer science arising from work on

distributed computing. This literature has been concerned with assessing the damage caused in

systems by the presence of faulty behavior, and designing mechanisms (protocols) that are fault

tolerant. It turns out that the notions of fault tolerance and asynchrony in distributed computing

are closely related to the idea of robustness in equilibria in game theory. In fact, in this context,

ex-post stability of equilibria can be viewed as a form of resilience to asynchrony in the world of

distributed computing.

Large games or games with a large number of players have been studied because Bayesian

equilibria in some classes of large games exhibit appealing stability properties like ex-post Nash

robustness. Kalai (2004) establishes robustness of Bayesian equilibria in a particular class of large

noncooperative games. He shows that if we restrict attention to games where payoff functions

are equicontinuous, where action and type spaces are finite, types are drawn independently and

players are anonymous (each player’s utility is affected only by the aggregate actions of her

rivals), Bayesian equilibria are approximately ex-post stable, provided the number of players is large

enough. What is the notion of approximate ex-post stability? A strategy vector is (ǫ, ρ) ex-post

stable if with very high probability (at least 1−ρ), no player can gain, ex post, by more than some

very small amount ǫ by deviating. In particular, if players play certain actions in equilibrium of a

large game with incomplete information, they would have no incentive to revise these actions even

with perfect hindsight knowledge of types and actions of their opponents. Further, equilibria in

large games are robust also in the sense that the analyst’s equilibrium predictions are less sensitive

to the details of the game. Equilibrium predictions do not change across different extensive

versions of the game. Immunity to alterations means that Nash equilibrium predictions are

valid even in games whose structure is largely unknown to modelers or to players. Kalai (2004)

establishes a strong form of convergence to ex-post stability. As the number of players gets larger,
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convergence to ex-post stability is at an exponential rate, simultaneously for all games and all

equilibria. Gradwohl and Reingold (2007) provide some limited extensions of the above result.

They show that the assumption of independence of types can be relaxed somewhat. Bayesian

equilibria in the equicontinuous anonymous games can be ex-post Nash even when certain kinds

of correlation between types are allowed.

However, the ex-post stability in the above-mentioned results relies on the anonymity of

players, and on the restriction of games to have finite sets of types and actions. The results of Kalai

(2004) cannot be applied to many important applications. The finiteness assumption eliminates

important applications of economic interest such as market games, voting games, location choice

games and auctions. Further, the anonymity restriction rules out many strategic situations1,

where player’s payoffs can be affected asymmetrically on the types and actions of her different

opponents. Our primary objective in this paper is to investigate whether the ex-post stability

properties of Bayesian Nash equilibria hold more generally, when we consider infinite type and

action spaces and non-anoymous games.

We consider a general family of large games where player’s types and action spaces are infinite,

and where players are not anonymous, but instead payoffs can depend on types and actions of

specific rivals in potentially asymmetric ways. We show that if the strategy spaces are bounded

and the payoff functions in the family of games satisfy a single regularity condition - a variant

of uniform Lipschitz continuity - then every Bayesian Nash equilibrium of a large game is also

an approximate ex-post Nash equilibrium. In fact, we show that if players use their equilibrium

action, every Bayesian equilibrium is (ǫ, 0) ex-post Nash; i.e. with certainty, no player can gain

by more than a very small amount by deviating ex-post.

1The anonymity assumption made in Kalai (2004) imposes anonymity on payoff functions but not on the symmetry
or anonymity of the players. This implies any game could potentially be described by an alternative game where
information about named players is incorporated into their types. However, the additional assumption of finite
types restricts the generality of such alternate descriptions.
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While this paper makes a substantive contribution by extending equilibrium robustness results

to general settings with infinite types action spaces and non-anoymous games, we also make some

technical contributions that we hope will be useful in the future. The regularity condition we

impose on payoff functions is a notion of uniform Lipschitz continuity with respect to a different

metric we call the scaled L1 metric. This metric that we introduce turns out to be very suitable

for the analysis of large games. While the regularity condition offers some technical convenience,

more significantly it implies a special property that we call limited individual impact. In these

games, the unilateral impact that any player can have on the payoffs of any of her rivals is bounded

and further this unilateral impact decreases with the total number of players in the game. This

limited individual impact condition turns out to be important as it implies that an appropriate law

of large numbers (McDiarmid’s Bounded Differences Inequality) holds. This law of large numbers

(deviation inequality) has not been used before in the economics literature, and we believe that

it can be extremely useful in the analysis of large games.

The intuition of the main result is as follows. Consider a Bayesian equilibrium of a game

where the Lipschitz continuity condition is satisfied. In particular this implies that this is a game

with limited individual impact. By a law of large numbers, as the number of players increases,

with a high probability every player gets a realized payoff arbitrarily close to her ex-ante expected

payoff from her equilibrium strategies. Suppose the equilibrium were not ex-post stable. Then

with positive probability, the realized outcome of the game (profile of type-action characters of

one’s rivals) will be one where player i has an incentive to deviate ex-post and make a ‘significant’

gain. Since players are playing equilibrium strategies, it must be the case that the deviation action

gives i a lower ex-ante expected payoff, but at the realized profile, the payoff from deviation is

‘significantly’ higher than the ex-ante expected payoff from the deviant action. Since such an

outcome can be realized in the game only with very small probability, the realized type-action

character profile must be very ‘near’ some other profile, where such a profitable deviation is not
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possible. This implies that there are two ‘nearby’ type-action character profiles of one’s rivals,

where the same action gives a player ‘significantly’ different payoffs. But this is impossible if

payoff functions satisfy Lipschitz continuity. So, the equilibrium must be approximately ex-post

stable. To fix ideas, we present an example of such a game.

3.1.1. Example

Consider a city on the closed interval [0, 1]. There are N people who must decide where to live in

this interval i.e. they choose location li ∈ [0, 1]. Players can observe who their opponents are and

how old they are. Suppose each person i is characterized by her age a(i) normalized to also lie

in [0, 1]. Players are of different types wi, with types being drawn independently from a uniform

distribution on [0, 1]. Think of a player’s type wi to be a normalized measure of her wealth.

At the start of the game, each person learns her own type (wealth level). She also observes

her opponents and their ages. Players must then simultaneously choose a location to live in, to

maximize her own utility. Each player wants to live far away from other people. She would rather

live closer to younger people than older people, and would rather live closer to people with similar

wealth levels as her own. Formally, the utility function of players is given by

ui(wi, li, w−i, l−i, a1, ..., aN ) =
1

N − 1





∑

j 6=i

aj(|ai − aj |)(|wi − wj|)



 .

At this point, it is worthwhile to point out some specific features of this location choice game.

Clearly, player types are drawn from a continuum, and actions spaces are infinite. Notice that in

this game, players are not anonymous. Each player’s impact on her rivals is different and depends

on her age. As a result, each player’s utility is not just determined by aggregate outcomes.

However, the specific impact any player has on her rivals reduces with the number of players in

the game. To see why, observe that the maximum difference any player can make on a rival’s

utility is 1
N−1 .
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An equilibrium that is ex-post stable in this game would be one where once players choose

where to live, they do not want to relocate. The results in this paper imply that if this location

choice game were played by a large enough number of people, and if players chose their location

according to a Bayesian Nash equilibrium of this game, they would not want to relocate even if

after they have perfect knowledge of their rivals’ location choices and wealth levels.

The rest of the paper is organized as follows. Section 2 describes the model. In Section 3, we

discuss the main assumption of Lipschitz continuity and its implications for the class of games

that we study. In Section 4, we state and prove the main result. Section 5 presents an example to

demonstrate the main ideas of the paper. In Section 6, we discuss a related notion of information

proofness of Bayesian equilibria. Section 7 concludes.

3.2. Model

Let T denote the space of feasible types of players, and let A denote the space of all fea-

sible actions of players. We will consider a family of games Γ = Γ(T ,A ) of Bayesian games

G(N,T,A, τ, {ui}) that can be described as follows.

• There are N players {i = 1, ..., N}.

• The type of each player i is drawn independently from a type-space Ti, where Ti is a

compact subset of T . Let T denote the type space of all players, i.e. T :=
∏

i=1,...,N Ti.

Let τ be a probability measure on the Borel subsets of T . Associated with τ is a marginal

distribution on each Ti, which is denoted by τi. The distributions are common knowledge.

• Each player i chooses actions from her action space Ai which is a compact subset of A .

Let A denote the space of action profiles of all players,, i.e. A :=
∏

i=1...,N Ai.

We refer to a pair (ti, ai) := ci as a type-action character of player i. Denote the space

of each player’s type-action characters Ti × Ai as Ci. Denote the space of type-action

character profiles as C =
∏

i Ci. For any player i, we denote the space of type-action
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characters of her rivals as C−i :=
∏

j 6=i Tj × Aj . For the rest of the paper, we assume

that each Ti and each Ai is a compact subset of R
k for some k ≥ 1.

• Players’ payoffs are given by bounded measurable functions ui : C → R.

For any player i, for any (ti, ai), we can define induced payoff functions

u
ti,ai

i : C−i → R such that uti,ai

i (t−i, a−i) = ui(ti, ai, t−i, a−i).

Definition 18. A family of games Γ = Γ(T ,A ) is said to have a uniformly bounded

strategy space if T is a compact subset of R
kT and A is a compact subset of R

kA for some

integers kT , kA ≥ 0.

In this paper, we consider families of games with uniformly bounded strategy spaces. Next,

we define a metric which will be useful in our analysis.

Definition 19 (Scaled L1 Metric). Given an integer N , we define the N-scaled L1 metric

on R
M as follows.

∀x, y ∈ R
M , d(x, y) =

1

N

M
∑

m=1

|xm − ym|.

Henceforth, in any N -player game, we will use this metric on the space of any player’s rival

type-action characters; i.e. for any player i, we measure the distance between any two type-action

character profiles of her rivals c−i, c
′
−i ∈ C−i using this metric, where N is the total number of

players in the game. Notice that this metric is very similar to the L1 metric except for the scaling

by a factor of N . The scale factor N makes the distance between two type-action characters less

sensitive to differences in magnitude of each coordinate.

We consider families of games with payoff functions that are Lipschitz continuous in the rivals’

type-action character profile with respect to this new metric.

Definition 20. Given K ≥ 0, the payoff functions ui in a family of games Γ(T ,A ) are said

to be uniformly K-Lipschitz continuous in the rivals’ type-action character with respect to
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the N -scaled L1 metric if for every N -player game in Γ(T ,A ), for every player i,

|ui(ci, c−i) − ui(ci, c
′
−i)| < K d(c−i, c

′
−i)

where d(., .) is the ‘scaled L1 metric’.

Notice that the above condition requires the Lipschitz bound is uniform for all N in the family

of games. Let Γ(T ,A ,K) denote a family of games consisting of games which also satisfy the

above Lipschitz continuity condition.

As an aside, note that the equivalence of the L1 and Euclidean norms implies that this

Lipschitz condition with respect to the scaled L1 metric implies the standard Lipschitz continuity

with respect to the Euclidean metric.

Definition 21. A pure strategy of a player i is a measurable function si : Ti → Ai.

Defining mixed strategies as maps from types to mixtures over pure strategies has the draw-

back that it is not well defined in games with a continuum of types (see Aumann (1964)). Here,

we use the notion of distributional strategies as introduced by Milgrom and Weber (1985).

Definition 22. A distributional strategy for player i is a probability measure σi on the

Borel subsets of Ti × Ai for which the marginal distribution of Ti is τi. When players use distri-

butional strategies, the expected payoff of player i is defined as follows:

Ui(σ1, . . . , σN ) =

∫

ui(c)dσ(c).

A distributional strategy refers to an equivalence class of mixed strategies that gives rise

to the same behavior. A mixed strategy induces a joint distribution across types and actions.

Conversely, a joint distribution can be generated by many mixed strategies2.

2Please see Milgrom Weber (1985) for more on the correspondence between behavioral strategies, mixed strategies
and distributional strategies. A behavior strategy can be defined as function βi(B, ·) : Ti → [0, 1] such that
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Definition 23. A profile of distributional strategies σ∗ is an equilibrium3 if

∀i,∀σ′i, Ui(σ
∗
1 , . . . σ

∗
i , . . . σ

∗
N ) ≥ Ui(σ

∗
1 , . . . σ

′
i, . . . , σ

∗
N ).

Since we are interested in ex-post Nash robustness and since we prove this property asymptot-

ically as the number of players increases, we need to define a notion of approximate equilibrium.

Definition 24. Let ǫ > 0 (small). A profile of type-action characters c ≡ (t1, a1, ..., tN , aN )

is said to be an ǫ-best response for player i if for all actions a′i, ui(a
′
i, ti, a−i, t−i)) ≤ ui(a) + ǫ.

Definition 25. A type-action character profile is said to be ǫ-Nash if it is an ǫ-best response

for all players.

Definition 26. A strategy profile (σ1, ..., σN ) is said to be ǫ-ex-post Nash if it yields ǫ-Nash

type-action character profiles with probability 1.

Note that an equilibrium is approximately ex-post Nash if it is stable in the sense that the re-

alized actions, not the mixed strategies, constitute a Nash equilibrium of the complete information

game.

3.3. Lipschitz Continuity and Limited Individual Impact

At this point, it is worthwhile to examine the Lipschitz continuity assumption more closely. In

the next section, we will prove the ex-post stability of equilibria in the class of games Γ(T ,A ,K).

To do this, we will use a special property of this family of games that we call the ‘limited individual

impact’ property.

(i) for every B ⊂ Ai, the function βi(B, ·) : Ti → [0, 1] is measurable and (ii) for every ti ∈ Ti, the function
βi(·, ti) : Ai → [0, 1] is a probability measure. For any distributional strategy σi, the regular conditional distributions
σi(B|ti) defined over the Borel subsets B of Ai can be understood as behavior strategies βi(B, ti) = σi(B|ti).
Conversely, for any behavioral strategy βi, the corresponding distributional strategy σi is defined for all Borel
subsets of Ti × Ai by σi(S × B) =

R

S
βi(B, tiτi(dti)

3In the context of this paper, we are not concerned about existence of equilibria, since our objective is to establish
stability properties of equilibria where they exist. As as aside, note that independence of types and uniform
continuity of payoff functions in a game delivers existence of an equilibrium in distributional strategies.
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Definition 27. Given λ ≥ 0, players in games in Γ(T ,A ) are said to have λ-limited

individual impact if the set of payoff functions {ui} satisfies the following condition:

∀i,∀ type-action characters ci, |uci

i (c−i) − uci

i (c′−i)| ≤
λ

N − 1
,

whenever c−i, c
′
−i differ only in one coordinate.

It turns out that uniform Lipschitz continuity in the scaled L1 metric together with uniform

boundedness of the strategy space implies the above property.

Lemma 3. Let Γ(T ,A ,K) be a family of games that satisfies the uniform K-Lipschitz con-

tinuity. Then, there exists a constant λ ≥ 0 such that players in Γ(T ,A ,K) satisfy the λ-limited

individual impact condition.

Consider any game in Γ(T ,A ,K), and fix any player i. For any two type-action character

profiles of player i’s rivals ci and c−i that differ only in one coordinate, the distance (in the scaled

L1 metric) between the two profiles is less than B
N

for some upper bound B. The existence of

such an upper bound B follows directly from the uniform bounded strategy space of Γ(T ,A ,K).

Now Lipschitz continuity implies that the for any type-action character of player i, the difference

in player i’s payoffs at ci and c−i can be at most KB
N

. This implies that the λ-limited individual

impact condition holds with λ = KB. �

The limited individual impact condition asserts that the influence that any player can unilat-

erally exert on the payoff of an opponent is uniformly bounded and decreases with the number of

players in the game. Notice that this condition does not imply anonymity, as a player’s utility is

not just affected by the aggregate actions of her rivals. The impact of each player on another can

be potentially asymmetric and dependent on the type and identity of the rival. Further, there are

no conditions imposed on the difference that a player can make to his own payoffs by changing

his action choice unilaterally.



92

3.4. Ex-post Robustness in Large Games

Theorem 3. (Ex-post Robustness in Large Games) Let G ∈ Γ(T ,A ,K). Let σ∗ be an

equilibrium of G. Then, the following condition holds.

Given ǫ > 0, ∃N̄ such that ∀N > N̄ , the equilibrium σ∗ is ǫ(1 +K) ex-post Nash.

Remark 4. Approximate ex-post Nash with probability 1: The above theorem delivers

a strong robustness property. If the game is large enough, with probability 1, players have arbi-

trarily low ex-post regret. In this sense, this result is stronger than that in Kalai (2004), where

approximate ex-post robustness is obtained with high probability, but not with certainty. Kalai

(2004) shows that in large games, Bayesian equilibrium strategy profiles yield ǫ-Nash type-action

character profiles with high probability. The stronger result in this paper is partly attributable to

the stronger assumption of Lipschitz continuity4.

We prove the above theorem in the following steps:

Lemma 4. (McDiarmid’s Independent Bounded Differences Inequality)5 Let X =

(X1,X2, ...,XM ) be a family of independent random vectors with Xk ∈ Xk for each k. Suppose

that the real-valued function g defined on
∏

Xk satisfies

|g(x) − g(x′)| ≤ lk whenever x and x′ differ only in the kth coordinate.

Let µ be the expected value of the random variable g(x). Then for any t ≥ 0,

Pr(g(x) − µ ≥ t) ≤ e
−2t2

PM
k=1

l2
k .

Proof: This result and the proof can be found in McDiarmid (1989). �

A straightforward application of the above result in our framework yields the following lemma.

4Lipschitz continuity in rivals’ type-action character profiles as defined in this paper implies the uniform equicon-
tinuity condition in Kalai (2004).
5We thank Colin McDiarmid for pointing us to this result.
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Lemma 5. Let σ be a strategy profile of the game G(N,T,A, {ui}).

∀i,∀ci, Pr(|uci

i (c−i) − µci

i | > α) ≤ 2e
−2(N−1)α2

λ2 ,

where µci

i = Euci

i (c−i).

Proof: For any player i, a realized type-action character profile of her opponents is a sequence

of independent random vectors (C1, ..., Ci−1, Ci+1, ..., CN ). By the limited individual impact con-

dition, we can find a constant λ such that the following condition holds.

∀i, ∀c−i ∈ C−i, whenever c−i, c
′
−i differ only in one coordinate,

|uci

i (c−i) − uci

i (c′−i)| ≤
λ

N − 1
.

Fix any α > 0 and any ci. Applying Lemma 2 to the function uci

i , we can get the above result.

�

The two lemmata above make transparent the role of the “limited individual impact”. The

Independent Bounded Differences inequality tells us that the probability that a function of inde-

pendent random variables deviates from its mean by any quantity t is inversely proportional to

the maximum impact that each random variable has on the value of the function. In our set-up,

limited individual impact means that any player’s impact on a rival’s payoffs is bounded, and

moreover decreases with N . This implies in turn that the probability of deviations from the mean

vanish exponentially fast with N .

We need to establish one more intermediate result before we prove the main robustness theo-

rem.

Lemma 6. Let p be a probability measure defined over X, where X is a compact subset of

R
k.

Given ǫ > 0,∃ δ > 0 : for all events S, p(S) > 1 − δ =⇒ p(Sǫ) = 1,
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where Sǫ is defined as the union of open balls of radius ǫ around elements of S, i.e. Sǫ =

⋃

x∈S Bǫ(x).

Proof: Suppose not. Then ∃ ǫ > 0 such that ∀δ > 0, we can find a set Sδ such that p(Sδ) > 1−δ

but p(Sǫ
δ) < 1. This implies that ∃ Tδ (let Tδ be the complement of Sǫ

δ) such that p(Tδ) > 0 and

p(T ǫ
δ ) < δ.

Now consider
⋃

x∈X B ǫ
3
(x) which is the union of ǫ

3 -balls centred around elements of X.

This is an open cover of X. By compactness there exists a minimal finite open sub-cover

O =
⋃

j=1,...,J B ǫ
3
(xj). Consider the sub-collection of sets O+ = {O ∈ O : p(O) 6= 0}. De-

fine δ̄ = MinO∈O+ p(O). In particular for this δ̄, ∃ Sδ̄ such that p(Sδ̄) > 1 − δ̄ but p(Sǫ
δ̄
) < 1.

Further for T = (Sǫ
δ̄
)C , p(T ) > 0 and p(T ǫ) < δ̄. Since p(T ) > 0, T must intersect one of the open

balls in O+, and consequently T ǫ must include one of the open balls in O+. This implies that

p(T ǫ) > δ̄ which is a contradiction. �

3.4.1. Proof of Theorem

Now we use the above lemmata to prove Theorem 3. Consider an equilibrium σ∗ of a game in

Γ(T ,A ,K). Let ǫ > 0 be given. Fix any player i. Suppose type ti is realized. Consider an action

ai of player i. The following must be true:

(3.1) Pr[uti,ai

i (c−i) − µ
ti,ai

i < ǫ] ≥ 1 − e
− 2(N−1)ǫ2

λ2 .

By Lemma 6, for this ǫ > 0, we can find δ > 0 such that for any S ∈ C−i, P (S) > 1 − δ =⇒

P (Sǫ) = 1. In particular this is true for S defined as S = {c−i ∈ C−i : |uti,ai

i (c−i)−µ
ti,ai

i | < ǫ}. If

N is large enough, the RHS of the above equation is greater than (1−δ). By Lemma 6, P (Sǫ) = 1.

Further, for any x−i ∈ Sǫ, ∃c−i ∈ S such that

u
ti,ai

i (x−i) − µ
ti,ai

i < |uti,ai

i (x−i) − u
ti,ai

i (c−i)| + |uti,ai

i (c−i) − µ
ti,ai

i |.
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Since the payoff functions are K-Lipschitz continuous, we get that

u
ti,ai

i (x−i) − µ
ti,ai

i < ǫ(1 +K).

Since the type-action character (ti, ai) was chosen arbitrarily, we have shown that for any player

i and for any realized type-action character (ti, ai), with probability 1, player i gets a payoff that

is at most ǫ(1 + K) different from the expected payoff conditional on her realized type-action

character.

(3.2) Pr[uti,ai

i (x−i) − µ
ti,ai

i < ǫ(1 +K)] = 1.

Now, since σ∗ is an equilibrium of the game, except on a set of type-action characters of measure

zero, the expected utility to player i from playing σ∗i is higher than that from playing any other

action. This along with (3.2) above implies that with probability 1, player i does not have a

profitable deviation that will give her a gain of more than ǫ(1 +K). �

3.5. Example

In this section, we present an example to demonstrate the main ideas of the paper.

Example 5 (Location Choice Game). Consider a group of N people {1, ..., N} choosing where

to live in the closed interval [0, 1]. Each person’s type is the place where she was born within the

interval (denoted by β), and is drawn uniformly from [0, 1]. Each player must choose a point

on the interval [0, 1] where she will live. Each person 2, ..., N wants to live where she was born.

Player 1 is different. She wants to live far away from the average choice of the other people, but

wants to live close to one person, her friend player 2. Formally, the game is described as follows.

• Each player’s type or birthplace βi is drawn independently from the uniform distribution

on [0, 1].

• Each player must choose location li ∈ [0, 1].
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• Utility functions of the players are given by

ui(τi, li, τ−i, l−i) =











−|li − τi| if i ∈ {2, ..., N}
4
5 |li − 1

N−1

∑

j 6=i lj | − 1
5

1
N−1 |li − l2| if i = 1.

Observe that this game is not anonymous, as player 1 specifically cares about the action choice

of player 2. First, consider this game being played by a small group of N = 3 players.

Claim: The following strategies constitute a Bayesian Nash equilibrium.

• Players 2 and 3 choose to live where they were born. (i.e. li = βi for i = 2, 3.)

• Player 1 chooses to live at l1 = 1.

Proof: Player 2 and player 3 will clearly choose actions exactly equal to their realized types.

Given player 1’s realized type, she will choose location l to such that

l = argmaxl∈[0,1]
4

5
E

[

|l − 1

2
(β2 + β3)|

]

− 1

5
E

[

1

2
|l − β2|

]

.

We know types are drawn independently from a uniform distribution over the unit interval. This

implies that β1 + β2 has probability density function

f(x) =























x 0 ≤ x ≤ 1

2 − x 1 ≤ x ≤ 2

0 otherwise.

Using this, it can be easily shown that player 1’s expected utility gets maximized at l = 1.

However, choosing location 1 is not ex-post Nash. To see why, consider the following realization

of types: players 1 and 2 are born at β = 0 and player 3 is born at β = 1. Ex-post, player 1 has

a profitable deviation. She would rather change her choice from 1 to 0. This would increase her

payoff from 3
10 to 4

10 .
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Now observe that the utility functions in this example satisfy the limited individual impact

condition. The types and action choices of players 1 and 3 have no impact on their rivals utilities,

and so the condition is satisfied trivially. Player 2 influences player 1’s utility, but her influence

reduces with the number of players in the game. It can be checked that each player’s utility

function is also Lipschitz continuous in her rivals’ type-action characters. Theorem 3 implies that

if a large enough number of players were playing this location choice game, player 1 would have

no ex-post regret.

The intuition is clear in this example. Though player 1 cares about her distance from her

friend player 2, as the number of players increases, she cares less about player 2. Being away

from the average becomes relatively more important. By choosing location 1, she maximizes her

expected distance from the average. As the number of players becomes very large, the realized

distance from the average is very close to what she expects.

3.6. Information Proofness

If we view an equilibrium as a steady state of an ongoing rational interactive process, our

notion of ex-post stability is compelling. In particular, it may be reasonable to assume that

players have access to ‘signals’ or partial information about other players’ actions or types, or

that they alter the sequence of play or have revision possibilities. It turns out that our ex-post

stability implies not only robustness to complete revelation of information about the final outcome

of the game, but also robustness to partial revelation of information or revision possibilities. In

this sense, we say that Bayesian Nash equilibria in large games with limited individual impact

are in fact “information-proof”.

Information-proofness offers a different perspective on private information in such games. Be-

ing information-proof means that even if all or some information about the relevant choices in the

game were publicly available, each player would be interested only in her own private information.

Full decentralization in the use of information is compatible with individual incentives.
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Formally, let ψi : C−i → M be a signaling function that maps the type-action character

profiles of player i’s rivals to an abstract message set M . Partial information revelation can be

modeled by such a signaling function. For an equilibrium to be robust to partial revelation of

information, we require that, conditioning on the observed signal and one’s own type and action,

players do not want to change their choice of action. It is straightforward to see why this would

hold. Fix a player i. Given any outcome c, consider any event of positive probability that is

compatible with the realized type-action character (ti, ai) and ψi(c). Ex-post stability implies

that for any such event, player i cannot significantly increase her payoff by changing her action.

3.7. Conclusion

This paper examines the robustness properties of Bayesian Nash equilibria in large games.

Earlier literature (See (Kalai 2004)) has shown that in large finite games with semi-anonymous

players and smooth payoff functions, all Bayesian Nash equilibria are structurally robust and in

particular are ex-post stable. However, little was known on the robustness properties of equilibria

in games with infinite types and actions, or in games which are not anonymous. This paper

attempts to address this gap.

We study Bayesian games where the type and action spaces are infinite - they can be compact

subsets of R
k. Further, players are no longer anonymous and can affect their rivals’ payoffs in

asymmetric, player-specific ways. We impose a single regularity condition - a variant of Lipschitz

continuity - on the payoff functions of players in a game, and show that this condition is enough

to guarantee ex-post stability of Bayesian Nash equilibria in our general class of games if the

number of players is large enough. Interestingly, it turns out that the regularity condition implies

that the unilateral impact a player can have on any of her rival’s payoffs is bounded and reduces

with the size of the game.

We establish that all Bayesian Nash equilibria in this class of games are ex-post stable in a

strong sense. If players play Bayesian equilibrium strategies, if the number of players is large
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enough, with probability 1, players have arbitrarily low ex-post regret. They would not want to

change their action even with perfect knowledge of their rivals’ realized types and actions. This is

stronger than results in earlier literature, which obtain ex-post stability in large games with high

probability but not with certainty. Further, we remove the restriction of finiteness, and prove

that this robustness property holds even in games with infinite type and action spaces.

It is not clear if similar robustness properties of Bayesian Nash equilibrium would hold if types

were not independent or if we had payoff functions that displayed discontinuities. This would be

an interesting line of investigation, and particularly important for applications.
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APPENDIX A

Appendix for Chapter 1

A.1. Sequential Equilibrium

Section 1.3.3 establishes optimality of strategies on the equilibrium path. Below, I prove

sequential rationality off the equilibrium path and the consistency of beliefs. Strategies on the

equilibrium path were specified in Section 1.3.2. Off-equilibrium strategies are defined as follows.

• ∀i,∀t,∀ht
i ∈ H t

i , σ
∗
i [h

t
i] = i.

In other words, after any complete private history including those in which they observed

a deviation (own or other), players report their name truthfully,

• ∀kt
i = {(ν1, a1), . . . , (νt−1, at−1), νt} ∈ K t

i with νt
i = i and ντ

i 6= i for some τ , player i

plays the partial strategy for pairwise game Γi,j where νt
−i = j.

In other words, at any t-period interim private history in which a player has misreported

her name in at least one period, but has reported truthfully in the current period, she

plays game Γi,−i according to the partial strategy against the current rival name.

• ∀kt
i = {(ν1, a1), . . . , (νt−1, at−1), νt} ∈ K t

i with νt
i 6= i,

σ∗[kt
i ] = argmaxai∈Ai

Ui(ai, σ
∗
−i|ξi[kt

i ]).

In other words, at any t-period interim private history in which a player has misreported

her name in the current period, she plays the action that maximizes her expected utility

given her beliefs and her rivals’ equilibrium strategies.

• At any t-period interim private history in which a player has deviated by playing the

wrong action, i.e. ∀kt
i = {(ν1, a1), . . . , (νt−1, at−1), νt} ∈ K t

i with aτ
i 6= σ∗i [k

τ
i ] for some τ ,

σ∗[kt
i ] prescribes the following.
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– If ντ
−i was in the unfavorable state (playing sB

−i), player i should play her best

response to the minmax strategy of her opponent for the rest of the block, and then

revert to playing her partial strategy for her game Γi,−i against this rival.

– If ντ
−i was in the favorable state (playing sG

−i), player i should continue playing sG
−i

for the rest of the block and revert to playing her partial strategy for her game Γi,−i

against this rival.

Optimality of Actions:

Lemma 7. For any player i, misreporting ones name is not optimal after any history.

Proof: Fix a player i. The proof of the Folk Theorem establishes optimality on the equilibrium

path. So now consider any information set of player i reached off the equilibrium path, possibly

after one or more deviations (impersonations or deviations in action) by player i herself or others.

We compare i’s payoffs if she truthfully reports her name to her payoffs if she impersonates

someone.

Consider the play between i and a rival name j who has observed d deviations so far. By

claiming to be i′, i can potentially get a short-term gain in the pairwise game with j.

Maximal Gain ≤
(

1 − δ

δ +M(1 − δ)

)

γ.

However, by impersonating i′, player i increases the probability with which j will punish in

case her deviation is detected. Player i’s minimal expected loss in continuation payoff from the

deviation is given by the following.

Minimal expected loss ≥ φ

M(M − 1)
ǫ2
(

δ

δ +M(1 − δ)

)T

(βd − βd+1)[vi − ((1 − ǫ)vi + ǫv̄i)].

To see how we obtain this expression, note that there is a minimal probability φ
M(M−1) that

j and i′ are supposed to be in a signature period. Conditional on this event, irrespective of
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what action i plays, there is a minimal probability ǫ2 that her rival j will learn of a deviation.

Conditional on detection, player j will switch to the unfavorable action plan with probability

(1 − βd+1) in the next plan period, instead of (1 − βd). At best, i and j’s plan period is (T − 1)

periods away, after which i’s payoff in her pairwise game with j will drop from the target payoff

vi to (1− ǫ)vi + ǫv̄i. (As before, in the pairwise game between i and j, the effective discount factor

is not δ but higher, i.e. δ
δ+M(1−δ) .)

So, player i will not misreport her name if the maximal gain from deviating is outweighed by

the minimal expected loss in continuation payoff, i.e. if the following inequality holds.

γ

(

1 − δ

δ +M(1 − δ)

)

≤ φ

M(M − 1)
ǫ2
(

δ

δ +M(1 − δ)

)T

βd(1 − β)[vi − ((1 − ǫ)vi + ǫv̄i)].

It can be seen that the above inequality holds for sufficiently large δ. Hence, at any information

set off the equilibrium path, i does not find it profitable to misreport her name. �

This establishes that the strategies are optimal, since conditional on truthful reporting of

names, it is optimal to play the specified actions.

Consistency of Beliefs:

For any player i, perturb the strategies as follows. (Fix η > 0 small.)

• At any t-period complete private history, player i announces her name truthfully with

probability (1 − η2

et ) and announces an incorrect name with complementary probability

(randomizing uniformly between other possible names).

• At any interim t-period private history, player i plays the equilibrium action with prob-

ability (1 − η
1
2t ). She plays other actions with complementary probability (randomizing

uniformly across the other possible actions).

Now, consider any t-period complete private history of player i. We will show that she believes

with probability 1 that there have been no impersonations in the past.
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Any observed history is consistent with the sequence of events that there have been no im-

personations but only deviations in action. Consider the sequence of events of no impersonations

and t deviations in action. If this sequence is consistent with the observed history, the probability

that player i assigns to this sequence of events is given by

t
∏

s=1

(

1 − η2

es

)

η
1
2s .

Since
∑k

n=1
1
2n is bounded above by 1, it follows that the probability of any number of deviations

in action is bounded below by η(1 − η). Hence any sequence of events with no name deviations

and some action deviations will be assigned probability that is greater than

η(1 − η)
t
∏

s=1

(1 − η2

es
).

Further, we can show that the above expression is bounded below by a constant κ uniformly in t.

To see how, note that

η(1 − η)

t
∏

s=1

(1 − η2

es
) ≥ η(1 − η)

t
∏

s=1

(1 − 1

es
)

≥ η(1 − η)

∞
∏

s=1

(1 − 1

es
).

We know that the series
∑∞

s=1
1
es converges, which implies that the infinite product

∏∞
s=1(1−

1
es ) converges.1 Since the infinite product converges, there exists a constant κ such that

∀t, η(1 − η)

t
∏

s=1

(1 − η2

es
) ≥ η(1 − η)κ.

Now we analyze sequences of events which are consistent with the observed history and which

involve at least one impersonation.

1This follows from the result that for un ∈ [0, 1),
Q

∞

n=1(1 − un) > 0 ⇐⇒
P

∞

n=1 un < ∞. (See Rudin: Real and
Complex Analysis)
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Consider sequences with only one impersonation. The probability of this set of events is given

by

p(1) =

t
∑

r=1

η2

er

∏

q 6=r

(

1 − η2

eq

)

.

The probability of the set of events with exactly two impersonations is given by

p(2) =
t
∑

τ=1

η2

eτ





∑

r>τ

η2

er

∏

q 6=r,q 6=τ

(

1 − η2

eq

)



 .

Similarly for sequences of events with l impersonations, we have

p(l) =

t
∑

τ1=1

η2

eτ1

∑

τ2>τ1

η2

eτ2
. . .

∑

τl−1>τl−2

η2

eτl−1

∑

τl>τl−1

η2

eτl

∏

q 6=τi,i∈{1,...,l}

(

1 − η2

eq

)

.

Hence the probability of the sequences of events that are consistent with the observed history

and involve any impersonations is given by P :=
∑t

l=1 P (l). Collecting terms differently (in

powers of e), we can see that for any t,

(A.1) P ≤
t
∑

m=1

η2 1

em

√
2m
∑

i

mi

≤
∞
∑

m=1

η2 1

em

√
2m
∑

i

mi

(A.2) = η2
∞
∑

m=1

1

em
m(−1 +m

√
2m)

(−1 +
√
m)(1 +

√
m)

.

The first inequality follows from two observations. First, any term with a given power of e, say

em, can belong to a sequence of events with at most
√

2m impersonations. Second, if there i

impersonations in m periods, there are less than mi ways in which this can occur.
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The series
∑

am in expression (A.2) is convergent. Denote the limit by Λ. Convergence follows

from the observation that

lim
m→∞

am+1

am
=

1

e
< 1.

Hence, for any t, P < η2Λ.

Given any observed history ht
i of player i, by Bayes’ Rule, the probability i assigns to a

consistent sequence of events with no impersonations is given by

Pr(Consistent events with no impersonations)

Pr(All consistent events)

≥ η(1 − η)κ

η(1 − η)κ + η2Λ
.

As η → 0, the above expression approaches 1 uniformly for all t. In other words, as perturbations

vanish, after any history player i believes that with probability 1 there were no impersonations

in the past. �

A.2. Proof of Folk Theorem for Small Communities (M = 2)

Consider a payoff profile (v1, v2) ∈ IntF ∗. We proceed as in the equilibrium construction of

Theorem 1. Pick payoff profiles wGG, wGB , wBG, wBB such that,

(1) wGG
i > vi > wBB

i ∀i ∈ {1, 2}.

(2) wGB
1 > v1 > wBG

1 .

(3) wBG
2 > v2 > wGB

2 .

These inequalities imply that there exists vi and v̄i with v∗i < vi < vi < v̄i such that the

rectangle [v1, v̄1]× [v2, v̄2] is completely contained in the interior of conv({wGG, wGB , wBG, wBB})

and further v̄1 < min{wGG
1 , wGB

1 }, v̄2 < min{wGG
1 , wBG

1 }, v1 > max{wBB
1 , wBG

1 } and v2 >

max{wBB
1 , wGB

1 }.



109

We can find finite sequences of action profiles {aGG
1 , . . . , aGG

N }, {aGB
1 , . . . , aGB

N }, {aBG
1 , . . . , aBG

N },

{aBB
1 , . . . , aBB

N } such that each vector wXY , the average discounted payoff vector over the sequence

{aXY
1 , . . . , aXY

N } satisfies the above relationships if δ is large enough.

Further, we can find ǫ ∈ (0, 1) small so that v∗i < (1 − ǫ)vi + ǫv̄i < vi < (1 − ǫ)v̄i + ǫvi. In

what follows, when we refer to an action profile aXY , we actually refer to the finite sequence of

action profiles {aXY
1 , . . . , aXY

N } described above.

A.2.1. Defining Strategies at Complete Histories: Name Announcements

At complete private histories, players report names truthfully, (i.e. ∀i,∀t,∀ht
i ∈ H t

i , σ
∗
i [h

t
i] = i).

A.2.2. Defining Strategies at Interim Histories: Actions

Partitioning of Histories:

At any interim private history, each player i partitions her history into M separate histories

corresponding to each of her pairwise games Γi,−i. If her current rival name is j, she plays game

Γi,j. Since equilibrium strategies prescribe truthful name announcement, a description o Γi,j will

complete the specification of strategies on the equilibrium path for the supergame.

Play of Game Γi,−i:

Fix player i and a name −i in i’s rival community. Play is specified in an identical manner for

each possible rival name. As before, we denote player i’s history in this pairwise game by ĥt
i. The

game Γi,−i between i and −i proceeds in blocks of T interactions, but with each block starting

with “initiation periods”.

Initiation Periods of Game Γi,−i: The first ever interaction between two player i and −i

is called the “game initiation period”. In this period, player 1 (from community 1) plays two

given actions (say a1 and a2) with equal probability and player 2 (from community 2) plays two

actions (say b1 and b2) with equal probability. If the realized action profile is not (a1, b1), the

game is said to be initiated and players continue to play as described below. If the realized
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action profile is (a1, b1), players replay the game initiation period. Once the game is initiated, the

game proceeds in blocks of T interactions. Any non-initial block of play also starts with similar

initiation periods. In a block initiation period, players play as described above. If the realized

profile is not (a1, b1), they start playing their block action plans from the next period. Otherwise,

they play the initiation period again.

T -period Blocks in Γi,j: Once a block is initiated, players use block action plans just like in the

construction with M > 2 players. In the first period (plan period) of a block, players i and −i

take actions which inform each other about the plan of play for the rest of the block. Partition

the set of i’s actions into two non-empty subsets Gi and Bi. If player i chooses an action from

set Gi, she is said to send plan Pi = G. Otherwise she is said to send plan Pi = B.

Further, choose any four pure action profiles g, b, x, y ∈ A such that gi 6= bi ∀i ∈ {1, 2}. Define

the signature function ψ : A → {g, b, x, y} mapping one-period histories to one of the action

profiles as follows.

ψ(a) =







































g if a ∈ G1 ×G2,

b if a ∈ B1 ×B2,

x if a ∈ G1 ×B2,

y if a ∈ B1 ×G2.

Suppose the observed plans are (P1, P2).

Define a set of action plans of the standard T -period finitely repeated stage-game as follows.

Si :=
{

si ∈ ST
i : ∀ĥt

i =
(

a, ψ(a), (aP2,P1
i , a

P2,P1
−i ), . . . , (aP2,P1

i , a
P2,P1
−i )

)

, a ∈ Pi ×G,

si[ĥ
1
i ] = ψi([ĥ

1
i ]) and si[ĥ

t
i] = a

P2,P1

i , t ≥ 2
}

.

As before, in equilibrium, players will use actions plans from the above set. Each player uses one

of two actions plans sG
i and sB

I , just as before.
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Define partially a favorable action plan sG
i such that

sG
i [∅] ∈ ∆(Gi),

sG
i [ĥ1

i ] = ψi([ĥ
1
i ]), and

∀ĥt
i =

(

a, ψ(a), (aP2 ,P1
i , a

P2,P1
−i ), . . . , (aP2,P1

i , a
P2,P1
−i )

)

, a ∈ Pi × P−i, t ≥ 1, sG
i [ĥt

i] = a
P2,P1
i .

Similarly, partially define an unfavorable action plan sB
i such that

sB
i [∅] ∈ ∆(Bi),

sB
i [ĥ1

i ] = ψi([ĥ
1
i ]),

∀ĥt
i =

(

a, ψ(a), (aP2 ,P1
i , a

P2,P1
−i ), . . . , (aP2,P1

i , a
P2,P1
−i )

)

, a ∈ Pi × P−i, t ≥ 1, sB
i [ĥt

i] = a
P2,P1
i ,

∀t ≥ r > 1,∀ĥt
i after ĥr

i =
(

a, ψ(a), (aP2 ,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i ), (aP1,P2

i , a′−i)
)

,

a ∈ Pi × P−i, a
′
−i 6= a

P2,P1
−i , sB

i [ĥt
i] = α∗

i , and

∀ĥt
i after ĥ2

i =
(

a, (ψi(a), a
′
−i)
)

, a ∈ Pi × P−i, a
′
−i 6= ψ−i(a), t > 2, sB

i [ĥt
i] = α∗

i .

As before, it is possible to choose T large enough so that for some δ < 1, ∀δ > δ, i’s average

payoff within the block from any action plan si ∈ Si against sG
−i strictly exceeds v̄1 and her

average payoff from using any action plan si ∈ ST
i against sB

−i is strictly below v1. Assume from

here on that δ > δ.

Define the two benchmark action plans used to compute continuation payoffs. Let rG
i ∈ Si

be an action plan such that given any history ĥt
i, r

G
i |ĥt

i gives the lowest payoffs against sG
−i among

all action plans in Si. Define rB
i ∈ ST

i to be an action plan such that given any history ĥt
i, r

B
i |ĥt

i

gives the highest payoffs against sB
−i among all action plans in ST

i . Redefine v̄ and v so that

Ui(r
G
i , s

G
−i) = v̄i and Ui(r

B
i , s

B
−i) = vi.
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Partial Strategies: Specification of Play in Γi,−i

The following describes how player i plays in the game Γi,−i. We call this i’s “partial strategy”.

• Game Initiation Period: Player i plays actions a1 and a2 and Player −i plays actions

b1 and b2 with equal probability.

• Period following Game Initiation Period: If the realized action profile is not (a1, b1),

the game is said to be initiated and players continue to play as described below. If the

realized action profile is (a1, b1), players replay the initiation period in their next meeting.

• First Plan Period of Γi,−i: In the first ever period that player i meets player −i after

their game is initiated, player i mixes between sG
i and sB

i as follows.

– If the first plan period of game Γi,−i occurs in the calendar period immediately

following the first initiation period of the game, and action profile a was realized

in the initiation period, then player i plays sG
i with probability µ0 and sB

i with

probability (1 − µ0) where µ0 solves

v−i +
1 − δ

δ

8

3
ρ(a) = µ0v̄−i + (1 − µ0)v−i,

where ρ is the difference in player −i’s payoff from action profile (a1, b1) and profile

a.

– Otherwise, player i plays sG
i with probability µ0 and sB

i with probability (1 − µ0),

where µ0 solves v−i = µ0v̄−i + (1 − µ0)v−i.

For discount factor δ close enough to 1, the payoffs v−i and v−i + 1−δ
δ

4ρ both lie in the

interval [(1 − ǫ)v−i + ǫv̄−i,ǫv−i + (1− ǫ)v̄−i]. Henceforth, assume that δ is large enough.

Further, in both the above cases, µ0, 1 − µ0 ≥ ǫ.

• Block Initiation Period: In the initiation period of a non-initial block, player i plays

actions a1 and a2 and Player −i plays actions b1 and b2 with equal probability.
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• Period following Block Initiation Period: If the realized action profile in the last

interaction was not (a1, b1), the next block is said to be initiated and players continue

to play as described below. If the realized action profile is (a1, b1), players replay the

initiation period.

• Plan Period of a Non-Initial Block of Γi,−i: If player i ever observed a deviation

in a signature period of an earlier block, she plays strategy sB
i with probability (1 − βl)

where l is the number of deviations she has seen so far and β > 0 is small.

Otherwise, she plays strategy sG
i with probability µ and sB

i with probability (1 − µ)

where the mixing probability µ is used to tailor player −i’s continuation payoff, as shown

below. Let c be the current calendar time period, and c(τ), τ ∈ {1, . . . , T} denote the

calendar time period of the τ th period of the most recently elapsed block. For any history

ĥT
i observed (at calendar period c) by i in the most recently elapsed block, if sB

i was

played in the last block, we define rewards ωB
−i(·) as

ωB
−i(ĥ

T
i ) :=

T
∑

τ=1

πB
τ

where

πB
τ =











1
δT+2−τ θ

B
τ

4
32T+2−τ + 1

δ
8
3ρ

B(a) if c− c(τ) = T + 2 − τ

0 otherwise.

θB
τ is the difference between −i’s continuation payoff in the last block from playing rB

−i

from time τ on and −i’s continuation payoff from playing the action observed by i at

period τ followed by reversion to rB
−i from (τ +1) on, and ρB(a) is the difference between

the maximum possible one-period payoff in the stage-game and player −i’s payoff from

profile a. Since rB
−i gives i maximal payoffs, θB

τ ≥ 0. Also by definition, ρB(a) ≥ 0.

Player i chooses µ ∈ (0, 1) to solve µv̄−i + (1 − µ)v−i = v−i + (1 − δ)ωB
−i(ĥ

T
i ).
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If sG
i was played in the last block, we specify punishments ωG

−i(·) as

ωG
−i(ĥ

T
i ) :=

T
∑

τ=1

πG
τ

where,

πG
τ =











1
δT+2−τ min{0, θG

τ }4
32T+2−τ + 1

δ
8
3ρ

G(a) if c− c(τ) = T + 1 − τ

0 otherwise,

θG
τ is the difference between −i’s continuation payoff within the last block from playing

rG
−i from time τ on and −i’s continuation payoff from playing the action observed by i at

period τ followed by reversion to rG
−i from τ + 1 on and ρG(a) is the difference between

the minimum possible one-period payoff in the stage-game and player −i’s payoff from

profile a. Since rG
−i gives −i minimal payoffs, θG

τ ≤ 0 for all actions are used by strategies

in S−i. By definition, ρG(a) ≥ 0.

Player i chooses µ ∈ (0, 1) to solve µv̄−i + (1 − µ)v−i = v̄−i + (1 − δ)ωG
−i(ĥ

T
i ).

Note that since T is fixed, we can make (1−δ)ωG
−i(ĥ

T
i ) and (1−δ)ωB

−i(ĥ
T
i ) arbitrarily

small, for large enough δ. We restrict attention to δ close enough to 1 so that

(1 − δ)ωB
−i(ĥ

T
i ) < ǫv−i + (1 − ǫ)v̄−i − v−i and (1 − δ)ωG

−i(ĥ
T
i ) > (1 − ǫ)v−i + ǫv̄−i − v̄−i.

For such δ, the continuation payoff at every period always lies within the interval [(1 −

ǫ)v−i + ǫv̄−i, ǫv−i + (1 − ǫ)v̄−i].

• Signature Period and other Non-initial Periods: Players use the designated sig-

nature ψ(a) if a was the profile realized in the plan period of the block. For the rest of

the block, they play according to the announced plan.

This completes the specification of strategies on the equilibrium path.
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A.2.2.1. Beliefs of Players. At any private history, each player believes that in every period,

she met the true owners of the names she met, and that no player ever misreported her name.

A.2.3. Proof of Equilibrium

First we show that conditional on truthful reporting of names, the strategies constitute an equi-

librium.

Note that any player i is indifferent across her actions in the initiation period of a game

against any rival −i. This is because any gain that player i can get over her payoff from profile

a in the initiation period will be wiped out in expectation. With probability 3
8 , she expects to

meet player −i again in the next calendar time period and initiate the game. In this case, player

−i will adjust her continuation payoff to exactly offset any gain or loss she made in the initiation

period.

Once the game is initiated, the strategies of any pair of players can be represented by an

automaton which revises actions and states in every plan period. The following describes the

automaton for any player −i.

Set of states: The set of states of a player −i is the set of continuation payoffs for her rival i

and is the interval [(1 − ǫ)vi + ǫv̄i, ǫvi + (1 − ǫ)v̄i].

Initial State: Player −i’s initial state is the target payoff for her rival vi.

Decision Function: When −i is in state u, she uses sG
−i with probability µ and sB

−i with

probability (1 − µ) where µ solves u = µ [ǫvi + (1 − ǫ)v̄i] + (1 − µ) [(1 − ǫ)vi + ǫv̄i]

Transition Function: For any history ĥT
−i for player −i, if the realized action plan is sG

−i then

at the end of the block, the state transits to v̄i + (1− δ)ωG
i (ĥT

−i). If the realized action plan is sB
−i

the new state is vi + (1 − δ)ωB
i (ĥT

−i).

It can be easily seen that given −i’s action plan, any action plan of player i whose restriction

belongs to Si is a best response. The average payoff within a block from playing rG
i against sG

−i
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is exactly v̄i, and that from playing rB
i against sB

−i is vi. Moreover, the continuation payoffs are

also v̄i and vi respectively. Any player’s payoff is therefore µ0v̄i + (1 − µ0)vi.

Note that each player is indifferent between all action plans in ST
i when her rival plays sB

−i.

At any stage τ of a block, player i believes that with probability 3
4 (1

2)T+2−τ , her next plan period

with −i is exactly (T + 2− τ) periods away, and in that case, for any action she chooses now she

will receive a proportionately high reward 4
3θ

B
τ 2T+2−τ . In expectation, any loss she suffers today

is exactly compensated for in the future. Similarly, in an initiation period of any block, player i

believes that with probability 3
8 that she will initiate the block in the next calendar time period,

and again for any action that she chooses now, she gets a proportionate reward / punishment.

It remains to check if players will truthfully report their names. At any calendar time t, define

the state of play between any pair of players to be k ∈ {0, 1 . . . , T}, where k is the stage of the

current block they are in (with k=0 for the initiation period). Suppose at period t, player i1

impersonates i2 and meets rival j. Player i1 can form beliefs over the possible states that each of

her rivals j1 and j2 are in with respect to player i2, conditional on her own private history. Based

on her own history, i1 knows how many times her rivals have met. Suppose player i1 knows that

player i2 has met rival j1 J1 times and met the other rival J2 times. Player i1 has a belief over

the possible states that j1 and i2 are in. Represent a player’s beliefs by a vector (p0, . . . , pT ).

For any t ≥ 2, player i1’s belief over the states of j1 and i2 is given by:

(1, 0, . . . , 0) ·HJ1, where H =



































1
4

3
4 0 0 0 . . . 0

0 0 1 0 0 . . . 0

0 0 0 1 0 . . . 0

...

0 0 0 0 0 . . . 1

1 0 0 0 0 . . . 0


































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To obtain the above expression, note that for any pair of players, conditional on meeting, if they

are in stage k = 0, they transit to state 1 with probability 3
4 and stay in the same state with

probability 1
4 . Otherwise, in every meeting, they move to the next state. The transition matrix

HJ1 is irreducible, and the limiting distribution is

lim
q→∞

(1, 0, . . . , 0) ·Hq = (
4

3T + 4
,

3

3T + 4
,

3

3T + 4
, . . . ,

3

3T + 4
).

Further, it can be easily shown that

∀q ≥ 3, [(1, 0, . . . , 0) ·Hq]3 > 0 where [(1, 0, . . . , 0) ·Hq]3 is the 3rd component of (1, 0, . . . , 0) ·Hq

It follows that for any rival j whom player i1 has not met in at least three periods in the past,

there is a lower bound φ > 0 such that the probability of j being in the signature period with

player i2 is at least φ. When i1 announces the name i2, she does not know which rival she will end

up meeting. However, for any t ≥ 5, player i1 must assign probability at least φ to the event that

her rival is supposed to be in a signature period with i2. This is because at any t ≥ 5 there is at

least one rival whom i1 has not met for three periods in the past. So, if she impersonates, there

is a minimal strictly positive probability φǫ2 that her lie gets detected. i1 will not impersonate i2

if her maximal gain is outweighed by the minimal expected loss from deviation.

Player i1’s maximal current gain from impersonation =

(

1 − δ

δ + 2(1 − δ)

)

γ.

Her expected loss in continuation payoff is given by the following expression.

Minimal loss from deviation ≥ φǫ2(1 − β)

(

δ

δ + 2(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)].
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So player i1 will not impersonate if the following inequality holds.

(

1 − δ

δ + 2(1 − δ)

)

γ ≤ φǫ2(1 − β)

(

δ

δ + 2(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)].

For δ close enough to 1, this inequality holds and misreporting is not a profitable deviation.

Now consider incentives for truthtelling at t ≤ 4. Suppose player i1 wants to impersonate

player i2 at t = 1. She believes that with probability 3
4 the game will get initiated in the current

period and with probability 1
4 the rival she meets now (say player j) will meet the true i2 in the

next two calendar time periods. In this case, irrespective of what player i2 plays at t = 3, with

probability ǫ, player j will become aware that a deviation occurred. In other words, at t = 1,

player i1 believes that with probability 3ǫ
16 her deviation will be detected at t = 3, and one of

her rivals will switch to her unfavorable strategy forever. By a similar argument as above, if δ

is high enough, player i1’s potential current gain from impersonation will be outweighed by the

long-term loss in continuation payoff. Similar arguments apply for t = 2, 3, 4. �

A.3. Proof of Folk Theorem for Multilateral Matching

A.3.1. Structure of Equilibrium

In equilibrium, players report their names truthfully. Each player plays the equilibrium strategies

separately against each possible playgroup that she can be matched to. On equilibrium path,

players condition play with a particular playgroup only on the history of play vis-à-vis that group

of names. It is as if each player is playing separate but identical games with MK−1 different

playgroups.

T -period Blocks: For any target payoff profile (v1, . . . , vK) ∈ int(F ∗), we choose an appropriate

positive integer T . Play between members of any group of K players proceeds in blocks of T

periods. In a block each player i uses one of two action plans of the T -period finitely repeated

game. One of the action plans used by a player i ensures that player (i + 1) in that playgroup
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cannot get more than vi+1, the target payoff for i + 1. The other action plan ensures that i + 1

gets atleast vi+1. We call i the monitor of her successor (i+1). (Player M monitors player 1.) In

the plan period of a block, each player randomizes between the two action plans so as to achieve

the target payoff of her successor in this playgroup. The action profile played in the plan period

acts as a coordination device that informs the players of the plan of play for the rest of the block

for this group. At the next plan period, each player’s continuation payoff is again adjusted by her

monitor based on the action profiles played in the last block with that playgroup. Conditional on

players reporting their names truthfully we show that the above form of strategies constitute an

equilibrium. Impersonations are detected and punished in a similar way as before.

Detecting Impersonations: The second period of a block is designated as the signature period

and all players play actions that serve as their signatures. The signature used depends on the

action profile realized in the plan period of the block. No player outside the specific K-player

group can observe the action in the plan period. Consequently, if anyone outside the playgroup

tries to impersonate one of the members, she can end up playing the wrong signature in case it is

a signature period, and so get detected.

Community Responsibility: If a player sees an incorrect action or signature, she knows that

someone has deviated, though the identity of the deviator or the nature of the deviation is

unknown. (In fact every player in the playgroup knows that a deviation has occured.) The

deviator’s entire community can be punished by the relevant monitor. The monitor just switches

to the bad action plan with every playgroup in their next plan period. Since every player is

indifferent between her two action plans at the start of any block, the relevant monitor can

punish her successor’s entire community without adversely affecting her own payoff.
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A.3.2. Preliminaries

Consider any payoff profile (v1, . . . , vK) ∈ Int(F ∗). There exist 2K payoff profiles wP such that

the following conditions hold.

(1) wP
i > vi if Pi = G.

(2) wP
i < vi if Pi = B.

These conditions imply that there exists vi and v̄i with v∗i < vi < vi < v̄i such that the rectangle

[v1, v̄1]×. . .×[vK , v̄K ] is contained in the interior of conv
({

wP : P = (P1, . . . , PK), Pi ∈ {G,B}
})

and further, for all i, v̄i < min{wP
i : Pi = G} and vi > max{wP

i : Pi = B}.

Now we can choose finite sequences of pure action profiles {aP
1 , . . . , a

P
N}, with P = (P1, . . . , PK),

Pi ∈ {G,B}, so that the vectors wP , the payoffs (average discounted) from the sequence of action

profiles {aP
n }N

n=1 for any plan profile P satisfy the above relationships. As before, choose ǫ ∈ (0, 1)

small so that v∗i < (1 − ǫ)vi + ǫv̄i < vi < (1 − ǫ)v̄i + ǫvi

Henceforth, when we refer to an action profile aP , we actually refer to the finite sequence of

action profiles {aP
1 , . . . , a

P
N}.

A.3.3. Name Announcements at Complete Histories

After any complete history (and the null history), players report their names truthfully.

A.3.3.1. Actions at Interim Histories. Partitioning of Histories:

At any interim private history, each player i partitions her history into MK−1 separate histories

corresponding to different games (denoted by Γi,G−i
) with each possible playgroup G−i. If her

current playgroup’s name profile is G−i, she plays game Γi,G−i
. Fix a player i and a playgroup

G−i. Below, I describe how game Γi,G−i
is played. Let ĥt

i denote a t-period history in the game

ΓG−i
. It specifies the action profiles played in the last t interactions of i with the playgroup G−i.

Play of Game Γi,G−i
:

The game Γi,G−i
between i and playgroup G−i proceeds in blocks of T periods. In the first period
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(the plan period) of a block, players take actions which inform their rivals about the plan of play

for the rest of the block. Partition the set of player i’s actions into two non-empty subsets Gi and

Bi. If player i chooses an action from set Gi, she is said to send plan Pi = G. Otherwise she is

said to send plan Pi = B.

Further, choose any two pure action profiles g, b ∈ A such that gi 6= bi ∀i ∈ {1, . . . ,K}. Define

the signature function ψ : A→ A mapping one-period histories to action profiles such that,

ψ(a) =











g if ai ∈ Gi ∀i,

b if ai ∈ Bi ∀i.

Define ψ(.) arbitrarily otherwise. Suppose the observed plans are (P1, . . . , PK).

Let P̃ = (PK , P1, . . . , PK−1). Define a set of action plans of a T -period finitely repeated game

as follows.

Si :=
{

si ∈ ST
i : ∀ĥt

i =
(

a, ψ(a), aP̃ , . . . , aP̃
)

, ai−1 ∈ Gi−1, si[ĥ
1
i ] = ψ([ĥ1

i ]) and si[ĥ
t
i] = aP̃

i ∀t ≥ 1
}

.

Si includes action plans that prescribe playing the correct signature and playing according to the

plan announced in the plan period if ones monitor announced a favorable plan G, and everyone

in the playgroup used the correct signature and played as per the plan so far. In equilibrium,

players use action plans from the above set. Within a block, they use one of two plans sG
i and sB

i

which are defined below.

Define partially a favorable action plan sG
i such that

sG
i [∅] ∈ ∆(Gi),

sG
i [ĥ1

i ] = ψi([ĥ
1
i ]), and

∀ĥt
i =

(

a, ψ(a), aP̃ , . . . , aP̃
)

, t ≥ 1, sG
i [ĥt

i] = aP̃
i .
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We partially define an unfavorable action plan sB
i such that

sB
i [∅] ∈ ∆(Bi),

sB
i [ĥ1

i ] = ψi([ĥ
1
i ]),

∀ĥt
i =

(

a, ψi(a), a
P̃ , . . . , aP̃

)

, t ≥ 1, sB
i [ĥt

i] = aP̃
i ,

∀ĥt
i after ĥr

i =
(

a, ψ(a), aP̃ , . . . , aP̃ , . . . , aP̃ , a′
)

, with j : a′j 6= aP̃
j , a

′
k = aP̃

j ∀k 6= j, t ≥ r > 1,

sB
i [ĥt

i] = α∗
ji,where α∗

ji is i’s action in profile α∗
j which minmaxes player j, and

∀ĥt
i after ĥ2

i =
(

a, a′
)

, with j : a′j 6= ψj(a), a
′
k = ψk(a)∀k 6= j, t > 2,

sB
i [ĥt

i] = α∗
ji, where α∗

ji is i’s action in profile α∗
j which minmaxes player j.

For any history not included in the definitions of sG
i and sB

i above, prescribe the actions

arbitrarily. Given a plan profile P̃ , these strategies specify ψ(a) and aP̃ until the first unilateral

deviation. (In case of simultaneous deviations, these strategies also specify ψ(a) and aP̃ .) If

a player j unilaterally deviates, then strategy sB
i specifies that other players in her playgroup

minmax her.

Notice that if player i’s monitor (i − 1) uses strategy sG
i−1, i gets a payoff strictly more than

v̄i in each period, except possibly the first two periods. Further, if i’s monitor plays sB
i−1, player

i gets a payoff strictly lower than vi in all except at most two periods. It is therefore possible to

choose T large enough so that for some δ < 1, ∀δ > δ, i’s average payoff within the block from any

strategy si ∈ Si against sG
−i strictly exceeds v̄1 and her average payoff from using any strategy

si ∈ ST
i against sB

−i is strictly below v1.

Now we define two benchmark action plans which are used to compute continuation payoffs.

For any sj ∈ {sG
j , s

B
j } define rG

i+1 ∈ Si to be an action plan such that given any history ĥt
i+1,

rG
i+1|ĥt

i+1 gives player i+ 1 the lowest payoffs against sG
i and sj for j 6= i, i + 1 among all action
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plans in Si+1. Define rB
i+1 ∈ ST

i to be an action plan such that given any history ĥt
i+1, r

B
i+1|ĥt

i+1

gives the highest payoffs against sB
i and sj for j 6= i, i+1 among all action plans in ST

i+1. Redefine

v̄ and v so that Ui+1(r
G
i+1, s

G
i ) = v̄i+1 and Ui+1(r

B
i+1, s

B
i ) = vi+1.

In other words, v̄i is the lowest payoff player i can get if she uses an action plan in Si and

her monitor plays a favorable action plan, and vi represents the highest payoff that player i can

get irrespective of what she plays when her monitor plays an unfavorable plan.

Partial Strategies: Specifying Play in Γi,G−i

Players play the following strategies in the pairwise games Γi,G−i
.

• Players always report their names truthfully.

• Each player plays the following strategies separately against each possible playgroup.

– Initial Period of Γi,G−i
: Player i plays sG

i with probability µ0 and sB
i with prob-

ability (1 − µ0) where µ0 solves vi+1 = µ0v̄i+1 + (1 − µ0)vi+1. Note that since

(1 − ǫ)vi + ǫv̄i < vi < ǫvi + (1 − ǫ)v̄i ∀i, we will have µ0, 1 − µ0 ≥ ǫ.

– Plan Period of a Non-Initial Block: If player i ever observed a deviation in the

signature period of an earlier block with any playgroup, she plays sB
i with probability

(1− βl), where l is the number of deviations she has seen so far and β > 0 is small.

Otherwise, she plays sG
i with probability µ and sB

i with probability (1 − µ) where

the mixing probability µ is used to tailor (i+ 1)’s continuation payoff.

For any history ĥT
i observed (at calendar time c) by i in the last block, specify

(i + 1)’s continuation payoff as follows. Let c denote the current calendar time

period, and let c(t), t ∈ {1, . . . , T} denote the calendar time period of the tth period

of the most recently elapsed block.

If sB
i was played in the last block, we specify the reward ωB

i+1(·) as

ωB
i+1(ĥ

T
i ) :=

T
∑

τ=1

πB
τ
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where,

πB
τ =











1
δT+1−τ θ

B
τ M

(K−1)(T+1−τ) if c− c(τ) = T + 1 − τ

0 otherwise,

and θB
t is the difference between (i+ 1)’s continuation payoff within the last block

from playing rB
i+1 from time t on and (i+ 1)’s continuation payoff from playing the

action observed by i at period t as in history ht
i followed by reversion to rB

i+1 from

t + 1 on. Notice that θB
t ≥ 0. If sB

i was played in the last block, player i chooses

µ ∈ (0, 1) to solve µv̄i+1 + (1 − µ)vi+1 = vi+1 + (1 − δ)ωB
i+1(ĥ

T
i ).

If sG
i was played in the last block, we specify punishments ωG

i+1(·) as

ωG
i+1(ĥ

T
i ) :=

T
∑

τ=1

πG
τ

where,

πG
τ =











1
δT+1−τ min{0, θB

τ }M (K−1)(T+1−τ) if c− c(τ) = T + 1 − τ

0 otherwise,

and θG
t is the difference between (i + 1)’s continuation payoff within the last block

from playing rG
i+1 from time t on and (i + 1)’s continuation payoff from playing

the action observed by i at period t as in history ĥt
i followed by reversion to rG

i+1

from t + 1 on. Note that θG
t ≤ 0 for all actions that are used by strategies in

Si+1. If sG
i was played in the last block, player i chooses µ ∈ (0, 1) to solve

µv̄i+1 + (1 − µ)vi+1 = v̄i+1 + (1 − δ)ωG
i+1(ĥ

T
−i).

We restrict attention to δ close enough to 1 so that

(1 − δ)ωB
i+1(ĥ

T
i ) < ǫvi+1 + (1 − ǫ)v̄i+1 − vi+1 and
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(1 − δ)ωG
i+1(ĥ

T
i ) > (1 − ǫ)vi+1 + ǫv̄i+1 − v̄i+1.

Then, continuation payoffs lie in the interval [(1−ǫ)vi+1+ǫv̄i+1, ǫvi+1+(1−ǫ)v̄i+1].

– Signature Periods and other Non-initial Periods: In signature periods, play-

ers use the designated signature ψi(a) if a was the profile realized in the plan period.

For the rest of the block, they play as per the announced plan.

A.3.3.2. Beliefs of Players. After every history, players believe that in every period so far,

they met the true owners of the names they encountered.

A.3.3.3. Proof of Theorem 2. Here, we prove optimality on the equilibrium path. Since the

proof for consistency of beliefs and sequential rationality off the equilibrium path are identical to

the two community case, these proofs are omitted. First we show that conditional on truthful

reporting of names, these strategies constitute an equilibrium.

Fix a player i and a rival playgroup G−i. The partial strategy for player i in her game Γi,G−i

can be represented by an automaton that revises actions and states in every plan period. The

following describes the automaton for any player i.

Set of States: The set of states of a player i in a game with a particular playgroup is the set

of continuation payoffs for her successor i + 1 in that playgroup and is the interval [(1 − ǫ)vi +

ǫv̄i, ǫvi + (1 − ǫ)v̄i].

Initial State: Player i’s initial state is the target payoff for her successor vi+1.

Decision Function: When i is in state u, she uses action plan sG
i with probability µ and sB

i

with probability (1−µ) where µ solves u = µ
[

ǫvi+1 + (1 − ǫ)v̄i+1

]

+ (1−µ)
[

(1 − ǫ)vi+1 + ǫv̄i+1

]

Transition Function: For any history ĥT
i in the last T -period block for player i, if the realized

action plan is sG
i then at the end of the block, the state transits to v̄i+1 + (1− δ)ωG

i+1(ĥ
T
i ). If the

realized action is sB
i the new state is vi+1 + (1 − δ)ωB

i+1(ĥ
T
i ).

It can be easily seen that given i’s strategy, any strategy of player i + 1 whose restriction

belongs to Si+1 is a best response. The average payoff within a block from playing rG
i+1 against
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sG
i is exactly v̄i+1, and that from playing rB

i+1 against sB
i is vi. Moreover, the continuation payoffs

are also v̄i+1 and vi+1 respectively. Any player’s payoff is therefore µ0v̄i + (1 − µ0)vi.

Further, as in the case of two communities, each player is indifferent between all possible

action plans when her monitor plays the unfavorable action plan. At any stage τ of a block, she

believes that with probability
(

1
MK−1

)T+1−τ
her next plan period with this playgroup is exactly

T + 1 − τ calendar time periods away, and in that case, for any action she chooses now she will

receive a proportionate reward θB
τ M

(K−1)(T+1−τ). This makes her indifferent across all action

plans in expectation.

It remains to verify that players will truthfully report their names in equilibrium. We show

below that if a player impersonates someone else in her community, irrespective of the action

she plays, there is a positive probability that her playgroup will become aware that a deviation

has occurred. Further, if a deviation is detected, her monitor will punish her whole community

(which includes her in particular). For sufficiently patient players this threat is enough to deter

impersonation.

At any calendar time t, define the state of play between a player i and a rival playgroup G−i

to be k ∈ {1, . . . , T} where k is the period of the current block they are playing in. At time

(t + 1), they will either transit to state k + 1 with probability 1
MK−1 (if i happens to meet the

same playgroup again in the next calendar time period) or remain in state k.

Suppose at time t player i1 wants to impersonate i2. Conditional on her private history, i1 can

form beliefs over the possible states that each of her playgroups is in with respect to i2. Suppose

i1 has met the sequence of playgroups {G 1
−i, . . . ,G

t−1
−i }. She knows that the playgroup she meets

in any period remains in the same state with i2 in that period. Fix any playgroup G−i whom i1

can be matched to. Player i1 has a belief over the possible states G−i is in with respect to i2.

Represent i1’s beliefs over the states by a vector (p1, . . . , pn).
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For any t ≥ 2, her belief over states of G−i and i2 is given by

(A.3)

t−1
∑

τ=1

(

1 − IG−i=G τ
−i

)

(

M − 2

M − 1

)

Pτ−1
l=1

„

1−I
G
−i=G l

−i

«

1

M − 1
(1, 0, . . . , 0)

t−1
∏

k=τ

[

Ij=jkI + (1 − Ij=jk)H
]

,

where H =





















M−2
M−1

1
M−1 0 0 . . . 0

0 M−2
M−1

1
M−1 0 . . . 0

...

1
M−1 0 0 0 . . . M−2

M−1





















I is the T × T identity matrix, and IG−i=G τ
−i

=











1 if G−i = G τ
−i,

0 otherwise.

To derive the above expression, note that player i1 knows that in periods when she met playgroup

G−i it is not possible that i2 met the same playgroup. Hence in these periods, the state of play

between i2 and G−i did not change. In other periods the state changed according to the transition

matrix H. This leads to the last product term. Now for any calendar period τ , player i1 can use

this information to compute the state of play between i2 and G−i conditioning on the event that

they met for the first time ever in period τ . For any τ , the probability that i2 and G−i met for

the first time at period τ is given by (M−2
M−1)

Pτ−1
l=1

„

1−I
G
−i=G l

−i

«

1
M−1 . Finally player i1 knows that

i2 and G−i could not have met for the first time in a period when she herself met playgroup G−i,

and so does not need to condition on such periods.

Notice that the initial state (1, 0, . . . , 0) and H form an irreducible Markov chain with

(A.4) lim
q→∞

(1, 0, . . . , 0) ·Hq = (
1

T
, . . . ,

1

T
).
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Further it can be easily shown that the following is true.

(A.5) ∀q ≥ 1, [(1, 0, . . . , 0) ·Hq]2 > 0,

where [(1, 0, . . . , 0) ·Hq]2 represents the 2nd component of (1, 0, . . . , 0) ·Hq.

It follows from (A.4) and (A.5) that for any playgroup G−i whom i1 has not met at least in

one period, there exists a lower bound φ > 0 such that the probability of G−i being in state 2

with i2 is at least φ.

Now, when i1 announces name i2, she does not know which playgroup she will end up meeting

that period. It follows that at t ≥ 2, player i1 assigns probability at least φ
MK−1(M−1)

to the event

that the rival she meets is in state 2 with i2. (To see why, pick a playgroup G ′
−i whom i1 did not

meet in the first calendar time period (t = 1). With probability 1
MK−1 , at time t, i1 will meet this

G ′
−i and with probability 1

M−1 this G ′
−i would have met i2 at t = 1 and period t could be their

signature period.)

Consequently, if player i1 decides to impersonates i2, there is a strictly positive probability

ǫK φ
MK−1(M−1)

that the impersonation will get detected. This is because if the playgroup she

meets is supposed to be in a signature period with i2, they should play one of the actions profiles

g, b, x, y depending on the realized plan in their plan period. Since players mix with probability

at least ǫ on both Plans G and B, with probability at least ǫK , i1 will play the wrong action

irrespective of what action she chooses. Her playgroup will be informed of a deviation, and her

monitor will switch to the bad plan B with all playgroups in the next respective plan period.

i1 will not impersonate any other player if her maximal potential gain from deviating is not

greater than the minimal expected loss in continuation payoff from detection.2

Player i1’s maximal current gain from misreporting =

(

1 − δ

δ +MK−1(1 − δ)

)

γ.

2As before, because of the random matching process, the effective discount factor for any player in her pairwise
game is not δ, but δ

δ+MK−1(1−δ)
.
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Player i’s loss in continuation payoff ≥

φ

MK−1(M − 1)
ǫK(1 − β)

(

δ

δ +MK−1(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)] .

To derive the expected loss in continuation payoff, note that there is a minimal probability

φ
MK−1(M−1)

that i2 and playgroup G−i are in a signature period. Conditional on this event,

irrespective of the action played, there is a minimal probability ǫK that player i1’s deviation is

detected by playgroup G−i. Conditional on detection, the relevant monitor will switch to the

unfavorable strategy with probability (1 − β) in the next plan period with i1. At best, this plan

period is T − 1 periods away, after which player i1’s payoff will drop from v1 to (1− ǫ)vi + ǫv̄i. i1

will not impersonate if the following inequality holds.

(

1 − δ

δ +MK−1(1 − δ)

)

γ ≤

φ

MK−1(M − 1)
ǫK(1 − β)

(

δ

δ +MK−1(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)] .

For δ close enough to 1, this inequality is satisfied, and so misreporting ones name is not a

profitable deviation. Now consider incentives for truth-telling in the first period of the supergame.

Suppose i1 impersonates i2 at t = 1 and meets playgroup G−i. In the next period, with probability

ǫK

MK−1 , i2 will meet the same playgroup G−i and use the wrong signature, thus informing G−i

that someone has deviated. By a similar argument as above, if δ is high enough, i1’s potential

current gain will be outweighed by the future loss in continuation payoff caused by her monitor’s

punishment. �
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APPENDIX B

Appendix for Chapter 2

B.1. Proof of Proposition 1

By Lemma 1, we know that in SHE, competent firms playing only S-names. This implies that

incompetent firms must use both S and N -names. The equilibrium conditions are as follows:

Incentive Compatibility for Name Choice

C-firms strictly prefer using S-names and working hard to using N -names.

(B.1) −VS + wS − c+ δ(1 − ρ)f1VS + δρf2VS > wN − c+ δ(1 − ρ)f3VS + δρf4VS .

(B.2) −VS + wS − c+ δ(1 − ρ)f1VS + δρf2VS > wN + δf4VS .

I-firms are indifferent between N -names and S-names.

(B.3) −VS + wS + δf2VS = wN + δf4VS .

Incentives for Competent Firms to Work Hard

(B.4) c < δ(1 − ρ)(f1 − f2)VS .

Equilibrium Determination

(B.5)

Market Clearing: φ+(1−φ)µS = φ(1−ρ)f1+φρf2+(1−φ)µSf2+(1−φ)(1−µS)f4.
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(B.6)

Wage Determination: wN = 0 and wS > wN .

The effort constraint implies that f1 = 1 and f2 = 0. Further, I claim that f4 6= f2. Suppose

not, i.e. f4 = f2 = 0. Then (B.5) implies µS = −φρ
1−φ

which is not possible. In other words, there

would be a shortage of S-names and the market would not clear. Hence, we have f4 = 1 6= f2.

This leaves possible only two transition rules with f3 = 1 or f3 = 0. These are precisely the ones

depicted in the figure. Consider the first transition rule in the figure (where f3 = 1). Conditions

(B.1)-(B.5) reduce to:

(B.7) µS =
1 − φ− φρ

2(1 − φ)
.

(B.8) wS =
φ(1 − ρ)

φ+ (1 − φ)µS
.

(B.9) VS =
wS

1 + δ
.

(B.10) c < δ(1 − ρ)VS .

It can easily be seen that if φ < 1
1+ρ

, these conditions yield a non-empty set of sorting equilibria.

Identical conditions arise for the second transition rule. 2

B.2. Richer Market with Non-Random Transitions

Consider a richer market with three names. It turns out that there are only three non-

random transition rules which allow sorting high-effort equilibria. Consider the automata below:

SHE exist only under these transition rules. The nature of sorting differs based on the transition

rule. With the first two rules, we get “Trust 1-Names” equilibria. In these equilibria, competent
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Figure B.1. Transitions for SHE in Market with Three States

firms buy all three names, but only competent firms buy S1-names. Incompetent firms buy only

S2 and S3-names. The last transition rule yields “Mistrust 3-Names”. Here, competent firms

never enter with costless S3-names. I-firms are the only ones using S3 names.

B.3. Proof of Proposition 2

Sufficiency: Fix φ, ρ, δ, c with c < min
{

δ(1−ρ)2(1−φ)
1−φ+δφρ

,
δ(1−φ)(1−ρ)2

δ(1−φ)+φρ

}

.

Case(i) c < δ(1−ρ)2(1−φ)
1−φ+φρ

.

Set the transition probabilities as follows:

γ1 = γ3 = 1, γ2 = 0, γ4 < min

{

φρ

1 − φ
,
δ(1 − ρ)2(1 − φ) − c(1 − φ+ φρ)

δ(1 − ρ)2(1 − φ) + cδφ(1 − φ+ φρ)

}

.
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I claim that there exists a “Trust S-Names” equilibrium where C-firms use S-names with prob-

ability σS = φ(1−ρ)(1−γ4)+γ4

φ(1+ργ4) and N -names with probability (1 − σS). Competent firms always

choose to work hard. Equilibrium price VS = (1−ρ)(1−φ)
1+δργ4

1+ργ4

ρ+(1−φ)(1−ρ)(1−γ4) .

Notice first that c < δ(1−ρ)2(1−φ)
1−φ+φρ

implies that γ4 is well-defined. Further, since γ4 <
φρ

1−φ
,

the strategy σS is well-defined. Given the conjectured equilibrium strategies, the wages would be

wS = 1 − ρ and wN = (1−ρ)[φρ−(1−φ)γ4 ]
1−φ+φρ−γ4(1−ρ)(1−φ) . The incentive constraints for the C-type implies

(B.11) −VS + wS − c+ δ(1 − ρ)VS = wN − c+ δ(1 − ρ)VS + δργ4VS =⇒ VS =
wS − wN

1 + δργ4
.

It is easy to check that the proposed VS satisfies the above. I-type’s incentive constraints imply

(B.12) VS >
wS − wN

1 + δγ4
.

The conjectured VS also satisfies this condition. Here, incentive compatibility of the competent

type implies incentive compatibility for the incompetent type. The market clearing condition is

also satisfied with these equilibrium strategies. Finally for the competent type to exert effort we

need to check the following conditions.

(B.13) c < δ(1 − ρ)VS and c < δ(1 − ρ)(1 − γ4)VS .

Clearly, it suffices to show that the second constraint holds. We need the following inequality:

c <
δ(1 − ρ)2(1 − φ)(1 − γ4)(1 + ργ4)

[1 + δργ4][ρ+ (1 − φ)(1 − ρ)(1 − γ4)
.

Now, (1 + ργ4)(1 + δφγ4) = 1 + δργ4 + ργ4(1 − δ) + δφγ4(1 + ργ4).

So, (1 + ργ4)(1 + δφγ4) ≥ 1 + δργ4.

Further, (1 − φ+ φρ) = ρ+ (1 − φ)(1 − ρ) ≥ ρ+ (1 − φ)(1 − ρ)(1 − γ4)
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=⇒ 1

(1 + δφγ4)(1 − φ+ φρ)
≤ 1 + ργ4

[ρ+ (1 − φ)(1 − ρ)(1 − γ4)][1 + δργ4]
.

This implies that

(B.14)
δ(1 − ρ)2(1 − φ)(1 − γ4)

(1 + δφγ4)(1 − φ+ φρ)
≤ δ(1 − ρ)2(1 − φ)(1 − γ4)[1 + ργ4]

[ρ+ (1 − φ)(1 − ρ)(1 − γ4)][1 + δργ4]
= δ(1 − ρ)(1 − γ4)VS .

But recall that by definition of γ4,

γ4 <
δ(1 − ρ)2(1 − φ) − c(1 − φ+ φρ)

δ(1 − ρ)2(1 − φ) + cδφ(1 − φ+ φρ)

=⇒ c <
δ(1 − ρ)2(1 − φ)(1 − γ4)

(1 + δφγ4)(1 − φ+ φρ)
.

So, by the above inequality, c < δ(1 − ρ)(1 − γ4)VS .

Case(ii) δ(1−ρ)2(1−φ)
1−φ+φρ

≤ c < min
{

δ(1−ρ)2(1−φ
1−φ+δφρ

,
δ(1−φ)(1−ρ)2

δ(1−φ)+φρ

}

.

First consider cases where φρ < 1 − φ. This implies that δ(1−ρ)2(1−φ)
1−φ+φρ

≤ c <
δ(1−ρ)2(1−φ)

1−φ+δφρ
. Fix the

following transition probabilities:

γ1 = γ3 = 1, γ2 = 0, γ4 ∈
(

φρ

1 − φ
,
δφ(1 − ρ)2(1 + φρ

1−φ
) − cφ(1 − ρ)(1 + δφρ

1−φ
)

c(1 + δφρ
1−φ

)

)

.

I claim that that there exists a “Mistrust N -Names” equilibrium where, incompetent firms use

S-names with probability µS = (1−φ)γ4−φρ
(1−φ)(1+γ4) and N -names with 1− µS.Competent firms choose to

work hard on the equilibrium path. Equilibrium price VS = φ(1−ρ)(1+γ4)
[1+δγ4][γ4+φ(1−ρ)] .

First, we check that the transition probabilities chosen are well-defined.

c <
δ(1 − ρ)2(1 − φ)

1 − φ+ δφρ

=⇒ φδ(1 − ρ)2(1 − φ) − φc(1 − φ+ δφρ) > 0

=⇒ φδ(1 − ρ)2(1 − φ+ δφρ) − (1 − ρ)φc(1 − φ+ δφρ) > 0
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=⇒ (1 +
φρ

1 − φ
)φδ(1 − ρ)2 − (1 +

δφρ

1 − φ
)(1 − ρ)φc > 0.

So the upper bound for γ4 is well-defined. Further,

c <
δ(1 − ρ)2(1 − φ)

1 − φ+ δφρ
=⇒ φρ

1 − φ
<
δφ(1 − ρ)2(1 + φρ

1−φ
) − cφ(1 − ρ)(1 + δφρ

1−φ
)

c(1 + δφρ
1−φ

)
.

So, the interval from which γ4 is chosen is well-defined. Given the conjectured strategies the

wages are wN = 0 and wS = φ(1−ρ)(1+γ4)
γ4+φ(1−ρ) . For I-firms to be indifferent between S and N -names,

we need:

VS =
wS − wN

1 + δγ4
.

We can check that VS satisfies this condition. Hence, C-firms strictly prefer S-names to N -

names. Since γ4 >
φρ

1−φ
, µS is well-defined, and satisfies the market clearing conditions. It only

remains to check that competent firms have an incentive to work hard on the equilibrium path,

i.e. c < δ(1 − ρ)VS . To prove this, define a function

ψ(x) =
δφ(1 − ρ)2

γ4 + φ(1 − ρ)

1 + x

1 + δx
.

Notice that this function is strictly increasing in x. Recall that

γ4 <
δφ(1 − ρ)2(1 + φρ

1−φ
) − cφ(1 − ρ)(1 + δφρ

1−φ
)

c(1 + δφρ
1−φ

)
=⇒ c <

δφ(1 − ρ)2(1 + φρ
1−φ

)

(1 + δφρ
1−φ

)(γ4 + φ(1 − ρ)
= ψ(

φρ

1 − φ
).

By the monotonicity of ψ(.), if γ4 >
φρ

1−φ
then c < ψ(γ4). So, for γ in the specified range,

c < ψ(γ4) =
δφ(1 − ρ)2(1 + γ4)

(γ4 + φ(1 − ρ))(1 + δγ4)
= δ(1 − ρ)VS .

This proves that we have found a “Mistrust N -Names” equilibrium.

Using a very similar argument as above, we can show that “Mistrust N -Names Equilibria”

exist also in the case when φρ > 1 − φ.
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Necessity: Propositions 4 & 5 characterize the types of SHE that exist. We can use these char-

acterizations to show that a necessary condition for SHE to exist is that the cost of hard work is

less than the upper bound.

Consider “Trust S-names” equilibria. Using the characterization in Proposition 4, we derive

a maximal cost of effort for which it is possible to find transition rules to support SHE. Finding

such an upper bound reduces to solving the following constrained maximization problem.

max
γ1,γ2,γ3,γ4

δ(1 − ρ)2(1 − φ)(γ3 − γ4)

1 + δ(1 − ρ)(γ3 − γ1) + δρ(γ4 − γ2)

1 + (1 − ρ)(γ3 − γ1) + ρ(γ4 − γ2)

1 − (1 − ρ)γ1 − ργ2 + (1 − φ)(1 − ρ)(γ3 − γ4)

(B.15) subject to γ1 − γ2 − γ3 + γ4 > 0

(B.16) −γ4(1 − φ) + φ(1 − (1 − ρ)γ1 − ργ2) > 0

(B.17) γ1, γ2, γ3, γ4 ≥ 0

(B.18) γ1, γ2, γ3, γ4 ≤ 1.

The constraints are linear and so the constraint qualification condition holds. Further it can be

verified that constraints (B.15) and (B.16) bind. So plugging back γ4 and γ3 and solving the

reduced problem, we find that the objective function is maximized at

γ1 = γ3 = 1 γ2 = γ4 =
φρ

1 − φ+ φρ
and the maximal value is c1max =

δ(1 − φ)(1 − ρ)2

1 − φ+ φρ
.

Next, consider “Mistrust N -names” equilibria. We will examine two cases:

Case A: Cost of hard work is low enough that it is sequentially rational for a C-firm to work

hard on and off the equilibrium path. (i.e., c < min{δ(1 − ρ)(γ3 − γ4)VS , δ(1 − ρ)(γ1 − γ2)VS}.)
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Case B: Cost of work is low enough to sustain hard work only on the equilibrium path.

For equilibria under Case (A), the conditions of Proposition 5 imply

c < δ(1−ρ)(γ3−γ4)
φ(1−ρ)

[φ+(1−φ)µS ][1+δ(γ4−γ2)] . To find the maximal value of the RHS of this constraint,

we solve the following problem:

max
γ1,γ2,γ3,γ4

δ(1 − ρ)2φ(γ3 − γ4)

1 + δ(γ4 − γ2)

1 + γ4 − γ2

φ(1 − ρ)(γ1 − γ2) + γ4

(B.19) subject to γ1 − γ2 − γ3 + γ4 > 0

(B.20) γ4(1 − φ) − φ(1 − (1 − ρ)γ1 − ργ2) > 0

(B.21) 1 − γ2 − φ(1 − ρ)(γ1 − γ2) > 0

(B.22) γ1, γ2, γ3, γ4 ≥ 0

(B.23) γ1, γ2, γ3, γ4 ≤ 1.

Here constraints (B.19) and (B.20) bind. Solving the reduced problem we find the objective

function is maximized at

γ1 = γ3 = 1 γ2 = γ4 =
φρ

1 − φ+ φρ
and the maximal value of c is c2max =

δ(1 − φ)(1 − ρ)2

1 − φ+ φρ
.

Note that in the two maximization problems, the maximum and the maximizers are exactly the

same. For the equilibria covered by Case (B), conditions of Proposition 5 imply

δ(1 − ρ)(γ3 − γ4)
φ(1−ρ)

[φ+(1−φ)µS ][1+δ(γ4−γ2)] ≤ c < δ(1 − ρ)(γ1 − γ2)
φ(1−ρ)

[φ+(1−φ)µS ][1+δ(γ4−γ2)] .
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Again, we solve the constrained maximization problem given by

max
γ1,γ2,γ4

δ(1 − ρ)2φ(γ1 − γ2)

1 + δ(γ4 − γ2)

1 + (γ4 − γ2)

γ4 + φ(1 − ρ)(γ1 − γ2)

(B.24) subject to γ4(1 − φ) − φ(1 − (1 − ρ)γ1 − ργ2) > 0

(B.25) 1 − γ2 − φ(1 − ρ)(γ1 − γ2) > 0

(B.26) γ1, γ2, γ4 ≥ 0

(B.27) γ1, γ2, γ4 ≤ 1.

It can be verified that:

1. For φ, ρ such that φ < 1
1+ρ

, the objective function is maximized at

γ1 = 1 γ2 = 0 γ4 =
φρ

1 − φ
and the maximal value of c is c3max =

δ(1 − φ)(1 − ρ)2

1 − φ+ δφρ
.

2. For φ, ρ such that φ > 1
1+ρ

, the objective function gets maximized at

γ1 = 1 γ2 = 1 − 1 − φ

φρ
γ4 = 1 and the maximal value of c is c4max =

δ(1 − φ)(1 − ρ)2

δ(1 − φ) + φρ
.

Inspecting the bounds yields that a necessary condition for sorting equilibria to exist is:

c < min

{

δ(1 − φ)(1 − ρ)2

1 − φ+ δφρ
,
δ(1 − φ)(1 − ρ)2

δ(1 − φ) + φρ

}

. 2



139

B.4. Proof of Proposition 4

Consider “Trust S-names” equilibria. The equilbrium conditions are as follows:

Incentive Compatibility for Name Choice

C-firms must be indifferent between N and S-names.

−VS + wS − c+ δ(1 − ρ)γ1VS + δργ2VS = wN − c+ δ(1 − ρ)γ3VS + δργ4VS .

(B.28) So, VS =
wS − wN

1 + δ(1 − ρ)(γ3 − γ1) + δρ(γ4 − γ2)
.

I firms must strictly prefer N -names to S-names.

(B.29) wN + δγ4VS > −VS + wS + δγ2VS =⇒ VS [1 + δ(γ4 − γ2)] > wS − wN .

Incentives for Competent Firms to Work Hard

(B.30) c < δ(1 − ρ)VS(γ1 − γ2).

(B.31) c < δ(1 − ρ)VS(γ3 − γ4).

Equilibrium Determination

Market Clearing: φσS = φσS(1−ρ)γ1+φσSργ2+φ(1−σS)(1−ρ)γ3+φ(1−σS)ργ4+(1−φ)γ4.

(B.32) So, σS =
φ(1 − ρ)(γ3 − γ4) + γ4

φ(1 − ρ)(γ3 − γ1) + φρ(γ4 − γ2) + φ
.

Wage Determination: wS = 1 − ρ > wN =
φ(1 − σS)(1 − ρ)

φ(1 − σS) + 1 − φ
.
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(B.33) VS > 0.

(B.34) σS ∈ (0, 1).

The incentive constraints of C-firms and I-firms together imply that (1) holds. The effort

constraint for a C-firm with an S-name (B.30) is equivalent to condition (3). Consider the market

clearing condition (B.32). Since the effort constraint (B.31) implies that γ3 > γ4, we know that

the numerator of (B.32) is positive. So, σS ∈ (0, 1), implies that the denominator in (B.32) must

be greater than the denominator. This implies (2) holds.

Conversely, assume conditions (1) - (3) in the proposition hold. I claim the following “Trust

S-names” SHE exists. C-firms buy both S and N -names. They buy S-names with probability

σS = φ(1−ρ)(γ3−γ4)+γ4

φ(1−ρ)(γ3−γ1)+φρ(γ4−γ2)+φ
. I-firms buy only N -names. So, wages are wS = 1 − ρ and

wN = φ(1−σS )(1−ρ)
φ(1−σS )+1−φ

. S-names trade at a price VS = wS−wN

1+δ(γ4−γ2) .

For an equilibrium, we need to check (B.28) to (B.34). We know VS ≥ 0. By definition, (B.28)

and (B.32) hold and (3) is equivalent to (B.31). Since c > 0, (1) and (3) imply (B.30) holds. (1)

also implies (B.29) holds. Finally, (1) and (3) imply that the numerator in (B.32) is positive.

Condition (2) implies that the numerator is strictly lesser than the denominator; so (B.34) holds.

2

B.5. Proof of Proposition 5

The proof is similar to Proposition 4. Suppose for given φ, ρ, γ1, γ2, γ3, γ4, δ and c, there exists

a “Mistrust N -names” equilibrium. The equilibrium conditions are as follows:

Incentive Compatibility for Name Choice

C-firms strictly prefer an S-name to an N -name.

−VS + wS − c+ δ(1 − ρ)γ1VS + δργ2VS > wN − c+ δ(1 − ρ)γ3VS + δργ4VS .
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(B.35) VS <
wS − wN

1 + δ(1 − ρ)(γ3 − γ1) + δρ(γ4 − γ2)
.

Further, − VS + wS − c+ δ(1 − ρ)γ1VS + δργ2VS > wN + δγ4VS .

(B.36) So, VS(1 + δγ4 − δ(1 − ρ)γ1 − δργ2) < wS − wN − c.

I-firms are indifferent between N -names and S-names.

(B.37) VS [1 + δ(γ4 − γ2)] = wS − wN .

Incentives for Competent Firms to Work Hard

(B.38) c < δ(1 − ρ)VS(γ1 − γ2).

Equilibrium Determination

(B.39) Market Clearing =⇒ µS =
φ(1 − ρ)γ1 + φργ2 + (1 − φ)γ4 − φ

(1 − φ)(1 + γ4 − γ2)
.

Wage Determination wN = 0 < wS =
φ(1 − ρ)

φ+ (1 − φ)µS
.

(B.40) VS > 0. and

(B.41) µS ∈ (0, 1).

Clearly, we need µS ∈ (0, 1). This implies that the second inequality in Conditions 1 and 2

hold. (B.38) is equivalent to Condition 3. Finally, the incentive constraints (B.35) and (B.37)

together imply that the first inequality in Condition 1 holds. This proves the necessary conditions.
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Conversely, suppose that there for given φ, ρ, γ1, γ2, γ3, γ4, δ and c, the conditions of the propo-

sition are satisfied. I claim that there exists a “Mistrust N -names” equilibrium in which incom-

petent firms buy S-names with probability µS given by (B.39) and where the price of an S-name,

VS is given by (B.37). To verify that this is an equilibrium, we need to check for conditions (B.35)

through (B.41). Conditions (B.37) through (B.40) are trivially satisfied.

γ3 − γ1 < γ4 − γ2 =⇒ 1 + δ(1 − ρ)(γ3 − γ1) + δρ(γ4 − γ2) < 1 + δ(γ4 − γ2)

=⇒ VS [1 + δ(1 − ρ)(γ3 − γ1) + δρ(γ4 − γ2)] < VS [1 + δ(γ4 − γ2)]

=⇒ (B.35) is satisfied.

(A4) and (B.35) imply that the other IC of the C-type (B.36) is also satisfied. Condition (3)

and (B.38) are equivalent. Conditions (1) and (2) ensure that (B.41) holds. It remains to be

shown that the second incentive constraint for the C-type (B.36) also holds. Consider two cases:

Case(i) c < δ(1 − ρ)(γ3 − γ4)
φ(1−ρ)

[φ+(1−φ)µS ][1+δ(γ4−γ2)]
: c is low enough for C-firms to work hard

in every state. (B.36) is implied by the first IC constraint of the C-type and we are done.

Case (ii) c ≥ δ(1−ρ)(γ3 −γ4)
φ(1−ρ)

[φ+(1−φ)µS ][1+δ(γ4−γ2)] : Here, a C-firm works hard only if it buys

an S-name. Then, the IC of I-type and (3) imply (B.36) holds. This proves sufficiency. 2


