
NORTHWESTERN UNIVERSITY

Power-Aware and Temperature-Aware Design Automation

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Electrical Engineering and Computer Science

By

Zhenyu Gu

EVANSTON, ILLINOIS

December 2007

2

© Copyright by Zhenyu Gu 2007

All Rights Reserved

3

ABSTRACT

Power-Aware and Temperature-Aware Design Automation

Zhenyu Gu

This dissertation presents several topics which are related to temperature-aware and power-

aware design.

An efficient unified incremental high-level and physical-level synthesis algorithm was pre-

sented in Chapter 2, which enable the tight integration between high-level and physical-level

design. Chapter 3 presented a temperature-aware high-level synthesis algorithm built upon

the framework of Chapter 2. Temperature variations and hot spots account for reliability is-

sue and require more conservative timing margins, thereby reducing performance. Therefore,

reliability-aware synthesis flow was presented in Chapter 4. Recent developments in nanoscale

devices open new alternatives for low-power embedded system design. Among these, single-

electron tunneling transistors hold the promise of achieving the lowest power consumption.

Unfortunately, most analysis of SETs has focused on single devices instead of architectures,

making it difficult to determine whether they are appropriate for low-power embedded sys-

tems. Therefore, a fault-tolerant hybrid SET/CMOS reconfigurable architecture was presented

4

in Chapter 5. 3D CMOS technology has been developed to overcome the interconnect bottle-

necks of 2D design, but at the cost of serious thermal problems due to significant increase of

power density by stacking multiple active device layer together. Hence, in Chapter 6, 3D CMP

framework was presented and temperature-aware management policy was evaluated built upon

this framework.

5

To Tian

6

Acknowledgements

First, I would like to thank my advisor, Robert Dick. We closely collaborated on all the work

presented in the body of this dissertation. He has all the traits of an excellent research advisor;

he is intelligent, diligent, methodical, careful, imaginative, and even-tempered. I appreciate the

corrections and suggestions offered by my dissertation readers: Robert Dick, Li Shang, Seda

Ogrenci Memik, Hai Zhou, and Russ Joseph.

I was glad to have the opportunity to discuss research with Changyun Zhu, Jia Wang,

Yonghong Yang, Ke Meng, and Lin Zhong.

Lastly, and most importantly, I am deeply indebted to my parents and wife for their selfless

love, care, support and belief. Without them, I could never have gotten to where I am today.

Zhenyu Gu

Northwestern University

December 2007

7

Table of Contents

ABSTRACT 3

Acknowledgements 6

List of Tables 10

List of Figures 12

Chapter 1. Introduction 17

1.1. Technology Scaling 17

1.2. Power-Aware and Temperature-Aware Design Flow 20

1.3. Dissertation overview 21

Chapter 2. Unified Incremental High-Level and Physical-Level Synthesis 24

2.1. Introduction 24

2.2. Motivation 27

2.3. Incremental High-Level Synthesis 32

2.4. Incremental Floorplanning 40

2.5. Experimental Results 47

2.6. Conclusions 54

Chapter 3. Unified Temperature-Aware Incremental High-Level and Physical-Level

Synthesis 58

8

3.1. Introduction 59

3.2. Related work 60

3.3. Motivating example 62

3.4. Overview of TAPHS 65

3.5. Slack distribution 66

3.6. Voltage partitioning 71

3.7. Floorplanning with voltage islands 81

3.8. Thermal modeling 84

3.9. Experimental results 86

3.10. Conclusions 92

Chapter 4. Reliable Application-Specific Multiprocessor System-On-Chip Synthesis 94

4.1. Introduction 94

4.2. MPSoC Reliability Estimation and Optimization Challenges 98

4.3. Reliable Application-Specific MPSoC Synthesis 102

4.4. Experimental Results 121

4.5. Conclusion 130

Chapter 5. Hybrid SET/CMOS Design for Low-Power Embedded Systems 132

5.1. Introduction 133

5.2. SET Modeling 137

5.3. IceFlex: A Fault-Tolerant Hybrid SET/CMOS Reconfigurable Architecture 144

5.4. Experimental Results 160

5.5. Conclusions 179

9

Chapter 6. Three-Dimensional Chip-Multiprocessor Run-Time Thermal Management 184

6.1. Introduction 185

6.2. Three-Dimensional CMP Technology 188

6.3. Thermal Properties of 3D CMPs 190

6.4. 3D CMP Thermal Management 193

6.5. Experimental Setup 202

6.6. Experimental Results 206

6.7. Related Work 218

6.8. Conclusions 220

Chapter 7. Conclusion and Future Work 222

References 226

Vita 243

10

List of Tables

2.1 Numbers of Merges of Different Benchmarks 50

2.2 CPU Times of Different Benchmarks 51

2.3 CPU Times Break Down of Different Benchmarks 52

2.4 Area and Power Improvements of Different Benchmarks 53

3.1 Comparison of non-dominated (multiobjective) results 88

3.2 Comparison of non-dominated (multiobjective) results with two voltage level 89

3.3 Comparison of non-dominated (multiobjective) results with four voltage level 90

4.1 System MTTF improvement under area bound 125

4.2 MTTF improvement with 25% area overhead bound 126

4.3 CPU time of design optimization flow 126

5.1 Island size estimation. Assuming disc capacitor model (C∑ = 8εr). One side

of the island is embedded into silicon dioxide. The other side of the island is

exposed to Nitrogen. 140

5.2 Design Space Characterization 147

5.3 Impact of Majority Vote Logic on SELB Fault Probability 155

5.4 Characterization of IceFlex Microarchitecture for CΣ = e2/(10kBT) 161

11

5.5 Characterization of IceFlex Microarchitecture for CΣ = e2/(40kBT) 162

5.6 Characterization of IceFlex Interconnect Fabric For CΣ = e2/(10kBT) 163

5.7 Characterization of IceFlex Interconnect Fabric For CΣ = e2/(40kBT) 164

5.8 Latency and Energy Improvement For Exclusive-Or Design 170

5.9 Characterization of Synthesized Processors 177

5.10 IceFlex Performance and Power Consumption at Room Temperature For

CΣ = e2/(10kBT) 178

5.11 IceFlex Performance and Power Consumption at Room Temperature For

CΣ = e2/(40kBT) 179

6.1 Design Parameters for Alpha 21264 203

6.2 3D Package Setup 203

6.3 Benchmark Characteristics 205

6.4 Benchmark Suites 205

12

List of Figures

1.1 Thermal-aware synthesis flow. 19

1.2 Silicon chip and package. 20

2.1 Power consumption of intermediate solution during optimization of ISCALP

& IFP-HLS. 31

2.2 Incremental high-level synthesis algorithm. 34

2.3 Incremental changes on HLS. 41

2.4 Iterative split move for slack smaller than -1. 42

2.5 (a) Horizontal cross and (b) vertical cross. 43

2.6 A constraint graph without over-specifications and transitive edges can have

quadratic number of edges. 43

2.7 Comparison between ISCALP & IFP-HLS for non-unity aspect ratio

functional units. 56

2.8 Comparison between ISCALP & IFP-HLS for unity aspect ratio functional

units. 57

3.1 Post-synthesis thermal profile without voltage islands. 63

3.2 Post-synthesis thermal profile with voltage islands. 64

13

3.3 Incremental high-level synthesis algorithm 65

3.4 Voltage partitioning example. 72

3.5 Lemma 2 with K = 2. 76

3.6 Property 1 of general K cuts optimal solution for Lemma 2. 76

3.7 Property 2 of general K cuts optimal solution for Lemma 2. 79

3.8 Full chip-packaging thermal model. 85

3.9 Peak temperature comparison for three voltage levels case. 91

3.10 Peak temperature reduction with different number of voltage levels. 93

4.1 Reliable MPSoC synthesis example. 99

4.2 RAMS infrastructure for the synthesis of reliable MPSoCs taking into account

architectural and physical effects on reliability. 103

4.3 Temperature impact on MTTF. 112

4.4 Solutions produced by RAMS. 125

4.5 Comparison of different optimization heuristics. 129

5.1 SET structure and schematic. 138

5.2 The Coulomb blockade effect of SET. 139

5.3 SET Coulomb oscillation (Cg =3.2 aF, Cs = Cd =1.0 aF, and Rs =

Rd =10 MΩ). 139

5.4 IceFlex microarchitecture 148

5.5 Multi-gate SET multiplexer tree. 149

14

5.6 SET configuration memory. 151

5.7 SET parity circuit. 153

5.8 Hybrid SET/CMOS interface circuitry 156

5.9 Power and performance of the multi-gate SET multiplexer tree for high

performance, CΣ = e2/(10kBT) 167

5.10 Power and performance of the multi-gate SET multiplexer tree for high

performance, CΣ = e2/(40kBT) 168

5.11 Power ratio of SET vs. hybrid interconnects for high performance for

CΣ = e2/(10kBT). 169

5.12 Power ratio of SET vs. hybrid interconnects for low power for CΣ =

e2/(10kBT). 170

5.13 Power ratio of SET vs. hybrid interconnects for high performance for

CΣ = e2/(40kBT). 171

5.14 Power ratio of SET vs. hybrid interconnects for low power for CΣ =

e2/(40kBT). 172

5.15 Performance and power characterization of exclusive-or logic for high

performance for CΣ = e2/(10kBT). 173

5.16 Performance and power characterization of exclusive-or logic for low power

for CΣ = e2/(10kBT) . 174

5.17 Performance and power characterization of exclusive-or logic for high

performance for CΣ = e2/(40kBT). 175

15

5.18 Performance and power characterization of exclusive-or logic for low power

for CΣ = e2/(40kBT). 176

5.19 Energy Efficiency of Non-Redundant Design 180

5.20 Energy Efficiency of Redundant Design 181

5.21 Frequency of Battery Powered Design 182

5.22 Frequency of High Performance Design 183

6.1 (a) Comparison of face-to-face (left) and face-to-back (right) configurations

for two stacked dies and (b) 3D three stacked die floorplan used in this work. 188

6.2 Comparison of ThermOS and Distributed Approach [1] CMP instruction

throughput (defined in Equation 6.3). 207

6.3 Comparison of ThermOS and Distributed Approach [1] aggregate CMP

frequencies (defined in Equation 6.4). 207

6.4 Reduction in thermal violations due to local DVFS and elimination of thermal

violations due to clock throttling. 210

6.5 Negligible CMP instruction throughput reduction resulting from local DVFS

and clock throttling. 210

6.6 Negligible aggregate CMP frequency reduction resulting from local DVFS

and clock throttling. 211

6.7 Temporal temperature variation for eight processor cores (P0–P7) running

lv-mipc using local DVFS w.o. (top) and w. (bottom) clock throttling. 211

6.8 Global guidance interval impact on CMP instruction throughput. 214

16

6.9 Global guidance interval impact on aggregate CMP frequency. 214

6.10 Lookup table size impact on CMP instruction throughput. 215

6.11 Lookup table size impact on aggregate CMP frequency. 215

17

CHAPTER 1

Introduction

In this chapter, we give an overview of the system-level/high-level design challenges re-

sulting from the aggressive process scaling. Then, a thermal-aware design flow is proposed to

prevent thermal problems. Finally, the structure of this dissertation is introduced.

1.1. Technology Scaling

Today, electronic circuits have developed to extremely high-performance ultra-large-scaled

integrated circuits made of CMOS transistors. They have been highly involved into our daily life

in the form of internet, cellphones, personal computers, digital cameras, cars (filled with micro-

controllers) etc. Moreover, with the development of deep sub-micro devices, the importance of

the integrated circuits will be expected to further increase in the future.

This significant progress is mainly driven by the aggressive process scaling in the feature

size of VLSI circuits. The main goal of process scaling is to decrease gate capacitance and

density, which results in the increase of circuit operation speed and decrease of its power con-

sumption. Moreover, reduction in transistor size increases the number of transistors in the VLSI

circuit (about billion transistors nowadays), and enhances parallel operation capability, which

leads to further increase in the circuit performance. Today, feature size has been aggressively

scaled to 65 nm from 350 nm in 1996, and it has been predicted by International Technology

Roadmap for Semiconductors (ITRS) [2] that the feature size will continue to shrink to about

32 nm in Year 2010. Furthermore, in the research level, normal transistor of a 5 nm gate length

18

p-channel MOSFET has been already reported [3]. This is approaching to the ultimate limit of

the process scaling, which is the distance of atoms in silicon crystals (about 0.3 nm). However,

before reaching the ultimate limit of the atomic size, the process scaling will meet a practical

limit caused by one of the integration issues: 1) the performance of the chip; 2) the cost of

manufacturing; 3) the increase of chip power and heat generation; 4) the reliability and yield

degradation of the chip.

Assume that process scaling trends continue (i.e., frequency doubles, supply voltage scales

down 30%, active capacitance grows 30%, and die size grows 25%) [4], then the power con-

sumption will increase to 2000 W in Year 2010. Even worse, it could reach approximately

10,000 W if the supply voltage process scaling rate is much slower due to its physical limita-

tion [5] and leakage power continues to increase. Therefore, it appears that power delivery and

dissipation will be primary limiters of performance and integration. Hence, it is really important

to propose a power-aware design flow.

Thermal problems can also occur since energy consumed by the transistors is converted into

heat. Therefore, increasing IC power consumption raises average and peak temperatures. Tem-

perature variations and hot spots account significantly for electronic failures [6], most of which

are due to electromigration, hot carrier effects, thermal stress, and oxide thermal breakdown.

Power and temperature variation can also lead to significant timing uncertainty, requiring more

conservative timing margins, thereby reducing performance. Designers must frequently trade

off other design metrics, such as performance, area, and cooling costs, to meet tight tempera-

ture constraints. The interaction of power and temperature constraints with other design metrics

further increases system complexity. As projected by the ITRS [2], further process scaling will

be bounded by power consumption and heat dissipation below 65 nm: it is critical to address

19

Input specification

Architectural optimization

(scheduling, voltage partitioning,

resource binding, etc.)

Physical optimization

(floorplanning, routing, etc.)

Power and

performance analysis
Thermal analysis

Feedback of thermal

performance, leakage,

reliability metrics

Figure 1.1. Thermal-aware synthesis flow.

the energy and thermal issues during on-chip system design to meet the urgent need of the

semiconductor industry and enable future technology scaling.

Thermal-aware design is very challenging. Thermal problems cannot be well solved at any

single level of the design process. First, thermal characterization requires detailed physical in-

formation, including an IC floorplan and power profile as well as interconnect and chip-package

thermal models. Second, thermal optimization requires a unified system-level/high-level and

physical-level design flow. At the architectural level, power-aware techniques (such as volt-

age partitioning, resource allocation and assignment) can reduce IC power consumption, hence

the temperature. At the physical level, efficient floorplanning is critical to correctly implement

temperature-aware design changes made by high-level design flow while maintaining other de-

sign metrics, such as performance, chip area, and cooling cost. Therefore, thermal-aware design

requires a comprehensive high-level and physical-level infrastructure.

20

Silicon dieCooling package

Figure 1.2. Silicon chip and package.

1.2. Power-Aware and Temperature-Aware Design Flow

In this section, we explain the challenges for preventing thermal problems based on our

proposed temperature-aware synthesis design flow.

Figure 1.1 shows an integrated behavioral-level and physical-level IC synthesis system [7].

This synthesis system uses a simulated annealing algorithm to jointly optimize several design

metrics, including performance, area, power consumption, and peak IC temperature. It conducts

both behavioral-level and physical-level stochastic optimization moves, including scheduling,

voltage assignment, resource binding, floorplanning, etc. Thermal analysis algorithms are in-

voked to guide optimization moves. An intermediate solution is generated after each optimiza-

tion move. A detailed two-dimensional active layer power profile is then reported based on the

physical floorplan. The power profile and floorplanning information will be used to generate a

full chip-package temperature profile as shown in Figure 1.2.

From above design flow, several interesting problems need to be solved in order to provide

an efficient thermal-aware design. First, since physical information is necessary to evaluate

every high-level decision, a fast unified high-level and physical-level design flow is needed.

Second, efficient power minimization techniques are necessary because of strong relationship

21

between temperature and power consumption. Third, a high-quality floorplanner is important

to understand and correctly implement high-level decisions. Finally, accurate thermal analysis

algorithm is another performance bottleneck for thermal-aware design flow.

1.3. Dissertation overview

In this thesis, we present the results [8,7,9,10,11,12] of the proposed temperature-aware de-

sign flow for both system-level and high-level design system. The rest of this thesis is organized

as follows.

First, achieving design closure is one of the biggest challenges for modern VLSI designers.

This problem is exacerbated by the lack of high-level design automation tools that consider the

increasingly important impact of physical features, such as interconnect, on integrated circuit

area, performance, and power consumption. Using physical information to guide decisions

in the behavioral-level stage of system design is essential to solve this problem. However, it

is unstable and time-consuming to loosely coupled floorplanners for physical estimation with

high-level synthesis especially for larger problem instances. Therefore, in Chapter 2, a fast

unified high-level and physical-level synthesis system was proposed which has the benefit of

efficiency, stability, and better quality results.

Second, thermal effects are becoming increasingly important during integrated circuit de-

sign. It is necessary to consider thermal effects during all levels of the design process, from

the architectural level to the physical level. Hence, a temperature-aware high-level synthesis

system is proposed in Chapter 3. It uses a tightly integrated thermal model and incremental

floorplanner to optimize ICs peak temperatures, area, and power consumptions, while meeting

performance constraints.

22

Third, aggressive scaling of CMOS process technology poses serious challenges to the life-

time reliability of ICs. Reduction of fabrication feature sizes and increases in power density

have resulted in increasing chip temperature and failure rates. Increasing system integration us-

ing these vulnerable devices and interconnects results in reduced system reliability. The severi-

ties of many reliability problems, such as time-dependent dielectric breakdown in MOS transis-

tors and electromigration in interconnects, increase exponentially with temperature. Lifetime

reliability is becoming an important quality metric in high-performance ICs [2]. Optimizing

lifetime reliability requires careful planning during IC design and synthesis. Therefore, Chap-

ter 4 presents a comprehensive solution to the reliable multiprocessor system-on-chip (MPSoC)

synthesis problem.

Fourth, minimizing power consumption is vitally important in embedded system design

since power consumption determines battery lifespan. Ultra-low-power designs may even per-

mit embedded systems to operate without batteries, e.g., by scavenging energy from the en-

vironment. Moreover, managing power dissipation is now a key factor in integrated circuit

packaging and cooling. As a result, embedded system price, size, weight, and reliability are all

strongly dependent on power dissipation. Recent developments in nanoscale devices open new

alternatives for low-power embedded system design. Among these, single-electron tunneling

transistors (SETs) hold the promise of achieving the lowest power consumption. Unfortunately,

most analysis of SETs has focused on single devices instead of architectures, making it difficult

to determine whether they are appropriate for low-power embedded systems. Hence, a reliable

hybrid SET/CMOS reconfigurable architecture was proposed in Chapter 5, which is the first

step in determining the potential of ultra-low-power embedded system design using SET.

23

In addition, technology scaling has been a major driving force in high-performance micro-

processor design. A single integrated circuit (IC) can now incorporate billions of transistors.

Therefore, high-performance microprocessor design is moving towards highly-scalable multi-

core architectures [13, 14, 15, 16, 17, 18, 19]. However, interconnect performance has not kept

pace with transistor performance. In particular, global interconnects have become major per-

formance bottlenecks. Researchers have proposed several techniques such as repeater insertion,

wave pipelining, and multicycling to improve interconnect performance. However, they remain

performance limiters and have substantial power consumption. Three-dimensional integrated

circuits (3D ICs) [20, 21, 22, 23] are very promising approaches for improving interconnect

delay and power consumption by dramatically reducing interconnect length. Multiple device

layers are stacked and electrically connected with vertical interconnects, i.e., interwafer vias.

This comes at the cost of serious thermal problems due to the significant increase of power

density by stacking multiple device layers together. Therefore, in Chapter 6, a 3D chip multi-

processor (CMP) simulation framework was built and thermal-aware management policy was

proposed and evaluated.

Finally, we will give a conclusion of this dissertation and the potential future research prob-

lems are proposed in Chapter 7.

24

CHAPTER 2

Unified Incremental High-Level and Physical-Level Synthesis

Achieving design closure is one of the biggest challenges for modern VLSI designers. This

problem is exacerbated by the lack of high-level design automation tools that consider the in-

creasingly important impact of physical features, such as interconnect, on integrated circuit

area, performance, and power consumption. Using physical information to guide decisions in

the behavioral-level stage of system design is essential to solve this problem. In this chapter,

we present an incremental floorplanning high-level synthesis system. This system integrates

high-level and physical design algorithms to concurrently improve a design’s schedule, re-

source binding, and floorplan, thereby allowing the incremental exploration of the combined

behavioral-level and physical-level design space. Compared with previous approaches that

repeatedly call loosely coupled floorplanners for physical estimation, this approach has the

benefits of efficiency, stability, and better quality of results. The average CPU time speedup

resulting from unifying incremental physical-level and high-level synthesis was 24.72× and

area improvement was 13.76%. The low power consumption of a state-of-the-art, low-power,

interconnect-aware high-level synthesis algorithm was maintained. The benefits of concurrent

behavioral-level and physical design optimization increased for larger problem instances.

2.1. Introduction

Process scaling has enabled the production of integrated circuits (ICs) with millions of tran-

sistors. This has allowed the design of more full-featured and high-performance ICs. However,

25

these increased capabilities have come at a cost. In order to deal with increased design complex-

ity and size, it is becoming increasingly important to automate the higher levels of the design

process.

High-level synthesis systems [24, 25, 26, 27] automatically convert behavioral, algorithmic,

descriptions of design requirements, e.g., control data flow graphs (CDFG) [28], into optimized

register-transfer level (RTL) descriptions in languages such as VHDL or Verilog. Based on

a behavioral description, a high-level synthesis system determines an allocation of resources,

assignment of operations to resources, and a schedule for operations, in an attempt to satisfy

the design specifications and minimize some combination of delay, area, and power consump-

tion [29, 30, 31, 32, 33, 34, 35, 36, 37, 27, 38, 39]. Recently, in order to improve design area or

performance estimation, a number of researchers have considered the impact of physical details,

e.g., floorplanning information, on high-level synthesis [40, 41, 42, 43, 44, 45].

In the past, it was possible for high-level synthesis algorithms to focus on logic, i.e., func-

tional units such as adders and multipliers. The contribution of wire delay and area was typically

neglected without much loss of accuracy. Focusing on logic was once reasonable since logic

was responsible for the majority of delay and power consumption. However, process scaling

into the deep sub-micron realm has changed the focus of VLSI design from transistors to global

interconnect. It is no longer possible to simplify the high-level synthesis problem by ignoring

interconnect.

Taking interconnect cost into consideration during high-level synthesis has attracted signifi-

cant attention. In previous work [46,47,48,49,50], the number of interconnects or multiplexers

was used to estimate interconnect cost. The performance and power impacts of interconnect and

interconnect buffers are now first-order timing and power considerations in VLSI design [51].

26

It is no longer possible to accurately predict the power consumption and performance of a de-

sign without first knowing enough about its floorplan to predict the structure of its interconnect.

This change has dramatically complicated both design and synthesis. For this reason, a number

of researchers have worked on interconnect-aware high-level synthesis algorithms [52, 53, 54].

These approaches typically use a loosely coupled independent floorplanner for physical estima-

tion. Although this technique improved on previous work by allowing estimation of physical

properties, there are two drawbacks for this approach. First, the independent floorplanner may

not be stable, i.e., a small change in the input netlist may result in a totally different floorplan.

A move is a discrete change made to a solution during optimization that results in transition

to a new position in the solution space. Floorplan instability may result in a high-level syn-

thesis algorithm that bases its moves on cost functions without continuity. Second, even if a

floorplanner is stable, creating a floorplan from scratch for each high-level synthesis move is

inefficient, given the fact that the new floorplan frequently has only small differences with the

previous one. The constructive approach works for small problem instances but is unlikely to

scale to large designs. New techniques for tightly coupling behavioral and physical synthesis

that dramatically improve their combined performance and quality are now necessary.

Incremental automated design promises to build tighter relationship between high-level syn-

thesis and physical design, improving the quality of each [55, 56, 8]. A number of high-level

synthesis algorithms are based on incremental optimization and are, therefore, amenable to

integration with incremental physical design algorithms. This has the potential of improving

both quality and performance. Incremental methods improve quality of results by maintaining

important physical-level properties across consecutive physical estimations during synthesis.

27

Moreover, they shorten CPU time by reusing and building upon previous high-quality physical

design solutions that required a huge amount of effort to produce.

This chapter describes an incremental high-level synthesis system that reduces synthesis

time dramatically while producing ICs with better area and low power consumption compared

to a state-of-the-art power-aware high-level synthesis algorithm. The benefits of this approach

increase with increasing problem size and complexity. Our work is based on the interconnect-

aware high-level synthesis tool, ISCALP [53], which was based on the low-power datapath

synthesis tool, SCALP [27]. We reuse the power modeling and iterative-improvement high-

level synthesis framework from ISCALP. However, this work differs from previous work in

that a truly incremental floorplanner is used to estimate the interconnect structure [57], instead

of a fast constructive algorithm. Moreover, the high-level synthesis algorithm, itself, is made

incremental. As shown in Section 2.5, this resulted in an average speedup of 24.72× and an

average area improvement of 13.76%, while maintaining the low power consumption of a state-

of-the-art power-aware high-level synthesis algorithm. In addition, wire delay is considered in

this work to guarantee that the implementation meets its performance requirements.

This chapter is organized as follows. Section 2.2 explains the motivation for this work. Sec-

tion 2.3 describes the design flow for the proposed high-level synthesis system. The details of

our incremental floorplanner are introduced in Section 2.4. Experimental results are presented

in Section 2.5. Conclusions and future work are presented in Section 2.6.

2.2. Motivation

In this section, we first present definitions useful in the discussion of high-level synthe-

sis. Then motivational examples are given based on our observations of the synthesis process.

28

Examples are used to explain and motivate the use of unified high-level and physical-level op-

timization.

2.2.1. Definition

The input to ISCALP is a control-data flow graph (CDFG), G, an input arrival (and output

sampling) period, Ts, and a library, L, of functional units for data path implementation. IS-

CALP produces an RTL circuit in which power consumption (including logic and wire power

consumption) and estimated area are optimized. The ISCALP algorithm has two loops. Given

the supply voltage, the outer loop incrementally reduces the number of control steps, csteps,

from its maximum to minimum value, where csteps is defined as

(2.1) csteps = Ts× f

or alternatively,

(2.2) Tclock = Ts/csteps

In the above equations, each control step corresponds to a time period of one clock cycle,

and the sample period Ts is the constraint on the input data rate. The solution got from high-

level synthesis must be able to process an input sample before the next one arrives. For a given

specification, the sample period is fixed. Hence, csteps indicates the number of clock cycles

required to process an input sample. The variable f is the chip clock frequency. Tclock is the

chip clock period. ISCALP searches for the lowest-power architecture for each possible value

of csteps.

29

Given a value of csteps, which allows the clock period to be determined, the inner loop

first uses the fastest available functional unit from the library to implement each operation.

An as-soon-as-possible (ASAP) schedule is then generated for the initial solution to determine

whether it meets its timing requirements. The initial solution is then further optimized. Having

obtained an initial solution that meets the sample period constraint for the current value of

csteps, the iterative improvement phase attempts to improve the architecture by reducing the

switched capacitance while satisfying the sample period constraints. More details can be found

in literature [27, 53].

2.2.2. Motivating Example

ISCALP employs a fast constructive slicing floorplanner based on netlist partitioning and

rotation/orientation selection to obtain a floorplan optimized for wire length and area [58, 59].

Although it improved on its predecessors by considering the impact of floorplanning on synthe-

sis, there are several drawbacks to this approach.

First, an incremental high-level synthesis algorithm only changes a small portion of the

modules and connections in each move. However, a constructive (conventional) floorplanner

always starts floorplanning from scratch. It is not efficient because it does not reuse the floorplan

information obtained during the previous run. Moreover, it is possible that the newly-produced

floorplan will be totally different from the previous one, despite only small changes in the set

of modules and interconnections. This lack of autocorrelation in floorplan solutions may result

in a high-level synthesis algorithm basing its future moves on information that immediately

becomes invalid after the moves are applied.

30

Second, the efficiency of the constructive slicing structure floorplanner decreases dramat-

ically for blocks with non-unity aspect ratios (ISCALP assume blocks with unity aspect ra-

tio). As a result of constraining the solution space to slicing floorplans, it is prone to reaching

sub-optimal solutions. However, simply replacing the slicing floorplanner with a high-quality

floorplanner would result in unacceptably-high CPU time.

To solve these problems, we propose an incremental iterative improvement high-level syn-

thesis algorithm tightly integrated with a high-quality incremental floorplanner. This synthesis

system is called IFP-HLS, i.e., incremental floorplanning high-level synthesis. We run the same

benchmarks on both ISCALP and IFP-HLS, listing the number of merge operations and CPU

time for each benchmark in Table 2.1 and Table 2.2.

(2.3) ttotal = Nmoves ∗ (tHLS + tfp)

As Equation 2.3 shows, the CPU time of the high-level synthesis run can be divided into two

parts: high-level synthesis moves and the resulting physical design carried out by the floorplan-

ner. As shown in Table 2.3, floorplanning is the most time consuming of these. It uses at least

75.69% of the CPU time on average for both ISCALP and IFP-HLS. As shown in Table 2.1 and

Table 2.2, IFP-HLS achieves an average reduction of 50% in the number of high-level synthesis

merge operations compared to ISCALP. This results in a large reduction in floorplanner CPU

time. The reduction in moves, and CPU time, is mainly due to the incremental high-level syn-

thesis and floorplanning algorithms used in IFP-HLS. Many high-level synthesis moves result

in time-consuming changes to the floorplan. IFP-HLS can greatly reduce CPU time by reducing

31

 100

 120

 140

 160

 180

 200

 220

 240

 0 2 4 6 8 10 12 14 16

P
o
w

e
r

(m
w

)

Number of csteps

Power consumption of intermediate solutions during optimization

IFPHLS
ISCALP

(a) Power consumption of intermediate solution during op-
timization for all the values of csteps.

 100

 120

 140

 160

 180

 200

 220

 240

 0 0.5 1 1.5 2

P
o
w

e
r

(m
w

)

Number of csteps

Power consumption of intermediate solutions during optimization

IFPHLS
ISCALP

(b) Power consumption of intermediate solution during op-
timization for the values of csteps from 0 to 2.

Figure 2.1. Power consumption of intermediate solution during optimization of
ISCALP & IFP-HLS.

the number of merge operations, especially for larger benchmarks which have bigger solution

space to explore.

Figure 2.1 illustrates the power consumptions of intermediate solutions during optimization

in ISCALP and IFP-HLS. For each value of csteps, we plot the intermediate solutions produced

by the optimization algorithm. Note that these intermediate solutions all have the same value of

32

csteps. Incremental optimization allows IFP-HLS to focus on the most promising (low-power)

regions of the solution space while ISCALP must essentially restart optimization for each new

potential clock frequency. This allows improvement to both optimization time and solution

quality for IFP-HLS.

Note that ISCALP starts the floorplanner from scratch after each high-level design change.

The incremental physical and architectural optimization used in IFP-HLS reduces CPU time

dramatically, especially for large applications. Table 2.1 and Table 2.2 indicates that the average

CPU time speedup is 24.72×. The improvement is greatest for the largest benchmarks. For

example, when run on Random300, ISCALP does not finish within 5 days, while IFP-HLS

finishes within 4 hours. In addition, IFP-HLS achieves 13.76% improvement in area compared

to ISCALP.

The above examples clearly illustrate the value of using unified incremental physical-level

and high-level design synthesis. As shown in detail in Section 2.5, this approach improves both

design quality and CPU time.

2.3. Incremental High-Level Synthesis

In this section, we describe our incremental floorplanning high-level synthesis algorithm

(IFP-HLS). IFP-HLS is built upon ISCALP [53]. However, incorporating incremental floor-

planning required substantial changes to that algorithm, resulting in a new low-power incre-

mental floorplanning high-level synthesis algorithm. IFP-HLS considers both datapath and

interconnect power consumption. As shown in Figure 2.2, the CDFG is simulated with typi-

cal trace in order to profile the switching activity of each operation and data transfer edge. A

33

RTL design library is set up to provide the power and area information. The profiling informa-

tion combined with this RTL design library and floorplanner is then used to evaluate the power

consumption of both datapath and interconnect. IFP-HLS uses a new incremental method for

improving functional unit binding during high-level synthesis. Although this improvement,

alone, would result in a reduction in synthesis time, its motivation was to facilitate the inte-

gration of an incremental floorplanning algorithm with high-level synthesis in order to improve

solution quality and reduce synthesis time. This allows the high-level synthesis algorithm to de-

termine the physical position of each module during optimization, enabling interconnect power

consumption and delay estimation.

2.3.1. Incremental High-level Synthesis Framework

In this section, we describe our incremental high-level synthesis tool, IFP-HLS. The flow-

chart of IFP-HLS is shown in Figure 2.2. IFP-HLS differs from ISCALP in a number of ways.

Instead of generating an initial solution for each value of csteps, IFP-HLS only generates one

solution at the maximum value of csteps and incrementally changes the solution as csteps de-

creases. Thus, in addition to using incremental floorplanning, IFP-HLS also eliminates redun-

dant moves by taking advantages of incremental steps in high-level synthesis. Initially, we still

use an ASAP schedule and fully parallel allocation to estimate whether there exists a valid solu-

tion for the current value of csteps. If not, it is not necessary to do further moves for the current

number of control steps because a binding that further reduces the finish time of an ASAP

schedule is not possible. However, if an ASAP schedule meeting the timing requirements is

possible, we will use the best solution from the previous value of csteps and reschedule it based

on the current value, which is equal to the previous csteps minus 1. If, after rescheduling, the

34

N

Y

N

Y

N

Y

N

Y

N

Y

N

CDFG simulation

Initial estimiation

Valid csteps?

MAX csteps?

Reschedule

Slack computation
Split operation

Local optimization
in floorplan

requirement?

Initial allocation
Fine optimization

in floorplan

Find merges? Global optimization
in floorplan

Incremental change
Local optimization

in floorplan

Extract physical info

csteps = csteps −1

MIN csteps?

Fine optimization

in floorplan

Print best solution

Meet the timing

Cost estimation

Y

Save current solution

wire delay check passed?
Improved and

Incremental change

Figure 2.2. Incremental high-level synthesis algorithm.

35

solution meets its timing requirements, rebinding is not necessary. Otherwise, it will be nec-

essary to parallelize some of the operations to improve performance. The split move is used

to eliminate resource contention by splitting a pair of operations that were initially assigned to

the same functional unit onto separate functional units. A detailed description of the split move

may be found in Section 2.3.2.

For a given value of csteps, when a move is chosen, IFP-HLS incrementally changes the

floorplan to see whether the change improves solution quality. If so, the change is accepted.

Otherwise, the change is rejected and other moves are attempted. This technique differs from

that in ISCALP. In ISCALP, floorplanning is only done at the end of each csteps iteration; it

does not take advantage of solution correlation to save effort across csteps values. ISCALP

uses only power consumption to guide high-level synthesis moves. In contrast, IFP-HLS uses a

weighted sum of area and power consumption (pW), with a ratio of 1 µm2 to 5 pW, in order to

evaluate solution quality.

A high-quality incremental floorplanner was developed and incorporated into IFP-HLS to

guide high-level synthesis moves. Each time the high-level synthesis algorithm needs physical

information, it extracts that information from the current, incrementally generated, floorplan.

Costs derived from the floorplan are also used to guide high-level synthesis moves. By using in-

cremental floorplanning, closer interaction between high-level synthesis and physical design is

possible, i.e., the high-level synthesis algorithm may determine the impact of potential changes

to binding upon physical attributes such as interconnect power consumption and area.

The core idea of incremental design is to maintain good physical-level properties across

consecutive physical estimations during high-level synthesis moves. It is possible to apply the

idea of using an incremental optimization framework to integrate other algorithms, provided

36

that the algorithms at each level of design can be made incremental. Let us consider a few other

examples. In force-directed scheduling, all the operations may be scheduled iteratively in the

order of increasingly cost and the cost of scheduling each unscheduled operation is updated

after each operation is scheduled. This provides a potential opportunity to tightly integrate an

incremental floorplanner to physical information feedback. For maximal clique based resource

sharing, since it is a NP-hard problem, a heuristic algorithm will be used in practice. As long as

the heuristic algorithm itself is iterative, it can be made incremental.

In summary, IFP-HLS performs scheduling, allocation, and binding by iteratively changing

csteps and determining whether operations need to be rescheduled or re-bound (split) in order

to meet timing constraints. At each step the floorplan is updated and re-optimized.

2.3.2. Extended Move

This subsection describes the split moves, rescheduling, and a new graph technique to de-

termine split locations.

We observed that when csteps decreases by one, each individual operation takes, at most,

the same number of control steps as it did for the previous value of csteps. Given that csteps

is no less than the previous csteps minus one, we can conclude that the ASAP schedule for the

previous value of csteps violates the deadline for the current value of csteps by, at most, one

clock cycle. We will use node i’s slack, Si, to represent this information, which is defined as

follows:

(2.4) Si = LST i−EST i

37

Here, EST i is the earliest start time and LST i is the latest start time which were computed by a

topological sort. Hardware resource contention has already been considered.

Nodes with non-negative slack values do not imply timing violations. However, nodes with

slack values of −1 cause timing violations, i.e., they must be executed one cycle earlier. These

timing violations can be removed by splitting merged operations which, although useful for

previous values of csteps, now harm performance. Based on this observation, the split move

is used to eliminate timing violations. Therefore, the whole high-level synthesis algorithm

is implemented in an incremental way from maximum to minimum values of csteps without

rebinding from scratch at each value of csteps. Few changes to binding and scheduling are

required as a result of single-unit change to csteps. However, in order to meet timing require-

ments, it is sometimes necessary to split operators mapped to the same functional unit. The split

move makes it possible to quickly apply these isolated changes. Previous high-level synthesis

systems, e.g., SCALP and ISCALP, started from a fully parallel implementation for each value

of csteps and repeatedly merged operators to reduce area. Although both techniques are rea-

sonable in the absence of an integrated floorplanner, the incremental approach used in IFP-HLS

speeds optimization (without degrading solution quality) by requiring far fewer changes to the

floorplan. Used together, the split and merge moves allow complete exploration of the solution

space. However, the primary goal of changing the number of control steps is meeting timing

constraints. We therefore start our exploration of the solution space at the most promising region

by iteratively splitting functional units on the critical timing path.

The reschedule and split procedure is shown in Algorithm 1. We will give an example

to further describe this procedure. Consider the data flow graph shown in Figure 2.3(a), in

which arrows represent the data dependencies. Scheduling and allocation yield the DFG in

38

Algorithm 1 Reschedule and Split Procedure
1: Reschedule the design
2: Compute slacks of all operations
3: while there exists negative slack do
4: Compute slack of all operations
5: Construct graph including all the operations and edges with negative slack
6: Use maximum flow to find the minimum cut in the graph
7: Do the split move
8: Reschedule the design
9: end while

Figure 2.3(b). Here, we can see that three functional units (FUs) are used. Operations *1

and *2 share FU1, operations *3, *4, and *5 share FU2, and operation +1, +2, and +3 share

FU3. The sample period is 108 ns, each multiplication takes 20 ns, and each addition takes

10 ns. When csteps is reduced from 10 to 9, instead of binding and scheduling from scratch,

the algorithm reschedules based on current binding. For this example, after rescheduling, there

are still timing violations for operations *3, *4, and *5 because they were all bound to FU2, as

shown in Figure 2.3(c). Therefore, the split move is necessary in order to allow all operations

to meet their timing requirements. A description of the split move follows.

Based on the result of slack computation, we produce a graph including all the operations

with negative slack. Each operation is represented by a node. In addition, there are three kinds

of edges, defined as follows:

(1) Data dependency edges, indicating that the destination node takes the source node’s

data as input;

(2) Merge edges, indicating that the two nodes are currently bound to the same functional

unit or same storage unit; and

(3) Pseudo edges, used to restructure the graph for application of the min-cut algorithm.

A pseudo source node and pseudo sink node are introduced into the graph. All input

39

nodes are connected to the pseudo source node and all output nodes are connected to

the pseudo sink node.

After constructing this graph, a min-cut algorithm is executed. First, an infinite capacity

is assigned to all the pseudo edges and data dependency edges. Merge edges are each given

capacities of one. If two nodes are connected by both a data dependency edge and a merge

edge, the merge edge is eliminated because split moves on nodes sharing dependency edges do

not improve the timing properties. Using a min-cut algorithm in this manner splits a minimal

cardinality subset of nodes, allowing a reduction in the finish time of the ASAP. One could

consider the impact of area and power consumption within the min-cut max-flow algorithm by

weighting the edges appropriately. However, this would generally lead to to additional split

operations, increasing CPU time.

Although decrementing csteps may increase delay by at most one clock cycle, there may

be some value of csteps for which even fully parallel bindings do not allow an ASAP schedule

to meet its timing constraints. Therefore, min-cut and rescheduling may not be carried out

for some values of csteps. After the split move, the operations are rescheduled and slack is

recomputed to determine whether timing constraints are met.

The algorithm described above was used to construct the graph shown in Figure 2.3(d). The

dashed lines represent merge edges. The solid lines represent pseudo-edges and data depen-

dence edges. Nodes S and T represent pseudo source and sink nodes respectively. After slack

computation, we eliminate all the nodes and edges which are not on the critical path and assign

a capacity of one to merge edges and a capacity of infinity to other edges, as shown in Fig-

ure 2.3(e). For this example, it is possible to cut through either edge (+2, +1), or edges (*3, *1)

and (*4, *2). Here, we cut through +2 and +1, which is the minimal cut, thereby assigning +1

40

to a new functional unit, FU4. +3 and +2 remain bound to the original functional unit, FU3. As

shown in Figure 2.3(f), no operation violates timing constraints.

Another case must also be considered. If no valid solutions exist for the current value of

csteps, IFP-HLS will skip further optimization and decrement csteps. IFP-HLS may reach a

valid value of csteps after repeatedly decrementing csteps. In this case, the slack values for

some operations may less than -1. Hence, the value of csteps is decremented and the split

move, followed by rescheduling, are repeated until a valid solution is produced. This process is

as shown in Figure 2.4.

2.4. Incremental Floorplanning

As discussed in previous sections, in order to introduce incremental combined behavioral

and physical optimization into high-level synthesis, a high-quality incremental floorplanner is

necessary. We have tested this idea by building an incremental simulated annealing floorplanner

into the IFP-HLS algorithm. In this section, we describe this incremental floorplanner.

This floorplanner handles blocks with different aspect ratios and produces non-slicing floor-

plans. Unlike the netlist partitioning approach used in ISCALP, it was designed primarily for

quality, not speed. Although the impact on synthesis time would prevent incorporation of a

conventional high-quality floorplanner in the inner loop of a high-level synthesis system, using

incremental floorplanning enables both high quality and low synthesis time. High-level syn-

thesis moves typically remove a single module or split a module into two. Therefore, many

changes are small and their effects on the floorplan are mostly local. We reuse the modified

previous floorplan as a starting point for each new floorplan. The previous floorplan is opti-

mized. Therefore, re-optimization of the current floorplan to incorporate local changes is fast.

41

*1 *2

*3 *4

+2+1

*5

+3

(a) CDFG

+3

+2

+1

*1

*2 *3

*4

*5

0

1

2

3

4

5

6

7

8

9

10

FU1 FU2 FU3

(b) Scheduling and al-
location.

*1

*2 *3
+3

*4

+2

+1

*5

0

9

8

7

6

5

4

3

2

1

FU1 FU2 FU3

(c) Timing violation.

S

*3 *4

*1 *2

+2

+3

+1 *5 T

(d) Slack computation.

S

*3 *4

*1 *2

+2 +1 *5 T

1

1

1
Inf

Inf
Inf

Inf

Inf Inf

(e) Min-cut flow.

*1

*2 *3

*4
+3

+2 +1

*5

0

9

8

7

6

5

4

3

2

1

FU1 FU2 FU3 FU4

(f) After split move.

Figure 2.3. Incremental changes on HLS.

42

Meet the timing
requirement?

Y

N

Y

N

Reschedule

in floorplan
Local optimization

Split operation
Slack compute

Incremental change

csteps = prev_csteps

csteps = csteps −1

csteps = cur_csteps

csteps =? cur_csteps

Figure 2.4. Iterative split move for slack smaller than -1.

In practice, we have found that this technique leads to quality-of-results and performance im-

provements over constructive floorplanning, even when compared with a very fast constructive

floorplanner.

2.4.1. Floorplan Representation

The Adjacent Constraint Graph (ACG) floorplan representation is used within IFP-HLS’s

incremental floorplanner [57, 60, 61]. This representation will be briefly summarized here.

An ACG is a constraint graph satisfying the following three conditions: first, there is at

most one relation (either horizontal or vertical) between any pair of vertices; second, there are

no transitive edges; third, there are no crosses. A cross is a special edge configuration that

can result in quadratic number of edges in the constraint graph. Figure 2.5 shows two cases of

43

(a)

a

b

c

d

(b)

Figure 2.5. (a) Horizontal cross and (b) vertical cross.

Figure 2.6. A constraint graph without over-specifications and transitive edges
can have quadratic number of edges.

crosses and Figure 2.6 shows that a constraint graph with crosses may have quadratic number

of edges even when the first two conditions are met. It is proved that the number of edges in an

ACG is at most O
(
n1.5) where n is the number of vertices [61].

The operations of removing and inserting vertices in an existing ACG are designed to reflect

high-level binding decisions, i.e., merging and splitting. To obtain the physical position of each

module, packing based on longest path computation is employed since the ACG itself is a

constraint graph.

Perturbations on the graph are designed so that the ACG can be used in an iterative opti-

mization heuristic such as simulated annealing (SA). They change the graph topology locally

and have straightforward meanings in physical space. Since the interconnect lengths are de-

termined by the physical positions of modules, which in turn depend on the graph topology,

44

applying these perturbations changes the interconnects locally. Other perturbations include ro-

tating a module and exchanging the two modules represented by any pair of vertices. The latter

changes the interconnect globally.

2.4.2. Incremental Floorplanner

There are four situations in which the incremental floorplanner is called by the IFP-HLS

framework. First, a floorplan should be generated after each ASAP schedule is produced. We

call this an initial floorplanning. Second, a floorplan should be modified and optimized after

each high-level synthesis move. We call this per-move floorplanning. Third, for each csteps

value, a floorplan for the best binding should be generated and compared to the existing best

floorplans. We call this per-cstep floorplanning. Fourth, after determining the best clock fre-

quency and binding, floorplanning is carried out to provide the final result. We call this final

floorplanning.

Although initial, per-cstep, and final floorplanning are done with simulated annealing for

quality, per-move floorplanning requires fewer global changes and less hill climbing. Moreover,

perturbations resulting from high temperatures may disrupt high-quality floorplan structures.

Therefore, it is reasonable to use lower temperatures for per-move floorplanning. In practice,

we have found that using a temperature of zero results in good quality and performance. In

other words, although simulated annealing is necessary in many cases, per-move floorplanning

is done with a greedy iterative improvement algorithm.

The details of our approach follow. First, after generating the first ASAP schedule and

binding, we have an initial set of modules and interconnections. Simulated annealing is used

to obtain an initial floorplan. Since every interconnect net has exactly one driving module,

45

multi-pin nets are broken into two-pin wires with the driving module as the source. The wire

length is calculated as the Manhattan distance between the two modules connected by the wire.

At this point, the unit-length switched capacitances of data transfers between two modules are

available. We use these as weights for the wire lengths. The weighted total wire length is

related to power consumption, i.e., optimizing weighted wire length minimizes interconnect

power consumption. A weighted sum of the area and the interconnect power consumption is

calculated as the floorplanner’s cost function, that is,

(2.5) A+w ∑
e∈E

CeDe

where A is the area, w is the power consumption weight, E is the set of all wires, e is an in-

terconnect wire, Ce is the unit-length switched capacitance for the data transfer along e, and

De is the length of e. With this approach, we optimize the floorplan for both the interconnect

power consumption and the area. The resulting floorplan will be improved during the consecu-

tive incremental floorplanning high-level synthesis moves. Therefore, the number of simulated

annealing iterations is bounded to reduce synthesis time.

After each high-level synthesis move, per-move floorplanning first modifies the previous

floorplan by removing or splitting a module. The modules and switched capacitances are up-

dated based upon the impact of these merges and splits. The floorplan is then re-optimized

with a greedy iterative improvement algorithm using the same cost function as the simulated

annealing algorithm. The greedy improvements are divided into consecutive rounds. In every

round we apply the same number of perturbations to the floorplan. If less than 10% of the per-

turbations result in reduced costs, re-optimization stops. Although it would be easy to use a low

simulated annealing temperature to allow some hill climbing during re-optimization, this was

46

not necessary in practice. It should be pointed out here that changes to switched capacitances

may require a few global changes in the ACG to obtain power consumption optimized floor-

plans. Therefore, we still allow the exchange perturbation to change the floorplan globally, but

reduce its frequency to favor local perturbations.

When we find the best binding for a given value of csteps, we do per-cstep floorplanning

and compare the result with the best floorplan from previous value of csteps. This time non-zero

temperature simulated annealing is used because it increases floorplan quality. These normal

simulated annealing runs occur only once per csteps value, allowing their CPU costs to be

amortized.

After determining the best binding across all the possible values of csteps, a final floorplan-

ning run is carried out for that binding. This final floorplanning occurs only once per synthesis

run. Therefore, it is acceptable to use a higher-quality, but slower, annealing schedule than

those in the inner loop of high-level synthesis, thereby reducing chip area and interconnect

power consumption.

During the annealing schedule, we use a constant multiplicative cooling factor, r, i.e.,

(2.6) T ′ = r×T

where T is the current temperature and T ′ is the temperature for the next iteration. The cooling

factors for initial, per-cstep, and final floorplanning are 0.7, 0.8, and 0.9 respectively. At one

temperature, if less than 10% of the perturbations are accepted, the annealing process stops. The

ratio between the numbers of the perturbations at one temperature for initial, per-cstep, and final

floorplanning is 1 : 1 : 5. The number of perturbations per round for per-move floorplanning is

the same as that in the final floorplanning.

47

The interconnect power consumption weight, w, is computed during synthesis for each floor-

planning to avoid the difficulty of determining a proper value for all the situations. Before each

floorplanning, we calculate the area-to-power-consumption ratio, w0, using the existing floor-

plan, which is either the previous floorplan for per-move, per-cstep, and final floorplanning or

the starting floorplan for initial floorplanning. For initial, per-cstep and final floorplanning, the

weight w is set to 0.5 ·w0 to balance the area and the interconnect power consumption. For

per-move floorplanning, it is more important to provide a prediction of the trend of intercon-

nect power consumption in a limited time so that w is set to 2.5 ·w0 instead. Note that in this

stage, not area cost but the prediction of the interconnect power consumption is the major con-

sideration. Therefore, the wire length weight was set to be a big value compared to the area

weight.

2.5. Experimental Results

In this section, we present the results produced by the IFP-HLS incremental floorplanning

high-level synthesis algorithm described in Sections 2.3 and 2.4 when run on a number of

benchmarks. The results generated by ISCALP and IFP-HLS are compared. As explained in

Section 2.3.1, both approaches optimize area and power consumption. The experiments were

conducted on Linux workstations with dual 933 MHz Pentium III processors and 512 MB of

random access memory.

2.5.1. Benchmarks

We evaluated seventeen high-level synthesis benchmarks using a 0.18 µm technology li-

brary. Chemical and IIR77 are infinite impulse response (IIR) filters used in industry. DCT IJPEG

48

is the Independent JPEG Group’s implementation of digital cosine transform (DCT) [62].

DCT Wang is a DCT algorithm named after the inventor [63]. Both DCT algorithms work on

8× 8 arrays of pixels. Elliptic, an elliptic wave filter, comes from the NCSU CBL high-level

synthesis benchmark suite [64]. Jacobi is the Jacobi iterative algorithm for solving a fourth

order linear system [65]. WDF is a finite impulse response (FIR) wave digital filter. The largest

benchmark is Jacobi with 24 multiplications, 8 divisions, 8 additions, and 16 subtractions. In

addition, we generate five CDFGs using a pseudo random graph generator [66]. Random100

has 20 additions, 15 subtractions, and 19 multiplications. Random200 has 39 additions, 44

subtractions, and 36 multiplications. Random300 has 59 additions, 58 subtractions, and 72

multiplications.

IFP-HLS had better performance than ISCALP on these large randomized benchmarks. In

order to determine whether the improved performance of IFP-HLS was the result of random

graph structure or benchmark size, we generated two structured benchmarks, Small and Serial.

Small is composed of five operations connected in parallel. Serial is composed of 45 operations

connected in serial. As shown in Table 2.1 and Table 2.2, IFP-HLS has better CPU time for

structured the large benchmark Serial. This is consistent with the results for other other large

benchmarks.

The area of each benchmark described in this section was estimated using pre-synthesized

functional-units (e.g., adders, multipliers, etc.) based on NEC’s 0.18 µm process and the floor-

planner from high-level synthesis tool. The logic power consumption of each benchmark was

evaluated using power models from the pre-synthesized functional-unit level design library.

A full-system switching activity simulator was used during power consumption computation.

49

Wire power consumption and wire delay were calculated based on the wire capacitances esti-

mated using Cong’s and Pan’s technique [67] and the wire length information from floorplanner

of high-level synthesis design tools. As described in Section 2.3, both logic and wire delays

were calculated to determine whether each design meets its timing requirements. However,

since the wire delay estimation is only implemented in IFP-HLS; this function was not used

when comparing to ISCALP.

2.5.2. Results

The results of running ISCALP and IFP-HLS on non-unity aspect ratio functional units are

shown in Figure 2.7. As shown in the Figure 2.7(a), Figure 2.7(b), Table 2.1, and Table 2.2,

IFP-HLS achieves an average CPU time speedup of 24.72×, 13.76% improvement in area,

and 50% reduction in the number of merge move in comparison with ISCALP. Low power

consumption is maintained.

ISCALP uses a constructive floorplanner that may suffer performance degradation when

used with non-unity aspect ratio functional units. In order to determine whether the improve-

ment in quality and run time were the result of the specific type of floorplanner used in IS-

CALP, we repeated all experiments using only unity aspect ratio functional units. As shown

in Figure 2.8, Table 2.1, Table 2.2, and Table 2.4, the IFP-HLS algorithm achieves an average

CPU time speedup of 2.03×, 11.32% improvement in area, and 54% reduction in the number

of merge move, while maintaining the same low power consumption as ISCALP.

As shown in Figure 2.7, Figure 2.8, Table 2.1, Table 2.2, and Table 2.4, IFP-HLS always

has better CPU time than ISCALP for both non-unity and unity aspect ratio cases except for

two very small unity aspect ratio benchmarks (PAULIN and MAC). There are two contributors

50

Table 2.1. Numbers of Merges of Different Benchmarks

Unity aspect ratio Non-unity aspect ratio
Benchmark No. of Merges No. of Splits No. of Merges No. of Splits

ISCALP IFP-HLS IFP-HLS ISCALP IFP-HLS IFP-HLS
CHEMICAL 593 208 24 585 190 26

DCT DIF 981 492 1 769 508 1
DCT IJPEG 630 380 0 850 424 11
DCT LEE 1512 674 2 1276 691 5

DCT WANG 974 564 10 1019 515 3
ELLIPTIC 562 172 16 533 212 11

IIR77 858 506 2 858 426 1
JACOBI SM 1652 572 52 1755 530 26

MAC 220 31 13 200 19 14
PAULIN 87 26 6 87 25 6

PR1 839 449 10 841 448 12
PR2 1074 526 20 866 529 27

SERIAL 5200 2620 3 5200 2660 1
SMALL 11 9 0 11 13 2

WDF 1827 631 6 1588 739 9
RANDOM100 1359 511 10 1353 433 5
RANDOM200 1110 780 1 1140 780 2
RANDOM300 2810 820 0 N/A∗ 900 2

Average 1238.83 553.94 9.78 1113.59∗ 537.76∗ 9.11
∗To solve non-unity aspect ratio Random300, ISCALP had not yet halted after 120 hours. The
non-unity aspect ratio Random300 benchmark was excluded from the computation for average

numbers.

to CPU time (as shown in Equation 2.3): the number of high-level synthesis moves and the

resulting floorplanning operations. ISCALP employs a fast constructive slicing floorplanner

based on netlist partitioning and rotation/orientation selection to obtain a floorplan optimized

for wire length and area. It is faster than our simulated annealing floorplanner for small bench-

marks with only a few blocks largely due to its determinism. The simulated annealing algo-

rithm may re-visit same valid solutions multiple times before reaching the halting conditions

while constructive slicing floorplanner can quickly consider all slicing structure floorplanners,

51

Table 2.2. CPU Times of Different Benchmarks

Unity aspect ratio Non-unity aspect ratio
Benchmark CPU Time CPU Time

ISCALP (s) IFP-HLS (s) Speedup (×) ISCALP (s) IFP-HLS (s) Speedup (×)
CHEMICAL 83.35 74.19 1.12 793.83 55.15 14.39

DCT DIF 102.98 120.86 0.85 699.96 102.27 6.84
DCT IJPEG 363.12 310.91 1.17 4297.13 183.36 23.44
DCT LEE 248.07 194.41 1.28 2669.18 166.56 16.03

DCT WANG 340.40 259.53 1.31 5678.98 229.11 24.79
ELLIPTIC 77.46 57.04 1.36 804.29 53.16 15.13

IIR77 214.89 192.87 1.11 2102.27 126.04 16.68
JACOBI SM 1982.55 322.97 6.14 31187.15 256.60 121.54

MAC 7.64 10.28 0.74 22.12 5.64 3.92
PAULIN 1.12 2.50 0.45 3.20 2.03 1.58

PR1 162.79 138.13 1.18 2041.15 121.94 16.74
PR2 366.87 256.12 1.43 6145.86 177.36 34.65

SERIAL 1187.37 767.48 1.55 14503.25 599.59 24.19
SMALL 0.20 0.94 0.21 0.24 0.83 0.29

WDF 185.52 118.74 1.56 1092.92 118.92 9.19
RANDOM100 462.14 246.24 1.88 5951.79 204.52 29.10
RANDOM200 16438.33 3498.53 4.70 174540.95 2826.22 61.76
RANDOM300 160997.92 18786.70 8.57 N/A∗ 12650.64 N/A∗

Average 10179.04 1408.80 2.03 14854.96∗ 307.61∗ 24.72∗

∗To solve non-unity aspect ratio Random300, ISCALP had not yet halted after 120 hours. The
non-unity aspect ratio Random300 benchmark was excluded from the computation for average

numbers.

given small enough problem sizes. In contrast, the simulated annealing floorplanner is rela-

tively faster on large problem instances because it can focus its moves on the most promising

regions of the solution space while the constructive floorplanner is left to explicitly consider

an exponentially-increasing number of points in the solution space. Please note that both floor-

planners run quickly on small benchmarks. We are primarily concerned with floorplanner per-

formance on large problem instances, for which run-time is a concern. In addition, recall that

ISCALP is an interconnect-aware, power-driven high-level synthesis tool. These results show

52

Ta
bl

e
2.

3.
C

PU
Ti

m
es

B
re

ak
D

ow
n

of
D

iff
er

en
tB

en
ch

m
ar

ks

U
ni

ty
as

pe
ct

ra
tio

N
on

-u
ni

ty
as

pe
ct

ra
tio

B
en

ch
m

ar
k

IS
C

A
L

P
IF

P-
H

L
S

IS
C

A
L

P
IF

P-
H

L
S

T f
p

T t
ot

al
R

at
io
∗

T f
p

T t
ot

al
R

at
io
∗

T f
p

T t
ot

al
R

at
io
∗

T f
p

T t
ot

al
R

at
io
∗

(s
)

(s
)

(%
)

(s
)

(s
)

(%
)

(s
)

(s
)

(%
)

(s
)

(s
)

(%
)

C
H

E
M

IC
A

L
61

.1
9

83
.3

5
73

.4
1

61
.2

4
74

.1
9

82
.5

4
77

0.
91

79
3.

83
97

.1
1

43
.6

0
55

.1
5

79
.0

6
D

C
T

D
IF

75
.5

7
10

2.
98

73
.3

8
10

1.
86

12
0.

86
84

.2
8

67
4.

93
69

9.
96

96
.4

2
82

.9
5

10
2.

27
81

.1
1

D
C

T
IJ

PE
G

30
8.

59
36

3.
12

84
.9

8
26

9.
28

31
0.

91
86

.6
1

42
38

.0
1

42
97

.1
3

98
.6

2
14

6.
66

18
3.

36
79

.9
8

D
C

T
L

E
E

19
1.

11
24

8.
07

77
.0

4
15

9.
66

19
4.

41
82

.1
3

26
16

.9
6

26
69

.1
8

98
.0

4
13

0.
88

16
6.

56
78

.5
8

D
C

T
W

A
N

G
27

5.
61

34
0.

40
80

.9
7

21
4.

17
25

9.
53

82
.5

2
56

13
.2

1
56

78
.9

8
98

.8
4

18
5.

94
22

9.
11

81
.1

6
E

L
L

IP
T

IC
49

.4
2

77
.4

6
63

.8
0

47
.0

8
57

.0
4

82
.5

4
78

0.
94

80
4.

29
97

.1
0

41
.4

4
53

.1
6

77
.9

5
II

R
77

16
8.

91
21

4.
89

78
.6

0
16

4.
32

19
2.

87
85

.2
0

20
56

.2
5

21
02

.2
7

97
.8

1
10

4.
88

12
6.

04
83

.2
1

JA
C

O
B

I
SM

18
46

.0
4

19
82

.5
5

93
.1

1
24

5.
88

32
2.

97
76

.1
3

31
02

9.
15

31
18

7.
15

99
.4

9
18

8.
11

25
6.

60
73

.3
1

M
A

C
4.

80
7.

64
62

.8
3

9.
28

10
.2

8
90

.2
7

19
.4

2
22

.1
2

87
.7

9
4.

89
5.

64
86

.7
0

PA
U

L
IN

0.
54

1.
12

48
.2

1
2.

11
2.

50
84

.4
0

2.
50

3.
20

78
.1

3
1.

66
2.

03
81

.7
7

PR
1

12
6.

84
16

2.
79

77
.9

2
11

2.
32

13
8.

13
81

.3
1

20
03

.7
0

20
41

.1
5

98
.1

7
96

.3
8

12
1.

94
79

.0
4

PR
2

29
9.

53
36

6.
87

81
.6

4
21

3.
68

25
6.

12
83

.4
3

60
85

.1
6

61
45

.8
6

99
.0

1
14

1.
40

17
7.

36
79

.7
2

SE
R

IA
L

97
4.

21
11

87
.3

7
82

.0
5

63
4.

26
76

7.
48

82
.6

4
14

28
8.

12
14

50
3.

25
98

.5
2

47
6.

38
59

9.
59

79
.4

5
SM

A
L

L
0.

09
0.

20
45

.0
0

0.
84

0.
94

89
.3

6
0.

15
0.

24
62

.5
0

0.
71

0.
83

85
.5

4
W

D
F

12
6.

58
18

5.
52

68
.2

3
90

.2
1

11
8.

74
75

.9
7

10
37

.3
6

10
92

.9
2

94
.9

2
88

.4
9

11
8.

92
74

.4
1

R
A

N
D

O
M

10
0

38
3.

64
46

2.
14

83
.0

1
20

8.
30

24
6.

24
84

.5
9

58
69

.2
4

59
51

.7
9

98
.6

1
17

2.
87

20
4.

52
84

.5
2

R
A

N
D

O
M

20
0

15
48

4.
14

16
43

8.
33

94
.2

0
28

77
.4

9
34

98
.5

3
82

.2
5

17
35

91
.1

9
17

45
40

.9
5

99
.4

6
22

20
.8

5
28

26
.2

2
78

.5
8

R
A

N
D

O
M

30
0

15
12

51
.0

51
60

99
7.

92
93

.9
5

15
79

8.
36

18
78

6.
70

84
.0

9
N

/A
∗∗

N
/A
∗∗

N
/A
∗∗

10
08

9.
21

12
65

0.
64

79
.7

5
A

ve
ra

ge
95

34
.8

8
10

17
9.

04
75

.6
9

11
78

.3
5

14
08

.8
0

83
.3

5
14

74
5.

72
∗∗

14
85

4.
96
∗∗

94
.1

5∗
∗

24
2.

83
∗∗

30
7.

61
∗∗

80
.2

4∗
∗

∗
R

at
io

=
T f

p/
T t

ot
al

∗∗
To

so
lv

e
no

n-
un

ity
as

pe
ct

ra
tio

R
an

do
m

30
0,

IS
C

A
L

P
ha

d
no

ty
et

ha
lte

d
af

te
r1

20
ho

ur
s.

T
he

no
n-

un
ity

as
pe

ct
ra

tio
R

an
do

m
30

0
be

nc
hm

ar
k

w
as

ex
cl

ud
ed

fr
om

th
e

co
m

pu
ta

tio
n

fo
ra

ve
ra

ge
nu

m
be

rs
.

53

Ta
bl

e
2.

4.
A

re
a

an
d

Po
w

er
Im

pr
ov

em
en

ts
of

D
iff

er
en

tB
en

ch
m

ar
ks

B
en

ch
m

ar
k

A
re

a
Im

pr
ov

em
en

t(
%

)
W

ir
e

Po
w

er
Im

pr
ov

em
en

t(
%

)
To

ta
lP

ow
er

Im
pr

ov
em

en
t(

%
)

U
ni

ty
N

on
-u

ni
ty

U
ni

ty
N

on
-u

ni
ty

U
ni

ty
N

on
-u

ni
ty

C
H

E
M

IC
A

L
6.

23
22

.6
7

22
.6

9
9.

39
4.

17
5.

72
D

C
T

D
IF

4.
36

-6
.9

1
41

.5
1

21
.8

6
2.

37
-0

.1
6

D
C

T
IJ

PE
G

-5
.0

9
12

.3
5

49
.5

9
-4

.3
9

0.
35

2.
76

D
C

T
L

E
E

13
.8

4
13

.5
3

22
.7

4
7.

58
3.

16
1.

35
D

C
T

W
A

N
G

16
.6

0
13

.6
1

38
.5

0
42

.8
2

7.
00

5.
15

E
L

L
IP

T
IC

9.
70

9.
45

22
.1

8
28

.3
2

2.
77

0.
03

II
R

77
22

.6
9

15
.0

3
21

.3
2

-0
.3

7
2.

42
-0

.3
4

JA
C

O
B

I
SM

22
.2

6
24

.1
7

14
.1

3
9.

76
-5

.4
1

-6
.5

1
M

A
C

36
.1

3
18

.8
4

9.
65

13
.7

2
-0

.2
7

0.
70

PA
U

L
IN

5.
74

6.
72

26
.1

9
23

.3
9

-8
.7

2
-8

.8
6

PR
1

19
.8

6
10

.8
7

6.
13

16
.4

4
2.

39
2.

05
PR

2
18

.5
6

26
.9

3
30

.8
3

-7
.7

5
2.

67
1.

84
SE

R
IA

L
11

.1
6

32
.0

4
11

.7
4

31
.5

7
-1

.4
2

3.
28

SM
A

L
L

22
.8

9
13

.7
8

36
.9

3
48

.8
3

1.
36

1.
98

W
D

F
8.

79
11

.1
0

9.
87

-1
2.

50
3.

79
-0

.9
1

R
A

N
D

O
M

10
0

19
.8

8
-2

.4
1

14
.6

7
19

.9
4

-1
.5

5
-4

.2
4

R
A

N
D

O
M

20
0

-1
.2

2
12

.2
0

19
.4

5
-1

.9
0

0.
01

-3
.0

1
R

A
N

D
O

M
30

0
-2

8.
55

N
/A
∗

31
.8

0
N

/A
∗

-1
5.

11
N

/A
∗

A
ve

ra
ge

11
.3

2
13

.7
6∗

23
.8

9
14

.5
1∗

0.
00

0.
05
∗

∗ T
o

so
lv

e
no

n-
un

ity
as

pe
ct

ra
tio

R
an

do
m

30
0,

IS
C

A
L

P
ha

d
no

ty
et

ha
lte

d
af

te
r1

20
ho

ur
s.

T
he

no
n-

un
ity

as
pe

ct
ra

tio
R

an
do

m
30

0
be

nc
hm

ar
k

w
as

ex
cl

ud
ed

fr
om

th
e

co
m

pu
ta

tio
n

fo
ra

ve
ra

ge
nu

m
be

rs
.

54

that, on average, IFP-HLS achieves better CPU time and area while maintaining good power

consumption. We also analysis the time break down between high-level synthesis moves and

floorplanning. As shown in Table 2.3, floorplanning used more than 75.69% of the total CPU

time on average for both ISCALP and IFP-HLS; floorplanning is the most time-consuming part

of the high-level synthesis design flow.

In an attempt to isolate the impact of using a constructive floorplanner from the impact of

using incremental optimization, we compared the results produced by running ISCALP fol-

lowed by a high-quality simulated annealing floorplanner by those produced by IFP-HLS. On

average, this results in a 1.6% increase in area and 2.7% decrease in total power compared to

IFP-HLS for unity aspect ratio functional units and a 0.8% increase in area and 1.3% decrease in

total power consumption for non-unity aspect ratio functional units. Note that ISCALP aggres-

sively optimizes power consumption. These results indicate that the incremental optimization

algorithm within IFP-HLS permits comparable quality, using much less CPU time, compared to

a non-incremental behavioral synthesis algorithm followed by an iterative improvement floor-

planner.

2.6. Conclusions

This chapter presented an incremental floorplanning, high-level synthesis system that inte-

grates high-level and physical-level design algorithms to concurrently improve a design’s sched-

ule, resource binding, and floorplan. Compared with previous approaches that repeatedly call

loosely coupled floorplanners, this approach has the benefit of efficiency, stability, and better

quality results. As shown in Section 2.5, for non-unity aspect functional units, incremental

floorplanning allowed an average CPU time speedup of 24.72× and an area improvement of

55

13.76%. For unity aspect ratio functional units, the CPU time speedup was 2.03× and area

was improved by 11.32%. In both cases, the low power consumption of a state-of-the-art, low-

power, interconnect-aware high-level synthesis algorithm was maintained. We conclude that

incremental floorplanning improved the quality of synthesis results and improves performance

dramatically, making synthesis from large specifications practical.

56

1

10

100

1000

10000

100000

1000000

ch
em

ic
al

dc
t_

di
f

dc
t_

ijp
eg

dc
t_

le
e

dc
t_

w
an

g

el
lip

tic
iir

77

ja
co

bi
_s

m
m

ac

pa
ul

in pr
1

pr
2

w
df

ra
nd

om
10

0

ra
nd

om
20

0

Benchmarks

C
P

U
 t

im
e

(s
)

ISCALP IFP-HLS

(a) CPU time for non-unity aspect ratio functional units.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

ch
em

ic
al

dc
t_

di
f

dc
t_

ijp
eg

dc
t_

le
e

dc
t_

w
an

g

el
lip

tic
iir

77

ja
co

bi
_s

m
m

ac

pa
ul

in pr
1

pr
2

w
df

ra
nd

om
10

0

ra
nd

om
20

0

R
at

io
 t

o
 I

S
C

A
L

P

#MOVES AREA POWER

(b) Number of moves, area, and power consumption for non-unity aspect ratio functional units.

Figure 2.7. Comparison between ISCALP & IFP-HLS for non-unity aspect ratio
functional units.

57

1

10

100

1000

10000

100000

1000000

ch
em

ic
al

dc
t_

di
f

dc
t_

ijp
eg

dc
t_

le
e

dc
t_

w
an

g

el
lip

tic
iir

77

ja
co

bi
_s

m
m

ac

pa
ul

in pr
1

pr
2

w
df

ra
nd

om
10

0

ra
nd

om
20

0

ra
nd

om
30

0

Benchmarks

C
P

U
 t

im
e

(s
)

ISCALP IFP-HLS

(a) CPU time for unity aspect ratio functional units.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

ch
em

ic
al

dc
t_

di
f

dc
t_

ijp
eg

dc
t_

le
e

dc
t_

w
an

g

el
lip

tic
iir

77

ja
co

bi
_s

m
m

ac

pa
ul

in pr
1

pr
2

w
df

ra
nd

om
10

0

ra
nd

om
20

0

ra
nd

om
30

0

R
at

io
 t

o
 I

S
C

A
L

P

#MOVES AREA POWER

(b) Number of moves, area, and power consumption for unity aspect ratio functional units.

Figure 2.8. Comparison between ISCALP & IFP-HLS for unity aspect ratio
functional units.

58

CHAPTER 3

Unified Temperature-Aware Incremental High-Level and Physical-Level

Synthesis

Thermal effects are becoming increasingly important during integrated circuit design. Ther-

mal characteristics influence reliability, power consumption, cooling costs, and performance. It

is necessary to consider thermal effects during all levels of the design process, from the architec-

tural level to the physical level. This is challenging because design-time temperature prediction

requires access to floorplans, wire models, power profile information, and a chip-package ther-

mal model. Temperature-aware design and synthesis necessarily couple architectural-level de-

sign decisions (e.g., scheduling) with physical design (e.g., floorplanning), and modeling (e.g.,

wire and thermal modeling).

This chapter proposes an efficient and accurate temperature-aware high-level synthesis sys-

tem that makes use of integrated high-level and physical-level design techniques. Voltage is-

lands are automatically generated via slack distribution and voltage partitioning algorithms in

order to reduce the design’s power consumption and peak temperature. The proposed system

was used to synthesize a number of benchmarks, yielding designs that trade off peak temper-

ature, integrated circuit area, and power consumption. In comparison with an existing power-

aware high-level synthesis algorithm, the proposed voltage control techniques reduce peak tem-

perature by 12.5 °C on average. Under a constraint on peak temperature, integrated circuit area

is reduced by 9.9% on average.

59

3.1. Introduction

Increasing performance requirements and system integration are dramatically increasing

integrated circuit (IC) power density and, therefore, cooling costs. Thermal issues are now

central to the design of ICs, including both high-end instruction processors in general-purpose

computers and high-performance application-specific integrated circuits (ASICs) in portable

electronic consumer devices. Peak local temperature influences the reliability, packaging costs,

cooling costs, bulk, and performance of ICs; these considerations can be particularly important

for portable devices.

Increasing IC power consumption raises average and peak temperatures. It is also found

that temperature-dependent reliability problems account significantly for electronic failures [6],

most of which are due to electromigration, hot carrier effects, thermal stress, and oxide tem-

perature breakdown. Power and temperature variation can also lead to significant timing uncer-

tainty, requiring more conservative timing margins, thereby reducing performance. Designers

must frequently trade off other design metrics, such as performance, area, and cooling costs, to

meet tight temperature constraints. The interaction of power and temperature constraints with

other design metrics further increases system complexity. As projected by the International

Technology Roadmap for Semiconductors (ITRS) [2], further process scaling will be bounded

by power consumption and heat dissipation below 65 nm: it is critical to address the energy and

thermal issues during on-chip system design to enable future technology scaling.

Thermal problems cannot be well solved at any single level of the design process. Thermal

characterization requires detailed physical information, including an IC floorplan, and power

profile, as well as interconnect and chip-package thermal models. Thermal optimization re-

quires a unified high-level and physical-level design flow. At the architectural level, reducing

60

supply voltage can reduce IC power consumption and temperature. At the physical level, ef-

ficient floorplanner is critical to correctly implement temperature-aware techniques made by

high-level design flow while maintaining other design metrics, such as performance, chip area,

and cooling cost. Therefore, this requires a comprehensive high-level and physical-level infras-

tructure.

Incremental synthesis is a promising design technique that may be used to unify high-level

synthesis and physical design. It improves the quality of results by maintaining important

physical-level properties across consecutive physical design changes, many of which are trig-

gered by architectural changes [8,55,68]. Moreover, it dramatically improves synthesis time by

reusing and building upon high-quality, previous physical design solutions that required a huge

amount of time and effort to produce.

This chapter presents an incremental temperature-aware, voltage selection, floorplanning,

high-level synthesis system called TAPHS. The proposed incremental synthesis techniques

rapidly learn the impact of architectural changes on floorplan-dependent characteristics (e.g.,

peak temperature, interconnect structure, area, and energy consumption) and concurrently opti-

mize IC thermal profile, area, and energy consumption under performance constraints.

3.2. Related work

In this section, we survey related work in the two main research areas in which TAPHS is

rooted: (1) high-level and physical-level co-synthesis and (2) temperature-aware analysis and

design.

A number of researchers have considered the impact of physical details, e.g., floorplanning

information, on behavioral synthesis [41, 42, 43, 45]. Interconnect and interconnect buffers are

61

now first-order timing and power considerations in VLSI design [67]. This change has com-

plicated both design and synthesis. It is no longer possible to accurately predict the power

consumption and performance of a design without first knowing enough about its floorplan to

predict the structure of its interconnect. For this reason, a number of researchers have worked

on interconnect-aware behavioral synthesis algorithms [69, 52, 70, 54]. These approaches typ-

ically use a loosely-coupled independent floorplanner for physical estimation. There are two

drawbacks to this approach. First, the independent floorplanner may not be stable, i.e., a small

change in the input netlist may result in a totally different floorplan. This results in a behavioral

synthesis algorithm that bases its moves on cost functions without continuity. Second, even if

the floorplanner is stable, creating a floorplan from scratch after each behavioral synthesis move

is not efficient. The new floorplan typically only requires small changes to the previous one.

Recently, incremental floorplanning and synthesis [55] were used to tightly couple high-level

and physical synthesis that dramatically improve their combined performance and quality [8].

Recent studies on thermal issues focused on thermal modeling, optimization, and run-time

management. Full-chip thermal modeling and analysis during synthesis were rarely consid-

ered in the past due to the formidable computational demand. Recently, a number of thermal

modeling approaches, which try to model complete chip designs, have been proposed [71, 72,

73, 74, 75]. Architecture-level thermal modeling and management techniques were proposed to

improve the thermal characteristics of microprocessors [76] and on-chip networks [73]. With

increasing power densities and reducing feature sizes, temperature-related reliability problems

such as electromigration and stress migration voiding are becoming increasingly important. Re-

cent studies [77,78,79] have proposed numerical and analytical modeling techniques to charac-

terize the thermal profile of on-chip interconnect layers. Recently, thermal issues have also been

62

considered during chip cell-level placement [80, 81], three-dimensional IC floorplanning [82]

and high-level temperature-aware resource binding and allocation [83]. The use of voltage is-

lands is effective in reducing power consumption and therefore temperature. Voltage island

generation has recently been incorporated with physical design [84, 85, 86, 87].

3.3. Motivating example

In this section, we use an example IC design to demonstrate the challenges of thermal op-

timization in high-level synthesis. Figure 3.1 shows an IC floorplan produced by an integrated

high-level synthesis and floorplanning algorithm. In this figure, the numbered rectangles are

functional units, e.g., adders, multipliers, dividers, or registers. Using thermal analysis, as de-

scribed in Section 3.9, the IC thermal profile is determined. The temperature of each functional

unit is indicated by its brightness: brighter functional units are hotter. 85� is a typical thermal

emergency threshold to ensure reliable operation. In this example, functional units tempera-

tures higher than 85� are white. 29 of the functional units are operating at dangerously high

temperatures: this chip is likely to suffer from failure caused by temperature-related reliability

problems, e.g., electromigration or decreased charge carrier mobility. Note that producing the

detailed chip thermal profile in Figure 3.1 requires detailed physical information, i.e., a floor-

plan, a power profile, and a chip-package thermal model. Therefore, stand-alone high-level

synthesis algorithms have no means of detecting, let alone correcting, thermal problems.

High-level synthesis provides numerous thermal optimization opportunities. Reducing sup-

ply voltage reduces power consumption, hence temperature, but may also impair performance.

Recent work on voltage islands has proposed operating different regions of an IC at different

voltages. Figure 3.2 illustrates the floorplan of an IC using voltage islands. In this design,

63

Figure 3.1. Post-synthesis thermal profile without voltage islands.

functional units are assigned to contiguous voltage islands with different supply voltages. The

brightnesses of the thick functional unit boundaries indicate their voltages. In this example,

three voltage islands are used. As in Figure 3.1, functional units violating the 85� temperature

constraint are white.

A comparison of Figures 3.1 and 3.2 indicates that voltage islands can dramatically improve

thermal conditions. The number of functional units with temperatures above the temperature

constraint decreased from 29 to 19. However, as shown in Figure 3.2, localized hot spots

still exist. The remaining hot spots are primarily the result of local peaks in power density.

Therefore, thermal analysis algorithms are invoked to guide optimization moves in the high-

level design.

Our study suggests a set of high-level and physical-level thermal optimization techniques,

including multiple operating voltages and appropriate scheduling. Many of the techniques to

64

Figure 3.2. Post-synthesis thermal profile with voltage islands.

optimize IC thermal properties also impact other design metrics such as area and power con-

sumption. We have considered the side effects of a number of techniques, proposing those

that allow improvements to thermal properties while maintaining good area, performance, and

power consumption.

Using voltage islands has a significant impact on chip area and performance as well as

increasing the complexity of floorplanning. Voltage islands require the addition of voltage con-

verters and delivery circuits, as well as on-chip level shifters to support communication among

functional units in different voltage islands. Moreover, reduced supply voltage requires a longer

clock period to compensate for reduced switching speeds. In order to use voltage islands, a syn-

thesis algorithm must wisely choose the island for each functional unit, appropriately allocate

timing slack to allow scheduling in the high-level design. In the physical-level design, high-

quality incremental floorplans is necessary to form voltage islands based on voltage assignment

from high-level decision as well as maintaining other design metrics such as area, total wire

length. This tightly couples the architectural and physical levels of design.

65

Profiling

information

RTL design

library

CDFG simulation

Initial allocation

Slack distribution

Voltage partitioning

Reschedule
Incremental

binding

Multi-objective

cost evaluation

Non-dominated

solutions

Thermal

model

Wire power

model

Incremental

floorplanning

Figure 3.3. Incremental high-level synthesis algorithm

Facing these design challenges, a high-quality temperature-aware synthesis system must

incorporate thermal optimization techniques into a unified high-level and physical level design

flow, as well as striking wise tradeoffs among conflicting design goals.

3.4. Overview of TAPHS

In this section, we give an overview of TAPHS: our incremental temperature-aware phys-

ical and high-level synthesis system. TAPHS considers the thermal impact of both logic and

interconnect power dissipation. It automatically plans voltage islands and schedules operations

to reduce IC power consumption and peak temperature.

Figure 3.3 illustrates the main algorithms used in TAPHS. First, the control and data flow

graph is simulated with typical input traces in order to determine the power consumption of

each operation and data transfer edge. The profile information, an RTL design library, floor-

planner, and thermal model are used to evaluate the IC temperature profile, power, area, and

66

performance. Slack distribution, voltage clustering, and voltage island aware floorplanning are

used to generate voltage islands for use in the initial solution: a fully parallel implementation.

There are two loops within the high-level synthesis algorithm. In the outer loop, the clock pe-

riod of the design is iteratively changed from the minimum to maximum potentially feasible

value. Incremental rescheduling, resource sharing, resource splitting (i.e., the opposite of re-

source sharing), and slack distribution are used to generate valid solutions. In the inner loop,

back-tracking iterative improvement is used to optimize the RTL architecture, considering mul-

tiple objectives, e.g., peak temperature, area, or power consumption. A dominated solution is

inferior to some other previously encountered solution in all costs. Non-dominated solutions

are preserved in a solution cache, from which the designer may choose based upon the desired,

and available, trade-offs among costs.

A high-quality incremental floorplanner was developed [88] and incorporated into TAPHS.

Each time the high-level synthesis algorithm needs temperature and physical information to

guide its moves, it extracts that information from the current, incrementally generated, floor-

plan. In addition, costs derived from the floorplan are also used to guide high-level synthesis

moves. By using incremental floorplanning, closer interaction between high-level synthesis and

physical design is possible, i.e., the high-level synthesis algorithm may determine the impact of

potential changes to binding upon physical attributes such as maximum IC temperature, area,

and interconnect energy consumption.

3.5. Slack distribution

In order to allow voltage scaling, it is necessary to appropriately distribute scheduling slack

among different operations. An operation’s slack is the difference between its latest start time

67

and earliest start time. If operation start times are determined with an as-soon-as-possible sched-

ule (ASAP), the executions of most operations will be immediately followed by other opera-

tions. As a result, determining whether it is possible, and desirable, to assign an operation to

a lower-voltage functional unit without violating timing constraints is not possible based on

ASAP operation start times. TAPHS redistributes slack among operations in order to support a

reduced energy assignment of functional units to voltage islands. Note that voltage assignment

(described in Section 3.6) may not arrive at an energy-optimal solution, as it is necessary to

constrain the off-chip overhead that would result from numerous power regulators. As shown

in Figure 3.3, slack distribution occurs before voltage partitioning.

Assume that control data flow graphs have been partitioned into same-slack paths, as de-

scribed later in this subsection. Given a single path composed of sequential operations, the

slack distribution problem is equivalent to deciding the execution times of each operation such

that energy consumption is minimized under a hard constraint on path execution time. We shall

use the following variables and constants:

• D is the bound on path execution time;

• p is the set of all operations on the path;

• v is the voltage of an operation’s functional unit;

• Vt is the threshold voltage constant;

• K is an execution time constant;

• E is the total path energy consumption;

• e is the energy required for an operation;

• C is the switched capacitance constant of an operation’s functional unit; and

• α is the alpha power law constant [89].

68

d =
Kv

(v−Vt)
α(3.1)

However, Vt is small and a very low value of v will generally imply an unacceptable path delay

that will be prevented by the constraint on line 3.7. Therefore, we may assume Vt is small, thus

d ' Kv
vα

(3.2)

v =
(

d
K

) 1
1−α

by (3.2)(3.3)

e = Cv2(3.4)

e = c
(

d
K

) 2
1−α

by (3.2) and (3.4)(3.5)

E = ∑
i∈p

Ci

(
di

Ki

) 2
1−α

(3.6)

min
∀i∈p

vi

∑
i∈p

Ci

(
di

Ki

) 2
1−α

subject to the constraint D≥∑
i∈p

di(3.7)

Note that a decrease in v implies an decrease e, which implies an increase in d. Therefore, for

minimal E,

D = ∑
i∈p

di(3.8)

69

Consider the delay and energy trade-off for an arbitrary pair of operations:

d12 = d1 +d2(3.9)

e12 = e1 + e2(3.10)

e12 =
C1

K1
2

1−α

(d1)
2

1−α +
C2

K2
2

1−α

(d12−d1)
2

1−α(3.11)

Take the derivative of e12 with respect to d1, set to zero, and solve to find d2/d1 for minimal E.

d2

d1
=

C1

K1
2

1−α

C2

K2
2

1−α

1−α

1+α

(3.12)

This optimal delay ratio for two operations may be used to compute the optimal delay ratio for

an arbitrary pair of operations. These ratios can be scaled by a dynamically computed value, N,

to ensure that the constraint on line 3.7 is honored.

N = ∑
i∈p

di

d1
(3.13)

∀i∈p di =

C1

K1
2

1−α

Ci

Ki
2

1−α

1−α

1+α

D
N

by (3.11)(3.14)

∀i∈p di = 3

√
CiKi

2

C1K1
2 ·

D
N

by fixing α = 2(3.15)

Equations 3.11 and 3.15 yield the optimal time, di, to dedicate to each operation. By grant-

ing slack to each operation in the path such that its time is proportional to its time share, we

70

allow the voltage island generation algorithm the opportunity to assign functional units to volt-

age islands such that energy consumption may be minimized under a hard constraint on path

execution time (please see Section 3.6).

Thus far, we have discussed individual operation paths. However, it is necessary for TAPHS

to determine slack distributions along numerous paths in arbitrary directed acyclic graphs of

operations. Assigning time shares eventually has the effect of (temporarily) fixing operation

start times. These start times may influence the earliest start times and latest finish times of

operations on other paths; in order to avoid deadline violations, slack distribution is conducted

on operation paths in order of increasing path slack. In order to generate paths, a modified

depth-first search is conducted on a graph in which each vertex is an operation labeled with its

slack and each edge is a data dependency. Vertex children are visited in the order of increasing

slack, thereby guaranteeing that vertices on multiple paths will be included in minimal-slack

paths.

Algorithm 2 Slack distribution procedure
1: Compute all operation slacks
2: Group operations into same-slack paths, P
3: Sort paths P in order of increasing slack
4: for all p ∈ P do
5: while slack remains on p do
6: ∀i∈p ti is the time assigned to operation i

7: Operation i =
arg
min

j
3
√

CiKi
2

C1K1
2 · D

N − t j by Equation 3.15
8: Assign one additional clock cycle to operation i
9: end while

10: Recompute all operation slacks
11: end for

As shown in Algorithm 2, starting from the minimal-slack path, TAPHS incrementally as-

signs extra clock cycles to operations. At each step, it locates the operation, j, for which the

71

current allocated time, t j, differs most from d j (Step 8) and assigns it an additional clock cycle

(Step 9). It is unlikely that this will result in deadline violations on other paths because slack

distribution is carried out on paths in order increasing slack. Therefore, slack distribution on a

given path is prevented from delaying any node so much that slack becomes negative on other

paths on which the node lies. After slack sharing is done for a given path, the slacks of all

nodes are recomputed and slack distribution proceeds for the next path. The proposed slack

distribution algorithm is optimal for continuous slack values. Discretization may introduce sub-

optimality. Recently, Ghiasi et al. [90] proposed a min-cost flow algorithm that optimally solves

problem with linear cost functions. However, it is not applicable for this problem because the

cost function is nonlinear.

3.6. Voltage partitioning

TAPHS uses on-chip voltage islands to optimize IC thermal profiles and energy consump-

tion. On-chip voltage islands are generated in two stages. Voltage partitioning classifies on-

chip functional units into different voltage levels to maximize overall power and energy savings

hence potential chip temperature reduction. Voltage island generation is then conducted via

incremental floorplanning to produce and optimize on-chip voltage islands.

In this work, we propose an efficient voltage partitioning algorithm. It conducts optimal

voltage allocation and assignment to minimize power consumption subject to timing constraints.

Motivating example We next present an example to illustrate the voltage partitioning issue.

Consider a circuit design with five functional units as shown in Fig. 3.4. For each functional

unit, FUi, the minimal allowed supply voltage, V min
FUi

, is uniquely determined by the ratio of

its time slack to its propagation delay under the initial (maximum) supply voltage. Then, in a

72

1 2 3 4

FUs 1 2 3 4

Vmin (V) 0.8 1 1.2 1.5

5

2

C (pf) 2.0 0.2 3.0 1.0 2.0

5

(a)Voltage partitioning

V
1
=V

2
=1.0V V

3
=V

4
=V

5
=2.0V

E
n

e
rg

y
 (

p
J
)

Partition

26.1 26.2

19.5

22.0

(b)FU characterization
(c)Energy vs. voltage partition

slack vs. delay 1.1 0.7 0.5 0.3 0

={1,2}{3,4,5}

={1,2,3}{4,5}
={1,2,3,4}{5}

={1}{2,3,4,5}

{1,2} {3,4,5}

Figure 3.4. Voltage partitioning example.

voltage partition ΨS
i with S clusters, to satisfy the deadline constraints of functional units, for

each cluster, ψ j = {FUj1, . . . ,FUjn}, ψ j ∈ΨS
i , the supply voltage, Vψ j , is greater than or equal

to max{V min
FUjt
}t=1,...,n, i.e., the minimal supply voltage of the functional unit with the lowest

slack-delay ratio inside this cluster. Consider the voltage partitioning shown in Fig. 3.4(a). This

partitioning contains two voltage clusters, ψ1 = {FU1,FU2} and ψ2 = {FU3,FU4,FU5}. The

supply voltage of ψ1, Vψ1 = 1V, which is the minimal allowed supply voltage of FU2. The

supply voltage of ψ2, Vψ2 = 2V, which is the minimal allowed supply voltage of FU5.

Fig. 3.4(c) shows the energy consumptions of different voltage partitions, which are de-

rived using a linear scan along the functional unit list. This list is sorted in order of increasing

slack-delay ratio (or minimal allowed supply voltage) of functional units. This figure shows

that, using linear scan, the energy curve is not monotonic, implying that an algorithm with

O (N) time complexity is required to find a single voltage partitioning cut with minimal energy

consumption.

Next, let us define the optimal voltage partitioning problem.

Problem Definition Given N functional units, {FUi}, and an input K, we need to find an

optimal voltage partition, ΨK
opt, containing K voltage clusters, {ψopt j} j=1,...,K , such that the

73

total energy consumption, i.e., E(ΨK
opt)≤ E(ΨK

i),∀ΨK
i , in which E(ΨK

opt) = ∑
N
l=1Cl×V 2

ψopt j
. Cl

is the capacitance of FUl,FUl ∈ ψopt j, j = 1, . . . ,K.

For each functional unit, FUi, to satisfy its deadline constraint, its minimal allowed supply

voltage, V min
FUi

, is uniquely determined by the ratio of its slack time to its propagation delay under

the initial (maximum) supply voltage. Then, for each cluster, ψ j = {FUj1, . . . ,FUjn}, ψ j ∈ΨK
i ,

its supply voltage, Vψ j ≥ max{V min
FUjt
}t=1,...,n, i.e., the minimal supply voltage of the functional

unit with the lowest slack to delay ratio inside this cluster.

An optimal voltage partitioning is derived using the following approach. Functional units

are first sorted based on their slack to propagation delay ratios. Then, linear scans along the

sorted functional unit list determine the optimal partitioning. Notice that the energy saving

curve is not monotonic, suggesting that an algorithm with O (N) time complexity is required

to find an energy-optimal voltage partitioning. For K partitions, the time complexity of this

algorithm is O
(
NK).

An optimal voltage partitioning algorithm of O
(
N2) complexity

We introduce an optimal voltage partitioning algorithm of O
(
N2) time complexity. Its

pseudo-code is shown in Algorithm 3, which is described in a recursive form. Partition() has

five input/output parameters. ∗FU list points to the sorted functional unit list. Start and End

designate the sub-list, the portion of the original list that need to be partitioned. Initially, Start =

0 and End = N denote voltage partitioning targets on the whole sorted list. K defines the targeted

number of partition cuts. OptTable stores intermediate optimal partitions of sub-lists.

Partition() is invoked recursively when K > 1 (line 1–4). For each sub-partitioning (K cuts)

on a sub-list (from Start to End), the optimal solution is derived using linear scan to examine the

Kth cut from Start to End, which is combined with the optimal solution of the sub-partitioning

74

(K−1 cuts) on its sub-list (from i to End). When K = 1, the algorithm uses a linear scan to find

the optimal cut in the targeted sub-list (line 12).

Algorithm 3 Partition(∗FU list,Start,End,K,∗OptTable)
1: if K > 1 then
2: C← 0
3: for (i← Start; i≤ End; i++) do
4: Partition(∗FU list, i,End,K−−,∗OptTable)
5: EK

Kth=i←C× (V min
FUi−1

)2 +OptTable[K−1][i]
6: C+ = CFUi

7: end for
8: EK

opt(Start,End)← min{EK
Kth=i}i←Start,...,End

9: cutKopt(Start,End)← i if EK
Kth←i = EK

opt(Start,End)
10: OptTable[K][Start]← pair(EK

opt(Start,End),cutKopt(i,End))
11: else
12: Linear Scan(∗FU list,End,&E1

opt(Start,End),
&cut1opt(Start,End))

13: OptTable[1][Start]← pair(E1
opt(Start,End),

cut1opt(Start,End))
14: end if

Lemma 1 In an optimal partition ΨK
opt with K voltage clusters, {ψopt,1, . . . ,ψopt,K}, ordered

by increasing voltage, Vψopt,1 < Vψopt,2 < · · ·< Vψopt,K , then the minimal allowed voltage of any

functional unit FU j in the optimal ith voltage cluster is greater than the voltage level of adjacent

lower voltage cluster, i.e., Vψopt,i−1 < Vmin
FUj
≤ Vψopt,i,∀FUj ∈ ψopt,i, where V min

FU j
is the minimum

allowed voltage supply.

Proof: Assume there exists a FU j ∈ψopt,i such that Vψopt,i−1 ≥ Vmin
FUj

. If V min
FU j

=Vψopt,i−1 , this

contradicts the claim Vψopt,i > Vψopt,i−1 . If V min
FU j

<Vψopt,i−1 , then we can simply move FU j to par-

tition ψopt,i−1, which results in a lower energy consumption partition; note that Vψopt,i ≥ Vψopt,i−1 .

This contradicts the claim that partition ΨK
opt is optimal, completing our proof.

75

Lemma 1 implies that the optimal partitioning can be found by partitioning the sorted func-

tional unit list. This lemma guarantees the optimality of the algorithm: it uses combinational

linear scans to explore all the possible partitioning combinations of the sorted list, including

the optimal solution. The time complexity of using a combinational linear scan to find the op-

timal K partitions on a sorted list with N functional units in O
(
NK). To improve computation

efficiency, we use a data structure, called OptTable, to store optimal sub-partitions. The time

complexity of K cuts partitioning results from a linear scan of the Kth cut multiplied by the

time complexity of finding the optimal K− 1 partitions. This only requires a linear search in

OptTable table (line 5) with complexity O (N). In total, there are K recursive layers. Since K is

much smaller than N, the overall time complexity of this optimal voltage partitioning algorithm

is O
(
N2).

Preprocessor algorithm with O (N) complexity

In TAPHS, we also implement an efficient preprocessing algorithm with O (N) complexity

to further improve the efficiency of voltage partitioning. The preprocessing algorithm contains

two steps, right-shift and left-shift. We explain the right-shift algorithm here, the left-shift algo-

rithm is complementary.

The right-shift partitioning algorithm is incremental. For voltage partitioning with K cuts,

this algorithm starts from the optimal solution of K−1 cuts. Considering the following initial

partitioning: cutK1 = 0,cutK2 = cutK−1
opt,1, . . . ,cutKK−1 = cutK−1

opt,K−2,cutKK = cutK−1
opt,K−1. The prepro-

cessor right shifts each cut, i.e., cutKi = cutKi ++, i = 1, . . . ,K, to find optimal voltage partition-

ing solution with K cuts, following the order from 1 to K. Each cut is right shifted if and only

if this results in a decrease in overall energy consumption. The algorithm stops when further

shifts can not reduce overall energy any more. The correctness of this algorithm is guaranteed

76

cut1
opt,1

cut2
opt,1 cut2

opt,2

V (1)
1 V (1)

2

V (2)
3V (2)

2V (2)
1

Figure 3.5. Lemma 2 with K = 2.

cutK
opt,i−1 cutK

opt,i

cutK−1
opt,i+1cutK−1

opt,i−1cutK−1
opt,i−2

cutK
opt,i+1

V (K)
i−1 V (K)

i V (K)
i+1

V (K−1)
i+1V (K−1)

i−1V (K−1)
i−2 V (K−1)

i

cutK−1
opt,i

Figure 3.6. Property 1 of general K cuts optimal solution for Lemma 2.

by Lemma 2. In addition, Lemma 2 implies that this algorithm requires at most N steps to reach

optimality, yielding time complexity in O (N). However, this is a greedy algorithm: it may

become trapped at a local minimal. Therefore, it cannot guarantee global optimality.

Lemma 2 In a sorted functional unit list with increasing minimum allowed voltage supply, if

the optimal K−1 partitions are {cutK−1
opt,1, . . . ,cutK−1

opt,K−1}, and the optimal K partitions are

{cutKopt,1, . . . ,cutKopt,K}, then cutKopt,i must be in the range between

cutK−1
opt,i−1 and cutK−1

opt,i , i.e., cutK−1
opt,i−1 ≤ cutKopt,i ≤ cutK−1

opt,i .

Proof: First, we will give the proof for K=2, then extend to general case with the proof of

two properties which can guarantee the correctness of lemma 2.

77

Given cut1
opt,1 is the optimal partition for one partition cut. The voltage of two clusters are

V (1)
1 and V (1)

2 . Shown in Fig. 3.5, assume for K=2, both two cuts (cut2
opt,1 and cut2

opt,2) of the

optimal partitions are on the left of cut1
opt,1. The voltage of three clusters are V (2)

1 , V (2)
2 , and

V (2)
3 . Let’s move the cut2

opt,2 to the same place as optimal one cut partition, cut1
opt,1. Therefore,

the change on energy can be as follows:

E2
inc = ∑

FUi∈A
Ci((V

(2)
2)2− (V (2)

3)2)(3.16)

E2
dec = ∑

FUi∈B
Ci((V

(2)
3)2− (V (1)

2)2)(3.17)

Here set A is the functional units between cut2
opt,2 and cut1

opt,1. Set B is the functional units

between cut1
opt,1 and the end of functional list. We also can move cut1

opt,1 to the same position

as cut2
opt,2 and get energy changes as follows:

E1
inc = ∑

FUi∈B
Ci((V

(2)
3)2− (V (1)

2)2)(3.18)

E1
dec = ∑

FUi∈A
Ci((V

(1)
1)2− (V (2)

3)2)(3.19)

Since cut1
opt,1 is the optimal cut for one cut partition. Hence, E1

inc > E1
dec. We also can find

that E2
dec = E1

inc, and E2
dec < E1

inc. Therefore, we can get E2
inc < E2

dec. This means that there is an

energy saving by moving cut2
opt,1 to the same place as optimal one cut partition. This contradicts

the fact that the current partition is optimal. In the same way, we can proof that both two cuts

of the optimal partitions are on the right of cut1
opt,1 is impossible.

78

Now, let’s extend above proof to general case. We will give following two properties for an

optimal K partitioning solution: (1) there must has at least a cut between position cutK−1
opt,i−1 and

cutK−1
opt,i ; (2) if there are two cuts between position cutK−1

opt,i−1 and cutK−1
opt,i , then there must be a

cut between cutK−1
opt,i and cutK−1

opt,i+1, and a cut between cutK−1
opt,i−2 and cutK−1

opt,i−1. Based on these

two properties, we can find the optimal solution follows the rule cutK−1
opt,i ≤ cutKopt,i ≤ cutK−1

opt,i−1

because if there exists a solution satisfied property 2, then it can not meet the requirement for

property 1. Therefore, the only optimal solution is that there exists one and only one cut between

the position cutK−1
opt,i and cutK−1

opt,i−1.

Property 1: Shown in Fig. 3.6, given optimal solution of voltage partitioning with K−1 cuts

({cutK−1
opt,1, . . . ,cutK−1

opt,K−1}) and optimal solution of voltage partitioning with K cuts

({cutKopt,1, . . . ,cutKopt,K}), assume that cutK
opt,i is on the right of cutK−1

opt,i , i.e. no cut between posi-

tion cutK−1
opt,i−1 and cutK−1

opt,i .

First, by moving cutK
opt,i into the same position as cutK−1

opt,i , we can have following energy

chances:

EK
inc = ∑

FUi∈A
Ci((V

(K)
i+1)2− (V (K)

i)2)(3.20)

EK
dec = ∑

FUi∈B
Ci((V

(K)
i)2− (V (K−1)

i)2)(3.21)

Here set A is the functional units between cutK
opt,i and cutK−1

opt,i . Set B is the functional units

between cutK−1
opt,i and cutK

opt,i−1.

79

cutK
opt,i−2 cutK

opt,i−1 cutK−1
opt,i cutK−1

opt,i+1

cutK
opt,i−2 cutK

opt,i+1cutK
opt,icutK

opt,i−1

V (K−1)
i−2 V (K−1)

i−1 V (K−1)
i V (K−1)

i+1

V (K)
i+1V (K)

iV (K)
i−1V (K)

i−2

Figure 3.7. Property 2 of general K cuts optimal solution for Lemma 2.

Second, by moving cutK−1
opt,i into the same position as cutK

opt,i, we can have following energy

chances:

EK−1
inc = ∑

FUi∈C
Ci((V

(K)
i)2− (V (K−1)

i)2)(3.22)

EK−1
dec = ∑

FUi∈A
Ci((V

(K−1)
i+1)2− (V (K)

i)2)(3.23)

Here, set C is the functional units between cutK−1
opt,i and cutK−1

opt,i−1. Since cutK−1
opt,i is the optimal cut

for K−1 partitions. Hence, EK−1
inc > EK−1

dec . From above equation, we can see that EK−1
dec > EK

inc

since set C is a subset of set B. We also can get EK−1
dec > EK

inc because V (K−1)
i+1 > V (K)

i+1 . Therefore,

EK
dec > EK

inc. This contradicts the fact that the current K partitions is optimal. In the same way,

we can proof that cutK
opt,i is on the left of cutK−1

opt,i−1. Therefore, cutK
opt,i must be in the scope

between position cutK−1
opt,i and cutK−1

opt,i−1.

Property 2: Shown in Fig. 3.7, given optimal solution of voltage partitioning with K−1 cuts

({cutK−1
opt,K−1, . . . ,cutK−1

opt,1}) and optimal solution of voltage partitioning with K cuts

({cutKopt,K, . . . ,cutK−1
opt,1}), assume that cutK

opt,i and cutK
opt,i−1 are in the scope between position

cutK−1
opt,i and cutK−1

opt,i−1 and there is no cut between cutK−1
opt,i+1 and cutK−1

opt,i .

80

First, by moving cutK
opt,i into the same position as cutK−1

opt,i , we can have following energy

chances:

EK
inc = ∑

FUi∈B
Ci((V

(K−1)
i)2− (V (K)

i)2)(3.24)

EK
dec = ∑

FUi∈A
Ci((V

(K)
i+1)2− (V (K−1)

i)2)(3.25)

Here set A is the functional units between cutK−1
opt,i and cutK

opt,i. Set B is the functional units

between cutK
opt,i and cutK

opt,i−1.

Second, by moving cutK−1
opt,i into the same position as cutK

opt,i, we can have following energy

chances:

EK−1
inc = ∑

FUi∈A
Ci((V

(K−1)
i+1)2− (V (K−1)

i)2)(3.26)

EK−1
dec = ∑

FUi∈C
Ci((V

(K−1)
i)2− (V (K)

i)2)(3.27)

Here, set C is the functional units between cutK
opt,i and cutK−1

opt,i−1. Since cutK−1
opt,i is the optimal

cut for K−1 partitions. Hence, EK−1
inc > EK−1

dec . From above equation, we can see that EK−1
dec >

EK
inc since set C is a subset of set B. We also can get EK−1

dec > EK
inc because V (K)

i+1 > V (K−1)
i+1 .

Therefore, EK
dec > EK

inc. This contradicts the fact that current K partitions is optimal. Therefore,

there must be a cut between position cutK−1
opt,i+1 and cutK−1

opt,i . In the same way, we can proof there

must be a cut between position cutK−1
opt,i−1 and cutK−1

opt,i−2.

Similarly, we use left-shift to further reduce the search space. For left-shift, the initial par-

titions start from cutKK = cutK−1
opt,K−1, . . . ,cutK2 = cutK−1

opt,1,cutK1 = N. Then, this algorithm shifts

each cut to the left, i.e., cutKi = cutKi −−, i = 1, . . . ,K, to explore optimal K partitions. Overall,

81

for a voltage partitioning with K cuts, using these two preprocessing steps, the optimal algo-

rithm only needs to search the following space to find optimal partitions

cutKopt,K ∈ {cutKright-shift,K,cutKleft-shift,K}, . . ., cutKopt,1 ∈ {cutKright-shift,1,cutKleft-shift,1}.

3.7. Floorplanning with voltage islands

In order to support temperature-aware, incremental, unified high-level and physical-level

optimization, it was necessary to incorporate a high-quality, incremental floorplanner within

TAPHS. New algorithms were developed and incorporated into this floorplanner to directly

support physical-level thermal optimization and indirectly support architectural-level thermal

optimization.

3.7.1. Floorplanner representation and cost function

The floorplanner within TAPHS is based on the Adjacent Constraint Graph (ACG) represen-

tation [57]. An ACG is a constraint graph with exactly one geometric relationship between every

pair of modules. ACGs have invariant structural properties that allow the number of edges in

the graph to be bounded. Operations on ACGs have straightforward meanings in physical space

and change graph topology locally; they require few, if any, global changes. The operations of

removing and splitting modules are designed to reflect high-level operation to functional unit

binding decisions. To obtain the physical position of each module, packing based on longest

path computation is employed. Simulated annealing is used to obtain an initial floorplan. A

weighted sum of the area and the interconnect power consumption is calculated for use as the

82

floorplanner cost function, i.e.,

(3.28) A+w ∑
e∈E

CeDe

where A is the area, w is the power consumption weight, E is the set of all wires, e is an in-

terconnect wire, Ce is the unit-length switched capacitance for the data transfer along e, and

De is the length of e, which is calculated as Manhattan distance between the two modules con-

nected by the wire. Using this cost function, we optimize the interconnect power consumption,

interconnect delay, and area of the floorplan. The resulting floorplan will be improved during

the subsequent incremental floorplanning high-level synthesis moves. Therefore, the number of

simulated annealing iterations is bounded to reduce synthesis time.

After each high-level synthesis move, the previous floorplan is modified by removing or

splitting a module. The modules and switched capacitances are updated based upon the impact

of these merges and splits. The floorplan is then re-optimized with a greedy iterative improve-

ment algorithm using the same cost function as the simulated annealing algorithm. There are

two reasons to use a greedy algorithm during this stage of synthesis: (1) re-optimization re-

quires fewer global changes and less hill climbing and (2) perturbations resulting from high

temperatures may disrupt high-quality floorplan structures.

After determining the best binding across all the possible values of csteps, another simu-

lated annealing floorplanning run is used for that binding. This final floorplanning stage occurs

only once for every synthesis run. Therefore, it is acceptable to use a slower, but higher-quality,

annealing schedule than those in the inner loop of high-level synthesis, thereby improving inte-

grated circuit area and interconnect power consumption.

83

During the annealing schedule, we use a constant multiplicative cooling factor, r, i.e.,

(3.29) T + = r×T

where T is the current temperature and T+ is the temperature during the next iteration. The

number of the perturbations for the initial floorplanning run, the floorplanning for each value of

csteps run, and the final floorplanning are related as follows: 1/2/20. The number of pertur-

bations per round for the greedy iterative improvement algorithm is the same as that for final

floorplanning run.

3.7.2. Voltage island implementation in floorplanning

As described in previous section, voltage island generation was introduced into the high-

level synthesis system in order to improve thermal profiles and reduce energy consumption.

Therefore, the floorplanner must attempt to keep functional units assigned to the same voltage

level contiguous in order to minimize the need for level converters and simplify power dis-

tribution. The floorplanner must still honor the elements in the original cost function shown

in Equation 3.28. Pair-wise weighted edges were added between all pairs of functional units

operating at the same voltage, yielding the following updated cost function:

(3.30) n
√

A+2n ∑
v∈V

Lv + ∑
e∈E

CeDe

where A is the area, n is the number of functional units, V is the set of all functional unit pairs

at the same voltage, v is a pair of functional units the same voltage, Lv is the separation between

a pair of functional units sharing the same voltage, E is the set of all interconnects, e, is an

84

interconnect line, Ce is the unit-length switched capacitance for the data transfer along e (zero

in the case of no communication), and De is the length of e. This approach generates contiguous

voltage islands, as well as optimizing the interconnect power consumption and area.

Figure 3.2, described in Section 3.3, shows an example of the results produced by this

floorplanning algorithm. TAPHS rapidly generated this result using only pair-wise edges for

functional unit clustering, i.e., hierarchical floorplanning was not required. Note that functional

units operating at the same voltage are contiguous. In some cases, keeping voltage levels con-

tiguous and minimizing wire length results in a slight area penalty. This is to be expected,

regardless of the quality of a floorplanner, because it is rare for a minimal-area solution to have

contiguous voltage levels and minimal interconnect power consumption. During incremental

improvement, operation merging (functional unit resource sharing) combines functional units

with other compatible functional units, always merging from the lower-voltage functional unit

to the higher-voltage functional unit (please see Section 3.4).

3.8. Thermal modeling

As mentioned in Section 3.4, thermal modeling and analysis are used in the inner loop

of the optimization flow to provide direct guidance for thermal optimization. Therefore, our

previous work, a compact chip-package thermal model [91], has been integrated into TAPHS to

determine the thermal profile of our system.

The thermal model has been validated against the COMSOL Multiphysics software pack-

age (formerly FEMLAB) [92], an accurate but slow commercial finite-element based solver. It

exhibited less than 2.5% estimation error when measured on the Kelvin scale. In the following

experiments, each chip design is attached to a copper heat sink using forced-air cooling. We

85

ai,j,k

Figure 3.8. Full chip-packaging thermal model.

model two thermally conductive paths: heat dissipates from the silicon die through the cooling

package to the ambient environment and through the package to the printed circuit board. We

use an ambient temperature of 45� and a silicon thickness of 200 µm. In high-end micropro-

cessor systems, due to the efficient cooling design, more than 80% of heat is dissipated through

the first conductive path. In portable consumer electronics, due to the tight cooling budget and

limited cooling space, the impact of the secondary conductive path may be significant.

Fig. 3.8 illustrates the compact thermal model. Each material layer (e.g., silicon die, cool-

ing package, and substrate carrier) is modeled with multiple layers of thermal elements. Each

layer is partitioned into homogeneous thermal tiles, and each thermal tile is then modeled with

inter-layer and intra-layer thermal resistors. Thermal resistances are determined based on ma-

terial properties and tile geometries. Different layers use different tile granularity to strike a

good trade-off between estimation accuracy and efficiency. To estimate the power consumption

of each tile, we currently ignore the self-heating effect of on-chip interconnect, and only con-

sider the power consumption of active devices [91]. Note that this work considers the impact

of wire capacitance on the power consumption of drivers and repeaters. Based on the floor-

planning information, we compute the power consumptions of thermal tiles using the average

power dissipated by the functional units within each thermal tile. The power consumption of

86

functional units with portions in multiple tiles is divided appropriately among the tiles. Instead

of characterizing thermal profile from scratch after every incremental change to the power pro-

file, the numerical thermal analysis method is initialized with the thermal profile associated with

the previous power profile, thereby accelerating convergence after incremental changes to the

power profile.

In general, chip thermal profile exhibits both temporal and spacial variations. Most of the

benchmarks in this work have overall execution delays less than or comparable to the active

layer element thermal time constant; therefore, temporal variation is negligible. Hence, we

focus on characterizing spacial thermal variation using steady-state thermal analysis. Chip ther-

mal characteristics are estimated based on the chip power distribution averaged over the period

or the deadline for periodic benchmarks and aperiodic benchmarks respectively.

3.9. Experimental results

In this section, we present experimental results for the TAPHS temperature-aware high-level

synthesis system, including the thermal optimization techniques described in Sections 3.5, 3.6,

and 3.7. The circuits described in this section were synthesized using a register transfer level

(RTL) design library based on the TSMC 0.18 µm process. The experiments were conducted on

AMD Athlon-based Linux workstations with 512 MB–1 GB of random access memory. No IC

synthesis runs required more than 1,195 s of CPU time.

3.9.1. Benchmarks

We used TAPHS to synthesize 13 synthesis benchmarks. Chemical and IIR77 are infinite

impulse response (IIR) filters used for signal processing. DCT IJPEG is the Independent JPEG

87

Group’s implementation of discrete cosine transform (DCT). DCT Wang and DCT Lee are DCT

algorithms named after their inventors. All DCT algorithms work on 8× 8 pixel of arrays.

Elliptic, an elliptic wave filter, comes from the NCSU CBL (North Carolina State University

Collaborative Benchmarking Laboratory) high-level synthesis benchmark suite [64]. Jacobi is

the Jacobi iterative algorithm for solving a fourth-order linear system. WDF is a finite impulse

response (FIR) wave digital filter. The largest benchmark, Jacobi, has 24 multiplications, 8

divisions, 8 additions, and 16 subtractions. In addition, we generated two CDFGs using a

pseudo-random graph generator [66]. Random100 has 20 additions, 15 subtractions, and 19

multiplications. Random200 has 39 additions, 44 subtractions, and 36 multiplications. The

same sample periods (deadlines) were used for the benchmarks when evaluating each synthesis

technique.

3.9.2. Multiobjective results

Table 3.1 shows the results of doing full multiobjective optimization of peak temperature,

area, and energy consumption with three voltage levels. In total, we compared 13 benchmarks.

For each benchmark, the table shows non-dominated solutions produced by TAPHS. Due to

space constraints, we sorted the solutions for each problem in order of increasing peak tempera-

ture and uniformly eliminated all but four solutions. For each solution, the left column indicates

the name of the benchmark. The next three columns show the peak temperatures, areas, and

power consumptions of solutions produced without using voltage islands. Area is reported as

a percentage of the area of the an initial solution without resource sharing or voltage islands.

The floorplanner typically has an area efficiency ranging from 75%–90% for these benchmarks.

From these columns, it should be clear that it is possible to trade off peak temperature for area

88

Table 3.1. Comparison of non-dominated (multiobjective) results

No voltage islands Voltage islands
Example Peak Area Power Peak Area Power

T (◦C) (%) (W) T (◦C) (%) (W)
chemical 123.4 116.6 2.18 98.0 142.4 1.60

123.6 112.0 2.18 100.4 121.7 1.62
123.7 109.3 2.18 103.3 112.7 1.59

dct dif 79.0 87.9 0.85 67.3 92.5 0.60
79.7 78.6 0.83 67.6 81.5 0.58
80.3 83.7 0.85 69.8 83.4 0.61

dct ijpeg 126.0 118.2 2.44 113.6 117.6 1.99
129.4 107.2 2.39 115.8 114.9 2.03
129.5 104.5 2.41 118.6 99.9 2.00

dct lee 71.5 98.9 0.79 63.7 106.4 0.59
71.8 95.6 0.79 65.5 119.2 0.61
71.9 99.9 0.79 64.6 106.3 0.59

dct wang 70.7 101.3 0.70 59.8 109.8 0.42
68.2 97.5 0.68 59.1 116.0 0.43
68.5 108.1 0.68 60.1 108.0 0.42

elliptic 136.8 105.5 2.55 111.6 122.6 2.04
iir77 94.5 105.0 1.57 73.7 119.7 0.94

97.7 93.1 1.56 74.6 115.7 0.94
99.0 93.1 1.57 76.5 94.9 0.96

jacobi 54.2 64.4 0.25 51.8 81.5 0.20
53.9 65.5 0.25 52.1 77.7 0.20
53.8 63.2 0.24 52.9 69.2 0.21

pr1 98.0 104.0 1.49 82.5 106.1 1.10
97.4 103.1 1.52 84.8 92.6 1.10

pr2 95.4 103.8 1.67 87.9 110.2 1.44
97.3 89.2 1.68 87.5 100.6 1.45
95.8 98.4 1.67 88.0 105.4 1.45

random100 71.6 100.0 0.85 66.0 98.8 0.63
72.1 99.2 0.85 65.7 99.6 0.62
72.7 99.7 0.86 67.6 85.1 0.67

random200 90.8 90.2 1.77 81.4 112.0 1.37
91.1 93.0 1.77 83.2 90.2 1.37

wdf 75.6 108.0 0.75 68.0 104.5 0.59
74.8 96.9 0.73 67.8 101.8 0.59

as long as a thermal model is available during multiobjective synthesis. However, improving

both objectives requires architectural-level and physical-level thermal optimization techniques.

89

Table 3.2. Comparison of non-dominated (multiobjective) results with two volt-
age level

No voltage islands Voltage islands
Example Peak Area Power Peak Area Power

T (�) (%) (W) T (�) (%) (W)
chemical 123.4 116.6 2.18 104.1 113.3 1.64

123.6 112.0 2.18 104.5 114.5 1.65
123.7 109.3 2.18 106.0 117.9 1.70

dct dif 79.0 87.9 0.85 71.5 81.2 0.62
79.7 78.6 0.83 72.4 80.7 0.64
80.3 83.7 0.85 71.9 77.7 0.60

dct ijpeg 126.0 118.2 2.44 115.6 104.7 2.02
129.4 107.2 2.39 118.2 107.9 2.08
129.5 104.5 2.41 119.4 101.7 2.06

dct lee 71.5 98.9 0.79 63.5 125.7 0.61
71.8 95.6 0.79 65.1 97.6 0.61
71.9 99.9 0.79 64.8 107.3 0.62

dct wang 70.7 101.3 0.70 61.1 104.3 0.47
68.2 97.5 0.68 60.2 96.2 0.46
68.5 108.1 0.68 61.6 92.3 0.48

elliptic 136.8 105.5 2.55 116.6 112.3 2.09
139.7 89.4 2.51 116.7 106.9 2.09
141.0 105.5 2.48 118.6 106.9 2.09

iir77 94.5 105.0 1.57 77.5 102.4 1.01
jacobi 54.2 64.4 0.25 52.1 70.4 0.20

53.9 65.5 0.25 52.9 68.2 0.20
53.8 63.2 0.24 52.8 65.8 0.21

pr1 98.0 104.0 1.49 86.3 106.0 1.25
97.4 103.1 1.52 88.0 102.6 1.28
97.9 98.3 1.50 88.9 98.5 1.27

pr2 95.4 103.8 1.67 89.0 102.0 1.47
97.3 89.2 1.68 89.7 95.7 1.47
95.8 98.4 1.67 90.9 97.2 1.48

random100 71.6 100.0 0.85 64.8 108.2 0.64
72.1 99.2 0.85 66.0 96.3 0.64
72.7 99.7 0.86 65.9 100.6 0.64

random200 90.8 90.2 1.77 86.3 84.1 1.47
91.1 93.0 1.77 85.6 82.8 1.48
91.2 94.7 1.76 86.1 79.5 1.46

wdf 75.6 108.0 0.75 71.1 95.1 0.63
74.8 96.9 0.73 73.0 84.0 0.64
76.0 93.2 0.72 73.2 86.5 0.64

90

Table 3.3. Comparison of non-dominated (multiobjective) results with four volt-
age level

No voltage islands Voltage islands
Example Peak Area Power Peak Area Power

T (�) (%) (W) T (�) (%) (W)
chemical 123.4 116.6 2.18 96.9 131.5 1.55

123.6 112.0 2.18 99.9 129.4 1.61
123.7 109.3 2.18 101.8 116.1 1.56

dct dif 79.0 87.9 0.85 66.8 105.7 0.59
79.7 78.6 0.83 67.5 91.0 0.56
80.3 83.7 0.85 66.8 94.8 0.57

dct ijpeg 126.0 118.2 2.44 111.7 113.7 1.92
129.4 107.2 2.39 115.8 116.4 2.05
129.5 104.5 2.41 115.0 108.1 2.05

dct lee 71.5 98.9 0.79 62.9 109.8 0.56
71.8 95.6 0.79 63.9 109.6 0.59
71.9 99.9 0.79 63.9 111.6 0.58

dct wang 70.7 101.3 0.70 57.5 111.9 0.39
68.2 97.5 0.68 57.6 112.3 0.40

elliptic 136.8 105.5 2.55 116.4 109.6 1.98
139.7 89.4 2.51 115.5 104.8 1.98
141.0 105.5 2.48 116.8 104.8 1.98

iir77 94.5 105.0 1.57 74.4 112.6 0.91
jacobi 54.2 64.4 0.25 52.3 67.3 0.20

53.9 65.5 0.25 52.1 69.6 0.20
53.8 63.2 0.24 53.2 66.2 0.21

pr1 98.0 104.0 1.49 80.3 107.6 1.07
97.4 103.1 1.52 83.4 111.2 1.10
97.9 98.3 1.50 84.1 101.4 1.08

pr2 95.4 103.8 1.67 86.7 106.9 1.44
97.3 89.2 1.68 89.2 110.2 1.47
95.8 98.4 1.67 88.4 99.7 1.44

random100 71.6 100.0 0.85 63.3 104.5 0.60
72.1 99.2 0.85 64.3 98.4 0.60
72.7 99.7 0.86 64.8 106.2 0.60

random200 90.8 90.2 1.77 80.5 94.4 1.35
91.1 93.0 1.77 79.9 98.7 1.37
91.2 94.7 1.76 80.7 94.9 1.38

wdf 75.6 108.0 0.75 71.1 95.1 0.63
74.8 96.9 0.73 73.0 84.0 0.64
76.0 93.2 0.72 73.2 86.5 0.64

The next three columns show the results produced using voltage islands. From these columns,

it is clear that voltage islands yield significant improvements in peak temperature, area, and

91

 0

 20

 40

 60

 80

 100

 120

 140

chem
ical

dct_dif

dct_ijpeg

dct_lee

dct_w
ang

elliptic

iir77
jacobi

pr1
pr2

random
100

random
200

w
df

T
e
m

p
e
ra

tu
re

 (
°
C

)

Benchmarks

NVI
VI

Figure 3.9. Peak temperature comparison for three voltage levels case.

power consumption. For example, the peak temperatures of the lowest peak temperature solu-

tions to each problem were reduced by an average of 12.5 °C.

Figure 3.9 shows only the lowest peak temperature for each benchmark after synthesis with

voltage islands, and without voltage islands. As this figure indicates that voltage islands can

substantially reduce IC peak temperature, and that the relative contribution depends on the

benchmark.

In addition, given the same area, TAPHS achieves lower peak temperatures for most bench-

marks. For example, the peak temperature of pr2 was reduced from 95.8 °C to 88.4 °C with the

same area. Similar reductions were possible for dct dif, dct ijpeg, and dct lee. In addition to re-

ducing peak temperature, the proposed techniques can also be used to reduce area given a fixed

peak temperature. When constraining temperature to the lowest temperature solution found

92

without thermal optimization techniques, using voltage islands reduced area by, on average,

9.9%.

As shown in Table 3.2 and Table 3.3, all the benchmarks were also run using two volt-

age levels and four voltage levels. The lowest peak temperatures were reduced by an average

of 9.85 °C for two voltage levels, and 12.83 °C for four voltage levels, compared to the result

without voltage islands. These results indicate that temperature reduction is significant when

moving from two voltage levels to three voltage levels and minor from three voltage levels to

four voltage levels. As shown in Figure 3.10, we also found that due to the differing properties

(such as benchmarks size, CDFG graph structure, etc.) of each benchmark, the number of volt-

age levels permitting maximum temperature reduction differs. In general, temperature reduces

with increasing voltage levels. However, changes in floorplanning prevent this trend from being

entirely consistent.

3.10. Conclusions

In this chapter, we have described TAPHS, a thermal-aware high-level synthesis system that

uses a tightly integrated thermal model and incremental floorplanner to optimize IC peak tem-

peratures, areas, and power consumptions, while meeting performance constraints. In order to

optimize peak temperature, it was necessary to tightly integrate floorplanning, wire modeling,

power profile generation, and chip-package thermal analysis with high-level synthesis. Exper-

imental results indicate that TAPHS is able to trade off peak temperature, IC area, and power

consumption. The proposed techniques allowed a reduction in peak temperature of 12.5�, on

average. We have also found that thermal optimization can allow significant improvements in

93

 0

 20

 40

 60

 80

 100

 120

chem
ical

dct_dif

dct_ijpeg

dct_lee

dct_w
ang

elliptic

iir77
jacobi

pr1
pr2

random
100

random
200

w
df

T
e
m

p
e
ra

tu
re

 (
°
C

)

Benchmarks

Two voltage levels
Three voltage levels
Four voltage levels

Figure 3.10. Peak temperature reduction with different number of voltage levels.

IC area under temperature constraints. We conclude that it is important to incorporate thermal

optimization in high-level synthesis to support continued increases in device and power density.

94

CHAPTER 4

Reliable Application-Specific Multiprocessor System-On-Chip Synthesis

This chapter presents a comprehensive solution to the reliable multiprocessor system-on-

chip (MPSoC) synthesis problem. Technology scaling and increasing power densities are in-

creasing the severity of MPSoC lifetime reliability problems. MPSoC reliability strongly de-

pends on system-level MPSoC architecture, the design style of each processing element (i.e., the

presence or absence of redundant functional units), and the thermal profile during operation. We

propose efficient thermal-aware reliability analysis and optimization algorithms for use during

MPSoC synthesis. In addition, we have developed a comprehensive synthesis system, called

RAMS, that conducts architectural synthesis, floorplanning, on-chip network synthesis, and

chip-package thermal analysis. RAMS exploits redundancy and thermal-aware design planning

to produce reliable, compact MPSoC designs that meet performance and functionality require-

ments. It is capable of substantially increasing MPSoC system mean time to failure with small

area overhead. For example, it increases MPSoC system mean time to failure by an average

of 85% with less than 5% area cost and by an average of 436% with less than 25% area cost,

compared to area-optimized solutions.

4.1. Introduction

A single integrated circuit (IC) can now contain well over 500 million transistors. The

International Technology Roadmap for Semiconductors (ITRS) [2] projects chips with a billion

95

transistors by 2007. In order to manage design complexity and control power consumption, it

has been necessary to move to multiprocessor system-on-chips (MPSoCs).

Aggressive scaling of CMOS process technology poses serious challenges to the lifetime

reliability of ICs. Reduction of feature sizes and increases in power density have resulted in

increasing chip temperatures and failure rates. Increasing system integration using these vul-

nerable devices and interconnects results in reduced system reliability. The severities of many

reliability problems, such as time-dependent dielectric breakdown in MOS transistors and elec-

tromigration in interconnects, increase exponentially with temperature. Lifetime reliability is

becoming an important quality metric in high-performance ICs [2]. Optimizing lifetime relia-

bility requires careful planning during IC design and synthesis.

The MPSoC lifetime reliability problem cannot be well solved at any single level of the de-

sign process. Reliability characterization requires detailed chip thermal information because the

severities of many lifetime reliability problems strongly depend on temperature. Thermal char-

acterization requires detailed physical information, including an IC floorplan, power profile, and

chip-package thermal model. Reliability-aware MPSoC design requires a unified architectural-

level and physical-level design flow. Processing elements (PEs) are general-purpose or special-

purpose processor cores, many of which may be used in an MPSoC. At the architectural-level,

careful assignment of tasks to PEs can balance the thermal profile of the chip, thereby im-

proving system reliability. Synthesis-time architectural planning and careful use of PE-level

and component-level (e.g., functional unit) redundancy will permit continued MPSoC opera-

tion after the failure of some processors or components, while limiting area overhead. At the

physical-level, a fast floorplanner is needed to provide physical information for generating the

96

power profile which, in turn, is used to determine the thermal profile. The evaluation and opti-

mization of system reliability and other design metrics, such as area and performance, require

a comprehensive and efficient architectural-level and physical-level synthesis infrastructure.

4.1.1. Past work and Contributions

Our work draws from research in the areas of IC reliability modeling, reliable system syn-

thesis, on-chip network synthesis, physical design, and thermal analysis. Srinivasan, et al.,

provide architectural reliability models and propose run-time techniques to improve the lifetime

reliability of microprocessors [93]. The COFTA hardware-software co-synthesis algorithm pro-

duces architectures that achieve the reliability of triple-modular systems at lower cost [94]. Xie,

et al., propose duplicating tasks on idle processors during embedded system synthesis in order

to recover from transient faults [95]. Srinivasan et al. [96] propose a linear programming based

NoC synthesis technique that maps a communication trace to an on-chip network topology to

satisfy performance constraints and optimize power consumption. Ogras et al. [97] propose a

depth-first search branch-and-bound algorithm for NoC synthesis.

IC temperature profile has a huge impact on reliability. In order to determine tempera-

ture profile, and conduct on-chip network synthesis, an MPSoC floorplan must be known dur-

ing the system synthesis process. Research has shown that it is possible to incorporate high-

performance floorplanning block placement algorithms within MPSoC synthesis [98, 8]. We

build upon IC thermal modeling research work in order to determine MPSoC thermal profiles

to enable accurate estimation of system mean-time-to-failure (MTTF) [10, 99].

The proposed algorithm generate a series of chip-level multiprocessor designs that satisfy

the functionality and performance constraints of a specification while simultaneously trading

97

off and minimizing IC area and MTTF. The specification consists of graphs composed of data-

dependent, multirate, periodic tasks and processor cores, each of which executes different tasks

with potentially different execution times and power consumption values. It differs from previ-

ous work in the following ways:

(1) We provide a new, unified reliability model that supports estimation of the mean time

an MPSoC will continue to meet its functional and performance requirements. This

model takes various design-time and run-time factors into consideration, including

numerous failure mechanisms, resource redundancy, and thermal profile and is efficient

enough to permit repeated use during synthesis.

(2) We designed domain-specific optimization algorithms that significantly improve MP-

SoC reliability with small area overhead.

(3) We have developed a comprehensive MPSoC synthesis system that conducts architec-

tural synthesis, floorplanning, on-chip network synthesis, and chip-package thermal

analysis. Optimization algorithms within this flow exploit redundancy and thermal-

aware design planning to produce reliable, compact MPSoC designs.

These ideas allow the proposed reliable MPSoC synthesis system to improve MPSoC system

MTTF by an average of 85% with less than 5% area cost and by an average of 436% with less

than 25% area cost, compared to area-optimized solutions. To the best of our knowledge, this is

the first work that proposes a comprehensive temperature and lifetime reliability aware MPSoC

synthesis system.

The rest of this chapter is organized as follows. Section 4.2 gives a motivating example that

illustrates the need for reliable MPSoC synthesis and suggests techniques to optimize system

MTTF. Section 4.3 describes the infrastructure, models, and optimization algorithms of our

98

reliable

application-specific multiprocessor synthesis system. Section 4.4 presents experimental results.

We draw conclusions in Section 4.5.

4.2. MPSoC Reliability Estimation and Optimization Challenges

In this section, we illustrate the key challenges to estimating and optimizing MPSoC reli-

ability. Section 4.2.1 defines system MTTF and uses an example to highlight the challenges

of reliability optimization in MPSoC system design. Section 4.2.2 describes the challenges of

calculating system MTTF. Finally, Section 4.2.3 describes the challenges of optimizing MPSoC

system MTTF.

4.2.1. System MTTF Definition and Illustrative Example

System MTTF: We define system MTTF as the average amount of time an MPSoC will

operate, possibly in the presence of component faults, before its performance drops below some

designer-specified constraint or it is no longer able to execute the specified workload. Using

system MTTF to characterize reliability has the advantage of taking into account performance;

this is important for consumer electronics and most other MPSoC applications. It is often

possible to increase reliability at the cost of reduced performance. This definition makes it clear

that it is still sufficient to permit acceptable performance throughout the stated lifetime of the

MPSoC.

In order to optimize the system MTTF of an MPSoC, while constraining IC area, it is nec-

essary to exploit and optimize both hardware redundancy and temperature profile. PE-level re-

dundancy is achieved by adding PEs to the MPSoC architecture. Component-level redundancy

99

PC
Power

PC
Power

Solution II

PowerPC
(RE)

Power

Power
PC

Solution I

PC

K6−2E+

AMD

Figure 4.1. Reliable MPSoC synthesis example.

is achieved by adding appropriate control mechanisms and redundant hardware such as addi-

tional arithmetic logic units (ALUs) or cache banks to individual PEs [93]. We will illustrate

each method of improving system MTTF using an example. Figure 4.1 shows two synthesized

solutions of an MPSoC benchmark based on the E3S benchmarks suite [100]. Each solution

contains three embedded processors connected by an on-chip router. The temperature of each

on-chip component is indicated by its brightness: brighter components are hotter. The system

MTTF of Solution I is 0.7 year. The system MTTF of Solution II in Figure 4.1 is 1.5 years, i.e.,

2.1× the duration of Solution I. These two solutions differ as follows. The embedded proces-

sor, AMD K6-2E+, used in Solution I, is replaced with IBM PowerPC 405GP-RE in Solution II.

405GP-RE is a low power, redundant version of IBM PowerPC 405GP. In the 405GP-RE, the

floating/fixed point units and floating/integer register files are duplicated.

In this example, the improvement to system MTTF in Solution II is mainly due to tempera-

ture reduction and resource redundancy. In ICs, many reliability problems strongly depend on

temperature. In Solution I, a peak temperature of 59.9 ◦C is observed inside the K5-2E+. In

Solution II, replacing the K5-2E+ with the 405GP-RE reduces the peak temperature by 5.1 ◦C,

100

thereby decreasing the run-time fault rate. Second, increasing system redundancy improves the

system fault-tolerance. Compared to the K5-2E+, the 405GP-RE can tolerate more run-time

faults. This results in an improvement to system MTTF. This example highlights various oppor-

tunities to optimize MPSoC reliability. However, synthesizing reliable MPSoCs is a challenging

problem requiring efficient system MTTF calculation and a reliability-aware design optimiza-

tion flow.

4.2.2. System MTTF Calculation Challenges

Computing system MTTF during MPSoC synthesis is a challenging task. Its complexity

has two main sources: the difficulty of (1) determining the system-level impact of component

failure and the necessity to synthesize an MPSoC architecture, from system level to physical

level, and (2) computing its thermal profile in order to enable component failure probability

estimation.

MPSoCs contain multiple heterogeneous on-chip components, or PEs. System MTTF is a

complex function of component MTTFs. In a fault-tolerant MPSoC, a PE may have a partial

failure or a complete failure that reduces MPSoC performance without causing the performance

to drop below a specified value, i.e., MPSoC may still work even if some PEs suffer partial or

complete failures. Assume each PE is in one of three status: fully-functional, partially opera-

tional 1, or inoperational. For an MPSoC system with N PEs there are 3N possible combinations

of processor states. Clearly, exact computation of system MTTF requires the traversal of a lat-

tice with a number of points that is exponential in the number of processors. Although the

1In practice, a PE may experience various run-time failures, hence in different partially operational status.

101

traversal may terminate upon reaching a state in which the MPSoC does not meet its perfor-

mance requirements, in the worst case a full traversal is necessary. Fast methods of computing

system MTTF are essential during MPSoC synthesis because this computation will be used

during the evaluation of numerous architectures.

Failure mechanisms in deep submicron application-specific multiprocessors are strongly

dependent on MPSoC architecture, physical design, and thermal profile. Determining IC tem-

perature profile requires knowledge of power profile which, in turn, requires knowledge of the

power states and positions of PEs. Simply getting the necessary power information requires (ex-

tremely fast) generation of candidate architectural designs and their floorplanning block place-

ments. Determining temperature profiles from the power profile requires (again, extremely fast)

chip-package thermal modeling. Moreover, these models cannot be static: they must take into

account conditions that may change dynamically during MPSoC operation and for each com-

ponent, they must specify the type of failure (e.g., partial or complete) as well as the overall

probability of failure.

4.2.3. System MTTF Optimization Challenges

Optimizing system MTTF requires that numerous hard, interdependent problems, many of

which are NP-complete, be concurrently solved. These problems include PE allocation, the

assignment of operations to PEs, floorplanning, on-chip network synthesis, operation and com-

munication event scheduling, power consumption estimation, IC thermal analysis, component

MTTF computation, and system MTTF computation. After each architectural change, the im-

plications of the change on each level of the design must be quickly determined. In addition, it

is necessary to compute system MTTF, which depends on pre-planning the appropriate run-time

102

task migration to compensate for a series of component failures while maintaining acceptable

MPSoC performance. Using a traditional stochastic optimization algorithm by simply adding

the system MTTF into the cost function as one of the optimization criteria will result in poor

performance due to the high dimensionality of the multiobjective solution space. Therefore, it

is necessary to develop domain-specific algorithms that can efficiently optimize MPSoC system

MTTF and other criteria. As indicated by the experimental results in Section 4.4, a domain-

specific algorithm that optimizes system MTTF by focusing on component redundancy and IC

thermal profile is able to improve synthesis speed by an order of magnitude while increasing

system MTTF by years without increasing area, in comparison with a stochastic algorithm that

optimizes IC area and system MTTF.

4.3. Reliable Application-Specific MPSoC Synthesis

In this section, we present RAMS, the proposed reliable application-specific MPSoC synthe-

sis infrastructure. Section 4.3.1 first gives an overview of RAMS. Section 4.3.4 then describes

models for IC failure mechanisms. Section 4.3.5 proposes an MPSoC reliability model and

corresponding MTTF-aware optimization algorithms used in RAMS. Finally, the thermal anal-

ysis (Section 4.3.6), floorplanning algorithms (Section 4.3.7), and on-chip network synthesis

(Section 4.3.8) are presented.

4.3.1. RAMS Infrastructure

Determining and optimizing MPSoC system MTTF requires a substantial infrastructure,

within which all the components indicated in Figure 4.2 are essential. As described in Sec-

tion 4.2, computing system MTTF requires knowledge of component MTTFs and run-time per-

formance constraints. Computing component MTTFs requires knowledge of MPSoC thermal

103

PRSA area
optimization

Iterative reliability
optimization

Processor
allocation

Task
assignment

Scheduling

System-level design building blocks

Performance analysis

Power analysis

Thermal analysis

Processor reliability analysis

System MTTF analysis

Solution analysis

Floorplanning
block placement

On-chip network
synthesis

Physical design building blocks

Report reliable, area-optimized MPSoC
architectures meeting performance constraints

Functionality and performance requirements, processor specifications

Figure 4.2. RAMS infrastructure for the synthesis
of reliable MPSoCs taking into account architec-
tural and physical effects on reliability.

profile and architecture. Computing MPSoC thermal profile requires fast and accurate ther-

mal analysis algorithms. Finally, determining, and optimizing MPSoC architecture requires a

system-level synthesis infrastructure that allocates PEs, assigns tasks to PEs, rapidly generates

floorplans, synthesizes an on-chip network, assigns communication events to network links and

routers, and schedules operations and communication events.

The RAMS synthesis system is composed of algorithms that may be placed in three cat-

egories: system-level design, physical-level design, and solution analysis. The system-level

design contains a single-objective stochastic optimization algorithm that minimizes MPSoC

area under performance constraints, and a heuristic optimization algorithm that uses knowledge

of redundancy and thermal profile to improve system MTTF with little impact on MPSoC area.

104

The physical-level design consists of a slicing floorplanning algorithm and a novel MPSoC

on-chip network synthesis algorithm. In addition, RAMS contains a novel statistical lifetime

reliability model, and also performance, power, and thermal models to guide MPSoC reliability

optimization.

4.3.2. System-Level Design

RAMS uses both stochastic and heuristic techniques to optimize MPSoC lifetime reliability

at the system level.

The stochastic optimizer builds on our previous work, MOCSYN [98], a multi-objective

SoC synthesis flow using a parallel recombinative simulated annealing (PRSA) algorithm [101].

Previous studies have demonstrates that the PRSA allocation, assignment, and scheduling

algorithm used in MOCSYN produces optimal solutions to problems for which optimal solu-

tions are known, and rapidly produces solutions of equal or better quality for problem instances

to which results have been published [102, 103]. The MPSoC lifetime reliability optimization

issue can potentially be solved using this stochastic synthesis flow by combining lifetime relia-

bility with the other optimization criteria supported by MOCSYN. However, compared to con-

ventional area-performance optimization problems, reliability optimization introduces unique

challenges.

In MPSoC design, the relationship between area and performance are complicated. Heuris-

tic area and performance optimization techniques can easily be trapped in local minima because

there is not a strong correlation between these objectives. Therefore, it is difficult to arrive at

low-area solutions meeting hard real-time deadlines without a global optimization algorithm.

Such area and reliability optimization heuristics stand in contrast to stochastic area and reliabil-

ity optimization, which requires a global search of a multi-dimensional solution space. To guide

105

reliability optimization, reliability analysis needs to be invoked within the inner loop of the syn-

thesis flow. MPSoC reliability analysis builds on detailed performance, power, and thermal

characterization, which are computation intensive. Therefore, the use of reliability estimation

within stochastic optimization dramatically decreases the area of the solution space that may be

explored in a fixed amount of CPU time.

In comparison with the area-performance tradeoff, the area-reliability tradeoff is clearer.

Lifetime reliability is inversely correlated with chip temperature and power density. By increas-

ing chip area, power density and chip temperature decrease, thereby increasing chip reliability.

Structural redundancy, which generally increases area, can also improve lifetime reliability. If

it is possible to start from a low-area solution, the search for solutions that increase reliability

at the cost of area can be focused on the most promising areas of the solution space via heuris-

tics. The strong relationship between area and reliability permits the development and use of

efficient heuristics for incremental MPSoC reliability and area optimization.

These observations motivate us to design a two-stage system-level optimization flow. This

synthesis flow starts by searching the area-minimum solution using MOCSYN. Although area-

efficient, these solutions tends to have high power density, low structural redundancy, and low

lifetime reliability. These solutions are used as starting points for reliability optimization. The

proposed heuristic reliability optimization algorithm uses knowledge of redundancy and thermal

profile to improve system MTTF while minimizing impact on MPSoC area. This algorithm, one

of the contributions of our work, is described in Section 4.3.5. As shown in the experimental

results, the proposed two-stage optimization flow consistently outperforms one-stage stochastic

area and reliability optimization.

106

4.3.3. Solution Analysis

MPSoC lifetime reliability is a function of various design-time and run-time factors, in-

cluding failure mechanisms, resource redundancy, and chip thermal profile. In RAMS, MPSoC

lifetime reliability optimization is guide by a novel MPSoC statistic lifetime reliability model

that takes all these factors into consideration and provide efficient and accurate estimation of

the system MTTF of the MPSoC.

The proposed reliability model builds on detailed performance, power, and thermal charac-

terization. In RAMS, performance and power consumption are characterized for each individual

on-chip PE based on measurement, datasheets, and discussions with microprocessor vendors

(see Section 4.4 for details). As described in Sections 4.3.7 and 4.3.6, the impacts of physical

characteristics, e.g., floorplans and thermal profiles, are considered and optimized by RAMS.

4.3.4. IC Failure Mechanisms

In this section, we characterize IC failure mechanisms. The lifetime reliability of ICs is pri-

marily affected by the following failure mechanisms: electromigration, thermal cycling, time-

dependent dielectric breakdown, and stress migration [93].

(1) Electromigration refers to the gradual displacement of the atoms in metal wires caused

by electrical current. It leads to voids and hillocks within metal wires that result in open

and short circuit failures. The MTTF due to electromigration is given by the following

equation [104, 105]:

(4.1) MTTFEM =
AEM

Jn e
EaEM

κT

107

where AEM is a constant determined by the physical characteristics of the metal inter-

connect, J is the current density, EaEM is the activation energy of electromigration, n is

an empirically-determined constant, κ is Boltzmann’s constant, and T is the tempera-

ture.

(2) Thermal cycling refers to IC fatigue failures caused by thermal mismatch deforma-

tion. In IC chip and package, adjacent material layers such as copper/low-k dielectric

have different coefficients of thermal expansion. As a result, run-time thermal varia-

tion causes fatigue deformation, leading to failures. The MTTF due to thermal cycling

is given by the following equation [104, 106]:

(4.2) MTTFTC =
ATC

(Taverage−Tambient)
q

where ATC is a constant coefficient, Taverage is the chip average run-time temperature,

Tambient is the ambient temperature, and q is the Coffin-Manson exponent constant.

(3) Time-dependent dielectric breakdown refers to deterioration of the gate dielectric

layer. This effect is a strong function of temperature, and is becoming increasingly

prominent with the reduction of gate-oxide dielectric thickness and non-ideal supply

voltage reduction. The MTTF due to time-dependent dielectric breakdown is given by

the following equation [104, 93]:

(4.3) MTTFTDDB = ATDDB

(
1
V

)(a−bT)

e
A+B/T+CT

κT

where ATDDB is a constant, V is the supply voltage, and a,b,A,B, and C are fitting

parameters.

108

(4) Stress migration refers to the mass transportation of metal atoms in metal wires due to

mechanical stress caused by thermal mismatch among metal and dielectric materials.

The MTTF resulting from stress migration is given by the following equation [104]:

(4.4) MTTFSM = ASM|T0−T |−ne
EaSM

κT

where ASM is a constant, T0 is the metal deposition temperature during fabrication, T

is the run-time temperature of the metal layer, n is an empirically-determined constant,

and EaSM is the activation energy for stress migration.

Equations 4.1–4.4 indicate that the lifetime reliability of ICs is strongly influenced

by temperature. Therefore, thermal analysis and optimization techniques play impor-

tant roles in reliability optimization.

4.3.5. MPSoC Reliability Modeling and Optimization

The system MTTF of an MPSoC is a function of the lifetime reliability of all the on-chip

PEs. In this work, we propose a unified lifetime reliability model for MPSoCs. Our first step

is to derive an efficient modeling method that can accurately predict the lifetime reliability of

each individual on-chip PE.

4.3.5.1. Reliability Modeling of On-Chip PEs. The lifetime reliability of an on-chip compo-

nent is influenced by various design-time and run-time factors, such as architecture-level and

circuit-level redundancy, run-time temperature, and fabrication process variation. In addition,

different failure mechanisms have distinct run-time impacts. Accurate lifetime characterization

of each component is challenging.

109

The PE reliability model used in RAMS considers fault mechanisms, component-level re-

source redundancy, and temperature. For the sake of explanation, in this section, the description

of PE reliability modeling starts from the simplest case, i.e., a single failure mechanism, single

point of failure (no resource redundancy), and constant temperature. These assumptions will

later be relaxed, and the reliability model further generalized. Multiple failure mechanisms will

first be considered, followed by component-level resource redundancy and thermal variation.

Statistical modeling is commonly used in IC reliability characterization. Researchers have

proposed using various statistical models, e.g., exponential, Weibull, and lognormal, to charac-

terize IC lifetime failures. Compared to other commonly-considered statistical models, the log-

normal distribution more accurately models the time-dependent degradation processes of ICs,

e.g., diffusion, corrosion, migration, and crack propagation [93] caused by the failure mecha-

nisms described in Section 4.3.4. However, using the lognormal distribution complicates the

derivation of analytical solutions [107]. Numerical methods, such as Monte-Carlo simulation

or statistical fitting techniques, are required. These methods are computational intensive.

Starting from the simplest assumption, for a failure mechanism i, the run-time fault proba-

bility density function (PDF), fi(t), and the corresponding cumulative fault distribution function

(CDF), Fi(t), can be described with two parameters: σi
PE (a shape parameter) and µi

PE (a scale

parameter). The MTTF of an on-chip PE due to a particular failure mechanism i, MTTFi
PE, is

then estimated as follows:

(4.5) MTTFi
PE =

Z
∞

0
t fi(t)dt =

Z 1

0
t dFi(t) = eµi

PE+σi
PE

2
/2

110

The overall lifetime reliability of each on-chip PE, MTTFPE, is modeled by a joint lognormal

distribution that depends on the major failure mechanisms described in Section 4.3.4. We as-

sume that the relationships among different failure mechanisms are serial, i.e., each individual

failure mechanism can result in complete PE failure independently. Therefore, for each non-

redundant PE, the CDF of its overall lifetime failure probability follows:

(4.6) FPE(t) = 1−∏
i

(1−Fi(t))

where i is the index of different failure mechanisms.

Researchers have often used exponential distributions for statistical modeling due to their

convenience. Given Fi(t)s with exponential distributions, Equation 4.6 would yield an easily-

computed analytical solution. However, as a consequence of using the more accurate lognormal

distribution for each Fi(t), Equation 4.6 does not allow straight-forward estimation of PE MTTF,

MTTFPE. In this work, we use statistical fitting to approximate MTTFPE using a single lognor-

mal distribution, governed by µPE and σPE. The parameters for this approximation follow:

µPE =
1
2

log

(
(
R

∞

0 t dFPE(t))4R
∞

0 t2 dFPE(t)

)
(4.7)

σPE =

√√√√log

(R
∞

0 t2 dFPE(t)

(
R

∞

0 t dFPE(t))2

)
(4.8)

As described in Section 4.2.1, PEs may have component redundancy to improve perfor-

mance or reliability. Such PEs can be designed to continue functioning even if some of their

components, e.g., an ALU or a cache bank, fail. By taking resource redundancy into consider-

ation, the lifetime reliabilities of PEs can be characterized as follows.

111

Assume a PE contains M types of resources. Each type of resource Si, i ∈ {1, · · · ,M},

is comprised of Ni identical elements. Assume the cumulative failure probability of resource

element Ei, j, i ∈ {1, · · · ,M}, j ∈ {1, · · · ,Ni} is Fi, j(t). Then, the cumulative failure probability

of resource Si, FSi(t) = ∏ j Fi, j(t). The MIN–MAX model may be used to bound the MTTF of

a PE with M types of resources as follows:

(4.9) MT T FPE =
M

min
i=1

(Z 1

0
t dFSi(t)

)

Note that, run-time faults will generally result in performance degradation, even if the af-

fected PE continues to function. Many applications have performance requirements. If, as a

result of PE performance degradation, the MPSoC performance drops below some bound, the

MPSoC should be deemed to have failed. Detailed MPSoC system reliability analysis under

MPSoC performance requirements is described in Section 4.3.5.2.

The lifetime reliability of a PE strongly depends on its temperature. In RAMS, after each

MPSoC solution is derived, performance and power analysis are conducted. The estimated

power profile and MPSoC floorplan, as well as the chip, package, and cooling configuration,

are provided to a thermal analysis algorithm to determine the chip thermal profile. Note that

Equation 4.9 is derived under an assumption of constant PE temperature. Next, we discuss how

to estimate temperature-dependent PE MTTF.

The temperature profile of an MPSoC varies with run-time workload. The impact of tem-

perature variation on MTTF calculation is illustrated in Figure 4.3. In this example, T1 and T2

are temperatures. T1 is high and T2 is low. The PE is initially hot (T1) and, at time t1, becomes

cooler (T2). Functions f1(t) and f2(t) are the fault PDFs given temperatures T1 and T2, respec-

tively. The overall fault distribution of the PE should satisfy the following equation, i.e., the

112

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

time

p
ro

b
ab

il
it

y
 d

en
si

ty

fault probability density
under temperature T

fault probability density
under temperature T

t t21

1

2

Figure 4.3. Temperature impact on MTTF.

overall cumulative fault distribution equals one.

(4.10)
Z t1

0
f1(t)dt +

Z
∞

t2
f2(t)dt = 1

When we switch from the fault PDF associated with one temperature, e.g., T1, to that associated

with another temperature, e.g., T2, it is necessary to adjust our start time to the value, in the

new time scale, associated with the appropriate amount of wear that had been experienced in

the previous time scale, i.e., we must start integrating from the effective age of the PE. For this

example the concept can be summarized as follows: F1(t1) = F2(t2).

Given that {T0,T1, · · · ,TN−1} denote the run-time PE thermal profile, the overall fault dis-

tribution should satisfy the following equation:

(4.11)
Z te0

ts0=0
f0(t)dt +

Z te1

ts1

f1(t)dt + · · ·+
Z

∞

tsN−1

fN−1(t)dt = 1

where fi(t) denotes the fault PDF of the PE at temperature Ti, tei(t) denotes the transition time

at which the temperature changes from Ti−1 to Ti, and tsi(t) denotes the equivalent age of the

PE, starting from tei−1, when the temperature switches to Ti. The value of tsi can be determined

113

using Equation 4.11, allowing the MTTF of a PE to be determined by the following equation:

(4.12) MTTF =
N−1

∑
i=0

Z tei

tsi

t fi(t)dt

In RAMS, reliability analysis resides in the inner loop of system synthesis. Therefore,

modeling efficiency is critical. An MPSoC consists of numerous on-chip PEs. If the cumu-

lative fault probability distributions, Fi(t), are lognormal, then solving Equation 4.9 requires

computationally-intensive numerical analysis. To address this issue, we produce a PE reliabil-

ity library before synthesis by pre-characterizing the reliability distributions of PEs as functions

of temperature and supply voltage. During MPSoC synthesis, when solving Equation 4.12, the

value of Fi(t) can be obtained by table look-up.

4.3.5.2. Reliability Modeling and Optimization of MPSoCs. In this section, we discuss MP-

SoC lifetime reliability estimation and optimization.

Many MPSoCs have built-in resource redundancy. In the recent past, techniques to pro-

vide both component-level (intra-PE) and PE-level redundancy have been proposed to improve

system reliability and performance (see Section 4.2.1 for definitions). For MPSoCs with re-

source redundancy, run-time faults may or may not cause system failures. As highlighted in

Section 4.2, in RAMS, system MTTF is defined as the mean operating time until the system

fails to meet designer-specified functionality and performance requirements.

The reliability analysis and optimization flow is shown in Figure 4.2. In RAMS, reliability

optimization starts by evaluating the system MTTF of area optimized solutions (using Algo-

rithm 4), which tend to have high power density, high temperature, low resource redundancy

and, therefore, low system MTTF. An iterative reliability optimization algorithm is invoked

114

if these solutions cannot meet targeted system MTTF. During each iteration, Algorithm 5 op-

timizes the system MTTF by improving system resource redundancy and/or optimizing chip

thermal profile by introducing new PEs and/or replacing or reinforcing vulnerable PEs. System-

level (task assignment and scheduling) and physical-level (floorplanning and network synthesis)

algorithms are then invoked to produce valid MPSoC solutions. Through performance, power,

thermal, and reliability analyses, the system MTTF of new solutions are estimated and evalu-

ated. The iterative optimization flow continues until the targeted system MTTF is achieved.

Algorithm 4 estimates system MTTF based on statistical models of MPSoC run-time failure

processes. Starting from time t = 0, it determines the minimal MTTF among all the on-chip

PEs using Equation 4.12 (line 4). Each fault may result in partial or complete PE failure. In ei-

ther case, task migration is used to balance system workload and optimize system performance.

The task migration routine moves tasks from the faulty or partial faulty, and therefore lower

performance, PE to other PEs (line 6). After task migration, if the MPSoC still meets its per-

formance requirements, the algorithm moves on to the remaining fault implying the minimal

MTTF. Task migration results in run-time changes in chip power consumption and temperature

profiles, thereby changing the lifetime reliability of each on-chip PE. To accurately predict sub-

sequent PE MTTFs, power and thermal analysis are conducted (lines 8 and 9). This process

continues until the MPSoC fails to meet its performance or functionality requirements. The

system MTTF of the MPSoC solution is then reported (line 11).

At run-time, on-line fault detection algorithms will be used to determine when an execu-

tion unit has failed. A proper treatment of on-line fault detection is beyond the scope of this

work but can be found in the literature [108, 109]. Upon fault detection, the pre-planned task

assignment changes indicated by the migration associated with the particular fault are made. If

115

Algorithm 4 System MTTF analysis of an MPSoC solution
1: Given an MPSoC solution MPSOCSol, MTTFMPSoC = 0,

time t = 0
2: while system schedule is valid do
3: MPSoCFunc are the functioning PEs in MPSoCSol
4: Fault interval ei = minpe∈MPSoCFunc(MTTFpe)
5: MTTFMPSoC+ = ei
6: Task migration, scheduling
7: if system scheduling is valid then
8: Power analysis, thermal analysis
9: Determine the temperature of each PE

10: else
11: Return MTTFMPSoC
12: end if
13: end while

it is acceptable to reboot the system in the presence of a fault, no further provisions need be

made. Note that a system is likely to experience only a few faults over its MTTF lifespan, e.g.,

10 years. If uninterrupted operation in the presence of a fault is necessary, distributed system

checkpointing will suffice [110].

RAMS is equipped with an efficient workload migration algorithm to maintain system func-

tionality and meet performance requirements in the presence of partial and complete PE failures.

When an MPSoC fails to meet its performance requirements due to run-time faults, tasks origi-

nally assigned to the faulty PE migrate to other PEs using the following policy. Tasks on faulty

PEs are first sorted in order of increasing time slack, the difference between the task’s latest fin-

ish time and earliest finish time. They are then migrated from the PE, to other PEs, in this order

until the system performance requirements are met and no tasks are assigned to a totally failed

PE. When moving a task from one PE to another, the new PE is selected by Pareto-ranking [111]

all PEs in order of increasing utilization ratio (the proportion of time during which the PE is

actively executing tasks) and increasing execution time for the task and PE under consideration.

116

Note that, if the faulty PE is inoperational, then all the tasks assigned to it migrate. If the PE

has only partially failed, only a subset of its tasks migrate to other PEs.

RAMS optimizes the lifetime reliability of MPSoCs by focusing on architectural changes

that improve redundancy and thermal profile, while maintaining low area overhead. Algorithm 5

shows the actions taken by RAMS to improve an MPSoC architecture that does not have a

sufficient system MTTF, i.e., MTTFMPSoC < MTTFtarget. First, the MTTF of each individual

PE is estimated (line 2). The PE with the minimal MTTF is identified as the MPSoC’s most

vulnerable point, PEvul (line 3). RAMS then attempts to improve system MTTF via one of

our proposed reliability optimization moves: PE reinforcement, PE swapping, and PE addition

(line 4). PE reinforcement introduces component redundancy (see Section 4.2.1) into the most

vulnerable PE. PE swapping replaces the most vulnerable PE with a different, more reliable, PE.

PE addition introduces a new PE into the MPSoC, enabling tasks to migrate from the vulnerable

PE to other PEs. These moves consider multiple candidates PEs. RAMS uses the relative

reliability gain, defined in Equation 4.13, to select the best candidate move. This equation takes

both power density reduction, resource redundancy improvement, and area overhead associated

with the move into consideration.

(4.13) GRAMS =
e−Pd ×MT T Fre f

A

Note that this value is used only to guide changes. The detailed effect of each tentative

change is computed using thermal profile and reliability analysis. MPSoC power profile influ-

ences MPSoC temperature profile, which strongly influences reliability. The MTTFs associated

with some major fault mechanisms are exponential functions of temperature. Therefore, in

117

Equation 4.13, RAMS uses an exponential term, e−Pd , to characterize the impact of power den-

sity reduction on reliability improvement. Pd is the power density reduction resulting from

applying a candidate move. In Equation 4.13, the impact of redundancy is characterized by

the second term, MTTFref , the system MTTF improvement resulting from the candidate move.

MTTFref is calculated under the assumption that other design characteristics, e.g., temperature

profile and supply voltage, remain the same. The relative reliability gain introduced by each

candidate move is the product of these two terms divided by the area overhead. The move with

the highest gain is applied (line 5). After each optimization move, system-level and physical-

level synthesis algorithms are invoked to update the MPSoC solution. Cost analysis is then

conducted to determine the improvement in system reliability, determine the impact on MPSoC

area, and validate the system schedule. This optimization process continues until the target

system MTTF is achieved.

For comparison purposes, we also implemented two other optimization moves. The first

considers only power density, e−Pd , and the second considers only resource redundancy, MTTFref .

Performance comparisons among these three heuristics are provided in Section 4.4.

4.3.6. Thermal Analysis

Our interest in the synthesis of reliable ICs motivated us to develop a new thermal analysis

algorithm with the accuracy and speed to support this application. Existing IC thermal analysis

tools [76,73,92] are capable of providing either accuracy or speed, but not both. Accurate ther-

mal analysis requires expensive computation for many elements in some regions, at some times.

Academic IC thermal analysis techniques ensure accuracy by choosing uniformly fine levels of

detail across time and space, i.e., they use equivalent physical sizes or time step durations for all

118

Algorithm 5 Reliability-aware optimization algorithm
1: while MTTFMPSoC < MTTFtarget do
2: ∀pe∈MPSoC compute MTTFpe
3: Find vulnerable point: PEvul is the PE with minimal MTTF
4: Optimization moves (PE reinforcement, PE swapping, PE addition)
5: Apply the best move based on Equation 4.13
6: System-level synthesis
7: Task assignment
8: Scheduling
9: Physical-level synthesis

10: Floorplanning
11: On-chip network synthesis
12: Performance, power, thermal, reliability analysis
13: if system MTTF improves and system schedule is valid then
14: Continue
15: else
16: Revert this change
17: end if
18: end while

thermal elements. The large number of elements and time steps resulting from such techniques

makes them computationally intensive and, therefore, impractical for use within IC synthesis.

We have developed an accurate, spatially and temporally adaptive chip-package thermal

analysis tool [10] for use within IC synthesis algorithms. When used for steady-state thermal

analysis, it takes, as input, a three-dimensional chip and package thermal conductivity profile,

as well as a power dissipation profile. A multi-grid incremental solver is used to rapidly pro-

duce an IC temperature profile. Heterogeneous, problem instance specific, adaptation of spatial

resolution is used to dramatically reduce computational overhead without sacrificing accuracy.

Recall that high-accuracy thermal profile estimation is required for reliability estimation be-

cause the severities of many reliability problems are exponentially dependent on temperature.

We validated our proposed thermal model using COMSOL Multiphysics [92], a reliable

commercial finite element physical process modeling package. When used on academic and

119

commercial IC designs, the worst-case errors for the proposed thermal analysis algorithms are

less then 1.7% on the Celsius scale and less than 1% on the Kelvin scale. In order to support

IC synthesis, thermal analysis must be fast enough to allow numerous evaluations in the inner

loop of a synthesis flow. The proposed technique is 22×–690× faster than a similar multi-grid

technique that does not do heterogeneous element adaptation [73], and at least 15,000× faster

than COMSOL Multiphysics run on the same problems.

4.3.7. Floorplanning

This section summarizes the area and communication time aware floorplanning algorithm

designed to rapidly determine the impact of MPSoC architectural changes on design metrics

such as area, performance, and thermal profile. Initially, the shape of each PE is determined

by two datum: the raw intellectual property PE layout shapes that are specified in the resource

database and the area of memory required by each PE, which must be determined during the

synthesis process. The memory requirement of each PE depends on the tasks assigned to it.

After PE areas have been calculated, an area-balanced binary tree of PEs is formed based on tie

priorities, i.e., the priorities of communication between PEs pairs. Accounting for the priority

of communication is an extension of an algorithm designed by Fiduccia and Mattheyses, which

considered only the presence or absence of communication [58]. Considering priority increases

the time complexity of the partitioning algorithm from O
(
n2) to O

(
n2 · logn

)
where n is the

number of PEs. PEs that are adjacent in the binary tree are also adjacent in the final block

placement. After forming the binary tree, RAMS optimally determines the orientations of all of

the PEs, under the constraint that the aspect ratio, i.e., the ratio between width and height, does

not exceed a value specified by the user. This algorithm is based on past work [59]. It takes

120

O (n · logn) time where n is the number of PEs when PE orientations, but not PE rotations, are

determined. The problem of optimally determining optimal PE rotations and orientations is

NP-complete [112]. However, for the number of PEs typically encountered in SoC synthesis

problems (fewer than 200), a natural extension of Stockmeyer’s work [59] to optimal rotation

and orientation determination has acceptable run-time in practice.

4.3.8. On-Chip Network Synthesis Algorithm

This section describes our heterogeneous on-chip network synthesis algorithm. This algo-

rithm generates a heterogeneous on-chip network of processor cores with differing shapes by

taking physical information into consideration. The input of the algorithm is a communication

graph, G = (V,E), in which V is the set of PEs allocated by RAMS and E is a set of weighted

edges. Each edge, ei ∈ E, has a weight equal to the communication timing slack between the

connected pair of PEs, which is defined as the difference between latest start time and earliest

start time.

As shown in Algorithm 6, the communication graph, G, is taken as input. The physical

positions of the PEs are generated by our floorplanner, which is described in Section 4.3.7. Here,

we define communication density as the communication quantity per unit area. This variable

indicates the amount of data that passes through a region. The communication density profile

of a chip is generated (Algorithm 6 line 1) in the following way: communication density of

region CDi is the sum of all the communication events of each pair of PEs that may transfer

data through region i, i.e.,

(4.14) CDi = ∑
v∈region i

v/a

121

All regions are sorted in order of decreasing communication density (Algorithm 6 line 2). A

router active region is defined to be a square (due to orthogonal routing), centered on the

router. Communication events passing through a router’s region may be forwarded by the router.

Routers are inserted starting from the most dense region, reducing communication density to

zero within the router active region (Algorithm 6 line 3 to 7). Ideally, the physical position

of router r is the center point of all the PEs associated with r. However, this is impractical in

on-chip network synthesis for heterogeneous PEs since the insertion point may already be oc-

cupied by a PE. Hence, routers are inserted along the shared boundaries of their associated PEs.

We exploit the slicing tree structure used for PEs floorplanning to determine the position of the

router r. Note that in the slicing tree structure of the floorplanner, each leaf node represents a

PE. Therefore, the position of the router may be determined by finding the lowest-level (possi-

bly transitive) parent node of all the leaf nodes within the router’s active region. All the PEs that

have not yet been associated with other routers are now connected to the newly-inserted router,

r, as long as they are within the active region of r. This procedure will be conducted repeatedly

until no regions with communication density greater than 0 remain. At this point routers are

connected to form a triangular mesh (Algorithm 6 line 8). The final steps (Algorithm 6 line 9

to 12) map the communication events into routing paths based on a weighted sum of commu-

nication quantity and slack. This causes communication events with less slack to be mapped to

paths with fewer routers, thereby reducing latency. Here the slicing tree structure is reused to

determine the routing path of each communication event between source and destination PEs.

4.4. Experimental Results

This section first describes the benchmarks used to evaluate RAMS. Section 4.4.2 shows the

results produced by running RAMS, and an area-minimizing stochastic optimization algorithm,

122

Algorithm 6 Heterogeneous on-chip network synthesis algorithm (G)
1: Generate communication density profile
2: Sort in decreasing order of communication density
3: while there exists area with density greater than 0 do
4: Insert a router r in the current highest density area
5: Connect r to all the un-associated PEs within the active region of router r
6: Set the density of the area covered by router r to be 0
7: end while
8: Connect routers to form a triangular mesh
9: Sort the communication events based on the weighted sum of the communication volume and slack

10: while there exists unmapped communication event do
11: Map the communication event by using slicing tree structure to find the route path
12: end while

when run on these benchmarks. RAMS increases MPSoC MTTF by an average of 85% with

less than 5% area cost or by an average of 436% with less than 25% area cost. Section 4.4.3

describes the impact of each of our proposed optimization moves on MPSoC system MTTF and

area; we conclude that both redundancy and thermal profile should be optimized during reliable

MPSoC synthesis. Note that, as a result of the definition of system MTTF in Section 4.2.1, we

only admit solutions in which all tasks meet their deadlines, i.e., we do not consider solutions

with acceptable performance to be valid. Section 4.4.4 compares the quality and performance of

RAMS with a multiobjective stochastic optimization algorithm that maximizes system MTTF

but does not use domain-specific optimization moves; we conclude that the proposed hybrid

optimization flow improves the efficiency and quality of results for nearly all problem instances.

4.4.1. Benchmarks

The proposed reliable MPSoC synthesis algorithm was evaluated using a number of bench-

marks based on the E3S benchmarks suite. E3S contains 17 PEs, e.g., the AMD ElanSC520,

Analog Devices 21065L, the Motorola MPC555, and the Texas Instruments TMS320C6203.

123

These PEs are characterized based on the measured execution times of 47 tasks commonly en-

countered in embedded applications, power numbers derived from datasheets, and additional

information, e.g., PE areas, some of which were necessarily estimated, and prices gathered

by emailing and calling vendors. Any PE for which the datasheet reflected results in coarser

technologies were linearly scaled to a 0.18 µm technology. The E3S task sets follow the orga-

nization of the EEMBC benchmarks [113]. There is one task set for each of the five application

suites: Automotive/Industrial, Consumer, Networking, Office Automation, and Telecommuni-

cations. The Office Automation problem contains only five tasks. Our modified version of

Office Automation contains four copies of the original Office Automation task set. In addition,

TGFF [66] was used to generate five random benchmarks, each of which has 30–50 tasks. The

graphs have different structures, ranging from random connectivity to a series-parallel struc-

ture commonly encountered in DSP applications. For each random benchmark, every task was

randomly assigned a task type from E3S.

In E3S, PEs do not have component redundancy, i.e., each PE will fail if any of its functional

units fails. We introduce a redundant version for each PE in E3S by duplicating floating/fixed

point units and floating/integer register files. Following previous work [93], we assume that

instruction scheduling units and instruction decode units do not have redundancy, i.e., a single

run-time fault in these units will result in PE failure. On-chip caches have redundancy, i.e., a

single fault will reduce performance but the PE will remain operational. This redundancy comes

at a cost. We relied on previous work to estimate the side-effects of component redundancy [93]:

PEs with component redundancy suffer a 24% area penalty and, as long as their additional

functional units are still operational, have 25% higher performance and power consumption.

124

The PEs in E3S have fairly homogeneous performance. This is not surprising given their

intended use: stand-alone embedded microprocessors or microcontrollers. It is our goal to de-

velop a synthesis algorithm that is effective at improving the reliability of application-specific

MPSoCs, which commonly contain heterogeneous PEs. The energy-delay products of PEs in

E3S are fairly uniform. Therefore, for each PE in E3S, we introduced one corresponding PE

operating at a higher voltage and another operating at a lower voltage. Note that a maximum of

three voltages need be provided by off-chip regulators. The alpha power law was used to calcu-

late the impact of voltage scaling on performance. Recall that we are considering a 0.18 µm pro-

cess in these benchmarks. A nominal supply voltage of 1.8 V and alpha of 1.3 were used, based

on recent short-channel MOSFET characteristics [114]. Therefore, to model high-performance

PEs, the supply voltage was scaled to 2.5 V, the performance increased by 25%, and the power

consumption increased to 2.4×. To model low-power PEs, the supply voltage was scaled to

1.28 V, performance was increased by 25%, and power consumption was decreased to 0.38×.

4.4.2. Comparison of RAMS and Stochastic Area Optimization

As described in Section 4.3.1, RAMS consists of a two-stage optimization flow. MOCSYN

PRSA algorithm first optimizes MPSoC area under performance requirement. Although the

MTTF of the solution has not been optimized, its area is optimized and real-time deadlines are

honored. The produced area-optimized solution is then used as a starting point for the MTTF

optimization heuristics.

Figure 4.4 illustrates the solutions produced by the RAMS MTTF optimization technique

for all ten benchmarks. In this figure, for each benchmark, the initial solution produced by

PRSA appears at the left-most point of the line associated with the benchmark. We continued to

125

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9

A
re

a
 (

m
m

2
)

MTTF (years)

auto
consumer

networking
office4x
telecom

random1
random2
random3
random4
random5

Figure 4.4. Solutions produced by RAMS.

Table 4.1. System MTTF improvement under area bound

Area MTTF Area MTTF Area MTTF
bound improvement bound improvement bound improvement

(%) (%) (%) (%) (%) (%)
0.0 40.0 15.0 180.0 30.0 457.0
5.0 85.0 20.0 240.0 35.0 468.0

10.0 180.0 25.0 436.0 40.0 470.0
The MTTF improvement under each area bound is computed by selecting the highest-MTTF

solution, for each benchmark, that honors the area bound and computing the average of their
MTTF improvements.

apply the optimization moves described in Section 4.3.5.2 until seven subsequent moves did not

significantly improve system MTTF. Table 4.1 shows the average system MTTF improvement

over initial area-optimized solutions under different area overhead constraints for all ten bench-

marks. These results illustrate three key points about the reliable application-specific MPSoC

synthesis problem.

126

Table 4.2. MTTF improvement with 25% area overhead bound

MTTF Area
Benchmarks Init Final Improve Init Final Overhead

(years) (years) (%) (mm2) (mm2) (%)
auto 2.2 6.7 199.8 7.3 9.0 23.5
consumer 0.9 4.5 405.2 21.6 27.0 25.0
office4x 1.4 6.1 341.1 7.3 9.0 23.5
networking 0.1 0.7 435.9 42.3 51.8 22.7
telecom 0.7 7.4 895.8 77.4 90.0 16.4
random1 1.0 5.0 413.4 18.0 21.8 21.0
random2 5.5 6.1 12.2 7.3 9.0 23.5
random3 0.4 2.5 598.5 14.6 18.0 23.5
random4 0.4 2.8 533.3 21.6 27.0 25.0
random5 0.5 3.3 520.8 118.3 144.5 22.1
Average 436.0 23.0

Table 4.3. CPU time of design optimization flow

Benchmarks CPU time (s)
RAMPS PD-only SR-only EVO

auto 181.5 238.2 322.9 1383.1
consumer 315.9 240.6 1738.6 600.7
office4x 301.6 311.3 516.5 5327.6
networking 285.1 319.5 616.2 1036.2
telecom 478.2 514.5 5449.8 690.3
random1 956.2 1037.5 996.7 4846.3
random2 315.6 300.0 467.6 2848.6
random3 773.0 911.4 1402.4 3712.6
random4 1332.9 561.7 438.5 2559.9
random5 1419.4 458.3 4808.7 934.2
Average 635.9 489.3 1675.8 2394.0

First, as indicated by the super-linear dependence of area on MTTF, reliability comes at

some cost in area but this cost is initially small, per year improvement in MTTF. Note that,

in Figure 4.4, area is plotted on a logarithmic scale. As shown in Table 4.1, improving the

average system MTTF over all benchmarks by 40%, 85%, and 180% results in maximum area

overheads of 0.0%, 5.0%, and 10.0%. RAMS is sometimes able to improve MTTF without area

127

overhead because the architectural optimization moves it uses indirectly result in new floorplans

that are as compact, or more compact, than the previous floorplan. However, this is rarely the

case and can be viewed as noise. The initial solutions are optimized for area; they tend to

have high power densities and temperatures. As a result, the temperature dependent fault rate

is high. Area-optimized solutions also have low resource redundancy, i.e., a single hardware

fault will often cause system failure. In addition, vulnerable points, i.e., hot, non-redundant

PEs, normally exist in these systems. Therefore, for area-optimized initial solutions, the system

reliability can be improved at low area cost. RAMS introduces PEs with lower power densities

and/or replaces non-redundant PEs with redundant ones, thereby optimizing thermal properties

and allowing the system to continue operating despite some runtime hardware faults.

Second, RAMS automatically trades off system reliability for area overhead. As shown in

Table 4.1, it consistently produces a set of solutions with different area and reliability trade-

offs, allowing system designers to choose a desirable solution based on domain-specific design

constraints.

Third, as system MTTF increases, the area penalty associated with further improving sys-

tem reliability increases, i.e., the areas of these application-specific MPSoCs are superlinearly

dependent on MTTF. As shown in Table 4.1 and Table 4.2, RAMS achieves a significant 436%

average system MTTF improvement with a maximum area overhead of 25%. Further improve-

ments to system MTTF become prohibitively costly. This can be explained in the following

way. PE failure cumulative distribution functions are non-decreasing. For some large duration,

there is a low probability that any PE will operate without a fault. As a result, at very large

MTTFs, adding PEs or reinforcing a subset of existing PEs with redundant components has

little impact on MTTF.

128

4.4.3. Evaluation of Proposed Optimization Moves

RAMS optimizes system reliability by controlling PE temperatures and improving system

redundancy. To evaluate the effectiveness of the proposed optimization moves, we compare

RAMS with two alternative moves described in Section 4.3.5: power density only (PD-only)

and component redundancy only (CR-only) moves. PD-only optimizes system MTTF by mini-

mizing chip power density, i.e., replacing high power density PEs with low power density ones,

and/or introducing extra low power density PEs to balance the workload and reduce chip power

density. CR-only optimizes system MTTF by introducing system resource redundancy, i.e.,

adding redundancy to PEs and/or introducing new, redundant, PEs.

Figure 4.5 shows the results produced by RAMS as well as the CR-only and PD-only opti-

mization moves. RAMS almost always produces solutions with better quality, i.e., lower area

overhead for a given MTTF. This is indicated by its line generally falling below, and to the

right, of the lines for the other synthesis algorithms, i.e., RAMS produces MPSoC architectures

with both superior area and system MTTF. Notice that, in some cases, PD-only or CR-only may

also produce high-quality solutions. Even though PD-only does not consider the component

redundancy of PEs, introducing redundant PEs in order to improve power density still improves

system MTTF. Even though CR-only does not consider PEs power density, redundant PEs tend

to have lower power density than non-redundant ones. In general, it is necessary to exploit both

structural redundancy and power density to consistently produce high-quality solutions.

4.4.4. Evaluation of Proposed Optimization Flow

RAMS uses an optimization flow in which the MOCSYN PRSA stochastic optimization

algorithm is first used to optimize area, followed by an iterative improvement algorithm that

129

 0

 50

 100

 150

 200

 2 3 4 5 6 7 8

A
re

a
 (

m
m

2
)

autoRAMS
CR-only
PD-only
MOREL

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8

A
re

a
 (

m
m

2
)

office4xRAMS
CR-only
PD-only
MOREL

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8

consumerRAMS
CR-only
PD-only
MOREL

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7 8

telecomRAMS
CR-only
PD-only
MOREL

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8

MTTF (years)

networkingRAMS
CR-only
PD-only
MOREL

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8

random1RAMS
CR-only
PD-only
MOREL

 0

 20

 40

 60

 80

 100

 120

 140

 5 5.5 6 6.5 7 7.5 8 8.5

A
re

a
 (

m
m

2
)

random2RAMS
CR-only
PD-only
MOREL

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8

random3RAMS
CR-only
PD-only
MOREL

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8

random4RAMS
CR-only
PD-only
MOREL

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7 8

MTTF (years)

random5RAMS
CR-only
PD-only
MOREL

Figure 4.5. Comparison of different optimization heuristics.

130

uses domain-specific optimization moves to improve system MTTF while limiting area over-

head. To determine whether a simpler reliable MPSoC optimization flow would be adequate,

we compared RAMS with a version of MOCSYNR that has been modified to take MTTF into

account during stochastic optimization. MOCSYNR does not use any MTTF-aware heuristics

but does optimize MTTF by including it in its multi-objective cost function. We found that

RAMS can almost always produce solutions with of equal or better quality than MOCSYNR.

Moreover, as shown in Table 4.3, RAMS generally produces better solutions in less CPU time

than MOCSYNR. In this table, CPU time includes the time for both optimization and solution

analysis. We believe that the primary reason RAMS quickly produces solutions of better quality

than MOCSYNR is that the solution space of non-trivial reliable MPSoC synthesis problem in-

stances is of such high dimensionality, and the cost of evaluating a solution so high, that unused

tentative optimization moves consume so much CPU time that little time remains to advance

toward more promising solutions. Recall that evaluating a solution requires solving multiple

instances of floorplanning, network-on-chip synthesis, scheduling, and thermal analysis prob-

lems. Given enough time, MOCSYNR may also be capable of finding high-quality solutions.

However, given limited optimization time, the domain-specific knowledge built into RAMS

generally allows higher-quality solutions to be produced.

4.5. Conclusion

This chapter has described a comprehensive method of synthesizing reliable application-

specific MPSoCs. We have identified the key sub-problems within reliable MPSoC synthe-

sis: (1) developing an architectural and physical design and analysis infrastructure that permits

reliability calculation and optimization; (2) developing MPSoC component and system-level

131

reliability models, and efficient methods of computing MPSoC system MTTF; and (3) design-

ing efficient domain-specific reliability optimization algorithms. These problems have been

addressed with (1) RAMS, a comprehensive reliable MPSoC synthesis infrastructure that con-

ducts architecture-level and physical-level synthesis and analysis, including floorplanning and

thermal analysis, (2) unified component and system level reliability models incorporating elec-

tromigration, thermal cycling, TDDB, and stress migration, as well as efficient algorithms for

computing MPSoC system MTTF, and (3) validated domain-specific reliability optimization

algorithms that exploit redundancy and thermal profile optimization. Experimental results in-

dicate that the resulting system is capable of improving MPSoC system MTTF by an average

of 85% with less than 5% area cost and by an average of 436% with less than 25% area cost,

compared to area-optimized solutions.

132

CHAPTER 5

Hybrid SET/CMOS Design for Low-Power Embedded Systems

Minimizing power consumption is vitally important in embedded system design; power

consumption determines battery lifespan. Ultra-low-power designs may even permit embedded

systems to operate without batteries by scavenging energy from the environment. Moreover,

managing power dissipation is now a key factor in integrated circuit packaging and cooling.

As a result, embedded system price, size, weight, and reliability are all strongly dependent on

power dissipation.

Recent developments in nanoscale devices open new alternatives for low-power embedded

system design. Among these, single-electron tunneling transistors (SETs) hold the promise of

achieving the lowest power consumption. Unfortunately, most analysis of SETs has focused

on single devices instead of architectures, making it difficult to determine whether they are

appropriate for low-power embedded systems.

Evaluating the use of SETs in large-scale digital systems requires novel architectural and

circuit design. SET-based design imposes numerous challenges resulting from low driving

strength, relatively large static power consumption, and the presence of reliability problems re-

sulting from random background charge effects. We propose a fault-tolerant, hybrid SET/CMOS,

reconfigurable architecture, named IceFlex, that can be tailored to specific requirements and al-

lows trade-offs among power consumption, performance requirements, operation temperature,

fabrication cost, and reliability. Using IceFlex as a testbed, we characterize the benefits and

limitations of SETs in embedded system designs. In particular, we focus on the use of SETs in

133

room-temperature ultra-low-power embedded systems such as wireless sensor network nodes.

We also consider higher-performance applications such as multimedia consumer electronics.

We see this work as a first step in determining the potential of ultra-low-power embedded sys-

tem design using SETs. My major contribution of this chapter is on the global/local interconnect

design and IceFlex microarchitecture characteristics.

5.1. Introduction

Energy consumption and thermal issues are now central in electronic system design. In

high-performance applications, temperature affects integration density, performance, reliability,

power consumption, and cost. For battery-powered embedded systems, energy consumption di-

rectly determines system life time. Power consumption crises were historically solved by mov-

ing to new technologies that decreased energy per operation, allowing increases in density and

eventually performance. Power and thermal concerns were some of the main motivations for

replacing vacuum tubes with semiconductor devices in the 1960s and replacing bipolar junction

transistors with CMOS in the 1990s. Although CMOS is the mainstream fabrication technol-

ogy used today, as IC and system integration further increase, it will reach fabrication, power

consumption, and thermal limits; it may soon be time for another transition to a dramatically

different technology.

Device researchers have seen the coming challenges for CMOS devices and evaluated al-

ternative technologies such as carbon nanotube transistors [115], nanowires [116], and single-

electron tunneling transistors (SETs) [117]. As projected by International Technology Roadmap

for Semiconductors, SETs can potentially achieve the lowest projected energy per switch-

ing event of any known computation technology (1× 10−18 J) [2]. However, their use poses

134

unique architectural, circuit design, and fabrication challenges. For example, SETs are sus-

ceptible to reliability problems resulting from 1/ f noise caused by random background offset

charges. They have cyclic I–V curves (see Figure 5.3) that can complicate design but permit

highly-efficient implementation of some useful logic functions that have proven inefficient us-

ing CMOS and threshold logic. Although the fabrication of SETs capable of operating at low

temperatures is now common, feature sizes of only a few nanometers are required for room-

temperature operation. Fabricating SETs that function at room-temperature is challenging.

5.1.1. Past Work

After their discovery in the 1980s [118, 119], there has been extensive research on fabri-

cation, design, and modeling of SETs. Please refer to the survey by Likharev [117] for more

details. SET fabrication and use in high-sensitivity amplifiers at cryogenic temperatures has

been the main research focus in the past [120]. SETs and simple circuits with a variety of struc-

tures were proposed and fabricated using different methods and materials [121, 122, 123, 124].

Recently, researchers have been able to fabricate SETs operating at room-temperature [125,

126,127,128]. This work provides a promising start for SET circuit design. Various SET-based

circuit applications, such as logic [129, 130, 131, 132, 133] and memory [134, 135, 136] have

been developed. They demonstrate orders of magnitude improvement in power consumption

and energy efficiency compared to CMOS.

Research into SET modeling and simulation has also been an active area. Monte Carlo

simulation has been widely used to model SETs. SIMON [137] and MOSES [138] are the

two most popular SET simulators. However, they are not suitable for circuit analysis due to

large runtimes when characterizing systems containing more than a few SETs. Uchida et al.

135

proposed an analytical SET model and incorporated it into SPICE [139]. Recently, Inokawa et

al. extended this model to a more general form to include asymmetric SETs [140]. Mahapatra

et al. propose a simulation framework for hybrid SET/CMOS circuit design and analysis [141].

Their model for SET behavior is similar to that of Uchida et al.. These compact modeling

techniques are efficient enough for use in SET circuit design and analysis and closely match

Monte Carlo simulation results.

Significant challenges still remain for large-scale integration of SETs and for implementa-

tion in room temperature SET-based circuits. SETs that operate reliably at room temperature

have critical dimensions of ∼1–10 nm. They are challenging to fabricate using current top-

down lithographic techniques. However, several exciting advances make the evaluation of ar-

chitectures for high density logic based on SETs worthwhile. Scanning-probe microscopes can

be used to create devices smaller than those using conventional lithography [125]. Continual

progress has been made on bottom-up nano-fabrication techniques, where chemical techniques

are used to make individual molecules with useful electronic properties. Molecular quantum

dots [142] can display SET behaviour in a single molecule. Larger structures, such as carbon

nanotubes and nanowires can act as SETs [124]. These bottom-up techniques can create struc-

tures supporting room-temperature SET operation. However, more research is needed in order

to integrate individual devices into large-scale circuits. Very recent advances in graphene [143]

devices, in which a single atomic layer of graphite is used, show promise for SETs. In parallel

with this work to make smaller devices, reliable methods for cooling to very low temperatures

without supplies of liquid helium or nitrogen are becoming more common [144]. For high-

performance computing, the added complexity of operating at cryogenic temperatures may not

136

be a limiting factor. Similarly, cryogenic temperatures are readily attained using passive meth-

ods in space.

5.1.2. Contributions

In this chapter, we explore the potential use of SETs in low-power embedded systems. In

order to take advantage of the power efficiency of SETs, it is critical to bring SET-based design

to the system level, characterize the impacts of SETs on system design metrics, and evaluate the

benefits and limitations of SETs. Our work starts from design space characterization of SET-

based architectures. We evaluate the impacts of using SETs upon architectural, circuit-level,

and device-level design, considering metrics such as energy efficiency, performance, reliability,

maximum operating temperature, and ease of fabrication.

Based on our evaluation of the architectural and circuit-level features that can most effec-

tively exploit the strengths of SETs while working within the constraints their use imposes, we

propose a fault-tolerant, reconfigurable, hybrid SET/CMOS based architecture called IceFlex.

IceFlex is regular and cell-based, easing nanoscale design and fabrication. It is reconfigurable,

permitting compensation for fabrication defects. It incorporates flexible, modular circuits to

enable tolerance of run-time fault. In addition to compensating for the weaknesses of SETs,

IceFlex exploits their strengths, e.g., we develop a two-SET design to implement Boolean func-

tions that are not linearly separable, permitting fast and energy-efficient arithmetic.

We tailor IceFlex to both high-performance and battery-powered embedded systems and

characterize its energy efficiency, performance, and power consumption using a number of in-

struction processors and application-specific cores. Compared to CMOS-based designs, IceFlex

137

improves energy efficiency by two orders of magnitude for both battery-powered and high-

performance applications, while maintaining good performance. However, our results also in-

dicate great challenges to the use of SET-based designs in portable embedded systems. Their

use will either require advances in the compact cooling technologies or the fabrication of fea-

tures with sizes approaching physical limits.

The rest of this chapter is organized as follows. Section 5.2 introduces SET operation and

models. Section 5.3 describes IceFlex, the proposed hybrid SET/CMOS reconfigurable archi-

tecture. Circuit and architecture design and design tradeoffs will be discussed. Section 5.4

characterizes the IceFlex microarchitecture for use in embedded computing applications. We

draw conclusions in Section 5.5.

5.2. SET Modeling

In this section, we introduce the physical properties of SETs, and discuss SET analytical

device modeling.

5.2.1. SET Basics

The operation of a single-electron tunneling device is governed by the Coulomb charging

effect. As shown in Figure 5.1, a single-electron tunneling device consists of a nanometer-scale

conductive island embedded in an insulating material. Electrons travel between the island,

source (S), and drain (D) through thin insulating tunnel junctions. When an electron tunnels

into the island, the overall electrostatic potential of the island increases by e2/CΣ, where e

is the elementary charge and CΣ is the island capacitance. For large devices, this change in

potential is negligible due to the high island capacitance C∑. However, for nanometer-scale

138

CG :gate capacitance CD :drain tunnel junction capacitance
CG2 :optional 2nd gate capacitance RS :source tunnel junction resistance
CS :source tunnel junction capacitance RD :drain tunnel junction resistance

gate (G)island

optional 2nd gate (G2)

tunnel
junction

source
(S)

drain
(D)

CG

CG2

CS,RS CD,RD

Figure 5.1. SET structure and schematic.

islands, the capacitance C∑ is much smaller. As a result the electrostatic energy change due to

the addition or removal of a single electron can be larger than the thermal energy, particularly

at low temperatures.

Changes to SET island potential results in an energy gap at the Fermi energy, preventing

further electron tunneling. This phenomenon is called Coulomb blockade. It prevents current

from flowing between source and drain (Ids = 0), i.e., the SET is turned off. The Coulomb

blockade effect can be overcome by changing the voltage of a conductor capacitively coupled

to the island, thereby turning tunneling on and off. Although their transfer functions differ

significantly from those of CMOS transistors, with careful circuit design, SETs can be used

to realize logic functions either using circuits analogous to CMOS, or using radically different

design techniques [117].

As shown in Figure 5.1, a SET typically has four terminals. The source and drain terminals

(S, D) serve as electron reservoirs. When the SET is turned on, electrons tunnel from one

terminal, through the junction, to the conductive island. They then tunnel through the other

139

0 VgCg

e

VgC
e

2
1

2
-3

2
-1

2
31 2-1-2

1

-1

Figure 5.2. The Coulomb blockade effect of SET.

 0.001

 0.01

 0.1

 1

 10

-60 -40 -20 0 20 40 60 80

I D
S
(n

A
)

VGS(mV)

Temperature: 5K
Temperature: 10K
Temperature: 20K

 0.001

 0.01

 0.1

 1

 10

-60 -40 -20 0 20 40 60 80

I D
S
(n

A
)

VGS(mV)

Temperature: 5K
Temperature: 10K
Temperature: 20K

PVCNVC

Figure 5.3. SET Coulomb oscillation (Cg =3.2 aF, Cs = Cd =1.0 aF, and Rs =
Rd =10 MΩ).

junction to the other terminal. Each tunneling junction is modeled as a resistor (RS or RD) and

a capacitor (CS or CD) in parallel. A gate terminal (G), with coupling capacitance CG, controls

140

Table 5.1. Island size estimation. Assuming disc capacitor model (C∑ = 8εr).
One side of the island is embedded into silicon dioxide. The other side of the
island is exposed to Nitrogen.

Temperature CΣ = e2/(10kBT) CΣ = e2/(40kBT)
(K) Island Island Island Island

capacitance diameter capacitance diameter
(aF) (nm) (aF) (nm)

40 4.65 52.48 1.16 13.12
77 2.41 27.26 0.60 6.82

103 1.80 20.38 0.45 5.10
120 1.55 17.49 0.39 4.37
200 0.93 10.50 0.23 2.62
250 0.74 8.40 0.19 2.10
300 0.62 7.00 0.15 1.75

the transport of electrons. A SET may also contain an optional second gate terminal (G2),

which is generally used to tune SET VGS bias to the optimum operating point. The Coulomb

blockade effect is maximized when VGS = me/CG, where m = 0,±1,±2, · · · [145] because, at

these voltages, the system is in a minimal-energy state when an integer number of electrons

are present on the island. Any single tunneling event between island and either source or drain

would move the system from this state. The Coulomb blockade effect vanishes when m =

±1/2,±3/2, · · · , i.e., when m is a half integer value because, at these voltages, the system is

in a minimal-energy state when a half-integer number of electrons are present on the island.

In this case, a single tunneling event does not move the system from a minimum energy state.

Electrons can therefore tunnel, in single-file, through the island as determined by VDS.

Figure 5.2 illustrates the Coulomb blockade effect of a SET as a function of the gate volt-

age VGS. The gray diamonds depict the regions in which the Coulomb blockade effect exists.

This diagram demonstrates that the transfer functions of SETs differ dramatically from those of

MOS devices. Discrete electron charging results in a periodic I–V transfer curve. The periodic

changes are called Coulomb Oscillations. The I–V curve of a SET, shown in Figure 5.3, is

141

therefore periodic; drain current changes periodically as a function of the gate voltage, and has

peaks and valleys with periods of e/Cg.

In order to observe the Coulomb blockade effect, the following constraints must be satisfied.

• Since thermal fluctuations can suppress the Coulomb Blockade effect, the electrostatic

charging energy, e2/C∑, must be much greater than kBT , where kB is Boltzmann’s

constant and T is the temperature. In order to ensure reliability, e2/C∑ ≥ 10kBT or the

more conservative e2/C∑ ≥ 40kBT constraint is enforced. These equations imply that

the maximum allowed island capacitance is inversely proportional to temperature. At

room temperature, an island capacitance below 1 aF is required. Island capacitance is

a function of island size. As shown in Table 5.1, using disc capacitor model, room-

temperature operation requires an island size in the nanometer range, making fabrica-

tion challenging. At present, the smallest island capacitance of a fabricated device is

around 0.15 aF [127].

• To observe single-electron charging effects, electrons must be confined in the island,

which requires that the junction resistance be higher than the quantum resistance, i.e.,

RS,RD > h/e2, h/e2 = 25.8 kΩ, where h is Planck’s constant. Therefore, SETs have

high resistances and low driving currents.

In order to operate voltage-state logic, SETs must exhibit voltage gain. The low-temperature

voltage gain is equal to the gate capacitance divided by the sum of the junction capacitances:

G = CG/(CS +CD). Achieving this gain requires techniques to reduce tunneling junction ca-

pacitance. It also requires close coupling of gate and island without a large increase in the

142

total island capacitance. High gain has only been demonstrated for a few devices and has re-

quired operation at low temperatures [146, 147]. However further advances in lithography or

nanofabrication may overcome this limitation.

5.2.2. Random Background Charge Effects

Background charge has been a persistent problem for SETs. Charges in the environment

surrounding the SET island influence its equilibrium state. Defects near the island serve as

charge traps [148]. Although the voltage offsets caused by these charges can be compensated

for using a biased second gate terminal, the required bias cannot be known until after fabrication.

Worse yet, some devices are affected by random background charge effects.

It is the tentative consensus of the research community that random background charge ef-

fects are caused by multiple, closely-spaced charge traps near the island, among which charge

carriers may tunnel. Random background charge effects produce run-time variations in gate

bias, and may cause logic errors. Much work has been done to understand the nature and den-

sity of these defects [149, 150, 151]. Most SETs have been fabricated with aluminum islands.

Some researchers have attempted to eliminate the random background charge effects by de-

signing SETs using alternative island materials such as silicon, based on the thesis that the use

of non-crystalline, non-stoichiometric aluminum oxide junctions in conventional SETs leads to

numerous charge-trapping defects. Silicon island SETs have shown greatly improved immu-

nity to random background charge noise, with operation unchanged over several weeks [152].

However, random background charge effects remain the main source of run-time reliability

problems for most SET designs. In this work, we describe a reconfigurable architecture that

provides architectural resistance to the effects of random background charges.

143

5.2.3. SET Modeling

Circuit and architecture design involves extensive large-scale circuit simulation. Despite

their accuracy, Monte Carlo methods are not suitable for large-scale circuit analysis due to their

high time complexities. We build upon the SET analytical model developed by Inokawa et

al. [140]. This compact model can be incorporated into SPICE. Combined with MOS transistor

models, it provides an efficient and accurate simulation solution for hybrid SET/CMOS circuits.

Inokawa’s model ignores random background charge effects. In addition, it does not consider

multi-gate effect, a necessary feature for modeling multi-gate SET circuit structure. In this

work, we incorporate these two effects into Inokawa’s model, and use it for hybrid SET/CMOS

circuit and architecture design.

The I–V characteristics of a SET with island charge equal to n or n + 1 electrons follow:

where

(5.1) CΣ = CS +CD +∑CGi

In this model,
2∑CGiVGSi

e models the Coulomb charging effects of the multiple gate terminals. ζ

is a real number that characterizes the random background charge effect.

This compact model is derived based on the steady-state master equation, which is not

directly applicable to transient circuit analysis. However, when used in circuits, SETs are

connected by metal wires. Based on existing fabrication processes, the capacitance of local

interconnect is at least two orders of magnitude higher than SET island capacitance, thereby

eliminating inter-SET Coulomb interaction. The independence of SETs enables the use of

quasi-steady-state analysis [140, 153].

144

5.3. IceFlex: A Fault-Tolerant Hybrid SET/CMOS Reconfigurable Architecture

This section describes the design and analysis of IceFlex, the proposed low-power, fault-

tolerant, reconfigurable, hybrid SET/CMOS architecture. The vast majority of devices in Ice-

Flex are SETs, allowing extremely low power consumption. CMOS devices are sparingly used

to improve the driving strength of global interconnect.

Our evaluation of the architectural constraints imposed by SETs led to four main conclu-

sions: (1) Flawless fabrication will be challenging, especially for circuits that operate at room

temperature. It is important to simplify fabrication and use post-fabrication adaptation to avoid

flawed devices; (2) An unpredictable subset of devices will be susceptible to random back-

ground offset charge effect noise: SET-based architectures should have the ability to tolerate

run-time errors; (3)SETs have poor driving strength; this must be remedied, especially when

driving global interconnect; (4)SETs have the ability to efficiently implement some functions

that are inefficient using BJTs, CMOS logic, or threshold logic, e.g., non-linearly-separable

functions can be implemented with one or two transistors: SET-based architectures should ex-

ploit such special properties in order to improve the efficiency of arithmetic and other logic

circuits.

5.3.1. SET Design Space Characterization

In order to characterize the benefits and limitations of SET circuits and architectures, we

analyze the tradeoffs among the following metrics: temperature, performance, power consump-

tion, reliability, and fabrication constraints. This study yields two design configurations, each

of which is shown in Table 5.2. One targets high-performance embedded applications such as

145

multimedia consumer electronics and one targets ultra-low-power battery-powered embedded

applications.

5.3.1.1. Temperature. As shown in Table 5.2, IceFlex was evaluated at seven temperatures.

IceFlex is a hybrid SET/CMOS design; the temperature range starts at 40 K to permit reliable

operation of the CMOS components. 77 K is achieved by liquid nitrogen cooling. 103 K is

the average cloud top temperature. 120 K and below are defined to be cryogenic. At 200 K,

functional SET devices have been widely demonstrated in the literature. 250 K is a temperature

that might be reached using a stacked Peltier heat pump. 300 K is room temperature.

5.3.1.2. Capacitance. To observe well-defined Coulomb charging effects, electron charging

energy must be higher than the thermal energy that might be imparted to charge carriers, i.e.,

e2

CΣ
≥ 10kBT or e2

CΣ
≥ 40kBT to enable more reliable SET circuit design, where kB is Boltzmann’s

constant and T is the temperature. At room temperature, this constraint requires an island

capacitance below 1 aF, making fabrication challenging but possible [127]. In order to operate

voltage-state logic, SETs must exhibit voltage gain, which is equal to the gate capacitance

divided by the sum of the junction capacitances: G = CG/(CS +CD). Our results indicate that

a gain of 1.5 is sufficient for use in digital logic. Targeting battery-powered systems, using

C∑ ≤ e2/(10kBT), C∑ ≤ e2/(40kBT) and G = 1.5, the maximum allowed gate and junction

capacitances are derived and shown in the “Low power, Capacitance” columns of Table 5.2.

SET performance degrades as device capacitance increases. However, decreased capaci-

tance makes fabrication challenging. We assume the capacitances at 300 K are the minimal

allowed gate and junction capacitances. Given e2

CΣ
≥ 10kBT , for high-performance applica-

tions, these minimal gate and junction capacitances are used at all the temperature settings and

shown in the corresponding “High Performance, Capacitance” columns of Table 5.2. On the

146

other hand, given e2

CΣ
≥ 40kBT , which requires very low SET capacitance at room temperature

(CG = 0.09aF) and makes fabrication very challenging. Due to fabrication concerns, for high-

performance design, the capacitance and voltage are determined by the corresponding operation

temperature, instead of room temperature.

5.3.1.3. Voltage. Consider a SET biased via a second gate, such that a VGS of zero places it

in the middle of the positive voltage coefficient (PVC) region in Figure 5.3. In this case, the

maximum range of current values can be traversed by letting VGS (i.e., Vin) vary in the range

[−e/(4CG),e/(4CG)]. At all but the lowest temperatures, this range also provides near-optimal

sensitivity to VGS. Therefore, we use this range. Once the range of VGS is known, a VSS of

−e/(4CG) and a VDD of e/(4CG) naturally follow, shown in the “Voltage” columns of Table 5.2.

Note that a bias voltage applied via a second gate can be used to shift the zero VGS point from

the PVC to negative voltage coefficient (NVC) region in Figure 5.3, permitting NMOS-like or

PMOS-like behavior.

5.3.1.4. Junction Resistance. To observe single-electron charging effects, electrons must be

confined in the island. This requires junction resistances that are much higher than the quantum

resistance, i.e., RS,RD� h/e2, h/e2 = 25.8 kΩ, where h is Planck’s constant. Therefore, SETs

have high resistances and low driving currents. In this work, we pick two resistance settings:

100 KΩ for high-performance applications and 10 MΩ for battery-powered systems, shown in

the “Resist.” columns of Table 5.2.

5.3.1.5. Reliability Implications. Researchers have pointed out the dangers posed by thermal

noise as charging (state change) energy approaches thermal energy. We explicitly consider the

effects of temperature on steady-state current during circuit analysis and design, its effects are

reflected in our design decisions, and their impacts on power consumption and performance

147

Table 5.2. Design Space Characterization

CΣ = e2/10kBT CΣ = e2/40kBT
Low power High performance Low power High performance

Temp. C V R C V R C V R C V R

(K) (aF) (mV) (MΩ) (aF) (mV) (kΩ) (aF) (mV) (MΩ) (aF) (mV) (kΩ)

CG
CS Vdd ,Vin RS CG

CS Vdd ,Vin RS CG
CS Vdd ,Vin RS CG

CS Vdd ,Vin RS
CD e/4CG RD CD e/4CG RD CD e/4CG RD CD e/4CG RD

40 2.78 0.93 14.36 10 0.37 0.12 107.70 100 0.70 0.23 57.46 10 0.70 0.23 57.46 100
77 1.45 0.48 27.65 10 0.37 0.12 107.70 100 0.36 0.12 110.60 10 0.36 0.12 110.60 100
103 1.08 0.36 36.99 10 0.37 0.12 107.70 100 0.27 0.09 147.95 10 0.27 0.09 147.95 100
120 0.93 0.31 43.09 10 0.37 0.12 107.70 100 0.23 0.08 172.37 10 0.23 0.08 172.37 100
200 0.56 0.19 71.82 10 0.37 0.12 107.70 100 0.14 0.05 287.28 10 0.14 0.05 287.28 100
250 0.45 0.15 89.77 10 0.37 0.12 107.70 100 0.11 0.04 359.10 10 0.11 0.04 359.10 100
300 0.37 0.12 107.70 10 0.37 0.12 107.70 100 0.09 0.03 430.91 10 0.09 0.03 430.91 100

are considered. Our model does not explicitly model the effects of temperature-dependent shot

noise [139]. Therefore, it is necessary to design circuits with charging energies that are sub-

stantially higher than the thermal energy. Designs with charging energies of both 10 and 40

times the thermal energy are evaluated in this chapter (10kBT or 40kBT). Researchers have

reported device operation at each level but the 40kBT requirement is more reliable. At charging

energies over 10kBT , the model we use is accurate to within 4% of the time-dependent master

equation [154, 139].

Random background charge effects [150, 151] are the main barrier to SET reliability. They

are observed as 1/ f noise on SET gate voltages, with some SETs susceptible and others im-

mune. Several recent devices have shown improved immunity to this noise, as described in

Section 5.2.2. Currently, the distribution of random background offset charges can only be

determined after fabrication [117]. Susceptible SETs may suffer transient errors infrequently,

e.g., only once per day. In this work, we use architectural techniques to reduce the probability

of failure using an entirely SET-based design. SETs are used in parallel to exploit the lack of

SET-to-SET correlation in random background offset charge effects.

148

SET configuration memory

SET local interconnect Hybrid SET/CMOS global
interconnect

Majority voting logic

SET multi-gate lookup table

SET input switch fabric SET registers

Figure 5.4. IceFlex microarchitecture

5.3.2. IceFlex Design

In this section, we present the architecture and circuit design of IceFlex. The microarchitec-

ture of IceFlex is shown in Figure 5.4. IceFlex is a cell-based design. Each cell is a SET logic

block (SELB) composed of the following components: (1) multi-gate SET-based reconfigurable

look-up tables that can realize arbitrary n-input Boolean functions; (2) a SET-based arithmetic

unit that allows efficient implementations of non-linearly separable arithmetic operations; (3)

a SET-based reconfiguration memory array that caches multiple configuration contexts to sup-

port efficient run-time reconfiguration; (4) a multi-gate SET-based input switch fabric; and (5)

SET registers. In addition, IceFlex also includes SET threshold logic-based majority voting

logic units, allowing a flexible solution to run-time reliability problems. In IceFlex, a multi-

level on-chip interconnect fabric forms inter-SELB connections. Local connections rely on a

custom-designed, SET-driven, variable-length, constant-latency interconnect. This interconnect

structure reduces power consumption and simplifies physical-level design automation problems,

e.g., placement and routing. SETs have limited driving strength. Therefore, IceFlex uses hybrid

SET/CMOS interconnect circuits to drive global interconnects.

149

Config. Bit
0

Config. Bit
m-1

configuration

m-to-1 multi-gate multiplexer SET tree

Vdd

VG2

Vss

-VG2

Config. Bit
0

Config. Bit
1

Config. Bit
mc-1

s0 s1 snc

s0 s1 snc

s0 s1 snc

mc-to-1 multi-gate SET multiplexer

Vdd

VG2

Vss

-VG2

0

A 4-to-1 multi-gate SET multiplexer example

a b

a b

a b

a b

0

0

1

IDS

VG

RSET

VG

a=1
b=1

P0
path P0

path P1

path P2

path P3

a=1
b=1

P1
P2 P3

Figure 5.5. Multi-gate SET multiplexer tree.

We now explain the design of each IceFlex component and discuss the tradeoffs in circuit-

level and architecture-level design.

5.3.2.1. Multi-Gate SET Reconfigurable Lookup Table Component. Each SELB is equipped

with l sets of n-input reconfigurable look-up tables. Each look-up table can realize an arbitrary

n-input Boolean function. The basic structure of the look-up table consists of an m-to-1 multi-

gate SET multiplexer tree (m = 2n), and an m-bit SET storage cell, which will be described in

the next section.

The proposed multi-gate SET multiplexer tree differs from existing CMOS-based designs

in the following way. A CMOS m-to-1 multiplexer tree requires dlog2 me stages of transmission

gates, plus buffers to meet the required driving strength. SETs may have multiple gate termi-

nals. As described in Equation 5.1, the overall gate charging effect is a function of ∑CGiVGSi .

Therefore, multiple control signals, e.g., the select signals for a multiplexer, can be supplied

into a single SET, enabling a more compact circuit structure with better performance and power

efficiency.

Figure 5.5 shows the proposed SET multi-gate multiplexer tree design. The basic building

block is a q-to-1 multi-gate single-stage multiplexer, in which each of the q paths consists of a

single multi-gate SET controlled by dlog2 qe select signals. Using this design, the logic depth

of a n-to-1 multiplexer tree reduces to
⌈
logq m

⌉
instead of dlog2 me. Figure 5.5 also shows a

150

design case for q = 4. The output SET buffer is used to break long resistive path and improve

the driving strength.

As described in Section 5.2, thermal energy has significant impact on electron tunneling and

the ratio of on to off currents, i.e., the ratio of the off to on resistance. This ratio decreases as

the ratio of Coulomb charging energy (e2/C) to thermal energy (kBT) decreases. On the other

hand, as the number of gate control signals per SET (hence the number of off paths connected in

parallel) increases, the impact of the off paths on the circuit output increases. Consider, for the

sake of example, the dual-gate 4-to-1 multiplexer design shown in Figure 5.5. The four logic

inputs are 0001 and both select signals are logic one, i.e., Va = Vb = V . Assume Ca = Cb = C.

As shown in the I-V curve on the right side of Figure 5.5, for the SET on path P3, the overall

gate charge equals 2CV . Therefore, the SET becomes fully conductive. For paths P1 and P2,

the gate charges both equal CV −CV = 0, hence both switches are partially conductive. For

path P0, even though the overall gate charge equals −2CV , at high temperature its resistance

may still be within the same order of magnitude as that of path P3. Since the inputs of paths P0,

P1 and P3 are all connected to logic zero (the worst-case scenario), these three parallel paths

may pull the output voltage below zero, producing incorrect results.

In the high-performance setting, the same capacitance settings are used across the whole

temperature range. Therefore, the ratio of Coulomb charging energy to thermal energy increases

as the temperature decreases. Therefore, lower temperatures permit fewer multiplexer levels in

the multiplexer tree, with more inputs to each individual multiplexer.

Detailed circuit analysis shows that, using the high-performance setting and e2/C∑≥ 10kBT ,

the dual-gate design may be used at temperatures up to 200 K. At 250 K and 300 K, only the

single-gate design is feasible. For the low-power setting, capacitance scaling maintains the

151

VCG

charge

VG
VoutD S

IDS

VG

VCG

VG
VoutD S

IDS

VG

VG
Store 1

Store 0

SET configuration memory SET SRAM SET configuration memory

S
E

T
 S

R
A

M
 m

em
ory

Vdd

VG2

In

Out

Vss

-VG2

Figure 5.6. SET configuration memory.

same e2/C∑kBT ratio. Therefore, the same design should be applied to the whole temperature

range. In addition, since both the low-power setting and the high-performance setting at room

temperature use the same e2/C∑kBT ratio, only the single-gate design is feasible for low-power,

room-temperature operation. For the e2/C∑ ≥ 40kBT configurations of IceFlex, the dual-gate

design may be used at all temperatures due to the increased charging energy.

5.3.2.2. SET Configuration Memory. In IceFlex, run-time reconfiguration is enabled by SET

configuration memory, which consists of SET configuration cache and current configuration

memory. In each SELB, the configuration cache stores multiple configurations. During run-

time reconfiguration, one set of configuration bits stored in the configuration cache are placed

into the current configuration memory to program SELB logic and interconnect. If k copies of

configuration sets are stored in the configuration cache, then the circuit can be reconfigured k

times during run-time execution without the need to access off-chip memory.

Figure 5.6 shows the circuit structure of the configuration memory in IceFlex. The SET

configuration cache is the main on-chip configuration memory. Each storage cell consists of a

dual-island SET [117]. A dual-island SET contains two capacitively-coupled SETs: a primary

SET and a secondary SET. By controlling VCG, electrons can tunnel through the control gate

and charge the island of the secondary SET. The charge state of the secondary SET is able to

shift the phase of the Coulomb oscillations of the primary gate, i.e., its conductivity condition

152

shifts as a function of gate control voltage, VGS. Therefore, under a certain VGS, the primary

SET is either conductive or open due to different island charges, representing either a logic one

or logic zero.

In the configuration cache, when a configuration is selected, a short-circuit path is formed

between the pull-up resistor and SETs with a stored zero within the selected configuration set.

The power consumption will be high if the configuration cache constantly controls the logic

and interconnect. To minimize power consumption, IceFlex uses separate on-chip memories to

store the currently-used configuration.

We designed two types of SET-based on-chip storage to hold the current configuration.

The first design is a dual-island based SET buffer. As shown to the right of Figure 5.6, this

buffer uses two opposite biasing voltages, VG2 and −VG2 , and behaves like a complementary

SET inverter. During run-time reconfiguration, for each dual-island SET, the corresponding

configuration bit stored in the configuration cache updates the island charge of its secondary

SET, hence the conductivity of its primary SET, thereby controlling the buffer output. The

second design is a SET SRAM design, which is similar to CMOS SRAM.

5.3.2.3. Efficient SET Implementations of Non-Unate Functions and Implications for Arith-

metic. SETs have the ability to support efficient implementation of some critical logic functions

that have long frustrated designers using threshold logic, BJT, and CMOS technologies. Most

conventional transistors have either non-decreasing or non-increasing I–V curves. As a result,

numerous devices are required to implement Boolean functions that are not unate, i.e., linearly

separable. However, such functions are widely used, especially in digital arithmetic. The pe-

riodic nature of SET I–V curves can be exploited for efficient implementation of highly-useful

non-unate functions such as exclusive-or.

153

VG2

-VG2

Out

Vss

Vdd

IN1

INk-1

IN1

INk-1

Figure 5.7. SET parity circuit.

The most efficient CMOS static pass-transistor logic design of a two-input exclusive-or

gate in general use requires six transistors [155]. Moreover, it relies on strong input signals

because it is not capable of signal restoration. A restoring version would require at least eight

transistors. In contrast, it is possible to implement a two-transistor SET-based exclusive-or gate

that is structurally equivalent to a CMOS inverter. In this design, each SET has two gates,

each of which is connected to one of the exclusive-or inputs. The circuit structure for a SET-

based n-input parity gate is shown in Figure 5.7. This design is capable of signal restoration.

Thanks to the periodic SET I–V curve, it is possible to directly determine whether the number of

high inputs is odd or even. By appropriately adjusting the gate capacitances, the device can be

adjusted such that switching a single gate will result in a 180◦ phase shift in the I–V curve (see

Figure 5.3). Note that even or odd parity functions with additional inputs may be implemented

using only two SETs. The number of inputs is bounded primarily by geometrical constraints on

fabrication of additional gates.

In SET-based architectures, we propose the use of fast carry chains based on the pro-

posed exclusive-or (sum) computation logic. We have found that this design is approximately

154

75% more energy-efficient and 25% faster than a design based on a conventional CMOS-style

exclusive-or sum implementation, when both are implemented using SETs. This design style

is impossible for threshold logic, BJTs, and CMOS technologies. Note that carry-out logic is

equivalent to 2-out-of-3 majority vote logic.

5.3.2.4. Reconfigurable Interconnect Network. IceFlex consists of a variety of reconfig-

urable interconnect resources, including SET local interconnects, hybrid SET/CMOS global

interconnects, and SET switch fabric.

Interconnect consumes a substantial proportion of total power consumption in IceFlex: its

power efficiency is critical. For SET-based interconnect, the static power consumption domi-

nates due to the impact of thermal energy on device conductance, especially at high tempera-

tures. In addition, static power consumption increases with wireload; maintaining unchanged

communication latency with higher wireload requires lower junction resistance. In contrast,

the dynamic power consumption of SETs is low due to the low SET gate capacitance and low

voltage swing. For hybrid SET/CMOS-based interconnect, SETs are only used to drive CMOS

buffers, which in turn drive metal wires. In this case, SETs with low driving strength, hence

high junction resistance, are allowed. Compared to SETs, CMOS has lower static power con-

sumption but higher capacitance and dynamic power consumption. Therefore, dynamic power

dominates in the hybrid SET/CMOS-based design. Detailed circuit analysis shows that, under

the same performance constraint, SET-based design is more energy-efficient for local intercon-

nect and the hybrid SET/CMOS design is more energy-efficient for global interconnect.

In IceFlex, local interconnects driven directly by SET buffers support communication be-

tween nearby SELBs. Three types of local interconnects are supported: single length, double

length, and hex length. The proposed SET local interconnect design guarantees a constant

155

Table 5.3. Impact of Majority Vote Logic on SELB Fault Probability

SET fault prob. 1/1,000 1/10,000 1/100,000
Majority vote inputs 3 5 7 3 5 7 3 5 7
Raw fail prob. 6.20E-2 6.20E-2 6.20E-2 6.38E-3 6.38E-3 6.38E-3 6.40E-4 6.40E-4 6.40E-4
Best prob. 1.11E-2 2.17E-3 4.45E-4 1.22E-4 2.57E-6 5.71E-8 1.23E-6 2.62E-9 5.86E-12
SET MVL prob. 1.11E-2 2.18E-3 4.57E-4 1.22E-4 2.69E-6 1.77E-7 1.23E-6 3.82E-9 1.21E-9

latency across different routing lengths. Consider, for the sake of example, a local communi-

cation architecture in which the maximum interconnect delay is bounded by some value and

the longest interconnect is appropriately buffered to meet this constraint. In this case, it would

possible to similarly drive shorter interconnects, thereby decreasing their delays, relative to that

of the longest interconnect. It would also be possible to reduce the driving strength on shorter

interconnects to reduce power consumption and produce a local interconnect architecture in

which all interconnects have uniform delay. We propose the second design because it improves

interconnect power efficiency and also simplifies placement and routing during physical design.

The proposed SET local interconnect is designed as follows. A SET buffer with minimal

driving strength (hence high junction resistance) is first determined. Next, for local intercon-

nects with different routing lengths, minimal driving strength SET buffers are connected in

parallel to meet driving strength requirements imposed by performance constraints. The main

motivation of using parallel SET buffers is that SET junction resistance cannot be reduced ar-

bitrarily (RD,RS � h/e2). In addition, using homogeneous SET buffers in parallel instead of

heterogeneous SET buffers is likely to simplify analysis and fabrication.

Remote connections introduce the high capacitive loads of long metal wires. To address the

driving strength problem of SET-only circuits, we have designed hybrid SET/CMOS interface

circuitry to drive global interconnect. Figure 5.8 shows the circuit structure, which contains two

complementary SET inverters and two CMOS inverters. SELB’s output is first fed to the input

156

VG2

-VG2

HLB output

VG2

-VG2

HLB input

SINV1 SINV2CINV1 CINV2

Inter-HLB metal wire

Figure 5.8. Hybrid SET/CMOS interface circuitry

of SET inverter SINV1. SINV1 drives the CMOS inverter, CINV1. Unlike the SET logic used

inside SELBs, SINV1 uses a low-resistance design to improve driving strength. Fortunately,

it is possible to achieve sufficient driving strength with a single SET so using parallel SETs is

unnecessary. Since the voltage range of SET logic is much smaller than that of CMOS logic,

the output signal of SINV1 is within the switching range of the CMOS inverter. Since both

MOS transistors are conductive within the switching region, short-circuit power is high. To

solve the short-circuit power consumption problem, CINV1 is designed to satisfy the following

two constraints. First, Vtn + |Vt p| > Vdd −Vss ensures that at least one MOS transistor is off at

all times, reducing static power consumption. Second, the output signal range of SINV1 must

be greater than Vtn + |Vt p|− (Vdd−Vss). Therefore, the NMOS (PMOS) transistor of CINV1 is

conductive at output signal high (low) of SINV1 to provide enough driving strength to CINV2.

CINV2 is a normal CMOS inverter. Therefore, CINV1 serves as a signal amplifier, and CINV2

provides driving strength.

CINV2 cannot be used to drive the input SET logic of a SELB directly. SET current is

a periodic function of the gate control voltage and has a period of e/CG. The output voltage

range of CINV2 is much larger than e/CG. Therefore, using this output voltage range directly

157

would cause output signal oscillation in SET logic. To solve this problem, we design a special

SET inverter, SINV2, that is used for SELB inputs. SINV2 is fabricated with a large distance

between gate and island in order to reduce the gate capacitance, CG. Thus, e/CG can match

the output signal range of CMOS inverter CINT2. Recall that, although source–island and

drain–island junctions must be short to permit tunneling, there is no such bound on gate–island

separation.

In IceFlex, each SELB is equipped with a reconfigurable input switch fabric that selects

the connections among local and global interconnects. The input switch fabric is implemented

using multi-gate SET multiplexor tree, the same as the reconfigurable look-up table described

in Section 5.3.2.1.

5.3.2.5. Design and Modeling of IceFlex Majority Voting Logic. Although researchers are

making progress on reducing the severity of noise resulting from random background offset

charge effects, it may continue to pose run-time noise problems in the future. Even if this prob-

lem can be entirely solved, resistance to run-time faults may be useful in SETs, e.g., to allow

resistance to Alpha particle induced faults or other single event upsets. IceFlex incorporates

support for hierarchical spatial redundancy to improve fault tolerance. Although much of the

literature predicts the need for fault-tolerant architectures in nanoelectronics, the level of fault

tolerance is currently unknown. Therefore, we consider the results for a number of possible

SET failure rates and in the presence of three fault-tolerance configurations.

Other researchers have proposed a number of architectural techniques to support reliable

computation using nanoscale electronics that are susceptible to fabrication-time and run-time

faults. Dehon described the use of structural redundancy and programming-time defect-aware

158

configuration in a carbon nanotube and silicon nanowire based programmable logic array ar-

chitecture [156]. Goldstein et al. describe the use of a defect map that is generated during

post-fabrication testing to avoid the use of faulty devices [157]. Bahar et al. present a method

of expressing logic circuits using Markov Random Fields, permitting Boolean functions to be

computed using devices susceptible to potentially frequent transient faults [158]. We think it

likely that the random background charge problem will ultimately be dealt with by a combina-

tion of improved fabrication technology, post-fabrication testing to identify and avoid a subset

of the affected SETs, and run-time fault-tolerance via conventional structural redundancy or re-

cent advances in probabilistic computation. IceFlex provides for regular structural redundancy

and run-time error correction.

We now consider the fault model for IceFlex SELBs. Every path from SELB input to output

contains 64 SETs. In the third row of Table 5.3, we show the SELB raw failure probabilities,

i.e., the probability of a SELB producing an incorrect output. SELB failure probability is a

function of the SET fault probability, for which Table 5.3 shows three values. Likharev esti-

mates the long-term density of background offset charge susceptible SETs [117]. We follow his

assumptions but correct a typographical error in that chapter, arriving at one susceptible SET

in 10,000. The resulting 1/ f noise produces long-duration failure periods. Therefore, in this

analysis, we (conservatively) assume that susceptible devices consistently fail. In reality, er-

rors may not be consistent, preventing post-fabrication identification of all susceptible devices.

We also consider the higher SET fault probability of 1/1,000 and the lower fault probability of

1/100,000. Advances in fabrication and detection of most SETs susceptible to random back-

ground offset charge effects by post-fabrication testing may permit reduction in run-time SET

fault probability.

159

We have considered the effect of using no MVL (Raw fail prob.), fault-free MVL (Best

prob.), and SET MVL. Using a given reliability configuration, it is not possible for MVL-based

designs to produce lower SELB fault probabilities than those shown in the Best prob. row. SET

MVLs are constructed from multi-gate SETs. We focus on the three-input SET MVL design

to simplify depiction; the five-input, and seven-input SET MVL follows an analogous design

style. This circuit has identical structure to the parity gate shown in Figure 5.7. However, the

separation of gates and island are adjusted such that the circuit traverses only 1/2 Coulomb

oscillation period during use. The SET pull-up gates are separated sufficiently to require the

majority of the gates to be high. The converse is true of the pull-down gates. For each SET

depicted in Figure 5.7, four SETs are used in parallel in order to permit the failure of one

SET while still producing correct results. We have computed the delay of the SET MVL by

considering the worst-case scenario, in which one a path that is 3/5 or 4/7 closed has a faulty

driver SET and the path that is 2/4 or 3/7 closed has no faulty SETs.

As shown in Table 5.3 it is possible for a seven-input SET-only MVL with redundant

SELBs to reduce the failure rate to 1/8,500,000, given a SET fault probability of 1/10,000,

or 1/830,000,000, given a SET fault probability of 1/100,000. Given recent trends in noise-

resistant SET design and fabrication, it seems likely that a less aggressive fault tolerance con-

figuration will be necessary in the future (see Section 5.2.3). However, when we later consider

the impact of fault tolerance on energy efficiency and performance, we assume the use of seven-

input SET MVLs for every SELB stage.

If a method of rapidly determining which SETs are susceptible to random background

charge effects is ever developed, these effects can be avoided in the same way that fabrica-

tion defects are avoided: via the use of a regular computation structure in which operations are

160

mapped only to operational devices, which are determined post-fabrication. There has been

some promising work on this topic, in which illumination is used to produce ions, accelerating

the onset of random background charge effects [159].

5.4. Experimental Results

In this section, we evaluate the suitability of using SETs in low-power embedded system

design. We start from the microarchitecture characterization of IceFlex. IceFlex is then used

as a testbed to characterize the benefits and limitations of SETs for both high-performance and

battery-powered embedded application.

5.4.1. Characterization of the IceFlex Architecture

Following the design parameters shown in Table 5.2, we evaluate the performance and

power consumption of IceFlex using HSPICE. For SET circuitry, the SPICE model and de-

vice parameters are described in Section 5.2.3. For CMOS logic and metal wire, we use the

22 nm Berkeley BSIM4 predictive technology model, which models the impact of temperature

on MOS devices. We analyze designs adhering to the CΣ = e2/(10kBT) constraint as well as

the more conservative CΣ = e2/(40kBT) constraint. A low-power setting (targeting megahertz

range) and a high-performance setting (targeting gigahertz range), are considered.

Tables 5.4, 5.5, 5.6, and 5.7 summarize the performance and power characterization of the

logic components and interconnect fabric of IceFlex, including multi-gate SET reconfigurable

lookup table (LUT)1, SET register (Register), SET and CMOS four-out-of-seven majority vot-

ing logic (MVL), multi-gate (MG) and CMOS-style (CS) exclusive-or, (CO) carry-out logic,

and SET local interconnect (Single, Double, and Hex), hybrid SET/CMOS global interconnect

1To allow comparison with Xilinx FPGAs, a 16-to-1 setting is used.

161

Ta
bl

e
5.

4.
C

ha
ra

ct
er

iz
at

io
n

of
Ic

eF
le

x
M

ic
ro

ar
ch

ite
ct

ur
e

fo
rC

Σ
=

e2 /
(1

0k
B
T

)

L
ow

po
w

er
H

ig
h

pe
rf

or
m

an
ce

40
K

77
K

10
3

K
12

0
K

20
0

K
25

0
K

30
0

K
40

K
77

K
10

3
K

12
0

K
20

0
K

25
0

K
30

0
K

L
U

T
4.

36
3.

30
3.

05
3.

04
2.

65
2.

56
2.

51
0.

04
0.

03
0.

02
0.

02
0.

02
0.

02
0.

02
L

at
en

cy
R

eg
is

te
r

1.
31

0.
93

0.
81

0.
75

0.
61

0.
59

0.
58

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

4.
81

e-
3

7-
IN

PU
T

M
V

L
0.

29
0.

28
0.

28
0.

28
0.

28
0.

27
0.

27
7.

42
e-

4
1.

59
e-

3
1.

99
e-

3
2.

18
e-

3
2.

10
e-

3
1.

91
e-

3
1.

69
e-

3
(n

s)
SE

T-
M

V
L

0.
76

0.
44

0.
49

0.
49

0.
48

0.
48

0.
48

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

4.
87

e-
3

A
ri

th
m

et
ic

SU
M

M
G

0.
33

0.
31

0.
30

0.
30

0.
30

0.
29

0.
29

0.
01

0.
01

0.
01

0.
01

4.
60

e-
3

3.
74

e-
3

3.
2e

-3
L

og
ic

C
S

0.
60

0.
53

0.
51

0.
51

0.
49

0.
48

0.
47

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

C
O

0.
76

0.
44

0.
49

0.
49

0.
48

0.
48

0.
48

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

4.
87

E
-0

3
L

U
T

0.
08

0.
31

0.
55

0.
75

2.
09

3.
26

4.
70

3.
41

19
.2

9
35

.3
7

46
.8

4
96

.1
2

34
3.

78
44

1.
44

Po
w

er
R

eg
is

te
r

0.
04

0.
15

0.
26

0.
35

0.
98

1.
53

2.
20

3.
75

18
.3

8
31

.8
3

38
.3

7
66

.3
6

17
4.

39
20

6.
66

7
IN

PU
T-

M
V

L
0.

02
0.

08
0.

14
0.

19
0.

54
0.

84
1.

21
1.

97
14

.4
1

26
.4

6
34

.7
5

72
.9

1
94

.3
7

11
3.

50
(n

W
)

SE
T-

M
V

L
3.

44
e-

03
0.

01
0.

02
0.

03
0.

09
0.

13
0.

19
1.

11
3.

62
6.

23
8.

06
16

.8
9

22
.1

4
27

.0
3

A
ri

th
m

et
ic

SU
M

M
G

2.
89

e-
03

0.
01

0.
02

0.
03

0.
07

0.
11

0.
16

0.
23

0.
42

0.
92

1.
50

6.
55

10
.7

9
15

.2
9

L
og

ic
C

S
4.

89
e-

03
0.

02
0.

03
0.

04
0.

12
0.

19
0.

28
2.

03
6.

54
10

.5
4

13
.0

5
22

.1
1

26
.4

0
30

.3
4

C
O

3.
44

e-
03

0.
01

0.
02

0.
03

0.
09

0.
13

0.
19

1.
11

3.
62

6.
23

8.
06

16
.8

9
22

.1
4

27
.0

3

162

Ta
bl

e
5.

5.
C

ha
ra

ct
er

iz
at

io
n

of
Ic

eF
le

x
M

ic
ro

ar
ch

ite
ct

ur
e

fo
rC

Σ
=

e2 /
(4

0k
B
T

)

L
ow

po
w

er
H

ig
h

pe
rf

or
m

an
ce

40
K

77
K

10
3

K
12

0
K

20
0

K
25

0
K

30
0

K
40

K
77

K
10

3
K

12
0

K
20

0
K

25
0

K
30

0
K

L
U

T
10

.0
4

7.
86

7.
09

6.
80

5.
57

5.
03

4.
75

0.
08

0.
06

0.
05

0.
05

0.
05

0.
04

0.
04

L
at

en
cy

R
eg

is
te

r
1.

42
1.

09
1.

02
1.

00
0.

90
0.

88
0.

86
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
7-

IN
PU

T
M

V
L

0.
58

0.
57

0.
58

0.
58

0.
59

0.
56

0.
58

3.
28

E
-0

3
3.

18
E

-0
3

3.
16

E
-0

3
3.

20
E

-0
3

3.
24

E
-0

3
2.

99
E

-0
3

3.
14

E
-0

3
(n

s)
SE

T-
M

V
L

1.
15

1.
13

1.
13

1.
00

1.
08

1.
04

1.
06

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

A
ri

th
m

et
ic

SU
M

M
G

2.
32

2.
31

2.
31

2.
31

2.
31

2.
28

2.
29

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

L
og

ic
C

S
3.

02
2.

97
2.

95
2.

96
2.

95
2.

89
2.

93
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
C

O
1.

15
1.

13
1.

13
1.

00
1.

08
1.

04
1.

06
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
L

U
T

0.
07

0.
26

0.
44

0.
58

1.
60

2.
64

3.
70

6.
67

25
.7

6
44

.5
3

58
.1

9
16

2.
20

26
6.

69
37

3.
81

Po
w

er
R

eg
is

te
r

0.
08

0.
30

0.
53

0.
72

1.
99

3.
14

4.
48

8.
02

29
.8

8
53

.1
6

72
.1

2
19

9.
64

31
5.

21
45

0.
34

7
IN

PU
T-

M
V

L
0.

05
0.

20
0.

36
0.

48
1.

32
2.

17
3.

02
5.

37
20

.0
5

35
.8

7
48

.1
5

13
2.

24
21

7.
31

30
2.

60
(n

W
)

SE
T-

M
V

L
0.

01
0.

03
0.

06
0.

08
0.

21
0.

34
0.

48
0.

94
3.

51
6.

26
8.

44
23

.2
4

37
.5

8
52

.9
0

A
ri

th
m

et
ic

SU
M

M
G

1.
61

E
-0

3
0.

01
0.

01
0.

01
0.

04
0.

07
0.

09
0.

22
0.

80
1.

44
1.

91
5.

19
8.

88
12

.0
4

L
og

ic
C

S
0.

01
0.

04
0.

07
0.

09
0.

25
0.

40
0.

57
1.

04
3.

87
6.

90
9.

30
25

.6
0

41
.5

1
58

.3
5

C
O

0.
01

0.
03

0.
06

0.
08

0.
21

0.
34

0.
48

0.
94

3.
51

6.
26

8.
44

23
.2

4
37

.5
8

52
.9

0

163

Ta
bl

e
5.

6.
C

ha
ra

ct
er

iz
at

io
n

of
Ic

eF
le

x
In

te
rc

on
ne

ct
Fa

br
ic

Fo
rC

Σ
=

e2 /
(1

0k
B
T

)

L
ow

po
w

er
H

ig
h

pe
rf

or
m

an
ce

40
K

77
K

10
3

K
12

0
K

20
0

K
25

0
K

30
0

K
40

K
77

K
10

3
K

12
0

K
20

0
K

25
0

K
30

0
K

IS
F

3.
48

7
2.

64
2

2.
43

9
2.

43
0

2.
12

0
2.

04
7

2.
00

6
0.

02
4

0.
01

9
0.

01
6

0.
01

5
0.

01
2

0.
01

9
0.

01
8

Si
ng

le
0.

45
6

0.
41

1
0.

36
8

0.
35

9
0.

34
0

0.
33

8
0.

38
8

0.
00

6
0.

00
6

0.
00

5
0.

00
5

0.
00

4
0.

00
4

0.
00

3
L

at
en

cy
D

ou
bl

e
0.

37
5

0.
35

3
0.

34
6

0.
34

2
0.

33
0

0.
33

0
0.

38
1

0.
00

6
0.

00
6

0.
00

5
0.

00
5

0.
00

4
0.

00
4

0.
00

3
(n

s)
H

ex
0.

16
4

0.
34

0
0.

33
6

0.
33

3
0.

32
5

0.
32

6
0.

37
7

0.
00

6
0.

00
6

0.
00

5
0.

00
5

0.
00

4
0.

00
4

0.
00

3
G

lo
ba

l
1.

65
1

4.
21

4
7.

61
2

7.
50

5
5.

08
3

5.
50

2
7.

96
8

0.
16

9
0.

15
7

0.
14

3
0.

13
9

0.
12

3
0.

12
3

0.
13

1
IS

F
0.

31
3

1.
16

3
2.

07
1

2.
82

3
7.

84
8

12
.2

43
17

.6
42

10
.7

12
63

.6
84

11
7.

15
6

15
5.

30
2

31
8.

63
2

12
92

.3
02

16
58

.2
24

Si
ng

le
0.

00
4

0.
01

3
0.

02
3

0.
03

2
0.

09
0

0.
14

0
0.

19
1

1.
39

4
4.

49
4

6.
90

3
8.

39
4

14
.3

64
17

.6
34

20
.2

42
Po

w
er

D
ou

bl
e

0.
00

7
0.

02
6

0.
04

6
0.

06
3

0.
17

9
0.

27
9

0.
38

3
2.

78
8

8.
98

8
13

.8
05

16
.7

88
28

.7
28

35
.2

67
40

.4
84

(n
W

)
H

ex
0.

01
4

0.
05

2
0.

09
2

0.
12

6
0.

35
8

0.
55

8
0.

76
6

5.
57

6
17

.9
77

27
.6

11
33

.5
75

57
.4

55
70

.5
35

80
.9

68
G

lo
ba

l
38

3.
83

0
53

.9
08

19
.7

61
18

.0
14

14
.3

09
12

.8
07

10
.9

03
31

05
.3

00
31

22
.0

00
32

80
.7

00
32

49
.9

00
37

33
.7

00
50

42
.5

00
98

28
.7

00

164

Ta
bl

e
5.

7.
C

ha
ra

ct
er

iz
at

io
n

of
Ic

eF
le

x
In

te
rc

on
ne

ct
Fa

br
ic

Fo
rC

Σ
=

e2 /
(4

0k
B
T

)

L
ow

po
w

er
H

ig
h

pe
rf

or
m

an
ce

40
K

77
K

10
3

K
12

0
K

20
0

K
25

0
K

30
0

K
40

K
77

K
10

3
K

12
0

K
20

0
K

25
0

K
30

0
K

IS
F

6.
69

6
5.

23
8

4.
72

7
4.

53
7

3.
71

2
3.

35
1

3.
16

9
0.

05
0

0.
03

9
0.

03
7

0.
03

6
0.

03
0

0.
02

8
0.

02
7

Si
ng

le
0.

72
8

0.
69

9
0.

69
4

0.
69

7
0.

79
9

0.
77

0
0.

78
4

0.
00

6
0.

00
6

0.
00

6
0.

00
7

0.
00

5
0.

00
5

0.
00

5
L

at
en

cy
D

ou
bl

e
0.

70
4

0.
68

7
0.

68
5

0.
68

9
0.

79
4

0.
76

6
0.

78
1

0.
00

6
0.

00
6

0.
00

6
0.

00
7

0.
00

5
0.

00
5

0.
00

5
(n

s)
H

ex
0.

69
2

0.
68

0
0.

68
0

0.
68

4
0.

79
1

0.
76

3
0.

77
9

0.
00

6
0.

00
6

0.
00

6
0.

00
7

0.
00

5
0.

00
5

0.
00

5
G

lo
ba

l
2.

99
6

4.
52

3
4.

65
7

4.
23

7
4.

57
2

4.
52

0
6.

78
5

0.
16

3
0.

11
0

0.
09

2
0.

08
6

0.
07

4
0.

07
3

0.
09

9
IS

F
0.

21
9

0.
84

4
1.

45
7

1.
90

3
5.

30
2

8.
72

7
12

.2
26

22
.0

22
85

.0
34

14
6.

92
0

19
1.

95
7

53
5.

07
2

87
9.

83
7

12
33

.1
47

Si
ng

le
0.

00
8

0.
03

2
0.

05
7

0.
07

6
0.

21
0

0.
34

2
0.

47
9

0.
95

9
3.

38
7

6.
19

3
7.

97
7

24
.9

92
34

.1
01

53
.5

81
Po

w
er

D
ou

bl
e

0.
01

7
0.

06
3

0.
11

3
0.

15
2

0.
42

0
0.

68
4

0.
95

8
1.

91
7

6.
77

5
12

.3
86

15
.9

55
49

.9
84

68
.2

02
10

7.
16

0
(n

W
)

H
ex

0.
03

4
0.

12
7

0.
22

6
0.

30
5

0.
84

0
1.

36
8

1.
91

7
3.

83
5

13
.5

49
24

.7
71

31
.9

09
99

.9
67

13
6.

40
0

21
4.

32
0

G
lo

ba
l

27
1.

78
0

23
.9

12
6.

66
8

4.
46

0
3.

55
5

4.
51

3
5.

85
7

66
74

.8
00

51
46

.7
00

55
60

.9
00

58
24

.1
00

53
18

.2
00

48
56

.1
00

47
45

.7
00

165

(Global) and SET input switch fabric (ISF). From these results, we draw the following observa-

tions.

First, IceFlex has high energy efficiency, good performance, and high flexibility in terms of

performance and energy efficiency tradeoff. At the low-power setting, the power consumptions

of SET-based logic components and local interconnect fabric are within the range of nano-Watts.

The hybrid SET/CMOS global interconnect has the highest power consumption. This is a result

of the high capacitance of global wires and high power consumption of the CMOS buffers. For

performance, all components in the low-power version of IceFlex still have latencies in the range

of nanoseconds. SETs have high junction resistance and low driving strength. Using the high-

performance setting, by scaling the SET junction resistance down to 100 kΩ, the latencies of the

SET-based logic and local interconnect fabric are consistently lower than 100 ps. Even though

reducing resistance results in a 100× increase in power, as demonstrated in Section 5.4.2, the

overall energy efficiency of IceFlex is still orders of magnitude higher than that of CMOS-based

solutions.

Second, these results demonstrate the impact of temperature on SET performance and power

consumption – as the temperature increases, performance increases and the power efficiency

decreases. This is a result of the impact of thermal energy on tunneling events and therefore

circuit behavior, which is described in Section 5.2. The number of electrons with sufficient

energy to overcome the Coulomb blockade effect increases with temperature, thereby increasing

electron tunneling and therefore average device current. At high temperature, the average device

conductance increases, increasing both performance and power consumption.

166

The CΣ = e2/(40kBT) setting enables greater resistance to shot noise than the e2/(10kBT)

setting. However, it also imposes performance and power consumption penalties. For SET cir-

cuitry, the required supply voltage is inversely proportional to SET gate capacitance. Compared

to the CΣ = e2/(10kBT) setting, CΣ = e2/(40kBT) requires a further reduction of SET gate ca-

pacitance and an increase in supply voltage. Note that the driven capacitance of SET circuit is

dominated by the metal wires. Therefore, decreased gate capacitance has negligible impact on

power consumption. The increased supply voltage, on the other hand, increases circuit dynamic

power consumption. Moreover, the increased voltage range increases the duration of signal

swing, thereby increases circuit latency.

5.4.1.1. SET Multi-Gate Multiplexer Tree. As described in Section 5.3.2.1, multi-gate SETs

benefit the performance, power consumption, and area efficiency of the multiplexer tree design.

This section characterizes the impact of thermal energy on the proposed multi-gate design.

As described in Section 5.3.2.1, at the high-performance CΣ = e2/(10kBT) setting, the dual-

gate design is used for temperatures at or below 200 K. For these settings only single-gate design

is feasible at temperatures greater than 250 K due to high static current at these temperatures. As

a result, circuit is decreased at high temperatures. As shown in Figure 5.9, from 200 K to 250 K,

we observe both an increase in latency and power consumption. In addition, when using the

same design, we observe that both the circuit performance and power consumption increase with

temperature. The same trend was described in Section 5.4.1. Using the low-power design of

IceFlex, only the single-gate design is feasible (see Section 5.3.2.1). The results are summarized

in Table 5.4. Using e2/C∑ ≥ 40kBT , SET circuitry is less susceptible to thermal energy thanks

to the increased charging energy. Therefore, both low-power and high-performance dual-gate

multiplexer tree designs become feasible across the entire temperature range. As shown in

167

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 0 50 100 150 200 250 300

 100

 200

 300

 400

La
te

nc
y

(n
s)

P
ow

er
 (n

W
)

T (K)

LUT latency
LUT power

Figure 5.9. Power and performance of the multi-gate SET multiplexer tree for
high performance, CΣ = e2/(10kBT)

Figure 5.10, using the high-performance CΣ = e2/(40kBT) setting, the performance and power

consumption of the multi-gate multiplexer tree design increase consistently with temperature.

Similar trend can be shown for the corresponding low-power design case.

5.4.1.2. Power and Performance of Interconnect Design. Power consumption, performance,

and the tradeoff between them are of central importance in interconnect design. We considered

both SET-only and SET/CMOS hybrid interconnect driver designs. The power consumption

ratios shown in Figures 5.11, 5.12, 5.13, and 5.14 characterize the power consumption of the

SET-only and the SET/CMOS hybrid interconnect as a function of the wireload at 300 K at both

the high-performance and the low-power settings. They show the ratios of power consumptions

for the SET-only and SET/CMOS design power consumptions at the same performance. The

figure indicates that the relative static power benefit of the SET/CMOS hybrid design over the

SET-only design increases as the wireload increases. This is mainly due to an increase in the

168

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0 50 100 150 200 250 300

 100

 200

 300

La
te

nc
y

(n
s)

P
ow

er
 (n

W
)

T (K)

LUT latency
LUT power

Figure 5.10. Power and performance of the multi-gate SET multiplexer tree for
high performance, CΣ = e2/(40kBT)

static power consumption of the SET-only design as more SET buffers are used to meet the

driving strength requirements. The SET-only design has superior power efficiency. As the wire

length increases, the proportion of capacitance contributed by CMOS buffer gates becomes

less significant relative to wire capacitance. Therefore, compared to the SET-only design, the

dynamic power consumption of the SET/CMOS hybrid design also improves, but is still inferior

to that of the SET-only design.

Based on these results, we conclude that at room temperature, SET-only designs should be

used for local interconnect; for wire lengths greater than 1 mm, the SET/CMOS hybrid design

is more energy efficient. As temperature increases, the thermal energy impact increases. As

a result, the static power consumption of SETs increases. Therefore, the wire length at which

the SET/CMOS design begins to outperform the SET-only design decreases as temperature

increases.

169

 0.001

 0.01

 0.1

 1

 10

 100

 0.1 1 10R
at

io
 o

f S
E

T
 V

s.
 2

2n
m

 C
M

O
S

Wire length (mm)

Cross Point

Static power
Dynamic power

Total power

Figure 5.11. Power ratio of SET vs. hybrid interconnects for high performance
for CΣ = e2/(10kBT).

Tables 5.6 and 5.7 illustrate two interesting trends for global interconnect. The power con-

sumption of both the low-power and the high-performance CΣ≤ e2/(40kBT) hybrid SET/CMOS

designs decrease with increasing temperature. At low temperatures, the output voltage ranges

and driving currents for the SETs are small, increasing CMOS buffer static power consumption.

The power consumption of the high-performance CΣ ≤ e2/(10kBT) hybrid SET/CMOS inter-

connect design increases with increasing temperature because for this design, the SET output

voltage range is small, resulting in increasing CMOS leakage at higher temperatures due to de-

creasing CMOS threshold voltage. The other designs were immune to this effect due to larger

SET output voltage ranges.

5.4.1.3. Performance and Power Characterization of SET Non-Unate Logic. SETs support

the efficient implementation of some non-unate arithmetic functions. We evaluate the power

consumption and performance of an exclusive-or gate, a non-unate Boolean function widely

170

 0.01

 0.1

 1

 10

 100

 0.1 1 10R
at

io
 o

f S
E

T
 V

s.
 2

2n
m

 C
M

O
S

Wire length (mm)

Cross Point

Static power
Dynamic power

Total power

Figure 5.12. Power ratio of SET vs. hybrid interconnects for low power for
CΣ = e2/(10kBT).

Table 5.8. Latency and Energy Improvement For Exclusive-Or Design

Performance CΣ Performance Energy
setting constraint (F) improvement (%) improvement (%)
Battery e2/(10kBT) 40.8 64.1
Battery e2/(40kBT) 22.0 87.1
High e2/(10kBT) 32.1 84.6
High e2/(40kBT) 25.2 84.4

used in arithmetic logic, e.g., in addition and multiplication. We compared the two different

implementations described in Section 5.3.2.3, the proposed SET-based design and the CMOS-

style SET implementation. Figures 5.15, 5.16, 5.17, and 5.18 show the power and performance

characterization of these two designs at the high-performance and the low-power settings at both

CΣ = e2/(10kBT) and CΣ = e2/(40kBT) settings. These results clearly demonstrate the superior

power consumption and performance of this design style, which is not possible using BJTs,

CMOS, or threshold logic. Compared to the CMOS-style SET implementation, the design that

171

 0.001

 0.01

 0.1

 1

 10

 100

 0.1 1 10R
at

io
 o

f S
E

T
 V

s.
 2

2n
m

 C
M

O
S

Wire length (mm)

Cross Point

Static power
Dynamic power

Total power

Figure 5.13. Power ratio of SET vs. hybrid interconnects for high performance
for CΣ = e2/(40kBT).

exploits the periodic I–V curve of SETs achieves the latency and power consumption reductions

indicated in Table 5.8, i.e., approximately a 25% reduction in latency and 75% reduction in

energy consumption.

5.4.2. Characterization of High-Performance and Battery-Powered Embedded Applica-

tions

In this section, we characterize the performance and power consumption of IceFlex when

used to implement numerous general-purpose and application-specific processor cores. We

evaluate the suitability of IceFlex for use in both portable battery-powered and high-performance

embedded systems by determining is performance and energy efficiency when used to imple-

ment the processor cores described in Table 5.9. We divided processors into two categories

172

 0.01

 0.1

 1

 10

 100

 0.1 1 10R
at

io
 o

f S
E

T
 V

s.
 2

2n
m

 C
M

O
S

Wire length (mm)

Cross Point

Static power
Dynamic power

Total power

Figure 5.14. Power ratio of SET vs. hybrid interconnects for low power for
CΣ = e2/(40kBT).

for the convenience of the reader. In fact, one might potentially use a “High performance”

processor in a battery powered application, or vice versa.

The Xilinx Virtex-II XC2V2000 FPGA is used as a base case for comparison. Each appli-

cation is synthesized with Xilinx ISE to determine the number of required LUTs, maximum

frequency, and power consumption, using a switching probability of 10% [160] and a 65 nm

feature size. Then, we scale the FPGA synthesis results into a 22 nm process based on HSPICE

predictive technology model simulation results for the two technologies [161]. We used FPGA

synthesis software to estimate the number of IceFlex SELBs required. 16-entry Virtex-II LUTs

were used due to their functional (but not structural) similarity to IceFlex SELBs. For each de-

sign, the maximum frequency for IceFlex was determined by multiplying the number of combi-

national SELBs along the longest combinational path by the delay of an IceFlex SELB plus the

delay of a local interconnect. The Xilinx ISE synthesis software did not use global interconnects

173

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0 50 100 150 200 250 300
 0

 5

 10

 15

 20

 25

 30

 35

La
te

nc
y

(n
s)

P
ow

er
 (n

W
)

T (K)

Multi-gate style latency
CMOS style latency

Multi-gate style power
CMOS style power

Figure 5.15. Performance and power characterization of exclusive-or logic for
high performance for CΣ = e2/(10kBT).

for any of the synthesized processors. IceFlex power consumption was computed by taking the

sum of the power consumptions of all components at the maximum operating frequency.

Figures 5.19, 5.20, 5.21, 5.22, and Tables 5.10 and 5.11 show the operating frequencies and

energy efficiency in Joules per clock cycle of the XC2V2000 and various versions of IceFlex

for each benchmark application. As described in Section 5.3.1.5, recent progress in fabrication

is reducing the severity of the random background charge problem. If that work is successful,

it may be less critical to use redundancy and majority voting logic in IceFlex. Therefore, we

show the characteristics of both the spatially-redundant and non-spatially-redundant versions of

IceFlex.

5.4.2.1. Ultra-Low-Power Applications. The data in Tables 5.10 and 5.11 indicate that the

non-redundant, room temperature, low-power version of IceFlex is suitable for use in appli-

cations such as sensor network nodes, if they can be fabricated with sufficiently small island

174

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 50 100 150 200 250 300
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

La
te

nc
y

(n
s)

P
ow

er
 (n

W
)

T (K)

Multi-gate style latency
CMOS style latency

Multi-gate style power
CMOS style power

Figure 5.16. Performance and power characterization of exclusive-or logic for
low power for CΣ = e2/(10kBT) .

capacitances. In the following analysis, we shall focus on the AVR core, which is representative

of the most commonly-used processor for sensor network nodes. Our results indicate that, even

when adhering to the conservative CΣ ≤ e2/(40kBT) constraint, the power consumption of Ice-

Flex is low enough to permit an AVR processor to operate at 4 MHz to the shelf life of a single

AA battery, or to operate on energy scavenged from the environment.

Alkaline AA batteries typically have 2,800 mAH of energy and nominal operating voltages

of 1.5 V, i.e., they can deliver approximately 15,000 J. A low-power IceFlex AVR implementa-

tion running at 4 MHz consumes approximately 200 µW, permitting it to run for 20 years on one

AA battery, i.e., longer than the shelf life of most such batteries.

If we assume an energy scavenging volume of 5 cm3 and use Roundy’s power densities of

4 µW/cm3 for indoor solar energy, 200 µW/cm3 for vibrations, 10 µW/cm3 for daily temperature

variation, and 0.003 µW/cm3 for acoustic noise at 75 dB [162], we find that one sensor network

175

 0.007

 0.0075

 0.008

 0.0085

 0.009

 0.0095

 0.01

 0.0105

 0 50 100 150 200 250 300
 0

 10

 20

 30

 40

 50

 60

La
te

nc
y

(n
s)

P
ow

er
 (n

W
)

T (K)

Multi-gate style latency
CMOS style latency

Multi-gate style power
CMOS style power

Figure 5.17. Performance and power characterization of exclusive-or logic for
high performance for CΣ = e2/(40kBT).

node is capable of scavenging enough energy to power an IceFlex AVR processor running at

the maximum clock frequency from vibrations or daily temperature variation, at 3.7 MHz from

indoor solar energy, and at 2.8 kHz from 75 dB acoustic noise. However, SET circuits that

operate at room temperature and adhere to the CΣ ≤ e2/(40kBT) constraint will rely on fea-

tures with sizes approaching (but not crossing) physical limits. Although the use of SETs in

battery-powered applications has potential, it depends on the solution of formidable fabrication

challenges or the development of compact, low-power cooling methods.

5.4.2.2. Energy-Efficient High-Performance Applications. We can draw the following gen-

eral conclusions from Figures 5.19, 5.20, 5.21, and 5.22, as well as Tables 5.10 and 5.11. For

a wide range of processor cores, the SET-based IceFlex architecture is capable of achieving

energy efficiencies two orders of magnitude better than 22 nm CMOS-based FPGAs. Peak fre-

quencies ranging from 200 MHz to 2 GHz are maintained for all processors.

176

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 0 50 100 150 200 250 300
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

La
te

nc
y

(n
s)

P
ow

er
 (n

W
)

T (K)

Multi-gate style latency
CMOS style latency

Multi-gate style power
CMOS style power

Figure 5.18. Performance and power characterization of exclusive-or logic for
low power for CΣ = e2/(40kBT).

One might expect the high-performance version of IceFlex to consistently achieve higher

frequency but require more Joules per clock cycle than the low-power version of IceFlex. How-

ever, it typically requires slightly fewer Joules per clock cycle, as well. Joules per clock cycle

are computed at the maximum clock frequency of each processor. This has the effect of reduc-

ing the impact of static power consumption for processors with higher peak frequencies. If one

must operate at a low frequency, the power consumption of the low-power version of IceFlex

will generally be lower than that of the high-performance version. However, the reported val-

ues of Joules per clock cycle at maximum frequency have interesting implications. Although

SETs have extremely low power consumption, at room-temperature a large percentage of this

power consumption can be attributed to static power (see Figure 5.3). Therefore, for SET-based

architectures that are operated at room temperature and have low performance requirements, it

177

Table 5.9. Characterization of Synthesized Processors

Type Name Description
AES AES (Rijndael) IP core
AVR ATMega103 microcontroller

CORDIC Coordinate rotation computer
Battery ECC ECC core

Powered FPU 32-bit IEEE 754 floating-point unit
RS Reed Solomon encoder

USB USB 2.0 function
VC Video compression systems

ARM7 Power-efficient RISC CPU
ASPIDA DLX Synchronous / DLX core

Jam RISC A five-stage pipeline RISC CPU
LEON2 SPARC Entire SPARC V8 processor

High Microblaze RISC CPU
Performance miniMIPS MIPS I clone

MIPS MIPS processor
Plasma Supports most MIP I opcodes
UCore MIPS I integer only clone
YACC MIPS I clone

will generally be more energy efficient to operate the device at high frequency and periodically

enter a power-gated sleep mode than to continuously operate at a low frequency.

In high-performance applications for which parallel computation is appropriate, improved

energy efficiency can be traded for improved performance with the same energy budget. For

example, given a power budget of 125 mW and CΣ ≤ e2/(40kBT), one could use one LEON2

SPARC implemented with an FPGA and running at 85 MHz or 5 LEON2 SPARCs implemented

with the high-performance variant of IceFlex and operating at 1,025 MHz. This implies an

overall performance 60× higher than that of the FPGA version. Taken to its logical extreme,

assuming a power budget of 100 W and one instruction per cycle, one could execute 4.8 Terra

IPS. These numbers are intended to give the reader some indication of the potential to improve

178

Table 5.10. IceFlex Performance and Power Consumption at Room Temperature
For CΣ = e2/(10kBT)

FPGA IceFlex
22 nm CMOS Non-Redundant Non-Redundant Redundant Redundant

Benchmarks Technology∗ Battery Powered High Performance Battery Powered High Performance
Freq E req. Freq E req. Freq E req. Freq E req. Freq E req.

(MHz) (J/cycle) (MHz) (J/cycle) (MHz) (J/cycle) (MHz) (J/cycle) (MHz) (J/cycle)
ARM7 26.3 2.96e-09 3.5 3.93e-11 394.2 3.25e-11 3.3 2.85e-10 379.3 88.31

ASPIDA DLX 125.7 8.86e-10 20.4 4.49e-12 2325.6 3.72e-12 19.4 3.23e-11 2237.6 58.92
Jam RISC 95.8 8.92e-10 22.7 2.61e-12 2584.0 2.16e-12 21.5 1.90e-11 2486.3 38.50

LEON2 SPARC 85.9 1.88e-09 15.7 1.73e-11 1788.9 1.44e-11 14.9 1.27e-10 1721.3 177.77
Microblaze RISC 115.1 7.28e-10 29.2 1.38e-12 3322.3 1.14e-12 27.7 9.76e-12 3196.6 25.44

miniMIPS 88.0 4.87e-10 17.0 6.93e-12 1938.0 5.74e-12 16.1 5.00e-11 1864.7 76.01
MIPS 80.4 1.02e-09 18.6 3.07e-12 2114.2 2.54e-12 17.6 2.22e-11 2034.2 36.76

Plasma 75.3 1.13e-09 15.7 5.07e-12 1788.9 4.20e-12 14.9 3.73e-11 1721.3 52.31
UCore 136.4 8.19e-10 22.7 3.88e-12 2584.0 3.21e-12 21.5 2.80e-11 2486.3 56.87
YACC 72.1 1.18e-09 34.1 2.19e-12 3876.0 1.81e-12 32.3 1.58e-11 3729.4 48.11
AES 205.3 3.43e-10 51.1 1.66e-12 5813.9 1.38e-12 48.4 1.20e-11 5594.1 54.98
AVR 71.9 2.67e-10 17.0 3.81e-12 1938.0 3.16e-12 16.1 2.76e-11 1864.7 42.04

CORDIC 271.8 1.37e-10 204.4 1.34e-13 23255.8 1.11e-13 193.7 9.23e-13 22376.4 16.85
ECC 39.1 4.91e-10 20.4 4.42e-12 2325.6 3.66e-12 19.4 3.00e-11 2237.6 54.78
FPU 28.4 1.00e-09 4.5 5.89e-11 516.8 4.87e-11 4.3 4.33e-10 497.2 175.56
RS 496.7 1.28e-11 102.2 3.13e-14 11627.9 2.59e-14 96.9 2.21e-13 11188.2 2.02

USB 171.6 3.24e-10 68.1 1.05e-12 7751.9 8.72e-13 64.6 7.47e-12 7458.8 45.46
VC 114.2 1.24e-09 40.9 7.42e-12 4651.2 6.14e-12 38.7 5.38e-11 4475.3 196.21

Avg. Energy Impr. 95.60× 115.65× 12.27× 15.27×

performance given a power budget. In practice some of this performance will be lost due to par-

allelization inefficiency and off-chip communication latency. A similar comparison can be used

for the MIPS processor, for which IceFlex permits a 268× improvement in energy efficiency

compared with an FPGA implementation.

5.4.2.3. Reliability. As described in Section 5.3.2.5, we have designed SET-only MVL cir-

cuitry to support spatial redundancy in IceFlex. The exact probability of each SET failing is

currently unknown. Therefore, we characterized the reliability impact of a number of spatial

redundancy configurations in Section 5.3.2.5. We have analyzed the performance and power

of a configuration in which seven-way SELB spatial redundancy is used together with MVL

179

Table 5.11. IceFlex Performance and Power Consumption at Room Temperature
For CΣ = e2/(40kBT)

FPGA IceFlex
22 nm CMOS Non-Redundant Non-Redundant Redundant Redundant

Benchmarks Technology∗ Battery Powered High Performance Battery Powered High Performance
Freq E req. Freq E req. Freq E req. Freq E req. Freq E req.

(MHz) (J/cycle) (MHz) (J/cycle) (MHz) (J/cycle) (MHz) (J/cycle) (MHz) (J/cycle)
ARM7 26.3 2.96e-09 2.0 5.47e-11 224.0 4.79e-11 1.8 3.93e-10 216.9 3.28e-10

ASPIDA DLX 125.7 8.86e-10 11.5 6.37e-12 1333.3 5.58e-12 10.8 4.46e-11 1279.8 3.72e-11
Jam RISC 95.9 8.92e-10 12.8 3.65e-12 1481.5 3.19e-12 12.0 2.61e-11 1422.0 2.18e-11

LEON2 SPARC 85.9 1.88e-09 8.8 2.39e-11 1025.6 2.09e-11 8.3 1.74e-10 984.4 1.45e-10
Microblaze RISC 115.1 7.28e-10 16.4 2.01e-12 1904.8 1.76e-12 15.4 1.35e-11 1828.2 1.13e-11

miniMIPS 88.0 4.87e-10 9.6 9.78e-12 1111.1 8.56e-12 9.0 6.90e-11 1066.5 5.76e-11
MIPS 80.4 1.02e-09 10.5 4.34e-12 1212.1 3.80e-12 9.8 3.06e-11 1163.4 2.55e-11

Plasma 75.4 1.13e-09 8.8 6.91e-12 1025.6 6.05e-12 8.3 5.12e-11 984.4 4.27e-11
UCore 136.4 8.19e-10 12.8 5.45e-12 1481.5 4.78e-12 12.9 3.87e-11 1422.0 3.23e-11
YACC 72.1 1.18e-09 19.2 3.08e-12 2222.2 2.69e-12 18.0 2.18e-11 2132.9 1.82e-11
AES 205.3 3.43e-10 28.7 2.34e-12 3333.3 2.05e-12 26.9 1.66e-11 3199.4 1.39e-11
AVR 71.9 2.67e-10 9.6 5.34e-12 1111.1 4.67e-12 9.0 3.81e-11 1066.5 3.18e-11

CORDIC 271.8 1.37e-10 114.9 2.05e-13 13333.3 1.79e-13 107.7 1.29e-12 12797.5 1.08e-12
ECC 39.1 4.91e-10 11.5 6.92e-12 1333.3 6.05e-12 10.8 4.22e-11 1279.8 3.52e-11
FPU 28.4 1.00e-09 2.6 8.02e-11 296.3 7.02e-11 2.4 5.94e-10 284.4 4.96e-10
RS 496.7 1.28e-11 57.5 4.61e-14 6666.7 4.05e-14 53.9 3.07e-13 6398.8 2.57e-13

USB 171.6 3.24e-10 38.3 1.53e-12 4444.4 1.34e-12 35.9 1.04e-11 4265.9 8.65e-12
VC 114.16 1.24e-09 23.0 1.04e-11 2666.8 9.10e-12 21.6 7.41e-11 2559.51 6.19e-11

Avg. Energy Impr. 68.58× 78.46× 8.64× 10.55×

that internally uses fine-grained four-way SET parallelism. The MVL fault-tolerance hardware

delays are added to the delay of each SELB stage. Tables 5.10 and 5.11 shows the performance

and power implications of this configuration. Although the impact on maximum frequency is

low, the use of seven-way structural redundancy generally increases the power consumption by

5–10 times, depending on the processor core.

5.5. Conclusions

In this chapter, we have analyzed the impact of using SETs in architecture and circuit de-

sign; proposed IceFlex, a fault-tolerant, reconfigurable, hybrid SET/CMOS architecture for

180

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

ARM
7

ASPIDA
DLX

Jam
RISC

LEON2
SPARC

M
icroblaze

RISC

m
iniM

IPS

M
IPS

Plasm
a

UCore

YACC

AES
AVR

CORDIC

ECC
FPU

RS USB
VC

E
ne

rg
y

(J
/c

yc
le

)

22nm CMOS
Non-redundant battery powered-10KBT

Non-redundant high performance-10KBT
Non-redundant battery powered-40KBT

Non-redundant high performance-40KBT

Figure 5.19. Energy Efficiency of Non-Redundant Design

use in high-performance and battery-powered embedded systems; and evaluated the energy ef-

ficiency, power consumption, and performance of IceFlex in these applications. Our results

indicate that using SETs for computation poses many design challenges, but that many of these

challenges can be solved with the proposed architecture and circuit design techniques. In ad-

dition, we find that SETs have some unique properties that permit significant improvements

in circuit efficiency when compared with BJT, CMOS, and threshold logic based design. In

summary, we find that a hybrid SETs/CMOS architecture has the potential to improve energy

efficiency in battery-powered high-performance applications by two orders of magnitude com-

pared with 22 nm CMOS while permitting operating frequencies that are as high, or higher.

181

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

ARM
7

ASPIDA
DLX

Jam
RISC

LEON2
SPARC

M
icroblaze

RISC

m
iniM

IPS

M
IPS

Plasm
a

UCore

YACC

AES
AVR

CORDIC

ECC
FPU

RS USB
VC

E
ne

rg
y

(J
/c

yc
le

)

22nm CMOS
Redundant battery powered-10KBT

Redundant high performance-10KBT
Redundant battery powered-40KBT

Redundant high performance-40KBT

Figure 5.20. Energy Efficiency of Redundant Design

This improved energy efficiency can be traded for performance when operating within a power

dissipation budget. Although they hold great promise, the practical use of SETs will require

additional research into fault tolerance techniques, processing technologies, and novel circuit

designs. In particular, the use of SET-based designs in portable applications will either require

the fabrication of features with sizes approaching physical limits or the development of com-

pact, energy-efficient technologies permitting operation below ambient temperature. It is our

hope that this chapter provide a starting point for additional research in this area and reveals the

potential advantages and challenges of SET-based architectures.

182

 1

 10

 100

 1000

ARM
7

ASPIDA
DLX

Jam
RISC

LEON2
SPARC

M
icroblaze

RISC

m
iniM

IPS

M
IPS

Plasm
a

UCore

YACC

AES
AVR

CORDIC

ECC
FPU

RS USB
VC

F
re

q
(M

H
z)

Non-redundant battery powered-10KBT
Redundant battery powered-10KBT

Non-redundant battery powered-40KBT
Redundant battery powered-40KBT

Figure 5.21. Frequency of Battery Powered Design

183

 100

 1000

 10000

 100000

ARM
7

ASPIDA
DLX

Jam
RISC

LEON2
SPARC

M
icroblaze

RISC

m
iniM

IPS

M
IPS

Plasm
a

UCore

YACC

AES
AVR

CORDIC

ECC
FPU

RS USB
VC

F
re

q
(M

H
z)

Non-redundant high performance-10KBT
Redundant high performance-10KBT

Non-redundant high performance-40KBT
Redundant high performance-40KBT

Figure 5.22. Frequency of High Performance Design

184

CHAPTER 6

Three-Dimensional Chip-Multiprocessor Run-Time Thermal

Management

Three-dimensional (3D) integration has recently been proposed for chip-multiprocessor

(CMP) design to improve communication latency and integration density. However, the stacked

high power density layers of 3D CMPs increase the importance and difficulty of thermal man-

agement. In this chapter, we investigate the 3D CMP run-time thermal management problem

and develop efficient management techniques. This work makes the following main contri-

butions: (1) it identifies and describes the critical concepts required for optimal thermal man-

agement, namely the methods by which heterogeneity in both workload power characteristics

and processor core thermal characteristics should be exploited; (2) it describes continuously-

engaged hardware and operating system thermal management techniques that achieve better

performance than state-of-the art techniques while honoring the same temperature bound; and

(3) it presents a detailed evaluation of the proposed techniques using an integrated power, per-

formance, and temperature full-system simulation environment. The software components of

the proposed thermal management techniques have been implemented in the Linux 2.6.8 kernel.

This source code will be publicly released. The analysis and techniques developed in this work

provide a general solution for future both 3D and 2D CMPs. My major contribution to this

chapter is on the design of 3D CMP architecture and technology, framework buildup of the full

simulation system, and benchmark suites characteristics and generation.

185

6.1. Introduction

Control of power consumption and design complexity, as well as continued increases in

integration density, are currently major concerns in computer architecture. As a result, micro-

processor design is rapidly moving towards highly-scalable chip-multiprocessor (CMP) archi-

tectures. Today’s mainstream microprocessors are multi-core [13, 14, 15, 16, 17, 18]. The trend

for future CMPs is to increase the number of on-chip cores: 80-core prototypes have recently

been demonstrated by Intel [163].

Performance scalability is a major challenge in CMP design. Using the mainstream two-

dimensional (2D) planar CMOS fabrication process, on-chip interconnect shows poor scalabil-

ity in both performance and power consumption. Recently-developed three-dimensional (3D)

integration is a promising solution to overcome the limitations of 2D technology [23, 164, 165,

166]. By stacking multiple device layers connected through inter-die vias, 3D technology sig-

nificantly reduces on-chip wire length (especially for global and semi-global wires), enables

efficient interconnect and logic design, and further boosts logic integration density. This has

motivated computer architects to adopt 3D technology to highly-scalable CMP architecture de-

sign [164, 167, 168, 169].

Thermal issues are a large and growing concern for CMPs. Increasing chip power con-

sumption and temperature affect circuit reliability (via electromigration, time-dependent dielec-

tric breakdown, thermal cycling, etc.), power and energy consumption (via increased leakage

power), and system cost (via increased cooling and packaging cost). The use of 3D integration

magnifies power dissipation problems. Chip power density increases linearly with the num-

ber of vertically-stacked active circuit layers. In addition, the interconnect and bonding layers

186

used in 3D integration have low thermal conductivities, which further exacerbates thermal ef-

fects [164]. Temperature-related concerns that can be safely ignored in 2D planar process, such

as self-heating, and temperature-induced performance degradation, become increasingly promi-

nent in 3D CMPs. 3D integration holds promise but without solutions to the thermal problems

it brings, 3D CMPs will be impractical.

Run-time thermal management techniques, such as dynamic voltage scaling, clock throt-

tling, execution unit toggling, and workload migration, have been proposed in the recent past

for 2D high-performance microprocessors [170, 76, 171, 172, 173, 1]. Using these techniques,

cooling solutions and packages needn’t be designed for the worst-case power consumption.

Cooling cost can thereby be significantly reduced. Most past work, however, cannot effectively

optimize the performance and thermal tradeoff in 3D CMPs for the following reasons: (1) In

current microprocessors, thermal management mechanisms are primarily used as a means to

handle rare, worst-case processor power consumption and eliminate thermal emergencies. Al-

though they can introduce performance overhead, they are rarely invoked. In contrast, the higher

power densities of future 3D (and some 2D) CMPs will frequently require operation at or near

thermal limits. Power should be viewed as limited resource and processor cores should spend

carefully-budgeted amounts. Thermal management should be used as a constantly-engaged

proactive run-time optimizer for CMP performance and thermal efficiency, instead of a reac-

tive emergency measure. Therefore, its run-time performance and power overheads must be

small; (2) 3D CMPs have heterogeneous power and thermal characteristics. On-chip processor

cores have different cooling efficiencies. For instance, cores in the layers closer to the heat

sink have higher cooling efficiencies than those farther from the heatsink. Inter-core thermal

correlation is anisotropic. The thermal correlation between vertically-aligned processor cores

187

is much stronger than that between processor cores within the same layer. The power and

thermal heterogeneity of 3D CMP poses unique challenges for run-time thermal management.

Achieving optimal 3D CMP performance under a peak temperature constraint requires careful

system-wide control of each processor core’s performance and power consumption.

Our goal is to design 3D CMP thermal management techniques that deliver near-optimal

performance and guarantee thermal safety. To reach this goal, we must first answer two main

questions:

• How does the move to 3D CMP architectures impact the run-time thermal man-

agement problem? Our study identifies the challenges in 3D CMP thermal manage-

ment. In addition, it determines the conditions necessary for optimal job assignment

and power–thermal budgeting, and uses these to develop dynamic thermal management

guidelines. We have found that the optimal run-time solution, i.e., maximal overall

CMP performance subject to a temperature constraint, requires continuously-engaged,

global power and thermal budgeting that considers the heterogeneous thermal charac-

teristics of 3D CMPs.

• Is it possible to design an efficient thermal management technique that yields

near-optimal performance under peak temperature constraints for 3D CMPs?

We describe and evaluate a continuously-engaged, hardware–software run-time ther-

mal management solution for 3D CMPs that delivers better throughput than existing

work while guaranteeing thermal safety.

The M5 full-system simulation environment [174] is used to evaluate the proposed software-

hardware based thermal management solution. Full-system multiprocessor simulation permits

detailed evaluation of both the hardware and operating system (OS) components of the proposed

188

Die 1

Die 2

Device Layer

Metal Layers

Die−to−Die Vias

Die 2

Die 1

Backside Vias
I/O and Power

Heat Sink

Bulk Si

Heat Sink

Bulk Si

(a)

L2 Cache

Core

Core

Core

Core

Core

CoreCore

Core

(b)

Figure 6.1. (a) Comparison of face-to-face (left) and face-to-back (right) config-
urations for two stacked dies and (b) 3D three stacked die floorplan used in this
work.

thermal management techniques, making it possible to consider the effects of heterogeneity in

workloads. Thermal management patches to the 2.6.8 Linux kernel will be publicly released.

6.2. Three-Dimensional CMP Technology

This section surveys the current status of 3D integration in microprocessor design and in-

dicates the special thermal management challenges it will bring. A survey of related thermal

management is given in Section 6.7.

6.2.1. Past Work on 3D Integration Technology

Several 3D fabrication technologies have been proposed and developed [23,166,165]. Topol

et al. review the process steps and design aspects that were developed at IBM for 3D fabrica-

tion [23]. Tezzaron [166] and Samsung [165] develop 3D fabrication technologies and Intel is

planning to use 3D integration in Terascale project [163].

189

As shown in Figure 6.1, there are two ways to stack two device layers: face-to-face and

face-to-back. For designs with more than two layers, face-to-back bonding decreases worst-

case inter-wafer via delay.

3D integration increases the importance of, and complicates, thermal management. The 2D

heat flux density through the heatsink increases roughly linearly with the number of stacked

wafers. As a result, unless per-layer power densities are greatly reduced, 3D CMPs will often

operate near their thermal limits.

In addition to increasing the importance of thermal management, 3D design complicates

thermal management policy design. In contrast with 2D CMPs, the temperatures of some pairs

of 3D CMP processor cores, e.g., vertically-adjacent cores, are highly correlated. Moreover,

in 2D CMPs, processor cores have similar thermal resistance to the ambient, and high thermal

resistance to other cores. In 3D CMPs, core resistance to ambient and thermal interaction are

highly-heterogeneous. For example, heat generated in cores farther from the heatsink must flow

through more layers of silicon and polyimide bonding before reaching the heatsink.

6.2.2. Past work on 3D CMP Architecture

This section surveys recent research on 3D CMP design. Black et al. evaluate the perfor-

mance improvement yielded by stacking memory and logic layers [164]. Healy et al. propose a

microarchitecture-level floorplanning algorithm that works for both 2D and 3D ICs [175]. Kgil

et al. propose an architecture in which processing core layers are vertically integrated with main

memory consisting of multiple DRAM dies, permitting performance and power consumption

improvements compared to 2D designs [168]. Li et al. propose a 3D topology that combines

190

the benefits of network-on-chip and 3D technology to reduce L2 cache latencies [167]. Tsai et

al. explore cache implementation in 3D technologies [176].

Thermal issues are critical for 3D integration. Puttaswamy and Loh evaluated the thermal

impact of 3D integration on high-performance microprocessors [177]. They also proposed a

family of techniques that reduce 3D power density and assign more power to the die closet

to the heat sink [178]. These approaches are principally applied at design time. Skadron et

al. describe a compact thermal analysis technique that has been extended to support 3D inte-

gration [76]. Loi et al. studied processor and memory behavior under temperature constraints

for 3D technology [179]. Link and Vijaykrishnan examine thermal effects in 3D technologies

and show that vertical temperature differences are much smaller than horizontal temperature

differences [180].

6.3. Thermal Properties of 3D CMPs

This section describes the properties of 3D CMPs. It also points out special thermal charac-

teristics that must be considered to permit high-quality thermal management.

6.3.1. 3D CMP Power Model

In order to determine temperature profile, the power profile must first be known. We model

both dynamic power consumption and leakage power consumption [181]. Dependence on volt-

age, switching activity, capacitance, and temperature are considered. These equations are used

together with a Wattch-based EV6 power model [182] to determine the power consumption

distribution among architectural units.

191

6.3.2. 3D CMP Thermal Model

There are two classes of thermal analysis problems: steady-state and dynamic. Dynamic

thermal analysis considers transient effects, i.e., the resistance of materials to sudden tempera-

ture change, and is necessary to accurately model systems in which power consumption changes

frequently. However, efficient and accurate dynamic thermal analysis is a hard problem. The

3D CMP and cooling structure may be decomposed into nearly isothermal (of uniform temper-

ature) thermal elements and finite difference techniques are used to solve for temperature as a

function of time and space. Fundamentally, the following equation must be efficiently solved

for T .

CdT (t)/dt +AT (t) = Pu(t)(6.1)

In this equation, given a system of N thermal elements, C is a an N×N matrix with thermal

element heat capacities along the diagonal and zeros elsewhere, T is a length N thermal element

temperature vector, t is time, A is an N×N thermal conductance matrix containing the conduc-

tances of adjacent elements at the corresponding row–column intersections and zeros elsewhere,

P is a length N thermal element power vector, and u(t) is a step function that changes from 0

to 1 at time t. Based on 3D power profiles and the 3D CMP thermal model, the temperature at

each point in time may be computed. We use a frequency-domain moment matching technique

for thermal analysis [99].

6.3.3. Special Thermal Properties of 3D CMPs

3D CMPs have a number of special thermal characteristics that must be considered during

thermal management. When the ratio of thermal conductances to the ambient and the thermal

192

conductance between two processor cores is small, the temperatures of the two cores are highly

correlated. In 2D CMPs the temperatures of all processor cores are moderately correlated, with

only slight variation due to physical adjacency. As a consequence, local power management

techniques can do a fair job at minimizing or bounding temperature. On the contrary, 3D CMPs

exhibit two types of thermal heterogeneity that require special treatment during thermal man-

agement.

Let us now consider thermal heterogeneity in 3D CMPs more formally. Power consumed in

one processor may influence the temperatures of other thermally-correlated processors. Equa-

tion 6.2 can be used as a starting point to compute the relative impact of a unit change in power

consumption in one core on the temperature of another core.

(6.2)

T0

T1

...

Tn−1

=

r0,0 r0,1 . . . r0,n−1

r1,0 r1,1 . . . r1,n−1

...
...

...
...

rn−1,0 rn−1,1 . . . rn−1,n−1

P0

P1

...

Pn−1

In this equation, R = A−1. This matrix is conventionally called the thermal resistance ma-

trix. However, it is more useful and accurate to view it as a power–temperature impact ma-

trix. ri, j in R is the thermal contribution of a unit of power consumption on core j to core i’s

temperature. Assume for a moment that Core 0 is horizontally adjacent to Core 1 and verti-

cally adjacent to Core 2. In this case, r0,1 is a small value, on the order of 0.4 K/W; r0,2 is

1.2 K/W approximately three times as large; and r0,0 is also large, approximately 1.2 K/W or

1.4 K/W depending on whether the processor is adjacent to the heatsink or farther from it. These

widely-varying power–temperature impact values make clear the heterogeneity of 3D CMPs.

Vertically-adjacent processor cores have extremely high, e.g., 3–4× thermal correlation relative

193

to other processor pairs. Moreover, the thermal resistance to the ambient varies depending on

the layer of a processor core. This heterogeneity requires global power-thermal budgeting.

6.4. 3D CMP Thermal Management

Below, we define and analyze the thermal management problem for 3D CMPs and determine

the policies necessary for performance optimization under temperature constraints. This study

will be used to guide the development of the run-time thermal management techniques described

in Section 6.4.3.

6.4.1. Problem Definition

Given a 3D CMP with N on-chip processor cores, our goal is to maximize the CMP through-

put under run-time thermal constraints. We consider the following two throughput metrics.

throughputCMP instruction =
N−1

∑
i=0

IPCi× freqi,(6.3)

the total number instructions executed by the CMP per second, i.e., the raw throughput and

throughputCMP frequency =
N−1

∑
i=0

freqi,(6.4)

the sum of the frequencies of the processor cores of the CMP, i.e., the multiprocessor analog

of raw processor frequency. Run-time thermal safety requires that Ti ≤ TMAX,∀0 ≤ i ≤ N− 1,

i.e., the temperature of each processor core cannot exceed the maximum temperature constraint,

TMAX.

194

Conventional run-time thermal management techniques assume that temperature constraints

will rarely be approached, and can be prevented by local emergency measures with little im-

pact on performance. However, in future many-core 3D CMPs, processor cores will frequently

operate at or near their temperature bounds. Therefore, 3D CMPs require continuously-engaged

global power and thermal budgeting to maximize performance while maintaining thermal safety.

6.4.2. Conditions for Optimal 3D CMP Thermal Management and Derivations of Result-

ing Policy Guidelines

This section derives performance optimization guidelines for workload assignment and

power–thermal budgeting.

Observation 1 To maximize CMP throughput, processor cores should operate at different volt-

ages and frequencies due to heterogeneous processor core thermal characteristics and hetero-

geneous run-time workloads.

As described in Section 6.3, processor cores in a 3D CMP are thermally correlated. The

temperature of each core i, is affected by the power consumptions of all cores, as follows:

(6.5) Ti = ri,0×power0 + · · ·+ ri,N−1×powerN−1 ≤ TMAX

where Ti is the temperature of processor core i, ri, j,{i, j} ∈ [0,N− 1] is an inter-core thermal

impact coefficient, which indicates the impact of a unit power consumption of core j on the

temperature of core i. power j is core j’s power consumption. N is the number of processor

cores of the CMP.

To explain the relationship between performance and thermal impact, we define the follow-

ing metrics: TIPi, j = dTi/d f j, the thermal impact on processor core i due to the increase of core

195

j’s frequency, and TIPi, j = dTi/d f jdIPC j, the thermal impact on processor core i due to the

increase in core j’s instructions per second.

Intuitively, TIP is the thermal cost per unit increase in processor core performance. Subject

to a temperature bound, maximizing CMP performance requires that all the processor cores

achieve the same thermal impact per performance improvement on the maximum-temperature

core, i.e.,

(6.6) TIPi,0 ≡ TIPi,1 ≡ ·· · ≡ TIPi,N−1

Given that dynamic power consumption, Pj = ξ jV 2
j f j, where Vj and f j are the supply voltage

and frequency of processor core j, yields

d(ri,0ξ0V 2
0 f0)/d f0 ≡ d(ri,1ξ1V 2

1 f1)/d f1 ≡ . . .

≡ d(ri,N−1ξN−1V 2
N−1 fN−1)/d fN−1(6.7)

d(ri,0ξ0V 2
0 f0)

d f0dIPC0
≡

d(ri,1ξ1V 2
1 f1)

d f1dIPC1
≡ . . .

≡
d(ri,N−1ξN−1V 2

N−1 fN−1)
d fN−1dIPCN−1

(6.8)

This result indicates that processor cores with heterogeneous power and thermal characteris-

tics, i.e., different power–thermal impact coefficients ri, j, running jobs with different switched

capacitances ξ j, should be clocked at different frequencies. Similar conclusions can be drawn

when both dynamic and leakage power variants are considered.

Equation 6.6 provides the optimal-performance solution that satisfies the thermal constraint

of processor core i. However, due to the heterogeneous power and thermal characteristics of

196

cores, this solution may not honor the temperature constraints of other cores. In addition, un-

der different run-time workload distributions, Equation 6.6 produces different performances.

Next, we will derive workload assignment as well as power and thermal budgeting policies for

3D CMPs. Workload assignment is used to optimize workload distribution for maximal per-

formance optimization potential. Given a particular workload (i.e., thread distribution) power–

thermal budgeting is used to control the voltages and frequencies of processor cores to optimize

3D CMP performance under temperature constraints.

As shown in Section 6.3, the inter-layer and intra-layer thermal characteristics of 3D CMP

show distinct differences. This leads to different thermal management policies for inter-layer

and intra-layer processor cores. In the following sections, we determine the conditions required

for optimal 3D CMP thermal management and derive the resulting policy guidelines.

6.4.2.1. Inter-Layer Power–Thermal Budgeting. Inter-layer processor cores have hetero-

geneous thermal characteristics. We now derive thermal heterogeneity aware guidelines for

power–thermal budgeting among vertically-aligned cores.

Guideline I To maximize aggregate CMP frequency or instruction throughput, power–thermal

budget assignment among inter-layer processor cores should follow Equation 6.6. As shown in

Section 6.3, among each group of vertically-aligned processor cores, the processor core i far-

thest from the heat sink has the lowest thermal efficiency and the highest temperature. There-

fore, given the thermal constraint for processor core i, the performance-optimal voltage and

frequency setup produced by Equation 6.6 also guarantees the thermal safety for other proces-

sor cores within the group. In other words, Equation 6.6 provides the performance-optimal

power–thermal budget policy for inter-layer, vertically-aligned processor cores.

197

6.4.2.2. Inter-Layer Workload Assignment. Run-time workload has heterogeneous perfor-

mance (IPC) and power (switched capacitance) characteristics. The following guidance pro-

vides the performance-optimal workload assignment policy among inter-layer, vertically aligned

processor cores.

Guideline II Given jobs with different switched capacitances, the maximal CMP throughput can

only be achieved by maximizing the spatial heterogeneity of the switched capacitance during

workload distribution. To maximize aggregate CMP frequency (Equation 6.4), jobs with higher

switched capacitances should be assigned to cores with lower thermal efficiencies.

Consider two vertically-aligned processor cores i and j. Core i is farther from the heat

sink. Hence, Ti > Tj and ri,i > ri, j. Assume the jobs running on both cores have the same

switched capacitance ξ. To maximize aggregate CMP frequency, Equation 6.6 yields fi < f j

and ri,ipoweri < ri, jpower j. Next, consider the effect of adjusting the workload assignment

to increase the switched capacitance of the thread assigned to core i by δξ and decrease the

switched capacitance of the jobs assigned to core j by δξ. In other words, we assign jobs

with higher switched capacitances to processor cores with lower thermal efficiencies. The peak

temperature (core i’s temperature) changes δTi = δξ/ξ× (ri,ipoweri− ri, jpower j) < 0, i.e., the

temperature decreases. Therefore, both core frequencies can be further increased and aggregate

CMP frequency can be further improved.

Guideline III Given jobs with different IPCs, the maximal CMP throughput can only be achieved

by maximizing the IPC heterogeneity during workload distribution. To maximize instruction

throughput (Equation 6.3), jobs with higher IPCs should be assigned to cores with higher ther-

mal efficiencies. The derivation of this guideline is similar to that of the first two guidelines.

198

6.4.2.3. Intra-Layer Power–Thermal Budgeting. Intra-layer cores have mostly-homogeneous

thermal characteristics with almost identical self power–thermal impacts (see Section 6.3), i.e.,

ri,i ≈ r j, j, where core i and core j are in the same layer. In addition, the inter-core thermal im-

pact is significantly lower than the self power–thermal impact of each core, i.e., ri,i� ri, j. We

derive the following policies for intra-layer power–thermal budgeting and workload assignment.

Guideline IV To maximize aggregate CMP frequency or instruction throughput, power–thermal

budget and workload should be balanced among intra-layer processor cores.

Consider two intra-layer processor cores i and j with ri,i ≡ r j, j � ri, j ≡ r j,i. Assume both

cores are assigned the same voltage V , frequency f , and workload (ξ and IPC). Therefore,

Ti ≡ Tj. Next, by adjusting the workload assignment, we increase the switched capacitance

(IPC) of the jobs assigned to one core by δξ (δIPC) and decrease the switched capacitance

(IPC) of the jobs assigned to another core. Since ri,i,r j, j � ri, j,r j,i, the peak temperature of

these two cores will increase. In other words, introducing intra-layer workload heterogeneity

degrades CMP thermal efficiency.

The polices and guidances derived in this section will drive our design of a run-time thermal

management solution to maximize thermally-safe 3D CMP performance.

6.4.3. ThermOS: 3D CMP Thermal Management

Based on the thermal management guidelines developed in Sections 6.4.2.1–6.4.2.3, we

designed ThermOS, a hardware–software run-time thermal management solution that optimizes

3D CMP performance subject to a peak temperature constraint. The following sections explain

its components.

199

6.4.3.1. Temperature Monitoring. ThermOS gathers CMP temperature profiles at run-time,

which are used to guide thermal-aware workload migration as well as power–thermal budgeting.

Either thermal sensors or online thermal analysis may be used for on-line temperature monitor-

ing. Thermal sensors have been widely used in high-performance microprocessors [183, 13].

Efficient and accurate software-based online thermal analysis techniques have also been devel-

oped [76].

6.4.3.2. Workload Monitoring. In addition to CMP temperature profile, ThermOS gathers

run-time performance and power characteristics to guide job migration as well as power–thermal

budgeting. A processor core’s switched capacitance is a function of the capacitances of its

functional units and the corresponding run-time switching activities resulting from its work-

load. Most modern processors provide hardware performance counters for monitoring specific

events [13, 184]. These performance counters can be used to inform accurate and efficient

regression-based run-time performance and power models [185, 186]. ThermOS uses this tech-

nique for linear regression estimation of run-time processor core switched capacitances. The

model is developed offline and implemented in the OS. At run-time, each processor core’s hard-

ware performance counter values are gathered periodically, triggered by OS timer interrupts

(every 1 ms in Linux 2.6.8 kernel) and used for switched capacitance estimation.

6.4.3.3. Distributed Thermal-Aware Workload Migration. ThermOS contains a distributed

online workload migration technique to support performance optimization. The proposed tech-

nique follows the guidelines derived in Section 6.4.2 and carefully handles the inter-layer ther-

mal heterogeneities of 3D CMP and workload switched capacitance heterogeneities. To opti-

mize CMP instruction throughput, ThermOS migrates jobs with high IPCs to processor cores

with higher thermal efficiencies. In contrast, to optimize aggregate CMP frequency, ThermOS

200

migrates jobs with high switched capacitances to processor cores with lower thermal efficien-

cies. A distributed technique that swaps neighboring jobs developed.

Consider two vertically-adjacent processor cores: i and j. Assume core i has higher thermal

efficiency than core j. To optimize instruction throughput, ThermOS compares the jobs stored

in each processor core’s job queue. It first identifies the lowest-IPC job (IPCMINi) on core i

and the highest-IPC job (IPCMAX j) on core j. If IPCMINi < IPCMAX j, ThermOS swaps the

corresponding jobs. Intra-layer thermal heterogeneity and thermal correlation are small. There-

fore, ThermOS balances the intra-layer IPC distribution to optimize instruction throughput or

the switched capacitance distribution to optimize aggregate CMP frequency. Average IPCs or

switched capacitance values of jobs on intra-layer adjacent cores are compared, swapping jobs

to further balance the distribution. The proposed distributed thermal-aware workload migration

technique has been integrated within the default Linux kernel workload balancing policy. In the

current implementation, workload migration occurs every 20 ms.

6.4.3.4. Global Power–Thermal Budgeting. ThermOS dynamically adjusts the power–thermal

budgets of processor cores to optimize 3D CMP performance. Following the guidelines in Sec-

tion 6.4.2, ThermOS balances the power–thermal budget assignment among processor cores in

the same layer. Equation 6.6 is used to guide inter-layer power–thermal budgeting. The leakage-

temperature dependency introduces temperature variables on both sides of Equation 6.6. Solv-

ing this equation requires numerical iteration and detailed chip-package thermal analysis which

are computationally intensive. To minimize run-time overhead, we have developed an hybrid

offline/online budgeting technique.

201

Given the switched capacitance (or IPC) range of the workload, the optimal voltage and

frequency settings for inter-layer, vertically-aligned processor cores are pre-computed. The of-

fline component of the budgeting algorithm is iterative. During each iteration, given the IPC

and the switched capacitance of each processor core, Equation 6.5 and Equation 6.6 are used

to determine the optimal processor core power–thermal budgets. Thermal analysis is then used

to estimate the 3D CMP thermal profile and update the leakage power estimate. This pro-

cess iterates until the chip-package temperature profile converges, subject to feedback from

temperature-dependent leakage power consumption. The final voltage and frequency config-

urations are stored in a look-up table for efficient use during online, run-time power–thermal

budgeting. Given the number of processor layers L and the number of switched capacitance

settings n, the lookup table has nL entries. Increasing n, i.e., the resolution of the switched

capacitance index, improves performance but increases storage overhead, as evaluated in Sec-

tion 6.6.3.2. In ThermOS, run-time power–thermal budgeting is implemented in Linux kernel

and invoked periodically. In the current implementation, periods ranging from 1 ms to 100 ms

are supported.

6.4.3.5. Distributed Run-Time Thermal Management. ThermOS uses distributed run-time

thermal management to honor the power and thermal budgets described in Section 6.4.3.4 and

adhere to a temperature constraint. Periodically, each processor core adjusts its voltage and fre-

quency based on its assigned power–thermal budget. However, transient variations may not be

immediately detected by the OS. In order to honor the temperature constraint, ThermOS uses

local dynamic voltage and frequency scaling (DVFS) and clock throttling to react to transient

variation with lower latency than global power–thermal budgeting. DVFS has less performance

202

impact per unit power reduction than clock throttling; however, clock throttling generally al-

lows lower-latency and finer-grained control. In ThermOS, local DVFS continuously tracks

temperature changes. Clock throttling is used as a final defense to guarantee thermal safety.

6.5. Experimental Setup

This section describes the experimental setup used to evaluate the proposed 3D CMP dy-

namic thermal management techniques. We describe our simulation and OS infrastructure, 3D

chip and package models, and benchmark suites.

6.5.1. Infrastructure

Performance and temperature estimation for 3D CMP architectures is challenging. Estimat-

ing spatial and temporal thermal profiles requires time-varying power profiles. This, in turn,

requires timing and power analysis. To accurately estimate the run-time characteristics of 3D

CMPs, we developed a full-system multiprocessor simulation environment with integrated pro-

cessor performance, power, and thermal models.

6.5.1.1. Full-System Simulation Setup. We use the M5 Full System Simulator [174]. M5

provides a detailed, cycle-accurate out-of-order multiprocessor simulation mode and a faster

functional simulation mode. We use a combination of full-system checkpoints and the func-

tional simulation mode to boot the system and fast-forward past the initialization portion of our

benchmarks. We then switch to detailed simulation mode to evaluate thermal and performance

characteristics.

We added a Wattch-based EV6 power model to M5 [182], scaled to the 90 nm process. Our

cache power model is based on CACTI [187]. Static power consumption was estimated using

203

Table 6.1. Design Parameters for Alpha 21264

Alpha 21264 Configuration (90 nm)
Die size 4.56×4.56 mm2

Frequency and Voltage 2 GHz, 1.2 V
Instruction Queue 64 entries
Functional Units 4IXU, 2FPU, 1BPU

Physical Registers 80 GPR, 72 FPR
Branch Predictor 1 K local, 4 K global

Memory Hierarchy
L1 DCache/core 32 KB, 2-way, 64 B blocks, 3 cycle lat.
L1 ICache/core 64 KB, 2-way, 64 B blocks, 1 cycle lat.

Shared L2 Cache 16 MB, 8-way LRU, 64 B blocks, 25 cycle lat.

Table 6.2. 3D Package Setup

Layer Thermal Heat Depth
cond. (W/mK) cap. (J/m3K) (µm)

Eff. Active Layer (Silicon) 160.11 1.66×106 50
Eff. Interface Layer (Polyimide) 6.83 3.99 10

Heatsink (Cu) 400 3.55×106 6,900
Thermal Grease [188] 3–5 (5 used) 4* 50

* From configuration used in HotSpot [76].

an area-based, temperature-sensitive leakage model [93]. A 3D frequency-domain dynamic

thermal analysis package was used [99].

6.5.1.2. Processor Architecture. We evaluate a three-layer front-to-back CMP structure. As

shown in 6.1(b), there are eight Alpha 21264 microprocessor cores in the top two layers, each

layer contains four microprocessor cores. Layers are connected with polyimide glue. There

is 50 µm of thermal grease between the heatsink and die. Parameters for thermal grease and

interface material follow Samson et al. [188].

Each processor core has 64 KB each of L1 data and instruction cache. There is a 16 MB

shared L2 cache on Layer 2 and 1,024 MB of main memory. A 90 nm technology is modeled.

Details can be found in the Table 6.1 and Table 6.2.

The via density in a region follows: ρvia = nAvia/wh where n is the number of vias in the

region, Avia is the cross section area of each via, w is the width of the region, and h is the height

of the region. The relationship between via density and effective vertical thermal conductivity

204

follows:

(6.9) Ke f f = ρviaKvia +(1−ρvia)Klayer

where Kvia is the thermal conductivity of the via material and Klayer is thermal conductivity of

the region without any vias. Here, the via is assumed to be cooper with a thermal conductivity

of 400 W/mK. A typical via size is 15×15 µm2.

For the Alpha 21264, there are 587 package pins (389 die pins). Interconnect vias use

0.64% of the core area. This results in the effective bulk silicon layer and interface layer thermal

conductivities reported in Table 6.2. There are three types of heat sink: extruded, folded-fin,

and integrated vapor-chamber. In this chapter, we assume an extruded heat sink with a thermal

conductivity of 400 W/mK [189].

6.5.1.3. Operating System. The ThermOS run-time thermal management algorithms are im-

plemented within the Linux-2.6.8 kernel. We made two main changes to the kernel:

• Performance-counter based power modeling: We enable OS-level power estimation

using performance counters. Hardware event counters of the sort typical for modern

processors were added to M5. A regression-based power model was added to the

OS [185].

• Power–thermal budgeting, task migration, and thermal management: The proposed

power–thermal budgeting and thermal-aware task migration techniques are implemented

in the Linux kernel. We modified M5 to support kernel control of DVFS and clock

throttling as well as temperature monitoring through privileged machine registers.

205

Table 6.3. Benchmark Characteristics

Group Name Avg. Avg. Max. Max.
IPC Power (W) T δT

gcc 3.36 14.67 60.34 2.56

SPEC High IPC applu 3.13 14.37 59.14 2.28
gzip 2.78 13.34 58.37 3.39

mgrid 2.58 13.66 59.25 3.06
twolf 1.58 11.33 56.30 2.26

SPEC Low IPC parser 1.55 10.41 55.57 2.81
vpr 1.47 10.63 55.93 2.88
mcf 1.25 10.91 57.59 2.50

Media High IPC gsmenc 3.10 13.50 58.46 0.29
jpegdec 2.72 13.42 57.72 0.29

Media Low IPC g721enc 1.94 11.91 57.26 0.25

Table 6.4. Benchmark Suites

Group Filename Clusters Benchmarks
hv-hipc High T var., high IPC gzip, mgrid
lv-hipc Low T var., high IPC applu, gcc
hv-lipc High T var., low IPC parser, vpr

SPEC lv-lipc Low T var., low IPC twolf, mcf
hv-mipc1 High T var., mixed IPC gzip, parser
hv-mipc2 High T var., mixed IPC mgrid, vpr
lv-mipc1 Low T var., mixed IPC applu, mcf
lv-mipc2 Low T var., mixed IPC gcc, twolf

Media media-hipc High IPC jpegdec, gsmenc
media-mipc Mixed IPC gsmenc, g721enc

6.5.2. Benchmark Suites

Two benchmark suites were used: SPEC2000 and Media Bench. Phansalkar et al. did a

detailed analysis on SPEC2000 and found that it can be divided into different groups based on

several microarchitecture-independent metrics [190]. In order to build up a complete set of test

cases for our proposed techniques, we selected two microarchitecture-independent metrics: IPC

and expected temperature variation.

• IPC: IPC is relatively stable and is approximately linearly-related to power consump-

tion. Power consumption, in turn, has a strong influence on temperature.

• Expected temperature variation: The main motivation of our work is to maximize

performance subject to a temperature constraint. We have prepared a set of benchmarks

with a wide range of spatial and temporal thermal characteristics.

206

Based on these metrics, the benchmarks were analyzed, yielding the results in Table 6.3. Dy-

namic power traces were gathered during 500 ms to determine average power consumption, the

temporal average of peak temperature, and the maximum peak temperature variation. Bench-

marks containing mixes of high and low thermal variation and IPC were used (see Table 6.4).

Each test case contained eight copies each of two benchmarks.

6.6. Experimental Results

This section evaluates ThermOS, the proposed run-time thermal management solution for

3D CMPs. The following design metrics have been used.

• Effectiveness: The capability to maximize performance while guaranteeing thermal

safety, which is accomplished by explicitly considering the power and thermal hetero-

geneity of 3D CMPs and

• Efficiency: In a thermal bound CMP, run-time thermal management needs to be con-

stantly engaged to optimize system performance and thermal efficiency. Therefore,

the run-time performance and thermal overhead introduced by its OS and hardware

components must be small.

6.6.1. Comparison of ThermOS With Alternatives

In this section, we first contrast ThermOS with solutions used in existing processors. Then

we provide a detailed quantitative comparison with the most recent state-of-the-art continuously-

engaged thermal management technique.

207

 10

 15

 20

 25

 30

m
edia-m
ipc

m
edia-hipc

lv-m
ipc2

lv-m
ipc1

lv-lipc

lv-hipc

hv-m
ipc2

hv-m
ipc1

hv-lipc

hv-hipc

T
h
ro

u
g
h
p
u
t
(B

IP
S

)
ThermOS

Distributed approach

Figure 6.2. Comparison of ThermOS and Distributed Approach [1] CMP in-
struction throughput (defined in Equation 6.3).

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

m
edia-m
ipc

m
edia-hipc

lv-m
ipc2

lv-m
ipc1

lv-lipc

lv-hipc

hv-m
ipc2

hv-m
ipc1

hv-lipc

hv-hipc

T
h
ro

u
g
h
p
u
t
(G

H
z
)

ThermOS
Distributed approach

Figure 6.3. Comparison of ThermOS and Distributed Approach [1] aggregate
CMP frequencies (defined in Equation 6.4).

Most thermal management techniques used in practice react to emergencies instead of being

continuously-engaged. They detect dangerously-high temperatures and reduce power consump-

tion, generally via hardware clock throttling. Such solutions are adequate when temperatures

approach their limits only very rarely. However, high power densities and constraints on cooling

costs require proactive thermal management. Some researchers have moved in this direction.

208

Donald and Martonosi [1] proposed a distributed continuously-engaged thermal manage-

ment technique. Their approach is based on closed-loop control theory, and continuously adjusts

the voltage and frequency of each processor core to maintain safe temperatures. Each core has

its own controller and the controllers act independently. This permits significantly better perfor-

mance than reactive approaches because DVFS can generally reduce power consumption by the

same amount as clock throttling with less performance penalty. In fact, their results indicate that,

compared with a stop-go based thermal control policy, distributed DVFS improves throughput

by 2.5×. However, independent local control has limitations. The power consumed in one

processor can impact the temperatures of other processors in nonuniform ways. As a result,

continuously-engaged global control can permit better performance than continuously-engaged

local control. This is especially true for 3D architectures, in which the power consumption of

a particular processor core has great impact on the temperature of vertically-adjacent cores and

relatively less impact on other cores.

ThermOS uses continuously-engaged, distributed global/local control to permit high per-

formance, thermally-safe execution on 3D and 2D architectures. It has two primary differ-

ences with state-of-the-art temperature control techniques. First, it uses global power budget-

ing that takes into account the thermal interaction between processor cores. Second, it directs

temperature-aware workload migration of threads among processor cores.

Figure 6.2 and Figure 6.3 show 3D CMP run-time throughput, in terms of instruction

throughput (Equation 6.3) and aggregate CMP frequency (Equation 6.4), achieved by Ther-

mOS and Donald’s distributed approach. These results demonstrate that, compared to Donald’s

distributed approach, ThermOS improves instruction throughput by 30.91% on average (rang-

ing from 15.22% to 53.79%) and improves aggregate CMP frequency by 27.63% on average

209

(ranging from 10.23% to 35.13%). The performance improvement can be explained as follows.

In 3D CMPs, the strong thermal correlation among inter-layer vertically aligned processor cores

has significant impact on the temperature of the processor layer farthest from the heat sink. Us-

ing the proposed power–thermal budgeting and thermal-aware workload migration techniques,

ThermOS permits appropriate power budgets for each group of vertically-aligned processor

cores. In addition, it uses DVFS to optimize the power–thermal efficiency of each processor

core. Together, these techniques maximize overall throughput. The Donald’s work, on the other

hand, is a fully distributed, processor-local technique. Using this technique, each processor

core regulates its power and performance to ensure local thermal safety without considering the

thermal impact on neighboring cores. As a result, vertically-aligned processor cores are unable

to efficiently share the power and thermal budget, which can reduce CMP performance.

In this section, we measure the performance permitted using a thermal management tech-

nique with near-optimal performance, but vulnerability to thermal violations due to transient

changes in workload. We then show that the performance reduction resulting from the addi-

tional management techniques ThermOS uses to guarantee thermal safety is small.

ThermOS uses the thermal-aware workload migration and global power–thermal budget-

ing guidelines derived in Section 6.4.2. These techniques can potentially offer near-optimal

run-time performance subject to a temperature constraint. However, they do not immediately

react to transient workload variation occurring in individual processor cores, which may cause

run-time thermal violations. ThermOS uses distributed run-time thermal control techniques to

guarantee thermal safety, i.e., local DVFS and clock throttling dynamically adjusts the voltage

and frequency of each processor core to eliminate thermal emergencies. Compared to DVFS,

clock throttling is more responsive but has more performance impact. Therefore, in ThermOS,

210

 0

 5

 10

 15

 20

 25

 30

 35

 40

m
edia-m
ipc

m
edia-hipc

lv-m
ipc2

lv-m
ipc1

lv-lipc

lv-hipc

hv-m
ipc2

hv-m
ipc1

hv-lipc

hv-hipc

T
h

e
rm

a
l
V

io
la

ti
o

n
 (

%
)

w local DVFS, w clock throttling
w local DVFS, w/o clock throttling

w/o local DVFS, w/o clock throttling

Figure 6.4. Reduction in thermal violations due to local DVFS and elimination
of thermal violations due to clock throttling.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

m
edia-m
ipc

m
edia-hipc

lv-m
ipc2

lv-m
ipc1

lv-lipc

lv-hipc

hv-m
ipc2

hv-m
ipc1

hv-lipc

hv-hipc

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

(B
IP

S
) w local DVFS, w clock throttling

w local DVFS, w/o clock throttling
w/o local DVFS, w/o clock throttling

Figure 6.5. Negligible CMP instruction throughput reduction resulting from lo-
cal DVFS and clock throttling.

DVFS is continuously engaged, and clock throttling is invoked only when local DVFS is in-

capable of guaranteeing thermal safety. These techniques, however, may deviate the run-time

operations of processor cores from the performance-optimized guidance from power–thermal

budgeting and thermal-aware workload migration, causing performance penalties.

211

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

m
edia-m
ipc

m
edia-hipc

lv-m
ipc2

lv-m
ipc1

lv-lipc

lv-hipc

hv-m
ipc2

hv-m
ipc1

hv-lipc

hv-hipc

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

(G
H

z
) w local DVFS, w clock throttling

w local DVFS, w/o clock throttling
w/o local DVFS, w/o clock throttling

Figure 6.6. Negligible aggregate CMP frequency reduction resulting from local
DVFS and clock throttling.

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

 300 350 400 450 500

T
e
m

p
e
ra

tu
re

 (
°
C

)

Time (ms)

P4 temperature profile (local DVFS + clock throttling)
P0 temperature profile (local DVFS + clock throttling)

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

T
e
m

p
e
ra

tu
re

 (
°
C

)

P4 temperature profile (local DVFS)
P0 temperature profile (local DVFS)

 82

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

 300 350 400 450 500

T
e
m

p
e
ra

tu
re

 (
°
C

)

Time (ms)

P5 temperature profile (local DVFS + clock throttling)
P1 temperature profile (local DVFS + clock throttling)

 82

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

T
e
m

p
e
ra

tu
re

 (
°
C

)

P5 temperature profile (local DVFS)
P1 temperature profile (local DVFS)

 82

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

 300 350 400 450 500

T
e
m

p
e
ra

tu
re

 (
°
C

)

Time (ms)

P6 temperature profile (local DVFS + clock throttling)
P2 temperature profile (local DVFS + clock throttling)

 82

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

T
e
m

p
e
ra

tu
re

 (
°
C

)

P6 temperature profile (local DVFS)
P2 temperature profile (local DVFS)

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

 86

 300 350 400 450 500

T
e
m

p
e
ra

tu
re

 (
°
C

)

Time (ms)

P7 temperature profile (local DVFS + clock throttling)
P3 temperature profile (local DVFS + clock throttling)

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

 86

T
e
m

p
e
ra

tu
re

 (
°
C

)

P7 temperature profile (local DVFS)
P3 temperature profile (local DVFS)

Figure 6.7. Temporal temperature variation for eight processor cores (P0–P7)
running lv-mipc using local DVFS w.o. (top) and w. (bottom) clock throttling.

212

Figure 6.4 illustrates the levels of thermal safety achieved by various control techniques.

As shown in this figure, when distributed control is disabled, the voltage and frequency of

each processor core is solely controlled by global power–thermal budgeting, which does not

consider the temporal workload variation within each processor core. This local workload vari-

ation can cause significant run-time power variation, and therefore thermal violations. Local

DVFS can effectively track rapid workload variation occurring within each processor core and

adjust voltage and frequency accordingly, thereby reducing the occurrences of run-time thermal

emergencies. When clock throttling is also enabled, Figure 6.4 shows that processor thermal

emergencies are completely eliminated.

To further illustrate the effectiveness of the distributed run-time control techniques, Fig-

ure 6.7 shows the run-time thermal profiles of eight on-chip processor cores when running the

lv-mipc2 benchmark, with and without local clock throttling. Processors 0–3 are adjacent to

the heatsink and processors 4–7 are closer to the printed circuit board. Local DVFS achieves a

balanced CMP thermal profile, and run-time thermal violations (exceeding 85 °C, a predefined

thermal threshold used in this experiment) occur only rarely. When both local DVFS and clock

throttling are enabled, the temperature constraint is never violated.

Figures 6.5 and 6.6 indicate the performance penalty introduced by the distributed control

techniques required to guarantee thermal safety. To help quantify the performance impact, we

normalize the CMP throughput to the value achieved by global power–thermal budgeting and

then evaluate the CMP throughput with local DVFS only and with both local DVFS and clock

throttling. These results indicate that local DVFS degrades performance by 0.74% and 1.25% on

average for instruction throughput and aggregate CMP frequency. In addition, since local DVFS

is capable of eliminating most run-time thermal emergencies, clock throttling is rarely invoked.

213

As shown in these figures, enabling both local DVFS and clock throttling results in performance

penalties of only 0.80% and 1.33% on average for instruction throughput and aggregate CMP

frequency. In summary, the proposed distributed run-time thermal control technique achieves

thermal safety with low performance impact.

6.6.2. Robustness to Changes in 3D Integration Process

In order to show the robustness of ThermOS to variation in 3D integration style, we evalu-

ated the performance improvement when used for CMPs using front-to-back and front-to-front

wafer integration (see Section 6.5.1). We simulated the proposed technique and the local dis-

tributed approach [1] for both integration styles using all benchmark mixes shown in Table 6.4.

CMP instruction throughput and aggregate CMP frequency improvements were compared. The

average CMP instruction throughput improvement was 30.91% for front-to-back integration

and 26.40% for front-to-front integration. The average aggregate CMP frequency improve-

ment achieved by ThermOS over the local distributed approach was 27.63% for front-to-back

integration and 28.29% for front-to-back integration. For all combination of benchmarks and

packages, the instruction throughput and aggregate CMP frequency improvements were greater

than 7%. We can conclude that ThermOS permits substantial improvements in performance

over the local, distributed technique for different 3D integration styles.

6.6.3. Scalability analysis of ThermOS

ThermOS uses distributed thermal-aware workload migration, global power–thermal bud-

geting, and distributed run-time thermal control techniques to optimize 3D CMP throughput and

214

 16

 18

 20

 22

 24

 26

lv-hipc

hv-m
ipc2

hv-m
ipc1

hv-lipc

hv-hipc

T
h
ro

u
g
h
p
u
t
(B

IP
S

)
1ms

10ms
50ms

100ms

Figure 6.8. Global guidance interval impact on CMP instruction throughput.

 9

 9.5

 10

 10.5

 11

 11.5

lv-hipc

hv-m
ipc2

hv-m
ipc1

hv-lipc

hv-hipc

T
h
ro

u
g
h
p
u
t
(G

H
z
)

1ms
10ms
50ms

100ms

Figure 6.9. Global guidance interval impact on aggregate CMP frequency.

guarantee thermal safety. In contrast with purely local distributed techniques, run-time power–

thermal budgeting is global. This might raise concerns about the scalability of ThermOS when

used on many-core 3D CMPs. In this section, we evaluate the scalability of the proposed global

power–thermal budgeting technique.

215

 12

 14

 16

 18

 20

 22

 24

m
edia-m
ipc

m
edia-hipc

lv-m
ipc2

lv-m
ipc1

lv-lipc

lv-hipc

hv-m
ipc2

hv-m
ipc1

hv-lipc

hv-hipc

T
h
ro

u
g
h
p
u
t
(B

IP
S

)
6 X 6 lookup table

11 X 11 lookup table
51 X 51 lookup table

Figure 6.10. Lookup table size impact on CMP instruction throughput.

 7.5

 8

 8.5

 9

 9.5

 10

m
edia-m
ipc

m
edia-hipc

lv-m
ipc2

lv-m
ipc1

lv-lipc

lv-hipc

hv-m
ipc2

hv-m
ipc1

hv-lipc

hv-hipc

T
h
ro

u
g
h
p
u
t
(G

H
z
)

6 X 6 lookup table
11 X 11 lookup table
51 X 51 lookup table

Figure 6.11. Lookup table size impact on aggregate CMP frequency.

6.6.3.1. Performance Impact. ThermOS periodically decides power–thermal budgets for pro-

cessor cores. This involves inter-layer and intra-layer assignment. Run-time inter-layer assign-

ment uses efficient table lookup. Intra-layer assignment uses an efficient homogeneous assign-

ment policy, i.e., processor cores within the same layer are assigned the same power–thermal

216

budgets. In the current setup, i.e., an eight-core 3D CMP with 1 ms global guidance interval, de-

tailed simulation shows that the overall run-time overhead introduced by global power–thermal

budgeting is only 0.22%.

The run-time overhead of global power–thermal budgeting is linearly proportional to the

run-time global guidance/budgeting interval. In general, shorter global guidance intervals can

more accurately track run-time workload variation but may introduce more run-time overhead

and communication contention when aggregating data from different CMP cores. It might

therefore be useful to reduce this overhead by increasing the global guidance interval.

In the current setup, 1 ms guidance interval is used. This is frequent enough to allow adjust-

ments in global power–thermal budget before temporal workload variation can produce large

temperature changes, i.e., a higher frequency is unnecessary. To evaluate the impact of increas-

ing global guidance interval on system performance, we choose run all four benchmarks with

high workload variation from Table 6.4. One low-variation benchmark is also included for the

sake of comparison. The results are shown in Figures 6.8 and 6.9. They indicate that, for guid-

ance intervals up to and including 100 ms, ThermOS maintains nearly identical performance.

Only hv-hipc experiences noticeable performance degradation. This benchmarks has the most

significant temporal workload variation in the benchmark suite. However, changing the global

guidance interval from 1 ms to 100 ms reduces CMP instruction throughput and aggregate CMP

frequency by only 1.81% and 1.67%, respectively. We conclude that even if it were necessary

to reduce global guidance interval by two orders of magnitude in order to maintain low global

power–thermal budgeting run-time overhead in many-core 3D CMPs, there would be little re-

duction in thermally-safe performance.

217

6.6.3.2. Storage Impact. As described in Section 6.4.3.4, ThermOS uses an offline iterative

budgeting algorithm to precompute some power–thermal budgeting decisions, which are stored

as a lookup table in the main memory for efficient run-time usage. This lookup table has nL

entries. Each entry requires 4 B storage. L is the number of processor layers. It is expected

that the number of processor layers in 3D CMP will be limited. n is the number of switched

capacitance settings, which affects the power–thermal budgeting resolution. Higher resolution

improves the accuracy of the run-time power–thermal budgeting decisions, but also increases

the storage requirements for the table. In the current setup, we use a two-dimensional lookup

table with 51×51 entries (10.4 KB) which provides sufficient resolution for accurate power–

thermal budgeting.

It might be useful to decrease lookup table resolution for many-core systems in order to

control storage overhead. We evaluated the impact of decreasing lookup table resolution on

thermally-safe CMP performance by running all benchmark mixes using 51×51, 11×11, and

6×6 tables. As shown in Figure 6.10 and Figure 6.11, compared to the 51×51 lookup table,

the 11×11 lookup table setting reduces the memory usage to 484 B, with average CMP instruc-

tion throughput and aggregate CMP frequency reductions of 1.16% and 1.19%, respectively.

When the table is reduced to 6×6 entries, memory usage decreases to 144 B, with average CMP

instruction throughput and aggregate CMP frequency reductions of 4.25% and 3.75%. We

conclude that ThermOS requires little storage and that its performance degrades slowly with

reduced lookup table size.

218

6.7. Related Work

Our work draws upon research in 3D integration technology, 3D microprocessor design, and

microprocessor thermal management. This section surveys recent work in microprocessor ther-

mal management. A survey of 3D technology and microprocessor design is given in Section 6.2.

Initially, thermal control strategies were seen as a last resort that would be typically engaged

infrequently. However, due to transistor densities and limitations in cool technology, thermal

control will be constantly engaged. ThermOS is targeted for this future design paradigm.

In contemporary high performance designs, high power densities and limitations in con-

ventional air cooling collectively create thermal hotspots on chip. These high temperature re-

gions are problematic because many prominent device and interconnect failure mechanisms

have an exponential dependence on temperature. Furthermore, high-performance chips in fu-

ture technologies will have drastically shorter usable lifetimes if these thermal concerns are

not addressed [191, 93]. In addition, temperature also has negative effects on static power and

maximum clock frequency due to subthreshold leakage and carrier mobility.

Brooks and Martonosi presented one of the first evaluations of DTM [170]. In essence,

DTM allows designers to target their designs for a common case where the temperature is

not severe. They instead allow run-time mechanisms to detect and resolve potential thermal

emergencies. This yields better overall performance than pessimistically designing hardware

which fits strictly within the thermal envelope.

Related work has examined use of local throttling policies to bound the peak temperature.

Brooks and Martonosi used windowed power as a proxy for temperature and enforced thermal

constraints through throttling techniques, most notably fetch toggling. In later work, Skadron

et al. proposed control theoretic DTM [192] and developed thermal models to capture lateral

219

heat flow and nuances of the heat-spreader and packaging interface [76]. Yi et al. examined the

impact of physical limitations (including power and temperature) on CMP architecture design

[193].

For multi-core processors, migration strategies can produce additional benefits by distribut-

ing heat across the chip. Heo et al. propose activity migration that reduces the power density

of a hotspot by relocating computation to another physical location on chip [194]. Powell et al.

explore the benefit of OS management in the context of SMTs/CMPs [171]. They propose the

Heat and Run strategy, in which the OS co-schedules and migrates SMT threads to maximize

resource utilization before a thermal emergency arises and then migrates computation to an idle

core. Kumar et al. examine hybrid hardware-software management that uses hardware perfor-

mance counters to characterize thermal behavior and kernel support to schedule tasks [186].

They evaluate their mechanism on a real system with SMT support and find significant bene-

fits from considering system-level effects which cannot be accounted for with pure hardware

techniques. While we also take advantage of kernel scheduling and performance counters, Ku-

mar’s work does not address multi-core management – which we do. Recent work by Park et

al. examines energy-performance tradeoffs in multi-threaded applications [195].

The recent work that is closest to our own is a paper by Donald and Martonosi which ex-

amines CMP thermal management with distributed control-theoretic core management and a

global controller which guides migration [1].

Our work differs in several respects. First, our work integrates continuously-engaged ther-

mal management strategies as a part of normal operation. This allows ThermOS to be appli-

cable for near future technologies where temperature regulation is an integral part of normal

operation. Second, we evaluate DTM in the context of 3D CMP architectures, a relatively new

220

avenue for microarchitects. In our problem domain, the global guidance and notion of a power

budget are particularly beneficial due to the heterogeneous thermal characteristics of processor

cores and workload power consumption. Consequently, distributed approaches such as those

proposed by Donald may not perform as well in a 3D architecture. By matching core cooling

characteristics, application features, and voltage levels we can improve performance by limit-

ing throttling and migration. We believe that we are the first to examine workload scheduling

techniques attuned to the cooling heterogeneity in 3D architectures. Finally, we evaluate our

proposed policies in a full system simulator, hence our experimental setup allows us to account

for the overhead of DTM in the OS, including migration costs and context switches.

6.8. Conclusions

3D integration has the potential to significantly improve performance and integration den-

sity. However, it will also increase power density, thereby increasing the importance of using

continuously-engaged thermal management techniques. It will also increase the heterogene-

ity in thermal interaction among processor cores. This requires careful consideration during

thermal management policy design.

We have developed a mathematical formulation for optimizing workload assignment, power–

thermal budgeting, and voltage mode selection for 3D CMP thermal management. This formu-

lation has been used to develop a continuously-engaged hardware–software thermal manage-

ment solution for 3D CMPs. The proposed solution has been implemented within the Linux

kernel and has been evaluated using full-system 3D CMP and OS simulation. Our strategy

outperforms a state-of-the-art continuously-active, but distributed, thermal management policy.

In particular, given the same temperature bound, it permits a 30.91% average improvement in

221

instruction throughput and a 27.63% average improvement in aggregate CMP frequency. In

summary, distributed local control is insufficient for CMPs in which thermal interaction among

processor cores is heterogeneous, i.e., 3D CMPs. A combination of local and continuously-

active global techniques is necessary.

222

CHAPTER 7

Conclusion and Future Work

Increasing IC power consumption raises average and peak temperatures. As projected by the

International Technology Roadmap for Semiconductors (ITRS) [2], further process scaling will

be bounded by power consumption and heat dissipation below 65 nm: it is critical to address

the energy and thermal issues during on-chip system design to meet the urgent need of the

semiconductor industry and enable future technology scaling. Therefore, in this dissertation,

we presented several topics which are related to thermal-aware and power-aware design.

In thermal-aware design flow, designers must frequently trade off other design metrics, such

as performance, area, and cooling costs, to meet tight thermal constraints. The interaction of

power and thermal constraints with other design metrics further increases system complexity.

Therefore, an efficient unified incremental high-level and physical-level synthesis algorithm

was presented in Chapter 2, which enable the tight integration between high-level and physical-

level design. Chapter 3 presented a thermal-aware high-level synthesis algorithm built upon

the framework of Chapter 2. Temperature variations and hot spots account for reliability issue,

most of which are due to electromigration, hot carrier effects, thermal stress, and oxide thermal

breakdown. Power and thermal variation can also lead to significant timing uncertainty, requir-

ing more conservative timing margins, thereby reducing performance. Therefore, reliability-

aware synthesis flow was presented in Chapter 4. Recent developments in nanoscale devices

open new alternatives for low-power embedded system design. Among these, single-electron

223

tunneling transistors hold the promise of achieving the lowest power consumption. Unfortu-

nately, most analysis of SETs has focused on single devices instead of architectures, making it

difficult to determine whether they are appropriate for low-power embedded systems. There-

fore, a fault-tolerant hybrid SET/CMOS reconfigurable architecture was presented in Chapter

5. 3D CMOS technology has been developed to overcome the interconnect bottlenecks of 2D

design, but at the cost of serious thermal problems due to significant increase of power density

by stacking multiple active device layer together. Hence, in Chapter 6, 3D CMP framework was

presented and thermal-aware management policy was evaluated built upon this framework.

There are several related issues of interests that can be explored in the future.

(1) Timing-driven high-level synthesis

A number of researchers have considered the impact of physical details, e.g., floor-

planning information, on behavioral synthesis [41, 42, 43, 45]. Interconnect and in-

terconnect buffers are now first-order timing and power considerations in VLSI de-

sign [51]. This change has complicated both design and synthesis. It is no longer pos-

sible to accurately predict the power consumption and performance of a design without

first knowing enough about its floorplan to predict the structure of its interconnect. For

this reason, a number of researchers have worked on low-power interconnect-aware be-

havioral synthesis algorithms [69,52,70,54]. These approaches typically use a loosely

coupled independent floorplanner for physical estimation. There are two drawbacks

to this approach. First, the independent floorplanner may not be stable, i.e., a small

change in the input netlist may result in a totally different floorplan. This results in

a behavioral synthesis algorithm that bases its moves on cost functions without conti-

nuity. Second, even if the floorplanner is stable, creating a floorplan from scratch for

224

each behavioral synthesis move is not efficient, given the fact that the new floorplan

has only small difference from the previous one. Recently, incremental floorplanning

and synthesis [55] were used to tightly couple high-level and physical synthesis that

dramatically improve their combined performance and quality [8]. Thermal problem

also has been considered during high-level synthesis [83, 7]. However, there are few

works focusing on timing-driven high-level synthesis in the view of performance con-

sidering wire delay. Weng and Parker proposed a high-level synthesis system, which

tried to reduce the total wire cost during scheduling and assignment procedure [42].

Cong et al. presented a regular distributed register microarchitecture for simultane-

ously scheduling with rebinding, and distributed control generation [196]. However,

this is only based on proposed microarchitecture which is not general.

(2) Power-driven floorplanning/placement with static voltage scaling

Now that integrated circuit (IC) design has entered the era of nanometer-scale fea-

tures, reducing and managing power dissipation are key challenges. Power consump-

tion influences peak IC temperature and determines the battery lifespans of portable

devices. Generally, power consumption comes from two sources, dynamic power and

static power. While static power in current technology mainly comes from leakage

current, dynamic power is consumed by transistors’ switching activities. Researchers

have proposed many circuit-level low power techniques. Static voltage scaling is a

promising one, which provides fine-grain dynamic power and performance trade-off.

However, this comes with the overhead of off-chip regulator and on-chip level shifter.

Therefore, floorplanning is a good platform for implementing this technique while

constraining the overhead introduced. Incremental technique can be used to tightly

225

combine voltage island assignment within floorplanning. In addition, compared with

traditional path based slack distribution algorithm, network flow based method can be

promising.

(3) 3D Thermal-aware floorplanning/placement

Three-dimensional (3D) chips have emerged as promising candidates to overcome

the interconnect bottlenecks of nanometer scale design. However, it is expected that

the benefits from this technology can potentially be offset by thermal considerations

which impact chip performance and reliability. Therefore, one big issue of nanometer

scale chip design is the thermal management. Temperature can be reduced through two

directions given same power budget: 1) balance power consumption in time domain; 2)

balance power consumption in physical space. Balancing the thermal profile from time

domain can be formed as scheduling problem while the latter one can be implemented

through floorplanning/placement.

On the other hand, temperature plays an important role in the dissipation of leak-

age current for transistors. From transistor physics, the subthreshold leakage cur-

rent is sensitive to temperature. Leakage power has been shown to have a strong

dependency on temperature especially for high temperature range [197]. Therefore,

thermal-aware design is not only restricted to reduce the peak temperature, it also

can consider reducing the total area of peak temperature, and reducing the total area

with temperature above threshold. All these cases will help to reduce the leakage

power, which will further reduce the peak temperature. This is different from previ-

ous work [198, 199, 80, 200, 81, 82], which only focus on minimizing the chip peak

temperature.

226

References

[1] J. Donald and M. Martonosi, “Techniques for multicore thermal management: Classifi-
cation and new exploration,” in Proc. Int. Symp. Computer Architecture, June 2006.

[2] “International Technology Roadmap for Semiconductors,” 2006. http://public.itrs.net.

[3] H. Wakabayashi, S. Yamagami, N. Ikezawa, A. Ogura, M. Narihiro, K. Arai, Y. Ochiai,
K. Takeuchi, T. Yamamoto, and T. Mogami, “Sub-10-nm planar-Bulk-CMOS devices
using lateral junction control,” in Proc. Int. Electron Devices Meeting, pp. 989–991, Dec.
2003.

[4] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, pp. 23–29, July 1999.

[5] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein, “Scaling,
power, and the future of CMOS,” in Proc. Int. Electron Devices Meeting, pp. 7–13, Dec.
2005.

[6] L.-T. Yeh and R. C. Chu, Thermal Management of Microelectronic Equipment: Heat
Transfer Theory, Analysis Methods, and Design Practices. New York, NY: ASME Press,
2002.

[7] Z. P. Gu, Y. Yang, J. Wang, R. P. Dick, and L. Shang, “TAPHS: Thermal-aware unified
physical-level and high-level synthesis,” in Proc. Asia & South Pacific Design Automa-
tion Conf., pp. 879–885, Jan. 2006.

[8] Z. P. Gu, J. Wang, R. P. Dick, and H. Zhou, “Incremental Exploration of the Combined
Physical and Behavioral Design Space,” in Proc. Design Automation Conf., pp. 208–213,
June 2005.

[9] Y. Yang, Z. P. Gu, C. Zhu, L. Shang, and R. P. Dick, “Adaptive Chip-Package Thermal
Analysis for Synthesis and Design,” in Proc. Design, Automation, and Test in Europe,
pp. 844–849, Mar. 2006.

http://public.itrs.net
http://robertdick.org/publications/gu06jan.pdf
http://robertdick.org/publications/gu06jan.pdf
http://robertdick.org/publications/gu05jun.pdf
http://robertdick.org/publications/gu05jun.pdf
http://robertdick.org/publications/yang06mar.pdf
http://robertdick.org/publications/yang06mar.pdf

227

[10] Y. Yang, Z. P. Gu, C. Zhu, R. P. Dick, and L. Shang, “ISAC: Integrated Space and Time
Adaptive Chip-Package Thermal Analysis,” IEEE Trans. Computer-Aided Design of In-
tegrated Circuits and Systems, Jan. 2007.

[11] C. Zhu, Z. Gu, L. Shang, R. P. Dick, and R. Knobel, “Towards an ultra-low-power archi-
tecture using single-electron tunneling transistors,” in Proc. Design Automation Conf.,
pp. 312–317, June 2007.

[12] Z. Gu, C. Zhu, L. Shang, and R. P. Dick, “Application-specific MPSoC reliability opti-
mization,” IEEE Trans. VLSI Systems. To appear.

[13] R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM Power5 chip: a dual-core multithreaded
processor,” IEEE Micro, vol. 24, no. 2, pp. 40–47, 2004.

[14] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way multithreaded SPARC
processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29, 2005.

[15] “AMD multi-core white paper.” http://www.amd.com.

[16] “Intel multi-core processor architecture.” http://www.intel.com.

[17] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann,
P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amaras-
inghe, and A. Agarwal, “Evaluation of the raw microprocessor: An exposed-wire-delay
architecture for ILP and streams,” in Proc. Int. Symp. Computer Architecture, June 2004.

[18] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C. K. Kim, D. Burger, S. W. Keckler,
and C. R. Moore, “Exploiting ILP, TLP, and DLP using polymorphism in the TRIPS
architecture,” in Proc. Int. Symp. Computer Architecture, June 2003.

[19] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K.-Y. Chang, “The case for a
single-chip multiprocessor,” in Proc. the 7th Int. Symposium on Architectural Support
for Programming Languages and Operating Systems, Oct. 1996.

[20] S. J. Souri, K. Banerjee, A. Mehrotra, and K. C. Saraswat, “Multiple Si layer ICs: Mo-
tivation, performance analysis, and design implications,” in Proc. Design Automation
Conf., pp. 213–220, June 2000.

[21] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip design
for improving deep-submicrometer interconnect performance and systems,” Proc. IEEE,
vol. 89, no. 5, 2001.

http://robertdick.org/publications/yang07jan.pdf
http://robertdick.org/publications/yang07jan.pdf
http://robertdick.org/publications/zhu07jun.pdf
http://robertdick.org/publications/zhu07jun.pdf
http://www.amd.com
http://www.intel.com

228

[22] S. Das, A. Fan, K.-N. Chen, and C. S. TanAnantha, “Technology, performance, and
computer-aided design of three-dimensional integrated circuits,” in Proc. Int. Symp.
Physical Design, pp. 108–115, Apr. 2004.

[23] A. W. Topol, D. C. L. Tulipe, L. S. Jr., D. J. Frank, K. Bernstein, S. E. Steen, A. Kumar,
G. U. Singco, A. M. Young, K. W. Guarini, and M. Ieong, “Three-dimensional integrated
circuits,” IBM J. Research and Development, vol. 4, 2006.

[24] R. Camposano and W. Wolf, High Level VLSI Synthesis. Kluwer Academic Publishers,
MA, 1991.

[25] D. C. Ku and G. D. Micheli, High Level Synthesis of ASICs Under Timing and Synchro-
nization Constraints. Kluwer Academic Publishers, MA, 1992.

[26] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Introduction to Chip and
System Design. Kluwer Academic Publishers, MA, 1992.

[27] A. Raghunathan and N. K. Jha, “SCALP: An iterative-improvement-based low-power
data path synthesis system,” IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 16, pp. 1260–1277, Nov. 1997.

[28] P. G. Paulin, J. P. Knight, and E. F. Girczyc, “HAL: A multi-paradigm approach to auto-
matic data path synthesis,” in Proc. Design Automation Conf., pp. 263–270, June 1986.

[29] R. K. Gupta and G. De Micheli, “Hardware-software cosynthesis for digital systems,”
IEEE Design & Test of Computers, vol. 10, pp. 29–41, Sept. 1993.

[30] R. Mehra and J. Rabaey, “Behavioral level power estimation and exploration,” in Proc.
Int. Wkshp. on Low Power Design, pp. 197–202, Apr. 1994.

[31] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for power minimization
during microarchitecture synthesis,” in Proc. Int. Symp. Low-Power Design, Apr. 1994.

[32] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitecture synthesis of performance-
constrained, low-power VLSI designs,” in Proc. Int. Conf. Computer Design, Oct. 1994.

[33] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,” in Proc. Int. Conf.
Computer Design, pp. 318–322, Oct. 1994.

[34] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, “Optimiz-
ing power using transformations,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, pp. 12–31, Jan. 1995.

229

[35] R. S. Martin and J. P. Knight, “Power profiler: Optimizing ASICs power consumption at
the behavioral level,” in Proc. Design Automation Conf., June 1995.

[36] J. M. Chang and M. Pedram, “Register allocation and binding for low power,” in Proc.
Design Automation Conf., June 1995.

[37] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-driven behavioral synthesis for
low-power VLSI systems,” IEEE Design Test, vol. 12, no. 3, pp. 70–84, 1995.

[38] K. S. Khouri, G. Lakshminarayana, and N. K. Jha, “High-level synthesis of low power
control-flow intensive circuits,” IEEE Trans. Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 18, pp. 1715–1729, Dec. 1999.

[39] H. P. Peixoto and M. F. Jacome, “A new technique for estimating lower bounds on latency
for high level synthesis,” in Proc. Great Lakes Symp. VLSI, pp. 129–132, Mar. 2000.

[40] M. C. McFarland and T. J. Kowalski, “Incorporating bottom-up design into hardware syn-
thesis,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 9,
pp. 938–950, Sept. 1990.

[41] D. W. Knapp, “Fasolt: A program for feedback-driven data-path optimization,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 11, pp. 677–695,
June 1992.

[42] J. P. Weng and A. C. Parker, “3D scheduling: High-level synthesis with floorplanning,”
in Proc. Design Automation Conf., June 1992.

[43] Y. M. Fang and D. F. Wong, “Simultaneous functional-unit binding and floorplanning,”
in Proc. Int. Conf. Computer-Aided Design, Nov. 1994.

[44] M. Xu and F. J. Kurdahi, “Layout-driven RTL binding techniques for high-level synthesis
using accurate estimators,” ACM Trans. Design Automation Electronic Systems, vol. 2,
pp. 312–343, Oct. 1997.

[45] W. E. Dougherty and D. E. Thomas, “Unifying behavioral synthesis and physical design,”
in Proc. Design Automation Conf., June 2000.

[46] P. G. Paulin and J. P. Knight, “Scheduling and binding algorithms for high-level synthe-
sis,” in Proc. Design Automation Conf., pp. 1–6, June 1989.

[47] C. A. Papachristou and H. Konuk, “A linear program driven scheduling and allocation
method followed by an interconnect optimization algorithm,” in Proc. Design Automa-
tion Conf., June 1990.

230

[48] T. A. Ly, W. L. Elwood, and E. F. Girczyc, “A generalized interconnect model for data
path synthesis,” in Proc. Design Automation Conf., June 1990.

[49] S. Tarafdar and M. Leeser, “The DT-model: High-level synthesis using data transfer,” in
Proc. Design Automation Conf., June 1998.

[50] C. Jego, E. Casseau, and E. Martin, “Interconnect cost control during high-level synthe-
sis,” in Proc. Design Circuits & Integration Systems Conf., Nov. 2000.

[51] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proc. IEEE, vol. 89, no. 4,
pp. 490–504, 2001.

[52] P. Prabhakaran and P. Banerjee, “Simultaneous scheduling, binding and floorplanning
high-level synthesis,” in Proc. Int. Conf. VLSI Design, Jan. 1998.

[53] L. Zhong and N. K. Jha, “Interconnect-aware low power high-level synthesis,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 24, pp. 336–351,
Mar. 2005.

[54] A. Stammermann, D. Helms, M. Schulte, A. Schulz, and W. Nebel, “Binding, allocation
and floorplanning in low power high-level synthesis,” in Proc. Int. Conf. Computer-Aided
Design, Nov. 2003.

[55] O. Coudert, J. Cong, S. Malik, and M. Sarrafzadeh, “Incremental CAD,” in Proc. Int.
Conf. Computer-Aided Design, pp. 236–244, Nov. 2000.

[56] W. Choi and K. Bazargan, “Hierarchical global floorplacement using simulated annealing
and network flow migration,” in Proc. Design, Automation & Test in Europe Conf., Mar.
2003.

[57] H. Zhou and J. Wang, “ACG–Adjacent constraint graph for general floorplans,” in Proc.
Int. Conf. Computer Design, Oct. 2004.

[58] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network
partitions,” in Proc. Design Automation Conf., pp. 173–181, June 1982.

[59] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan designs,” Information
& Control, vol. 57, pp. 91–101, May 1983.

[60] J. Wang and H. Zhou, “Interconnect estimation without packing via ACG floorplans,” in
Proc. Asia & South Pacific Design Automation Conf., Jan. 2005.

231

[61] J. Wang, “Floorplanning by adjacent constrain graph and its applications,” Master’s the-
sis, Northwestern University, June 2005.

[62] “Independent JPEG group.” www.ijp.org.

[63] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications.
Academic, NY, 1990.

[64] “NCSU CBL high-level synthesis benchmark suite.” www.cbl.ncsu.edu/benchmarks.

[65] S. Y. Kung, VLSI Array Processors. Prentice-Hall, Englewood Cliffs, NJ, 1988.

[66] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task Graphs for Free,” in Proc. Int.
Wkshp. Hardware/Software Co-Design, pp. 97–101, Mar. 1998.

[67] J. Cong and Z. Pan, “Interconnect performance estimation models for design planning,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, pp. 739–752,
June 2001.

[68] J. Cong and M. Sarrafzadeh, “Incremental physical design,” in Proc. Int. Symp. Physical
Design, Apr. 2000.

[69] R. Mehra, L. M. Guerra, and J. M. Rabaey, “Low power architecture synthesis and impact
of exploiting locality,” J. VLSI Signal Processing, vol. 13, pp. 877–888, Aug. 1996.

[70] L. Zhong and N. K. Jha, “Interconnect-aware high-level synthesis for low power,” in
Proc. Int. Conf. Computer-Aided Design, pp. 110–117, Nov. 2002.

[71] Y. Cheng, P. Raha, C. Teng, E. Rosenbaum, and S. Kang, “ILLIADS-T: An electrother-
mal timing simulator for temperature-sensitive reliability diagnosis of CMOS VLSI
chips,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 17,
pp. 668–681, Aug. 1998.

[72] Z. Yu, D. Yergeau, R. Dutton, S. Nakagawa, and J. Deeney, “Fast placement-dependent
full chip thermal simulation,” in Proc. Int. Symp. VLSI Tech., Systems, & Applications,
pp. 249–252, Apr. 2001.

[73] P. Li, L. T. Pileggi, M. Ashghi, and R. Chandra, “Efficient full-chip thermal modeling
and analysis,” in Proc. Int. Conf. Computer-Aided Design, pp. 319–326, Nov. 2004.

[74] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A power-performance simulator
for interconnection networks,” in Proc. Int. Symp. Microarchitecture, pp. 294–305, Dec.
2002.

http://robertdick.org/publications/dick98mar.pdf

232

[75] X. Guo, D. Celo, P. Gunpudi, R. Khazaka, D. J. Walkey, T. Smy, and M. Nakhla, “The
creation of compact thermal models of electronic components using model reduction,” in
Proc. Semiconductor Thermal Measurement & Management Symp., pp. 104–110, Mar.
2004.

[76] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tar-
jan, “Temperature-aware microarchitecture,” in Proc. Int. Symp. Computer Architecture,
pp. 2–13, June 2003.

[77] K. Banerjee, A. Mehrotra, A. Sanjiovanni-Vincentelli, and C. Hu, “On thermal effects in
deep sub-micron VLSI interconnects,” in Proc. Design Automation Conf., pp. 885–891,
June 1999.

[78] T.-Y. Chiang, K. Banerjee, and K. C. Saraswat, “Analytical thermal model for multi-
level VLSI interconnects incorporating via effect,” IEEE Electron Device Ltrs., vol. 23,
pp. 31–33, Jan. 2002.

[79] Z. Lu, W. Huang, J. Lach, M. Stan, and K. Skadron, “Interconnect lifetime prediction
under dynamic stress for reliability-aware design,” in Proc. Int. Conf. Computer-Aided
Design, pp. 327–334, Nov. 2004.

[80] C. Tsai and S. Kang, “Cell-level placement for improving substrate thermal distribu-
tion,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 19,
pp. 253–266, Feb. 2000.

[81] B. Goplen and S. Sapatnekar, “Efficient thermal placement of standard cells in 3D ICs
using a force directed approach,” in Proc. Int. Conf. Computer-Aided Design, pp. 86–89,
Nov. 2003.

[82] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven floorplanning algorithm for 3D ICs,”
in Proc. Int. Conf. Computer-Aided Design, pp. 306–313, Nov. 2004.

[83] R. Mukherjee, S. Öğrenci Memik, and G. Memik, “Temperature-aware resource alloca-
tion and binding in high-level synthesis,” in Proc. Design Automation Conf., June 2005.

[84] Y. Cai, B. Liu, Q. Zhou, and X. Hong, “A thermal aware floorplanning algorithm sup-
porting voltage island for low power soc design,” Integrated Circuit and System Design,
Aug. 2005.

[85] W.-L. Hung, G. Link, Y. Xie, N. Vijaykrishnan, N. Dhanwada, and J. Conner,
“Temperature-aware voltage islands architecting in system-on-chip design,” in Proc. Int.
Conf. Computer Design, Oct. 2005.

233

[86] W.-P. Lee, H.-Y. Liu, and Y.-W. Chang, “Voltage island aware floorplanning for power
and timing optimization,” in Proc. Int. Conf. Computer-Aided Design, nov. 2006.

[87] R. L. Ching, E. F. Young, K. C. Leung, and C. Chu, “Post-placement voltage island
generation,” in Proc. Int. Conf. Computer-Aided Design, nov. 2006.

[88] Z. P. Gu, J. Wang, R. P. Dick, and H. Zhou, “Unified incremental physical-level and
high-level synthesis,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, Sept. 2007.

[89] K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and J. D. Meindl, “A physical alpha-
power law MOSFET model,” IEEE J. Solid-State Circuits, vol. 34, pp. 1410–1414, Oct.
1999.

[90] S. Ghiasi, E. Bozorgzadeh, P.-K. Huang, R. Jafari, and M. Sarrafzadeh, “A unified the-
ory of timing budget management,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, pp. 2364–2375, Nov. 2006.

[91] L. Shang, L.-S. Peh, A. Kumar, and N. K. Jha, “Thermal modeling, characterization and
management of on-chip networks,” in Proc. Int. Symp. Microarchitecture, pp. 67–80,
Dec. 2004.

[92] “COMSOL Multiphysics.” http://www.comsol.com/products/multiphysics.

[93] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Exploiting structural duplication for
lifetime reliability enhancement,” in Proc. Int. Symp. Computer Architecture, pp. 520–
531, June 2005.

[94] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-software co-synthesis
of embedded systems,” in Proc. Design Automation Conf., pp. 703–708, June 1997.

[95] Y. Xie, L. Lu, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Reliability-aware co-
synthesis for embedded systems,” in Proc. Int. Conf. Application-Specific Systems, Ar-
chitectures, and Processors, Sept. 2004.

[96] K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear programming based techniques
for synthesis of network-on-chip architectures,” in Proc. Int. Conf. Computer Design,
pp. 422–429, Oct. 2004.

[97] U. Y. Ogras and R. Mǎrculescu, “Energy- and performance- driven NoC communication
architectures synthesis using a decomposition approach,” in Proc. Design, Automation &
Test in Europe Conf., pp. 352–357, Mar. 2005.

http://robertdick.org/publications/gu07tcad.pdf
http://robertdick.org/publications/gu07tcad.pdf
http://www.comsol.com/products/multiphysics

234

[98] R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective Core-Based Single-Chip System
Synthesis,” in Proc. Design, Automation & Test in Europe Conf., pp. 263–270, Mar. 1999.

[99] Y. Yang, C. Zhu, Z. P. Gu, L. Shang, and R. P. Dick, “Adaptive multi-domain thermal
modeling and analysis for integrated circuit synthesis and design,” in Proc. Int. Conf.
Computer-Aided Design, pp. 575–582, Nov. 2006.

[100] R. P. Dick, “E3S: The embedded system synthesis benchmarks suite.” E3S link at http:
//robertdick.org/tools.html.

[101] S. W. Mahfoud and D. E. Goldberg, “Parallel recombinative simulated annealing: A
genetic algorithm,” Parallel Computing, vol. 21, pp. 1–28, Jan. 1995.

[102] R. P. Dick, Multiobjective Synthesis of Low-Power Real-Time Distributed Embedded Sys-
tems. PhD thesis, Dept. of Electrical Engineering, Princeton University, July 2002.

[103] R. P. Dick and N. K. Jha, “MOGAC: A Multiobjective Genetic Algorithm for Hardware-
Software Co-Synthesis of Distributed Embedded Systems,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 17, pp. 920–935, Oct. 1998.

[104] Joint Electron Device Engineering Council, “Failure mechanisms and models for semi-
conductor devices,” in JEDEC Publication JEP 122-B, Aug. 2003.

[105] L. Ting, J. May, W. Hunter, and J. McPherson, “AC electromigration characterization
and modeling of multilayered interconnections,” in Proc. Int. Reliability Physics Symp.,
pp. 311–316, Mar. 1993.

[106] C. Dunn and J. McPherson, “Temperature-cycling acceleration factors for aluminum
metallization failure in VLSI applications,” in Proc. Int. Reliability Physics Symp.,
pp. 252–255, Mar. 1990.

[107] A. Leon-Garcia, Probability and Random Processes for Electrical Engineering.
Addison-Wesley, 1989.

[108] A.-R. Chowdhury and P. Banerjee, “A new error analysis based method for tolerance
computation for algorithm-based checks,” IEEE Trans. Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 45, pp. 238–243, Feb. 1996.

[109] A. Mishra and P. Banerjee, “An algorithm-based error detection scheme for the multi-
grid method,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 52, pp. 1089–1099, Sept. 2003.

http://robertdick.org/publications/dick99mar.pdf
http://robertdick.org/publications/dick99mar.pdf
http://robertdick.org/publications/yang06nov.pdf
http://robertdick.org/publications/yang06nov.pdf
http://robertdick.org/tools.html
http://robertdick.org/tools.html
http://robertdick.org/publications/dick02nov.pdf
http://robertdick.org/publications/dick02nov.pdf
http://robertdick.org/publications/dick00jan.pdf
http://robertdick.org/publications/dick00jan.pdf

235

[110] Y. Zhang, R. P. Dick, and K. Chakrabarty, “Energy-aware deterministic fault tolerance
in distributed real-time embedded systems,” in Proc. Design Automation Conf., pp. 550–
555, June 2004.

[111] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization,” in Proc. Int. Conf. Genetic Algorithms,
pp. 416–423, July 1993.

[112] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout. John Wiley &
Sons, England, 1990.

[113] “Embedded microprocessor benchmark consortium.” http://www.eembc.org.

[114] T. Sakurai, “A JSSC classic paper: The simple model of CMOS drain current,” IEEE
Solid State Circuits Society Quarterly Newsletter, pp. 4–5, Oct. 2004.

[115] M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes. Springer-Verlag,
Germany, Feb. 2001.

[116] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates
and computation from assembled nanowire building blocks,” Nature, vol. 294, pp. 1313–
1317, Nov. 2001.

[117] K. K. Likharev, “Single-electron devices and their applications,” Proc. IEEE, vol. 87,
pp. 606–632, Apr. 1999.

[118] D. V. Averin and K. K. Likharev, “Coulomb blockade of tunneling and coherent oscilla-
tions in small tunnel junctions,” J. Low Temperature Physics, vol. 62, pp. 345–372, Feb.
1986.

[119] T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small
tunnel junctions,” Physics Review Ltrs., vol. 59, pp. 109–112, July 1987.

[120] M. H. Devoret and R. J. Schoelkopf, “Amplifiying quantum signals with the single-
electron transistor,” Nature, vol. 406, pp. 1039–1046, Aug. 2000.

[121] Y. Nakamura, C. D. Chen, and J. S. Tsai, “100-K operation of Al-based single-electron
transistors,” Japan Journal Applied Physics, vol. 35, pp. 1465–1467, Nov. 1996.

[122] D. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. McEuen, “A single-electron
trnaistor made from a cadmium selenide nanocrystal,” Nature, vol. 389, pp. 699–701,
Oct. 1997.

http://robertdick.org/publications/zhang04jun-b.pdf
http://robertdick.org/publications/zhang04jun-b.pdf
http://www.eembc.org

236

[123] X. Tang, X. Baie, V. Bayot, F. V. de Wiele, and J. P. Colinge, “An SOI single-electron
transistor,” in Proc. Silicon-on-Insulator Conf., pp. 46–47, Oct. 1999.

[124] M. Ahlskog, R. Tarkiainen, L. Roschier, and P. Hakonen, “Single-electron transistor
made of two crossing multiwalled carbon nanotubes and its noise properties,” Applied
Physics Ltrs., vol. 77, pp. 4037–4039, Dec. 2000.

[125] K. Matsumoto, M. Ishii, K. Segawa, and Y. Oka, “Room temperature operation of a single
electron transistor made by the scanning tunneling microscope nanooxidation process for
the TiOx/Ti system,” Applied Physics Ltrs., vol. 68, pp. 34–36, Jan. 1996.

[126] E. S. Soldatov, V. V. Kahanin, A. S. Trifononv, S. P. Gubin, V. V. Kolesov, D. E. Presnov,
S. A. Yakovenko, G. B. Khomutov, and A. N. Korotkov, “Room temperature molecular
single-electron transistor,” JETP Ltrs., vol. 64, pp. 556–558, Oct. 1996.

[127] J.-I. Shirakashi, K. Matsumoto, N. Miura, and M. Konagai, “Single-electron charging
effects in Nb/Nb oxide-based single-electron transistors at room temperature,” Applied
Physics Ltrs., vol. 72, pp. 1893–1895, Apr. 1998.

[128] Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Room-temperature Al single-electron tran-
sistor made by electron-beam lithography,” Applied Physics Ltrs., vol. 76, pp. 2256–
2258, Apr. 2000.

[129] J. R. Tucker, “Complementary digital logic based on the Coulomb blockade,” J. Applied
Physics, vol. 72, no. 99, pp. 4399–4413, 1992.

[130] R. H. Chen, A. N. Korotkov, and K. K. Likharev, “Single-electron transistor logic,” Ap-
plied Physics Ltrs., vol. 68, pp. 1954–1956, Apr. 1996.

[131] K. Uchida, J. Koga, R. Ohba, and A. Toriumi, “Programmable single-electron transistor
logic for future low-power intelligent LSI: proposal and room-temperature operation,”
IEEE Trans. Electron Devices, vol. 50, pp. 1623–1630, July 2003.

[132] F. Nakajima, Y. Miyoshi, J. Motohisa, and T. Fukui, “Single-electron AND/NAND logic
circuits based on a self-organized dot network,” Applied Physics Ltrs., vol. 83, Sept.
2003.

[133] Y.-K. Cho and Y.-H. Jeong, “Single-electron pass-transistor logic with multiple tunnel
junctions and its hybrid circuit with MOSFETs,” ETRI J., vol. 26, pp. 669–672, Dec.
2004.

237

[134] K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, and K. Seki, “Room-temperature
single-electron memory,” IEEE Trans. Electron Devices, vol. 41, pp. 1628–1638, Sept.
1994.

[135] C. Wasshuber, H. Kosina, and S. Selberherr, “A comparative study of single electron
memories,” IEEE Trans. Electron Devices, vol. 45, pp. 2365–2371, Nov. 1998.

[136] K. K. Yadavalli, A. O. Orlov, G. L. Snider, and A. N. Korotkov, “Single electron memory
devices: toward background charge insensitive operation,” J. Vacuum Science Technology
B Microelectronics and Nanometer Structures, vol. 21, pp. 2860–2864, 2003.

[137] C. Wasshuber, H. Kosina, and S. Selberherr, “A single-electron device and circuit simu-
lator,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 16,
pp. 937–944, Sept. 1997.

[138] R. H. Chen, “MOSES: a general Monte Carlo simulator for single-electron circuits,”
Meeting Abstracts, The Electrochemical Society, vol. 96, p. 576, Oct. 1996.

[139] K. Uchida, K. Matsuzawa, J. Koga, R. Ohba, S. ichi Takagi, and A. Toriumi, “Analytical
single-electron transistor (SET) model for design and analysis of realistic set circuits,”
Japanese. J. Applied Physics, vol. 39, pp. 2321–2324, Apr. 2000.

[140] H. Inokawa and Y. Takahashi, “A compact analytical model for asymmetric single-
electron tunneling transistors,” IEEE Trans. Electron Devices, vol. 50, pp. 455–461, Feb.
2003.

[141] S. Mahapatra, V. Vaish, C. Wasshuber, and K. Banerjee, “Analytical modelling of single
electron transistor (SET) for hybrid CMOS-SET analog IC design,” IEEE Trans. Electron
Devices, vol. 51, pp. 1772–1782, June 2004.

[142] J. R. Heath and M. A. Ratner, “Molecular electronics,” Physics Today, vol. 56, pp. 43–49,
May 2003.

[143] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6,
pp. 183–191, Mar. 2007.

[144] S. Vanapalli, M. Lewis, Z. Gan, and R. Radebaugh, “120 Hz pulse tube cryocooler for
fast cooldown to 50 K,” Applied Physics Letters, vol. 90, Feb. 2007.

[145] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures. Cambridge University
Press, 1997.

238

[146] Y. Ono, Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara, and
K. Murase, “Si complementary single-electron inverter,” IEDM Technology Dig.,
pp. 367–370, 1999.

[147] C. P. Heij, P. Hadley, and J. E. Mooij, “Single-electron inverter,” Applied Physics Ltrs.,
vol. 78, pp. 1140–1142, 2001.

[148] H. Wolf, F. J. Ahlers, J. Niemeyer, H. Scherer, T. Weimann, A. B. Zorin, V. A. Krupenin,
S. V. Lotkhov, and D. E. Presnov, “Investigation of the offset charge noise in single
electron tunneling devices,” Trans. on Instrumentation and Measurement, vol. 46, Apr.
1997.

[149] M. Furlan and S. V. Lotkhov, “Electrometry on charge traps with a single-electron tran-
sistor,” Physics Rev. B, vol. 67, p. 205313, 2003.

[150] V. A. Krupenin, D. Presnov, A. Zorin, and J. Niemeyer, “Aluminum single electron tran-
sistors with islands isolated from a substrate,” J. of Low Temperature Physics, vol. 118,
Dec. 1999.

[151] N. M. Zimmerman, W. H. Huber, A. Fujiwara, and Y. Takahashi, “Excellent charge offset
stability in Si-based SET transistors,” in Proc. Precision Electromagnetic Measurements,
pp. 124–125, Nov. 2002.

[152] N. S. Zimmerman, W. H. Huber, A. Fujiwara, and Y. Takahashi, “Excellent charge offset
stability in a Si-based single-electron tunneling transistor,” Applied Physics Ltrs., vol. 79,
pp. 3186–3190, 2002.

[153] Y. S. Yu, S. W. Hwang, and D. Ahn, “Transient modelling of single-electron transistors
for efficient circuit simulation by SPICE,” Electronics Ltrs., vol. 152, pp. 691–696, Dec.
2005.

[154] M. Kirihara, K. Nakazato, and M. Wagner, “Hybrid circuit simulator including a model
for single electron tunneling devices,” Japanese J. of Applied Physics, vol. 38, Apr. 1999.

[155] J. M. Rabaey, Digital Integrated Circuits. Prentice-Hall, NJ, 1998.

[156] A. DeHon, “Array-based architecture for FET-based nanoscale electronicss,” IEEE
Trans. Nanotechnology, vol. 2, Mar. 2003.

[157] S. C. Goldstein and M. Budiu, “Nanofabrics: spatial computing using molecular elec-
tronics,” in Proc. Int. Symp. Computer Architecture, pp. 178–189, June 2001.

239

[158] R. I. Bahar, J. Mundy, and J. Chen, “A probabilistic-based design methodology for
nanoscale computation,” in Proc. Int. Conf. Computer-Aided Design, pp. 480–486, Nov.
2003.

[159] K. R. Brown, L. Sun, and B. E. Kane, “Electric-field-dependent spectroscopy of charge
motion using a single-electron transistor,” Applied Physics Ltrs., vol. 88, 2006 May.

[160] “Xilinx XPower.” http://www.xilinx.com.

[161] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45nm
design exploration,” in Proc. Int. Symp. Quality of Electronic Design, pp. 585–590, Mar.
2006.

[162] S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power
source for wireless sensor nodes,” Computer Communications, vol. 26, Oct. 2003.

[163] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Lyer,
A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, “An 80-tile
1.28TFLOPS networks-on-chip in 65nm CMOS,” in Proc. Int. Solid-State Circuits Conf.,
Feb. 2007.

[164] B. Black, M. M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. Mc-
Caule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar, J. Shen, and
C. Webb, “Die stacking (3D) microarchitecture,” in Proc. Int. Symp. Microarchitecture,
pp. 469–479, Dec. 2006.

[165] Samsung. http://www.samsung.com/.

[166] Tezzaron. http://www.tezzaron.com/technology/FaStack.htm.

[167] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and M. Kandemir, “Design
and management of 3D chip multiprocessors using network-in-memory,” in Proc. Int.
Symp. Computer Architecture, June 2006.

[168] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, T. Mudge, S. Reinhardt, and
K. Flautner, “PicoServer: using 3D stacking technology to enable a compact energy
efficient chip multiprocessor,” in Proc. Int. Conf. Architectural Support for Programming
Languages and Operating Systems, Oct. 2006.

[169] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, V. Narayanan, M. S. Yousif, and C. R.
Das, “A novel dimensionally-decomposed router for on-chip communication in 3D ar-
chitectures,” in Proc. Int. Symp. Computer Architecture, June 2007.

http://www.xilinx.com
http://www.samsung.com/
http://www.tezzaron.com/technology/FaStack.htm

240

[170] D. Brooks and M. Martonosi, “Dynamic thermal management for high-performance mi-
croprocessors,” in Proc. Int. Symp. High-Performance Computer Architecture, Jan. 2001.

[171] M. D. Powell, M. Gomaa, and T. N. Vijaykumar, “Heat-and-run: Leveraging SMT and
CMP to manage power density through the operating system,” in Proc. Int. Conf. Archi-
tectural Support for Programming Languages and Operating Systems, Nov. 2004.

[172] J.McGregor, “x86 power and thermal management,” in Microprocessor Report, Dec.
2004.

[173] Y. Li, D. Brooks, Z. Hu, and K. Skadron, “Performance, energy, and thermal considera-
tions for SMT and CMP architectures,” in Proc. Int. Symp. Computer Architecture, Feb.
2005.

[174] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt,
“The M5 simulator: Modeling networked systems,” Proc. Int. Symp. Microarchitecture,
vol. 26, no. 4, pp. 52–60, 2006.

[175] M. Healy, M. Vittes, M. Ekpanyapong, C. Ballapuram, S. K. Lim, H.-H. S. Lee, and
G. H. Loh, “Multi-objective microarchitectural floorplanning for 2d and 3d ics,” TCAD,
vol. 26, pp. 38–52, Jan. 2007.

[176] Y. Tsai, Y. Xie, N. Vijaykrishnan, and M. J.Irwin, “Three-dimensional cache design ex-
ploration using 3DCacti,” in Proc. Int. Conf. Computer Design, pp. 519–524, Oct. 2005.

[177] K. Puttaswamy and G. H. Loh, “Thermal analysis of a 3d die-stacked high-performance
microprocessor,” in Proc. Great Lakes Symp. VLSI, pp. 19–24, May 2006.

[178] K. Puttaswamy and G. H. Loh, “Thermal herding: Microarchitecture techniques for
controlling hotspots in high-performance 3d-integrated processors,” in Proc. Int. Symp.
High-Performance Computer Architecture, pp. 193–204, Feb. 2007.

[179] G. L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood, and K. Banerjee, “A
thermally-aware performance analysis of vertically integrated (3-d) processor-memory
hierarchy,” in Proc. Design Automation Conf., pp. 991–996, July 2006.

[180] G. M. Link and N. Vijaykrishnan, “Thermal trends in emerging technologies,” in Proc.
Int. Symp. Quality of Electronic Design, pp. 625–632, Mar. 2006.

[181] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan, “HotLeakage: A
temperature-aware model of subthreshold and gate leakage for architects,” tech. rep.,
Univ. of Virginia, May 2003. CS-2003-05.

241

[182] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-level
power analysis and optimizations,” in Proc. Int. Symp. Computer Architecture, pp. 83–94,
June 2000.

[183] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Massubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,
M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa, “The de-
sign and implementation of a frist-generation CELL processor,” in Proc. Int. Solid-State
Circuits Conf., Feb. 2007.

[184] R. Sprunt, “Pentium 4 performance-monitoring features,” IEEE Micro, vol. 22, no. 4,
pp. 72–82, 2002.

[185] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Method-
ology and empirical data,” in Proc. Int. Symp. Microarchitecture, Dec. 2003.

[186] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha, “HybDTM: a coordinated hardware-
software approach for dynamic thermal management,” in Proc. Design Automation Conf.,
pp. 548–553, July 2006.

[187] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “CACTI 4.0,” tech. rep., HP Laboratories,
June 2006.

[188] E. C. Samson, S. V. Machiroutu, J.-Y. Chang, I. Santos, J. Hermerding, A. Dani,
R. Prasher, and D. W. Song, “Interface material selection and a thermal management
technique in second-generation platforms built on Intel Centrino mobile technology,” In-
tel Technology J., vol. 09, pp. 75–86, Feb. 2005.

[189] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur, “Thermal performance chal-
lenges from silicon to systems,” Intel Technology J., vol. 04, Aug. 2000.

[190] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John, “Measuring program similarity:
Experiments with SPEC CPU benchmark suites,” in Proc. Int. Symp. on Performance
Analysis of Systems and Software, Mar. 2005.

[191] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The impact of technology scaling on
lifetime reliability,” in Proc. International Conf. Dependable Systems and Networks,
pp. 177–186, June 2004.

[192] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic techniques and thermal
RC-modeling for accurate and localized dynamic thermal management,” in Proc. Int.
Symp. High-Performance Computer Architecture, pp. 17–28, Feb. 2001.

242

[193] Y. Li, B. Leez, D. Brooksz, Z. Huyy, and K. Skadron, “CMP design space exploration
subject to physical constraints,” in Proc. Int. Symp. High-Performance Computer Archi-
tecture, Feb. 2006.

[194] S. Heo, K. Barr, and K. Asanovic, “Reducing power density through activity migration,”
in Proc. Int. Symp. Low Power Electronics & Design, pp. 217–222, Aug. 2003.

[195] S. Park, W. Jiang, Y. Zhou, and S. Adve, “Managing energy-performance tradeoffs for
multi-threaded applications,” in Proc. Int. Conf. on Measurement and Modeling of Com-
puter Systems, June 2007.

[196] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture and synthesis for on-chip
multicycle communication,” IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 23, pp. 550–514, Apr. 2004.

[197] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full chip leakage estimation consider-
ing power supply and temperature variations,” in Proc. Int. Symp. Low Power Electronics
& Design, pp. 78–83, Aug. 2003.

[198] K.-Y. Chao and D. F. Wong, “Thermal placement for high-performance multichip mod-
ules,” in Proc. Int. Conf. Computer Design, pp. 218–223, Sept. 1995.

[199] C. C. N. Chu and D. F. Wong, “A matrix synthesis approach to thermal placement,” in
Proc. Int. Symp. Physical Design, pp. 163–168, Apr. 1997.

[200] G. Chen and S. Sapatnekar, “Partition-driven standard cell thermal placement,” in Proc.
Int. Symp. Physical Design, pp. 75–80, Apr. 2003.

243

Vita

Zhenyu Gu was born in Shanghai, China on July 15, 1978, the only son of Xiong Gu and

Kunfang Zhang. He received his Bachelor’s degree in electrical engineering from Fudan Uni-

versity in 2000, and Master’s degree from Fudan University’s ASIC and System State-Key

Lab in 2003. His research interests include chip-level multiprocessor synthesis, unified behav-

ioral and physical-level synthesis, thermal and reliability aware design and analysis, and design

methodologies for VLSI systems and embedded systems.

He is the recipient of Outstanding Graduate Student Award of Shanghai (2003), Shanghai

Applied Materials Fund Graduate Student Fellowship (2003), Alcatel Microelectronics Fel-

lowship (2002), Guang Hua Fellowship (2001), 2nd Prize of the 4th National Undergradu-

ate Student Electronics Design Contest (2000), Alcatel Fellowship (1999), Motorola Fellow-

ship (1998), People’s Fellowship (1997), and Freshmen Fellowship of Fudan University (1996).

He has four peer-review publications in IEEE conferences in the areas of design automation

and VLSI design. His ASPDAC paper was one of eight best paper award candidates among

135 technical papers and his DAC paper was nominated for best paper award. When he was

pursuing his doctoral degree, he was employed as a teaching and research assistant in Electrical

Engineering and Computer Science Department of Northwestern University. He was also with

Shanghai-Fudan Microelectronic Corp., Shanghai, China in the summers of 2000 and 2001.

	ABSTRACT
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Technology Scaling
	1.2. Power-Aware and Temperature-Aware Design Flow
	1.3. Dissertation overview

	Chapter 2. Unified Incremental High-Level and Physical-Level Synthesis
	2.1. Introduction
	2.2. Motivation
	2.3. Incremental High-Level Synthesis
	2.4. Incremental Floorplanning
	2.5. Experimental Results
	2.6. Conclusions

	Chapter 3. Unified Temperature-Aware Incremental High-Level and Physical-Level Synthesis
	3.1. Introduction
	3.2. Related work
	3.3. Motivating example
	3.4. Overview of TAPHS
	3.5. Slack distribution
	3.6. Voltage partitioning
	3.7. Floorplanning with voltage islands
	3.8. Thermal modeling
	3.9. Experimental results
	3.10. Conclusions

	Chapter 4. Reliable Application-Specific Multiprocessor System-On-Chip Synthesis
	4.1. Introduction
	4.2. MPSoC Reliability Estimation and Optimization Challenges
	4.3. Reliable Application-Specific MPSoC Synthesis
	4.4. Experimental Results
	4.5. Conclusion

	Chapter 5. Hybrid SET/CMOS Design for Low-Power Embedded Systems
	5.1. Introduction
	5.2. SET Modeling
	5.3. IceFlex: A Fault-Tolerant Hybrid SET/CMOS Reconfigurable Architecture
	5.4. Experimental Results
	5.5. Conclusions

	Chapter 6. Three-Dimensional Chip-Multiprocessor Run-Time Thermal Management
	6.1. Introduction
	6.2. Three-Dimensional CMP Technology
	6.3. Thermal Properties of 3D CMPs
	6.4. 3D CMP Thermal Management
	6.5. Experimental Setup
	6.6. Experimental Results
	6.7. Related Work
	6.8. Conclusions

	Chapter 7. Conclusion and Future Work
	References
	Vita

