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ABSTRACT

Efficient Estimation with Smooth Penalization

Sergey Gitlin

This dissertation proposes an oracle efficient estimator in the context of a sparse linear

model. Chapter 1 introduces the penalty and the estimator that optimizes a penalized

least squares objective. Unlike existing methods, the penalty is differentiable – once, and

hence the estimator does not engage in model selection. This feature allows the estimator

to reduce bias relative to a popular oracle efficient method (SCAD) when small, but

not insignificant, coefficients are present. Consequently the estimator delivers a lower

realized squared error of coefficients of interest. Furthermore, the objective function with

the proposed penalty is shown to be convex; paired with differentiability, this ensures

good computational properties of the estimator. Simulation evidence illustrates increased

robustness of the estimator with the smooth penalty in the presence of small, but nonzero,

coefficients.

Chapter 2 focuses on better understanding asymptotic properties of the proposed pe-

nalized estimator when the standard asymptotic approximation might be unsatisfactory,
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and leveraging that understanding to improve inference. Conventional asymptotic analy-

sis of efficient penalized estimators typically prohibits coefficients of a magnitude that lies

in a certain range relative to the sampling error, and it is well understood that allowing

for such coefficients can lead to slower rates of convergence of such estimators. I de-

rive the asymptotic distribution for the penalized estimator with the once-differentiable

penalty while allowing for coefficients in this range. The analysis is conducted under

standard conditions on the tuning parameters, as well as under an alternative asymptotic

framework that preserves nonlocal properties of these estimators. Inference by a modified

bootstrap procedure is shown to be consistent both under the standard assumptions on

tuning parameters that ensure oracle efficiency and under an alternative asymptotic view

that excludes intermediate-magnitude coefficients but allows for nonnormal asymptotic

distributions arising from penalization. Simulation evidence is presented that shows that

the proposed smooth penalty paired with bootstrap inference provides good coverage to-

gether with smaller confidence intervals even under violations of exact sparsity that lead

to poor performance by model-selection-based estimators.

Finally, Chapter 3 applies the proposed approach to reevaluate the effect of location-

specific human capital on agricultural output using the data and framework of Bazzi

et al. (2016). Authors consider a relocation program carried out in Indonesia that created

exogenous variation in where migrants were settled. A key estimate in that work is that a

one-standard-deviation increase in a measure of agricultural similarity between migrants’

origins and destinations produced a 20% increase in rice productivity. The estimate

comes from a regression with a relatively small set of controls, and I find that a more

plausible estimate of the effect is 11%. Authors’ original result appears to be driven by
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omitted variable bias due to not including a small number of important controls, most

notably education level of the local population, as measured by the average years of

schooling of the locals. This finding fits well into the human capital transition mechanism

envisioned in the original paper, in which interactions with more experienced locals would

improve migrants’ productivity. Since the agricultural similarity happens to correlate with

local education levels in the dataset under study, omitting schooling from the regression

increases the estimate on agricultural similarity.
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CHAPTER 1

Efficient Estimation with Smooth Penalization

1.1. Introduction

Advances in traditional survey data collection and increasing availability of detailed

data generated by tech companies have resulted in economic datasets that are ’big’ in

many ways: in particular both in the number of observations and in the number of co-

variates available for each observation. Consequently, improvements in data have enabled

researchers to answer old questions with more precision and detail and ask new ones that

would have previously been impossible to answer.

Conventional econometric tools in common use by practitioners are well suited to take

advantage of the first aspect of Big Data – large number of observations – since their

properties are typically derived for exactly such asymptotics. However, the second aspect

– large number of available covariates, known as high dimensionality in the statistics

literature and popularized by Varian (2014) as “fat data” – is less well covered in standard

econometric toolset used in applied work.1

While many covariates may be available and may conceivably be related to the chosen

outcome of economic interest, it is reasonable to suppose that some of those will not

have a significant impact on that outcome of interest. This is known as sparsity : in the

1The idea that modeling grows in complexity as more observations become available is not new and
predates the advent of Big Data. In a meta-analysis of wage equation literature Koenker (1988) decisively
rejects the idea of fixed model dimensionality, in particular finding that in his sample model dimensionality
grows as the fourth-root of sample size.
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linear model context, the vector of coefficients is thought to be sparse, that is, has many

elements that are zero.2 Since including unnecessary covariates in a regression typically

increases the variance of the estimates, and omitting important ones leads to omitted

variable bias and ensuing inconsistency, a central question facing any applied researcher

with a high-dimensional dataset is how to proceed with estimation without suffering from

either predicament.3

I propose a rigorous approach to this problem with an estimator that exhibits optimal

behavior in the standard sparse model settings and delivers improved performance under

the challenging setting of deviations from the standard sparsity assumptions. I provide

conditions on tuning parameters that allow the researcher to ensure convexity of the ob-

jective function that the estimator optimizes; paired with differentiability of the objective

function this ensures that the estimator is computationally unburdensome. Such com-

putational tractability is especially appealing in the practical settings if the researcher

decides to use crossvalidation or bootstrap.

The approach uses penalized estimation with a novel penalty function. Key differ-

ence of the proposed penalty that sets it apart from existing methods is differentiability,

specifically, the penalty is once differentiable at zero, with an infinite second derivative.

I show that under conventional assumptions the proposed estimator achieves the oracle

2More generally, one can consider approximate sparsity, where some of the coeffients are very small, even
if not exactly zero.
3A common approach to this problem involves researcher’s judgement on what handful of covariates ought
to be sufficiently relevant to warrant inclusion in the regression. To guard against omitted variable bias in
particular, multiple regressions of varying dimensionality may be carried out (possibly with corresponding
tests and levels of significance), so as to argue that the results aren’t driven by the vagaries of the modeling
choices. Unfortunately, such an approach is rarely carried out as a formally well-defined econometric
procedure, and as such little can be said about the properties of the estimators, particularly when the
final ’headline number’ is chosen ad hoc from multiple reported specifications.
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property : that is, it has the same asymptotic distribution as the oracle estimator that

knows which covariates can be dropped from estimation. This result is similar to many

other methods in the literature; nonetheless, in contrast to the existing literature this is

the first penalized estimator with a differentiable objective function to do so.

However, the proposed estimator substantially improves upon a popular existing method

(SCAD by Fan and Li (2001)) under very general conditions when conventional sparsity

assumptions underpinning oracle efficiency results are violated. Under such violations my

method reduces the worst squared error in the estimates of coefficients of interest. The

magnitude of improvement is larger than the sampling error, and is driven by a reduction

in omitted variable bias.

Conventional sparsity assumptions typically involve two restrictions: on the one hand,

some coefficients are sufficiently large (larger than the sampling error); on the other hand,

all the other coefficients are sufficiently small: either exactly zero (exact sparsity), or

sufficiently smaller than the sampling error (approximate sparsity). This creates a gap in

allowed coefficient magnitudes, and the common approach assumes no coefficients fall in

that gap.

As has been highlighted by Leeb and Pötscher (2008) and related research, model-

selection-consistent estimators like SCAD suffer from bad bias properties when we allow

for coefficients to be in the gap, essentially due to dropping covariates that should not have

been dropped. While the proposed estimator also suffers from a similar bias predicament,

it suffers from it to a lesser extent. This is achieved due to a reduction in omitted variable

bias inherent in model-selection-based estimators like SCAD, since the proposed estimator

does not drop any covariates from the regression, and as such does not engage in model
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selection. Curiously, the reduction in squared error is larger than the terms due to random

sampling error (in particular the term that gives variance in expansion for squared error).

It is worth discussing the broader context of penalized estimation and its evolution

as a tool of improving estimator precision. Many econometric estimators can be defined

as maximizers or minimizers of certain objective functions (such as the sum of squared

residuals in the case of OLS), and penalized estimation methods amend the objective

by adding a penalty term that affects the properties of the estimator in a certain way

that depends on the choice of the penalty. For example, information criteria, such as AIC

(Akaike (1974)) and BIC (Schwarz (1978)), penalize the number of included covariates, i.e.

the l0 norm of the coefficient vector. We can imagine the researcher considering all possible

subsets of covariates and using such information criteria to select the ’best’ model, which

would seem to be not too far from the heuristic procedure described earlier. However, even

though a procedure based on l0 penalization can be assured of good statistical properties

in theory, searching over all possible subsets of covariates is a combinatorial problem, and

hence such an approach is impossible in practice with any nontrivial number of potential

regressors.

Since penalizing the l0 norm is computationally unappealing, we can consider using

a continuous penalty function to simplify optimization while possibly achieving the same

effect. In a seminal contribution to this line of inquiry, Tibshirani (1996) proposed using

l1 penalty on estimated coefficients added to the least-squares objective as a way to

simultaneously estimate coefficients on the ’relevant’ covariates and eliminate some of the

’irrelevant’ ones. The procedure, known as LASSO, ameliorates the variance problem

of having too many covariates. LASSO achieves model size reduction by having a cusp
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at zero with nonzero directional derivative on either side, which means that when the

smooth main objective function is nearly flat in a given covariate coefficient at zero,

Kuhn-Tucker conditions ensure that zero value for that coefficient is part of the solution

to the optimization problem.

There are two potential issues with LASSO. One is that, except under very restrictive

conditions, LASSO will select a model that is larger than necessary. That is, it will not

eliminate all of the unnecessary regressors, and so the estimation will not be as efficient as

possible. Another issue with LASSO is the bias it introduces. The fact that the coefficients

are penalized in the same way (in terms of derivative of the penalty) regardless of their

magnitude forces a tradeoff between bias for large coefficients and ability to drive small

ones to zero.4

Various approaches have since been proposed to improve the properties of penal-

ized estimation, notably bridge estimation, smoothly-clipped absolute deviation penalty

(SCAD), and adaptive LASSO. They all aim to penalize coefficients that are close to

zero more heavily than those that are further away, thereby reducing the bias for large

coefficients without sacrificing model selection prowess.

SCAD, proposed by Fan and Li (2001), ’flattens’ the penalty above a certain threshold,

and keeps LASSO l1 penalty below that threshold. If the threshold converges to zero at a

slow enough rate, then all the large coefficients will eventually fall in the flat part of the

penalty and hence won’t suffer any penalization bias, while all the small ones will still

be inside the penalized range and will be driven to zero. Fan and Li (2001) establish the

asymptotic oracle property for SCAD: the resulting estimator has the same asymptotic

4This bias can be eliminated by using a post-selection estimator that keeps the covariates LASSO chose
but does not penalize.
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distribution as the oracle estimator: one that knows exactly which covariates should be

included in the model from the outset. While theoretically attractive, SCAD suffers from

finite-sample issues stemming from the reasons outlined above and the fact that it might

not select the right model some of the time.

Huang, Horowitz, and Ma (2008) derive asymptotic properties (including oracle ef-

ficiency) for bridge estimators (see also Knight and Fu (2000)), defined as least-squares

estimators with ld penalty with d ∈ (0, 1). This penalty function naturally has the desir-

able features of small derivative for large arguments and large (going to infinity) for small

ones. However, unlike SCAD, penalized solutions are discontinuous in data: small varia-

tions in data may result in a jump in the value of the estimator from zero to something

away from zero (or vice-versa).

Zou (2006) proposes weighting LASSO penaly with the inverse of a preliminary esti-

mator, in effect penalizing smaller coefficients more. Adaptive LASSO retains attractive

convexity property of LASSO while at the same time approximating the behavior of bridge

estimators (see also Hastie, Tibshirani, and Friedman (2009)).

What all of these methods (and other similar approaches) share is the fact that they

first solve the problem of model selection: they estimate some coefficients in the regression

as exactly zero, effectively omitting corresponding covariates from estimation. Since under

appropriate conditions these methods achieve model selection consistency, i.e. only keep

the covariates needed and only drop those not needed, and since they don’t incur too much

bias for large coefficients, they achieve oracle efficiency : asymptotically, the estimates of

large coefficients behave as if the researcher knew the right model from the start.
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Nonetheless, as will be shown here, model selection (i.e. omitting the covariates

deemed irrelevant) is not a necessary condition for oracle efficiency. In fact, it is enough

for the coefficients on irrelevant covariates to converge to zero fast enough to avoid excess

variance cost introduced by their estimation. In particular, we can use a differentiable

penalty function to achieve the same asymptotic properties of the estimator. At the same

time, first-order changes in the derivative of the usual least-squares objective function

around sparse solutions ought to correspond to smaller changes in the estimate, and as

such the second derivative of the objective at zero can’t be finite. I therefore propose to

use the lq penalty around zero that is flattened away from zero as a solution that satisfies

both of these requirements.

As the objective function will now be differentiable, none of the estimated coefficients

will be exactly zero. As such, all of the regressors will be kept in the model, but those that

would be estimated as zero by model-selection-consistent methods will have very small

estimated coefficient values in my approach. While this is not, in and of itself, a benefit

when the coefficients can be separated into large and small ones by the ’gap’ assumption,

it will allow us to reduce omitted variable bias in the worst cases when coefficients that

are neither large nor small (I’ll call them ’intermediate-magnitude’) are present. As such,

the estimates derived from my method will be more precise than those from SCAD in this

setting; the practical significance of this being the improved robustness of the estimator

against deviations from the standard sparsity assumptions that will be clarified in the

main text.

While the proposed penalty is modelled overall on the SCAD penalty, the key dis-

tinction lies in the shape of the penalty around zero. To this end, the earliest use of lq
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regularization with q ∈ (1, 2) among existing literature is Frank and Friedman (1993),

who briefly consider it (as part of lq with q ∈ (0,∞)) as an extension of LASSO and ridge

regression. Zou and Hastie (2005) also mention it as a possibility before settling on the

elastic net as a different compromise between LASSO and ridge. Neither work evaluates

its theoretical properties further. Knight and Fu (2000) consider bridge estimators with

lq penalties for q > 0 and derive some theoretical properties for them; however, due to

the excessive bias incurred for large coefficients when q > 1, in their framework it is not

possible to achieve efficient estimation in sparse models. None of the works mentioned rec-

ognizes the possibility of using such a method as an ingredient to achieve oracle efficiency

without explicit model selection.

Theoretical results presented in this work are supported by evidence from simulations.

In particular, when small nonzero coefficients are present, I find that smoothing out the

penalty does reduce simulated mean squared error of coefficients of interest as expected.

The optimization procedure is also extremely fast in practice, even with a general-purpose

optimizer. The speed also seems to increase with smoothness, with smoother penalty

resulting in faster estimation. Good numerical properties are aided by the fact that the

objective function is convex; a simple condition ensuring convexity is provided.

The rest of the chapter is organized as follows. Section 1.2 presents the model and

the motivation for seeking oracle efficiency. Section 1.3 introduces the proposed smooth

penalty function and the corresponding penalized least squares estimator. Section 1.4

presents the three key properties of the method: objective function convexity, oracle

efficiency under conventional assumptions and improvement in realized squared error over

SCAD when insufficiently-small coefficients are allowed. Section 1.5 provides simulation
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evidence illustrating increased robustness offered by the smooth penalty. Section 1.6 offers

concluding remarks. All proofs are in the appendix.

1.2. Model and motivation

This section describes the key features of the model and provides motivation for using

the proposed estimator. I will start by presenting the model in a notation that best

illustrates the practical setting envisioned here. However, this notation is cumbersome for

the theoretical arguments, and a more formal discussion is aided by a simplified notation.

For this reason this second notation will be introduced, and the rest of the paper beyond

this section will follow it.

1.2.1. The model

We have a sample of n observations from a linear model:

yi = w′iθ + z′iψ + εi,(1.1)

where wi is a k0×1 vector of covariates of ex ante interest and zi is a (pn−k0)×1 vector

of potentially relevant controls.5 All regressors are nonstochastic and standardized; details

of this are addressed in Remark 1. εi is the error term with E(εi) = 0. pn and k0 are

allowed to change with n; this feature will be addressed in Remark 2 at the end of the

section.6

5We can also entertain a situation where there are no covariates of ex ante interest, and we want to
estimate ψ, or all (or some) of its nonzero components. That is, the set of covariates of ex ante interest
can be an empty set, i.e. k0 = 0 is allowed. All theoretical results in this paper apply to this case.
6Dependence of θ and ψ on n is notationally suppressed for simplicity.
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A key feature of the true model is that it possesses a sparse structure: that is, some

coefficients on control covariates are large (and ’important’), and others are small (and

’unimportant’). ’Large’ and ’small’ is relative to the sample size; the exact details of this

will be discussed in Section 1.4.7 For example, any coefficient that does not vary with

sample size and is not zero is ’large’. A fixed coefficient that is exactly zero is ’small’.

For simplicity, I will assume exact sparsity : all small coefficients are exactly zero.8 That

is, some elements of ψ are equal to zero. Without loss of generality I order the control

covariates in such a way that all the the controls with large coefficient values come first,

followed by controls with zero coefficient values: ψ = (ψ′1, ψ
′
2)′, where ψ2 = 0. I will use

k1 to denote the length of ψ1, and let kn = k0 +k1. Splitting zi into (z′1,i, z
′
2,i)
′ accordingly

we can write Equation 1.1 as

yi = w′iθ + z′1,iψ1 + z′2,iψ2 + εi.

Taking into account ψ2 = 0 we can also write

yi = w′iθ + z′1,iψ1 + εi.

The researcher knows which covariates go into wi versus zi, but does not know which

components of zi are in z1,i and which are in z2,i.

Since the role played by ex ante important covariates and controls with large coef-

ficients will be similar, I adopt a notation that unifies them. Let β10 = (θ′, ψ′1)′ and

7Coefficients on covatiates of ex ante interest can be large, small or anything in between; due to their
special status we want them in the regression regardless of the true value of their coefficients.
8An alternative approach would be to allow for coefficients to be ’small’ but nonzero (approximate spar-
sity) similar to Horowitz and Huang (2013). For our purposes this costs more in clarity of presentation
than it offers in insight, and so will be avoided here, but further addressed in subsection 1.4.3.
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β20 = ψ2, so that β0 = (β′10, β
′
20)′ = (θ′, ψ′)′. Similarly, let x1,i = (w′i, z

′
1,i)
′, x2,i = z2,i and

xi = (x′1,i, x
′
2,i)
′. Then Equation 1.1 can be rewritten as

(1.2) yi = x′1,iβ10 + x′2,iβ20 + εi.

Taking into account β20 = ψ2 = 0 we can also write

(1.3) yi = x′1,iβ10 + εi.

I will refer to the model in Equation 1.2 (equivalently Equation 1.1) as the full model.

It will be assumed throughout that it is feasible to estimate this model by OLS, and thus

I will refer to the OLS estimator of this model as the full-model OLS estimator.

I will call the model in Equation 1.3 the oracle model : this is the smallest parsimonious

model that includes the covariates of interest. Since the researcher does not know which

controls need to go into x1,i, the oracle OLS estimator is infeasible.

Remark 1. Some details on regressor properties need to be addressed. First, following

a common approach in the literature (see e.g. Huang, Horowitz, and Ma (2008)) I take

the n× pn matrix of covariates Xn to be nonstochastic. Equivalently, the results can be

thought of as conditional on stochastic regressors. Second, I do not include a constant in

the model; if needed, it can be accomodated by de-meaning the regressors and the outcome

variable. Therefore, while not required for any results, it can be implicitly understood

that each regressor has sample average zero. Third, the regressors are standardized. Let

Xn = (X1n, X2n), where X1n is the n × kn matrix of ex ante important regressors and

important controls. Let Σn = 1
n
X ′nXn be the regressor sample covariance matrix, which
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is partitioned according to partitioning in Equation 1.2:

(1.4) Σn =
1

n
X ′nXn =

 1
n
X ′1nX1n

1
n
X ′1nX2n

1
n
X ′2nX1n

1
n
X ′2nX2n

 =

 Σ1n Σ̃n

Σ̃′n Σ2n

 .

I assume that all diagonal elements of Σn are equal to 1: the regressors are normalized to

have unit sample variance. This is without loss of generality for the theoretical results.

The same normalization approach should be followed in practice, with an appropriate

rescaling of coefficients after estimation to correspond to the original scale of regressors.

Remark 2. As is implied by the notation, total number of covariates is allowed to

change with n, and in particular it can grow with n. As a practical matter, growing pn

should not be interpreted literally, and is rather a theoretical tool to capture some features

and limitations of estimators when the total number of covariates is large relative to sample

size. One can imagine two obvious scenarios: more observations than covariates, and more

covariates than observations. This work is focused on the first case: pn < n. While there

is a lot of research on the case of pn > n (see e.g. Van de Geer et al. (2014) and references

therein), the case of pn < n is more prominent in applied economic research, where the

number of covariates researchers commonly entertain for regression analysis can be large

but is still usually smaller than the sample size. Focusing on this case allows us to avoid

more restrictive conditions required in the pn > n case. On the other hand, the question

of how to estimate linear models in the case of unknown ’optimal’ specification is clearly

present even for pn < n, evidenced by the common practice of estimating a linear model

with varying sets of controls and reporting the results of multiple specifications, as is done

in Bazzi et al. (2016), chosen as the empirical application here.
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The two main asymptotic results will differ in their stance on pn. While the main

result under conventional assumptions (Theorem 2) will allow a growing pn, the result

under violation of the ’gap’ assumption (Theorem 3) will maintain that pn is fixed. For

the first result, growing pn is required to highlight the cost of using a smooth penalty:

namely, a slower-growing number of covariates can be accomodated with a smoother

penalty. For the second result, even fixed pn is sufficient to show that the proposed

estimator improves worst squared error relative to SCAD. In exchange for giving up model

complexity flexibility afforded by growing pn, fixed pn allows the proofs to be constructed

in such a way so as to accomodate a broad class of problems under very weak assumptions

on the error term.

1.2.2. Motivation: efficiency

In general terms, this work (and many other approaches in the literature) seeks to come

up with a feasible procedure that replicates some of the properties of the oracle estimator.

Since the full-model OLS estimator is feasible and the oracle estimator is not, it is worth

asking whether there is any benefit to trying to mimic the latter.

To this end, consider a simplified model where the number of regressors is fixed and all

coefficients are fixed. Moreover, Σn −−−→
n→∞

Σ > 0, errors εi are i.i.d. with mean zero and

variance σ2, and regularity conditions on regressors are satisfied so that 1√
n

∑n
i=1 xiεi

d−−−→
n→∞

N (0, σ2Σ).

Let

β̂F = arg min
b

n∑
i=1

(yi − x′ib)2

be the OLS estimator of β0 in the full model.
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Then in the case of estimating the full model by OLS we have

√
n(β̂F − β0)

d−−−→
n→∞

N (0, σ2Σ−1).

In particular, consider the asymptotic distribution of β̂F,1, the first k components of

β̂F that correspond to covariates of interest and controls with nonzero coefficient values.

The expression above implies that

√
n(β̂F,1 − β10)

d−−−→
n→∞

N (0, σ2
[
Σ1 − Σ̃Σ−1

2 Σ̃′
]−1

),

where Σ1, Σ2 and Σ̃ are the corresponding limits of the parts of Σn defined in Equation 1.4.

On the other hand, for the infeasible oracle estimator β̂O of β10 we have

√
n(β̂O − β10)

d−−−→
n→∞

N (0, σ2Σ−1
1 ).

It is easy to verify that Σ−1
1 −

[
Σ1 − Σ̃Σ−1

2 Σ̃′
]−1

≤ 0 (in the sense of being negative

semidefinite).9 That is, for any linear combination of coefficients from β10, oracle estimator

is at least as efficient as, and potentially more efficient than, the full-model OLS estimator:

the asymptotic variance and MSE are weakly lower. In the same vein, we can show that

confidence intervals for coefficients of interest constructed using the oracle model will be

smaller than those constructed using the full model.

1.3. The estimator

As has been discussed in the introduction, penalized estimation is a popular approach

to achieving oracle efficiency, usually as a result of model selection. I also follow penalized

9In general it will be negative definite if Σ̃Σ−12 Σ̃′ is positive definite.
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estimation approach, but one that does not engage in model selection, as will be clear

from the discussion of the penalty function.

I estimate β0 by the following penalized least squares estimator:

β̂n = arg min
b
Qn(b),(1.5)

Qn(b) =
n∑
i=1

(yi − x′ib)2 + λn

pn∑
j=k0+1

Pen(bj),(1.6)

where the penalty function with smoothness parameter γ ∈ (0, 1) is

Pen(b) = τ 1+γ
n


2

1+γ

(
|b|
τn

)1+γ

, when |b|
τn
< 1;

1−γ
1+γ

+ a− 1
a−1

(
a− |b|

τn

)2

, when |b|
τn
∈ [1, a];

1−γ
1+γ

+ a, when |b|
τn
> a.

(1.7)

Equivalently, the derivative of the penalty function is

Pen′(b) = 2τ γn sgn(b)



(
|b|
τn

)γ
, when |b|

τn
< 1;

a− |b|
τn

a−1
, when |b|

τn
∈ [1, a];

0, when |b|
τn
> a.

(1.8)

Note that the objective function does not penalize coefficients on covariates of interest

(i.e. the first k0 components of β, or θ in the notation of Equation 1.1).

Observe that this one-dimensional penalty function is the l1+γ penalty10 around zero

paired with SCAD-like flattening away from zero. As such, the penalty, unlike SCAD,

10Notice that we do not raise the sum of |bj |1+γ to the inverse power in order to make it the l1+γ norm
of the coefficient vector.
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b

Pen(b)

−τn τn

τ 1+γ
n

2
1+γ

aτn−aτn

τ 1+γ
n

[
1−γ
1+γ

+ a
]

0

Figure 1.1. Plot of the penalty function for γ = 0.4, τn = 1, a = 3.

LASSO or bridge, does have the first derivative at zero, but not the second (more specif-

ically, the second derivative at zero is infinity: that is, the limit of it from both sides is

+∞). Notice that at one end of the spectrum γ = 0 corresponds to SCAD penalty, while

at the other γ = 1 would be ridge penalty that is flattened away from zero similar to

SCAD.

There are three tuning parameters: λn, τn and a, although a does not depend on the

sample size. Moreover, one can think of γ as a choice variable as well, although any choice

consistent with the relevant assumptions is acceptable. As will be seen in the discussion to

follow, we can also make λn a function of τn, as is done in Fan and Li (2001), which would

notionally reduce the number of tuning parameters. However, the roles λn and τn play

are subtly different, and in particular pushing the boundaries on the allowed magnitude
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b

Pen′(b)

−τn

−2τ γn

τn

2τ γn

−aτn
aτn0

Figure 1.2. Plot of the derivative of the penalty function for γ = 0.4, τn = 1,
a = 3.

of λn can allow us to capture some finite-sample features of penalized estimators that are

absent from the conventional asymptotic framework common in the literature.11 Since we

can still achieve the desired results with more flexibility in the choice of λn and τn than

what would be dictated by the functional linkage similar to that of Fan and Li (2001), I

will keep λn and τn separate for the sake of generality.

1.4. Properties of the estimator with smooth penalty

This section presents three theoretical properties of the estimator. The first one is

convexity of the objective function, which is desirable from the computational point of

view. This is a property shared by adaptive LASSO and by SCAD (under restrictions on

11This is the subject of Chapter 2 that focuses on inference with penalized estimators.
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tuning parameter choices), but not by bridge estimators as defined in Huang, Horowitz,

and Ma (2008). The second result is asymptotic normality and oracle property in a

homoskedastic model with exact sparsity with a growing number of regressors. Even

though oracle property is not unique to the proposed estimator (it is shared by SCAD,

adaptive LASSO and bridge estimators under similar conditions), it is perceived as a

necessary requirement in a sparse model. What is unique about the estimator with the

smooth penalty is that it achieves oracle efficiency without model selection. The third

result shows the benefits of it. It allows for approximate sparsity with small coefficients

’insufficiently small’; the result establishes that a sufficiently smooth penalty delivers a

lower squared error than SCAD with probability approaching one. In other words, the

proposed estimator is more robust to such scenarios, and this feature is a direct result of

not engaging in model selection.

1.4.1. Convexity of the objective function

This part provides conditions under which the objective function is convex. While some

penalized objective functions, such as least-squares with LASSO (and by extension adap-

tive LASSO) are obviously convex, the proposed penalty is not by itself convex, and

so establishing convexity of the objective is not immediate. The following assumption

provides conditions on tuning parameter choices that ensure convexity of the objective.

Assumption A1 (Objective function convexity and continuity of solutions). (a) Let

Ipn,k0 be a diagonal pn × pn matrix with the first k0 diagonal elements equal to zero and
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the remainder equal to one. We have

Σn −
λnτ

γ−1
n

n

1

a− 1
Ipn,k0 > 0,

in the sense of the matrix being positive definite.

(b) (sufficient condition for A1(a)) Let ρn = Eigmin(Σn). ρn > 0 and

λnτ
γ−1
n

ρnn
< a− 1.

Assumption A1(b) provides a simple sufficient condition for A1(a) and is equivalent

to it in the case k0 = 0, that is, when all coefficients are penalized.

Lemma 1. Suppose assumption A1(a) holds. Then the objective function Qn(b) is

strictly convex.

This result is important for the practical implications it carries. Convex optimization

is a well-studied subject; a multitude of approaches exist to solving large-scale convex

problems, and even conventional hill-descent algorithms can be guaranteed to converge to

the unique global minimum in case of strict convexity. Contrast that with minimizing a

non-convex (more specifically, non-quasi-concave) function, where there is a possibility of

multiple local minima and no general way of knowing whether the estimator has converged

to the global minimum.

Adding that the objective function is also differentiable (due to differentiable penalty)

means that analytical gradient can be supplied to optimization algorithms, speeding up

optimization in practice.
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Remark 3. Since the proposed penalty converges uniformly to SCAD penalty as

γ → 0, a direct corollary to Lemma 1 is that the objective function for SCAD-penalized

least squares is convex if the choice of tuning parameters for SCAD satisfies A1(a). In

particular, since what I have denoted as λn and τn are linked in the original formulation of

SCAD in Fan and Li (2001), a sufficient condition for convexity in that case is ρ−1
n < a−1.

The same condition has been previously derived in Zhang (2010).

1.4.2. Asymptotic properties: conventional framework

The results here establish consistency and asymptotic normality of the proposed penalized

estimator, following the strategy adopted by Huang, Horowitz, and Ma (2008). Main focus

here is on Theorem 2, and the consistency and superefficiency results are ingredients for

it. I will state the assumptions and results first and then discuss the significance of results

and some implications of the assumptions.

It is useful to introduce some notation first. For a real symmetric matrix A, let

Eigmax(A) and Eigmin(A) denote the largest and smallest eigenvalues of A. For a vector

v of length l, let ‖v‖q =
(∑l

j=1 |vj|q
)1/q

, and ‖ · ‖ = ‖ · ‖2. The ‖ · ‖∞ norm is defined

accordingly.

Assumption A2 (Errors). (a) εi, i = 1, . . . , n are independent with mean zero.

(b) εi, i = 1, . . . , n have nonzero finite variance σ2.

Assumption A3 (Design). (a) Let ρn = Eigmin(Σn). ρn > 0 for all n.

(b)

1

n
max
i=1,...,n

x′1,iΣ
−1
1nx1,i −−−→

n→∞
0.
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(c)

1

n
max
i=1,...,n

x′iΣ
−1
n xi −−−→

n→∞
0.

Assumption A4 (Parameters). (a) Let bn = min {|β10j|, k0 + 1 ≤ j ≤ kn} (bn > 0

for all n). We have

τn +

[
pn + λnknτ

1+γ
n

nρn

]1/2

= o(bn).

(b)

τn

(
ρ−1
n

(pn
n

)1/2
)−1

−−−→
n→∞

∞.

(c) Let κ1n = Eigmax(Σ1n) and κ2n = Eigmax(Σ2n). We have

[
pnκ1n

ρ2
n(λn/n(1+γ)/2)

] 1
1+γ

κ
1/2
2n −−−→

n→∞
0.

The following theorem shows that under the maintained assumptions the proposed

estimator is consistent at the same rate as the full-model OLS estimator.

Theorem 1 (Consistency). Suppose assumptions A2(a), A2(b) and A3(a) hold. Then

‖β̂n − β0‖ = Op

(
pn(1 + λnτ

1+γ
n )

nρn

)1/2

.

Suppose, moreover, that we have exact sparsity (β20 = 0) and that A4(a) holds. Then

‖β̂n − β0‖ = Op

(
ρ−1
n

(pn
n

)1/2
)
.

The following lemma provides a bound on the magnitude of estimates of β20, and will

be used to establish conditions under which they go to zero sufficiently fast so as not

to affect estimates of β10. Consistent with the notation adopted for the true coefficient
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vector, I partition the estimator as β̂n = (β̂′1n, β̂
′
2n)′, where the first component has length

kn.

Lemma 2. Under exact sparsity (β20 = 0) and assumptions A2(a), A2(b), A3(a),

A4(a) and A4(b) we have

‖β̂2n‖1+γ
1+γ = Op

(
pnκ1n

ρ2
nλn

)
.

Equivalently

‖
√
nβ̂2n‖1+γ

1+γ = Op

(
pnκ1n

ρ2
n(λn/n(1+γ)/2)

)
.

Remark 4. I use the word ’superefficiency’ to denote convergence of l2 (and hence

l∞) norm of
√
nβ̂2n to zero in probability. Notice that with fixed pn and ρn bounded away

from zero λn
n(1+γ)/2 → ∞ gives us superefficiency.12 This is a key component to achieving

oracle efficiency in the next result.

The following theorem established the asymptotic distribution of the penalized esti-

mator with the smooth penalty.

Theorem 2 (Asymptotic distribution). Suppose conditions A2(a), A2(b), A3(a),

A3(b), A3(c), A4(a), A4(b) and A4(c) are satisfied, and the model satisfies exact sparsity

(β20 = 0). Let αn = (α′1n, α
′
2n)′ be a sequence of pn × 1 vectors, where α1n contains the

first kn components of αn, and α2n the rest. Let

s2
n = σ2

{
α′1nΣ−1

1nα1n + α′2n

[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
α2n

}
.

12We can bound the l2 norm by the l1+γ norm since the space is of finite dimension pn − kn for any n.
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β̂2n

f(β̂2n)

0−2 2

Figure 1.3. Plot of the distribution of zeros for γ = 0.4. Standard normal
density in dashed.

Then

1

sn
α′n

 n1/2(β̂1n − β10)

λn
n1/2 sgn(β̂2n)|β̂2n|γ

 = n−1/2

n∑
i=1

εi
1

sn

{
α′1nΣ−1

1nx1,i + α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)}
+Rn

d−−−→
n→∞

N (0, 1),

where

Rn = Op

([
pnκ1n

ρ2
n(λn/n(1+γ)/2)

] 1
1+γ

κ
1/2
2n

)
= op(1)

uniformly in αn.

Theorem 2 establishes that the ’nonzeros’ have the same asymptotic distribution as

the oracle OLS estimator, and as such no efficiency is lost, asymptotically, from having

unnecessary covariates in the penalized regression.

Moreover, we get a nonstandard distribution for estimates of ’zeros’, depicted in Fig-

ure 1.3. The interesting feature of it is that for smaller values of γ most of the mass will

be concentrated closer to zero, but at the same time tails will be fatter. So, for small γ,
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most errors in estimates of ’zeros’ will be small, but a few will be very large, relative to

those coming from larger γ.

Curiously, the estimates of zeros and nonzeros are asymptotically uncorrelated, as

follows from the variance formula in Theorem 2. The following corollary illustrates the

result in the case where the total number of covariates is fixed:

Corollary 1 (Asymptotically uncorrelated estimates of ’zeros’ and ’nonzeros’). Sup-

pose assumptions of Theorem 2 hold; moreover, suppose that the total number of covariates

is fixed, i.e. pn = p, and Σn −−−→
n→∞

Σ > 0. Then

 n1/2(β̂1n − β10)

λn
n1/2 sgn(β̂2n)|β̂2n|γ

 d−−−→
n→∞

N

0, σ2

 Σ−1
1 0

0 Σ2 − Σ̃′Σ−1
1 Σ̃


 ,

where Σ1, Σ2 and Σ̃ are the corresponding limits of the parts of Σn defined in Equation 1.4.

The proof of Corollary 1 is a direct application of the Cramér-Wold device to the

result of Theorem 2.

1.4.2.1. Regressor classification and inference. Theorem 2 by itself is not directly

applicable to the task of inference since the researcher does not know a priori which

coefficients are zeros and which are nonzeros. This means that even if the researcher is

only interested in the inference on the ex ante important coefficients, she does not know

a priori how to construct the matrix Σ1n in order to do inference according to Theorem 2.

The following result rectifies that.
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Lemma 3. Consider coefficients βj with j ∈ k0 + 1, . . . , pn. Let S0 = {j : β0j 6= 0}

and Ŝn =
{
j :
∣∣∣β̂nj∣∣∣ ≥ κτn

}
for some κ > 0. Suppose assumptions of Theorem 2 hold.

Then Ŝn = S0 with probability approaching 1 as n→∞.

Any fixed κ works, and in particular choosing κ ∈ [1, a] is natural: all covariates

with estimated penalized coefficients in the inner zone of the penalty function are treated

as components of X2n, all covariates with estimated penalized coefficients in the flat

outer zone of the penalty function are treated as components of X1n, and κ governs

the assignment of covariates whose coefficients fall in between. As lower κ will lead to

weakly more covariates being included for the purposes of inference, confidence intervals

obtained with κ = 1 will include as subsets those obtained with larger values of κ under

the assumptions of Theorem 2.

A straightforward argument shows that Lemma 3 extends results of Theorem 2 so as

to allow conducting inference using Ŝn as if it were S0, in particular treating ’selected’

covariates (together with coefficients of interest that were not penalized) as those cor-

responding to nonzero coefficients β10 for the purposes of Theorem 2. So, to construct

confidence intervals for coefficients of interest we would simply compute standard errors

as if we ran a regression with only controls being those with coefficients larger than κτn,

and then construct confidence intervals as usual, only centered at the values estimated by

the penalized estimator rather than OLS.13

A curious reader might wonder whether it is a good idea to run a second regression

with only selected covariates following the thresholding procedure outlined above, and

13Note that even though coefficients of interest do not get thresholded, we still need thresholding on
controls to establish which ones are deemed nonzeros, so as to construct Σ1n.
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report estimates and conduct inference based on this second regression. The short answer

is no. As will be shown in subsection 1.4.3, a key benefit of utilizing the smooth penalty

proposed in this work is the bias reduction it delivers in cases where the ’gap’ assumption

of no intermediate-magnitude coefficients is violated. Post-selection reestimation would be

similar to utilizing a model-selection-based estimator like SCAD, and would suffer from the

same omitted variable bias problem that is ameliorated by using the proposed estimator.

Simulation evidence supports this recommendation: results in Section 1.5 illustrate the

robustness of the proposed estimator in terms of mean-squared error, while results in

Chapter 2 , in particular those in Figure 2.5, illustrate the corresponding inference benefits.

1.4.2.2. Discussion of assumptions. Assumptions A2, A3 and A4 are used for con-

ventional theoretical results described above. Since the results seek to allow for a wide

array of potential issues that can be encountered in high-dimensional estimation, the

assumptions might appear complicated. To clarify the restrictions they place I will ad-

dress each assumption in turn, and provide a simplified sufficient set of assumptions that

illustrates these restrictions.

Assumption A2(a) is maintained to simplify proofs and allow the use of Laws of

Large Numbers (LLNs) and Lindeberg-Feller Central Limit Theorem (CLT) that lever-

age independence. Assumption A2(b) is similarly chosen for simplicity and in line with

conventional assumptions in the literature. It is conceivable that independence can be

supplanted with a sufficiently-weakly-dependent requirement on errors and heteroskedas-

ticity can be allowed provided some CLT can be found that applies to the relevant series

in the proof of Theorem 2. This will likely involve extra restrictions on covariates, which

will result in design assumptions becoming less tractable.
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Assumption A3(a) is natural: without it we have perfect multicollinearity and a prob-

lem with identification. Evidently, this assumption precludes the pn > n case.

Assumption A3(c) is needed in the proof of the Lindeberg-Feller CLT for contrasts

that include zeros in Theorem 2, and A3(b) is used for the same purpose when only ex

ante important coefficients and large coefficients (i.e. the first kn) are of interest. In

particular, A3(c) can be dropped if we only need the asymptotic distribution of nonzeros,

or just the coefficients of interest. These assumptions can be satisfied with a lower bound

on the eigenvalues of Σn and a more detailed description of where the regressors come

from. The approach taken here is agnostic about the origin of the regressors, and so I

present the assumptions in this form to preserve generality.

Assumption A4 contains a lot of moving interdependent components, and thus might

appear hard to interpret. For this reason I will provide simple sufficient conditions that

ensure that it is satisfied. Moreover, the sufficient conditions will be designed so as to

satisfy assumption A1(a) as well. As shown in subsection 1.4.1, assumption A1(a) ensures

convexity of the objective function and continuity of solutions in the data. It is not needed

for other results present in this work, in particular, for Theorem 2. However, I view these

properties as highly desirable, continuity ensuring a certain stability of the estimator and

convexity assuring convergence to the global minimum and fast optimization in practice.

For these reasons I will include A1(b) (a simple sufficient condition for A1(a) which is

equivalent to it in the case of k0 = 0) in the discussion of constraints imposed by the

assumptions. It is worth pointing out that A1(a) (and A1(b)) can be easily verified in

an application: it only requires the knowledge of the regressor sample covariance matrix

and of which regressors the researcher has deemed ex ante important (and thus excluded
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from penalization). In particular, A1(b) can serve as a useful guide for the joint choice of

λn and τn if the researcher deems convexity and continuity desirable in her application.

The sufficient conditions for satisfying A1(a) and A4 are given in the following lemma14:

Lemma 4. Suppose the following conditions hold:

(1) ρn > 0 is bounded away from zero and Eigmax(Σn) is bounded above for all n large

enough;

(2) kn is bounded above for all n large enough;

(3) the smallest of coefficients {β0,k0+1, . . . , β0,kn} is bounded away from zero for all

n large enough;

(4) pn = o(n
1−γ
2 ).

Then there exist sequences of real numbers λn, τn such that assumptions A1(b) and A4

are satisfied. Specifically, these sequences are given by

λn = n
1+γ
2 pnfn,

τn = n−1/2p
1

1−γ
n

(
2

ρn(a− 1)
fn

) 1
1−γ

,

where fn is any sequence of real numbers such that fn →∞ and fn = o
(
n

1−γ
2 p−1

n

)
.

Lemma 4 can be verified by directly verifying each part of assumptions A4 and A1(b),

or derived from them by straightforward analysis. It is worth emphasizing that sequences

fn that we use to construct λn and τn always exist: these are simply sequences that grow

slowly enough such that the last restriction is satisfied.

14Without the convexity requirement (A1) the following lemma would have pn = o
(
n

2
3+γ

)
as the bound

on the number of covariates.
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Most notable implication here is the rate of growth of pn. For γ arbitrarily close to 0,

i.e. method being close to SCAD, the rate can be arbitrarily close to n1/2. Higher values

of γ restrict pn to growing slower, such that for γ close to 1, i.e. the method being close to

ridge regression with clipped outer area of the penalty, pn must either not grow or grow

very slowly. In other words, there is a tradeoff between how fast we can allow the number

of regressors to increase and how smooth we can let our penalty be. Faster growth of pn

necessitates harsher penalization (both less smooth function and higher λn).

Note that even with fixed pn, Lemma 4 does not allow for γ = 1, as that would

require that the sequence fn goes both to infinity and to zero. In other words, the

proposed estimator does not allow for the use of ridge penalty in the inner area. This

highlights the importance of the core feature of the penalty: infinite second derivative

at zero. With a finite second derivative, first-order variation in sampling error would

lead to a similarly first-order variation in the estimates, precluding us from achieving

superefficiency in Lemma 2 that is the key ingredient of Theorem 2.

In totality, the most restrictive assumption at the moment is that of a gap between

large and small coefficients15, or, in the notation of the simplified example in the previous

part, the lower bound on large coefficients (bn) given by A4(a) coupled with a restriction

that all the rest are zero. While universally employed in the literature, it arguably hides

the problems that penalized methods experience in practice by excluding the possibility

that small-but-not-small-enough coefficients might be present (penalizing which intro-

duces bias in estimates of other coefficients), and in doing so doesn’t allow for theoretical

15In a way, this is what defines them as large and small. The important question is what happens when
some coefficients are neither.
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comparison between the proposed method and existing procedures under such challenging

circumstances.

Of course real world coefficients do not change with sample size, and as such the

assumption appears innocuous. The role of this assumption in the proofs is to keep

estimates of ’nonzeros’ far away from the penalized region, and to exclude any coefficients

that might be erroneously penalized (asymptotically). Therefore with moderate sample

sizes this assumption might be ’violated’: we might have sampling error that is comparable

to the magnitudes of some coefficients, and as such no reasonable choice of τn will allow

us to avoid a nontrivial chance of some nonzero coefficients being in the non-flat area of

the penalty, and hence treated as zeros.

The solution to this is to explicitly consider asymptotics that allow for coefficients to

stay in the penalized region while not being small enough to be disregarded. This will be

addressed in subsection 1.4.3.

1.4.2.3. Confidence interval length. Given that Theorem 2 promises oracle efficiency

and the same asymptotic distribution as the oracle estimator, it is reasonable to expect

narrower valid confidence intervals than those provided by the full-model OLS. This can

be explored theoretically and numerically; I will cover the theoretical part here.

Given a consistent estimator of error variance (I will consider the case where the same

estimator of error variance is used, e.g. the full-model OLS homoskedastic error variance

estimator), and assuming homoskedasticity for the construction of confidence intervals,

the length of the 1−α confidence interval for coefficient j in the full-model OLS estimator

is

2z1−α/2

√
(Σ−1

n )j,jσ̂nn
−1/2.
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Constructing confidence intervals according to Theorem 2 after penalized estimation gives

us confidence interval length

2z1−α/2

√(
Σ−1

1n

)
j,j
σ̂nn

−1/2.

So, in this case “efficient” confidence intervals for nonzeros are narrower by a factor of

√
(Σ−1

n )j,j /
(
Σ−1

1n

)
j,j
.

How low can this be? If Σn is diagonal, then clearly this ratio is 1, and both confidence

intervals have the same length. This is unrealistic, however. Even if regressors come from

a distribution with a diagonal variance-covariance matrix, sample covariance matrix is

unlikely to be diagonal. For example, I simulated 100 observations from a 50-component

multivariate normal distribution with identity covariance, and normalized each compo-

nent to have sample variance 1. I chose 8 components to be “nonzeros”. Over 1000 MC

replications, the average value of the CI length ratio for the first element on the diagonal

(and similarly for others) is 1.37: that is, we would get on average an 1.37 shorter con-

fidence intervals using the efficient penalized method (or oracle OLS) when we use the

same error variance estimates.

The difference becomes even more pronounced when we allow for correlation in the

true distribution of regressors, although then it matters more which 8 components are

chosen as “nonzeros”.

Note that this analysis applies equally to SCAD and other oracle efficient methods

under appropriate conditions, and so all of them would obtain the same length of a

confidence interval asymptotically.
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1.4.3. Asymptotic properties: higher-order analysis under adverse conditions

We have shown that under assumptions common in the literature and with an appro-

priate choice of tuning parameters the proposed estimation procedure can achieve oracle

efficiency, just as other methods in the literature. Furthermore, in Lemma 4 we found that

smoother penalty functions (higher γ) can only be used with slower-growing number of

covariates relative to those with lower γ. To this end, it is worth asking whether anything

is gained by having smooth penalization, relative to nonsmooth methods like SCAD and

others. We will address this question here.

So far we have assumed that there are two kinds of coefficients: small and large ones.

Small ones in this work are defined as exactly zero (this is the assumption of exact sparsity:

β20 = 0). Large ones, characterized by assumption A4(a), are kept further-than-sampling-

error away from zero. This is a common approach in the literature. The assumption on

small coefficients can be relaxed to allow for them to be small but nonzero, as is done in

Horowitz and Huang (2013), where in the most favorable case the l1 norm of β20 must be

o(n−1/2). Even with this relaxation there is still a gap between small and large coefficients

which allows penalized estimation methods to distinguish between what is to be kept in

the model and what is to be excluded.

It is well known, due to results by Leeb and Pötscher (2008) and related papers, that

model-selection consistent estimators behave badly when we allow for some coefficients to

be in this gap, i.e. when they are neither sufficiently large nor sufficiently small. It seems

reasonable (and is shown formally in the proof of Theorem 3) that similar problems will

plague the estimator proposed here. However, the smoothly penalized estimator delivers
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a strict improvement in the worst squared error of the estimates of ex ante important

coefficients through a reduction in omitted variable bias, as is shown in Theorem 3.

For this section, I will adjust the maintained assumptions, to strengthen them in some

ways and significantly weaken in others.

Assumption A5 (Fixed dimension: regressors and errors). The total number of co-

variates is equal to p and is fixed (does not vary with n). Moreover:

(a)

Σn −−−→
n→∞

Σ > 0;

(b)

1√
n

n∑
i=1

εixi = Op(1);

E

[(
1√
n

n∑
i=1

εixi

)(
1√
n

n∑
i=1

εixi

)′]
= O(1).

Assumption A6 (Fixed dimension: coefficients). β0 is given by (β′10, hnc
′)′ with the

length of the first component k and the second p− k for fixed k, where

(a) components 1, . . . , k0 (for fixed k0) of β10 are coefficients on covariates of ex ante

interest (which are not penalized), and

n−1/2 = o

(
min

k0+1≤j≤k
|β10j|

)
;

(b) c ∈ Rp−k, ‖c‖ ≤ 1, (
√
nτn)

1−γ
= o (

√
nhn) and hn = o(τn).

Assumption A7 (Fixed dimension: parameter choices). a > 1 and

τn = n−1/2gn,
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λn = n(1+γ)/2g1−γ
n m,

where m > 0, gn −−−→
n→∞

∞, n−1/2gn = o(1) and n−1/2gn = o (mink0+1≤j≤k |β10j|).

The main strengthening of assumptions comes from maintaining that pn = p is fixed

(does not vary with sample size). While it might be possible to replicate the results with a

growing pn similar to that of Theorem 2, it would require strengthening other assumptions.

The setting considered here will be sufficient to discern important differences between

methods that achieve exact model selection, mainly SCAD, and the proposed procedure

under different choices of γ.

The major relaxation of assumptions comes from abandoning error independence and

homoskedasticity. In fact, just about any sort of error process that would have led the

researcher to believe that the full-model OLS estimator is asymptotically normal at a

root-n rate would satisfy assumption A5(b).16 In particular, this can accomodate het-

eroskedasticity, stationary time series settings, and more general error structures such as

spatial dependence.

Assumption A7 corresponds to the most general form of tuning parameter choice for

SCAD, and in particular is either identical to or less restrictive than the assumptions on

the tuning parameter choice in Fan and Li (2001) and Horowitz and Huang (2013). The

case of γ > 0 is tuned to correspond closest to chosen values for SCAD: the thresholding τn

is in the same position and the rate of the magnitude of the largest value of the penalty

16The first component of A5(b) can be satisfied with (but does not require) 1√
n

∑n
i=1 εixi

d−−−−→
n→∞

N (0,ΣN )

for some covariance matrix ΣN . The second component of A5(b) is a technical condition that is satisfied
by common uniform integrability conditions.
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is the same.17 It is worth noting that A7 satisfies tuning parameter requirements of

assumptions of Theorem 2, and in particular matches those in Lemma 4 for fixed number

of covariates (for a specific value of m). It is also worth noting that the choice of m for

SCAD is inconsequential for Theorem 3, and the choice of m for γ > 0 only affects the

magnitude of the Cγ term, not its sign nor the rate on the difference between squared

errors of SCAD and estimator with smooth penalty.

Assumption A6(a) (together with the restriction on τn in A7) is exactly assumption

A4(a) in a fixed-dimension model with regressors satisfying A5(a), and simply character-

ized what it means for the coefficients to be ’large’. Assumption A6(b) is the main driving

force behind the result: it specifies that while those intermediate coefficients are o(τn),

they are still relatively large. So they will be penalized, leading to bias in their estimates

and hence in the estimates of the ’important’ coefficients. It is through reducing this

version of omitted variable bias that the proposed estimator obtains the improvement in

Theorem 3. The following lemma illustrates the root of the problem:

Lemma 5 (SCAD model selection). Let γ = 0. Suppose assumptions A5, A6(a)

and A7 hold. Moreover, suppose that ‖β20‖∞ = o(τn). Then β̂2n = 0 with probability

approaching one as n→∞.

What Lemma 5 says is that all coefficients that are o(τn) will be estimated as exactly

zero by SCAD. In particular, this includes coefficients of the same magnitude as the

sampling error (n−1/2), as well as coefficients even larger than that. This will be the cause

17More importantly, it is exactly the relative rates of λn and τn given by A7 that give the estimator non-
trivial asymptotic behavior when coefficients exactly proportional to τn are allowed. Detailed treatment
of this case goes beyond the scope of the analysis here and is addressed in Chapter 2.
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of omitted variable bias in estimates of β10, and it is this bias that will be reduced by

using the proposed smooth penalty. This is formally shown in the following theorem.

Theorem 3 (Asymptotic improvement in Realized Squared Error). Suppose assump-

tions A5 and A6 hold. Consider estimating α′1β10 + α′2β20 for some chosen α = (α′1, α
′
2)′

with two estimators: one with γ = 0 (SCAD) and one with γ ∈ (0, 1] (estimator with

smooth penalty), both tuned according to assumption A7 with the same sequence τn. Let

ᾱb =
(

Σ̃′Σ−1
1 α1 − α2

)
and V̄ = Σ2 − Σ̃′Σ−1

1 Σ̃. Suppose that αb 6= 0.18 Let I denote an

identity matrix of the same dimension as V̄ . Let

RSESCAD =
[
α′
(
β̂n,SCAD − β0

)]2

and

RSEγ =
[
α′
(
β̂n − β0

)]2

.

In case of γ ∈ (0, 1) we have

(
hn
τn

)− 1−γ
γ

h−2
n

[
sup

c∈Rp−k,‖c‖≤1

RSESCAD − sup
c∈Rp−k,‖c‖≤1

RSEγ

]
≥ Cγ + op (1) ,

where

Cγ = 2ᾱ′b

{
1

m
V̄ ᾱb

} 1
γ

‖ᾱb‖−
1−γ
γ ,

with the power understood as the sign-preserving element-wise (Hadamard) power. More-

over, Cγ > 0 for all γ high enough.

18This assumption excludes the case where asymptotically there would be no omitted variable bias in the
desired linear combination of coefficients regardless of the value of β20 if we were to drop the ’controls’
from the regression completely. Such a fortuitous occurence is a knife-edge case that is unlikely to be of
practical significance.
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In case of γ = 1 we have

h−2
n

[
sup

c∈Rp−k,‖c‖≤1

RSESCAD − sup
c∈Rp−k,‖c‖≤1

RSEγ

]
= C̄1 + op(1),

where

C̄1 = ᾱ′b

(
1

m
V̄ + I

)−1 [
1

m2
V̄ 2 + 2

1

m
V̄

](
1

m
V̄ + I

)−1

ᾱb > 0.

This result can be interpreted in two ways. First, where both α1 and α2 are potentially

nonzero, Theorem 3 illustrates that using a smooth penalty yields lower worst prediction

error. Second, the result can be interpreted as improving precision of estimation of par-

ticular contrasts, e.g. the ones that are focused on coefficients of ex ante interest. In

this case, what Theorem 3 tells us is that when some of the coefficients are smaller than

τn but nonetheless may not be ’small enough’, their penalization affects estimates of the

important coefficients in a way that is less severe for smoother penalties.

It is notable that this result is in terms of the Realized Squared Error, as opposed to

the Mean Squared Error; that is, it considers the actual squared error in the contrast

of interest as a random variable rather than taking its expectation. This is due to two

facts. First, under the conditions of Theorem 3, specifically A6(b), the leading term in

the expansion of the squared error is nonrandom and the same across different γ and

for model selection methods. Second, and more notably, reduction in bias due to smooth

penalty is larger than the terms that are due to random sampling error, making it possible

to write the result in terms of RSE.19

19Note that the fact that the result is in terms of the realized squared error also implies that Theorem 3

extends to show that for any symmetric loss of the form f
(∣∣∣α′ (β̂n − β0)∣∣∣) with f strictly increasing

smoother penalty will produce lower worst loss with probability approaching one.
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What is the magnitude of improvement delivered in Theorem 3? The answer to this

question is driven by the multiplier
(
hn
τn

)− 1−γ
γ
h−2
n in the statement of the theorem. Note

that in the case of γ = 1 this multiplier is exactly of the magnitude of the (squared) omit-

ted variable bias, since hn is the upper bound on how large the ’intermediate’ coefficients

are allowed to be. In particular, in case of γ = 1, the improvement in squared error is

actually of the first order: as is demonstrated in the proof of Theorem 3, the appropriate

rate on RSE for both SCAD and the smoothly-penalized estimator is h2
n, exactly because

of omitted variable bias. In the case of γ < 1 the result in Theorem 3 is a higher-order

asymptotic refinement, and the rate of the magnitude of the improvement becomes less

than the full omitted variable bias by the factor of
(
hn
τn

) 1−γ
γ

. Evidently the closer γ is to

1, the slower this factor converges to zero, and the closer the estimator is to achieving an

improvement of the magnitude of the omitted variable bias.

Since assumptions A6 and A7 are intertwined through the sequence τn, it is worth

illustrating the statement of Theorem 3 with an example. Suppose the researcher is

satisfied that assumption A5 holds, and she is interested in the coefficient on the first

regressor, which is not penalized (since it is of ex ante interest). The researcher maintains

that ’large’ coefficients on other covariates are bounded away from zero. She decided to

use SCAD, and has chosen a sequence of tuning parameters that would ensure oracle

efficiency according to the conditions of, and under the assumptions of, Fan and Li (2001)

(or Horowitz and Huang (2013)). The theorem says that when some coefficients are

smaller than the chosen thresholding parameter, but still relatively large, with probability

approaching one the researcher would obtain a strictly lower squared error by using the

proposed smooth penalty with the same tuning parameters and with a high enough value
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of γ. While it is true that for any given hn (with a fixed ‖c‖) the researcher could pick a

different sequence τn (specifically, smaller than hn) to avoid omitted variable bias (with

SCAD and with the smooth penalty), the researcher is unlikely to know the exact rate hn;

more importantly, no matter the choice of τn, there will always be sequences hn = o(τn)

that satisfy assumptions of Theorem 3.

This last point can also be illustrated by a game in which the researcher first decides

on the tuning parameter values (and specifically on the sequence τn, representing the

boundary at which the penalty will treat the coefficients as ’large’) from all possible

values that would deliver oracle efficiency in SCAD under standard sparsity assumptions;

moreover, the researcher also has a choice of whether to use SCAD or a correspondingly-

tuned smooth penalty. Then Nature moves and chooses the coefficients on controls with

the goal of making the resulting estimate as far away from the truth as possible (in the

sense of the squared error), with the only restriction that the coefficients Nature chooses

be no larger in magnitude than a certain sequence hn = o(τn). Theorem 3 shows that,

provided hn is not too restrictive, the researcher can strictly improve her payoff in this

game with probability approaching 1 by choosing a sufficiently smooth penalty instead

of SCAD. Moreover, as demonstrated above, this choice of smooth penalty and tuning

parameters will still deliver oracle efficiency under the standard sparsity assumptions.

Two important qualifications need to be addressed. One is that the theorem is stated

for “γ high enough”. Due to nonlinear nature of the expression for Cγ for γ 6= 1, it is

hard to characterize its sign, and so the argument in Theorem 3 works by continuity in

the neighbourhood of γ = 1. While this might not sound useful for practitioners, in an

application we can evaluate the sign of the sample analog of Cγ, since it only depends
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on γ, Σn and α1, the chosen contrast of interest. This sample analog converges to Cγ.

However, due to nonstochastic nature of the regressors and no bounds on Σn−Σ, we can

not test for the sign of Cγ.

The second qualification is that the theorem is written explicitly as a comparison

to SCAD, and as such does not cover other oracle efficient model-selection-consistent

estimators, such as those with adaptive LASSO, bridge or minimax concave penalties.

Unfortunately it is less clear what a ’fair’ comparison is in terms of tuning parameters

between those penalties and the one proposed here; however, some analysis could be

feasible. In particular, Theorem 3 can be straightforwardly adapted to comparison with

minimax concave penalties as long as they satisfy two conditions: the derivative of the

penalty above a certain threshold is zero, and for given tuning parameter sequences we

can find a threshold τn such that n−1/2 = o(τn) and coefficients smaller than τn will

be estimated as exactly zero with probability approaching one. Accomodating bridge

penalties will require accounting for the bias they introduce due to nonzero derivative

of the penalty even for large coefficients, and accomodating adaptive LASSO will involve

similar concerns. Nonetheless, SCAD has emerged as a popular option in model-selection-

consistent penalization literature (both due to prominence of Fan and Li (2001) and due

to much subsequent work on it), and as such is a good benchmark.

Overall, what this section shows is that the proposed estimator can serve as a partial

’insurance policy’ against the worst mistakes of the classic oracle efficient methods, achiev-

ing efficient estimation when the standard assumptions are satisfied but improving the

worst-case performance under very general assumptions when small-but-not-small-enough

coefficients are present.
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1.5. Simulations

Theoretical results under conventional assumptions (Theorem 2) indicate that the

proposed estimator is just as efficient, in the first-order asymptotic sense, as the oracle

estimator, and hence as efficient as model selection based estimators that achieve ora-

cle efficiency. The result on higher-order refinement in squared error tells us that when

intermediate-magnitude coefficients are present, smoother penalties should have an ad-

vantage over model selection based estimators, at least in the worst cases. I will carry out

numerical simulations to illustrate both points.

I will simulate the linear model considered throughout this chapter. Regressors will

be drawn (once for each model) from a multivariate normal with covariance matrix with

diagonal 1 and off-diagonal elements equal to 0.7.20 This covariance structure ensures

that the ordering of regressors is irrelevant, that is, permuting coefficients would not

materially change the results. Regresssors will be standardized to have sample mean

zero and variance one. I will treat regressor 1 as the “important” regressor and will not

penalize the corresponding coefficient. Other regressors are treated as controls.

There will be n = 250 observations and p = 20 covariates in each simulation run.

Errors are i.i.d. N (0, σ2), where σ2 is chosen so that the finite-sample MSE of the full-

model OLS estimator of coefficient 1 would be 1.

I evaluate six simulation designs meant to illustrate settings of Theorem 2 and The-

orem 3. In all of them the first coefficient is set to 1 and its estimate is not penalized.

The second coefficient is set to 20, which is large enough to be in the outer area of the

penalty with the choice of τn outlined above (which is about 1.8 in the simulations). So

20It is easy to verify that this produces a valid variance covariance matrix.
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covariate 2 is thus a control covariate with a ’large’ coefficient (unknown from the point

of view of simulations), and even though its coefficient will be penalized, it will be in the

flat area of the penalty. The simulation designs differ in the coefficients on the other 18

covariates. In the ’zero’ design, those 18 coefficients are exactly zero, representing exact

sparsity. The other 5 designs introduce progressively larger coefficients:

(1) Coefficients 2-20 are drawn from U [0, 0.1].

(2) Coefficients 2-20 are drawn from U [0, 0.2].

(3) Coefficients 2-20 are drawn from U [0, 0.3].

(4) Coefficients 2-20 are drawn from U [0, 0.4].

(5) Coefficients 2-20 are drawn from U [0, 0.5].

For comparability of results across designs, all coefficients are drawn once from U [0, 1]

and then scaled appropriately for each design.

The ’zero’ design captures the key feature of the ideal case: coefficients on controls

are either zero or large, making it easy for model selection or penalization methods to

distinguish between important and unimportant covariates.

The other designs are challenging in a sense that some of the coefficients on controls

are smaller than τn but not sufficiently small to be irrelevant, leading to omitted variable

bias due to penalization. Scaling coefficients up as we move from design 1 to design 5

should increase this bias. On the other hand, shrinking small coefficients also carries a

benefit through a reduction in variance.

For all simulations, I will need to choose tuning parameters. I will conduct all simu-

lations for various values of γ, so as to illustrate its effects, including γ = 0, i.e. SCAD. I

will use a = 3.7 (as recommended by Fan and Li (2001) for SCAD). τn will be chosen in
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each simulation run as the half-width of the widest 95% confidence interval that we would

construct by running full-model OLS (and using homoskedastic OLS estimator of error

variance). This seeks to mimic the idea that τn should be ’larger than sampling error’.

Finally, λn will be chosen by crossvalidation in each simulation.

While in practice τn can, and probably should, be chosen by crossvalidation, I will

keep it fixed here and report results for different values of γ to isolate its effects. γ can

also be chosen by crossvalidation, as will be done in the empirical application, but here

the goal of simulations is to highlight differences across γ and with SCAD, and so a grid

of values of γ is reported.

I will focus on simulated mean squared error of estimates of coefficient 1. Note that I

do not address coverage in the simulation results reported here; Chapter 2 focuses more

specifically on inference and so I leave it to the simulations section in that chapter to

place inference results in better context.

Results for SCAD, full-model OLS and smooth penalty with γ ∈ {0.1, 0.5, 0.9} are

plotted in Figure 1.4. Numerical results (including those for other values of γ) are reported

in Table A.1 in the appendix, along with Figure A.1 showing simulated bias of estimates

of coefficient 1.

In ’zero’ design, all choices of γ yield lower MSE than OLS, but the lowest choices

appear best, with the minimum at SCAD (i.e. γ = 0). This is to be expected, since we

prefer the coefficients that are truly zero to be estimated as close to zero as possible, and

low values of γ do that (the residual term in Theorem 2 is lower). SCAD estimates these

coefficients as exactly zero with high probability, and so is practically the same as the

oracle estimator.
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Figure 1.4. Simulated MSE of estimates of coefficient 1. All results are from
10 000 simulations (per model and estimator).

As we increase the magnitude of small coefficients, performance of SCAD estimator

starts to worsen dramatically, to the point that in the last design the increase in MSE is

equivalent to cutting sample size in half. Even moving to γ = 0.1 notably improves esti-

mator performance, and γ = 0.9 proves the most robust. Even though it does somewhat

worse than SCAD or lower values of γ in the ’zero’ case, it still improves on OLS in that

case. On the other hand, for upper bound 0.1, γ = 0.9 is nearly the same as other methods

(and still improves on OLS), and clearly outperforms them for larger magnitudes of small

coefficients. Note also that SCAD and γ = 0.1 break even with OLS around upper bound

0.2, and changing to γ = 0.9 moves the break-even point to 0.4. That is, high smoothness

doubles the range of coefficient magnitudes where penalization is beneficial.
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However, even γ = 0.9 does worse than OLS in the last case with the highest magnitude

of small coefficients. This reflects the fact that omitted variable bias dominates variance

reduction in this case.

Results support the intuition from Theorem 3 that smoother penalty performs better

in the case when not-sufficiently-small coefficients are present, and also the intuition from

Theorem 2 about behavior under exact sparsity.

In addition to the results presented above, average execution time with SCAD is almost

twice as long as with smooth penalty with γ = 0.1, and higher γ increase execution speed

even further. This suggest that smooth penalization might offer appealing computational

advantages over nonsmooth SCAD. However, since faster algorithms can undoubtedly be

created for both SCAD and smooth penalization estimators, the results on computational

speed are tentative and as such I do not report the exact numbers.

Overall, simulation results suggest that smoother penalties might present better overall

precision of estimation of coefficient of interest, improving upon full model OLS under

ideal conditions and performing better than SCAD under challenging circumstances.

1.6. Conclusion

I have proposed a penalized estimation method that achieves oracle efficiency despite

utilizing a differentiable penalty function. The proposed method is computationally easy

and is particularly suitable to circumstances where model selection is not in itself required,

such as when estimating a linear model with a large number of controls but small number

of covariates of interest. For an applied researcher faced with a high-dimensional dataset,
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the method provides a rigorous approach to carrying out efficient estimation of coefficients

of interest without the need for ad hoc trimming of controls.

Importantly, the estimator improves on existing model selection based estimators when

the ’gap’ assumptions that preclude presence of coefficients comparable to the sampling

error are violated. The proposed estimator achieves asymptotically lower worst realized

squared error in the estimates of coefficients of interest, driven by a higher-order reduction

in bias. This serves as a partial ’insurance policy’ against undesirable properties when

such coefficients are present.

The proposed method works well in simulations, reducing mean squared error of coef-

ficients of interest relative to OLS across various settings. In particular, smoother versions

of the penalty (higher γ) result in more robust performance when small-but-nonnegligible

coefficients are present. The method is computationally easy, with estimation taking frac-

tions of a second on a modern computer, and higher values of γ working faster than lower

ones. Fast computational speed results in crossvalidation being unburdensome.
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CHAPTER 2

Alternative Asymptotic Analysis of Once-Differentiable Penalty

Estimator

2.1. Introduction

Modern economic analysis often deals with datasets with a large number of potentially

relevant covariates. It is often not unreasonable to suppose that only a fraction of the

covariates actually affect the outcome, but at the same time it is not always clear ex ante

what those important covariates are. The question then is how to carry out estimation

and inference in such settings so that efficiency gains of smaller models might be realized

and yet model misspecification is also avoided.

A number of approaches have emerged to carry out estimation in such settings. Pe-

nalized estimation with a continuous penalty function has emerged as perhaps the most

popular, with LASSO by Tibshirani (1996) and SCAD by Fan and Li (2001) being the

most well known. Supposing that there is a true (and fixed) sparse data generating pro-

cess underlying the data, SCAD can achieve model selection consistency, that is, keep all

the covariates that are relevant to the outcome and drop the rest. Combined with the

asymptotic lack of bias for nonzero coefficients, model selection delivers what is termed an

oracle property : the estimator of nonzeros has the same asymptotic distribution as if the

true, oracle model were known and estimated from the start. This immediately leads to

straightforward inference that takes only estimated-as-nonzero coefficients into account.
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Good properties of such estimators crucially depend on the absense of coefficients

roughly comparable in magnitude to the sampling error. In particular, the oracle prop-

erty is not uniform in coefficient size, and estimator performance can be greatly com-

promised by omitted variable bias when such intermediate-magnitude coefficients are

present.1 Chapter 1 proposed a penalized estimator with a once differentiable penalty

function, showing that such an estimator can achieve oracle efficiency in the standard

framework that prohibits coefficients of intermediate magnitude. At the same time, de-

parting from model selection provides a reduction in estimator bias when such small

coefficients are present, leading to a reduction in quadratic loss that is of a larger magni-

tude than even that of the sampling error. As shown in Chapter 1, inference based on the

oracle distribution remains valid in the standard model, just as with model-selection-based

estimators.

However, it is well understood in the literature (see e.g. Leeb and Pötscher (2008),

Belloni, Chernozhukov, and Hansen (2014) and references therein) that the oracle distri-

bution may be a less-than-ideal approximation to the finite sample behavior of penalized

estimators. In finite samples we may experience both mistakes in classifying covariates as

small or large, and local bias and variance distortions in estimator distributions coming

from the penalty term. It is therefore desirable to consider alternative asymptotic ap-

proximations that might be better suited to capturing finite sample estimator behavior.

This paper explores such alternative asymptotic approaches in the context of the pe-

nalized least squares estimator proposed in Chapter 1. Three alternatives are considered,

1The range of what I call “intermediate-magnitude coefficients” is also known as the “gap” in the litera-
ture, after a common feature of assumptions required for estimators to achieve oracle efficiency: that of
either having zero (or very small) or relatively large coefficient values, but nothing in between. A more
detailed discussion of this assumption and its violations can be found in Chapter 1.
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differing in which of the finite sample issues they capture and consequently differing in

their usefulness to practitioners.

The first approach is the local asymptotic approximation that allows us to capture

the full richness of finite sample behavior. Both classification mistakes and nontrivial

covariance between large and small coefficients are captured, and consequently the ap-

proximation is the most realistic one. However, it is not useful for practical inference, as

the asymptotic distribution depends on impossible-to-estimate drift parameters. Such an

approximation is still interesting as a way of thinking about finite-sample performance of

the estimator, and an example is evaluated that illustrates that the intuition from results

obtained in Chapter 1 carries over to this more complex approximation. In particular,

smoother penalty delivers slightly worse performance than when the classic sparse model

is a correct representation of the DGP, but offers a much larger improvement under a

wide range of violations of sparsity.

The second approach is what I call a “semi-local” asymptotic approximation. This

approximation consideres tuning parameter choices that deliver correct classification and

oracle efficiency in the standard sparse model. However, instead of assuming away in-

termediate coefficients, I explicitly consider coefficients proportional to the thresholding

parameter. This allows us to capture bias and variance effects of having intermediate

coefficients. The resulting asymptotic distribution is normal and incorporates bias and

variance adjustments typical of delta method approaches. It is possible to estimate both

the bias and the variance. However, I show that estimating the bias introduces the vari-

ance cost such that the confidence intervals obtained using such an approach are exactly
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the same width as those from using the full-model OLS estimation and inference proce-

dure. This result runs counter to the suggestion in Fan and Peng (2004), whereby bias is

estimated but extra variance is not accounted for in the suggested inference procedure.

The third, and final, approach is to allow for nontrivial covariance between esti-

mates of small and large coefficients but not for the classification errors and bias due

to intermediate-magnitude coefficients. This covariance arises from the fact that while in

the standard asymptotic framework of Theorem 2 estimates of ’zeros’ converge to zero at

a rate that is sufficiently fast to ignore them in the asymptotic distribution of ’nonzeros’,

in finite samples variation in these coefficients will introduce variation in estimates of

large coefficients.2 I show that the resulting nonstandard asymptotic distribution can be

approximated by a modified bootstrap procedure similar to that used in Chatterjee and

Lahiri (2011) for LASSO estimators. Moreover, the same modified bootstrap procedure

is valid under the standard assumptions on coefficients and tuning parameters, and the

researcher does not need to know which is the ’correct’ regime to obtain valid inference

via bootstrap. As such, inference by this modified bootstrap can be seen as a more robust

approach that guards against underpenalization.

Simulation evidence supports theoretical findings and illustrates that the bootstrap

behaves well even when the penalty level is not so high so as to render estimates of zero

coefficients negligible, improving on the coverage of the confidence intervals constructed

using the oracle distribution and still delivering narrower confidence intervals than those

from the full-model OLS. Furthermore, building on the results of Chapter 1, simulation

evidence suggests that even when exact sparsity is violated, a combination of a smoother

2In a model-selection-based estimator, a similar feature will be observed where the probability of selecting
precisely the right model is less than one in a finite sample.
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penalty and bootstrap inference continues to provide close-to-nominal coverage, capital-

izing on reduced estimator bias that is a key feature of the smoothly-penalized estimator.

The remainder of the paper is structured as follows. Section 2.2 introduces the model

and the notation, as well as the penalized least squares estimator with the smooth penalty

proposed in Chapter 1. Section 2.3 discusses possible approaches to asymptotics as they

relate to the choices of tuning parameters. Section 2.4 presents the local asymptotic ap-

proximation and illustrates the analogy to the results in Chapter 1. Section 2.5 considers

the semi-local approximation and inference with estimated bias. Section 2.6 considers the

asymptotic approximation that allows for nontrivial covariance between estimates of small

and large coefficients but not for classification errors nor intermediate-magnitude coeffi-

cients, and shows that the modified bootstrap can be used to approximate the resulting

asymptotic distribution, as well as the asymptotic distribution under standard assump-

tions on coefficients and tuning parameters. Section 2.7 presents simulation evidence on

the comparative merits of bootstrap and oracle distribution. Section 2.8 concludes.

2.2. The model and the estimator

This section describes the model and the notation used in this paper, and reintroduces

the penalized estimator proposed in Chapter 1.

The researcher observes a sample of n observations from the following model:

yi = x′iβ0 + εi,

where xi is a p × 1 vector of covariates, which includes k0 ≥ 0 covariates of ex ante

interest and p− k0 controls. Unlike Chapter 1, I treat p, the total number of covariates,
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as fixed in this paper, as it simplifies the arguments while still allowing to focus on the

interesting features of the estimator. The regressors are nonstochastic in line with the

standard approach in the literature, and the error term εi has mean zero.

Some of the coefficients on controls are potentially zero: that is, the model can be

written as

(2.1) yi = x′1,iβ10 + x′2,iβ20 + εi.

where β10 is of length k ≥ k0 and includes coefficients on covariates of ex ante interest and

nonzero coefficients on controls. Correspondingly β20 = 0, and so consists of coefficients

on those controls that have no mean effect on y. Taking the above into account we can

write

(2.2) yi = x′1,iβ10 + εi.

The researcher’s goal is to estimate β0 and conduct inference on it; specifically, the

researcher might focus on the coefficients on covariates of ex ante interest. One avenue

is thus to estimate (and conduct inference based on) the full model in Equation 2.1 by

OLS. Had the correct partitioning been known, the researcher would have wanted to

estimate the oracle model in Equation 2.2, which could lead to lower estimator variance

and narrower confidence intervals. Since the correct partitioning is unknown, the oracle

estimator is infeasible.



64

I will consider here the estimator proposed in Chapter 1 and defined as follows:

β̂n = arg min
b
Qn(b),(2.3)

Qn(b) =
n∑
i=1

(yi − x′ib)2 + λn

p∑
j=k0+1

Pen(bj),(2.4)

where the penalty function is everywhere differentiable with the derivative

Pen′(b) = 2τ γn sgn(b)



(
|b|
τn

)γ
, when |b|

τn
< 1;

a− |b|
τn

a−1
, when |b|

τn
∈ [1, a];

0, when |b|
τn
> a.

(2.5)

Figure 2.1 reproduces Figure 1.2 from Chapter 1 and illustrates the derivative of the

penalty function.

The fact that the penalty is everywhere differentiable means that none of the estimated

coefficients are exactly zero. Chapter 1 shows that this reduces worst-case estimator bias

and through it estimation and prediction squared error when intermediate-magnitude

coefficients are present.

It is worth highlighting that asymptotic approximations in this paper revolve around

two tuning parameters in the expressions above: the thresholding parameter τn and the

scale parameter λn.

Observe that the thresholding parameter determines what magnitude coefficients fall

into what area of the penalty. In particular, the penalty has three areas: inner area

(coefficients smaller than τn in absolute value), outer area (coefficients larger than aτn in

absolute value), and an intermediate area that provides a smooth transformation from
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b

Pen′(b)

−τn

−2τ γn

τn

2τ γn

−aτn
aτn0

Figure 2.1. Plot of the derivative of the penalty function for γ = 0.4, τn = 1,
a = 3.

the inner area to the flat outer area. In this way the role of τn is to distinguish between

small and large coefficients.

The scale parameter λn primarily serves to drive coefficients that are in the inner area

of the penalty towards zero. How fast they converge to zero depends on how large λn is.

2.3. Possible approaches to asymptotic approximations

The main standard theoretical result in Chapter 1 – Theorem 2 – postulates what is

known as the oracle property, popularized by Fan and Li (2001). This is a feature common

to modern penalized estimators such as SCAD, bridge estimators and adaptive LASSO,

and essentially establishes that under the right conditions the asymptotic distribution of
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coefficients of interest (or otherwise “large” coefficients) is the same as if we knew and

estimated the smallest parsimonious model by OLS from the start.

It is well understood in the literature (see e.g. Leeb and Pötscher (2008), Belloni,

Chernozhukov, and Hansen (2014) and references therein) that the oracle distribution may

be a less-than-ideal approximation to the finite sample behavior of penalized estimators.

It is therefore worth looking into how the oracle property is achieved and what can be

done differently to obtain a more realistic approximation to finite-sample behavior.

The conclusion of Theorem 2 is achieved with the following conditions on the two

tuning parameters:

(1) τn should be large enough to exceed sampling error (Assumption A4(b)) but

smaller than large coefficients (Assumption A4(a)).

(2) λn should be high enough so that true zero coefficients are driven to zero at a

sufficiently fast rate (Assumption A4(c)).

The two conditions achieve subtly different effects. The first one ensures that, asymp-

totically, we can classify coefficients into “zeros” and “nonzeros” (or “small” and “large”

ones). In particular, it is intertwined with the assumption that there are no coefficients

of an intermediate magnitude, that is, ones which are large enough to be important yet

not large enough to be easily distinguishable from zero. As such, this part ensures that

there are no classification errors in Theorem 2, and so none of the coefficients that need

to be kept in the model are biased, and all of the coefficients that are small are judged as

such.

The second assumption ensures that the estimates of coefficients that are truly zero

are so small as to not affect the nonzeros. It essentially allows us to treat the component
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of variance in estimates of large coefficients that is due to variance in the estimates of

small coefficients as negligible.

Among the two conditions on the tuning parameters, it is arguably easier to ensure

that τn is larger than the sampling error of the estimator, for exampe by using the rule

of thumb recommended in Chapter 1 (see e.g. the approach in Section 1.5), whereby we

can set τn as the half-width of the widest confidence interval constructed using full-model

OLS, where the nominal coverage is chosen suitably large.

It is less obvious what the appropriate finite-sample way of choosing λn should be.

Simulations in Chapter 1 support the idea that crossvalidation works well both when

the standard no-intermediate-coefficients assumption is replicated and even when some

intermediate-magnitude coefficients are present. However, Wang, Li, and Tsai (2007)

show in the context of SCAD that crossvalidation may lead to underpenalization, and

so it is worth considering how we can carry out inference that remains valid under such

conditions. Moreover, even if a data-driven way to choose λn can be devised that does

indeed deliver λn sufficiently high (as BIC does in Wang, Li, and Tsai (2007)), it might be

argued that a lower level of λn provides a better safeguard against penalization bias, and

can be desirable in settings where the researcher is unsure of the validity of the standard

sparsity assumptions.

Given the context of choices of tuning parameters, there are four possible combina-

tions of views on whether we want to capture classification errors (and ensuing bias) and

covariance between estimates of large and small coefficients.
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Capturing neither effect is the standard asymptotic approach of Theorem 2 discussed

above, achieved with sufficiently high τn, sufficiently high λn, and assuming away inter-

mediate coefficients.

Capturing both effects can be achieved by using the local asymptotic approximation

in Section 2.4, where neither τn nor λn are “large enough”, and coefficients proportional

to τn are allowed. As will be seen, while this might be seen as the best approximation

theoretically, it is not useful for inference as the asymptotic distribution is dependent on

impossible-to-estimate nuisance parameters. We must therefore turn to more restrictive

approximations.

Capturing classification mistakes and penalization bias, but not covariance between co-

efficients estimated as “zero” and other ones, can be achieved under standard assumptions

on tuning parameters but allowing for coefficients proportional to τn. This is considered in

Section 2.5. While the resulting asymptotic distribution differs nontrivially from both the

full-model OLS distribution and the oracle distribution derived in Theorem 2, estimating

bias in order to carry out inference results in normal distribution with the variance that

is exactly the same as that of full-model OLS, and so while realistic, this approach does

not improve on simply estimating the full model by OLS as far as the width of confidence

intervals is concerned.

Finally, we can capture covariance effects but not classification mistakes and penaliza-

tion bias in a framework where there are no intermediate coefficients, τn satisfies standard

assumptions but λn is not “large enough”. This is the approach in Section 2.6. In contrast

to the two alternative approaches above, the asymptotic distribution does not contain un-

known parameters, and can be approximated by a modified bootstrap procedure, yielding
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an inference tool that both improves the quality of the asymptotic approximation relative

to the standard framework, and still delivers narrower confidence intervals than those

offered by full-model OLS. Notably, this bootstrap procedure is also valid under the stan-

dard assumptions on τn and λn, and so can be recommended as a robust approach to

inference for practical applications.

2.4. Local asymptotics

As described above, it is well understood that oracle efficiency in the standard sparse

setting comes at a cost of poor performance when some coefficients fall into the no man’s

land of being neither small enough to warrant exclusion from the model nor large enough

to be clearly distinguishable from zero. One clear way to evaluate performance in this

case is to consider local asymptotics with model parameters approaching zero at just the

right rate:

β0 = α0n
−1/2,

where α0 is a fixed p-vector.

For the asymptotics to be sensitive to specific choices of penalty function and tuning

parameters, we need to capture both the possibility of mistakes in classifying coefficients

based on location of the estimates, and the fact that for any given penalty multiplier there

is a chance that the estimated coefficient will be large even if the true value is zero. To

capture both effects we need to model τn and λn as slightly smaller than in the standard
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asymptotic approach, specifically

τn = tn−1/2,

λn = ln
1+γ
2

for some fixed t and l.

Note that now τn shinks at the the same rate as sampling error, and λn is just large

enough to make the penalty term converge to a stable limit in local asymptotics.

Given the above choice of τn the magnitude of components of the Pittman drift α0

relative to t and at determines whether a given coefficient is primarily “large” or “small”,

essentially by what area of the penalty function it falls into.

Notice also that the two tuning parameters are just smaller (by factors growing at an

arbitrarily slow rate) than what is called for by Theorem 2 in Chapter 1, which would

allow us to capture features of the estimator that are explicitly suppressed in Theorem 2

in Chapter 1. As such, the estimator will no longer exhibit oracle efficiency and the

asymptotic distribution will be complicated, but the goal is for it to be a more realistic

approximation to finite sample behavior.

I establish the following result for the case outlined above:

Theorem 4 (Local asymptotics). Suppose the total number of regressors and the num-

ber of ex-ante important regressors are fixed at p and k0, respectively, regressor covariance

matrix Σn converges to a positive definite limit Σ, true regression coefficients are given

by β0 = α0n
−1/2 and the two tuning parameters are τn = tn−1/2 and λn = ln

1+γ
2 . Assume

that the errors are i.i.d. with mean 0 and variance σ2. Let Pen(b; τ) denote the penalty
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function with the thresholding parameter set to τ . Then

√
n
(
β̂n − β0

)
d−−−→

n→∞
arg min

u
VL(u),

where

VL(u) = u′Σu− 2u′W + l

p∑
j=k0+1

Pen(α0 + u; t)

and W ∼ N (0, σ2Σ).

The proof of this result follows immediately from the arguments in Knight and Fu

(2000).

As is evident from the result of the theorem above, the asymptotic distribution is

nonstandard and, more importantly, depends on impossible-to-estimate Pittman drift pa-

rameters α0. As such, this approximation can not be used for inference directly. However,

it is still of interest in evaluating estimator performance in a theoretical setting.

While there does not appear to be a closed-form solution for the asymptotic distribu-

tion in the general case, it can be easily simulated for specific circumstances. In particular,

we might want to explore how the mean squared error of the estimator varies with the

Pittman drift. To this end, consider a two-covariate setup with the first coefficient large

(α01 >> at) and the other one small-to-moderate (|α02| ∈ [0, at]). We will compare the

asymptotic mean squared error of the estimator of β1 for different values of γ, i.e. for

different shapes of the penalty function.

Since the penalty requires two tuning parameters (plus a as the third) for a given value

of γ, we need a way to choose tuning parameters that would make results comparable

across different γ. The only difference in the shape of the penalty lies in the inner area
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of the penalty, and so we will set t and a the same across different γ, and then choose

l (or λn) so that the shape of the penalty above t (or τn) is exactly the same for all γ.

This amounts to choosing l so that the largest value of the derivative of the penalty is the

same across γ. Suppose for γ = 0 we choose l = l0. Then for a different γ the equivalent

value of l is

lγ = l0t
−γ.

We will consider asymptotic covariance matrix for regressors with correlation coeffi-

cient ρ = 0.5. The results depend on it in the obvious way: higher ρ will let estimator of

coefficient 2 affect that of coefficient 1 more, in particular increasing the bias when α02 is

nonzero.

Other parameters will be set as follows: σ2 = 1, a = 3.7 per the recommendation in

Fan and Li (2001), and α01 = 2at, different for different values of t but always far above

at.3

Note that in this model two-covariate OLS estimator of β1 has asymptotic MSE of

1
1−ρ2 = 1.33 and oracle asymptotic MSE of 1.

We will consider two choices of t and l0:

(1) t = 1, l0 = 2. This corresponds to the case when we would both make many

classification mistakes (due to low value of t relative to σ), and we are penalizing

a lot, so that, in case of second coefficient being really zero, we would estimate

it as very close to zero most of the time and hence would get almost perfectly to

oracle efficiency.

3We can consider a different setup where the first coefficient is not penalized, and then it would not
matter where it is located. As it is, the main point in choosing a drift value for β1 is to keep its estimates
out of the penalized region.
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(2) t = 3, l0 = 1. This corresponds to the case where we make very few mistakes

in classifying, and we are also penalizing less. So we would expect to be further

from oracle efficiency in case β2 = 0 but perhaps achieve better performance for

all methods in the intermediate range where we incur most bias.

Results are summarized in plots in Figure 2.2 and Figure 2.3. In each figure, the first

plot shows asymptotic MSE of β̂1 and the second shows the ratio MSE(γ)/MSE(γ = 0.1)

as a way of comparison.

I find that for all values of γ there is a large range of intermediate values of drift where

the estimator has higher MSE than full-model OLS. This mirrors the intuition in Leeb

and Pötscher (2008), in that the estimator (much like other penalized estimators) suffers

from increased bias in the intermediate range of coefficient values as a cost of improving

efficiency at zero.

Moreover, we find that higher values of γ lead us to two results: we lose some efficiency

when the second coefficient is very close to zero, and gain some in a wide range where

that coefficient is further away from zero but still in the penalized region. That is, it

would be more reasonable to use low γ (or even SCAD) if we were very confident that the

model is sparse with a large number of zeros and no intermediate parameters; however,

if we suspect that some intermediate coefficients might be present, then larger values

of γ provide some insurance againt very large bias and MSE due to those intermediate

coefficients. This is in line with Theorem 3 in Chapter 1, illustrating that the reduction

in bias due to smoother penalty dominates the whole of the variance term, implying that

smoother penalties deliver lower squared error with intermediate-magnitude coefficients.
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Figure 2.2. MSE and relative efficiency as a function of γ and β2 – Case 1
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Figure 2.3. MSE and relative efficiency as a function of γ and β2 – Case 2
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As such, choosing γ amounts to resolving a tradeoff between excellent behavior when

traditional assumptions on coefficients are a good approximation to the DGP, achieved by

lower values of γ, and less-terribly-bad behavior when those assumptions do not capture

key features of the DGP, and the bias problems are present, in which case higher values

of γ provide more robust performance.

2.5. Semi-local asymptotics

As illustrated in the previous section, local asymptotics of the type considered there are

unsuitable for inference due to dependence of asymptotic distribution on impossible-to-

estimate drift parameters. We will consider an alternative approach to local asymptotics

in which the coefficients are proportional to τn, but unlike in the previous section, n1/2τn →

∞, consistent with the assumption on τn in the standard asymptotics. λn will also be

chosen in a way that satisfies the standard assumptions, that is, high enough to suppress

the effects of coefficients estimated as zero on the other ones.

To simplify the results, it helps to redefine the intermediate range of the penalty. The

original definition of the penalty function specifies a transitional region from the inner

part of the penalty to the flat outer part as a parabola, in the same way as in Fan and Li

(2001). This means that the penalty function is not twice differentiable at the boundaries

of the intermediate region. While this is irrelevant in asymptotic experiments that exclude

coefficients comparable to the thresholding parameter, it becomes less convenient when

such coefficients are allowed, potentially leading to non-normality in those coefficients that

happen to center at the boundary of the transitional region. For this reason it is more

convenient to redefine the penalty so that it is twice differentiable everywhere except for
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zero, making the description of asymptotic behavior easier. Therefore consider a class of

penalty functions defined by their derivative satisfying the following description:

Assumption A8 (Penalty function). Penalty function Pen(b; τn) (as a function of

b with thresholding parameter τn) is continuously differentiable, with a derivative that

satisfies the following conditions: Pen′(b; τn) = 2 sgn(b)|b|γ for |b|
τn

< 1; Pen′(b; τn) =

0 for |b|
τn
> a; Pen′(b; τn) is continuously differentiable on b 6= 0 with finite derivative.

I will rely on (asymptotic) objective function convexity to establish results in this

section. To this end, Lemma 1 from Chapter 1 that establishes convexity of the objective

function needs to be modified. The new assumption and convexity lemma are as follows:

Assumption A9 (Objective function convexity). (a) Let Ip,k0 be a diagonal p × p

matrix with the first k0 diagonal elements equal to zero and the remainder equal to one.

We have

Σn +
1

2

λn
n

min
b6=0

Pen′′(b; τn)Ip,k0 > 0

in the sense of the matrix being positive definite.

(b) (sufficient condition for A9(a)) Let ρn be the smallest eigenvalue of Σn. We have

−1

2

λn
n

min
b 6=0

Pen′′(b; τn) < ρn.

The modified convexity lemma thus reads as

Lemma 6. Suppose the penalty function satisfies assumption A8, and assumption

A9(a) holds. Then the objective function Qn(b) is strictly convex.
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The proof of Lemma 6 is a straightforward modification of the corresponding proof in

Chapter 1.

We will make one weak assumption on errors together with regressors:

Assumption A10 (Asymptotic normality in OLS).

1√
n

n∑
i=1

εixi
d−−−→

n→∞
N (0,ΣN)

for some positive definite matrix ΣN .

Assumption A10 allows for a very generic form of the error term, in particular allowing

heteroskedasticity and cross-dependence as in time series settings. Essentially, whenever

the researcher would be prepared to assume asymptotic normality at root-n rate with

a full-model OLS regression (and have a way to consistently estimate the ’meat’ of the

asymptotic covariance matrix), she should be willing to entertain Assumption A10.

Regressor covariance matrix is assumed to converge to a positive definite limit:

Assumption A11 (Regressor covariance matrix). (a) Σn → Σ as n → ∞ for some

positive definite matrix Σ.

(b) Assumption A11(a) holds; moreover

‖Σn − Σ‖ = o

(
1√
nτn

)
.

Note that Assumption A11(b) is not a restriction on Σn, but rather an upper bound

on how large τn can be, since whenever Assumption A11(a) holds, we can always let
√
nτn

grow slowly enough such that A11(b) is satisfied.
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Finally, we will require asymptotic convexity, which is achieved with a direct analogue

of Assumption A9(a):

Assumption A12 (Asymptotic convexity). For the matrix Σ in assumption A11(a)

and tuning parameters λn, τn such that λn
n

= mτ 1−γ
n the following holds:

Σ +
1

2
mmin

b6=0
Pen′′(b; 1)Ip,k0 > 0

in the sense of the matrix being positive definite.

Assumption A12 ensures that the asymptotic objective function is convex. Without

it the estimator might not be continuous, which would preclude us from establishing

asymptotic normality of the estimator.

Theorem 5 (Asymptotic distribution under semi-local asymptotics). Suppose condi-

tions A8, A10, A11(b) and A12 are satisfied, a > 0 and γ ∈ (0, 1). Let τn = n−1/2gn for

some gn →∞ and λn
n

= mτ 1−γ
n for some fixed m > 0. Let β0 = α0τn. Let

b = arg min
v
v′Σv +m

p∑
j=k0+1

Pen(α0j + vj; 1).

Let β10 capture the elements of β0 such that either the corresponding coefficient is not

penalized, or α0j + bj 6= 0. Let β20 capture the rest, and let β0 = (β′10, β
′
20)′. Partition β̂n,

b, α0 and Σn accordingly. Then √n
(
β̂1n − β10

)
−
√
nτnb1

λn√
n
β̂γ2n

 =

 V −1
1 0

−Σ̃′nV
−1

1 I

W + op(1),

where V1 = Σ1n + m
2
52 Pen(α10 + b1; 1) and W ∼ N (0,ΣN).
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What Theorem 5 shows is that estimates of coefficients that are centered at zero con-

verge faster than root-n, and that the asymptotic distribution of coefficients of interest

(and others in group 1) is only affected by those in group 2 through the bias. A natu-

ral question is then whether we can estimate the bias and conduct inference. Observe

that due to convexity, the minimization problem defining the bias has a unique solution

characterized by the first-order condition:

b = −m
2

Σ−15 Pen(α0 + b; 1),

or, utilizing the fact that τ−1
n

(
β̂n − β0

)
= b+ op(1), we can rewrite the above as

b = −1

2

λn
nτn

Σ−15 Pen
(
β̂n + op(1); τn

)
.

Naturally, we can use

b̂n = −1

2

λn
nτn

Σ−1
n 5 Pen

(
β̂n; τn

)
as an estimator of the bias. However, replacing the unknown true bias in Theorem 5 with

this estimate adds to the variance, which is captured in the following result:

Lemma 7 (Asymptotic distribution with estimated bias). Suppose assumptions A8,

A10 and A11(a) are satisfied. Then

√
n
(
β̂n − β0 − τnb̂n

)
d−−−→

n→∞
N
(
0,Σ−1ΣNΣ−1

)
.

The result of Lemma 7 says that the confidence intervals constructed with the above

estimate of the bias have the same width as those constructed from the full-model OLS. It
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is not surprising: we cannot get narrower confidence intervals from penalized estimation

without any assumptions on the possible magnitudes of coefficients.

2.6. Bootstrap

While the asymptotic distribution in Theorem 2 in Chapter 1 is normal (or a trans-

formation of it in case of zeros), we have seen that under more realistic local asymptotics

the asymptotic distribution is less tractable. What’s worse is that it depends on Pittman

drifts of small coefficients that can’t be estimated consistently. Due to this fact it appears

that bootstrap wouldn’t work if we allow for arbitrary values of Pittman drift (the proof

would go along the lines of Chatterjee and Lahiri (2010)), and it is not clear how to do

(non-conservative) inference in this case.

As such, we will not seek to conduct inference in the presence of intermediate-value

parameters, and will assume again that all parameters are either zero or ’large’. The

question then is whether we must revert to the asymptotics in Theorem 2 in Chapter 1, or

whether there is some middle ground that would be more realistic than oracle asymptotic

distribution but where we could still construct a valid (and nonconservative) inference

procedure.

One abstraction of Theorem 2 in Chapter 1 is that the estimators of zeros do not affect

the estimators of nonzeros due to faster-than-root-n convergence. However, it ought to

be clear that in a finite sample variability in the estimators of zeros will affect nonzeros

(as can be seen under local asymptotics with zero drift). I will reintroduce the ability to

distinguish zeros from nonzeros but will abandon superefficiency in order to keep interde-

pendence of zeros and nonzeros in the asymptotic distribution. Theorem 6 shows that the
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asymptotic distribution thus derived is nonstandard. I will then show that the modified

bootstrap proposed in Chatterjee and Lahiri (2011) provides valid inference both in this

case as well as the standard case where the estimates of zeros are negligibly small.

Assumption A13 describes details of the data-generating process. Assumptions A14(a)

and A14(b) describe two alternative approaches to parameter choices that embody the

different asymptotic approximations.

Assumption A13 (Errors and design). (a) The number of regressors is fixed and is

equal to p.

(b) Regressor covariance matrix Σn is nonsingular for all n and converges to a positive

definite limit Σ.

(c) 1
n

∑n
i=1 ‖xi‖3 = O(1).

(d) True regression coefficients are fixed (among which coefficients 1 to k are nonzero

and k + 1 to p are zero).

(e) The errors are i.i.d. with mean 0 and variance σ2 ∈ (0,∞).

Assumption A14 (Parameter choices). The two tuning parameters are given by

τn = n−1/2gn and λn = fnn
1+γ
2 .

(a) (Oracle efficiency) fn −−−→
n→∞

∞, fng
γ
n = O (log n) and gn

logn
−−−→
n→∞

∞.

(b) (No oracle efficiency) fn = l ∈ (0,∞) for all n, gn = O
(

[log n]1/γ
)

and

gn
logn
−−−→
n→∞

∞.

Note that Assumption A13 is a simplified version of assumptions in Theorem 2, with

the main difference being that we consider the number of regressors as fixed and the
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coefficients as fixed. As such, whether we achieve oracle efficiency in this setting depends

on the choice of tuning parameters.

The following two results highlight the different asymptotic approximations implied

by the different assumptions A14(a) and A14(b) on parameter choices; the first result is

a straightforward corollary of Theorem 2.

Corollary 2 (Asymptotic distribution with oracle efficiency). Suppose assumptions

A13 and A14(a) hold. Then Theorem 2 applies. In particular, √
n
(
β̂1n − β10

)
λn√
n

sgn(β̂2n)|β̂2n|γ

 d−−−→
n→∞

N

0, σ2

 Σ−1
1 0

0 Σ2 − Σ̃′Σ−1
1 Σ̃


 .

Theorem 6 (Asymptotic distribution without oracle efficiency). Suppose assumptions

A13 and A14(b) hold. Then

√
n
(
β̂n − β0

)
d−−−→

n→∞
arg min

u
VF (u),

where

VF (u) = u′Σu− 2u′W +
2

1 + γ
l

p∑
j=k+1

|uj|1+γ

and W ∼ N (0, σ2Σ).

The proof of Theorem 6 follows the argument in Theorem 4 and Knight and Fu (2000),

with the only added detail that under the chosen tuning parameters estimates of zeros

will be in the inner area of the penalty almost surely and estimates of nonzeros will be in

the outer area almost surely (see Lemma 13 in the appendix).
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Note that under Theorem 6 the variability in estimators of zeros will affect nonze-

ros, and so the limiting distribution is nonstandard. It can be easily simulated, and due

to Lemma 13 we can correctly classify coefficients into zeros and nonzeros with proba-

bility 1, asymptotically, and hence we can use the asymptotic distribution to construct

asymptotically valid confidence intervals for all coefficients.

However, it is both arguably easier and more robust to use bootstrap here. I now show

that the modified bootstrap proposed in Chatterjee and Lahiri (2011) is consistent for the

limiting distribution both under the conditions of Theorem 6 and under the conditions of

Corollary 2. The modified bootstrap suitable for the estimator considered here is given

by the following procedure:

(1) Compute the proposed penalized estimator β̂n.

(2) Construct the modified estimator β̃n as β̃nj = β̂njI
{∣∣∣β̂nj∣∣∣ > τn

}
for k0+1 ≤ j ≤ p

and β̃nj = β̂nj for j ≤ k0.

(3) Obtain residuals ri = yi − x′iβ̃n and recenter them as r∗i = ri − 1
n

∑n
i=1 ri.

(4) For a given number of bootstrap simulation iterations, obtain new residuals ε∗i

by resampling r∗i with replacement, construct y∗i = x′iβ̃n + ε∗i and compute the

penalized estimator β∗n from (y∗i , xi)i=1..n using the same values of tuning param-

eters.

(5) Use the simulated distribution of
√
n
(
β∗ − β̃n

)
as an approximation of the dis-

tribution of
√
n
(
β̂n − β0

)
.
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Theorem 7 (Modified bootstrap validity). Suppose assumption A13 holds. Moreover

suppose either assumption A14(a) or assumption A14(b) holds. Then

%(G̃n, Gn) −−−→
n→∞

0, a.s.,

where %(·, ·) denotes the Prohorov metric on the set of all probability measures on

(Rp,B(Rp)), Gn is the distribution of
√
n
(
β̂n − β0

)
and G̃n is the conditional distribution

of
√
n
(
β∗ − β̃n

)
given the errors εi.

As a corollary of Theorem 7 we can use modified bootstrap to construct confidence

intervals for individual coefficients.

Note the key implication of Theorem 7 for applied work: regardless of whether the

researcher chose the penalty multiplier high enough to make estimates of ’zeros’ irrele-

vantly small, inference by bootstrap is valid. As such, bootstrap serves as a robust way

to conduct inference in practice.

2.7. Simulations

Since the main applied result in this work is the validity of the modified bootstrap

procedure under lower-than-usual choices of scale parameter λn, I will seek to compare

inference by the standard asymptotic approximation based on the oracle distribution (i.e.

the one derived from Theorem 2) with inference by bootstrap across a range of settings

and penalty smoothness parameter γ choices. The results will also be compared against

inference based on the full-model OLS estimator, and that based on standard inference

with SCAD.
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It is worth considering what settings the bootstrap would be most valuable in, relative

to the standard asymptotically normal approximation. Evidently, these are the settings

where the sum total of extra variance from estimates of small coefficients is in some sense

significant. That would be either because the scale parameter λn is relatively small,

meaning that individual estimates of zeros are larger, or because there are a lot of zero

(or small) coefficients, even if their individual variances are small.

One prime setting where λn can be restricted to be somewhat smaller is when convexity

of the objective function is desirable. Recall that a sufficient condition for convexity given

in Assumption A1(b) in Chapter 1 postulates that the largest value of λn that still ensures

convexity given other tuning parameters declines with decline in the smallest eigenvalue

of the regressor covariance matrix. So requiring convexity imposes an upper bound on

the choice of λn, and this upper bound becomes more restrictive whenever regressors are

“more correlated” with each other. As such, simulations will be conducted with and

without convexity restriction on the choice of λn to compare the impact of requiring

convexity on inference.

Simulation design will be based on that in Chapter 1. There will be n = 250 ob-

servations with a variable number of regressors, with regressors drawn from a normal

distribution with all covariances equal to 0.7. The first coefficient will be considered co-

efficient of interest, and will not be penalized. The second coefficient will be set in the

outer area of the penalty to be considered “large”.

In the first group of simulation designs, the rest of the coefficients are set to zero

to replicate exact sparsity. There will be either 20, 50 or 100 regressors, and for each
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number of regressors estimation and inference with and without imposing convexity will

be considered.

In the second group of designs, I will focus on exploring inference in the presence

of small-but-nonzero coefficients. Settings with 20 covariates and with coefficients 3-20

drawn from a uniform distribution on [0, 0.2], [0, 0.4] and [0, 0.6] will be simulated. Note

that this design is almost identical to the one in Chapter 1, and the results can thus be

considered as an extension of, and in conjunction with, those in Chapter 1.4

Confidence intervals will be constructed at the nominal level of 95%, and I will focus

on the confidence intervals for the first coefficient.

Finally, in all simulations errors are drawn from a normal distribution with error

variance chosen so as to yield asymptotic mean squared error of 1 for the full-model OLS

estimator of the first coefficient.

Tuning parameters are chosen as follows: a = 3.7 as in Chapter 1, γ will be set to

one of {0, 0.1, 0.5, 0.9}, τn will be chosen as the half-width of the largest 95% confidence

interval constructed from full-model OLS, and λn will be chosen by crossvalidation, with

and without the convexity restriction outlined above.

Standard asymptotic inference after penalized estimation will be carried out with

thresholding at the level τn. That is to say, estimated coefficients with absolute value

below τn will not be included in the construction of the covariance matrix for regressors

with “large” coefficients. SCAD inference will rely on implicit thresholding, that is to

say, all covariates with coefficients that are not estimated as exactly zero will be included

4The difference in collections of designs is that simulations in Chapter 1 covered a finer grid of values for
the upper end of the uniform distribution, but did not include the [0,0.6] design.
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in the covariance matrix. In actual simulations, this will mean that fewer regressors are

excluded, as it appears that the implicit threshold is below τn.

The results are presented in Figures 2.4 and 2.5.

First, looking at the exactly sparse setting, we can see that confidence interval widths

produced by the standard asymptotic approach are practically indistinguishable from

those constructed with the oracle OLS estimator with only the first two regressors, which

is to be expected. Bootstrap confidence intervals, on the other hand, are somewhat wider,

and get wider with γ. Again, this is consistent with the fact that smoother penalties

are less aggressive in driving small coefficients to zero. Enforcing convexity also widens

the confidence intervals. In contrast, SCAD confidence intervals are somewhat wider,

especially when we restrict λn to ensure convexity of the objective function. This is

consistent with fewer of the “zeros” being estimated as exactly zero.

Looking at coverage in the exactly sparse setting, we can see that the coverage of

the standard asymptotic approximation is better for lower γ, again consistent with the

idea that smoother penalties allow for more variance in the estimates of zeros. However,

coverage falls further below the nominal level for larger number of covariates, even for γ =

0 with thresholding at τn. Enforcing convexity makes this effect more pronounced, as the

scale parameter λn is restricted to be lower. Coverage with SCAD inference is essentially

at the nominal level. On the other hand, bootstrap coverage probability remains close to

the nominal level regardless of γ, number of covariates and convexity restrictions. Taken

together with the larger width of the confidence intervals, it suggests that the bootstrap

successfully captures extra variance in the estimates of the coefficient of interest that is
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Figure 2.4. Coverage probability and width of the confidence interval of
coefficient 1 under exact sparsity. Confidence interval widths by full-model
OLS and OLS with only the first two covariates in solid black. Results for
SCAD inference in dash-dot blue.
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suppressed in the standard asymptotic approach for smooth penalties, supporting the

results of Theorem 6 and Theorem 7.

Considering the case with small nonzero coefficients presented in Figure 2.5, we can

see that the standard asymptotic approximation now performs relatively badly for all

values of γ, although for different reasons. As shown in the simulations in Chapter 1

and additional results in Figure A.1 in the Appendix, and consistent with the theoretical

results, smoother penalties reduce bias, so the contribution of bias to undercoverage should

be less for higher γ. However, the extra variance effect of estimating small coefficients with

smooth penalties is still present, just as in the exactly sparse case. Moreover, inference by

SCAD still leads to noticeable undercoverage, even with much wider confidence intervals

than that by smooth penalties with thresholding. This highlights the fact that bias, and

the reduction in bias due to utilizing smoother penalty, dominates the variance effects,

and suggests that the improvement in estimator precision derived in Theorem 3 carries

over to an improvement in inference, even in the settings where the sparsity assumption

might be a poor approximation of the data-generating process.

Interestingly, bootstrap achieves coverage rates close to nominal for γ = 0.9, which is

consistent with it capturing the variance component. Bootstrap performs less well for low

values of γ, due to the fact that it can not account for the larger bias in those settings. At

the same time as achieving near-nominal coverage, inference by bootstrap with γ = 0.9

still noticeably reduces the width of the confidence interval relative to estimation by full-

model OLS. Equally importantly, the “pseudo-oracle” OLS that only includes the first two

covariates leads to coverage far below the nominal, illustrating the danger of estimating

smaller potentially misspecified models.
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Overall, simulation results strongly support the premise that excess variance due to

estimates of zero coefficients needs to be explicitly accounted for when carrying out in-

ference based on estimators with the smooth penalty. Moreover, inference by bootstrap

with an estimator with a high value of γ appears to deliver an attractive combination

of robust inference across a wide range of settings together with reduced length of confi-

dence intervals relative to the full-model OLS estimator. Taken together with simulation

results in Chapter 1, these results suggest that using a high value of gamma for estimation

and subsequently using bootstrap for inference provides a good practical approach that

delivers close-to-oracle performance under ideal circumstances and substantial robustness

both to deviations from sparsity and to nontrivial covariance across estimates of zero and

nonzero coefficients.

2.8. Conclusion

Asymptotic approximations to distributions of penalized estimators based on the con-

cept of oracle property are appealing in their simplicity but are not always a good ap-

proximation to estimator properties in practice. I have considered alternative approaches

to constructing asymptotic approximations to finite sample estimator behavior, including

local asymptotics, semilocal asymptotics and asymptotics with no penalization bias but

nontrivial variance effects of estimates of small coefficients on the estimates of the large

ones. Among the three approaches, only the third one is amenable to a workable inference

procedure that is materially different from simply not penalizing at all. This is achieved

by a modified bootstrap procedure. Moreover, the same modified bootstrap procedure is

also valid in the standard asymptotic framework that delivers oracle efficiency, and can
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therefore be used without the researcher having to make a bet on whether her choice of

tuning parameters achieves sufficient penalization or underpenalizes.

Simulation evidence strongly supports the need for this alternative asymptotic approx-

imation even in situations that fit perfectly into the standard exactly sparse framework.

Moreover, bootstrap paired with a smooth penalty with a high smoothness parameter

continues to work well and deliver close-to-nominal coverage even in the settings where

exact sparsity is violated, and penalization bias becomes an important consideration. This

dovetails with the results in Chapter 1 that illustrate the reduction in bias achieved by

smoother penalties. Such an approach also greatly improves on the coverage of confidence

intervals from a small misspecified “pseudo-oracle” model, highlighting that estimating

smaller ad hoc models under specification uncertainty should not be relied upon as an ap-

plied practice. At the same time, bootstrap confidence intervals remain smaller than those

constructed from estimating the full model, providing a credible alternative to estimating

an ad hoc model when some measure of efficiency is desirable.

Overall, the simulation evidence together with the theoretical results suggests that

inference by bootstrap after estimation with a penalty with a high smoothness parameter

is noticeably more robust to deviations from the standard sparse framework, and can pro-

vide an appropriate balance between increasing efficiency in ideal settings and delivering

reliable estimation and inference in less-than-ideal circumstances.
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CHAPTER 3

Empirical Application

3.1. Introduction and baseline results

This chapter illustrates the empirical applicability of the proposed estimation proce-

dure. For this purpose, I will reevaluate some key results of Bazzi et al. (2016).

Bazzi et al. (2016) address an interesting question in development and broader human

capital literature: to what extent is human capital location specific? The question is a

natural one, especially in the context of agricultural production: after all, even experienced

rice growers would find their skills out of place if, for example, tasked with deer herding

in the tundra. While no one would advocate for such an extreme relocation programme,

the question of the extent of skill specificity is pertinent in any migration context, and

in particular is important for evaluating effects of climate change, which is expected to

displace a large number of people from areas subject to flooding due to rising ocean levels.

Higher skill specificity would imply larger adjustment costs in the case of population

relocation, as well as heightened policy focus on matching immigrants to most-suitable

destinations.

Quantifying skill transferability is nontrivial due to endogeneity concerns: voluntary

migrant workers might settle in places that are more suitable to their skill set. Bazzi et al.

(2016) address this problem by examining a large-scale resettlement program in Indonesia

that, by and large, resettled migrants randomly to newly created villages, providing the
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desired exogenous variation. To formally quantify skill specificity, the authors introduce

agroclimatic similarity as a measure of similarity of one location to another, based on fac-

tors such as topography, hydrology, climate and soil properties. Aggregating this measure

at a village level then characterizes how well matched the population in a given village

is to their prior skill set. Since rice is the dominant agricultural output in the region

in question, and since rice production is location-dependent and less standardized than

other crops, village-level rice output (per hectare, log) is therefore a useful measure of

skill-sensitive productivity.

In the terminology of this dissertation, agroclimatic similarity is the covariate of ex

ante interest. In fact, coefficient on it is the only coefficient authors report in Table 3

that I am reanalyzing, implying that other covariates are only included to the extend that

they could be confounding the estimate on agrosimilarity.

Bazzi et al. (2016) consider 83 additional regressors as controls. They are grouped in

7 categories: island fixed effects, predetermined village controls, origin province migrant

shares, log weighted average distance to origins, weighted average predetermined controls

at origins, predetermined controls at destinations, and demographics and schooling. In

Table 3, Bazzi et al. (2016) report the results of 5 different linear regressions: there is the

smallest one that only includes island fixed effects, and the largest one that includes all the

controls; what I have called the full model. The other three specifications include island

fixed effects and add various combinations of groups of other controls. All specifications

are estimated by OLS, which is feasible since there are 600 observations (more than

covariates).1

1I have replicated all the regressions reported in Table 3 and obtained the same numbers as Bazzi et al.
(2016).
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Bazzi et al. (2016) Table 3 – Effects of Agroclimatic Similarity on Rice Productivity

(1) (2) (3) (4) (5)

Panel A. Rice productivity
Agroclimatic similarity 0.204 0.182 0.210 0.151 0.166

(0.064) (0.045) (0.075) (0.057) (0.068)

Number of Villages 600 600 600 600 600
R2 0.149 0.032 0.178 0.281 0.318

Island fixed effects Yes Yes Yes Yes Yes
Predetermined village controls (xj) Yes No Yes Yes Yes
Origin province migrant shares No No Yes No Yes
log weighted avg. distance to origins No No Yes No Yes
Weighted avg. predetermined controls, No No Yes No Yes
origins
Predetermined controls, destinations No No No Yes Yes
Demographics and schooling No No No Yes Yes

Note: This reproduction of Table 3 of Bazzi et al. (2016) omits Panel B, which carries
out a placebo test by using cash crop productivity instead of rice productivity as the
dependent variable.

The headline number in this analysis is the result of the regression with island fixed

effects and only village controls, giving an estimate of 0.204 (i.e. 20%) increase in rice

productivity for one standard deviation increase in agrosimilarity. While the estimate from

the full model is smaller at 0.166, Bazzi et al. (2016) argue that it is not statististically

significantly different, and so keep the 20% as the main result.

Note that if we consider island fixed effect as must-have controls (since they are in-

cluded in all specifications the authors report), that leaves 80 controls that might or might

not be included, with 280 = 1.2× 1024 (1.2 septillion) potential combinations to explore.

Even if we settled to only include and exclude the covariates in given groups, that would

still leave 26 = 64 specifications to analyse. While running 64 linear regressions is feasible,
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the fact that only 5 specifications are reported, and that no further mention of specifi-

cation search is made, leads me to believe no exhaustive search was performed and no

formal analysis was carried out to choose which results to report.

3.2. Estimation

I reestimate the effect of agroclimatic similarity in this setting by using the proposed

smooth penalization procedure. As described above, island fixed effects are included

in all specifications the authors report, so I will treat them as must-have controls and

therefore include them in the set of covariates that will not be penalized, in addition to

agrosimilarity.

All covariates are demeaned and standardized to have sample covariance 1, and the

outcome variable (log rice output per hectare) is demeaned. Consequently no constant is

included.

The main question is the choice of tuning parameters: γ, λ, τ and a. I will set a = 3.7

consistent with the recommendation by Fan and Li (2001) for SCAD. The other param-

eters are chosen by leave-one-out crossvalidation. That is, for a given grid of potential

choices of γ, λ and τ , crossvalidation criterion is computed for each point in the grid and

the tuning parameters corresponding to the smallest value of crossvalidation criterion are

chosen for the final estimations.

The choice of the range of τ is more complicated here than in the simulations since

the smallest eigenvalue is low (3 × 10−4), indicating multicollinearity, and the range of

values for confidence interval widths for standardized covariates is wide, with the largest

being 40 times the smallest. As such, I choose a log scale range between the half-widths of
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the largest and the smallest 95% confidence intervals for coefficients (based on assuming

homoskedastic errors).

Range of λ is chosen to include on the upper end values produced by linking λ to τ in

the same manner as Fan and Li (2001), and going down about 50-fold, so that the lower

end of the range isn’t binding.

Crossvalidation yields a choice of γ = 0.5. It is worth asking whether Theorem 3 is

useful here, i.e. whether this value of γ yields an asymptotic reduction in squared error

promised by the theorem for high enough values of γ. Since we are only interested in

the coefficient on agrosimilarity, we are using α1 = (1, 0, .., 0)′ as the contrast of interest.

Using coefficients that are estimated larger than τ as ’nonzeros’2 and plugging in sample

covariance matrix for the dataset we get a positive value for the sample analog of constant

Cγ in Theorem 3, i.e. smooth penalization should yield lower worst squared error than a

model-selection based method like SCAD asymptotically under conditions of Theorem 3.

Estimating the model with parameter values chosen by crossvalidation yields an es-

timate of 0.11, i.e. 11% increase in rice productivity for one standard deviation increase

in agrosimilarity, rather than 20% used as the headline number by Bazzi et al. (2016).

The marked difference in the result appears largely due to omisssion of covariates in the

group of predetermined (pre-resettlement) destination controls, such as destination liter-

acy rates, schooling levels, technology penetration (TV, radio), proportion of population in

trade and worker wages.3 Note that this estimate lies both in the 95% confidence interval

2Changing the threshold to aτ instead of τ does not change the sign, so the argument still holds.
3In fact, adding this group of controls (destination controls minus potential crop yields) to island fixed
effects and village controls (authors’ preferred regression) and just running OLS gives an estimate of 0.08.
However, since this work is explicitly advocating against model selection, I will rely on the 0.11 estimate
that the penalized estimation method produces.
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of the authors’ preferred specification (specification 1) and of the full model (specification

5).

3.3. Inference

Carrying out inference here is complicated by the fact that assuming that the errors are

i.i.d. is likely unreasonable. While the improvement in squared error result of Theorem 3

applies in this setting, the bootstrap validity result only applies to the i.i.d. context. As

such, I will take three approaches to inference here, all of which are mostly illustrative.

The first approach is to reestimate standard errors via only considering “nonzero” co-

variates as in the standard asymptotic approach, but to construct the covariance matrix

under the author’s chosen assumptions on the error structure. As argued in subsubsec-

tion 1.4.2.1, this requires determining which controls to treat as “important” and which to

discard. This is done by designating controls with coefficients larger than κτ as “impor-

tant”, for κ ∈ [1, a]. I will consider values of 1 and a, 1 being a more conservative choice

as it treats more covariates as “important”, but will potentially deliver wider confidence

intervals.

Specifically, to reestimate standard errors, I use authors’ code for spatial HAC variance

estimation with a set of controls with correspondingly large coefficients. To be precise,

formal results on inference by standard asymptotic approximation do not cover inference

in the model without error independence and homoskedasticity. Hence inference results

here are tentative and are meant to illustrate the simplest way of conducting inference

when conditions for oracle efficiency are satisfied. While I conjecture that oracle efficiency,

and valid inference by the same standard asymptotic approximation via thresholding, can



100

be achieved under more general error structures (like the one assumed in Bazzi et al.

(2016)), I offer no theoretical results on that here.

Using κ = 1 yields 26 controls, with the corresponding standard error on the coefficient

for agrosimilarity of 0.057. Using κ = a = 3.7 yields 16 controls and standard error of

0.051. Corresponding 95% confidence intervals are (0.003, 0.227) and (0.015, 0.215).

It is notable that for both values of κ, standard errors are smaller than those in

authors’ preferred specification (0.064) and those from the full model (0.068), leading to

narrower confidence intervals. Together with a lower point estimate the upper end of the

confidence interval that I obtain here is noticeably lower than what could be constructed

from Bazzi et al. (2016). Overall this approach leads to the conjecture that the effect

of agroclimatic similarity on rice productivity is likely lower than that reported in Bazzi

et al. (2016), but still different from zero at 95% confidence level.

The second and third approaches carry out inference under the i.i.d. assumption,

by the standard asymptotic approximation and bootstrap, respectively. While this fits

into the inference results in Chapter 1 and Chapter 2, it is unlikely to be a reasonable

assumption for the given dataset. Instead, it is an illustration of relative merits of these

approaches, in particular in comparison to homoskedastic inference from full-model OLS

and smaller specifications.

Results are presented in Table 3.1. In addition to results for γ = 0.5 chosen by

crossvalidation, I also present results for γ = 0.9 for comparison.

Note that confidence interval widths obtained by the standard asymptotic approxi-

mation are noticeably smaller than those by bootstrap and smaller than all but one OLS

specification, highlighting the potential value of excluding some covariates in obtaining
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Table 3.1. Inference under i.i.d. errors.

OLS

(1) (2) (3) (4) (5)
Estimate 0.204 0.182 0.210 0.151 0.166
95% conf. int. [0.077,0.331] [0.080,0.284] [0.071,0.350] [0.000,0.301] [-0.004,0.337]
Conf. int. width 0.254 0.204 0.279 0.301 0.340

Penalized estimation

γ = 0.5 γ = 0.9
Estimate 0.112 0.149

Standard asymptotic approximation
95% conf. int. [-0.004,0.227] [0.030,0.269]
Conf. int. width 0.231 0.239

Bootstrap
95% conf. int. [-0.040,0.251] [0.007,0.308]
Conf. int. width 0.291 0.300

narrower confidence intervals. Bootstrap confidence intervals are wider than those under

standard asymptotic approximation, but still narrower than those from the full-model

OLS.

3.4. Conclusion

Reevaluation of importance of location-specific human capital in rice productivity

post-resettlement in Indonesia addressed in Bazzi et al. (2016) highlights the dangers of ad

hoc approach to model selection. I argue that the value of the key estimate obtained by the

authors is driven by omitted variable bias due to a relatively small number of covariates,

and obtain an estimate half the size. More detailed analysis of important controls suggests

that they all belong to a single group of destination region covariates. However, even

though a linear regression on a specification that included those covariates could have

revealed a noticeable change in the coefficient of interest, choosing this specification would
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have required either a good deal of luck or a significant effort to search over a large number

of specifications, as well as choosing the best one after the search.

While theoretical results on inference in this dissertation do not admit the error struc-

ture deemed appropriate by Bazzi et al. (2016), a reevaluation of inference under i.i.d.

error assumption highlights the potential reduction in confidence interval width achieved

by using either the standard asymptotic approximation or bootstrap. Together with

theoretical results on reduction in squared error under violations of exact sparsity and

simulation evidence suggesting that bootstrap with smooth penalty is reasonably robust

to departures from the standard framework, these results suggest that there are gains to

using smoother penalties both for estimation and inference in the circumstances where

the researcher expects some degree of sparsity and would like to leverage that, but can

not be entirely sure that the standard assumptions reflect the DGP.



103

References

Akaike, H. (1974): “A new look at the statistical model identification,” IEEE transac-

tions on automatic control, 19, 716–723.

Bazzi, S., A. Gaduh, A. D. Rothenberg, and M. Wong (2016): “Skill Trans-

ferability, Migration, and Development: Evidence from Population Resettlement in

Indonesia,” American Economic Review, 106, 2658–2698.

Belloni, A., V. Chernozhukov, and C. Hansen (2014): “Inference on treatment

effects after selection among high-dimensional controls,” The Review of Economic Stud-

ies, 81, 608–650.

Chatterjee, A. and S. N. Lahiri (2010): “Asymptotic properties of the residual

bootstrap for lasso estimators,” Proceedings of the American Mathematical Society,

138, 4497–4509.

——— (2011): “Bootstrapping lasso estimators,” Journal of the American Statistical

Association, 106, 608–625.

Fan, J. and R. Li (2001): “Variable selection via nonconcave penalized likelihood and

its oracle properties,” Journal of the American Statistical Association, 96, 1348–1360.

Fan, J. and H. Peng (2004): “Nonconcave penalized likelihood with a diverging number

of parameters,” The Annals of Statistics, 32, 928–961.

Frank, L. E. and J. H. Friedman (1993): “A statistical view of some chemometrics

regression tools,” Technometrics, 35, 109–135.



104

Hastie, T., R. Tibshirani, and J. Friedman (2009): The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, Second Edition, Springer Series in

Statistics, Springer.

Horowitz, J. L. and J. Huang (2013): “Penalized estimation of high-dimensional

models under a generalized sparsity condition,” Statistica Sinica, 23, 725–748.

Huang, J., J. L. Horowitz, and S. Ma (2008): “Asymptotic properties of bridge

estimators in sparse high-dimensional regression models,” The Annals of Statistics, 36,

587–613.

Knight, K. and W. Fu (2000): “Asymptotics for lasso-type estimators,” The Annals

of Statistics, 28, 1356–1378.

Koenker, R. (1988): “Asymptotic theory and econometric practice,” Journal of Applied

Econometrics, 3, 139–147.

Leeb, H. and B. M. Pötscher (2008): “Sparse estimators and the oracle property, or

the return of Hodges estimator,” Journal of Econometrics, 142, 201–211.

Rockafellar, R. T. (2015): Convex Analysis, Princeton University Press.

Schwarz, G. (1978): “Estimating the dimension of a model,” The Annals of Statistics,

6, 461–464.

Tibshirani, R. (1996): “Regression shrinkage and selection via the lasso,” Journal of

the Royal Statistical Society. Series B (Methodological), 58, 267–288.
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CHAPTER A

Appendix to Chapter 1

A.1. Additional simulation results

Upper bound on small coefficients

0 0.1 0.2 0.3 0.4 0.5

SCAD 0.58 0.69 0.96 1.34 1.71 2.04

γ = 0.1 0.62 0.69 0.93 1.21 1.40 1.55
γ = 0.2 0.62 0.70 0.90 1.10 1.28 1.39
γ = 0.3 0.64 0.69 0.86 1.06 1.22 1.34
γ = 0.4 0.64 0.69 0.83 1.01 1.16 1.27
γ = 0.5 0.65 0.69 0.82 0.97 1.13 1.24
γ = 0.6 0.66 0.68 0.81 0.96 1.11 1.22
γ = 0.7 0.67 0.69 0.78 0.91 1.05 1.18
γ = 0.8 0.68 0.70 0.78 0.90 1.03 1.13
γ = 0.9 0.68 0.71 0.77 0.88 0.99 1.13

OLS 1.00 0.99 0.99 0.99 0.99 0.99

Table A.1. Simulated MSE of estimates of coefficient 1. All results from
10 000 simulations.
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Figure A.1. Simulated bias of estimates of coefficient 1. All results from
10 000 simulations.

A.2. Proofs

Proof of Lemma 1. In this proof I will show that a weaker version of A1(a) that

replaces the positive definite requirement with positive semidefinite is sufficient for con-

vexity, and that A1(a) as stated ensures strict convexity.

To simplify notation I will show convexity of Qn(b)/n. We have

Qn(b)

n
=

1

n

n∑
i=1

(yi − x′ib)2 +
λn
n

pn∑
j=k0+1

Pen(bj)

=
1

n

n∑
i=1

y2
i −

[
2

n

n∑
i=1

yix
′
i

]
b+ b′

[
1

n

n∑
i=1

xix
′
i

]
b+

λn
n

pn∑
j=k0+1

Pen(bj).

Observe that the first two terms on the last line form an affine function of b, so it is

enough to show convexity of

f(b) = b′Σnb+
λn
n

pn∑
j=k0+1

Pen(bj).
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Observe that f is everywhere differentiable and the gradient is given by

5f = 2Σnb+
λn
n
5 Pen(b),

where 5Pen(b) is a vector with the first k0 components equal to zero and the rest equal

to Pen′(bj) for corresponding j.

Consider two arbitrary points b1, b2 ∈ Rpn , b1 6= b2, and let ∆b = b2 − b1. Consider

function

G(α) = f ((1− α)b1 + αb2)

on α ∈ [0, 1]. It is enough to show convexity of G(α).

By Theorem 24.2 of Rockafellar (2015), it is enough to show that the function

g(α) = 5f ((1− α)b1 + αb2)′ (b2 − b1)

= 2b′1Σn∆b+ 2∆b′Σn∆bα +
λn
n

pn∑
j=k0+1

Pen′(b1j + α∆bj)∆bj

is nondecreasing in α to prove convexity. A straightforward adjustment to the proof of

Theorem 24.2 of Rockafellar (2015) shows that it is enough to show that g(α) is strictly

increasing in α to show strict convexity.

Consider two arbitrary values α1 < α2, and let ∆α = α2 − α1. We have

g(α2)− g(α1) = 2∆α∆b′Σn∆b

+
λn
n

pn∑
j=k0+1

[Pen′(b1j + α2∆bj)− Pen′(b1j + α1∆bj)]︸ ︷︷ ︸
∆ Pen′j

∆bj.
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Now for each j we have

∆ Pen′j ∆bj ≥ −
2

(a− 1)τ 1−γ
n

∆α(∆bj)
2

(verify first for ∆bj > 0 and then argue the opposite case the same way).

Therefore we have

g(α2)− g(α1) ≥ 2∆α∆b′Σn∆b− 2∆α
λn

(a− 1)nτ 1−γ
n

pn∑
j=k0+1

(∆bj)
2

︸ ︷︷ ︸
∆b′Ipn,k0∆b

= 2∆α∆b′
[
Σn −

λn

(a− 1)nτ 1−γ
n

Ipn,k0

]
∆b.

Since ∆α > 0, it is enough for the matrix inside square brackets to be positive semi-

definite to ensure that g(α2)− g(α1) ≥ 0. This is assured by the weak inequality version

of assumption A1(a). Moreover, under the strict inequality version of A1(a) we have

g(α2)− g(α1) > 0, and so the objective function is strictly convex. �

I will need the following lemma from Huang, Horowitz, and Ma (2008):

Lemma 8. Let u be a pn × 1 vector. Under assumptions A2(a) and A2(b)

E sup
‖u‖<δ

∣∣∣∣∣
n∑
i=1

εix
′
iu

∣∣∣∣∣ ≤ δσn1/2p1/2
n .

I will prove Theorem 1 under more general conditions that allow for small coefficients

that are not exactly zero but are nonetheless very close to zero. To this end assumption

A15 defines how small these coefficients need to be. Assumption A15 is trivially satisfied
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under exact sparsity, therefore Theorem 1 presented in the main text is a special case of

the result proved here.

Assumption A15 (Approximate sparsity). Let b2n = max {|β0j|, kn + 1 ≤ j ≤ pn}.

(a)

b2n = O

([
kn
pn

] 1
1+γ

τn

)
.

(b)

b1+γ
2n λnρn

pn − kn
pn

= O (1) .

Theorem 8 (Generalized version of Theorem 1). Suppose γ ∈ [0, 1] and assumptions

A2(a), A2(b) and A3(a) hold. Then

‖β̂n − β0‖ = Op

(
pn + λn

[
knτ

1+γ
n + (pn − kn)b1+γ

2n

]
nρn

)1/2

.

Suppose moreover that A4(a), A15(a) and A15(b) hold. Then

‖β̂n − β0‖ = Op

(
ρ−1
n

(pn
n

)1/2
)
.

Proof of Theorem 8 (and Theorem 1 as a special case of it). This proof

follows closely the one for Theorem 1 from Huang, Horowitz, and Ma (2008).

By the definition of β̂n, we have

n∑
i=1

(yi − x′iβ̂n)2 + λn

pn∑
j=k0+1

Pen(β̂nj) ≤
n∑
i=1

(yi − x′iβ0)2 + λn

pn∑
j=k0+1

Pen(β0j).
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Dropping the penalty term on the LHS and letting ηn = λn
∑pn

j=k0+1 Pen(β0j) we get

ηn ≥
n∑
i=1

(yi − x′iβ̂n)2 −
n∑
i=1

(yi − x′iβ0)2

=
n∑
i=1

[x′i(β̂n − β0)]2 + 2
n∑
i=1

εix
′
i(β0 − β̂n).

Let ∆n = n1/2(Σn)1/2(β̂n − β0), Dn = n−1/2(Σn)−1/2X ′ and ε = (ε1, .., εn)′. Then

n∑
i=1

[x′i(β̂n − β0)]2 + 2
n∑
i=1

εix
′
i(β0 − β̂n) = ∆′n∆n − 2(Dnε)

′∆n

and

∆′n∆n − 2(Dnε)
′∆n − ηn ≤ 0,

||∆n −Dnε||2 − ||Dnε||2 − ηn ≤ 0,

||∆n −Dnε|| ≤ ||Dnε||+ η1/2
n .

By the triangle inequality

||∆n|| ≤ ||∆n −Dnε||+ ||Dnε||.

So

||∆n|| ≤ 2||Dnε||+ η1/2
n .

Using the fact that xy ≤ 1
2
(x2 + y2) for two scalars x and y we have

||∆n||2 ≤ 6||Dnε||2 + 3ηn.
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Let di be the i’th column of Dn, so that Dnε =
∑n

i=1 diεi. Since εi and εj are uncorrelated

for i 6= j by A2(a), and by A2(b), we have

E||Dnε||2 =
n∑
i=1

||di||2E(ε2
i ) = σ2 trace(D′nDn) = σ2pn,(A.1)

E||∆n||2 ≤ 6σ2pn + 3ηn.(A.2)

Splitting the penalty into that for ’nonzeros’ and ’zeros’ we have:

ηn = λn

pn∑
j=k0+1

Pen(β0j)

≤ λnkn max
b

Pen(b) + λn(pn − kn) Pen(b2n)

≤ λnkn Pen(aτn) + λn(pn − kn)
2

1 + γ
b1+γ

2n

= λnknτ
1+γ
n

[
1− γ
1 + γ

+ a

]
+ λn(pn − kn)

2

1 + γ
b1+γ

2n

≤ λn
[
knτ

1+γ
n + (pn − kn)b1+γ

2n

]
(a+ 1).

So

nE
[
(β̂n − β0)′Σn(β̂n − β0)

]
≤ 6σ2pn + 3(a+ 1)λn

[
knτ

1+γ
n + (pn − kn)b1+γ

2n

]
.

By min-max theorem and A3(a) ||β̂n − β0||2 ≤ ρ−1
n (β̂n − β0)′Σn(β̂n − β0) so by Jensen’s

inequality

E||β̂n − β0|| ≤

[
6σ2pn + 3(a+ 1)λn

[
knτ

1+γ
n + (pn − kn)b1+γ

2n

]
nρn

]1/2

.
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Hence

||β̂n − β0|| = Op

[pn + λn
[
knτ

1+γ
n + (pn − kn)b1+γ

2n

]
nρn

]1/2
 .

This completes the first part of the proof. For the second part, let rn = ρn

(
n
pn

)1/2

. We

want to show that

rn||β̂n − β0|| = Op (1) .

For each n partition the parameter space minus β0 into ’shells’

Sm,n =
{
β : rn||β − β0|| ∈

(
2m−1, 2m

]}
,

where m is an integer. Since β̂n minimizes sample objective, we have, for all εn > 0,

P (rn||β̂n − β0|| > 2M−1) ≤
∑

m≥M,2m≤εnrn

P

(
inf

β∈Sm,n
(Qn(β)−Qn(β0)) ≤ 0

)

+ P
(

2||β̂n − β0|| > εn

)
.

We will pick a sequence εn =
[
pn+λnknτ

1+γ
n

nρn

]1/2

ζn, with ζn such that ζn →∞ and εn = o(bn).

From the result in the first part of the theorem and from A4(a) and A15(a) we have that

the last term converges to zero as n→∞. So we are left to show that the first term goes
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to zero.

Qn(β)−Qn(β0) =
n∑
i=1

(yi − x′iβ)2 −
n∑
i=1

(yi − x′iβ0)2

+ λn

kn∑
j=k0+1

Pen(βj) + λn

pn∑
j=kn+1

Pen(βj)− λn
pn∑

j=k0+1

Pen(β0j)

≥
n∑
i=1

[x′i(β − β0)]2 − 2
n∑
i=1

εix
′
i(β − β0)

+ λn

kn∑
j=k0+1

[Pen(βj)− Pen(β10j)]− λn
pn∑

j=kn+1

Pen(β0j)

≡I1n + I2n + I3n + I4n.

On Sm,n we have

I1n > nρn22(m−1)r−2
n .

Let I4n = λn(pn − kn)b1+γ
2n

2
1+γ

. We have

I4n ≥ −I4n.

Using assumption A4(a) we can bound I3n at zero for n large enough. With τn = o(bn)

Pen(β10j) = maxb Pen(b) for all j : k0 + 1 ≤ j ≤ kn, for all n such that aτn < bn. Also, for

all j : k0 + 1 ≤ j ≤ kn,

|βj| ≥ bn − ||β − β0||∞

≥ bn − ||β − β0||

≥ bn − εn,
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where the last line holds on all shells considered above. Since εn = o(bn) and τn = o(bn),

for all n large enough |βj| > aτn and Pen(βj) = maxb Pen(b) for all j : k0 + 1 ≤ j ≤ kn

on all shells considered above. Hence for all n large enough I3n = 0 on all shells Sm,n

considered above.

So

Qn(β)−Qn(β0) ≥ −|I2n|+ nρn22(m−1)r−2
n − I4n.

Hence, by Markov inequality and Lemma 8,

P

(
inf

β∈Sm,n
(Qn(β)−Qn(β0)) ≤ 0

)
≤ P

(
sup

β∈Sm,n
|I2n| ≥ nρn22(m−1)r−2

n − I4n

)

≤ 2σn1/2p
1/2
n 2mr−1

n

nρn22(m−1)r−2
n − I4n

=
σ

2m−3 − I4nρnp
−1
n 2−m−1

.

We have

I4nρnp
−1
n 2−m−1 ≤ λn

pn − kn
pn

b1+γ
2n ρn2−m,

which by A15(b) is smaller than 1
4
2m−3 for all M large enough, m ≥M .

Finally

∑
m≥M,2m≤εnrn

P

(
inf

β∈Sm,n
(Qn(β)−Qn(β0)) ≤ 0

)
≤
∑
m≥M

σ

2m−4
=

σ

2M−5
.

This goes to zero for every M = Mn → ∞. So we’ve shown that rn||β̂n − β0|| = Op (1),

which completes the proof.

�
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Lemma 9. Suppose assumptions of Theorem 8 (A2(a), A2(b), A3(a), A4(a), A15(a)

and A15(b)) hold, and moreover that b2n = o(τn) and A4(b) hold. Then with probability

approaching 1 estimates of ’zeros’ will be in the inner area of the penalty. That is,

‖β̂2n‖∞ = op(τn).

Proof of Lemma 9. By the triangle inequality and Theorem 8

‖β̂2n‖∞ ≤ ‖β̂2n − β20‖∞ + ‖β20‖∞

≤ ρ−1
n

(pn
n

)1/2

+ b2n.

The first term is op(τn) by A4(b) and the second term is o(τn) by assumption. �

Proof of Lemma 2. Let hn = ρ−1
n

(
pn
n

)1/2
. By Theorem 1 with A4(a), there exists

C <∞ such that ‖β̂n− β0‖ ≤ hnC with probability approaching 1. Let β̂1n = β10 + hnu1

and β̂2n = β20 + hnu2 = hnu2. We have ‖u1‖2 + ‖u2‖2 ≤ C2 by the argument above. The

gradient of the objective function is

∂Qn(b)

∂b
= −2

n∑
i=1

(yi − x′ib) · xi + λn5 Pen(b),

where 5Pen(b) is the gradient of the function
∑pn

j=k0+1 Pen(bj).

Setting the gradient to zero as our first-order condition and using the notation intro-

duced above we have

0 = −2
n∑
i=1

(εi − hnx′1,iu1 − hnx′2,iu2) · xi + λn5 Pen(β̂n).(A.3)
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By assumption A4(b) hn
τn
→ 0, so the estimators of zeros will be in the inner range of

the penalty function. By assumption A4(a) and Theorem 1 the estimators of nonzeros

will be in the outer (flat) range of the penalty function with probability approaching 1.

We rewrite the first-order conditions for the part of the vector corresponding to zeros (i.e.

the last pn − kn components):

0 = −
n∑
i=1

(εi − hnx′1,iu1 − hnx′2,iu2) · x2,i + λn sgn(u2)|hnu2|γ,(A.4)

where the last term is understood as the vector with j’th component sgn(u2j)|hnu2j|γ.

Transpose the RHS of Equation A.4 and multiply by hnu2 to get a scalar condition:

h2
n

n∑
i=1

(x′2,iu2)2 + h2
n

n∑
i=1

x′1,iu1 · x′2,iu2 − hn
n∑
i=1

εi · x′2,iu2 + λn‖hnu2‖1+γ
1+γ = 0.(A.5)

We can bound the first two terms from below as

h2
n

n∑
i=1

(x′2,iu2)2 + h2
n

n∑
i=1

x′1,iu1 · x′2,iu2 ≥
1

2
h2
n

n∑
i=1

(x′2,iu2)2

− 1

2
h2
n

n∑
i=1

(x′2,iu2)2 − 1

2
h2
n

n∑
i=1

(x′1,iu1)2

= −1

2
h2
n

n∑
i=1

(x′1,iu1)2

≥ −1

2
nh2

n Eigmax(Σ1n)‖u1‖2

≥ −pn
ρ2
n

κ1nC
2

on the sets of probability approaching 1 where ‖u‖ ≤ C.
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We can bound the third term by bounding its expectation using A2(a) and A2(b):

E

∣∣∣∣∣
n∑
i=1

εi · x′2,iu2

∣∣∣∣∣ ≤
E( n∑

i=1

εi · x′2,iu2

)2
1/2

= σ

[
n∑
i=1

(x′2,iu2)2

]1/2

≤ σn1/2 Eigmax(Σ2n)1/2‖u2‖

≤ σn1/2p1/2
n C

on the sets of probability approaching 1 where ‖u‖ ≤ C. So

hn

n∑
i=1

εi · x′2,iu2 = Op

(
pn
ρn

)
.

Plugging these results back into Equation A.5 we get

λn‖hnu2‖1+γ
1+γ = Op

(
pnκ1n

ρ2
n

+
pn
ρn

)
,

‖β̂2n‖1+γ
1+γ = Op

(
pnκ1n

ρ2
nλn

)
.

�

Proof of Theorem 2. Rewrite the first-order conditions from Equation A.3 sepa-

rately for zeros and nonzeros as a system of two (vector) equations, where by results of

Theorem 1 and assumptions A4(a) and A4(b) nonzeros are in the flat outer part of the
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penalty and zeros are in the inner part:
−
∑n

i=1 εix1,i + hn
∑n

i=1 x1,ix
′
1,iu1 + hn

∑n
i=1 x1,ix

′
2,iu2 = 0;

−
∑n

i=1 εix2,i + hn
∑n

i=1 x2,ix
′
1,iu1 + hn

∑n
i=1 x2,ix

′
2,iu2 + λn sgn(u2)|hnu2|γ = 0.


Σ1nhnu1 + Σ̃nhnu2 = 1

n

∑n
i=1 εix1,i;

λn
n

sgn(u2)|hnu2|γ + Σ2nhnu2 + Σ̃′nhnu1 = 1
n

∑n
i=1 εix2,i.

Since by A3(a) we assumed that ρn > 0, we can solve for hnu1 in the first equation

and plug it into the second:
hnu1 = Σ−1

1n
1
n

∑n
i=1 εix1,i − Σ−1

1n Σ̃nhnu2;

λn
n

sgn(u2)|hnu2|γ + Σ2nhnu2 − Σ̃′nΣ−1
1n Σ̃nhnu2 = 1

n

∑n
i=1 εix2,i − Σ̃′nΣ−1

1n
1
n

∑n
i=1 εix1,i.

Multiplying by
√
n and rearranging we get the following form of the first-order condi-

tions:

(A.6)
n1/2hnu1 =

1

n1/2

n∑
i=1

εi
{

Σ−1
1nx1,i

}
− Σ−1

1n Σ̃nn
1/2hnu2;

λn
n1/2

sgn(u2)|hnu2|γ =
1

n1/2

n∑
i=1

εi

{
x2,i − Σ̃′nΣ−1

1nx1,i

}
−

[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
n1/2hnu2.
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For a sequence of pn-vectors αn, partition αn = (α′1n, α
′
2n)′, where α1n contains the

first kn components of αn, and α2n the rest. Let

s2
n = σ2

{
α′1nΣ−1

1nα1n + α′2n

[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
α2n

}
.

Then

1

sn
α′n

 n1/2hnu1

λn
n1/2 sgn(u2)|hnu2|γ

 =
1

n1/2

n∑
i=1

εi
1

sn

{
α′1nΣ−1

1nx1,i + α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)}

− 1

sn
α′1nΣ−1

1n Σ̃nn
1/2hnu2

− 1

sn
α′2n

[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
n1/2hnu2.

Observe that Σ2n − Σ̃′nΣ−1
1n Σ̃n = 1

n
Z ′MWZ and hence it is symmetric positive semi-

definite. Since it is the Schur complement of Σ1n in Σn and by A3(a) we assumed that

ρn > 0, it is positive definite. Consider the last two terms in the expression above. Let

Rn =
1

sn
α′1nΣ−1

1n Σ̃nn
1/2hnu2 +

1

sn
α′2n

[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
n1/2hnu2.

Then by repeated application of Cauchy-Schwarz inequality and by min-max theorem

R2
n ≤2

α′1nΣ−1
1nα1n

s2
n

(
n1/2hnu2

)′
Σ̃′nΣ−1

1n Σ̃n

(
n1/2hnu2

)
+ 2

α′2n

[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
α2n

s2
n

(
n1/2hnu2

)′ [
Σ2n − Σ̃′nΣ−1

1n Σ̃n

] (
n1/2hnu2

)
≤2σ−2

(
n1/2hnu2

)′
Σ2n

(
n1/2hnu2

)
≤2σ−2 Eigmax(Σ2n)‖n1/2hnu2‖2.
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Hence by Lemma 2 we have

Rn = Op

([
pnκ1n

ρ2
n(λn/n(1+γ)/2)

] 1
1+γ

κ
1/2
2n

)

uniformly in αn. By A4(c) this is also op(1) uniformly in αn.

Let vi = εi
1

n1/2sn

{
α′1nΣ−1

1nx1,i + α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)}
. We want to apply the

Lindeberg-Feller CLT to
∑n

i=1 vi. Observe that

Var

(
n∑
i=1

vi

)
=
σ2

ns2
n

n∑
i=1

{
α′1nΣ−1

1nx1,i + α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)}2

=
σ2

s2
n

{
α′1nΣ−1

1nα1n + α′2n

[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
α2n

+ 2α′1nΣ−1
1n

(
Σ̃n − Σ1nΣ−1

1n Σ̃n

)
α2n

}
=
σ2

s2
n

{
α′1nΣ−1

1nα1n + α′2n

[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
α2n

}
=1.

Consider the term inside the limit in the Lindeberg condition:

n∑
i=1

E
[
v2
i ; |vi| > ε

]
=

1

ns2
n

n∑
i=1

{
α′1nΣ−1

1nx1,i + α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)}2

· E

ε2
i ;

∣∣∣∣∣∣εi
α′1nΣ−1

1nx1,i + α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)
n1/2sn

∣∣∣∣∣∣ > ε

 .
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From the way we defined s2
n we have 1

ns2n

∑n
i=1

{
α′1nΣ−1

1nx1,i + α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)}2

=

1
σ2 . Hence a sufficient condition for the Lindeberg condition to hold is

maxi=1,...,n

{
α′1nΣ−1

1nx1,i + α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)}2

σ−2ns2
n

−−−→
n→∞

0.

The above condition is satisfied by satisfying the following two:

maxi=1,...,n

{
α′1nΣ−1

1nx1,i

}2

n
{
α′1nΣ−1

1nα1n

} −−−→
n→∞

0,(A.7)

maxi=1,...,n

{
α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)}2

n
{
α′2n

[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
α2n

} −−−→
n→∞

0,(A.8)

when the respective contrast coefficients α1n and α2n are nonzero. If one of them is

zero, the corresponding condition can be dropped, and only the condition for the nonzero

contrast needs to be satisfied.

For Equation A.7 we have

maxi=1,...,n

{
α′1nΣ−1

1nx1,i

}2

n
{
α′1nΣ−1

1nα1n

} ≤
{
α′1nΣ−1

1nα1n

}
maxi=1,...,n

{
x′1,iΣ

−1
1nx1,i

}
n
{
α′1nΣ−1

1nα1n

}
=

1

n
max
i=1,...,n

x′1,iΣ
−1
1nx1,i −−−→

n→∞
0,

with the last line holding by assumption A3(b).
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Let Sc =
[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
. Observe that

α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)
= α′2n

(
−Σ̃′nΣ−1

1n , Ipn−kn

) x1,i

x2,i


= α′2nS

1/2
c S−1/2

c

(
−Σ̃′nΣ−1

1n , Ipn−kn

)
xi.

Then by Cauchy-Schwarz inequality{
α′2n

(
x2,i − Σ̃′nΣ−1

1nx1,i

)}2

n {α′2nScα2n}
≤ 1

n
x′i

 −Σ−1
1n Σ̃n

Ipn−kn

S−1
c

(
−Σ̃′nΣ−1

1n , Ipn−kn

)
xi

=
1

n
x′i

 Σ−1
1n Σ̃nS

−1
c Σ̃′nΣ−1

1n −Σ−1
1n Σ̃nS

−1
c

−S−1
c Σ̃′nΣ−1

1n S−1
c

xi

=
1

n
x′i

Σ−1
n −

 Σ−1
1n 0

0 0


xi,

where the last line follows from the formula for block matrix inversion by inverting Σn

via the inverses of Σ1n and its Schur complement.

Therefore Equation A.8 is satisfied if

1

n
max
i=1,...,n

x′iΣ
−1
n xi −−−→

n→∞
0,

which holds by assumption A3(c).

Hence by the Lindeberg-Feller CLT we have
∑n

i=1 vi
d−−−→

n→∞
N (0, 1). �
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Lemma 10 (Bound on the estimator error). Let γ ∈ [0, 1]. Suppose assumptions A5,

A6(a) and A7 hold. Moreover, suppose that ‖β20‖∞ = o(τn). Then

‖β̂n − β0‖∞ = op(τn).

Proof of Lemma 10. Let δn = β̂n−β0 and N = 1√
n

∑n
i=1 εixi. Replicating the first

part of the proof of Theorem 8 with a straightforward adjustment in Equation A.1 for

A5(b) instead of A2 we get

‖δn‖ = Op(τn),(A.9)

and so the same applies to ‖δn‖∞. We will now show that ‖δn‖ = op(τn), which will imply

the same for ‖δn‖∞.

Fix arbitrary ∆ > 0 and ε > 0. We want to show that

P
(
‖τ−1
n δn‖ > ∆

)
< ε

for all n large enough.

By Equation A.9 we can find C > 0 such that

P
(
‖τ−1
n δn‖ > C

)
<
ε

2
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for all n large enough. So consider δn,C defines as

τ−1
n δn,C = arg min

u∈B(0,C)
Vn(u),

Vn(u) = u′Σnu− 2
1√
nτn

u′N +
λn
nτ 2

n

p∑
j=k0+1

Pen(β0j + τnuj),

where B(0, C) is the closed (and hence compact) l2 ball of radius C around zero. Observe

that

P (δn = δn,C) > 1− ε

2

for all n large enough.

By assumption A6(a)

τn = o(β0j + τnuj)

for j = k0 + 1, . . . , k. So for all n large enough

τ−1
n δn,C = arg min

u∈B(0,C)
V ∗n (u),

V ∗n (u) = u′Σnu− 2
1√
nτn

u′N +
λn
nτ 2

n

p∑
j=k+1

Pen(β0j + τnuj),

where V ∗n (·) omits the penalty terms for coefficients j = k0 + 1, . . . , k since they are a

constant function of u on B(0, C) for n large enough.
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Let Pen(b, t) denote the penalty function with the thresholding parameter set to t.

That is, in the notation of Equation 1.7 Pen(b) = Pen(b, τn). Then, under A7,

V ∗n (u) = u′Σnu− 2
1√
nτn

u′N +
λnτ

1+γ
n

nτ 2
n

p∑
j=k+1

Pen(τ−1
n β0j + uj, 1)

= u′Σnu− 2
1√
nτn

u′N +m

p∑
j=k+1

Pen(τ−1
n β0j + uj, 1).

Now by ‖β20‖∞ = o(τn) and A5(b) V ∗n (u) converges in probability uniformly in u ∈

B(0, C) to

V ∗(u) = u′Σu+m

p∑
j=k+1

Pen(uj, 1),

and hence τ−1
n δn,C

p−−−→
n→∞

0. Therefore for all n large enough

P
(
‖τ−1
n δn,C‖ > ∆

)
<
ε

2
.

Therefore for all n large enough

P
(
‖τ−1
n δn‖ > ∆

)
< ε.

�

Proof of Lemma 5. Suppose that for some j = k + 1, . . . , p β̂n,j 6= 0. Without loss

of generality let β̂n,j > 0. Let N = 1√
n

∑n
i=1 εixi. Then the objective function has the

partial derivative with respect to its j’th argument at β̂n:

1

n

∂Qn

∂bj
= 2

[{
Σn

(
β̂n − β0

)}
j
− n−1/2Nj +

λn
n

]
= 2 [op(τn) + op(τn) +mτn] ,
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where I used Lemma 10, A5(b), ‖β20‖∞ = o(τn) and A7 to get the last line. Hence this

partial derivative is larger than zero with probability approaching 1, i.e. β̂n is not the

minimum of the objective function. Using the fact that β̂2n is of bounded dimension we

conclude that β̂2n = 0 with probability approaching 1. �

The following lemma seeks to clarify the use of the phrase “with probability approach-

ing one” when proving convergence in probability and similar results (including deriving

bounds on rates of convergence that hold in the op sense).

Lemma 11 (Convergence in probability and the “with probability approaching one”

argument). Suppose that for event A we have P (A) −−−→
n→∞

1 (A holds with probability

approaching one). Suppose moreover that for two random variables Xn and Yn we have

Xn(ω) = Yn(ω)∀ω ∈ A. Finally, suppose f(Yn)
p−−−→

n→∞
0 for a given scalar-valued function

f . Then

f(Xn)
p−−−→

n→∞
0.

Proof of Lemma 11. Let ε > 0.

P (|f(Xn)| > ε) = P (|f(Xn)| > ε ∩ A) + P
(
|f(Xn)| > ε ∩ Ā

)
= P (|f(Yn)| > ε ∩ A) + P

(
|f(Xn)| > ε ∩ Ā

)
≤ P (|f(Yn)| > ε)︸ ︷︷ ︸
−−−→
n→∞

0 ∀ ε>0

+ P
(
Ā
)︸ ︷︷ ︸

−−−→
n→∞

0

.

Therefore f(Xn)
p−−−→

n→∞
0. �
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Proof of Theorem 3. Consider the objective function that the penalized estimator

minimizes:

Qn(b) =
n∑
i=1

ε2
i +(b−β0)′

n∑
i=1

xix
′
i(b−β0)−2

n∑
i=1

εix
′
i(b−β0)+λn

p∑
j=k0+1

Pen(β0j +bj−β0j).

Let δn = β̂n − β0 and N = 1√
n

∑n
i=1 εixi. Partition δn and N according to the partition

of β0. Then δn minimizes

Vn(u) = u′Σnu− 2
1√
n
u′N +

λn
n

p∑
j=k0+1

Pen(β0j + uj).

By Lemma 10 δn = op(τn).

By Lemma 5 β̂2n = 0 with probability approaching one for γ = 0. So with probability

approaching 1 δ2n,SCAD = −hnc, and since δn = op(τn) and τn = o(mink0+1≤j≤k |β10j|) by

A7 the first-order condition for δ1n,SCAD gives

δ1n,SCAD =
1√
n

Σ−1
1nN1 − Σ−1

1n Σ̃nδ2n,
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and therefore

h−1
n (α′1δ1n,SCAD + α′2δ2n,SCAD) =

1√
nhn

α′1Σ−1
1nN1 + α′1Σ−1

1n Σ̃nc− α′2c,(
h−1
n α′δn,SCAD

)2
=

(
α′1Σ−1

1n Σ̃n − α′2
)
cc′
(

Σ̃′nΣ−1
1nα1 − α2

)
+

1

nh2
n

α′1Σ−1
1nN1N

′
1Σ−1

1nα1

+2
1√
nhn

(
α′1Σ−1

1n Σ̃n − α′2
)
cN ′1Σ−1

1nα1

=
(
α′1Σ−1

1n Σ̃n − α′2
)
cc′
(

Σ̃′nΣ−1
1nα1 − α2

)
+Op

(
1√
nhn

)
,

with the Op term uniform in c. Let

αb = Σ̃′nΣ−1
1nα1 − α2.

We have

sup
c,‖c‖≤1

(
h−1
n α′δn,SCAD

)2
= sup

c,‖c‖≤1

(α′bc)
2

+Op

(
1√
nhn

)
(A.10)

= (α′bc)
2
∣∣∣
c=‖αb‖−1αb

+Op

(
1√
nhn

)
(A.11)

= ‖αb‖2 +Op

(
1√
nhn

)
(A.12)

= ‖αb‖2 + op

([
hn
τn

] 1−γ
γ

)
.(A.13)

The last line holds by A6.
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We now consider γ > 0. Since Vn is differentiable for γ > 0, we have

Σnδn −
1√
n
N +

1

2

λn
n
5 Pen(β0 + δn) = 0,

where 5Pen(b) is the gradient of the function
∑p

j=k0+1 Pen(bj). Since ‖δn‖∞ = op(τn) we

have, with probability approaching one (here and in the derivations to follow)1, Σ1nδ1n + Σ̃nδ2n = 1√
n
N1;

Σ̃′nδ1n + Σ2nδ2n = 1√
n
N2 − λn

n
(β20 + δ2n)γ ;

where the power is understood as the sign-preserving element-wise (Hadamard) power

(here and in the derivations to follow).

Let V = Σ2n − Σ̃′nΣ−1
1n Σ̃n. Rearranging the above expression we get δ1n = 1√

n
Σ−1

1nN1 − Σ−1
1n Σ̃nδ2n;

V δ2n = 1√
n

[
N2 − Σ̃′nΣ−1

1nN1

]
− λn

n
(β20 + δ2n)γ .

(A.14)

Let W = N2 − Σ̃′nΣ−1
1nN1. Rewrite the second part:

V
(
τ−1
n β20 + τ−1

n δ2n

)
+

λn

nτ 1−γ
n

(
τ−1
n β20 + τ−1

n δ2n

)γ
=
hn
τn
V c+

hn
τn

1√
nhn

W.(A.15)

We will first consider the case of γ ∈ (0, 1), and afterwards come back to Equation A.15

to consider the case of γ = 1.

1See Lemma 11 for a formal clarification of this statement. In this context, the equations that follow
hold exactly for δn on the event {‖δn‖∞ < τn}, which happens with probability approaching one as
n → ∞. In the interests of clarity, I do not introduce separate notation for a new ’version’ of δn (Yn in
the statement of Lemma 11) that always (rather than with probability approaching one) satisfies these
equations. However, the reader can safely assume that we revert back to the original δn at any statement
that involves op terms.
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Since ‖τ−1
n β20 + τ−1

n δ2n‖∞ = op(1), λn
nτ1−γn

= m and ‖W‖∞ = Op(1) we have

‖τ−1
n β20 + τ−1

n δ2n‖∞ = Op

([
hn
τn

] 1
γ

)
,

or

‖c+ h−1
n δ2n‖∞ = Op

([
hn
τn

] 1
γ
−1
)

= op(1).

So

(
hn
τn

)γ (
c+ h−1

n δ2n

)γ
=

hn
τn

1

m
V c− hn

τn

1

m
V
(
c+ h−1

n δ2n

)
+
hn
τn

1√
nhn

1

m
W,(

hn
τn

)γ−1 (
c+ h−1

n δ2n

)γ
=

1

m
V c− 1

m
V
(
c+ h−1

n δ2n

)
+

1√
nhn

1

m
W.

Now since
√
nhn →∞ we have

(
hn
τn

)γ−1 (
c+ h−1

n δ2n

)γ
=

1

m
V c+ op(1),

(
hn
τn

) γ−1
γ (

c+ h−1
n δ2n

)
=

(
1

m
V c

) 1
γ

+ op(1),

δ2n = hn

[
−c+

(
hn
τn

) 1−γ
γ
(

1

m
V c

) 1
γ

+ op

([
hn
τn

] 1−γ
γ

)]
,

where the second line holds by CMT and the op term is uniform in c.

Going back to the first part of Equation A.14 and plugging in the above result:

δ1n =
1√
n

Σ−1
1nN1 + hnΣ−1

1n Σ̃nc− hn
(
hn
τn

) 1−γ
γ

Σ−1
1n Σ̃n

(
1

m
V c

) 1
γ

+ op

(
hn

[
hn
τn

] 1−γ
γ

)
.
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Therefore for a given (α′1, α
′
2)′ we have

h−1
n (α′1δ1n + α′2δ2n) = α′1Σ−1

1n Σ̃nc− α′2c+
1√
nhn

α′1Σ−1
1nN1

−
(
hn
τn

) 1−γ
γ

α′1Σ−1
1n Σ̃n

(
1

m
V c

) 1
γ

+

(
hn
τn

) 1−γ
γ

α′2

(
1

m
V c

) 1
γ

+op

([
hn
τn

] 1−γ
γ

)

= α′bc+
1√
nhn

α′1Σ−1
1nN1 −

(
hn
τn

) 1−γ
γ

α′b

(
1

m
V c

) 1
γ

+op

([
hn
τn

] 1−γ
γ

)
.

Hence the squared error is

(
h−1
n α′δn

)2
= α′bcc

′αb

+
1

nh2
n

α′1Σ−1
1nN1N

′
1Σ−1

1nα1

+2
1√
nhn

α′bcN
′
1Σ−1

1nα1

−2

(
hn
τn

) 1−γ
γ

α′b

(
1

m
V c

) 1
γ

c′αb

−2
1√
nhn

(
hn
τn

) 1−γ
γ

α′b

(
1

m
V c

) 1
γ

N ′1Σ−1
1nα1

+

(
hn
τn

)2 1−γ
γ

α′b

(
1

m
V c

) 1
γ

((
1

m
V c

) 1
γ

)′
αb

+op

([
hn
τn

] 1−γ
γ

)
,
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with the op term uniform in c. Note that the last two terms before op term can be absorbed

into it as well, so

(
h−1
n α′δn

)2
= α′bcc

′αb

+
1

nh2
n

α′1Σ−1
1nN1N

′
1Σ−1

1nα1

+2
1√
nhn

α′bcN
′
1Σ−1

1nα1

−2

(
hn
τn

) 1−γ
γ

α′b

(
1

m
V c

) 1
γ

c′αb

+op

([
hn
τn

] 1−γ
γ

)
,

with the op term uniform in c. Now, with
(

1√
nτn

)γ
= o

(
hn
τn

)
the second and the third

terms on the right-hand side can also be absorbed into the op term:

(
h−1
n α′δn

)2
= α′bcc

′αb

−2

(
hn
τn

) 1−γ
γ

α′b

(
1

m
V c

) 1
γ

c′αb

+op

([
hn
τn

] 1−γ
γ

)
,

with the op term uniform in c.

Now, taking supremum over ‖c‖ ≤ 1 we have

sup
c,‖c‖≤1

(
h−1
n α′δn

)2 ≤ sup
c,‖c‖≤1

[
α′bcc

′αb − 2

(
hn
τn

) 1−γ
γ

α′b

(
1

m
V c

) 1
γ

c′αb

]

+op

([
hn
τn

] 1−γ
γ

)
.
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Let

Sn(c) = α′bcc
′αb − 2

(
hn
τn

) 1−γ
γ

α′b

(
1

m
V c

) 1
γ

c′αb.

Observe that Sn is even: Sn(c) = Sn(−c). Since Sn is a continuous function on a compact

support, it has a maximum and a maximizer, call it ĉn. Since Sn is even, −ĉn is also a

maximizer. We will restrict attention to maximizers belonging to some half-ball S ⊂ {c :

‖c‖ ≤ 1} such that (c ∈ S ⇔ −c /∈ S) ; let S̄ be the closure of S. Moreover we will require

that ‖Σ̃′Σ−1
1 α1 − α2‖−1

(
Σ̃′Σ−1

1 α1 − α2

)
is in the interior of S relative to {c : ‖c‖ ≤ 1}

(feasible since Σ̃′Σ−1
1 α1 − α2 6= 0), e.g. S ⊂ S̄ = {c : ‖c‖ ≤ 1, c′αb ≥ 0}. So we will let

ĉn ∈ S without loss of generality. Then, since ‖ĉn‖ ≤ 1,

sup
c,‖c‖≤1

Sn(c) = α′bĉnĉ
′
nαb − 2

(
hn
τn

) 1−γ
γ

α′b

(
1

m
V ĉn

) 1
γ

ĉ′nαb

≤ ‖αb‖2 − 2

(
hn
τn

) 1−γ
γ

α′b

(
1

m
V ĉn

) 1
γ

ĉ′nαb.

Sn(c) converges uniformly to

S(c) =
(
α′1Σ−1

1 Σ̃− α′2
)
cc′
(

Σ̃′Σ−1
1 α1 − α2

)
,

so S(c) has a unique maximizer c̄ ∈ S̄ and it is c̄ = ‖Σ̃′Σ−1
1 α1 − α2‖−1

(
Σ̃′Σ−1

1 α1 − α2

)
;

it is in the interior of S̄ relative to {c : ‖c‖ ≤ 1} by the choice of S̄. Hence by the usual

asymptotic theory ĉn −−−→
n→∞

c̄. Hence

α′b

(
1

m
V ĉn

) 1
γ

ĉ′nαb −−−→
n→∞

ᾱ′b

(
1

m
V̄ ᾱb

) 1
γ

‖ᾱb‖−
1−γ
γ ,

where V̄ = limn→∞ V and ᾱb = Σ̃′Σ−1
1 α1 − α2.
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Finally, putting all of the results together we get

sup
c,‖c‖≤1

(
h−1
n α′δn,SCAD

)2 − sup
c,‖c‖≤1

(
h−1
n α′δn

)2 ≥ 2

(
hn
τn

) 1−γ
γ

ᾱ′b

(
1

m
V̄ ᾱb

) 1
γ

‖ᾱb‖−
1−γ
γ

+op

([
hn
τn

] 1−γ
γ

)
,

or

(
hn
τn

)− 1−γ
γ

h−2
n

[
sup

c,‖c‖≤1

(α′δn,SCAD)
2 − sup

c,‖c‖≤1

(α′δn)
2

]
≥ 2ᾱ′b

(
1

m
V̄ ᾱb

) 1
γ

‖ᾱb‖−
1−γ
γ

+op (1) .

Since the main term on the right-hand side is a continuous function of γ for γ > 0 we

will show that it is strictly positive for the limiting case γ = 1, which will imply that the

same holds for all γ < 1 high enough.

Observe that V̄ = lim→∞

[
Σ2n − Σ̃′nΣ−1

1n Σ̃n

]
= Σ2 − Σ̃′Σ−1

1 Σ̃ is positive definite since

it is the Schur complement of Σ1 in Σ, and Σ is positive definite. Therefore, for γ = 1

2ᾱ′b

(
1

m
V̄ ᾱb

) 1
1

‖ᾱb‖−
1−1
1 =

2

m
ᾱ′bV̄ ᾱb︸ ︷︷ ︸

Quadratic form with V̄ >0

> 0.

We have proved the theorem for γ ∈ (0, 1). We now come back to Equation A.15 to

complete the proof for γ = 1.
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Rewrite Equation A.15 for γ = 1 considering that λn
nτ1−γn

= m:

V
(
τ−1
n β20 + τ−1

n δ2n

)
+m

(
τ−1
n β20 + τ−1

n δ2n

)1
=

hn
τn
V c+

hn
τn

1√
nhn

W,

(V +mI)
[
h−1
n β20 + h−1

n δ2n

]
= V c+

1√
nhn

W,

c+ h−1
n δ2n = (V +mI)−1 V c+ (V +mI)−1 1√

nhn
W,

δ2n = hn
{[
−I + (V +mI)−1 V

]
c+ op(1)

}
,

with the op term uniform in c.

So

δ2n = hn

[
−
(

1

m
V + I

)−1

c+ op(1)

]
,

with the op term uniform in c.

Going back to Equation A.14 we have

δ1n =
1√
n

Σ−1
1nN1 − Σ−1

1n Σ̃nδ2n,

and therefore

h−1
n (α′1δ1n + α′2δ2n) = α′1Σ−1

1n Σ̃n

(
1

m
V + I

)−1

c− α′2
(

1

m
V + I

)−1

c+ op(1),

h−1
n α′δn = α′b

(
1

m
V + I

)−1

c+ op(1),

with the op term uniform in c.
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Now

sup
c,‖c‖≤1

(
h−1
n α′δn

)2
= sup

c,‖c‖≤1

[
α′b

(
1

m
V + I

)−1

c

]2

+ op(1)

=

[
α′b

(
1

m
V + I

)−1

c

]2
∣∣∣∣∣∣
c=

∥∥∥( 1
m
V+I)

−1
αb

∥∥∥−1

( 1
m
V+I)

−1
αb

+ op(1)

=

∥∥∥∥∥
(

1

m
V + I

)−1

αb

∥∥∥∥∥
2

+ op(1).

Combining the above with Equation A.12 we have

sup
c,‖c‖≤1

(
h−1
n α′δn,SCAD

)2 − sup
c,‖c‖≤1

(
h−1
n α′δn

)2

= ‖αb‖2 −

∥∥∥∥∥
(

1

m
V + I

)−1

αb

∥∥∥∥∥
2

+ op(1)

= α′b

[
I −

(
1

m
V + I

)−2
]
αb + op(1)

= α′b

(
1

m
V + I

)−1 [
1

m2
V 2 + 2

1

m
V

](
1

m
V + I

)−1

αb + op(1).

We can replace αb and V with their respective limits ᾱb and V̄ :

sup
c,‖c‖≤1

(
h−1
n α′δn,SCAD

)2 − sup
c,‖c‖≤1

(
h−1
n α′δn

)2

= ᾱ′b

(
1

m
V̄ + I

)−1 [
1

m2
V̄ 2 + 2

1

m
V̄

](
1

m
V̄ + I

)−1

ᾱb + op(1),

where the leading term is greater than zero since V̄ > 0 (as shown in the γ ∈ (0, 1) part

of this proof) and ᾱb 6= 0 by assumption.

�
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CHAPTER B

Appendix to Chapter 2

B.1. Proofs

Proof of Theorem 5. Consider the objective function that the penalized estimator

minimizes:

Qn(b) =
n∑
i=1

ε2
i +(b−β0)′

n∑
i=1

xix
′
i(b−β0)−2

n∑
i=1

εix
′
i(b−β0)+λn

p∑
j=k0+1

Pen(β0j +bj−β0j).

Let δn = β̂n − β0 and N = 1√
n

∑n
i=1 εixi. Then δn minimizes

Vn(u) = u′Σnu− 2
1√
n
u′N +

λn
n

p∑
j=k0+1

Pen(β0j + uj).(B.1)

Since this function is differentiable, we have

Σnδn −
1√
n
N +

1

2

λnτ
γ
n

n
5 Pen(τ−1

n β0 + τ−1
n δn; 1) = 0,

or

n

λnτ
γ
n
δn = −1

2
Σ−1
n 5 Pen(τ−1

n β0 + τ−1
n δn; 1) +

√
n

λnτ
γ
n

Σ−1
n N.(B.2)

Using the notation τn = n−1/2gn and λn = n
1+γ
2 fn with gn → ∞, fn → ∞, note that

√
n

λnτ
γ
n

= 1
fng

γ
n
→ 0, 5Pen(·; 1) is bounded and N = Op(1) by Assumption A10 and does
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not depend on coefficients, so

δn = Op

(
λnτ

γ
n

n

)
= Op

(
fng

γ
n√
n

)

uniformly in β0.

This provides us with a bound on convergence rate of the estimator. For more pre-

cise results we need to consider sequences τ−1
n β0 and τ−1

n δn. We will consider semi-local

sequences β0 = τnα0 so as to keep the first component meaningful. From the result above

we have

τ−1
n δn = Op

(
λn

nτ 1−γ
n

)
= Op

(
fn

g1−γ
n

)
.

Three distinct cases are possible here, depending on whether the ratio inside the Op

converges to zero, is equal to a constant, or diverges to infinity. In this theorem I focus

on the second case.

Case 1: if fn = o (g1−γ
n ), then τ−1

n δn = op(1) and, from Equation B.2,

n

λnτ
γ
n
δn

p−−−→
n→∞

−1

2
Σ−15 Pen(α0; 1).

Case 2: if fn = mg1−γ
n (or λn

n
= mτ 1−γ

n ), then, rewriting Equation B.1, we have

τ−1
n δn = arg min

v
v′Σnv − 2

1√
nτn

v′N +m

p∑
j=k0+1

Pen(τ−1
n β0j + vj; 1).
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So, by the usual asymptotic argument,

τ−1
n δn

p−−−→
n→∞

arg min
v
v′Σv +m

p∑
j=k0+1

Pen(α0j + vj; 1)︸ ︷︷ ︸
≡b

.

Let Dn = τ−1
n δn − b. Returning to the first-order condition for δn we have

Σnb+ ΣnDn +
m

2
5 Pen(α0 + b+Dn; 1) =

1√
nτn

N.

Let D1n capture the elements of Dn such that either the corresponding coefficient

is not penalized, or α0j + bj 6= 0. Let D2n contain the rest. Then since Dn
p−−−→

n→∞
0,

we can expand the gradient of the penalty according to Taylor expansion for elements

corresponding to D1n and as a penalty at D2n for the rest:

5Pen(α0 + b+Dn; 1) = 5Pen(α0 + b; 1) +

 52 Pen(α10 + b1; 1)D1n + o(D1n)

2Dγ
2n


with probability approaching 1.

So

(Σn − Σ) b+

Σb+
m

2
5 Pen(α0 + b; 1)︸ ︷︷ ︸

=0 by definition of b

+ ΣnDn

+
m

2

 52 Pen(α10 + b1; 1)D1n + o(D1n)

2Dγ
2n

 =
1√
nτn

N.
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Splitting Σn into Σ1n, Σ2n and Σ̃n according to the split into D1n and D2n, we have Σ1nD1n + Σ̃nD2n + m
2
52 Pen(α10 + b1; 1)D1n + o(D1n) = 1√

nτn
N1 − [(Σn − Σ)b]1 ;

Σ̃′nD1n + Σ2nD2n +mDγ
2n = 1√

nτn
N2 − [(Σn − Σ)b]2 .

Continuing with the first part of the FOC, and utilizing Assumption A11(b),

[
Σ1n +

m

2
52 Pen(α10 + b1; 1)

]
︸ ︷︷ ︸

≡V1

D1n + o(D1n) =
1√
nτn

N1 − Σ̃nD2n + o

(
1√
nτn

)
,

D1n =
1√
nτn

V −1
1 N1 − V −1

1 Σ̃nD2n + op

(
1√
nτn

N1 + Σ̃nD2n

)
,

where V1 is invertible for n large enough as a corollary of assumptions A11(a) and A12.

Plugging the above result into the second part of the FOC we have

[
Σ2n − Σ̃′nV

−1
1 Σ̃n

]
D2n + op(D2n) +mDγ

2n =
1√
nτn

[
N2 − Σ̃′nV

−1
1 N1

]
− op

(
1√
nτn

)
.

It follows from assumption A12 that the first term on the left-hand side is O(D2n), so

Dγ
2n =

1√
nτn

1

m

[
N2 − Σ̃′nV

−1
1 N1

]
+ op

(
1√
nτn

)
.

Returning to D1n we have

D1n =
1√
nτn

V −1
1 N1 + op

(
1√
nτn

)
,
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and putting the two together

√
nτn

 D1n

Dγ
2n

 =

 V −1
1 0

− 1
m

Σ̃′nV
−1

1
1
m
I

N + op(1).

The conclusion of the theorem follows from A10.

�

Proof of Lemma 7. Writing out the first-order condition (see Equation B.2 in the

proof of Theorem 5) we have

√
n

β̂n − β0 +
1

2

λn
n

Σ−1
n 5 Pen

(
β̂n; τn

)
︸ ︷︷ ︸

=−τnb̂n

 = Σ−1
n

1√
n

n∑
i=1

εixi,

with the result following from assumptions A10 and A11(a). �

Proof of Corollary 2. We will verify the assumptions of Theorem 2.

Assumptions A2(a) and A2(b) are satisfied by assumption A13(e).

Assumption A3(a) is satisfied by assumption A13(b).

Assumption A3(c) is satisfied by assumptions A13(b) and A13(c): observe that

x′iΣ
−1
n xi ≤ ρ−1

n ‖xi‖2.

�

I will use Lemma 4.1 and a modification of Lemma 4.2 of Chatterjee and Lahiri (2010)

for obtaining the asymptotic distribution and later for ensuring bootstrap consistency.
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Lemma 12 (Lemma 4.1 in Chatterjee and Lahiri (2010)). Suppose that Σn converges

to a positive definite limit Σ, 1
n

∑n
i=1 ‖xi‖3 = O(1) and the errors εi are i.i.d. with mean

0 and variance σ2. Then ∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥ = o(n1/2 log n), a.s.

Lemma 13 (Modification of Lemma 4.2 in Chatterjee and Lahiri (2010)). Suppose

that Σn converges to a positive definite limit Σ, 1
n

∑n
i=1 ‖xi‖3 = O(1) and the errors εi are

i.i.d. with mean 0 and variance σ2 ∈ (0,∞). Suppose moreover that λnτ
γ
n = O(n1/2 log n).

Then ∥∥∥√n(β̂n − β0

)∥∥∥ = O(log n), a.s.

Proof of Lemma 13. This proof follows the arguments in the proof of Lemma 4.2

in Chatterjee and Lahiri (2010) and those in the proof of Theorem 1 in Chapter 1.

Let Tn =
√
n
(
β̂n − β0

)
and N = 1√

n

∑n
i=1 εixi. Then Tn minimizes

Vn(u) = u′Σnu− 2u′N + λn

p∑
j=k0+1

[
Pen(β0j + n−1/2uj)− Pen(β0j)

]
.

Let ρn be the smallest eigenvalue of Σn. Using the fact that the largest derivative of the

penalty function is 2τ γn we have

Vn(u) ≥ ρn‖u‖2 − 2‖u‖‖N‖ − 2pn−1/2λnτ
γ
n‖u‖

= ‖u‖
(
ρn‖u‖ − 2‖N‖ − 2pn−1/2λnτ

γ
n

)
≡ V1,n(u).

Now for ‖u‖ ≥ C log n with C large enough we have

ρn‖u‖ > 2‖N‖+ 2pn−1/2λnτ
γ
n , a.s.
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by Lemma 12 and assumption on λn, τn. Therefore V1,n(u) > 0 and hence Vn(u) > 0 with

probability 1 on the set {u : ‖u‖ ≥ C log n}. Since Vn(0) = 0, the minimizer of Vn lies in

the set {u : ‖u‖ < C log n} with probability 1. �

Lemma 13 is of interest beyond its use in the proof of modified bootstrap consistency.

In particular, note that the restrictions on tuning parameters admit values required for

Theorem 2 in Chapter 1, and this lemma does not impose any conditions on coefficients

(in particular, does not exclude ’intermediate’ values). So, with a careful choice of λn and

τn we can achieve oracle efficiency (when intermediate coefficients are excluded) while

maintaining the same bound on almost sure convergence (n−1/2 log n, allowing for any

coefficients) as the OLS and methods that do not provide oracle efficiency. It is curios

because we know from Leeb and Pötscher (2008) and relater works that we cannot esti-

mate regression coefficients at root-n rate uniformly if we use a model-selection-consistent

method like SCAD. It seems reasonable that the method proposed here would suffer the

same fate, and this lemma provides a bound on how bad this slowdown in convergence is.

Corollary 3. Suppose conditions of Lemma 13 hold. Moreover, suppose that all coef-

ficients are fixed, and that τn = o(1). Then

∥∥∥√n(β̃n − β0

)∥∥∥ = O(log n), a.s.

Proof of Corollary 3. Observe that with probability 1 there is N > 0 such that

for n > N only estimates of coefficients that are equal to zero may be thresholded.

Therefore ∣∣∣√n(β̃n − β0

)∣∣∣ ≤ ∣∣∣√n(β̂n − β0

)∣∣∣
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elementwise (a.s. for n large enough), and the conclusion of the corollary follows by

Lemma 13. �

Lemma 14 (Modification of Lemma 4.3 in Chatterjee and Lahiri (2010)). Let s2
n =

1
n

∑n
i=1(ri − r̄n)2 and µ̂3,n = 1

n

∑n
i=1 |ri − r̄n|

3. Assume that 1
n

∑n
i=1 ‖xi‖2 = O(1) and the

errors εi are i.i.d. with mean 0 and variance σ2 ∈ (0,∞). Moreover, assume that the

conditions of Corollary 3 hold. Then

∣∣s2
n − σ2

∣∣+ n−1/2µ̂3,n
a.s.−−−→
n→∞

0.

Proof of Lemma 14 follows the one in Chatterjee and Lahiri (2010) with the only

difference that Corollary 3 for the thresholded estimator supplants the original Lemma

4.2 in the argument.

Lemma 15 (Lemma 4.4 in Chatterjee and Lahiri (2010)). For each n ≥ 1, let {ηi,n}ni=1

be a collection of random variables on (Ω,F , P ) such that given E (a sub-sigma-algebra

of F), {ηi,n}ni=1 are i.i.d. with E∗(ηi,n) = 0, and |E∗(ηi,n)2 − t2| + n−1/2E∗|ηi,n|3 → 0 as

n → ∞ with probability 1 for some t ∈ (0,∞) (where E∗(·) = E(·|E)). Also, suppose

that Σn converges to a positive definite limit Σ and that 1
n

∑n
i=1 ‖xi‖3 = O(1) as n→∞.

Then

L

(
n−1/2

n∑
i=1

xiηi,n|E

)
d−−−→

n→∞
N
(
0, t2Σ

)
, a.s.,

where L(·|E) denotes the conditional distribution given E.

Proof of Theorem 7. The proof follows that of Theorem 1 of Chatterjee and

Lahiri (2011) with adjustments for a different penalty function. It relies on Lemmas
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4.2 - 4.4 from Chatterjee and Lahiri (2010) applying to the residuals from the modified

estimator β̃n. Lemma 4.2 holds under the conditions of, and as a corollary of, modified

Lemma 4.2 for β̂n described above. A modification of Lemma 4.3 can be established

provided 4.2 holds, and resampled residuals ε∗i satisfy the conditions of Lemma 4.4 given

Lemma 4.3.

Let (Ω,F , P ) be the underlying probability space. Let N∗ = 1√
n

∑n
i=1 ε

∗
ixi. Then T ∗n

minimizes

V ∗n (u) = u′Σnu− 2u′N∗ + λn

p∑
j=k0+1

[
Pen(β̃n,j + n−1/2uj)− Pen(β̃n,j)

]
.

Note that Lemma 15 applies to resampled residuals ε∗i due to Lemma 14. Therefore

(B.3) L (N∗|E)
d−−−→

n→∞
N
(
0, σ2Σ

)
, a.s.,

where E is the sigma-algebra generated by {εi}ni=1.

Let A ∈ F be a set of probability 1 such that for every ω ∈ A

∥∥∥√n(β̃n − β0

)∥∥∥ = O(log n)

(by Corollary 3) and

L (N∗|E) (ω)
d−−−→

n→∞
N
(
0, σ2Σ

)
.

Fix ω ∈ A. There exists N > 0 such that for all n > N

β̃n,j = β̂n,j,∀ j : 1 ≤ j ≤ k
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and

β̃n,j = 0,∀ j : k + 1 ≤ j ≤ p.

Therefore for all n > N we have

V ∗n (u) = u′Σnu− 2u′N∗ + λn

k∑
j=k0+1

[
Pen(β̃n,j + n−1/2uj)− Pen(β̃n,j)

]

+ λn

p∑
j=k+1

Pen(n−1/2uj).

Similarly to Lemma 13 we can establish that

∥∥∥√n(β∗n − β̃n)∥∥∥ = O(log n), a.s.

Restricting attention to B ⊂ A such that P (B) = 1 and
∥∥∥√n(β∗n − β̃n)∥∥∥ = O(log n) for

every ω ∈ B, and fixing ω, we have that for all n large enough β∗n,j is in the outer area of

the penalty for k0 + 1 ≤ j ≤ k and in the inner area of the penalty for k + 1 ≤ j ≤ p, so

T ∗n minimizes

(B.4) V ∗∗n (u) = u′Σnu− 2u′N∗ +
2

1 + γ
fn

p∑
j=k+1

|uj|1+γ .

Here we will consider the cases under assumptions A14(a) and A14(b) separately;

this will help highlight that while estimator behavior under the two choices of tuning

parameters is different, modified bootstrap inference is valid under both of them.

First consider the case under A14(b). We have

V ∗∗n (u) = u′Σnu− 2u′N∗ +
2

1 + γ
l

p∑
j=k+1

|uj|1+γ .
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Following the argument in Theorem 1 of Chatterjee and Lahiri (2011) and those in Knight

and Fu (2000), we can establish that

L (V ∗∗n (·)|E) (ω)
d−−−→

n→∞
L (VF (·))

on the space of all functions on Rp that are uniformly bounded on compact subsets of Rp

(where VF is defined in Theorem 6). Therefore

L (T ∗n |E) (ω)
d−−−→

n→∞
L (T∞) ,

where T∞ is distributed as in Theorem 6. Since this holds for all ω ∈ B and P (B) = 1

the conclusion of the theorem follows.

Now consider the case under A14(a). Maintaining the same split of p-vector u (and

correspondingly N∗ and Σn) into (u′1, u
′
2)′, where u1 has k elements (consistent with

assumption A13), we have, from Equation B.4,
∂V ∗∗n
∂u1

= 2Σ1nu1 − 2N∗1 + 2Σ̃nu2;

∂V ∗∗n
∂u2

= 2Σ̃′nu1 + 2Σ2nu2 − 2N∗2 + 2fnu
γ
2 ;

where the power is understood as the sign-preserving element-wise (Hadamard) power

(here and in the derivations to follow).
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Hence by first-order conditions for T ∗n = (T ∗1n
′, T ∗2n

′)′ we have
T ∗1n = Σ−1

1nN
∗
1 − Σ−1

1n Σ̃nT
∗
2n;

Σ̃′nT
∗
1n + Σ2nT

∗
2n −N∗2 + fnT

∗
2n
γ = 0.

Substituting the first equation into the second and rearranging we get
T ∗1n = Σ−1

1nN
∗
1 − Σ−1

1n Σ̃nT
∗
2n;

(
Σ2n − Σ̃′nΣ−1

1n Σ̃n

)
T ∗2n + fnT

∗
2n
γ = N∗2 − Σ̃′nΣ−1

1nN
∗
1 .

Following the same argument as in Theorem 2 we have

fnT
∗
2n
γ = N∗2 − Σ̃′nΣ−1

1nN
∗
1 + op(1),

and hence 
T ∗1n = Σ−1

1nN
∗
1 + op(1);

fnT
∗
2n
γ = N∗2 − Σ̃′nΣ−1

1nN
∗
1 + op(1).

Rewriting further we get T ∗1n

fnT
∗
2n
γ

 =

 Σ−1
1n 0

−Σ̃′nΣ−1
1n Ip−k

N∗ + op(1).
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Finally, utilizing B.3 we have

L


 T ∗1n

fnT
∗
2n
γ

 |E
 d−−−→

n→∞
N
(
0, σ2Ω

)
, a.s.,

where

Ω =

 Σ−1
1 0

−Σ̃′Σ−1
1 Ip−k


 Σ1 Σ̃

Σ̃′ Σ2


 Σ−1

1 −Σ−1
1 Σ̃

0 Ip−k



=

 Σ−1
1 0

0 Σ2 − Σ̃′Σ−1
1 Σ̃

 ,

which completes the proof. �


	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Efficient Estimation with Smooth Penalization
	1.1. Introduction
	1.2. Model and motivation
	1.3. The estimator
	1.4. Properties of the estimator with smooth penalty
	1.5. Simulations
	1.6. Conclusion

	Chapter 2. Alternative Asymptotic Analysis of Once-Differentiable Penalty Estimator
	2.1. Introduction
	2.2. The model and the estimator
	2.3. Possible approaches to asymptotic approximations
	2.4. Local asymptotics
	2.5. Semi-local asymptotics
	2.6. Bootstrap
	2.7. Simulations
	2.8. Conclusion

	Chapter 3. Empirical Application
	3.1. Introduction and baseline results
	3.2. Estimation
	3.3. Inference
	3.4. Conclusion

	References
	Chapter A. Appendix to Chapter 1
	A.1. Additional simulation results
	A.2. Proofs

	Chapter B. Appendix to Chapter 2
	B.1. Proofs


