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ABSTRACT

Essays in Applied Microeconomics

Philip Marx

This dissertation consists of three essays in applied microeconomics. In the first chap-

ter, I introduce a new statistical test for identifying prejudice from empirical data. In

the second chapter, I (joint with James Schummer) consider the revenue maximization

problem for a two-sided, one-to-one matching platform. In the third chapter, I (joint with

Tomer Hamami) consider the dynamic incentives of news firms to polarize consumers in

order to increase rent extraction.

Disparities along racial and ethnic lines persist across domains, and distinguishing

among the possible sources of such disparities matters. Chapter 1 introduces the first

absolute test for identifying prejudice in the common setting where the returns to treat-

ment intensity are weakly diminishing for each treator. As examples, law enforcement

officers engage in stops and searches, employers hire, judges deny bail, doctors administer

procedures and medical tests, and creditors extend loans and mortgages. The test ad-

ditionally unifies the existing literature and can be partially extended to the important

setting where treators vary in the quality of their information. Empirically, the test finds
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evidence of prejudice in a dataset where the existing test does not. Methodologically, the

test is the first in the literature to jointly use actions and outcomes in the test statistic.

Chapter 2 considers the revenue maximization problem for one-to-one matching plat-

forms that choose among stable matching mechanisms. In this sense the work bridges

an existing gap between two literatures in economics: matching and two-sided markets.

In seeming contrast with recent results in the matching literature, a platform does not

want to price discriminate across the two sides of the market based on their relative sizes

when preferences are independent. The analysis introduces a new class of matching mech-

anisms and an approximation for the stable platform’s expected revenue using an exact

expression for revenue under a constrained serial dictatorship mechanism. The chapter

concludes by considering how correlation in agents’ preferences affects results and how

this contrasts with classic models of pricing in two-sided markets.

Chapter 3 addresses a gap in the literature on political slant in news media regarding

the means and incentives news firms have to affect their consumers’ beliefs over time.

Specifically, competitive tensions generate an incentive for media firms to intentionally

polarize consumers in order to increase product differentiation, and this can occur even if

consumers are initially homogeneous and unbiased. Computational analysis and simula-

tions corroborate this analysis.
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CHAPTER 1

An Absolute Test of Racial Prejudice

1.1. Introduction

Racial and ethnic disparities persist in the criminal justice system, law enforcement,

education, employment, health care, and housing (NRC, 2004).Two sources of such dis-

parities – statistical discrimination and prejudice – are identified in the literature on the

economics of discrimination. To illustrate each concept, consider the problem of a treator

who makes decisions under uncertainty over a set of treatable agents. The optimal treat-

ment decision depends on an imperfectly observed quality of the treatable agent. For

example, a police officer (treator) chooses which drivers (treatable) to search (treat) for

contraband (quality); a doctor chooses which patients to test for a medical condition.1

Disparities in treatment can arise along any treatable characteristic such as race, gender,

sexual orientation, or provenance. For clarity, however, the discussion proceeds with race.

Racial disparities are driven by prejudice if the treator has a utility motive for treating

agents differently.2 In this case the treator is called prejudiced. Alternatively, racial dispar-

ities are driven by statistical discrimination if the treator has an informational motive.3

This might happen when race correlates with the unobserved quality.

1 Other examples include a judge who seeks to convict the guilty or an employer who seeks to hire
productive workers.
2 Following Becker (1957).
3 Following Arrow (1973) and Phelps (1972).



13

Distinguishing between prejudice and statistical discrimination matters. For the policy-

maker who seeks to mitigate existing disparities, prejudice among treators calls for differ-

ent measures than an undesirable equilibrium outcome. For example, a temporary policy

of affirmative action can resolve the issue of equilibrium selection [e.g. Coate and Loury

(1993)], but not prejudice.4 This underscores the value of identifying prejudice in the

presence of statistical discrimination.

However, empirically distinguishing between sources of disparity is challenging. In

particular, regression analysis in this setting places stringent demands on the data avail-

able to the researcher. Action-based regression tests that explain (differences in) actions

as a function of characteristics observable to the researcher are susceptible to omitted

variables bias if the researcher does not observe all of the information used by the treator;

conversely, such tests may fail to find discrimination if treators, in order to enshroud

their prejudice, condition decisions only on characteristics correlated with race. Even

with evidence that treatment depends on race, such regression-based action tests do not

distinguish whether disparities stem from prejudice or from statistical discrimination.

Alternatively, outcome-based tests compare the average quality of treated agents

across race. This idea originates with Becker (1957) and is first operationalized by

Knowles, Persico, and Todd (2001) [KPT]. KPT show that a comparison of average out-

comes across treatable race provides a robust test for prejudice when treators face constant

4 The respective concepts also correspond loosely to the claims of disparate treatment and disparate
impact in anti-discrimination law. A treator engages in disparate treatment when he or she treats
similarly situated individuals differently because of a protected characteristic. A treator engages in
disparate impact when decisions are made according to a formally neutral policy that adversely affects a
protected group of people. While disparate treatment is always unlawful, the legality of disparate impact
depends on the domain and on the justification for the policy in question.
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marginal returns to individual treatment intensity.5 In the context of policing, an individ-

ual officer choosing how often to search a motorist group perceives the expected marginal

return of searching the first motorist to be the same as the expected marginal return of

searching the last motorist. This arises for two reasons. First, given a fixed treatment

intensity, the officer does not perceive any differences in the likelihood of guilt among

members of the motorist group. Second, the individual choice of treatment intensity has

no impact on the motorist decision to carry contraband.6

The key assumption of constant marginal returns to individual treatment intensity

need not hold, however. In policing, motorist characteristics observed by the officer may

correlate with guilt; in medical care, patient symptoms may correlate with the incidence of

a medical condition. Both examples violate the first condition of the previous paragraph.

For a given treator, the marginal return to the first unit of treatment intensity – for

example, searching only the guiltiest drivers or testing only the highest-risk patients –

is higher than the marginal return of the last unit of treatment intensity. Therefore the

individual treator faces diminishing marginal returns to treatment intensity.7

Anwar and Fang (2006) [AF] introduce a test for prejudice in the case of diminishing

returns to individual treatment intensity. The test relies on an observable source of

variation in treatment intensity across treators for a fixed group of treatable agents.

However, the test only identifies prejudice in a partial sense. Namely, the AF test is

5 An earlier paper by Ayres and Waldfogel (1994) proposes a closely related test based on constant returns
to treatment without explicitly resolving why returns should be constant.
6 In contrast, marginal returns to aggregate treatment intensity must incorporate any effects of increased
treatment intensity on the behavior of treatable agents – for example, motorist decisions to carry contra-
band or job applicant incentives to invest in human capital.
7 Diminishing marginal returns to treatment intensity give rise to infra-marginally treated agents, which
again complicates the task of identifying prejudice. This is referred to as the infra-marginality problem
in the racial profiling literature.
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relative: it cannot disentangle competing hypotheses of who is prejudiced against whom.

In contrast, a test is defined to be absolute if it can identify a specific prejudiced treator

and a specific group of victimized treatable agents. To contextualize the improvement,

consider the example of racial profiling: only an absolute test can distinguish whether

minorities are victims or beneficiaries of current policing practices.

This paper presents the first absolute test for prejudice when marginal returns to indi-

vidual treatment intensity may be diminishing. The test requires no additional theoretical

assumptions over the existing literature and relies on the same source of identification –

variation in behavior across treators – as AF. Therefore the improvement in explanatory

power stems from an additional contribution: the test is the first to jointly use actions

and outcomes in the test statistic.

The key insight of the test is that variation in treator behavior gives rise to a group

of “inter-marginal” agents in each treatable group. For example, consider two police

officers who search the same treatable group of motorists with different intensities. This

partitions the searched treatable motorists into two groups: those who are searched by

both officers, and those who are searched only by the high-intensity officer. The latter

group is “inter-marginal:” the expected return of searching any member of the group is

weakly higher than the search cost of the high-intensity officer but weakly lower than

the search cost of the low-intensity officer.8 Therefore the average return to searching an

inter-marginal agent bounds the treatment costs. Discrepancies in treatment costs across

treatable groups in turn define prejudice. Finally, partially identified treatment costs

provide a test for prejudice: if the sets of possible treatment costs by treatable group do

8 Otherwise officer behavior is suboptimal.
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not overlap for a given treator, the treator must be prejudiced. Implementing the test

requires only one source of variation across each group, but further granularity in treator

and treatable characteristics enhances explanatory power.

The new model and test also unify the existing literature. The model extends the

AF model to encompass the KPT model by permitting constant returns to individual

treatment intensity. A generalized model in turn allows for a comparison of tests. When

the data exhibit diminishing returns to individual treatment intensity, the new test is

strictly more powerful than the AF test: empirical evidence of prejudice under the AF

test also constitutes evidence of prejudice under the new test, but not vice versa. Insofar

as the the data exhibit constant returns to individual treatment intensity, the test statistic

coincides with the average outcome of KPT.

An extension of the model considers the case where signals vary across treators. The

existing assumption of equal information across treators is limiting.9 For example, the

assumption prohibits using tenure (or any correlated variable) as a source of treator

variation without excluding the possibility that treators learn with experience.10 Many

scenarios with differential signals are captured by differences in signal informativeness.

Extending the model to allow for differences in signal informativeness across treators

yields an analogous, albeit weakened, test for prejudice.

To demonstrate the empirical power of the new test, I revisit the application of AF.

The new test finds the first evidence of prejudice in the AF dataset on Florida State

9 This assumption is also made by existing tests [KPT, AF].
10 This also rules out applying the test in law enforcement if same-race policing confers informational
advantages [as suggested for local policing by Donohue and Levitt (2001)].
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Highway Patrol stops and searches. Namely, Hispanic officers exhibit prejudice against

Hispanic motorists.11

The paper proceeds as follows. Section 1.2 provides additional discussion of the related

literature. Section 1.3 presents the model of treator behavior and defines the researcher’s

problem. Section 1.4 presents the empirical test. Section 1.5 extends the model and test

to the case where the informativeness of signals may vary across treators. Section 1.6

provides an empirical application on the AF data. Section 1.7 concludes.

1.2. Related Literature

The test belongs to a literature on racial profiling that derives testable implications

of prejudice in terms of simple summary statistics of the data.12 In a seminal paper,

Knowles, Persico, and Todd (2001) show that a comparison of average outcomes provides

a test for prejudice when the marginal returns to treating an additional agent are constant

for treators. This is a result of equilibrium in their model: if treatable agents best-respond

to intensity of treatment, a no-arbitrage condition implies that average outcomes should

equal treatment costs.13

However, Anwar and Fang (2006) provide evidence that the marginal returns to in-

dividual treatment intensity may not be constant. In this setting they exploit variation

in treator behavior to provide a new test for prejudice. Similarly, Antonovics and Knight

11 In addition, a new test for informativeness rejects the assumption that officers are equally informed. In
particular, white and Hispanic officers are not equally informed over Hispanic motorists. Nevertheless the
finding of prejudice under the absolute test is robust to a weakened set of assumptions on informativeness
across officers that is consistent with the data.
12 A large literature in labor also attempts to distinguish between statistical discrimination and prejudice.
See Charles and Guryan (2011) for an overview and Altonji and Pierret (2001) for an example that tests
for race-based statistical discrimination.
13 See also Persico and Todd (2006) for an additional class of decision problems for which the outcome
test is valid.
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(2009) observe that treators may vary in their behavior and use this to develop a related

but parametric test for prejudice. Both papers precede the current one in their reliance

on variation in treator behavior to identify prejudice.

The new test for prejudice relies on partially identifying the parameters that underlie

prejudice. In this sense the test is related to a large literature on partial identification (see

Manski (2003) and Tamer (2010) for overviews). In the context of testing for prejudice in

policing, Hernandez-Murillo and Knowles (2004) also derive a test using bounds. However,

their bounds stem from the researcher’s uncertainty over the proportion of searches that

are at the discretion of the decision-maker.

The test assumes, like KPT and AF, that the treator’s objective function is to maxi-

mize outcomes net of the cost of treatment. Other objective functions may guide decision-

making, in which case the test does not generally apply. For example, in the context of

policing, Dominitz and Knowles (2005) and Manski (2006) consider problems where the

objective is to minimize the crime rate and a social cost function,14 respectively.

1.3. The Model

This section develops the model that underlies the empirical test presented in Section

1.4. It begins with the treator’s decision problem and continues with the researcher’s

problem of identifying prejudice.

14 The social cost function includes the costs of crime, punishment, and search.
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1.3.1. The Treator’s Decision Problem

A continuum of treators of type t or t′ decide whether to treat an infinite and independent

stream of treatable agents of race r ∈ {M,W}.15 The decision to treat, or the action, is

denoted by a ∈ {0, 1}. The quality of a treatable agent is denoted by q and can belong

to any real-valued set Q. To simplify notation I assume that Q ⊂ R+. Quality is only

revealed when an agent is treated. In this case I refer to revealed quality as the outcome.

The payoff to a treator of race i who takes action a on a treatable agent of race r and

quality q is given by:

(1.1) a · [q − ct(r)].

A treator is prejudiced when the cost of treatment differs across treatable groups:

Definition 1.1. Treator t is prejudiced if the cost of treatment depends on the treatable

race:

(1.2) ct(M) 6= ct(W ).

Imperfect information over quality introduces uncertainty into the treator’s decision

problem.16 As in AF, I model this uncertainty through a single-dimensional signal x which

is correlated with q. The signal incorporates any observable characteristics of the treatable

agents that correlate with quality. This includes any characteristics of the interaction

between the treator and treatable agent.17 Formally, let Q and X denote the random

15 With slight abuse of notation I also refer to an agent in a group by the group identity, e.g. treator t
and treated agent r.
16 Otherwise statistical discrimination is precluded and inference over prejudice is straightforward.
17 In policing, for example, a motorist may respond nervously to questioning, especially when guilty.
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variables with respective realizations q, x. Let F r(q, x) denote the joint distribution of

quality q and signal outcome x for treatable agents of race r. I assume that each family

{F r
Q(·|x)}x has a complete FOSD order in x.18

A treator t chooses an optimal action given a signal outcome x for a treatable agent

of race r:

(1.3) a∗t (x; r) ∈ arg max
a

a · [E[Qr|Xr = x]− ct(r)].

The optimal action is to treat an agent iff the expected benefit of treatment exceeds the

cost ct(r). The assumptions on the signal imply the existence of an optimal cutoff rule.

Lemma 1.1 (AF, Proposition 1). Treator t has an optimal cutoff decision rule such

that a∗t (x; r) = 1 iff x ≥ x∗r.

Proof: The result follows immediately from Lemma 1 of Athey and Levin (2017)

because the signal satisfies FOSD and the utility function (1.1) is trivially supermodular

in (a, q). �

Finally, note that the assumption that F is independent of the treator t may be unduly

restrictive. In Section 1.5, I consider an extension where signal informativeness may vary

across treator and treatable pairs.

18 For simplicity I assume that there are no mass points on signals. This is without loss of generality.
Namely, replace any signal outcome with positive mass by a continuum of signal outcomes that differ in
name but generate the same posterior beliefs.
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1.3.2. The Researcher’s Problem

I now turn to the researcher’s problem of inferring prejudice. The researcher observes

average actions

(1.4) āt(r) = E[a∗t (Xr; r)]

and average outcomes

(1.5) q̄t(r) = E[Qr|a∗t (Xr; r) = 1]

for each treator t and treatable group r.19 Let ā =
(
āt(r)

)
rt

and q̄ =
(
q̄t(r)

)
rt

denote the

vectors of average actions and average outcomes by treatable group and treator.

Inferring prejudice from disparities is complicated by the possibility of statistical dis-

crimination: even the average actions of an unprejudiced treator may vary across treatable

groups. Adopting the definition of KPT,

Definition 1.2. Suppose that costs of treatment for treator i are equal across treatable

groups: ct(M) = ct(W ). Then treator i exhibits statistical discrimination if the average

action varies by treatable group: āt(M) 6= āt(W ).

Two mechanisms underlie statistical discrimination in the model. The first, in the

spirit of Arrow (1973), is that the distributions of quality can vary by treatable race:

QM

d

6= QW .

19 The researcher may observe additional characteristics of the treatable groups. This can be incorporated
by considering a finer r.
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To illustrate in the context of policing, officers will search a motorist group more if the

motorist group carries contraband at a higher rate, ceteris paribus. The second, in the

spirit of Phelps (1972), is that treator information varies across treatable groups, even

conditional on treatable quality:

FM
X (·|q) 6= FW

X (·|q).

This happens if officers search motorist groups at different rates because the officers’

ability to distinguish between innocence and guilt varies across motorist groups.

To identify prejudice, the researcher derives testable implications of prejudice as a

function of the observable vectors of average actions ā and outcomes q̄. The result is a

test T (ā, q̄).20 Using vectors of observables allows the researcher to exploit variation in

average actions across treators for a fixed group of treatable agents.21

Tests vary in the precision of the null hypotheses that they can reject. A test for

prejudice should at least be able to identify prejudice – or equivalently, to reject a null of

no prejudice. Adopting the terminology of AF, such a test is called relative.

Definition 1.3. A test TR is relative if it can reject a null hypothesis that no group

of treators is prejudiced against any treatable group:

H0 : ct(M) = ct(W ) for all treator types t and treatable groups M,W .

The name stems from the relative nature of the alternate hypothesis: some group of

treators is prejudiced against some group of treatable agents. A relative test can identify

20 For simplicity of notation I omit the arguments to a test where possible.
21 This insight, as well as the introduction of a source of variation, are important contributions of AF.
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that prejudice exists, but it cannot disentangle finer hypotheses of which treator is preju-

diced against which treatable group. A more specific test is an absolute one. An absolute

test can identify specific perpetrators and victims of prejudice:

Definition 1.4. A test TA is absolute if it can reject a null hypothesis that treator t

is not prejudiced against a given treatable group, say M :

HtMW
0 : ct(M) ≥ ct(W )

The alternate hypothesis of an absolute test can identify a specific group of discriminating

treators and a treatable group that is discriminated against. Note that an absolute test

is also relative, but a relative test need not be absolute. Thus, absoluteness is a desirable

property of a test.

1.4. An Absolute Test of Prejudice

The main theoretical contribution of the paper is to provide the first absolute test for

prejudice when individual returns to treatment are diminishing.

Theorem 1.1. Suppose individual returns to treatment are weakly diminishing. There

exists an absolute test TA(ā, q̄) for prejudice based on partial identification of treatment

costs:

ct(r) ∈ Sr,t(ā, q̄).22

22 Note that each set Sr,t(·) only relies on the subset of average actions and outcomes for treatable group
r, which I omit for simplicity of notation.
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Treator t is prejudiced if:

(1.6) SM,t(ā, q̄) ∩ SW,t(ā, q̄) = ∅.

Proof: The model partially identifies treatment costs when treators vary in their

average actions over a fixed treatable group. Therefore suppose that treators t and t′ take

average actions āt(r) > āt′(r) over treatable group r.

A set X high
r of the highest signals generates a sufficiently high expected outcome for

both treators to optimally treat. A set X int
r of intermediate signals generates a sufficiently

low expected outcome that treator t optimally treats and t′ optimally does not treat.

The set of signals X high
r is infra-marginal. Each signal in X high

r generates a weakly

higher expected outcome than the treatment cost of treator t′. The set of signals X int
r is

“inter-marginal:” any signal in X int
r generates a weakly higher expected outcome than the

treatment cost of treator t, and a weakly lower expected outcome than the treatment cost

of treator t′. Otherwise the treatment decisions are suboptimal. Therefore the average

outcome conditional on either set of signals places bounds on the the treatment costs of

both treators. In particular, when āt(r) > āt′(r),

(1.7) E[Qr|Xr ∈ X high
r ] ≥ ct′(r) ≥ E[Qr|Xr ∈ X int

r ] ≥ ct(r).

The next part of the identification argument expresses the conditional average out-

comes in (1.7) as a function of the observables ā and q̄. The lower-intensity treator (by

assumption t′) treats if and only if the signal belongs to X high
r . It follows that:

(1.8) E[Qr|Xr ∈ X high
r ] = q̄t′(r).
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For E[Qr|Xr ∈ X int
r ], the Law of Iterated Expectations implies:

q̄t(r) = E[Qr|Xr ∈ X high
r ∪ X int

r ]

=
āt′(r)

āt(r)
E[Qr|Xr ∈ X high

r ] +
āt(r)− āt′(r)

āt(r)
E[Qr|Xr ∈ X int

r ]

=
āt′(r)

āt(r)
q̄t′(r) +

āt(r)− āt′(r)
āt(r)

E[Qr|Xr ∈ X int
r ]

Simplifying,

(1.9) E[Qr|Xr ∈ X int
r ] =

āt(r)q̄t(r)− āt′(r)q̄t′(r)
āt(r)− āt′(r)

The intuition is presented graphically in Figure 1.1. The average outcome for the higher-

intensity treator t is a weighted average of the conditional outcomes over the two signal

groups. This identifies the average outcome conditional on an intermediate signal.

By (1.8), the conditional outcomes define intervals Sr,t(ā, q̄) of possible treatment

costs ct(r) for each treator t and treatable group r. The test rejects the null that treator

t is not prejudiced when:

SM,t(ā, q̄) ∩ SW,t(ā, q̄) = ∅.

because this implies that ct(M) 6= ct(W ). Finally, the test can identify the victimized

treatable group because the sets Sr,t(ā, q̄) (and therefore the costs of treatment) are

strictly ordered on the real line if the test finds prejudice.

�
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ā

q̄

A

B

C

r, t′

r, t

Sr,t(ā, q̄)

Sr,t
′
(ā, q̄)

E[Qr|Xr ∈ X int
r ]

E[Qr|Xr ∈ X high
r ]

Figure 1.1. Fix a treatable group r. By the Law of Iterated Expectations, E[Qr|Xr ∈ X intr ]
is identified as the solution to A = B + C. Since treator t′ does not treat given any
intermediate signal Xr ∈ X intr , the average outcome given those signals provides a lower
bound for ct′(r). Conversely, the average outcome over any set of signals a treator t does
treat provides an upper bound for ct(r). The bounds define sets of possible search costs
Sr,t(ā, q̄) for treator t on treated group r.

1.4.1. Relation to AF Test

Anwar and Fang (2006) propose a relative test for prejudice TR(ā) when individual returns

to treatment are strictly diminishing:

(1.10) āt(r) > āt′(r) =⇒ āt(r
′) > āt′(r

′).

Average actions are perfect proxies for treatment costs in the AF model: higher average

actions correspond to lower treatment costs for a fixed treatable group.23 If (1.10) does

not hold, it follows that treator t has lower treatment costs than t′ over treatable group r

but weakly higher treatment costs over treatable group r′. This implies that the treatment

costs of at least one of the treators must depend on the treatable group – at least one of

the treators is prejudiced.

23 Average outcomes are also perfect proxies, so the test can be equivalently defined in terms of average
outcomes q̄.
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The power of a test is defined to be the probability of correctly rejecting the null

hypothesis. The following theorem shows that the new test is more powerful than the

test proposed by AF.

Theorem 1.2. The absolute test TA is more powerful than the AF relative test TR.

Proof: Suppose that returns to treatment are strictly diminishing, so that the AF

test holds. It suffices to show that the test TA rejects the null hypothesis of no prejudice

if the test TR does. Asymptotically, the test TR finds prejudice if and only if the ordering

of treatment costs across treators differs by treatable group. Therefore without loss of

generality suppose that:

ct(W ) ≥ ct′(W )

ct(M) < ct′(M).

For simplicity of notation, denote the bound used in the absolute test by:

κr , E[Qr|Xr ∈ X int
r ], r = M,W.

By the ranking of treatment costs and bounds from (1.7), it follows that:

ct(W ) ≥ κW ≥ ct′(W )

ct(M) < κM < ct′(M).

Note that the inequalities are strict in the second equation because returns to individual

treatment are assumed to be strictly diminishing.
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If κM ≤ κW , then:

(1.11) ct(M) < κM ≤ κW ≤ ct(W ).

The absolute test rejects that treator t is unprejudiced because the intervals SM,t(ā, q̄)

and SW,t(ā, q̄) are strictly ordered by (1.11). In the symmetric case where kM ≥ kW , the

absolute test finds prejudice for treators t′. �

The new test TA improves on the explanatory and statistical power of TR. This

increase in power comes at the cost of requiring more data. The AF test TR requires

data on actions or outcomes, while the new test TA requires both. When the researcher

observes both actions and outcomes (including in the AF dataset), however, the new test

more efficiently uses the available information.

1.4.2. Relation to KPT Test

Knowles, Persico, and Todd (2001) propose a test TC(q̄) for prejudice when returns to

individual treatment are constant:

q̄t(M) = q̄t(W )

If marginal returns to individual treatment are constant everywhere, then average returns

to treatment are also constant. The absolute test statistic reduces to the KPT test

statistic to the extent that constant average returns are observed empirically. This makes

sense because KPT assume that marginal – and therefore average – returns to individual

treatment are constant everywhere.
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Constant average returns to individual treatment are observed empirically when āt(r) >

āt′(r) and q̄t(r) = q̄t′(r). Then the test inequalities (1.7) imply:

q̄t′(r) ≥ ct′(r) ≥
āt′(r)q̄t′(r)− āt(r)q̄t(r)

āt′(r)− āt(r)
= q̄t′(r)

=⇒ ct′(r) = q̄t′(r).

In particular, for treator t′, the new test statistic reduces to the average outcome – the

same as the KPT test statistic.24 In this sense KPT is a special case of the new test.

1.5. Introducing Differential Information

The previous analysis assumes that treators are equally informed over treatable groups.

Definition 1.5 (t ∼r t′). Treators t and t′ are equally informed over treatable group

r if:

(1.12) F r,t = F r,t′ .

However, this assumption is limiting. Treators may improve in their decision-making

as they accumulate experience. In policing, officers may also be better at assessing guilt in

motorists who are culturally or otherwise similar,25 or motorists of a certain race may be

more cooperative with certain groups of officers. Alternatively, as argued by Donohue and

Levitt (2001), communities may be more willing to cooperate with an officer of the same

24 Note that for treator t we can only infer that ct(r) ≤ q̄t(r) because the data do not imply that marginal
returns for treator t are constant.
25 For example, a literature on cross-race facial recognition generally finds support for familiarity bias,
or the notion that other-race groups “all look alike” [for early examples, see Malpass and Kravitz (1969);
Brigham and Barkowitz (1978)].
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race, who thus obtains more information about a motorist on the streets. As observed by

AF, this makes the equal information assumption especially tenuous in policing if stops

and searches occur on local streets.26

Differences in signal informativeness capture the previous examples. Therefore I con-

sider an extension to the model where the informativeness of signals can vary across

treators for a fixed treatable group. The natural notion of preferences over signal struc-

tures that satisfy FOSD is given by Athey and Levin (2017), Theorem 1, and replicated

in Equation (A.1) in Appendix A.27 If condition (A.1) holds I say that F ′ is strictly better

than F and write F ′ � F . Say a signal F ′ is weakly better than F if it is strictly better

or the same:

(F ′ % F ) = (F ′ � F ) ∨ (F ′ = F ).

A treator is weakly better informed if the the treator receives a weakly better signal.

Definition 1.6 (t %r t′). Treator t is weakly better informed than treator t′ over

treated group r if:

(1.13) F r,t % F r,t′ .

26 In health care, Bischoff et al. (2003) find evidence that language barriers between patients and nurses
can impact symptom reporting and referrals.
27 This condition is also implied by more demanding orderings of signal structures F , such as Blackwell
(1951) and Lehmann (1988).
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1.5.1. Test for Differential Information

The assumption that treators are equally informed is partially testable in the data. In

this section I propose a new test for differential information across treators. This comple-

ments a testable implication provided by AF. The relation between the two conditions is

presented graphically in Figure 1.2.

Theorem 1.3. If treators t and t′ are equally informed over treatable group r (t ∼ t′),

then:

(1.14) āt(r) > āt′(r) =⇒ āt(r)q̄t(r) ≥ āt′(r)q̄t′(r).

Proof: Suppose that (1.14) is violated:

(
āt(r) > āt′(r)

)
∧
(
āt(r)q̄t(r) < āt′(r)q̄t′(r)

)
.

Then:

E[Qr|Xr ∈ X int
r ] =

āt(r)q̄t(r)− āt′(r)q̄t′(r)
āt(r)− āt′(r)

< 0

which violates the fact that Q ⊂ R+. �

The new testable implication stems from the bounded rate of change in average out-

comes: if two treators are equally informed, then a small difference in average actions

implies a small difference in average outcomes. Consider the policing example. If an

officer who searches 0.9% of drivers finds contraband 10% of the time, then an equally

informed officer who searches 1% of drivers cannot find contraband only 5% of the time.

At worst, the second officer searches an additional 0.1 p.p. of drivers who are never guilty.
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ā

q̄

r, t′

r, t

Figure 1.2. The lighter shaded region represents a rejection region of equal information
derived by AF, and the darker area represents a new rejection region. In this case the new
test would reject the assumption of equal information. The implied rate of change is too
large in magnitude to be rationalized by the data if the treators are equally informed.

This places a lower bound of

0.9

1
(10%) +

0.1

1
(0%) = 9%

on the second officer’s search success rate.

Condition (1.14) has an intuitive interpretation in the case of binary quality. In the

policing example, (1.14) states that the unconditional probability of success28 must be

increasing in the search rate. Because a high-search officer searches a superset of the

drivers searched by a lower-search officer, the overall probability of success for the high-

search officer is at least as large as the overall probability of success for the low-search

officer when the officers are equally informed.

28 More precisely, unconditional on search but conditional on stop.
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1.5.2. Test for Prejudice, Differential Informativeness

Suppose the researcher rejects the assumption that treators are equally informed. Differen-

tial information may be observed empirically or assumed by the nature of the application.

For example, a more experienced police officer or doctor may be better informed than

a less experienced counterpart. In many applications, the possible variation in informa-

tion across treators is captured by considering differences in signal informativeness. This

section presents a test for prejudice when signal informativeness varies across treators.

Theorem 1.4. Suppose individual returns to treatment are weakly diminishing and

that treator information over treated groups is given by a non-empty %. There exists an

absolute test T̃A(ā, q̄;%) for prejudice based on partial identification of treatment costs:

ct(r) ∈ S̃r,t(ā, q̄;%).

Specifically, if treator t is weakly better informed than treator t′ over treatable group

r, there exists a test T̃ r,t(ā, q̄;%) that treator t is prejudiced in favor of treatable group r

relative to treatable group r′:

(1.15) S̃r,t(ā, q̄;%) > S̃r
′,t(ā, q̄;%).29

Proof: Let kr,t(ā) denote the possibility frontier of average outcomes that a treator

t can achieve by taking average action ā under signal structure F r,t. Better information

expands this possibility frontier:

29 Where S1 > S2 iff inf S1 > supS2.
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Lemma 1.2. Better signals expand the treator possibility frontier:

F r,t % F r,t′ =⇒ kr,t(ā) ≥ kr,t
′
(ā) for all ā.

The proof of Lemma 1.2 is provided in Appendix A.

The derivation of the absolute test under differential information proceeds analogously

to the derivation under equal information, with the addition of the inequality from Lemma

1.2.

Suppose again that āt(r) > āt′(r). Since treators are no longer equally informed,

define:

X high
r,t = {x|F r,t

X (x) ≥ 1− āt′(r)}

X int
r,t = {x|1− āt(r) ≤ F r,t

X (x) ≤ 1− āt′(r)}

X high
r,t′ = {x|F r,t′

X (x) ≥ 1− āt′(r)}

X int
r,t′ = {x|1− āt(r) ≤ F r,t′

X (x) ≤ 1− āt′(r)}

Similar bounds to those derived in (1.7) continue to hold for each officer:

E[Qr|Xr,t′ ∈ X high
r,t′ ] ≥ ct′(r) ≥E[Qr|Xr,t′ ∈ X int

r,t′ ](1.16)

E[Qr|Xr,t ∈ X int
r,t ] ≥ ct(r).(1.17)

The test loses partial power relative to the test under equal information at the next step

of identifying the average conditional outcomes E[Qr|Xr,t ∈ X int
r,t ] in terms of observable

average actions and outcomes.
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ā

q̄

A

B

C

Sr,t
′
(ā, q̄;%)

Sr,t(ā, q̄;%)

r, t′

r, t

min
F r,t′

E[Qr|Xr,t′ ∈ X int
r,t′ ]

E[Qj |Xr,t′ ∈ X high
r,t′ ]

Figure 1.3. A more informative signal expands the outcome frontier and adds the dotted
wedge to the reasoning under equal information. Therefore the Law of Iterated Expectations
implies A ≤ B + C, and only the minimum of E[Qr|Xr,j ∈ X intr,j ] is identified for j = t, t′.

This provides a bound for the better-informed treator. For the other treator, Sr,t(ā, q̄;%
) = [0, q̄t(r)]. In the case where the better-informed treator takes a higher average action,
analogous reasoning identifies the maximum of E[Qr|Xr,j ∈ X intr,j ] and therefore an upper
bound.Note that in both cases the inter-marginal logic only identifies a bound for the better-
informed treator.

If F r,t - F r,t′ , then:

q̄t(r) ≤ kr,t
′
(āt(r))(By Lemma 1.2)

= E
[
Qr|Xr,t′ ∈ X high

r,t′ ∪ X
int
r,t′

]
=
āt′(r)

āt(r)
E
[
Qr|Xr,t′ ∈ X high

r,t′

]
+
āt(r)− āt′(r)

āt(r)
E
[
Qr|Xr,t′ ∈ X int

r,t′

]
=
āt′(r)

āt(r)
q̄t′(r) +

āt(r)− āt′(r)
āt(r)

E
[
Qr|Xr,t′ ∈ X int

r,t′

]
(1.18)

A graphical version of the argument is presented in Figure 1.3. Differential signal

informativeness introduces a wedge into the argument under equal information. Even

though observables now only partially identify the average inter-marginal outcome, the

bound on the treatment cost for the better-informed treator remains unchanged as a
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function of observables. Combining (1.16) and (1.18),

(1.19) ct′(r) ≥ E[Qr|Xr,t′ ∈ X int
r,t′ ] ≥

āt(r)q̄t(r)− āt′(r)q̄t′(r)
āt(r)− āt′(r)

For the less-informed treator,

q̄t(r) = E
[
Qr

∣∣∣Xr,t ∈ X high
r,t ∪ X int

r,t

]
=
āt′(r)

āt(r)
E
[
Qr

∣∣∣Xr,t ∈ X high
r,t

]
+
āt(r)− āt′(r)

āt(r)
E
[
Qr

∣∣∣Xr,t ∈ X int
r,t

]

=
āt′(r)

āt(r)
kr,t(āt′(r)) +

āt(r)− āt′(r)
āt(r)

E
[
Qr

∣∣∣Xr,t ∈ X int
r,t

]

≤ āt′(r)

āt(r)
q̄t′(r) +

āt(r)− āt′(r)
āt(r)

E
[
Qr

∣∣∣Xr,t ∈ X int
r,t

]
.(By Lemma 1.2)

While this argument also provides a lower bound on the inter-marginal outcome E[Qr|Xr,t ∈

X int
r,t ] in terms of observables, the inequality is in the wrong direction to provide a mean-

ingful bound on the treatment cost ct(r). Under the reverse assumption F r,t % F r,t′ on

signal informativeness, the inequalities are flipped. Therefore the argument provides an

upper bound for ct(r) but not a lower bound for ct′(r).

Thus the bounds from the equal information case are maintained only for a weakly

better-informed treator:

t %r t
′ =⇒ Sr,t(ā, q̄) = S̃r,t(ā, q̄;%)

In the absence of better information,

Sr,t(ā, q̄) ⊆ S̃r,t(ā, q̄;%) = [0, q̄t(r)]
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Weakening the equal information assumption to a ranked informativeness assumption

leads to a weaker absolute test due to weaker bounds on treatment costs. Note that the

researcher can never reject a null hypothesis of no prejudice for a treator with only upper

bounds on treatment costs – any sufficiently low treatment cost rationalizes the observed

behavior without reference to prejudice. Therefore a researcher can never reject a null

hypothesis of no prejudice for a treator who is not assumed to be at least weakly-better

informed over some treated group. In particular, a treator must be assumed weakly-better

informed over a treatable group r in order to test whether the treator is prejudiced in

favor of treatable group r. �

1.6. Applications

1.6.1. Motor Vehicle Searches: Anwar and Fang

In this section I revisit the empirical application of Anwar and Fang (2006). The AF

dataset provides an ideal opportunity to apply the new absolute test because the model

underlying the new test encompasses the AF model. This confers two advantages. First,

the dataset suggests that marginal returns to treatment intensity are decreasing, which

is a defining feature of the model. Second, because the model of officer behavior is held

fixed across the tests TA and TR, any difference in findings stems from the efficiency of

the new test, rather than stronger assumptions.

The dataset consists of 906,339 stops and 8,976 searches conducted by the Florida

State Highway Patrol from January 2000 to November 2001. For convenience, Tables 1.1

and 1.2 replicate the search and search success rates by officer and motorist race presented
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in Table 1 of their paper. Note that this is also the set of summary statistics used by AF

in applying their tests.30

Applying the Absolute Test TA. To apply the absolute test, bounds are computed for

each pair of officers who are adjacent in the space of search and search success rates. The

computed bounds are presented numerically and graphically in Figure 1.4. Note that the

bounds are not confidence intervals, but rather partial identification of the parameter of

interest, the vector of search costs.31 Note that the new test provides partial bounds on

search costs for each group of officers.

In practice, the absolute test finds evidence that Hispanic officers are prejudiced

against Hispanic motorists relative to black and white motorists. This is the first for-

mal evidence of prejudice in the AF dataset. Thus the new test TA also confers additional

explanatory and statistical power relative to TR in practice. Even when the test fails

to find prejudice, partial identification of parameters can provide useful bounds on the

possible extent of prejudice. For example, given the sharpness of the bounds, the absolute

test suggests that any prejudice exhibited by Hispanic officers between black and white

motorists is limited.

Conclusions are sharpest for Hispanic officers in part because of their intermediate rank

in search intensity. Because they search each motorist group at a higher rate than black

officers, the test inequalities provide new upper bounds on search costs. Because they

search less than white officers, the inequalities also provide lower bounds. The other two

30 In particular, AF apply a re-sampling procedure in order to ensure that officers of different races are
stopping the same pool of motorists in expectation. More detail on the procedure is provided in Section
III, C of their paper.
31 Confidence intervals on the bounds can also be computed. For methods in the case of partially identified
parameters, see Manski (2003) or Manski and Imbens (2004).
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officer groups have either sharp upper or lower bounds. In particular, an absence of lower

bounds precludes any finding of prejudice for white officers because the data can always

be rationalized by assuming that white officers have a sufficiently low search cost across

all motorist groups. Insofar as the researcher is most interested in unearthing prejudice

among the officers with the highest propensity for search, this is a general limitation of the

test. On the other hand, the concern is unique to absolute tests, since a relative test can

never identify prejudice in a particular group by definition. Additional variation across

officers, such as gender or experience effects, can ameliorate this identification issue, as

well as provide more disaggregated tests for prejudice.

Table 1.1. [AF] Search Rate Given Stop (%)

Trooper Race

Driver Race White Black Hispanic

White 0.96 0.27 0.76

Black 1.74 0.35 1.21

Hispanic 1.61 0.28 0.99

Table 1.2. [AF] Search Success Rate (%)

Trooper Race

Driver Race White Black Hispanic

White 24.3 39.4 26.0

Black 19.9 26.0 20.8

Hispanic 8.5 21.0 14.3
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White

Officer

0 0.5 t

τ(w,W ) = [0, 0.18]
τ(w,B) = [0, 0.18]
τ(w,H) = [0, 0.06]

Fail to reject

Black

Officer

0 0.5 t

τ(b,W ) = [0.19, 0.39]
τ(b, B) = [0.19, 0.26]
τ(b,H) = [0.12, 0.21]

Fail to reject

Hispanic

Officer

0 0.5 t

τ(h,W ) = [0.18, 0.19]
τ(h,B) = [0.18, 0.19]
τ(h,H) = [0, 0.12]

Reject

Figure 1.4. The bounds provide evidence of prejudice by Hispanic officers against Hispanic
motorists because the sets of possible search thresholds do not overlap. On the other hand,
a hypothesis of no prejudice can be rationalized with a search threshold that intersects
the sets across motorist groups. Therefore the test fails to reject the null hypothesis of no
prejudice by white and black motorists.

Applying the Test for Unequal Information. The new information test also provides

the first evidence in the AF data that officers are not equally informed. Recall that under

equal information, the unconditional probability of success should be increasing in the

search rate. However, white officers search 1.61% of stopped Hispanic motorists and find

contraband 8.5% of the time that they conduct a search. Hispanic officers search 0.99%

of stopped Hispanic motorists and find contraband 14.3% of the time that they conduct a

search. Therefore Hispanic officers find more contraband conditional on stopping Hispanic

motorists despite searching less:

0.99× 14.3 = 14.157 > 13.685 = 1.61× 8.5
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This implies that Hispanic and white officers are not equally informed over Hispanic

motorists.

The rejection of equal information suggests that Hispanic officers may receive better

signals of guilt over Hispanic motorists than white officers. Note that as long as this

finding does not alter the researcher’s stance on informational assumptions for the other

groups, the finding of heterogeneity does not affect the outcome of the test presented in

the previous section. In particular, the finding of prejudice holds as long as the researcher

assumes that Hispanic officer signals are at least as informative as white officer signals for

each motorist group.32

1.7. Conclusion

Racial and ethnic disparities remain prevalent across a range of domains. Distinguish-

ing among the possible sources of such disparities matters. This underscores the value

of new methods for determining whether disparities are driven by statistical discrimi-

nation or prejudice. The paper develops the first absolute test for identifying prejudice

in the setting where treators make binary treatment decisions and where the returns to

extending treatment to a larger fraction of the population are weakly diminishing. For

example, employers hire, judges deny bail, law enforcement officers engage in stops and

searches, doctors administer procedures and medical tests, and creditors extend loans and

mortgages.

The model unifies the existing literature by encompassing the environments of existing

models. The test provides a more powerful alternative to the test derived in AF when

32 On the other hand, assuming that Hispanic officer signals are not at least as good over, say, white
motorists would affect the finding of prejudice against Hispanics only relative to white motorists.
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marginal returns to treatment are diminishing. This allows the test to uncover the first

evidence of prejudice in the AF dataset. The test also includes the KPT test statistic as

a special case when the empirical evidence supports the assumption of constant marginal

returns to individual treatment intensity. Methodologically, the test is the first to jointly

use actions and outcomes in the test statistic. A weakened version of the new test holds

even when treators may vary in the informativeness of their signals. Such improvements

come at the cost of more stringent but frequently non-binding data requirements.
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CHAPTER 2

Revenue from Matching Platforms

(joint with James Schummer)

2.1. Introduction

The proliferation of online platforms has led to intensified interest in the study of

platform pricing. The topic becomes increasingly important—particularly for regulators—

as dominant platforms emerge in “winner-take-all” environments.1 While an existing

literature tells us much about pricing on certain kinds of platforms, much of it has ignored

two market characteristics that, together, distinguish some platforms from those that have

been studied. Specifically, we consider platforms serving markets in which exclusive (one-

to-one) partnerships occur between horizontally differentiated agents.

Exclusivity. Canonical models of platforms (see Subsection 2.1.2) address many-to-

many matching environments, where each participating agent interacts with all the agents

on the other side of the market. These models accurately portray often-cited examples of

platforms such as credit cards (connecting consumers and merchants), video game consoles

(game players and developers), and newspapers (readers and advertisers). On the other

hand, many platforms exist specifically to create one-to-one matchings, such as AirBnB

(guests lodging with hosts), Uber (riders and drivers), and online dating platforms. Each

AirBnB guest wants to be matched to a single host, and each host desires a single guest;

1 E.g. The Economist, “Nostrums for rostrums,” May 26, 2016.
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Uber drivers and passengers also are matched one-to-one at any given point in time. 2 For

people interested in developing a monogamous relationship, the outcome ideally produced

by a dating platform is a one-to-one matching.3

Heterogeneity. There remains a gap between the literature on platform pricing and

the literature pioneered by Gale and Shapley (1962) concerning capacity-constrained

matching of agents with heterogeneous tastes. For example, canonical papers in the for-

mer literature address agents who would obtain the same value from all partners to whom

they are matched; agents on one side of the market perceives the other side’s agents as

homogeneous objects. Again, this assumption makes sense in certain applications—credit

card holders and merchants value a credit card based on its “cashless” feature rather than

the identity of their matched partners. In one-to-one markets, however, this homogeneity

is atypical. Instead, an agent on any one side (e.g. an AirBnB guest) typically perceives

the other side’s agents (AirBnB hosts) as heterogeneous objects. Furthermore, these het-

erogeneous tastes may differ even across agents within one side of the market, creating

horizontal differentiation amongst the agents on the other side. AirBnB guests have dif-

ferent tastes over the type and location of residences; hosts have different preferences over

guests with pets, children, or other needs.4

2 Slightly complicating our story, Uber also offers a pooled service in which customers share a driver. There
could be analogous exceptions to the one-to-one rule on AirBnB. Nevertheless, the capacity constraints
implicit on these platforms are better approximated with one-to-one models than the “all-to-all” models
in the canonical literature.
3 This is true even if agents have to “learn their preferences” in the short run by initially dating multiple
people through the platform. If a single, long term relationship is the ultimate goal then a one-to-one
model captures the essence of the platform.
4 Numerous articles on the internet advise AirBnB hosts on how to accept or reject guest applications.
The subjectiveness of these articles merely strengthens our opinion that tastes vary.
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To consider the pricing implications of these two characteristics, we consider the rev-

enue maximization problem for a monopolistic platform that sets prices to two sides of

a “marriage market” and creates a one-to-one matching between the two sides. As a

minimal requirement, we restrict attention to platforms that are (ex post) individually

rational : once agents anticipate the outcome of the platform’s matching process, they

should not want to renege on participation and payment. Given our interest in heteroge-

neous preferences, we also consider the revenue and pricing consequences for a platform

that further commits to producing stable outcomes, i.e. ruling out the ex post possibility

that a “blocking pair” of agents would have preferred being matched with each other, even

when taking the platform’s pricing into account. Our interest in the stability condition is

motivated both normatively and positively.

Normatively, a platform may wish to use stable matching procedures for a variety of

reasons. For one, stability allows a matchmaker to advertise the “quality” of its matching

procedure in that no (blocking) pair of customers could come to the realization that they

could have jointly created a better match than the one created by the platform.5 A

second reason is that stability has been argued to help prevent market unravelling; see

Roth (2002) for evidence supporting this argument. Even if a monopolistic platform has

technology that, in the short run, gives it exclusive control over agents’ ability to match, its

creation of unstable matchings could increase the platform’s long run vulnerability to the

entry of alternate technologies/platforms that would allow blocking pairs to match outside

5 For example, online matchmaker eHarmony claims to use its patented algorithms to “identify matches
with the highest potential for a successful relationship” and to predict “who you match best with.” Since
these promises are being made to both sides of the market, one can interpret these claims as an attempt
to determine stable outcomes.
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of the monopolist’s current platform. A farsighted, monopolistic matching platform could

thus consider stability to be a form of entry deterrence.

To see the positive motivation for studying stability in this problem, consider platforms

(e.g. dating sites) that “create” matchings in a decentralized way, by allowing the agents

themselves to form pairs. In such settings, stable outcomes can arise naturally [Hitsch et

al. (2010)]. By allowing decentralized matching, the platform has indirectly committed

to providing a stable outcome. In such markets, stability should be viewed more as a

market design constraint than as a choice.

2.1.1. Overview of results

Our focus is on how a platform would set prices to two sides of a matching market as

a function of market parameters. These parameters include not only the distribution of

individual agent’s values, but also the degree of market imbalance (relative sizes of the

two sides) and the degree of correlation in agents’ values. While imbalance and correlation

play little role in standard models of many-to-many platforms, these characteristics can

impact pricing in our setting (see Section 2.5).

Our first set of results concerning market imbalance appear counterintuitive with

respect to a recent result in the literature on stable matching. In a classic marriage model

with independent, uniformly drawn preferences, Ashlagi et al. (2017) show the following

striking result. Under essentially any degree of market imbalance, average (normalized)

payoffs are notably higher for agents on the short side of the market than for those on

the long side, at any stable outcome. Consider the following intuition. A woman walks

into a balanced market. If the existing stable match is “far” from the male-optimal stable
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match in terms of payoffs (for example, the woman-optimal stable match), the woman

easily breaks a match. The recently unmatched woman is in turn also likely to break a

match. This pattern of match-breaking propagates until men begin to derive high value

from their current match. Otherwise the probability that the lone woman will break

a match remains high. Ashlagi et al. (2017) show formally that the payoffs under the

match described above are close to the payoffs under the man-optimal match. Therefore

the payoffs under any stable match are close to those under the man-optimal match.

Following this result one might guess that a monopolist who controls the stable match-

ing process should use unbalanced prices in order to capture these unbalanced payoffs,

charging a higher price to the short side of the market. Under such fees, we show that

this reasoning does not hold: We prove a “symmetric-pricing” result stating that a rev-

enue maximizing stable platform does not price discriminate between the two sides of the

market based on their relative sizes, despite the asymmetric-payoff result of Ashlagi et

al. Particularly, when agents’ values are i.i.d. across both sides of the market a standard

hazard rate condition leads the platform to charge the same price to both sides of the

market, regardless of their relative sizes.

At first glance our no-price-discrimination result may appear to coincide with results

obtained for the many-to-many platform models described in Subsection 2.1.2. In those

models it is conventional wisdom to subsidize the price-sensitive side of the market in order

to exploit cross-network effects.6 Therefore it may sound unsurprising when we show an

absence of price discrimination in our model when both sides are equally price sensitive.

This is a misleading comparison, however. In many-to-many models, this argument not to

6 A small price drop on the sensitive side leads to a large increase in transactions, proportionally increasing
revenue earned from the other side.
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price discriminate applies regardless of whether agent’s values are correlated. Intuitively,

in many-to-many models a platform is essentially pricing each transaction separately, so

correlation plays no role in maximizing expected revenue across the entire market. On the

other hand, when values become correlated in capacity constrained models such as ours,

market imbalance can affect the platform’s optimal pricing decision, leading to different

pricing across the two sides.7 These ideas and comparisons are explained in Section 2.5.

The combination of these results illustrates that our model sits between the literatures

on matching and on platform pricing. Despite the fact that, with i.i.d. values, the short

side of the market captures more value than the long side under stability [Ashlagi et

al. (2017)] a monopolistic platform does not capture value by charging a premium to the

short side. At the same time, if market imbalance coexists with correlation in agents’ val-

ues, the platform does price discriminate on the basis of market imbalance, a phenomenon

that would not occur in many-to-many models without capacity constraints.

Our tool for analyzing stable platform pricing is a new family of (typically unstable)

matching procedures that we call Meet and Propose (MAP) algorithms. These algorithms

work similarly to Deferred Acceptance algorithms, but require proposers to “meet” po-

tential mates in some arbitrarily fixed order. We use the relationship between MAP algo-

rithms and Deferred Acceptance to prove the no-price-discrimination theorem described

earlier.

As part of our analysis of MAP algorithms, we derive a closed-form expression that

approximates a stable platform’s expected revenue, when agents have i.i.d. values. This

7 However the direction in which the platform price discriminates turns out to depend on the type of
correlation in values, so again the reasons for price discrimination are not related to the surplus imbalance
results of Ashlagi et al.
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is accomplished by considering the special case in which MAP algorithms coincide with

a “constrained-dictatorship” mechanism, representing a platform where agents from one

side arrive sequentially and are matched with their favorite (mutually compatible) remain-

ing agent on the other side.8 By appealing both to simulations and a related result of

Arnosti (2016), we argue that our approximation is a fairly tight lower bound on revenue

when a platform uses stable matching mechanisms in large markets.

We also use this bound to show that, as markets with independently drawn preferences

grow arbitrarily large, the platform’s “cost of committing to stability” essentially vanishes:

that is, by relaxing stability to merely ex-post individual rationality, a platform would

improve its revenue by only a vanishingly small percentage. Hence our lower bound on

the stable platform’s revenue turns out to be a good approximation of that revenue as the

market becomes large. Furthermore, simulations demonstrate that the bound is a good

approximation of revenue for markets of any size.

To conclude, we consider the implications of correlation in agents’ values. Corre-

lation in the one-to-one matching case introduces incentives for the platform to price-

discriminate based on relative market size. Furthermore, the type of correlation matters.

Two-sided matching suggests two dimensions of correlation, which have opposite effects

on relative pricing comparative statics. On the other hand, correlation does not affect

pricing decisions in the many-to-many case. This suggests that the impact of preference

correlation on pricing decisions varies with the amount of intra-platform competition.

8 Though it is not our objective, our analysis can be applied directly to such platforms, including those
where pairwise compatibility is determined exogenously.
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2.1.2. Platforms Literature

The two-sided markets literature shares our interest in profit-maximizing platforms that

connect two sets of agents who derive benefits from interacting with each another. In

contrast to our approach many models in this literature exhibit the following features,

making them less relevant for the applications we have in mind.

All-to-all:: each agent receives some constant marginal benefit from each agent

present on the other side of the market;

No differentiation:: each agent perceives the agents on the other side of the mar-

ket as indistinguishable;

No same-side externalities:: each agent is unaffected by the presence of other

agents on the same side.

These features are implied by the modeling assumption that an agent’s payoff is some

affine function, say a + bn, of the number of agents on the other side of the market, n.

The fixed and per-transaction benefits, a and b, may or may not be assumed to vary

across agents.9

The affine payoff structure easily captures so-called “cross-network effects” where

agents benefit from additional participation on the other side. A consequence is one

of the fundamental lessons from the two-sided markets literature: a profit-maximizing

platform should not set prices to the two sides of the markets independently, as if they

were two unrelated products. An increase in the per-transaction price charged to one side

of the market can be viewed as a decrease in the marginal cost of providing transactions

9 This payoff structure is used by the seminal papers of the literature, such as Rochet and Tirole
(2003),(2006) and Armstrong (2006), as well as Caillaud and Jullien (2003), Weyl (2010), and others.
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to the other side of the market [Rochet and Tirole (2003)]. This observation yields the

see-saw effect observed by Rochet and Tirole (2006): if the platform finds reason to de-

crease the price charged to one side of the market (e.g. due to increased price sensitivity

on that side), then this in turn justifies a price increase to the other side of the market.

A form of cross-network effect also exists in the one-to-one matching markets we

consider. A well-known result of Gale and Sotomayor (1985a) states that the addition of

an agent on one side of the market weakly improves stable outcomes for agents on the

other side of the market. Since agents are heterogeneous and are capacity constrained

to match with at most one other agent, however, the derivation of an analogous see-saw

effect in this model is not as transparent, though its intuition is essentially the same.

On the other hand, one-to-one matching models distinguish themselves from two-sided

market models in that the latter typically ignore market size effects.10 In fact, the all-to-

all feature of these latter models is what neutralizes market-size effects outright. In our

one-to-one model, on the other hand, market size does impact pricing; furthermore its

effect is determined by the degree of correlation in agents’ preferences. See Section 2.5

for elaboration.

Another feature of the literature—beyond our current interest—is the analysis of com-

peting platforms. The “divide and conquer” theme arising from this literature formalizes

the idea that platforms may subsidize a “critical” side of the market and recover profits

from the other. As Armstrong (2006) points out, if agents on only one side of the mar-

ket must “single-home” (commit to a single platform), then platforms will compete for

10 An exception is the distantly related work of Ambrus and Argenziano (2009). They consider competing
platforms where one is cheaper and larger on one side of the market, and the other is cheaper and larger
on the other side. This (equilibrium) price discrimination causes “high value” agents to choose expensive
platforms in order to access more potential partners.
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them (through low/subisidized pricing) while charging the “multi-homing” side monopoly

prices.

Somewhat closer to our work, Damiano and Li (2008) consider competing platforms

where heterogeneous agents are randomly matched one-to-one and each payoff is the

product of the pair’s types.11 One of their main points is that, in their setup, prices lead

to an assortative segmentation of agents across platforms. Besides the issue of platform

competition, there are other critical differences between their model and ours. Whereas

our main results concern the case of heterogeneous preferences, Damiano and Li’s agents

have the same (ordinal) preferences over the “vertically differentiated” agents on the

other side; however we do consider perfectly correlated (cardinal) preferences in Section

2.5. Second, their random matching assumption sets aside market size effects, which

is natural since their motivation is the question of market composition or quality; on

the other hand we obtain such effects precisely when there is correlation in preferences.

Finally, as in the literature described above, there are no same-side externalities: holding

all else constant, an agent does not suffer from the presence of additional agents on the

same side. This is not the case in our model [Gale and Sotomayor (1985a)].

Fershtman and Pavan (2016) study many-to-many matching platforms with persistent,

private information. Their analysis requires a dynamic model, since agents remain in the

market forever, potentially changing partners as their match values evolve. Optimal

mechanisms are shown to be dynamic auctions that assign matches based on a scoring

rule that uses reported information about both the persistent and idiosyncratic part of

agents’ types.

11 Also see Damiano and Li (2007) for a similar monopolistic setting. Results here deal with efficiency.
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2.2. Model

The agents consist of a setM of men and a setW of women. A (one-to-one) matching

is a function µ : M × W → M × W satisfying the following usual conditions for all

m ∈ M, w ∈ W : µ(m) ∈ W ∪ {m}, µ(w) ∈ M ∪ {w}, and µ(m) = w if and only if

µ(w) = m. We say that agent i ∈M×W is unmatched (or single) when µ(i) = i.

If manm ∈M is matched to woman w ∈ W , he obtains value um(w) ∈ [0, 1]; similarly

w obtains uw(m) ∈ [0, 1] from being matched to m. The value of being unmatched is

normalized to zero (denoted ui(i) ≡ 0 when necessary). Each value um(w) is randomly

drawn according to a distribution FM , and each uw(m) is drawn according to FW , where

both densities are continuously differentiable with positive support on [0, 1]. We initially

assume that each value ui(j) is drawn independently of all other values. Correlated values

are considered in Section 2.5.

Though we rule out transfers between agents, they may make payments to the plat-

form itself. Agents’ preferences are represented by payoffs that are quasi-linear in such

payments. Specifically, at a matching µ, if man m ∈ M makes a payment of pM to the

platform, then his payoff is um(µ(m))−pM . The symmetric assumption holds for women.

We assume that the platform can price discriminate based only on (i) whether the

agent is matched or single, and (ii) the agent’s side of the market (M vs. W). Fixing

M and W , prices are simply a pair of “match-contingent fees” (pM , pW ) ∈ R2, where

matched men and women are charged pM and pW respectively, while the payments of

unmatched agents are normalized to zero. Implicitly, prices can be a function of (the size

of) the sets M and W , but we do not require such notation.
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2.2.1. Constraints of the Platform

Our main interest is in platforms that charge agents fees for being part of a stable match

[Gale and Shapley (1962)], i.e. a match guaranteeing individual rationality and the absence

of pairwise blocking. Stability can be viewed either as a normative constraint or as a

positive description of platform outcomes. Normatively, a platform designer might wish

to avoid creating a blocking pair simply to avoid attempts by agents to manipulate or

bypass the platform or to avoid complaints from dissatisfied customers. Positively, even

if the matchmaker has little control over how agents match after they join the platform,

stable matchings might arise naturally. For example Hitsch, Hortaçsu, and Ariely (2010)

show that matchings in decentralized, online dating markets are approximately stable

even though such platforms clearly cannot dictate which matchings occur.

Observe that the stability condition becomes endogenous once the platform can vary

prices. On the other hand one can think of any fixed price as simply representing an agent’s

outside option (from remaining single), in which case the standard definition of stability

applies. Regardless, we now formalize the concept as functions of prices p = (pM , pW ).

The individual rationality requirement means that an agent should not prefer to with-

draw from the platform. Here, this means that no matched agent should prefer remaining

single (for free) over his/her match outcome given the platform’s prices.12

Definition 2.1. Fix values u. With respect to prices p = (pM , pW ), a matching µ is

individually rational at p when, for all m ∈ M and w ∈ W, µ(m) = w implies both

um(w) ≥ pM and uw(m) ≥ pW .

12 This is an ex post individual rationality condition, which is stronger than a definition which would
only require agents to benefit from the platform in expectation, ex ante. There turns out to be little
difference between these definitions in our model.
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The no-blocking-pairs requirement means that no man-woman pair would strictly

prefer matching with each other instead of receiving their prescribed matching outcome.

In our context we are ruling out blocking pairs would would benefit from being matched

with each other, even if they have to pay the platform’s prices in order to do so.

Definition 2.2. Fix values u. With respect to prices p = (pM , pW ), man m ∈M and

woman w ∈ W p-block a matching µ when

um(w)− pM > um(µ(m))− pM ∗ 1µ(m)∈W and

uw(m)− pW > uw(µ(w))− pW ∗ 1µ(w)∈M

where 1 is the indicator function.

Combining these definitions leads to the following notion of stability.

Definition 2.3. Fix values u. With respect to prices p = (pM , pW ), a matching µ is

p-stable if (i) it is individually rational at p and (ii) there is no m,w who p-block µ.

It is immediately clear that a p-stable matching can be found by simply (i) truncating

each man’s (woman’s) preferences by removing all potential mates who are valued at less

than pM (pW ), then (ii) running the classic Deferred Acceptance (DA) algorithm on these

truncated preferences. Furthermore it follows from well-known results [Roth (1984b)] that

all p-stable matchings contain the same number of marriages.13

Theorem (Rural Hospital Theorem). Fix values u and prices p = (pM , pW ). All

p-stable matchings contain the same number of marriages.

13 The result furthermore states that the set of married agents remains constant across all p-stable
matchings. See also McVitie and Wilson (1971).
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2.2.2. Implicit Informational Assumptions

In our analysis we take each realization of agents’ preferences u as given and then compute

a realized matching as a function of these preferences. When preferences can be observable

by the platform, then this is without loss of generality. However we can justify this

assumption even for environments in which preferences are not observable to the platform

using results from the literature.

For instance, if the platform’s objective is to yield p-stable matchings, then under some

assumptions this can be done by setting up the proper “game.” This is certainly the case

when agents have complete information about each others’ preferences. Specifically, Roth

(1984a) shows that under the Deferred Acceptance revelation game, a (complete informa-

tion) equilibrium outcome in undominated strategies must be stable. Kara and Sönmez

(1996) show that the set of stable outcomes is fully implementable in Nash equilibrium.

An even sharper prediction of stability is made using iterated deletion of dominated

strategies; see Alcalde (1996).

Under some of these results we cannot necessarily predict which stable outcome would

be obtained. In our setting this is irrelevant of course since the Rural Hospital Theorem

implies that the platform does not care—the same number of marriages are created at

any stable matching, so all such matchings provide identical revenue to the platform.

A second argument in favor of our informational assumption comes from a growing

body of work confirming the idea that, in large markets, agents have little incentive to

misreport their preferences [Roth and Peranson (1999); Immorlica and Mahdian (2005);

Kojima and Pathak (2009); Azevedo and Budish (2015)].
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Finally, as mentioned earlier, there is empirical evidence supporting the idea that in

certain decentralized markets, stable outcomes obtain as real world “equilibrium” out-

comes; e.g. Hitsch et al. (2010). For all of these reasons, we make the simplifying as-

sumption that a p-stable matching is obtained by the platform once agents’ preferences

are randomly determined.

2.3. Meet and Propose

As mentioned earlier, a p-stable matching can be found by running the Deferred Ac-

ceptance (DA) algorithm on agent’s preferences that have been appropriately truncated

with respect to prices p. Here we provide an alternative formulation of such a method,

DAp, which we describe in a somewhat atypical fashion. The reason for this formulation is

to make clear how a second algorithm, used below in our analysis, relates to this one. To

state it, for any prices p = (pM , pW ) we say that m ∈ M and w ∈ W are p-compatible

if um(w) > pM and uw(m) > pW .

Definition 2.4 (DAp algorithm). The algorithm takes values u as input and initializes

all men to be single. The following two steps are executed in rounds t = 1, 2, . . . until each

man is either matched or has “met” every woman.

Step t.1:: Each man m who is single “meets” his favorite woman w among those

he has not already proposed to. (If no such women exist, he remains single.) He

proposes to her if and only if they are p-compatible.

Step t.2:: Each woman becomes matched to her favorite man among those who

have proposed to her. (If none exist, she remains single.) All other men become

(or remain) single.
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It should be clear that DAp is the standard DA algorithm, with a bit of redundancy

in the notion of men first “meeting” women before proposing. In the typical description

of DA, one can dispense with this since men only “meet” the women with whom they

might be compatible in the first place. Any further incompatibility on the woman’s part

is taken care of when she decides whether to accept his offer. We have included this extra

step in our description in order to highlight the difference between DAp and the class of

MAPBp algorithms that we use to approximate the platform’s revenue under p-stability.

Specifically, we consider algorithms where a man’s “meeting order” is not perfectly

aligned with his preferences as it is under Steps t.1 of DAp. This separates meeting orders

from preference orders, but proposals themselves are still tied to preferences through each

man’s “decision” of whether to propose.14 Women, on the other hand, accept and reject

proposals as they do under DA: they reject all proposals other than the best one they

have received so far.15

To describe our algorithms, a meeting order for man m ∈M, Bm, is a linear order

on W . A profile of meeting orders is denoted B = (Bm)m∈M .

Definition 2.5 (MAPBp algorithm). The algorithm is parameterized by a meeting order

profile B. It takes values u as input and initializes all men to be single. The following two

steps are executed in rounds t = 1, 2, . . . until each man is either matched or has “met”

every woman.

14 The word decision should not be taken literally: we are merely using this algorithm as a tool. It does
not share the incentive properties of DA.
15 Observe that since only p-compatible men make proposals, we need not check women’s individual
rationality constraints.
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Step t.1:: Each man m who is single “meets” the woman w ranked highest under

Bm among those he has not already proposed to. (If no such women exist, he

remains single.) He proposes to her if and only if they are p-compatible.

Step t.2:: Each woman becomes matched to her favorite man among those who

have proposed to her. (If none exist, she remains single.) All other men become

(or remain) single.

Fixing values u, if each Bm happens to coincide with the ordering of m’s relative

preference order over women (um()), then MAPBp would yield the same outcome as DAp

for u. Typically, of course, a randomly determined u induces orders over women that do

not coincide with B, and the algorithms yield different outcomes. Nevertheless, we use

MAPBp to analyze and approximate the distribution of p-stable marriages in a random

economy.

Finally, observe that we have described “all men propose at the same time” versions

of DAp and MAPBp . As is well known, the DA algorithm is invariant to specifications

in which men propose individually (e.g. the lowest numbered unmatched man proposing

in every round) instead of simultaneously. Similarly it is easily shown that MAPBp is

also invariant to such specifications. In some of our proofs we consider such a “one man

propose at a time” version of MAPBp , assuming the reader’s understanding that this does

not change the outcome of the algorithm.

2.4. Independent Preferences

We primarily consider the case in which each man’s value um(w) for some w ∈ W is

an i.i.d. draw from FM , and each woman’s value uw(m) for some m ∈M is an i.i.d. draw
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from FW . Throughout this section, a random economy refers to such independently

drawn payoffs (for fixed M,W ).

Our first result establishes a relationship between DA and a randomized version of

MAP. Running DAp on a random economy generates the same expected volume of mar-

riages as would be obtained from running MAPBp , using a uniformly randomly chosen

profile B of meeting orders. More generally, both methods lead to the same distribution

over the number of marriages.16

Theorem 2.1 (random-order MAP gives the distribution of p-stable marriages). Fix

sets M,W and prices p = (pm, pw). Let KDA be a random variable representing the number

of p-stable marriages in a random economy. Let KrMAP be a random variable representing

the number of marriages created under MAPBp for a random economy when each meeting

order Bm is independently drawn from a uniform distribution over all orders. Then KDA

and KrMAP have the same probability distribution.

The distribution of KDA obviously depends on prices pM , pW . However prices turn out

to affect this distribution only to the extent that they affect the probability that any one

man-woman pair are p-compatible. Recall that man m and woman w are p-compatible

when um(w) ≥ pm and uw(m) ≥ pw. They are thus incompatible with probability

(2.1) q(pm, pw) ≡ FM(pm) + FW (pw)− FM(pm)FW (pw)

We call q(p) the incompatibility parameter at prices p.

16 Any omitted proofs appear in Appendix B.
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The next lemma states that, for fixed M , W , and meeting orders (Bm)M , the expected

number of marriages created by MAPBp at prices p is a function only of q(p). In other

words, if q(p) = q(p′) then MAPBp and MAPBp′ induce the same expected number of

marriages.

Lemma 2.1 (Expected MAP marriages is a polynomial function of q). Fix M,W

and meeting orders (Bm)M . For any prices pm, pw, let KBpm,pw be a random variable rep-

resenting the number of marriages created under MAP(B, pm, pw) for a random economy.

There exists a function K̄B : R→ R such that, for all pm, pw, E[KBpm,pw ] = K̄B(q(pm, pw)),

where q(pm, pw) ≡ pm +pw−pmpw is the probability of incompatibility. Furthermore K̄B()

is polynomial in its argument.

This result extends to the expected number of p-stable marriages with the help of

Theorem 2.1.

Theorem 2.2 (Expected p-stable marriages is a polynomial function of q). For any

prices (pM , pW ), let KDA
pm,pw be a random variable representing the number of (pm, pw)-stable

marriages for a random economy. Then E[KDA
pm,pw ] is a polynomial function of q(pm, pw).

Proof: Letting O denote the set of meeting order profiles, Theorem 2.1 implies

E[KDA
pm,pw ] = E(KrMAP

pm,pw ) =

∑
B∈O E[K

MAP(B)
pm,pw ]

|O|

where the numerator is a sum of polynomials in q(pM , pW ) by Lemma 2.1. �

We now turn to our first main conclusion regarding the platform’s revenue under

p-stability. Namely, when the two sides’ values are draw from the same distribution
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F = FM = FW , the platform’s expected revenue is symmetric in the price vector (pM , pW ).

We interpret this as a “non-price-discrimination” result: despite the fact that matched

agents on the short side of the market extract greater value than those on the long side

[e.g. Ashlagi et al. (2017)], the platform does not benefit from, for instance, specifically

charging the short side a higher price.

Corollary 2.1 (Revenue symmetric in prices). Fix M and W , and suppose FM = FW .

Let R(pM ,pW ) denote the platform’s expected revenue from a random economy under a p-

stable mechanism with prices p = (pM , pW ). Then we have R(pM ,pW ) = R(pW ,pM ).

The analogous result holds if the platform uses a MAPBp mechanism with arbitrary,

fixed meeting orders B.

Proof: The planner earns (pM+pW ) from each marriage, so under p-stability, expected

revenue has the form (pM + pW )K̄(q(pm, pw)) where K̄ is some polynomial function of q

from Theorem 2.2. Since q() is symmetric in FM(pM) and FW (pW ) the result follows. For

MAPBp , Lemma 2.1 leads to the analogous conclusion. �

This result demonstrates that a profit-maximizing platform does not price discriminate

amongst the two sides of the market based on their relative sizes. When both sides’ values

are draw from the same distribution, if (p∗M , p
∗
W ) is a revenue-maximizing price vector then

so is (p∗W , p
∗
M).

In fact we now show that, under a standard assumption on the common distribution

FM = FW , revenue maximizing prices are equal across the two sides, regardless of how

unbalanced their sizes are. Of course that common price might change with respect to

absolute market size or with the degree of market imbalance. Our point is that changes
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in market size or imbalance are not per se a reason for the platform to practice price

discrimination.

The platform earns pm + pw for each marriage. Fixing a DA (or MAP) algorithm, the

price-optimization problem is thus

max
pm,pw

(pm + pw)E[K(pm, pw)](2.2)

= max
pm,pw

(pm + pw)K̄(q(pm, pw))(2.3)

where K(pm, pw) denotes the expected number of marriages created under the fixed algo-

rithm for a random economy, which can be written in the form of K̄(q) by our two earlier

results. Unsurprisingly, K̄(q) is decreasing in the incompatibility parameter q. For the

case of DA, this statement is essentially identical to a Theorem of Gale and Sotomayor

(1985b) stating that, under DA with fixed preferences, a preference truncation on one side

of the market makes the other side worse off, weakly decreasing the number of marriages.

Our proof (see Appendix B) also handles the case of MAP.

Lemma 2.2 (Monotonicity in q). For any MAPBp algorithm or any p-stable algorithm,

the expected number of marriages K̄(q) as a function of incompatibility q is decreasing in

q.

Now if we commit the platform to any fixed incompatibility rate q = q(pm, pw), the

platform would prefer to maximize pm + pw subject to that constraint. Under a stan-

dard hazard rate assumption, this will imply pm = pw. When preferences for both sides
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are drawn from the same distribution, the platform charges both sides the same price

regardless of their relative sizes.17

Theorem 2.3 (Monotone hazard rate implies equal pricing). Fix M and W , and

suppose F = FM = FW , where F has a weakly increasing hazard rate f(u)
1−F (u)

. Let R(pM ,pW )

denote the platform’s expected revenue from a random economy under a p-stable mecha-

nism with prices p = (pM , pW ). If (p∗M , p
∗
W ) maximizes R(pM ,pW ) then p∗M = p∗W .

The analogous result holds if the platform uses a MAPBp mechanism with arbitrary,

fixed meeting orders B.

Without the monotone hazard rate condition, equal pricing may not be optimal. To

illustrate this in as simple a way as possible, consider the following discrete example.18

Example 2.1 (Optimal, unequal prices). Consider one man and one woman. Each

(independently) has a value of being matched to the other that is either 0.1 (with probability

π) or 0.9 (probability 1−π). We can restriction attention to prices (pm, pw) ∈ {0.1, 0.9}2.

Depending on π, one can easily check that the following price combinations maximize

expected revenue.

(p∗m, p
∗
w) = (0.9, 0.9) when π ≤ 4/9,

(p∗m, p
∗
w) ∈ {(0.1, 0.9), (0.9, 0.1)} when 4/9 ≤ π ≤ 4/5,

(p∗m, p
∗
w) = (0.1, 0.1) when 4/5 ≤ π.

17 Obviously the result assumes that both sides’ values are drawn from the same distribution; relaxing
such an assumption clearly gives the platform incentive to charge higher prices to the side of the agent
which tends to captures higher values from being matched.
18Though the discrete example does not fit in our domain of analysis, one can (tediously) perturb it into
a continuous version that yields the same conclusion.
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The case 4/9 ≤ π ≤ 4/5 is the relevant one, demonstrating unequal optimal prices.

However the set of optimal price lists is symmetric, in accordance with Corollary 2.1.

2.4.1. Constrained Serial Dictatorship: MAP with Equal Meeting Orders

Our next objective is to evaluate the platform’s expected revenue from any pair of prices

p = (pm, pw) and value distributions FM , FW . When the platform uses the DAp mecha-

nism, a closed-form expression for revenue remains elusive. On the other hand, a plat-

form’s expected revenue from DAp turns out to be remarkably close to that from using

MAPBp (with the same prices p), when all men’s meeting orders are identical under B.

When B is such that all men have the same meeting order, MAPB can be viewed as a

constrained serial dictatorship mechanism: in turn, each woman takes her turn choosing

her favorite man among the remaining men who are compatible with her (if any).19 For this

subclass of MAP algorithms, the probability distribution of the number of marriages can

be described explicitly. To do this, we introduce the concept of q-analogs (parameterized

generalizations) of integers, factorials, and binomial coefficients.

Definition 2.6. For any real number q ∈ [0, 1], the q-analog of integer j ∈ Z is

[j]q ≡ 1 + q + · · ·+ qj−1 =
1− qj

1− q

19 Though it is not our objective, one can imagine this mechanism describing a platform where agents
on one side (women) arrive randomly, and get to choose a among all remaining (but compatible) agents
on the other side.
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The q-factorial of j is

[j]q! ≡ [j]q[j − 1]q · · · [1]q

The q-binomial coefficient for integers k, n ∈ Z+, with k ≤ n, is

[
n

k

]
q

≡ [n]q!

[k]q![n− k]q!
=

(1− qn)(1− qn−1) · · · (1− qn−(k−1))

(1− q1)(1− q2) · · · (1− qk)

The following result establishes the probability distribution of the number of marriages

under an equal-meeting-order MAP algorithm in terms of these q-analogs.20

Theorem 2.4 (Distribution of marriages for identical orders). Fix M,W , and a profile

of meeting orders B in which all men have identical meeting orders: for all m,m′ ∈ M ,

Bm = Bm′. Fix prices pM , pW and incompatibility parameter q = q(pM , pW ). Let K= be

a random variable representing the number of marriages in a random economy created

under MAPBp . The probability distribution of K= is given by

(2.4) P (k;M,W ) = (1− q)kq(M−k)(W−k)

[
M

k

]
q

[
W

k

]
q

[k]q!

The first two terms in Equation 2.4 have a straightforward interpretation: (1−q)k is the

probability of mutual compatibility among k men matched to k women, and q(M−k)(W−k)

is the probability of mutual incompatibility among all possible pairs of the remaining

20 The distribution of Equation 2.4, called the absorption distribution, was described by Blomqvist (1952).
Kemp (1998) finds its moments and shows that it is log-concave. Ebrahimy and Shimer (2010) make use
of this distribution.
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agents. The remaining q-analog terms are a probabilistic analog to
(
M
k

)(
W
k

)
k!, the number

of possible size-k matchings in a market (M,W ).

Theorem 2.4 is itself a q-analog to the two trivial observations that (i) at q = 1 the

probability of zero matches is one, and (ii) at q = 0 the probability of k = min{M,W}

matches is one. Typically, of course, a revenue maximizer would indirectly set an inter-

mediate value of q (through its choice of prices pm, pw), and might care only about the

expectation of K=. Kemp (1998) provides the following expression.

Theorem 2.5 (Kemp, 1998). The expected value of K= (defined in Theorem 2.4) is

(2.5) E(K=) =

min{M,W}∑
j=1

[(1− qM) · · · (1− qM−j+1)][(1− qW ) · · · (1− qW−j+1)]

1− qj

Figure 2.1 illustrates Equation 2.5 for a fixed number of men M = 50, varying both

W and the incompatibility parameter q, where values are assumed to be uniform on [0, 1].

The figure highlights the obvious fact that, as W grows large, the expected number of

marriages converges to 50: when the market is very imbalanced, the platform can charge

a very high price and still create the close to the maximum number of possible marriages.

Also obvious is that, when prices are very low, the platform again creates close to the

maximum number of possible marriages, regardless of the market imbalance. On the

other hand, when prices are high and the market is not very imbalanced, a non-trivial

number of agents are unmatched. In these situations the platform faces a less trivial

pricing decision.
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Figure 2.1. Expected marriages under equal-order MAP. Fixing M = 50 men and varying
1 ≤W ≤ 100 women, the figure shows the expected number of marriages for various values
of q. For example, when q = 0.9, if M = W = 50, Equation 2.5 yields roughly 43.6 expected
marriages. If values um(·), uw(·) were uniformly i.i.d. on [0, 1], this value of q corresponds
to prices of approximately pm = pw = 0.684.

2.4.2. Constrained Serial Dictatorship as a Bound

Returning to our main motivation of p-stability, we observe that for relatively smaller

markets, the expected number of p-stable marriages is well-approximated by Equation

2.5. This would be less surprising in relatively unbalanced markets, where many mecha-

nisms might yield an expected number of marriages close to min{M,W}. Therefore we

specifically consider balanced markets in Figure 2.2, where we graphically compare the
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Figure 2.2. For balanced markets and various values of q, the graph shows the difference
between Equation 2.5 and the expected number of p-stable marriages. Hence the former is
a good approximation for the latter in small, balanced markets. The fact that the values
are all positive is consistent with a related result of Arnosti (2016).

(simulated) expected number of p-stable marriages to the expected value under Equation

2.5. It is in balanced markets that one might expect the largest divergence between these

two values. As one can see, Equation 2.5 provides a fairly good approximation of the

expected number of p-stable marriages for the market sizes considered in the figure.

Figure 2.2 additionally suggests that the expected difference in the number of un-

matched pairs between the constrained serial dictatorship and DA stabilizes as the market



70

grows large. This means that the fraction matched under the constrained serial dicta-

torship converges to the fraction matched under DA. Thus the approximation becomes

arbitrarily accurate for the pricing purposes of the platform in large markets.

Therefore we turn to the analysis of the expected number of matches in balanced large

markets, i.e. where M = W = n for some n. Fixing the incompatibility parameter q,

Equation 2.4 gives us the following probability that MAPB yields a perfect match (n

marriages) when all men have the same meeting order.

P (n;n, n) = (1− q)nq(n−n)(n−n)

[
n

n

]
q

[
n

n

]
q

[n]q!

= (1− q)n [n]q!

= (1− q)n (1− qn) · · · (1− q1)

(1− q)n

= (1− qn) · · · (1− q1)

As n→∞, P (n;n, n) converges to the following expression.21

(2.6) φ(q) ≡
∞∏
i=1

(1− qi)

Since φ(q) is positive whenever q < 1, for any prices pm, pw < 1 (i.e. F (pm), F (pw) < 1),

the probability that equal-order MAP yields a perfect match remains bounded away from

zero as the market grows arbitrarily large.

21 This expression has been referred to as Euler’s function, though other functions also carry that name.
It is a special case of the q-Pochhammer symbol. Banerjee and Wilkerson (2016) give a closed-form
approximation for φ.
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To generalize this observation, consider the asymptotic probability that any fixed

number of men and women remain unmatched. If there are k marriages among M men

and W women, then there must be g = M − k single men and h = W − k single women.

Rewriting Equation 2.4 in terms of g and h we have

(2.7) P (k;M,W ) = P (k; k + g, k + h) = (1− q)kqgh
[
k + g

k

]
q

[
k + h

k

]
q

[k]q!

Now fix a constant number of single men and women, g and h respectively, and let the

number of couples k →∞ (so implicitly, M = k + g →∞ and W = k + h→∞). Then

Equation 2.7 converges to the following (see Appendix B for proof).

(2.8) lim
k→∞

P (k; k + g, k + h) = φ(q)
qgh

(1− q) · · · (1− qg) · (1− q) · · · (1− qh)

For the case of balanced markets (where M = W , so g = h) this gives us the following.

Theorem 2.6 (Asymptotic distribution of unmatched agents in balanced markets).

Fix prices pm, pw with incompatibility parameter q ≡ q(pm, pw) < 1. Consider running

equal-order MAP (all men have identical meeting orders) on a random economy. For any

positive integer g ∈ Z++,

lim
M=W→∞

P (exactly g men remain single)

= G(g; q) ≡ φ(q)
qg

2

((1− q) · · · (1− qg))2(2.9)

For the case g = 0, the limit is G(0; q) = φ(q).
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Figure 2.3. The expected number of unmatched agents under equal-order MAPBp in large,
balanced markets, for incompatibility parameter 0 ≤ q ≤ 0.975.

Equation 2.9 can be used to approximate the expected number of unmatched agents in

large (balanced) markets under equal-order MAP.22 Figure 2.3 shows the expected number

of single men (and single women) in balanced markets as n = M = W grows arbitrarily

large. For example, even when any pair is incompatible with probability q = 0.95, the

expected number of single men in a large balanced market is less than 13.4. For q = 0.80

the value drops below 3.

Since single agents are a vanishingly small fraction of the total market for any q, a

platform using equal-order MAP could charge close to maximal prices to both sides of

the market and still create close to the maximal feasible number of matches; i.e. revenue-

maximizing prices converge towards pm = pw = 1 as the market grows large. For example,

in a balanced market with i.i.d. preferences from U [0, 1] and 100 agents on each side, the

platform optimally charges a symmetric price of 0.77; with the same preferences and 500

agents on each side, the platform optimally charges a symmetric price of 0.86.

22 The probabilities G(g; q) quickly converge to zero as g increases, so we approximate the asymptotic
expectation

∑∞
g=0 gG(g; q) by considering only the first (sufficiently many) terms.
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The more surprising fact is the strength of the approximation for moderately-sized

markets.23 In particular, Figures 2.2 and 2.3 jointly suggest that the difference in the

expected number of matches in any size of market markets is bounded above by the

asymptotic number in large markets for any incompatibility parameter q. Furthermore,

Figure 2.3 shows that this asymptotic number is small for “most” values of q.

The simulations suggest two further results for p-stable matchings that we have been

unable to prove analytically. First, Equation 2.5 appears to be a lower bound on the

expected number of p-stable marriages for all market sizes. This is strongly suggested

by the non-negativity in Figure 2.2 across a range of market sizes and probabilities of

incompatibility. Additionally this is consistent with a result by Arnosti (2016) in a sim-

ilar setting. Second, the expected number of single agents under p-stability appears to

converges to zero. This would imply that the “price of stability” is zero in the limit.24

2.5. Correlated Preferences

Correlation among user preferences in the one-to-one matching case introduces incen-

tives for the platform to price-discriminate based on relative market size. This contrasts

with the literature on two-sided markets, where correlation does not affect the prices of

a risk-neutral platform.25 In particular, in the absence of capacity constraints, the many-

to-many platform optimally sets prices as if it could optimally price each transaction.

23 Such markets may also be of most practical relevance to the platform. Consider for example Airbnb or
Uber. The gross number of participating agents is large, but most agents are matching in much smaller
localized markets, both geographically and temporally. It is plausible that many such localized markets
would fall into the intermediate range.
24 From Erdos and Renyi (1964), we already know that the “price of IR” is zero in our model of i.i.d.
preferences: as the market size grows, it is with probability approaching 1 that there exists a perfect
matching satisfying individual rationality. The additional observation here is that the pairwise-blocking
constraint is also asymptotically costless.
25 E.g. Rochet and Tirole (2003), Armstrong (2006), Rochet and Tirole (2006).
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This obviates the need for the platform to consider correlation. In contrast, one-to-one

matching introduces competition within the platform. Agents can only be matched once.

Therefore each match has an opportunity cost, and this opportunity cost depends on the

correlation structure.

Two-sided matching naturally suggests two dimensions of correlation. Consider the

preferences of women over men. First, women may generally agree in their rankings over

men. In this case we say preferences are correlated across the women. Second, each

woman’s valuations over the men may be correlated. This occurs naturally if the women

have heterogeneous outside options, for example. In this case we say preferences are

correlated within the women.

The type of correlation matters for pricing in the one-to-one matching case. Assume

a continuum of agents to abstract from matching frictions. Since we are interested in

how relative market size affects pricing, consider two sides of the market: a long side L

with mass 1, and a short side S with mass λ < 1. For simplicity of exposition we assume

that individual match values are identically distributed on the two sides: FM = FW =

F . Finally, we examine relative prices in the corner cases where preferences are either

perfectly correlated across or within.

In particular, relative pricing implications across the two sides of the market are

opposite for the two types of correlation. When preferences are correlated across, the

long side is charged a lower price because the marginal agent on the long side receives a

higher-quality match. When preferences are correlated within, the long side is charged a

higher price because the value, or outside option, of the marginal agent on the long side

is higher.
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L = 1

Across: uL(k) = F−1(1− k/λ)

Within: uL(k) = F−1(1− k)

k

S = λ < 1

Across: uS(k) = F−1(1− k)
Within: uS(k) = F−1(1− k/λ)

Figure 2.4. When preferences are correlated across, the marginal valuation is higher on
the short side, implying pL < pS . When preferences are correlated within, the marginal
valuation is higher on the long side, implying pL > pS .

Graphical intuition for relative pricing in the two cases of correlation is provided in

Figure 2.4. First, note that in either case the platform maximizes revenue at some pair

of prices where the masses of agents willing to pay are equal on both sides.26 When

preferences are perfectly correlated across, the match is assortative. If a mass k of agents

is matched, the value to the marginal agent on the long side is the match value of the

k-th quantile agent on the short side, given by F−1(1 − k/λ). When preferences are

perfectly correlated within, the agents are indifferent over each agent on the other side

of the market. Therefore the value to the marginal agent on the long side is the outside

option, given by F−1(1 − k). Arguments are symmetric for the marginal valuations on

the short side of the market. Note that in the across case, the value of the marginal agent

is given by the marginal agent on the other side; in the within case, the value is given by

the marginal agent on same side.

The dependence of relative pricing on correlation in the one-to-one matching case

suggests the pricing matrix presented in Figure 2.5. The pricing matrix considers rela-

tive pricing implications across two dimensions: preference correlation and intra-platform

26 If, for example, there are more acceptable men than women, the platform can raise the women’s price
without reducing the number of resulting marriages.
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Figure 2.5. This figure captures when and how correlation moves the platform away from
equal pricing. In the absence of intra-platform competition (many-to-many case), correlation
does not affect the equal pricing recommendation. With extreme intra-platform competition
(one-to-one case), any correlation affects the equal pricing recommendation. Independent
preferences are a knife-edge case.

competition. On the vertical axis, the correlation of agent preferences may vary.27 On

the horizontal axis, the platform may face different levels of intra-platform competition as

a result of matching capacity constraints. The many-to-many case presents one extreme

with no capacity constraints, and hence no intra-platform competition. The one-to-one

case presents the other extreme, where each agent faces a capacity constraint of one.

The pricing matrix summarizes our key insights on the relationship between rela-

tive pricing, preference correlation, and intra-platform competition (capacity constraints).

First, when preferences are independent both across and within agents, a monopolist

27 Note that both types of correlation will generally exist in agent preferences, in which case we hypoth-
esize that each type of correlation will exert the pressure described, with a magnitude commensurate to
the extent of correlation.
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platform optimally charges equal prices for equal match-value distributions, regardless of

capacity constraints. Second, in the absence of capacity constraints, the platform charges

equal prices regardless of correlation structure. Third, equal pricing becomes a knife-edge

case with one-to-one capacity constraints: relative pricing generally depends on market

size and depends crucially on the type of correlation. We hypothesize that these insights

vary “continuously” with the extent of capacity constraints and the correlation structures

present in the market. However, we leave any formalization of this argument to future

work.

A final comparative static of interest is the effect of changes in the relative market size,

captured by the parameter λ. This occurs with ride-sharing platforms, for example, when

the pool of potential passengers suddenly experiences a “surge” due to a special event

or other demand shock. In particular, preferences on a ride-sharing platform exhibit

significant within correlation. Passengers have different values of hailing a cab but cannot

choose the driver. Similarly, drivers care about picking up a fare but are largely indifferent

about the passenger.28 In the case of within correlation, it is possible to show that an

increase in λ leads to higher prices for the “surging” side. This is consistent with the notion

of “surge-pricing” practiced by ride-sharing services such as Uber. Interestingly, however,

in situations where preferences are primarily correlated across, the model suggests the

opposite pricing implication.

28 While passenger and driver preferences also exhibit correlation across, we believe this is a second-order
consideration for the pricing decisions of a monopolist platform.
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2.6. Conclusion

The proliferation of online platforms and their propensity toward increased market

concentration have intensified interest in the study of platform pricing. Two features

– exclusivity and heterogeneity – jointly characterize a number of important platforms,

yet this combination of features remains largely unaddressed by the literature on two-

sided markets. Additionally, interaction between the literatures in two-sided markets and

stable matching remains limited, despite intriguing similarities. We address both gaps

by studying the revenue maximization problem of a monopolistic matching platform that

sets prices to two sides of a “marriage market.”

Our first pricing result is that a platform does not want to price discriminate across

the two sides of the market based on their relative sizes when agent preferences are

independently drawn. This result appears counterintuitive in light of a result by Ashlagi

et al. (2017), who show that small imbalances in size create large imbalances in surplus

across the two market sides. Our proof technique introduces a class of “meet-and-propose”

(MAP) matching algorithms that generalize DA by relaxing the equivalence between

preferences and meeting orders. Even though MAP algorithms do not guarantee stable

outcomes, the expected number of matches under a randomized MAP algorithm coincides

with the expected number of stable matches.

Next we address the problem of which prices a stability-constrained platform should

optimally charge. Our recursive formulation for the expected number of stable matches

quickly becomes intractable with market size. In the absence of a closed-form solution

for revenue under stability, we therefore show via simulations that the revenue under

stability is well-approximated using an exact expression for revenue under a constrained
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serial dictatorship mechanism. While the approximation is good for large markets, this

is driven largely by the vanishing cost of stability. In this case the platform can extract

almost all surplus under either mechanism. We therefore place particular emphasis on the

fact that the the approximation remains good for moderately sized markets. We suggest

that this intermediate category may also be the most relevant in practice, given that many

large markets are locally small.

Our findings depart significantly from the literature on two-sided markets when we

consider correlated preferences. In particular, correlation among user preferences in the

one-to-one matching case introduces incentives for the platform to price-discriminate

based on relative market size. In contrast, correlation does not affect optimal pricing

in the many-to-many setting of canonical two-sided markets. Furthermore, the type of

correlation matters for one-to-one matching. Preferences that are correlated across a

group of agents have the opposite pricing implication as preferences that are correlated

within agents. Our analysis of pricing under perfect correlation within and across agents

suggests that relative market size matters in the presence of capacity constraints, which

introduce intraplatform competition. We leave this topic as an interesting avenue for

future research.
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CHAPTER 3

A Dynamic Theory of Political Slant in News Media

(joint with Tomer Hamami)

3.1. Introduction

The literature on political slant in news media is relatively young. Models in this

subject area are overwhelmingly static in nature. The biased beliefs of consumers are

assumed to be exogenous, and news firms simply slant their news in order to meet demand.

Such models overlook the critical role news firms play in the formation of consumer beliefs

in the first place. The purpose of this paper is to analyze this role in a dynamic setting

where news slant affects consumer beliefs over time.

We extend the seminal model of Mullainathan and Shleifer (2005; hereafter MS (2005))

to a dynamic setting. In the original model, consumers have (exogenous) biased beliefs

about the state of the world and a taste for news slanted towards their beliefs (to provide

tension in the model, consumers also dislike slanted news in general). MS (2005) show that

a profit-maximizing monopolist slants towards the consumers’ bias, but profit-maximizing

duopolists actually slant toward a point even more extreme than the most biased con-

sumer’s belief. This result follows from standard Hotelling reasoning: duopolists position

themselves farther apart than otherwise necessary to mitigate the effects of competition

on price.
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In that paper, a monopolist’s profits are higher when consumers less biased, but

duopolist profits are higher when consumers are more biased (to a certain point). It

follows that, if news firms can influence consumer beliefs, a monopolist would want to

manipulate consumers towards a lack of bias, while a duopolist would profit from some

degree of polarization. This idea forms the crux of this essay – while other papers frame

bias in news media as firms simply responding to consumer demand, the implications here

are more insidious: the news media has incentive to create biased consumers on its own,

even if consumers have initially unbiased beliefs.

We construct a dynamic model where the MS (2005) game is the stage game. Addi-

tionally, news firms can choose not to report news in a period after observing the data

available to report. Consumers are naive about nondisclosure; they do not update beliefs

after observing no news even though the absence of reporting is informative about the

state of the world. Firms can use this disclosure/nondisclosure decision to influence con-

sumer beliefs. Although a news firm forgoes current period revenue by not reporting, the

next period state may be more profitable following nondisclosure.

We first solve the problem for the monopolist news firm, which effectively reduces

to a dynamic programming problem. We prove that the optimal disclosure set for the

monopolist results in consumer beliefs converging to unbiasedness. Of course, this finding

depends on the monopolist being motivated solely by profit; the journalism industry is

competitive in part because this assumption about a monopolist news firm may not be

true. Simulations and computational analysis corroborate this finding.

We next analyze the far more complicated duopolist problem. We show the incen-

tive to push consumers towards unbiasedness is tempered by the incentive to maintain
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consumer differentiation in order to suppress price competition. Moreover, we show how

news firms have incentive to actually create political division even in the case where

consumers were originally homogeneous and unbiased. Simulations and computational

analysis demonstrate scenarios in which this occurs.

The remainder of this paper is organized as follows: In the rest of this section, we

discuss what is meant by “political slant” and review the literature on bias in news me-

dia. In Section 3.2, we set up the theoretical framework of MS (2005) and show how we

extend it to a dynamic setting. In Section 3.3, we analyze the monopolist’s problem. In

Section 3.4, we analyze the duopolist’s problem. We conclude in Section 3.5. All proofs

and figures are relegated to the appendix.

What is Political Slant? Our usage of the term political slant is consistent with the

meaning common in the literature. In particular, slant does not mean the transmission of

factually incorrect information (i.e. “fake news”). Rather, slant involves a combination

of framing, phrasing, and filtering to present information in a way that makes it seem as

if its implications are consistent with a certain set of preexisting beliefs. To demonstrate,

we gently borrow the below example from Gentzkow and Shapiro (2006):

“On December 2, 2003, American troops fought a battle in the Iraqi city of

Samarra. Fox News began its story on the event with the following paragraph:
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In one of the deadliest reported firefights in Iraq since the fall of Saddam

Hussein’s regime, U.S. forces killed at least 54 Iraqis and captured eight

others while fending off simultaneous convoy ambushes Sunday in the

northern city of Samarra.

The New York Times article on the same event began:

American commanders vowed Monday that the killing of as many as 54

insurgents in this central Iraqi town would serve as a lesson to those

fighting the United States, but Iraqis disputed the death toll and said

anger against America would only rise.

And the English-language website of the satellite network Al Jazeera (Al-

Jazeera.net) began:

The US military has vowed to continue aggressive tactics after saying it

killed 54 Iraqis following an ambush, but commanders admitted they had

no proof to back up their claims. The only corpses at Samarra’s hospital

were those of civilians, including two elderly Iranian visitors and a child.”

These three news stories each reported on the same event, and none said anything

untrue. Nevertheless, it is clear that each paints a very different picture about what

occurred and the implications of the event. This is what is meant by political slant.
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Related Literature. The literature on political slant in news media is largely a post-

internet phenomenon and thus still a relatively young body of scholarship. Gentzkow et

al. (2015) do an excellent job of breaking down existing theoretical work into demand-

side and supply-side models of bias. A demand-side model of media bias is one where

consumers prefer to consume biased news, whether the source of that preference is explicit

bias [Mullainathan and Shleifer (2005), Gentzkow and Shapiro (2006), Burke (2008), Stone

(2011)] or simply differentiation according to partisanship [Bernhardt et al. (2008), Chan

and Suen (2008)]. Whichever assumption drives consumer preferences for slanted news,

a key feature of all of these papers is that it is exogenous, and news firms are merely

responding to a force that already exists. As a direct extension of MS (2005), the current

paper falls into this category, and its key contribution is to examine the mechanism by

which consumer preference for bias is endogenously affected by the actions of news firms

themselves. Supply-side models of bias, on the other hand, are ones where slanted news

arises not because of consumer preference, but because either the news firm (or its agents)

wants to affect policy [Baron (2006), Chan and Suen (2009), Duggan and Martinelli (2011),

Anderson and McLaren (2012)], or because political agents themselves are manipulating

voting behavior using the media as a catalyst [Strömberg (2004)].

There is also a body of work that uncovers empirical evidence that political slant

actually exists and varies across news outlets [(Groseclose and Milyo (2005), Gentzkow

and Shapiro (2010)]. Gentzkow and Shapiro (2010) is especially relevant in that they

find evidence consistent with the theory that news slant is primarily driven by demand-

side forces. Finally, there are a few papers that examine the extent to which slanted

news media can impact beliefs and/or political behavior [Druckman and Parkin (2005),
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Dellavigna and Kaplan (2007), Gerber et al. (2009), Hmielowski et al. (2015), Martin

and Yurukoglu (2017)]. Each finds evidence that such influence exists, with a particular

emphasis on existence and availability of the Fox News network.

3.2. Framework

There is some state of the world ω that is distributed normally with mean 0 and variance

vω. Each period, the firm observes a data point dt = ω+ ε where ε is normally distributed

with mean 0 and variance vε. A news firm can observe data point dt and then choose

to report news n ∈ R. In this context, we define news slant as s ≡ n − d. A news firm

chooses a one-to-one slanting strategy s : R→ R that maps each possible data point to a

unique news report. This restriction on the firm’s strategy space is intended to represent

some required standard of editorial conduct; the firm can slant news in a way that is

pleasing to its readers, but it cannot explicitly obfuscate a news event. A firm’s disclosure

set D ⊆ R is the set of data points for which a firm decides to report news.

A unit mass of consumers have potentially biased beliefs prior to observing any news.

Specifically, they initially believe ω is normally distributed with mean b1 and variance vω.

Consumers have the following preferences regarding news:

• Consumers are inherently interested in learning about ω and thus value learning

the realization of d each period.

• Consumers dislike slanted news in general. This could be true because of the

psychological burden associated with unraveling the true value of d from some

n 6= d or because slanted news is in general of lower journalistic quality.
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• Consumers prefer news to be slanted in accordance with their existing biases,

represented in period t by bt.

Thus, if a consumer with bias b consumes news n with slant s, his payoff is characterized

as follows:

Ub = ū− χs2 − φ(n− b)2 − P(3.1)

Where ū, χ, and φ are positive parameters. In this expression, ū represents the inherent

value of information, χ represents the consumer’s general distaste for slant, φ represents

the consumer’s distaste for news that fails to conform to his preexisting biases, and P is

the price the consumer pays for the news. Each consumer purchases news from the news

firm for which its expected payoff is highest and also has an outside option with value

equal to zero. The news firm’s payoff is simply equal to its revenue, which is equal to the

price it charges (P ) multiplied by the share of the market captured, and discounts future

payoffs exponentially with discount factor δ.

The key distinction between this model and that of MS (2005) is that this game is

played repeatedly, with a new data draw each period, and consumer beliefs bt evolve over

time. A consumer that consumes news in period t effectively observes data point dt and

thus updates his beliefs as follows:
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bt+1 =
ptbt + pεdt
pt + pε

(3.2)

pt+1 = pt + pε(3.3)

Where pt ≡ 1
vt

and pε ≡ 1
vε

are the corresponding precisions. However, consumers are

boundedly rational in the following sense:

Assumption 3.1. Consumers behave as though the firm never withholds news. That

is, if the firm reports no news, then consumers do not update their beliefs even though the

absence of disclosure may imply something about dt. Moreover, when a consumer consid-

ers his expected payoff when determining his willingness to pay, he takes expectations over

the full distribution of dt even if the firm might not report news for all dt.

There is a growing body of empirical and experimental literature that suggests con-

sumers failing to update in the absence of information may actually be a more accurate

representation of human behavior than the fully rational consumer. For example, Jin et

al. (2015) show in an experimental setting that information receivers are insufficiently

skeptical of nondisclosure in a verifiable disclosure game. Similarly, Brown et al. (2012)

show that consumers fail to infer low quality about movies whose studios choose not to

make them available to critics prior to release.

This assumption allows us to exploit the conjugate prior for the normal distribution

and characterize consumer beliefs in any period t. Let 1Dt be an indicator function that
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is equal to 1 if dt ∈ Dt and 0 otherwise. Then, for any period t ≥ 1, consumer beliefs are

distributed normally with mean bt and variance vt as follows:

bt =
pωb1 + pε

∑t−1
τ=1 dτ1Dτ

pω + pε
∑t−1

τ=1 1Dτ
(3.4)

vt =
1

pt
=

1

pω + pε
∑t−1

τ=1 1Dτ
(3.5)

Formally, the timing of the game is as follows:

(1) The firm chooses slanting policy st(dt). This policy is common knowledge. If

there are multiple firms, they choose their policies simultaneously.

(2) The firm chooses a price Pt to charge if it reports news. This price is common

knowledge. If there are multiple firms, they choose their prices simultaneously.

(3) Consumers decide whether or not to purchase from the firm (conditional on news

being reported). If there are two firms, each consumer purchases from at most

one firm.

(4) The firm privately observes dt. If there are two firms, each observes the same dt.

(5) The firm decides whether or not to report news. If a firm reports, then nt =

dt + st(dt). Only consumers who previously decided to purchase news from this

firm know whether or not news was reported.

(6) Stage game payoffs are realized. Any consumer that observes news updates his

beliefs accordingly, and the game returns to Step 1 for period t+ 1.

Before we proceed to analyze the problems of monopolist and duopolist news firms, it

will be useful establish some shorthand notation:
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γ ≡ φ

χ+ φ
(3.6)

sz(d) ≡ γ(z − d)(3.7)

The parameter γ will frequently recur as a coefficient. It measures, on a scale from 0 to 1,

the extent to which consumers are willing tolerate slanted news in order to consume news

that conforms to their current beliefs. MS (2005) show that sz(d) is the slanting policy

that maximizes the expected payoff of a consumer with belief b = z. In our solutions,

firms will be exclusively using slanting policies with this structure, so the shorthand is

useful. We can also say that a news firm that chooses slanting policy sz(d) is positioning

itself at location z in a spatial modeling sense. Lastly, it will be useful to note that the

expected payoff for a consumer that consumes news positioned at z and pays price P is:

Ed[Ub] = ū− χγ(b2 + vd)− φγ(z − b)2 − P(3.8)

For the derivation of this expression, see Lemma A1 from MS (2005).
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3.3. Monopolist’s Problem

3.3.1. Monopoly: Theory

In this section, we will assume that consumers are homogeneous and have beliefs (bt, pt)

in period t. 1 The strategy for the monopolist in period t consists of a slanting policy

st(dt), a price Pt, and a disclosure set Dt. The strategy for a consumer in this case is

simply whether or not to purchase news from the monopolist.

In the absence of competition, the monopolist’s problem collapses to a fairly straight-

forward dynamic programming problem. First, note that, since consumers can figure out

the true value of dt from nt, the firm’s choice of slant in equilibrium affects only its cur-

rent period payoff and not the future state. Thus, the firm will choose the slanting policy

that allows it to charge the highest possible price that period – this is the same as the

monopolist’s solution in MS (2005). Specifically,

s∗t (dt) = γ(bt − dt)(3.9)

P ∗t = ū− χγ(b2
t + vd)(3.10)

Notice, importantly, that the price the firm can charge in equilibrium is strictly de-

creasing in the absolute value of bt and strictly decreasing in vt. This implies that the

firm has at least two dynamic incentives:

(1) The firm prefers consumers to have as small a bias as possible and might be

willing to forgo some profit today to keep future beliefs sufficiently close to zero.

1 The case of a monopolist news firm with heterogeneous consumers is a trivial extension that mirrors the
analogous case in MS (2005) without affecting the qualitative dynamics in which we are most interested.
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(2) The firm prefers belief variance to be as low as possible. This gives the firm

additional incentive to report news, since each news report decreases the variance

of future beliefs.

Since we already know the slanting and pricing policies of the firm in equilibrium and

that consumers will indeed purchase news, the monopolist’s problem reduces to a dynamic

programming problem with state vector (bt, pt). In each period, the firm merely observes

dt and decides whether to report news. Let V (bt, pt) be the firm’s value function and

V (bt, pt)|dt be the value function upon observing dt. Then,

V (bt, pt)|dt = max

{
ū− χγ

(
b2
t +

1

pt
+

1

pε

)
+ δV

(
ptbt + pεdt
pt + pε

, pt + pε

)
, δV (bt, pt)

}(3.11)

V (bt, pt) = Edt [V (bt, pt)|dt ]

(3.12)

Our analysis focuses on two issues: the nature of the firm’s disclosure set (that is, how

the news firm systematically censors data) and the evolution of consumer beliefs over time.

Lemma 3.1. Holding pt constant, V (bt, pt) is single-peaked at bt = 0 if Dt is non-empty.

Lemma 3.2. If Dt is non-empty, then it is convex and symmetric around the point

d∗t ≡ −
ptbt
pε

.
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Lemma 3.1 tells us that the firm’s long term expected payoff is highest when consumers

are unbiased. This, in turn, tells us something about which data point is most desirable

in the form of Lemma 3.2: the dt that results in bt+1 = 0, which we denote by d∗t . In

particular, the closer dt is to d∗t , the closer bt+1 will be to zero. Since Dt will always be

an interval symmetric around a point with a sign opposite that of bt, if follows that this

information disclosure policy will result in belief convergence to zero.

Proposition 3.1. Consider a sequence of data {dτ}∞τ=t such that Dτ is non-empty for

every τ . Then, E[bτ ]→ 0 and Dτ → R as τ →∞.

Proposition 3.1 states that, as long as a monopolist continues to report news, bias will

not persist. Moreover, in the long run, the monopolist will disclose all data to consumers.

3.3.2. Monopoly: Computational Analysis

In order to further investigate a monopolist’s revelation incentives, we numerically solve

for the firm’s value function V (bt, pt) and equilibrium disclosure strategy D(bt, pt). Be-

cause the arguments require a bounded state space, however, we use state variables (bt, vt)

instead of (bt, pt). While the precision pt becomes unbounded with revelation, at any time

t + k ≥ t we have vt+k ∈ [0, vt]. Additionally, the following lemma bounds the state

variable bt.
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Lemma 3.3. For all sequences {bt}∞t=1 for which Dt is non-empty for all t, bt is bounded

from above and below in both the monopolist and duopolist cases. Specifically:

bt ∈
(
−
√

ū

χγ(1− δ)
,

√
ū

χγ(1− δ)

)
(3.13)

Given the bounded state space, standard arguments show that the operator

Tf(bt, vt) = Edt

[
max

{
ū− χγ

(
b2
t + vt + vε

)
+ δf

(
btvε + dvt
vε + vt

,
vtvε
vt + vε

)
, δf(bt, vt)

}]

is a contraction mapping [Blackwell (1965)] under the sup-norm. As a result, there exists

a unique function V such that TV = V . Furthermore, this function can be computed by

iteratively applying the operator T :

Tf i(bt, vt) = f i−1(bt, vt), f 0(bt, vt) = f 0

until an arbitrary degree of accuracy ε is reached:

d(f i, f i−1) < ε.

The numerical implementation proceeds by approximating V on a finite grid and by

considering optimal revelation strategies on a discretized space of news. Specific details

are relegated to Appendix D.

We now present numerical results for the parameter values φ = 0.7, χ = 0.7, δ =

0.95, ū = 5, vω = 0.25, vε = 0.25. Figure F.1 gives the estimated value function. Figure

F.2 gives the probability of revealing news dt. These highlight the monopolist’s incentives
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to disclose news in a way that creates an unbiased and well-informed (high precision) set

of readers. In particular, given such a population of consumers, the firm reveals all news.

The next set of results concern convergence. Figures F.3 and F.4 show the convergence

of vt and bt at a point (bt, vt) = (10.75, 0.1) with a low probability of reporting and a low

continuation value. In Figure F.3, the average bias and variance are plotted against the

period number, whereas in Figure F.4, the average states are plotted against one another;

the large black dots in Figure F.4 mark the average (bt, vt) pair at every tenth iteration.

This gives an indication of the speed of convergence. For a low value point, convergence

of the average path is slow. However, this is because on many paths, the probability of

reporting remains near zero. Once news is revealed, the firm quickly begins to report

news with probability near one. Either a point is not moving between periods, or the

path quickly enters into a region where nearly all news is revealed. This also explains the

observed near-linearity on the (bt, vt) plot in Figure F.4; a single path either converges

quickly to (0, 0) or remains at the original value until a sufficiently “shocking” piece of

news is revealed.

In contrast, at a moderate value point such as (bt, vt) = (8, 0.22), we see a much faster

rate of convergence (Figures F.5 and F.6). Few paths do not report news in an early

iteration, and once they begin reporting they quickly move toward (0, 0). In Figure F.6

we also see that by the tenth iteration, the average path has shifted significantly toward

the origin, and it only accelerates in later iterations.
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3.4. Duopolist’s Problem

3.4.1. Duopoly: Theory

Suppose there are up to two types of consumers who have current biases b1 ≤ b2. Suppose

further that two firms have already positioned themselves at locations z1 ≤ z2, where

“locating” implies si = szi(d) and that dt ∈ D1,t ∩D2,t.
2 Then, conditional on Pj, firm i

captures both types of consumers if and only if:

ū− χγ(b2
j + vd)− φγ(zi − bj)2 − Pi > ū− χγ(b2

j + vd)− φγ(zj − bj)2 − Pj(3.14)

⇐⇒ Pi < Pj + φγ[(zj + zi)(zj − zi) + 2bj(zi − zj)](3.15)

Specifically, for firm 1 to capture type 2 consumers, it must be that:

P1 < P2 − 2φγ∆z[b2 − z̄](3.16)

And for for firm 2 to capture type 1 consumers, it must be that:

P2 < P1 − 2φγ∆z[z̄ − b1](3.17)

Where:

2 As in MS (2005), we simply impose as an assumption that duopolists use linear slanting strategies.
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∆z ≡ z2 − z1(3.18)

z̄ ≡ z1 + z2

2
(3.19)

Alternatively, if dt is in the disclosure set of only one firm, the active firm captures the

whole market only if:

P1 ≤ ū− χγ(b2
2 + vd)− φγ(z1 − b2)2(3.20)

P2 ≤ ū− χγ(b2
1 + vd)− φγ(z2 − b1)2(3.21)

These expressions capture some important differences between the monopolist case and

the duopolist case. Firm j would ideally like to cater to the preferences of its half of the

market by setting zj = bj and charging the monopolist price to capture all of the surplus.

However, if b1 and b2 are sufficiently close to each other, this creates an incentive for firm

i to undercut this price and capture the entire market for itself. However, the case where

one firm serves the entire market is never an equilibrium:

Lemma 3.4. If b1 6= b2, then each firm serves at most one type of consumer in equi-

librium.
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Conditional on disclosure, the goal of each news firm in the stage game is to charge

the highest possible price subject to two constraints. First, they have to charge a price

low enough that consumers are willing to buy news. We will denote this as the WTP

constraint:

P1 ≤ ū− χγ(b2
1 + vd,1)− φγ(z1 − b1)2(3.22)

P2 ≤ ū− χγ(b2
2 + vd,2)− φγ(z2 − b2)2(3.23)

In the monopolist game, this is the only constraint and therefore always binds; the

monopolist always captures all the surplus when consumers are homogeneous. We will

denote by Pm
i the price the monopolist would charge in state (bi, vi) if it were positioned

at location zi, and this price is equal to the right hand side of the WTP constraint for

each respective firm.

The duopolist firm has a second constraint: conditional on zj the price for firm i must

be low enough that it is not profitable for firm j to undercut and steal the whole market.

We will call this the undercut constraint:

P1 ≤
1

2
P2 + 2φγ∆z(z̄ − b1)(3.24)

P2 ≤
1

2
P1 + 2φγ∆z(b2 − z̄)(3.25)

Some stage game examples will help demonstrate the dynamic tension between these

two types of constraints. For these examples, assume the following:
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ū = 10(3.26)

φ =χ = 2(3.27)

vd,1 =vd,2 = 1(3.28)

Example 3.1. −b1 = b2 = 2 We know there will not be a stage game equilibrium where

one firm captures the entire market. Let us begin by setting zi = bi, binding the WTP

constraint for each firm, and then checking the respective undercut constraint. When

−z1 = z2 = 2, we have Pm
1 = Pm

2 = 5. The undercut constraint for firm 1 is satisfied:

5 ≤ 2.5 + (2)(1)(4)(2) = 18.5(3.29)

And the undercut constraint for firm 2 is analogous. So we have a stage game equilib-

rium; neither firm can benefit by raising price (because consumers are not willing to pay

more), lowering price (undercutting the other firm is too costly to be profitable), or by

changing position (choosing any zi 6= bi makes Pm
i smaller).

What does this tell us about dynamic incentives with respect to each firm’s disclosure

policy? The crux of this equilibrium is that the two consumer types are sufficiently

differentiated that each firm operates as a de facto monopolist for its respective market

segment. The local dynamic incentive here is the same as in the monopoly case: each

firm could charge a higher price if its consumers beliefs were a little bit closer to zero. In

fact, there is so much slack in the undercut constraint that, holding bj constant, firm i
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would be best off if bi = 0. In the case where bi = 0 and bj = 2, Pm
i = 9 is still satisfies

the undercut constraint by a substantial margin.

Of course, this local incentive to shift consumers closer to zero is not a global incentive.

To see this, let us examine an extreme scenario:

Example 3.2. b1 = b2 = 0 In this case, consumers are homogeneous, and we will

observe z1 = z2 = p1 = p2 = 0. This result follows from standard undifferentiated

Bertrand reasoning and is shown explicitly in Proposition 3 of MS (2005). Because stage

game profits are zero, the undercut constraint dominates the WTP constraint and the firms

have a strong incentive to manipulate consumers apart from each other. For example, we

could have disclosure sets such that:

D1 = {d ∈ R : 0 ≥ d ≥ −d̄}(3.30)

D2 = {d ∈ R : d̄ ≥ d ≥ 0}(3.31)

In this case, firm 1 only reports data points that lie left of center (but still above some

extreme lower bound) and firm 2 only reports data points that lie right of center (but still

below some extreme upper bound). For any given dt such that d̄ ≥ |dt| 6= 0, half of the

consumers will consume news and update to bt+1 6= 0 while the other half will remain at

bt+1 = 0. In this way, forward-looking, profit-maximizing news firms can actually create

polarization and political conflict even where none previously existed. This analysis has

a key implication: the worst possible scenario is for consumer types to have very similar

beliefs with very low variance, so firms will choose disclosure policies that prevent this from
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happening. Thus, we will not observe all consumer beliefs converging to unbiasedness

as we did in the monopoly case. It is plausible, however, that one type converges to

unbiasedness while another converges to beliefs away from zero (more information on this

scenario in the computational analysis below).

Example 3.3. −b1 = b2 = 1 Lastly, let us consider this intermediate example. In this

case, Pm
1 = Pm

2 = 8, and both sets of constraints bind simultaneously:

8 ≤ 4 + (2)(1)(2)(1) = 8(3.32)

Firm i does not want |bi| to increase – this would tighten the WTP constraint and

reduce its price. Firm i also does not want |bi| to decrease – this would tighten the

undercut constraint and reduce its price. Thus, holding bj constant, firm i wants to

keep its consumers’ beliefs exactly as they are. This gives us a clue about what types of

convergence we may observe in our computational analysis below.

3.4.2. Duopoly: Computational Analysis

We next present the algorithm used to compute the value function for the duopoly case.

As previously, specific details of the implementation are relegated to Appendix D. For

simplicity of notation, let xit = (bit, v
i
t) denote the pair of state variables for firm i at

time t, let xt without firm superscript denote the pair xt = (x1
t , x

2
t ), and let x̄t denote

the flipped pair x̄t = (x2
t , x

1
t ). Let ρ(xi, d, ri) denote the state-update function which

returns the updated beliefs and variance given by expression (D.1) in Appendix D when

ri = 1 (news is revealed) and which returns the identity xi when ri = 0 (news is not
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revealed). In addition to choosing prices according to the Duopoly Algorithm presented

in Appendix E, firms choose whether to reveal rit(d, x) ∈ {0, 1} each possible piece of news

d ∈ R. Given the value function V 1 and Firm 2’s revelation strategy r2
t (·, x), Firm 1’s

equilibrium revelation strategy solves:

∀d, r1
t (d, xt) ∈ arg max{P 1(xt) + δV 1(ρ(x1

t , d, 1), ρ(x2
t , d, r

2
t (d, xt)),

δV 1(x1
t , ρ(x2

t , d, r
2
t (d, xt)))}(3.33)

A Nash equilibrium of the revelation game jointly solves (3.33) and the analogous condi-

tion for Firm 2. Note that value functions are subscripted by player for now. An important

point is that the duopoly game will generally have a large multiplicity of disclosure equi-

libria, and a value function for each player is specific to the equilibrium selected. Note

also that we subscript the player strategies rit to allow for the possibility that firms choose

different equilibria in different iterations for the same state variables. For asymmetric

equilibria there is no basis for assuming these value functions will be equal.

Simultaneously solving for the revelation equilibrium at each iteration may be computa-

tionally intensive, and it additionally requires us to take a stance on equilibrium selection.

Therefore we begin by searching for a symmetric disclosure equilibrium in the manner of

Pakes and McGuire (1994). Namely, we solve for the value function for a single firm, say

Firm 1, and at each iteration t we assume that Firm 2 plays as Firm 1 would have played

at the same state variables in the previous round, and then we compute Firm 1’s optimal
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best response:

∀d, rt(d, xt) ∈ arg max{P 1(xt) + δVt−1(ρ(x1
t , d, 1), ρ(x2

t , d, rt−1(d, x̄t))),

δVt−1(x1
t , ρ(x2

t , d, rt−1(d, x̄t)))}(3.34)

Note that, if found, a solution V = V t = V t−1 and strategy profile r = rt = rt−1
3

constitutes a symmetric equilibrium of the original game where r1(d, x) = r(d, x) and

r2(d, x) = r(d, x̄).

In this game, however, it becomes clear ex post that a pure strategy equilibrium cannot

be symmetric. In particular, the symmetry cannot be expected to hold for b1 = b2 6=

0, v1 = v2. Both firms have an incentive to move toward zero, but they also have an

incentive to keep their clientele sufficiently separated to extract high surplus. For a given

dt, we should then expect three types of outcomes. The first two are that either both

firms report news or that neither reports news. In such equilibria both firms have a

dominant strategy to either report or not. These involve symmetric actions. The third,

however, involves the pair of equilibria where exactly one news firm reports. Given that

the competing firm reports, it is optimal for the other firm to avoid reporting, lest the two

firms move too close in bias-variance space. We conjecture that each firm strictly prefers

the equilibrium in which it reports news.

Nevertheless, for now this computation should provide a good first-order approxima-

tion to equilibrium and to the corresponding value functions.4 We use the approximate

3 Numerically speaking, a pair of arbitrarily close approximations.
4 Intuitively, we are computing a sort of level-k reasoning outcome, where Firm 1 best responds to a firm
that would take the same action.
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value function to simulate trajectories of bias, which are computed by selecting a true

equilibrium given the value function (which for now is generated in a “near” equilibrium).

We expect this to provide a good approximation for two reasons. The first is that, when

consumers have the same bias, the current period profit is zero for each firm regardless of

the revelation decision, so the incentives for firms preferring one outcome over the other

involve only future payoffs. Second, this still involves a sensible best response to a sensible

action and may approximate more of a mixed strategy equilibrium. Consider again a dt

in a given state such that Firm 1 reports if and only if Firm 2 does not. In the current

computation, in one iteration over the value function, Firm 1 reports. Responding to

this action in the next iteration, it does not. Iterating over this logic, what we capture

is a sort of mixed strategy response where the firms mix over the equilibria.5 It is clear,

however, that this computation is not a contraction mapping because the strategies will

eventually cycle as described, and correspondingly the value function will also vary when

we are in a revelation iteration versus a non-revelation iteration.

3.4.3. Results

As described in the previous section, the current algorithm does not compute a formal

equilibrium of the game. However, we conjecture and expect that the properties high-

lighted in this section are robust to the approximation, and that we will see the same

phenomena in a true equilibrium. Figures F.7 and F.8 graph the value function for one

firm as we respectively shift the bias and variance of the other firm’s consumers. An

interesting phenomenon is that a lower variance firm can defend an optimal point and

5 But correspondence to an actual mixed strategy equilibrium is broken by the presence of a discount
factor δ 6= 1.
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force the other firm to move its consumers to a more extreme point, but if both firms have

sufficiently certain (low variance) consumers then they may be stuck in a trap where both

firms would like to move away from one another but are no longer able to provide suffi-

ciently extreme news to do so. This “bias trap” is evidenced in the lower right quadrant

of Figure F.8.

In Figures F.9 and F.10, we analyze the following question: given the approximate value

function, how do firms optimally behave in the future? In order to do so, we have to take a

stance on equilibrium selection. In particular, we plot the equilibrium where the same firm

always reveals (does not reveal) in the case of multiple stage game revelation equilibria.

We expect that this will provide an upper (lower) envelope to the value functions for the

two players, and therefore it is an interesting case to examine. Note that in both the case

where firms start off at the same bi and the case where they start off equidistantly on

opposing sides of 0, the consumers of the firm with the reporting advantage eventually

have correct beliefs. The other firm quickly stops revealing news that would move it

too close to this firm in equilibrium. In a sense the firm with a first-mover advantage

(“first to press”) can move beliefs to the truth and force the other firm to reveal only

news that maintains bias. Whether the firms remain separated in all equilibria for all

discount factors δ is not clear from this figure, although the figures seem to indicate a

strong and persistent incentive for the firms to remain differentiated – namely, a firm will

stop revealing news if doing so moves it too close to the other firm. Another interesting

question is: does one firm necessarily move to the truth, i.e. do there exist equilibria

without convergence to zero for at least one firm as t → ∞? We think in general the

answer to the latter question will be yes, and this depends on the equilibrium we select.
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3.5. Conclusion

In this essay, we show how competitive forces in the news media industry can create

political division and polarization among consumers, even in cases where none initially

existed. For policy makers, this is a negative outcome in two ways. First, it results in

decreased welfare within the confines of the model. In our framework, total surplus is

maximized when when consumers are homogeneous and unbiased. A monopolist gets us

to this outcome, though the monopolist also reaps all of the surplus. When duopolists

shift consumers away from unbiasedness as they do in our model, they are decreasing

total surplus in order to increase producer surplus. Second, there are obvious, unmodeled

negative externalities associated with political conflict that are not internalized by news

firms (if anything, such conflict may increase demand for news media).

Unfortunately, highlighting this problem does not lead to any easy solution. Although

the monopolist case seems to lead to a positive outcome, this result depends crucially

on the assumption that the monopolist is motivated solely by profit. Democracies value

competitive news industries specifically because this assumption may not always be true.

One possible approach that could improve outcomes is to use education to create con-

sumers with low-bias, high-confidence initial beliefs, but such things are easier said than

done.

There are natural avenues to continue this line of research. Within the context of theory

and computation, we can continue to consider new cases. There is room for variation

along several dimensions, including within the parameter space, the set of initial states,

and the set of equilibrium selection assumptions. Robust case analysis can help us better

understand when the issues raised in this paper are most severe.
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Moreover, virtually all of the theoretical predictions in this model are testable empir-

ically. Media scholars have means to measure political slant, and the methodology of

Gentzkow and Shapiro (2010) has grown quite popular. Scholars also have access to rich

data about consumer beliefs through organizations such as the Pew Research Center. It

is our hope that continued research will paint a clearer picture about the relationship

between news media and consumer beliefs and shed some light on how to mitigate the

concerns raised in this essay.
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APPENDIX A

An Absolute Test for Racial Prejudice: Informativeness

Theorem A.1 (Athey and Levin (2017), Theorem 1). Suppose signal structures F and

F ′ satisfy FOSD. Then F ′ is preferred to F by all treators with a utility function that is

supermodular in (a, q) if and only if:

(A.1) F ′Q(·|F ′X(X) > α) �FOSD FQ(·|FX(X) > α) for all α ∈ [0, 1].

Proof of Lemma 1.2. If F r,t = F r,t′ , the result is trivial. Therefore suppose F r,t �

F r,t′ . Fix any average action ā. By definition of the information structure ordering (A.1),

F r,t
Q (·|F r,t

X (X) ≥ 1− ā) �FOSD F r,t′

Q (·|F r,t′

X (X) ≥ 1− ā).1

By FOSD and because the identity function is trivially increasing,

(A.2) E
r,t
Q [Q|F r,t

X (X) ≥ 1− ā)] ≥ Er,t
′

Q [Q|F r,t′

X (X) ≥ 1− ā)].

Equivalently,

kr,t(ā) ≥ kr,t
′
(ā).

Equivalence follows because a signal is included in the conditioning statements of the

expectations in (A.2) if and only if the treator – applying an optimal decision rule that

generates aggregate search rate ā – would treat such a signal. �

1The weak inequality is without loss since I assume the set of signal outcomes is atomless.
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APPENDIX B

Revenue from Matching Platforms: Omitted Proofs

Proof of Theorem 2.1. To randomly generate a realization of KDA, the process

would randomly generate preferences, and then run DA. However this is probabilistically

equivalent to the following process:

(i) randomly determine whether each w is acceptable to each m (given pm),

(ii) randomly order each m’s acceptable women to determine ordinal preferences, and

then

(iii) run DA.

To randomly generate a realization of KrMAP, the process would randomly generate

preferences and Bm’s, and then run MAP. However this is probabilistically equivalent to

the following process:

(i) randomly generate whether each w is acceptable to each m (given pm),

(ii) randomly order each m’s acceptable women to determine a relative meeting order

over just those women,

(iii) run DA, using these meeting orders as “preferences”.

This process skips the steps in which men meet unacceptable women. It is clear, however,

that this would be a redundant step1 hence the two processes are equivalent. �

Proof of Lemma 2.1. As in the matching literature, we can consider the equivalent

case where men propose sequentially, and the current proposer is given by the lowest

1We intentionally include this redundancy since it allows derivation of our later results.



116

indexed man who is currently unengaged. We will define a recursive proposal probability

function πk(η,P , µ) to compute the probability of k matches conditional on:

• A W -length vector η whose ith entry counts the number of compatible proposals

received so far by woman i.

• An order P of meetings remaining for each of the men.2

• A temporary match µ which records the set of engagements at the given stage.3

Note that, given our lowest-unengaged-index proposal rule, the remaining meetings P

and the temporary match µ are enough to determine the next proposer m(P , µ), as well

as the woman w(P , µ) he meets, in the next step of a MAP algorithm with remaining

meetings P and a temporary match µ. Additionally, let δ(P , µ) denote the transformation

which deletes the current meeting between m and w from the meeting order, and let

ρ(P , µ) denote the transformation which updates the temporary match µ by replacing

w’s current engagement (if any) by m(P , µ).

Then observe that we can write the conditional probability πk of k matches recursively

as follows:

πk(η,P , µ) =qπk(η,P ′, µ)

+(1− q)
(

1− 1

n′w

)
πk(n

′,P ′, µ)

+(1− q) 1

n′w
πk(n

′,P ′, µ′)

2We use P because we can think without loss of this object lying in the space of (the men’s) preferences.
Namely, think of the meetings left for any man in the same way as a preference, and denote the end of
the meeting list in the same way as an IR constraint.
3 Again, this µ can inhabit the same space as a traditional matching function µ.
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where w = w(P , µ), n′ = n+1w denotes the new vector in which we have augmented the

wth value of n by 1, P ′ = δ(P , µ), and µ′ = ρ(P , µ).

The three terms correspond to the three possible outcomes at such a stage of MAP

given random preferences:

• m and w are incompatible, which occurs with probability q. To proceed we simply

remove w from m’s meeting order.

• m and w are compatible but w prefers her previous engagement. This occurs

with probability (1− q)
(

1− 1
n′w

)
. We update the meeting order and the number

of compatible men that women w has met.

• m and w are compatible and w prefers m to her previous engagement. This

occurs with probability (1− q) 1
n′w

. We update the meeting order and the number

of compatible men met, and we replace w’s previous engagement with m in the

temporary match.

To close the loop, we specify the terminal conditions:

πk(η, ∅, µ) =


1 if |µ| = k

0 else.

Note that the number of remaining meetings decreases by one at every step, so that every

terminal node of the recursive computation is reached in finite steps.

We finish the proof by observing that the probability of k matches in a random economy

with meeting order B is given by:

P (k,B) = πk(η0,B, µ0)
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where η0 is a length-W zero vector and µ0 denotes the null match where all agents are

single. It follows that the distribution of the number of matches is parametrized by the

single variable q. �

Proof of Lemma 2.2. We prove the result for MAP, and the result for DA follows

immediately. Fix a profile of meeting orders B, a value of q ∈ (0, 1], and a profile of

preferences u. Consider prices pm = 0, pw = q, and p′w = q′ > q (for which q(pm, pw) = q,

q(pm, p
′
w) = q′). At pm = 0, each man finds every woman acceptable. Hence we can

reinterpret each Bm as an ordinal preference relation over W , and reinterpret MAP(B) as

Deferred Acceptance.4 The input to DA is (i) the men’s preferences in the form of B, and

(ii) the women’s preferences in the form of their rankings over acceptable men at prices

pw and p′w respectively.

The women’s ordinal preferences over men at price p′w are a truncation of their prefer-

ences at pm. It follows from Theorem 2 of Gale and Sotomayor (1985)5 that any agent who

is unmatched when DA on the women’s preferences derived from pw remains unmatched

when running DA on the women’s preferences derived from p′w. This proves monotonicity

of the number of marriages for any fixed u. Hence taking expectations over all preferences

u, we have K̄(q) > K̄(q′). �

Proof of Theorem 2.3. Equation 2.3 can be rewritten using Lemma 2.1 (or Theo-

rem 2.2 for the case of DA), along with a transformation of variables

max
pm,pw

(pm + pw)K̄(q(pm, pw)) = max
p,pm

pK̄(q(pm, p− pm))

4Each m meets women in order of Bm, and bothers proposing only if the woman finds him acceptable;
each woman keeps her best proposer.
5On the stable matching problem, discrete applied math.
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where p ≡ pm + pw is the revenue from a single marriage. Observe that if (p∗, p∗m) solves

the latter maximization problem, then p∗m must solve

max
pm

p∗K̄(q(pm, p
∗ − pm))

That is for fixed p, pm should be chosen merely to maximize the expected number of

marriages K̄(). Consider first the general case for distributions Fm, Fw. By Lemma 2.2,

this means pm should be chosen to minimize q(pm, p
∗ − pm) = Fm(pm) + Fw(p∗ − pm) −

Fm(pm)Fw(p∗ − pm).

Differentiating q() we have

∂q(pm, p
∗ − pm)

∂pm
= (1− Fw(p∗ − pm))fm(pm)− (1− Fm(pm))fw(p− pm)

= (1− Fm(pm))(1− Fw(p∗ − pm))

[
fm(pm)

1− Fm(pm)
− fw(p∗ − pm)

1− Fw(p∗ − pm)

]

Now consider the case Fm = Fw = F .6 By the monotone hazard rate condition this

implies

∂q(pm, p
∗ − pm)

∂pm



≤ 0 for pm < p∗

2

= 0 for pm = p∗

2

≥ 0 for pm > p∗

2
.

Therefore q(pm, p
∗ − pm) is minimized at pm = p∗/2. �

Proof of Theorem 2.4. Fix M and W , and a profile of identical meeting orders. we

want to know the probability P (k;M,W ) that this procedure ends with k couples. Clearly

6Of course when Fm 6= Fw the optimal prices may not be equal, but the same principle of equating hazard
rates applies.
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Equation 2.4 holds whenever M = 1: the lone man in the economy is either incompatible

with each woman (P (0; 1,W ) = qW ) or is not (P (1; 1,W ) = 1− qW ).

Using induction on the number of men M , suppose that for any k, Equation 2.4 accu-

rately describes P (k;M−1,W ). By the construction of the MAP algorithm with identical

orders, and symmetry of the men, we have the following observation: Fixing M , consider

running the algorithm only until man mM−1 is matched (or is rejected by all women); call

this the end of stage M − 1. The probability that k of the first M − 1 men are married

at this point in the algorithm is precisely P (k;M − 1,W ), since a complete run of the

algorithm for a randomized economy of size (M − 1,W ) is equivalent to a run of the

algorithm to the end of stage M − 1 for a randomized economy of size (M,W ).

Furthermore for the economy (M,W ) to end up with k marriages it must be that, at

the end of stage M − 1, there were either k or k− 1 temporary marriages. We separately

consider these two cases.

Case 1: at the end of stage M − 1, k men are temporarily matched. There are thus

W −k women currently unmatched. The algorithm now introduces man mM , who begins

to sequentially meet women. If w1 is currently unmatched, there is probability (1−q) that

she accepts a proposal from mM (ending the algorithm), and probability q that he must

continue by meeting w2 (if she exists). But if w1 was temporarily matched, then with

certainty some man—either mM or her temporary partner—will be permanently matched

to her, and the other man continues by meeting w2 (if she exists). In this latter case, it is

probabilistically irrelevant which man continues on to meet w2 (by the i.i.d. assumption

on utilities).
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This process continues for each woman in turn until the algorithm ends. Each tem-

porarily married woman wj keeps some offer and sends the other man on to meet wj+1.

Each currently single woman (if met) ends the algorithm with an accepted proposal with

probability (1 − q). Therefore, “stage M” does not add an additional marriage to the

already existing k marriages with probability qW−k.

Case 2: at the end of stage M − 1, k − 1 men are temporarily matched. There are

thus W − k + 1 women currently unmatched. As above, the introduction of man mM

in stage M fails to yield an additional match precisely when each of the W − k + 1 is

incompatible with the unique man who proposes to her. Therefore, “stage M” adds an

additional marriage to the already existing k − 1 marriages with probability 1− qW−k+1.

Combining Case 2 and Case 1 respectively, P (k;M,W ) equals

P (k − 1;M − 1,W ) · (1− qW−k+1) + P (k;M − 1,W ) · qW−k

Using Equation 2.4 to substitute for P ( · ;M − 1,W ) this becomes
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(1− q)k−1q(M−k)(W−k+1)

[
M − 1

k − 1

]
q

[
W

k − 1

]
q

[k − 1]q!(1− q
W−k+1)

+ (1− q)kq(M−k−1)(W−k)

[
M − 1

k

]
q

[
W

k

]
q

[k]q!(q
W−k)

=

(
qM−k

[k]q (1− q)

)
(1− q)kq(M−k)(W−k)

[
M − 1

k − 1

]
q

[
W

k − 1

]
q

[k]q!(1− q
W−k+1)

+ (1− q)kq(M−k)(W−k)

[
M − 1

k

]
q

[
W

k

]
q

[k]q!

=

(
qM−k

[k]q (1− q)

)
(1− q)kq(M−k)(W−k)

[
M

k

]
q

[k]q
[M ]q

[
W

k

]
q

[k]q
[W − k + 1]q

[k]q!(1− q
W−k+1)

+ (1− q)kq(M−k)(W−k)

[
M

k

]
q

[M − k]q
[M ]q

[
W

k

]
q

[k]q!

= qM−k(1− q)kq(M−k)(W−k)

[
M

k

]
q

[k]q
[M ]q

[
W

k

]
q

[k]q!

+ (1− q)kq(M−k)(W−k)

[
M

k

]
q

[M − k]q
[M ]q

[
W

k

]
q

[k]q!

= (1− q)kq(M−k)(W−k)

[
M

k

]
q

[
W

k

]
q

[k]q!

(
qM−k [k]q + [M − k]q

[M ]q

)

= (1− q)kq(M−k)(W−k)

[
M

k

]
q

[
W

k

]
q

[k]q!

(
[M ]q
[M ]q

)
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Proof of Equation 2.8. We rewrite Equation 2.4 in terms of k, g ≡ M − k, and

h ≡ W − k, and take the limit as k →∞.

lim
k→∞

P (k; k + g, k + h)

= lim
k→∞

(1− q)kqgh
[
k + g

k

]
q

[
k + h

k

]
q

[k]q!

= lim
k→∞

(1− q)kqgh
(

(1− qk+1) · · · (1− qk+g)

(1− q) · · · (1− qg)

)(
(1− qk+1) · · · (1− qk+h)

(1− q) · · · (1− qh)

)
[k]q!

= lim
k→∞

(1− qk) · · · (1− q)qgh
(

(1− qk+1) · · · (1− qk+g)

(1− q) · · · (1− qg)

)(
(1− qk+1) · · · (1− qk+h)

(1− q) · · · (1− qh)

)
= φ(q)qgh

1

(1− q) · · · (1− qg) · (1− q) · · · (1− qh)
�

Proof of Theorem 2.6. Follows from Equation 2.8. �



124

APPENDIX C

A Dynamic Theory of Political Slant: Omitted Proofs

Proof of Lemma 3.1. V (bt, pt), when fully expanded, is an infinite discounted stream

of prices (or in an extreme scenario where Dt is empty, equal to 0). The price the firm

is able to charge in any period t̂ ≥ t is strictly decreasing in |bt̂|. Moreover, bt̂ can be

written as follows:

bt̂ =
ptbt + pε

∑t̂−1
τ=t dτ1Dτ

pt + pε
∑t̂−1

τ=t 1Dτ

Thus, bt̂ is strictly increasing in bt and therefore prices in all periods after t are strictly

decreasing in |bt|. Hence, V (bt, pt) is strictly decreasing in |bt| for all (bt, pt) such that Dt

is non-empty.

�

Proof of Lemma 3.2. First, notice that P ∗t and δV (bt, pt) are independent of dt.

It must be, then, that V
(
ptbt+pεdt
pt+pε

, pt + pε

)
≥ V

(
ptbt+pεd̃t
pt+pε

, pt + pε

)
for all dt ∈ Dt and

all d̃t /∈ Dt. We know from Lemma 3.1 that V is maximized at b = 0. Thus, since

ptbt + pεd
∗
t = 0, it must be that d∗t ∈ Dt.

To show that Dt is convex, consider some point dt ∈ Dt. Let d̂t = αdt + (1 − α)d∗t

be a convex combination of dt and d∗t . Then,
∣∣∣ptbt+pεd̂tpt+pε

∣∣∣ < ∣∣∣ptbt+pεdtpt+pε

∣∣∣, which implies

V
(
ptbt+pεd̂t
pt+pε

, pt + pε

)
≥ V

(
ptbt+pεdt
pt+pε

, pt + pε

)
. Therefore, it must be that d̂t ∈ Dt.
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To show that Dt is symmetric around d∗t , consider some point dt ∈ Dt such that

dt = d∗t + α, where α is some real number. Let d̂t = dt − α. Then,
∣∣∣ptbt+pεd̂tpt+pε

∣∣∣ =
∣∣∣ptbt+pεdtpt+pε

∣∣∣,
which implies V

(
ptbt+pεd̂t
pt+pε

, pt + pε

)
= V

(
ptbt+pεdt
pt+pε

, pt + pε

)
. Therefore, it must be that

d̂t ∈ Dt.

�

Proof of Proposition 3.1. First, consider states where Dt = R. Since the mean

of the true distribution of dτ is zero, it is immediate that bτ will trend toward zero.

Alternatively, consider states where Dt is a strict subset of R. Suppose bt > 0. Because

Dt is symmetric around d∗t ≡ −
ptbt
pε

< 0, it follows that E[dt|dt ∈ Dt] < 0. Thus, bτ will

on average trend towards zero in such states. An analogous argument holds when bt < 0.

Since bτ trends towards zero in all states where Dt is non-empty, it follows that bτ → 0

as t→∞.

To see that Dτ → R, first note that pτ →∞ and therefore pεdτ
pτ+pε

→ 0. That is, because

the marginal impact of an outlying data point converges to zero, the firm is less likely to

forgo current period revenue to avoid severe belief distortion. Thus, the endpoints of Dt

increase in magnitude without bound and ultimately converge to +∞ and −∞.

�

Proof of Lemma 3.3. Consider a continuation payoff where a news firm receives a

payoff equal to ū in every subsequent period. Note that this is strictly higher than the

continuation payoff in any plausible state in either the monopoly or duopoly cases. Next,

consider the (negative) current period price for which a news firm would be indifferent

between reporting news (and receiving the previously mentioned continuation payoff) and

not reporting news. That is:
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Pt +
δū

1− δ
= 0(C.1)

Consider a monopolist news firm and denote its consumers’ current bias by b̄. Then,

we can re-write the above expression as:

χγ

(
b̄2 +

1

pt
+

1

pε

)
=

ū

1− δ
(C.2)

⇐⇒ b̄ = ±

√
ū

χγ(1− δ)
− 1

pt
− 1

pε
(C.3)

By construction, given pt, we know that a monopolist firm when faced with bt > |b̄| or

bt < −|b̄| will never report news and therefore Dt is empty. Since pt and pε are positive

numbers, we know that, in any state:

−
√

ū

χγ(1− δ)
< b̄ <

√
ū

χγ(1− δ)
(C.4)

And therefore, for any sequence that does not terminate (i.e. for which Dt is always

non-empty), it must be the case that:

bt ∈
(
−
√

ū

χγ(1− δ)
,

√
ū

χγ(1− δ)

)
(C.5)
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The proof for the duopoly case follows a fortiori since Pt in any given state for a

duopolist is weakly lower than Pt in the same state for a monopolist.

�

Proof of Lemma 3.4. By contradiction, suppose that firm 1 serves the whole market

(the proof is analogous for the case where firm 2 serves the whole market). There are two

possible cases:

• Case A: Firm 2 chooses not to report news and firm 1 chooses price P1 ≤

ū− χγ(b2
2 − vd)− φγ(z1 − b2)2

• Case B: Firm 2 reports news but firm 1 chooses price P1 < P2 − 2φγ∆z[b2 − z̄]

Note that in both cases, firm 2 earns no revenue AND all consumers consume news, which

means that firm 2 does not benefit from any strategic manipulation of consumer beliefs.

Thus, if there exists a strategy where firm 2 serves some of the market and earns strictly

positive revenue, then the case where firm 2 earns zero revenue cannot be equilibrium.

Note that, because b1 6= b2, it cannot be that firm 1 positions itself directly on top of

both types of consumers (i.e. it cannot be that z1 = b1 and z1 = b2). Thus, firm 2 always

has the opportunity to position itself slightly closer than firm 1 to one type of consumer

and capture that type while charging a slightly higher price. Since this guarantees positive

revenue, it cannot be that one firm serves the whole market in equilibrium.

�
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APPENDIX D

A Dynamic Theory of Political Slant: Numerical Computation

D.1. Monopolist’s Problem

Reduction to a Finite State Space

We consider a finite-state approximation to the monopolist’s problem. In particular, at

each iteration we approximate f i by storing an m×n matrix f̃ i defined on an m×n grid

G = {(bi, vj) : 1 ≤ i ≤ n, 1 ≤ j ≤ n} of the bounded (b, v) space. However, even for a

finite grid of news dt the point in the first term of the maximand

(D.1)

(
btvε + dvt
vε + vt

,
vtvε
vt + vε

)

may fall outside of the grid G, and so we approximate f i at such points by simplicial

interpolation [Algorithm 6.5, Judd (1998)].

Discretizing News

An additional complication arises with the continuity of news, namely that dt ∼ N (0, vε+

vω). Not only are we restricted to computing the decision to report news dt given a function

f i for a finite set of news,1 but there is also no closed form solution for the expectation of an

arbitrary function of a normally distributed variable, and so we are required to numerically

1 We could conceivably do this if f is well behaved, in which case we can numerically solve for the zeros
of the function and summarize the reporting decision by the finite set of thresholds.
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integrate Edt [max{. . . }]. We therefore discretize the space of news as follows. Choose a

number k − 1 of sample points and let D = {di : F (di) = i/k, i ∈ (1, k − 1)} where F is

the cdf of the distribution of dt. Thus our set of news is sampled equidistantly in terms

of the cdf F rather than the news dt. This simplifies the numeric integration.

Numeric Integration

The integral over possible news is approximated by:

(D.2)

∫ ∞
−∞

h(d) dF (d) ≈
k−1∑
i=1

h(di+j)[F (di+1)− F (di)]

where j = 1 if F (di+1) ≤ 0.5 and j = 0 otherwise.2 Note from the way we have defined D

in the previous section we have [F (di+1)− F (di)] = 1/k.

Summary

The final implementation is presented in pseudocode form.

(1) Define parameters φ, χ, γ, δ, ū, vω, vε, discretizing parameters m,n, k, and an error

threshold ε. In particular, we set m = n = 100 and k = 1000.

(2) Fix a desired upper bound v̄ for vt and compute b̄.

(3) Compute B =
{
−b̄+ ib̄

n
, i = 0, 1, . . . n

}
, V =

{
iv̄
m
, i = 0, 1, . . . ,m

}
and G =

{(b, v) : b ∈ B, v ∈ V}.

(4) Given k, compute D.

(5) Initialize f 0. For simplicity we set f 0(g) = 0 for all g ∈ G.

(6) Define MSE > ε and set t = 0.

2 The idea is to have an approximation that is symmetric across the mean and excludes the endpoints to
infinity.
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(7) While MSE > ε:

• For each g ∈ G:

– For each d ∈ D:

∗ Given g and d, compute gr and gn, that is for both the case where

the monopolist reports d and where he does not.

∗ Approximate f t(gr) using simplicial interpolation. Note that gn =

g and so f t(gn) is already stored.

∗ Set:

f t+1
d (g) = max

{
ū− χγ

(
b2
t + vt + vε

)
+ δf t(gr), δf t(gn)

}
Numerically integrate f t+1

d (g) over d as proposed in (D.2) to obtain

f t+1(g).

• Compute new MSE between f t+1.

(8) Set V = f t+1 and f t and increment t.

D.2. Duopolist’s Problem

This section proceeds largely as in the monopoly section, except that the squared di-

mensionality of the state space x = (b1, v1, b2, v2) now restricts the granularity of the

grid G with which we approximate the value function. Motivated by the results from the

monopoly value function, instead of sampling points equidistantly we focus observations

in the area around b = 0 by letting B = ± b̄/(2j − 1), j = 1, 2, 3, 4. We compute V as pre-

viously, but with significantly reduced precision with m = 8. The grid G is then defined



131

as:

G = {(b1, v1, b2, v2) : b1, b2 ∈ B, v1, v2 ∈ V}
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APPENDIX E

A Dynamic Theory of Political Slant: Duopoly Stage Game

Algorithm

Full characterization of the stage game equilibrium in the case of duopoly is extremely

complex in some states. In order to perform computational analysis, we use the following

algorithm to determine how duopolists make slanting and pricing decisions. In some

cases, this algorithm gives outcomes exactly equivalent to true equilibrium; in some cases

it does not. However, the algorithm is designed to capture many of the same qualitative

dynamics demonstrated in Section 3.4.1, and we conjecture that many of the qualitative

observations from our results will remain true in the case of formal equilibrium.

E.1. Notation

We will refer to three types of pricing strategies in the algorithm below. Firm i chooses

its monopolist price Pm
i if it sets its price equal to the total surplus otherwise enjoyed

by its consumers. Given competitor price Pj, firm i chooses its undercut price P u
i (Pj) if

it charges the price that makes consumer type j indifferent between firms i and j. Given

competitor price Pj, firm i charges its defensive price P d
i (Pj) if it charges a price that

makes firm j indifferent between remaining at Pj and switching to P u
j (P d

i (Pj)). A special

version of this price are the mutually defensive prices P̄ d
i and P̄ d

j . This is the pair

of prices for which both firms are exactly indifferent between undercutting the other and

remaining at their current prices.
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We will use the firm’s choice of slanting strategy and the firm’s choice of position

interchangeably. When we claim that firm i is positioned at location zi, it means that it

has chosen the slanting strategy si = szi(d).

Below are derivations that will be useful:

Pm
1 = ū− χγ(b2

1 + vd,1)− φγ(z1 − b1)2(E.1)

Pm
2 = ū− χγ(b2

2 + vd,2)− φγ(z2 − b2)2(E.2)

P u
1 (P2) = P2 − 2γφ∆z(b2 − z̄)(E.3)

P u
2 (P1) = P1 − 2γφ∆z(z̄ − b1)(E.4)

P d
1 (Pm

2 ) =
1

2
Pm

2 + 2γφ∆z(z̄ − b1)(E.5)

P d
2 (Pm

1 ) =
1

2
Pm

1 + 2γφ∆z(b2 − z̄)(E.6)

P̄ d
1 =

4

3
φγ∆z(b2 − 2b1 + z̄)(E.7)

P̄ d
2 =

4

3
φγ∆z(2b2 − b1 − z̄)(E.8)

E.2. Algorithm: Pricing

Given zi and zj, “equilibrium” prices will be determined as follows:

(1) First, check monopolist prices:

(a) If neither firm profits from undercutting the other, then each firm selects

its monopolist price. Formally, this means 1
2
Pm
i ≥ P u

i (Pm
j ) is true for both

firms, and P ∗i = Pm
i for both.
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(b) If undercutting is profitable for both firms, then each firm selects its mutually

defensive price. Formally, this means 1
2
Pm
i < P u

i (Pm
j ) for both firms, and

P ∗i = min{Pm
i , P̄

d
i } for both.

(c) If undercutting is profitable for firm i but not firm j, then check the price

pair [Pm
i , P

d
j (Pm

i )].

(i) If firm j still cannot profit from undercutting firm i, then firm i se-

lects its monopolist price and firm j chooses the price that defends

against firm i’s monopolist price. Formally, this means the following

inequalities all hold:

1

2
Pm
i < P u

i (Pm
j )(E.9)

1

2
Pm
j ≥ P u

j (Pm
i )(E.10)

1

2
P d
j (Pm

i ) ≥ P u
j (Pm

i )(E.11)

Then, P ∗i = Pm
i and P ∗j = P d

j (Pm
i )

(ii) If firm j can now profit from undercutting firm i, then each firm se-

lects its mutually defensive price. Formally, this means the following

inequalities all hold:

1

2
Pm
i < P u

i (Pm
j )(E.12)

1

2
Pm
j ≥ P u

j (Pm
i )(E.13)

1

2
P d
j (Pm

i ) < P u
j (Pm

i )(E.14)
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Then, P ∗i = min{Pm
i , P̄

∗
i } and P ∗j = min{Pm

j , P̄
∗
j }

E.3. Algorithm: Positioning

Given the process described above that determines prices, “equilibrium” positions are

determined as follows:

(1) First, check zi = bi for both firms.

(a) If the resulting prices are [Pm
i , P

m
j ] from scenario 1(a) in the pricing algo-

rithm or [Pm
i , P

d
j (Pm

i )] from scenario 1(c)(i) in the pricing algorithm, then

z∗i = b∗i for both firms, and we’re done.

(b) If the resulting prices are [P̄ d
i , P̄

d
j ] from scenarios 1(b) or 1(c)(ii), then firms

position as follows:

z∗1 = 2b1 − b2(E.15)

z∗2 = 2b2 − b1(E.16)

And P ∗i = P̄ d
i for both firms, and we’re done.

From here, we can substitute the appropriate positions into our prices to get prices

as a function of parameters alone, which is sufficient to characterize the full stage game

“equilibrium.”
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APPENDIX F

A Dynamic Theory of Political Slant: Figures

This appendix includes all of the figures referenced in Chapter 3.

Figure F.1. Numerically computed value function for a monopolist.
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Figure F.2. Probability of revealing news as a function of the state for a monopolist.
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Figure F.3. Simulated path of convergence of (bt, vt) with initial condition (b0, v0) =
(10.75, 0.10) for a monopolist.
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Figure F.4. Simulated rate of convergence of (bt, vt) with initial condition (b0, v0) =
(10.75, 0.10) for a monopolist.
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Figure F.5. Simulated path of convergence of (bt, vt) with initial condition (b0, v0) =
(8.00, 0.22) for a monopolist.
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Figure F.6. Simulated rate of convergence of (bt, vt) with initial condition (b0, v0) =
(8.00, 0.22) for a monopolist.
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Figure F.7. Value for Firm 1 as we vary b2.
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Figure F.8. Value for Firm 1 as we vary v2.
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Figure F.9. Average (bt, vt) and probability of revelation for duopolists with same initial
condition.
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Figure F.10. Average (bt, vt) and probability of revelation for duopolists starting at op-
posite sides of zero.
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