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ABSTRACT

Harmonic Caps and Planar Conformal Geometry

Shuyi Weng

In this thesis, we study the geometry of planar shapes and their harmonic caps. Specif-

ically, given a compact continuum P ⊆ C, we are interested in constructing a planar cap P̂

such that P and P̂ can be glued together along their boundary to form a topological sphere

with prescribed curvature distribution. In 2017, DeMarco and Lindsey published the re-

sult that such a process is always possible if the curvature distribution is proportional

to the harmonic measure associated to the complement of P . Alexandrov’s uniqueness

theorem implies that the topological sphere has a unique realization as the boundary

surface of a compact convex subset of R3. Reshetnyak, who is one of Alexandrov’s stu-

dents, provided an alternative perspective of the realization from the complex analytic

point of view. We build on these previous works, and characterize harmonic planarity,

in which case said convex subset of R3 is entirely contained in a plane, for planar shapes

that are Jordan domains or Jordan arcs. We also study computational and numerical

methods for Riemann mapping constructions, including the zipper algorithm and the

Schwarz-Christoffel transformations. Finally, we implement a numerical cap construction
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algorithm in Mathematica and in Matlab to generate approximations of harmonic caps.

These results help us develop valuable insights into the geometric properties of harmonic

caps and the associated convex realizations.
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CHAPTER 1

Introduction

The purpose of this thesis is to investigate harmonic caps of planar shapes, as well

as the convex bodies constructed from gluing planar shapes and their corresponding har-

monic caps along the boundary. In this study, we take the perspectives of both theoretical

and computational methods to further the understanding of harmonic caps.

Descartes’ theorem on total angular defect states that if a polyhedron is homeomorphic

to a sphere, then the sum of angular defects at the vertices is 4π. We may raise the

following question:

Question. Given a polygon P in the plane, together with a prescribed distribution

of angular defect on the vertices of P that sums to 4π, can we construct a “cap” polygon

P ′ such that P and P ′ can be glued along the boundary to form a polyhedron that is

homeomorphic to a sphere?

Descartes’ total angular defect theorem is a special case of Gauss-Bonnet theorem, for

which the Gaussian curvature is discrete and concentrated at the vertices, and the integral

of Gaussian curvature at a vertex is equal to the angular defect there [20]. If we think

of curvature as a measure, Descartes’ theorem is then the special case of Gauss-Bonnet

theorem where the curvature is a discrete measure. We may raise a more general question

in this setting:
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Question. Given a Jordan domain P , together with a Radon measure µ supported

on ∂P , can we construct a “cap” P ′ such that P and P ′ can be glued along the boundary

to form a topological sphere whose Gaussian curvature is proportional to µ?

The answer to both questions is negative in general. For example, if a triangle is given

as the polygon P , then the only distribution of angular defect for the “cap” polygon P ′ to

exist is that the angular defect at each vertex equals 2π−2θ, where θ is the internal angle

at the vertex. In this case, P ′ is a reflection of P , and the polyhedron formed by gluing

P and P ′ along the boundary is a double of the triangle P , thus resulting in a degenerate

polyhedron. As another example, if the polygon P is a quadrilateral, and the prescribed

distribution of angular defect is π at each vertex, then the “cap” polygon exists if and

only if P is a parallelogram. [12]

The study of harmonic caps begins with a version of the question that requires distri-

bution of Gaussian curvature with respect to the harmonic measure. That is, for a fixed

compact and simply connected subset P of the plane, we consider the curvature distri-

bution on ∂P that is proportional to the harmonic measure for the domain Ĉ \P with

respect to the point at ∞. The question, in the case of polygons and discrete curvature,

dates back to the work of Alexandrov in the 1950s [1], but the case of curvature distribu-

tion proportional to harmonic measure has its origin in the study of complex polynomial

dynamical systems. In 2017, DeMarco and Lindsey stated the question in a formal con-

text, building on informal discussions with William Thurston and Curtis McMullen [6].

They provided a positive answer to the existence question of harmonic caps. We now

summarize their formulation of the question, and lay out some essential definitions for

the main results in this thesis.
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Let P be a subset of C or R2 that is compact, connected, containing at least two

points, and has a connected complement. We call such subset P a planar shape. Given

a probability measure µ supported on ∂P , one seeks a conformal metric ρ = ρ(z)|dz| on

the Riemann sphere Ĉ such that

(1) P , with Euclidean metric, embeds locally-isometrically into (Ĉ, ρ); and

(2) The curvature distribution on (Ĉ, ρ) equals the pushforward of 4πµ under said

embedding.

If ρ exists, Alexandrov’s uniqueness theorem claims that the metrized sphere (Ĉ, ρ) has

a unique convex realization [1, 18], that is, a convex subset B ⊆ R3 whose boundary

surface is isometric to (Ĉ, ρ). It is possible that B does not have any interior points, or

equivalently, B is a two-dimensional planar region. In this case, we consider the doubling

of B glued along the planar boundary as the boundary surface of B, so that it “bounds”

both sides of B. The complement of P in (Ĉ, ρ) is called the cap of P with respect

to µ, and denoted by P̂µ. By construction, the metric on P̂µ is flat, so it maps locally-

isometrically into the standard plane (C, |dz|). Such a map is called a development of

the cap P̂µ. This work concerns the case where the aforementioned probability measure

µ is the harmonic measure. A detailed introduction to harmonic caps of planar shapes is

included in Chapter 3, where examples of numerically computed harmonic caps can also

be found.

The harmonic cap problem leads us to different fields of mathematics, including com-

putational geometry, probability, and potential theory. We have learned a number of
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numerical algorithms, including the zipper algorithm [14, 13], Schwarz-Christoffel trans-

formations [9, 8, 7], and the circle-packing algorithm [19] that compute numerical approx-

imations of Riemann maps. The convex realization of Alexandrov’s uniqueness theorem

has also been studied by various authors, most notably Demain and O’Rouke [5, 16]

through their study of geometric folding algorithms. The harmonic measure aspect of

this problem also connects to potential theory and probability. Mörters and Peres [15]

presented a Brownian motion’s approach on potential theory in the complex plane, as

well as in higher dimensions.

The central results of this thesis include two theorems concerning harmonic planarity,

which describes the scenario that the convex realization of the metrized sphere (Ĉ, ρ) can

be entirely contained in a plane. A number of numerical Riemann mapping algorithms

are used to find numerical approximations of the harmonic measure. Schwarz-Christoffel

method is particularly useful in the in-depth study of the wedge family of planar shapes,

which are Jordan arcs formed by joining two line segments of equal length at one of

their endpoints. An explicit inverse distribution function of the harmonic measure is

presented for the wedge family. Finally, we implement an algorithm to generate figures

of harmonic caps using harmonic measure approximations generated by the numerical

Riemann mapping algorithms. We call this the cap construction algorithm. The harmonic

caps of planar shapes generated from this algorithm are included throughout this thesis.

1.1. Summary of Main Results

1.1.1. Harmonic planarity. The first point of interest is harmonic planarity of P . As

a first example, if the planar shape P is the closed unit disk, the harmonic measure of its
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complement is uniformly distributed along the unit circle, and the associated harmonic

cap P̂ is again the unit disk. Perimeter gluing guarantees that the topological sphere

formed by P and its cap is a double cover of the disk itself. In this case, the convex body

resulting from perimeter gluing of the unit disk and its harmonic cap is entirely contained

in a plane. We say a shape is harmonically planar if the convex body resulting from

perimeter gluing of the planar shape and its harmonic cap is entirely contained in a plane.

The following theorem characterizes all Jordan domains that are harmonically planar.

Theorem 1.1. Let P ⊆ C be the closure of a Jordan domain. Then P is harmonically

planar if and only if P is a closed circular disk.

If P has smooth boundary, Theorem 1.1 is a relatively straightforward consequence

of the boundary parameterization formula given in [6]. The more general case exploits

the non-negativity of the curvature distribution by harmonic measure, together with a

classical fact that convex Jordan domains have rectifiable boundary.

We also study planar shapes that are Jordan arcs, which are images of injective con-

tinuous functions of a bounded closed interval [a, b] into the plane C. We found a family

of Jordan arcs that are harmonically planar.

Theorem 1.2. If Γ ⊆ C is a line segment or a circular arc, then Γ is harmonically

planar.

The proof of Theorem 1.2 is purely constructive, because the conformal isomorphism

from the complement of the disk to the complement of a circular arc can be made explicit.

We compose seven conformal maps to obtain a conformal isomorphism for any circular arc,

then use such a function to construct a harmonic cap and verify its reflection symmetry.
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We propose that the converse of Theorem 1.2 should also hold.

Conjecture. Let Γ ⊆ C be a Jordan arc. If Γ is harmonically planar, then it is either

a line segment or a circular arc.

Much of the work for this thesis grew out of the development of, the testing for,

and various attempts to prove this conjecture. First of all, the cap construction algorithm

discussed in Chapter 7, coupled with zipper algorithm [14] generates a family of harmonic

cap examples that provide the first hints to Theorem 1.2 (see Example 3.7 and Figure 3.7).

However, the implementation of zipper algorithm gives a Riemann map that fixes zero for

a Jordan domain that contains zero. This requires preparation to the input data which

applies a Möbius transformation that sends ∞ to 0 on the given planar shape and yields

a bounded Jordan domain. This is not possible for Jordan arc planar shapes, because

they do not have interior points. The Schwarz-Christoffel transformation discussed in

Chapter 6 computes exterior Riemann maps for polygons. This algorithm overcomes

previous limitation by regarding polygonal arcs as degenerate polygons without interior.

It generates many harmonic cap examples of Jordan arcs, providing further evidence to

the validity of the conjecture. Furthermore, the semi-explicit nature of the Schwarz-

Christoffel transformation, especially the exterior map, enables us to focus on the wedge

family, which are Jordan arcs formed by joining two line segments of equal length at one

of their endpoints. This is the simplest non-trivial family of polygonal Jordan arcs, and

we study their harmonic caps through explicit computation. Details of the wedge family

will be introduced in the next subsection.



17

Almost every attempt to prove the conjecture deduces a symmetry assumption of some

form. The following is one of the formulations of the symmetry assumption, which is a

condition equivalent to being harmonically planar for a smooth Jordan arc.

Lemma 1.3 (The Symmetry Assumption). Let Γ ⊆ C be a smooth Jordan arc, and

let γ : [0, L] → C be an arc-length parameterization of Γ, and assume that γ(0) = 0 and

γ′(0) = 1. Let Φ: Ĉ \D→ Ĉ \Γ be a conformal isomorphism that fixes the point at∞, and

assume its continuous extension at the boundary satisfies Φ(1) = 0. If Γ is harmonically

planar, then

(1.1) γ′(t) = Φ−1
1 (γ(t)) · Φ−1

2 (γ(t)),

where Φ−1
1 and Φ−1

2 are the two distinct branches of the inverse of Φ along Γ.

Given a conformal isomorphism Φ associated with the complement of a smooth Jordan

arc Γ, we can always recover the Jordan arc by the complement of the image of Φ. The

symmetry assumption provides yet an alternative method to recover the Jordan arc. It

says that if a Jordan arc γ : [0, L] → C, parameterized by arc length, is harmonically

planar, then the tangent vector γ′(t) to the arc at γ(t) equals the two preimages of γ(t)

through the conformal isomorphism Φ, satisfying the conditions specified in Lemma 1.3.

Invoking the fundamental theorem of calculus, the curve Γ can be recovered up to a

translation by

γ(t) =

∫ t

0

Φ−1
1 (γ(x)) · Φ−1

2 (γ(x)) dx,
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θπ
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Figure 1.1. The wedge Wθ

if the conformal isomorphism Φ is explicitly given. We conclude that every harmonically

planar smooth Jordan arc is one with agreeing recovery from both methods. This con-

clusion inspires an iteration problem for smooth Jordan arcs, which is discussed in detail

with numerical examples in Section 8.2.

1.1.2. The wedge family Wθ. Schwarz-Christoffel transformation allows us to study

the harmonic caps of the wedge family Wθ with explicit computation. This is the third

family of Jordan arcs, after segments and circular arcs, whose conformal isomorphisms of

the exterior can be written explicitly enough for rigorous harmonic cap computation. To

the best of our knowledge, this is also the only family of Jordan arcs that are proved to

be harmonically non-planar through explicit computation.

A wedge Wθ is a planar shape consisting of two equal-length line segments joined at

one endpoint at an angle θπ (see Figure 1.1). A canonical model of the wedge is

Wθ = {z ∈ C | z = reiαπ where r ∈ [0, 1] and α = 0 or θ}.

for θ ∈ (0, 1]. The result of this study is the next theorem.
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Theorem 1.4. A Schwarz-Christoffel exterior map f : D→ Ĉ \Wθ is given by

(1.2) f(z) = C

∫ z

0

ζ−2
(1− ζ

1 + ζ

)θ−1

(1− ω−1ζ)(1− ωζ) dζ,

where ω = (1−θ)+ i
√

1− (1− θ)2, and C = −θ−θ/2(2−θ)θ/2−1. Furthermore, Wθ∩ [0, 1]

can be parametrized by harmonic measure with respect to conformal angle t ∈ [0, π] as

(1.3) Fθ(t) = f(γ(t)) = 2θ−θ/2(2− θ)θ/2−1 sin(t/2)θ cos(t/2)2−θ.

The parametrization of Wθ ∩ eiθπ[0, 1] can be described by symmetry.

Equation 1.3 is essentially an inverse distribution function of the harmonic measure

of Wθ. It allows us to show that Wθ is not harmonically planar. This is the first example

shown to be harmonically non-planar through explicit computation.

1.1.3. The cap construction algorithm. Given a polygon P and a probability mea-

sure µ supported on the vertices of P , the cap construction algorithm attempts to generate

the cap P ′, in the context of the questions at the beginning of the section. If P ′ does

not exist, the algorithm would generate a polygonal line that either crosses itself or does

not close up to form a polygon. Based on the cap construction algorithm and numerical

approximation algorithms for conformal isomorphisms [7, 8, 13, 14], we develope an

algorithm to find the harmonic cap of a given planar shape.
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1.2. Organization

This thesis consists of eight chapters, including this introduction. In Chapter 2, we

introduce some preliminary information of the harmonic measure and present some con-

vergence results. Chapter 3 defines harmonic caps, and provides plentiful examples of

planar shapes together with their harmonic caps. Chapter 4 introduces the concept of

harmonic planarity, and gives a proof of Theorems 1.1 on Jordan domains. Chapter 5

revisits harmonic planarity, focusing on Jordan arcs, and gives proofs of Theorem 1.2 and

Lemma 1.3. Chapter 6 introduces the Schwarz-Christoffel transformation and its appli-

cation on the computations about the wedge family, providing a rigorous computational

proof of Theorem 1.4. Chapter 7 includes descriptions of the cap construction algorithm

and the numerical approximation algorithms for harmonic caps, together with the zipper

algorithm developed by Marshall. The last chapter presents two iterative processes related

to harmonic caps, provides numerical examples of the iterative processes, and formulates

a conjecture on the iterative harmonic caps.

1.3. Convention and Notations in this Text

• The open ball of radius r centered at x is denoted by B(x, r). Its closure is

denoted by B(x, r).

• The unit disk {z ∈ C : |z| < 1} is denoted by D; the closed unit disk {z ∈ C :

|z| ≤ 1} is denoted by D; the upper-half plane {z ∈ C : Im(z) > 0} is denoted

by H.

• The Riemann sphere, topologically describing the one-point compactification of

the complex numbers C, is denoted by Ĉ in this text.
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• For a bounded domain Ω, its harmonic measure µΩ will refer to the harmonic

measure of the complement Ĉ \Ω with respect to the point at ∞. When the

context is clear, the subscript indicating the bounded domain will be omitted,

and we simply write µ. Harmonic measures with different points of reference will

always be clearly indicated in this text.

• For a planar shape P and a probability measure ν supported on ∂P , the cap of P

associated with ν is denoted by P̂ν . Specifically, if ν is the harmonic measure µP ,

the subscript indicating the measure will be omitted, and we simply write P̂ for

the harmonic cap of P .

• Jordan domains are usually considered open subsets of C or R2. By definition,

planar shapes are compact, therefore closed in the plane. In this text, when a

Jordan domain Ω is designated as a planar shape, we always take the closure Ω

of the Jordan domain as the planar shape to work with.

• A Jordan arc is the image of an injective continuous function γ : [0, 1] → C. In

this text, Jordan arcs are never self-intersecting. The endpoints of a Jordan arc

are always distinct.

• The Riemann Mapping Theorem asserts the existence of a conformal isomorphism

from the unit disk to any simply connected proper subset of C. In this text, we

use the words “Riemann map” and “conformal isomorphism” interchangeably to

refer to a biholomorphic function from either D or Ĉ \D to a simply connected

proper subset of C, or the inverse of such a function.
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CHAPTER 2

The Harmonic Measure

This chapter includes the preliminaries required for the thesis. It mainly consists of

fundamental knowledge about harmonic measures and its connection to a few different

branches of mathematics.

2.1. Definitions of the Harmonic Measure

Let P be a planar shape. The harmonic measure µP of P (with respect to the

point at ∞) is given by the pushforward µP = Φ∗λ, where λ is the normalized arclength

measure on ∂ D, and Φ: Ĉ \D → Ĉ \P is a conformal isomorphism that fixes the point

at∞ [11]. There are quite a few equivalent definitions of the harmonic measure for planar

shapes.

An intuitive definition of harmonic measure is given in terms of boundary hitting

distribution of Brownian motions. Let Bt be a standard Brownian motion starting at

z ∈ C \P , and let T be the first hitting time of the Brownian motion into ∂P . Let

E ⊆ ∂P be a measurable set. For a point z ∈ C \P , the function

Pz(BT ∈ E | T <∞)

is a harmonic function in z, and the harmonic measure is given by

µB(E) = lim
z→∞

Pz(BT ∈ E | T <∞),
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for all measurable E ⊆ ∂P .

From the potential-theoretic point of view, the harmonic measure is the energy-

minimizing measure on P , sometimes also referred to as the equilibrium measure.

Let P(P ) be the collection of Borel probability measures on P , and let the energy of

ν ∈ P(P ) be defined by

I(ν) = −
∫∫

log |z − w| dν(w) dν(z).

Then the harmonic measure µE is the unique measure that satisfies

I(µE) = inf
ν∈P(P )

I(ν).

Next we consider the Dirichlet problem on P . Every f ∈ C(∂P ) has an extension

hf ∈ C(Ĉ \P ) that is harmonic in Ĉ \P . The map f → hf (∞) is therefore a positive

linear functional on C(∂P ). By the Riesz representation theorem,

hf (∞) =

∫
∂P

f dµR

for some Radon measure µR on ∂P , and this measure µR is the harmonic measure of P .

Theorem 2.1. The measures µP , µB, µE, and µR defined above are all equivalent.

Equivalence of these definitions of harmonic measure are classical results. Proofs can

be found in various texts [11, 15, 17]. As mentioned in section 1.3, we simply write µ

for the harmonic measure in this text when the context is clear.
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2.2. Convergence of Harmonic Measures

In 2019, Binder et al. showed in [3] that weak convergence of harmonic measure with

respect to an interior point is equivalent to Caratheódory convergence of the underlying

domains.

Definition 2.2 (Carathéodory Convergence). Let (Ωn, xn) and (Ω, x) be pointed

simply connected domains in C. We say that (Ωn, xn) → (Ω, x) converges in the

Carathéodory sense if

(1) xn → x;

(2) for any compact K ⊆ Ω, we have K ⊆ Ωn for all n sufficiently large;

(3) for any open connected U containing x, if U ⊆ Ωn for infinitely many n, then

U ⊆ Ω.

Example 2.3. Let {an} be a real-valued sequence that converges to 1. Then (Dan , 0)→

(D, 0) in the Carathéodory sense.

Remark 2.4. The example above presents a sequence of domains converging not

only in the Carathéodory sense, but also in the Hausdorff metric. Convergence in the

Carathéodory sense is strictly weaker than Hausdorff convergence, as demonstrated in

the next example.

Example 2.5. Let Ω = D, and let

Ωn = D∪{z ∈ C | 0 < Re(z) < 2, and | Im(z)| < 1/n}.
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Then (Ωn, 0) → (Ω, 0) in the Carathéodory sense. In this example, the sequence does

not converge in the Hausdorff metric. The Hausdorff distance dH(Ωn,Ω) ≥ 1 for every

natural number n because of the spike along the direction of the positive real axis.

Definition 2.6 (Arbitrarily Good Common Interior Approximations). Let x ∈ C,

and let Ωn and Ω be simply connected bounded domains containing x. We say that Ωn

and Ω have arbitrarily good common interior approximations if for all ε > 0, there

exists N ∈ N and Kε ⊆ Ω ∩
⋂
n≥N Ωn containing x such that

d(y, ∂Ω) < ε and d(y, ∂Ωn) < ε

for all y ∈ ∂Kε.

The following theorem proved by Binder et al. shows the equivalence among weak

convergence of harmonic measures, arbitrarily good common interior approximation, and

Carathéodory convergence.

Theorem 2.7. Let (Ωn, xn) and (Ω, x) be pointed simply connected domains in C. Let

ωn denote the harmonic measures of Ωn with respect to xn, and ω denote the harmonic

measure of Ω with respect to x. The followings are equivalent:

(1) The sequence of harmonic measures ωn converges to ω in the weak sense.

(2) (Ωn, xn)→ (Ω, x) in the Carathéodory sense.

(3) (Ωn, xn) and (Ω, x) have arbitrarily good common interior approximation.

One classical result of Carathéodory [10] states that
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Theorem 2.8 (Carathéodory Kernel Theorem). Let (Ωn, xn) and (Ω, x) be pointed

simply connected domains in C. Let Φn : D → Ωn be conformal maps with Φn(0) = xn

and Φ′n(0) > 0, and let Φ: D → Ω be the conformal map with Φ(0) = x and Φ′(0) > 0.

Then Φn → Φ on compact subsets of D if and only if (Ωn, xn)→ (Ω, x) in the Carathéodory

sense.

A special case of Theorem 2.7 and 2.8 gives us the following corollary characterizing

weak convergence of harmonic measures (with respect to the point at ∞).

Corollary 2.9. Let Pn and P be planar shapes, and let µn and µ be their respec-

tive harmonic measures. Let Φn : Ĉ \D → Ĉ \Pn and Φ: Ĉ \D → Ĉ \Pn be conformal

isomorphisms with Φn(∞) =∞ and Φ′n(∞) > 0. Then the followings are equivalent:

(1) Φn → Φ on compact subsets of D.

(2) µn → µ in the weak sense.

(3) (Ĉ \Pn,∞)→ (Ĉ \P,∞) in the Carathéodory sense.

This result allows us to use the harmonic measure of domains converging in the

Carathéodory sense as an approximation of harmonic measure. In practice, we can use

the harmonic measure of domains that are Hausdorff-close to the target domain as an ap-

proximation, because Hausdorff convergence is stronger than Carathéodory convergence.

2.3. Convergence of Conformal Metrics

One classical result by Reshetnyak [18] in 1960 is a theorem on the convergence of

metrics. In a neighborhood of each point of a two-dimensional Riemannian manifold, we

can introduce an isothermal coordinate system in which the metric quadratic form of the
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manifold is

ds2 = λ(x, y)(dx2 + dy2) = λ(z) |dz|2.

The function λ(z) is expressed in terms of the integral curvature of the Riemannian

manifold by the formula

(2.1) λ(z) = exp
[ 1

π

∫
G

ln
1

|z − ζ|
dω(ζ) + h(z)

]
,

where G ⊆ C is the range of values for the given coordinate system, and h(z) is a harmonic

function. Let G ⊆ C be a bounded domain. Assume that there is a measure ω and a

harmonic function h specified in G. We put

λ(z;ω, h) = exp
[ 1

π

∫
G

ln
1

|z − ζ|
dω(ζ) + h(z)

]
.

The function λ(z;ω, h) is finite for almost every z ∈ G. It is closely connected with the

class of subharmonic functions. In fact, − lnλ(z) is subharmonic if ω is a non-negative

measure. Now let z1, z2 ∈ G, and define

(2.2) ρλ(z1, z2) = inf
K

∫
K

√
λ(z) |dz|,

where the infimum is taken on the set of all rectifiable curves K contained in G joining

the points z1 and z2. It is possible that ρλ(z0, z) =∞ for some points z0 ∈ G, no matter

where z ∈ G\{z0} is. If z0 has this property, it is called a point at infinity with respect to

the conformal metric line element λ(z) |dz|2. The following theorem by Reshetnyak shows

that the function ρλ defined above is a metric intrinsic to G.
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Theorem 2.10. Suppose that a function λ(z) = λ(z;ω, h) is specified in a domain

G ⊆ C. Let G̃ be the domain obtained from G by excluding the points at infinity with

respect to the line element λ(z) |dz|2. Then the function ρλ(z1, z2) is the intrinsic metric

in G̃ compatible with the topology of G̃ as a subset of C, and the metric space (G̃, ρλ) is

a two-dimensional manifold of bounded curvature.

The converse of this theorem also holds true.

Theorem 2.11. Let M be a two-dimensional manifold of bounded curvature. Any

point p ∈ M has a neighborhood U which is isometric to some flat domain G with a

metric ρ in G that can be defined from some function λ(z) of the form (2.1).

The next theorem is Reshetnyak’s result that weak convergence of curvature distribu-

tions as measures implies convergence of conformal metrics.

Theorem 2.12. Let ωn be non-negative measures defined in the domain G and weakly

converging to the measure ω in G. Let λn(z) = λ(z;ωn), and λ(z) = λ(z;ω). Then the

functions ρλn(z, ζ) converge to the function ρλ(z, ζ) uniformly on any closed subset of G

not containing points at infinity with respect to λ(z) |dz|2.

Applying this theorem to the setting of harmonic caps, it allows us to use approximated

harmonic measures as curvature distributions, while still providing good approximations

on the metric of (Ĉ, ρ), provided that the metrized sphere exists for the setting of the

harmonic cap question at the beginning of Chapter 1.



29

CHAPTER 3

Harmonic Caps and Examples

Recall the question proposed in Chapter 1: given a probability measure µ supported

on ∂P , does there exist a conformal metric ρ = ρ(z)|dz| on the Riemann sphere Ĉ such

that

(1) P , with Euclidean metric, embeds locally-isometrically into (Ĉ, ρ); and

(2) The curvature distribution on (Ĉ, ρ) equals the pushforward of 4πµ under the

said embedding?

In 2017, DeMarco and Lindsey [6] proved the existence of such a conformal metric ρ for

any planar shape P with its harmonic measure µ as the given probability measure. The

complement of P in the metrized sphere (Ĉ, ρ) is the harmonic cap of P , denoted by

P̂ . Further, they presented the locally univalent function g : D→ C defined by

(3.1) g(z) =

∫ z

0

Φ′(1/x) dx,

where Φ: Ĉ \D → Ĉ \P is a conformal isomorphism fixing ∞, as a parametrization of

the Euclidean development of the harmonic cap P̂ . It is worth mentioning that g is only

guaranteed to be locally one-to-one, which means that the development of P̂ may not

be able to embed into C. In this thesis, we will exclusively consider globally one-to-one

development of harmonic caps (c.f. [6, §2.3]). All the planar shapes that appear in this

thesis have planar harmonic caps. If we further assume that P has rectifiable boundary,
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a perimeter gluing of P and P̂ can be performed with boundary identification by arc

length. Given s(t) =
∫ t

0
eiα(x) dx a counterclockwise arc-length parameterization of ∂P ,

the boundary of P̂ is parameterized clockwise by

(3.2) ŝ(t) =

∫ t

0

ei(α(x)−κ(x)) dx,

where κ(t) = 4πµ(s[0, t]), and the perimeter gluing is given by the boundary identification

s(t) ∼ ŝ(t).

The metrized sphere (Ĉ, ρ) has non-negative curvature proportional to the distribution

of the harmonic measure of P . Alexandrov’s uniqueness theorem [1] asserts that (Ĉ, ρ) is

isometric to the boundary surface of a bounded convex subset of R3. Because the harmonic

measure is only supported on the boundary of P , the interior of P̂ is flat, and can be

isometrically embedded in R2 or C. Equation 3.1 provides such an embedding. On the

other hand, Equation 3.2 lays the foundation of the cap construction algorithm, which

will be introduced in detail in Chapter 7. Despite these positive results in generating

developments of harmonic caps, it is difficult to determine the structure of the convex

realization from a development. Algorithms only exist in certain polyhedral metric cases,

i.e., spheres with discrete curvature [4].

A direct computation shows that the metric ρ is invariant under rotation, scaling, and

translation of the planar shape.

Lemma 3.1. Let P and Q be planar shapes, and suppose that Q can be obtained

from P with only rotation, scaling, and translation in the plane, then the corresponding

harmonic caps P̂ and Q̂ are the same up to rotation, scaling, or translation.
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Proof. Let ΦP : Ĉ \D → Ĉ \P is a conformal isomorphism fixing ∞. If Q can be

obtained from P with only rotation, scaling, and translation in the plane, then a conformal

isomorphism ΦQ : Ĉ \D→ Ĉ \Q can be constructed by

ΦQ(z) = α · ΦP (z) + β

for some appropriate choices of α ∈ C \{0} and β ∈ C. Furthermore, this construction

of ΦQ fixes the point at ∞. Thus Q̂ can be parameterized by

gQ(z) =

∫ z

0

Φ′Q(1/x) dx =

∫ z

0

α · Φ′P (1/x) dx = α · gP (z).

Hence, P̂ and Q̂ differ by at most a rotation and a scaling. �

The short argument above tells us that every example of harmonic cap is in fact a

representative of a family of harmonic caps, in the sense that SO(2) actions on the planar

shape does not affect the conformal metric ρ on the Riemann sphere Ĉ.

We now present several examples of planar shapes and their corresponding harmonic

caps. We also attempt to reconstruct some of the convex realizations from the Euclidean

developments, using paper cut-outs and tape.

Example 3.2. The simplest example is P = D the closed unit disk. The harmonic

measure is precisely the normalized arclength measure on ∂ D, with corresponding con-

formal isomorphism Φ(z) = z. Using Equation 3.1, the harmonic cap of D can be

parametrized by

g(z) =

∫ z

0

Φ′(1/x)dx =

∫ z

0

dx = z,
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Figure 3.1. The unit disk and its harmonic cap

which means that the harmonic cap of the unit disk is the disk itself. Figure 3.1 shows the

unit disk (blue) together with its harmonic cap (red). In this thesis, all figures showing a

planar shape together with its harmonic cap have the original planar shape in blue and

its harmonic cap in red, unless otherwise indicated. Perimeter gluing of the disk and its

harmonic cap identifies points on these two unit circles by arc length, which results in a

double cover of the disk as the convex realization.

Example 3.3. Let P be a line segment. First of all, a line segment is a planar shape,

as it is (1) compact, (2) connected, and (3) contains at least two points. Without loss

of generality, assume P = [−2, 2] ⊆ R ⊆ C. Then a conformal isomorphism Φ: Ĉ \D →

Ĉ \P fixing the point at ∞ could be

Φ(z) = z +
1

z

Thus the harmonic cap of P can be parametrized by the function g : D→ C with

g(z) =

∫ z

0

Φ′(1/x) dx =

∫ z

0

1− x2 dx = z − z3

3
.
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Figure 3.2. A line segment and its harmonic cap

Its harmonic cap is shown in Figure 3.2. Perimeter gluing uses the line segment itself as

the glue, and paste the reflectively symmetric parts of the harmonic cap together to form

a double cover of half of the harmonic cap as the convex realization.

Example 3.4. The conformal isomorphism in Example 3.3 is the Joukowsky trans-

form, which maps circles centered at the origin to ellipses with foci ±2. Thus, it can be

used to construct conformal isomorphisms for ellipses of all eccentricity. Let a > 1, and

Φa(z) = az +
1

az

Then Φa : Ĉ \D → Ĉ \Ea is a conformal isomorphism for an ellipse Ea. The harmonic

cap of Ea can be parametrized by the function ga : D→ C with

ga(z) =

∫ z

0

Φ′a(1/x) dx =

∫ z

0

a− x2

a
dx = az − z3

3a
.

Some ellipses and their corresponding harmonic caps are shown in Figure 3.3. With

ellipses, the convex realizations are no longer of zero volume. Paper cut-outs of ellipses

and their harmonic caps can be glued along their boundary and provide an insight into
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Figure 3.3. Ellipses and their corresponding harmonic caps

Figure 3.4. The paper cut-outs of ellipses and their harmonic caps paste
together along their boundaries to form corresponding convex realizations.

the shape of the actual convex realizations. Images of these paper cut-outs are included

in Figure 3.4.

Example 3.5. The harmonic cap of P = [0, 1] ∪ [0, 1]i can be computed explicitly

with Schwarz-Christoffel transformations. It is shown in Figure 3.5. Details can be found

in Chapter 6.

All examples above are computed explicitly either with Equation 3.1 or by bound-

ary parametrization. The next few examples are numerical. The harmonic measures

are obtained by the zipper algorithm, and the harmonic caps are constructed with the

cap construction algorithm. All curved sides in the figures are in fact polygonal lines.

Descriptions of both algorithms can be found in Chapter 7.
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Figure 3.5. The right-angle wedge and its harmonic cap

Example 3.6. The harmonic caps of a square, a rhombus, a semicircular disk, and a

hexagon are shown in Figure 3.6.

Example 3.7. The harmonic caps of semicircular arches with different thickness were

also computed. They are shown in Figure 3.7. The paper cut-outs of these planar shapes

and their harmonic caps glue together to form almost flat empanada-like convex bodies,

Figure 3.6. Different shapes and their corresponding harmonic caps
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Figure 3.7. Semicircular arches and their corresponding harmonic caps

Figure 3.8. The paper cut-outs of the semicircular arches and their har-
monic caps form almost flat convex bodies.

whose images are included in Figure 3.8. It was these harmonic cap figures that led to

suspicion and eventual proof that circular arcs are harmonically planar.

Example 3.8. The cap construction algorithm is capable of computing the harmonic

caps of fairly complicated planar shapes. Figure 3.9 shows an approximation of the

cauliflower Julia set (the filled Julia set of f(z) = z2 + 1/4) together with its harmonic

cap development. The planar shape is a polygonal approximation by 2048 vertices on the

Julia set.
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Figure 3.9. The cauliflower Julia set (blue) and its harmonic cap (red)

Convergence of harmonic caps is worth mentioning at the end of this chapter. Carathéodory

kernel theorem (2.8) states that locally uniform convergence of Riemann maps is equiva-

lent to Carathéodory convergence of planar shapes. Since the development of harmonic

caps can be parameterized by an integral of the Riemann map, as stated in Equation 3.1,

we expect harmonic caps to converge on compact subsets as we take a sequence of planar

shapes converging in the Carathéodory sense.

Lemma 3.9. Let Pn be a sequence of planar shapes that converge in the Carathéodory

sense to a planar shape P . Then the harmonic caps P̂n also converge in the Carathéodory

sense, and the limit is P̂ .
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CHAPTER 4

Harmonic Planarity of Jordan Domains

The results in [6] showed the existence of a metrized sphere (Ĉ, ρ) realizing the gluing

of any planar shape P with its harmonic cap P̂ along the boundary. Examples 3.2 and 3.3

have already demonstrated that some special planar shapes have a doubly-covered convex

planar region as the realization of such gluing. In this chapter, we investigate the criterion

for a Jordan domain to be harmonically planar.

4.1. First Take on Jordan Domains

We have seen in Example 3.2 that the harmonic cap of the unit disk is the disk itself,

and the convex realization formed by gluing D and its harmonic cap is a doubly covered

disk.

This is an interesting scenario, as the convex body resulted from perimeter gluing of

the planar shape and its harmonic cap is entirely contained in a plane. We say such planar

shapes, whose corresponding metrized sphere (Ĉ, ρ) is entirely contained in a plane, are

harmonically planar.

The first step is to identify all harmonically planar Jordan domains that are smoothly

bounded. The bonus for assuming smooth boundary is that the conformal isomorphism

Φ: Ĉ \D → Ĉ \P can be smoothly extended to the boundary, which enables us to use

derivatives in the argument. The following proposition characterizes all of them using

Equation 3.2.
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Proposition 4.1. Let P ⊆ C be a Jordan domain with smooth boundary. Then P is

harmonically planar if and only if P is a disk.

Proof. Let s : [0, L]→ C be a counter-clockwise unit-speed parameterization of ∂P .

Without loss of generality, assume that s(0) = 0 and s′(0) = i. Write s(t) =
∫ t

0
eiα(x) dx

for a smooth function α : [0, L] → R. Then s′(t) = eiα(t). Assume that α(0) = π/2.

Let Φ: Ĉ \D → Ĉ \P be a conformal isomorphism with Φ(∞) = ∞. Regularity of ∂P

guarantees that Φ extends smoothly to ∂ D. Define θ(t) = arg(Φ−1(s(t))). Assume that

Φ satisfies θ(0) = 0, or equivalently, Φ(1) = 0. Then

ŝ(t) =

∫ t

0

ei(α(x)−2θ(x)) dx,

and ŝ′(t) = ei(α(t)−2θ(t)). Assume that P and P̂ differs by a reflection across the imaginary

axis, so that P could be harmonically planar, then

ŝ′(t) = −s′(t),

or equivalently,

ei(α(t)−2θ(t)) = −e−iα(t) = ei(−α(t)+π).

Thus θ(t) = α(t)− π/2. By construction, we have

Φ(eiθ(t)) = s(t) =

∫ t

0

eiα(x) dx =

∫ t

0

ei(θ(x)+π/2) dx = i

∫ t

0

eiθ(x) dx.

Take t-derivatives on both sides, we get

Φ′(eiθ(t)) · iθ′(t)eiθ(t) = ieiθ(t).
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Hence, Φ′(eiθ(t))·θ′(t) = 1. But θ(t) is a real-valued function, so is θ′(t), which implies that

Φ′(z) ∈ R for all |z| = 1. Because Φ′(z) is holomorphic on Ĉ \D, we have Im(Φ′) harmonic

on Ĉ \D, and Im(Φ′) = 0 on ∂ D. By maximum principle, Im(Φ′) = 0 throughout Ĉ \D.

Cauchy-Riemann equation indicates that Φ′(z) is a real constant. It follows that P is an

affine transformation of D.

The converse has been demonstrated in Example 3.2. �

4.2. General Jordan Domains

Any Jordan domain can be approximated by smoothly-bounded Jordan domains,

where the approximation is achieved in the sense of Hausdorff. Convergence of harmonic

measures guarantees that the harmonic caps of the approximating domains also approxi-

mates the actual harmonic cap. This alludes to a stronger version of Proposition 4.1 for

general Jordan domains, which is the statement of Theorem 1.1.

Theorem 1.1. Let P ⊆ C be the closure of a Jordan domain. Then P is harmonically

planar if and only if P is a closed circular disk.

The “if” part of the theorem is clear from the computation in Example 3.2. To prove

the “only if” part, we first observe that the unique convex realization of the metrized

sphere (Ĉ, ρ) with respect to P and its harmonic measure µ is obtained by identifying P

and P̂ along the boundary, which results in both P and P̂ isometrically embedded into

the same plane, forming a two-sheeted double of P that is a degenerate topological sphere

contained within a plane. The Alexandrov realization of the metrized sphere (Ĉ, ρ) is

convex in R3, and is also contained in a plane. It follows that P itself is a convex Jordan

domain. We first state a few preliminary lemmas.
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Lemma 4.2. Convex Jordan domains have rectifiable boundary.

This result is classical. A proof can be found in [21, §1.5]. Here we present a proof

that uses a similar argument, but with a more explicit computation.

Proof. Let P be a convex Jordan domain. Let p0, p1, . . . , pn−1, pn = p0 be an arbi-

trary sequence of points in order on ∂P . By convexity of P , each line segment [pk−1, pk]

is contained in P . Further, the inner incident angle at the point pk is not greater than π.

Thus the polygonal line joining p0 through pn forms the boundary of a convex polygon Π.

Let R be a rectangle that satisfies (1) its sides are parallel to the coordinate axes, and (2)

it encloses P . Then R encloses the polygon Π. Project each segment Sk = [pk−1, pk] hor-

izontally and vertically onto R so that the projections are in the direction away from Π.

Let segments Hk and Vk be the respective results of the projections. Because Π is convex,

every horizontal line has at most two points of intersection with Π, so does every vertical

line. Therefore, the segments {Hk} and {Vk} are pairwise disjoint (except possibly at

R

Sk Hk

Vk

Figure 4.1. The circumference of a convex Jordan domain is bounded by a rectangle.
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endpoints), and `(Sk) ≤ `(Hk) + `(Vk). Therefore,

`(Π) ≤
n∑
k=1

`(Hk) + `(Vk) ≤ `(R).

Because our choice of polygonal line was arbitrary, and R does not depend on this choice,

we have

`(∂P ) = sup
Π
`(Π) ≤ `(R).

Hence, ∂P is rectifiable. �

Lemma 4.3. The image of the function F : Ĉ \P → C defined by

F (z) =

∫ z

∞

1

[Φ−1(ζ)]2
dζ

is a Euclidean development of the harmonic cap of P parametrized by z ∈ Ĉ \P . Further,

suppose that P is a convex Jordan domain, and let γ(t) be an arc-length parametrization

of ∂P . Then F (γ(t)) is an arc-length parametrization of ∂P̂ .

The proof of the first part of this lemma is in [6]. The argument is relatively short,

and we include it in the proof later in this section for completeness. A direct consequence

of this argument is the existence of harmonic caps in general.

To prove the second part, we begin with the following lemma.

Lemma 4.4. Let D ⊆ C be a convex Jordan domain. Let f : Ĉ \D → C be a holo-

morphic function with a continuous extension to ∂D. Let p, q ∈ ∂D, and Γ ⊆ Ĉ \D a
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rectifiable curve joining p to q. The path integral

∫
Γ

f(z) dz

from p to q is independent of the choice of Γ. In particular, we may choose Γ to be the

curve Γ0 joining p to q along ∂D.

Proof. It suffices to prove the case where Γ intersects ∂D only at the endpoints p

and q. Let γ : [0, L] → Ĉ \D be an arc-length parametrization of Γ with γ(0) = q and

γ(L) = q. Let pn = γ(1/n) and qn = γ(L− 1/n). Then pn, qn ∈ Ĉ \D, and |pn− p| ≤ 1/n

and |qn − q| ≤ 1/n. Because f is continuous on a compact set, it is bounded. Let B ∈ R

be an upper bound of |f |. Then

∣∣∣∣∫
Γ

f(z) dz −
∫ qn

pn

f(z) dz

∣∣∣∣ ≤ ∫ pn

p

|f(z)| dz +

∫ q

qn

|f(z)| dz ≤ 2B

n
→ 0

as n→∞. Now let p′n, q
′
n ∈ Ĉ \D be points obtained in the same way from another curve

Γ′. Then pn, p
′
n ∈ B(p, 1/n) and qn, q

′
n ∈ B(q, 1/n). Because D is convex, we can find a

path in B(p, 1/n)\D joining pn to p′n with arc length at most

2 · 1

n
+

2π

n
=

2 + 2π

n

Such a path may be constructed as illustrated in Figure 4.2. Then∣∣∣∣∣
∫ p′n

pn

f(z) dz

∣∣∣∣∣ ≤
∫ p′n

pn

|f(z)| dz ≤ (2 + 2π)B

n
.
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1/n
p

pn

pn'

Figure 4.2. Path integral close to the endpoint on the boundary

It then follows that

∣∣∣∣∫
Γ

f(z) dz −
∫

Γ′
f(z) dz

∣∣∣∣
≤
∣∣∣∣∫

Γ

f(z) dz −
∫ qn

pn

f(z) dz

∣∣∣∣+

∣∣∣∣∣
∫

Γ′
f(z) dz −

∫ q′n

p′n

f(z) dz

∣∣∣∣∣+

∣∣∣∣∣
∫ qn

pn

f(z) dz −
∫ q′n

p′n

f(z) dz

∣∣∣∣∣
≤ 2B

n
+

2B

n
+

∣∣∣∣∣
∫ p′n

pn

f(z) dz

∣∣∣∣∣+

∣∣∣∣∣
∫ q′n

qn

f(z) dz

∣∣∣∣∣
≤ 2B

n
+

2B

n
+

(2 + 2π)B

n
+

(2 + 2π)B

n

=
(8 + 4π)B

n
→ 0

as n→∞. Thus the line integral is independent of curves interior of Ĉ \D.

Let x ∈ D, and define

M = sup
y∈∂D

|x− y| and m = inf
y∈∂D

|x− y|

Both bounds are positive and attained on ∂D. Let Tε(z) = (1 + ε)(z−x) +x be the affine

dilation of factor (1 + ε) with x fixed. Consider the curve Γ given by the joining of the

following three pieces:
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(1) the line segment connecting p to Tε(p),

(2) the image Tε(Γ0), and

(3) the line segment connecting Tε(q) to q.

p

q

Tϵ(p)

Tϵ(q)

x

Γ0

Γ

Figure 4.3. Alternative path integral near boundary

Let γ : [0, `] → ∂D be an arc-length parametrization of Γ0 with γ(0) = p and γ(`) = q.

Then |γ′(t)| = 1 almost everywhere, and

∣∣∣∣∫
Γ

f(z) dz −
∫

Γ0

f(z) dz

∣∣∣∣ ≤ 2εMB +

∣∣∣∣∫
Tε(Γ0)

f(z) dz −
∫

Γ0

f(z) dz

∣∣∣∣
= 2εMB +

∣∣∣∣∫ `

0

f(γ(t))γ′(t) dt−
∫ `

0

f(Tε(γ(t)))T ′ε(γ(t))γ′(t) dt

∣∣∣∣
≤ 2εMB +

∫ `

0

|f(γ(t))− (1 + ε)f(Tε(γ(t)))| dt

≤ 2εMB + ε`B +

∫ `

0

|f(γ(t))− f(Tε(γ(t)))| dt

Now as ε→ 0, we have 2εMB + ε`B → 0, and

∫ `

0

|f(γ(t))− f(Tε(γ(t)))| dt→ 0

by dominated convergence theorem. Therefore, we may integrate along the boundary. �
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Proof of Lemma 4.3. Let GP : C → R be the Green’s function for P . It is the

unique continuous function on C satisfying (1) GP ≡ 0 on P , (2) GP (z) = log |z|+γ+o(1)

near ∞ for some constant γ, and (3) GP is harmonic on Ĉ \P . Let ρP be a metric on C

given by

ρP = e−2GP (z)|dz|

Its curvature form ωP = 2∆GP indicates that the metric ρP is flat away from ∂P , and

the curvature distribution equals 4π times the harmonic measure of P supported on ∂P .

Consider the holomorphic 1-form

η =
1

[Φ−1(z)]2
dz

on the complement of P . Since the Green’s function satisfies GP (z) = log |Φ−1(z)| on

Ĉ \P , we see that |η| = ρP on Ĉ \P . Let F : Ĉ \P → C be defined by

F (z) =

∫ z

∞

1

[Φ−1(ζ)]2
dζ =

∫ z

∞
η.

Then η = dF = F ∗(dz), where dz is the standard holomorphic 1-form. Since F ∗|dz| =

|η| = ρP , which is the desired conformal metric on Ĉ, we conclude that F is a Euclidean

development of the harmonic cap P̂ by z ∈ Ĉ \P .

Now let P be a Jordan domain with rectifiable boundary, and let Φ: Ĉ \D → Ĉ \P

be a conformal isomorphism fixing ∞. By Carathéodory’s theorem, Φ continuously ex-

tends to a homeomorphism on ∂ D. By rectifiability of ∂P , there exists an arc-length

parametrization γ(t) of ∂P . In particular, γ(t) is 1-Lipschitz. By Rademacher theorem,
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the derivative γ′(t) exists almost everywhere. Let γ̂(t) = F (γ(t)). Then γ̂(t) parametrizes

∂P̂ . It would suffice to show |γ̂′(t)| = 1 almost everywhere.

Let a ∈ R be a parameter such that γ′(a) exists. Then |γ′(a)| = 1. Thus

d

dt
γ̂(t)

∣∣∣∣
t=a

= lim
t→a

γ̂(t)− γ̂(a)

t− a
= lim

t→a

F (γ(t))− F (γ(a))

t− a

= lim
t→a

F (γ(t))− F (γ(a))

γ(t)− γ(a)

γ(t)− γ(a)

t− a

= γ′(a) lim
t→a

F (γ(t))− F (γ(a))

γ(t)− γ(a)

= γ′(a) lim
t→a

1

γ(t)− γ(a)

∫ γ(t)

γ(a)

1

[Φ−1(ζ)]2
dζ

= γ′(a) lim
t→a

1

γ(t)− γ(a)

∫ t

a

γ′(τ)

[Φ−1(γ(τ))]2
dτ

The integral is taken along any path connecting γ(a) to γ(t) within the domain Ĉ \P . By

Lemma 4.4, we may take the integral along ∂P , which justifies the last equal sign.

It now suffices to show the limit in the expression above has norm 1. Let ε > 0. Let

δ > 0 be small enough such that for all x ∈ ∂P with |x− γ(a)| < δ, we have

∣∣∣[Φ−1(γ(a))]2 − [Φ−1(x)]2
∣∣∣ < ε.
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Consider the limit for t ∈ (a − δ, a + δ). Because γ(t) is an arc-length parametrization,

|γ(t)− γ(a)| < δ. Then for almost every τ ∈ [a, t], we have |γ′(τ)| = 1. Thus

∣∣∣∣∫ t

a

γ′(τ)

[Φ−1(γ(τ))]2
dτ −

∫ t

a

γ′(a)

[Φ−1(γ(a))]2
dτ

∣∣∣∣ ≤ ∫ t

a

∣∣∣∣ 1

[Φ−1(γ(τ))]2
− 1

[Φ−1(γ(a))]2

∣∣∣∣ dt
=

∫ t

a

|[Φ−1(γ(τ))]2 − [Φ−1(γ(a))]2|
|Φ−1(γ(τ))|2|Φ−1(γ(a))|2

dt

=

∫ t

a

∣∣∣[Φ−1(γ(τ))]2 − [Φ−1(γ(a))]2
∣∣∣ dt

< ε|t− a|.

However, the integrand in ∫ t

a

γ′(a)

[Φ−1(γ(a))]2
dτ

is constant with complex norm 1. Therefore,

(1− ε)|t− a| <
∣∣∣∣∫ t

a

γ′(τ)

[Φ−1(γ(τ))]2
dτ

∣∣∣∣ < (1− ε)|t− a|

and

(1− ε) lim
t→a

|t− a|
|γ(t)− γ(a)|

<

∣∣∣∣limt→a 1

γ(t)− γ(a)

∫ t

a

γ′(τ)

[Φ−1(γ(τ))]2
dτ

∣∣∣∣ < (1 + ε) lim
t→a

|t− a|
|γ(t)− γ(a)|

It follows that

1− ε =
1− ε
|γ′(a)|

<

∣∣∣∣limt→a 1

γ(t)− γ(a)

∫ t

a

γ′(τ)

[Φ−1(γ(τ))]2
dτ

∣∣∣∣ < 1 + ε

|γ′(a)|
= 1 + ε.

for arbitrary ε > 0. Hence, we have come to the conclusion that |γ̂′(a)| = |γ′(a)| = 1. �
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Lemma 4.3 allows for perimeter gluing of ∂P and ∂P̂ . To be more precise, let

γ : [0, L] → C be an arc-length parametrization of ∂P . Then the perimeter gluing is

given by γ(t) ∼ F (γ(t)). We are now ready to prove the theorem for Jordan domains

with rectifiable boundary.

Lemma 4.5. Let P ⊆ C be a Jordan domain with rectifiable boundary. If P and its

harmonic cap P̂ differs by a reflection, then P is a disk.

Proof. Let Φ: Ĉ \D→ Ĉ \P be a conformal isomorphism fixing ∞. Let Ψ: D→ P̂

be defined by Ψ = F ◦ Φ ◦ c, where c : D → Ĉ \D is the reflection across the unit circle

given by c(z) = 1/z, which fixes every point on the unit circle if extended. Notice that Ψ

is an antiholomorphic bijection that extends to a homeomorphism (which is orientation-

reversing) on the boundary. Now assume that P and P̂ differs by a reflection, then

there exists some appropriate reflection r(z) = ωz + ζ, where ω ∈ ∂ D and ζ ∈ C, such

that r ◦ Ψ: D → P is a holomorphic bijection that agrees with Φ on the boundary by

perimeter gluing. So Φ and r ◦ Ψ together define a homeomorphism h : C → C, which

is holomorphic off the unit circle. Then h is entire by Morera’s Theorem. Because h is

injective, Liouville’s Theorem further implies that h is linear of the form h(z) = αz + β,

where α 6= 0. Therefore, P is necessarily a disk. �

Combining the result of Lemma 4.2 and 4.5, we have completed the proof of the “only

if” part of Theorem 1.1.
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CHAPTER 5

Harmonic Planarity of Jordan Arcs

We have also seen in Example 3.3 that the harmonic cap of [−2, 2] can be parametrized

by the function g : D→ C with

g(z) = z − z3

3
.

Because g(z) = g(z), the real axis is a reflection axis of symmetry. Perimeter gluing of

P and P̂ would identify conjugating points on ∂P̂ to the same point on the segment P ,

thus also resulting in a convex shape that is entirely contained in a plane. We see from

the argument above that a line segment is harmonically planar. In fact, there is a whole

family of harmonically planar Jordan arcs, namely, the circular arcs.

5.1. Circular Arcs Are Harmonically Planar

Lemma 5.1. If Γ ⊆ C is a circular arc, then it is harmonically planar.

We will prove this lemma in three steps: (1) construct the appropriate conformal

isomorphism for an arbitrary circular arc, (2) find a criterion for the circular arcs to be

harmonically planar, and (3) show that the criterion is met for all circular arcs.

Proof. We assume that Γ is an arc of the unit circle with one endpoint sitting at

1 ∈ ∂ D. The length of Γ will be characterized by identifying each such circular arc with

the image of a specific ray under a Möbius transformation. The following construction

parameterizes the family of circular arcs by the real numbers R.
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Let f : H→ D be the Möbius transformation

f(z) =
z − i
z + i

.

Then f−1 : D→ H has the expression

f−1(z) = i · 1 + z

1− z
.

Further, f maps any ray of the form (−∞, a] ⊆ R to a circular arc on the unit circle,

and the length of the arc is uniquely determined by the value of a ∈ R. Let Γa be the

circular arc given by the image of (−∞, a]∪{∞} under the Möbius transformation f . The

following composition of functions gives a conformal isomorphism from Ĉ \Γa to Ĉ \D.

Ĉ \Γa
f−1

−−−→ C \(−∞, a]
z−a−−−→ C \(−∞, 0]

z1/2−−−→ −iH g−−→ −iH 1/f(iz)−−−−−→ C \D

where f : H → D is the Möbius transformation defined above, and g : − iH → −iH is

an affine transformation of the right-half plane defined by

g(z) =

√
2
(
a+
√
a2 + 1

)
z +

(
a+
√
a2 + 1

)
i.

Under this sequence of compositions, the image of ∞ is ∞, as checked in the following

sequence of images

∞ f−1

−−−→ −i z−a−−−→ −i− a z1/2−−−→ (a2 + 1)1/4eiθ/2
g−−→ 1

1/f(iz)−−−−−→∞

where cot(θ) = a with θ ∈ (−π, 0). This completes step (1) of the proof.
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Let γ(t) = eit, 0 ≤ t ≤ ϕ, where eiϕ = f(a), be an arc-length parametrization of Γa.

Then s : [0, 2ϕ]→ C given by

s(t) =


eit, if 0 ≤ t ≤ ϕ,

ei(2ϕ−t), if ϕ ≤ t ≤ 2ϕ

is a counterclockwise arc-length parameterization of the outside of the planar shape Γa.

Let Φ: Ĉ \D→ Ĉ \Γa be a conformal isomorphism that satisfies Φ(∞) =∞ and Φ(1) =

γ(0). Because Γa is smooth, Φ continuously extend to Ĉ \D, and ∂ D maps onto Γa

through the extension. Thus

κ(t) = 4πµ(s[0, t]) = 2
[

arg
(

Φ−1
(
s(t)
))]

,

where arg is the branch of the argument function taking [0, 2π) as its range, is the cu-

mulative curvature distribution along both sides of Γ, parameterized by arc length. By

Equation 3.2, the boundary of the harmonic cap Γ̂a has parametrization

ŝ(t) =

∫ t

0

ei(α(x)−κ(x)) dx,

and thus

ŝ′(t) = ei(α(t)−κ(t))

Let Ψ1,Ψ2 : Ĉ \Γa → Ĉ \D be the conformal isomorphisms defined in the aforementioned

construction, where each of Ψk takes a different branch of z1/2 at the third function. Then

Ψ1(z) and Ψ2(z) are indeed the inverse of Φ outside of Γ, and they give two different



53

preimages of Φ−1(z) for z ∈ Γa. Therefore,
ŝ′(t) = ieit ·

[
Ψ1(eit)

]−2

ŝ′(2ϕ− t) = −ieit ·
[
Ψ2(eit)

]−2

for t < ϕ. In order for Γa to be harmonically planar, the harmonic cap Γ̂a needs to have a

reflection axis of symmetry, and perimeter gluing should identify symmetric points to the

same point on Γa. With the given assumption, we have γ′(0) = i, thus implying ŝ′(0) = i

as well. From Figure 5.1, we see that the boundary of the harmonic cap Γ̂a must satisfy

the condition

ŝ′(t)ŝ′(2ϕ− t) = 1,

Or, equivalently,

(?) e2it =
[
Ψ1(eit)

]2[
Ψ2(eit)

]2
.

Now we have completed step (2) of the proof.

s
′(t)

s
′(2 φ- t)

s
′(t)

s
′(2 φ- t)

1

Figure 5.1. Harmonically planar Jordan arcs must have harmonic caps with
reflection symmetry. The symmetry condition is represented by the relation
between tangent vectors at the same distance away from ŝ(0) = ŝ(2ϕ) along

the boundary curve of Γ̂a.
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To show condition (?) is satisfied by Γa, we conduct the following computation.

f−1 : eit 7→ − cot(t/2)

z − a : − cot(t/2) 7→ − cot(t/2)− a

z1/2 : − cot(t/2)− a 7→ ±i
√

cot(t/2) + a

g : ± i
√

cot(t/2) + a 7→ i
(
a+
√
a2 + 1±

√
2
(
a+
√
a2 + 1

)(
cot(t/2) + a

))
1

f(iz)
=
z + 1

z − 1
: i
(
a+
√
a2 + 1±

√
2
(
a+
√
a2 + 1

)(
cot(t/2) + a

))

7→
−i+

(
a+
√
a2 + 1±

√
2
(
a+
√
a2 + 1

)(
cot(t/2) + a

))
i+
(
a+
√
a2 + 1±

√
2
(
a+
√
a2 + 1

)(
cot(t/2) + a

)) =: ζ±

The values ζ± are the preimages of eit, and their product is

ζ+ζ− =

(
a+
√
a2 + 1− i

)2 − 2
(
a+
√
a2 + 1

)(
cot(t/2) + a

)(
a+
√
a2 + 1 + i

)2 − 2
(
a+
√
a2 + 1

)(
cot(t/2) + a

)
The numerator and denominator of the product are complex conjugates of each other.

Therefore, the argument of ζ+ζ− is twice the argument of its numerator. To isolate the
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numerator,

Re(numerator) = 2a2 + 2a
√
a2 + 1− 2

(
a+
√
a2 + 1

)(
cot(t/2) + a

)
= 2a

(
a+
√
a2 + 1

)
− 2
(
a+
√
a2 + 1

)(
cot(t/2) + a

)
= 2
(
a+
√
a2 + 1

)(
a− cot(t/2)− a

)
= −2

(
a+
√
a2 + 1

)
cot(t/2),

Im(numerator) = −2
(
a+
√
a2 + 1

)
.

Therefore,

cot
[

arg(numerator)
]

=
Re(numerator)

Im(numerator)
= cot(t/2).

It thus follows that arg(ζ+ζ−) = t, and therefore, ζ2
+ζ

2
− = e2it, which is precisely the

symmetry condition (?). �

Together with the harmonic cap computation of the line segment, we just completed

the proof of Theorem 1.2.

Theorem 1.2. If Γ ⊆ C is a line segment or a circular arc, then Γ is harmonically

planar.

5.2. Are There Other Harmonically Planar Jordan Arcs?

We proved in Chapter 4 that a Jordan domain is harmonically planar if and only if it

is a disk. We would desire a similar statement about Jordan arcs in the plane as planar

shapes. Based on extensive numerical evidence, we conjecture that line segments and

circular arcs are the only harmonically planar Jordan arcs.
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Conjecture. Let Γ ⊆ C be a Jordan arc. If Γ is harmonically planar, then it is either

a line segment or a circular arc.

In order to attempt a proof, we first need to device an intrinsic property of the curve

that leads to harmonic planarity, which we call the symmetry assumption.

Lemma 1.3 (The Symmetry Assumption). Let Γ ⊆ C be a smooth Jordan arc, and

let γ : [0, L] → C be an arc-length parameterization of Γ, and assume that γ(0) = 0 and

γ′(0) = 1. Let Φ: Ĉ \D→ Ĉ \Γ be a conformal isomorphism that fixes the point at∞, and

assume its continuous extension at the boundary satisfies Φ(1) = 0. If Γ is harmonically

planar, then

(1.1) γ′(t) = Φ−1
1 (γ(t)) · Φ−1

2 (γ(t)),

where Φ−1
1 and Φ−1

2 are the two distinct branches of the inverse of Φ along Γ.

Proof. Let F : Ĉ \Γ→ C be the map given by

F (z) =

∫ z

∞

1

[Φ−1(w)]2
dw

From the proof of Lemma 4.3, we know that the map F is locally univalent, and its image

is a Euclidean development of the harmonic cap Γ̂. From its definition, we have

F ′(z) =
1

[Φ−1(z)]2

Further, for ζ ∈ Γ,

lim
z→ζ

F ′(z) = lim
z→ζ

[Φ−1(z)]−2 ∈ S1.
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Thus |F ′(ζ)| = 1. If Γ is a smooth curve, then by the chain rule, the only non-differentiable

γ(0) γ(1)

γ(t)

F(0)F(γ(1))

F(γ(t))

F

Figure 5.2. The symmetry assumption on Jordan arcs

points on ∂Γ are the images of the endpoints. Further, the unit tangent vector at F (γ(t))

shown in the figure above is

γ′(t)F ′(γ(t)) =
γ′(t)

[Φ−1
1 (γ(t))]2

,

where Φ−1
1 takes inverse of γ(t) approaching from above of the curve.

To assume the appropriate reflection axis of symmetry, we would need the unit tangent

vector at the other image of γ(t) to differ by a reflection. First, this unit tangent is

−γ′(t)F ′(γ(t)) =
−γ′(t)

[Φ−1
2 (γ(t))]2

,

where Φ−1
2 takes inverse of γ(t) approaching from below of the curve. The symmetry

condition would then require these two unit tangent vectors to be symmetric across the

imaginary axis, hence

γ′(t)

[Φ−1
1 (γ(t))]2

· −γ′(t)
[Φ−1

2 (γ(t))]2
= −1.
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This simplifies to

γ′(t)2 = [Φ−1
1 (γ(t))]2 · [Φ−1

2 (γ(t))]2.

From the assumption Φ(1) = 0, the symmetry assumption becomes

γ′(t) = Φ−1
1 (γ(t)) · Φ−1

2 (γ(t)).

�

For a curve planar shape Γ, the conformal isomorphism Φ: Ĉ \D → Ĉ \Γ fixing the

point at ∞ defines a conformal lamination of the unit circle. To be more precise,

Definition 5.2. Given a curve Γ and a conformal isomorphism Φ: Ĉ \D → Ĉ \Γ

fixing the point at ∞, the conformal lamination Lc induced by Φ on the unit circle is

an equivalence relation defined by

ξ ∼ η if and only if Φ(ξ) = Φ(η)

for ξ, η ∈ ∂ D.

Let ϕ(t) and ψ(t) be the two distinct pre-images of the arc-length parameterization

γ(t) of Γ, in the sense that

Φ(ϕ(t)) = Φ(ψ(t)) = γ(t).

Then we can recover the curve Γ with the conformal map. In fact, we are able to recover

any rectifiable curve, up to an affine transformation, with only the lamination information.
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Lemma 5.3. Let Γ and Γ0 be rectifiable Jordan arcs, and let Φ: Ĉ \D → Ĉ \Γ and

Φ0 : Ĉ \D → Ĉ \Γ0 be their respective conformal isomorphisms fixing infinity. If the

induced conformal laminations agree on the unit circle, then Γ0 is an affine image of Γ.

Proof. Consider the map Φ0 ◦ Φ−1 : Ĉ \Γ → Ĉ \Γ0. The map is conformal off Γ.

Because the laminations agree, it is also continuous across Γ. A stronger form of Cauchy

integral theorem [2] tells us that

∮
C

Φ0 ◦ Φ−1(z) dz = 0

for all closed, positively-oriented rectifiable curves C. Thus Φ0 ◦Φ−1 is entire. Because it

also fixes ∞, it must be an affine map. �

The symmetry assumption (1.1) relates the direction of the curve to the conformal

angles by γ′(t) = ϕ(t)ψ(t). This defines an alternative method to recover the original

curve Γ, given that Γ is harmonically planar, namely, we can recover

γ(t) =

∫ t

0

ϕ(x)ψ(x) dx.

The collection of all harmonically planar Jordan arcs is then all curves with agreeing

recovery from both methods.
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CHAPTER 6

Schwarz-Christoffel Transformations and the Wedge Family

In this chapter, we investigate a powerful tool in computing conformal isomorphisms,

the Schwarz-Christoffel transformations. The main reference for this chapter is [9] by

Driscoll and Trefethen, while the Matlab computation toolbox and its manual are avail-

able at [7, 8]. The Matlab toolbox helps in generating a number of harmonic cap figures

in the next two chapters. We conclude our study of Schwarz-Christoffel transformations

by investigating the simplest family of polygonal lines, the wedge family Wθ, in detail.

6.1. Schwarz-Christoffel Transformations

6.1.1. The fundamental idea. The idea behind the Schwarz-Christoffel transformation

is that a conformal mapping f may have a derivative that can be expressed as

f ′ =
∏

fk

for some canonical functions fk. Geometrically, the significance of the assumption above

is that

arg f ′ =
∑

arg fk

Restricted on R, if each arg fk on the right hand side is a step function, the resulting

arg f ′ on the left is piecewise constant with specific jumps. In the classical setting, we
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would have f mapping the real axis to a polygon, and extend it to be a conformal map

of the upper half plane H onto the interior of a polygon.

To be more concrete, let P be the region in the complex plane C bounded by a

polygon Γ with vertices w1, . . . , wn, given in counterclockwise order, and interior angles

α1π, . . . , αnπ. Let f be a conformal map from the upper half plane H onto P , and let

zk = f−1(wk) be the k-th prevertex. Figure 6.1 demonstrates the schematic of Schwarz-

Christoffel transformations together with these definitions.

z1 z2 z3 z4  ∞

ℍ

f−−−−−→

w1 w2

w3w4

α1π

Figure 6.1. A schematic of Schwarz-Christoffel transformations

By the Schwarz reflection principle, f can be analytically continued across the seg-

ment joining zk to zk+1. In particular, f ′ exists, and arg f ′ is constant on this segment.

Furthermore, arg f ′ must undergo a specific jump at z = zk:

(6.1)
[

arg f ′(z)
]z+k
z−k

= (1− αk)π = βkπ

The angle βkπ is the turning angle at the k-th vertex. A particular function that is

analytic in H, satisfies Equation 6.1, and otherwise has constant arg f ′ on R is

fk(z) = (z − zk)−βk
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The preceding argument suggests the following Fundamental Theorem of Schwarz-Christoffel

Mapping.

Theorem 6.1 (Fundamental Theorem of Schwarz-Christoffel Mapping). Let P be

the interior of a polygon Γ with vertices w1, . . . , wn and interior angles α1π, . . . , αnπ in

counterclockwise order. Let f : H→ P be a conformal map. Then

(6.2) f(z) = A+ C

∫ z n∏
k=1

(ζ − zk)αk−1 dζ

for some complex constants A and C, where wk = f(zk) for all k = 1, . . . , n.

An outline of the proof can be found in [9]. We include a detailed proof here for the

purpose of completeness.

Proof. Without loss of generality, assume all prevertices zk are finite.

By Schwarz reflection principle, the function f can be analytically continued to the

lower half plane; the image of the continuation is the reflection of P along one side of Γ.

By reflecting again about a side of the new polygon, we return analytically to the upper

half plane. This can be done for any even number of reflections of P , each giving a branch

of f . The image of each branch is a translated and rotated copy of P . Thus f ′′/f ′ is an

invariant among these branches because

[A+ Cf(z)]′′

[A+ Cf(z)]′
=
f ′′(z)

f ′(z)
.

Therefore, f ′′(z)/f ′(z) can be defined as a single-valued analytic function everywhere

in the closed upper half plane, except at the prevertices zk. Similarly, odd numbers of
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reflections define f ′′(z)/f ′(z) as a single-valued analytic function in the closed lower half

plane, except at the prevertices zk.

Now we look at the prevertices zk. Locally, f(z) = (z − zk)αk in some coordinates.

Thus

f ′(z) = (z − zk)αk−1ψ(z)

for some function ψ analytic in a neighborhood of zk. Therefore, f ′′(z)/f ′(z) has a simple

pole at zk with residue αk − 1, and therefore, the function

h(z) =
f ′′(z)

f ′(z)
−

n∑
k=1

αk − 1

z − zk

removes all the simple poles and is an entire function.

Because prevertices are finite, f is analytic at ∞ (evaluates to some point on one side

of the polygon). Thus the function f(1/z) could be given by a Taylor series

f(1/z) = c0 +
∞∑
k=1

ckz
k

near z = 0. The Laurent expansion of f(z) at ∞ is then

f(z) = c0 +
∞∑
k=1

ckz
−k

It then follows that

lim
z→∞

f ′′(z)

f ′(z)
= 0

Thus h(z)→ 0 as z →∞. By Liouville’s Theorem, h(z) ≡ 0.
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Now we have established that

(6.3)
f ′′(z)

f ′(z)
=

n∑
k=1

αk − 1

z − zk
.

Notice that

d

dz
log(f ′(z)) =

f ′′(z)

f ′(z)
=

n∑
k=1

αk − 1

z − zk
.

Integrating twice, and we get the Schwarz-Christoffel formula in Equation 6.2. �

6.1.2. Schwarz-Christoffel exterior maps. A few variations of the Schwarz-Christoffel

formula allows us to map simply connected domains in C to polygons [9]. Of all these

variations, the mapping formula from the disk to the exterior region of a polygon is the

most useful for our context.

Theorem 6.2. Let P be the region exterior to a bounded polygon Γ, where w1, . . . , wn

are the vertices of Γ in the clockwise direction, and α1π, . . . , αnπ are the interior angles

of the polygon at respective vertices. Let f : D→ Ĉ \P be a conformal isomorphism that

maps 0 to ∞. Then

(6.4) f(z) = A+ C

∫ z

ζ−2

n∏
k=1

(
1− ζ

zk

)1−αk
dζ

for some complex constants A and C, where f(zk) = wk.

Equation 6.4 helps us construct the Riemann map explicitly for the region exterior

to a polygon. Furthermore, because f(0) = ∞, the pushforward f∗λ, where λ is the

normalized arclength measure on ∂ D, is precisely the harmonic measure of the polygon.
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6.2. The Wedge Family

We are particularly interested in the family of wedges as planar shapes. To be precise,

a wedge is a planar shape consisting of two equal-length line segments joined at one

endpoint at an angle. A canonical model of this planar shape is

Wθ = {z ∈ C | z = reiαπ where r ∈ [0, 1] and α = 0 or θ}.

for θ ∈ (0, 1]. We use the Schwarz-Christoffel exterior formula to find a conformal isomor-

phism between D and Ĉ \Wθ. Because such a conformal mapping is unique up to rotation,

and because of the symmetry of Wθ, we may assume the following table of parameters for

the SC exterior map.

k wk αk zk
1 0 2− θ 1
2 1 0 ω
3 0 θ −1
4 eiθπ 0 ω−1

The Carathéodory theorem guarantees a continuous extension of f to D, so the

prevertices zk are well-defined. Figure 6.2 is a schematic of the conformal mapping

f : D→ Ĉ \Wθ as described in Theorem 6.2.

θπ
0 1

e iθπ

f

1-1

ω

ω-1

Figure 6.2. A schematic of the conformal mapping f : D→ Ĉ \Wθ
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The value of ω ∈ S1 is not arbitrary. For every θ ∈ (0, 1], there exists a unique ω ∈ S1

such that f is indeed a conformal isomorphism, as demonstrated in the following lemma.

Lemma 6.3 (Arccosine Relation). For every θ ∈ (0, 1], f as described by Equation 6.4

is a conformal isomorphism if and only if ω = (1 − θ) + i
√

1− (1− θ)2. An equivalent

condition is arg(ω) = cos−1(θ).

Proof. In order for f to be a conformal isomorphism, it is necessary that f(1) =

f(−1). Because f is given in the form of a path integral, this would mean

(6.5)

∫
S

f ′(ζ) dζ = 0,

where S is the semicircular arc joining 1 to −1, and

f ′(ζ) = C · ζ−2

4∏
k=1

(
1− ζ

zk

)1−αk

= C · ζ−2(1− ζ)θ−1(1− ω−1ζ)(1 + ζ)1−θ(1− ωζ)

= C · ζ−2
(1− ζ

1 + ζ

)θ−1

(1− ω−1ζ)(1− ωζ)

The derivative f ′ is defined everywhere on S except possibly at ω and ±1. In this case

where 0 < θ ≤ 1, it is defined everywhere on the semicircular arc S except at 1.

Let γ(t) = eit for t ∈ [0, π]. Then γ parametrizes the semicircular arc S. Now

Equation 6.5 becomes

(6.6)

∫ π

0

d

dt
f
(
γ(t)

)
dt = 0.
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Let ϕ = Arg(ω), and let C absorb any non-zero complex constants that arise from the

computation. Then

d

dt
f
(
γ(t)

)
= γ′(t) · f ′

(
γ(t)

)
= ieit · Ce−2it

(
1− eit

1 + eit

)θ−1

(1− ei(t−ϕ))(1− ei(t+ϕ))

= Ce−it
(
e−it/2 − eit/2

e−it/2 + eit/2

)θ−1

· e
−i(t−ϕ)/2 − ei(t−ϕ)/2

e−i(t−ϕ)/2
· e
−i(t+ϕ)/2 − ei(t+ϕ)/2

e−i(t+ϕ)/2

= Ce−it
(
− i tan(t/2)

)θ−1 · eit · (−2i) sin
(t− ϕ

2

)
· (−2i) sin

(t+ ϕ

2

)
= C

(
tan(t/2)

)θ−1
sin
(t− ϕ

2

)
sin
(t+ ϕ

2

)
= C

(
tan(t/2)

)θ−1(
cos(ϕ)− cos(t)

)
= C

(
tan(t/2)

)θ−1(
Re(ω)− cos(t)

)
.

Thus the isomorphism condition stated in Equations 6.5 and 6.6 has been reduced to the

problem of finding the correct value of Re(ω) such that the definite integral

(6.7)

∫ π

0

(
tan(t/2)

)θ−1(
Re(ω)− cos(t)

)
dt = 0.

If θ ∈ (0, 1), then

d

dt

(
tan(t/2)

)θ
=

1

2
·
(

cos(t/2)
)−2 · θ

(
tan(t/2)

)θ−1
.

Thus ∫
θ
(

tan(t/2)
)θ−1

dt =

∫
2
(

cos(t/2)
)2 · d

dt

(
tan(t/2)

)θ
dt.
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Integrate the right hand side by parts,

∫
θ
(

tan(t/2)
)θ−1

dt = 2
(

cos(t/2)
)2 ·
(

tan(t/2)
)θ

+

∫ (
tan(t/2)

)θ · 2 sin(t/2) cos(t/2) dt

= 2 cos(t/2)2 tan(t/2)θ + 2

∫
tan(t/2)θ−1 sin(t/2)2 dt

= 2 cos(t/2)2 tan(t/2)θ +

∫
tan(t/2)θ−1

(
1− cos(t)

)
dt.

It then follows that the indefinite integral from Equation 6.7 is

∫ (
tan(t/2)

)θ−1(
Re(ω)− cos(t)

)
dt

=

∫
tan(t/2)θ−1

(
1− cos(t)

)
dt+

∫
tan(t/2)θ−1

(
Re(ω)− 1

)
dt

=− 2 cos(t/2)2 tan(t/2)θ +

∫
θ tan(t/2)θ−1 dt+

∫
tan(t/2)θ−1

(
Re(ω)− 1

)
dt

=− 2 cos(t/2)2 tan(t/2)θ +
(
θ + Re(ω)− 1

) ∫
tan(t/2)θ−1 dt.

Evaluate the definite integral in Equation 6.7,

∫ π

0

(
tan(t/2)

)θ−1(
Re(ω)− cos(t)

)
dt

=
[
− 2 cos(t/2)2 tan(t/2)θ

]π
0

+
(
θ + Re(ω)− 1

) ∫ π

0

tan(t/2)θ−1 dt

= − 2
[
sin(t/2)θcos(t/2)2−θ

]π
0

+
(
θ + Re(ω)− 1

) ∫ π

0

tan(t/2)θ−1 dt

=
(
θ + Re(ω)− 1

) ∫ π

0

tan(t/2)θ−1 dt.
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However, tan(t/2) > 0 for all t ∈ (0, π), thus the definite integral

∫ π

0

tan(t/2)θ−1 dt > 0.

To enforce the isomorphism condition of Equation 6.7, we must have θ + Re(ω)− 1 = 0.

Therefore, Re(ω) = 1− θ. Because ω ∈ ∂ D∩H, it follows that

ω = (1− θ) + i
√

1− (1− θ)2.

If θ = 1, then Wθ is the line segment [−1, 1] contained in the real axis. We know a

conformal mapping f : D→ Ĉ \[−1, 1] given by the formula f(z) = −i(z− z−1)/2. When

ω = i, the map f satisfies the assumptions given by the table of prevertices and that

f(0) =∞. �

The image of the arc length parameterization γ(t) of the unit semicircular arc S under

the conformal map fθ : D→ Ĉ \Wθ gives a parametrization of Wθ by harmonic measure.

We first pick the appropriate complex constants A and C such that f(γ(0)) = f(γ(π)) = 0

and f(γ(ϕ)) = 1. Because

f(γ(t)) = A+ C

∫ t

0

tan(x/2)θ−1
(
1− θ − cos(x)

)
dx,

we would need A = 0 for f(γ(0)) = 0. From the computation above, we know that

f(γ(t)) = C

∫ t

0

tan(x/2)θ−1
(
1− θ − cos(x)

)
dx = −2C sin(t/2)θ cos(t/2)2−θ
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We know further that f(γ(t)) is real-valued, and it has a critical point at ϕ = arccos(1−θ),

whose critical value is the endpoint 1 of Wθ on the real axis. Therefore,

C = −sin(ϕ/2)−θ cos(ϕ/2)θ−2

2

= −1

2

[
1− cos(ϕ)

2

]−θ/2[
1 + cos(ϕ)

2

]θ/2−1

= −
[
1− cos(ϕ)

]−θ/2[
1 + cos(ϕ)

]θ/2−1

= −θ−θ/2(2− θ)θ/2−1.

These combine to give

(1.3) Fθ(t) = f(γ(t)) = 2θ−θ/2(2− θ)θ/2−1 sin(t/2)θ cos(t/2)2−θ

for t ∈ [0, π], as a parametrization of both sides of the line segment [0, 1] by the harmonic

measure of Wθ, i.e.,

µθ(Fθ([0, t])) =
t

2π

for all t ∈ [0, π]. The harmonic measure parametrization of the other line segment of Wθ

can be found by symmetry. Hence, we have just proved Theorem 1.4:

Theorem 1.4. A Schwarz-Christoffel exterior map f : D→ Ĉ \Wθ is given by

(1.2) f(z) = C

∫ z

0

ζ−2
(1− ζ

1 + ζ

)θ−1

(1− ω−1ζ)(1− ωζ) dζ,
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where ω = (1−θ)+ i
√

1− (1− θ)2, and C = −θ−θ/2(2−θ)θ/2−1. Furthermore, Wθ∩ [0, 1]

can be parametrized by harmonic measure with respect to conformal angle t ∈ [0, π] as

(1.3) Fθ(t) = f(γ(t)) = 2θ−θ/2(2− θ)θ/2−1 sin(t/2)θ cos(t/2)2−θ.

The parametrization of Wθ ∩ eiθπ[0, 1] can be described by symmetry.

6.3. Wθ Is Not Harmonically Planar

The reflection symmetry of Wθ indicates that its harmonic measure µθ is symmetrically

distributed on its two consisting line segments, i.e., for any measurable E ⊆ [0, 1], we have

µθ(E) = µθ(e
iθπE). Specifically, if

s(t) =



t, if 0 ≤ t ≤ 1,

2− t, if 1 ≤ t ≤ 2,

eiθπ(t− 2), if 2 ≤ t ≤ 3,

eiθπ(4− t), if 3 ≤ t ≤ 4.

is the arc-length parametrization of Wθ, then

µθ(s[0, t]) = µθ(s[4− t, 4]) = 1− µθ(s[0, 4− t]).

Equation 3.2 gives the curvature on the boundary of Ŵθ by

|ŝ′′(t)| = | − iκ′(t)e−iκ(t)| = |κ′(t)|

where t /∈ Z and κ(t) = 4πµθ(s[0, t]). Thus |ŝ′′(t)| = |ŝ′′(4 − t)| for t /∈ Z. This gives

a reflection axis of symmetry of Ŵθ by the line joining ŝ(0) and ŝ(2). However, because
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s(0) = s(2), perimeter gluing will identify ŝ(0) with ŝ(2) to form the boundary surface of

the associated convex body. If we can show that the curvature on the boundary of Ŵθ

near ŝ(0) and ŝ(2) are different, we can then conclude that the associated convex body

cannot be isometrically embedded into a planar region.

Lemma 6.4. lim
δ→0
|ŝ′′(δ)| 6= lim

δ→0
|ŝ′′(2− δ)| if θ < 1.

Proof. First of all, we recall from Chapter 2 that

ŝ(t) =

∫ t

0

ei(α(x)−κ(x))dx,

where κ(t) = 4πµ(s[0, t]). By the fundamental theorem of calculus,

ŝ′(t) = ei(α(t)−κ(t)), and ŝ′′(t) = i(α′(t)− κ′(t))ei(α(t)−κ(t)).

Thus |ŝ′′(t)| = |α′(t)− κ′(t)|. We notice that

κ(Fθ(t)) = 4πµθ
(
s
(
[0, Fθ(t)]

))
= 4πµθ

(
Fθ
(
[0, t]

))
= 4π · t

2π
= 2t.

Further, Fθ(0) = Fθ(π) = 0 = s(0) = s(2), and Fθ is differentiable on (0, π) with a single

critical point whose critical value is 1. Thus Fθ is locally invertible near 0 and π, and its

inverse is κ/2. It then follows that

lim
δ→0
|κ′(δ)| = lim

ε→0

2

|F ′θ(ε)|
;

lim
δ→0
|κ′(2− δ)| = lim

ε→0

2

|F ′θ(π − ε)|
.
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It now remains to compute F ′θ. Let Cθ = 2θ−θ/2(2− θ)θ/2−1, then

F ′θ(t) = Cθ ·
[θ

2
· sin(t/2)θ−1 cos(t/2)3−θ − 2− θ

2
· sin(t/2)θ+1 cos(t/2)1−θ

]
=
Cθ
2
·
[
θ sin(t/2)θ−1 cos(t/2)3−θ + θ sin(t/2)θ+1 cos(t/2)1−θ

− 2 sin(t/2)θ+1 cos(t/2)1−θ
]

=
Cθ
2
·
[
θ sin(t/2)θ−1 cos(t/2)1−θ( cos(t/2)2 + sin(t/2)2

)
− 2 sin(t/2)θ+1 cos(t/2)1−θ

]
=
Cθ
2
·
[
θ − 2 sin2(t/2)

]
cot(t/2)1−θ.

Because θ < 1,

lim
t→0

F ′θ(t) =
θCθ
2
· lim
t→0

cot(t/2)1−θ =∞;

lim
t→π

F ′θ(t) =
(θ − 2)Cθ

2
· lim
t→π

cot(t/2)1−θ = 0.

Lastly, recall that α(t) satisfies

s(t) =

∫ t

0

eiα(x)dx.

Thus α is locally constant near 0 and 1 on the wedge Wθ, and α′(t) = 0 It follows that

Hence, we have lim
δ→0
|ŝ′′(δ)| 6= lim

δ→0
|ŝ′′(2− δ)|. �

The following claim is therefore immediate.

Theorem 6.5. Wθ is not harmonically planar if θ 6= 1.

Alternatively, we can argue that Wθ does not satisfy the symmetry assumption in

Equation 1.1 unless θ = 1. Let γ(t) be an arc-length parameterization of Wθ. Assume
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that γ′(0) = 1. Then γ′(t) = 1 for all t ∈ (0, 1). Imposing the symmetry assumption, we

would have

Φ−1
1 (γ(t)) · Φ−1

2 (γ(t)) = 1

for all t ∈ (0, 1). This would imply that the harmonic measures along both sides of the

first edge equal, so the total harmonic measure on either side of the Wθ is 1/2. From

Proposition 6.3, this could only happen when θ = 1.

When θ = 1, the wedge W1 is simply the line segment [−1, 1] on the real axis. As we

have observed in Chapter 5, we know that W1 is harmonically planar.

In the next chapter, we will take a detailed investigation on the convex body associated

to Wθ when θ = 1/2. We will demonstrate that it consists of one flat face and three

curved faces with numerical analysis based on data obtained from the Matlab toolbox

by Driscoll.
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CHAPTER 7

Numerical Algorithms for Harmonic Cap Developments

7.1. Turning Angle and Curvature

Given a polygon P in R2 and a discrete non-negative probability measure µ supported

on its vertices, is it possible to find another polygon P̂µ in R2 such that P and P̂µ could

glue together to form a polyhedron with curvature distribution 4πµ on ∂P ∼ ∂P̂µ? If the

answer to this question is yes, what shape would the resulting polyhedron in R3 have?

To address the first question, suppose that P is an n-sided polygon with vertices

v1, v2, . . . , vn listed in counterclockwise orientation. With this information, the polygon P

is uniquely determined, and its side lengths `k and internal angles θk can all be computed

from the location of the vertices. For simplicity, let θk be the internal angle of P at the

vertex vk. Then the sum of external angles π − θk needs to be 2π, i.e.,

n∑
k=1

(π − θk) = 2π.

Now suppose that the given probability measure µ charges the vertex vk with a mass mk.

Then 0 < mk < 1 and
n∑
k=1

mk = 1.

Now we assume that the polygon P̂µ were to exist, with vertices v̂1, v̂2, . . . , v̂n listed in

clockwise orientation so that the gluing of the two polygons identifies each pair of vertices

(vk, v̂k) and the corresponding edges between vertices, then, similar with P , the sum of
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external angles π − θ̂k at vertex v̂k needs to be 2π, i.e.,

n∑
k=1

(π − θ̂k) = 2π.

Further, if we glue two polygons at their respective vertices vk and v̂k with internal angles

θk and θ̂k, as illustrated in Figure 7.1. If the polyhedron is flat at the glued vertex vk, the

vk ~ v

k

θk

θ

k

Figure 7.1. Angular defect at identified vertex

internal angles satisfy

θk + θ̂k = 2π.

When this equality is not satisfied, the discrepancy

κ(vk) = 2π − θk − θ̂k

is the curvature concentrated at the glued vertex vk. Under the assumption that P̂µ exists,

the curvature distribution at the vertices is proportional to the given probability measure

µ, i.e.,

4πµ(vk) = κ(vk) = 2π − θk − θ̂k.

With this information, we are able to construct the polygon P̂µ from the information of

the polygon P by an algorithm described as follows.
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7.2. The Cap Construction Algorithm

The cap construction algorithm is described below as a series of functions implemented

in Mathematica.

7.2.1. CompanionShape[GivenPolygon,GivenCurvature]. This function takes in a list

of complex numbers, representing the vertices of P in counterclockwise order, together

with corresponding curvature data at each vertex, and returns a list of complex numbers

that potentially traces out the vertices of the polygon P̂µ in clockwise order. Note that

if the polygon P̂µ of our context does not exist, this algorithm would return a polygonal

line that does not form a Jordan curve. Details of this scenario will be discussed at the

end of this section. The algorithm is implemented by the following steps.

(1) Check for incorrect inputs on the lists GivenPolygon and GivenCurvature.

(2) Compute the list of sides sk as complex vectors from the list of vertices vk specified

by GivenPolygon.

(3) Compute the list of side lengths `k and internal angles θk from the list of vertices

vk specified by GivenPolygon.

(4) Use the relation κ(vk) = 2π−θk−θ̂k to find the internal angles θ̂k of the candidate

polygonal line for P̂µ.

(5) The sides of the new polygon P̂µ shall have the same lengths as the sides of the

original polygon P , but in opposite orientation. Therefore, using the list of side

lengths `k and the list of new internal angles θ̂k, we can compute the list of new

sides ŝk as complex vectors.
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(6) The output NewPolygonalLine is a list of complex numbers obtained by sequen-

tially adding the complex vectors ŝk to the identified first vertex v1 ∼ v̂1. The

first two vertices, v̂1 and v̂2, in NewPolygonalLine shall agree with the first two

vertices, v1 and v2, in GivenPolygon. The length of the list NewPolygonalLine

is one more than the length of GivenPolygon.

7.2.2. CompanionShape[GivenPolygon]. When the curvature data is not specified, this

function assumes uniformly distributed curvature on all of the vertices vk specified by

GivenPolygon.

7.2.3. DrawCompanionShapes[GivenPolygon,GivenCurvature]. This function calls the

function CompanionShape with the given inputs, and produces the graphics of the original

polygon P together with the polygonal line representing the candidate boundary of the

polygon P̂µ, identifying the first two vertices of both P and P̂µ.

7.2.4. DrawCompanionShapes[GivenPolygon]. When the curvature data is not speci-

fied, this function assumes uniformly distributed curvature on all of the vertices vk spec-

ified by GivenPolygon.

7.2.5. Examples. The followings are some sample inputs and outputs of the function

DrawCompanionShapes. The original polygon P is colored in blue, while the polygonal

line that represents a potential P̂µ is colored in red.
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• DrawCompanionShapes[{1,I,-1,-I}]

• DrawCompanionShapes[{0,1,2+I,1+I}]

• DrawCompanionShapes[{0,I,-1+I/2}]

• DrawCompanionShapes[{0,I,-1+I/2},{2Pi-2ArcTan[2],2Pi-2ArcTan[2],

4ArcTan[2]}]
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7.2.6. Existence of P̂µ. As shown in the third example above, the polygonal line ob-

tained from this algorithm may not form a closed polygon. In fact, the polygonal line

is consisted of n line segments with n + 1 vertices. However, the desired polygon P̂µ

should have exactly n vertices corresponding to the number of vertices on P . In order

to obtain n vertices with the algorithm described above, the information we would need

includes the side lengths `1, . . . , `n−1, internal angles θ2, . . . , θn−1, and curvature data

κ(v2), . . . , κ(vn−1). Notice that the complete curvature data is not required to obtain n

vertices on the polygonal line, as we do not need the curvature information on two vertices

v1 and vn. The n + 1-st vertex v̂n+1 obtained from the algorithm allows us to determine

whether the polygonal line can form a closed polygon, and it would consequently tell us

whether the desired polygon P̂µ exists in our context. In the third example above, the

uniform curvature distribution of 4π/3 on each vertex does not produce a closed polygonal

line, and thus the corresponding polygon P̂µ does not exist. However, in the fourth ex-

ample with the same starting polygon P , a different curvature distribution yields a closed

polygonal line, which realizes the polygon P̂µ as the triangle traced out in red. Details of

the existence of P̂µ where P is a polygon and µ is a discrete measure concentrated on the

vertices of P can be found in [12].

7.2.7. Harmonic Cap Approximation. We discussed in Chapter 2 that for a pla-

nar shape P in R2 and its harmonic measure µ with respect to ∞ supported on ∂P ,

the harmonic cap P̂ always exists. The CompanionShape function provides a discrete

approximation to visualize the harmonic cap under specific circumstances.



81

Let Φ: C \D → C \P be a conformal isomorphism that fixes the point at ∞. For

P with piecewise C1 boundary, the map Φ extends continuously to the boundary ∂ D.

Let {zk}nk=1 be points uniformly distributed on ∂ D with respect to arc length λ, e.g.,

zk = e2kπi/n the n-th roots of unity. As we pick n big enough, the images Φ(zk) forms

a discrete approximation of ∂P with respect to the harmonic measure µ = Φ∗λ. If the

list {Φ(zk)}nk=1 is used as the vertex input for CompanionShape with curvature uniformly

distributed on the sample vertices, a numerical approximation to the harmonic cap can

be obtained. The resulting polygonal arc will have a very small (possibly zero) distance

between the endpoints.

7.3. The Convex Body Associated to W1/2

We have previously established

(1.3) Fθ(t) = f(γ(t)) = 2θ−θ/2(2− θ)θ/2−1 sin(t/2)θ cos(t/2)2−θ

as the parametrization of Wθ ∩ [0, 1] with respect to conformal angle t ∈ [0, π] in Theo-

rem 1.4. We use this parametrization as the input to the cap construction algorithm.

7.3.1. Constructing the Harmonic Cap. The algorithm for the construction of the

harmonic cap consists of the following steps.

(1) Choose a large positive integer n that represents the number of discrete points

to approximate the harmonic measure on each branch of the wedge Wθ.

(2) Choose an integer k such that 1 ≤ k ≤ n/2. This is the number of discrete

points that are supposed to approximate the harmonic measure on the inner side
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of one branch of the wedge Wθ. The integer k determines the parameter θ by the

relation

arccos(1− θ) =
kπ

n
.

For example, θ = 1 corresponds to k = n/2, where the wedge is a simple line

segment, and θ = 1/2 corresponds to k = n/3, where we have a right-angle wedge

W1/2.

(3) Use equation 1.3 to compute the image of n equally spaced points

exp
(iπ
n

)
, exp

(2iπ

n

)
, . . . , exp

((n− 1)iπ

n

)
, exp(iπ)

on the unit semicircular arc on the upper half plane joining 1 to −1. The dis-

tribution of these n points provides a discrete approximation of the harmonic

measure on one branch of the wedge Wθ.

(4) Reflect the image obtained in the previous step to get a discrete approximation

of the harmonic measure on the other branch of the wedge Wθ. The joined list of

2n images provides a discrete parametrization of Wθ with respect to its harmonic

measure. The parameterization traces (the outside of) the wedge Wθ twice in

counterclockwise direction.

(5) Use the discrete approximation by 2n + 1 points obtained in the previous step

as the input of DrawCompanionShapes, and get a sequence of 2n points on the

boundary of the harmonic cap in the clockwise direction. The algorithm is rel-

atively fast, as n = 12000 yields a result within 11 seconds, with computation

precision in the order of 10−6.
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Figure 7.2. The right-angle wedge W1/2 (blue) and its harmonic cap (red)

An image of W1/2 together with its harmonic cap is generated with parameters n =

12000 and k = 4000. The first point of the harmonic cap, as well as the wedge, is set at 0,

while the last point (the 24001-st) of the harmonic cap is at about 2.2×10−6−2.2×10−6i,

whose distance to the origin is approximately 3.1× 10−6. Graphically, we are not be able

to tell such small difference in the print-out of Figure 7.2.

7.3.2. Folding the Petals. In this subsection, we will use the figure of W1/2 and its

harmonic cap as an example.

The output of DrawCompanionShapes is a graphical object based on the computation

result of CompanionShape, whose output is a list of 2n+1 complex numbers, representing

points on the boundary of the harmonic cap in clockwise direction. The following figure

shows the locations of the first point, the k + 1-st point, and the n + 1-st point on

the harmonic cap. We first establish the following guiding principles for folding up the

harmonic cap to obtain the boundary surface of the associated convex body.

(1) No folding lines should cross in the interior of the harmonic cap.
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(2) By symmetry, every folding line should have a mirror image, symmetric across

the line joining the first point and the n+ 1-st point, that is also a folding line.

(3) The perimeter gluing shall identify the following two arcs together by arc length:

• The arc joining the k + 1-st point to the first point;

• The arc joining the k + 1-st point to the n+ 1-st point.

A few conclusions can be inferred from these principles.

(4) From principle (1) alone, if three folding lines form a triangle, then no other

folding line should pass through the interior of this triangle, and thus the triangle

is a planar face of the resulting convex body.

(5) From principles (1) and (2), we can infer that no folding line should cross the

symmetry axis, unless it joins two points on the boundary symmetric across the

axis.

(6) The gluing principle (3) indicates that there must be at least one folding line

symmetric across the axis.

1

k + 1

n + 1

A

B

C1

C2

a

b

c

Figure 7.3. The harmonic cap of W1/2, with 2n + 1 points approximating
the boundary, partitioned into four regions
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We first conjecture that the triangular region B shown in Figure 7.3 is a planar face

of the associated convex body.

It is easy to see that region A is a curved face of the boundary surface of the associated

convex body, as the regions A and B have different heights against their common base.

We attempt to answer the question whether the regions C1 and C2 are planar faces of the

convex body with the following strategy.

(1) Find an affine transformation f(z) = eiθz + β such that f(b) = 0 and f(a) ∈

(−∞, 0). The resulting image of the harmonic cap in the complex plane is shown

in the figure below.

a
b

c

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2

-0.4

-0.2

0.2

0.4

(2) Choose an assumed angle ϕ of rotation. Isolate the boundary curve Γ joining b

to c, and rotate along the line through b and c for ϕ into the third dimension to
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obtain Γϕ.

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2

-0.4

-0.2

0.2

0.4

The results of the rotation for ϕ = π/6 and ϕ = π/3 are shown in the following

figure.

(3) Compute the curve in the plane that glues to the rotated image Γϕ to form half

of a closed convex body. The algorithm includes the following steps.

• There are n−k+1 points on the curve Γϕ. Isolate the y-coordinates of these

points in a list y, and the projection onto the xz-plane in a list xz.

• Use the list xz to compute the arclength of the xz-projection of Γϕ starting

from the point f(c) in the complex plane.

• The list arclength contains the distance to the point f(c) in the x-direction,

and the list y contains the distance to the real axis in the y-direction. Hence,

we obtain another list of n− k + 1 points that forms the desired curve.
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Figure 7.4. The caps of W1/2, if the petals are assumed to be folded into
planar faces, shown in thin black curves. The light blue curve shows the
actual boundary of the harmonic cap of W1/2.

Figure 7.4 shows two caps of W1/2, if we assume that the petals C1 and C2 are

planar faces of the associated convex body obtained from folding up the petals

by ϕ = π/4 and ϕ = π/3, respectively. The images are superimposed with the

actual harmonic cap of W1/2 in light blue.

The images we obtained are strong evidence that the convex body associated with the

harmonic cap has one and only one planar face, namely the region B.

Proposition 7.1. The convex body associated with the harmonic cap of Wθ has the

regions C1 and C2 as curved faces.

Proof. Suppose that C1 and C2 are planar faces of the convex body. Then each

of them forms a dihedral angle ϕ with the planar face B. The sum of internal angles

at the gluing site of the points a and b is therefore strictly less than 2π. Hence, some

amount of positive curvature is concentrated at a single point on the surface of the convex

body, which would imply that the harmonic measure of Wθ is atomic at that point.

Contradiction. �
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7.4. The Zipper Algorithm

The zipper algorithm is an elementary algorithm for computing conformal maps dis-

covered in the early 1980’s by Kühnau and Marshall. Its convergence was studied by

Marshall and Rohde [14]. We include a brief description of the algorithm itself, as many

figures of harmonic caps in this thesis attributes to the zipper algorithm.

The elementary map of the zipper algorithm is the conformal map fa : H \γa → H,

where γa is an arc of a hyperbolic geodesic from 0 to a ∈ H. This map is realized by a

composition of a Möbius transformation, the square, and the square root map.

Let

b =
|a|2

Re(a)
and c =

|a|2

Im(a)
.

Then the geodesic arc γa intersects R at b, and the Möbius transformation

z 7→ z

1− z/b

sends γa to γic, which is a line segment orthogonal to R from 0 to ic. Compose this map

with z 7→ z2 + c2 and then
√
z, we obtain the desired conformal map fa as shown in

Figure 7.5.

The inverse f−1
a can be easily found by composing the inverses of these elementary

functions in the reverse order.

Let z0, z1, . . . , zn be points on the boundary of a Jordan domain Ω traced in the

counter-clockwise direction. The map ϕ1 given by

ϕ1(z) = i

√
z − z1

z − z0
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maps z0 7→ ∞, z1 7→ 0, and all other zi 7→ ϕ1(zi) ∈ H. The interior of Ω is mapped to the

“left” of 0, and the exterior of Ω is mapped to the “right” of 0 on H.

Now we set ζ2 = ϕ1(z2) and ϕ2 = fζ2 . Repeating this process, and define

ζk = ϕk−1 ◦ · · · ◦ ϕ1(zk), and ϕk = fζk .

Here we just use the elementary conformal map to “unzip” the boundary of the Jordan

domain onto the positive and negative real axis. Notice that each elementary conformal

map maps R into (but not onto) R. Finally, map a half-disk to H by letting

ζn+1 = ϕn ◦ · · · ◦ ϕ1(z0) ∈ R,

Figure 7.5. The elementary map of the zipper algorithm, figure excerpted from [14]
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and set

ϕn+1 =
(ζn+1 − z

z

)2

.

Let

ϕ = ϕn+1 ◦ ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1, and ϕ−1 = ϕ−1
1 ◦ ϕ−1

2 ◦ · · · ◦ ϕ−1
n ◦ ϕ−1

n+1.

Then ϕ−1 : H → Ωc is a conformal isomorphism such that zj ∈ ∂Ωc, and the portion γj

of ∂Ωc connecting zj and zj+1 is the image of the corresponding geodesic arc γζj+1
by the

analytic map ϕ−1
1 ◦ · · · ◦ ϕ−1

j .

Figure 7.6. The zipper algorithm, figure excerpted from [14]
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Remark 7.2. As remarked above, ∂Ωc is piecewise analytic. In fact, it is also C1

since the inverse of fa doubles angle at 0 and halves angles at ±c.

Remark 7.3. The map ϕ constructed above is also a conformal map of the comple-

ment of Ωc onto the lower half plane.
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CHAPTER 8

Iterated Harmonic Caps and Plane Curves

8.1. Iterated Harmonic Caps

An observation that arises from the harmonic cap study is that the iterative process

of taking harmonic caps appears to produce “rounder and rounder” planar shapes. This

phenomenon is best illustrated in the sequence of the iterative images of the square under

the operation of “taking harmonic cap”. The sixth iteration has the same circumference

as the initial square, but it is close, in the Hausdorff sense, to the round disk with the

same circumference. With a lot of experimentations on the cap construction algorithm,

we observe that this phenomenon is not limited to convex regions with symmetry such as

a square. Included are the iterative images of a “keyhole” shape and an “L” shape under

the same operation.

Figure 8.1. Iterative harmonic caps of the square

As we mentioned briefly in Chapter 3, the development of a harmonic cap may not

be globally one-to-one, which prohibits the iteration process. We restrict the iteration

process to Jordan domains whose iterative harmonic caps are all bounded by Jordan

curves. The following conjecture describes our observation above.
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Figure 8.2. The sixth iterative harmonic cap of the square is close to a
round disk (dashed curve) in the Hausdorff sense.

Figure 8.3. Iterative harmonic caps of the “keyhole” and the “L”. The image
of the first iteration of the “keyhole” was produced by the heuristic that as
the keyhole gets sufficiently thin, the harmonic measure will concentrate so
little within the keyhole that the harmonic cap simply recreate the shape
of the keyhole outside of the disk region.

Conjecture. Let L > 0. Let R(L) be the collection of rectifiable closed curves of

length L, and let J (L) ⊆ R(L) be the Jordan curves among them. Let h : J (L)→ R(L)

be the function that maps a Jordan curve Γ ∈ J (L) to the boundary curve of the harmonic
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Figure 8.4. The sixth iterative harmonic caps of the “keyhole” and the “L”
are close to round disks (dashed curves) in the Hausdorff sense.

cap of the region bounded by Γ. Equation 3.2 guarantees that h is well-defined. Let

H(L) =
⋂
n≥0

h−n(J (L)).

Then the restriction h : H(L)→ H(L) is also well-defined. If Γ ∈ H(L), then the sequence

of Jordan curves {hn(Γ)}n≥0 converges to the circle CL of circumference L in the Hausdorff

metric.

8.2. Plane Curve Iteration with the Symmetry Assumption

At the end of Chapter 5, we presented two ways to recover a Jordan arc from the con-

formal isomorphism Φ, through the complement of the image and through the symmetry

assumption. We concluded that the collection of all harmonically planar Jordan arcs is all

curves with agreeing recovery from both methods. To find out whether a smooth Jordan

arc Γ is harmonically planar, it is then natural to take the following steps:

(1) Find an arc-length parameterization γ : [0, L] → C of Γ. Translate and rotate Γ

such that γ(0) = 0 and γ′(0) = 1.
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(2) Compute the conformal isomorphism Φ: Ĉ \D→ Ĉ \Γ that satisfies Φ(∞) =∞

and Φ(1) = 0.

(3) Find continuous functions ϕ, ψ : [0, L]→ ∂ D such that Φ(ϕ(t)) = Φ(ψ(t)) = γ(t).

(4) Construct a new curve Γ̃ by

γ̃(t) =

∫ t

0

ϕ(x)ψ(x) dx.

(5) Γ is harmonically planar if and only if Γ and Γ̃ are the same curve, or equivalently,

if γ′(t) = γ̃′(t).

Steps (1)–(4) describes a map that takes in a smooth Jordan arc Γ, and gives another

curve Γ̃. This potentially defines an iterative process as well, if we assume that every

iterative image is also a Jordan arc. We expect the fixed points of this iterative process

to be the harmonically planar smooth Jordan arcs.

From the discussion in Section 6.3, we know that Wθ is not harmonically planar.

Figure 8.5 shows the first five iterative images of three wedges with different incident

angles. These examples appears to have their iterative images converging to circular arcs,

which we know by Theorem 1.2 are harmonically planar. More examples are needed

before we can propose a conjecture similar with the one on harmonic cap iteration.
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Figure 8.5. Iterative curves of the wedge family. The original curve is shown
in black, and the following successive images are shown in red, yellow, green,
blue, and purple, respectively. Each curve is a numerical approximation by
a polygonal line of 40 segments.
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