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Abstract 

Sensorimotor integration is a general term to describe how task-specific motor output is 

generated from the selective and rapid processing of sensory and motor information. The rodent 

vibrissal (whisker) system is an important model for the study of sensorimotor integration and 

active tactile sensing. This research uses the rodent vibrissal system as a model to study 

sensorimotor integration at the level of the brainstem.  

Angular tuning is a property of whisker-sensitive neurons that describes the way a neuron 

responds when a single whisker is stimulated in a preferred direction. While this property can 

partially inform how individual whisker deflections shape the neural response to multi-whisker 

deflections, the study of global motion can sometimes be more ethologically relevant to the type 

of stimulation that a rodent experiences across the array. Specifically, my thesis investigates how 

neurons of the trigeminal brainstem encode stimulus speed and the extent to which they exhibit 

tuning for the direction of global motion. Direction of global motion tuning could aid in whisker-

mediated orientating behaviors. The thesis reviews the literature on speed, angular tuning, and 

direction of motion tuning, and describes novel experiments to assess speed and direction of global 

motion tuning.   

Experiments on the vibrissal system often require highly repeatable stimulation of multiple 

whiskers and the ability to vary stimulation parameters across a wide range. The stimulator must 

also be easy to position and adjust, while providing real time information about whisker contact. 

Developing a multi-whisker stimulation system that meets these criteria remains challenging. We 

describe a novel multi-whisker stimulator to assess neural sensitivity to the direction of global 

motion. The device can generate repeatable, linear sweeps of tactile stimulation across the whisker 

array in any direction and with a range of speeds. A fiber optic beam break detects the interval of 
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whisker contact as the stimulator passes through the array. We demonstrate the device’s function 

and utility by recording from a small number of multi-whisker-responsive neurons in the 

trigeminal brainstem. Neurons had higher firing rates in response to faster stimulation speeds; 

some also exhibited strong direction-of-motion tuning. The stimulator complements more standard 

piezoelectric stimulators, which offer precise control but typically stimulate only single whiskers, 

require whisker trimming, and travel through small angles. It also complements non-contact 

methods of stimulation such as air-puffs and electromagnetic-induced stimulation. Tradeoffs 

include stimulation speed and frequency, and the inability to stimulate whiskers individually. The 

stimulator could be used – in either anesthetized or awake, head-fixed preparations – as an 

approach to studying global motion selectivity of multi-whisker sensitive neurons at multiple 

levels of the vibrissal-trigeminal system. 
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1.1 Sensorimotor Circuits of the Whisker System 

The exploration and navigation of an environment requires a sensory system that samples 

enough information from that environment to rapidly extract meaning from behaviorally relevant 

features and guide specific needs. For instance, the tactile guidance of prey capture via the rapid 

orienting and localization behavior is the consequence of fast motor control circuits that allow 

animals to detect, track, and orient towards an external moving stimulus. How sensory organs 

control the input they receive and determine which input is most relevant to behavior is a vital 

question in sensory physiology.  This is best studied through the lens of sensorimotor integration. 

Sensorimotor integration is a process by which sensory and motor information are rapidly 

integrated to produce task-specific motor output. This process can also involve the extrapolation 

of the features to unknown conditions and the cancellation of sensory expectation in the case of 

distinguishing self-generated movement from external stimuli (Curtis and Kleinfeld, 2006). The 

central nervous system integrates different sources of stimuli, and in parallel, transforms these 

inputs into motor actions. One excellent model for the study of sensorimotor integration is the 

rodent vibrissal system. 

The rodent vibrissa (whisker) system is one of the most valuable models for the study of 

active tactile sensing and sensorimotor integration (Ahissar and Kleinfeld, 2003; Bosman et al., 

2011; Kleinfeld and Deschenes, 2011).  It is an anatomically well established and well-organized 

system that gives rise to complex behaviors. The whisker system is an ideal system to study 

sensorimotor circuits because it heavily relies on sensor movement to gather sensory information 

from the environment, integrates it with motor information, and guide animal movement. The 

whiskers themselves are specialized, tactile hairs that provide accurate somatosensory input via 
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the existence of mechanoreceptors at their follicles (Bosman et al., 2011). During exploratory 

behaviors, rats actively sweep their whiskers through space and across objects in a behavior known 

as “whisking” (Berg and Kleinfeld, 2003; Carvell and Simons, 1990; Welker, 1964). The classical 

description of a whisk cycle is a protraction followed by a retraction back to the rest position on 

the caudo-rostral plane, generating unique kinetic signatures of whisker vibrations when contact 

is made on a surface (Arabzadeh et al., 2005). During exploratory behaviors, rats make large 

whisker movements at a frequency of 5-15Hz and when they’ve contacted an object of interest, 

these movements become smaller and increase their frequency to 15-25Hz (Bosman et al., 2011). 

Rats produce spatiotemporally complex sequences of tactile contacts during whisking which they 

use to discriminate between objects (Jacob et al., 2008). The signals that occur at the level of the 

whisker convey sufficient information to the animal to be able to distinguish between objects of 

different shapes and textures. 

There are five horizontal rows composed of 30 distinct whiskers that are arranged in a grid-

like manner on each side of the rat’s snout (Fig. 1.1; Belli et al., 2018; Brecht et al., 1997; Brecht 

et al., 2006; Towal et al., 2011; Simons et al., 1983). One can identify each whisker using a unique 

letter-number combination corresponding to its row, A to E from dorsal to ventral, and column 

identified as numbers starting at 1 from caudal to rostral with four straddlers between rows named 

alpha, beta, gamma, and delta, from dorsal to ventral. Tactile information is acquired through this 

array and is represented in a robust and expressive way in whisker-sensitive circuits.  
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This arrangement of the vibrissal pad is mapped in the same grid-like manner at every step along 

the whisker pathway. 

At every stage of processing, there are anatomical and functional topographic maps of 

whiskers (Fig. 1.2). These clusters are referred to as “barrels” in the cortex, “barreloids” in the 

thalamus, and “barrelettes” in the brainstem. While there are multiple maps in the thalamus and 

cortex, this work focuses on the trigeminal brainstem. Because of this topographic arrangement, 

the whisker system in rodents has become one of the most important models of research in sensory 

physiology and it allows us to study sensorimotor integration at different levels of the brain. 

The structure that anchors a whisker within the skin is called a follicle. Each whisker is 

embedded in a follicle in the skin on the rat’s face and it gives tactile sensitivity and motion to the 

whisker. The follicles are surrounded by a dermal blood sinus which is thought to aid in modulating 

the dynamic range of the whisker (Bosman et al., 2011; Gottschaldt et al., 1973). Whiskers have 

no sensors along their length. Instead, each vibrissal base is embedded within a follicle that is 

densely innervated by the peripheral branches of about 200-300 cells of the trigeminal ganglion 

(Vg) (Ebara et al., 2002; Rice, 1993; Rice et al., 1997; Rice et al., 1986), and have 

mechanoreceptors that transduce vibrissal deformations into electrical signals that are sent to the 

Vg (Bush et al., 2016a; Bush et al., 2021; Campagner et al., 2016; Jones et al., 2004; Leiser and 

Moxon, 2007; Lichtenstein et al., 1990; Severson et al., 2017; Szwed et al., 2006).  

 Vg neurons are the primary sensory neurons of vibrissal tactile sensing. The cell bodies of 

these neurons make up the Vg (Bosman et al., 2011) and their peripheral axons innervate one 

whisker (Kerr & Lysak, 1964; Zucker &Welker, 1969). Vg neurons encode single whisker 

deformations, meaning that every whisker-responsive cell in Vg responds to the movement of one  
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and only one whisker. Different Vg units show various tuning properties with sensitivity to 

parameters such as direction of whisker deflections and motions, acceleration, and amplitude, 

which all provide information regarding how these features are represented further along the 

pathway. The responses of these first-order neurons with their single-whisker receptive fields, 

constrain all subsequent somatosensory processing.  

Signals from the Vg then ascend via multiple parallel pathways through the trigeminal 

brainstem, thalamus, and cortex (Ahissar and Kleinfeld, 2003; Bosman et al., 2011). The whisker-

sensitive nuclei of the trigeminal brainstem are the first processing stage in the rodent vibrissal 

system. The trigeminal sensory nuclei are made up of two different nuclei: the principal trigeminal 

nucleus (PrV) and the spinal trigeminal nucleus (SpV) which is further divided into three subnuclei 

– oralis (SpVo), interpolaris (SpVi), and caudalis (SpVc). Most projections to the thalamus occur 

through three pathways that originate in these nuclei.  

The first is the lemniscal pathway. This pathway, which is thought to be responsible for 

tactile discrimination (Carvell and Simons, 1990; Krupa et al., 2001b; Ebara et al., 2002; 

Arabzadeh et al., 2003; Moore et al., 2015), arises from the PrV, projects to the contralateral 

dorsomedial portion of the ventral posterior medial nucleus (VPMdm) of the thalamus (Erzurumlu 

et al., 1980; Hayashi, 1980), and terminates in the granular zone of the cortical barrel field 

(Deschenes et al., 2005). This pathway predominately conveys single-whisker input (Bosman et 

al., 2011). The second pathway, which is thought to be involved in localization and orienting 

behaviors (Knutsen et al., 2006; Mehta et al., 2007; O’Connor et al., 2010), is the paralemniscal 

pathway which originates from the rostral portion of SpVi (SpVir), travels through the medial 

posterior nuclear group in the thalamus (PoM) and terminates with multiple collaterals in the 
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dysgranular zone of the cortical barrel field (Bosman et al., 2011). This pathway conveys multi-

whisker input to higher structures (Bosman et al., 2011). The third pathway is the extralemniscal 

pathway. This pathway originates in the caudal portion of SpVi (SpVic), projects to the 

ventrolateral VPM (VPMvl), and continues to the somatosensory cortices (Pierret et al., 2000). 

The input of this pathway originates from multi-whisker cells, though its function has yet to be 

elucidated (Bosman, et al., 2011). These trigemino-thalamo-cortical pathways play a central role 

in the sensory information processing of whisker movements. 

Projections from the trigeminal brainstem travel to many different parts of the brain, most 

notably the lateral facial nucleus. The lateral facial nucleus neurons can evoke either the 

protraction of a single whisker or the retraction of multiple whiskers (Herfst and Brecht, 2008). 

Motor commands are delivered to whisker muscles via the facial nerve by the motor neurons 

located in the lateral facial nucleus (Ashwell, 1982; Klein and Rhoades, 1985; Herfst and Brecht, 

2008; Dörfl, 1985; Haidarliu et al., 2010). While other connections to the lateral facial nucleus will 

not be discussed here, the convergence of those inputs with that of motor commands allow for the 

integration of whisker movements (Bosman et al., 2011). 

 The vibrissal-trigeminal loop, which goes from the whisker to the trigeminal ganglion to 

the trigeminal nuclei to the lateral facial nucleus to whisker muscles, is thought to be responsible 

for reflexive whisker retraction upon encountering a novel tactile stimulus (Tsur et al., 2019). We 

are interested in how this circuit is involved in whisker-mediated localization and orienting 

behaviors; specifically, how trigeminal brainstem neurons respond to global motion. Global 

motion is an apparent motion in a given direction when several whiskers are stimulated together 

(Jacob et al., 2008). Information about global motion is acquired through multiple whiskers (Jacob 
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et al., 2008). Quantifying global motion tuning is an approach towards understanding the neural 

basis for behaviors such as orienting (Arkley et al., 2014; Cohen et al., 2008) and gating incoming 

sensory input (Chakrabarti and Schwarz, 2018; Furuta et al., 2010; Urbain and Deschenes, 2007). 

Most neurons in central vibrissal-sensitive structures integrate information from multiple 

whiskers, and it is a long-standing experimental challenge to quantify their integrative properties 

(Benison et al., 2006; Cohen et al., 2008; Deschenes et al., 2003; Goldin et al., 2018; Jacob et al., 

2008; Jacob et al., 2017; Jouhanneau et al., 2014; Le Cam et al., 2011; Lyall et al., 2021; Pluta et 

al., 2017; Rodgers et al., 2006; Timofeeva et al., 2004; Veinante and Deschenes, 1999; Whitmire 

et al., 2021). To quantify these neurons’ integrative properties, it would be useful to have a 

stimulation tool that could deliver repeatable stimuli to multiple whiskers, that allowed stimulation 

parameters to be varied across a wide range, that detected contact with the whiskers, and that was 

easy to position. The present work describes the construction and validation of a stimulation 

system that meets these requirements. 

 Understanding how trigeminal brainstem neurons encode tactile information from multiple 

whiskers is essential for understanding how that integration occurs in higher brain structures and 

how the vibrissal-trigeminal circuit represents the external world.  
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1.2 Studying Global Motion in the Vibrissal-Trigeminal System 

To understand the integrative properties of vibrissal trigeminal neurons, we must first 

understand the type of stimulus that evokes these responses, specifically, the motion of whisker 

deflection that evokes this activity. Researchers have studied these whisker motions at the level of 

a single whisker, multiple whiskers within a receptive field, and multiple whiskers across the array. 

Each level informs how neurons in the vibrisso-trigeminal pathway collect, integrate, and pass 

along whisker motion information. 

To investigate whisker motion at the level of a single whisker, researchers often turn to the 

property of angular tuning. Angular tuning is the angle to which an individual whisker needs to be 

deflected in order for the neuron to respond optimally. Although a stimulus may move multiple 

whiskers in the same general direction, individual whiskers will be deflected against the stimulus 

in very different directions based on their geometry and orientation. Researchers typically 

investigate the property of angular tuning using a piezoelectric stimulator to passively stimulate 

the trimmed whisker of an anesthetized rat while recording single units in the whisker-barrel circuit 

(Bellavance et al., 2010; Furuta et al., 2006; Timofeeva et al., 2003; Bruno et al., 2003). For 

instance, using this method, Bruno and colleagues demonstrated that angular tuning could be found 

not only in primary afferents, but in thalamic and cortical neurons as well, meaning this property 

is conserved at every level of the whisker pathway (Bruno et al., 2003). Angular tuning 

experiments tell us that whiskers are very sensitive to the direction they are pushed in at the level 

of a single whisker. However, angular tuning has not been investigated in the behaving animal, so 

its ethological relevance is unclear (Bruno et al., 2003). In the behaving animal, multiple whiskers 
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are typically used when exploring. This led researchers to wonder if the neuron would respond in 

the same way if all whiskers in its receptive field were deflected in the same direction. 

Direction tuning is the consistency of angular tuning across the receptive field of a neuron. 

It is assessed for multiple whiskers and asks whether the direction of motion that elicits the largest 

neural response is the same for all the whiskers in the receptive field of the neuron. For instance, 

the neurons in SpVi have been shown to integrate inputs from multiple whiskers and they have 

large, elliptical shaped receptive fields of up to about 15 whiskers. So, it is important to understand 

if the neuron responds in similar ways when the whiskers are being deflected in the same manner 

across the receptive field. The approach to studying direction tuning is quite similar to that of 

angular tuning, except that with direction tuning, researchers systematically evaluate the neuron’s 

response to the deflection of each and every whisker in the neuron’s receptive field. In their 2006 

paper, Furuta and colleagues investigated the directional tuning of neurons in the SpVi. They found 

that the directional tuning of SpVir cells was not conserved across the receptive field, which while 

surprising, indicated that there is the integration of whisker motion signals from multiple whiskers 

that are then conveyed to higher level brain structures (Furuta et al., 2006). These studies shed 

light on response properties of neurons along the vibrisso-trigeminal pathway and informed us of 

how individual whisker deflections shape the neural response to multi-whisker deflections. As 

researchers began performing more behavioral studies within the whisker system, it opened up 

questions of how behaviorally relevant these multiple whisker deflections are. 

Global motion tuning is the sensitivity of a neuron to an apparent motion in a given 

direction across the whisker array (Jacob et al., 2008). It is assessed for the entire whisker array, 

and it asks whether there is a global motion across the whisker array that will evoke the largest 
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response from a neuron. Because global motion deflects whiskers in similar ways as they would 

be deflected if they encountered a complex, natural stimulus, it could potentially give us insight 

into the integrative properties of neurons in the pathway. The structure of multi-whisker receptive 

fields is stimulus dependent (Vilarchao et al., 2018) so it is important that we are able to quantify 

stimulus properties to truly understand their impact on neural responses.  

When discussing “global motion,” researchers often point to the 2008 study done by Jacob 

et al. where they used multi-whisker motion patterns across the array to investigate how barrel 

cortex neurons combine and extract information from the whisker pad (Jacob et al., 2008). They 

evaluated eight different global directions and demonstrated that barrel cortex neurons are indeed 

tuned to the global direction of a tactile stimulus, further supporting the notion that tactile 

perception is dependent on the neural representation of the collective features of a stimulus (Jacob 

et al., 2008). Another study that looked at global motion in the barrel cortex was done by Vilarchao 

and colleagues who investigated the cortical integration of multi-whisker inputs in response to 

global motion (Vilarchao et al., 2018). They were interested in whether barrel neurons extracted 

the global properties of complex tactile inputs and they found that these neurons were able to 

extract global motion direction information from a multi-whisker, moving stimulus (Vilarchao et 

al., 2018).  These studies have demonstrated that the cortical response of whisker sensitive units 

to multi-whisker stimulation depends heavily on the direction of global motion.  

Global motion has also been studied at different levels of the whisker-barrel pathway. Ego-

Stegnel and colleagues studied whether VPM neurons demonstrate global motion tuning in 

response to multi-whisker stimuli (Ego-Stengel et al., 2012). They tested the response of VPM 

neurons to global motion in eight different directions and found that their responses not only 
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depended on the direction of global motion, but these neurons selectively increased their firing 

rate during their preferred stimulus direction (Ego-Stengel et al., 2012). Studies of global motion 

tuning in the trigeminal brainstem have also been done. In their work investigating speed and 

direction coding in the trigeminal brainstem, Kaloti et al. used a global motion stimulus to generate 

an overall direction of deflection across the array (Kaloti et al., 2016). They passed a vertical post 

through the whisker array in the rostral-caudal and caudal-rostral directions and found that many 

neurons had a higher spike rate during caudal-rostral stimulation than during rostral-caudal 

stimulation. In addition, they found that many neurons had higher firing rates for slower stimulus 

speeds (Kaloti et al., 2016). The present work confirms that many neurons in the trigeminal 

brainstem are sensitive to the direction of global motion, but somewhat contradictory results for 

speed tuning, something that is discussed in Discussion. The studies presented here have studied 

global motion at every level of the whisker-barrel pathway, yet we still have little understanding 

of how global motion information is transformed in these circuits. It is imperative that we continue 

to study this phenomenon in the trigeminal brainstem because this is the first processing site in the 

whisker-barrel pathway and understanding how neurons respond to global motion stimuli could 

help the facilitation of studies about the integrative properties of trigeminal brainstem neurons. 

Global motion tuning complements angular tuning and direction tuning of whisker-

sensitive neurons (Furuta et al., 2006). Knowing how neurons respond to single whisker 

deformations can inform how the entire array responds to a global motion stimulus. Global motion 

simulates complex, natural stimuli interacting with the whisker array and it is necessary that we 

have a device that could replicate this stimulus experimentally. The present work describes the 
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development of such a system and its subsequent use to investigate tuning of global motion in 

multi-whisker responsive neurons. 
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1.3 Contributions to the Field 

The previous work reviewed here discusses the properties of trigeminal brainstem neurons 

and their responses to global motion. This thesis performs a literature review on the trigeminal 

brainstem to describe speed tuning, angular tuning, and direction of global motion tuning. In this 

work we developed and tested a novel stimulator that could deliver complex, naturalistic 

mechanical stimulation to investigate speed tuning and direction of global motion tuning in the 

trigeminal brainstem, with the goal of understanding the global motion selectivity of multi-whisker 

sensitive neurons. We demonstrate the device’s function and utility by recording from a small 

number of multi-whisker-responsive neurons in the trigeminal brainstem and found that neurons 

had higher firing rates in response to faster stimulation speeds and some exhibited strong direction-

of-motion tuning. The stimulator could be used – in either anesthetized or awake, head-fixed 

preparations – as an approach to studying global motion selectivity of multi-whisker sensitive 

neurons at multiple levels of the vibrissal-trigeminal system.  
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Chapter 2: Research Strategy 

 

Portions of this chapter from:  

Dorizan S, Kleczka KJ, Resulaj A, Alston T, Bresee CS, Hartmann MJ (2022) A novel stimulator 

to investigate the tuning of multi-whisker responsive neurons for speed and the direction of global 

motion. Accepted with revisions. 
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2.1 Problem Statement 

My thesis research uses the rodent vibrissal system as a model to study sensorimotor 

integration at the level of the brainstem. Figure 2.1 illustrates the vibrissal-trigeminal brainstem 

loop, which goes from the whiskers to the Vg to the SpV to the lateral facial nucleus to the whisker 

muscles. Vibrissal-sensitive structures integrate information from multiple whiskers, and before 

we can begin to quantify those responses, we need a tool specifically designed to investigate tuning 

to the direction of global stimulation across the entire whisker array. Therefore, we developed a 

system that would allow one to investigate the integrative properties of these neurons to further 

our understanding of their role in encoding spatial information. The present work describes the 

construction and validation of such a device.  
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2.2 Overview of Objectives 

This thesis work passively stimulated the rodent whiskers while recording from an isolated 

single unit in the trigeminal brainstem. Doing this, we were able to probe the relationship between 

this stimulation and the responses of whisker-responsive trigeminal neurons. We first developed a 

tool that would allow us to stimulate the whiskers systematically and reliably in a range of 

directions and speeds. Then we examined the responses of these whisker-sensitive units to the 

different combinations of speed and directions to determine whether these units are direction or 

speed selective. To that end, we set out to accomplish the following objectives: 

 

To develop a multi-whisker stimulation system that can be controlled to generate repeatable, 

linear sweeps of tactile stimulation across the whisker array in any direction and with a range 

of speeds. We developed a multi-whisker stimulator that reliably stimulates and detects whiskers 

across conditions in a consistent manner. We validated the use of this system by demonstrating the 

function and utility of the stimulator by recording from a small number of multi-whisker-

responsive neurons in the trigeminal brainstem.  

 

To determine if a novel, multi-whisker stimulation system can be used to investigate the 

tuning of multi-whisker responsive neurons for speed and direction of global motion tuning. 

While used mainly to validate the stimulation device, we recorded from a small number of multi-

whisker responsive neurons in the trigeminal brainstem and determined their speed and direction-

of-motion tuning.  
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How the features of a stimulus are integrated in these whisker-sensitive circuits is of great interest 

to those in the field and this work provides a tool by which researchers can begin to investigate 

this idea in earnest. 

 

  



38 

 

2.3 Approach  

Animal experiments were approved by the Institutional Animal Care and Use Committee 

(IACUC) of Northwestern University. Neurophysiological data were obtained from four adult, 

female Long Evans rats (4 – 7 months). Rats were anesthetized with isoflurane, their body 

temperature maintained on a “PhysioSuite” heating pad (Kent Scientific), and they were checked 

every 15 minutes for a toe pinch reflex (TPR). The animal’s head was stereotaxically immobilized 

using earbars and eye ointment was applied. The scalp was shaved, cleaned, and covered with 

lidocaine, and the head leveled by ensuring that the heights of bregma and lambda differed by less 

than 0.05mm. To access the trigeminal nuclei, a craniotomy was performed on the animal’s left 

side, between 11.9 and 13.3mm caudal to Bregma, and between -2.45 and -3.35mm lateral to the 

midline. Three holes were drilled to accommodate skull screws and ground wires were implanted.  

The rat was then moved to a taller surgical stage to accommodate the stimulator height and 

to expose whiskers for stimulation. Deep anesthesia was achieved using an intraperitoneal 

injection of ketamine hydrochloride, xylazine HCl, and acepromazine maleate as the isoflurane 

gradually wore off. After anesthesia stabilized, the animal’s head was re-leveled. A methyl 

methacrylate bridge was constructed between the skull screws and the surgical stage. After the 

bridge dried, the headgear was removed as well as the stereotaxic holder’s left arm, exposing the 

left whisker array.  

The stimulator, placed on a standard 3-DOF surgical micromanipulator, was then 

positioned and oriented to pass through the whisker array parallel to the rat’s cheek. We paid 

particular attention to the distance between the stimulator and the rat’s cheek. Placing the 

stimulator close to the cheek ensures that the nitinol wire makes contact with all macrovibrissae. 
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If the stimulator is moved further away but remains parallel to the cheek, some of the more rostral 

(shorter) macrovibrissae are not contacted during the sweep. In the present experiments, care was 

taken to ensure that all whiskers in the neuron’s receptive field were contacted, and whiskers were 

always stimulated approximately halfway along their length or close to their tips. 

A tungsten microelectrode (1-2MΩ; FHC, 15mm, Cat. #: UEWSFGSE7N1M) was lowered 

until the trigeminal brainstem was reached (~6.5mm from brain surface). The trigeminal brainstem 

was identified first, by the presence of multi-whisker receptive fields and second, by confirming 

that receptive fields gradually and systematically shifted from the E row to the A row as the 

electrode descended. As the electrode was lowered, whiskers on the ipsilateral side of the face 

were manually deflected to detect whisker sensitive units. Once a whisker-responsive neuron was 

identified, a battery of 24 different stimulus conditions was run. The stimulator was swept through 

the array at three speeds (150 mm/s, 113 mm/s, and 75 mm/s; Figure 2.3) and eight directions (0° 

- 315° in 45° increments; Fig. 2.2). Ten trials were run for each stimulus condition. After all 240 

trials finished, an additional ten trials were completed at 0° at all three speeds to ensure that the 

spike shape had not changed during recording.  

Neural recordings were collected using the open-access neural acquisition software, 

NeuroRighter (v1.1.0.564). Neural signals were amplified with a gain of 1,000 (AM Systems 

1700) and filtered between 300 and 10,000 Hz before acquisition on a National Instruments™ 

BNC-2090 board at 40,000 Hz. Analog signals from the slide potentiometer and fiber optic 

amplifier (see Chapter 3.2) were recorded simultaneously on the same system. During 

experiments, the whisker stimulator was controlled via an Arduino Mega with an Adafruit motor 
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shield (part number 1438). Python scripts controlled the movement of the stimulator, while 

Arduino firmware handled low-level motor control.  
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Chapter 3: Development of a Novel Multi-Whisker Stimulator 

 

Portions of this chapter from:  

Dorizan S, Kleczka KJ, Resulaj A, Alston T, Bresee CS, Hartmann MJ (2022) A novel stimulator 

to investigate the tuning of multi-whisker responsive neurons for speed and the direction of global 

motion. Accepted with revisions. 
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3.1 Introduction 

Repetitive contact with multiple whiskers is how rodents acquire tactile information 

(Carvell and Simons, 1990; Harvey et al., 2001; Sachdev et al., 2001) and to accurately 

discriminate between objects, the contact of multiple whiskers with an object is necessary (Jacob 

et al., 2010). Most neurons in central vibrissal-sensitive structures integrate information from 

multiple whiskers and it has been a long-standing experimental challenge to quantify their 

integrative properties (Benison et al., 2006; Cohen et al., 2008; Deschenes et al., 2003; Goldin et 

al., 2018; Jacob et al., 2008; Jacob et al., 2017; Le Cam et al., 2011; Rodgers et al., 2006; 

Timofeeva et al., 2004; Veinante and Deschenes, 1999; Whitmire et al., 2021). Rats have been 

shown to alter their whisking movement strategies during discriminative task acquisition which 

included changes in the frequency, velocity, amplitude, duration, and the amount of whisking 

(Benison et al., 2006; Harvey et al., 2001). It is therefore necessary to have a stimulation system 

where we can implement changes in these stimulus parameters that can replicate the different 

features of natural stimuli in accordance with experimental need. There have been several types of 

whisker stimulators with capabilities that support the aforementioned parameters, though not 

without limitations. 

In the late 1970’s, researchers used electric and manual stimulation to mimic the natural 

movement of the whisker. Axelrad and colleagues did this in two ways: 1) the electrical stimulation 

of a dissected follicle nerve and 2) by gluing a whisker at its resting position to a probe that was 

controlled by a custom-built stimulator (Axelrad et al., 1976). This stimulator offered precise 

control of direction, duration, amplitude, rise time, and fall time of the stimulus (Axelrad et al., 

1976). While electrical stimulation directly activated the whisker, the response of units of interest 
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were directly affected by the strength of stimulation itself (Axelrad et al., 1976). Larger whisker 

displacements tended to produce larger neural responses, though whether this increase was due to 

the movement of the whisker or to the activation of more follicles is not clear. Similarly for manual 

stimulation, it was not clear whether the observed responses were due to the manual stimulation 

or to the varying amplitude of movement which stimulated more follicle receptors. Trimming and 

gluing the whisker to the probe also changes the whisker response to external stimuli so the 

responses seen may not accurately reflect what is happening on the circuit level.  

Piezoelectric stimulators, the most common type of contact-based stimulator, have been 

used to induce single whisker and multi-whisker deflections in studies of the whisker system. One 

of the first piezoelectric stimulators was used by Simons when investigating the effects of multi-

whisker stimulation on whisker-sensitive units in the somatosensory cortex (Simons, 1983). This 

“multiangular, piezoelectric stimulator” was an array of independently controlled whisker 

deflectors (Simons, 1983). After trimming the whiskers to a length of 7mm, they inserted the 

terminal 2mm of the whisker into a piece of Teflon tubing that protruded from a grass probe (yes, 

grass: “dried grass was used because it is strong and rigid but light in weight” (Simons, 1983)). 

Individual stimulators were then positioned over the whiskers via an anchored micromanipulator 

with a dissecting microscope attached (Simons, 1983). The advantages of this stimulator design 

were that a whisker could be deflected in any direction over 360°, the behavior of the stimulator 

was highly reproducible, the individual stimulators could be controlled simultaneously, and the 

stimulator was compact enough to allow whiskers that were no more than 2mm apart to be attached 

(Simons, 1983). One disadvantage, however, was that there was a need to calibrate the stimulator 

with a phototransistor circuit and a compound microscope (Simons, 1983), necessitating the use 
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of additional equipment outside of the stimulator itself to ensure delivery of stimulation and 

stimulation contact. Another disadvantage was that the stimulator needed to be repositioned often 

so as to stimulate the whisker array in different directions. This, of course, is cumbersome, not to 

mention potentially inconsistent as it is difficult to maintain the same stimulation conditions 

throughout the experiment. Finally, they used ramp-and-hold “trapezoid” as stimulus signals 

which does not cover the full range of relevant parameters for whisker deflection in a natural 

context (Simons, 1983; Jacob et al., 2010). 

Most piezoelectric stimulators today (Fig. 3.1) were built following the design structure 

used by Simons. For example, Deschenes and colleagues built a whisker stimulator with a ceramic 

bimorph bender glued to a thin straw (Deschenes et al., 2003). At the free end of the straw, the tip 

of the whisker would be inserted into a tiny cone-shaped, glass bead that prevented any dead space 

(Deschenes et al., 2003). The piezo amplifier was then driven by bandpass-filtered sinusoidal or 

triangular waveforms and positioned to deflect the principal whisker in different directions 

(Deschenes et al., 2003). They too required additional equipment in the form of a microscope with 

an attached digital camera and used a stimulus that may not accurately reflect stimuli that these 

animals would encounter naturally. Whisker stimulators around this time also suffered from 

“ringing” at the resonance frequency due to the high-speed deflection of the bender. To prevent 

ringing at lower frequencies, the Deschenes group blocked the bimorph at mid-length, reducing 

how far the probe could displace the whisker. To compensate for this limitation, they stimulated 

the whiskers 5mm from the whisker pad, which restricted the type of response they could evoke 

with stimulation. 
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Piezoelectric stimulators evolved from using one piezo to stimulate one whisker, to 

multiple piezos stimulating multiple whiskers simultaneously, though independently of one 

another. In their first iteration of such a device, Jacobs and colleagues built a stimulator of 24 

independent piezoelectric actuators assembled to match the arrangement of the whisker array that 

allowed for deflections in the rostro-caudal axis at lower frequencies (Jacob et al., 2008). The 

second iteration of this device included multi-directional piezoelectric benders that allowed for the 

deflection of up to 24 whiskers in any direction (Jacob et al., 2010). Predecessors of this device 

demonstrated that piezoelectric bimorphs could be used to stimulate a large number of whiskers 

and did as few as 4 whiskers and as many as 16 whiskers (Krupa et al., 2001a; Krupa et al., 2004; 

Benison et al., 2006; Jacob et al., 2010). 

Experiments that use a piezoelectric stimulator or multiple piezoelectric stimulators aren’t 

without difficulties. These stimulators are often hard to manually position, which can be time-

consuming if there are multiple trials to done. The whiskers of the animal often need to be trimmed 

to use these stimulators, which can drastically change the response of whisker sensitive neurons to 

external stimuli. Experiments using a piezoelectric stimulator often place the probe along the shaft 

of the whisker (Axelrad et al., 1976; Simons, 1983) instead of at the tips or passing the stimulus 

through the array as an external natural stimulus would during typical exploratory behavior. And 

probably most notably, piezoelectric dynamics can cause artifacts. Piezoelectric stimulators offer 

precise control but travel only through small angles, and typically stimulate modified, trimmed 

whisker(s) (Axelrad et al., 1976; Deschenes et al., 2003; El-Boustani et al., 2020; Jacob et al., 

2010; Simons, 1983). 
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While piezoelectric stimulators are the most ubiquitous, there are other types of stimulators 

that have been used that provide non-contact stimulation of whiskers: air current stimulators and 

magnetic-based stimulators.  

In air current stimulators, sensory stimulation consists of puffs of compressed air delivered 

via a compressed air source or a repeatable pressure pulse system (Bernhard et al., 2020; Charpier 

et al., 2020; Sosnik et al., 2001; Yu et al., 2019). Air stimuli can be delivered at multiple directions 

and the pressure adjusted so as to deliver stimuli of different speeds, resembling the movement 

profile of natural whisking (Sosnik et al., 2001). Air puffs forced forward movement of the 

whiskers which allowed them to return to their rest position before the next stimulus. Much like 

there piezoelectric counterparts, however, there are also limitations to these types of stimulators. 

Air current stimulators require the calibration of airflow for each test condition (Yu et al., 2019) 

which can take up a lot of time during already time-sensitive electrophysiological experiments. 

Having to calibrate the stimulus signal after each administration could potentially lead to 

inconsistencies in stimulus intensity. Additional equipment is also necessary to measure whisker 

movement with air current stimulators. Lastly, the air puff does not always stimulate the entire 

whisker array simultaneously; it typically only deflects a select number of whiskers each time. 

Magnetic-based stimulators offer non-contact stimulation of whiskers. Small metal pieces 

are glued to the desired set of whiskers and the animal is placed in a “Lausanne whisker 

stimulator,” a cylindrical cage placed inside of an electromagnetic coil which delivers pulses of 

magnetic field bursts that deflect the metal pieces attached to the whiskers (Melzer et al., 1985; 

Welker et al., 1992). Magnetic-based stimulators allow experimenters to deflect the whisker while 

the animal is awake and freely behaving. A challenge to this approach is that the small metal pieces 
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must be constantly observed to ensure that they do not fall off or are replaced as soon as possible. 

Also, this method requires the whiskers to be glued to these small metal pieces which deform and 

can cause damage to the whisker, preventing an accurate reflection of the evoked neuronal 

responses to stimulation. Whiskers are also required to be clipped here, dampening potential 

responses to stimulation. While the magnetic field was homogeneous, the strength of stimulation 

was decreased the further the animal got away from the center, so it was difficult to keep the same 

stimulus intensity consistent throughout the experiment and it was difficult to ensure that the 

whiskers were appropriately stimulated at all. Lastly, it is hard to consistently stimulate multiple 

whiskers, let alone the entire whisker array. The magnetic-based stimulator is incompatible with 

experiments that necessitate the stimulation of more than three whiskers.  

To overcome these challenges, there is a need for a stimulator that is more versatile, that 

can deliver real-time detection of whiskers, that offers high resolution control over stimulus 

parameters, and that can reliably replicate behaviorally relevant stimuli while recording the 

responses of whisker sensitive circuits. The present work describes the construction and validation 

of a stimulation system that meets these requirements. 
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3.2 Multi-whisker Stimulator 

3.2.1 Stimulator Design and Control 

We designed a closed-loop stimulator that repeatably and consistently stimulates the 

whisker array in a range of speed and directions which allows us to investigate the sensitivity of 

trigeminal brainstem neurons to these stimulus features. As shown in Figure 3.1A, the stimulator 

consists of a motorized slide potentiometer (Bourns®, PSM01-082A-103B2) attached to a stepper 

motor (Moons’ Industries, MS17HD6P4150). The slide potentiometer permits controlled linear 

motion with simultaneous position readout. It supports a carriage holding a thin nitinol wire (0.01” 

diameter) that is swept through the whiskers. The stepper motor rotates the slide potentiometer and 

carriage as a unit, so the wire can sweep in any direction. The entire device can be mounted to a 

micromanipulator to position it relative to the animal.  

To record the time interval when the nitinol wire contacts the whiskers a fiber optic 

emitter/detector pair (Banner™, DF-G3-NU-2M) is aligned coaxial with the wire. The emitter 

generates a collimated light beam, and the detector senses analog changes in light intensity. When 

the emitter-detector path is unobstructed, the detector voltage is constant. The voltage drops when 

the beam is interrupted. Although the work described in the present study was performed in rats, 

we fully expect the system to work for mice, as contacts were detected with even the smallest rat 

whiskers, which are approximately the same size as mouse whiskers (Belli et al., 2016; Hires et 

al., 2016). A bracket immobilizes the fiber optic cables relative to the slider as the mechanism 

rotates. Hardware to attach the slider to the stepper motor, to attach the fiber optic cables and 

nitinol wire to the slider, and to mount the stimulator are 3D-printed.  
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During experiments, both the slide potentiometer and the stepper motor were controlled 

via an Arduino Mega with an Adafruit motor shield (part number 1438). A capacitive absolute 

position rotary encoder (CUI, AMT203-V) allowed accurate, closed loop control of motor angle. 

Python scripts controlled the experiment, while Arduino firmware handled low-level motor 

control. The stimulator was briefly forced to its end of travel before each trial. 

Files for stimulator construction and use are located at: https://github.com/SeNSE-

lab/global_motion_stimulator. The repository includes a bill of materials, CAD drawings for each 

part, Arduino and python code, and instructions for assembly and use. 
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3.2.2 Stimulator Performance  

First, we tested the system’s ability to reliably detect single whisker contact with the nitinol 

wire. Figure 3.1B compares the fiber optic signal obtained when the stimulator brushed past a 

whisker with that obtained when the stimulator was pulled away from the face. The encoder 

(position) signal from the potentiometer for both trials is shown below the fiber optic signals. A 

voltage drop in the fiber optic signal is observed when a whisker is present, but not when the 

whisker is absent. The two encoder traces overlap, indicating that stimulator motion did not vary 

between trials even as the assembly was repositioned away from the whiskers.  

Next, repeatability of stimulation and detection were assessed while running the stimulator 

through the full whisker array. A photo of the stimulator next to the rat is shown in Figure 3.2C 

for scale. The position and orientation of the stimulator relative to the bases of the whiskers will 

have a strong influence on the mechanical signals generated, as described further in the Discussion. 

Figure 3.2D shows fiber optic and potentiometer signals for ten sweeps back and forth (20 sweeps 

total) through the whisker array. The stimulator first traversed the array in one direction, and then 

in reverse, 180° opposite the original. To ensure that sequential sweeps did not interfere with each 

other, the stimulator was held fixed for ~1.5 s between sweeps. Thus, in Figure 3.2D stimulation 

durations appear as steep upwards and downwards slopes in the potentiometer trace, and durations 

of static hold appear flat. The small rectangular-shaped voltage pulse in the potentiometer trace at 

the start of each downwards slope indicates when the stimulator is forced to end-of-travel.  

As expected, the fiber optic trace in Figure 3.2D is constant during times when the 

potentiometer is static, and shows large voltage drops during periods of whisker contact. Notably, 

the shape of the voltage drops differs considerably between the two stimulation directions. The 
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voltage drop is much larger for one direction (in this case, the direction with positive potentiometer 

slopes) than the other. These differences are expected, because the duration and timing of whisker 

contact will depend strongly on the positions and orientations of the whiskers relative to the 

stimulator. Importantly, however, although the fiber optic signal varies considerably between 

directions, it is extremely consistent for a single direction. This consistency is evident in Figure 

3.2E, which overlays the twenty fiber optic voltage drops shown in Figure 3.2D, separated by 

stimulation direction. 
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3.3 Comparison with Other Whisker Stimulators 

We describe a novel stimulator system with two important, distinct capabilities. First, the 

stimulator can be controlled to traverse either the full array or a subset of whiskers with multiple 

directions and speeds. It is intended for the study of tuning to global motion direction, not for 

experiments that require precise temporal control over individual whiskers. This capability 

complements more standard piezo-electric stimulators, which offer precise control but travel only 

through small angles, and typically stimulate only a single, trimmed whisker (Deschenes et al., 

2003; El-Boustani et al., 2020; Simons, 1983). The present system is also safer and more versatile 

than a previous multi-whisker stimulator that relied on high-speed rotations to sweep a post 

through the array (Kaloti et al., 2016). The second, equally important capability of the system is 

real time, fiber optic detection of whisker contact. In the present work, this capability was used 

only during post-processing, to determine the interval of whisker contact. However, the real-time 

nature of the fiber optic signal means that the system could be used in closed-loop feedback 

experiments. For example, awake, head-fixed animals could be trained to whisk against the nitinol 

wire, and the stimulator moved in response with a chosen velocity.  

The present system complements several other stimulator types, some contact-based and 

others non-contact based. The most standard type of contact-based whisker stimulator is 

piezoelectric; this technology offers high resolution control over individual whisker motion 

(Armstrong-James, 1975; Cohen et al., 2008; Furuta et al., 2006; Ito, 1981; Jones et al., 2004; 

Kheradpezhouh et al., 2017; Laturnus et al., 2021; Lichtenstein et al., 1990; Shipley, 1974; Simons, 

1983). However, it is challenging to manually position the stimulator and whiskers are often 

trimmed to ~1 cm. Piezoelectric dynamics can cause artifacts, and only small angle deflections are 
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possible. A few experiments have been performed with multiple piezoelectric (Estebanez et al., 

2016; Jacob et al., 2010; Jacob et al., 2008; Jacob et al., 2017; Ramirez et al., 2014; Vilarchao et 

al., 2018) or solenoid-based (Krupa et al., 2001a; Rodgers et al., 2006) stimulators. These are tour-

de-force experiments that have produced insights into response properties of whisker neurons that 

would not be possible with the stimulator described here.  

Non-contact stimulation approaches include directing air at the whisker array (Bernhard et 

al., 2020; Charpier et al., 2020; Sosnik et al., 2001; Yu et al., 2019), or using magnetic-based 

stimulation (Melzer et al., 1985; Welker et al., 1992). Although air stimuli can be delivered at 

multiple directions and speeds, the mechanical response of whiskers is quite different than during 

contact and involves nonlinear effects (Yu et al., 2019). Thus, it can be difficult to correlate 

whisker motions with neural activity. Finally, the “Lausanne whisker stimulator” is a cylindrical 

enclosure surrounded by an electromagnetic coil that delivers magnetic field bursts that deflect 

metal filings attached to single whiskers (Melzer et al., 1985; Welker et al., 1992). An advantage 

of this approach is that animals can behave freely within the enclosure, but a challenge is ensuring 

that the filings are not removed during grooming. In addition, the metal filings slightly deform the 

whiskers, and it can be difficult to stimulate more than one whisker. 

The present system permits repeatable, coherent-motion stimulation of multiple whiskers 

but sacrifices the ability to stimulate a single whisker with micron resolution, the ability to 

stimulate at high frequency, and to precisely control inter-whisker contact timing. In addition, the 

speeds generated by the device are relatively slow. Note, however, that when the nitinol wire 

makes contact with a whisker, the whisker will bend and then “slip” along the wire (Huet et al., 

2015). Depending on the relative angle of contact, the speed of the whisker on the wire will be 
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greater than or equal to the speed of the stimulator. The slip of the whisker on the wire will be 

particularly significant given that the stimulator generates large angle deflections, except when 

positioned very close to the whisker tips. As the stimulator is moved closer to the whisker bases, 

larger angle deflections will be generated, and the mechanical signals (forces and torques) will be 

larger. Notably, although the stimulator can accurately indicate the time of first whisker contact, 

it cannot, by itself, be used to quantify whisker mechanical signals. To determine mechanical input, 

the stimulator must be used in conjunction with simulations (Zweifel et al., 2021) that establish 

error bounds on whiskers’ mechanical responses. Thus, one of the most important future 

improvements is the incorporation of closed-loop speed control, to ensure that accurate speeds can 

be used in simulations.  
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3.4 Investigating the Tuning of Multi-whisker Responsive Neurons with the Multi-whisker 

Stimulator 

Certain aspects of the sensory periphery make stimulating vibrissae difficult, so much so, 

that studies are often limited to stimulating one and only one whisker at a time (Simons, 1983). 

The size of the animal’s face and the need for whiskers to be deflected in specific directions impose 

restraints on the physical dimension and dynamic properties of mechanical stimulating devices 

(Simon, 1983). The mechanical properties of the piezoelectric benders also limit what type of 

naturalistic whisker deflections are generated (Jacob et al., 2010). There is a need for a device that 

can consistently replicate and deliver behaviorally relevant stimuli while recording functional 

responses from whisker-sensitive regions (Jacob et al., 2010). To mimic these natural phenomena 

experimentally and to quantify whisker-sensitive neurons’ integrative properties, a whisker 

stimulator that is designed to deliver careful sequences of multi-whisker stimulation is essential 

(Jacob et al., 2008). It would be useful to have a system that could deliver repeatable stimuli to 

multiple whiskers, that allowed stimulation parameters to be varied across a wide range, that 

detected contact with the whiskers, and that was easy to position. The present work describes the 

construction and validation of a stimulation system that meets these requirements. 

To that end, we used this novel omni-directional, multi-whisker stimulator in the 

anesthetized rat preparation as a way to investigate multi-whisker sensitive neurons at the level of 

the brainstem. Our stimulator is designed to mechanically stimulate whiskers in any direction with 

a range of speeds that mimic natural tactile interactions; the stimulator traversed the array in eight 

stimulation directions, and in each direction, the stimulator was run at three different speeds. For 

each neuron recorded, ten trials were obtained for each speed/direction combination. The ability 
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to manipulate the spatial and temporal features of vibrissal stimuli is crucial for understanding how 

whisker-sensitive circuits integrate the various features of a stimulus. 
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Chapter 4: Direction and Speed of Global Motion in Trigeminal Brainstem Neurons 

 

Portions of this chapter from:  

Dorizan S, Kleczka KJ, Resulaj A, Alston T, Bresee CS, Hartmann MJ (2022) A novel stimulator 

to investigate the tuning of multi-whisker responsive neurons for speed and the direction of global 

motion. Accepted with revisions. 
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4.1 Introduction 

Sensory physiology seeks to understand how responses to complex stimuli are generated 

(Ego-Stengel et al., 2012). The rodent vibrissa system is an ideal system for studying the 

spatiotemporal sequence of whisker deflections, though we still lack a full understanding of how 

responses to multi-whisker stimuli are collected, integrated, and processed in whisker sensitive 

structures.   

When a rat explores an object, multiple whiskers simultaneously contact its surface (Ego-

Stengel et al., 2012), which results in a complex sequence of whisker movements. In order to 

determine the functional properties of whisker-barrel units, one needs to be able to manipulate the 

spatial and temporal aspects of whisker stimuli (Simons, 1983). To that end, we developed a multi-

whisker stimulation system that can vary stimulation parameters across a wide range, provides real 

time information about whisker contact, and is easy to position and adjust. We validated this 

stimulator by assessing the neural sensitivity of trigeminal brainstem neurons to the direction of 

global motion and speed of incoming stimuli. Understanding how trigeminal brainstem neurons 

represent tactile information is crucial for understanding the neuron’s capacity to combine and 

extract information about the collective features of a stimulus from across the whisker array (Jacob 

et al., 2008) and for interpreting the responses and elucidating the functions of related, downstream 

structures.  

The study of global motion is a means by which we can investigate the spatiotemporal 

structure of sensory information conveyed by the whiskers. Understanding the underlying 

mechanism of global motion sensitivity can help researchers examine the encoding properties of 

whisker-responsive units, particularly during behaviors that result in multi-vibrissae inputs, 



63 

 

understand whether relevant information from across the entire whisker array influences 

downstream responses, and for the overall investigation of the dynamics of spatiotemporal 

integration in the whisker-barrel pathway. 

 

  



64 

 

4.2 Methods  

4.2.1 Data Acquisition 

Neural signals were amplified with a gain of 1,000 (AM Systems 1700) and filtered 

between 300 and 10,000 Hz before acquisition on a National Instruments™ BNC-2090 board at 

40,000 Hz. Analog signals from the slide potentiometer and fiber optic amplifier were recorded 

simultaneously on the same system. 

 

4.2.2 Analysis 

For each neuron and each speed, the directional sensitivity index (DSI) was computed by 

finding the vector sum of the mean firing rate in all directions (Mazurek et al., 2014). The mean 

firing rate was computed as the average (over 10 trials) of the number of spikes during contact 

divided by contact duration.  The DSI was normalized by the summed firing rate in all directions. 

Thus, the DSI will have a magnitude of 0 if the neuron responds equally well in all directions and 

a magnitude of 1 if all responses are in a single direction. All neurons fired less than 0.8 

spikes/second during non-contact periods. Most neurons did not respond during post-contact, when 

resonance is expected; those that did were excluded for future analysis. The resonance frequencies 

experienced during active whisking are different than the ones generated with passive stimulation. 

While we can accurately determine the interval of whisker contact and the response evoked within 

this timeframe, we did not measure the resonance frequencies of the post-contact response, thereby 

excluding them from our study.  
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4.3 Results 

4.3.1 Speed and Direction Sensitivity of Multi-whisker Responsive Neurons  

We used the stimulator to begin to explore speed and global-motion sensitivity of neurons 

in the trigeminal brainstem. Figure 4.2A illustrates the eight stimulation directions. In each 

direction, the stimulator was run at three different speeds. Ten trials were obtained for each 

speed/direction combination. Five neurons responsive to multi-whisker stimulation were recorded. 

Consistent with previous studies (Furuta et al., 2006; Timofeeva et al., 2004), each neuron had a 

“principal whisker” to which its response was maximal and several “surround” whiskers to which 

it responded more weakly as determined by manual stimulation of individual whiskers with a hand-

held wooden probe. In the present study, neurons had principal whiskers D3, E2, and E6, and all 

had surrounds that included whiskers of the same row. Three of five neurons had surrounds that 

also included one or two whiskers in more dorsal rows, consistent with the elliptical, row-wise 

receptive fields commonly found in SpVi (Furuta et al., 2006; Timofeeva et al., 2004). 

Responses of the five neurons are summarized in Figure 4.2B. Each panel in this row shows 

a polar plot in which the angular axis corresponds to the directions of stimulation shown in Figure 

4.2A, and the radial axis indicates the mean firing rate (spikes/second). The three curves in each 

panel show the neuron’s firing rate at each of the three speeds indicated as fast, intermediate, and 

slow. With few exceptions, the firing rate of all neurons is lower in response to slow stimulation 

than to faster stimulation in all directions – the black trace (slow speed) is enveloped within the 

responses to faster speeds.  

In addition, visual inspection suggested that some neurons were tuned to the direction of 

global motion of the stimulator through the array. To more carefully quantify this effect, we 
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analyzed the neural responses after separating by speed, as shown in rows 2 – 4 of Figure 4.2B. 

The second row of Figure 4.2B shows the neural response at the fastest speed. Each panel shows 

the neuron’s mean response, the mean ± standard error of the response, and the summed direction 

vector. The third and fourth rows of Figure 4.2B are identical to the second row, except that they 

show data for intermediate and slow speeds, respectively. 

The plots reveal several important features of the data. First, for all neurons except neuron 

4, the best direction is approximately the same across speeds. The probability of this occurring by 

chance is 3/82 = ~4.8%. Second, Cells 2 and 3 generally have direction vectors with magnitudes 

that exceed the standard error. To confirm that these two neurons were tuned to the direction of 

global motion we randomly shuffled the data 1,000 times. The last number in red at the bottom of 

each plot indicates the probability (expressed as a percent) that the observed direction vector could 

have occurred by chance. For example, there is a 3.2% chance that the DSI for neuron 3 at the 

slowest speed could have occurred by chance; probabilities are even lower for all other speeds for 

both neurons 2 and 3. A similar analysis showed that Cell 1 was not directionally tuned; the 

chances are 21%, 66%, and 14% that the observed DSI vectors could have resulted from a random 

distribution of firing rates. Tuning for the direction of global motion is more equivocal for Cells 4 

and 5. Shuffling analysis showed that Cell 5 is not tuned at the fastest speed but may exhibit weak 

tuning at intermediate and slower speeds. Cell 4 exhibits weak direction tuning that gradually shifts 

with speed; this could result simply from chance.  

To reveal spike timing information -- which cannot be observed in the polar plots of Figure 

4.2B -- we computed peristimulus time histograms (PSTHs) for responses obtained when neurons 

were stimulated in their preferred directions (Figure 4.2C). The “preferred” direction for neuron 4 



67 

 

was ambiguous, so it was chosen based on results for fast stimulation. The plots show that the peak 

amplitude of the PSTH appears to occur at similar times across speeds for each neuron. Cell 3 

exhibits a sharp onset response with rapid decay, while Cells 4 and 5 show a broader temporal 

distribution for some speeds. These types of temporal analyses will be interesting to investigate in 

future studies.   



68 

 

  



69 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5: Discussion 

 

Portions of this chapter from:  

Dorizan S, Kleczka KJ, Resulaj A, Alston T, Bresee CS, Hartmann MJ (2022) A novel stimulator 

to investigate the tuning of multi-whisker responsive neurons for speed and the direction of global 

motion. Accepted with revisions. 
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5.1 Limitations 

The sensory and motor systems of the whiskers are coupled together to allow the animal to 

adjust their whisker movements to sensory input (Bosman et al., 2011). Sensorimotor integration 

is a process in which sensory and motor information are integrated to guide the animal’s behavior 

(Tsur et al., 2019). While the nature of sensorimotor integration is still under investigation, it is 

imperative that we begin to understand how sensory tactile stimuli can influence the neural 

responses of units along the vibrisso-trigeminal pathway.  

We describe a novel stimulator system to begin to explore speed and global-motion 

sensitivity of neurons in the trigeminal brainstem. The stimulator has two important, distinct 

capabilities: 1) the stimulator can be controlled to traverse either the full array or a subset of 

whiskers with multiple directions and speeds and 2) it provides real time, fiber optic detection of 

whisker contact. It is intended for the study of tuning to global motion direction, not for 

experiments that require precise temporal control over individual whiskers. 

The system does not stimulate individual whiskers; it is specifically designed to investigate 

tuning to the direction of global motion of stimulation (Vilarchao et al., 2018) across the entire 

whisker array. While the stimulator can traverse the array in any direction with a range of 

controllable speeds, with an optical detector to sense the duration of whisker contact, it sacrifices 

the ability to stimulate a single whisker with micron resolution, the ability to stimulate at high 

frequency, and to precisely control inter-whisker contact timing. In addition, the speeds generated 

by the device are relatively slow. Note, however, that when the nitinol wire makes contact with a 

whisker, the whisker will bend and then “slip” along the wire (Huet et al., 2015). Depending on 

the relative angle of contact, the speed of the whisker on the wire will be greater than or equal to 
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the speed of the stimulator. The slip of the whisker on the wire will be particularly significant 

given that the stimulator generates large angle deflections, except when positioned very close to 

the whisker tips. As the stimulator is moved closer to the whisker bases, larger angle deflections 

will be generated, and the mechanical signals (forces and torques) will be larger. Notably, although 

the stimulator can accurately indicate the time of first whisker contact, it cannot, by itself, be used 

to quantify whisker mechanical signals. To determine mechanical input, the stimulator must be 

used in conjunction with simulations (Zweifel et al., 2021) that establish error bounds on whiskers’ 

mechanical responses. Thus, one of the most important future improvements is the incorporation 

of closed-loop speed control, to ensure that accurate speeds can be used in simulations. 
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5.2 Neural Representations of Global Motion in Trigeminal Brainstem Neurons  

Most neurons along the vibrissotrigeminal pathway integrate information from multiple 

whiskers, and it is a long-standing experimental challenge to quantify their integrative properties 

(Benison et al., 2006; Cohen et al., 2008; Deschenes et al., 2003; Goldin et al., 2018; Jacob et al., 

2008; Jacob et al., 2017; Le Cam et al., 2011; Rodgers et al., 2006; Timofeeva et al., 2004; 

Veinante and Deschenes, 1999; Whitmire et al., 2021). To demonstrate the stimulator’s utility, we 

probed the directional sensitivity of multi-whisker responsive neurons in the trigeminal brainstem. 

Although stimulator motion will tend to push all whiskers in the same general direction, individual 

whiskers will deflect against the wire in very different directions based on their geometry and 

orientation. Thus, the present stimulation approach – which allows each whisker to interact with a 

stimulus that sweeps through the array – begins to quantify tuning for “global motion” (Vilarchao 

et al., 2018). 

Global motion tuning complements “angular tuning” and “direction preference” of 

whisker-sensitive neurons (Furuta et al., 2006). Angular tuning refers to the neuron’s response to 

the deflection of a single whisker in specific directions, while directional preference quantifies the 

extent to which the angular deflection that elicits the largest response is similar for all vibrissae in 

the neuron’s receptive field. Direction preference is computed as the linear sum of individual 

angular tuning vectors (Furuta et al., 2006). Quantifying global motion tuning is an additional 

approach towards understanding the neural basis for behaviors such as orienting (Arkley et al., 

2014; Cohen et al., 2008), gating incoming sensory input (Chakrabarti and Schwarz, 2018; Furuta 

et al., 2010; Urbain and Deschenes, 2007), and transforming between whisker, snout, and world 

coordinate systems (Bush et al., 2016b). 
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The small sample of neurons shown in Figure 4.2 suggests that neurons exhibit higher 

firing rates for faster stimulus speeds, appearing to contradict results of an earlier study done by 

our lab showing the opposite (Kaloti et al., 2016). One possible explanation for the discrepancy is 

that the slowest speed in the earlier study was much slower than that used here. Such a low speed 

could potentially cause higher firing rates as bending duration increases. A more likely explanation 

is that the two studies recorded from very few neurons and were biased towards recording from 

different brainstem regions.  

When combined with appropriate simulations (Zweifel et al., 2021), the stimulator could 

be used to explore the extent to which neurons are tuned to the mechanics (forces and torques) at 

the whisker base. In the present study, whiskers were always stimulated approximately halfway 

along their length or close to their tips. Future work may include a systematic comparison of 

responses generated when whiskers are stimulated at different locations along their length, 

permitting a distinction between mechanical and kinematic signals. 
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5.3 Novel Multi-whisker Stimulator Utility  

Through repetitive contacts with multiple whiskers, animals acquire tactile information 

about their environment (Carvell and Simons, 1990; Harvey et al., 2001; Sachdev et al., 2001). 

This information-seeking action using the entire sensory apparatus is known as “active sensing” 

(Adibi et al., 2019). Up until this point, we have studied whisker-mediated touch in a passive way. 

The stimuli delivered to animals in various preparations have delivered precisely controlled 

stimulation to an animal who isn’t actively moving their whiskers. While we cannot use this novel 

stimulator to directly study “active sensing”, we can use this stimulator in a variety of ways that 

will allow us to further our understanding of sensorimotor integration. 

This novel stimulator could be used to study the context-dependent sensorimotor strategies 

of exploratory behavior. Exploratory behavior is an information-gathering venture that animals 

use to learn about their environment. This is a natural behavior for rodents that requires little to no 

training (Adibi et al., 2019). Other behaviors that do not require training include whisking, free 

navigation, and gap crossing (Adibi et al., 2019). If we combine these native forms of behavior 

with our stimulator, however, we can begin to elucidate the causal link between sensation and 

neuronal activity. 

 For instance, if we trained awake, head fixed animals to whisk against the nitinol wire, we 

could have the stimulator move at desired speeds across the whisker array while recording from 

regions of interest. While this would allow us to investigate questions of active sensing and allows 

us to observe whisker relevant circuits in their mostly, undisturbed state, having the animals be 

head-fixed takes away a major component of their whisking behavior: their head movement. There 

is a great deal of work that has been done that demonstrates that head movements play a crucial 
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role in determining how whiskers are brought into contact with an object of interest (Hobbs et al., 

2016). If one wants to understand whisking behavior as it relates to head movement, they will not 

get very far with our stimulator. That goes to say that our stimulator would also not be able to help 

answer scientific questions regarding head movement, head position, head velocity, or head 

orientation in relation to whisking and exploratory behavior.  

 As the stimulator stands, we would not be able to easily investigate these questions in the 

awake, freely behaving animal. Our stimulator, which can traverse the array in a repeatable, 

controllable way with real-time whisker contact detection, was designed for the study of global 

motion tuning which has yet to be done in the awake, freely behaving animal. Our stimulator also 

provides complex stimuli that may be difficult to administer to freely moving animals. Also, 

recording neurons from a moving animal while accurately tracking whiskers is quite difficult. The 

best setup to date, in my opinion, that could be used to study these questions is a setup that has 

been used in our lab before. 

 Previous work from the Hartmann Lab has tracked rat whisking on the millisecond 

timescale with the use of a laser light sheet (Hobbs et al., 2016). They created a collimated plane 

of light using an infrared beam that was placed in front of a glass sheet and this plane of light was 

interrupted when the animal’s whiskers contacted the glass sheet marking where the whiskers 

made contact (Hobbs et al., 2016). They used this setup to monitor head movements while also 

quantifying the complete sequence of vibrissal-object contact during exploratory behavior (Hobbs 

et al., 2016).  While researchers of this study used a procedure to detect and quantify the sites of 

vibrissal-object contact, others can use a combination of these setups to answer questions of 

behavioral strategies used for exploratory behavior, head movement, position, and orientation, 
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motion of whisker contact, contact timing, contact patterns, and quantifying the spatiotemporal 

features of contact intervals. 

 One way that we would like to use this stimulator is to determine whether the generated 

mechanical signals at the base of the whisker are represented in the responses of trigeminal 

brainstem neurons, or any neuron along the vibrisso-trigeminal pathway. It is experimentally 

challenging to study this particular question because the tools that we would use to physically 

measure the mechanics of the whisker would also change what the mechanics look like (Whiteley 

et al., 2015). Using our stimulator combined with a biomechanical model, however, we can predict 

the forces and rotational moments that occur at the whisker given a set of stimulus parameters 

(Zweifel et al., 2021). For instance, we can use the stimulator to deliver complex, tactile stimuli to 

the full whisker array at different points along the whisker length (Fig. 5.1, unpublished). 

Stimulating the whisker array at these points along the length will change the forces and the 

moments acting on the whisker while minimally changing the kinematics of the stimulus, allowing 

us to see the difference, if any, in spike rate patterning as a function of distance. This, in 

conjunction with a biomechanical model that can simulate the natural sensory input and motor 

output of the whisker system, will simulate the complete loop of sensorimotor integration (Zweifel 

et al., 2021).  

 Largely, we are interested in how sensory organs control the massive amount of sensory 

information they receive and select the most relevant inputs for behavior. The whisker system is 

an ideal system to study sensorimotor integration and the relative simplicity of the whiskers allows 

us to study this complex process of rapid integration of stimulus features and the extrapolation of 

the features to unknown conditions. 
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local and regional conferences, and provide valuable feedback on the diversity and retention 

initiatives carried out by The Graduate School 

 

♦ Skills & Careers in Science Writing 

Medill School of Journalism, Northwestern University                     2018 

- Course focuses on storytelling techniques and best practices for science writing/communication. 

Students gain exposure to career possibilities and hone their writing skills through authentic 

writing and editorial assignments. The course will help STEM PhD trainees write clearly and speak 

confidently about their own research, providing a solid foundation for future pursuits in science 

writing and communication 

 

♦ Founder and Leader of the Graduate Women of Color Association 

Student Organization, Northwestern University         2019 - Present 

- Lead monthly meetings that specifically addresses the need of graduate women of color in higher 

education; create a space where women across disciplines come together to build community, 

exchange resources, and engage in peer mentorship 

 

♦ President of the Black Graduate Student Association 

Student Organization, Northwestern University         2018 - Present 

- Retain the growing diverse group at Northwestern by cultivating events and programs that are 

relevant to the Black graduate population including the Annual Graduate Research Conference; 

support the mental, physical, social, and emotional well-being of these students 

 

♦ Research Communication Training Program: Participant 

Office of STEM Education, Northwestern University                   2016, 2019 

- Increase the awareness for the urgent need of excellent science communication and to coach 

graduate and post-doc researchers to improve their own presentation skills. The program focuses 
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on three important components of communication: building confidence in all communication 

roles, enhancing the clarity of the message, and forming a connection with any audience 

 

♦ Mentored Discussions of Teaching 

Searle Center for Advancing Learning & Teaching, Northwestern University                    2016 

- Course is designed to engage STEM graduate students and postdoctoral fellows in discussions 

with faculty about teaching and learning. Students are invited to observe faculty teaching 

undergraduate or early graduate courses and meet with faculty to discuss their perspectives and 

methods. Participants also engage in group discussions on selected readings that address key 

topics in teaching. 

 

♦ NUIN Student Advisory Council 

Interdepartmental Neuroscience, Northwestern University        2015 - Present 

- Advocate for and communicate the needs of fellow graduate students to faculty and 

administration; also aid in organizing student participation in NUIN activities such as the annual 

retreat and recruitment events 

 

____________________________GRANTS & FELLOWSHIPS________________________ 

♦ The General Motor Control and Mechanisms of Disease T32 Training Grant       2020 - Present 

♦ The Neuroscience of Human Cognition T32 Training Grant       2017 - 2019 

♦ Collaborative Learning and Integrate Mentoring in the Biosciences Fellowship      2015 – 2017 

 

_______________________________AWARDS & HONORS__________________________ 

♦ McBride Student Award at Northwestern University         2021 

♦ Edward Bouchet Graduate Honor Society Inductee at Yale University          2019 

♦ Summer Research Opportunity Program Group Leader          2019, 2020 

♦ Neuroscience Roadmap Scholar             2017 - Present 

♦ National Enhancement of Underrepresented Academic Leaders (NEURAL) Conference    2017 

1st Place Oral Presentation Recipient 

♦ The Black Graduate Student Association (BGSA) Annual Research Conference       2017 

1st Place Poster Presentation Recipient 

♦ The National GEM Consortium: GEM Associate Fellow     2015 - Present 

♦ Annual Biomedical Research Conference for Minority Students FASEB-MARC Travel Award 

Recipient                   2013 

♦ Ronald E. McNair Program: McNair Scholar          2010 - 2013 

♦ Meyerhoff Scholars Program: Meyerhoff Scholar                 2009 - 2013 

 

____________________SELECT CONFERENCE PRESENTATIONS__________________ 

♦ “Developing a Model of Memory Facilitation by Stimulating Cortical-Hippocampal Networks 

in Rats.”  
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• Poster presentation at the Cognitive Neuroscience Society Annual Meeting in San 

Francisco, March 2019 

• Oral presentation at the Annual NEURAL Conference at the University of Alabama-

Birmingham, June 2017 

• Poster presentation at the BGSA Annual Research Conference in Chicago, IL, April 2017  

• Seven Minutes of Science Symposium at Northwestern University in Chicago, IL , Sept. 

2016 

__________________________TEACHING EXPERIENCE___________________________ 

♦ Instructor, “Graduate Student Led Qualifying Exam Prep”, (graduate, developed course to 

prepare pre-candidate graduate students for their qualifying exams). Schnaude Dorizan, 

Interdepartmental Neuroscience Program, Spring 2019 - Fall 2019  

 

♦ Teaching Assistant, “Neuroscience of Brain Disorders” (undergraduate). Dr. Valarie Kilman, 

Department of Neurobiology, Northwestern University, Fall 2016 

 

♦ Teaching Assistant, “Neurobiology of Learning and Memory” (undergraduate). Dr. Catherine 

Woolley, Department of Neurobiology, Northwestern University, Spring 2017 

 

♦ Tutor, N’CAT Tutors: Student-athlete Tutoring (undergraduate), Athletics Department, 

Northwestern University, Fall 2017 - Fall 2018 

 

♦ Instructor, “Brain-boozled! Misinformation and Your Brain” (high school). Schnaude Dorizan, 

Splash!, April 2017 

 

___________________PROFESSIONAL SOCIETY MEMBERSHIPS__________________ 

♦ Society for Neuroscience        2009 - Present 

♦ Barrels: Rodent Whisker-to-Barrels Society     2019 - Present 

♦ Cognitive Neuroscience Society            2018 

♦ Golden Key International Honour Society          2009 - 2013 

 

______________COMMUNITY OUTREACH & VOLUNTEER SERVICE_____________ 

♦ Northwestern University Brain Awareness Outreach    2015 - Present 

♦ Black Creativity Jr. Science Café Series at the Museum of Science and Industry Feb. 2017, 

2018, 2019, 2020 

♦ Family Matters: Mentoring, Tutoring, and Leadership    2016 - Present 

♦ Alder Planetarium: Invited Guest Speaker at Youth Council Event       2018 

♦ Mentor Matching Engine: Online Mentoring for High School Students          2016 - 2018 

♦ Introduction to Graduate Education at Northwestern University    2017 - Present 

 

___________________________LANGUAGES AND SKILLS_________________________ 

♦ Haitian-Creole Native/bilingual 
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♦ Software Skills:  

o Microsoft Office - Word, Outlook, Excel, PowerPoint, Skype 

o Google - Calendar, Docs, Gmail, Drive, Hangouts 

o Adobe - Acrobat DC, Illustrator 

o Canvas: Instructure Tools for Online Learning 

o Neuralynx Neural Acquisition Systems, Neuroexplorer 

o MATLAB 

 

♦ Administrative Skills:  

o Refined Organizational Abilities 

o Multi-Calendar Management 

o Answering and Routing Calls 

o Office Supply Purchases/Inventory 

o Facilities Management 

o Liaison with Vendors 

o Greeting Clients/Guests 

 

_______________________EXTRACURRICULAR ACTIVITIES______________________ 

♦ Alliance of Chicago Minority Students Organization 

♦ Diversity in Biological Sciences Council  

♦ Chicago Graduate Student Association 

♦ Rainbow Children Dance Collective 

♦ Kung Fu 


