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ABSTRACT

Queueing Models for Service Systems with Dependencies

Chenguang (Allen) Wu

One of the main drivers of complexity in a service system is the dependence between

different random variables describing the system. For example, the queue lengths at

different time points and the waiting times of different items (jobs, customers) in queue are

strongly dependent. To reduce dependence-related complexities, it is customary to assume

that the system primitives (such as the arrival processes, service times, patience of different

customers, etc.) are independent from one another as well as from the systems dynamics

and state. However, in many settings, dependencies across different primitive processes,

or between a primitive process and the state of the system, should clearly hold. For

example, it stands to reason, and has been shown empirically in call centers, hospitals and

restaurants, that the service requirement of a customer may depend on that customer’s

patience or on the time that customer spends waiting in queue. A natural question to ask

is then: To what extent do these types of dependencies impact the performance, control

and optimal design of a service system? In this thesis, I aim to answer this question for

fundamental queueing models.
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I start by considering two relevant dependence structures in large service systems:

In the first, customers’ patience depends on their individual service requirement; in the

second, the service requirement of each customer depends on that customer’s delay in

queue. Since either dependence structure renders exact analysis intractable, I employ a

fluid approach to approximate the mean-field behavior of the stochastic queueing systems,

which illustrates a first-order impact of both dependencies on the system’s performance.

Using a stationary analysis, I demonstrate a fundamental difference between the two de-

pendencies in their stationary behavior for the corresponding fluid models. Despite this

difference, surprisingly, a unified model can be developed to describe the two dependencies

simultaneously, which is further used to characterize the relation between the two depen-

dencies using the concept of equivalence class. Such relation yields important insights to

the empirical identification of the dependence, which is otherwise very difficult given that

any dataset of service systems is censored due to customer abandonment.

To manifest the role of pricing in efficiently exploiting the underlying system structure,

I consider another type of dependence in service systems in which a customer’s value for

service depends on that customer’s service requirement. In a queueing-game framework,

I analyze the impact of such dependence on the service provider’s revenue performance.

I show that a positive dependence between the service value and the service requirement

may hurt the provider’s revenue if customers are charged the same price. In response

to the positive dependence, I propose a novel service-based pricing scheme which prices

a customer’s service based on that customer’s realized service time. I demonstrate that

the positive dependence could be exploited under service-based pricing to generate more

revenue compared to the case of no dependence.
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CHAPTER 1

Introduction

The last century has experienced a significant growth in the service industry world-

wide: Currently, the service sector accounts for approximately 80.2% of the GDP (Fact-

book (2017)) and 80.3% of workforce∗ in the United States. In fast-developing economies,

such as China and India, the service industry also plays an increasingly important role

in creating jobs and generating social value. It is therefore vital to have a comprehensive

understanding of service systems, with the ultimate goal to improve the efficiency in the

operations of services.

A central question in the management of service systems is to determine the optimal

trade-off between satisfactory service levels and a reasonable profile of operational costs.

Among the various important problems that are of key interest to service centers, one of

them is the staffing problem, which is concerned with the solution to the optimal number

of service agents hired to operate the service center. The answer to the staffing problem

is crucial because hiring labor is often very costly in developed countries and regions.

For example, Bocklund and Hinton (2008) estimate that 77% of the operational costs are

devoted to human sources in contact centers in the US. Hence, contact-center managers

seeks to find the minimal number of working representatives that ensures a prespecified

service level for their customers. In healthcare settings where the service quality becomes

more crucial, the task to allocate ambulances and their crews, available doctors and nurses,

∗Data from The World Bank.
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as well as inpatient beds, have to be solved simultaneously, rendering the staffing problem

more complicated.

1.1. Queueing Models for Service Systems with Impatient Customers

Queueing models are frequently employed to model the dynamics of service systems

and are further used to provide guidance to the operational decisions. A fundamental

phenomenon in service systems is that customers are often impatient while waiting for

their service to commence. A customer who has to wait for the service in a queue may

choose to balk, i.e., leave the system immediately after seeing a queue, or abandon the

queue while waiting. For example, in call centers, incoming callers may hang up the

phone immediately after they realize that they need to wait until a service representative

becomes available. In emergency departments, patients may choose to leave without being

seen by a doctor if their waiting time in the waiting room exceeds their patience. From

a service-quality perspective, customer impatience leads to lost sales which otherwise

could be transformed into real sales if the waiting time can be significantly reduced.

Also, customer dissatisfaction that arises from excessive waiting and abandonment is

harmful to customer loyalty and the firm’s reputation. From an analytical perspective,

customer impatience makes a nontrivial impact on system performance, and thus should

be accounted for in the modeling and analysis of service systems.

The queueing literature has studied customer impatience extensively. A typical ap-

proach in the modeling of customers’ impatience is to assume that each arriving customer

is endowed with a finite patience time and the customer abandons the queue if his wait-

ing time exceeds that patience time. A second approach is to assume that each customer
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arrives with a personal valuation for service and decides to balk if his valuation is smaller

than the full price of the service, which is computed as the sum of the price charged

for service and the disutility incurred by the delay in queue. Therefore, the higher the

valuation of a customer, the less likely he is to balk and the more patient he is. In either

approach, a basic assumption in most existing queueing models is that the primitives

in the system (arrival, service, patience time, valuation, etc.) are independent from one

another as well as from the system’s dynamics and state.

1.2. Research Question

In a wide variety of services, however, one may expect dependencies across different

primitives, or between a primitive process and the state of the system. Following this idea,

I will explore two directions in this thesis. In one direction, I consider customers’ service

and patience times to be dependent, a fact empirically observed by Reich (2012). Reich

(2012) demonstrates a statistically significant correlation between the service and patience

times of incoming callers in a call center that serves customers of a large commercial

bank. In a many-server queueing framework, I explicitly model the dependence between

customers’ service and patience times and study its impact on various key performance

measures in the service system and the resulting implications on the staffing problem. My

results provide important insights for the optimal design of large-scale service systems with

dependencies between underlying primitives, such as large contact centers with hundreds

of service representatives and large hospitals with dozens of doctors and inpatient beds.
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Motivated by the empirical work in Reich (2012), I also propose another dependence

structure in service systems which is relevant and practically reasonable. I consider cus-

tomers’ service times to depend on their actual delays in queue, which is also empirically

observed in other contexts. Chan et al. (2016) show that in some Intensive Care Units

(ICU), patients’ lengths of stay increase with the delay they experience before their admis-

sion to the ICU. It is significant to note that although the two forementioned dependencies

are very different regarding how customers’ service times are determined, they are in fact

indistinguishable in data. This is because all datasets, wherever collected, are necessarily

censored due to customer abandonment. In other words, both dependencies can be used

to explain the empirical finding in Reich (2012). Despite this empirical difficulty, one of

the key contributions of this thesis is to establish a unified model which describes the two

dependencies simultaneously. The analysis of the unified model identifies a fundamental

difference as well as an interesting but deep relation between the two dependencies.

In the other direction, I focus on the customers’ balking behavior and consider a

customer’s service value to depend on his service requirement. This dependence has been

studied by Anand et al. (2011) in a similar setting. Anand et al. (2011) assume that the

customer population has the same service value, which increases with the service quality,

which in turn increases with the average service time, which is a decision variable of the

service provider. I find this assumption to be restrictive. From a customer’s perspective,

the average service time is only a statistical indicator of the service quality and may

not be very useful to that particular customer since he is more concerned with his own

service. Therefore, it is more straightforward to model a direct dependence between a
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customer’s service value and his individual service time, a key feature captured in my

game-theoretical queueing model.

I remark that despite the existing empirical evidence that demonstrates the existence

of various dependencies in service systems, the implications of these dependencies have not

been well explored with only a few exceptions. Chan et al. (2016) provide an upper bound

on the expected workload in a system where a customer’s service time depends on the her

waiting time. But the bound becomes very loose even when the system size is less than

20. Bassamboo and Randhawa (2015) discuss the optimal control when customers’ service

and patience may be correlated. This thesis complements the existing empirical studies

and contributes to the literature by explicitly modeling and analyzing these dependencies

in service systems. The insights developed in this thesis provide important guidelines

for the implementation on key operational problems, such as capacity decisions, pricing

strategies and routing policies.

1.3. Organization

I briefly discuss the organization of this thesis. In Chapter 2, I consider a many-server

queueing system with homogeneous service agents. The key feature is that each customer

arrives with a service time and patience time that are dependent. An exact analysis for

such a system is intractable due to the dependence. For analytical tractability, I utilize

a many-server (deterministic) fluid model to approximate the mean-field behavior of the

stochastic queueing systems. Numerical experiments are given to validate the accuracy

of the fluid model. I use the results derived in performance analysis to solve the service

manager’s capacity sizing problem.
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In Chapter 3, I propose another dependence structure in which customers’ service

times depend on their actual delays in queue. I develop a unified transient fluid model

which is able to capture the two dependencies forementioned simultaneously. The fluid

analysis exposes a fundamental difference between the two dependencies, which suggests

caution to operational decisions given that the two dependencies are indistinguishable in

censored data.

In Chapter 4, I comment on two directions for future research. In one direction, I

establish the relation between the two dependencies, which has important implications on

the empirical identification of the exact form of dependence on a censored dataset. In the

second, I consider a single-server service system in which customers’ service values depend

on their service requirement. I give structural results on the impact of such dependence

on service provider’s optimal pricing decision and revenue performance. I also propose

a novel service-based pricing scheme, which manifests the role of pricing in efficiently

exploiting dependencies in service systems.
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CHAPTER 2

Service Systems with Dependent Service and Patience Times

2.1. Introduction

Customers arriving to a service system are often impatient and may choose to abandon

the queue while waiting for their service to commence. A typical approach in the queueing

literature to model this phenomenon is to assume that each customer is endowed with a

finite patience and will abandon if his delay in queue exceeds that patience time. It is

further assumed that the patience time of each customer is random, and is independent

of all other random variables comprising the system, and in particular, of that customer’s

service requirement. However, in many settings one expects to have customers’ patience

be dependent on their individual service requirements, as is indeed observed empirically

in Reich (2012) and Vries et al. (2017). In this chapter, I study the impact of such

dependence on system performance and optimal staffing.

To motivate my analytical study, I start by considering the following question: To

what extent does the dependence between patience and service requirement impact various

system measures? To demonstrate the significant effects that such a dependency has on

fundamental performance measures, I compare three systems, differing from one another

only by the joint distribution of the service time and the (im)patience of the customers.

The three systems I consider all have s = 100 agents, a Poisson arrival process with rate

λ = 110, and marginal service and patience times that are exponentially distributed with
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rates µ = 1 and θ = 1/2, respectively. The nominal traffic intensity, defined as the usual

traffic intensity when there is no dependence, is ρ := λ/sµ = 1.1. I remark that, under

mild assumptions on the abandonment distribution, the system is always stable (reaches

a steady state), regardless of the value of the nominal traffic intensity.

While there are many metrics to measure dependence, a commonly used one is Pear-

son’s correlation coefficient, and it is adopted in the current example. In particular,

recall that for random variables S and T having finite second moments with covariance

Cov(S, T ) and variances Var(S) and Var(T ), Pearson’s coefficient of correlation is defined

via

r :=
Cov(S, T )√

Var(S)Var(T )
.

In my simulation study I compare the standard model, in which patience and service

times are independent (with r = 0), to a system with positive correlation (r = 0.4) and a

system with a negative correlation (r = −0.4).

Table 2.1 reports estimations for the following steady-state performance metrics: ex-

pected queue length, throughput rate (defined as the average number of service comple-

tions per unit time), expected waiting time of served customers; and the probability that

an arriving customer is delayed in queue before entering service. The results are based

on ten independent simulation runs, each of 3, 000 time units, with the first 1, 000 time

units serving as a warm up period∗. The 95% confidence intervals, calculated using the t

distribution with nine degrees of freedom, are also given.

Observe that, under positive correlation, the expected queue length and expected

offered wait (defined as the average time that an infinitely patient customer would wait

∗In fact, the convergence of the stochastic systems to the steady state is fairly fast; see Appendix A.1.2
for more details.
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Table 2.1. Simulation estimations of stationary performance measures (λ =
110, s = 100)

Correlation Queue Length Throughput Waiting Time Prob. of Waiting
Negative (r = −0.4) 10.4± 0.11 104.8± 0.04 0.09± 0.001 78.7%± 0.11%
Independent (r = 0) 21.0± 0.20 99.5± 0.10 0.20± 0.002 93.4%± 0.19%

Positive (r = 0.4) 39.9± 0.45 90.1± 0.19 0.39± 0.005 99.0%± 0.48%

before entering service) are approximately twice as large as those in the independent

case, and four times as large as those in the negatively correlated case. Observe also the

substantial differences in the probability that customers find all agents busy upon arrival.

Since the nominal traffic intensity is greater than 1, one expects almost all arrivals to be

delayed in queue. However, when r = −0.4, roughly 21% of the customers enter service

immediately upon arrival, a statistic that is typically associated with critically loaded

many-server systems (or even slightly underloaded systems), but not with overloaded

ones; see, e.g., Garnett et al. (2002).

The reason for the substantial differences between the performance metrics under

different correlations above can be attributed to the dramatic decrease in the throughput

rate as the correlation increases. In particular, the throughput under negative correlation

is approximately 5% higher than it is in the independent case, and 15% higher than the

case with a positive correlation. Furthermore, under negative correlation, the throughput

is larger than 100 per unit time, which is the maximum achievable throughput in systems

with independent service and patience times. (In the standard independent model, the

throughput is bounded by the minimum of the arrival rate and total service capacity of

the pool, namely, by min{λ, sµ}. Since λ > sµ in this example, the throughput in the

independent model equals sµ = 100.) In addition, even though there is rarely any idleness

in the system with a positive correlation, so that all agents are working almost all the time,
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the throughput in this case is about 10% smaller than 100. These simulation results are

easy to explain: Patient customers are those who get served; they require longer-than-

average service times under positive correlation but shorter-than-average service times

under negative correlation. As a result, the throughput is lower under positive correlation

and higher under negative correlation than in the independent model. I conclude that

even moderate correlation can substantially affect the system performance, and therefore

staffing decisions, due to its impact on the total service rate, and thus the throughput.

Of course, Pearson’s coefficient of correlation is only one of various metrics that mea-

sure dependence between random variables. Therefore, a second natural question to

address is whether, given the arrival process, number of agents and marginal service and

patience distributions, knowledge of the correlation coefficient between those latter two

distributions is sufficient to determine the performance. To answer this question, I per-

form another simulation study in which I consider systems having the same correlation

between the service time and patience, but differing in the corresponding joint distribu-

tions. Specifically, I simulate nine groups of systems, where each group consists of four

systems, all four having arrival rate λ = 110, number of agents s = 100 and marginal

service and patience times that are exponentially distributed with means 1 and 2, respec-

tively, but different dependencies between service and patience times. The correlation

coefficient is identical among the four systems within each group, but varies across the

nine groups. I use a Gaussian copula and three different t-copulas, all with the same cor-

relation coefficient, to generate the four different joint distributions for each of the nine

groups; see Appendix A.1.1 for more details. The simulated steady-state expected queue

length for each of the 36 systems is shown in Figure 2.1. I make two important observa-
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Figure 2.1. Simulated Expected Queue Length for Different Joint Distributions

tions: First, even though the correlation (and marginal distributions) of the service time

and patience are the same within each of the nine groups, the queue lengths of the four

systems within each group may differ significantly. The differences between the queue

lengths are particularly large when the correlation is moderately positive (r is between

0.4 and 0.6). In particular, for the group with r = 0.4, the min-to-max ratio of queue

length is almost 60%. Moreover, the case r = 0 demonstrates that the dependency indeed

matters, even when the corresponding random variables are uncorrelated. I conclude that

the correlation coefficient is not a sufficient statistic to determine system performance.

Second, I find that I cannot compare systems across the groups, namely, the correla-

tion coefficient is not a sufficient statistic to compare systems, even if their correlations

are different. Specifically, even though one intuitively expects to have the queue length

increase as the correlation increases, this is not true in general. For example, the expected

steady-state queue length in the independent model could be larger than the expected
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queue length in a system with r = 0.2, and could be roughly equal to the expected queue

length in a system with r = 0.4.

To summarize, the two simulation examples above suggest that (i) dependency be-

tween patience time and service requirement can have substantial impacts on system

performance, and that (ii) to isolate its effects, one must consider more refined measures

of dependencies than simple correlation.

The Setting. To gain insights, I consider a many-server queueing system with a

single pool of statistically homogeneous agents. I assume that each arriving customer

is endowed with a bivariate random variable whose marginals represent that customer’s

service requirement and patience time, and that those bivariate random variables are

independently and identically distributed (IID) across the customers. In the presence of

the dependence, it is essential to distinguish between the nominal service rate, denoted

by µ, which I define to be the reciprocal of the (unconditional) expected service time

of all arrivals, and the effective service rate, denoted by µeff, which is the reciprocal of

the actual mean service time in steady state, averaged over the customers that end up

receiving service. The key to analyzing the system is to characterize this effective service

rate, or alternatively, the throughput rate, defined to be the long-run average number of

service completions per unit time. Equivalently, the throughput rate can be defined as

the average number of service completions per unit time when the system is stationary.

(I will use the terms “stationary” and “steady state” interchangeably.)

Of course, the dependence between the service requirement and patience of each cus-

tomer only matters if sufficiently many customers need to wait in queue for a sufficiently

long time. (Otherwise, the effective service rate µeff will be approximately equal to the
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nominal service rate µ.) Therefore, I focus on overloaded systems, where an overload

is defined to hold when the arrival rate λ satisfies λ > sµ with s being the number of

agents. It is significant that λ > sµ implies that the system is overloaded, even if µeff

can be substantially larger than µ. Indeed, if this was not the case, i.e., if the system

was to stabilize at a non-overloaded equilibrium, then waiting times would necessarily be

negligible in a sufficiently large system, in which case it would hold that µeff ≈ µ. In

turn, this implies that λ > sµ ≈ sµeff, so that the system is overloaded, and waiting times

are nonnegligible. This heuristic contradictory argument is formalized in Proposition 2.2

below.

I note that the dependence may also have substantial impacts on critically loaded

systems in some cases, because a nonnegligible proportion of customers are delayed in

queue. Since my analysis is motivated by asymptotic considerations, and in particular,

by a weak law of large numbers (which I do not formally prove here), the stochastic

fluctuations of the queue in a critically loaded system are negligible for sufficiently large

systems; see also Remark 2.1 below. For applications in which those stochastic fluctuations

are nevertheless significant (because the systems is not sufficiently large), I propose a

heuristic refinement in §2.6.3 below.

2.1.1. Main Goals and Contribution

Goals. In this chapter I aim to quantify the impacts of a dependency between the service

requirement and the patience of customers on key performance measures and on opti-

mal staffing decisions, when capacity and abandonment costs are incurred. (Henceforth,
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dependence or correlation refer to that between the service time and patience time distri-

butions.) As the simulation study depicted in Figure 2.1 shows, quantifying the impact

of the dependence on the queueing system requires more refined measures of dependency

than simple correlation.

To this end, I must first develop an effective approximation for the analytically in-

tractable queueing system. Indeed, even if the arrival process is Poisson and the marginal

distributions of the service and patience times are both exponential (distributional as-

sumptions that I do not make), the number-in-system-process is not Markovian, since the

service-time distribution of a customer in service is related to his delay in queue. Hence,

the service-time distribution of each customer in service at any given time is in general

different than that of any other customer in service, rendering exact analysis intractable.

Thus, building on the fluid model for non-Markovian many-server systems proposed in

Whitt (2006a) and Bassamboo and Randhawa (2015), I employ a stationary fluid model

to approximate the steady-state distribution of the stochastic queueing system. It is im-

portant to note that the fluid model is characterized via the full joint distribution of the

service time and patience (see §2.4.1 below), so that the dependence structure and its

impact on the fluid model can be studied.

Contribution. With respect to the goals above, my contribution here is fourfold:

(I) I explicitly characterize the effective service rate of the fluid model in stationarity,

from which the value of the throughput rate follows immediately. Given the

throughput rate, all other key performance measures in the fluid model, e.g., the

stationary queue length and the waiting time of served customers, can be easily
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computed. I demonstrate via simulation experiments that my fluid model is an

effective and accurate approximation. See §2.4 for my fluid model.

(II) I provide a novel framework to measure the impact of the dependence on the

fluid model, and in turn, on the stochastic system it approximates. First, for

a given system, I study how the structure of the conditional expected service

time, conditioned on the waiting time in queue, impacts the throughput rate

(which determines other performance measures). Second, I compare systems

differing from each other only by the dependence structure. To this end, I rank

the “strength” of the dependence by utilizing the Positive Quadrant Dependence

(PQD) stochastic order; see §2.3 for background of PQD order and §2.5 for

performance analysis.

(III) I apply the fluid model and the framework described in (I) and (II) to study

the economic implications of the service-patience dependency by analyzing an

optimal-staffing problem when costs for staffing and abandonment are incurred.

In particular, I compute the fluid-optimal staffing, as well as provide structural

results regarding how the dependence affects that optimal staffing. In addition,

based on my fluid analysis, I provide a heuristic safety-staffing rule for settings

in which the fluid-optimal solution is to process all the input (implying that it is

optimal to have the stochastic system be critically loaded), in which case second-

order stochastic fluctuations have a dominant impact on the optimal solution.

See §2.6 for the capacity sizing problem and the heuristic refinement.

(IV) Estimating the exact joint distribution can be hard in practice. Thus, a para-

metric approach is warranted. I therefore demonstrate that my main structural
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results hold for important classes of bivariate random variables generated by

copulas, facilitating simulation experiments that can be used to estimate possi-

ble scenarios for different joint distributions. In particular, I focus on the class of

Gaussian copulas (see §2.3.2 for details), whose relative tractability makes them

attractive, and thus prevalent, in modeling.

2.2. Related Literature

Related Queueing Models. As was mentioned above, the fluid model I employ builds on

the fluid model proposed in Whitt (2006a) to approximate the non-Markovian G/GI/s+

GI, which has a general stationary arrival process (the G), IID service times with general

distribution (the first GI), s statistically homogeneous agents, and IID times for waiting

customers to abandon the queue while waiting for service (the +GI). Whitt’s fluid model

is shown to hold as a bona-fide fluid limit in the many-server heavy-traffic limiting regime

in Kang and Ramanan (2010) and Zhang (2013). The fluid model in Whitt (2006a) is

employed to optimize staffing decisions when the arrival rate and number of agents in a call

center are uncertain in Whitt (2006b), and to study the impact of delay announcements in

Armony et al. (2009). The stationary point of a fluid model in which the service time and

patience can be dependent is characterized in Bassamboo and Randhawa (2015), which

considers scheduling policies for customers based on their waiting times. Liu and Whitt

(2011a,b) adapt the approach in Whitt (2006a) to study systems in which the arrivals

and staffing may vary with time. The two papers Bassamboo and Randhawa (2010) and

Bassamboo et al. (2010) use a fluid approach to study capacity-sizing problems, and show

that the fluid model yields accurate approximations for large overloaded systems.
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Although most of the literature assumes that the random variables comprising the

primitive processes of queueing models (arrivals, service times, and patience times when

abandonment is considered) are independent, there are a few exceptions. Both Whitt

(1990) and Boxma and Vlasiou (2007) consider a G/G/1 system in which the service rate

depends linearly on the delay process. More recently, heavy-traffic limits for infinite-server

models in which successive service times are dependent were developed in Pang and Whitt

(2012, 2013). Li and Whitt (2014) build on the latter references to approximate blocking

probabilities in loss models when successive service times and successive interarrival times

are allowed to be dependent. Whitt and You (2016) employ a robust optimization ap-

proach to consider the impact of serial dependence between interarrival and service times

in a single-server queue.

Motivated by empirical evidence that long waiting times for admissions often lead

to increased hospitalization times in intensive-care units, Chan et al. (2016) analyze an

M/M(f)/n queueing model (with no abandonment) in which service times are expo-

nentially distributed with a mean which increases with congestion according to a given

“inflation” function f (the notation M(f) for the service time). Upper bounds for the

waiting times in queue are developed, and are shown to be fairly accurate for small sys-

tems (with a small number of servers) or systems with low utilization. I, on the other

hand, consider large and overloaded systems.

Bivariate Stochastic Order and Copulas. Recall that one of the goals in this chapter

is to compare and rank systems having identical marginal distributions of service and

patience times but different dependence structures. To this end, I employ the PQD

order mentioned above and copulas. I refer to Scarsini and Shaked (1996) and Shaked
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and Shanthikumar (2007) for a surveys of positive dependence orders in general, and

PQD in particular, and to Joe (1997) and Nelsen (2013) for overviews of the theory and

applications of copulas. Stochastic orders for multivariate random variables generated by

a common copula can be found in Müller and Scarsini (2001).

The multivariate Gaussian copula is applied in Clemen and Reilly (1999) for decision

and risk analysis. Both Corbett and Rajaram (2006) and Mak and Shen (2014) study

the benefits of inventory pooling by adopting the supermodular order to compare the

dependence of demand at multiple locations. In the queueing literature, Müller (2000)

uses the PQD order to rank the dependence between the service time of a customer and the

subsequent interarrival time. It is shown that stronger dependence between interarrival

and service times leads to decreasing waiting times in the increasing convex ordering sense.

2.3. Measures of Dependence

In this section, I describe the measures of dependence that I will use in this chapter. I

provide more details in Appendix A.1.1. Let S and T be two random variables with finite

second moment. Let f := f(S, T ) denote the joint density of S and T having marginal

densities fS and fT , respectively.

I consider the set of all bivariate distributions with the same marginal densities fS and

fT , which I denote by F(fS, fT ). (Note that, if S and T are independent, then their joint

distribution function is in F(fS, fT ), so that this set is not empty; it can be shown that

there are many other joint distributions in this set; see §2.3.2.) I first employ a stochastic

order, introduced in §2.3.1 below, to rank the strength of the dependence of the elements

in F(fS, fT ). I then discuss how to use copulas to represent joint distributions in §2.3.2.
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2.3.1. Measuring Dependence via Bivariate Dependence Orders

A natural dependence concept is achieved by comparing the joint distribution of two

dependent random variables X1 and X2 to the distribution of two independent random

variables with the same marginals. In particular, X1 and X2 are said to be Positive

Quadrant Dependent (PQD) if

P(X1 > x1, X2 > x2) ≥ P(X1 > x1)P(X2 > x2) for all x1, x2.

Similarly, X1 and X2 are said to be Negative Quadrant Dependent (NQD) if P(X1 >

x1, X2 > x2) ≤ P(X1 > x1)P(X2 > x2) for all x1, x2.

Loosely speaking, PQD means that large values of X1 tend to go together with large

values of X2, namely, both random variables are more likely to be large together than if

they were independent.

The notion of PQD leads to the following bivariate stochastic dependence order; see,

e.g., Shaked and Shanthikumar (2007, Chapter 9).

Definition 2.1 (PQD order). For random vectors (X1, X2) with joint cdf G and

(Y1, Y2) with joint cdf H, suppose that G and H have the same marginal cdf ’s F1 and F2.

I say that (X1, X2) is smaller than (Y1, Y2) in the PQD order, denoted by (X1, X2) ≤PQD

(Y1, Y2), if

G(x1, x2) ≤ H(x1, x2), or equivalently, Ḡ(x1, x2) ≤ H̄(x1, x2) for all x1, x2

where Ḡ(x1, x2) := P(X1 > x1, X2 > x2) and H̄(x1, x2) := P(Y1 > x1, Y2 > x2).
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One can analogously define NQD order by switching the inequalities between G and H,

namely, (X1, X2) ≤NQD (Y1, Y2) if Ḡ(x1, x2) ≥ H̄(x1, x2) for all x1, x2.

It is worth noting that, even though PQD (NQD) order is a partial order on F(fS, fT )

(not all the bivariate distributions in F(fS, fT ) can be ranked by PQD order), it is widely

considered to be the most fundamental stochastic dependence order; see Colangelo et al.

(2006). Indeed, Joe (1997) postulates that PQD order possesses all the desirable properties

that a multivariate positive dependence order should satisfy, and that any other stochastic

positive dependence order should imply PQD order.

One can relate PQD order to Pearson’s correlation in the following lemma, whose

proof can be found in Shaked and Shanthikumar (2007, p. 389).

Lemma 2.1. If (S1, T1) ≤PQD (S2, T2), then r1 ≤ r2, where ri is the Pearson’s corre-

lation coefficient of (Si, Ti), i = 1, 2.

2.3.2. Measuring Dependence via Copulas

A d-dimensional copula C, associated with a random vector (X1, . . . , Xd) having joint

cdf F and marginal cdf’s F1, . . . , Fd, is a joint cdf on the unit cube [0, 1]d with uniformly

distributed marginals, such that

(2.1) C(F1(x1), . . . , Fd(xd)) = F (x1, . . . , xd) for all x1, . . . , xd, d ≥ 2.

By Sklar’s theorem (e.g., Clemen and Reilly (1999, §2)), a copula exists uniquely for any

given joint cdf F if the marginals are continuous (as I assume). Moreover, for any marginal

distribution Fi, i = 1, . . . , d, and a copula C, there exists a joint distribution function

F , such that (2.1) holds. Thus, the use of copulas provides great modeling flexibility for
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practical purposes as it places no restriction on the marginal distributions. (In principle,

I could choose any marginal distributions for S and T , and construct a joint distribution

having those marginals.) Furthermore, copulas offer increased tractability, since they

allow us to “decouple” a joint distribution of a multivariate random variable into its

univariate marginal distributions and the copula, which fully captures the dependence

structure between the marginals. In my setting, copulas are useful not only in generating

joint distributions, but also because many classes of copulas can be associated with PQD

order. In particular, let P := P(fS, fT ) denote a subset of F(fS, fT ) that can be ranked

by PQD order; the existence of a nonempty set P can be deduced from (9.A.6) in Shaked

and Shanthikumar (2007). It is significant that a set P can be chosen to be the set

of bivariate distributions generated by one of many commonly used copulas, e.g., the

Guassian copula, t-copula and various Archimedean copulas (such as Frank, Joe, AMH

and Gumbel copulas.) Due to its tractability, the Guassian copula plays a fundamental

role in modeling dependent distributions. I will therefore focus on this class of copulas,

and demonstrate how my results translate to the corresponding joint distributions.

I denote the set of joint distributions generated by the Gaussian copula with fixed

marginals fS and fT by G := G(fS, fT ). For a given rG ∈ [−1, 1], a Gaussian copula can

be written as

C(x1, x2) = ΦrG(Φ−1(x1),Φ−1(x2)), x1, x2 ∈ [0, 1],

where Φ is cdf of the standard normal random variable and Φ−1 is its inverse, and ΦrG

is the joint cdf of a bivariate normal with mean vector zero and correlation coefficient

rG. (Note that rG is not the correlation coefficient of the resulting joint distribution,

which I denote by r.) It follows that a Gaussian copula can be used to construct a
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bivariate distribution for any predetermined marginals and any attainable correlation

coefficient r†. Moreover, Lemma A.2 in Appendix A.1.2 proves that the elements in

G(fS, fT ) can be ranked by r, namely, by a single parameter. This latter property makes

the Gaussian copula an attractive object of study, because it implies that the complicated

high-dimensional dependence structure of the random variables generated by the copula

can be quantified by a scalar.

2.4. Model

I consider a multi-server queueing system with s statistically identical agents. Cus-

tomers arrive to the system according to a general stationary arrival process; upon arrival,

a customer enters service immediately if an agent is available, and joins the queue if all

agents are busy. I assume that each customer has a finite patience for waiting to be served,

and will abandon the queue if his waiting time exceeds that patience. A key feature of

my model is that the patience time of a customer depends on that customer’s service

requirement, although the bivariate random variables of service and patience times are

independent across customers.

More specifically, letting Si and Ti denote the service requirement and patience time

of customer i, respectively, I assume that {(Si, Ti) : i ≥ 1} are IID bivariate random

variables, all having the same continuous joint density f and marginal densities fS and fT

for service time and patience time, respectively. The support of both marginal densities

is assumed to be the entire positive half of the real line. I use S and T to denote generic

†In general, for given marginals there can be values in [−1, 1] that r cannot achieve. For example,
if both the marginals are exponential distributions, then r cannot attain values smaller than −0.64.
Moreover, marginal distributions together with a correlation coefficient do not uniquely determine a joint
distribution. Extreme examples in Sharakhmetov and Ibragimov (2002) and Embrechts et al. (2002) give
a continuum of bivariate distributions with the same marginals and correlation coefficient.
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random variables having joint density f , and marginals fS and fT . I further assume

that E[S2] <∞ and E[T 2] <∞, so that both random variables have finite expectations,

and the correlation coefficient between S and T , denoted by r, is well defined. I refer

to µ := 1/E[S] > 0 as the nominal service rate, because µ would be the service rate

if there was no waiting, namely, if the system had sufficient capacity to operate as an

infinite-server queue.

Let λ denote the arrival rate, and let ρ := λ/sµ denote the nominal traffic intensity.

I consider overloaded systems in which the arrival rate is larger than the total service

capacity and thus a non-negligible fraction of customers abandon the system. It will be

shown in Proposition 2.2 below that if λ > sµ, or equivalently ρ > 1, then the system is

overloaded for any joint distribution f .

2.4.1. The Fluid Model

As was mentioned above, if S and T are dependent, the number-in-system process is

necessarily non-Markovian, rendering stochastic analysis prohibitively hard. I therefore

employ a deterministic fluid model, as in Whitt (2006a) and Bassamboo and Randhawa

(2015), to approximate the stationary queueing system, and demonstrate the effectiveness

of that fluid model via simulations. To construct the fluid model, I replace the stochas-

tic arrival, service and abandonment processes by corresponding deterministic flows. In

particular, I start by taking the number of agents s to be a positive real number (not

necessarily an integer), and imagine that fluid flows into the system at rate λ. Since each

of the s agents processes work at rate µ, fluid flows out of service at rate sµ, so that, by

the assumption ρ > 1, the rate at which fluid arrives is greater than the processing rate of
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all agents combined, implying that a nonnegligible proportion of fluid leaves the system

via abandonment.

In my setting, the workload in the system depends on the waiting time; to characterize

it, I define the work evolution function

(2.2) φ(w) :=

∫ ∞
w

∫ ∞
0

xf(x, y)dxdy,

which represents the work of a unit of fluid that remains in the system after waiting for

w time units in the queue. To see this, observe that φ(w) = F c
T (w)E[S|T > w], where

F c
T := 1− FT is the proportion of fluid that remains in queue after waiting w time units,

and E[S|T > w] is the average work of that remaining fluid. In steady state, the work

flow into service must be equal to the work flow out of service, giving rise to the steady

state fluid equation

(2.3) λφ(w) = s.

Observe that φ(w) is strictly decreasing in w due to my assumption that fS and fT are

strictly positive over [0,∞), implying the following result.

Proposition 2.1. If ρ > 1, then there exists a unique w̄ > 0 that solves equation

(2.3).

I refer to the unique solution w̄ to (2.3) as the offered wait. It represents the time in

queue that a virtual customer endowed with infinite patience would wait before entering

service when the fluid model is stationary. In other words, in the fluid model, customers

with patience greater than or equal to w̄ enter service after waiting exactly w̄ time units
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in queue, whereas the remaining customers, whose patience is smaller than w̄, abandon

the queue.

Given the steady state offered wait, I can characterize other key performance measures

for the fluid model. Let a(w) denote the conditional expected service time, conditioned

on the patience being larger than w, i.e.,

(2.4) a(w) := E[S|T > w].

Then aeff := a(w̄) is the average effective service time in steady state, so that µeff := 1/aeff

is the effective service rate in steady state. Given the effective service rate µeff I can

characterize the effective traffic intensity to the system

(2.5) ρeff :=
λ

sµeff

.

Next, dividing both sides of the equality in (2.3) by sµ gives

(2.6) ρφ(w̄) = 1/µ.

Noting that φ(w) = F c
T (w)a(w) = F c

T (w)/µeff, where F c
T is the complement of the cumu-

lative distribution function (cdf) FT of patience time, I see that (2.6) can be represented

via

(2.7) ρF c
T (w̄) =

µeff

µ
, or equivalently,

λF c
T (w̄)

s
= µeff.



38

The first equality in (2.7) is a generalization of Equation (3.9) in Whitt (2006a), which

states ρF c
T (w) = 1 in the independent model. The second equality in (2.7) can be inter-

preted as follows: Since F c
T (w̄) is the proportion of fluid that remains in the queue after

w̄ time units, and thus gets served, λF c
T (w̄)/s represents the rate per agent at which fluid

flows into service, and this rate must equal the effective service rate of an agent µeff.

I note that when S and T are positively dependent, a(w) = E(S|T > w) might increase

to infinity as w →∞. However, the assumption that E[S] <∞ ensures that F c
T (w)a(w)

is strictly decreasing and converges to 0 as w →∞.

Next, I compute the throughput and stationary fluid queue which I denote by R and

Q, respectively. Clearly, I have R = sµeff, so that

R = sµeff = sµρF c
T (w̄) = λF c

T (w̄),(2.8)

where the second equality follows from (2.7). The expression for the steady-state fluid

queue length Q is derived as follows: The amount of fluid that enters the queue over an

interval [t, t+ dx) is λdx, and the proportion of that fluid remaining in the queue t time

units later after arrival is F c
T (t). Since all arriving fluid that is served waits exactly w̄, it

holds that

Q = λ

∫ w̄

0

F c
T (x)dx.(2.9)

Observe that the fluid model is completely determined by the three elements in the

primitive data set D := (λ, s, f). (Note that the marginal distributions of S and T and the

nominal service rate µ are easily recovered from f .) Indeed, given the model data in D, I
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can compute the offered wait w̄ via (2.3), from which aeff and µeff can be easily recovered

via (2.7). Given these latter two variables, I can compute the stationary throughput R

in (2.8) and fluid queue Q in (2.9).

Note that in an overloaded system, i.e., with w̄ > 0 (Proposition 2.1), my fluid model

captures “predictable” queueing effects, which are due to insufficient service capacity.

This is different than non-overloaded systems, in which queueing is due to stochasticity

associated with the arrival and service process. Specifically, the fluid model does not

capture queueing effects that are due to random fluctuations. The following remark

elaborates on this point from an asymptotic perspective.

Remark 2.1. Even though I do not prove limit theorems here, it is helpful to think

of the stationary fluid model as a weak law of large numbers for a sequence of stationary

stochastic systems. More formally, consider a sequence of stochastic systems as described

above indexed by the number of agents s. Assume that the arrival rate to system s is

λs := sλ+o(s) (where o(s) denotes a function that increases slower than s, i.e., o(s)/s→ 0

as s → ∞), but that the joint distribution f is fixed along the sequence. Letting Qs(∞)

denote a random variable which is distributed as the stationary queue in the s system,

I conjecture that Qs(∞)/s converges in distribution to Q in (2.9), and that a similar

result holds for the stationary distribution of the service process. In particular, I expect

my fluid model to become more accurate as the size of the system increases, although

my simulation experiments (depicted in Figures 2.2 and 2.3 below) demonstrate that the

system need not be too large. It is readily seen from the spatial scaling by s of the prelimit

that the fluid model does not capture fluctuations of order o(s). Hence, the fluid queue
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and the offered wait are both zero when the system is not overloaded, i.e., when ρ ≤ 1.

See also Proposition 2.2 below.

2.4.2. Numerical Examples

I now examine the accuracy of the fluid approximation for overloaded systems via simu-

lation. To conduct the numerical experiments, I vary the size of the system (number of

agents) from 25 to 200 and the arrival rate such that ρ = 1.2 for all the systems I consider.

In the first numerical study, depicted in Figure 2.2, the arrival process is Poisson with

rate λ and the service time S and the patience time T are exponentially distributed with

means 1 and 2, respectively. (Recall that the number-in-system process is not Markovian,

so that steady-state quantities cannot be computed for the stochastic systems.) To move

away from the exponential assumption, I perform another numerical study, depicted in

Figure 2.3, in which I consider a renewal arrival process with Erlang(2, 2λ) interarrival-

time distribution (namely, Erlang with a shape parameter 2 and a rate parameter 2λ, so

that the arrival rate is λ); service time S is lognormal with LN(1, 2); and the patience

time T is lognormal with LN(2, 2), where I use LN(a, b) to denote the lognormal dis-

tribution with mean a and variance b. (Note that the mean service time is 1 and mean

time to abandon is 2 for the given lognormal distributions.) In both numerical studies

I plot the simulated average waiting time of served customers, the average throughput

and average queue length in steady state, and compare those simulation results (curves

indicated by the number of agents s) to the corresponding fluid estimates (the ‘Dependent

Fluid’ curves). The fluid estimates are obtained by numerically computing φ in (2.6) and

solving w̄ with a bisection search. The throughput and queue length are both plotted
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scaled by the number of agents s. To compare the result to the independent model, I also

plot the fluid estimates of the independent model (the ‘Independent Fluid’ curves).

It is clear from the simulations that the fluid model is accurately predicting the steady-

state metrics of overloaded systems, even for relatively small systems (with 25 agents),

and that the accuracy does not depend on exponential-distributions and Poisson-process

assumptions. Further, as was already demonstrated in §2.1, the independent model does

not give useful approximations even for systems with moderate dependence.
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Figure 2.2. Simulation and fluid model under different system sizes and de-
pendencies, ρ = λ/sµ = 1.2, s ∈ {25, 50, 100, 200}. Poisson arrival with rate
λ, service time distribution exp(1), and patience time distribution exp(1/2).
(The joint distribution of service time and patience time is generated via
Guassian copula.)

I next demonstrate how the effective traffic intensity ρeff in (2.5) changes with the

nominal traffic intensity ρ and the joint distribution f ; the results are shown in Table

2.2. As before, S and T are taken to be exponentially distributed with means 1 and 2,

respectively, and two different joint distributions are generated via Gaussian copulas, one

with r = −0.4 and the second with r = 0.4.

It is seen that even moderate dependence (as captured by the correlation) may have

a large impact on the effective system load. For example, when ρ = 1.2 and r = −0.4,
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Figure 2.3. Simulation and fluid model under different system sizes and
dependencies, ρ = λ/sµ = 1.2, s ∈ {25, 50, 100, 200}. Interarrival time dis-
tribution Erlang(2, 2λ), service time distribution LN(1, 2), patience time
distribution LN(2, 2). (The joint distribution of service time and patience
time is generated via Guassian copula.)

Table 2.2. A comparison of ρeff for different ρ, ρ ∈ {1, 1.05, 1.1, 1.2.1.3, 1.5}

1 1.05 1.1 1.2 1.3 1.5
ρeff (r=-0.4) 1.0 1.02 1.04 1.08 1.13 1.22
ρeff (r=0.4) 1.0 1.12 1.23 1.42 1.60 1.97

the effective traffic intensity is only ρeff = 1.08. (A system with a traffic intensity of

1.08 can be considered to be critically loaded, and not overloaded, for practical purposes;

see Garnett et al. (2002).) On the other hand, when ρ = 1.1 and the dependence is

positive with r = 0.4, the system is effectively severely congested with ρeff = 1.23. These

differences have significant economic consequences: When ρ = 1.2, approximately 16.7%

of the customers are expected to abandon in the independent model (since a proportion

(1.2 − 1)/1.2 ≈ 0.167) of the arrivals abandons), but only about 7.4% (a proportion

(1.08−1)/1.08) end up abandoning in my example with negative correlation. In contrast,

when ρ = 1.1 roughly 9% of the customers are expected to abandon in the independent

model, but 18.7% are expected to abandon in my example with positive correlation. I

study the economic aspect of my results in §2.6 below in the context of optimal staffing.
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2.5. Performance Analysis

Recall that the fluid model is fully characterized by the primitive data setD = (λ, s, f).

In this section, I analyze the impact of each of the three components in D on the fluid

system by fixing the other two components. In particular, for a given joint distribution

f , in §2.5.1 I study the effect of changes to the arrival rate λ when s is fixed, and the

effect of changing the staffing level s, when λ is fixed, on the throughput. Next, in §2.5.2

I quantify how the throughput is impacted by the dependence structure, employing the

PQD order and Gaussian copula discussed in §§2.3.1 and 2.3.2. To this end, I fix λ and

s and the two marginal densities fS and fT , and vary the joint distribution f .

However, I first prove that it is sufficient to know the value of the nominal traffic

intensity, equivalently, the values of λ, s and µ, in order to determine whether the system

is overloaded. (The system is considered to be overloaded if w̄ > 0.) I have already

observed that negative dependence of S and T decreases the load of the system relative

to the independent case. On the other hand, it is not immediately clear whether ρ ≤ 1

implies that w̄ = 0 when S and T are positively dependent. Specifically, a self-sustained

overload may exist in this case, because a large initial queue leads to a slow effective service

rate, which in turn leads to having a large queue. The next proposition shows that the

nominal traffic intensity determines whether the fluid model is overloaded. In particular,

a stationary fluid system with negative dependence remains overloaded if ρ > 1, and

overloads cannot be self-sustained when ρ ≤ 1.

Proposition 2.2. The following three statements are equivalent:

i) The nominal traffic intensity is strictly greater than one; ρ > 1.



44

ii) The effective traffic intensity is strictly greater than one; ρeff > 1.

iii) The offered wait is strictly greater than zero; w̄ > 0.

Throughout this section I assume that ρ > 1.

Let

(2.10) g(w) := E[S|T = w].

I refer to the function g as the Conditional Service Time (CST). Then an Increasing

Conditional Service Time (ICST) implies a positive dependence, whereas a Decreasing

Conditional Service Time (DCST) implies a negative dependence, between S and T . The

independence between S and T implies a Constant Conditional Service Time (CCST).

In general, for a given bivariate random variable (S, T ), the CST need not be a mono-

tone function. In Appendix A.1.3 I provide natural sufficient conditions for Monotone

Conditional Service Time (MCST), and link the monotonicity of the CST to PQD and

Gaussian copula introduced in §2.3. In particular, Lemma A.4 states that, for (S, T ) ∈ G,

r > 0 implies that (S, T ) is PQD and has an ICST, whereas r < 0 implies that (S, T )

is NQD and has a DCST. This monotonicity of the CST can be observed in Figure 2.4,

which plots curves of the CST for different bivariates in G. In this figure, the marginal

service and patience times S and T are exponential random variables with means 1 and

2, respectively.

2.5.1. Impact of Arrival Rate and Service Capacity on Performance Measures

I now analyze the effects of the arrival rate λ and number of agents s on the throughput R.

In a congested system with nonnegligible offered waits, the served customers are also the
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Figure 2.4. Conditional service time under different distributions generated
by Gaussian copula. Positive dependence (left), r > 0 and ICST. Negative
dependence (right), r < 0 and DCST. Independent case, r = 0 and CCST.

more patient customers. If S and T are positively dependent, served customers also tend

to require relatively long service times, so that, as the arrival rate increases, the offered

wait and, in turn, the effective mean service time, increase as well, so that throughput

decreases. On the other hand, when the dependence is negative, served customers tend to

require short service times. As the the arrival rate λ increases, the offered wait increases,

leading to more abandonment, and therefore, higher effective service rate and throughput.

In either case, as the next proposition shows, if f has an MCST, then the throughput R

is a monotone function of λ. Specifically, for given s and f , let R(λ) be the throughput

when the arrival rate is λ. The assumption ρ > 1 implies that the domain of R(λ) is

(sµ,∞).

Proposition 2.3. R(λ) is decreasing if f has an ICST and is increasing if f has a

DCST.

An important managerial insight that follows from Proposition 2.3 is that congestion

does not necessarily lead to performance degradation. In particular, if f has a DCST, then
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waiting “strains” the customers that have short patience times and long service times,

thus increasing the effective service rate and the throughput. This self-selection of the

customers can be exploited by appropriately staffing the system, as I will show in §2.6.

The following corollary follows immediately from Lemma A.4 and Proposition 2.3.

Corollary 2.1. For (S, T ) ∈ G, R(λ) is decreasing if r > 0, and R(λ) is increasing if

r < 0.

I next consider the throughput as a function of the capacity when the arrival rate is

fixed. To this end, let R(s) denote the throughput as a function of the capacity s when

λ and f are fixed. The assumption ρ > 1 implies that 0 ≤ s < λ/µ, namely, the domain

of R(s) is [0, λ/µ).

Proposition 2.4. R(s) is convex increasing if f has an ICST and is concave increas-

ing if f has a DCST. In particular, R(s) is linear if f has a CCST.

Unlike Proposition 2.3, in which the monotonicity of the throughput in λ depends

on the dependence structure, the throughput is always increasing in s, regardless of the

dependence, when λ is fixed. In the special case with independent service and patience

times, the relation between the throughput and the capacity is linear. The structural

properties of R(s), stated in Proposition 2.4, facilitate the analysis of the staffing problem

for revenue maximization in §2.6.

The intuition behind the fact that the throughput grows at a rate faster/slower than

capacity s when f has an MCST, can be explained as follows. If f has an ICST, then

as capacity s increases, the offered wait w̄ decreases so that the effective service rate µeff

increases. The throughput sµeff thus increases superlinearly in s. On the other hand, if f
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has a DCST, the effective service rate µeff decreases with s and thus the throughput sµeff

grows sublinearly in s.

For the Gaussian copula, I obtain the following corollary to Proposition 2.4.

Corollary 2.2. For (S, T ) ∈ G, R(s) is convex increasing if r > 0, and R(s) is

concave increasing if r < 0.

2.5.2. Impact of Dependence between Service and Patience on Performance

I now consider how the strength of the dependence, as ranked by PQD order, impacts

system performance. To this end, I fix the arrival rate λ and the number of agents s, as

well as the marginals fS and fT . Let (S1, T1) and (S2, T2) denote two bivariate random

variables both in a subset P(fS, fT ) of F(fS, fT ) whose elements can be ranked by PQD

order (see §2.3.1). Let Ri, wi and Qi denote the throughput, offered wait and stationary

queue, respectively, in the fluid model of a system with joint service time and patience

(Si, Ti), i = 1, 2. The next result validates the intuition that the throughput is smaller

under positive dependence and larger under negative dependence.

Proposition 2.5. If (S1, T1) ≤PQD (S2, T2), then R1 ≥ R2, w1 ≤ w2 and Q1 ≤ Q2.

It is significant that the statement in Proposition 2.5 can be strengthened if one

considers particular families of joint distributions with given marginals. In particular, if

both bivariate random variables are generated via a Gaussian copula, then the inequalities

in the statement are strict, as the next result shows.

Corollary 2.3. If (S1, T1), (S2, T2) ∈ G(fS, fT ) and r1 < r2, then R1 > R2, w1 < w2

and Q1 < Q2.
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2.5.3. Numerical Examples

I first demonstrate the statement of Proposition 2.3 and Corollary 2.1. In Table 2.3 I

compare the throughput of different systems where the capacity s is fixed at 100 and the

nominal traffic intensity ρ increases from 1.0 to 1.5 as the arrival rate λ varies. I also com-

pare the throughput calculated by my fluid model with those observed by simulations. In

the example, (S, T ) is generated via a Gaussian copula, with S and T being exponentially

distributed with means 1 and 2, respectively. The gaps between the fluid predictions

and the simulated values of the throughput are also reported. It is readily seen that the

throughput is increasing in λ when r = −0.4 (representing negative dependence), and is

decreasing in λ when r = 0.4 (representing positive dependence). Moreover, the changes

to the throughput as λ increases are substantial. I remind the readers that for any ρ ≥ 1,

the throughput is fixed at sµ = 100 when S and T are independent.

I note that the gaps between the fluid estimates and the corresponding simulation

experiments are the largest when the system is critically loaded (ρ = 1), because stochastic

fluctuations, which are of lower order than the dynamics captured by the fluid model (see

Remark 2.1), play a dominant role when the fluid estimate is zero for the system. I

consider the staffing problem in the next section and propose a heuristic refinement that

is based on diffusion approximations for critically loaded systems.

I next validate the result in Proposition 2.4. Figure 2.5 compares the throughputs

obtained from simulations (discrete marks) and from fluid models (dashed line) under

different capacities and joint distributions. I vary the capacities from 10 to 90 while

keeping the arrival rate fixed at λ = 100. Service time S and patience time T are

exponentially distributed with means 1 and 2, respectively, and the bivariate (S, T ) is
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Table 2.3. A comparison of throughputs under different nominal traffic in-
tensities (s = 100)

r = −0.4 r = 0.4
Throughput Gap Throughput Gap

λ ρ Simulation Fluid Percentage Simulation Fluid Percentage
100 1 98.01 100.00 2.03% 94.34 100.00 6.00%
105 1.05 101.66 103.20 1.52% 93.09 93.44 0.38%
110 1.1 104.82 106.00 1.13% 90.08 89.79 0.33%
120 1.2 110.26 110.96 0.63% 84.78 84.75 0.03%
130 1.3 114.89 115.37 0.41% 81.17 81.16 0.01%
150 1.5 122.75 123.08 0.27% 76.12 76.11 0.01%

generated via Gaussian copulas for different values of r. The convexity of R(s) when

r > 0 and the concavity of R(s) when r < 0 are apparent. When service and patience

times are independent, so that r = 0, R(s) linearly increases in s (solid lines).
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Figure 2.5. A comparison of throughputs under different capacities (λ =
100, s ranges from 10 to 90). Positive dependence (left figure): throughput
convex increasing with s. Negative dependence (right figure): throughput
concave increasing with s. The independent case (solid lines with squares):
throughput is linear increasing with s.

Finally, I numerically validate the result in Proposition 2.5. I take S and T as in

the former two examples, and again employ a Gaussian copula to generate their joint

distribution. I fix λ = 120 and s = 100, and plot the throughput as a function of the
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correlation coefficient r. Figure 2.6 reveals the significant impact of the dependence on

the system performance. In particular, the throughput when r = 1.0 is only half of that

under r = −0.64 (which is the minimal attainable correlation coefficient when the two

marginals are exponentially distributed). The increase in the average queue length is even

more salient: The fluid queue increases from 11.9, when r = −0.64, to 123.7 when r = 1.
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Figure 2.6. A comparison of throughputs and queue lengths for different
systems with service and patience times generated by Gaussian copulas.

2.6. Economics of Capacity Sizing

In this section I apply the results derived for the stationary fluid model to develop

fluid-optimal solutions to a capacity-sizing problem under a linear cost structure. I start

in §2.6.1 by considering the optimal staffing under the FIFO policy‡. It is significant

that the analysis I apply was performed for overloaded systems having ρ > 1 (recall

Proposition 2.2), but that it is sometimes optimal to staff the system so as to have it be

critically loaded, namely, have ρ = 1; see Proposition 2.6 below. In the later case, my

fluid model is too crude an approximation for the stochastic system (since the queue, and

‡The analysis in §2.6.1 is extended in Appendix A.1.3 to consider the optimal control policies.
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thus the proportion of abandonment, are both null in the fluid model of critically loaded

systems), and stochastic refinements must be considered. Thus, in §2.6.3 I propose a

heuristic refinement based on existing approximations for critically loaded systems. The

effectiveness of the fluid-based and the heuristic prescriptions are verified via simulations.

2.6.1. Capacity Sizing under FIFO Policy

I study the capacity-sizing problem when linear staffing and abandonment costs are in-

curred. Let c denote the unit cost of capacity and let p denote the penalty associated with

an abandonment. For a given arrival rate λ, I consider the following cost optimization

problem for the fluid system:

(2.11) min
s≥0

Cλ(s) := cs+ pαλ(s),

where αλ(s) is the abandonment rate when the arrival rate is λ and capacity is set to

s. The penalty for abandonment can be considered as the opportunity cost of a lost

customer, or as the reputation cost resulting from customer dissatisfaction. Hence the

cost function Cλ(s) is a combination of the personnel cost incurred by capacity allocation

and the customer-related cost induced by abandonments.

Equivalently to (2.11), I can maximize the profit function Πλ(s) := pRλ(s) − cs,

where Rλ(s) is the throughput when the arrival rate is λ and capacity is s. In the

standard model (with independent service and patience), the throughput is Rλ(s) =

min{λ, sµ}, so that Πλ(s) = pmin{λ, sµ}−cs. Clearly, an optimal solution to the problem

mins≥0 Πλ(s) cannot have the number of agents s be larger than the offered load λ/µ, for

otherwise the cost of the “extra capacity” s−λ/µ can be eliminated without reducing the
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throughput (the throughput stays λ as long as s ≥ λ/µ). In the independent model, the

optimal capacity is trivial to compute because the profit-maximization problem reduces

to maximizing (pµ − c)s, which is positive if and only if pµ > c. In the latter case, the

optimal capacity is clearly s∗λ = λ/µ. See similar results in Whitt (2006b) and Ren and

Zhou (2008).

When service times and patience are dependent, the throughput is determined by their

joint distribution, in addition to the arrival rate and staffing, so that the optimal-staffing

problem is no longer trivial. Nevertheless, similar to the independent case, it is easy to

see that the optimal capacity s∗λ must satisfy s∗λ ≤ λ/µ, implying that (2.11) is equivalent

to

(2.12) min
0≤s≤λ/µ

Cλ(s) = cs+ pαλ(s).

Note that αλ(s) = λFT (w̄), where w̄ solves (2.3), so that

Cλ(s) = cs+ pαλ(s) = λ [cφ(w̄) + pFT (w̄)] = λ [cF c
T (w̄)a(w̄) + pFT (w̄)] .

I can equivalently optimize over w and restate the optimization problem:

(2.13) min
w̄≥0

C̄λ(w̄) := cF c
T (w̄)a(w̄) + pFT (w̄).

Differentiating C̄λ(w̄) with respect to w̄ gives C̄ ′λ(w̄) = fT (w̄) (p− cg(w̄)), and setting the

derivative to zero gives us the following first order condition: g(w̄) = p/c. To interpret

the latter equality, note that p/g(w̄) represents the marginal revenue of adding capacity;

in optimality, this marginal revenue must equal the marginal cost c of added capacity.



53

The derivation above gives rise to the following proposition. Let g(∞) denote the limit

of g(w̄) as w̄ →∞, whenever the limit exists.

Proposition 2.6. Under FIFO,

(i) If f has an ICST, then the critically loaded regime with capacity s∗λ = λ/µ is fluid

optimal if and only if c < pµ. Otherwise if c ≥ pµ, then no capacity should be

allocated.

(ii) If f has a DCST, then the overloaded regime is fluid optimal if and only if g(∞) <

p/c < g(0). In this case, the optimal capacity is s∗λ = λFT (w∗)a(w∗), for w∗ :=

g−1(p/c). Otherwise if p/c ≥ g(0), then the critically loaded regime with capacity

s∗λ = λ/µ is fluid optimal. If p/c ≤ g(∞), then no capacity should be allocated.

I remark that the conditions in the second part of the proposition are always satisfied

when (S, T ) is generated by a Gaussian copulas with r < 0.

As was discussed above, when pµ < c then service is unprofitable in the independent

model. The same is true for systems with positive dependence, because the throughput

in such a system is no larger than the throughput sµ of the independent model. However,

Proposition 2.6 shows that when f has a DCST, the effective service rate, and thus the

throughput, can be sufficiently high to warrant service profitable even when pµ < c.

Proposition 2.6 is concerned with the structure of the dependence in a given system.

The next result considers the comparative statics focusing on the dependence measured

by the PQD order. To state the result, recall the setting of Proposition 2.5. In particular,

fix the arrival rate λ, capacity s, and the marginal densities fS and fT . Let (S1, T1) and

(S2, T2) be two bivariate random variables in a set P(fS, fT ) ⊆ F(fS, fT ) whose elements
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can be ranked by PQD order. For i = 1, 2, let C∗i denote the optimal cost when the

service time and patience are distributed as Si and Ti, respectively.

Corollary 2.4. If (S1, T1) ≤PQD (S2, T2), then C∗1 ≤ C∗2 .

It follows from Corollary 2.4 that the optimal cost is monotone in the dependence

strength. However, an analogous result for the optimal staffing does not necessarily hold,

as will be seen in the numerical example presented in Table 2.4 below. Nevertheless, one

intuitively expects that when abandonments are “too costly,” namely, if the abandonment

penalty p is sufficiently large relative to the staffing cost c, then a stronger dependence

will also imply a larger optimal staffing level, because a stronger dependence implies

increased abandonment for any given staffing level. This intuition is formalized in the

next proposition. To state it, I need the following definition. Let h be a real-valued

function. I say that h satisfies the principle of permanence at z = 0 when the following

holds: if there exists a positive sequence {zn : n ≥ 1} of distinct numbers such that

zn → 0 as n→∞ and h(zn) = 0 for all n, then h(z) = 0 in a neighborhood of z = 0. In

particular, h cannot have infinitely many roots in any finite interval containing 0 unless

it is identically equal to 0 over such interval.

Consider the setting of Corollary 2.4, and let s∗i (p/c) denote the optimal capacity as

a function of the penalty-cost ratio p/c, when the service-time and patience are (Si, Ti).

Let gi(z) denote the corresponding conditional expectation, defined in (2.10), i = 1, 2.

Proposition 2.7. Assume that (i) (S1, T1) ≤PQD (S2, T2); (ii) fi has a DCST, i = 1, 2;

(iii) h(z) := g1(z)−g2(z) satisfies the principle of permanence at z = 0. Then there exists

M satisfying 0 < M < g2(0) such that s∗1(p/c) ≤ s∗2(p/c) for all p/c ∈ (M, g2(0)).
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I note that Condition (iii) in Proposition 2.7 is a weak technical condition ensuring

that g1 and g2 do not cross infinitely many times in the neighborhood of 0. Any of the

following three conditions is sufficient for (iii) to hold: (1) h(0) 6= 0 (which typically

holds); (2) if h(0) = 0, then h′(0) 6= 0; (3) h admits a Taylor series expansion at 0.

If the bivariates (S, T ) are generated via a Gaussian copula, the monotonicity of the

optimal staffing in Proposition 2.7 is strict, as stated in the following corollary.

Corollary 2.5. If for (S1, T1), (S2, T2) ∈ G(fS, fT ) it holds that r1 < r2 < 0, then

there exists M > 0 such that s∗1(p/c) < s∗2(p/c) for all p/c > M .

2.6.2. Numerical Study

I now present numerical and simulation examples to demonstrate the accuracy and the

limitations of the optimal fluid solution to Problem (2.11) described in Proposition 2.6.

The system I consider has a Poisson arrival process with arrival rate λ = 100; the marginal

service time and patience distribution are exponentially distributed with means 1 and 2,

respectively; and the joint distributions of service and patience times are generated via

Gaussian copulas with correlation coefficients ranging from −0.64 to 1. (Recall that

for Gaussian copulas the correlation coefficient determines the joint distribution, and

that r = 0 corresponds to the independent case. Moreover, r = −0.64 is the minimum

attainable correlation coefficient for exponential marginals.) In the three examples, I fix

c = 1 and vary the penalty p; in particular, I consider the values p = 0.8, p = 1.25

and p = 3.5. Note that, in the first case (with p = 0.8) service is not profitable in the

independent and positively dependent models. On the other hand, p = 3.5 represents an

extreme case of a high abandonment penalty.
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In Table 2.4 I compare the fluid-optimal capacity and cost (shown in the ‘Fluid Opti-

mal’ column) to the corresponding optimal values obtained from simulation experiments

(these appear in the ‘Simulation Optimal’ column). The optimality gap between the fluid

prescription and the true optimum is shown in the third column of the table. The simu-

lation results are based on 10 independent runs; when a critically loaded regime is fluid

optimal, each run lasts for 20,000 time units with the first 10,000 time units serving as the

warm-up period. For overloaded systems, each run stops after 3,000 time units with the

first 1,000 time units serving as the warm-up period. Before elaborating on the numerical

results, I make the following quick observations: First, when p = 0.8 (so that pµ < c),

operations can be profitable when the dependence is negative, provided the staffing is done

correctly, even though it is not profitable to operate when service and patience times

are independent or positively dependent. I also observe that the optimal staffing is not

monotone in the correlation r (and thus in the dependence strength) when p = 0.8, but

is monotone for the other two cases with larger values of p; see Corollary 2.5. Finally,

the optimality gap is relatively negligible in the overload regime, but the gap can be large

when the system is critically loaded, in particular, when the dependence is strong and

positive.

More specifically, when the service time and patience are negatively dependent, it is

optimal to operate in the overload regime. In this regime, the fluid queue serves as a

first-order approximation for the queue process, and the stochastic fluctuations about the

fluid are of lower order, and so are negligible in large systems. As a result, the optimality

gap between the optimal fluid prescription and the true optimum, as evaluated via the

simulations, is negligible. However, there are considerable optimality gaps when the
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Table 2.4. Optimal staffing of systems with dependencies (λ = 100)

Correlation Fluid Optimal Simulation Optimal Optimality Gap
r Capacity Cost Capacity Cost Absolute Percentage

p/c = 0.8
-0.64 19 55.18 19 55.18 0.00 0.0%
-0.6 20 58.29 20 58.29 0.00 0.0%
-0.4 22 69.78 21 69.78 0.00 0.0%
-0.2 14 78.81 14 78.81 0.00 0.0%

0 to 1 0 80.00 0 80.00 0.00 0.0%
p/c = 1.25

-0.64 36 71.62 36 71.62 0.00 0.0%
-0.6 39 75.25 38 75.23 0.02 0.0%
-0.4 55 88.63 54 88.58 0.04 0.1%
-0.2 79 98.02 78 97.93 0.09 0.1%

0 100 104.14 92 102.71 1.43 1.4%
0.2 100 105.40 97 105.20 0.20 0.2%
0.4 100 106.95 102 106.91 0.04 0.0%
0.6 100 109.06 102 108.12 0.94 0.9%
0.8 100 111.86 105 108.99 2.88 2.6%

1 100 115.40 106 109.47 5.94 5.4%
p/c = 3.5

-0.64 86 101.18 83 100.99 0.19 0.2%
-0.6 91 102.78 87 102.42 0.36 0.4%
-0.4 100 106.86 98 106.55 0.31 0.3%
-0.2 100 108.91 102 108.72 0.19 0.2%

0 100 111.59 104 110.22 1.38 1.3%
0.2 100 114.98 106 111.27 3.71 3.3%
0.4 100 119.46 108 112.17 7.30 6.5%
0.6 100 125.37 108 112.76 12.61 11.2%
0.8 100 133.22 109 113.32 19.90 17.6%

1 100 143.13 110 113.63 29.50 26.0%

dependence is positive, and the fluid-optimal solution for the staffing problem puts the

system in the critically loaded regime. In this case, the stochastic fluctuations, which

are not captured by the fluid model, become dominant. As should be expected, the

optimality gap increases as the cost of abandonment and the strength of the dependence

increase. In particular, when the dependence is strong (r ≥ 0.6) and abandonment cost
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is high (p = 3.5), the optimality gap is too substantial for the optimal fluid staffing to be

considered a useful guideline.

Even though p = 3.5 represents an extreme case of a high abandonment penalty rel-

ative to the staffing cost, the results in Table 2.4 suggest that taking stochasticity into

account can lead to substantial improvements in critically loaded systems, even more

so than in the independent model. However, studying the optimal staffing problem in

this setting requires a refined second-order (diffusion type) approximation to the sys-

tem, which is beyond the scope of this chapter. I mention that extensive simulation

experiments suggest that the safety capacity needed in order to achieve optimality in the

critically loaded regime is of order
√
λ, which is consistent with diffusion approximations

for many-server queueing systems without dependence (see Halfin and Whitt (1981) and

Garnett et al. (2002)). In the next section I propose an algorithm to compute effective

staffing recommendations for critically loaded systems with dependencies that are based

on my characterization of the effective service rate combined with existing results for the

independent model.

2.6.3. A Heuristic Stochastic Refinement for the Critically loaded Case

To refine the first-order staffing recommendation prescribed by the fluid model when

the service time and patience are positively dependent, I propose the following algorithm,

based on the diffusion approximation for the independent model (the Erlang A) in Garnett

et al. (2002). Consider a system having Poisson arrivals with rate λ, exponential service

time with rate µ, exponential patience time with rate θ and a given joint distribution for

the service time and patience.
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(i) Use the stationary diffusion approximation for the critically loaded Erlang-A

in Garnett et al. (2002), and in particular, the formula for the proportion of

abandonment in p. 218 of this reference: For a service system with s agents,

define β = s−λ/µ√
λ/µ

. Then the abandonment ratio can be approximated by

(2.14) P(Ab) ≈

[
1−

h(β
√
µ/θ)

h(β
√
µ/θ +

√
µ/θ)

][
1 +

h(β
√
µ/θ)√

µ/θh(−β)

]−1

,

where h is the hazard function of the standard normal random variable. Ap-

proximate the abandonment rate αλ(s) = λ · P(Ab) and compute the optimal

staffing level s0 that solves (2.11) (without dependence). Let P∗(Ab) denote the

proportion of abandonment under s0 in the Erlang-A model.

(ii) For the dependent model under consideration, compute the fluid waiting time

w∗ for which the proportion of abandonment is equal to P∗(Ab) computed in

(i), namely, for which FT (w∗) = P∗(Ab). Compute the effective service rate

µ∗eff = 1/a(w∗).

(iii) Employ the approximation in (2.14) once again, this time with service rate µ∗eff,

and compute the capacity s∗ for which the proportion of abandonment is equal

to P∗(Ab).

Note that s∗ computed in Step (iii) is of the form s∗ = λ + β∗
√
λ, for some β∗ ∈ R.

Then the proposed number of agents in the real system is ds∗e, namely, the smallest

integer larger than s∗.

Numerical Example. Table 2.5 demonstrates the substantial improvements ob-

tained by employing the procedure above. In this table, the capacity and resulting cost
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obtained using my staffing algorithm is compared with the fluid prescriptions and the

optimal values, which are estimated via simulations. Observe in particular, that the op-

timality gap in the cost reduces to 1.8% under my heuristic when p = 3.5 and r = 1.0,

compared to 26% under the fluid prescription.

Table 2.5. Optimal staffing of systems with dependencies: simulations, fluid
prescriptions and heuristic (λ = 100, µ = 1, θ = 1/2, c = 1, p = 3.5)

Correlation Optimal Fluid Model Heuristic
r Capacity Capacity Cost Gap Capacity Cost Gap

-0.4 98 100 0.3% 101 0.5%
-0.2 102 100 0.2% 103 0.2%

0 104 100 1.2% 104 0.0%
0.2 106 100 3.3% 105 0.2%
0.4 108 100 6.5% 105 0.5%
0.6 108 100 11.2% 106 0.6%
0.8 109 100 17.6% 106 1.2%
1 110 100 26.0% 106 1.8%

2.7. Square-root Staffing under Dependent Service and Patience Times

The queueing literature has demonstrated that the square-root staffing rule in the

many-server setting allows the service manager to to achieve two desirable goals: a high

quality of service level in the sense that customers’ queueing time is negligible and there

is a strictly positive probability that customers do have to wait to get served; as well as a

high efficiency in the capacity cost in that almost all service agents are busy all the time

so that the utilization of service agents is close to 1. See e.g., Halfin and Whitt (1981)

and Garnett et al. (2002). As a result, the square-root staffing regime is also termed as

the Quality-and-Efficiency Driven (QED) regime by Borst et al. (2004).

In the presence of a dependence between service and patience times, however, I con-

jecture via extensive simulations that the square-root staffing may fail to achieve the
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desirable QED performance in some circumstances. I find that for systems which have a

positive dependence with g(0) = 0 and are staffed such that λn/µ = n + β
√
n for some

fixed β > 0, the queue length can not be order of O(
√
n), an indicator suggesting the

failure of the QED performance. In this case, the probability that an arriving customer

will have to wait in queue is nearly 1. The intuition behind these facts is straightforward

and similar to what I have explained in §2.5. The positive dependence puts more work-

load into the system compared to the independent model since customers who end up

receiving service are those with high patience levels and thus longer-than-average service

requirements.

Although I am unable to prove my argument rigorously, in this section I provide a

heuristic to support my argument. I consider a sequence of systems having service and

patience times distributed with a common distribution f , which does not vary with system

size. The arrival rate λn and the number of service agents n in the nth system are related

such that λn/µ = n + β
√
n for some fixed β ∈ (0,+∞). Two performance metrics in

the QED regime in the independent model are of interest. Garnett et al. (2002) show

that under the square-root staffing, the waiting time W n ∼ 1/
√
n and the queue length

Qn ∼
√
n where the superscript n indicates the corresponding performance metrics in

the nth system. Assuming the same positive dependence along the sequence of systems,

I will show by contradiction that the waiting time W n cannot follow the same order as

with no dependence. To derive the contradiction, suppose the waiting time W n is still

of order 1/
√
n in the nth system with a positive dependence. Then it must hold that

E[W n] = w̃/
√
n for some w̃ ∼ O(1). I will show in the following that the work inflow
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into service must exceed the maximal processing capacity, hence a steady state cannot be

sustained.

Recall the definition in (2.4) that a(w) = E[S|T > w] and g(w) = E[S|T = w]. One

can compute a′(0) = fT (0) (1/µ− g(0)). Thus, the effective service time in system can

be approximated using a first-order Taylor expansion

1

µeff

≈ a (E[W n]) ≈ 1

µ
+ a′(0)E[W n] =

1

µ

[
1 +

fT (0)(1− µg(0))w̃√
n

]
.

Since the waiting time E[W n] = w̃/
√
n and is close to 0 for large n, hence the abandonment

ratio

P (Ab) ≈ hT (0)E[W n] =
fT (0)w̃√

n
.

The workload into service is:

T = λn
1

µeff

(1− P (Ab)) =
(
n+ β

√
n
)(

1 + fT (0)(1− µg(0))
w̃√
n

)(
1− fT (0)

w̃√
n

)
= (n+ β

√
n)

(
1− µfT (0)g(0)

w̃√
n

+ o

(
1√
n

))
= n+ (β − µfT (0)g(0)w̃)

√
n+ o(

√
n).

In the case g(0) = 0 (for example, when the service and patience times are generated with

Gaussian copulas with positive correlation coefficient), since β > 0, it necessarily follows

that β > fT (0)g(0)w̃ for all w̃ > 0. Since each service agent is working at unit rate, the

workload into service T exceeds the maximal capacity n. Hence the service flow described

above cannot be sustained in a steady state in the QED regime.
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Next I show that the above heuristic argument does not violate the predictions of

Garnett et al. (2002) in the independent model. In Garnett et al. (2002),

P (Ab) =

[
1−

h(−β
√
µ/θ)

h(−β
√
µ/θ +

√
θ/nµ)

]
ω(β,

√
µ

θ
)

≈
h(−β

√
µ/θ)′

√
θ/nµ

h(−β
√
µ/θ)

ω(β,

√
µ

θ
)

=
(
h(−β

√
µ/θ) + β

√
µ/θ
)√

θ/nµω(β,

√
µ

θ
).

If service and patience times are exponentially distributed with rates µ = 1 and θ = 1/2,

respectively, then

P (Ab) =
(
h(−
√

2β) +
√

2β
) 1√

n

h(β)√
2h(β) + h(−

√
2β)

>
β√
n
.

Figure 2.7 plots
√
n(P (Ab) − β) against β in the independent model. It can be readily

seen that P (Ab) > β always holds for all β. In fact, one can show P (Ab) > β is true for

all values of µ and θ. It then follows that the workload into service less than the maximal

capacity in that T = λn/µ(1− P (Ab)) = n− (P (Ab)− β)
√
n < n, thus the steady state

is stable and can be sustained.

The heuristic argument provides a necessary condition for the overloaded square-root

staffing (β > 0) to achieve QED performance in the presence of a positive dependence:

g(0) > 0, which is trivially satisfied in the independent model.

2.8. Summary

I considered a queueing model for large service systems in which the patience of cus-

tomers depends on their individual service times. Since this dependency renders exact
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Figure 2.7. Independent case:
√
N(P (Ab)− β) against β.

analysis intractable even if the marginal service time and patience are exponentially dis-

tributed, I utilized a stationary fluid model to approximate the system’s steady state.

That fluid model can be employed to provide accurate approximations of key performance

measures of overloaded systems with any jointly continuous service-time and patience dis-

tribution, as is demonstrated via simulation experiments. Moreover, since the fluid model

is characterized via the full joint distribution of service and patience times, it can be

applied to obtain important qualitative results. In particular, I applied the fundamental

PQD stochastic order and the Conditional Service Time (CST) to obtain structural re-

sults regarding the impact of the dependence on the fluid model. My qualitative results

were shown to hold for the important family of Gaussian copulas, which is often employed

in practice to analyze joint distributions due to its analytical tractability.

I then implemented the framework I developed to study an optimal staffing problem

when staffing and abandonment costs are incurred. The fluid-optimal prescriptions were

shown to be very close to the true optimum, as evaluated via simulations, in the overloaded
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regime, but the optimality gap can be substantial when the fluid-optimal solution puts

the system in the critically loaded regime. To handle that latter case, I proposed a simple

algorithm to compute a square-root safety-staffing recommendation, based on a heuristic

adjustment of an existing second-order refinement for the Erlang-A (independent) model,

together with my characterization for the effective service rate. Numerical examples

demonstrate that the proposed heuristic can decrease the optimality gap substantially,

even for moderate positive dependencies, when the abandonment penalty (equivalently,

the revenue from service) is relatively large.

Future Research There are many directions for related future research. One needs

to develop efficient econometric methods to accurately estimate the joint distribution for

the service and patience times from data. In doing so, one also needs to carefully address

the censoring problem due to customer abandonments, e.g., see Brown et al. (2005). It also

remains to formally develop second-order (diffusion-type) approximations for critically

loaded systems. Finally, it remains to describe the transient fluid approximation and

prove that both the transient and the stationary fluid models hold as weak limits for

the stochastic system and its steady state, respectively, in the many-server heavy-traffic

regime.
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CHAPTER 3

Service Systems with Exogenous and Endogenous

Dependencies: A Unified Fluid Model

3.1. Introduction

One of the most prevalent assumptions in the queueing literature is that the primitives

of the model (the inter-arrival, service and patience times, for example) are independent

of each other, as well as of the state and dynamics of the system. In practice, however, this

independence assumption does not always hold. For example, the patience of a customer

waiting for an agent to reply in a call center is likely to depend on the importance of the

requested service, which in turn, is likely to be correlated with the length of the service;

e.g., see Reich (2012). Similarly, the willingness to wait for a checkup in an Emergency

Department (ED) is likely to depend on the acuity level of the waiting patient, which itself

is correlated with the service (treatment) time that patient requires; e.g., see Lovett et al.

(2014). In these two examples, the service requirement of each customer depends on his or

her own (im)patience; in other settings, however, it is likely to depend on the customer’s

delay in queue. For example, Chan et al. (2016) provide empirical evidence that the

hospitalization times at some Intensive-Care Units (ICUs) are positively dependent on

the times that the patients waited for an available bed at those ICUs.

In this chapter, I study the queueing dynamics of two different models, each corre-

sponding to one of the aforementioned dependence structures. When customers’ service
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times depend on their individual patience, I consider the dependence to be exogenously

“brought into the system” by arriving customers, and refer to that model as exogenous-

dependence model. When the service time of each customer depends on that customer’s

delay in queue, I treat each customer as arriving with a family of conditional service-time

distributions (conditional on the delay), with the actual service-time distribution being

determined by the realized delay of that customer. Note that, in this case, the actual

service time of a customer is endogenized by the system dynamics, and I therefore refer

to the latter model as the endogenous-dependence model. See §3.3 below for the specific

modeling assumptions.

Note that the stochastic queueing dynamics of a system under either form of depen-

dency (exogenous or endogenous) are intractable, because the number-in-system process is

non-Markovian, even if the arrival process is Poisson and the conditional service time (con-

ditioned on the delay) and patience time are both exponentially distributed. I therefore

consider fluid approximations for the stochastic system, namely, a deterministic dynamic

system that approximates the mean behavior of the corresponding stochastic system. I

further note that, one can relatively easily observe a correlation between the service and

waiting times of served customers, both the exogenous and endogenous model I study

in this chapter can be used to explain such correlation observed from censored data.

In particular, the service times and waiting times are observed for customers who did

not abandon, but their actual patience times are right censored by the waiting times.

Moreover, the patience times of abandoned customers can be observed, but their service

times are not. Fortunately, I can capture both types of dependencies simultaneously via

a unified fluid model, facilitating the study and comparisons between the two dependence
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structures. The relation between the two dependencies in stochastic queueing systems

is further discussed in Chapter 4, where a unified model for the stochastic systems is

developed to capture the two dependencies.

The unified fluid model I propose is developed for non-stationary systems, namely, for

systems with time-varying arrival rates. However, for the qualitative study of the fluid

model, I focus on the important case of piecewise-constant arrival rate functions. Indeed,

control and staffing decisions in practice are often made by dividing the day into time

intervals over which the arrival rates are nearly constant, and then employing steady-

state analysis over those time intervals; e.g., see Gans et al. (2003, §3.2). Such analysis

relies on having the system converge to stationarity, rendering the study of transient

behavior imperative. In particular, it is important to determine whether the system

under consideration possesses a unique stationary behavior when the arrival rate is fixed,

and whether it necessarily converges to the equilibrium in such a case. As my fluid model

demonstrates, the answer to both questions is not always affirmative for the dependence

models.

In particular, I characterize a sufficient condition for the fluid model to possess a

unique equilibrium (stationary point), which always holds in the exogenous-dependence

case, but may not hold in the endogenous-dependence case in which the service times

depend on the delay. I provide examples for fluid models to have two equilibria, including

both underload and overload equilibrium points. In the latter case, the system may be

stuck in an overload equilibrium, even though it has sufficient potential service capacity

to serve all the arrivals, a phenomenon referred to as congestion collapse in the queueing

literature; see Perry and Whitt (2015, 2016). Further, I use numerical examples for
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the transient fluid models to demonstrate that the rate of convergence to equilibrium is

highly affected by the dependence structure. Therefore, employing the “standard model”,

in which the service times are assumed to be independent of the patience times and of

the state of the system, when one of these dependencies is present, may be harmful.

Contribution. To summarize, my contribution is threefold.

(I) I develop a unified fluid model to approximate the stochastic dynamics of systems

under both types of dependence structures simultaneously. I prove that, under

minor regularity conditions, there exists a unique solution to the fluid equations,

for any given initial condition. I propose an efficient algorithm to numerically solve

the fluid-model equations.

(II) I provide a sufficient condition for an ordering of the fluid trajectories. In partic-

ular, if two systems only differ by the dependence structure (i.e., they have the

same patience-time distribution, number of agents and arrival process), and both

are initialized at the same initial condition, then the fluid model of one system will

dominate the other all the time. In turn, such a result suggests the ordering of

the equilibria (assuming the convergence to stationarity of the fluid model holds

when the arrival rates are fixed). It may also suggest that the time to stationarity

is a function of the specific joint distribution of service and patience times in the

exogenous model, and of the conditional service time distribution in the endoge-

nous model. Further, numerical examples show that the fluid model may oscillate

towards a stationary point, implying that the time to stationarity may be relatively

long.
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(III) I characterize a sufficient condition for the existence of a unique stationary point

for the fluid model with fixed arrival rate, which always holds for the exogenous

model, and provide examples of bi-stable fluid models (for endogenous dependence),

namely, fluid models possessing two stationary points. Further, I demonstrate that

a bi-stable fluid model can have both an underload and an overload equilibrium. In

this latter case, simulation experiments show that stochastic fluctuations may push

a nominally underloaded system into an overload equilibrium, causing the system

to experience congestion collapse for long time periods.

3.2. Related Literature

The exogenous-dependence model has been studied in Chapter 2 and in Bassamboo

and Randhawa (2015). Chapter 2 analyzes the impact of such dependence on various

performance measures and staffing decisions. The results show that even moderate de-

pendence has significant impacts on system performance, so ignoring the dependence is

harmful. Bassamboo and Randhawa (2015) characterize the optimal scheduling policies

for a service system serving a homogeneous class of customers with dependent service

and patience times. Both Chapter 2 and Bassamboo and Randhawa (2015) focus on the

steady-state analysis of these queueing systems. This chapter, on the other hand, studies

the transient behavior of these systems. My results demonstrate the uniqueness of the

equilibrium point for the exogenous-dependence fluid model with fixed arrival rate and

lend support to the steady-state analysis in Chapter 2 and Bassamboo and Randhawa

(2015).
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Related to the endogenous-dependence model in this chapter, Chan et al. (2016) and

Vries et al. (2017) empirically report a dependence between the service times of served

customers and their delay times in queue in different service contexts. Chan et al. (2016)

show that patients’ long waiting times for admissions to ICUs lead to increased hospi-

talization times in ICUs. Vries et al. (2017) (personal communication) find an opposite

effect of delays in queue by analyzing data from a popular restaurant chain in India. The

authors show that the time that customers spend dining is negatively dependent on the

time they spend waiting for a table.

A growing literature on service operations studies the behavioral aspect of service

agents who may exhibit speed-up or slow-down effect in response to the system’s state.

For example, Staats and Gino (2012) and Tan and Netessine (2014) find evidence of the

agents’ speed-up effect in reaction to a high system load in bank loan applications and

restaurants, respectively. In a series of papers, Kc and Terwiesch (2009, 2012), Kuntz

et al. (2014), Chan et al. (2014) and Batt and Terwiesch (2016) also report the speed-up

effect in various healthcare service settings. On the other hand, the slow-down behavior of

servers in a congested environment is also observed in Dietz (2011) and its implication on

system performance is investigated in Dong et al. (2015). Recently, Armony et al. (2015)

and Batt and Terwiesch (2016) show that service agents tend to slow down when system

load remains high over an extended period, a phenomenon referred to as overwork in Kc

and Terwiesch (2009). Delasay et al. (2016) design algorithms to analytically compute

the performance measures when service agents experiencing overwork tend to slow down.

In terms of the throughput (number of service completions per unit time), a similar

speed-up or slow-down effect also appears as a feature in my model. The service times
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of customers in service may be longer or shorter than the average depending on their

actual delays in queue, which in turn, depends on the congestion level in the system.

However, it is significant that the driver of the relevant speed-up or slow-down effects

in my model stems from customers rather than service agents. My model assumes that

a customer’s service time only depends on his patience or waiting time. In particular,

the service time of a customer does not change once that customer is admitted into

service. By contrast, when service agents may instantly adjust their service rates, the

service time of a customer in service changes instantly while he is being served; e.g., see

Dong et al. (2015). My modeling framework is similar to Chan et al. (2016). Motivated

by their empirical evidence, Chan et al. (2016) analyze an M/M(f)/n queueing model

(with no abandonment) in which a customer’s service time is exponentially distributed

with mean which increases with the delay he experiences according to a given inflation

function f (the notation M(f) for the service time). Upper bounds for the steady-state

workload in systems are developed, and are shown to be fairly accurate for small systems

or systems with low utilization. I, on the other hand, consider the transient dynamics of

large systems.

3.3. Model

I start by introducing two stochastic queueing systems with an exogenous and endoge-

nous dependence, respectively. I then develop a deterministic fluid model to approximate

the associated fluid-scaled processes derived in the stochastic models.
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3.3.1. Two Stochastic Systems

I consider a multi-server queueing system with s statistically identical agents. Customers

arrive to the system with time-varying arrival rate sλ(t), t ≥ 0. New arrivals enter service

immediately if there is an available agent and are delayed in queue if all agents are busy.

Each customer has a finite patience for waiting to be served, and will abandon the queue

if his waiting time exceeds that patience. A key feature of the underlying queueing model

is that a customer in service requires a service time that depends on his patience time or

waiting time in queue.

More specifically, let Si and Ti be customer i’s service and patience times, respectively.

I assume that customers’ patience times {Ti : i ≥ 1} are independent of all other random

variables in the model and are independently and identically distributed (I.I.D.) with

cumulative distribution function (cdf) FT and probability density function (pdf) fT . Let

F c
T := 1 − FT be the complementary cdf (ccdf) of the patience time. Let Zi be the

offered wait of customer i, which represents the virtual waiting time of that customer

if he had infinite patience. It follows immediately that customer i’s actual waiting time

Wi = min{Ti, Zi}. To capture the dependence between customers’ service, patience and

waiting times, I assume a parametric form of the cdf of customer i’s conditional service

time conditioned on his waiting time:

Ψz(x) := P(Si ≤ x|Ti > Wi,Wi = z) = P(Si ≤ x|Ti > Zi, Zi = z).

For expositional convenience, I treat the parameter z as a single argument and write

Ψ(z, x) ≡ Ψz(x). Define the complementary cdf Ψ̄(z, x) := 1−Ψ(z, x). Assuming Ψ(z, x)
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is differentiable in x for all z ≥ 0, the pdf of the conditional service time exists and

satisfies

ψ(z, x) :=
∂Ψ(z, x)

∂x
.(3.1)

Define the hazard rate of the conditional service time as follows:

h(z, x) :=


ψ(z,x)

Ψ̄(z,x)
if x ∈ S(z),

0 if x /∈ S(z),

(3.2)

where S(z) := {x : Ψ̄(z, x) > 0} is the support of the conditional pdf ψ(z, ·).

Exogenous Dependence: In the exogenous-dependence system, I assume that the

service and patience time of each arriving customer are dependent and are drawn from a

common bivariate joint distribution; e.g., Bassamboo and Randhawa (2015) and Chapter

2. Specifically, I assume {(Si, Ti) : i ≥ 1} are I.I.D. bivariate random variables, all having

the same continuous joint density f , with marginal densities fS and fT . Furthermore, I

assume customer i’s service-and-patience (Si, Ti) is independent of the system’s state, in

particular, of his offered wait Zi.

To derive the distribution of the conditional service time, note that

Ψ(z, x)
(1)
= P(Si ≤ s|Ti > Zi, Zi = z)

= P(Si ≤ s|Ti > z, Zi = z)

(2)
= P(Si ≤ s|Ti > z),
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where (1) follows from the definition of Ψ and (2) follows from the fact that (Si, Ti) is

independent of Zi. Since (Si, Ti) has joint density f , the distributions of the conditional

service time satisfy

Ψ(z, x) =

∫∞
z

∫ x
0
f(x, y)dxdy∫∞

z

∫∞
0
f(x, y)dxdy

and ψ(z, x) =

∫∞
z
f(x, y)dy∫∞

z

∫∞
0
f(x, y)dxdy

.(3.3)

Endogenous Dependence: In the endogenous-dependence system, I assume that

each customer’ service time changes in response to his waiting time in queue. To capture

this feature, I assume that a customer’s service time only depends on his offered wait.

Formally,

Ψ(z, x) = P(Si ≤ s|Ti > Zi, Zi = z) = P(Si ≤ s|Zi = z).

It then follows that the service time of a customer in service only depends on his actual

waiting time.

3.3.2. A Unified Fluid Model

Since the dependence renders the exact analysis intractable, I develop a fluid model to

approximate the stochastic systems. Even though I do not prove limit theorems in this

chapter, it is helpful to think of the fluid model as a weak law of large numbers for a

sequence of stochastic systems. More formally, consider a sequence of stochastic systems

as described above indexed by the number of agents s. Assume that the arrival rate to

system s is λs(t) := sλ(t) + o(s) (where o(s) denotes a function that increases slower than

s, i.e., o(s)/s → 0 as s → ∞), but that the primitive model data D := (λ, fT , ψ) is fixed

along the sequence. Letting Qs denote the process of queue length in the s system, I
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conjecture that Qs/s converges in distribution to a deterministic limit, and that a similar

result holds for the service process. The rest of this section is devoted to deriving the

corresponding deterministic limits.

Let B(t, y) denote the amount of fluid in service at time t that have been in service for

at most y time units. Let Q(t, y) denote the amount of fluid in queue at time t that have

been in queue for at most y time units. Let B(t) := B(t,∞) and Q(t) := Q(t,∞) be the

amount of fluid in service and in queue at time t, respectively. Let X(t) := Q(t)+B(t) be

the total amount of fluid in system at time t. Let w(t) be the head-of-line waiting time,

namely, the elapsed waiting time of the fluid at the head of the queue at time t. Let v(t)

be the offered wait, i.e., the virtual waiting time of an infinitely patient fluid arriving at

time t. Suppose B(t, y) and Q(t, y) are integrable with continuous densities b and q:

B(t, y) =

∫ y

0

b(t, x)dx, Q(t, y) =

∫ y

0

q(t, x)dx.

Then b(t, x) and q(t, x) represent the amount of fluid at time t that has been in service

and in queue for exactly x time units, respectively.

As in Liu and Whitt (2011a), I analyze the fluid model by considering alternating time

intervals over which the system is either underloaded (UL) or overloaded (OL). To state

these concepts, let σ(t) denote the total rate of service completions at time t. An interval

starting at time 0 is OL if (i) Q(0) > 0 or (ii) Q(0) = 0, B(0) = 1 and λ(0) > σ(0). The

OL interval ends at the termination time

TOL = inf{t ≥ 0|Q(t) = 0 and λ(t) < σ(t)}.



77

An interval starting at time 0 is UL if (i) B(0) < 1 or (ii) Q(0) = 0, B(0) = 1 and

λ(0) ≤ σ(0). The UL interval ends at the termination time

TUL = inf{t ≥ 0|B(t) = 1 and λ(t) > σ(t)}.

When the system is in an UL interval, the new arrivals are served immediately upon

arrival and experience no delay in queue. The conditional service-time distribution is the

same for all the fluid that arrive during this interval. If the initial fluid in service is not

delayed as well, then the fluid model in this UL interval is essentially the same as a model

with fluid having a homogeneous service-time distribution. Hence, the analysis of the

independent fluid model in UL intervals considered in Liu and Whitt (2012) carries over

to this case.

In an OL interval, the waiting time w is strictly positive. Fluid in service with un-

completed service remains in service, leading to the evolution equation of fluid in service:

(3.4) b(t+ u, x+ u) = b(t, x)
Ψ̄(w(t− x), x+ u)

Ψ̄(w(t− x), x)
for 0 < x < t.

To understand (3.4), note that the fluid density b(t, x) enters service at time t− x, hence

its waiting time is w(t− x). The total service rate of the system at time t is

(3.5) σ(t) =

∫ t

0

b(t, x)h(w(t− x), x)dx+ c(t),

where c(t) is the total service rate of the initial fluid at time t, which I define as follows.

To state it, let wB(x) be the waiting time of b(0, x), the initial fluid density that has been

in service for time x. Define SB(0) := {x : b(0, x) > 0} to be the set of elapsed service
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times of nonzero fluid density in service at time 0. By the definition of SB(0), it follows

that that Ψ̄(wB(x), x) > 0 for all x ∈ SB(0). Then the total service rate of the initial

fluid that remains in service at time t can be computed as

c(t) :=

∫
SB(0)

b(0, x)ψ(wB(x), t+ x)

Ψ̄(wB(x), x)
dx.

Fluid in queue that does not abandon and does not move into service, remains in queue,

leading to the evolution equation of fluid in queue:

(3.6) q(t+ u, x+ u) = q(t, x)
F c
T (x+ u)

F c
T (x)

.

The total abandonment rate of fluid in queue is then

(3.7) α(t) =

∫ ∞
0

q(t, x)hT (x)dx,

where hT (·) is the hazard rate of patience time.

To fully characterize the fluid model, I specify boundary conditions of b(t) and q(t):

(3.8)

q(t, 0) = λ(t) if Q(t) > 0,

b(t, 0) = λ(t) if B(t) < 1,

b(t, 0) = σ(t) ∧ λ(t), q(t, 0) = λ(t)− (σ(t) ∧ λ(t)) if B(t) = 1, Q(t) = 0,

where x ∧ y = min{x, y}.

The waiting time function w is required to compute the conditional service-time distri-

bution in (3.4) and (3.5). To determine w, I relate it to the offered wait v in the following
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lemma. Recall the offered wait v(t) is the virtual waiting time of infinitely patient fluid

that arrives at time t.

Lemma 3.1. In an OL interval, the following holds:

(3.9) w(t+ v(t)) = v(t).

The proof of Lemma 3.1 follows from Liu and Whitt (2012, Proposition 5). I next

characterize v so that w can be computed via (3.9). Consider a virtual arrival of fluid

with infinite patience at time t observing a queue length Q(t). Turn off the arrivals after

time t and define k(u) to be the clearing queue process at time t + u with u ≥ 0, which

starts at k(0) = Q(t). Then

(3.10) v(t) := inf
u≥0

{
k(u) = 0

∣∣∣∣k(0) = Q(t), k′(u) = −β(t+ u)− σ(t+ u)

}
,

where

(3.11) β(t+ u) =

∫ w(t+u)

u

q(t+ u, x)hT (x)dx.

is the total abandonment rate of the clearing queue at time t+ u.

Equivalently, one can characterize v as follows (see Liu and Whitt (2012)):

v(t) = inf
u≥0
{E(t+ u)− E(t) + At(u) ≥ Q(t)},

where

E(t) =

∫ t

0

σ(u)du, At(u) =

∫ t+u

t

αt(x)dx and αt(u) =

∫ ∞
u−t

q(u, x)hT (x)dx, u ≥ t.
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3.4. Analysis

In this section, I show that the fluid model with time-varying arrivals admits a unique

solution under mild regularity conditions. I study the stationary behavior of the fluid

model when the arrival process is stationary, which reveals a fundamental difference be-

tween the exogenous and endogenous dependencies.

3.4.1. Solution to the Fluid Model

For the fluid model to admit a unique solution, I make several technical assumption on

the smoothness of the model primitives. First, I assume the arrival rate function λ(·) is

continuous and strictly positive. Second, I assume the initial conditions are continuous.

The initial fluid content in service B(0, ·) and in queue Q(0, ·) are twice differentiable func-

tions with derivatives b(0, ·), q(0, ·). Furthermore, if Q(0) > 0, then b(0, 0) = q(0, w(0))

and q(0, 0) = λ(0); if Q(0) = 0, then b(0, 0) = λ(0). This assumption holds true if the

system starts running in the distant past. Third, I assume the conditional service-time

distribution is smooth: fT (·) is continuous and ψ(z, ·) is continuous for all z ≥ 0. Further,

it holds that

sup
0≤x≤x0,0≤z≤z0

ψ(z, x) <∞ and sup
0≤x≤x0,0≤z≤z0

∣∣∣∂ψ(z, x)

∂z

∣∣∣ <∞ for all x0, z0 > 0.

Next, I impose a bound on the service rate followed from the initial service content.

I assume the total service rate of the initial fluid that remains in service at time t is

uniformly bounded for all t > 0. Specifically, the tail of initial density in service is
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bounded relative to the initial conditional service-time distribution:

C(t) := sup
0≤u≤t

c(u) = sup
0≤u≤t

∫
SB(0)

b(0, x)ψ(wB(x), t+ x)

Ψ̄(wB(x), x)
dx <∞ for all t > 0.

I give some important lemmas, which are useful in proving the existence and uniqueness

of a solution to the fluid model. I start by rewriting (3.5) in an OL interval.

Lemma 3.2. In an OL interval starting at time 0,

σ(t) =

∫ t

0

σ(t− u)ψ(w(t− x), x)dx+ c(t).(3.12)

In an OL interval, w is strictly positive. I can compute the derivative of w by assuming

that the initial waiting time is continuous and the initial queue density is strictly positive

if there is a queue at time 0. Formally, wB(x) is continuous for all x and qinf(0) :=

inf0≤u≤w(0){q(0, u)} > 0 if Q(0) > 0.

Lemma 3.3. In an OL interval starting at time 0, the following hold:

w′(t+) = 1− σ(t−)

q̃(t, w(t+))
,(3.13)

w(t) =

∫ t

0

[
1− σ(x)

q̃(x,w(x))

]
dx+ w(0),(3.14)

where

q̃(t, x) = λ(t− x)F c
T (x)1[x≤t] + q(0, x− t) F c

T (x)

F c
T (x− t)

1[t<x].(3.15)

The proof of Lemma 3.3 is similar to Liu and Whitt (2012, Proposition 3).
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Observe that the fluid model is fully characterized by the primitive model data D :=

(λ, fT , ψ). The intricacy of the fluid model lies in the nested w and σ in (3.12) and

(3.14) in an OL interval. The next proposition claims that there is a unique solution

(b, q, σ, α,Q,B,W, V ) that solves the fluid equations.

Proposition 3.1. The fluid model (3.4)-(3.14) with model data D = {λ, fT , ψ} has a

unique solution (b, q, σ, α,Q,B,w, v).

I am interested in comparing trajectories of fluid models with different model data.

Indeed, with all else being equal in the model data, the trajectories of two fluid models

can be ordered if the hazard rates of the conditional service times in the two models are

ordered. To state the result, consider two fluid models with common arrival rate, patience-

time distribution and initial conditions. I use subscript i to specify the conditional hazard

rate and performance functions associated with model i, i = 1, 2. Define the order of

functions to be pointwise order for all arguments and the order of vectors to be pointwise

order for all coordinates.

Proposition 3.2 (trajectory comparison). Consider two fluid models with common

arrival rate λ(·) and patience-time distribution fT (·). The initial conditions (b(0), q(0), wB)

are also the same for both models. If the hazard rates of the conditional service times can

be ordered as follows,

(3.16) sup
z,x≥0

h1(z, x) ≤ inf
z,x≥0

h2(z, x),

then (w1, v1, q1, Q1, B1, X1) ≥ (w2, v2, q2, Q2, B2, X2).
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It is important that the ordering (3.16) is satisfied for an important class of model

data. In particular, when the dependence is exogenous and the bivariate random variables

representing the service and patience times are generated by Gaussian copulas with the

marginal of service time being exponential, the ordering (3.16) holds when two models

with and without a dependence are compared. See §3.4.3.1 for more details.

3.4.2. Stationary Arrivals

I identify the stationary point of the fluid model when the arrival process is stationary,

namely, λ(t) ≡ λ for all t ≥ 0. To gain qualitative results, I impose a condition on the

workload associated with fluid in queue to guarantee the existence and uniqueness of a

stationary point. Define the average conditional service rate, conditioned on the waiting

time z,

(3.17) µ(z) :=
1

E[Si|Ti > Zi, Zi = z]
=

1∫∞
0
xψ(z, x)dx

.

Define the work evolution function

(3.18) φ(z) := F c
T (z)/µ(z),

which represents the workload required by unit fluid that remains in the system after

waiting for w time units in queue.

Condition 3.1. φ(z) is strictly decreasing in z.

Condition 3.1 clearly holds when µ(·) is nondecreasing (implying a negative depen-

dence between service and waiting times). In particular, when service and waiting times
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are independent, µ(·) is constant so that Condition 3.1 also holds. When µ(·) is decreasing

(implying a positive dependence between service and waiting times), Condition 3.1 does

not hold in general. However, I show in §3.4.3.1 that Condition 3.1 is always satisfied

when the dependence is exogenous even if µ(·) may be decreasing.

Proposition 3.3. Let λ(t) ≡ λ for all t ≥ 0. Under Condition 3.1, for any λ > 0,

the fluid model with primitive model data D = (λ, fT , ψ) has a unique stationary point

characterized by the vector (b, q, σ, α,Q,B,w, v) depending on the relative value of λ and

µ(0).

(a) Underloaded and critically loaded systems:

If λ ≤ µ(0), then

B = λ/µ(0), σ = λ, w = v = α = 0, Q = q = 0 and b(x) = λΨ̄(0, x).

(b) Overloaded systems:

If λ > µ(0), then

w = v = w∗, σ = µ(w∗), α = λ− σ, B = 1,

b(x) = σΨ̄(w∗, x), x ≥ 0,

q(x) = λF c
T (x), 0 ≤ x ≤ w∗ and q(x) = 0, x > w∗,

where w∗ is the solution to

(3.19) λφ(w) = 1.
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The total queue content is

(3.20) Q =

∫ w∗

0

q(x)dx = λ

∫ w∗

0

F c
T (x)dx.

I remark that Condition 3.1 is a sufficient and necessary condition to guarantee a

unique equilibrium for the fluid model for any arbitrary stationary arrival rate λ. However,

for a system with given arrival rate λ, Condition 3.1 is a sufficient condition for the

existence of a unique stationary point. Other sufficient conditions that can lead to a unique

equilibrium for a system with fixed stationary arrival rate are stated in the following

proposition. When these sufficient conditions are violated, multiple stable equilibria may

exist for the fluid model, as I demonstrate using simulations in §3.5.2.1.

Proposition 3.4. Suppose limz→∞ φ(z) = 0.

1. For an overloaded system with stationary arrival rate λ > µ(0), if either of the following

holds, then there exists a unique stationary point for the fluid model:

(i) φ(z) is unimodal;

(ii) 1/φ(z) = µ(z)/F c
T (z) is convex in z.

2. For an underloaded or critically loaded system with stationary arrival rate λ ≤ µ(0),

the stationary point for the fluid model is unique if and only φ(z) < 1/λ for all z ≥ 0.

3.4.3. Implications of Two Dependencies

In this section, I discuss the implications of the two dependence structures in the context

of the fluid model. I consider the exogenous dependence in §3.4.3.1 and employ a bivariate

dependence concept to compare trajectories for systems differing from one another only by
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the dependence. I consider the endogenous dependence in §3.4.3.2. By further assuming

that the conditional service time is exponentially distributed, I prove the convergence to

stationarity under certain initial conditions.

3.4.3.1. Exogenous Dependence: Dependent Service and Patience Time. In

the exogenous-dependence model, each arriving customer is endowed with an exogenous

service and patience time which are dependent. The following lemma shows that Condi-

tion 3.1 holds when the dependence is exogenous. The proof of the lemma can be found

in Chapter 2.

Lemma 3.4. If S and T have a joint density f , then Condition 3.1 holds.

Lemma 3.4 highlights a fundamental difference between exogenous and endogenous

dependencies. When the dependence is exogenous, Lemma 3.4 shows that Condition 3.1

necessarily holds. Therefore, when the arrival process is stationary, Proposition 3.3 and

Lemma 3.4 imply that the fluid model under an exogenous dependence has a unique

stationary point, as characterized in Chapter 2 and Bassamboo and Randhawa (2015).

However, when the dependence is endogenous, Condition 3.1 may be violated and mul-

tiple stable equilibria may exist. I leave the discussion on the identification of the two

dependencies in a censored dataset to Section 4.1.

Next, I study the impact of the exogenous dependence on the evolution of performance

functions. I am interested in comparing trajectories of systems differing from one another

only by the dependence between the service and patience times. To this end, I fix the

marginal distributions of the service and patience times and only vary the dependence of

the two. To invoke Proposition 3.2, one needs an ordering of the hazard rate of conditional
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service time. To gain qualitative results, I consider the following bivariate dependence

concept (Block et al. (1985)). Two random variables X1 and X2 are said to be Positive

Dependent through Stochastic ordering (PDS) if P(X1 > x1|X2 = x2) is increasing in x2

for all x1. Similarly, X1 and X2 are said to be Negative Dependent through Stochastic

ordering (NDS) if P(X1 > x1|X2 = x2) is decreasing in x2 for all x1. When the service

time has an marginal exponential distribution, the following proposition characterizes the

qualitative structure of the conditional hazard rate using the PDS or NDS concept.

Proposition 3.5. Consider bivariate random variables (S, T ). Suppose S is exponen-

tially distributed with rate µ and T has a general distribution.

(1) If (S, T ) is PDS, then supz,x≥0 h(z, x) ≤ µ.

(2) If (S, T ) is NDS, then infz,x≥0 h(z, x) ≥ µ.

It is important that the set of PDS or NDS bivariate distributions with given marginals

is non-empty. In particular, if bivariate random variables (S, T ) are generated by Gaussian

copulas (e.g., Wu et al. (2017, Appendix A)), then (S, T ) must be either PDS or NDS

depending on the correlation coefficient of S and T .

Lemma 3.5. Consider bivariate random variables (S, T ) generated by Gaussian cop-

ulas. Let r be the correlation coefficient of S and T . Then (S, T ) is PDS if r > 0 and

NDS if r < 0.

The proof of Lemma 3.5 can be found in Chapter 2. Combining Proposition 3.5 and

Lemma 3.5, I immediately have the following corollary.
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Corollary 3.1. Consider two fluid models with common arrival rate λ and initial

condition. In model i (i = 1, 2), the service time Si is exponentially distributed and

(Si, Ti) are generated by Gaussian copulas. Let ri be the correlation coefficient of (Si, Ti).

If r1 ≥ 0 ≥ r2, then (w1, v1, q1, Q1, B1, X1) ≥ (w2, v2, q2, Q2, B2, X2).

The ordering of the trajectories for different fluid models also suggests the ordering of

the equilibria given that the convergence to stationarity holds. This argument provides

an alternative to proving the ordering of equilibria for different exogenous-dependence

models in Chapter 2.

3.4.3.2. Endogenous Dependence: Exponential Conditional Service Time. Re-

call that in the endogenous-dependence model, a customer’s service time only depends

on his offered wait. To gain qualitative results, I further assume that a customer with

offered wait z requires a service time which is exponentially distributed with rate µ(z).

In general, for an arbitrary rate function µ(·), one cannot find a joint density of service

and patience times in the exogenous-dependence model that induces µ(·) via (4.1). In

particular, Lemma 3.4 shows that if φ(z) = F c
T (z)/µ(z) is nondecreasing, then µ can never

be induced by an exogenous-dependence model.

Proposition 3.1 claims the existence and uniqueness of a solution to the fluid equations.

Proposition 3.3 identifies the unique stationary point for the fluid model with stationary

arrivals when Condition 3.1 is valid. It is natural to conjecture that the transient fluid

model converges to the unique stationary point. To prove this conjecture is nontrivial

in the exogenous-dependence model mainly because a general joint density f of service

and patience times does not provide good structures on the hazard rate of the conditional

service time. However, in the endogenous-dependence model, the assumption that the
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conditional service time has an exponential distribution allows us to prove this conjec-

ture under certain initial conditions. Under the exponential assumption, the conditional

service-time distribution has relatively simple forms:

Ψ(z, x) = 1− e−µ(z)x, ψ(z, x) = µ(z)e−µ(z)x and h(z, x) = µ(z).

I further assume µ(·) is decreasing.

Assumption 3.1. µ(z) is differentiable and decreasing in z.

A decreasing conditional service rate µ(·) implies a positive dependence between the

service and waiting times, namely, a customer who waits longer in queue tends to require a

longer service time. I remark that when µ(·) is strictly decreasing, the exponential condi-

tional service-time distribution cannot be induced by an exogenous-dependence model via

(4.1) even if φ(z) = F c
T (z)/µ(z) is decreasing. In other words, no exogenous-dependence

model gives the same system dynamics as those under the specific endogenous dependence

I consider in this section.

Recall wB(x) is the waiting time of the initial density b(0, x). For notational conve-

nience, I define w(−x) := wB(x) for x ∈ SB(0).

Proposition 3.6. Suppose λ(t) ≡ λ > µ(0) for all t ≥ 0. Let Condition 3.1 and

Assumption 3.1 hold true. Let w∗(λ) be the equilibrium waiting time solving (3.19) when

the arrival rate is λ. If one of the following holds,

(1) The system is OL at time 0 and

max
−maxSB(0)<t≤v(0)

{w(t)} = v(0) ≤ w∗(λ), w′(v(0)+) ≥ 0.
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(2) The system is OL at time 0 and

min
−maxSB(0)<t≤v(0)

{w(t)} = v(0) ≥ w∗(λ), w′(v(0)+) ≤ 0.

(3) The system is UL at time 0 and wB(x) = 0 for all x ∈ SB(0).

then it holds that

lim
t→∞

w(t) = w∗(λ).

If the fluid model starts empty, then condition (iii) in Proposition 3.6 holds. Hence,

a fluid model initialized empty necessarily converges to the stationary point given that

it is unique. Another immediate result of Proposition 3.6 is that, when the arrival rate

λ is piecewise constant and the system remains overloaded all the time, one can observe

transitions between steady states associated with different arrival rates.

Corollary 3.2. Let Condition 3.1 and Assumption 3.1 hold true. Suppose the fluid

model is at the stationary point associated with arrival rate λ1 > µ(0) at time 0. If

λ(t) = λ2 > µ(0) for t ≥ 0, then limt→∞w(t) = w∗(λ2).

3.5. Numerical Study

I conduct simulation experiments to validate the accuracy of the fluid model in ap-

proximating the stochastic queueing systems. I first solve the fluid equations using a

discretization algorithm; details are relegated to Appendix B.1. I then simulate systems

with an exogenous and endogenous dependencies, respectively, and compare the simula-

tion results to the fluid estimates.
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3.5.1. Exogenous Dependence

I first simulate systems with an exogenous dependence. Specifically, I simulate three

queueing systems with different dependencies between the service and patience times.

All systems start empty and have 100 service agents and Poisson arrivals of customers

with rate 120. The service and patience times of arriving customers are exponentially

distributed with rates 1 and 1/2, respectively. I use Gaussian copulas to generate the

bivariate random variable representing the service and patience times. In the current

study, the correlation coefficient between the service and patience times is 1 (-0.64) for

the system with a positive (negative) dependence, which is the maximal (minimal) at-

tainable correlation coefficient for two exponential random variables. See the discussion

on bivariate generation using Gaussian copula in Chapter 2.

For each simulated system, I take averages over 500 independent runs and use the

queue length function Q(t) as the performance metric to demonstrate the convergence. I

compare the queue length estimates computed from the fluid model with those observed by

simulations. Results are plotted in Figure 3.1 (systems with no dependence and a positive

dependence) and the left panel of Figure 3.2 (system with a negative dependence).

I find that the fluid model is effectively approximating overloaded systems with a

positive dependence or no dependence between the service and patience times. However,

I observe substantial gaps between the fluid estimates and simulation results when the

dependence is negative. This is because the nominal traffic intensity ρ := λ/µ(0) = 1.2

in the current study does not reflect the actual load of the system when a dependence
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Figure 3.1. Queue length process of systems under different dependencies
between service and patience times. Each system has s = 100 agents, Pois-
son arrivals with rate λs = 120, service-time distribution exp(1), patience-
time distribution exp(1/2). The joint distributions of service and patience
times are generated via Guassian copulas.

exists. Instead, the effective traffic intensity in steady state can be defined via

ρeff :=
λs

sµ(w∗)
=

λ

µ(w∗)
,

where w∗ is the unique equilibrium waiting time solving (3.19). In the expression above,

µ(w∗) is the effective service rate in steady state, corresponding to the average service

rate of customers in service. For the system with a negative dependence, I can compute

ρeff ≈ 1.04. The stochastic system in steady-state can be considered to be critically

loaded (see Garnett et al. (2002)) and I expect the effect of stochastic fluctuations to

be significant. In the system that generates the right panel of Figure 3.2, I increase the

arrival rate to 150 while fixing other system parameters. In this latter case, it can be

computed that ρeff ≈ 1.11 . The stochastic system is effectively overloaded in steady state

and the accuracy of the fluid estimates improves substantially.
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Figure 3.2. Queue length process of systems under negative dependence
between service and patience Time. Each system has s = 100 agents,
Poisson arrivals with rate λs, service-time distribution exp(1), patience-
time distribution exp(1/2). The joint distributions of service and patience
times are generated via Guassian copulas.

Interestingly, even if the dependencies in all three system are exogenous, they may

lead to very different patterns of system dynamics. When the dependence is positive and

the system is initialized empty, the transient queue converges to the stationary queue

monotonically. A similar pattern is observed in the independent model. However, the

time to stationarity under a positive dependence is roughly twice as much as that in the

independent model. (This observation is made clear in Figure 3.7 below.) Furthermore,

with the number of servers and arrival rate being equal, the steady-state queue length

under a positive dependence is roughly three times as much as that without a dependence.

A detailed discussion on the impact of an exogenous dependence on various steady-state

performance measures can be found in Chapter 2.

When the dependence is negative, I observe oscillations in the system dynamics, a

pattern very different from those with a positive dependence and no dependence. The

intuition behind the observed oscillations can be explained as follows. When the queue
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length lands above the steady state, the fluid in queue has to wait longer than that in

steady state to enter service. Those who get served require shorter service times due to

the negative dependence, implying an increase in the total service rate. The queue is

cleared at a higher rate until it drops below the steady state. A similar reasoning explains

why the queue length is pulled up after it falls below the steady state. Finally, I remark

that it takes less time to converge to stationarity under a negative dependence compared

to under no dependence.

3.5.2. Endogenous Dependence

To simulate systems with an endogenous dependence, I assume the conditional service

time is exponentially distributed. A decreasing service rate function µ(·) implies a positive

dependence while an increasing µ(·) implies a negative dependence. I use simulations to

demonstrate the potential bistability of equilibria when Condition 3.1 is violated. I also

validate the accuracy of the fluid model when the equilibrium is unique.

3.5.2.1. Bistability of Equilibria. When the service rate function µ(·) is increasing

(implying a negative dependence), Condition 3.1 holds trivially. Recall that Condition

3.1 is a sufficient and necessary condition to guarantee a unique equilibrium for the fluid

model for any arbitrary stationary arrival rate λ. For a given arrival rate, the unique

equilibrium of the fluid model is prescribed in Proposition 3.3. However, Condition 3.1

may be violated under a positive dependence with a decreasing µ(·). As such, there may

exist multiple equilibria for the fluid model, which I demonstrate using simulations below.

Similar results are observed in Dong et al. (2015).
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The first two figures in Figure 3.3 give sample paths of the queue length process for two

nominally overloaded systems with different service rate function µ(·) satisfying λ > µ(0).

I also plot the estimates of the stationary points computed from the fluid model (dashed

horizontal line). Both systems have s = 100 agents and Poisson arrivals of customers

with rate λ = 115. The patience time is exponentially distributed with rate 1/2. Let

µ(z) = 0.6+0.4 exp(−1.8·z) in the first system, where one can show both of the conditions

for the overloaded case in Proposition 3.4 hold so that the uniqueness of the equilibrium

follows. However, in the second system where I set µ(z) = 0.6+0.4 exp(−1.8 ·z3), none of

the sufficient conditions in Propositions 3.3 and 3.4 is satisfied and as a result, I observe

two stationary points in the middle panel of Figure 3.3. The stochastic system stays

in each equilibrium for a substantial amount of time until the stochastic fluctuation in

the system triggers the transition from one equilibrium to the other. The right panel

of Figure 3.3 plots the stationary distribution of the number in system process obtained

from simulation results. The two equilibria computed by the fluid model (dashed vertical

line) match the two peaks in the stationary density.

For nominally underloaded systems with λ < µ(0), bistability of equilibria may also be

observed when the condition in Proposition 3.4 for the underloaded case is violated. Fig-

ure 3.4 plots sample paths of the number-in-system process for two nominally underloaded

system with different service rate function µ(·). Both systems have s = 100 agents and

Poisson arrivals of customers with rate 90. The patience time of arriving customers is ex-

ponentially distributed with rate 1/2. The first system with µ(z) = 0.6 + 0.4 exp(−1.8 · z)

has one unique stationary point, similar to the overloaded case with the same system

parameters except for the arrival rate. The second system with service rate function
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Figure 3.3. Sample paths of queue length process of overloaded systems
under decreasing conditional service rate functions. Each System has s =
100 agents, Poisson arrivals with rate λs = 115, patience-time distribution
exp(1/2).

µ(z) = 0.6 + 0.4 exp(−3 · z) (the middle panel) has two stationary points, an underload

one with no queue and an overload one with a nonempty queue. The stationary distri-

bution of the number-in-system process is plotted in the right panel. Note that for the

second system, the system may experience congestion collapse, namely, it may settle at

an overload equilibrium with a nonempty queue on the fluid scale, even though it is nom-

inally underloaded with λ < µ(0) and has sufficient potential service capacity to serve all

the arrivals.

3.5.2.2. Convergence to Stationarity. I conduct simulation experiments to verify

the accuracy of the fluid model given that the conditional service time is exponentially

distributed. I simulate four overloaded systems, all having one unique equilibrium on

the fluid scale. The number of service agents s = 100 is the same for all systems. I set

the arrival rate λs = 115 for systems with a positive dependence (decreasing µ(·)) and

λs = 130 for systems with a negative dependence (increasing µ(·)). The patience time is
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Figure 3.4. Sample paths of number in system process of underloaded sys-
tems under decreasing conditional service rate functions. Each system has
s = 100 agents, Poisson arrivals with rate λs = 90, patience-time distribu-
tion exp(1/2).

exponentially distributed with rate 1/2. Results of the queue length process are plotted

in Figures 3.5 and 3.6.

Figure 3.5 depicts the queue-length process for two systems with a decreasing µ(·) and

arrival rate λs = 115. Although Condition 3.1 holds for neither of the two systems, both

of them have one unique equilibrium. (Recall Condition 3.1 is a sufficient condition for

the uniqueness of equilibrium.) Note that the time to stationarity in the second system

is very long.

Figure 3.6 plots the queue-length process for two systems with an increasing µ(·).

I let λS be 130 for the systems to be effectively overloaded with ρeff defined in §3.5.1

substantially greater than 1. Similar to the case with an exogenous negative dependence

in §3.5.1, I observe oscillations in the first system where µ(z) = 0.6 + 0.4 exp(−1.8 ·

z). However, in the second system where µ(z) = 0.6 + 0.4 exp(−1.8 · z2), the transient

queue length converges monotonically to the stationary point. The different patterns of
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system dynamics observed under different increasing service rate functions highlight a

complicated interaction between the underlying dependence and system performance.
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Figure 3.5. Queue length process of overloaded systems under decreasing
conditional service rate functions. Each system has s = 100 agents, Poisson
arrivals with rate λs = 115, patience-time distribution exp(1/2).
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Figure 3.6. Queue length process of overloaded systems under increasing
conditional service rate functions. Each system has s = 100 agents, Poisson
arrivals with rate λs = 130, patience-time distribution exp(1/2).
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3.5.3. Trajectory Comparison

I use simulations to validate the trajectory comparison result in Proposition 3.2. I first

consider exogenous dependencies which lead to the ordering of conditional hazard rates

in (3.16), as discussed in Proposition 3.5. I then give a counterexample in the context of

§3.4.3.2 to demonstrate the violation of the trajectory comparison result in Proposition

3.2 when the ordering in (3.16) fails. Results of the queue length process are plotted in

Figure 3.7.

In the left panel of Figure 3.7, I plot the queue-length processes of three systems

simulated in §3.5.1 together. Recall that all systems have s = 100 agents, Poisson arrivals

with rate λs = 120 and service and patience times generated by Gaussian copulas with

marginal distributions being exponential with rates 1 and 1/2, respectively. Corollary 3.1

implies the trajectory comparison result holds across systems with a positive, negative

and no dependence, as is indeed observed in the left panel of Figure 3.7.

It can be readily seen that the time to stationarity is much longer under positive

dependence than under no dependence. This observation suggests caution when one

performs steady-state analysis over separate time intervals for a system with time-varying

arrival rates. In particular, if the transient system does not converge to the equilibrium

sufficiently fast (relative to the change in the arrival rate), then it is imperative to account

for the entire transient dynamics in the staffing and control decisions. Restricting the

analysis to the steady-state, in this case, is harmful.

In the right panel of Figure 3.7, I simulate two systems with an endogenous dependence

but different service rate functions µ(·). Both systems have s = 100 agents and Poisson

arrivals with rate λs = 130. The patience-time distribution is exponential with rate 1/2.
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The conditional service rate functions in the two systems are set µ1(z) = 0.6+0.4 exp(−z)

and µ2(z) = 0.6 + 0.4 exp(−z2), respectively. The ordering in (3.16) is violated in this

case and the trajectory comparison result in Proposition 3.2 is invalid. Indeed, I observe

a crossing of the two queue-length processes.
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Figure 3.7. Trajetory comparison. Each system has s = 100 agents, Poisson
arrivals with rate λs, patience-time distribution exp(1/2).

3.5.4. Time-varying Arrivals

I use simulation to demonstrate that the accuracy of the fluid model is robust to time-

varying arrivals. The systems have s = 100 agents and non-homogeneous Poission arrivals

with periodic arrival rate λs(t) = s · (1 + 0.4 sin(t)). The patience-time distribution is

exponential with rate 1/2. I plot the number-in-system processes in Figures 3.8 and 3.9.

Figure 3.8 corresponds to systems with an exogenous dependence, where the service and

patience times generated by Gaussian copulas. Figure 3.9 corresponds to systems with an

endogenous dependence, where the conditional service time is exponentially distributed.

Both systems with positive and negative dependencies are simulated. I find that the fluid
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model provides accurate approximations for the stochastic systems under time-varying

arrivals and different dependence structures.
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Figure 3.8. Number-in-system process with time-varying arrivals. Each sys-
tem has s = 100 agents, Poisson arrivals with time-varying rate λs(t) =
s · (1 + 0.4 sin(t)), service-time distribution exp(1), patience-time distribu-
tion exp(1/2). Exogenous dependence, the joint distributions of service
time and patience time are generated via Guassian copulas.
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Figure 3.9. Number-in-system process with time-varying arrivals. Each sys-
tem has s = 100 agents, Poisson arrivals with time-varying rate λs(t) =
s · (1 + 0.4 sin(t)), patience-time distribution exp(1/2). Endogenous depen-
dence.
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CHAPTER 4

Future Work

In this chapter, I comment on two directions for future research which are closely

related to the previous chapters in this thesis. Despite the difference revealed in Chapter 3

between the exogenous and endogenous dependencies regarding their stationary behaviors,

I first give a detailed analysis of the fundamental relation between the two seemingly

different dependencies. Implications to the empirical estimation on a censored dataset

are also discussed. In the second direction, I consider the pricing implication of another

dependence structure in service systems: a customer’s value of service acquisition depends

on his own service requirement. Utilizing a queueing-game framework, I characterize the

optimal pricing scheme and routing policy for a revenue-maximizing service provider.

4.1. More on Exogenous and Endogenous Dependencies

Following the setting in Chapter 3 where two relevant but seemingly different depen-

dencies are introduced, I further discuss the relation between these two dependencies in

this section. Recall in Chapter 3, I consider a multi-server queueing system with s statis-

tically identical agents. Customers arrive to the system according to a stochastic process

A(t) which is right continuous with left limits. New arrivals enter service immediately if

there is an available agent and are delayed in queue if all agents are busy. I assume that

each customer has a finite patience for waiting to be served, and will abandon the queue

if his waiting time exceeds that patience. A key feature of the underlying queueing model
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is that a customer in service requires a service time that depends on his patience time or

waiting time in queue.

More specifically, let Si and Ti be customer i’s service and patience times, respectively.

I assume that customers’ patience times {Ti : i ≥ 1} are independent of all other random

variables in the model and are I.I.D. with cumulative distribution function (cdf) FT and

probability density function (pdf) fT . Let F c
T := 1−FT be the complementary cdf (ccdf)

of the patience time. Let Vi be the offered wait of customer i, which is the virtual waiting

time of the customer if he had infinite patience. It then follows that customer i’s actual

waiting time Wi = min{Ti, Vi}. To capture the dependence between customers’ service,

patience and waiting times, I introduce the following parametrized cdf of the conditional

service time of served customers:

Ψ(v;x) := P(Si ≤ x|Ti > Wi,Wi = v) = P(Si ≤ x|Ti > Vi, Vi = v).

Assuming the conditional cdf Ψ(v;x) is differentiable in x for all v ≥ 0, the pdf of the

conditional service time exists and satisfies

ψ(v;x) :=
∂Ψ(v;x)

∂x
.

Exogenous Dependence. When the dependence is exogenous, I assume that each

customer’s patience level depends on his individual service requirement. See e.g., Bassam-

boo and Randhawa (2015) and Chapter 2. Each arriving customer is endowed with an

exogenous service and patience time which are dependent. I assume the bivariate random

variables representing the service and patience times are I.I.D. across different customers.

Specifically, I assume {(Si, Ti) : i ≥ 1} are I.I.D. bivariate random variables, all having
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the same continuous joint density f , with marginal densities fS and fT . Furthermore, I

assume (Si, Ti) are independent of Vi.

To derive the distribution of the conditional service time, note that

Ψ(v;x)
(1)
= P(Si ≤ s|Ti > Vi, Vi = v)

= P(Si ≤ s|Ti > v, Vi = v)

(2)
= P(Si ≤ s|Ti > v),

where (1) follows from the definition of Ψ and (2) follows from the independence of (Si, Ti)

and Vi. Since (Si, Ti) has joint density f , the distributions of the conditional service time

satisfy

Ψ(v;x) =

∫∞
v

∫ x
0
f(x, y)dxdy∫∞

v

∫∞
0
f(x, y)dxdy

and ψ(v;x) =

∫∞
v
f(x, y)dy∫∞

v

∫∞
0
f(x, y)dxdy

.(4.1)

Let Dex(A, s) = {A, s, f} be the primitive model data of a system with three components:

an arrival process A, capacity s and an exogenous dependence characterized by the joint

distribution of service and patience times f .

Endogenous Dependence. When the dependence is endogenous, each customer’

service time changes in response to his waiting time in queue. To capture this feature, I

assume that a customer’s service time depends on his offered wait. It then follows that

the service times of served customers depend on their actual waiting times. Formally,

Ψ(v;x) = P(Si ≤ s|Ti > Vi, Vi = v) = P(Si ≤ s|Vi = v) := Ξ(s, v).
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Let Den(A, s) = {A, s, ξ, fT} be the primitive model data of a system with four compo-

nents: an arrival process A, capacity s, patience-time distribution fT and an endogenous

dependence characterized by the conditional service-time distribution ξ.

4.1.1. Relation between Two Dependencies

Equivalence Class. For a given arrival process A(t) and capacity s, an equivalence

class is defined as a set of model data characterized by distributional primitives such

that the system dynamics of the stochastic queueing systems with any model data in this

equivalence class have the same law. To formally state the concept, let L(D(A, s)) be

the law of the offered wait process of a system with an arrival process A, capacity s and

distributional model data D describing the dependence in the system.

Definition 4.1. Two systems with model data D1 and D2 are equivalent if

L(D1(A, s))
d
= L(D2(A, s)) for all A and s,

given the same initial condition of the queueing systems, where
d
= represents equality in

distribution.

By Definition 4.1, if two systems are equivalent, then their offered processes must have

the same law. Further, it can be shown that all the system dynamics of the two systems

must have the same law. Therefore, if two different dependencies give rise to two systems

which are equivalent, and if we are only interested in the distributions of performance

functions, then we don’t really have to distinguish the exact form of dependence in the

system.
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Proposition 4.1. Two systems with model data specified as follows are equivalent:

Dex(A, s) = (A, s, f) and Den(A, s) = (A, s, ξ, fT ),

where fT is the patience-time distribution and ξ(v;x) = ∂P(S ≤ x|T > v)/∂x derived

from f . To be specific,

(4.2) fT (v) =

∫ ∞
0

f(x, v)dx and ξ(v;x) =

∫∞
v
f(x, y)dy∫∞

v
fT (y)dy

.

Proof. To develop intuition, I first give the proof in the single-server case. I use

superscript ex and en to distinguish between the exogenous and endogenous models. Let

αn denote the inter-arrival time between the n − 1st and nth customer. For customer n,

in the exogenous model, he arrives with a service and patience time pair (Sn, Tn) which

is randomly drawn from the joint distribution f . Following Baccelli et al. (1984, Eq 2.1),

the offered wait process can be characterized using a recursion

(4.3) V ex
n+1 = [V ex

n + 1{T exn >V exn }S
ex
n − αexn+1]+.

Customer n enters service if and only if his patience Tn exceeds his virtual waiting time

Vn, in which case his service requirement is counted in the service process of the service

agent. Otherwise, he abandons the queue and his service requirement is removed from

the service process. Note that in (4.3), the effective workload of customer n into the

service process 1{T exn >V exi }S
ex
i has a probability mass P (T exn < V ex

n ) at 0. Suppose V ex
n has



107

a distribution f exVn , then for any v > 0, it holds that

P (V ex
n + 1{T exn >V exn }S

ex
n > v)

=P (V ex
n > v) + P (Sexn > v − V ex

n , T exn > V ex
n , V ex

n ≤ v)

(1)
=P (V ex

n > v) +

∫ v

u=0

P (Sexn > v − u, T exn > u)f exVn(u)du

(2)
=P (V ex

n > v) +

∫ v

u=0

∫ ∞
y=u

∫ ∞
x=v−u

f(x, y)dxdy f exVn(u)du,

where (1) follows because (Sexn , T
ex
n ) is independent of V ex

n and (2) follows because (Sexn , T
ex
n )

is drawn from the joint distribution f .

In the endogenous model,

(4.4) V en
n+1 = [V en

n + 1{T enn >V enn }S
en
n − αenn+1]+.

The effective service time of customer n into the service process 1{T enn >V enn }S
en
n has a

probability mass P (T enn < V en
n ) at 0. Suppose V en

n has a distribution f enVn , then for any
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v > 0, it holds that

P (V en
n + 1{T enn >V eni }S

en
n > v)

=P (V en
n > v) + P (Senn > v − V en

n , T enn > V en
n , V en

n ≤ v)

=P (V en
n > v) +

∫ v

u=0

P (Senn > v − u, T enn > v|V en
n = u)f enVn(u)du

=P (V en
n > v) +

∫ v

u=0

P (Senn > v − u|V en
n = u)P (T enn > u) f enVn(u)du,

(3)
=P (V en

n > v) +

∫ v

u=0

∫ ∞
x=v−u

∫ ∞
y=u

f(x, y)∫∞
y=u

fT (y)dy
dydx P (T enn > u)f enVn(u)du

=P (V en
n > v) +

∫ v

u=0

∫ ∞
y=u

∫ ∞
x=v−u

f(x, y)dxdy f enVn(u)du,

where (3) follows from the definition of ξ. Note that αi+1 is independent of {Vn, Sn, Tn}

in both models and αexn+1
d
= αenn+1. If V ex

0
d
= V en

0 , then an induction argument proves

V ex
n

d
= V en

n for all n ≥ 1.

The intuition in the single-server case can be easily transferred to the many-server

case except that a more subtle recursive representation of workload vector is required.

See e.g., Moyal (2017). For a system with s servers, define an s-dimensional workload

vector at the arrival time of the nth customer Vn = (Vn(1), Vn(2), . . . , Vn(s)). This vector

is ranked in the increasing order such that Vn(1) ≤ Vn(2) ≤ . . . ≤ Vn(s). To interpret this

workload vector, consider another s − 1 virtual customers arriving at the same time of

customer n. Index these s customers arriving simultaneously by {1, 2 . . . , s} with the real

customer n being indexed by 1. For 1 ≤ i ≤ s, let Vn(i) represent the virtual waiting time

of customer i if he has infinite patience. Then Vn(1) corresponds to the offered wait of

the real customer n. Under this representation, the workload vector Vn is updated when
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the n+ 1st arrives:
Vn+1(i) =

[(
Vn(i) ∨ (Vn(1) + 1{Vn(1)<Tn}Sn)

)
∧ Vn(i+ 1)− αn+1

]+
, 1 ≤ i ≤ s− 1

Vn+1(s) =
[
Vn(s) ∧ (Vn(1) + 1{Vn(1)<Tn}Sn)− αn+1

]+
.

In the exogenous model,

P (V ex
n (1) + 1{Vn(1)<Tn}Sn > v1, V

ex
n (2) > v2, . . . , V

ex
n (s) > vs)

= P (V ex
n (1) > v1, . . . , V

ex
n (s) > vs)

+

∫ v1

u=0

P (T exn > u, Sexn > v1 − u, V ex
n (2) > v2, . . . , V

ex
n (s) > vs|Vn(1)ex = u)f exVn(1)(u)du

= P (V ex
n (1) > v1, . . . , V

ex
n (s) > vs)

+

∫ v1

u=0

∫ ∞
y=u

∫ ∞
x=v1−u

f(x, y)dxdy P (V ex
n (2) > v2, . . . , V

ex
n (s) > vs|Vn(1)ex = u)f exVn(1)(u)du.

In the endogenous model,

P (V en
n (1) + 1{Vn(1)<Tn}Sn > v1, V

en
n (2) > v2, . . . , V

en
n (s) > vs)

= P (V en
n (1) > v1, . . . , V

en
n (s) > vs)

+

∫ v1

u=0

P (T enn > u, Senn > v1 − u, V en
n (2) > v2, . . . , V

en
n (s) > vs|Vn(1)en = u)f enVn(1)(u)du

(4)
= P (V en

n (1) > v1, . . . , V
en
n (s) > vs)

+

∫ v1

u=0

∫ ∞
y=u

∫ ∞
x=v1−u

f(x, y)dxdy P (V en
n (2) > v2, . . . , V

en
n (s) > vs|Vn(1)en = u)f enVn(1)(u)du,

where (4) follows from the same computation of the endogenous model in the single-server

case. If V ex
0

d
= V en

0 , then an induction argument proves V ex
n

d
= V en

n for all n ≥ 1. Q.E.D.
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Proposition 4.2. A system with an endogenous model data Den(λ, s) = (λ, s, ξ, fT )

is equivalent to a system with an exogenous model data if and only if (1 − Ξ(v;x))F c
T (v)

is decreasing in both v and x, where Ξ is the corresponding cdf of the conditional service

time, Ξ(v;x) =
∫ x

0
ξ(v;x)dx.

Proof. If an endogenous model has an exogenous counterpart and there exists a

two-dimensional density f such that (4.2) holds. It follows immediately that

(4.5) (1− Ξ(v;x))F c
T (v) =

∫ ∞
y=v

∫ ∞
x

f(x, y)dxdy

is decreasing in both v and x.

On the other hand, suppose (1 − Ξ(v;x))F c
T (v) is decreasing in both v and x. Note

that

lim
v→∞

lim
x→∞

(1− Ξ(v;x))F c
T (v) = 0 and lim

v→0
lim
x→0

(1− Ξ(v;x))F c
T (v) = 1.

This implies (1− Ξ(v;x))F c
T (v) can be represented as a two-dimensional ccdf. Assuming

the derivate exists, the joint density f in the exogenous model can be computed via

f(x, v) =
∂2(1− Ξ(v;x))F c

T (v)

∂x∂v
.

It can be verified that such f in the exogenous model will induce fT and ψ in the endoge-

nous model via (4.2). Invoking Proposition 4.1, the exogenous model with density f has

the same system dynamics as in the endogenous model specified by fT and ψ. Q.E.D.

Proposition 4.2 gives a sufficient and necessary condition to distinguish the two de-

pendencies. It is a stronger than Condition 1 in Chapter 3 developed to evaluate the
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uniqueness of equilibrium for the fluid approximation of the stochastic system. Proposi-

tion 3.3 states that, for a fluid model with stationary arrivals, the equilibrium is unique if

and only if E[S|T > V, V = v]P(T > v) is decreasing in v. This latter condition trivially

holds when (1−Ξ(v;x))F c
T (v) is decreasing in both v and x. It then follows from Proposi-

tion 4.1 and Proposition 4.2 that a fluid model with an exogenous dependence must have

a unique equilibrium.

Proposition 4.2 also implies that the possible system dynamics given by exogenous

models form a subset of those given by endogenous models. Although the two depen-

dencies correspond to very different mechanisms in the stochastic system regarding how

customers’ service times are determined, they can, in fact, give rise to the same system

performance when the condition in Proposition 4.2 is satisfied.

Proposition 4.2 has very important implication on the empirical identification of de-

pendence. The estimation of an exogenous dependence characterized by the joint dis-

tribution of the service and patience times are, in general, very difficult given that the

dataset is necessarily censored, as I remark at the end of Chapter 2. The relation between

the exogenous and endogenous dependence, as demonstrated in Proposition 4.2, indicates

that it is only necessary to estimate the primitives of its endogenous representation, even

if the dependence is physically exogenous in the service system. It is significant that

the estimation of the endogenous model is much easier even if the dataset is censored,

which boils down to estimating the marginal distribution of the patience time and the

conditional service-time distribution (conditioned on the waiting time). I elaborate below.

First, one can use the Kaplan-Meier estimator to extract the patience-time distribution

since waiting times are observed for both abandoned and served customers. Let n denote
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the number of customers observed in the sample, among whom J customers abandon and

the other N − J customers are served. One can rank the waiting times observed from

abandoned customers in the increasing order such that 0 = t0 < t1 < t2 < . . . < tJ <

tJ+1 =∞. The patience-time distribution can be estimated as follows:

F̂T (x) =
∏
tj≤x

(
1− # customers who abandon at tj

# customers who have not abandoned by tj−

)

The conditional service-time distribution can be estimated by analyzing the service

times observed from served customers. Specifically, let ai indicate whether that customer

is served. It equals 1 if that customers gets served and 0 if that customer abandons. If

ai = 1 so that customer i is served, let si and wi be the service and waiting times observed

from customer i. The conditional service-time distribution can be estimated as follows:

Ψ̂(v;x) =

∑n
i=1 1{ai = 1, wi = v, si ≤ x}∑n

i=1 1{ai = 1, wi = v}
.

4.1.2. Performance Analysis: A Fluid Approach

Since the exact analysis of performance measures under either dependence is intractable,

I develop a stationary fluid model (similar to Chapter 2) to approximate the steady-state

performance measures. The following analysis generalizes some of the results in Chapter

2 derived for systems with an exogenous dependence.

Define

a(v) := E[S|T > V, V = v] =

∫ ∞
0

xψ(v;x)dx

to be the average conditional service time of a customer given that he has not abandoned

after waiting v time units in queue. I assume a(v)P(T > v) is strictly decreasing in v.
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Assumption 4.1. a(v)P(T > v) is strictly decreasing in v for all v.

Chapter 2 shows that Assumption 4.1 holds when the dependence is exogenous. To see

this, recall g(v) := E[S|T = v] is the average service time of a customer whose patience

time is v, which we refer to as the Conditional Service Time in Chapter 2. Differentiating

a(v)P(T > v) gives the derivative−fT (v)[a(v)−a′(v)/hT (v)] = −fT (v)g(v) < 0, where the

equality follows because Reich (2012, Equation (4.5)) shows that a(v) − a′(v)/hT (v) =

g(v), so that Assumption 4.1 must hold. Now, if the dependence is endogenous and

further, if a is decreasing (implying a negative dependence between service and wait-

ing times), Assumption 4.1 also holds. However, if a is increasing (implying a positive

dependence between service and waiting times), Assumption 4.1 may be violated.

Assumption 4.1 can be used to derive the uniqueness of an equilibrium for the fluid

model when the arrival process is stationary. Indeed, Proposition 3.3 shows this. It

follows immediately that the equilibrium is unique when the dependence is exogenous.

However, Chapter 3 uses numerical examples to demonstrate that multiple equilibria may

exist when the dependence is endogenous and Assumption 4.1 fails. In the following, I

always assume that Assumption 4.1 holds for any dependence under consideration so that

a unique equilibrium exists. The steady-state performance measures are derived based on

that unique equilibrium.

Proposition 4.2 indicates that the law of system dynamics only depends on the ar-

rival rate of customers λ, number of agents s, patience-time distribution fT and the

distribution of the conditional service time ψ. In other words, the primitive model data

D := {λ, s, fT , ψ} fully determines the dynamics of the fluid model. I analyze the impact

of each of the components in D on the stationary fluid system by fixing the other three
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components. I use the throughput R as the performance measure to demonstrate the

comparative statics.

Let R(λ) be the throughput when the arrival rate is λ and other data components are

fixed. The following result generalizes Proposition 2.3.

Proposition 4.3. R(λ) is decreasing if a is increasing and is decreasing if a is de-

creasing.

Let R(s) be the throughput when the capacity is s and other data components are

fixed.

Proposition 4.4. If fT has an increasing hazard rate, then R(s) is convex increasing

if a is concave increasing and concave increasing if a is convex decreasing.

The conditions in Proposition 4.4 are different from those in Proposition 2.7. In Propo-

sition 2.7 where an exogenous dependence is concerned, the structure of the throughput

only depends on a simple condition on the monotonicity of g. Proposition 4.4 applies to a

more general dependence but requires the patience-time distribution to have an increasing

hazard rate.

Fix the arrival rate λ, capacity s and distribution of the conditional service time ψ. Let

T1 and T2 denote two random variables which can be ranked by the first-order stochastic

dominance. Let Ri be the throughput in the fluid model of a system with patience time

distributed as Ti.

Proposition 4.5. Suppose T1 ≤st T2. It follows that R1 ≥ R2 if a is increasing and

that R1 ≤ R2 if a is decreasing.
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Proposition 4.5 demonstrates the impact of the patience-time distribution, which is

not considered in Chapter 2. The proposition shows that a high patience level implies a

low throughput given a positive dependence. This is because as customers become more

patient, they are less likely to abandon and it takes longer to clear the queue. Customers

must wait longer to get served and tend to require longer service times due to the positive

dependence, leading to a lower throughput. Similarly, the throughput is higher when the

patience level is higher but the dependence is negative.

Fix the arrival rate λ, capacity s and patience-time distribution fT . Let a1 and a2 be

two functions representing the average conditional service times. Let Ri be the throughput

in the fluid model of a system with conditional service time ai.

Proposition 4.6. If a1(v) ≤ a2(v) for all v > 0, then R1 ≥ R2.

Proposition 4.6 generalizes Proposition 2.5, which shows that the throughput is de-

creasing in the strength of the dependence as ranked by PQD order. To see how Proposi-

tion 4.6 implies Proposition 2.5, note that the ordering of the average conditional service

time follows from the PQD order, as is shown in Shaked and Shanthikumar (2007, p.

389).

4.2. On the Dependence between Service Value and Service Requirement

In the second direction for future research, I consider a dependence between the ser-

vice value and service requirement in service systems and its implication on the revenue

management of these systems.

In a wide variety of services, the value a customer receives from service may depend

on his individual service requirement. For example, the value of visiting a grocery store is
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likely to depend on the number of items a customer wishes to purchase, and that number

is positively correlated with the time spent in the store, picking up items and checking

out. Similarly, the value of visiting a doctor and receiving medical care is likely to be

high if a patient’s illness is acute, which in turn, is likely to imply a long treatment

time. The dependence between service value and service requirement has been supported

by empirical evidence. Analyzing a dataset from a call center, Hu et al. (2016) find

that a caller’s service reward tends to be larger when a call center agent spends more

time talking to that caller. The authors argue that the longer one’s service time is, the

more complicated and urgent the service request is to the caller, and the larger reward is

generated from service.

In this section, I consider a queueing model which explicitly captures the dependence

described above. My goal is to study the impact of such dependence on the provider’s

pricing decision and revenue performance. In my model, customers are rational and

self-interested: they decide whether to queue for service based on their individual val-

uations, waiting cost and price of service. The dependence between the valuation and

service requirement considered in my model has significant implications on the system

performance. In particular, it implies that the service-time distribution of customers who

join the queue is in general different than that of the entire customer population. This

property distinguishes my work from the existing literature, which, in general, assumes

identical service-time distributions for customers who join and who balk (see e.g., Anand

et al. (2011)).

There has been a rich literature on service operations that studies the joining/balking

decisions of rational customers based on self-interest. Most of the existing research treats
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the system primitives to be independent, in particular, it is assumed that a customer’s

valuation for service is independent of his service requirement. My work contributes to

the literature by explicitly modeling and analyzing a dependence between a customer’s

valuation and service requirement.

Relevant to the dependence considered in this section, Hopp et al. (2007) and Alizamir

et al. (2013) use dynamic models to study discretionary services, in which the service rate

can be adjusted at the provider’s discretion. The value of the service increases with

service quality, which in turn increases with service time. In a similar spirit, Anand

et al. (2011) consider the interaction between the service value and service time using a

static queueing game. All these papers assume service speeds are adjustable and the key

research question addressed in these papers is to determine the optimal trade-off between

providing high-valued services and serving more customers. My model, on the other hand,

studies service settings where customers’ service requirements are exogenous and cannot

be easily controlled by the provider.

Recently, there has been research on consumer-driven dependencies between system

primitives. Nazerzadeh and Randhawa (2015) assume that a customer’s sensitivity to

delays increases with his valuation and the authors find that offering two service grades

is asymptotically optimal in revenue maximization. Gurvich et al. (2016) extend their

model to study the social welfare optimization. Afèche and Pavlin (2016) make a similar

assumption on customer valuation and delay sensitivity. The authors study the optimal

price and delay menus for revenue maximization under asymmetric information. It is

worth noting that all the references above assume a special correlation structure between

the primitives under study. In particular, a customer’s delay sensitivity is a deterministic
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function of his service value. By contrast, the interaction between the service value and

service requirement in my model is captured using a stochastic dependence concept, and

is more reflective of the heterogeneity in customer preferences.

4.2.1. Model

I consider a monopoly service provider selling service to a market of customers. I model the

service process using an invisible M/G/1 queueing system. Potential customers arrive for

service in a Poisson stream with an exogenous rate Λ, which I refer to as the market size or

demand interchangeably. Each arriving customer has a finite random valuation for service

and decides to join service if the utility of obtaining service is nonnegative. A key feature

of my model is that the valuation of an arriving customer depends on that customer’s

individual service requirement, although the bivariate random variables representing the

valuation and service requirement are independent across different customers.

Specifically, letting Vi and Si denote the valuation and service requirement of customer

i, respectively, I assume that {(Vi, Si) : i ≥ 1} are independent and identically distributed

(I.I.D.) bivariate random variables, all having the same continuous joint density f and

marginal densities fV and fS for valuation V and service requirement S, respectively.

Suppose fV has support in [v, v̄] while the support of fS is the entire positive half of the

real line. I further assume that E[S2] <∞, so that unconditional service time has a finite

expectation. I refer to µ := 1/E[S] > 0 as the nominal service capacity, because µ would

be the service rate if all customers choose to join service.

Each customer incurs a cost c for each time unit waiting in queue, which I refer to as the

delay sensitivity and is assumed to be homogeneous across customers. In the benchmark
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case, the provider charges a uniform price p for service, which is processed in a First

Come First Served (FCFS) manner. I will relax this assumption and consider priority-

based pricing schemes in §??. Upon arrival, each customer decides whether to acquire

service (joining) or quit service (balking) based on his individual valuation, expected

waiting cost and price charged for service. To formally characterize a customer’s decision,

let W be the random variable representing the equilibrium delay time in queue of a joining

customer.. A customer joins service if his utility of obtaining service is positive:

U := V − p− cE[W ] ≥ 0.

Otherwise, he balks. I assume that joining customers do not renege and that balking

customers do not retry.

In my model, a customer’s waiting cost is measured by his waiting time in queue.

This assumption is supported by various psychological studies which claim that customers

usually perceive the time in queue to be unproductive and thus undesirable. The time in

service, however, produces value and is often not associated with a mental cost. This fact

is emphasized in my model with dependence, especially when a customer’s valuation is

positively dependent on his service requirement. In this case, the time in service is valued

more than it is if the valuation and service requirement were independent.

Since the price p and waiting cost cE[W ] are the same across customers, there exists

a valuation threshold v such that customers join the service if their valuation exceed v
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and balk otherwise. This implies

(4.6)


v − cE[W (v)]− p = 0 if v > v,

v − cE[W (v)]− p ≥ 0 if v = v,

where W (v) is the equilibrium delay given that the valuation threshold is v. Consider the

customers who join service. By Poisson thinning, they enter service in a Poisson stream

with rate λ = ΛF̄V (v). If V and S are dependent, the service-time distribution of these

customers also depends on v. I refer to the service time of joining customers as the effective

service time, which I represent using a generic random variable Se. It is the service time

of customers whose valuation is greater than the threshold v, which, in general, has a

different distribution than the nominal service time S. This feature distinguishes my

model from the literature, which typically assumes an identical distribution for Se and S.

See e.g., Anand et al. (2011), Cachon and Feldman (2011) and Huang et al. (2013).

It is worth noting that when the valuation and service requirement are independent,

models with waiting cost measured by the time in queue and the time in system (queueing

time plus service time) are qualitatively the same because the distribution of the effective

service time does not depend on customers’ joining decisions. However, in the presence

of a dependence, the effective service time depends on the valuation threshold, exposing

an intricate difference between the two measurements of waiting costs.

4.2.1.1. Measures of Dependence. While there are various ways to model dependence

in system primitives, a commonly used approach in the prior studies to capturing depen-

dence between two primitives is to assume that one primitive is a deterministic function of

the other. For example, Afèche and Pavlin (2016) and Nazerzadeh and Randhawa (2015)
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assume that a customer’s delays sensitivity is an increasing function of his valuation.

However, such a modeling approach is restrictive in that it is unable to capture a stochas-

tic dependence between the primitives, which is important to reflect the heterogeneity in

customer preferences. By assuming a joint distribution for the valuation and service re-

quirement, my model allows for any arbitrary stochastic dependence to be captured. The

dependence studied in Afèche and Pavlin (2016) and Nazerzadeh and Randhawa (2015)

can be be considered as a special case of my general modeling framework.

In this section, I introduce two measures of dependence which I will use later. First,

I will identify the service provider’s optimal pricing strategy for a given joint density

f . To gain qualitative insights, I will impose structural assumptions on f by assuming

that the conditional expected service time (conditioned on the valuation) is monotone; I

elaborate in §4.2.1.1. Second, to compare the optimal revenues for systems with different

dependencies, I consider the set of all bivariate distributions with the same marginal

densities fV and fS, which I denote by F(fV , fS) and is nonempty. See §2.3.

Measuring Dependence via Bivariate Dependence Orders . The first dependence con-

cept is the PQD order defined in Chapter 2, where it was employed to rank the strength

of dependence between customers’ service and patience times in the many-server setting.

Conditional Expected Service Time. In addition to the PQD order, dependence be-

tween V and S can also be captured by the conditional expected service time given a

customer’s service value. In particular, let

(4.7)
a(v) = E[S|V > v], b(v) = E[S2|V > v],

g(v) = E[S|V = v], h(v) = E[S2|V = v].
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For the notational convenience later, I also define

A(v) = F̄V (v)a(v), B(v) = F̄V (v)b(v).(4.8)

I refer to the function g as the Conditional Service Time (CST) and h as the Second-

moment of Conditional Service Time (SCST). An increasing CST and SCST imply a

positive dependence, whereas a decreasing CST and SCST imply a negative dependence,

between V and S. The independence between V and S implies a constant CST and a

constant SCST.

In general, for a given bivariate random variable (V, S), the CST and SCST need not

be monotone. The following lemma provides natural sufficient conditions for monotone

CST and SCST, and link the monotonicity of the CST and SCST to PQD.

Lemma 4.1. If P(S > s|V = v) is increasing in v, then (V, S) is PQD and has an

increasing CST and SCST. If P(S > s|V = v) is decreasing in v, then (V, S) is NQD and

has a decreasing CST and SCST.

4.2.1.2. Service Price. The service provider collects revenue from customers served.

In the benchmark model, the provider determines a uniform price p to charge for service.

The effective service-time distribution of customers who receive service depends on the

valuation of these customers, which in turn depends on the provider’s pricing decision.

Therefore, it is important that one can show there exists a unique subgame equilibrium

under each price p charged by the provider.

To show a unique subgame equilibrium exists, I first characterize the expected de-

lay E[W (v)] given a valuation threshold v. Using the Pollaczek-Khinchine formula, the
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expected delay (in queue) W̃ for an M/G/1 queue with arrival rate λ̃ and service time

S̃ can be computed by E[W̃ ] = λ̃E[S̃2]/2(1 − λ̃E[S̃]). For a system with a valuation

threshold v, it follows that λ̃ = ΛF̄V (v), E[S̃] = E[Se] = E[S|V > v] = a(v) and

E[S̃2] = E[S2
e ] = E[S2|V > v] = b(v). Hence the expected delay can be computed

via

E[W (v)] =
ΛF̄V (v)b(v)

2(1− ΛF̄V (v)a(v))
=

ΛB(v)

2(1− ΛA(v))
,(4.9)

provided the system is stable: ΛA(v) < 1, where A and B are defined in (4.8).

Proposition 4.7. Fix Λ and f , then for each price p, there exists a unique valuation

threshold v. Moreover, the valuation threshold v is increasing in p and the expected delay

E[W (v)] is decreasing in p.

Proposition 4.7 shows that the waiting time decreases with the service price, implying

that a higher admission fee can be used to reduce congestion. Note that when V and

S are positively dependent, as the price increases, the valuation threshold also increases.

This implies customers who join service must have higher valuations. When the depen-

dence is positive, these customers require longer service times. Since a high price reduces

congestion, Proposition 4.7 shows that the decrease in the effective arrival rate dominates

the increase in the effective service time. Mathematically, the average of the effective

service time a(v) = E(S|V > v) might increase to infinity as v → v̄ due to a positive

dependence. The assumption that E[S] <∞, however, ensures that A(v) = F̄V (v)a(v) is

strictly decreasing and converges to 0 as v → v̄. Similarly, B(v) is also strictly decreasing
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and converges to 0 as v → v̄. It then follows from (4.9) that the expected delay E[W (v)]

is decreasing in v, thus decreasing in price.

Proposition 4.7 shows that each price charged by the provider induces a unique sub-

game perfect equilibrium. Using a backward induction, the provider seeks the optimal

price p∗ to maximize her revenue:

(4.10)

max
p≥0,v∈[v,v̄]

pΛF̄V (v)

s.t. v − p− cE[W (v)] ≥ 0,

ΛA(v) < 1.

The first constraint in (4.10) corresponds to the individual rationality of joining customers,

i.e., the utility of obtaining service for the customer whose valuation equals the valuation

threshold is nonnegative. The second constraint ensures that the queueing system is

stable.

The first constraint must be binding for the optimal price p∗. In other words, the

customer whose valuation equals the valuation threshold gains zero utility. To see this,

suppose this constraint is nonbinding, then the provider could be strictly better-off by

increasing the price by a sufficiently amount while maintaining the same valuation thresh-

old v and throughput ΛF̄V (v). Since the constraint is binding, I can represent the price as

a function of the valuation threshold v via p = v− cE[W (v)]. I can equivalently optimize

over the valuation threshold v and restate the optimization problem:

max
v∈V

(v − E[W (v)])ΛF̄V (v),(4.11)
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where V is the feasible region of the valuation threshold such that the system is stable,

i.e.,

V := {v ∈ [v, v̄] : ΛA(v) < 1}.

I assume that there is a unique v∗ which solves (4.11) and the optimal price can be

uniquely computed by p∗ = v∗ − cE[D(v∗)].

Let D := {Λ, c, f} be the primitive model data, a set containing all the system primi-

tives. It endogenizes the optimal price of the provider, and in turn, determines the joining

and balking decisions of the customer population. This implies that the queueing game

is fully characterized by D.

4.2.2. Revenue Maximization

In this section, I consider the provider’s revenue maximization problem with and without

a dependence in the service system. By studying the independent and dependent models

separately, I show that some traditional wisdom in the independent model may fail to

hold in the dependent model. I also demonstrate how the strength of the dependence, as

ranked by PQD order, impacts the optimal revenue.

4.2.2.1. Benchmark: Independent Model. I first consider the benchmark model

in which a customer’s valuation is independent of his service requirement. Under this

assumption, the effective and nominal service times have the same distribution. I first

identify the optimal price of the provider, assuming the service time has an exponential

distribution. Next, I relax the distributional assumption of service time and study the

impact of the market size and delay sensitivity on the optimal revenue.
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If a customer’s valuation is independent of his service requirement, then the functions

defined in (4.7) are all constants, i.e., f has a constant CST and SCST. If I further assume

that the service time of potential customers is exponentially distributed with rate µ, then

a(v) = g(v) = 1/µ and b(v) = h(v) = 2/µ2 for all v ≥ 0. The expected delay in this case

is

E[W (v)] =
ΛF̄V (v)/µ2

1− ΛF̄V (v)/µ
=

Λ

µ

F̄V (v)

µ− ΛF̄V (v)
.

The feasible region V = {v ∈ [v, v̄]|F̄V (v) < min{1, µ/Λ}}. The revenue of the provider is

R(v) =

(
v − cΛ

µ

F̄V (v)

µ− ΛF̄V (v)

)
ΛF̄V (v).

I characterize the provider’s optimal pricing decision in the following proposition.

Proposition 4.8. Suppose valuation V has an increasing hazard rate hV (·) and service

time S is exponentially distributed with rate µ. Further, if either of the following conditions

holds:

(i) Λ ≥ µ.

(ii) Λ < µ and v ≤ 1
fV (v)

+ c(2Λµ−Λ2)
µ(µ−Λ)2

.

then R(v) is quasiconcave in v and the optimal valuation threshold v∗ = argmaxvR(v)

uniquely solves

(4.12) v =
cΛF̄V (v)

µ(µ− ΛF̄V (v))
+

cΛF̄V (v)

(µ− ΛF̄V (v))2
+

1

hV (v)
.

The optimal price p∗ = v∗ − cΛF̄V (v∗)/µ(µ− ΛF̄V (v∗)).
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The proof of Proposition 4.8 follows from Cachon and Feldman (2011, Proposition

1). Proposition 4.8 shows that R(v) is quasiconcave in v, hence solving the first order

condition (4.12) gives the optimal v∗. To ensure the existence of a solution to (4.12),

Proposition 4.8 gives two conditions: Either the market size is greater than the nominal

capacity so that the market can only be partially covered; or the lowest valuation in the

population is small enough.

I next consider the impact of the market size on the provider’s optimal revenue, al-

lowing for a general distribution for the service time. The following proposition claims

that the provider’s optimal revenue increases with the market size Λ when V and S are

independent.

Proposition 4.9. If V and S are independent, the optimal revenue R∗ is strictly

increasing in the market size Λ.

Proposition 4.9 generalizes a similar result in Huang et al. (2013, Proposition 7). To

derive their result, Huang et al. (2013) make specific distributional assumptions on the

valuation (Gumbel) and service time (exponential). My result only requires the service

time to have a finite second moment and does not pose any distributional assumption on

the valuation.

Proposition 4.9 shows that the service provider always benefits from a large market

size. As the market size grows, the provider can be strictly better off by adjusting prices.

The impact of the market size on the optimal price is characterized in the following

corollary.
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Corollary 4.1. If the conditions in Proposition 4.8 are satisfied, then the optimal

price p∗ and the optimal effective arrival rate λ∗ are strictly increasing in the market size

Λ.

By Corollary 4.1, the provider enjoys a high margin of price as well as a high through-

put in a large market. However, as I will discuss in §4.2.3, the benefit of a large market

size may vanish when the valuation depends on the service requirement. In particular, in

a system with a positive dependence and a small service capacity, the provider may prefer

a small market size.

By Proposition 4.9, the optimal revenue R∗ is strictly increasing in the market size Λ.

I can characterize the limit of R∗ as the market size Λ grows indefinitely.

Proposition 4.10. Suppose v̄ <∞. Then

lim
Λ→∞

v∗ = v̄,

lim
Λ→∞

p∗ = v̄ +
c

µ
−
√
c(v̄ +

c

µ
)/µ,

lim
Λ→∞

R∗ =

(
v̄ +

c

µ
−
√
c(v̄ +

c

µ
)/µ

)(
µ−

√
cµ/(v̄ +

c

µ
)

)
.

The intuition behind Proposition 4.10 is straightforward. When the market size Λ is

sufficiently large, the valuation threshold v needs to stay very close to v̄ to ensure system

stability. The joining customers are almost homogeneous in their valuation. With this

observation, I can apply the result in Anand et al. (2011, Proposition 1) to determine the

optimal price.
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The impact of the delay sensitivity on the optimal revenue will be discussed in Propo-

sition 4.14 of §4.2.2.2, where I show that the optimal revenue strictly decreases with the

delay sensitivity regardless of the dependence in the system. The intuition is straight-

forward. As the delay sensitivity decreases, the provider can extract more surplus from

customers as the waiting cost decreases.

4.2.2.2. Dependent Customer Valuation and Service Requirement. In this sec-

tion, I consider the model with dependent valuation and service requirement. My analysis

in §4.2.1.2 shows that the queueing game is fully characterized by the primitive model

data D = {Λ, c, f}. I will study the impact of each of the components in D on the

provider’s optimal revenue by fixing other components. I first analyze how the revenue

is impacted by different dependence structures, employing the PQD order discussed in

Chapter 2. Next, for a given joint distribution f , I utilize the monotone CST and SCST

introduced in §4.2.1.1 to study the effect of changes to the market size Λ. Finally, I discuss

the impact of the delay sensitivity.

Recall that given a valuation threshold v, the expected equilibrium delay E[W (v)] =

ΛB(v)/2(1 − ΛA(v)), where A and B are defined in (4.8). The feasible region for v is

V = {v|A(v) < 1/Λ, v − E[W (v)] ≥ 0}. The provider’s revenue is

R(v) =

(
v − cΛB(v)

2(1− ΛA(v)))

)
ΛF̄V (v).

One can easily compute A′(v) = −g(v)fV (v) and B′(v) = −h(v)fV (v). Differentiating R

gives:

R′(v)/Λ = F̄V (v)− fV (v)v +
cΛfV (v)F̄V (v)

2

[
h(v) + b(v)

1− ΛA(v)
+

ΛB(v)g(v)

(1− ΛA(v))2

]
.
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I show how the strength of the dependence, as ranked by PQD order, impacts the

provider’s revenue. To this end, I fix the market size Λ, delay sensitivity c as well as

the marginals fV and fS. Let (V1, S1) and (V2, S2) denote two bivariate random variables

both in a subset P(fV , fS) of F(fV , fS) whose elements can be ranked by PQD order

(see §4.2.1.1). Let Ri denote the optimal revenue, corresponding to a system with joint

valuation and service requirement (Vi, Si), i = 1, 2. The next result claims that the optimal

revenue decreases with the strength of the dependence.

Proposition 4.11. If (V1, S1) ≤PQD (V2, S2), then R1 ≥ R2.

Proposition 4.11 gives the structural result on how different dependencies between

customer valuation and service requirement impact the provider’s revenue. To explain

the intuition, note that if the market is not fully covered, served customers are those with

higher valuations, which implies a potential high margin of price. If V and S are positively

dependent, joining customers tend to require longer-than-average service times, so that

the effective service rate is lower than the nominal service rate and the throughput is

lower than it is in the independent model. Since the provider’s revenue is determined by

the price and throughput, the overall effect of the positive dependence on the revenue is

not straightforward. Proposition 4.11 shows that a positive dependence always hurts the

provider’s revenue, indicating that the loss in throughput due to the positive dependence

dominates the potential to charge a high price. Moreover, the numerical study in §4.2.3

shows that the optimal price for a system with a positive dependence can even be lower

than that for a system without dependence. To see why, note that the congestion may get

worse in the system with a positive dependence because joining customers require longer
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service times. The optimal price drops when the increased waiting cost in the dependent

model dominates the increase in the valuation threshold of joining customers.

On the other hand, when the dependence is negative, customers with higher valuations

stay in service and they tend to require shorter service times. The provider benefits from

the negative dependence as she is able to charge a high price while maintain a high

throughput.

Proposition 4.11 rationalizes the operational incentives of offering an express line in

addition to the regular lines in many service systems. For example, a common practice

in grocery stores is to set up self check-out counters or an express line for customers with

less than 10 items. These customers require relatively shorter service times and there is a

good chance that they will leave the store if they have to wait in regular lines for a long

time. A similar practice is adopted in call centers that provide service for commercial

banks. A special line is often set up for new card activations, which in general, take less

time than other regular services.

Proposition 4.11 also demonstrates how the strength of the dependence affects the

provider’s revenue. It provides incentives for the service provider to manipulate the de-

pendence. In service settings where customer valuation is positively dependent on the

service requirement, a low degree of dependence is desirable. The goal is to relate a cus-

tomer’s valuation to the nature of his service request, rather than the time he spends in

service. To achieve this, the provider may choose to provide standard services. In many

call centers, the high valuation of a caller is driven by an urgent service request, such

as reporting an electricity outrage or a lost card. For these urgent requests, the time a
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call center agent spends with the caller may not have a profound impact on the caller’s

valuation once the caller’s request is resolved.

Proposition 4.11 makes a contrast to Anand et al. (2011). Anand et al. (2011) study

customer intensive services which also highlight the interaction between the service value

and service time. The authors capture the degree of the interaction using a term named as

customer intensity, which is defined as the growth factor in the service value with respect

to the average service time. In Anand et al. (2011), a high degree of customer intensity

benefits the service provider as it allows for a high margin of price. By contrast, my

result shows that a high degree of dependence between customer valuation and service

requirement, in fact, hurts the provider’s revenue. The contrast between the results in

my model and in Anand et al. (2011) follows from the difference in the modeling of

the dependence between service value and service time. Anand et al. (2011) models the

dependence by assuming the service value is a prespecified function of the service speed,

with the latter being optimized by the provider. My model, on the other hand, considers

a stochastic dependence between the service value and service requirement. The strength

of the (stochastic) dependence is measured by PQD order.

Proposition 4.9 shows that the service provider can exploit a large market size in

the independent model. I am interested in whether a large market size also benefits the

provider’s revenue in the presence of a dependence. To gains insights, I assume an MCST

and MSCST for the joint distribution of the valuation and service requirement. I find

that the benefit of a large market size remains valid when the dependence is negative, as

the next proposition shows.
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Proposition 4.12. For a fixed f , if a and b are decreasing, then the provider’s optimal

revenue R∗ is strictly increasing in the market size Λ.

Note that if I take the CST a and SCST b to be constants, then Proposition 4.12

reduces to Proposition 4.9 in the independent model. The intuition behind Proposition

4.12 can be explained as follows. When V and S are negatively dependent, joining cus-

tomers tend to require shorter service times. As the market size Λ increases, the valuation

threshold also increases. This implies shorter effective service times due to the negative

dependence, which further implies a higher price and a higher throughput.

It is worth noting that the benefit of a large market size Λ may not carry over to

the case with a positive dependence, where joining customers tend to bring long service

requirements. The increase in market size Λ leads to a higher valuation threshold, which

implies a longer effective service time. Two opposing effects appear due to the positive

dependence: an increase in the valuation threshold and a decrease in the throughput.

Which effect is dominant depends on the the system parameters. I will give a numerical

example in §4.2.3 to illustrate that the benefit of the a large market size may fail under

a positive dependence and certain system parameters. This violation can also be easily

observed when the limiting case is considered in which the market size grows indefinitely.

Although the optimal revenue need not be monotone with the market size Λ, the limiting

result on the optimal revenue as the market size grows still holds, as the next proposition

shows. The intuition is similar to that of Proposition 4.10.
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Proposition 4.13. Suppose v̄ < ∞ and the following limits exist and are strictly

positive:

lim
v→v̄

g(v) = ḡ > 0 and lim
v→v̄

h(v) = h̄ > 0.

Then the limit of R∗(Λ) as Λ → ∞ also exists. Furthermore, limΛ→∞R
∗(Λ) > 0 if and

only if ḡ <∞ and h̄ <∞. In this case,

lim
Λ→∞

R∗(Λ) =

[
v̄ − cλ∗h̄

2(1− λ∗ḡ)

]
λ∗,

where λ∗ uniquely solves

v̄ − cλh̄

2(1− λḡ)
− cλh̄

2(1− λḡ)2
= 0.

Proposition 4.13 shows that the optimal revenue can be very low if either of g(v) and

h(v) becomes very large as v → v̄, which is never the case in the independent model as

g(v) and h(v) are constants for all v .

Next I analyze the impact of the delay sensitivity c. As the delay sensitivity decreases,

the waiting cost decreases and the provider is able to extract more surplus from joining

customers and thus generate more revenue.

Proposition 4.14. For fixed Λ and f , the provider’s optimal revenue R∗ is strictly

decreasing in the delay sensitivity c.

Proposition 4.14 shows that the provider’s optimal revenue strictly decreases with

the delay sensitivity, regardless of the exact form of the dependence in the system. In

particular, the provider’s optimal revenue R∗ decreases in the delay sensitivity c when

there is no dependence.
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4.2.3. A Numerical Study

In this section, we give a numerical example to compare the provider’s optimal revenues

across systems with and without dependencies. I let the service value V be uniformly

distributed in [0, 1] and the service requirement S be exponentially distributed with rate

µ. In models with dependent primitives, we let V = 1 − e−µS to capture a positive

dependence and V = e−µS to capture a negative dependence. The correlation coefficients

between V and S in these two cases are the largest and smallest, respectively, among all

attainable correlation coefficients for bivariate random variables with the same marginal

distributions (See Dhaene et al. (2002)).

By measuring the time unit by average service time, we can always normalize µ to 1

without loss of generality. I first fix µ and vary the market size Λ to study the effect of

varying market sizes. The nominal traffic intensity ρ := λ/µ ranges from 0.2 to 2. I next

vary the delay sensitivity c ∈ {0.1, 0.01} to expose the effect of waiting cost.

Proposition 4.8 derives the optimal price in the independent model which uniquely

solves (4.12). One can show that the optimal price is also unique in the model with a

negative dependence and can be solved through an equation similar to (4.12). However,

for the case with a positive dependence, the explicit formula for the optimal price is not

attainable and we can only compute it using an exhaustive search. In Figures 4.1 and 4.2,

we present results of optimal revenue R and optimal price p for systems with and without

dependencies.

I make two important observations from Figure 4.1. First, as Proposition 4.12 shows,

the optimal revenue for systems with a negative dependence or without a dependence

increases with the market size. However, such result fails to hold in the presence of a



136

positive dependence. For example, when the waiting cost is relatively high such that

c = 0.1, the optimal revenue starts to decrease after the market size exceeds 0.9. Second,

Proposition 4.11 predicts a revenue loss due to a positive dependence and a revenue

gain due to a negative dependence, compared to the system with no dependence. This

numerical example shows that the revenue loss or gain due to a dependence could be

substantial when the market size is large. To see why, note that the revenue loss due to

the positive dependence follows from the fact that the loss in throughput dominates the

potential high margin of price. When the market size goes large, the system becomes more

congested and joining customers must have higher service value and longer average service

times, implying a further loss in throughput. Since the effect of a reduced throughput

dominates, the revenue loss due to the positive dependence exacerbates as the market size

grows large.

As we show in Figure 4.2, the relative value of the optimal prices for systems with

and without dependencies is sensitive to the system parameters. I find that when the

delay sensitivity c is large and market size Λ is small, the optimal price under a positive

dependence can be lower than that under no dependence. This implies even the potential

of a high margin of price may not be feasible when the dependence is positive. In this

case, joining customers with high service values bring in more service requirement, which

may lead to a longer waiting time. The effect of waiting cost is amplified when the delay

sensitivity c is large and may even dominate the potential of a high margin of price that

comes with high-valued joining customers.
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Figure 4.1. Optimal Revenue under Single Pricing
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Figure 4.2. Optimal Price under Single Pricing

4.2.4. Service-Based (SB) Pricing

So far we have considered the provider’s revenue maximization problem when the same

price price is charged to all customers. I have discussed in §4.2.2.2 about the loss of the

provider’s revenue due to a positive dependence between the service value and service

requirement. In this section, we consider how the provider should respond to the positive
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dependence to improve his revenue performance. I propose a service-based (SB) pricing

scheme as a solution to overcoming the disadvantage of the positive dependence. An SB

pricing scheme, loosely speaking, prices a customer’s service based on his realized service

time. I demonstrate that the SB pricing scheme will only work when the dependence

exists. I further show that SB pricing can be used to exploit the dependence and generate

more revenue than if the dependence were not there.

The distribution of service value V can be estimated through marketing surveys or

lab experiments while the distribution of service time S can be estimated from historic

data collected from the service process. The optimal revenue in the independent model

represents the provider’s predicted revenue when he has estimated the marginals of V

and S but treated them as independent primitives. However, estimating the marginal

distributions of the service value and service requirement is insufficient to determine the

optimal prices if the two primitives are in fact dependent. The joint distribution of the

two primitives should be estimated. Suppose the service provider has estimated the joint

distribution f of the two primitives. He could design an SB pricing scheme with the

information of the joint distribution f , which we discuss below.

4.2.4.1. Service-based Pricing. I propose a service-based pricing scheme in response

to the positive dependence. The literature has demonstrated the role of SB pricing

schemes in price discrimination among customers with heterogeneous service require-

ments; e.g., Mendelson and Whang (1990) and Van Mieghem (2000). In a service system

with a positive dependence between the service value and service requirement, customers

with higher service values join service and they require longer-than-average service times.

The main drawback of single pricing is that each customer is charged the same price even
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if that customer requires a very long service time. As a potential fix, the provider may

offer an SB pricing scheme which is contingent on each customer’s realized service time.

Mathematically, an SB pricing function p : R+ 7→ R+, is a mapping that translates a

customer’s realized service time to a price the customer has to pay. In other words, a

customer with a realized service time s will be charged a price p(s) for his service.

I next analyze the how the SB function p affects customers’ decisions on whether

to join service. The service provider first announces the SB pricing function p. Each

customer estimates the price he will have to pay based on the knowledge of his service

and then decides whether he should join service. The service-time distribution of each

customer can be computed conditioned on that customer’s service value v,

fS|V (s|v) =
f(s, v)

fV (v)
.

With the announced SB pricing function p(·), the expected price q charged to a customer

with a service value v is

q(v) = E[p(S)|V = v] =

∫ ∞
0

p(s)fS|V (s|v)ds.

Note that the SB pricing scheme can be used to charge different prices across customers

only when there exists a dependence between the service value and service requirement.

Indeed, if the dependence does not exist, then the conditional service-time distribution

fS|V (s|v) = fS(s) does not depend on v, implying the expected price function q is a

constant. Thus, SB pricing is equivalent to single pricing without the dependence. On the

other hand, q will vary among customers with different service values when a dependence

exists. For example, if the dependence is positive such that P(S ≥ s|V = v) is increasing
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in v, one can easily show that if the SB pricing function p is strictly increasing, then so

is q.

The provider also announces the expected delay ŵ, which reflects the provider’s belief

of the delay time in equilibrium. A customer will join service if his utility of joining service

U(v) = v − q(v) − cŵ ≥ 0. I assume a customer who is indifferent between joining and

balking always joins. Define

I(ŵ) := {v : v − q(v)− cŵ ≥ 0},

which represents the set of joining customers indexed by their service values. The resulting

expected delay is

(4.13) w =
Λ
∫
I(ŵ)

E[S2|V = v] fV (v)dv

2(1− Λ
∫
I(ŵ)

E[S|V = v] fV (v)dv)
.

In equilibrium, the provider’s announced delay must be consistent with the actual delay,

so that w = ŵ.

Lemma 4.2. Given any expected price function q(·), there exists a unique waiting

time w.

I denote the expected waiting time w := w(q) given the uniqueness of q for any

expected price function q. Hence, the provider’s revenue-optimization problem under SB
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pricing scheme is

max
p(·)

R(p) =

∫
I(w(q))

q(v)fS|V (v)dv(4.14)

s.t. q(v) =

∫ ∞
0

p(s)fS|V (s|v)ds.(4.15)

For tractability, we consider a relaxed problem of (4.14). In particular, we will remove

the constraint (4.15) and optimize the provider’s revenue over q,

(4.16) max
q(·)

R(q) =

∫
I(w(q))

q(v)fS|V (v)dv.

The feasible region of q expands in the relaxed problem (4.16) since we have removed the

constraint (4.15) describing how q is generated. In general, for any arbitrary expected

price function q(v) and conditional distribution of the service time fS|V (s|v), there is no

guarantee that we can find an SB pricing function p such that the constraint (4.15) is

satisfied. The optimal solution to the relaxed problem (4.16), thus, is an upper bound of

the optimal constrained problem (4.14).

Note that in (4.16), the optimal q squeezes the surplus of joining customers to zero.

In other words, the provider is able to use SB pricing as an instrument to extract the

full surplus of joining customers. The revenue-optimization problem is equivalent to

the welfare-optimization problem in this case. The equivalence between the revenue-

optimization and welfare-optimization is widely known for unobservable queues when

customers’ service values are homogeneous; e.g., Hassin and Haviv (2003, Chapter 3) and

the references therein. However, the two optimization problems are, in general, different

when customers have heterogeneous service values. Assuming a dependence between the
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service value and service requirement, we can reestablish the equivalence between the two

problems by allowing for an SB pricing scheme.

To gain insights, we further reduce the feasible region of q to consider threshold poli-

cies. I restrict our analysis to the pricing policies such that there exists a service value

threshold ṽ and customers elect to join service if their service value is greater than ṽ and

balk otherwise. Under threshold policies, the relaxed problem (4.16) can be reduced to

an optimization problem which is optimized over the service value threshold ṽ, similar to

the independent case. Specifically, the expected delay w(ṽ) under threshold policies can

be computed by

(4.17) w(ṽ) =
Λ
∫ v̄
ṽ
E[S2|V = v] fV (v)dv

2
(

1− Λ
∫ v̄
ṽ
E[S|V = v] fV (v)dv

) =
Λ
∫ v̄
ṽ

∫∞
0
s2f(s, v)dsdv

2
(

1− Λ
∫ v̄
ṽ

∫∞
0
sf(s, v)dsdv

) .
The optimal q∗(v) extracts the full surplus of joining customers so that q∗(v) = v − cw.

Hence,

(4.18) max
ṽ

R(ṽ) =

∫ v̄

ṽ

(v − cw(ṽ))fV (v)dv.

Comparing the optimal revenue generated under the SB threshold pricing policies with

the independent model, we find that a positive dependence, although undesirable under

single pricing, can help to generate more revenue under SB pricing. To state the result,

consider two systems with service value and service requirement distributed as (V1, S1)

and (V2, S2), respectively, with fixed marginals. Suppose V1 and S1 are independent and

V2 and S2 are positively dependent characterized by an increasing CST and SCST.
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Proposition 4.15. Under SB pricing, the optimal revenue of the positive dependent

system 2 under the relaxed problem (4.18) is strictly larger than that of the independent

system 1 under the revenue-optimization problem (4.14) if either of the two conditions

holds:

(1) When the market size Λ is sufficiently small;

(2) When the delay sensitivity c is sufficiently small and the provider’s capacity can

cover the entire market, i.e., Λ < µ.

SB pricing is useful because it allows for different prices charged to different customers

depending on customers’ service values. In particular, it can be used to charge a customer

a higher price for a longer service time. In the relaxed problem (4.18), it can be further

employed to extract the full surplus of joining customers. As a result, Proposition 4.15

shows that when the market size Λ or the delay sensitivity c is sufficiently small, the

provider can always do better in the relaxed problem (4.18) compared to the case of no

dependence. To complete the analysis of the last component in the primitive data D,

the following proposition is concerned with identifying the condition on the strength of

dependence to have a similar statement as above.

Proposition 4.16. Suppose (V2, S2) ∈ G(fV , fS) with correlation coefficient r2 > 0.

If r2 is sufficiently small, then under SB pricing, the optimal revenue of the positive

dependent system 2 under the relaxed problem (4.18) is strictly larger than that of the

independent system 1 under the revenue-optimization problem (4.14) .

The optimal ṽ∗ that solves (4.18) gives rise to an expected pricing function q∗(v) =

v − cw(ṽ∗). Again, we may not find an SB pricing function p which induces q∗ via
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(4.15) under any arbitrary conditional service-time distribution fS|V . However, there

always exists an SB pricing function p that induces q∗ if we consider the following special

dependence between V and S. I say the service value and service requirement are co-

monotonic (Dhaene et al. (2002)) if (V, S)
d
= (F−1

V (U), F−1
S (U)), where

d
= stands for

equality in distribution and U is a standard uniform random variable independent of V

and S.

Corollary 4.2. Suppose (V1, S1)
d
= (F−1

V (U), F−1
S (U)) where U is a uniform random

variable independent of V1 and S1. Under revenue-optimization problem (4.14) with SB

pricing, the optimal revenue of the positive dependent system 2 is strictly larger than that

of the independent system 1 if either of the two conditions holds:

(1) When the market size Λ is sufficiently small;

(2) When the delay sensitivity c is sufficiently small and the provider’s capacity can

cover the entire market, i.e., Λ < µ.

I can explicitly design an SB pricing function in the case when V and S are co-

monotonic. Let ṽ∗ be the optimal service value threshold solving (4.18) and let s̃∗ :=

F−1
S FV (ṽ∗). A feasible SB pricing function is given by

(4.19) p(s) =


F−1
V (FS(s))− cw(ṽ∗) for s ≥ s̃∗

ṽ∗ − cw(ṽ∗) for s < s̃∗,

where w(ṽ∗) is the expected waiting time computed by (4.17). To explain the intuition

of the pricing function above, note that when V and S are co-monotonic, a customer

with service value v has a deterministic service time F−1
S (FV (v)). Under the SB pricing
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function defined in (4.19), only customers with service value higher than ṽ∗ join service and

their surplus is fully extracted by the service provider. Hence, the outcome of the pricing

function is consistent with the provider’s strategy and customers’ decisions described in

(4.18).

I conduct a numerical study to verify the insights derived from the analytical result.

Following the setting in §4.2.3, I let the service value V be uniformly distributed in [0, 1]

and the service requirement S be exponentially distributed with rate µ. In models with

dependent primitives, I let V = 1− e−µS to capture a positive dependence and V = e−µS

to capture a negative dependence.

I normalize µ to 1 and vary the market size Λ from 0.2 to 2 with increment 0.02

to study the effect of varying market sizes. I also vary the delay sensitivity c from

0.01 to 0.6 with increment 0.01 to expose the effect of waiting cost. I plot some of the

numerical results in Figures 4.3 and 4.4. Across the 5,460 combinations of parameters,

the revenue improvement using SB pricing compared to single pricing is 32.0% under a

positive dependence and 71.9% under a negative dependence.

Figure 4.3 shows that how the market size shapes the optimal revenue for systems with

and without a dependence under SB pricing. When the market size is small, the optimal

revenue generated by the SB threshold policies under a positive dependence is larger than

that under no dependence. In particular, when the delay sensitivity c = 0.01 is small, the

optimal revenue under the positive dependence outperforms that under no dependence

till the market size grows to approximately 1.2. In this case, if the market can be fully

covered by the provider’s service capacity, i.e., Λ < µ, the positive dependence indeed

benefits the provider’s revenue performance when SB pricing is allowed. However, when
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Figure 4.3. Optimal Revenue under SB Threshold Policy
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Figure 4.4. Optimal Revenue under SB Threshold Policy

the market size is large, the extra revenue extracted from high-valued customers under

SB pricing is not sufficient to compensate for a reduced throughput due to a positive

dependence. As a result, the optimal revenue under a positive dependence drops below

that under no dependence as the market size grows large. Furthermore, we observe that

when the market size is small, the difference between the optimal revenue achieved under
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a positive and a negative dependence is also relatively small. To explain, note that most

of the market can be served when the market size is small, implying a relatively modest

difference between the workload and waiting cost in systems with a positive and a negative

dependence. Note that the optimal revenue under SB pricing is equal to the social welfare

in the relaxed problem (4.18) and that the social welfare is roughly the same when most

of the customers join service.

Figure 4.4 shows the impact of delay sensitivity on the optimal revenue when the

market size is fixed. I find that when the market size is moderate Λ = 0.5, the optimal

revenue generated by SB pricing under a positive dependence can outperform that under

no dependence if the delay sensitivity is smaller than 0.4. By contrast, when the market

size is large Λ = 1.2, even if the delay sensitivity is small c = 0.05, the positive dependence

can hurt the provider’s revenue. I conclude that the benefit of a positive dependence under

SB pricing is the most substantial when the market size and delay sensitivity are both

small, i.e., when the queueing effect is not very significant.

4.2.4.2. A Heuristic for General SB Pricing. In Propositions 4.15 and 4.16, we

compare the optimal revenue of a system with dependence in the relaxed problem (4.18)

and a system with no dependence in the original revenue-optimization problem (4.14). I

have discussed that the solution to the relaxed problem (4.18) may not always be derived

by an SB function via (4.15). Even if the solution to (4.18) can be derived by a SB

pricing function, it can be difficult to find that SB pricing function. One of the exceptions

is the case with the service value and service requirement being co-monotonic, in which

we are able to give an explicit formula for the pricing function. Motivated by the pricing
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function in that special case, we propose a heuristic SB pricing function under a general

dependence between the service value and service requirement.

The SB pricing formula (4.19) takes advantage of the co-monotonicity between the

service value and service requirement. Optimizing over the service value threshold, the

provider serves customers with service value higher than that threshold and fully extracts

their surplus. Now, with a general positive dependence between the service value and

service requirement, we revise the pricing function (4.19) and let

(4.20) p(s) = F−1
V (FS(s))− cw̃ for all s,

where we require w̃ to be an equilibrium expected waiting time that solves (4.13) given

the pricing function (4.20). The existence and uniqueness of such w̃ is guaranteed by

Lemma 4.2. In general, customers’ decisions under the pricing function (4.20) may not

exhibit a threshold structure with respect to their service value. Therefore, the expected

waiting time must be computed via (4.13) rather than (4.17). The pricing function (4.20)

can be interpreted as a two-part tariff. The first term F−1
V (FS(s)) is the regular price

a customer pays for his service time s, which is motivated by the case when the service

value and service time are co-monotonic. The second term −cw̃ is the price adjustment

accounting for the actual waiting time in the system.

I discuss the performance of the pricing function (4.20). For tractability, we consider

a special class of dependencies between the service value and service requirement, as

characterized by Gaussian copulas. See Appendix A.1.1 for details. In particular, a

positive dependence between V and S is captured by assuming (V, S) ∈ G(fV , fS) with
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correlation coefficient r > 0. The expected price a customer with service value v pays is

(4.21) q(v) =

∫ ∞
0

F−1
V (FS(s))fS|V (s|v)ds− cw̃.

Under the dependence generated by Gaussian copulas, we can show that the expected

price q(v) increases with v.

Lemma 4.3. Assume (V, S) ∈ G(fV , fS) with correlation coefficient r > 0. Then q(v)

defined in (4.21) is increasing in v.

I next characterize customers’ decisions under the pricing function (4.20). A customer

with service value v joins service if v − q(v)− cw̃ ≥ 0, or equivalently,

v ≥
∫ ∞

0

F−1
V (FS(s))fS|V (s|v)ds.

Assuming (V, S) ∈ G(fV , fS) with V being uniformly distributed, we can show that the

pricing function (4.20) indeed induces a threshold structure in customers’ decisions.

Lemma 4.4. Assume (V, S) ∈ G(fV , fS) with correlation coefficient r > 0. Further,

if the marginal distribution of V is uniform, then the price function (4.20) induces a

threshold policy of customers’ decisions. In particular, a customer joins service if and

only if his service value v ≥ E[V ].

Combining Lemmas 4.3 and 4.4, we immediately have the following result.

Proposition 4.17. Assume (V, S) ∈ G(fV , fS) with correlation coefficient r > 0 and

V is uniformly distributed in [0, v̄]. The revenue generated by the pricing function (4.20)

is strictly larger than that in the independent model if either of the two conditions holds:
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(1) When the market size Λ is sufficiently small;

(2) When the delay sensitivity c is sufficiently small and the provider’s capacity can

cover the entire market, i.e., Λ < µ.

Proposition 4.17 shows that the intuitive construction of price function (4.20) works

well when the queueing effect is not significant. The positive dependence can be ex-

ploited under the heuristic to generate more revenue compared to the independent model.

However, when queueing effect is significant, the comparison result could reverse, as we

numerically demonstrate below.

I use a numerical example to test the performance of my proposed heuristic. I let

the service value V be uniformly distributed in [0, 1] and the service requirement S be

exponentially distributed with rate µ. For systems with dependencies, we generate the

joint distributions of V and S using Gaussian copulas. In the system where V and S are

co-monotonic, the correlation coefficient is 0.87, which is the largest among all attainable

correlation coefficients for the bivariate random variable with the same marginals. To

capture a moderate positive dependence, we consider correlation coefficient of V and S

to be 0.6 and 0.3 in the other two systems. I compare the revenue for these three systems

under the heuristic pricing function (4.20) with that for an independent system under the

optimal price. Results with different delay sensitivities are presented in Figure 4.5.

I observe that when the market size is not very large, the heuristic pricing function

(4.20) can be used to generate more revenue for a system under a positive dependence than

that under no dependence. The numerical results provide strong evidence that a positive

dependence can be useful to improve revenue under SB pricing. The results also show

that the benefit of SB pricing is the highest in the presence of co-monotonicity between
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Figure 4.5. Optimal Revenue under One SB Policy

service value and service requirement, which allows the provider to use SB pricing to fully

extract the surplus of joining customers. By contrast, the provider can only extract a

partial surplus from customers under a general dependence in which the service value and

service requirement are not co-monotonic.
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APPENDIX A

Appendix for Chapter 2

A.1. More on Copulas and Conditional Service Time

A.1.1. Generating Gaussian Copulas and t-Copulas

I now provide details on how to generate dependent bivariates (S, T ) via Gaussian cop-

ula and t-copulas. The procedures I describe below are used to generate different joint

distributions which correspond to Figure 2.1.

Let rG be a number in [−1, 1], and let Φ(·) denote the cdf of standard normal random

variable. The following NORTA procedure, which was proposed in Cario and Nelson

(1997), produces a bivariate (S, T ) with some correlation coefficient r that is a bijective

function of rG; I elaborate below.

Generating (S, T ) Using Gaussian Copula (NORTA)

1. Generate two independent standard normal random variables Z1 and Z2.

2. Let V1 = Z1 and V2 = rGZ1 +
√

1− r2
GZ2. Then V1 and V2 are two standard normal

random variables with correlation coefficient rG.

3. Let S = F−1
S (Φ(V1)) and T = F−1

T (Φ(V2)). The correlation coefficient r between the

random variables S and T generated via the algorithm above is a continuous function of

rG. To generate a bivariate (S, T ) with a specific correlation r, I build on the following

lemma; see Cario and Nelson (1997) Proposition 2 for its proof and for further details.

Let r and r be the minimal and maximal attainable correlation coefficients of S and
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T , respectively. (Note that r may be larger than −1 and r may be smaller than 1; for

example, if S and T are both exponential random variables, then r ≈ −0.64.)

Lemma A.1. For two densities fS and fT and a fixed number x ∈ [−1, 1], let Sx

and Tx be the random variables generated via NORTA by taking rG = x, and let r(x)

denote the correlation between Sx and Tx. Then r : x 7→ [r, r] is strictly increasing, with

r(−1) = r and r(1) = r.

In particular, the minimal and maximal attainable correlation between two marginal

distributions can be generated via NORTA. Moreover, due to the monotonicity of r(x)

and its inverse, it is easy to find the value of rG that gives any pre-specified attainable

correlation coefficient. Finally, it can be easily verified that r(rG) = 0 if and only if

rG = 0, so that two random variables generated by Gaussian copula are independent if

and only if they are uncorrelated.

I next describe the procedure proposed in ? for generating a bivariate (S, T ) using

t-copula.

Generating (S, T ) Using t-Copula with Degree n

1. Generate two independent standard normal random variables Z1 and Z2.

2. Let V1 = Z1 and V2 = rtZ1 +
√

1− r2
tZ2. Then V1 and V2 are two standard normal

random variables with correlation coefficient rt.

3. Generate a random variable Y having the chi-square distribution with n degrees of

freedom, and let U = n/Y .

4. Let X1 =
√
UV1 and X2 =

√
UV2.
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5. Let S = F−1
S (tn(X1)) and T = F−1

T (tn(X2)), where tn(·) is the cdf of the t-distribution

with n degrees of freedom.

A.1.2. Ranking Gaussian Copulas with Given Marginals

Recall that G := G(fS, fT ) denotes the set of joint distributions generated by the Gaussian

copula with fixed marginals fS and fT . I state a few properties of G. First, a bivariate

with any attainable correlation coefficient can be generated by a Gaussian copula, and

is characterized by its correlation. In particular, if (S1, T1) and (S2, T2) are two distinct

elements in G, then their respective correlation coefficients are necessarily different, i.e.,

either r1 < r2, or r2 < r1, where ri is the correlation coefficient of (Si, Ti), i = 1, 2.

Thus, an important advantage of focusing on the set of bivariates with fixed marginals

that are generated by Gaussian copulas, is that the corresponding joint distributions are

fully characterized by the correlation coefficient r, so that one parameter can be used as

a measure of dependence (as opposed to PQD order, which is a non-parametric measure

of dependence). Second, bivariates in the set G are independent if and only if they are

uncorrelated. Third, the class of bivariates generated by the Gaussian copula can be

ranked by PQD order, as was mentioned above. I therefore have the following lemma.

Lemma A.2. If for (S1, T1), (S2, T2) ∈ G it holds that r1 < r2, then (S1, T1) ≤PQD

(S2, T2).

Note that the condition r1 < r2 is assumed without loss of generality, since the corre-

lation coefficients of any two distinct elements in G must be strictly ordered.
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A.1.3. Relating the CST, PQD order and Gaussian Copula together

The following two lemmas provide natural sufficient conditions for Monotone Conditional

Service Time (MCST), and link the monotonicity of the CST to PQD and Gaussian

copula.

Lemma A.3. If P(S > u|T = w) is increasing in w, then (S, T ) is PQD and has an

ICST. If P(S > u|T = w) is decreasing in w, then (S, T ) is NQD and has a DCST.

Lemma A.3 provides a natural sufficient condition for (S, T ) to be PQD (NQD) and

have an MCST. When (S, T ) ∈ G, both PQD and monotonicity of the CST are determined

by the sign of the correlation coefficient r, as the next lemma shows.

Lemma A.4. Let (S, T ) ∈ G with correlation coefficient r. Then (i) if r > 0, then

(S, T ) is PQD and has an ICST; (ii) if r < 0, then (S, T ) is NQD and has a DCST; (iii)

if r = 0, then (S, T ) has a CCST.

A.2. Time to Stationarity

In general, many-server queueing systems in heavy traffic tend to converge to station-

arity much faster than single-server systems; see, e.g., the discussion in E.C.1 in Perry

and Whitt (2009). I now demonstrate via simulations that my system with dependence

indeed converges quickly to its stationary behavior. I simulate systems with and with-

out dependence, starting the systems at two extreme initial conditions; the systems in

Figure A.1(a) are initialized empty, and the initial queue length of the systems depicted

in Figure A.1(b) is much larger than the stationary queue. The system parameters and
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distributions are the same as in the numerical experiment presented in Table 2.1. Specif-

ically, the system has an arrival rate λ = 110 and s = 100 agents, and the service and

patience times are exponentially distributed with rate µ = 1 and θ = 1/2, respectively.

For each simulated system, I take averages of 500 independent runs, and use the queue

length metric to demonstrate the convergence.

Observe that the shape of the trajectories of queues in the dependent models is similar

to that of the independent model. Since it is known that both the stochastic system and its

fluid limit converge exponentially fast to stationarity in the independent case, I conjecture

that the same is true for the dependent model. I further remark that I consider extreme

initial conditions in order to make the shape of the trajectories apparent. However, in

practice, a stationary analysis is performed over time blocks, with the initial condition of

the fluid model being much closer to its stationary point. (Similarly, the initial distribution

is much closer to the stationary one, where the distance is measured via an appropriate

metric.) Therefore, the actual time it takes to be sufficiently close to stationarity is much

shorter than that in the examples shown in Figure A.1.

A.3. Capacity Sizing under a Throughput-Maximizing Policy

In this appendix, I consider the capacity sizing problem when applying the optimal

control policy to maximize throughput. The following proposition follows directly from

Proposition 3 in Bassamboo and Randhawa (2015).

Proposition A.1. The throughput-maximizing policy is FIFO if f has a DCST and

LIFO if f has an ICST. If f has a CCST, any nonidling policy yields the same throughput.
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Figure A.1. Convergence of queue length of stochastic system to steady state

In particular, since congestion is beneficial when the dependence is negative, I would

like to serve customers in the order at which they arrive, so that customers having short

patience, but long service requirements, voluntarily abandon the system. However, under

positive dependence, less patient customers are also those who tend to require short

services, and since I cannot identify those customers upon arrival, the best I can do is to

have µeff = µ. This effective service rate can be achieved (in the fluid model) by employing

LIFO, since the waiting of customers who enter service is negligible, and so no screening

of customers occurs.

For bivariates generated by Guassian copulas, the conditions on MCST in Proposition

A.1 reduce to a condition on the sign of the correlation coefficient.

Corollary A.1. Let (S, T ) ∈ G. Then the throughput-maximizing policy is FIFO if

r < 0 and LIFO if r > 0. Any nonidling policy yields the same throughput if r = 0.

The discussion in §2.6.1 regarding the optimal capacity under a negative dependence

still applies, because FIFO is the optimal policy in this case. Hence I only need to
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consider the case with a positive dependence, for which LIFO is optimal. Under LIFO,

the throughput is equal to sµ, so that the profit Πλ(s) is simply equal to (pµ− c)s, as in

the independent model. I conclude that when the throughput-maximizing control policy

is adopted, the capacity prescribed in Proposition A.1 remains optimal. Numerical studies

for the system considered in §2.6.3, presented in Table A.1, show that the fluid-optimal

capacity is fairly accurate under the throughput-maximizing policy.

Table A.1. Optimal staffing under LIFO and positive dependence (λ = 100)

p/c = 1.25 p/c = 3.5
Capacity Cost Gap Capacity Cost Gap

r Optimal Fluid Percentage Optimal Fluid Percentage
0 94 100 1.4% 104 100 1.0%

0.2 95 100 0.7% 105 100 1.9%
0.4 95 100 0.5% 105 100 2.8%
0.6 98 100 0.3% 107 100 3.6%
0.8 99 100 0.3% 108 100 4.2%
1 100 100 0.0% 108 100 4.7%

In ending I remark that in overloaded systems, customers will be left to wait with

no chance of ever entering service if LIFO is employed, and so is infeasible to employ in

observable service systems. Nevertheless, from the fluid perspective, I can achieve the

same throughput by employing an admission control policy which rejects arrivals if the

number of customers waiting in queue is larger than a certain threshold, and this threshold

is negligible for the fluid model.

A.4. Proofs

A.4.1. Auxiliary Results

Before presenting the proofs of the results in this chapter I state two auxiliary results

which will be employed in my proofs below.
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The proof of the following lemma can be found in Shaked and Shanthikumar (2007,

p. 389).

Lemma A.5. If (S1, T1) ≤PQD (S2, T2), then E(S1|T1 ≤ z) ≥ E(S2|T2 ≤ z) and

E(S1|T1 > z) ≤ E(S2|T2 > z) for all z ≥ 0.

For the next auxiliary result, whose statement follows easily from (2.3), let w(s) denote

the steady state offered wait as a function of the capacity s when λ and f are kept fixed.

Using the monotonicity of φ(·), I obtain the following lemma.

Lemma A.6. I have that w(s) is strictly decreasing on (0, λ/µ).

A.4.2. Proofs of the Main Results in Chapter 2

I now prove the main results (Propositions and Corollaries) in the chapter in the order in

which they appear.

Proof of Proposition 2.1. Since fS and fT are strictly positive over [0,∞), φ(w) is

strictly decreasing. Thus, there exists a unique solution to (2.3). Q.E.D.

Proof of Proposition 2.2. I start by showing that w̄ > 0 if and only if ρ > 0. First, it

follows immediately from the fact that φ(w) ≤ φ(0) = E[S] = 1
µ

for all w ≥ 0, that (2.6)

is not well defined when ρ ≤ 1. In particular, there exists no overload equilibrium for the

fluid model in this case.

To prove the other direction, I assume that ρ > 1 and make the contradictory as-

sumption that w̄ = 0. It then follows from (2.4) that aeff = a(w̄) = E[S], so that

µeff = 1/aeff = µ, contradicting the first equality in (2.7). Thus, it must hold that w̄ > 0.
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I next prove that ρ > 1 if and only if ρeff > 1. To this end, observe that, by (2.5),

ρeff ≤ 1 is equivalent to sµeff ≥ λ which, together with the second equality in (2.7), implies

that w̄ = 0. Hence, by the preceding argument, ρ > 1 implies that ρeff > 1 as well. For

the other direction, note that, by (2.5), ρeff > 1 implies that µeff < λ/s = ρµ. It then

follows from the first equality in (2.7) that w̄ > 0 and thus ρ > 1. Q.E.D.

Proof of Proposition 2.3. By Corollary 4.1 in Reich (2012), if g(w) is increasing (de-

creasing), then a(w) is also increasing (decreasing). The throughput R(λ) = s/a(w(λ))

is increasing (decreasing) in w(λ) if a(w(λ)) is decreasing (increasing) in w(λ). By (2.3),

given s and f , the offered wait w(λ), as a function of λ, is increasing in λ. Thus, R(λ) is

increasing (decreasing) in λ if a is decreasing (increasing), which is implied by having g

decreasing (increasing). Q.E.D.

Proof of Corollary 2.1. Corollary 2.1 follows from Proposition 2.3 and Lemma A.4.

Q.E.D.

Proof of Proposition 2.4. The offered wait w solving (2.3) is a function of s, which I

denote by w(s). It can be easily verify that w(s) is continuously differentiable in s. Note

that w(s) is strictly decreasing in s, so that w′(s) < 0. Differentiating both sides of (2.3)

with respect to s gives −λ
∫∞

0
xf(x,w(s))dx · w′(s) = 1, so that

(A.1) − λw′(s) =

(∫ ∞
0

xf(x,w(s))dx

)−1
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The throughput R = λF c
T (w(s)) is decreasing in w(s), and hence increasing in s. Taking

the derivative of R(s), R′(s) = −λfT (w(s))w′(s), and plugging the value of −λw′(s) in

(A.1), gives

R′(s) =
fT (w(s))∫∞

0
xf(x,w(s))dx

=
1

E(S|T = w(s))
=

1

g(w(s))
.

Therefore R′(s) > 0 for all s ∈ (0, λ/µ). If g is increasing, then R′(s) is increasing in s,

hence R(s) is convex in s. Analogously, R(s) is concave in s if g is decreasing. Q.E.D.

Proof of Cororllary 2.2. Corollary 2.2 follows from Proposition 2.4 and Lemma A.4.

Q.E.D.

Proof of Proposition 2.5. It suffices to prove that w1 ≤ w2, because the stated in-

equalities for Ri and Qi, i = 1, 2, will follow immediately from (2.8) and (2.9) and the

fact that T1 and T2 have the same marginal cdf FT . To this end, I will prove that the

following inequality holds for φ in (2.2).

(A.2) φ1(z) ≤ φ2(z), for all z ≥ 0.

Indeed, if (A.2) holds, then ρφ1(w2) ≤ ρφ2(w2) = 1/µ. Since ρφi(wi) = 1/µ for i = 1, 2,

and since φ1 is strictly decreasing and ρφ1(w1) = 1/µ, (A.2) implies that w1 ≤ w2.

It remains to show (A.2) holds. Note that ψz(s, t) = (s · 1{t > z}) is a supermodu-

lar function in (s, t). It also holds that φi(z) = E[ψz(Si, Ti)]. Since PQD ordering and

supermodular ordering are equivalent in the bivariate case (see 9.A.18, Shaked and Shan-

thikumar (2007, p. 395)), (S1, T1) ≤PQD (S2, T2) implies E[ψz(S1, T1)] ≤ E[ψz(S2, T2)],
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i.e., φ1(z) ≤ φ2(z). Q.E.D.

Proof of Corollary 2.3. The statement of the corollary follows from the fact that the

inequality in (A.2) is strict for (S1, T1), (S2, T2) ∈ G(fS, fT ) with r1 < r2. To show this,

note that

E(Si|Ti > z) =

∫ ∞
0

P(Si > u|Ti > z)du =

∫∞
0

P(Si > u, Ti > z)du

F c
T (z)

.(A.3)

In the proof of Lemma A.2 below I show that P(S1 > u, T1 > z) < P(S2 > u, T2 > z) for

all u, z > 0. It then follows from (A.3) that E(S1|T1 > z) < E(S2|T2 > z) for all z > 0.

Hence, w1 < w2, implying that R1 > R2 and Q1 < Q2. Q.E.D.

Proof of Proposition 2.6. If g is increasing, then by Proposition 2.4, R(s) is convex

increasing in s. Hence, the profit function Πλ(s) is convex in s and maximizing Πλ(s) gives

a corner solution. Note that Πλ(0) = 0 and Πλ(λ/µ) = (pµ− c)λ/µ. Hence Πλ(λ/µ) > 0

if and only if pµ > c. In other words, s∗λ = λ/µ is optimal if and only if pµ > c.

Next, if g is decreasing, I optimize the cost function C̄λ(s) in (2.12). Or equivalently, I

minimize C̄λ(w) in (2.13). The derivative of C̄λ(w) is C̄ ′λ(w) = fT (w) (p− cg(w)), since g

is decreasing, C̄λ(w) is quasiconvex in w. Hence, any local minimizer is globally optimal.

If g(∞) < p/c < g(0), since g is continuous, there is a unique w∗ that solves g(w∗) = p/c

and w∗ is the optimizer. The optimal capacity is given by (2.7): s∗λ = λF c
T (w∗)a(w∗). If

p/c ≥ g(0), then C̄ ′λ(w) ≥ 0 for all w, so that w∗ = 0 and s∗λ = λ/µ is fluid optimal. If

p/c ≤ g(∞), then C̄ ′λ(w) ≤ 0 for all w, hence w∗ =∞ and s∗λ = 0. Q.E.D.
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Proof of Corollary 2.4. The cost function for a system whose service time and patience

time are distributed as Si and Ti is

Ci(s) = cs+ pαi(s) = cs+ p(λ−Ri(s)) = pλ+ cs− pRi(s).

Let s∗i be the optimal capacity for a syetem with service time and patience time (Si, Ti).

Then

C∗2 = pλ+ cs∗2 − pR2(s∗2) ≥ pλ+ cs∗2 − pR1(s∗2) ≥ pλ+ cs∗1 − pR1(s∗1) = C∗1 ,

where the first inequality follows from Proposition 2.5 and the second inequality follows

from the optimality of s∗1 for a system with service and patience time (S1, T1). Q.E.D.

Proof of Proposition 2.7. The first-order condition (2.13) of the capacity optimization

problem gives

E(S1|T1 = w1(s∗1)) = E(S2|T2 = w2(s∗2)) = p/c,

where wi(s) is the offered wait for a system with capacity s and service and patience time

(Si, Ti). I will next show that

(A.4) g1(0) := E(S1|T1 = 0) ≥ E(S2|T2 = 0) =: g2(0).

To prove (A.4), I take the contradictory assumption that E(S1|T1 = 0) < E(S2|T2 = 0).

As I assume continuity of gi for i = 1, 2, I can therefore find a δ > 0, such that E(S1|T1 =
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z) < E(S2|T2 = z) for all z < δ. Note that

E(Si|Ti ≤ z) =

∫ z
0
E(Si|Ti = t)fT (t)dt

FT (z)
.

Since T1 and T2 have the same marginal cdf FT , E(S1|T1 ≤ δ) < E(S2|T2 ≤ δ), contra-

dicting Lemma A.5. Hence, (A.4) must hold.

I will show below that there exists a t0, 0 < t0 < ∞, such that for all z ∈ [0, t0], it

holds that g1(z) ≥ g2(z). For that t0, let M := g2(t0). Since g2 is strictly decreasing,

M < g2(0) ≤ g1(0). If M < p/c < g2(0) ≤ g1(0), then the equality g1(w1(s∗1)) =

g2(w2(s∗2)) = p/c and the fact that g1 and g2 are both strictly decreasing functions imply

that

(A.5) w1(s∗1) ≥ w2(s∗2).

Observe that the inequality s∗1 > s∗2 implies that w1(s∗1) < w1(s∗2) ≤ w2(s∗2), where the first

inequality follows from Lemma A.6 and the second inequality follows from Proposition 2.5,

contradicting (A.5). Hence, it must hold that s∗1 ≤ s∗2 as stated.

It remains to show the existence of a finite t0 > 0, such that g1(z) ≥ g2(z) for all

z ∈ [0, t0]. To this end, I consider the the case h(0) > 0 and h(0) = 0 separately. Assume

first that h(0) > 0. In this case, g1(0) > g2(0) so that g1(z) > g2(z) in a right neighborhood

of 0 due to the right continuity of g1 and g2 at 0. Define t0 := infz≥0{g1(z) ≤ g2(z)}.

Note that t0 < ∞ because
∫∞

0
fT (y)g1(y)dy =

∫∞
0
fT (y)g2(y)dy = E[S]. (If g1(z) > g2(z)

for all z ≥ 0, then this latter equality cannot hold.)

I next consider the case h(0) = 0. If h(t) = 0 for all t in some right neighborhood

of 0, namely, if there exists t0 > 0 such that h(z) = 0 for all z ∈ [0, t0], then it trivially
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holds that g1(z) ≥ g2(z) for all z ∈ [0, t0]. Hence, I need only consider the case in which

h(0) = 0 and h is not identically equal to 0 in any right neighborhood of 0. That is, for any

ε > 0, there exists t ∈ (0, ε) such that h(t) 6= 0. Define t0 = inf{z > 0 : h(z) = 0}, where

inf(∅) :=∞. I first claim that t0 > 0. Indeed, if t0 = 0, then there must exists a positive

sequence {zn : n ≥ 1} such that h(zn) = 0 and zn → 0 as n → ∞, contradicting the

assumption that the principle of permanence holds for h at z = 0. I therefore have t0 > 0.

I next show t0 is finite and that h(z) ≥ 0 for all z ∈ [0, t0], so that g1(z) ≥ g2(z) for all

z ∈ [0, t0]. If t0 =∞, note that by the definition of t0, it holds that h(z) > 0 or h(z) < 0

for all z > 0. (Otherwise, if the value of h changes sign in (0, t0), then the continuity of

h implies that there exists a ẑ ∈ (0, t0) such that h(ẑ) = 0, contradicting the definition of

t0.) Since h(z) < 0 for all z > 0 implies that E(S1|T1 ≤ δ) < E(S2|T2 ≤ δ) for all δ > 0,

a contradiction to Lemma A.5, I necessarily have h(z) > 0 for all z ∈ (0, t0). But then

g1(z) > g2(z) for all z > 0 which, as was shown above for the case h(0) > 0, contradicts

the fact that E[S1] = E[S2]. Hence, it must hold that t0 <∞. Repeating the same argu-

ment above shows that h(z) > 0 for all z ∈ (0, t0), so that h(z) ≥ 0 for all z ∈ [0, t0].Q.E.D.

Proof of Corollary 2.5. If (S1, T1), (S2, T2) ∈ G(fS, fT ) satisfying r1 < r2 < 0, then

g1(z) > g2(z) for sufficiently small z > 0. Define t0 := infz{g1(z) ≤ g2(z)}, then t0 > 0.

A similar argument to the one in the proof of Proposition 2.7 gives t0 < ∞. For all

z ∈ (0, t0), I have g1(z) > g2(z). Define M := g2(t0). If p/c > M , then the first order

condition g1(w1(s∗1)) = g2(w2(s∗2)) = p/c implies w1(s∗1) > w(s∗2). A similar argument to

the one in the proof of Proposition 2.7 can be used to show that s∗1 < s∗2. Q.E.D.
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A.4.3. Proofs of the Lemmas in the Paper

Proof of Lemma A.2. As demonstrated in Appendix A.1.1,

(Si, Ti)
d
= (F−1

S (Φ(Γi)), F
−1
T (Φ(Ξi))), i = 1, 2,

where
d
= denotes equality in distribution and (Γi,Ξi) is a bivariate normal random variable

with correlation coefficient riG. It follows from Lemma A.1 that r1 < r2 if and only if

r1
G < r2

G. Therefore, it suffices to show that if r1
G ≤ r2

G, then (S1, T1) ≤PQD (S2, T2). By

Proposition 9.A.1 of Shaked and Shanthikumar (2007, p. 390), PQD ordering is preserved

under componentwise increasing transformation of random vectors. Since F−1
S (Φ(·)) and

F−1
T (Φ(·)) are both increasing, it suffices to show that if r1

G ≤ r2
G, then (Γ1,Ξ1) ≤PQD

(Γ2,Ξ2). This latter result follows from the facts that (1) bivariate normal distributions

with the same marginals are monotone in the association ordering with respect to their

correlation coefficient (Shaked and Shanthikumar (2007, p. 419, Example 9.E.6)); (2)

association ordering implies PQD ordering (Shaked and Shanthikumar (2007, p. 417,

Proposition 9.E.2)).

I now prove a stronger version of the lemma, which I employ in the proof of Corollary

2.3, requiring a strict form of the PQD order; in particular, I prove that, if r1 < r2, then

P(S1 ≤ x, T1 ≤ y) < P(S2 ≤ x, T2 ≤ y), for all x, y > 0. With an abuse of notation, I

write F ∈ G := G(fS, fT ) if F is the joint cdf of a bivariate (S, T ) ∈ G. Since a bivariate

normal random variable is completely characterized by its mean and correlation coefficient

rG, it follows from Lemma A.1 that the cdf’s {F ∈ G} can be indexed by the correlation

coefficient r of (S, T ). Moreover, again by Lemma A.1, there exists a bijection mapping
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from the cdf’s in G to the family of bivariate normal random variables with a zero mean

vector indexed by their correlation coefficient rG. Thus, I can equivalently parameterize

the elements {F ∈ G} by the correlation coefficient rG of the underlying bivariate normal

random variables, and show that {FrG(x1, y1) : −1 ≤ rG ≤ 1} ≡ {Fr(x1, y1) : r ≤ r ≤ r} is

increasing in rG, and thus in r, for all x1, y1 ≥ 0. (Recall that r and r denote the minimal

and maximal attainable correlation coefficients of S and T , respectively; see Appendix

A.1.1.)

Let ϕrG denote the density function of (Γ,Ξ) with correlation coefficient rG:

ϕrG(u1, u2) =
1

2π
√

1− r2
G

exp

(
−u

2
1 − 2rGu1u2 + u2

2

2(1− r2
G)

)
.

For Φ and φ denoting the cdf and pdf of the standard normal random variable, respectively,

let γ(x) := Φ−1(FS(x)) and ξ(y) := Φ−1(FT (y)). Then Γ
d
= γ(S) and Ξ

d
= ξ(T ) so that

the joint density of (S, T ) is

frG(x, y) :=
1

2π
√

1− r2
G

exp

(
−γ(x)2 − 2rGγ(x)ξ(y) + ξ(y)2

2(1− r2
G)

)
γ′(x)ξ′(y),

where γ′(x) = fS(x)/φ(γ(x)) and ξ′(y) = fT (y)/φ(ξ(y)). Then

FrG(x1, y1) =

∫ y1

0

∫ x1

0

frG(x, y)dxdy

=

∫ y1

0

∫ x1

0

1

2π
√

1− r2
G

exp

(
−γ(x)2 − 2rGγ(x)ξ(y) + ξ(y)2

2(1− r2
G)

)
γ′(x)ξ′(y)dxdy,
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so that

∂FrG(x1, y1)

∂rG
=

∫ y1

0

∫ x1

0

∂

(
1

2π
√

1−r2G
exp

(
−γ(x)2−2rGγ(x)ξ(y)+ξ(y)2

2(1−r2G)

)
γ′(x)ξ′(y)

)
∂rG

dxdy

=
1

2π

∫ y1

0

∫ x1

0

e−
ξ(y)2

2

∂
(

exp
(
− (γ(x)−rGξ(y))2

2(1−r2G)

)
γ′(x)ξ′(y)

)
∂rG

dxdy

=
1

2π

∫ y1

0

∫ x1

0

e−
ξ(y)2

2

{ ∂

(
exp

(
− (γ(x)−rGξ(y))

2

2(1−r2
G

)

)
γ′(x)ξ′(y)

)
∂rG

√
1− r2

G

1− r2
G

+

(
exp

(
− (γ(x)−rGξ(y))2

2(1−r2G)

)
γ′(x)ξ′(y)

)
2rG

2
√

1−r2G

1− r2
G

}
dxdy

=
1

2π
√

1− r2
G

∫ y1

0

∫ x1

0

e−
ξ(y)2

2 ξ′(y)
{
γ′(x)

∂
(

exp(− (γ(x)−rGξ(y))2

2(1−r2G)
)
)

∂rG

+ γ′(x)

(
exp

(
− (γ(x)−rGξ(y))2

2(1−r2G)

))
rG

1− r2
G

}
dxdy.(A.6)
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Now,

∫ x1

0

γ′(x)
∂
(

exp
(
− (γ(x)−rGξ(y))2

2(1−r2G)

))
∂rG

dx

=−
∫ x1

0

γ′(x)exp

(
−(γ(x)− rGξ(y))2

2(1− r2
G)

) rG [γ(x)− rGξ(y)]
[
γ(x)− ξ(y)

rG

]
(1− r2

G)2
dx

=− 1

(1− r2
G)2

∫ x1

0

exp

(
−(γ(x)− rGξ(y))2

2(1− r2
G)

)
rG

[
γ(x)− ξ(y)

rG

]
d [γ(x)− rGξ(y)]2

=
1

1− r2
G

{
rG

[
γ(x)− ξ(y)

rG

]
exp

(
−(γ(x)− rGξ(y))2

2(1− r2
G)

) ∣∣∣x1
x=0

−
∫ x1

0

rGγ
′(x)exp

(
−(γ(x)− rGξ(y))2

2(1− r2
G)

)
dx
}

=
1

1− r2
G

{
rG

[
γ(x1)− ξ(y)

rG

]
exp

(
−(γ(x1)− rGξ(y))2

2(1− r2
G)

)
−
∫ x1

0

rGγ
′(x)exp

(
−(γ(x)− rGξ(y))2

2(1− r2
G)

)
dx
}
.(A.7)

Plug (A.7) into (A.6),

∂FrG(x1, y1)

∂rG

=
1

2π(1− r2
G)3/2

∫ y1

0

rGe
− ξ(y)

2

2 ξ′(y)

[
γ(x1)− ξ(y)

rG

]
exp

(
−(γ(x1)− rGξ(y))2

2(1− r2
G)

)
dy

=− 1

2π(1− r2
G)3/2

∫ y1

0

e−
γ(x1)

2

2 ξ′(y)(ξ(y)− rGγ(x1))exp

(
−(ξ(y)− rGγ(x1))2

2(1− r2
G)

)
dy

=
1

2π(1− r2
G)1/2

[
e−

γ(x1)
2

2 exp

(
−(ξ(y)− rGγ(x1))2

2(1− r2
G)

)]∣∣∣y1
y=0

=
1

2π(1− r2
G)1/2

[
e−

γ(x1)
2

2 exp

(
−(ξ(y1)− rGγ(x1))2

2(1− r2
G)

)]
.
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It follows that
∂FrG (x1,y1)

∂rG
> 0 for all x1, y1 > 0, implying the statement of the lemma.

Q.E.D.

Proof of Lemma A.3. Note that g(w) = E[S|T = w] =
∫∞

0
P(S > u|T = w)du. Since

P(S > u|T = w) is increasing in w and fS is fixed, g is necessarily increasing. It re-

mains to show that P(S > u|T = w) increasing in w implies PQD. Following Block et al.

(1985), I say that (S, T ) is Positively Dependent through Stochastic Ordering (PDS) if

P(S > u|T = w) is increasing in w. That PDS implies PQD is proved in Block et al.

(1985, p.82). Q.E.D.

Proof of Lemma A.4. By Lemma A.3, I need to show that, if (S, T ) ∈ G, then

P(S > u|T = w) is strictly increasing in w (PDS) (see the proof of Lemma A.3) if

r > 0, and strictly decreasing in w if r < 0. Note that if (S, T ) ∈ G(fS, fT ), then

(S, T )
d
= (F−1

S (Φ(Γ)), F−1
T (Φ(Ξ))) for a bivariate normal random variables (Γ,Ξ) with

correlation coefficient rG. By Block et al. (1985, Proposition 2.1), PDS is preserved under

componentwise increasing transformation of random vectors. Since r > 0 implies rG > 0

by Lemma A.1, and since F−1
S (Φ(·)) and F−1

T (Φ(·)) are both increasing, it suffices to show

that (Γ,Ξ) is PDS if rG > 0. This latter result is established in Block et al. (1985, Ex-

ample 4.1). The proof for r < 0 is similar. Q.E.D.
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APPENDIX B

Appendix for Chapter 3

B.1. An Algorithm to Solve the Fluid Model

In this section I provider an algorithm to numerically solve the continuous-time fluid

model developed in §3.3.2 by computing the various performance functions in discrete

time scales. Building on the discretization method proposed in Whitt (2006a), I adapt

the method to incorporate the dependence in my model, and also complement and correct

some implementation details in Whitt (2006a).

I assume that all events take place in the discrete time scale {iδ : i ≥ 0} for small

δ > 0. I specify the order of events if more than one event takes place simultaneously:

First, customers who complete service depart, second, waiting customers in queue enter

service, third, impatient customers in queue elect to abandon, finally, new arrivals are

added to the system. When counting the queue length Q(n), I don’t include q(n, 0),

which is the new arrival at time n. Define the probability mass functions (pmf) for

customer l:

g(i|j) = P(Sl = iδ|Tl > Zl, Zl = jδ) ≈ ψ(jδ, iδ)δ,

G(i|j) =
i∑

k=1

g(k|j), Gc(i|j) = 1−G(i|j),

gT (i) = P(Tl = iδ) ≈ fT (iδ)δ, GT (i) =
i∑

k=1

gT (k), Gc
T (i) = 1−GT (i),
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where ψ and fT are the pdf of the conditional service time and patience time in the

continuous model, respectively. I discuss how to discretize the fluid model in two cases

depending on whether all servers are currently busy.

Case 1: B(n− 1) = 1.

If B(n− 1) = 1, then all servers are busy after time n− 1. In this case, the total service

rate

σ(n) =
n−1∑
i=1

{
I(n− i− 1)

[ n−i−1∑
j=cn−i+1

q(n− i− 1, j)g(i|j)

+

(
b(n− i, 0)−

n−i−1∑
j=cn−i+1

q(n− i− 1, j)

)
g(i|cn−i)

]

+(1− I(n− i− 1))

[
n−i−1∑
j=0

q(n− i− 1, j)g(i|j)

]}
+
∞∑
i=n

b(0, i− n)g(n|wB(i− n)),

(B.1)

where I(n) and cn are defined in (B.5) and (B.6) below. I use cn to denote the smallest

waiting time experienced by the fluid that enters service at time n, which approximates

w(nδ) in the continuous model. I(n) is an indicator function which tracks whether all

the queue content at time n − 1 and new arrival q(n − 1, 0) are cleared by service input

at time n. If the queue and new arrival is not cleared at time n, then I(n) = 1 and cn

defined in (B.6) below is strictly positive.

To explain the expression of the total service rate in (B.1), first pick an arbitrary i < n

and consider the fluid content that enters service at time n − i and remains in service

at time n − 1. This fluid may consist of separate fluid densities with different waiting

times. Hence I compute the service rate of this fluid by summing up the conditional
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service rates of its individual fluid, conditioned on the corresponding waiting times. The

quantity of the individual fluid with waiting time j that remains in service at time n− 1

is q(n − i − 1, j)Gc(i − 1|j) and the conditional hazard rate of this individual fluid is

g(i|j)/Gc(i − 1/j). It then follows that the instantaneous service rate of this individual

fluid is q(n− i− 1, j)g(i|j), which is the product of the quantity of the individual fluid at

time n − i and the conditional pmf conditioned on its waiting time. Now I consider the

waiting times of the fluid entering service at time n− i. If I(n− i) = 1, then the smallest

waiting time of individual fluids is cn−i, and the quantity of fluid with the smallest waiting

time cn−i is b(n− i, 0)−
∑n−i

j=cn−i+1 q(n− i−1, j). If I(n− i) = 0, then the smallest waiting

time of individual fluids is zero. The second term in (B.1) is the service rate of the initial

fluid that remains in service at time n. A similar argument gives the fluid density b(n, i)

in service:

b(n, i) =



I(n− i− 1)

[∑n−i−1
j=cn−i+1 q(n− i− 1, j)Gc(i|j)

+
(
b(n− i, 0)−

∑n−i−1
j=cn−i+1 q(n− i− 1, j)

)
Gc(i|cn−i)

]
+ (1− I(n− i− 1))

[∑n−i−1
j=0 q(n− i− 1, j)Gc(i|j)

]
for i < n

b(0, i− n)Gc(n|wB(i− n)) for i ≥ n.

(B.2)

I give the boundary conditions when there is a positive queue. (I point out that Equation

(6.17) in Whitt (2006a) is incorrect.)

(B.3)
b(n, 0) = min{σ(n)δ,Q(n− 1) + q(n− 1, 0)},

q(n, 0) = λδ.
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Update fluid content in service B in the next time epoch:

(B.4) B(n) =
n∑
i=0

b(n, i).

Note in (B.3), the service input b(n, 0) depends on the relative value of σ(n)δ and Q(n−

1) + q(n − 1, 0). I define an indicator function to track which is smaller. (This detail

complements Whitt (2006a).)

(B.5) I(n) = 1[σ(n)<Q(n−1)+q(n−1,0)] for n ≥ 0.

Using cn to denote the smallest waiting time of fluid that enters service at time n, I

compute cn in two cases depending on I(n).

(1) σ(n) < Q(n− 1) + q(n− 1, 0).

In this case I(n) = 1 and b(n, 0) = σ(n). Further,

q(n, i) = 0, i ≥ cn + 2,

q(n, cn + 1) = (1− Pn)q(n− 1, cn)
Gc
T (cn + 1)

Gc
T (cn)

,

q(n, i) = q(n− 1, i− 1)
Gc
T (i)

Gc
T (i− 1)

, for i ≤ cn,

where the integer cn and the probability pn are determined by

∞∑
i=cn+1

q(n− 1, i) ≤ σ(n) <
∞∑
i=cn

q(n− 1, i),(B.6)

Pn =
σ(n)−

∑∞
i=cn+1 q(n− 1, i)

q(n− 1, cn)
.(B.7)
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Other performance functions can be computed as follows:

αn =
cn−1∑
i=0

q(n− 1, i)
gT (i+ 1)

Gc
T (i)

+ (1− Pn)q(n− 1, cn)
gT (cn + 1)

Gc
T (cn)

,(B.8)

Q(n) =
cn∑
i=1

q(n, i).(B.9)

(2) σ(n) ≥ Q(n− 1) + q(n− 1, 0).

In this case I(n) = 0 and b(n) = Q(n − 1) + q(n − 1, 0). Define cn = 0 and Pn = 1.

Further,

α(n) = 0, Q(n) = 0, and q(n, i) = 0 for all i > 0.

Case 2: B(n− 1) < 1.

If B(n − 1) < 1, then there is idle server after time n − 1. In this case, (B.1) and (B.2)

still hold. However, instead of (B.3), the boundary conditions are characterized by

b(n, 0) = min {σ(n)δ + 1−B(n− 1), q(n− 1, 0)} ,

q(n, 0) = λδ.

Queue contents are updated:

q(n, i) = 0, for i ≥ 2,

q(n, 1) = (q(n− 1, 0)− b(n, 0))+Gc
T (1).(B.10)
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Other performance functions are computed as follows:

I(n) = 1[σ(n)δ+1−B(n−1)<q(n−1,0)],

cn = 0,

α(n) = (q(n− 1, 0)− b(n, 0))+ fT (1).

B.2. Proofs

Proof of Proposition 3.1. It suffices to show the nested σ and w in (3.12) and (3.14)

have a unique solution. I discuss two cases depending on whether the system is UL or

OL at time 0.

Case 1: If the system is OL at time 0, then w(t) > 0 for all t < TOL where TOL is the

termination time of the OL interval. I will show there exists a unique solution (w, σ) to

(3.12) and (3.14).

Define an operator Γ : C2 7→ C2 via

Γ(l,m) =

(∫ t

0

l(t− x)ψ(m(t− x), x)dx+ c(t),

∫ t

0

[
1− l(x)

q̃(x,m(x))

]
dx+ w(0)

)
.

Then it is evident that (w, σ) is a fixed point of the operator Γ. I use the complete normed

space C2 with the following norm over the interval [0, t],

‖(l,m)‖t = sup
0≤u≤t

{|l(u)|}+ sup
0≤u≤t

{|m(u)|} .

I will apply the Banach fixed point theorem by showing Γ is a contraction mapping. Note

that the expression of q̃(t, w(t)) in (3.15) depends on the relative value of t and w(t).



177

Therefore, I will analyze Γ separately for t < v(0) and t ≥ v(0), where v(0) is the time for

the initial queue to be cleared. For t < v(0), the initial queue is not cleared yet. Hence

t < w(t) for all t < v(0). Restricting Γ on time [0, v(0)], then

Γ(l,m)

=

∫ u

0

l(u− x)ψ(m(u− x), x)du+ c(t),

∫ t

0

1− l(x)

q(0,m(x)− x)
F cT (m(x))

F cT (m(x)−x)

 dx+ w(0)

 .

The total service rate of the initial fluid content in service is bounded, sup0≤u≤t |c(u)| <∞.

Hence, Γ maps C2 to C2.

‖Γ(l1,m1)− Γ(l2,m2)‖t

= sup
0≤u≤t

{∣∣∣∣ ∫ u

0

l1(u− x)ψ(m1(u− x), x)− l2(u− x)ψ(m2(u− x), x)dx

∣∣∣∣}
+ sup

0≤u≤t

{∣∣∣∣ ∫ t

0

l1(x)

q(0,m1(x)− x)
F cT (m1(x))

F cT (m1(x)−x)

− l2(x)

q(0,m2(x)− x)
F cT (m1(x))

F cT (m2(x)−x)

dx

∣∣∣∣}.
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I analyze the first term:

∣∣∣∣ ∫ u

0

l1(u− x)ψ(m1(u− x), x)− l2(u− x)ψ(m2(u− x), x)dx

∣∣∣∣
≤
∫ u

0

∣∣∣∣l1(u− x)ψ(m1(u− x), x)− l2(u− x)ψ(m2(u− x), x)

∣∣∣∣dx
=

∫ u

0

∣∣∣∣ [l1(u− x)− l2(u− x)]ψ(m1(u− x), x)

+ l2(u− x)[ψ(m1(u− x), x)− ψ(m2(u− x), x)]

∣∣∣∣dx
≤
∫ u

0

∣∣∣∣ [l1(u− x)− l2(u− x)]ψ(m1(u− x), x)

∣∣∣∣
+

∣∣∣∣l2(u− x)[ψ(m1(u− x), x)− ψ(m2(u− x), x)]

∣∣∣∣dx
≤ sup

0≤x≤u
|l1(x)− l2(x)|

∫ u

0

ψ(m1(u− x), x)dx

+ sup
0≤x≤u

|l2(x)| ·
∫ u

0

∣∣∣∣ψ(m1(u− x), x)− ψ(m2(u− x), x)

∣∣∣∣dx
(a)

≤ sup
0≤x≤u

|l1(x)− l2(x)| ·M1u+ sup
0≤x≤u

|m1(x)−m2(x)| ·M2u for some M1 and M2

≤(M1 +M2)u ·
[

sup
0≤x≤u

|l1(x)− l2(x)|+ sup
0≤x≤u

|m1(x)−m2(x)|
]
,

where inequality (a) follows from the continuity of ψ. In particular, since m1 is continuous,

hence m1(x) is bounded for 0 ≤ x ≤ t. Then the continuity of ψ implies there exists some

M1 > 0 such that ψ(m1(u−x), x) < M1 for all 0 ≤ x ≤ t. On the other hand,the continuity

of ψ also implies there exists M̂2 > 0 such that
∣∣ψ(m1(u − x), x) − ψ(m2(u − x), x)

∣∣ <
M̂2|m1(t− x)−m2(t− x)| for 0 ≤ x ≤ t. Let M2 = M̂2 · sup0≤x≤t |l2(x)|. I next analyze
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the second term:

∫ u

0

∣∣∣∣ l1(x)

q(0,m1(x)− x)
F cT (m1(x))

F cT (m1(x)−x)

− l2(x)

q(0,m2(x)− x)
F cT (m1(x))

F cT (m2(x)−x)

∣∣∣∣dx
≤
∫ u

0

∣∣∣∣ l1(x)− l2(x)

q(0,m1(x)− x)
F cT (m1(x))

F cT (m1(x)−x)

∣∣∣∣
+

∣∣∣∣ l2(x)

q(0,m1(x)− x)
F cT (m1(x))

F cT (m1(x)−x)

− l2(x)

q(0,m2(x)− x)
F cT (m1(x))

F cT (m2(x)−x)

∣∣∣∣dx
(b)

≤ sup
0≤x≤u

|l1(x)− l2(x)| ·M3u+ sup
0≤x≤u

|m1(x)−m2(x)| ·M4u for some M3 and M4

≤(M3 +M4)u ·
[

sup
0≤x≤u

|l1(x)− l2(x)|+ sup
0≤x≤u

|m1(x)−m2(x)|
]
,

where inequality (b) follows from the continuity of initial conditions and the distribution

of the conditional service time. Combining the results together, I have

‖Γ(l1,m1)− Γ(l2,m2)‖t

≤ sup
0≤u≤t

(M1 +M2 +M3 +M4)u ·
[

sup
0≤x≤u

|l1(x)− l2(x)|+ sup
0≤x≤u

|m1(x)−m2(x)|
]

≤(M1 +M2 +M3 +M4)t ·
[

sup
0≤x≤t

|l1(x)− l2(x)|+ sup
0≤x≤t

|m1(x)−m2(x)|
]
.

Let δ = 1/2(M1 +M2 +M3 +M4), then Γ is a contraction mapping on [0, δ]. Therefore,

(w, σ) uniquely solves (3.12) and (3.14) on [0, δ]. Then I can recursively consider successive

intervals of length δ to show (w, σ) uniquely solves (3.12) and (3.14) on [0, t] for t < v(0).

Next I consider t > v(0). Now I have q̃(t, w(t)) = λ(t)F c
T (w(t)). I consider the original

system at time v(0) to be a new system at time 0 by adjusting b(0, ·) to b̂(0, ·) and q(0, ·)

to q̂(0, ·) accordingly. In particular, I perform a backward time shift to replace t with
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t− v(0) wherever t appears. The new system is OL at time 0 and I will show the new tail

b̂(0, ·) is relatively bounded relative to new initial conditional service time.

Ĉ1(t) := sup
0≤u≤t

[ ∫
SB(0)

b(0, x)ψ(wB(x), v(0) + u+ x)

Ψ̄(wB(x), x)
dx

+

∫ v(0)

0

q(x,w(x))ψ(w(x), v(0)− x+ u)dx

]
= sup

0≤u≤t

[ ∫
SB(0)

b(0, x)ψ(wB(x), v(0) + u+ x)

Ψ̄(wB(x), x)
dx

+

∫ v(0)

0

q(0, w(x)− x)
F c
T (w(x))

F c
T (w(x)− x)

ψ(w(x), v(0)− x+ u)dx
]

(c)
< sup

0≤u≤t

∫
SB(0)

b(0, x)ψ(wB(x), v(0) + u+ x)

Ψ̄(wB(x), x)
dx+M5

∫ v(0)

0

q(0, w(x)− x)dx

= sup
0≤u≤t

∫
SB(0)

b(0, x)ψ(wB(x), v(0) + u+ x)

Ψ̄(wB(x), x)
dx+M5 ·Q(0)

<∞,

where inequality (c) follows from the continuity of ψ. I can use a similar argument to

show Γ is a contraction mapping on [v(0), v(0)+δ] for small δ. By considering recursively,

I can show (w, σ) uniquely solves (3.12) and (3.14) on [0, TOL]. If TOL = ∞, then the

system stays OL all the time and I have shown the existence and uniqueness of (w, σ) on

[0,∞). If TOL <∞, then I consider the original system at time TOL to be a new system

at time 0 by adjusting b(0, ·) to b̂(0, ·) and q(0, ·) to q̂(0, ·) accordingly. I analyze the UL

interval in Case 2. Here I only need to establish that the new tail b̂(0, ·) is relatively
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bounded relative to new initial conditional service time.

Ĉ2(t)

= sup
0≤u≤t

[ ∫
SB(0)

b(0, x)ψ(wB(x), TOL + u+ x)

Ψ̄(wB(x), x)
dx+

∫ v(0)

0

q(x,w(x))ψ(w(x), TOL − x+ u)dx

+

∫ TOL

v(0)

q(x,w(x))ψ(w(x), t+ TOL − x)dx

]
(d)

≤ sup
0≤u≤t

Ĉ1(TOL − v(0) + t) +M6(TOL − v(0)) sup
0≤x≤TOL

λ(x)

<∞,

where inequality (d) follows from the definition of Ĉ1 and q(x,w(x)) ≤ λ(x− w(x)).

Case 2: If the system is UL at time 0, then w(t) = 0 for all t < TUL where TUL is

the termination time of the UL interval. No queue is accumulated in this interval and b

evolves according to (3.4) with w(t) = 0 for all t < TUL.

σ(t) =

∫ t

0

b(t− x, 0)Ψ̄(w(t− x), x)h(w(t− x), x)dx

+

∫ ∞
t

b(0, x− t)Ψ̄(wB(t− x), x)h(wB(t− x), x)du

=

∫ t

0

λ(x)ψ(0, x)dx+ c(t).

If TUL =∞, then the system is UL all the time and all performance functions are explicitly

determined. If TUL < ∞, then I consider the original system at time TUL to be a new

system at time 0 by adjusting b(0, ·) to b̂(0, ·) accordingly. The new system is OL at time 0

and I will show the new tail b̂(0, ·) is relatively bounded relative to new initial conditional

service time. Then I can employ the argument in Case 1 to show the existence of a
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solution (w, σ). Note that

Ĉ(t) = sup
0≤u≤t

[∫
SB(0)

b(0, x)ψ(wB(x), TUL + u+ x)

Ψ̄(wB(x), x)
dx+

∫ TUL

0

λ(x)ψ(0, TUL + u− x)dx

]
< sup

0≤u≤t

∫
SB(0)

b(0, x)fz(TUL + u+ x|wB(x))

F̄S(x|wB(x))
dx+ sup

0≤x≤TUL
λ(x)

<∞.

Finally, I can show the existence and uniqueness of (w, σ) on the entire timeline by re-

cursively considering alternating OL and UL intervals. Q.E.D.

Proof of Proposition 3.2. I invoke the proof of a similar comparison result in Liu and

Whitt (2012). I first claim σ1(t) ≤ σ2(t) when B1(t) = B2(t). This is straightforward

because

σ1(t) =

∫ ∞
0

b(t, x)h1(w1(t− x), x)dx

≤ sup
z≥0,x∈S1(z)

h1(z, x)

∫ ∞
0

b(t, x)dx

=B1(t) sup
z≥0,x∈S1(z)

h1(z, x).

Similarly,

σ2(t) ≥ B2(t) inf
z≥0,x∈S2(z)

h2(z, x).

By (3.16), it follows that σ1(t) ≤ σ2(t) when B1(t) = B2(t).

I discuss three cases: (i) when both systems are UL, (ii) when the upper system is OL

and the lower system is UL, and (iii) when both systems are OL. I apply mathematical
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induction over the successive alternating intervals of the three cases by assuming the initial

conditions for each succeeding interval satisfy the ordering assumed in the proposition.

I first consider when both systems are UL. Then w1(t) = w2(t) = 0 until one of the

system becomes OL. Suppose the ordering B1(t1) ≥ B2(t1) holds for some t1 in a common

UL interval of both systems. If there exists t2 > t1 such that B1(t2) < B2(t2). Then by

the continuity of Bi, there exists t0 satisfying t1 ≤ t0 < t2 such that B1(t0) = B2(t0).

Note that in an UL interval, B′i(t) = λ(t)−σi(t). I have showed that σ1(t0) ≤ σ2(t0) since

B1(t0) = B2(t0). Then it follows that B′1(t0) ≥ B′2(t0). This contradicts the assumption

that there exists t2 > t0 such that B1(t2) < B2(t2). I also find that the UL termination

times are ordered as well. This is because B1 ≥ B2 in the UL interval of B1, which I

will show later. Whenever system 2 becomes OL, i.e., B2(t) = 1 and λ > σ2(t), I must

have B1(t) ≥ B2(t) = 1 and λ(t) > σ2(t) ≥ σ1(t). This implies system 1 is OL at the UL

termination time of system 2. Therefore, the UL termination time of system 1 must come

before that of system 2.

When the upper system is OL while the lower system is UL, it is obvious that the

ordering B1(t) ≥ B2(t) and w1(t) ≥ w2(t) remain valid.

I consider when both systems are OL. Suppose the ordering w1(t1) ≥ w2(t1) holds

for some t1 in a common OL interval of both systems. If there exists t2 > t1 such that

w1(t2) < w2(t2). Then by the continuity of wi, there exists t0 satisfying t1 ≤ t0 < t2 such

that w1(t0) = w2(t0). By (3.14), w′i(t) = 1−σi(t)/q̃i(t, w(t)). On one hand, q̃1(t0, w(t0)) =

q̃1(t0, w(t0)). On the other, σ1(t0) ≤ σ2(t0) since B1(t0) = B2(t0). Then it follows that

w′1(t0) ≥ w′2(t0). This contradicts the assumption that there exists t2 > t0 such that

B1(t2) < B2(t2).
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By Corollary 3 of Liu and Whitt (2012), it holds that

qi(t, x) = qi(t− x, 0)F c
T (x)1[x≤wi(t)∧t] + q(0, x− t) F c

T (x)

F c
T (x− t)

1[t≤x≤wi(t)].

Since w1(t) ≥ w2(t), hence q1(t, ·) ≥ q2(t, ·). Q.E.D.

Proof of Proposition 3.3. In stationarity, the service input (rate that fluid enters ser-

vice) must equal service output (rate that fluid completes service). This implies b(t, 0) =

σ(t) = σ. Then the basic evolution equation (3.4) implies b(t, x) = σΨ(w(t − x), x).

In stationarity, all performance functions are time-independent. In particular, w(t − x)

does not evolve with t. So there exists a function l(·) such that w(t − x) = l(x) for all

t. I claim that l(·) is a constant. Pick an arbitrary pair (x, y) ∈ R2
+ satisfying y > x,

I show l(x) = l(y). Pick any t1 > x + l(x) and define t2 = t1 − x + y > t1. Then

l(x) = w(t1−x) = w(t2− y) = l(y). This implies l(·) is a constant, which I denote by w∗.

Then b(x) = σΨ̄(w∗, x) for all x ≥ 0, which, by integrating implies B = σ/µ(w∗).

Because the total fluid input must equal the total fluid output, I must have λ = σ+α.

Note that when Q > 0, I must have B = 1. On the other hand, Q > 0 is equivalent to

α > 0 and w∗ = 0. If λ > µ(0), the system has an overload and I claim that Q > 0. Take

the contradictory assumption that Q = 0, then w = 0 so that σ = µ(0) < λ. This implies

α = λ− σ > 0, contradicting Q = 0. Hence Q > 0 and B = 1. If λ ≤ µ(0), I discuss two

possible scenarios: (i) Q > 0 so that B = 1, α > 0 and w∗ > 0. (ii) Q = 0 so that α = 0

and σ = λ = Bµ(0) hence B = λ/µ(0). The following discussion will rule out the first

scenario.
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Note that when w∗ > 0, B = 1 must hold, hence σ = µ(w∗). Then α = λ − σ =

λ− µ(w∗). The abandonment rate α, on the other hand, can be computed by

α =

∫ w∗

0

q(x)hT (x)dx =

∫ w∗

0

q(0)F c
T (x)

fT (x)

F c
T (x)

dx =

∫ w∗

0

λfT (x)dx = λFT (w∗).

Plug in α = λ − µ(w∗) and I obtain λF c
T (w∗) = µ(w∗), which is exactly (3.19). Under

Condition 3.1, there is a unique solution w∗ > 0 that solves (3.19) if and only if λ > µ(0).

Hence the first scenario discussed above when λ ≤ µ(0) is ruled out. Therefore, when

λ ≤ µ(0), I must have Q = α = w∗ = 0, σ = λ and B = λ/µ(0).

Now it remains to show the vector (b, q, σ, α,Q,B,w, v) given above is indeed a sta-

tionary point. In other words, if the system starts with it, the performance functions do

no change over time.

When λ ≤ µ(0), the system is underloaded or critically loaded. The maximal service

capacity can handle all incoming fluid, hence w(t) = 0 for all t > 0 if the system is

initialized with no queue. The initial fluid in service satisfies b(0, x) = λF c
z (x|0) and

hence the initial total service rate

σ(0) =

∫ ∞
0

b(0, x)(0, x)dx =

∫ ∞
0

λΨ̄(0, x)
ψ(0, x)

Ψ̄(0, x)
dx = λ.

Then it follows for small t > 0,

b(t, x) = b(t− x, 0)Ψ̄(0, x)1[0≤x≤t] + b(0, x− t) Ψ̄(0, x)

Ψ̄(0, x− t)
1[x>t]

= λΨ̄(0, x)1[0≤x≤t] + λΨ̄(0, x− t) Ψ̄(0, x)

Ψ̄(0, x− t)
1[x>t] = λΨ̄(0, x) = b(0, x).
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When λ > µ(0), I have σ(0) = µ(w∗) and b(0, x) = F c
z (x|w∗)µ(w∗). In this case,

c(t) =

∫ ∞
0

b(0, x)ψ(w∗, t+ x)

Ψ̄(w∗, x)
dx =

∫ ∞
0

ψ(w∗, t+ x)µ(w∗)dx = Ψ̄(w∗, t)µ(w∗).

If w(0) = w∗, then by (3.13) I have w′(0+) = 1−σ(0)/(λF c
T (w∗)) = 0. In an OL interval,

I have σ(t) = b(t, 0). Hence for small t > 0, b(t, 0) solves

b(t, 0) =

∫ t

0

b(t− x, 0)ψ(w∗, x)dx+ c(t) =

∫ t

0

b(t− x, 0)ψ(w∗, x)dx+ Ψ̄(w∗, t)µ(w∗).

Noting that sup0≤u≤t c(u) < ∞, I can use a similar approach in the proof of Proposition

3.1 to show the above equation has a unique fixed point b(s) = µ(w∗) for all s ∈ [0, t].

The fluid density in queue satisfies

q(t, x) = λF c
T (x)1[x≤t] + q(0, x− t) F c

T (x)

F c
T (x− t)

1[t<t≤w(t)]

= λF c
T (x)1[0≤x≤w(t)].

Since σ(t) = b(t, 0) are constants, I have w′(t) = 1 − σ(t)/(λF c
T (w(t))) = 0 so that

w(t) = w∗ and q(t, x) = q(x). Therefore, all performance functions are constants with

0 ≤ t ≤ δ for small δ and thus for all t ≥ 0. Q.E.D.

Proof of Proposition 3.4. Following the argument in the proof of Proposition 3.3, the

stationary point of the fluid model for an overloaded system can be found by solving

(3.19). In this case, the uniqueness of the stationary point is equivalent to the uniqueness

of the solution to (3.19). Note that λφ(0) = λ/µ(0) > 1 and λφ(∞) = 0, by the continuity

of φ(z), (3.19) must have at least one solution. I show that either of two conditions is
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sufficient to guarantee the uniqueness of the solution. If φ(z) is unimodal, then the curve

y = λφ(z) can only cross the horizontal line y = 1 once, otherwise there will be more than

one mode, contradicting the unimodality of φ(z). If 1/φ(z) is convex in z, it is sufficient

to show the solution to ξ(z) = 1/φ(z) − λ = 0 is unique. Define z0 = infz=0{ξ(z) = 0},

then it must hold that ξ′(z0) > 0. Otherwise if ξ′(z0) ≤ 0, then by the convexity of ξ(z),

ξ′(z) ≤ 0 for all z ≤ z0. It then follows that ξ(z0) ≤ ξ(0) = µ(0) − λ < 0, contradicting

the definition of z0. Thus, I have ξ′(z0) > 0 and the convexity of ξ(z) implies ξ′(z) > 0

for all z > z0, which further implies z0 is the unique solution.

If the system is underloaded with λ < µ(0), Proposition 3.3 prescribes one equilibrium

with no queue. This equilibrium is unique if and only if an equilibrium with a strictly

positive queue does not exist, i.e., (3.19) does not have a solution. For this latter case to

hold, it follows immediately that φ(z) < 1/λ for all z ≥ 0. Q.E.D.

Proof of Proposition 3.5. By definition of the hazard rate of conditional service time,

h(z, x) =
ψ(z, x)

Ψ̄(z, x)

=
fS|T (x|T > z)

F c
S|T (x|T > z)

=

∫∞
z
f(x, y)dy/P(T > z)

P(S > x, T > z)/P(T > z)

=

∫∞
z
f(x, y)dy

P(S > x, T > z)

=
P(T > z|S = x)fS(S = x)

P(T > z|S > x)F c
S(x)

=
P(T > z|S = x)

P(T > z|S > x))
· µ,
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where I use fS and FS to denote the unconditional marginal distributions of S. It then

suffices to show P(T > z|S = x)/P(T > z|S > x) ≤ 1 if (S, T ) are PRD and P(T >

z|S = x)/P(T > z|S > x) ≥ 1 if (S, T ) are NRD. I show the first half and the second half

follows analogously.

P(T > z|S > x) =
P(T > z, S > x)

P(S > x)

=

∫∞
x

P(T > z|S = x)fS(y)dy

P(S > x)

≤
P(T > z|S = x)

∫∞
x
fS(y)dy

P(S > x)

= P(T > z|S = x),

where in the inequality I have used the fact that P(T > z|S = x) is increasing in x.Q.E.D.

Proof of Proposition 3.6. I show the result under condition (i). The proof under other

two conditions follows analogously. I complete the proof in four steps. Proposition 3.1

implies there is a unique (w, σ) that solves the fluid model.

Step 1: Let t0 := v(0) be the time that the initial queue content is cleared. I first

claim that for any t1 > t0, if w′(t) ≥ 0 for t ∈ [t0, t1], then σ′(t) ≤ 0 for t ∈ [t0, t1].

To show this, first note that the differentiability of σ follows from the smoothness of µ.

Lemma 3.2 implies that

σ(t) =

∫ ∞
0

b(t, x)µ(w(t− x))dx.
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Thus,

σ(t+ ∆t) =

∫ ∞
0

b(t+ ∆t, x)µ(w(t+ ∆t− x))dx

=

∫ ∆t

0

b(t+ ∆t, x)µ(w(t+ ∆t− x))dx+

∫ ∞
∆t

b(t+ ∆t, x)µ(w(t+ ∆t− x))dx

=

∫ ∆t

0

b(t+ ∆t, x)µ(w(t+ ∆t− x))dx+

∫ ∞
0

b(t+ ∆t, x+ ∆t)µ(w(t− x))dx.

Subtracting σ(t+ ∆t) by σ(t) gives

σ(t+ ∆t)− σ(t)

=

∫ ∆t

0

b(t+ ∆t, x)µ(w(t+ ∆t− x))dx−
∫ ∞

0

[b(t, x)− b(t+ ∆t, x+ ∆t)]µ(w(t− x))dx

(e)

≤µ(w(t))

∫ ∆t

0

b(t+ ∆t, x)dx− µ(w(t))

∫ ∞
0

[b(t, x)− b(t+ ∆t, x+ ∆t)]µ(w(t− x))dx

=µ(w(t))

[∫ ∞
0

b(t+ ∆t, x)dx−
∫ ∞

0

b(t, x)dx

]
=0,

where inequality (e) follows because w is decreasing in [t0, t1] and w(t) > w(t0) =

w(v(0)) ≥ w(x) for x < 0. Let ∆t be sufficiently small, then it follows that σ′(t) ≤ 0.

Step 2: I next show w′(t) ≥ 0 for all t ≥ t0. Suppose this is not true, i.e., there

exists t3 > t0 such that w′(t3) < 0. Since w′(t0) ≥ 0 as assumed in condition (i) and w′(t)

is continuously differentiable as I assume the smoothness of the initial conditions, define

t2 := sup{t > t0 : w′(t) ≥ 0}. Since w′(t3) < 0, it holds that t2 <∞. By the definition of

t2, I have w′(t) ≥ 0 for all t ∈ [t0, t2). Differentiating w′(t) = 1 − σ(t)
λF cT (w(t))

on both sides
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gives

w′′(t2) = −σ
′(t2)F c

T (w(t2)) + σ(t2)fT (w(t2))w′(t2)

(λF c
T (w(t2))2

= −σ
′(t2)F c

T (w(t2))

(λF c
T (w(t2))2

≥ 0.

In the last inequality I have used σ′(t2) ≤ 0, as proved in Step 1. The above equation

contradicts the assumption that w′(t3) < 0.

Step 3: I show that w(t) can never hit w∗(λ). If w(t) = w∗(λ) for some t > t0, then

w′(t) = 1− σ(t)

λF c
T (w(t))

= 1− σ(t)

λF c
T (w∗(λ))

< 1− µ(w∗(λ))

λF c
T (w∗(λ))

= 0.

The inequality follows because

σ(t) =

∫ ∞
0

b(t, x)µ(w(t− x)) < µ(w(t))

∫ ∞
0

b(t, x)dx = µ(w(t)) = µ(w∗(λ)).

Therefore, w(t) < w∗(λ) for all t > t0.

Step 4: Since w(t) is increasing for t > t0 (Step 2) and is bounded above by w∗(λ)

(Step 3), w(t) has a limit w̃ as t → ∞. I show the limit w̃ = w∗(λ). If w̃ < w∗(λ), then

by (3.12),

σ(t) =

∫ t

0

σ(t− u)fz(u|w(t− u))du+ c(t).
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First note that

c(t) =

∫
SB(0)

b(0, x)fz(t+ x|wB(x))

F̄S(x|wB(x))
dx

=

∫
SB(0)

b(0, x) exp(−µ(wB(x))t)dx

≤ exp(−µ(w∗(λ))t)B(0)→ 0 as t→∞.

Next,

∫ t

0

σ(t− u)fz(u|w(t− u))du

=

∫ t

0

σ(u)fz(t− u|w(u))du

=

∫ t/2

0

σ(u)fz(t− u|w(u))du+

∫ t

t/2

σ(u)fz(t− u|w(u))du

=

∫ t/2

0

σ(u)µ(w(u)) exp(−µ(w(u))(t− u))du+

∫ t

t/2

σ(u)µ(w(u)) exp(−µ(w(u)(t− u))du.

I analyze the first term,

∫ t/2

0

σ(u)µ(w(u)) exp(−µ(w(u))(t− u))du

≤µ(0)2

∫ t/2

0

exp(−µ(w(u))(t− u))du

≤µ(0)2

∫ t/2

0

exp(−µ(w∗(λ))(t− u))du

≤ µ(0)2

µ(w∗(λ))

(
exp(−µ(w∗(λ))(t/2))− exp(−µ(w∗(λ))t

)
→ 0 as t→∞.
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The second term,

lim
t→∞

∫ t

t/2

σ(u)µ(w(u)) exp(−µ(w(u)(t− u))du

= lim
t→∞

∫ t

t/2

b(t, t− u)µ(w(u))du

= lim
t→∞

∫ t/2

0

b(t, u)µ(w(t− u))du

(f)
= lim

t→∞

∫ t/2

0

b(t, u)µ(w̃)du

(g)
=µ(w̃).

In equality (f), I use dominated convergence theorem to take limit of µ(w(t− u)) in the

integration. In equality (g), I use the fact that
∫∞
t/2
b(t, u) → 0 as t → ∞. The proof of

this is similar to the analysis of the first term and is omitted for brevity. Hence it holds

that

lim
t→∞

σ(t) = µ(w̃).

This implies

lim
t→∞

w′(t) = lim
t→∞

1− σ(t)

λF c
T (w(t))

= 1− µ(w̃)

λF c
T (w̃)

> 0.

The last inequality follows from Assumption 3.1 and w̃ < w∗(λ). Hence one can find δ

such that 0 < δ < 1 − µ(w̃)/λF c
T (w̃). It then follows that w′(t) > δ for sufficiently large

t. This contradicts the assumption that limt→∞w(t) = w̃.

Combining the results in Step 3 and Step 4, I conclude that limt→∞w(t) = w∗(λ).

Q.E.D.
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