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Abstract 

Memory systems research has established the importance of two distinct types of memory 

systems in the brain: explicit and implicit. While a robust literature exists on individual 

differences in the explicit domain (Chapter 3), research on individual differences in implicit 

learning remains relatively limited. The key question guiding the investigation into individual 

differences described in this dissertation lies in the arguably natural assumption that certain 

individuals are more equipped to learn particular skills, such as in sports or music, that are 

supported by implicit learning mechanisms. Historically, researchers have assumed that 

individual differences in implicit learning are relatively small or nonexistent due its reliance on 

evolutionarily older neural mechanisms and its incidental or “automatic” nature. Such an 

automatic process should not be able to translate into individual advantages or weaknesses in 

implicit learning. However, the body of research investigating “automaticity” in implicit learning 

has proved inconclusive in many ways. 

Furthermore, researchers who study the types of real-world skill learning that implicit 

learning is thought to support have argued in favor of individual differences. In particular, 

consideration of the nature of skill expertise has led some to argue that innate talent does play an 

important role in skill learning. This suggests that implicit learning, as a key component of skill 

learning, may vary across individuals in a similar way to constructs with a much deeper history 

of individual differences research, such as fluid intelligence or working memory capacity. In 

other words, particular individuals may simply be more gifted when it comes to skill learning, a 

notion that likely seems logical or even obvious to most. 
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In my own research using an implicit sequence learning task, I have found that altering 

participants’ mental state (e.g., depleting mental resources, inducing a particular motivational 

state) can impact the expression of implicit knowledge, providing a firmer argument against the 

notion of “automaticity” in implicit learning (Chapter 2). In addition, other researchers have 

begun to investigate the relationship between individual differences in working memory capacity 

and individual differences in implicit learning (Chapter 3). Together, these studies led me to ask 

the question: is implicit learning ability a reliable trait measure that differs across individuals? 

Surprisingly, the results from the four experiments at the core of this dissertation (Chapter 4) 

suggest that the answer is a resounding no. Evidence from both correlational and factor analyses 

indicated that sequence-specific learning ability is not a stable individual trait. This finding adds 

significantly to the discussion of the nature of skilled expertise by implying that the basic 

implicit learning mechanism underlying skill learning is a universally shared process—all 

individuals have an equal capacity to learn. 
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Chapter 1: Implicit Learning—An Automatic Process? 

 

Memory systems research has established the importance of two distinct types of memory 

systems in the brain: explicit and implicit. The explicit memory system holds conscious 

memories for fact and events, and upon retrieval these memories are readily available for 

conscious control and verbal report. Therefore, the explicit system contains much of what are 

conventionally thought of as “memories”. Seminal research by Scoville and Milner (1957) on the 

patient H.M. provided the first evidence that explicit memories rely on the hippocampus and 

related structures contained within the medial temporal lobe (MTL). In particular, storage of 

explicit memories is dependent on an intact MTL, with long-term memory retrieval gradually 

becoming MTL independent through consolidation (Reber, 2008). 

In contrast to explicit memory, implicit memory is thought to operate largely outside of 

conscious awareness. These types of memories are thought to reflect changes in plasticity that 

occur throughout the cortex independent of the explicit, medial temporal lobe system. Through 

experience, patterns are extracted from the environment and predictable structures that emerge 

can be used to guide future behavior. For example, some aspects of language learning (e.g., early 

learning of word segmentation and grammatical structure) are thought to occur in the automatic 

fashion that is considered a hallmark of implicit learning (Saffran, Aslin, & Newport, 1996). 

Artificial grammar learning tasks (e.g., Reber, 1967) have been commonly used to investigate 

implicit learning of language. A wide range of other phenomena have also been classified as 

types of implicit learning, including priming, habit learning, sequence learning, and some forms 

of category learning (Reber, 2008; Reber, 2013). Additionally, this type of learning is thought to 

underlie a wide array of skills, such as learning to ride a bike or play a sport or musical 
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instrument. Thus, skill learning research is related to implicit learning research in that it focuses 

on the study of the types of complex, real-world skills that are thought to be supported by 

implicit learning mechanisms.  

A further contrast between implicit and explicit memory concerns the manner in which 

learning is thought to occur. Explicit learning occurs intentionally, such as when participants 

attempt to discover a task-based rule through hypothesis testing. Individual events are rapidly 

learned and stored in the MTL memory system, which is highly specialized for pattern separation 

such that many similar events can be stored and retrieved separately with relatively low 

interference (McClelland, McNaughton, & O’Reilly, 1995). Implicit learning, on the other hand, 

is assumed to be incidental and not based on a conscious intention to learn. Learning in this 

system is slower, with information accumulated in an incremental fashion across a number of 

repetitions. This more gradual learning is what allows for the extraction of underlying statistical 

co-occurences that can then lead to greater processing fluidity and accuracy. 

For example, priming can be elicited in a word stem completion task where participants 

read a list of words and are then asked to complete a list of partial word stems with the first word 

that comes to mind. Participants are more likely to complete the word stems with words from the 

list they read earlier, even if they were not told to remember these words and even if they are 

given explicit instructions to avoid completing the word stems with words from the list (Reber, 

2008; Schacter, 1987). The studied words appear to unconsciously “intrude” to influence 

participants’ word stem completions, even if the participants believe they are avoiding using the 

words they read earlier. 
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However, this type of performance test is by nature an indirect measure of the learning 

process (in this case, greater activation of the words read earlier is thought to produce the 

priming effect by making these words more likely to come to mind when reading the word 

stems). Indeed, it is difficult if not impossible to directly measure implicit learning since the 

learning occurs incidentally and outside of awareness. Another example of an indirect 

assessment comes from research on implicit motor sequence learning. Participants make motor 

responses to a series of on-screen cues in which a repeating sequence has been embedded. 

Though participants are not made aware of the presence of the repeating sequence, they tend to 

show improved performance over time for the repeating sequence compared to novel or random 

sequences (Nissen & Bullemer, 1987; Sanchez, Gobel, & Reber, 2010). Thus, participants appear 

to extract and learn the embedded pattern even though they are not aware of its existence. 

Historically, the incidental nature of implicit learning has led researchers to assume that 

individual differences in implicit learning are relatively small or nonexistent. Many have referred 

to implicit learning as an “automatic” process that occurs regardless of constraints imposed on 

processes that can impact explicit learning, such as attention or working memory. Additionally, 

many have cited the reliance of implicit learning on evolutionarily older neural mechanisms as 

evidence that this type of learning should not differ among individuals in the way that explicit 

learning does (Kaufman et al., 2010; Reber, 1989; Reber & Allen, 2000). However, imaging 

studies have shown that implicit learning processes involve not only older structures such as the 

basal ganglia, but areas of the more newly formed neocortex as well (Gobel, Parrish, & Reber, 

2011). Furthermore, research on implicit learning under dual task conditions have challenged 

strict interpretations of automaticity as it relates to implicit learning. 
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The notion that implicit learning occurs “incidentally” and outside of awareness led many 

to assume that attention was not required for this type of learning. Several researchers have 

explored this idea in implicit sequence learning by looking at learning under dual-task 

conditions. The added secondary task (typically tone counting) is presented to participants as the 

primary task. This prompts participants to divert most their attention away from the sequence 

learning task, allowing researchers to measure subsequent effects on sequence learning through 

indirect tests of performance (typically measured as the difference in reaction times to the 

repeating sequence compared to a random sequence introduced towards the end of training). 

Schumacher and Schwarb (2009) provide a comprehensive review of studies that 

investigated dual-task effects on implicit sequence learning in the Serial Reaction Time (SRT) 

sequence learning task developed by Nissen and Bullemer (1987). The results of many of these 

studies are conflicting, with some finding interference from a secondary task and others 

observing intact learning. Schumacher and Schwarb (2009) discuss two potential reasons for this 

discrepancy. First, the timing of the secondary task in relation to the sequence learning task 

appears to affect whether impaired learning is observed. Schumacher and Schwarb found that 

sequence learning is impaired when the sequence learning and secondary tasks occurred 

simultaneously, but not sequentially. They argued that this was due to parallel processing 

constraints rather than a response selection bottleneck, as previous researchers had speculated. 

However, this may be specific to sequence learning dual-task paradigms, as the responses 

typically required (motor in the SRT task and verbal for the tone counting task) differ in 

modality and thus one might not expect response selection interference to explain the 

impairments observed from the addition of the secondary task. 
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Second, it is difficult to tease apart whether the secondary task affects the learning or 

expression of sequence knowledge, and this may have contributed to the varied findings in the 

literature. Curran and Keele (1993) suggested that a secondary task impairs learning of 

ambiguous sequences (where each item in the sequence can be followed by two or more other 

items) but not unique (each item is always followed by the same item) or hybrid (containing at 

least one unique transition) sequences. This led the authors to conclude that learning of 

ambiguous sequences, which are commonly used in implicit sequence learning paradigms, 

requires attention. However, others (e.g., Frensch, Lin, & Buchner, 1998; Frensch & Miner, 

1994) proposed that as an automatic process, implicit sequence learning should not depend on 

attentional resources. They explain dual-task interference effects in terms of knowledge 

expression rather than learning. This theory, known as the automatic learning hypothesis or 

suppression hypothesis, suggests that sequence knowledge is obscured, but that learning is not 

necessarily impaired, by the addition of a secondary task. In support of this, Frensch et al. (1998) 

found that when participants learned the sequence under dual-task conditions but were given a 

single-task test, there was still evidence of successful learning. 

There does not yet seem to be a consensus on the above question concerning whether a 

secondary task interferes with learning or expression. Even within research groups, such as 

Frensch and colleagues, seemingly contradictory claims have been made across papers. 

Furthermore, the idea of parallel explicit and implicit knowledge development in healthy 

subjects again becomes relevant here. As stated above, implicit learning is described in terms of 

a lack of medial temporal lobe (e.g., explicit memory system) involvement. However, this can 

prove difficult to tease apart with healthy subjects. Additionally, the SRT task is somewhat less 
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effective as a “process-pure” measure of implicit learning and often leads to concurrent explicit 

knowledge development in participants. The combined issues of learning versus expression and 

parallel explicit/implicit knowledge development may be some of the key reasons researchers 

have struggled to develop an adequate definition of automaticity with regards to implicit 

sequence learning. 

Though this represents an important and ongoing problem in the implicit learning 

literature, I do not plan to address automaticity directly in the scope of my proposed research. 

Rather, I discuss these points to illustrate how central assumptions about implicit learning—

namely, that it is incidental and automatic—are in fact complex concepts that have proved 

difficult to address experimentally. The argument that implicit learning ability has relatively low 

between-subject variability due to its automatic nature may therefore not be as solid as it first 

appears. 

Furthermore, skill learning research often assumes the opposite—individual differences 

in innate talent do influence learning. Ericsson’s popularized “10,000 hours” theory (Ericsson, 

Krampe, & Tesch-Rӧmer, 1993; Ericsson, Prietula, & Cokely, 2007) originally challenged the 

idea of innate talent, suggesting that expertise in a particular skill was the result of years of 

intense, deliberate practice, with 10,000 hours as the estimated amount of practice required for 

attaining expertise in a given skill. Following this line of argument, individual differences should 

not exist in skill learning contexts—practice, and not innate learning ability, is the sole 

requirement for attaining expertise. In other words, the notion that an individual may be 

particularly better or worse at skill learning would be unfounded. This aligns with the 

assumption that implicit learning, a key component process of skill learning, does not function as 



  17 
 
a stable individual trait in the same manner as other cognitive abilities such as working memory 

or fluid intelligence (both widely studied in the individual differences literature).  

However, Fernand Gobet has pushed back against the theory of deliberate practice by 

arguing that it is “necessary but not sufficient” in achieving expertise (Campitelli & Gobet, 2011; 

see also Hambrick et al., 2014). In particular, Gobet’s research into expert chess players revealed 

that many individuals who dedicated over 20,000 hours to chess, twice the amount that Ericsson 

suggested was sufficient for expertise, still failed to achieve chess master level status (recognized 

as the highest level of skill). In addition, Gobet noted high variability in the number of practice 

hours (a range of approximately 3,000 to 23,000 hours) among those who had achieved “master” 

status, suggesting that not all individuals benefited from deliberate practice in similar ways. 

Gobet therefore concluded that innate talent or ability does play a key role in expertise; certain 

individuals have a greater capacity for skill learning. If implicit learning ability is a key 

component of skill learning ability, implicit learning should thus also vary across individuals in a 

similar way to other cognitive skills like fluid intelligence or working memory. 

Additionally, examples of individual differences even among novices are abundant in 

skill learning literature. Ackerman and Cianciolo (2000) found that psychomotor and processing 

speed abilities predicted individual differences in learning and performance on a simulated flight 

landing task. Groups that have use simpler sensorimotor adaptation tasks such as grip force or 

motor trajectory tasks have found evidence of individual differences (Golenia, Schoemaker, 

Mouton, & Bongers, 2014) and that trial-by-trial variability in movement accuracy may be 

predictive of individual learning rates (Wu, Miyamoto, Castro, Ölvecky, & Smith, 2014). 
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Finally, Engel and colleagues (2013) found that time to learn novel piano melodies consistently 

varied across their non-musician participants from one training session to the next. 

Despite the evidence from the skill learning literature, individual differences in more 

basic experimental implicit learning tasks meant to capture the type of learning underlying these 

skills have remained relatively unexplored. As discussed above, this is in large part due to the 

reigning assumption among researchers who employ these tasks that such individual differences 

don’t exist. While individual differences in explicit learning ability have been studied by many 

researchers (as discussed further in Chapter 3), the opposite—namely, that there are little or no 

individual differences—seems to be merely assumed to be true of implicit learning due to the 

further assumption that it is an automatic process that should be immune to such differences. In 

the next two chapters, I present evidence challenging the idea that implicit learning is fully 

automatic by considering factors that can affect learning and performance in implicit sequence 

learning (Chapter 2). The two sets of experiments on state effects described in the next chapter 

have particular implications for implicit knowledge expression and maximizing expertise. I then 

go on to review prior individual differences research (Chapter 3) as I consider whether implicit 

learning can behave more like an individually distinct trait. 
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Chapter 2: Factors Affecting Implicit Learning and Performance 

 

Experiment 2.1: Fragment-Based Learning of Repeating Sequences 

In my prior and current work, I have utilized 

the Serial Interception Sequence Learning (SISL) 

task (Sanchez et al., 2010) to measure implicit 

sequence learning. During the SISL task, 

participants attempt to intercept cues scrolling down 

a monitor by pressing a corresponding key (D, F, J, 

K) when the cues overlap their target rings (Figure 

2.1).  Responses are scored as correct if the 

corresponding key is pressed when the cue overlaps 

the target ring within one cue length (one half a cue 

length on either side of the optimal target response). 

Typically, participants are trained on a particular 12-item repeating sequence that comprises 80% 

of the 3240 training trials, while novel foil sequences are shown on the remaining 20% of trials. 

Following training, implicit sequence knowledge is tested using 3 60-trial sub-blocks of five 

trained sequence repetitions randomized among six sub-blocks of five repetitions of two novel 

foil sequences (3 sub-blocks for each foil). Participants are not made aware of the presence of the 

repeating sequence during training or test, nor is there any indication of when the training blocks 

end and the test block begins. Sequence learning is measured as the difference in accuracy 

(percent correct) at test for the repeating sequence compared to the foil sequences. 

Figure 2.1. The SISL task. Blue 
circular cues move down the screen 
towards black target circles, each 
corresponding to a key on the 
keyboard—D, F, J, or K. 
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In some of my early work with the SISL task, I became interested in what specifically is 

learned about the repeating sequence to support later performance on the sequence knowledge 

test. As discussed in Chapter 1, the incidental quality of implicit learning and the indirect nature 

of tests used to measure learning make it difficult to study the learning process itself. As a way to 

address this issue, I developed two types of training in the SISL task that would allow me to 

manipulate the sequence information available to participants to determine what type of 

information was necessary for participants to learn the sequence (Thompson, Blake, & Reber, in 

preparation). 

In the SISL task, the sequences used are second-order conditional in nature (Reed & 

Johnson, 1994), meaning that each item in the sequence occurs an equal number of times, 

making reliance on raw frequency or bigram information insufficient for predicting the next item 

in the sequence. However, each possible pair of items occurs exactly once and learning second-

order information (trigrams) allows perfect prediction of the sequence. I contrasted normal 12-

item sequence training with training based on sequence fragments that were 6 items long. 

Critically, the basic trigram information necessary to learn the sequence was matched between 

the two types of training. On a sequence knowledge test, the performance of all participants on 

the 12-item repeating sequence was contrasted with two novel 12-item foil sequences—the 

typical test block structure used in the SISL task. Participants displayed equivalent rates of 

learning (measured by the Sequence-Specific Performance Advantage, or repeating sequence 

performance minus average foil performance) regardless of training type, indicating that trigrams 

are a key piece of information participants extract to learn the sequence. Furthermore, presenting 
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the sequence in fragments did not appear to disrupt participants’ ability to extract the statistical 

structure of the entire sequence (Figure 2.2, first pair of bars).  

Two additional experimental conditions, which matched the repeating sequence and 

fragments conditions based on higher-order statistical information (4-grams or 5-grams), 

suggested that participants may also be learning more than simple trigram information (see 

remainder of Figure 2.2).  This was confirmed through computational simulation of the data 

using three different learning models. Each model predicted percent correct on a trial-by-trial 

basis. This prediction combined the outcome from two different functions—a learning function 

Figure 2.2. Performance during the sequence test for the repeating and 
fragments training groups. Regardless of training condition 
(Repeated/Fragments) and group (3=trigram matched, 4=4-gram matched, 5=5-
gram matched), test performance indicated equivalent knowledge of the 
repeating sequence. SSPA = Sequence-Specific Performance Advantage. Error 
bars reflect SEM. 
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(Eq. 1) and a general performance function (Eq. 2). Learning in a given model was based on the 

number of repetitions of the particular N-gram (trigram, 4-gram, 5-gram) tracked by that model: 

𝑓𝑓(𝐿𝐿) =  𝑀𝑀3[𝑏𝑏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡]𝜆𝜆    (1) 

The above (Eq. 1) is an example of the learning function in the trigram (M3) model, where 𝑀𝑀3 

represents the trigram matrix. This matrix was indexed using the current bigram (b, which 

represents the previous two cues) and current cue (𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡), and the resulting value was raised to 

the learning rate (λ) power. Therefore, the model would predict higher performance for trigrams 

that have been encountered more often and follow a power law function of learning based on 

trigram repetitions. The learning functions for the 4-gram (M4) and 5-gram (M5) models were 

identical in format, but the matrix instead stored the appropriate N-gram and was indexed by the 

current trigram or 4-gram, respectively, and current cue. 

 All possible N-grams were tracked and stored in the given N-gram matrix of a model.  

The trial order information for each participant was fed into the model, and on each trial the 

model would simultaneously update its count of the current N-gram and predict performance on 

the current trial based on the current number of N-gram repetitions. The outcome of the learning 

function was then modulated by the performance function (Eq. 2), which represented general 

task characteristics necessary to produce model predictions that matched human behavior. 

𝑓𝑓(𝑃𝑃) = 𝐶𝐶 − (𝑆𝑆 ×  𝜎𝜎)    (2) 

Here, C was a constant that represented general task performance, S represented the current 

speed (taken from participant data), and σ was a speed adjustment parameter that controlled how 

speed changes affected overall performance. Thus, the model’s predicted performance for each 

trial was given by Eq. 3: 
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𝑃𝑃𝐶𝐶𝑡𝑡 = 𝑓𝑓(𝐿𝐿) + 𝑓𝑓(𝑃𝑃)     (3) 

Predicted performance could then be summarized across blocks for both the repeating 

sequence (or fragments) and foil trials, in the same manner as the behavioral data. This was 

repeated for all participants’ trial orders, and the predictions for the group performance taken 

from the model were compared to the actual group data to assess the goodness of fit for each 

model. Using a downhill simplex search method, the parameter spaces for the three free 

parameters in each model (λ, C, and σ) were explored to find the set of parameter values that 

yielded the best-fitting version of each model (M3, M4, M5). Comparison of these models 

showed that a 5-gram learning model provided the best overall fit of all six datasets (trigram, 4-

gram, and 5-gram repeated and fragments groups; Table 2.1). 

Table 2.1 
 
Comparison of model fits across the three learning models. 

Model Fit (MSE) 
Parameter Values 

λ σ C 

M3 34.53 0.511 -0.510 0.301 

M4 28.00 0.490 -0.413 0.339 

M5 25.87 0.479 -0.371 0.443 

Note: MSE = mean squared error 
 

The modeling work provided a way to investigate the learning process and indicated that 

participants were utilizing higher-order information beyond the simple trigram level  

necessary for learning the second-order conditional sequences, which fits with previous work 

using more complex SISL sequences (e.g., Gobel et al., 2013). Of course, even trigram learning 

can be computationally complex if one considers that real-world skills involve more than the 
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simple four keystrokes used in the SISL task. Furthermore, the number of items that must be 

tracked increases exponentially with each additional step size (4-grams, 5-grams, etc.). Thus, 

although the mechanism supporting implicit learning does not require learning the full sequence 

in order and can support fragment-based learning, it also requires tracking of multiple statistical 

relationships between cues. 

State Effects in the SISL Task 

Following this investigation of how participants learn the repeating sequences in the SISL 

task, two sets of experiments on state effects further prompted my interest in investigating 

individual differences in implicit learning. If one accepts that implicit learning is truly incidental 

and/or automatic, one would expect this type of learning to be unaffected by current mental state. 

However, some researchers have presented evidence for state effects by showing that mood can 

affect learning on the SRT task. Shang, Fu, Dienes, Shao, and Fu (2013) found that inducing a 

negative mood reduced learning on the SRT task. Bertels, Demoulin, Franco, and Destrebecqz 

(2013) also found an effect of mood on visual statistical learning of shape triplets. Participants 

under a sad mood induction were more likely to develop explicit knowledge of the statistical 

relationship among the shapes. Using the SISL task, we have also found evidence for two types 

of state effects that can impact the expression of implicit knowledge: ego depletion and 

motivation. 

Experiments 2.2 and 2.3: Ego Depletion 

Thompson, Sanchez, Wesley, and Reber (2014) investigated the effects of ego depletion 

on implicit learning using the SISL task. The core motivation for this research was to look at 

cognitive resource constraint effects on implicit learning (similar to the dual-task work 
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previously described), and the phenomenon of ego depletion was chosen primarily for its 

implications in dopaminergic function. Muraven, Tice, and Baumeister (1998) and Baumeister, 

Vohs, and Tice (2007) described the phenomenon of ego depletion as a weakening of central 

executive functioning following the depletion of cognitive control resources. Because cognitive 

control has been associated with variations in dopaminergic function (Braver & Barch, 2002), it 

was proposed that ego depletion could produce a transitory learning effect similar to deficits in 

sequence learning observed in Parkinson’s patients (Gobel et al., 2013; Siegert, Taylor, 

Weatherall, & Abernethy, 2006). An additional benefit of using this type of resource constraint 

induction method was that it allowed us to get away from some of the issues associated with the 

dual-task paradigms used previously with the SRT task (e.g., timing effects). 

Experiment 2.2 methods. Thirty undergraduates at Northwestern University were 

compensated $10/hour for participation. Participants were randomly assigned to a Depletion 

(N=15) or Non-Depletion (N=15) condition. We induced ego depletion through a standard 

manipulation (Baumeister, Bratslavsky, Muraven, & Tice, 1998) that initially required 

participants to cross out every letter “e” in a page of text from a statistics textbook for five 

minutes. For the next five minutes, those in the Depletion condition completed a more complex 

regulatory control fatiguing task of crossing off every letter “e” unless it was next to or one letter 

removed from a vowel, while Non-Depletion participants continued to follow the easier rule of 

crossing out every “e”. 

Following the depletion/non-depletion task, participants completed six 480-trial training 

blocks of SISL followed by a 540-trial test block to assess sequence-specific learning. During 

training, the cues followed a repeating sequence on 80% of trials and novel foil sequences on 
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20% of trials. At test, 3 60-trial sub-blocks of five trained sequence repetitions were randomized 

among six sub-blocks of five repetitions of two novel foil sequences (3 sub-blocks for each foil). 

Participants were not made aware of the presence of the repeating sequence during training or 

test, nor was there any indication of when the training blocks ended and the text block began. 

Sequence learning was measured as the difference in accuracy (percent correct) at test for the 

repeating sequence compared to the foil sequences. 

Cues initially scrolled down the screen at a velocity of 12.6 degrees/second, reaching the 

target zone .85 s after appearing on the screen. Speed was adapted based on performance, with 

cue velocity increasing when performance rose above 65% and dropping when performance fell 

below 25%. Thus, the speed adjustments prevented participants from reaching ceiling 

performance levels, which would prevent observation of sequence learning as this measure relies 

on a difference score based on the performance difference between the repeating sequence and 

foil sequences. 

Equally importantly, the speed adjustments served as means of maintaining a consistently 

challenging task for participants. This component of the task is likely what accounts for the 

lower levels of explicit knowledge development observed among participants compared to the 

more traditional sequence learning task, the SRT. Indeed, even instructing participants to 

memorize the embedded repeating sequence does not lead to better performance compared to 

participants who are kept naïve to the presence of a repeating sequence (Sanchez & Reber, 

2013). Thus, the SISL task is designed such that even perfect explicit knowledge of the sequence 

does not produce faster learning, suggesting that explicit recognition of the sequence does not 

influence performance on the task. This eliminates any need for concern that cognitively healthy 
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participants likely acquire some explicit knowledge of the repeating sequence, as this type of 

knowledge does not appear to contribute to performance on the SISL task. 

Experiment 2.2 results. Though both groups showed evidence of learning the sequence, 

participants in the Depletion condition displayed less sequence knowledge at test than those in 

the Non-Depletion condition (Figure 2.3). However, as in the initial dual-task experiments 

discussed in Chapter 1, we were unable to distinguish whether ego depletion negatively affected 

sequence learning directly or whether it impacted participants’ ability to express their sequence 

knowledge. Therefore, a second experiment employed a pre-training/pre-test depletion design to 

address this issue. 

Figure 2.3. SISL test performance in Experiment 2.2. The sequence-specific 
performance advantage measures the improvement in SISL task execution 
when cues are following the repeating sequence. The Depletion group showed a 
significantly smaller advantage for the trained sequence at test. Error bars 
reflect SEM. 
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Experiment 2.3 methods. One hundred twenty-four participants at Northwestern 

University received course credit for participation. Two groups of Depletion participants 

received the depleting form of the task (crossing out “e’s” based on the complex set of rules 

described above) for five minutes either before training on SISL (N=42) or after training but 

before the sequence test (N=41), and the non-depleting form of the task (cross out every “e”) at 

the other time point. An additional group (N=41) served as a non-depletion control, completing 

the easier form of the task at both time points. 

Experiment 2.3 results. Though not quite reliable, the Non-Depletion group again 

performed better on the test compared to both of the Depletion conditions. The nonsignificant 

results may have been due to the shortened version of the depletion task used in order to fit the 

two depletion time points, which may have been less effective than the design used in 

Experiment 2.2. In addition, participants provided self-report ratings of mental fatigue following 

each time point and several individuals reported depletion levels inconsistent with the 

experimental manipulation (e.g., reporting feeling depleted after the non-depleting task or vice 

versa). When participants were sorted based on a median split of their self-reported depletion at 

each time point, there was a main effect of pre-training depletion and a marginal effect of pre-

test depletion. In particular, participants who reported feeling depleted at both time points 

showed the lowest performance benefit for the trained sequence, while those who were not 

depleted at either time point showed learning similar to the Non-Depletion participants in the 

Experiment 2.2. Participants who were depleted at one time point but not the other fell 

somewhere between the other two groups (Figure 2.4).  
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Thus, the effects of ego depletion appeared to be additive—depletion either pre-training 

or pre-test produced lower test performance than no depletion, and depletion at both time points 

produced the lowest performance. There was no clear distinction among pre-training versus pre-

test depletion, leading us to conclude that depletion may affect both sequence learning and the 

expression of sequence knowledge. Importantly, we also failed to find an effect of ego depletion 

on participants’ explicit knowledge of the sequence pattern, suggesting that ego depletion affects 

implicit knowledge expression and/or learning directly. As mentioned above, the potential 

contamination of explicit knowledge represents an additional issue faced by dual-task 

experiments, as the SRT task tends to produce higher levels of explicit knowledge in 

participants. However, participants’ explicit knowledge has been shown to have little or no effect 

Figure 2.4. SISL test performance for post hoc conditions in Experiment 2.3. 
Participants in a depleted state prior to training and test (D-D) exhibited a 
significantly smaller sequence-specific performance advantage at test 
compare to those who were not depleted at either time point (ND-ND). Those 
who self-reported depletion at either time point (ND-D and D-ND) also 
displayed reduced performance benefits compared to ND-ND participants. 
Error bars reflect SEM. 
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on SISL task performance (Sanchez & Reber, 2013; also see Chapter 4 for a more in-depth 

discussion), leaving us more confident that the depletion effects we observed were specific to the 

implicit processes involved in the task. These findings have implications for real-world skill 

training, suggesting that maximizing the gains from repeated practice of a skill requires limiting 

the constraints placed on central executive processes, which could impact implicit learning 

processes by disrupting dopaminergic functioning. 

Experiments 2.4 and 2.5: Motivation 

In addition to mood and depletion effects, others have shown that current motivational 

states can also impact implicit learning. In particular, Grimm, Markman, Maddox, and Baldwin 

(2008) showed that inducing a regulatory “mismatch” between motivational focus 

(approach/avoid) and task feedback structure (gain/loss) led to improved learning on an 

information integration (implicitly learned) category learning task. In other words, participants 

who were primed to be in an approach motivational state but were given feedback focused on 

losses (and vice versa) showed improved learning of an implicit category. Those who 

experienced a regulatory “match” between feedback and motivational focus (approach 

motivation + gain-focused feedback or avoid motivation + loss-focused feedback), on the other 

hand, showed better learning of a rule-based category which can be learned explicitly. 

The authors explained this effect by proposing that regulatory fit leads to greater 

flexibility in hypothesis testing, which would benefit a rule-based task by leading participants to 

find the rule more quickly. However, an information integration category learning task requires 

participants to learn categories that cannot be distinguished by an easily verbalizable rule, and 

explicitly applying different rules can actually hurt performance. Therefore, participants who 
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experience a regulatory mismatch may be better suited to learn these more complex categories 

due to a reduction in elaborative processing. We aimed to expand this theory to implicit sequence 

learning by conducting a similar experiment with the SISL task (Chon, Thompson, & Reber, 

2017).  

Experiment 2.4. In a first experiment, one hundred and twenty-five participants were 

compensated $10/hour for participation. Participants were told that they could either win two 

tickets for a $50 raffle by improving their performance on the task (approach motivation 

induction) or were provided with an initial two tickets and told they could lose them through 

poor performance (avoid motivation induction). In addition, the motivation conditions were fully 

crossed with two feedback conditions (with 20 participants per each of the four conditions) for 

the SISL task—positive feedback on correct responses (by target circles flashing green and 

positive verbal phrases appearing on the screen) or negative feedback (red target flashes and 

negative verbal phrases) for incorrect responses. The regulatory “match” participants were those 

with avoid motivation and negative feedback or approach motivation and positive feedback. 

Participants with contradictory motivation/feedback pairings were considered to be experiencing 

a regulatory “mismatch”, similar to Grimm et al. (2008). Participants were also provided with 

feedback on their progress towards winning or losing tickets (depending on condition) 

throughout the task (3240 trials of training and 540 trials of test) to ensure that the motivation 

manipulation remained strong (Figure 2.5). Cue speed was adjusted adaptively to maintain an 

overall task performance rate of 75% correct.  Initially cues reached the target zone 1.5s after 

appearing on the screen. If performance exceeded 80% correct over 20 trials, the speed was 

increased by 5%.  If performance fell under 70%, speed was decreased 5%. The speed 
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adjustments were removed for the test block; test speed was set to the speed the participant had 

reached at the end of training. 

Though we did not find a similar motivation-feedback interaction as Grimm and 

colleagues, we did observe that participants under an avoid motivation induction (regardless of 

feedback condition) showed significantly greater sequence-specific knowledge at test (Figure 

2.6A). Again, we wanted to further investigate whether this effect was specific to learning or 

expression. 

Figure 2.5. SISL task for Experiments 2.4 & 2.5. In Experiment 2.4, the Positive 
Feedback condition flashed positive verbal phrases (e.g., “Correct!” “Great!” or 
“Excellent!”) across the screen for every third correct response while the Negative 
Feedback condition flashed negative verbal phrases (e.g., “Missed,” “Try harder,” or 
“Wrong”) for every incorrect response. In the Approach Motivation condition, the 
progress bar filled up to the top with green color based on the correct response rate, 
while in the Avoid Motivation condition, the progress bar filled down to the bottom 
with red color based on the incorrect response rate. Movement of the progress bar 
was controlled based on the 75% correct response rate (controlled by adaptive speed 
adjustments) so that it reached the top or bottom of the bar (for the Approach or 
Avoid conditions, respectively) by the end of the experimental session. The figures 
shown above reflect the two “match” conditions. For Experiment 2.5, the verbal 
phrases feedback was removed. 
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Figure 2.6. SISL test performance for Experiments 2.4 & 2.5. A) In Experiment 2.4, 
those in the Avoid motivation conditions exhibited a significantly greater performance 
advantage for the trained sequence than those in the Approach conditions. There was 
no main effect of feedback nor an interaction between feedback and motivation. B) In 
Experiment 2.5, avoid motivation participants again showed a greater sequence-
specific advantage at test (left bars). However, when the motivation manipulation was 
removed (right bars), no reliable differences between the motivation conditions 
persisted. Error bars reflect SEM. 
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Experiment 2.5. In a second experiment, the feedback conditions were removed (since 

no main effect of feedback was found in Experiment 2.4, all participants received both positive 

and negative feedback in the form of the target circles flashing green or red) and participants 

were randomly assigned to either an Approach (N=40) or Avoid (N=41) condition. Participants 

completed 3240 trials of training and a 540-trial test block of the SISL task as in Experiment 2.4. 

Participants were debriefed about the motivation manipulation following the test block. They 

were then invited to complete a second test block, which allowed us to observe performance with 

the motivation effects removed. We replicated the effect from the first experiment, with 

participants who were directed to adopt an avoidance motivation style showing significantly 

greater sequence knowledge in the first test block. However, this group’s performance dropped 

to match those in the approach motivation condition in the second test block, once the motivation 

manipulation had been removed Figure 2.6B). 

Thus, avoid motivation appeared to produce transiently improved expression of sequence 

knowledge after SISL task training but did not necessarily lead to faster learning of the sequence. 

Nevertheless, the idea that motivation could not only affect general performance on the task but 

actually led participants to better express their knowledge of the trained sequence was surprising. 

Similar to the findings from the ego depletion experiments, these results open the possibility of 

identifying ideal conditions for fully capitalizing on one’s implicitly acquired knowledge in 

guiding skilled performance in real-world skills such as music and sports. Indeed, coaches and 

trainers seem to regularly employ avoid motivational techniques (e.g., framing performance 

goals in terms of avoiding loss, whether of status, a scholarship, teammates’ respect, or other 

valuable concepts) in pushing their trainees to perform better.  



  35 
 

The motivation experiments, along with the ego depletion experiments discussed earlier 

in this chapter, provide evidence that the expression of knowledge acquired implicitly (and 

perhaps the learning process itself) can be enhanced or impaired by manipulating mental states. 

This adds to the dual-task literature reviewed in Chapter 1 by further weakening the claim that 

the expression of knowledge in implicit learning tasks is an automatic process that cannot be 

disrupted. Because automaticity is one of the main supporting arguments for the idea that 

implicit learning does not exhibit individual differences, it seems that a reconsideration of this 

claim is in order. However, the evidence for specific effects on implicit learning (in contrast to 

implicit performance/expression of knowledge) remains somewhat less robust even following the 

prior studies discussed thus far, given the inconclusive results from both dual-task experiments 

with the SRT task and the ego depletion experiments described in the current chapter. The next 

chapter reviews prior research on individual differences and more directly considers the question 

of whether implicit learning ability can be defined as a stable trait that varies across individuals. 
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Chapter 3: A Review of Individual Differences Research in Intelligence and Working 

Memory 

 

While it appears that implicit learning isn’t truly automatic in the sense that it is 

unaffected by the learner’s current mental state, whether there are stable trait differences in 

implicit learning ability remains an open question. By contrast, explicit cognition is well known 

to vary among individuals. Two of the most widely studied areas of individual differences are 

intelligence and working memory. Conway and Kovacs (2013) provide a good review of the 

history of research into these constructs, emphasizing the parallel search for and subsequent 

rejection of a unitary source of variance among individuals. 

Spearman’s (1904) theory of a general factor (g) of intelligence has since been 

challenged primarily on the finding that intelligence tests within a particular domain (e.g., 

spatial) correlate more strongly with each other than with tests from a different domain (e.g., 

verbal). Various models that include both a general factor and group factors representing specific 

domains to explain the variance in individual test scores have been proposed as alternatives to 

Spearman’s original model. The most influential description of the content of the group factors 

comes from Cattell (1971) and Horn’s (1994) proposed models of fluid versus crystallized 

intelligence. Fluid intelligence describes the ability to solve problems in novel situations 

(without necessarily drawing on specific previous knowledge) while crystallized intelligence 

refers to the ability to solve problems using already acquired knowledge or skills. Other 

intelligence factors such as visuospatial intelligence and processing speed are also commonly 

included in updated versions of these original models. 
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Indeed, processing speed has its own fairly robust history in the realm of individual 

differences research as one of the group factors identified in the more updated models of 

intelligence. Some researchers have even assumed the strong position of arguing that processing 

speed is the basis of a general intelligence factor such as g. This line of argument proposes that 

speed of processing imposes limits on the efficiency of operating on particular types of 

information (e.g., verbal or visual), thus making speed key to the functioning of all cognitive 

processes underlying the manifestation of intelligence (Mackintosh, 2011). Whether or not this 

notion is correct, there have been many studies that confirm at least some relationship exists 

between processing speed and intelligence (see chapter 3 in Mackintosh, 2011 for a review of the 

history of this research), indicating that this cognitive ability does reliably vary across 

individuals.  

To conclude their summary of intelligence research, Conway and Kovacs summarize the 

wealth of converging evidence from cognitive psychology, neuropsychology, and neuroscience 

contradicting the notion of a domain-general intelligence mechanism. It is now generally 

accepted that no such mechanism exists to fully and adequately explain the positive correlations 

observed when looking at individuals’ scores on a battery of intelligence tests; rather, processes 

common to all tests merely gives the illusion of a general factor such as g. 

Conway and Kovacs continue their review with a discussion of the parallels between 

intelligence and working memory research. The latter has also undertaken a similar debate 

concerning whether domain-specific or domain-general processes are responsible for 

determining working memory capacity. Daneman and Carpenter (1980) originally seemed to 

suggest the former in the paper describing their reading span task, as they specifically related 
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their reading span measure to measures of reading comprehension. The reading span task asks 

participants to read a series of sentences hold the final word of the sentence in mind. After sets of 

sentences ranging from two to six, participants are asked to recall the final word from each 

sentence in the correct order. Working memory capacity is measured as the maximum set size at 

which participants are able to correctly recall all of the final words. 

Following the creation of this first complex working memory span task (considered a 

more accurate measure of working memory than simple span tasks), others created similar 

complex span tasks, the most well-known of which is Turner and Engle’s (1989) operation span 

task. These authors argued instead for a more domain-general explanation of working memory 

capacity, citing as evidence the fact that their task, which uses mathematical operations rather 

than reading as the intervening task, correlated just as well with verbal SAT scores as Daneman 

and Carpenter’s reading span task. Eventually, working memory researchers reached a similar 

conclusion to those in the field of intelligence research: no single domain-general process can 

fully account for the correlations observed among various measures of working memory 

capacity. 

A review of these two bodies of research would be remiss if it did not include a 

discussion of the relationship between intelligence and working memory. Conway and Kovacs 

thus conclude their review by considering the vast body of research into the link between these 

two constructs. Indeed, during the search for a general factor of intelligence, many proposed 

working memory as the likely candidate (see Conway, Kane, & Engle, 2003, for a review of this 

work). Certainly, working memory capacity has been related to many higher-level cognitive 

abilities, including reading and language comprehension (e.g., Cantor, Engle, & Hamilton, 1991; 
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Daneman & Carpenter, 1980; Just & Carpenter, 1992; King & Just, 1991) and inference 

reasoning (e.g., Barrouillet, 1996). However, more recent research has shown that, while 

strongly correlated, working memory and general intelligence are not identical. Rather, the 

central executive component of working memory, which is more directly tapped by complex 

span tasks, relates most closely to fluid intelligence (e.g., Engle, 2002). Again, Conway and 

Kovacs present converging evidence from neuroimaging studies (e.g., Kane & Engle, 2002) in 

support of the theory that the central executive component of working memory and the fluid 

reasoning component of intelligence are primarily responsible for the observed relationship 

between working memory and intelligence. 

What About Implicit Learning? 

It is important to note that what has been most commonly debated in both intelligence 

and working memory research concerns the source of individual differences in these abilities, 

rather than the existence of such individual differences themselves. Of course, the strong 

reliability of measures of intelligence and working memory gives ample support for the stability 

of such differences. By contrast, however, the leading assumption among implicit learning 

researchers is that this type of learning shows relatively small individual differences, though 

there has been a surprising lack of research aimed at directly supporting this theory. The majority 

of research that has been done investigated the relationship between intelligence and implicit 

learning, much as research on working memory and intelligence has often focused on the 

relationship between the two. Though no such relationship has been found (Feldman, Kerr, & 

Streissguth, 1995; Kaufman et al., 2010; McGeorge, Crawford, & Kelly, 1997; Reber, 

Walkenfeld, & Hernstadt, 1991), this is perhaps not so surprising considering that the processes 
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tapped by intelligence tests likely share little in common with those involved in implicit learning. 

(One possible exception is processing speed, which may be a common process shared by both 

intelligence and implicit learning, as suggested in Kaufman et al., 2010). 

However, some have recently begun to consider the relationship between implicit 

sequence learning and working memory. Indeed, this idea developed out of some of the dual-task 

research discussed in Chapter 2. 

Working Memory and Implicit Sequence Learning 

In the debate concerning the exact nature of the attentional requirements for implicit 

sequence learning, some have argued that a secondary task interferes with learning by disrupting 

the organization of the sequence and the ability to associate successive items together (e.g., 

Frensch, Buchner, & Lin, 1994; Jiménez & Méndez, 1999; Jiménez & Vázquez, 2005; Stadler, 

1995). For instance, Stadler (1995) pointed out that participants are only required to actively 

update information about the secondary task on some trials (typically they are instructed to only 

count high tones in the tone counting task commonly used as the secondary task), thus artificially 

creating inconsistent timing between trials. Stadler found that similar interference effects to those 

observed in some of the dual-task research could be created by randomly inserting short and long 

response stimulus intervals between sequence trials without actually including a secondary task. 

Therefore, it may be that the inconsistent organization of the two tasks is what detracts from 

learning the sequencing task in these cases, rather than reduced attentional capacity per se. 

Some of the above authors further considered the idea that working memory is essential 

for forming associations between successive items in a sequence (e.g., Frensch et al., 1994; 

Jiménez & Méndez, 1999). Successful association between all items in the sequence is important 
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in driving the increased fluidity of responding that is thought to underlie the measured learning 

effects (i.e., decreased RTs) observed in studies of the SRT task. Because the addition of a 

secondary task induces an increase in working memory load, these authors suggest that the 

secondary task not only interrupts the presentation of the sequence but also increases the 

temporal distance between the sequence stimuli, thus negatively impacting one’s ability to 

associate these stimuli together in working memory. 

Frensch and Miner (1994) found support for the first part of this hypothesis, showing that 

manipulating the temporal distance between subsequent cues can influence the amount of 

observed learning (though they argued for an expression rather than a direct learning effect). In 

particular, a longer response stimulus interval (RSI) led to a smaller RT difference between the 

repeating and random sequence (the typical measure of learning) in their experiments, similar to 

the finding by Stadler (1995). However, they only found a direct correlation between working 

memory capacity and learning under intentional instructions, where participants were told to 

look for the repeating sequence. The same relationship was found for incidental learning only 

under dual-task conditions. Thus, they speculated that true implicit learning (e.g., learning that 

occurs incidentally) may rely on working memory only when task demands require some 

attentional control (e.g., under dual-task conditions). 

Further research has also highlighted the complexity of the relationship between 

sequence learning and working memory. In their review of the literature, Janacsek and Nemeth 

(2013) discuss three key findings. First, working memory may only be required when sequence 

learning is intentional (as in Frensch & Miner, 1994). Unsworth & Engle (2005) also found that 

high working memory capacity individuals only showed differential learning rates from low 
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capacity individuals under intentional learning instructions, while there were no group 

differences in learning rate for the incidental learning condition. 

However, Janacsek and Nemeth (2013) also considered that the type of working memory 

assessment used could affect the observed relationship between working memory and incidental 

sequence learning. Nearly all of the studies to date have used traditional simple span measures 

(e.g., digit span), which tap into the maintenance aspect of working memory, but not necessarily 

the processing and manipulation of information held in mind. Thus, these tasks fall short of fully 

and accurately measuring working memory capacity (Jarrold & Towse, 2006). Furthermore, it 

seems more plausible that the ability to manipulate information present in working memory is 

key to one’s ability to form the associations between cues in a sequence; it is not sufficient to 

merely maintain the items in memory. 

In support of this idea, studies that have used more complex working memory tasks 

designed to tap manipulation in addition to maintenance have demonstrated a relationship 

between working memory and incidental (implicit) sequence learning (Bo, Jennett, & Seidler, 

2011; Martini, Furtner, & Sachse, 2013). Martini et al. (2013) suggest that it is the relational 

integration aspect of working memory that is related to implicit sequence learning. This fits with 

the idea put forth in the dual-task literature that working memory is necessary to form 

associations between items (i.e., relational associations) in the sequence (Jiménez & Méndez, 

1999). Furthermore, imaging studies using disruptive transcranial magnetic stimulation (TMS) 

over the dorsolateral prefrontal cortex have shown that this can disrupt implicit sequence 

learning. Because this region is also involved in working memory, the authors of these studies 

speculate that the spatial (Robertson, Tormos, Maeda, & Pascual-Leone, 2001) or the temporal 
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sequencing aspects (Pascual-Leone, Wassermann, Grafman, & Hallett, 1996) of working 

memory may specifically support implicit sequence learning. 

Finally, Janacsek and Nemeth (2013) discuss a further issue that arises when considering 

the type of working memory assessment employed—whether working memory is necessary for 

general task learning or sequence-specific learning. Indeed, Unsworth and Engle (2005) did find 

a difference between high and low span individuals in terms of overall reaction times (high span 

participants were faster) under both incidental and intentional learning conditions. Additionally, 

Bo et al. (2011) found that their measures of working memory capacity correlated with the 

decrease in reaction times across the experimental session even though they did not correlate 

with learning. However, the authors caution that this may be due to a limitation in the typical 

structure of the SRT task itself. Using a random sequence as comparison, rather than a sequence 

that is structured in the same manner as the repeating sequence but with a different order of cues, 

may not be an accurate measure of sequence-specific learning (Reed & Johnson, 1994). 

The research on the relationship between working memory and implicit learning thus 

follows along the same lines as the dual-task research on automaticity in implicit learning: 

neither illuminate a clear conclusion to support the presence or absence of individual differences 

in implicit learning. Therefore, while both bodies of research address important and interesting 

questions, they still fall short of answering the more basic question proposed to guide this 

dissertation—is implicit learning ability a reliable trait measure that differs across individuals? 

And if so, how does one quantify those differences? The experiments conducted to answer this 

question and discussed in Chapter 4 aim to make a significant contribution to the implicit 

learning literature while also expanding on my own prior work on state effects in SISL. 
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Chapter 4: A Look at Individual Differences in SISL 

 

General Methods 

The following section describes the typical SISL task administration, as well as the 

exclusion criteria used in all experiments described in this chapter. Any specific modifications to 

the SISL task employed for a given experiment are 

described in the Methods section of that experiment. 

As briefly described in previous chapters, the 

SISL task consists of blue circular cues that 

continuously scroll down a computer screen towards 

one of four target circles, each corresponding to a key 

on the keyboard (D, F, J, or K; see Figure 4.1 for a 

reminder of the task layout). Participants are 

instructed to time their responses to the cues such that 

they press the appropriate key on the keyboard as each cue crosses its target. The target circle 

flashes green and the blue cue circle disappears from the screen when a correct response is made. 

When participants make an incorrect response, the target circle flashes red and the cue remains 

on the screen until it passes out of the target zone. 

The initial speed of the cues is set to 1.5 seconds from onset to target with an inter-

stimulus interval (ISI) of 750ms (long) or 350ms (short), with a random pattern of six long and 

six short ISIs assigned to each sequence (see example below). The task speed is adaptive based 

on performance, which is assessed every twelve cues. If the participant’s accuracy over the last 

twelve cues is 90% or higher, the speed is increased by multiplying the current time-to-target by 

Figure 4.1. The SISL task. 
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a fraction of 20/21 (resulting in an approximately 5% change in speed). If accuracy falls below 

75%, speed is decreased by multiplying the current time-to-target by a fraction of 21/20 (with ISI 

speed changing accordingly as the time-to-target is adjusted). This method of adjusting the speed 

ensures that the speed increments remain the same as the task speeds up and slows down. 

The SISL task utilizes 12-item, second-order conditional (SOC) sequences (e.g., D-F-D-

J-F-K-D-K-F-J-K-J). Each sequence is additionally assigned a unique pattern of long and short 

ISIs (e.g., L-S-L-L-L-S-L-S-L-L-S-S). The SISL task is typically divided into six 540-trial 

training blocks and one 540-trial test block to assess sequence-specific learning. Each of these 

blocks is further divided into nine 60-trial sub-blocks. During training, each of these sub-blocks 

contains 4 repetitions of the 12-item SOC sequence that has been selected as the training 

sequence and one 12-item SOC foil sequence, which always occurs at a randomly selected 

position (1-5) within the sub-block. A different SOC sequence is selected as the training 

sequence for each participant. All of the foil sequences used during the training blocks are 

unique; that is, they occur only once throughout the 3,240 trials of training. Thus, participants are 

trained with 80% repeating training sequence and 20% noise (foils). 

During the test block, three of the nine sub-blocks each contain five additional repetitions 

of the trained repeating sequence. Participants are not made aware of the presence of a repeating 

sequence during training or at test. The remaining test sub-blocks contain five repetitions of one 

of two foil sequences, neither of which were used as foils during training. Thus, participants see 

fifteen additional repetitions of the trained sequence and fifteen repetitions each of two novel foil 

sequences. The order of the repeating sequence and foil sub-blocks are randomized for each 

participant. Sequence learning during training and at test is measured using a sequence-specific 
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performance advantage (SSPA) measure. The SSPA is a subtraction score of mean accuracy 

(percent correct) for the foil sequences from mean accuracy for the training sequence. It is 

assumed that the higher the SSPA, the better participants have learned the trained, repeating 

sequence. Speed functions as a measure of general task learning, as it is summarized as an 

overall average across the test block rather than as a difference score between the trained 

sequence and foil sequences. The better participants are able to perform the task overall, the 

faster the task speed. 

In the four experiments described in subsequent sections, some modifications were made 

to the typical structure of the SISL task; these are noted within the Methods section of each 

experiment. 

Characteristics of the SISL Task 

Explicit knowledge. In the seminal paper introducing the SISL task, Sanchez et al. 

(2010) found reliable sequence learning even among participants with no concomitant explicit 

knowledge (measured using both a recognition and recall test), suggesting that the SISL task was 

particularly sensitive to measuring implicit knowledge. A common issue with many implicit 

learning tasks concerns interference from explicit knowledge. Several studies have suggested 

that instructing participants to attempt to discover the sequence pattern during training (using the 

more common SRT task or variations on this task) or providing information about the repeating 

sequence can interfere with participants’ ability to perform the task (Boyd & Winstein, 2004; 

Boyd & Winstein, 2006; Fletcher et al., 2004; Howard & Howard, 2001). Authors of these 

studies argue that the explicit knowledge interferes or competes with one’s ability to learn 

implicitly. Although several of the studies cited above used older adult or patient populations, 
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explicit interference is still a concern when designing tasks intended to solely measure implicit 

learning. 

In the SISL task, however, explicit knowledge does not seem to interfere with nor 

contribute to task performance even though it may (and likely does) develop in parallel as 

participants perform the task. Indeed, even perfect explicit knowledge of the repeating sequence 

prior to training does not lead to faster learning. In Sanchez and Reber (2013), half of the 

participants viewed the repeating sequence prior to SISL task training and were asked to 

memorize it. Although these participants later scored significantly higher on an explicit recall 

test, they did not differ from naïve participants in their ability to learn the sequence; in other 

words, explicit knowledge of the sequence did not lead to any learning benefits during the SISL 

task. Nor, indeed, did it lead to any impairments in learning. Thus, this study further 

demonstrated the relatively “process-pure” nature of the SISL task, which appears to be resistant 

to any contributions or interference from explicit knowledge. Thus, although I did not utilize any 

explicit knowledge tests in the subsequent experiments due to the difficulty of delivering these 

types of tests remotely online, I could be relatively confident that any explicit knowledge 

acquired by participants would not affect their performance in a meaningful way. 

Learning. Sanchez and Reber (2012) found that learning on the SISL task, as measured 

by the sequence-specific performance advantage for the repeating sequence (regardless of the 

length of the sequence), could be reliably predicted from the logarithm of the number of trained 

sequence repetitions occurring during the task (see Figure 4.2, taken from Sanchez & Reber, 

2012). This log-linear relationship allows for a useful means of determining the reliability of the 

sequence learning measure obtained in the following experiments, thus preventing any doubt in 
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the reliability of the SISL task itself from affecting the interpretation of the results on individual 

differences.  

Rather, one potential concern with the structure of the SISL task that may impact the 

results involves the repeating foil sequences used during the SISL test. As sequence learning is 

log-linear based on the number of sequence repetitions (as shown in Sanchez & Reber, 2012), 

participants are likely demonstrating some learning of the foil sequences at test, which are 

themselves repeating, in contrast to the non-repeating foils used during training. This in turn may 

impact the subtraction measure (repeating sequence accuracy minus foil sequence accuracy) used 

Figure 4.2. Scatterplot of the SISL test score by the log10 of trained 
sequence repetitions. The SISL test performance as a log-linear function 
of trained sequence repetitions is better predictive than other variables, 
such as sequence length. (text taken from Sanchez & Reber, 2012). 
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as the indicator of learning in SISL. This point is discussed further at the end of Experiment 2 

and is addressed in the design of Experiment 3. 

Exclusion Criteria 

 In each of the experiments below, identical exclusion criteria were applied to all 

participants. Only those who maintained good overall task performance were included in the 

main analyses. Poor performance was indicated by excessive numbers of missed trials (more 

than 50% within a 180-trial sub-block); responding in excess of 50% above the total number of 

trials in a 180-trial sub-block, indicating that participants are likely hitting many keys at random 

in quick succession; or overall performance below 25% correct in any 180-trial sub-block. Each 

of these indicators reflects a lack of attention and noncompliance with the task itself and would 

greatly impact the accuracy of the learning score measure, particularly considering the relatively 

shortened amount of training and test trials used in the subsequent experiments. 
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Experiment 4.1 

My previous research on state effects has shown that performance implicit learning tasks 

such as SISL can be affected by mental state. The question that naturally follows from this is 

whether implicit learning ability can manifest as a trait that shows stable differences across 

individuals, as discussed in the preceding chapter. The extent to which individuals vary 

significantly at the trait level in the type of skill learning that tasks such as SISL aim to measure 

remains to be determined. It is vital to consider the potential influence of individual differences 

when drawing conclusions about observed learning differences that one would like to attribute 

solely to experimental manipulations of interest, as individual differences in implicit learning 

ability offer potential confounds for such conclusions. While it has generally been assumed that 

implicit sequence learning (and implicit learning in general) shows little variation among 

individuals, few researchers have explicitly tested this theory. In addition, research on real-world 

skills suggests that innate talent does play a role in skill development. As researchers like Gobet 

have argued (e.g., Campitelli & Gobet, 2011), extensive practice, even focused and deliberate 

practice, does not guarantee a particular level of skill attainment. 

Thus, the main goal of my thesis work was to challenge the dominant narrative that 

implicit learning is not subject to individual differences. One way to identify individual 

differences in implicit learning assessments such as SISL is to look at test-retest reliability. It is 

not enough to administer one assessment and assume that individual differences in scores reflect 

real differences among participants. As discussed above, other variables such as mental state can 

impact an individual’s performance at any given time. In addition, no assessment is a perfect 

measure of the construct it aims to test. By measuring performance at multiple time points, one 
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can determine the proportion of variance attributable to individual ability (i.e., how well current 

performance is predicted by previous performance) versus interference from measurement error 

or state effects. In working memory research, for example, commonly used complex working 

memory span tasks such as reading span (Daneman & Carpenter, 1980) and operation span 

(Turner & Engle, 1989) have both shown high test-retest reliability (Conway et al., 2005; 

Friedman & Miyake, 2005; Klein & Fiss, 1999). This has provided strong evidence that working 

memory capacity is a reliable and stable individual trait. 

The goal of this and the next three experiments was to use the SISL task to look at 

sequence learning across several sequences and/or days. This would allow me to determine 

whether the learning measure used in SISL is stable within individuals across multiple learning 

instances. The SISL task used in the following experiments lends itself well to this type of 

design. There are 256 unique second-order conditional sequences making it simple to administer 

multiple different training and test sessions. In addition, because previous research using the 

SISL task has shown that prior knowledge of the sequence to be learned does not affect 

performance (Sanchez & Reber, 2013), if participants discover the repeating structure of the task 

after one or more training sessions, it is unlikely to affect future performance on subsequent 

sequence tests. In terms of explicit knowledge, then, performance on a particular sequence 

should be relatively immune to interference effects from prior learning of a different sequence. 

Methods 

Participants 

Seventy-nine participants were recruited through Amazon’s Mechanical Turk. 

Participants were compensated $10 for their time. Using the exclusion criteria described in the 
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General Methods section above, 19 participants were excluded, leaving 60 for the analyses 

reported in the Results section below. 

Procedure 

 For Experiment 4.1, the SISL task was altered in the following way. Participants were 

trained and tested on four different sequences. For each sequence, they completed one 540-trial 

block of training. Each sequence training block was followed by a 540-trial test block, composed 

of trained sequence and foil sub-blocks as in the typical SISL task. Thus, participants completed 

4,320 trials of alternating training and test blocks, with a new training sequence and a new set of 

foil sequences selected for each of the four training/test block pairs. 

Results 

 Across the four sequences, the average performance advantage for the trained sequence 

compared to the foil sequences across all sequence tests and all participants was 5.38% (SE = 

0.71%). A one-way repeated measures ANOVA of the SSPA scores for the four individual 

sequences indicated that there were no significant differences in learning between the sequences 

as measured by the SSPA learning score (Seq 1, M = 4.60%, SE = 1.27%; Seq 2, M = 5.44%, SE 

= 1.21%; Seq 3, M = 4.76%, SE = 1.47%; Seq 4, M = 6.71%, SE = 1.35%), F(3,177) = 0.55, p = 

.648 (Figure 4.3). Based on the log-linear relationship between sequence repetitions and the SISL 

learning score determined by Sanchez and Reber (2012), one should expect a performance 

advantage of approximately 3%; all sequence learning scores were well above this threshold. 

Additionally, although the final sequence test had the highest average performance, the linear 

trend across the four sequence tests was not significant, F(1,59) = 0.95, p = .333. 
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 The overall average speed at test across all four sequence tests and all participants was 

0.98s (SE = 0.03s). A one-way repeated measures ANOVA of the speed at test for the  four 

individual sequence tests indicated that there were significant differences in speed between the 

sequences (Seq 1, M = 1.08s, SE = 0.04s; Seq 2, M = 0.98s, SE = 0.03s; Seq 3, M = 0.93s, SE = 

0.03s; Seq 4, M = 0.92s, SE = 0.03s), F(3,177) = 42.01, p < .001 (Figure 4.4). In particular, the 

time between cue onset and target decreased in a linear fashion across sequence tests (F(1,59) = 

75.94, p < .001), suggesting that participants became faster at the task throughout the four 

training/test sessions.  

To quantify individual differences in SISL performance, I looked at the correlation 

matrix of SSPA scores among the four sequence tests. This produced only one marginally 

significant correlation between performance on the first and third sequence tests (Table 4.1), 

Figure 4.3. Average test sequence performance advantage for each of the four 
sequences in Experiment 4.1. SSPA = Sequence-specific performance 
advantage (trained sequence performance minus foil performance). Error bars 
reflect SEM. 
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indicating that participants who perform better or worse on a particular sequence test do not do 

so consistently. By contrast, speed was highly correlated across the four sequence tests (Table 

4.2). 

 

 

 

 

Table 4.1 

Correlations between the sequence-specific performance advantage (SSPA) measure 
for the four sequence test blocks in Experiment 4.1. 
 SSPA 1 SSPA 2 SSPA 3 
 r p r p r p 

SSPA 2 -0.02 .858     

SSPA 3 0.24 .071 -0.11 .393   

SSPA 4 0.01 .927 -0.02 .869 0.15 .240 

 
 

Figure 4.4. Average test speed (in seconds to target) for each of the 
four sequences in Experiment 4.1. Error bars reflect SEM. 
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Table 4.2 

Correlations of speed between the four sequence test blocks in Experiment 4.1. 
 Speed 1 Speed 2 Speed 3 
 r p r p r p 

Speed 2 0.91 < .001     

Speed 3 0.91 < .001 0.92 < .001   

Speed 4 0.89 < .001 0.92 < .001 0.92 < .001 

 

 Nevertheless, average speed across the four sequence tests did significantly correlate with 

average sequence learning as measured by SSPA, r(58) = -0.25, p = .0511 (Figure 4.5). 

 

 
                                                           
1 The correlation is negative because we measure speed as the seconds to target for the cues. Thus, a lower value 
indicates a faster speed. 

Figure 4.5. Scatterplot of average SISL SSPA score across the four 
sequence tests in Experiment 4.1 by average test speed across the 
four tests. 
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Discussion 

From these results, there appear to be significant individual differences in general task 

performance (speed), but not necessarily sequence-specific learning (SSPA). Nevertheless, the 

average speed across the four sequence tests did significantly correlate with average 

performance, though the correlation was relatively weak. One concern with the structure of 

Experiment 4.1 is that assessing sequence knowledge on four different sequences with just 540 

trials of training only allows investigation of individual differences very early in learning. If the 

individual difference effect is small, it likely would not have been measurable with just one 

block of training. Experiment 4.2 aimed to reduce the number of sequence assessments and 

increase the number of sequence training and test blocks to address this issue. 
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Experiment 4.2 

The goal of Experiment 4.2 was to determine whether training on fewer sequences but 

with more training and test blocks produced greater evidence of stable individual differences in 

sequence learning compared to shorter assessments of four different sequences. 

Methods 

Participants 

 Seventy-four participants were recruited through Amazon’s Mechanical Turk to 

participate in Experiment 4.2 and were paid $10 for their time. Participants were not allowed to 

participate in this experiment if they had previously participated in Experiment 4.1. Fourteen 

participants were removed based on the performance exclusion criteria, leaving 60 participants 

for the analyses reported below. 

The SISL Task 

 The SISL task was identical to that used in Experiment 4.1, apart from the specific 

training and test parameters laid out below. 

Procedure 

 In Experiment 4.2, participants were trained on two different sequences. For each 

sequence, they completed two 540-trial training blocks followed by two 540-trial test blocks. 

Thus, participants completed the same number of trials as well as the same number of training 

and test blocks as in Experiment 4.1, but instead were only trained and tested on two different 

sequences with twice the number of training/test trials for each sequence. 
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Results 

 The average performance advantage for the trained sequence across both sequence tests 

and all participants was 6.74% (SE = 0.76%). This is higher than in Experiment 4.1, which 

would be expected based on 

the log-linear relationship 

between sequence 

repetitions and learning (the 

expected learning score for 

this experiment would be 

approximately 6.5%). 

Although the average group 

performance for the second 

sequence test (M = 5.79%, 

SE = 1.09%) was lower than that of the first sequence test (M = 7.69%, SE = 1.10%), this 

difference was not reliable, t(59) = 1.21, p = .232 (Figure 4.6). 

The average test speed across both sequence tests and all participants was 1.01s (SE = 

0.04s). Similar to Experiment 4.1, participants were significantly faster on the second sequence 

test (M = 0.97s, SE = 0.04s) compared to the first (M = 1.05s, SE = 0.04s), t(59) = 5.18, p < .001 

(Figure 4.7). 

Figure 4.6. Average test SSPA for the two sequences 
in Experiment 4.2. Error bars reflect SEM. 
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Also similar to 

Experiment 4.1, the 

correlation between the two 

SSPA measures for each of 

the sequence tests was not 

significant [r(58) = -0.03, p 

= .817], while speed was 

highly correlated between 

the two sequence tests [r(58) 

= 0.93, p < .001]. However, the correlation between average speed across the two blocks and 

average performance was not significant [r(58) = -0.19, p = .137] (Figure 4.8).  

 

 

 

 

 

 

 

 

 

Figure 4.7. Average test speed (in seconds to target) for 
each sequence in Experiment 4.2. Error bars reflect 
SEM. 

Figure 4.8. Scatterplot of average SISL SSPA score across the 
four sequence tests in Experiment 4.2 by average test speed 
across the four tests. 
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While the SSPA data in Experiments 4.1 and 4.2 did not point to any stability in learning 

across sequences, I also wanted to examine the possibility of performance instability within a 

given sequence masking individual differences in learning. To test this, I looked at split-half 

correlations between trained sequence performance on the two blocks of each sequence test. One 

should expect performance to correlate when looking at the same sequence. For the first 

sequence, participants’ performance (accuracy) during block 1 correlated signficantly and 

robustly with their performance during block 2 (r(58) = 0.70, p < .001). Sequence peformance on 

the two blocks of the second sequence test was not as strongly, but still significantly, correlated 

(r = 0.39, p = <.01). Figure 4.9 shows the comparison between the split-half tests correlations 

and the cross-sequence test correlation.
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Figure 4.9. Scatterplots 
showing across- and 
within-sequence 
correlations in 
Experiment 4.2. A) 
Scatterplot of the SSPA 
score on the second 
sequence test by SSPA 
score on the first 
sequence test. B) 
Scatterplot of trained 
sequence performance 
(percent correct) on the 
second half of the first 
sequence test by trained 
sequence performance 
on the first half of the 
first sequence test. C) 
Scatterplot of trained 
sequence performance 
(percent correct) on the 
second half of the 
second sequence test by 
trained sequence 
performance on the first 
half of the second 
sequence test. 
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Discussion 

Experiment 4.2 replicated the results of Experiment 4.1, with the same finding that 

sequence-specific learning as measured by SSPA does not correlate significantly across 

sequences, while general task performance as measured by test speed is highly reliable across 

sequences. Additionally, the correlation analyses shown in Figure 4.9 indicate that the within-

sequence reliability is much stronger than the cross-sequence reliability, and that performance 

instability within a given sequence is unlikely to be interferring with accurately measuring 

individual differences in sequence learning using the SISL task. 

One potential issue with quantifying individual differences in sequence learning during 

the SISL task may be the design of the SISL test to assess sequence knowledge. As discussed at 

the beginning of this chapter, the foil sequences that are compared to the training sequence at test 

are themselves repeating. Thus, participants are likely showing some learning of these sequences 

as well, which could mean that individual differences affecting learning of both the training 

sequence and the foils are subtracted out when calculating the SSPA used as our measure of 

sequence-specific learning. In addition, the speed was not reset with each new sequence 

training/test block pair in Experiments 4.1 and 4.2, which may have influenced the correlations I 

observed in the speed measure. Experiment 4.3 aimed to address these two issues. 
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Experiment 4.3 

Experiment 4.3 addressed the issue of participants learning the test foil sequences by 

constructing foil sequences that equally balanced all possible trigrams from which the second-

order conditional sequences used in SISL are derived. It also addressed the issue of the speed 

adjustments across sequence tests by resetting the speed back to 1.5s to target after each 

sequence training/test pair. The remainder of this experiment was a replication of Experiment 

4.1. 

Methods 

Participants 

 Participants for this study were 65 undergraduate students enrolled in introductory 

psychology at Northwestern. Participants were given course credit for participation. After 

excluding participants for noncompliance as in Experiments 4.1 and 4.2, 51 participants were left 

for analyses. 

Materials 

SISL task. The structure of the SISL task in Experiment 4.3 addressed the issue of foil 

sequence learning at test by using non-repeating test foils that were 36 items long and contained 

one of each of the 36 possible trigrams2. Thus, the transitional probabilities were flat at the 

trigram level. 

Because no apparent advantage was offered by using longer training and test blocks, 

participants completed four training and test block pairs as in Experiment 4.1. The test blocks 

contained 15 repetitions of the training sequence organized into 60-trial blocks (5 repetitions 

                                                           
2 Because no immediate repeats (e.g., DD) are allowed in the sequences used for the SISL task, the total possible 
trigrams = 4 x 3 x 3 (36). 
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each) as before. These were randomized among two 180-trial foil blocks, which each contained 5 

different 36-item sequences structured as described above. New training and foil sequences were 

used for each training/test block pair. In addition, the speed was reset back to 1.5s to target at the 

beginning of each new training/test block pair. This detail was unfortunately overlooked and not 

implemented in Experiments 4.1 and 4.2, but is important for an accurate assessment of 

individual differences in the speed performance measure. 

Results 

 The average performance advantage for the trained sequence across both sequence tests 

and all participants was 8.08% (SE = 0.89%). A one-way repeated measures ANOVA of the 

SSPA scores for the four individual sequence tests indicated that there were no significant 

differences in learning between the sequences (Seq 1, M = 10.70%, SE = 1.67%; Seq 2, M = 

Figure 4.10. Average test SSPA for each of the four sequences in 
Experiment 4.3. Error bars reflect SEM. 
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7.34%, SE = 1.75%; Seq 3, M = 8.77%, SE = 1.76%; Seq 4, M = 5.52%, SE = 1.76%), F(3,150) 

= 1.55, p = .205 (Figure 4.10). However, in this case the linear trend across sequences nearly 

reached significance, F(1,50) = 3.73, p = .059. 

 The overall average speed at test across the four sequence tests and all participants was 

0.76s (SE = 0.02s). A one-way repeated measures ANOVA of test speed across the four 

sequence tests indicated that speed did differ significantly across the four tests, F(3,150) = 29.07, 

p < .001. As in Experiment 4.1, the linear trend across the four sequence tests was significant 

(F(1,50) = 49.88, p < .001), indicating that participants were performing the task faster during 

each subsequent test (Figure 4.11). 

As seen in both Experiment 4.1 and Experiment 4.2, the correlations among the four 

sequence tests were small and nonsignificant (Table 4.3), but speed was highly correlated across 

Figure 4.11. Average test speed (in seconds to target) for each 
sequence in Experiment 4.3. Error bars reflect SEM. 
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all sequence tests (Table 4.4). This latter finding reinforces the conclusions drawn about test 

speed as a reliable individual difference measure in the prior two experiments despite the fact 

that speed was not reset between sequences in those experiments. 

 

Table 4.3 

Correlations between the sequence-specific performance advantage (SSPA) 
measure for the four sequence test blocks in Experiment 4.3. 
 SSPA 1 SSPA 2 SSPA 3 
 r p r p r p 

SSPA 2 -0.06 .716     

SSPA 3 -0.01 .971 -0.04 .781   

SSPA 4 0.14 .346 -0.25 .094 -0.01 .949 

 
 

Table 4.4 

Correlations of speed between the four sequence test blocks in Experiment 4.3. 
 Speed 1 Speed 2 Speed 3 
 r p r p r p 

Speed 2 0.84 < .001     

Speed 3 0.91 < .001 0.88 < .001   

Speed 4 0.85 < .001 0.87 < .001 0.91 < .001 
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The correlation between average speed across the four sequence tests and average 

sequence learning as measured by SSPA trended towards significance, r(49) = -0.26, p = .066 

(Figure 4.12). 

Discussion of Experiments 4.1, 4.2, and 4.3 

 From these three experiments, it appears that performance speed may be a more reliable 

individual difference measure than sequence-specific learning. Because speed is a more task-

general performance measure, this suggests that individuals may differ in either general 

perceptual or motor ability, allowing those who are more skilled in these areas to perform the 

SISL task at an overall faster rate. Though previous literature aligns with an absence of 

individual differences in implicit sequence learning, it was still surprising to find a consistent 

pattern of near-zero correlations of individual subjects’ sequence learning across multiple 

Figure 4.12. Scatterplot of average SISL SSPA score across the 
four sequence tests in Experiment 4.3 by average test speed across 
the four tests. 
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sequence tests. This suggests that early learning (i.e., within the first few hundred repetitions) of 

a new motor sequence does not exhibit stable individual differences across people. 

One might argue that running this type of task online produces a noisier measure than the 

controlled environment of the lab and therefore reduces the possibility of observing individual 

differences. Nevertheless, the robustly stable individual differences observed in the test speed 

measure would suggest that this method does not have a marked impact on the results obtained. 

In addition, the SSPA learning scores for each experiment aligned relatively well with what one 

would expect based on the log-linear relationship between learning and sequence repetitions 

reported in Sanchez and Reber (2012). Furthermore, the split-half correlation analysis in 

Experiment 4.2 did not suggest any cause for concern with within-sequence performance 

reliability on the SISL task. 

A more plausible alternate possibility is that the effect size for individual differences in 

implicit sequence learning is small, and thus a robust sample size is needed. Therefore, to be sure 

I was not simply underpowered to observe individual differences in sequence learning, I 

conducted a further large scale study aimed at greatly increasing the number of participants and 

introducing other measures that do have a strong individual difference component to compare 

with SISL.  
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Experiment 4.4 

As discussed at the beginning of Chapter 4, one method for measuring individual 

differences is to look at test-retest reliability. However, not all assessments lend themselves to 

this type of design (e.g., if it is not possible to make multiple versions of the assessment). This is 

especially true in intelligence research, for example, where there is no one standard test of IQ. 

Therefore, researchers in this field have instead favored factor analysis methods. Factor analysis 

simplifies the intercorrelations between several cognitive tests into discrete factors. If several 

tests load onto the same factor, they are assumed to measure a common underlying construct. 

Thus, if the variance among individuals can consistently be accounted for by a particular factor, 

this provides evidence for the existence of a particular trait (represented by that factor) that 

reliably differs across people. Further, if a particular assessment in one domain consistently 

predicts variability on several assessments in another domain, this can also suggest the existence 

of a meaningful individual trait. To take an example from the working memory literature, 

Daneman and Carpenter (1980) showed that their reading span measure correlated strongly with 

three measures of reading comprehension, showing that individual differences in working 

memory capacity could meaningfully predict variation in this domain. Experiment 4.4 assessed 

individual differences in implicit sequence learning using both test-retest and factor analysis 

methods.  

Methods 

Participants 

 Two hundred and twenty subjects were recruited through Northwestern’s Paid Participant 

Registry (56 male, mAge = 24.25 years). Participants were paid $10 per session (sessions 
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described in more detail below) of the four session experiment. Technical issues unfortunately 

resulted in 29 participants having missing data from 1 or more sessions. Additionally, an 

unfortunate coding error resulted in missed trials not counting as errors within the speed 

adjustment algorithm. Thus, the speed adjustments that should normally have occurred every 12 

trials were not always correctly triggered. This led to much lower performance than usual, as 

misses actually counted against participants rather than leading to a slowing of the task to help 

improve their performance, likely leading to even more missed trials. 

This therefore caused many participants (the coding issue was not corrected for the first 

109 subjects) to be filtered due to a high number of missed trials and low performance; an 

additional 46 participants were excluded based on the typical criteria. Although several of these 

were likely excluded in error, it was impossible to determine which subjects were correctly 

excluded and which were not. Thus, the Results section discusses correlation and factor analyses 

with both the 145 complete subjects (220 minus the 29 with missing data and the additional 46 

who did not meet exclusion criteria) as well as the full sample of 191 subjects that included 

participants who had been filtered according to the exclusion criteria (the 29 subjects with 

missing data were also excluded from this second set of analyses). 

Materials 

In addition to the SISL task, which was structured identically to Experiment 4.3, I created 

a battery of assessments using measures of working memory, fluid intelligence, personality, and 

processing speed. As reviewed in Chapter 3, fluid intelligence and working memory show 

reliable differences among individuals. Additionally, working memory has recently been 

considered as a potential source of individual differences in implicit sequence learning. There are 
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several measures of both fluid intelligence and working memory with a long history of individual 

differences research. Two of these measures, the Operation Span task (Turner & Engle, 1989) 

and Raven’s Progressive Matrices task (Raven, Court, & Raven, 1977), were adapted for online 

data collection for the purposes of this study. 

Personality is another construct that has been studied in relation to implicit learning. In 

particular, a few studies have shown a positive relationship between openness to experience and 

implicit learning (Kaufman et al., 2010; Woolhouse & Bayne, 2000). These authors suggest that 

the potential link between openness and implicit learning is intuition; intuition seems to involve a 

similar reliance on unconscious knowledge as implicit learning, and individuals scoring high on 

scales measuring openness to experience also score high on intuition measures (McCrae, 1994). 

As openness to experience is one of the “big 5” personality constructs, several extensively 

validated measures of it existed to draw from for this study. 

Finally, the cognitive abilities discussed above match closely with those studied by 

Kaufman et al. (2010), one of the few (perhaps the only) comprehensive studies of individual 

differences in implicit sequence learning (using the SRT task). Kaufman and colleagues also 

showed that processing speed was correlated with implicit sequence learning, suggesting that this 

more basic and primitive cognitive function measure is more likely to relate to implicit learning 

than measures of more complex cognitive mechanisms such as fluid intelligence. Thus, the 

measures described below were chosen for a combination of reasons: 1) well-established 

measures of a particular construct, particularly those with a history of use in individual 

differences research, 2) measures easily deployable for, or easily adapted to, online data 

collection, and/or 3) measures used in Kaufman et al. (2010). 
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Working memory measures. Participants were given three working memory 

assessments: operation span, list sorting, and a working memory assessment (SeVi) developed in 

our own lab. 

Operation span. The operation span (OSPAN) task (Turner & Engle, 1989) is a 

commonly used complex working memory span measure. In the task, participants are asked to 

solve a series of mathematical operations while simultaneously remembering a set of unrelated 

words. A typical trial consists of a question such as “Is (9/3) – 1 = 1?” followed by the word 

“DOG”. Participants must evaluate the truth of the math statement and indicate whether it is 

correct. They are then instructed to read the word “DOG” before moving on to the next 

operation-word pairing. After a certain number of trials (typically 2-6), participants are asked to 

recall the words that had been presented previously, in the order they had been presented. 

All of the mathematical operations were structured as a simple multiplication or division 

problem, such as (3 x 4) or (8/2), followed by the subtraction or addition of a single digit integer. 

Half of the operations had the correct answer listed after the equal sign while the other half were 

incorrect. The words paired with the mathematical operations were all one syllable concrete 

nouns 4-6 letters long, after Turner & Engle (1989). At intervals of 2-6 trials, participants were 

asked to recall the words that accompanied the previous set of trials in the correct order. 

Participants began at a set size of two trials and moved sequentially up to a set size of six, 

completing three trial orders at each length before moving up to the next set size. Working 

memory capacity was scored as the sum of the number of words from each correctly recalled 

trial order (thus the maximum score possible was 60). 
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List sorting. The List Sorting Working Memory Test was taken from the NIH Toolbox 

Cognitive Function Battery (Tulsky et al., 2013), which is intended for online/computer-based 

use. Participants were shown pictures of animals for two seconds each and asked to recall those 

animals in the correct order for set sizes of 2 to 7 animals. Sets progressed serially from 2 to 7, 

with two trial orders at each set size. Working memory span was scored as the set size for which 

participants correctly recalled at least one of the two trial orders. 

Sequential visuospatial (SeVi) working memory task. Previously, the SeVi task has been 

used as a tool for studying the effects of working memory training. The task is very similar in 

appearance to the SISL task, and I chose to adapt it for one of my working memory assessments 

for this reason. In the adapted version of the task, participants viewed circular cues scrolling 

down the screen towards target circles that were labeled with either a D, F, J, or K. Each trial 

contained two sequences, distinguished by the color of the cues (red or blue). These sequences 

were presented in a randomly interleaved fashion and participants were instructed to watch the 

cues as they fell down the screen (Figure 4.13A) and to remember the order of the red cues only. 

The cues took 1.5s from onset to reach the target circle and had an inter-stimulus interval of 

600ms. Once all of the cues disappeared from the screen, there was a short delay (~1s) before 

participants were instructed to repeat back the red sequence using the keyboard or by clicking on 

the target circles with the mouse in the correct order (Figure 4.13B).  
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Participants started with an initial length of two items for each sequence. If they 

completed two sequences in a row correctly at this length, the total length increased by two, so 

that the red and blue sequences were each three items long. This continued until the participant 

missed two sequences in a row at a given length. The task then stepped down to the previous 

sequence length. It continued to move between sequence lengths based on these criteria (2 

correct/2 incorrect) throughout the task. Participants completed 30 trials of this task (5-10 min) 

and working memory capacity was scored as the longest sequence length at which the participant 

achieved an overall accuracy of at least 70% correct. 

Personality measures. Participants were given subsets of two personality instruments to 

measure openness to experience: the openness subscale of the NEO-PI-R (Costa & McCrae, 

1992) and the openness subscale of the Big Five Aspect Scales (BFAS; DeYoung, Quilty, 

Peterson, & Gray, 2014). Both scales ask participants to indicate the extent to which they agree 

or disagree (5-point scale) with a series of descriptive statements (e.g., “I love to reflect on 

Figure 4.13. The SeVi task. (A) Participants are instructed to watch and 
remember the red sequence. (B) Participants attempt to repeat back the red 
sequence using the keyboard or the mouse. 
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things”). Individual items were scored from 1-5 based on the participants’ response (with 

reverse-coded items scored accordingly) and then summed across items, yielding a single 

“openness” score for each scale (NEO-PI-R max = 170; BFAS max = 50). 

Fluid intelligence measures. Participants completed two fluid intelligence measures 

from the International Cognitive Ability Resource (http://icar-project.com/), a collaborative 

effort to produce public domain assessment tools for various cognitive measures (e.g, see 

Condon & Revelle, 2014), and thus easily obtained for online use. 

Matrix reasoning. Similar to Raven’s Progressive Matrices (Raven et al., 1977), a 

commonly used measure of fluid intelligence, the Matrix Reasoning items of the ICAR are 3x3 

arrays of geometric shapes with one of the nine shapes missing. Eleven of these items were 

presented to participants, and on each trial participants were asked to decide which of the six 

possible shapes presented below the array best completed the pattern. 

Letter and number series. The Letter and Number Series items were nine short digit or 

letter sequences following a particular pattern. Similar to the Matrix Reasoning items, 

participants were prompted to choose the next letter or number in the sequence from six possible 

choices. 

Processing speed measures. Participants completed two processing speed measures, 

modeled after Kaufman et al. (2010): the Speed of Information Processing sub-test from the 

British Ability Scales (Elliot, 1996) and the Digit-Symbol Substitution task from the WAIS-R 

(Wechsler, 1981). 

Speed of information processing. For this task, participants were shown sets of five 

integers, each randomly chosen from the range 1-100, and were asked to select the highest 

http://icar-project.com/
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number in each set. They were given 60 seconds to complete as many of the 48 items as they 

could. The score for this task was the number of items completed correctly after 60s. 

Digit-symbol substitution. This task presented participants with a key of symbols that 

matched with the numbers 1-9 (Figure 4.14). Beneath the key were a series of symbols each 

followed by a blank box. Participants were instructed to fill in the correct number that 

corresponded to that symbol in the key (note that this is in contrast to how the task is normally 

presented, with participants being asked to draw the corresponding symbols; the task was 

reversed to make it easier to complete online). There were 93 items and participants were given 

90s to complete as many as they could. Similar to the previous task, the score was the number 

completed correctly in 90s. 

Procedure 

 Participants completed four approximately one-hour sessions. Following completion of a 

session, the link to the next session was emailed to participants approximately 18-24 hours later. 

In the first session, participants completed the Operation Span and List Sorting tasks, the two 

personality measures, the two fluid intelligence measures, and the two processing speed 

measures. These tasks were completed online using Qualtrics survey software. For the 

subsequent three sessions, participants completed a session of SISL training and a session of the 

SeVi task. Each session of SISL consisted of 8 blocks of training and testing (one block of each 

Figure 4.14. The Digit-Symbol task key. 
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for four different sequences, as in Experiment 4.3), with new sequences used in each session. 

Each session of the SeVi task was 30 trials long as described above. 

With this design, I was able to compare the reliability of individual performance on the 

SISL task to that of a task (SeVi) that measures a construct (working memory) well-known to 

behave in a trait-like manner with stable individual differences. Additionally, I was able to run a 

factor analysis for all seventeen measures (the eight cognitive measures, the three average SISL 

SSPA and test speed measures from each session of SISL, and the three sessions of SeVi) to 

reveal the underlying factor structure. 

Results 

 The average SISL sequence-specific performance advantage (SSPA) across the 145 

participants who were not filtered or excluded due to missing data for each sequence test in each 

of the three sessions is shown in Figure 4.15 and Table 4.5. A one-way repeated measures 

Figure 4.15. Average test SSPA for each of the four sequences across the 
three sessions of SISL in Experiment 4.4. Error bars reflect SEM. 
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ANOVA of the SSPA learning measure across the four sequence tests in each session did not 

show a significant linear trend for session two (F(1,143) = 0.27, p = .60), but was significant for 

sessions three (F(1,142) = 5.63, p = .02) and four (F(1,144) = 4.56, p = .03). The linear trend 

model for the repeated measures ANOVA on the overall average SSPA for each session (session 

2, M = 6.26%, SE = 0.45%; session 3, M = 5.19%, SE = 0.38%; session 4, M = 5.09%, SE = 

0.39%) was also significant (F(1,144) = 4.14, p = .04). 

Table 4.5 
 
Mean SSPA and standard error for the twelve sequence tests in Experiment 4.4. 
 M SE 
Session 2 

Sequence 1 
Sequence 2 
Sequence 3 
Sequence 4 

 
6.81% 
6.23% 
5.77% 
6.17% 

 
0.86% 
0.88% 
0.90% 
0.82% 

Session 3 
Sequence 1 
Sequence 2 
Sequence 3 
Sequence 4 

 
6.61% 
5.78% 
4.00% 
4.32% 

 
0.81% 
0.75% 
0.85% 
0.68% 

Session 4 
Sequence 1 
Sequence 2 
Sequence 3 
Sequence 4 

 
6.56% 
4.69% 
4.84% 
4.28% 

 
0.75% 
0.79% 
0.72% 
0.72% 

 The average speed at test for each of the twelve sequence tests across the three sessions 

of SISL is shown in Figure 4.16 and Table 4.6. The linear trend for the repeated measures 

ANOVA was significant across the four sequence tests in sessions two (F(1,143) = 64.63, p < 

.001), three (F(1,142) = 5.17, p = .03), and four (F(1,144) = 10.23, p < .01). It was also 

significant for the overall average test speed across the three sessions (session 2, M = 0.96s, SE = 

0.03s; session 3, M = 0.79s, SE = 0.02s; session 4, M = 0.73s, SE = 0.02s), F(1,144) = 171.42, p 

< .001. This suggests that participants generally improved at the task across sessions. 
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Table 4.6 
 
Mean speed and standard error for the twelve sequence tests in Experiment 4.4. 
 M SE 
Session 2 

Sequence 1 
Sequence 2 
Sequence 3 
Sequence 4 

 
1.07s 
0.96s 
0.92s 
0.88s 

 
0.04s 
0.03s 
0.03s 
0.03s 

Session 3 
Sequence 1 
Sequence 2 
Sequence 3 
Sequence 4 

 
0.81s 
0.80s 
0.79s 
0.78s 

 
0.02s 
0.02s 
0.02s 
0.03s 

Session 4 
Sequence 1 
Sequence 2 
Sequence 3 
Sequence 4 

 
0.74s 
0.72s 
0.73s 
0.71s 

 
0.02s 
0.02s 
0.02s 
0.02s 

 

Figure 4.16. Average test speed (in seconds to target) for each of the 
four sequences across the three sessions of SISL in Experiment 4.4. 
Error bars reflect SEM. 
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Figures 4.17 and 4.18 show the distribution of correlation coefficients derived from all 

pairwise correlations between the SSPA learning measures (Figure 4.17) and all pairwise 

comparisons between the test speed measures (Figure 4.18) across all twelve sequences from 

Figure 4.17. Distribution of correlation coefficients for the SSPA learning 
measures across sessions 2-4. 

Figure 4.18. Distribution of correlation coefficients for the test speed 
measures across sessions 2-4. 



  81 
 
sessions 2-4, sorted smallest to largest. The correlation coefficients for the SSPA learning 

measures centered around zero (average r = 0.02), while the correlations for test speed were all 

robustly above zero (average r = 0.81). 

Table 4.7 shows the correlations among all cognitive measures completed during the first 

sessio n as well as the average SSPA, SISL test speed, and SeVi working memory span (using 

the overall averages from sessions 2-4) for the 145 subjects with complete datasets. Importantly, 

tasks reportedly measuring the same construct tended to have the highest correlations (OSPAN 

and List Sorting tasks, r = .43; fluid intelligence tasks, r = .49; processing speed tasks, r = .57; 

personality measures, r = .81; all p’s <.001). Additionally, there were at least moderate 

correlations between most of the different cognitive measures, particularly the working memory 

and fluid intelligence measures as would be expected. The SeVi task was significantly correlated 

with the other working memory measures (r’s = .19 - .44; p’s = < .001 - .02). Each of the three 

sessions of SeVi were also significantly correlated with both of the fluid intelligence measures 

(r’s = .22 - .36, all p’s < .01). 



 

Table 4.7 
 
Correlations (r) among all measures of working memory, fluid intelligence, processing speed, personality, and the SISL task – 145 
complete subjects. 
Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. OSPAN -                 
2. List 
Sorting .43 -                

3. SeVi – 1 .19 .30 -               
4. SeVi – 2 .26 .24 .30 -              
5. SeVi – 3 .32 .44 .49 .37 -             
6. Matrices .27 .27 .32 .22 .36 -            
7. Letter 
Number .49 .36 .31 .24 .36 .49 -           

8. Digit-
Symbol .10 .26 .20 .27 .16 .14 .25 -          

9. SoIP .26 .27 .22 .22 .12 .08 .26 .57 -         
10. Openness 
(NEO-PI-R) .17 .18 .05 -.17 .03 .19 .06 -.03 -.04 -        

11. Openness 
(BFAS) .20 .23 .03 -.15 .06 .19 .12 .05 .03 .81 -       

12. SISL 
SSPA–2* .02 .16 .10 .04 .24 .07 -.03 -.01 .00 .10 .11 -      

13. SISL 
SSPA–3 .15 .15 .05 .03 .17 .13 .18 .00 .09 .08 .13 .03 -     

14. SISL 
SSPA–4 -.04 .03 .00 -.03 -.05 .09 .04 .03 -.03 .08 .11 .09 .12 -    

15. SISL 
Speed–2* -.21 -.22 -.24 -.28 -.23 -.15 -.28 -.47 -.35 .03 -.02 -.15 -.12 -.10 -   

16. SISL 
Speed–3 -.21 -.20 -.25 -.27 -.27 -.12 -.22 -.46 -.34 .05 .02 -.13 -.26 -.18 .88 -  

17. SISL 
Speed–4 -.23 -.20 -.27 -.31 -.31 -.18 -.28 -.78 -.33 .08 .03 -.13 -.26 -.22 .85 .92 - 
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Table 4.7 
 
Correlations (r) among all measures of working memory, fluid intelligence, processing speed, personality, and the SISL task – 145 
complete subjects. 
Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

N 145 145 145 144 141 145 144 145 144 145 145 145 145 145 145 145 145 
Mean 46.4 5.7 4.5 4.5 4.9 6.5 5.5 39.4 22.7 132.2 38.9 6.3% 5.2% 5.1% 0.96s 0.79s 0.73s 
SEM .99 .10 .12 .11 .12 .23 .18 .74 .44 1.48 .56 .45% .37% .39% .03s .02s .02s 
Note: Significant correlations (p < .05) in bold. Matrices = Matrix Reasoning task; Letter Number = Letter and Number Series task; 
SoIP = Speed of Information Processing task 
* SISL SSPA and Speed were averaged across the four sequence tests within a given session; numbers after each measure reflect the 
session number 
  

83 



  84 
 
The SeVi task also showed significant correlations across the three sessions for which it was 

administered (sessions 1 and 2, r = .30; sessions 1 and 3, r = .49; sessions 2 and 3, r = .37, all p’s 

< .001). By contrast, in line with the previous experiments, sequence-specific learning (SSPA) in 

SISL was not correlated across sessions (all r’s < .12, all p’s > .15). In addition, the SSPA scores 

had very few (likely spurious) correlations with the other cognitive measures. Also confirming 

previous results, SISL test speed was significantly correlated across sessions (sessions 1 and 2, r 

= .88; sessions 1 and 3, r = .85; sessions 2 and 3, r = .92; all p’s < .001). Furthermore, SISL 

speed was significantly correlated with many of the other cognitive measures, particularly 

processing speed (r’s = .33 - .78, all p’s < .001). 

 Approximately half of the correlations between the overall average SSPA and the overall 

average speed for each session were significant. This, along with the moderate and occasionally 

significant correlations found in Experiments 4.1-4.3 invites a more precise indication of the 

nature of the relationship between SSPA and speed. To achieve this, the mean-centered SSPA 

and speed data from all four experiments were combined to look at the correlation between the 

two measures across all experiments. The resulting correlation was modest but significant, r(604) 

=  -0.20, p < .001. A similar method was used for estimating the SSPA-SSPA correlations across 

sequence tests for all experiments, using the SSPA for the first sequence test and the average 

SSPA of the remaining sequence tests to account for the different number of sequence tests from 

experiment to experiment; this correlation was not significant, r(604) = 0.06, p = .178. While 

these correlations confirm the relative instability of learning across sequences, it is curious that 

the SSPA-speed correlation is more robust. As speed seems to be a reliable individual difference 

measure, the suggestion of a relationship between speed and SSPA hints at the possibility of a 
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weak individual differences signal in SSPA. This point is returned to in the concluding chapter of 

this thesis (Chapter 5). 

Following up on the correlational analyses, I conducted a principal components factor 

analysis to further explore the relationship between the cognitive and implicit learning measures 

(again using the overall average SSPA and speed from the three sessions). Using promax 

rotation, I initially obtained a five factor solution. However, only one variable loaded primarily 

onto the fifth factor. As this factor no longer meaningfully summarized the data with only one 

variable loading, therefore making it more difficult to interpret, the analysis was redone forcing 

the solution to four factors. The resulting factor loadings are shown in Table 4.8.  

Table 4.8 
 
Rotated factor loading matrix (loadings shown in parentheses) – 145 complete subjects. 

Factor 1: 
Processing Speed 

Factor 2: 
WM/gF 

Factor 3: 
Openness 

Factor 4: 
Implicit Learning 

SISL Speed – 
Session 3 

(.90) 
SISL Speed – 

Session 4 
(.89) 

SISL Speed – 
Session 2 

(.88) 
Digit-Symbol 
Substitution 

(-.743) 
Speed of 

Information 
Processing 

(-.63) 

SeVi – Session 4 
(.76) 

Letter and Number 
Series 
(.69) 

SeVi – Session 2 
(.65) 

List Sorting 
(.65) 

Matrix Reasoning 
(.64) 

OSPAN 
(.63) 

SeVi – Session 3 
(.55) 

Openness – BFAS 
(.91) 

Openness – NEO-
PI-R 
(.88) 

SISL SSPA – 
Session 2 

(.56) 
SISL SSPA – 

Session 4 
(.51) 

SISL SSPA – 
Session 3 

(.36) 
 

 

                                                           
3 Again, with speed measured as time-to-target (i.e., as the task speed increases, the value recorded for speed 
decreases), these negative loadings should be interpreted as associated with this factor, in the same way as the 
positive loadings for the other variables. 
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SISL test speed and the two information processing tasks loaded onto the first factor, and 

SeVi, the other working memory measures, and well as the two fluid intelligence measures 

loaded onto the second factor. The two personality measures loaded most strongly onto the third 

factor, while the fourth factor was described by the SISL SSPA measures from the three 

sessions. However, the factor loadings for the SISL SSPA measures were still relatively low 

compared to the other three factors. 

Finally, as in Experiment 4.2, I wanted to investigate the stability of performance within 

a given sequence test (i.e., on the same sequence) to ensure this wasn’t masking the true learning 

differences. Because of the shorter test blocks and the longer foil sub-blocks, it was not possible 

to do a true split-half correlation. Instead, I looked at the correlation between performance on the 

first and last repeating sequence sub-block (60 trials) within the first and last sequence tests for 

each of the three SISL sessions (Table 4.9). Though all correlations were moderate in strength, 

they were all significant and much higher than the correlations between the SSPA scores across 

the three sessions. As with the similar correlational analysis performed in Experiment 4.2, this 

indicates that within-sequence performance is more stable than across-sequence performance. 

Table 4.9 
 
Correlations between sequence performance on two sequence sub-
blocks within the first and last test of each SISL session. 

 Sequence Test 1 Sequence Test 4 

 r p r p 

Session 2 0.48 < .001 0.34 < .001 

Session 3 0.32 < .001 0.34 < .001 

Session 4 0.19 .025 0.41 < .001 
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The correlation matrix and factor analyses were repeated on the full sample (which 

included participants who had originally been filtered through the exclusion criteria described at 

the beginning of this chapter, but still excluded participants with missing data). As Table 4.10 

shows, the pattern of correlations across all of the cognitive and implicit learning measures was 

very similar for this sample. The factor analysis (Table 4.11) with this sample did not fully match 

that of the smaller sample, but still showed that SISL test speed and processing speed loaded 

onto a single factor, while sequence learning as measured by SSPA did not associate very 

strongly on a particular factor. 

  



 

Table 4.10 
 
Correlations (r) among all measures of working memory, fluid intelligence, processing speed, personality, and the SISL task – all 
subjects. 
Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. OSPAN -                 
2. List 
Sorting 

.48 -                

3. SeVi – 1 .11 .23 -               
4. SeVi – 2 .21 .23 .42 -              
5. SeVi – 3 .24 .28 .52 .49 -             
6. Matrices .25 .25 .38 .30 .41 -            
7. Letter 
Number 

.39 .28 .33 .30 .41 .57 -           

8. Digit-
Symbol 

.03 .17 .25 .24 .17 .22 .29 -          

9. SoIP .22 .18 .20 .19 .16 .10 .22 .60 -         
10. Openness 
(NEO-PI-R) 

.13 .21 .03 -.10 .03 .17 .08 .00 -.03 -        

11. Openness 
(BFAS) 

.18 .25 .03 -.09 .02 .16 .07 .04 .03 .80 -       

12. SISL 
SSPA–2 

.01 .12 .15 .04 .17 .12 .01 .03 .05 .07 .09 -      

13. SISL 
SSPA–3 

.16 .18 -.01 .00 .06 .01 .02 .04 .11 .12 .15 -.02 -     

14. SISL 
SSPA–4 

.01 .09 .01 .08 -.02 .09 .03 -.04 -.03 .05 .10 .06 .06 -    

15. SISL 
Speed–2 

-.23 -.27 -.26 -.26 -.25 -.24 -.31 -.44 -.31 -.12 -.13 -.13 -.14 .01 -   

16. SISL 
Speed–3 

-.15 -.17 -.31 -.31 -.27 -.24 -.28 -.56 -.38 -.04 .00 -.09 -.19 -.09 .81 -  

17. SISL 
Speed–4 

-.18 -.17 -.31 -.33 -.31 -.24 -.26 -.49 -.36 .00 .02 -.11 -.23 -.20 .72 .86 - 
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Table 4.10 
 
Correlations (r) among all measures of working memory, fluid intelligence, processing speed, personality, and the SISL task – all 
subjects. 
Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

N 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 
Mean 46.1 5.6 4.3 4.4 4.6 5.9 5.04 37.9 22.4 132.4 39.2 5.9% 5.3% 5.4% 1.07s .87s .79s 
SEM .88 .09 .12 .10 .12 .20 .18 .71 .38 1.29 .50 .44% .35% .41% .05s .03s .02s 

Note: Significant correlations (p < .05) in bold. Matrices = Matrix Reasoning task; Letter Number = Letter and Number Series task; 
SoIP = Speed of Information Processing task  
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Table 4.11 
 
Rotated factor loading matrix (loadings shown in parentheses) – all subjects. 

Factor 1: 
Processing Speed 

Factor 2: 
WM/gF 

Factor 3: 
Openness 

Factor 4: 
Implicit Learning 

SISL Speed – 
Session 3 

(-.90) 
SISL Speed – 

Session 4 
(-.90) 

SISL Speed – 
Session 2 

(-.84) 
Digit-Symbol 
Substitution 

(.71) 
Speed of Information 

Processing 
(.62) 

 

SeVi – Session 4 
(.78) 

Letter and Number 
Series 
(.70) 

Matrix Reasoning 
(.69) 

SeVi – Session 2 
(.67) 

SeVi – Session 3 
(.65) 

Openness – BFAS 
(.84) 

Openness – NEO-PI-
R 

(.81) 
List Sorting 

(.54) 
SISL SSPA – Session 

3 
(.36) 

OSPAN 
(.60) 

SISL SSPA – Session 
2 

(-.49) 
SISL SSPA – Session 

4 
(-.35) 

 

Discussion 

Experiment 4.4 generally confirmed the pattern of results observed in Experiments 4.1-

4.3. In contrast to both a working memory task (SeVi) and SISL test speed, sequence-specific 

learning in SISL did not show robust test-retest reliability. With a much larger sample size, I was 

also able to conduct a factor analysis using SeVi, SISL, and a set of tasks measuring working 

memory, processing speed, openness to experience, and fluid intelligence, the first three of 

which have previously been investigated as potential sources of individual differences in implicit 

sequence learning (e.g., Kaufman et al., 2010). Both average SISL speed and SeVi again stood 

apart from sequence-specific learning in that they each loaded onto a common factor along with 

a subset of the other cognitive measures. On the one hand, this suggests that the performance 

speed component of skill learning does exhibit stable individual differences, while extraction of 
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the specific sequence pattern during initial learning of a new sequence is much less stable across 

individuals. Nevertheless, the fact that sequence-specific learning across the three sessions 

loaded onto a single factor suggests at least some underlying stability in this measure. Thus, 

individual differences in implicit sequence learning may be present but subtle. This point, along 

with other possible sources of individual differences in skill learning, is further considered in the 

following, and final, chapter.  
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Chapter 5: Summary and Future Directions 

 

In contrast to explicit learning, many researchers have operated on the commonly held 

assumption that implicit sequence learning ability shows little variation across individuals. This 

assertion is supported by one of two arguments, both of which have their own points of 

weakness. Some maintain an evolutionary argument, claiming that because the implicit learning 

system is evolutionarily older than the explicit system, one should expect lower between-subject 

variability. However, imaging studies have shown that implicit learning processes involve not 

only older structures such as the basal ganglia, but areas of the more newly formed neocortex as 

well (Gobel et al., 2011). Thus, arguing for a lack of individual differences in implicit learning 

from an evolutionary standpoint does not provide strong support for such a claim. 

Others use the argument that implicit learning is an automatic process that occurs 

incidentally and should therefore operate independently of other cognitive processes. However, 

this has proven challenging to show experimentally using dual-task protocols, with specific 

characteristics and timing of the secondary task having a significant influence on whether 

impaired or intact implicit learning is observed (Schumacher & Schwarb, 2009). Furthermore, 

studies of state effects on learning provide additional evidence that implicit sequence learning is 

not an entirely automatic process. Both mental fatigue (induced through an ego depletion task; 

Thompson et al., 2014) and avoid motivation (Chon et al., 2017) have been shown to influence 

the degree of learning observed in an implicit sequence learning task (SISL). Coupled with the 

fact that individual differences in implicit learning have rarely been systematically studied, I saw 
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providing a quantifiable measure of such differences as an important addition to the body of 

research on implicit learning. 

The relatively flawed arguments historically used to support the claim that implicit 

learning ability should not differ across individuals, plus my own intuition, led me to expect to 

find at least modest evidence that people do in fact vary not only in explicit learning but implicit 

learning as well. Anyone who considers examples of people they have encountered who seem to 

be “naturals” at real-world skills such as music or sports would most likely easily concede that 

certain individuals must be naturally “better” at skill learning. As an important component of 

skill learning, one might thus expect that implicit learning ability should also differ across 

individuals. However, the first three experiments described in Chapter 4 suggested that only 

certain components of learning exhibited stable individual differences. In particular, performance 

speed was robustly correlated across different sequence tests. While this certainly represents an 

important component of overall skill learning, it is not specific to the individual sequence that 

participants are expected to extract. Learning on a given sequence in the SISL task was almost 

completely unrelated to learning of a subsequent sequence. This suggests that initial learning of a 

new sequence (i.e., within the first 50 or so repetitions of practice) does not differ in a trait-like 

manner across individuals. 

This pattern was again observed in Experiment 4.4 with a multi-day experimental 

protocol. Compared to both speed at test and the SeVi working memory measure, sequence 

learning on the SISL task was much less reliable across sessions. Furthermore, sequence learning 

did not correlate consistently with any other measures employed in that experiment, while 

performance speed correlated with many of these measures. Finally, a factor analysis revealed a 
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common factor underlying both processing speed measures and test performance speed on SISL. 

Thus, general task performance as measured by speed did robustly emerge as an individual trait, 

but sequence-specific learning, surprisingly, did not. 

This result is particularly interesting in light of real-world evidence that innate talent does 

play a role in attaining expertise in a skill. In particular, evidence for this comes from both the 

motor learning literature (Ackerman and Cianciolo, 2000; Engel et al., 2013; Golenia et al., 

2014; Wu et al., 2014) and the studies of Fernand Gobet discussed in Chapter 1 (Campitelli & 

Gobet, 2011; Hambrick et al., 2014). A certain number of hours of practice—even deliberate 

practice, as Ericsson has suggested is necessary for achieving expertise—do not guarantee a 

certain level of skill. This makes intuitive sense when one considers the absurdity of assuming 

anyone could become an Olympic-level athlete or world-class musician. However, the results of 

my experiments are not necessarily inconsistent with the notion of innate talent. Experiment 4.4 

showed that a common factor does underlie sequence learning in SISL, though it should be noted 

that this factor had among the weakest loadings of the four factors. But this doesn’t imply that 

innate talent is nonexistent; rather, weak evidence of stable individual differences in learning of a 

new sequence suggests that individual differences in skill learning (i.e., talent) arise from 

something other than core sequence learning (i.e., pattern extraction) ability. Thus, the research 

described in the previous chapter makes an important contribution to our understanding of skill 

learning. 

Furthermore, it raises the question of how to more accurately define differences in innate 

talent, rather than suggesting that this concept be disregarded entirely. First, perhaps individual 

differences only manifest themselves when comparing experts to novices. If so, I should not 
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necessarily have expected to see them emerge with a relatively small sample size of mostly 

young adults (when considering the smaller subgroups of the population I would have had to 

target to ensure enough variability in expertise) or over such a short training period (roughly 3 

hours). Targeted recruitment of experts (e.g., musical experts, as we have observed on an 

anecdotal basis that musicians tend to perform better on SISL) would be a valuable area for 

future research. Individual differences in implicit learning ability may be subtle enough that they 

only emerge after extensive hours of practice. Even a slight learning advantage, while perhaps 

not observable on the smaller scale of my experiments, could lead to faster skill development 

when compounded over thousands of hours. 

Or perhaps initial learning might proceed similarly across individuals, but realization of 

expert status requires something extra beyond basic pattern extraction ability. One possibility is 

that pure physiological differences account for much of the variability in real-world skill 

expertise. For example, in the world of sports, individuals with specific physical characteristics 

(e.g., height, weight) tend to excel in specific positions within a given sport. In music, more 

difficult pieces are often characterized by complex rhythmic structures and faster transitions 

between notes or chords; it is conceivable that individual differences in musical ability arise 

simply from individual differences in motor skill afforded by a specific physiological profile. 

Additionally, the importance of speed would be more consistent with my findings that overall 

task performance ability, as measured by speed of responding, is a robust individual difference 

measure in SISL. Perhaps this component of skill learning plays a greater role in determining 

individual ability or talent when it comes to real-world skills. 
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Alternatively, evidence from the reinforcement learning literature suggests a possible 

genetic component to skill learning. In a typical reinforcement learning paradigm, participants 

view pairs of neutral stimuli and must learn to choose one and avoid the other in each pair based 

on probabilistic feedback. Participants are then tested with novel stimulus pairs to determine how 

well they generalize the information learned during training. Frank, Moustafa, Haughey, Curran, 

and Hutchinson (2007) and Collins and Frank (2012) have demonstrated a relationship between 

the Val158Met polymorphism in the COMT gene, working memory capacity, and dopaminergic 

function in predicting participants’ performance on a probabilistic reinforcement learning task. 

Because dopamine likely plays an important role in skill learning as well (Gobel et al., 2013; 

Siegert et al., 2006), genetics may play a part in giving rise to individual differences. Again, 

targeted sampling may be necessary to test this idea, given that the various polymorphisms are 

not equally distributed across the population. 

A further possibility is that individual differences in explicit learning may have greater 

impact on attainment of complex real-world skills than on learning in laboratory tasks designed 

to tap only implicit processes. Indeed, most skilled performance likely draws on both explicit and 

implicit knowledge. A prominent example of this again relates to musical ability. Researchers as 

well as musicians themselves will often speak of musical training in a way that suggests the 

importance of both explicit and implicit knowledge. Achieving increased accuracy through 

repeated practice as well as acquiring knowledge about rules governing musical structure are 

likely supported by implicit mechanisms (Rohrmeier & Rebuschat, 2012; Tillmann, Bharucha, & 

Bigand, 2000), but studying written music to learn a piece by memory is a more explicit process. 

This explicit knowledge of a piece is particularly important for recovering from a mistake or 
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fumbled note—in other words, when implicit knowledge fails. It is also important when 

changing the context of performance, such as when transposing music to another instrument or 

key (Colwell, 2006). Therefore, while I did not find strong evidence for individual differences in 

implicit learning, individual differences in real-world skills may arise more from individual 

differences in explicit learning ability than implicit learning ability. 

Finally, a deeper understanding of the specific characteristics of the SISL task itself 

represents an additional important area of future study. Measurement error is of course a 

component of any experimental task, and the relatively unexplored potential sources of error in 

the SISL task may present a caveat to any conclusions that can be drawn about individual 

differences. While learning within a sequence was shown to be much more reliable than learning 

across sequences, suggesting that the learning measure itself is relatively stable and reliable, two 

additional questions that have not been systematically answered are worth considering: 1) Are 

particular sequences learned faster than others? and 2) How does speed relate to performance? 

For each participant, one of the 256 possible 12-item sequences is randomly chosen as the 

trained repeating sequence. We assume that each of these sequences are of equal difficulty to 

learn, but perhaps this is not the case. With thousands of prior participants in dozens of studies 

that have used the SISL task, it would be possible to mine this data to look for evidence that a 

particular sequence (or set of sequences) is learned faster than others. It would be important to 

know if some sequences are easier to learn, as this could present an additional source of 

measurement error when attempting to study individual differences in sequence learning on 

SISL. 
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Second, the relationship between speed and performance on SISL remains relatively 

unknown. The cross-experiment correlation analysis showed that these measures are modestly 

but significantly correlated. However, it would be interesting and worthwhile to characterize this 

relationship more definitively. Because I have treated speed and sequence-specific learning 

(SSPA) as separate performance measures throughout this dissertation, more carefully 

characterizing the relationship between the two could lead to a reconsideration of my 

conclusions about the results presented in the previous chapter. Perhaps the way learning is 

measured using the SSPA subtraction score is subtly influenced by speed. To investigate this 

idea further, one could imagine presenting participants with non-repeating sequences while 

randomly varying the speed of the task (as opposed to tying speed changes to overall participant 

performance). This would allow for a more systematic method of observing how accuracy 

changes as a function of speed. 

Barring these further investigations, however, the experiments presented in this 

dissertation raise important questions about the nature of expertise. Arguing whether certain 

individuals are more adept at implicit learning is overly simplistic. Many factors likely contribute 

to the attainment of expertise in complex real-world skills. My work has provided robust 

evidence that at the level of pattern extraction processes underlying performance on an implicit 

sequence learning task, individuals do not differ. This component of skill learning does not 

behave in a trait-like manner similar to well-studied constructs such as working memory or fluid 

intelligence. Rather, all individuals have an equal capacity to learn.   



99 
 

References 

Ackerman, P. L., & Cianciolo, A. T. (2000). Cognitive, perceptual-speed and psychomotor 

determinants of individual differences during skill acquisition. Journal of Experimental 

Psychology: Applied, 6(4), 259-290. 

Barrouillet, P. (1996). Transitive inferences from set-inclusion relations and working 

memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 

1408-1422. 

Baumeister, R. F., Bratslavsky, E., Muraven, M., & Tice, D. M. (1998). Ego depletion: Is the 

active self a limited resource? Journal of Personality and Social Psychology, 74(5), 

1252-1265. 

Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The strength model of self-control. 

Current Directions in Psychological Science, 16, 351-355. 

Bertels, J., Demoulin, C., Franco, A., & Destrebecqz, A. (2013). Side effects of being blue: 

Influence of sad mood on visual statistical learning. PLoS ONE, 8(3), e59832. 

Bo, J., Jennett, S., & Seidler, R. D. (2011). Working memory capacity correlates with implicit 

serial reaction time task performance. Experimental Brain research, 214, 73-81. 

Boyd, L. A., & Winstein, C. J. (2004). Providing explicit information disrupts implicit motor 

learning after basal ganglia stroke. Learning & memory, 11(4), 388-396. 

Boyd, L. A., & Winstein, C. J. (2006). Explicit information interferes with implicit motor 

learning of both continuous and discrete movement tasks after stroke. Journal of 

Neurologic Physical Therapy, 30(2), 46-57. 



100 
 
Braver, T. S., & Barch, D. M. (2002). A theory of cognitive control, aging cognition, and 

neuromodulation. Neuroscience & Biobehavioral Reviews, 26(7), 809-817. 

Campitelli, G., & Gobet, F. (2011). Deliberate practice: Necessary but not sufficient. Current 

Directions in Psychological Science, 20(5), 280-285. 

Cantor, J., Engle, R. W., & Hamilton, G. (1991). Short-term memory, working memory, and 

verbal abilities: How do they relate? Intelligence, 15, 229-246. 

Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton Mifflin. 

Chon, D., Thompson, K. R., & Reber, P. J. (2017). Motivation to avoid loss improves implicit 

skill performance. Journal of Experimental Psychology: Learning, Memory, and 

Cognition. Advance online publication, September 21, 

http://dx.doi.org/10.1037/xlm0000456. 

Collins, A. G. E., & Frank, M. J. (2012). How much of reinforcement learning is working 

memory, not reinforcement learning? A behavioral, computational, and neurogenetic 

analysis. European Journal of Neuroscience, 35, 1024-1035. 

Colwell, R. (Ed.). (2006). MENC handbook of musical cognition and development. New York, 

NY: Oxford University Press. 

Condon, D. M., & Revelle, W. (2014). The international cognitive ability resource: Development 

and initial validation of a public-domain measure. Intelligence, 43, 52-64. 

Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. 

(2005). Working memory span tasks: A methodological review and user’s guide. 

Psychonomic Bulletin & Review, 12(5), 769-786. 

http://psycnet.apa.org/doi/10.1037/xlm0000456


101 
 
Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its 

relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547-552. 

Conway, A. R. A., & Kovacs, K. (2013). Individual differences in intelligence and working 

memory: A review of latent variable models. Psychology of Learning and Motivation, 58, 

233-270. 

Costa, P. T., Jr., & McCrae, R. R. (1992). Four ways five factors are basic. Personality and 

Individual Differences, 13, 653-665. 

Curran, T., & Keele, S. W. (1993). Attentional and nonattentional forms of sequence learning. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(1), 189-202. 

Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and 

reading. Journal of Verbal Learning and Verbal Behavior, 19, 450-466. 

DeYoung, C. G., Quilty, L. C., Peterson, J. B., & Gray, J. R. (2014). Openness to experience, 

intellect, and cognitive ability. Journal of Personality Assessment, 96(1), 46-52. 

Elliot, C. D. (1996). British ability scales II. Windsor, Berkshire, UK: NFER-Nelson. 

Engel, A., Hijmans, B. S., Cerliani, L., Bangert, M., Nanetti, L., Keller, P. E., & Keysers, C. 

(2013). Inter-individual differences in audio-motor learning of piano melodies and white 

matter fiber tract architecture. Human Brain Mapping, 35(5), 2483-2497. 

Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in 

Psychological Science, 11, 19-23. 

Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the 

acquisition of expert performance. Psychological Review, 100(3), 363-406. 



102 
 
Ericsson, K. A., Prietula, M. J., & Cokely, E. T. (2007). The making of an expert. Harvard 

Business Review, 85(7/8), 114-120. 

Feldman, J., Kerr, B., & Streissguth, A. P. (1995). Correlational analyses of procedural and 

declarative learning performance. Intelligence, 20(1), 87-114. 

Fletcher, P. C., Zafiris, O., Frith, C. D., Honey, R. A. E., Corlett, P. R., Zilles, K., & Fink, G. R. 

(2004). On the benefits of not trying: Brain activity and connectivity reflecting the 

interactions of explicit and implicit sequence learning. Cerebral Cortex, 15(7), 1002-

1015. 

Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchinson, K. E. (2007). Genetic 

triple dissociation reveals multiple roles for dopamine in reinforcement learning. 

Proceedings of the National Academy of Sciences, 104(41), 16311-16316. 

Frensch, P. A., Buchner, A., & Lin, J. (1994). Implicit learning of unique and ambiguous serial 

transitions in the presence and absence of a distractor task. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 20(3), 567-584. 

Frensch, P. A., Lin, J., & Buchner, A. (1998). Learning versus behavioral expression of the learned: The 

effects of a secondary tone-counting task on implicit learning in the serial reaction task. 

Psychological Research, 61, 83-98. 

Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate and individual differences in 

short-term memory capacity on an indirect measure of serial learning. Memory and 

Cognition, 22(1), 95-110. 

Friedman, N. P., & Miyake, A. (2005). Comparison of four scoring methods for the reading span 

test. Behavior Research Methods, 37(4), 581-590. 



103 
 
Gobel, E. W., Blomeke, K., Zadikoff, C., Simuni, T., Weintraub, S., & Reber, P. J. (2013). 

Implicit perceptual-motor skill learning in Mild Cognitive Impairment and Parkinson’s 

disease. Neuropsychology, 27(3), 314-321. 

Gobel, E. W., Parrish, T. B., & Reber, P. J. (2011). Neural correlates of skill acquisition: 

Decreased cortical activity during a serial interception sequence learning task. 

NeuroImage, 58, 1150-1157. 

Golenia, L., Schoemaker, M. M., Mouton, L. J., & Bongers, R. M. (2014). Individual differences 

in learning a novel discrete motor task. PLoS ONE, 9(11), e112806. 

Grimm, L. R., Markman, A. B., Maddox, W. T., & Baldwin, G. C. (2008). Differential effects of 

regulatory fit on category learning. Journal of Experimental Social Psychology, 44, 920-

927. 

Hambrick, D. Z., Oswald, F. L., Altmann, E. M., Meinz, E. J., Gobet, F., & Campitelli, G. 

(2014). Deliberate practice: Is that all it takes to become an expert? Intelligence, 45, 34-

45. 

Horn, J. L. (1994). Theory of fluid and crystallized intelligence. In R. J. Sternberg (Ed.), 

Encyclopedia of human intelligence (Vol. 1, pp. 443–451). New York: MacMillan. 

Howard, D. V., & Howard, J. H. (2001). When it does hurt to try: Adult age differences in the 

effects of instructions on implicit pattern learning. Psychonomic bulletin & review, 8(4), 

798-805. 

Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory: Correlated 

or complicated? Cortex, 49, 2001-2006. 



104 
 
Jarrold, C., & Towse, J. N. (2006). Individual differences in working memory. Neuroscience, 

139, 39-50. 

Jiménez, L., & Méndez, C. (1999). Which attention is needed for implicit sequence learning? 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 236-259. 

Jiménez, L., & Vázquez, G. A. (2005). Sequence learning under dual-task conditions: 

Alternatives to a resource-based account. Psychological Research, 69, 352-368. 

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual 

differences in working memory. Psychological Review, 99(1), 122-149. 

Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, 

executive attention, and general fluid intelligence: An individual-differences perspective. 

Psychonomic Bulletin & Review, 9(4), 637-671. 

Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jiménez, L., Brown, J., & Mackintosh, N. (2010). 

Implicit learning as an ability. Cognition, 116, 321-340. 

King, J., & Just, M. A. (1991). Individual differences in syntactic processing: The role of 

working memory. Journal of Memory and Language, 30, 580-602. 

Klein, K., & Fiss, W. H. (1999). The reliability and stability of the Turner and Engle working 

memory task. Behavior Research Methods, Instruments, & Computers, 31(3), 429-432. 

Mackintosh, N. J. (2011). IQ and human intelligence (2nd ed.). Oxford: Oxford University Press. 

Martini, M., Furtner, M. R., & Sachse, P. (2013). Working memory and its relation to 

deterministic sequence learning. PLoS ONE, 8(2): e56166. 

McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary 

learning systems in the hippocampus and neocortex: Insights from the successes and 



105 
 

failures of connectionist models of learning and memory. Psychological review, 102(3), 

419-457. 

McCrae, R. R. (1994). Openness to experience. Expanding the boundaries of factor V. European 

Journal of Personality, 8, 251-272. 

McGeorge, P., Crawford, J. R., & Kelly, S. W. (1997). The relationships between psychometric 

intelligence and learning in an explicit and an implicit task. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 23(1), 239-245. 

Muraven, M., Tice, D. M., & Baumeister, R. F. (1998). Self-control as a limited resource: 

Regulatory depletion patterns. Journal of Personality and Social Psychology, 74(3), 774-

789. 

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from 

performance measures. Cognitive Psychology, 19, 1-32. 

Pascual-Leone, A., Wassermann, E. M., Grafman, J., & Hallett, M. (1996). The role of the 

dorsolateral prefrontal cortex in implicit procedural learning. Experimental Brain 

Research, 107, 479-485. 

Raven, J. C., Court, J. H., & Raven, J. (1977). Raven’s Progressive Matrices and Vocabulary 

Scales. New York: Psychological Corporation. 

Reed, J., & Johnson, P. (1994). Assessing implicit learning with indirect tests: Determining what 

is learned about sequence structure. Journal of Experimental Psychology: Learning, 

Memory, & Cognition, 20, 585-594. 

Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning & 

Verbal Behavior, 6, 855-863. 



106 
 
Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: 

General, 118, 219–235. 

Reber, A. S., & Allen, R. (2000). Individual differences in implicit learning: Implications for the 

evolution of consciousness. In R. G. Kunzendorf & B. Wallace (Eds.), Individual 

differences in conscious experience (pp. 227–247). Amsterdam, Netherlands: John 

Benjamins Publishing Company. 

Reber, A. S., Walkenfeld, F. F., & Hernstadt, R. (1991). Implicit and explicit learning: Individual 

differences and IQ. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 17(5), 888-896. 

Reber, P. J. (2008). Cognitive neuroscience of declarative and nondeclarative memory. In: S. 

Aaron, A. S. Benjamin, De Belle, J. S. B. Etnyre, & T. A. Polk (Eds.), Advances in 

psychology, (pp.113-123). North-Holland. 

Reber, P. J. (2013). The neural basis of implicit learning and memory: a review of 

neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026-2042. 

Robertson, E.M., Tormos, J.M., Maeda, F., & Pascual-Leone, A. (2001). The role of the 

dorsolateral prefrontal cortex during sequence learning is specific for spatial information. 

Cerebral Cortex, 11, 628-635. 

Rohrmeier, M., & Rebuschat, P. (2012). Implicit learning and acquisition of music. Topics in 

Cognitive Science, 4, 525-553. 

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. 

Science, 274(5294), 1926-1928. 



107 
 
Sanchez, D. J., Gobel, E. W., & Reber, P. J. (2010). Performing the unexplainable: implicit task 

performance reveals individually reliable sequence learning without explicit knowledge. 

Psychonomic Bulletin & Review, 17(6), 790-796. 

Sanchez, D. J., & Reber, P. J. (2012). Operating characteristics of the implicit learning system 

supporting serial interception sequence learning. Journal of Experimental Psychology: 

Human Perception and Performance, 38(2), 439-452. 

Sanchez, D. J., & Reber, P. J. (2013). Explicit pre-training instruction does not improve implicit 

perceptual-motor sequence learning. Cognition, 126, 341-351. 

Schacter, D. L. (1987). Implicit memory: history and current status. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 13, 501-518. 

Schumacher, E. H., & Schwarb, H. (2009). Parallel response selection disrupts sequence learning 

under dual-task conditions. Journal of Experimental Psychology: General, 138(2), 270-

290. 

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal 

lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20(1), 11-21. 

Shang, J., Fu, Q., Dienes, Z., Shao, C., & Fu, X. (2013). Negative affect reduces performance in 

implicit sequence learning. PLoS ONE, 8(1), e54693. 

Siegert, R. J., Taylor, K. D., Weatherall, M., & Abernethy, D. A. (2006). Is implicit sequence 

learning impaired in Parkinson’s disease? Neuropsychology, 20(4), 490-495. 

Spearman, C. (1904). General intelligence, objectively determined and measured. American 

Journal of Psychology, 15, 201–293. 



108 
 
Stadler, M. A. (1995). Role of attention in implicit learning. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 21(3), 674-685. 

Thompson, K. R., Blake, P., & Reber, P. J. (in preparation). Statistical learning of repeating 

sequences. 

Thompson, K. R., Sanchez, D. J., Wesley, A. H., & Reber, P. J. (2014). Ego depletion impairs 

implicit learning. PLoS ONE, 9(10), e109370. 

Tillmann, B., Bharucha, J. J., & Bigand, E. (2000). Implicit learning of tonality: A self-

organizing approach. Psychological Review, 107(4), 885-913. 

Tulsky, D. S., Carlozzi, N., Chevalier, N., Espy, K., Beaumont, J., & Mungas, D. (2013). NIH 

Toolbox Cognitive Function Battery (NIHTB-CFB): Measuring working memory. 

Monographs of the Society for Research in Child Development, 78(4), 70-87. 

Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of 

Memory & Language, 28, 127-154. 

Unsworth, N., & Engle, R. W. (2005). Individual differences in working memory capacity and 

learning: Evidence from the serial reaction time task. Memory and Cognition, 33(2), 213-

220. 

Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale-Revised. New York: 

Psychological Corporation. 

Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). 

Temporal structure of motor variability is dynamically regulated and predicts motor 

learning ability. Nature Neuroscience, 17(2), 312-321. 



109 
 
Woolhouse, L. S., & Bayne, R. (2000). Personality and the use of intuition: Individual 

differences in strategy and performance on an implicit learning task. European Journal of 

Personality, 14, 157-169. 


