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Abstract

In this dissertation I examine issues related to uncertainty and robustness in game theory.

In Chapter 1 a strategic setting is analyzed where players face Knightian uncertainty

about the strategic choices of their opponents. That is, in contrast to the usual Bayesian

framework and in line with experimental evidence, players might not be able to form

probabilistic belief about the uncertainty they face. Instead players entertain a set of

beliefs about this uncertainty. In joint work with Peio Zuazo-Garin, I provide a general

model that captures this situation and show that, under certain assumptions, well-known

solution concepts, such as rationalizability, are still appropriate.

Chapter 2 reinterprets the model with Knightian uncertainty by interpreting cau-

tiousness as robustness to ambiguity. As before, each players strategic uncertainty is

represented by a possibly non-singleton set of beliefs, but now a rational player also

wants to make a choice that is robust to this ambiguity. Thus, a rational player chooses

a strategy that is a best-reply to every belief in this set. Again in joint work with Peio

Zuazo-Garin, I show that the interplay between these two features precludes the conflict

between strategic reasoning and cautiousness and therefore solves the inclusion-exclusion

problem raised by Samuelson (1992). Notably, my approach provides a simple foundation

for the iterated elimination of weakly dominated strategies.

In Chapter 3 I study an information provider who commits to provide information

to multiple receivers seeking robustness towards the reasoning of these receivers. The
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robustness consideration arises naturally in a setting where information is provided bi-

laterally. Such a scenario precludes the possibility of commitment to a grand information

structure. Consequently, in a strategic situation, each receiver needs to reason about what

information other receivers get. Since the information provider does not know this rea-

soning process, a motivation for a robustness requirement arises: the provider seeks an

information structure that performs well no matter how the receivers actually reason. In

this chapter, I provide a general method to study how to optimally provide information

under these constraints. The main result is a representation theorem, which makes the

problem tractable by reformulating it as a linear program in belief space. Furthermore,

I provide novel bounds on the correlation among receivers beliefs, which provide even

more tractability in some special cases. I illustrate the main result by solving for the

optimal provision of information in a stylized model of contract research organizations,

which are an integral part of the pharmaceutical industry.
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CHAPTER 1

Strategic Knightian Uncertainty1

“It is a world of change in which we live, and a world

of uncertainty. We live only by knowing something

[...]; while the problems of life [...] arise from the fact

that we know so little.

Frank H. Knight (1921, p.199)

1This chapter was developed together with Peio Zuazo-Garin. Parts of the exposition, but none of the
results (besides Proposition 1) were used in Ziegler and Zuazo-Garin (2020). For consistency reasons the
grammatical first person in singular form and associated personal pronouns will be used throughout this
dissertation.
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1.1. Introduction

Economists commonly use iterated strategy elimination procedures as solution concepts

in games. Such procedures thus constitute one of the cornerstones for modeling agents’

behavior in economic theory. The predictive power of iterated elimination procedures is in

general lower than that of equilibrium-related notions; however, since the latter requires

players to correctly forecast their opponents’ behavior (see Aumann and Brandenburger,

1995), the former seems more appropriate in situations of multiple equilibria wherein

either the players or the economic analyst lack accurate data about past play or such

data appears uninformative about future behavior.2 For instance, this is the case in

many application of auction theory, e.g., wireless spectrum, carbon emission rights and

online advertising.3 Consequently, thorough understanding of the forces behind iterated

elimination is relevant from both a purely theoretical perspective and a more applied point

of view, and is key to effective mechanism design and correct identification in empirical

analyses.4

The conceptual appeal of iterated elimination procedures is that they carry the intu-

itive game-theoretic appeal of strategic reasoning: if a player is certain that some of her

2In Dekel and Fudenberg’s (1990) words (p. 243): “Nash equilibrium and its refinements describe
situations with little or no ‘strategic uncertainty,’ in the sense that each player knows and is correct about the
beliefs of the other players regarding how the game will be played. While this will sometimes be the case,
it is also interesting to understand what restrictions on predicted play can be obtained when the players’
strategic beliefs may be inconsistent, that is, using only the assumption that it is common knowledge that
the players are rational.”

3See Milgrom (1998), Cramton and Kerr (2002), and Varian (2007), respectively.
4See Bergemann and Morris (2009, 2011); Bergemann, Morris, and Tercieux (2011) and Aradillas-Lopez

and Tamer (2008), respectively.
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opponent’s strategies are not going to be played, then she might deem some of her own

strategies to be unreasonable. This is clearly exemplified by the informal argument for

competitive prices in Bertrand duopoly models. Consider a market consisting of prof-

itable, identical firms A and B: If A slightly lowers its mark-up it should absorb all the

demand and increases its profit; now, this is easy to forecast by B, which might in turn

decide to lower its mark-up more than slightly and thus absorb itself all the demand and

increase her profit with respect to the losses obtained under A’s, hypothetical, initial slight

cut. Obviously, this logic leads to the standard zero mark-up conclusion. Sketches of this

elementary intuition in modern economic theory can be traced back to Keynes (1936): “It

is not a case of choosing those [faces] that, to the best of one’s judgment, are really the

prettiest, nor even those that average opinion genuinely thinks the prettiest. We have

reached the third degree where we devote our intelligences to anticipating what average

opinion expects the average opinion to be. And there are some, I believe, who practice

the fourth, fifth and higher degrees."

However, the formalization of these ideas in game theory was not reached until Pearce

(1984) and Bernheim (1984) introduced the concept of rationalizability. Shortly after this

concept was developed, Brandenburger and Dekel (1987) and Tan and da Costa Werlang

(1988) gave a foundation for this concept in terms of strategic reasoning as outlined above

within a setting where every player is Bayesian. That is, each player of the game is

assumed to be a subjective expected utility maximizer as envisioned by Savage (1954). In
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a strategic setting, this means that every player has a unique subjective belief about the

coplayer’s actions.

To this day, most of game theory makes this expected utility assumption either explic-

itly or implicitly.5 Using a distinction introduced by Knight (1921), most game theoretic

analysis is therefore conducted under the assumption of risk without allowing for the

possibility of uncertainty. Knight explains the difference: “Uncertainty must be taken

in a sense radically distinct from the familiar notion of Risk, from which it has never

been properly separated.... The essential fact is that ’risk’ means in some cases a quantity

susceptible of measurement, while at other times it is something distinctly not of this char-

acter; and there are far-reaching and crucial differences in the bearings of the phenomena

depending on which of the two is really present and operating.... It will appear that a

measurable uncertainty, or ’risk’ proper, as we shall use the term, is so far different from

an unmeasurable one that it is not in effect an uncertainty at all.”

In this chapter, I study the implications of this sort of Knightian uncertainty on strategic

reasoning. For this, I make use of the interpretation and formalization of Knightian

uncertainty due to Bewley (2002). In this formalization, each player’s strategic uncertainty

is represented by a possibly non-singleton set of beliefs. Thus, this allows for Knightian

uncertainty on the one hand, but also incorporates standard Bayesian analysis as a special

case if the set of beliefs is a singleton set. The main departure of Bewley’s decision theory

is dropping the completeness axiom and although the main approach in this chapter

5In Section 1.2, I discuss related literature including departures from the Bayesian paradigm in game
theory.
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is conceptual and focused on the implications of Knightian uncertainty on reasoning-

based processes in strategic situations, the results provide a methodological contribution

for the use of incomplete preferences in game theory, which is a subject of interest in

itself aside from its interpretation as Knightian uncertainty. For example, Aumann (1962)

questions the completeness axiom: “Of all the axioms of utility theory, the completeness

axiom is perhaps the most questionable. [. . . ] [W]e find it hard to accept even from

the normative viewpoint. Does ‘rationality’ demand that an individual make definite

preference comparisons [. . . ]”

For a given set of beliefs, there are two natural interpretation on how a player will

choose a strategy that is reasonable. First, a requirement in spirit of Bewley (2002) is

to require a strategy will be chosen if and only if it is a best-reply to every belief in the

player’s set of beliefs. I will dub strategies that satisfy this requirement as rational. Since

such a choice procedure corresponds to incomplete preferences, this requirement is more

demanding than usual rationality postulates because it also requires that a strategy being

a best-reply to all beliefs actually exists. Thus, my notion of rationality incorporates two

behavioral restrictions: (i) optimal choice and (ii) being able to make a choice. Second,

a dual notion to my definition of rationality is in spirit of Lehrer and Tepper (2011): a

strategy will be chosen if there exists one belief on the set of beliefs that make this strategy

a best-reply. These strategies will be called justifiable. In contrast to rational strategies,

justifiable strategies always exist. The reason is that justifiable strategies correspond to



18

preferences which do satisfy completeness. However, as the axiomatic study of Lehrer

and Tepper (2011) highlights these preferences fail to satisfy transitivity instead.

When it comes to reasoning-based analysis in games where players have sets of beliefs,

there are also two natural formalization of how players reason. Both are related to the

notions of reasonable choices explained above. I say that a player believes a certain event

if at least one belief in her set of beliefs assigns probability one to this event. This is a weak

notion of belief because it allows for one player to belief two mutually exclusive events at

the same time. On the other hand, similar to rationality, a stronger requirement is to have

all beliefs in the set to assign probability one to the event under consideration. If this is

the case, I will say that a player fully believes the event. Thus, a player cannot fully believe

two mutually exclusive events, but she can believe both of these events.

Based on the above, I build a framework to explore the behavioral implications of

common (full) believe of rationality and justifiability, respectively. Note that either choice

requirement drops an assumption that many economists find crucial to be able to con-

duct any analysis; namely, completeness or transitivity. Thus, maybe surprisingly, the

behavioral implications of these choice requirements together with common (full) belief

restrictions give rise to predictions that are more or less standard predictions of game

theory: whereas common belief in justifiably corresponds to undominated strategies (S1),

all the other combinations correspond the iterated deletion of strictly dominated strategies

(S∞). Table 1.1 summarizes these results and provides references to the formal statements

of each result. Therefore, Knightian uncertainty itself does not provide sharper predic-
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tions of common belief of rationality in a standard Bayesian setting, which is just S∞.

Furthermore, Knightian uncertainty also does enable to make more behavioral predic-

tions beyond common belief of rationality (S∞), unless one wants to impose the very weak

requirements of common belief of justifiably in the Knightian uncertainty case. Then the

only strategies that can be ruled out for each player are strictly dominated strategies.

Table 1.1: Behavioral implications of strategic Knightian uncertainty.

Epistemic Assumption

Belief (∃) Full Belief (∀)

Choice Assumption
Justifiability (∃) S1

(Theorem 2)
S∞

(Theorem 4)

Rationality (∀) S∞
(Theorem 1)

S∞
(Theorem 3)

The results summarized in Table 1.1 might suggest that strategic Knightian uncer-

tainty does not really affect the behavioral implications in games relative to the Bayesian

benchmark. However, the Knightian uncertainty allows for more flexibility because the

Bayesian benchmark is covered as a special case. This flexibility is very salient in the

case of belief under Knightian uncertainty. As mentioned above, in my setting a player is

allowed to believe two mutually exclusive events.

This flexibility of strategic Knightian uncertainty allows to overcome the inclusion-

exclusion problem of Samuelson (1992). Samuelson points out that in a standard Bayesian

setting there is a conflict cautious behavior and strategic reasoning. On the one hand,

cautiousness requires to assign positive probability on all eventualities (i.e. inclusion of

eventualities). On the other hand, strategic reasoning allows to rule out certain behavior
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of the other players (i.e. exclusion of eventualities). Therefore, for a player with a unique

subjective belief as in the Bayesian case satisfying both, cautiousness and strategic reason-

ing, is impossible. However, in my Knightian uncertainty framework this problem can be

easily solved because multiple beliefs are allowed.

I explore this possibility by introducing cautiousness in my framework. I say that a

player is weakly cautious if at least one belief in her set of beliefs has support equal to the full

state space. Intuitively, this means a cautious player assigns positive probability to every

eventuality and therefore does not rule out anything. Furthermore, I consider a more

demanding criterion dubbed strong cautiousness: a strongly cautious player has a set of

beliefs with non-empty interior. This implies, intuitively, that a strongly cautious player

has (i) a set of beliefs that is big and (ii) many beliefs with full support. Thus, a strongly

cautious player is also weakly cautious. Building on these definitions I show that the

Dekel-Fudenberg procedure (S∞W) characterizes the behavioral implications of rationality

and weak cautiousness and common belief thereof and that strict rationalizability (S∞S+)

characterizes the behavioral implications rationality and strong cautiousness and common

belief thereof. Hence, this chapter not only provides the behavioral consequences under

strategic Knightian uncertainty but by doing so provides a concise framework for the

characterization of the standard iterated deletion procedures which would run into the

inclusion-exclusion problem of Samuelson (1992). Furthermore, my analysis sheds light

on the requirements to overcome this inclusion-exclusion problem. In addition to allowing

for multiple beliefs another requirement is that all of these belief have to matter when it
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comes to choosing strategies in a game. My notion of rationality does exactly this using

an universal quantifier over beliefs. If I only consider justifiable strategies, then (either

version of) cautiousness does not provide sharper predictions than players not choosing

strictly dominated strategies. The results on cautiousness are summarized in Table 1.2.

Table 1.2: Strategic Knightian uncertainty and cautiousness.

Cautiousness Assumption

Weak Strong

Choice Assumption
Justifiability (∃) S1

(Corollary 2)
S1

(Corollary 2)

Rationality (∀) S∞W
(Theorem 5)

S∞SR
(Theorem 6)

The rest of this chapter is structured as follows. Section 1.2 reviews the related liter-

ature. Section 1.3 recalls both the game- and decision-theoretic preliminaries and intro-

duces the epistemic framework. All the epistemic characterization results are stated in

Section 1.4. Section 1.5 concludes.

1.2. Related Literature

As mentioned in the introduction, Brandenburger and Dekel (1987) and Tan and da Costa

Werlang (1988) were among the first to apply Bayesian decision making to give founda-

tions for solution concepts in game theory. In particular, they show that the behavioral

implications of rationality common belief of ratioanlity are exactly rationalizable strate-

gies (S∞). A decade earlier, Armbruster and Böge (1979) and Böge and Eisele (1979)

establieshed similar results already. These results were extended to incorporate exoge-



22

nous uncertainty, for example about the payoffs of the players, by Battigalli and Siniscalchi

(2002, 2003) and Dekel, Fudenberg, and Morris (2007). The former also study extensions

to dynamic games with the natural adaption of a Bayesian framework to dynamic games.

Still within a Bayesian framework but with the use of p-beliefs of Monderer and Samet

(1987), Börgers (1994) provides a foundation for the Dekel-Fudenberg procedure6 (S∞W)

via approximate common belief in rationality and cautiousness. All of these papers have

in common to provide a foundation of iterated strategy elimination procedures. Aumann

(1987) studies a similar question with the additional assumption of a common prior and

therefore provides a foundation for (objective) correlated equilibrium. A reasoning based

foundation for the widely applied concept of Nash equilibrium was provided Aumann

and Brandenburger (1995). This analysis sheds light on the demanding assumptions

underlying Nash equilibrium.

Leaving the Bayesian paradigm was spured by the inclusion-exclusion problem of

Samuelson (1992). As a response, interactive reasoning based on lexicographic proba-

bility systems due to Blume, Brandenburger, and Dekel (1991) were introduced to game

theory. Brandenburger (1992) shows that the Dekel-Fudenberg procedure coincides with

permissibility, which is an iterative procedure based on lexicographic probability systems.

Reasoning based foundations within the same decision theoretic setting were provided

recently by Catonini and De Vito (2020).7 To the best of my knowledge, a foundation for

what I call strict rationalizability does not appear in the literature. Another solution con-

6This solution concept was introduced by Dekel and Fudenberg (1990) in a different context.
7Asheim and Dufwenberg (2003) provide a foundation in a slightly different setting.
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cept that runs into the inclusion-exclusion problem is iterated admissibility, i.e. the iterative

deletion of weakly dominated strategies. Lexicographic probability systems seem useful

also to provide a foundation for iterated admissibility. Within this stream of literature,

seminal work by Brandenburger, Friedenberg, and Keisler (2008) establishes foundations

for iterated admissibility in terms of rationality and common assumption of rationality

(RCAR); however, the same authors reveal a vexatious reality: RCAR is empty in ev-

ery non-trivial game. By now, there are solutions available either using lexicographic

probability systems or using my framework of strategic Knightian uncertainty. The latter

is presented in Chapter 2, which also provides a more thorough discussion about the

solutions with lexicographic probability systems.

Knightian uncertainty can be interpreted as a form of ambiguity.8 Combining am-

biguity with interactive reasoning is relatively new. Ahn (2007) provides a theory of

hierarchies of ambiguity. Like us, he assumes that each player is allowed to have a set

of beliefs, a set of beliefs about the set of beliefs of the other players, and so on. He

goes on by constructing a universal type strcutre akin to the standard Bayesian version of

Mertens and Zamir (1985) and Brandenburger and Dekel (1993). In my setting of strate-

gic Knightian uncertainty, I rely on Ahn’s construction. Independently from my work,

Dominiak and Schipper (2020) study ambiguity and interactive reasoning in games. In

contrast to my work, they use Choquet expected utility. With their version of belief, they

provide a characterization of the behavioral implications of common belief of Choquet

8In fact, I put forward this interpretation in Chapter 2, where I study the foundation of iterated admissi-
bility.
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rationality, which is different from standard rationalizability. A seminal work by Epstein

(1997) goes beyond ambiguity by allowing general preferences, which include a wide class

of decision theories but maintains the completeness assumption.9 In his model common

belief in rationality is behaviorally equivalent to appropriately adapted iterative deletion

procedures. Chen, Luo, and Qu (2016) extend Epstein’s analysis to include, among other

things, incomplete preferences á la Bewley (2002). Their notion of belief can be interpreted

as deeming the complement of given event as impossible. Thus, their notion is similar to

my notion of full belief. In turn, my Theorem 3 and Theorem 4 can be seen as special cases

of their model adding the additional restriction that Knightian uncertainty is commonly

believed as well, i.e. ruling out other preferences that are allowed in the general class

considered by Chen et al. (2016). However, in their formalization it is implicit that even

if preferences are incomplete, players will have a preferred strategy. For incomplete pref-

erences this might not be true. Thus, I explicitly demand that a rational player has such

a preferred strategy. If a player is not able to find a preferred strategy due to incomplete

preferences, he will be called irrational in my framework. In my model these types of

irrational players are allowed for.

Moving beyond reasoning-based foundations of solution concepts, allowing for non-

Bayesian behavior in game theory is studied more thoroughly and reviewing it is beyond

the scope of this chapter.10 However, there are a few exceptions that are direclty related

to my work. First, Kokkala et al. (2019) allow players to have incomplete preferences and

9See also Epstein and Wang (1996) for a construction of a universal preference space.
10A recent paper in this strand of the literature is Kokkala, Berg, Virtanen, and Poropudas (2019), which

includes many references to this literature.
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provide a suitable version of rationalizability for their setting. In contrast to my setting,

they allow players to have incomplete preferences over outcomes of the game. In my case,

incompleteness arises from multiple beliefs only but players have a complete ordering

over outcomes. Furthermore, Kokkala et al. do not provide reasoning-based foundations

for their proposed version of rationalizability. Second, Lopomo, Rigotti, and Shannon

(2011, 2017) study the implications of Knightian uncertainty as formalized here on moral

hazard and mechanism design, respectively. A key condition that arises in Lopomo et al.

(2017) is that the set of beliefs has full dimensionality, which is related to, but weaker,

than my notion of strong cautiousness. Chiesa, Micali, and Zhu (2015) study Vickrey

auctions where bidders face Knightian uncertainty about their own evaluations. Knightian

uncertainty was also employed in models of general equilibirum by, for example, Rigotti

and Shannon (2005), Kajii and Ui (2009), Easley and O’Hara (2010), Dana and Riedel (2013),

Chambers (2014), Beissner and Riedel (2019), and Chambers and Melkonyan (2020).

1.3. Preliminaries

This section presents the main standard concepts and formalism related to game and

decision theory. Subsection 1.3.1 recalls the formalization of strategic-form games and

states the relevant solution concepts. Since my analysis models players as individual

decision makers whose beliefs may display Knightian uncertainty, Subsection 1.3.2 recalls

the necessary decision-theoretical toolbox and Subsection 1.3.3 illustrates how games can

be envisioned as decision problems as is standard in the literature since Tan and da
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Costa Werlang (1988).11 Subsection 1.3.4 formalizes the idea of (higher-order) reasoning

in games. Finally, Subsection 1.3.5 defines the relevant concepts of justifiable and rational

choices as well as the notions of belief and full belief.

1.3.1. Games and iterated strategy elimination

A game consists of a tuple G := ⟨I, (Si,ui)i∈I⟩ where I is a finite set of players, and for each

player i there is a finite set of (pure) strategies Si and a utility function ui : S → R, where

S :=
∏

i∈I Si denotes the set of strategy profiles. For each player i a randomization of

own strategies σi ∈ ∆(Si) is referred to as a mixed strategy,12 and a probability measure

µi ∈ ∆ (S−i), where S−i :=
∏

j,i S j, as a conjecture. When necessary, with some abuse of

notation, I use si to refer to the degenerate mixed strategy that assigns probability one

to si. Each conjecture µi and possibly mixed strategy σi naturally induce expected utility

Ui(µi; σi) and based on this, each player i’s best-reply correspondence is defined by assigning

to each conjecture µi the subset of pure strategies BRi(µi) that maximize its corresponding

expected utility.13 For the rest of the chapter I consider game G to be fixed and therefore

drop most explicit mentions to it.

Following the duality results of Pearce (1984), best-replies correspondences allow for

easily formalizing the standard procedures of iterated elimination whose foundations I

later study in Section 1.4:

11Di Tillio (2008) provides a more modern and detailed formulation.
12Throughout this chapter, for any topological space X, as usual, ∆ (X) denotes the set of probability

measures on the Borel σ-algebra of X.
13That is, given conjecture µi the expected utility is Ui(µi; σi) :=

∑
(s−i;si)∈S µi[s−i] · σi[si] · ui(s−i; si) for each

possibly mixed strategy σi, and the set of best-replies is BRi(µi) := arg maxsi∈Si
Ui(µi; si).
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Rationalizability

Strategy si is rationalizable if it survives the iterated elimination of strictly dominated

strategies; i.e., if it is not strictly dominated given strategy profiles S−i × Si, it is not strictly

dominated given strategy profiles S1
−i × S1

i consisting only of strategies surviving the first

elimination round, etc. Thus, formally, strategy si is rationalizable if si ∈ S∞i :=
∩

n≥0 Sn
i ,

where S0
i := Si and for any n ∈ N,

Sn
i :=


si ∈ Sn−1

i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ ∆(S−i) such that:

(i) suppµi ⊆
∏

j,i Sn−1
j ,

(ii) si ∈ BRi(µi)


.

Note that with this notation S1
i denotes the set of undominated strategies for player i.

The Dekel-Fudenberg Procedure

The procedure due to Dekel and Fudenberg (1990) consists of performing an initial elimina-

tion of weakly dominated strategies followed by iterated elimination of strictly dominated

strategies; in such case I say that strategy si survives the Dekel-Fudenberg procedure if
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si ∈ S∞Wi :=
∩

n≥0 SnWi, where

S0Wi :=


si ∈ Si

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ ∆(S−i) such that:

(i) suppµi =
∏

j,i S j,

(ii) si ∈ BRi(µi)


,

and for any n ≥ 1,

SnWi :=


si ∈ Sn−1Wi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ ∆(S−i) such that:

(i) suppµi ⊆
∏

j,i Sn−1W j,

(ii) si ∈ BRi(µi)


.

Strict Rationalizability

Finally, I say that strategy si is strictly rationalizable if it survives an initial elimination of

of non-strict best-replies followed by iterated elimination of strictly dominated strategies.

Formally, si ∈ S∞S+i :=
∩

n≥0 SnS+i , where

S0S+i :=



si ∈ Si

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ ∆(S−i) such that:

(i) suppµi ⊆
∏

j,i S j,

(ii) BRi(µi) =

s′i ∈ Si

∣∣∣∣∣∣∣∣∣∣∣
For any s−i ∈

∏
j,i S j,

ui(s−i; s′i) = ui(s−i; si)





,
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and for any n ≥ 1,

SnS+i :=


si ∈ Sn−1S+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ ∆(S−i) such that:

(i) suppµi ⊆
∏

j,i Sn−1S+j ,

(ii) si ∈ BRi(µi)


.

The inclusion relation between these solution concepts is easy to see: for any player i,

S∞S+i ⊆ S∞Wi ⊆ S∞i and furthermore, the inclusions might be strict.

1.3.2. Decision problems and preferences

I follow the reformulation of Anscombe and Aumann’s (1963) framework by Fishburn

(1970). The decision maker faces decision environment (Z,Θ) where: (i) Z is a set of outcomes,

which can be informally understood as the elements that will ultimately yield direct utility

to the decision maker; and (ii) Θ is a set of states (of the world) about which the decision

maker might face uncertainty, and which may affect how her choices relate to outcomes. I

refer to randomizations of outcomes, ℓ ∈ ∆(Z), as lotteries. A preference is a binary relation

% over the set of acts, F , which is the collection of all maps f : Θ → ∆(Z) that assign a

lottery to each state. M (Θ) denotes the set of closed and convex nonempty subsets of

Θ.14 Throughout the chapter I focus on two classes of preferences: (i) Bewley preferences

14To be more mathematically precise, Z is assumed to be finite, Θ is compact and metrizable and the
elements of F , simple and measurable in the Borel σ-algebra of Θ. Space Mi(S−i × T−i) is endowed with the
topology induced by the Hausdorffmetric and is therefore compact and metrizable.
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as introduced by Bewley (2002) and (ii) justifiable preferences due to Lehrer and Tepper

(2011).15 The main point of departure from the preferences of a standard Bayesian decision

maker (i.e., one whose preferences satisfy the axioms by Anscombe and Aumann (1963)

is that completeness or transitivity of the preferences is dropped, respectivley. Theorem

1 by Gilboa et al. (2010) provides the following convenient representation for Bewley

preferences: % is a Bewley preference if and only if there exist a non-constant utility-

function u : Z → R and a set of ambiguous beliefs M ∈ M (Θ) such that for every pair of

acts f , g,16

f % g ⇐⇒
∫
Θ

E f (θ)[u(z)] dµ ≥
∫
Θ

Eg(θ)[u(z)] dµ for every µ ∈M.

Similarly, Theorem 1 of Lehrer and Tepper (2011) gives a representation for justifiable

preferences: % is a justifiable preference if and only if there exist a non-constant utility-

function u : Z → R and a set of ambiguous beliefs M ∈ M (Θ) such that for every pair of

acts f , g,17

f % g ⇐⇒
∫
Θ

E f (θ)[u(z)] dµ ≥
∫
Θ

Eg(θ)[u(z)] dµ for at least one µ ∈M.

15 For Bewley preferences, I rely on a more modern version by Gilboa, Maccheroni, Marinacci, and
Schmeidler (2010). Bewley’s (2002) version requires the decision-maker to have a designated default act
always chosen unless ranked strictly lower than some alternative. This is commonly known in the literature
as inertia (see, Bewley, 2002, or Lopomo et al., 2011). Furthermore, the version of Gilboa et al. (2010) allows
for infinite state spaces which are necessary in my framework.

Lehrer and Tepper (2011) consider an axiomatization with a finite state space only. They claim (see
Footnote 7) that an extension to infinite states is possible in a similar manner as in Gilboa et al. (2010). I
make use of such an extenstion without providing the details.

16More precisely, M is non-empty, closed, and convex. Moreover, M is unique and u is unique up to
positive affine transformations.

17The details of the previous footnote apply to this representation as well.
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In both cases, a decision maker’s epistemic attitude with respect to the source of

uncertainty may not be represented by a single belief, as in the standard case, but rather by

a possibly non-singleton set of beliefs that reflects the decision maker’s possible ambiguity

towards that source of uncertainty.

1.3.3. Games as decision problems

Players are envisioned as individual decision makers facing a decision problem where

their opponents’ strategies are part of the description of the states of the world and

strategies are the feasible acts. For obvious reasons, for each player i, game G is a very

specific decision problem (Zi,Θi,Fi) consisting of:

• Outcomes. In contexts of complete (payoff-relevant) information, player i’s utility

depends only on the strategy profiles chosen in the game; hence, I identify outcomes

with the latter: Zi := S.

• States. Player i’s primary source of uncertainty (and the only payoff-relevant one) is

strategic: it refers to her opponents’ behavior (S−i). However, player i’s beliefs about

her opponents’ strategies could be affected by an additional non payoff-relevant

unobserved parameters about which she might face uncertainty, say T−i.18 I identify

the set of states of the world with these joint sources of uncertainty: Θi := S−i × T−i.

• Acts and feasible acts. Player i’s set of acts is Fi := ∆(S)S−i×T−i . Notice that within the

context of a game this set of acts is not feasible. First, player i cannot make her choice
18To ensure appropriate construction, T−i is assumed to be compact and metrizable.
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contingent on a parameter t−i that she does not observe. Second, in situations of

simultaneous choice, player i cannot make her choice contingent on her opponents’

choices. Still, player i might (and typically will) have preferences on modeled but

unavailable options. The set of player i’s feasible acts is then identified with her

mixed strategies:

Fi :=


f ∈ Fi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists a σi ∈ ∆(Si) such that:

f (s−i, t−i)[(s′−i; s′i)] =


σi[s′i] if s′−i = s−i,

0 otherwise,

for any (s−i, t−i) ∈ S−i × T−i and any (s′−i; s′i) ∈ S


.

In addition, remember that game G already incorporates utility functions; thus, each

player i’s set of Bewley preferences under consideration needs to be restricted to these

preferences whose risk attitude is represented by utility function ui. Now, Theorem 1 by

Gilboa et al. (2010) implies that for any set of parameters T−i, each Bewley preference for

decision environment (S,S−i × T−i) whose risk attitude is represented by ui is biunivocally

associated with ambiguous beliefs Mi ⊆ ∆(S−i × T−i).19 Thus, there is no loss of generality

in switching the focus from Bewley preferences to ambiguous beliefs, the collection of

which I denote by Mi(S−i × T−i). The same applies for justifiable preferences via Theorem

1 of Lehrer and Tepper (2011).

19Remember that Mi is non-empty, closed, and convex. Of course, Mi is a subset of ∆(S−i) in cases in
which I omit set of parameters T−i.
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1.3.4. Reasoning in Games

In this section I present the epistemic framework that I employ in my analysis. Formally,

for each player I specify a choice and a representation of her beliefs on her opponents’

strategies, her beliefs on her opponents’ beliefs over their opponents’ strategies, etc.

These elements suffice to assess whether under such specifications, the player is being

rational or has certain higher-order beliefs on her opponents’ rationality. To formalize

these concepts some previous methodological work is required. As seen above, when

Knightian uncertainty is allowed for, the representation of uncertainty may require non-

singleton sets of beliefs. It follows that standard type structures as introduced by Harsanyi

(1967) and standard belief-hierarchies à la Mertens and Zamir (1985) are not suitable for

analyzing strategic reasoning: they fail to capture the possibility of Knightian uncertainty.

Instead, I rely on a modified version of type structure that accounts for ambiguous beliefs.20

The study of strategic reasoning requires an instrument that formalizes players’ beliefs

about their opponents’ choices, players’ beliefs about their opponents’ beliefs about their

opponents’ choices and so on. When players have complete preferences this hierarchical

uncertainty can easily be represented through type structures. Thus, it is convenient

to extend the definition of the latter so that can deal with the possibility of ambiguity.

Formally, an ambiguous type structure consists of a listT := ⟨Ti,Mi⟩i∈I where for each player

i there is:21

20These type structures are regarded to Ahn’s (2007) ambiguous hierarchies what Harsanyi’s (1967) type
structures are to Mertens and Zamir’s (1985) belief hierarchies.

21I assume each Ti to be compact and metrizable and each Mi, continuous. See Footnote 18.
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(i) A set of (ambiguous) types Ti.

(ii) An ambiguous belief map Mi : Ti →Mi(S−i × T−i), where T−i :=
∏

j,i T j, that associates

each type with ambiguous beliefs on opponents’ strategy-type pairs.

It is easy to see why ambiguous type structures capture the idea of hierarchical reasoning

mentioned at the beginning of the paragraph. For any player i’s type ti it is possible to

compute the following by recursive marginalization:22

(1) First-order ambiguous beliefs that represent type ti’s uncertainty about her oppo-

nents’ strategies, Mi,1(ti) ∈ Mi,1 := Mi(S−i), which is easily obtained by taking the

marginals on S−i of the beliefs in Mi(ti).

(2) Second-order ambiguous beliefs that represent type ti’s uncertainty about her oppo-

nents’ strategy-first-order ambiguous beliefs pairs, Mi,2(ti) ∈ Mi,2 := Mi(
∏

j,i(S j ×

M j,1)).

· · ·

(n) nth-order ambiguous beliefs that represent type ti’s uncertainty about her opponents’

strategy-(n − 1)th-order ambiguous beliefs pairs, Mi,n(ti) ∈ Mi,n := Mi(
∏

j,i(S j ×

M j,n−1)).

22The conceptual simplicity that follows contrasts the notational complexity that it requires; technically,
for each n ∈ N:

Mi,n+1(ti) =

µi ∈ ∆
∏

j,i

(S j ×M j,n)


∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µ′i ∈Mi(ti) such that:

µi[E] = µ′i

[(∏
j,i(idS j ×M j,n)

)−1
(E)
]

for every measurable E ⊆∏ j,i S j ×M j,n

 .
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· · ·

Ambiguous type structure T is said to be complete if every map Mi is surjective, that is,

if for every possible ambiguous beliefs the ambiguous type structure may admit, there

exists some type that is mapped to such ambiguous beliefs.23

1.3.5. Behavior and Beliefs

The analysis of each player i’s reasoning is focused on strategy-type pairs (si, ti), which

specify both player i’s choice, and as described above, her ambiguous beliefs on her op-

ponents’ choices, her ambiguous beliefs on her opponents’ first-order ambiguous beliefs,

etc. Thus, each strategy-type pair (si, ti) enables questions such as the following to be

addressed: Is player i rational given her beliefs? Do her preferences embody some kind

of ambiguity? What are her higher-order beliefs about her opponents’ rationality and am-

biguity? Next, I first formalize the notions of rationality and justifiability that I employ.

Second, I introduce the formalizations of belief and full belief.

Justifiability

I say that strategy si is justifiable for type ti if si is a best-reply to at least one first-order

ambiguous belief induced by ti; thus, the set of strategy-type pairs in which player i is

23As shown by Ahn (2007), the answers to the following modified questions in (Dekel and Siniscalchi,
2015, p. 629): “Is there a[n] [ambiguous] type structure that generates all [ambiguous] hierarchies of
beliefs? Is there a[n] [ambiguous] type structure into which every other [ambiguous] type structure can be
embedded?” are yes, and yes. Within a Bayesian framework, Friedenberg (2010) studies such a richness
requirement more generally.
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justified is formalized as follows:

Ji :=

(si, ti) ∈ Si × Ti

∣∣∣∣∣∣∣∣si ∈
∪

µi∈Mi(ti)

BRi(marg
S−i

µi)

 .

These sets are non-empty because the best-reply correspondence is non-empty. Further-

more, Ji is closed, hence also an event:24

Lemma 1. Let G be a game and T an ambiguous type structure. For any player i, Ji is a closed

subset of Si × Ti.

Proof. Fix player i and convergent sequence of strategy-type pairs {sn
i , t

n
i }n∈N ⊆ Ri with

limit (si, ti). Notice that due to finiteness of Si I can assume without loss of generality

that sn
i = si for any n ∈ N. Now, for each n ∈ N set Mn

i = Mi(tn
i ) and let Mi = Mi(ti).

By definition it holds that si ∈ BRi(margS−i
µn

i ) for at least one µn
i ∈ Mn

i for any n ∈ N.

Without loss (otherwise take an appropriate subsequence) µn
i converges to µi. µi ∈ Mi,

because Mn
i ’s as functions of the types are continuous and Mn

i ’s converge to Mi, which is

closed. Since si ∈ BRi(margS−i
µn

i ) for any n ∈ N, upper-hemicontinuity of the best-reply

correspondence implies that si ∈ BRi(margS−i
µi). Hence, I conclude that (si, ti) ∈ Ji and

therefore, that the latter is closed. �
24In the following, for beliefs I will use the Lévy-Prohorov metric (denoted with d) which induces the

weak∗-topology. For any µ ∈ ∆(X) and any closed M ⊆ ∆(X), define d(µ,M) = minµ′∈M d(µ, µ′).
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Rationality

I say that strategy si is rational for type ti if si is a best-reply to every first-order ambiguous

belief induced by ti; thus, the set of strategy-type pairs in which player i is rational is

formalized as follows:

Ri :=

(si, ti) ∈ Si × Ti

∣∣∣∣∣∣∣∣si ∈
∩

µi∈Mi(ti)

BRi(marg
S−i

µi)

 .

First, I claim that Ri is a well-defined event:

Lemma 2. Let G be a game and T an ambiguous type structure. For any player i, Ri is a closed

subset of Si × Ti.

Proof. Fix player i and convergent sequence of strategy-type pairs {sn
i , t

n
i }n∈N ⊆ Ri with

limit (si, ti). Notice that due to finiteness of Si I can assume without loss of generality

that sn
i = si for any n ∈ N. Now, for each n ∈ N set Mn

i = Mi(tn
i ) and let Mi = Mi(ti). By

definition it holds that si ∈
∩
µ′i∈Mn

i
BRi(margS−i

µ′i) for any n ∈ N. Pick now arbitraryµi ∈Mi.

Furthermore, {d(µi,Mn
i )}n∈N converges to 0 and thus, that there exists some sequence {µn

i }n∈N

with limit µi such that µn
i ∈ Mn

i for any n ∈ N. Since si ∈ BRi(margS−i
µn

i ) for any n ∈ N,

upper-hemicontinuity of the best-reply correspondence implies that si ∈ BRi(margS−i
µi).

Hence, I conclude that (si, ti) ∈ Ri and therefore, that the latter is closed. �

Second, note that the definition implicitly requires each type ti, in order to be eligible

for rational behavior, to satisfy that the intersection of the best-replies to the ambiguous
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first-order beliefs induced by it is non empty. This is a consistency requirement in the

vein of Bayesian updating for conditional probability systems in the literature of dynamic

games: When a conditional probability system fails to satisfy Bayesian updating it may

not admit sequential best-replies.25

I refer to the types that admit rational choices as decisive. The foundation of decisiveness

in terms of preferences is provided by Proposition 1 below. Decisive types are those

induced by preferences that are possibly incomplete but display completeness at the top:

the decision maker is indifferent between two acts that are not less preferred than another

act.26

Proposition 1 (Behavioral foundation of decisiveness). Let G be a game andT an ambiguous

type structure. Then, any player i’s type ti is decisive if and only if there exists a subset of feasible

acts F∗i ⊆ Fi, such that %i, the Bewley preference represented by (ui,Mi(ti)), satisfies

f ∼i g ≻i h,

for every f , g ∈ F∗i and every h ∈ Fi \ F∗i .

Proof. Fix player i, type ti and event E−i ⊆ S−i×T−i and let %i denote the Bewley preference

represented by (ui,Mi(ti)). The ‘if’ part is immediate, so I focus on the ‘only if’ part. To

25I thank Pierpaolo Battigalli for this observation. This issue, which refers to the distinction between a
choice being optimal or undominated, is discussed in further detail below.

26Despite the following characterization relying on an axiom evoking existence, G being a finite game
implies that the verification of the condition requires only finitely many bets.



39

see it simply take S∗i :=
∩
µi∈Mi(ti) BRi(margS−i

µi) and set:

F∗i :=



fi ∈ Fi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists a σi ∈ ∆(Si) such that:

(i) fi(s−i, t−i)[(s′−i; s′i)] =


σi[s′i] if s′−i = s−i,

0 otherwise,

for any (s−i, t−i) ∈ S−i × T−i and any (s′−i; s′i) ∈ S,

(ii) σi[S∗i ] = 1



.

Clearly, F∗ ⊆ F and f ∼i g ≻i h for every f , g ∈ F∗i and every h ∈ Fi \ F∗i . �

Notice that in the presence of incomplete preferences ‘undomination’ (an act not being

strictly worse than some other act) and ‘optimality’ (an act being at least as good as

every other act) are two different concepts, which is not the case under completeness:

An optimal act is always undominated but an undominated act might not be optimal;

furthermore, every Bewley preference admits undominated acts, but there may not exist

optimal ones. Decisiveness ensures the existence of the latter, which in turn, restores

the equivalence of undomination and optimality. In consequence, imposing decisiveness

on incomplete preferences is similar in spirit to the requirement of Bayesian updating

for conditional probability systems in the literature of extensive-form games.27 As for

27The definition of conditional probability systems (originally due to Rényi, 1955) requires the decision
maker to update her beliefs according to the chain rule whenever possible; this requirement is usually
referred to as Bayesian updating.
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decisiveness, Bayesian updating guarantees the existence of optimal strategies by forcing

them to be equivalent to undominated ones.

Belief and Full Belief

Hereafter I refer to measurable subsets E ⊆ S× T as events. A standard Bayesian decision

maker is said to belief event E when the unique subjective belief induced by her preference

has support included in E. With sets of beliefs two extensions are natural: (i) existence of

one belief with support in E and (ii) all beliefs being supported in E. The first extension,

I will call belief and the latter will be referred to as full belief. Formally, for any player i,

any type ti and any event E−i ⊆ S−i ×T−i I say that type ti believes E−i if at least one belief in

Mi(ti) assigns probability one to E−i, i.e. there exists µi ∈Mi(ti) such that µi[E] = 1. I denote

the set of player i’s strategy-type pairs in which the type beliefs E−i by Bi(E−i). Similarly,

I say that type ti fully believes E−i if all beliefs in Mi(ti) assigns probability one to E−i, i.e.

µi[E] = 1 for all µi ∈ Mi(ti). Henceforth, Fi(E−i) denotes the set of player i’s strategy-type

pairs in which the type fully beliefs E−i. Note that both definitions of beliefs reduce to the

Bayesian case, i.e. if the set of beliefs is a singleton.

I end this section with proving that Bi(E−i) and Fi(E−i) are well-defined events whenever

E−i is closed because both sets are closed:

Lemma 3. Let G be a game and T an ambiguous type structure. For any player i and any closed

event E ⊂ S−i × T−i, Bi(E) is a closed subset of Si × Ti.
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Proof. Fix player i and any closed event E ⊆ S−i × T−i. Consider convergent sequence

of strategy-type pairs {sn
i , t

n
i }n∈N ⊆ Bi with limit (si, ti). W.l.o.g assume sn

i = si for any

n ∈ N. Now, for each n ∈ N set Mn
i = Mi(tn

i ) and let Mi = Mi(ti). By definition it holds

that µn
i [E] = 1 for at least one µn

i ∈ Mn
i for any n ∈ N. Without loss (otherwise take

an appropriate subsequence) µn
i converges to µi. µi ∈ Mi, because Mn

i ’s as functions of

the types are continuous and Mn
i ’s converge to Mi, which is closed. By the Portmanteau

theorem, µi[E] ≥ lim supn→∞ µ
n
i [E] = 1. Thus, µi[E] = 1 for at least one µi ∈ Mi. Hence, I

conclude that (si, ti) ∈ Bi(E) and therefore, that the latter is closed. �

Lemma 4. Let G be a game and T an ambiguous type structure. For any player i and any closed

event E ⊂ S−i × T−i, Fi(E) is a closed subset of Si × Ti.

Proof. Fix player i and any closed event E ⊆ S−i × T−i. Consider convergent sequence

of strategy-type pairs {sn
i , t

n
i }n∈N ⊆ Bi with limit (si, ti). W.l.o.g assume sn

i = si for any

n ∈ N. Now, for each n ∈ N set Mn
i = Mi(tn

i ) and let Mi = Mi(ti). By definition it holds

that µn
i [E] = 1 for all µn

i ∈ Mn
i for any n ∈ N. Pick now arbitrary µi ∈ Mi. Furthermore,

{d(µi,Mn
i )}n∈N converges to 0 and thus there exists some sequence {µn

i }n∈N with limit µi such

that µn
i ∈ Mn

i for any n ∈ N. By the Portmanteau theorem, µi[E] ≥ lim supn→∞ µ
n
i [E] = 1.

Thus, µi[E] = 1 for all µi ∈ Mi. Hence, I conclude that (si, ti) ∈ Fi(E) and therefore, that the

latter is closed. �
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1.4. Epistemic Implications on Behavior

This section presents the main results of this chapter. Namely, the behavioral implications

of strategic Knightian uncertainty as summarized in Table 1.1. Furthermore, I will illus-

trate in Subsection 1.4.2 how my framework allows to overcome the inclusion-exclusion

problem and the corresponding results (summarized in Table 1.2) are stated there as well.

1.4.1. Main characterizations

The set of strategy-type pairs in which player i exhibits common belief of rationality is

given by CBRi :=
∩

n≥0 CBRi,n, where each CBRi,n is defined recursively by setting:

CBRi,0 := Si × Ti,

CBRi,n := CBRi,n−1 ∩ Bi(
∏

j,i

R j ∩ CBR j,n−1),

for every n ∈ N. That is, CBRi brings together all the strategy-type pairs (si, ti) where

player i’s type ti beliefs that every player j , i is rational and beliefs that every player j , i

beliefs that every player k , j is rational, and so on.

In a similar vein, common belief of justifiability is defined by replacing Ri with Ji

everywhere and the strategy-type pairs corresponding to it will be denoted by CBJi. If

belief Bi is replaced with full belief Fi everywhere, one obtains common full belief of

rationality (CFRi) and common full belief of justifiability (CFJi), respectively. All these sets
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are actually events, because of the closedness of all the primitive events defined before

(Lemma 1–4):

Corollary 1. Let G be a game and T an ambiguous type structure. For any n ∈N, the following

are events: Ri ∩ CBRi,n, Ji ∩ CBJi,n, Ri ∩ CFRi,n, and Ji ∩ CFJi,n. Furthermore, Ri ∩ CBRi,n.

Furthermore, Ri ∩ CBRi, Ji ∩ CBJi, Ri ∩ CFRi, and Ji ∩ CFJi are events.

Proof. The first claim follows directly from the previous analysis (Lemma 1–4). The second

claim holds because all four sets are intersections of closed sets, hence closed. �

Based on the above, each of these four epistemic conditions has implications for

behavior in a game:

Theorem 1 (Implications of common belief of rationality). Let G be a game. The following

holds:

(i) For any ambiguous type structure, any player i, and any strategy-type pair (si, ti), if type ti is

consistent with common belief of rationality and si is rational for ti, then si is rationalizable;

i.e.,

proj
Si

(Ri ∩ CBRi) ⊆ S∞i .

(ii) For any player i and any strategy si, if si is rationalizable then there exist a complete

ambiguous type structure T and a type ti consistent common belief of rationality for which

si is rational; i.e.,

S∞i ⊆ proj
Si

(Ri ∩ CBRi).
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Proof. Let’s check first the finitely many iteration case, that is, that for each player i it holds

that for any n ≥ 0,

proj
Si

(
Ri ∩ CBRi,n

) ⊆ Sn+1
i ,

and that the inclusion is an equality when the ambiguous type structure is complete. For

convenience, for each player i define Xi,0 := Si×Ti and for any n ∈ N, Xi,n := (Ri∩CBRi,n−1).

Now, I proceed by induction on n:

Initial Step (n = 0). For the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈ Ri∩CBRi,0

and denote M̄i :=Mi(t̄i). Then, for any belief µ1
i ∈ M̄i, s̄i is a best-reply for margS−i

µ1
i . Thus,

µ̄1
i := margS−i

µ1
i is a conjecture for which s̄i is a best-reply. Hence, si ∈ S1

i .

For the left-hand inclusion, fix strategy s̄i ∈ S1
i and conjecture µ̄i for which s̄i is a best-

reply. Pick then arbitrary ηi ∈ ∆(T−i) and define belief µ1
i as µ1

i := µ̄i × ηi. Obviously, s̄i is a

best-reply to the marginal on S−i induced by µ1
i , which is precisely µ̄i. Next, set M̄i := {µ1

i }

and pick (by completeness) type t̄i ∈ Ti such that Mi(t̄i) = M̄i. The following two hold:

• (s̄i, t̄i) ∈ CBRi,0. This holds trivially since CBRi,0 = Si × Ti.

• (s̄i, t̄i) ∈ Ri. This follows immediately from the fact that s̄i is a best-reply to the

conjecture induced by the unique belief in Mi(t̄i) = {µ1
i }, which is, precisely, µ̄i.

Thus, I conclude that (s̄i, t̄i) is strategy-type pair in Ri ∩ CBRi,0 that induces s̄i.

Inductive Step. Suppose that n ≥ 0 is such that the claim holds. I verify that it also

holds for n + 1. For the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈ Ri ∩ CBRi,n+1

and denote M̄i := Mi(t̄i). Then, there exists some belief µn+2
i ∈ M̄i that puts probability
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one on X−i,k :=
∏

j,i X j,k for every k = 0, . . . , n + 1 and such that s̄i is a best-reply for

margS−i
µn+2

i . Thus, µ̄n+2
i := margS−i

µn+2
i is a conjecture that puts probability one on Sk

−i for

every k = 0, . . . , n + 1 and for which s̄i is a best-reply. Hence, si ∈ Sn+2
i .

For the left-hand inclusion, fix strategy s̄i ∈ Sn+2
i and conjecture µ̄i that puts probability

one on Sn+1
−i and for which s̄i is a best-reply. Now, the induction hypothesis implies that for

any s−i ∈ Sn+1
−i there exists some t−i(s−i) ∈ T−i such that (s−i, t−i(s−i)) ∈ R−i ∩CBR−i,n = X−i,n+1.

Then, for any measurable E−i ⊆ S−i × T−i set:

µn+2
i [E−i] = µ̄i

[{
s−i ∈ Sn+1

−i

∣∣∣ (s−i, t−i(s−i)) ∈ E−i

}]
.

Notice that finiteness of S−i guarantees that µn+2
i is well-defined, and that the fact that µ̄i

puts probability one on Sn+1
−i ensures thatµn+2

i puts probability one on X−i,n+1. Furthermore,

it follows from monotonicity of the belief operator that µn+2
i puts probability one on X−i,k

for every k = 0, . . . , n. Obviously, s̄i is a best-reply to the marginal on S−i induced by µn+2
i ,

which is precisely µ̄i. Next, set M̄i = {µn+2
i } and pick (using completeness) type t̄i ∈ Ti such

that Mi(t̄i) = M̄i. The following two hold:

• (s̄i, t̄i) ∈ CBRi,n+1. To see it simply remember from above that µn+2
i puts probability

one on X−i,k for every k = 0, . . . , n + 1.

• (s̄i, t̄i) ∈ Ri. This follows immediately from the fact that s̄i is a best-reply to the

conjecture induced by the unique belief in Mi(t̄i) = {µn+2
i }, which is, precisely, µ̄i.

Thus, I conclude that (s̄i, t̄i) is strategy-type pair in Ri ∩ CBRi,n+1 that induces s̄i.
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I prove next that, indeed:

proj
Si

(Ri ∩ CBRi) ⊆ S∞i ,

and that the inclusion is an equality when the ambiguous type structure is complete. For

the right-hand inclusion fix strategy-type pair (s̄i, t̄i) ∈ Ri ∩ CBRi and simply notice that

since (s̄i, t̄i) ∈ Ri∩CBRi,n for any n ≥ 0. From above it follows that that s̄i ∈ Sn
i for any n ≥ 1.

Thus, s̄i ∈ S∞i .

For the left-hand inclusion, fix strategy s̄i ∈ S∞i . Since, in particular, s̄i ∈ Sn+1
i for any

n ≥ 0, the arguments above imply that for any n ≥ 0 there exists some type tn
i ∈ Ti such that

(s̄i, tn
i ) ∈ Ri ∩ CBRi,n. Now, let M̄i denote the closure of the convex-hull of

∪
n≥0 Mi(tn

i ) and

pick (using completeness) type t̄i ∈ Ti such that Mi(ti) = M̄i. Obviously, s̄i is a best-reply is

to every conjecture induced by the beliefs in Mi(t̄i) and t̄i is consistent with common belief

in rationality. Thus, (s̄i, t̄i) ∈ Ri ∩ CBRi and hence, s̄i ∈ projSi
(Ri ∩ CBRi). �

Theorem 1 provides a complete characterization that generalizes the well-known re-

sult by Tan and da Costa Werlang (1988) from standard Bayesian rational players to ones

that might display some Knightian uncertainty (or, formally equivalently, from players

with complete preferences to ones that might have incomplete preferences due to multiple

beliefs). Part (i) shows that whenever a player chooses maximizing w.r.t. possibly am-

biguous higher-order beliefs that represent common belief in rationality, then the resulting

strategy is necessarily rationalizable. Part (ii) shows the partial converse: it is not true

that every time a rationalizable strategy is chosen this is due to the player being rational
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and best-responding to higher-order ambiguous beliefs that represent common belief in

rationality, but still, it holds that every rationalizable strategy is a rational choice for some

type that is consistent with common belief in rationality. Note that in this characterization

no claim or implication is done about the presence of Knightian uncertainty: any rational-

izable strategy could be played under either presence or absence of ambiguity. Indeed,

parts of the construction for the proof of part (ii) resemble the construction in the Bayesian

case. That is, I construct types with singleton sets of beliefs.

Theorem 2 (Implications of common belief of justifiability). Let G be a game. The following

holds:

(i) For any ambiguous type structure, any player i, and any strategy-type pair (si, ti), if type

ti is consistent with common belief of justifiability and si is justifiable for ti, then si is

undominated; i.e.,

proj
Si

(Ji ∩ CBJi) ⊆ S1
i .

(ii) For any player i and any strategy si, if si is undominated then there exist a complete

ambiguous type structure T and a type ti consistent common belief of justifia1bility for

which si is justifiable; i.e.,

S1
i ⊆ proj

Si

(Ji ∩ CBJi).
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Proof. Let’s check first the finitely many iteration case, that is, that for each player i it holds

that for any n ≥ 0,

proj
Si

(
Ji ∩ CBJi,n

) ⊆ S1
i ,

and that the inclusion is an equality when the ambiguous type structure is complete. For

convenience, for each player i define Xi,0 := Si×Ti and for any n ∈ N, Xi,n := (Ri∩CBRi,n−1).

Now, I proceed by induction on n:

Initial Step (n = 0).

For the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈ Ji ∩ CBJi,0 and denote

M̄i := Mi(t̄i). Then, there exists a belief µ1
i ∈ M̄i, s̄i is a best-reply for margS−i

µ1
i . Thus,

µ̄1
i := margS−i

µ1
i is a conjecture for which s̄i is a best-reply. Hence, si ∈ S1

i .

For the left-hand inclusion, fix strategy s̄i ∈ S1
i and conjecture µ̄i for which s̄i is a best-

reply. Pick then arbitrary ηi ∈ ∆(T−i) and define belief µ1
i as µ1

i := µ̄i × ηi. Obviously, s̄i is a

best-reply to the marginal on S−i induced by µ1
i , which is precisely µ̄i. Next, set M̄i := {µ1

i }

and pick (by completeness) type t̄i ∈ Ti such that Mi(t̄i) = M̄i. The following two hold:

• (s̄i, t̄i) ∈ CBJi,0. This holds trivially since CBJi,0 = Si × Ti.

• (s̄i, t̄i) ∈ Ji. This follows immediately from the fact that s̄i is a best-reply to the

conjecture induced by the unique belief in Mi(t̄i) = {µ1
i }, which is, precisely, µ̄i.

Thus, I conclude that (s̄i, t̄i) is strategy-type pair in Ji ∩ CBJi,0 that induces s̄i.
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Inductive Step. Suppose that n ≥ 0 is such that the claim holds. I verify that it also holds

for n+1. For the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈ Ji∩CBJi,n+1 and denote

M̄i :=Mi(t̄i). Note that Ji ∩ CBJi,n+1 ⊆ Ji ∩ CBJi,0. So by the initial step, si ∈ S1
i .

For the left-hand inclusion, fix strategy s̄i ∈ S1
i and conjecture µ̄i for which s̄i is a best-

reply. Extend this conjecture to a belief µ1
i as in the initial step. Furthermore, consider any

arbitrary beliefµn+1
i that puts probability one on J−i∩CBJ−i,n = X−i,n+1 (and by monotonicity

also on X−i,k for every k = 0, . . . , n + 1). Next, set M̄i to be the convex hull of {µ1
i , µ

n+1
i } and

pick (using completeness) type t̄i ∈ Ti such that Mi(t̄i) = M̄i. The following two hold:

• (s̄i, t̄i) ∈ CBJi,n+1. To see it simply remember that from above it follows that µn+1
i puts

probability one on X−i,k for every k = 0, . . . , n + 1.

• (s̄i, t̄i) ∈ Ji. This follows immediately from the fact that s̄i is a best-reply to the

conjecture induced by µ1
i .

Thus, I conclude that (s̄i, t̄i) is strategy-type pair in Ji ∩ CBJi,n+1 that induces s̄i.

I prove next that, indeed:

proj
Si

(Ji ∩ CBJi) ⊆ S1
i ,

and that the inclusion is an equality when the ambiguous type structure is complete. The

right-hand inclusion follows because Ji ∩CBJi ⊆ Ji ∩CBJi,n for any n ≥ 0. For the left-hand

inclusion, fix strategy s̄i ∈ S1
i . The analysis above implies that for any n ≥ 0 there exists

some type tn
i ∈ Ti such that (s̄i, tn

i ) ∈ Ji ∩ CBJi,n. Now, let M̄i denote the closure of the

convex-hull of
∪

n≥0 Mi(tn
i ) and pick (using completeness) type t̄i ∈ Ti such that Mi(ti) = M̄i.
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Obviously, s̄i is a best-reply is to at least one conjecture induced by the beliefs in Mi(t̄i) and

t̄i is consistent with common belief in justifiability. Thus, (s̄i, t̄i) ∈ Ri ∩ CBRi and hence,

s̄i ∈ projSi
(Ji ∩ CBJi). �

Theorem 3 provides a complete characterization only of undominated strategies, which

highlights that the combination of justfiability with belief do not impose severe restrictions

about behavior in a game where players might display some Knightian uncertainty. As

both notions are very weak, the higher-order restrictions do not have any bite. As before,

part (i) shows unsurprisingly that whenever a player chooses justifiable w.r.t. possibly

ambiguous higher-order beliefs that represent common belief in justifiability, then the

resulting strategy is necessarily undominated. Part (ii) shows the partial converse: it is

not true that every time an undominated strategy is chosen this is due to the player being

justifiable and corresponding to higher-order ambiguous beliefs that represent common

belief in justifiability, but still, it holds that every undominated strategy is a justifiable

choice for some type that is consistent with common belief in justifiability. As before,

in this characterization no claim or implication is done about the presence of Knightian

uncertainty.

Theorem 3 (Implications of common full belief of rationality). Let G be a game. The following

holds:

(i) For any ambiguous type structure, any player i, and any strategy-type pair (si, ti), if type

ti is consistent with common full belief of rationality and si is rational for ti, then si is



51

rationalizable; i.e.,

proj
Si

(Ri ∩ CFRi) ⊆ S∞i .

(ii) For any player i and any strategy si, if si is rationalizable then there exist a complete

ambiguous type structure T and a type ti consistent common full belief of rationality for

which si is rational; i.e.,

S∞i ⊆ proj
Si

(Ri ∩ CFRi).

Proof. Let’s check first the finitely many iteration case, that is, that for each player i it holds

that for any n ≥ 0,

proj
Si

(
Ri ∩ CFRi,n

) ⊆ Sn+1
i ,

which holds because CFRi,n ⊆ CBRi,n for any n ≥ 0 and by (the proof of) Theorem 1. To

prove that the inclusion is an equality when the ambiguous type structure is complete, it

suffices to verify that the construction in the proof of Theorem 1 corresponds to full belief

of rationality.

I prove next that, indeed projSi
(Ri ∩ CFRi) ⊆ S∞i , and that the inclusion is an equality

when the ambiguous type structure is complete. The right-hand inclusion follows as above

from Theorem 1 and monotonicity. For the left-hand inclusion, fix strategy s̄i ∈ S∞i . Since,

in particular, s̄i ∈ Sn+1
i for any n ≥ 0, the analysis above implies that for any n ≥ 0 there exists

some type tn
i ∈ Ti such that (s̄i, tn

i ) ∈ Ri∩CFRi,n. Let Zn := {(si, ti) : si = s̄i}∩Ri∩CFRi,n which

is non-empty and closed by Corollary 1. By construction, Zn is a decreasing sequence and

has the finite intersection property. Since the type structure is assumed to be compact, it
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follows that Z := ∩nZn is non-empty, i.e. there exists t̄i such that (s̄i, t̄i) ∈ Z ⊆ Ri ∩ CFRi.

Hence, s̄i ∈ projSi
(Ri ∩ CFRi). �

The interpretation of Theorem 3 is similar to Theorem 1 stated above. Indeed, the

construction for part (ii) of the theorem is actually the same as in the respective part of

Theorem 1, which—as mentioned above–resembles the Bayesian construction and there

belief and full belief collapse to the same notion.

Theorem 4 (Implications of common full belief of justifiability). Let G be a game. The

following holds:

(i) For any ambiguous type structure, any player i, and any strategy-type pair (si, ti), if type

ti is consistent with common full belief of justifiability and si is justifiable for ti, then si is

rationalizable; i.e.,

proj
Si

(Ji ∩ CBJi) ⊆ S∞i .

(ii) For any player i and any strategy si, if si is rationalizable then there exist a complete

ambiguous type structure T and a type ti consistent common full belief of justifiability for

which si is justifiable; i.e.,

S∞i ⊆ proj
Si

(Ji ∩ CBJi).

Proof. Let’s check first the finitely many iteration case, that is, that for each player i it holds

that for any n ≥ 0,

proj
Si

(
Ji ∩ CFJi,n

) ⊆ Sn+1
i ,
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and that the inclusion is an equality when the ambiguous type structure is complete. For

convenience, for each player i define Xi,0 := Si × Ti and for any n ∈ N, Xi,n := Ji ∩ CFJi,n−1.

Now, I proceed by induction on n:

Initial Step (n = 0). Same as in the proof of Theorem 2.

Inductive Step. Suppose that n ≥ 0 is such that the claim holds. I verify that it also holds

for n+1. For the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈ Ji∩CFJi,n+1 and denote

M̄i := Mi(t̄i). Then, there exists some belief (in fact, that’s true for all beliefs) µn+2
i ∈ M̄i

that puts probability one on X−i,k :=
∏

j,i X j,k for every k = 0, . . . , n + 1 and such that s̄i is a

best-reply for margS−i
µn+2

i . Thus, µ̄n+2
i := margS−i

µn+2
i is a conjecture that puts probability

one on Sk
−i for every k = 0, . . . , n + 1 and for which s̄i is a best-reply. Hence, si ∈ Sn+2

i .

For the left-hand inclusion, fix strategy s̄i ∈ Sn+2
i and conjecture µ̄i that puts probability

one on Sn+1
−i and for which s̄i is a best-reply. Now, the induction hypothesis implies that for

any s−i ∈ Sn+1
−i there exists some t−i(s−i) ∈ T−i such that (s−i, t−i(s−i)) ∈ J−i ∩ CFJ−i,n = X−i,n+1.

Then, for any measurable E−i ⊆ S−i × T−i set:

µn+2
i [E−i] = µ̄i

[{
s−i ∈ Sn+1

−i

∣∣∣ (s−i, t−i(s−i)) ∈ E−i

}]
.

Notice that finiteness of S−i guarantees that µn+2
i is well-defined, and that the fact that µ̄i

puts probability one on Sn+1
−i ensures thatµn+2

i puts probability one on X−i,n+1. Furthermore,

it follows from monotonicity of the belief operator that µn+2
i puts probability one on X−i,k

for every k = 0, . . . , n. Obviously, s̄i is a best-reply to the marginal on S−i induced by µn+2
i ,
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which is precisely µ̄i. Next, set M̄i = {µn+2
i } and pick (using completeness) type t̄i ∈ Ti such

that Mi(t̄i) = M̄i. The following two hold:

• (s̄i, t̄i) ∈ CFJi,n+1. To see it simply remember that the arguments above imply that µn+2
i

puts probability one on X−i,k for every k = 0, . . . , n + 1.

• (s̄i, t̄i) ∈ Ri. This follows immediately from the fact that s̄i is a best-reply to the

conjecture induced by the unique belief in Mi(t̄i) = {µn+2
i }, which is, precisely, µ̄i.

Thus, I conclude that (s̄i, t̄i) is strategy-type pair in Ji ∩ CFJi,n+1 that induces s̄i.

I prove next that, indeed:

proj
Si

(Ji ∩ CFJi) ⊆ S∞i ,

and that the inclusion is an equality when the ambiguous type structure is complete. For

the right-hand inclusion fix strategy-type pair (s̄i, t̄i) ∈ Ri ∩ CBRi and simply notice that

since (s̄i, t̄i) ∈ Ji∩CFJi,n for any n ≥ 0, the arguments above imply that s̄i ∈ Sn
i for any n ≥ 1.

Thus, s̄i ∈ S∞i .

For the left-hand inclusion, fix strategy s̄i ∈ S∞i . Since, in particular, s̄i ∈ Sn+1
i for any

n ≥ 0, the analysis above implies that for any n ≥ 0 there exists some type tn
i ∈ Ti such that

(s̄i, tn
i ) ∈ Ji∩CFJi,n = Xi,n+1. Let Zn := {(si, ti) : si = s̄i}∩Xi,n+1 which is non-empty and closed

by Corollary 1. By construction, Zn is a decreasing sequence and has the finite intersection

property. Since the type structure is assumed to be compact, it follows that Z := ∩nZn is

non-empty, i.e. there exists t̄i such that (s̄i, t̄i) ∈ Z ⊆ Ji∩CFJi. Hence, s̄i ∈ projSi
(Ji∩CFJi). �
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Theorem 4 has again a similar interpretation as the previous ones. However, in

contrast to Theorem 2 replacing belief with full belief imposes severe restrictions on higher-

order reasoning so that the characterization corresponds to rationalizability instead of just

undominated strategies. As before, the characterization does not rely on the presence (nor

on the absence) of Knightian uncertainty itself.

1.4.2. Knightian Uncertainty, Cautiousness, and the Inclusion-Exclusion

Problem

The framework of Knightian uncertainty is more flexible than the standard Bayesian

one, because the latter is nested in the former. Therefore, the characterization results

Subsection 1.4.1 do not explicitly require nor rule-out the Bayesian case. However, as

mentioned in the introduction, one possiblity that arises from having multiple beliefs is

the resolution of the of inclusion-exclusion problem of Samuelson (1992). That is, cautious

behavior and strategic sophistication in a game together are not possible within a Bayesian

framework.

I argue next that Knightian uncertainty, intuitively thought of the decision maker

considering every state of the world when deciding which choice is best, can be interpreted

as a product of ambiguity in the sense that types that exhibit cautiousness tend to represent

preferences that also display Knightian uncertainty. First, I formalize the two notions of

cautiousness that take part in the characterizations result and discuss their relation with

presence of Knightian uncertainty.
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Definition 1 (Weak and strong cautiousness). Let G be a game and T an ambiguous type

structure. Then, for any player i and any type ti I say that type ti is:

(i) weakly cautious if it is has a belief with support S−i × T−i. That is, there exists µi ∈Mi(ti)

such that suppµi = S−i × T−i. I denote the set of player i’s strategy-type pairs in which the

type is weakly cautious by WCi.

(ii) strongly cautious if Mi(ti) has non-empty topological interior. I denote the set of player i’s

strategy-type pairs in which the type is strongly cautious by SCi.

If at an intuitive level cautiousness is associated with the idea that a decision maker

takes every possible contingency into account, then this is present in both concepts in

Definition 1. Weak cautiousness requires that the whole set of states S−i × T−i is believed

and nothing is ruled out, that is, loosely speaking, that every state is taken into account

by the decision maker. Strong cautiousness is of course more demanding: if a type is

maximizing w.r.t. to some belief in ∆(S−i × T−i), her choice must be also optimal for

every belief resulting from some small enough perturbation of the original belief. Thus,

intuitively, not only is every state taken into account, the possibility of small increases in

the likeliness of each state also is.

The relation of these notions of cautiousness with Knightian uncertainty is easy to

see. In principle, it is possible that a type displays weak cautiousness but not Knightian

uncertainty. This is the case of every type whose set of ambiguous beliefs consists of a

single belief with full-support on S−i × T−i. However, if in addition to weak cautiousness

the type also exhibits some form of strategic sophistication in the sense of believing in
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some proper subset of S−i×T−i, then, necessarily, the type displays Knightian uncertainty:

the corresponding ambiguous beliefs a fortiori contain at least two different beliefs. Strong

cautiousness necessarily implies Knightian uncertainty regardless of whether some proper

event is believed or not. This is due to no open set consisting of just a singleton belief.

Hence, in either case, not only does the introduction of Knightian uncertainty allow for

making strategic reasoning and cautiousness compatible, but indeed, it is necessary when

strategic reasoning has any bite. This allows to overcome the inclusion-exclusion problem

of Samuelson (1992).

I continue now with two solution concepts that, intuitively, do contain some flavor of

cautiousness: the Dekel-Fudenberg procedure and strict rationalizability. The definition

of the former requires that the strategies that survive the first iterated round are best-replies

to some belief that has full-support on the opponents’ strategies, that is, some belief that

gives some consideration to every possible behavior. The link with the notion of weak

cautiousness seems clear. Similarly, the definition of strict rationalizability requires that

non-strict best-replies are eliminated in the first round; this is equivalent to requiring that

the best-replies of the player remain unaltered under any possible small enough tremble

in the belief in any direction (i.e., by adding some small enough mass to any strategy

by the opponent). Again, it seems natural how this idea could relate to the notion of

strong cautiousness, which requires ambiguous beliefs to consider perturbations that may

increase the likeliness of every state. Indeed, as shown below in Theorem 5 and Theorem 6,

providing foundations for the Dekel-Fudenberg procedure and strict rationalizability only
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requires to incorporate the aforementioned notions of cautiousness in the common belief

constraints. To this end, consider the following collections of strategy-type pairs:

• The set of strategy-type pairs in which player i exhibits common belief in rationality

and weak cautiousness is given by CBRWCi :=
∩

n≥0 CBRWCi,n, where each CBRWCi,n

is defined recursively by setting:

CBRWCi,0 := Si × Ti,

CBRWCi,n := CBRWCi,n−1 ∩ Bi(
∩
j,i

R j ∩WC j ∩ CBRWC j,n−1),

for every n ∈ N. The interpretation of CBRWCi is clear: it is the collection of the

strategy-type pairs (si, ti) where player i’s type ti believes that every player j , i is

rational and weakly cautious, believes that every player j , i believes that every

player k , j is rational and weakly cautious, and so on.

• The set of strategy-type pairs in which player i exhibits common belief in rationality

and strong cautiousness is given by CBRSCi :=
∩

n≥0 CBRSCi,n, where each CBRSCi,n

is defined recursively by setting:

CBRSCi,0 := Si × Ti,

CBRSCi,n := CBRSCi,n−1 ∩ Bi(
∩
j,i

R j ∩ SC j ∩ CBRSC j,n−1),
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for every n ∈ N. Again, it is clear that CBRSCi is the collection of the strategy-type

pairs (si, ti) where player i’s type ti believes that every player j , i is rational and

strongly cautious, believes that every player j , i believes that every player k , j is

strongly rational and strongly cautious, and so on.

Now, I am ready to provide foundations for the Dekel-Fudenberg procedure and strict

rationalizability:

Theorem 5 (Foundation of the Dekel-Fudenberg procedure). Let G be a game. It holds that:

(i) For any ambiguous type structure, any player i, and any strategy-type pair (si, ti), if type ti

is consistent weak cautiousness and common belief of rationality and weak cautiousness and

si is rational for ti, then si survives the Dekel-Fudenberg procedure; i.e.,

proj
Si

(Ri ∩WCi ∩ CBRWCi) ⊆ S∞Wi.

(ii) For any player i and any strategy si, if si survives the Dekel-Fudenberg procedure then there

exist a complete ambiguous type structureT and a type ti consistent with weak cautiousness

and common belief in rationality and weak cautiousness for which si is rational; i.e.

S∞Wi ⊆ proj
Si

(Ri ∩WCi ∩ CBRWCi).
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Proof. Let’s check first the finitely many iteration case, that is, that for each player i it holds

that for any n ≥ 0,

proj
Si

(
Ri ∩WCi ∩ CBRWCi,n

) ⊆ SnWi,

and that the inclusion is an equality when the ambiguous type structure is complete.

For convenience, for each player i define Xi,0 := Si × Ti and for any n ∈ N, Xi,n :=

Ri ∩WCi ∩ CBRWCi,n−1. Now, I proceed by induction on n:

Initial Step (n = 0). For the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈ Ri ∩WCi

and denote M̄i = Mi(t̄i). Then, since t̄i is weakly cautious there exists some belief µ1
i ∈ M̄i

whose support is S−i×T−i, and since (s̄i, t̄i) ∈ Ri it holds that s̄i is a best-reply for margS−i
µ1

i .

Thus, µ̄1
i := margS−i

µ1
i is a conjecture in with full-support on S−i for which s̄i is a best-reply.

Hence, s̄i ∈ S0Wi.

For the left-hand inclusion, fix strategy s̄i ∈ S0Wi and conjecture µ̄i with full-support

on S−i for which s̄i is a best-reply. Then, take arbitrary full-support belief ηi ∈ ∆(T−i) and

set µ1
i := µ̄i × ηi and M̄i := {µ1

i }. Since T is complete, there exists some type t̄i ∈ Ti such

that Mi(t̄i) = M̄i. As µ1
i has full-support in S−i × T−i it has to be the case that t̄i is weakly

cautious, and hence, that (s̄i, t̄i) ∈ WCi, and the fact that s̄i is a best-reply to the marginal

on S−i induced by the unique belief in Mi(t̄i) ensures that (s̄i, t̄i) ∈ Ri. Thus, I conclude that

(s̄i, t̄i) is a strategy-type pair in Ri ∩WCi that induces s̄i.

Inductive Step. Suppose that n ≥ 0 is such that the claim holds. Next I verify it for n+1. For

the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈ Ri ∩WCi ∩CBRWCi,n+1 and denote
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M̄i := Mi(t̄i). Then, since (s̄i, t̄i) ∈ Ri ∩WCi ∩ CBRWCi,n the induction hypothesis implies

that s̄i ∈ SnWi, and since (s̄i, t̄i) ∈ CBRWCi,n+1, that there exists some belief µn+1
i ∈ Mi(t̄i)

which assign probability 1 to X−i,n+1 :=
∏

j,i X j,n+1. Now, I also know that (s̄i, t̄i) ∈ Ri and

thus, that s̄i is a best reply to the marginal on S−i induced by µn+1
i , which by the induction

hypothesis puts probability one on SnW−i. Hence, I conclude that s̄i ∈ Sn+1Wi.

For the left-hand inclusion, fix strategy s̄i ∈ Sn+1Wi and pair of conjectures µ̄1
i and µ̄n+1

i

such that: (i) µ̄1
i has full-support on S−i, (ii) µ̄n+1

i puts probability one on SnW−i (and hence,

so does it on SkW−i for every k = 1, . . . , n) and (iii) s̄i is a best-reply to both conjectures. Use

these two conjectures now to define:

• Belief µ1
i with full support in S−i × T−i. Just pick arbitrary belief full-support belief

η1
i ∈ ∆(T−i) and set µ1

1 := µ̄1
i × η1

i .

• Belief µn+1
i that puts probability one on X−i,n+1. To do so simply notice that from the

induction hypothesis for any s−i ∈ SnW−i there exists some types t−i(s−i) such that

(s−i, t−i(s−i)) ∈ X−i,n+1. Then, for any measurable E−i ⊆ S−i × T−i set:

µn+1
i [E−i] = µ̄n+1

i [{s−i ∈ SnW−i| (s−i, t−i(s−i)) ∈ E−i}] .

Notice that finiteness of S−i guarantees that µn+1
i is well-defined, and that the fact

that µ̄n+1
i puts probability one on SnW−i ensures that µn+1

i puts probability one on

X−i,n+1. Furthermore, it follows from monotonicity of the belief operator that µn+1
i

puts probability one on X−i,k for every k = 0, . . . , n.
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Notice in addition that since for both k = 1,n + 1, the marginal of µk
i on S−i is precisely µ̄k

i .

Thus, s̄i is a best-reply to µk
i . Then, let M̄i denote the convex hull of {µ1

i , µ
n+1
i } and pick (by

completeness) type t̄i ∈ Ti such that Mi(t̄i) = M̄i. The following three hold:

• (s̄i, t̄i) ∈ CBRCWi,k for any k = 0, . . . , n+ 1. To see it, simply notice that as seen above,

µn+1
i , which is an element of Mi(t̄i), puts probability one on every Xi,k.

• (s̄i, t̄i) ∈WCi. This is implied by µ1
i , which is an element of Mi(t̄i) that has full-support

on S−i × T−i.

• (s̄i, t̄i) ∈ Ri. This follows immediately from the fact that s̄i is a best-reply to the

conjectures induced by both µ1
i and µn+1

i , and hence, to the conjecture induced by

each belief in Mi(t̄i).

Thus, I conclude that (s̄i, t̄i) is strategy-type pair in Ri ∩WCi ∩ CBRWCi,n+1 that induces s̄i.

I prove next that, indeed:

proj
Si

(Ri ∩WCi ∩ CBRWCi) ⊆ S∞Wi,

and that the inclusion is an equality when the ambiguous type structure is complete. For

the right-hand inclusion fix strategy-type pair (s̄i, t̄i) ∈ Ri ∩WCi ∩ CBRWCi and simply

notice that since (s̄i, t̄i) ∈ Ri ∩WCi ∩ CBRWCi,n for any n ≥ 0, the arguments above imply

that s̄i ∈ SnWi for any n ≥ 0. Thus, s̄i ∈ S∞Wi.

For the left-hand inclusion, fix strategy s̄i ∈ S∞Wi. Since, in particular, s̄i ∈ SnWi for

any n ≥ 0, the arguments above imply that for any n ≥ 0 there exists some type tn
i ∈ Ti
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such that (s̄i, tn
i ) ∈ Ri ∩WCi ∩CBRWCi,n. Now, let M̄i denote the closure of the convex-hull

of
∪

n≥0 Mi(tn
i ) and (using completeness) pick type t̄i ∈ Ti such that Mi(ti) = M̄i. Obviously,

s̄i is a best-reply is to every conjecture induced by the beliefs in Mi(t̄i) and t̄i is weakly

cautious and is consistent with common belief in rationality and weak cautiousness. Thus,

(s̄i, t̄i) ∈ Ri ∩WCi ∩ CBRWCi and hence, s̄i ∈ projSi
(Ri ∩WCi ∩ CBRWCi).

�

Theorem 6 (Foundation of strict rationalizability). Let G be a game. It holds that:

(i) For any ambiguous type structure, any player i, and any strategy-type pair (si, ti), if type ti is

consistent with strong cautiousness and common belief of rationality and strong cautiousness

and si is rational for ti, then si is strictly rationalizable; i.e.,

proj
Si

(Ri ∩ SCi ∩ CBRSCi) ⊆ S∞S+i .

(ii) For any player i and any strategy si, if si is strictly rationalizable then there exist a complete

ambiguous type structure T and a type ti consistent with strong cautiousness and common

belief of rationality and strong cautiousness for which si is rational; i.e.,

S∞S+i ⊆ proj
Si

(Ri ∩ SCi ∩ CBRSCi).
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For the poof define for any A−i ⊆
∏

j,i S j and any si ∈ Si

[si]A−i :=

s′i ∈ Si

∣∣∣∣∣∣∣∣∣∣∣
For any s−i ∈ A−i,

ui(s−i; s′i) = ui(s−i; si)

 .

Then the first step of strict rationalizability can be rewritten as

S0S+i :=


si ∈ Si

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ ∆(S−i) such that:

(i) suppµi ⊆
∏

j,i S j,

(ii) BRi(µi) = [si]∏ j,i S j


.

The proof of Theorem 6 makes use of the following lemma.

Lemma 5. Let ε > 0 and G be a game. Consider player i’s conjecture µi with full support on S−i.

If si ∈ BRi(µ′i) for every µ′i ∈ Bε(µi),28 then BRi(µi) = [si]S−i .

Proof. Fix ε > 0 and si ∈ Si such that si ∈ BRi(µ′i) for every µ′i ∈ Bε(µi). Consider s′i ∈ Si

such that s′i , si and s′i ∈ BRi(µi). First, s′i cannot be weakly dominated by si since µi has

full support. So there are two cases:

1. s′i is payoff equivalent to si (on S−i), i.e. s′i ∈ [si]S−i , or

2. there exists s′−i ∈ S−i such that ui(s′−i; s′i) > ui(s′−i; si).

28I.e., in the open ball with center µi and radius ε.
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In the first case there is nothing to prove. The second case would imply

si < BRi

(
(1 − δ)µi + δs′−i

)

for δ < ε. This violates si ∈ BRi(µ′i) for every µ′i ∈ Bε(µi). Thus, the second case is

impossible. �

Proof of Theorem 6. Let’s check first the finitely many iteration case, that is, that for each

player i it holds that for any n ≥ 0,

proj
Si

(
Ri ∩ SCi ∩ CBRSCi,n

) ⊆ SnS+i ,

and that the inclusion is an equality when the ambiguous type structure is complete.

For convenience, for each player i define Xi,0 := Si × Ti and for any n ∈ N, Xi,n :=

Ri ∩ SCi ∩ CBRSCi,n−1. Now, I proceed by induction on n:

Initial Step (n = 0). For the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈ Ri ∩ SCi ∩

CBRSCi,0 and denote M̄i := Mi(t̄i). Pick arbitrary full-supported belief µi in the interior

of M̄i,29 and set µ̄1
i := margS−i

µi. Then, there exists some ε > 0 such that s̄i ∈ BRi(µ′i) for

every µ′i ∈ Bε(µ̄1
i ). By Lemma 5 this implies BRi(µ̄1

i ) = [s̄i]S−i . Thus, µ̄1
i is a conjecture whose

best-reply is exactly [s̄i]S−i . Hence, s̄i ∈ S0S+i .

For the left-hand inclusion, fix strategy s̄i ∈ S0S+i and conjecture µ̄i whose best reply is

exactly [si]S−i . It follows from finiteness of Si and from continuity of the expected utility

29Since M̄i has non-empty interior, this is obviously possible.
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payoff function that there exists some ε > 0 such that BRi(µi) = [si]S−i for any µi ∈ Bε(µ̄i).30

Define then:

M̄i := Bε(µ̄i) × ∆(T−i),

which is clearly closed and convex and (using completeness) pick type t̄i ∈ Ti such that

Mi(t̄i) = M̄i. The following three hold:

• (s̄i, t̄i) ∈ CBRSCi,0. This is trivially true due to the fact that CBRSCi,0 = S−i × T−i.

• (s̄i, t̄i) ∈ SCi. It is obvious by construction that Mi(t̄i) has non-empty interior.

• (s̄i, t̄i) ∈ Ri. This follows immediately from the fact that the conjecture induced by

each belief in Mi(t̄i) is a convex combination of conjectures in Bε(µ̄i).

Thus, I conclude that (s̄i, t̄i) is strategy-type pair in Ri ∩ SCi ∩ CBRSCi,0 that induces s̄i.

Inductive Step. Suppose that n ≥ 0 is such that the claim holds. Next I verify it holds for

n + 1. For the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈ Ri ∩ SCi ∩ CBRSCi,n+1

and denote M̄i :=Mi(t̄i). Then, since (s̄i, t̄i) ∈ Ri ∩ SCi ∩ CBRSCi,n the induction hypothesis

implies that s̄i ∈ SnS+i , and since (s̄i, t̄i) ∈ CBRSCi,n+1, that there exists some belief µn+1
i ∈

Mi(t̄i) which assign probability 1 to X−i,n+1 :=
∏

j,i X j,n+1. Furthermore, (s̄i, t̄i) ∈ Ri and

thus, that s̄i is a best reply to the marginal on S−i induced by µn+1
i , which by the induction

hypothesis puts probability one on SnS+−i. Hence, I conclude that s̄i ∈ Sn+1S+i .

For the left-hand inclusion, fix strategy s̄i ∈ Sn+1S+i and pair of conjectures µ̄1
i and µ̄n+1

i

such that: (i) µ̄1
i is as µ̄i in the initial step, (ii) µ̄n+1

i puts probability one on SnS+−i (and hence,

30I.e., in the closed ball with center µ̄1
i and radius ε.
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so does it on SkS+−i for every k = 1, . . . , n) and (iii) s̄i is a best-reply to both conjectures.

Now, use these two conjectures to define:

• A set of beliefs M̄1
i like M̄i in the initial step.

• Belief µn+1
i that puts probability one on X−i,n+1. To do so simply notice the induction

hypothesis implies for any s−i ∈ SnS+−i there exists some types t−i(s−i) such that

(s−i, t−i(s−i)) ∈ X−i,n+1. Then, for any measurable E−i ⊆ S−i × T−i set:

µn+1
i [E−i] = µ̄n+1

i [{s−i ∈ SnW−i| (s−i, t−i(s−i)) ∈ E−i}] .

Notice that finiteness of S−i guarantees that µn+1
i is well-defined, and that the fact

that µ̄n+1
i puts probability one on SnS+−i ensures that µn+1

i puts probability one on

X−i,n+1. Furthermore, it follows from monotonicity of the belief operator that µn+1
i

puts probability one on X−i,k for every k = 0, . . . , n.

Notice that s̄i is a best-reply to all conjectures derived from M̄1
i ∪{µn+1

i }. Then, let M̄i denote

the convex hull of M̄1
i ∪{µn+1

i } and pick (by completeness) type t̄i ∈ Ti such that Mi(t̄i) = M̄i.

The following three hold:

• (s̄i, t̄i) ∈ CBRSCi,k for any k = 0, . . . , n + 1. To see it, simply notice that as seen above,

µn+1
i , which is an element of Mi(t̄i), puts probability one on every Xi,k.

• (s̄i, t̄i) ∈ SCi. This is implied by M̄1
i , which is a subset of Mi(t̄i) and has non-empty

interior.
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• (s̄i, t̄i) ∈ Ri. This follows immediately from the fact that s̄i is a best-reply to the

conjectures induced by all conjectures derived from Mi(t̄i).

Thus, I conclude that (s̄i, t̄i) is strategy-type pair in Ri ∩ SCi ∩ CBRSCi,n+1 that induces s̄i.

I prove next that, indeed:

proj
Si

(Ri ∩ SCi ∩ CBRSCi) ⊆ S∞S+i ,

and that the inclusion is an equality when the ambiguous type structure is complete. For

the right-hand inclusion fix strategy-type pair (s̄i, t̄i) ∈ Ri∩SCi∩CBRSCi and simply notice

that since (s̄i, t̄i) ∈ Ri ∩WCi ∩CBRSCi,n for any n ≥ 0, the arguments above imply s̄i ∈ SnS+i

for any n ≥ 0. Thus, s̄i ∈ S∞S+i .

For the left-hand inclusion, fix strategy s̄i ∈ S∞S+i . Since, in particular, s̄i ∈ SnS+i for

any n ≥ 0, the arguments above imply that for any n ≥ 0 there exists some type tn
i ∈ Ti

such that (s̄i, tn
i ) ∈ Ri ∩ SCi ∩ CBRSCi,n. Now, let M̄i denote the closure of the convex-hull

of
∪

n≥0 Mi(tn
i ) and (using completeness) pick type t̄i ∈ Ti such that Mi(ti) = M̄i. Obviously,

s̄i is a best-reply is to every conjecture induced by the beliefs in Mi(t̄i) and t̄i is strongly

cautious and is consistent with common belief in rationality and strong cautiousness.

Thus, (s̄i, t̄i) ∈ Ri ∩ SCi ∩ CBRSCi and hence, s̄i ∈ projSi
(Ri ∩ SCi ∩ CBRSCi). �

The interpretation of parts (i) and (ii) of each theorem is analogous to that of the the-

orems in the previous section. However, the implications for the presence of Knightian

uncertainty differ. In the case of the Dekel-Fudenberg procedure, if the iteration process
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requires more than one round, then the preferences of a weakly cautious and rational

player that exhibits common belief of rationality and weak cautiousness must necessarily

display Knightian uncertainty. This is due to the fact that weak cautiousness requires

some belief with full-support in the whole set of states, and belief in the opponents’ being

rational and weakly cautious requires some belief that puts probability one on a proper

subset of the set of states. This implies that the set of beliefs of the player must necessarily

contain at least two beliefs, i.e. the Bayesian is not Bayesian. As discussed above, strongly

cautious types always represent preferences displaying Knightian uncertainty. In conse-

quence, Theorem 5 and Theorem 6 illustrate the deep connection between cautiousness

and Knightian uncertainty: in order to guarantee that strategically sophisticated players

choose according to cautious criteria, Knightian uncertainty is required to overcome the

inclusion-exclusion problem.31

My characterization makes clear that the resolution of the problem requires the stronger

notion of rationality instead of the (weaker) notion of justifiability. The reason is that as

seen above multiplicity of beliefs is needed to overcome the problem. However, only

under my notion of rationality all of these beliefs matter for the actual choice of the

player. Justifiable strategies do not share this feature and therefore cautiousness does not

provide any (higher-order) belief restrictions. The following corollary summarizes this

observation.

Corollary 2. Let G be a game. It holds that:

31At least, in those contexts in which strategic sophistication has any bite.
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(i) For any ambiguous type structure, any player i, and any strategy-type pair (si, ti), if type ti is

consistent with weak cautiousness and common belief of justifiability and weak cautiousness

and si is justifiable for ti, then si is undominated; i.e.,

proj
Si

(Ji ∩WCi ∩ CBJWCi) ⊆ S1
i .

(ii) For any player i and any strategy si, if si is undominated then there exist a complete

ambiguous type structure T and a type ti consistent with weak cautiousness and common

belief of justifiability and weak cautiousness for which si is justifiable; i.e.,

S1
i ⊆ proj

Si

(Ji ∩WCi ∩ CBJWCi).

The same holds if weak is replaced with strong (and SC replaces WC) everywhere.

Remark 1. Without formally proving this corollary, it is easy to see that the first inclusion holds

trivially. The second inclusion holds, because one can always add more beliefs (either a full support

one or a set of beliefs with non-empty interior) while keeping the same strategy justifiable.

1.5. Conclusions

In this chapter I provide reasoning-based characterizations of some solution concepts in

game theory. Whereas most of the literature focuses on the case that a player in a strategic

setting is Bayesian and maximizes his or her subjective expected utility, I extend this to
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the case of Knightian uncertainty. I formalize this idea by allowing players to have a set

of beliefs instead of having a unique belief. Within this setting, I explore four natural

extensions of the Bayesian case along two dimensions:

1. Choice: How does a player choose a strategy if she has a set of beliefs?

(i) Rationality: Her choice needs to be a best-reply to all beliefs in her set.

(ii) Justifiability: Her choice needs to be a best-reply to at least one beliefs in her set.

2. Reasoning: How does a player with a set of beliefs reason about the choice of other

players?

(iii) Belief: She believes an event E if at least one belief in her set assigns probability

one to this event.

(iv) Full belief: She fully believes an event E if all beliefs in her set assigns probability

one to this event.

My main result combines these assumptions about choices and (higher-order) reason-

ing. Three of these combinations result in a characterization that is behaviorally equivalent

to rationalizability: rationality and common belief of rationality (Theorem 1), rationality

and common full belief of rationality (Theorem 3), and justifiability and common full be-

lief of justifiability (Theorem 4). The behavioral implications of justifiability and common

belief of justifiability are only undomindated strategies (Theorem 2). Thus, the behavioral

implications of strategic Knightian uncertainty are standard solutions concepts in game
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theory. Since I consider the extreme cases of existential and universal quantifiers along

both dimensions, there is an interesting open question of what the behavioral implications

are for intermediate cases. I leave this question open for further research.

My framework of strategic Knightian uncertainty allows for much more flexibility than

a Bayesian framework. I make use of this flexibility to overcome the inclusion-exclusion

problem of Samuelson (1992), which states that strategic reasoning is in conflict with

cautious behavior in a Bayesian setting. Since my framework allows for multiple beliefs

and rationality requires that all of these beliefs matter, the problem does not arise. Using

two similar, but distinct, notions of cautiousness I use Knightian uncertainty to provide

a foundation for the Dekel-Fudenberg procedure (Theorem 5) and strict rationalizability

(Theorem 6). Both of these characterizations are conceptually similar to∆-rationalizability,

an umbrella solution concept introduced by Battigalli and Siniscalchi (2003) in a Bayesian

setting. Extending such a general characterization to my case of Knightian uncertainty is

also left for future research.
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CHAPTER 2

Strategic Cautiousness as an Expression of

Robustness to Ambiguity1

“Zwey Seelen wohnen, ach! in meiner Brust”

Faust by Johann Wolfgang von Goethe (1841, p.56)

1This chapter was developed together with Peio Zuazo-Garin and the results were published in Ziegler
and Zuazo-Garin (2020). As explained in Footnote 1 of Chapter 1 the grammatical singular form will be
used throughout the dissertation.
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2.1. Introduction

Economic modeling often invokes the avoidance of weakly dominated strategies as a

criterion for equilibrium selection.2 That is, players should choose admissible strategies.

The rationale goes back to at least Wald (1939) where he addresses the foundations of

statistics in terms of a single decision making problem. Soon after, economists started to

use the same criterion, because as Arrow (1951, p. 429) states such rules are “extremely

reasonable.” In the context of game theory, Luce and Raiffa (1957) promote “[f]irst [...]

discarding many of the inadmissible strategies [and then using] iterative procedures.”

Harsanyi (1962) is among the first to apply this reasoning to bargaining.3 Further appli-

cations were considered by Moulin (1979). More recently Dekel and Fudenberg (1990, p.

245) use the “iterated deletion of weakly dominated strategies since it clearly incorporates

certain intuitive objectives of rationality postulates.” A formal argument for admissible

strategies is due to Pearce (1984). Intuitively, Pearce’s result says a decision maker would

choose an admissible strategy if and only if she is cautiousness, which dictates that players

favor strategies that, ceteris paribus, hedge against unexpected behavior. That is, she

deems all eventualities as possible.

However, Samuelson’s (1992) classic analysis illustrates that strategic reasoning is in

conflict with the criterion of cautiousness. If players are modeled as subjective expected

2See, for example, Kohlberg and Mertens (1986), Palfrey and Srivastava (1991), Feddersen and Pesendor-
fer (1997), or Sobel (2017, 2019).

3Harsanyi describes the procedure as corresponding to mutual knowledge of admissibility, but it is clear
from his exposition that he had in mind common knowledge of admissibility.
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utility maximizers, the clash seems inescapable: Strategic reasoning requires each player

i’s beliefs to assign zero probability to some of the strategies of i’s, while cautiousness

requires player i’s decision to be sensitive to these strategies that receive zero probability

(and are therefore of negligible importance for the maximization problem). Thus, the

seemingly mutually exclusive nature of strategic reasoning and cautiousness requires

clarification. Such an understanding is desirable in particular in scenarios where behavior

is likely to be reasoning-based and cautiousness plays a role.

This chapter proposes a new take on this longstanding problem by suggesting a novel

theoretical foundation for the interplay between strategic reasoning and cautiousness. The

analysis by Samuelson (1992) clearly shows that two ingredients are necessary to overcome

this tension: First, multiple beliefs are needed to account for epistemic conditions that

would be mutually excluding if required to be satisfied by a single belief. Second, the

best-reply needs to be sensitive to all these beliefs. I achieve this within my framework

by augmenting the underlying standard decision-theoretic foundation for each player by

allowing for incomplete preferences à la Bewley (2002) where: (i) Each player’s strategic

uncertainty is represented by a possibly non-singleton set of beliefs thus allowing for

ambiguity, and (ii) a rational player chooses a strategy that is a best-reply to every belief in

her set, so that the resulting choice is robust to the possible ambiguity faced by the player.4

Under this set-up, and inspired by Brandenburger et al. (2008), I say that a player assumes

certain behavior by her opponents if at least one of the beliefs in her set has full-support

4Due to incompleteness such a strategy might not exist for a given set of beliefs. In such case I also say
that the player is not rational; see Proposition 1 and the surrounding discussion.
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on the collection of states representing such behavior.5 Consequently, the introduction

of ambiguity and the requirement of robustness give great flexibility: It is possible for a

player to assume certain behavior and, simultaneously, assume certain more restrictive

behavior. If the player is also rational, her choice needs to be a best-reply to both of these

beliefs. Hence, in particular, the tension between strategic reasoning and cautiousness

is solved: A player can be strategically sophisticated by having one belief that assigns

zero probability to her opponents playing dominated strategies, and at the same time

cautious by having another belief that assigns positive probability to every strategy of her

opponents. Thus, my model overcomes the problem as identified by Samuelson (1992)

since it allows precisely for the two necessary ingredients.

Based on the above, I build a framework that provides reasoning-based foundations

for iterated admissibility—the iterated elimination of weakly dominated strategies. In

Theorem 7 I show that, when type structures are belief-complete (roughly speaking, rich

enough to capture any possible belief hierarchy), iterated admissibility characterizes the

behavioral implications of rationality, cautiousness, and common assumption thereof.

From my characterization, it is easy to see that the foundations of iterated admissibility

necessarily require the presence of ambiguity whenever strategic reasoning has any bite.

If the elimination procedure consists of multiple rounds, the set of ambiguous beliefs

needs to contain a specific belief with full-support on the set of opponents’ strategies

that survive each round. Theorem 8 provides the analysis for the relaxation of belief-

5Thus, in addition to what I call belief in Chapter 1, here I add a full support restriction.
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completeness and shows that, in this case, it is self-admissible sets à la Brandenburger

et al. (2008) which characterize the behavioral implications of rationality, cautiousness

and common assumption thereof.

The literature studying the conflict between strategic reasoning and cautiousness is

epitomized by the seminal paper by Brandenburger et al. (2008), who shed light on the

question by building upon the lexicographic probability system approach by Blume et al.

(1991).6 Lexicographic probability systems represent the uncertainty faced by a deci-

sion maker whose preferences depart from standard Bayesian preferences by allowing

violations of the continuity axiom. In this setting, Brandenburger et al. (2008) provide

reasoning-based foundations for finitely many iterations of weakly dominated strategy

elimination based on rationality and finite-order assumption of rationality, but also present

a celebrated impossibility result: under some standard technical conditions and generi-

cally in all games, common assumption of rationality cannot be satisfied. This negative

result has spurred a line of research concerned with obtaining sound epistemic founda-

tions for iterated admissibility. Keisler and Lee (2015) and Yang (2015) propose answers by

tweaking topological properties of the modeling of higher-order beliefs and the notion of

assumption, respectively, while Lee (2016) obtains foundations by proposing a modifica-

tion in the definition of coherence.7 Catonini and De Vito (2018) also provide foundations

by introducing a weaker notion of the likeliness-ordering of events that characterizes the

lexicographic probability system, and via an alternative definition of cautiousness that

6Early contributions along the same lines include, for example, Brandenburger (1992) and Stahl (1995).
7Similar to Epstein and Wang (1996), coherency is imposed on the preferences directly, not only on the

beliefs that represent the preferences.
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restricts attention to the payoff-relevant component of the states. In a slightly different

direction, Heifetz, Meier, and Schipper (2019) propose a new solution concept, comprehen-

sive rationalizability, that coincides with iterated admissibility in many settings and admits

epistemic foundations. Within a standard Bayesian decision-theoretic model, Barelli and

Galanis (2013) provide a characterization for iterated admissibility by introducing an ex-

ogenous ‘tie breaking’ criterion. Robustness to ambiguity is studied by Stauber (2011,

2014) with a different interpretation from ours.

My approach can be regarded as complementary to the lexicographic probability

system approach as standard Bayesian preferences are also abandoned by dropping com-

pleteness instead of continuity. Both these relaxations allow for multiple beliefs, but while

the former requires a specific order, my model drops the order altogether and allows for

multiplicity directly. However, apart from the transparent link between cautiousness

and robustness to ambiguity that my framework allows for, the nice structure of the sets

of ambiguous beliefs representing incomplete preferences has some additional advan-

tages. First, it is easy to show that rationality and common assumption of rationality

is a non-empty event and thus, that iterated admissibility is properly founded for all

games. Second, the definitions and formalism involved do not require departures from

the canonical definition of the objects involved: (i) The modeling of higher-order beliefs

(i.e., the type structures employed), including the definition of coherence, and the version

of assumption that I rely on are natural extensions of their counterparts in the realm of

standard Bayesian preferences; and (ii) the notion of cautiousness invoked in my theo-
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rems is not necessarily restricted to environments where the sets of states have a specific

structure (e.g. games).8 Finally, the presence of ambiguity via incomplete preferences has

been shown to be empirically testable by recent work by Cettolin and Riedl (2019).

2.2. Non-technical overview

2.2.1. Examples

To illustrate the intuition behind the usual tension between rationality and cautious be-

havior and to show how my approach avoids this issue, I present two examples.

Example 1. Consider a two player game with the following payoffmatrix:9

0 2 1 0
1 1 0 1

Bob
L R

Ann
T

D

Clearly, no action is strictly dominated for either player, so (standard) rationalizability

predicts {T,D} × {L,R}. However, R is weakly dominated by L. Deleting R will therefore

make D strictly dominated in the reduced game. Thus, iterated admissibility has a unique

prediction in this game: (T,L).

Now assume that one wishes to study how players themselves reason about this

game. If Bob is rational and cautious he should play L. Suppose Ann is cautious as well.

8Though they are sensitive to topological specifications.
9This is the leading example of Brandenburger et al. (2008) and was introduced by Samuelson (1992).
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Therefore her belief has to put positive probability on Bob playing L and on Bob playing

R. However, if Ann believes that Bob is rational and cautious, then she should rule out

Bob playing R. This is the inclusion-exclusion problem as identified by Samuelson (1992).

On the one hand, Ann should include R in her belief because she is cautious. On the other

hand, she should exclude R because she believes that Bob is rational and cautious. ⋄
In my framework there is more flexibility because players are not Bayesian, but are

allowed to have a (potentially non-singleton) set of beliefs. To see how this relaxation

avoids the tension just described, I provide a slightly more elaborate example, which also

explores the reasoning of the players more explicitly.

Example 2. Again, there are two players, Ann and Bob, who play the following game:

0 2 0 2 1 2 3 2
1 4 1 0 1 2 1 0
1 0 1 4 1 2 1 0

Bob
A B C D

Ann

H

M

L

Now suppose that each player faces ambiguity (as described by Bewley, 2002) about

the strategy choice of their opponent. That is, neither player has a unique belief about the

opponent’s strategy choice, but rather each has a set of beliefs. In particular, suppose that

Ann has a convex closed set of beliefs described by two extreme points. Her first belief

is uniform across all of Bob’s strategies, µ1
A(sB) = 1/4 for sB = A,B,C,D, and her second

(extreme) belief is uniform across A, B, and C only, µ2
A(sB) = 1/3 for sB = A,B,C. Similarly,

Bob faces uncertainty about Ann’s choice. Consider the following set of beliefs for Bob,
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which also has two extreme beliefs. The first is uniform across all of Ann’s strategies,

µ1
B(sA) = 1/3 for sA = H,M,L, and the second belief assigns equal probability to H and M,

µ2
B(H) = µ2

B(M) = 1/2.

What strategies are rational for each player given their beliefs? Preferences à la Bewley

(2002) are incomplete, and for incomplete preferences there is no obvious definition of

rationality: Optimality is a stronger requirement than maximality for incomplete orders.

As stated in the introduction, the solution to the inclusion-exclusion problem requires that

a best-reply to be sensitive to all beliefs. Thus, I identify rationality with optimality so

that a rational strategy is a best-reply to all beliefs, i.e. the choice needs to be robust to the

ambiguity faced by the player. In this example this implies that Ann will not rationally

choose L since it is not a best-reply that is robust to the ambiguity that she faces. H and

M, on the other hand, are best-replies to all beliefs and are therefore rational choices for

Ann. For Bob, only D is not rational because it is not a best-reply to any of his beliefs. The

three other strategies A, B, and C are rational as they are best-replies to all of his beliefs.

Thus, with these sets of beliefs the prediction of the model would correspond to iterated

admissibility. This is not a coincidence and foreshadows my results on the characterization

of iterated admissibility, explained in more detail below, where the strategic reasoning is

also made explicit. ⋄
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2.2.2. Heuristic treatment of strategic reasoning

In the previous examplesit can be seen that a set of beliefs enables strategic reasoning and

cautiousness to be incorporated. To study games in general, players need to be allowed to

reason about the reasoning process of other players too. This necessitates the formalizing

of infinite sequences of the following form:

a1: Ann is rational and cautions b1: Bob is rational and cautions
a2: a1 holds and Ann assumes b1 b2: b1 holds and Bob assumes a1

a3: a1 holds and Ann assumes b1 & b2 b2: b1 holds and Bob assumes a1 & a2

. . . . . .

If this infinite sequence holds, I say that there is rationality, cautiousness, and common

assumption thereof (RCCARC).

To study these infinite sequences and to see which strategies are played if they hold,

(epistemic) types need to be introduced for each player. Accordingly, consider TA and

TB as type spaces for Ann and Bob, respectively. Usually, each of Ann’s type tA ∈ TA

is associated with a belief about Bob’s strategy and type, i.e. a probability distribution

over SB × TB. However, the idea here is to model players who face ambiguity, so each

type is associated with a (closed, and convex) set of beliefs about SB × TB. Thus, for a

strategy-type pair of Ann (sA, tA), strategy sA is said to be rational if sA is a best-reply to all

of the beliefs associated with tA. Whether a player is cautious depends only on her beliefs:

she thinks everything is possible. That is, one of her beliefs has full support on the full

space of uncertainty. Thus, I say that Ann’s type tA is cautious if there exists a belief in the

associated set of beliefs which has full support on SB × TB.
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SB

TB µA

Figure 2.1: Cautiousness

For example, consider a type of Ann’s, tA, which has only a singleton set of beliefs {µA}

with support as depicted in Figure 2.1. For such a cautious type, the question arises of

which strategies are rational. Accordingly, consider the marginal of µA on Bob’s strategy

space SB. This marginal has full support on SB and if Ann is rational, her rational choice

has to be a best-reply to this marginal. It then follows from Pearce (1984) that she must

choose a strategy which is not weakly dominated.

SB

TB

µ1
A µ2

A µ3
A
µ4

A
µ5

A
µ6

A...

Figure 2.2: Rationality, cautiousness, and common assumption thereof.

Now, it is possible to study the infinite sequences described above. In this case the

picture that emerges looks like Figure 2.2. Here the small area with solid boundary
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corresponds to all strategy-type combinations of Bob satisfying RCCARC. Now, set a

strategy-type combination (sA, tA) for Ann. Does this type correspond to RCCARC for

Ann? i.e. does the type satisfy the sequence a1, a2, . . .? It is already known that if a1 holds

there needs to be a belief in the associated set of beliefs which has support as µ1
A. Next, it

is considered that Ann assumes b1. This rules out some of Bob’s strategy-type pairs, but

also requires tA to have a belief which has full support on the remaining pairs. Thus, in

the associated set of beliefs there needs to a belief µ2
A. In the next step, Ann is considered

to assume b1 and b2. Similar reasoning applies and there needs to be a belief like µ3
A in the

set of beliefs corresponding to tA. This procedure can now be iterated (as indicated in the

picture) to verify whether the type tA corresponds to RCCARC for Ann. Only finite games

are considered here so at some stage n this iteration no longer rules out any strategies for

Bob. However, it might be the case that at every step there are still some types of Bob’s that

need to be ruled out. In the worst case there needs to be a different belief for each iteration

as the support of each belief is changing over the course of the sequence. However, this

does not cause a problem. For each type the set of beliefs could be potentially very large.10

Since such large sets of beliefs are within the framework under consideration, the event

RCCARC is not empty. Thus I do not get a negative result as Brandenburger et al. (2008)

find in a different framework. To illustrate more specifically how this analysis works,

types are added explicitly for the example considered above.

10That is, not finitely generated sets.
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Example 2 (continuing from p. 80). Consider the following type space Ti =
{
t0
i , t

1
i , t

2
i , t

3
i

}
for

i = A,B and define (with some abuse of notation) the following beliefs on SB × TB:

µ1
A(sB, tB) = 1/16, for all (sB, tB) ∈ SB × TB,

µ2
A(sB, tB) = 1/9, for all (sB, tB) ∈ {A,B,C} × {t1

B, t
2
B, t

3
B}, and

µ3
A(sB, t3

B) = 1/3, for all sB ∈ {A,B,C}.

Similarly, define the following beliefs on SA × TA:

µ1
B(sA, tA) = 1/12 for all (sA, tA) ∈ SA × TA,

µ2
B(sA, t1

A) = 1/6, for all sA ∈ SA, µ
2
B(sA, tA) = 1/8, for all (sA, tA) ∈ {H,M} × {t2

A, t
3
A}, and

µ3
B(sA, t3

A) = 1/2, for all sA ∈ {H,M}.

Given these beliefs, define the set of beliefs Mi(ti) for each type as follows: for i = A,B set

Mi(t0
i ) =
{
µ3

i

}
, Mi(t1

i ) =
{
µ1

i

}
, Mi(t2

i ) is the convex hull of µ1
i and µ2

i , and Mi(t3
i ) is the convex

hull of µ1
i , µ2

i , and µ3
i

Now, it is possible to analyze the infinite sequences a1, a2, . . . and b1, b2, . . . introduced

above. a1 is the event that Ann is rational and cautious, so I have to collect all strategy-type

pairs which satisfy the full-support requirement (cautiousness) and the requirement that

the strategy is a best-reply to all beliefs of the given type (rationality). Here, all types but

t0
i have at least one belief with full support on S−i×T−i. Together with rationality this gives
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that the following strategy-type pairs correspond to a1: SA×{t1
A}∪{H,M}×{t2

A, t
3
A}. Similarly,

b1 corresponds to {A,B,C} × {t1
B, t

2
B, t

3
B}. So both a1 and b1 rule out some strategy-type pairs

and in particular the weakly dominated strategy D is ruled out. Next, to get to a2, I want

to find all types of Ann that assume b1. That is, all types of Ann that have at least one

belief with full-support on {A,B,C} × {t1
B, t

2
B, t

3
B}. Only t2

A and t3
A satisfy this requirement,

leaving {H,M} × {t2
A, t

3
A} corresponding to a2. For Bob, it emerges that b2 corresponds to

{A,B,C} × {t2
B, t

3
B}. Again, note that in this step the interactive reasoning leads to the ruling

out of L, which is weakly dominated after elimination of D. In the next step (i.e. a3 and b3),

types t2
i are ruled out, but no more strategies. This construction, however, would lead to

the conclusion that a4 and b4 do not correspond to any strategy-type pairs. The solution,

and this is the main idea of how to prove one direction of Theorem 7, is to add more types.

For each iteration add another type with full support on the previous rounds (similar to

types t3
i ). This gives an infinite (but countable) number of types and only the “limiting”

type corresponds to RCCARC. This argument shows that the illustration in Figure 2.2 is

accurate in the sense that for higher order iterations the supported strategies are constant,

but only types are removed in each round.

Theorem 8 provides a direct (and hence different) way to construct finite type structures

so that for strategy-type pairs satisfying RCCARC the strategies of iterated admissibility

(or these of any other self-admissible set) are obtained. ⋄
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2.3. Preliminaries

This section presents the main concepts used in my analyis. The object of study is the

inclusion-exclusion problem inherent in the iterated elimination of weakly dominated

strategies raised by Samuelson (1992). Thus, Subsection 2.3.1 recalls the formalization

of strategic-form games, iterated admissibility, and self-admissible sets (Brandenburger

et al., 2008). Subsection 2.3.2 introduces the relevant definitions of rationality and the

epistemic objects.11

2.3.1. Games and iterated strategy elimination

A game consists of a tuple G := ⟨I, (Si,ui)i∈I⟩ where I is a finite set of players, and for each

player i there is a finite set of (pure) strategies Si and a utility function ui : S → R, where

S :=
∏

i∈I Si denotes the set of strategy profiles. For each player i a randomization of

own strategies σi ∈ ∆(Si) is referred to as a mixed strategy,12 and a probability measure

µi ∈ ∆ (S−i), where S−i :=
∏

j,i S j, as a conjecture. When necessary, with some abuse of

notation, I use si to refer to the degenerate mixed strategy that assigns probability one

to si. Each conjecture µi and possibly mixed strategy σi naturally induce expected utility

Ui(µi; σi) and based on this, each player i’s best-reply correspondence is defined by assigning

11Since my analysis models players as individual decision makers whose beliefs may display ambiguity
via incomplete preferences, Subsection 1.3.2 and Subsection 1.3.3 illustrate the underlying decision theory
and how to envision games as decision problems, respectively.

12Recall that for any topological space X, as usual and as in Chapter 1, ∆ (X) denotes the set of probability
measures on the Borel σ-algebra of X.
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to each conjecture µi the subset of pure strategies BRi(µi) that maximize its corresponding

expected utility.13

Following the duality results of Pearce (1984), I use the best-reply correspondence

directly to define iterated admissibility whose foundations are then studied in Section 2.4.

Strategy si is iteratively admissible if it survives the iterated elimination of weakly dominated

strategies; i.e., if it is not weakly dominated given strategy profiles S−i × Si, it is not

weakly dominated given strategy profiles W1
−i×W1

i consisting only of strategies surviving

the first elimination round, etc. Thus, formally, strategy si is iteratively admissible if

si ∈W∞
i :=

∩
n≥0 Wn

i , where W0
i := Si and for any n ∈ N,

Wn
i :=


si ∈Wn−1

i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ ∆(S−i) such that:

(i) suppµi =
∏

j,i Wn−1
j ,

(ii) si ∈ BRi(µi)


.

Finally, that set of strategy profiles Q =
∏

i∈I Qi is said to be a self-admissible set (SAS) if

for every player i the following three conditions are satisfied:

(i) No si ∈ Qi is weakly dominated given S−i × Si.

(ii) No si ∈ Qi is weakly dominated given Q−i × Si.

(iii) For every si ∈ Qi and every mixed strategy σi such that Ui(s−i; σi) = Ui(s−i; si) for

every s−i, it holds that supp σi ⊆ Qi.

13That is, given conjecture µi the expected utility is Ui(µi; σi) :=
∑

(s−i;si)∈S µi[s−i] · σi[si] · ui(s−i; si) for each
possibly mixed strategy σi, and the set of best-replies is BRi(µi) := arg maxsi∈Si

Ui(µi; si).
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The connection between the notions of self-admissibility and iterated admissibility is im-

mediately apparent: the set of iteratively admissible strategy profiles is a self-admissible

set of game G, but in general there are other self-admissible sets. For details see Bran-

denburger and Friedenberg (2010), who also study properties of self-admissible sets for

specific (classes of) games.

2.3.2. Behavioral and epistemic conditions

As in Subsection 1.3.4, I extend the definition of (standard Bayesian) type structures so to

be able to deal with the possibility of ambiguity. Recall that an ambiguous type structure

consists of a list T := ⟨Ti,Mi⟩i∈I where for each player i there is:14

(i) A set of (ambiguous) types Ti.

(ii) An ambiguous belief map Mi : Ti →Mi(S−i × T−i), where T−i :=
∏

j,i T j, that associates

each type with ambiguous beliefs on opponents’ strategy-type pairs.

With such a type structure, the analysis of each player i’s reasoning is focused on

strategy-type pairs (si, ti), which specify both player i’s choice, and as described above,

her ambiguous beliefs on her opponents’ choices, her ambiguous beliefs on her opponents’

first-order ambiguous beliefs, etc.

Next, I first recall the notion of rationality that I employ. Second, I introduce my formal-

ization of cautiousness as a manifestation of ambiguity. Finally, I define the appropriate

14I assume each Ti to be compact and metrizable and each Mi, continuous. See Footnote 18 in Chapter 1.
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tool to impose restrictions on higher-order beliefs, which is a generalization to Bewley

preferences of the usual notion of full-support belief for standard Bayesian preferences.

Rationality

I say that strategy si is rational for type ti if si is a best-reply to every first-order ambiguous

belief induced by ti; thus, the set of strategy-type pairs in which player i is rational is

formalized as follows:

Ri :=

(si, ti) ∈ Si × Ti

∣∣∣∣∣∣∣∣si ∈
∩

µi∈Mi(ti)

BRi(marg
S−i

µi)

 .

I discuss properties of this notion of rationality in more detail in Subsection 1.3.5. However,

I want to stress that this notion of rationality also incorporates the requirement that each

player does have a rational strategy available. If this is not the case, which is possible due

to incompleteness, a player will be irrational.

Cautiousness and ambiguity

I next argue that cautiousness, intuitively thought of as the decision maker considering

every state of the world when deciding which choice is best, can be interpreted as a product

of ambiguity in the sense that types that exhibit cautiousness tend to represent preferences

that also display ambiguity. I first formalize the notion of cautiousness that takes part in

the characterizations result in Section 2.4 and then discuss its link to ambiguity.15

15This defintion is equivalent to what I call weak cautiousness in Definition 1. But since strong cautiousness
does not play a role in this chapter, I omit the qualifier. I note that all of the following analyses could have
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Definition 2 (Cautiousness). Let G be a game and T , an ambiguous type structure. Then,

for any player i and any type ti I say that type ti is cautious if at least one belief in Mi(ti) has

full-support on S−i × T−i. I denote the set of player i’s strategy-type pairs in which the type is

cautious by Ci.

If at an intuitive level cautiousness is seen as the idea that a decision maker takes every

possible contingency into account, then that is present in this definition. Cautiousness

requires, loosely speaking, that every state is taken into account by the decision maker.16

The link with ambiguity is easy to see. In principle, it is possible for a type to display

cautiousness but not ambiguity. This is the case of every type whose set of ambiguous

beliefs consists of a single belief with full-support on S−i × T−i as in Figure 2.1. However,

if in addition to cautiousness the type also exhibits some form of strategic sophistication

in the sense of having a (different) belief that rules out some proper subset of S−i × T−i,

then, necessarily, the type displays ambiguity: The corresponding ambiguous beliefs a

fortiori contain at least two different beliefs. Hence, the introduction of ambiguity not

only enables strategic reasoning and cautiousness to be made compatible, but is indeed,

necessary when strategic reasoning has any bite.

been carried out employing a slightly weaker notion of cautiousness than the one introduced in Definition 2.
In principle it would suffice to require full support on S−i rather than S−i ×T−i. My reason for opting for the
stronger notion is twofold: (i) It does not prevent my characterization from dispensing with impossibility
issues à la Brandenburger et al. (2008) (see Subsection 2.4.3), so it is clear that it is not modifications in the
notion of cautiousness that enable for this to be achieved; and (ii) since it does not apply only to state spaces
with product structure, it has a more general decision-theoretic foundation.

16Cautiousness is also present in the analysis by Brandenburger et al. (2008). However, there it is
incorporated into the definition of rationality. I find it more transparent to explicitly define the event when
a player is cautious.
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Assumption

Hereafter I refer to measurable subsets E ⊆ S× T as events. A standard Bayesian decision

maker is said to assume event E when the unique subjective belief induced by her preference

has full-support on E.17 Some changes are in order if this idea is to be extended to Bewley

preferences: The set of ambiguous beliefs may contain beliefs that have different supports.

I say that a Bewleyian decision maker assumes event E when at least one belief in her set

of ambiguous beliefs has full-support on E. Given the inclusion-exclusion problem, it is

natural to consider such a weak version of assumption. As discussed in Section 2.1, it is

necessary to have multiple beliefs which have potentially different supports to resolve the

tension between strategic reasoning and cautiousness.

Definition 3 (Assumption). Let G be a game and T , an ambiguous type structure. For any

player i, any type ti and any event E−i ⊆ S−i × T−i I say that type ti assumes E−i if at least one

belief in Mi(ti) has full-support on the topological closure of E−i. I denote the set of player i’s

strategy-type pairs in which the type assumes E−i by Ai(E−i).

Remark 2. Cautiousness as defined in Definition 2 can be restated in terms of assumption: A type

ti is cautious if it assumes S−i × T−i.
17Technically, I am considering the collapse of the notion of assumption (see Brandenburger et al., 2008 and

Dekel, Friedenberg, and Siniscalchi, 2016) under the lexicographic probability system when the preferences
satisfy continuity and the corresponding lexicographic probability system thus collapses to a single belief.
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2.4. Iterated admissibility and ambiguous types

This section presents the main results of the chapter. Based on the observation made

in the previous section that the presence of ambiguity can reconcile strategic reasoning

with cautiousness, I provide foundations for iterated admissibility and self-admissibility

in terms of rationality, cautiousness, and certain higher-order assumption constraints. I

provide these foundations in Subsection 2.4.1. Then, in Subsection 2.4.2, I discuss the link

between iterated assumption and ambiguity to resolve the inclusion-exclusion problem.

Finally, in Subsection 2.4.3 I review the seminal impossibility result due to Brandenburger

et al. (2008) within the approach in terms of lexicographic probability systems, recall some

of the responses in the related literature, and explore the connection with my results.

2.4.1. Epistemic foundation

As mentioned above, the epistemic foundation of iterated admissibility is to be formulated

in terms of rationality, cautiousness, and higher-order assumption restrictions. The set

of strategy-type pairs in which player i exhibits common assumption in rationality and

cautiousness is given by CARCi :=
∩

n≥0 CARCi,n, where each CARCi,n is defined recursively
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by setting:

CARCi,0 := Si × Ti,

CARCi,n := CARCi,n−1 ∩ Ai(
∏

j,i

R j ∩ C j ∩ CARC j,n−1),

for every n ∈ N. That is, CARCi brings together all the strategy-type pairs (si, ti) where

player i’s type ti assumes that every player j , i is rational, cautious, and assumes that

every player j , i assumes that every player k , j is rational, cautious, and so on. Based

on the above:18

Theorem 7 (Foundation of iterated admissibility). Let G be a game. The following holds:

(i) For any complete ambiguous type structure, any player i and any strategy-type pair (si, ti),

if type ti is consistent with cautiousness and common assumption of rationality and cau-

tiousness and si is rational for ti, then si is iteratively admissible; i.e.,

proj
Si

(Ri ∩ Ci ∩ CARCi) ⊆W∞
i .

(ii) For any player i and any strategy si, if si is iteratively admissible then there exist a com-

plete ambiguous type structure T and a type ti consistent with cautiousness and common

18The theorem is stated and holds only for a complete type structure because the assumption operator is
not monotone. This is similar to, for example, assumption in Brandenburger et al. (2008) or strong belief
of Battigalli and Siniscalchi (2002). An example showing why completeness is needed is available upon
request.
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assumption of rationality and cautiousness for which si is rational; i.e.,

W∞
i ⊆ proj

Si

(Ri ∩ Ci ∩ CARCi).

As an intermediate step, which is of interest by itself I first prove the result for every

finite iteration.

Proposition 2. Let G be a game and T a complete ambiguous type structure. For any n ∈N and

every player i the following holds:

proj
Si

(Ri ∩ Ci ∩ CARCi,n) =Wn+1
i .

Proof. For the sake of convenience, for each player i define Xi,0 := Si×Ti and for any n ∈ N,

Xi,n := Ri ∩ Ci ∩ CARCi,n−1. Now, I proceed by induction on n:

Initial Step (n = 0). For the right-hand inclusion, set strategy-type pair (s̄i, t̄i) ∈ Ri ∩ Ci

and denote M̄i = Mi(t̄i). Then, since t̄i is cautious there exists a belief µ1
i ∈ M̄i whose

support is S−i × T−i, and since (s̄i, t̄i) ∈ Ri it follows that s̄i is a best-reply for margS−i
µ1

i .

Thus, µ̄1
i := margS−i

µ1
i is a conjecture in with full-support on S−i for which s̄i is a best-reply.

Hence, s̄i ∈W1
i .

For the left-hand inclusion, set strategy s̄i ∈ W1
i and conjecture µ̄i with full-support

on S−i for which s̄i is a best-reply. Then, take arbitrary full-support belief ηi ∈ ∆(T−i) and

set µ1
i := µ̄i × ηi and M̄i := {µ1

i }. Since T is complete there exists a type t̄i ∈ Ti such that
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Mi(t̄i) = M̄i. Since µ1
i has full-support on S−i × T−i it holds that t̄i is cautious, and hence,

that (s̄i, t̄i) ∈ Ci, and as s̄i is a best-reply to the marginal on S−i induced by the unique belief

in Mi(t̄i) it follows that (s̄i, t̄i) ∈ Ri. Thus, it can be concluded that (s̄i, t̄i) is a strategy-type

pair in Ri ∩ Ci that induces s̄i.

Inductive Step. Suppose that n ≥ 0 is such that the claim holds. Next, I verify it holds for

n + 1. For the right-hand inclusion, set strategy-type pair (s̄i, t̄i) ∈ Ri ∩ Ci ∩ CARCi,n+1 and

denote M̄i := Mi(t̄i). Then, since (s̄i, t̄i) ∈ Ri ∩ Ci ∩ CARCi,n it is known from the induction

hypothesis that s̄i ∈ Wn+1
i , and since (s̄i, t̄i) ∈ Ri ∩ CARCi,n+1 there must exist a belief

µn+1
i ∈ M̄i whose support is the closure of X−i,n+1 :=

∏
j,i X j,n+1 and whose marginal on S−i

admits s̄i as a best-reply. It follows from the induction hypothesis and completeness that

the support of µ̄n+1
i := margS−i

µn+1
i is Wn+1

−i and hence, it can be concluded that s̄i ∈Wn+2
i .

For the left-hand inclusion, set strategy s̄i ∈Wn+2
i and family of conjectures {µ̄k

i }n+2
k=1 such

that for each k = 1, . . . , n+ 2: (i) µ̄k
i has full-support on Wk−1

−i , and (ii) s̄i is a best-reply to µ̄k
i .

Now, set arbitrary k = 0, . . . , n+ 1 and for any player j , i and any strategy s j ∈Wk
j define:

Y j,k(s j) := proj
T j

(
{s j} × T j ∩ X j,k

)
,

which is known from the induction hypothesis to be non-empty. It is also known from

the induction hypothesis that {Y j,k(s j)|s j ∈ Wk
j } is a finite cover of projT j

(X j,k). Now, for

each s−i ∈Wk
−i pick arbitrary belief ηk

i (s−i) ∈ ∆(
∏

j,i Y j,k(s j)) whose support is the closure of
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∏
j,i Y j,k(s j), and define belief µk

i in ∆(S−i × T−i) as follows:

µk
i [E] :=

∑
s−i∈Wk−1

−i

µ̄k+1
i [s−i] · ηk

i (s−i)

E ∩∏
j,i

{s j} × Y j,k(s j)

 .
Obviously, µk

i is well-defined and its support is exactly the closure of X−i,k :=
∏

j,i X j,k.19

Notice in addition that the marginal of µk
i on S−i is precisely µ̄k+1

i and therefore s̄i is a

best-reply to µk
i . Then, let M̄i be the convex hull of {µk

i }n+1
k=0 and pick type t̄i ∈ Ti such that

Mi(t̄i) = M̄i. Clearly, the following two hold:

• (s̄i, t̄i) ∈ Ci ∩ CARCi,k for any k = 0, . . . , n + 1. To see this, simply note that for any

k = 0, . . . , n + 1, it holds that µk
i ∈ Mi(t̄i) = M̄i. Then, the claim is proven since (as

seen above) the support of µk
i is exactly the closure of X−i,k.

• (s̄i, t̄i) ∈ Ri. This follows immediately from—as seen above—s̄i being a best-reply to

the conjecture induced by each belief in {µk
i }n+1

k=0 and thus, also to each belief in Mi(t̄i).

Thus, it can be concluded that (s̄i, t̄i) is a strategy-type pair in Ri ∩ Ci ∩ CARCi,n+1 that

induces s̄i. �

Now, the proof makes use of Proposition 2.

Proof of Theorem 7. For the right-hand inclusion set strategy-type pair (s̄i, t̄i) ∈ Ri ∩ Ci ∩

CARCi and simply notice that since (s̄i, t̄i) ∈ Ri ∩ Ci ∩ CARCi,n for any n ≥ 0, Proposition 2

reveals that s̄i ∈Wn
i for any n ≥ 1. Thus, s̄i ∈W∞

i .

19For the latter, simply note that for any (s−i, t−i), µk
i [N] > 0 for any neighborhood N of (s−i, t−i) if and only

if ηk
i (s−i)[N] > 0 for any neighborhood N of (s−i, t−i).
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For the left-hand inclusion, set strategy s̄i ∈ W∞
i . Since, in particular, s̄i ∈ Wn+1

i for

any n ≥ 0, it is known from Proposition 2 that for any n ≥ 0 there exists a type tn
i ∈ Ti

such that (s̄i, tn
i ) ∈ Ri ∩ Ci ∩ CARCi,n. Now, let M̄i denote the closure of the convex-hull of∪

n≥0 Mi(tn
i ) and pick type t̄i ∈ Ti such that Mi(ti) = M̄i. Obviously, s̄i is a best-reply is to

every conjecture induced by the beliefs in Mi(t̄i) and t̄i is cautious and is consistent with

common assumption in rationality and cautiousness. Thus, (s̄i, t̄i) ∈ Ri ∩ Ci ∩ CARCi and

hence, s̄i ∈ projSi
(Ri ∩ Ci ∩ CARCi). �

Thus, Theorem 7 provides a complete characterization of iterated admissibility. Part

(i) is a sufficiency result. It shows that whenever a player chooses in a robust way that

maximizes with respect to higher-order assumptions that represent common assumption

in rationality and cautiousness, then the resulting strategy is necessarily iteratively ad-

missible. Part (ii) is, partially, the necessity counterpart: while it is not true that every

time an iteratively admissible strategy is chosen this is due to the player being ratio-

nal, cautious, and best-replying to the higher-order assumption restrictions that represent

common assumption in rationality and cautiousness, it is true that every iteratively admis-

sible strategy is a rational choice for a type that is consistent with common assumption in

rationality and cautiousness. Note that the proof of Theorem 7 and Proposition 2 reveals

from a conceptual perspective that whenever the elimination procedure involves more

than one round, satisfying the epistemic conditions above requires players’ preferences to

display ambiguity. As the next theorem shows, if the requirement of completeness of the
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type structure is dropped then the behavioral consequences of rationality, cautiousness

and common assumption thereof are captured by self-admissibility:

Theorem 8 (Foundation of self-admissibility). Let G be a game. Then:

(i) For any ambiguous type structure T the set of strategies consistent with rationality, cau-

tiousness and common assumption of rationality and cautiousness is a self-admissible set;

i.e., the following set is self-admissible:

∏
i∈I

proj
Si

(Ri ∩ Ci ∩ CARCi).

(ii) For any self-admissible set Q there exists a finite ambiguous type structure T for which Q

characterizes the behavioral implications of rationality, cautiousness and common assump-

tion of rationality and cautiousness; i.e., such that:

∏
i∈I

proj
Si

(Ri ∩ Ci ∩ CARCi) = Q.

The interpretation is analogous to that of Theorem Theorem 7. Part (i) states that given

an arbitrary ambiguous type structure, not necessarily complete, the set of strategy profiles

that are consistent with rationality, cautiousness and common assumption of rationality

and cautiousness is a self-admissible set. Part (ii) offers the partial converse: For any given

self-admissible set Q there exists an ambiguous type structure T , notably, finite, such that

Q is exactly the set of strategy profiles that are consistent with rationality, cautiousness and



100

common assumption of rationality and cautiousness withinT . Theorem 7 and Theorem 8

are clearly connected because the set of iteratively admissible strategy profiles is itself self-

admissible. In particular, for a fixed game this reveals that the set of iteratively admissible

strategies can be understood as strategies obtained not only in a very large complete type

structure, but also under a smaller finite one in which, as shown in the proof of Theorem 8,

each player i only has as many types as there are iteratively admissible strategies plus one

additional dummy type. The proof of Theorem 8 proceeds in a way very similar to the

one by Brandenburger et al. (2008) of their characterization result for self-admissible sets

(Theorem 8.1). In particular, I need exactly the same number of types for each player.

For the characterization of self-admissible sets a simple preliminary observations is

needed first: the reasoning process about strategies only stops after finitely many rounds.

Lemma 6. Let G be a game. Consider an ambiguous type structure T . There exists a N ∈ N

such that for all n ≥ N,

∏
i∈I

proj
Si

(
Ri ∩ Ci ∩ CARCi,n

)
=
∏
i∈I

proj
Si

(
Ri ∩ Ci ∩ CARCi,N

)
.

Proof. By definition CARCi,n+1 ⊆ CARCi,n, so that it also holds that Ri ∩ Ci ∩ CARCi,n+1 ⊆

Ri ∩ Ci ∩ CARCi,n. Since Si is finite there has to be an Ni ∈N such that n ≥ Ni

proj
Si

(
Ri ∩ Ci ∩ CARCi,n

)
= proj

Si

(
Ri ∩ Ci ∩ CARCi,Ni

)
.

Take N = maxi Ni. �
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Proof of Theorem 8. For the first part consider an ambiguous type structureT and consider

Q :=
∏
i∈I

proj
Si

(Ri ∩ Ci ∩ CARCi) .

If Q = ∅ then Q is a SAS. So assume it is non-empty. Set si ∈ projSi
(Ri ∩ Ci ∩ CARCi); then

there exists a ti such that (si, ti) ∈ Ri∩Ci∩CARCi. Thus (si, ti) ∈ Ri∩Ci implies that condition

(i) of SAS is satisfied. Furthermore, with N from Lemma 6 and because (si, ti) ∈ CARCi ⊆

CARCi,N+1 there must exist a µi ∈ Mi(ti) such that suppµi =
∏

j,i R j ∩ C j ∩ CARC j,N.

Then, µ̄i := margS−i
µi is a conjecture with full-support on Q−i (again using Lemma 6)

for which si is a best-reply. Hence, condition (ii) of SAS is satisfied. Lastly, consider

mixed strategy σi such that Ui(s−i; σi) = Ui(s−i; si) for every s−i. Then, by Lemma D.2 of

Brandenburger et al. (2008) supp σi ⊆ BRi(margS−i
µi) for every µi ∈Mi(ti) giving (ri, ti) ∈ Ri

for all ri ∈ supp σi. Then it also holds that (ri, ti) ∈ Ri ∩Ci ∩CARCi,n for every n ≥ 1, so that

ri ∈ projSi
(Ri ∩ Ci ∩ CARCi) and thus, condition (iii) of SAS is satisfied too.

For the second part set SAS Q. By definition of SAS (and Pearce, 1984), for each si ∈ Qi,

there exist a µ1
i (si), µ2

i (si) ∈ ∆(S−i) such that suppµ1
i (si) = S−i and suppµ2

i (si) = Q−i. By

Lemma D.4 of Brandenburger et al. (2008) choose µ1
i (si) so ri ∈ BRi(µ1

i (si)) if and only if

ri ∈ supp σi for a mixed strategy σi with Ui(s−i; σi) = Ui(s−i; si) for every s−i.

Now, consider the set of types Ti := {ti(si)|si ∈ Qi} ∪ {⋆i}; to get an ambiguous type

structure define Mi(⋆i) ⊆ ∆(S−i × T−i) such that there is no ηi ∈ Mi(⋆i) with supp ηi =
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S−i × T−i. For si ∈ Qi, define,

Yi(si) := {(ri, ti(si)) : either ri = si or

∃σi ∈ ∆(Si), such that ri ∈ supp σi and Ui(s−i; σi) = Ui(s−i; si) for all s−i ∈ S−i
}

and then define two beliefs η1
i (si), η2

i (si) ∈ ∆(S−i × T−i) such that

supp η1
i (si) = S−i × T−i and marg

S−i

η1
i (si) = µ1

i (si),

supp η2
i (si) =

∏
j,i

∪s j∈Q jY j(s j) ∩ R j and marg
S−i

η2
i (si) = µ2

i (si).

To complete the description of the type structure, set Mi(ti(si)) to be the convex hull of

η1
i (si) and η2

i (si). Note that Ri only depends on the marginal beliefs on the strategies, so for

η2
i (si) to be well-defined the following is required:

Claim 1: projSi

∪
si∈Qi

Yi(si) ∩ Ri = Qi. If si ∈ Qi, then (si, ti(si)) ∈ Yi(si) and by construction

also (si, ti(si)) ∈ Ri. Conversely, set ri ∈ projSi

∪
si∈Qi

Yi(si) ∩ Ri. So there exists a si ∈ Qi such

that (ri, ti(si)) ∈ Yi(si) ∩ Ri. If ri = si, the proof is complete. If not, then by property (iii) of

self-admissible sets (and definition of Yi(si)), it also follows that ri ∈ Qi. ⋆

Next I prove that the type structure satisfies that:

Q =
∏
i∈I

proj
Si

(Ri ∩ Ci ∩ CARCi) .
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Claim 2:
∪

si∈Qi
Yi(si) ∩ Ri = Ri ∩ Ci. Consider (ri, ti) ∈

∪
si∈Qi

Yi(si) ∩ Ri. Then for some

si ∈ Qi it holds that η1
i (si) and thus ti(si) is cautious. Conversely, for (ri, ti) ∈ Ri ∩ Ci it is

needed that ti , ⋆i since ⋆i is not cautious. Thus, there exists a si ∈ Qi such that ti = ti(si).

If si = ri, the proof is complete. If not, then Ri requires that ri ∈ BRi(µ1
i (si)), which holds if

and only if (see above) ri ∈ supp σi for a mixed strategy σi with Ui(s−i; σi) = Ui(s−i; si) for

every s−i. Thus, in either case it holds that (ri, ti(si)) ∈ Yi(si). ⋆

Claim 3:
∪

si∈Qi
Yi(si) ∩ Ri = Ri ∩ Ci ∩ CARCi,1. (ri, ti) ∈ ∪si∈QiYi(si) ∩ Ri, that is (ri, ti(si)) ∈

Yi(si) ∩ Ri for some si ∈ Qi. Then, (ri, ti(si)) ∈ CARCi,1 due to η2
i (si). The converse follows

from Claim 2. ⋆

Induction concludes the proof. �

2.4.2. Iterated assumption and ambiguity

The main distinctive feature of assumption with respect to the usual belief for Bayesian

agents, and as in the assumption operator of Brandenburger et al. (2008), is the failure of

monotonicity.20 Whenever a Bayesian agent believes in event E, she also believes in every

event F such that E ⊆ F: The (Bayesian) belief µi that assigns probability one to E assigns

probability one to F. This is not the case with my notion of assumption. Type ti might

assume event E via some belief µi ∈ Mi(ti) that has full-support on E, but she may fail to

assume an event F such that E ⊆ F;21 even if ti assumed such F, it certainly, could not be

via µi. Thus, when considering a sequence of nested events such as the finite iterations in

20This is also reminiscent of strong belief as defined and studied by Battigalli and Siniscalchi (1999, 2002).
21I am implicitly assuming that the topological closure of F contains that of E.
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the common assumption events defined above, a single belief can assign probability one

to all the events in the sequence simultaneously, but different beliefs are required in order

to assume each of them at the same time. This is exactly why the inclusion-exclusion

problem arises within a standard Bayesian framework, but it can be resolved within my

framework.

In principle there is no reason to consider that the assumption of an event is an

expression of cautiousness; for every type there exists always an event that is assumed and

this simply relates to which specific states play some role in how preference ranks acts.

However, the assumption of different nested events is a non-trivial feature that reveals a

cautious attitude: Whenever a type assumes two nested events E and F, the preference

represented is crucially sensitive to comparisons at every state in E but also to comparisons

at every state in the larger event F, in particular to these states outside E. Of course, as

mentioned above, the simultaneous assumption of different events necessarily requires

belief multiplicity.

2.4.3. (Non-)Emptiness of common assumption of rationality and cautious-

ness

The canonical epistemic foundation of iterated admissibility in the literature is due to

Brandenburger et al. (2008). Their seminal result shows that m rounds of elimination of

non-admissible strategies characterize the behavioral implications of rationality and mth-

order mutual assumption of rationality for finite m in a model where players’ uncertainty
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is formalized by type structures where types are mapped to lexicographic probability

systems. As shown by Blume et al. (1991), lexicographic probability systems arise under a

variation of Anscombe and Aumann’s (1963) preferences in which the axiom of continuity

is relaxed (rather than that of completeness, as in Bewley’s (2002) variant). However,

Brandenburger et al. (2008) also reveal a vexatious feature of the common assumption

case: Their celebrated impossibility result shows that for every generic game, if the

type structure is complete and maps types continuously, then common assumption in

rationality is empty. Below I also discuss the work by Keisler and Lee (2015), Yang (2015),

Lee (2016) and Catonini and De Vito (2018), who propose changes in the formalism that

allow for sound epistemic foundations, and compare their results to ours.

Notice first that within my set-up, and for every game G, common assumption in

rationality and cautiousness is never empty in complete ambiguous type structures. The

intuition behind the claim is easy to see: For each iteration in player i’s reasoning process

set a belief µn
i ∈ ∆(S−i × T−i) that has full-support on the topological closure of

∏
j,i R j ∩

CARC j,n (these collections of strategy-type pairs are clearly never empty; thus, the belief µn
i

always exists). Then, define Mi as the topological closure of the convex hull of {µn
i }n∈N, and

by virtue of the ambiguous type structure being complete, pick type ti with ambiguous

beliefs Mi.22 By construction, ti is a type representing common assumption of rationality

and cautiousness and hence, CARCi is non-empty.

22As shown by Ahn (2007), this assignment can take place in an ambiguous type structure that maps
types to ambiguous beliefs continuously.
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Furthermore, as briefly mentioned in Section 2.1, the non-emptiness of rationality and

common assumption thereof does not follow from specific alterations in the formalism

(beyond the different decision-theoretic model underlying the approach). This is easier

to visualize by direct comparison with other studies that also provide sound foundations

for iterated admissibility. Keisler and Lee (2015) obtain their result by dropping the re-

quirement that types are mapped continuously, Yang (2015) considers a weaker version

of assumption than that in Brandenburger et al. (2008), and Lee (2016) explicitly imposes

coherence on the preferences, which is usually only checked for the beliefs that represent

the preferences. For lexicographic probability systems, which he builds on, this makes

a difference. As said, I do not require any of these modifications: My type structures

map types continuously, my notion of assumption is a direct adaption of that in Bran-

denburger et al. (2008) and Dekel et al. (2016),23 and the coherence requirement implicit

in my type structures resembles the standard one in literature due to Brandenburger and

Dekel (1993).24 Finally, Catonini and De Vito (2018) consider a weaker version of the

likeliness-ordering of events that characterizes the lexicographic probability system and

an alternative version of cautiousness where only the payoff-relevant aspect of the states

of the world play any role. Again (and despite Theorem 7 and Theorem 8 would remain

unchanged under this alternative notion of cautiousness), I obtain my non-emptiness re-

sult with a standard, purely decision-theoretic notion of cautiousness that does not require

any specific structure of the set of states.

23See also Footnote 17.
24The requirement is explicit in the construction by Ahn (2007).
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To end this section, I present a comparison between lexicographic probability systems

and ambiguous beliefs that provides some understanding of the differences between the

two approaches with respect to the presence of ambiguity. Remember that a lexicographic

probability system consists of a finite sequence beliefs {µk}nk=1 ⊆ ∆(Θ),25 where the order of

the sequence represents the epistemic priority attached to each element: µ1 is the decision

maker’s ‘primary’ hypothesis, µ2 is the ‘secondary’ hypothesis, and so on. This is reflected

by the lexicographic consideration, i.e. if act f is better than g for belief µ1, then the

comparison between the two acts for the rest of the beliefs in the sequence is immaterial and

the decision maker prefers f to g. The main distinction between lexicographic probability

systems and ambiguous beliefs is then clear: Both are composed of multiple beliefs, but

the former incorporates a hierarchy in terms of epistemic priority and hence removes any

trace of ambiguity. However, as shown above, this hierarchy is not important to overcome

the inclusion-exclusion problem; what is important is the multiplicity of beliefs.

2.5. Conclusions

Cautiousness in games is intuitively understood as the idea that even when a player

deems some of her opponents’ strategies to be completely unlikely (typically on the basis

of strategic reasoning), she still prefers to choose strategies that are immune to deviations

towards such unexpected strategies. This is at odds with the strategically sophisticated

25Brandenburger et al. (2008) use lexicographic conditional probability systems, but their result extends
to more general lexicographic probability systems as shown by Dekel et al. (2016).
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expected utility maximization process representing a standard Bayesian rational decision

maker who believes her opponent to be rational too: Every suboptimal strategy of the latter

is assigned zero probability by the subjective belief of the former, and cannot therefore

affect the decision process.

This chapter proposes a new theoretic understanding of cautiousness in interactive

settings that reconciles it with strategic sophistication. I interpret cautiousness under

strategic sophistication as a manifestation of robustness to ambiguity, which renders

more choices as non-optimal. Then I show that the resulting behavioral implications

can be obtained as a consequence of rationality and related higher-order assumption

constraints. Specifically:

(i) I introduce the possibility of ambiguity in beliefs by allowing players’ preferences

to be incomplete. This is done by replacing the standard Anscombe and Aumann

(1963) decision-theoretic framework behind each player with a model of (possibly)

incomplete preferences à la Bewley (2002) so that each player’s uncertainty about

her opponents’ behavior is represented by a possibly non-singleton set of beliefs

that reflects the decision maker’s possibly ambiguous uncertainty. My main result

implies that for choices that are iteratively admissible the justifying set of beliefs has

to be non-singleton for non-trivial games.

(ii) I apply the framework described above to study the epistemic (i.e. reasoning-based)

foundations of iterated admissibility in belief-complete type structures and find that

it characterizes the behavioral implications of rationality, cautiousness, and common
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assumption thereof (Theorem 7). For non-complete type structures I find that it is

self-admissible sets that characterize the behavioral implications of such an event

(Theorem 8).

Thus, the main insight is immediately apparent: The inclusion-exclusion problem

of Samuelson (1992) can be resolved not only by relaxing continuity of preferences (i.e.

through lexicographic probability systems), but also by relaxing completeness (while

maintaining continuity). Notably, this enables me to provide a sound epistemic founda-

tion of iterated admissibility—a challenging task within the framework of lexicographic

probability systems. Using my approach, it is easy to see that the event of rationality,

cautiousness, and common assumption thereof is non-empty across all games—unlike,

for instance, the foundations for iterated admissibility under lexicographic probability

systems, as found by Brandenburger et al. (2008), and the instruments involved in my

characterization (type structures and assumption operators) are straightforward general-

izations of the instruments in the realm of standard Bayesian preferences. In addition,

the suggested link between ambiguity via incomplete preferences and the presence of

cautiousness is potentially testable by applying techniques for the identification of incom-

pleteness of preferences recently developed in the literature on experimental economics

(see Cettolin and Riedl, 2019).



110

CHAPTER 3

Adversarial Bilateral Informational Design

“Simplicity is prerequisite for reliability.”

Edsger W. Dijkstra (1975)

3.1. Introduction

Information provision and bilateral contracting are ubiquitous in today’s economy. For ex-

ample, contract research organizations (CROs) provide information to downstream firms
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(called sponsors), which are typically pharmaceutical or biotechnology companies. CROs

do so mainly by conducting clinical trials, but also by utilizing their internal healthcare

data in combination with data science. By providing this information, CROs are an inte-

gral part of the pharmaceutical and biotechnology industry. The global CRO market was

valued at almost $35 billion in 2018 and is projected to reach about $55 billion in 2025.

(Grand View Research, 2019)

Sponsors, such as pharmaceutical companies, engage with CROs to outsource part

of the drug development. If an agreement is reached, the contract specifies which trials

the CRO will conduct for the given sponsor, but not which trials are performed for other

sponsors. This is a typical example of bilateral contracting: the contract is contingent only

on events that can be verified by both of the involved parties. The largest CROs generate

most of the revenue of the industry, so it is common for sponsors of the same CRO to be

direct competitors. For example, Pfizer and Novartis, are clients of the same CRO, even

as they seek to develop similar products. (Ibid.)

Leaving aside details of specific industries, three considerations are crucial for any

information provision organization determining what information to provide to clients.

First, the provider effectively commits to deliver specific information to a given client

in a contract. For example, a contract will specify exactly which medical tests will be

conducted. Second, the bilateral nature of contracting excludes commitment to a grand

information structure shared with all clients. That is, a contract will only state which tests

will be conducted for a specific sponsor and will not state which tests will be performed
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for other sponsors.1 Third, the receivers’ use of the information is determined within an

interactive setting. Therefore, a receiver faces strategic uncertainty and needs to reason

about what information other receivers get. Crucially, the details of this reasoning process

are usually unknown to the information provider. For example, the decision for one

sponsor to conduct further research on a drug depends on whether the sponsor believes

its competitors are also developing a competing drug and, if so, what information the

sponsor believes its competitors are receiving.

In this chapter, I provide a general, yet tractable, method for examining how an

information provider determines which information to supply bilaterally to multiple

receivers, taking into consideration each of the three aspects outlines above. In particular,

motivated by the severity of strategic uncertainty, I take an adversarial approach which

ensures robustness to details of receivers’ strategic reasoning and is tractable. That is, the

information provided to one receiver is required to be optimal for the designer no matter

how that receiver thinks about the information other receivers may get. The adversarial

approach adopted here ensures that the supplied information is optimal even if nature

“chooses” the receiver’s reasoning that is least advantageous to the provider.

First, I formalize the issue of robustness to the receivers’ reasoning. From a CRO’s point

of view, I provide a precise answer to the following question: given that a pharmaceutical

1Contracts do not specify such details for several reasons. First, CROs have reputational concerns. If
CROs disclose which trials they were conducting for a sponsor’s competitor, the CRO might reveal the
competitor’s private information, undermining the CRO’s relationship with the competitor. Second, a
contract that is contingent on every trial conducted for every sponsor is complex and lacks enforceability.
These reasons are broadly applicable and do not only affect CROs. In particular, the second point was raised
by McAfee and Schwartz (1994) regarding any supplier that deals with multiple downstream firms.
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sponsor gets some information about their drug, how does the pharmaceutical sponsor

decide whether to bring the drug to the market or, for example, drop the project altogether?

As noted above, sponsors face strategic uncertainty because they do not know what

information their competitors have access to. This section’s primary contribution is to

provide a solution concept that captures this kind of uncertainty. The key insight is that

the reasoning about the competitors’ information can be sidestepped: to form a best-

reply the competitors’ information is not relevant, but only the beliefs about the state

of nature and the competitor’s action matter. For this, a characterization of “rational”

competitor’s action for any information structure is needed: all belief-free rationalizable

actions. Furthermore, I demonstrate that this solution concept depends only upon players’

first-order beliefs about the payoff state. For a CRO, this means that the solution concept

depends only on the information a sponsor receives about their own drug, but not on how

a sponsor thinks about the information its competitors have.

Second, I contribute to the foundations of information design with multiple receivers.

Mathevet, Perego, and Taneva (2020, p.2) describe information design as “an exercise in

belief manipulation;” therefore, it is crucial to characterize which beliefs can be induced by

a designer. If there is only one receiver, it is well known that there is only one restriction

on the distribution of beliefs about the state of nature. The average belief under this

distribution is equal to the prior—a requirement deemed Bayes plausibility by Kamenica

and Gentzkow (2011). This chapter extends this characterization to multiple receivers (cf.

Theorem 9). Furthermore, I provide necessary bounds on the dependence of beliefs if
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there are two receivers (cf. Proposition 6). These bounds are reminiscent of, but usually

tighter than, the Fréchet-Hoeffding bounds known from copulas in probability theory

and statistics.2 Moreover, these bounds are novel not only for information-design and the

economics literature more generally, but—to the best of my knowledge—to probability

theory as well and provide tractability because they are related to the supermodular

stochastic ordering. Even more tractability is gained when more assumptions are put

on the primitives, which in particular include supermodular games. I illustrate this in a

stylized version of the problem faced by a CRO.

The remainder of the chapter is organized as follows: the next subsections elaborate

on related literature and provide the setting for the stylized model of a CRO, which will

be used as a running example throughout the chapter. Section 3.2 develops the solution

concept. The main representation theorem for the general design problem is formalized in

Section 3.3. Section 3.4 studies the case of pure persuasion, which includes the derivation

of the belief-dependence bounds and the solution to the CRO model. In Section 3.5,

I discuss some extensions and highlight issues related to interpretations of the model.

Section 3.6 concludes.
2A standard reference for copulas including the Fréchet-Hoeffding bounds is Nelsen (2006).
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3.1.1. Related Literature

This chapter is related to several strands of the literature: a solution concept capturing a

notion of robustness, general information design, and adversarial and bilateral design. In

this section, I discuss these three strands in detail.

Informational Robustness and Solution Concepts

Harsanyi’s (1967) theory of games with incomplete information is partially motivated by

the possibility that players’ information may not be common knowledge. The solution

concept I develop in this chapter is directly inspired by the literature on informational

robustness which later extended Harsanyi’s insights to allow uncertainty about the infor-

mation structure itself from an outside oberserver’s perspective. Early pioneers in this

area include Aumann (1987), Brandenburger and Dekel (1987), and Forges (1993, 2006).

Bergemann and Morris (2013, 2016) recently exploited the full power of informational

robustness to provide robust predictions in economic environments with uncertainty.

Within this subset of the literature, the conceptual idea of my proposed solution concept

is closest to that of Bergemann and Morris (2017). Proposition 4 is directly inspired by their

Section 4.5.3 However, for the actual solution concept and its foundation in Proposition 5

there is major conceptural difference: Bergemann and Morris are interested in robustness

over all information structures from the perspective of an outside observer,4 while the

3Battigalli (1999, 2003) and Battigalli and Siniscalchi (2003) obtain simlar results from an interim perspec-
tive.

4Some of these ideas are fruitfully applied to the theory of robust mechanism design as initiated by
Bergemann and Morris (2005, 2009, 2011). Relatedly, Artemov, Kunimoto, and Serrano (2013) study robust
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proposed solution concept in this chapter focuses on the notion of robustness from a

player’s perspective. This allows sharper predictions because a player considers parts of

the information structure that an outside observer does not know. In this vein, Börgers

and Li (2019) use a related solution concept to define strategic simplicity. However, these

authors do not assume common belief in rationality and also do not provide a foundation

for their solution concept.5

Other papers dealing with related ideas about robustness (usually from an outside

observer) include Battigalli (1999, 2003), Battigalli and Siniscalchi (2003), Dekel et al.

(2007), Liu (2015), Tang (2015), and Germano and Zuazo-Garin (2017). In each of these

papers players have symmetric knowledge about the information structure. Either the

full information structure is commonly known, or no (common) knowledge about the

information structure is assumed at all. In my case, there is no assumption about common

knowledge of the information structure, but each player knows her own information

structure. As discussed in more detail in Subsection 3.5.2, the main solution in this

chapter concept can be given an epistemic foundation by simply modifying the arguments

introduced by Battigalli and Siniscalchi (2003, 2007) and developed further in Battigalli,

Di Tillio, Grillo, and Penta (2011).

mechanism design when the designer knows that the first-order beliefs belong to a specific set of beliefs. In
contrast to my appraoch, the (sets of) first-order beliefs are common knowledge among the players in their
setting. A similar approach was considered by Ollár and Penta (2017).

5Taking this individual perspective is rather uncommon in recent developments in game theory. Notable
exceptions are recent developments in epistemic game theory. Dekel and Siniscalchi (2015) provide a
modern overview, whereas Perea (2012) gives a textbook treatment highlighting the indiviudal perspective
explicitly. Furthermore, Aumann and Dreze (2008) explicitly study the implications of common knowledge
of rationality and a common prior in a complete information game from an individual perspective.
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Information Design

The literature on information design originated from contributions of Calzolari and Pavan

(2006), Bergemann and Pesendorfer (2007), Brocas and Carrillo (2007), and Eső and Szentes

(2007). Since then the literature has grown rapdily. The interested reader is referred to two

recent reviews by Bergemann and Morris (2019) and Kamenica (2019). Here I highlight

papers that are more closely related to this one, which provide general methods to analyze

information design as this chapter does. The seminal paper pertaining to a single receiver

is Kamenica and Gentzkow (2011) which illustrates the usefulness of the concavification

approach for information design. Regarding multiple receivers, Taneva (2019) uses a

Myersonian approach, exploiting a version of the revelation principle, which can be

interpreted as a akin to partial implementation known from mechanism design.

The closest work on information design is the recent article by Mathevet et al. (2020).

Like Taneva (2019), Mathevet et al. consider information design in cases when the designer

has the power to commit to the provision of a grand information structure. However, for

a given grand information structure, they allow for the case of adversarial equilibrium

selection. Thus, their approach is reminiscent of full implementation in mechanism design.

They show that attaining robustness to equilibrium selection requires constructing the

full hierarchy of beliefs for each receiver.6 My approach is complementary to theirs. In

my setting, strategic uncertainty arises from the bilateral contracting environment which

6Similar to the full implementation literature the revelation does not apply in Mathevet et al.’s (2020)
setting either.
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excludes commitment to a grand information structure. Therefore, in my case the designer

is not only concerned about equilibrium selection, but also about strategic uncertainty.

My proposed solution concept reflects this more general robustness concern. In addition,

I show that my robust solution concept depends only on induced first-order beliefs.

Therefore, it is not necessary to induce a full hierarchy of beliefs, but it suffices to look

at first-order beliefs only. Thus, the approach I propose is closer in spirit to Kamenica

and Gentzkow (2011): since they consider a single receiver, by definition only first-order

beliefs matter. However, in the present chapter there are multiple receivers and therefore

a new characterization in terms of distributions of first-order beliefs is needed. This is the

main result of Section 3.3.

Recent and independent work by Arieli, Babichenko, Sandomirskiy, and Tamuz (2020)

studies the question of which distributions over (first-order) beliefs can be induced by

information structures in the case of binary states of nature.7 They provide a full char-

acterization of these distributions for two receivers and extend this characterization to

multiple receivers in spirit of No Trade Theorems. In Section 3.4, I provide bounds on the

dependence structure across two receivers for these distributions, which are necessary,

but not sufficient. Under more stringent assumptions (which include the CRO model of

Subsection 3.1.2) my bounds become equivalent to the conditions of Arieli et al. (2020)

and are therefore also sufficient.
7Arieli et al. also consider applications to social persuasion, i.e. persuading multiple receivers in a

non-strategic setting.
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Adversarial and Bilateral Design

A few recent studies employ an adversarial approach to information design:8 Carroll

(2016), Goldstein and Huang (2016), Inostroza and Pavan (2018), Hoshino (2019),9 and

ans Daisuke Oyama and Takahashi (2020). All apply the adversarial selection for a solu-

tion concept that relies on a grand information structure. In this chapter the adversarial

selection is more severe because of the additional robustness coming from the bilateral

contracting environment. Recently, Dworczak and Pavan (2020) study adversarial in-

formation design using a reduced-form approach that could arise from robustness to

equilibrium selection or, like in this chapter, from bilateral contracting. Bilateral informa-

tion design with or without adversarial robustness is, to the best of my knowledge, new

to this chapter.

In a recent review, Carroll (2019) discusses adversarial selection aspects in mechanism

design. Bilateral contracting has a long history in economics and has been studied ex-

tensively in industrial organization.10 The relevant paper from this body of literature is

Dequiedt and Martimort (2015). Dequiedt and Martimort examine bilateral mechanism

design when the designer cannot commit to a grand mechanism. My analysis shares the

motivation for analyzing a setting with limited commitment with Dequiedt and Marti-

mort. They overcome the limited commitment by imposing appropriate ex-post incentive

constraints on side of the principal. In equilibrium, these ex-post constraints determine all

8That is, in addition to Mathevet et al. (2020) as mentioned above.
9I thank Nageeb Ali for making me aware of Hoshino’s paper.

10The interested reader is referred to two handbook chapters: Bresnahan and Levin (2012) and Segal and
Whinston (2012).
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beliefs of the agents including how they think about other agents’ contracts. My approach

resolves the limited-commitment issue in a different way. In my model, the designer does

not assume that all beliefs are in equilibrium and therefore needs consider the reasoning

of the receivers. By taking an adversarial approach, the designer circumvents these issues

and seeks an information structure that is robust to the reasoning of the receivers.11

3.1.2. Leading Example: A Stylized CRO Model12

Consider a situation where a CRO conducts medical trials for two pharmaceutical com-

panies called Pfizr (P) and Novarty (N).13 Both work on developing similar breast cancer

drugs. For simplicity, suppose that each drug could be either effective, or ineffective, and

one drug is effective if and only if the other drug is effective. Thus, there are two states of

nature, i.e. Θ = {0, 1} representing an ineffective drug and an effective drug, respectively.

Furthermore, there are two possible actions the pharmaceutical companies can take: either

conduct further research (R), or drop the project (D). Profits (i.e. payoffs) are such that, if

firms knew the effectiveness of the drug, they would like to conduct research if and only if

the drug is actually effective. However, if a pharmaceutical company decides to conduct

further research, its payoff will be lower if the competitor also conducts further research.

The reduction in payoffs could be caused by lower expected profits in the future, because

11In this sense, the literature on mechanism design without or with limited commitment is also related.
12For readers familiar with information design, this section can be skipped. However, in the main analysis

I will refer back to this example to illustrate some of the results.
13These companies and names are purely fictional.
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the competitor’s drug is likely to be on the market. The following payoff tables represent

such a situation.

0 2 0 0
1 1 2 0

0 −1 0 0
−2 −2 −1 0

Novarty
R D

Novarty
R D

Pfizr
R

D

θ = 1 (effective) θ = 0 (ineffective)

For any belief (about the state of nature) that puts probability greater than 2/3 on the

state in which the drug is effective (θ = 1),14 R is the dominant action. Similarly, for any

belief less than 1/3, the dominant action becomes D. For intermediate beliefs about θ, the

best action depends beliefs about competitors’ actions. Formal analysis in this chapter

shows that these predictions are exactly these which are robust to the reasoning about the

information of the competitor. For example, if Pfizr assigns probability close to one to

θ = 1, then it does not matter what information Novarty gets and Pfizr should conduct

further research. However, if the probability of θ = 1 is 1/2, Novarty’s information matters.

To see this, consider the Novarty medical trials, conducted by a CRO, that reveal with high

probability that the drug is ineffective. In such a case, Novarty will drop the project with

high probability too. This implies that Pfizr should conduct more research (given their

belief about θ). On the other hand, if the medical trials for Novarty are such that there is

a high likelihood of revealing that the drug is effective, then Novarty is likely conducting

research and Pfizr should drop the project (again given their belief about θ). Thus, Pfizr’s

14Henceforth, I will always associate belief with the probability of the state being θ = 1.
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beliefs about Novarty’s information matter. Therefore, if robustness is a concern, the CRO

should take both actions, R and D, into account.

By providing information to the pharmaceutical companies, the CRO can effectively

influence the actions taken by the pharmaceutical companies. For example, a natural

assumption is that the CRO prefers further research rather than dropping the project,

because of the likelihood that further research will include subsequent trials for the CRO

to conduct. The goal of this chapter is to provide a tractable method for solving for the

optimal provision of information in such settings. In the remainder of this subsection, I

highlight some specific information structures that are part of the CRO’s choice set.

Suppose that both pharmaceutical companies have a prior belief that assigns proba-

bility 1/3 to the drugs being effective. A trivial choice of the CRO would be to provide

no information. In this case and similar to the explanation above, {R,D} is the robust

prediction for both receivers. Thus, under adversarial selection, the CRO expects both

companies to drop the project, which would be the worst possible outcome from the

CRO’s perspective. Another possibility would be for the CRO to provide full information

to each pharmaceutical company. In this case, each company will conduct further research

if and only if their drug is effective. Overall, there will be further research (by both firms)

with probability equal to the prior, i.e. slightly above 33%. However, the CRO could

increase the probability of further research by providing information that does not fully

reveal the effectiveness of the drugs.
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For illustrative purposes, consider first a case where the CRO can actually commit to a

grand information structure and therefore does not have to worry about what conjectures

the receivers form about their competitor.15 This problem can be analyzed with tools

provided by Bergemann and Morris (2016) and Taneva (2019) and the solution provides

an upper bound for the CRO under the bilateral-contracting assumptions of interest.16

Consider the following information structure, where both companies get one of two

possible reports: either the trial reveals that the drug is ineffective (bad news, b) or the

trial suggests the drug is effective but without fully proving the drug’s efficacy (good

news, g). The reports are generated according to the distribution shown in Table 3.1.17

Table 3.1: Optimal Information with Full Commitment.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizr b 0 0 0 1/2

g 0 1 1/2 0

For example, when getting the good news, Pfizr will update its belief to get a posterior

of 1/2, but since the designer committed to the grand information structure Pfizr knows

even more: Novarty will get bad news with probability 1/3, which is higher than the

ex-ante probability of bad news, equal to 1/6. Furthermore, Pfizr also knows how the

15With commitment to a grand information structure, Pfizr would exactly know what information Novarty
gets. That is, not the exact realization (i.e. the result of the trial), but the information structure overall (i.e.
which trials will be conducted).

16Applying the more robust method akin to full implementation of Mathevet et al. (2020) yields the same
result for this example.

17The information structure in Table 3.1 is optimal for a designer with symmetric, increasing, and sub-
modular preferences, i.e. v(R,D) = v(D,R), v(R, ·) ≥ v(D, ·), and v(R,R) + v(D,D) ≤ v(D,R) + v(R,D).
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state describing the effectiveness of the drugs correlates with the Novarty reports. This

reasoning about Novarty’s reports is crucial because under these assumptions, a unique

Bayes-Nash equilibrium exists,18 where the receivers conduct further research if and only

if they receive good news. Thus, with full commitment to a grand information structure

the designer can ensure that at least one company will conduct further research with

certainty, while both will conduct research with probability equal to the prior belief of 1/3.

However, the CRO cannot actually commit to the grand information structure. Due to

the bilateral-contracting assumption, the CRO can only commit to the marginal distribu-

tions and the receivers have to reason about the competitors’ information. For example, if

the CRO adopts the above information structure, Pfizr could nevertheless conjecture that

Novarty does not obtain any useful information from the CRO. For the information struc-

ture based on this conjecture, a Bayes-Nash equilibrium exists wherein Pfizr will drop

the project given either report.19 Novarty could reason similarly. If the CRO is concerned

about adversarial selection, then the CRO’s worst-case scenario results in both pharma-

ceutical companies dropping the project. The question then becomes, is there a way to

get these companies to conduct further research given that only bilateral contracting is

possible and the designer is concerned about adversarial selection?20

18The equilibrium action profile is also the unique interim-correlated rationalizable profile.
19In this conjectured equilibrium, Novarty would conduct research, but this does not matter for the rest

of the analysis.
20The arguments in this paragraph relate to a foundation I give in Subsection 3.2.2 for the solution concept

developed in Section 3.2.
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Table 3.2: Optimal Information for Adversarial Bilateral design.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizr b 0 0 1/2 1/4

g 0 1 1/4 0

A positive answer is provided by the robust information structure described in Ta-

ble 3.2.21 This information structure reduces the overall probability of the good report

from 2/3 to 1/2. Now, after receiving the good report the posterior is 2/3, which makes R a

dominant action. Thus, each report now has a unique dominant action22 and the conjec-

ture about the competitor’s information no longer plays a role. The optimal information

structure exactly balances the trade-off between inducing posteriors that are robust to re-

ceivers’ conjecture about the information of their competitor and making further research

as likely as possible. However, to achieve this, the proposed robust information structure

reduces the probability of at least one receiver conducting further research to 2/3.23 There-

fore, the CRO suffers a loss of about 33 percent that at least one company will conduct

further research relative to the optimal full commitment information structure. This is the

loss due to the constraints of bilateral contracting.

21As before, this information structure is optimal for the same preferences as stated in Footnote 17.
22With the exact posterior of 2/3 both actions are still undominated. Therefore, the induced posterior

should be 2/3 + ε for some small ε > 0. This example ignores this tie-breaking issue here. The full theory
presented below does account for this.

23Even with this robust information structure both receivers will conduct further research with probability
of 1/3.
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3.2. A Robust Solution Concept

This section develops a solution concept that delivers predictions that are robust in the

sense that they depend on what information the player receives about the economic

fundamental, but do not depend on how the player reasons about information other

players might receive. I refer to these predictions as individual robust predictions and

the corresponding solution concept is developed in two stages. The first stage builds

on the concept of belief-free rationalizability (see Battigalli et al., 2011).24 This version

of rationalizability is robust to any information any player might get. Thus, this stage

corresponds to robustness across information structure from an outside observer. For the

purposes of this chapter, this solution concept is too extreme since it does not take into

account any information that a player gets about the state of nature, which describes,

for example, the effectiveness of a drug. The second stage of the solution concept adds

exactly this information, therefore refining belief-free rationalizability. I argue that this

new solution concept reflects the robust prediction given that a player knows his/her

information about the state of nature.

There are two players i ∈ N := {1, 2}, who will be also called receivers.25 Each player

has a finite set of actions Ai and as usual A = A1 × A2 denotes the set of action profiles.26

24Battigalli (1999, 2003) and Battigalli and Siniscalchi (2003) introduce a more general class of versions of
rationalizability. One instance corresponds to belief-free rationalizability.

25This section is concerned only with the predictions of receivers’ actions for the given information
structure. The sender/designer does not play a role and will be introduced later.

26I follow the standard notation that for a fixed player i, A−i denotes the set of actions for the other player
3 − i. More generally, I use this notation for any player-specific sets.
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Uncertainty is modeled via a finite set of states of nature denoted by Θ. Each agent’s

preferences are represented by a utility function ui : A×Θ→ R. All these components form

an economic environment E = ⟨Θ, (Ai,ui)i∈N⟩,27 which is assumed to be common knowledge.

Example 3. The economic environment for the CRO example is succinctly described by

the two payoff tables specified in Subsection 3.1.2. ⋄
The economic environment does not specify any information the players might have.

Most solution concepts need a specification of the information structure. However,

Battigalli et al. (2011) provide a solution concept—belief-free rationalizability—that de-

pends only on the economic environment, capturing the exact behavioral implications

of (correct) common belief in rationality.28 Formally, action ai is belief-free rationalizable if

ai ∈ BFRi :=
∩

n≥0 BFRn
i , where BFR0

i := Ai and inductively for any n ∈ N

BFRn
i (θi) :=


ai ∈ BFRn−1

i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ ∆(Θ × A−i) such that:

(i) suppµi ⊆ Θ × BFRn−1
−i ,

(ii) ai ∈ BRi(µi)


. (BFRn)

According to the usual arguments (e.g. Wald, 1949; Pearce, 1984), this procedure is the

same as deleting ex-post dominated actions iteratively. An action ai ∈ Ai is ex-post

27This is different from a basic game which is widely used in information design (see e.g. Bergemann and
Morris, 2013; Mathevet et al., 2020). The difference is that a basic game also specifies a common prior on the
states of nature.

28Bergemann and Morris (2017) also mention this solution concept, but they call it ex post rationalizability.
They also define a notion of belief-free rationalizability, which is stronger than the version used here.
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dominated (relative to X−i ⊆ A−i), if there exists αi ∈ ∆(Ai) such that

∑
a′i

α(a′i)ui(a′i , a−i, θ) > ui(ai, a−i, θ), for all (a−i, θ) ∈ X−i ×Θ.

Example 4. In the CRO example from Subsection 3.1.2 it is easy to see that no action is

ex-post dominated; hence BFRi = Ai. ⋄
As mentioned at the beginning of this section, belief-free rationalizability only takes

the economic environment and rationality as primitive objects. In the current situation, a

player has some information about the state of nature which affects his/her individual robust

predictions.29 Thus, Player 1 is assumed have a prior π1 ∈ ∆(Θ) and gets some information

about the state of nature, which is described by a marginal information structure.30

Definition 4. Fix an economic environment E. A marginal information structure (for E) is

I1 = ⟨S1, ψ1⟩, where

1. S1 is a finite set of signals, and

2. ψ1 : Θ→ ∆(S1) is a conditional signal distribution.

This marginal information structure does not specify any possible signals for the other

player, nor does it it specify the signal distribution for the other player. Thus, this marginal

29The remainder of this section describes the perspective of Player 1. To apply it to Player 2, switch the
player indicies.

30A marginal information structure is equivalent to a statistical experiment as introduced by Blackwell
(1951, 1953). The restriction to finite signals might not be without loss, but it remains an open question
whether it is. In this section, I also assume that each signal realization s1 ∈ S1 has (ex-ante) positive
probability. This can be relaxed at the cost of more cumbersome notation. See Subsection 3.2.2.
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information structure provides information only about the state of nature. The solution

concept depends only on the marginal information structure.31 This solution concept will

be a set of pure strategies denoted by R1(I1, π1) ⊆ AS1
1 and is formally defined as follows.

Each signal realization s1 ∈ S1 induces a posterior belief32 µs1 ∈ ∆(Θ) by Bayesian

updating:

µs1(θ) :=
ψ1(s1|θ)π(θ)∑
θ′ ψ1(s1|θ′)π(θ′)

. (3.1)

Since these signals only induce a belief about the state of nature θ, these beliefs are

not rich enough to form a best-reply in an interactive setting. To form a best-reply,

beliefs about the actions of the other player are also needed. A rational-extended belief

incorporates this additional requirement by assigning positive probability only to the

belief-free rationalizable actions of the other player.

Definition 5. Fix an economic environment E, a prior π1 ∈ ∆(Θ) and a marginal information

structure I1. A rational-extended belief for s1 ∈ S1 is a belief µ̃1 ∈ ∆ (Θ × A2) such that (i)

margΘ µ̃1 = µs1 as given by Equation 3.1 and (ii) supp µ̃1 ⊆ Θ×BFR2. LetM1 : S1 ⇒ ∆ (Θ × A2)

denote the set of rational-extended beliefs for each s1 ∈ S1, i.e.

M1(s1) =
{
µ̃ ∈ ∆ (Θ × A2) : µ̃ is a rational-extended belief for s1

}
.

31Similar to before, the solution concept also depends on the economic environment, but this dependence
will be implicit.

32To save on notation, the player’s index is kept implicit by using the signals’ index.
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Finally, these rational-extended beliefs allow me to define the individual robust pre-

diction.

Definition 6. Fix an economic environment E, a prior π1 ∈ ∆(Θ), and a marginal information

structure I1. A pure strategy b : S1 → A1 is conceivable for (π1, I1) if b is optimal for at least one

selection ofM1, i.e. b is optimal given µ1, i.e. for each s1 ∈ S1, there exists µ̃1 ∈ Mi(s1) such that

b(s1) ∈ arg max
a′1∈A1

∑
θ,a2

µ̃1(θ, a2)u1(a′1, a2, θ).

The individual robust prediction is the set of all conceivable strategies and is denoted by

R1(I1, π1).

A foundation in terms of explicit epistemic assumptions is discussed Subsection 3.5.2:

the individual robust prediction corresponds to the behavioral implications of common

knowledge of the economic environment, common belief in rationality, and knowledge

of the marginal information structure. Thus, the prediction does not rely on implicit

or explicit common knowledge assumptions about the marginal information structure.

This is relevant for later questions about information design. The nature of bilateral

contracting allows the designer to only commit to a marginal information structure. The

receiver understands this marginal information, but needs to reason about what actions

their opponent chooses. This reasoning process is not transparent to the designer. Thus,

all actions the designer can rule out are exactly these strategies that are not part of the

individual robust prediction. This is the essence of Definition 6.
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In Subsection 3.2.2, I provide another foundation of this solution concept in terms of

informational robustness and Bayes-Nash equilibirum analyis similar in spirit to Berge-

mann and Morris (2013, 2016, 2017). This foundation relies on a theory of how player’s

resolve uncertainty about the grand information structure: each player conjectures a

grand information structure consistent with their marginal information structure. Given

this conjecture, each player chooses a strategy as predicted by a Bayes-Nash equilibrium.

The individual robust predictions correspond to the union across all such conjectures and

all corresponding equilibria. Independently of the foundations, the robust predictions are

often simple to calculate as the following example shows.

Example 5. Table 3.3 shows the marginal information for Pfizr induced by the full com-

mitment optimal information structure described in Table 3.1. The bad report leads to a

Table 3.3: Pfizr’s marginal information derived from the information structure of Table 3.1.

θ = 1 θ = 0

Report for Pfizer b 0 1/2

g 1 1/2

posterior33 of zero, whereas the good report induces a posterior belief of 1/2. Example 4 es-

tablished that all actions are belief-free rationalizable. Thus, the sets of rational-extended
33Recall that within this example beliefs correspond to the likelihood of the state of the drug being effective

(θ = 1).
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beliefs for each signal are given by:

MP(b) =
{
µ̃ ∈ ∆(Θ × AN) : µ̃(1,R) + µ̃(1,D) = 0

}
, and

MP(g) =
{
µ̃ ∈ ∆(Θ × AN) : µ̃(1,R) + µ̃(1,D) = 1/2

}
.

Since Research (R) is a dominated action if the drug is ineffective, R cannot be part of the

individual robust prediction for the bad report. However, for the good report both actions

are conceivable. For example, D is a best-reply to µ(1,R) = 1 − µ(0,R) = 1/2, whereas R is

a best-reply µ(1,D) = 1 − µ(0,D) = 1/2. Both beliefs are valid rational-extended belief for

the good signal. Thus, the individual robust prediction for Pfizr is

RP(Table 3.3, 1/3) = {(D,D), (D,R)} ,

where the first coordinate indicates the action after the bad report, and the second coordi-

nate corresponds to the good report. ⋄

3.2.1. The interim perspective

Thus far the solution concept has been stated from an ex-ante perspective, which is relevant

for later questions about information design question. However, it will also be useful to

have the solution concept in an interim form. This is done by defining a correspondence
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R1(·|I1, π1) : S1 ⇒ A1 as

R1(s1|I1, π1) := {a1 ∈ A1 : ∃b ∈ R1(I1, π1) s.t. a1 = b(s1)} .

The interim individual robust prediction relies only on the belief about the state of nature

that is induced by the signal. Thus, the solution concept does not depend on the (marginal)

information structure it is defined for, but only on the posteriors it generates. Moreover,

the robust predictions can be strategically distinguished by changing the economic envi-

ronment. The following proposition formalizes these simple observations, which will be

useful to address the information-design question.

Proposition 3. Fix a set of states of nature Θ. Consider an economic environment E (with states

of nature given by Θ), two priors π1, π′1 ∈ ∆(Θ) and two marginal information structures I1 =

⟨S1, ψ1⟩ and I′1 = ⟨S′1, ψ′1⟩. For all (s1, s′1) ∈ S1 × S′1, if µs1 = µs′1
, then R1(s1|I1, π1) = R1(s′1|I′1, π′1).

Conversely, consider two priors π1, π′1 ∈ ∆(Θ) and two marginal information structures

I1 = ⟨S1, ψ1⟩ and I′1 = ⟨S′1, ψ′1⟩. If there exists (s1, s′1) ∈ S1×S′1 and θ ∈ Θ such that µs1(θ) , µs′1
(θ)

then there exists a (finite) economic environment (holding Θ fixed) such that R1(s1|I1, π1) ∩

R1(s′1|I′1, π′1) = ∅.

Proof. The statement is trivial if |Θ| = 1, so suppose |Θ| > 1.

The first part follows directly from the definition, since BFRi depends only on the

economic environment and the rational-extended beliefs exactly capture only the beliefs

about the states of nature, which are the same by assumption.
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For the second part, fix θ′ ∈ Θ such that

µ :=
ψ1(s1|θ′)π1(θ′)∑
θψ1(s1|θ)π1(θ)

,
ψ′1(s′1|θ′)π′1(θ′)∑
θψ
′
1(s′1|θ)π′1(θ)

=: µ′.

Consider the following economic environment: Ai =
{
µ, µ′
}

and payoffs are given by

ui(ai, a−i, θ) = (ai − 1[θ = θ′])2.

By construction only the belief about the state matters for best-replies, so the difference

between the induced belief on Θ and an rational-extended belief does not matter. Now,

note that µ (as action) is the unique best-reply to µ (as belief). Then, by construction

R1(s1|I1, π1) = {µ} and R1(s′1|I′1, π′1) = {µ′} and the conclusion follows. �

With Proposition 3 in mind,34 I abuse notation for the interim version of the solution

concept and write it as a correspondence defined on belief space, i.e. R1 : ∆(Θ) ⇒ A1.

Thus, R1 denotes the ex-ante version, whereas R1(µ1) denotes the interim version. The

interim notion is illustrated by applying it to the CRO example.

Example 6. Due to the binary state space, the interim individual robust predictions (de-

fined on belief space) can be illustrated by means of a simple diagram. Figure 3.1 shows

these predictions for both companies, where, a belief corresponds to the probability of the

drug being effective. It was already argued in the introduction, that for beliefs greater than

34As stated the proposition requires that every signal happens with positive probability. If any signals
have zero ex-ante probability, then the proposition needs to be adjusted to condition on positive probability
signals only.
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µN

µP0 1

1

{(D,D)}

{R,D}
×
{R,D}

{D}
×
{R,D}

{R,D}
×
{D}

{(D,R)}

{(R,D)}

{R,D}
×
{R}

{R}
×
{R,D}

{(R,R)}

Figure 3.1: Individual robust predictions of the CRO game.

2/3 R is uniquely undominated, whereas for beliefs lower than 1/3 D is the only dominant

action. For all intermediate beliefs, a similar argument as in the previous example can

establish that both actions are the individual robust prediction. ⋄

3.2.2. A Foundation for the Individual Robust Predictions

In this section, I provide a foundation for the individual robust predictions. To achieve

this from an ex-ante perspective zero-probability events have to be explicitly be accounted

for. This changes some of the previous definitions slightly at the cost of more burdensome

notation. Whenever zero-probability events can be ruled out, all the following definitions

reduce to the previous definitions.
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Robustness for an Outside Observer

Starting with an economic environment, a Bayesian game is obtained by adding priors

for each player πi ∈ ∆(Θ) and specifying a (grand) information structure with possible

heterogeneous signal functions.

Definition 7. Fix an economic environment E. A (grand) generalized information structure

(for E) is I = ⟨(Si,Ψi)i∈N⟩, where for each player i ∈ N,

1. Si is a finite set of signals, and

2. Ψi : Θ→ ∆(S1 × S2) is a conditional signal distribution.

A Bayesian game G = ⟨E, I, (πi)i∈N⟩ is given by (i) an economic environment E, (ii) a

generalized information structure I, and (iii) a prior πi ∈ ∆(Θ) for each player i ∈ N.

A generlized information structure together with the two priors gives rises to a stan-

dard type structure á la Harsanyi (1967) but without a common prior.35 Without common

priors and signal distributions the definition of equilibrium needs to account for zero

probability events. For complete information games, Brandenburger and Dekel (1987)

introduced a posteriori equilibrium to rule out the play of dominated actions after a zero

probability events. The definition of equilibrium in this chapter will be an extension to

incorporate uncertainty about the states of nature. But first, I need to introduce a tool to

define beliefs even in case of zero probability events.

35Recently, Piermont and Zuazo-Garin (2020) allow for even more disagreement by allowing for lack of
common knowledge of the Harsanyi type structure and the states of nature.
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Definition 8. Fix an economic environment E, a player i, a prior πi ∈ ∆(Θ) and a generalized

information structure I. A conditional probability system (CPS) for (πi, I) is a mapping

µi : Si → ∆ (Θ × S−i) such that for every (θ, si, s−i) ∈ Θ × S1 × S2,

µi(θ, s−i|si)

∑
θ′,s′−i

πi(θ′)Ψi(si, s′−i|θ′)
 = πi(θ)Ψi(si, s−i|θ).

That is, a CPS defines beliefs about the state of nature and the opponent’s signal

realization for every signal relation of the given player. In addition, the beliefs have to be

updated via Bayes’ rule whenever possible. To formally state the appropriate version of

equilibrium, it only remains to define strategies. A (behavioral) strategy for player i in a

Bayesian Game G is a mapping βi : Si → ∆(Ai).

Definition 9. Fix an economic environment E, priors πi ∈ ∆(Θ) for each player i ∈ N, and an

information structure I. A Bayes-Nash equilibrium (BNE) for (π1, π2, I) is a tuple (βi, µi) for

each player i ∈ I such that

1. βi is a strategy,

2. µi is a CPS for (πi, I), and

3. βi is optimal (given µi and β−i), i.e. for each si ∈ Si

ai ∈ supp βi(·|si) =⇒ ai ∈ arg max
a′i

∑
θ,s−i,a−i

µi(θ, s−i|si)β−i(a−i|s−i)ui(a′i , a−i, θ).
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Let BNE(π1, π2, I) be the set of all BNEs for (π1, π2, I).36

For some of the formal proofs below it will be useful to have an equivalent fixed-point

definition of belief-free rationalizability (Equation BFRn). Usual arguments can be used

to show the following equivalent fixed-point definition:37 for every player i consider a set

of actions Fi ⊆ Ai with the following fixed-point property

Fi :=


ai ∈ Ai

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ ∆(Θ × A−i) such that:

(i) suppµi ⊆ Θ × F−i,

(ii) ai ∈ BRi(µi)


. (BFRFP)

Then the pair (BFRi)i∈I understood as correspondences is equal to the pair of correspon-

dences (Fi)i∈I satisfying the fixed-point property and are largest by set inclusion.

The first result states that belief-free rationalizability characterizes all actions that can

be played in any Bayes-Nash equilibrium for any information structure (and any prior be-

liefs). Thus, without making any assumptions about the information structure an outside

observer can not make any prediction that is a refinement of belief-free rationalizability.

In this sense, belief-free rationalizability is robust to the specification of the (generalized)

information structure.

36The dependence on the economic environment is suppressed in this notation since it will be fixed
throughout. Furthermore, I will slightly abuse notation and write β = (β1, β2) ∈ BNE(π1, π2, I) if there exists
CPS’ µ = (µ1, µ2) such that (β, µ) ∈ BNE(π1, π2, I). Similarly, I will write βi ∈ BNEi(π1, π2, I) if there exists β−i
and µ such that (β1, µ1, β2, µ2) ∈ BNE(π1, π2, I).

37Battigalli (2003, Proposition 8.1) establishes this equivalence in a more general setting.
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Proposition 4. Fix an economic environment E. For every player i, ai ∈ BFRi iff there exists

priors (π1, π2), an information structure I and a signal si ∈ Si such that ai ∈ supp βi(·|si) for some

βi ∈ BNEi(π1, π2, I).

Proof. For given priors (π1, π2), information structure I, consider a signal si such that

ai ∈ supp βi(·|si) for some (βi, µ̂i, β−i, µ̂−i) ∈ BNE(π1, π2, I). I show that ai ∈ BFRi by induction,

i.e. ai ∈ BFRn
i for every n. The statement is trivial for n = 0. So assume the statement is

true for n ≥ 0. Consider the following belief µi ∈ ∆(Θ × S−i × A−i) defined by

µi(θ, s−i, a−i) = µ̂i(θ, s−i|si)β−i(a−i|s−i),

Note that ai is a best-reply to µi by the definition of BNE.

Let mi = margΘ×A−i
µi, then

mi(θ, a−i) > 0 =⇒ µi(θ, s−i, a−i) > 0 for some s−i such that β−i(a−i|s−i) > 0,

and by the induction hypothesis a−i ∈ BFRn
−i. Hence, suppµi ⊆ Θ × BFRn

−i. Since, ai is a

best-reply to µi, ai ∈ BFRn+1
i .
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Conversely, for every ai ∈ BFRi, there is a justifying belief µai
i satisfying (1) and (2) from

BFR.38 Then define a prior by

πi(θ) =
∑

ai∈BFRi

∑
a−i
µai

i (θ, a−i)
|BFRi|

and consider the following information structure: Si = BFRi and

Ψi(ai, a−i|θ) =
µai

i (θ, a−i)
πi(θ)

|BFRi|−1,

if πi(θ) > 0 and arbitrary otherwise. Note that for every ai ∈ BFRi,

∑
a−i,θ

πi(θ)Ψi(ai, a−i|θ) = |BFRi|−1 > 0,

so that the CPS is entirely determined by Bayesian updating.

Now, fix ai ∈ BFR and consider the obedient strategies, i.e. βi(ai|si) = 1[si = ai]. Then,

ai ∈ arg max
a′i∈Ai

∑
θ,a−i

µai
i (θ, a−i)ui(a′i , a−i, θ)

∈ arg max
a′i∈Ai

∑
θ,a−i

Ψi(ai, a−i|θ)πi(θ)ui(a′i , a−i, θ)

∈ arg max
a′i∈Ai

∑
θ,a−i,s−i

πi(θ)Ψi(ai, s−i|θ)β−i(a−i|s−i)ui(a′i , a−i, θ),

38Here, the equivalent fixed-point definition of belief-free rationalizability stated as in Equation BFRFP
(without any belief restrictions) is used.
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so that the obedient strategy of i is indeed a best-reply to the obedient strategy of the other

player (given the information structure). That is, β (and the CPS derived from Bayesian

updating) constitute a BNE. �

Robustness from the Player’s Perspective39

Now, I add back the marginal information structure of Player 1 (see Definition 4). Here

as well, zero probability events need to be taken care of and therefore rational-extended

beliefs are not appropriate anymore. A version of a conditional probability system is

needed again. Although, now it should only capture beliefs about the state of nature.

Definition 10. Fix an economic environment E, a prior π1 ∈ ∆(Θ) and a marginal information

structure I1. A marginal conditional probability system (mCPS) for (π1, I1) is a mapping

µ1 : S1 → ∆ (Θ) such that for every (θ, s1) ∈ Θ × S1,

µ1(θ|s1)

∑
θ′

π1(θ′)ψ1(s1|θ′)
 = π1(θ)ψ1(s1|θ).

Similar to rational-extended beliefs, mCPS need to be extended as well.

Definition 11. Fix an economic environment E, a prior π1 ∈ ∆(Θ) and a marginal information

structure I1. A rational-extended conditional probability system (rCPS) for (π1, I1) is a

mapping µ1 : S1 → ∆ (Θ × A2) such that

39This subsection is described from the perspective of player 1. It applies verbatim to player 2 by switching
the player indices.
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1. µ̃1 =
(
µ1(·|s1)

)
s1∈S1

is a mCPS for (π1, I1), where µ̃1(·|s1) = margΘ µ1(·|s1) for all s1 ∈ S1,

and

2. for all s1 ∈ S1, suppµ1(·|s1) ⊆ Θ × BFR2.

Finally, these rCPS’ allow to define the individual robust prediction even with zero

probability events.

Definition 12. Fix an economic environment E, a prior π1 ∈ ∆(Θ), and a marginal information

structure I1. A pure strategy b : S1 → A1 is conceivable for (π1, I1) if there exists a rCPS µ1 for

(π1, I1) such that b is optimal given µ1, i.e. for each s1 ∈ S1,

b(s1) ∈ arg max
a′1

∑
θ,a2

µ1(θ, a2|s1)u1(a′1, a2, θ).

The individual robust prediction is the set of all conceivable strategies and is denoted by

R1(I1, π1).

The goal of this section is to provide a foundation of the individual robust predictions.

That is, it should capture they idea of informational robustness across all information

structures of the opponent (fixing the marginal information structure of the player). This

leads to the idea of an extended information structure.

Definition 13. Fix an economic environment E and a marginal information structure I1 =

⟨S1, ψ1⟩. An extended information structure (for I1) is I = ⟨(Ŝi,Ψi)i∈N⟩ such that

1. I is a generalized information structure,
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2. S1 ⊆ Ŝ1, and

3. margS1
Ψ1(·|θ) = ψ1(·|θ), for all θ ∈ Θ.

Let I(I1) be the set of extending information structures for I1.

Condition (1) ensures that an extended information structure is indeed a generalized

information structure, whereas conditions (2) and (3) make sure that the extended infor-

mation structure incorporates the marginal information structure of Player 1. A natural

interpretation of this definition is that Player 1 conjectures a grand information structure

for given economic environment so that she can analyze the resulting Bayesian game.

However, since she knows exactly what information she gets about the state of nature,

she uses this knowledge to rule out information structures which do not align with her

marginal information structure. Indeed, the individual robust prediction correspond to

all strategies that are conceivable across all such conjectures. This means that for each

conceivable strategy there is an extending information structure (and a conjectured prior

for the opponent)40 and a corresponding Bayes-Nash equilibrium where this strategy is

played.

Proposition 5. Fix an economic environment E, prior π1 ∈ ∆(Θ), and a marginal information

structure I1. b ∈ R1(I1, π1) if and only if there exists an extending information structure I ∈ I(I1),

a prior π2 ∈ ∆(Θ), and a corresponding BNE βi such that b(si) ∈ supp βi(·|si) for all si ∈ Si.

Proof. Fix an economic environment E, prior π1 ∈ ∆(Θ), and a marginal information

structure I1.
40Recall that the economic environment does not specify priors.
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For a given extending information structure I ∈ I(I1), a prior π2, and a corresponding

BNE (β, µ̂) consider any selection b(s1) ∈ supp βi(·|s1) for all s1 ∈ S1. For every s2 ∈ Ŝ2

and every a2 ∈ supp β2(·|s2), a2 ∈ BFR2 by Proposition 4. For each s1 ∈ S1 consider beliefs

µ1(·|s1) ∈ ∆(Θ × A2) defined by

µ1(θ, a2|s1) =
∑

ŝ2

µ̂1(θ, ŝ2|s1)β2(a2|ŝ2).

Then µ1(θ, a2|s1) > 0 implies that there exists s2 ∈ Ŝ2 such that β2(a2|s2) > 0, which implies

that a2 ∈ BFR2. Hence, suppµ1(·|s1) ⊆ Θ × BFR2 for every s1 ∈ S1. Furthermore, let

µ̃1(·|s1) =
∑

a2
µ1(·, a2|s1) for every s1 ∈ S1, then

µ̃1(θ|s1)

∑
θ′

π1(θ′)ψ1(s1|θ′)
 =∑

a2,ŝ2

µ̂1(θ, ŝ2|s1)β2(a2|ŝ2)

∑
θ′

π1(θ′)ψ1(s1|θ′)


=
∑

ŝ2

µ̂1(θ, ŝ2|s1)

∑
θ′

π1(θ′)ψ1(s1|θ′)


=
∑

ŝ2

µ̂1(θ, ŝ2|s1)

∑
θ′,ŝ′2

π1(θ′)Ψ1(s1, ŝ′2|θ′)


=
∑

ŝ2

π1(θ)Ψ1(s1, ŝ2|θ) = π1(θ)ψ1(s1|θ),

where the third and last equality use property 3 of an extending information structure

(Definition 13). The fourth equality follows from µ̂1 being a CPS for (π1, I) (see Definition 8).

Thus, µ1 is a rCPS and by construction b(si) is a best-reply to µ1(·|s1) for each s1 ∈ S1. This

proves that b is conceivable.
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Conversely, consider b ∈ R1(I1, π1). By definition of R1 there exists a rCPS µ1 such

that b is optimal given µ1. Define BFR−1 = BFR1 \ ∪s1∈S1{b(s1)} and set Ŝ1 = S1 ∪ BFR−1 and

Ŝ2 = BFR2.

For player 1, define a conditional signal distribution as follows.

Ψ1(s1, ŝ2|θ) =
µ1(ŝ2, θ|s1)
π1(θ)

∑
θ̃

π1(θ̃)ψ1(s1|θ̃), for all s1 ∈ S1, and

Ψ1(a1, ŝ2|θ) = 0 for all a1 ∈ BFR−1 ,

if πi(θ) > 0 and arbitrary otherwise. Since the marginal of µ1 on θ is a mCPS, it holds that

margS1
Ψ1 = ψ1.

Since Ŝ2 ⊆ BFR2, there is a belief µa2
2 satisfying (1) and (2) from BFR41 for each a2 ∈ Ŝ2.

Then define a prior by

π2(θ) =
∑
a2∈Ŝ2

∑
a1
µa2

2 (θ, a1)

|Ŝ2|

and consider the following conditional signal distribution for player 2.

Ψ2(s1, a2|θ) =
1

|Ŝ2|
1

|b−1(b(s1))|
µa2

2 (b(s1), θ)
π2(θ)

, for all s1 ∈ S1, and

Ψ2(a1, a2|θ) =
1

|Ŝ2|
µa2

2 (a1, θ)
π2(θ)

, for all a1 ∈ BFR−1 ,

41Again, the equivalent fixed-point definition of BFR stated in Equation BFRFP (without any belief restric-
tion) is used.
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if π2(θ) > 0 and arbitrary otherwise.

Since
∑

ŝ1,θΨ2(ŝ1, s2|θ)π2(θ) = |Ŝ2|−1 > 0 for all s2 ∈ Ŝ2, the CPS for player 2 is determined

by Bayesian updating. For player 1, consider the CPS that is defined by Bayesian updating

if
∑
θ̃,ŝ2
π1(θ̃)Ψ1(s1, ŝ2|θ̃) =

∑
θ̃ π1(θ̃)ψ1(s1|θ̃) > 0 and in the other case for s1 ∈ S1 define

µ̂1(θ, ŝ2|s1) =
∑

a2

µ1(θ, a2|s1)1[a2 = ŝ2].

For a1 ∈ BFR−1 there exists a justifying BFR belief µa1
1 ∈ ∆(Θ × A2), so take as a CPS belief42

µ̂1(θ, ŝ2|s1) =
∑

a2

µa1
1 (θ, a2)1[a2 = ŝ2].

Now, consider the obedient strategies β1(b(s1)|s1) = 1 if s1 ∈ S1, β1(a1|a1) = 1 if a1 ∈ BFR−1 ,

and β2(a2|a2) = 1 for every a2 ∈ Ŝ2. It remains to verify that these strategies are optimal

given the CPS (and the strategy of the opponent).

Player 1 For every s1 ∈ S1 with
∑
θ̃,ŝ2
π1(θ̃)Ψ1(s1, ŝ2|θ̃) > 0

b(s1) ∈ arg max
a′1∈A1

∑
θ,a2

µ1(θ, a2|s1)u1(a′1, a2, θ)

∈ arg max
a′i∈Ai

∑
θ,a2

Ψ1(s1, a2|θ)π1(θ)u1(a′1, a2, θ)

∈ arg max
a′i∈Ai

∑
θ,a2,ŝ2

π1(θ)Ψ1(s1, ŝ2|θ)β2(a2|ŝ2)u1(a′1, a2, θ),

42By construction, these a1 have zero probability under the signal distributions of player 1.
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where the second line uses the definition of the signal distribution and the belief in

the last line is (equivalent to) the updated belief together with belief in the strategy

of the other player.

For every si ∈ Si with
∑
θ̃,ŝ2
π1(θ̃)Ψ1(s1, ŝ2|θ̃) = 0,

b(s1) ∈ arg max
a′1∈A1

∑
θ,a2

µ1(θ, a2|s1)u1(a′1, a2, θ)

∈ arg max
a′i∈Ai

∑
θ,a2,ŝ2

µ1(θ, a2|s1)1[a2 = ŝ2]u1(a′1, ŝ2, θ)

∈ arg max
a′i∈Ai

∑
θ,ŝ2,a2

µ̂1(θ, ŝ2|s1)β2(a2|ŝ2)u1(a′1, a2, θ).

Like in the last case, for every a1 ∈ BFR−1 a1 is a best-reply to µ̂1 and β2.

Player 2 For every a2 ∈ Ŝ2

a2 ∈ arg max
a′2∈A2

∑
θ,a1

µa2
2 (θ, a1)u2(a1, a′2, θ)

∈ arg max
a′2∈A2

∑
θ

 ∑
a1∈{b(s1)}s1

µa2
2 (θ, a1)u2(a1, a′2, θ) +

∑
a1∈BFR−1

µa2
2 (θ, a1)ui(a1, a′2, θ)


∈ arg max

a′2∈A2

∑
θ

∑
s1∈S1

µa2
2 (θ, b(s1))
|b−1(b(s1))| u2(b(s1), a′2, θ) +

∑
a1∈BFR−1

µa2
2 (θ, a1)u2(a1, a′2, θ)


∈ arg max

a′2∈A2

∑
θ

∑
ŝ1∈Ŝ1,a1

π2(θ)ψ2(ŝ1, a2|θ)β1(a1|ŝ1)u2(a1, a′2, θ).

So that β (together with the constructed CPS) is indeed a BNE. �
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Proposition 5 constitutes the main result of this section, because it provides an infor-

mational robustness foundation for the individual robust predictions.

3.3. Adversarial Bilateral Information Design

3.3.1. The General Problem

The previous section prepared the stage to address the question of information design

with bilateral contracting. Due to the nature of bilateral contracting, receivers’ behavior

is not uniquely predicted and the information designer is concerned about robustness

to this uncertainty. For this, the previous section introduced a solution concept that

captures robust predictions of receivers’ actions. Crucially, this solution concept depends

only on the receiver’s belief about the states of nature. This feature produces a general

representation theorem for information design with an adversarial and bilateral aspect.

To formally address the design question, the economic environment E needs to be

appended with the preferences of the designer (she) v : A × Θ → R, which describes

the utility she gets if the receivers take actions a = (a1, a2). Furthermore, I assume that

she knows the receivers’ priors, and that these priors are the same as her prior, i.e.

π1 = π2 = π ∈ ∆(Θ).43 Given this assumption, it is without loss to assume that the prior

43The assumption says the designer knows the prior of the receivers, which happens to be the same prior.
It does not state that players know the prior of their opponent, i.e. there is no common prior. Relaxing the
assumption of the designer knowing the receivers’ priors is active research even for the single receiver case.
See, for example, Beauchêne, Li, and Li (2019), Kosterina (2019), and Pahlke (2019). Heterogeneous priors
with the same support can be incorporated along the lines of Alonso and Câmara (2016). If priors with
different supports are allowed, an extension is not straightforward. Galperti (2019) addresses some of the
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has full support. Together these components form a design environment D = ⟨E, π, v⟩. In

such an environment, the designer chooses (grand) information structures, which specifies

signals and distributions over signals for both receivers:

Definition 14. Fix an economic environment E. A (grand) information structure (for E) is

I = ⟨(S1,S2),Ψ⟩, where for each player i ∈ N,

1. Si is a finite set of signals, and

2. Ψi : Θ→ ∆(S1 × S2) is a conditional signal distribution.

Let I denote the set of information structures (for E).

As before, I assume that each signal happens with positive probability.44 Additionally,

a given information structure I induces a marginal information structure, denoted by

margi I (or sometimes just Ii—no confusion should arise), by marginalization. That is,

ψi(·|θ) = marg
Si

Ψ(·|θ), for all θ ∈ Θ,

which justifies the naming.

The timeline of the overall design game is as follows and schematically shown in

Figure 3.2.

Step 1: Designer chooses an information structure I ∈ I.

subsequent issues in the case of a single receiver. Applying Galperti’s approach to the multiple receivers
setting of this chapter seems interesting for future research.

44This is without loss in this section.
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Step 2: Receivers learn their respective marginal information structure Ii.

Step 3: The state of nature θ realizes and signals (s1, s2) are sent according toΨ(·|θ).

Step 4: For each signal (s1, s2), Nature recommends a conceivable action for each receiver

to minimize the payoff of the designer.

Step 5: Each receiver plays as recommended by Nature.

Step 6: Payoffs are realized.

1 2 3 4 5 6

D chooses I i learns Ii θ realizes,
(s1, s2) sent

Nature rec-
ommends

(a1, a2)

i plays ai payoffs
realize

Figure 3.2: Timeline of the design game.

The bilateral contracting assumption is reflected in Step 2: a contract only specifies

the marginal information structure for each player. Step 4 corresponds to the adversarial

selection of the receivers’ actions. Due to bilateral contracts, there might be multiple

conceivable actions for each receiver, giving rise to uncertainty as to which actions will

be played. Here, the designer is assumed to be very sensitive to this uncertainty and she

considers a worst-case scenario.
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3.3.2. The Representation

With this timing in mind, the information-design problem can be stated formally as

sup
I∈I

V(I),

where

V(I) :=
∑

θ∈Θ,s∈S

π(θ)ψ(s|θ) min
(ai∈Ri(si|Ii,π))i∈N

v(a1, a2, θ), (3.2)

and recall that Ii is the marginal information structure derived from I.45 If a maximizer

exists,46 then the resulting information structure captures robustness in the following

sense: the optimal information structure performs well no matter how Nature chooses

and coordinates the receivers’ conceivable actions.

Given the structure of the problem, a natural approach would be to try to use a version

of the revelation principle. However, the standard revelation principle argument á la

Myerson (1982) does not apply here: this approach requires tie-breaking in favor of the

designer. Instead, adversarial selection, by definition, selects actions that are incentive-

compatible for the agents and bad for the principal. The following example illustrates

45See the discussion after Definition 4.
46In general, a maximizer might not exist. The adversarial approach includes tie-breaking against the

designer’s favor. This can lead to a failure of upper semicontinuity of the objective function.
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that such an approach is bound to fail and shows that the problem is even more subtle

than the tie-breaking issue. 47

Example 7. Let Θ = {0, 1} and consider an economic environment, where player 2 has

two actions (x and y) and is indifferent between them. Thus, R2(µ2) = {x, y} = A2 for any

µ2 ∈ ∆(Θ). Player 1 has three actions a, b, c and payoffs are given by Table 3.4.

Table 3.4: Payoffs for Player 1.

Player 2’s action

θ = 1 θ = 0

x y x y

Player 1’s action
a 2 0 0 2
b 3 0 1 0
c 0 1 0 3

First, b is conceivable for any belief: b is a best-reply if Player 1 is certain that player

2 chooses x. Similarly, c is also always conceivable. For beliefs close to certainty of either

state, a is dominated by a mixture of b and c (e.g. in state θ = 1 almost all the weight of

the mixture will be on b). However, beliefs around 1/2 about θ makes a conceivable. For

example, suppose the belief about θ is exactly 1/2, then consider the following rational-

extended belief: µ̃(1, x) = µ̃(0, y) = 1/2. For this belief, a is a best-reply. It can be verified

that for any belief µ ∈ ∆(Θ) such that µ ∈ [1/4, 3/4] a is conceivable.

Now, consider a designer who only cares about Player 1’s action. In particular, assume

her (state-independent) preferences are given by a ≺ b ≺ c. Figure 3.3 shows the robust

47I am indebted to Marciano Siniscalchi for providing this simple, yet elucidative, example. Inostroza
and Pavan (2018, Example 1) illustrate a similar issue when the designer has full commitment.



153

predictions for Player 1 in belief space and the implied worst-case selection for the de-

signer. For any prior π ∈ ∆(Θ) the designer can get her (constrained) best outcome (b) by

µ1 10 3/41/4

{b, c}

b

{b, c}

b

A1

a

Figure 3.3: Robust Predictions for Player 1 and implied designer’s worst-case realization.

fully revealing the state. This optimal payoff cannot be attained with recommendation in

general. For example, consider a prior belief of π = 1/2. A recommendation would send b

with certainty. However, this signal does not provide information beyond the prior and

therefore the worst-case prediction will be a rather than b as recommended.

The crucial failure is that a revelation principle with some sort of recommendations

usually works by pooling signals together. This gives rise to a posterior that is a convex

combination of the posteriors derived from each of the pooled signals. However, it is not

true that a best-reply to the convex combination is also a best-reply to one of the original

posteriors. For example, here, a is a best-reply to a convex combination of beliefs that are

certain about a state. For each of these extreme beliefs, a is dominated by either b or c. ⋄
Example 7 illustrates that there is no obvious simplification in signal space available

that does not use some specific structure of the underlying economic environment. Since

the individual robust prediction Ri depends only on the belief induced by the signal (see

Proposition 3), the problem can be simplified by working with beliefs directly similarly

to the single-receiver case of Kamenica and Gentzkow (2011). However, for multiple
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receivers, their approach does not readily extend itself because the designer has to address

the full hierarchy of beliefs. This approach has been studied by Mathevet et al. (2020).

In the present chapter the information designer can only commit to the marginal

information structures because of the bilateral contracting assumption. In this setting, the

players know what information they will receiver about the state of nature, but they do

not know what information their opponent receives. The individual robust prediction

corresponds to such an environment. Thus, the current setting raises a question about

which distribution over beliefs can be induced by an information structure.48

Like Equation 3.1, Bayesian updating gives rise to receiver i’s posterior belief about

the state of nature:49

µsi(θ) :=

∑
s−i
Ψ(si, s−i|θ)π(θ)∑

s−i,θ′Ψ(si, s−i|θ′)π(θ′)
. (3.3)

Thus, the information structure gives rise to a distribution over beliefs and the state of

nature, i.e. an element of ∆(∆(Θ) × ∆(Θ) ×Θ). Formally, this distribution τ is given by

λ(µ1, µ2, θ) =
∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ). (3.4)

48Indeed, this is an open question in the literature. Ely (2017, p. 47) raises this concern quite directly by
stating that “[...] there is no useful generalization for the multi-agent case”. However, see also Arieli et al.
(2020).

49Mechanically, Bayesian updating gives rise to a belief about the other receiver’s signals as well. However,
as mentioned above only beliefs about the states matter.



155

Say a distribution over beliefs τ is induced by some information structure, if there exists

an information structure such that τ can be derived from the information structure by

applying Equation 3.3 and 3.4. Using Proposition 3, the objective from Equation 3.2 can

be rewritten as follows:

V(I) =
∑

θ∈Θ,s∈S

π(θ)ψ(s|θ) min
(ai∈Ri(µsi ))i∈N

v(a1, a2, θ)

=
∑
µ1,µ2,θ

λ(µ1, µ2, θ) min
(ai∈Ri(µi))i∈N

v(a1, a2, θ),

where λ corresponds to the distribution over beliefs induced by I. Now, the objective

is stated purely in terms of beliefs and the actual information structure no longer plays

a role. However, a simplification of the design problem calls for a characterization of a

subset of ∆(∆(Θ) × ∆(Θ) × Θ) so that every element of this subset is induced by some

information structure.

Obviously, consistency with the prior π requires the marginal of λ on the state space to

coincide with π, i.e. margΘ λ = π. Furthermore, it is well known that another requirement

that needs to be satisfied for any distribution over beliefs is that the belief of each player

averages out to the prior, i.e. for each i ∈ N

∑
µ1,µ2,θ

µiλ(µ1, µ2, θ) = π. (3.5)
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Kamenica and Gentzkow (2011) show that this condition is also sufficient to characterize

the marginal distribution over beliefs for each player. However, these martingale prop-

erties on the marginals are not enough to characterize the possible joint distributions.

Intuitively, what is missing are constraints linking together co-movement of beliefs across

players.

Table 3.5: λ not induced by any information structure.

µ2

λ
θ = 1 θ = 0

0 1 0 1

µ1
0 0 0 0 1/2

1 1/2 0 0 0

Example 8. Let Θ = {0, 1} and consider a uniform prior. Table 3.5 states a candidate

distribution λ, which satisfies consistency with the prior and satisfies the martingale

property for each player. However, no information structure induces such a distribution

over beliefs. Intuitively, why no information structure can give rise to such a posterior

distribution is easily seen: the extreme posteriors reflect the idea that the information

structure fully reveals the state to the receivers. But if this is the case, there is no way to

reveal one state to Player 1 and, at the same time, reveal the other state to Player 2. ⋄
The following representation theorem takes care of the restrictions across players and

follows from a direct-revelation argument in belief space:50

50Here and henceforth, I will differ slightly from the standard notation by denoting the set of finite
support probability measures with ∆(X) even for the case when X is infinite. This is not restrictive beyond
the maintained assumption of finite information structures.
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Theorem 9 (Representation Theorem). Fix a design environmentD and define ν(µ1, µ2, θ) :=

min(ai∈Ri(µi))i∈N
v(a1, a2, θ). The designer’s problem can be represented as51

sup
I∈I

V(I) = sup
λ∈∆(∆(Θ)2×θ)

∑
µ1,µ2,θ

λ(µ1, µ2, θ)ν(µ1, µ2, θ)

s.t. (1) marg
Θ

λ = π,

(2) Eλ[δθ|µi] =

∑
µ−i
λ(µi, µ−i, ·)∑

µ−i,θ λ(µi, µ−i, θ)
= µi, for every µi ∈ suppλ.

Furthermore, this restated problem is is a linear program.

Proof. I only proof (1)+(2). The rest is obvious or follows from the previous discussion.

Fix an information structure I ∈ I and let λ ∈ ∆(∆(Θ) × ∆(Θ) × Θ) be the induced

distribution. Then (1) is satisfied, because

∑
µ1,µ2

λ(µ1, µ2, θ) =
∑
µ1,µ2

∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ)


= π(θ)

∑
s1,s2

Ψ(s1, s2|θ) = π(θ).

51Henceforth, for a given set X and any x ∈ X, δx ∈ ∆(X) denotes the Dirac measure concentrated at x.
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For (2), consider µ1 ∈ ∆(Θ). Then,

∑
µ2

λ(µ1, µ2, θ) =
∑
µ2

∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ)


=
∑

s1:µs1=µ1

∑
s2

π(θ)Ψ(s1, s2|θ)

=
∑

s1:µs1=µ1

µs1(θ)
∑
s2,θ′

π(θ′)Ψ(s1, s2|θ′)


= µ1(θ)
∑

s1:µs1=µ1

∑
s2,θ′

π(θ′)Ψ(s1, s2|θ′)


= µ1(θ)
∑
µ2,θ′

λ(µ1, µ2, θ
′).

The argument for player 2 is the same.

Conversely, suppose there exists λwith conditions (1) and (2), I will construct an infor-

mation structure which induces λ. For this let S1 = supp marg1 τ and S2 = supp marg2 τ

and define the conditional signal distribution as

Ψ(µ1, µ2|θ) =
λ(µ1, µ2, θ)
π(θ)

.

Note that condition (1) implies thatΨ gives rises to valid distributions.

Furthermore, for signals which happen with positive probability condition (2) gives

µµi(θ) =

∑
µ−i
λ(µi, µ−i, θ)∑

µ−i,θ̃ λ(µi, µ−i, θ)
= µi(θ).
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Hence,

∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ) = π(θ)Ψ(µ1, µ2|θ) = λ(µ1, µ2, θ)

so that the constructed information structure induces λ. �

Example 8 (continuing from p. 156). The proposed distribution of Table 3.5 does not satisfy

condition (2) of the program states in Theorem 9. To see this, consider the case where

Player 2 is certain of θ = 0 (i.e. µ2 = 0), so that

∑
µ1
λ(µ1, 0, 0)∑

µ1,θ λ(µ1, 0, θ)
= 0 , µ2(0) = 1 − µ2 = 1.

This formally illustrates that λ is not induced by any information structure as was intu-

itively explained before. ⋄
The characterization of the distributions over belief in the representation theorem does

not make use of the martingale properties (Equation 3.5). Indeed, the two conditions in

the theorem imply the martingale condition, because

∑
µi,µ−i,θ

τ(µi, µ−i, θ)µi =
∑
µi

µi

∑
µ−i,θ

τ(µi, µ−i, θ)
(2)
=
∑
µi

∑
µ−i

τ(µi, µ−i, ·)
(1)
= π. (3.6)

Furthermore, this characterization is a direct extension of the single-receiver characteriza-

tion of Kamenica and Gentzkow (2011), i.e. if one receiver does not get any information
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the martingale condition (Equation 3.5) remains the only constraint for the other receiver.

Corollary 3 (Kamenica and Gentzkow, 2011). Fix an economic environment E and a full-

support prior π ∈ ∆(Θ). Consider λ ∈ ∆(∆(Θ) × ∆(Θ) × Θ) with marginals (on ∆(Θ)) τ1 and

τ2 and suppose that (i) τ2 = δπ and (ii) margΘ λ = π. Then, λ is induced by an information

structure if and only if
∑
µ1
Eτ1[µ1] = π.

3.4. The Case of Pure Persuasion

So far the general problem allowed for the designer having intrinsic preference on how

the information is provided to the receivers. This section will address the case where the

designer only cares about the receivers’ actions, but does not care about the state of nature

herself. Henceforth, with a slight abuse of notation, the designer’s preferences are given

by v : A→ R. Thus the objective of the designer becomes to maximize

∑
θ∈Θ,s∈S

π(θ)ψ(s|θ) min
(ai∈Ri(si|Ii,π))i∈N

v(a1, a2).

In this case the belief-space approach simplifies the problem even further, because now

the distribution over two beliefs of the receivers are a sufficient to calculate the expected

value for the designer. For a given a information structure I and the induced distribution

over beliefs and states λ ∈ ∆(∆(Θ) × ∆(Θ) × Θ), consider the marginal distribution over

beliefs alone, i.e. marg1,2λ =: τ ∈ ∆(∆(Θ) × ∆(Θ)). Similar to above this allows to exploit
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Proposition 3 to rewrite the objective in belief space as

∑
µ1,µ2

τ(µ1, µ2)ν(µ1, µ2),

where ν(µ1, µ2) := min(ai∈Ri(µi))i∈I
v(a1, a2). However, working in belief space requires again a

characterization of the choice set of the designer; that is a characterization of distributions

over receivers’ beliefs that can be induced by information structures. However, this is an

open problem in the literature. Very recently and independently from my work, Arieli et al.

(2020) provide such a characterization for the case of binary states. Their characterization

requires a quantification over all subsets of the support of the distributions over beliefs

and therefore does not readily yield a simplification of the design problem. Instead, I

follow a different route by providing bounds on how dependent the beliefs can be across

the two receivers. Although, these bounds turn out to be only a necessary condition for

distributions over beliefs to be induced by any information structure, they are tractable and

work for any (finite) number of states of nature.52 Furthermore, these bounds are sufficient

under more assumptions about the design environment. One set of such assumptions will

be presented later.

3.4.1. Measuring Dependence of Random Variables

A bit more notation is needed to introduce the relevant measure of dependence for random

variables that is also relevant when realizations are beliefs. Let X and Y be real-valued
52Arieli et al. (2020, Appendix B) discuss why my bounds are only necessary.
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random variables.53 distributed according to cumulative distribution functions (CDFs)

FX and FY, respectively. Then the Fréchet class F (FX,FY) is the set of all joint CDFs with

marginals given by FX and FY.

Definition 15 (Joe, 1997, Section 2.2.1). Fix two univariate CDFs F1 and F2. Consider F,F′ ∈

F (F1,F2). F′ is said to be more concordant than F (denoted by F - F′) if54

F(x, y) ≤ F′(x, y),

for all (x, y) ∈ R2.

Intuitively, this stochastic ordering formalizes the idea that large values happen more

often together (across both dimensions) under F′ than under F. Furthermore, the Fréchet

class F can be bounded according to this stochastic ordering. That is, for given univariate

CDFs F1 and F2, for every F ∈ F (F1,F1), F - F - F, where

F(x, y) := max{0,F1(x) + F2(y) − 1}, and (3.7)

F(x, y) := min{F1(x),F2(y)}. (3.8)

These bounds are often called Fréchet-Hoeffding bounds55 and they correspond to ex-

tremal dependence across the two dimensions. The lower bound corresponds to coun-

53The definition readily extends to random variables taking values in a totally ordered set.
54This stochastic order is also known as the positive quadrant dependent (PQD) ordering. See, e.g.,

Shaked and Shanthikumar (2007, Chapter 9).
55They were discoverd by Hoeffding (1940) and Fréchet (1951). They play an important role in Copula

theory. For more see, for example, Nelsen (2006).



163

termonotonic random variables (i.e. low realizations in one dimension happen only with

high realizations in the other dimension), whereas the upper bound describes comono-

tonic random variables (i.e. perfect positive dependence). These bounds also describe the

extremal dependence for information structures.56 This is illustrated with the help of the

information structures from the CRO example next.

Example 9. Consider the information structures described by Table 3.1 and Table 3.2.

Table 3.6 shows their corresponding CDFs.57 Both CDFs correspond to the lower Fréchet-

Hoeffding bound (given their respective marginal distributions).

Table 3.6: CDFs corresponding to the information structures from Subsection 3.1.2.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizr b 0 0 0 1/2

g 0 1 1/2 1
CDF for Table 3.1

Report for Novarty

θ = 1 θ = 0

b g b g

b 0 0 1/2 3/4

g 0 1 3/4 1
CDF for Table 3.2

With the information from Table 3.6 the upper bound can be obtained by using Equa-

tion 3.8. The resulting CDFs are shown in Table 3.7. With these CDFs, the signals are

perfectly aligned. For example, the distribution coniditonal on the state θ = 0 defined

by the left side of Table 3.7 corresponds to sending the bad report to both receivers with

probability 1/2 and sending the good report with the remaining probability of 1/2 to both

56For this, the set of individual signals needs be endowed with any total order. Recall that information
structures are distributions over signals conditional on the state of nature, see Definition 14. If all conditional
distributions are equal to their (upper or lower) Fréchet-Hoeffding bound (fixing the conditional marginal
distributions), then I say the information structures attains its bound.

57Signals are ordered so that g is assumed to be greater than b.
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companies. Therefore, both companies will always get the exact same report in the case

the drug is ineffective. This is also true for the distribution described on the right side,

but in this case the probabilities differ. ⋄
Table 3.7: F for same marginals as in Table 3.6.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizr b 0 0 1/2 1/2

g 0 1 1/2 1
F for Table 3.1

Report for Novarty

θ = 1 θ = 0

b g b g

b 0 0 3/4 3/4

g 0 1 3/4 1
F for Table 3.2

For distributions over beliefs more restrictive bounds can be established. In general,

the Fréchet-Hoeffding bounds are too wide for distributions over beliefs. Examples best

illustrate this issue. First, Example 10 shows that, although the information structure from

Table 3.1 attains58 the lower Fréchet-Hoeffding bound, the induced belief distribution does

not attain the Fréchet-Hoeffding bound. Second, Example 8 shows a belief distribution

that attains the lower Fréchet-Hoeffding bounds. However, this belief distributions can-

not be induced by an information structure, meaning that the usual Fréchet-Hoeffding

bounds can be tightened to bound the distributions of beliefs induced by any information

structure.

Example 10. As before, consider a binary state case with prior π = 1/2. Suppose the

information structure in Table 3.8 is given. The information structure attains the Fréchet-

Hoeffding lower bound and induces two posteriors: 1/4 and 3/4.
58See Footnote 56.
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Table 3.8: Non-revealing symmetric information structure.

Report for Player 2

θ = 1 θ = 0

b g b g

Report for Player 1 b 1/2 1/4 0 1/4

g 1/4 0 1/4 1/2

The induced distribution over beliefs is given in Table 3.9: the bivariate uniform

distribution. This clearly differs the Fréchet-Hoeffding lower bound, which is shown on

the right. Thus, although the information structure attains the lower bound, the induced

distribution over beliefs does not attain the Fréchet-Hoeffding lower bound. As shown

later, the belief distribution on the right (i.e. the Fréchet-Hoeffding lower bound) cannot be

induced by any information structure. Indeed, any distribution that shows more negative

dependence than the actual belief distribution (i.e. the distribution on the left) cannot be

a belief distribution induced by any information structure. Therefore, the usual Fréchet-

Hoeffding bounds are not tight enough. This becomes even more transparent in the next

example. ⋄
Table 3.9: Belief distribution induced by the information structure of Table 3.8.

Belief of Player 2

PMF CDF F
1/4 3/4 1/4 3/4 1/4 3/4

Belief of Player 1
1/4 1/4 1/4 1/4 1/2 0 1/2
3/4 1/4 1/4 1/2 1 1/2 1

Example 8 (continuing from p. 156). Consider the distributions only over beliefs derived

from Table 3.5, which is stated in Table 3.10. Example 8 already established that the
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distribution cannot be induced by any information structure. However, the distribution

of Table 3.10 corresponds to the lower Fréchet-Hoeffding bound. ⋄
Table 3.10: Pure belief distribution not induced by any information structure.

Belief of Player 2

PMF

0 1

Belief of Player 1 0 0 1/2

1 1/2 0

The previous examples established that the usual Fréchet-Hoeffding bounds can be

tightened to provide necessary conditions for distributions over beliefs induced by infor-

mation structures. In this section, I introduce and discuss such bounds that are useful

for the information design question at hand. Since these bounds concern CDFs defined

on beliefs, the space of beliefs needs to be ordered. Although the proposed bounds hold

for any total order, it is convenient to take a linear extension of the first-order stochas-

tic dominance order.59 To do this, endow the state of nature Θ with a total order, i.e.

Θ = {θ1, . . . , θK} for some finite K < ∞ and the order corresponds to the indexing set. Then

endow ∆(Θ) with a completion of first-order stochastic dominance giving rise to a lattice

structure. Given µ, µ′ ∈ ∆(Θ), a sufficient condition for µ ≥ µ′ is µ first-order stochastic

dominating µ′, i.e. for every L = 1, . . . ,K,

L∑
k=1

µ(θk) ≤
L∑

k=1

µ′(θk).

59Such a completion always exists due to Szpilrajn’s extension theorem. See Aliprantis and Border (2006,
Theorem 1.9).
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Given this order, define CDFs over beliefs analogously to the case of CDFs of real-

valued random variables. That is, for a given distribution τ ∈ ∆(∆(Θ)), define the as-

sociated CDF by T(µ) =
∑
µ′≤µ τ(µ′). Similarly, ∆(Θ) × ∆(Θ) is endowed with the prod-

uct order derived from the order on each dimension. Then, for any joint distribution

τ ∈ ∆(∆(Θ) × ∆(Θ)) the associated (joint) CDF is given by

T(µ) = T(µ1, µ2) =
∑

µ′1≤µ1,µ′2≤µ2

τ(µ′1, µ
′
2).

With these definitions in hand, the belief-dependence bounds can be defined. Similar to

the Fréchet-Hoeffding bounds, these bounds are defined for given marginal distributions.

Definition 16. Fix two univariate distributions over beliefs τ1, τ2 ∈ ∆(∆(Θ)) and a prior π ∈

∆(Θ). The lower belief-dependence bound is defined as

T(µ1, µ2) = max
0≤L≤K

max
{
T1(µ1, µ2; L),T2(µ1, µ2; L)

}
, (3.9)
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where for each60 L = 0, . . . ,K,

T1(µ1, µ2; L) =
∑
µ′1≤µ1

τ1(µ′1)
L∑

k=1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
L∑

k=1

µ′2(θk) −
L∑

k=1

π(θk),

and (3.10)

T2(µ1, µ2; L) =
∑
µ′1≤µ1

τ1(µ′1)
K∑

k=L+1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
K∑

k=L+1

µ′2(θk) −
K∑

k=L+1

π(θk).

The upper belief-dependence bound is defined as

T(µ1, µ2) = min
1≤L≤K

min
{
T1(µ1, µ2; L),T2(µ1, µ2; L)

}
, (3.11)

where for each61 L = 0, . . . ,K,

T1(µ1, µ2; L) =
∑
µ′1≤µ1

τ1(µ′1)
L∑

k=1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
K∑

k=L+1

µ′2(θk),

and (3.12)

T2(µ1, µ2; L) =
∑
µ′1≤µ1

τ1(µ′1)
K∑

k=L+1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
L∑

k=1

µ′2(θk).

A few observation are in order. First, as argued in the previous section, the goal

is to tighten the usual Fréchet-Hoeffding bounds using the restrictions imposed by

the actual information structures and Bayesian updating. Thus, the belief-dependence

bounds should be tighter, which is indeed the case. Formally, for the lower bound it

60By convention, empty sums are defined to be zero.
61Again, by convention, empty sums are defined to be zero.
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holds that F(µ1, µ2) ≤ T(µ1, µ2) since F(µ1, µ2) = maxL∈{0,K} T(µ1, µ2; L) ≤ T(µ1, µ2). For

the upper bound the reversed inequality, F(µ1, µ2) ≥ T(µ1, µ2), holds because F(µ1, µ2) =

min
{
T1(µ1, µ2; K),T2(µ1, µ2; K)

}
≥ T(µ1, µ2). Second, if the marginal distributions are equal,

i.e. τ1 = τ2, then the upper belief-dependence bound is actually the same as the upper

Fréchet-Hoeffding bound. Formally:

Lemma 7. Fix an economic environment E and a full-support prior π ∈ ∆(Θ). Consider two

univariate distributions τ1, τ2 ∈ ∆(∆(Θ)) such that τ1 = τ2 and suppose that Eτ1[µ1] = π. Then,

the upper belief-dependence bound is the usual upper Fréchet-Hoeffding bound, i.e. T = F.

Proof. For notation, see the proof of Proposition 6 below. By Symmetry T1 = T2 and similar

for Mi. Thus, I will drop the indices. Without loss say µ1 ≤ µ2, then T(µ1) ≤ T(µ2). Fix any

L and then T1(µ1, µ2; L) =M(µ1)+T(µ2)−M(µ2) ≥M(µ1)+T(µ1)−M(µ1) = T(µ1). Similarly,

T2(µ1, µ2; L) = T(µ1) −M(µ1) +M(µ2) ≥ T(µ1) −M(µ1) +M(µ1) = T(µ1). �

Furthermore, these bounds are indeed necessary conditions for distributions over

beliefs to be induced by any information structure.

Proposition 6. Fix an economic environment E and a full-support prior π ∈ ∆(Θ). τ ∈ ∆(∆(Θ)×

∆(Θ)) is induced by an information structure only if62

1.
∑
µ1,µ2

τ(µ1, µ2)µ1 =
∑
µ1,µ2

τ(µ1, µ2)µ2 = π, and

2. T - T - T.
62Here, a slight abuse of notation appears: the belief bounds are formally only defined for two marginal

beliefs. In the statement there is only the joint distribution τ. The belief bounds correspond to the bounds
defined by using the two marginals distributions derived from τ.
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The formal proof of Proposition 6 is stated in below, but requires some cumbersome

notation. Thus, I provide a sketch of the main steps of the proof first.

Step 1 [Characterization of state-dependent distributions over beliefs]: Theorem 9 gives

a characterization of the distributions λ ∈ ∆(∆(Θ)×∆(Θ)×Θ) that can arise from any

information structure, where the third dimension corresponds to the actual state of

nature.

Step 2 [From τ to marginals of λ]: Consider τ induced by an information structure.

By Step 1, there exists λ with marginal τ satisfying the properties of Theorem 9.

Equation 3.6 shows condition (1) in Proposition 6 has to hold.

Using property (2) of Theorem 9 it can be verified that the two other bivariate

marginals of λ are given by λi,θ(µi, θ) = µi(θ)
∑
µ−i
τ(µi, µ−i). It remains to show

necessesity of (2) as stated in Proposition 6 using the marginals of λ.

Step 3 [Higher-order Fréchet-Hoeffding bounds]: Joe (1997, Theorem 3.11) extends the

usual Fréchet-Hoeffding bounds to trivariate distribution with given bivariate mar-

ginals. For the distribution here, these bounds say that the desired λ exists only

if

Γ
(
τ, λ1,θ, λ2,θ

) ≤ Γ (τ, λ1,θ, λ2,θ
)
, (3.13)

whereΓ andΓ are functionals mapping to CDFs of trivariate distributions. By contra-

diction, suppose that τ does not satisfy the bounds of Proposition 6. Since both λi,θ’s
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depend only on τ, simple alegbra shows that the inequality of Joe (1997) described

in Equation 3.13 is violated, which implies that λ does not exists. Contradiction.

QED.

Proof. For the proof consider the following definitions. Given τ1, τ2 ∈ ∆(∆(Θ)) and a prior

π ∈ ∆(θ) define

Π(L) =
L∑

k=1

π(θk)

T1(µ1) =
∑
µ′1≤µ1

τ1(µ′1) and T2(µ2) =
∑
µ′2≤µ2

τ2(µ′2)

T(µ1, µ2) =
∑
µ′1≤µ1

∑
µ′2≤µ2

τ(µ′1, µ
′
2)

M1(µ1,L) =
∑
µ′1≤µ1

τ1(µ′1)
L∑

k=1

µ′1(θk)

M2(µ2,L) =
∑
µ′2≤µ2

τ2(µ′2)
L∑

k=1

µ′2(θk).

With these definitions, the elementary functions of the belief-dependence bounds can be

restated as

T1(µ1, µ2; L) =M1(µ1,L) +M2(µ2,L) −Π(L)

T2(µ1, µ2; L) = T1(µ1) −M1(µ1,L) + T2(µ2) −M2(µ2,L) − [1 −Π(L)]

T1(µ1, µ2; L) =M1(µ1,L) + T2(µ2) −M2(µ2,L)

T2(µ1, µ2; L) = T1(µ2) −M1(µ2,L) +M2(µ1,L),
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for every L = 0, . . . ,K.63

Consider τ that is induced by an information structure. Since it is induced by an

information structure, there exists λ ∈ ∆(∆(Θ) × ∆(Θ) ×Θ) with marginal distribution on

∆(Θ)×∆(Θ) given by τ and properties (1) and (2) as stated in Theorem 9. By Equation 3.6

the marginal conditions (1) of Proposition 6 are satisfied. Now, define

λ1(µ1, θ) = µ1(θ)
∑
µ2

τ(µ1, µ2),

λ2(µ2, θ) = µ2(θ)
∑
µ1

τ(µ1, µ2).

Since τ is a (bivariate) marginal of λ and due to (2) of Theorem 9, λ1 and λ2 are the two

other bivariate marginals of λ.

Now, by Joe (1997, Theorem 3.11), λ with the given bivariate marginals exists only if

for every L = 0, . . . ,K and every µ1, µ2 ∈ ∆(Θ),

max
{
0,T(µ1, µ2) − [T1(µ1) −M1(µ1,L)

]
,T(µ1, µ2) − [T2(µ2) −M2(µ2,L)

]
,

M1(µ1,L) +M2(µ2,L) −Π(L)
}

≤ (3.14)

min
{
T(µ1, µ2),M1(µ1,L),M2(µ2,L),

T(µ1, µ2) + [1 −Π(L)] − [T1(µ1) −M1(µ1,L)
] − [T2(µ2) −M2(µ2,L)

]}
.

63Recall that a summation over an empty set is, by definition, zero.
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Now, it remains to prove that existence of λ and Equation 3.14 imply the bounds

T % T % T. By way of contradiction, suppose the bounds are violated, then (at least) one

of the following cases has to apply for some L = 0, . . . ,K and some µ1, µ2 ∈ ∆(Θ)

• If T(µ1, µ2) > T1(µ1, µ2; L) =M1(µ1,L) + T2(µ2) −M2(µ2,L), then

T(µ1, µ2) − [T2(µ1) −M2(µ1,L)
]
> M1(µ2,L).

• If T(µ1, µ2) > T2(µ1, µ2; L) = T1(µ2) −M1(µ2,L) +M2(µ1,L), then

T(µ1, µ2) − [T1(µ1) −M1(µ1,L)
]
> M2(µ2,L).

In either case, Equation 3.14 is violated. Similarly, if T(µ1, µ2) < T1(µ1, µ2; L) = M1(µ1,L) +

M2(µ2,L) − Π(L) or T(µ1, µ2) < T2(µ1, µ2; L) = T1(µ1) − M1(µ1,L) + T2(µ2) − M2(µ2,L) −

[1 −Π(L)] then Equation 3.14 is violated.

Thus, if the bounds are not satisfied at any point, Equation 3.14 is violated. This means

that there is no trivariate distribution with the marginals given by τ, λ1, and λ2. However,

this is in contradiction with the existence of λ. �

Thus, these bounds gives rise to a problem for finding an upper bound of the pure-

persuasion design problem:
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Corollary 4. Fix a design environmentD. Then,

sup
I∈I

V(I) ≤ V(π) := sup
τ∈∆(∆(Θ)2)

∑
µ1,µ2

τ(µ1, µ2)ν(µ1, µ2)

s.t.
∑
µ1,µ2

τ(µ1, µ2)µ1 = π,

∑
µ1,µ2

τ(µ1, µ2)µ2 = π,

and T - T - T.

This corollary shows that the designer solves the (relaxed) problem as if she chooses

marginal belief distributions for each receiver subject to the familiar Bayes plausibility

conditions. Moreover, the beliefs across the two receivers cannot be too dependent so

that the joint distribution satisfies the belief-dependence bounds. The constraints on the

distributions of beliefs are tractable, especially if the designer utility ν (as a function on

belief space) has special properties.

For two-dimensional real-vectors it is well known64 that the stochastic order - (recall

Definition 15) has a dual characterization in terms of utility functions. In particular,

F - G ⇐⇒ EF[w(x, y)] ≤ EG[w(x, y)],

for all Bernoulli utility functions w : R2 → R that are supermodular. Meyer and Strulovici

(2015) extend this result to distribution over a finite, n-dimensional lattice. Since the order
64In probability theory, this is known at least since Cambanis, Simons, and Stout (1976) and Tchen (1980).
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on beliefs was assumed to be a total order, Meyer and Strulovici’s results apply to the

setting of this chapter. Thus, if ν in Corollary 4 is supermodular, then the pure persuasion

design problem can be simplified by first solving

sup
τ1,τ2∈∆(∆(Θ))

∑
µ1,µ2

τ(µ1, µ2)ν(µ1, µ2)

s.t.
∑
µ1

τ1(µ1)µ1 = π,

∑
µ2

τ2(µ2)µ2 = π,

and T = T,

and then verifying whether the resulting τ is induced by an information structures. Sym-

metrically, if ν is submodular the last constraint would be replaced by T = T. In either

case, the problem is simplified because the choice set contains only marginal distributions.

Kamenica and Gentzkow (2011) show that the value of the information-design problem

with one receiver is equal to the concavification of the underlying utility function of the

designer. This turns out to be a convenient way of solving the design problems for specific

environments. Sometimes, the concavification approach is useful even for the case with

two receivers, as considered in this chapter. Here, applying the concavification65 to the

65See, for example, Rockafellar (1970, Corollary 17.1.5)
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designer utility ν gives

cav ν(π1, π2) = sup
τ∈∆(∆(Θ)2)

∑
µ1,µ2

τ(µ1, µ2)ν(µ1, µ2)

s.t.
∑
µ1,µ2

τ(µ1, µ2)µ1 = π1,

∑
µ1,µ2

τ(µ1, µ2)µ2 = π2.

Thus, the concavification is just an (even more) relaxed version of the actual designer’s

problem. It suggests solving the concavification approach and then checking whether the

resulting distribution actually satisfies the belief bounds. This might be useful for applica-

tions: as demonstrated later in Subsection 3.4.2, this approach simplifies the search for the

optimal information structure in the CRO example, given that the CRO has supermodular

preferences. This observation is formally recorded next.

Corollary 5. Fix a design environment D. The concavification of ν is an upper bound for the

relaxed problem of Corollary 4 (a fortiori for the actual design problem), i.e.

cav ν(π, π) ≥ V(π) ≥ sup
I∈I

V(I).

As explored above, Corollary 4 allows further simplifications of the maximization

problem if the designer’s utility function defined on the belief space takes particular

forms. However, this utility function ν is an object derived from the primitive objects

stated in a design environment D. Next, I discuss a broad class of environments which
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provides easy verifiable sufficient conditions on primitives to ensure that the derived

object ν satisfies sub- or supermodularity whenever the primitive function v satisfies

these properties. In addition, a subclass of these environments allows me to provide an

upper bound on the cardinality of the signal space (see Example 7).

Definition 17. An economic environment E = ⟨Θ, (Ai,ui)i∈N⟩ is monotone if

1. the states of nature Θ are endowed with an total order,

2. for each player i ∈ N, the set of actions Ai is endowed with an total order, and

3. for each player i ∈ N, the utility function has increasing differences in (ai, θ), i.e. for all

(ai, θ), (a′i , θ
′) ∈ Ai ×Θ and all a−i ∈ A−i,

a′i ≥ ai and θ′ ≥ θ =⇒ ui(a′i , a−i, θ
′) + ui(ai, a−i, θ) ≥ ui(a′i , a−i, θ) + ui(ai, a−i, θ

′).

A design environmentD = ⟨E, π, v⟩ is monotone if

1. the economic environment E is monotone, and

2. the designer’s utility function v : A → R is increasing66 with respect to the product order

induced by the orders on the set of actions Ai, i.e. for all (a1, a2) ∈ A,

a′i ≥ ai, for all i = 1, 2 =⇒ v(a′1, a
′
2) ≥ v(a1, a2).

66Only monotonicity of v is needed for all of the following analysis. The definition uses increasingness to
simplify the notation.
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Supermodular games usually have an underlying economic environment that is mono-

tone. However, the class of monotone environments is more general since it does not

specify increasing differences in (ai, a−i), which is assumed to transform an economic en-

vironment to supermodular game. Thus, the class of environments here is quite general,

but specific enough to translate the preference for complementarities from action space

to belief space as formally stated in the next proposition. This proposition, therefore,

provides a simple way to check the primitives to ensure that the derived Bernoulli utility

in in belief space is either sub- or supermodular.

Proposition 7. Consider a monotone design environment D. Suppose the designer’s utility

v : A → R is supermodular then the derived utility ν : ∆(Θ) × ∆(Θ) → R on belief space

(endowed with the first-order stochastic dominance order) is supermodular, where

ν(µ1, µ2) := min
(ai∈Ri(µi))i∈N

v(a1, a2).

Similarly, if v is submodular, then ν is submodular as well.

Proof. I will only prove the case of supermodularity. Consider µi ∈ ∆(Θ) and η :

Θ → ∆(A−i) such that supp ν(·|θ) ⊆ BFR−i for all θ ∈ Θ. Since supermodularity is

preserved under summation (i.e. expectation) , the best-reply is increasing (in the

strong set-order) in first-order beliefs µi (holding η fixed), see van Zandt and Vives

(2007). Thus the robust prediction correspondence is increasing (in the strong-set or-

der). Now, let bi(µi) = min
{
ai ∈ Ri(µi)

}
, which is increasing in µi. Because v is increasing,
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ν(µ1, µ2) = v(b1(µ1), b2(µ2)). If µ1 first-order stochastic dominates µ′1, then b1(µ1) ≥ b1(µ′1).

Thus,

ν(µ1, µ2) − ν(µ′1, µ2) = v(b1(µ1), a2(µ2)) − v(b1(µ′1), a2(µ2)),

is increasing in µ2 because b2(·) is and v is supermodular. �

In the general problem, Example 7 illustrates that using recommendations similar to

the usual revelation principle does not work. For monotone design environments with

a restriction on information structures, action recommendations provide a rich enough

signal space. Action recommendations turn out to be useful even when working in

belief space as will be illustrated in Subsection 3.4.2.67 For this, say that an information

structure I is direct if for every i ∈ N, Si ⊆ Ai and for every signal a = (a1, a2), it holds

that min(a′i∈Ri(si|Ii,π))i∈N
v(a′1, a

′
2) = v(a). Then, the following proposition is akin to a standard

revelation principle.

Proposition 8 (Revelation Principle). Suppose the design environmentD is monotone. Restrict

the choice of information structures to information structures that give rise to posteriors that

are totally ordered by first-order stochastic dominance for each player.68 Then, there exists an

information structure I with value V(I) if and only if there exists a direct information structure Î

such that v(I) = v(Î).
67Whether this revelation principle argument is useful for working directly in signal space is an open

question.
68For example, if the state space is binary, then this assumption is without loss of generality.
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Proof. One direction is obvious. For the other fix an information structure I. Then, define69

S1
i =
{
si ∈ Si : a1

i ∈ Ri(si)
}

and for 1 < k ≤ Ji

Sk
i =
{
si ∈ Si : ak

i ∈ Ri(si) and al
i < Ri(si) for all l < k

}
.

Now, let Ŝi =
{
a j

i ∈ Ai : S j
i , ∅

}
⊆ Ai and set the signal distribution to

Ψ̂(a j1
1 , a

j2
2 |θ) =

∑
i

∑
si∈S ji

i

Ψ(s1, s2|θ).

Now, for a given a j
i ∈ Ŝi, the induced first-order belief (call it µ) will be a convex combina-

tion of beliefs (i.e µsi for si ∈ S j
i ). Since these beliefs are totally ordered, one of these beliefs

is the lowest according to first-order stochastic dominance; call it µ. Thus, the convex com-

bination (i.e. µ) is also greater than µ. As shown in Proposition 3.4.1, the robust-prediction

correspondence is increasing. Thus, Ri(µ) ≤ Ri(µ) in the strong set order.

By construction, I have am
i < Ri(µ) for m < j implying that am

i < Ri(µ). Furthermore, a j
i

is conceivable for each µsi for si ∈ S j
i . That is, for each such si ∈ S j

i there exists ηsi(·|·) : Θ→

∆(A−i) such that a j
i ∈ BRi(µsi ◦ ηsi). Consider70 µ̃ =

∑
si∈ŜAi

i
λsiµsi ◦ ηsi , which has marginal µ

by construction. And since a j
i is a best-reply to each belief separately, it’s also a best-reply

to the convex combination. Proving a j
i ∈ Ri(µ).

69The superscripts refer to the indexing set of the actions, i.e. Ai = {a1
i , . . . , a

Ji
i }.

70Let λsi denote the coefficients of the convex combination.
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So I established

a j
i ∈ Ri(a

j
i ) and am

i < Ri(a
j
i ), for all m < j.

Thus, by Definition 17 for any (a1, a2) ∈ Ŝ1 × Ŝ2

min
a′i∈Ri(ai)

v(a′1, a
′
2) = v(a1, a2).

Proving that the information structure is direct. That the values are the same follows

trivially from the construction. �

This result is interpreted slighlty different from the usual interpretation of the revela-

tion principle as in Myerson (1982) or Kamenica and Gentzkow (2011). Here, the designer

sends action recommendations to the receivers like in the usual version, but the receivers

do not have to be obedient and follow the recommendation. Instead, whatever action the

receiver chooses, for the designer the action will be at least as good as if the receiver had

followed the recommendation.

3.4.2. The Problem of a CRO solved

Now, the problem of the CRO introduced in Subsection 3.1.2 can be solved. Recall that the

economic environment E can be summarized by the two game tables in Subsection 3.1.2.

This economic environment is actually a monotone one. Furthermore, the prior of both

pharmaceutical companies was specified as π = 1/3, thus it remains to specify the prefer-
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ences for the designer (i.e. the CRO) to get a design environment. For now, assume that

preferences are such that the CRO prefers further research over dropping the project for

both companies, i.e.

v(R, ·) > v(D, ·) and v(·,R) > v(·,D),

which makes the design environment monotone as well. Using Figure 3.1, it is easy to

obtain the CRO utility function defined on belief space, as shown in Figure 3.4.

µN

µP0 1

1

v(D,D)

v(D,R)

v(R,D)

v(R,R)

Figure 3.4: CRO utility function ν defined on belief space.

Given this derived utility function ν, the optimal information and the corresponding

value can be obtained by applying Theorem 9. The problem is analyzed separately for

two possible cases of sub- and supermodular preferences of the CRO. For the remainder,

I also assume that the preferences are symmetric.71

71This is not without loss of generality!
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Supermodular case: Suppose that the utility of the CRO is supermodular, i.e. v(R,R) +

v(D,D) ≥ v(R,D)+v(D,R), then by Proposition 7 the induced belief utility function ν

will be supermodular as well. In this case, the design problem can be easily solved by

considering the relaxed version obtained by removing the belief-dependence bounds

from the problem as stated in Theorem 9. Thus, the problem becomes equivalent to

the concavification approach of Kamenica and Gentzkow (2011). Figure 3.5 plots the

utility function ν in the left panel. The right panel superimposes the concavification

cav ν. The optimal value corresponds to cav ν(π, π) as indicated with an asterisk in

the figure. Due to the supermodularity the CRO wants to make receivers’ choices

as positive dependent as possible, and the resulting belief distribution72 (shown in

Table 3.11) reflects this. It remains to verify that the belief-dependence bounds are

satisfied by the solution resulting from the concavification approach. For this, recall

that for symmetric marginal belief distributions the upper belief-dependence bound

(which is attained due to supermodularity) is just the upper Fréchet-Hoeffding

bound. Thus, the distribution in Table 3.11 is indeed a valid belief distribution. An

information structure inducing this belief distribution is also shown in Table 3.11.

Submodular case: In the remaining case, the CRO is assumed to have submodular prefer-

ences. That is, v(R,R)+v(D,D) ≤ v(R,D)+v(D,R), which implies that ν is submodular

similar to before. Here, the concavification approach is not useful since it would

72Since tie-breaking does not favor the designer, ν is not upper semicontinous and an optimal information
structure does not exist. To simplify this illustration, the reported information structure ignores this issue.
An ε-optimal information structure would ensure that the induced belief is strictly greater than 2/3.
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Figure 3.5: CRO utility and concavification superimposed (right panel).

Table 3.11: Optimal information for the CRO with supermodular preferences.

Novarty

Signals
Belief

θ = 1 θ = 0

b g b g 0 2/3

Signals for Pfizr
b 0 0 3/4 0

Belief of Pfizr
0 1/2 0

g 0 1 0 1/4 2/3 0 1/2

yield a belief distribution (see Table 3.12) which cannot be induced by any informa-

tion structure. This can be verified by checking that this distribution violates the

lower belief-dependence bound. Thus, a different approach is needed for this case.

By Proposition 8, it is sufficient to consider marginal belief distributions with binary

Table 3.12: Result from concavification approach for submodular preferences.

Belief of Novarty

0 2/3

Belief of Pfizr 0 0 1/2
2/3 1/2 0
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support only: one supported belief leads to actions D in the worst-case and the other

leads to action R in the worst-case. Therefore, for each receiver I need to consider

beliefs (µD
i , µ

R
i ) ∈ [0, 2/3) × [2/3, 1] only.73 Moreover, it is easy to see that distributions

leading to both actions with positive probability are better than just sticking to the

prior (on each dimension). Thus, (µD
i , µ

R
i ) ∈ [0, 1/2) × [2/3, 1] by Bayes plausibility.

Using Theorem 9 the solution is readily available computationally. However, in this

case the problem can be solved directly using Corollary 4. As binary signals suffice

and the problem has only states of nature, the bounds of Proposition 6 coincide

with the characterization of Arieli et al. (2020).74 First, the lower belief-dependence

bound75 has to be binding due to submodularity. In the current situation this means

that only T1 has to be considered. The reason is that with two states the beliefs are

naturally ordered by first-order stochastic dominance and therefore the following

lemma applies.

Lemma 8. Fix two univariate belief-distributions τ1, τ2 ∈ ∆(Θ) and a full-support prior

π ∈ ∆(Θ). Suppose that (i) Eτi[µi] = π, and (ii) suppi τi is totally ordered by first-order

stochastic dominance, then for every L = 0, . . . ,K

Ti(µi) −Mi(µi,L) ≤ Ti(µi) [1 −Π(L)] . (3.15)

73As before, I change the tie-breaking assumption here, which simplifies the notation, but does not change
the essence of the argument.

74Arieli et al. (2020) discuss details in their Appendix B.
75For the binary state case first-order stochastic dominance is a total order. By Lemma 8, only T1 has to

be considered for the lower bound.
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Furthermore, T2(µ1, µ2; L) ≤ maxL T1(µ1, µ2; L).

Proof. I use the same notation as in the proof of Proposition 6. Using the total order

and (i), for every L and every µi ∈ supp τi

Eτi[
∑
k≤L

µ′i(θk)|µ′i ≤ µi]P(µ′i ≤ µi) + Eτi[
∑
k≤L

µ′i(θk)|µ′i > µi]P(µ′i > µi) =
∑
k≤L

Eτi[µ
′
i(θk)] = Π(L),

and by first-order stochastic dominance

Eτi[
∑
k≤L

µ′i(θk)|µ′i ≤ µi] ≥
∑
k≤L

µi(θk) ≥ Eτi[
∑
k≤L

µ′i(θk)|µ′i > µi].

Thus, Π(L) ≤ Eτi[
∑

k≤L µ
′
i(θk)|µ′i ≤ µi] = Mi(µi,L)/Ti(µi), which implies the first inequality

in Equation 3.15.

For the second part, the inequality Equation 3.15 gives

T2(µ1, µ2; L) = T1(µ1) −M1(µ1,L) + T2(µ1) −M2(µ1,L) − [1 −Π(L)]

≤ T1(µ1) [1 −Π(L)] + T2(µ2) [1 −Π(L)] − [1 −Π(L)]

≤ T1(µ1) + T2(µ2) − 1 ≤ max
L

T1(µ1, µ2; L).

�

Furthermore, the lower belief-dependence bound has to be strictly tighter at some

point than the usual Fréchet-Hoeffding lower bound, otherwise Table 3.12 would be
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the solution. Given the binary signals per receiver and the possible values for these,

the only point where the bound is binding is at (µD
1 , µ

D
2 ). For the other cases the

Fréchet-Hoeffding bound is the same as the belief-dependence bound. Thus, letting

τi denote the marginal distributions,

τ(µD
1 , µ

D
2 ) = τi(µD

1 )
(
1 − µD

1

)
+ τ2(µD

2 )
(
1 − µD

2

)
− (1 − π) ,

has to hold for any possible joint distribution. This allows me to simplify the

program as stated in Theorem 9 by making the problem separable between the two

agents.76 The reformulated program becomes

sup
τ1,τ2∈∆(∆(Θ))

∑
µ1

τ1(µ1) f (µ1) +
∑
µ2

τ2(µ2) f (µ2)

s.t.
∑
µ1

τ1(µ1)µ1 = π,

∑
µ2

τ2(µ2)µ2 = π,

where f (µ) := 1
[
µ < 2/3

] (
2v + µ − 1

)
+ 1
[
µ ≥ 2/3

] (
1 − µ) using a normalization on

the payoffs for the CRO.77 The solution to this program determines the optimal

marginal distributions, which are then combined to a joint distribution via the lower

belief-dependence bound. Due to the established separability, the reformulation can

76Derivations are shown in detail below.
77In particular, v(D,D) = −1, v(R,R) = 0, and v(R,D) = v(D,R) =: v ∈ [−1/2, 0]. This is without loss of

generality.
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be solved with the concavification technique from Kamenica and Gentzkow (2011)

yielding µD,∗
i = 0 and µR,∗

i =
2/3. By Bayes plausibility this gives the same marginal

distribution as in Table 3.12, but these marginals must be put together with the

lower belief-dependence bounds. This yields the optimal information structure as

foreshadowed in the introduction and stated in Table 3.2.

Detailed calculations: To simplify notation let τDD := τ(µD
1 , µ

D
2 ) and similar for the

other three cases and let τi := τi(µD
i ). With this notation,

τDD = τ1(1 − µD
1 ) + τ2(1 − µD

2 ) − (1 − π).

Since marginal distribution average out to the prior: (1−τi)(1−µR
i )+τi(1−µD

i ) = 1−π.

Hence,

τDD = τ1(1 − µD
1 ) + τ2(1 − µD

2 ) − (1 − π) −
∑

i

(1 − τi)(1 − µR
i ) + τi(1 − µD

i )
2

=
1
2

[
τ1(1 − µD

1 ) − (1 − τ1)(1 − µR
1 ) + τ2(1 − µD

2 ) − (1 − τ2)(1 − µR
2 )
]
.

Given the normalization on the utility of the designer, the objective becomes −τDD +

v(τDR + τRD). Furthermore, the following equalities hold:

τDR = τ1 − τDD =
1
2

[(
τ1µ

D
1 + 1 − µR

1 + τ1µ
R
1

)
−
(
τ2(1 − µD

2 ) − (1 − τ2)(1 − µR
2 )
)]

τRD = τ2 − τDD =
1
2

[(
τ2µ

D
2 + 1 − µR

2 + τ2µ
R
2

)
−
(
τ1(1 − µD

1 ) − (1 − τ1)(1 − µR
1 )
)]
.
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Plugging into the objective (ignoring the 1/2 scaling):

v
[(
τ1µ

D
1 + 1 − µR

1 + τ1µ
R
1

)
−
(
τ1(1 − µD

1 ) − (1 − τ1)(1 − µR
1 )
)]
−
(
τ1(1 − µD

1 ) − (1 − τ1)(1 − µR
1 )
)

+v
[(
τ2µ

D
2 + 1 − µR

2 + τ2µ
R
2

)
−
(
τ2(1 − µD

2 ) − (1 − τ2)(1 − µR
2 )
)]
−
(
τ2(1 − µD

2 ) − (1 − τ2)(1 − µR
2 )
)

=
[
2vτ1 − τ1(1 − µD

1 ) + (1 − τ1)(1 − µR
1 )
]
+
[
2vτ2 − τ2(1 − µD

2 ) + (1 − τ2)(1 − µR
2 )
]

=τ1

(
2v − (1 − µD

1 )
)
+ (1 − τ1)(1 − µR

1 ) + τ2

(
2v − (1 − µD

2 )
)
+ (1 − τ2)(1 − µR

2 ),

so that the objective is separable. The analysis above implies µD
i <

2/3 and µR
i ≥ 2/3.

Thus, I can rewrite the objective as claimed before78 with

f (µ) := 1
[
µ < 2/3

] (
2v + µ − 1

)
+ 1
[
µ ≥ 2/3

] (
1 − µ) .

Figure 3.6 plots this function and its concavification. Since v ∈ [−1/2, 0] shifts f only

vertically, it will not change the maximizer resulting from the concavification.

78To be precise, the values of f for µ ∈ [1/2, 2/3) can be set arbitrary as long as they are strictly below the
resulting concavification. This can be done because from the previous analysis it is known that µ in this
range cannot be optimal.
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0

f (µ)

µ0

1/3

−1

−1/2

2/3 1π

Figure 3.6: f (µ) in dashed blue (with v = −0.05) and concavification thereof in red.
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3.5. Discussion

In this section, I discuss some extensions of the model and highlight some conceptual

aspects.

3.5.1. Extension to Multiple Receivers

In this chapter, I have focused only on two players only. This simplifies the notation

significantly. The solution concept introduced in Section 3.2 readily extends to any fi-

nite number of players if the definitions of belief-free rationalizability (Equation BFRn)

and rational-extended beliefs (Definition 5) are adapted to allow for general correlated

beliefs about the opponents’ actions.79 Moreover, the general design problem discussed

in Section 3.3 can be adjusted accordingly to multiple receivers. However, the bounds in

Section 3.4 do not extend to multiple players without adaption. Of course, the functional

form of the belief bounds is specific to two receivers, but a similar approach as in the

proof of Proposition 6 can be adapted. I sketch this in accordance with the proof steps of

Proposition 6.

Step 1 [Characterization of state-dependent distributions over beliefs]: This step gener-

alizes as mentioned above.
79REF prev chapter, TODO
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Step 2 [From τ to marginals of λ]: This generalizes as well, but now one has |N| + 1

marginals: the marginal τ on ∆(∆(Θ)N), and |N| bivariate marginals λi,θ on ∆(∆(Θ)×

Θ).

Step 3 [Higher-order Fréchet-Hoeffding bounds]: This step is crucial for a generalization.

Here an extension of Joe (1997, Theorem 3.11) is needed to obtain bounds for |N|+ 1

dimensional distribution for marginals like the ones in Step 2, i.e. a version of

Γ
(
τ,
(
λi,θ
)

i∈N

)
≤ Γ
(
τ,
(
λi,θ
)

i∈N

)
,

where Γ and Γwould be functionals mapping to CDFs of |N|+ 1 dimensional distri-

butions.

Deriving these bounds and studying their properties is left for future research.

3.5.2. The Economic Enviornment is Common Knowledge, so is Rationality

Throughout this chapter, I operated from the assumption that the economic environment

is common knowledge among the players. In the examples this did not matter too much,

but it this knowledge is crucial for the solution concept, which also requires common

knowledge of rationality. A slight adaption of Battigalli et al. (2011, Section 3.1–3.2, see

also Section 4.2) shows that the individual robust prediction corresponds to the behavioral

implications of common belief of the economic environment and rationality, as well as

knowledge of the marginal information structure. For certain economic environments, this
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has important consequences for the design of information structures. To see this, consider

the following economic environment:

0 −1 0 0
1 −1 2 0

0 −1 0 0
−2 −1 −1 0

Novarty
R D

Novarty
R D

Pfizr
R

D

θ = 1 θ = 2

The payoffs for Pfizr are the same as in the CRO example, however Novarty now has

an (ex-post) dominated action: R is always worse than D. For the same prior as before

(π = 5/9) the robust prediction without any information would be {R} for Pfizr (and, of

course, D for Novarty). Thus, without providing any information the designer gets the

best possible outcome. Suppose now, that the designer does not assume common knowl-

edge of rationality among the receivers but still assumes rationality and knowledge of the

marginal information structure for each receiver. The corresponding (even more) robust

predication can be obtained by dropping part (2) in the definition of rCPS (Definition 5).

In this example, this version of robust prediction (interpreted as a function of first-order

beliefs) for Pfizr yields the same as in the running example in the main analysis of this

chapter. Therefore, if the designer is concerned about robustness under these less restric-

tive assumptions, she will engage in Bayesian Persuasion á la Kamenica and Gentzkow

(2011) with Pfizr. This means that the designer will optimally reveal the state of the drug

being ineffective sometimes, which implies that Pfizr will drop the project occasionally.

This is in contrast to the behavior under the assumption of common knowledge of ratio-
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nality, where Pfizr will conduct further research with certainty. What is the right optimal

information structure for the designer? This depends on the assumptions the designer

wants to make. In this chapter, the designer imposes common knowledge of rationality.

3.5.3. Robust Information Design

The key aspect of robust mechanism design as initiated by Bergemann and Morris (2005),

and the Wilson (1987)-doctrine more generally, is relaxing the implicit common knowl-

edge assumption to obtain more realistic models. Given the discussion in the previous

subsection, the model presented here can be interpreted likewise, but in the realm of

information design. In robust mechanism design, the implicit assumptions are relaxed by

considering a sufficiently rich Harsanyi type structure. In contrast, in information design

the Harsanyi type structure is the actual designed information structure. Mathevet et al.

(2020) provide a method to study this design problem. My model can be interpreted as

relaxing the common knowledge assumption about the designed information structure.

But to remain in the realm of information design, the players still know their designed

marginal information structure. The solution concept proposed in this chapter captures

these assumptions exactly as explained in the previous section. In addition, the adversarial

selection assumption reflects the robustness aspect.
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3.6. Conclusions

One of the primary tasks of modern economies is the provision of information. In this

chapter, I provide a method to study the question of how to optimally provide informa-

tion when agreements are made bilaterally between the sender and the receiver. In the

case of multiple receivers, which is quite common in the pharmaceutical industry, for

example, receivers might engage in a strategic game to compete in their market. These

strategic considerations should be taken into account by the information provider. Since

the previous literature assumed that the information provider can fully commit to a grand

information structure that becomes common knowledge among the receivers, I cannot di-

rectly apply these existing methods. The full commitment assumption is in direct contrast

to the bilateral-contracting assumption.

This chapter has several contributions, which provide a general, yet tractable, method

to study bilateral information design. First, I propose a new solution concept that cap-

tures all actions that can be rationally chosen for a player with a given information about

the fundamental of the economy. Second, I contribute to information design by charac-

terizing the set of possible distributions over beliefs that can arise from any information

structure. In doing so, I develop novel extremal distributions that capture how dependent

these beliefs can be. Finally, I combine each of these insights to develop a representation

theorem that provides a simple method to study bilateral information design, assuming

the designer is concerned about robustness to strategic uncertainty arising from the bi-
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lateral arrangement. I illustrate the main theorem by solving for the optimal information

structure in a stylized problem faced by contract research organizations.
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