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ABSTRACT

Efficient and Guaranteed Geometric Methods for Motion Generation and Perception

Taosha Fan

Even though a number of techniques have been developed for motion generation and
perception, few of them focus on the computational efficiency and theoretical guarantees
at the same time. Typically, improved guarantees come with increased complexity, making
theoretically guaranteed methods challenging use in real-time applications. Thus, existing
methods usually have to ignore either efficiency or guarantees in practical implementation.
Nevertheless, numerous problems in motion generation and perception require computa-
tional efficiency as well as theoretical guarantees, making the implementation of existing
techniques strictly limited. To address this issue, we present efficient and guaranteed
methods for motion generation and perception by utilizing geometry and optimization. In
this thesis, we develop fast algorithms for higher-order variational integrators with linear-
and quadratic-time complexity for integration and linearization, respectively; we make
use of the complex number representation to solve the planar graph-based SLAM that is

not only certifiably correct but also more efficient and robust; we propose majorization



minimization methods for distributed pose graph optimization that have provable con-
vergence to first-order critical points and can be accelerated with no loss of theoretical
guarantees; we present a sparse constrained formulation for 3D human pose and shape
estimation with which a linear-time algorithm is derived to compute the Gauss-Newton
direction and the optimization time is reduced from tens of seconds to several millisec-
onds. In spite of the theoretical guarantees, all of these aforementioned methods achieve
the state-of-the-art performances in terms of both accuracy and efficiency for their specific

applications in motion generation and perception.
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CHAPTER 1

Introduction

Motion generation and perception are essential and have broad applications in robotics.
Despite that a number of techniques have been proposed, most of them have to make a
compromise between computational efficiency and theoretical guarantees, and thus, their
implementation is strictly limited in practice. To address these issues, this thesis focuses
on efficient and guaranteed methods for motion generation and perception. In particular,
our methods are developed from a geometric perspective and we show that numerous
problems in motion generation and perception can be reasonably formulated and solved

by utilizing geometry and optimization.

1.1. Contributions
1.1.1. Higher-Order Variational Integrators

Numerical integrators are critical to the motion generation for robots. Due to the
preservation of mechanical quantities, Variational Integrators (VI) are well-known for
their longer-time stability and high accuracy [15|. In spite of this, variational integrators
are time-consuming for computation, and thus, difficult to be implemented in real time. In
Chapter [2| we present algorithms that significantly improve the computational efficiency
of higher-order variational integrators. Our algorithms are applicable to variational in-
tegrators of arbitrarily high order, and more importantly, reduce the complexity from

O(n?) to O(n) for integration and O(n?) to O(n?) for linearization—n being the number
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of joints. These improvements make higher-order variational integrators well suited for

the simulation and trajectory optimization of complex robotic systems.

1.1.2. Planar Graph-Based SLAM

When navigating without GPS, a robot is required to estimate its location as well
as build the map of the environment. Such a problem is termed as Simultaneous Lo-
calization and Mapping (SLAM) [16]. In general, SLAM problems are formulated as a
graph where the vertices are either robot’s locations or landmark’s positions while the
edges are the available noisy measurements [17]. In Chapter 3| we present CPL-SLAM
that formulates planar SLAM using the complex number representation. Even though
the resulting optimization problem is nonconvex, CPL-SLAM is certifiably correct and
guaranteed to recover the globally optimal solution regardless of the initialization as long
as the measurement noise is under a certain threshold. In addition, as a result of the
complex number representation, CPL-SLAM is faster and more robust than the other

certifiably correct algorithms for SLAM [7].

1.1.3. Distributed Pose Graph Optimization

Pose Graph Optimization (PGO) has extensive applications in autonomous driving,
AR/VR, mapping, etc. |18|. Even though centralized PGO has been well studied, it
can not solve large-scale problems due to the limitation of computational resources. In
contrast, distributed PGO has no such restrictions and applies to problems of all the
scales. Since the communication latency has been greatly reduced, distributed PGO is

more concerned with the rates and guarantees of the convergence. In Chapter[d] we present
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major minimization methods for distributed PGO that have provable convergence to first-
order critical points under mild conditions. Furthermore, we exploit Nesterov’s method
and adaptive restarts to accelerate the convergence of distributed PGO without sacrificing
any theoretical guarantees. Last but not the least, our majorization minimization methods
for distributed PGO can be fully decentralized while achieving comparable performance

to these with a master node to communicate with all the nodes in the network.

1.1.4. 3D Human Pose and Shape Estimation

Estimating 3D human poses and shapes from images are widely used in embodied
Al robotics, AR/VR. We can solve this problem by either optimization or regression
methods. Although more popular, regression methods depend on optimization methods
for neural network training and output refining. Therefore, optimization methods remain
important for 3D human pose and shape estimation. One of the most major drawbacks
for optimization methods is that they suffer from high computation times. This mainly
results from the inefficiency to compute the Gauss-Newton direction when solving the
optimization problem. In Chapter [5] we present a sparse constrained formulation for 3D
human pose and shape estimation that is equivalent to existing optimization methods
under mild conditions. Furthermore, we exploit the underlying sparsity and constraints
of our formulation and derive algorithms that have the computation of the Gauss-Newton
direction scale linearly with the number of joints. In contrast, existing optimization
methods have the cubic complexity. As a result of the sparse constrained formulation,
our methods reduce the optimization from tens of seconds to less than 4 milliseconds with

no loss of accuracy, which is orders of magnitude faster.
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CHAPTER 2

Efficient Computation of Higher-Order Variational Integrators

This chapter addresses the problem of efficiently computing higher-order variational
integrators in simulation and trajectory optimization of mechanical systems as those of-
ten found in robotic applications. We develop O(n) algorithms to evaluate the discrete
Euler-Lagrange (DEL) equations and compute the Newton direction for solving the DEL
equations, which results in linear-time variational integrators of arbitrarily high order. To
our knowledge, no linear-time higher-order variational or even implicit integrators have
been developed before. Moreover, an O(n?) algorithm to linearize the DEL equations is
presented, which is useful for trajectory optimization. These proposed algorithms elimi-
nate the bottleneck of implementing higher-order variational integrators in simulation and
trajectory optimization of complex robotic systems. The efficacy of this chapter is vali-
dated through comparison with existing methods, and implementation on various robotic
systems—including trajectory optimization of the Spring Flamingo robot, the LittleDog
robot and the Atlas robot. The results illustrate that the same integrator can be used
for simulation and trajectory optimization in robotics, preserving mechanical properties

while achieving good scalability and accuracy.

2.1. Introduction

Variational integrators conserve symplectic form, constraints and energetic quantities

[15,19-23|. As a result, variational integrators generally outperform the other types
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of integrators with respect to numerical accuracy and stability, thus permitting large
time steps in simulation and trajectory optimization, which is useful for complex robotic
systems [1519-23|. Moreover, variational integrators can also be regularized for collisions
and friction by leveraging the linear complementarity problem (LCP) formulation |24,25|.

The computation of variational integrators is comprised of the discrete Euler-Lagra-
nge equation (DEL) evaluation, the descent direction computation for solving the DEL
equations and the DEL equation linearization. The computation of these three phases of
variational integrators can be accomplished with automatic differentiation and our prior
methods [19}21], both of which are O(n?) to evaluate the DEL equations and O(n?®)
to compute the Newton direction and linearize the DEL equations for an n-degree-of-
freedom mechanical system. Recently, a linear-time second-order variational integrator
was developed in |4], which uses the quasi-Newton method and works for small time steps
and comparatively simple mechanical systems.

Higher-order variational integrators are needed for greater accuracy in predicting the
dynamic motion of robots [26,27|. However, the computation of higher-order variational
integrators has rarely been addressed. The quasi-Newton method in [4] only applies to
second-order variational integrators, and while automatic differentiation and our prior
methods [19/[21] are implementable for higher-order variational integrators, the complex-
ity increases superlinearly as the integrator order increases.

This chapter is built upon the preliminary results in [28]. We address the computation
efficiency of higher-order variational integrators and develop: i) an O(n) method for
the evaluation of the DEL equations, ii) an O(n) method for the computation of the

Newton direction, and iii) an O(n?) method for the linearization of the DEL equations.
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The proposed characteristics i) — iii) eliminate the bottleneck of implementing higher-
order variational integrators in simulation and trajectory optimization of complex robotic
systems, and to the best of our knowledge, no similar work has been presented before. In
particular, we believe that the resulting variational integrator from i) and ii) is the first
exactly linear-time implicit integrator of third or higher order for mechanical systems.
The rest of this chapter is organized as follows. Section reviews higher-order
variational integrators, the Lie group formulation of rigid body motion and the tree rep-
resentation of mechanical systems. Sections [2.3|and [2.4] respectively detail the linear-time
higher-order variational integrator and the quadratic-time linearization, which are the
main contributions of this chapter. Section compares our work with existing meth-
ods, and Section 2.6 presents examples of trajectory optimization for the Spring Flamingo

robot, the LittleDog robot and the Atlas robot. The conclusions are made in Section 2.7

2.2. Preliminaries and Notation

In this section, we review higher-order variational integrators, the Lie group formula-
tion of rigid body motion, and the tree representation of mechanical systems. In addition,

notation used throughout this chapter is introduced accordingly.

2.2.1. Higher-Order Variational Integrators

In this chapter, higher-order variational integrators are derived with the methods
in [15/[29]/30].
A trajectory (q(t), ¢(t)) where 0 <t < T of a forced mechanical system should satisfy

the Lagrange-d’Alembert principle:
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(2.1) 66 = dintd L(q, §)dt + int{F(t) - dgdt = 0

in which £(q, ¢) is the system’s Lagrangian and F(t) is the generalized force. Provided
that the time interval [0, T is evenly divided into N sub-intervals with At = T/N, and
each q(t) over [kAt, (k + 1)At] is interpolated with s + 1 control points ¢& = ¢(t*%) in
which o = 0, 1, .-+, s and kAt = th0 < ¢l < ... < ths = (k + 1)At, then there are

coefficients b** (0 < a, B < s) such that

1 S
29 . tk’a ~ g — baﬁ k,,B‘
(2.2) q(t") ~ g = BZ:% q

In this chapter, we assume that the quadrature points of the quadrature rule are also t*
though our algorithms in Sections[2.3]and [2.4] can be generalized for any quadrature rules.

Then the Lagrange-d’Alembert principle Eq. (2.1)) is approximated as

N—-1 s
(2.3) 06 ~ > S w [5L(¢", ) + F(th*) - ¢4 - At =0,

k=0 a=0
where w® are weights of the quadrature rule used for integration. In variational integra-

tors, the discrete Lagrangian and the discrete generalized force are defined to be

s
<24) L"d(qk@? qk’17 T qk7s) = Zwac(qk,a’ qk’a)At
a=0

and F)*(th*) = w* F(t"*)At, respectively. Note that by definition we have ¢ = tk+1.0

and ¢** = ¢**10, and as a result of Eq. (2.3)), we obtain

(2.5a) P+ DiLa(@) + Fy =0,

(2.5b) Dos1 La(@) + F2* =0 VYa=1,---,s—1,
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(2.5¢) P =D La(@) + Fy°

in which p* is the discrete momentum, g* stands for the tuple (¢*°, ¢*!, ---, ¢"%), and
Do 1Ly is the derivative with respect to ¢®. Note that Eq. (2.5) is known as the discrete
Euler-Lagrangian (DEL) equations, which implicitly define an update rule (¢®°, p*) —

(g"*t10, pk+1) by solving sn nonlinear equations from Egs. (2.5a)) and (2.5b)). In a similar

way, for mechanical systems with constraints h(q, ¢) = 0, we have

(2.6a) P DI La(T) + FYO ARO(gH0) N0 = 0,

(2.6b) o1 La(T°) + Fi® 4+ AR (b AR =0 Yo =1, s —1,
(2.6¢) P =D La(@) + Fy

(2.6d) hhe(gF e @ty =0 Ya =1, -, s

in which A% (¢%?) is the discrete constraint force matrix and A\* is the discrete constraint
force.

The resulting higher-order variational integrator is referred as the Galerkin integrator
[15/,129,30], the accuracy of which depends on the number of control points as well as
the numerical quadrature of the discrete Lagrangian. If there are s + 1 control points
and the Lobatto quadrature is employed, then the resulting variational integrator has an

accuracy of order 2s [29/[30|. The Galerkin integrator includes the trapezoidal variational
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integrator and the Simpson variational integrator as shown in Examples and [2.2] the

DEL equations of which are given by Egs. (2.5) and (2.6).

Example 2.1. The trapezoidal variational integrator is a second-order integrator

with two control points g* = (¢"?, ¢*') such that ¢"° = ¢(kAt) and ¢*' = ¢((k + 1)At),

k
q"°

. . k1 _ _ . .
"0 = ¢ = g, and La(7) = 5 [L(¢0,¢") + L{¢™, )]

Example 2.2. The Simpson variational integrator is a fourth-order integrator with

three control points ¥ = (¢*°, ¢!, ¢*?) in which ¢"° = ¢(kAt), ¢*° = ¢((k+ 1)At) and

qk2—gk:0
At

g0 43gm2_4qk:1

. k1l_q. kO0_ k2
qk,2 _ q((k:—i— 1)At), qk,O _ 49" —3¢""—q 7 qk,l _ L

At

L4(@") = 2L, ¢50) + 4L(g", ¢5) + L(g"2, ¢2)].

and ¢*? = , and

2.2.2. The Lie Group Formulation of Rigid Body Motion

The configuration of a rigid body g = (R,p) € SE(3) can be represented as a 4 x 4

’op
matrix g = in which R € SO(3) is a rotation matrix and p € R? is a position

0 1
vector. The body velocity of the rigid body v = (w,vp) € T.SE(3) is an element of the

Lie algebra and can be represented either as a 6 x 1 vector v = (¢g71¢g)" = {wT Ug] or

~

a4 x4 matrix o =g g = <o in which w = (wy, wy,w,) € T.SO(3) is the angular
0 0
0 —w, wy
velocity, vo is the linear velocity, © = | o, 0 —w,| € R*?, and the hat “A” and
—Wy Wy 0

unhat“V” are linear operators that relate the vector and matrix representations. The same

representation and operators also apply to the spatial velocity v = (w,70) € T.SE(3),
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whose 6 x 1 vector and 4 x 4 matrix representations are respectively v = (gg~!)" and

=gg".

P>

In the rest of this chapter, if not specified, vector representation is used for T,SFE(3),

such as v, U, etc., and the adjoint operators Ad, and ad, : T.SE(3) — T.SE(3) can

R 0 w 0
be accordingly represented as 6 x 6 matrices Ad, = and ad, =
pR R Vo W

V. For consistence, the dual Lie algebra

such that ¥ = Ad,v and ad,, vy = (0102 — U901)".
TrSE(3) uses the 6 x 1 vector representation as well. As a result, the body wrench F' =
(1, fo) € T:SE(3) is represented as a 6 x 1 vector F' = [TT fg} ' in which 7 € T}SO(3)
is the torque and fo is the linear force so that <F ,U> = FTv. Moreover, we define

the linear operator ad? : T,SFE(3) — T*SE(3) which is represented as a 6 x 6 matrix

~
~

D T Jo T T, 1D T, 1D
adp = | so that F'ad,,vo = vyadpv; = —vy adpve for vy, vy € T.SE(3). The
Jo 0
same representation and operators also apply to the spatial wrench F' = Ad;TF = (7, fo)

which is paired with the spatial velocity 7 = Ad,v.

2.2.3. The Tree Representation of Mechanical Systems

In general, a mechanical system with n inter-connected rigid bodies indexed as 1,2, - - - ,
can be represented through a tree structure so that each rigid body has a single parent
and zero or more children [19,31], and such a representation is termed as tree represen-
tation. In this chapter, the spatial frame is denoted as {0}, which is the root of the tree
representation, and we denote the body frame of rigid body ¢ as {i}, and the parent,
ancestors, children and descendants of rigid body ¢ as par(i), anc(i), chd(i) and des(7),

respectively. Since all joints can be modeled using a combination of revolute joints and
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prismatic joints, we assume that each rigid body 7 is connected to its parent by a one-
degree-of-freedom joint ¢ which is either a revolute or a prismatic joint and parameterized
by a real scalar ¢; € R. As a result, the tree representation is parameterized with n gen-

T
eralized coordinates ¢ = {ql go - Qn} € R™. For each joint 7, the joint twist with

T
respect to frame {0} and {i} are respectively denoted as 6 x 1 vectors S; = [g;f ﬁ;f’]

and S; = |:81T ni’} ' in which 5;, s; are 3 x 1 vectors corresponding to rotation and n;, n;
are 3 x 1 vectors corresponding to translation. Note that S;, s; and n; are constant by
definition. Moreover, S; and S; are related as S; = Ad,, S; where g; € SE(3) is the con-
figuration of rigid body ¢, and gz = admgi, where 7; € T,SE(3) is the spatial velocity of
rigid body %.

It is assumed without loss of generality in this chapter that the origin of frame {i} is
the mass center of rigid body ¢, and j € des(i) only if ¢ < j, or equivalently j € anc(7)
only if + > j.

The rigid body dynamics can be computed through the tree representation. The
configuration g; = (R;,p;) € SE(3) of rigid body 7 is ¢i = Gpar(s)9Ipar(s),i(¢:) in which
Gpar(i),i (i) = Gpar(i),i(0) exp(giqi) is the rigid body transformation from frame {i} to its
parent frame {par(i)}, and the spatial velocity v; of rigid body i is U; = Upw(y + i - Gi-
In addition, the spatial inertia matrix M; of rigid body {i} with respect to frame {0}
is M; = Ad;,T]\L»Adg_i1 in which M; = diag{Z;, m;I} € R%<6 is the constant body inertia
matrix of rigid body i, Z; € R3*? is the body rotational inertia matrix, m; € R is the

mass and I € R3*3 is the identity matrix.
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In rigid body dynamics, an important notion is the articulated body |31]. In terms
of the tree representation, articulated rigid body i consists of rigid body 7 and all its
descendants j € des(i), and the interactions with articulated body ¢ can only be made
through rigid body ¢, which is known as the handle of the articulated body .

In the last thirty years, a number of algorithms for efficiently computing the rigid
body dynamics have been developed based on tree representations and articulated bodies
[31-33], making explicit integrators have O(n) complexity for an n-degree-of-freed-om
mechanical system. Even though the same algorithms might be used for the evaluation of
implicit integrators, none of them can be used for the computation of the Newton direction
for solving implicit integrators. If the residue is ¥, the Newton direction of an implicit
integrator is computed as ¢ = —F(¢*)"'r*; however, the Jacobian matrix J(¢*) is
usually asymmetric and indefinite, and has a size greater than n x n for higher-order
implicit integrators, which means that the computation of implicit integrators is distinct
from explicit integrators whose computation is simply a combination of the algorithms
in [31-33] with an appropriate integration scheme. Furthermore, the computation of
implicit integrators is much more complicated than the computation of forward and inverse

dynamics and out of the scope of those algorithms in [31-33|.

2.2.4. Recursive Computation of the Variations and Derivatives

In addition to the computation of rigid body dynamics as those in Section [2.2.3] the
tree representation can also be used to compute the variations and derivatives.

In the tree representation, the configuration g; € SFE(3) of rigid body i is

(27) gi = gpar(i)gpar(i),i(%)
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where gpar(i),i(¢i) = gpar(s),i(0) exp(S’iqi) and S; is the body Jacobian of joint ¢ with respect

to frame {i}. In addition, the spatial Jacobian of joint ¢ with respect to frame {0} is

in which S; is constant by definition. Using Eqgs. (2.7) and (2.8)) as well as Ady,S; =

(gi[;'igi_l)v, we obtain 7; = (0g;g; ')V as
(2.9) T = Tpas( + S - 005
or equivalently,

(2.10) m=2S-6+ Y 8;-dq

j€anc(4)

and furthermore,

, v S; j €anc(i) U {i},
(2.11a) (ag’gf) ~!
dq; .
0  otherwise,
dg. v Si  j € des(i) U {i},
2.11b Tg7t) =
(2.11b) ( 9, )

0  otherwise.

In addition, from Egs. l} and 1' 0Ad,, = ady,Ad,, and adgigi = 0, we obtain

(2.12) 0S; = admgi = —adg7; = adﬁparm?i = _adgiﬁpar(i)'



Moreover, as a result of Eqgs. (2.10) to (2.12)), we further obtain

< ads S; j € anc(i),
(2.13a) 95 _ %

0 otherwise,

agj adgigj J € des(i),
dq; B

(2.13Db)

0 otherwise.

Since the spatial velocity v; of rigid body 7 is

(214) v; = gz : qz + Z gj . Qj = @par(i) + gz ' Qi,

j€anc(i)

we obtain
0T, = 6S; -4+ Si -0+ Y (98,45 +S; - 0dy)

jeanc(s)
= 0Vpar(i) + 0Si -G+ Si - 6.
Substitute Eq. into the equation above, the result is
0T; = ady, S - Gi + Si - 6Gi + Y (adﬁﬁj g+ 5, 5@-)
(2.15) je€anc(i)
= 0Upar(s) + adﬁigi i+ S - 6.

From Egs. (2.12)) to (2.15)), we obtain

— S; j € anc(i) U {i},
(2.16a) 0o _ ™
aq]'

0  otherwise,
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o | S g edesti)u i),

2.16b —
(2160 i,
0 otherwise,
and
(2172) o adg, (v; — ;) Jj € anc(i) U {i},
A7a 50, = |
0 otherwise,
(217b) av; adg, (v; —0;) g € des(i) U{i},

0g; B

0 otherwise.

In addition, from Egs. 1) and 1’ Adg, = ady,Ady, and adgigi = (0, we obtain

(218) gz — admgi = —adgi@i = ad gl = —adgi@par(i).

Upar(1)

As for the spatial inertia matrix M; = Adg_iTMiAd;, algebraic manipulation shows that
and from Eqgs. (2.9)) to (2.11]) and Eq. (2.19), we obtain

(2.208) &M, —adgjﬁi - Miadgj J € anc(i) U {i},
20a =
9q;

0 otherwise,
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Wi —adZ M. — M.ade i , .
(2.20b) o8, _ | —adg M — Mjads, j € des(i) U {1},
| dg;

0 otherwise.

In the rest of this chapter, Eq. (2.9) to (2.20) will be used to derive the algorithms

and prove the propositions.

2.2.5. The Spatial Variation

In this subsection, we introduce the spatial variation 56 that is used in the algorithms
and the proof of the propositions. Note that the notion of the spatial variation 36 only
applies to the spatial quantities (-) of T.SE(3) or T*SE(3) that are described in the
spatial frame.

If @,a € T.SE(3) are related as @ = Adya in which g € SE(3), we have
da = Adgoa + adza

in which 77 = (dgg~')¥. For numerical simplicity, it is sometimes preferable to have the
variations of @ and a still related by Ad,. Therefore, we define the spatial variation da to

be

(2.21) da = da — ad;a

such that 6@ = Ad,da as long as @ = Adya. In a similar way, if b ,b* € T*SE(3) are

related as b = Ad;Tb*, we obtain

7* —T qp% T7*
55" = Ad;76b* — adll’,
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Similar to Eq. , the spatial variation 30" is defined to be

(2.22) 60 =6b +adld

such that 66 = AdgT(Sb* as long as b= Ad;Tb*. In addition, note that ¢ (b*Ta) =
0 Ta+bT5a=30"a+b oaand 5(5*Td) = §(b*"a), we have

(2.23) 5@ @) =36"a+1b ea.

In general, the spatial variations Sm are the infinitesimal changes of spatial quantities
in either the Lie algebra T,SE(3) or the dual Lie algebra T*SF(3) after canceling out the
influences of the frame change.

In Section 2.3 we have a number of spatial quantities that are defined in T.SE(3) and

T*SE(3), whose spatial variations 5 (-) can be computed in the tree representation.

Recall from Egs. 1} 2.12)) and ([2.21]) and §f’a = Adg;_c,aSi that the spatial variation

<=k, .
05, is

k,a

(2.24) 08,

)

=0

though 5§f’a = adﬁk,agf’a is usually not zero. In addition, according to Egs. (2.15

and ([2.21)), we have

<k, _ —ka k.o kL« <k, ko —k,«
00;"" = 00y + adﬁf,aSi ¢S - 0gT — adﬁf,avi
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Substitute Egs. 1' and ([2.14]) into the equation above to expand ad k av * and apply

Egs. (2.12) and (2.18)), it can be shown that

(2.25) STh = 5T G0 sgh 4 8 gk

par(z

In terms of 7i-®, H"* and Q in Eq. (2.31), which are spatial quantities in T*SFE(3),

we can still implement the tree representation to compute the spatial variation. According

to Definition [2.2] we have

éﬁ?,a _ (S( k a—k a Z 5—k Oé‘

jEchd( )

From Eq. (2.22)), the spatial variation 6 is

St = §(M; T + ) o +adkaul

jé€chd (i)

: —ka _ rRo_ka —k,a —k,a _ —ka k.o k,o
Using 71;" = M;" 0" + 3 icpa@y By~ and ;% =07 — 57 - 65", we have

(2.26) 87 = (M, ) + ad, ST T4

(2 3

—k,« —k,« k.«
Z <5uj +ad%,auj adTm,uJ - 0¢; )

jé€chd(z)

As a result of Egs. (2.19) and (2.21), 5(Mk T+ ad (Mk T is

K3 (2

(227) (LT + adl WM 5) = M (0007 — ad ot ™) = M, 500,

()

From Egs. (2.22)) and ([2.27) and adT,mu] —adgk,agf’a, Eq. (2.26) is simplified to
i
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gﬁf,a _ Mk aa_ka i Z (5_ka adiau] _5q;€,a)
(2.25) jechd(i)

—k,o—= _ka _ka D Gk k,a
= M0w Y (0" — adga Sy dgp ).

jé€chd(z)

In a similar way, for the spatial variation § H f “ we obtain

SHP" =5F "+ Y (JH} - adl, H" o)

jé€chd(z)
(2.29)
=3F "+ S (GHM —adl, .5 6qh).

j€chd(i)

Hk:a

As for ﬁf = w*At- ad -_ka+Hk from Eqgs. (2.21)) and ([2.22), algebraic manipulation

shows that
30" =00, + adl.
(2.30) = w*At - (adg;_w -Su + adT : a,uz ) + SHf’a

= w At - (adfe - O + ad ko 00;77) + 0 H.

We remark that Eqgs. , and (| - to are fundamental to the algo-

rithms and propositions in this chapter.

2.2.6. Differentiation on Lie Groups

For an analytical function f : R® — R, the directional derivative at x € R" in the

direction dz is defined to be

Df(x)-dx = %f(x—l—t-éa:)

t=0
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T
i i = |9f Of of n
in which Df(z) oL oL A SHING

In a similar way, we might define the directional derivative on Lie groups using the

Lie algebra and the exponential map as follows.

Definition 2.1. If GG is a n-dimensional smooth Lie group and f : G — R is a smooth
function on G, the directional derivative at ¢ € G in the direction 7 = dgg~! € T.G is

defined to be

Df() 7= < F (exp(t 7))

t=0
Moreover, if €1, €, - - -, €, is a basis for the Lie algebra T.G, then Df(g) can be explicitly
written as
T
d _— —_— f—
Df(g) = o |flexp(t-2)g)  [lexp(t-B)g) -+  [flexp(t-2n) g)]
t=0

We remark that R" is also a smooth Lie group for which the binary operation is addi-
tion, the Lie algebra is itself and the exponential map is the identity map. Furthermore,
the definition of directional derivatives on Lie groups in Definition [2.1] is consistent with
the definition of directional derivatives in R™. Therefore, it is without loss of any gener-
ality to interpret all the quantities in this chapter as elements of Lie groups and all the
derivatives in this chapter as derivatives on Lie groups that are defined by Definition [2.1]

Following the notion in multivariate calculus, if f : Gy x Gy X -+ - x G4 — R is a smooth
function in which G, Gg, ---, G4 are Lie groups, we use I, f to denote the derivative
with respect to G;. In particular, for Ff’a = Ff’a(gf @ TP ) that is used to compute

the Newton direction in Algorithm , note that D, F, “ is the derivative with respect to

—ko . L )
gf’a and ]D)QFZ-’Q is the derivative with respect to Uf’a.
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2.3. The Linear-Time Higher-Order Variational Integrator

In this and next sections, we present the propositions and algorithms efficiently com-
puting higher-order variational integrators, whose derivations are omitted due to space
limitations. Though not required for implementation, we refer the reader to Section
for detailed proofs.

In the rest of this chapter, if not specified, we assume that the mechanical system
has n degrees of freedom and the higher-order variational integrator has s + 1 control
points ¢ = q(t**) in which 0 < a < s. Note that the notation (-)*® is used to denote

k,a ka —k,«a

quantities (-) associated with ¢®® and t* such as ¢;"“, g;"“, v, etc.

%

2.3.1. The DEL Equation Evaluation

To evaluate the DEL equations, the discrete articulated body momentum and discrete

articulated body impulse are defined from the perspective of articulated bodies as follows.

Definition 2.2. The discrete articulated body momentum 7" € RS for articulated

body i is defined to be EP* = M?’aﬁf’a + D jcchd() ﬁf’o‘ in which Mf’a and v,"" are

(2

respectively the spatial inertia matrix and spatial velocity of rigid body .

Definition 2.3. Suppose F;(t) € RS is the sum of all the wrenches directly acting
on rigid body ¢, which does not include those applied or transmitted through the joints
that are connected to rigid body i. The discrete articulated body impulse HZ-]C * e R®

for articulated body i is defined to be HM* = Ff’a + D echd(i Hf’a in which Ff’a =

—k,«

wOF;(t**) At € RS is the discrete impulse acting on rigid body 4. Note that Fy(t), F

(2

and H" are expressed in frame {0}.
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Remark 2.1. As for wrenches exerted on rigid body i, in addition to F;(¢) which
includes gravity as well as the external wrenches that directly act on rigid body i, there
are also wrenches applied through joints, e.g., from actuators, and wrenches transmitted

through joints, e.g., from the parent and children of rigid body ¢ in the tree representation.

It can be seen in Proposition that z"* and H* make it possible to evaluate the

DEL equations without explicitly calculating Dy 1£4(q") and ]—"5’“ in Egs. 1) and 1'

Proposition 2.1. If Q;(t) € R is the sum of all joint forces applied to joint i and

T
pF = [p’f ko pﬁ] € R" is the discrete momentum, the DEL equations Eq. 1}

can be evaluated as

—rolT — il 18T
(2.31a) 0 = pk 4 S+ Z aoﬁsfﬁ 7+ QY
=0
kol —ko 5 — 3T
(2.31b) =T Y eSS Qb Ya=1, s 1,
=0
kT —ks 5 5T
(23lc) P =S+ eST Qb
=0

in which rf * is the residue of the DEL equations Egs. 1) and 1 , a® = whbPe,

—k,«
Q.

(2

= w*At - adg;?,a S 4+ HPYand QF = woQi (M)At is the discrete joint force

applied to joint 7.

PROOF. See Section 2.8.1]. O

In Egs. 1) and (2.31h)), if all rf “ are equal to zero, a solution to the variational

integrator as well as the DEL equations is obtained.
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All the quantities used in Proposition can be recursively computed in the tree
representation, therefore, we have Algorithm [I] that evaluates the DEL equations, which
essentially consists of s+1 forward passes from root to leaf nodes and s+1 backward passes
in the reverse order, thus totally takes O(sn) time. In contrast, automatic differentiation

and our prior methods [19}21] take O(sn?) time to evaluate the DEL equations.

Algorithm 1 Recursive Evaluation of the DEL Equations

1: initialize g"* = T and T3'* = 0
2: fori=1—ndo

3: for a =0 —> S do

4

k7
9 = gpar(z)gpar(z) 1((]2 )

5. 5% = AdpaS;, M," = Ad—gaMiAd—k{a
o =g e T e
B=0

7: end for
8: end for
9: fori=n—1do
10: for o« =0 — s do

—ka ko ko —k,a ka ko k,a
11: 2 _Mivi+2ﬂj7Hi —Fi‘l'ZHj
192: jé€chd(z) jé€chd(z)
13: Q= weAt - adly. -1+ HI

7

14: end for
—k,OT—k’,O s —k, T J—
15: 7,(6,0 = pf + Si Qi + Z aoﬂsi o Nf’ﬁ + Qf’o

1

16: fora:1—>5—1do
17: pho — ghelghe S qasght ks | ke
18: end for -
19: phtt = S Q +ﬁz ,6 _kﬁ+ka
0

20: end for




45

2.3.2. Exact Newton Direction Computation

From Eq. , the Newton direction §g* = 5qk71T’ . 5qusT} ' € R*" is computed
as 0q" = —jk_l(qk) -k in which J%(g*) € R*™**" is the Jacobian of Eqs. and
with respect to control points ¢"', - -+, ¢, and r* € R*" is the residue of evaluating the
DEL equations Eqgs. and by Proposition

In this chapter, we make the the following assumption on F?’a and Qf’a, which is

general and applies to a large number of mechanical systems in robotics.

Assumption 2.1. Let u(t) be the control inputs of the mechanical system, we assume
that the discrete impulse F “ and discrete joint force Qf’a can be respectively formulated

-k, -k, _ . . .
as F, " =F, " (gF o ubeo) and Q% = Q¥ (g5, ¢P*, ub) in which ub® = u(th®).

’ Vg

If Assumption holds and J kil(@’“) exists, it can be shown that Algorithm |2| com-

putes the Newton direction for variational integrators in O(sn) time.

Proposition 2.2. For higher-order variational integrators of unconstrained mechan-
. . . k=1 /—k . . . —k
ical systems, if Assumption holds and J% " (g") exists, the Newton direction §g° =

—jkil(qk) -7r* can be computed with Algorithm [2/in O(s®n) time.

PROOF. See Section [2.8.2] O

In Algorithm , the forward and backward passes of the tree structure take O(s’n)
time, and the n computations of the s x s matrix inverse takes O(s®n) time, thus the
overall complexity of Algorithm [2is O(s®n + s?n). In contrast, automatic differentiation
and our prior methods in [19,/21] take O(s?n?) time to compute J*(g") and another

O(s*n?) time to compute the sn x sn matrix inverse J kil(@’“), and the overall complexity
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Algorithm 2 Recursive Computation of the Newton Direction

1:
2:
3:
4:

5:

10:
11:

12:

13:
14:
15:

16:

17:
18:
19:
20:
21:

22:

23:
24:
25:

initialize go* = T and ) = 0
fori=1—ndo
fora =0 —) s do

k7
9; _gpar(l)gpar(z) (ql )
S0 = AdgaSi, M= AT MAdL,

1 S
ko - afB kB ko _ka
q; - At ﬁ:Ob a4, Y - par( _'_ S

gf’a = adﬁly,agf’a
end for '

end for

fori=n—1do

use Algorithm [3| to evaluate
a) Df’a”, Gf’o‘”, li“a and ﬁf’o‘
b) II}*7, WP (M and H
¢) H"* and oM
) Xbor Y5 and
end for
initialize 75" = 0 and 0vy” = 0
fori=1—ndo
for 7 =1 —> s do

E Xk WS L+ 2:1 Y;kmj Upar(,) TV o

par(z
p=
end for

forvr=1—sdo
ﬁk,y _ ﬁk N + S 5q£c,1/

1 par
end for
for p=0 —> 5 do
5P = b - 5P
G At Z q"”
5ok = 5—1’3;5; o+ Si7 8+ 5 6
end for
end for




Algorithm 3 Recursive Computation of the Newton Direction — Backward Pass
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5 Va=0,1,---,s—1,Vp=0,1,--- , sand Vv =0,1, --- , s — 1,
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k, —k,o k —k,o —k,a k
Oy = wAt - (87" D™ +0S;" adll.) + 577 1,

—k,av
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=he — e Ar. S Gher 4 g ghev,
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is O(s*n3 + s?n3). Though the quasi-Newton method [4] is O(n) time for second-order
variational integrator in which s = 1, it requires small time steps and can not be used for
third- or higher-order variational integrators.

Therefore, both Algorithms|l|and 2lhave O(n) complexity for a given s, which results in
a linear-time variational integrator. Furthermore, Algorithms[I]and [2| have no restrictions
on the number of control points, which indicates that the resulting linear-time variational
integrator can be arbitrarily high order. To our knowledge, this is the first exactly linear-

time third- or higher-order implicit integrator for mechanical systems.

2.3.3. Extension to Constrained Mechanical Systems

Thus far all our discussions of linear-time variational integrators have been restricted
to unconstrained mechanical systems. However, Algorithms [T] and [2] can be extended to
constrained mechanical systems as well.

In terms of the the DEL equation evaluation, the extension to constrained mechanical
systems is immediate. From Eq. , we only need to add the constraint term A%< (g*)-
A5 to the results of using Algorithm .

If the variational integrator is second-order and the mechanical system has m con-
straints, it is possible to compute the Newton direction d¢**! and \* in O(mn) + O(m?)
time using Algorithm . In accordance with Eq. , 5¢"t! and 6\* should satisfy
T*(q") - 6¢" + AF(¢) - 6N = —rk and DRF(¢"H, ¢FH) - 0¢" ! = —rk in which r¥ and

r® are equation residues. Then §¢*** and JA* can be computed as follows: i) compute

Sghtt = — g+ ¥ with Algorithmwhich takes O(n) time; ii) compute J* ' - A* by using
Algorithm [2|m times which takes O(mn) time; iii) compute §A* = (Dh* - J* - Ak)_l(rf +

DA* - 5g¥1) which takes O(m?) time; iv) compute dgFt! = §ghtt — FF71. Ak . 5k,
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In regard to third- or higher-order variational integrators, if the constraints are of
hE(gh®,T%) = 0 or h¥(gP",¢5*) = 0 or both for each i = 1,2, ---, n, Algorithm
can be used to compute the Newton direction 6g* and 6\* in a similar procedure to the
second-order variational integrator.

In next section, we will discuss the linearization of higher-order variational integrators

in O(n?) time.
2.4. The Linearization of Higher-Order Variational Integrators

The linearization of discrete time systems is useful for trajectory optimization, stability
analysis, controller design, etc., which are import tools in robotics.

From Egs. and , the linearization of variational integrators is comprised of
the computation of D2Ly(7*), DFy(t%*) and DAM(¢"*). In most cases, DFy“(th*)
and DA (¢") can be efficiently computed in O(n?) time, therefore, the linearization
efficiency is mostly affected by D?L4(q").

It is by definition that the Lagrangian of a mechanical system is £(q,q) = K(q,¢) —

V(¢) in which K(q,q) is the kinetic energy and V(q) is the potential energy, and from

. — . 2 2 2
Eq. 1} the computation of D?L4(q") is actually to compute 3712, gqéi] , gqgfj, %TIQ{ and

OV for which we have Propositions and H as follows.

(9_(12’

Proposition 2.3. For the kinetic energy K(q,¢) of a mechanical system, %QTI;, %,
3;52 , %27[2( can be recursively computed with Algorithm [4|in O(n?) time.

PROOF. See Section 2.8.3] OJ

In the matter of potential energy V' (q), we only consider the gravitational potential

energy V;(q), and the other types of potential energy can be computed in a similar way.
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PK 9°K 9K 9’K
9¢% 7 9G0q’ 9qdq’ Oq>

Algorithm 4 Recursive Computation of

1: initialize go =1 and vy = 0
2: fori=1—ndo

3 Gi = Gpar(i)Ipar(i).i (i)
4 M;=Ad,"M;Ad,,
5: Ui = Upar(i) + Si - i,
6: end for

7

8

9

. 2 2 2 2
. initialize 25 =0, 2K =0, 2K _ 2K _9

9q9q dq®

02
: fori=n—1do o o
=My + > [, Mi=M+ > M,
jé€chd(z) ] jé€chd(z)
10: M, =MS;, M; =M.5; - ad’5,
11: for j € anc(i) U {i} do

0q0q

. 82K _ 82K o —T——A
12 s506; — og05 — 23 Mi
_ 2K _ ’°K _ T g4 9k _ K _ ol54B
13: 9¢;0q; — 0q;0q; Sj MZ » o 9qi0q; — 04;0q; Sj MZ
T
, RPK _ PK _ G A8
14: 0q;0q; — 0q;0q; Sj Ml
15: end for
16: end for
Proposition 2.4. If § € R3 is gravity, then for the gravitational potential energy
2y
Vi), % can be recursively computed with Algorithm [5/in O(n?) time.
PROOF. See Section 2.8.4] O

In regard to Proposition [2.4 and Algorithm [}, we remind the reader of the notation

introduced in Sections [2.2.2| and [2.2.3| that m; € R is the mass of rigid body i, p; € R? is

T
the mass center of rigid body i as well as the origin of frame {i}, and S; = [ggf ﬁ;f] € R

is the spatial Jacobian of joint i with respect to frame {0}.

0K 9’°K O’°K O’°K oV ; 2\ 1 ;
If 5% 30q° DaBG’ 0L and g7 are computed in O(n?) time, then according to Eqs. 1}

and (2.4)), the remaining computation of D?L4(g**) is simply the application of the chain

rule. Therefore, if the variational integrator has s + 1 control points, the complexity of
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Algorithm 5 Recursive Computation of %

: initialize go =1
:fori=1—ndo

1

2

3 Gi = Gpar(i)Jpar(i),i(¢) S = Ad,, S,
4: end for

5 2 =

6

7

e . 92V,
. Initialize o
q

: fori=n—1do
Emi =m; + Z Emﬁ Epi = NP + Z Epj

jé€chd(z) jé€chd(z)
8 08 =G (Cm  T—0pSi)
9: for j € anc(i) U {i} do
: Vg _ Vg _ T =4
10: 0qi0q; — 0q;0q; 55 0i
11: end for
12: end for

the linearization is O(s*n?). In contrast, automatic differentiation and our prior methods

[1921] take O(s*n?) time to linearize the variational integrators.

2.5. Comparison with Existing Methods

The variational integrators using Algorithms [I] to [5| are compared with the linear-
time quasi-Newton method [4], automatic differentiation and the Hermite-Simpson direct
collocation method, which verifies the accuracy, efficiency and scalability of our work. All

the tests are run in C++ on a 3.1GHz Intel Core Xeon Thinkpad P51 laptop.

2.5.1. Comparison with the Linear-Time Quasi-Newton Method

In this subsection, we compare the O(n) Newton method using Algorithms [I] and
with the O(n) quasi-Newton method in |4] on the trapezoidal variational integrator (Ex-

ample of a 32-link pendulum with different time steps.
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Figure 2.1. The comparison of the O(n) Newton method with the O(n)
quasi-Newton method [4] for the trapezoidal variational integrator of a 32-
link pendulum with different time steps. The results of computational time
are in (a), number of iterations in (b) and success rates in (¢). Each result
is calculated over 1000 initial conditions.

In the comparison, 1000 initial joint angles ¢° and joint velocities ¢° are uniformly
sampled from [—7, 7] for each of the selected time steps, which are 0.001s, 0.002s, 0.005s,

0.01s, 0.02s, 0.03s, 0.04s, 0.05s and 0.06s, and the Newton and quasi-Newton methods
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are used to solve the DEL equations for one time step. The results are in Fig. 2.1]
in which the computational time and the number of iterations are calculated only over
initial conditions that the DEL equations are successfully solved. It can be seen that the
Newton method using Algorithms (1| and |2 outperforms the quasi-Newton method in [4]

in all aspects, especially for relatively large time steps.

2.5.2. Comparison with Automatic Differentiation

In this subsection, we compare Algorithms [I] to [5] with automatic differentiation for
evaluating the DEL equations, computing the Newton direction and linearizing the DEL
equations. The variational integrator used is the Simpson variational integrator (Exam-
ple 2.2)).

In the comparison, we use pendulums with different numbers of links as benchmark
systems. For each pendulum, 100 initial joint angles ¢° and joint velocities ¢° are uniformly
sampled from [—7, 7]. The results are in Fig. and it can be seen that our recursive
algorithms are much more efficient, which is consistent with the fact that Algorithms
tolplare O(n) for evaluating the DEL equations, O(n) for computing the Newton direction,
and O(n?) for linearizing the DEL equations, whereas automatic differentiation are O(n?),

O(n?®) and O(n?), respectively.

2.5.3. Comparison with the Hermite-Simpson Direct Collocation Method

In this subsection, we compare the fourth-order Simpson variational integrator (Ex-

ample [2.2) with the Hermite-Simpson direct collocation method, which is a third-order
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Figure 2.2. The comparison of our recursive algorithms with automatic dif-
ferentiation for pendulums with different numbers of links. The variational
integrator used is the Simpson variational integrator. The results of evalu-
ating the DEL equations are in (a), computing the Newton direction in (b)

and linearizing the DEL equations in (c¢). Each result is calculated over 100
initial conditions.

implicit integrator commonly used in robotics for trajectory optimization ,ﬂ Note

that both integrators use three control points for integration.

IThe Hermite-Simpson direct collocation methods used in are actually implicit integrators that
integrate the trajectory as a second-order system in the (g, ¢) space, whereas the variational integrators
integrate the trajectory in the (g, p) space.



o6

The strict comparison of the two integrators for trajectory optimization is usually
difficult since it depends on a number of factors, such as the target problem, the opti-
mizers used, the optimality and feasibility tolerances, etc. Therefore, we compare the
Simpson variational integrator and the Hermite-Simpson direct collocation method by
listing the order of accuracy, the number of variables and the number of constraints for
trajectory optimization. In general, the computational loads of optimization depends on
the problem size that is directly related with the number of variables and the the number
of constraints. The higher-order accuracy suggests the possibility of large time steps in
trajectory optimization, which reduces not only the problem size but the computational
loads of optimization as well. The results are in Table It can be concluded that the
Simpson variational integrator is more accurate and has less variables and constraints in

trajectory optimization, especially for constrained mechanical systems.

Table 2.1. The comparison of the Simpson variational integrator with the
Hermite-Simpson direct collocation method for trajectory optimization.
The trajectory optimization problem has N stages and the mechanical sys-
tem has n degrees of freedom, m holonomic constraints and is fully actuated
with n control inputs. Note that all the integrators use three control points
for integration.

Integrator Accuracy # of Variables # of Constraints
Variational Integrator | 4th-order | (4N +3)n + (2N + 1)m 3Nn+ (2N +1)m
Direct Collocation
(Explicit)
Direct Collocation
(Implicit)

3rd-order | (6N +3)n+ (2N +1)m| 4Nn+ (6N +3)m

3rd-order | (8N +4)n+ (2N + 1)m | (6N + 1)n + (6N + 3)m

2The explicit and implicit formulations of the Hermite-Simpson direct collocation methods differ in
whether the joint acceleration § is explicitly computed or implicitly involved as extra variables. Although
the explicit formulation of the Hermite-Simpson direct collocation has fewer variables and constraints
than the implicit one, it is more complicated for the evaluation and linearization. Thus, the implicit
formulation is more efficient and more commonly used in trajectory optimization [27].
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The accuracy comparison in Table of the Simpson variational integrator with the
Hermite-Simpson direct collocation method is further numerically validated on a 12-link
pendulum. In the comparison, different time steps are used to simulate 100 trajectories
with the final time 7' = 10 s, and the initial joint angles ¢° are uniformly sampled from
[—{5, 5] and the initial joint velocities ¢° are zero. Moreover, the Simpson variational
integrator uses Algorithms|l|and 2| which has O(n) complexity for the integrator evaluation
and the Newton direction computation, whereas the Hermite-Simpson direct collocation
method uses [31}[34] which is O(n) for the integrator evaluation and O(n?) for the Newton
direction computation. For each initial condition, the benchmark solution g,(t) is created
from the Hermite-Simpson direct collocation method with a time step of 5 x 10™* s and
the simulation error in ¢(t) is evaluated as Fint{ [¢(t) — qq(t)[|dt. The running time
of the simulation is also recorded. The results are in Fig. which indicates that the
Simpson variational integrator is more accurate and more efficient in simulation, and more
importantly, a better alternative to the Hermite-Simpson direction collocation method for
trajectory optimization.

In regard to the integrator evaluation and linearization, for unconstrained mechan-
ical systems, experiments (not shown) suggest that the Simpson variational integrator
using Algorithms [T}, [4] and [5] is usually faster than the Hermite-Simpson direct collocation
method using [31}/34] even though theoretically both integrators have the same order of

complexity. However, for constrained mechanical systems, if there are m holonomic con-

straints, the Simpson variational integrator is O(mn) for the evaluation and O(mn?) for
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Figure 2.3. The comparison of the Simpson variational integrator with the
Hermite-Simpson direction collocation method on a 12-link pendulum with
different time steps. The results of the integrator error are in (a), the
computational time in (b) and the integration error v.s. computational
time in (c). Each result is calculated over 100 initial conditions.

the linearization while the Hermite-Simpson direct collocation method in [26]27] is respec-
tively O(mn?) and O(mn?), the difference of which results from that the Hermite-Simpson

direct collocation method is more complicated to model the constrained dynamics.
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2.6. Trajectory Optimization

In this section, we implement the fourth-order Simpson variational integrator (Exam-
ple 2.2) with Algorithms and [5| on the Spring Flamingo robot [35], the LittleDog
robot |36] and the Atlas robot [37] for trajectory optimization, the results of which are
included in our supplementary videos. It should be noted that the variational integrators
used in [19-21}[23,25| for trajectory optimization are second order. In Sections m
and 2.6.2 a LCP formulation similar to [25] is used to model the discontinuous frictional
contacts with which no contact mode needs to be prespecified. These examples indicate
that higher-order variational integrators are good alternatives to the direct collocation

methods [26,27]. The trajectory optimization problems are solved with SNOPT [38].

2.6.1. Spring Flamingo

The Spring Flamingo robot is a 9-DoF flat-footed biped robot with actuated hips and
knees and passive springs at ankles [35]. In this example, the Spring Flamingo robot is
commanded to jump over an obstacle that is 0.16 m high while walking horizontally from
one position to another. The results are in Fig. [2.4] in which the initial walking velocity

is 0.26 m/s and the average walking velocity is around 0.9 m/s.

2.6.2. LittleDog

The LittleDog robot is 18-DoF quadruped robot used in research of robot walking [36].
In this example, the LittleDog robot is required to walk over terrain with two gaps. The

results are in Fig. in which the average walking velocity is 0.25 m/s.
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Figure 2.4. The Spring Flamingo robot jumps over a obstacle of 0.16 meters
high.
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Figure 2.5. The LittleDog robot walks over terrain with gaps.
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2.6.3. Atlas

The Atlas robot is a 30-DoF humanoid robot used in the DARPA Robotics Challenge
. In this example, the Atlas robot is required to pick a red ball with its left hand
while keeping balanced only with its right foot. Moreover, the contact wrenches applied
to the supporting foot should satisfy contact constraints of a flat foot . The results

are in Fig. [2.6) and it takes around 1.3 s for the Atlas robot to pick the ball.

Figure 2.6. The Atlas robot picks a red ball while keeping balanced with a
single foot.
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2.7. Conclusion

In this chapter, we present O(n) algorithms for the linear-time higher-order variational
integrators and O(n?) algorithms to linearize the DEL equations for use in trajectory op-
timization. The proposed algorithms are validated through comparison with existing
methods and implementation on robotic systems for trajectory optimization. The results
illustrate that the same integrator can be used for simulation and trajectory optimization
in robotics, preserving mechanical properties while achieving good scalability and accu-
racy. Though not presented in this chapter, these O(n) algorithms can be regularized for
parallel computation, which results in O(log(n)) algorithms with enough processors. In
particular, the proposed algorithms for higher-order variational integrators are expected to

benefit existing optimal control and estimation techniques [39-43| in numerous aspects.

2.8. Proofs
In this section, we review and prove Propositions [2.1] to although these proofs are
not necessary for implementation.
2.8.1. Proof of Proposition

In Section [2.3.1] we define the discrete articulated body momentum and discrete ar-

ticulated body impulse are respectively as follows.

Definition 2.4. The discrete articulated body momentum ﬁf’a € RS for articulated

body ¢ is defined to be

(2.35) e =M+ Y R Va=0,1, s

j€chd(i)
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in which M, “ and vf’o‘ are respectively the spatial inertia matrix and spatial velocity of

rigid body 4.

Definition 2.5. Suppose F;(t) € R is the sum of all the wrenches directly acting
on rigid body ¢, which does not include those applied or transmitted through the joints
that are connected to rigid body 7. The discrete articulated body impulse Hik * € R® for

articulated body ¢ is defined to be
ko =k, k,a
(2.36) HY=TF;"+ )  H]
jé€chd(z)

in which F?’a = wF;(t"*)At € R is the discrete impulse acting on rigid body i. Note

that F;(t), Ff’a and H" are expressed in frame {0}.

The DEL equations Eq. 1} can be recursively evaluated with Ef’a and Ff “ as

Proposition [2.5] indicates.

Proposition 2.5. If Q;(t) € R is the sum of all joint forces applied to joint 7 and

T
pF = {p’f P pﬁ] € R" is the discrete momentum, the DEL equations Eq. 1}

can be evaluated as

—koT — ° — 8T
(2.37a) Tf’o =pF+ Sf’o . Qf’o + Z GOBSfﬂ ‘ﬁ?ﬂ + Qf’ov
5=0

kol —ko ° — 3T N

(2.37b) =T Y eSS Qb Ya=1, s 1,
5=0

—tsT —ks ° 8T i

(2.37c) A e A N0

8=0
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in which ’r‘f ** is the residue of the DEL equations Eqs. and - a®® = whhie,

Qe = weAt ad S 4 HPY and QP = weQ; (tk “)At is the discrete joint force

(2

applied to joint .
PROOF. The Lagrangian of a mechanical system is defined to be
(2.38) L(q,q) = K(q,9) — V(q)

in which K(q,q) is the kinetic energy and V'(q) is the potential energy. It is by the

definition of F;(t) and Q;(t) that
int] F(t) - 6qdt — sintl V(q)dt = int] Z Fi(t) - m;dt + intd Z Qi(t) - dg;dt

in which 7; = (6¢:9; 1)V, Therefore, the Lagrange-d’Alembert principle Eq. (2.1)) is equiv-
alent to
(2.39) 06 = dintg K (g, ¢)dt + int§ Y F(t) - mydt + int Y Q(t) - dgsdt = 0.

i=1 i—

As a result of Eqs. ) and (| - we have

N-1 s n
pa0 S S (a0 ()
k=0 «

(Falth),70) + (Qi(t), 04) | At = 0.
Note that the kinetic energy K (¢&<,¢"?) is

_k,aT57ka_k
vj’o‘ M o

(2.41) K(¢".¢") = j

v

1
2

Jj=1
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in which M;" € R%*6 is the spatial inertia matrix and 7°"* € RS is the spatial velocity.

Using Egs. (2.16b)), (2.35) and (2.41]), we obtain

n kol
0K (qk,cx qk,a) _ av? M’f,a@k,a
8(]1 ’ = 8ql J J
2.42 kol —k a_k a —k aT—k a_k a
(242) =5 M T Z Mo
jé€des(i)
:gEaT_I.C’O‘

In a similar way, as a result of Eqs. (2.17b)), (2.18)), (2.20b)), (2.35) and (2.41)), a tedious

but straightforward algebraic manipulation results in

0K

5 ( 7qk:,oz) _ Z |:ad§l?*"‘ (E;f,a . 5?,04) ad : D k: ] M?,av;c,a
e jedes(i)u{i} '
(2.43) :Sl(w ad? . T
;k,aT_kﬂ

% 7

In addition, using Eqs. (2.10]) and (2.36|) and Ff’a = wF;(t**) At, we obtain

Z(waF ()AL, 7Y = Z wF (%) AL S o+ Y T ey

je€anc(i)

_Z F+ Y FUS - aqbey
j€des(i)

—Z AR

_Z<§kvaTHk,a P

- A i) q]‘ >
=1

(2.44)
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From Eq. (2.2)), we obtain

1 S
2.45 5 = b8 . 5P,
(2.45) " =5 E:o g

Substituting Eqs. (2.42) to (2.44) into Eq. (2.40) and simplifying the resulting equation
with Eq. (2.45)) as well as the chain rule, we obtain

N-1 s n

PIPIP LGN +Za“55’ﬁ T+ Q0 =0

k=0 a=0 i=1

k,a

in which a®® = w?bPe, WAt - ad P 4+ HPY and QP = weQ,(th*)At. The

equation above is equivalent to requiring

S
—k0T  —k0 kBT g k,0
pf+Si LY +§ GOBSi 'Hiﬁ‘f'Qi =0
B=0

—k:,aT

R I T VA
—k,sT —k,s . sBGR T s
B=0

This completes the proof. O

2.8.2. Proof of Proposition

In Section [2.3.2] we make the assumption on the discrete impulse F?’a and discrete

joint force Q¥ as follows.
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Assumption 2.1. Let u(t) be control inputs of the mechanical system, we assume
that the discrete impulse Ff’a and discrete joint force Qfa can be respectively formulated
as Ff’ F “(gh, o b)) and QP = QP (¢P, ¢P* uh*) in which ub = wu(th).

From the notion of the spatial variation in Section [2.2.5] we have the following propo-

sition for the Newton direction computation, which is later used in the proof of Proposi-

tion 2.2

Proposition 2.8.1. If §¢/* is the Newton direction for ¢/"*, r¥* is the residue of the
DEL equations Egs. (2.31a) and (2.31b)), and Assumption holds, the computation of

the Newton direction 5q£f “ is equivalent to requiring

(2.46a) O = ka(S_ka + Z (5—ka S?’a : 5q;-€’°‘), Va=0,1,---,s,

jé€chd(z)

(2.46b) SH = (DiF;" +adu, — adgen) - 70 + DoF, " - 507+

Z (5Hf’a adD;mS 5’”‘) Va=0,1,---,s5—1,

jechd(i) i

(2.46¢) gﬁf’a = w*At - (ad 5_ka + ad 5_k a) —1—5]:7?’0‘, Va=0,1,---,s—1,

(2.46d) 5 50" +Z a5 S L DQhe . agke
=0

I%Qf’a . 5(}?’0‘ =P VYa=0,1,---,s5—1.

7
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: o= = < =5ka _
in which 607%, 67, 6 HI™ and 0§, are the spatial variations of 7%, 7*, H"* and

ﬁl-w, respectively. Note that (5qf’0 =0 and ﬁf’o = 0 though Sﬂf’o # 0.

(2

PRroOF. Egs. (2.46a) and (2.46c) are respectively the same as Eqs. (2.28]) and ([2.30)),

thus we only need to prove Eqgs. ) and m
From Assumption , we have Fi’ F “(gF, o ube), and since dui® = 0, we

? 7

obtain (57?“ as

«

OF; " = DiFy " 7 4+ DoF, " - o

According to Eq. (2.22)), the spatial variation gff’a is

SE =Dy F 7P 4 D F 5 4 adgk,aff’a

)

k,a

. ko _ T —k = —k
Since 67" = 60, “+ad, k TP ad, . DT = —ad_rT;" as well as ad;;w F, = ad%wm *
2 2 i

the equation above is equivalent to

SF,’;’O[ = (Dlﬁf’a -+ ad%,a — Dgﬁf’aadﬁﬂ) . —|— ]DQFk “ (S_k o«

Substitute the equation above into Eq. (2.29)), the result of which is Eq. (2.46D)).

As for the proof of Eq. (2.46d), from Eqgs. (2.31al) and (2.31b)), the Newton direction

Sqi

. requires that

(247) 5(SFTQ) + Y a5 (SE ) £ DiQE - 6gf et
5=0

Dy - 6¢F = —rP* VYa=0,1, .-, s—1.

7
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ol T —paT—ha
As aresult of Egs. (2.23)) and ([2.24)), we have (5(5?’ /7]?’0‘) = Sf’ o™ and 5(5?’ ay ) =

(2 K3

——haT———ka

S, 08,7, with which and Eq. (2.47), we obtain Eq. (2.46d). This completes the

1

proof. O

In Section [2.3.2] Proposition to compute the Newton direction is stated as follows,
for which note that the higher-order variational integrator has s 4+ 1 control points and

the mechanical system has n degrees of freedom.

Proposition 2.8.2. For higher-order variational integrators of unconstrained me-
chanical systems, if Assumption holds and J k_l(qk) exists, the Newton direction

67" = —jkil(ak) -7% can be computed with Algorithm [2/in O(s®n) time.

PROOF. The proof consists of proving the correctness and the O(n) complexity of the
algorithms.
For each j € chd(i), we suppose that there exists Df’o‘p : G?’O“', lf’a and H?’ap , \Ilf’a”,

Cf’o‘ such that

248) T = 3D S 0 Ya =01 s
p=0 v=1
(249)  SHP® = T 5007 4> RVt 4 (Y Ya=0,1,--, s L
p=0 v=1

According to Eqs. 1} 1) and 1’ 5@?”’ and ﬁ?’” can be respectively computed as

(2.50) T = £ 5 gk
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and

- - -~ I —hp
(2.51) 00 = 5uy " + S5 g + 5 "N v g

=1

for which note that 6¢™° = 0. Substitute Egs. (2.50) and (2.51)) into Eq. (2.48)), algebraic
j

manipulation shows that

(@52) G =3 DR vuz(;kav T 5 3 R

p=0 v=1
in which

k,oy _ k,oc’y;k;y k,oy Gk 1 - k,apak:p
Hy™ = DP™ISE7 + GEvs;™ + o > ¥ Dprsy”
p=0

In a similar way, using Eqgs. (2.49)) to (2.51]), we also have

(2.53) GHP™ = D I . gut 4+ > W g o4 by Z@’W&qﬁ
p=0 v=1

in which

k.o ka R k,ay gk - k.apakp

pher — rberghy | ghergh thmnj e

J
p=0

From Egs. (Z18), ([£:30) and (2:51) to (2:53) and

T
T _k —k,a D &k
S d ka,uja:Sj adﬁkﬁas‘

; J
J

=0,

we obtain

kol ==ko . [ < . —_ v [
(2.54) ST e =N eher gk ¢ S gher gy g gk
p:O v=1
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in which

;k,aT —k,aT —k,al
O = w At - (8, DV + 650" adb.) + 5, TP,
B J J

. T T
—k _kva k _k?,Oé k
:j’a" :wO‘At~Sj Gj’w—i-Sj \Ifj’au,

aT « ral :CVT «@ : = T o3
o = AL S e G R +Z[w%t-(sjm HEe4
y=1
— k.ol “ k.o —kal o
oSy adD.S)) + 5, @b W]éq’?’”
J

J J J J

and note that o*” is given in Eq. (2.33)) of Algorithm [3} Substituting Egs. (2.45)), (2.52)
and ([2.54) into Eq. (2.46d)), we obtain

- ko <k - =kav gy | ko - ka k k.o
(2.55) Z@j p-dvi’p~|—z:j -+ +ZAJ~’ Toq; = e,
p=0 v=1 y=1

in which

S
=k.ap o k,ap a/@'_k“7BT k,Bp
6, =0y 43 " a*’S;" Dy,

=0
k u k8T
=0ar.  —=k,av afB gk k,Bv
g2, =E; —i—EaSj Gj ,
B=0
S
ka4 ;kvaT k,a _k’voéT k,a a[g’_kw@T k.
&7 = w A ST+ ST Gy atS

=0
S
AR Zyo g G5 e ghel ghar > 9GO ey
J - J J J J J J

B=0

1% e’ a —k,aT oo 1 (o} «
otl (DlQ?’ + w*At - 5 ad%,asj ) + Ktb 7-]]3)262? :
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For notational convenience, we define Aj’a to be
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(256) AP =N"rau  SUEN L 1 Ya=0,1, -, s L.
v=1

p=0

such that Eq. (2.55) is rewritten as

S

(2.57) DA G = B AP Va=0,1, -+, 5 1.

v=1

In addition, if we further define Af , rf, A? and (5@? respectively as

A = {Aﬁ?‘”} €R™,

T
kE_ | k0o k1 k,s—1 s
’I"] |:7*j rj e Tj :| < R s
T
Ak = {A;ao AR L A?S_l] 3.3
T
—k __ k,1 k,2 k,

in which 0 < o <s—1and 1 <~ <s, then Eq. (2.57)) is equivalent to requiring

kosk _ .k k
(2.58) Aj - 0g; = —rj — 4.
in which A¥ is invertible since J k_l(qk) exists. From Eq.

_ -1
07: = —AF (1% + ).

2.58

, we obtain
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If A§_1 is explicitly written as Af_l = {K?’w] € R*** in which 1 <y <sand 0 < p <

s — 1, expanding the equation above, we obtain

s—1
(2.59) 56];-:’7 = - ZK?’W <7’f’g + A§’9> , Vy=1,2,---,s.

0=0

Substitute Eq. (2.56) into Eq. (2.59)), the result is

(260) 5q§7>'7 — Z X;Cv"/p . g@fvp + Z Y}kv’yl’ . ﬁf?” + y§77
p=0 v=1

in which

J

s—1
k Z ~kye =k,op
XJ VP — A] . @ )
0=0

Vi Y

s—1
k “kvo =k,ov
Y4 i = — A . - =
J 2 : J
0=0

s—1
ky Z—k,w ko | 7K.
0=0

Making use of Egs. 1’ and 1} and canceling out (5q§3’7, we obtain

<~—k,a —k, a u —k, - 5 —kov Ly ~k,a
(2.61) 5;4?’ - ad%,aSj “. 5q§f» — Z D] T Z G v 7
p=0 v=1
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in which « =0, 1, --- , s, and
(262&) D = Dk P + Z Hk O"YXk P —OtO d S?»aXf,ap7
y=1
(262b) G Gk o + Z Hk O"‘/ka’YV —CvOad S 'va}/jk,auy
y=1
7R ko k.o k, —a0_ 1D TF ko
(2.62c) Lo =47 Z; Hy"y;™ =7 adﬂ;?,aSj Yi

and note that 7 is given in Eq. (2.33) of Algorithm [3] In a similar way, using Egs. (2.53)

and ([2.60)), we obtain

(2.63) DHP™ —adp,.. ;" - dq Zn‘““” 5—’”+pr’“°‘”.—“+<’“‘“
p=0 v=1
in whicha=1, 2, ---, s, and
(2.64a) I, = 11t "‘P+Z¢>’“ VX — _aoadeaS “xper,
'y—l
—k,av av e AV 5 o] Ne%Y
(2.64b) v = +Z<I>k YR — OadeaS. Y/,
y=1
(2.64¢) & _g’“wchb’“ ok aaoades’“ ke
g
mally, for each 7 € chd(z), substituting kgs. (2. an . respectively into kqs. ((2.464)
Finally, f h j € chd(s bstituting Eqgs. (2.61]) and ([2.63]) ively into Eqs. (2.46
and (2. and applying Egs. (2.62) and (2.64) to expand D", G, 1 ¢ .
d (2.46b) and applying Eqs. (2.62) and (2.64 dD*, G T and T, U

—k,a . . k,p kv k.« k,ap koav ko
¢; , we respectively obtain D;”", G, [;"" and 11", W™, ¢

as Eqs. (2.32)) and ((2.34

of Algorithm [3] such that

(265) gﬁ?,a ZD]CCXP 561€P+ZG]€O(V _—kV+lka VQ{ _ O’ 17 . 87

p=0
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(2.66)  SH =) I 500f 43 WP 4 (5 Va=0,1, -, s 1.
p=0

v=1
In particular, note that even if rigid body ¢ is the leaf node of the tree representation

whose chd(i) = , there still exists D[?, G¥¥, ¥ and TIF*, wh* 5 from Eqs. (2.32)

2

and (2.34) of Algorithm . Moreover, as long as DI?, G¥¥ 15* and TP, w5 P are

7

given for each rigid body i, we can further obtain X" v** 45 following lines 3 to 9

of Algorithm [3]

In summary, for each rigid body i, we have shown that X Y/ 45 a5 well
as DP?, GPY 19 and TIP*, U5 (5 are computable through the backward pass by
Algorithm , and 0¢"* as well as 777" and 60,"* are computable through the forward pass
by lines 4 to 15 of Algorithm [2| which proves the correctness of the algorithms.

In regard to the complexity, Algorithm [3|has O(s?)+ O(s?) complexity since there are
O(s?) quantities and the computation of Af’ail takes O(s%) time, and thus the backward
pass by lines 1 to 3 of Algorithm [2| totally takes O(s*n+ s*n) time. Moreover, in lines 4 to
15 of Algorithm , the forward pass takes O(s’n) time. As a result, the overall complexity

of Algorithm [2|is O(s®n), which proves the complexity of the algorithms. U

2.8.3. Proof of Proposition

’K 0°K

Proposition 2.8.3. For the kinetic energy K(q, ¢) of a mechanical system, 532 Dada’

PK  9%K
g0’ 0q?

can be recursively computed with Algorithm {4/ in O(n?) time.

PROOF. According to Eqgs. (2.35)), (2.42)) and (2.43), we have

(2.67) oK :§T<Hm+ > M@)

i’€des(4)



7

(2.68) oK :§T<Mﬁi+ > M,-@).

Since M,;7;, S; and E only depend on ¢; and ¢; for j € anc(i) U {i}, it is straightforward

. . 2 2 2 2
to show from Eqgs. (2.67) and (2.68) that the derivatives ‘?_K._, ‘?AK_, O°K_ and 2K can
0¢;04;° 0¢;0q;’ 0q;04; 0q;0q;

be respectively computed as

(
2 (ggj) j € anc(i) U {i},
PK
2.69 = o2 . .
( ) (9q,ﬁq] 8qjgfji J € des(z),
0 otherwise,
\
(
2 (%) j e ancli) U{i},
PK
- 2 . .
(2.70) 04;0q; 8?”(% J € des(i),
0 otherwise,
\
(
2 (gfj) j € anc(i) U {i},
*K
(2.71) 04,04 = 8?3% J € des(i),
0 otherwise,
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PK

2.72 =
( ) aQian 9q;9q;

0 otherwise.

Therefore, we only need to consider the derivatives for j € anc(i) U {i}, whereas the

derivatives for j ¢ anc(i) U {i} are computed from Egs. (2.69)) to (2.72). In addition, if

J € anc(i) U {i}, using Egs. (2.16a)), (2.17), (2.18) and (2.20a)), we obtain

OMv;  — —
OM v, — —
o % = —adf M, — Miads, 7 + Madg (v, — ;)
j
9S; -
2.75 = adg Sia
( ) aqj a S
5 . _
(2-76) dq; = admadéj Si + adadgj (m—@-)sz'-
j
For notational clarity, we define 7i;, M;, /V? and Mf as
(2.77) i=Mu+ Y My =Mvi+ Y 7
j€des(i) jé€chd(z)
(2.78) M;=M;+ > M;=DM+ M;,
j€Edes(4) j€chd(z)
(2.79) M = M5,
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2 2 2 2
hich will in the derivation of 2L~ K = 0K anq 0K
which will be used in the derivation o 94,06, 95,00, da0q; & d Pa0a;

) 9’K
04;04;

If j € anc(i) U{i}, from Eqgs. (2.67)), (2.73), (2.78) and (2.79)), it is simple to show that

PE 0 (0[()
0¢;0q¢;  0q; \ 04
+

== gz (Mz_] Z Mi’§j>
i’ €des(z)
(2.81) _ @T(m + Y m)ﬁj
i’ €des(7)
_§"MS,
— 5, M.

If j € anc(i) U {i}, using Eqgs. (2.134)), (2.67)), (2.74), (2.78) and (2.79)), we obtain
PK 0 <8K>

0¢;:0q;  0g; \ 04
- ¥ (E?Fm,j. — Sl adl

i'€des(i)U{s} ’

<

_ =7 =7 —
Uy + Sl adgMi/vi/>
J

i’ €des(7)
— 51 MS;
=5, M.
82
3) 3%51]'



If j € anc(i) U {i}, using Eqgs. (2.68), (2.73)), (2.75)), (2.77) and (2.78]), we obtain

PE 0 (8[()
0q;0q¢;  0q; \ 0q;

30

Then simplify the equation above with ﬂ?adgjgi = —gjradg S; and Eq. (2.80)), the result

18

PK

_ 5" (M5, — ad?S.) = ST AP
(2.83) 500 = (MS; — ad25,) = 57 M.
4) B?Ii;f]j

If j € anc(i) U {4}, using Egs. (2.18), (2.68), (2.73), (2.74) and (2.76) to ( and

adad@@- = adg,adg, — adg ady,, we obtain

5%8% ( )

= |: (Mi/@i/)T (ad@. adgjgi — adgj ad@-gi‘{‘
i'edes(i)U{i}

adadgj ; ? ) ETMZ/§1:|

=5 (T 3 WS+ (Was 3 o) ady 5

i'€des(4) i'€des(4)
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Similar to 8?;;51;’ using ﬁ?adgjgi = —?;'-Fadgi S; and Eq. (2.80)), we obtain

0?K

2.84 — =
( ) aQia%

S; (MiSi - adlS;) = 5 M; .

K K 9K 9’°K
04;0q;° 0q¢;0q;° 0q;0q; and 0q;0q;

Thus far, we have proved that can be computed using

Eqgs. (2.69) to (2.72) and (2.81]) to (2.84) with which we further have 8;—.12{, %, % and
q q09 q09

2K
o computed.

As for the complexity of Algorithm , it takes O(n) time to pass the tree representation
forward to compute g;, M;, S;, T;, S; and another O(n) time to pass the tree representation

— N A B 2K PK 9K
backward to compute 7i;, M;, M, and M, . In the backward pass, D00 9500 a0,

B?K are computed for each ¢ using Egs. (2.69)) to (2.72) and (2.81)) to (2.84) which

and
0q;0q;

totally takes at most O(n?) time. Therefore, the complexity of Algorithm 4| is O(n?).

This completes the proof. O

2.8.4. Proof of Proposition

Proposition 2.8.4. If § € R? is gravity, then for the gravitational potential energy

%(Q?,R%%%can heuieswsiviehy ermpred atidhad\jasudtham @@@WM%

(2.85) Vita) = — > mi- i
=1

in which m; € R is the mass of rigid body i and p; € R? is the mass center of rigid body

i as well as the origin of frame {i}. In addition, from Egs. (2.11a)) and (2.11b)), we have

ap; Sipi+m;  j€anc(i) U {i},
(2.86a) pi_
8(]j

0 otherwise,
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. Sipj+ M j € des(i) U{i},
(2.86h) g]; i

0 otherwise,

T
in which 5;,7; € R and S; = [gZT ﬁZT:| € RS is the spatial Jacobian of joint i. From

Eqgs. (2.85) and (2.86b]), algebraic manipulation gives

G — ﬁzg ﬁz’g
(2.87) g‘q/? = —SiT(mi + Y m )

—

g i edes(i) g

Moreover, observe that S; and p; only depends on g; for j € anc(i) U {i}, we obtain from

Eq. (2.87)) that

OV . . .
a%- (8—;) J € anc(i) U {i},

0V
2.88 L= 2y ~ :
(2.88) 04:94; 9,00 J € des(i),
\O otherwise,
which means that only 8?;;3 for j € anc(i) U {i} needs to be explicitly computed. If
104G

j € anc(i) U {i}, using Egs. (2.13a)), (2.86a) and (2.87) as well as the equality ab = —ba

for any a,b € R3, we obtain

o*Vy; 0 <avg~)

3%‘3% B 3_61; 0q;

= w5 (e +peg) — TG
i'edes(i)U{i}




33

In addition, since ﬁi/§‘§j = —ﬁjpir — §jp}/ G and a’ = —a for any a € R3, the equation

above is equivalent to

PVe  _pn
(289) I = g ( i + Z z) zpz + Z mz’pz Si
0q;0q; .
i’ €des(7) i'edes(i
If we define
=m; + Z m; =m; + Z O, s
j€des(4) j€chd(i)
Op, = Mip; + Z m;p; = mp; + Z Opjs
j€des(i) j€chd(q)

T = G (T, T — T, 5i)
then Eq. (2.89) is further simplified to

2 = ~
(2.90) Vs _grs

T
aQiaQJ J

0:)

G (Om,T0i — 0p,5i) =5, 0,

As a result, 6;—;/25 can be computed from Eqs. (2.88)) and (2.90).

The O(n?) complexity of Algorithm [5|is as follows: the forward pass to compute g;

and S; and the backward pass to compute 7,,,, 7,, and 77 take O(n) time, respectively;

: 2y
and the computation of 7 gg = 8?] g’j} = STUA totally takes O(n?) time. Therefore, it can
J 7199

be concluded that Algorithm [5) I 5| has O(n?) complexity. This completes the proof. O
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CHAPTER 3

Efficient and Certifiably Correct Planar Graph-Based SLAM

Using the Complex Number Representation

This chapter considers the problem of planar graph-based simultaneous localization
and mapping (SLAM) that involves both poses of the autonomous agent and positions
of observed landmarks. We present CPL-SLAM, an efficient and certifiably correct algo-
rithm to solve planar graph-based SLAM using the complex number representation. We
formulate and simplify planar graph-based SLAM as the maximum likelihood estimation
(MLE) on the product of unit complex numbers, and relax this nonconvex quadratic com-
plex optimization problem to convex complex semidefinite programming (SDP). Further-
more, we simplify the corresponding complex semidefinite programming to Riemannian
staircase optimization (RSO) on the complex oblique manifold that can be solved with
the Riemannian trust region (RTR) method. In addition, we prove that the SDP relax-
ation and RSO simplification are tight as long as the noise magnitude is below a certain
threshold. The efficacy of this work is validated through applications of CPL-SLAM and
comparisons with existing state-of-the-art methods on planar graph-based SLAM, which
indicates that our proposed algorithm is capable of solving planar graph-based SLAM cer-
tifiably, and is more efficient in numerical computation and more robust to measurement

noise than existing state-of-the-art methods.
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3.1. Introduction

Simultaneous localization and mapping (SLAM) estimates poses of an autonomous
agent and positions of observed landmarks from noisy measurements [44-46|. For an
autonomous agent, the ability to construct a map of the environment and concurrently
estimate its location within the map is essential to navigation and exploration in unknown
scenarios, such as autonomous driving [47], disaster response [48|, underwater exploration
[49], precision agriculture [50], floor plan building |51], virtual and augmented reality |52],
to name a few. An intuitive way to formulate SLAM problems is to use a graph whose
vertices are associated with either poses of the autonomous agent or positions of observed
landmarks and whose edges are associated with the available measurements [17]. In
graph-based SLAM, the estimation problem is usually addressed as a difficult nonconvex
optimization problem that involves up to thousands of variables and constraints, and
the procedure of solving the optimization problem greatly affects the overall performance
of estimation. Even though a number of optimization methods have been developed
[17,44/53|, it is generally NP-hard to solve a nonconvex optimization problem globally
[53], and it is common to get stuck at local minima in solving graph-based SLAM, which
results in bad estimates.

In robotics, most graph-based SLAM techniques rely on local search methods for
nonlinear optimization to estimate poses of the autonomous agent and positions of ob-
served landmarks. Lu and Milios [54] formulate SLAM as pose graph optimization (PGO)
and use iterative nonlinear optimization methods to solve PGO. Duckett and Frese et
al. [55,/56] exploit the sparsity of graph-based SLAM and propose relaxations for the

resulting nonlinear optimization problem. Olson et al. [57] propose a stochastic gradient
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descent on an alternative state space representation of graph-based SLAM that has good
stability and scalability. Grisetti et al. [58] extend Olson’s work by presenting a novel
tree parametrization that improves the convergence of stochastic gradient descent. Fan
and Murphey [59] propose an accelerated proximal method for pose graph optimization.
Dellaert and Kaess et al. [60-63| propose incremental smoothing algorithms that enable
online updates of large-scale graph-based SLAM with nonlinear optimization. Huang and
Wang et al. [64,65] study the least-square structure of graph-based SLAM and indi-
cate the possibility of reducing the nonlinearity and nonconvexity of SLAM. Kiimmerle
et al. [66] propose go framework that solves graph-based SLAM using Gauss-Newton
method. Carlone et al. [67,68| propose approximations for planar pose graph optimiza-
tion that reduce the risks of getting stuck at local minima. Khosoussi et al. [69] exploit the
separable structure of SLAM problems using variable projection and propose algorithms
to improve the efficiency of Gauss-Newton methods. However, all of the aforementioned
nonlinear optimization techniques are local search methods, and as a result, there are no
guarantees of the correctness for the resulting solutions.

To address the issues of local minima in nonlinear optimization, several efforts have
been made to relax graph-based SLAM as convex optimization problems. Liu et al. |70|
propose a suboptimal convex relaxation to solve SLAM problems. Carlone et al. |71
73| propose a tight semidefinite relaxation and analyze its optimality using Lagrangian
duality. Briales et al. [74] present a fast method for the optimality verification of 3D PGO
based on [73|. A further breakthrough of the semidefinite relaxation of PGO is made
in 7] that results in a fast and certifiable algorithm for pose graph optimization. Rosen

et al. propose SE-Sync to solve the semidefinite relaxation of PGO using Riemannian
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staircase optimization on the Stiefel manifold that is orders of magnitude faster than
interior point methods |7]. Furthermore, it is shown in |7] that the semidefinite relaxation
of PGO is tight as long as the magnitude of the measurement noise is below a certain
threshold. Similar to SE-Sync, Briales et al. |75] propose Cartan-Sync that uses the
Cartan motion group and introduce a novel preconditioner to accelerate the algorithm.
Mangelson et al. [76] formulate planar pose graph and landmark SLAM using sparse-
bounded sum of squares programming that is guaranteed to find the globally optimal
solution regardless of the noise level.

In fields other than robotics, problems such as angular and rotation synchronization
that share a similar mathematical formulation with graph-based SLAM have been ex-
tensively studied. Singer et al. [77}/78] propose semidefinite relaxations to solve angular
and rotation synchronization by finding the eigenvectors that correspond to the great-
est eigenvalues. Bandeira et al. [79] prove the tightness of the semidefinite relaxation of
angular synchronization and show that the Riemannian staircase optimization is signifi-
cantly more scalable to solve the resulting problem. Boumal [80] proposes the generalized
power method that can recover the globally optimal solution to angular synchronization.
Eriksson et al. [81] explore the role of strong duality in rotation averaging, which has
important applications in computer vision.

In applied mathematics, it is common to use unit complex numbers in synchronization
problems over SO(2) [79,80]. In robotics, it is not new to use the complex number
representation in planar robot localization and mapping problems, either. Betke et al. [82]
use the complex number to represent positions of landmarks to localize a mobile robot

with bearing measurements. Carlone et al. [72] use the complex number representation of
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SO(2) and SE(2) to verify the optimality of planar PGO and the tightness of semidefinite
relaxations, and the analysis is much clearer and simpler than that using the matrix
representation, and to our knowledge, this is the first implementation of the complex
number representation in planar PGO.

In general, a certifiably correct algorithm for an optimization problem not only finds
a solution to the problem, but also is capable of certifying the global optimality of the
resulting solution [83]. For many estimation problems, it is usually intractable to attain
a globally optimal solution and we have to either solve these problems using local search
methods, or relax them to a more reasonable formulation. As a result, the certifiable
correctness of the algorithm is important for estimation problems in which globally optimal
solutions are preferred. Even though a number of optimization methods are proposed to
planar graph-based SLAM, to our knowledge, only |7, 71-76| are certifiably correct.

In this chapter, we consider the problem of planar graph-based SLAM that involves
both poses of the autonomous agent and positions of observed landmarks. We present
CPL-SLAM, which means the ComPLex number Simultaneous Localization And Mapping,
an efficient and certifiably correct algorithm to solve planar graph-based SLAM using the
complex number representation.

This chapter is built upon the works of |7,|72,/79| that use the complex number
representation, the semidefinite relaxation and the Riemannian staircase optimization
[84] to efficiently and certifiably correctly solve large-scale estimation problems. In [72],
Carlone et al. were first to formulate planar PGO using the complex number representation
of SE(2), in which the optimality and tightness of the semidefinite relaxation are studied;

in CPL-SLAM, we use the same representation of SE(2) as the one in [72]. In [7],
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Rosen et al. analyze the optimality and tightness of the semidefinite relaxation of PGO
and introduce the Riemannian staircase optimization to solve the semidefinite relaxation,
which, though using the matrix representation, motivates this chapter. In [79], Bandeira
et al. prove the tightness of semidefinite relaxation of phase synchronization on SO(2)
using the complex number representation, which is helpful to our theoretical analysis of
CPL-SLAM.

In graph-based SLAM, poses are special Euclidean groups SE(d) |7,/17,63,66,75|,
which are isomorphic to a semidirect product of real space R? and special orthogonal
groups SO(d) [85|. In general, it is possible to identify SFE(d) as a pair (¢, R), in which
the translation is represented as a real vector ¢ in R? and the rotation is represented as
a matrix R in SO(d), and such an identification results in the matrix representation of
SE(d) that is commonly used in robotics. However, for planar graph-based SLAM, the
matrix representation of SO(2) is redundant, which needs four real numbers, whereas a
unit complex number that can be represented with two real numbers is sufficient to capture
the topological and geometric structures of SO(2) |72,/86]. Furthermore, as is later shown
in this chapter, the complex number representation of SO(2) and SFE(2) brings significant
analytical and computational benefits, and renders the resulting CPL-SLAM algorithm a
lot more efficient in numerical computation and much more robust to measurement noise.
As a result, the CPL-SLAM outperforms existing methods of planar graph-based SLAM
in terms of both numerical scalability and theoretical guarantees.

In contrast to the state-of-the-art local search methods in [54-68|, CPL-SLAM is a lot
faster and capable of certifying the correctness of the solutions. As for |7/72,76| that also

seek to use convex relaxation to certifiably correctly solve graph-based SLAM, CPL-SLAM
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has better scalability, and more explicitly, CPL-SLAM is expected to be several orders
of magnitude faster than |72|76] and several times faster than [7]. Moreover, [7,|72]
are designed for pose-only problems, whereas CPL-SLAM extends the works of [7],72]
by accepting pose-landmark measurements. Even though [72] uses complex semidefinite
relaxation to verify the optimality and tightness of planar pose graph optimization, we
present stronger, more complete and more concise theoretical results and more scalable
algorithms to solve the complex semidefinite relaxation. Furthermore, the conciseness
of the complex number representation makes the semidefinite relaxation in CPL-SLAM
much tighter than that in |7] using the matrix representation, and thus, CPL-SLAM has
greater robustness to measurement noise.

This chapter is based on the preliminary results of [87,88| where we use the complex
number representation to solve planar graph-based SLAM with landmarks. Similar to
|7,75/ 87| for pose graph optimization, CPL-SLAM is a certifiable algorithm that is
guaranteed to attain the globally optimal solution to planar graph-based SLAM with
landmarks as long as the magnitude of measurement noise is below a certain threshold.
Furthermore, even though it is not new to involve landmarks in graph-based SLAM |17,
58,89|, we propose a novel preconditioner making better use of translation and landmark
information in planar graph-based SLAM. As a result, the performance of the truncated
conjugate gradient method is improved. In addition, we also provide the proofs of lemmas
and propositions, extensive experimental results on numerous datasets and much more
detailed discussions.

In summary, the contributions of this chapter are the following;:
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(1) We formulate planar graph-based SLAM with poses of the autonomous agent
and positions of observable landmarks using the complex number representation
and simplify the resulting estimation problem as an optimization problem on the
product of unit complex numbers.

(2) We relax the nonconvex optimization problem as complex semidefinite program-
ming and prove that the complex semidefinite relaxation is tight as long as the
magnitude of measurement noise is below a certain threshold.

(3) We recast the complex semidefinite programming as a series of rank-restricted
complex semidefinite programming on complex oblique manifolds that can be
efficiently solved with the Riemannian staircase optimization [84], and it is almost
guaranteed to retrieve the true solution to the complex semidefinite programming
if the rank of the Riemannian staircase optimization is appropriately selected.

(4) The resulting CPL-SLAM algorithm is certifiably correct, and more importantly,
a lot faster in numerical computation and much more robust to measurement

noise than existing state-of-the-art methods |7,(54-58//60-68,,72.89|.

The rest of this chapter is organized as follows. Section introduces notations
that are used throughout this chapter. Sections and review the complex number
representation of SO(2) and SE(2) and the complex oblique manifold [90]. Section
formulates planar graph-based SLAM with poses of the autonomous agent and positions
of observable landmarks using the complex representation and Section relaxes planar
graph-based SLAM to complex semidefinite programming. Section presents the CPL-
SLAM algorithm to solve planar graph-based SLAM. Section presents and discusses

comparisons of CPL-SLAM with existing methods [7,/63/|89] on a series of simulated
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Tree and City datasets and a suite of large 2D simulated and real-world SLAM bench-
mark datasets. The conclusions are made in Section [3.9 The proofs of the lemmas and

propositions are presented in Section [3.10]

3.2. Notation

R and C denote the sets of real and complex numbers, respectively; R™*"™ and C™*"
denote the sets of m x n real and complex matrices, respectively; R” and C" denote the
sets of n x 1 real and complex vectors, respectively. C; and C} denote the sets of unit
complex numbers and n x 1 vectors over unit complex numbers, respectively. P denotes the
group of (C,+) x (Cy, -) in which “x” denotes the semidirect product of groups |85] under
complex number addition “+” and multiplication “-”. S” and H" denote the sets of n x n
real symmetric matrices and complex Hermitian matrices, respectively. The notation “i” is
reserved for the imaginary unit of complex numbers. The notation | - | denotes the absolute
value of real and complex numbers, and the notation U denote the conjugate of complex
numbers. The superscripts ()7 and (-) denote the transpose and conjugate transpose
of a matrix, respectively. For a complex matrix W, [W];; denotes its (i, j)-th entry; the
notations R(W) and (W) denote real matrices such that W = R(W) + I(W)i; W = 0
means that W is Hermitian and positive semidefinite; trace(IV') denotes the trace of W
diag(WW) extracts the diagonal of W into a vector and ddiag (1) sets all off-diagonal entries

of W to zero; the notations |[W{|r and ||W||2 denote the Frobenius norm and the induced-

2 norm, respectively. The notation <-, > denotes the real inner product of matrices. For a

vector v, the notation [v]; denotes its i-th entry; [[v]|> = |[v]|2 = /3, [v]:[* = VvHv; the

notation diag(v) denotes the diagonal matrix with [diag(v)] . = v;. The notation 1 € C"

i
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denotes the vector of all-ones. The notation 0 € C" denotes the vector of all-zeros. The
notation I € C™*™ denotes the identity matrix. The notation O € C"*" denotes the zero
matrix. For a hidden parameter x whose value we wish to infer, the notations z, Z and z

denote the true value of x, a noisy observation of x and an estimate of x, respectively.

3.3. The Complex Number Representation of SO(2) and SE(2)

In this section, we give a brief review of SO(2) and SE(2), and show that SO(2) and
SE(2) can be represented using complex numbers. It should be noted that the complex
number representation used in this chapter, though presented in a different way, is in fact
equivalent to that in [72].

It is known that the set of unit complex numbers
(Cl = {Cll —I—a2i S C\a% +CL§ = 1}

forms a group under complex number multiplication “-” for which the identity is 1 and

the inverse is the conjugate, i.e., for z, 2’ € C;, we obtain [86|

|
Il
Y|
IS
I
[

2-2e€eCy, 1liz=z-1=2, =z-

In addition, the group of unit complex numbers (Cy,-) is diffeomorphic and isomorphic

to the matrix Lie group SO(2):

a | T2 2%x2( 2 2
SO(2) =4 € R*aj + a5 =1}

a2

2 {ReR”?}R'R =1, det(R) = 1}
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under matrix multiplication. As a result, SO(2) can be represented using unit complex

numbers C;. More explicitly, if R € SO(2) is

a, —ao cosd@ —sinf

(3.1) R = = ,
as  a sinf) cos@

the corresponding unit complex number representation z € C; is

0

(3.2) z=ay + asi = € = cosf + sin 6i

.
in which €' = cos # + sin #i. Furthermore, if b = [b’l b’z} € R? is rotated by R € SO(2)

-
in Eq. |’ from b = {bl b2} c R? ie.,

b] = a1by — asby = by cos — by sin b,
by = aiby + asby = by cosf + by sin 6,
we obtain

(3.3a) s =z-5=ab — azngr(gle + azblj)h

~
/
bl

~
/
b2

or equivalently,

(3.3b)
= @1 cos 6 — by sin€+(§2 cos 6 + by sin 6/’)i7

by b

in which z is a unit complex number as that given in Eq. (3.2), and
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(3.4) s=0by+byi and s =10+ bhi

are the complex number representation of b and ', respectively. As a result, rotating a
vector can also be described using the complex number representation.

In general, the special Euclidean group SFE(2) is the matrix Lie group
s |BE 3x3 2
(3.5) SE(2) ={ € R7°|R € SO(2), t € R*},

whose group multiplication is matrix multiplication. In terms of group theory, SFE(2) is

also represented as the semidirect product of (R? +) and SO(2):
SE(2) £ (R? +) x SO(2),

in which “x” denotes the semidirect product of groups under vector addition and matrix

multiplication [85] and whose group multiplication “o” using the matrix representation of

Eq. (3.5)) is defined to be
(3.6) goyg = (Rt'+1,RR),

in which g = (t, R), ¢’ = (¢, R') € SE(2)[]] Following the complex number representation
of SO(2) and R?, the representation of SF(2) as Eq. (3.5) is diffeomorphic and isomorphic

to the semidirect product of (C,+) and (Cy,-):

P = (C, —f-) X (Cl,'),

n group theory, the definition of the semidirect product relies on the choice of the group multiplication
rule.
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whose group multiplication “®” is defined to be
(3.7) pOp =(z-d+cz-7)eP,

in which p = (¢, 2), p' = (¢, /) € P. In Eq. (3.7), 2, 2 € Cy and ¢, ¢ € C are the complex
number representation of R, R € SO(2) and t, ' € R2, respectively, which follow the
same representation as that in Eqs. and . It is obvious from Eqs. and
that the group multiplication of p®p’ in Eq. is equivalent to that of gog’ in Eq. .

Furthermore, the identity of P is (0,1) € P and the inverse of p = (¢, 2) € P is
(3.8) pl=(-%¢7%) €cP.

As a result, instead of using the matrix representation, we represent SFE(2) with a 2-tuple
of complex numbers. In addition, if &' € R? is transformed by g € SE(2) from b € R?, we
obtain
ss=z-s+c¢
in which p = (¢, z) € P is the complex number representation of g € SE(2), and s and &’
are the complex number representation of b and b', respectively.
For notational convenience, in the rest of paper, we will omit the complex number

W

multiplication “-” if there is no ambiguity.

In terms of the computation of group multiplication and transformation only, the com-
plex number representation of SO(2) and SE(2) has the same complexity as the matrix
representation. In spite of this, as shown in the following sections, the complex number

representation greatly simplifies the analysis for planar graph-based SLAM, and most im-

portantly, the semidefinite relaxation and Riemannian optimization of planar graph-based
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SLAM using the complex number representation is simpler for problem formulation, more
efficient in numerical computation and more robust to measurement noise than that using
the matrix representation in [7].

In this chapter, we will use the complex number representation of SO(2) and SE(2)

to formulate and solve planar graph-based SLAM.

3.4. The Complex Oblique Manifold

In this section, we give a brief review of the Riemannian geometric concepts and
operators of the complex oblique manifold [91] that are used in this chapter. A detailed
introduction to Riemannian geometry and optimization can be found in [90].

In Riemannian geometry, the complex oblique manifold
OB(r,n) £ {Y € C™"|ddiag(YY") =T}

is a smooth and compact complex matrix manifold, whose tangent space at Y € OB(r, n)
is

TyOB(r,n) £ {U € C™"|R{ddiag(UY")} = O}.
For any U € C"*", we define the projection operator proj, : C**" — Ty OB(r,n) to be

projy U 2 U — R{ddiag(UY#)}Y.

7 For a smooth function F' : OB(r,n) — R, it is by definition that the Riemannian

gradient for F'(Y) is

grad F(Y) £ VF(Y) — R{ddiag(VF(Y)Y")lY.
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Since we have assumed that the complex oblique manifold is a Riemannian submanifold
of Euclidean space, then for any tangent vector Y € TyOB(r,n), the Riemannian Hessian

for F(Y) can be computed as
Hess F/(Y)[Y] £ projy Dgrad F(Y)[Y],

in which D grad F'(z)[Z] is the direction derivative of grad F'(z) along direction Z.

3.5. Problem Formulation and Simplification

In this section, we formulate planar graph-based SLAM as maximum likelihood esti-
mation, and further simplify it to complex quadratic programming on the product of unit

complex numbers.

3.5.1. Problem Formulation

Planar graph-based SLAM consists of estimating n unknown poses g1, g2, -, gn €
SE(2), in which gy = (t), Ry) with ¢y € R? and Ry € SO(2), and n’ landmark

positions Iy, ly, -+ -, I,y € R? given m noisy pose-pose measurements g;; € SE(2) of
9 = 9i 95 € SE(2)

and m’ noisy pose-landmark measurements l;j € R? of

(3.9) li; = R/ (I —t;) € R%

From Section [3.3] the problem is equivalent to estimating n 2-tuples of complex numbers

p1, P2, -+, pn € P, in which py = (cq,2()) € P with ¢y € C and 2y € Cy, and 7/
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complex numbers 51, s, -+, 5,y € C given m noisy pose-pose measurements p;; € P of
A 1
pi; =p; OpjeP

and m’ noisy pose-landmark measurements 5;; € C of

AL

Sij EZ‘(SJ' - Ci) e C.

The unknown n poses and n’ landmark positions and the noisy relative measurements can
be described with a directed graph (= Yuvy, gu ?) in which i € V £ {1,--- ,n}
is associated with g; or p;, and i € V' = {1,--- ,n'} is associated with [; or s;, and
(1,7) € ? C V x V if and only if the pose-pose measurement g;; or p;; exists, and
(1,7) € ? C V x V' if and only if the pose-landmark measurement lNZ»j or §;; exists. If
the orientation of edges in ? and ? are ignored, we obtain the undirected graph of 8
that is denoted as G = (VU V', EUE’). In the rest of this chapter, we assume that 3
is weakly connected and G is (equivalently) connected. In addition, we assume that the

noisy relative measurements p;; = (¢, Z;;) and §;; are random variables that satisfy

(310&) 6@‘ = Cjj + Cze»j Cze'j ~ N(O 7'._.1>’

71]

(3.10b) Zij = Zij% 51'3' ~ VMF<17 Hij)u

€
ij

(3.10c) Sij = Sij + i s~ N0, v5"),

o =
for all (i,7) € Fud. m Eq. (3.10), pi; = (cij, z;;) and s;; are the true (latent) values

of p;; and s;;, respectively, N(u,2) denotes the complex normal distribution with mean

w € C and covariance ¥ 3= 0, and vMF (2, k) denotes the von Mises-Fisher distribution on
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C; with mode 2, € C;, concentration number £ > 0 and the probability density function

of vMF (29, k) is |92]
1

ca(K)

f(Z; 205 ’%) =

exp (k(Zoz + 202)) ,

in which ¢4(k) is a function of k.

If ¢, Z;; and §;; are independent from each other, from Eqgs. (3.3)), (3.7) and (3.8), a
straightforward algebraic manipulation indicates that the maximum likelihood estimation
(MLE) is a least square problem as follows
(MLE) min Z ["iij|zi§ij — Zj|2 + Tij‘cj — G

S»L'E(C,
c; €C™, 2;€C} (l,j)E?

—zi"] + Y wigls; — o — 28yl

(i,)€E’

in which &;;, 7;; and v;; are as given in Eqgs. (3.10a) to (3.10c|). From Egs. (3.1) and (3.2,
it should be noted that

_ 1 ~
|Zizij - Zj|2 = §||RiRij - Rj||2F,

and it is also trivial to show that
l¢j — ¢ — 2635 = ||t; — t: — Rityj|7,

|8 — &5 — 23855 = Il — ts — Riliy .
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As a result, (MLE) is equivalent to

. Kij >3
(SE-MLE)  min 7 [T RRy = Byl + 7l — b
Di, lz €R2 (izj)e

Rz’{in%’} + Y vl =t = Rilig|7-

_)
(i)’

Even though there are landmarks present in (MLE]) and (SE-MLE)), this does not create

a significant distinction from |7] in terms of problem formulation. As a matter of fact,
if there are no landmarks, i.e., V' = () and ? = 0, is almost the same as
the formulation of pose graph optimization using the matrix representation in SE-Sync
|7] except for the weight factors. In addition, can also be constructed as
a specialized case of SE-Sync’s [7] measurement model if we interpret pose-landmark
measurements as pose-pose measurements whose rotational weight factors are zero.

In the next subsection, we will simplify to quadratic programming on the

product of unit complex numbers C7.

3.5.2. Problem Simplification

The simplification of is similar to that of |7, Appendix B], the difference of
which is that ours uses the complex number representation while [7] uses the matrix
representation and ours has landmarks involved while |7]| does not.

For notational convenience, we define z;; = Z;;, k;; = k;; and 7;; = 7,5, and
can be reformulated as

(P) min  ¢7T¢
£€C xCnxCY



in which
A
5— S1 Sy €1 ot Cp Z1 2

In (P), T is a (2n + n')-by-(2n + n') Hermitian matrix

e U N
(3.11) T2 |« LWe)+yr E :
* * L(G7) 4+ %7

102

in which ¥ € H", U € C"*", N € C"*", L(W*) € H", ¥ € H", E € C™*"*, L(G*) € H"

and ¥* € H” are defined as

§
Z Vi, 1= ja
[29];; 2 { (kijed
kO otherwise,
(
%
_Vjia (], l) < 5/,
U];; £
\O otherwise,
§
. N
~ | Vs (j,i) € &,
[Ns]ij =
0 otherwise,
\
(
Z Tiks 1= j7
(3,k)EE
LW & .
LS5 —Tijs (4,5) € €,
0 otherwise,
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.
Z Vik, 1= j,
[ 2 ) mee
\O otherwise,
(
Z Tikéik + Z_)Vikgika 7= j,
(i,k‘)E? (z’,k)eg/
El. & ~ o
0 otherwise,
\
(
Z Rik, 1= j,
(3,k)EE
RN
L)) = —Kij Zjis (i,7) € &,
0 otherwise,
\
(
" Z Tz‘k’éikP + Eéyiklgik’a 1=
[Ez)]” £ (i,k)e? (i,k)eg’
kO otherwise,

respectively.

It is possible to marginalize the translational states and landmarks and reformulate
planar graph-based SLAM as an optimization problem on the rotational states only, which
has been used in |7,/69,(93] to improve the computational efficiency. In a similar way, if

-
rotational states z = |:Zl Zn:| € C? are known, is reduced to unconstrained

-
complex quadratic programming on translational states ¢ £ [61 Cn:| € C" and
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-
landmark positions s = {51 ce Sn’:| e Cv:
(3.12) min  B7AB+2(B, (:jz> + 2 L(G%)z + 2522,

n/4n (. 4

pee Con‘sgant
A T XA N / A ZS U
in which g = [ST CT] ceC, 0= | | € Cltn)xn and A £ €
E x  L(We)+ X¢

H"*". It can be shown that according to |94, Proposition 4.2]7 one of the optimal

solutions to Eq. (3.12) is
(3.13) B =—AOz.

Substituting Eq. (3.13)) into and simplifying the resulting equation, we obtain the

complex quadratic programming on the product of unit complex numbers C7 as follows

(3.14) min 27 Mz,

2€C?

in which M = L(G7) + £ — O A0 = 0.
Furthermore, let Q € R(m+m)x(m+mY) e the diagonal matrix indexed by e € guE
and ¢’ € € U €' whose (e, €')-element is given by

)
/ !/
v, e=¢c¢ andee€ &',

(315) [Q]ee’ é Te, e = 6’ and e € ?,

0, otherwise,
\

%It should be noted that |94, Proposition 4.2] was originally derived for real matrices, however, the results
can be generalized to complex matrices as well.
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in which v, and 7, € R are the precisions of the landmark positional observations and
the translational observations as given in Eqgs. (3.10c) and (3.10al), respectively; and let

-~ ’ -
T € Cm+m)xn he the matrix indexed by e € EUE and k € VUV whose (e, k)-element

is given by
.
%
_§kj; e = (/{Z, j) € 5/,
T A
<316> [T}ek = _6k‘j7 €= (k7 j) € ?’
0, otherwise;

\

%
and let A(?) € R™™ to the matrix indexed by k € YUV and e € E U € whose

(k, e)-element is given by

(3.17) [AG)], =4 -1, e—(h)eEUE,

0, otherwise.
\

_>
In addition, without loss of any generality, we also introduce the ordering over ? U’

%
and V UV’ such that ¢/ € £ precedes e € ? and k' € V' precedes k € V. As a result of

Egs. (3.15) to (3.17), M = L(éz) + 32 — OFATO can be rewritten as
(3.18) M = L(G%) + TP Q2 1Q-T,

in which II € RO™7)x(m+mY) i the matrix of the orthogonal projection operator 7 :
cmm ker(A(?)Q%) onto the kernel of A(?)Q%. Therefore, Eq. 1} is equivalent

to
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m('%:n trace(Mzz™),

z€C}

(QP) 1
M = L(G%) + THQ1I0>T.

The detailed derivation of (QP) is presented in Section [3.5.3|

3.5.3. The Derivation of (QP]

In this subsection, we derive following a similar procedure of |7, Appendix B]
even though ours uses the complex number representation and has landmarks involved.

It is straightforward to rewrite (MLE]) as

s
(3.19) Inin B |¢

ceC™, zeCp

z
2
in which
B Y Bl BQ e (C(2m+m’)><(2n+n’)'
0 Bs

Here B, € Rintm)x(nin) B« ROmtm)xn and B, € C™ " are given as

;

N e=(i, k)€
—Vi,  e=(k j)€
(3.20a) [Bilek = § \/Tir» e=(i, k)€ g,

g

~VT5,  e=(hj)e

0, otherwise,
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4

i, e=(k ) €&,
(3.20D) [Bolex = § — /mginy, e=(k, j)€ &,
\ 0, otherwise,
and

—/Frizkj, e=(k, j)€ ?7
(3.20¢) Bl = $ /7, e=(i,k)e ¢,

0, otherwise,

respectively. Since is also equivalent to (3.12)), it can be concluded that

(3.21a) BB, = A,
(3.21b) BB, =0,
3.21c BEB, =7,

2
(3.21d) B By = L(G?)

in which A, ©, ¥ and L(éz) are as defined in (3.12)). If we let M7 £ 37 — OF AT, then

from Egs. (3.21a) to (3.21d)), we obtain

M° = BB, — BYB,(BB,)'BI' B,
(3.22)
= By (I- By(B{'B,)'B") Bs,
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in which By, By and Bs are defined as Egs. (3.20a)) to (3.20¢). It should be noted that

we might rewrite B; and By as
(3.23) By =0AT, B, =Q2T,
in which A £ A(a) and T are given by Eqgs. (3.17) and (3.16)), respectively. Substituting
Eq. (3.23)) into Eq. (3.22)), we obtain
M? = Bf (I - Bl(B{IBl)TB{{) B,
(3.24)
— THQ2TIN:T,

in which

M=T1-02A7 (A0AT)" AQz  ROmHm)xCnim),

As a result, it can be concluded that
M = L(G") + M° = L(G*) + TTQ=11Q=T.
Furthermore, it is known that X " (XX ") = XT for any matrix X, then we further obtain

M=T-A" (4047)" A0z
(3.25) ;
—1- (AQ%) AQ3,
which according to [95, Chapter 5.13] is the matrix of orthogonal projection operator
T C ker(A(a)Q%) onto the kernel space of AQ2. In addition, similar to |7,

Appendix B.2|, it is possible to further decompose II in terms of sparse matrices and their

inverse for efficient computation even though II is in general a dense matrix.
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In the next section, we will relax (QPJ) to complex semidefinite programming and show
that the semidefinite relaxation is tight as long as the noise magnitude is below a certain

threshold.

3.6. The Semidefinite Relaxation

In a similar way to |72//79,80], it is straightforward to relax (QP) to

puin, (M, X)

(SDP)
st. X =0, diag(X)=1.

It should be noted that if X € H" has rank one and solves (SDP), then a solution 2 € C}

to can be exactly recovered from X through singular value decomposition with

which we have X = 22H.

In this chapter, it is without loss of any generality to assume that all the manifolds are
Riemannian submanifolds of Euclidean space [90], whose differential geometric properties,
e.g., Riemannian gradients and Riemannian Hessians, are defined accordingly.

In the rest of section, we will analyze and derive the conditions for the optimality of
(QP]) and , and conditions for the tight relaxation of , all the proofs of which
can be found in Section B.I0

From [90|, the necessary conditions for the local optimality of can be well char-

acterized in terms of the Riemannian gradients and Hessians.

Lemma 3.1. If 2 € C7 is a local optimum of (QP)), then there exists a real diagonal
matrix A £ R{ddiag(M2:7)} € R"*" such that S £ M — A € H" satisfies the following

conditions:
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(1) Sz = 0;
(2) (£,5%) >0 for all 2 € T:C}.
If Z satisfies (1), it is a first-order critical point, and if Z satisfies (1) and (2), it is a

second-order critical point.

PROOF. See Section B.10.11 O

Since (SDP)) is convex and the identity matrix I € C"*™ is strictly feasible, the suffi-
cient and necessary conditions for the global optimality of (SDP)) can be derived in terms

of the Karush-Kuhn-Tucker (KKT) conditions.

Lemma 3.2. A Hermitian matrix X € H" is a global optimum of (SDP) if and only

if there exists S € H" such that the following conditions hold:

(1) diag(X) = 1;

(2) X = 0;

(3) 5X =0;

(4) M — S is real diagonal;
(5) S+=0

Furthermore, if rank(S ) =n—1, then X has rank one and is the unique global optimum
of (SDP).
PROOF. See Section B.10.2 O

As a result of Lemmas [3.1] and [3.2] we obtain the sufficient conditions for the exact

recovery of (QP)) from (SDP)).
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Lemma 3.3. If 2 € C? is a first-order critical point of (QP) and S = M — A = 0
in which A = R{ddiag(M227)}, then 2 is a global optimum of (QP) and X = 227 is a
global optimum of (SDP)). Moreover, if rank(sY ) =n —1, then X is the unique optimum

of (SDP).
PROOF. See Section B.10.3 O

Lemma [3.3| gives sufficient conditions to check whether (SDP)) is a tight relaxation of
(QP]). As a matter of fact, if the measurement noise is not too large, it is guaranteed that

(SDP) is always a tight relaxation of ((QP|) as the following proposition states.

Proposition 3.6.1. Let M € H" be the data matrix of the form Eq. (3.18)) that
is constructed with the true (latent) pose-pose measurements p;; = (cij, 2;5) and pose-
landmark measurements s,

—Zj7

|M — M||2 < 7, then (SDP)) attains the unique global optimum at X =234 ¢ H", in

then there exists a constant v = (M) > 0 such that if

which z € C} is a global optimum of (QP)).
PROOF. See Section [3.10.4 d

Lemma [3.3] verifies the tightness of the complex semidefinite relaxation and Propo-
sition [3.6.1] guarantees that the tightness of the complex semidefinite relaxation, which
makes certifiably correct for graph-based SLAM. It should be noted that similar
results to Lemma [3.3]and Proposition [3.6.1 have been presented for synchronization prob-
lems on general special Euclidean groups using the matrix representation in |7| and for
phase synchronization using the complex number representation in [79|.

In spite of the tightness of the semidefinite relaxation of planar graph-based SLAM,

solving large-scale complex semidefinite programming remains challenging and time-consuming.
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In the next section, we will further relax (SDP)) as a series of rank-restricted complex
semidefinite programming such that (SDP)) can be efficiently solved with the Riemannian

staircase optimization.

3.7. The CPL-SLAM Algorithm

In this section, we show that it is possible to recast (SDP)|) as Riemannian optimiza-
tion on complex oblique manifolds, which is one of the most important contributions of
this chapter. A brief introduction to the complex oblique manifold has been given in

Section and it is also helpful to read [91] that is about the real oblique manifold.

3.7.1. Riemannian Staircase Optimization

In general, interior point methods to solve (SDP)) take polynomial time, which, how-
ever, may still be slow when the polynomial exponent is large. Instead of solving (SDP)
directly, Boumal et al. found that (SDP)) can be relaxed to a series of rank-restricted

complex semidefinite programing [84]:

(r-SDP) min trace(MYY*)
Y eOB(r,n)

in which

OB(r,n) £ {Y € C™"|ddiag(YY") =T}

is the complex oblique manifold. It should be noted that (r-SDPJ) can be a tight relaxation

of (SDPJ) if some conditions are met as stated in Propositions|3.7.1|and |3.7.2 whose proofs

are immediate from [84, Theorem 2].
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Proposition 3.7.1. If Y € OB(r,n) is rank-deficient and second-order critical for

(r-SDP), then it is globally optimal for (-SDP)) and X = YY# € H" is globally optimal
for (SDP).

Proposition 3.7.2. If r > [/n], then for almost all M € C™ ", every first-order

critical Y € OB(r,n) for (r-SDP) is rank-deficient.

Propositions [3.7.1] and [3.7.2] are referred as the Burer-Monteiro guarantees for smooth

semidefinite programming [84] that apply to a number of classic estimation problems.

From Propositions [3.7.1] and [3.7.2) it can be concluded that (SDPJ]) is equivalent to

successively solving with the Riemannian trust region (RTR) method |96] for
2<1r <ry<---<r,<n+1 until a rank-deficient second-order critical point is
found, and such a method to solve semidefinite programming is referred as the Riemann-
ian staircase optimization (Algorithm [6]) [84,/97]. In [71[79,/97], the Riemannian staircase
optimization has been used to solve a number of semidefinite relaxations of synchroniza-
tion problems. In addition, it is known that the RTR method solves locally in
polynomial time [84) Proposition 3|. In contrast to using interior point methods to solve
directly, the Riemannian staircase optimization using the RTR method is empiri-
cally orders of magnitude faster in solving large-scale smooth semidefinite programming.

As shown in Algorithm [7} the solution rounding of an optimum of Y* € OB(r,n) of
is simply to assign 2 = [#; -+ 2,] € C" to be the left-singular vector of Y* that
is associated with the greatest singular value, and then normalize each z; to get z € C}.
The solution rounding algorithm is exact if rank(Y*) = 1. Moreover, it should be noted

that the solution rounding algorithm can recover the global optimum 2* € C} from Y* as

long as the exactness of (SDP)) holds and X = Y*Y*¥ solves (SDP).
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Algorithm 6 The Riemannian staircase optimization (RSO)

1
2
3:
4

10:
11:

: Input: Integers 2 <17y <r; <--- <r, <n+ 1; an initial iterate zy € C}
: Yo=[%2 0] € OB(ro,n)
fori=1—k do

Implement the Riemannian optimization to solve
Y =arg min trace(MYY"H)

YeOB(r;,n)

locally with Y; as an initial guess

if rank(Y;*) < r; then

return Y;* € OB(r;,n)

else
Yijgn= [YL 0} € OB(rit1,n)
end if
end for

return Y;* € OB(r,n)

Algorithm 7 The rounding procedure for solutions of (r-SDP)

1:

oros W

Input: An optimum Y* € OB(r,n) to (r-SDP)

. Assign Z = [21 e in}T € C" to be the left-singular vector of Y* that is associated
with the greatest singular value

cfori=1—=ndo
2 = T
|2
. end for

: return z € C}

From algorithms of Riemannian staircase optimization (Algorithm [6) and solution

rounding (Algorithm , the proposed CPL-SLAM algorithm for planar graph-based

SLAM is as shown in Algorithm [8] which follows a similar procedure to SE-Sync [7].

It

of

should be noted that Lemmas to can be used to certify the global optimality

the solution, and Propositions [3.6.1], [3.7.1] and [3.7.2] indicate that the CPL-SLAM al-

gorithm is expected to retrieve the globally optimal solution to the planar graph-based

SLAM as long as the noise magnitude is below a certain threshold. Therefore, it can be

concluded that CPL-SLAM is certifiably correct.
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Algorithm 8 The CPL-SLAM algorithm

: Input: Integers 2 <1y <r; <--- <1, <n+ 1; an initial iterate zy € C}
: Implement Algorithm [f] to compute an optimum Y* € OB(r,n)

: Implement Algorithm [7| to compute rotational states z € C}

: Implement Eq. to compute translational states ¢ € C”

return z € C} and ¢ € C"

U W N

3.7.2. The Preconditioner for the CPL-SLAM Algorithm

As SE-Sync |7] and Cartan-Sync [75], CPL-SLAM uses the trust-region method on
Riemannian manifolds that relies on the truncated conjugated gradient (TCG) method
to evaluate the descent direction [96|. The TCG method iteratively solves linear equa-
tions and improves the solution to necessary accuracy within finite iterations, which is
usually faster than direct methods. In general, the TCG method needs a preconditioner
to accelerate the convergence. Even though the choice of preconditioner for graph-based
SLAM without landmarks is immediate |7], there is still a lack of a suitable precondi-
tioner for graph-based SLAM with landmarks. To address this issue, we also propose a
preconditioner for graph-based SLAM with landmarks as follows.

Similar to |7),75,98], instead of factorizing the Riemannian Hessian matrix Hess F'(z) €
C™*™in Eq. to explicitly evaluate the descent direction, the Riemannian trust region
(RTR) method in CPL-SLAM leverages the truncated conjugated gradient (TCG) method
to approximate the descent direction with necessary accuracy. Though the TCG method
is guaranteed to converge to the true solution within finite iterations, the rates of the
convergence is closely related with the preconditioner Precon(Hess F'(z)) € C"*" that is

used to approximate Hess F'(z) and iteratively solve

Precon(Hess F'(z)) -a =b
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to evaluate the descent direction, in which a, b € C".

In graph-based SLAM, several preconditioners have been proposed for the TCG method
[75,98]. For CPL-SLAM, an immediate choice of the preconditioner Precon(Hess F'(z)) is
L(G#) + %*, which is the submatrix of T in Eq. that corresponds to the rotational
statesﬂ and such a preconditioner works well for planar graph-based SLAM without land-
marks. However, the preconditioner of L(éz) + 3* suffers slow convergence for planar
graph-based SLAM with landmarks since the submatrix L(éz) + %7 loses information of
pose-landmark measurements and results in a bad approximation of Hess F(z).

In contrast to L(éz) + Y7 that only captures the information of pose-pose measure-

ments, the matrix
(3.26) M = L(G*) + T"Q21IQT € C™"

in (QP]) implicitly but properly keeps the information of both pose-pose measurements
and pose-landmark measurements. However, there is no exact expression of M and we
need to evaluate the equation above to factorize M. Furthermore, since M can be a dense

matrix, the resulting factorization of M might be inefficient to solve
(3.27) M-a=b,

which affects the performance of the TCG method. As a result, we need some other

methods rather than evaluate and factorize M explicitly to solve Eq. (3.27)).

3A similar preconditioner is also used in SE-Sync |98].
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It should be noted that the solution to

1
(3.28) min §<x, Mz) — (z,b),

is also a solution to Eq. (3.27)). From Egs. (3.11)) to (3.14)), it is straightforward to show
that Eq. (3.28)) is equivalent to
"I | 10

(3.29) min ,1<x,r ) —( , ),

z€Cn, x’eCntn

a’ /
and the solution € C* to Eq. (3.29) can be computed in closed form as

a
~ |d 0
(3.30) I = ;
a b
or equivalently,
a ~. |0
(3.31) =TT
a b

It is by definition that a € C™ in Egs. (3.30) and (3.31) is also a solution to Eqs. (3.27))
and 1’ Therefore, we might factorize I and solve Egs. 1' and 1} instead so
as to solve Eq. (3.27). In Eqgs. (3.14), (3.27) and (3.28)), we construct the dense data

matrix M using Eq. (3.13) to reduce the dimension of the optimization problem with
no information loss. In Egs. (3.30) and (3.31)), on the other hand, we essentially reverse

the operation of Eq. 1) to recover the sparse matrix r by augmenting the dimension.
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Since I' is a sparse matrix whose exact expression requires no extra computation, it is

more efficient to exploit the sparsity of I to solve Eqgs. (I3.30|) and (IB.BlI) than factorize
the dense data matrix M to solve Egs. (3.27)) and (3.28).

3.7.3. Discussion

Even though the positive semidefinite matrix is not explicitly formed in CPL-SLAM
or SE-Sync to solve planar graph-based SLAM, it can be seen that CPL-SLAM using
the complex number representation results in semidefinite relaxations of smaller size
than |7,/72|. In the semidefinite relaxation of CPL-SLAM, the n x n complex positive
semidefinite matrix X € H" can be parameterized with n? real numbers, whereas the
semidefinite relaxation in |7] using the matrix representation needs 2n? 4+ n real numbers
to parameterize the 2n x 2n real positive semidefinite matrix, and that in |72| needs 4n?
real numbers to parameterize the 2n x 2n complex positive semidefinite matrix.

It is obvious that the complex number representation is more concise than the matrix
representation, and as a result, CPL-SLAM roughly requires half as much storage space as
SE-Sync [7]. More importantly, as is discussed in Section [3.8] from both theoretical and
empirical perspectives, the conciseness of the complex number representation reduces the
computational cost a lot and renders the semidefinite relaxation much tighter, and thus,
the resulting CPL-SLAM algorithm is much more efficient in numerical computation and
much more robust to measurement noise than [7].

In contrast to the works of [7],72,|76], CPL-SLAM is more general and more scalable.
As mentioned before, CPL-SLAM is more efficient, tighter and more robust than SE-Sync

[7]. Even though we use the same complex number representation as [72], our formulation
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is simpler and only depends on rotational states z € C}, whereas [72]| involves both
translational and rotational states ¢ € C" and z € C}. Moreover, [72]| mainly focuses on
the optimality verification of planar pose graph optimization, whereas ours not only works
on optimality verification and obtains stronger theoretical results, but also presents more
scalable algorithms to solve planar graph-based SLAM. In [76|, the authors use bounded
sum of squares programming to solve planar graph-based SLAM. Even though [76] always
attains the globally optimal solution regardless of the measurement noise, it relies on
sparse sum of squares programming, which, to our knowledge, has limited scalability for
large-scale problems. As a result, CPL-SLAM can be expected to outperform |76| by
several orders of magnitude in terms of computational time. Last but not least, except
for |76|, the works of |7,/72| are designed for planar pose graph optimization or angular
synchronization, whereas ours considers the planar graph-based SLAM that has both

poses and landmarks.

3.8. Experiments

In this section, we implement CPL-SLAM on the simulated Tree datasets, simulated
City datasets and a suite of large-scale 2D SLAM benchmark datasets with and without
landmarks |7,72,99|. We compare CPL-SLAM with the popular state-of-the-art SE-Sync
|7] and Powell’s Dog-Leg method (PDL-GN) [63,89]. Even though the original algorithms
of SE-Sync |7] are not designed for problems with landmarks, we extend SE-Sync following
a similar procedure as CPL-SLAM. For the linear solvers to compute a descent direction,

CPL-SLAM and SE-Sync |7]| use the indirect and iterative truncated conjugate gradient
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method, whereas PDL-GN [63],|89] uses the sparse direct method. The C++ code of
CPL-SLAM is available at https://github.com/MurpheyLab/CPL-SLAM.

All the experiments have been performed on a laptop with an Intel i7-8750H CPU and
32GB of RAM running Ubuntu 18.04 and using g++ 7.8 as C++ compiler. We have
done the computation on a single core of CPU. For all the experiments, we choose the
initial rank to be rsg = 3 and rgpr, = 2 for SE-Sync and CPL-SLAM, respectively, since
we find that r¢g = 3 and rcpr, = 2 are in general good enough for SE-Sync and CPL-
SLAM to solve planar graph-based SLAM given the noise levels in robotics and computer

vision applications.

3.8.1. Tree Datasets

In this subsection, we evaluate the performance of CPL-SLAM, SE-Sync and PDL-GN
on the simulated Tree datasets that are similar to tree10000 (Fig. [3.6k). A Tree dataset
is consisted of 25 x 25 square grids in which each grid has side length of 1 m, and a
robot trajectory of n poses along the rectilinear path of the square grid, and n’ trees
(landmarks) that are randomly distributed in the centre of some square grids. Odometric
pose-pose measurements are available between each pair of sequential poses along the
robot trajectory, whereas pose-landmark measurements between poses and trees that are
close to each other are available with a probability of py; the pose-pose measurements
pi; = (Cij, Zij) and pose-landmark measurements §;; are generated from the noise models
of Eq. . In our experiments, we investigate the performance of these algorithms

by varying each parameter individually and the default values for these parameters are


https://github.com/MurpheyLab/CPL-SLAM
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chosen to be n = 5000, n' = 250, p;, = 0.2, ¢;; with an expected translational root-mean-
squared error (RMSE) of o, = 0.05 m, Z;; with an expected angular RMSE of o = 0.0157
rad, and §;; with an expected positional RMSE of ; = 0.05 m.

For all the Tree datasets tested, CPL-SLAM, SE-Sync and PDL-GN all converge to
the global optima when using the chordal initialization. As is shown in Fig. [3.1] it can be
seen that CPL-SLAM is around 4 ~ 5 times faster than SE-Sync and PDL-GN, whereas
SE-Sync and PDL-GN are roughly as fast as each other.

The speed-up of CPL-SLAM over SE-Sync 7] in planar graph-based SLAM can be
explained from several perspectives. 1) CPL-SLAM is more efficient for the objective
and gradient evaluation, e.g., if the rank is rsg = 3 and rcp, = 2, CPL-SLAM only

2

1 1
needs 5 ~ 3 and 1~

2
3

operations of SE-Sync to evaluate the objective and gradient,
respectively. 2) CPL-SLAM is more efficient in terms of the projection or retraction onto
the manifold than SE-Sync — the projection map of CPL-SLAM is just to normalize n
vectors, whereas that of SE-Sync has to compute n singular value decompositions, which is
much more time consuming. 3) CPL-SLAM is more efficient for chordal initialization and
solution rounding. 4) As a result of the conciseness of the complex number representation,
the preconditioner used in CPL-SLAM has a better approximation the Hessian matrix
than SE-Sync, and thus, has a faster convergence of the truncated conjugate gradient
method that the Riemannian trust region method implements to evaluate the descent
direction. Therefore, CPL-SLAM should be theoretically more efficient than SE-Sync,
which is further confirmed by the results of the experiments.

Similar to [66}69,100], PDL-GN uses the Gauss-Newton method and might not

perform well if there are large residues of the measurements and strong nonlinearities of
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Figure 3.1. The computational time of CPL-SLAM, SE-Sync and PDL-GN
on the Tree datasets with varying each parameter individually while keeping
the other parameters to be default values. The chordal initialization is used
for all the tests. The results of each varying parameter are the number of
poses n in (a), the number of trees n’ in (b), the probability of observing
trees py in (c), translational RMSEs of o in (d), angular RMSEs of o in
(e) and positional RMSEs of o, in (f). The default values are n = 5000,
n' =250, pr, = 0.2, 0, = 0.05 m, og = 0.0157 rad and o; = 0.05 m. For all
the Tree datasets tested, it can be seen that CPL-SLAM is around 4 ~ 5
times faster than SE-Sync and PDL-GN, whereas SE-Sync and PDL-GN
are roughly as fast as each other.
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the objective function [63/,89], whereas CPL-SLAM uses the exact Hessian to compute the
Newton direction, and thus, is expected to converge faster and have better efficiency. In
addition, as mentioned before, when evaluating the descent direction, PDL-GN factorizes
sparse matrices to solve linear equations. In contrast, CPL-SLAM makes use of the
truncated conjugate gradient method as the linear solver, which might also improve the
overall efficiency of CPL-SLAM. On the other hand, since the choice of linear solvers
is critical for the efficiency of optimizers, there is a possibility to improve PDL-GN’s
efficiency if the truncated conjugate gradient method is used.

The performance of CPL-SLAM, SE-Sync and PDL-GN is also evaluated if they are
not well initialized. When the odometric initialization is used, it can be seen from Fig.
that CPL-SLAM and SE-Sync converge to the global optima in spite of the poor initial
guess, whereas PDL-GN gets stuck at the local optima and has much greater objective
values.

As mentioned before, the convergence of CPL-SLAM and SE-Sync to global optima
does not rely on initial guess since CPL-SLAM and SE-Sync essentially solve the semidef-
inite relaxation of graph-based SLAM and are guaranteed to attain the globally optimal
solution as long as the magnitude of measurement noise is below a certain threshold. As a
comparison, PDL-GN is a local search method whose performance is closely related with
quality of initial guess, and thus the global optimum convergence of PDL-GN is usually

not guaranteed even with low measurement noise.

3.8.2. City Datasets

In this subsection, we evaluate the tightness of CPL-SLAM on a series of simulated

City datasets that are similar to city10000 (Fig. [3.6b) but with high measurement noise.
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Figure 3.2. The objective of CPL-SLAM, SE-Sync and PDL-GN on the Tree
datasets using the odometric initialization. In the experiments, we vary each
parameter separately while the other parameters are set to be the default
values. The results of each varying parameter are the number of poses n
in (a), the number of trees n’ in (b), the probability of observing trees p,
in (c), translational RMSEs of ¢, in (d), angular RMSEs of o in (e) and
positional RMSEs of g in (f). The default values are n = 5000, n’ = 250,
pr, = 0.2, 0, = 0.05 m, ogp = 0.0157 rad and o; = 0.05 m. For all the
Tree datasets tested, CPL-SLAM and SE-Sync converge to global optima
despite poor initialization, whereas PDL-GN gets stuck at local optima.
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As a basis for comparison, we also evaluate the tightness of SE-Sync using the matrix
representation [7]. In general, CPL-SLAM and SE-Sync are said to be tight if the globally
optimal solution is exactly recovered from the semidefinite relaxation, or equivalently,
there is no suboptimality gap between the rounded solution and the relaxed solution.

In our experiments, a City dataset consists of 25 x 25 square grids in which each
grid has side length of 1 m, a robot trajectory of n = 3000 poses along the rectilinear
path of the grid, odometric measurements that are available between sequential poses
along the robot trajectory, and loop-closure measurements that are available at random
between non-sequential poses with a probability po = 0.1. The odometric and loop-
closure measurements are generated from noise models of Egs. and , and
the default translational weight factor is 7;; = 88.89 that corresponds to an expected
translational RMSE of o, = 0.15 m and the default rotational weight factor is x;; = 40.53
that corresponds to an expected angular RMSE of oz = 0.057 rad. For the datasets, we
vary translational and rotational measurement weight factors 7;; and &;; individually that
correspond to translational and angular RMSEs of oy = 0.1 ~ 0.3 m and o = 0.037 ~
0.157 rad, respectively, while keeping the other weight factor as the default value.

The results of CPL-SLAM and SE-Sync on the simulated City datasets with high
translational and rotational measurement noise are in Figs. [3.3] and [3.4] respectively. For
each translational and angular RMSE, we calculate the successful rates of exact recovery
from the semidefinite relaxation (Fig. and Fig. [3.4a), the relative suboptimality
bounds between rounded and relaxed solutions (Fig. and Fig.[3.4b), and the objective
values of rounded and relaxed solutions (Fig. and Fig. ) statistically from 50

randomly generated City datasets, in which we assume the globally optimal solution is
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Figure 3.3. The comparisons of CPL-SLAM and SE-Sync on the City
datasets with high translational measurement noise with n = 3000, pc =
0.1, k;; = 40.53 corresponding to angular RSME of o = 0.057 rad and
varying 7;; corresponding to different translational RSMEs of 0y = 0.1 ~ 0.3
m. The results are (a) successful rates of exact recovery from the semi-
definite relaxation, (b) relative suboptimality bounds between rounded and
relaxed solutions, and (c) objective values of rounded and relaxed solutions.
For all the datasets with different o, CPL-SLAM has a tighter semidefinite
relaxation and is more robust to translational measurement noise.

exactly recovered if the relative suboptimality bound is less than 1 x 107%. From Fig. 3.3,

it can be seen that CPL-SLAM holds the tightness on all the datasets with translational

RMSEs of 0, = 0.1 ~ 0.3 m, whereas SE-Sync fails on some of the datasets. From Fig.[3.4]

it can be seen that when the angular RMSE is small, i.e., approximately less than 0.15
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Figure 3.4. The comparisons of CPL-SLAM and SE-Sync on the City
datasets with high rotational measurement noise with n = 3000, pc = 0.1,
7;; = 88.89 corresponding to translational RSME of o; = 0.15 m and vary-
ing k;; corresponding to different angular RSMEs of or = 0.037 ~ 0.157
rad. The results are (a) successful rates of exact recovery from the semi-
definite relaxation, (b) relative suboptimality bounds between rounded and
relaxed solutions, and (c) objective values of rounded and relaxed solutions.
For all the datasets with different o, CPL-SLAM has a tighter semidefinite
relaxation and is more robust to rotational measurement noise.

rad, both CPL-SLAM and SE-Sync exactly recover the globally optimal solution from
the semidefinite relaxation, and as angular RMSE increases and is greater than 0.15 rad,
CPL-SLAM and SE-Sync begin to fail. In spite of this, we find that CPL-SLAM has a

much higher successful rate of exact recovery from the semidefinite relaxation (Fig. |3.3p
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and Fig. B.4h) and orders of magnitude smaller relative suboptimality bounds (Fig. [3.3p
and Fig.|3.4p). Furthermore, for the objective value, CPL-SLAM has greater lower bound
from the relaxed solution but lower upper bound from the rounded solution in scenarios of
high measurement noise (Fig. and Fig. ﬂc) All of these results indicate that CPL-
SLAM has a tighter semidefinite relaxation using the complex number representation than
SE-Sync using the matrix representation, and thus, is more robust to translational and
rotational measurement noise.

In Fig. B3] it is interesting to see that SE-Sync fails on datasets with small trans-
lational measurement noise but works on datasets with large translational measurement
noise. Even though there is lack of formal analysis, we guess this is because the tightness
of the semidefinite relaxation in SE-Sync, in addition to the magnitude of measurement
noise, is also related with the ratio 7;;/k;; of translational weight factors 7;; and rotational
weight factors k;;, i.e., when 7;;/k;; increases, the semidefinite relaxation in SE-Sync tends
to be relatively more sensitive to measurement nose.

It is obvious that the improved tightness and robustness of CPL-SLAM over SE-Sync in
planar graph-based is associated with the more concise representation of complex numbers
over matrices in the semidefinite relaxation, for which a theoretically complete analysis
similar to [101] is left as future work. In spite of this, we present one possible reason
that might help explain the improved tightness of CPL-SLAM. The semidefinite matrix
resulting from the solution to planar graph-based SLAM using the matrix representation

should take the form Xp = [XR

1-]} € R¥?" in which each (i,7)-th block X, has the

a —b
algebraic structure Xp,, = €R?*2 and SE-Sync drops such an algebraic structure
b a
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in the semidefinite relaxation. Even though it is possible for SE-Sync to keep this algebraic
structure by either reformulating the associated data matrix or adding numbers of extra
linear constraints, substantial computational efforts are required for both options. In
comparison, CPL-SLAM preserves the algebraic structure of Xg, as complex numbers in
the semidefinite relaxation without having to reformulate the data matrix or introduce
any extra constraints. As said before, the explanations given above are still hypotheses
and need to be proved. However, we can still conclude from the Figs. and that
the semidefinite relaxation in CPL-SLAM using the complex number representation is
tighter than that in SE-Sync using the matrix representation, which further suggests that

CPL-SLAM is more robust to measurement noise than SE-Sync.

3.8.3. SLAM Benchmark Datasets

In this subsection, we implement CPL-SLAM, SE-Sync and PDL-GN on a variety of
2D SLAM benchmark datasets with and without landmarks. In these datasets, city10000,
M3500, M3500-a, M3500-b, M3500-c and treel0000 are simulated benchmark datasets
while the others, i.e., ais2klinik, CSAIL, intel, FR-079, MIT and victoria-park, are real-world
datasets. In addition, treel0000 and victoria-park have positions of observed landmarks
involved. The chordal initialization |8] is used for all the benchmark datasets tested.

For all the 2D SLAM benchmark datasets, CPL-SLAM, SE-Sync and PDL-GN con-
verge to the globally optimal solution. The results are shown in Table [3.1], in which n is
the number of unknown poses and n’ is the number of observed landmarks, m is the num-
ber of pose-pose measurements and m’ is the number of pose-landmark measurements,

f* is the globally optimal objective value, and the total time accounts for all the time
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Figure 3.5. The speed-up of CPL-SLAM over SE-Sync on 2D SLAM bench-
mark datasets. The results are (a) the speed-up of RTR time of CPL-SLAM
over SE-Sync and (b) the speed-up of total time of CPL-SLAM over SE-
Sync. CPL-SLAM is on average 2.87 and 2.51 times faster than SE-Sync
for RTR time and total time, respectively.

taken to solve graph-based SLAM and the RTR time only accounts for the time taken
by the RTR method to solve Riemannian staircase optimization. A specific comparison
of SE-Sync and CPL-SLAM is further shown in Fig. 3.5l From Table [3.1] and Fig. 3.5 it
can be seen that CLP-Sync is significantly faster than both SE-Sync and PDL-GN on all
the SLAM benchmark datasets, in which CPL-SLAM outperforms PDL-GN by a factor
of 5.53 on average for the overall computation, and outperforms SE-Sync by a factor of
2.87 and 2.51 on average for the computation of the RTR method and the overall compu-
tation, respectively. In particular, CPL-SLAM obtains a further improved performance
of the RTR method over SE-Sync on the datasets with landmarks, and we think it is due
to the conciseness of the complex number representation whose resulting preconditioner
accelerates the truncated conjugate gradient method that is used in the RTR method to

evaluate the descent direction.
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The globally optimal results of CPL-SLAM on these 2D SLAM benchmark datasets are
as shown in Fig. It should be noted that M3500-a, M3500-b and M3500-c in Fig. [3.6f-
Fig. respectively have extra Gaussian noise with standard deviation 0.1 rad, 0.2
rad and 0.3 rad added to the rotational measurements of M3500 [72] in Fig. [3.6k, which
indicates that CPL-SLAM can tolerate noisy measurements that are orders of magnitude
greater than real-world SLAM applications. For tree10000 in Fig. and victoria-park in

Fig. with landmarks, we denote the positions of landmarks with red “4-".

3.9. Conclusion

In this chapter, we have presented CPL-SLAM that is a certifiably correct algorithm
for planar graph-based SLAM using the complex number representation. By leveraging
the complex semidefinite programming and Riemannian staircase optimization on com-
plex oblique manifolds, CPL-SLAM is applicable to planar graph-based SLAM with and
without landmarks. In addition, even though CPL-SLAM essentially solves the complex
semidefinite relaxation, we prove that CPL-SLAM exactly retrieves the globally optimal
solution to planar graph-based SLAM as long as the noise magnitude is below a certain
threshold.

CPL-SLAM is compared with the state-of-the-art methods SE-Sync [7] and Powell’s
Dog-Leg [63,89] on the simulated Tree datasets, the simulated City datasets and numerous
large 2D simulated and real-world SLAM benchmark datasets in terms of scalability and
robustness. The results of the data experiments indicate that CPL-SLAM is capable of

solving planar graph-based SLAM certifiably, and more importantly, is more efficient in
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numerical computation and more robust to measurement noise. Thus, we expect that
CPL-SLAM outperforms existing state-of-the-art methods to planar graph-based SLAM.

There is still great potential for improvements of CPL-SLAM in several aspects. A fully
distributed extension of CPL-SLAM is definitely beneficial to multi-robot simultaneous
localization and mapping. In spite of being able to tolerate large measurement noise,
CPL-SLAM still needs to enhance its robustness to measurement outliers. At last, it is
currently assumed that the positions of landmarks are fully known in CPL-SLAM, and we
hope that in the future CPL-SLAM can handle range-only and bearing-only measurements

of landmarks, which is another important extension.

3.10. Proofs

In this section, we present proofs of the lemmas and propositions in Section These
proofs draw heavily on [90] and follows a similar procedure to that of |7, Appendix C|

and |79, Section 4.3|.

3.10.1. Proof of Lemma [3.1]

It is known that the unconstrained Euclidean gradient of F(z) £ ¥ Mz is VF(2) =

2M z, and thus, if we let S(z) = M — R{ddiag(M zz")}, the Riemannian gradient is
grad F(z) = proj,(VF(2))
(3.32) = 2(M — R{ddiag(Mzz")})z

=25(z)z,
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in which the linear projection operator proj, : C* — T,C} is defined to be
proj,u = u — R{ddiag(uz")}z.

In addition, it should be noted that we have assumed that C} is a Riemannian submanifold

of Euclidean space, then the Riemannian Hessian is
(3.33) Hess F'(z)[2] = proj,D grad F'(2)[Z] = proj,25(z)Z,

in which D grad F'(z)[Z] is the direction derivative of grad F'(z) along direction 2. From

Eq. , we obtain
(Hess F(2)[2],2) = 2(S(2)%, 2).

Moreover, according to [90, Chapter 5|, if exp, : T,C} — C7 is the exponential map at
z € C}, we obtain

= (grad F'(2), %)

t=0

d
&F o exp,(t2)

and

= (Hess F'(2)[2], 2).

t=0

Therefore, if 2 € C} is a local optimum for Eq. 1} and S = S (2), it is required that

Sz =0 and <2, 5’2> > 0 for all 2 € T,,C}, which completes the proof.

3.10.2. Proof of Lemma [3.2

It should be noted that (1) to (5) in Lemma (3.2| are KKT conditions of (SDP)), which
proves the necessity. Since the identity matrix I € C™*™ is strictly feasible to Lemma [3.2]

the Slater’s condition is satisfied, which proves the sufficiency. In addition, it should be
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noted that the Slater’s condition also holds for the dual of (SDP). If rank(S ) =n—1,
according to |102, Theorem 6|, S is dual nondegenerate. Moreover, by complementary
slackness, S is also optimal for the dual of , which, as a result of [102, Theorem
10], implies that X is unique. If rank(g) =n — 1, it can be concluded that X has rank

one from SX = 0.

3.10.3. Proof of Lemma [3.3

Since z € CY is a first-order critical point and S - 0, we conclude that Z is a second-

order critical point from Lemma Also it can be checked that X = 272 € H" satisfies

(1) to (5) in Lemma thus, 2 solves (QP)), and X solves (SDP) and is the unique global
optimum for (SDP) if rank(S) = n — 1.

3.10.4. Proof of Proposition [3.6.1

In order to prove Proposition |3.6.1 we need Propositions|3.10.1| and |3.10.2] as follows.

Proposition 3.10.1. If M € H” is data matrix of the form Eq. (3.18)) that is con-
structed with the true (latent) relative measurements, and z € C7 is the true (latent)

value of rotational states z, then M z = 0 and Ay(M) > 0.

PROOF. For consistency, we assume that (]E[) and are formulated with the true
(latent) relative measurements. Let s € C" and ¢ € C" be the true (latent) value of

e
landmark positions and translational states ¢, respectively, then § = [§T c’ ZT} €
C™ x C" x C} solves , and the optimal objective value is 0. Since ((QP)) is equivalent to

([P), it can be concluded that z € C7 solves (QP)), and the optimal objective value of (QP)
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is 0 as well. Furthermore, since M = 0, we obtain M z = 0. Let = £ diag{z1, --- , 2,,} €
C™™ and L(W?#) € R™" be the Laplacian such that

(

Z Kiks 1= j7
(i,k)eE
z A
[L(W )]” = _K'ija (%j) € ga
0 otherwise,

\

we obtain L(G*) = ZL(W#)ZH. It should be noted that G is assumed to be connected,

and as a result, Ao(L(G*)) > 0 and L(G*)z = 0. Furthermore, it is by the definition of

M or M in Eq. (3.14) that

(3.34) M = L(G") + M°,

in which M° = ¥* — ©7AT0. From Egs. (3.21a)) to (3.21c) and (3.22), we obtain that

M? is the Schur complement of

BB, BEB,| |BY
= |:Bl B2:| toa
BB, BEB,| |BE

which suggests that M7 > 0 and A\ (M7) > 0. As a result of Eq. (3.34), \o(L(G*)) > 0

and A\ (M7) > 0, we obtain
Ao(M) = Ap(L(GT)) + Mi(M7) > 0,

which completes the proof. 0]
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Proposition 3.10.2. If z € C} is the true (latent) value of z € C}, and Z solves

(QP), and d(z, 2) £ Igniﬂlg |2 — €z]|, then we obtain
S

nl|M — M,

(3.35) Az 2) <) [=5 5

PROOF. If we define AM £ M — M € H" to be the perturbation matrix, then
(3.36) MMz =2"Mz+ 2"AMz = 2" AMz < n||AM |,

in which, according to Proposition [3.10.1, zM z = 0. In addition, it should be noted

that

(3.37) HMz> 20 Mz

and

(3.38) Mz =Mz + HAME > 27 M2 — n||AM|,.

From Egs. (3.36]) to (3.38)), we obtain

(3.39) 2n||AM |y > 2" M2

From Proposition [3.10.1, we obtain

(3.40)
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in which the equality “=" uses M z = 0 and the inequality “>" uses \y(M) > X\ (M) =0

H

and z(2 — %g 2z) = 0. Furthermore, an algebraic manipulation indicates that

1 1
(3.41) 12— =27 22|> =n — —|273%
n n

(3.42) = (M)~ [2"2P)

in which the last inequality “>" uses the Cauchy-Schwarz inequality
272 < Jlzl] - [I12]] = n.

Substituting Eq. (3.42)) into Eq. (3.39)) and simplifying the resulting equation, we obtain

2n||AM ||,

3.43 n— M2 <
4 SR HIT)

In addition, from |79, Eq. (4.1)], it is known that d(z, 2) = \/2n — 2|z 2|, and then from

Eq. (3.43)), we further obtain Eq. (3.35)), which completes the proof. O
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To prove Proposition [3.6.1] we first decompose S = M — R(ddiag(M272)) as follows:

S =M — R(ddiag(M272))
=M + AM—
R {ddiag (M + AM)(z + Az)(z + Az)7)}
=M + AM — R{ddiag(MAzz" + MA=AZ"+

AM(z+ Az)(z+ Az)™)},

(. J/

AS

in which z € C7 is the true (latent) value of z € C} such that M z = 0, and Z solves (QP)),

and Az £ 2 — 2. In addition, we assume ||2 — z|| = d(2, 2) £ Igli{g |12 — €i%z]|. Tt is obvious
S

that ||AS|l; — 0 as long as [|[AM]|; — 0 and ||Az|| — 0, and by Proposition [3.10.2] we

obtain ||Az|| — 0 as long as ||[AM]||s — 0. As a result, from continuity, there exists some

v > 0 such that ||AS||2 < X\a(M) as long as ||AM||2 < v. Then we obtain
Ai(S) 2 Ni(M) — Al > Ni(M) = Aa(M) 2 0

for all © > 2, which implies that S at least has n — 1 positive eigenvalues. In addition,
by Lemma , we obtain SZ = 0, from which it can be concluded that S > 0 and
rank(S) = n — 1. Furthermore, Lemma [3.3| guarantees that X = 227 e H" is the unique

optimum of (SDPJ) if S =0 and rank(S*) =n-—1
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CHAPTER 4

Majorization Minimization Methods for Distributed Pose Graph
Optimization

This chapter considers the problem of distributed pose graph optimization (PGO)
that has important applications in multi-robot simultaneous localization and mapping
(SLAM). We propose the majorization minimization (MM) method for distributed PGO
(MM—PGO) that applies to a broad class of robust loss kernels. The MM—PGO method
is guaranteed to converge to first-order critical points under mild conditions. Further-
more, noting that the MM—PGO method is reminiscent of proximal methods, we leverage
Nesterov’s method and adopt adaptive restarts to accelerate convergence. The resulting
accelerated MM methods for distributed PGO—both with a master node in the net-
work (AMM—PGO*) and without (AMM—PGO#)—have faster convergence in contrast
to the MM—PGO method without sacrificing theoretical guarantees. In particular, the
AMM-PGO# method, which needs no master node and is fully decentralized, features
a novel adaptive restart scheme and has a rate of convergence comparable to that of
the AMM—PGO* method using a master node to aggregate information from all the
nodes. The efficacy of this work is validated through extensive applications to 2D and
3D SLAM benchmark datasets and comprehensive comparisons against existing state-of-
the-art methods, indicating that our MM methods converge faster and result in better

solutions to distributed PGO.
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4.1. Introduction

Pose graph optimization (PGO) is a nonlinear and nonconvex optimization prob-
lem estimating unknown poses from noisy relative pose measurements. PGO associates
each pose with a vertex and each relative pose measurement with an edge, from which
the optimization problem is well represented through a graph. PGO has important ap-
plications in a number of areas, including but not limited to robotics [16}(18}|45], au-
tonomous driving [47], and computational biology [77,/78|. Recent advances |7},63,72,
73,75, 87-89,103,/104] suggest that PGO can be well solved using iterative optimiza-
tion. However, the aforementioned techniques [7./63,72,73| 75, 87-89,103}/104] rely on
a centralized optimizer to solve PGO and are difficult to distribute across a network.
Due to communication and computational limitations, most, if not all, of these tech-
niques |7,/63,72,73.(75,87-89,[103|104] are only applicable to small- and medium-sized
problems. Moreover, their centralized pipelines are equivalent to using a master node to
aggregate information from the entire network, making it impossible to meet potential
privacy requirementsﬂ one may wish to impose [105|,106|.

In multi-robot simultaneous localization and mapping (SLAM) [107H116|, cach robot
estimates not only its own poses but those of the others as well to build an environment
map. Even though such a problem can be solved by PGO, communication between robots
is restricted and multi-robot SLAM has more unknown poses than single-robot SLAM.
Thus, instead of using centralized PGO [7,63,|72,/73,|75|,|87-89,103,/104], it is more
reasonable to formulate this large-sized estimation problem involving multiple robots as

distributed PGO—each robot in multi-robot SLAM is represented as a node and two nodes

n terms of “privacy”, we mean that only peer-to-peer communication between neighboring nodes is
required.
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(robots) are said to be neighbors if there exists a noisy relative pose measurement between
them (a more detailed description of distributed PGO can be found in Section [£.4). In
most cases, it is assumed that inter-node communication only occurs between neighboring
nodes and most of these iterative optimization methods |7,63.(72,73,75,87-89,103,104|
are infeasible, which renders distributed PGO more challenging than centralized PGO.

In this chapter, we propose majorization minimization (MM) methods [117}/118| for
distributed PGO. As the name would suggest, MM methods have two steps. First, in the
majorization step, we construct a surrogate function that majorizes the objective function,
i.e., the surrogate function is an upper bound of the objective function except for the
current iterate at which both functions attain the same value. Then, in the minimization
step, we minimize the surrogate function instead of the original objective function to
improve the current iterate. Even though the procedure is straightforward, MM methods
remain difficult for practical use—a suitable surrogate function, whose construction and
minimization can not be more difficult than solving the optimization problem itself, is
not generally evident, and MM methods might converge to noncritical stationary points
for nonconvex optimization problems and suffer from slow convergence around stationary
points. The implementation of MM methods on large-scale, complicated and nonconvex
optimization problems like distributed PGO is nontrivial, and inter-node communication
requirements impose extra restrictions making it more so. All of these issues are addressed
in our MM methods for distributed PGO both theoretically and empirically.

The preliminary results of this chapter have been presented in [1,/59,(119|. In par-
ticular, we introduced and elaborated on the use of Nesterov’s method [120,]121] and

adaptive restart [122] for the first time to accelerate the convergence of PGO without
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sacrificing the theoretical guarantees. Our MM methods in this chapter are also capable
of handling a broad class of robust loss kernels, no longer require each iteration to attain a
local optimal solution to the surrogate function for the convergence guarantees, and adopt
a novel adaptive restart scheme for distributed PGO without a master node to make full
use of Nesterov’s acceleration.

In summary, the contributions of this chapter are the following;:

(1) We derive a class of surrogate functions that suit well with MM methods for
distributed PGO. These surrogate functions apply to a broad class of robust loss
kernels in robotics and computer vision.

(2) We develop MM methods for distributed PGO that are guaranteed to converge to
first-order critical points under mild conditions. Our MM methods for distributed
PGO implement a novel update rule such that each iteration does not have to
minimize the surrogate function to a local optimal solution.

(3) We leverage Nesterov’s methods and adaptive restart to accelerate MM methods
for distributed PGO and achieve significant improvement in convergence without
any compromise of theoretical guarantees.

(4) We present a decentralized adaptive restart scheme to make full use of Nesterov’s
acceleration such that accelerated MM methods for distributed PGO without a

master node are almost as fast as those requiring a master node.

The rest of this chapter is organized as follows. Section reviews the state-of-the-art
methods for distributed PGO. Section [4.3] introduces mathematical notation and prelim-
inaries that are used in this chapter. Section formulates the problem of distributed

PGO. Sections and present surrogate functions for individual loss terms and the
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overall distributed PGO, respectively, which are fundamental to our MM methods. Sec-
tions 4.7] to present unaccelerated and accelerated MM methods for distributed PGO
that are guaranteed to converge to first-order critical points, which are the major contri-
butions of this chapter. Section implements our MM methods for distributed PGO
on a number of simulated and real-world SLAM datasets and make extensive comparisons
against existing state-of-the-art methods [5,/6]. Section concludes this chapter and
discusses future work. Section completes the proofs of the propositions presented in

this chapter.
4.2. Related Work

In the last decade, multi-robot SLAM has been becoming increasingly popular, which
promotes the research of distributed PGO |5,6,123}124].

Choudhary et al. |5] present a two-stage algorithm that implements either Jacobi Over-
Relaxation or Successive Over-Relaxation as distributed linear system solvers. Similar to
centralized methods, [5] first evaluates the chordal initialization [8] and then improves
the initial guess with a single Gauss-Newton step. However, one step of Gauss-Newton
method in most cases can not lead to sufficient convergence for distributed PGO. In
addition, no line search is performed in [5] due to the communication limitation, and
thus, the behaviors of the single Gauss-Newton step is totally unpredictable and might
result in bad solutions.

Tian et al. [6] present the distributed certifiably correct PGO using Riemannian block
coordinate descent method, which is later generalized to asynchronous and parallel dis-
tributed PGO [125|. Specially, their method makes use of Riemannian staircase opti-

mization to solve the semidefinite relaxation of distributed PGO and is guaranteed to
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converge to global optimal solutions under moderate measurement noise. Following our
previous works [1,59|, they implement Nesterov’s method for acceleration as well. Con-
trary to our MM methods, a major drawback of |6] is that their method has to precompute
red-black coloring assignment for block aggregation and keep part of the blocks in idle
for estimate updates. In addition, although several strategies for block selection (e.g.,
greedy /importance sampling) and Nesterov’s acceleration (e.g., adaptive/fixed restarts)
are adopted in [6] to improve the convergence, most of them are either inapplicable
without a master node or at the sacrifice of computational efficiency and theoretical guar-
antees. In contrast, our MM methods are much faster (see Section but have no such
restrictions for acceleration. More recently, Tian et al. further apply Riemannian block
coordinate descent method to distributed PGO with robust loss kernels [116|. However,
they solve robust distributed PGO by trivially updating the weights using graduated non-
convexity [126] and no formal proofs of convergence are provided. Again, this is contrast
to the work presented here that has provable convergence to first-order critical points for
a broad class of robust loss kernels.

Tron and Vidal [123] present a consensus-based method for distributed PGO using
Riemannian gradient. The authors derive a condition for convergence guarantees related
with the stepsize of the method and the degree of the pose graph. Nonetheless, their
method estimates rotation and translation separately, fails to handle robust loss kernels,
and needs extra computation to find the convergence-guaranteed stepsize.

Cristofalo et al. [124] present a novel distributed PGO method using Lyapunov theory
and multi-agent consensus. Their method is guaranteed to converge if the pose graph has

certain topological structures. However, [124] updates rotations without exploiting the
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translational measurements and only applies to pairwise consistent PGO with nonrobust
loss kernels.

In comparison to these aforementioned techniques, our MM methods have the mildest
conditions (not requiring any specific pose graph structures, any extra computation for
preprocessing, any master nodes for information aggregation, etc.) to converge to first-
order critical points, apply to a broad class of robust loss kernels in robotics and computer
vision, and manage to implement decentralized acceleration with convergence guarantees.
Most importantly, as is shown in Section .10} our MM methods outperform existing state-
of-the-art methods in terms of both efficiency and accuracy on a variety of simulated and

real-world SLAM benchmark datasets.

4.3. Notation

Miscellaneous Sets. R denotes the sets of real numbers; R™ denotes the sets of
nonnegative real numbers; R”*" and R™ denote the sets of m x n matrices and n x 1
vectors, respectively. SO(d) denotes the set of special orthogonal groups and SFE(d)
denotes the set of special Euclidean groups. The notation | - | denotes the cardinality of
a set.

Matrices. For a matrix X € R™*", the notation [X];; denotes the (7, j)-th entry or
(i, j)-th block of X, and the notation [X]; denotes the i-th entry or i-th block of X. For
symmetric matrices X, Y € R X =Y (or Y < X) and X > Y (or Y < X) mean
that X — Y is positive (or negative) semidefinite and definite, respectively.

Inner Products. For a matrix M € R™", <-, ~>M  R™ x R™*™ — R denotes the

function
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(X,Y),, & trace(XMY")
where X, Y € R™* " and if M is the identity matrix, <-, ->M might also be denoted as
<-, > : R™™ x R™*™ — R such that

(X,Y) £ trace(XY ).

Norms. The notation || - || denotes the Frobenius norm of matrices and vectors.
The notation || - || denotes the induced 2-norms of matrices and linear operators. For a

positive semidefinite matrix M € R™™, || - [[5; : R™*" — R" denotes the function

1 X |2 & /trace(XMXT)

where X € R™*",

Riemannian Geometry. If F(-) : R™" — R is a function, M C R™" is a
Riemannian manifold and X € M, the notation VF(X) and grad F(X) denote the
Euclidean and Riemannian gradients, respectively.

Graph Theory. Let a = (V, ?) be a directed graph whose vertices are ordered

pairs. For any vertices («, i) and (3, j) € V, the notation ?aﬁ denotes the set

(4.1) £ 2 (00, (o ), (B, 7)) € €},

and the notation N'® denotes the set

(4.2) N® 2 (B8 £ 0 and a # 8,
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and the notation N denotes the set

(4.3) N £ (€5 0 and a £ B,
and the notation N'* denotes the set

(4.4) N*ENCUNT.

Optimization. For optimization variables X, X®, R®, t*, etc., the notation X®),

Xt Rat ¢k etc. denotes the k-th iterate of corresponding optimization variables.

4.4. Problem Formulation

4.4.1. Distributed Pose Graph Optimization

In distributed PGO [1,5,6.(123], we are given |.A| nodes A = {1, 2, --- , |A|} and each
node o € A has n, poses g7, g5, ---, gn. € SE(d). Let 90y = 2 ( Oy Rf“_)) where ¢, € R¢
is the translation and R{) € SO(d) the rotation. We consider the problem of estimating

unknown poses g7, g5, - -+, go. € SE(d) for all the nodes o € A given intra-node noisy

measurements gt = = (2, R?jo‘) € SE(d) of the relative pose

(4.5) gi 2 (¢0) g € SE(d)

within a single node «, and inter-node noisy measurements go‘ﬁ 2 (1 f‘]ﬂ : Raﬁ ) € SE(d) of

the relative pose

(4.6) gfj‘ﬁ £ (gf‘)_lgf € SE(d)
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between different nodes a # . In Egs. and , note that ff‘jo‘ and f%ﬁ € R? are
translational measurements, and EZO‘ and Ef}ﬁ € SO(d) are rotational measurements.

Following |7], we model distributed PGO as a directed graph a =V, ?) whose
vertices are ordered pairs consisting of node index, e.g., a and 8 and pose index, e.g., @
and j. In the directed graph 3, the vertex (o, 7) € V is in one-to-one correspondence with
the unknown pose ¢ € SE(d) and the directed edge ((a, 1), (8, 7)) € € is in one-to-one
correspondence with the noisy measurement §f‘jﬁ € SE(d). Note that ?aﬂ, N, N and
N®in Egs. (4.1) to are well defined for distributed PGO.

From the convention of distributed PGO, nodes o and € A are referred as neighbors
as long as either ?aﬁ # () or ?5‘1 # (). We remark that N'® is the set of neighbors that
has a directed edge connected with node «, and N* and N are the sets of neighbors
that have a directed edge from and to node «, respectively.

In the rest of this paper, we make the following assumption that each node can com-
municate with its neighbors and the network topology is unchanged during optimization.

These assumptions are common in distributed PGO [5,6,123,124].

Assumption 4.1. Each node a can communicate with its neighbors 8 € N and the

network topology is unchanged.

4.4.2. Loss Kernels

In practice, it is inevitable that there exist inter-node measurements that are out-

liers resulting from false loop closures; these adversely affect the overall performance of
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distributed PGO. To address this issue, it is popular to use non-trivial loss kernels—
e.g., Huber and Welsch losses—to enhance the robustness of distributed PGO against
outliers [127-129|.

In this chapter, we make the following assumption that applies to a broad class of loss

kernels p(-) : Rt — R in robotics and computer vision.

Assumption 4.2. The loss kernel p(-) : Rt — R satisfies the following properties:
(a) p(s) >0 for any s € R* and the equality “=" holds if and only if s = 0;
(b
(c
(d
(e

p(+) : RT — R is continuously differentiable for any s € R™;

)

)

) p(+) : Rt — R is a concave function;

) 0 < Vp(s) <1 for any s € RT and Vp(0) = 1;
)

() : R™™ — R with ¢(X) = p(||X]|?) has Lipschitz continuous gradient,
i.e., there exists ;1 > 0 such that ||Vo(X) — Vo(X')|| < p- || X — X'|| for any

X, X' € Rmxm,

In the following, we present some examples of loss kernels (see Fig. satisfying

Assumption (4.2

Example 4.1 (Trivial Loss).

(4.7) p(s) =s.

Example 4.2 (Huber Loss).

(4.8) p(s) =
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—Trivial loss
——Huber loss
Welsch loss

Figure 4.1. p(z?) for trivial, Huber, Welsch losses.

where a > 0.

Example 4.3 (Welsch Loss).

(4.9) p(s) =a— aexp (—2)

where a > 0.

4.4.3. Objective Function

Recall that each node o € A has n, unknown poses gf, g5, ---, go. € SE(d). For

notational simplicity, we define X* and X as
X £ RY7 x SO(d)™

and
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respectively, where n = Y aeaNa- Furthermore, we represent gi* € SE(d), i.e., the i-th

pose of node o € A, as a d x (d+ 1) matrix
x> 4 {tg R?} € SE(d) c R+,

represent (g, g3, - -+, g5 ) € SE(d)", i.e., all the poses of node a € A, as an element of

X% as well as a d x (d + 1)n, matrix

X A |:ta Ra‘| c X c Rdx(dJrl)na’

where
T {t? R 1 € R¥xna
and
R™ & {erl R ] € SO(d)™ c R¥*dna,

and represent {(g¢, g5, - -, gn. ) faca € SE(d)", i.e., all the poses of distributed PGO, as

an element of X' as well as a d x (d + 1)n matrix
X2 {Xl XA] € X c R¥x(d+n,

Remark 4.1. X and & are by definition homeomorphic to SE(d)™ and SE(d)",
respectively. Thus, X® € X* and X € X are sufficient to represent elements of SFE(d)™
and SE(d)".

Following [1,7,59|, distributed PGO can be formulated as an optimization problem

on X = {Xl XA} eX:
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Problem 4.1 (Distributed Pose Graph Optimization).
(4.10) min F(X).

XekXx

The objective function F'(X) in Eq. (4.10) is defined as

1 (6707 O¢~O£Oé (6% ax [e X707 (0% (0%
(411) FX)&£> > 5[%. |RFRE™ — RY|> + 70° | RAES + ¢ tj||2]+

acA (i’j)eﬁaa
1 e a Do afo o
> Z S (RAIR RS — B2 + mPRetsy 1 =412 |
8] BGA @
a#p eEer
where x{, 75, 5035 : Z‘jﬁ are weight factors and p(-) : R* — R is the loss kernel.

For notational simplicity, F'(X) in Eq. (4.11])) can be also rewritten as

(4.12) FX)=) > FX)+ Y > FX),

e ST
where

(4.13) Fge(X) & Sael RO — RYP 4 Srsel| RO + 45 — 191,
and

(@19)  EPO0 2 Sp(PIRRY — R+ Srs R e~ ),

Note that F3*(X) and Fz‘;‘ﬁ corresponds to intra- and inter-node measurements, respec-

tively.
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In the next sections, we will present MM methods for distributed PGO, which is the

major contribution of this chapter.

4.5. The Majorization of Loss Kernels

In this section, we will present surrogate functions majorizing the loss kernels p(-).
The resulting surrogate functions lead to an intermediate upper bound of distributed
PGO while attaining the same value as the original objective function at each iterate.

It is straightforward to show that there exists sparse and positive semidefinite matrices

Mgﬁ e R(Dnx(d+Dn for either o = 8 or a # [ such that

1 « a Do « ajo «a
(4.15) —||X||Ma5 = 5%-5“31- Rijﬁ—Rf||2+ STEONRSEY + 18 — 151,

Then, in terms of intra-node measurements with a =  and inter-node measurements

with a # 3, F5*(X) and Fgﬁ take the form of

(6767 1
(4.16) F3(X) = §||X\|?wg;a
and
(4.17) FiP(X) £ (|!X||Ma5)

respectively. From Eqgs. (4.13) and (4.14), we obtain an upper bound of F*(X) and

Fgﬁ (X) as the following proposition states.

Proposition 4.5.1. Let X® = | x100 ... xM®| € X with X*® € X* be an

iterate of Eq. (.10). If p(-) : R* — R is a loss kernel that satisfies Assumption 4.2} then
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we obtain

1, ) ) a
595 X = XW s+ (VEF(X0), X = X0) + B2 (X W) > FP(X)

(418) 3

for any X and X®) € R>WH" where wy] *f) ¢ R is defined as

17 aZﬁ’

lI>

(4.19) WP
Vp([ X ||Maﬂ) a# B

In Eq. (4.18), the equality “=" holds as long as X = X&),

PROOF. See Section A.12.1] O

Note that F'(X), as is shown in Eq. (4.12)), is equivalent to the sum of all Fj5*(X) and

F;;ﬂ (X). Then, an immediate upper bound of F(X) resulting from Proposition is
(4.20) —HX XO o+ (VA(XY), X — X0) + F(X®) > F(X)

where M®) g R@+Dnx(@+)n ig 5 positive semidefinite matrix that is defined as

(421) M(k) 2 Z Z Mioj{a + Z Z w;ﬁ(k) . Mlojéﬂ c R(d+1)n><(d+l)n'

€A (i,j)e € oo @BEA (i) E s

In addition, the equality “=" in Eq. (4.20) holds as long as X = X&),

B(k)

Remark 4.2. If the loss kernel p(-) is non-trivial, w;; " is a function of X () as defined

in Eq. (4.19), and M® is a positive semidefinite matrix depending on X® as well.
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It is obvious that Eq. (4.20) has X* € X* of different nodes coupled with each other,
and as a result, is difficult to be used for distributed PGO. In spite of that, as is shown
in the next sections, Eq. (4.20)) is still useful for the development and analysis of our MM

methods for distributed PGO.

4.6. The Majorization of Distributed Pose Graph Optimization

In this section, following a similar procedure to our previous works [1},/59], we will
present surrogate functions G(X|X®) and H(X|X®) that majorize the objective func-
tion F(X). The surrogate functions G(X|X®) and H(X|X®) decouple unknown poses

of different nodes, and thus, are critical to our MM methods for distributed PGO.

4.6.1. The Majorization of FZ"B(X)

For any matrices B, C' and P € R™*", it can be shown that

1
(4.22) SIB - CH?\/[?J_/? <|B- Pllﬁﬁjﬂ +[IC - Pllf\@jﬂ
as long as M;;B € R™™ is positive semidefinite, where “=" holds if
1 1
P=-B+-C.
2 + 2

If we let P =0, Eq. (4.22)) becomes

1
(4.23) SIB = Cll}ep < 1Bl e + 1€
2 3 9

2
/8 .
i
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Applying Eq. (4.23)) on the right-hand side of Eq. (4.15]), we obtain

SIXI2 0 < WPURE R + RSP + m | RS + 450+

zzy

(4.24)
—rg | RSN+ wgl I RIP + 75 (1RSE + 2211 + 757 12711,

1 ig

where the last equality is due to (Ezﬁ )T}N%?j’g = }N%Z’B (}N%ZB )T = I. Furthermore, there
exists a positive semidefinite matrix ijﬁ € R+Dnx(@d+hn gych that the right-hand side of

Eq. (4.24) can be rewritten as
(4.25) ||X||2aﬂ = Kl 1R NZ + w7 IR 1P + 75 N REET + 2817 + 57185 1P,

where Q%ﬂ is a block diagonal matrix decoupling unknown poses of different nodes. Re-

placing the right-hand side of Eq. (4.24]) with Eq. (4.25)) results in

—IIXH 2

MO‘B =9 Q“B

for any X € R¥™(@+Dn which suggests

(4.26) Q= M

1] —
With Q¢ € RE+Unx(@+Dn iy Bas. (4.25) and (4.26), we define Ef(-|X®)) : Réx(@n
R:

1
5 X = XU 4+ (VESP(X0), X = X W) 4 B (),

af k) &
(4.27) E (X|xW0) & 5
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where w?j’g ®) i given in Eq. (4.19). From the equation above, it can be concluded that

Ef‘jﬂ (X|X®) majorizes Fgﬂ (X) as the following proposition states, which is important

for the construction of surrogate functions for distributed PGO.

Proposition 4.6.1. Given any nodes «, § € A with either o = § or a # f, if

p(+) : RT — R is a loss kernel that satisfies Assumption , then we obtain
afs k af
(4.28) EP(X|XW) > FP(X).

for any X € R¥(@Dn Tn the equation above, the equality “=" holds if X = X®).

PROOF. Sce Section [4.12.2] O

4.6.2. The Majorization of F'(X)

From Proposition it is immediate to construct surrogate functions that majorize

F(X) in Egs. (4.11) and (4.12) as the following proposition states.

Proposition 4.6.2. Let X® = {Xuk) X|A|<k>} € X with X*® ¢ X be an
iterate of X € X for Eq. (4.10). Let G(-|X®) : R¥*(@+Dn s R be a function that is

defined as

0 G =Y X R0+ X )
a€A (j jye Eaa afigl, (i) € B

where £ € R and £ > 0. Then, we have the following results:
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(a) For any node a € A, there exists positive-semidefinite matrices T € R(d+1nax(d+)na

such that G(X|X®) is equivalent to

(4.30) GX|X®) =" G (X|XW) + F(Xx¥),
acA

where G%(X*| X ™) is defined as
1
@310 GUXIX®) = 1K = XO g + (T FXW), X7 — X0,

In Eq. (4.31), VxoF(X®) is the Euclidean gradient of F/(X) with respect to
Xeexeat XWe X,

b) G(X|X®) is a proximal operator of FI(X) at X € X and can be written as
(

1
(4.32) G(X|XW) = SX = X2, + (VF(X®9), X — XW) + F(XW),

where I'®) ¢ R@+Dnx(d+1)n i5 5 block diagonal matrix

(4.33) ko 2 djag{rl(k)’ . F\A\(k)} € R@+Dnx(d+1)n

Y

and VF(X®) € R+ ig the Euclidean gradient of F(X) at X® € X.

Furthermore, we have
(4.34) G(X|X®W) > F(X)

where the equality “=" holds if X = X®.

(c) T®W = M® where M® is given in Eq. (4.21)).
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(d) T™ is bounded, i.e., there exists a constant positive-semidefinite matrix I' €

R@Dnx(d+Dn gych that T = T'® holds for any k > 0.

PROOF. See Section 4.12.3 O

From Proposition [4.6.2, it is known that G(X|X®) in Egs. (4.29) and (4.30) is a

proximal operator as well as an upper bound of F(X). Instead of depending on X =

{Xl XIAI} € X of all the nodes, each G*(X*|X®) in Eq. (4.30) is a function of

X € xo ¢ R™@Hna within a single node a € A, which makes G(X|X®) well-suited

for distributed PGO.

If substituting Egs. 1) and 1. into Eq. 1} to replace Fj*(X|X () with

Ee(X|X ™), we have F(X) as well as G(X|X®) further majorized as the following

proposition states.

Proposition 4.6.3. Let X&) = {Xuk) X|A|<k>} € X with X*® € X be an

iterate of X € & for Eq. (4.10]), and X?(k) = {ta(k) Ra(k)} € SE(d) be the corresponding

iterate of X® € SE(d). Let H(-|X®) : R¥(@+» 5 R be a function that is defined as

(435) H(X|XW)=>" > EXX|XY)+
QEA(i,j)G?aa

SO EPEX®) 1 §x - xW
BEd (ig)c €

In Eq. (4.35), ¢ € R and ¢ > ¢ > 0 where ¢ € R is given in G(X|X®) of Eq. (4.29).

Then, we have the following results:
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(a) For any node o € A and ¢ € {1, --+, ny}, there exists positive-semidefinite

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

matrices IT°0%) € R Dnex(@Hna gng [0 ¢ REFD*EH) guch that

H(X|XW)=>" H*(X*|XY) + F(X¥)
acA

and

Ho(X* X W) = ZH?(X?IX(”),
=1
where H*(X*|X®) and H*(X#|X®) are defined as
(0 [0 1 [0 [0 (0% (0%
He (X XxW) = 5HX — X012+ (Vxa F(X®), X — x°0)

and

1
Hf“(XﬁX(k)) - §||Xla _ X;v(k)||2m(k) I <VXgF(X(k)), xo _ X;)z(k)>’

)

respectively. In Egs. 1' and 1 , VxoF(X®) and VXiaF(X(k)) are the
Euclidean gradients of F(X) with respect to X® € X and X € SE(d) at
X® € X, respectively.

H(X|X®) is a proximal operator of F/(X) at X € X and can be written as
G CIE ®) () ()
H(XIXY) = S|IX = XPf0 + (VF(XY), X = X)) + F(XT),
where I1K) ¢ R@+Dnx(d+1)n 5 5 block diagonal matrix

0 2 diag{II1®), ... K] ¢ R@HDmx(@+Dn,
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and VF(X®) € R™>@+Dn ig the Euclidean gradient of F(X) at X® ¢ X.

Furthermore, we have
(4.42) H(X|X¥) > G(X]X) > F(X)

where the equality “=" holds if X = X®.

(c) MW = T® = M&® where M® and T'® are given in Egs. and -
respectively.

(d) I® is bounded, i.e., there exists a constant positive-semidefinite matrix II €
R@+Dnx (@) gych that IT > II® holds for any k > 0.

(e) H*(X*X®) > Go(X*| X™®) where G*(X*|X®) is given in Eq. and the

equality “=" holds as long as X = X°®),
PROOF. The proof is similar to that of Proposition 4.6.2 U

Remark 4.3. As a result of Egs. (| and -, (X|X®) can be rewritten as
the sum of H¥( X XM):

H(X|[X®) =" H (XX Y) + F(XW),
acA i

=1

where note that each H®(X?|X®) relies on a single pose X® € SE(d) C R&@+HD),
In Sections to , we will exploit this decomposition of H(X|X®) to improve the

computational efficiency of distributed PGO.

From Eqgs. (4.32)) and (4.40), the Euclidean gradient VF(X) of F(X) is needed in
G(X|X®) and H(X|XX). From Eqs. (4.12) to (4.14)), it can be shown that Vya F(X),
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i.e., the Euclidean gradient of F(X) with respect to X* € X?, is only related with

oo af Bo 3
F3(X), F;;”(X) and F;;"(X), which suggests that

(443) VyxeFP(XW)= Y VxaF3*(XW)+

(i,j)e € o
> D Vae RSx4 Y Y V(X W),
BEN? (; e Eop BENE (i) € Ba

In addition, Eqs. 1) and 1} indicate that Fj5%(X) depends X{* and X¢, and Fgﬁ (X)
and Fﬁa depend on X and X f . Therefore, V xo F'(X) can be computed using Eq. 1}
in a distributed setting as long as each node a@ € A can communicate with its neighbors

e N If VxaF(X) is known for each node o € A, then

VE(X) £ {vxlF(X) VXAF(X)}

and

VxeF(X) 2 lvt?F(X) ngF(X)}
are immediately known. Thus, it can be concluded from Egs. (4.31)), (4.38]) and (4.39)) that
GYX*| XMWY in G(X|X W) as well as H*(X*| X®) and HX(X# X M) in H(X|X®) can be
constructed in a distributed setting with one communication round between neighboring

nodes « and f3.
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4.6.3. The Formulation of I'*¥ in Eq. (4.31))

From Eqs. (4.15)), (4.25)), (4.29) and (4.31)), a straightforward but tedious mathematical

manipulation results in

1
X = X0 g

—22(%”—“”—%ﬂ—%%3

! & oo o o
% 5(’46%&“(}2?_3 . )R — (RS _Rj(k))H2
(17])6 ao

(140 (2 — B+ 80— 159 — (15— %) ) ¢

> X W (R - R+

BEN™ (i,j)e?aﬁ

el (R~ B + 1 — 5+

oS W (e B — BP9,

ENT (jiye @ e

For notational clarity, we introduce

?aﬁ {2, DI, 7) 6?0‘5}

E97 L (0, )|, i) € £,
N 218 e ARG, j) € €°° and 8 # a),
2 {Bec A3, i 6?5“ and f # al,
gL ELUEY,

NP & NEUNG.
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In addition, we define /@']@f = m%ﬂ : Tﬁ-a = T{;ﬂ , wiajﬁ(k) = wﬁa(k)a and
(4.45) K%ﬁ(k) A w?jﬁ(k) : H%’B,

B(k) a  apfk) B
(140 P £

for any (i, j) € Eos, Then, Eq. |D indicates that [ ¢ R@+Dnax(d+na ipn Fq. 1)

takes the form as

F‘r,a(k) Fu,a(k)
(4.47) red) —

T I

Fu,a(k) Iw,a(k)

where 'K ¢ Rraxna Twvalk) ¢ Rraxdia gnd ["ak) ¢ Rénaxdna are sparse matrices that

are defined as

(

E+ Y ey Y 2 =y

e BENE cegns
1

[FT,a(k)] _ _Ti?a? (273) < ?aa,

]

rae, (j,i) € €0,

0, otherwise,
\

(

> oreeqeeT 4y MR i,
ceEf® BENT ceg®
[Fy,a(k)i|

i - —T]-O{O‘f?iaT, (j,1) € ?W,

0, otherwise,

\
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;

33 EDDINTAES D e

eeEXe e€Ere

DIEIEDDICHAES B DR SR L I

BENF eeé'io‘ﬁ eegff
[F ]ij _K/aa . Eaa (Z ) c ?aa
i ij ) J )
e foaT, (j.i) € o,
0, otherwise.

\

4.6.4. The Formulation of I1*% and Hf‘(k) in Eqgs. 1) and (4.39)

Similar to Eq. (4.44]), it can be shown from Eqs. (4.15)), (4.25]), (4.35)), (4.37) and (4.38))

that
Liva  yal)2
S = X
=5 (17 = BV + ey =) +
> (mllre = B e Ry - RO e = )+
(ij) € e
(.48 > (el = BN e - )+
' (i,/)e € 2o

PR DR G TR

PENE (1j)e 2P
|| (Re = )RS w12 )+

S S W Re RO el — ).
BENT (ji)e &0
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From Eq. , ?‘(k € RU@HDx(d+1) i Eq. 1) can be written as

H‘r,a(k) HI'/,OA(k)

(4.49) m®=
Hu,a(k) Hn,a(k)

where 17" e R, T17°™ € R4 and I17*™ € R are defined as

(450) Ta(k) <_|_ Z 27_aa+ Z Z 27_a5

e€Ere BENE ecE™P

K3

(450 0 = 3 gpaeeeT 4 3T Y ggeae”

ceepe BENT. cego?

(4.52) oW = ¢ .14 D2k T4 Y 2re e T4

]

ecEN™ ecEN™
ST 2014 N 2780 jesges Ty
BENT  ccel? ecEP
ap(k) ap(k) : . .
where r;;"" and 7 are given in Eqs. (4.45)) and (4.46)), respectively.

Similar to T® ¢ R@+Drax(@hna iny Fq. (4.47), 10 ¢ RE+Dnax(@hna iy Fq. (4.38)

also takes the form as

(4.53) e = :
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where II7*% ¢ Rraxna Jrak) ¢ Rraxdia gpd 15K ¢ Rdnaxdna gre sparse matrices.

Following Eqgs. (4.37)) to (4.39), it is straightforward to show that

1 o o - 1 @ a(k
SIX = X O = 31X = X o
i=1 ‘

From the equation above, Ik g Rrexna J[ak) ¢ Rraxdra gpd [[Hek) ¢ Riraxdna iy

Eq. (4.53)) are defined as

e, i=j,
[HT,a(k)i| _ t
N 0, otherwise,
\
.
e, =,
|:1-w,oz(k)i| _ v
N 0, otherwise,
\
(
e, i=
[Fn,a(k)} — v
K 0, otherwise,

where IT7*" e R, TI7°% ¢ R4 and 117°® € R are given in Eqs. (4.50) to (4.52).
In the next sections, we will present MM methods for distributed PGO using G(X|X ")

and H(X|X®) that are guaranteed to converge to first-order critical points.

4.7. The Majorization Minimization Method for Distributed Pose Graph

Optimization

In distributed optimization, MM methods are one of the most popular first-order op-

timization methods [117,[118|. As mentioned before, MM methods solve an optimization
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problem by iteratively minimizing an upper bound of the objective function such that the

objective value is either decreased or unchanged.

4.7.1. Update Rule

In Section [4.6} it has been proved that G(X|X®) and H(X|X®) are proximal oper-

ators of F'(X) such that
H(X|XY) > G(X|XY) = F(X),

and
H(X(k)|X(k)) _ G(X(k)|X(k)) — F(X(k)).

Following the notion of MM methods [117], we implement an update rule as the following

(k+3) : (k)
(4.54) X ¢ argmin H(X|X™),
and

(k+1) i (k)
(4.55) X ¢ arg min G(X|X™)

which results in

(4.56) FIX®) = H(X®|X0) > g(xED|x0) > pxka),
and
(4.57) F(X®) = G(XY1xY) > GxtD|IX W) = F(x k)

respectively. From Eq. (4.36)), Eq. (4.54) is equivalent to
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(4.58) XoU+a) o arg min HY(X*|XY), VaeA

ae)(a

Similarly, from Eq. (4.30), Eq. (4.55]) is equivalent to
(4.59) XUt arg i Go(x¥x®), Vae A
Ote [e3

Note that both Egs. and can be independently solved within a single node
a € A. Recalling H*(X*|X®) = Y"" H*(X2|XW) from Eq. (4.37), we conclude that
Eq. can be further reduced ton = ) __ , n, independent optimization problems on
X e SE(d)

1
4.60) X' arg min HH(XXY),  VaeAdandie{l, -, na}.
XoeSE(d)

In particular, as is shown in Section m, Eq. admits a closed-form solution that
only involves matrix multiplication and singular value decomposition [130].

As aresult of Egs. and (4.57), we conclude that iteratively minimizing H*(X*|X®)
and G*(X*|X®) improves the estimates and reduces the objective values. In our pre-
vious works, we have shown that Eq. can be exactly and efficiently solved using
Eq. [59], and a local instead of global optimal solution to Eq. is sufficient to
guarantee the convergence of distributed PGO [1]. Nevertheless, Eq. fails to make
full use of the local information within a single node and might induce more iterations if
there are nodes with more than one poses, whereas Eq. can still be time-consuming
to find a local optimal solution and thus, restricts the performance of distributed PGO.

To address these issues, we propose a novel update rule exploiting both Eqs.

and (4.59) to enhance the overall computational efficiency, where we precompute an initial
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estimate from Eq. (4.58)) and then refine the initial estimate with Eq. (4.59) to get the

final estimate.

4.7.2. Algorithm

Algorithm 9 The MM—PGO Method

1:

2:

3:

4:

5:

9:

10:

11:

Input: An initial iterate X(® € X and ¢ > £ > 0.
Output: A sequence of iterates {X®} and {X(+2)}.
for k< 0,1,2, --- do

for node <1, --- , |A| do

retrieve X?® from 8 € N,

aB(k
]

evaluate V xo F(X®) using Eq. (4.43)
xolkts)  arg Xmig H*(X*|X®) using Algorithm
CVE [e3

) and wﬁa(k)

evaluate w using Eq. (4.19

X+« improve arg Xmi?( Go(XX®) with X°*+2) as the initial guess
ae «
end for

end for

Algorithm 10 Solve Xk+3) arngi?( He (x| X®)
UCE «

1:

2:

Input: X°® and Vya F(X®).

Output: Xok+3).

fori«<1,---,n,do
1
Xf(k+2) —arg min  HX(X#|X®) using Section [4.7.3
X2eSE(d)
end for

. 1 « k—',—l .
retrieve X3 from X *+3) where i = 1, -, ng
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The proposed update rule results in the MM—PGO method for distributed PGO (Al-

gorithm E[) The outline of the MM—PGO method is as follows:

1) In line [f] of Algorithm [0} each node « performs one inter-node communication round
to retrieve X#® from its neighbors # € N,. We remark that no other inter-node
communication is required.

2) In lines |§|, of Algorithm @, cach node a evaluates wiajﬁ (), wﬁa(k), VxaF(X) using
X2k and XPK where € N are the neighbors of node .

3) In line 8] of Algorithm |§|, we obtain the intermediate solution X(+2) using Algo-
rithm We have proved that the resulting X a(kt3) jg already sufficient to guarantee
the convergence to first-order critical points.

4) In line [3] of Algorithm [10] there exists an exact and efficient closed-form solution to
X°+3) ysing Section m

5) In line @ of Algorithm @ we use Xk+3) to initialize Eq. , and improve the
final solution X1 through iterative optimization such that G(Xo&+D|x®) <
Go(Xk+2)| X)) Note that X**+1 does not have to be a local optimal solution to

Eq. (4.59), nevertheless, X 1) is still expected to have a faster convergence than

Xoa(k-i—%)'

Remark 4.4. The MM—PGO method requires no inter-node communication except for

lines |§| and [7|of Algorithm |§| that evaluate wfjﬂ ), wfia(k) and V xa F(X®) using Eqs. (4.19

and ([4.43]), which, as mentioned before, can be distributed with limited local communica-

tion between neighboring nodes a and [ without introducing any additional computation.
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Since X°(+2) in Eq. has a closed-form solution that can be efficiently com-
puted, and Eq. does not require X**t1 to be a local optimal solution, the overall
computational efficiency of the MM—PGO method is significantly improved in contrast
to |1,/59]. More importantly, the MM—PGO method still converges to first-order critical

points as long as the following assumption holds.

Assumption 4.3. For X°k+D and Xo(+2) it is assumed that
(4.61) Ga(Xa(k+1)|X(k)) < Ga(Xa(k+%)|X(k))

for each node a =1, 2 --- | |A|.

It is known from Proposition [4.6.3that H*(X*|X®) > Go(X*|X®) and H*(X*®W| X)) =
0, and thus, Assumption can be satisfied with ease as long as line [J] of Algorithm [J]
is initialized with Xk+32), Then, the MM—PGO method in Algorithm |§| is guaranteed to

converge to first-order critical points as the following proposition states.

Proposition 4.7.1. For a sequence of {X®} generated by the MM—PGO method in

Algorithm [9) we have the following results if Assumptions [4.1] to [4.3] hold:

(a) F(X®) is nonincreasing as k — 0o;
(b) F(X®) — > as k — oo;

)
)
(c) [|X® D) — X®|| — 0 as k — oo if € > 0;
(d) [|[X**+2) — X®|| - 0as k — oo if ¢ > &> 0;
)

(e) if ¢ > £ > 0, then there exists € > 0 such that

2 F(X©) - p=
€ K+1

mln |grad F(X O )|| < \/

0<k<
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for any K > 0;

(f) if ¢ > & > 0, then grad F(X®) — 0 and grad F(X*t2)) = 0 as k — co.

PROOF. See Section A.12.4] O

The MM—PGO method is guaranteed to converge as long as ¢ > £ > 0. In contrast
to other distributed PGO algorithms that are presented in [5,6},123,124|, the MM—PGO
method needs milder conditions and less communication to guarantee the convergence

while applying to a broader class of loss kernels for distributed PGO.

4.7.3. The Closed-Form Solution to Eq. (4.60))

Substituting Eq. (4.49) into Eq. (4.60) and rewriting the resulting equation in terms

of X = [t? Ria} € R+ Jeads to

ak+d)  a(kt+d) . Lo a2
t." ¥, R *)=ar min ||t — ¢, ratot
( i ) ) gt?ERd,Rf‘ESO(d) 2” HHz (k)

)

vV, o (07 1 (0%
W Ry = REO)T (1 =17 4 IR = BRI oo+
(Ve F(XY), 10 — 1Y) 4 (Ve F(XY), RY — R{Y).

()

For notational simplicity, the equation above is simplified to

1 vV,
(4.62) min 1P s + T RAT o
tocR?, R*€SO(d) 2 1L

1 T, a K,Qu o
QHR?HIQ-I?a(k) + <'Yz'7 (k)ati > + <’Yz’ (k)a R; >:

where



(4.63) A7l = Vi F(X®) — el ¢ gd
and
(4.64) 7o) = e P(X W) — REMIIE0) ¢ Rxe,

Recalling from Eq. (4.49) that HZ’O‘(k) € R and HZ’a(k) > 0, we obtain that

1 -1
_ ,y'.ﬂa(k) HTva(k)

2 7

T —
(4.65) 1 = —Roqro® re®
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minimizes Eq. (4.62) if R € SO(d) is given. Then, substituting Eq. (4.65) into Eq. (4.62)

yields

(4.66) R <arg min SRS - (00, R2),
where

(4.67) =0 _ et _ Hle,a(kﬁnz,a(k)—lng,a(k) c Rixd
and

(4.68) v = fy[’“(k)nj’a(k)_lny’C“‘k) _ e ¢ Raxd,

If we apply R?TR? =1 on Eq. (4.66)), then Eq. (4.60) is equivalent to

(k+1) ak) pa
4.69 RV — ) R,
(4.69) i arg | max (v, RYY)
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Thus, Eq. (4.60) is reduced to an optimization problem on SO(d), which has a closed-form
solution as follows.

Following [130], if v’ ) ¢ R4 admits a singular value decomposition

-
200 _ gretsatoya
where Uz-a(k) and Via(k) € O(d) are orthogonal (not necessarily special orthogonal) matrices,
and Ez‘a(k) = diag{ff?(k), Ug(k), SR ai(k’} € R%*4 is a diagonal matrix, and J?(k) > Ug(k) >

cee > ag(k) > 0 are singular values of v’ (k), then the optimal solution to Eq. 1’ is

T T
Ul-a(k)AJ'-Via(k) , det (Uia(k)vi@(k) ) > 0’
(4.70) R =

Uia(k)A_Via(k)T, otherwise,
where A" = diag{1, 1, ---, 1} € R4 and A~ = diag{l, 1, ---, =1} € R [f d = 2,
the equation above is equivalent to the polar decomposition of 2 x 2 matrices, and if d = 3,
there are fast algorithms for singular value decomposition of 3 x 3 matrices [131]. As a
result, Eq. can be efficiently solved in the case of SO(2) and SO(3), both of which
are commonly used in SLAM.

1 (03 1 .
As long as R?(HZ) € SO(d) is known, t, +2) ¢ R? can be exactly recovered using
Eq. (4.65):

@ 1 [ 1 va(k) T rak) L T,Q ra(k)~1
(4.71) glra) _ _ pola et Tyreo ™! rapprato !

(2 K3 K3 K3 K3

)

1
Therefore, Xl-a (kt2) _ {t?‘(kJr%) Ria(”é)] € R (@+1) i5 exactly solved, whose computation

only involves matrix multiplication and singular value decomposition.
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4.8. The Accelerated Majorization Minimization Method for Distributed

Pose Graph Optimization with a Master Node

In the last several decades, a number of accelerated first-order optimization methods
have been proposed [120,[121]. Even though most of them were originally developed for
convex optimization, it has been recently found that these accelerated methods have a
good performance for nonconvex optimization as well [132-134]. In our previous works |1}
59|, we proposed to use Nesterov’s method to accelerate first-order optimization methods
for distributed PGO, which empirically have much faster convergence. Since the MM—PGO
method is a first-order optimization method, it is possible to exploit Nesterov’s method
for acceleration as well.

In this and next sections, we will propose the accelerated MM methods for distributed
PGO with and without a master node, respectively, both of which significantly improve

the convergence compared to MM—PGO.

4.8.1. Nesterov’s Method

From Egs. (4.29) and (4.35)), it is obvious that G(X|X®) and H(X|X®) are proximal

operators of F'(X), which suggests the possibility to use Nesterov’s methods [120,/121|
for acceleration.

As a result of Nesterov’s method [120,(121], Xot3) and Xk+D can be updated with

45000% 11 41
472 a(k+1) —
(4.7 ; S

(4.73) Aol =2 =
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(474) Ya(k) — Xa(k) + )\a(k) X (Xa(k) . on(kfl)),
alk+y) ; af oy (k)

(4.75) X arg min H*(X*|YW),
a(k+1) _ : afyaly (k)

(4.76) X arg Xglglg(} GY( X Y™).

In Egs. (4.75) and (4.76), G*(-]Y™®) : X* — R and HY(-|Y™) : X* — R are proximal

operators defined as:

1
(4.77) G Xy W)y = SIx = Vo2 o+ (Ve F(YW), X — yol)
and

1
(4.78) HO (XY M) = S| X7 = Y02 + (T F(YY), X = yoW),

where T*®) and I1° are the same as these in G*(-|X®) and H*(-|X®) in Egs.
and (4.38).

The key idea of Nesterov’s method is to exploit the momentum X&) — xak=1 for
acceleration, which is essentially governed by Egs. to . Note that Nesterov’s
method using Eqs. (4.72) to suggest is equivalent to Eqs. and when
s*® =1 and A*® = 0, and then increasingly affected by the momentum as s*® and
Ak increase. Similar to [1,/59], the implementation of Nesterov’s method [120,/121] in
practice leads to significant speedup of distributed PGO. Moreover, Egs. (4.72)) to (4.78)

can be distributed without introducing any additional computation as long as each node
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a € A can communicate with its neighbors 8 € N®. Thus, it is preferable to adopt

Nesterov’s method to accelerate distributed PGO.

4.8.2. Adaptive Restart

In spite of faster convergence, Nesterov’s accelerated distributed PGO using Eqgs.
to (4.76) is no longer nonincreasing, and might fail to converge due to the nonconvexity
of PGO. Fortunately, such a problem can be remedied with an adaptive restart scheme
(1,59, 122].

In the adaptive restart scheme , we recursively define Y that is an exponential
moving averaging of F'(X©), F(X®M) ... F(X®) [59/134,135|:

© _
. - F(X©), k=0,

(1—mn) -F(kil) +1n-F(X®), otherwise

where 7 € (0, 1]. Then, X°*+2) and X1 are updated using the following steps:

(1) Update X *+2) and X*+1 by solving Egs. (4.75) and (4.76) with Y® resulting from

Egs. (4.72)) to (4.74);

(2) If F(X*+3)) > FY update X*+3) again by solving Eq. (4.75) with Y = x®;

Y

(3) If F(X&HD) > F(k), update X &1 again by solving Eq. (4.76) with Y® = X® and

reduce s*k+1),

k+1) (k)

<F¥as long as F(X*H)) < F,

Remark 4.5. Since n € (0, 1] in Eq. (4.79 ,F(

In Section |4.12.5, we have proved F(X*+D) < F® it XD and X*HD are updated

with Y = X® in Eqgs. (4.75)) and (4.76). Therefore, such an adaptive restart scheme is

. . . Z (k)
guaranteed to result in a nonincreasing sequence of .
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Note that one has to aggregate information across the network to evaluate F(k),

F(X®+2), F(X® D) using Bqs. (4.12) and (4.79) and a master node capable of com-
municating with each node a € A is required. Thus, we make the following assumption

about the existence of such a master node in the rest of this section.

Assumption 4.4. There is a master node to retrieve X*® and X o(+3) from each

node o € A and evaluate F(k), F(X&+2)), F(X D),

aster node to collect X® and X*(+2) from each node o € A to evaluate F(X®),

F(X®+3)) and T,

4.8.3. Algorithm

From Nesterov’s method and the adaptive restart scheme in Eqs. (4.72) to (4.76)
and ([1.79), we obtain the AMM—PGO* method for distributed PGO (Algorithm[11]), where
“x” indicates that there is a master node for the distributed PGO.

The outline of the AMM—PGO* method is as follows:

1) In lines , of Algorithm each node o computes Y™ for Nesterov’s acceleration
that is related with s*®) € [1, oco) and A*® € [0, 1).

2) In line [2| of Algorithm , each node o performs one inter-node communication round
to retrieve X?® and Y#® from its neighbors f € N°.

3) In lines[7] [13] 2] of Algorithm [12] each node a performs one inter-node communication

round to send X°k+2) and Xek+1) to the master node.
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Algorithm 11 The AMM—PGO* Method
1: Input: An initial iterate X® € X, and ¢ > ¢ > 0, and n € (0, 1], and ¢ > 0, and

¢ > 0.
2: Output: A sequence of iterates {X®} and {X+2)}.
3: for node a < 1, --- , |A| do
4. XD o X0 and 520 < 1
5: send X to the master node
6: end for
7: evaluate F(X(®) using Eq. at the master node
g POV F(X©) at the master node
9: for k< 0,1,2, --- do
10: for node a - 1, --- | |A| do
11: solktl) ¢ —\/45“(22““7 A Ziikk—)ﬁ)l
12: yot) o xak) ok . (Xa(k) — Xa(k—l))
13: end for
14: Jap (1—mn) FRY n - F(X®) at the master node

15: update X*+2) and X**+1 using Algorithm
16: end for

4) In lines , of Algorithm , each node «a evaluates wiajﬁ(k), wfia(k), Vxa F(X®),
Vxe F(Y®) using Xo®, Yok x5k yBK where 8 € N* are the neighbors of node
a.

5) In lines , of Algorithm and lines @7 , of Algorithm , the master node

evaluates F(k), F(X®+2)), F(X® D) that are used for adaptive restart.
6) In lines [10| to [24] of Algorithm , the master node performs adaptive restart to keep
F(X k) < F* and F (X)) < F(k), which yields a nonincreasing sequence of I3
to guarantee the convergence.

7) In lines @, of Algorithm note that X+ does not have to be a local optimal
solution to Eq. (4.59).
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Algorithm 12 Updates for the AMM—PGO* Method

1
2
3:
4
5

10:
11:

12:

13:
14:

15:
16:

17:
18:

19:

20:

21:
22:

23:
24:

25:

26:
27:

: for node a 1, -+, |A| do

retrieve X% and Y2® from 5 € N,
af(k (k)
J

evaluate w;/ using Eq. (4.19

) B
and wy;

evaluate Vyo F(X®) and Vxa F(Y®) using Eq. (4.43)
Xok+t3) « arg Xmig H*(X*|Y®) using Algorithm
QG @

Xkt « improve arg Xmig G“(X“|Y(k)) with X°k+2) as the initial guess
OLE «

send X*k+2) and X°k+D) to the master node
end for

evaluate F(X®+2)) and F(X® ) using Eq. (4.11) at the master node

if F(X09))>FY — .| xk+r3) - X®|2 then
for node a - 1, --- | |A| do

Xa(k-f-%) < arg Xmlglg Ha(XalX(k)) USing Algorlthm
ae [e3

send X°(+3) to the master node
end for

evaluate F'(X (k+%)) using Eq. |D at the master node
end if

if F(XCD) > FX g || X4+ — X 0|2 then
for node a - 1, --- | |A| do

X+« improve arg Xmi/rvl Go(XX®) with X**F2) as the initial guess
Ote [e3

s« max{lseltD 1}

send X&) {4 the master node
end for

evaluate F(X &) using Eq. (4.11) at the master node
end if

if T — Pty < 6. (F(k) - F(X<k+%>)) then
X0+ o x(042) and F(X KD F(X (k)
end if

8)

Tn lines [25] to 27 of Algorithm [12] F(X**D) is guaranteed to yield sufficient improve-

ment over £V compared to F(X("JF%)).
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In spite of acceleration, the AMM—PGO™ method is guaranteed to converge to first-

order critical points under mild conditions as the following proposition states.

Proposition 4.8.1. If Assumptions [1.1] to [£.4] hold, then for a sequence of iterates

{X®} generated by Algorithm , we obtain

(a) F ) is nonincreasing;

(b) F(X®) — o and TV - poo as k — oo;

(c) HXk“) X®I|| —0ask — ooif £ >0and ¢ > 0;
(d) [|[XO&F+2) — X®|| - 0ask — oo if ¢ > € >0;

(e) if ¢ > & > 0, then there exists € > 0 such that

1 F(X©) - pe
€ K+1

Omln ||g1"adF(X(k+ N < 2\/

for any K > 0;

(f) if ¢ > € > 0, then grad F(X®) — 0 and grad F(X*+2)) — 0 as k — co.

PROOF. See Section {.12.51 O

Remark 4.6. If n = 1 in Eq. (4.79), F(X®) = F(k), and F(X™) is also nonincreasing

according to Proposition [4.8.1f(a)l Even though F(X®) might fail to be nonincreasing,
we still recommend to choose n < 1 that empirically yields fewer adaptive restarts and

faster convergence for distributed PGO.

Remark 4.7. In Algorithm , ¢ > 0 and ¢ > 0 guarantee that F(X®**+2)) and

F(X®+1)) yield sufficient improvement over 7Y in terms of | X (+2) — X ® || and || X<+ —
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X®]||, and are recommended to set close to zero to avoid unnecessary adaptive restarts

and make better use of Nesterov’s acceleration.

4.9. The Accelerated Majorization Minimization Method for Distributed

Pose Graph Optimization without a Master Node

In this section, we will propose accelerated MM methods for distributed PGO without
a master node. The resulting accelerated MM method not only is guaranteed to converge
to first-order critical points with limited local communication but also has almost no loss

of computational efficiency in contrast to the AMM—PGO™ method with a master node

(see Section [4.10)).

4.9.1. Adaptive Restart Scheme

The adaptive restart is essential for the convergence of accelerated MM methods. In
the AMM—PGO" method (Algorithm, the adaptive restart scheme needs a master node
to evaluate F(X®) and 7 and guarantee the convergence. However, in the case of no
master node, such an adaptive restart scheme requires substantial amount of inter-node
communication across the network, making the AMM—PGO™ method unscalable for large-
scale distributed PGO. Recently, we developed an adaptive restart scheme for distributed
PGO that does not require a master node but still generates convergent iterates with
limited local communication [1|. In spite of that, the adaptive restart scheme in |1] is
conservative and suffers from unnecessary restarts, which hinders acceleration and yields
slower convergence than the AMM—PGO™ method. Thus, we need to redesign the adaptive

restart scheme to boost the performance of distributed PGO without master node.
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Recall that the AMM—PGO* method’s adaptive restart scheme is for the purpose of
F(Xk) < Y In a similar way, we propose the following adaptive restart scheme
that keeps F(X D) < FY for distributed PGO without master node, from which the
convergence is guaranteed for accelerated MM methods.

For notational simplicity, we introduce AG*(X|X®) : X — R:

(4.80) AG(X|XX) é% S % (F;;ﬁ(X) —E;;ﬂ(X|X<k>)> N

PENZ (i j)edan

LYY (B0 - EREIXG)) - §xe - xow

BENT (i.4)e € Ba

2
)

af Ba af Ba . .
where F}°(X), FS*(X), B (X|X®), BJ*(X|X") are given in Eqs. (4.14) and (4.27).

From AG®(X|X®) in Eq. (4.80)), we recursively define F*®), Fa(k), G*M according to:

(1) If k = —1, each node « initializes F*~V) and 7Y with

R D YR C LR DUED DA DR D DD D)

(i,j) € € o BENZ (i) € op BENT (i,j)c € pe

and
(4.82) FCY & pat-y,
(2) If k > 0, each node a recursively updates G¢®, F(®) and W according to

(483) Ga(k) L Ga(Xa(k)|X(k71)) + Fa(kil)J

(4.84) Fo® 2 got) L AGe(x W x kD),
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(4.85) FYWaq_y.F

where n € (0, 1].

143 ao af Bo [ « « 3
From the definitions of Fij*(X), Fj;"(X), F;"(X), G*(X | X0, AGY(X|X®) in Egs. |D
(k)

4.17), (4.31)) and (4.80)), it is tedious but straightforward to show that G*® ek, F

in Egs. (4.81) to (4.85) can be explicitly evaluated with one inter-node communication
round between node « and its neighbors § € N,. Furthermore, we have the following

proposition about F*®) Fa(k), G,

Proposition 4.9.1. For any k > 0, we have

(a) F(X®W) =Y F*® where F(X®) is given in Eq. (4.11);

(b) Y= Y ocA 7 where 7 is given in Eq. (4.79);

(k+1)

(c) Fotet) < T < T 4 Gatern) < 720,

PROOF. See Section 4.12.61 O

In Algorithms [11] and [12], the AMM—PGO* method’s adaptive restart scheme requires

a master node to evaluate and compare F(X 1) and FY in order to keep F(X &) <

(k)

7Y m spite of local communication, we remark it is still possible to result in F/(X 1) <

F(k) for distributed PGO without master node as follows:

(1) From Propositions 4.9. and [4.9.1(b)| we obtain F(X®D) = 3 Folt) and

a(k

M= ZQEAF ), and as a result,



188

(486) X(k—‘rl Z e (k+1) < Z F F(k
acA acA
as long as
(487) Fa(kJrl) S Fa(k)

(k)

for each node a € A. In addition, Proposition [4.9.1(c)|indicates that G+ < F

leads to Eq. (4.87). Therefore, F(X* D) < 7Y

is reduced to requiring

(488) Goz(k-l—l) < Fa(k)

for each node o € A.

5

(2) In terms of G**+1) and FQ( , we obtain from Eq. (4.83]) that Eq. (4.88]) is equivalent

to
(4.89) Gtk — go (x| x W) 4 pet < T,
From Egs. (4.86) to (4.89), we conclude Fot+) < T angd F(X k) < FY as long
as
(4.90) Go(xeltbxM)y <o
and
(4.91) ot < 0

for each node o € A.

(3) Recall from Eq. (4.31)) that G*(X*®W|X®) = 0. Then, if X* in Egs. (4.58)) and -

is initialized with X*®), the resulting X**+1 has
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(4.92) Ga(Xa(k+1)|X(k)) < GO{(Xa(k)’X(k)) —0,

which yields Eq. (4.90).
(4) In Section 4.12.7} it can be shown by induction that Eq. (4.91) holds for distributed

PGO without master node.

From the discussion above, we conclude that Eqs. and can be always satisfied,
and more importantly, result in F(X &) < FY for distributed PGO without master
node. This suggests an adaptive restart scheme that evaluates and compares G*+1
and F*" independently at each node o € A to keep F(X &) < . We emphasize
that the resulting adaptive restart scheme requires no master node and evaluates neither

F(X®+1) nor .

Therefore, such an adaptive restart scheme differs from these in
the AMM—PGO™ method and [59}/134}135| that rely on a master node to evaluate and
compare F(X®+1)) and Y. addition, the adaptive restart scheme takes at most one

inter-node communication round among neighboring nodes at each iteration, which is well

suited for distributed PGO without master node.

4.9.2. Algorithm

Following the adaptive restart scheme using G**+1) and Fa(k), we obtain the AMM—PGO
method (Algorithm , where “#” indicates that no master node is needed.

The outline of the AMM—PGO™ method is as follows:

1) In lines , of Algorithm , each node a performs one inter-node communication
round to retrieve X#®) and Y#® from its neighbors 8 € N®. We remark that no other

inter-node communication is required.
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Algorithm 13 The AMM—PGO# Method

1:

—_
—_

12:

13:
14:
15:
16:

17:
18:
19:

,_.
e

Input: An initial iterate X(® € X, and € (0, 1], and ¢ > ¢ > 0, and > 0, and
o > 0.

Output: A sequence of iterates {X®} and {X*+2)}.
for node a - 1, -+, |A| do
XD o X0 and 520 1
retrieve X?(=D and XPO) from 8 € N,
evaluate F*=1 using Eq. (4.81
evaluate F* using Eq. (4.82
Go0)  Ga( X o0 X (1)) 4 Fol-D)
end for
for k< 0,1,2, --- do
for node v <1, --- , |A| do
e 2 (0%
galkt) Vs 41 4+ 1 Lol o sk 1
2 ’ go(k+1)
yoak) o xalk) 1 yak) . (Xoc(k) — Xa(k—l))
retrieve X?® and Y2® from 5 € N,
Fot ¢ Gel) 1 AGH(X W) X&) using Eqs. (4.80]) and (4.83))
Fa(k) « (1 . 77) ) Foz(k—l) - Fa(k)
update Xk+3) and X0+ yging Algorithm
end for
end for

2) In lines @ , , of Algorithm (13| and lines |§|, |§|7 of Algorithm , each node «

evaluates FM), Fa(k), Gelts) Goltl) that are used for adaptive restart. Note that

X80 and XA*k=1 from node a’s neighbors 8 € N are needed.

3) In lines [7] to [15| of Algorithm , each node a performs independent adaptive restart

such that Gok+3) < 7Y and gota) < Fa(k), which also results in F/(X &) < Y

and a nonincreasing sequence of FY for distributed PGO without master node.

4) In lines 16/ to |18| of Algorithm , G+ is guaranteed to yield sufficient improvement

over F'

el compared to Gok+3),
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Algorithm 14 Update X*+2) and X**+D for the AMM—PGO# Method

1:
2:
3:

10:
11:
12:

13:
14:
15:
16:

17:
18:

evaluate wfjﬁ ® and wﬁa(k) using Eq. (4.19

evaluate Vxo F(X®) and Vxa F(Y®) using Eq. (4.43)

Xolkts)  arg Xmig H*(X*|Y®) using Algorithm
ae [e%

L Galer) (- Ga(xalerd) X (9) 4 pal
. XU+ < improve arg Juin Go(X°Y®) with X**+2) as the initial guess
; Golrl) o Go(X ol X (0) 4 o)
Cif Golta) > F

A _ || xelez) - Xo®)|2 then

Xo0t3) « arg min H*(X*| X®) using Algorithm

Xana
Gok+3) o Ga(xa(k—l—%)’x(k)) + oK)
end if
it Gett) 5 7Y then

X+l ¢ improve arg Xmig Go(X| X®) with X**F2) as the initial guess
046 [e3

Galkr) - Ga(xalern| X0 | pato
skt max{1se(<tD 1}

end if

if 720 _ gotkn) < 4. (F“‘k) _ Ga<k+%>) then

xok+1) — Xa(k-i—%) and Ga(k+1) « Ga(k-i—%)
end if

The AMM—PGO# method is guaranteed to converge to first-order critical points under

mild conditions as the following propositions states.

(X

Proposition 4.9.2. If Assumptions [£.1] to [4.3] hold, then for a sequence of iterates

(01 generated by Algorithm , we obtain

(a) M s nonincreasing;
(b) F(X®) — F> and FY & F™ as k — oo;

(c) |IX® ) — X®O| — 0 as k — oo if ¢ > & > 0;
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(d) || X0+ — X0 - 0 as k — oo if ¢ > & > 0;

(e) if ¢ > £ > 0, then there exists € > 0 such that

0)) = oo
; k+3)\|| < 1 . FXT)
it e <3y O

for any K > 0;

(f) if ¢ > & > 0, then grad F(X®) — 0 and grad F(X*+2)) — 0 as k — oo;

PROOF. See Section 4.12.7 O

In spite of limited local communication, the AMM—PGO? method has provable conver-
gence as long as each node o € A can communicate with its neighbors 3 € N®. Thus, the
AMM—PGO# method eliminates the bottleneck of communication for distributed PGO
without a master node in contrast to the AMM—PGO™ method and [59|. In addition, note
that the AMM—PGO# method results in F(X*+D) < G(X*+D|x0) < FY instead of
FX®D) < (X6 X0) < F(X®) in [1]. Recalling F(X®) < F. we conclude
that the AMM—PGO™ method prevents unnecessary adaptive restarts and mitigates the
impacts that G(X V| X®) is an upper-bound of F(X*+Y) which is expected to make

better use of Nesterov’s method for acceleration and have faster convergence than [1].

4.10. Experiments

In this section, we evaluate the performance of our MM methods (MM—PGO, AMM—PGO*
and AMM—PGO#) for distributed PGO on the simulated Cube datasets and a number of
2D and 3D SLAM benchmark datasets |7]. In terms of MM—PGO, AMM—PGO* and
AMM—PGO¥ 1, ¢, ¢, ¥ and ¢ in Algorithms @, and are 5 x 1074, 1 x 10710,

1.5 x 107191 x 107% and 1 x 1079, respectively, for all the experiments. In addition,
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MM—PGO, AMM—PGO* and AMM—PGO? can take at most one iteration when solving

Egs. (4.59)) and (4.76)) to improve the estimates. All the experiments have been performed

on a laptop with an Intel Xeon(R) CPU E3-1535M v6 and 64GB of RAM running Ubuntu

18.04.

Figure 4.2. A Cube dataset has 12 x 12 x 12 grids of side length of 1 m, 3600
poses, probability of loop closure of 0.1, an translational RSME of o, = 0.02
m and an angular RSME of oz = 0.027 rad.

4.10.1. Cube Datasets

In this section, we test and evaluate our MM methods for distributed PGO on 20
simulated Cube datasets (see Fig. with 5, 10 and 50 robots.

In the experiment, a simulated Cube dataset has 12 x 12 x 12 cube grids with 1 m
side length, a path of 3600 poses along the rectilinear edge of the cube grid, odometric
measurements between all the pairs of sequential poses, and loop-closure measurements

between nearby but non-sequential poses that are randomly available with a probability
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of 0.1. We generate the odometric and loop-closure measurements according to the noise
models in |7] with an expected translational RMSE of o, = 0.02 m and an expected angular
RMSE of o = 0.027 rad. The centralized chordal initialization [8] is implemented such
that distributed PGO with different number of robots have the same initial estimate. The
maximum number of iterations is 1000.

We evaluate the convergence of MM—PGO, AMM—PGO* and AMM—PGO? in terms of
the relative suboptimality gap and Riemannian gradient norm. For reference, we also make
comparisons against AMM—PGO [1]. Note that AMM—PGO is the original accelerated MM
method for distributed PGO whose adaptive restart scheme is conservative and might
prohibit Nesterov’s acceleration.

Relative Suboptimality Gap. We implement the certifiably-correct SE—Sync |7] to
get the globally optimal objective value F* for distributed PGO with the trivial loss kernel
(Example [4.1)), making it possible to compute the relative suboptimality gap (F'— F*)/F*
where F' is the objective value for each iteration. The results are in Fig. [4.3]

Riemannian Gradient Norm. We also compute the Riemannian gradient norm
for distributed PGO with the trivial (Example and nontrivial—Huber (Example 4.2))
and Welsch (Example [4.3)—losses kernels for evaluation. Note that it is difficult to find

the globally optimal solution to distributed PGO if nontrivial loss kernels are used. The

results are in Figs. to [4.6]
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Figure 4.3. The relative suboptimality gaps of the MM—PGO, AMM—PGO™,
AMM-PGO* and AMM-PGO [1] methods for distributed PGO with the
trivial loss kernel on 5, 10 and 50 robots. The results are averaged over 20
Monte Carlo runs.

In Figs. [£.3] to [A.6] it can be seen that MM—PGO, AMM—PGO*, AMM—PGO# and

AMM~—PGO have a faster convergence if the number of robots (nodes) decreases. This is ex-

pected since G(X|X®) and H(X|X®) in Egs. (4.29) and (4.35) result in tighter approx-

imations for distributed PGO with fewer robots (nodes). In addition, Figs. 4.4] to 4.6 sug-

gest that the convergence rate of MM—PGO, AMM—PGO*, AMM—PGO# and AMM—PGO
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Figure 4.4. The Riemannian gradient norms of the MM—PGO, AMM—PGO",
AMM—-PGO# and AMM—PGO methods for distributed PGO with the
trivial loss kernel on 5, 10 and 50 robots. The results are averaged over 20
Monte Carlo runs.

also relies on the type of loss kernels. Nevertheless, AMM—PGO*, AMM—PGO# and

AMM—PGO accelerated by Nesterov’s method outperform the unaccelerated MM—PGO

method by a large margin for any number of robots and any types of loss kernels, which
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means that Nesterov’s method improves the convergence of distributed PGO. In particu-

lar, Figs. (a), a), (a) and (a) indicate that AMM—PGO# with 50 robot still

converges faster than MM—PGO with 5 robots despite that the later has a much smaller
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Figure 4.6. The Riemannian gradient norms of the MM—PGO, AMM—PGO*,
AMM—-PGO# and AMM—PGO methods for distributed PGO with the
Welsch loss kernel on 5, 10 and 50 robots. The results are averaged over 20
Monte Carlo runs.

number of robots. Therefore, we conclude that the implementation of Nesterov’s method
accelerate the convergence of distributed PGO.
Furthermore, we emphasize the convergence comparisons of AMM—PGO*, AMM—PGO*

and AMM—PGO, which are all accelerated with Nesterov’s method while differing from
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each other by the adaptive restart schemes—AMM—PGO™ has an additional master node to
aggregate information from all the robots (nodes), whereas AMM—PGO* and AMM—PGO
are restricted to one inter-node communication round per iteration among neighboring
robots (nodes). Notwithstanding limited local communication, as is shown in Figs.
to , AMM—PGO? has a convergence rate comparable to that of AMM—PGO* using a
master node while being significantly faster than AMM—PGO. In particular, AMM—PGO¥
reduces adaptive restarts by 80% to 95% compared to AMM—PGO on the Cube datasets,
and thus, is expected to make better use of Nesterov’s acceleration. Since AMM—PGO
and AMM—PGO differ in the adaptive restart schemes, we attribute the faster convergence
of AMM—PGO¥ to its redesigned adaptive restart scheme. These results suggest that
AMM—PGO¥ is advantageous over other methods for very large-scale distributed PGO

where computational and communicational efficiency are equally important.

4.10.2. Benchmark Datasets

In this section, we evaluate our MM methods (MM—PGO, AMM—PGO* and AMM—PGO#)
for distributed PGO on a number of 2D and 3D SLAM benchmark datasets (see Ta-
ble [7]. We use the trivial loss kernel and assume that there are no outliers such
that the globally optimal solution can be exactly computed with SE—Sync |7]. For
each dataset, we also make comparisons against SE—Sync [7], distributed Gauss-Seidel
(DGS) [5] and the Riemannian block coordinate descent (RBCD) [6] method, all of which
are the state-of-the-art algorithms for centralized and distributed PGO. The SE—Sync
and DGS methods use the recommended settings in [5}/7]. We implement two Nesterov’s

accelerated variants of RBCD [6], i.e., one with greedy selection rule and adaptive restart
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(RBCD++*) and the other with uniform selection rule and fixed restart (RBCD-++# ] As
mentioned before, AMM—PGO* and AMM—PGO¥ can take at most one iteration when up-
dating X+ using Egs. (4.59)) and (4.76)), which is similar to RBCD++* and RBCD-+-+%.

An overview of the aforementioned methods is given in Table [4.2]

Number of Iterations. First, we examine the convergence of MM—PGO, AMM—PGO*,
AMM-PGO#, DGS [5], RBCD++* [6] and RBCD++# [6] w.r.t. the number of iterations.
The distributed PGO has 10 robots and all the methods are initialized with the distributed
Nesterov’s accelerated chordal initialization [1].

The reconstruction results using AMM—PGO¥ are shown in Figs. and 4.8 and the
objective values of each method with 100, 250 and 1000 iterations are reported in Ta-
bles and [4.4] For almost all the benchmark datasets, AMM—PGO* and AMM—PGO?
outperform the other methods (MM—PGO, DGS, RBCD++* and RBCD++7#). While
RBCD++* and RBCD++7 have similar performances in four comparatively simple datasets—
CSAIL, sphere, torus and grid—we remark that AMM—PGO* and AMM—PGO# achieve
much better results in the other more challenging datasets in particular if there are no
more than 250 iterations. As discussed later, AMM—PGO* and AMM—PGO¥ have faster
convergence to more accurate estimates without any extra computation and communica-
tion in contrast to RBCD++* and RBCD-++7#. Last but not the least, Tables [4.3| and
demonstrate that the accelerated AMM—PGO* and AMM—PGO# converge significantly
faster than the unaccelerated MM—PGO, which further validates the usefulness of Nes-

terov’s method.

%In the experiments, we run RBCD++# |6] with fixed restart frequencies of 30, 50 and 100 iterations for
each dataset and select the one with the best performance.



Table 4.1. 2D and 3D SLAM benchmark datasets.

Simulated

Dataset 2D /3D # Poses # Measurements Dataset
ais2klinik 2D 15115 16727 No
city 2D 10000 20687 Yes
CSAIL 2D 1045 1172 No
M3500 2D 3500 5453 Yes
intel 2D 1728 2512 No
MITb 2D 808 827 No
sphere 3D 2500 4949 Yes
torus 3D 5000 9048 Yes
grid 3D 8000 22236 Yes
garage 3D 1661 6275 No
cubicle 3D 5750 16869 No
rim 3D 10195 29743 No

Table 4.2. An overview of the state-of-the-art algorithms for distributed and
centralized PGO. Note that AMM—PGO* and RBCD++* require a master
node for distributed PGO. In addition, AMM—PGO" is the only acceler-
ated method for distributed PGO that has provable convergence without a
master node.

Method ‘ Distributed ‘ Accelerated ‘ Masterless ‘ Converged
SE—Sync [7] No N/A N/A Yes
DGS [5] Yes No Yes No
RBCD++*7[6| Yes Yes No Yes
RBCD++7 |6] Yes Yes Yes No
MM—-PGO Yes No Yes Yes
AMM—-PGO* Yes Yes No Yes
AMM—-PGO* Yes Yes Yes Yes

201
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(a) ais2klinik

P

:

(e) intel (f) MITb

Figure 4.7. AMM—PGO¥ results on the 2D SLAM benchmark datasets
where the different colors denote the odometries of different robots. The
distributed PGO has 10 robots and is initialized with the distributed Nes-
terov’s accelerated chordal initialization . The number of iterations is
1000.
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distributed PGO has 10 robots and is initialized with the distributed Nes-

terov’s accelerated chordal initialization . The number of iterations is

1000.



204

(0T X 6081°9 |{0T X 0SPZ'L| {01 X PSIT'9 | (0T X PGFT'9 || (0T X PSIT'O | (0T X FCTT9 |000T
(0T X 66GT°9 |{0T X €228°L| 0T X GOTT'9 | ;0T X GE€T'9 || (0T X LSTT'9 | ;0T X LGTT°9 | 0ST ||{0T X ¥STT'9|{0T X 0£F8'8|| qLIN
(0T X L66T°9 |{0T X 09¥5'6| (0T ¥ 0£ET'9 | (0T X LG9€'9 || ;0T X 8TGT'9 | ;0T X TEET9 | 00T
(0T X GTPE'S |{0T X I8€2°S| 0T X 8PET'G | (0T X 12FT'G || {01 X 6¥ET'S | (0T X SPET'S |000T
(0T X 68FT°G {01 X TPPTG| (0T X 1SS | (0T X €8FE'S || (0T X GTFE'S | ;0T X TGET'G | 05T || {0T X 8FEE'G|{0T X 69g€ G| [21ur
(0T X 9Z6Z'S |{0T X TFGZ'S| (0T X L6€2'G | (0T X LIST'S || {01 X 96¥2'S | (0T X L6ET'G | 00T
0T X GGFE'T |01 X GTFE'T| 0T X 8866'T | 0T X T9V6'T || 0T X 2686°T | 0T X 88€6'T [000T
0T X TTG6°T |0 X GPP6'T| (01 X VIV6'T | (0T X 9TG6°T || (0T X EFP6'T | (0T X VIV6'T | 0SC || 0T X 98¢6°T|,0T X TT1€C¢|| 00SEN
0T X TGG6'T |01 X LGG6°T| 0T X LFW6'T | ;0T X 0996'T || 0T X TIG6°T | ;0T X 9FF6T | 00T
(0T X POLT'E |{0T X TLT'E| (0T X FOLTE | (0T X GOLT'E || (0T X FOLT'E | ;0T X FOLT'E |000T
0T X POLT'E {01 X T6LT'E| (0T X POLT'E | (0T X 90LT'E || (0T X POLT'E | ;0T X FOLT'E | 05 |[{0T X FOLT'E|{0T X 6TLTE| VS
(0T X GOLT'E |{0T X 6L72°€| {0T X POLT'E | (0T X 90LT'E || (0T X FOLT'E | (0T X FOLT'E | 00T
0T X 89L7'9 |01 X €86G°9| 0T X £98€'9 | ;0T X T9FF'9 || 0T X GE6€'9 | 0T X Z98E'9 |000T
0T X TTIG'9 |01 X £900°L| ;0T X 668¢°9 | ;0T X 098F°9 || 0T X TELV'9 | 0T X 668£'9 | 05 || ,0T X TIRE'9|0T X FOVOL| Awo
0T X 96£C°9 0T X GPLLL| 0T X LTEV'O | ;0T X 1906°9 || 0T X 8€TIC'9 | ;0T X LZEV'9 | 00T
0T X £620°C |01 X 8968°€| ;0T X 9£68'T | ;0T X G8G0°C || 0T X FLO6'T | ;0T X €L68'T |000T
0T X F80T'T |{0T X €29T'6| 0T X 9FF6'T | ;0T X TLET'T || ;0T X LLOO'T | ;0T X LVV6'T | 0ST || 0T X 088" T|,0T X GLER'E|iutpyeste
0T X GTLT'T |01 X TOLF'S| 0T X TLE0T | ;0T X PI6T'T || ;0T X 6L01°C | ;0T X TLEO'T | 00T

| ww@mﬁpﬁg M.ﬂmaﬂogwm Eaﬂ@@ QN

9| 4++aday| lel soa | x0od-wwv | 09d-WiW |9l .++adgy| .09d-INInY

@UOZ I93)SeIN O\B m@OQa@E @UOZ I93SeIN \\5 m@OQa@E b/ VIHN AOVHN uwwdudg
e

"1S9( 91} I0] 91} SPOYJSUL OU JI SN[ UI }89( PUOIDS [} PUR PAI Ul PAIOJ0D IR SHNSAI 189( Y T,
"‘Afoargoadsor ‘onea oa1300[qo reurydo AJ[RGO[S PUR 3 UOTYRIOY J& ON[BA OA1JO[(O oYY T8 i PUR (4]
'SUOIYRINT 0OOT PU® 0GZ ‘00T YIM POYIOUIL [ed JO sanfea 9A1199[qo oy j10dot op\ | T| wonezipenru
[ePIOYD POJRIS[OIIR S AOID)SON PIINGLIISIP 9} YIM POZI[RIIIUL ST PUR $30(0I ()T Sy ()5 POINLIISIP
UL ﬂ OB, 998) $19sRIRD YrRWPUIE YIS (¢ 9} U0 0D PAIMGLSIP JO $HNSRY “¢'F deRL




205

0T X €286°G |01 x 8620°9] (0T % 6097°C | (01 % 605G || (0T X L19¥°C | 01 x 6097°¢ [000T
0T X G6TLC [0 X PRIT9| 0T X 8F9FC | (0T X L61L°C || (0T X 0S0G°G | (01 X 8FOF'C | 09T || 0T X 609F°C|,01 X 90p1°8| wu
(0T X 0T8LC |01 X OFPST9| 0T X FH0CG | (0T X 8EIS'G || (0T X PRILG | (01 X 1P0S°C | 00T
(01 X GPRT'L |01 X PP0T L] ;01 X €121 | ;01 X 88082 || ;01 X €1L1°L | ;01 X €1L1°L 0001
0T X 18082 |Z0T X 80€%°L] 0T X STLT'L | 0T X 280%°L || Z0T X ¥6LT°L | 01 x P1L1°L | 092 || 01  €121°L|,01 x F1ce'g| jo1qn>
01 X 01882 |Z01 X G8I€"L] 01 X ZIST'L | L01 X 00€%°L || ;01 X 8¥0z'L | ,01 x ZI81°L | 001
Q0T X FBIET o1 X 88LTT| (01 X 96921 | 0T X GFIET || (0T X 189Z°T | 401 x 9£9z°T |000T
0T X 9L2E°T o1 X LOSTT| (0T X 8L8TT | o0T X 88TE'T || (0L X P60E'T | (0T X TL8T'T | 05T || (0T X GZ9Z T[0T X 0L¥G 1| 2Bese3
0T X POEET |01 X OLIET| (01 X COTET | (0T X 96€€°T || (0T X 28T | (0T X COTE'T | 001
L0 X GIEF'S |01 X ¥SOF°T| ;0T X 61618 | ;01 X 61678 || ;01 X 61678 | ;01 x 61£7°8 |000T
0T X 61E7'8 |01 X 9907 T| 50T X 12878 | ;01 X $209°8 || ;01 % 61678 | 101 X 61£7°8 | 062 ||,0T X 61&F°8|(0T X 8128/ Ppus
L0 X 02678 |0 X LVSV'T| ;0T X 66678 | 0T X 0680°T || ;01 x 02678 | ;0T x €2er'8 | 001
0T X LTTh'e ;01 X 98eV°8| ;01 X Leehe | 401 X Leeh'e || ;01 X L2ev'e | ;01 X L2eh's |000T
01 X LZ21T |01 X €Vere| ;01 % L22he | ;01 X L2ehz || ;01 % L2ah'e | 401 % L2era | 09t ||,01 X L62F°g|,0T X $S9p-g| snio
W01 X LTEFT |;01 X 8VeF'g| ;01 X L62hT | 401 X €&V | ;01 % L2ahe | ;01 % LZeh'e | 00T
0T X 0489 |¢0T X TL89'T| (0T X 02891 | ¢0T X 0L89'T || (0T X 0L89'T | (0T X 0L89'T |000T
01 X 0L89°T |¢0T X 2L8Y'T| (0T X 0891 | ¢0T X PL8Y'T || (0T % 0L89'T | (0T % 0L89'T | 0T || (0T X 0289°T|¢0T X F026°T|| 242yds
0T X 0L89°T |g0T X GL8Y'T| (0T X 0891 | ¢OT X T069'T || (0T % 0L89°T | (0T % 0L89°T | 00T
I Syasele(J M.Hmaﬂvﬁwm H\/H{qﬂm Qm
9| 4++adgy| lel soa | 40od-wwv | 09d-WIN |9l .++adgy| .09d-ININY
@@OZ I9)SBIN O\E m@OQw@E @@OZ I9)SeIN \\5 m@OQw@E A wl AOVRN a@m@p@g
oA

"1S9( 91} I0] 91} SPOYJSUL OU JI SN[ UI }89( PUOIDS [} PUR PAI Ul PAIOJ0D IR SHNSAI 189( Y T,
"‘Afoargoadsor ‘onea oa1300[qo reurydo AJ[RGO[S PUR 3 UOTYRIOY J& ON[BA OA1JO[(O oYY T8 i PUR (4]
'SUOIYRINT 0OOT PU® 0GZ ‘00T YIM POYIOUIL [ed JO sanfea 9A1199[qo oy j10dot op\ | T| wonezipenru
[ePIOYD POJRIS[OIIR S AOID)SON PIINGLIISIP 9} YIM POZI[RIIIUL ST PUR $30(0I ()T Sy ()5 POINLIISIP
UL E OB, 998) $19sRIRD YrRWPUIE YIS (€ 9} U0 ODJ PAIMGLSIP JO $HNSRY §F SR




206

We also compute the performance profiles [136] based on the number of iterations.
Given a tolerance A € (0, 1], the objective value threshold Fa(p) for PGO problem p is

defined to be

(4.93) Falp)=F*+A- (FO — ),

© and F* are the initial and globally optimal objective values, respectively.

where F'
Let Ia(p) denote the minimum number of iterations a PGO method takes to reduce the

objective value to Fa(p), i.e.,
Ia(p) £ min {k > 0|F® < Fa(p)},

where F( is the objective value at iteration k. Then, for a problem set P, the performance
profiles of a PGO method is the percentage of problems solved w.r.t. the number of

iterations k:

percentage of problems solved 2 {p € PlIa(p) < k}|
at iteration k |P| ’

The performance profiles based on the number of iterations over a variety of 2D and
3D SLAM benchmark datasets (see Table are shown in Fig. 1.9 The tolerances
evaluated are A =1 x 1072, 5x 1073, 1 x 1073 and 1 x 10~*. We report the performance
of MM—PGO, AMM—-PGO*, AMM—PGO*, DGS [5], RBCD++* |6] and RBCD++# [6] for
distributed PGO with 10 robots (nodes). As expected, AMM—PGO* and AMM-PGO*
dominates the other methods (MM—PGO, DGS, RBCD++* and RBCD++%) in terms of
the convergence for all the tolerances A, which means that AMM—PGO* and AMM—PGO*

are better choices for distributed PGO.
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Figure 4.9. Performance profiles for MM—PGO, AMM—PGO*, AMM—PGO¥,
DGS [5], RBCD++* [6] and RBCD++* [6] over a variety of 2D and 3D
SLAM Benchmark datasets (see Table The performance is based on
the number of iterations k and the evaluation tolerances are A =1 x 1072,
5x 1073, 1 x 1073 and 1 x 107%. The distributed PGO has 10 robots
(nodes) and is initialized with the distributed Nesterov’s accelerated chordal
initialization [1]. Note that AMM—PGO* and RBCD++* [6] require a master
node, whereas MM—PGO, AMM—PGO*, DGS 5] and RBCD++# [6] do not.

In Tables and and Fig. we emphasize that AMM—PGO¥ requiring no master

node achieves comparable performance to that of AMM—PGO* using a master node, and
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is a lot better than all the other methods with a master node (RBCD++"*) and without
(MM—PGO, DGS and RBCD++7#). Even though RBCD++* and RBCD++7# are simi-
larly accelerated with Nesterov’s method, we remark that RBCD++# without a master
node suffers a great performance drop compared to RBCD++*, and more importantly,
RBCD++# has no convergence guarantees to first-order critical points. These results
reverify that AMM—PGO? is more suitable for very large-scale distributed PGO with
limited local communication.

Note that all of MM—PGO, AMM—PGO*, AMM-PGO*, DGS [5|, RBCD++* [6] and
RBCD++# 6] have to exchange poses of inter-node measurements with the neighbors,
and thus, need almost the same amount of communication per iteration. However, Fig.
indicates that AMM—PGO* and AMM—PGO? have much faster convergence in terms of the
number of iterations, which also means less communication for the same level of accuracy.
In addition, RBCD++* and RBCD++# have to keep part of the nodes in idle during
optimization and rely on red-black coloring for block aggregation and random sampling
for block selection, which induce additional computation and communication. In contrast,
neither AMM—PGO* nor AMM—PGO? has any extra practical restrictions except those in
Assumptions [4.1] to [£.4]

Optimization Time. In addition, we evaluate the speedup of AMM—PGO* and
AMM-PGO?* with different numbers of robots (nodes) against the state-of-the-art central-
ized algorithm SE—Sync |7]. To improve the optimization time efficiency of AMM—PGO*
and AMM—PGO? Xokt1) in Egs. and uses the same rotation as Xk+2)
and only updates the translation. Since the number of robots varies in the experiments,

the centralized chordal initialization [8] is adopted for all the methods.
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Similar to the number of iterations, we also use the performance profiles to evaluate
AMM—PGO* and AMM—PGO™ in terms of the optimization time. Recall from Eq. (4.93)
the objective value threshold Fa(p) where p is the PGO problem and A € (0, 1] is
the tolerance. Since the average optimization time per node is directly related with
the speedup, we measure the efficiency of a distributed PGO method with N nodes by
computing the average optimization time Th(p, N) that each node takes to reduce the

objective value to Fa(p):

Ta(p)

TA(pJN) - N )

where Ta(p) denotes the total optimization time of all the N nodes. We remark that the
centralized optimization method has N = 1 node and Ta(p, N) = Ta(p). Let Tsesync
denote the optimization time that SE—Sync needs to find the globally optimal solution.
The performance profiles assume a distributed PGO method solves problem p for some
p € [0, +00) if Ta(p, N) < p-Tsg_sync- Note that p is the scaled average optimization time
per node and SE—Sync solves problem p globally at ;1 = 1. Then, as a result of [136],
the performance profiles evaluate the speedup of distributed PGO methods for a given
optimization problem set P using the percentage of problems solved w.r.t. the scaled

average optimization time per node p € [0, +00):

percentage of problems a |{P € P|Talp, N)<p- TSE—Sync}‘
solved at - P :

Fig. shows the performance profiles based on the scaled average optimization
time per node. The tolerances evaluated are A = 1 x 1072, 1 x 1073, 1 x 10™* and

1 x 107°. We report the performance of AMM—PGO* and AMM—PGO# with 10, 25



—

1=

S
T

Percentage of problems solved (%

Percentage of problems solved (%)

©
S

80

—10 robots + AMM—PGO*
——10 robots + AMM—PGO*
25 robots + AMM—PGO*
——25 robots + AMM—PGO*
——100 robots + AMM—PGO*
100 robots + AMM—PGO*

— SE-Sync

1 12 14 16 18
"

100 -

©
S
T

——10 robots + AMM—PGO*
25 robots + AMM—PGO*

—25 robots + AMM—PGO*

——100 robots + AMM—PGO*

—SE—Sync

——10 robots + AMM—PGO" ||

100 robots + AMM —PGO* |-

0 02 04 06 08 1 1.2 14 16 18
m
() A=1x10"*

—
o
S

Percentage of problems solved (%

Percentage of problems solved (%)

100 -

90 -

210

—10 robots + AMM—PGO*
—10 robots + AMM—PGO* |
25 robots + AMM—PGO*
—25 robots + AMM—PGO* |

——100 robots + AMM—PGO*
100 robots + AMM—PGO* -
—SE—Sync

0.2

04 06 08 1 12 14 16 18 2
,u

(b) A=1x10"3

]

—10 robots + AMM—PGO*
—10 robots + AMM—PGO*
25 robots + AMM—PGO*
—25 robots + AMM—PGO*
——100 robots + AMM—PGO*
100 robots + AMM—PGO™ -
—SE—Sync

0.2

04 06 08 1 1.2 14 16 18 2
I

(d) A=1x10"°

Figure 4.10. Performance profiles for AMM—PGO*, AMM-PGO* and
SE—Sync |7] over a variety of 2D and 3D SLAM Benchmark datasets (see

Table [1.1).

The performance is based on the scaled average optimization

time per node p € [0, +00) and the evaluation tolerances are A = 1 x 1072,
1x1073, 1 x 107* and 1 x 107°. The distributed PGO has 10, 25 and 100
robots (nodes) and is initialized with the classic chordal initialization [8].
Note that SE—Sync |7] solves all the PGO problems globally at u = 1.

and 100 robots (nodes). For reference, we also evaluate the performance profile of the

centralized PGO baseline SE—Sync [7]. As the results demonstrate, AMM—PGO* and



211

AMM—PGO? are significantly faster than SE—Sync |7] in most cases for modest accuracies
of A =1x1072 and A = 1x 1073, for which the only challenging case is the CSAIL dataset,
whose chordal initialization is already very close to the globally optimal solution. Even
though the performance of AMM—PGO* and AMM—PGO? declines for smaller tolerances of
A =1x10"*and A = 1x107°, AMM—PGO* and AMM—PGO* with 100 robots (nodes) still
achieve a 2.5 ~ 20x speedup over SE—Sync for more than 70% of the benchmark datasets.
Furthermore, in terms of the average optimization time per node, the computational
efficiency of AMM—PGO* and AMM—PGO# improves as the number of robots (nodes)
increases, which indicates the possibility of using accelerated MM methods as fast parallel
backends for real-time SLAM.

In summary, AMM—PGO* and AMM—PGO¥ not only achieve the state-of-the-art per-
formance for distributed PGO but also enjoy significant multi-node speedup against the

centralized baseline |7]| for modest accuracy that is sufficient for practical use.

4.10.3. Robust Distributed PGO

In this section, we evaluate the robustness of AMM—PGO® against the outlier inter-
node loop closures. Similar to [112}|115], we first use the distributed pairwise consistent
measurement set maximization algorithm (PCM) [9] to reject spurious inter-node loop
closures and then solve the resulting distributed PGO using AMM—PGO? with the trivial
(Example [4.1)), Huber (Example and Welsch (Example loss kernels.

We implement AMM—PGO? on the 2D intel and 3D garage datasets (see Table with
10 robots (nodes). For each dataset, we add false inter-node loop closures with uniformly

random rotation and translation errors in the range of [0, 7] rad and [0, 5] m, respectively.
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In addition, after the initial outlier rejection using the PCM algorithm [9], we initialize
AMM-PGO# with the distributed Nesterov’s accelerated chordal initialization [1] for all
the loss kernels.

The absolute trajectory errors (ATE) of AM M—PGO for different outlier thresholds
of inter-node loop closures are reported in Fig. The ATESs are computed against the

outlier-free results of SE—Sync |7] and averaged over 10 Monte Carlo runs.
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Figure 4.11. Absolute trajectory errors (ATE) of distributed PGO using
AMM—PGO* with the trivial, Huber and Welsch loss kernels on the 2D intel
and 3D garage datasets. The outlier thresholds of inter-node loop closures
are 0 ~ 0.9. The ATEs are computed against the outlier-free results of
SE—Sync |7] and are averaged over 10 Monte Carlo runs. The distributed
PGO has 10 robots (nodes) and is initialized with the distributed Nesterov’s
accelerated chordal initialization [1|. The PCM algorithm [9] is used to
initially reject spurious inter-robot loop closures.

In Fig. 4.11a), PCM [9] rejects most of the outlier inter-node loop closure for the
intel dataset and AMM—PGO? solves the distributed PGO problems regardless of the loss

kernel types and outlier thresholds. Note that AMM—PGO? with the Welsch loss kernel

has larger ATEs (avg. 0.057 m) against SE—Sync [7]| than those with the trivial and
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Huber loss kernels (avg. 0.003 m), and we argue that this is related to the loss kernel
types. The ATEs are evaluated based on SE—Sync using the trivial loss kernel, which is
in fact identical or similar to distributed PGO with the trivial and Huber loss kernels but
different from that with the Welsch loss kernel. Therefore, the estimates from the trivial
and Huber loss kernels are expected to be more close to those of SE—Sync, which result
in smaller ATEs compared to the Welsch loss kernel if there are no outliers.

For the more challenging garage dataset, as is shown in Fig. (b), PCM fails for
outlier thresholds over 0.4, and further, distributed PGO with the trivial and Huber loss
kernels results in ATEs as large as 65 m. In contrast, distributed PGO with the Welsch
loss kernel still successfully estimates the poses with an average ATE of 2.5 m despite the
existence of outliers—mnote that the garage dataset has a trajectory over 7 km. For the
garage dataset, a qualitative comparison of distributed PGO with different loss kernels is
also presented in Fig. [£.12] where the Welsch loss kernel still has the best performance.
The results are not surprising since the Welsch loss kernel is known to be more robust
against outliers than the other two loss kernels [129)].

The results above indicate that our MM methods can be applied to distributed PGO
in the presence of outlier inter-node loop closures when combined with robust loss kernels
like Welsch and other outlier rejection techniques like PCM [9]. In addition, we empha-
size again that our MM methods have provable convergence to first-order critical points
for a broad class of robust loss kernels, whereas the convergence guarantees of existing

distributed PGO methods [5],6],123,(124] are restricted to the trivial loss kernel.



(a) SE—Sync (b) The trivial loss kernel

(c¢) The Huber loss kernel (d) The Welsch loss kernel

Figure 4.12. A qualitative comparison of distributed PGO with the trivial,
Huber and Welsch loss kernels for the garage dataset with spurious inter-
node loop closures. The outlier-free result of SE—Sync [7] is shown in
Fig. [4.12((a) for reference. The outlier threshold of inter-node loop closures
is 0.6 and PCM [@I is used for initial outlier rejection.

214
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4.11. Conclusion

We presented majorization minimization (MM) methods for distributed PGO that has
important applications in multi-robot SLAM. Our MM methods had provable convergence
for a broad class of robust loss kernels in robotics and computer vision. Furthermore, we
elaborated on the use of Nesterov’s method and adaptive restart for acceleration and
developed accelerated MM methods AMM—PGO* and AMM—PGO? without sacrifice of
convergence guarantees. In particular, we designed a novel adaptive restart scheme making
the AMM—PGO# method without a master node comparable to the AMM—PGO* method
using a master node for information aggregation. The extensive experiments on numerous
2D and 3D SLAM datasets indicated that our MM methods outperformed existing state-
of-the-art methods and robustly handled distributed PGO with outlier inter-node loop
closures.

Our MM methods for distributed PGO can be improved as follows. A more tractable
and robust initialization technique is definitely beneficial to the accuracy and efficiency
of distributed PGO. Even though our MM methods have reliable performances against
outliers, a more complete theoretical analysis for robust distributed PGO is still necessary.
In addition, our MM methods can be implemented as local solvers for distributed certi-
fiably correct PGO [6] to handle poor or random initialization. Since all the nodes are
now assumed to be synchronized, it is necessary and useful to extend our MM methods
for asynchronous distributed PGO. Lastly, real multi-robot tests might make the results
of our MM methods more convincing where not only the optimization time but also the

communication overhead can be validated.
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4.12. Proofs

4.12.1. Proof of Proposition [4.5.1
For any nodes a, 8 € A, it should be noted that

(4.94) —HXHMaa——HX X3 as+<X M X - X >+—HX HMaa

always holds. Then, we will prove Proposition 4.5.1| considering cases of « = # and a # (3,

respectively.

1) If @ = B, Eq. (4.16) indicates VF(X®) = X®WA2”. From Egs. (4.16), (4.19)
and (4.94), it is immediate to conclude that Eq. (4.18)) holds for any X and X® ¢

R (@417 a5 long as o = .

2) From Assumption [4.2(c)|, it is known that p(s) is a concave function, which suggests

p(s') < pls) +Vp(s) - (s' = s).

2 the equation above can be written as

If we let s = ||X(k)||fw_a_6 and s’ = || X||?

1
(4.95) (HXHMaﬂ) ol p(lIX™ HMaa) + VP(HX(k HMas) : (HXHMaa —[|x® HMaB)
From Eq. (4.94), it can be shown that

(4.96) _HXHMaB IIX k)IIM«w = —IIX - X(k)H?sz + (XM X — X)),

Then, applying Eq. (4.96)) on the right-hand side of Eq. (4.95)) results in

1
(197) Sp(IXIRe) < 5T(IXOIR00) X = XOI2,00t
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1
Vp(||X(k)||2 ,43)'<X M8 x _ x(k >+§p(||X(k)||M5ﬁ)-

ij

From Egs. ) and (4.19), we obtain
FP(xW) = (||X k)||Maza)

af k af
VES (XW) = vp(|| x* |!2 )X()Mzw

wi = V(X I‘)||Mcw)

with which Eq. (4.97)) is simplified to
1 af(k a N N
5%/3( )IIX—X(”II op +<VF (X0, X — X0) 4 Ff(x W) > F2O(X).

The proof is completed.

4.12.2. Proof of Proposition 4.6.1

From Eqgs. (4.26]) and (4.27), we obtain

(198) B (XIX®) 2 21X = X0 + (VEP(X®), X = X0) + F(XW),

1
2%
where the equality “=" holds as long as X = X® . From Proposition [4.5.1] we obtain

(4.99)  sw¥x - xO)2 tee + (VEFI(XW), X = X W) 4 FFP(X0) > FP(X).

2%
Then, as a result of Egs. (4.98)) and (4.99), it is straightforward to show

af k af
B (X|X0) > F(x)
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for any X € R¥>(@+n where the equality “=" holds as long as X = X®. The proof is

completed.

4.12.3. Proof of Proposition [4.6.2

Proof of [(a)l From Eq. (#.25), it can be concluded that

(4.100) —||X X2 = mIIRE - R |2+
||(RQ—R- )) aﬁ+ta_ Oé(k || +

()

k k
R IRY = R+ e = )

From Eq. 1} it is by definition that Fi‘;ﬁ (X) is a function related with X* € X* and

X8 ¢ X8 only, and thus, VFZ-‘;B (X) is sparse, which suggests

(4.201) (VES(XM), X — X®) = (Vya F7(XW), X — X0 4

af k k
(Vs FP(XW), X7 — XPO),

In Eq. (4.101)), Vxa Fi?-‘B(X(k)) is the Euclidean gradient of FZC;ﬁ(X) with respect to X* €

X at X € X. Substituting Eqs. (4.100)) and (4.101)) into Eq. (4.27)), we obtain

af k

W (e IRE = BRIP4 (R — ROV 412 — 672+

(4.102)
/i?j/BHR? _ RJ/?’(k)HZ + Taﬂntﬁ tf(k)‘P) + <VXQF5B(X(k)),Xa . Xa(k)>+

(Vxs P (XW), X7 = XP00) + FP (X W),
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In a similar way, Fi5*(X) in Eq. (4.13) can be rewritten as

v

a 1 [e%6" le} a(k)\ paa e} Olk
(4103) F5*(X) = gag | (Re — RPY)RE — (RS — RSY)|P+

J

Q ao o o ak
aol|(Re — RyMiee g — 0™ — (g0 — 21124

<VX Foeoz(X(k)) X Xoc(k>+Fo¢oc X(k))

Substituting Eqgs. (4.102)) and (4.103)) into Eq. (4.29) and simplifying the resulting equation

with Eq. (4.43)), we obtain

G(X|X®) =) G (X XW) + F(X W),
acA

where G(X*|X®) is a function that is related with X® € X only. Furthermore,

a tedious but straightforward mathematical manipulation from Eqs. (4.101f) to (4.103)

indicates that there exists positive-semidefinite matrices T*®) e R@+Dnax(@+)na gych

that G(X*|X®) in the equation above can be written as

G(X|X®) = ZX" = X2 + (Ve F(XW), X* = X0,
where the formulation of I'*® is given in Section . The proof is completed.
Proof of @. If we substitute Eq. into Eq. , the result is

1
(4.104) G(X[X®) =) [§||X0‘ — XM 0+ (Vxa F(XW), X — Xa<k>>} + F(x®),
acA
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Furthermore, it can be shown that

1 1 oo o
L = X0 = 3 Exe - X0,
acA
where T' ¢ R@+Dx(d+Dn s defined as Eq. (4.33), and

(VE(X®), X = XW) = (VyxaF(XW), X — X°0),
acA

Thus, Eq. (4.104) is equivalent to Eq. (4.32)), i.e.,
1
(4.105) G(X|XW) = SlIx = XW)2 + (VF(XM), X — xW) 4+ F(X®).

From Proposition , it is known that E?j’B(X|X(k)) majorizes Fgﬁ(X) and Eiajﬁ(X|X(k)) =
Fi‘;’g (X®)if X = X®_ Then, as a result Eqgs. 1) and 1) it can be concluded that

G(X|X ™) majorizes F(X) and G(X|X®) = F(X) if X = X®. The proof is completed.

Proof of[(c)} From Eqs. (¢.16), (4.27), (4.29) and ([4.105), we rewrite T ¢ R(@+Dnx(d+1)n

as

(4.106) r=3"5" me+ > 3 wMeoalrer

ACA (i )e oo wHEL (1g)e €

where QY = M7” by Eq. (4.26) and £ > 0. Then, as a result of Eqs. (4.21), (4.26)
and (4.106)), it is straightforward to conclude that

(4.107) Ik = MO 4 e.1= MO,
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The proof is completed.

Proof of@ Let T' € R@tDnx(@+hn 16 defined as

(4.108) T2y Y M+ ) > 9f+¢-L

a€A (j j)e € aa afié“» (i,j)c € B
From Assumption 4.2(d){and Eq. (4.19), it can be concluded that

(4.109) 0<wi™ <1

for any X® € RP>@+Dn  Fyrthermore, it is known that Q%ﬁ = 0, then Egs. (4.106),

(4.108) and (4.109) result in I' = I'® for any X&) € R+ The proof is completed.

4.12.4. Proof of Proposition [4.7.1

Proof of @ From Assumption and line [§ of Algorithm |§|, we obtain

(4110) GO‘<Xa(k+1)|X(k)) < Ga(Xa(k+%)|X(k))
and
(4.111) Ho(XoHs) | x 00y < go(xet) x ®),

From Eqgs. (4.30)), (4.36]), (4.110)) and (4.111)), it can be concluded that

(4.112) G(X®D | XxW) < G(x K2 x W)

and
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(4.113) H(X® 2| x0) < (X0 x®),

Note that Eq. (4.42)) suggests

(4.114) F(X*D) < q(x D] x ()
and
(4.115) G(X*H2)| X0y < F(Xx 2| x 0.

Then, Egs. (4.112) to (4.115]) result in

(4.116) F(X® D) < G(xXED|x0) < G(x ) x®) <

H(X(k+%)|X(k)) < H(X®|Xx®) = F(x®),

which indicates that F'(X®) is nonincreasing. The proof is completed.

Proof of @ From Proposition , it has been proved that F(X®) is nonincreas-
ing. From Eq. (4.11)) and Assumption , F(X®) >0, ie., F(X®) is bounded below.

As a result, there exists F*° € R such that F(X®) — F>_ The proof is completed.

Proof of From Eq. (4.116)), it is known that F(X®) > G(X&D|X®) which

suggests

(4117) F(X(k)) _ F(X(k+1)> > G(X(k+1)|X(k)> . F<X(k+1))
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From Egs. and (4.32), we obtain

(4.118) F(XU) < %||X<k+1> — X2 ) +(VF(XW), X — XWY 4 p(x 1)
and

(4.119)  G(X®HD|x0) = %HX(”” — XW)2 +(VF(XW), X — XW) + F(X0),

respectively. Substituting Eqs. (4.118) and (4.119)) into the right-hand side of Eq. (4.117)),

we obtain

(1120)  F(X®) = F(X*) > e - XOR — Sxtet - XWR
From Eqgs. and , there exists a constant scalar ¢ > 0 such that
(4.121) F(X®W) — p(x () > an(k“) — x ()2

as long as £ > 0. From Proposition we obtain

(4.122) F(X®) - p(x) -0,

and thus, it can be concluded from Egs. and that

(4.123) | X *D — x| = 0.

The proof is completed.
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Proof of @ From Eq. (4.116), it is known that F(X®) > H(X®**+2)|X®) and

G(X k)| X0) > G(X k| X0) > (X *D) which suggests

F(X®) = p(XED) > F(x &) x W) — g(x k)| x0),
From Eqgs. and , the equation above is equivalent to
(@124)  F(XW) = F(X6D) > X0 - X0, - xted - X W,
A similar procedure to the derivation of Eq. results in
(4.125) n® =10+ (¢ -¢) -1,
which suggests there exists a constant scalar 9’ > 0 such that

M =10 4§ 1

if ( > & > 0. Then, similar to the proof of Proposition , we obtain
(4.126) F(X®) = p(x®D) > %/||X<k+%> — x®)2,
Thus, it can be concluded that
(4.127) X %) — x®) = 0.

The proof is completed.

Proof of @ The following proposition about VF(X) is needed in this proof.
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Proposition 4.12.1. If Assumption 4.2(e) holds, then the Euclidean gradient VF(-) :
Réx(d+1)n _y Rdx(d+hn of F(X) in Eq. (4.12)) is Lipschitz continuous, i.e., there exists a

constant p > 0 such that |[VF(X) - VE(X')|| < p-||X - X'|.

PROOF. From Assumption it is known that p(||X|?) has Lipschitz continuous

1
gradient, which suggests that Fgﬁ (X) = Ep(HX [
1
tinuous gradient. Note that F3%(X) = §HX |3/ee in Eq. (4.16) has Lipschitz continuous
gradient as well. Then, from Eq. (4.12)), it can be concluded that F'(X) has Lipschitz

in Eq. (4.17) has Lipschitz con-

?\/[qﬂ)
ij

continuous gradient. The proof is completed. O

It is straightforward to show that the Riemannian gradient grad F'(X) takes the form

as

In the equation above, grad,F'(X) is the Riemannian gradient of F'(X) with respect to

X e X for node a € A, and can be written as

(4.128) grad, ['(X) = [gradtaF(X) gradRaF(X)} € TxaX®

where recall that

TxaX® 2 R x TraSO(d)™.

From [7,90], it can be shown that grad,. F'(X) and gradpz. F'(X) in Eq. (4.128) are

(4.129) grad,. F(X) = Vi F(X)
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and
(4.130) gradpe F(X) = Vza F(X) — R* SymBlockDiag§ (R TV g F(X)).
In Eq. (4.130), SymBlockDiag : Rémexdne —y Rdnaxdna jg 4 linear operator

1
(4.131) SymBlockDiag§(Z) £ 5BlockDiagg(Z + 2",

where BlockDiag§ : Rdmexdna s Rdnaxdna extracts the d x d-block diagonals of a matrix,

ie.,
le
BlockDiag§(Z) = € Rnaxdna

Znana

As a result of Egs. (4.128) to (4.131]), there exists a linear operator

(4132) QX . Rdxd(n—i—l) N Rdxd(n—i—l)
that continuously depends on X € X such that
(4.133) grad F(X) = Qx(VF(X)).

From Eq. (4.40)), it is straightforward to show that

(4.134) VH(X® 2| Xx0) = VR(X W) 4 (x k) — xRk =

VE(XU) 4 (x0+2) — x0n® 1 (VRxX®) - vE(X <),
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Note that Eq. (4.133]) applies to any functions on X'. As a result of Eqs. (4.133)) and (4.134]),

we obtain

(4.135) grad H(X®+2)|X®) = grad F(X*+2))+

Q ety (XU = XONTIO) 4+ Qg (VF(XW) = VF(XE42))).
From line [§ of Algorithm [9] we obtain.
grad H*(X*t+2)| x ) = 0.
In addition, it is by definition that
grad H(X|X™) = |grad HY(X1[X®0) ... grad HAI(XMA|X®),
which suggests
(4.136) grad H(X*+2) | x®) = 0.
From Eqgs. and , we obtain

grad F(X®72) = Q oy (X® = XEEN)IW) 4 Qo) (VR(X ) = VF(XW)).
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From the equation above, it can be shown that

1
lgrad F (X “F2))]]

L (VE(XE)) - V(X))

=[|Q ey (X = XC+NIW0) + Q)
(4.137) <[ Qg (X® = XEENIW) |+ [|Q ey, (VF(XKF2) = V(X)) |
<NQ i ll2 - IOy - X0+ — X W+
1Q e llz - [VE(XEHD) — V(X W),

where || - |3 denotes the induced 2-norm of linear operators. From Propositions 4.6.3(d)
and [1.12.1] there exists a constant positive-semidefinite matrix II € R(@Dnx(@+hn gpq
constant positive scalar y > 0 such that II = I = 0 and |[VE(X*+2)) — VF(X®)|| <
- || X®+2) — X®|| for any k > 0, making it possible to upper-bound the right-hand side
of Eq. :

(4.138)

1 1 1
lerad FXCE D) < 1Q gy ll2- [T [ XD — XV Qg fl- - [ XD — X O

Moreover, Egs. (4.128) to (4.130) indicate that Qx(-) only depends on the rotation R* €
SO(d)" for « € A. Since Qx(-) is continuous and SO(d)™ is a compact manifold,
ngm%)Hz is bounded for any X *+2) € X. Thus, there exists a constant scalar v > 0

such that the right-hand side of Eq. (4.138]) can be upper-bounded as

(4.139) lgrad F(X*F2))[| < p| X2 — X0,
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As long as ( > ¢ > 0, Egs. (4.126)) and (4.139) result in

2 2
||grad F(X("JF%))H2 < 5—1/,(F(X(k)) _ F(X(k“))).

Then, there exists a constant scalar ¢ = I‘j—; > 0 with which the equation above can be

rewritten as
(4.140) F(X®) = p(X KDy > %ngad P(XUt2))|2,

As a result of Eq. (4.140)), we obtain

(4.141)

K
Oy _ px+y > € kb2 < €K+ (1)1 (12
FXW) = F(XTY) 2 5 kZO||£->;I‘8udl”’(?<' D)2 =—— min |lgrad F(XT=)"

From Propositions 4.7.1}(a)| and [4.7.1(b), it can be concluded that F(X®*+1) > > for

any k > 0, which and Eq. (4.141)) suggest

1 9 F(Xx0)) _ foo
min ||grad F(X&F2)|| < \/_. (X™)
0<k<K

€ K41

The proof is completed.

Proof of As a result of Propositions [4.7.1(c)| and [4.7.1}(d)}, it is known that

HX(k—H) . X(k)“ =0

and

|X*2) — X®W| =0

as long as ¢ > & > 0. Thus, it can be concluded from Eq. (4.139) that
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grad F(X(kJ“%)) -0

if ( > ¢ > 0. In addition, Assumption indicates that grad F(X®) is continuous,
which suggests
grad F(X®) — grad F(X+32)).

Then, we obtain

grad F(X®) — 0.

The proof is completed.

4.12.5. Proof of Proposition [4.8.1

k+1)

Proof of|(a)l. In this proof, we will prove F(X®) < FY and F' < 7 by induction.

1) From lines [4] of Algorithm [I1} it can be shown that
(4.142) FIXY) = p(x©O) =F"Y = F,

2) Suppose k > 0 and F(X®) < FY holds at k-th iteration. In terms of X&+2) | if the
adaptive restart scheme for X (k+2) is not triggered, it is immediate to show from line

of Algorithm [T2] that
(4.143) F(XUD) < T,

On the other hand, if the adaptive restart scheme for X (k+3) s triggered, line of

Algorithm [I2] results in

(4.144) HO‘(X‘”‘(k+%)|X(k)) < Ha(Xa(k)|X(k)) —0,
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where He(X*W|X®) = 0 is from Eq. . Then, Egs. , and

indicate

(4.145) FX0D)) < H(XUD | xW) < P(X0) < FY,

Therefore, no matter whether the adaptive restart scheme is triggered or not, we conclude

from Eqs. (4.143]) and (4.145]) that
(4.146) F(xka)y < FY

always holds.

Furthermore, as a result of lines 25 to [27] of Algorithm [I2] we obtain

(4.147) Fx®D) _FY <. (F(X<k+%>) _ F(k)) <0.

From line [14] of Algorithm |11jand F(X D) — FY <0 in Eq. (4.147), we obtain

FOXUD) = FY = (1 =) (FX) = FY) <0

and

oD _ Bl _ n- (F(X(k+1)) _ F(k)) <0,

—(k+1)

which suggest F(X*D) < F )

<F.
3) Therefore, it can be concluded that F(X®) < FY and T

)

) < F(k), which suggests

that F* is nonincreasing. The proof is completed.
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Proof of @. From line [14] of Algorithm , we obtain

k+1)

(k)

which suggests that 7'~ is a convex combination of F(XO), F(XW), ... F(X®) as long

(k

as 1 € (0, 1]. Since F(X®) > 0 for any k > 0, we obtain F' ) > 0 as well, ie., Y i

bounded below. Proposition [4.8.1f(a)|indicates that 7Y

(k)

is nonincreasing, and thus, there

exists F'*° such that F'

— F*°. Then, it can be still concluded from Eq. (4.148) that

F(X®) — fee,

Proof of . In terms of X1 there are three possible cases:

1) If X+ is from line@of Algorithm , then the adaptive restart scheme is not triggered

and line [I0] of Algorithm [12| results in
(4.149) FY— p(x ) > . || X 0D = x W17

2) If X**V is from line 19| of Algorithm [12] then the adaptive restart scheme is triggered

and Eq. (4.124) holds as well, from which and Eq. (4.107) we obtain

P(X1) = POX0) > S| X040 — x|

)

In the proof of Proposition |4.8.1f(a), it is known that 7 > F(XW®), then the equation

above results in

(4.150) 7~ pxkrn) > §||X<k+1> _ xW|P,
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3) If X is from line of Algorithm then we obtain X0+t = X0+3) and

F(X (D)) = F(X(kJ“%)). Then, similar to the derivations of Eqs. (4.149) and (4.150)),
lines [ and [12] of Algorithm [12] result in

(4.151) FY - pxtrdy > - | X 0D — XO)|?
and
(4.152) FY _ px+d) > g”ﬁ(w+é>__)(W)H{

respectively, from which and X*+) = X(+2) and F(X*)) = F(X*2)) we obtain
either

FY — X0 > g || x4 — X097

or

F(k) _ F(X(k—i—l)) > QHX(kH) _ X(k)H2_

Then, for any n, ¥ € (0, 1], it can be shown from cases to above that there exists

a constant scalar o > 0 such that

(4.153) FY - (k) > Z)xke - x02

if £ >0 and ¢ > 0. In addition, note that Eq. is equivalent to
(4.154) FM—FW”:n(ﬂ”—mXW%>

From Eqs. (4.153)) and (4.154)), we further conclude that there exists o > 0 such that
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(4.155) F® _F Y — ). (F(k) - F(X<k+1>)> >

77_‘7||X(k+1) _ X(k)H2 > §||X(k+1) _ X(k)||2-
2 -2

Recall F* — F* from Proposition 4.8.1f(b)|, which suggests

(k+1)

(4.156) YT L,

Therefore, Egs. (4.155) and (4.156]) indicate that
[ X ¢ — x W - 0.

The proof is completed.

Proof of [(d)} Note that Eqgs. (4.151)) and (4.152)) suggest that there exists o’ > 0 such

that

/
(4.157) FY _ p(xtrd) > %HX(H%) — X0
always holds. From lines [25] to [27] of Algorithm [I2], we obtain

!
(is)  FY - Ry > (FY - p(xted)) > O xted - x 0,

where the last inequality is due to Eq. (4.157). From Egs. (4.154) and (4.158)), it can be

shown that

(4.159) FO Tk _ n - <F(k) _ F(X(k+1))> > 77¢0/||X(k+é) _ X(k)H2_
- 2
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The equation above suggests that there exists a constant scalar ¢’ > 0 such that

(4.160) 7 _ gl 5_/||X(k+%) _ X(")||2.
-2

() _ glktD)

Note that Proposition [4.8.1{(b)| results in F'

Proposition 4.8.1(c)| it can be concluded from Eq. (4.160)) that

— 0. Thus, similar to the proof of

||X(k+%) _ X(k)H 0

if ( > & > 0. The proof is completed.

Proof of @ In terms of XoK+2) ¢ X%, there are two possible cases:

1) If X°(+2) € X is from line 5| of Algorithm , we obtain

a(k—i—%) : « a|y (k)
(4.161) X <—arng§1€1/’réaH (XY™,

From Eq. , we obtain
VH (X |y ()
:VXQF(y(k)) + (Xa(kJr%) _ Ya(k))Ha(k)
—V e F(X0HD)) 4 (xo0+) — yele®) 4 (Vo F(Y®) — Vo F(XKH)),

which suggests

(4.162) grad H*(X°t+2)|y®) = grad, F(X <)+

Q?(Q(H%) ((Xa(Hi) o Ya(k)>Ha(k)) + Q;a(w%) (VX@F(Y(k)> - VXaF(X(k+§)))7
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where grad,F'(X) is the Riemannian gradient of F(X) with respect to X® € X*, and
Q%o 1 RIxdna 5 Rdxdna jg 3 linear operator that extracts the a-th block of Qx(-) in

Eq. (4.132). Since X***2) is an optimal solution to Eq. (4.161)), we obtain
(4.163) grad H*(X*(+2) |y ) = 0.

From Egs. (4.162)) and (4.163)), a straightforward mathematical manipulation indicates

(4.164) grad, F(X*2)) = Q2 .\ ((yo® — xektaye) 4

xelkt3)

a 1
QXa(kvL%) (VXQF(X(H_Q)) — VXaF(y(k)))

From Eq. , we further obtain

Jrad, F(X )]
<Nyl 1V = XD 4 Q% - [Vao F(XD) = Vo F(YO)|
<NQ% sl (VW = XEENTO) 41Q% 1 o - [VE(XEH2) = VE(YW)]|
<NQ sl [TV - [ XD YO 4@ [l - [[VE(XEH2)) = VE(Y W),
where || - ||2 denotes the induced 2-norm of linear operators. From Propositions 4.6.3(d)l

and [£.12.T], the equation above results in

1 o 1
(4.165) [|grad, F(X*D)] < Q2 Il - X048 — Y ®)

a(k+%)||2 ’

1Q% oy llz - g X O — YW,

Xa(k+%
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4.139

192 ey I in B

4.165
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is bounded as well. There-

fore, there exists a constant scalar v* > 0 such that the right-hand side of Eq. (4.165|)

can be upper-bounded:

(4.166) lgrad, F(X U2 | < v x 02 — y 0.

Recall that Y € R¥*(@+Dn regults from line [12] of Algorithm [11}

(4.167)

y®R — x® 4 (X(k)

— X(k—l))/\(k)_

In Eq. (4.167), AW € RU@+Dnx(@+1)n j5 5 diagonal matrix

AR 2 Giag{ A0 L TL ... AMI L [} @ RE+HDnx(dHn

where \*® € R is given by line [L1] of Algorithm [11] and I* € R{@*Dnax(d+hna g the

identity matrix. From Eqs. (4.166|) and (4.167)), it can be shown that

lgrad,, (X “F2))]

SVCYHX(H%) _xk (X(k) _ X(kfl)))\(k)H

(4.168)

Sya”X(kJr%)_X(k)” + 0 (X(k)_ X(k_l)))\(k)H

S o e R DA PR P |

From line |11{ of Algorithm , we obtain s*®) > 1, and thus,

A =

oty VAs*®T41-1 2509
252 VAse®)? 1141

€ (0, 1),

which suggests |A*||y € (0, 1). Then, we upper-bound the right-hand side of Eq. (4.168)

using [[A®]], € (0, 1):
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(4.169) lgrad, FOXH2)]| < v X0FD) — X042 X0 — XED).
2) If Xo(k+3) € X2 is from line [12) of Algorithm , we obtain
(4.170) Xo0+3) o arg min H(X|XW).
Xeexe

A similar procedure to the derivation of Eq. (4.166|) indicates

lgrad, F(XCH D) < v XD — X W,
where v > 0 is the same as that in Eq. (4.166)). Thus, we obtain

lerad, F(X*2) < o X4 — XO) <o X0 - X0 o) x® - X)),

Therefore, no matter if X a(k+3) is from line |5 or [12] of Algorithm , it can be shown that
(4.171) lerad, F(X O] < v X2 — X W 42 X0 — x <)

holds for any node a € A. From Eq. (4.171)), there exists a constant scalar v £ Y oaea V>

0 such that
lgrad F(X ¢+2)))|

1
<3 Jlgrad, F(X*D)]
acA

<D vt (X = X X - X))
acA

=] XD - X0 4] X0 — X

g\/iy\/ﬂx(k%) — X(k)Hz + HX(k) _ X(k71)||2_

Furthermore, if ( > £ > 0, the equation above indicates
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(4.172) [lgrad F(X*F2)|2 < 202 (| X0F2) — XO? 4 | X W — X*D)2) <

42 —1) =Mty | AV —keD) =
S (F = F )+ —(F" = F7),
where the last inequality is due to Egs. (4.155)) and (4.160)). Letting e = min{#, %} > 0,

then Eq. (4.172)) leads to

k=1)  —5(k+1)

(4.173) F Y > §||grad F(X K2,

A telescoping sum of Eq. (4.173)) over k from 0 to K yields

K
FOULFO—FY T > 53 farad P2,
k=0

and thus,

o _ —_ _ K+1 1
(4'174) F( 1) i F(O) . F(k) B F(k'H) > %0%33( ngad F(X(k—i_i))Hz.

From lines [] and [§] of Algorithm [11], we obtain

(4.175) FU=FY = p(x),
and Propositions 4.8.1f(a)| and [4.8.1f(b)| indicate
(4.176) FY > FE 5 pee

As a result of Eqgs. (4.174) to (4.176), it can be concluded that

K+1) . 1
)y _ oo>€(_ (k+2)V (|2
FXY)—F>> 1 orgringngadF(X 2|7,
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which is equivalent to

0)y = pre
; (k+3|| < 1 . FX™)
(4.177) Jnin |lgrad F'(X ) < 2\/6 K1 :

The proof is completed.

Proof of [(f)} From Propositions [4.8.1(c)] and [.8.1[d)] we obtain

HX(kJrl) . X(k)“ =0

and

||X(k+%) _ X(k)” =0

as long as ( > & > 0, from which and Eq. , it is trivial to show that
(4.178) grad F(X*+3)) - 0.
In addition, note that grad F'(X) is continuous by Assumption which suggests
(4.179) grad F(X®) — grad F(X(H%)).
From Eqgs. and , it can be concluded that
grad F(X®) - 0.

The proof is completed.

4.12.6. Proof of Proposition [4.9.1

Proof of We will prove F(X®) =% _ F*® by induction.
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1) From Eq. (4.12), it can be shown that

(4180) F(XO) =" Y Fex©O)+ Y Y FP(xO) =

a€A () E e B (i) € s
1
aa 0 aff 0
S( X mames 3o
acA (,L'J)E?aa 56/\/’7 ?aﬁ
'Sy ) =3,
BGN ’L_] E?ﬁa acA

where the last equality results from Eq. (4.81]).

2) Suppose F(X®) =3 _ F*® holds at k-th iteration. As a result of Eq. (4.83), we

obtain

4 181 Z Ga (k+1) Z Ga(on(kJrl)’X(k)) + Z Fa(k)
acA acA acA

=Y o (xet X 0) 4 P(X®) = GX & X)),
acA

where the second and third equality are due to F(X®) =3 _ F*® and Eq. (4.30),

respectively. From Eq. (4.80) and

||X(k+1) - X(k)H2 _ Z HXa(k+1) o Xa(k)||2,
acA

it is straightforward to show

(4.182) ) AGUX*HD X W) =

acA

> Z (P2 00) — B2 (x1x®)) = §|Ix 0 — x|

@ BGA af
afp )€¥
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In addition, Eqs. (4.84) and (4.181]) suggest

4 183 Z Fa k+1 Z Ga(k+1) 4 Z AGQ(Xa(k+1)|X(k))
acA acA acA

_ G(x(k+1)|X(k)) + Z AGQ<Xa(k+1)|X(k)).

acA

Substituting Eqgs. and into Eq. m yields.
Z pok+l) Z Z F{;Q(X(k+1)) + Z Z F;-?ﬁ(X(k+1))_

acA acA (7;7]‘)6?0404 «, ,8;[._}4 i ])E?aﬁ

We simplify the equation above with Eq. (4.12) and obtain
(4.184) F(XHD) =3 = ol
acA

3) Therefore, it can be concluded that F(X®) =3 _ F*® holds for any k > 0.

Proof of |(b)l We will prove 7Y = Y acA 7w by induction.

1) Recall from Egs. (4.79)), (4.82) and (4.180) that 7 = F(X), 7O = FeO and

F(XO) = Y oaca F*O) which immediately yields

)

(4.185) F = p(xO).

(k)

2) Suppose F' = Y acA 7w holds at k-th iteration. As a result of Eq. (4.79|), we obtain

FE — (=) FY 4. px D),

Note that Proposition 4.9.1f(a)| suggests F(X*+D)= Y~ paltl)  Apply e =Y o

acA acA

and F(X®&+)) = Y~ pekt) on the right-hand side of the equation above results in
acA
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(4.186) Y _ (1—mn) Z 70 n- Z patk+l) _ Z—a k+1)

acA acA acA

where the last equality is due to Eq. (4.85)).

(k)

3) Therefore, it can be concluded that F*' = > _, 7™ holds for any k > 0. The proof

is completed.

Proof of|(c)} Proposition{4.6.1|indicates E%B(X|X(k_1)) > Ff;ﬁ(X) and EZQ(X|X(k_1)) >

Fga (X), from which and Eq. 1} we obtain

(4.187) AGY(XYXx*Dy <0

as long as £ > 0. From Egs. (4.84)) and (4.187]), it is immediate to conclude

(4188) Foz(k+1) < Ga(k+1)
for any k > 0. If G* (kt1) < F , the equation above further suggests
(4189) Fa(k+1) < Ga(k+1) Sﬁa(k).

From Eq. (4.85]), we obtain

(4.190) FMY — (1) T gy el

where note that n € (0,1]. Thus, we conclude that F** is a convex combination of
7™ and Fott) wwhich and Eq. (4.189) lead to

(4.191) polett) < D) o ot

The proof is completed.
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4.12.7. Proof of Proposition [4.9.2

Za(k+1) Fa(k) by induction, from which

Proof of|(a). We will prove F*® < Y and F

—(k+1)

it can be shown that I F(k).
1) From line [7] of Algorithm [13] it can be concluded that

Fe© = 7O,

5

2) Suppose Fo® < F*Y holds at k-th iteration. If the adaptive restart scheme for

Xo0+3) is not triggered, it is immediate to show from line |7 of Algorithm (14| that
a(k)

Ga(k+ < F

On the other hand, if the adaptive restart scheme for X alkt+3) jg triggered, line [§| of

Algorithm [I4] results in
(4.192) G (Xt x0) < B (Xt X 0) < B (XWX W) =,

where the first inequality and the last equality are due to Proposition [4.6.3(e)| and

Eq. , respectively. From Egs. ) and m we obtain

(4.193) Golts) = Go(xoltd)| x W) 4 po®) <

Ha(Xa(k—i-%)’X(k)) _|_Fo¢(k) < Fa(k) < Fa(k).

Therefore, no matter whether the adaptive restart scheme is triggered or not, it can be

concluded that

(4.194) Golta) < F
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In addition, line 16| of Algorithm |14 and Eq. (4.194)) result in

(4195) Ga(k—H) _Fa(k) < ¢ . (Ga(k—‘r%) o Fa(k)) < 0’

which suggests

(4.196) Golt) < 70

As a result of Proposition [4.9.1(c)| the equation above indicates

k+1) a(k)

(4.197) polt) < T o F

a(k+1)

3) Therefore, it can be concluded that Fe® < 7Y and 7 < 7Y hold for any

k > 0.

—a(k+1)

4) Summing both sides of F’ Fa(k) over all the nodes a and implementing Propo-

sitions [4.9.1((a)| and [4.9.1|(b)| yields

F(kJrl Z 7 a(k+1) < Z F F(k

acA acA

which suggests that 7 is nonincreasing. The proof is completed.

Proof of |(b). Recalling that F(X®) > 0 holds by definition for any k > 0 and Y
(k)

is the exponential moving average of F(X©) F(X®M), ... F(X®) we obtain F
(k)

>
() 18

0, i.e., F' is bounded below. In addition, Proposition 4.9.2(a)| indicates that F

(k)

nonincreasing, and thus, there exists F* such that F*~ — F*, from which and Eq. (4.79

it can be concluded that F(X®) — F* as well. The proof is completed.
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Proof of . From Eq. (4.30), it can be shown that G(X*+D|X®) takes the form as
(4.198)

G(X(k+1)|X ZGa Xak)|X k))+FX(k ZGa Xak)|X k) _I_ZFQ
acA acA acA

where the last equality is due to Proposition 4.9.1§(a)l Applying Eq. (4.83)) on the equation

above results in

(4.199) G(X*D | X0y = Z Gala1)
acA

Recalling Gok+1) < 7™ from Eq. (4.196) and } . 4 7% = FY from Propositionf4.9.1f(b)

we obtain

(4200> G(x(k+1)|x(k)) _ Z Ga(k+1) < Z Fa(k) _ F(k)
acA acA

From Eq. (4.200]), it can be shown that

(4.201) F(k) — F(X(k+1)> > G(X(k+1)|X(k)> _ F(X(k+1))_

Substitute Eqs. (4.118) and (4.119) into the right-hand side of Eq. (4.201]) and simplify

the resulting equation:

—k 1
(4:202) FY — F(X) > X — X2, - Xk X0

From Eqgs. ) and m we obtain

—(k —(k+1 —(k
(4:203) TV —F" = (FY — D) > T o) - x W2, — T X0 - x|
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From Eq. (4.107)), note that T® — M® > ¢.1 and thus, there exists § > 0 such that the

equation above is reduced to
— — )
(4204) F(k) . F(k+1) > §||X(k+1) i X(k)HZ

as long as £ > 0. Furthermore, Proposition [4.9.2(b)| yields

(4.205) FY T L,
from which and Eq. (4.204)), we obtain
(4.206) | X ¢ — x W) - 0.

The proof is completed.

Proof of @ In terms of X “(k+%), there are two possible cases:

1) If X a(k+3) is from line 3] of Algorithm then line (7| of Algorithm |14|indicates
(4.207) FW _gatkrd) > g | xokts) _ xa®)2,

2) If Xo(+2) is from line |8 of Algorithm , then note that Eq. (4.193) holds for any
k > 0, which suggests

Fa(k) . Ga(k-ﬁ-%) > Ha(Xa(k—i—%)lX(k)) N Ga(Xa(k+%)|X(k)).

Recalling the definitions of G*(X**+2)| X ®)) and H*(X*+2)| X)) in Eqs. (4.31) and (4.38)),

we rewrite the equation above as

— 1 1
(4208)  F - @) > Xt - Xo0R ) - SIX0r) - X002,
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Similar to '™ and I in Eq. , we obtain

(4.209) o0 = el 4 (¢ —¢) - L

Applying Eq. on the right-hand side of Eq. indicates
(4.210) 7V _ gots) > %chﬂ“%) — X012,

Then, as a result of Egs. (4.207) and (4.210|), there exists a constant scalar ¢’ > 0 such

that

(4.211) 70 gater) > %'||Xa<k+§> _ xeto 2

if ¢ > ¢ > 0. In addition, lines [I6] to [I8 of Algorithm [I4] results in

am)  F oG s g (P - geted) 5 G eed - oo

where the last inequality is from Eq. (4.211). Summing both sides of Eq. (4.212) over
all the nodes o € A and simplifying the resulting equation with Proposition and

Eq. (4.199)), we obtain
F(k) N G(X(k+1)‘X(k)) > %UIHX(k+§) o X(k)HZ.

Recalling G(X*+D|x®) > F(X(+D) from Proposition [4.6.4(b)] the equation above in-

dicates

/
(4.213) Y F(XKD) > 7 _ G(X kD) x 00) > %’HX(H%) — X®2,
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From Egs. and (4.213)), it is immediate to show
7 _ D) >0 (F(k) B F(X(k+1))> > %U/HX(”%) _ X(k)Hg
Therefore, there exists a constant scalar ¢’ > 0 such that
(4.214) kD S %’||X<k+;> ~ x W2,
Since 7Y — F*°, it can be concluded that
(4.215) X0+ — x| =0

if ( > & > 0. The proof is completed.

Proof of [(e)| and [(f)l The proofs of Propositions [£.9.%(e)] and [£.9.9f)] are almost the

same as these of Propositions [4.8.1}(e)| and [4.8.1f(f)| which are thus omitted due to space

limitation.
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CHAPTER 5

Sparse Constrained Optimization of 3D Human Pose and Shape

Estimation

We propose a novel sparse constrained formulation and from it derive a real-time op-
timization method for 3D human pose and shape estimation. Our optimization method,
SCOPE (Sparse Constrained Optimization for 3D human Pose and shapE estimation), is
orders of magnitude faster (avg. 4ms convergence) than existing optimization methods,
while being mathematically equivalent to their dense unconstrained formulation under
mild assumptions. We achieve this by exploiting the underlying sparsity and constraints
of our formulation to efficiently compute the Gauss-Newton direction. We show that this
computation scales linearly with the number of joints and measurements of a complex 3D
human model, in contrast to prior work where it scales cubically due to their dense uncon-
strained formulation. Based on our optimization method, we present a real-time motion
capture framework that estimates 3D human poses and shapes from a single image at over
30 FPS. In benchmarks against state-of-the-art methods on multiple public datasets, our
framework outperforms other optimization methods and achieves competitive accuracy

against regression methods.

5.1. Introduction

Estimating 3D human poses and shapes from an image has a broad range of applica-

tions in embodied Al, robotics, AR/VR, and has seen remarkable progress in recent years.
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Among leading techniques, optimization methods [11}/12}137-140| have been moderately
successful. However, they can still take up to tens of seconds to fit 3D human poses and
shapes given an image, which is not practical for real-time applications. Deep learning
based regression methods |2, 141| have significantly reduced the computation times down
to just tens of milliseconds, but often rely on optimization during training or for refining
the network outputs. With a novel formulation, we propose fast algorithms to solve the
optimization problem of 3D human pose and shape estimation in real time and achieve a
comparable performance to the regression methods |2,[141].

Most optimization methods [11},(12,|137-140| formulate 3D human pose and shape
estimation as dense unconstrained optimization problems, differing only in terms of the
objective functions. These formulations are dense as they result in dense Hessian matri-
ces and unconstrained as the optimization variables are unconstrained. To optimize the
objective they use iterative techniques like Gauss-Newton [142| to find a local minimum
given an initial guess. These formulations, however, suffer from high computation times
due to the dense Hessian matrices that lead to O(K?) + O(K%N) time to compute the
Gauss-Newton direction for a 3D human model with K joints and N measurements. In
particular, computing this descent direction involves the steps of linearization to find the
Jacobian, building and then solving the linear system, where a dense formulation renders
all these steps expensive. Therefore, it is critical to improve the efficiency of the Gauss-
Newton direction computation to develop real-time optimization methods for 3D human
pose and shape estimation.

The preliminary results of this work are presented in [143|. Instead of using the

dense unconstrained formulation from existing optimization methods, we present a sparse
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Figure 5.1. Example solutions from our motion capture framework based
on our proposed sparse constrained optimization. (left) input image from
the 3DPW dataset, (middle) 3D pose and shape reconstruction over-
layed on the input image, (right) 3D reconstruction shown from a rotated
viewpoint.
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constrained formulation that is mathematically equivalent under mild assumptions. We
show how the underlying sparsity and constraints of our formulation can be exploited
leading to sparse Hessian matrices and ultimately computing the Gauss-Newton direction
in O(K) + O(N) time for a 3D human model with K joints and N measurements. Our
optimization method, SCOPE (Sparse Constrained Optimization for 3D human Pose and
shapE estimation), is thus orders of magnitude faster (average 4 ms convergence) than ex-
isting optimization methods, particularly when the number of joints K and measurements
N is large.

Based on our optimization method, we present a real-time 3D motion capture frame-
work (illustrated in Figure that estimates 3D human poses and shapes from a single
image at over 30 FPS. Example solutions are shown in Figure Our method allows
using a modified SMPL model |144] that has 75 degrees of freedom and 10 shape parame-
ters, and estimates both human poses and shapes with which the 3D human mesh can be
reconstructed. In contrast, several real-time 3D motion capture frameworks using opti-
mization methods [137],138| adopt a much simpler 3D skeleton model with 33 degrees of
freedom and no shape parameters to reduce the computation complexity and are therefore
unable to reconstruct the 3D human mesh. We compare our real-time 3D motion capture
framework with numerous state-of-the-art methods [2},|11},/12,139/[141},|145] on public
benchmark datasets |104[13,14]|. Our framework achieves accuracies that outperform op-
timization methods [11,/12/138,139] and are competitive to regression methods [2,141.

In summary, our contributions are: (i) we propose a sparse constrained formulation
for 3D human pose and shape estimation that is mathematically equivalent to the dense

unconstrained formulation of existing optimization methods under mild assumptions; (ii)
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we develop an efficient algorithm that computes the Gauss-Newton direction in linear-time
complexity with respect to the number of joints and measurements; and (iii) we present a
real-time 3D motion capture framework that estimates 3D human poses and shapes from
a single image.

The rest of this chapter is organized as follows. Section [0.2|reviews the state-of-the-art
optimization and regression methods for 3D human pose and shape estimation. Section
formulates the optimization problem. Section proposes the sparse constrained formu-
lation as well as the O(K) algorithm to compute the Gauss-Newton direction. Section
presents the real-time motion capture framework for 3D human pose and shape estima-
tion. Sections and evaluate the proposed method on various benchmark datasets
and make comparisons against existing state-of-the-art methods. Section concludes
this chapter and discusses future work. Section proves the propositions presented in

this chapter and presents a complete complexity analysis.

5.2. Related work

Optimization methods estimate human poses and shapes by matching 3D joints
on the human body to 2D keypoints on the image. Works in human body model-
ing [144,(146/147] and 2D keypoint detection [148-150| have made substantial con-
tributions, but the resulting optimization problem remains challenging due to the am-
biguity in the 3D information from an image and the uncertainty of 3D human poses.
To address this, recent works have incorporated 3D information, such as 3D keypoint

positions [137,138|, part orientation fields [11], silhouette [151], etc, as additional fitting



255

terms. Additionally, human 3D pose priors in the form of mixture of Gaussians [12], vari-
ational auto-encoder [152], and normalizing flow [153] have been trained from numerous
datasets [131|154,155| and successfully applied to human 3D pose and shape estimation.
A closer look at these optimization methods [11,12[137-139,[153| does reveal that they
primarily differ in their loss terms of the objective function while still utilizing the same
underlying dense unconstrained formulation. We show that such a formulation is inher-
ently inefficient in computing the Gauss-Newton direction. Thus despite the considerable
progress, these methods still take tens of seconds to converge and are impractical for real
time applications.

Regression methods use deep neural networks to regress human poses and shapes
directly from images. In most cases, regression methods [2,/141,(145|156| take only
tens of milliseconds to process one image and meet the real-time requirements. Unlike
[157-H161] that lift 2D keypoints to 3D keypoints, regression methods for 3D human pose
and shape estimation face a challenge in having access to large datasets with ground truth
labels of 3D human pose and shape. To address this, regressions methods often employ
optimization methods to precompute 3D ground truth for supervision [141] or even have
optimization methods in the loop [2| during training. Other examples like [156] rely on
optimization methods to refine the network outputs. In these aforementioned scenarios,
the computational efficiency of optimization methods play an important role both during

training and deployment.
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5.3. Problem Formulation

5.3.1. SMPL Model

The SMPL model [144] is a vertex-based linear blend skinning 3D human model. In
this chapter, we use a SMPL model that has K = 23 rotational joints, V' = 6890 vertices,
and P = 10 shape parameters.

The SMPL model represents the human body using a kinematic tree with K + 1 inter-
connected body parts indexed with ¢ = 0, 1, --- , K. In the rest of this chapter, we use
par(i) to denote the parent of body part ¢, and T; € SE(3) the pose of body part ¢, and
Q; € SO(3) the state of joint i, and B € RY the shape parameters. Note that body part

i is connected to its parent body part par(i) through joint i.

R; t
Let T; £ € SE(3) denote the pose of body part ¢ where R; € SO(3) is

0 1
the rotation and t; € R3 is the translation as well as the position of joint . The SMPL

model [144] assumes that the joint positions at the rest pose linearly depend on the
vertex positions, and the vertex positions at the rest pose linearly depend on the shape
parameters 3 € RY. Thus, we conclude that the joint positions t; € R? at the rest pose
linearly depend on the shape parameters 3, i.e., there exists J; € R**? and ¢; € R? in

the SMPL model such that t; at the rest pose takes the form of
(5.1) ti=J-8+c.

Moreover, the relative joint position At; € R3 between any connected body parts is
constant, and thus, we obtain At; = t; — tpars), where par(i) denotes the index of the

parent of body part i. Then, joint position t; € R? at any poses satisfies
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(5.2) ti = Rpar() At + thar(i) = Rpari) (8 — tpar(i)) + tpar(i)-

In the equation above, Rpariy is rotation of pose Tpary € SE(3). Substituting Eq. (5.1)

into Eq. (5.2) to cancel out t; and tpar(;), we obtain

(5.3) ti = Rpar(n) (Si - B+ 1) + tpar(i),
where

(5.4) Si = Ti — Tpar(i) € R”P
and

(5.5) L, = ¢; — Cpur(i) € R

It is immediate to show that S; - 3 +1; is the relative joint position between body parts ¢

and par(), and thus, the corresponding relative pose Tpa), is

Q S-B+]
(56) Tpar(i),i =
0 1

where €; € SO(3) is the state of joint . Then T; can be recursively computed as

Q S-B+]
(57) T; = Tpar(i)Tpar(i),i = Tpar(i)
0 1

5.3.2. Rigid Skinning Assumption of Keypoints

We need to select a set of joints and vertices on the SMPL model as keypoints to

calculate 2D and 3D keypoint losses, part orientation field losses, etc. [11,(12,(137,/138|.
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In this chapter, we modify the SMPL model and make the following assumption of the

selected keypoints for loss calculation.

Assumption 5.1. Each keypoint j is rigidly attached to a body part i, i.e., the

position v; € R? of keypoint j is

where R; € SO(3) and t; € R? are the rotation and translation of pose T; € SE(3), and
v; € R? is the relative position of keypoint j with respect to body part i. Furthermore,
there exists V; € R¥*F and v, € R? such that the relative position v; € R? in Eq. (5.8)

is evaluated as
(59) Vj - Vj . ,6 +Vj70.

For simplicity, we use V; and V; extracted from the joint and vertex positions at the
rest pose of the SMPL model, whose derivation is similar to that of S; and 1; in Eq. .
We remark that Assumption [5.1]is important for our sparse constrained formulation pre-
sented later in this chapter.

Compared to the SMPL model, Assumption keeps rigid skinning (shape blend
shapes) while dropping nonrigid skinning (pose blend shapes) for the vertex keypoints.
We argue that Assumption [5.1]is a reasonable and mild modification for human pose and
shape estimation. First, the SMPL model evaluates the joint keypoints, such as wrists,
elbows, knees, etc, using Eq. , which is essentially equivalent to Egs. and
of rigid skinning. While the SMPL model has each vertex position depend on the poses

of all the body parts, the vertices selected as keypoints, such as nose, eyes, ears, etc., are
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mainly affected by a single body part. Finally, we note that inaccuracies are also present

in 2D and 3D keypoint measurements used for estimation, which are usually much larger

than those induced by the SMPL model modification using Eqgs. (5.8) and (5.9)).

5.3.3. Objective Function

Given an RGB image, we use the following objective for human pose and shape esti-

mation:

(5.10) E= >  (Eapy+Asp-Espi+ Ap - Epi + Ar - Eri + Aq - Equ) + A - Eg,
0<i<K
where Asp, Ap, Ar, Aq and Ag are scalar weights and joint state €2y € SO(3) for body part

0 is a dummy variable. Each loss term in Eq. (5.10)) is defined as follows:
<1> EQD’i = %Zj€V2D,i

set of indices of keypoints attached to body part 7 and selected to calculate the

Ik (v;) — vap||* is the 2D keypoint loss, where Vap ; is the

2D keypoint loss, I1k(+) is the 3D to 2D projection map with camera intrinsics K,
v, € R? is the keypoint position, and vop ; € R? is the 2D keypoint measurement.

(2) E3D’i = %ZjEVBD,i

of indices of keypoints attached to body part ¢ and selected to calculate the 3D

v; — V3p;||? is the 3D keypoint loss, where Vjp; is the set

keypoint loss, v; € R? is the keypoint position and vsp ; € R? is the 3D keypoint
measurement.

A
(3) Epi = %ZjePi

the set of indices of keypoints attached to body part ¢ and selected to calculate

”:]—:E” = f)]-HQ is the part orientation field loss [11], where P; is
j i

the part orientation field loss, v; € R? is the keypoint position, and t; € R? is
the position of body part i as well as the translation of pose T; € SFE(3), and

p; € R? is the part orientation field measurement.
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(4) Er,; = 3T, - T,||? is the prior loss of pose T; € SE(3), where T; € SE(3) is a
known prior estimate.
A

(5) Eq; = 3|lra,(€2)||? is the prior loss of joint state ©; € SO(3), where rg,(-) is a

normalizing flow of SO(3) trained on the AMASS dataset [154].

From the definitions above, each loss term E(4); in Eq. (5.10) can be in general for-
mulated as
1
(5.11) Ey) = Z §||r(#),ij(Ti7 2, B, Vj)H27
J
where r(4) ;;(-) is a function of T;, ©;, B and v;. Since keypoint j in Eq. (5.11)) is attached

to body part 4, then Egs. (5.8) and (5.9) indicate that v; is a function of T, and 3:
(512) V; = Rl (VJ . ,6 —{—Vj’()) + tz

As a result of Eq. (5.12)), we can cancel out v; in Eq. (5.11]) and simplify re () as a
function of T;, €2; and 3:
1
(5.13) Ew),i = Z §||r(#),ij(Ti7 Q. 6)|*.
J
We remark that ry),;(-) in Eq. (5.13)) is related to T; € SE(3) and ©; € SO(3) of a
single body part 7. Then, Eq. (5.13)) immediately suggests that Eq. ((5.10)) takes the form
of
1

0<i<K

where each r;(-) is a function of T; € SE(3), ; € SO(3) and B € RF. Besides those in

Eq. (5.10), a number of losses can be written in the form of Eqs. (5.11]) and (5.13]) as well.
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5.3.4. Dense Unconstrained Optimization

With Egs. (5.6) and (5.7), we might recursively compute each T; € SE(3) through a
top-down traversal of the kinematics tree. Thus, each T; can be written as a function of
the root pose Ty € SE(3), the joint states Q = (2, Q, ---, Qx) € SO(3)5*! and the

shape parameters 3 € R”:

In existing optimization methods |11,/12}/137-139,[152|, Eq. (5.15) is substituted into
Eq. (5.14) to cancel out non-root poses T; € SE(3) (1 < i < K), which results in a dense
unconstrained optimization problem of Ty € SE(3), @ € SO(3)X and B € R”:

(5.16) min E= Y %Hri(TO,Q,ﬁ)HQ.

To, €2,
0.4, 0<i<K

In general, Gauss-Newton is the preferred method to solve optimization problems of
the kind in Eq. . This consists of linearization to find the Jacobian matrix, building
and then solving the linear system to find the Gauss-Newton direction. In Section [5.9.2]
we show that Eq. yields a dense linear system when computing the Gauss-Newton
direction. Since the complexity of dense linear system computation increases superlinearly
with their size, the dense unconstrained formulation of Eq. has poor scalability when

the human model has large numbers of joints and measurements.

5.4. Method

In this section, we present a sparse constrained formulation for 3D human pose and

shape estimation that is mathematically equivalent to the dense unconstrained one in
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Section [5.3.4l From our formulation, we derive a method that scales linearly with the

number of joints and measurements to compute the Gauss-Newton direction.

5.4.1. Sparse Constrained Optimization

We introduce 8; € RY with 3; = Bpar) for each body part ¢ in the SMPL model.
Since B; = Bpar(s) indicates 3; = B, and T, £2; and @ satisfy the kinematic constraints
of Eq. (5.7), we formulate 3D human pose and shape estimation of Eq. (5.14) as a sparse

constrained optimization problem on {T;, B;, Q;}X, € (SE(3) x R x SO(3))K+1:

_ |
(5.17) min > §||ri(TiyﬂiaBi)||2

{Tz‘» Bi, Qi}izo 0<i<K

subject to

T, = Fi(Tpar(i)a ﬁpar(i)7 Qz)

5.18
( a> A Qz Sz : IBpar(i) + lz
= Tpar(i) )

0 1

(518b) /61 = Bpar(i)-

In Eq. (5.18al), note that F;(+) : SE(3) x R x SO(3) — SE(3) is a function corresponding
to Eq. 1} and maps Tpar), Bpar(i), 2 to T;. For notational simplicity, we define x; =
(Ty, B;) € SE(3) x R, Then, Egs. (5.17) and (5.18) are equivalent to

_ 1
(5.19) min Z §||ri(Xz‘, Q,)[°

b idizo Sk
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subject to

F; (Xpar(i) ) Qz)
/Bpar(i)

In spite of additional optimization variables and kinematic constraints compared to Eq. ((5.16]),

we have the following proposition for our sparse constrained formulation.

Proposition 5.4.1. Eqgs. (5.19) and (5.20) are equivalent to Eq. (5.16) under As-

sumption [5.1]

PROOF. Please refer to Section [5.9.1] O

In the remainder of this section, we will make use of the sparsity and constraints of

Egs. (5.19) and (5.20]) to simplify the computation of the Gauss-Newton direction.

5.4.2. Gauss-Newton Direction

The computation of the Gauss-Newton direction for Egs. (5.19)) and (5.20)) is summa-

rized as follows.

Step 1: The linearization of Egs. (5.19)) and (5.20)) results in

(521) min AE = Z %”Ji,lAXZ' + Ji72AQi + I‘i||2’

) K
{Ax;, AQ; )L, 0<i<K

subject to

(522) Axi = AiAXpar(i) + Bi7
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where Ax; = (AT;, AB;) € R+ and AQ; € R? are the Gauss-Newton directions of x;

and €;, respectively, and r; in Eq. (5.21) is the residue, and

or; Or; Or; or;
5.23 J., &2 == ! i dJ,, 2 =~
(5.23) 1 O, {8Ti gi] iz = 50,
in Eq. (5.21)) are the Jacobians, and
OF; OF; OF;
(524) Az 2 anar(i) aIBpar(i) and Bz L 892
0 1 0

in Eq. (5.22) are the partial derivatives of Eq. (5.20). For Ax; = (AT;, AB;) € R¢*F
in Egs. (5.21) and (5.22)), note that AT; € R® and AB; € R” are the Gauss-Newton

direction of T; and 3;, respectively.

Step 2: We reformulate Egs. (5.21)) and (5.22) as

K
1
(525) @ HAllél 1K AE:Z [§AX;~|—H1‘711AXZ' + AQ:Hi721AXZ'+
Xi, i f5=0 i=0

1

SAQTH A, + gl Ax; + g,A,
subject to
(526) AXi = AiAXpar(i) + BZAQH

A A A . A
where H; 1; = J;‘rlJi,l; H,» = JZ-TQJM and H; 9 = JLJM are the Hessians, and g;; =
T L T :
J;iri and g;» = J, ,1; are the gradients.

Step 3: Implement Algorithm [15] to solve Eqgs. (5.25) and (5.26) and compute the

Gauss-Newton direction {Ax;, AQ; £ .
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Here, Steps 1 to 3 compute the Gauss-Newton direction {Ax;, AQ;}E ) by solv-
ing a constrained quadratic optimization problem. The following proposition is for its

completeness and complexity.

Proposition 5.4.2. The resulting {Ax;, AQ,}E, for Egs. and is also
the Gauss-Newton direction for Eq. . Furthermore, Egs. and take
O(K) + O(N) time to compute {Ax;, AQ;}£  using Steps 1 to 3, where K and N are
the number of joints and measurements of the 3D human model, respectively. In contrast,

Eq. (5.16) has a complexity of O(K?) + O(K?N).

PROOF. Please refer to Section [5.9.2 O

In general, the computation of the Gauss-Newton direction occupies a significant por-
tion of workloads in optimization. Since our sparse constrained formulation improves this
computation by two orders in terms of the number of joints and has the number of joints
and measurements decoupled for the complexity, it is expected that our resulting method

greatly improves the efficiency of optimization.

5.5. Real-time Motion Capture Framework

We design a real-time monocular motion capture framework, illustrated in Figure [5.2]
based on our fast optimization method to recover 3D human poses and shapes from a
single image. Similar to the other frameworks [137]/138]|, ours consists of a preprocessing
pipeline with the input image fed to YOLOv4-CSP |3,162| for human detection, then to
AlphaPose [149| for 2D keypoint estimation, and finally to a light-weight neural network

that is a modification of VideoPose3D [158| for 2D-to-3D lifting. The output of the
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Algorithm 15 Solve Egs. (5.25)) and ((5.26)) and compute the Gauss-Newton direction

1. Input:{H; 1, Hio1, Hio, 81, 82}
2: Output:{Ax;, AQ;}X, and AE,
3: fori=K — 1do
4: Nt =Hiin + 3 jcoam Min
5 Nioi = H;o
6 N2 = H; 2
7 n; =g+ ZjeChd(i) my
8 n;, = g2
9 AE =i AE
10: Qi,ll = A;’rNi,llAi
11: Qi2i= BZTNi,llAi + N 21A;
12: Qi 2 :B;’rNi,llBi +N;2B; + B;FNIQ]_ + N 2
130 qi=An;;
14: iz =B/n;;1 +n;,
15: K, = —Q;212Q1,21
16: k, = _Q;QIqu,Q
17: M1 = Qi1 — QZlei_,lele
18: mi; =dq;1— QZin_,élqu
19: AE; = AE,; — %q;l,—QQ;Qqui,Z
20: end for
21: AQy=0
22: My = Hy 11 + ZjEChd(o) M, 11
23: my = o1 + ZjeChd(O) m;
24: AE) = 2 icehd(0) DEi
25: Xo = —M, 'my
26: AEy = AEq — %mgl\/[glmo
27: fori =1— K do
28: AQ; = KiAXpar) + ki
20:  AX; = A AXpu() + BiAQ;
30: end for
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>

Figure 5.2. Overview of our motion capture framework. Given an image,
our preprocessing pipeline estimates a bounding box, 2D and 3D keypoints.
The 2D and 3D keypoints are then sent to our fast sparse constrained
optimizer for 3D pose and shape reconstruction. Note that 3D keypoints
are used to compute the part orientation fields [11].

preprocessing pipeline is then sent to our fast optimizer for 3D reconstruction. The Python
API of NVIDIA TensorRT 7.2.1 is used to accelerate the inference of the preprocessing

neural networks.

5.5.1. Human Detection

The YOLOv4-CSP [3[[162] is used for human detection to balance between accuracy

and efficiency. The size of input images for YOLOv4-CSP is 512 x 512.

5.5.2. 2D Keypoint Estimation

The AlphaPose is used for 2D keypoint estimation with 256 x 192 input images.
The following datasets are used to train AlphaPose.

Human3.6M is a popular dataset for 3D human pose estimation. Following the
standard training-testing protocol in [157], we use subjects S1, S5-S8 for training.

MPI-INF-3DHP is a multi-view markerless dataset with 8 training subjects

and 6 test subjects. We use subjects S1-S8 that are downsampled to 10 FPS for training.



268

COCO [163] is a large-scale dataset for 2D joint detection. We use the COCO
training datasets for training.
MPII |164] is a 2D human pose dataset that is extracted from online videos. We use

the MPII training datasets for training.

5.5.3. 3D Keypoint Regression

In our real-time motion capture framework, we use a light-weight fully connected
neural network for 2D-to-3D lifting. The 3D Keypoint regression network is a modification
of VideoPose3D [158]. From the 3D keypoint regression network, we further obtain the
part orientation field [11] for each body part. We use the training datasets of Human3.6M
[13] and MPI-INF-3DHP [14] that are downsampled to 10 FPS to train the 3D keypoint

regression network.

5.6. Evaluation

In this section, we present quantitative and qualitative evaluation of our method
against state-of-the-art optimization and regression methods on multiple public bench-
mark datasets. All experiments are done on an Intel Xeon E3-1505M 3.0GHz CPU and

a NVIDIA Quadro GP 100 GPU.

5.6.1. Datasets

We evaluate all methods on the following datasets.
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Human3.6M (H36M) [13] is one of the most commonly used datasets for 3D human
pose (and shape) estimation (it was obtained and used by coauthors affiliated with aca-
demic institutions). Following the standard training-testing protocol established in [157],
we use subjects S9 and S11 for evaluation.

MPI-INF-3DHP [14] is a markerless dataset with multiple viewpoints. We use
subjects TS1-TS6 for evaluation where the first four (TS1-TS4) are in a controlled lab
environment and the last two are in the wild (T'S5-TS6).

3DPW [10] is an in-the-wild dataset captured from a moving single hand-held camera.
IMU sensors are also used to compute ground-truth poses and shapes using the SMPL

model. We use its defined test dataset for evaluation.

5.6.2. Computation Times

We evaluate all methods on their computation or inference times on the Human3.6M
dataset [13| dataset. We compare optimization methods against ours on the optimization
only time and compare all methods on the total computation time per image.

Optimization time is reported in column 4 of Table [5.1 Our method converges
in 20-50 iterations taking less than 4ms on average to reconstruct 3D human poses and
shapes. In contrast to existing optimization methods that estimate pose and shape |11,
12,139] in 20-45s, ours is 4 orders of magnitude faster. As discussed earlier, our method
uses the SPML model with 2.6 times as many variables (75 degrees of freedom and 10
shape parameters) as the 3D skeleton in VNect [138] (33 degrees of freedom and no
shape parameters)—note that the complexity of optimization problems typically increases

superlinearly with the number of optimization variables. Our optimization method is still
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twice as fast as VNect that only estimates poses (with an objective function with fewer loss
terms). We attribute the significant improvements in optimization times to our sparse
constrained formulation whose computation of the Gauss-Newton direction has linear
rather than cubic complexity with the number of joints and measurements. The ablation
studies in Section further support our complexity analysis.

Total time includes the preprocessing time and any optimization or regression time
and reflects the overall time it takes for a method to produce estimates given an image. All
timings are reported in columns 3-6 of Table [5.1] The regression methods [2}[141][145]
use ground-truth bounding boxes during evaluation. Therefore, we assume YOLOv4-
CSP [3|162] (17ms) is used in practice to obtain bounding boxes from images and count
it as the preprocessing time per image. For the optimization methods, the preprocessing
time of VNect |138] is computed from its own neural networks while for others [11,12//139|
the preprocessing pipeline is similar to ours and we assume their times (29ms) are close
to ours. Note that in our method the 29ms preprocessing time is a significant portion of
the total time, while for the other optimization methods (that estimate pose and shape)
it is negligible compared to their optimization times. SPIN |2]| has the lowest total time
of 29ms and ours is a close second with 33ms. Our motion capture framework thus has a

speed of over 30 FPS which is sufficient for real-time applications.

5.6.3. Accuracy

Human3.6M. We evaluate all methods on the Mean Per-Joint Position Errors with-
out (MPJPE) and with (PA-MPJPE) Procrustes Alignment on two common protocols.

Protocol 1 uses all the four cameras and Protocol 2 only uses the frontal camera. The
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results are reported in columns 7-9 of Table [5.1] Our framework outperforms the other
methods on Protocol 1 MPJPE, and achieves the second lowest PA-MPJPE slightly be-
hind SPIN [2] on both Protocols 1 and 2. Though not presented in Table 5.1}, our method
also has the lowest MPJPE on Protocol 2, which is 60.3 mm.

MPI-INF-3DHP. This is a more challenging dataset than Human3.6M dataset. In
addition to MPJPE, we also compare on Percentage of Correct Keypoints (PCK) with a
threshold of 150 mm and Area Under the Curve (AUC) for a range of PCK thresholds
as alternate metrics for evaluation. The results of MPI-INF-3DHP without and with
rigid alignment are presented in Table [5.2l Our method achieves the state-of-the-art
performance on all metrics.

3DPW. The results are reported in Table [5.3] Our method has the second lowest
MPJPE and PA-MPJPE, and is competitive against the regression method SPIN [2]|. Our

method also outperforms regression methods that use multiples frames [165,166].
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Table 5.2. Evaluation on the MPI-INF-3DHP dataset. Our method out-
performs optimization (denoted by *) and regression methods over multiple
accuracy metrics before and after rigid alignment.

Method | PCK 1 AUC 7t MPJPE |
Absolute (w/o rigid alignment)
Mehta et al. [12] 75.7 39.3 117.6
HMR [141] 72.9 36.5 124.2
SPIN |2] 76.4 37.1 105.2
*XNect [137] 77.8 38.9 115.0
*VNect [138| 76.6 40.4 124.7
*Ours 83.0 41.9 91.5
Rigid aligned
HMR [141] 86.3 47.8 89.8
SPIN |2] 92.5 55.6 67.5
*VNect [138| 83.9 47.3 98.0
*Ours 94.6 59.0 62.1

Table 5.3. Evaluation on the 3DPW dataset. Our method is competitive
against the best regression method SPIN. * denotes optimization method
and T indicates that the method uses multiple frames.

Method MPJPE | PA-MPJPE |
AMR [141] 130 81.3
Kolotouros et al. [145| - 70.2
SPIN [2] 96.9 59.2
TArnab et al. [166] - 72.2
fKanazawa et al. [165| 116.5 72.6
*XNect [137] 134.2 80.3
*Ours 98.6 68.0

5.6.4. Qualitative Results

We present typical failure cases due to inaccurate detection of our preprocessing
pipeline in Fig. and qualitative comparisons with SPIN |2] and SMPLify [12] on diffi-

cult examples from the Human3.6M [13]|, MPI-INF-3DHP [14] and 3DPW [10] datasets
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Figure 5.3. Typical failure cases of our method due to (left) body part occlu-
sion, (middle) incorrect body orientation detection, (right) depth ambiguity
of monocular camera.

in Figs. to For a fair comparison, we add extra 3D keypoint measurements to
SMPLify to improve its performance. In Figs.[5.4] to [5.9] it can be seen that our method

has better pixel alignment than SPIN and generates results of higher quality than
SMPLify [12].

5.7. Ablation Studies

In the ablation stuidies, we analyze the impacts of the number of joints K, the number
of measurements NV, and the number of shape parameters P on the computation of the
Gauss-Newton direction. The SMPL model [144] with K = 23 joints and SMPL+H

model [167] with K = 51 joints are used for evaluation.



SPIN 2| Ours Original

SMPLify [12!

Figure 5.4. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify (fourth row in purple) on
the Human3.6M dataset.
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SPIN |2 Ours Original

SMPLify [12!

Figure 5.5. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify [12]| (fourth row in purple) on
the Human3.6M [13] dataset.



SPIN |2] Ours Original

SMPLify [12]

Figure 5.6. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify (fourth row in purple) on
the MPI-INF-3DHP dataset.

277




SPIN |2] Ours Original

SMPLify [12!

Figure 5.7. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify (fourth row in purple) on
the MPI-INF-3DHP dataset.
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SPIN |2] Ours Original

SMPLify [12!

Figure 5.8. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify (fourth row in purple) on
the 3DPW dataset.
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SPIN |2] Ours Original

SMPLify [12!

Figure 5.9. Qualitative comparisons of our method (second row in pink),
SPIN [2] (third row in gray), and SMPLify (fourth row in purple) on
the 3DPW dataset.
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5.7.1. Experiments

In this section, the CPU time to compute the Gauss-Newton direction w/ and w/o
our method is recorded for the SMPL and SMPL+H models in the following experiments.

Experiment 1. The number of shape parameters P is 0 and the number of measure-
ments N increases from 120 to 600 for both of the SMPL and SMPL+H models.

Experiment 2. The number of shape parameters P is 10 and the number of mea-
surements N increases from 120 to 600 for both of the SMPL and SMPL+H models.

Experiment 3. The number of shape parameters P increases from 0 to 10, and each
joint of the SMPL and SMPL+H models is assigned with a 2D keypoint, a 3D keypoint,
and a part orientation field as measurements.

The SMPL and SMPL-+H models have different numbers of joints, and Experiments
1 to 3 have varying numbers of measurements and shape parameters. Thus, these exper-
iments are sufficient to evaluate the impacts of the number of joints K, measurements N

and shape parameters P on the computation of the Gauss-Newton direction.

5.7.2. Number of the Joints

The CPU time ratio of the SMPL+H and SMPL models to compute the Gauss-Newton
direction is used as the metric to evaluate the impact of the number of joints K. Note
that the SMPL and SMPL+H models have K = 23 and K = 51 joints, respectively. The
CPU time ratio reflects the additional time induced as a result of the more joints on the
SMPL+H model. The CPU time ratios of the three experiments are reported in Fig.

and discussed as follows:
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Figure 5.10. The CPU time ratio of the SMPL+H and SMPL models to
compute the Gauss-Newton direction with (a) different numbers of measure-
ments and no shape parameters, (b) different numbers of measurements and
10 shape parameters, and (c) different numbers of shape parameters. The
SMPL and SMPL+H models have K = 23 and K = 51 joints, respectively.
In Figs.[5.10] (a) to|5.10|(c), the solid lines denote the actual CPU time ratio
of the SMPL+H and SMPL models that is obtained from the experiments,
whereas the dashed lines denote the expected CPU time ratio that is ap-
proximated from the complexity analysis in Tables to 5.8 It can be
seen the impact of the number of joints is around two orders of magnitude

less on our method.
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In Experiment 1, there are no shape parameters and the computation of the
Gauss-Newton direction is dominated by the number of measurements N. From
Tables to it is known that our method has O(N) complexity, which is
not related with the number of joints K, and thus, the expected CPU time ratio
with our method should be

1
- =1
1

In contrast, the CPU time without our method is approximately O ((3K + 6)?),

which suggests an expected CPU time ratio of

2
3x51+6 — 449
I x23+6

The numbers of 1 and 4.49 in the two equations above are consistent with the
results in Fig. [5.10((a).

In Experiment 2, there are 10 shape parameters. However, the analysis is still
similar to that of Experiment 1. From Tables[5.6|to 5.8 the expected CPU time
ratio of the SMPL+H and SMPL models w/ and w/o our method should be

around

and

2
3x51+6+10 _ 3.05.
3x23+6+10

respectively, which is consistent with the results in Fig. [5.10|(b).
In Experiment 3, the number of measurements N is proportional to the number of

joints of the SMPL and SMPL-+H models. Then, as a result of Tables[5.6] to[5.8]
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the CPU time w/ and w/o our method to compute the Gauss-Newton direction
should be around O(K) and O ((3K + 6)?), respectively, and the corresponding

expected CPU time can be also approximated by

1
5— = 2.22
23

and

3x51+6\°
P27 ) —953
(3><23+6) ’

which is consistent with the results in Fig. [5.10c).

(4) From Fig. and the discussions above, it can be further concluded that the
number of joints has around O(K?) times less impact on our method, which sug-
gests that our sparse constrained formulation is more suitable for human models

with more joints.

5.7.3. Number of the Measurements

The CPU time w/ and w/o our method to compute the Gauss-Newton direction and
the corresponding speedup in Experiments 1 and 2 are reported in Figs. and [5.12 It
can be seen from Figs. [5.11] and [5.12] that our method has 4.73 ~ 13.91x speedup on the
SMPL model and a 12.17 ~ 43.24x speedup on the SMPL+H model. Furthermore, no
matter whether there are shape parameters or not, the speedup of our method is greater
as the number of measurements increases, which means that our sparse constrained for-

mulation is more efficient to solve optimization problems with more more measurements.
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Figure 5.11. The computation of the Gauss-Newton direction with different
numbers of measurements and no shape parameters. The results are (a)
the CPU time with and without our method on the SMPL and SMPL-+H
models, and (b) the speedup of our method on the SMPL and SMPL-+H
models, and (c) the speed up of our method on the SMPL model, and (d)
the speed up of our method on the SMPL+H model.
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Figure 5.12. The computation of the Gauss-Newton direction with different
numbers of measurements and 10 shape parameters. The results are (a)
the CPU time with and without our method on the SMPL and SMPL+H
models, and (b) the speedup of our method on the SMPL and SMPL-+H
models, and (c) the speed up of our method on the SMPL model, and (d)
the speed up of our method on the SMPL+H model.
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5.7.4. Number of the Shape Parameters

The CPU time w/ and w/o our method to compute the Gauss-Newton direction and
the corresponding speedup in Experiment 3 are reported in Fig. [5.13] It can be seen
from Fig. that our method has a 4.92 ~ 7.78x speedup on the SMPL model and a
18.63 ~ 34.18x speedup on the SMPL+H model, which is consistent with the analysis
that our sparse constrained formulation has better scalability on human models with
more joints. On the SMPL-+H model, the CPU time taken to compute the Gauss-Newton
direction without our method is as many as 2.5 ms, which is difficult to be used in real time
considering that most optimization methods need around 20 ~ 30 iterations to converge.
As a comparison, our method is significantly faster on both of the SMPL and SMPL+H
models, for which the CPU time is 0.027 ~ 0.13 ms. In particular, note that if there are
no shape parameters, our method has a further acceleration of the computation—this has
is important for real-time video tracking of 3D human pose and shape, where the shape

parameters that are estimated from the first few frames can be reused.

5.8. Conclusion

We considered the problem of 3D human pose and shape estimation by presenting a
sparse constrained formulation that performs on par with regression methods. We demon-
strated how to exploit the sparsity in our formulation and build an optimizer that can
compute the Gauss-Newton direction in only linear complexity (with respect to the num-
ber of joints and measurements in the human model). This was a key contributing factor

in bringing down the computation times of existing optimization methods by orders of
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Figure 5.13. The computation of the Gauss-Newton direction with differ-
ent number of shape parameters. The results are (a) the CPU time with
and without our method on the SMPL and SMPL+H models, and (b) the
speedup of our method on the SMPL and SMPL+H models, and (c) the
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magnitude to 4ms. In benchmarks across multiple datasets on several metrics our frame-
work, that uses a preprocessing neural network plus our optimizer, was highly competitive
against the best performing regression method in terms of speed and accuracy.

We note that our fast framework can also benefit regression methods by quickly refining
their outputs or by reducing training times for methods that train with some optimization
in the loop.

The qualitative results illustrate that our framework was mainly limited by the relia-
bility of the preprocessor. While our primary focus in this work was on the optimization
side, some investment in engineering the preprocessor could yield further improvements in
performance. Although we employed the SMPL model in our current implementation, our
optimizer has the flexibility to support other types of 3D human models if the appropriate
loss terms are specified for the objective. In particular, sparse 3D human models such as
STAR [147]| would be well suited for our method. With an additional preprocessor, and
model and loss terms to support human hands and facial expressions, our framework can

also be extended to address the total 3D human capture problem.

5.9. Proofs

5.9.1. Proof of Proposition [5.4.1

In Egs. (5.16)) and (5.19), T; € SE(3) is the rigid body transformation of body part
i, and §2; is the state of joint 4, and = (24, --- , Qx) € SO(3)¥ are the joint states,
and B and 3; € R” are the shape parameters, and F;(-) : SE(3) x R” x SO(3) — SE(3)

is a function that maps Tpa i), Bpars) and €2; to T;.
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Note that Eqs. (5.17) and (5.18) are equivalent to Eqgs. (5.19) and (5.20). If we let
Bo = 3, Eq. (5.18b)) suggests that 3; = B for all i = 1, --- | K, from which Egs. (5.19)
and ((5.20)) are reduced to

K
1
5.27 min E= —||r:(T5, Q. B
(5.27) o 2 B2 il
subject to
Ti :Fi(Tpar(i)7 ﬁ? Qz)
(5.28) Q Si-B+1

=Tpar(i)

0 1

Next, as mentioned in Section [5.3.4] if we perform a top-down traversal of the kine-
matic tree of the SMPL model and recursively exploit Eq. (5.28) for each body part
i=1,---, K, then, all of T; € SE(3) can be represented as a function of the root pose

Ty € SE(3), and the joint states © € SO(3)¥X, and the shape parameter 3 € R” i.e.,
(5.29) T; £ T; (To, 2, B)

If we use Eq. (5.29) to cancel out non-root rigid body transformations T; (1 < i < K),
each () in Eq. (5.27) is rewritten as a function of Ty € SFE(3), and Q € SO(3)X,
and B € R, from which we obtain an optimization problem of a dense unconstrained

formulation
K

) 1
min E = Z §||ri(T07 Q, 5)“2

To, Q2,8 P
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that is the same as Eq. (5.16)). Therefore, it can be concluded that Eqgs. ((5.19) and ({5.20)
are equivalent to Eq. (5.16). The proof is completed.

5.9.2. Proof of Proposition |5.4.2

The proof of Proposition is organized as follows: we present an overview of the
steps to compute the Gauss-Newton direction in Section [5.9.2.1] and show that the steps
for the two formulations result in the same Gauss-Newton direction in Section 5.9.2.2] and
derive a dynamic programming algorithm to solve the quadratic program of the sparse
constrained formulation in Section and analyze the complexity of the aforemen-
tioned steps to compute the Gauss-Newton direction in Section [5.9.2.4]
5.9.2.1. Steps to Compute the Gauss-Newton Direction. We introduce x £ (T, Q, 3) €
SE(3) x SO(3)X xR and x; 2 (T, B;) € SE(3) x RP. Then Eq. and Eqs.
and can be rewritten as

K
1
5.30 nE=>» Sfnx)|?
(5.30) min ;QHI (x)]]
and
"1
(5.31) min  E=) =|ri(x;, Q)]
{xi, QYK ;2
subject to
Fi(Xpar(i), €2
(5.32) o = | T )|
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respectively. For analytical clarity, we assume with no loss of generality that the residues

r;(x) and r;(x;, ;) are N; x 1 vectors fori =0, --- , K.

Following the procedure originally given in Section[5.4] an overview of steps to compute

the Gauss-Newton direction for the dense unconstrained and sparse constrained formu-

lations is given in Tables and [0.5] which will be frequently used in the rest of this

proof.

5.9.2.2. The Equivalence of the Gauss-Newton Direction. In Tables[5.4] and [5.5]

since Steps 2 and 3 are the reformulation of Step 1, we only need to show that the

linearizations of dense unconstrained and sparse constrained formulations in Step 1, i.e.,

Table 5.4. Steps to Compute the Gauss-Newton Direction for the Dense
Unconstrained Formulation

Step 1

The linearization of Eq. ([5.30) results in
"1
1 — . . 2
(5.33) IRI){I]AE = ;§||J1Ax+rl|| ,
where Ax 2 (ATy, AQ, AB) € ROFBEHP AT, € RS, AQ € R* and AB €

R? are the Gauss-Newton directions of x, Ty,  and 3, respectively, and

or; Or; Or;
34 . é ? ? ? RN¢><(6+3K+P)
(5:34) Ji [8T0 o0 aﬁ] ©

is the Jacobian of r;(-), and r; € R is the residue.

Step 2

Reformulate Eq. (5.33]) as
1
(5.35) min AE = §AXTHAX +g'Ax

where H £ YK JTJ, € ROBEEPXOH3K+P) ig the Hessian, and g 2

S I T € ROHEAP) §s the gradient.

Step 3

Compute the Gauss-Newton direction from Eq. (5.35)), which has a closed-form
solution

(5.36) Ax=-H'g.
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Table 5.5. Steps to Compute the Gauss-Newton Direction for the Sparse
Constrained Formulation

The linearization of Eq. (5.31)) results in
"1
( ) {Ax;, AQ}E ; 2 19: 2 |
subject to
(538) AXZ = AiAXpar(i) + BZAQZ,
where Ax; 2 (AT;, AB;) € RO+ AT; € R, AQ; € R and AB; € R are
the Gauss-Newton directions of x;, T;, €2; and 3;, respectively, and
Or; Or;
5.39 Jii 2 |5 | € RNXEHP)
(539) 5 {8Ti 8@-]
Step 1 and
ep Or
5.40 Jio 2 —- e RV?
(5.40) 270,
are the Jacobians of r;(-), and
OF; OF;
(5.41) A2 | 0Ty OBpary | € ROT*EHR)
0 I
and
OF;
(5.42) B; £ |9Q, | € RO+P)3
0
are the partial derivatives of Eq. (5.38)), and r; € R is the residue.
Reformulate Eq. (5.37)) as
S|
min AE = Z —AX;—HZ‘,HAXZ‘ + AQE—HZ'721AXZ‘+
(5.43) {8, A i 2
1
SAQH; AQ; + gl Ax; + g/, AQ;
Step 2 2
subject to
AXZ' = AiAXpar(i) + BlAQZ,
where Hi,ll é JZlJi,l & R(6+P)X(6+P), Hi,?l é J;~|7—2Ji’1 c RSX(6+P), and Hi’gg é
J/2Jio € R33 are the Hessians, and g;; £ J/;r; € RO and g;o £ J,x; €
RS*F are the gradients.
Compute the Gauss-Newton direction from Eq. (5.43)), which can be exactly
Step 3 .
solved by Algorithm [15]




294

Egs. (5.33) and (5.37)), are equivalent. From Eq. (5.29), the rigid body transformation

T; € SE(3) of body part ¢ can be written as a function of Ty, €2 and 3. Furthermore, it

is by the definition of r;(-) that
ri(T(b Qa /6) = ri<Ti(T07 Q? /B)a Qia IB)

From the equation above, J;Ax in Eq. (5.33) can be computed using J;; and J;o in
Eq. (5.37):

0 i o) i o) 3
GrAT, + SHAQ + SHAS
(544) JlAX == Ji,l + JZ’QAQZ

B

Note that the partial derivatives g%, %1;; and %% in the right-hand side of Eq. ([5.44) are

obtained by the recursive implementation of Eq. . Therefore, it can be concluded
that Eqgs. and are equivalent to each other, which suggests that the dense
unconstrained and sparse constrained formulations result in the same Gauss-Newton di-
rection.

5.9.2.3. Algorithm to Solve Eq. (5.43). In Table[5.5] it is straightforward to follow
Steps 1-2 of the sparse constrained formulation to compute the Gauss-Newton direc-
tion. Next, we need to solve the quadratic program of Eq. in Step 3, which is
nontrivial. In this subsection, we derive a dynamic programming algorithm that exploits
the sparsity and constraints of Eq. such that the Gauss-Newton direction can be

exactly computed.
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For notational simplicity, we let par(i), chd(i) and des(i) be the parent, children
and descendants of body part 7 in the kinematics tree, and assume i > par(i) for all
i=1 -, K.

First, we define &(-) : R®"” — R to be a function of AXpa) € R in the form of

an optimization problem of {Ax;, AQ;} for j € {i} Udes(i)

1

5.45) Ei(AXuumin) 2 i 3 [—A TH. |, Ax;

( > ( Xpa()) {ij»Aﬂl?}lﬁ{i}udes(i) L 5 X; By X+
je{i es(i

1
AQ}—Hj’QlAXj -+ §AQ;|—HJ'722AQ]' + g}:lAXj -+ g]TQAQJ
subject to
(546) AXj = A—jAXpar(j) + BjAQj, Vj S {Z} U des(i),

where Axp;) € RO is given. Furthermore, if &;(-) : R — R is defined for all
j € chd(i), then, it is from Eq. (5.45) that &(-) can be reduced to an optimization

problem of Ax; and A€;
1
(547) gi(AXpar(i)) =S AmlAnQ |:§AXZTHZ'711AXZ' + AQ:HZ'721AXZ'+

1

j€chd(i)

subject to

AXi = AiAXpar(i) + BIAQ“
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where AXpar(i) € RS*F is given. Note that Eq. 1) is an intermediate procedure that is
essential for our dynamic programming algorithm.
Next, suppose that there exists M; € RO+P)*6+P) 'm; € RS+ and AE; € R for all

J € chd(7) such that £;(Ax;) can be written as

1
(5.48) Ei(Ax;) = 5ij M;Ax; + m] Ax; + AE;.
Applying Eq. (5.48)) to Eq. (5.47), we obtain

1
(549) gi(AXpar(i)) = min vﬁAXjNi’HAXi + AQZ—-I—Ni’glAXi—F

Ax;, A

1 —
§AQ:N%22AQZ + Il;-’rlAXi + Il;;AQZ' + AEZ'

subject to

AXi = AiAXpar(i) + BZAQ“
where
(5.50a) N =H; + Z M;,

jé€chd ()

(5.50b) N, 21 = H; 91,
(550C) Ni’22 = Hi,227
(5.50d) n;; =g+ Z my,

jé€chd(z)



(5.50¢)

(5.50f)
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n;s = g2,

AE = Y  AE;.

j€chd(d)

Substitute Eq. (5.38) into Eq. (5.49) to cancel out Ax; and simplify the resulting equation

to an unconstrained optimization problem on A€, € R3:

o1
(551) Si(AXpar(i)) = rilslgll §Axpar(i) Qi,llepar(i) + AQ?Qi,ZlAXpar(i)—i_

where

(5.52a)

(5.52b)

(5.52¢)

(5.52d)

(5.52e)

1 _
§AQ;Q@22A91‘ + q;rlAXpar(i) + QIQAQi + AE;,

Qi = AN A,
Qi1 = B;'rNi,llAi + N2 Ay,
Qi = By—;rNi,llBi + Ni21B; + B:Nzﬂ + Nj 20,
qi1 = A;rni,h

-
Q2 = B, n;; +n;,.
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It is obvious that Eq. (5.51]) has a closed-form solution

(553) AQZ = KiAXpar(i) + ki7
where
(5.54) K; = _Qi_,212Qi,21 and k; = —Qi_,zlzqz',z

If we use Eq. (5.53) to eliminate AL, in Eq. (5.51), there exists M; € RE+HP)*6+P)

m; € R and AE,; € R such that

(5.55) Ei(AXpar(i)) = %Axgar(i)MiAxpar(i) +m; Axpar) + AE;,
where

(5.56a) M; = Qi1 — Q)51 Qi Qi1

(5.56b) m; =q;1 — QIQlQi_,212qi,27

(5.56¢) AE; = AE; — %QZQQi,le%,z-

Therefore, if there exists M; € REFPIX6+P) 'y, € RSP and AE; € R for all j € chd(i)
such that Eq. (5.48) holds, we might further obtain M; € RE+7)x(6+P) ', ¢ R6+F and

AE; € R with which & (AxXpa;)) can be written as Eq. (5.55).
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In the kinematic tree, a body part ¢ at the leaf node has no children, for which
Eq. is simplified to IN; 11 = H; 11, Nijo1 = Hio1, Nijoo = Hi90, 051 = g1, N2 = 82
and AE; = 0, then, it is possible to recursively compute M; € RE+P)x6+P) . ¢ RO+P
and AE; € R for each i =1, --- , K following Eqs. , and through the
bottom-up traversal of kinematic tree.

It is by definition that €y is a dummy variable and AQy = 0. Thus, if &(Axp) in
Eq. is known for each i € chd(0), Eq. is equivalent to an unconstrained

optimization problem on Ax, € R%*+%:

o1
Igl)l(gl éAXJHQHAXO + gJ’leo + Z Ei(Axg).

jé€chd(0)
From Eq. (5.55)), the equation above is equivalent to
1T T =

(5.57) Iil}l(f)l §AXO MyAxg + my Xo + AEg
where
(5.58a) Mo =Hon+ » M,

j€chd(0)
(5.58h) my =g+ », my,

j€chd(0)
(5.58¢) AEy= Y AE.

icchd(0)

It is straightforward to show that
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(5.59) Axy = —M; 'my

solves Eq. (5.57)) with

_ 1

to be the expected cost reduction as well as the minimum objective value of Eq. .

At last, we recursively compute {Ax;, AQ;}X | using Egs. , and
through a top-down traversal of the kinematics tree, from which the Gauss-Newton di-
rection is exactly retrieved.

From our analysis, the resulting algorithm to solve Eq. and compute the Gauss-
Newton direction is summarized in Algorithm [I5] In the next subsection, we show that
Algorithm [T5] scales linearly with respect to the number of joints.
5.9.2.4. Complexity Analysis. In Table 5.6 we present a short summary of the com-
putational complexities for each step to compute the Gauss-Newton direction, and in
Tables and [5.8| we present a comprehensive analysis of the computational complexi-
ties that leads to results in Table[5.6] The analysis also proves the complexity conclusions

in Proposition 2.
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In Tables to [5.8] it can be concluded that our sparse constrained formulation is
O(K) times faster for Step 1, and O(K?) times for Steps 2 and 3 than the dense uncon-
strained formulation in terms of the number of joints K. In total, our sparse constrained
formulation scales linearly with respect to the number of joints instead of cubically as the
dense unconstrained formulation.

Furthermore, in terms of the number of measurements N, Tables to indicate
that the complexity of our sparse constrained formulation is O(N(9 + P)?) or O(N),
whereas that of the dense constrained formulation is O(N(6 + 3K + P)?) or O(K2N).
This suggests that our sparse constrained formulation has the the number of joints K and
measurements N decoupled in the computation, and as a result, is much more efficient to
handle optimization problems with more measurements. Note that it is common in |11

12/]137-139,152] to introduce extra measurements to improve the estimation accuracy.

Table 5.7. The analysis of the computational complexities for the steps to
compute the Gauss-Newton direction for the dense unconstrained. In this
table, K is the number of joints, P is the number of shape parameters, N is
the number of measurements for all the body parts, and N; is the number
of measurements associated with body part .

(a) It takes O(N;(6 + 3K + P)) time to compute J; € RNx(6F3K+F) iy
Eq. (5.34) for each i =0, --- |, K.

(b) In total, it takes O(N(6+ 3K + P)) time to compute J; € RNix(6+3K+F)
foralli =0, --, K.

(a) It takes O(N;(6+3K + P)?) to compute J J; € REF3KHPIx(EF3K+P) fop
eacht=0, --- | K.

(b) In total, it takes O(N(6+3K + P)?) time to compute H = S, I e
R(6+3K+P)x(6+3K+P) i Eq. "

(a) In total, it takes O((6 4+ 3K + P)*) to compute the matrix inverse of
H € ROEBPHOXEFPHE) and solve Eq. (5.36)).

Total | The overall complexity is O((6 + 3K + P)*) + O(N(6 + 3K + P)?).

Step 1

Step 2

Step 3




Table 5.8. The analysis of the computational complexities for the steps to
compute the Gauss-Newton direction for the dense unconstrained. In this
table, K is the number of joints, P is the number of shape parameters, N is
the number of measurements for all the body parts, and N; is the number
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of measurements associated with body part .

Step 1

) Tt takes O 9+P time to compute A; € RO+P)*(6+F) and B, € R(E+HP)x3
in Eqgs. (5.41] and (]EZ foreachi =10, --- , K. Note that the bottom of
A; and B; in Egs. (5.41) and (5.42)) are either zero or identity matrices,
which simplifies the computation.

(b) It takes O(N;(9+ P)) time to compute J; ; € RY*O+F) and J; 5 € RV:3
in Egs. (5.39) and (5.40|) for each i =0, --- , K.
(c) Note that J;1, J;2, A; and B; are intermediates to compute J; in

Eq. (5.34) using the chain rule.

(d) In total, it takes O (K (9+P)+O(N(9+P))) time to compute J; 1, J; o,
A, and B; foralli =0, --- |, K.

Step 2

(a) Tt takes O (N;(9 + P)?) time to compute H;; € ROFI*E+P) H,,, €
R3*6+P) and H; 9 € R3*3 in Eq. ((5.43)) for each i =0, -+ , K.

(b) In total, it takes O(N(9 + P)?) time to compute H 11 € ROEEPIX(6+P)
H; . € R3X(6+P and H; 50 € R*3 for all i =0,

Step 3

(a) It takes O( (9—|—P) ) time to run lines 4{19)and lines 2829|in Algorithm
for each : = 1, ---, K. Note that A and B; in Eqs (5.41) and (5.42)
are zero and identlty matrices at the bottom, which can be exploited to
simplify the computation.

(b) It takes O((6 + P)*) time to compute the matrix inverse of My €
RO+P)>x6+P) ip line [25| of Algorithm .

(c) In total, it takes O(K (9 + P)?) + O((6 + P)*) to compute the Gauss-
Newton direction.

Total

The overall complexity is O(K (9 + P)?) + O((6 + P)*) + O(N(9 + P)?).
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