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ABSTRACT

Semantic Labeling for Image Classification

Depalov Dejan

The rapid growth of digital imaging technology and the accumulation of large collections

of digital images has created the need for efficient and intelligent schemes for content-based image

retrieval. Our goal is to organize the contents semantically, according to meaningful categories. We

present a new approach for semantic classification that utilizes a recently proposed color-texture

segmentation algorithm (by Chen et al.), which combines knowledge of human perception and

signal characteristics to segment natural scenes into perceptually uniform regions. The features of

these regions are then used as medium level descriptors that can effectively bridge the “semantic

gap” between low level primitives and high level semantics. The goal is to extract semantic labels,

first at the segment and then at the scene level. The focus of this thesis is on region classifica-

tion. We develop segment features that consist of spatial texture orientation information and color

composition in terms of a limited number of locally adapted dominant colors. We also consider

segment size and position. We use a hierarchical vocabulary of segment labels that is consistent

with subjective experiments and the labels used in the NIST TRECVID 2003 development set.

We have gathered a database of 13000 automatically segmented and manually labeled segments

obtained from 3300 photographs of natural scenes. This database is used for training and testing.

For training and classification we use the Linear Discriminant Analysis (LDA) technique. We ex-

amine the performance of the algorithm (precision and recall rates) when different sets of features

(e.g., one or two most dominant colors versus four quantized dominant colors) are used. We also
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consider the performance of other techniques such as Gaussian Mixture Models (GMMs) and Sup-

port Vector Machines (SVMs). Our results indicate that the proposed approach offers significant

performance improvements over existing approaches. We also compare with human performance.

For this, we use human segmentations to do the feature extraction and segment classification. We

show that both the segment statistics and algorithm performance remain approximately the same

when the automatic segmentations are replaced with human segmentations.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The Growth of Digital Imaging

People have used images for communication throughout history. Even our ancestors painted pic-

tures on the walls of their caves. However, it was the twentieth century that has witnessed tremen-

dous growth in the number, availability and importance of images. Images play a crucial role in

fields as diverse as engineering, medicine, journalism, advertising, design, education and enter-

tainment. Technology, in the form of inventions such as photography and television, has played a

major role in facilitating the capture and communication of pictorial data. Notably, the real engine

of the imaging revolution has been the computer, introducing a range of techniques for the digital

image capture, processing, storage, and transmission. The use of computers in imaging can be

dated back to the mid-1960s, although it was rather limited until the mid-1980s when the personal

computer was introduced. Once computerized imaging became affordable, it quickly penetrated

into almost every area of human activity. The creation of the World-Wide Web in the early 1990s,

enabled users to access data in a variety of media from anywhere on the planet, and has provided
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further stimulus to the exploitation of digital images.

Figure 1.1: Digital Camera Sales

Figure 1.2: Digital Images

The early years of the 21st century have seen an enormous advancement and growth in

digital imaging. As digital imagers approach traditional film-based cameras in terms of resolution

and price, combined with the additional sets of features they provide, consumers and businesses

have embraced this new technology with previously unseen vigor. This has resulted in a tenfold
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increase in the amount of digital images created, from 2 billion in year 2000 to estimated 20 billion

it 2005 (Source: PMA Marketing Research).

Figure 1.3: Camera Phones Sales

Another important milestone was the introduction of the camera phone. In fact, camera-

phones, with 159 million units sold in year 2004 alone (Source: Consumer Phone Report), became

the best and fastest selling consumer product in the history of mankind. A recent Zalos Group

survey estimates that the total picture messaging market in the United States will approach 440

million dollars by 2008.

1.1.2 The Need for Image Data Management

In addition to consumers, corporate and business users have an increasing need for managing

digital image databases. The most important users that might benefit from the Content Based

Image Retrieval (CBIR) technology are in the area of publishing and advertising, television and

movie studios, fashion and graphic design, museums and galleries, medicine, military and law

enforcement, education, geographical and remote sensing systems, and Web search engines. For

example: Publishing and advertising companies maintain their own databases of digital images that
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might contain millions of images. These industries rely heavily on images to complement a story,

illustrate books or articles or promote products and services. In the field of fashion and graphic

design, visualization is a part of creative process, and the ability to find a particular combination

of color and texture is crucial in the design process [2]. Automatic identification of regions within

satellite images by shape, color or texture is another important application that has received lot of

attention [3–6]. Currently several Web search engines offer an option of image search. However,

they are of limited use as they only search the keywords in the image title or the included metadata.

1.1.3 What is Content Based Image Retrieval?

The term Content Based Image Retrieval was introduced by Kato [7], to describe his experiments

into automatic retrieval of images from a database by color and shape features. The term has since

been widely used to describe the process of retrieving images from a large collection on the basis

of features (such as color, texture, and shape) that can be automatically extracted from the images

themselves. The features used for retrieval can be either primitive or semantic, but the extraction

process must be predominantly automatic. CBIR differs from classical information retrieval in

fact that image databases are essentially unstructured, since digitized images consist purely of ar-

rays of pixel intensities, with no inherent meaning. One of the key issues with any kind of image

processing is the need to extract useful information from the raw data (such as recognizing the

presence of particular shapes or textures) before any kind of reasoning about the image contents

is possible. The image databases thus differ fundamentally from text databases, where the raw

material (words stored as ASCII character strings), has already been logically structured by the

author [8]. CBIR draws many of its methods from the fields of image processing and computer

vision, and is regarded by some as a subset of these fields. Its emphasis is on the retrieval of images

with desired characteristics from a large collection. Image processing covers a much wider field,

including image enhancement, compression, transmission, and interpretation. Research and devel-
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opment issues in CBIR cover a range of topics, many shared with mainstream image processing

and information retrieval. Some of the most important are:

• identification of suitable ways of describing image content

• extracting such features from raw images

• matching query and stored images in a way that reflects user needs or human similarity

judgments

• efficiently accessing stored images by content

• providing usable human interfaces to CBIR systems

1.2 Proposed Approach - From Segments to Semantics

The rapid accumulation of large collections of digital images has created the need for efficient

and intelligent schemes for image retrieval. Since humans are the ultimate users of most retrieval

systems, it is important to organize the contents semantically, according to meaningful categories.

This requires an understanding of the important semantic categories that humans use for image

classification [1, 9, 10], and the extraction of meaningful image features that can be used to distin-

guish between these categories.

Current algorithms for low-level feature extraction, such as color, texture, and shape, are

quite sophisticated and have had a considerable success. [11, 12]. However, the extraction of low-

level image features that can be correlated with high-level image semantics remains a challenging

task. The focus of this thesis research is on a new methodology for image segmentation, semantic

classification, and retrieval, that is based on perceptual models and principles about the processing

of texture and color information.
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Figure 1.4: Overview of the Proposed Method

This thesis proposes a novel framework for semantic image analysis and retrieval that at-

tempts to bridge the semantic gap between low level primitives and high level semantics by utiliz-

ing perceptually uniform segments as medium level descriptors to effectively bridge the semantic

gap.

The foundation for this thesis research was set by a recently proposed approach for im-

age segmentation that is based on spatially adaptive color and spatial texture features [13–18]. It

is aimed at segmentation of natural scenes, in which color and texture do not typically exhibit

uniform statistical characteristics. The new approach combines knowledge of human perception

with an understanding of signal characteristics in order to segment natural scenes into perceptu-

ally/semantically uniform regions. This new segmentation methodology can be used to extract

semantic information from digital images. In particular, it can be used to derive region-wide color

and texture features that, together with the segment location, boundary shape, and region size, can

be used to extract semantic information.
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(a) Semantic Gap between
low level primitives and im-
age semantics

(b) Proposed method to
bridge the Semantic Gap

Figure 1.5: Bridging the Semantic Gap

Once the image has been segmented into regions, the goal is to extract segment features that

can be related to semantic concepts. The features that we use to obtain the image segmentation

are not necessarily the same as those that are most suitable for assigning a semantic meaning to

a segment. Image segmentation requires a combination of local and global features, while region

interpretation requires region-wide features. Overall, in this thesis we develop a novel systematic

approach for segment labeling that is based on human perception that combines the segment char-

acteristics (color and texture composition, size, shape, relative location). The resulting labels can

then be combined to provide an overall scene interpretation.

The focus of this thesis is on still images. The techniques we discuss, however, can also

form the basis for content-based analysis of video sequences. We consider the domain of photo-

graphic images with an essentially unlimited range of content (landscapes, cityscapes, buildings,
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(a) Original Color Image (b) Adaptive Dominant Colors

(c) Texture Classes (d) Final Segmentation

Figure 1.6: Segmentation Overview

indoor scenes, people, plants, animals, objects, etc.).

1.3 Contributions

This dissertation focuses on techniques for semantic labeling on segments for image analysis and

classification. The following contributions have been made:

• Semantic classification of image segments.

• Incorporating the knowledge of human perception and signal characteristics into segment

feature extraction, representation and classification.

• Evaluation of classification techniques that that are best suited for the selected features.
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• Low level color and texture based retrieval.

• Comparison with human performance.

– human vs. automatic segmentation statistics.

– human vs. automatic segmentations classification performance.

1.4 Organization

Chapter 2 presents the background material and a high level overview of Content Based Retrieval

problem. Chapter 3 presents an overview of perceptually tuned adaptive color-texture segmenta-

tion algorithm recently proposed by Chen and Pappas. Chapter 4 introduces the low level features

used in retrieval and their representations in greater detail. Chapter 5, describes how proposed

features were extracted from segments and their representation. Segment statistics of dominant

colors is also presented in this chapter. In Chapter 6 we present semantic label selection, veri-

fication database and ground truth generation were. Chapter 7 presents clustering, classification

and pattern recognition algorithms used in classification, their tradeoffs and numerical implemen-

tations. Chapter 8 presents experimental results and detailed analysis demonstrating benefits of

this new approach. Feature Evaluation in Terms of Human Segmentations and statistics of human

segmentations are presented in Chapter 9. Summary, conclusions and future research directions

are proposed in Chapter 10.
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Chapter 2

Background

2.1 User Needs for Image Data Indexing

CBIR research reports, which have focused on specific collections, user types or populations

[19–26], reveal that there is a significant difference between features sought by users in differ-

ent disciplines. For example, journalists prefer to undertake their own searches for photographs

based on such attributes as symbolic value, atmosphere and feelings, or the context of a particular

illustration task [20], while health professionals ask for images in a manner more in keeping with

the Library’s orientation (e.g., do you have pictures of cholera?). Such information leads to the

conclusion that CBIR systems have to be designed with particular applications in mind. In addi-

tion, users’ expressed needs are likely to be heavily biased by their expectations of the kinds of

query the system can actually handle [19]. To resolve this problem, van der Starre [27] advocates

that indexers should “stick to ‘plain and simple’ indexing, using index terms accepted by the users,

and using preferably a thesaurus with many lead-ins,” thus placing the burden of further selection

on the user. Shatford Layne [28] suggests that, when indexing images, it may be necessary to

determine which attributes provide useful groupings of images; which attributes provide informa-

tion that is useful once the images are found; and which attributes may, or even should, be left
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to the searcher or researcher to identify. In addition, she advocates further research into the ways

images are sought and the reasons that they are useful in order to improve the indexing process.

Constantopulos and Doerr [29] also support a user centered approach to the designing of effective

image retrieval systems. They urge that the attention needs to be paid to the intentions and goals of

the users, since this will help define the desirable descriptive structures and retrieval mechanisms

as well as understanding what is ’out of the scope’ of an indexing system.

The last decade has seen the appearance of a number of commercial databases and image

data management systems such as: Corbis, Getty, iBase, Index+, Digital Catalogue, Fastfoto,

FotoWare, Signpost, Cumulus. These systems store representations of pictorial documents (such

as photographs, prints, paintings, drawings, illustrations, slides, video clips, and so on) in static

archival databases, and incorporate multimedia database management systems in the storage of,

and provision of wider access to, these repositories. It should be noted, however, that none of these

systems provide CBIR facilities - all rely on text keywords which have to be entered by human

indexers to provide retrieval of stored images.

2.1.1 Research Into Indexing Effectiveness

There is a wide range of available text retrieval software to automate the actual process of search-

ing. However, the process of manual indexing, whether by keywords or classification codes, suffers

from two significant drawbacks. First, it is inherently very labor-intensive. Indexing times quoted

in the literature range from about 7 minutes per image for stock photographs at Getty Images, using

their in-house system, to more than 40 minutes per image for a slide collection at Rensselaer Poly-

technic. Manual indexing times for video are likely to be even longer. Both newspapers and stock

shot agencies maintain archives of still photographs to illustrate articles or advertising copies.

These archives can often be extremely large (running into millions of images) and dauntingly

expensive to maintain if detailed keyword indexing is needed. The broadcasting corporations are
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faced with an even bigger problem, having to deal with millions of hours of archived video footage,

which is almost impossible to annotate without some degree of automatic assistance. Secondly,

manual indexing does not appear to be particularly reliable as a means of subjective retrieval of

images. In [30] Markey reported that there were wide disparities in the keywords that different in-

dividuals assigned to the same image. Similar results were reported from studies of the usefulness

of assigned keywords in answering user queries in picture libraries. These limitations mean that

retrieval of images has to rely on the knowledge and experience of the staff. At the present stage

of CBIR development, it is meaningless to ask whether CBIR techniques perform better or worse

than manual indexing. Potentially, CBIR techniques have a number of advantages over manual in-

dexing. They are inherently quicker, cheaper, and completely objective in their operation. Another

limitation of manual indexing is the difficulty to anticipate the retrieval cues future searchers will

actually use [22]. As observed above, in contrast with the situation in text retrieval, where index

language effectiveness has been the subject of intensive study for more than thirty years, there is

little hard evidence on the effectiveness of visual information retrieval systems of any kind.

2.2 Characteristics of Image Queries

Image retrieval types have been classified into three levels of increasing complexity by Eakins [31]:

Level 1: The retrieval by primitive features such as color, texture, shape or the spatial

location of image elements. Examples of such queries might include “find pictures with a yellow

disc the at top”, or most commonly “find images similar to this one”. This level of retrieval uses

features (such as a particular hue and lightness of yellow) that are both objective and directly

derivable from the images themselves. Its use is largely limited to specialized applications such as

trademark registration, identification of drawings in a design archive, or color matching of fashion

accessories.
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Level 2: The retrieval by derived, sometimes known as logical features, involving some de-

gree of logical inference about the identity of the objects depicted in the image. It can conveniently

be further divided into: retrieval of objects of a given type (e.g. “find images of a SUV”); retrieval

of individual objects or persons (“find a picture of the Chicago Skyline”). In the first example

above, some prior understanding is necessary to identify an object as a SUV which is a type of car;

in the second example, one needs the knowledge that a given individual structure has been given

the name “the Eiffel tower”. Search criteria at this level, are usually still reasonably objective.

Level 3: The retrieval by abstract attributes, involving a significant amount of high-level

reasoning about the meaning and purpose of the objects or scenes depicted. Again, this level of

retrieval can be subdivided into: retrieval of named events or types of activity (e.g. “find pictures

of Scottish folk dancing”); retrieval of pictures with emotional or religious significance (“find a

picture depicting suffering”).

At present the most significant gap lies between levels 1 and 2. Many authors [32] refer

to levels 2 and 3 together as semantic image retrieval, and hence the gap between levels 1 and 2

as semantic gap. It should be noted that Eakins’ classification ignores the retrieval by associated

metadata, such as who created the image, where, and when.

2.3 Content-Based Image and Video Retrieval

2.3.1 Primitive Features Used in Retrieval

The most common primitive features used in image classification and retrieval are color, texture

and shape and are used by all current CBIR systems. A typical system allows users to formulate

queries by submitting an example of the type of image being sought, though some offer alternatives

such as selection from a palette or sketch input. The system then identifies those stored images

whose feature values most closely match those of the query, and displays thumbnails of these
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images on the screen. Some of the more commonly used types of features used for image retrieval

are described below.

2.3.2 Color Retrieval

Several methods for retrieving images on the basis of color similarity have been described in the

literature, but most are variations of the same basic idea. Each image added to the collection

is analyzed to compute a color histogram which shows the proportion of pixels of each color

within the image. The color histogram for each image is then stored in the database. During

search, the user can either specify the desired proportion of each color (75% olive green and

25% red, for example), or submit an example image from which a color histogram is calculated.

Either way, the matching process then retrieves those images whose color histograms most closely

match those of the query. The matching technique most commonly used, histogram intersection,

was first developed by Swain and Ballard [1991]. Variants of this technique are now used in a

high proportion of current CBIR systems. Methods that improve the Swain and Ballard’s original

technique include the use of cumulative color histograms [33], combining histogram intersection

with some element of spatial matching [34], and the use of region-based color querying [35].

2.3.3 Texture Retrieval

The ability to match texture can often be useful in distinguishing between areas of images with

similar color (such as sky and sea, or leaves and grass). A variety of techniques has been used

for measuring texture similarity; the best-established ones rely on comparison of values of second-

order statistics calculated from query and stored images. Essentially, methods calculate the relative

brightness of selected pairs of pixels from each image. Using these descriptors, it is possible to

calculate measures of image texture such as the degree of contrast, coarseness, directionality and

regularity [36], or periodicity, directionality and randomness [37]. The alternative methods of
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texture analysis for retrieval include the use of Gabor filters [38] and fractals [39]. Texture queries

can be formulated in a similar manner to color queries, by selecting examples of desired textures

from a palette, or by supplying an example query image. The system then retrieves images with

texture measures most similar in value to the query. An extension of the technique is the texture

thesaurus developed by Ma and Manjunath [5], which retrieves textured regions in images on the

basis of similarity to automatically-derived codewords representing important classes of texture

within the collection.

2.3.4 Shape Retrieval

Unlike texture, shape is a fairly well-defined concept - and there is considerable evidence that

natural objects are primarily recognized by their shape [40]. A number of features characteristic

of object shape (but independent of size or orientation) are computed for every object identified

within each stored image. Queries are then answered by computing the same set of features for

the query image, and retrieving those stored images whose features most closely match those

of the query. Two main types of shape features are commonly used - global features such as

aspect ratio, circularity and moment invariants [41] and local features such as sets of consecutive

boundary segments [42]. Alternative methods proposed for shape matching have included elastic

deformation of templates [43, 44], comparison of directional histograms of edges extracted from

the image [45, 46], and shocks, skeletal representations of object shape that can be compared

using graph matching techniques. The queries to shape retrieval systems are formulated either

by identifying an example image to act as the query, or as a user-drawn sketch [47, 48]. The

shape matching of three-dimensional objects is a more challenging task - particularly where only

a single 2-D view of the object in question is available. While no general solution to this problem

is possible, some useful inroads have been made into the problem of identifying at least some

instances of a given object from different viewpoints. One approach has been to build up a set



26

of plausible 3-D models from the available 2-D image, and match them with other models in the

database [49]. Another approach is to generate a series of alternative 2-D views of each database

object, each of which is matched with the query image [50].

2.3.5 Retrieval by Other Types of Primitive Features

One of the oldest-established means of accessing pictorial data is retrieval by its position within

an image. Accessing data by spatial location is an essential aspect of geographical information

systems and efficient methods to achieve this have been around for many years [51, 52]. Similar

techniques have been applied to image collections, allowing users to search for images containing

objects in defined spatial relationships with each other [53, 54]. Improved algorithms for spatial

retrieval are still being proposed [55]. Spatial indexing is seldom useful on its own, though it has

proved effective in combination with other cues such as color [34, 56] and shape [57].

Several other types of image features have been proposed as a basis for CBIR. Most of these

rely on complex transformations of pixel intensities that have no obvious counterpart in any human

description of an image. Most such techniques aim to extract features that reflect some aspect of

image similarity, which a human subject can perceive, even if he or she finds it difficult to describe.

The most well-researched technique of this kind uses the wavelet transform to model an image at

several different resolutions. Promising retrieval results have been reported by matching wavelet

features computed from query and stored images [58, 59]. Another method giving interesting

results is retrieval by appearance. Two versions of this method have been developed, one for

whole-image matching and one for matching selected parts of an image. The part-image technique

involves filtering the image with Gaussian derivatives at multiple scales [60], and then computing

differential invariants; the whole-image technique uses distributions of local curvature and phase

[61]. The advantage of all these techniques is that they can describe an image at varying levels

of detail (useful in natural scenes where the objects of interest may appear in a variety of guises),
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and avoid the need to segment the image into regions of interest before shape descriptors can

be computed. This is because, despite recent advances in techniques for image segmentation, it

remains a challenging problem.

2.3.6 Retrieval by Semantic Image Features

The vast majority of current CBIR techniques are designed for primitive-level retrieval. However,

some researchers have attempted to bridge the gap between level 1 and level 2 retrieval. One

early system aimed at tackling this problem was GRIM-DBMS [62], designed to interpret and

retrieve the line drawings of objects within a narrow predefined domain, such as floor plans for

domestic buildings. The system analyzed object drawings, labeling each with a set of possible

interpretations and their probabilities. These were then used to derive likely interpretations of the

scene within which they appeared.

More recent research reports tend to concentrate on two problems. The first is scene recog-

nition. It can often be important to identify the overall scene type depicted by an image, both

because this in an important filter that can be used when searching, and because this can help

in identifying specific objects present. One system of this type is IRIS [63], which uses color,

texture, region and spatial information to derive the most likely interpretation of the scene, gen-

erating text descriptors which can be input to any text retrieval system. Other researchers have

identified simpler techniques for scene analysis, using low-frequency image components to train a

neural network [64], or color neighborhood information extracted from low-resolution images to

construct user-defined templates [65]. The second focus of research activity is object recognition,

an area of interest to the computer vision community for many years [66–68]. Techniques are

now being developed for recognizing and classifying objects with database retrieval in mind. Such

techniques are based on the idea of developing a model for each object class to be recognized,

identifying image regions that might contain examples of the object, and building up evidence to
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confirm or rule out the object’s presence. The evidence typically includes both features of the

candidate region itself (color, shape or texture) and contextual information such as its position

and the type of background in the image. In contrast to these fully-automatic methods, there is

a family of techniques that allow systems to learn associations between semantic concepts and

primitive features from user feedback. The earliest such system was FourEyes from MIT [69].

This approach invites the user to annotate selected regions of an image, and then proceeds to apply

similar semantic labels to areas with similar characteristics. The system is capable of improving

its performance with further user feedback. Another approach is the concept of the semantic visual

template introduced by Chang et al [70]. Here, the user is asked to identify a possible range of

color, texture, shape or motion parameters to express his or her query, which is then refined using

relevance feedback techniques. When the user is satisfied, the query is given a semantic label (such

as “sunset”) and stored in a query database for later use. Over time, this query database becomes

a visual thesaurus, linking each semantic concept to the range of primitive image features most

likely to retrieve relevant items.

2.4 Available CBIR Software

2.4.1 Commercial Systems

Despite the shortcomings of current CBIR technology, several image retrieval systems are now

available as commercial packages, with demonstration versions of many others available on the

Web. Some of the most prominent systems are described below.

Pixlogic: Pixlogic is a start-up company that has recently introduced a visual search engine

that “automatically analyzes, indexes, and searches the contents of images and video files.” The

user can input either the image, or a selection, as an input to query for similar images. This system

segments the image into regions and then uses color and shape descriptors to classify the objects
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in the image such as a car, person, logo, etc. This system is still unable to assign semantic labels.

QBIC: IBM’s QBIC system [71] is probably the best-known of all image content retrieval

systems. It is available commercially either in standalone form, or as part of other IBM products

such as the DB2 Digital Library. It offers retrieval by any combination of color, texture or shape -

as well as by text keyword. The system extracts and stores color, shape and texture features from

each image and calculates a similarity score between the query and each stored image.

Virage: Another well-known commercial system is the VIR Image Engine from Virage,

Inc [72]. A high-profile application of Virage technology is AltaVista’s AV Photo Finder, allowing

Web surfers to search for images by content similarity. Virage technology has also been extended

to the management of video data.

Excalibur: This product offers a variety of image indexing and matching techniques based

on the company’s own proprietary pattern recognition technology [73]. Its best-known application

is probably the “Yahoo!” Image Surfer, allowing content-based retrieval of images from the World-

wide Web.

2.4.2 Experimental Systems

A large number of experimental systems have been developed, mainly by academic institutions,

in order to demonstrate the feasibility of new CBR techniques. Many of these are available as

demonstration versions on the Web. Some of the best-known are described below.

Photobook: The Photobook system [43] from Massachusetts Institute of Technology (MIT)

has proved to be one of the most influential of the early CBIR systems. Photobook characterizes

images for retrieval by computing shape, texture and other appropriate features. This system has

been successfully used in a number of applications, involving retrieval of image textures, shapes,

and human faces, each using features based on a different model of the image. More recent ver-

sions of the system allow users to select the most appropriate feature type for the retrieval problem
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at hand from a wide range of alternatives [74]. Although Photobook itself never became a com-

mercial product, its face recognition technology has been incorporated into the FaceID package

from Viisage Technology which is used by several US police departments.

Cypress: The Cypress CBR system is incorporated within the Berkeley Digital Library

project.

VisualSEEk: The VisualSEEk system [56] was developed at Columbia University, New

York. It offers searching by image region color, shape and spatial location, as well as by keyword.

Users can build up image queries by specifying areas of defined shape and color at absolute or

relative locations within the image.

WebSEEk: The WebSEEk system [75] aims to facilitate image searching on the Web. Web

images are identified and indexed by an autonomous agent, which assigns them to an appropriate

subject category according to associated text. Color histograms are also computed from each im-

age. During search, users are invited to select categories of interest; the system then displays a

selection of images within this category, which users can then search by color similarity. Rele-

vance feedback facilities are also provided for search refinement. Further prototypes from this

group include VideoQ [76], a video search engine allowing users to specify motion queries, and

MetaSEEk [77], a meta-search engine for images on the Web.

MARS: The MARS (Multimedia Analysis and Retrieval System) project has been devel-

oped at the University of Illinois [78]. Relevance feedback is an integral part of the system, and

according to the authors is the only way of capturing individual human similarity judgments at

the present time. The system characterizes each object within an image by a variety of features,

and uses a range of different similarity measures to compare the query and stored objects. User

feedback is then used to adjust feature weights, and if necessary to invoke different similarity

measures [79].

Infomedia: The Infomedia project [80] aims to facilitate full content search and retrieval

of video by integrating speech and image processing. This system identifies video scenes (not just
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shots) from analysis of color histograms, motion vectors, speech and audio soundtracks, and then

automatically indexes these ‘video paragraphs’ according to the significant words detected from

the soundtrack, text from the images and captions, and objects detected within the video clips. A

query is typically submitted as speech input. Thumbnails of keyframes are then displayed with the

option to show a sentence describing the content of each shot, extracted from spoken dialogue or

captions, or to play back the shot itself. Many of the system’s strengths stem from its extensive

evaluation with a range of different user populations [81]. Its potential applications include TV

news archiving, sports, entertainment and other consumer videos, and education and training.

Surfimage: The Surfimage system was developed at INRIA, France [82]. This system

has a similar philosophy as the MARS system, using multiple types of image features that can be

combined in different ways, and offering relevance feedback.

Netra: The Netra system uses color texture, shape, and spatial location information to pro-

vide region-based searching based on local image properties [83] utilizing an image segmentation

technique.

Synapse: This system is an implementation of retrieval by appearance using whole image

matching [61].

2.5 Current research trends

Most of current CBR approaches utilize an image segmentation scheme as an intermediate step,

and then rely on the content of the segmented regions as well as their context within an image to

obtain semantic information. Some of them use an explicit image segmentation where image is

decomposed in a regular grid.

Mojsilovic and Rogowitz [10] attempt to link low-level image features directly to image

semantics, while Zhu et al. [84] partition the image into equal size blocks and index the regions

using a codebook whose entries are obtained from the block features. Wang et al. [85] also propose
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a codebook based approach, whereby the codebook is used to segment the image based on the

statistics of the region color and texture features. Their approach also attempts to take into account

properties of the neighboring regions. Carson et al. [86] use a simple segmentation technique to

segment an image into regions and extract their features. Each region is given a label called a

blob-token. The authors attempt to find the association (co-occurrence) among the blob-tokens

and the associated captions to index the image. Barnard, Forsyth et al. [87] extend blob idea even

further by learning the joint distributions of image regions and associated words. Their approach is

an example of multimodal data mining in which there is an attempt to effectively match words and

pictures. Li and Wang [88] use a statistical modeling approach in which images of a given concept

are regarded as the instances of a random process characterizing this concept. Their method utilizes

2D hidden Markov models to calculate a measure of association between the image and the textual

description of a concept. Gao et. al. [89] address the framework for indexing and retrieval of

images based on high-dimension feature extraction and discriminative classifier learning. This

method attempts to describe the image content, using keywords from a predefined vocabulary,

based on low-level features. To avoid errors associated with image segmentation proposed method

performs the explicit segmentation by employing regular blocking and tokenization of all sub-

blocks of training images. Then single and bigrams of neighboring blocks are computed and high

dimensional Latent Semantic Analysis (LSA) matrix assembled. Image annotation is then treated

as a multi-class text categorization, i.e., assigning multiple ranked labels to an image according

to its closeness to concept models. In the method proposed by Feng et. al. [90], each image is

partitioned into a set of rectangular regions and a real-valued feature vector is computed over these

regions. The relevance model, which is a joint probability distribution of the word annotations and

the image feature vectors, is computed using the training set. The word probabilities are estimated

using a Multiple Bernoulli Relevance Model (MBRM), and the image feature probabilities using a

non-parametric kernel density estimate. Images are then annotated using this model. The authors

evaluated their algorithm using 260 concepts with a total of COREL 5000 images, where 4000
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images were used for training, 500 for a validation set, and 500 for testing. Experimental results

obtained 24 percent average precision and 25 percent average recall.

The above mentioned approaches have achieved some success for certain image types and

certain semantic categories but, in spite of all this effort, the effectiveness of CBIR systems has not

been satisfactory and they are still a long way from matching the performance of the human visual

system (HVS).

A Major obstacle for the success of CBR systems, as pointed out by the authors in [91], is

the unavailability of semantically meaningful image segmentation.

The volume of the research activity associated with CBIR techniques and systems con-

tinues to grow. Significant research problems addressed are: methods of segmenting images to

distinguish objects of interest from their background (or alternatively, improved techniques for

feature extraction which do not rely on segmentation), new paradigms for user interaction with

CBIR systems, and better ways of representing human judgments of image similarity. Above all,

there is a need to bridge the semantic gap, introducing a degree of automation to the processes of

indexing and retrieving images.
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Chapter 3

Semantic Labeling

The identification of appropriate semantic categories is of critical importance in the design of a

CBR system, as it will ensure both the relevance and the feasibility of the solutions sought.

3.1 Selecting Semantic Categories

The goal of this thesis is to classify segments into semantic categories according to their features.

However, these semantic categories have to be selected according to the manner in which humans

classify images.

Recent perceptual experiments by Mojsilovic and Rogowitz [1] suggest a semantically

based image similarity and retrieval model, and identified semantic categories that humans use

for image classification. In their experiments, Mojsilovic and Rogowitz, uncovered the two major

axes with the most fundamental categories: natural vs. man made axis, and more human-like vs.

less human like axis. These axes could be conveniently named animate and inanimate, and they

are adopted as the fundamental categories in our classification.

In this thesis, we propose a hierarchical classification that extends these abstract categories

into a more specific ones. For example, the “natural” category can be divided into “vegetation,”
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Figure 3.1: Fundamental semantic categories humans use in judging image similarity [1].

“sky,” “water,” “landform,” etc., and the “vegetation” subcategory can be further divided into

“grass,” “forest,” and “woods/bushes” categories. Continuing in such a manner, we would be

able to construct a vocabulary of labels which can be associated with a particular segment. The

primary reason for such a hierarchical vocabulary representation is that sometimes we will not be

able to classify the segment into any of the more specific categories, however we still might be

able classify it into a more abstract one.

Our experiments using unsupervised hierarchical clustering based on texture features only,

presented us with promising results. We were able to discriminate between several categories.

However, these experiments also revealed importance of color composition features. Our main

research is focused at combining the color and texture feature descriptors.
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Figure 3.2: Hierarchical category representation - example.

3.2 Color Labeling

In addition to the semantic labels, we also want to attach a color name label to each segment/category.

This color label would allow, for example, the users to refine their query by specifying a particular

color within the semantic category, or to search directly by color composition. Thus, as we will

see below, color can be used both directly and as an intermediate feature for extracting semantic

labels.

The mechanism of color naming is still not very well understood. Due to the limited re-

search efforts invested in this area by the engineering community, as a starting point, we have

to rely on the research done in the field of neurophysiology [92] [93] Another drawback is the

non-existence of color space suitable for the CBR applications. All of the existing color spaces

were designed with intervene gamut matching or compression applications in mind. Even the CIE
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L*a*b* and L*u*v* color spaces, that were designed with perceptual uniformity in mind are only

locally perceptually uniform.

One of the most important studies of color categorization was done by Berlin and Kay [94],

who examined about one hundred languages and uncovered similarities in the color vocabulary.

They introduced a concept of basic color term and identified the following eleven basic colors:

black, white, red, green, yellow, blue, brown, pink, orange, purple and gray. Later studies con-

firmed this hypothesis and indicated that prototypical colors play a crucial role in the internal

representation of color categories, and that a membership in the color category seems to be repre-

sented relative to the prototype [95].

3.2.1 Proposed Approach

One possible approach for segment color labeling is to utilize National Bureau of Standards -

NBS recommendation for color names, which defines 267 focal colors and associated names [96].

A sample color could then be compared to all 267 focal colors and the name of the closest foci

assigned. Through perceptual experiments, Mojsilovic in [97] showed that in many cases this

approach failed to match the color names assigned by subjects. Thus, she proposed a new com-

putational model for color categorization and naming. Although it outperforms the simple closest

focal color approach, this method is computationally intensive requiring several iterations for each

of the foci.

As presented in Figure 3.3 (a), the shortcoming of the NBS focal colors is a poor sampling

of the color space. A more effective way of assigning a color name to a segment would be to repeat

the perceptual experiments in order to obtain the set of additional focal points (allowing several

points to have the same name). Using this method, it could be possible to construct a simple lookup

table to decrease the computation time.

Table 3.2.1 illustrates a color naming syntax proposed by the NBS, which utilizes English
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(a) (b)

Figure 3.3: (a) NBS focal colors in L*a*b* color space (b) RGB gamut in L*a*b*.

terms to describe colors along dimensions of hue (primary and secondary), saturation and light-

ness.
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Hue - primary Hue - secondary Saturation Lightness Achromatic
red red grayish blackish black

orange brown moderate very dark gray
brown yellow medium dark white
yellow green strong medium
green blue vivid light
blue purple very light

purple pink whitish
pink
beige
olive
violet

Table 3.1: Color naming syntax
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Chapter 4

Segmentation

In this chapter, we review the perceptually-tuned multiscale color-texture segmentation developed

by Chen and Pappas [18] The results of this algorithm form the basis of the thesis research. The

purpose of this thesis will be to relate the image segments to semantic categories used in image

labeling and retrieval.

Many Content-Based Image Retrieval (CBIR) systems rely on scene segmentation for re-

trieval [11] [12]. The segmentation of natural images is particularly difficult because, textures that

appear uniform to the human eye exhibit non-uniform statistical characteristics due to effects of

lighting, perspective, etc. Thus, the problem of combining spatial texture and color to obtain seg-

mentations that are consistent with human perception is quite challenging. The key to addressing

this problem is in combining perceptual models and principles about the processing of texture and

color information with an understanding of image characteristics. Although significant efforts have

been devoted to understanding perceptual issues in image analysis(e.g., [98] [99]), relatively little

work has been done in applying perceptual principles to complex scene segmentation(e.g., [100]).

In [13] [14], Chen and Pappas presented an image segmentation algorithm that is based on

spatially adaptive color and spatial texture features. The perceptual aspects of this algorithm were

further developed in [15] [18], while in [16] authors proposed perceptual tuning of the algorithm
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based on subjective tests.

4.1 Adaptive Perceptual Color-Texture Segmentation

The flow chart of the algorithm is shown in Fig. 4.1. The algorithm is based on two types of

spatially adaptive features. One describes the local color composition, and the other the spatial

characteristics of the grayscale component of the texture. These features are first developed inde-

pendently, and then combined to obtain the overall segmentation.

The color composition features consist of the (spatially adaptive) dominant colors and as-

sociated percentages in the vicinity of each pixel. The use of spatially adaptive dominant colors

reflects, on the one hand, the fact that the human visual system (HVS) cannot simultaneously per-

ceive a large number of colors, and on the other, the fact that image colors are spatially varying.

The spatially adaptive dominant colors are obtained using the adaptive clustering algorithm (ACA)

for segmentation [101]. The color feature representation is as follows:

fc(x,y,Nx,y) = {(ci(x,y,Nx,y), pi(x,y,Nx,y)),

i = 1, . . . ,M, pi(x,y,Nx,y) ∈ [0,1]} (4.1)

where each of the dominant colors, ci(x,y,Nx,y), is a three dimensional vector in Lab space and

pi(x,y,Nx,y) is the corresponding percentage. Nx,y denotes the neighborhood around the pixel at

location (x,y) and M is the total number of colors in the neighborhood. A reasonable choice is

M = 4. Finally, a perceptual metric (OCCD) [97] is used to determine the similarity of two color

feature vectors.

The spatial texture features describe the spatial characteristics of the grayscale component

of the texture, and are based on a multiscale frequency decomposition such as the steerable pyramid

[102] or the Gabor transform [103]. Such decompositions have been widely used as descriptions
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Figure 4.1: Schematic of segmentation algorithm

of early visual processing in mammals. The local median energy of the subband coefficients

is a simple but effective characterization of spatial texture. Median operators tend to respond to

texture within uniform regions and suppress responses associated with transitions between regions.

In [14] Chen et al. used a one-level steerable filter decomposition with four orientations, as shown

in Fig. 4.2 (left). The texture features consist of a classification of each pixel into one of the

following categories: smooth, horizontal, vertical, +45 -45 and complex.

The spatial texture feature extraction consists of two steps. First, pixels are classified into

smooth and non-smooth categories. Then the non-smooth pixels are further classified into the

remaining categories. Let s0(x,y), s1(x,y), s2(x,y), and s3(x,y) represent the subband coefficient at

location (x,y) that corresponds to the horizontal, +45 vertical, and -45lope directions, respectively,

The smax(x,y) is used to denote the maximum absolute value of the four coefficients, and

si(x,y) to denote the subband index that corresponds to that maximum. A pixel (x,y) is classified

as smooth if the median of smax(x′,y′) over a neighborhood of (x,y) is below a threshold T0.

In [15] this threshold was determined using a two-level K-means over the image. As shown in

[16], this threshold can be determined by subjective tests. If the pixel is non-smooth, then it
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is further classified as follows. We compute the percentage for each value (orientation) of the

index si(x′,y′) in the neighborhood of (x,y). If the maximum of the percentages is higher than a

threshold T1 (e.g., 42%) and the difference between the first and second maxima is greater than

a threshold T2, (e.g., 12%), then there is a dominant orientation in the window and the pixel is

classified accordingly. Otherwise, the pixel is classified as complex. The first threshold ensures

the existence of a dominant orientation and the second ensures its uniqueness. These thresholds

were determined by subjective tests. The use of maximum is due to the fact that neighboring

subband filters typically have significant overlap (e.g., in the steerable filter decomposition) and

the maximum carries significant information about the texture orientation.

The segmentation algorithm combines the color composition and spatial texture features to

obtain segments of uniform color texture. This is done in two steps. The first relies on a multigrid

region growing algorithm to obtain a crude segmentation. The segmentation is crude due to the fact

that the estimation of the spatial and color texture features requires a finite window. The second

uses an elaborate border refinement procedure, which progressively relies on the color composition

features to obtain accurate and precise border localization.

(a) One-level Decomposition (b) Two-level Decomposition

Figure 4.2: Steerable Filter Frequency Response
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4.1.1 Multiscale Feature Extraction

Since the HVS can perceive multiple scales at the same time, it is important that a computer-based

segmentation algorithm be able to detect textures at different scales. Multiple scale analysis can

also help capture an object in different perspectives as one uniform object.

A texture may be smooth at a finer scale, horizontal at a coarser scale, and smooth again

at an even coarser scale. In such a case, the texture will be perceived as horizontal. Alternatively,

if a texture is horizontal at one scale and vertical at another, then a human could detect both

orientations. In such a case, it would make more sense to classify the texture as complex (given

the above texture categories). Finally, if a texture is complex at one scale and horizontal at another,

the horizontal orientation is more likely to dominate the human perception.

Based on the these observations, Chen et al. utilized the following rules for extending the

one-level texture feature extraction method to multiple scales:

1. For each scale, use the texture extraction method described in the previous section.

2. If downsampling is performed in the multiscale decomposition, upsample the texture class

images obtained at each scale to the original image size, so that the texture class images from

all scales have the same size.

3. Combine the texture classes of different scales using the following rules:

• A pixel is classified as smooth only if it is classified as smooth at all of the scales.

• A pixel is classified as horizontal, vertical, +45 or -45 if all the scales are consistent, where

classification in any given direction at one scale is consistent with a complex or smooth

classification at another scale, but is not consistent with a classification in any other direction

at another scale. Due to the crudeness of the texture classification, neighboring directions

are also considered as consistent with each other.

• Pixels that do not satisfy the above conditions are classified as complex.
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Thus, the complex category includes pixels that are classified as complex at some scales and

smooth at the remaining scales, or pixels that have inconsistent classification at different scales.

4.1.2 Perceptual Tuning

Several key parameters of the segmentation algorithm were determined by subjective tests [17].

These include the threshold T0 for the smooth/non-smooth classification and the thresholds neces-

sary for determining if there is a dominant orientation (T1 and T2). Another important parameter is

the threshold for the color composition feature similarity. The goal of the tests is to relate human

perception of isolated (context-free) texture patches to the statistics of natural textures.

The parameter selections were based on a combination of texture statistics and how hu-

mans perceive textures. For more details on the subjective experiments,1 refer to [16] [17].

Experimental results demonstrate that this perceptual tuning leads to significant improvements in

segmentation performance.

4.2 Segmentation Results

Fig. 4.3 shows the segmentation results based on the algorithm described in this chapter. In all

cases, the texture window size was 23×23 and spatial constraints beta was β = 0.8. More details

can be found in [104].

1Available online at http://peacock.ece.utk.edu/FeatureTest/.
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Figure 4.3: Segmentation Results
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Chapter 5

Features for Classification

5.1 Color Features

5.1.1 What is Color

Color is a perceptual phenomenon, it is the human response to the particular wavelengths of light.

Color is created by the interaction of three elements: an illuminant, an object, and an observer.

When an object appears to be of a given color, it is because the object transmits or reflects

certain wavelengths of light. The human visual system associates particular combinations of visi-

ble wavelengths with different colors. The eyes contain two types of sensor cells, that are sensitive

to light. The rods are essentially monochromatic, with a peak sensitivity at around the 510nm

wavelength: They contribute to peripheral vision and allow us to see in relatively dark conditions,

but typically they don’t contribute to color vision. The sensation of color comes from the cones.

Our eyes contain three different types of cones, each type sensitive to light of long, medium, and

short wavelength.
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5.1.2 Color Spaces

CIE 1931 Standard Observer (XYZ Color Space)

In 1931 the Commission Internationale De l’clairage (CIE) created a mathematical model that uses

synthetic, imaginary primaries that represent the individual cone responses. This model converts

continuous spectra that our eyes receive, into varying amounts of three different primaries. These

primaries were labeled X, Y, and Z. Today CIE XYZ lies at the heart of all current implementations

of color management; CIE XYZ, and its derivation CIE L∗a∗b∗, define light-independent, device

and color independent spaces that software, device profiles, and drivers use when interpreting or

translating color information.

CIE L∗a∗b∗ Color Space

The CIE L*a*b* color space is derived from the CIE Standard Color Table by transforming the

original X, Y and Z coordinates into the three new reference values of L∗, a∗ and b∗. The objec-

tive of this transformation was to create a color space to aid the numerical classification of color

differences. However, the CIE L∗a∗b∗ is only approximately perceptually uniform, and color dif-

ferences are valid only locally. The L∗ represents lightness, and its values run from 0 (black) to

100 (white). On each color axis, the values run from -128 to +128. On the a∗ axis, positive values

indicate amounts of red while negative values indicate amounts of green, and on the b∗ axis, yellow

is positive and blue is negative.

RGB Color Space

In 1931, the Commission International de l’Eclairage (CIE) standardized the primary colors at

wavelengths λR = 700nm, λG = 346.1nm, λB = 435.8nm, which form a basis for the color moni-

tors. As a result, the RGB color representation has become the standard for image storage. Each

colored pixel is represented by three values (R,G,B) ∈ [0,1]3. Hence, the RGB color space takes
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the form of a cube of unit length, and represents all the colors that can be displayed on the CRT

computer monitor.

(a) RGB Cube (b) HSV color space

Figure 5.1:

One of the limitations of the RGB Color Space is that it can not represent all the colors

human can perceive. Figure 3.3 shows that RGB gamut occupies only part of the L∗a∗b∗ color

space.

HSV Color Space

The HSV (hue, saturation, value) color space is a nonlinear transformation of the RGB color space,

which is commonly used in the computer graphic applications. In it, the hue is represented by a

circular region; Artists sometimes prefer to use the HSV color model over alternative models such

as the RGB or CMYK, because of its similarities to the way humans tend to perceive color. The

RGB and CMYK are additive and subtractive models, respectively, defining the color in terms of

the combination of primaries, whereas the HSV encapsulates information about a color in terms

that are more familiar to humans. Hue, the color type, ranges from 0-360o(but it is normalized
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to [0,1] in many applications). Hue refers to the graduation of color within the optical spectrum,

or visible spectrum, of the light. A particular hue value refers to a particular color within this

spectrum, as defined by its dominant wavelength. Saturation ranges from 0 to 1, and lower the

saturation of a color, the more ”grayness” is present and the more faded the color will appear. The

value (lightness) of the color also ranges from 0 to 1.

5.1.3 Color Features in Image Retrieval

Color has been used extensively as a low-level feature for image retrieval [105] [106] [11] [107].

Many of the existing techniques are based on the color image histogram. For example: Im-

ageRover, QBIC, MARS, and many other use variations of color-based histogram matching. A

common characteristic of these methods is the global approach, where attempt is made to match

the whole images by appearance. Even though such techniques have been successful in specialized

settings, they have several significant shortcomings:

• Even in a coarsely quantized color space, histogram matching during retrieval in large data-

bases involves a significant amount of computation.

• Histogram does not take into account the color composition of the image, e.g., whether

one color is concentrated in one corner of the image, or distributed throughout the image.

In addition, histograms cannot discriminate between rapidly varying color patterns (e.g.,

checkerboards), which the human eye may not even be able to perceive as separate colors,

and solid colors that appear as small or large blobs around the image.

• Finally, histogram based methods do not take into consideration the fact that the human

visual system can only perceive a few colors at a time.
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5.1.4 Spatially Adaptive Dominant Colors as Proposed Color Composition

Features

Considering the shortcomings of the histogram based methods mentioned in the previous section,

we are led to the conclusion that for an effective CBR system we need to obtain compact, spatially

adaptive, segment level color features that incorporate knowledge of human perception. In this

section we propose spatially adaptive dominant colors as features that satisfy such criterion.

An important characteristic of human color perception is that the human eye cannot si-

multaneously perceive a large number of colors [97], and that the number of colors that can be

internally represented and identified in cognitive space is about thirty [108]. Using a small set

of color categories (dominant colors) provides a compact and efficient representation, and more

importantly, makes it easier to capture invariant properties in object appearance [109].

Existing approaches for extracting the dominant colors [97] [110] [111] [112] [113] [114],

rely on the assumption that the characteristic colors of an image are relatively constant, i.e., they

do not change due to variations in illumination, perspective, etc. Consequently, the resulting color

classification could be quite inadequate due to the lack of spatial adaptation and spatial constraints

[101].

To handle a wide range of consumer produced images we are interested in (indoor, outdoor,

landscapes, cityscapes, plants, animals, people, and man-made objects), we have to account for

color and lighting variations in the scene. In addition, we have to take into consideration the

adaptive nature of the human visual system [115], i.e., humans perceive regions with spatially

varying color as a single color. Furthermore, color perception could also depend on the surrounding

colors [115], i.e., an observer’s notion of a blue, brown, or green color is highly dependent on the

surrounding colors [116]. Conversely, the photometric description of a color that is perceived as

blue, brown, or green could vary substantially with changing lighting conditions within the same

image or across images or display devices.
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(a) (b) (c)

Figure 5.2: Color image segmentation. (a) Original color image. (b) ACA color classes. (c)
Locally averaged image.

In order to account for the spatially varying image characteristics and the adaptive nature

of the HVS, we utilize the idea of spatially adaptive dominant colors. The proposed segment

color composition feature representation consists of a limited number of locally adapted dominant

colors and the corresponding percentage of occurrence of each color within a segment:

fc(S) = {(ci, pi), i = 1, . . . ,M, pi ∈ [0,1]} (5.1)

where each of the dominant colors, ci, is a three dimensional vector in Lab space, and pi are

the corresponding percentages. S stands for a particular segment, and M is the total number of

dominant colors in the segment.

A particularly useful property of this approach is its robustness to the number of classes.

This is because the gradual color adaptation makes it possible to use one color class to represent

a wide range of similar colors, provided that they vary gradually over the image. That means that

the same ACA color class might represent different colors in different segments. Thus, one of the
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advantages of using the ACA to obtain spatially adaptive dominant colors is that we only need to

specify the parameter K, which then determines the maximum number of dominant colors (M ≤K)

in any given region of the image. Usually, a small number (e.g., K = 4) is quite adequate.

The ACA segments the image into color classes, as shown in Fig. 5.1.4 (b). In the Fig.

5.1.4(c), each class is represented by the characteristic function µk(x,y), i.e., a color that is equal

to the average color of the pixels in its neighborhood that belong to that class [101].

5.2 Texture Features

5.2.1 What is Texture

The term “texture”, although widely used, does not have a commonly accepted definition. Haindl

[117] states that: “Texture is generally a visual property of a surface, representing the spatial

information contained in object surfaces.” A plethora of texture analysis methods proposed in

literature can be classified into four major types [118]:

• Statistical (Co-occurrence Matrices [119], Autocorrelation Features),

• Geometrical (Voronoi tessellation Features [120], Structural [121] [122]),

• Model Based Methods (Random Field Models [123] [124] [125], Fractals [126] [127]),

• Signal Processing Methods (Spatial Domain Filters [128] [129], Fourier domain filtering

[130], Gabor and Wavelet models [131] [132] [133])

5.2.2 Spatial Texture Features

The spatial texture features we propose to use for the classification are based on the available

subband coefficients already precomputed in the segmentation step. As mentioned in the Chapter
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4, the spatial texture feature extraction relies on the steerable pyramid decomposition, which is a

good approximation of the visual cortex. Such a decomposition can be designed to produce any

number of the orientation bands. Furthermore, this approach utilizes the local median energy of the

subband coefficients, where the energy is defined as the square of the coefficients. The advantage

of the median filter is that it suppresses textures associated with transitions between regions, while

it responds to texture within the uniform regions. The use of median local energy as a nonlinear

operation also agrees with Graham [134] and Graham and Sutter [135] [136] who concluded that

a nonlinear operator in texture segregation must have accelerating/expansive nature.

We use a steerable filter decomposition with four orientation subbands (horizontal, vertical,

+45 -45. Most researchers have used four to six orientation bands to approximate the orientation

selectivity of the HVS (e.g., [137] [138]). However, since the images are fairly small, a one-level

decomposition (lowpass band, four orientation bands, and highpass residue) is adequate.

A pixel is classified as smooth if there is no substantial energy in any of the four orientation

bands. The next step is to classify the pixels in the non-smooth regions. As we mentioned above,

it is the maximum of the four subband coefficients, si(x,y), that determines the orientation of the

texture at each image point. The texture classification is based on the local histogram of these

indices. A median operation is used to increase the response to the texture within uniform regions

and suppress the response due to textures associated with transitions between regions. If there is

no dominant orientation, the pixel is classified as complex.

An example is presented in Figure. 5.2.2. The original color image is shown in (a), max-

ima of the subband coefficients are shown in (b), (the smooth regions are shown in black, and the

nonsmooth regions are shown in different shades of gray representing the indices si of the subband

coefficients with maximum energy). Part (c) shows the resulting texture classes, after the median

operation (black denotes smooth, white denotes complex, and light gray denotes directional tex-

tures). The window for the median operation was 23× 23. Two types of features were tested:

maxima of subband coefficients and median of maxima [18]. The results indicate that a median of
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(a) (b) (c)

Figure 5.3: (a) Original Image. (b) Maxima of Subband Coefficients. (c) Medians of Maxima.

maxima provides more successful classification of the segments.

5.3 Other Features

Although the main emphasis of this project is semantic classification of images based on color and

spatial texture, other features such as position and shape may also be used to aid semantic segment

classification.

Position of the segment within the image can distinguish among semantic categories that

have similar color and texture characteristics. For example, sky and water both have blue dominant

color and smooth spatial texture descriptors. However, sky is almost certain to be at the top of the

image, while water is usually at the lower section.

Shape recognition is a problem that has received a considerable attention in recent years,

and a vast number of techniques have been proposed. However, at this point in our CBIR system

implementation, shape features might be of limited use since most of the semantic categories of

our interest, such as sky, vegetation, trees/bushes, etc., lack a clearly defined shape.
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Chapter 6

Segment Wide Feature Extraction

6.1 Color Texture Feature Selection

We now review the color-texture features that were developed for the adaptive perceptual segmen-

tation algorithm proposed in [18]. These features can also be used for segment classification.

The segmentation approach [18] incorporates models of human perception and signal char-

acteristics. It is based on two types of spatially adaptive features. The first provides a localized

description of the color composition of the texture and the second models the spatial characteristics

of its grayscale component.

The color composition feature exploits the fact that the HVS cannot simultaneously per-

ceive a large number of colors. In addition, it accounts for the spatially varying image character-

istics and the adaptive nature of the HVS. It thus consists of a small number of spatially adaptive

dominant colors and the corresponding percent occurrence of each color in the vicinity of a pixel:

fc(x,y,Nx,y) = {(ci, pi), i = 1, . . . ,M, pi ∈ [0,1]} (6.1)

where ci is a 3-D color vector and pi is the corresponding percentage. Nx,y denotes the neigh-
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borhood of the pixel at (x,y) and M is the number of dominant colors in Nx,y; a typical value is

M = 4. The spatially adaptive dominant colors are obtained using the adaptive clustering algorithm

(ACA) [139]. The perceptual similarity between two color composition feature vectors is based

on the “Optimal Color Composition Distance (OCCD),” which finds the optimal mapping between

the color composition features of two segments and computes the average distance between them

in the CIE L*a*b* color space.

The spatial texture feature extraction is based on a multiscale frequency decomposition with

four orientation subbands (horizontal, vertical, +45 -45. Here, we use a one-level steerable filter

decomposition with four orientation subbands. The local energy of the subband coefficients is used

as a simple but effective characterization of spatial texture. At each pixel location, the maximum

of the four subband coefficients determines the texture orientation. A median filtering operation

boosts the response to texture within uniform regions and suppresses the response resulting from

to transitions between regions. Pixels are then classified into smooth and non-smooth classes,

and non-smooth pixels are further classified on the basis of dominant orientation, as horizontal,

vertical, +45 -45 and complex (i.e., no dominant orientation).

6.2 Segment Wide Color Texture Feature Extraction

Once the image has been segmented into regions, the goal is to relate their features to semantic

concepts. This is done in two stages. First, we derive semantic labels at the segment level, and then

we classify the entire image into categories. The key to bridging the gap between low-level image

primitives and high-level semantics is the extraction of medium-level segment descriptors. These

include region-wide color and texture features, as well as the segment location, size, and boundary

shape. The semantic label for each segment can be extracted from a combination of such features,

as well as the properties of the neighboring segments. The success of this approach, however,

depends on having segments that are semantically meaningful. The methodology for obtaining
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(a) Segmented image (b) Selected segment

(c) Seg-
ment color
composition

(d) Segment texture composition

Figure 6.1: Segment feature extraction

such segmentations was described in the previous sections and incorporates knowledge of human

perception and image characteristics to segment scenes into perceptually uniform regions. In this

section, we discuss the development of segment-wide color and spatial texture features. The seg-

ment features that we used to obtain the image segmentation are not necessarily the same as those

that are most suitable for assigning a semantic label to a segment. Image segmentation requires a

combination of local and global features, while region interpretation requires region-wide features.

Thus, for each segment, we recalculate the color composition and spatial texture features

using only information from within the segment, that is, the local averages and medians are com-

puted across and strictly within the segment. An example is shown in Fig. 6.1, where Fig. 6.1(a)

shows a segmented image, Fig. 6.1(b) shows a selected segment, and Fig. 6.1(c) shows the color

composition of the segment (dominant colors and percentages). The texture features of the seg-
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ment can be similarly described by the percentage of smooth, horizontal, vertical, +45 -45 and

complex pixels as shown in Fig. 6.1(d).

6.2.1 Dominant Colors as Color Features

For this thesis, we considered two types of dominant color feature representations. The first type

of color feature considered can be described by the L*a*b* coordinate of the dominant color with

highest percentage (referred from now on as the first dominant color) and the L*a*b* color space

coordinates difference between the first and second dominant color. This type of feature was

motivated by our statistical analysis of dominant colors associated with segments in our database,

which revealed that the great majority of segments could be described by first two dominant colors.

The statistics of dominant colors is presented in Fig. 6.2(a)-(d) where each figure presents respec-

tively, the histogram for each dominant color occupying certain percentage of the segment area.

The horizontal axis represents the area percentage, while the vertical axis has been normalized and

it could be said that it represents the probability of occurrence for a particular bin. By analyzing

the data we can conclude that color content of a particular segment can be described by the two

most dominant colors without any significant loss of information. Furthermore, by analyzing the

L*a*b* distance among the dominant colors that in majority of cases the second dominant color

is less than twenty units away from the first. This means that for a great majority of segments the

second dominant color is similar to the first. The histogram of distances between dominant colors

is presented in Fig. 6.3 where Fig. 6.3(a) presents distances between the first and second dominant

colors and Fig. 6.3(b) between the first and third.

6.2.2 Perceptually Quantized Colors as Color Features

Another way to obtain a color feature representation is to use a perceptually quantized color space,

whereby the color space is reduced to a set of several perceptually distinct categories. The moti-
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Figure 6.2: Statistics of dominant colors. The horizontal axis represents the percentage of the area
that the dominant color occupies in a segment and the vertical axis represents the probability of
occurrence for each bin.

vation for this type of color feature came as a natural extension our perceptual approach, and also

as a attempt to handle an apparent asymmetry between the two types of features. As explained

in Sec.6.1, the spatial texture feature consists of six labels and the corresponding percentages,

while the color composition feature consists of up to four dominant colors (which take essentially

a continuum of values) and the associated percentages. In order to reduce the dimensionality of

the color composition features, we assign color names to the dominant colors of each region. The

procedure for assigning color names can be found in [97]. The selected color names (labels) are

consistent with a National Bureau of Standards recommendation for color names. The syntax con-
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Figure 6.3: Distances between dominant colors in L*a*b* color space

tains color names for 267 regions in color space, and employs English terms to describe colors

along the three dimensions of the color space: hue, lightness and saturation. There are seven dis-

crete values for lightness, five discrete values for saturation, and a basic set of eleven prototypical

hues, as shown in Table 3.2.1. Thus, if we assign labels based on hue only, we end up with 14

labels (and corresponding percentages) instead of a continuum of color values, which establishes

a symmetry with the spatial texture features. The use of a limited number of colors is consistent

with Boyntons study, which found that when people are asked to categorize colors, the number of

perceptually distinguishable color categories is small. (See his 1989 paper Eleven colors which

are almost never confused [140].) Finally, we should note that, in addition to facilitating semantic

labeling, the color labels (either at the segment or at the image level) can also be used to allow

queries on the basis of color composition.

6.3 Semantic Labeling

In [1,10,141], subjective experiments were conducted in order to identify important semantic cat-

egories that humans use for image organization and retrieval. For example, they have discovered
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Natural Man-made Human
Vegetation Sky Landform Water Building/House Face

Grass Day-sky Snow Bridge Person
Trees/bushes Night-sky Ground Car People

Forest Sun Mountain/Hill Boat
Flowers Clouds Airplane

Sunrise/set Pavement
Other Manmade

Table 6.1: Segment Labels

two important dimensions in human similarity perception: “natural” vs. “man-made,” and “hu-

mans” vs. “non-human.” In addition, certain cues, such as “sky,” “water,” “mountains,” etc., were

found to have an important influence in human image perception [142]. Thus, rather than trying

to obtain a complete and detailed description of every object in the scene, this suggests that it

may be sufficient to isolate segments of such perceptual significance, which in turn can be used

to correctly classify an image into a given category (e.g., “natural,” “man-made,” “outdoor,” etc.).

Our first goal will be to assign labels to image segments. For this, we need to relate the segment

features to semantic labels, but first, we must decide what the labels will be. To this end, we have

assembled a vocabulary of labels consistent with the above findings, as well as those used in an-

notation of the NIST TRECVID 2003 development set [143]. The set of labels we selected is a

subset of NIST lexicon. To describe the content of an image we use two types of labels, segment

and scene labels. The segment labels describe the semantics of a particular segment (e.g., building,

sky), while the scene labels describe the (higher-level) semantic content of the image (e.g., beach

scene). The latter cannot be inferred from a particular image segment alone. The segment labels

we chose are shown in Table 6.1, and are arranged in a hierarchical manner. Note that only leaf

nodes are used in the annotation.



63

Chapter 7

Learning and Classification

7.1 Classification Setup

We performed several sets of experiments using approximately 3300 photographs. The majority of

the images were obtained from the Corel Stock Photo Library. Additional images were obtained

from a Key Photos Library and the investigators personal repository. The images in the database

cover a variety of outdoor scenes, with a wide range of themes. The images were segmented using

the adaptive perceptual color-texture image segmentation algorithm [18] described above, and the

resulting segments were manually labeled to be used as the ground truth in supervised learning.

Each segment was assigned exactly one label. Segments whose area was less than three percent

of total image area were not considered. This resulted in approximately 13000 labeled segments,

80% of which were used for training and the rest for testing.

7.2 Supervised vs. Unsupervised Learning Techniques

For the training and classification we considered both unsupervised (clustering) and supervised

learning techniques. Among unsupervised techniques we experimented with K-means, K-nearest
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Figure 7.1: Arbitrary density approximated as a mixture of Gaussians

neighbors, agglomerative, and conglomerative clustering methods, while in the supervised learning

experiments we used Gaussian Mixture Models (GMM) [144], Support Vector Machines (SVM)

[145], and Linear Discriminant Analysis (LDA) [146]. It quickly became clear that supervised

techniques are best suited for the problem at hand, primarily because of the complexity of the

cluster configurations. Supervised techniques require the existence of ground truth for a large

database of segments.

7.3 Gaussian Mixture Models

In the Gaussian Mixture Model approach, each label from the training set is represented as a

probability density, and is parametrized as a mixture of Gaussian components. An individual

multivariate Gaussian is represented as

fk(x) = N(µ,∑) =
1√

(2π)d|∑|
exp(−1

2
(x−µ)T

∑
−1(x−µ)) (7.1)

where µ is the mean, ∑ is the covariance matrix, and | · | denotes the determinant. The mixture

density is then represented as

f (x) =
K

∑
k=1

ak fk(x) (7.2)

where ak represents the weight of each Gaussian component.



65

The mixture model is fitted to the training data using the Expectation-Maximization (EM)

[144] algorithm. The EM algorithm is an iterative maximum likelihood (ML) technique that com-

putes the most likely estimate of a distribution p(X|θ) parametrized by θ.

θ
∗ = arg maxθ p(X|θ) = arg maxθ

n

∏
p=1

p(xp|θ) (7.3)

EM introduces a hidden variable the estimation of which simplifies the maximization of p(X|θ).

After initialization, the EM technique iterates between expectation and maximization steps to im-

prove the parameter estimates. The expectation step computes the expected value of the hidden

variable given the data and the current value of the parameters. The maximization step modifies

the parameters in order to maximize the joint distribution of the data and the hidden variable. After

each iteration, the likelihood function is guaranteed to increase, and thus, model convergence to

local optimum is assured. Once the model has been determined, the membership of the test feature

is determined using Bayes rule.

7.4 Support Vector Machines

SVM belongs to a class of supervised machine learning algorithms that are used in classification

and pattern recognition. SVM maximizes the margin around hyperplanes separating the different

classes. The SVM decision function is specified in terms of a subset of training samples, the

support vectors. The support vectors are the elements of the training set that if removed would

change the position of the dividing hyperplane. (They are thus critical elements of the training

set). A boundary hyperplane is expressed as

wTx+b = 0 (7.4)
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Figure 7.2: SVM as a maximum margin classifier

where x is a vector in a vector space, w is a weight coefficient vector and b is a bias term. The

distance between a training vector xi and the boundary, called margin, is expressed as follows:

|wTxi +b|
‖w‖

(7.5)

The optimal boundary maximizes the minimum of 7.5, and the optimization function can be ex-

pressed as:

minimize : wTw (7.6)

sub ject to : yi(wTxi +b)≥ 1−ξi (7.7)

where yi is 1 if xi belongs to one set and −1 if xi belongs to the other set, and the ξi’s are the slack

variables that indicate tolerances of misclassification. This means that a training vector is allowed

to exist in a limited region in the wrong side along the boundary.
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Figure 7.3: Kernel transformation

In the non-linear case, SVM can be extended by transforming the original data through a

kernel function to a new space, usually of higher dimension, in which the data becomes linearly

separable. The kernel function satisfies

K(x,x′) = R(x)TR(x′) (7.8)

where R is transformation to a higher dimensional space. The above equation indicates that the

kernel function is equivalent to the distance between x and x′ measured in the higher dimensional

space transformed by R. Note that the boundary in the transformed space is obtained as

wTR(x)+b = 0 (7.9)

The optimization function in the transformed space is also obtained by substituting xi
Txj
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with K(xi,xj). This means that all of the calculation can be achieved by using K(xi,xj) only, and

we do not need to know what R or the transformed space actually is.

7.5 Linear Discriminant Analysis

LDA is a method that belongs to the class linear classifiers. It tries to find a subspace of projections

such that samples from the different classes are well separated, or in other words to find directions

that are useful for the data classification. The main idea of LDA is to find a directions which

maximize the variance between the class means and at the same time minimize the variance within

each class.

The measure of separation between the class means is defined as:

SB = ∑
c

Nc(µc− x̄)(µc− x̄)T (7.10)

where,

µc =
1

Nc
∑
i∈c

xi (7.11)

x̄ =
1
N ∑

c
Ncµc (7.12)

The measure of within class variance is defined as:

SW = ∑
c

∑
i∈c

(xi−µc)(xi−µc)T (7.13)

SB is usually referred to as the “between the classes scatter matrix”, while SW is known as the

“within the classes scatter matrix”.
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Using these measures we can obtain the objective function as:

J(w) =
wT SBw
wT SW w

(7.14)

where w is a transformation matrix. The optimization function can be maximized by taking the

derivative of J(w) with respect to w and setting it to zero.

d
dw

J(w) =
(2SBw)wtSww− (2Sww)wtSbw

(wtSww)2 = 0 (7.15)

which can be reduced to
wtSww(Sbw)

wtSww
− wtSbw(Sww)

wtSww
= 0 (7.16)

Sbw− wtSbw(Sww)
wtSww)

= 0 (7.17)

Note that
wtSbw(Sww)

wtSww
= λ (7.18)

and it can be concluded that the objective function J(w) is maximized by solving the generalized

eigenvalue problem

SBw = λSW w (7.19)

so that columns of an optimal w are the eigenvectors associated with largest eigenvalues.

If Sw is nonsingular, the nontrivial solution can be obtained from the standard eigenvalue

problem

Sw
−1Sbw = λw (7.20)

However, Sw is often singular, or at the very least, ill-conditioned. For the singular and

ill-conditioned cases, the generalized eigenvalue problem can be solved by applying the QZ fac-
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Figure 7.4: LDA example in two dimensions

torization [147] algorithm without any inversion of Sw or its submatrix. The QZ factorization is

the generalization of QR (orthogonal-triangular) algorithm. Here Q and Z are both orthogonal

matrices.

The QZ algorithm or Generalized Schur Decomposition attempts to find an alternative ap-

proach to the A− λB problem. The key step is to compute nonsingular matrices Q and Z such

that

A1 = Q−1AZ (7.21)

and

B1 = Q−1BZ (7.22)

are each in the canonical form. It can easily be proved that the pencils A−λB and A1−λB1 are

equivalent and it follows that

λ(A,B) = λ(A1,B1) (7.23)



71

since

Ax = λBx ⇐⇒ A1y = λB1y, x = Zy. (7.24)

The generalized eigenvalues of original problem are extracted from diagonal elements of

matrices A1 and B1

λi = aii/bii f or bii 6= 0 (7.25)

and the corresponding eigenvectors can be extracted from the columns of Z.

In the case of Linear Discriminant Analysis, the matrices Sw and Sb are positive semidefi-

nite covariance matrices. Although the QZ algorithm can be used to solve symmetric semi-definite

problem, it has a flaw of destroying both symmetry and definiteness. In this special case QZ al-

gorithm can be improved by exploiting the special properties of covariance matrices. More stable

and efficient algorithms can be devised by computing a matrix X [148] such that

A1 = XTAX = diag(a1, ...,an) (7.26)

and

B1 = XTBX = diag(b1, ...,bn) (7.27)

are both in canonical form. The generalized eigenvalues of the original problem are extracted as

λi = ai/bi (7.28)

and the corresponding eigenvectors can be extracted from the columns of X.

We should also note, that for LDA to work, the data for each class has to form a single clus-

ter. Furthermore, although not a requirement, LDA assumes that the underlying class distribution

can be approximated with a Gaussian.

It is reasonable to expect that a particular label may consist of more than one cluster. For
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(a) LDA applied directly (b) LDA applied after preprocessing

Figure 7.5: LDA applied to the class consisting of multiple clusters

example, the label “water” may be represented by blue dominant color and smooth or horizontal

texture, thus resulting in two clusters. In such a case, the mean and the covariance of the data set

belonging to the label consisting of several disjoint clusters would be miscalculated resulting in

suboptimal classification when LDA is applied. This case is represented in the Figure 7.5(a).

To deal with such cases, we experimented with applying the clustering algorithm to each

category in the training set to create additional clusters before applying LDA. Note that misclassi-

fication among clusters that belong to the same label is not recorded as a classification error. The

effect of applying the clustering algorithm prior the LDA is depicted in Figure 7.5(b).

The K-means is an algorithm for clustering N data points into K disjoint subsets. The

K-means objective function, to be minimized, is represented as

J =
k

∑
j=1

n

∑
i=1

‖x( j)
i −µ j‖

2
(7.29)

where ‖x( j)
i −µ j‖

2
is a chosen distance measure between a data point x( j)

i and the cluster center µ j.

The K-means algorithm consists of a simple iterative procedure, where initially, the K
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cluster centers are assigned at random. Data points are then assigned to the cluster whose centroid

is closest to that point, and new cluster centers are calculated. These two steps are then alternated

until a stopping criterion is met, usually when there is no further change in the assignment of the

data points.

Although it converges only to a local minimum and the number of clusters must be deter-

mined before hand, we found that for our purposes K-means outperformed other unsupervised

clustering techniques such as k-nearest neighbors and other types of agglomerative clustering.

We found that LDA is best suited for the problem at hand because it works better with noisy

data and is less sensitive to data redundancies than the other two approaches. Furthermore, LDA

is not critically dependent on the correct choice of a Kernel function like in the SVM approach.

The GMM approach achieved lower recall and precision rates compared to LDA, due to inherent

limitations of the mixture approach and the fact that EM algorithm is only locally convergent.
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Chapter 8

Classification Results

8.1 Results and Discussion

We evaluated the performance of the proposed method using the standard measures that are used

for search strategies in the literature. The recall is the ratio of the correctly labeled segments to

the total number of relevant segments in the database (i.e., those with the particular label). The

precision is the ratio of the correctly labeled segments to the total number of segments that the

algorithm assigned to the particular label (both correct and incorrect). Both performance measures

are expressed as percentages. Overall performance can be expressed as the accuracy over the

whole database.

We experimented with the three supervised techniques described in the previous section,

GMM, SVM, and LDA. Indeed, these are the dominant supervised techniques encountered in

the literature. Since LDA turned out to be the most suited to our problem, we present the LDA

experiments first.

The goal of our experiments was to identify the most suitable set of features for segment

classification. We compared the classification performance of spatial texture and different color

feature representations as described in Section 6.2 by applying the LDA on our labeled set of
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segmented images. The classification is hierarchical; each level of hierarchy is handled as an

exclusive multi-class classification problem.

In the first experiment, we used the perceptually quantized color features with 15 colors.

Thus, each segment was represented by a 21 dimensional feature vector (six spatial textures and

15 colors). The results are shown in Figure 8.1, which shows the recall and precision rates for the

most important semantic categories. We then evaluated the classification performance using only

the most dominant color expressed in CIE L*a*b* coordinates. In this case, the dimension of the

feature vector is three (three dimensions for color component). Figure 8.2 presents the results of

this classification. Comparing the recall and precision rates of the two experiments it is clear that

using only the most dominant color expressed as an exact coordinate in the L*a*b* color space

outperforms the perceptual quantization approach. At first, this appears to be surprising, which

is what led us to the statistical analysis presented in Chapter 6. Recall that the key conclusion of

our analysis was that a great majority of segments either have only one dominant color or have

the second dominant color similar to the first. To make sure that the result is not an artifact of

the number of quantization levels, we experimented with different numbers of colors. Figure 8.3

shows the classification results when the number of quantization levels is reduced to eleven. Ob-

serve that there is no significant difference between the two quantization schemes. Decreasing the

number of representative colors to fewer than 11 resulted in too coarse quantization of the feature

vector and a decrease in performance of the classification algorithm. Note also that increasing

the number of color quantization levels will not increase the classification performance. This is

because increasing the number of quantization levels increases the feature dimensionality in such

a way that it creates an artificial distance between perceptually similar colors. This statement has

been confirmed by our experiments. We also tried including a second dominant color (in addition

to first). This resulted in a modest gain in classification performance, as is evident from Figure 8.4,

which shows the results of using two most dominant colors expressed in CIE L*a*b* coordinates.

Here, the first dominant color is expressed as a coordinate in L*a*b* color space, while the second
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dominant color is expressed as the difference to the first. Finally, we should also note that addi-

tional experiments verified that using a third dominant color does not increase performance, and

that using a fourth dominant color actually reduces the classification ability of LDA. Figures 8.5

and 8.6 present the classification results using only spatial texture and spatial texture with eleven

perceptually quantized colors, respectively. It can be concluded that spatial texture plays an im-

portant role in classification feature by itself or in combination with color, resulting in significant

improvement in recall and precision rates.

Figure 8.7 and Figure 8.8 show that using spatial texture with the unquantized color value of

the first dominant color (in L*a*b* color space) or first and second dominant color outperforms the

use of all the dominant colors perceptually quantized. Here, the first dominant color is expressed

as an L*a*b* coordinate, while second is expressed as a difference. Note that adding information

about the second dominant color improves the classification even further. Figure 8.9 shows the

effect of adding the segment position to the feature vector. It is expressed as the centroid normal-

ized by the size of the image. As expected, adding position improves classification performance,

especially for separating the sky and water categories. Finally, the last plot shown as the Figure

8.10 presents the result obtained by applying the K-means algorithm followed by LDA, in order

to add within-class clusters. This yields a modest improvement in precision (6% on the average),

while the recall remains the same.

We now examine the performance of the other two supervised classification techniques.

Figures 8.11 and 8.12 show the classification results using the GMM and SVM techniques, respec-

tively. In both cases, we used the texture features, the L*a*b* coordinates of the first and second

dominant color, and position. As can be seen from a comparison of these graphs with the one in

Figure 8.10, LDA outperforms the other two techniques.

We now turn to the comparison of the proposed approach with the existing literature. Di-

rect comparison of performance on our data set would be difficult as we do not have access to

implementations of the other techniques. Other problems are differences in number of semantics



77

Figure 8.1: Classification results using LDA and fifteen perceptually quantized colors.

labels. The majority of approaches try to infer a larger set of semantic labels, while our aim is to

classify the smaller set of significant labels with high precision and recall rates. Still, we give a

brief description of the relevant published results for a variety of techniques.

Blobworld [86], which proposes a model that calculates the co-occurrence of blobs and

words, achieves a mean precision rate of seven percent and a mean recall of 11 percent. In [149],

as in the above mentioned approaches, the sky, water, and people labels have high retrieval rates,

the grass label has moderate, while the others are significantly lower. The overall average recall

rate is 24 percent and the average precision rate is 14 percent, for a total of 69 concepts. As noted

in one of the authors’ comments, the principal reason for that is the unavailability of semantically

meaningful segmentations.

Reference [85] is an example of an approach that uses a smaller set of labels. The reported

rates are quite high, approximately 75 percent recall and 75 percent precision at the optimal op-

erating point, which are comparable to our approach. However, it is important to note here they

do not use images containing man-made objects, but rather images containing natural scenes only.

Other non-segmentation based algorithms intend to infer the presence of the labels in the image
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Figure 8.2: Classification results using LDA and first dominant color.

using sophisticated statistical and pattern recognition methods, but although they handle a large

vocabulary of labels, their performance is still unsatisfactory.

For example [150] was evaluated on a set of 260 labels, but their average precision rate is

10 percent, while the average recall rate is 9 percent. Although their classification rates are high

for the sky, water, people, sun categories, the others are significantly lower. For the 69 concepts

with best retrieval rates their average precision rate increases to 33 percent, and the recall rate to

37 percent.

For the LSA based method in [89], the authors evaluated their algorithm using 374 concepts

with a total of COREL 5000 images, where 4500 images were used for training and 500 for testing.

Each image was uniformly segmented into 16 by 16 pixels grid. Experimental results obtained 25

percent average precision and 27 percent average recall with 133 concepts detected.

In the MBRM method [90], the authors evaluated their algorithm using 260 concepts with

a total of COREL 5000 images, where 4000 images were used for training, 500 for a validation

set, and 500 for testing. Experimental results obtained 24 percent average precision and 25 percent

average recall with 122 concepts detected.
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Figure 8.3: Classification results using LDA and eleven perceptually quantized colors.

As we discussed above, the classification techniques presented in this paper are primarily

aimed at identifying a limited number of important semantic categories that humans use for image

organization and retrieval. Overall, based on the results we have presented in the paper, we believe

that the proposed techniques compare favorably to the literature. This includes the approaches we

reviewed above [86, 89, 90, 150–152] as well as other references such as [153–155].
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Figure 8.4: Classification results using LDA and first and second dominant color.

Figure 8.5: Classification results using LDA and texture features.
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Figure 8.6: Classification results using LDA and eleven perceptually quantized colors and texture
features.

Figure 8.7: Classification results using LDA and first dominant color and texture features
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Figure 8.8: Classification results using LDA and first and second dominant color and texture fea-
tures

Figure 8.9: Classification results using LDA and first and second dominant color, texture features
and position
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Figure 8.10: Classification results using LDA and first and second dominant color, texture features,
position and K-means preprocessing

Figure 8.11: Classification results using the GMM approach with texture features, the L*a*b*
coordinates of the first and second dominant colors, and position
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Figure 8.12: Classification results using the SVM approach with texture features, the L*a*b*
coordinates of the first and second dominant colors, and position
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Chapter 9

Classification and Feature Evaluation in

Terms of Human Segmentations

9.1 Introduction

In the previous chapters we showed how the feature selection and the performance of the classifica-

tion algorithms were based on the segment statistics. In this chapter we investigate the dependence

of the segment statistics on the segmentation algorithm. For this, we extract and compare statistics

of the segment features obtained using the Chen et al. algorithm to those that correspond to human

segmentations. Our findings indicate that although segmentations of the same image by different

humans appear to be quite different, the resulting statistics are consistent. Moreover, the statistics

are similar to those obtained when the automatic segmentation algorithm is used.

9.2 Segment Statistics for Natural Images

In this section we compare the segment statistics that are obtained from automatic and human seg-

mentations. Figure 4.3 shows several images segmented using the algorithm in Ref. 18. Figure 9.1
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shows two images from the UCB database segmented by different humans. Observe that there are

substantial differences in the segmentations. Martin et al. [156] have shown that, if we allow for

mutual refinement, the segmentations by different humans are consistent. What is of more interest

to us is whether the segment statistics for the human segmentations are significantly different to

those obtained from the human segmentations.

(a) (b) (c)

(d) (e) (f)

Figure 9.1: Human Segmentations

Automatic segmentations were performed on a image database containing approximately

3300 photographs. The majority of the images were obtained from the Corel Stock Photo Library.

Additional images were obtained from a Key Photos Library and the investigators’ personal repos-

itory. The images in the database cover a variety of outdoor scenes, with a wide range of themes.

The images were segmented using the algorithm in Ref. 18 described above. The resulting seg-

ments were manually labeled to be used as the ground truth for collecting statistics and supervised

learning. Each segment was assigned exactly one label. Segments whose area was less than three

percent of total image area were not considered.
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Human segmentations were obtained from the University of California at Berkeley (UCB)

segmentation database [156]. Martin et. al. constructed this segmentation database by selecting the

a representative (RGB) images from the Corel image database, which is widely used in computer

vision. Selected images were images of a natural scenes that contain at least one discernible object.

Images that are inappropriate for the task of recognition, such as photographs of reflections of neon

signs on wet concrete sidewalks, or photographs of marble textures were excluded.

Subjects performed the segmentation task using the computer, and in order to collect seg-

mentations from a wide range of people, authors developed a Java application that subjects can

use to divide an image into segments, where a segment is simply a set of pixels. Subjects can then

split or merge resulting segments, as well as transfer pixels between any two existing segments.

In order to preserve only the variation among human segmentations of an image due to

different perceptual organizations of the scene, and minimize variation among human segmenta-

tions due to different interpretations of the task and experimental setup, the instructions were made

intentionally vague in an effort to cause the subjects to break up the scene in a ”natural” manner.

Subjects were instructed to divide each image into pieces, where each piece represents a distin-

guished thing in the image. The instructions to the human subjects made no attempt to restrict or

encourage the use of any particular type of cues. The number of resulting segments was left up

to the subjects. The subjects were also provided with several example segmentations of simple,

unambiguous images as a visual description of the task.

Images were assigned to subjects randomly with a bias towards images that had been seg-

mented by some other subject. In addition, no subject segmented the same image twice, no image

was segmented by more than 5 people, and no two images were segmented by exactly the same set

of subjects.

We selected a subset of a database containing approximately segmented 400 images, with

approximately 1600 labeled segments. Each image was segmented by an average of five subjects.

There was a total of 30 subjects. For reasons that we will explain in Section 6.3, we did not consider
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segments containing humans or animals. As with the automatic segmentations, the segments were

manually labeled; each segment was assigned exactly one label.

The statistics for automatic segmentations using the Chen et al. algorithm [18] are shown in

the left column of Fig. 9.2, which shows histograms for the first, second, third, and fourth dominant

color across all segments in the database. The horizontal axis represents the percentage of the area

that the corresponding dominant color occupies in a segment, while the vertical axis represents the

probability of occurrence for each bin. Based on these statistics, the great majority of segments

could be described by the first two dominant colors with very little loss of information. We also

looked at the distance between the dominant colors. The histogram of the distance between the first

and second dominant colors is shown at the top left of Fig. 9.3, and the distance between the first

and third is shown at the right. Observe that, in the majority of cases, the second dominant color is

less than twenty units away from the first. Here we should note that colors with L*a*b* distance

of 10 units are quite similar. This means that for a great majority of segments the second dominant

color is similar to the first. This explains why using the L*a*b* value of the first dominant color

gives better classification results than using the 15 quantized colors, and also why adding the

second dominant color improves performance by only a small amount.

The corresponding statistics for the human segmentations are shown in Figures 9.2 and

9.3. Note that, with the exception of the 100% bin for the first dominant color, the statistics are

quite similar. A similar observation holds for the distribution of the distance between the first and

second dominant colors and the distance between the first and third dominant colors. Thus, we can

safely assume that ignoring the second and third dominant color can be safely ignored in segment

classification. Finally, we should point out that the two sets of statistics are quite similar, even

though they obtained over different sets of images.
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9.3 Classification Results

In addition to the segment statistics, it is interesting to investigate whether the performance of

the classification algorithm can improve if human segmentations are used instead of the automatic

ones, or if it degrades due to the fact that the features we are using are matched to the segmentation

algorithm and do not work with the human segments. For this, we compared the classification

performance of the spatial texture and color composition features described in Section 6.2 on both

human and automatic segmentations. We applied LDA to the same labeled sets of segmented

images that we used for the segment statistics in Section 9.2. In both cases we used 80% of the

segments for training and the rest for testing.

We evaluated the performance of the classification techniques using the standard measures

that are used for evaluating search strategies in the literature. The recall is the ratio of the correctly

labeled segments to the total number of relevant segments in the database (i.e., those with the

particular label). The precision is the ratio of the correctly labeled segments to the total number

of segments that the algorithm assigned to the particular label (both correct and incorrect). Both

performance measures are expressed as percentages. Overall performance can be expressed as the

accuracy over the whole database.

The results are shown in Fig. 9.4(b) for the segment classification using spatial texture

features, first two dominant colors and position, and Fig. 9.4(b) using same set of features and the

K-means preprocessing. We should note that the “Sunrise/Sunset” category was omitted from the

human segmentations results because of insufficient number of samples for classification.

Comparing the recall and precision rates from the two experiments we can see that on the

average they are approximately the same. Experiments with different sets of features (one most

dominant color, 15 quantized colors, etc.) and resulted in the same conclusion. We also verified

that using a third dominant color does not increase performance, and that using a fourth dominant

color actually reduces the classification ability of LDA.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9.2: Statistics of dominant colors. Left column: automatic segmentations. Right column:
human segmentations. The horizontal axis represents the percentage of the area that the dominant
color occupies in a segment and the vertical axis represents the probability of occurence for each
bin.
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Figure 9.3: Distances between dominant colors in L*a*b* color space
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(a) LDA using texture, first two dominant colors and position

(b) K-means preprocessed LDA using texture, first two dominant colors and position

Figure 9.4: Comparison of classification results using human and automatic segmentations
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Chapter 10

Summary, Conclusions, and Future Work

This dissertation addresses important aspects for Content Based Image Retrieval: derivation of

medium level descriptors through spatially adaptive color texture segmentation that divides the

image into perceptually uniform regions (segments) and extraction and representation of segment

wide features for classification.

Background material is presented in Chapter 2. In addition to discussion of user needs for

semantic indexing, an overview of Content Based Retrieval highlights the state of the art in the

field. Important concepts of semantic gap is introduced in greater detail.

In Chapter 3, we present an overview of perceptually tuned adaptive color-texture segmen-

tation algorithm recently proposed by Chen and Pappas. This segmentation algorithm combines

the color composition and spatial-texture features to obtain segments of uniform texture. Several

critical parameters of the texture features and this segmentation algorithm were determined by

subjective tests.

Low level features used are introduced in Chapter 4. This chapter presents the color, texture

and other features in greater detail.

Semantic label selection is presented in Chapter 5.

Chapter 6, describes how proposed features were extracted from segments and their repre-
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sentation. Segment statistics of dominant colors is also presented in this chapter.

Verification database and ground truth generation were presented in Chapter 7. In addition,

this chapter presents clustering, classification and pattern recognition algorithms used in classifi-

cation, their tradeoffs and numerical implementations.

Experimental results were presented in Chapter 8. Recall and precision rates obtained by

using the different feature representations and applying the classification techniques were pre-

sented and compared to the literature.

Feature Evaluation in Terms of Human Segmentations and statistics of human segmenta-

tions were presented in Chapter 9.

In Conclusion, we presented a new approach for semantic classification that utilizes per-

ceptual models for image segmentation and classification. The main innovations of the proposed

approach are the use of an algorithm that produces perceptually uniform segments and the selection

of perceptually-motivated region-wide color and texture features. The features of these regions are

used as medium level descriptors and are the key to bridging the gap between low-level image

primitives and high-level image semantics. Our results indicate that the proposed approach offers

significant performance improvements over the existing literature.
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10.1 Future Work

In closing, we suggest possible future research directions based on the work presented here. First

we consider extensions of the current classification scheme onto extraction of semantic labels at

the image (scene) level. Then we present some thoughts on development of novel classification

techniques and possible image query types.

10.1.1 Extracting Semantic Labels at the Image (Scene) Level

The classification of segments can be further extended to full semantic scene classification. This

can be achieved by incorporating the relative location and relationship of the various segments

within the image. A number of approaches can be used for this, including Bayesian inference, lay-

out models, region adjacency graphs, entropy models, and Hidden Markov Models. For example,

by exploiting the layout and mutual relationship among segments we expect that we will be able to

classify the image as an indoor or outdoor scene. Similarly, we should be able to identify marine

scenes, landscapes, garden scenes (bright colors), etc. A marine scene that also contains sand may

be further classified as a beach scene. Such an approach could then be coupled with the existing

face/person detection algorithms to yield a rich vocabulary of labels describing a particular image.

10.1.2 Development of Novel Classification Techniques

The primary technique that we have used so far for training and classification is the Linear Dis-

criminant Analysis (LDA) method. We have tried a number of other techniques, but LDA is so

far the best. LDA belongs to the class of linear classifiers, which try to find a subspace projec-

tion such that samples from the different classes are well separated, i.e., to find directions in the

data space that facilitate data classification. This is done by finding a direction that maximizes

the variance between the class means, and at the same time minimizes the variance within each
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class. LDA is fast, has the ability to handle non-Gaussian cluster distributions, and the discrim-

inatory dimensions are expressed as vectors. In addition, when each semantic class consists of

two or more clusters, K-means followed by LDA can be used to separate the different clusters that

belong to the same class. This provides lot of room for improvement since we do not care about

the overlap of the clusters that belong to the same class. Based on such observations, we believe

that by posing the optimization function in a slightly different way we may be able to achieve large

gains in classification ability. Finally, we also plan to further improve the performance of segment

classification by developing boundary shape features, as well as exploiting the properties of the

neighboring segments.

10.1.3 Image Query Types

The proposed approach is designed for queries based on a set of predefined labels. However, the

approach can be extended to query by example. As the proposed techniques will be able to extract

semantic labels from an image, query by example will require the extraction of labels for both

the query image and the images in the database. A simple matching of labels will then complete

the query. Furthermore since low level descriptors are recorded in the XML (extended markup

language) file structure, it could be also possible for the user to query an image with the particular

shade of color or texture, as well as full low level query based on color and texture only.

10.1.4 Need for Benchmarking Image Retrieval Databases and Ontologies

During the course of this thesis research, we found it to be very difficult to directly compare

retrieval and precision performance with the literature. The main difficulty is the lack of precisely

defined sets of ontologies (formal description or specification of the concepts and relationships

that can exist for an agent or a community of agents) for the semantic concepts used in image

analysis and retrieval. Often, different researchers use the same label in a different meaning. For
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example the definition of cityscape can sometimes be quite lenient and left at the discretion of the

investigator. Ontological commitments by researchers would allow the use of shared vocabulary

in a coherent and consistent manner.

Benchmarking results are further complicated by the lack of a common test database. Al-

though the majority of researchers use the Corel Stock Photo Library, there are credible doubts

about the usability and bias of this database. For example, sometimes several images of the same

subject are taken from a slightly different angle or are similar in some other way.

Such shortcomings have also been encountered in the related field of video retrieval, and

work is already under way to improve benchmarking. The goal of the TRECVID workshops,

which are sponsored by the National Institute of Standards and Technology (NIST), is to facili-

tate research in information retrieval by providing a large collection of test data, uniform scoring

procedures, and a forum for researchers interested in comparing their results. Such efforts were

met with great anticipation and widespread acceptance among researchers. Unfortunately, similar

benchmarks and procedures are not yet available in the image analysis and retrieval field.
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