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ABSTRACT

Electrostatic Interactions in Self-assembly Systems

Honghao Li

Many phenomena that occur in the nanoscale, such as the self-assembly of charged am-

phiphiles, the metal extraction for recovering rare earth elements and nuclear waste as well

as water purification, are driven by the electrostatic forces. Although current simulation

techniques can handle the long-range Coulomb potential efficiently, the inhomogeneity in

materials of such systems often gives rise to significant polarization charges that have to

be determined by solving the non-trivial Poissons equation at each time step of molecular

simulation. Thus, dielectric effects are often ignored in previous simulation studies despite

their potential importance. Meanwhile, molecules can dynamically change their charges

(dissociation state) according to the environment around. Current molecular simulation

framework is unable to handle this efficiently. This dissertation presents various tech-

niques that can resolve the simulation challenges in charged systems and applies them to

uncover the significance of electrostatic interactions in those systems.

We first present the mathematical formulations for the variational approach that solves

the polarization in dielectric heterogeneous systems. We use this method to compute
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the surface polarization of ion-containing droplets. For water droplets immersed in oil,

the interdroplet interaction is attractive, and the surface polarization makes the major

contribution. By contrast, for oil droplets in water, the ion-surface induced charge in-

teraction is repulsive and counteracts the attraction between the ions, leading to a small

attractive interaction between the droplets. This research improves our understanding of

self-assembly in mixed phases such as metal extraction for recovering rare earth elements

and nuclear waste as well as water purification. Then we consider asymmetric 2:1 and 3:1

electrolyte bounded by a sinusoidally deformed solid surface. We demonstrate that even

when the surface is neutral, the electrolyte acquires a non-uniform ion density profile near

the surface. The profile is asymmetric and leads to the effective charging of the surface.

We furthermore show that the charge is modulated by the local curvature. The effective

charge is opposite to that of the multivalent ion and is negative at concave regions of

the surface. The ion distribution could be altered if there are charged molecules at the

interface.

Later, we develop the Monte-Carlo method that self-consistently solves the dynamical

dissociation state of amphiphile molecules. Together with a theoretical model, we find

that electrostatic effects arising from the inhomogeneity of the interfacial medium are re-

sponsible for this strong selectivity between two chemically similar lanthanide ions. Our

results show that the interface plays an essential role in separating lanthanides during sol-

vent extraction. We also use the Monte-Carlo simulations and pH titration measurements

reveal that ionic correlations in the peptide amphiphile (PA) assemblies shift the ionizable

amine pK ∼ 8 from pK ∼ 10 in the lysine headgroup. Our studies correlate the molecular

charge and the morphology for a pH-responsive PA system and provide insights into the
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Å-scale molecular packing in such assemblies. In another project, we use simplified theo-

retical models based on the interplay between electrostatic, bending, van-der Waals and

surface energies qualitatively reproduce the experimental observations of the increase in

bilayer aspect ratio, membrane rolling and the changes in the inter-bilayer spacing as a

function of NaCl concentration. We find the narrow ribbon to sheet transition is a first

order phase transition. Overall, our studies correlate electrostatic interaction with the

morphological changes of the membrane, and provide a means for attaining and control-

ling the cochleate morphology. In particular, we speculate that the tunable inter-bilayer

spacing can be used for controlled encapsulation and release of macromolecules of different

sizes for drug-delivery applications.

Last, we further extend our studies to the ion dynamics in charged system. Transport

of ionic species in heterogeneous polymeric media is highly dependent on the charge distri-

butions and interactions between mobile and immobile groups. Here we perform coarse-

grained molecular dynamics simulations to study the ion dynamics in swollen polyelec-

trolyte gels under external electric fields. A nonlinear response of the ionic conductivity

to an applied electric field, for field strengths that are comparable to the ionic coupling

strength, is observed. This behavior correlates to a broadening of the ionic distribution

around the polymer backbone under an increasing electric field. Also, we find that the

weak-field ionic mobility in gels increases with density, which is opposite to the behavior

of simple electrolytes. This relates to the mean coupling between charges that decreases

in gels, but increases in simple electrolytes, with increasing density. These results provide

more insights into the electric response of polyelectrolyte gels to support the development
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of applications that combine electric and mechanical properties of polyelectrolyte gels for

energy storage, sensing, selective transport, and signal transfer.
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CHAPTER 1

Introduction

It is hard to overstate the importance of the electrostatic force in soft-matter systems

with charges. Electrostatic interactions play an major role in determining the structure

and function of several biological macromolecules, such as proteins and DNA [2, 3]. In

cell signaling, the creation of electrical potential differences and ionic transport are of

chief importance [4]. On the other hand, electrostatic forces allow the stabilization of

many synthetic structures, endowed with remarkable properties: self-assembled colloidal

dispersions [5], overcharged surfaces [6], patterned surfaces by competition between short-

range and Coulombic interactions [7], and faceted thin shells [8].

It is imperative to mention that, in soft-matter systems with charges, most real situ-

ations involve regions with different dielectric response, as is the case for proteins within

an aqueous cellular medium or for emulsions where oil and water are partitioned [9]. Due

to the ensuing theoretical and computational challenges, this inhomogeneous dielectric

response of the medium is often ignored or excessively simplified. Nevertheless, to accu-

rately understand the role of electrostatic interactions in such systems, it is important to

take into account the presence of dielectric heterogeneities in the medium.

All-atom simulations are considered the best tool to study dielectric inhomogeneity,

since polarization effects are included in the atomic details of the solvent molecules. How-

ever, those simulations are generally prohibitively expensive, and the role of surface polar-

ization cannot be extracted. Therefore, coarse-grained molecular dynamics (CGMD) that
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include explicitly surface polarization effects are desired [10]. Recently, surface polariza-

tion has been introduced in implicit solvent CGMD simulations using the boundary ele-

ment method [11, 12, 13], perturbation theory [14] and the variational method [15, 16].

The variational method is further extended and validated for better performance, which

will be discussed in the method part (Chapter 2).

With such a tool, we can study many interesting phenomena. For example, aggregation

of foreign phases in dielectric media that contain ions is ubiquitous in biological systems,

oil refining industry and water purification membranes [4, 17, 18]. Segregation of ion-

containing emulsions in organic solvents is particularly important in extraction of rare

earths and nuclear waste. Therefore, we investigate the surface polarization effects on ion-

containing emulsions (Chapter 3). Another example is the polarizable interface between

two dielectric media, which has important effects on the electrolytes in its vicinity. This

becomes more complicated when there are charged amphiphile molecules at the interface,

as in the solvent extraction process. Our studies show a nontrivial structured interface

will cause symmetry breaking in electrolytes distribution (Chapter 4).

As mentioned, solvent extraction [19], also known as liquid-liquid extraction, is a

common technique used to remove a specific ion or compound from an aqueous solution.

The process works by bringing together two immiscible liquid phases, an aqueous phase

containing the dissolved ions and another liquid phase, usually with specialized extractant

molecules at the interface. The desired ion is then preferentially transferred to the non-

aqueous solvent, resulting in a target-metal-rich solvent phase and a waste aqueous phase.

This method has applications in mining and refinement of rare earth metals, in nuclear fuel

reprocessing (actinide separation), and in the cleanup of toxic waste [19, 20, 21, 22].
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Despite decades of research into the mechanics and development of solvent extraction

[20, 23], and its widespread use in industry, there is very little understanding of many

fundamental aspects of the process. Besides the polarization at the interface, the dy-

namical dissociation of charges of extractant molecules is another obstacle. Therefore,

Monte-Carlo simulation is introduced to study the intra-lanthanide selectivity (Chapter

5).

Also, we can use Monte-Carlo simulation to study the self assemblies of charged am-

phiphiles, which have wide-ranging applications including extraction, decontamination,

remediation and biosensing (Chapter 6). The degree of ionization is sensitively depen-

dent on external parameters such as pH and salt concentration, which provides a unique

platform for the design of materials with controllable structural features at different length

scales.

To further extend our research in electrostatic systems, we can apply external field and

study the transport properties. Ion dynamics in non-equilibrium simulation in itself is a

difficult topic, even without considering structure and conformation changes in the ionic

environment. However, in most circumstances, it is not possible to extend equilibrium

studies to include dynamical effects because systems driven out of equilibrium often take

conformations not accessible in equilibrium, especially when charges are involved. Ionic

transport in heterogeneous media on the microscale and nanoscale is of paramount interest

for many applications including water desalination systems [24, 25], biomimetic systems

[26, 27], as well as the potential for future generations of man-made devices, which can

interface and be intrinsically compatible with biological tissues. During the past few

years, large research effort and significant progress have been achieved in the area of ionic
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devices, such as ionic diodes [28, 29, 30], ionic transistors [31, 32, 33, 34], and ionic

conductors [35, 36]. Also, ionic conduction of polymer electrolyte confined in micro and

nanopores has wide applications in batteries and fuel cells [37]. So we present our work

on ion dynamics in Chapter 7.

In Chapter 8, we summarize our work and give a brief discussion for promising future

work.
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CHAPTER 2

Method

2.1. Variational approach for dielectric response

For charged systems, one of the major difficulties in simulation is to accurately cal-

culate the effects of dielectric medium on the charges and similarly the effects of charges

on the medium’s dielectric response. Generally, such information comes at the cost of

solving the Poisson equation

(2.1) −∇2Φ(r) =
ρ(r)

ε

at each time step of the simulation. It is often advantageous to think of alternative ways

to approach problems in electrostatics than to directly attack the Poisson equation to

determine the electrostatic potential. For example, in the problem of charges present in

two different dielectric media separated by a single interface, it is desirable to choose the

polarization charge density (also called the induced charge density) as the variable to solve

for rather than the potential. This is because the unknown induced charge density lies

only on the interface, thus presenting a reduction of the full three-dimensional electrostatic

problem to a two-dimensional surface problem.

Similarly, instead of directly investing in the expensive procedure of solving the Poisson

equation, which is a second order partial differential equation, it is often desirable to adopt

a variational approach. This is especially the case if one is interested in simulations of
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charges in heterogeneous media, where one faces the task of solving the Poisson equation at

every step of the simulation. Under a variational formulation we are offered the possibility

of bypassing the effort spent to explicitly solve Poisson equation at each step by framing

the problem in such a way that the very process of updating the simulation guarantees the

solving of Poisson equation. In other words, Poisson equation is solved on the fly in tandem

with the generation of the new charge configuration. Algorithms that implement this

possibility are known as dynamical optimization algorithms and such schemes are valid

only when the functional underlying the variational formulation is an energy functional 1.

We use the energy functional for a general electrostatics problem with the polarization

charge density as the only function variable. The functional I[ω] has such form [16, 38]:

I[ω] =
1

2

∫∫
ρ(r)G(r, r′)(ρ(r′) + s[ω](r′))d3rd3r′

− 1

2

∫∫
s[ω](r)G(r, r′)(ω(r′)− s[ω](r′))d3rd2s

(2.2)

where

s[ω](r) = ∇ ·
[
χ(r)∇r

∫
G(r, r′)(ρ(r′) + ω(r′))d3r′

]
For piecewise uniform dielectric media, the total induced charge density ω(r) splits into

two parts: ωP (r), which presents on the point charges induced charge density; ωI(r),

which is located at the interface.

1 A functional is an energy functional when it minimizes to reveal the correct energy in the system
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2.2. General functional for multiple interfaces

The functional can be written as:

I[w] =
1

2

∫∫
ρ(r)G(r, r′)

ρ(r′)

ε(r′)
d3rd3r′

+
1

2

∫∫
ρ(r)

ε(r)
G(r, s)Ω(s)d3rd2s

− 1

2

∫∫
1− ε(r)

ε(r)
ρ(r)G(r, s)ω(s)d3rd2s

− 1

2

∫∫
Ω(s)G(s, s′)ω(s′)d2sd2s′

+
1

2

∫∫
Ω(s)G(s, s′)Ω(s′)d2sd2s′

(2.3)

where

(2.4) Ω(s) = ∇s ·
(
χ(r)∇s(

∫
G(s, r)

ρ(r)

ε(r)
d3r +

∫
G(s, s′)ω(s′)d2s′)

)
Generally, for any number of sharp interfaces (u and u′ are indice of interfaces):

Ω(s) =
∑
u

(1− εu)ω(su)

+
∑
u

εdun̂u · ∇u

∫
G(su, r)

ρ(r)

ε(r)
d3r

+
∑
u

∑
u′

εdun̂u · ∇u

∫
G(su, su′)ω(su′)d

2su′

(2.5)

where εmu ≡ εu++εu−
2

defined as the dielectric constant of the interface (average between

two regions), and εdu ≡ εu+−εu−
4π

defined the difference between two regions.
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Substitute (2.5) into (2.3) we obtain (I’ll insert the derivation in later version):

I[w] =
1

2

∫∫
ρ(r)Rρρ(r, r

′)ρ(r′)d3rd3r′

+
1

2

∑
u

∫∫
ρ(r)Rρω(r, su)ω(su)d

3rd2s

+
1

2

∑
u

∑
u′

∫∫
ω(s)Rωω(su, su)ω(su)d

2sd2s′
(2.6)

where

Rρρ(r, r
′) =

1

ε(r′)
G(r, r′) +

1

ε(r)ε(r′)
G(r, r′) +

1

ε(r)ε(r′)
G (r, r′)

Rρω(r, su) =
(

1− εu
ε(r)

)
G(r, su) +

1− 2εu
ε(r)

G(su, r) +
1

ε(r)
G(r, su) +

2

ε(r)
G (r, su)

Rωω(su, su′) = εu(εu′ − 1)G(su, su′) + (1− εu − εu′)G(su, su′) + G (su, su′)

(2.7)

and

G(a, b) ≡
∑
u

∫
G(a, su)εdun̂u · ∇uG(su, b)d

2su

G (a, b) ≡
∑
u

∑
u′

∫∫
εdun̂u · ∇uG(su, a)G(su, su′)εdu′n̂u′ · ∇u′G(su′ , b)d

2sud
2su′

(2.8)

where r, r′ are position vectors of ions, and su is the position vector on interface u.

Equations (2.6) (2.7) (2.8) are all we need. Notice the definition of G and G are different

here compared to previous notes, we absorb the εd into the definition so that (2.6) has a

general simply form for any number of interfaces.
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2.3. Numerical Implementation

2.3.1. Discretization

The numerical approach begins with representing the interface between the two dielectrics

by a set of discrete grid points. Let us suppose M points grid the interface. We label the

position vectors of these points as sk, where the subscript identifies the kth point. Each

grid point, called a vertex from now on, is assigned an area ak so as to effect the transition

from the continuum form of the functional I[ω] (which involves integrals) to a discrete

version as required for the numerical exploration. Each vertex also gets its own normal

vector n̂k. Thus the surface integrals appearing in the functional move to discrete sums:

(2.9)

∫
. . . d2s −→

M∑
k=1

. . . ak

and a function prescribed on the surface, such as, for example the surface induced charge

density, becomes a function of the discrete position vectors:

(2.10) ω(s) −→ ω(sk) ≡ ωk

where ωk is the induced charge density at the kth vertex. As noted before, we represent

the free charges (ions) as point charges and, the bulk free charge density ρ(r) is expressed

as the discrete sum:

(2.11) ρ(r) =
N∑
i=1

qiδ (r− ri) ,

where we consider N ions in the system with qi being the charge of the ith ion and ri its

position vector. Employing equations (2.9)-(2.11) the functional can be transformed into
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its discretized form:

(2.12)

I[ω] =
1

2

N∑
i=1

N∑
j=1

qiRρρ(ri, rj)qj+
1

2

N∑
i=1

M∑
k=1

qiRρω(ri, sk)ωkak+
1

2

M∑
k=1

M∑
l=1

ωkakRωω(sk, sl)ωlal.

Recall that the functions Rρρ, Rρω, and Rωω are given by equations (2.7). These R func-

tions require the evaluation of renormalized Green’s functions G and G . We introduced

these renormalized Green’s functions in equations (2.8). For a numerical evaluation of

these functions we need to work with the discretized form which, by employing (2.9) and

(2.10), is found to be

G (a,b) ≡
M∑
m=1

G(a, sm)εdmn̂m · ∇mG(sm,b)am

G (a,b) ≡
M∑
m=1

M∑
l=1

εdmn̂m · ∇mG(sm, a)G(sm, sl)εdln̂l · ∇lG(sl,b)amal

(2.13)

Using equations (2.13) and (2.7), the functional I[{ωk}] can be evaluated for any set of dis-

crete induced charge values {ωk}. One cautionary note before we move forward. The bare

Green’s function G(sk, sl) and its gradient ∇G(sk, sl), which are required for the compu-

tation of G and G and also the R functions, diverge at the point k = l. The discretization

of the functional leads us to the expression where we will encounter such divergences.

To get around these divergences we employ the standard trick of approximating the sum

by an integral expression at these special points, and evaluate the subsequent integral

analytically. These integrals are easy to evaluate in symmetric geometries, such as sphere

or cylinder. For more complicated shapes we will have to get them in an approximate

analytical form which is indeed possible.
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2.3.2. Calculate Induced charge

As demonstrated in original notes, we need to minimize the functional (2.12) to obtain

the induced charge at each time step. The simplest way to minimize a function is to take

the derivative:

(2.14) ∇ωI[ω] = 0, and ∇2
ωI[ω] > 0

We have

(2.15) ∇ωkI[ω] =
1

2

N∑
i=1

qiRρω(ri, sk) +
1

2

M∑
l=1

[
Rωω(sk, sl) +Rωω(sl, sk)

]
ωlal.

This has the matrix form of a linear equation

(2.16)
(
Rωω +RT

ωω

)−→ω + qRρω = 0

so

(2.17) −→ω =
(
Rωω +RT

ωω

)−1
qRρω

A naive mehtod would solve this matrix (inversion of matrix) at every time step.

However, there are faster methods to work around the time consuming inversion of matrix,

for example, iterative method [12] and CarParrinello molecular dynamics (CPMD) on-

the-fly optimization [15]. We’ll discuss the non-static interfaces in details later. On the

other hand, for static interfaces, it’s not a problem since
(
Rωω + RT

ωω

)−1
never changes.

So we can calculate this term at the beginning and store it during the whole simulation.

Then at every time step, only the qRρω needs to be updated.



35

Notice numerically implementation need a good behavior matrix Rωω +RT
ωω. In some

extreme conditions, such as all εu = 1 for all vertex on the interfaces, and only one planar

interface, e.g. n̂m · ∇mG(sm, sl) = 0, Then Rωω = 0, no inversion exists. Such details

should be taken care of during the real implementation.

2.3.3. Static interfaces

When interfaces are fixed, we only need to solve the matrix Rωω once. Every time step,

we only need to update the quantity:

(2.18)
∑
i

qiRρω(ri, sk)

Rωω can be calculated using same formula in previous document, just note there are triple

loop in that implementation. As long as it’s only calculated once, no need to optimize.

2.3.4. Non-periodic boundary condition

If the system has open boundary condition, (2.12) can be easily evaluated by counting all

N ions and M vertices on the interfaces, where

(2.19) G(a,b) =
1

|a− b|

and

(2.20) ∇aG(a,b) = − a− b

|a− b|3



36

2.3.5. Periodic boundary condition

Under periodic boundary condition, the system becomes infinity, containing infinity num-

ber of ions and vertices. We denote n and n′ as the index of periodic images, and L is

the periodic vector, each unit cell contains N ions and M vertices, the functional (2.12)

can be rewritten into

I[ω] =
+∞∑

n′=−∞

+∞∑
n=−∞

[
1

2

N∑
i=1

N∑
j=1

qiRρρ(ri + n · L, rj + n′ · L)qj

+
1

2

N∑
i=1

M∑
k=1

qiRρω(ri + n · L, sk + n′ · L)ωkak

+
1

2

M∑
k=1

M∑
l=1

ωkakRωω(sk + n · L, sl + n′ · L)ωlal.

]
(2.21)
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Since only relative distance between two particles is important, the above equation can

be reformulated into

I[ω] =
+∞∑

n′=−∞

+∞∑
n=−∞

[
1

2

N∑
i=1

N∑
j=1

qiRρρ(ri, rj + (n′ − n) · L)qj

+
1

2

N∑
i=1

M∑
k=1

qiRρω(ri, sk + (n′ − n) · L)ωkak

+
1

2

M∑
k=1

M∑
l=1

ωkakRωω(sk, sl + (n′ − n) · L)ωlal.

]

I[ω] =
+∞∑

n′=−∞

+∞∑
n′−n=−∞

[
1

2

N∑
i=1

N∑
j=1

qiRρρ(ri, rj + (n′ − n) · L)qj

+
1

2

N∑
i=1

M∑
k=1

qiRρω(ri, sk + (n′ − n) · L)ωkak

+
1

2

M∑
k=1

M∑
l=1

ωkakRωω(sk, sl + (n′ − n) · L)ωlal.

]

(2.22)

The above term surely will blow up since infinity system has infinity energy. By simply

removing the 1st index n′, we obtain the energy per unit cell

I[ω] =
+∞∑

n=−∞

[
1

2

N∑
i=1

N∑
j=1

qiRρρ(ri, rj + n · L)qj

+
1

2

N∑
i=1

M∑
k=1

qiRρω(ri, sk + n · L)ωkak

+
1

2

M∑
k=1

M∑
l=1

ωkakRωω(sk, sl + n · L)ωlal.

]
(2.23)
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Then we absorb the summation
∑+∞

n=−∞ into all the Rxx terms. According to (2.7), the

summation finally gets into G, G and G

G(r, r′) −→
+∞∑

n=−∞

G(r, r′ + n · L)(2.24)

G(r, r′) −→
+∞∑

n=−∞

G(r, r′ + n · L)(2.25)

G (r, r′) −→
+∞∑

n=−∞

G (r, r′ + n · L)(2.26)

We now show (2.25) and (2.26) will reduce to (2.24). First we generalize (2.8) and (2.13)

to periodic system:

G (a,b) ≡
+∞∑

n′=−∞

M∑
m=1

G(a, sm + n′ · L)εdmn̂m · ∇mG(sm + n′ · L,b)am(2.27)

G (a,b) ≡
+∞∑

n′=−∞

+∞∑
n′′=−∞

M∑
m=1

M∑
l=1

(
εdmn̂m · ∇mG(sm + n′ · L, a)G(sm + n′ · L, sl + n′′ · L)

εdln̂l · ∇lG(sl + n′′ · L,b)amal

)
(2.28)
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We have

+∞∑
n=−∞

G(r, r′ + n · L)

=
+∞∑

n=−∞

+∞∑
n′=−∞

M∑
m=1

G(r, sm + n′ · L)εdmn̂m · ∇mG(sm + n′ · L, r′ + n · L)am

=
+∞∑

n−n′=−∞

+∞∑
n′=−∞

M∑
m=1

G(r, sm + n′ · L)εdmn̂m · ∇mG(sm, r
′ + (n− n′) · L)am

=
+∞∑

n′′=−∞

+∞∑
n′=−∞

M∑
m=1

G(r, sm + n′ · L)εdmn̂m · ∇mG(sm, r
′ + n′′ · L)am

=
M∑
m=1

([ +∞∑
n′=−∞

G(r, sm + n′ · L)
]
εdmn̂m · ∇m

[ +∞∑
n′′=−∞

G(sm, r
′ + n′′ · L)

]
am

)

(2.29)
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and similarly

+∞∑
n=−∞

G (r, r′ + n · L) =
+∞∑

n=−∞

+∞∑
n′=−∞

+∞∑
n′′=−∞

M∑
m=1

M∑
l=1

(
εdmn̂m · ∇mG(sm + n′ · L, r)

G(sm + n′ · L, sl + n′′ · L)εdln̂l · ∇lG(sl + n′′ · L, r′ + n · L)amal

)

=
+∞∑

n=−∞

+∞∑
n′=−∞

+∞∑
n′′=−∞

M∑
m=1

M∑
l=1

(
εdmn̂m · ∇mG(sm + n′ · L, r)G(sm, sl + (n′′ − n′) · L)

εdln̂l · ∇lG(sl, r
′ + (n− n′′) · L)amal

)

=
+∞∑

n−n′′=−∞

+∞∑
n′′−n′=−∞

+∞∑
n′=−∞

M∑
m=1

M∑
l=1

(
εdmn̂m · ∇mG(sm + n′ · L, r)G(sm, sl + (n′′ − n′) · L)

εdln̂l · ∇lG(sl, r
′ + (n− n′′) · L)amal

)

=
+∞∑

n1=−∞

+∞∑
n2=−∞

+∞∑
n′=−∞

M∑
m=1

M∑
l=1

(
εdmn̂m · ∇mG(sm + n′ · L, r)G(sm, sl + n2 · L)

εdln̂l · ∇lG(sl, r
′ + n1 · L)amal

)

=
M∑
m=1

M∑
l=1

(
εdmn̂m · ∇m

[ +∞∑
n′=−∞

G(sm + n′ · L, r)
][ +∞∑

n2=−∞

G(sm, sl + n2 · L)
]

εdln̂l · ∇l

[ +∞∑
n1=−∞

G(sl, r
′ + n1 · L)

]
amal

) (2.26)

So the only difficult for periodic system is to calculate

+∞∑
n=−∞

G(r, r′ + n · L)
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2.3.6. Real space and reciprocal space separation

The common techniques to calculate
∑+∞

n=−∞G(r, r′ + n · L) is to separate Green’s func-

tions into real space and reciprocal space G = GR+GK . This is usually done by employing

Error function erf(x) and its complementary erfc(x). Since erf(x) + erfc(x) = 1, we have

(2.27)
1

r
=

erfc(αr)

r
+

erf(αr)

r

where α is just a parameter. The 1st term has a singular behavior as r → 0, but decays

exponentially as r → ∞. The 2nd term goes to a constant as r → 0 but has a long

range tail as r → ∞. So the 1st term can be estimated accurately in real space with a

reasonable truncate cutoff length, while the 2nd term has to be calculated in reciprocal

space for a faster convergence. They are denoted as real space term and kspace term

respectively. Reciprocal space calculation depends on different methods such as Ewald or

PPPM.

2.3.7. Ewald method

There are many ways to derive the exact Ewald formula. Typically, the total energy of

a charge neutral unitcell is considered, and then separated into real space term with a

double summation over all the charged particles and a kspace term with summation over

dozens of k points of the structure factor S(k) =
∑N

i=1 qie
ikri . However, we are going

to follow another procedure (cite something here), starting from the Ewald potential of

a single unit charge. This way, we do not need to assume the charge neutrality, as a

neutralizing background is present automatically. We will show this would be better

for general derivation, and it can give us the correct physics when dealing with some
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test system (for example, single unit charge in an infinite long cylinder) in the following

chapters.

We express the Green’s function as (derivation skipped):

∞∑
n

G(r1, r2 + nL) =
∞∑
n

1

|r1 − r2 − nL|
≡

∞∑
n

1

|r− nL|

=
cutoff∑
n

erfc(α|r + n · L|)
|r + n · L|

+
4π

V

∑
k 6=0

e−k
2/4α2

k2
eik·r − π

V α2

(2.28)

where the last term is neutralizing background potential. If the whole system is neutral,

the last term would be zero, and the summation of Green’s function between all pairs

would reduce to the formula in any textbook. Notice the original summation is infinity,

after separated in real space GR and kspace GK , the summation for real space only con-

tains very few term within the cutoff range. Usually n only contains nearest {−1, 0,+1}

periodic images, and only |r + n · L| < rcut are considered, thus real space calculation is

largely reduced.

2.3.7.1. Ewald method for reciprocal calculation. For Ewald method, the Green’s

function in reciprocal space is:

(2.29) GK(r, r′) =
4π

V

∑
k 6=0

e−k
2/4α2

k2
eik·(r−r

′)

According to (2.7), Rρω has four terms, so (2.18) has four terms.

2.3.7.2. The 1st term:

(2.30)
∑
i

qi

(
1− εmk

ε(ri)

)[
GR(ri, sk) +GK(ri, sk)

]
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only consider the Kspace term:

∑
i

qi

(
1− εmk

ε(ri)

)
GK(ri, sk)

=
4π

V

∑
k 6=0

e−k
2/4α2

k2

[(∑
i

qie
ik·ri
)
e−ik·sk − εmk

(∑
i

qi
ε(ri)

eik·ri
)
e−ik·sk

](2.31)

Now we define structure factors:

Sions(k) ≡
∑
i

qie
ik·ri(2.32)

Sions,ε(k) ≡
∑
i

qi
ε(ri)

eik·ri(2.33)

Notice traditional Ewald approach only need the 1st structure factor, while our functional

needs more (we’ll see others later). However, it’s not a problem since the calculation of

structure factors only have time scale ∼ O(N). In the code, we calculate cos and sin

instead of exp, for example:

Sions(k) =
∑
i

qi(cos k · ri + i sin k · ri) ≡ cosSions(k) + sinSions(k)(2.34)

e−ik·sk = cos k · sk − i sin k · sk(2.35)
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we have

Re

[(∑
i

qie
ik·ri
)
e−ik·sk

]
= cosSions(k) cos(k · sk) + sinSions(k) sin(k · sk)(2.36)

Re

[(∑
i

qi
ε(ri)

eik·ri
)
e−ik·sk

]
= cosSions,ε(k) cos(k · sk) + sinSions,ε(k) sin(k · sk)(2.37)

(2.38)

2.3.7.3. The 2nd term:

(2.39)
∑
i

qi

(1− 2εm
ε(ri)

)∫
G(sm, su)εdln̂l · ∇lG(sl, ri)d

2sl

where G(sm, su) = GR+GK has already been calculated when calculating all the interfaces

terms, and ∇lG(sl, ri) = ∇lG
R +∇lG

K need to be calculated. (2.39) can be reformulated

into

(2.40) (1− 2εm)

∫
G(sm, su)εdln̂l ·

[∑
i

qi
ε(ri)
∇lG

R+K(sl, ri)

]
d2sl

Only consider the kspace term in ∇G, notice

(2.41) ∇lG
K(sl, ri) =

4π

V

∑
k 6=0

e−k
2/4α2

k2
ikeik·(sl−ri)

So kspace term in (2.39) becomes

(2.42) (1− 2εm)

∫
G(sm, su)εdln̂l ·

[∑
i

qi
ε(ri)
∇lG

K(sl, ri)

]
d2sl
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where

(2.43)
∑
i

qi
ε(ri)
∇lG

K(sl, ri) =
4π

V

∑
k 6=0

e−k
2/4α2

k2

[∑
i

qi
ε(ri)

e−ik·ri

]
ikeik·sl

Again, term in square bracket is one of the structure factors Sions,ε. In terms of cos and

sin

(2.44) Re ∼ (cosS− i sinS)ik(cos +i sin) = k
(

sinSions,ε cos(k ·sl)−cosSions,ε sin(k ·sl)
)

2.3.7.4. The 3rd term:

(2.45)
∑
i

qi
ε(ri)

∫
G(ri, sl)εdln̂l · ∇lG(sl, sm)d2sl

Similarly, the interface term has been calculated already, only consider G = GR +GK

(2.46)
∑
i

qi
ε(ri)

GK(ri, sl) =
4π

V

∑
k 6=0

e−k
2/4α2

k2

(∑
i

qi
ε(ri)

eik·ri
)
e−ik·sl

The same as the 2nd term in (2.31)

2.3.7.5. The 4th term:

(2.47)∑
i

2

ε(ri)
G (ri, sm) =

∑
i

2

ε(ri)

∫∫
εdln̂l · ∇lG(sl, ri)G(sl, sk)εdkn̂k · ∇kG(sk, sm)d2sld

2sk

where interface termG(sl, sk)εdkn̂k·∇kG(sk, sm) has already been calculated, only consider

(2.48)
∑
i

2

ε(ri)
∇lG

K(sl, ri)

which is the same as in (2.43)
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2.3.7.6. Wrap it up. After calculating those four terms, we obtain the quantity (2.18)

(2.49)
∑
i

qiRρω(ri, sk)

Together with the already known matrix Rωω +RT
ωω, we can calculate the induced charge

for each time step.

The total energy functional (2.6) now can be evaluated. On the other hand, the total

electrostatic energy can be calculated using

(2.50) U =
1

2

∫∫
ρ(r)

G(r, r′)

ε(r′)
ρ(r′)d3rd3r′ +

1

2

∫∫
ρ(r)G(r, s)ω(s)d3rd2s

We can compare those two results for validation.

2.3.8. Force calculation

The electrostatic force on the ith ion is Fi = −∇riU . In the minimization condition

(correct induced charge), U = I[ω], so Fi = −∇riI[ω]. We can use either equation to

calculate force, we did that in fact to validate our results. However, in the implementation,

Fi = −∇riU would be easier since ∇riI[ω] contains extra terms to calculate in both real

and reciprocal space.

(2.51) Fi = −∇riU = −qi
N∑
j=1

∇riG(ri, rj)
qj
εj
− qi

M∑
m=1

∇riG(ri, sm)ωmam

There are only two terms to calculate. Without further notice, we only consider kspace

calculation as usual.
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2.3.8.1. The 1st term:

(2.52)
∑
j

∇iG
K(ri, rj)

qj
εj

=
4π

V

∑
k 6=0

e−k
2/4α2

k2

(∑
j

qj
εj
e−ik·rj

)
eik·riik

Using the structure factor Sions,ε calculated in previous section, the real part is

(2.53) Re ∼ k
(

sinSions,ε cos(k · ri)− cosSions,ε sin(k · ri)
)

2.3.8.2. The 2nd term:

(2.54)
∑
m

∇riG
K(ri, sm)ωmam =

4π

V

∑
k 6=0

e−k
2/4α2

k2

(∑
m

ωmame
−ik·sm

)
eik·riik

We define a new term “structure factor of interface charges” here Sω =
(∑

m ωmame
−ik·sm

)
,

then the real part is

(2.55) Re ∼ k
(

sinSω cos(k · ri)− cosSω sin(k · ri)
)

To summarize, in order to calculate electrostatic energy (functional) and force, we

need three structure factors: traditional one Sions, structure factor including dielectric

environment Sions,ε and structure factor of interface Sω .

2.3.9. Beyond Ewald method

We still need to calculate three structure factors discussed above, only the detail of kspace

calculations are different.
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2.3.10. Non-static interfaces

We could use the original CPMD method [15].
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CHAPTER 3

Surface Polarization Effects on Ion-Containing Emulsions

This chapter applies the variational method to solve surface polarization in a real

physics problem. The content of this chapter is based on the following publication:

• Meng Shen, Honghao Li, and Monica Olvera De La Cruz. ”Surface Polariza-

tion Effects on Ion-Containing Emulsions.” Physical Review Letters 119, no. 13

(2017): 138002.

Abstract

Surface polarization in ion-containing heterogeneous dielectric media such as cell media

and emulsions is determined by and determines the positions of the ions. We compute the

surface polarization self-consistently as the ions move and analyze their effects on the in-

teractions between electro-neutral, ion-containing droplets using coarse-grained molecular

dynamics simulations based on the true energy functional. For water droplets immersed

in oil, the inter-droplet interaction is attractive, and the surface polarization makes the

major contribution. By contrast, for oil droplets in water, the ion-surface induced charge

interaction is repulsive and counteracts the attraction between the ions, leading to a small

attractive interaction between the droplets. This research improves our understanding of

self-assembly in mixed phases such as metal extraction for recovering rare earth elements

and nuclear waste as well as water purification.
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3.1. Introduction

Aggregation of foreign phases in dielectric media that contain ions is ubiquitous in

biological systems, oil refining industry and water purification membranes [4, 17, 18].

Segregation of ion-containing emulsions in organic solvents is particularly important in

extraction of rare earths and nuclear waste. In such processes, multivalent ions and

their counterions are encapsulated in self-assembled nano-droplets of water immersed in

oil. In the case of amphiphiles encapsulating electroneutral water droplets with trivalent

ions (such as lanthanides) together with monovalent counterions in oil, for example, the

droplets flocculate into clusters [20], and X-ray scattering data reveal long range inter-

droplet interactions. A unique feature of these emulsions is the permittivity difference,

which gives rise to surface polarization when there is a local electrical field either due to

an external field or due to the presence of charges in the system. In order to understand

the aggregation of ion-containing emulsions, it is important to study how the surface

polarization contributes to the inter-droplet interactions.

All-atom molecular dynamics simulations account for polarization effects. However,

it is not easy to extract the underlying interaction mechanism from all-atom simula-

tions, nor to follow the process over long time and length scales. As a result, the role

of surface polarization in ion-containing aggregates have remained elusive. Therefore,

coarse-grained molecular dynamics (CGMD) simulations that include explicitly surface

polarization effects are desired [10]. Recently, surface polarization has been introduced

in implicit solvent CGMD simulations using the boundary element method [11, 12, 13],

perturbation theory [14] and the variational method [15, 16].
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In this research, we use CGMD to investigate the role of surface polarization in the

interaction between ion-containing electro-neutral droplets in heterogeneous dielectric me-

dia. In contrast to traditional CGMD, this work directly considers interfacial polarization

by minimizing the energy functional of surface induced charges [16]. We first simulate two

water droplets immersed in an oil medium, each droplet is 1 nm in diameter and encloses

cations and anions with stoichiometric ratio (Fig. 3.1), consistent with the observation

in all-atomistic simulations for metalloamphipheles studies [20]. We then simulate the

opposite case of two droplets with lower dielectric constant (oil) of the same dimensions

immersed in water (Fig. 3.1) to determine the role of surface polarization in settings close

to biological conditions such as interactions between bacterial micrompartments including

carboxysomes [39]. Trivalent cations and monovalent anions of 2 Å radii are first studied,

corresponding to Eu3+ and NO- studied in experimental measurements [20]. Then we

vary the ion size and valency. We model ions explicitly, and we model solvents implicitly.

We neglect surfaces [40] and confinement effects [41] on the permittivity of the media.

We assume the bulk permittivity is 80 for water, and 5 for oil. The cases we study here are

summarized in Table 3.1, where ε1: permittivity in droplet 1; ε2: permittivity in droplet

2; ε3: permittivity in the medium.

Table 3.1. Four cases with different permittivity contrast.

Case ID Case description ε1/ε3/ε2
(a) Water droplets in oil 80/5/80
(b) Oil droplets in water 5/80/5
(c) Pure water 80/80/80
(d) Pure oil 5/5/5
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3.2. Model

The role of surface polarization can be addressed starting from the definition of po-

larization vector,

(3.1) P(x) = − [ε(x)− 1]∇ψ(x)

4π

where ε(x) is permittivity, and ψ(x) is electrostatic potential. Gaussian units are used.

However, polarization vector is a volume vector in a non-trivial dielectric medium, namely,

it is non-zero wherever the electrical field is not zero, making the surface polarization con-

tributions hard to separate from the total electrostatic interactions. In addition, surface

polarization is dynamically entangled with the positions of real charges, therefore, it is

rather difficult to be calculated and remains unresolved for decades. Fortunately, the in-

duced charge density, which is defined as ρi(x) = −∇·P(x), vanishes except when ∇ε(x)

or ρr(x) is not zero, where ρr(x) is real charge density, i.e. the induced charge is not zero

only at dielectric interfaces or at the location of real charges. Therefore, the determina-

tion of induced charges enables the separation of surface polarization contributions from

total electrostatic interactions.

We obtain the induced charges using a variational method based on the true energy

functional of induced charges as discussed in the previous chapter [16, 38]: We emphasize

that it is a true energy functional of induced charges. Minimizing the functional solves

for the induced charges and gives the true electrostatic energy.

In our CGMD simulations, surfaces are meshed into 0.0095 nm2 triangular patches

and the induced charges are obtained by minimizing the discretized energy functional.

The electrostatic force on the ions is then calculated as the product of ion charge and
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the electrical field. The excluded volume of the ions is represented by a shifted repulsive

Lennard-Jones potential: uLJ = 4ε[(σ
r
)12 − (σ

r
)6] + ε for r ≤ 2

1
6σ, where ε and σ are the

energy and distance parameter, respectively. The encapsulation of the ions by the droplet

surface is guaranteed by a shifted repulsive Lennard-Jones potential. The dynamics of ions

is advanced following Newton's second law [42]. To simulate the constant temperature

ensemble, the system is coupled to a Langevin thermostat at a temperature of 300 K. The

timestep is 1 fs. All simulations are run for at least 10 ns.

Including induced charges, ρi(x), the Poisson's Equation is rewritten as ∇2ψ(x) =

−4π(ρr(x) + ρi(x)). Then, the electrostatic potential can be further separated into bulk

and surface contributions (see Appendix),

(3.2) ψ(x) =

∫
V

ρr(x
′)

ε(x′)|x− x′|
d3x′ +

∫
S

ω(x′)

|x− x′|
d2x′

where ω(x′) is surface induced charge density, and the electrostatic energy is expressed in

terms of bulk charges and surface induced charges as

U =
1

2

∫
V

∫
V

ρr(x)ρr(x
′)

ε(x′)|x− x′|
d3x′d3x

+
1

2

∫
V

∫
S

ρr(x)ω(x′)

|x− x′|
d2x′d3x

(3.3)

The first term is the electrostatic interactions excluding the surface charges, and the

second term is the contribution that involves surface polarization. To be concise, we refer

to the first term in Eq. (3.7) as ion-ion interactions, and the second term in Eq. (3.7)

as ion-surface induced charge interactions. However, the factor of 1
2

in the second term
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Figure 3.1. Ion-ion (blue circles, fit in blue dotted lines), ion-induced charge
(red triangles, fit in red dashed lines) and total (black squares, fit in solid
black lines) inter-droplet interactions as a function of inter-droplet distance
(a) between water droplets immersed in oil and (b) between oil droplets
immersed in water. Inter-droplet interaction with uniform water permittiv-
ity (green crosses and fit in green solid lines in (a)) and with uniform oil
permittivity (green pluses and fit in solid lines in (b)). Insets are snapshots
of the simulations. Red means positive charges, and blue means negative
charges.

indicates that this term contains not only real charge-induced charge interactions, but

also induced charge-induced charge interactions.

3.3. Results and Discussion

It is known that surface polarization is determined by ion distribution, and surface

polarization also affects ion distribution. The physics behind this intertwined relation

is hardly understood without being able to separate the inter-droplet interactions into

ion-ion interaction and ion-surface induced charge interaction. Fig. 3.1 shows the total,
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ion-ion and ion-surface induced charge interactions for the four cases (a) - (d) in Table

3.1. Fig. 3.1(a) shows that in case (a), the ion-surface induced charge interaction between

the droplets contributes about 80% to the total inter-droplet electrostatic attraction at

an inter-droplet distance of 11 Å. The total inter-droplet interaction is about 1.0 kBT,

close to SAXS measurement in experiments [20]. The interaction energy decays with r−6,

where r is the distance between the two droplets (see fit curves in Fig. 3.1). This result

shows that surface polarization enhances the inter-droplet attraction for water droplets in

oil. To understand this enhancement, we notice that the surface induced charge adjacent

to positive ions is positive, and vice versa, as is shown in the snapshot in the inset of

Fig. 3.1(a) as well as the supplementary video S1 in the original paper [1]. That ions

induce same sign charges can be understood by expanding in spherical harmonics induced

charges in a single sphere,

ω(R, θ) =
q(εin − εout)

4πεin

×
∞∑
l=0

(l + 1)(2l + 1)dl

[l(εin + εout) + εout]al+2
Pl(cos θ)

(3.4)

where ω is the surface induced charge, q is the charge of an ion, R is the radius of the

sphere, d is the distance from the ion to the center of the sphere, θ is the polar angle, l is

the order of each term in the expansion, and εin and εout is permittivity inside and outside

the sphere, respectively. Eq. (3.4) shows that the induced charges are of the same sign

as the ion inside the sphere when εin > εout. Consequently, the induced charges increase

the total dipole moment formed by the real charges in each droplet, which enhances the

inter-droplet attraction.
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By contrast, in case (b), the ion-surface induced charge interaction between the

droplets is repulsive, while the ion-ion interaction between the droplets is still attrac-

tive (Fig. 3.1(b)). These two types of interactions counteract each other, leading to a

very small inter-droplet attraction (Fig. 3.1(b)). As shown in the inset in Fig. 3.1(b)

and supplementary video S2 in the original paper [1], the surface induced charges are of

the opposite sign as the charge of the ion adjacent to the interface grids, which cancels

out the dipole moment formed by the ions within the droplet. This is consistent with the

spherical harmonics expansion approximation in Eq. (3.4).

To reinforce the importance of including surface polarization for the inter-droplet in-

teractions, we perform simulations without considering surface polarization, using uniform

permittivity throughout the system and compare with simulations that consider surface

polarization. Fig. 3.1(a) shows that when water permittivity is used throughout the sys-

tem (case (c) in Table 3.1 shown in green crosses in Fig. 3.1(a)), the total inter-droplet

interaction is close to the ion-ion interaction between the droplets for water droplets in

oil. This is not surprising, considering that only ion-ion interaction exists for simulations

with uniform permittivity, and the permittivity inside the droplets in the two cases is

the same. This comparison also indicates that using uniform water permittivity under-

estimates the total inter-droplet interaction for water droplets in oil by a large amount

when surface polarization is neglected. Moreover, by comparing case (a) (black squares

in Fig. 3.1(a)) with case (d) (green plus signs in Fig. 3.1(b)), we find that simulations

with uniform oil permittivity overestimates the inter-droplet interaction by an order of

magnitude. We attribute this to the increased electrostatic interaction between ions due

to decreased permittivity. The above comparisons indicates that the total inter-droplet
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interaction is not simply reproduced by arbitrarily choosing the permittivity inside or

outside the droplets.

On the other hand, the comparison between case (b) (black squares in Fig. 3.1(b))

and case (d) (green plus signs in Fig. 3.1(b)) shows that when uniform oil permittivity is

used, the total inter-droplet attraction is overestimated for oil droplets in water. Moreover,

uniform water permittivity in case (c) also overestimates the total inter-droplet interaction

for oil droplets in water.

It is interesting that the inter-droplet interaction for case (d) with uniform oil permit-

tivity is at least twice the inter-droplet ion-ion interaction for oil droplets in water in case

(b) (Fig. 3.1(b)). This seems inconsistent with the fact that the permittivity inside the

the droplets is the same for the two cases, which seems to correspond to similar ion-ion

interactions between the droplets for the two cases, based on Eq. (3.7). To understand

this difference in ion-ion interactions with or without accounting for surface polarization,

we recall that surface polarization not only is determined by the ion distribution, but also

determines the ion distribution, and consequently ion-ion inter-droplet interactions. The

effect of surface polarization on the ion-ion inter-droplet interaction can be analyzed with

dipole-dipole interactions by simply modeling ions in each droplet as one dipole:

W =
|p(x1)||p(x2)|(cos θ12 − 3 cos θ1 cos θ2)

ε|x1 − x2|3
(3.5)

where W is the interaction energy between dipoles p(x1) and p(x2), θ12 is the angle

between the two dipoles, θ1 (θ2) is the polar angle of dipole 1 (dipole 2) with respect to

n, the unit vector in the direction of (x1 − x2), and ε is permittivity where the dipoles

are.



58

0

0.5

1

<p
2 >

0.
5  (e

 n
m

)

water droplets in oil
oil droplets in water
Pure water
Pure oil

-2.5

-2

-1.5

-1

-0.5

0

< Θ
>

distance (nm)

1

1.5

2

<|
x 1

-x
2

|>
 (n

m
)

|x1-x2|

(a)

(b)

(c)

p

𝜃2
𝜃12 𝜃1

Figure 3.2. (a) the average magnitude of dipole moment, (b) the ori-
entation factor between dipoles and (c) the distance between the center
of dipoles formed by ions in each droplet for water droplets in oil (black
squares), oil droplets in water (red circles), uniform water permittivity (blue
triangles) and uniform oil permittivity (green diamonds). Color online.

Based on Eq. (3.5), the ion-ion interaction between the droplets is determined by four

factors in the framework of dipole-dipole interactions: i) the magnitude of the dipoles,

|p(x1)| and |p(x2)|, ii) the orientation factor of the dipoles Θ = cos θ12 − 3 cos θ1 cos θ2,

iii) the distance between the dipoles, |x1 − x2|, and iv) the permittivity ε. While the

factor iv) is an input to CGMD, the rest of the factors vary upon ion distribution within

the droplets, and are shown in Fig. 3.2 for all four cases (a) to (d).

The average magnitude of the dipole moment formed by ions in each droplet
√
〈p2〉 is

smaller in cases (b) and (d) than cases (a) and (c), as shown in Fig. 3.2(a), because the
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electrostatic attraction between ions is stronger in oil than in water, leading to smaller

cation-anion distances. Moreover,
√
〈p2〉 is smaller for water droplets in oil (case (a))

than in uniform water permittivity (case (c)), because ions inside droplets induce surface-

induced charges of the same sign, which repel the ions from the surface, making cation-

anion distances even smaller. On the contrary,
√
〈p2〉 is larger for oil droplets in water

(case (b)) than in uniform oil permittivity (case (d)), because ions inside droplets induce

opposite-sign surface induced charges, pulling ions towards the surfaces.

Fig. 3.2(b) shows that the orientation factor, Θ, is much more negative for uniform oil

permittivity (case (d)) than the other cases, which has the strongest total inter-droplet

attraction in Fig. 3.1. The dipoles are oriented to minimize the enthalpic driven free

energy for case (d). We note that Θ is 0 for fully random orientations. For cases (a) and

(c), the ion-ion electrostatic interactions are normalized by large permittivities, making

enthalpic contribution to the free energy less pronounced. Therefore, the dipoles formed

by ions in each droplet are more randomly oriented to maximize the entropy. For case

(b), the ion-ion attraction between the droplets is canceled out by surface polarization,

leading to little enthalpic contribution to the total free energy, therefore, the orientation

dependence of the free energy for case (b) is weakened, also leading to random orientations.

The energy functional based CGMD and the separation of inter-droplet interaction

enables to understand the physics behind the observed phenomena. The difference in

the magnitude and the orientation factor of the dipole moments formed by the ions in

each droplet for cases (a) to (d) show that the surface polarization and ion distribution

are inter-dependent. Moreover, the average distance between the center of dipoles is

more or less of the same length scale as the distance between the droplets. We note
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that strictly speaking, ion-ion inter-droplet interactions not only include dipoles but also

quadruples, which is important for small inter-droplet interactions, but decay sharply

with inter-droplet distance.

3.4. Conclusion

Using explicit calculation of induced charges and separation of electrostatic inter-

droplet interaction, our work provides a clear understanding behind the intertwined rela-

tion between surface polarization and ion distribution. Besides finding strong attractions

between droplets with multivalent ions in agreement with all-atom metalloamphiphile ex-

traction studies [20], we find the orientation of the charges in the droplets is strongly af-

fected by the surface polarization and hence the ion-ion interaction between the droplets;

these interactions decrease as the ion size and valency decreases (see Appendix). Our

studies reveal the role of dielectric mismatch on inter-droplet interactions. While ion-

containing oil aggregates in aqueous solutions interact very weakly with each other, much

weaker than in the case of simulations that do not include surface polarization, in organic

solvents the interactions between water droplets are strongly enhanced due to surface

polarization. This understanding helps building meaningful models for analyzing inter-

actions between ion containing emulsions and microcompartents [43], and paves the way

for understanding self-assembly of mixed phases for multiple applications.

3.5. Appendix

The electrostatic interaction can be calculated from the electrostatic potential ψ that

satisfies Poisson's Equation, ∇ · (−ε(x)∇ψ(x)) = 4πρr(x), where ρr(x) is the real charge
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density corresponding to the ions and ε(x) is permittivity at x. ε is assumed to be piece-

wise uniform in this work. In terms of the induced charges, ρi, Poisson's Equation is

rewritten as: ∇2ψ(x) = −4π(ρr(x) + ρi(x)). Based on Green's theorem in Dirichlet

boundary condition, the electrostatic potential is ψ(x) =
∫
V
ρr(x′)+ρi(x′)
|x−x′| d3x′, which can be

further separated into bulk and surface contributions:

(3.6) ψ(x) =

∫
V

ρr(x
′)

ε(x′)|x− x′|
d3x′ +

∫
S

ω(x′)

|x− x′|
d2x′

where ω(x′) is the surface induced charge density.

The electrostatic energy is defined as: U = 1
8π

∫
V
ε(x)E2(x)d3x. Integration by parts

yields U = 1
2

∫
V
ρr(x)ψ(x)d3x. Substituting Eq. (3.6) for electrostatic potential, the

electrostatic energy is expressed in terms of bulk charges and surface induced charges:

U =
1

2

∫
V

∫
V

ρr(x)ρr(x
′)

ε(x′)|x− x′|
d3x′d3x

+
1

2

∫
V

∫
S

ρr(x)ω(x′)

|x− x′|
d2x′d3x

(3.7)

When the ion size is reduced from 0.4 nm to 0.2 nm in diameter, the inter-droplet

interaction is much reduced as shown in Fig. 3.3(a), comparing with case (a) studied

in this work where both ion diameters are 0.4 nm. We attribute this reduction to the

smaller distance between the cations and anions, leading to smaller dipole moment formed

by the ions, and consequently smaller induced charges at the surfaces. Fig. 3.3(b) shows

that when the cation diameter is 0.5 nm, and anion diameter is 0.3 nm, the inter-droplet

interaction is slightly smaller than case (a).
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Figure 3.3. Ion-ion (blue circles, fit in blue dotted lines), ion-induced charge
(red triangles, fit in red dashed lines) and total (black squares, fit in solid
black lines) inter-droplet interactions as a function of inter-droplet distance
between the water droplets immersed in oil (a) for ion diameters of 0.2 nm
and (b) for cation diameters of 0.5 nm and anion diameters of 0.3 nm.

The ion valence effects are studied for the cases with ion diameters of 0.4 nm. We

find that for water droplets immersed in oil, with monovalent ions in the droplets, both

the ion-ion interaction and ion-surface induced charge interaction between the droplets

are small (Fig. 3.4(a)) comparing with the case with trivalent cations and monovalent

anions in case (a). Similarly, for the monovalent ion-containing oil droplets in water (Fig.

3.4(b)), both ion-ion interaction and ion-surface induced charge interaction are smaller

than case (b). For trivalent ions, both ion-ion interaction and ion-surface induced charge

interaction between the droplets are large for both water droplets in oil (Fig. 3.4(c)) and

oil droplets in water (Fig. 3.4(d)) comparing with cases (a) and (b), respectively.

These results indicate that the inter-droplet interaction can be tuned by ion size and

ion valence.
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Figure 3.4. Ion-ion (blue circles, fit in blue dotted lines), ion-surface induced
charge (red triangles, fit in red dashed lines) and total (black squares, fit
in solid black lines) inter-droplet interactions as a function of inter-droplet
distance for (a) monovalent ions in the water droplets immersed in oil, (b)
monovalent ions in the oil droplets immersed in water, (c) trivalent ions in
the water droplets immersed in oil, and (d) trivalent ions in the oil droplets
immersed in water for ion diameters of 0.4 nm.
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CHAPTER 4

Asymmetric Electrolytes Near Structured Dielectric Interfaces

This chapter studies the electrolytes distribution near structured interface, using both

our variational method and GMRES. To present a complete story, I have included the

figures and data by Huanxin Wu. The content of this chapter is based on the following

publications:

• Huanxin Wu, Honghao Li, Francisco Solis, Monica Olvera de la Cruz, and Erik

Luijten. ”Asymmetric Electrolytes near Structured Dielectric Interfaces”. (sub-

mitted)

• Honghao Li, Trung D Nguyen, Francisco Solis, and Monica Olvera De La Cruz.

”title TBD”. (to be submitted).

Abstract

The ion distribution of electrolytes near interfaces with dielectric contrast has impor-

tant consequences for electrochemical processes and many other applications. To date,

most studies of such systems have focused on geometrically simple interfaces, for which

dielectric effects are analytically solvable or computationally tractable. However, all real

surfaces display non-trivial structure at the nanoscale and have, in particular, nonuniform

local curvature. Using two recently developed, highly efficient computational methods, we

investigate the effect of surface geometry on ion distribution and interface polarization.

We consider an asymmetric electrolyte bounded by a sinusoidally deformed surface. We
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demonstrate that even when the surface is neutral, the electrolyte acquires a non-uniform

ion density profile near the surface. The profile is asymmetric and leads to the effective

charging of the surface, which is modulated by the local curvature. The effective charge is

opposite to that of the multivalent ion and is larger at concave regions of the surface. We

furthermore show that when the surface is charged (e.g. charged amphiphile molecules

at interfaces), The electrolyte has the opposite ion distribution compared to the neutral

case, here multivalent ions have higher density at concave regions.

4.1. Introduction

The behavior of electrolytes near interfaces has important consequences for surface

properties and for processes that take place in their vicinity, such as redox reactions in

electrochemical capacitors[44], ion transfer at biomembranes[45], controlling the surface

tension of aqueous solutions[46, 47], and establishing colloidal stability via electric dou-

ble layers[48]. Despite being at the very foundation of modern electrochemistry, complete

understanding of electrolyte structure at interfaces is still elusive. Direct probes of the

electrolyte structure near an interface have long been challenging in experiments[49, 50].

Theoretical approaches have used the classical Poisson–Boltzmann (PB) model, which

offers good descriptions for dilute symmetric electrolyte, but often breaks down at high

concentrations, in asymmetric electrolytes, or near strongly charged surfaces.[51, 52, 53]

Such breakdown is due to features ignored in the mean field model such as ion size [54, 55],

ion hydration [56], dielectric effects [46], and the molecular-scale structure of the liquid

solution [57]. Many refinements in the theory have been made, including the modified

Poisson–Boltzmann [58], the Born–Green–Yvon approximations [59], the hypernetted
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chain [60], charge renormalization [61], and the inclusion of dielectric effects [62]. How-

ever, we are still far from a complete description.

Surface structure can have a strong influence on the interfacial properties. In fact,

physical roughness should be carefully considered in many applications [63, 64, 65]. For

example, the Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction, determined by

the repulsive double layer and the attractive van der Waals interaction, differs significantly

for rough surfaces compared to perfect smooth ones [66, 67, 68, 69]. Moreover, due to

the permittivity mismatch at the interface, ions induce polarization charges on the surface,

which is nontrivial for structured surfaces.

Numerical solutions to the polarization problem offer a possible path to the investi-

gation of these structures. However, even with the rapid growth of computational power,

previous simulation studies have primarily focused on geometrically simple surfaces where

the method of image charges or other techniques can be exploited [70, 71, 72, 73, 74].

One can resort to finite-difference or finite-element methods for structured interfaces.

Such algorithms involve discretization of the whole 3-dimensional space, while the in-

duced charges only reside on the surface. Thus, these methods are inefficient for dynamic

simulation purposes which require updating the polarization charges at each time step.

Recently, boundary element method (BEM) based approaches have gained popularity [11].

Instead of volume discretization, the BEM only discretizes the interface and solves the

polarization charges directly, which can be readily utilized in molecular dynamics (MD)

simulations. In this paper, we apply (1) the iterative dielectric solver (IDS), which is
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solved efficiently via a combination of a fast Ewald summation method and the general-

ized minimal residual (GMRES) method [12], (2) and the variational method [1, 15, 16]

to study the structured interfaces.

The surface structures that are of interest have dimensions in the nanoscale, making

first-principle or all-atom simulations unfeasible. We therefore simulate the system with a

coarse-grained model with implicit solvent, which captures the finite size effects, the ionic

coupling, and the polarization effects. To focus on the dielectric effects, we first study

neutral dielectric interfaces, where the electrostatic interaction between the interface and

the ions is purely due to surface polarization charges. To complement the simulations

we analytically study the system to determine the contribution to the electric potential

observed by charges near the interface due to their interaction to the surface. This calcu-

lation identifies the origin of the charge accumulation at the surface and its dependence

on curvature.

4.2. Asymmetric 2:1 electrolytes near solid neutral interface

4.2.1. Model

In nature, biomolecular structures, such as membranes and proteins often display com-

plicated surface morphologies. As a first model, we consider a solid–liquid interface with

sinusoidal surface topography (see Fig. 4.1). The system is considered as piecewise uni-

form, with a liquid electrolyte and a low permittivity solid medium. We use the value

of εs = 2 for the solid, representing materials such as lipid bilayers[75, 76, 77]. The

local height of the solid-liquid interface is described by the equation z = A cos(2πx/λ),

where A is the amplitude of the height oscillation and λ is its wavelength. We start from
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Figure 4.1. Primitive model of an asymmetric electrolyte near a neutral
sinusoidal dielectric interface. The positive divalent (red) ions the nega-
tive monovalent (blue) ions are immersed in continuum water with relative
permittivity εm = 80. The medium below the interface has relative permit-
tivity εs = 2. Apart from the polarization charges, the ions also interact
with the surface via the shifted–truncated Lenard–Jones potential.

a configuration of A = σ and λ = 10σ for our discussion and later vary the amplitude

and the surface structure. Since the roughness length scale of our surface is much larger

than the water molecule size, we treat the background solvent as an implicit dielectric

continuum of relative permittivity εm = 80. The interface is discretized into a curved

rectangular mesh. To capture the excluded volume effects and the atomistic nature of the

surface, each mesh point interacts with the ions via the shifted–truncated Lennard–Jones

(LJ) interaction. The distance between adjacent mesh points is 0.2σ. Such fine mesh also

guarantees less than 10−3 error in the force calculation of the IDS for worst configurations

when ions are closest to the surface. We model the hydrated ions as equal size spheres of

diameter σ = 7.14Å with point charges of valence Zi embedded in their centers.
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Since for symmetric electrolytes, dielectric effects are the same for both ion species,

it is more interesting to explore the behavior of asymmetric electrolytes. We carry out

simulations of 2:1 electrolytes at 50 mM concentration. Slab simulation box of dimension

10×10×100σ3 is used with periodicities in both x and y directions. The dielectric interface

is centered at z = 0. The electrolyte only stays in upper half of the box. The slab height

is sufficiently high to eliminate the boundary effects. Using a Langevin thermostat with

damping time 20t0, where t0 = (mσ2/kBT )1/2 is the LJ unit time with kBT the Boltzmann

factor and m the ion mass, The system is kept at room temperature with Bjerrum length

lB = σ.

4.2.2. Mean-field model

To better understand the features observed in the simulations we analyze the properties

of the surface polarization for a single ion of valence Z near the interface. These results

indicate the presence of induced charges and their dependence on curvature. The solution

is obtained as a perturbative expansion on the surface amplitude A. Once the induced

polarization charge is determined, the excess energy of the ion due to the polarization

effects is given by U = ZeφP/2 where φP is the electric potential due only to the polariza-

tion charges. The Boltzmann weight, exp[−U/kBT ] is then used to determine the relative

depletion of ions at the interface.

The perturbative approach expands the polarization potential as φP = φ
(0)
P +φ

(1)
P + . . .,

and similar expansions are applied to the charge density and the geometric quantities.

The order of a term in the expansion is the power of the modulation amplitude A that

appears in the expression. The zeroth order of this calculation corresponds to the case of
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a single ion near a flat interface. In that case, we have ε̄σ(0) + ε0∆εn̂(0) ·E(0) = 0. In this

flat geometry, the electric field E(0) is due only to the single ion as the field created by the

polarization charges is parallel to the surface. We have n(0) · E(0) = Ze(4πε0)−1(x′ − x) ·

n(0)/|x′−x|3, where x′ is a point at the surface and we take the ion position as x = (0, 0, a).

Integration of the Coulomb potential due to the resulting surface charge density gives the

standard image-charge potential at the position of the ion: φ
(0)
P = (4πε0)−1(∆ε/ε̄)Ze/(2a).

The resulting energy of the ion is U0 = (4πε0)−1(∆ε/ε̄)Z2e2/(4a). This expression is

positive when the solid phase has a lower permittivity.

The first order term in the expansion of the potential is associated with the deformation

of the surface. To simplify its calculation, we consider the limit where the ion is brought

to the interface. In addition, we consider first the case where its position coincides with

a peak of the deformed surface. Results for other positions follow from this calculation.

According to the image-charge result, the energy in this limit is singular but the exclusion

of a small region around the ion renders the result finite. We take the excluded region as

spherical, with radius a. That is, we use the original distance of the ion to the surface as

the cutoff for the divergent terms. This choice is not very important but simplifies the

presentation of the results. The evaluation of the potential retains an explicit dependence

on the wavelength, which is the key feature of interest in our analysis. A more complex

calculation, maintaining the ion at a finite distance from the interface, gives similar re-

sults. In this limit, the first oder terms read ε̄σ(1) + ε0∆εn̂(1) ·E(0) = 0. Other terms in the

expansion of the equation cancel due to the geometry used. The first order term in the ex-

pression for the normal is n̂(1) = [(2πA/λ) sin(2πx/λ), 0, 0]. Solving for the charge density

we obtain σ(1) = −(∆ε/ε̄)(2πA/λ)(Ze/4π)x sin(kx)/(x2 + y2)3/2. The electric potential
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created at the ion location is the integration of this density, σ(1), times the Coulomb

potential (4πε0)−1(x2 + y2)−1. The potential at the ion position has a leading term

φ
(1)
P = −(∆ε/ε̄)A(Ze/4πε0)(2π/λ)2C| ln(a/λ)| with C a positive constant. For positive

ions this excess potential is negative. For other positions, the leading term in the potential

is approximately φ
(1)
P = −(∆ε/ε̄)A(Ze/4πε0)(2π/λ)2C| ln(a/λ)| cos(2πx/λ). We now use

the fact that the mean curvature of the surface is H = −(1/2)(2π/λ)2A cos(2πx/λ). The

sign of the mean curvature is negative at convex regions such as those around the peaks

of the surface. Therefore, our result can be understood as indicating the dependence of

the potential as a function of the curvature φ
(1)
P = (∆ε/ε̄)(Ze/4πε0)(2CH)| ln(a/λ)|. We

observe that this expression can be used as an approximation for the potential in cases

with a different modulation of the surface. The resulting first-order contribution to the

interaction energy between ion and surface is U (1) = (∆ε/ε̄)(Z2e2/4πε0)(CH)| ln(a/λ)|.

For a particle near the surface the dominant term of its energy is given by its interaction

with the polarization charges. We can then write the excess charge density near the

surface in terms of the Boltzmann population factor exp[−(U (0) +U (1))/kBT ]. Expanding

the exponential factor and multiplying by the bulk densities, we obtain an excess charge

density near the surface. Within an atomic diameter from the surface, the net accumulated

charge per unit area takes the approximate form

(4.1) δq = −lB
[
C1 − C2Aa

| ln(a/λ)|
λ2

cos(
2πx

λ
)

]
×
∑
i

cieZ
3
i .

where ci is the bulk number density of species i, and the integration constants C1 and

C2 are positive according to the functional form of the estimated potentials. The values

of the constants can be estimated in terms of the parameters of the system but we note
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Figure 4.2. Density distributions of a 50 mM 2:1 electrolyte above a struc-
tured interface. Left: (a) Divalent and (b) monovalent ion density dis-
tributions for a surface without dielectric mismatch. Right: (c) Divalent
and (d) monovalent ion density distributions for a surface with permittivity
mismatch 80/2. The polarization charges significantly enhance the surface
depletion, in particular for the divalent ions.

that, within the calculation outlined above, they depend on the specific cutoff a chosen.

Equation (4.1) retains the dependence on valencies and characteristic lengths. In par-

ticular, we emphasize that the result is not zero for asymmetric electrolytes. The net

charge is a result of the asymmetric depletion of ions near the interface. Additionally,

the sign of the first order term indicates that the depletion is stronger at concave regions.

This result ignores ion correlations and is based on the properties of the direct interaction

of individual ions with the dielectric interface. Yet, as shown below, it reproduces the

key features of the charge distribution observed in simulations, indicating that it likely

represents the dominant contribution.
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4.2.3. Results and Discussion

Figure 4.2 shows the ion number density for the 50mM 2:1 electrolyte near the modulated

surface. In the absence of dielectric contrast the bulk monovalent ion density is almost

exactly twice that of the divalent ions; only close to the surface a small depletion occurs,

which is more pronounced for the divalent ions. This effect appears as ions near the

interface lack a symmetric shell of screening counterions. The asymmetric counterion

shell pulls the ions towards the bulk[78, 73]. These results serve as a baseline to assess

the effects of the dielectric contrast case.

In the presence of dielectric contrast, we observe a stronger depletion of both charged

species, owing to the repulsive polarization charges. The depletion now extends further

into the bulk, as can be expected from the long-range nature of the electrostatic interac-

tions. More importantly, since the interaction between the ion and its polarization charge

scales as Z2, the divalent ions are significant more depleted near the surface than the

monovalent ions. This asymmetry breaks the concentration balance c+2 = (1/2)c−1 that

is fulfilled in the bulk, so that charge neutrality is violated in the vicinity of the surface,

with a net negative charge cloud above the surface (Figure 4.3(a)). Strictly, this effect also

occurs in the absence of dielectric mismatch (Figure 4.3(b)) owing to the above-mentioned

difference in asymmetry of the counterion shell, but the net charge density is substantially

stronger in the presence of dielectric contrast. Also, we observe that the depletion effect

is stronger near concave domains of the surface than near convex ones (Figure 4.3(c)).

This result is consistent with the results obtained from the analytical calculation.

Along with the net ionic charge density in the electrolyte, the simulations also provide

the average induced surface charge density. Although globally the net induced charge of
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Figure 4.3. Net ionic charge distribution formed by 50 mM 2:1 electrolyte
above a neutral structured interface with (a) permittivity mismatch 80/2
and (b) no dielectric mismatch. The net ionic charge density is significantly
enhanced by dielectric effects. In addition, the lateral position above the
surface also affects the net charge density, as confirmed in panels (c) and
(d), with and without permittivity mismatch, respectively. The magnitude
of the net charge density is largest above the concave regions (troughs) of
the surface. The bin width is 0.5σ along the x direction and dz = 0.02σ in
the z direction. Panels (c) and (d) were obtained using simulations based
upon the variational approach of Ref[1].

the interface must vanish, it presents persistent nonzero averages as a function of position.

Consistent with the modulation of the ionic charge density, the average induced charge

density is positive at convex regions and negative at the concave regions, as illustrated by

the time average in Fig. 4.4(a).

To further examine the dependence of the induced charge and ion charge density

on surface structure we systematically vary the parameters of the modulated surface.

We perform simulations for different modulation amplitudes A ranging from 0 to 2σ.
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(a) (b)e

Figure 4.4. (a) Time-averaged surface polarization charge density induced
by the spatially modulated ion distribution. (b) Surface polarization charge
profile for various amplitudes of the profile.

Figure 4.4(b) shows the induced charge density averaged over the y direction, along which

the properties of the system are invariant. For large amplitudes, we observe that the

induced charge density amplitude is larger and varies more rapidly at the peak than in

the trough. At low amplitude, the induced charge density itself mimics the sinusoidal

variation of the surface, but this similarity breaks down at high amplitude (A = 2.0σ).

This break-down reflects steric effects, where ions cannot reach the bottom of the trough

once the gap near the minimum becomes too narrow.

Lastly, the phenomenon we have found in our simulations as well as the PB analy-

sis, of curvature-dependent charge depletion, is generic and not limited to surfaces with

modulation in a single dimension. Indeed, it can be generalized to other structures. For

example, Fig. 4.5 illustrates the net surface polarization charge pattern of the same 50 mM

2:1 electrolyte above a structured dielectric interface with permittivity mismatch 80/2,

but a surface modulation in both x and y directions, z(x, y) = A cos(kx) sin(ky). Similar

to our previous results, the valleys of the surface acquire a negative surface polarization
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Figure 4.5. Induced surface charge density at a structured dielectric in-
terface that is modulated along both the x and y directions. As in the
sinusoidal case [Fig. 4.4(a)], the dielectric mismatch is 80/2 with a 50 mM
2:1 electrolyte placed above the surface.

charge, whereas the peaks carry a positive induced charge. We note that periodicity of

the modulation is not a requirement for the phenomenon to occur.

4.3. Asymmetric 3:1 electrolytes near neutral/charged interface

4.3.1. Model

In this study, we consider two dielectric media with the dielectric constants ε1 = 80

(water) and ε2 = 2 (e.g. lipid bilayers) respectively. We assume a sharp interface between

two dielectric media. For simplicity, a sinusoidal interface is studied, with equation z =

A cos(2πx/λ), where the amplitude A = 1.0σ and the wavelength λ = 10σ. To calculate

the polarization charge, the interface is discretized into 80 × 40 = 3200 patches. The

electrolyte solution is only in the aqueous media. The trivalent cation concentration is
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Figure 4.6. The sketch of the studied system. (a) A sinusoidal interface
between two different dielectric constants regions (ε1 = 80 and ε2 = 2). Ions
are all in the 1st region. When they approach the interface, the interface
will have induced charge thus affect the ions distribution. (b) Another
layer of amphiphile molecules are considered. They can move freely along
the interface and some of them are negative charged.

50mM. Implicit solvent is considered. We choose the diameter of the ions as 1σ = 0.5nm.

The simulation box is 10×10×55 with the sinusoidal interface at z = 0 and another rigid

wall at z = 50 to confine the electrolytes. The simulation is periodic in x, y direction

while non-periodic in z direction.

Later we also consider another layer of amphiphile molecules. They can move freely

along the interface and some of them are negative charged. We change the fraction of

charge and study how this could affect the ion distribution. The molecules are modeled

by spherical LJ particles, restrained near the interface via a virtual hard wall layer at

distance of 1.2σ to the interface.

4.3.2. Curvature effect
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(a)

+
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(b)

(c)

Figure 4.7. (a) A single positive charge is placed 1σ above the con-
vex/concave point, the induced charge density along x direction is plotted.
When the charge is placed above the concave point, the induced charge
has higher peak, wider shape, and a compensated negative value at convex
region. (b) When two layers of uniform charges (10 × 10 point ions each
layer) are placed above the interface with negative layer closer and positive
layer further away. (c) the polarization charge is negative at concave region
while positive at convex region.

4.3.2.1. Single charge. We start from the simplest test case, a single charge near dif-

ferent curvature interface. We found the charge near concave region generates strong

polarization on the interface than a charge near the convex region, see Fig. 4.7(a).

The force calculation demonstrated the same result. For a single charge near infinite

planar dielectric interface, the force exerted on the charge by the polarization can be

easily calculated using image charge method, f = ε1−ε2
ε1+ε2

q2

4πε1r2
. For our case, ε1 = 80

(where the charge presents) and ε2 = 2. We have f = 80−2
80+2

q2

4πε1(2σ)2
= 0.2378 q2

4πε1σ2 ; While

the simulation gives f = 0.1917 q2

4πε1σ2 for charge above convex point, and f = 0.3271 q2

4πε1σ2

for charge above concave point. So the interaction for the charge is: concave > planar >

convex region.
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4.3.2.2. Many charges. For two layers of uniform charges near the interface, we find

that the polarization mainly depends on the closest layer of charges. The surface polariza-

tion of concave region has the same sign as the closest layer of charges due to the stronger

effect there. To fulfill the total surface charge neutrality, the polarization of convex region

has to be opposite. Conclusion: different depletion would result asymmetric polarization

for different curvatures.

4.3.3. Electrolytes

4.3.3.1. Trivalent with same size. The ion distribution is investigated, Fig. 4.8(a)(d)

demonstrates a stronger depletion effect of the trivalent cations than that of the monova-

lent anions. This can be explained by considering different forces experienced by ions near

a dielectric boundary[73]: (1) The deformation of the double layer tends to pull ions away

from the boundary; (2) The steric interactions tend to push ions against the boundary;

(3) The surface charge and polarization charge can attract or repel ions depending on the

relative sign of the charges. Since the interaction between the ion and its polarization

charges scales with the valence (Z2), the trivalent ions are much more depleted near the

interface than the monovalent ions. Similar effect can also be found in divalent systems

(previous sections).

We also notice the depletion effect is stronger at concave region than that at convex

region, see Fig. 4.8(b). This can be understood since an ion near concave point experi-

ences a stronger repel force than an ion near convex point, as we discussed in previous

section. This asymmetric depletion effect can also be observed for monovalent anions, see

Fig. 4.8(e). However, it is weaker than the trivalent cation case.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8. Ion distribution. (a) Charge density of positive ions. The
interface is denoted by black color, the dashed line represents the closest
distance an ion can reach due to the hard-core LJ potential. (b) Charge
density of positive ions in the narrow bin (width dx = 0.5σ) above the
convex/concave region. (c) Charge density of positive ions in the narrow
bin (width dx = 0.5σ) above the convex/concave region (system without
dielectric mismatch). (a) Charge density of negative ions. (b) Charge den-
sity of negative ions in the narrow bin (width dx = 0.5σ) above the con-
vex/concave region. (c) Charge density of negative ions in the narrow bin
(width dx = 0.5σ) above the convex/concave region (system without di-
electric mismatch). To summarize, (a), (b), (d) and (e) are for system with
dielectric mismatch while (c) and (f) are for system without dielectric mis-
match.

Both of the above effects can be found in a system where there is no dielectric mismatch

(e.g. a hard wall interface with both sides ε = 80). This proves the deformation of double

layer dominates over the steric interactions. However, the depletion and the asymmetric

depletion are much weaker.

Fig. 4.9(a) shows the net charge density in the system with dielectric mismatch. It is

clear to see the closest layer are negative due to the stronger depletion of trivalent cations
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(a) (b)

(c) (d)

Figure 4.9. Net charge density. (a) Net charge density. (b) Net charge
density in the narrow bin (width dx = 0.5σ) above the convex/concave
region. (c) Net charge density in system without dielectric mismatch. (d)
Net charge density in the narrow bin (width dx = 0.5σ) above the con-
vex/concave region (system without dielectric mismatch).

as we discussed above. Fig. 4.9(b) also shows the effect is stronger at concave region than

convex region. Fig. 4.9(c)(d) is the comparison results for the system without dielectric

mismatch, similar effect but weaker.

Fig. 4.10 shows the induced charge density of the interface averaged over time. The

total charge is zero within the error due to the neutrality in the system. However, since

the closest layer of negative net charge density. there is a positive polarization at convex
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Figure 4.10. Induced charge density on the interface when the dielectric
mismatch is present.

region and a negative polarization at concave region. This result agrees with our discussion

in previous section, see Fig. 4.7.

Also, in the second layer, trivalent has higher distribution at convex part. This could

further enhances the asymmetry.

4.3.4. Molecular layer

4.3.4.1. Ion distribution for different charge fraction. Now we consider the system

with a layer of amphiphile molecules. Fig. 4.11 illustrates the distribution of trivalent

cations above convex/concave region, for different fraction of charge of molecules. We find

the depletion still exists when the molecular layer is not charged or weakly charged, but

the effect is weaker than the case without molecules. This is because the molecular layer

makes the ions further away from the interface, thus reduces the effect. With the fraction

of charge increases, the depletion effect disappears. The repulsion changes to attraction.

Note that for the attraction at higher fraction of charge, concave region attracts more

ions than convex region.
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q = 0 / 70 q = 1 / 70

q = 3 / 70 q = 5 / 70

(a) (b)

(c) (d)

Figure 4.11. Charge density of positive ions in the narrow region above
the convex/concave region when the molecular layer is present. (a) None of
the 70 molecules is charged. (b) 1 out of 70 molecules is negative charged.
(c) 3 out of 70 molecules are negative charged. (d) 5 out of 70 molecules
are negative charged.

Actually, we also calculated the ion distribution for planar case, see Fig. 4.12.

4.4. Conclusion

The simulations presented, along with the arguments based on single-ion interactions

with the surface, demonstrate that the effect observed is universal. The local curvature of

the surface always induces effective surface polarization and net ion charge accumulation
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Figure 4.12. Charge distribution for planar case with molecular layer.

in the presence of asymmetric electrolytes. The effect should be observable not only on

surfaces that bound an electrolyte, but also at the surface of electrolyte-immersed colloids.

Trivalent ions has a stronger symmetry-breaking effect than divalent ions. When there

is a layer of charged molecules present at the interface, The ion distribution could be

altered. Our findings can be applied to the design of surfaces with useful physicalchemical

properties.
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CHAPTER 5

Interfacial origin of intra-lanthanide selectivity during solvent

extraction

The content of this chapter is based on the following publications:

• Miller, Mitchell; Li, Honghao; Chu, Miaoqi; Yoo, Sangjun; Bu, Wei; de la Cruz,

Monica Olvera; Dutta, Pulak ”Interfacial origin of intra-lanthanide selectivity

during solvent extraction”. (submitted)

Abstract

Rare earths are fundamental components of modern technologies, and solvent extrac-

tion is widely used for recovering and separating these elements from aqueous solutions.

Heavier lanthanides are more easily extracted than lighter lanthanides, even though the

ions are chemically very similar, but very little is known about the nanoscale processes

responsible for this selectivity. Using a floating (Langmuir) monolayer as a model ex-

tractant, we have measured the interfacial densities of two lanthanide ions (Er3+ and

Nd3+) using X-ray fluorescence near total reflection (XFNTR). When a single lanthanide

is present, the interfacial concentration shows a near-step-function dependence on bulk

solution concentration. The threshold bulk concentration of erbium (Z=68) is an order

of magnitude lower than that of neodymium (Z=60). When both ions are present in the
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bulk solution, Er segregates preferentially to the interface even when its bulk concen-

tration is lower. Using a theoretical model and Monte Carlo simulations, we find that

electrostatic effects arising from the inhomogeneity of the interfacial medium can explain

both the unusual step-function dependence and the large difference in the threshold bulk

concentrations. Our results imply that the extractant-rich interface plays an essential role

in separating lanthanides during solvent extraction.

5.1. Introduction

Solvent extraction [19], also known as liquid-liquid extraction, is a common technique

used to remove a specific ion or compound from an aqueous solution. The process works

by bringing together two immiscible liquid phases, an aqueous phase containing the dis-

solved ions and another liquid phase, usually with specialized extractant molecules at the

interface. The desired ion is then preferentially transferred to the non-aqueous solvent,

resulting in a target-metal-rich solvent phase and a waste aqueous phase. This method

has applications in mining and refinement of rare earth metals, in nuclear fuel reprocessing

(actinide separation), and in the cleanup of toxic waste [19, 20, 21, 22].

Despite decades of research into the mechanics and development of solvent extraction

[20, 23], and its widespread use in industry, there is very little understanding of many

fundamental aspects of the process. One example is the lanthanides’ nearly ubiquitous

trend of increased extraction efficiency as a function of atomic weight [19]. This phenom-

enon is well documented using dozens of different extractant molecules, and can be very

useful because the source minerals typically contain multiple lanthanides. However, ex-

traction efficiency is a macroscopic measurement and there are a multitude of microscopic
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and nanoscale processes that could work together and also compete with one another

to produce this outcome. The chemistry of f-element separation [79] is highly complex.

Metal hydration before and after complexation with extractant molecules [80], the pres-

ence of other salts [79, 81, 82], and even the nanoscale structure of water molecules [83]

could all have competing or cooperating effects on the overall extraction of a given metal.

The adsorption of amphiphilic extractant molecules onto the aqueous-organic interface

will affect solvent extraction [84]. Behaviors like the rate of chemical reaction between

extractants and metal ions to form complexes, the speed of diffusion from the interface

to the bulk rate could also affect the net extraction efficiency [84]. These behaviors may

or may not be attributable to the widely known “lanthanide contraction” [85]. There

is much debate as to which processes or interactions are most important in determining

intra-lanthanide selectivity. The general view is that bulk interactions dominate and that

the extractant-rich interfaces are only of interest in the transport of the different species.

However, while there are many studies of bulk solvent extraction [86, 87, 88, 89], sur-

prisingly few experiments have focused on the interface between liquid phases.

The difficulty in experimentally probing the surfactant-liquid interface is a major

reason for the scarcity of studies. However, over the past five years, nanoscale and in situ

measurements of model systems have yielded important information regarding real solvent

extraction processes. Early x-ray studies of isolated (no extractant analogue) aqueous

lanthanide solutions showed that there is a dramatic difference between the coordination

of erbium near the surface and in the bulk [90, 91]. Another study of the same system

revealed that there is a nonmonotonic density profile perpendicular to the liquid surface,

suggesting the spontaneous formation of high density ionic layers at the surface [92].



88

More realistic model systems in which an aqueous solution is completely submerged in

dodecane extractant solution [93, 94], create a static interface that can be probed with

x-rays. This system showed several different morphologies of ion-extractant complexes,

depending on what ion is present in the aqueous phase. Further, interfacial lanthanides

have recently demonstrated unexpected trends in lateral ordering structure as a function

of atomic number [95].

While these studies enhance our understanding of the interface, they do not address

the question of why and where intra-lanthanide selectivity occurs during the extraction

process. Using X-ray fluorescence near total reflection (XFNTR; see the original paper

for details) at the Advanced Photon Source, Argonne, IL, we have measured the inter-

facial densities of two lanthanides adsorbed at amphiphile monolayers as functions of

their concentration in the bulk solution. We find that the heavier lanthanide was much

more strongly attracted to the interface. We explain this unexpected finding with a the-

oretical model that shows that this selectivity results from the fact that the interface is

inhomogeneous.

5.2. Results and Discussion

5.2.1. Experiment

We first studied the interfacial lanthanide density when the only lanthanide present in

the aqueous subphase was Er3+. The floating monolayer was octadecylphosphonic acid

(ODPA)< chosen because phosphates are often used as extractants. With bulk solution

concentrations between 10−4M and ∼ 5× 10−8M of ErCl3, the surface density of erbium
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measured by XFNTR was roughly constant, at about 0.016 ions/Å2. However, at concen-

trations, below ∼ 5× 10−8M the surface density drops quite sharply to < 0.001 ions/Å2,

essentially zero. This is shown in Fig. 5.1; the line through the data is a theoretical

prediction, to be discussed later.

Figure 5.1. Surface density of Er (red error bars) vs. bulk concentration in
the aqueous phase. The line connects theoretically calculated values (blue
dots) using simulation parameters: l+B = 1.769lwaterB , liB = 1.963water, with
interlayer distance d = σ = 0.5nm. See Simulations and Theory Results
section for an explanation of these variables, and other details.

Solutions of NdCl3 likewise show an attraction to ODPA monolayers, but to a much

lesser extent (Fig. 5.2). The average surface density at higher bulk concentrations is 0.013

Nd/Å2, slightly lower than that of Er at equivalent concentrations. However, at 5×10−7M
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NdCl3 and below, the surface density decreases to zero. Thus the bulk concentration

thresholds of these similar ions differ by a full order of magnitude.

Figure 5.2. Surface density of Nd (red error bars) vs. bulk concentration in
the aqueous phase. The line connects theoretically calculated values (blue
dots) using simulation parameters: l+B = 1.769lwaterB , liB = 1.963water, with
interlayer distance d = 1.07σ = 0.535nm. See Simulations and Theory
Results section for an explanation of these variables, and other details.

Finally, we investigated mixtures of Nd and Er in aqueous solution. When there are

equal concentrations of Nd and Er (10−4M of NdCl3 and ErCl3) , there is five times as

much Er compared to Nd at the interface (Fig. 5.3). When the Er concentration is

reduced while the Nd concentration is held constant, there is a continuous (not sudden)

decrease in Er surface density and a roughly equal increase in Nd density (i.e. the total

surface density is approximately constant). But to have a 50% reduction in Er surface
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density (which is also the point at which Er and Nd are present in equal quantities at the

surface), the bulk Er concentration must be lowered by an order of magnitude.

Figure 5.3. Surface densities of Er3+ and Nd3+ when the bulk Er concen-
tration is varied (Nd concentration fixed at 10−4M). The lines are guides to
eye.

These fluorescence measurements can be used to calculate an average number of ions

per ODPA molecule. A previous report [95] showed that ODPA molecules have an area of

∼ 21Å2 when spread over lanthanide salt solutions. In pure solutions, the data reported

here mean that neodymium and erbium have an average area of 77Å2 and 63Å2 per iron

respectively. Thus there are approximately four ODPA molecules for every Nd3+ ion and

three ODPA molecules for every Er3+ ion attracted to the interface. When both ions are

dissolved in the subphase, the total surface density remains almost constant while the
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relative bulk concentrations are varied. If one considers this a measure of the average

area for either an erbium or neodymium ion, we find an area of 56Å2. This is close to the

density observed with erbium by itself, i.e. there is approximately 1 ion (either erbium or

neodymium) per 3 ODPA molecules. These results are unexpected since both erbium and

neodymium have the same valence, and pKa values indicate that ODPA molecules have

completely dissociated one hydrogen and have only about 5% dissociation of the second.

Therefore, the Er numbers seem reasonable, while there is a mismatch in charge with

neodymium, with cations providing 3+ and ODPA molecules providing 4- in the same

area. However, note that XFNTR does not measure total charge and cannot detect H+,

OH-, Cl- etc. Moreover, one cannot assume that the local pH at the interface is the same

as that in the bulk [96] .

5.2.2. Simulation & Theory

5.2.2.1. Monte Carlo Simulation. The surface of a liquid, or the interface between

two liquids, is a complicated environment. We cannot assume a homogenous dielectric

medium, with an overall dielectric constant. The dielectric environment could change

dramatically in the vicinity of interface [97, 98, 99, 100], and the presence of dissolved

ions also results in a different bulk dielectric constant [101]. The hydration shells of

different lanthanide ions add to the complications. Since the electrostatic interactions

are crucial in our system, we need to introduce dielectric inhomogeneity to capture the

fundamental physics. Full atom simulations are considered the best tool to study dielectric

inhomogeneity, but this method lacks a mechanism to dynamically change the dissociation

state of molecules. Therefore, the adsorption of lanthanide ions on surfactant monolayer
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Figure 5.4. (a) Schematic diagram of the system being simulated. (b)
Sample Monte-Carlo simulation setup (smaller system 20×20 here for clar-
ity), upper(lower) hexagonal lattice layer is molecules(lanthanides), red is
charged molecules, blue is absorbed lanthanides; white is neutral molecules
or empty sites of lanthanides. The separation in the z direction is exagger-
ated here for clarity.

near interface as a function of concentration were examined using Monte Carlo simulations.

According to the Henderson-Hasselbach equation, the fraction of dissociated rate α for

an acid molecule is:

(5.1) α =
1

1 + 10pKa−pH

However, the above description does not include effects resulting from the electro-

static interaction between charges. Each amphiphile near the interface is surrounded by

many other amphiphiles. If one amphiphile dissociates, then due to the strong electro-

static repulsion between the neighboring charges, it will become harder for its immediate

neighbors to dissociate. If one lanthanide ion is absorbed, due to the electrostatic at-

traction between positive charged ions and negative charged amphiphiles, it will be easier

for nearby amphiphiles to dissociate. Therefore, the actual dissociation and adsorption
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rate depends on many factors such as the range of electrostatic correlations, dielectric

environment due to local water structure and the specific arrangement of amphipiles and

ions, see Figure 5.4(a).

We model the effects of electrostatic interactions by a lattice model introduced by

Netz [102], and used in previous studies [103, 104]. We choose hexagonal lattices for

both ODPA molecules and lanthanide ions. One layer represents the ODPA molecule

headgroups, while the other represents the lanthanide ions (Fig. 5.4(b)). For the molecular

layer, each site can have -1e (dissociated) or 0 (neutral) charge; for the ionic layer, each

site can have +3e (adsorbed) or 0 (not adsorbed) charge. Notice that charge neutrality

does not have to hold locally between ODPA headgroups and ions, as discussed earlier.

Two nearby sites are separated by σ = 0.5nm, comparable to the size of hydrated ions.

The distance between two layers are approximately the size of the hydrated lanthanide

ions, which we set σ = 0.5nm.

Our modified Monte-Carlo model introduces several parameters to capture the dielec-

tric inhomogeneity. First, we define the Bjerrum length lB = e2

4πε0ε1kBT
to indicate the

electrostatic strength, where ε is the relative permittivity, e is the unit charge and kBT is

the thermo energy. (lB = 0.7nm for an aqueous environment). Thus, the screened electro-

static interaction between two charges is E
kBT

= lB
ZiZj
rij

e−κrij , where Z is the valence, r is

the distance, and κ is the inverse of Debye screening length. To effectively capture the di-

electric inhomogeneity, we then introduce three parameters: l+B, l−B and linterB to represent

the strength of electrostatic positively charged ion/ion interactions, negatively charged

molecule/molecule interaction and interlayer molecule/ion interactions respectively. The
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Hamiltonian used in our simulations is then given by

H

kBT
=− n+ ln(c) +

µ

kBT
n−

− linterB

∑
+−

Z+Z−
r+−

e−κr+− + l−B
∑
−−

Z−Z−
r−−

e−κr−− + l+B
∑
++

Z+Z+

r++

e−κr++

(5.2)

where n+ is the number of adsorbed ions (how many sites are +3 charged), c is the

bulk concentration of lanthanide ions.
∑

+− means the summation over all charged

ion/molecule pairs. The chemical potential of the dissociation of acid molecules is given

by 4

(5.3)
µ

kBT
= − ln 10(pH − pKa)

This value is a constant since the pH is constant.

Before getting into details of the simulation results, we discuss an analytical model

to rationalize the physical mechanism leading to a sharp transition. In the Hamiltonian

above, the summation terms depend on the lattice configuration of the system. To simplify

this Hamiltonian, we define f as the fraction of dissociated sites (0 ≤ f ≤ 1), f+ for

positive charged lanthanides ions and f− for negative charged molecules. Qualitatively,

(5.4)
∑
ij

e−κrij

rij
≈ fifj, (i, j = +,−)

Note that this scaling argument is a very crude approximation since it ignores the

lattice configuration, the screening factor and even the 1/r electrostatic potential. The
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Hamiltonian simplifies to:

(5.5)
H

kBT
≈ −f+ ln(c)− 3linterB f+f− + l−Bf−f− + 9l+Bf+f+

where the coefficients 3 and 9 are from the charge valence of the lanthanides ion. For any

given concentration c, the equilibrium f+, f− value is obtained by minimizing H. Since

H is expressed as a 2nd-order function with two variables, the Hessian matrix is

(5.6)

 ∂2H
∂f+∂f+

∂2H
∂f+∂f−

∂2H
∂f−∂f+

∂2H
∂f−∂f−

 =

 18l+B −3linterB

−3linterB 2l−B


If (linterB )2 < 4l−Bl

+
B, the Hessian matrix has two positive eigenvalues, H is positive

definite, and thus always has a local minimum at:

(5.7) f+ =
ln c

9(2l+B −
(linterB )2

2l−B
)
, f− =

3linterB

2l−B
f+

Therefore, f+(f−) changes continuously with concentration.

However, if (linterB )2 > 4l−Bl
+
B, he Hessian matrix has both positive and negative

eigenvalues, H is saddle-like, and has no local minimum. Due to 0 ≤ f ≤ 1, either

f+(f−) = 0or1 would give the minimum H of the system. Therefore, f+(f−) has a sharp

transition from 0 to 1 at some threshold concentration c0. The threshold concentration

can be estimated by considering the Hamiltonian in two scenarios:

(5.8) H(f+ = f− = 1) ≤ H(f+ = f− = 0)
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which gives

(5.9) ln(c0) ≈ −3linterB + l−B + 9l+B

It is easy to notice that the threshold concentration will be larger for a smaller interlayer

coupling strength.

To summarize, the relation between (linterB )2 and l−Bl
+
B provides a guideline to predict

the sharp transition regime. Since the Hamiltonian is highly simplified, we cannot rely

on the exact condition (linterB )2 > 4l−Bl
+
B to predict the sharp transition regime. In partic-

ular, we cannot assume the coefficient is 4 in a real situation. We can assume generally

(linterB )2 > kl−Bl
+
B but the coefficient k must be determined from the simulation results.

The concentration dependent dissociation and adsorption rate are calculated for vari-

ous combinations of lB to compare with the experimental results (see Methods/Simulation

Parameters section).

Alternatively, if we fix all three Bjerrum lengths, then only increasing the interlayer

distance would increase the threshold concentration. The reason is that the strength of

interlayer interaction decreases with increasing the interlayer distance, thus higher thresh-

old bulk concentration of ions is needed for the transition, as discussed above. Simulation

shows that about 7% change of the distance would result in an order of magnitude dif-

ference in the threshold concentration. A distance of d = 1.07σ would fit the neodymium

experimental data very well [see Figure 5.2]. The atomic radius of erbium, the heavier lan-

thanide, is about 9% smaller than that of neodymium; this is the ”lanthanide contraction”.

The 7% distance difference between Er and Nd simulation systems is roughly consistent

with the hydrated ionic size difference between Er and Nd. This implies that the vastly
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different threshold concentrations for Er and Nd are due to the different strength of elec-

trostatic interaction resulting from their slightly different hydrated ion sizes. As reported

above, a mixture of Nd and Er does not show any sharp transition with increasing bulk

concentration. From the theoretical point of view, the three-component system (Nd, Er

and ODPA) has a 3 by 3 Hessian Matrix. The analytical condition for a sharp transition

is too complicated to obtain any simple physical insight. Most practical parameters in

this system would lead to a positive definite Hamiltonian, which has no sharp transition,

consistent with the experimental observation (Fig. 5.3). This is also confirmed by the

simulation.

5.3. Conclusions

This study shows that strong elemental selectivity in the solvent extraction process

occurs at the interface between aqueous and organic phases. Erbium (the heavier and

smaller lanthanide) is attracted to a Langmuir monolayer of extractant-like molecules even

at much lower bulk concentrations than neodymium. When both metals are present in

the solution, erbium is the dominant surface adsorbant even when much more neodymium

is present in the bulk. Using a theoretical model and Monte Carlo simulations, we find

that electrostatic effects arising from the inhomogeneity of the interfacial medium and

small differences between ions are responsible for this strong selectivity between these

two chemically similar ions. Our results imply that the interface plays the essential role

in separating lanthanides during solvent extraction. We therefore suggest that efforts

to understand, modify and improve lanthanide (and perhaps also actinide) separations

processes should focus on the unusual chemical environment of the interface.
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5.4. Appendix: Simulation Parameters

The concentration dependent dissociation and adsorption rate was calculated for var-

ious combinations of lB to compare with the experimental results. Since εair ∼ 1 and

εwater ∼ 80, we simply assume the molecules near the interface have a dielectric constant

εaverage = (εair + εwater)/2 which leads to l−B = 2lwaterB . According to the experiments,

the surface density of ions after the threshold concentration stays constant (0.016Er/Å2

or 0.013Nd/Å2 ) at higher bulk concentrations. This means that there are ∼ 3−4 ODPA

molecules per ion. Simulation shows that the surface density only depends on the ra-

tio linterB /l+B. Larger linterB /l+B gives larger surface density and vice versa. In particular,

linterB /l+B = 1.11 gives a good fit to the observed saturation surface density. Together with

the threshold concentration of the sharp transition, we can fit the erbium experimental

data with simulation parameters l+B = 1.769lwaterB , linterB = 1.963lwaterB , with adsorption

layer distance σ = 0.5nm [see Figure 1]. Notice here (lwaterB )2 = 1.089l−Bl
+
B does not ex-

actly match the analytical coefficient of 4 in the sharp transition criterion (linterB )2 > kl−Bl
+
B

. To justify why l+B is larger than lwaterB here, as we mentioned, full atom simulation shows

concentrated solution results in a different bulk dielectric constant (e.g. 1M concentration

would decrease εwater from 80 to about 40) [101] . Since the surface density of ions is

equivalent to a local concentration ∼1M, l+B ∼ 2lwaterB is a good qualitative approxima-

tion. A typical simulation system consists of two layers of sites (N=80*80*2=12800), with

1,000 equilibration steps and 10,000 measurement sweeps, where a sweep is defined as the

attempt to flip the charge of all sites.

Please find the details of experimental part in the original publication.
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CHAPTER 6

Electrostatic Control of Polymorphism in Charged Amphiphile

Assemblies

To present a complete story, I have included figures by Changrui Gao. The content of

this chapter is based on the following publications:

• Changrui Gao, Honghao Li, Yue Li, Sumit Kewalramani, Liam C. Palmer, Vinayak

P. Dravid, Samuel I. Stupp, Monica Olvera de la Cruz, and Michael J. Bedzyk.

”Electrostatic control of polymorphism in charged amphiphile assemblies.” The

Journal of Physical Chemistry B 121, no. 7 (2017): 1623-1628.

• Changrui Gao, Honghao Li, Sumit Kewalramani, Monica Olvera de la Cruz,

and Michael J. Bedzyk. ”Electrostatic shape control of a charged molecular

membrane from ribbon to scroll” (to be submitted).

6.1. Introduction

Molecular self-assembly is defined as the process of spontaneous association of ran-

domly distributed molecular units into highly organized supramolecular structures. A

typical building block of those functional self-assembly structure is the amphiphilic mole-

cule, which is a type of molecule possessing both hydrophilic and hydrophobic properties.

The structure of common amphiphilic molecules consists of a polar hydrophilic head-

group grafted to a hydrophobic carbon chain. When dissolved in aqueous solution, these
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molecules can self-assemble into a large variety of aggregates such as micelles, fibers,

planar membranes, and vesicles.

Assemblies of amphiphilic molecules in aqueous solutions and at interfaces are often

used as model systems for cell membranes and associated processes and have important

nanotechnological applications, including extraction[20, 22], decontamination and reme-

diation [105], and biosensing [106]. Peptide amphiphiles (PAs), molecules in which a

hydrophobic alkyl tail is covalently linked to an amino acid sequence, can self-assemble

into nanostructures with a broad range of applications[107, 108, 109, 110, 111]. Inter-

estingly, these structures can reconfigure in response to external stimuli, including tem-

perature, pH, and ionic strength[112, 113, 114], which allows versatile conformations

such as membrane and fiber conformations that can mimic extracellular matrixes[115].

The varying structures of PA assembly could arise from interplay of several differ-

ent intermolecular interactions, including van der Waals, hydrogen bonding, electrostatic

interaction, steric effect, and π-π stacking. However, it remains highly challenging to

experimentally regulate those intermolecular interactions, and also detailed physical ex-

planations of the equilibrium self- assembly structure are often lacking in those studies.

Electrostatic interaction, unlike other interactions, can be experimentally tuned by the so-

lution pH and salt concentration. The solution pH controls the charge of the amino acids

in the headgroup, and the counterions from the salt screen the intermolecular electrostatic

interactions. Theoretical investigations have probed the dependence of PA assembly struc-

tures on the relative strengths of the electrostatic interactions[116, 117]. For example, a

combined Monte Carlo, molecular dynamics (MD) simulation, and transmission electron

microscopy (TEM) study on the assembly of a bioactive PA showed that PAs assemble
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into spherical or cylindrical micelle structure only if the electrostatic repulsion between

the headgroup is weak. This demonstrates the critical role of electrostatic interactions in

the PA assembly.

So the first part of this chapter focuses on how Monte-Carlo simulations give better

estimation of the electrostatic interaction in such systems.

Another interesting assembly structure is the nanoribbon, which is a high aspect ratio

(10:1 or greater) bilayer. Nanoribbons are a gateway to a number of other morphologies

with distinct functionalities. For example, nanoribbons of a charged chromophore am-

phiphile can transform to a scroll-like (cochleate) morphology when the ionic strength of

the solution is increased [118]. These cochleate structures serve as efficient charge transfer

agents for photocatalysts in hydrogen production. Cochleate formation from liposomes

of negatively charged phospholipids in the presence of multivalent cations also involves

a nanoribbon intermediate [119, 120, 121]. Biocompatible phospholipid cochleates are

being explored as drug-delivery agents because they can trap macromolecules, such as

proteins, peptides and DNA, and provide protection against degradation due to their

multilayer geometry. Nanoribbons have also been observed in peptide amphiphiles (PA),

which consist of a sequence of amino acids covalently linked to an alkyl tail [109, 109].

For example, a peptide amphiphile that stimulates collagen production has been found

to self-assemble into nanotapes with an internal bilayer structure [122]. In a PA with

alternating charged and neutral amino acids, nanoribbons were found to transform into

helical ribbons as the PA concentration was reduced [123] and into helical and twisted

nanoribbons when the amino acid sequence was permuted [124]. Helical supramolecu-

lar assemblies have been previously used to template semiconductor nanohelices [125].
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Despite the progress, the correlation between experimental conditions such as molecular

design, ionic strength, pH, amphiphile concentration and the attained nanoribbon-related

morphology are not fully established. Therefore, precise control of nanoribbon assembly

architecture requires further understanding of the delicate interplay between intermolec-

ular interactions and elastic and interfacial energies.

A recent theoretical study showed that for charged molecules, tuning the range of

electrostatic interactions could induce transitions between different nanoribbon-related

morphologies [126]. Specifically, a phase diagram was deduced for a 2D lattice of charged

points, which interacted via long-range repulsive electrostatic interactions and short-range

attractive interactions. Planar nanoribbon to wavy ribbon with periodic undulations to

helical ribbon transitions were predicted as the range of the electrostatic interactions

is increased. This study suggests a facile experimental method for accessing distinct

nanoribbon architectures by varying the ionic strength (µ) of the solution because the

range of electrostatic interactions as parameterized by Debye length ( λD ) scales as

µ−1/2 . Recent experiments also attest that tuning the ionic strength leads to predictable

changes in the nanoribbon-related assembly morphology. For example, the period of the

twists in amyloid fibril aggregates monotonically increases with decreasing ionic strength

[127].

In the second part of this chapter, we focus on the morphological changes in charged

planar nanoribbons as a function of increasing ionic strength. In this regime, the inter-

nanoribbon interactions become prominent, and as mentioned, nanoribbon to cochleate

transformations have been observed in phospholipids [120] and chromophore amphiphiles
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[118, 128, 129, 130]. However, the generality and the mechanistic details of this transi-

tion are still unknown. In particular, the correlation between the ionic strength induced

changes in the molecular packing and the mesoscopic morphology transformations are

elusive.

6.2. Polymorphism of peptide amphiphile assembly induced by headgroup

charge and size regulation

Our collaborator Changrui Gao focuses on the self-assembly of a modular series of

peptide amphiphiles: C16K4, C16K3, C16K2, and C16K1, which carry different number of

ionizable lysine residues conjugated to the same C16 -alkyl tail (Fig. 6.1)

Figure 6.1. Molecular structures of positively charged C16K4, C16K3,
C16K2, and C16K1 peptide amphiphiles.

Based on their SAXS/WAXS and Cryo-TEM results, They establish a phase diagram

shown in Figure 6.2 as function of pH and headgroup. In this diagram, we can observe

that as the headgroup size decreases and pH increases (i.e. headgroup charge decreases),

the equilibrium self-assembly structure transforms from ill-defined unaggregated state to

spherical micelles, to cylindrical micelles, to nanoribbons, and finally to microtubules,
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which depicts the correlation between intermolecular interaction and resulting assembly

structures. Strong intermolecular repulsion (electrostatic and steric) could lead to loosely

packed assembly structures (spherical micelles) or even no assembly at all, while the weak

repulsion favors the formation of closely packed assemblies such as crystalline bilayers.

Future work could focus on the theoretical simulation of the assembly structures (i.e.

Molecular Dynamic simulation) to quantitatively describe the correlations between the

thermodynamic equilibrium structures and the strength of intermolecular interactions.

Figure 6.2. Phase diagram showing the formation and transition of self-
assembly morphology of C16Kn peptide amphiphile as a function of head-
group size and pH.

Here we take C16K2 as an example, see Fig. 6.3.

The effects of charge correlations on the ionization of C16K2 headgroup as a function of

pH were examined by Monte Carlo simulations. According to the Henderson Hasselbach
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Figure 6.3. Phase diagram showing the formation and transition of self-
assembly morphology (the headgroup charge) of C16K2 peptide amphiphile
as a function pH.

equation, the fraction of dissociated sites α for a monoprotic acid is:

(6.1) α =
1

1 + 10pKa−pH

However, the above description does not include the effects resulting from the electro-

static interaction between charges. Each amphiphile in the self-assembly structures is

surrounded by many other amphiphiles. If an amphiphile dissociates due to the strong

electrostatic repulsion between the neighboring charges, it will become harder for its im-

mediate neighbors to dissociate as well (this is true also for other ionizable groups on

the same molecule). In other words, the average dissociation will become much lower.

Therefore, the actual dissociation depends on the range of electrostatic correlations and

the specific arrangement of amphiphiles in the self-assembly structures.
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We model the effects of electrostatic interactions by a lattice model introduced by Netz

[102], and used in previous studies [103]. As a simplification, we choose a square lattice for

C16K2 molecules. Two nearby sites separated by 0.5nm are connected to represent a single

molecule. Each site can be either in state n = 0 (neutral) or n = 1 (dissociated). The

energy is measured in terms of KBT , and the Bjerrum length lB = e2

4πε0ε1kBT
is introduced

for simplicity, where εr is the relative permittivity and the e is the unit charge. The

Hamiltonian used in the simulations is given by

(6.2)
H

kBT
=

µ

kBT

∑
i

ni +
1

2

∑
i 6=j

lB
e−κrij

rij

where n = 0 or 1 is the dissociation state of site i and κ is the inverse of the Debye screening

length which is controlled by the salt concentration. In order to model actual experiment,

we set the Bjerrum length lB = 0.7nm for aqueous environment and lB = 1.4nm for

water-air interface. The chemical potential (as mentioned in previous chapter):

(6.3)
µ

kBT
= − ln 10(pH − pKa)

A typical simulation consists of 10,000 equilibration steps and 100,000 measurement

sweeps, where a sweep is defined as an attempted flip of each site.

Figure 6.4c shows the measured titration curve for 4 mM C16K2 with 100 mM NaOH

. C16K2 was soluble over the entire pH range with the solutions becoming highly viscous

for pH > 10. For comparison, two calculated titration curves are shown (Figure 6.4c).

The first calculation (red, dashed) assumes that each protonated lysine is a monoprotic

acid with a pKa = 8.2 and uses the HendersonHasselbach equation (6.1) up to the volume
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Figure 6.4. (a) Molecular structure of +2 charged C16K2 peptide with
estimates for the hydrophobic tail length and hydrophilic headgroup length
and width. (b) Averaged C16K2 headgroup charge as a function of pH in
standard water environment obtained by Monte Carlo simulation, showing
deprotonation around pH 8.2. (c) C16K2 titration curve showing how pH
changes as a function of the volume of NaOH added. For comparison,
calculated titration curves based on a monoprotic acid with pKa = 8.2
(red, dashed) and Monte Carlo simulations (green) are shown.

added of NaOH, corresponding to an equivalent concentration of PA and NaOH (equiv-

alence point; here, 400 µL of NaOH). Thereafter, the added NaOH is assumed to only

increase the solution pH. The second calculation, which reproduces the measured titra-

tion curve better up to pH ∼ 9.5 is based on the above-described Monte Carlo simulation

that takes into account electrostatic correlations in the ionization process. Both of the

calculations deviate from the measured titration curve in a regime where the solution be-

came highly viscous. Nevertheless, these observations show that Monte Carlo simulations
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can be used to estimate a priori the ionization tendency of molecules that are in close

proximity. It should be noted that the observed titration curves vary slightly between

synthetic batches of C16K2 (see the original paper [104]). These differences could be due

to variations in the concentration of the amphiphile or of residual salts after purification

and lyophilization. Regardless, only one buffer region (plateau at pH ∼ 8) is observed in

the titration curves for C16K2. According to Monte-Carlo simulation, it is because (1)

the electrostatic interaction between charges in the same molecules is not strong enough;

(2) the distance between two molecules is not far enough. Because morphological trans-

formations such as the micelle to vesicle transition in fatty acids [131, 132] frequently

occur at pH ∼ pK, we hypothesized that a nano- or mesoscopic structural transformation

would also occur at pH ∼ 8 in our system.

Figure 6.5. (a) C16Kn titration curves showing how pH changes as function
of the volume of NaOH added. All C16Kn exhibit single buffer stage. (b)
Averaged C16Kn headgroup charge as a function of pH obtained through
Henderson-Hasselbach equation of monoprotic acid (6.1). pKa is deter-
mined from the titration curves.

Figure 6.5a shows the measured titration curves for 5 mL 4 mM C16Kn with 100 mM

NaOH solution. All the molecules are soluble over the studied pH range. We can observe

that the titration curves for all C16Kn molecules exhibit only one buffer stage, indicating

that the fully ionized C16Kn behave as monoprotic acid regardless of the number of lysines
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(K) on the headgroup. Therefore, we are able to use Henderson-Hasselbach equation to

derive the charge vs. pH curves for C16Kn. The pKa can be determined from the center

positions on the buffer stages of the titration curves, the pKa for C16K1 , C16K2 , C16K3

and C16K4 are found to be 7.4, 8.3, 9.1, and 9.7 respectively. We notice that the pKa for

all four molecules are lower than the pKa ∼ 10.0 expected for isolated lysine. This implies

that in C16Kn assemblies, the ionization tendency of lysines is reduced, because any ar-

rangement of like-charged molecules in close proximity increases the overall electrostatic

potential energy of the ionized state. This can also be proven by Monte-Carlo simula-

tion of C16K2 assembly showing a theoretical deionization curve with pKa ∼ 8.2. Figure

6.5b shows the averaged headgroup charge vs. solution pH curves for C16K1, C16K2,

C16K3 and C16K4 peptide amphiphiles from Henderson-Hasselbach equation (6.1). At

low pH, the lysine groups are fully ionized and further increase in pH leads to a mono-

tonic decrease in the headgroup charge for all four peptide amphiphiles. The significant

decrease in headgroup charge occurs around the pKa of each C16Kn molecule, therefore

we hypothesized that nano- or mesoscopic structural transformations would also occur at

pH ∼ pKa . Following studies will focus on the structural transformation around pH ∼

pKa , and explore the correlations between the electrostatic repulsion and self-assembly

morphologies for different C16Kn molecules.
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6.3. Electrostatic control of nanoribbon-to-cochleate transition in a charged

peptide amphiphile assembly

For the present work, the simplest possible charged peptide amphiphile (PA): C16K1

was chosen, where a single ionizable amino acid lysine (K) is covalently linked to a palmi-

toyl (C16) alkyl tail. This PA was chosen because our recent studies [104] on C16K2 found

spherical micelle to cylindrical micelle to a mixture of cylindrical micelle and nanoribbon

transformations as the molecular charge was reduced by increasing the solution pH. There-

fore, we hypothesized that removing one of the charged lysines from the headgroup could

yield a macroscopic state consisting purely of nanoribbons. Second, the choice of this

PA ensures that the inter-headgroup interactions are Coulombic. This is unlike the case

of other PAs with multiple amino acids, where the assembly is strongly modulated by

intermolecular hydrogen bonding.

To understand the effects of screening of intermolecular electrostatic interactions on

the assembly morphology, we analyzed dispersions of C16K1 in solutions containing NaCl

at concentrations c ranging from 0 to 100 mM. Figure 6.6a-d show atomic force microscopy

(AFM) images of C16K1 assemblies at Si/NaCl solution interfaces for c = 0, 1, 3 and 5

mM. Peakforce error images are shown because they deliver better 3D representation of

the assembly morphologies. As the NaCl concentration is increased the aspect ratio of

the ribbons decreases, and at c = 3mM, nearly isotropic sheets of 1-3µm diameter are

observed (Figure 6.6c). At or above this threshold concentration (cth), the sheets roll

into scrolls or cochleates (Figure 6.6d). The multi-layered nature of the scrolls is better

observed in cryo-transmission electron microscopy (cryo-TEM) images (Figure 6.6e-h).

These cryo-TEM images (Figure 6.6f-h) further reveal that the interlayer spacing (D)
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Figure 6.6. (a-d) AFM peakforce error images for C16K1 membranes at
Si/NaCl solution interfaces. As the NaCl concentration increases, nanorib-
bon to isotropic sheet and to rolled-up cochleate transformations are ob-
served. (e-h) Cryogenic TEM images of cochleates exhibit scroll morphology
and the internal multilayer features. It can be readily seen that the inter-
bilayer spacing D within the cochleate structure decreases with increasing
NaCl concentration.

within the cochleate structure monotonically decreases with increasing c. Overall, AFM

and cryo-TEM show that for C16K1, increasing the solution ionic strength first induces the

ribbon to cochleate transition, and thereafter, reduces the inter-lamellar spacing within

the cochleates, see Figure 6.7.

To qualitatively understand the origins of the observed structural changes in the ribbon

to cochleate transition from the perspective of interplay between various intermolecular

interactions, and membrane bending and interfacial energies, we develop simple theoretical

models. Three aspects are focused upon: (1) The decrease in the ribbon aspect ratio with

increasing salt concentration, (2) The origin of curvature in the membranes, and (3)
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Figure 6.7. (upper) Illustration of nanoribbon-to-cochleate transition.
(bottom) Interlayer distance decreases with increasing salt concentration.

the linear relationship between the interbilayer separation within the cochleates and the

electrostatic screening length.

We first discuss the ribbon to sheet transformation. For this we model the membrane

as a parallelepiped (Fig. 6.8a) with top and bottom faces uniformly charged, and formulate

the membrane energy per unit volume as a sum of long-ranged electrostatic interaction

energy and an interfacial energy term that accounts for the direct exposure of hydrophobic

tails to water on the membranes side surfaces (Eq. 6.4, see 6.4 for details). Short ranged

interactions such as intermolecular van der Waals interactions are neglected because the

contribution of these interactions to the areal or volume normalized energies is expected

to be a constant. Furthermore, we assume that the area of the membrane is independent
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Figure 6.8. (a) Schematic representation of C16K1 nanoribbon showing
ribbon dimensions used for the energy calculation. (b) The membrane en-
ergy per unit area in equation (1) as a function of the inverse of membrane
aspect ratio W/L. At low salt concentration, the minimum of the mem-
brane energy indicates that elongated ribbon structure is the equilibrium
morphology. As salt concentration increases, the membrane energy starts
to decrease monotonically with W/L and drives the membrane to form low
aspect ratio morphology.

of the salt concentration. This assumption is justified based on AFM images in Fig.

6.6, where membranes with areas in the range about 1 ∼ 5µm2 are observed, regardless

of the salt concentration. The membrane energy per unit volume is (see Appendix for

derivation):

(6.4)

Uelectrostatic + Uinterface
V

= 2(
N2
T

V A
)kBT lB

∫ ∫
W,L

e−
√
x2+y2/λd√
x2 + y2

dxdy +
2γ(
√
A/χ+

√
Aχ)

A

where A and V are the area and volume of the membrane, NT is the total membrane

charge, γ is the interfacial tension for the membrane side surfaces, lB is the Bjerrum

length. λd is the electrostatic screening length, which is proportional to
√

(1/c), where c is

the salt concentration, and χ = W/L is the inverse of membrane aspect ratio (Fig. 6.8a).
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Eq. 6.4 shows that the interfacial energy term monotonically increases with increasing

aspect ratio, whereas for a given c, the reverse is true for the electrostatic energy. This

competition leads to an equilibrium aspect ratio, which minimizes the membrane energy

per unit volume. At low salt concentrations, the equilibrium morphology is an elongated

ribbon, as shown in Fig. 6.8b. Numerical values of the fixed parameters: A, V , lB , g and

NT that are used in the simulations in Fig. 6.8b are presented in Table 6.1 (Appendix).

As the salt concentration increases, the equilibrium membrane aspect ratio decreases.

In the limiting case of very high salt concentration (very small λd ), the electrostatic

term becomes independent of the aspect ratio, and the interfacial energy term drives the

membrane to the lowest possible aspect ratio: χ = 1 (Fig. 6.8b).

We further study the ribbon-to-sheet transition by numerically computing the integral

in (6.14). The model contains total ∼ 10000 charge points (e.g. 100×100 when the aspect

ratio is 1). The separation between nearby charges is 0.5nm, consistent with the distance

between amphiphile molecules. We maintain the total area to be constant while changing

the aspect ratio W/L, calculate total energy (electrostatic and interfacial) per molecule,

see Figure 6.9(a). At small Debye length (high salt concentration), membrane favors to be

sheets (aspect ratio W/L = 1); at large Debye length (low salt concentration), membrane

favors to be narrow ribbons (small aspect ratio). If we plot the equilibrium aspect ratio

over different Debye lengths. It is clearly a first-order phase transition, from narrow

ribbons to sheets. However, we do see intermediate aspect ratio structures or different

aspect ratio structures at the same time in experiment, e.g. see Figure 6.6(b). Actually,

this is expected becasue near the phase transition point, the energy difference between

two phases is very small (see inset of Figure 6.9(b)), much smaller than 1kBT .
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min enegy

min enegy

(a) (b)

Figure 6.9. (a) Total energy per charged molecule vs. aspect ratio with
total area of membrane being constant. At small Debye length (high salt
concentration), membrane favors to be sheets (aspect ratio = 1); at large
Debye length (low salt concentration), membrane favors to be narrow rib-
bons (small aspect ratio). (b) The equilibrium aspect ratio (minimum en-
ergy state) for different Debye length. It is a first order transition. (Inset)
The energy difference between the equilibrium aspect ratio and the sheets
(aspect ratio = 1). There energy difference near the transition point is much
smaller than 1kBT .

Next, we consider the rolling of a flat membrane. This process involves a change in

intermolecular electrostatic repulsion energy and the membrane elastic energy. When a

thin membrane of a fixed perimeter length is bent, the intermolecular distances become

shorter (Fig. 6.10a). This increases the overall membrane electrostatic energy. Further-

more, unless the membrane has an intrinsic curvature, external work must also be done

to bend the membrane. To test whether the C16K1 membranes possess an intrinsic cur-

vature, we studied the self-assembly of C16K1 at elevated pH (= 10) by adding excessive

NaOH. In this scenario, the majority of the C16K1 headgroups are expected to be union-

ized. Our result shows that under these conditions, the equilibrium morphology of C16K1

assembly is a nanotube, see the original paper for details. Although counterintuitive, the
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above observation shows that the symmetric C16K1 bilayer has an intrinsic spontaneous

curvature, and rolling of a flat membrane could in fact decrease the curvature energy. To

further illustrate the membrane rolling, we use a simple model consisting of an array of

charged species with pre- defined array length L0 and an intrinsic spontaneous curvature

C0 , and calculate the total energy (electrostatic + curvature energy) as a function of

curvature and salt concentration (Eq. 6.5, see Appendix for details).

Figure 6.10. (a) An array of charged species with array length L0 and spon-
taneous curve C0 . This model is used to calculate the sum of electrostatic
and curvature energy as a function of salt concentration and curvature. (b)
Total energy per unit length (6.5) versus array curvature C1 at different salt
concentrations (3 > 2 > 1 > No salt).

(6.5)
Uelectrostatic + Usurface

L0

= 2ρ2L0

∫ L0

d0

lB
e
− 2
c1

sin(
c1l
2

)/λd

2
c1

sin( c1l
2

)
dl +

κc
2
L0(C1 − C0)2

where ρ is the membrane charge density, d0 is the nearest neighbor intermolecular distance,

κc is the membrane bending stiffness, C1 is the curvature of the array and C0 is the

intrinsic spontaneous curvature. For the limiting case of very high salt concentration
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(λd → 0). Eq. 6.5 shows that the electrostatic energy term is negligible, and the resulting

morphology would possess the intrinsic membrane curvature (C1 = C0). To elaborate, we

present results from calculations of total array energy as a function of curvature for four

salt concentrations in Fig. 6.10b. Numerical values for the fixed parameters (, d0 , C0 ,

κc , L0 ) are presented in Table 6.2 (Appendix). For the zero salt condition, the total

energy increases with curvature (Fig. 6.10b, top left). Therefore, the flat membrane is

the equilibrium shape. As the salt concentration is increased, the total energy shows a

minimum for an optimal curvature value, which continues to increase towards the intrinsic

membrane curvature with increasing salt concentration.

Finally, we investigate the relation between interbilayer separation within the rolled-

up C16K1 cochleate and salt concentration. We start with a theoretical model that is

used to model the interactions in stacks of planar lipid bilayers. This model takes into

account the interbilayer van der Waals attraction, short-range hydration repulsion and

electrostatic repulsion between charged lipid bilayer membranes in solution. Specifically,

the van der Waals attraction Ud(δ, d), the hydration Uh(d) and electrostatic repulsion

energies per unit area are:

(6.6) Ud(δ, d) = −W [
1

d2
− 2

(d+ δ)2
+

1

(d+ 2δ)2
]

(6.7) Uh(d) = He−d/Λh

(6.8) Ue(d) =
32ε0εw(kBT )2

q2λd
exp(−d/λd)
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where δ is the bilayer thickness and d is the thickness of the aqueous layer between

the bilayers (Fig. 6.11a). Therefore, δ + d = D, the interbilayer spacing. W is the

Hamaker constant, H is the hydration repulsion pressure, and Λh is the decay length for

the hydration pressure (∼ 0.2nm). q is the electron charge, ε0 is the vacuum permittivity,

εw is the dielectric constant of the aqueous solution, and kB is the Boltzmann constant.

Figure 6.11. (a) The geometry of the lamellar stack. The thicknesses
of membrane and interbilayer aqueous regions are δ and d, respectively.
(b) Theoretical prediction showing linear correlation between interbilayer
spacing D and c−1/2 , where c is NaCl concentration with unit of mol/L.
The deviation relative to experimental result is likely due to the assumption
of planar stack rather than spiral geometry in the theoretical model.

Based on experiments, the aqueous layer thickness d varies between 31 ∼ 9nm when

the salt concentration is varied between 5 ∼ 100nm. This thickness is much larger than

decay length Λh. Therefore, the hydration energy term can be neglected in our theoretical

model. The thickness d is also much larger than ld , which varies from 4.3nm to 1nm

when c is increased from 5 to 100 mM. Therefore, the use of the asymptotic form for the

Debye-Huckel equation (Eq. 6.8) is valid.

In addition to the above energies in planar lipid bilayer stacks system, we also con-

sidered the curvature energy per unit area of cochleate spiral sheet, which turned out to
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be independent of interbilayer spacing D (see Appendix). Therefore, equilibrium inter-

bilayer spacing D is calculated at different salt concentrations c by minimizing the total

free energy (Ud + Ue ) with respect to aqueous thickness d. The numerical values of all

fixed parameters used in these calculations are summarized in Appendix, and Fig. 6.11b

shows that the theoretical relationship between D and c. Similar to the experiments, the

theoretical model also predicts that D varies linearly with c−1/2, but with a slope that is

2.5 × larger than the experimentally determined slope for C16K1 cochleates. This devia-

tion is likely a result of the assumption of planar membrane stacks, and maybe corrected

by deriving the correct form of van der Waals energy for a spiral sheet. Nevertheless, the

above simplified theoretical model shows that the linear relationship between the inter-

bilayer separation and the electrostatic screening length is not a result of system specific

design, but a result of interplay between interbilayer van der Waals and electrostatic en-

ergies. Therefore, it is not a surprise that this linear relationship has been observed in

other charged lamellar systems, such as clay mineral montmorillonite. It should however,

be noted that the linear relationship does not appear to be generally valid in the presence

of salts with multivalent ions. For example, traditional negatively charged phospholipid

cochleates show little or no dependence of interbilayer spacing the concentration of CaCl2.

It is possible that the multivalent cations are covalently linked to the molecules. As such

the resulting interbilayer electrostatic interactions cannot be parameterized by the screen-

ing length λd. By contrast, the use of monovalent salts to induce the C16K1 cochleate

structure leads to tunable interbilayer spacing over ∼ 10 - 40 nm. This structural feature

may have potential application for controlled encapsulation and release of drug particles

within specific size range.
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6.4. Appendix: Theoretical models for ribbon-to-cochleate transition

6.4.1. Step 1: Ribbon-to-sheet transition

The bilayer ribbon is modeled as a parallelepiped of length L, which extends to µm,

thickness δ, which is roughly 4nm, and width W (see Fig. 6.8a). The ribbon energy

per volume can be written as a sum of electrostatic energy and interfacial energy, which

accounts for the contact between the hydrophobic chains and water on the side faces of

the ribbon.

(6.9) Uribbon = Uelectrostatic + Usurface

The electrostatic energy is formulated as:

(6.10) Uelectrostatic = 2

∫
u(r − r′)d3

rd
3
r′ρ(r)ρ(r′)

where u(r − r′) is the inter-particle electrostatic potential and is approximated as:

(6.11) u(r − r′) ∝ lB
e−(r−r′)/λd

|r − r′|

Here, the Debye length λ ∝ c−1/2. ρ(r) is the charge density of the ribbon, and can

be approximated as a constant NT
V

, where NT is the ribbon charge and V is the ribbon

volume. Therefore, we have

(6.12) Uelectrostatic = 2(
NT

V
)2kBT

∫
lB
e−(r−r′)/λd

|r − r′|
d3
rd

3
r′
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Since for the C16K1 ribbon, only the top and bottom surfaces are charged, the volume

integral can first be thought of as a 2D integral. Let r − r′ = r̄.

(6.13) Uelectrostatic ∝ 2(
NT

V
)2V δkBT

∫ ∫
W,L

lB
e−r̄/λd

r̄
dr̄

or

(6.14) Uelectrostatic ∝ 2(
NT

V
)2V δkBT lB

∫ ∫
W,L

e−
√
x2+y2/λd√
x2 + y2

dxdy

Here we distinguish between two conditions: low excess salt and high excess salt.

(1) At low excess salt condition, λd is very large, e−
√
x2+y2/λd ≈ 1−

√
x2 + y2/λd, thus

(6.14) becomes

(6.15) Uelectrostatic ∝ 2(
NT

V
)2V δkBT lB

∫ ∫
W,L

(
1√

x2 + y2
− 1

λd
)dxdy

since

(6.16)

∫ ∫
W,L

1√
x2 + y2

dxdy =

∫
W

ln

[
L

x
+

√
1 +

L2

x2

]
dx

So we have

(6.17) Uelectrostatic ∝ 2(
NT

V
)2V δkBT lB

[
−WL

λd
+

∫
W

ln

(
L

x
+

√
1 +

L2

x2

)
dx

]

(2) At high excess salt condition, λd is very small (sub nm). Therefore, electrostatic

energy contributions are significant only over a small circle about the origin. Therefore,
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the integral of
∫ ∫

W,L
e−
√
x2+y2/λd√
x2+y2

dxdy, it can be reformulated as,

(6.18)

∫ ∫
W,L

e−
√
x2+y2/λd√
x2 + y2

dxdy =

∫ R

0

∫ 2π

0

e
− r
λd

r
rdrdθ

The upper limit R can be chosen to be a few Debye Lengths such that the electrostatic

energy term is negligible for r > R. The simplified integral here can be analytically solved,

and the final result (6.19) shows that the electrostatic energy is independent of aspect

ratio.

(6.19) Uelectrostatic ∝ 4(
NT

V
)2V δkBT lBπλd

Now we have the electrostatic part for our formulation. The interfacial energy part is

simple,

(6.20) Uinterface = 2γ(L+W )δ

Here γ is the surface tension for the hydrocarbon/water interface.

By combining Equation (6.20) with (6.17) and (6.19), we have the ribbon energy per

unit volume in low and high salt conditions. Also based on AFM observations, we make

a simplifying assumption that the total ribbon area A = WL is independent of aspect

ratio χ−1 = (L/W ). Thus we can substitute the W and L with ribbon area A and the

inverse of aspect ratio χ,

(6.21)

Uribbon
V

= (
2N2

T

V A
)kBT lB

[
− A
λd

+

∫ √Aχ
0

ln

(√
A/χ

a
+

√
1 +

A

χa2

)
da

]
+

2γ(
√
A/χ+

√
Aχ)

A
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(6.22)
Uribbon
V

= (
4N2

T

V A
)kBT lBπλd +

2γ(
√
A/χ+

√
Aχ)

A

(6.21) (low salt) and (6.22) (high salt) are plotted in the main text to understand the rela-

tionship between ribbon energy and the ribbon aspect ratio χ−1 different salt conditions.

The numerical values of parameters used in the calculation are listed below.

Table 6.1. Numerical values for the membrane model parameters in (6.21)
and (6.22).

Parameter Value Notes
Ribbon area: A 2× 10−12m2 Estimated from AFM image
Ribbon thickness: δ 4× 10−9m AFM scan and SAXS fitting
Ribbon volume: V = A× δ 8× 10−21m3

Membrane charge density: ρ 1.219× 1027/m3 Estimated from WAXS re-
sults

Ribbon charge: NT = A× ρ 1.56× 10−12C
Bjerrum length: lB 0.7nm

Surface tension: γ 7.2× 10−2J/m2 Hydrocarbon-water interfa-
cial energy (ref [133])

6.4.2. Step 2: Membrane rolling

In order to understand the rolling of the C16K1 membrane, we used a simplified model of

an array of charged species. The array was assumed to possess a spontaneous curvature C0,

and a contour length L0 that was independent of the curvature of the array (Fig. 6.10a).

The array energy was assumed to be a sum of electrostatic repulsion energy and the

curvature energy. The electrostatic repulsion energy for a straight array of charged species

may be written as:

(6.23)
Uelectrostatic

L0

= 2ρ2L0kBT

∫ L0

d0

lB
e−l/λd

l
dl
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Here, ρ is the membrane charge density and d0 is the nearest neighbor distance.

If the array had a curvature Cl, the intermolecular distances will become smaller,

resulting in an increase in the electrostatic energy for the array. For instance, the distance

between the two ends of the curved array L0 is smaller than L0, and it can be written as

(6.24) L′0 =
2

c1

sin(
c1L0

2
)

In particular, the electrostatic repulsion energy for case of curved array is

(6.25)
Uelectrostatic

L0

= 2ρ2L0kBT

∫ L0

d0

lB
e
− 2
c1

sin(
c1l
2

)/λd

2
c1

sin( c1l
2

)
dl

and the array curvature energy is

(6.26)
Ucurvature

L0

=
κc
2
L0(C1 − C0)2

where κc is the bending stiffness. Based on the nanotube diameter, C0 ∼ 1/(75nm).

Using Eq. 6.20 and 6.21, we calculated the total energy as a function of curvature C1 for

different salt concentrations, which are discussed in the main text. The numerical values

of model parameters are listed below.

6.4.3. Interbilayer separation in cochleates vs. salt concentration

In the main text, we used the sum of interlayer van der Waals attrac (6.6) and electrostatic

repulsion (6.8) energy to calculate the equilibrium interlayer spacing D in the cochleates

as a function of salt concentration c. The model parameters used in these calculations

and their numerical values are listed below.
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Table 6.2. Numerical values for the membrane model parameters in Eq. 6.20 and 6.21.

Parameter Value Notes

Molecular density along array: ρ 2.438× 1011/m
Estimated from WAXS re-
sults

Bjerrum length: lB 0.7nm
Nearest neighbor distance: d0 5× 10−10m Estimated from WAXS
Length of the charged array: L0 5× 10−8m

Bending stiffness: κc 2× 10−19J
DPPC crystalline bi-
layer memebrane
stiffness(ref[119])

Intrinsic curvature: C0 1/(75nm) Cryo-TEM image

Table 6.3. Numerical values for the membrane model parameters in (6.6)
and (6.8).

Parameter Value Notes
Hamaker constant: W 1.9× 10−22J ref [134]
Temperature: T 298K Room temperature
Bilayer thickness: δ 4× 10−9m AFM and SAXS

6.4.4. Curvature energy for cochleats

The curvature energy for a cylindrical bilayer membrane of area A and radius Rcyl is

(6.27) Ucurvature =
κc
2

∫
A

(C1 − C0)2dA

where κc is the bending stiffness, C1 = 1/Rcyl is the cylinder curvature, and C0 is the

spontaneous curvature for the membrane. The above equation can be written as

(6.28) Ucurvature =
κc
2
L

∫
l

(C1 − C0)2dl

where L is the cochleate length, and l represents the contour length along the cochleate

spiral. For a cochleate strucutre with interlayler spacing D, the radius of curvature at a
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specific azimuthal angle θ on the spiral takes the form

(6.29) R1 =
D

2π
θ +Ri

where Ri is the internal radius of the cochleate. So we have

(6.30) Ucurvature =
κc
2
L

∫ θo

0

(
1

D
2π
θ +Ri

− C0)2(
D

2π
θ +Ri)dθ

where thetao is the azimuthal angle corresponding to the outermost end of the spiral, e.g.

the outermost radius of cochleate Ro = D
2π
θo +Ri. Analytically solving Eq. 6.30 yields

(6.31) Ucurvature =
κcLπ

2D
(2 ln(

Ro

Ri

)− 4C0(Ro −Ri) + (R2
o −R2

i )C
2
0)

The cochleate membrane area A can be written as

(6.32) A =
πL

D
(R2

o −R2
i )

Therefore, the curvature energy per unit area

(6.33)
Ucurvature

A
=

κc
2(R2

o −R2
i )

(2 ln(
Ro

Ri

)− 4C0(Ro −Ri) + (R2
o −R2

i )C
2
0)

is dependent on the innermost and outermost radii of the cochleate, but does not depend

on the interlayer spacing D. Therefore, for the purpose of calculating the equilibrium

interlayer spacing D by minimization of the free energy, we neglect the effect of curvature

energy.
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CHAPTER 7

Ion dynamics in polyelectrolyte gels

The content of this chapter is based on the following publication:

• Honghao Li, Aykut Erbas, Jos Zwanikken, and Monica Olvera de la Cruz. ”Ionic

conductivity in polyelectrolyte hydrogels.” Macromolecules 49, no. 23 (2016):

9239-9246. [135]

Abstract

Transport of ionic species in heterogeneous polymeric media is highly dependent on

the charge distributions and interactions between mobile and immobile groups. Here

we perform coarsegrained molecular dynamics simulations to study the ion dynamics in

swollen polyelectrolyte gels under external electric fields. A nonlinear response of the

ionic conductivity to an applied electric field, for field strengths that are comparable to

the ionic coupling strength, is observed. This behavior correlates to a broadening of

the ionic distribution around the polymer backbone under an increasing electric field.

Also, we find that the weak-field ionic mobility in gels increases with density, which is

opposite to the behavior of simple electrolytes. This relates to the mean coupling between

charges that decreases in gels, but increases in simple electrolytes, with increasing density.

These results provide more insights into the electric response of polyelectrolyte gels to

support the development of applications that combine electric and mechanical properties

of polyelectrolyte gels for energy storage, sensing, selective transport, and signal transfer.
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7.1. Introduction

As an important type of heterogeneous media, polyelectrolyte gels have already been

used in applications in a broad range of fields such as drug delivery, superabsorbants,

actuators, and artificial muscles [136, 137, 35, 138, 139, 140]. Polyelectrolyte gels

are cross-linked polymer chains with charged groups covalently bonded to the backbones,

while counterions dissolve into solvent as the only mobile charge species. The unique

property as single-ion conductors has been used to synthesize ion-selective membranes

which are especially important for applications mentioned above. For example, a practi-

cal and stable polyelectrolyte diode is reported by forming the interface of two hydrogel

layers doped with oppositely charged polyelectrolytes, the oppositely charged counterions

produce a nonlinear current response as a rectifying junction at the interface [29, 30]. In

almost all practical electrodialysis processes, multiple electrodialysis cells with alternating

anion and cation exchange membranes are arranged into an electrodialysis stack to re-

move ions. Anion (cation) membranes are polyelectrolyte gels with positively (negatively)

charged groups, which rejects positively (negatively) charged ions and allows negatively

(positively) charged ions to flow through.

Experimentally, ionic conductivity of polyelectrolyte gels has been measured in various

conditions [141, 142, 143, 144, 145]. The ion dynamics in such heterogeneous media

shows unique behaviors compared to other systems. For example, the concentration

dependent ionic conductivity of polyelectrolyte gels is reported differently compared to

polyelectrolytes solutions or binary electrolytes[146, 141]; while in electrolyte solutions,

increasing concentration leads to a decrease in conductivity, for gels, a weak increase was

observed with increasing monomer density. The conductivity can also be modulated by
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counterion distribution by controlling the cross-linking density (i.e., the average molecular

weight between crosslinkers) [147, 141]. Therefore, the morphology of polyelectrolyge gels

at the nanometer scale is of paramount importance in improving membrane function and

mechanical properties. However, usually only the relative amount of cross-linkers can be

well controlled in experiments, leaving the chain lengths, entanglements, dangling ends

almost impossible to determine. Hence, further design of such systems require theoretical

determination of efficiency and the range of experimentally accessible parameters.

Here we use coarse-grained molecular dynamics (MD) simulations to investigate the

ion dynamics in polyelectrolyte gels under external electric fields. We find a nonlinear

response region where the molar ionic conductivity of polyelectrolyte gels increases with

external fields. The counterion redistribution under electric fields is proposed as the driv-

ing mechanism. We also show that the ionic conductivity can be modulated by changing

density of polyelectrolyte network particularly in the weak-field regime. A qualitative

theory based on a field-induced weakening of binding energies can qualitatively describe

the mobility of counterions for the range of external fields considered here. Our results

also underline an essential difference between the ionic response in simple electrolyte so-

lutions and that in polyelectrolyte gels. The simulations reveal underlying mechanisms

that contribute to the average ionic response in charged polymeric systems, and suggest

guidelines for tuning the conductivity in ion-conducting devices.

7.2. Model

Figure 7.1a illustrates the single cell of a defect-free cubic polyelectrolyte network that

is used in simulations. The polymer segments connecting two network nodes are modelled
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Figure 7.1. (a) Snapshot depicting aN = 100 polyelectrolyte network struc-
ture. Monomers and counterions are denoted by cyan and purple spheres
respectively. Every cross-linking node (drawn as oversized red spheres for
illustration purpose) is attached by six polyelectrolyte chains, each of which
has N monomers. Unit cell box in simulation typically has 4× 4× 4 cross-
linking nodes (2× 2× 2 shown here). (b) Illustration of the cell parameter
that is used to determine condensed ion distributions. The distance from
chain d is defined by the distance between an ion and its nearest monomer.
The ion is considered as condensed ion when d ≤ 2σ.

by bead-spring chains composed of N monomers. The steric and bonded interaction

between monomers are calculated by the Lennard-Jones (LJ) and FENE (Finite Extension
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Nonlinear Elastic) potentials in the forms of

ULJ(r) =

 4ε
[(

σ
r

)12 −
(
σ
r

)6
+ 1

4

]
for r < rc,

0 for r ≥ rc,

UF (r) =

 −
1
2
kF r

2
F ln

[
1− ( r

rF
)2
]

for r < rF ,

∞ for r ≥ rF ,

respectively. Here the LJ potential is shifted at the cutoff radius r = rc to obtain a

continuous potential profile. σ is the monomer diameter (LJ unit)1. Good solvent is

modelled by rc = 21/6σ and ε = 1kBT , leaving only the repulsive part of the interactions.

This potential is employed for the mutual chain-counterion and counterion-counterion

excluded volume interactions as well. For the FENE bond, the parameters are set to

kF = 10.0kBT/σ
2 and rF = 1.5σ [148]. Periodic boundary conditions are applied in all

direction in the simulation box. A typical cubic simulation box contains 4× 4× 4 cross-

linking nodes in each direction. The sizes of simulation box for different gels are roughly

in the range 50σ − 200σ.

Each counterion has a valency of q = +1 unit charge, while each backbone monomer

of N -mer chains bears a unit charge of q = −1. Initially, counterions are added at

random positions in the periodic simulations box. Due to the macroscopic requirements

of electro-neutrality, number of counterions are set equal to the total number of charged

backbone monomers. The short range pair-wise Coulomb interaction between two charges

is UC(r) = εlBqiqj/r, where the Bjerrum length is lB = e2/(4πε0εsε). Here e is the unit

1In LJ unit, LAMMPS sets the fundamental quantities mass m, length σ, energy ε, and the Boltzmann
constant kB equal to 1
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charge, ε0 and εs: permittivity of the vacuum and the solvent respectively. The Bjerrum

length is defined as the distance, at which two unit charges have an electrostatic interaction

energy equivalent to thermal energy kBT . As an example, for water lB ≈ 7.1Å and is

roughly equal to four adjacent carbon-carbon bonds. The long-range Coulomb interaction

is calculated via the PPPM-algorithm [149], with a force accuracy of 10−4. The cut-off

distance that determines the short and long range scheme in simulations is chosen to

optimize the computation time between real and K-space. Typically, the range of the

electrostatic cutoff distance ranges 8σ − 20σ depending on the size of the system. [150].

Isothermal-isobaric (NPT ) ensemble is used to obtain equilibrium swelling size of gels by

setting all pressure components to zero.

The non-equilibrium simulations are conducted by applying constant external electric

field on each charged particle (i.e., the external force per monomer is Fext = qE) under

NV T ensemble. The external electric fields are in the range of 10−2 − 101ε/qσ and in

the z-direction (E = Eẑ). The average drift velocity of all counterions relative to the

polyelectrolyte network under the field is used to calculate the mobility of counterions as

(7.1) µ =
〈υci〉
qE

,

where the angular bracket 〈..〉 refer to averaging over all the ions and time frames. The

mobility of counterions can be related to the molar conductivity by Λ = qµ. Addition-

ally, diffusion coefficient of counterions at vanishing fields (i.e., D ≡ kBTµ(E → 0)) is

calculated from the simulation trajectories via

(7.2) D = lim
t→∞

〈[r(t)− r(0)]2〉
6t

,
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where r(t) is the position vector of ion at time t.

The molecular dynamics simulations were performed using LAMMPS software pack-

ages [151]. The Langevin (LGV) equation of motion are solved to iterate velocities and

coordinates of particles. The equation of motion for particle i

(7.3) ṗi = Fi + Fext,i + FD
i + FR

i

where Fi is the total bound and unbounded forces on the ith particle, FD
i = −γvi is the

dissipative force, where γ is the friction coefficient and vi is the particle velocity. The

damping parameter is set to 0.1τ for all simulations in this work. Here τ is the reduced

time unit and defined as 1τ = ( ε
mσ2 )1/2t.Multiple values of damping factor are tested,

and no qualitatively difference is found. The random force, FR
i , satisfies the fluctuation-

dissipation theorem [152]. Typically 106 MD time steps (∆t = 0.005τ) are used to reach

a steady state. Following, additional 107 time steps are run to obtain the data used in the

analysis. The statistical errors of time-series data are analysed by using block averages

as detailed in ref [153, 154]. Error bars of the order of the symbol size or smaller are not

shown in the figures.

7.3. Results and Discussion

7.3.1. Polyelectrolyte gels in the absence of an external electric field

In polyelectrolyte networks, the osmotic pressure exerted by ionized counterions and the

elastic response of the network chains determine the equilibrium size of the swelling ratio

of network chains [155, 156]. The scaling theory [157, 158] gives the average end-to-end

distance of the network chains in highly-swollen gels as Re ' f 1−νNσ, where f is the
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bear fraction of charge on backbone and ν ≈ 3/5 is the Flory exponent for good solvent.

In simulations, where we have strongly charged polyelectrolyte chains (i.e., f = 1), Re

linearly scales with N for various electrostatic strengths (Figure 7.2a). As the electrostatic

strength (Bjerrum length) is increased, the polyelectrolyte gels are less swollen as a result

of increasing attraction between backbone charges and counterions [159].
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Figure 7.2. (a)Average end-to-end distance Re of polyelectrolyte chains ex-
hibit a linear scaling with N for both lB = 1σ (empty square) and 5σ (solid
sphere). Due to the stronger electrostatic interaction, lB = 5σ has a smaller
Re than its lB = 1σ equivalence. A linear reference line is shown to guide
the eye. (b) Fraction of condensed counterions fCI at zero external elec-
tric field, all ions within a distance of 2σ around the backbone chains are
summed up. As N →∞, the counterion condensation ratio approaches the
Manning theory (dashed line).
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According to Manning’s theory of condensation [147, 160], a single strongly charged

and infinitely long charged rod attracts oppositely charged counterions to reduce its line

charge density. Similar phenomena in polyelectrolyte gels has been reported in previous

simulation studies [161, 159]. The simplified Manning model predicts the fraction of

condensed counterions to be fCI = 1 − 1/ξ for ξ > 1, where the Manning parameter

ξ = lB/l is defined as the Bjerrum length over the distance between two charges along

the backbone chain, which is l = σ in our case.

An estimate for the fraction of condensed (non-free) counterions can be obtained by

counting the ions confined in a cylindrical cell of radius 2σ around each chain [162]

(see also Figure 7.1b for the schematic definition). Figure 7.2b shows the calculated

fraction of condensed counterions fCI for various polyelectrolyte networks in the absence

of external field. For dilute polyelectrolyte gels (N > 100), the measured fraction of

condensed counterions approaches the predicted Manning values, fCI → 0 and fCI =

0.8, for lB = 1σ and lB = 5σ, respectively (dashed line in Figure 7.2b). Although

the counterion-condensation picture is valid for a single infinitely long chain, our results

suggest that it is still qualitatively valid for ion distributions in gels in dilute limit. A

more accurate method uses the inflection point based on Poisson-Boltzmann theory to

estimate the counterion condensation around single chains [163, 164, 162], yet cannot

be easily applied to arbitrary geometries such as networks in our simulations.

The transport properties of counterions are related to the fraction of condensed ions

since electrostatic forces exerted on the counterions depends on their relative position

with respect to the network chains. Figure 7.3 shows the counterion diffusion coefficient

as a function of monomer concentration for lB = 5σ. The diffusion coefficient decreases
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Figure 7.3. Comparison of linear-response mobilities µ and equilibrium dif-
fusivities D of counterions in gels and 1:1 simple electrolytes for an electro-
static strength of lB = 5σ. The diffusion coefficients are calculated via mean
square displacement of counterions (MSD) in Eq. 7.2 at zero field, whereas
the mobilities are calculated via Eq. 7.1 at E = 0.1ε/qσ. For comparison,
polymerization degree N and monomer concentration c are related by using
c ≡ N/R3

e for gels and shown as an alternative x-axis (top axis).

as the size of the network chains is increased (i.e., monomer concentration is lowered).

At low concentrations, the fraction of condensed ions converges to its Manning value (see

Figure 7.2). Figure 7.3 also compares the diffusivity of ions in polyelectrolyte networks to

that of 1 : 1 binary electrolytes with identical ionic concentrations. Unlike polyelectrolyte

gels, in the electrolyte solution, diffusion of ions is faster for lower concentrations. At

lower electrostatic strengths (i.e., lB = 1σ), although the trend in diffusion coefficient

is similar to lB = 5σ case, the difference in mobilities at low and high concentrations

are weaker (data not shown). This again indicates the dependence of averaged transport

coefficients to the position of ions with respect to the backbone chains since, for lB = 5σ,

ions are more condensed onto network chains.
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The equilibrium charge distribution and diffusion behavior in polyelectrolyte gels that

we discuss so far is expected to be altered under external electric fields. In the following

section, we discuss how the applied field alter the charge distribution and, in turn, mobility

of mobile counterions in polyelectrolyte gels.

7.3.2. The effect of external field

Figure 7.4 shows counterion mobility in various polyelectrolyte networks N = 10, 30, 100

for Bjerrum lengths lB = 1σ, 5σ. To compare various cases on a single plot, all mobilities

are normalized by their bulk value µ0 = 1/γ, where the Langevin friction term is γ.
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Figure 7.4. Mobility of counterions for various gels under external electric
fields for both lB = 1σ and lB = 5σ. All the mobility values are rescaled by
the Langevin damping parameter µ0 = 1/γ. Arrow indicates the value of
the electric field (E = 0.1ε/qσ) that is used in Figure 7.3. Notice that this
field is within the linear-response regime

Based on the data in Figure 7.4, for each polyelectrolyte network, the mobility of

counterions under external an electric field E can be divided into three regimes. These

regimes are
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(1) The mobility remains constant under the external electric fields of strength E <

E∗ ≡ εlB/σ
2. This regime corresponds to the linear-response behavior for weak

perturbations (e.g., Ohm’s law is valid).

(2) The linear-response regime ends at around E ' E∗, and a non-linear regime,

where the mobility increases with increasing strength of electric field, sets in

(Figure 7.4). The non-linear transition points are denoted by two dashed lines for

lB = 1σ and lB = 5σ, respectively, and E∗lB=5σ/E
∗
lB=1σ ≈ 5. Linear polyelectrolyte

solutions also exhibit similar nonlinear response to external electric fields [165].

(3) In the saturated regime, the external field E is strong enough and dominates over

the Coulomb interactions. In this regime, the mobility of counterions becomes

independent of the applied field and approaches its bulk value µ→ µ0 = 1/γ for

swollen gels.

In the linear regime, the electric field is not strong enough to alter the equilibrium

distribution of charges and the related transfer properties significantly. This can be seen in

Figure 7.3, where we compare the mobility values obtained at an electrical field strength

within the linear regime, E = 0.1ε/qσ (filled spheres in Figure 7.3) to the equilibrium

diffusion coefficients (filled squares). Note that the diffusion coefficient and mobility

are related via the Einstein relations, D = kBTµ. The linear-response mobility indeed

converges to the equilibrium diffusion coefficients as E → 0.

Within linear-response regime (i.e., E < E∗), interestingly the gels composed of shorter

network chains exhibit slightly higher values of mobility (Figure 7.4). This is somewhat

counter-intuitive since at high concentrations of charges (i.e., smaller values of N), one

can expect smaller values of mobilities similar to electrolyte solutions. However, the
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distribution of free charges within the network of charged polymers alters the response

to the external fields. In Figure 7.5a, we show the integrated distributions of counterions

around the network chains as a function of the rescaled radial distance from the chain at

E = 0.1ε/qσ for various network chains. The data for lB = 5σ are specifically chosen here

to demonstrate the effect of condensation more clearly. Although the relative condensation

volume, hence, condensation is more marked for networks of short chains (Figure 7.2),

the counterion clouds near the chains are relatively more extended in the gels composed

of short network chains due to mutual attraction by neighboring chains (Figure 7.5a).

Indeed the average mobility of counterions is higher if they are away from the network

chains as can be seen in the inset of Figure 7.5a): despite the noise in the data due to

thermal fluctuations, the closer the counterions to the networks chains are, the slower

they move. Hence, if the counterions are more scattered in the gel, the average mobility

increases (Figure 7.5a).

The distance dependent mobility can be invoked by the distribution of electrostatic po-

tential in polyelectrolyte gels. The electrostatic potential distribution of a polyelectrolyte

network has been calculated using a two-dimensional stacking model [166], revealing the

potential energy valleys around the polymer chains. The electrostatic potential for each

counterion is calculated, and the results are shown in Figure 7.5b: these calculations also

reveal the potential energy valleys around the polymer chains. Near the chains, deep

potential wells are common in all networks. Away from the chains, the potentials de-

cay to zero (Figure 7.5b). At intermediate distances between the backbone chains and

counterions, the Coulomb potential is stronger for longer chains. This indicates that for a

counterion located near, say N = 100 network, escaping from the potential requires higher
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Figure 7.5. (a) Integrated ion distributions for various polyelectrolyte net-
works. The distance from chain d is normalized by the end-to-end distance
Re. Inset shows mobility of ions as a function of their distance from chains
at E = 0.1ε/qσ with lB = 5σ. (b) The calculated electrostatic potentials
for counterions as a function of the distance. Inset shows average Coulomb
energy per counterion in various gels and 1:1 binary electrolytes at identical
ionic concentrations at E = 0.1ε/qσ.

forces compared to that in a N = 10 network. Thus, the mobility of counterions can be

smaller in dilute networks. Combined these results with the counterion distributions in

various polyelectrolyte networks shown in Figure 7.5, the decrease in ionic mobility with

increasing size of network chains in the linear-response regime can be related to distribu-

tion of counterions in dilute gels.
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The linear regime ends when the strength of applied force approaches to that of the

Coulomb forces between charged species (i.e., qE ' lB/σ
2). To understand the underly-

ing mechanism of the nonlinear mobility of counterions, the microscopic distribution of

counterions is investigated at E > E∗. Indeed, strong electric fields are known to reduce

the number of condensed counterions near the charged chains [165, 162]. In Figure 7.6a

and b, we show the integrated distributions of counterions around chains of N = 100

network as a function of the average radial distance from the chain for various electric

field strengths. The values of the electric field correspond to both linear and non-linear

regimes (Figure 7.4). For both lB = 1σ and lB = 5σ cases, at vanishing values of electric

fields, the distributions are weakly affected by the external field as expected. However, at

E > E∗ the counterion distributions are broader as a result of the counterions departed

away from the network chains. This can be seen more clearly in the 2D concentration

profiles shown in Figure 7.6c for two different external fields, E = 0.1ε/qσ and E = 1ε/qσ.

At the higher field, more ions occupy spaces between the network chains (notice the light

and darker blue regions in Figure 7.6c). Indeed, there is an excellent correlation between

the fraction of free ions and the mobility values for a wide range of external fields as

shown in the inset of Figure 7.6a and b: the fraction of the free counterion as a function

of external field overlaps with mobility data remarkably well.

Finally, in the saturation regime under strong fields, most of the condensed ions are

stripped off the network chains, and dragged by the field. Indeed, when E is strong enough

(i.e., E � E∗), the resulting mobility is expected to be independent of network properties

and electrostatic coupling for highly swollen gels. Indeed, this is what we observe in the

simulations (Figure 7.4). However, we should note that in the cases of dense gels (i.e., the
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end-to-end distance does not obey the scaling Re ∼ N) [167], the counterion diffusion

can be coupled to chain motion. Thus, the final saturation values can be a function of

crosslinking density or chains sizes.

Since the main contribution to the mobility in polyelectrolyte gels are from uncon-

densed (free) ions that can move through the network structure away from the chains,

the mobility can be expressed as the sum of contributions from the free and condensed

ions as

(7.4) µ = µnffCI + µfree(1− fCI),

where µfree is mobility of free ions and µnf is mobility of condensed ions. As a simple

estimate, the fraction of condensation is fCI ' 0.8 for lB = 5σ, thus Eq. 7.4 gives a value

of mobility µ ' 0.2µ0. However, Eq. 7.4 is less accurate for weak electrostatic strengths

(e.g., lB ≈ 1σ since a distinction between ”condensed” and ”free” ions is hard to establish

due to weaker interactions between the ions and the backbone charges (e.g., on the order

of thermal energy).

7.3.3. Comparison: simple electrolytes versus polyelectrolyte gels

In 1 : 1 electrolytes in the dilute limit, according to Debye-Huckel theory, the molar

conductivity Λ (which is proportional to diffusivity) decreases linearly with the square

root of concentration, Λ = Λ0−K
√
c (Kohlrausch’s law), where K is a constant, and Λ0 is

the molar conductivity at infinite dilution (or limiting molar conductivity). Accordingly,

a single diffusing ion feels a drag friction due to the surrounding ionic atmosphere of

oppositely charged ions. The drag force increases with increasing concentration. Thus,
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Figure 7.6. Integrated ion distribution around the chains of N = 100 poly-
electrolyte networks for various external electric fields (a) lB = 1σ and (b)
lB = 5σ. The distance is normalized by the end-to-end distance Re. Insets
show mobility and number of free ions on a single plot. Blue squares denote
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field is in z-direction. The red regions refer to high local concentration of
counterions around the network chains, whereas blue color refers to the low
local concentration.
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the ion diffusivity decreases with increasing concentration. In contrast, the ion diffusivity

in polyelectrolyte gels increases with increasing concentration (Figure 7.3). Indeed, this

distinct concentration dependence of ionic conductivity in gels and electrolytes were also

observed experimentally [141].

A scaling argument can be made to invoke the difference between simple electrolytes

and PE gels. In electrolytes, the average distance between two ions in solution can be

estimated as ∼ c−1/3, where c is the concentration. Hence, the average distance decreases

with increasing concentration (assuming no charge pairs are formed), resulting in stronger

repulsions between like-charged ions and stronger attractions between oppositely charged

ions. The inset of Figure 7.5b compares the average Coulomb energy per counterion in

a 1:1 electrolyte solution in implicit solvent to those in various gels at E = 0.1ε/qσ.

For the electrolytes, the absolute value of the Coulomb energy increases with increasing

concentration. In contrast, in polyelectrolyte gels, the absolute value of Coulomb energy

decreases with increasing concentration. This behavior indicates an essential difference in

ion distributions, which results in different ion dynamics in electrolytes and polyelectrolyte

gels.

7.3.4. Theoretical arguments for mobility

In order to rationalize the behavior of the mobility from a different perspective, we develop

a theoretical model to refine equation (7.4) and the notion of ’free’ and ’condensed’. We

assume simple reaction equilibria, set by reaction constants Ki, connected to different

states i of an ion. This rate constant is calculated from a single-ion partition function

that depends on a mean binding (Gibbs) energy ∆G(E) , depending on the external field
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E, and a volume V in which a single ion interacts with a site on the backbone,

(7.5) Ki = Vie
∆Gi(E).

In addition, we distinguish three regions: 1) the region where the ions are ’free’ (∆G1 = 0),

2) the region where the ions are close to the chain but still mobile (∆G2 ∼ 1kBT ), and 3)

the region where the ions are condensed and immobile (∆G3 � 1kBT ). The number of

ions in each region, ni, is determined by a reaction equilibrium,

(7.6) ni = n
Ki

K1 +K2 +K3

.

We use an equation similar to equation (7.4) to estimate the total mobility, but now with

three types of ions, corresponding to the three regions. Before we can make a comparison

to the simulation results, many assumptions are required about the scaling behavior of

Vi (the volume of region i) and the mean free energy of binding, and in principle also the

mobility in region 2, although this parameter appeared of little influence. The predictions

of the model depend sensitively on these assumptions, especially on the scaling behavior

of Vi and ∆Gi(E), and also on the input parameters. However, regardless of the specific

assumptions, we find general trends that largely coincide with the simulation results,

namely that the mobility increases with increasing field E, because a larger E shifts

the reaction equilibria in favor of region 1 (the ’free’ region), with a transition in the

region where E has the same order of magnitude as the Coulomb pair interaction. The

remarkable behavior in Figure 7.4a at small electric fields is, in contrast, only predicted

for rather specific assumptions. An important assumption is that ∆G in a dilute gel

needs to be larger than in a more dense gel. That is, ions stick more strongly in dilute



147

networks. This assumption is confirmed by the simulation results in Figure 7.5b. The

results are shown in Figure 7.7, under the assumption that the length of the chains

scale linearly with N , and ∆G linearly with E, for lB = 5. We can draw two main

conclusions from the perspective of this model. Firstly, the nonlinear response can be

rationalized as a general consequence of ions breaking free from the polymer backbone,

that are being less impeded by the interactions with the polymer chains as the electric

field increases. Secondly, we conclude that the density-dependence of the mobility at low

electric fields is not easily captured in a simple model, and only reproduced under very

specific assumptions for the scaling behaviour of the gel volume and the binding energy

of the ions. These assumptions are in line with the simulation results in the previous

section. However, considering the simplifications in our theoretical models, and number

of unknown parameters, the molecular dynamics simulations are necessary for conclusive

results. The model highlights qualitative trends and suggests conditions for the required

scaling behavior of the binding energy and gel swelling.

7.4. Conclusion

We have analysed the ion dynamics in polyelectrolyte gels with molecular dynamics

simulations, and invoked theoretical models to rationalize results. Regardless of the gel

characteristics, we find a nonlinear response of the conductivity to an applied electric

field, for field strengths that are comparable to the ionic coupling strength. This behavior

correlates to a broadening of the ionic distribution around the polymer backbone under an

increasing electric field. The weak-field mobility for dilute gels can be directly estimated

from the fraction of free ions, using Manning’s theory, if the ionic coupling is larger than
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these assumptions, and to show the same qualitative trend without these
assumptions. The inset shows the fraction of the ion population in each of
the three regions as a function of E, for N = 30.

the thermal energy, lB/σ > 1 . For dense gels, the mobility is not easily estimated due to

the complicated interplay of Coulomb interactions and steric repulsions. We find that the

ion mobility in dilute gels shows a larger transition than in denser gels, and we connected

the behavior to a larger binding energy of the ions to the polymer backbone. Remarkably,

we find that the small-field ion mobility in polyelectrolyte gels increases with increasing

concentration, which is opposite to the behavior observed in simple electrolytes. This

is related to the mean coupling between charges, which decreases in polyelectrolyte gels

and increases in simple electrolytes, with increasing concentration. These results provide

more insight into the electric response of polyelectrolyte gels, to support the development

of applications that combine electric and mechanical properties of polyelectrolyte gels for

energy storage, sensing, selective transport, and signal transfer.
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CHAPTER 8

Summary and Outlook

8.1. Summary

Electrostatic interactions are of fundamental importance for understanding the rela-

tionships between structure and function in many biological and physical systems. There

are great challenges in solving electrostatics problem in complex electrolytes computation-

ally. In this thesis, I first extend previous variational formulations to solve polarization

for multiple interfaces. I develop a molecular dynamics simulation package from scratch

and this package is used by Meng Shen and me to study the surface polarization effects on

ion-containing emulsions [1]. Using explicit calculation of induced charges and separation

of electrostatic inter-droplet interaction, our work provides a clear understanding behind

the intertwined relation between surface polarization and ion distribution. Besides find-

ing strong attractions between droplets with multivalent ions in agreement with all-atom

metalloamphiphile extraction studies [20], we find the orientation of the charges in the

droplets is strongly affected by the surface polarization and hence the ion-ion interaction

between the droplets; these interactions decrease as the ion size and valency decreases.

Our studies reveal the role of dielectric mismatch on inter-droplet interactions. While

ion-containing oil aggregates in aqueous solutions interact very weakly with each other,

much weaker than in the case of simulations that do not include surface polarization, in

organic solvents the interactions between water droplets are strongly enhanced due to
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surface polarization. This understanding helps building meaningful models for analyzing

interactions between ion containing emulsions and microcompartents [43], and paves the

way for understanding self-assembly of mixed phases for multiple applications.

Then I work with Trung D. Nguyen to implement our variational method in to the

well-known open-source molecular dynamics simulator (LAMMPS). We use this module

to study the ion distribution near structured polarizable surface. Together with Huanxin

Wu in professor Erik Luijten’s group, We find the local curvature of the surface always

induces effective surface polarization and net ion charge accumulation in the presence of

asymmetric electrolytes. The effect should be observable not only on surfaces that bound

an electrolyte, but also at the surface of electrolyte-immersed colloids. Our findings can

be applied to the design of surfaces with useful physicalchemical properties. I also further

investigate the case where there are charged amphiphile molecules at the interface.

I develop a Monte-Carlo simulation package to capture the dynamical dissociation of

charges of molecules. Collaborated with experiments (Mitchell Miller in professor Pulak

Dutta’s group), we study the intra-lanthanide selectivity during solvent extraction. This

study shows that strong elemental selectivity in the solvent extraction process occurs

at the interface between aqueous and organic phases. Erbium (the heavier and smaller

lanthanide) is attracted to a Langmuir monolayer of extractant-like molecules even at

much lower bulk concentrations than neodymium. When both metals are present in the

solution, erbium is the dominant surface adsorbant even when much more neodymium

is present in the bulk. Using a theoretical model and Monte Carlo simulations, we find

that electrostatic effects arising from the inhomogeneity of the interfacial medium and

small differences between ions are responsible for this strong selectivity between these
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two chemically similar ions. Our results imply that the interface plays the essential role

in separating lanthanides during solvent extraction. We therefore suggest that efforts

to understand, modify and improve lanthanide (and perhaps also actinide) separations

processes should focus on the unusual chemical environment of the interface.

Collaborated with Changrui Gao in professor Michael J. Bedzyk’s group, We use

Monte-Carlo simulations and pH titration measurements to reveal that ionic correlations

in the PA assemblies shift the ionizable amine pK ∼ 8 from pK ∼ 10 in the lysine

headgroup. We also use simplified theoretical models explain that that the reduction

in the range of electrostatic interactions is the driving force for high aspect ribbons

isotropic sheets membrane rolling transformations. The linear relationship between the

interbilayer separation and the screening length was qualitatively explained by considering

the interplay between attractive van der Waals’ and the repulsive electrostatic energies.

These results suggest that the salt-induced structural transitions in the C16K1 system

should also be observable in other charged bilayer membranes that possess a spontaneous

curvature. Our combined experimental and theoretical study yields insight into attaining

the cochleate structures and controlling their internal architecture. The results presented

here should be useful for optimizing the structure and function of cochleates in many

applications, including drug delivery and photocatalytic production of hydrogen.

At last, I discuss ion dynamics simulations. We have analysed the ion dynamics in

polyelectrolyte gels with molecular dynamics simulations, and invoked theoretical models

to rationalize results. Regardless of the gel characteristics, we find a nonlinear response

of the conductivity to an applied electric field, for field strengths that are comparable

to the ionic coupling strength. This behavior correlates to a broadening of the ionic
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distribution around the polymer backbone under an increasing electric field. The weak-

field mobility for dilute gels can be directly estimated from the fraction of free ions,

using Manning’s theory, if the ionic coupling is larger than the thermal energy, lB/σ > 1

. For dense gels, the mobility is not easily estimated due to the complicated interplay

of Coulomb interactions and steric repulsions. We find that the ion mobility in dilute

gels shows a larger transition than in denser gels, and we connected the behavior to a

larger binding energy of the ions to the polymer backbone. Remarkably, we find that

the small-field ion mobility in polyelectrolyte gels increases with increasing concentration,

which is opposite to the behaviour observed in simple electrolytes. This is related to the

mean coupling between charges, which decreases in polyelectrolyte gels and increases in

simple electrolytes, with increasing concentration. These results provide more insight into

the electric response of polyelectrolyte gels, to support the development of applications

that combine electric and mechanical properties of polyelectrolyte gels for energy storage,

sensing, selective transport, and signal transfer.

8.2. Ongoing project: Comparison of different polarization solvers

As mentioned, it is very important to develop a fast and efficient polarization solver

for many problems. Currently, our variational method implemented LAMMPS can deal

with systems with thousands of discretized interface patches for a typical molecular dy-

namics simulation (> 107 timesteps), even without perfect parallelization. However, for

significant larger system. It is necessary to make the code parallel computable. Also, it is

a good practice to compare different methods and find the best one for different scenarios.
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Figure 8.1. Induced charge of plane.

Here are the preliminary results Trung D. Nguyen has done to compare three different

polarization solvers (ICC [168], GMRES [12], variational method [15]) for three different

simple geometries (plane, cylinder and sphere) which with analytical results. The curves

“Variational cutoff” are his new implementation of the direct optimization (inverse matrix

calculation) adopted from implementation which use full sized matrices (“Variational

M2”), cutoff = 20σ for these tests. For a point charge inside the sphere and εin >> εout,

the discrepancy between the numerical results from the solvers and analytical results can

be reduced by increasing the number of mesh points.

8.3. Promising project: Ion dynamics in dielectric media

Combined what we have investigated, it is meaningful to study the ion dynamics

in media with inhomogeneous dielectrics. Here I propose to study the ionic transport

in nanochannels (Figure 8.4) with different concentrations, channel sizes, ion sizes and

dielectric constants. From my previous test, such system would need lots of discretization

points of interface ( > 6000 for a tube with 5nm diameter) to get an accurate result of
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Figure 8.2. Induced charge of sphere.

induced charge. It is only possible after we find the most efficient method/implementation

mentioned in previous section. There are several problems we could study.

First, the equilibrium ion distribution in nanochannel could be studied. Various ion

sizes, nanochannel sizes, dielectric mismatches will be considered. Note asymmetric salt,

such as MgCl2 and AlCl3, appears widely in chemical or biological systems. Because the

magnitude of dielectric effects scales as z2, where z is the valence of an ion, multivalent ions

experience much stronger image repulsion/attraction than monovalent ions. This would
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Figure 8.3. Induced charge of cylinder.
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Figure 8.4. System we are going to study: Ionic transport in nanchannel.
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cause different ion distribution for monovalent ion and divalent/trivalent ion, especially

for interface with curvatures. We could also charge the interface with a gate voltage,

the net charge distribution on the interface would greatly tune free ions distribution in

nanochannel.

Then, by applying an external electric field along the nanochannel. The electric field

is known to alter the ion distribution thus result in non-trivial ion dynamics according to

the previous chapter. Moreover, the interaction between free ions and polarized charge

on the interface would greatly expand our knowledge in ion dynamics and nanofuidics.

Finally, more geometries other than cylindrical channel, such as conical channels and

curved tubes could be studied. Conical shaped pores have application in ion pumps [169],

which could bring novel phenomenal to this system.
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