
NORTHWESTERN UNIVERSITY

Efficient and Guaranteed Geometric Methods for Motion Generation and
Perception

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Mechanical Engineering

By

Taosha Fan

EVANSTON, ILLINOIS

March 2022

2

© Copyright by Taosha Fan 2022

All Rights Reserved

3

ABSTRACT

Efficient and Guaranteed Geometric Methods for Motion Generation and Perception

Taosha Fan

Even though a number of techniques have been developed for motion generation and

perception, few of them focus on the computational efficiency and theoretical guarantees

at the same time. Typically, improved guarantees come with increased complexity, making

theoretically guaranteed methods challenging use in real-time applications. Thus, existing

methods usually have to ignore either efficiency or guarantees in practical implementation.

Nevertheless, numerous problems in motion generation and perception require computa-

tional efficiency as well as theoretical guarantees, making the implementation of existing

techniques strictly limited. To address this issue, we present efficient and guaranteed

methods for motion generation and perception by utilizing geometry and optimization. In

this thesis, we develop fast algorithms for higher-order variational integrators with linear-

and quadratic-time complexity for integration and linearization, respectively; we make

use of the complex number representation to solve the planar graph-based SLAM that is

not only certifiably correct but also more efficient and robust; we propose majorization

4

minimization methods for distributed pose graph optimization that have provable con-

vergence to first-order critical points and can be accelerated with no loss of theoretical

guarantees; we present a sparse constrained formulation for 3D human pose and shape

estimation with which a linear-time algorithm is derived to compute the Gauss-Newton

direction and the optimization time is reduced from tens of seconds to several millisec-

onds. In spite of the theoretical guarantees, all of these aforementioned methods achieve

the state-of-the-art performances in terms of both accuracy and efficiency for their specific

applications in motion generation and perception.

5

Acknowledgements

First of all, I would like to thank my advisor Prof. Todd Murphey for his kind support

and guidance. Todd has given me tremendous freedom to explore my research interests

even though some of them sound senseless at the beginning. Whenever I encounter dif-

ficulties, Todd always makes time for me and tries his best to help. I can never express

my thanks enough. I’m also grateful to Prof. Randy Freeman and Prof. Brenna Ar-

gall for being my committee members and giving valuable and inspiring feedback on my

dissertation. I further want to thank my colleagues and friends in Northwestern with

whom I spent lots of wonderful time these years. At last, I want to thank my family who

has provided me with endless support and care throughout my life. This dissertation is

impossible without them.

6

Table of Contents

ABSTRACT 3

Acknowledgements 5

Table of Contents 6

List of Tables 9

List of Figures 13

Chapter 1. Introduction 22

1.1. Contributions 22

Chapter 2. Efficient Computation of Higher-Order Variational Integrators 25

2.1. Introduction 25

2.2. Preliminaries and Notation 27

2.3. The Linear-Time Higher-Order Variational Integrator 42

2.4. The Linearization of Higher-Order Variational Integrators 50

2.5. Comparison with Existing Methods 52

2.6. Trajectory Optimization 59

2.7. Conclusion 63

2.8. Proofs 63

7

Chapter 3. Efficient and Certifiably Correct Planar Graph-Based SLAM Using the

Complex Number Representation 84

3.1. Introduction 85

3.2. Notation 92

3.3. The Complex Number Representation of SO(2) and SE(2) 93

3.4. The Complex Oblique Manifold 97

3.5. Problem Formulation and Simplification 98

3.6. The Semidefinite Relaxation 109

3.7. The CPL-SLAM Algorithm 112

3.8. Experiments 119

3.9. Conclusion 132

3.10. Proofs 134

Chapter 4. Majorization Minimization Methods for Distributed Pose Graph

Optimization 141

4.1. Introduction 142

4.2. Related Work 145

4.3. Notation 147

4.4. Problem Formulation 149

4.5. The Majorization of Loss Kernels 155

4.6. The Majorization of Distributed Pose Graph Optimization 157

4.7. The Majorization Minimization Method for Distributed Pose Graph

Optimization 169

8

4.8. The Accelerated Majorization Minimization Method for Distributed Pose

Graph Optimization with a Master Node 178

4.9. The Accelerated Majorization Minimization Method for Distributed Pose

Graph Optimization without a Master Node 185

4.10. Experiments 192

4.11. Conclusion 215

4.12. Proofs 216

Chapter 5. Sparse Constrained Optimization of 3D Human Pose and Shape

Estimation 250

5.1. Introduction 250

5.2. Related work 254

5.3. Problem Formulation 256

5.4. Method 261

5.5. Real-time Motion Capture Framework 265

5.6. Evaluation 268

5.7. Ablation Studies 274

5.8. Conclusion 287

5.9. Proofs 289

References 304

9

List of Tables

2.1 The comparison of the Simpson variational integrator with the

Hermite-Simpson direct collocation method for trajectory optimization.

The trajectory optimization problem has N stages and the mechanical

system has n degrees of freedom, m holonomic constraints and is fully

actuated with n control inputs. Note that all the integrators use three

control points for integration. 56

3.1 Results of the 2D SLAM Benchmark Datasets 131

4.1 2D and 3D SLAM benchmark datasets. 201

4.2 An overview of the state-of-the-art algorithms for distributed and

centralized PGO. Note that AMM−PGO∗ and RBCD++∗ require a

master node for distributed PGO. In addition, AMM−PGO# is the only

accelerated method for distributed PGO that has provable convergence

without a master node. 201

4.3 Results of distributed PGO on the 2D SLAM Benchmark datasets (see

Table 4.1). The distributed PGO has 10 robots and is initialized with

the distributed Nesterov’s accelerated chordal initialization [1]. We

report the objective values of each method with 100, 250 and 1000

10

iterations. F (k) and F ∗ are the objective value at iteration k and globally

optimal objective value, respectively. The best results are colored in red

and the second best in blue if no methods tie for the best. 204

4.4 Results of distributed PGO on the 3D SLAM Benchmark datasets (see

Table 4.1). The distributed PGO has 10 robots and is initialized with

the distributed Nesterov’s accelerated chordal initialization [1]. We

report the objective values of each method with 100, 250 and 1000

iterations. F (k) and F ∗ are the objective value at iteration k and globally

optimal objective value, respectively. The best results are colored in red

and the second best in blue if no methods tie for the best. 205

5.1 Evaluation on the Human3.6M dataset comparing computational times

(s) and accuracy (mm) with Protocols 1 and 2. Overall, our method

significantly outperforms all optimization methods with orders of

magnitude speed up, and is competitive against the best performing

regression method SPIN [2]. Preprocessing time for regression methods

is the generation of human bounding boxes with YOLOv4-CSP [3], and

for optimization methods is the inference time of the front-end neural

network. All the optimization is run on CPU. VNect, MTC and ours

are in C++, and SMPLify and UP-P91 are in Python. 272

5.2 Evaluation on the MPI-INF-3DHP dataset. Our method outperforms

optimization (denoted by *) and regression methods over multiple

accuracy metrics before and after rigid alignment. 273

11

5.3 Evaluation on the 3DPW dataset. Our method is competitive against

the best regression method SPIN. * denotes optimization method and ‡

indicates that the method uses multiple frames. 273

5.4 Steps to Compute the Gauss-Newton Direction for the Dense

Unconstrained Formulation 292

5.5 Steps to Compute the Gauss-Newton Direction for the Sparse

Constrained Formulation 293

5.6 The summary of the computational complexities for the steps to

compute the Gauss-Newton direction for the dense unconstrained and

sparse constrained formulations, where K is the number of joints, P

is the number of shape parameters, N is the number of measurements

for all the body parts. Note that the number of shape parameters P is

assumed to be varying in (a) and constant in (b). 301

5.7 The analysis of the computational complexities for the steps to compute

the Gauss-Newton direction for the dense unconstrained. In this table,

K is the number of joints, P is the number of shape parameters, N

is the number of measurements for all the body parts, and Ni is the

number of measurements associated with body part i. 302

5.8 The analysis of the computational complexities for the steps to compute

the Gauss-Newton direction for the dense unconstrained. In this table,

K is the number of joints, P is the number of shape parameters, N

12

is the number of measurements for all the body parts, and Ni is the

number of measurements associated with body part i. 303

13

List of Figures

2.1 The comparison of the O(n) Newton method with the O(n) quasi-

Newton method [4] for the trapezoidal variational integrator of a 32-link

pendulum with different time steps. The results of computational time

are in (a), number of iterations in (b) and success rates in (c). Each

result is calculated over 1000 initial conditions. 53

2.2 The comparison of our recursive algorithms with automatic

differentiation for pendulums with different numbers of links.

The variational integrator used is the Simpson variational integrator.

The results of evaluating the DEL equations are in (a), computing the

Newton direction in (b) and linearizing the DEL equations in (c). Each

result is calculated over 100 initial conditions. 55

2.3 The comparison of the Simpson variational integrator with the Hermite-

Simpson direction collocation method on a 12-link pendulum with

different time steps. The results of the integrator error are in (a), the

computational time in (b) and the integration error v.s. computational

time in (c). Each result is calculated over 100 initial conditions. 58

2.4 The Spring Flamingo robot jumps over a obstacle of 0.16 meters high. 60

2.5 The LittleDog robot walks over terrain with gaps. 61

14

2.6 The Atlas robot picks a red ball while keeping balanced with a single

foot. 62

3.1 The computational time of CPL-SLAM, SE-Sync and PDL-GN on the

Tree datasets with varying each parameter individually while keeping

the other parameters to be default values. The chordal initialization is

used for all the tests. The results of each varying parameter are the

number of poses n in (a), the number of trees n′ in (b), the probability

of observing trees pL in (c), translational RMSEs of σt in (d), angular

RMSEs of σR in (e) and positional RMSEs of σl in (f). The default

values are n = 5000, n′ = 250, pL = 0.2, σt = 0.05 m, σR = 0.015π rad

and σl = 0.05 m. For all the Tree datasets tested, it can be seen that

CPL-SLAM is around 4 ∼ 5 times faster than SE-Sync and PDL-GN,

whereas SE-Sync and PDL-GN are roughly as fast as each other. 122

3.2 The objective of CPL-SLAM, SE-Sync and PDL-GN on the Tree

datasets using the odometric initialization. In the experiments, we

vary each parameter separately while the other parameters are set to

be the default values. The results of each varying parameter are the

number of poses n in (a), the number of trees n′ in (b), the probability

of observing trees pL in (c), translational RMSEs of σt in (d), angular

RMSEs of σR in (e) and positional RMSEs of σl in (f). The default

values are n = 5000, n′ = 250, pL = 0.2, σt = 0.05 m, σR = 0.015π

rad and σl = 0.05 m. For all the Tree datasets tested, CPL-SLAM and

15

SE-Sync converge to global optima despite poor initialization, whereas

PDL-GN gets stuck at local optima. 124

3.3 The comparisons of CPL-SLAM and SE-Sync on the City datasets

with high translational measurement noise with n = 3000, pC = 0.1,

κij = 40.53 corresponding to angular RSME of σR = 0.05π rad

and varying τij corresponding to different translational RSMEs of

σt = 0.1 ∼ 0.3 m. The results are (a) successful rates of exact recovery

from the semidefinite relaxation, (b) relative suboptimality bounds

between rounded and relaxed solutions, and (c) objective values of

rounded and relaxed solutions. For all the datasets with different σt,

CPL-SLAM has a tighter semidefinite relaxation and is more robust to

translational measurement noise. 126

3.4 The comparisons of CPL-SLAM and SE-Sync on the City datasets with

high rotational measurement noise with n = 3000, pC = 0.1, τij = 88.89

corresponding to translational RSME of σt = 0.15 m and varying κij

corresponding to different angular RSMEs of σR = 0.03π ∼ 0.15π

rad. The results are (a) successful rates of exact recovery from the

semidefinite relaxation, (b) relative suboptimality bounds between

rounded and relaxed solutions, and (c) objective values of rounded and

relaxed solutions. For all the datasets with different σR, CPL-SLAM

has a tighter semidefinite relaxation and is more robust to rotational

measurement noise. 127

16

3.5 The speed-up of CPL-SLAM over SE-Sync on 2D SLAM benchmark

datasets. The results are (a) the speed-up of RTR time of CPL-SLAM

over SE-Sync and (b) the speed-up of total time of CPL-SLAM over

SE-Sync. CPL-SLAM is on average 2.87 and 2.51 times faster than

SE-Sync for RTR time and total time, respectively. 130

3.6 The globally optimal results of CPL-SLAM on 2D SLAM benchmark

datasets. Note that CPL-SLAM still obtains global optima on M3500-a,

M3500-b and M3500-c in (f)-(g), which respectively has large extra noise

with standard deviations of 0.1 rad, 0.2 rad and 0.3 rad added to the

rotational measurements of M3500 in (e). For tree10000 in (k) and

victoria-park in (l) with landmarks, we denote the positions of landmarks

with red “+”. 133

4.1 ρ(x2) for trivial, Huber, Welsch losses. 152

4.2 A Cube dataset has 12× 12× 12 grids of side length of 1 m, 3600 poses,

probability of loop closure of 0.1, an translational RSME of σt = 0.02 m

and an angular RSME of σR = 0.02π rad. 193

4.3 The relative suboptimality gaps of the MM−PGO, AMM−PGO∗,

AMM−PGO# and AMM−PGO [1] methods for distributed PGO with the

trivial loss kernel on 5, 10 and 50 robots. The results are averaged over

20 Monte Carlo runs. 195

4.4 The Riemannian gradient norms of the MM−PGO, AMM−PGO∗,

AMM−PGO# and AMM−PGO [1] methods for distributed PGO with the

17

trivial loss kernel on 5, 10 and 50 robots. The results are averaged over

20 Monte Carlo runs. 196

4.5 The Riemannian gradient norms of the MM−PGO, AMM−PGO∗,

AMM−PGO# and AMM−PGO [1] methods for distributed PGO with the

Huber loss kernel on 5, 10 and 50 robots. The results are averaged over

20 Monte Carlo runs. 197

4.6 The Riemannian gradient norms of the MM−PGO, AMM−PGO∗,

AMM−PGO# and AMM−PGO [1] methods for distributed PGO with the

Welsch loss kernel on 5, 10 and 50 robots. The results are averaged over

20 Monte Carlo runs. 198

4.7 AMM−PGO# results on the 2D SLAM benchmark datasets where

the different colors denote the odometries of different robots. The

distributed PGO has 10 robots and is initialized with the distributed

Nesterov’s accelerated chordal initialization [1]. The number of

iterations is 1000. 202

4.8 AMM−PGO# results on the 3D SLAM benchmark datasets where

the different colors denote the odometries of different robots. The

distributed PGO has 10 robots and is initialized with the distributed

Nesterov’s accelerated chordal initialization [1]. The number of

iterations is 1000. 203

4.9 Performance profiles for MM−PGO, AMM−PGO∗, AMM−PGO#, DGS [5],

RBCD++∗ [6] and RBCD++∗ [6] over a variety of 2D and 3D SLAM

18

Benchmark datasets (see Table 4.1). The performance is based on the

number of iterations k and the evaluation tolerances are ∆ = 1× 10−2,

5 × 10−3, 1 × 10−3 and 1 × 10−4. The distributed PGO has 10 robots

(nodes) and is initialized with the distributed Nesterov’s accelerated

chordal initialization [1]. Note that AMM−PGO∗ and RBCD++∗ [6]

require a master node, whereas MM−PGO, AMM−PGO#, DGS [5] and

RBCD++# [6] do not. 207

4.10 Performance profiles for AMM−PGO∗, AMM−PGO# and SE−Sync [7]

over a variety of 2D and 3D SLAM Benchmark datasets (see Table 4.1).

The performance is based on the scaled average optimization time per

node µ ∈ [0, +∞) and the evaluation tolerances are ∆ = 1 × 10−2,

1×10−3, 1×10−4 and 1×10−5. The distributed PGO has 10, 25 and 100

robots (nodes) and is initialized with the classic chordal initialization [8].

Note that SE−Sync [7] solves all the PGO problems globally at µ = 1. 210

4.11 Absolute trajectory errors (ATE) of distributed PGO using AMM−PGO#

with the trivial, Huber and Welsch loss kernels on the 2D intel and

3D garage datasets. The outlier thresholds of inter-node loop closures

are 0 ∼ 0.9. The ATEs are computed against the outlier-free results

of SE−Sync [7] and are averaged over 10 Monte Carlo runs. The

distributed PGO has 10 robots (nodes) and is initialized with the

distributed Nesterov’s accelerated chordal initialization [1]. The PCM

algorithm [9] is used to initially reject spurious inter-robot loop closures.

212

19

4.12 A qualitative comparison of distributed PGO with the trivial, Huber and

Welsch loss kernels for the garage dataset with spurious inter-node loop

closures. The outlier-free result of SE−Sync [7] is shown in Fig. 4.12(a)

for reference. The outlier threshold of inter-node loop closures is 0.6 and

PCM [9] is used for initial outlier rejection. 214

5.1 Example solutions from our motion capture framework based on our

proposed sparse constrained optimization. (left) input image from

the 3DPW [10] dataset, (middle) 3D pose and shape reconstruction

overlayed on the input image, (right) 3D reconstruction shown from a

rotated viewpoint. 252

5.2 Overview of our motion capture framework. Given an image, our

preprocessing pipeline estimates a bounding box, 2D and 3D keypoints.

The 2D and 3D keypoints are then sent to our fast sparse constrained

optimizer for 3D pose and shape reconstruction. Note that 3D keypoints

are used to compute the part orientation fields [11]. 267

5.3 Typical failure cases of our method due to (left) body part occlusion,

(middle) incorrect body orientation detection, (right) depth ambiguity

of monocular camera. 274

5.4 Qualitative comparisons of our method (second row in pink), SPIN [2]

(third row in gray), and SMPLify [12] (fourth row in purple) on the

Human3.6M [13] dataset. 275

20

5.5 Qualitative comparisons of our method (second row in pink), SPIN [2]

(third row in gray), and SMPLify [12] (fourth row in purple) on the

Human3.6M [13] dataset. 276

5.6 Qualitative comparisons of our method (second row in pink), SPIN [2]

(third row in gray), and SMPLify [12] (fourth row in purple) on the

MPI-INF-3DHP [14] dataset. 277

5.7 Qualitative comparisons of our method (second row in pink), SPIN [2]

(third row in gray), and SMPLify [12] (fourth row in purple) on the

MPI-INF-3DHP [14] dataset. 278

5.8 Qualitative comparisons of our method (second row in pink), SPIN [2]

(third row in gray), and SMPLify [12] (fourth row in purple) on the

3DPW [10] dataset. 279

5.9 Qualitative comparisons of our method (second row in pink), SPIN [2]

(third row in gray), and SMPLify [12] (fourth row in purple) on the

3DPW [10] dataset. 280

5.10 The CPU time ratio of the SMPL+H and SMPL models to compute

the Gauss-Newton direction with (a) different numbers of measurements

and no shape parameters, (b) different numbers of measurements and

10 shape parameters, and (c) different numbers of shape parameters.

The SMPL and SMPL+H models have K = 23 and K = 51 joints,

respectively. In Figs. 5.10 (a) to 5.10(c), the solid lines denote the actual

CPU time ratio of the SMPL+H and SMPL models that is obtained

21

from the experiments, whereas the dashed lines denote the expected

CPU time ratio that is approximated from the complexity analysis in

Tables 5.6 to 5.8. It can be seen the impact of the number of joints is

around two orders of magnitude less on our method. 282

5.11 The computation of the Gauss-Newton direction with different numbers

of measurements and no shape parameters. The results are (a) the CPU

time with and without our method on the SMPL and SMPL+H models,

and (b) the speedup of our method on the SMPL and SMPL+H models,

and (c) the speed up of our method on the SMPL model, and (d) the

speed up of our method on the SMPL+H model. 285

5.12 The computation of the Gauss-Newton direction with different numbers

of measurements and 10 shape parameters. The results are (a) the CPU

time with and without our method on the SMPL and SMPL+H models,

and (b) the speedup of our method on the SMPL and SMPL+H models,

and (c) the speed up of our method on the SMPL model, and (d) the

speed up of our method on the SMPL+H model. 286

5.13 The computation of the Gauss-Newton direction with different number

of shape parameters. The results are (a) the CPU time with and without

our method on the SMPL and SMPL+H models, and (b) the speedup of

our method on the SMPL and SMPL+H models, and (c) the speed up

of our method on the SMPL model, and (d) the speed up of our method

on the SMPL+H model. 288

22

CHAPTER 1

Introduction

Motion generation and perception are essential and have broad applications in robotics.

Despite that a number of techniques have been proposed, most of them have to make a

compromise between computational efficiency and theoretical guarantees, and thus, their

implementation is strictly limited in practice. To address these issues, this thesis focuses

on efficient and guaranteed methods for motion generation and perception. In particular,

our methods are developed from a geometric perspective and we show that numerous

problems in motion generation and perception can be reasonably formulated and solved

by utilizing geometry and optimization.

1.1. Contributions

1.1.1. Higher-Order Variational Integrators

Numerical integrators are critical to the motion generation for robots. Due to the

preservation of mechanical quantities, Variational Integrators (VI) are well-known for

their longer-time stability and high accuracy [15]. In spite of this, variational integrators

are time-consuming for computation, and thus, difficult to be implemented in real time. In

Chapter 2, we present algorithms that significantly improve the computational efficiency

of higher-order variational integrators. Our algorithms are applicable to variational in-

tegrators of arbitrarily high order, and more importantly, reduce the complexity from

O(n3) to O(n) for integration and O(n4) to O(n2) for linearization—n being the number

23

of joints. These improvements make higher-order variational integrators well suited for

the simulation and trajectory optimization of complex robotic systems.

1.1.2. Planar Graph-Based SLAM

When navigating without GPS, a robot is required to estimate its location as well

as build the map of the environment. Such a problem is termed as Simultaneous Lo-

calization and Mapping (SLAM) [16]. In general, SLAM problems are formulated as a

graph where the vertices are either robot’s locations or landmark’s positions while the

edges are the available noisy measurements [17]. In Chapter 3, we present CPL-SLAM

that formulates planar SLAM using the complex number representation. Even though

the resulting optimization problem is nonconvex, CPL-SLAM is certifiably correct and

guaranteed to recover the globally optimal solution regardless of the initialization as long

as the measurement noise is under a certain threshold. In addition, as a result of the

complex number representation, CPL-SLAM is faster and more robust than the other

certifiably correct algorithms for SLAM [7].

1.1.3. Distributed Pose Graph Optimization

Pose Graph Optimization (PGO) has extensive applications in autonomous driving,

AR/VR, mapping, etc. [18]. Even though centralized PGO has been well studied, it

can not solve large-scale problems due to the limitation of computational resources. In

contrast, distributed PGO has no such restrictions and applies to problems of all the

scales. Since the communication latency has been greatly reduced, distributed PGO is

more concerned with the rates and guarantees of the convergence. In Chapter 4, we present

24

major minimization methods for distributed PGO that have provable convergence to first-

order critical points under mild conditions. Furthermore, we exploit Nesterov’s method

and adaptive restarts to accelerate the convergence of distributed PGO without sacrificing

any theoretical guarantees. Last but not the least, our majorization minimization methods

for distributed PGO can be fully decentralized while achieving comparable performance

to these with a master node to communicate with all the nodes in the network.

1.1.4. 3D Human Pose and Shape Estimation

Estimating 3D human poses and shapes from images are widely used in embodied

AI, robotics, AR/VR. We can solve this problem by either optimization or regression

methods. Although more popular, regression methods depend on optimization methods

for neural network training and output refining. Therefore, optimization methods remain

important for 3D human pose and shape estimation. One of the most major drawbacks

for optimization methods is that they suffer from high computation times. This mainly

results from the inefficiency to compute the Gauss-Newton direction when solving the

optimization problem. In Chapter 5, we present a sparse constrained formulation for 3D

human pose and shape estimation that is equivalent to existing optimization methods

under mild conditions. Furthermore, we exploit the underlying sparsity and constraints

of our formulation and derive algorithms that have the computation of the Gauss-Newton

direction scale linearly with the number of joints. In contrast, existing optimization

methods have the cubic complexity. As a result of the sparse constrained formulation,

our methods reduce the optimization from tens of seconds to less than 4 milliseconds with

no loss of accuracy, which is orders of magnitude faster.

25

CHAPTER 2

Efficient Computation of Higher-Order Variational Integrators

This chapter addresses the problem of efficiently computing higher-order variational

integrators in simulation and trajectory optimization of mechanical systems as those of-

ten found in robotic applications. We develop O(n) algorithms to evaluate the discrete

Euler-Lagrange (DEL) equations and compute the Newton direction for solving the DEL

equations, which results in linear-time variational integrators of arbitrarily high order. To

our knowledge, no linear-time higher-order variational or even implicit integrators have

been developed before. Moreover, an O(n2) algorithm to linearize the DEL equations is

presented, which is useful for trajectory optimization. These proposed algorithms elimi-

nate the bottleneck of implementing higher-order variational integrators in simulation and

trajectory optimization of complex robotic systems. The efficacy of this chapter is vali-

dated through comparison with existing methods, and implementation on various robotic

systems—including trajectory optimization of the Spring Flamingo robot, the LittleDog

robot and the Atlas robot. The results illustrate that the same integrator can be used

for simulation and trajectory optimization in robotics, preserving mechanical properties

while achieving good scalability and accuracy.

2.1. Introduction

Variational integrators conserve symplectic form, constraints and energetic quantities

[15, 19–23]. As a result, variational integrators generally outperform the other types

26

of integrators with respect to numerical accuracy and stability, thus permitting large

time steps in simulation and trajectory optimization, which is useful for complex robotic

systems [15,19–23]. Moreover, variational integrators can also be regularized for collisions

and friction by leveraging the linear complementarity problem (LCP) formulation [24,25].

The computation of variational integrators is comprised of the discrete Euler-Lagra-

nge equation (DEL) evaluation, the descent direction computation for solving the DEL

equations and the DEL equation linearization. The computation of these three phases of

variational integrators can be accomplished with automatic differentiation and our prior

methods [19, 21], both of which are O(n2) to evaluate the DEL equations and O(n3)

to compute the Newton direction and linearize the DEL equations for an n-degree-of-

freedom mechanical system. Recently, a linear-time second-order variational integrator

was developed in [4], which uses the quasi-Newton method and works for small time steps

and comparatively simple mechanical systems.

Higher-order variational integrators are needed for greater accuracy in predicting the

dynamic motion of robots [26,27]. However, the computation of higher-order variational

integrators has rarely been addressed. The quasi-Newton method in [4] only applies to

second-order variational integrators, and while automatic differentiation and our prior

methods [19,21] are implementable for higher-order variational integrators, the complex-

ity increases superlinearly as the integrator order increases.

This chapter is built upon the preliminary results in [28]. We address the computation

efficiency of higher-order variational integrators and develop: i) an O(n) method for

the evaluation of the DEL equations, ii) an O(n) method for the computation of the

Newton direction, and iii) an O(n2) method for the linearization of the DEL equations.

27

The proposed characteristics i) – iii) eliminate the bottleneck of implementing higher-

order variational integrators in simulation and trajectory optimization of complex robotic

systems, and to the best of our knowledge, no similar work has been presented before. In

particular, we believe that the resulting variational integrator from i) and ii) is the first

exactly linear-time implicit integrator of third or higher order for mechanical systems.

The rest of this chapter is organized as follows. Section 2.2 reviews higher-order

variational integrators, the Lie group formulation of rigid body motion and the tree rep-

resentation of mechanical systems. Sections 2.3 and 2.4 respectively detail the linear-time

higher-order variational integrator and the quadratic-time linearization, which are the

main contributions of this chapter. Section 2.5 compares our work with existing meth-

ods, and Section 2.6 presents examples of trajectory optimization for the Spring Flamingo

robot, the LittleDog robot and the Atlas robot. The conclusions are made in Section 2.7.

2.2. Preliminaries and Notation

In this section, we review higher-order variational integrators, the Lie group formula-

tion of rigid body motion, and the tree representation of mechanical systems. In addition,

notation used throughout this chapter is introduced accordingly.

2.2.1. Higher-Order Variational Integrators

In this chapter, higher-order variational integrators are derived with the methods

in [15,29,30].

A trajectory (q(t), q̇(t)) where 0 ≤ t ≤ T of a forced mechanical system should satisfy

the Lagrange-d’Alembert principle:

28

(2.1) δS = δintT0L(q, q̇)dt+ intT0F(t) · δqdt = 0

in which L(q, q̇) is the system’s Lagrangian and F(t) is the generalized force. Provided

that the time interval [0, T] is evenly divided into N sub-intervals with ∆t = T/N , and

each q(t) over [k∆t, (k + 1)∆t] is interpolated with s + 1 control points qk,α = q(tk,α) in

which α = 0, 1, · · · , s and k∆t = tk,0 < tk,1 < · · · < tk,s = (k + 1)∆t, then there are

coefficients bαβ (0 ≤ α, β ≤ s) such that

(2.2) q̇(tk,α) ≈ q̇k,α =
1

∆t

s∑
β=0

bαβqk,β.

In this chapter, we assume that the quadrature points of the quadrature rule are also tk,α

though our algorithms in Sections 2.3 and 2.4 can be generalized for any quadrature rules.

Then the Lagrange-d’Alembert principle Eq. (2.1) is approximated as

(2.3) δS ≈
N−1∑
k=0

s∑
α=0

wα
[
δL(qk,α, q̇k,α) + F(tk,α) · δqk,α

]
·∆t = 0,

where wα are weights of the quadrature rule used for integration. In variational integra-

tors, the discrete Lagrangian and the discrete generalized force are defined to be

(2.4) Ld(qk,0, qk,1, · · · , qk,s) =
s∑

α=0

wαL(qk,α, q̇k,α)∆t

and Fk,αd (tk,α) = wαF(tk,α)∆t, respectively. Note that by definition we have tk,s = tk+1,0

and qk,s = qk+1,0, and as a result of Eq. (2.3), we obtain

(2.5a) pk + D1Ld(qk) + Fk,0d = 0,

(2.5b) Dα+1Ld(qk) + Fk,αd = 0 ∀α = 1, · · · , s− 1,

29

(2.5c) pk+1 = Ds+1Ld(qk) + Fk,sd

in which pk is the discrete momentum, qk stands for the tuple (qk,0, qk,1, · · · , qk,α), and

Dα+1Ld is the derivative with respect to qk,α. Note that Eq. (2.5) is known as the discrete

Euler-Lagrangian (DEL) equations, which implicitly define an update rule (qk,0, pk) →

(qk+1,0, pk+1) by solving sn nonlinear equations from Eqs. (2.5a) and (2.5b). In a similar

way, for mechanical systems with constraints h(q, q̇) = 0, we have

(2.6a) pk + D1Ld(qk) + Fk,0d + Ak,0(qk,0) · λk,0 = 0,

(2.6b) Dα+1Ld(qk) + Fk,αd + Ak,α(qk,α) · λk,α = 0 ∀α = 1, · · · , s− 1,

(2.6c) pk+1 = Ds+1Ld(qk) + Fk,sd ,

(2.6d) hk,α(qk+1,α, q̇k+1,α) = 0 ∀α = 1, · · · , s

in which Ak,α(qk,α) is the discrete constraint force matrix and λk,α is the discrete constraint

force.

The resulting higher-order variational integrator is referred as the Galerkin integrator

[15, 29, 30], the accuracy of which depends on the number of control points as well as

the numerical quadrature of the discrete Lagrangian. If there are s + 1 control points

and the Lobatto quadrature is employed, then the resulting variational integrator has an

accuracy of order 2s [29,30]. The Galerkin integrator includes the trapezoidal variational

30

integrator and the Simpson variational integrator as shown in Examples 2.1 and 2.2, the

DEL equations of which are given by Eqs. (2.5) and (2.6).

Example 2.1. The trapezoidal variational integrator is a second-order integrator

with two control points qk = (qk,0, qk,1) such that qk,0 = q
(
k∆t

)
and qk,1 = q

(
(k+ 1)∆t

)
,

q̇k,0 = q̇k,1 = qk,1−qk,0
∆t

, and Ld(qk) = ∆t
2

[
L(qk,0, q̇k,0) + L(qk,1, q̇k,1)

]
.

Example 2.2. The Simpson variational integrator is a fourth-order integrator with

three control points qk = (qk,0, qk,1, qk,2) in which qk,0 = q
(
k∆t

)
, qk,0 = q

(
(k+ 1

2
)∆t
)
and

qk,2 = q
(
(k + 1)∆t

)
, q̇k,0 = 4qk,1−3qk,0−qk,2

∆t
, q̇k,1 = qk,2−qk,0

∆t
and q̇k,2 = qk,0+3qk,2−4qk,1

∆t
, and

Ld(qk) = ∆t
6

[
L(qk,0, q̇k,0) + 4L(qk,1, q̇k,1) + L(qk,2, q̇k,2)

]
.

2.2.2. The Lie Group Formulation of Rigid Body Motion

The configuration of a rigid body g = (R, p) ∈ SE(3) can be represented as a 4 × 4

matrix g =

R p

0 1

 in which R ∈ SO(3) is a rotation matrix and p ∈ R3 is a position

vector. The body velocity of the rigid body v = (ω, vO) ∈ TeSE(3) is an element of the

Lie algebra and can be represented either as a 6 × 1 vector v = (g−1ġ)∨ =

[
ωT vTO

]
or

a 4 × 4 matrix v̂ = g−1ġ =

ω̂ vO

0 0

 in which ω = (ωx, ωy, ωz) ∈ TeSO(3) is the angular

velocity, vO is the linear velocity, ω̂ =

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ∈ R3×3, and the hat “∧” and

unhat“∨” are linear operators that relate the vector and matrix representations. The same

representation and operators also apply to the spatial velocity v = (ω, vO) ∈ TeSE(3),

31

whose 6 × 1 vector and 4 × 4 matrix representations are respectively v = (ġg−1)∨ and

v̂ = ġg−1.

In the rest of this chapter, if not specified, vector representation is used for TeSE(3),

such as v, v, etc., and the adjoint operators Adg and adv : TeSE(3) → TeSE(3) can

be accordingly represented as 6 × 6 matrices Adg =

 R 0

p̂R R

 and adv =

 ω̂ 0

v̂O ω̂

such that v = Adgv and adv1v2 = (v̂1v̂2 − v̂2v̂1)∨. For consistence, the dual Lie algebra

T ∗e SE(3) uses the 6× 1 vector representation as well. As a result, the body wrench F =

(τ, fO) ∈ T ∗e SE(3) is represented as a 6× 1 vector F =

[
τT fTO

]T
in which τ ∈ T ∗e SO(3)

is the torque and fO is the linear force so that
〈
F, v

〉
= F Tv. Moreover, we define

the linear operator adDF : TeSE(3) → T ∗e SE(3) which is represented as a 6 × 6 matrix

adDF =

 τ̂ f̂O

f̂O 0

 so that F Tadv1v2 = vT2 ad
D
F v1 = −vT1 adDF v2 for v1, v2 ∈ TeSE(3). The

same representation and operators also apply to the spatial wrench F = Ad−Tg F = (τ , fO)

which is paired with the spatial velocity v = Adgv.

2.2.3. The Tree Representation of Mechanical Systems

In general, a mechanical system with n inter-connected rigid bodies indexed as 1, 2, · · · , n

can be represented through a tree structure so that each rigid body has a single parent

and zero or more children [19,31], and such a representation is termed as tree represen-

tation. In this chapter, the spatial frame is denoted as {0}, which is the root of the tree

representation, and we denote the body frame of rigid body i as {i}, and the parent,

ancestors, children and descendants of rigid body i as par(i), anc(i), chd(i) and des(i),

respectively. Since all joints can be modeled using a combination of revolute joints and

32

prismatic joints, we assume that each rigid body i is connected to its parent by a one-

degree-of-freedom joint i which is either a revolute or a prismatic joint and parameterized

by a real scalar qi ∈ R. As a result, the tree representation is parameterized with n gen-

eralized coordinates q =

[
q1 q2 · · · qn

]T
∈ Rn. For each joint i, the joint twist with

respect to frame {0} and {i} are respectively denoted as 6 × 1 vectors Si =

[
sTi nTi

]T
and Si =

[
sTi nTi

]T
in which si, si are 3× 1 vectors corresponding to rotation and ni, ni

are 3 × 1 vectors corresponding to translation. Note that Si, si and ni are constant by

definition. Moreover, Si and Si are related as Si = AdgiSi where gi ∈ SE(3) is the con-

figuration of rigid body i, and Ṡi = adviSi, where vi ∈ TeSE(3) is the spatial velocity of

rigid body i.

It is assumed without loss of generality in this chapter that the origin of frame {i} is

the mass center of rigid body i, and j ∈ des(i) only if i < j, or equivalently j ∈ anc(i)

only if i > j.

The rigid body dynamics can be computed through the tree representation. The

configuration gi = (Ri, pi) ∈ SE(3) of rigid body i is gi = gpar(i)gpar(i),i(qi) in which

gpar(i),i(qi) = gpar(i),i(0) exp(Ŝiqi) is the rigid body transformation from frame {i} to its

parent frame {par(i)}, and the spatial velocity vi of rigid body i is vi = vpar(i) + Si · q̇i.

In addition, the spatial inertia matrix M i of rigid body {i} with respect to frame {0}

is M i = Ad−Tgi MiAd−1
gi

in which Mi = diag{Ii,miI} ∈ R6×6 is the constant body inertia

matrix of rigid body i, Ii ∈ R3×3 is the body rotational inertia matrix, mi ∈ R is the

mass and I ∈ R3×3 is the identity matrix.

33

In rigid body dynamics, an important notion is the articulated body [31]. In terms

of the tree representation, articulated rigid body i consists of rigid body i and all its

descendants j ∈ des(i), and the interactions with articulated body i can only be made

through rigid body i, which is known as the handle of the articulated body i.

In the last thirty years, a number of algorithms for efficiently computing the rigid

body dynamics have been developed based on tree representations and articulated bodies

[31–33], making explicit integrators have O(n) complexity for an n-degree-of-freed-om

mechanical system. Even though the same algorithms might be used for the evaluation of

implicit integrators, none of them can be used for the computation of the Newton direction

for solving implicit integrators. If the residue is rk, the Newton direction of an implicit

integrator is computed as δqk = −J (qk)−1rk; however, the Jacobian matrix J (qk) is

usually asymmetric and indefinite, and has a size greater than n × n for higher-order

implicit integrators, which means that the computation of implicit integrators is distinct

from explicit integrators whose computation is simply a combination of the algorithms

in [31–33] with an appropriate integration scheme. Furthermore, the computation of

implicit integrators is much more complicated than the computation of forward and inverse

dynamics and out of the scope of those algorithms in [31–33].

2.2.4. Recursive Computation of the Variations and Derivatives

In addition to the computation of rigid body dynamics as those in Section 2.2.3, the

tree representation can also be used to compute the variations and derivatives.

In the tree representation, the configuration gi ∈ SE(3) of rigid body i is

(2.7) gi = gpar(i)gpar(i),i(qi)

34

where gpar(i),i(qi) = gpar(i),i(0) exp(Ŝiqi) and Si is the body Jacobian of joint i with respect

to frame {i}. In addition, the spatial Jacobian of joint i with respect to frame {0} is

(2.8) Si = AdgiSi

in which Si is constant by definition. Using Eqs. (2.7) and (2.8) as well as AdgiSi =(
giŜig

−1
i

)∨, we obtain ηi = (δgig
−1
i)∨ as

(2.9) ηi = ηpar(i) + Si · δqi,

or equivalently,

(2.10) ηi = Si · δqi +
n∑

j∈anc(i)

Sj · δqj

and furthermore,

(2.11a)
(
∂gi
∂qj

g−1
i

)∨
=

Sj j ∈ anc(i) ∪ {i},

0 otherwise,

(2.11b)
(
∂gj
∂qi

g−1
i

)∨
=

Si j ∈ des(i) ∪ {i},

0 otherwise.

In addition, from Eqs. (2.8) and (2.9), δAdgi = adηiAdgi and adSiSi = 0, we obtain

(2.12) δSi = adηiSi = −adSiηi = adηpar(i)Si = −adSiηpar(i).

35

Moreover, as a result of Eqs. (2.10) to (2.12), we further obtain

(2.13a)
∂Si
∂qj

=

adSjSi j ∈ anc(i),

0 otherwise,

(2.13b)
∂Sj
∂qi

=

adSiSj j ∈ des(i),

0 otherwise.

Since the spatial velocity vi of rigid body i is

(2.14) vi = Si · q̇i +
∑

j∈anc(i)

Sj · q̇j = vpar(i) + Si · q̇i,

we obtain
δvi = δSi · q̇i + Si · δq̇i +

∑
j∈anc(i)

(
δSj · q̇j + Sj · δq̇j

)
= δvpar(i) + δSi · q̇i + Si · δq̇i.

Substitute Eq. (2.12) into the equation above, the result is

(2.15)

δvi = adηiSi · q̇i + Si · δq̇i +
∑

j∈anc(i)

(
adηjSj · q̇j + Sj · δq̇j

)
= δvpar(i) + adηiSi · q̇i + Si · δq̇i.

From Eqs. (2.12) to (2.15), we obtain

(2.16a)
∂vi
∂q̇j

=

Sj j ∈ anc(i) ∪ {i},

0 otherwise,

36

(2.16b)
∂vj
∂q̇i

=

Si j ∈ des(i) ∪ {i},

0 otherwise,

and

(2.17a)
∂vi
∂qj

=

adSj(vi − vj) j ∈ anc(i) ∪ {i},

0 otherwise,

(2.17b)
∂vj
∂qi

=

adSi(vj − vi) j ∈ des(i) ∪ {i},

0 otherwise.

In addition, from Eqs. (2.8) and (2.14), Adġi = adviAdgi and adSiSi = 0, we obtain

(2.18) Ṡi = adviSi = −adSivi = advpar(i)Si = −adSivpar(i).

As for the spatial inertia matrix M i = Ad−Tgi MiAd−1
gi
, algebraic manipulation shows that

(2.19) δM i = −adTηi ·M i −M i · adηi ,

and from Eqs. (2.9) to (2.11) and Eq. (2.19), we obtain

(2.20a)
∂M i

∂qj
=

−adT

Sj
M i −M iadSj j ∈ anc(i) ∪ {i},

0 otherwise,

37

(2.20b)
∂M j

∂qi
=

−adT

Si
M j −M jadSi j ∈ des(i) ∪ {i},

0 otherwise.

In the rest of this chapter, Eq. (2.9) to (2.20) will be used to derive the algorithms

and prove the propositions.

2.2.5. The Spatial Variation

In this subsection, we introduce the spatial variation δ (·) that is used in the algorithms

and the proof of the propositions. Note that the notion of the spatial variation δ (·) only

applies to the spatial quantities (·) of TeSE(3) or T ∗e SE(3) that are described in the

spatial frame.

If a, a ∈ TeSE(3) are related as a = Adga in which g ∈ SE(3), we have

δa = Adgδa+ adηa

in which η = (δgg−1)∨. For numerical simplicity, it is sometimes preferable to have the

variations of a and a still related by Adg. Therefore, we define the spatial variation δa to

be

(2.21) δa = δa− adηa

such that δa = Adgδa as long as a = Adga. In a similar way, if b∗, b∗ ∈ T ∗e SE(3) are

related as b∗ = Ad−Tg b∗, we obtain

δb
∗

= Ad−Tg δb∗ − adTη b
∗
.

38

Similar to Eq. (2.21), the spatial variation δ b∗ is defined to be

(2.22) δ b
∗

= δb
∗

+ adTη b
∗

such that δ b∗ = Ad−Tg δb∗ as long as b∗ = Ad−Tg b∗. In addition, note that δ
(
b∗Ta

)
=

δb∗Ta+ b∗T δa = δ b
∗T
a+ b

∗T
δa and δ(b∗

T
a) = δ(b∗Ta), we have

(2.23) δ(b
∗T
a) = δ b

∗T
a+ b

∗T
δa.

In general, the spatial variations δ (·) are the infinitesimal changes of spatial quantities

in either the Lie algebra TeSE(3) or the dual Lie algebra T ∗e SE(3) after canceling out the

influences of the frame change.

In Section 2.3, we have a number of spatial quantities that are defined in TeSE(3) and

T ∗e SE(3), whose spatial variations δ (·) can be computed in the tree representation.

Recall from Eqs. (2.8), (2.12) and (2.21) and Sk,αi = Adgk,αi Si that the spatial variation

δS
k,α

i is

(2.24) δS
k,α

i = 0

though δS
k,α

i = adηk,αi S
k,α

i is usually not zero. In addition, according to Eqs. (2.15)

and (2.21), we have

δvk,αi = δvk,αpar(i) + adηk,αi S
k,α

i · q̇
k,α
i + S

k,α

i · δq̇
k,α
i − adηk,αi vk,αi

39

Substitute Eqs. (2.9) and (2.14) into the equation above to expand adηk,αi vk,αi and apply

Eqs. (2.12) and (2.18), it can be shown that

(2.25) δvk,αi = δvk,αpar(i) + Ṡ
k,α

i · δq
k,α
i + S

k,α

i · δq̇k,α.

In terms of µk,αi , Hk,α
i and Ω

k,α

i in Eq. (2.31), which are spatial quantities in T ∗e SE(3),

we can still implement the tree representation to compute the spatial variation. According

to Definition 2.2, we have

δµk,αi = δ(M
k,α

i vk,αi) +
∑

j∈chd(i)

δµk,αj .

From Eq. (2.22), the spatial variation δµk,αi is

δµk,αi = δ(M
k,α

i vk,αi) +
∑

j∈chd(i)

δµk,αj + adT
ηk,αi

µk,αi .

Using µk,αi = M
k,α

i vk,αi +
∑

j∈chd(i) µ
k,α
j and ηk,αi = ηk,αj − S

k,α

j · δq
k,α
j , we have

(2.26) δµk,αi = δ(M
k,α

i vk,αi) + adT
ηk,αi

(M
k,α

i vk,αi)+∑
j∈chd(i)

(
δµk,αj + adT

ηk,αj
µk,αj − adT

S
k,α
j

µk,αj · δq
k,α
j

)

As a result of Eqs. (2.19) and (2.21), δ(Mk,α

i vk,αi) + adT
ηk,αi

(M
k,α

i vk,αi) is

(2.27) δ(M
k,α

i vk,αi) + adT
ηk,αi

(M
k,α

i vk,αi) = M
k,α

i (δvk,αi − adηk,αi vk,αi) = M
k,α

i δvk,αi .

From Eqs. (2.22) and (2.27) and adT
S
k,α
j

µk,αj = adD
µk,αj

S
k,α

j , Eq. (2.26) is simplified to

40

(2.28)

δµk,αi = M
k,α

i δvk,αi +
∑

j∈chd(i)

(
δµk,αj − adT

S
k,α
j

µk,αj · δq
k,α
j

)
= M

k,α

i δvk,αi +
∑

j∈chd(i)

(
δµk,αj − adD

µk,αj
S
k,α

j · δq
k,α
j

)
.

In a similar way, for the spatial variation δHk,α
i , we obtain

(2.29)

δHk,α
i = δF

k,α

i +
∑

j∈chd(i)

(
δHk,α

j − adT
S
k,α
j

Hk,α
j · δqk,αj

)
= δF

k,α

i +
∑

j∈chd(i)

(
δHk,α

j − adD
Hk,α
j

S
k,α

j · δq
k,α
j

)
.

As for Ω
k,α

i = wα∆t·adT
vk,αi
·µk,αi +Hk,α

i , from Eqs. (2.21) and (2.22), algebraic manipulation

shows that

(2.30)

δΩ
k,α

i = δΩ
k,α

i + adT
ηk,αi

Ω
k,α

i

= wα∆t ·
(
adT

vk,αi
· δµk,αi + adT

δvk,αi
µk,αi

)
+ δHk,α

i

= wα∆t ·
(
adT

vk,αi
· δµk,αi + adD

µk,αi
δvk,αi

)
+ δHk,α

i .

We remark that Eqs. (2.24), (2.25) and (2.28) to (2.30) are fundamental to the algo-

rithms and propositions in this chapter.

2.2.6. Differentiation on Lie Groups

For an analytical function f : Rn → R, the directional derivative at x ∈ Rn in the

direction δx is defined to be

Df(x) · δx =
d

dt
f(x+ t · δx)

∣∣∣∣
t=0

41

in which Df(x) =

[
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]T
∈ Rn.

In a similar way, we might define the directional derivative on Lie groups using the

Lie algebra and the exponential map as follows.

Definition 2.1. If G is a n-dimensional smooth Lie group and f : G −→ R is a smooth

function on G, the directional derivative at g ∈ G in the direction η = δgg−1 ∈ TeG is

defined to be

Df(g) · η =
d

dt
f (exp (t · η) g)

∣∣∣∣
t=0

.

Moreover, if e1, e2, · · · , en is a basis for the Lie algebra TeG, then Df(g) can be explicitly

written as

Df(g) =
d

dt

[
f (exp (t · e1) g) f (exp (t · e2) g) · · · f (exp (t · en) g)

]T ∣∣∣∣∣
t=0

.

We remark that Rn is also a smooth Lie group for which the binary operation is addi-

tion, the Lie algebra is itself and the exponential map is the identity map. Furthermore,

the definition of directional derivatives on Lie groups in Definition 2.1 is consistent with

the definition of directional derivatives in Rn. Therefore, it is without loss of any gener-

ality to interpret all the quantities in this chapter as elements of Lie groups and all the

derivatives in this chapter as derivatives on Lie groups that are defined by Definition 2.1.

Following the notion in multivariate calculus, if f : G1×G2×· · ·×Gd → R is a smooth

function in which G1, G2, · · · , Gd are Lie groups, we use Dif to denote the derivative

with respect to Gi. In particular, for F k,α

i = F
k,α

i (gk,αi , vk,αi , uk,αi) that is used to compute

the Newton direction in Algorithm 3, note that D1F
k,α

i is the derivative with respect to

gk,αi and D2F
k,α

i is the derivative with respect to vk,αi .

42

2.3. The Linear-Time Higher-Order Variational Integrator

In this and next sections, we present the propositions and algorithms efficiently com-

puting higher-order variational integrators, whose derivations are omitted due to space

limitations. Though not required for implementation, we refer the reader to Section 2.8

for detailed proofs.

In the rest of this chapter, if not specified, we assume that the mechanical system

has n degrees of freedom and the higher-order variational integrator has s + 1 control

points qk,α = q(tk,α) in which 0 ≤ α ≤ s. Note that the notation (·)k,α is used to denote

quantities (·) associated with qk,α and tk,α, such as qk,αi , gk,αi , vk,αi , etc.

2.3.1. The DEL Equation Evaluation

To evaluate the DEL equations, the discrete articulated body momentum and discrete

articulated body impulse are defined from the perspective of articulated bodies as follows.

Definition 2.2. The discrete articulated body momentum µk,αi ∈ R6 for articulated

body i is defined to be µk,αi = M
k,α

i vk,αi +
∑

j∈chd(i) µ
k,α
j in which M

k,α

i and vk,αi are

respectively the spatial inertia matrix and spatial velocity of rigid body i.

Definition 2.3. Suppose F i(t) ∈ R6 is the sum of all the wrenches directly acting

on rigid body i, which does not include those applied or transmitted through the joints

that are connected to rigid body i. The discrete articulated body impulse Hk,α
i ∈ R6

for articulated body i is defined to be Hk,α
i = F

k,α

i +
∑

j∈chd(i)H
k,α
j in which F

k,α

i =

ωαF i(t
k,α)∆t ∈ R6 is the discrete impulse acting on rigid body i. Note that F i(t), F

k,α

i

and Hk,α
i are expressed in frame {0}.

43

Remark 2.1. As for wrenches exerted on rigid body i, in addition to F i(t) which

includes gravity as well as the external wrenches that directly act on rigid body i, there

are also wrenches applied through joints, e.g., from actuators, and wrenches transmitted

through joints, e.g., from the parent and children of rigid body i in the tree representation.

It can be seen in Proposition 2.1 that µk,αi and Hk,α
i make it possible to evaluate the

DEL equations without explicitly calculating Dα+1Ld(qk) and Fk,αd in Eqs. (2.5) and (2.6).

Proposition 2.1. If Qi(t) ∈ R is the sum of all joint forces applied to joint i and

pk =

[
pk1 pk2 · · · pkn

]T
∈ Rn is the discrete momentum, the DEL equations Eq. (2.5)

can be evaluated as

rk,0i = pki + S
k,0

i

T
· Ωk,0

i +
s∑

β=0

a0βS
k,β

i

T
· µk,βi +Qk,0

i ,(2.31a)

rk,αi = S
k,α

i

T
· Ωk,α

i +
s∑

β=0

aαβS
k,β

i

T
· µk,βi +Qk,α

i ∀α = 1, · · · , s− 1,(2.31b)

pk+1
i = S

k,s

i

T
· Ωk,s

i +
s∑

β=0

asβS
k,β

i

T
· µk,βi +Qk,s

i(2.31c)

in which rk,αi is the residue of the DEL equations Eqs. (2.5a) and (2.5b), aαβ = wβbβα,

Ω
k,α

i = wα∆t · adT
vk,αi
· µk,αi + Hk,α

i , and Qk,α
i = ωαQi(t

k,α)∆t is the discrete joint force

applied to joint i.

Proof. See Section 2.8.1. �

In Eqs. (2.31a) and (2.31b), if all rk,αi are equal to zero, a solution to the variational

integrator as well as the DEL equations is obtained.

44

All the quantities used in Proposition 2.1 can be recursively computed in the tree

representation, therefore, we have Algorithm 1 that evaluates the DEL equations, which

essentially consists of s+1 forward passes from root to leaf nodes and s+1 backward passes

in the reverse order, thus totally takes O(sn) time. In contrast, automatic differentiation

and our prior methods [19,21] take O(sn2) time to evaluate the DEL equations.

Algorithm 1 Recursive Evaluation of the DEL Equations

1: initialize gk,α0 = I and vk,α0 = 0
2: for i = 1→ n do
3: for α = 0→ s do
4: gk,αi = gk,αpar(i)g

k,α
par(i),i(q

k,α
i)

5: S
k,α

i = Adgk,αi Si, M
k,α

i = Ad−T
gk,αi

MiAd−1

gk,αi

6: q̇k,αi = 1
∆t

s∑
β=0

bαβqk,βi , vk,αi = vk,αpar(i) + S
k,α

i · q̇
k,α
i

7: end for
8: end for
9: for i = n→ 1 do
10: for α = 0→ s do
11: µk,αi = M

k,α

i vk,αi +
∑

j∈chd(i)

µk,αj , Hk,α
i = F

k,α

i +
∑

j∈chd(i)

Hk,α
j

12:
13: Ω

k,α

i = wα∆t · adT
vk,αi
· µk,αi +Hk,α

i

14: end for

15: rk,0i = pki + S
k,0

i

T
Ω
k,0

i +
s∑

β=0

a0βS
k,β

i

T
· µk,βi +Qk,0

i

16: for α = 1→ s− 1 do

17: rk,αi = S
k,α

i

T
Ω
k,α

i +
s∑

β=0

aαβS
k,β

i

T
· µk,βi +Qk,α

i

18: end for

19: pk+1
i = S

k,s

i

T
Ω
k,s

i +
s∑

β=0

asβS
k,β

i

T
· µk,βi +Qk,s

i

20: end for

45

2.3.2. Exact Newton Direction Computation

From Eq. (2.5), the Newton direction δqk =

[
δqk,1

T
, · · · , δqk,sT

]T
∈ Rsn is computed

as δqk = −J k−1
(qk)·rk in which J k(qk) ∈ Rsn×sn is the Jacobian of Eqs. (2.5a) and (2.5b)

with respect to control points qk,1, · · · , qk,s, and rk ∈ Rsn is the residue of evaluating the

DEL equations Eqs. (2.5a) and (2.5b) by Proposition 2.1.

In this chapter, we make the the following assumption on F
k,α

i and Qk,α
i , which is

general and applies to a large number of mechanical systems in robotics.

Assumption 2.1. Let u(t) be the control inputs of the mechanical system, we assume

that the discrete impulse F k,α

i and discrete joint force Qk,α
i can be respectively formulated

as F k,α

i = F
k,α

i (gk,αi , vk,αi , uk,α) and Qk,α
i = Qk,α

i (qk,αi , q̇k,αi , uk,α) in which uk,α = u(tk,α).

If Assumption 2.1 holds and J k−1
(qk) exists, it can be shown that Algorithm 2 com-

putes the Newton direction for variational integrators in O(s3n) time.

Proposition 2.2. For higher-order variational integrators of unconstrained mechan-

ical systems, if Assumption 2.1 holds and J k−1
(qk) exists, the Newton direction δqk =

−J k−1
(qk) · rk can be computed with Algorithm 2 in O(s3n) time.

Proof. See Section 2.8.2. �

In Algorithm 2, the forward and backward passes of the tree structure take O(s2n)

time, and the n computations of the s × s matrix inverse takes O(s3n) time, thus the

overall complexity of Algorithm 2 is O(s3n+ s2n). In contrast, automatic differentiation

and our prior methods in [19, 21] take O(s2n3) time to compute J k(qk) and another

O(s3n3) time to compute the sn×sn matrix inverse J k−1
(qk), and the overall complexity

46

Algorithm 2 Recursive Computation of the Newton Direction

1: initialize gk,α0 = I and vk,α0 = 0
2: for i = 1→ n do
3: for α = 0→ s do
4: gk,αi = gk,αpar(i)g

k,α
par(i),i(q

k,α
i)

5: S
k,α

i = Adgk,αi Si, M
k,α

i = Ad−T
gk,αi

MiAd−1

gk,αi

6: q̇k,αi =
1

∆t

s∑
β=0

bαβqk,βi , vk,αi = vk,αpar(i) + S
k,α

i · q̇
k,α
i

7: Ṡ
k,α

i = advk,αi S
k,α

i

8: end for
9: end for
10: for i = n→ 1 do
11: use Algorithm 3 to evaluate

a) Dk,αρ
i , Gk,αν

i , lk,αi and µk,αi
b) Πk,αρ

i , Ψk,αν
i , ζk,αi and Hk,α

i

c) Hk,α
i and Φk,α

i

d) Xk,αρ
i , Y k,αν

i and yk,αi
12: end for
13: initialize ηk,ν0 = 0 and δvk,ρ0 = 0
14: for i = 1→ n do
15: for γ = 1→ s do

16: δqk,γi =
s∑

ρ=0

Xk,γρ
i · δvk,ρpar(i) +

s∑
ν=1

Y k,γν
i · ηk,νpar(i) + yk,γi

17: end for
18: for ν = 1→ s do
19: ηk,νi = ηk,νpar(i) + S

k,ν

i · δq
k,ν
i

20: end for
21: for ρ = 0→ s do

22: δq̇k,ρi =
1

∆t

s∑
γ=1

bργ · δqk,γi

23: δvk,ρi = δvk,ρpar(i) + Ṡ
k,ρ

i · δq
k,ρ
i + S

k,ρ

i · δq̇
k,ρ
i

24: end for
25: end for

47

Algorithm 3 Recursive Computation of the Newton Direction – Backward Pass

1: ∀α = 0, 1, · · · , s, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Dk,αρ
i = σαρM

k,α

i +
∑

j∈chd(i)

(
Dk,αρ
j +

s∑
γ=1

Hk,αγ
j Xk,γρ

j − σα0adD
µk,αj

S
k,α

j Xk,αρ
j

)
,(2.32a)

Gk,αν
i =

∑
j∈chd(i)

(
Gk,αν
j +

s∑
γ=1

Hk,αγ
j Y k,γν

j − σα0adD
µk,αj

S
k,α

j Y k,αν
j

)
,(2.32b)

lk,αi =
∑

j∈chd(i)

(
lk,αj +

s∑
γ=1

Hk,αγ
j yk,γj − σα0adD

µk,αj
S
k,α

j yk,αj

)
,(2.32c)

µk,αi = M
k,α

i vk,αi +
∑

j∈chd(i)

µk,αj(2.32d)

where

(2.33) σαρ =

{
1 α = ρ,

0 α 6= ρ
and σα0 =

{
1 α 6= 0,

0 α = 0

2: ∀α = 0, 1, · · · , s− 1, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Πk,αρ
i = σαρD2F

k,α

i +
∑

j∈chd(i)

(
Πk,αρ
j +

s∑
γ=1

Φk,αγ
j Xk,γρ

j − σα0adD
Hk,α
j

S
k,α

j Xk,αρ
j

)
,(2.34a)

Ψk,αν
i = σαν

(
D1F

k,α

i + adD
F
k,α
i

− D2F
k,α

i advk,αi

)
+∑

j∈chd(i)

(
Ψk,αν
j +

s∑
γ=1

Φk,αγ
j Y k,γν

j − σα0adD
Hk,α
j

S
k,α

j Y k,αν
j

)
,(2.34b)

ζk,αi =
∑

j∈chd(i)

(
ζk,αj +

s∑
γ=1

Φk,αγ
j yk,γj − σα0adD

Hk,α
j

S
k,α

j yk,αj

)
,(2.34c)

Hk,α
i = F

k,α

i +
∑

j∈chd(i)

Hk,α
j(2.34d)

3: ∀α = 0, 1, · · · , s and ∀γ = 1, 2, · · · , s,

Hk,αγ
i = Dk,αγ

i Ṡ
k,γ

i +Gk,αγ
i S

k,γ

i +
1

∆t

s∑
ρ=0

bργDk,αρ
i S

k,ρ

i .

4: ∀α = 0, 1, · · · , s− 1 and ∀γ = 1, 2, · · · , s,

Φk,αγ
i = Πk,αγ

i Ṡ
k,γ

i + Ψk,αγ
i S

k,γ

i +
1

∆t

s∑
ρ=0

bργΠk,αρ
i S

k,ρ

i .

48

5: ∀α = 0, 1, · · · , s− 1, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Θk,αρ
i = wα∆t ·

(
Ṡ
k,α

i

T

Dk,αρ
i + σαρS

k,α

i

T
adD

µk,αi

)
+ S

k,α

i

T
Πk,αρ
i ,

Ξk,αν
i = wα∆t · Ṡk,αi

T

Gk,αν
i + S

k,α

i

T
Ψk,αν
i .

6: ∀α = 0, 1, · · · , s− 1, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Θ
k,αρ

i = Θk,αρ
i +

s∑
β=0

aαβS
k,β

i

T
Dk,βρ
i ,

Ξ
k,αν

i = Ξk,αν
i +

s∑
β=0

aαβS
k,β

i

T
Gk,βν
i ,

ξ
k,α

i = wα∆t · Ṡk,αi
T

lk,αi + S
k,α

i

T
ζk,αi +

s∑
β=0

aαβS
k,β

i

T
lk,βi .

7: ∀α = 0, 1, · · · , s− 1 and ∀γ = 1, 2, · · · , s,

Λk,αγ
i = wα∆t · Ṡk,αi

T

Hk,αγ
i + S

k,α

i

T
Φk,αγ
i +

s∑
β=0

aαβS
k,β

i

T
Hk,βγ
i +

σαγ
(
D1Q

k,α
i + wα∆t · Sk,αi

T
adD

µk,αi
Ṡ
k,α

i

)
+

1

∆t
bαγ · D2Q

k,α
i

with which Λk
i =

[
Λk,αγ
i

]
∈ Rs×s

8: ∀γ = 1, 2, · · · , s and ∀% = 0, 1, · · · , s− 1, compute Λ
k,γ%

i such that Λk
i
−1

=
[
Λ
k,γ%

i

]
∈

Rs×s

9: ∀γ = 1, 2, · · · , s, ∀ρ = 0, 1, · · · , s and ∀ν = 1, 2, · · · , s

Xk,γρ
i = −

s−1∑
%=0

Λ
k,γ%

i ·Θk,%ρ

i ,

Y k,γν
i = −

s−1∑
%=0

Λ
k,γ%

i · Ξk,%ν

i ,

yk,γi = −
s−1∑
%=0

Λ
k,γ%

i

(
rk,%i + ξ

k,%

i

)

49

is O(s3n3 + s2n3). Though the quasi-Newton method [4] is O(n) time for second-order

variational integrator in which s = 1, it requires small time steps and can not be used for

third- or higher-order variational integrators.

Therefore, both Algorithms 1 and 2 haveO(n) complexity for a given s, which results in

a linear-time variational integrator. Furthermore, Algorithms 1 and 2 have no restrictions

on the number of control points, which indicates that the resulting linear-time variational

integrator can be arbitrarily high order. To our knowledge, this is the first exactly linear-

time third- or higher-order implicit integrator for mechanical systems.

2.3.3. Extension to Constrained Mechanical Systems

Thus far all our discussions of linear-time variational integrators have been restricted

to unconstrained mechanical systems. However, Algorithms 1 and 2 can be extended to

constrained mechanical systems as well.

In terms of the the DEL equation evaluation, the extension to constrained mechanical

systems is immediate. From Eq. (2.6), we only need to add the constraint term Ak,α(qk,α) ·

λk,α to the results of using Algorithm 1.

If the variational integrator is second-order and the mechanical system has m con-

straints, it is possible to compute the Newton direction δqk+1 and δλk in O(mn) +O(m3)

time using Algorithm 2. In accordance with Eq. (2.6), δqk+1 and δλk should satisfy

J k(qk) · δqk+1 + Ak(qk) · δλk = −rkq and Dhk(qk+1, q̇k+1) · δqk+1 = −rkc in which rkq and

rkc are equation residues. Then δqk+1 and δλk can be computed as follows: i) compute

δqk+1
r = −J k−1·rkq with Algorithm 2 which takes O(n) time; ii) compute J k−1·Ak by using

Algorithm 2 m times which takes O(mn) time; iii) compute δλk =
(
Dhk · J k ·Ak

)−1
(rkc +

Dhk · δqk+1
r) which takes O(m3) time; iv) compute δqk+1 = δqk+1

r − J k−1 · Ak · δλk.

50

In regard to third- or higher-order variational integrators, if the constraints are of

hki (g
k,α
i , vk,αi) = 0 or hki (q

k,α
i , q̇k,αi) = 0 or both for each i = 1, 2, · · · , n, Algorithm 2

can be used to compute the Newton direction δqk and δλk in a similar procedure to the

second-order variational integrator.

In next section, we will discuss the linearization of higher-order variational integrators

in O(n2) time.

2.4. The Linearization of Higher-Order Variational Integrators

The linearization of discrete time systems is useful for trajectory optimization, stability

analysis, controller design, etc., which are import tools in robotics.

From Eqs. (2.5) and (2.6), the linearization of variational integrators is comprised of

the computation of D2Ld(qk), DFk,αd (tk,α) and DAk,α(qk,α). In most cases, DFk,αd (tk,α)

and DAk,α(qk,α) can be efficiently computed in O(n2) time, therefore, the linearization

efficiency is mostly affected by D2Ld(qk).

It is by definition that the Lagrangian of a mechanical system is L(q, q̇) = K(q, q̇) −

V (q) in which K(q, q̇) is the kinetic energy and V (q) is the potential energy, and from

Eq. (2.4), the computation of D2Ld(qk) is actually to compute ∂K
∂q̇2

, ∂2K
∂q̇∂q

, ∂2K
∂q∂q̇

, ∂2K
∂q2

and

∂V
∂q2

, for which we have Propositions 2.3 and 2.4 as follows.

Proposition 2.3. For the kinetic energy K(q, q̇) of a mechanical system, ∂2K
∂q̇2

, ∂2K
∂q̇∂q

,

∂2K
∂q∂q̇

, ∂2K
∂q2

can be recursively computed with Algorithm 4 in O(n2) time.

Proof. See Section 2.8.3. �

In the matter of potential energy V (q), we only consider the gravitational potential

energy V~g(q), and the other types of potential energy can be computed in a similar way.

51

Algorithm 4 Recursive Computation of ∂2K
∂q̇2

, ∂2K
∂q̇∂q

, ∂2K
∂q∂q̇

, ∂2K
∂q2

1: initialize g0 = I and v0 = 0
2: for i = 1→ n do
3: gi = gpar(i)gpar(i),i(qi)

4: M i = Ad−Tgi MiAd−1
gi
, Si = AdgiSi

5: vi = vpar(i) + Si · q̇i, Ṡi = adviSi
6: end for
7: initialize ∂2K

∂q̇2
= 0, ∂2K

∂q̇∂q
= 0, ∂2K

∂q∂q̇
= 0, ∂2K

∂q2
= 0

8: for i = n→ 1 do
9: µi = M ivi +

∑
j∈chd(i)

µj, Mi = M i +
∑

j∈chd(i)

Mj

10: MA

i =MiSi, M
B

i =MiṠi − adDµiSi
11: for j ∈ anc(i) ∪ {i} do
12: ∂2K

∂q̇i∂q̇j
= ∂2K

∂q̇j∂q̇i
= S

T

jM
A

i

13: ∂2K
∂q̇i∂qj

= ∂2K
∂qj∂q̇i

= Ṡ
T

jM
A

i ,
∂2K
∂qi∂q̇j

= ∂2K
∂q̇j∂qi

= S
T

jM
B

i

14: ∂2K
∂qi∂qj

= ∂2K
∂qj∂qi

= Ṡ
T

jM
B

i

15: end for
16: end for

Proposition 2.4. If ~g ∈ R3 is gravity, then for the gravitational potential energy

V~g(q),
∂2V~g
∂q2

can be recursively computed with Algorithm 5 in O(n2) time.

Proof. See Section 2.8.4. �

In regard to Proposition 2.4 and Algorithm 5, we remind the reader of the notation

introduced in Sections 2.2.2 and 2.2.3 that mi ∈ R is the mass of rigid body i, pi ∈ R3 is

the mass center of rigid body i as well as the origin of frame {i}, and Si =

[
sTi nTi

]T
∈ R6

is the spatial Jacobian of joint i with respect to frame {0}.

If ∂K
∂q̇2

, ∂2K
∂q̇∂q

, ∂2K
∂q∂q̇

, ∂2K
∂q2

and ∂V
∂q2

are computed in O(n2) time, then according to Eqs. (2.2)

and (2.4), the remaining computation of D2Ld(qk,α) is simply the application of the chain

rule. Therefore, if the variational integrator has s + 1 control points, the complexity of

52

Algorithm 5 Recursive Computation of ∂2V~g
∂q2

1: initialize g0 = I
2: for i = 1→ n do
3: gi = gpar(i)gpar(i),i(qi), Si = AdgiSi
4: end for
5: initialize ∂2V~g

∂q2
= 0

6: for i = n→ 1 do
7: σmi = mi +

∑
j∈chd(i)

σmj , σpi = mipi +
∑

j∈chd(i)

σpj

8: σAi = ~̂g
(
σmi · ni − σ̂pi · si

)
9: for j ∈ anc(i) ∪ {i} do
10:

∂2V~g
∂qi∂qj

=
∂2V~g
∂qj∂qi

= sTj · σAi
11: end for
12: end for

the linearization is O(s2n2). In contrast, automatic differentiation and our prior methods

[19,21] take O(s2n3) time to linearize the variational integrators.

2.5. Comparison with Existing Methods

The variational integrators using Algorithms 1 to 5 are compared with the linear-

time quasi-Newton method [4], automatic differentiation and the Hermite-Simpson direct

collocation method, which verifies the accuracy, efficiency and scalability of our work. All

the tests are run in C++ on a 3.1GHz Intel Core Xeon Thinkpad P51 laptop.

2.5.1. Comparison with the Linear-Time Quasi-Newton Method

In this subsection, we compare the O(n) Newton method using Algorithms 1 and 2

with the O(n) quasi-Newton method in [4] on the trapezoidal variational integrator (Ex-

ample 2.1) of a 32-link pendulum with different time steps.

53

(a) (b)

(c)

Figure 2.1. The comparison of the O(n) Newton method with the O(n)
quasi-Newton method [4] for the trapezoidal variational integrator of a 32-
link pendulum with different time steps. The results of computational time
are in (a), number of iterations in (b) and success rates in (c). Each result
is calculated over 1000 initial conditions.

In the comparison, 1000 initial joint angles q0 and joint velocities q̇0 are uniformly

sampled from [−π
2
, π

2
] for each of the selected time steps, which are 0.001s, 0.002s, 0.005s,

0.01s, 0.02s, 0.03s, 0.04s, 0.05s and 0.06s, and the Newton and quasi-Newton methods

54

are used to solve the DEL equations for one time step. The results are in Fig. 2.1,

in which the computational time and the number of iterations are calculated only over

initial conditions that the DEL equations are successfully solved. It can be seen that the

Newton method using Algorithms 1 and 2 outperforms the quasi-Newton method in [4]

in all aspects, especially for relatively large time steps.

2.5.2. Comparison with Automatic Differentiation

In this subsection, we compare Algorithms 1 to 5 with automatic differentiation for

evaluating the DEL equations, computing the Newton direction and linearizing the DEL

equations. The variational integrator used is the Simpson variational integrator (Exam-

ple 2.2).

In the comparison, we use pendulums with different numbers of links as benchmark

systems. For each pendulum, 100 initial joint angles q0 and joint velocities q̇0 are uniformly

sampled from [−π
2
, π

2
]. The results are in Fig. 2.2 and it can be seen that our recursive

algorithms are much more efficient, which is consistent with the fact that Algorithms 1

to 5 are O(n) for evaluating the DEL equations, O(n) for computing the Newton direction,

and O(n2) for linearizing the DEL equations, whereas automatic differentiation are O(n2),

O(n3) and O(n3), respectively.

2.5.3. Comparison with the Hermite-Simpson Direct Collocation Method

In this subsection, we compare the fourth-order Simpson variational integrator (Ex-

ample 2.2) with the Hermite-Simpson direct collocation method, which is a third-order

55

(a) (b)

(c)

Figure 2.2. The comparison of our recursive algorithms with automatic dif-
ferentiation for pendulums with different numbers of links. The variational
integrator used is the Simpson variational integrator. The results of evalu-
ating the DEL equations are in (a), computing the Newton direction in (b)
and linearizing the DEL equations in (c). Each result is calculated over 100
initial conditions.

implicit integrator commonly used in robotics for trajectory optimization [26,27].1 Note

that both integrators use three control points for integration.
1The Hermite-Simpson direct collocation methods used in [26,27] are actually implicit integrators that
integrate the trajectory as a second-order system in the (q, q̇) space, whereas the variational integrators
integrate the trajectory in the (q, p) space.

56

The strict comparison of the two integrators for trajectory optimization is usually

difficult since it depends on a number of factors, such as the target problem, the opti-

mizers used, the optimality and feasibility tolerances, etc. Therefore, we compare the

Simpson variational integrator and the Hermite-Simpson direct collocation method by

listing the order of accuracy, the number of variables and the number of constraints for

trajectory optimization. In general, the computational loads of optimization depends on

the problem size that is directly related with the number of variables and the the number

of constraints. The higher-order accuracy suggests the possibility of large time steps in

trajectory optimization, which reduces not only the problem size but the computational

loads of optimization as well. The results are in Table 2.1.2 It can be concluded that the

Simpson variational integrator is more accurate and has less variables and constraints in

trajectory optimization, especially for constrained mechanical systems.

Table 2.1. The comparison of the Simpson variational integrator with the
Hermite-Simpson direct collocation method for trajectory optimization.
The trajectory optimization problem has N stages and the mechanical sys-
tem has n degrees of freedom, m holonomic constraints and is fully actuated
with n control inputs. Note that all the integrators use three control points
for integration.

Integrator Accuracy # of Variables # of Constraints
Variational Integrator 4th-order (4N + 3)n+ (2N + 1)m 3Nn+ (2N + 1)m

Direct Collocation
(Explicit) 3rd-order (6N + 3)n+ (2N + 1)m 4Nn+ (6N + 3)m

Direct Collocation
(Implicit) 3rd-order (8N + 4)n+ (2N + 1)m (6N + 1)n+ (6N + 3)m

2The explicit and implicit formulations of the Hermite-Simpson direct collocation methods differ in
whether the joint acceleration q̈ is explicitly computed or implicitly involved as extra variables. Although
the explicit formulation of the Hermite-Simpson direct collocation has fewer variables and constraints
than the implicit one, it is more complicated for the evaluation and linearization. Thus, the implicit
formulation is more efficient and more commonly used in trajectory optimization [27].

57

The accuracy comparison in Table 2.1 of the Simpson variational integrator with the

Hermite-Simpson direct collocation method is further numerically validated on a 12-link

pendulum. In the comparison, different time steps are used to simulate 100 trajectories

with the final time T = 10 s, and the initial joint angles q0 are uniformly sampled from

[− π
12
, π

12
] and the initial joint velocities q̇0 are zero. Moreover, the Simpson variational

integrator uses Algorithms 1 and 2 which hasO(n) complexity for the integrator evaluation

and the Newton direction computation, whereas the Hermite-Simpson direct collocation

method uses [31,34] which is O(n) for the integrator evaluation and O(n3) for the Newton

direction computation. For each initial condition, the benchmark solution qd(t) is created

from the Hermite-Simpson direct collocation method with a time step of 5 × 10−4 s and

the simulation error in q(t) is evaluated as 1
T

intT0 ‖q(t) − qd(t)‖dt. The running time

of the simulation is also recorded. The results are in Fig. 2.3, which indicates that the

Simpson variational integrator is more accurate and more efficient in simulation, and more

importantly, a better alternative to the Hermite-Simpson direction collocation method for

trajectory optimization.

In regard to the integrator evaluation and linearization, for unconstrained mechan-

ical systems, experiments (not shown) suggest that the Simpson variational integrator

using Algorithms 1, 4 and 5 is usually faster than the Hermite-Simpson direct collocation

method using [31,34] even though theoretically both integrators have the same order of

complexity. However, for constrained mechanical systems, if there are m holonomic con-

straints, the Simpson variational integrator is O(mn) for the evaluation and O(mn2) for

58

(a) (b)

(c)

Figure 2.3. The comparison of the Simpson variational integrator with the
Hermite-Simpson direction collocation method on a 12-link pendulum with
different time steps. The results of the integrator error are in (a), the
computational time in (b) and the integration error v.s. computational
time in (c). Each result is calculated over 100 initial conditions.

the linearization while the Hermite-Simpson direct collocation method in [26,27] is respec-

tively O(mn2) and O(mn3), the difference of which results from that the Hermite-Simpson

direct collocation method is more complicated to model the constrained dynamics.

59

2.6. Trajectory Optimization

In this section, we implement the fourth-order Simpson variational integrator (Exam-

ple 2.2) with Algorithms 1, 4 and 5 on the Spring Flamingo robot [35], the LittleDog

robot [36] and the Atlas robot [37] for trajectory optimization, the results of which are

included in our supplementary videos. It should be noted that the variational integrators

used in [19–21, 23, 25] for trajectory optimization are second order. In Sections 2.6.1

and 2.6.2, a LCP formulation similar to [25] is used to model the discontinuous frictional

contacts with which no contact mode needs to be prespecified. These examples indicate

that higher-order variational integrators are good alternatives to the direct collocation

methods [26,27]. The trajectory optimization problems are solved with SNOPT [38].

2.6.1. Spring Flamingo

The Spring Flamingo robot is a 9-DoF flat-footed biped robot with actuated hips and

knees and passive springs at ankles [35]. In this example, the Spring Flamingo robot is

commanded to jump over an obstacle that is 0.16 m high while walking horizontally from

one position to another. The results are in Fig. 2.4, in which the initial walking velocity

is 0.26 m/s and the average walking velocity is around 0.9 m/s.

2.6.2. LittleDog

The LittleDog robot is 18-DoF quadruped robot used in research of robot walking [36].

In this example, the LittleDog robot is required to walk over terrain with two gaps. The

results are in Fig. 2.5, in which the average walking velocity is 0.25 m/s.

60

(a) t = 0 s (b) t = 0.13 s

(c) t = 0.33 s (d) t = 0.44 s

(e) t = 0.57 s (f) t = 0.68 s

(g) t = 0.88 s (h) t = 1.1 s

Figure 2.4. The Spring Flamingo robot jumps over a obstacle of 0.16 meters
high.

61

(a) t = 0 s (b) t = 0.48 s

(c) t = 0.56 s (d) t = 1.04 s

(e) t = 1.84 s (f) t = 2.16 s

(g) t = 2.72 s (h) t = 3.2 s

Figure 2.5. The LittleDog robot walks over terrain with gaps.

62

2.6.3. Atlas

The Atlas robot is a 30-DoF humanoid robot used in the DARPA Robotics Challenge

[37]. In this example, the Atlas robot is required to pick a red ball with its left hand

while keeping balanced only with its right foot. Moreover, the contact wrenches applied

to the supporting foot should satisfy contact constraints of a flat foot [27]. The results

are in Fig. 2.6 and it takes around 1.3 s for the Atlas robot to pick the ball.

(a) t = 0s (b) t = 0.4 s

(c) t = 0.6 s (d) t = 1.3 s

Figure 2.6. The Atlas robot picks a red ball while keeping balanced with a
single foot.

63

2.7. Conclusion

In this chapter, we present O(n) algorithms for the linear-time higher-order variational

integrators and O(n2) algorithms to linearize the DEL equations for use in trajectory op-

timization. The proposed algorithms are validated through comparison with existing

methods and implementation on robotic systems for trajectory optimization. The results

illustrate that the same integrator can be used for simulation and trajectory optimization

in robotics, preserving mechanical properties while achieving good scalability and accu-

racy. Though not presented in this chapter, these O(n) algorithms can be regularized for

parallel computation, which results in O(log(n)) algorithms with enough processors. In

particular, the proposed algorithms for higher-order variational integrators are expected to

benefit existing optimal control and estimation techniques [39–43] in numerous aspects.

2.8. Proofs

In this section, we review and prove Propositions 2.1 to 2.4 although these proofs are

not necessary for implementation.

2.8.1. Proof of Proposition 2.1

In Section 2.3.1, we define the discrete articulated body momentum and discrete ar-

ticulated body impulse are respectively as follows.

Definition 2.4. The discrete articulated body momentum µk,αi ∈ R6 for articulated

body i is defined to be

(2.35) µk,αi = M
k,α

i vk,αi +
∑

j∈chd(i)

µk,αj ∀α = 0, 1, · · · , s

64

in which Mk,α

i and vk,αi are respectively the spatial inertia matrix and spatial velocity of

rigid body i.

Definition 2.5. Suppose F i(t) ∈ R6 is the sum of all the wrenches directly acting

on rigid body i, which does not include those applied or transmitted through the joints

that are connected to rigid body i. The discrete articulated body impulse Hk,α
i ∈ R6 for

articulated body i is defined to be

(2.36) Hk,α
i = F

k,α

i +
∑

j∈chd(i)

Hk,α
j

in which F k,α

i = ωαF i(t
k,α)∆t ∈ R6 is the discrete impulse acting on rigid body i. Note

that F i(t), F
k,α

i and Hk,α
i are expressed in frame {0}.

The DEL equations Eq. (2.5) can be recursively evaluated with µk,αi and F
k,α

i as

Proposition 2.5 indicates.

Proposition 2.5. If Qi(t) ∈ R is the sum of all joint forces applied to joint i and

pk =

[
pk1 pk2 · · · pkn

]T
∈ Rn is the discrete momentum, the DEL equations Eq. (2.5)

can be evaluated as

rk,0i = pki + S
k,0

i

T
· Ωk,0

i +
s∑

β=0

a0βS
k,β

i

T
· µk,βi +Qk,0

i ,(2.37a)

rk,αi = S
k,α

i

T
· Ωk,α

i +
s∑

β=0

aαβS
k,β

i

T
· µk,βi +Qk,α

i ∀α = 1, · · · , s− 1,(2.37b)

pk+1
i = S

k,s

i

T
· Ωk,s

i +
s∑

β=0

asβS
k,β

i

T
· µk,βi +Qk,s

i(2.37c)

65

in which rk,αi is the residue of the DEL equations Eqs. (2.5a) and (2.5b), aαβ = wβbβα,

Ω
k,α

i = wα∆t · adT
vk,αi
· µk,αi + Hk,α

i , and Qk,α
i = ωαQi(t

k,α)∆t is the discrete joint force

applied to joint i.

Proof. The Lagrangian of a mechanical system is defined to be

(2.38) L(q, q̇) = K(q, q̇)− V (q)

in which K(q, q̇) is the kinetic energy and V (q) is the potential energy. It is by the

definition of F i(t) and Qi(t) that

intT0F(t) · δqdt− δintT0 V (q)dt = intT0

n∑
i=1

F i(t) · ηidt+ intT0

n∑
i=1

Qi(t) · δqidt

in which ηi = (δgig
−1
i)∨. Therefore, the Lagrange-d’Alembert principle Eq. (2.1) is equiv-

alent to

(2.39) δS = δintT0K(q, q̇)dt+ intT0

n∑
i=1

F i(t) · ηidt+ intT0

n∑
i=1

Qi(t) · δqidt = 0.

As a result of Eqs. (2.3) and (2.39), we have

(2.40)
N−1∑
k=0

s∑
α=0

wα
n∑
i=1

[〈
∂K
∂qi

(qk,α, q̇k,α), δqk,αi

〉
+
〈
∂K
∂q̇i

(qk,α, q̇k,α), δq̇k,αi

〉
+

〈
F i(t

k,α), ηk,αi
〉

+
〈
Qi(t

k,α), δqk,αi
〉]

∆t = 0.

Note that the kinetic energy K(qk,α, q̇k,α) is

(2.41) K(qk,α, q̇k,α) =
1

2

n∑
j=1

vk,αj
T
M

k,α

j vk,αj

66

in which Mk,α

i ∈ R6×6 is the spatial inertia matrix and vk,αi ∈ R6 is the spatial velocity.

Using Eqs. (2.16b), (2.35) and (2.41), we obtain

(2.42)

∂K

∂q̇i
(qk,α, q̇k,α) =

n∑
j=1

∂vk,αj
∂q̇i

T

M
k,α

j vk,αj

=S
k,α

i

T
M

k,α

i vk,αi +
∑

j∈des(i)

S
k,α

i

T
M

k,α

j vk,αj

=S
k,α

i

T
µk,αi .

In a similar way, as a result of Eqs. (2.17b), (2.18), (2.20b), (2.35) and (2.41), a tedious

but straightforward algebraic manipulation results in

(2.43)

∂K

∂qi
(qk,α, q̇k,α) =

∑
j∈des(i)∪{i}

[
ad

S
k,α
i

(vk,αj − v
k,α
i)− ad

S
k,α
i
vk,αj

]T
M

k,α

j vk,αj

=Sk,αi
T
adTvi · µ

k,α
i

=Ṡ
k,α

i

T

µk,αi .

In addition, using Eqs. (2.10) and (2.36) and F k,α

i = wαF i(t
k,α)∆t, we obtain

(2.44)

n∑
i=1

〈
wαF i(t

k,α)∆t, ηk,αi
〉

=
n∑
i=1

〈
wαF i(t

k,α)∆t, S
k,α

i · δq
k,α
i +

∑
j∈anc(i)

S
k,α

j · q
k,α
j

〉
=

n∑
i=1

〈
F
k,α

i +
∑

j∈des(i)

F
k,α

j , S
k,α

i · δq
k,α
i

〉
=

n∑
i=1

〈
Hk,α
i , S

k,α

i · δq
k,α
i

〉
=

n∑
i=1

〈
S
k,α

i

T
Hk,α
i , δqk,αj

〉
.

67

From Eq. (2.2), we obtain

(2.45) δq̇k,αi =
1

∆t

s∑
β=0

bαβ · δqk,βi .

Substituting Eqs. (2.42) to (2.44) into Eq. (2.40) and simplifying the resulting equation

with Eq. (2.45) as well as the chain rule, we obtain

N−1∑
k=0

s∑
α=0

n∑
i=1

〈
S
k,α

i

T
· Ωk,α

i +
s∑

β=0

aαβS
k,β

i

T
· µk,βi +Qk,α

i , δqk,αi
〉

= 0

in which aαβ = wβbβα, Ω
k,α

i = wα∆t · adT
vk,αi
· µk,αi + Hk,α

i and Qk,α
i = ωαQi(t

k,α)∆t. The

equation above is equivalent to requiring

pki + S
k,0

i

T
· Ωk,0

i +
s∑

β=0

a0βS
k,β

i

T
· µk,βi +Qk,0

i = 0,

S
k,α

i

T
· Ωk,α

i +
s∑

β=0

aαβS
k,β

i

T
· µk,βi +Qk,α

i = 0 ∀α = 1, · · · , s− 1,

pk+1
i = S

k,s

i

T
· Ωk,s

i +
s∑

β=0

asβS
k,β

i

T
· µk,βi +Qk,s

i .

This completes the proof. �

2.8.2. Proof of Proposition 2.2

In Section 2.3.2, we make the assumption on the discrete impulse F k,α

i and discrete

joint force Qk,α
i as follows.

68

Assumption 2.1. Let u(t) be control inputs of the mechanical system, we assume

that the discrete impulse F k,α

i and discrete joint force Qk,α
i can be respectively formulated

as F k,α

i = F
k,α

i (gk,αi , vk,αi , uk,α) and Qk,α
i = Qk,α

i (qk,αi , q̇k,αi , uk,α) in which uk,α = u(tk,α).

From the notion of the spatial variation in Section 2.2.5, we have the following propo-

sition for the Newton direction computation, which is later used in the proof of Proposi-

tion 2.2.

Proposition 2.8.1. If δqk,αi is the Newton direction for qk,αi , rk,αi is the residue of the

DEL equations Eqs. (2.31a) and (2.31b), and Assumption 2.1 holds, the computation of

the Newton direction δqk,αi is equivalent to requiring

(2.46a) δµk,αi = M
k,α

i δvk,αi +
∑

j∈chd(i)

(
δµk,αj − adD

µk,αj
S
k,α

j · δq
k,α
j

)
, ∀α = 0, 1, · · · , s,

(2.46b) δHk,α
i =

(
D1F

k,α

i + adD
F
k,α
i

− advk,αi
)
· ηk,αi + D2F

k,α

i · δv
k,α
i +∑

j∈chd(i)

(
δHk,α

j − adD
Hk,α
j

S
k,α

j · δq
k,α
j

)
, ∀α = 0, 1, · · · , s− 1,

(2.46c) δΩ
k,α

i = ωα∆t ·
(
adT

vk,αi
· δµk,αi + adD

µk,αi
δvk,αi

)
+ δHk,α

i , ∀α = 0, 1, · · · , s− 1,

(2.46d) S
k,α

i

T
δΩ

k,α

i +
s∑

β=0

aαβS
k,β

i

T
δµk,βi + D1Q

k,α
i · δq

k,α
i +

D2Q
k,α
i · δq̇

k,α
i = −rk,αi , ∀α = 0, 1, · · · , s− 1.

69

in which δvk,αi , δµk,αi , δHk,α
i and δΩ

k,α

i are the spatial variations of vk,αi , µk,αi , Hk,α
i and

Ω
k,α

i , respectively. Note that δqk,0i = 0 and ηk,0i = 0 though δvk,0i 6= 0.

Proof. Eqs. (2.46a) and (2.46c) are respectively the same as Eqs. (2.28) and (2.30),

thus we only need to prove Eqs. (2.46b) and (2.46d).

From Assumption 2.1, we have F k,α

i = F
k,α

i (gk,αi , vk,αi , uk,α), and since δuk,αi = 0, we

obtain δF k,α

i as

δF
k,α

i = D1F
k,α

i · η
k,α
i + D2F

k,α

i · δv
k,α
i .

According to Eq. (2.22), the spatial variation δF k,α

i is

δF
k,α

i = D1F
k,α

i · η
k,α
i + D2F

k,α

i · δv
k,α
i + adT

ηk,αi
F
k,α

i .

Since δvk,αi = δvk,αi +adηk,αi vk,αi , advk,αi ηk,αi = −adηk,αi vk,αi as well as adT
ηk,αi

F
k,α

i = adD
F
k,α
i

ηk,αi ,

the equation above is equivalent to

δF
k,α

i =
(
D1F

k,α

i + adD
F
k,α
i

− D2F
k,α

i advk,αi
)
· ηk,αi + D2F

k,α

i · δv
k,α
i .

Substitute the equation above into Eq. (2.29), the result of which is Eq. (2.46b).

As for the proof of Eq. (2.46d), from Eqs. (2.31a) and (2.31b), the Newton direction

δqk,αi requires that

(2.47) δ
(
Sk,αi

T
Ωi

)
+

s∑
β=0

aαβδ
(
Sk,βi

T
µk,βi

)
+ D1Q

k,α
i · δq

k,α
i +

D2Q
k,α
i · δq̇

k,α
i = −rk,αi ∀α = 0, 1, · · · , s− 1.

70

As a result of Eqs. (2.23) and (2.24), we have δ
(
S
k,α

i

T
µk,αi

)
= S

k,α

i

T
δµk,αi and δ

(
S
k,α

i

T
Ω
k,α

i

)
=

S
k,α

i

T
δΩ

k,α

i , with which and Eq. (2.47), we obtain Eq. (2.46d). This completes the

proof. �

In Section 2.3.2, Proposition 2.2 to compute the Newton direction is stated as follows,

for which note that the higher-order variational integrator has s + 1 control points and

the mechanical system has n degrees of freedom.

Proposition 2.8.2. For higher-order variational integrators of unconstrained me-

chanical systems, if Assumption 2.1 holds and J k−1
(qk) exists, the Newton direction

δqk = −J k−1
(qk) · rk can be computed with Algorithm 2 in O(s3n) time.

Proof. The proof consists of proving the correctness and the O(n) complexity of the

algorithms.

For each j ∈ chd(i), we suppose that there exists Dk,αρ
j , Gk,αν

j , lk,αj and Πk,αρ
j , Ψk,αν

j ,

ζk,αj such that

(2.48) δµk,αj =
s∑

ρ=0

Dk,αρ
j · δvk,ρj +

s∑
ν=1

Gk,αν
j · ηk,νj + lk,αj , ∀α = 0, 1, · · · , s,

(2.49) δHk,α
j =

s∑
ρ=0

Πk,αρ
j · δvk,ρj +

s∑
ν=1

Ψk,αν
j · ηk,νj + ζk,αj , ∀α = 0, 1, · · · , s− 1.

According to Eqs. (2.9), (2.25) and (2.45), δvk,ρj and ηk,νj can be respectively computed as

(2.50) ηk,νj = ηk,νi + S
k,ν

j · δq
k,ν
j

71

and

(2.51) δvk,ρj = δvk,ρi + Ṡk,ρj · δq
k,ρ
j +

1

∆t
S
k,ρ

j

s∑
γ=1

bργ · δqk,γj

for which note that δqk,0j = 0. Substitute Eqs. (2.50) and (2.51) into Eq. (2.48), algebraic

manipulation shows that

(2.52) δµk,αj =
s∑

ρ=0

Dk,αρ
j · δvk,ρi +

s∑
ν=1

Gk,αν
j · ηk,νi + lk,αj +

s∑
γ=1

Hk,αγ
j δqk,γj ,

in which

Hk,αγ
j = Dk,αγ

j Ṡk,γj +Gk,αγ
j S

k,γ

j +
1

∆t

s∑
ρ=0

bργDk,αρ
j S

k,ρ

j .

In a similar way, using Eqs. (2.49) to (2.51), we also have

(2.53) δHk,α
j =

s∑
ρ=0

Πk,αρ
j · δvk,ρi +

s∑
ν=1

Ψk,αν
j · ηk,νi + ζk,α +

s∑
γ=1

Φk,αγ
j δqk,γj

in which

Φk,αγ
j = Πk,αγ

j Ṡk,γj + Ψk,αγ
j S

k,γ

j +
1

∆t

s∑
ρ=0

bργΠk,αρ
j S

k,ρ

j .

From Eqs. (2.18), (2.30) and (2.51) to (2.53) and

S
k,α

j

T
adT

S
k,α
j

µk,αj = S
k,α

j

T
adD

µk,αj
S
k,α

j = 0,

we obtain

(2.54) S
k,α

j

T
δΩ

k,α

j =
s∑

ρ=0

Θk,αρ
j · δvk,ρi +

s∑
ν=1

Ξk,αν · ηk,νi + ξk,αj

72

in which

Θk,αρ
j = wα∆t ·

(
Ṡ
k,α

j

T

Dk,αρ
j + σαρS

k,α

j

T
adD

µk,αj

)
+ S

k,α

j

T
Πk,αρ
j ,

Ξk,αν
j = wα∆t · Ṡk,αj

T

Gk,αν
j + S

k,α

j

T
Ψk,αν
j ,

ξk,αj = wα∆t · Ṡk,αj
T

lk,αj + S
k,α

j

T
ζk,αj +

s∑
γ=1

[
wα∆t ·

(
Ṡj

k,α
T

Hk,αγ
j +

σαγS
k,α

j

T
adD

µk,αj
Ṡ
k,α

j

)
+ S

k,α

j

T
Φk,αγ
j

]
δqk,γj ,

and note that σαρ is given in Eq. (2.33) of Algorithm 3. Substituting Eqs. (2.45), (2.52)

and (2.54) into Eq. (2.46d), we obtain

(2.55)
s∑

ρ=0

Θ
k,αρ

j · δvk,ρi +
s∑

ν=1

Ξ
k,αν

j · ηk,νi + ξ
k,α

j +
s∑

γ=1

Λk,αγ
j · δqk,γj = −rk,αj ,

∀α = 0, 1, · · · , s− 1.

in which

Θ
k,αρ

j = Θk,αρ
j +

s∑
β=0

aαβS
k,β

j

T
Dk,βρ
j ,

Ξ
k,αν

j = Ξk,αν
j +

s∑
β=0

aαβS
k,β

j

T
Gk,βν
j ,

ξ
k,α

j = wα∆t · Ṡk,αj
T

lk,αj + S
k,α

j

T
ζk,αj +

s∑
β=0

aαβS
k,β

j

T
lk,βj ,

Λk,αγ
j =wα∆t · Ṡk,αj

T

Hk,αγ
j + S

k,α

j

T
Φk,αγ
j +

s∑
β=0

aαβS
k,β

j

T
Hk,βγ
j +

σαγ
(
D1Q

k,α
j + wα∆t · Sk,αj

T
adD

µk,αj
Ṡ
k,α

j

)
+

1

∆t
bαγ · D2Q

k,α
j .

73

For notational convenience, we define ∆k,α
j to be

(2.56) ∆k,α
j =

s∑
ρ=0

Θ
k,αρ

j · δvk,ρi +
s∑

ν=1

Ξ
k,αν

j · ηk,νi + ξ
k,α

j , ∀α = 0, 1, · · · , s− 1.

such that Eq. (2.55) is rewritten as

(2.57)
s∑

γ=1

Λk,αγ
j · δqk,γj = −rk,αj −∆k,α

j , ∀α = 0, 1, · · · , s− 1.

In addition, if we further define Λk
j , rkj , ∆k

j and δqkj respectively as

Λk
j =

[
Λk,αγ
j

]
∈ Rs×s,

rkj =

[
rk,0j rk,1j · · · rk,s−1

j

]T
∈ Rs,

∆k
j =

[
∆k,0
j ∆k,1

j · · · ∆k,s−1
j

]T
∈ Rs,

δqkj =

[
δqk,1j δqk,2j · · · δqk,sj

]T
∈ Rs,

in which 0 ≤ α ≤ s− 1 and 1 ≤ γ ≤ s, then Eq. (2.57) is equivalent to requiring

(2.58) Λk
j · δqkj = −rkj −∆k

j .

in which Λk
j is invertible since J k−1

(qk) exists. From Eq. (2.58), we obtain

δqkj = −Λk
j

−1
(rkj + ∆k

j).

74

If Λk
j
−1 is explicitly written as Λk

j
−1

=

[
Λ
k,γ%

j

]
∈ Rs×s in which 1 ≤ γ ≤ s and 0 ≤ % ≤

s− 1, expanding the equation above, we obtain

(2.59) δqk,γj = −
s−1∑
%=0

Λ
k,γ%

j

(
rk,%j + ∆k,%

j

)
, ∀γ = 1, 2, · · · , s.

Substitute Eq. (2.56) into Eq. (2.59), the result is

(2.60) δqk,γj =
s∑

ρ=0

Xk,γρ
j · δvk,ρi +

s∑
ν=1

Y k,γν
j · ηk,νi + yk,γj

in which

Xk,γρ
j = −

s−1∑
%=0

Λ
k,γ%

j ·Θk,%ρ

j ,

Y k,γν
j = −

s−1∑
%=0

Λ
k,γ%

j · Ξk,%ν

j ,

yk,γj = −
s−1∑
%=0

Λ
k,γ%

j

(
rk,%j + ξ

k,%

j

)
.

Making use of Eqs. (2.52) and (2.60) and canceling out δqk,γj , we obtain

(2.61) δµk,αj − adD
µk,αj

S
k,α

j · δq
k,α
j =

s∑
ρ=0

D
k,ρ

j · δv
k,ρ
i +

s∑
ν=1

G
k,αν

j · ηk,νi + l
k,α

j

75

in which α = 0, 1, · · · , s, and

D
k,ρ

j = Dk,ρ
j +

s∑
γ=1

Hk,αγ
j Xk,γρ

j − σα0adD
µk,αj

S
k,α

j Xk,αρ
j ,(2.62a)

G
k,ν

j = Gk,αν
j +

s∑
γ=1

Hk,αγ
j Y k,γν

j − σα0adD
µk,αj

S
k,α

j Y k,αν
j ,(2.62b)

l
k,α

j = lk,αj +
s∑

γ=1

Hk,αγ
j yk,γj − σα0adD

µk,αj
S
k,α

j yk,αj ,(2.62c)

and note that σα0 is given in Eq. (2.33) of Algorithm 3. In a similar way, using Eqs. (2.53)

and (2.60), we obtain

(2.63) δHk,α
j − adD

Hk,α
j

S
k,α

j · δq
k,α
j =

s∑
ρ=0

Π
k,αρ

j · δvk,ρj +
s∑

ν=1

Ψ
k,αν

j · ηk,νj + ζ
k,α

j

in which α = 1, 2, · · · , s, and

Π
k,αρ

j = Πk,αρ
j +

s∑
γ=1

Φk,αγ
j Xk,γρ

j − σα0adD
Hk,α
j

S
k,α

j Xk,αρ
j ,(2.64a)

Ψ
k,αν

j = Ψk,αν
j +

s∑
γ=1

Φk,αγ
j Y k,γν

j − σα0adD
Hk,α
j

S
k,α

j Y k,αν
j ,(2.64b)

ζ
k,α

j = ζk,αj +
s∑

γ=1

Φk,αγ
j yk,γj − σα0adD

Hk,α
j

S
k,α

j yk,αj .(2.64c)

Finally, for each j ∈ chd(i), substituting Eqs. (2.61) and (2.63) respectively into Eqs. (2.46a)

and (2.46b) and applying Eqs. (2.62) and (2.64) to expandDk,ρ

j , Gk,ν

j , lk,αj and Π
k,αρ

j , Ψ
k,αν

j ,

ζ
k,α

j , we respectively obtain Dk,ρ
i , Gk,ν

i , lk,αi and Πk,αρ
i , Ψk,αν

i , ζk,αi as Eqs. (2.32) and (2.34)

of Algorithm 3 such that

(2.65) δµk,αi =
s∑

ρ=0

Dk,αρ
i · δvk,ρi +

s∑
ν=1

Gk,αν
i · ηk,νi + lk,αi , ∀α = 0, 1, · · · , s,

76

(2.66) δHk,α
i =

s∑
ρ=0

Πk,αρ
i · δvk,ρi +

s∑
ν=1

Ψk,αν
i · ηk,νi + ζk,αi , ∀α = 0, 1, · · · , s− 1.

In particular, note that even if rigid body i is the leaf node of the tree representation

whose chd(i) = , there still exists Dk,ρ
i , Gk,ν

i , lk,αi and Πk,αρ
i , Ψk,αν

i , ζk,αi from Eqs. (2.32)

and (2.34) of Algorithm 3. Moreover, as long as Dk,ρ
i , Gk,ν

i , lk,αi and Πk,αρ
i , Ψk,αν

i , ζk,αi are

given for each rigid body i, we can further obtain Xk,αρ
i , Y k,αν

i , yk,αi following lines 3 to 9

of Algorithm 3.

In summary, for each rigid body i, we have shown that Xk,αρ
i , Y k,αν

i , yk,αi as well

as Dk,ρ
i , Gk,ν

i , lk,αi and Πk,αρ
i , Ψk,αν

i , ζk,αi are computable through the backward pass by

Algorithm 3, and δqk,αi as well as ηk,αi and δvk,αi are computable through the forward pass

by lines 4 to 15 of Algorithm 2, which proves the correctness of the algorithms.

In regard to the complexity, Algorithm 3 has O(s2) +O(s3) complexity since there are

O(s2) quantities and the computation of Λk,α
i

−1
takes O(s3) time, and thus the backward

pass by lines 1 to 3 of Algorithm 2 totally takes O(s3n+s2n) time. Moreover, in lines 4 to

15 of Algorithm 2, the forward pass takes O(s2n) time. As a result, the overall complexity

of Algorithm 2 is O(s3n), which proves the complexity of the algorithms. �

2.8.3. Proof of Proposition 2.3

Proposition 2.8.3. For the kinetic energy K(q, q̇) of a mechanical system, ∂2K
∂q̇2

, ∂2K
∂q̇∂q

,

∂2K
∂q∂q̇

, ∂2K
∂q2

can be recursively computed with Algorithm 4 in O(n2) time.

Proof. According to Eqs. (2.35), (2.42) and (2.43), we have

(2.67)
∂K

∂q̇i
= S

T

i

(
M ivi +

∑
i′∈des(i)

M i′vi′
)
,

77

(2.68)
∂K

∂qi
= Ṡ

T

i

(
M ivi +

∑
i′∈des(i)

M i′vi′
)
.

Since M ivi, Si and Ṡi only depend on qj and q̇j for j ∈ anc(i) ∪ {i}, it is straightforward

to show from Eqs. (2.67) and (2.68) that the derivatives ∂2K
∂q̇i∂q̇j

, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

can

be respectively computed as

(2.69)
∂2K

∂q̇i∂q̇j
=

∂
∂q̇j

(
∂K
∂q̇i

)
j ∈ anc(i) ∪ {i},

∂2K
∂q̇j∂q̇i

j ∈ des(i),

0 otherwise,

(2.70)
∂2K

∂q̇i∂qj
=

∂
∂qj

(
∂K
∂q̇i

)
j ∈ anc(i) ∪ {i},

∂2K
∂qj∂q̇i

j ∈ des(i),

0 otherwise,

(2.71)
∂2K

∂qi∂q̇j
=

∂
∂q̇j

(
∂K
∂qi

)
j ∈ anc(i) ∪ {i},

∂2K
∂q̇j∂qi

j ∈ des(i),

0 otherwise,

78

(2.72)
∂2K

∂qi∂qj
=

∂
∂qj

(
∂K
∂qi

)
j ∈ anc(i) ∪ {i},

∂2K
∂qj∂qi

j ∈ des(i),

0 otherwise.

Therefore, we only need to consider the derivatives for j ∈ anc(i) ∪ {i}, whereas the

derivatives for j /∈ anc(i) ∪ {i} are computed from Eqs. (2.69) to (2.72). In addition, if

j ∈ anc(i) ∪ {i}, using Eqs. (2.16a), (2.17), (2.18) and (2.20a), we obtain

∂M ivi
∂q̇j

= M iSj,(2.73)

∂M ivi
∂qj

= −adT
Sj
M ivi −M iadSjvi +M iadSj(vi − vj)

= M iṠj − adT
Sj
M ivi(2.74)

∂Ṡi
∂q̇j

= adSjSi,(2.75)

∂Ṡi
∂qj

= adviadSjSi + adadSj (vi−vj)Si.(2.76)

For notational clarity, we define µi,Mi,M
A

i andMB

i as

µi = M ivi +
∑

j∈des(i)

M jvj = M ivi +
∑

j∈chd(i)

µj,(2.77)

Mi = M i +
∑

j∈des(i)

M j = M i +
∑

j∈chd(i)

Mj,(2.78)

MA

i =MiSi,(2.79)

MB

i =MiṠi − adDµiSi(2.80)

79

which will be used in the derivation of ∂2K
∂q̇i∂q̇j

, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

.

1) ∂2K
∂q̇i∂q̇j

If j ∈ anc(i)∪{i}, from Eqs. (2.67), (2.73), (2.78) and (2.79), it is simple to show that

(2.81)

∂2K

∂q̇i∂q̇j
=

∂

∂q̇j

(
∂K

∂q̇i

)
= S

T

i

(
M iSj +

∑
i′∈des(i)

M i′Sj

)
= S

T

i

(
M i +

∑
i′∈des(i)

M i′

)
Sj

= S
T

jMiSi

= S
T

jM
A

i .

2) ∂2K
∂q̇i∂qj

If j ∈ anc(i) ∪ {i}, using Eqs. (2.13a), (2.67), (2.74), (2.78) and (2.79), we obtain

(2.82)

∂2K

∂q̇i∂qj
=

∂

∂qj

(
∂K

∂q̇i

)
=

∑
i′∈des(i)∪{i}

(
S
T

i M i′Ṡj − S
T

i ad
T
Sj
M i′vi′ + S

T

i ad
T
Sj
M i′vi′

)
= S

T

i

(
M i +

∑
i′∈des(i)

M i′

)
Ṡj

= Ṡ
T

jMiSi

= Ṡ
T

jM
A

i .

3) ∂2K
∂q̇i∂qj

80

If j ∈ anc(i) ∪ {i}, using Eqs. (2.68), (2.73), (2.75), (2.77) and (2.78), we obtain

∂2K

∂qi∂q̇j
=

∂

∂q̇j

(
∂K

∂qi

)
=

∑
i′∈des(i)∪{i}

(
Ṡ
T

i M i′Sj + S
T

i ad
T
Sj
M i′vi′

)
= S

T

j

(
M i +

∑
i′∈des(i)

M i′

)
Ṡi +

(
M ivi +

∑
i′∈des(i)

M i′vi′
)T

adSjSi

= S
T

jMiṠi + µTi adSjSi.

Then simplify the equation above with µTi adSjSi = −STj adDµiSi and Eq. (2.80), the result

is

(2.83)
∂2K

∂qi∂q̇j
= S

T

j

(
MiṠi − adDµiSi

)
= S

T

jM
B

i .

4) ∂2K
∂qi∂qj

If j ∈ anc(i) ∪ {i}, using Eqs. (2.18), (2.68), (2.73), (2.74) and (2.76) to (2.78) and

adadviSj
= adviadSj − adSjadvi , we obtain

∂2K

∂qi∂qj
=
∂

∂qj

(
∂K

∂qi

)
=

∑
i′∈des(i)∪{i}

[(
M i′vi′

)T (adviadSjSi − adSjadviSi+

adadSj (vi−vj)Si

)
+ Ṡ

T

jM i′Ṡi

]
=Ṡ

T

j

(
M i +

∑
i′∈des(i)

M i′

)
Ṡi +

(
M ivi +

∑
i′∈des(i)

M i′vi′
)T

ad
Ṡj
Si

=Ṡ
T

jMiṠi + µTi adṠjSi.

81

Similar to ∂2K
∂q̇i∂qj

, using µTi adṠjSi = −ṠTj adDµiSi and Eq. (2.80), we obtain

(2.84)
∂2K

∂qi∂qj
= Ṡ

T

j

(
MiṠi − adDµiSi

)
= Ṡ

T

jM
B

i .

Thus far, we have proved that ∂2K
∂q̇i∂q̇j

, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

can be computed using

Eqs. (2.69) to (2.72) and (2.81) to (2.84) with which we further have ∂2K
∂q̇2

, ∂2K
∂q̇∂q

, ∂2K
∂q∂q̇

and

∂2K
∂q2

computed.

As for the complexity of Algorithm 4, it takes O(n) time to pass the tree representation

forward to compute gi,Mi, Si, vi, Ṡi and another O(n) time to pass the tree representation

backward to compute µi, Mi, M
A

i and MB

i . In the backward pass, ∂2K
∂q̇i∂q̇j

, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

are computed for each i using Eqs. (2.69) to (2.72) and (2.81) to (2.84) which

totally takes at most O(n2) time. Therefore, the complexity of Algorithm 4 is O(n2).

This completes the proof. �

2.8.4. Proof of Proposition 2.4

Proposition 2.8.4. If ~g ∈ R3 is gravity, then for the gravitational potential energy

V~g(q),
∂2V~g
∂q2

can be recursively computed with Algorithm 5 in O(n2) time.Proof. It is known that the gravitational potential energy V~g(q) is

(2.85) V~g(q) = −
n∑
i=1

mi · ~gTpi.

in which mi ∈ R is the mass of rigid body i and pi ∈ R3 is the mass center of rigid body

i as well as the origin of frame {i}. In addition, from Eqs. (2.11a) and (2.11b), we have

(2.86a)
∂pi
∂qj

=

ŝjpi + nj j ∈ anc(i) ∪ {i},

0 otherwise,

82

(2.86b)
∂pj
∂qi

=

ŝipj + ni j ∈ des(i) ∪ {i},

0 otherwise,

in which si, ni ∈ R3 and Si =

[
sTi nTi

]T
∈ R6 is the spatial Jacobian of joint i. From

Eqs. (2.85) and (2.86b), algebraic manipulation gives

(2.87)
∂V~g
∂qi

= −STi
(
mi

p̂i~g
~g

+
∑

i′∈des(i)

mi′

p̂i′~g
~g

).
Moreover, observe that Si and pi only depends on qj for j ∈ anc(i) ∪ {i}, we obtain from

Eq. (2.87) that

(2.88)
∂2V~g
∂qi∂qj

=

∂
∂qj

(
∂V~g
∂qi

)
j ∈ anc(i) ∪ {i},

∂2V~g
∂qj∂qi

j ∈ des(i),

0 otherwise,

which means that only ∂2V~g
∂qi∂qj

for j ∈ anc(i) ∪ {i} needs to be explicitly computed. If

j ∈ anc(i) ∪ {i}, using Eqs. (2.13a), (2.86a) and (2.87) as well as the equality âb = −b̂a

for any a, b ∈ R3, we obtain

∂2V~g
∂qi∂qj

=
∂

∂qj

(
∂V~g
∂qi

)
=

∑
i′∈des(i)∪{i}

mi′

[
sTi

(
~̂gŝjpi′ + ŝj p̂i′~g

)
− nTi ~̂gsj

]
.

83

In addition, since p̂i′~̂gsj = −~̂gŝjpi′ − ŝj p̂i′~g and âT = −â for any a ∈ R3, the equation

above is equivalent to

(2.89)
∂2V~g
∂qi∂qj

= sTj ~̂g

[(
mi +

∑
i′∈des(i)

mi′
)
ni −

(
mip̂i +

∑
i′∈des(i)

mi′ p̂i′
)
si

]

If we define

σmi = mi +
∑

j∈des(i)

mj = mi +
∑

j∈chd(i)

σmj ,

σpi = mipi +
∑

j∈des(i)

mjpj = mipi +
∑

j∈chd(i)

σpj ,

σAi = ~̂g
(
σmi · ni − σ̂pi · si

)
,

then Eq. (2.89) is further simplified to

(2.90)
∂2V~g
∂qi∂qj

= sTj ~̂g
(
σmini − σ̂pisi

)
= sTj σ

A
i .

As a result, ∂
2V~g
∂q2

can be computed from Eqs. (2.88) and (2.90).

The O(n2) complexity of Algorithm 5 is as follows: the forward pass to compute gi

and Si and the backward pass to compute σmi , σpi and σAi take O(n) time, respectively;

and the computation of ∂2V~g
∂qi∂qj

=
∂2V~g
∂qj∂qi

= sTj σ
A
i totally takes O(n2) time. Therefore, it can

be concluded that Algorithm 5 has O(n2) complexity. This completes the proof. �

84

CHAPTER 3

Efficient and Certifiably Correct Planar Graph-Based SLAM

Using the Complex Number Representation

This chapter considers the problem of planar graph-based simultaneous localization

and mapping (SLAM) that involves both poses of the autonomous agent and positions

of observed landmarks. We present CPL-SLAM, an efficient and certifiably correct algo-

rithm to solve planar graph-based SLAM using the complex number representation. We

formulate and simplify planar graph-based SLAM as the maximum likelihood estimation

(MLE) on the product of unit complex numbers, and relax this nonconvex quadratic com-

plex optimization problem to convex complex semidefinite programming (SDP). Further-

more, we simplify the corresponding complex semidefinite programming to Riemannian

staircase optimization (RSO) on the complex oblique manifold that can be solved with

the Riemannian trust region (RTR) method. In addition, we prove that the SDP relax-

ation and RSO simplification are tight as long as the noise magnitude is below a certain

threshold. The efficacy of this work is validated through applications of CPL-SLAM and

comparisons with existing state-of-the-art methods on planar graph-based SLAM, which

indicates that our proposed algorithm is capable of solving planar graph-based SLAM cer-

tifiably, and is more efficient in numerical computation and more robust to measurement

noise than existing state-of-the-art methods.

85

3.1. Introduction

Simultaneous localization and mapping (SLAM) estimates poses of an autonomous

agent and positions of observed landmarks from noisy measurements [44–46]. For an

autonomous agent, the ability to construct a map of the environment and concurrently

estimate its location within the map is essential to navigation and exploration in unknown

scenarios, such as autonomous driving [47], disaster response [48], underwater exploration

[49], precision agriculture [50], floor plan building [51], virtual and augmented reality [52],

to name a few. An intuitive way to formulate SLAM problems is to use a graph whose

vertices are associated with either poses of the autonomous agent or positions of observed

landmarks and whose edges are associated with the available measurements [17]. In

graph-based SLAM, the estimation problem is usually addressed as a difficult nonconvex

optimization problem that involves up to thousands of variables and constraints, and

the procedure of solving the optimization problem greatly affects the overall performance

of estimation. Even though a number of optimization methods have been developed

[17,44,53], it is generally NP-hard to solve a nonconvex optimization problem globally

[53], and it is common to get stuck at local minima in solving graph-based SLAM, which

results in bad estimates.

In robotics, most graph-based SLAM techniques rely on local search methods for

nonlinear optimization to estimate poses of the autonomous agent and positions of ob-

served landmarks. Lu and Milios [54] formulate SLAM as pose graph optimization (PGO)

and use iterative nonlinear optimization methods to solve PGO. Duckett and Frese et

al. [55, 56] exploit the sparsity of graph-based SLAM and propose relaxations for the

resulting nonlinear optimization problem. Olson et al. [57] propose a stochastic gradient

86

descent on an alternative state space representation of graph-based SLAM that has good

stability and scalability. Grisetti et al. [58] extend Olson’s work by presenting a novel

tree parametrization that improves the convergence of stochastic gradient descent. Fan

and Murphey [59] propose an accelerated proximal method for pose graph optimization.

Dellaert and Kaess et al. [60–63] propose incremental smoothing algorithms that enable

online updates of large-scale graph-based SLAM with nonlinear optimization. Huang and

Wang et al. [64, 65] study the least-square structure of graph-based SLAM and indi-

cate the possibility of reducing the nonlinearity and nonconvexity of SLAM. Kümmerle

et al. [66] propose g2o framework that solves graph-based SLAM using Gauss-Newton

method. Carlone et al. [67,68] propose approximations for planar pose graph optimiza-

tion that reduce the risks of getting stuck at local minima. Khosoussi et al. [69] exploit the

separable structure of SLAM problems using variable projection and propose algorithms

to improve the efficiency of Gauss-Newton methods. However, all of the aforementioned

nonlinear optimization techniques are local search methods, and as a result, there are no

guarantees of the correctness for the resulting solutions.

To address the issues of local minima in nonlinear optimization, several efforts have

been made to relax graph-based SLAM as convex optimization problems. Liu et al. [70]

propose a suboptimal convex relaxation to solve SLAM problems. Carlone et al. [71–

73] propose a tight semidefinite relaxation and analyze its optimality using Lagrangian

duality. Briales et al. [74] present a fast method for the optimality verification of 3D PGO

based on [73]. A further breakthrough of the semidefinite relaxation of PGO is made

in [7] that results in a fast and certifiable algorithm for pose graph optimization. Rosen

et al. propose SE-Sync to solve the semidefinite relaxation of PGO using Riemannian

87

staircase optimization on the Stiefel manifold that is orders of magnitude faster than

interior point methods [7]. Furthermore, it is shown in [7] that the semidefinite relaxation

of PGO is tight as long as the magnitude of the measurement noise is below a certain

threshold. Similar to SE-Sync, Briales et al. [75] propose Cartan-Sync that uses the

Cartan motion group and introduce a novel preconditioner to accelerate the algorithm.

Mangelson et al. [76] formulate planar pose graph and landmark SLAM using sparse-

bounded sum of squares programming that is guaranteed to find the globally optimal

solution regardless of the noise level.

In fields other than robotics, problems such as angular and rotation synchronization

that share a similar mathematical formulation with graph-based SLAM have been ex-

tensively studied. Singer et al. [77,78] propose semidefinite relaxations to solve angular

and rotation synchronization by finding the eigenvectors that correspond to the great-

est eigenvalues. Bandeira et al. [79] prove the tightness of the semidefinite relaxation of

angular synchronization and show that the Riemannian staircase optimization is signifi-

cantly more scalable to solve the resulting problem. Boumal [80] proposes the generalized

power method that can recover the globally optimal solution to angular synchronization.

Eriksson et al. [81] explore the role of strong duality in rotation averaging, which has

important applications in computer vision.

In applied mathematics, it is common to use unit complex numbers in synchronization

problems over SO(2) [79, 80]. In robotics, it is not new to use the complex number

representation in planar robot localization and mapping problems, either. Betke et al. [82]

use the complex number to represent positions of landmarks to localize a mobile robot

with bearing measurements. Carlone et al. [72] use the complex number representation of

88

SO(2) and SE(2) to verify the optimality of planar PGO and the tightness of semidefinite

relaxations, and the analysis is much clearer and simpler than that using the matrix

representation, and to our knowledge, this is the first implementation of the complex

number representation in planar PGO.

In general, a certifiably correct algorithm for an optimization problem not only finds

a solution to the problem, but also is capable of certifying the global optimality of the

resulting solution [83]. For many estimation problems, it is usually intractable to attain

a globally optimal solution and we have to either solve these problems using local search

methods, or relax them to a more reasonable formulation. As a result, the certifiable

correctness of the algorithm is important for estimation problems in which globally optimal

solutions are preferred. Even though a number of optimization methods are proposed to

planar graph-based SLAM, to our knowledge, only [7,71–76] are certifiably correct.

In this chapter, we consider the problem of planar graph-based SLAM that involves

both poses of the autonomous agent and positions of observed landmarks. We present

CPL-SLAM, which means theComPLex number Simultaneous LocalizationAndMapping,

an efficient and certifiably correct algorithm to solve planar graph-based SLAM using the

complex number representation.

This chapter is built upon the works of [7, 72, 79] that use the complex number

representation, the semidefinite relaxation and the Riemannian staircase optimization

[84] to efficiently and certifiably correctly solve large-scale estimation problems. In [72],

Carlone et al. were first to formulate planar PGO using the complex number representation

of SE(2), in which the optimality and tightness of the semidefinite relaxation are studied;

in CPL-SLAM, we use the same representation of SE(2) as the one in [72]. In [7],

89

Rosen et al. analyze the optimality and tightness of the semidefinite relaxation of PGO

and introduce the Riemannian staircase optimization to solve the semidefinite relaxation,

which, though using the matrix representation, motivates this chapter. In [79], Bandeira

et al. prove the tightness of semidefinite relaxation of phase synchronization on SO(2)

using the complex number representation, which is helpful to our theoretical analysis of

CPL-SLAM.

In graph-based SLAM, poses are special Euclidean groups SE(d) [7,17,63,66,75],

which are isomorphic to a semidirect product of real space Rd and special orthogonal

groups SO(d) [85]. In general, it is possible to identify SE(d) as a pair (t, R), in which

the translation is represented as a real vector t in Rd and the rotation is represented as

a matrix R in SO(d), and such an identification results in the matrix representation of

SE(d) that is commonly used in robotics. However, for planar graph-based SLAM, the

matrix representation of SO(2) is redundant, which needs four real numbers, whereas a

unit complex number that can be represented with two real numbers is sufficient to capture

the topological and geometric structures of SO(2) [72,86]. Furthermore, as is later shown

in this chapter, the complex number representation of SO(2) and SE(2) brings significant

analytical and computational benefits, and renders the resulting CPL-SLAM algorithm a

lot more efficient in numerical computation and much more robust to measurement noise.

As a result, the CPL-SLAM outperforms existing methods of planar graph-based SLAM

in terms of both numerical scalability and theoretical guarantees.

In contrast to the state-of-the-art local search methods in [54–68], CPL-SLAM is a lot

faster and capable of certifying the correctness of the solutions. As for [7,72,76] that also

seek to use convex relaxation to certifiably correctly solve graph-based SLAM, CPL-SLAM

90

has better scalability, and more explicitly, CPL-SLAM is expected to be several orders

of magnitude faster than [72, 76] and several times faster than [7]. Moreover, [7, 72]

are designed for pose-only problems, whereas CPL-SLAM extends the works of [7, 72]

by accepting pose-landmark measurements. Even though [72] uses complex semidefinite

relaxation to verify the optimality and tightness of planar pose graph optimization, we

present stronger, more complete and more concise theoretical results and more scalable

algorithms to solve the complex semidefinite relaxation. Furthermore, the conciseness

of the complex number representation makes the semidefinite relaxation in CPL-SLAM

much tighter than that in [7] using the matrix representation, and thus, CPL-SLAM has

greater robustness to measurement noise.

This chapter is based on the preliminary results of [87,88] where we use the complex

number representation to solve planar graph-based SLAM with landmarks. Similar to

[7, 75, 87] for pose graph optimization, CPL-SLAM is a certifiable algorithm that is

guaranteed to attain the globally optimal solution to planar graph-based SLAM with

landmarks as long as the magnitude of measurement noise is below a certain threshold.

Furthermore, even though it is not new to involve landmarks in graph-based SLAM [17,

58,89], we propose a novel preconditioner making better use of translation and landmark

information in planar graph-based SLAM. As a result, the performance of the truncated

conjugate gradient method is improved. In addition, we also provide the proofs of lemmas

and propositions, extensive experimental results on numerous datasets and much more

detailed discussions.

In summary, the contributions of this chapter are the following:

91

(1) We formulate planar graph-based SLAM with poses of the autonomous agent

and positions of observable landmarks using the complex number representation

and simplify the resulting estimation problem as an optimization problem on the

product of unit complex numbers.

(2) We relax the nonconvex optimization problem as complex semidefinite program-

ming and prove that the complex semidefinite relaxation is tight as long as the

magnitude of measurement noise is below a certain threshold.

(3) We recast the complex semidefinite programming as a series of rank-restricted

complex semidefinite programming on complex oblique manifolds that can be

efficiently solved with the Riemannian staircase optimization [84], and it is almost

guaranteed to retrieve the true solution to the complex semidefinite programming

if the rank of the Riemannian staircase optimization is appropriately selected.

(4) The resulting CPL-SLAM algorithm is certifiably correct, and more importantly,

a lot faster in numerical computation and much more robust to measurement

noise than existing state-of-the-art methods [7,54–58,60–68,72,89].

The rest of this chapter is organized as follows. Section 3.2 introduces notations

that are used throughout this chapter. Sections 3.3 and 3.4 review the complex number

representation of SO(2) and SE(2) and the complex oblique manifold [90]. Section 3.5

formulates planar graph-based SLAM with poses of the autonomous agent and positions

of observable landmarks using the complex representation and Section 3.6 relaxes planar

graph-based SLAM to complex semidefinite programming. Section 3.7 presents the CPL-

SLAM algorithm to solve planar graph-based SLAM. Section 3.8 presents and discusses

comparisons of CPL-SLAM with existing methods [7, 63, 89] on a series of simulated

92

Tree and City datasets and a suite of large 2D simulated and real-world SLAM bench-

mark datasets. The conclusions are made in Section 3.9. The proofs of the lemmas and

propositions are presented in Section 3.10.

3.2. Notation

R and C denote the sets of real and complex numbers, respectively; Rm×n and Cm×n

denote the sets of m× n real and complex matrices, respectively; Rn and Cn denote the

sets of n × 1 real and complex vectors, respectively. C1 and Cn
1 denote the sets of unit

complex numbers and n×1 vectors over unit complex numbers, respectively. P denotes the

group of (C,+)o(C1, ·) in which “o” denotes the semidirect product of groups [85] under

complex number addition “+” and multiplication “·”. Sn and Hn denote the sets of n× n

real symmetric matrices and complex Hermitian matrices, respectively. The notation “i” is

reserved for the imaginary unit of complex numbers. The notation | · | denotes the absolute

value of real and complex numbers, and the notation (·) denote the conjugate of complex

numbers. The superscripts (·)> and (·)H denote the transpose and conjugate transpose

of a matrix, respectively. For a complex matrix W , [W]ij denotes its (i, j)-th entry; the

notations <(W) and =(W) denote real matrices such that W = <(W) + =(W)i; W < 0

means that W is Hermitian and positive semidefinite; trace(W) denotes the trace of W ;

diag(W) extracts the diagonal ofW into a vector and ddiag(W) sets all off-diagonal entries

ofW to zero; the notations ‖W‖F and ‖W‖2 denote the Frobenius norm and the induced-

2 norm, respectively. The notation
〈
·, ·
〉
denotes the real inner product of matrices. For a

vector v, the notation [v]i denotes its i-th entry; ‖v‖2 = ‖v‖2
2 =

√∑
i |[v]i|2 =

√
vHv; the

notation diag(v) denotes the diagonal matrix with
[
diag(v)

]
ii

= vi. The notation 1 ∈ Cn

93

denotes the vector of all-ones. The notation 0 ∈ Cn denotes the vector of all-zeros. The

notation I ∈ Cn×n denotes the identity matrix. The notation O ∈ Cn×n denotes the zero

matrix. For a hidden parameter x whose value we wish to infer, the notations x, x̃ and x̂

denote the true value of x, a noisy observation of x and an estimate of x, respectively.

3.3. The Complex Number Representation of SO(2) and SE(2)

In this section, we give a brief review of SO(2) and SE(2), and show that SO(2) and

SE(2) can be represented using complex numbers. It should be noted that the complex

number representation used in this chapter, though presented in a different way, is in fact

equivalent to that in [72].

It is known that the set of unit complex numbers

C1 , {a1 + a2i ∈ C|a2
1 + a2

2 = 1}

forms a group under complex number multiplication “·” for which the identity is 1 and

the inverse is the conjugate, i.e., for z, z′ ∈ C1, we obtain [86]

z · z′ ∈ C1, 1 · z = z · 1 = z, z · z = z · z = 1.

In addition, the group of unit complex numbers (C1, ·) is diffeomorphic and isomorphic

to the matrix Lie group SO(2):

SO(2) , {

a1 −a2

a2 a1

 ∈ R2×2|a2
1 + a2

2 = 1}

, {R ∈ R2×2|R>R = I, det(R) = 1}

94

under matrix multiplication. As a result, SO(2) can be represented using unit complex

numbers C1. More explicitly, if R ∈ SO(2) is

(3.1) R =

a1 −a2

a2 a1

 =

cos θ − sin θ

sin θ cos θ

 ,
the corresponding unit complex number representation z ∈ C1 is

(3.2) z = a1 + a2i = eiθ = cos θ + sin θi

in which eiθ = cos θ+ sin θi. Furthermore, if b′ =
[
b′1 b′2

]>
∈ R2 is rotated by R ∈ SO(2)

in Eq. (3.1) from b =

[
b1 b2

]>
∈ R2, i.e.,

b′1 = a1b1 − a2b2 = b1 cos θ − b2 sin θ,

b′2 = a1b2 + a2b1 = b2 cos θ + b1 sin θ,

we obtain

(3.3a) s′ = z · s = a1b1 − a2b2︸ ︷︷ ︸
b′1

+(a1b2 + a2b1︸ ︷︷ ︸
b′2

)i,

or equivalently,

(3.3b)

s′ = z · s = eiθ · s

= b1 cos θ − b2 sin θ︸ ︷︷ ︸
b′1

+(b2 cos θ + b1 sin θ︸ ︷︷ ︸
b′2

)i,

in which z is a unit complex number as that given in Eq. (3.2), and

95

(3.4) s = b1 + b2i and s′ = b′1 + b′2i

are the complex number representation of b and b′, respectively. As a result, rotating a

vector can also be described using the complex number representation.

In general, the special Euclidean group SE(2) is the matrix Lie group

(3.5) SE(2) , {

R t

0 1

 ∈ R3×3|R ∈ SO(2), t ∈ R2},

whose group multiplication is matrix multiplication. In terms of group theory, SE(2) is

also represented as the semidirect product of (R2,+) and SO(2):

SE(2) , (R2,+) o SO(2),

in which “o” denotes the semidirect product of groups under vector addition and matrix

multiplication [85] and whose group multiplication “◦” using the matrix representation of

Eq. (3.5) is defined to be

(3.6) g ◦ g′ = (Rt′ + t, RR′),

in which g = (t, R), g′ = (t′, R′) ∈ SE(2).1 Following the complex number representation

of SO(2) and R2, the representation of SE(2) as Eq. (3.5) is diffeomorphic and isomorphic

to the semidirect product of (C,+) and (C1, ·):

P , (C,+) o (C1, ·),

1In group theory, the definition of the semidirect product relies on the choice of the group multiplication
rule.

96

whose group multiplication “�” is defined to be

(3.7) ρ� ρ′ = (z · c′ + c, z · z′) ∈ P,

in which ρ = (c, z), ρ′ = (c′, z′) ∈ P. In Eq. (3.7), z, z′ ∈ C1 and c, c′ ∈ C are the complex

number representation of R, R′ ∈ SO(2) and t, t′ ∈ R2, respectively, which follow the

same representation as that in Eqs. (3.2) and (3.4). It is obvious from Eqs. (3.2) and (3.3)

that the group multiplication of ρ�ρ′ in Eq. (3.7) is equivalent to that of g◦g′ in Eq. (3.6).

Furthermore, the identity of P is (0, 1) ∈ P and the inverse of ρ = (c, z) ∈ P is

(3.8) ρ−1 = (−z · c, z) ∈ P.

As a result, instead of using the matrix representation, we represent SE(2) with a 2-tuple

of complex numbers. In addition, if b′ ∈ R2 is transformed by g ∈ SE(2) from b ∈ R2, we

obtain

s′ = z · s+ c,

in which ρ = (c, z) ∈ P is the complex number representation of g ∈ SE(2), and s and s′

are the complex number representation of b and b′, respectively.

For notational convenience, in the rest of paper, we will omit the complex number

multiplication “·” if there is no ambiguity.

In terms of the computation of group multiplication and transformation only, the com-

plex number representation of SO(2) and SE(2) has the same complexity as the matrix

representation. In spite of this, as shown in the following sections, the complex number

representation greatly simplifies the analysis for planar graph-based SLAM, and most im-

portantly, the semidefinite relaxation and Riemannian optimization of planar graph-based

97

SLAM using the complex number representation is simpler for problem formulation, more

efficient in numerical computation and more robust to measurement noise than that using

the matrix representation in [7].

In this chapter, we will use the complex number representation of SO(2) and SE(2)

to formulate and solve planar graph-based SLAM.

3.4. The Complex Oblique Manifold

In this section, we give a brief review of the Riemannian geometric concepts and

operators of the complex oblique manifold [91] that are used in this chapter. A detailed

introduction to Riemannian geometry and optimization can be found in [90].

In Riemannian geometry, the complex oblique manifold

OB(r, n) , {Y ∈ Cn×r|ddiag(Y Y H) = I}

is a smooth and compact complex matrix manifold, whose tangent space at Y ∈ OB(r, n)

is

TY OB(r, n) , {U ∈ Cn×r|<{ddiag(UY H)} = O}.

For any U ∈ Cn×r, we define the projection operator projY : Cn×r → TY OB(r, n) to be

projYU , U −<{ddiag(UY H)}Y.

7 For a smooth function F : OB(r, n) → R, it is by definition that the Riemannian

gradient for F (Y) is

gradF (Y) , ∇F (Y)−<{ddiag(∇F (Y)Y H)}Y.

98

Since we have assumed that the complex oblique manifold is a Riemannian submanifold

of Euclidean space, then for any tangent vector Ẏ ∈ TY OB(r, n), the Riemannian Hessian

for F (Y) can be computed as

HessF (Y)[Ẏ] , projY DgradF (Y)[Ẏ],

in which D gradF (z)[ż] is the direction derivative of gradF (z) along direction ż.

3.5. Problem Formulation and Simplification

In this section, we formulate planar graph-based SLAM as maximum likelihood esti-

mation, and further simplify it to complex quadratic programming on the product of unit

complex numbers.

3.5.1. Problem Formulation

Planar graph-based SLAM consists of estimating n unknown poses g1, g2, · · · , gn ∈

SE(2), in which g(·) = (t(·), R(·)) with t(·) ∈ R2 and R(·) ∈ SO(2), and n′ landmark

positions l1, l2, · · · , ln′ ∈ R2 given m noisy pose-pose measurements g̃ij ∈ SE(2) of

gij , g−1
i gj ∈ SE(2)

and m′ noisy pose-landmark measurements l̃ij ∈ R2 of

(3.9) lij , R>i (lj − ti) ∈ R2.

From Section 3.3, the problem is equivalent to estimating n 2-tuples of complex numbers

ρ1, ρ2, · · · , ρn ∈ P, in which ρ(·) = (c(·), z(·)) ∈ P with c(·) ∈ C and z(·) ∈ C1, and n′

99

complex numbers s1, s2, · · · , sn′ ∈ C given m noisy pose-pose measurements ρ̃ij ∈ P of

ρij , ρ−1
i � ρj ∈ P

and m′ noisy pose-landmark measurements s̃ij ∈ C of

sij , zi(sj − ci) ∈ C.

The unknown n poses and n′ landmark positions and the noisy relative measurements can

be described with a directed graph
−→
G = (V ∪ V ′,

−→
E ∪
−→
E ′) in which i ∈ V , {1, · · · , n}

is associated with gi or ρi, and i ∈ V ′ = {1, · · · , n′} is associated with li or si, and

(i, j) ∈
−→
E ⊂ V × V if and only if the pose-pose measurement g̃ij or ρ̃ij exists, and

(i, j) ∈
−→
E ′ ⊂ V × V ′ if and only if the pose-landmark measurement l̃ij or s̃ij exists. If

the orientation of edges in
−→
E and

−→
E ′ are ignored, we obtain the undirected graph of

−→
G

that is denoted as G = (V ∪ V ′, E ∪ E ′). In the rest of this chapter, we assume that
−→
G

is weakly connected and G is (equivalently) connected. In addition, we assume that the

noisy relative measurements ρ̃ij = (c̃ij, z̃ij) and s̃ij are random variables that satisfy

c̃ij = cij + cεij cεij ∼ N(0, τ−1
ij),(3.10a)

z̃ij = zijz
ε
ij z̃εij ∼ vMF(1, κij),(3.10b)

s̃ij = sij + sεij sεij ∼ N(0, ν−1
ij),(3.10c)

for all (i, j) ∈
−→
E ∪
−→
E ′ . In Eq. (3.10), ρij = (cij, zij) and sij are the true (latent) values

of ρij and sij, respectively, N(µ,Σ) denotes the complex normal distribution with mean

µ ∈ C and covariance Σ < 0, and vMF(z0, κ) denotes the von Mises-Fisher distribution on

100

C1 with mode z0 ∈ C1, concentration number κ ≥ 0 and the probability density function

of vMF(z0, κ) is [92]

f(z; z0, κ) =
1

cd(κ)
exp (κ(z0z + z0z)) ,

in which cd(κ) is a function of κ.

If c̃ij, z̃ij and s̃ij are independent from each other, from Eqs. (3.3), (3.7) and (3.8), a

straightforward algebraic manipulation indicates that the maximum likelihood estimation

(MLE) is a least square problem as follows

(MLE) min
si∈C,

ci∈Cn, zi∈Cn1

∑
(i,j)∈

−→
E

[
κij|ziz̃ij − zj|2 + τij|cj − ci

−zic̃ij|2
]

+
∑

(i,j)∈
−→
E ′

νij|sj − ci − zis̃ij|2,

in which κij, τij and νij are as given in Eqs. (3.10a) to (3.10c). From Eqs. (3.1) and (3.2),

it should be noted that

|ziz̃ij − zj|2 =
1

2
‖RiR̃ij −Rj‖2

F ,

and it is also trivial to show that

|cj − ci − zic̃ij|2 = ‖tj − ti −Rit̃ij‖2
F ,

|sj − ci − zis̃ij|2 = ‖lj − ti −Ril̃ij‖2
F .

101

As a result, (MLE) is equivalent to

(SE-MLE) min
Ri∈SO(2),
pi, li∈R2

∑
(i,j)∈

−→
E

[κij
2
‖RiR̃ij −Rj‖2

F + τij‖tj − ti−

Rit̃ij‖2
F

]
+
∑

(i,j)∈
−→
E ′

νij‖lj − ti −Rilij‖2
F .

Even though there are landmarks present in (MLE) and (SE-MLE), this does not create

a significant distinction from [7] in terms of problem formulation. As a matter of fact,

if there are no landmarks, i.e., V ′ = ∅ and
−→
E ′ = ∅, (SE-MLE) is almost the same as

the formulation of pose graph optimization using the matrix representation in SE-Sync

[7] except for the weight factors. In addition, (SE-MLE) can also be constructed as

a specialized case of SE-Sync’s [7] measurement model if we interpret pose-landmark

measurements as pose-pose measurements whose rotational weight factors are zero.

In the next subsection, we will simplify (MLE) to quadratic programming on the

product of unit complex numbers Cn
1 .

3.5.2. Problem Simplification

The simplification of (MLE) is similar to that of [7, Appendix B], the difference of

which is that ours uses the complex number representation while [7] uses the matrix

representation and ours has landmarks involved while [7] does not.

For notational convenience, we define zji = zij, κji = κij and τji = τij, and (MLE)

can be reformulated as

(P) min
ξ∈Cn′×Cn×Cn1

ξH Γ̃ξ

102

in which

ξ ,

[
s1 · · · sn′ c1 · · · cn z1 · · · zn

]>
.

In (P), Γ̃ is a (2n+ n′)-by-(2n+ n′) Hermitian matrix

(3.11) Γ̃ ,

Σs U Ñ

∗ L(W c) + Σc Ẽ

∗ ∗ L(G̃z) + Σ̃z

 ,

in which Σ̃s ∈ Hn′ , Ũ ∈ Cn′×n, Ñ ∈ Cn′×n, L(W c) ∈ Hn, Σ̃c ∈ Hn, Ẽ ∈ Cn×n, L(G̃z) ∈ Hn

and Σ̃z ∈ Hn are defined as

[Σs]ij ,

∑

(k,i)∈
−→
E ′
νki, i = j,

0 otherwise,

[U]ij ,

−νji, (j, i) ∈

−→
E ′ ,

0 otherwise,

[Ñ s]ij ,

−νjis̃ji, (j, i) ∈

−→
E ′ ,

0 otherwise,

[L(W c)]ij ,

∑
(i,k)∈E

τik, i = j,

−τij, (i, j) ∈ E ,

0 otherwise,

103

[Σc]ij ,

∑

(i,k)∈
−→
E ′
νik, i = j,

0 otherwise,

[Ẽ]ij ,

∑
(i,k)∈

−→
E
τikc̃ik +

∑
(i,k)∈

−→
E ′
νiks̃ik, i = j,

−τij c̃ji, (j, i) ∈
−→
E ,

0 otherwise,

[L(G̃z)]ij ,

∑
(i,k)∈E

κik, i = j,

−κij z̃ji, (i, j) ∈ E ,

0 otherwise,

[Σ̃z)]ij ,

∑

(i,k)∈
−→
E
τik|c̃ik|2 +

∑
(i,k)∈

−→
E ′
νik|s̃ik|2, i = j

0 otherwise,

respectively.

It is possible to marginalize the translational states and landmarks and reformulate

planar graph-based SLAM as an optimization problem on the rotational states only, which

has been used in [7,69,93] to improve the computational efficiency. In a similar way, if

rotational states z ,
[
z1 · · · zn

]>
∈ Cn

1 are known, (P) is reduced to unconstrained

complex quadratic programming on translational states c ,
[
c1 · · · cn

]>
∈ Cn and

104

landmark positions s ,
[
s1 · · · sn′

]>
∈ Cw:

(3.12) min
β∈Cn′+n

βHΛβ + 2
〈
β, Θ̃z

〉
+ zHL(G̃z)z + zHΣ̃zz︸ ︷︷ ︸

constant

,

in which β ,
[
s> c>

]>
∈ Cn+n′ , Θ̃ ,

Ñ
Ẽ

 ∈ C(n+n′)×n, and Λ ,

Σs U

∗ L(W c) + Σc

 ∈
Hn+n′ . It can be shown that according to [94, Proposition 4.2]2, one of the optimal

solutions to Eq. (3.12) is

(3.13) β = −Λ†Θ̃z.

Substituting Eq. (3.13) into (P) and simplifying the resulting equation, we obtain the

complex quadratic programming on the product of unit complex numbers Cn
1 as follows

(3.14) min
z∈Cn1

zHMz,

in which M = L(G̃z) + Σ̃z − Θ̃HΛ†Θ̃ � 0.

Furthermore, let Ω ∈ R(m+m′)×(m+m′) be the diagonal matrix indexed by e ∈
−→
E ∪
−→
E ′

and e′ ∈
−→
E ∪
−→
E ′ whose (e, e′)-element is given by

(3.15) [Ω]ee′ ,

νe, e = e′ and e ∈
−→
E ′ ,

τe, e = e′ and e ∈
−→
E ,

0, otherwise,

2It should be noted that [94, Proposition 4.2] was originally derived for real matrices, however, the results
can be generalized to complex matrices as well.

105

in which νe and τe ∈ R are the precisions of the landmark positional observations and

the translational observations as given in Eqs. (3.10c) and (3.10a), respectively; and let

T̃ ∈ C(m+m′)×n be the matrix indexed by e ∈
−→
E ∪
−→
E ′ and k ∈ V ∪V ′ whose (e, k)-element

is given by

(3.16)
[
T̃
]
ek
,

−s̃kj, e = (k, j) ∈
−→
E ′ ,

−c̃kj, e = (k, j) ∈
−→
E ,

0, otherwise;

and let A(
−→
G) ∈ Rn×m to the matrix indexed by k ∈ V ∪ V ′ and e ∈

−→
E ∪

−→
E ′ whose

(k, e)-element is given by

(3.17)
[
A(
−→
G)
]
ke

=

1, e = (i, k) ∈
−→
E ∪
−→
E ′ ,

−1, e = (k, j) ∈
−→
E ∪
−→
E ′ ,

0, otherwise.

In addition, without loss of any generality, we also introduce the ordering over
−→
E ∪

−→
E ′

and V ∪ V ′ such that e′ ∈
−→
E ′ precedes e ∈

−→
E and k′ ∈ V ′ precedes k ∈ V . As a result of

Eqs. (3.15) to (3.17), M = L(G̃z) + Σ̃z − Θ̃HΛ†Θ̃ can be rewritten as

(3.18) M = L(G̃z) + T̃HΩ
1
2 ΠΩ

1
2 T̃ ,

in which Π ∈ R(m+m′)×(m+m′) is the matrix of the orthogonal projection operator π :

Cm+m′ → ker(A(
−→
G)Ω

1
2) onto the kernel of A(

−→
G)Ω

1
2 . Therefore, Eq. (3.14) is equivalent

to

106

(QP)
min
z∈Cn1

trace(MzzH),

M = L(G̃z) + T̃HΩ
1
2 ΠΩ

1
2 T̃ .

The detailed derivation of (QP) is presented in Section 3.5.3.

3.5.3. The Derivation of (QP)

In this subsection, we derive (QP) following a similar procedure of [7, Appendix B]

even though ours uses the complex number representation and has landmarks involved.

It is straightforward to rewrite (MLE) as

(3.19) min
s∈Cn,

c∈Cn, z∈Cn1

∥∥∥∥∥∥∥∥∥∥
B

s

c

z

∥∥∥∥∥∥∥∥∥∥

2

2

in which

B ,

B1 B2

0 B3

 ∈ C(2m+m′)×(2n+n′).

Here B1 ∈ R(m+m′)×(n+n′), B2 ∈ R(m+m′)×n and B3 ∈ Cm×n are given as

(3.20a) [B1]ek =

√
νik, e = (i, k) ∈

−→
E ′ ,

−√νkj, e = (k, j) ∈
−→
E ′ ,

√
τik, e = (i, k) ∈

−→
E ,

−√τkj, e = (k, j) ∈
−→
E ,

0, otherwise,

107

(3.20b) [B2]ek =

−√νkj s̃kj, e = (k, j) ∈
−→
E ′ ,

−√τkj c̃kj, e = (k, j) ∈
−→
E ,

0, otherwise,

and

(3.20c) [B3]ek =

−√κkj z̃kj, e = (k, j) ∈
−→
E ,

√
κik, e = (i, k) ∈

−→
E ,

0, otherwise,

respectively. Since (P) is also equivalent to (3.12), it can be concluded that

BH
1 B1 = Λ,(3.21a)

BH
1 B2 = Θ̃,(3.21b)

BH
2 B2 = Σ̃z,(3.21c)

BH
3 B3 = L(G̃z)(3.21d)

in which Λ, Θ̃, Σ̃ and L(G̃z) are as defined in (3.12). If we let Mσ , Σ̃z − Θ̃HΛ†Θ̃, then

from Eqs. (3.21a) to (3.21d), we obtain

(3.22)
Mσ = BH

2 B2 −BH
2 B1(BH

1 B1)†BH
1 B2

= BH
2

(
I−B1(BH

1 B1)†BH
1

)
B2,

108

in which B1, B2 and B3 are defined as Eqs. (3.20a) to (3.20c). It should be noted that

we might rewrite B1 and B2 as

(3.23) B1 = Ω
1
2A>, B2 = Ω

1
2 T̃ ,

in which A , A(
−→
G) and T̃ are given by Eqs. (3.17) and (3.16), respectively. Substituting

Eq. (3.23) into Eq. (3.22), we obtain

(3.24)
Mσ = BH

2

(
I−B1(BH

1 B1)†BH
1

)
B2

= T̃HΩ
1
2 ΠΩ

1
2 T̃ ,

in which

Π = I− Ω
1
2A>

(
AΩA>

)†
AΩ

1
2 ∈ R(m+m′)×(m+m′).

As a result, it can be concluded that

M = L(G̃z) +Mσ = L(G̃z) + T̃HΩ
1
2 ΠΩ

1
2 T̃ .

Furthermore, it is known that X>(XX>)† = X† for any matrix X, then we further obtain

(3.25)
Π = I− Ω

1
2A>

(
AΩA>

)†
AΩ

1
2

= I−
(
AΩ

1
2

)†
AΩ

1
2 ,

which according to [95, Chapter 5.13] is the matrix of orthogonal projection operator

π : Cm+m′ → ker(A(
−→
G)Ω

1
2) onto the kernel space of AΩ

1
2 . In addition, similar to [7,

Appendix B.2], it is possible to further decompose Π in terms of sparse matrices and their

inverse for efficient computation even though Π is in general a dense matrix.

109

In the next section, we will relax (QP) to complex semidefinite programming and show

that the semidefinite relaxation is tight as long as the noise magnitude is below a certain

threshold.

3.6. The Semidefinite Relaxation

In a similar way to [72,79,80], it is straightforward to relax (QP) to

(SDP)
min
X∈Hn

〈
M,X

〉
s.t. X � 0, diag(X) = 1.

It should be noted that if X̂ ∈ Hn has rank one and solves (SDP), then a solution ẑ ∈ Cn
1

to (QP) can be exactly recovered from X̂ through singular value decomposition with

which we have X̂ = ẑẑH .

In this chapter, it is without loss of any generality to assume that all the manifolds are

Riemannian submanifolds of Euclidean space [90], whose differential geometric properties,

e.g., Riemannian gradients and Riemannian Hessians, are defined accordingly.

In the rest of section, we will analyze and derive the conditions for the optimality of

(QP) and (SDP), and conditions for the tight relaxation of (SDP), all the proofs of which

can be found in Section 3.10.

From [90], the necessary conditions for the local optimality of (QP) can be well char-

acterized in terms of the Riemannian gradients and Hessians.

Lemma 3.1. If ẑ ∈ Cn
1 is a local optimum of (QP), then there exists a real diagonal

matrix Λ̂ , <{ddiag(MẑẑH)} ∈ Rn×n such that Ŝ , M − Λ̂ ∈ Hn satisfies the following

conditions:

110

(1) Ŝẑ = 0;

(2)
〈
ż, Ŝż

〉
≥ 0 for all ż ∈ TẑCn

1 .

If ẑ satisfies (1), it is a first-order critical point, and if ẑ satisfies (1) and (2), it is a

second-order critical point.

Proof. See Section 3.10.1. �

Since (SDP) is convex and the identity matrix I ∈ Cn×n is strictly feasible, the suffi-

cient and necessary conditions for the global optimality of (SDP) can be derived in terms

of the Karush-Kuhn-Tucker (KKT) conditions.

Lemma 3.2. A Hermitian matrix X̂ ∈ Hn is a global optimum of (SDP) if and only

if there exists Ŝ ∈ Hn such that the following conditions hold:

(1) diag(X̂) = 1;

(2) X̂ � 0;

(3) ŜX̂ = 0;

(4) M − Ŝ is real diagonal;

(5) Ŝ � 0.

Furthermore, if rank(Ŝ) = n− 1, then X̂ has rank one and is the unique global optimum

of (SDP).

Proof. See Section 3.10.2. �

As a result of Lemmas 3.1 and 3.2, we obtain the sufficient conditions for the exact

recovery of (QP) from (SDP).

111

Lemma 3.3. If ẑ ∈ Cn
1 is a first-order critical point of (QP) and Ŝ = M − Λ̂ � 0

in which Λ̂ = <{ddiag(MẑẑH)}, then ẑ is a global optimum of (QP) and X̂ = ẑẑH is a

global optimum of (SDP). Moreover, if rank(Ŝ) = n− 1, then X̂ is the unique optimum

of (SDP).

Proof. See Section 3.10.3. �

Lemma 3.3 gives sufficient conditions to check whether (SDP) is a tight relaxation of

(QP). As a matter of fact, if the measurement noise is not too large, it is guaranteed that

(SDP) is always a tight relaxation of (QP) as the following proposition states.

Proposition 3.6.1. Let M ∈ Hn be the data matrix of the form Eq. (3.18) that

is constructed with the true (latent) pose-pose measurements ρij = (cij, zij) and pose-

landmark measurements sij, then there exists a constant γ = γ(M) > 0 such that if

‖M −M‖2 < γ, then (SDP) attains the unique global optimum at X̂ = ẑẑH ∈ Hn, in

which ẑ ∈ Cn
1 is a global optimum of (QP).

Proof. See Section 3.10.4. �

Lemma 3.3 verifies the tightness of the complex semidefinite relaxation and Propo-

sition 3.6.1 guarantees that the tightness of the complex semidefinite relaxation, which

makes (SDP) certifiably correct for graph-based SLAM. It should be noted that similar

results to Lemma 3.3 and Proposition 3.6.1 have been presented for synchronization prob-

lems on general special Euclidean groups using the matrix representation in [7] and for

phase synchronization using the complex number representation in [79].

In spite of the tightness of the semidefinite relaxation of planar graph-based SLAM,

solving large-scale complex semidefinite programming remains challenging and time-consuming.

112

In the next section, we will further relax (SDP) as a series of rank-restricted complex

semidefinite programming such that (SDP) can be efficiently solved with the Riemannian

staircase optimization.

3.7. The CPL-SLAM Algorithm

In this section, we show that it is possible to recast (SDP) as Riemannian optimiza-

tion on complex oblique manifolds, which is one of the most important contributions of

this chapter. A brief introduction to the complex oblique manifold has been given in

Section 3.4, and it is also helpful to read [91] that is about the real oblique manifold.

3.7.1. Riemannian Staircase Optimization

In general, interior point methods to solve (SDP) take polynomial time, which, how-

ever, may still be slow when the polynomial exponent is large. Instead of solving (SDP)

directly, Boumal et al. found that (SDP) can be relaxed to a series of rank-restricted

complex semidefinite programing [84]:

(r-SDP) min
Y ∈OB(r,n)

trace(MY Y H)

in which

OB(r, n) , {Y ∈ Cn×r|ddiag(Y Y H) = I}

is the complex oblique manifold. It should be noted that (r-SDP) can be a tight relaxation

of (SDP) if some conditions are met as stated in Propositions 3.7.1 and 3.7.2, whose proofs

are immediate from [84, Theorem 2].

113

Proposition 3.7.1. If Ŷ ∈ OB(r, n) is rank-deficient and second-order critical for

(r-SDP), then it is globally optimal for (r-SDP) and X̂ = Ŷ Ŷ H ∈ Hn is globally optimal

for (SDP).

Proposition 3.7.2. If r ≥ d
√
n e, then for almost all M ∈ Cn×n, every first-order

critical Ŷ ∈ OB(r, n) for (r-SDP) is rank-deficient.

Propositions 3.7.1 and 3.7.2 are referred as the Burer-Monteiro guarantees for smooth

semidefinite programming [84] that apply to a number of classic estimation problems.

From Propositions 3.7.1 and 3.7.2, it can be concluded that (SDP) is equivalent to

successively solving (r-SDP) with the Riemannian trust region (RTR) method [96] for

2 ≤ r1 < r2 < · · · < rk ≤ n + 1 until a rank-deficient second-order critical point is

found, and such a method to solve semidefinite programming is referred as the Riemann-

ian staircase optimization (Algorithm 6) [84,97]. In [7,79,97], the Riemannian staircase

optimization has been used to solve a number of semidefinite relaxations of synchroniza-

tion problems. In addition, it is known that the RTR method solves (r-SDP) locally in

polynomial time [84, Proposition 3]. In contrast to using interior point methods to solve

(SDP) directly, the Riemannian staircase optimization using the RTR method is empiri-

cally orders of magnitude faster in solving large-scale smooth semidefinite programming.

As shown in Algorithm 7, the solution rounding of an optimum of Y ∗ ∈ OB(r, n) of

(r-SDP) is simply to assign ẑ =
[
ẑ1 · · · ẑn

]
∈ Cn to be the left-singular vector of Y ∗ that

is associated with the greatest singular value, and then normalize each zi to get ẑ ∈ Cn
1 .

The solution rounding algorithm is exact if rank(Y ∗) = 1. Moreover, it should be noted

that the solution rounding algorithm can recover the global optimum ẑ∗ ∈ Cn
1 from Y ∗ as

long as the exactness of (SDP) holds and X = Y ∗Y ∗H solves (SDP).

114

Algorithm 6 The Riemannian staircase optimization (RSO)
1: Input: Integers 2 ≤ r0 < r1 < · · · < rk ≤ n+ 1; an initial iterate z0 ∈ Cn

1

2: Y0 =
[
ẑ0 0

]
∈ OB(r0, n)

3: for i = 1→ k do
4: Implement the Riemannian optimization to solve

Y ∗i = arg min
Y ∈OB(ri,n)

trace(MY Y H)

locally with Yi as an initial guess
5: if rank(Y ∗i) < ri then
6: return Y ∗i ∈ OB(ri, n)
7: else
8: Yi+1 =

[
Ŷi 0

]
∈ OB(ri+1, n)

9: end if
10: end for
11: return Y ∗i ∈ OB(rk, n)

Algorithm 7 The rounding procedure for solutions of (r-SDP)
1: Input: An optimum Y ∗ ∈ OB(r, n) to (r-SDP)

2: Assign ẑ =
[
ẑ1 · · · ẑn

]> ∈ Cn to be the left-singular vector of Y ∗ that is associated
with the greatest singular value

3: for i = 1→ n do
4: ẑi =

ẑi
|ẑi|

5: end for
6: return ẑ ∈ Cn

1

From algorithms of Riemannian staircase optimization (Algorithm 6) and solution

rounding (Algorithm 7), the proposed CPL-SLAM algorithm for planar graph-based

SLAM is as shown in Algorithm 8, which follows a similar procedure to SE-Sync [7].

It should be noted that Lemmas 3.1 to 3.3 can be used to certify the global optimality

of the solution, and Propositions 3.6.1, 3.7.1 and 3.7.2 indicate that the CPL-SLAM al-

gorithm is expected to retrieve the globally optimal solution to the planar graph-based

SLAM as long as the noise magnitude is below a certain threshold. Therefore, it can be

concluded that CPL-SLAM is certifiably correct.

115

Algorithm 8 The CPL-SLAM algorithm
1: Input: Integers 2 ≤ r0 < r1 < · · · < rk ≤ n+ 1; an initial iterate z0 ∈ Cn

1

2: Implement Algorithm 6 to compute an optimum Y ∗ ∈ OB(r, n)
3: Implement Algorithm 7 to compute rotational states ẑ ∈ Cn

1

4: Implement Eq. (3.13) to compute translational states ĉ ∈ Cn

5: return ẑ ∈ Cn
1 and ĉ ∈ Cn

3.7.2. The Preconditioner for the CPL-SLAM Algorithm

As SE-Sync [7] and Cartan-Sync [75], CPL-SLAM uses the trust-region method on

Riemannian manifolds that relies on the truncated conjugated gradient (TCG) method

to evaluate the descent direction [96]. The TCG method iteratively solves linear equa-

tions and improves the solution to necessary accuracy within finite iterations, which is

usually faster than direct methods. In general, the TCG method needs a preconditioner

to accelerate the convergence. Even though the choice of preconditioner for graph-based

SLAM without landmarks is immediate [7], there is still a lack of a suitable precondi-

tioner for graph-based SLAM with landmarks. To address this issue, we also propose a

preconditioner for graph-based SLAM with landmarks as follows.

Similar to [7,75,98], instead of factorizing the Riemannian Hessian matrix HessF (z) ∈

Cn×n in Eq. (3.33) to explicitly evaluate the descent direction, the Riemannian trust region

(RTR) method in CPL-SLAM leverages the truncated conjugated gradient (TCG) method

to approximate the descent direction with necessary accuracy. Though the TCG method

is guaranteed to converge to the true solution within finite iterations, the rates of the

convergence is closely related with the preconditioner Precon(HessF (z)) ∈ Cn×n that is

used to approximate HessF (z) and iteratively solve

Precon(HessF (z)) · a = b

116

to evaluate the descent direction, in which a, b ∈ Cn.

In graph-based SLAM, several preconditioners have been proposed for the TCGmethod

[75,98]. For CPL-SLAM, an immediate choice of the preconditioner Precon(HessF (z)) is

L(G̃z) + Σ̃z, which is the submatrix of Γ̃ in Eq. (3.11) that corresponds to the rotational

states,3 and such a preconditioner works well for planar graph-based SLAM without land-

marks. However, the preconditioner of L(G̃z) + Σ̃z suffers slow convergence for planar

graph-based SLAM with landmarks since the submatrix L(G̃z) + Σ̃z loses information of

pose-landmark measurements and results in a bad approximation of HessF (z).

In contrast to L(G̃z) + Σ̃z that only captures the information of pose-pose measure-

ments, the matrix

(3.26) M = L(G̃z) + T̃HΩ
1
2 ΠΩ

1
2 T̃ ∈ Cn×n

in (QP) implicitly but properly keeps the information of both pose-pose measurements

and pose-landmark measurements. However, there is no exact expression of M and we

need to evaluate the equation above to factorizeM . Furthermore, sinceM can be a dense

matrix, the resulting factorization of M might be inefficient to solve

(3.27) M · a = b,

which affects the performance of the TCG method. As a result, we need some other

methods rather than evaluate and factorize M explicitly to solve Eq. (3.27).

3A similar preconditioner is also used in SE-Sync [98].

117

It should be noted that the solution to

(3.28) min
x∈Cn

1

2

〈
x,Mx

〉
−
〈
x, b
〉
,

is also a solution to Eq. (3.27). From Eqs. (3.11) to (3.14), it is straightforward to show

that Eq. (3.28) is equivalent to

(3.29) min
x∈Cn, x′∈Cn+n′

1

2

〈x′
x

, Γ̃
x′
x

〉− 〈
x′
x

,
0

b

〉,

and the solution

a′
a

 ∈ C2n+n′ to Eq. (3.29) can be computed in closed form as

(3.30) Γ̃

a′
a

 =

0

b

 ,
or equivalently,

(3.31)

a′
a

 = Γ̃†

0

b

 .
It is by definition that a ∈ Cn in Eqs. (3.30) and (3.31) is also a solution to Eqs. (3.27)

and (3.28). Therefore, we might factorize Γ̃ and solve Eqs. (3.30) and (3.31) instead so

as to solve Eq. (3.27). In Eqs. (3.14), (3.27) and (3.28), we construct the dense data

matrix M using Eq. (3.13) to reduce the dimension of the optimization problem with

no information loss. In Eqs. (3.30) and (3.31), on the other hand, we essentially reverse

the operation of Eq. (3.13) to recover the sparse matrix Γ̃ by augmenting the dimension.

118

Since Γ̃ is a sparse matrix whose exact expression requires no extra computation, it is

more efficient to exploit the sparsity of Γ̃ to solve Eqs. (3.30) and (3.31) than factorize

the dense data matrix M to solve Eqs. (3.27) and (3.28).

3.7.3. Discussion

Even though the positive semidefinite matrix is not explicitly formed in CPL-SLAM

or SE-Sync to solve planar graph-based SLAM, it can be seen that CPL-SLAM using

the complex number representation results in semidefinite relaxations of smaller size

than [7, 72]. In the semidefinite relaxation of CPL-SLAM, the n × n complex positive

semidefinite matrix X ∈ Hn can be parameterized with n2 real numbers, whereas the

semidefinite relaxation in [7] using the matrix representation needs 2n2 + n real numbers

to parameterize the 2n× 2n real positive semidefinite matrix, and that in [72] needs 4n2

real numbers to parameterize the 2n× 2n complex positive semidefinite matrix.

It is obvious that the complex number representation is more concise than the matrix

representation, and as a result, CPL-SLAM roughly requires half as much storage space as

SE-Sync [7]. More importantly, as is discussed in Section 3.8, from both theoretical and

empirical perspectives, the conciseness of the complex number representation reduces the

computational cost a lot and renders the semidefinite relaxation much tighter, and thus,

the resulting CPL-SLAM algorithm is much more efficient in numerical computation and

much more robust to measurement noise than [7].

In contrast to the works of [7,72,76], CPL-SLAM is more general and more scalable.

As mentioned before, CPL-SLAM is more efficient, tighter and more robust than SE-Sync

[7]. Even though we use the same complex number representation as [72], our formulation

119

is simpler and only depends on rotational states z ∈ Cn
1 , whereas [72] involves both

translational and rotational states c ∈ Cn and z ∈ Cn
1 . Moreover, [72] mainly focuses on

the optimality verification of planar pose graph optimization, whereas ours not only works

on optimality verification and obtains stronger theoretical results, but also presents more

scalable algorithms to solve planar graph-based SLAM. In [76], the authors use bounded

sum of squares programming to solve planar graph-based SLAM. Even though [76] always

attains the globally optimal solution regardless of the measurement noise, it relies on

sparse sum of squares programming, which, to our knowledge, has limited scalability for

large-scale problems. As a result, CPL-SLAM can be expected to outperform [76] by

several orders of magnitude in terms of computational time. Last but not least, except

for [76], the works of [7,72] are designed for planar pose graph optimization or angular

synchronization, whereas ours considers the planar graph-based SLAM that has both

poses and landmarks.

3.8. Experiments

In this section, we implement CPL-SLAM on the simulated Tree datasets, simulated

City datasets and a suite of large-scale 2D SLAM benchmark datasets with and without

landmarks [7,72,99]. We compare CPL-SLAM with the popular state-of-the-art SE-Sync

[7] and Powell’s Dog-Leg method (PDL-GN) [63,89]. Even though the original algorithms

of SE-Sync [7] are not designed for problems with landmarks, we extend SE-Sync following

a similar procedure as CPL-SLAM. For the linear solvers to compute a descent direction,

CPL-SLAM and SE-Sync [7] use the indirect and iterative truncated conjugate gradient

120

method, whereas PDL-GN [63, 89] uses the sparse direct method. The C++ code of

CPL-SLAM is available at https://github.com/MurpheyLab/CPL-SLAM.

All the experiments have been performed on a laptop with an Intel i7-8750H CPU and

32GB of RAM running Ubuntu 18.04 and using g++ 7.8 as C++ compiler. We have

done the computation on a single core of CPU. For all the experiments, we choose the

initial rank to be rSE = 3 and rCPL = 2 for SE-Sync and CPL-SLAM, respectively, since

we find that rSE = 3 and rCPL = 2 are in general good enough for SE-Sync and CPL-

SLAM to solve planar graph-based SLAM given the noise levels in robotics and computer

vision applications.

3.8.1. Tree Datasets

In this subsection, we evaluate the performance of CPL-SLAM, SE-Sync and PDL-GN

on the simulated Tree datasets that are similar to tree10000 (Fig. 3.6k). A Tree dataset

is consisted of 25 × 25 square grids in which each grid has side length of 1 m, and a

robot trajectory of n poses along the rectilinear path of the square grid, and n′ trees

(landmarks) that are randomly distributed in the centre of some square grids. Odometric

pose-pose measurements are available between each pair of sequential poses along the

robot trajectory, whereas pose-landmark measurements between poses and trees that are

close to each other are available with a probability of pL; the pose-pose measurements

ρ̃ij = (c̃ij, z̃ij) and pose-landmark measurements s̃ij are generated from the noise models

of Eq. (3.10). In our experiments, we investigate the performance of these algorithms

by varying each parameter individually and the default values for these parameters are

https://github.com/MurpheyLab/CPL-SLAM

121

chosen to be n = 5000, n′ = 250, pL = 0.2, c̃ij with an expected translational root-mean-

squared error (RMSE) of σt = 0.05 m, z̃ij with an expected angular RMSE of σR = 0.015π

rad, and s̃ij with an expected positional RMSE of σl = 0.05 m.

For all the Tree datasets tested, CPL-SLAM, SE-Sync and PDL-GN all converge to

the global optima when using the chordal initialization. As is shown in Fig. 3.1, it can be

seen that CPL-SLAM is around 4 ∼ 5 times faster than SE-Sync and PDL-GN, whereas

SE-Sync and PDL-GN are roughly as fast as each other.

The speed-up of CPL-SLAM over SE-Sync [7] in planar graph-based SLAM can be

explained from several perspectives. 1) CPL-SLAM is more efficient for the objective

and gradient evaluation, e.g., if the rank is rSE = 3 and rCPL = 2, CPL-SLAM only

needs 1
2
∼ 2

3
and 1

4
∼ 2

3
operations of SE-Sync to evaluate the objective and gradient,

respectively. 2) CPL-SLAM is more efficient in terms of the projection or retraction onto

the manifold than SE-Sync – the projection map of CPL-SLAM is just to normalize n

vectors, whereas that of SE-Sync has to compute n singular value decompositions, which is

much more time consuming. 3) CPL-SLAM is more efficient for chordal initialization and

solution rounding. 4) As a result of the conciseness of the complex number representation,

the preconditioner used in CPL-SLAM has a better approximation the Hessian matrix

than SE-Sync, and thus, has a faster convergence of the truncated conjugate gradient

method that the Riemannian trust region method implements to evaluate the descent

direction. Therefore, CPL-SLAM should be theoretically more efficient than SE-Sync,

which is further confirmed by the results of the experiments.

Similar to [66, 69, 100], PDL-GN uses the Gauss-Newton method and might not

perform well if there are large residues of the measurements and strong nonlinearities of

122

(a) (b)

(c) (d)

(e) (f)

Figure 3.1. The computational time of CPL-SLAM, SE-Sync and PDL-GN
on the Tree datasets with varying each parameter individually while keeping
the other parameters to be default values. The chordal initialization is used
for all the tests. The results of each varying parameter are the number of
poses n in (a), the number of trees n′ in (b), the probability of observing
trees pL in (c), translational RMSEs of σt in (d), angular RMSEs of σR in
(e) and positional RMSEs of σl in (f). The default values are n = 5000,
n′ = 250, pL = 0.2, σt = 0.05 m, σR = 0.015π rad and σl = 0.05 m. For all
the Tree datasets tested, it can be seen that CPL-SLAM is around 4 ∼ 5
times faster than SE-Sync and PDL-GN, whereas SE-Sync and PDL-GN
are roughly as fast as each other.

123

the objective function [63,89], whereas CPL-SLAM uses the exact Hessian to compute the

Newton direction, and thus, is expected to converge faster and have better efficiency. In

addition, as mentioned before, when evaluating the descent direction, PDL-GN factorizes

sparse matrices to solve linear equations. In contrast, CPL-SLAM makes use of the

truncated conjugate gradient method as the linear solver, which might also improve the

overall efficiency of CPL-SLAM. On the other hand, since the choice of linear solvers

is critical for the efficiency of optimizers, there is a possibility to improve PDL-GN’s

efficiency if the truncated conjugate gradient method is used.

The performance of CPL-SLAM, SE-Sync and PDL-GN is also evaluated if they are

not well initialized. When the odometric initialization is used, it can be seen from Fig. 3.2

that CPL-SLAM and SE-Sync converge to the global optima in spite of the poor initial

guess, whereas PDL-GN gets stuck at the local optima and has much greater objective

values.

As mentioned before, the convergence of CPL-SLAM and SE-Sync to global optima

does not rely on initial guess since CPL-SLAM and SE-Sync essentially solve the semidef-

inite relaxation of graph-based SLAM and are guaranteed to attain the globally optimal

solution as long as the magnitude of measurement noise is below a certain threshold. As a

comparison, PDL-GN is a local search method whose performance is closely related with

quality of initial guess, and thus the global optimum convergence of PDL-GN is usually

not guaranteed even with low measurement noise.

3.8.2. City Datasets

In this subsection, we evaluate the tightness of CPL-SLAM on a series of simulated

City datasets that are similar to city10000 (Fig. 3.6b) but with high measurement noise.

124

(a) (b)

(c) (d)

(e) (f)

Figure 3.2. The objective of CPL-SLAM, SE-Sync and PDL-GN on the Tree
datasets using the odometric initialization. In the experiments, we vary each
parameter separately while the other parameters are set to be the default
values. The results of each varying parameter are the number of poses n
in (a), the number of trees n′ in (b), the probability of observing trees pL
in (c), translational RMSEs of σt in (d), angular RMSEs of σR in (e) and
positional RMSEs of σl in (f). The default values are n = 5000, n′ = 250,
pL = 0.2, σt = 0.05 m, σR = 0.015π rad and σl = 0.05 m. For all the
Tree datasets tested, CPL-SLAM and SE-Sync converge to global optima
despite poor initialization, whereas PDL-GN gets stuck at local optima.

125

As a basis for comparison, we also evaluate the tightness of SE-Sync using the matrix

representation [7]. In general, CPL-SLAM and SE-Sync are said to be tight if the globally

optimal solution is exactly recovered from the semidefinite relaxation, or equivalently,

there is no suboptimality gap between the rounded solution and the relaxed solution.

In our experiments, a City dataset consists of 25 × 25 square grids in which each

grid has side length of 1 m, a robot trajectory of n = 3000 poses along the rectilinear

path of the grid, odometric measurements that are available between sequential poses

along the robot trajectory, and loop-closure measurements that are available at random

between non-sequential poses with a probability pC = 0.1. The odometric and loop-

closure measurements are generated from noise models of Eqs. (3.10a) and (3.10b), and

the default translational weight factor is τij = 88.89 that corresponds to an expected

translational RMSE of σt = 0.15 m and the default rotational weight factor is κij = 40.53

that corresponds to an expected angular RMSE of σR = 0.05π rad. For the datasets, we

vary translational and rotational measurement weight factors τij and κij individually that

correspond to translational and angular RMSEs of σt = 0.1 ∼ 0.3 m and σR = 0.03π ∼

0.15π rad, respectively, while keeping the other weight factor as the default value.

The results of CPL-SLAM and SE-Sync on the simulated City datasets with high

translational and rotational measurement noise are in Figs. 3.3 and 3.4, respectively. For

each translational and angular RMSE, we calculate the successful rates of exact recovery

from the semidefinite relaxation (Fig. 3.3a and Fig. 3.4a), the relative suboptimality

bounds between rounded and relaxed solutions (Fig. 3.3b and Fig. 3.4b), and the objective

values of rounded and relaxed solutions (Fig. 3.3c and Fig. 3.4c) statistically from 50

randomly generated City datasets, in which we assume the globally optimal solution is

126

(a) (b)

(c)

Figure 3.3. The comparisons of CPL-SLAM and SE-Sync on the City
datasets with high translational measurement noise with n = 3000, pC =
0.1, κij = 40.53 corresponding to angular RSME of σR = 0.05π rad and
varying τij corresponding to different translational RSMEs of σt = 0.1 ∼ 0.3
m. The results are (a) successful rates of exact recovery from the semi-
definite relaxation, (b) relative suboptimality bounds between rounded and
relaxed solutions, and (c) objective values of rounded and relaxed solutions.
For all the datasets with different σt, CPL-SLAM has a tighter semidefinite
relaxation and is more robust to translational measurement noise.

exactly recovered if the relative suboptimality bound is less than 1× 10−6. From Fig. 3.3,

it can be seen that CPL-SLAM holds the tightness on all the datasets with translational

RMSEs of σt = 0.1 ∼ 0.3 m, whereas SE-Sync fails on some of the datasets. From Fig. 3.4,

it can be seen that when the angular RMSE is small, i.e., approximately less than 0.15

127

(a) (b)

(c)

Figure 3.4. The comparisons of CPL-SLAM and SE-Sync on the City
datasets with high rotational measurement noise with n = 3000, pC = 0.1,
τij = 88.89 corresponding to translational RSME of σt = 0.15 m and vary-
ing κij corresponding to different angular RSMEs of σR = 0.03π ∼ 0.15π
rad. The results are (a) successful rates of exact recovery from the semi-
definite relaxation, (b) relative suboptimality bounds between rounded and
relaxed solutions, and (c) objective values of rounded and relaxed solutions.
For all the datasets with different σR, CPL-SLAM has a tighter semidefinite
relaxation and is more robust to rotational measurement noise.

rad, both CPL-SLAM and SE-Sync exactly recover the globally optimal solution from

the semidefinite relaxation, and as angular RMSE increases and is greater than 0.15 rad,

CPL-SLAM and SE-Sync begin to fail. In spite of this, we find that CPL-SLAM has a

much higher successful rate of exact recovery from the semidefinite relaxation (Fig. 3.3a

128

and Fig. 3.4a) and orders of magnitude smaller relative suboptimality bounds (Fig. 3.3b

and Fig. 3.4b). Furthermore, for the objective value, CPL-SLAM has greater lower bound

from the relaxed solution but lower upper bound from the rounded solution in scenarios of

high measurement noise (Fig. 3.3c and Fig. 3.4c). All of these results indicate that CPL-

SLAM has a tighter semidefinite relaxation using the complex number representation than

SE-Sync using the matrix representation, and thus, is more robust to translational and

rotational measurement noise.

In Fig. 3.3, it is interesting to see that SE-Sync fails on datasets with small trans-

lational measurement noise but works on datasets with large translational measurement

noise. Even though there is lack of formal analysis, we guess this is because the tightness

of the semidefinite relaxation in SE-Sync, in addition to the magnitude of measurement

noise, is also related with the ratio τij/κij of translational weight factors τij and rotational

weight factors κij, i.e., when τij/κij increases, the semidefinite relaxation in SE-Sync tends

to be relatively more sensitive to measurement nose.

It is obvious that the improved tightness and robustness of CPL-SLAM over SE-Sync in

planar graph-based is associated with the more concise representation of complex numbers

over matrices in the semidefinite relaxation, for which a theoretically complete analysis

similar to [101] is left as future work. In spite of this, we present one possible reason

that might help explain the improved tightness of CPL-SLAM. The semidefinite matrix

resulting from the solution to planar graph-based SLAM using the matrix representation

should take the form XR =

[
XRij

]
∈ R2n×2n in which each (i, j)-th block XRij has the

algebraic structureXRij =

a −b
b a

∈R2×2, and SE-Sync drops such an algebraic structure

129

in the semidefinite relaxation. Even though it is possible for SE-Sync to keep this algebraic

structure by either reformulating the associated data matrix or adding numbers of extra

linear constraints, substantial computational efforts are required for both options. In

comparison, CPL-SLAM preserves the algebraic structure of XRij as complex numbers in

the semidefinite relaxation without having to reformulate the data matrix or introduce

any extra constraints. As said before, the explanations given above are still hypotheses

and need to be proved. However, we can still conclude from the Figs. 3.3 and 3.4 that

the semidefinite relaxation in CPL-SLAM using the complex number representation is

tighter than that in SE-Sync using the matrix representation, which further suggests that

CPL-SLAM is more robust to measurement noise than SE-Sync.

3.8.3. SLAM Benchmark Datasets

In this subsection, we implement CPL-SLAM, SE-Sync and PDL-GN on a variety of

2D SLAM benchmark datasets with and without landmarks. In these datasets, city10000,

M3500, M3500-a, M3500-b, M3500-c and tree10000 are simulated benchmark datasets

while the others, i.e., ais2klinik, CSAIL, intel, FR-079, MIT and victoria-park, are real-world

datasets. In addition, tree10000 and victoria-park have positions of observed landmarks

involved. The chordal initialization [8] is used for all the benchmark datasets tested.

For all the 2D SLAM benchmark datasets, CPL-SLAM, SE-Sync and PDL-GN con-

verge to the globally optimal solution. The results are shown in Table 3.1, in which n is

the number of unknown poses and n′ is the number of observed landmarks, m is the num-

ber of pose-pose measurements and m′ is the number of pose-landmark measurements,

f ∗ is the globally optimal objective value, and the total time accounts for all the time

130

(a) (b)

Figure 3.5. The speed-up of CPL-SLAM over SE-Sync on 2D SLAM bench-
mark datasets. The results are (a) the speed-up of RTR time of CPL-SLAM
over SE-Sync and (b) the speed-up of total time of CPL-SLAM over SE-
Sync. CPL-SLAM is on average 2.87 and 2.51 times faster than SE-Sync
for RTR time and total time, respectively.

taken to solve graph-based SLAM and the RTR time only accounts for the time taken

by the RTR method to solve Riemannian staircase optimization. A specific comparison

of SE-Sync and CPL-SLAM is further shown in Fig. 3.5. From Table 3.1 and Fig. 3.5, it

can be seen that CLP-Sync is significantly faster than both SE-Sync and PDL-GN on all

the SLAM benchmark datasets, in which CPL-SLAM outperforms PDL-GN by a factor

of 5.53 on average for the overall computation, and outperforms SE-Sync by a factor of

2.87 and 2.51 on average for the computation of the RTR method and the overall compu-

tation, respectively. In particular, CPL-SLAM obtains a further improved performance

of the RTR method over SE-Sync on the datasets with landmarks, and we think it is due

to the conciseness of the complex number representation whose resulting preconditioner

accelerates the truncated conjugate gradient method that is used in the RTR method to

evaluate the descent direction.

131

Ta
bl
e
3.
1.

R
es
ul
ts

of
th
e
2D

SL
A
M

B
en
ch
m
ar
k
D
at
as
et
s

D
at
as
et

n
+
n
′

m
+
m
′

f
∗

P
D
L-
G
N

[6
3]

SE
-S
yn

c
[7
]

C
P
L-
SL

A
M

[o
ur
s]

T
ot
al

ti
m
e
(s
)

R
T
R

ti
m
e
(s
)

T
ot
al

ti
m
e
(s
)

R
T
R

ti
m
e
(s
)

T
ot
al

ti
m
e
(s
)

ai
s2

kl
in

ik
15

11
5

16
72

7
1
.8

85
×

10
2

3
.2
×

10
0

2.
6
×

10
0

2.
7
×

10
0

1
.0
×

10
0

1
.2
×

1
00

ci
ty

10
00

0
10

00
0

20
68

7
6
.3

86
×

10
2

1
.8
×

10
0

8.
6
×

10
−

1
1.

2
×

10
0

5
.2
×

10
−

1
5
.4
×

1
0−

1

C
SA

IL
10

45
11

72
3
.1

70
×

10
1

2
.6
×

10
−

2
5.

0
×

10
−

3
1.

4
×

10
−

2
1
.0
×

10
−

3
5.

0
×

1
0−

3

in
te

l
17

28
25

12
5
.2

36
×

10
1

1
.3
×

10
−

1
3.

8
×

10
−

2
6.

1
×

10
−

2
1
.7
×

10
−

2
2.

6
×

1
0−

2

M
35

00
35

00
54

53
1
.9

39
×

10
2

3
.3
×

10
−

1
1.

5
×

10
−

1
2.

2
×

10
−

1
7
.4
×

10
−

2
9.

8
×

1
0−

2

M
35

00
-a

35
00

54
53

1
.5

98
×

10
3

4
.1
×

10
−

1
1.

6
×

10
−

1
2.

3
×

10
−

1
8
.0
×

10
−

2
1.

0
×

1
0−

1

M
35

00
-b

35
00

54
53

3
.6

76
×

10
3

1
.6
×

10
0

5.
3
×

10
−

1
5.

9
×

10
−

1
2
.6
×

10
−

1
2.

8
×

1
0−

1

M
35

00
-c

35
00

54
53

4
.5

74
×

10
3

2
.4
×

10
0

7.
5
×

10
−

1
8.

2
×

10
−

1
3
.7
×

10
−

1
4.

0
×

1
0−

1

FR
-0

79
98

9
12

17
2
.8

59
×

10
1

3
.9
×

10
−

2
5.

9
×

10
−

3
1.

8
×

10
−

2
1
.7
×

10
−

3
5.

5
×

1
0−

3

M
IT

80
8

82
7

6
.1

15
×

10
1

7
.4
×

10
−

2
1.

4
×

10
−

2
2.

1
×

10
−

2
4
.7
×

10
−

3
7.

1
×

1
0−

3

tr
ee

10
00

0
10

10
0

14
44

2
6
.0

35
×

10
2

6
.9
×

10
−

1
5.

4
×

10
−

1
5.

9
×

10
−

1
1
.3
×

10
−

1
2.

3
×

1
0−

1

vi
ct

or
ia

-p
ar

k
71

20
10

60
8

4
.6

60
×

10
2

2
.1
×

10
0

5.
9
×

10
−

1
6.

2
×

10
−

1
1
.4
×

10
−

1
2.

0
×

1
0−

1

132

The globally optimal results of CPL-SLAM on these 2D SLAM benchmark datasets are

as shown in Fig. 3.6. It should be noted that M3500-a, M3500-b and M3500-c in Fig. 3.6f-

Fig. 3.6h respectively have extra Gaussian noise with standard deviation 0.1 rad, 0.2

rad and 0.3 rad added to the rotational measurements of M3500 [72] in Fig. 3.6e, which

indicates that CPL-SLAM can tolerate noisy measurements that are orders of magnitude

greater than real-world SLAM applications. For tree10000 in Fig. 3.6k and victoria-park in

Fig. 3.6l with landmarks, we denote the positions of landmarks with red “+”.

3.9. Conclusion

In this chapter, we have presented CPL-SLAM that is a certifiably correct algorithm

for planar graph-based SLAM using the complex number representation. By leveraging

the complex semidefinite programming and Riemannian staircase optimization on com-

plex oblique manifolds, CPL-SLAM is applicable to planar graph-based SLAM with and

without landmarks. In addition, even though CPL-SLAM essentially solves the complex

semidefinite relaxation, we prove that CPL-SLAM exactly retrieves the globally optimal

solution to planar graph-based SLAM as long as the noise magnitude is below a certain

threshold.

CPL-SLAM is compared with the state-of-the-art methods SE-Sync [7] and Powell’s

Dog-Leg [63,89] on the simulated Tree datasets, the simulated City datasets and numerous

large 2D simulated and real-world SLAM benchmark datasets in terms of scalability and

robustness. The results of the data experiments indicate that CPL-SLAM is capable of

solving planar graph-based SLAM certifiably, and more importantly, is more efficient in

133

(a) ais2klinik (b) city10000 (c) CSAIL

(d) intel (e) M3500 (f) M3500-a

(g) M3500-b (h) M3500-c (i) FR-079

(j) MIT (k) tree10000 (l) victoria-park

Figure 3.6. The globally optimal results of CPL-SLAM on 2D SLAM bench-
mark datasets. Note that CPL-SLAM still obtains global optima on M3500-
a, M3500-b and M3500-c in (f)-(g), which respectively has large extra noise
with standard deviations of 0.1 rad, 0.2 rad and 0.3 rad added to the rota-
tional measurements of M3500 in (e). For tree10000 in (k) and victoria-park
in (l) with landmarks, we denote the positions of landmarks with red “+”.

134

numerical computation and more robust to measurement noise. Thus, we expect that

CPL-SLAM outperforms existing state-of-the-art methods to planar graph-based SLAM.

There is still great potential for improvements of CPL-SLAM in several aspects. A fully

distributed extension of CPL-SLAM is definitely beneficial to multi-robot simultaneous

localization and mapping. In spite of being able to tolerate large measurement noise,

CPL-SLAM still needs to enhance its robustness to measurement outliers. At last, it is

currently assumed that the positions of landmarks are fully known in CPL-SLAM, and we

hope that in the future CPL-SLAM can handle range-only and bearing-only measurements

of landmarks, which is another important extension.

3.10. Proofs

In this section, we present proofs of the lemmas and propositions in Section 3.6. These

proofs draw heavily on [90] and follows a similar procedure to that of [7, Appendix C]

and [79, Section 4.3].

3.10.1. Proof of Lemma 3.1

It is known that the unconstrained Euclidean gradient of F (z) , zHMz is ∇F (z) =

2Mz, and thus, if we let S(z) ,M −<{ddiag(MzzH)}, the Riemannian gradient is

(3.32)

gradF (z) = projx(∇F (z))

= 2(M −<{ddiag(MzzH)})z

= 2S(z)z,

135

in which the linear projection operator projz : Cn → TzCn
1 is defined to be

projzu = u−<{ddiag(uzH)}z.

In addition, it should be noted that we have assumed that Cn
1 is a Riemannian submanifold

of Euclidean space, then the Riemannian Hessian is

(3.33) HessF (z)[ż] = projzD gradF (z)[ż] = projz2S(z)ż,

in which D gradF (z)[ż] is the direction derivative of gradF (z) along direction ż. From

Eq. (3.33), we obtain 〈
HessF (z)[ż], ż

〉
= 2
〈
S(z)ż, ż

〉
.

Moreover, according to [90, Chapter 5], if expz : TzCn
1 → Cn

1 is the exponential map at

z ∈ Cn
1 , we obtain

d
dt
F ◦ expz(tż)

∣∣∣∣
t=0

=
〈
gradF (z), ż

〉
and

d2

dt2
F ◦ expz(tż)

∣∣∣∣
t=0

=
〈
HessF (z)[ż], ż

〉
.

Therefore, if ẑ ∈ Cn
1 is a local optimum for Eq. (QP) and Ŝ = S(ẑ), it is required that

Ŝẑ = 0 and
〈
ż, Ŝż

〉
≥ 0 for all ż ∈ TxCn

1 , which completes the proof.

3.10.2. Proof of Lemma 3.2

It should be noted that (1) to (5) in Lemma 3.2 are KKT conditions of (SDP), which

proves the necessity. Since the identity matrix I ∈ Cn×n is strictly feasible to Lemma 3.2,

the Slater’s condition is satisfied, which proves the sufficiency. In addition, it should be

136

noted that the Slater’s condition also holds for the dual of (SDP). If rank(Ŝ) = n − 1,

according to [102, Theorem 6], Ŝ is dual nondegenerate. Moreover, by complementary

slackness, Ŝ is also optimal for the dual of (SDP), which, as a result of [102, Theorem

10], implies that X̂ is unique. If rank(Ŝ) = n − 1, it can be concluded that X̂ has rank

one from ŜX̂ = 0.

3.10.3. Proof of Lemma 3.3

Since ẑ ∈ Cn
1 is a first-order critical point and Ŝ � 0, we conclude that ẑ is a second-

order critical point from Lemma 3.1. Also it can be checked that X̂ = ẑH ẑ ∈ Hn satisfies

(1) to (5) in Lemma 3.2, thus, ẑ solves (QP), and X̂ solves (SDP) and is the unique global

optimum for (SDP) if rank(Ŝ) = n− 1.

3.10.4. Proof of Proposition 3.6.1

In order to prove Proposition 3.6.1, we need Propositions 3.10.1 and 3.10.2 as follows.

Proposition 3.10.1. If M ∈ Hn is data matrix of the form Eq. (3.18) that is con-

structed with the true (latent) relative measurements, and z ∈ Cn
1 is the true (latent)

value of rotational states z, then M z = 0 and λ2(M) > 0.

Proof. For consistency, we assume that (P) and (QP) are formulated with the true

(latent) relative measurements. Let s ∈ Cn′ and c ∈ Cn be the true (latent) value of

landmark positions and translational states c, respectively, then ξ =

[
s> c> z>

]>
∈

Cn′×Cn×Cn
1 solves (P), and the optimal objective value is 0. Since (QP) is equivalent to

(P), it can be concluded that z ∈ Cn
1 solves (QP), and the optimal objective value of (QP)

137

is 0 as well. Furthermore, since M � 0, we obtain M z = 0. Let Ξ , diag{z1, · · · , zn} ∈

Cn×n and L(W z) ∈ Rn×n be the Laplacian such that

[L(W z)]ij ,

∑
(i,k)∈E

κik, i = j,

−κij, (i, j) ∈ E ,

0 otherwise,

we obtain L(Gz) = ΞL(W z)ΞH . It should be noted that G is assumed to be connected,

and as a result, λ2(L(Gz)) > 0 and L(Gz)z = 0. Furthermore, it is by the definition of

M or M in Eq. (3.14) that

(3.34) M = L(Gz) +Mσ,

in which Mσ = Σz − ΘHΛ†Θ. From Eqs. (3.21a) to (3.21c) and (3.22), we obtain that

Mσ is the Schur complement ofBH
1 B1 BH

1 B2

BH
2 B1 BH

2 B2

 =

BH
1

BH
2

[B1 B2

]
� 0,

which suggests that Mσ � 0 and λ1(Mσ) ≥ 0. As a result of Eq. (3.34), λ2(L(Gz)) > 0

and λ1(Mσ) ≥ 0, we obtain

λ2(M) ≥ λ2(L(Gz)) + λ1(Mσ) > 0,

which completes the proof. �

138

Proposition 3.10.2. If z ∈ Cn
1 is the true (latent) value of z ∈ Cn

1 , and ẑ solves

(QP), and d(z, ẑ) , min
θ∈R
‖ẑ − eiθz‖, then we obtain

(3.35) d(z, ẑ) ≤ 2

√
n‖M −M‖2

λ2(M)

Proof. If we define ∆M ,M −M ∈ Hn to be the perturbation matrix, then

(3.36) zHMz = zHM z + zH∆Mz = zH∆Mz ≤ n‖∆M‖2,

in which, according to Proposition 3.10.1, zHM z = 0. In addition, it should be noted

that

(3.37) zHMz ≥ ẑHMẑ

and

(3.38) ẑHMẑ = ẑHMẑ + ẑH∆Mẑ ≥ ẑHMẑ − n‖∆M‖2.

From Eqs. (3.36) to (3.38), we obtain

(3.39) 2n‖∆M‖2 ≥ ẑHMẑ

From Proposition 3.10.1, we obtain

(3.40)
ẑHMẑ = (ẑ − 1

n
zH ẑz)HM(ẑ − 1

n
zH ẑz)

≥ λ2(M)‖ẑ − 1

n
zH ẑz‖2,

139

in which the equality “=” uses M z = 0 and the inequality “≥” uses λ2(M) > λ1(M) = 0

and zH(ẑ − 1
n
zH ẑz) = 0. Furthermore, an algebraic manipulation indicates that

(3.41) ‖ẑ − 1

n
zH ẑz‖2 = n− 1

n
|zH ẑ|2.

From Eqs. (3.40) and (3.41), we obtain

(3.42)

ẑHMẑ ≥ λ2(M)‖ẑ − 1

n
zH ẑz‖2

=
1

n
λ2(M)(n2 − |zH ẑ|2)

≥ λ2(M)(n− |zH ẑ|),

in which the last inequality “≥” uses the Cauchy-Schwarz inequality

|zH ẑ| ≤ ||z|| · ‖ẑ‖ = n.

Substituting Eq. (3.42) into Eq. (3.39) and simplifying the resulting equation, we obtain

(3.43) n− |zH ẑ| ≤ 2n‖∆M‖2

λ2(M)
.

In addition, from [79, Eq. (4.1)], it is known that d(z, ẑ) =
√

2n− 2|zH ẑ|, and then from

Eq. (3.43), we further obtain Eq. (3.35), which completes the proof. �

140

To prove Proposition 3.6.1, we first decompose Ŝ = M −<(ddiag(MẑH ẑ)) as follows:

Ŝ =M −<(ddiag(MẑH ẑ))

=M + ∆M−

<
{

ddiag
(
(M + ∆M)(z + ∆z)(z + ∆z)H

)}
=M + ∆M −<

{
ddiag(M∆zzH +M∆z∆zH+

∆M(z + ∆z)(z + ∆z)H)
}︸ ︷︷ ︸

∆S

,

in which z ∈ Cn
1 is the true (latent) value of z ∈ Cn

1 such thatM z = 0, and ẑ solves (QP),

and ∆z , ẑ− z. In addition, we assume ‖ẑ− z‖ = d(ẑ, z) , min
θ∈R
‖ẑ− eiθz‖. It is obvious

that ‖∆S‖2 → 0 as long as ‖∆M‖2 → 0 and ‖∆z‖ → 0, and by Proposition 3.10.2, we

obtain ‖∆z‖ → 0 as long as ‖∆M‖2 → 0. As a result, from continuity, there exists some

γ > 0 such that ‖∆S‖2 < λ2(M) as long as ‖∆M‖2 < γ. Then we obtain

λi(Ŝ) ≥ λi(M)− ‖∆S‖2 > λi(M)− λ2(M) ≥ 0

for all i ≥ 2, which implies that Ŝ at least has n − 1 positive eigenvalues. In addition,

by Lemma 3.1, we obtain Ŝẑ = 0, from which it can be concluded that Ŝ � 0 and

rank(Ŝ) = n− 1. Furthermore, Lemma 3.3 guarantees that X̂ = ẑẑH ∈ Hn is the unique

optimum of (SDP) if Ŝ � 0 and rank(Ŝ) = n− 1.

141

CHAPTER 4

Majorization Minimization Methods for Distributed Pose Graph

Optimization

This chapter considers the problem of distributed pose graph optimization (PGO)

that has important applications in multi-robot simultaneous localization and mapping

(SLAM). We propose the majorization minimization (MM) method for distributed PGO

(MM−PGO) that applies to a broad class of robust loss kernels. The MM−PGO method

is guaranteed to converge to first-order critical points under mild conditions. Further-

more, noting that the MM−PGO method is reminiscent of proximal methods, we leverage

Nesterov’s method and adopt adaptive restarts to accelerate convergence. The resulting

accelerated MM methods for distributed PGO—both with a master node in the net-

work (AMM−PGO∗) and without (AMM−PGO#)—have faster convergence in contrast

to the MM−PGO method without sacrificing theoretical guarantees. In particular, the

AMM−PGO# method, which needs no master node and is fully decentralized, features

a novel adaptive restart scheme and has a rate of convergence comparable to that of

the AMM−PGO∗ method using a master node to aggregate information from all the

nodes. The efficacy of this work is validated through extensive applications to 2D and

3D SLAM benchmark datasets and comprehensive comparisons against existing state-of-

the-art methods, indicating that our MM methods converge faster and result in better

solutions to distributed PGO.

142

4.1. Introduction

Pose graph optimization (PGO) is a nonlinear and nonconvex optimization prob-

lem estimating unknown poses from noisy relative pose measurements. PGO associates

each pose with a vertex and each relative pose measurement with an edge, from which

the optimization problem is well represented through a graph. PGO has important ap-

plications in a number of areas, including but not limited to robotics [16, 18, 45], au-

tonomous driving [47], and computational biology [77,78]. Recent advances [7,63,72,

73,75,87–89,103,104] suggest that PGO can be well solved using iterative optimiza-

tion. However, the aforementioned techniques [7,63,72,73,75,87–89,103,104] rely on

a centralized optimizer to solve PGO and are difficult to distribute across a network.

Due to communication and computational limitations, most, if not all, of these tech-

niques [7,63,72,73,75,87–89,103,104] are only applicable to small- and medium-sized

problems. Moreover, their centralized pipelines are equivalent to using a master node to

aggregate information from the entire network, making it impossible to meet potential

privacy requirements1 one may wish to impose [105,106].

In multi-robot simultaneous localization and mapping (SLAM) [107–116], each robot

estimates not only its own poses but those of the others as well to build an environment

map. Even though such a problem can be solved by PGO, communication between robots

is restricted and multi-robot SLAM has more unknown poses than single-robot SLAM.

Thus, instead of using centralized PGO [7, 63, 72, 73, 75, 87–89, 103, 104], it is more

reasonable to formulate this large-sized estimation problem involving multiple robots as

distributed PGO—each robot in multi-robot SLAM is represented as a node and two nodes
1In terms of “privacy”, we mean that only peer-to-peer communication between neighboring nodes is
required.

143

(robots) are said to be neighbors if there exists a noisy relative pose measurement between

them (a more detailed description of distributed PGO can be found in Section 4.4). In

most cases, it is assumed that inter-node communication only occurs between neighboring

nodes and most of these iterative optimization methods [7,63,72,73,75,87–89,103,104]

are infeasible, which renders distributed PGO more challenging than centralized PGO.

In this chapter, we propose majorization minimization (MM) methods [117,118] for

distributed PGO. As the name would suggest, MM methods have two steps. First, in the

majorization step, we construct a surrogate function that majorizes the objective function,

i.e., the surrogate function is an upper bound of the objective function except for the

current iterate at which both functions attain the same value. Then, in the minimization

step, we minimize the surrogate function instead of the original objective function to

improve the current iterate. Even though the procedure is straightforward, MM methods

remain difficult for practical use—a suitable surrogate function, whose construction and

minimization can not be more difficult than solving the optimization problem itself, is

not generally evident, and MM methods might converge to noncritical stationary points

for nonconvex optimization problems and suffer from slow convergence around stationary

points. The implementation of MM methods on large-scale, complicated and nonconvex

optimization problems like distributed PGO is nontrivial, and inter-node communication

requirements impose extra restrictions making it more so. All of these issues are addressed

in our MM methods for distributed PGO both theoretically and empirically.

The preliminary results of this chapter have been presented in [1, 59, 119]. In par-

ticular, we introduced and elaborated on the use of Nesterov’s method [120, 121] and

adaptive restart [122] for the first time to accelerate the convergence of PGO without

144

sacrificing the theoretical guarantees. Our MM methods in this chapter are also capable

of handling a broad class of robust loss kernels, no longer require each iteration to attain a

local optimal solution to the surrogate function for the convergence guarantees, and adopt

a novel adaptive restart scheme for distributed PGO without a master node to make full

use of Nesterov’s acceleration.

In summary, the contributions of this chapter are the following:

(1) We derive a class of surrogate functions that suit well with MM methods for

distributed PGO. These surrogate functions apply to a broad class of robust loss

kernels in robotics and computer vision.

(2) We develop MM methods for distributed PGO that are guaranteed to converge to

first-order critical points under mild conditions. Our MMmethods for distributed

PGO implement a novel update rule such that each iteration does not have to

minimize the surrogate function to a local optimal solution.

(3) We leverage Nesterov’s methods and adaptive restart to accelerate MM methods

for distributed PGO and achieve significant improvement in convergence without

any compromise of theoretical guarantees.

(4) We present a decentralized adaptive restart scheme to make full use of Nesterov’s

acceleration such that accelerated MM methods for distributed PGO without a

master node are almost as fast as those requiring a master node.

The rest of this chapter is organized as follows. Section 4.2 reviews the state-of-the-art

methods for distributed PGO. Section 4.3 introduces mathematical notation and prelim-

inaries that are used in this chapter. Section 4.4 formulates the problem of distributed

PGO. Sections 4.5 and 4.6 present surrogate functions for individual loss terms and the

145

overall distributed PGO, respectively, which are fundamental to our MM methods. Sec-

tions 4.7 to 4.9 present unaccelerated and accelerated MM methods for distributed PGO

that are guaranteed to converge to first-order critical points, which are the major contri-

butions of this chapter. Section 4.10 implements our MM methods for distributed PGO

on a number of simulated and real-world SLAM datasets and make extensive comparisons

against existing state-of-the-art methods [5,6]. Section 4.11 concludes this chapter and

discusses future work. Section 4.12 completes the proofs of the propositions presented in

this chapter.

4.2. Related Work

In the last decade, multi-robot SLAM has been becoming increasingly popular, which

promotes the research of distributed PGO [5,6,123,124].

Choudhary et al. [5] present a two-stage algorithm that implements either Jacobi Over-

Relaxation or Successive Over-Relaxation as distributed linear system solvers. Similar to

centralized methods, [5] first evaluates the chordal initialization [8] and then improves

the initial guess with a single Gauss-Newton step. However, one step of Gauss-Newton

method in most cases can not lead to sufficient convergence for distributed PGO. In

addition, no line search is performed in [5] due to the communication limitation, and

thus, the behaviors of the single Gauss-Newton step is totally unpredictable and might

result in bad solutions.

Tian et al. [6] present the distributed certifiably correct PGO using Riemannian block

coordinate descent method, which is later generalized to asynchronous and parallel dis-

tributed PGO [125]. Specially, their method makes use of Riemannian staircase opti-

mization to solve the semidefinite relaxation of distributed PGO and is guaranteed to

146

converge to global optimal solutions under moderate measurement noise. Following our

previous works [1,59], they implement Nesterov’s method for acceleration as well. Con-

trary to our MM methods, a major drawback of [6] is that their method has to precompute

red-black coloring assignment for block aggregation and keep part of the blocks in idle

for estimate updates. In addition, although several strategies for block selection (e.g.,

greedy/importance sampling) and Nesterov’s acceleration (e.g., adaptive/fixed restarts)

are adopted in [6] to improve the convergence, most of them are either inapplicable

without a master node or at the sacrifice of computational efficiency and theoretical guar-

antees. In contrast, our MM methods are much faster (see Section 4.10) but have no such

restrictions for acceleration. More recently, Tian et al. further apply Riemannian block

coordinate descent method to distributed PGO with robust loss kernels [116]. However,

they solve robust distributed PGO by trivially updating the weights using graduated non-

convexity [126] and no formal proofs of convergence are provided. Again, this is contrast

to the work presented here that has provable convergence to first-order critical points for

a broad class of robust loss kernels.

Tron and Vidal [123] present a consensus-based method for distributed PGO using

Riemannian gradient. The authors derive a condition for convergence guarantees related

with the stepsize of the method and the degree of the pose graph. Nonetheless, their

method estimates rotation and translation separately, fails to handle robust loss kernels,

and needs extra computation to find the convergence-guaranteed stepsize.

Cristofalo et al. [124] present a novel distributed PGO method using Lyapunov theory

and multi-agent consensus. Their method is guaranteed to converge if the pose graph has

certain topological structures. However, [124] updates rotations without exploiting the

147

translational measurements and only applies to pairwise consistent PGO with nonrobust

loss kernels.

In comparison to these aforementioned techniques, our MM methods have the mildest

conditions (not requiring any specific pose graph structures, any extra computation for

preprocessing, any master nodes for information aggregation, etc.) to converge to first-

order critical points, apply to a broad class of robust loss kernels in robotics and computer

vision, and manage to implement decentralized acceleration with convergence guarantees.

Most importantly, as is shown in Section 4.10, our MMmethods outperform existing state-

of-the-art methods in terms of both efficiency and accuracy on a variety of simulated and

real-world SLAM benchmark datasets.

4.3. Notation

Miscellaneous Sets. R denotes the sets of real numbers; R+ denotes the sets of

nonnegative real numbers; Rm×n and Rn denote the sets of m × n matrices and n × 1

vectors, respectively. SO(d) denotes the set of special orthogonal groups and SE(d)

denotes the set of special Euclidean groups. The notation | · | denotes the cardinality of

a set.

Matrices. For a matrix X ∈ Rm×n, the notation [X]ij denotes the (i, j)-th entry or

(i, j)-th block of X, and the notation [X]i denotes the i-th entry or i-th block of X. For

symmetric matrices X, Y ∈ Rn×n, X � Y (or Y � X) and X � Y (or Y ≺ X) mean

that X − Y is positive (or negative) semidefinite and definite, respectively.

Inner Products. For a matrix M ∈ Rn×n,
〈
·, ·
〉
M

: Rm×n × Rm×n → R denotes the

function

148

〈
X, Y

〉
M
, trace(XMY >)

where X, Y ∈ Rm×n, and if M is the identity matrix,
〈
·, ·
〉
M

might also be denoted as〈
·, ·
〉

: Rm×n × Rm×n → R such that

〈
X, Y

〉
, trace(XY >).

Norms. The notation ‖ · ‖ denotes the Frobenius norm of matrices and vectors.

The notation ‖ · ‖2 denotes the induced 2-norms of matrices and linear operators. For a

positive semidefinite matrix M ∈ Rn×n, ‖ · ‖M : Rm×n → R+ denotes the function

‖X‖M ,
√

trace(XMX>)

where X ∈ Rm×n.

Riemannian Geometry. If F (·) : Rm×n → R is a function, M ⊂ Rm×n is a

Riemannian manifold and X ∈ M, the notation ∇F (X) and gradF (X) denote the

Euclidean and Riemannian gradients, respectively.

Graph Theory. Let
−→
G = (V ,

−→
E) be a directed graph whose vertices are ordered

pairs. For any vertices (α, i) and (β, j) ∈ V , the notation
−→
E αβ denotes the set

(4.1)
−→
E αβ , {(i, j)|((α, i), (β, j)) ∈

−→
E },

and the notation N α
− denotes the set

(4.2) N α
− , {β|

−→
E αβ 6= ∅ and α 6= β},

149

and the notation N α
+ denotes the set

(4.3) N α
+ , {β|

−→
E βα 6= ∅ and α 6= β},

and the notation N α denotes the set

(4.4) N α , N α
− ∪N α

+ .

Optimization. For optimization variables X, Xα, Rα, tα, etc., the notation X(k),

Xα(k), Rα(k), tα(k), etc. denotes the k-th iterate of corresponding optimization variables.

4.4. Problem Formulation

4.4.1. Distributed Pose Graph Optimization

In distributed PGO [1,5,6,123], we are given |A| nodes A , {1, 2, · · · , |A|} and each

node α ∈ A has nα poses gα1 , gα2 , · · · , gαnα ∈ SE(d). Let gα(·) , (tα(·), R
α
(·)) where tα(·) ∈ Rd

is the translation and Rα
(·) ∈ SO(d) the rotation. We consider the problem of estimating

unknown poses gα1 , gα2 , · · · , gαnα ∈ SE(d) for all the nodes α ∈ A given intra-node noisy

measurements g̃ααij , (t̃ααij , R̃
αα
ij) ∈ SE(d) of the relative pose

(4.5) gααij ,
(
gαi
)−1

gαj ∈ SE(d)

within a single node α, and inter-node noisy measurements g̃αβij , (t̃αβij , R̃
αβ
ij) ∈ SE(d) of

the relative pose

(4.6) gαβij ,
(
gαi
)−1

gβj ∈ SE(d)

150

between different nodes α 6= β. In Eqs. (4.5) and (4.6), note that t̃ααij and t̃αβij ∈ Rd are

translational measurements, and R̃αα
ij and R̃αβ

ij ∈ SO(d) are rotational measurements.

Following [7], we model distributed PGO as a directed graph
−→
G , (V ,

−→
E) whose

vertices are ordered pairs consisting of node index, e.g., α and β and pose index, e.g., i

and j. In the directed graph
−→
G , the vertex (α, i) ∈ V is in one-to-one correspondence with

the unknown pose gαi ∈ SE(d) and the directed edge ((α, i), (β, j)) ∈
−→
E is in one-to-one

correspondence with the noisy measurement g̃αβij ∈ SE(d). Note that
−→
E αβ, N α

− , N α
+ and

N α in Eqs. (4.1) to (4.4) are well defined for distributed PGO.

From the convention of distributed PGO, nodes α and β ∈ A are referred as neighbors

as long as either
−→
E αβ 6= ∅ or

−→
E βα 6= ∅. We remark that N α is the set of neighbors that

has a directed edge connected with node α, and N α
− and N α

+ are the sets of neighbors

that have a directed edge from and to node α, respectively.

In the rest of this paper, we make the following assumption that each node can com-

municate with its neighbors and the network topology is unchanged during optimization.

These assumptions are common in distributed PGO [5,6,123,124].

Assumption 4.1. Each node α can communicate with its neighbors β ∈ N α and the

network topology is unchanged.

4.4.2. Loss Kernels

In practice, it is inevitable that there exist inter-node measurements that are out-

liers resulting from false loop closures; these adversely affect the overall performance of

151

distributed PGO. To address this issue, it is popular to use non-trivial loss kernels—

e.g., Huber and Welsch losses—to enhance the robustness of distributed PGO against

outliers [127–129].

In this chapter, we make the following assumption that applies to a broad class of loss

kernels ρ(·) : R+ → R in robotics and computer vision.

Assumption 4.2. The loss kernel ρ(·) : R+ → R satisfies the following properties:

(a) ρ(s) ≥ 0 for any s ∈ R+ and the equality “=” holds if and only if s = 0;

(b) ρ(·) : R+ → R is continuously differentiable for any s ∈ R+;

(c) ρ(·) : R+ → R is a concave function;

(d) 0 ≤ ∇ρ(s) ≤ 1 for any s ∈ R+ and ∇ρ(0) = 1;

(e) ϕ(·) : Rm×n → R with ϕ(X) , ρ(‖X‖2) has Lipschitz continuous gradient,

i.e., there exists µ > 0 such that ‖∇ϕ(X) − ∇ϕ(X ′)‖ ≤ µ · ‖X − X ′‖ for any

X, X ′ ∈ Rm×n.

In the following, we present some examples of loss kernels (see Fig. 4.1) satisfying

Assumption 4.2.

Example 4.1 (Trivial Loss).

(4.7) ρ(s) = s.

Example 4.2 (Huber Loss).

(4.8) ρ(s) =

s, |s| ≤ a,

2
√
a|s| − a, |s| ≥ a

152

Figure 4.1. ρ(x2) for trivial, Huber, Welsch losses.

where a > 0.

Example 4.3 (Welsch Loss).

(4.9) ρ(s) = a− a exp
(
−s
a

)
where a > 0.

4.4.3. Objective Function

Recall that each node α ∈ A has nα unknown poses gα1 , gα2 , · · · , gαnα ∈ SE(d). For

notational simplicity, we define X α and X as

X α , Rd×nα × SO(d)nα

and

X , X 1 × · · · × X |A| ⊂ Rd×(d+1)n,

153

respectively, where n ,
∑

α∈A nα. Furthermore, we represent gαi ∈ SE(d), i.e., the i-th

pose of node α ∈ A, as a d× (d+ 1) matrix

Xα
i ,

[
tαi Rα

i

]
∈ SE(d) ⊂ Rd×(d+1),

represent (gα1 , gα2 , · · · , gαnα) ∈ SE(d)nα , i.e., all the poses of node α ∈ A, as an element of

X α as well as a d× (d+ 1)nα matrix

Xα ,

[
tα Rα

]
∈ X α ⊂ Rd×(d+1)nα ,

where

tα ,

[
tα1 · · · tαnα

]
∈ Rd×nα

and

Rα ,

[
Rα

1 · · · Rα
nα

]
∈ SO(d)nα ⊂ Rd×dnα ,

and represent {(gα1 , gα2 , · · · , gαnα)}α∈A ∈ SE(d)n, i.e., all the poses of distributed PGO, as

an element of X as well as a d× (d+ 1)n matrix

X ,

[
X1 · · · X |A|

]
∈ X ⊂ Rd×(d+1)n.

Remark 4.1. X α and X are by definition homeomorphic to SE(d)nα and SE(d)n,

respectively. Thus, Xα ∈ X α and X ∈ X are sufficient to represent elements of SE(d)nα

and SE(d)n.

Following [1,7,59], distributed PGO can be formulated as an optimization problem

on X =

[
X1 · · · X |A|

]
∈ X :

154

Problem 4.1 (Distributed Pose Graph Optimization).

(4.10) min
X∈X

F (X).

The objective function F (X) in Eq. (4.10) is defined as

(4.11) F (X) ,
∑
α∈A

∑
(i,j)∈

−→
E αα

1

2

[
κααij ‖Rα

i R̃
αα
ij −Rα

j ‖2 + τααij ‖Rα
i t̃
αα
ij + tαi − tαj ‖2

]
+

∑
α,β∈A,
α 6=β

∑
(i,j)∈

−→
E αβ

1

2

[
ρ
(
καβij ‖Rα

i R̃
αβ
ij −R

β
j ‖2 + ταβij ‖Rα

i t̃
αβ
ij + tαi − t

β
j ‖2
)]
,

where κααij , τααij , καβij , τ
αβ
ij are weight factors and ρ(·) : R+ → R is the loss kernel.

For notational simplicity, F (X) in Eq. (4.11) can be also rewritten as

(4.12) F (X) =
∑
α∈A

∑
(i,j)∈

−→
E αα

Fαα
ij (X) +

∑
α,β∈A,
α 6=β

∑
(i,j)∈

−→
E αβ

Fαβ
ij (X),

where

(4.13) Fαα
ij (X) ,

1

2
κααij ‖Rα

i R̃
αα
ij −Rα

j ‖2 +
1

2
τααij ‖Rα

i t̃
αα
ij + tαi − tαj ‖2,

and

(4.14) Fαβ
ij (X) ,

1

2
ρ
(
καβij ‖Rα

i R̃
αβ
ij −R

β
j ‖2 +

1

2
ταβij ‖Rα

i t̃
αβ
ij + tαi − t

β
j ‖2
)
,

Note that Fαα
ij (X) and Fαβ

ij corresponds to intra- and inter-node measurements, respec-

tively.

155

In the next sections, we will present MM methods for distributed PGO, which is the

major contribution of this chapter.

4.5. The Majorization of Loss Kernels

In this section, we will present surrogate functions majorizing the loss kernels ρ(·).

The resulting surrogate functions lead to an intermediate upper bound of distributed

PGO while attaining the same value as the original objective function at each iterate.

It is straightforward to show that there exists sparse and positive semidefinite matrices

Mαβ
ij ∈ R(d+1)n×(d+1)n for either α = β or α 6= β such that

(4.15)
1

2
‖X‖2

Mαβ
ij

=
1

2
καβij ‖Rα

i R̃
αβ
ij −R

β
j ‖2 +

1

2
ταβij ‖Rα

i t̃
αβ
ij + tαi − t

β
j ‖2.

Then, in terms of intra-node measurements with α = β and inter-node measurements

with α 6= β, Fαα
ij (X) and Fαβ

ij take the form of

(4.16) Fαα
ij (X) ,

1

2
‖X‖2

Mαα
ij

and

(4.17) Fαβ
ij (X) ,

1

2
ρ
(
‖X‖2

Mαβ
ij

)
,

respectively. From Eqs. (4.13) and (4.14), we obtain an upper bound of Fαα
ij (X) and

Fαβ
ij (X) as the following proposition states.

Proposition 4.5.1. Let X(k) =

[
X1(k) · · · X |A|(k)

]
∈ X with Xα(k) ∈ X α be an

iterate of Eq. (4.10). If ρ(·) : R+ → R is a loss kernel that satisfies Assumption 4.2, then

156

we obtain

(4.18)
1

2
ω
αβ(k)
ij ‖X −X(k)‖2

Mαβ
ij

+
〈
∇Fαβ

ij (X(k)), X −X(k)
〉

+ Fαβ
ij (X(k)) ≥ Fαβ

ij (X)

for any X and X(k) ∈ Rd×(d+1)n, where ωαβ(k)
ij ∈ R is defined as

(4.19) ω
αβ(k)
ij ,

1, α = β,

∇ρ
(
‖X(k)‖2

Mαβ
ij

)
, α 6= β.

In Eq. (4.18), the equality “=” holds as long as X = X(k).

Proof. See Section 4.12.1 �

Note that F (X), as is shown in Eq. (4.12), is equivalent to the sum of all Fαα
ij (X) and

Fαβ
ij (X). Then, an immediate upper bound of F (X) resulting from Proposition 4.5.1 is

(4.20)
1

2

∥∥X −X(k)
∥∥2

M(k) +
〈
∇F (X(k)), X −X(k)

〉
+ F (X(k)) ≥ F (X)

where M (k) ∈ R(d+1)n×(d+1)n is a positive semidefinite matrix that is defined as

(4.21) M (k) ,
∑
α∈A

∑
(i,j)∈

−→
E αα

Mαα
ij +

∑
α,β∈A,
α 6=β

∑
(i,j)∈

−→
E αβ

ω
αβ(k)
ij ·Mαβ

ij ∈ R(d+1)n×(d+1)n.

In addition, the equality “=” in Eq. (4.20) holds as long as X = X(k).

Remark 4.2. If the loss kernel ρ(·) is non-trivial, ωαβ(k)
ij is a function of X(k) as defined

in Eq. (4.19), and M (k) is a positive semidefinite matrix depending on X(k) as well.

157

It is obvious that Eq. (4.20) has Xα ∈ X α of different nodes coupled with each other,

and as a result, is difficult to be used for distributed PGO. In spite of that, as is shown

in the next sections, Eq. (4.20) is still useful for the development and analysis of our MM

methods for distributed PGO.

4.6. The Majorization of Distributed Pose Graph Optimization

In this section, following a similar procedure to our previous works [1, 59], we will

present surrogate functions G(X|X(k)) and H(X|X(k)) that majorize the objective func-

tion F (X). The surrogate functions G(X|X(k)) and H(X|X(k)) decouple unknown poses

of different nodes, and thus, are critical to our MM methods for distributed PGO.

4.6.1. The Majorization of Fαβ
ij (X)

For any matrices B, C and P ∈ Rm×n, it can be shown that

(4.22)
1

2
‖B − C‖2

Mαβ
ij

≤ ‖B − P‖2

Mαβ
ij

+ ‖C − P‖2

Mαβ
ij

as long as Mαβ
ij ∈ Rn×n is positive semidefinite, where “=” holds if

P =
1

2
B +

1

2
C.

If we let P = 0, Eq. (4.22) becomes

(4.23)
1

2
‖B − C‖2

Mαβ
ij

≤ ‖B‖2

Mαβ
ij

+ ‖C‖2

Mαβ
ij

.

158

Applying Eq. (4.23) on the right-hand side of Eq. (4.15), we obtain

(4.24)

1

2
‖X‖2

Mαβ
ij

≤ καβij ‖Rα
i R̃

αβ
ij ‖2 + καβij ‖R

β
j ‖2 + ταβij ‖Rα

i t̃
αβ
ij + tαi ‖2 + ταβij ‖t

β
j ‖2

=καβij ‖Rα
i ‖2 + καβij ‖R

β
j ‖2 + ταβij ‖Rα

i t̃
αβ
ij + tαi ‖2 + ταβij ‖t

β
j ‖2,

where the last equality is due to
(
R̃αβ
ij

)>
R̃αβ
ij = R̃αβ

ij

(
R̃αβ
ij

)>
= I. Furthermore, there

exists a positive semidefinite matrix Ωαβ
ij ∈ R(d+1)n×(d+1)n such that the right-hand side of

Eq. (4.24) can be rewritten as

(4.25)
1

2
‖X‖2

Ωαβij
= καβij ‖Rα

i ‖2 + καβij ‖R
β
j ‖2 + ταβij ‖Rα

i t̃
αβ
ij + tαi ‖2 + ταβij ‖t

β
j ‖2,

where Ωαβ
ij is a block diagonal matrix decoupling unknown poses of different nodes. Re-

placing the right-hand side of Eq. (4.24) with Eq. (4.25) results in

1

2
‖X‖2

Mαβ
ij

≤ 1

2
‖X‖2

Ωαβij

for any X ∈ Rd×(d+1)n, which suggests

(4.26) Ωαβ
ij �Mαβ

ij .

With Ωαβ
ij ∈ R(d+1)n×(d+1)n in Eqs. (4.25) and (4.26), we define Eαβ

ij (·|X(k)) : Rd×(d+1)n →

R:

(4.27) Eαβ
ij (X|X(k)) ,

1

2
ω
αβ(k)
ij ‖X −X(k)‖2

Ωαβij
+
〈
∇Fαβ

ij (X(k)), X −X(k)
〉

+ Fαβ
ij (X(k)),

159

where ωαβ(k)
ij is given in Eq. (4.19). From the equation above, it can be concluded that

Eαβ
ij (X|X(k)) majorizes Fαβ

ij (X) as the following proposition states, which is important

for the construction of surrogate functions for distributed PGO.

Proposition 4.6.1. Given any nodes α, β ∈ A with either α = β or α 6= β, if

ρ(·) : R+ → R is a loss kernel that satisfies Assumption 4.2, then we obtain

(4.28) Eαβ
ij (X|X(k)) ≥ Fαβ

ij (X).

for any X ∈ Rd×(d+1)n. In the equation above, the equality “=” holds if X = X(k).

Proof. See Section 4.12.2 �

4.6.2. The Majorization of F (X)

From Proposition 4.6.1, it is immediate to construct surrogate functions that majorize

F (X) in Eqs. (4.11) and (4.12) as the following proposition states.

Proposition 4.6.2. Let X(k) =

[
X1(k) · · · X |A|(k)

]
∈ X with Xα(k) ∈ X α be an

iterate of X ∈ X for Eq. (4.10). Let G(·|X(k)) : Rd×(d+1)n → R be a function that is

defined as

(4.29) G(X|X(k)) =
∑
α∈A

∑
(i,j)∈

−→
E αα

Fαα
ij (X) +

∑
α,β∈A,
α 6=β

∑
(i,j)∈

−→
E αβ

Eαβ
ij (X|X(k)) +

ξ

2

∥∥X −X(k)
∥∥2

where ξ ∈ R and ξ ≥ 0. Then, we have the following results:

160

(a) For any node α ∈ A, there exists positive-semidefinite matrices Γα(k) ∈ R(d+1)nα×(d+1)nα

such that G(X|X(k)) is equivalent to

(4.30) G(X|X(k)) =
∑
α∈A

Gα(Xα|X(k)) + F (X(k)),

where Gα(Xα|X(k)) is defined as

(4.31) Gα(Xα|X(k)) =
1

2
‖Xα −Xα(k)‖2

Γα(k) +
〈
∇XαF (X(k)), Xα −Xα(k)

〉
.

In Eq. (4.31), ∇XαF (X(k)) is the Euclidean gradient of F (X) with respect to

Xα ∈ X α at X(k) ∈ X .

(b) G(X|X(k)) is a proximal operator of F (X) at X(k) ∈ X and can be written as

(4.32) G(X|X(k)) =
1

2
‖X −X(k)‖2

Γ(k) +
〈
∇F (X(k)), X −X(k)

〉
+ F (X(k)),

where Γ(k) ∈ R(d+1)n×(d+1)n is a block diagonal matrix

(4.33) Γ(k) , diag
{

Γ1(k), · · · , Γ|A|(k)
}
∈ R(d+1)n×(d+1)n,

and ∇F (X(k)) ∈ Rd×(d+1)n is the Euclidean gradient of F (X) at X(k) ∈ X .

Furthermore, we have

(4.34) G(X|X(k)) ≥ F (X)

where the equality “=” holds if X = X(k).

(c) Γ(k) �M (k) where M (k) is given in Eq. (4.21).

161

(d) Γ(k) is bounded, i.e., there exists a constant positive-semidefinite matrix Γ ∈

R(d+1)n×(d+1)n such that Γ � Γ(k) holds for any k ≥ 0.

Proof. See Section 4.12.3 �

From Proposition 4.6.2, it is known that G(X|X(k)) in Eqs. (4.29) and (4.30) is a

proximal operator as well as an upper bound of F (X). Instead of depending on X =[
X1 · · · X |A|

]
∈ X of all the nodes, each Gα(Xα|X(k)) in Eq. (4.30) is a function of

Xα ∈ X α ⊂ Rd×(d+1)nα within a single node α ∈ A, which makes G(X|X(k)) well-suited

for distributed PGO.

If substituting Eqs. (4.27) and (4.28) into Eq. (4.29) to replace Fαα
ij (X|X(k)) with

Eαα
ij (X|X(k)), we have F (X) as well as G(X|X(k)) further majorized as the following

proposition states.

Proposition 4.6.3. Let X(k) =

[
X1(k) · · · X |A|(k)

]
∈ X with Xα(k) ∈ X α be an

iterate of X ∈ X for Eq. (4.10), and Xα(k)
i =

[
tα(k) Rα(k)

]
∈ SE(d) be the corresponding

iterate of Xα
i ∈ SE(d). Let H(·|X(k)) : Rd×(d+1)n → R be a function that is defined as

(4.35) H(X|X(k)) =
∑
α∈A

∑
(i,j)∈

−→
E αα

Eαα
ij (X|X(k))+

∑
α,β∈A,
α 6=β

∑
(i,j)∈

−→
E αβ

Eαβ
ij (X|X(k)) +

ζ

2

∥∥X −X(k)
∥∥2
.

In Eq. (4.35), ζ ∈ R and ζ ≥ ξ ≥ 0 where ξ ∈ R is given in G(X|X(k)) of Eq. (4.29).

Then, we have the following results:

162

(a) For any node α ∈ A and i ∈ {1, · · · , nα}, there exists positive-semidefinite

matrices Πα(k) ∈ R(d+1)nα×(d+1)nα and Π
α(k)
i ∈ R(d+1)×(d+1) such that

(4.36) H(X|X(k)) =
∑
α∈A

Hα(Xα|X(k)) + F (X(k))

and

(4.37) Hα(Xα|X(k)) =
nα∑
i=1

Hα
i (Xα

i |X(k)),

where Hα(Xα|X(k)) and Hα
i (Xα

i |X(k)) are defined as

(4.38) Hα(Xα|X(k)) =
1

2
‖Xα −Xα(k)‖2

Πα(k) +
〈
∇XαF (X(k)), Xα −Xα(k)

〉
and

(4.39) Hα
i (Xα

i |X(k)) =
1

2
‖Xα

i −X
α(k)
i ‖2

Π
α(k)
i

+
〈
∇Xα

i
F (X(k)), Xα

i −X
α(k)
i

〉
,

respectively. In Eqs. (4.38) and (4.39), ∇XαF (X(k)) and ∇Xα
i
F (X(k)) are the

Euclidean gradients of F (X) with respect to Xα ∈ X α and Xα
i ∈ SE(d) at

X(k) ∈ X , respectively.

(b) H(X|X(k)) is a proximal operator of F (X) at X(k) ∈ X and can be written as

(4.40) H(X|X(k)) =
1

2
‖X −X(k)‖2

Π(k) +
〈
∇F (X(k)), X −X(k)

〉
+ F (X(k)),

where Π(k) ∈ R(d+1)n×(d+1)n is a block diagonal matrix

(4.41) Π(k) , diag
{

Π1(k), · · · , Π|A|(k)
}
∈ R(d+1)n×(d+1)n,

163

and ∇F (X(k)) ∈ Rd×(d+1)n is the Euclidean gradient of F (X) at X(k) ∈ X .

Furthermore, we have

(4.42) H(X|X(k)) ≥ G(X|Xk) ≥ F (X)

where the equality “=” holds if X = X(k).

(c) Π(k) � Γ(k) � M (k) where M (k) and Γ(k) are given in Eqs. (4.21) and (4.33),

respectively.

(d) Π(k) is bounded, i.e., there exists a constant positive-semidefinite matrix Π ∈

R(d+1)n×(d+1)n such that Π � Π(k) holds for any k ≥ 0.

(e) Hα(Xα|X(k)) ≥ Gα(Xα|X(k)) where Gα(Xα|X(k)) is given in Eq. (4.31) and the

equality “=” holds as long as Xα = Xα(k).

Proof. The proof is similar to that of Proposition 4.6.2. �

Remark 4.3. As a result of Eqs. (4.36) and (4.37), H(X|X(k)) can be rewritten as

the sum of Hα
i (Xα

i |X(k)):

H(X|X(k)) =
∑
α∈A

nα∑
i=1

Hα
i (Xα

i |X(k)) + F (X(k)),

where note that each Hα
i (Xα

i |X(k)) relies on a single pose Xα
i ∈ SE(d) ⊂ Rd×(d+1).

In Sections 4.7 to 4.9, we will exploit this decomposition of H(X|X(k)) to improve the

computational efficiency of distributed PGO.

From Eqs. (4.32) and (4.40), the Euclidean gradient ∇F (X) of F (X) is needed in

G(X|X(k)) and H(X|X(k)). From Eqs. (4.12) to (4.14), it can be shown that ∇XαF (X),

164

i.e., the Euclidean gradient of F (X) with respect to Xα ∈ X α, is only related with

Fαα
ij (X), Fαβ

ij (X) and F βα
ji (X), which suggests that

(4.43) ∇XαF (X(k)) =
∑

(i,j)∈
−→
E αα

∇XαFαα
ij (X(k))+

∑
β∈Nα−

∑
(i,j)∈

−→
E αβ

∇XαFαβ
ij (X(k)) +

∑
β∈Nα+

∑
(j,i)∈

−→
E βα

∇XαF βα
ji (X(k)).

In addition, Eqs. (4.13) and (4.14) indicate that Fαα
ij (X) dependsXα

i andXα
j , and F

αβ
ij (X)

and F βα
ji depend on Xα

i and Xβ
j . Therefore, ∇XαF (X) can be computed using Eq. (4.43)

in a distributed setting as long as each node α ∈ A can communicate with its neighbors

β ∈ N α. If ∇XαF (X) is known for each node α ∈ A, then

∇F (X) ,

[
∇X1F (X) · · · ∇X|A|F (X)

]

and

∇Xα
i
F (X) ,

[
∇tαi

F (X) ∇Rαi
F (X)

]
are immediately known. Thus, it can be concluded from Eqs. (4.31), (4.38) and (4.39) that

Gα(Xα|X(k)) in G(X|X(k)) as well asHα(Xα|X(k)) andHα
i (Xα

i |X(k)) inH(X|X(k)) can be

constructed in a distributed setting with one communication round between neighboring

nodes α and β.

165

4.6.3. The Formulation of Γα(k) in Eq. (4.31)

From Eqs. (4.15), (4.25), (4.29) and (4.31), a straightforward but tedious mathematical

manipulation results in

(4.44)

1

2
‖Xα −Xα(k)‖2

Γα(k)

=
nα∑
i=1

ξ

2

(∥∥Rα
i −R

α(k)
i

∥∥2
+
∥∥tαi − tα(k)

i

∥∥2
)

∑
(i,j)∈

−→
E αα

1

2

(
κααij
∥∥(Rα

i −R
α(k)
i)R̃αα

ij − (Rα
j −R

α(k)
j)

∥∥2

τααij
∥∥(Rα

i −R
α(k)
i)t̃ααij + tαi − t

α(k)
i − (tαj − t

α(k)
j)

∥∥2
)

+∑
β∈Nα−

∑
(i,j)∈

−→
E αβ

ω
αβ(k)
ij

(
καβij
∥∥Rα

i −R
α(k)
i

∥∥2
+

ταβij
∥∥(Rα

i −R
α(k)
i

)
t̃αβij + tαi − t

α(k)
i

∥∥2
)

+

∑
β∈Nα+

∑
(j,i)∈

−→
E βα

ω
βα(k)
ji

(
κβαji
∥∥Rα

i −R
α(k)
i

∥∥2
+ τβαji

∥∥tαi − tα(k)
i

∥∥2
)
.

For notational clarity, we introduce

−→
E αβi− , {(i, j)|(i, j) ∈

−→
E αβ},

−→
E αβi+ , {(i, j)|(j, i) ∈

−→
E βα},

N α
i− , {β ∈ A|∃(i, j) ∈

−→
E αβ and β 6= α},

N α
i+ , {β ∈ A|∃(j, i) ∈

−→
E βα and β 6= α},

Eαβi ,
−→
E αβi− ∪

−→
E αβi+ ,

N α
i , N α

i− ∪N α
i+.

166

In addition, we define κβαji , καβij , τ
βα
ji , ταβij , ωαβ(k)

ij , ω
βα(k)
ji , and

(4.45) κ
αβ(k)
ij , ω

αβ(k)
ij · καβij ,

(4.46) τ
αβ(k)
ij , ω

αβ(k)
ij · ταβij

for any (i, j) ∈
−→
E αβ. Then, Eq. (4.44) indicates that Γα(k) ∈ R(d+1)nα×(d+1)nα in Eq. (4.31)

takes the form as

(4.47) Γα(k) =

Γτ,α(k) Γν,α(k)

Γν,α(k)> Γκ,α(k)

 ,
where Γτ,α(k) ∈ Rnα×nα , Γν,α(k) ∈ Rnα×dnα and Γκ,α(k) ∈ Rdnα×dnα are sparse matrices that

are defined as

[
Γτ,α(k)

]
ij

=

ξ +
∑

e∈Eααi
τααe +

∑
β∈Nαi

∑
e∈Eαβi

2τ
αβ(k)
e , i = j,

−τααij , (i, j) ∈
−→
E αα,

−τααji , (j, i) ∈
−→
E αα,

0, otherwise,

[
Γν,α(k)

]
ij

=

∑
e∈Eααi−

τααe t̃ααe
> +

∑
β∈Nαi−

∑
e∈Eαβi−

2τ
αβ(k)
e t̃αβe

>
, i = j,

−τααji t̃ααji >, (j, i) ∈
−→
E αα,

0, otherwise,

167

[
Γκ,α(k)

]
ij

=

ξ · I +
∑

e∈Eααi
κααe · I +

∑
e∈Eααi−

τααe · t̃ααe t̃ααe
>+

∑
β∈Nαi

2
(∑
e∈Eαβi

κ
αβ(k)
e · I +

∑
e∈Eαβi−

τ
αβ(k)
e · t̃αβe t̃αβe

>
)
, i = j,

−κααij · R̃αα
ij , (i, j) ∈

−→
E αα,

−κααji · R̃αα
ij
>, (j, i) ∈

−→
E αα,

0, otherwise.

4.6.4. The Formulation of Πα(k) and Π
α(k)
i in Eqs. (4.38) and (4.39)

Similar to Eq. (4.44), it can be shown from Eqs. (4.15), (4.25), (4.35), (4.37) and (4.38)

that

(4.48)

1

2
‖Xα

i −X
α(k)
i ‖2

Παi (k)

=
ζ

2

(∥∥Rα
i −R

α(k)
i

∥∥2
+
∥∥tαi − tα(k)

i

∥∥2
)

+∑
(i,j)∈

−→
E ααi−

(
κααij
∥∥Rα

i −R
α(k)
i

∥∥2
+ τααij

∥∥(Rα
i −R

α(k)
i

)
t̃ααij + tαi − t

α(k)
i

∥∥2
)

+

∑
(i,j)∈

−→
E ααi+

(
κααji
∥∥Rα

i −R
α(k)
i

∥∥2
+ τααji

∥∥tαi − tα(k)
i

∥∥2
)

+

∑
β∈Nαi−

∑
(i,j)∈

−→
E αβi−

ω
αβ(k)
ij

(
καβij
∥∥Rα

i −R
α(k)
i

∥∥2
+

ταβij
∥∥(Rα

i −R
α(k)
i

)
t̃αβij + tαi − t

α(k)
i

∥∥2
)

+∑
β∈Nαi+

∑
(j,i)∈

−→
E βαi+

ω
βα(k)
ji

(
κβαji
∥∥Rα

i −R
α(k)
i

∥∥2
+ τβαji

∥∥tαi − tα(k)
i

∥∥2
)
.

168

From Eq. (4.48), Π
α(k)
i ∈ R(d+1)×(d+1) in Eq. (4.39) can be written as

(4.49) Π
α(k)
i =

Π
τ,α(k)
i Π

ν,α(k)
i

Π
ν,α(k)
i

>
Π
κ,α(k)
i

 ,
where Π

τ,α(k)
i ∈ R, Π

ν,α(k)
i ∈ R1×d and Π

κ,α(k)
i ∈ Rd×d are defined as

(4.50) Π
τ,α(k)
i = ζ +

∑
e∈Eααi

2τααe +
∑
β∈Nαi

∑
e∈Eαβi

2ταβ(k)
e ,

(4.51) Π
ν,α(k)
i =

∑
e∈Eααi−

2τααe t̃ααe
> +

∑
β∈Nαi−

∑
e∈Eαβi−

2ταβ(k)
e t̃αβe

>
,

(4.52) Π
κ,α(k)
i = ζ · I +

∑
e∈Eααi

2κααe · I +
∑
e∈Eααi−

2τααe · t̃ααe t̃ααe
>+

∑
β∈Nαi

(∑
e∈Eαβi

2καβ(k)
e · I +

∑
e∈Eαβi−

2ταβ(k)
e · t̃αβe t̃αβe

>)
,

where καβ(k)
ij and ταβ(k)

ij are given in Eqs. (4.45) and (4.46), respectively.

Similar to Γα(k) ∈ R(d+1)nα×(d+1)nα in Eq. (4.47), Πα(k) ∈ R(d+1)nα×(d+1)nα in Eq. (4.38)

also takes the form as

(4.53) Πα(k) =

Πτ,α(k) Πν,α(k)

Πν,α(k)> Πκ,α(k)

 ,

169

where Πτ,α(k) ∈ Rnα×nα , Πν,α(k) ∈ Rnα×dnα and Πκ,α(k) ∈ Rdnα×dnα are sparse matrices.

Following Eqs. (4.37) to (4.39), it is straightforward to show that

1

2
‖Xα −Xα(k)‖2

Πα(k) =
nα∑
i=1

1

2
‖Xα

i −X
α(k)
i ‖2

Π
α(k)
i

.

From the equation above, Πτ,α(k) ∈ Rnα×nα , Πν,α(k) ∈ Rnα×dnα and Πκ,α(k) ∈ Rdnα×dnα in

Eq. (4.53) are defined as

[
Πτ,α(k)

]
ij

=

Π
τ,α(k)
i , i = j,

0, otherwise,

[
Γν,α(k)

]
ij

=

Π
ν,α(k)
i , i = j,

0, otherwise,

[
Γκ,α(k)

]
ij

=

Π
κ,α(k)
i , i = j,

0, otherwise,

where Π
τ,α(k)
i ∈ R, Π

ν,α(k)
i ∈ R1×d and Π

κ,α(k)
i ∈ Rd×d are given in Eqs. (4.50) to (4.52).

In the next sections, we will present MMmethods for distributed PGO usingG(X|X(k))

and H(X|X(k)) that are guaranteed to converge to first-order critical points.

4.7. The Majorization Minimization Method for Distributed Pose Graph

Optimization

In distributed optimization, MM methods are one of the most popular first-order op-

timization methods [117,118]. As mentioned before, MM methods solve an optimization

170

problem by iteratively minimizing an upper bound of the objective function such that the

objective value is either decreased or unchanged.

4.7.1. Update Rule

In Section 4.6, it has been proved that G(X|X(k)) and H(X|X(k)) are proximal oper-

ators of F (X) such that

H(X|X(k)) ≥ G(X|X(k)) ≥ F (X),

and

H(X(k)|X(k)) = G(X(k)|X(k)) = F (X(k)).

Following the notion of MM methods [117], we implement an update rule as the following

(4.54) X(k+ 1
2

) ← arg min
X∈X

H(X|X(k)),

and

(4.55) X(k+1) ← arg min
X∈X

G(X|X(k))

which results in

(4.56) F (X(k)) = H(X(k)|X(k)) ≥ H(X(k+ 1
2

)|X(k)) ≥ F (X(k+ 1
2

)),

and

(4.57) F (X(k)) = G(X(k)|X(k)) ≥ G(X(k+1)|X(k)) ≥ F (X(k+1))

respectively. From Eq. (4.36), Eq. (4.54) is equivalent to

171

(4.58) Xα(k+ 1
2

) ← arg min
Xα∈Xα

Hα(Xα|X(k)), ∀α ∈ A.

Similarly, from Eq. (4.30), Eq. (4.55) is equivalent to

(4.59) Xα(k+1) ← arg min
Xα∈Xα

Gα(Xα|X(k)), ∀α ∈ A.

Note that both Eqs. (4.58) and (4.59) can be independently solved within a single node

α ∈ A. Recalling Hα(Xα|X(k)) =
∑nα

i=1H
α
i (Xα

i |X(k)) from Eq. (4.37), we conclude that

Eq. (4.58) can be further reduced to n =
∑

α∈A nα independent optimization problems on

Xα
i ∈ SE(d)

(4.60) X
α(k+ 1

2
)

i ← arg min
Xα
i ∈SE(d)

Hα
i (Xα

i |X(k)), ∀α ∈ A and i ∈ {1, · · · , nα}.

In particular, as is shown in Section 4.7.3, Eq. (4.60) admits a closed-form solution that

only involves matrix multiplication and singular value decomposition [130].

As a result of Eqs. (4.56) and (4.57), we conclude that iteratively minimizingHα(Xα|X(k))

and Gα(Xα|X(k)) improves the estimates and reduces the objective values. In our pre-

vious works, we have shown that Eq. (4.58) can be exactly and efficiently solved using

Eq. (4.60) [59], and a local instead of global optimal solution to Eq. (4.59) is sufficient to

guarantee the convergence of distributed PGO [1]. Nevertheless, Eq. (4.58) fails to make

full use of the local information within a single node and might induce more iterations if

there are nodes with more than one poses, whereas Eq. (4.59) can still be time-consuming

to find a local optimal solution and thus, restricts the performance of distributed PGO.

To address these issues, we propose a novel update rule exploiting both Eqs. (4.58)

and (4.59) to enhance the overall computational efficiency, where we precompute an initial

172

estimate from Eq. (4.58) and then refine the initial estimate with Eq. (4.59) to get the

final estimate.

4.7.2. Algorithm

Algorithm 9 The MM−PGO Method

1: Input: An initial iterate X(0) ∈ X and ζ ≥ ξ ≥ 0.

2: Output: A sequence of iterates {X(k)} and {X(k+ 1
2

)}.

3: for k← 0, 1, 2, · · · do

4: for node α← 1, · · · , |A| do

5: retrieve Xβ(k) from β ∈ Nα

6: evaluate ωαβ(k)
ij and ωβα(k)

ji using Eq. (4.19)

7: evaluate ∇XαF (X(k)) using Eq. (4.43)

8: Xα(k+ 1
2

) ← arg min
Xα∈Xα

Hα(Xα|X(k)) using Algorithm 10

9: Xα(k+1) ← improve arg min
Xα∈Xα

Gα(Xα|X(k)) with Xα(k+ 1
2

) as the initial guess

10: end for

11: end for

Algorithm 10 Solve Xα(k+ 1
2

) ← arg min
Xα∈Xα

Hα(Xα|X(k))

1: Input: Xα(k) and ∇XαF (X(k)).

2: Output: Xα(k+ 1
2

).

3: for i← 1, · · · , nα do

4: X
α(k+ 1

2
)

i ← arg min
Xα
i ∈SE(d)

Hα
i (Xα

i |X(k)) using Section 4.7.3

5: end for

6: retrieve Xα(k+ 1
2

) from X
α(k+ 1

2
)

i where i = 1, · · · , nα

173

The proposed update rule results in the MM−PGO method for distributed PGO (Al-

gorithm 9). The outline of the MM−PGO method is as follows:

1) In line 5 of Algorithm 9, each node α performs one inter-node communication round

to retrieve Xβ(k) from its neighbors β ∈ Nα. We remark that no other inter-node

communication is required.

2) In lines 6, 7 of Algorithm 9, each node α evaluates ωαβ(k)
ij , ωβα(k)

ji , ∇XαF (X) using

Xα(k) and Xβ(k) where β ∈ N α are the neighbors of node α.

3) In line 8 of Algorithm 9, we obtain the intermediate solution Xα(k+ 1
2

) using Algo-

rithm 10. We have proved that the resulting Xα(k+ 1
2

) is already sufficient to guarantee

the convergence to first-order critical points.

4) In line 3 of Algorithm 10, there exists an exact and efficient closed-form solution to

Xα(k+ 1
2

) using Section 4.7.3.

5) In line 9 of Algorithm 9, we use Xα(k+ 1
2

) to initialize Eq. (4.59), and improve the

final solution Xα(k+1) through iterative optimization such that Gα(Xα(k+1)|X(k)) ≤

Gα(Xα(k+ 1
2

)|X(k)). Note that Xα(k+1) does not have to be a local optimal solution to

Eq. (4.59), nevertheless, Xα(k+1) is still expected to have a faster convergence than

Xα(k+ 1
2

).

Remark 4.4. TheMM−PGOmethod requires no inter-node communication except for

lines 6 and 7 of Algorithm 9 that evaluate ωαβ(k)
ij , ωβα(k)

ji and ∇XαF (X(k)) using Eqs. (4.19)

and (4.43), which, as mentioned before, can be distributed with limited local communica-

tion between neighboring nodes α and β without introducing any additional computation.

174

Since Xα(k+ 1
2

) in Eq. (4.58) has a closed-form solution that can be efficiently com-

puted, and Eq. (4.59) does not require Xα(k+1) to be a local optimal solution, the overall

computational efficiency of the MM−PGO method is significantly improved in contrast

to [1,59]. More importantly, the MM−PGO method still converges to first-order critical

points as long as the following assumption holds.

Assumption 4.3. For Xα(k+1) and Xα(k+ 1
2

), it is assumed that

(4.61) Gα(Xα(k+1)|X(k)) ≤ Gα(Xα(k+ 1
2

)|X(k))

for each node α = 1, 2 · · · , |A|.

It is known from Proposition 4.6.3 thatHα(Xα|X(k)) ≥ Gα(Xα|X(k)) andHα(Xα(k)|X(k)) =

0, and thus, Assumption 4.3 can be satisfied with ease as long as line 9 of Algorithm 9

is initialized with Xα(k+ 1
2

). Then, the MM−PGO method in Algorithm 9 is guaranteed to

converge to first-order critical points as the following proposition states.

Proposition 4.7.1. For a sequence of {X(k)} generated by the MM−PGO method in

Algorithm 9, we have the following results if Assumptions 4.1 to 4.3 hold:

(a) F (X(k)) is nonincreasing as k→∞;

(b) F (X(k))→ F∞ as k→∞;

(c) ‖X(k+1) −X(k)‖ → 0 as k→∞ if ξ > 0;

(d) ‖X(k+ 1
2

) −X(k)‖ → 0 as k→∞ if ζ > ξ > 0;

(e) if ζ > ξ > 0, then there exists ε > 0 such that

min
0≤k<K

‖gradF (X(k+ 1
2

))‖ ≤

√
2

ε
· F (X(0))− F∞

K + 1

175

for any K ≥ 0;

(f) if ζ > ξ > 0, then gradF (X(k))→ 0 and gradF (X(k+ 1
2

))→ 0 as k→∞.

Proof. See Section 4.12.4 �

The MM−PGO method is guaranteed to converge as long as ζ > ξ > 0. In contrast

to other distributed PGO algorithms that are presented in [5,6,123,124], the MM−PGO

method needs milder conditions and less communication to guarantee the convergence

while applying to a broader class of loss kernels for distributed PGO.

4.7.3. The Closed-Form Solution to Eq. (4.60)

Substituting Eq. (4.49) into Eq. (4.60) and rewriting the resulting equation in terms

of Xα
i =

[
tαi Rα

i

]
∈ Rd×(d+1) leads to

(
t
α(k+ 1

2
)

i , R
α(k+ 1

2
)

i

)
= arg min

tαi ∈Rd, Rαi ∈SO(d)

1

2
‖tαi − t

α(k)
i ‖2

Π
τ,α(k)
i

+

Π
ν,α(k)
i (Rα

i −R
α(k)
i)>(tαi − t

α(k)
i) +

1

2
‖Rα

i −R
α(k)
i ‖2

Π
κ,α(k)
i

+〈
∇tαi

F (X(k)), tαi − t
α(k)
i

〉
+
〈
∇Rαi

F (X(k)), Rα
i −R

α(k)
i

〉
.

For notational simplicity, the equation above is simplified to

(4.62) min
tαi ∈Rd, Rαi ∈SO(d)

1

2
‖tαi ‖2

Π
τ,α(k)
i

+ Π
ν,α(k)
i Rα

i
>tαi +

1

2
‖Rα

i ‖2

Π
κ,α(k)
i

+
〈
γ
τ,α(k)
i , tαi

〉
+
〈
γ
κ,α(k)
i , Rα

i

〉
,

where

176

(4.63) γ
τ,α(k)
i = ∇tαi

F (X(k))− tα(k)
i Π

τ,α(k)
i ∈ Rd

and

(4.64) γ
κ,α(k)
i = ∇Rαi

F (X(k))−Rα(k)
i Π

κ,α(k)
i ∈ Rd×d.

Recalling from Eq. (4.49) that Π
τ,α(k)
i ∈ R and Π

τ,α(k)
i > 0, we obtain that

(4.65) tαi = −Rα
i Π

ν,α(k)
i

>
Π
τ,α(k)
i

−1
− γτ,α(k)

i Π
τ,α(k)
i

−1

minimizes Eq. (4.62) if Rα
i ∈ SO(d) is given. Then, substituting Eq. (4.65) into Eq. (4.62)

yields

(4.66) R
α(k+ 1

2
)

i = arg min
Rαi ∈SO(d)

1

2
‖Rα

i ‖2

Ξ
α(k)
i

−
〈
υ
α(k)
i , Rα

i

〉
,

where

(4.67) Ξ
α(k)
i = Π

κ,α(k)
i − Π

ν,α(k)
i

>
Π
τ,α(k)
i

−1
Π
ν,α(k)
i ∈ Rd×d

and

(4.68) υ
α(k)
i = γ

τ,α(k)
i Π

τ,α(k)
i

−1
Π
ν,α(k)
i − γκ,α(k)

i ∈ Rd×d.

If we apply Rα
i
>Rα

i = I on Eq. (4.66), then Eq. (4.60) is equivalent to

(4.69) R
α(k+ 1

2
)

i = arg max
Rαi ∈SO(d)

〈
υ
α(k)
i , Rα

i

〉
.

177

Thus, Eq. (4.60) is reduced to an optimization problem on SO(d), which has a closed-form

solution as follows.

Following [130], if υα(k)
i ∈ Rd×d admits a singular value decomposition

υ
α(k)
i = U

α(k)
i Σ

α(k)
i V

α(k)
i

>

where Uα(k)
i and V α(k)

i ∈ O(d) are orthogonal (not necessarily special orthogonal) matrices,

and Σ
α(k)
i = diag{σα(k)

1 , σ
α(k)
2 , · · · , σα(k)

d } ∈ Rd×d is a diagonal matrix, and σα(k)
1 ≥ σ

α(k)
2 ≥

· · · ≥ σ
α(k)
d ≥ 0 are singular values of υα(k)

i , then the optimal solution to Eq. (4.69) is

(4.70) R
α(k+ 1

2
)

i =

U
α(k)
i Λ+V

α(k)
i

>
, det

(
U
α(k)
i V

α(k)
i

>)
> 0,

U
α(k)
i Λ−V

α(k)
i

>
, otherwise,

where Λ+ = diag{1, 1, · · · , 1} ∈ Rd×d and Λ− = diag{1, 1, · · · , −1} ∈ Rd×d. If d = 2,

the equation above is equivalent to the polar decomposition of 2×2 matrices, and if d = 3,

there are fast algorithms for singular value decomposition of 3 × 3 matrices [131]. As a

result, Eq. (4.69) can be efficiently solved in the case of SO(2) and SO(3), both of which

are commonly used in SLAM.

As long as Rα(k+ 1
2

)

i ∈ SO(d) is known, tα(k+ 1
2

)

i ∈ Rd can be exactly recovered using

Eq. (4.65):

(4.71) t
α(k+ 1

2
)

i = −Rα(k+ 1
2

)

i Π
ν,α(k)
i

>
Π
τ,α(k)
i

−1
− γτ,α(k)

i Π
τ,α(k)
i

−1
.

Therefore, Xα(k+ 1
2

)

i =

[
t
α(k+ 1

2
)

i R
α(k+ 1

2
)

i

]
∈ Rd×(d+1) is exactly solved, whose computation

only involves matrix multiplication and singular value decomposition.

178

4.8. The Accelerated Majorization Minimization Method for Distributed

Pose Graph Optimization with a Master Node

In the last several decades, a number of accelerated first-order optimization methods

have been proposed [120,121]. Even though most of them were originally developed for

convex optimization, it has been recently found that these accelerated methods have a

good performance for nonconvex optimization as well [132–134]. In our previous works [1,

59], we proposed to use Nesterov’s method to accelerate first-order optimization methods

for distributed PGO, which empirically have much faster convergence. Since theMM−PGO

method is a first-order optimization method, it is possible to exploit Nesterov’s method

for acceleration as well.

In this and next sections, we will propose the accelerated MM methods for distributed

PGO with and without a master node, respectively, both of which significantly improve

the convergence compared to MM−PGO.

4.8.1. Nesterov’s Method

From Eqs. (4.29) and (4.35), it is obvious that G(X|X(k)) and H(X|X(k)) are proximal

operators of F (X), which suggests the possibility to use Nesterov’s methods [120,121]

for acceleration.

As a result of Nesterov’s method [120,121], Xα(k+ 1
2

) and Xα(k+1) can be updated with

(4.72) sα(k+1) =

√
4sα(k)2

+ 1 + 1

2
,

(4.73) λα(k) =
sα(k) − 1

sα(k+1)
,

179

(4.74) Y α(k) = Xα(k) + λα(k) ·
(
Xα(k) −Xα(k−1)

)
,

(4.75) Xα(k+ 1
2

) = arg min
Xα∈Xα

Hα(Xα|Y (k)),

(4.76) Xα(k+1) = arg min
Xα∈Xα

Gα(Xα|Y (k)).

In Eqs. (4.75) and (4.76), Gα(·|Y (k)) : X α → R and Hα(·|Y (k)) : X α → R are proximal

operators defined as:

(4.77) Gα(Xα|Y (k)) =
1

2
‖Xα − Y α(k)‖2

Γα(k) +
〈
∇XαF (Y (k)), Xα − Y α(k)

〉
and

(4.78) Hα(Xα|Y (k)) =
1

2
‖Xα − Y α(k)‖2

Πα(k) +
〈
∇XαF (Y (k)), Xα − Y α(k)

〉
,

where Γα(k) and Πα(k) are the same as these in Gα(·|X(k)) and Hα(·|X(k)) in Eqs. (4.31)

and (4.38).

The key idea of Nesterov’s method is to exploit the momentum Xα(k) − Xα(k−1) for

acceleration, which is essentially governed by Eqs. (4.72) to (4.74). Note that Nesterov’s

method using Eqs. (4.72) to (4.76) suggest is equivalent to Eqs. (4.58) and (4.59) when

sα(k) = 1 and λα(k) = 0, and then increasingly affected by the momentum as sα(k) and

λα(k) increase. Similar to [1,59], the implementation of Nesterov’s method [120,121] in

practice leads to significant speedup of distributed PGO. Moreover, Eqs. (4.72) to (4.78)

can be distributed without introducing any additional computation as long as each node

180

α ∈ A can communicate with its neighbors β ∈ N α. Thus, it is preferable to adopt

Nesterov’s method to accelerate distributed PGO.

4.8.2. Adaptive Restart

In spite of faster convergence, Nesterov’s accelerated distributed PGO using Eqs. (4.72)

to (4.76) is no longer nonincreasing, and might fail to converge due to the nonconvexity

of PGO. Fortunately, such a problem can be remedied with an adaptive restart scheme

[1,59,122].

In the adaptive restart scheme , we recursively define F (k) that is an exponential

moving averaging of F (X(0)), F (X(1)), · · · , F (X(k)) [59,134,135]:

(4.79) F
(k)
,

F (X(0)), k = 0,

(1− η) · F (k−1)
+ η · F (X(k)), otherwise

where η ∈ (0, 1]. Then, Xα(k+ 1
2

) and X(k+1) are updated using the following steps:

(1) Update X(k+ 1
2

) and X(k+1) by solving Eqs. (4.75) and (4.76) with Y (k) resulting from

Eqs. (4.72) to (4.74);

(2) If F (X(k+ 1
2

)) > F
(k), update X(k+ 1

2
) again by solving Eq. (4.75) with Y (k) = X(k);

(3) If F (X(k+1)) > F
(k), update X(k+1) again by solving Eq. (4.76) with Y (k) = X(k) and

reduce sα(k+1)).

Remark 4.5. Since η ∈ (0, 1] in Eq. (4.79), F (k+1) ≤ F
(k) as long as F (X(k+1)) ≤ F

(k).

In Section 4.12.5, we have proved F (X(k+1)) ≤ F
(k) if X(k+ 1

2
) and X(k+1) are updated

with Y (k) = X(k) in Eqs. (4.75) and (4.76). Therefore, such an adaptive restart scheme is

guaranteed to result in a nonincreasing sequence of F (k).

181

Note that one has to aggregate information across the network to evaluate F
(k),

F (X(k+ 1
2

)), F (X(k+1)) using Eqs. (4.12) and (4.79) and a master node capable of com-

municating with each node α ∈ A is required. Thus, we make the following assumption

about the existence of such a master node in the rest of this section.

Assumption 4.4. There is a master node to retrieve Xα(k) and Xα(k+ 1
2

) from each

node α ∈ A and evaluate F (k), F (X(k+ 1
2

)), F (X(k+1)).

aster node to collect Xα(k) and Xα(k+ 1
2

) from each node α ∈ A to evaluate F (X(k)),

F (X(k+ 1
2

)) and F (k).

4.8.3. Algorithm

From Nesterov’s method and the adaptive restart scheme in Eqs. (4.72) to (4.76)

and (4.79), we obtain the AMM−PGO∗ method for distributed PGO (Algorithm 11), where

“∗” indicates that there is a master node for the distributed PGO.

The outline of the AMM−PGO∗ method is as follows:

1) In lines 11, 12 of Algorithm 11, each node α computes Y (k) for Nesterov’s acceleration

that is related with sα(k) ∈ [1, ∞) and λα(k) ∈ [0, 1).

2) In line 2 of Algorithm 12, each node α performs one inter-node communication round

to retrieve Xβ(k) and Y β(k) from its neighbors β ∈ N α.

3) In lines 7, 13, 21 of Algorithm 12, each node α performs one inter-node communication

round to send Xα(k+ 1
2

) and Xα(k+1) to the master node.

182

Algorithm 11 The AMM−PGO∗ Method

1: Input: An initial iterate X(0) ∈ X , and ζ ≥ ξ ≥ 0, and η ∈ (0, 1], and ψ > 0, and
φ > 0.

2: Output: A sequence of iterates {X(k)} and {X(k+ 1
2

)}.
3: for node α← 1, · · · , |A| do
4: Xα(−1) ← Xα(0) and sα(0) ← 1

5: send Xα(0) to the master node
6: end for
7: evaluate F (X(0)) using Eq. (4.11) at the master node

8: F
(−1) ← F (X(0)) at the master node

9: for k← 0, 1, 2, · · · do
10: for node α← 1, · · · , |A| do

11: sα(k+1) ←
√

4sα(k)
2
+1+1

2
, λα(k) ← sα(k)−1

sα(k+1)

12: Y α(k) ← Xα(k) + λα(k) ·
(
Xα(k) −Xα(k−1)

)
13: end for
14: F

(k)←(1− η) · F (k−1)
+ η · F (X(k)) at the master node

15: update X(k+ 1
2

) and X(k+1) using Algorithm 12
16: end for

4) In lines 3, 4 of Algorithm 12, each node α evaluates ωαβ(k)
ij , ωβα(k)

ji , ∇XαF (X(k)),

∇XαF (Y (k)) using Xα(k), Y α(k), Xβ(k), Y β(k) where β ∈ N α are the neighbors of node

α.

5) In lines 8, 14 of Algorithm 11 and lines 9, 15, 23 of Algorithm 12, the master node

evaluates F (k), F (X(k+ 1
2

)), F (X(k+1)) that are used for adaptive restart.

6) In lines 10 to 24 of Algorithm 12, the master node performs adaptive restart to keep

F (X(k+ 1
2

)) ≤ F
(k) and F (X(k+1)) ≤ F

(k), which yields a nonincreasing sequence of F (k)

to guarantee the convergence.

7) In lines 6, 19 of Algorithm 12, note that Xα(k+1) does not have to be a local optimal

solution to Eq. (4.59).

183

Algorithm 12 Updates for the AMM−PGO∗ Method
1: for node α← 1, · · · , |A| do
2: retrieve Xβ(k) and Y β(k) from β ∈ Nα
3: evaluate ωαβ(k)

ij and ωβα(k)
ji using Eq. (4.19)

4: evaluate ∇XαF (X(k)) and ∇XαF (Y (k)) using Eq. (4.43)
5: Xα(k+ 1

2
) ← arg min

Xα∈Xα
Hα(Xα|Y (k)) using Algorithm 10

6: Xα(k+1) ← improve arg min
Xα∈Xα

Gα(Xα|Y (k)) with Xα(k+ 1
2

) as the initial guess

7: send Xα(k+ 1
2

) and Xα(k+1) to the master node
8: end for
9: evaluate F (X(k+ 1

2
)) and F (X(k+1)) using Eq. (4.11) at the master node

10: if F (X(k+ 1
2

)) > F
(k) − ψ · ‖X(k+ 1

2
) −X(k)‖2 then

11: for node α← 1, · · · , |A| do
12: Xα(k+ 1

2
) ← arg min

Xα∈Xα
Hα(Xα|X(k)) using Algorithm 10

13: send Xα(k+ 1
2

) to the master node
14: end for
15: evaluate F (X(k+ 1

2
)) using Eq. (4.11) at the master node

16: end if
17: if F (X(k+1)) > F

(k) − ψ · ‖X(k+1) −X(k)‖2 then
18: for node α← 1, · · · , |A| do
19: Xα(k+1) ← improve arg min

Xα∈Xα
Gα(Xα|X(k)) with Xα(k+ 1

2
) as the initial guess

20: sα(k+1) ← max{1
2
sα(k+1), 1}

21: send Xα(k+1) to the master node
22: end for
23: evaluate F (X(k+1)) using Eq. (4.11) at the master node
24: end if
25: if F (k) − F (X(k+1)) < φ ·

(
F

(k) − F (X(k+ 1
2

))
)
then

26: X(k+1) ← X(k+ 1
2

) and F (X(k+1))← F (X(k+ 1
2

))

27: end if

8) In lines 25 to 27 of Algorithm 12, F (X(k+1)) is guaranteed to yield sufficient improve-

ment over F (k) compared to F (X(k+ 1
2

)).

184

In spite of acceleration, the AMM−PGO∗ method is guaranteed to converge to first-

order critical points under mild conditions as the following proposition states.

Proposition 4.8.1. If Assumptions 4.1 to 4.4 hold, then for a sequence of iterates

{X(k)} generated by Algorithm 11, we obtain

(a) F (k) is nonincreasing;

(b) F (X(k))→ F∞ and F (k) → F∞ as k→∞;

(c) ‖X(k+1) −X(k)‖ → 0 as k→∞ if ξ > 0 and ζ > 0;

(d) ‖X(k+ 1
2

) −X(k)‖ → 0 as k→∞ if ζ ≥ ξ > 0;

(e) if ζ ≥ ξ > 0, then there exists ε > 0 such that

min
0≤k<K

‖gradF (X(k+ 1
2

))‖ ≤ 2

√
1

ε
· F (X(0))− F∞

K + 1

for any K ≥ 0;

(f) if ζ > ξ > 0, then gradF (X(k))→ 0 and gradF (X(k+ 1
2

))→ 0 as k→∞.

Proof. See Section 4.12.5. �

Remark 4.6. If η = 1 in Eq. (4.79), F (X(k)) = F
(k), and F (X(k)) is also nonincreasing

according to Proposition 4.8.1(a). Even though F (X(k)) might fail to be nonincreasing,

we still recommend to choose η � 1 that empirically yields fewer adaptive restarts and

faster convergence for distributed PGO.

Remark 4.7. In Algorithm 12, ψ > 0 and φ > 0 guarantee that F (X(k+ 1
2

)) and

F (X(k+1)) yield sufficient improvement over F (k) in terms of ‖X(k+ 1
2

)−X(k)‖ and ‖X(k+1)−

185

X(k)‖, and are recommended to set close to zero to avoid unnecessary adaptive restarts

and make better use of Nesterov’s acceleration.

4.9. The Accelerated Majorization Minimization Method for Distributed

Pose Graph Optimization without a Master Node

In this section, we will propose accelerated MM methods for distributed PGO without

a master node. The resulting accelerated MM method not only is guaranteed to converge

to first-order critical points with limited local communication but also has almost no loss

of computational efficiency in contrast to the AMM−PGO∗ method with a master node

(see Section 4.10).

4.9.1. Adaptive Restart Scheme

The adaptive restart is essential for the convergence of accelerated MM methods. In

the AMM−PGO∗ method (Algorithm 11), the adaptive restart scheme needs a master node

to evaluate F (X(k)) and F (k) and guarantee the convergence. However, in the case of no

master node, such an adaptive restart scheme requires substantial amount of inter-node

communication across the network, making the AMM−PGO∗ method unscalable for large-

scale distributed PGO. Recently, we developed an adaptive restart scheme for distributed

PGO that does not require a master node but still generates convergent iterates with

limited local communication [1]. In spite of that, the adaptive restart scheme in [1] is

conservative and suffers from unnecessary restarts, which hinders acceleration and yields

slower convergence than the AMM−PGO∗ method. Thus, we need to redesign the adaptive

restart scheme to boost the performance of distributed PGO without master node.

186

Recall that the AMM−PGO∗ method’s adaptive restart scheme is for the purpose of

F (X(k+1)) ≤ F
(k). In a similar way, we propose the following adaptive restart scheme

that keeps F (X(k+1)) ≤ F
(k) for distributed PGO without master node, from which the

convergence is guaranteed for accelerated MM methods.

For notational simplicity, we introduce ∆Gα(X|X(k)) : X → R:

(4.80) ∆Gα(X|X(k)) ,
1

2

∑
β∈Nα−

∑
(i,j)∈

−→
E αβ

(
Fαβ
ij (X)− Eαβ

ij (X|X(k))
)

+

1

2

∑
β∈Nα+

∑
(i,j)∈

−→
E βα

(
F βα
ij (X)− Eβα

ij (X|X(k))
)
− ξ

2

∥∥Xα −Xα(k)
∥∥2
,

where Fαβ
ij (X), F βα

ij (X), Eαβ
ij (X|X(k)), Eβα

ij (X|X(k)) are given in Eqs. (4.14) and (4.27).

From ∆Gα(X|X(k)) in Eq. (4.80), we recursively define Fα(k), Fα(k), Gα(k) according to:

(1) If k = −1, each node α initializes Fα(−1) and Fα(−1) with

(4.81) Fα(−1) ,
∑

(i,j)∈
−→
E αα

Fαα
ij (X(0)) +

1

2

∑
β∈Nα−

∑
(i,j)∈

−→
E αβ

Fαβ
ij (X(0)) +

1

2

∑
β∈Nα+

∑
(i,j)∈

−→
E βα

F βα
ij (X(0))

and

(4.82) F
α(−1)

, Fα(−1).

(2) If k ≥ 0, each node α recursively updates Gα(k), Fα(k) and Fα(k) according to

(4.83) Gα(k) , Gα(Xα(k)|X(k−1)) + Fα(k−1),

(4.84) Fα(k) , Gα(k) + ∆Gα(X(k)|X(k−1)),

187

(4.85) F
α(k)
, (1− η) · Fα(k−1)

+ η · Fα(k)

where η ∈ (0, 1].

From the definitions of Fαα
ij (X), Fαβ

ij (X), F βα
ij (X), Gα(Xα|X(k)), ∆Gα(X|X(k)) in Eqs. (4.14),

(4.17), (4.31) and (4.80), it is tedious but straightforward to show that Gα(k), Fα(k), Fα(k)

in Eqs. (4.81) to (4.85) can be explicitly evaluated with one inter-node communication

round between node α and its neighbors β ∈ Nα. Furthermore, we have the following

proposition about Fα(k), Fα(k), Gα(k).

Proposition 4.9.1. For any k ≥ 0, we have

(a) F (X(k)) =
∑

α∈A F
α(k) where F (X(k)) is given in Eq. (4.11);

(b) F (k)
=
∑

α∈A F
α(k) where F (k) is given in Eq. (4.79);

(c) Fα(k+1) ≤ F
α(k+1) ≤ F

α(k) if Gα(k+1) ≤ F
α(k).

Proof. See Section 4.12.6. �

In Algorithms 11 and 12, the AMM−PGO∗ method’s adaptive restart scheme requires

a master node to evaluate and compare F (X(k+1)) and F (k) in order to keep F (X(k+1)) ≤

F
(k). In spite of local communication, we remark it is still possible to result in F (X(k+1)) ≤

F
(k) for distributed PGO without master node as follows:

(1) From Propositions 4.9.1(a) and 4.9.1(b), we obtain F (X(k+1)) =
∑

α∈A F
α(k+1) and

F
(k)

=
∑

α∈A F
α(k), and as a result,

188

(4.86) F (X(k+1)) =
∑
α∈A

Fα(k+1) ≤
∑
α∈A

F
α(k)

= F
(k)

as long as

(4.87) Fα(k+1) ≤ F
α(k)

for each node α ∈ A. In addition, Proposition 4.9.1(c) indicates that Gα(k+1) ≤ F
α(k)

leads to Eq. (4.87). Therefore, F (X(k+1)) ≤ F
(k) is reduced to requiring

(4.88) Gα(k+1) ≤ F
α(k)

for each node α ∈ A.

(2) In terms of Gα(k+1) and Fα(k), we obtain from Eq. (4.83) that Eq. (4.88) is equivalent

to

(4.89) Gα(k+1) = Gα(Xα(k+1)|X(k)) + Fα(k) ≤ F
α(k)

.

From Eqs. (4.86) to (4.89), we conclude Fα(k+1) ≤ F
α(k) and F (X(k+1)) ≤ F

(k) as long

as

(4.90) Gα(Xα(k+1)|X(k)) ≤ 0

and

(4.91) Fα(k) ≤ F
α(k)

for each node α ∈ A.

(3) Recall from Eq. (4.31) that Gα(Xα(k)|X(k)) = 0. Then, if Xα in Eqs. (4.58) and (4.59)

is initialized with Xα(k), the resulting Xα(k+1) has

189

(4.92) Gα(Xα(k+1)|X(k)) ≤ Gα(Xα(k)|X(k)) = 0,

which yields Eq. (4.90).

(4) In Section 4.12.7, it can be shown by induction that Eq. (4.91) holds for distributed

PGO without master node.

From the discussion above, we conclude that Eqs. (4.90) and (4.91) can be always satisfied,

and more importantly, result in F (X(k+1)) ≤ F
(k) for distributed PGO without master

node. This suggests an adaptive restart scheme that evaluates and compares Gα(k+1)

and F
α(k) independently at each node α ∈ A to keep F (X(k+1)) ≤ F

(k). We emphasize

that the resulting adaptive restart scheme requires no master node and evaluates neither

F (X(k+1)) nor F (k). Therefore, such an adaptive restart scheme differs from these in

the AMM−PGO∗ method and [59,134,135] that rely on a master node to evaluate and

compare F (X(k+1)) and F (k). In addition, the adaptive restart scheme takes at most one

inter-node communication round among neighboring nodes at each iteration, which is well

suited for distributed PGO without master node.

4.9.2. Algorithm

Following the adaptive restart scheme usingGα(k+1) and Fα(k), we obtain the AMM−PGO#

method (Algorithm 13), where “#” indicates that no master node is needed.

The outline of the AMM−PGO# method is as follows:

1) In lines 5, 14 of Algorithm 13, each node α performs one inter-node communication

round to retrieve Xβ(k) and Y β(k) from its neighbors β ∈ N α. We remark that no other

inter-node communication is required.

190

Algorithm 13 The AMM−PGO# Method

1: Input: An initial iterate X(0) ∈ X , and η ∈ (0, 1], and ζ ≥ ξ ≥ 0, and ψ > 0, and
φ > 0.

2: Output: A sequence of iterates {X(k)} and {X(k+ 1
2

)}.
3: for node α← 1, · · · , |A| do
4: Xα(−1) ← Xα(0) and sα(0) ← 1

5: retrieve Xβ(−1) and Xβ(0) from β ∈ Nα
6: evaluate Fα(−1) using Eq. (4.81)
7: evaluate Fα(−1) using Eq. (4.82)
8: Gα(0) ← Gα(Xα(0)|X(−1)) + Fα(−1)

9: end for
10: for k← 0, 1, 2, · · · do
11: for node α← 1, · · · , |A| do

12: sα(k+1) ←

√
4sα(k)2

+ 1 + 1

2
, λα(k) ← sα(k) − 1

sα(k+1)

13: Y α(k) ← Xα(k) + λα(k) ·
(
Xα(k) −Xα(k−1)

)
14: retrieve Xβ(k) and Y β(k) from β ∈ Nα
15: Fα(k) ← Gα(k) + ∆Gα(X(k)|X(k−1)) using Eqs. (4.80) and (4.83)
16: F

α(k) ← (1− η) · Fα(k−1)
+ η · Fα(k)

17: update Xα(k+ 1
2

) and Xα(k+1) using Algorithm 14
18: end for
19: end for

2) In lines 6, 7, 15, 16 of Algorithm 13 and lines 4, 6, 9, 13 of Algorithm 14, each node α

evaluates Fα(k), Fα(k), Gα(k+ 1
2

), Gα(k+1) that are used for adaptive restart. Note that

Xβ(k) and Xβ(k−1) from node α’s neighbors β ∈ N α are needed.

3) In lines 7 to 15 of Algorithm 14, each node α performs independent adaptive restart

such that Gα(k+ 1
2

) ≤ F
α(k) and Gα(k+1) ≤ F

α(k), which also results in F (X(k+1)) ≤ F
(k)

and a nonincreasing sequence of F (k) for distributed PGO without master node.

4) In lines 16 to 18 of Algorithm 14, Gα(k+1) is guaranteed to yield sufficient improvement

over Fα(k+1) compared to Gα(k+ 1
2

).

191

Algorithm 14 Update X(k+ 1
2

) and X(k+1) for the AMM−PGO# Method

1: evaluate ωαβ(k)
ij and ωβα(k)

ji using Eq. (4.19)

2: evaluate ∇XαF (X(k)) and ∇XαF (Y (k)) using Eq. (4.43)

3: Xα(k+ 1
2

) ← arg min
Xα∈Xα

Hα(Xα|Y (k)) using Algorithm 10

4: Gα(k+ 1
2

) ← Gα(Xα(k+ 1
2

)|X(k)) + Fα(k)

5: Xα(k+1) ← improve arg min
Xα∈Xα

Gα(Xα|Y (k)) with Xα(k+ 1
2

) as the initial guess

6: Gα(k+1) ← Gα(Xα(k+1)|X(k)) + Fα(k)

7: if Gα(k+ 1
2

) > F
α(k) − ψ · ‖Xα(k+ 1

2
) −Xα(k)‖2 then

8: Xα(k+ 1
2

) ← arg min
Xα∈Xα

Hα(Xα|X(k)) using Algorithm 10

9: Gα(k+ 1
2

) ← Gα(Xα(k+ 1
2

)|X(k)) + Fα(k)

10: end if
11: if Gα(k+1) > F

α(k) then
12: Xα(k+1)← improve arg min

Xα∈Xα
Gα(Xα|X(k)) with Xα(k+ 1

2
) as the initial guess

13: Gα(k+1) ← Gα(Xα(k+1)|X(k)) + Fα(k)

14: sα(k+1) ← max{1
2
sα(k+1), 1}

15: end if
16: if Fα(k) −Gα(k+1) < φ ·

(
F
α(k) −Gα(k+ 1

2
)
)
then

17: Xα(k+1) ← Xα(k+ 1
2

) and Gα(k+1) ← Gα(k+ 1
2

)

18: end if

The AMM−PGO# method is guaranteed to converge to first-order critical points under

mild conditions as the following propositions states.

Proposition 4.9.2. If Assumptions 4.1 to 4.3 hold, then for a sequence of iterates

{X(k)} generated by Algorithm 13, we obtain

(a) F (k) is nonincreasing;

(b) F (X(k))→ F∞ and F (k) → F∞ as k→∞;

(c) ‖X(k+1) −X(k)‖ → 0 as k→∞ if ζ > ξ > 0;

192

(d) ‖X(k+ 1
2

) −X(k)‖ → 0 as k→∞ if ζ > ξ > 0;

(e) if ζ > ξ > 0, then there exists ε > 0 such that

min
0≤k<K

‖gradF (X(k+ 1
2

))‖ ≤ 2

√
1

ε
· F (X(0))− F∞

K + 1

for any K ≥ 0;

(f) if ζ > ξ > 0, then gradF (X(k))→ 0 and gradF (X(k+ 1
2

))→ 0 as k→∞;

Proof. See Section 4.12.7. �

In spite of limited local communication, the AMM−PGO# method has provable conver-

gence as long as each node α ∈ A can communicate with its neighbors β ∈ N α. Thus, the

AMM−PGO# method eliminates the bottleneck of communication for distributed PGO

without a master node in contrast to the AMM−PGO∗ method and [59]. In addition, note

that the AMM−PGO# method results in F (X(k+1)) ≤ G(X(k+1)|X(k)) ≤ F
(k) instead of

F (X(k+1)) ≤ G(X(k+1)|X(k)) ≤ F (X(k)) in [1]. Recalling F (X(k)) ≤ F
(k), we conclude

that the AMM−PGO# method prevents unnecessary adaptive restarts and mitigates the

impacts that G(X(k+1)|X(k)) is an upper-bound of F (X(k+1)), which is expected to make

better use of Nesterov’s method for acceleration and have faster convergence than [1].

4.10. Experiments

In this section, we evaluate the performance of our MMmethods (MM−PGO, AMM−PGO∗

and AMM−PGO#) for distributed PGO on the simulated Cube datasets and a number of

2D and 3D SLAM benchmark datasets [7]. In terms of MM−PGO, AMM−PGO∗ and

AMM−PGO#, η, ξ, ζ, ψ and φ in Algorithms 9, 11 and 13 are 5 × 10−4, 1 × 10−10,

1.5 × 10−10, 1 × 10−10 and 1 × 10−6, respectively, for all the experiments. In addition,

193

MM−PGO, AMM−PGO∗ and AMM−PGO# can take at most one iteration when solving

Eqs. (4.59) and (4.76) to improve the estimates. All the experiments have been performed

on a laptop with an Intel Xeon(R) CPU E3-1535M v6 and 64GB of RAM running Ubuntu

18.04.

Figure 4.2. A Cube dataset has 12×12×12 grids of side length of 1 m, 3600
poses, probability of loop closure of 0.1, an translational RSME of σt = 0.02
m and an angular RSME of σR = 0.02π rad.

4.10.1. Cube Datasets

In this section, we test and evaluate our MM methods for distributed PGO on 20

simulated Cube datasets (see Fig. 4.2) with 5, 10 and 50 robots.

In the experiment, a simulated Cube dataset has 12 × 12 × 12 cube grids with 1 m

side length, a path of 3600 poses along the rectilinear edge of the cube grid, odometric

measurements between all the pairs of sequential poses, and loop-closure measurements

between nearby but non-sequential poses that are randomly available with a probability

194

of 0.1. We generate the odometric and loop-closure measurements according to the noise

models in [7] with an expected translational RMSE of σt = 0.02 m and an expected angular

RMSE of σR = 0.02π rad. The centralized chordal initialization [8] is implemented such

that distributed PGO with different number of robots have the same initial estimate. The

maximum number of iterations is 1000.

We evaluate the convergence of MM−PGO, AMM−PGO∗ and AMM−PGO# in terms of

the relative suboptimality gap and Riemannian gradient norm. For reference, we also make

comparisons against AMM−PGO [1]. Note that AMM−PGO is the original accelerated MM

method for distributed PGO whose adaptive restart scheme is conservative and might

prohibit Nesterov’s acceleration.

Relative Suboptimality Gap. We implement the certifiably-correct SE−Sync [7] to

get the globally optimal objective value F ∗ for distributed PGO with the trivial loss kernel

(Example 4.1), making it possible to compute the relative suboptimality gap (F −F ∗)/F ∗

where F is the objective value for each iteration. The results are in Fig. 4.3.

Riemannian Gradient Norm. We also compute the Riemannian gradient norm

for distributed PGO with the trivial (Example 4.1) and nontrivial—Huber (Example 4.2)

and Welsch (Example 4.3)—losses kernels for evaluation. Note that it is difficult to find

the globally optimal solution to distributed PGO if nontrivial loss kernels are used. The

results are in Figs. 4.4 to 4.6.

195

(a) AMM−PGO# vs.
MM−PGO with the trivial
loss on 5, 10, 50 robots

(b) 5 robots

(c) 10 robots (d) 50 robots

Figure 4.3. The relative suboptimality gaps of the MM−PGO, AMM−PGO∗,
AMM−PGO# and AMM−PGO [1] methods for distributed PGO with the
trivial loss kernel on 5, 10 and 50 robots. The results are averaged over 20
Monte Carlo runs.

In Figs. 4.3 to 4.6, it can be seen that MM−PGO, AMM−PGO∗, AMM−PGO# and

AMM−PGO have a faster convergence if the number of robots (nodes) decreases. This is ex-

pected since G(X|X(k)) and H(X|X(k)) in Eqs. (4.29) and (4.35) result in tighter approx-

imations for distributed PGO with fewer robots (nodes). In addition, Figs. 4.4 to 4.6 sug-

gest that the convergence rate of MM−PGO, AMM−PGO∗, AMM−PGO# and AMM−PGO

196

(a) AMM−PGO# vs.
MM−PGO with the trivial
loss on 5, 10, 50 robots

(b) 5 robots

(c) 10 robots (d) 50 robots

Figure 4.4. The Riemannian gradient norms of theMM−PGO, AMM−PGO∗,
AMM−PGO# and AMM−PGO [1] methods for distributed PGO with the
trivial loss kernel on 5, 10 and 50 robots. The results are averaged over 20
Monte Carlo runs.

also relies on the type of loss kernels. Nevertheless, AMM−PGO∗, AMM−PGO# and

AMM−PGO accelerated by Nesterov’s method outperform the unaccelerated MM−PGO

method by a large margin for any number of robots and any types of loss kernels, which

197

(a) AMM−PGO# vs.
MM−PGO with the Huber
loss on 5, 10, 50 robots

(b) 5 robots

(c) 10 robots (d) 50 robots

Figure 4.5. The Riemannian gradient norms of theMM−PGO, AMM−PGO∗,
AMM−PGO# and AMM−PGO [1] methods for distributed PGO with the
Huber loss kernel on 5, 10 and 50 robots. The results are averaged over 20
Monte Carlo runs.

means that Nesterov’s method improves the convergence of distributed PGO. In particu-

lar, Figs. 4.3(a), 4.4(a), 4.5(a) and 4.6(a) indicate that AMM−PGO# with 50 robot still

converges faster than MM−PGO with 5 robots despite that the later has a much smaller

198

(a) AMM−PGO# vs.
MM−PGO with the Welsch
loss on 5, 10, 50 robots

(b) 5 robots

(c) 10 robots (d) 50 robots

Figure 4.6. The Riemannian gradient norms of theMM−PGO, AMM−PGO∗,
AMM−PGO# and AMM−PGO [1] methods for distributed PGO with the
Welsch loss kernel on 5, 10 and 50 robots. The results are averaged over 20
Monte Carlo runs.

number of robots. Therefore, we conclude that the implementation of Nesterov’s method

accelerate the convergence of distributed PGO.

Furthermore, we emphasize the convergence comparisons of AMM−PGO∗, AMM−PGO#

and AMM−PGO, which are all accelerated with Nesterov’s method while differing from

199

each other by the adaptive restart schemes—AMM−PGO∗ has an additional master node to

aggregate information from all the robots (nodes), whereas AMM−PGO# and AMM−PGO

are restricted to one inter-node communication round per iteration among neighboring

robots (nodes). Notwithstanding limited local communication, as is shown in Figs. 4.3

to 4.6, AMM−PGO# has a convergence rate comparable to that of AMM−PGO∗ using a

master node while being significantly faster than AMM−PGO. In particular, AMM−PGO#

reduces adaptive restarts by 80% to 95% compared to AMM−PGO on the Cube datasets,

and thus, is expected to make better use of Nesterov’s acceleration. Since AMM−PGO#

and AMM−PGO differ in the adaptive restart schemes, we attribute the faster convergence

of AMM−PGO# to its redesigned adaptive restart scheme. These results suggest that

AMM−PGO# is advantageous over other methods for very large-scale distributed PGO

where computational and communicational efficiency are equally important.

4.10.2. Benchmark Datasets

In this section, we evaluate our MMmethods (MM−PGO, AMM−PGO∗ and AMM−PGO#)

for distributed PGO on a number of 2D and 3D SLAM benchmark datasets (see Ta-

ble 4.1) [7]. We use the trivial loss kernel and assume that there are no outliers such

that the globally optimal solution can be exactly computed with SE−Sync [7]. For

each dataset, we also make comparisons against SE−Sync [7], distributed Gauss-Seidel

(DGS) [5] and the Riemannian block coordinate descent (RBCD) [6] method, all of which

are the state-of-the-art algorithms for centralized and distributed PGO. The SE−Sync

and DGS methods use the recommended settings in [5,7]. We implement two Nesterov’s

accelerated variants of RBCD [6], i.e., one with greedy selection rule and adaptive restart

200

(RBCD++∗) and the other with uniform selection rule and fixed restart (RBCD++#)2. As

mentioned before, AMM−PGO∗ and AMM−PGO# can take at most one iteration when up-

datingXα(k+1) using Eqs. (4.59) and (4.76), which is similar to RBCD++∗ and RBCD++#.

An overview of the aforementioned methods is given in Table 4.2.

Number of Iterations. First, we examine the convergence ofMM−PGO, AMM−PGO∗,

AMM−PGO#, DGS [5], RBCD++∗ [6] and RBCD++# [6] w.r.t. the number of iterations.

The distributed PGO has 10 robots and all the methods are initialized with the distributed

Nesterov’s accelerated chordal initialization [1].

The reconstruction results using AMM−PGO# are shown in Figs. 4.7 and 4.8 and the

objective values of each method with 100, 250 and 1000 iterations are reported in Ta-

bles 4.3 and 4.4. For almost all the benchmark datasets, AMM−PGO∗ and AMM−PGO#

outperform the other methods (MM−PGO, DGS, RBCD++∗ and RBCD++#). While

RBCD++∗ and RBCD++# have similar performances in four comparatively simple datasets—

CSAIL, sphere, torus and grid—we remark that AMM−PGO∗ and AMM−PGO# achieve

much better results in the other more challenging datasets in particular if there are no

more than 250 iterations. As discussed later, AMM−PGO∗ and AMM−PGO# have faster

convergence to more accurate estimates without any extra computation and communica-

tion in contrast to RBCD++∗ and RBCD++#. Last but not the least, Tables 4.3 and 4.4

demonstrate that the accelerated AMM−PGO∗ and AMM−PGO# converge significantly

faster than the unaccelerated MM−PGO, which further validates the usefulness of Nes-

terov’s method.

2In the experiments, we run RBCD++# [6] with fixed restart frequencies of 30, 50 and 100 iterations for
each dataset and select the one with the best performance.

201

Table 4.1. 2D and 3D SLAM benchmark datasets.

Dataset 2D/3D # Poses # Measurements
Simulated
Dataset

ais2klinik 2D 15115 16727 No
city 2D 10000 20687 Yes

CSAIL 2D 1045 1172 No
M3500 2D 3500 5453 Yes
intel 2D 1728 2512 No
MITb 2D 808 827 No
sphere 3D 2500 4949 Yes
torus 3D 5000 9048 Yes
grid 3D 8000 22236 Yes

garage 3D 1661 6275 No
cubicle 3D 5750 16869 No

rim 3D 10195 29743 No

Table 4.2. An overview of the state-of-the-art algorithms for distributed and
centralized PGO. Note that AMM−PGO∗ and RBCD++∗ require a master
node for distributed PGO. In addition, AMM−PGO# is the only acceler-
ated method for distributed PGO that has provable convergence without a
master node.

Method Distributed Accelerated Masterless Converged

SE−Sync [7] No N/A N/A Yes
DGS [5] Yes No Yes No

RBCD++∗ [6] Yes Yes No Yes
RBCD++# [6] Yes Yes Yes No
MM−PGO Yes No Yes Yes

AMM−PGO∗ Yes Yes No Yes
AMM−PGO# Yes Yes Yes Yes

202

(a) ais2klinik (b) city

(c) CSAIL (d) M3500

(e) intel (f) MITb

Figure 4.7. AMM−PGO# results on the 2D SLAM benchmark datasets
where the different colors denote the odometries of different robots. The
distributed PGO has 10 robots and is initialized with the distributed Nes-
terov’s accelerated chordal initialization [1]. The number of iterations is
1000.

203

(a) sphere (b) torus

(c) grid (d) garage

(e) cubicle (f) rim

Figure 4.8. AMM−PGO# results on the 3D SLAM benchmark datasets
where the different colors denote the odometries of different robots. The
distributed PGO has 10 robots and is initialized with the distributed Nes-
terov’s accelerated chordal initialization [1]. The number of iterations is
1000.

204
Ta

bl
e
4.
3.

R
es
ul
ts

of
di
st
ri
bu

te
d
P
G
O

on
th
e
2D

SL
A
M

B
en
ch
m
ar
k
da

ta
se
ts

(s
ee

Ta
bl
e
4.
1)
.
T
he

di
st
ri
bu

te
d
P
G
O

ha
s
10

ro
bo

ts
an

d
is
in
it
ia
liz
ed

w
it
h
th
e
di
st
ri
bu

te
d
N
es
te
ro
v’
s
ac
ce
le
ra
te
d
ch
or
da

l
in
it
ia
liz
at
io
n
[1
].
W
e
re
po

rt
th
e
ob

je
ct
iv
e
va
lu
es

of
ea
ch

m
et
ho

d
w
it
h
10

0,
25

0
an

d
10
00

it
er
at
io
ns
.

F
(k

)
an

d
F
∗
ar
e
th
e
ob

je
ct
iv
e
va
lu
e
at

it
er
at
io
n
k
an

d
gl
ob

al
ly

op
ti
m
al

ob
je
ct
iv
e
va
lu
e,

re
sp
ec
ti
ve
ly
.

T
he

be
st

re
su
lt
s
ar
e
co
lo
re
d
in

re
d
an

d
th
e
se
co
nd

be
st

in
bl
ue

if
no

m
et
ho

ds
ti
e
fo
r
th
e
be

st
.

D
at
as
et

F
(0

)
F
∗

k

F
(k

)

M
et
ho

ds
w
/
M
as
te
r
N
od

e
M
et
ho

ds
w
/o

M
as
te
r
N
od

e
A
M
M
−P

G
O
∗

R
B
C
D

+
+
∗
[6
]

M
M
−P

G
O

A
M
M
−P

G
O

#
D
G
S
[5
]

R
B
C
D

+
+

#
[6
]

2D
SL

A
M

B
en

ch
m
ar
k
D
at
as
et
s

ai
s2

kl
in

ik
3.

83
75
×

10
2

1.
88

50
×

10
2

10
0

2
.0

37
2
×

10
2

2
.1

07
9
×

10
2

2.
19

14
×

10
2

2
.0

37
1
×

10
2

8
.4

7
0
1
×

1
02

2
.1

7
1
5
×

1
02

25
0

1
.9

44
7
×

10
2

2
.0

07
7
×

10
2

2.
13

71
×

10
2

1
.9

44
6
×

10
2

9
.1

6
2
3
×

1
01

2
.1

0
8
4
×

1
02

10
00

1
.8

97
3
×

10
2

1
.9

07
4
×

10
2

2.
05

85
×

10
2

1
.8

93
6
×

10
2

3
.8

9
6
8
×

1
02

2
.0

2
5
3
×

1
02

ci
ty

7.
04

04
×

10
2

6.
38

62
×

10
2

10
0

6
.4

32
7
×

10
2

6
.5

13
8
×

10
2

6.
50

61
×

10
2

6
.4

32
7
×

10
2

7
.7

7
4
5
×

1
02

6
.5

3
9
6
×

1
02

25
0

6
.3

89
9
×

10
2

6
.4

73
2
×

10
2

6.
48

50
×

10
2

6
.3

89
9
×

10
2

7
.0

0
6
3
×

1
02

6
.5

1
2
2
×

1
02

10
00

6
.3

86
2
×

10
2

6
.3

93
5
×

10
2

6.
44

61
×

10
2

6
.3

86
3
×

10
2

6
.5

5
8
3
×

1
02

6
.4

7
6
8
×

1
02

C
SA

IL
3.

17
19
×

10
1

3.
17

04
×

10
1

10
0

3
.1

70
4
×

10
1

3
.1

70
4
×

10
1

3.
17

06
×

10
1

3
.1

70
4
×

10
1

3
.2

4
7
9
×

1
01

3
.1

7
0
5
×

1
01

25
0

3
.1

70
4
×

10
1

3
.1

70
4
×

10
1

3.
17

06
×

10
1

3
.1

70
4
×

10
1

3
.1

7
9
2
×

1
01

3
.1

7
0
4
×

1
01

10
00

3
.1

70
4
×

10
1

3
.1

70
4
×

10
1

3.
17

05
×

10
1

3
.1

70
4
×

10
1

3
.1

7
1
2
×

1
01

3
.1

7
0
4
×

1
01

M
35

00
2.

23
11
×

10
2

1.
93

86
×

10
2

10
0

1
.9

44
6
×

10
2

1
.9

51
1
×

10
2

1.
95

60
×

10
2

1
.9

44
7
×

10
2

1
.9

5
5
7
×

1
02

1
.9

5
5
1
×

1
02

25
0

1
.9

41
4
×

10
2

1
.9

44
3
×

10
2

1.
95

16
×

10
2

1
.9

41
4
×

10
2

1
.9

4
4
5
×

1
02

1
.9

5
1
1
×

1
02

10
00

1
.9

38
8
×

10
2

1
.9

39
2
×

10
2

1.
94

61
×

10
2

1
.9

38
8
×

10
2

1
.9

4
1
5
×

1
02

1
.9

4
5
5
×

1
02

in
te

l
5.

32
69
×

10
1

5.
23

48
×

10
1

10
0

5
.2

39
7
×

10
1

5
.2

49
6
×

10
1

5.
25

17
×

10
1

5
.2

39
7
×

10
1

5
.2

5
4
1
×

1
01

5
.2

5
2
6
×

1
01

25
0

5
.2

35
2
×

10
1

5
.2

41
5
×

10
1

5.
24

83
×

10
1

5
.2

35
1
×

10
1

5
.2

4
4
1
×

1
01

5
.2

4
8
9
×

1
01

10
00

5
.2

34
8
×

10
1

5
.2

34
9
×

10
1

5.
24

21
×

10
1

5
.2

34
8
×

10
1

5
.2

3
8
1
×

1
01

5
.2

4
2
5
×

1
01

M
IT

b
8.

84
30
×

10
1

6.
11

54
×

10
1

10
0

6
.1

33
1
×

10
1

6
.1

51
8
×

10
1

6.
36

57
×

10
1

6
.1

33
0
×

10
1

9
.5

4
6
0
×

1
01

6
.1

9
9
7
×

1
01

25
0

6
.1

15
7
×

10
1

6
.1

18
7
×

10
1

6.
23

35
×

10
1

6
.1

16
5
×

10
1

7
.8

2
7
3
×

1
01

6
.1

5
9
9
×

1
01

10
00

6
.1

15
4
×

10
1

6
.1

15
4
×

10
1

6.
14

54
×

10
1

6
.1

15
4
×

10
1

7
.2

4
5
0
×

1
01

6
.1

2
0
9
×

1
01

205
Ta

bl
e
4.
4.

R
es
ul
ts

of
di
st
ri
bu

te
d
P
G
O

on
th
e
3D

SL
A
M

B
en
ch
m
ar
k
da

ta
se
ts

(s
ee

Ta
bl
e
4.
1)
.
T
he

di
st
ri
bu

te
d
P
G
O

ha
s
10

ro
bo

ts
an

d
is
in
it
ia
liz
ed

w
it
h
th
e
di
st
ri
bu

te
d
N
es
te
ro
v’
s
ac
ce
le
ra
te
d
ch
or
da

l
in
it
ia
liz
at
io
n
[1
].
W
e
re
po

rt
th
e
ob

je
ct
iv
e
va
lu
es

of
ea
ch

m
et
ho

d
w
it
h
10

0,
25

0
an

d
10
00

it
er
at
io
ns
.

F
(k

)
an

d
F
∗
ar
e
th
e
ob

je
ct
iv
e
va
lu
e
at

it
er
at
io
n
k
an

d
gl
ob

al
ly

op
ti
m
al

ob
je
ct
iv
e
va
lu
e,

re
sp
ec
ti
ve
ly
.

T
he

be
st

re
su
lt
s
ar
e
co
lo
re
d
in

re
d
an

d
th
e
se
co
nd

be
st

in
bl
ue

if
no

m
et
ho

ds
ti
e
fo
r
th
e
be

st
.

D
at
as
et

F
(0

)
F
∗

k

F
(k

)

M
et
ho

ds
w
/
M
as
te
r
N
od

e
M
et
ho

ds
w
/o

M
as
te
r
N
od

e
A
M
M
−P

G
O
∗

R
B
C
D

+
+
∗
[6
]

M
M
−P

G
O

A
M
M
−P

G
O

#
D
G
S
[5
]

R
B
C
D

+
+

#
[6
]

3D
SL

A
M

B
en

ch
m
ar
k
D
at
as
et
s

sp
he

re
1.

97
04
×

10
3

1.
68

70
×

10
3

10
0

1.
68

70
×

10
3

1
.6

87
0
×

10
3

1
.6

90
1
×

10
3

1.
68

70
×

10
3

1
.6

87
5
×

1
03

1
.6

8
7
0
×

1
03

25
0

1.
68

70
×

10
3

1
.6

87
0
×

10
3

1
.6

87
4
×

10
3

1.
68

70
×

10
3

1
.6

87
2
×

1
03

1
.6

8
7
0
×

1
03

10
00

1.
68

70
×

10
3

1
.6

87
0
×

10
3

1
.6

87
0
×

10
3

1.
68

70
×

10
3

1
.6

87
2
×

1
03

1
.6

8
7
0
×

1
03

to
ru

s
2.

46
54
×

10
4

2.
42

27
×

10
4

10
0

2.
42

27
×

10
4

2
.4

22
7
×

10
4

2
.4

23
4
×

10
4

2.
42

27
×

10
4

2
.4

24
8
×

1
04

2
.4

2
2
7
×

1
04

25
0

2.
42

27
×

10
4

2
.4

22
7
×

10
4

2
.4

22
7
×

10
4

2.
42

27
×

10
4

2
.4

24
3
×

1
04

2
.4

2
2
7
×

1
04

10
00

2.
42

27
×

10
4

2
.4

22
7
×

10
4

2
.4

22
7
×

10
4

2.
42

27
×

10
4

2
.4

23
6
×

1
04

2
.4

2
2
7
×

1
04

gr
id

2.
82

18
×

10
5

8.
43

19
×

10
4

10
0

8.
43

23
×

10
4

8
.4

32
0
×

10
4

1
.0

83
0
×

10
5

8.
43

99
×

10
4

1
.4

84
7
×

1
0

5
8
.4

9
2
0
×

1
0

4

25
0

8.
43

19
×

10
4

8
.4

31
9
×

10
4

8
.6

05
4
×

10
4

8.
43

21
×

10
4

1
.4

06
6
×

1
05

8
.4

3
1
9
×

1
04

10
00

8.
43

19
×

10
4

8
.4

31
9
×

10
4

8
.4

31
9
×

10
4

8.
43

19
×

10
4

1
.4

65
4
×

1
05

8
.4

3
1
9
×

1
04

ga
ra

ge
1.

54
70
×

10
0

1.
26

25
×

10
0

10
0

1.
31

05
×

10
0

1
.3

28
2
×

10
0

1
.3

39
6
×

10
0

1.
31

05
×

10
0

1
.3

17
0
×

1
0

0
1
.3

3
6
4
×

1
0

0

25
0

1.
28

72
×

10
0

1
.3

09
4
×

10
0

1
.3

28
8
×

10
0

1.
28

72
×

10
0

1
.2

86
7
×

1
00

1
.3

2
7
6
×

1
00

10
00

1.
26

36
×

10
0

1
.2

68
1
×

10
0

1
.3

14
5
×

10
0

1.
26

36
×

10
0

1
.2

72
2
×

1
00

1
.3

1
2
4
×

1
00

cu
bi

cl
e

8.
35

14
×

10
2

7.
17

13
×

10
2

10
0

7.
18

12
×

10
2

7
.2

04
8
×

10
2

7
.2

30
0
×

10
2

7.
18

12
×

10
2

7
.3

18
5
×

1
0

2
7
.2

2
1
0
×

1
0

2

25
0

7.
17

14
×

10
2

7
.1

79
4
×

10
2

7
.2

08
2
×

10
2

7.
17

15
×

10
2

7
.2

30
8
×

1
02

7
.2

0
8
1
×

1
02

10
00

7.
17

13
×

10
2

7
.1

71
3
×

10
2

7
.2

08
2
×

10
2

7.
17

13
×

10
2

7
.2

04
4
×

1
02

7
.1

8
4
5
×

1
02

rim
8.

14
06
×

10
4

5.
46

09
×

10
3

10
0

5.
50

44
×

10
3

5
.7

18
4
×

10
3

5
.8

13
8
×

10
3

5.
50

44
×

10
3

6
.1

84
0
×

1
03

5
.7

8
1
0
×

1
03

25
0

5.
46

48
×

10
3

5
.5

05
0
×

10
3

5
.7

19
7
×

10
3

5.
46

48
×

10
3

6
.1

18
4
×

1
03

5
.7

1
9
5
×

1
03

10
00

5.
46

09
×

10
3

5
.4

61
7
×

10
3

5
.5

50
9
×

10
3

5.
46

09
×

10
3

6
.0

25
8
×

1
03

5
.5

3
7
3
×

1
03

206

We also compute the performance profiles [136] based on the number of iterations.

Given a tolerance ∆ ∈ (0, 1], the objective value threshold F∆(p) for PGO problem p is

defined to be

(4.93) F∆(p) = F ∗ + ∆ ·
(
F (0) − F ∗

)
,

where F (0) and F ∗ are the initial and globally optimal objective values, respectively.

Let I∆(p) denote the minimum number of iterations a PGO method takes to reduce the

objective value to F∆(p), i.e.,

I∆(p) , min
k

{
k ≥ 0|F (k) ≤ F∆(p)

}
,

where F (k) is the objective value at iteration k. Then, for a problem set P , the performance

profiles of a PGO method is the percentage of problems solved w.r.t. the number of

iterations k:

percentage of problems solved
at iteration k

,

∣∣{p ∈ P|I∆(p) ≤ k}
∣∣

|P|
.

The performance profiles based on the number of iterations over a variety of 2D and

3D SLAM benchmark datasets (see Table 4.1) are shown in Fig. 4.9. The tolerances

evaluated are ∆ = 1× 10−2, 5× 10−3, 1× 10−3 and 1× 10−4. We report the performance

of MM−PGO, AMM−PGO∗, AMM−PGO#, DGS [5], RBCD++∗ [6] and RBCD++# [6] for

distributed PGO with 10 robots (nodes). As expected, AMM−PGO∗ and AMM−PGO∗

dominates the other methods (MM−PGO, DGS, RBCD++∗ and RBCD++#) in terms of

the convergence for all the tolerances ∆, which means that AMM−PGO∗ and AMM−PGO∗

are better choices for distributed PGO.

207

(a) ∆ = 1× 10−2 (b) ∆ = 5× 10−3

(c) ∆ = 1× 10−3 (d) ∆ = 1× 10−4

Figure 4.9. Performance profiles for MM−PGO, AMM−PGO∗, AMM−PGO#,
DGS [5], RBCD++∗ [6] and RBCD++∗ [6] over a variety of 2D and 3D
SLAM Benchmark datasets (see Table 4.1). The performance is based on
the number of iterations k and the evaluation tolerances are ∆ = 1× 10−2,
5 × 10−3, 1 × 10−3 and 1 × 10−4. The distributed PGO has 10 robots
(nodes) and is initialized with the distributed Nesterov’s accelerated chordal
initialization [1]. Note that AMM−PGO∗ and RBCD++∗ [6] require a master
node, whereas MM−PGO, AMM−PGO#, DGS [5] and RBCD++# [6] do not.

In Tables 4.3 and 4.4 and Fig. 4.9, we emphasize that AMM−PGO# requiring no master

node achieves comparable performance to that of AMM−PGO∗ using a master node, and

208

is a lot better than all the other methods with a master node (RBCD++∗) and without

(MM−PGO, DGS and RBCD++#). Even though RBCD++∗ and RBCD++# are simi-

larly accelerated with Nesterov’s method, we remark that RBCD++# without a master

node suffers a great performance drop compared to RBCD++∗, and more importantly,

RBCD++# has no convergence guarantees to first-order critical points. These results

reverify that AMM−PGO# is more suitable for very large-scale distributed PGO with

limited local communication.

Note that all of MM−PGO, AMM−PGO∗, AMM−PGO#, DGS [5], RBCD++∗ [6] and

RBCD++# [6] have to exchange poses of inter-node measurements with the neighbors,

and thus, need almost the same amount of communication per iteration. However, Fig. 4.9

indicates that AMM−PGO∗ and AMM−PGO# have much faster convergence in terms of the

number of iterations, which also means less communication for the same level of accuracy.

In addition, RBCD++∗ and RBCD++# have to keep part of the nodes in idle during

optimization and rely on red-black coloring for block aggregation and random sampling

for block selection, which induce additional computation and communication. In contrast,

neither AMM−PGO∗ nor AMM−PGO# has any extra practical restrictions except those in

Assumptions 4.1 to 4.4.

Optimization Time. In addition, we evaluate the speedup of AMM−PGO∗ and

AMM−PGO# with different numbers of robots (nodes) against the state-of-the-art central-

ized algorithm SE−Sync [7]. To improve the optimization time efficiency of AMM−PGO∗

and AMM−PGO#, Xα(k+1) in Eqs. (4.59) and (4.76) uses the same rotation as Xα(k+ 1
2

)

and only updates the translation. Since the number of robots varies in the experiments,

the centralized chordal initialization [8] is adopted for all the methods.

209

Similar to the number of iterations, we also use the performance profiles to evaluate

AMM−PGO∗ and AMM−PGO# in terms of the optimization time. Recall from Eq. (4.93)

the objective value threshold F∆(p) where p is the PGO problem and ∆ ∈ (0, 1] is

the tolerance. Since the average optimization time per node is directly related with

the speedup, we measure the efficiency of a distributed PGO method with N nodes by

computing the average optimization time T∆(p,N) that each node takes to reduce the

objective value to F∆(p):

T∆(p,N) =
T∆(p)

N
,

where T∆(p) denotes the total optimization time of all the N nodes. We remark that the

centralized optimization method has N = 1 node and T∆(p,N) = T∆(p). Let TSE−Sync

denote the optimization time that SE−Sync needs to find the globally optimal solution.

The performance profiles assume a distributed PGO method solves problem p for some

µ ∈ [0, +∞) if T∆(p,N) ≤ µ ·TSE−Sync. Note that µ is the scaled average optimization time

per node and SE−Sync solves problem p globally at µ = 1. Then, as a result of [136],

the performance profiles evaluate the speedup of distributed PGO methods for a given

optimization problem set P using the percentage of problems solved w.r.t. the scaled

average optimization time per node µ ∈ [0, +∞):

percentage of problems
solved at µ ,

∣∣{p ∈ P|T∆(p, N)≤µ · TSE−Sync}
∣∣

|P|
.

Fig. 4.10 shows the performance profiles based on the scaled average optimization

time per node. The tolerances evaluated are ∆ = 1 × 10−2, 1 × 10−3, 1 × 10−4 and

1 × 10−5. We report the performance of AMM−PGO∗ and AMM−PGO# with 10, 25

210

(a) ∆ = 1× 10−2 (b) ∆ = 1× 10−3

(c) ∆ = 1× 10−4 (d) ∆ = 1× 10−5

Figure 4.10. Performance profiles for AMM−PGO∗, AMM−PGO# and
SE−Sync [7] over a variety of 2D and 3D SLAM Benchmark datasets (see
Table 4.1). The performance is based on the scaled average optimization
time per node µ ∈ [0, +∞) and the evaluation tolerances are ∆ = 1×10−2,
1× 10−3, 1× 10−4 and 1× 10−5. The distributed PGO has 10, 25 and 100
robots (nodes) and is initialized with the classic chordal initialization [8].
Note that SE−Sync [7] solves all the PGO problems globally at µ = 1.

and 100 robots (nodes). For reference, we also evaluate the performance profile of the

centralized PGO baseline SE−Sync [7]. As the results demonstrate, AMM−PGO∗ and

211

AMM−PGO# are significantly faster than SE−Sync [7] in most cases for modest accuracies

of ∆ = 1×10−2 and ∆ = 1×10−3, for which the only challenging case is the CSAIL dataset,

whose chordal initialization is already very close to the globally optimal solution. Even

though the performance of AMM−PGO∗ and AMM−PGO# declines for smaller tolerances of

∆ = 1×10−4 and ∆ = 1×10−5, AMM−PGO∗ and AMM−PGO# with 100 robots (nodes) still

achieve a 2.5 ∼ 20x speedup over SE−Sync for more than 70% of the benchmark datasets.

Furthermore, in terms of the average optimization time per node, the computational

efficiency of AMM−PGO∗ and AMM−PGO# improves as the number of robots (nodes)

increases, which indicates the possibility of using accelerated MM methods as fast parallel

backends for real-time SLAM.

In summary, AMM−PGO∗ and AMM−PGO# not only achieve the state-of-the-art per-

formance for distributed PGO but also enjoy significant multi-node speedup against the

centralized baseline [7] for modest accuracy that is sufficient for practical use.

4.10.3. Robust Distributed PGO

In this section, we evaluate the robustness of AMM−PGO# against the outlier inter-

node loop closures. Similar to [112,115], we first use the distributed pairwise consistent

measurement set maximization algorithm (PCM) [9] to reject spurious inter-node loop

closures and then solve the resulting distributed PGO using AMM−PGO# with the trivial

(Example 4.1), Huber (Example 4.2) and Welsch (Example 4.3) loss kernels.

We implement AMM−PGO# on the 2D intel and 3D garage datasets (see Table 4.1) with

10 robots (nodes). For each dataset, we add false inter-node loop closures with uniformly

random rotation and translation errors in the range of [0, π] rad and [0, 5] m, respectively.

212

In addition, after the initial outlier rejection using the PCM algorithm [9], we initialize

AMM−PGO# with the distributed Nesterov’s accelerated chordal initialization [1] for all

the loss kernels.

The absolute trajectory errors (ATE) of AMM−PGO# for different outlier thresholds

of inter-node loop closures are reported in Fig. 4.11. The ATEs are computed against the

outlier-free results of SE−Sync [7] and averaged over 10 Monte Carlo runs.

(a) intel (b) garage

Figure 4.11. Absolute trajectory errors (ATE) of distributed PGO using
AMM−PGO# with the trivial, Huber and Welsch loss kernels on the 2D intel
and 3D garage datasets. The outlier thresholds of inter-node loop closures
are 0 ∼ 0.9. The ATEs are computed against the outlier-free results of
SE−Sync [7] and are averaged over 10 Monte Carlo runs. The distributed
PGO has 10 robots (nodes) and is initialized with the distributed Nesterov’s
accelerated chordal initialization [1]. The PCM algorithm [9] is used to
initially reject spurious inter-robot loop closures.

In Fig. 4.11(a), PCM [9] rejects most of the outlier inter-node loop closure for the

intel dataset and AMM−PGO# solves the distributed PGO problems regardless of the loss

kernel types and outlier thresholds. Note that AMM−PGO# with the Welsch loss kernel

has larger ATEs (avg. 0.057 m) against SE−Sync [7] than those with the trivial and

213

Huber loss kernels (avg. 0.003 m), and we argue that this is related to the loss kernel

types. The ATEs are evaluated based on SE−Sync using the trivial loss kernel, which is

in fact identical or similar to distributed PGO with the trivial and Huber loss kernels but

different from that with the Welsch loss kernel. Therefore, the estimates from the trivial

and Huber loss kernels are expected to be more close to those of SE−Sync, which result

in smaller ATEs compared to the Welsch loss kernel if there are no outliers.

For the more challenging garage dataset, as is shown in Fig. 4.11(b), PCM fails for

outlier thresholds over 0.4, and further, distributed PGO with the trivial and Huber loss

kernels results in ATEs as large as 65 m. In contrast, distributed PGO with the Welsch

loss kernel still successfully estimates the poses with an average ATE of 2.5 m despite the

existence of outliers—note that the garage dataset has a trajectory over 7 km. For the

garage dataset, a qualitative comparison of distributed PGO with different loss kernels is

also presented in Fig. 4.12, where the Welsch loss kernel still has the best performance.

The results are not surprising since the Welsch loss kernel is known to be more robust

against outliers than the other two loss kernels [129].

The results above indicate that our MM methods can be applied to distributed PGO

in the presence of outlier inter-node loop closures when combined with robust loss kernels

like Welsch and other outlier rejection techniques like PCM [9]. In addition, we empha-

size again that our MM methods have provable convergence to first-order critical points

for a broad class of robust loss kernels, whereas the convergence guarantees of existing

distributed PGO methods [5,6,123,124] are restricted to the trivial loss kernel.

214

(a) SE−Sync (b) The trivial loss kernel

(c) The Huber loss kernel (d) The Welsch loss kernel

Figure 4.12. A qualitative comparison of distributed PGO with the trivial,
Huber and Welsch loss kernels for the garage dataset with spurious inter-
node loop closures. The outlier-free result of SE−Sync [7] is shown in
Fig. 4.12(a) for reference. The outlier threshold of inter-node loop closures
is 0.6 and PCM [9] is used for initial outlier rejection.

215

4.11. Conclusion

We presented majorization minimization (MM) methods for distributed PGO that has

important applications in multi-robot SLAM. Our MMmethods had provable convergence

for a broad class of robust loss kernels in robotics and computer vision. Furthermore, we

elaborated on the use of Nesterov’s method and adaptive restart for acceleration and

developed accelerated MM methods AMM−PGO∗ and AMM−PGO# without sacrifice of

convergence guarantees. In particular, we designed a novel adaptive restart scheme making

the AMM−PGO# method without a master node comparable to the AMM−PGO∗ method

using a master node for information aggregation. The extensive experiments on numerous

2D and 3D SLAM datasets indicated that our MM methods outperformed existing state-

of-the-art methods and robustly handled distributed PGO with outlier inter-node loop

closures.

Our MM methods for distributed PGO can be improved as follows. A more tractable

and robust initialization technique is definitely beneficial to the accuracy and efficiency

of distributed PGO. Even though our MM methods have reliable performances against

outliers, a more complete theoretical analysis for robust distributed PGO is still necessary.

In addition, our MM methods can be implemented as local solvers for distributed certi-

fiably correct PGO [6] to handle poor or random initialization. Since all the nodes are

now assumed to be synchronized, it is necessary and useful to extend our MM methods

for asynchronous distributed PGO. Lastly, real multi-robot tests might make the results

of our MM methods more convincing where not only the optimization time but also the

communication overhead can be validated.

216

4.12. Proofs

4.12.1. Proof of Proposition 4.5.1

For any nodes α, β ∈ A, it should be noted that

(4.94)
1

2
‖X‖2

Mαβ
ij

=
1

2
‖X −X(k)‖2

Mαβ
ij

+
〈
X(k)Mαβ

ij , X −X(k)
〉

+
1

2
‖X(k)‖2

Mαβ
ij

always holds. Then, we will prove Proposition 4.5.1 considering cases of α = β and α 6= β,

respectively.

1) If α = β, Eq. (4.16) indicates ∇Fαβ
ij (X(k)) = X(k)Mαβ

ij . From Eqs. (4.16), (4.19)

and (4.94), it is immediate to conclude that Eq. (4.18) holds for any X and X(k) ∈

Rd×(d+1)n as long as α = β.

2) From Assumption 4.2(c), it is known that ρ(s) is a concave function, which suggests

ρ(s′) ≤ ρ(s) +∇ρ(s) · (s′ − s).

If we let s = ‖X(k)‖2

Mαβ
ij

and s′ = ‖X‖2

Mαβ
ij

, the equation above can be written as

(4.95)
1

2
ρ
(
‖X‖2

Mαβ
ij

)
≤ 1

2
ρ
(
‖X(k)‖2

Mαβ
ij

)
+

1

2
∇ρ
(
‖X(k)‖2

Mαβ
ij

)
·
(
‖X‖2

Mαβ
ij

− ‖X(k)‖2

Mαβ
ij

)
.

From Eq. (4.94), it can be shown that

(4.96)
1

2
‖X‖2

Mαβ
ij

− 1

2
‖X(k)‖2

Mαβ
ij

=
1

2
‖X −X(k)‖2

Mαβ
ij

+
〈
X(k)Mαβ

ij , X −X(k)
〉
.

Then, applying Eq. (4.96) on the right-hand side of Eq. (4.95) results in

(4.97)
1

2
ρ
(
‖X‖2

Mαβ
ij

)
≤ 1

2
∇ρ
(
‖X(k)‖2

Mαβ
ij

)
· ‖X −X(k)‖2

Mαβ
ij

+

217

∇ρ
(
‖X(k)‖2

Mαβ
ij

)
·
〈
X(k)Mαβ

ij , X −X(k)
〉

+
1

2
ρ
(
‖X(k)‖Mαβ

ij

)
.

From Eqs. (4.17) and (4.19), we obtain

Fαβ
ij (X(k)) =

1

2
ρ
(
‖X(k)‖2

Mαβ
ij

)
,

∇Fαβ
ij (X(k)) = ∇ρ

(
‖X(k)‖2

Mαβ
ij

)
·X(k)Mαβ

ij ,

ω
αβ(k)
ij = ∇ρ

(
‖X(k)‖2

Mαβ
ij

)
,

with which Eq. (4.97) is simplified to

1

2
ω
αβ(k)
ij ‖X −X(k)‖2

Mαβ
ij

+
〈
∇Fαβ

ij (X(k)), X −X(k)
〉

+ Fαβ
ij (X(k)) ≥ Fαβ

ij (X).

The proof is completed.

4.12.2. Proof of Proposition 4.6.1

From Eqs. (4.26) and (4.27), we obtain

(4.98) Eαβ
ij (X|X(k)) ≥ 1

2
ω
αβ(k)
ij

∥∥X −X(k)
∥∥2

Mαβ
ij

+
〈
∇Fαβ

ij (X(k)), X −X(k)
〉

+ Fαβ
ij (X(k)),

where the equality “=” holds as long as X = X(k). From Proposition 4.5.1, we obtain

(4.99)
1

2
ω
αβ(k)
ij ‖X −X(k)‖2

Mαβ
ij

+
〈
∇Fαβ

ij (X(k)), X −X(k)
〉

+ Fαβ
ij (X(k)) ≥ Fαβ

ij (X).

Then, as a result of Eqs. (4.98) and (4.99), it is straightforward to show

Eαβ
ij (X|X(k)) ≥ Fαβ

ij (X)

218

for any X ∈ Rd×(d+1)n, where the equality “=” holds as long as X = X(k). The proof is

completed.

4.12.3. Proof of Proposition 4.6.2

Proof of (a). From Eq. (4.25), it can be concluded that

(4.100)
1

2
‖X −X(k)‖2

Ωαβij
= καβij ‖Rα

i −R
α(k)
i ‖2+

ταβij ‖(Rα
i −R

α(k)
i)t̃αβij + tαi − t

α(k)
i ‖2+

καβij ‖R
β
j −R

β(k)
j ‖2 + ταβij ‖t

β
j − t

β(k)
j ‖2.

From Eq. (4.13), it is by definition that Fαβ
ij (X) is a function related with Xα ∈ X α and

Xβ ∈ X β only, and thus, ∇Fαβ
ij (X) is sparse, which suggests

(4.101)
〈
∇Fαβ

ij (X(k)), X −X(k)
〉

=
〈
∇XαFαβ

ij (X(k)), Xα −Xα(k)
〉
+〈

∇XβFαβ
ij (X(k)), Xβ −Xβ(k)

〉
.

In Eq. (4.101), ∇XαFαβ
ij (X(k)) is the Euclidean gradient of Fαβ

ij (X) with respect to Xα ∈

X α at X(k) ∈ X . Substituting Eqs. (4.100) and (4.101) into Eq. (4.27), we obtain

(4.102)

Eαβ
ij (X|X(k))

=ω
αβ(k)
ij ·

(
καβij ‖Rα

i −R
α(k)
i ‖2+ ταβij ‖(Rα

i −R
α(k)
i)t̃αβij + tαi − t

α(k)
i ‖2+

καβij ‖R
β
j −R

β(k)
j ‖2 + ταβij ‖t

β
j − t

β(k)
j ‖2

)
+
〈
∇XαFαβ

ij (X(k)), Xα −Xα(k)
〉
+〈

∇XβFαβ
ij (X(k)), Xβ −Xβ(k)

〉
+ Fαβ

ij (X(k)).

219

In a similar way, Fαα
ij (X) in Eq. (4.13) can be rewritten as

(4.103) Fαα
ij (X) =

1

2
κααij ‖(Rα

i −R
α(k)
i)R̃αα

ij − (Rα
j −R

α(k)
j)‖2+

1

2
τααij ‖(Rα

i −R
α(k)
i)t̃ααij + tαi − t

α(k)
i − (tαj − t

α(k)
j)‖2+〈

∇XαFαα
ij (X(k)), Xα −Xα(k)

〉
+ Fαα

ij (X(k)).

Substituting Eqs. (4.102) and (4.103) into Eq. (4.29) and simplifying the resulting equation

with Eq. (4.43), we obtain

G(X|X(k)) =
∑
α∈A

Gα(Xα|X(k)) + F (X(k)),

where Gα(Xα|X(k)) is a function that is related with Xα ∈ X α only. Furthermore,

a tedious but straightforward mathematical manipulation from Eqs. (4.101) to (4.103)

indicates that there exists positive-semidefinite matrices Γα(k) ∈ R(d+1)nα×(d+1)nα such

that Gα(Xα|X(k)) in the equation above can be written as

Gα(Xα|X(k)) =
1

2
‖Xα −Xα(k)‖2

Γα(k) +
〈
∇XαF (X(k)), Xα −Xα(k)

〉
,

where the formulation of Γα(k) is given in Section 4.6.3. The proof is completed.

Proof of (b). If we substitute Eq. (4.31) into Eq. (4.30), the result is

(4.104) G(X|X(k)) =
∑
α∈A

[1

2
‖Xα−Xα(k)‖2

Γα(k) +
〈
∇XαF (X(k)), Xα −Xα(k)

〉]
+F (X(k)).

220

Furthermore, it can be shown that

1

2
‖X −X(k)‖2

Γ(k) =
∑
α∈A

1

2
‖Xα −Xα(k)‖2

Γα(k) ,

where Γ(k) ∈ R(d+1)n×(d+1)n is defined as Eq. (4.33), and

〈
∇F (X(k)), X −X(k)

〉
=
∑
α∈A

〈
∇XαF (X(k)), Xα −Xα(k)

〉
.

Thus, Eq. (4.104) is equivalent to Eq. (4.32), i.e.,

(4.105) G(X|X(k)) =
1

2
‖X −X(k)‖2

Γ(k) +
〈
∇F (X(k)), X −X(k)

〉
+ F (X(k)).

From Proposition 4.6.1, it is known thatEαβ
ij (X|X(k)) majorizes Fαβ

ij (X) and Eαβ
ij (X|X(k)) =

Fαβ
ij (X(k)) if X = X(k). Then, as a result Eqs. (4.12) and (4.29), it can be concluded that

G(X|X(k)) majorizes F (X) and G(X|X(k)) = F (X) if X = X(k). The proof is completed.

Proof of (c). From Eqs. (4.16), (4.27), (4.29) and (4.105), we rewrite Γ(k) ∈ R(d+1)n×(d+1)n

as

(4.106) Γ(k) =
∑
α∈A

∑
(i,j)∈

−→
E αα

Mαα
ij +

∑
α,β∈A,
α 6=β

∑
(i,j)∈

−→
E αβ

ω
αβ(k)
ij · Ωαβ

ij + ξ · I,

where Ωαβ
ij � Mαβ

ij by Eq. (4.26) and ξ ≥ 0. Then, as a result of Eqs. (4.21), (4.26)

and (4.106), it is straightforward to conclude that

(4.107) Γ(k) �M (k) + ξ · I �M (k).

221

The proof is completed.

Proof of (d). Let Γ ∈ R(d+1)n×(d+1)n be defined as

(4.108) Γ ,
∑
α∈A

∑
(i,j)∈

−→
E αα

Mαα
ij +

∑
α,β∈A,
α 6=β

∑
(i,j)∈

−→
E αβ

Ωαβ
ij + ξ · I.

From Assumption 4.2(d) and Eq. (4.19), it can be concluded that

(4.109) 0 ≤ ω
αβ(k)
ij ≤ 1

for any X(k) ∈ Rd×(d+1)n. Furthermore, it is known that Ωαβ
ij � 0, then Eqs. (4.106),

(4.108) and (4.109) result in Γ � Γ(k) for any X(k) ∈ Rd×(d+1)n. The proof is completed.

4.12.4. Proof of Proposition 4.7.1

Proof of (a). From Assumption 4.3 and line 8 of Algorithm 9, we obtain

(4.110) Gα(Xα(k+1)|X(k)) ≤ Gα(Xα(k+ 1
2

)|X(k))

and

(4.111) Hα(Xα(k+ 1
2

)|X(k)) ≤ Hα(Xα(k)|X(k)).

From Eqs. (4.30), (4.36), (4.110) and (4.111), it can be concluded that

(4.112) G(X(k+1)|X(k)) ≤ G(X(k+ 1
2

)|X(k))

and

222

(4.113) H(X(k+ 1
2

)|X(k)) ≤ H(X(k)|X(k)).

Note that Eq. (4.42) suggests

(4.114) F (X(k+1)) ≤ G(X(k+1)|X(k))

and

(4.115) G(X(k+ 1
2

)|X(k)) ≤ H(X(k+ 1
2

)|X(k)).

Then, Eqs. (4.112) to (4.115) result in

(4.116) F (X(k+1)) ≤ G(X(k+1)|X(k)) ≤ G(X(k+ 1
2

)|X(k)) ≤

H(X(k+ 1
2

)|X(k)) ≤ H(X(k)|X(k)) = F (X(k)),

which indicates that F (X(k)) is nonincreasing. The proof is completed.

Proof of (b). From Proposition 4.7.1(a), it has been proved that F (X(k)) is nonincreas-

ing. From Eq. (4.11) and Assumption 4.2, F (X(k)) ≥ 0, i.e., F (X(k)) is bounded below.

As a result, there exists F∞ ∈ R such that F (X(k))→ F∞. The proof is completed.

Proof of (c). From Eq. (4.116), it is known that F (X(k)) ≥ G(X(k+1)|X(k)), which

suggests

(4.117) F (X(k))− F (X(k+1)) ≥ G(X(k+1)|X(k))− F (X(k+1)).

223

From Eqs. (4.20) and (4.32), we obtain

(4.118) F (X(k+1)) ≤ 1

2
‖X(k+1) −X(k)‖2

M(k) +
〈
∇F (X(k)), X −X(k)

〉
+ F (X(k))

and

(4.119) G(X(k+1)|X(k)) =
1

2
‖X(k+1) −X(k)‖2

Γ(k) +
〈
∇F (X(k)), X −X(k)

〉
+ F (X(k)),

respectively. Substituting Eqs. (4.118) and (4.119) into the right-hand side of Eq. (4.117),

we obtain

(4.120) F (X(k))− F (X(k+1)) ≥ 1

2
‖X(k+1) −X(k)‖2

Γ(k) −
1

2
‖X(k+1) −X(k)‖2

M(k) .

From Eqs. (4.107) and (4.120), there exists a constant scalar δ > 0 such that

(4.121) F (X(k))− F (X(k+1)) ≥ δ

2
‖X(k+1) −X(k)‖2

as long as ξ > 0. From Proposition 4.7.1(b), we obtain

(4.122) F (X(k))− F (X(k+1))→ 0,

and thus, it can be concluded from Eqs. (4.121) and (4.122) that

(4.123) ‖X(k+1) −X(k)‖ → 0.

The proof is completed.

224

Proof of (d). From Eq. (4.116), it is known that F (X(k)) ≥ H(X(k+ 1
2

)|X(k)) and

G(X(k+ 1
2

)|X(k)) ≥ G(X(k+1)|X(k)) ≥ F (X(k+1)), which suggests

F (X(k))− F (X(k+1)) ≥ H(X(k+ 1
2

)|X(k))−G(X(k+ 1
2

)|X(k)).

From Eqs. (4.32) and (4.40), the equation above is equivalent to

(4.124) F (X(k))− F (X(k+1)) ≥ 1

2
‖X(k+ 1

2
) −X(k)‖2

Π(k) −
1

2
‖X(k+ 1

2
) −X(k)‖2

Γ(k) .

A similar procedure to the derivation of Eq. (4.107) results in

(4.125) Π(k) � Γ(k) + (ζ − ξ) · I,

which suggests there exists a constant scalar δ′ > 0 such that

Π(k) � Γ(k) + δ′ · I

if ζ > ξ > 0. Then, similar to the proof of Proposition 4.7.1(c), we obtain

(4.126) F (X(k))− F (X(k+1)) ≥ δ′

2
‖X(k+ 1

2
) −X(k)‖2.

Thus, it can be concluded that

(4.127) ‖X(k+ 1
2

) −X(k)‖ → 0.

The proof is completed.

Proof of (e). The following proposition about ∇F (X) is needed in this proof.

225

Proposition 4.12.1. If Assumption 4.2(e) holds, then the Euclidean gradient ∇F (·) :

Rd×(d+1)n → Rd×(d+1)n of F (X) in Eq. (4.12) is Lipschitz continuous, i.e., there exists a

constant µ > 0 such that ‖∇F (X)−∇F (X ′)‖ ≤ µ · ‖X −X ′‖.

Proof. From Assumption 4.2(e), it is known that ρ(‖X‖2) has Lipschitz continuous

gradient, which suggests that Fαβ
ij (X) =

1

2
ρ(‖X‖2

Mαβ
ij

) in Eq. (4.17) has Lipschitz con-

tinuous gradient. Note that Fαα
ij (X) =

1

2
‖X‖2

Mαα
ij

in Eq. (4.16) has Lipschitz continuous

gradient as well. Then, from Eq. (4.12), it can be concluded that F (X) has Lipschitz

continuous gradient. The proof is completed. �

It is straightforward to show that the Riemannian gradient gradF (X) takes the form

as

gradF (X) =

[
grad1F (X) · · · grad|A|F (X)

]
∈ TXX .

In the equation above, gradαF (X) is the Riemannian gradient of F (X) with respect to

Xα ∈ X α for node α ∈ A, and can be written as

(4.128) gradαF (X) =

[
gradtαF (X) gradRαF (X)

]
∈ TXαX α

where recall that

TXαX α , Rd×nα × TRαSO(d)nα .

From [7,90], it can be shown that gradtαF (X) and gradRαF (X) in Eq. (4.128) are

(4.129) gradtαF (X) = ∇tαF (X)

226

and

(4.130) gradRαF (X) = ∇RαF (X)−Rα SymBlockDiagαd (Rα>∇RαF (X)).

In Eq. (4.130), SymBlockDiagαd : Rdnα×dnα → Rdnα×dnα is a linear operator

(4.131) SymBlockDiagαd (Z) ,
1

2
BlockDiagαd (Z + Z>),

where BlockDiagαd : Rdnα×dnα → Rdnα×dnα extracts the d× d-block diagonals of a matrix,

i.e.,

BlockDiagαd (Z) ,

Z11

. . .

Znαnα

 ∈ Rdnα×dnα .

As a result of Eqs. (4.128) to (4.131), there exists a linear operator

(4.132) QX : Rd×d(n+1) → Rd×d(n+1)

that continuously depends on X ∈ X such that

(4.133) gradF (X) = QX(∇F (X)).

From Eq. (4.40), it is straightforward to show that

(4.134) ∇H(X(k+ 1
2

)|X(k)) = ∇F (X(k)) + (X(k+ 1
2

) −X(k))Π(k) =

∇F (X(k+ 1
2

)) + (X(k+ 1
2

) −X(k))Π(k) +
(
∇F (X(k))−∇F (X(k+ 1

2
))
)
.

227

Note that Eq. (4.133) applies to any functions on X . As a result of Eqs. (4.133) and (4.134),

we obtain

(4.135) gradH(X(k+ 1
2

)|X(k)) = gradF (X(k+ 1
2

))+

Q
X(k+1

2)

(
(X(k+ 1

2
) −X(k))Π(k)

)
+Q

X(k+1
2)

(
∇F (X(k))−∇F (X(k+ 1

2
))
)
.

From line 8 of Algorithm 9, we obtain.

gradHα(Xα(k+ 1
2

)|X(k)) = 0.

In addition, it is by definition that

gradH(X|X(k)) =

[
gradH1(X1|X(k)) · · · gradH |A|(X |A||X(k)),

]

which suggests

(4.136) gradH(X(k+ 1
2

)|X(k)) = 0.

From Eqs. (4.135) and (4.136), we obtain

gradF (X(k+ 1
2

)) = Q
X(k+1

2)

(
(X(k) −X(k+ 1

2
))Π(k)

)
+Q

X(k+1
2)

(
∇F (X(k+ 1

2
))−∇F (X(k))

)
.

228

From the equation above, it can be shown that

(4.137)

‖gradF (X(k+ 1
2

))‖

=
∥∥Q

X(k+1
2)

(
(X(k) −X(k+ 1

2
))Π(k)

)
+Q

X(k+1
2)

(
∇F (X(k+ 1

2
))−∇F (X(k))

)∥∥
≤
∥∥Q

X(k+1
2)

(
(X(k) −X(k+ 1

2
))Π(k)

)∥∥+
∥∥Q

X(k+1
2)

(
∇F (X(k+ 1

2
))−∇F (X(k))

)∥∥
≤‖Q

X(k+1
2)‖2 · ‖Π(k)‖2 · ‖X(k+ 1

2
) −X(k)‖+

‖Q
X(k+1

2)‖2 · ‖∇F (X(k+ 1
2

))−∇F (X(k))‖,

where ‖ · ‖2 denotes the induced 2-norm of linear operators. From Propositions 4.6.3(d)

and 4.12.1, there exists a constant positive-semidefinite matrix Π ∈ R(d+1)n×(d+1)n and

constant positive scalar µ > 0 such that Π � Π(k) � 0 and ‖∇F (X(k+ 1
2

))−∇F (X(k))‖ ≤

µ · ‖X(k+ 1
2

) −X(k)‖ for any k ≥ 0, making it possible to upper-bound the right-hand side

of Eq. (4.137):

(4.138)

‖gradF (X(k+ 1
2

))‖ ≤ ‖Q
X(k+1

2)‖2 · ‖Π‖2 · ‖X(k+ 1
2

)−X(k)‖+‖Q
X(k+1

2)‖2 ·µ · ‖X(k+ 1
2

)−X(k)‖.

Moreover, Eqs. (4.128) to (4.130) indicate that QX(·) only depends on the rotation Rα ∈

SO(d)nα for α ∈ A. Since QX(·) is continuous and SO(d)nα is a compact manifold,

‖Q
X(k+1

2)‖2 is bounded for any X(k+ 1
2

) ∈ X . Thus, there exists a constant scalar ν > 0

such that the right-hand side of Eq. (4.138) can be upper-bounded as

(4.139) ‖gradF (X(k+ 1
2

))‖ ≤ ν‖X(k+ 1
2

) −X(k)‖.

229

As long as ζ > ξ > 0, Eqs. (4.126) and (4.139) result in

‖gradF (X(k+ 1
2

))‖2 ≤ 2ν2

δ′
(
F (X(k))− F (X(k+1))

)
.

Then, there exists a constant scalar ε = δ′

ν2
> 0 with which the equation above can be

rewritten as

(4.140) F (X(k))− F (X(k+1)) ≥ ε

2
‖gradF (X(k+ 1

2
))‖2.

As a result of Eq. (4.140), we obtain

(4.141)

F (X(0))− F (X(K+1)) ≥ ε

2

K∑
k=0

‖gradF (X(k+ 1
2

))‖2 ≥ ε(K + 1)

2
min

0≤k≤K
‖gradF (X(k+ 1

2
))‖2.

From Propositions 4.7.1(a) and 4.7.1(b), it can be concluded that F (X(k+1)) ≥ F∞ for

any k ≥ 0, which and Eq. (4.141) suggest

min
0≤k<K

‖gradF (X(k+ 1
2

))‖ ≤

√
2

ε
· F (X(0))− F∞

K + 1
.

The proof is completed.

Proof of (f). As a result of Propositions 4.7.1(c) and 4.7.1(d), it is known that

‖X(k+1) −X(k)‖ → 0

and

‖X(k+ 1
2

) −X(k)‖ → 0

as long as ζ > ξ > 0. Thus, it can be concluded from Eq. (4.139) that

230

gradF (X(k+ 1
2

))→ 0

if ζ > ξ > 0. In addition, Assumption 4.2(b) indicates that gradF (X(k)) is continuous,

which suggests

gradF (X(k))→ gradF (X(k+ 1
2

)).

Then, we obtain

gradF (X(k))→ 0.

The proof is completed.

4.12.5. Proof of Proposition 4.8.1

Proof of (a). In this proof, we will prove F (X(k)) ≤ F
(k) and F (k+1) ≤ F

(k) by induction.

1) From lines 4, 8, 14 of Algorithm 11, it can be shown that

(4.142) F (X(−1)) = F (X(0)) = F
(−1)

= F
(0)
.

2) Suppose k ≥ 0 and F (X(k)) ≤ F
(k) holds at k-th iteration. In terms of X(k+ 1

2
), if the

adaptive restart scheme for X(k+ 1
2

) is not triggered, it is immediate to show from line 10

of Algorithm 12 that

(4.143) F (X(k+ 1
2

)) ≤ F
(k)
.

On the other hand, if the adaptive restart scheme for X(k+ 1
2

) is triggered, line 12 of

Algorithm 12 results in

(4.144) Hα(Xα(k+ 1
2

)|X(k)) ≤ Hα(Xα(k)|X(k)) = 0,

231

where Hα(Xα(k)|X(k)) = 0 is from Eq. (4.38). Then, Eqs. (4.36), (4.42) and (4.144)

indicate

(4.145) F (X(k+ 1
2

)) ≤ H(X(k+ 1
2

)|X(k)) ≤ F (X(k)) ≤ F
(k)
.

Therefore, no matter whether the adaptive restart scheme is triggered or not, we conclude

from Eqs. (4.143) and (4.145) that

(4.146) F (X(k+ 1
2

)) ≤ F
(k)

always holds.

Furthermore, as a result of lines 25 to 27 of Algorithm 12, we obtain

(4.147) F (X(k+1))− F (k) ≤ φ ·
(
F (X(k+ 1

2
))− F (k)

)
≤ 0.

From line 14 of Algorithm 11 and F (X(k+1))− F (k) ≤ 0 in Eq. (4.147), we obtain

F (X(k+1))− F (k+1)
= (1− η) ·

(
F (X(k+1))− F (k)) ≤ 0

and

F
(k+1) − F (k)

= η ·
(
F (X(k+1))− F (k)) ≤ 0,

which suggest F (X(k+1)) ≤ F
(k+1) ≤ F

(k).

3) Therefore, it can be concluded that F (X(k)) ≤ F
(k) and F (k+1) ≤ F

(k), which suggests

that F (k) is nonincreasing. The proof is completed.

232

Proof of (b). From line 14 of Algorithm 11, we obtain

(4.148) F
(k+1)

= (1− η) · F (k)
+ η · F (X(k+1)),

which suggests that F (k) is a convex combination of F (X(0)), F (X(1)), · · ·F (X(k)) as long

as η ∈ (0, 1]. Since F (X(k)) ≥ 0 for any k ≥ 0, we obtain F (k) ≥ 0 as well, i.e., F (k) is

bounded below. Proposition 4.8.1(a) indicates that F (k) is nonincreasing, and thus, there

exists F∞ such that F (k) → F∞. Then, it can be still concluded from Eq. (4.148) that

F (X(k))→ F∞.

Proof of (c). In terms of X(k+1), there are three possible cases:

1) IfX(k+1) is from line 6 of Algorithm 12, then the adaptive restart scheme is not triggered

and line 10 of Algorithm 12 results in

(4.149) F
(k) − F (X(k+1)) ≥ ψ ·

∥∥X(k+1) −X(k)
∥∥2
.

2) If X(k+1) is from line 19 of Algorithm 12, then the adaptive restart scheme is triggered

and Eq. (4.124) holds as well, from which and Eq. (4.107) we obtain

F (X(k))− F (X(k+1)) ≥ ξ

2

∥∥X(k+1) −X(k)
∥∥2
.

In the proof of Proposition 4.8.1(a), it is known that F (k) ≥ F (X(k)), then the equation

above results in

(4.150) F
(k) − F (X(k+1)) ≥ ξ

2

∥∥X(k+1) −X(k)
∥∥2
.

233

3) If X(k+1) is from line 26 of Algorithm 12, then we obtain X(k+1) = X(k+ 1
2

) and

F (X(k+1)) = F (X(k+ 1
2

)). Then, similar to the derivations of Eqs. (4.149) and (4.150),

lines 5 and 12 of Algorithm 12 result in

(4.151) F
(k) − F (X(k+ 1

2
)) ≥ ψ ·

∥∥X(k+ 1
2

) −X(k)
∥∥2

and

(4.152) F
(k) − F (X(k+ 1

2
)) ≥ ζ

2

∥∥X(k+ 1
2

) −X(k)
∥∥2
,

respectively, from which and X(k+1) = X(k+ 1
2

) and F (X(k+1)) = F (X(k+ 1
2

)) we obtain

either

F
(k) − F (X(k+1)) ≥ ψ ·

∥∥X(k+1) −X(k)
∥∥2

or

F
(k) − F (X(k+1)) ≥ ζ

2

∥∥X(k+1) −X(k)
∥∥2
.

Then, for any η, ψ ∈ (0, 1], it can be shown from cases 1)) to 3)) above that there exists

a constant scalar σ > 0 such that

(4.153) F
(k) − F (X(k+1)) ≥ σ

2
‖X(k+1) −X(k)‖2

if ξ > 0 and ζ > 0. In addition, note that Eq. (4.148) is equivalent to

(4.154) F
(k) − F (k+1)

= η ·
(
F

(k) − F (X(k+1))
)
.

From Eqs. (4.153) and (4.154), we further conclude that there exists δ > 0 such that

234

(4.155) F
(k) − F (k+1)

= η ·
(
F

(k) − F (X(k+1))
)
≥

ησ

2
‖X(k+1) −X(k)‖2 ≥ δ

2
‖X(k+1) −X(k)‖2.

Recall F (k) → F∞ from Proposition 4.8.1(b), which suggests

(4.156) F
(k) − F (k+1) → 0.

Therefore, Eqs. (4.155) and (4.156) indicate that

‖X(k+1) −X(k)‖ → 0.

The proof is completed.

Proof of (d). Note that Eqs. (4.151) and (4.152) suggest that there exists σ′ > 0 such

that

(4.157) F
(k) − F (X(k+ 1

2
)) ≥ σ′

2

∥∥X(k+ 1
2

) −X(k)
∥∥2

always holds. From lines 25 to 27 of Algorithm 12, we obtain

(4.158) F
(k) − F (X(k+1)) ≥ φ ·

(
F

(k) − F (X(k+ 1
2

))
)
≥ φσ′

2

∥∥X(k+ 1
2

) −X(k)
∥∥2
,

where the last inequality is due to Eq. (4.157). From Eqs. (4.154) and (4.158), it can be

shown that

(4.159) F
(k) − F (k+1)

= η ·
(
F

(k) − F (X(k+1))
)
≥ ηφσ′

2

∥∥X(k+ 1
2

) −X(k)
∥∥2
.

235

The equation above suggests that there exists a constant scalar δ′ > 0 such that

(4.160) F
(k) − F (k+1) ≥ δ′

2
‖X(k+ 1

2
) −X(k)‖2.

Note that Proposition 4.8.1(b) results in F (k) − F (k+1) → 0. Thus, similar to the proof of

Proposition 4.8.1(c), it can be concluded from Eq. (4.160) that

‖X(k+ 1
2

) −X(k)‖ → 0

if ζ > ξ > 0. The proof is completed.

Proof of (e). In terms of Xα(k+ 1
2

) ∈ X α, there are two possible cases:

1) If Xα(k+ 1
2

) ∈ X α is from line 5 of Algorithm 12, we obtain

(4.161) Xα(k+ 1
2

) ← arg min
Xα∈Xα

Hα(Xα|Y (k)).

From Eq. (4.38), we obtain

∇Hα(Xα(k+ 1
2

)|Y (k))

=∇XαF (Y (k)) + (Xα(k+ 1
2

) − Y α(k))Πα(k)

=∇XαF (X(k+ 1
2

)) + (Xα(k+ 1
2

) − Y α(k))Πα(k) +
(
∇XαF (Y (k))−∇XαF (X(k+ 1

2
))
)
,

which suggests

(4.162) gradHα(Xα(k+ 1
2

)|Y (k)) = gradαF (X(k+ 1
2

))+

Qα
Xα(k+1

2)

(
(Xα(k+ 1

2
) − Y α(k))Πα(k)

)
+Qα

Xα(k+1
2)

(
∇XαF (Y (k))−∇XαF (X(k+ 1

2
))
)
,

236

where gradαF (X) is the Riemannian gradient of F (X) with respect to Xα ∈ X α, and

QαXα : Rd×dnα → Rd×dnα is a linear operator that extracts the α-th block of QX(·) in

Eq. (4.132). Since Xα(k+ 1
2

) is an optimal solution to Eq. (4.161), we obtain

(4.163) gradHα(Xα(k+ 1
2

)|Y (k)) = 0.

From Eqs. (4.162) and (4.163), a straightforward mathematical manipulation indicates

(4.164) gradαF (X(k+ 1
2

)) = Qα
Xα(k+1

2)

(
(Y α(k) −Xα(k+ 1

2
))Πα(k)

)
+

Qα
Xα(k+1

2)

(
∇XαF (X(k+ 1

2
))−∇XαF (Y (k))

)
.

From Eq. (4.164), we further obtain

‖gradαF (X(k+ 1
2

))‖

≤‖Qα
Xα(k+1

2)
‖2 · ‖(Y α(k) −Xα(k+ 1

2
))Πα(k)‖+ ‖Qα

Xα(k+1
2)
‖2 · ‖∇XαF (X(k+ 1

2
))−∇XαF (Y (k))‖

≤‖Qα
Xα(k+1

2)
‖2 · ‖(Y (k) −X(k+ 1

2
))Π(k)‖+ ‖Qα

Xα(k+1
2)
‖2 · ‖∇F (X(k+ 1

2
))−∇F (Y (k))‖

≤‖Qα
Xα(k+1

2)
‖2 · ‖Π(k)‖2 · ‖X(k+ 1

2
) − Y (k)‖+ ‖Qα

Xα(k+1
2)
‖2 · ‖∇F (X(k+ 1

2
))−∇F (Y (k))‖,

where ‖ · ‖2 denotes the induced 2-norm of linear operators. From Propositions 4.6.3(d)

and 4.12.1, the equation above results in

(4.165) ‖gradαF (X(k+ 1
2

))‖ ≤ ‖Qα
Xα(k+1

2)
‖2 · ‖Π‖2 · ‖X(k+ 1

2
) − Y (k)‖+

‖Qα
Xα(k+1

2)
‖2 · µ · ‖X(k+ 1

2
) − Y (k)‖.

237

Similar to Eqs. (4.138) and (4.139), ‖Qα
Xα(k+1

2)
‖2 in Eq. (4.165) is bounded as well. There-

fore, there exists a constant scalar να > 0 such that the right-hand side of Eq. (4.165)

can be upper-bounded:

(4.166) ‖gradαF (X(k+ 1
2

))‖ ≤ να‖X(k+ 1
2

) − Y (k)‖.

Recall that Y (k) ∈ Rd×(d+1)n results from line 12 of Algorithm 11:

(4.167) Y (k) = X(k) +
(
X(k) −X(k−1)

)
λ(k).

In Eq. (4.167), λ(k) ∈ R(d+1)n×(d+1)n is a diagonal matrix

λ(k) , diag{λ1(k) · I1, · · · , λ|A|(k) · I|A|} ∈ R(d+1)n×(d+1)n,

where λα(k) ∈ R is given by line 11 of Algorithm 11 and Iα ∈ R(d+1)nα×(d+1)nα is the

identity matrix. From Eqs. (4.166) and (4.167), it can be shown that

(4.168)

‖gradαF (X(k+ 1
2

))‖

≤να‖X(k+ 1
2

) −X(k) −
(
X(k) −X(k−1)

)
λ(k)‖

≤να‖X(k+ 1
2

)−X(k)‖+ να‖
(
X(k)−X(k−1)

)
λ(k)‖

≤να‖X(k+ 1
2

) −X(k)‖+ να‖λ(k)‖2 · ‖X(k) −X(k−1)‖.

From line 11 of Algorithm 11, we obtain sα(k) ≥ 1, and thus,

λα(k) =

√
4sα(k)2

+ 1− 1

2sα(k)
=

2sα(k)√
4sα(k)2

+ 1 + 1
∈ (0, 1),

which suggests ‖λ(k)‖2 ∈ (0, 1). Then, we upper-bound the right-hand side of Eq. (4.168)

using ‖λ(k)‖2 ∈ (0, 1):

238

(4.169) ‖gradαF (X(k+ 1
2

))‖ ≤ να‖X(k+ 1
2

) −X(k)‖+ να‖X(k) −X(k−1)‖.

2) If Xα(k+ 1
2

) ∈ X α is from line 12 of Algorithm 12, we obtain

(4.170) Xα(k+ 1
2

) ← arg min
Xα∈Xα

Hα(Xα|X(k)).

A similar procedure to the derivation of Eq. (4.166) indicates

‖gradαF (X(k+ 1
2

))‖ ≤ να‖X(k+ 1
2

) −X(k)‖,

where να > 0 is the same as that in Eq. (4.166). Thus, we obtain

‖gradαF (X(k+ 1
2

)) ≤ να‖X(k+ 1
2

) −X(k)‖ ≤ να‖X(k+ 1
2

) −X(k)‖+ να‖X(k) −X(k−1)‖.

Therefore, no matter if Xα(k+ 1
2

) is from line 5 or 12 of Algorithm 12, it can be shown that

(4.171) ‖gradαF (X(k+ 1
2

))‖ ≤ να‖X(k+ 1
2

) −X(k)‖+ να‖X(k) −X(k−1)‖

holds for any node α ∈ A. From Eq. (4.171), there exists a constant scalar ν ,
∑

α∈A ν
α >

0 such that
‖gradF (X(k+ 1

2
))‖

≤
∑
α∈A

‖gradαF (X(k+ 1
2

))‖

≤
∑
α∈A

να ·
(
‖X(k+ 1

2
) −X(k)‖+ ‖X(k) −X(k−1)‖

)
= ν‖X(k+ 1

2
) −X(k)‖+ ν‖X(k) −X(k−1)‖

≤
√

2ν

√
‖X(k+ 1

2
) −X(k)‖2 + ‖X(k) −X(k−1)‖2.

Furthermore, if ζ > ξ > 0, the equation above indicates

239

(4.172) ‖gradF (X(k+ 1
2

))‖2 ≤ 2ν2 ·
(
‖X(k+ 1

2
) −X(k)‖2 + ‖X(k) −X(k−1)‖2

)
≤

4ν2

δ′
(
F

(k) − F (k+1))
+

4ν2

δ

(
F

(k−1) − F (k))
,

where the last inequality is due to Eqs. (4.155) and (4.160). Letting ε , min{ δ
2ν2
, δ′

2ν2
} > 0,

then Eq. (4.172) leads to

(4.173) F
(k−1) − F (k+1) ≥ ε

2
‖gradF (X(k+ 1

2
))‖2.

A telescoping sum of Eq. (4.173) over k from 0 to K yields

F
(−1)

+ F
(0) − F (k) − F (k+1) ≥ ε

2

K∑
k=0

‖gradF (X(k+ 1
2

))‖2,

and thus,

(4.174) F
(−1)

+ F
(0) − F (k) − F (k+1) ≥ ε(K + 1)

2
min

0≤k≤K
‖gradF (X(k+ 1

2
))‖2.

From lines 4 and 8 of Algorithm 11, we obtain

(4.175) F
(−1)

= F
(0)

= F (X(0)),

and Propositions 4.8.1(a) and 4.8.1(b) indicate

(4.176) F
(k) ≥ F

(k+1) ≥ F∞.

As a result of Eqs. (4.174) to (4.176), it can be concluded that

F (X(0))− F∞ ≥ ε(K + 1)

4
min

0≤k≤K
‖gradF (X(k+ 1

2
))‖2,

240

which is equivalent to

(4.177) min
0≤k<K

‖gradF (X(k+ 1
2

))‖ ≤ 2

√
1

ε
· F (X(0))− F∞

K + 1
.

The proof is completed.

Proof of (f). From Propositions 4.8.1(c) and 4.8.1(d), we obtain

‖X(k+1) −X(k)‖ → 0

and

‖X(k+ 1
2

) −X(k)‖ → 0

as long as ζ > ξ > 0, from which and Eq. (4.172), it is trivial to show that

(4.178) gradF (X(k+ 1
2

))→ 0.

In addition, note that gradF (X) is continuous by Assumption 4.2(b), which suggests

(4.179) gradF (X(k))→ gradF (X(k+ 1
2

)).

From Eqs. (4.178) and (4.179), it can be concluded that

gradF (X(k))→ 0.

The proof is completed.

4.12.6. Proof of Proposition 4.9.1

Proof of (a). We will prove F (X(k)) =
∑

α∈A F
α(k) by induction.

241

1) From Eq. (4.12), it can be shown that

(4.180) F (X(0)) =
∑
α∈A

∑
(i,j)∈

−→
E αα

Fαα
ij (X(0)) +

∑
α,β∈A,
α6=β

∑
(i,j)∈

−→
E αβ

Fαβ
ij (X(0)) =

∑
α∈A

(∑
(i,j)∈

−→
E αα

Fαα
ij (X(0)) +

1

2

∑
β∈Nα−

∑
(i,j)∈

−→
E αβ

Fαβ
ij (X(0))+

1

2

∑
β∈Nα+

∑
(i,j)∈

−→
E βα

F βα
ij (X(0))

)
=
∑
α∈A

Fα(0),

where the last equality results from Eq. (4.81).

2) Suppose F (X(k)) =
∑

α∈A F
α(k) holds at k-th iteration. As a result of Eq. (4.83), we

obtain

(4.181)
∑
α∈A

Gα(k+1) =
∑
α∈A

Gα(Xα(k+1)|X(k)) +
∑
α∈A

Fα(k)

=
∑
α∈A

Gα(Xα(k+1)|X(k)) + F (X(k)) = G(X(k+1)|X(k)),

where the second and third equality are due to F (X(k)) =
∑

α∈A F
α(k) and Eq. (4.30),

respectively. From Eq. (4.80) and

‖X(k+1) −X(k)‖2 =
∑
α∈A

‖Xα(k+1) −Xα(k)‖2,

it is straightforward to show

(4.182)
∑
α∈A

∆Gα(Xα(k+1)|X(k)) =

∑
α,β∈A,
α 6=β

∑
(i,j)∈

−→
E αβ

(
Fαβ
ij (X)− Eαβ

ij (X|X(k))
)
− ξ

2

∥∥X(k+1) −X(k)
∥∥2
.

242

In addition, Eqs. (4.84) and (4.181) suggest

(4.183)
∑
α∈A

Fα(k+1) =
∑
α∈A

Gα(k+1) +
∑
α∈A

∆Gα(Xα(k+1)|X(k))

= G(X(k+1)|X(k)) +
∑
α∈A

∆Gα(Xα(k+1)|X(k)).

Substituting Eqs. (4.29) and (4.182) into Eq. (4.183) yields.

∑
α∈A

Fα(k+1) =
∑
α∈A

∑
(i,j)∈

−→
E αα

Fαα
ij (X(k+1)) +

∑
α,β∈A,
α 6=β

∑
(i,j)∈

−→
E αβ

Fαβ
ij (X(k+1)).

We simplify the equation above with Eq. (4.12) and obtain

(4.184) F (X(k+1)) =
∑
α∈A

Fα(k+1).

3) Therefore, it can be concluded that F (X(k)) =
∑

α∈A F
α(k) holds for any k ≥ 0.

Proof of (b). We will prove F (k)
=
∑

α∈A F
α(k) by induction.

1) Recall from Eqs. (4.79), (4.82) and (4.180) that F (0)
= F (X(0)), Fα(0)

= Fα(0) and

F (X(0)) =
∑

α∈A F
α(0), which immediately yields

(4.185) F
(0)

= F (X(0)).

2) Suppose F (k)
=
∑

α∈A F
α(k) holds at k-th iteration. As a result of Eq. (4.79), we obtain

F
(k+1)

= (1− η) · F (k)
+ η · F (X(k+1)).

Note that Proposition 4.9.1(a) suggests F (X(k+1))=
∑
α∈A

Fα(k+1). Apply F
(k)

=
∑
α∈A

F
α(k)

and F (X(k+1)) =
∑
α∈A

Fα(k+1) on the right-hand side of the equation above results in

243

(4.186) F
(k+1)

= (1− η) ·
∑
α∈A

F
α(k)

+ η ·
∑
α∈A

Fα(k+1) =
∑
α∈A

F
α(k+1)

,

where the last equality is due to Eq. (4.85).

3) Therefore, it can be concluded that F (k)
=
∑

α∈A F
α(k) holds for any k ≥ 0. The proof

is completed.

Proof of (c). Proposition 4.6.1 indicates Eαβ
ij (X|X(k−1)) ≥ Fαβ

ij (X) and Eβα
ij (X|X(k−1)) ≥

F βα
ij (X), from which and Eq. (4.80) we obtain

(4.187) ∆Gα(Xα|X(k−1)) ≤ 0

as long as ξ ≥ 0. From Eqs. (4.84) and (4.187), it is immediate to conclude

(4.188) Fα(k+1) ≤ Gα(k+1)

for any k ≥ 0. If Gα(k+1) ≤ F
α(k), the equation above further suggests

(4.189) Fα(k+1) ≤ Gα(k+1) ≤ F
α(k)

.

From Eq. (4.85), we obtain

(4.190) F
α(k+1)

= (1− η) · Fα(k)
+ η · Fα(k+1),

where note that η ∈ (0, 1]. Thus, we conclude that Fα(k+1) is a convex combination of

F
α(k) and Fα(k+1), which and Eq. (4.189) lead to

(4.191) Fα(k+1) ≤ F
α(k+1) ≤ F

α(k)
.

The proof is completed.

244

4.12.7. Proof of Proposition 4.9.2

Proof of (a). We will prove Fα(k) ≤ F
α(k) and Fα(k+1) ≤ F

α(k) by induction, from which

it can be shown that F (k+1) ≤ F
(k).

1) From line 7 of Algorithm 13, it can be concluded that

Fα(0) = F
α(0)

.

2) Suppose Fα(k) ≤ F
α(k) holds at k-th iteration. If the adaptive restart scheme for

Xα(k+ 1
2

) is not triggered, it is immediate to show from line 7 of Algorithm 14 that

Gα(k+ 1
2

) ≤ F
α(k)

.

On the other hand, if the adaptive restart scheme for Xα(k+ 1
2

) is triggered, line 8 of

Algorithm 14 results in

(4.192) Gα(Xα(k+ 1
2

)|X(k)) ≤ Hα(Xα(k+ 1
2

)|X(k)) ≤ Hα(Xα(k)|X(k)) = 0,

where the first inequality and the last equality are due to Proposition 4.6.3(e) and

Eq. (4.38), respectively. From Eqs. (4.83) and (4.192), we obtain

(4.193) Gα(k+ 1
2

) = Gα(Xα(k+ 1
2

)|X(k)) + Fα(k) ≤

Hα(Xα(k+ 1
2

)|X(k)) + Fα(k) ≤ Fα(k) ≤ F
α(k)

.

Therefore, no matter whether the adaptive restart scheme is triggered or not, it can be

concluded that

(4.194) Gα(k+ 1
2

) ≤ F
α(k)

.

245

In addition, line 16 of Algorithm 14 and Eq. (4.194) result in

(4.195) Gα(k+1) − Fα(k) ≤ φ ·
(
Gα(k+ 1

2
) − Fα(k)) ≤ 0,

which suggests

(4.196) Gα(k+1) ≤ F
α(k)

.

As a result of Proposition 4.9.1(c), the equation above indicates

(4.197) Fα(k+1) ≤ F
α(k+1) ≤ F

α(k)
.

3) Therefore, it can be concluded that Fα(k) ≤ F
α(k) and F

α(k+1) ≤ F
α(k) hold for any

k ≥ 0.

4) Summing both sides of Fα(k+1) ≤ F
α(k) over all the nodes α and implementing Propo-

sitions 4.9.1(a) and 4.9.1(b) yields

F
(k+1)

=
∑
α∈A

F
α(k+1) ≤

∑
α∈A

F
α(k)

= F
(k)
,

which suggests that F (k) is nonincreasing. The proof is completed.

Proof of (b). Recalling that F (X(k)) ≥ 0 holds by definition for any k ≥ 0 and F
(k)

is the exponential moving average of F (X(0)), F (X(1)), · · · , F (X(k)), we obtain F
(k) ≥

0, i.e., F (k) is bounded below. In addition, Proposition 4.9.2(a) indicates that F (k) is

nonincreasing, and thus, there exists F∞ such that F (k) → F∞, from which and Eq. (4.79)

it can be concluded that F (X(k))→ F∞ as well. The proof is completed.

246

Proof of (c). From Eq. (4.30), it can be shown that G(X(k+1)|X(k)) takes the form as

(4.198)

G(X(k+1)|X(k)) =
∑
α∈A

Gα(Xα(k)|X(k)) + F (X(k)) =
∑
α∈A

Gα(Xα(k)|X(k)) +
∑
α∈A

Fα(k),

where the last equality is due to Proposition 4.9.1(a). Applying Eq. (4.83) on the equation

above results in

(4.199) G(X(k+1)|X(k)) =
∑
α∈A

Gα(k+1).

RecallingGα(k+1) ≤ F
α(k) from Eq. (4.196) and

∑
α∈A F

α(k)
= F

(k) from Proposition 4.9.1(b),

we obtain

(4.200) G(X(k+1)|X(k)) =
∑
α∈A

Gα(k+1) ≤
∑
α∈A

F
α(k)

= F
(k)
.

From Eq. (4.200), it can be shown that

(4.201) F
(k) − F (X(k+1)) ≥ G(X(k+1)|X(k))− F (X(k+1)).

Substitute Eqs. (4.118) and (4.119) into the right-hand side of Eq. (4.201) and simplify

the resulting equation:

(4.202) F
(k) − F (X(k+1)) ≥ 1

2
‖X(k+1) −X(k)‖2

Γ(k) −
1

2
‖X(k+1) −X(k)‖2

M(k) .

From Eqs. (4.154) and (4.202), we obtain

(4.203) F (k)−F (k+1)
= η ·

(
F

(k)−F (k+1)
)
≥ η

2
‖X(k+1)−X(k)‖2

Γ(k)−
η

2
‖X(k+1)−X(k)‖2

M(k) .

247

From Eq. (4.107), note that Γ(k)−M (k) ≥ ξ · I, and thus, there exists δ > 0 such that the

equation above is reduced to

(4.204) F
(k) − F (k+1) ≥ δ

2
‖X(k+1) −X(k)‖2

as long as ξ > 0. Furthermore, Proposition 4.9.2(b) yields

(4.205) F
(k) − F (k+1) → 0,

from which and Eq. (4.204), we obtain

(4.206) ‖X(k+1) −X(k)‖ → 0.

The proof is completed.

Proof of (d). In terms of Xα(k+ 1
2

), there are two possible cases:

1) If Xα(k+ 1
2

) is from line 3 of Algorithm 14, then line 7 of Algorithm 14 indicates

(4.207) F
α(k) −Gα(k+ 1

2
) ≥ ψ · ‖Xα(k+ 1

2
) −Xα(k)‖2.

2) If Xα(k+ 1
2

) is from line 8 of Algorithm 14, then note that Eq. (4.193) holds for any

k ≥ 0, which suggests

F
α(k) −Gα(k+ 1

2
) ≥ Hα(Xα(k+ 1

2
)|X(k))−Gα(Xα(k+ 1

2
)|X(k)).

Recalling the definitions ofGα(Xα(k+ 1
2

)|X(k)) andHα(Xα(k+ 1
2

)|X(k)) in Eqs. (4.31) and (4.38),

we rewrite the equation above as

(4.208) F
α(k) −Gα(k+ 1

2
) ≥ 1

2
‖Xα(k+ 1

2
) −Xα(k)‖2

Πα(k) −
1

2
‖Xα(k+ 1

2
) −Xα(k)‖2

Γα(k) .

248

Similar to Γ(k) and Π(k) in Eq. (4.125), we obtain

(4.209) Πα(k) � Γα(k) + (ζ − ξ) · I.

Applying Eq. (4.209) on the right-hand side of Eq. (4.208) indicates

(4.210) F
α(k) −Gα(k+ 1

2
) ≥ ζ − ξ

2
‖Xα(k+ 1

2
) −Xα(k)‖2.

Then, as a result of Eqs. (4.207) and (4.210), there exists a constant scalar σ′ > 0 such

that

(4.211) F
α(k) −Gα(k+ 1

2
) ≥ σ′

2
‖Xα(k+ 1

2
) −Xα(k)‖2

if ζ > ξ > 0. In addition, lines 16 to 18 of Algorithm 14 results in

(4.212) F
α(k) −Gα(k+1) ≥ φ ·

(
F
α(k) −Gα(k+ 1

2
)
)
≥ φσ′

2
‖Xα(k+ 1

2
) −Xα(k)‖2,

where the last inequality is from Eq. (4.211). Summing both sides of Eq. (4.212) over

all the nodes α ∈ A and simplifying the resulting equation with Proposition 4.9.1(b) and

Eq. (4.199), we obtain

F
(k) −G(X(k+1)|X(k)) ≥ φσ′

2
‖X(k+ 1

2
) −X(k)‖2.

Recalling G(X(k+1)|X(k)) ≥ F (X(k+1)) from Proposition 4.6.2(b), the equation above in-

dicates

(4.213) F
(k) − F (X(k+1)) ≥ F

(k) −G(X(k+1)|X(k)) ≥ φσ′

2
‖X(k+ 1

2
) −X(k)‖2.

249

From Eqs. (4.154) and (4.213), it is immediate to show

F
(k) − F (k+1) ≥ η ·

(
F

(k) − F (X(k+1))
)
≥ ηφσ′

2
‖X(k+ 1

2
) −X(k)‖2.

Therefore, there exists a constant scalar δ′ > 0 such that

(4.214) F
(k) − F (k+1) ≥ δ′

2
‖X(k+ 1

2
) −X(k)‖2.

Since F (k) → F∞, it can be concluded that

(4.215) ‖X(k+ 1
2

) −X(k)‖ → 0

if ζ > ξ > 0. The proof is completed.

Proof of (e) and (f). The proofs of Propositions 4.9.2(e) and 4.9.2(f) are almost the

same as these of Propositions 4.8.1(e) and 4.8.1(f), which are thus omitted due to space

limitation.

250

CHAPTER 5

Sparse Constrained Optimization of 3D Human Pose and Shape

Estimation

We propose a novel sparse constrained formulation and from it derive a real-time op-

timization method for 3D human pose and shape estimation. Our optimization method,

SCOPE (Sparse Constrained Optimization for 3D human Pose and shapE estimation), is

orders of magnitude faster (avg. 4ms convergence) than existing optimization methods,

while being mathematically equivalent to their dense unconstrained formulation under

mild assumptions. We achieve this by exploiting the underlying sparsity and constraints

of our formulation to efficiently compute the Gauss-Newton direction. We show that this

computation scales linearly with the number of joints and measurements of a complex 3D

human model, in contrast to prior work where it scales cubically due to their dense uncon-

strained formulation. Based on our optimization method, we present a real-time motion

capture framework that estimates 3D human poses and shapes from a single image at over

30 FPS. In benchmarks against state-of-the-art methods on multiple public datasets, our

framework outperforms other optimization methods and achieves competitive accuracy

against regression methods.

5.1. Introduction

Estimating 3D human poses and shapes from an image has a broad range of applica-

tions in embodied AI, robotics, AR/VR, and has seen remarkable progress in recent years.

251

Among leading techniques, optimization methods [11,12,137–140] have been moderately

successful. However, they can still take up to tens of seconds to fit 3D human poses and

shapes given an image, which is not practical for real-time applications. Deep learning

based regression methods [2,141] have significantly reduced the computation times down

to just tens of milliseconds, but often rely on optimization during training or for refining

the network outputs. With a novel formulation, we propose fast algorithms to solve the

optimization problem of 3D human pose and shape estimation in real time and achieve a

comparable performance to the regression methods [2,141].

Most optimization methods [11, 12, 137–140] formulate 3D human pose and shape

estimation as dense unconstrained optimization problems, differing only in terms of the

objective functions. These formulations are dense as they result in dense Hessian matri-

ces and unconstrained as the optimization variables are unconstrained. To optimize the

objective they use iterative techniques like Gauss-Newton [142] to find a local minimum

given an initial guess. These formulations, however, suffer from high computation times

due to the dense Hessian matrices that lead to O(K3) + O(K2N) time to compute the

Gauss-Newton direction for a 3D human model with K joints and N measurements. In

particular, computing this descent direction involves the steps of linearization to find the

Jacobian, building and then solving the linear system, where a dense formulation renders

all these steps expensive. Therefore, it is critical to improve the efficiency of the Gauss-

Newton direction computation to develop real-time optimization methods for 3D human

pose and shape estimation.

The preliminary results of this work are presented in [143]. Instead of using the

dense unconstrained formulation from existing optimization methods, we present a sparse

252

Figure 5.1. Example solutions from our motion capture framework based
on our proposed sparse constrained optimization. (left) input image from
the 3DPW [10] dataset, (middle) 3D pose and shape reconstruction over-
layed on the input image, (right) 3D reconstruction shown from a rotated
viewpoint.

253

constrained formulation that is mathematically equivalent under mild assumptions. We

show how the underlying sparsity and constraints of our formulation can be exploited

leading to sparse Hessian matrices and ultimately computing the Gauss-Newton direction

in O(K) + O(N) time for a 3D human model with K joints and N measurements. Our

optimization method, SCOPE (Sparse Constrained Optimization for 3D human Pose and

shapE estimation), is thus orders of magnitude faster (average 4 ms convergence) than ex-

isting optimization methods, particularly when the number of joints K and measurements

N is large.

Based on our optimization method, we present a real-time 3D motion capture frame-

work (illustrated in Figure 5.2) that estimates 3D human poses and shapes from a single

image at over 30 FPS. Example solutions are shown in Figure 5.1. Our method allows

using a modified SMPL model [144] that has 75 degrees of freedom and 10 shape parame-

ters, and estimates both human poses and shapes with which the 3D human mesh can be

reconstructed. In contrast, several real-time 3D motion capture frameworks using opti-

mization methods [137,138] adopt a much simpler 3D skeleton model with 33 degrees of

freedom and no shape parameters to reduce the computation complexity and are therefore

unable to reconstruct the 3D human mesh. We compare our real-time 3D motion capture

framework with numerous state-of-the-art methods [2, 11, 12, 139, 141, 145] on public

benchmark datasets [10,13,14]. Our framework achieves accuracies that outperform op-

timization methods [11,12,138,139] and are competitive to regression methods [2,141].

In summary, our contributions are: (i) we propose a sparse constrained formulation

for 3D human pose and shape estimation that is mathematically equivalent to the dense

unconstrained formulation of existing optimization methods under mild assumptions; (ii)

254

we develop an efficient algorithm that computes the Gauss-Newton direction in linear-time

complexity with respect to the number of joints and measurements; and (iii) we present a

real-time 3D motion capture framework that estimates 3D human poses and shapes from

a single image.

The rest of this chapter is organized as follows. Section 5.2 reviews the state-of-the-art

optimization and regression methods for 3D human pose and shape estimation. Section 5.3

formulates the optimization problem. Section 5.4 proposes the sparse constrained formu-

lation as well as the O(K) algorithm to compute the Gauss-Newton direction. Section 5.5

presents the real-time motion capture framework for 3D human pose and shape estima-

tion. Sections 5.6 and 5.7 evaluate the proposed method on various benchmark datasets

and make comparisons against existing state-of-the-art methods. Section 5.8 concludes

this chapter and discusses future work. Section 5.9 proves the propositions presented in

this chapter and presents a complete complexity analysis.

5.2. Related work

Optimization methods estimate human poses and shapes by matching 3D joints

on the human body to 2D keypoints on the image. Works in human body model-

ing [144, 146, 147] and 2D keypoint detection [148–150] have made substantial con-

tributions, but the resulting optimization problem remains challenging due to the am-

biguity in the 3D information from an image and the uncertainty of 3D human poses.

To address this, recent works have incorporated 3D information, such as 3D keypoint

positions [137,138], part orientation fields [11], silhouette [151], etc, as additional fitting

255

terms. Additionally, human 3D pose priors in the form of mixture of Gaussians [12], vari-

ational auto-encoder [152], and normalizing flow [153] have been trained from numerous

datasets [13,154,155] and successfully applied to human 3D pose and shape estimation.

A closer look at these optimization methods [11,12,137–139,153] does reveal that they

primarily differ in their loss terms of the objective function while still utilizing the same

underlying dense unconstrained formulation. We show that such a formulation is inher-

ently inefficient in computing the Gauss-Newton direction. Thus despite the considerable

progress, these methods still take tens of seconds to converge and are impractical for real

time applications.

Regression methods use deep neural networks to regress human poses and shapes

directly from images. In most cases, regression methods [2, 141, 145, 156] take only

tens of milliseconds to process one image and meet the real-time requirements. Unlike

[157–161] that lift 2D keypoints to 3D keypoints, regression methods for 3D human pose

and shape estimation face a challenge in having access to large datasets with ground truth

labels of 3D human pose and shape. To address this, regressions methods often employ

optimization methods to precompute 3D ground truth for supervision [141] or even have

optimization methods in the loop [2] during training. Other examples like [156] rely on

optimization methods to refine the network outputs. In these aforementioned scenarios,

the computational efficiency of optimization methods play an important role both during

training and deployment.

256

5.3. Problem Formulation

5.3.1. SMPL Model

The SMPL model [144] is a vertex-based linear blend skinning 3D human model. In

this chapter, we use a SMPL model that has K = 23 rotational joints, V = 6890 vertices,

and P = 10 shape parameters.

The SMPL model represents the human body using a kinematic tree with K+1 inter-

connected body parts indexed with i = 0, 1, · · · , K. In the rest of this chapter, we use

par(i) to denote the parent of body part i, and Ti ∈ SE(3) the pose of body part i, and

Ωi ∈ SO(3) the state of joint i, and β ∈ RP the shape parameters. Note that body part

i is connected to its parent body part par(i) through joint i.

Let Ti ,

Ri ti

0 1

 ∈ SE(3) denote the pose of body part i where Ri ∈ SO(3) is

the rotation and ti ∈ R3 is the translation as well as the position of joint i. The SMPL

model [144] assumes that the joint positions at the rest pose linearly depend on the

vertex positions, and the vertex positions at the rest pose linearly depend on the shape

parameters β ∈ RP . Thus, we conclude that the joint positions ti ∈ R3 at the rest pose

linearly depend on the shape parameters β, i.e., there exists Ji ∈ R3×P and ci ∈ R3 in

the SMPL model such that ti at the rest pose takes the form of

(5.1) ti = Ji · β + ci.

Moreover, the relative joint position ∆ti ∈ R3 between any connected body parts is

constant, and thus, we obtain ∆ti = ti − tpar(i), where par(i) denotes the index of the

parent of body part i. Then, joint position ti ∈ R3 at any poses satisfies

257

(5.2) ti = Rpar(i)∆t + tpar(i) = Rpar(i)

(
ti − tpar(i)

)
+ tpar(i).

In the equation above, Rpar(i) is rotation of pose Tpar(i) ∈ SE(3). Substituting Eq. (5.1)

into Eq. (5.2) to cancel out ti and tpar(i), we obtain

(5.3) ti = Rpar(i)

(
Si · β + li

)
+ tpar(i),

where

(5.4) Si = Ji − Jpar(i) ∈ R3×P

and

(5.5) li = ci − cpar(i) ∈ R3.

It is immediate to show that Si ·β + li is the relative joint position between body parts i

and par(i), and thus, the corresponding relative pose Tpar(i),i is

(5.6) Tpar(i),i ,

Ωi Si · β + li

0 1

where Ωi ∈ SO(3) is the state of joint i. Then Ti can be recursively computed as

(5.7) Ti = Tpar(i)Tpar(i),i = Tpar(i)

Ωi Si · β + li

0 1

 .
5.3.2. Rigid Skinning Assumption of Keypoints

We need to select a set of joints and vertices on the SMPL model as keypoints to

calculate 2D and 3D keypoint losses, part orientation field losses, etc. [11,12,137,138].

258

In this chapter, we modify the SMPL model and make the following assumption of the

selected keypoints for loss calculation.

Assumption 5.1. Each keypoint j is rigidly attached to a body part i, i.e., the

position vj ∈ R3 of keypoint j is

(5.8) vj = Rivj + ti,

where Ri ∈ SO(3) and ti ∈ R3 are the rotation and translation of pose Ti ∈ SE(3), and

vj ∈ R3 is the relative position of keypoint j with respect to body part i. Furthermore,

there exists Vj ∈ R3×P and vj,0 ∈ R3 such that the relative position vj ∈ R3 in Eq. (5.8)

is evaluated as

(5.9) vj = Vj · β + vj,0.

For simplicity, we use Vj and vj,0 extracted from the joint and vertex positions at the

rest pose of the SMPL model, whose derivation is similar to that of Si and li in Eq. (5.6).

We remark that Assumption 5.1 is important for our sparse constrained formulation pre-

sented later in this chapter.

Compared to the SMPL model, Assumption 5.1 keeps rigid skinning (shape blend

shapes) while dropping nonrigid skinning (pose blend shapes) for the vertex keypoints.

We argue that Assumption 5.1 is a reasonable and mild modification for human pose and

shape estimation. First, the SMPL model evaluates the joint keypoints, such as wrists,

elbows, knees, etc, using Eq. (5.7), which is essentially equivalent to Eqs. (5.8) and (5.9)

of rigid skinning. While the SMPL model has each vertex position depend on the poses

of all the body parts, the vertices selected as keypoints, such as nose, eyes, ears, etc., are

259

mainly affected by a single body part. Finally, we note that inaccuracies are also present

in 2D and 3D keypoint measurements used for estimation, which are usually much larger

than those induced by the SMPL model modification using Eqs. (5.8) and (5.9).

5.3.3. Objective Function

Given an RGB image, we use the following objective for human pose and shape esti-

mation:

(5.10) E =
∑

0≤i≤K

(
E2D,i + λ3D · E3D,i + λp · Ep,i + λT · ET,i + λΩ · EΩ,i

)
+ λβ · Eβ,

where λ3D, λp, λT, λΩ and λβ are scalar weights and joint state Ω0 ∈ SO(3) for body part

0 is a dummy variable. Each loss term in Eq. (5.10) is defined as follows:

(1) E2D,i , 1
2

∑
j∈V2D,i

‖ΠK(vj) − v̂2D,j‖2 is the 2D keypoint loss, where V2D,i is the

set of indices of keypoints attached to body part i and selected to calculate the

2D keypoint loss, ΠK(·) is the 3D to 2D projection map with camera intrinsics K,

vj ∈ R3 is the keypoint position, and v̂2D,j ∈ R2 is the 2D keypoint measurement.

(2) E3D,i , 1
2

∑
j∈V3D,i

‖vj − v̂3D,j‖2 is the 3D keypoint loss, where V3D,i is the set

of indices of keypoints attached to body part i and selected to calculate the 3D

keypoint loss, vj ∈ R3 is the keypoint position and v̂3D,j ∈ R3 is the 3D keypoint

measurement.

(3) Ep,i , 1
2

∑
j∈Pi

∥∥ vj−ti
‖vj−ti‖ − p̂j

∥∥2 is the part orientation field loss [11], where Pi is

the set of indices of keypoints attached to body part i and selected to calculate

the part orientation field loss, vj ∈ R3 is the keypoint position, and ti ∈ R3 is

the position of body part i as well as the translation of pose Ti ∈ SE(3), and

p̂i ∈ R3 is the part orientation field measurement.

260

(4) ET,i , 1
2
‖Ti − T̂i‖2 is the prior loss of pose Ti ∈ SE(3), where T̂i ∈ SE(3) is a

known prior estimate.

(5) EΩ,i , 1
2
‖rΩi(Ωi)‖2 is the prior loss of joint state Ωi ∈ SO(3), where rΩi(·) is a

normalizing flow of SO(3) trained on the AMASS dataset [154].

From the definitions above, each loss term E(#),i in Eq. (5.10) can be in general for-

mulated as

(5.11) E(#),i =
∑
j

1

2
‖r(#),ij(Ti, Ωi, β, vj)‖2,

where r(#),ij(·) is a function of Ti, Ωi, β and vj. Since keypoint j in Eq. (5.11) is attached

to body part i, then Eqs. (5.8) and (5.9) indicate that vj is a function of Ti and β:

(5.12) vj = Ri

(
Vj · β + vj,0

)
+ ti.

As a result of Eq. (5.12), we can cancel out vj in Eq. (5.11) and simplify r(#),ij(·) as a

function of Ti, Ωi and β:

(5.13) E(#),i =
∑
j

1

2
‖r(#),ij(Ti, Ωi, β)‖2.

We remark that r(#),ij(·) in Eq. (5.13) is related to Ti ∈ SE(3) and Ωi ∈ SO(3) of a

single body part i. Then, Eq. (5.13) immediately suggests that Eq. (5.10) takes the form

of

(5.14) E =
∑

0≤i≤K

1

2
‖ri(Ti,Ωi,β)‖2,

where each ri(·) is a function of Ti ∈ SE(3), Ωi ∈ SO(3) and β ∈ RP . Besides those in

Eq. (5.10), a number of losses can be written in the form of Eqs. (5.11) and (5.13) as well.

261

5.3.4. Dense Unconstrained Optimization

With Eqs. (5.6) and (5.7), we might recursively compute each Ti ∈ SE(3) through a

top-down traversal of the kinematics tree. Thus, each Ti can be written as a function of

the root pose T0 ∈ SE(3), the joint states Ω , (Ω0, Ω1, · · · , ΩK) ∈ SO(3)K+1 and the

shape parameters β ∈ RP :

(5.15) Ti , Ti (T0,Ω,β) .

In existing optimization methods [11, 12, 137–139, 152], Eq. (5.15) is substituted into

Eq. (5.14) to cancel out non-root poses Ti ∈ SE(3) (1 ≤ i ≤ K), which results in a dense

unconstrained optimization problem of T0 ∈ SE(3), Ω ∈ SO(3)K and β ∈ RP :

(5.16) min
T0,Ω,β

E =
∑

0≤i≤K

1

2
‖ri(T0,Ω,β)‖2.

In general, Gauss-Newton is the preferred method to solve optimization problems of

the kind in Eq. (5.16). This consists of linearization to find the Jacobian matrix, building

and then solving the linear system to find the Gauss-Newton direction. In Section 5.9.2,

we show that Eq. (5.16) yields a dense linear system when computing the Gauss-Newton

direction. Since the complexity of dense linear system computation increases superlinearly

with their size, the dense unconstrained formulation of Eq. (5.16) has poor scalability when

the human model has large numbers of joints and measurements.

5.4. Method

In this section, we present a sparse constrained formulation for 3D human pose and

shape estimation that is mathematically equivalent to the dense unconstrained one in

262

Section 5.3.4. From our formulation, we derive a method that scales linearly with the

number of joints and measurements to compute the Gauss-Newton direction.

5.4.1. Sparse Constrained Optimization

We introduce βi ∈ RP with βi = βpar(i) for each body part i in the SMPL model.

Since βi = βpar(i) indicates βi = β, and Ti, Ωi and β satisfy the kinematic constraints

of Eq. (5.7), we formulate 3D human pose and shape estimation of Eq. (5.14) as a sparse

constrained optimization problem on {Ti, βi, Ωi}Ki=0 ∈
(
SE(3)× RP × SO(3)

)K+1:

(5.17) min
{Ti,βi,Ωi}Ki=0

∑
0≤i≤K

1

2
‖ri(Ti,Ωi,βi)‖2

subject to

(5.18a)

Ti = Fi(Tpar(i), βpar(i),Ωi)

, Tpar(i)

Ωi Si · βpar(i) + li

0 1

 ,

(5.18b) βi = βpar(i).

In Eq. (5.18a), note that Fi(·) : SE(3)×RP ×SO(3)→ SE(3) is a function corresponding

to Eq. (5.7) and maps Tpar(i), βpar(i), Ωi to Ti. For notational simplicity, we define xi ,

(Ti, βi) ∈ SE(3)× RP . Then, Eqs. (5.17) and (5.18) are equivalent to

(5.19) min
{xi,Ωi}Ki=0

∑
0≤i≤K

1

2
‖ri(xi,Ωi)‖2

263

subject to

(5.20) xi =

Fi(xpar(i), Ωi)

βpar(i)

 .
In spite of additional optimization variables and kinematic constraints compared to Eq. (5.16),

we have the following proposition for our sparse constrained formulation.

Proposition 5.4.1. Eqs. (5.19) and (5.20) are equivalent to Eq. (5.16) under As-

sumption 5.1.

Proof. Please refer to Section 5.9.1. �

In the remainder of this section, we will make use of the sparsity and constraints of

Eqs. (5.19) and (5.20) to simplify the computation of the Gauss-Newton direction.

5.4.2. Gauss-Newton Direction

The computation of the Gauss-Newton direction for Eqs. (5.19) and (5.20) is summa-

rized as follows.

Step 1: The linearization of Eqs. (5.19) and (5.20) results in

(5.21) min
{∆xi,∆Ωi}Ki=0

∆E =
∑

0≤i≤K

1

2

∥∥Ji,1∆xi + Ji,2∆Ωi + ri
∥∥2
,

subject to

(5.22) ∆xi = Ai∆xpar(i) + Bi,

264

where ∆xi , (∆Ti, ∆βi) ∈ R6+P and ∆Ωi ∈ R3 are the Gauss-Newton directions of xi

and Ωi, respectively, and ri in Eq. (5.21) is the residue, and

(5.23) Ji,1 ,
∂ri
∂xi

=

[
∂ri
∂Ti

∂ri
βi

]
and Ji,2 ,

∂ri
∂Ωi

,

in Eq. (5.21) are the Jacobians, and

(5.24) Ai ,

 ∂Fi
∂Tpar(i)

∂Fi
∂βpar(i)

0 I

 and Bi ,

 ∂Fi∂Ωi

0

in Eq. (5.22) are the partial derivatives of Eq. (5.20). For ∆xi = (∆Ti, ∆βi) ∈ R6+P

in Eqs. (5.21) and (5.22), note that ∆Ti ∈ R6 and ∆βi ∈ RP are the Gauss-Newton

direction of Ti and βi, respectively.

Step 2: We reformulate Eqs. (5.21) and (5.22) as

(5.25) min
{∆xi,∆Ωi}Ki=0

∆E=
K∑
i=0

[1

2
∆x>i Hi,11∆xi + ∆Ω>i Hi,21∆xi+

1

2
∆Ω>i Hi,22∆Ωi + g>i,1∆xi + g>i,2∆Ωi

]
,

subject to

(5.26) ∆xi = Ai∆xpar(i) + Bi∆Ωi,

where Hi,11 , J>i,1Ji,1, Hi,21 , J>i,2Ji,1 and Hi,22 , J>i,2Ji,2 are the Hessians, and gi,1 ,

J>i,1ri and gi,2 , J>i,2ri are the gradients.

Step 3: Implement Algorithm 15 to solve Eqs. (5.25) and (5.26) and compute the

Gauss-Newton direction {∆xi,∆Ωi}Ki=0.

265

Here, Steps 1 to 3 compute the Gauss-Newton direction {∆xi, ∆Ωi}Ki=0 by solv-

ing a constrained quadratic optimization problem. The following proposition is for its

completeness and complexity.

Proposition 5.4.2. The resulting {∆xi, ∆Ωi}Ki=0 for Eqs. (5.19) and (5.20) is also

the Gauss-Newton direction for Eq. (5.16). Furthermore, Eqs. (5.19) and (5.20) take

O(K) +O(N) time to compute {∆xi, ∆Ωi}Ki=0 using Steps 1 to 3, where K and N are

the number of joints and measurements of the 3D human model, respectively. In contrast,

Eq. (5.16) has a complexity of O(K3) +O(K2N).

Proof. Please refer to Section 5.9.2. �

In general, the computation of the Gauss-Newton direction occupies a significant por-

tion of workloads in optimization. Since our sparse constrained formulation improves this

computation by two orders in terms of the number of joints and has the number of joints

and measurements decoupled for the complexity, it is expected that our resulting method

greatly improves the efficiency of optimization.

5.5. Real-time Motion Capture Framework

We design a real-time monocular motion capture framework, illustrated in Figure 5.2,

based on our fast optimization method to recover 3D human poses and shapes from a

single image. Similar to the other frameworks [137,138], ours consists of a preprocessing

pipeline with the input image fed to YOLOv4-CSP [3,162] for human detection, then to

AlphaPose [149] for 2D keypoint estimation, and finally to a light-weight neural network

that is a modification of VideoPose3D [158] for 2D-to-3D lifting. The output of the

266

Algorithm 15 Solve Eqs. (5.25) and (5.26) and compute the Gauss-Newton direction

1: Input:{Hi,11,Hi,21,Hi,22,gi,1,gi,2}Ki=0

2: Output:{∆xi,∆Ωi}Ki=0 and ∆E0

3: for i = K → 1 do
4: Ni,11 = Hi,11 +

∑
j∈chd(i) Mj,11

5: Ni,21 = Hi,21

6: Ni,22 = Hi,22

7: n1,i = gi,1 +
∑

j∈chd(i) mj,1

8: ni,2 = gi,2

9: ∆Ei =
∑

j∈chd(i) ∆Ej

10: Qi,11 = A>i Ni,11Ai

11: Qi,21 = B>i Ni,11Ai + Ni,21Ai

12: Qi,22 =B>i Ni,11Bi + Ni,21Bi + B>i N>i,21 + Ni,22

13: qi,1 = A>i ni,1

14: qi,2 = B>i ni,1 + ni,2

15: Ki = −Q−1
i,22Qi,21

16: ki = −Q−1
i,22qi,2

17: Mi,11 = Qi,11 −Q>i,21Q
−1
i,22Qi,21

18: m1,i = qi,1 −Q>i,21Q
−1
i,22qi,2

19: ∆Ei = ∆Ei − 1
2
q>i,2Q

−1
i,22qi,2

20: end for
21: ∆Ω0 = 0

22: M0 = H0,11 +
∑

j∈chd(0) Mj,11

23: m0 = g0,1 +
∑

j∈chd(0) mj,1

24: ∆E0 =
∑

i∈chd(0) ∆Ei

25: x0 = −M−1
0 m0

26: ∆E0 = ∆E0 − 1
2
m>0 M−1

0 m0

27: for i = 1→ K do
28: ∆Ωi = Ki∆xpar(i) + ki

29: ∆xi = Ai∆xpar(i) + Bi∆Ωi

30: end for

267

Figure 5.2. Overview of our motion capture framework. Given an image,
our preprocessing pipeline estimates a bounding box, 2D and 3D keypoints.
The 2D and 3D keypoints are then sent to our fast sparse constrained
optimizer for 3D pose and shape reconstruction. Note that 3D keypoints
are used to compute the part orientation fields [11].

preprocessing pipeline is then sent to our fast optimizer for 3D reconstruction. The Python

API of NVIDIA TensorRT 7.2.1 is used to accelerate the inference of the preprocessing

neural networks.

5.5.1. Human Detection

The YOLOv4-CSP [3,162] is used for human detection to balance between accuracy

and efficiency. The size of input images for YOLOv4-CSP is 512× 512.

5.5.2. 2D Keypoint Estimation

The AlphaPose [149] is used for 2D keypoint estimation with 256× 192 input images.

The following datasets are used to train AlphaPose.

Human3.6M [13] is a popular dataset for 3D human pose estimation. Following the

standard training-testing protocol in [157], we use subjects S1, S5-S8 for training.

MPI-INF-3DHP [14] is a multi-view markerless dataset with 8 training subjects

and 6 test subjects. We use subjects S1-S8 that are downsampled to 10 FPS for training.

268

COCO [163] is a large-scale dataset for 2D joint detection. We use the COCO

training datasets for training.

MPII [164] is a 2D human pose dataset that is extracted from online videos. We use

the MPII training datasets for training.

5.5.3. 3D Keypoint Regression

In our real-time motion capture framework, we use a light-weight fully connected

neural network for 2D-to-3D lifting. The 3D Keypoint regression network is a modification

of VideoPose3D [158]. From the 3D keypoint regression network, we further obtain the

part orientation field [11] for each body part. We use the training datasets of Human3.6M

[13] and MPI-INF-3DHP [14] that are downsampled to 10 FPS to train the 3D keypoint

regression network.

5.6. Evaluation

In this section, we present quantitative and qualitative evaluation of our method

against state-of-the-art optimization and regression methods on multiple public bench-

mark datasets. All experiments are done on an Intel Xeon E3-1505M 3.0GHz CPU and

a NVIDIA Quadro GP 100 GPU.

5.6.1. Datasets

We evaluate all methods on the following datasets.

269

Human3.6M (H36M) [13] is one of the most commonly used datasets for 3D human

pose (and shape) estimation (it was obtained and used by coauthors affiliated with aca-

demic institutions). Following the standard training-testing protocol established in [157],

we use subjects S9 and S11 for evaluation.

MPI-INF-3DHP [14] is a markerless dataset with multiple viewpoints. We use

subjects TS1-TS6 for evaluation where the first four (TS1-TS4) are in a controlled lab

environment and the last two are in the wild (TS5-TS6).

3DPW [10] is an in-the-wild dataset captured from a moving single hand-held camera.

IMU sensors are also used to compute ground-truth poses and shapes using the SMPL

model. We use its defined test dataset for evaluation.

5.6.2. Computation Times

We evaluate all methods on their computation or inference times on the Human3.6M

dataset [13] dataset. We compare optimization methods against ours on the optimization

only time and compare all methods on the total computation time per image.

Optimization time is reported in column 4 of Table 5.1. Our method converges

in 20-50 iterations taking less than 4ms on average to reconstruct 3D human poses and

shapes. In contrast to existing optimization methods that estimate pose and shape [11,

12,139] in 20-45s, ours is 4 orders of magnitude faster. As discussed earlier, our method

uses the SPML model with 2.6 times as many variables (75 degrees of freedom and 10

shape parameters) as the 3D skeleton in VNect [138] (33 degrees of freedom and no

shape parameters)—note that the complexity of optimization problems typically increases

superlinearly with the number of optimization variables. Our optimization method is still

270

twice as fast as VNect that only estimates poses (with an objective function with fewer loss

terms). We attribute the significant improvements in optimization times to our sparse

constrained formulation whose computation of the Gauss-Newton direction has linear

rather than cubic complexity with the number of joints and measurements. The ablation

studies in Section 5.7 further support our complexity analysis.

Total time includes the preprocessing time and any optimization or regression time

and reflects the overall time it takes for a method to produce estimates given an image. All

timings are reported in columns 3-6 of Table 5.1. The regression methods [2,141,145]

use ground-truth bounding boxes during evaluation. Therefore, we assume YOLOv4-

CSP [3,162] (17ms) is used in practice to obtain bounding boxes from images and count

it as the preprocessing time per image. For the optimization methods, the preprocessing

time of VNect [138] is computed from its own neural networks while for others [11,12,139]

the preprocessing pipeline is similar to ours and we assume their times (29ms) are close

to ours. Note that in our method the 29ms preprocessing time is a significant portion of

the total time, while for the other optimization methods (that estimate pose and shape)

it is negligible compared to their optimization times. SPIN [2] has the lowest total time

of 29ms and ours is a close second with 33ms. Our motion capture framework thus has a

speed of over 30 FPS which is sufficient for real-time applications.

5.6.3. Accuracy

Human3.6M. We evaluate all methods on the Mean Per-Joint Position Errors with-

out (MPJPE) and with (PA-MPJPE) Procrustes Alignment on two common protocols.

Protocol 1 uses all the four cameras and Protocol 2 only uses the frontal camera. The

271

results are reported in columns 7-9 of Table 5.1. Our framework outperforms the other

methods on Protocol 1 MPJPE, and achieves the second lowest PA-MPJPE slightly be-

hind SPIN [2] on both Protocols 1 and 2. Though not presented in Table 5.1, our method

also has the lowest MPJPE on Protocol 2, which is 60.3 mm.

MPI-INF-3DHP. This is a more challenging dataset than Human3.6M dataset. In

addition to MPJPE, we also compare on Percentage of Correct Keypoints (PCK) with a

threshold of 150 mm and Area Under the Curve (AUC) for a range of PCK thresholds

as alternate metrics for evaluation. The results of MPI-INF-3DHP without and with

rigid alignment are presented in Table 5.2. Our method achieves the state-of-the-art

performance on all metrics.

3DPW. The results are reported in Table 5.3. Our method has the second lowest

MPJPE and PA-MPJPE, and is competitive against the regression method SPIN [2]. Our

method also outperforms regression methods that use multiples frames [165,166].

272
Ta

bl
e
5.
1.

E
va
lu
at
io
n
on

th
e
H
um

an
3.
6M

da
ta
se
t
co
m
pa

ri
ng

co
m
pu

ta
ti
on

al
ti
m
es

(s
)
an

d
ac
cu
ra
cy

(m
m
)
w
it
h
P
ro
to
co
ls
1
an

d
2.

O
ve
ra
ll,

ou
r
m
et
ho

d
si
gn

ifi
ca
nt
ly

ou
tp
er
fo
rm

s
al
lo

pt
im

iz
at
io
n
m
et
h-

od
s
w
it
h
or
de
rs

of
m
ag

ni
tu
de

sp
ee
d
up

,a
nd

is
co
m
pe

ti
ti
ve

ag
ai
ns
t
th
e
be

st
pe

rf
or
m
in
g
re
gr
es
si
on

m
et
ho

d
SP

IN
[2
].
P
re
pr
oc
es
si
ng

ti
m
e
fo
r
re
gr
es
si
on

m
et
ho

ds
is

th
e
ge
ne
ra
ti
on

of
hu

m
an

bo
un

di
ng

bo
xe
s
w
it
h
Y
O
LO

v4
-C

SP
[3
],
an

d
fo
r
op

ti
m
iz
at
io
n
m
et
ho

ds
is

th
e
in
fe
re
nc
e
ti
m
e
of

th
e
fr
on

t-
en
d

ne
ur
al

ne
tw

or
k.

A
ll

th
e
op

ti
m
iz
at
io
n

is
ru
n

on
C
P
U
.
V
N
ec
t,

M
T
C

an
d

ou
rs

ar
e
in

C
+
+
,
an

d
SM

P
Li
fy

an
d
U
P
-P

91
ar
e
in

P
yt
ho

n.

M
et
ho

d
T
im

e
(s
)

P
ro
to
co
l1

P
ro
to
co
l2

P
re
pr
oc
es
si
ng

O
pt
im

iz
at
io
n

R
eg
re
ss
io
n

To
ta
l

M
P
JP

E
↓

PA
-M

P
JP

E
↓

PA
-M

P
JP

E
↓

Poseonly

R
og

ez
et

al
.[
16

0]
–

n/
a

–
–

–
–

87
.3

R
og

ez
et

al
.[
16

1]
–

n/
a

–
–

87
.7

71
.6

–
P
av

la
ko
s
et

al
.[
15

7]
–

n/
a

–
–

71
.9

51
.2

51
.9

M
ar
ti
ne
z
et

al
.[
15

9]
–

n/
a

–
–

–
–

47
.7

P
av

llo
et

al
.[
15

8]
–

n/
a

–
–

51
.8

40
–

*V
N
ec
t
[1
38

]
0.
02

6
0.
00

8
n/

a
0.
03
4

80
.5

–
–

Poseandshape

H
M
R

[1
41

]
0.
01

7
n/

a
0.
03

2
0.
04

9
88

.0
58

.1
56

.8
K
ol
ot
ou

ro
s

et
al
.[
14

5]
0.
01

7
n/

a
0.
02

3
0.
04

0
74

.7
51

.9
50

.1

SP
IN

[2
]

0.
01

7
n/

a
0.
01

2
0.
02

9
65

.6
44

.6
41

.1
*S

M
P
Li
fy

[1
2]

0.
02

9
45

n/
a

45
–

–
82

.3
*U

P
-P

91
[1
39

]
0.
02

9
40

n/
a

40
–

–
80

.7
*M

T
C

[1
1]

0.
02

9
20

n/
a

20
64

.5
–

–
*O

ur
s

0.
02

9
0.
00

4
n/

a
0.
03

3
61

.5
48

.2
46

.3
(*
)
op

ti
m
iz
at
io
n
m
et
ho

d
(n
/a

)
no

t
ap

pl
ic
ab

le
(–
)
un

re
po

rt
ed

st
at
is
ti
c

273

Table 5.2. Evaluation on the MPI-INF-3DHP dataset. Our method out-
performs optimization (denoted by *) and regression methods over multiple
accuracy metrics before and after rigid alignment.

Method PCK ↑ AUC ↑ MPJPE ↓
Absolute (w/o rigid alignment)

Mehta et al. [12] 75.7 39.3 117.6
HMR [141] 72.9 36.5 124.2
SPIN [2] 76.4 37.1 105.2
*XNect [137] 77.8 38.9 115.0
*VNect [138] 76.6 40.4 124.7
*Ours 83.0 41.9 91.5

Rigid aligned
HMR [141] 86.3 47.8 89.8
SPIN [2] 92.5 55.6 67.5
*VNect [138] 83.9 47.3 98.0
*Ours 94.6 59.0 62.1

Table 5.3. Evaluation on the 3DPW dataset. Our method is competitive
against the best regression method SPIN. * denotes optimization method
and ‡ indicates that the method uses multiple frames.

Method MPJPE ↓ PA-MPJPE ↓
HMR [141] 130 81.3
Kolotouros et al. [145] – 70.2
SPIN [2] 96.9 59.2
‡Arnab et al. [166] – 72.2
‡Kanazawa et al. [165] 116.5 72.6
*XNect [137] 134.2 80.3
*Ours 98.6 68.0

5.6.4. Qualitative Results

We present typical failure cases due to inaccurate detection of our preprocessing

pipeline in Fig. 5.3 and qualitative comparisons with SPIN [2] and SMPLify [12] on diffi-

cult examples from the Human3.6M [13], MPI-INF-3DHP [14] and 3DPW [10] datasets

274

Figure 5.3. Typical failure cases of our method due to (left) body part occlu-
sion, (middle) incorrect body orientation detection, (right) depth ambiguity
of monocular camera.

in Figs. 5.4 to 5.9. For a fair comparison, we add extra 3D keypoint measurements to

SMPLify to improve its performance. In Figs. 5.4 to 5.9, it can be seen that our method

has better pixel alignment than SPIN [2] and generates results of higher quality than

SMPLify [12].

5.7. Ablation Studies

In the ablation stuidies, we analyze the impacts of the number of joints K, the number

of measurements N , and the number of shape parameters P on the computation of the

Gauss-Newton direction. The SMPL model [144] with K = 23 joints and SMPL+H

model [167] with K = 51 joints are used for evaluation.

275
O
ri
gi
na

l
O
ur
s

SP
IN

[2
]

SM
P
Li
fy

[1
2]

Figure 5.4. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify [12] (fourth row in purple) on
the Human3.6M [13] dataset.

276
O
ri
gi
na

l
O
ur
s

SP
IN

[2
]

SM
P
Li
fy

[1
2]

Figure 5.5. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify [12] (fourth row in purple) on
the Human3.6M [13] dataset.

277
O
ri
gi
na

l
O
ur
s

SP
IN

[2
]

SM
P
Li
fy

[1
2]

Figure 5.6. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify [12] (fourth row in purple) on
the MPI-INF-3DHP [14] dataset.

278
O
ri
gi
na

l
O
ur
s

SP
IN

[2
]

SM
P
Li
fy

[1
2]

Figure 5.7. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify [12] (fourth row in purple) on
the MPI-INF-3DHP [14] dataset.

279
O
ri
gi
na

l
O
ur
s

SP
IN

[2
]

SM
P
Li
fy

[1
2]

Figure 5.8. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify [12] (fourth row in purple) on
the 3DPW [10] dataset.

280
O
ri
gi
na

l
O
ur
s

SP
IN

[2
]

SM
P
Li
fy

[1
2]

Figure 5.9. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify [12] (fourth row in purple) on
the 3DPW [10] dataset.

281

5.7.1. Experiments

In this section, the CPU time to compute the Gauss-Newton direction w/ and w/o

our method is recorded for the SMPL and SMPL+H models in the following experiments.

Experiment 1. The number of shape parameters P is 0 and the number of measure-

ments N increases from 120 to 600 for both of the SMPL and SMPL+H models.

Experiment 2. The number of shape parameters P is 10 and the number of mea-

surements N increases from 120 to 600 for both of the SMPL and SMPL+H models.

Experiment 3. The number of shape parameters P increases from 0 to 10, and each

joint of the SMPL and SMPL+H models is assigned with a 2D keypoint, a 3D keypoint,

and a part orientation field as measurements.

The SMPL and SMPL+H models have different numbers of joints, and Experiments

1 to 3 have varying numbers of measurements and shape parameters. Thus, these exper-

iments are sufficient to evaluate the impacts of the number of joints K, measurements N

and shape parameters P on the computation of the Gauss-Newton direction.

5.7.2. Number of the Joints

The CPU time ratio of the SMPL+H and SMPL models to compute the Gauss-Newton

direction is used as the metric to evaluate the impact of the number of joints K. Note

that the SMPL and SMPL+H models have K = 23 and K = 51 joints, respectively. The

CPU time ratio reflects the additional time induced as a result of the more joints on the

SMPL+H model. The CPU time ratios of the three experiments are reported in Fig. 5.10

and discussed as follows:

282

(a) (b)

(c)

Figure 5.10. The CPU time ratio of the SMPL+H and SMPL models to
compute the Gauss-Newton direction with (a) different numbers of measure-
ments and no shape parameters, (b) different numbers of measurements and
10 shape parameters, and (c) different numbers of shape parameters. The
SMPL and SMPL+H models have K = 23 and K = 51 joints, respectively.
In Figs. 5.10 (a) to 5.10(c), the solid lines denote the actual CPU time ratio
of the SMPL+H and SMPL models that is obtained from the experiments,
whereas the dashed lines denote the expected CPU time ratio that is ap-
proximated from the complexity analysis in Tables 5.6 to 5.8. It can be
seen the impact of the number of joints is around two orders of magnitude
less on our method.

283

(1) In Experiment 1, there are no shape parameters and the computation of the

Gauss-Newton direction is dominated by the number of measurements N . From

Tables 5.6 to 5.8, it is known that our method has O(N) complexity, which is

not related with the number of joints K, and thus, the expected CPU time ratio

with our method should be
1

1
= 1.

In contrast, the CPU time without our method is approximately O ((3K + 6)2),

which suggests an expected CPU time ratio of

(
3× 51 + 6

3× 23 + 6

)2

= 4.49.

The numbers of 1 and 4.49 in the two equations above are consistent with the

results in Fig. 5.10(a).

(2) In Experiment 2, there are 10 shape parameters. However, the analysis is still

similar to that of Experiment 1. From Tables 5.6 to 5.8, the expected CPU time

ratio of the SMPL+H and SMPL models w/ and w/o our method should be

around
1

1
= 1

and (
3× 51 + 6 + 10

3× 23 + 6 + 10

)2

= 3.95,

respectively, which is consistent with the results in Fig. 5.10(b).

(3) In Experiment 3, the number of measurements N is proportional to the number of

joints of the SMPL and SMPL+H models. Then, as a result of Tables 5.6 to 5.8,

284

the CPU time w/ and w/o our method to compute the Gauss-Newton direction

should be around O(K) and O ((3K + 6)3), respectively, and the corresponding

expected CPU time can be also approximated by

51

23
= 2.22

and (
3× 51 + 6

3× 23 + 6

)3

= 9.53,

which is consistent with the results in Fig. 5.10(c).

(4) From Fig. 5.10 and the discussions above, it can be further concluded that the

number of joints has around O(K2) times less impact on our method, which sug-

gests that our sparse constrained formulation is more suitable for human models

with more joints.

5.7.3. Number of the Measurements

The CPU time w/ and w/o our method to compute the Gauss-Newton direction and

the corresponding speedup in Experiments 1 and 2 are reported in Figs. 5.11 and 5.12. It

can be seen from Figs. 5.11 and 5.12 that our method has 4.73 ∼ 13.91x speedup on the

SMPL model and a 12.17 ∼ 43.24x speedup on the SMPL+H model. Furthermore, no

matter whether there are shape parameters or not, the speedup of our method is greater

as the number of measurements increases, which means that our sparse constrained for-

mulation is more efficient to solve optimization problems with more more measurements.

285

(a) (b)

(c) (d)

Figure 5.11. The computation of the Gauss-Newton direction with different
numbers of measurements and no shape parameters. The results are (a)
the CPU time with and without our method on the SMPL and SMPL+H
models, and (b) the speedup of our method on the SMPL and SMPL+H
models, and (c) the speed up of our method on the SMPL model, and (d)
the speed up of our method on the SMPL+H model.

286

(a) (b)

(c) (d)

Figure 5.12. The computation of the Gauss-Newton direction with different
numbers of measurements and 10 shape parameters. The results are (a)
the CPU time with and without our method on the SMPL and SMPL+H
models, and (b) the speedup of our method on the SMPL and SMPL+H
models, and (c) the speed up of our method on the SMPL model, and (d)
the speed up of our method on the SMPL+H model.

287

5.7.4. Number of the Shape Parameters

The CPU time w/ and w/o our method to compute the Gauss-Newton direction and

the corresponding speedup in Experiment 3 are reported in Fig. 5.13. It can be seen

from Fig. 5.13 that our method has a 4.92 ∼ 7.78x speedup on the SMPL model and a

18.63 ∼ 34.18x speedup on the SMPL+H model, which is consistent with the analysis

that our sparse constrained formulation has better scalability on human models with

more joints. On the SMPL+H model, the CPU time taken to compute the Gauss-Newton

direction without our method is as many as 2.5 ms, which is difficult to be used in real time

considering that most optimization methods need around 20 ∼ 30 iterations to converge.

As a comparison, our method is significantly faster on both of the SMPL and SMPL+H

models, for which the CPU time is 0.027 ∼ 0.13 ms. In particular, note that if there are

no shape parameters, our method has a further acceleration of the computation—this has

is important for real-time video tracking of 3D human pose and shape, where the shape

parameters that are estimated from the first few frames can be reused.

5.8. Conclusion

We considered the problem of 3D human pose and shape estimation by presenting a

sparse constrained formulation that performs on par with regression methods. We demon-

strated how to exploit the sparsity in our formulation and build an optimizer that can

compute the Gauss-Newton direction in only linear complexity (with respect to the num-

ber of joints and measurements in the human model). This was a key contributing factor

in bringing down the computation times of existing optimization methods by orders of

288

(a) (b)

(c) (d)

Figure 5.13. The computation of the Gauss-Newton direction with differ-
ent number of shape parameters. The results are (a) the CPU time with
and without our method on the SMPL and SMPL+H models, and (b) the
speedup of our method on the SMPL and SMPL+H models, and (c) the
speed up of our method on the SMPL model, and (d) the speed up of our
method on the SMPL+H model.

289

magnitude to 4ms. In benchmarks across multiple datasets on several metrics our frame-

work, that uses a preprocessing neural network plus our optimizer, was highly competitive

against the best performing regression method in terms of speed and accuracy.

We note that our fast framework can also benefit regression methods by quickly refining

their outputs or by reducing training times for methods that train with some optimization

in the loop.

The qualitative results illustrate that our framework was mainly limited by the relia-

bility of the preprocessor. While our primary focus in this work was on the optimization

side, some investment in engineering the preprocessor could yield further improvements in

performance. Although we employed the SMPL model in our current implementation, our

optimizer has the flexibility to support other types of 3D human models if the appropriate

loss terms are specified for the objective. In particular, sparse 3D human models such as

STAR [147] would be well suited for our method. With an additional preprocessor, and

model and loss terms to support human hands and facial expressions, our framework can

also be extended to address the total 3D human capture problem.

5.9. Proofs

5.9.1. Proof of Proposition 5.4.1

In Eqs. (5.16) and (5.19), Ti ∈ SE(3) is the rigid body transformation of body part

i, and Ωi is the state of joint i, and Ω , (Ω1, · · · , ΩK) ∈ SO(3)K are the joint states,

and β and βi ∈ RP are the shape parameters, and Fi(·) : SE(3)×RP × SO(3)→ SE(3)

is a function that maps Tpar(i), βpar(i) and Ωi to Ti.

290

Note that Eqs. (5.17) and (5.18) are equivalent to Eqs. (5.19) and (5.20). If we let

β0 = β, Eq. (5.18b) suggests that βi = β for all i = 1, · · · , K, from which Eqs. (5.19)

and (5.20) are reduced to

(5.27) min
{Ti,Ωi,βi}Ki=0

E =
K∑
i=0

1

2
‖ri(Ti, Ωi, β)‖2

subject to

(5.28)

Ti =Fi(Tpar(i), β, Ωi)

=Tpar(i)

Ωi Si · β + li

0 1

 .
Next, as mentioned in Section 5.3.4, if we perform a top-down traversal of the kine-

matic tree of the SMPL model and recursively exploit Eq. (5.28) for each body part

i = 1, · · · , K, then, all of Ti ∈ SE(3) can be represented as a function of the root pose

T0 ∈ SE(3), and the joint states Ω ∈ SO(3)K , and the shape parameter β ∈ RP , i.e.,

(5.29) Ti , Ti (T0, Ω, β)

If we use Eq. (5.29) to cancel out non-root rigid body transformations Ti (1 ≤ i ≤ K),

each ri(·) in Eq. (5.27) is rewritten as a function of T0 ∈ SE(3), and Ω ∈ SO(3)K ,

and β ∈ RP , from which we obtain an optimization problem of a dense unconstrained

formulation

min
T0,Ω,β

E =
K∑
i=0

1

2
‖ri(T0, Ω, β)‖2

291

that is the same as Eq. (5.16). Therefore, it can be concluded that Eqs. (5.19) and (5.20)

are equivalent to Eq. (5.16). The proof is completed.

5.9.2. Proof of Proposition 5.4.2

The proof of Proposition 5.4.2 is organized as follows: we present an overview of the

steps to compute the Gauss-Newton direction in Section 5.9.2.1, and show that the steps

for the two formulations result in the same Gauss-Newton direction in Section 5.9.2.2, and

derive a dynamic programming algorithm to solve the quadratic program of the sparse

constrained formulation in Section 5.9.2.3, and analyze the complexity of the aforemen-

tioned steps to compute the Gauss-Newton direction in Section 5.9.2.4.

5.9.2.1. Steps to Compute the Gauss-Newton Direction. We introduce x , (T0, Ω, β) ∈

SE(3)×SO(3)K ×RP and xi , (Ti, βi) ∈ SE(3)×RP . Then Eq. (5.16) and Eqs. (5.19)

and (5.20) can be rewritten as

(5.30) min
x

E =
K∑
i=0

1

2
‖ri(x)‖2,

and

(5.31) min
{xi,Ωi}Ki=0

E =
K∑
i=0

1

2
‖ri(xi, Ωi)‖2

subject to

(5.32) xi =

Fi(xpar(i), Ωi)

βpar(i)

 ,

292

respectively. For analytical clarity, we assume with no loss of generality that the residues

ri(x) and ri(xi, Ωi) are Ni × 1 vectors for i = 0, · · · , K.

Following the procedure originally given in Section 5.4, an overview of steps to compute

the Gauss-Newton direction for the dense unconstrained and sparse constrained formu-

lations is given in Tables 5.4 and 5.5, which will be frequently used in the rest of this

proof.

5.9.2.2. The Equivalence of the Gauss-Newton Direction. In Tables 5.4 and 5.5,

since Steps 2 and 3 are the reformulation of Step 1, we only need to show that the

linearizations of dense unconstrained and sparse constrained formulations in Step 1, i.e.,

Table 5.4. Steps to Compute the Gauss-Newton Direction for the Dense
Unconstrained Formulation

Step 1

The linearization of Eq. (5.30) results in

(5.33) min
∆x

∆E =
K∑
i=0

1

2
‖Ji∆x + ri‖2,

where ∆x , (∆T0, ∆Ω, ∆β) ∈ R6+3K+P , ∆T0 ∈ R6, ∆Ω ∈ R3K and ∆β ∈
RP are the Gauss-Newton directions of x, T0, Ω and β, respectively, and

(5.34) Ji ,

[
∂ri
∂T0

∂ri
∂Ω

∂ri
∂β

]
∈ RNi×(6+3K+P)

is the Jacobian of ri(·), and ri ∈ RNi is the residue.

Step 2

Reformulate Eq. (5.33) as

(5.35) min
∆x

∆E =
1

2
∆x>H∆x + g>∆x

where H ,
∑K

i=0 J>i Ji ∈ R(6+3K+P)×(6+3K+P) is the Hessian, and g ,∑K
i=0 J>i ri ∈ R(6+3K+P) is the gradient.

Step 3

Compute the Gauss-Newton direction from Eq. (5.35), which has a closed-form
solution
(5.36) ∆x = −H−1g.

293

Table 5.5. Steps to Compute the Gauss-Newton Direction for the Sparse
Constrained Formulation

Step 1

The linearization of Eq. (5.31) results in

(5.37) min
{∆xi,∆Ωi}Ki=0

∆E =
K∑
i=0

1

2
‖Ji,1∆xi + Ji,2∆Ωi + ri‖2

subject to
(5.38) ∆xi = Ai∆xpar(i) + Bi∆Ωi,

where ∆xi , (∆Ti, ∆βi) ∈ R6+P , ∆Ti ∈ R6, ∆Ωi ∈ R3 and ∆βi ∈ RP are
the Gauss-Newton directions of xi, Ti, Ωi and βi, respectively, and

(5.39) Ji,1 ,

[
∂ri
∂Ti

∂ri
∂βi

]
∈ RNi×(6+P)

and

(5.40) Ji,2 ,
∂ri
∂Ωi

∈ RNi×3

are the Jacobians of ri(·), and

(5.41) Ai ,

 ∂Fi
∂Tpar(i)

∂Fi
∂βpar(i)

0 I

 ∈ R(6+P)×(6+P)

and

(5.42) Bi ,

 ∂Fi∂Ωi
0

 ∈ R(6+P)×3

are the partial derivatives of Eq. (5.38), and ri ∈ RNi is the residue.

Step 2

Reformulate Eq. (5.37) as

(5.43)
min

{∆xi,∆Ωi}Ki=0

∆E =
K∑
i=0

[1

2
∆x>i Hi,11∆xi + ∆Ω>i Hi,21∆xi+

1

2
∆Ω>i Hi,22∆Ωi + g>i,1∆xi + g>i,2∆Ωi

]
subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi,

where Hi,11 , J>i,1Ji,1 ∈ R(6+P)×(6+P), Hi,21 , J>i,2Ji,1 ∈ R3×(6+P), and Hi,22 ,

J>i,2Ji,2 ∈ R3×3 are the Hessians, and gi,1 , J>i,1ri ∈ R6+P and gi,2 , J>i,2ri ∈
R6+P are the gradients.

Step 3 Compute the Gauss-Newton direction from Eq. (5.43), which can be exactly
solved by Algorithm 15.

294

Eqs. (5.33) and (5.37), are equivalent. From Eq. (5.29), the rigid body transformation

Ti ∈ SE(3) of body part i can be written as a function of T0, Ω and β. Furthermore, it

is by the definition of ri(·) that

ri(T0, Ω, β) = ri
(
Ti(T0, Ω, β), Ωi, β

)
.

From the equation above, Ji∆x in Eq. (5.33) can be computed using Ji,1 and Ji,2 in

Eq. (5.37):

(5.44) Ji∆x = Ji,1

∂Ti
∂T0

∆T0 + ∂Ti
∂Ω

∆Ω + ∂Ti
∂β

∆β

β

+ Ji,2∆Ωi.

Note that the partial derivatives ∂Ti
∂T0

, ∂Ti
∂Ω

and ∂Ti
∂β

in the right-hand side of Eq. (5.44) are

obtained by the recursive implementation of Eq. (5.38). Therefore, it can be concluded

that Eqs. (5.33) and (5.37) are equivalent to each other, which suggests that the dense

unconstrained and sparse constrained formulations result in the same Gauss-Newton di-

rection.

5.9.2.3. Algorithm to Solve Eq. (5.43). In Table 5.5, it is straightforward to follow

Steps 1–2 of the sparse constrained formulation to compute the Gauss-Newton direc-

tion. Next, we need to solve the quadratic program of Eq. (5.43) in Step 3, which is

nontrivial. In this subsection, we derive a dynamic programming algorithm that exploits

the sparsity and constraints of Eq. (5.38) such that the Gauss-Newton direction can be

exactly computed.

295

For notational simplicity, we let par(i), chd(i) and des(i) be the parent, children

and descendants of body part i in the kinematics tree, and assume i > par(i) for all

i = 1, · · · , K.

First, we define Ei(·) : R6+P → R to be a function of ∆xpar(i) ∈ R6+P in the form of

an optimization problem of {∆xj, ∆Ωj} for j ∈ {i} ∪ des(i)

(5.45) Ei(∆xpar(i)) , min
{∆xj ,∆Ωj}j∈{i}∪des(i)

∑
j∈{i}∪des(i)

[1

2
∆x>j Hj,11∆xj+

∆Ω>j Hj,21∆xj +
1

2
∆Ω>j Hj,22∆Ωj + g>j,1∆xj + g>j,2∆Ωj

]
subject to

(5.46) ∆xj = Aj∆xpar(j) + Bj∆Ωj, ∀j ∈ {i} ∪ des(i),

where ∆xpar(i) ∈ R6+P is given. Furthermore, if Ej(·) : R6+P → R is defined for all

j ∈ chd(i), then, it is from Eq. (5.45) that Ei(·) can be reduced to an optimization

problem of ∆xi and ∆Ωi

(5.47) Ei(∆xpar(i)) , min
∆xi,∆Ωi

[1

2
∆x>i Hi,11∆xi + ∆Ω>i Hi,21∆xi+

1

2
∆Ω>i Hi,22∆Ωi + g>i,1∆xi + g>i,2∆Ωi +

∑
j∈chd(i)

Ej(∆xi)
]

subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi,

296

where ∆xpar(i) ∈ R6+P is given. Note that Eq. (5.47) is an intermediate procedure that is

essential for our dynamic programming algorithm.

Next, suppose that there exists Mj ∈ R(6+P)×(6+P), mj ∈ R6+P and ∆Ej ∈ R for all

j ∈ chd(i) such that Ej(∆xi) can be written as

(5.48) Ej(∆xi) =
1

2
∆x>i Mj∆xi + m>j ∆xi + ∆Ej.

Applying Eq. (5.48) to Eq. (5.47), we obtain

(5.49) Ei(∆xpar(i)) = min
∆xi,∆Ωi

1

2
∆xiNi,11∆xi + ∆Ω>i Ni,21∆xi+

1

2
∆Ω>i Ni,22∆Ωi + n>i,1∆xi + n>i,2∆Ωi + ∆Ei

subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi,

where

(5.50a) Ni,11 = Hi,11 +
∑

j∈chd(i)

Mi,

(5.50b) Ni,21 = Hi,21,

(5.50c) Ni,22 = Hi,22,

(5.50d) ni,1 = gi,1 +
∑

j∈chd(i)

mj,

297

(5.50e) ni,2 = gi,2,

(5.50f) ∆Ei =
∑

j∈chd(i)

∆Ej.

Substitute Eq. (5.38) into Eq. (5.49) to cancel out ∆xi and simplify the resulting equation

to an unconstrained optimization problem on ∆Ωi ∈ R3:

(5.51) Ei(∆xpar(i)) = min
∆Ωi

1

2
∆xpar(i)Qi,11∆xpar(i) + ∆Ω>i Qi,21∆xpar(i)+

1

2
∆Ω>i Qi,22∆Ωi + q>i,1∆xpar(i) + q>i,2∆Ωi + ∆Ei,

where

(5.52a) Qi,11 = A>i Ni,11Ai,

(5.52b) Qi,21 = B>i Ni,11Ai + Ni,21Ai,

(5.52c) Qi,22 = B>i Ni,11Bi + Ni,21Bi + B>i N>i,21 + Ni,22,

(5.52d) qi,1 = A>i ni,1,

(5.52e) qi,2 = B>i ni,1 + ni,2.

298

It is obvious that Eq. (5.51) has a closed-form solution

(5.53) ∆Ωi = Ki∆xpar(i) + ki,

where

(5.54) Ki = −Q−1
i,22Qi,21 and ki = −Q−1

i,22qi,2.

If we use Eq. (5.53) to eliminate ∆Ωi in Eq. (5.51), there exists Mi ∈ R(6+P)×(6+P),

mi ∈ R6+P and ∆Ei ∈ R such that

(5.55) Ei(∆xpar(i)) =
1

2
∆x>par(i)Mi∆xpar(i) + m>i ∆xpar(i) + ∆Ei,

where

(5.56a) Mi = Qi,11 −Q>i,21Q
−1
i,22Qi,21,

(5.56b) mi = qi,1 −Q>i,21Q
−1
i,22qi,2,

(5.56c) ∆Ei = ∆Ei −
1

2
q>i,2Q

−1
i,22qi,2.

Therefore, if there exists Mj ∈ R(6+P)×(6+P), mj ∈ R6+P and ∆Ej ∈ R for all j ∈ chd(i)

such that Eq. (5.48) holds, we might further obtain Mi ∈ R(6+P)×(6+P), mi ∈ R6+P and

∆Ei ∈ R with which Ei(∆xpar(i)) can be written as Eq. (5.55).

299

In the kinematic tree, a body part i at the leaf node has no children, for which

Eq. (5.50) is simplified to Ni,11 = Hi,11, Ni,21 = Hi,21, Ni,22 = Hi,22, ni,1 = gi,1, ni,2 = gi,2

and ∆Ei = 0, then, it is possible to recursively compute Mi ∈ R(6+P)×(6+P), mi ∈ R6+P

and ∆Ei ∈ R for each i = 1, · · · , K following Eqs. (5.50), (5.52) and (5.56) through the

bottom-up traversal of kinematic tree.

It is by definition that Ω0 is a dummy variable and ∆Ω0 = 0. Thus, if Ei(∆x0) in

Eq. (5.55) is known for each i ∈ chd(0), Eq. (5.43) is equivalent to an unconstrained

optimization problem on ∆x0 ∈ R6+P :

min
∆x0

1

2
∆x>0 H0,11∆x0 + g>0,1∆x0 +

∑
j∈chd(0)

Ei(∆x0).

From Eq. (5.55), the equation above is equivalent to

(5.57) min
∆x0

1

2
∆x>0 M0∆x0 + m>0 x0 + ∆E0

where

(5.58a) M0 = H0,11 +
∑

j∈chd(0)

Mj,

(5.58b) m0 = g0,1 +
∑

j∈chd(0)

mj,

(5.58c) ∆E0 =
∑

i∈chd(0)

∆Ei.

It is straightforward to show that

300

(5.59) ∆x0 = −M−1
0 m0

solves Eq. (5.57) with

(5.60) ∆E0 = ∆E0 −
1

2
m>0 M−1

0 m0

to be the expected cost reduction as well as the minimum objective value of Eq. (5.43).

At last, we recursively compute {∆xi, ∆Ωi}Ki=1 using Eqs. (5.38), (5.53) and (5.54)

through a top-down traversal of the kinematics tree, from which the Gauss-Newton di-

rection is exactly retrieved.

From our analysis, the resulting algorithm to solve Eq. (5.43) and compute the Gauss-

Newton direction is summarized in Algorithm 15. In the next subsection, we show that

Algorithm 15 scales linearly with respect to the number of joints.

5.9.2.4. Complexity Analysis. In Table 5.6, we present a short summary of the com-

putational complexities for each step to compute the Gauss-Newton direction, and in

Tables 5.7 and 5.8, we present a comprehensive analysis of the computational complexi-

ties that leads to results in Table 5.6. The analysis also proves the complexity conclusions

in Proposition 2.

301

Ta
bl
e
5.
6.

T
he

su
m
m
ar
y
of

th
e
co
m
pu

ta
ti
on

al
co
m
pl
ex
it
ie
s
fo
r
th
e
st
ep
s
to

co
m
pu

te
th
e
G
au

ss
-

N
ew

to
n
di
re
ct
io
n
fo
r
th
e
de
ns
e
un

co
ns
tr
ai
ne
d
an

d
sp
ar
se

co
ns
tr
ai
ne
d
fo
rm

ul
at
io
ns
,w

he
re
K

is
th
e

nu
m
be

r
of

jo
in
ts
,
P

is
th
e
nu

m
be

r
of

sh
ap

e
pa

ra
m
et
er
s,
N

is
th
e
nu

m
be

r
of

m
ea
su
re
m
en
ts

fo
r
al
l

th
e
bo

dy
pa

rt
s.

N
ot
e
th
at

th
e
nu

m
be

r
of

sh
ap

e
pa

ra
m
et
er
s
P

is
as
su
m
ed

to
be

va
ry
in
g
in

(a
)
an

d
co
ns
ta
nt

in
(b
).

D
en

se
U
n
co
n
st
ra
in
ed

Fo
rm

u
la
ti
on

S
p
ar
se

C
on

st
ra
in
ed

Fo
rm

u
la
ti
on

S
te
p
1

O
(N(6

+
3K

+
P

))
O
(K(9

+
P

)) +
O
(N(9

+
P

))
S
te
p
2

O
(N(6

+
3K

+
P

)2
)

O
(N(9

+
P

)2
)

S
te
p
3

O
((6

+
3K

+
P

)3
)

O
(K(9

+
P

)2
) +

O
((6

+
P

)3
)

T
ot
al

O
((6

+
3K

+
P

)3
) +

O
(N(6

+
3K

+
P

)2
) O

(K(9
+
P

)2
) +

O
((6

+
P

)3
) +

O
(N(9

+
P

)2
)

(a
)

D
en

se
U
n
co
n
st
ra
in
ed

Fo
rm

u
la
ti
on

S
p
ar
se

C
on

st
ra
in
ed

Fo
rm

u
la
ti
on

S
te
p
1

O
(KN

)
O

(K
)

+
O

(N
)

S
te
p
2

O
(K2 N

)
O
(N)

S
te
p
3

O
(K

3
)

O
(K

)

T
ot
al

O
(K

3
)

+
O
(K2 N

)
O

(K
)

+
O
(N)

(b
)

302

In Tables 5.6 to 5.8, it can be concluded that our sparse constrained formulation is

O(K) times faster for Step 1, and O(K2) times for Steps 2 and 3 than the dense uncon-

strained formulation in terms of the number of joints K. In total, our sparse constrained

formulation scales linearly with respect to the number of joints instead of cubically as the

dense unconstrained formulation.

Furthermore, in terms of the number of measurements N , Tables 5.6 to 5.8 indicate

that the complexity of our sparse constrained formulation is O
(
N(9 + P)2

)
or O(N),

whereas that of the dense constrained formulation is O
(
N(6 + 3K + P)2

)
or O(K2N).

This suggests that our sparse constrained formulation has the the number of joints K and

measurements N decoupled in the computation, and as a result, is much more efficient to

handle optimization problems with more measurements. Note that it is common in [11,

12,137–139,152] to introduce extra measurements to improve the estimation accuracy.

Table 5.7. The analysis of the computational complexities for the steps to
compute the Gauss-Newton direction for the dense unconstrained. In this
table, K is the number of joints, P is the number of shape parameters, N is
the number of measurements for all the body parts, and Ni is the number
of measurements associated with body part i.

Step 1

(a) It takes O
(
Ni(6 + 3K + P)

)
time to compute Ji ∈ RNi×(6+3K+P) in

Eq. (5.34) for each i = 0, · · · , K.
(b) In total, it takes O

(
N(6 + 3K+P)

)
time to compute Ji ∈ RNi×(6+3K+P)

for all i = 0, · · · , K.

Step 2

(a) It takes O
(
Ni(6 + 3K+P)2

)
to compute J>i Ji ∈ R(6+3K+P)×(6+3K+P) for

each i = 0, · · · , K.
(b) In total, it takes O

(
N(6+3K+P)2

)
time to compute H =

∑K
i=0 J>i Ji ∈

R(6+3K+P)×(6+3K+P) in Eq. (5.35).

Step 3
(a) In total, it takes O

(
(6 + 3K + P)3

)
to compute the matrix inverse of

H ∈ R(6+3P+K)×(6+3P+K) and solve Eq. (5.36).

Total The overall complexity is O
(
(6 + 3K + P)3

)
+O

(
N(6 + 3K + P)2

)
.

303

Table 5.8. The analysis of the computational complexities for the steps to
compute the Gauss-Newton direction for the dense unconstrained. In this
table, K is the number of joints, P is the number of shape parameters, N is
the number of measurements for all the body parts, and Ni is the number
of measurements associated with body part i.

Step 1

(a) It takes O
(
9+P

)
time to compute Ai ∈ R(6+P)×(6+P) and Bi ∈ R(6+P)×3

in Eqs. (5.41) and (5.42) for each i = 0, · · · , K. Note that the bottom of
Ai and Bi in Eqs. (5.41) and (5.42) are either zero or identity matrices,
which simplifies the computation.

(b) It takes O
(
Ni(9+P)

)
time to compute Ji,1 ∈ RNi×(9+P) and Ji,2 ∈ RNi×3

in Eqs. (5.39) and (5.40) for each i = 0, · · · , K.
(c) Note that Ji,1, Ji,2, Ai and Bi are intermediates to compute Ji in

Eq. (5.34) using the chain rule.
(d) In total, it takes O

(
K(9+P)+O

(
N(9+P)

))
time to compute Ji,1, Ji,2,

Ai and Bi for all i = 0, · · · , K.

Step 2

(a) It takes O (Ni(9 + P)2) time to compute Hi,11 ∈ R(6+P)×(6+P), Hi,21 ∈
R3×(6+P) and Hi,22 ∈ R3×3 in Eq. (5.43) for each i = 0, · · · , K.

(b) In total, it takes O
(
N(9 + P)2

)
time to compute Hi,11 ∈ R(6+P)×(6+P),

Hi,21 ∈ R3×(6+P) and Hi,22 ∈ R3×3 for all i = 0, · · · , K.

Step 3

(a) It takes O
(
(9+P)2

)
time to run lines 4-19 and lines 28-29 in Algorithm 15

for each i = 1, · · · , K. Note that Ai and Bi in Eqs. (5.41) and (5.42)
are zero and identity matrices at the bottom, which can be exploited to
simplify the computation.

(b) It takes O
(
(6 + P)3

)
time to compute the matrix inverse of M0 ∈

R(6+P)×(6+P) in line 25 of Algorithm 15.
(c) In total, it takes O

(
K(9 + P)2

)
+ O

(
(6 + P)3

)
to compute the Gauss-

Newton direction.
Total The overall complexity is O

(
K(9 + P)2

)
+O

(
(6 + P)3

)
+O

(
N(9 + P)2

)
.

304

References

[1] T. Fan and T. Murphey, “Majorization minimization methods for distributed pose
graph optimization with convergence guarantees,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2020.

[2] N. Kolotouros, G. Pavlakos, M. J. Black, and K. Daniilidis, “Learning to reconstruct
3d human pose and shape via model-fitting in the loop,” in Proceedings of the
IEEE/CVF Conference on Computer Vision, 2019.

[3] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-YOLOv4: Scaling cross
stage partial network,” arXiv preprint arXiv:2011.08036, 2020.

[4] J. Lee, C. K. Liu, F. C. Park, and S. S. Srinivasa, “A linear-time variational integra-
tor for multibody systems,” in International Workshop on the Algorithmic Founda-
tions of Robotics (WAFR), 2016.

[5] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and F. Dellaert,
“Distributed mapping with privacy and communication constraints: Lightweight al-
gorithms and object-based models,” The International Journal of Robotics Research,
vol. 36, no. 12, pp. 1286–1311, 2017.

[6] Y. Tian, K. Khosoussi, D. M. Rosen, and J. P. How, “Distributed certifiably correct
pose-graph optimization,” arXiv preprint arXiv:1911.03721, 2019.

[7] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard, “SE-Sync: A certifi-
ably correct algorithm for synchronization over the special euclidean group,” The
International Journal of Robotics Research, vol. 38, no. 2-3, pp. 95–125, 2019.

[8] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization techniques for 3D
SLAM: a survey on rotation estimation and its use in pose graph optimization,” in
IEEE International Conference on Robotics and Automation (ICRA), 2015.

[9] J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan, “Pairwise consistent
measurement set maximization for robust multi-robot map merging,” in 2018 IEEE

305

International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
2916–2923.

[10] T. von Marcard, R. Henschel, M. Black, B. Rosenhahn, and G. Pons-Moll, “Recov-
ering accurate 3D human pose in the wild using IMUs and a moving camera,” in
European Conference on Computer Vision (ECCV), sep 2018.

[11] D. Xiang, H. Joo, and Y. Sheikh, “Monocular total capture: Posing face, body,
and hands in the wild,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 10 965–10 974. [Online]. Available: http:
//openaccess.thecvf.com/content_CVPR_2019/html/Xiang_Monocular_Total_
Capture_Posing_Face_Body_and_Hands_in_the_CVPR_2019_paper.html

[12] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J. Black, “Keep
it SMPL: Automatic estimation of 3D human pose and shape from a single image,”
in European conference on computer vision (ECCV), 2016.

[13] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6M: Large scale
datasets and predictive methods for 3D human sensing in natural environments,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7,
pp. 1325–1339, 2013.

[14] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, and
C. Theobalt, “Monocular 3D human pose estimation in the wild using improved
cnn supervision,” in Proceedings of the International Conference on 3D Vision.
IEEE, 2017. [Online]. Available: http://gvv.mpi-inf.mpg.de/3dhp_dataset

[15] J. E. Marsden and M. West, “Discrete mechanics and variational integrators,” Acta
Numerica, vol. 10, pp. 357–514, 2001.

[16] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and
J. J. Leonard, “Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age,” IEEE Transactions on robotics, vol. 32, no. 6,
pp. 1309–1332, 2016.

[17] G. Grisetti, R. Kummerle, C. Stachniss, andW. Burgard, “A tutorial on graph-based
SLAM,” IEEE Intelligent Transportation Systems Magazine, 2010.

[18] D. M. Rosen, K. J. Doherty, A. Terán Espinoza, and J. J. Leonard, “Advances in
inference and representation for simultaneous localization and mapping,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 215–242, 2021.

http://openaccess.thecvf.com/content_CVPR_2019/html/Xiang_Monocular_Total_Capture_Posing_Face_Body_and_Hands_in_the_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Xiang_Monocular_Total_Capture_Posing_Face_Body_and_Hands_in_the_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Xiang_Monocular_Total_Capture_Posing_Face_Body_and_Hands_in_the_CVPR_2019_paper.html
http://gvv.mpi-inf.mpg.de/3dhp_dataset

306

[19] E. R. Johnson and T. D. Murphey, “Scalable variational integrators for constrained
mechanical systems in generalized coordinates,” IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1249–1261, 2009.

[20] M. Kobilarov, K. Crane, and M. Desbrun, “Lie group integrators for animation and
control of vehicles,” ACM Transactions on Graphics (TOG), vol. 28, no. 2, p. 16,
2009.

[21] E. Johnson, J. Schultz, and T. Murphey, “Structured linearization of discrete me-
chanical systems for analysis and optimal control,” IEEE Transactions on Automa-
tion Science and Engineering, 2015.

[22] T. Fan and T. Murphey, “Structured linearization of discrete mechanical systems on
lie groups: A synthesis of analysis and control,” in IEEE Conference on Decision
and Control (CDC), 2015, pp. 1092–1099.

[23] O. Junge, J. E. Marsden, and S. Ober-Blöbaum, “Discrete mechanics and optimal
control,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 538–543, 2005.

[24] C. Lacoursiere, “Ghosts and machines: regularized variational methods for inter-
active simulations of multibodies with dry frictional contacts,” Ph.D. dissertation,
Datavetenskap, 2007.

[25] Z. Manchester and S. Kuindersma, “Variational contact-implicit trajectory opti-
mization,” in International Symposium on Robotics Research (ISRR), 2017.

[26] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabilization of tra-
jectories for constrained dynamical systems,” in IEEE International Conference on
Robotics and Automation (ICRA), 2016.

[27] A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames, “Dynamic humanoid
locomotion: A scalable formulation for hzd gait optimization,” IEEE Transactions
on Robotics, 2018.

[28] T. Fan, J. Schultz, and T. D. Murphey, “Efficient computation of variational integra-
tors in robotic simulation and trajectory optimization,” in International Workshop
on the Algorithmic Foundations of Robotics (WAFR), submitted, 2018.

[29] S. Ober-Blöbaum and N. Saake, “Construction and analysis of higher order Galerkin
variational integrators,” Advances in Computational Mathematics, vol. 41, no. 6, pp.
955–986, 2015.

307

[30] S. Ober-Blöbaum, “Galerkin variational integrators and modified symplectic Runge–
Kutta methods,” IMA Journal of Numerical Analysis, vol. 37, no. 1, pp. 375–406,
2017.

[31] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.

[32] K. Yamane and Y. Nakamura, “Efficient parallel dynamics computation of human
figures,” in IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2002.

[33] A. Fijany, I. Sharf, and G. M. D’Eleuterio, “Parallel O (log n) algorithms for com-
putation of manipulator forward dynamics,” IEEE Transactions on Robotics and
Automation, vol. 11, no. 3, pp. 389–400, 1995.

[34] J. Carpentier, “Analytical derivatives of rigid body dynamics algorithms,” in Robot-
ics: Science and Systems (RSS), 2018.

[35] J. Pratt and G. Pratt, “Intuitive control of a planar bipedal walking robot,” in IEEE
International Conference on Robotics and Automation (ICRA), 1998.

[36] A. Shkolnik, M. Levashov, I. R. Manchester, and R. Tedrake, “Bounding on rough
terrain with the LittleDog robot,” The International Journal of Robotics Research,
vol. 30, no. 2, pp. 192–215, 2011.

[37] G. Nelson, A. Saunders, N. Neville, B. Swilling, J. Bondaryk, D. Billings, C. Lee,
R. Playter, and M. Raibert, “Petman: A humanoid robot for testing chemical protec-
tive clothing,” Journal of the Robotics Society of Japan, vol. 30, no. 4, pp. 372–377,
2012.

[38] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-
scale constrained optimization,” SIAM review, vol. 47, no. 1, pp. 99–131, 2005.

[39] T. Fan and T. Murphey, “Online feedback control for input-saturated robotic sys-
tems on lie groups,” in Robotics: Science and Systems Conference (RSS), 2016.

[40] E. Todorov and W. Li, “A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems,” in American Control
Conference (ACC), 2005, pp. 300–306.

[41] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic pro-
gramming,” in IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 1168–1175.

308

[42] T. Fan, H. Weng, and T. Murphey, “Decentralized and recursive identification for
cooperative manipulation of unknown rigid body with local measurements,” in 2017
IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017, pp.
2842–2849.

[43] J. Schultz and T. D. Murphey, “Extending filter performance through structured
integration,” in American Control Conference (ACC), 2014. IEEE, 2014.

[44] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and
J. J. Leonard, “Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age,” IEEE Transactions on Robotics, 2016.

[45] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT press, 2005.

[46] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: a survey from
2010 to 2016,” IPSJ Transactions on Computer Vision and Applications, vol. 9,
no. 1, pp. 1–11, 2017.

[47] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The
kitti vision benchmark suite,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2012, pp. 3354–3361.

[48] A. Kleiner, J. Prediger, and B. Nebel, “Rfid technology-based exploration and slam
for search and rescue,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2006, pp. 4054–4059.

[49] J. C. Kinsey, R. M. Eustice, and L. L. Whitcomb, “A survey of underwater vehicle
navigation: Recent advances and new challenges,” in IFAC Conference of Manoeu-
vering and Control of Marine Craft, vol. 88, 2006, pp. 1–12.

[50] J. Dong, J. G. Burnham, B. Boots, G. Rains, and F. Dellaert, “4d crop monitor-
ing: Spatio-temporal reconstruction for agriculture,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017.

[51] O. Vysotska and C. Stachniss, “Exploiting building information from publicly avail-
able maps in graph-based SLAM,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 4511–4516.

[52] J. Polvi, T. Taketomi, G. Yamamoto, A. Dey, C. Sandor, and H. Kato, “SlidAR: A
3d positioning method for SLAM-based handheld augmented reality,” Computers &
Graphics, vol. 55, pp. 33–43, 2016.

[53] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.

309

[54] F. Lu and E. Milios, “Globally consistent range scan alignment for environment
mapping,” Autonomous robots, vol. 4, no. 4, pp. 333–349, 1997.

[55] T. Duckett, S. Marsland, and J. Shapiro, “Fast, on-line learning of globally consistent
maps,” Autonomous Robots, vol. 12, no. 3, pp. 287–300, 2002.

[56] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm for simul-
taneous localization and mapping,” IEEE Transactions on Robotics, vol. 21, no. 2,
pp. 196–207, 2005.

[57] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose graphs with
poor initial estimates,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2006.

[58] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree parameterization for
efficiently computing maximum likelihood maps using gradient descent.” in Robotics:
Science and Systems, vol. 3, 2007, p. 9.

[59] T. Fan and T. Murphey, “Generalized proximal methods for pose graph optimiza-
tion,” in International Symposium on Robotics Research (ISRR), 2019.

[60] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization and map-
ping via square root information smoothing,” The International Journal of Robotics
Research, vol. 25, no. 12, pp. 1181–1203, 2006.

[61] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smoothing and
mapping,” IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365–1378, 2008.

[62] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “iSAM2:
Incremental smoothing and mapping using the bayes tree,” The International Jour-
nal of Robotics Research.

[63] D. M. Rosen, M. Kaess, and J. J. Leonard, “Rise: An incremental trust-region
method for robust online sparse least-squares estimation,” IEEE Transactions on
Robotics, vol. 30, no. 5, pp. 1091–1108, 2014.

[64] S. Huang, Y. Lai, U. Frese, and G. Dissanayake, “How far is slam from a linear
least squares problem?” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2010, pp. 3011–3016.

[65] H. Wang, G. Hu, S. Huang, and G. Dissanayake, “On the structure of nonlinearities
in pose graph slam,” Robotics: Science and Systems VIII, p. 425, 2013.

310

[66] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: A
general framework for graph optimization,” in 2011 IEEE International Conference
on Robotics and Automation.

[67] L. Carlone and A. Censi, “From angular manifolds to the integer lattice: Guar-
anteed orientation estimation with application to pose graph optimization,” IEEE
Transactions on Robotics, vol. 30, no. 2, pp. 475–492, 2014.

[68] L. Carlone, R. Aragues, J. A. Castellanos, and B. Bona, “A fast and accurate
approximation for planar pose graph optimization,” The International Journal of
Robotics Research, vol. 33, no. 7, pp. 965–987, 2014.

[69] K. Khosoussi, S. Huang, and G. Dissanyake, “Exploiting the separable structure of
slam,” in Robotics: Science and systems, 2015.

[70] M. Liu, S. Huang, G. Dissanayake, and H. Wang, “A convex optimization based
approach for pose slam problems,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012.

[71] L. Carlone and F. Dellaert, “Duality-based verification techniques for 2D SLAM,”
in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

[72] L. Carlone, G. C. Calafiore, C. Tommolillo, and F. Dellaert, “Planar pose graph
optimization: Duality, optimal solutions, and verification,” IEEE Transactions on
Robotics, vol. 32, no. 3, pp. 545–565, 2016.

[73] L. Carlone, D. M. Rosen, G. Calafiore, J. J. Leonard, and F. Dellaert, “Lagrangian
duality in 3D SLAM: Verification techniques and optimal solutions,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2015.

[74] J. Briales and J. Gonzalez-Jimenez, “Fast global optimality verification in 3d slam,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2016.

[75] ——, “Cartan-sync: Fast and global se (d)-synchronization,” IEEE Robotics and
Automation Letters, vol. 2, no. 4, pp. 2127–2134, 2017.

[76] J. G. Mangelson, J. Liu, R. M. Eustice, and R. Vasudevan, “Guaranteed globally
optimal planar pose graph and landmark slam via sparse-bounded sums-of-squares
programming,” in International Conference on Robotics and Automation (ICRA),
2019, pp. 9306–9312.

311

[77] A. Singer, “Angular synchronization by eigenvectors and semidefinite programming,”
Applied and computational harmonic analysis, vol. 30, no. 1, pp. 20–36, 2011.

[78] A. Singer and Y. Shkolnisky, “Three-dimensional structure determination from com-
mon lines in cryo-em by eigenvectors and semidefinite programming,” SIAM journal
on imaging sciences, vol. 4, no. 2, pp. 543–572, 2011.

[79] A. S. Bandeira, N. Boumal, and A. Singer, “Tightness of the maximum likelihood
semidefinite relaxation for angular synchronization,” Mathematical Programming,
vol. 163, no. 1-2, pp. 145–167, 2017.

[80] N. Boumal, “Nonconvex phase synchronization,” SIAM Journal on Optimization,
vol. 26, no. 4, pp. 2355–2377, 2016.

[81] A. Eriksson, C. Olsson, F. Kahl, and T.-J. Chin, “Rotation averaging and strong
duality,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 127–135.

[82] M. Betke and L. Gurvits, “Mobile robot localization using landmarks,” IEEE trans-
actions on robotics and automation, vol. 13, no. 2, pp. 251–263, 1997.

[83] A. S. Bandeira, “A note on probably certifiably correct algorithms,” Comptes Rendus
Mathematique, vol. 354, no. 3, pp. 329–333, 2016.

[84] N. Boumal, V. Voroninski, and A. Bandeira, “The non-convex Burer-Monteiro ap-
proach works on smooth semidefinite programs,” in Advances in Neural Information
Processing Systems, 2016.

[85] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, Volume
2: Analytic Methods and Modern Applications. Springer Science & Business Media,
2011, vol. 2.

[86] J. M. Selig, Geometric fundamentals of robotics. Springer Science & Business
Media, 2004.

[87] T. Fan, H. Wang, M. Rubenstein, and T. Murphey, “Efficient and guaranteed pla-
nar pose graph optimization using the complex number representation,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 1904–1911.

[88] ——, “CPL-SLAM: Efficient and certifiably correct planar graph-based slam using
the complex number representation,” IEEE Transactions on Robotics, vol. 36, no. 6,
pp. 1719–1737, 2020.

312

[89] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,” Georgia Insti-
tute of Technology, Tech. Rep., 2012.

[90] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix man-
ifolds. Princeton University Press, 2009.

[91] P.-A. Absil and K. A. Gallivan, “Joint diagonalization on the oblique manifold for
independent component analysis,” in IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings, 2006.

[92] C. Khatri and K. Mardia, “The von Mises-Fisher matrix distribution in orientation
statistics,” Journal of the Royal Statistical Society. Series B (Methodological), pp.
95–106, 1977.

[93] L. Carlone, “A convergence analysis for pose graph optimization via Gauss-Newton
methods,” in 2013 IEEE International Conference on Robotics and Automation,
2013.

[94] J. Gallier, “The schur complement and symmetric positive semidefinite (and definite)
matrices,” 2010.

[95] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM, 2000, vol. 71.

[96] P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-region methods on riemannian
manifolds,” Foundations of Computational Mathematics, vol. 7, no. 3, pp. 303–330,
2007.

[97] N. Boumal, “A Riemannian low-rank method for optimization over semidefinite
matrices with block-diagonal constraints,” arXiv preprint arXiv:1506.00575, 2015.

[98] D. Rosen and L. Carlone, “Computational enhancements for certifiably correct
slam,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017.

[99] Y. Latif, C. Cadena, and J. Neira, “Robust graph slam back-ends: A comparative
analysis.”

[100] S. M. Nasiri, R. Hosseini, and H. Moradi, “A recursive least square method for 3d
pose graph optimization problem,” arXiv preprint arXiv:1806.00281, 2018.

[101] R. Tron, D. M. Rosen, and L. Carlone, “On the inclusion of determinant constraints
in Lagrangian duality for 3d slam,” Robot. Sci. Syst. Work.âĂĲThe Probl. Mob.
Sensors, 2015.

313

[102] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, “Complementarity and nonde-
generacy in semidefinite programming,” Mathematical programming, 1997.

[103] D. M. Rosen, “Scalable low-rank semidefinite programming for certifiably correct
machine perception,” in Intl. Workshop on the Algorithmic Foundations of Robotics
(WAFR), vol. 3, 2020.

[104] G. Grisetti, C. Stachniss, and W. Burgard, “Nonlinear constraint network optimiza-
tion for efficient map learning,” IEEE Transactions on Intelligent Transportation
Systems, vol. 10, no. 3, pp. 428–439, 2009.

[105] L. Li, A. Bayuelo, L. Bobadilla, T. Alam, and D. A. Shell, “Coordinated multi-robot
planning while preserving individual privacy,” in 2019 International Conference on
Robotics and Automation (ICRA), 2019, pp. 2188–2194.

[106] Y. Zhang and D. A. Shell, “Complete characterization of a class of privacy-preserving
tracking problems,” The International Journal of Robotics Research, vol. 38, no. 2-3,
pp. 299–315, 2019.

[107] A. Cunningham, M. Paluri, and F. Dellaert, “DDF-SAM: Fully distributed SLAM
using constrained factor graphs,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2010.

[108] R. Aragues, L. Carlone, G. Calafiore, and C. Sagues, “Multi-agent localization from
noisy relative pose measurements,” in IEEE International Conference on Robotics
and Automation, 2011, pp. 364–369.

[109] A. Cunningham, V. Indelman, and F. Dellaert, “DDF-SAM 2.0: Consistent dis-
tributed smoothing and mapping,” in IEEE International Conference on Robotics
and Automation, 2013, pp. 5220–5227.

[110] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-robot simultaneous localization
and mapping: A review,” Journal of Field Robotics, vol. 33, no. 1, pp. 3–46, 2016.

[111] J. Dong, E. Nelson, V. Indelman, N. Michael, and F. Dellaert, “Distributed real-time
cooperative localization and mapping using an uncertainty-aware expectation maxi-
mization approach,” in IEEE International Conference on Robotics and Automation
(ICRA), 2015.

[112] P.-Y. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame, “Door-slam:
Distributed, online, and outlier resilient slam for robotic teams,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 1656–1663, 2020.

314

[113] T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-efficient decentralized visual
SLAM,” in IEEE International Conference on Robotics and Automation (ICRA),
2018.

[114] V. Tchuiev and V. Indelman, “Distributed consistent multi-robot semantic local-
ization and mapping,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp.
4649–4656, 2020.

[115] Y. Chang, Y. Tian, J. P. How, and L. Carlone, “Kimera-multi: a system for dis-
tributed multi-robot metric-semantic simultaneous localization and mapping,” arXiv
preprint arXiv:2011.04087, 2020.

[116] Y. Tian, Y. Chang, F. H. Arias, C. Nieto-Granda, J. P. How, and L. Carlone,
“Kimera-multi: Robust, distributed, dense metric-semantic slam for multi-robot
systems,” arXiv preprint arXiv:2106.14386, 2021.

[117] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The American Statis-
tician, vol. 58, no. 1, pp. 30–37, 2004.

[118] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in
signal processing, communications, and machine learning,” IEEE Transactions on
Signal Processing, vol. 65, no. 3, pp. 794–816, 2016.

[119] T. Fan and T. Murphey, “Majorization minimization methods for distributed pose
graph optimization,” arXiv preprint arXiv:2108.00083, 2021.

[120] Y. Nesterov, “A method for unconstrained convex minimization problem with the
rate of convergence O (1/kˆ 2),” in Doklady AN USSR, vol. 269, 1983, pp. 543–547.

[121] ——, Introductory lectures on convex optimization: A basic course. Springer Sci-
ence & Business Media, 2013, vol. 87.

[122] B. OâĂŹdonoghue and E. Candes, “Adaptive restart for accelerated gradient
schemes,” Foundations of computational mathematics, vol. 15, no. 3, pp. 715–732,
2015.

[123] R. Tron and R. Vidal, “Distributed 3-d localization of camera sensor networks from
2-d image measurements,” IEEE Transactions on Automatic Control, vol. 59, no. 12,
pp. 3325–3340, 2014.

[124] E. Cristofalo, E. Montijano, and M. Schwager, “Geod: Consensus-based geodesic
distributed pose graph optimization,” arXiv preprint arXiv:2010.00156, 2020.

315

[125] Y. Tian, A. Koppel, A. S. Bedi, and J. P. How, “Asynchronous and parallel dis-
tributed pose graph optimization,” IEEE Robotics and Automation Letters, vol. 5,
no. 4, pp. 5819–5826, 2020.

[126] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone, “Graduated non-convexity for
robust spatial perception: From non-minimal solvers to global outlier rejection,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1127–1134, 2020.

[127] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard, “Robust
map optimization using dynamic covariance scaling,” in 2013 IEEE International
Conference on Robotics and Automation, 2013, pp. 62–69.

[128] L. Carlone and G. C. Calafiore, “Convex relaxations for pose graph optimization
with outliers,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1160–1167,
2018.

[129] J. T. Barron, “A general and adaptive robust loss function,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[130] S. Umeyama, “Least-squares estimation of transformation parameters between two
point patterns,” IEEE Transactions on Pattern Analysis & Machine Intelligence,
no. 4, pp. 376–380, 1991.

[131] A. McAdams, A. Selle, R. Tamstorf, J. Teran, and E. Sifakis, “Computing the sin-
gular value decomposition of 3x3 matrices with minimal branching and elementary
floating point operations,” University of Wisconsin-Madison Department of Com-
puter Sciences, Tech. Rep., 2011.

[132] S. Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex nonlinear and
stochastic programming,” Mathematical Programming, vol. 156, no. 1-2, pp. 59–99,
2016.

[133] C. Jin, P. Netrapalli, and M. I. Jordan, “Accelerated gradient descent escapes saddle
points faster than gradient descent,” in Conference On Learning Theory, 2018.

[134] H. Li and Z. Lin, “Accelerated proximal gradient methods for nonconvex program-
ming,” in Advances in neural information processing systems, 2015, pp. 379–387.

[135] H. Zhang and W. W. Hager, “A nonmonotone line search technique and its applica-
tion to unconstrained optimization,” SIAM Journal on Optimization, vol. 14, no. 4,
pp. 1043–1056, 2004.

316

[136] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance
profiles,” Mathematical Programming, vol. 91, no. 2, pp. 201–213, 2002.

[137] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, M. Elgharib, P. Fua, H.-P. Seidel,
H. Rhodin, G. Pons-Moll, and C. Theobalt, “XNect: Real-time multi-person 3D
motion capture with a single RGB camera,” ACM Transactions on Graphics (TOG),
vol. 39, no. 4, pp. 82–1, 2020.

[138] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-P. Seidel, W. Xu,
D. Casas, and C. Theobalt, “VNect: Real-time 3D human pose estimation with a
single RGB camera,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp.
1–14, 2017.

[139] C. Lassner, J. Romero, M. Kiefel, F. Bogo, M. J. Black, and P. V. Gehler, “Unite the
People: Closing the loop between 3D and 2D human representations,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017.

[140] M. Loper, N. Mahmood, and M. J. Black, “MoSh: Motion and shape capture from
sparse markers,” ACM Transactions on Graphics (TOG), 2014.

[141] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, “End-to-end recovery of
human shape and pose,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 7122–7131.

[142] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business
Media, 2006.

[143] T. Fan, K. V. Alwala, D. Xiang, W. Xu, T. Murphey, and M. Mukadam, “Revital-
izing optimization for 3d human pose and shape estimation: A Sparse Constrained
Formulation,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2021, pp. 11 457–11 466.

[144] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, “SMPL:
A skinned multi-person linear model,” ACM Trans. Graphics (Proc. SIGGRAPH
Asia), vol. 34, no. 6, pp. 248:1–248:16, Oct. 2015.

[145] N. Kolotouros, G. Pavlakos, and K. Daniilidis, “Convolutional mesh regression for
single-image human shape reconstruction,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2019.

[146] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis, “SCAPE:
Shape completion and animation of people,” ACM Trans. Graphics, vol. 24, no. 3,
pp. 408–416, Jul. 2005.

317

[147] A. A. A. Osman, T. Bolkart, and M. J. Black, “STAR: A spare trained articu-
lated human body regressor,” in European Conference on Computer Vision (ECCV),
2020.

[148] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose: Realtime
multi-person 2D pose estimation using part affinity fields,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 172–186, 2019.

[149] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “RMPE: Regional multi-person pose es-
timation,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2017, pp. 2334–2343.

[150] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learn-
ing for human pose estimation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 5693–5703.

[151] Y. Huang, F. Bogo, C. Lassner, A. Kanazawa, P. V. Gehler, J. Romero, I. Akhter,
and M. J. Black, “Towards accurate markerless human shape and pose estimation
over time,” in Proceedings of the International Conference on 3D Vision, 2017, pp.
421–430.

[152] G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. A. Osman, D. Tzionas,
and M. J. Black, “Expressive body capture: 3D hands, face, and body from a
single image,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019.

[153] A. Zanfir, E. G. Bazavan, H. Xu, W. T. Freeman, R. Sukthankar, and C. Sminchis-
escu, “Weakly supervised 3d human pose and shape reconstruction with normalizing
flows,” in European Conference on Computer Vision, 2020.

[154] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J. Black, “AMASS:
Archive of motion capture as surface shapes,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, Oct. 2019, pp. 5442–5451.

[155] H. Joo, T. Simon, and Y. Sheikh, “Total Capture: A 3D deformation model for
tracking faces, hands, and bodies,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 8320–8329.

[156] Y. Rong, T. Shiratori, and H. Joo, “Frankmocap: Fast monocular 3D hand and body
motion capture by regression and integration,” arXiv preprint arXiv:2008.08324,
2020.

318

[157] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, “Coarse-to-fine volumetric
prediction for single-image 3D human pose,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 7025–7034.

[158] D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli, “3D human pose estimation
in video with temporal convolutions and semi-supervised training,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

[159] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet effective baseline
for 3D human pose estimation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2017, pp. 2640–2649.

[160] G. Rogez and C. Schmid, “MoCap-guided data augmentation for 3D pose estimation
in the wild,” Advances in Neural Information Processing Systems, vol. 29, pp. 3108–
3116, 2016.

[161] G. Rogez, P. Weinzaepfel, and C. Schmid, “LCR-net: Localization-classification-
regression for human pose,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2017.

[162] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal speed and
accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[163] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision. Springer, 2014, pp. 740–755.

[164] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2D human pose estimation:
New benchmark and state of the art analysis,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2014.

[165] A. Kanazawa, J. Y. Zhang, P. Felsen, and J. Malik, “Learning 3D human dynamics
from video,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 5614–5623.

[166] A. Arnab, C. Doersch, and A. Zisserman, “Exploiting temporal context for 3D
human pose estimation in the wild,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

[167] J. Romero, D. Tzionas, and M. J. Black, “Embodied hands: Modeling and capturing
hands and bodies together,” ACM Transactions on Graphics, vol. 36, no. 6, pp. 1–17,
2017.

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Contributions

	Chapter 2. Efficient Computation of Higher-Order Variational Integrators
	2.1. Introduction
	2.2. Preliminaries and Notation
	2.3. The Linear-Time Higher-Order Variational Integrator
	2.4. The Linearization of Higher-Order Variational Integrators
	2.5. Comparison with Existing Methods
	2.6. Trajectory Optimization
	2.7. Conclusion
	2.8. Proofs

	Chapter 3. Efficient and Certifiably Correct Planar Graph-Based SLAM Using the Complex Number Representation
	3.1. Introduction
	3.2. Notation
	3.3. The Complex Number Representation of SO(2) and SE(2)
	3.4. The Complex Oblique Manifold
	3.5. Problem Formulation and Simplification
	3.6. The Semidefinite Relaxation
	3.7. The CPL-SLAM Algorithm
	3.8. Experiments
	3.9. Conclusion
	3.10. Proofs

	Chapter 4. Majorization Minimization Methods for Distributed Pose Graph Optimization
	4.1. Introduction
	4.2. Related Work
	4.3. Notation
	4.4. Problem Formulation
	4.5. The Majorization of Loss Kernels
	4.6. The Majorization of Distributed Pose Graph Optimization
	4.7. The Majorization Minimization Method for Distributed Pose Graph Optimization
	4.8. The Accelerated Majorization Minimization Method for Distributed Pose Graph Optimization with a Master Node
	4.9. The Accelerated Majorization Minimization Method for Distributed Pose Graph Optimization without a Master Node
	4.10. Experiments
	4.11. Conclusion
	4.12. Proofs

	Chapter 5. Sparse Constrained Optimization of 3D Human Pose and Shape Estimation
	5.1. Introduction
	5.2. Related work
	5.3. Problem Formulation
	5.4. Method
	5.5. Real-time Motion Capture Framework
	5.6. Evaluation
	5.7. Ablation Studies
	5.8. Conclusion
	5.9. Proofs

	References

