
NORTHWESTERN UNIVERSITY

Efficient Second-Order Methods for Second-Order Cone Programs and

Continuous Nonlinear Two-Stage Optimization Problems

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Xinyi Luo

EVANSTON, ILLINOIS

September 2023

2

© Copyright by Xinyi Luo 2023

All Rights Reserved

3

Abstract

Efficient Second-Order Methods for Second-Order Cone Programs and Continuous

Nonlinear Two-Stage Optimization Problems

Xinyi Luo

This dissertation presents novel advancements in the field of continuous nonlinear op-

timization, focusing on the development of efficient second-order methods for second-order

conic programs (SOCPs) and continuous nonlinear two-stage optimization problems. The

primary focus is on the theory and computations of Sequential Quadratic Programming

(SQP) methods, which are widely used for solving nonlinear optimization problems.

In this work, we introduce a new SQP method tailored for linear SOCPs, leveraging the

SQP framework for nonlinear optimization. By capitalizing on warm-start capabilities for

active-set quadratic programming subproblem solvers and utilizing polyhedral outer approx-

imations of cones, our method achieves a local quadratic rate of convergence. It efficiently

identifies the set of cones where the optimal solution lies at extreme points, enabling rapid

local convergence. Numerical experiments confirm that the method can take advantage of

good starting points and can achieve higher accuracy compared to a state-of-the-art interior

point solver.

4

The dissertation also includes two computational projects. Firstly, we introduce Restart-

SQP, an open-source C++ software package implementing Fletcher’s Sℓ1QP method and

integrating the parametric active-set methods for solving SQP subproblems. RestartSQP

offers unique warm-start capabilities, efficiently handling changing constraint values and

incorporating additional constraints dynamically. Additionally, it supports crossover from

interior-point solvers like Ipopt, enabling the solution of subsequent NLPs using the SQP

method. Numerical experiments using the CUTE benchmark NLP test set demonstrate the

practical performance of RestartSQP.

Furthermore, we develop a two-stage decomposition algorithm for continuous nonlinear

two-stage optimization problems and discussed the detailed C++ implementation. The algo-

rithm decomposes large-scale problems into master and independent subproblems, allowing

for parallel processing and accelerated speedup. To address non-differentiability challenges

arising in subproblem objectives, we incorporate a smoothing technique and propose a new

approximation scheme for subproblem objectives. Furthermore, an extrapolation strategy

is utilized to enhance the computational efficiency of the algorithm. By combining Restart-

SQP and the interior-point solver Ipopt, our algorithm demonstrates parallel scalability and

efficient solution to large-scale optimization problems.

5

Acknowledgements

I am deeply indebted to my supervisor Professor Andreas Wächter, whose unwavering

support and expertise have been invaluable throughout this journey. Andreas’s insightful

feedback, patience, and dedication have significantly improved the quality of this work. His

high standards and encouragement have constantly motivated me to strive for excellence. I

am truly thankful for his guidance on my path of numerical optimization, which has been

invaluable to my growth as a researcher.

I would like to express my gratitude to Professor Ermin Wei and Dr. Russell Bent for

their generous contribution as members of my prospectus and thesis defense committee.

Their insightful feedback has been invaluable in refining my academic work. I am grateful

for their time, expertise, and commitment to helping me succeed in my research endeavors.

I am deeply grateful to all the individuals at Los Alamos National Laboratory’s Advanced

Network Science Initiative for their invaluable contributions to my academic journey. My

summer internship in New Mexico was truly memorable, and I owe a debt of gratitude to

several people who made it a rewarding experience. I extend my sincere thanks to Carleton

and Hassan for guiding my internship throughout the summer. I would like to express my

heartfelt appreciation to David, Russell, and Juan for their assistance and collaboration in

the development of the two-stage optimization algorithm project.

My heartfelt thanks extend to my friends and colleagues who provided unwavering emo-

tional support, lifting my spirits over the course of the five-year Ph.D. journey. I am grateful

6

to the entire Optimization Lab L375, including the past members Ruby, Yuchen, Alejandra,

and Michael, and the current members Shima, Shigeng, Melody, and Xiaochun. I would also

like to express my gratitude to my friends in the IEMS department, including Kim, Tong,

Yufeng, and Jeffery. Your friendship and companionship have made Northwestern feel like

a second home to me.

To my parents, thank you for your endless love, unwavering support, and strong belief

in me. Without you, I would not be who I am today.

Above all, I would like to thank my fiancé Boyi for his love and constant support. Thank

you for being my inspiration, my closest friend, and the one I love.

To all those mentioned, and even those whose names might not appear here, I sincerely

thank you for being part of my journey. This journey has been challenging, yet immensely

rewarding, and I am honored to have had such incredible support along the way.

7

Table of Contents

Abstract 3

Acknowledgements 5

Table of Contents 7

List of Tables 9

List of Figures 12

Chapter 1. Introduction 13

1.1. Sequential Quadratic Programming Method for Second-Order Conic Programs 15

1.2. Nonlinear Two-Stage Decomposition Algorithm 16

1.3. Notation and Definitions 18

Chapter 2. A Quadratically Convergent Sequential Programming Method for

Second-Order Cone Programs Capable of Warm Starts 21

2.1. Introduction 21

2.2. Preliminaries 25

2.3. Algorithm 34

2.4. Convergence analysis 49

2.5. Numerical Experiments 65

2.6. Concluding remarks 73

Chapter 3. RestartSQP: A Sequential Qudratic Programming Solver 75

8

3.1. Introduction 75

3.2. Preliminaries 77

3.3. Algorithm 84

3.4. Details of the Implementation 91

3.5. Numerical Results 104

3.6. Conclusing Remarks 111

Chapter 4. A Decomposition Algorithm for Continuous Nonlinear Two-Stage

Optimization Problems 112

4.1. Introduction 112

4.2. Preliminaries 116

4.3. Smoothing the Second-stage Problems 121

4.4. Decomposition Framework 135

4.5. Extrapolation Steps 137

4.6. Details of the Implementation 141

4.7. Numerical Results 157

4.8. Concluding Remarks and Future Directions 169

References 170

Appendix A. Generation of random instances 181

Appendix B. CUTE Result 184

B.1. With QORE as QP solver 185

B.2. Warm-start Using Perturbed Optimal Solution 208

B.3. With Ipopt as QP solver 230

Appendix C. Schur Complement View of the Log-Barrier Approximation 254

9

List of Tables

2.1 Results with x0 = 0, ϵtol = 10−7, average per-size statistics taken over

30 random instances. “solved”: number of instances solved (out of 30);

“total iter”: total number of iterations in Algorithm 3; “SQP iter”:

number of iteration in which NLP-SQP step was accepted in Steps 11 or

16; “total QP (2.27)” / “total QP (2.18)”: Total number of QPs of that

type solved. 68

2.2 Result with MOSEK solution as x0, ϵtol = 10−9. All instances were

solved. “Mosek error”: Optimality error E (2.56) at Mosek solution;

“final error”: Optimality error E at final iterate of Algorithm 3. 70

2.3 Result with 10−3 perturbation, ϵtol = 10−7. 70

2.4 Result with 10−1 perturbation, ϵtol = 10−7. 71

2.5 Results for CBLIB instances, averaged per problem group, ϵtol = 10−5.

“Problem subset”: name of problem group; “# var”: number of variables;

“# con”: number of linear constraints; “# soc”: number of second-order

cone constraints; “solved/total”: number of solved vs. total instances;

“total iter”: number of iterations in Algorithm 3; “SQP iter”: number of

iterations in which NLP-SQP step was accepted; “iter warm/iter cold”:

iterations for warm start divided by iterations for cold start (only for

instances solved in both settings). 72

10

3.1 Summary of algorithmic parameters in RestartSQP with their respective

default values 104

4.1 Summary of the algorithm’s performance for different initial values of

the smoothing parameter (µ) on Example 4.3.1. 160

4.2 Summary of results for running Example 4.3.1 using initial smoothing

parameter 1.0e-01 161

4.3 Notation for the supply allocation problem 164

4.4 Summary of the results for the supply allocation problem, with 1000

subproblems. facilities represent the number of facilities in the problem

instance. demand sites represent the number of demand sites in the

problem instance. iter denotes the number of SQP iterations performed

by the algorithm. avg subiter denotes the average number of Ipopt

iterations for solving all the second-stage problems per SQP iteration.

The time represents the total running time (in seconds) the algorithm

takes to solve the problem. For the instance with 10 facilities and 50

demand sites, the algorithm using the natural approximation failed to

converge to an optimal solution. 168

4.5 Comparison of results on the linear power flow problem with and without

the extrapolation step. Each row represents an outer iteration with a

specific µ value. The “iter” column denotes the number of SQP iterations

performed, while the “avg subiter” column indicates the average number

of Ipopt iterations incurred per subproblem solve per SQP iteration. 169

11

B.1 Table of results on the CUTE test set for RestartSQP using QORE as

QP subsolver 185

B.2 Table of warm-start results on the CUTE test set for RestartSQP 208

B.3 Table of results on the CUTE test set for RestartSQP using Ipopt as QP

subsolver 230

12

List of Figures

4.1 The function f̂(x) is not differentiable at (x∗
1, x

∗
2) = 0. 122

4.2 Value function f̂(x1, x2) for Example 4.3.2 132

4.3 Smoothed second-stage objective function f̂(x1, x2;µ) for Example 4.3.2

with natural approximation and µ = 0.1 132

4.4 Smoothed second-stage objective function f̂(x1, x2;µ) for Example 4.3.2

with log-barrier approximation and µ = 0.1 134

4.5 Decomposition algorithm software structure 144

4.6 Two-stage algorithm performance for QCQP problems. The x-axis

represents the number of subproblems. The y-axis represents the running

time (in seconds). Each line corresponds to a different number of

constraints for the subproblems. 165

4.7 Parallel scalability: impact of the number of threads on running time on

a two-stage QCQP problem. n0 = 100, ni = 1000, N = 1024, m0 = 10,

mi = 50. The x-axis represents the number of threads used for parallel

computation. The y-axis represents the corresponding running time in

seconds. 166

13

CHAPTER 1

Introduction

Sequential Quadratic Programming (SQP) is a method for solving Nonlinear Program-

ming (NLP) problems. These problems are typically formulated as follows:

min
x∈Rn

f(x)(1.1a)

s.t c(x) = 0,(1.1b)

d(x) ≤ 0.(1.1c)

In this formulation, the objective function f : Rn → R and the constraint functions c :

Rn → Rmc and d : Rn → Rmd are all nonlinear and are assumed to be twice continuously

differentiable.

SQP methods have been extensively studied in the field of nonlinear programming [33,

29, 28]. It is an iterative algorithm that utilizes Quadratic Programming (QP) to model

(1.1) at a given iterate xk. At an iterate xk, the basic SQP method computes a step pk as

an optimal solution to the QP subproblem

min
p∈Rn

∇f(xk)Tp+ 1
2
pTHkp

s.t. c(xk) +∇c(xk)Tp = 0,

d(xk) +∇d(xk)Tp ≤ 0.

14

whereHk is a symmetric matrix that is constructed using the second-order information of f , c

and d,∇f(x) is the gradient of the objective function f(x) and∇c(x)T = (∇c1(x), · · · ,∇cmc(x))
T

is the Jacobian of c at x. ∇d(x)T is defined analogously. The solution of the QP subproblem

provides the search direction pk, which is then used to construct a new iterate xk+1. The

SQP method constructs a sequence of iterates {(xk, λk, µk)} whose limit points are KKT

points of (1.1), where λk and µk are the multiplier estimates of (1.1b) and (1.1c) at k-th

iteration.

SQP methods can be viewed as a natural extension of Newton’s method for constrained

optimization problems. Notably, under mild regularity conditions, these methods exhibit

similar quadratic rate convergence properties to Newton’s method when iterates are close

to an optimal solution (x∗, λ∗, µ∗). This rapid convergence is a significant strength of SQP

methods and makes them appealing for solving a wide range of optimization problems beyond

regular NLPs.

In this dissertation, we have extended the SQP framework to create efficient second-order

methods for a broader set of problems. These methods are specifically designed to handle

two types of optimization problems: second-order conic programs (SOCPs) and continuous

nonlinear two-stage optimization problems.

15

1.1. Sequential Quadratic Programming Method for Second-Order Conic

Programs

In Chapter 2, we propose a new method for linear second-order cone programs of the

following form:

min
x∈Rn

cTx

s.t. Ax ≤ b,

xj ∈ Kj j ∈ J := {1, . . . , p},

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, and xj is a subvector of x of dimension nj with index

set Ij ⊆ {1, . . . , n}. We assume that the sets Ij are disjoint. The set Kj is the second-order

cone of dimension nj.

The method is based on the sequential quadratic programming framework for nonlinear

programming. In contrast to interior point methods, it can capitalize on the warm-start

capabilities of active-set quadratic programming subproblem solvers and achieve a local

quadratic rate of convergence.

To address the non-differentiability challenges posed by the nonlinear formulations of

conic constraints, the subproblems approximate the cones using polyhedral outer approx-

imations, which are continuously refined during the iterations. In cases of nondegenerate

instances, the algorithm implicitly identifies the set of cones for which the optimal solution

lies at the extreme points. Consequently, the final steps are identical to regular sequential

quadratic programming steps for differentiable nonlinear optimization problems, resulting in

local quadratic convergence.

16

1.2. Nonlinear Two-Stage Decomposition Algorithm

Another topic addressed in this dissertation is a decomposition algorithm for continuous

nonlinear two-stage optimization problems. The algorithm is designed to solve the following

problem:

min
xi∈RnP

i ,z∈Rn0

f0(z) +
N∑
i=1

f̂i(xi)

s.t c0(z) = 0,

d0(z) ≤ 0,

P̂iz − xi = 0, i = 1, . . . , N,

together with N (N ≥ 0) second-stage problems of the form

f̂i(xi) = min
yi∈Rni

fi(yi)

s.t ci(yi) = 0,

di(yi) ≤ 0,

Piyi − xi = 0.

Here, fi : Rni −→ R, ci : Rni −→ Rmc
i , and di : Rni −→ Rmd

i are assumed to be twice-

continuously differentiable. The shared variables xi ∈ RnP
i are subvectors of the first-stage

variables z defined using projection matrix P̂i ∈ RnP
i ×n0 . Similarly, the second-stage variables

yi is defined by the projection matrix Pi ∈ RnP
i ×ni .

17

Chapter 4 presents a comprehensive description of the decomposition algorithm. The

proposed approach decomposes the original problem into a master problem and a set of

independent subproblems. This decomposition enables the utilization of parallel processing,

leading to accelerated speedup and enhanced efficiency.

A key strength of this new algorithm lies in its ability to employ second-order optimization

solvers to handle the nonlinearity of the instances in a natural manner. By breaking down

the problem into manageable subproblems, each solver can efficiently tackle its corresponding

part, thus collectively contributing to the solution of the entire large-scale problem.

To make this work, we address a challenge that makes the direct application of a

fast second-order nonlinear optimization solver for the first-stage problems impossible: the

second-stage value function f̂i is typically not differentiable at values of xi when the active-

set changes. To overcome this difficulty, the proposed algorithm relies on a barrier-problem

reformulation that results in a smooth approximation of the value function f̂i so that a stan-

dard nonlinear optimization method can be used to solve the smoothed first-stage problem.

The implementation of the two-stage decomposition algorithm is realized in C++ and

includes the development of the RestartSQP solver, an open-source software package based

on Fletcher’s Sℓ1QP method [27]. RestartSQP is integrated with the parametric active-

set method for solving SQP subproblems, providing warm-start capabilities and efficient

handling of changing constraint values and dynamic incorporation of additional constraints.

The software also supports crossover from interior-point solvers like Ipopt, facilitating the

solution of subsequent NLPs using the SQP method.

Chapter 3 of the dissertation presents detailed insights into the implementation of Restart-

SQP and provides numerical results using the CUTE benchmark NLP test set [12]. These

results demonstrate the practical performance of RestartSQP.

18

In the two-stage decomposition algorithm, RestartSQP plays a crucial role as the mas-

ter problem solver. Due to that SQP methods require fewer function evaluations compared

to interior-point methods, RestartSQP is well-suited for solving the master problem in the

two-stage decomposition algorithm. On the other hand, the interior-point solver Ipopt is

utilized to handle the subproblems. Additionally, the software provides interfaces for model-

ing languages including AMLP and JuMP. Chapter 4 provides numerical results showcasing

the parallel scalability of the two-stage decomposition algorithm, confirming its effectiveness

in solving large-scale problems efficiently.

1.3. Notation and Definitions

Throughout the dissertation, the following notations and definitions will be used.

We use [n] to denote the index set {1, · · · , n}. For two vectors x, y ∈ Rn, we denote

with x ◦ y their component-wise product, and the condition x ⊥ y stands for xTy = 0. For

x ∈ Rn, we define [x]+ as the vector with entries max{xi, 0}. We denote by ∥ · ∥, ∥ · ∥1, ∥ · ∥∞

the Euclidean norm, the ℓ1-norm, and the ℓ∞-norm, respectively. If a function f : Rn → R

is differentiable, we denote its gradient by ∇xf(x). If f is twice-differentiable, we denote

its Hessian by ∇2
xxf(x). For a cone Kj, eji ∈ Rnj is the canonical basis vector with 1 in

the element corresponding to xji for i ∈ {0, . . . , nj − 1}, and int(Kj) and bd(Kj) denote the

cone’s interior and boundary, respectively.

Definition 1.3.1 (Lagrangian function). We define the Lagrangian function associated

with the NLP (1.1) as

L(x, λ, µ) = f(x) + λT c(x) + µTd(x).

The vector λ ∈ Rmc and µ ∈ Rmd are referred to as Lagragian multipliers.

19

Definition 1.3.2 (Active set). For x ∈ Rn, the index set

A(x) := {1, · · · ,mc} ∪ {i ∈ {1, · · · ,md}|di(x) = 0}

is referred to as the active set at x.

Definition 1.3.3 (Linear independence constraint qualification). Given the point x and

the active set A(x), we say that the linear independence constraint qualification (LICQ) holds

if the gradients of the active constraints {∇ci(x), i ∈ [mc]} ∪ {∇di(x), i ∈ A(x)} are linearly

independent.

Definition 1.3.4 (First-order necessary optimality conditions). Suppose x∗ is a local

solution of (1.1) and that LICQ holds at x∗. Then there are Lagrange multiplier vectors λ∗

and µ∗ such that the following conditions are satisfied at (x∗, λ∗, µ∗)

∇xL(x∗, λ∗, µ∗) = 0,

c(x∗) = 0, d(x∗) ≤ 0,

µ∗ ≥ 0, µ∗ ◦ d(x∗) = 0.

These conditions are also referred to as Karush-Kuhn-Tucker(KKT) conditions.

Definition 1.3.5 (Strict Complementarity). Given a local solution x∗ of (1.1) and vec-

tors λ∗ and µ∗ satisfying (1.2), we say the strict complementarity condition holds if µ∗
i > 0

for each i ∈ A(x∗).

20

Definition 1.3.6 (Critical cone). Given a local solution x∗ of (1.1) and vectors λ∗ and

µ∗ satisfying (1.2), we define the critical cone at x∗ as

C(x∗, λ∗, µ∗) =

d ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣

∇ci(x∗)Td = 0,∀i ∈ [mc],

∇di(x∗)Td = 0,∀i ∈ [md] ∩ A(x∗) with µ∗
i > 0,

∇di(x∗)Td ≤ 0,∀i ∈ [md] ∩ A(x∗) with µ∗
i = 0

.

Definition 1.3.7 (Second-order sufficient optimality conditions). Suppose that for some

feasible x ∈ Rn, there are vectors λ ∈ Rmc and µ ∈ Rmd such that the KKT conditions (1.2)

are satisfied. Suppose also that

dT∇2
xxL(x∗, λ∗, µ∗)d > 0, ∀d ∈ C(x∗, λ∗, µ∗) \ {0}.

Then x∗ is a strict local minimizer of (1.1).

21

CHAPTER 2

A Quadratically Convergent Sequential Programming Method for

Second-Order Cone Programs Capable of Warm Starts

2.1. Introduction

We are interested in the solution of second-order cone programs (SOCPs) of the form

min
x∈Rn

cTx(2.1a)

s.t. Ax ≤ b,(2.1b)

xj ∈ Kj j ∈ J := {1, . . . , p},(2.1c)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, and xj is a subvector of x of dimension nj with index

set Ij ⊆ {1, . . . , n}. We assume that the sets Ij are disjoint. The set Kj is the second-order

cone of dimension nj, i.e.,

(2.2) Kj := {y ∈ Rnj : ∥ȳ∥ ≤ y0},

where the vector y is partitioned into y = (y0, ȳ
T)T with ȳ = (ȳ1, . . . , ȳnj−1)

T . These problems

arise in a number of important applications [2, 5, 57, 75]

Currently, most of the commercial software for solving SOCPs implements interior-point

algorithms which utilize a barrier function for second-order cones, see, e.g. [41, 47, 3].

Interior-point methods have well-established global and local convergence guarantees [63]

and are able to solve large-scale instances, but they cannot take as much of an advantage

22

of a good estimate of the optimal solution as it would be desirable in many situations.

For example, in certain applications, such as online optimal control, the same optimization

problem has to be solved over and over again, with slightly modified data. In such a case, the

optimal solution of one problem provides a good approximation for the new instance. Having

a solver that is capable of “warm-starts”, i.e., utilizing this knowledge, can be essential when

many similar problems have to be solved in a small amount of time.

For some problem classes, including linear programs (LPs), quadratic programs (QPs),

or nonlinear programming (NLP), active-set methods offer suitable alternatives to interior-

point methods. They explicitly identify the set of constraints that are active (binding) at

the optimal solution. When these methods are started from a guess of the active set that

is close to the optimal one, they often converge rapidly in a small number of iterations. An

example of this is the simplex method for LPs. Its warm-start capabilities are indispensable

for efficient branch-and-bound algorithms for mixed-integer linear programs.

Active-set methods for LPs, QPs, or NLPs are also known to outperform interior-point

algorithms for problems that are not too large [38, 45, 51]. Similarly, active-set methods

might be preferable when there are a large number of inequality constraints among which

only a few are active, since an interior-point method is designed to consider all inequality

constraints in every iteration and consequently solves large linear systems, whereas an active

set method can ignore all inactive inequality constraints and encounters potentially much

smaller linear systems.

Our goal is to propose an active-set alternative to the interior-point method in the con-

text of SOCP that might provide similar benefits. We introduce a new sequential quadratic

programming (SQP) algorithm that, in contrast to interior-point algorithms for SOCPs,

has favorable warm-starting capabilities because it can utilize active-set QP solvers. We

23

prove that it is globally convergent, i.e., all limit points of the generated iterates are opti-

mal solutions under mild assumptions, and that it enjoys a quadratic convergence rate for

non-degenerate instances. Our preliminary numerical experiments demonstrate that these

theoretical properties are indeed observed in practice. They also show that the algorithm is

able in some cases to compute a solution to a higher degree of precision than interior point

methods. This is expected, again in analogy to the context of LPs, QPs, and NLPs, since

an interior point method terminates at a small, but nonzero value of the barrier parameter

that cannot be made smaller than some threshold (typically 10−6 or 10−8) because the aris-

ing linear systems become highly ill-conditioned. In contrast, in the final iteration of the

active-set method, the linear systems solved correspond directly to the optimality conditions,

without any perturbation introduced by a barrier parameter, and are only as degenerate as

the optimal solution of the problem.

The paper is structured as follows. Chapter 2.2 reviews the sequential quadratic program-

ming method and the optimality conditions of SOCPs. Chapter 2.3 describes the algorithm,

which is based on an outer approximation of the conic constraints. Chapter 2.4 establishes

the global and local convergence properties of the method, and numerical experiments are

reported in Chapter 4.7. Concluding remarks are offered in Chapter 2.6.

2.1.1. Related work

While a large number of interior-point algorithms for SOCP have been proposed, including

some that have been implemented in efficient optimization packages [41, 47, 3], there are

only very few approaches for solving SOCPs with an active-set framework. The method

proposed by Goldberg and Leyffer [35] is a two-phase algorithm that combines a projected-

gradient method with equality-constrained SQP. However, it is limited to instances that have

24

only conic constraints (2.1c) and no additional linear constraints (2.1b). Hayashi et al. [44]

propose a simplex-type method, where they reformulate the SOCP as a linear semi-infinite

program to handle the fact that these instances have infinitely many extreme points. The

resulting dual-simplex exchange method shows promising practical behavior. However, in

contrast to the method proposed here, the authors conjecture that their method has only

an R-linear local convergence rate. Zhadan [86] proposes a similar simplex-type method.

Another advantage of the method presented in this paper is that the pivoting algorithm

does not need to be designed and implemented from scratch. Instead, it can leverage ex-

isting implementations of active-set QP solvers, in particular the efficient handling of linear

systems.

The proposed algorithm relies on polyhedral outer approximations based on well-known

cutting planes for SOCPs. For instance, the methods for mixed-integer SOCP by Drewes

and Ulbrich [23] and Coey et al. [17] use these cutting planes to build LP relaxations of

the branch-and-bound subproblems. We note that an LP-based cutting plane algorithm for

SOCP could be seen as an active-set method, but it is only linearly convergent. As pointed

out in [21], it is crucial to consider the curvature of the conic constraint in the subproblem

objective to achieve fast convergence.

The term “SQPmethod for SOCP” has also been used in the literature to refer to methods

for solving nonlinear SOCPs [21, 49, 60, 87]. However, in contrast to the method here, in

these approaches, the subproblems themselves are SOCPs (2.1) and include the linearization

of the nonlinear objective and constraints. It will be interesting to explore extensions of

the proposed method to nonlinear SOCPs in which feasibility is achieved asymptotically not

only for the nonlinear constraints but also for the conic constraints.

25

2.2. Preliminaries

The NLP reformulation of the SOCP is introduced in Chapter 2.2.1. We review in Chap-

ter 2.2.2 the local convergence properties of the SQP method and in Chapter 2.2.3 the penalty

function as a means to promote convergence from any starting point. In Chapter 2.2.4, we

briefly state the optimality conditions and our assumptions for the SOCP (2.1).

2.2.1. Reformulation as a smooth optimization problem

The definition of the second-order cone in (2.2) suggests that the conic constraint (2.1c) can

be replaced by the nonlinear constraint

rj(xj) := ∥x̄j∥ − xj0 ≤ 0

without changing the set of feasible points. Consequently, (2.1) is equivalent to

min
x∈Rn

cTx(2.3a)

s.t. Ax ≤ b,(2.3b)

rj(xj) ≤ 0, j ∈ J .(2.3c)

Unfortunately, (2.3) cannot be solved directly with standard gradient-based algorithms

for nonlinear optimization, such as SQP methods. The reason is that rj is not differentiable

whenever x̄j = 0. This is particularly problematic when the optimal solution x∗ of the SOCP

lies at the extreme point of a cone, x∗
j = 0 ∈ Kj. In that case, the Karush-Kuhn-Tucker

(KKT) necessary optimality conditions for the NLP formulation, which are expressed in

terms of derivatives, cannot be satisfied. Therefore, any optimization algorithm that seeks

26

KKT points cannot succeed. As a remedy, differentiable approximations of rj have been

proposed in the past; see, for example, [80]. However, high accuracy comes at the price of

high curvature, which can make finding the numerical solution of the NLP difficult.

An alternative equivalent reformulation of the conic constraint is given by

∥x̄j∥2 − x2
j0 ≤ 0 and xj0 ≥ 0.

In this case, the constraint function is differentiable. But if x∗
j = 0, its gradient vanishes,

and as a consequence, no constraint qualification applies and the KKT conditions do not

hold. Therefore, again, a gradient-based method cannot be employed. By using an outer

approximation of the cones that is improved in the course of the algorithm, our proposed

variation of the SQP method is able to avoid these kinds of degeneracy.

To facilitate the discussion we define a point-wise partition of the cones.

Definition 2.2.1. Let x ∈ Rn.

(1) We call a cone Kj extremal-active at x, if xj = 0, and we denote with E(x) =

{j ∈ J : xj = 0} the set of extremal-active cones at x.

(2) We define the set D(x) = {j ∈ J : x̄j ̸= 0} as the set of all cones for which the

function rj is differentiable at x.

(3) We define the set N (x) = {j ∈ J : xj ̸= 0 and x̄j = 0} as the set of all cones that

are not extremal-active and for which rj is not differentiable x.

If the set E(x∗) at an optimal solution x∗ were known in advance, we could compute x∗

as a solution of (2.1) by solving the NLP

27

min
x∈Rn

cTx(2.4a)

s.t. Ax ≤ b,(2.4b)

rj(x) ≤ 0, j ∈ D(x∗),(2.4c)

xj = 0, j ∈ E(x∗).(2.4d)

The constraints involving the linearization of rj are imposed only if rj is differentiable at

x∗, and variables in cones that are extremal-active at x∗ are explicitly fixed to zero. With

this, locally around x∗, all functions in (2.4) are differentiable and we could apply standard

second-order algorithms to achieve fast local convergence.

In (2.4), we omitted the cones in N (x∗). If x∗ is feasible for the SOCP and j ∈ N (x∗)

we have x̄∗
j = 0 and x∗

j0 > 0, and so rj(x
∗) < 0. This implies that the nonlinear constraint

(2.4c) for this cone is not active and we can omit it from the problem statement without

impacting the optimal solution.

2.2.2. Local convergence of SQP methods

The proposed algorithm is designed to guide the iterates xk into the neighborhood of an

optimal solution x∗. If the optimal solution is not degenerate and the iterates are sufficiently

close to x∗, the steps generated by the algorithm are eventually identical to the steps that

the SQP method would take for solving the differentiable optimization problem (2.4). In

this chapter, we review the mechanisms and convergence results of the basic SQP method

[59].

28

At an iterate xk, the basic SQP method, applied to (2.4), computes a step dk as an

optimal solution to the QP subproblem

min
d∈Rn

cTd+ 1
2
dTHkd(2.5a)

s.t. A(xk + d) ≤ b,(2.5b)

rj(x
k
j) +∇rj(xk

j)
Tdj ≤ 0, j ∈ D(x∗),(2.5c)

xk
j + dj = 0, j ∈ E(x∗).(2.5d)

Here, Hk is the Hessian of the Lagrangian function for (2.4), which in our case is

(2.6) Hk =
∑

j∈D(x∗)

µk
j∇2

xxrj(x
k
j),

where µk
j ≥ 0 are estimates of the optimal multipliers for the nonlinear constraint (2.4c),

and where ∇2
xxrj(xj) is the n× n block-diagonal matrix with

(2.7) ∇2rj(xj) =

0 0

0 1
∥x̄j∥I −

x̄j x̄
T
j

∥x̄j∥3

in the rows and columns corresponding to xj for j ∈ J . It is easy to see that ∇2rj(xj) is

positive semi-definite. The estimates µk
j are updated based on the optimal multipliers µ̂k

j ≥ 0

corresponding to (2.5c).

Algorithm 1 Basic SQP Algorithm

Require: Initial iterate x0 and multiplier estimates λ0, µ0, and η0.
1: for k = 0, 1, 2 · · · do
2: Compute Hk from (2.6).

3: Solve QP (2.5) to get step dk and multipliers λ̂k, µ̂k
j , and η̂k.

4: Set xk+1 ← xk + dk and µk+1
j ← µ̂k

j for all j ∈ D(x∗).
5: end for

29

Algorithm 1 formally states the basic SQP method where λ̂k ≥ 0 and η̂k denote the

multipliers corresponding to (2.4b) and (2.4d), respectively. Because we are only interested

in the behavior of the algorithm when xk is close to x∗, we assume here that x̄k
j ̸= 0 for all

j ∈ D(x∗) and for all k, and hence the gradient and Hessian of rj can be computed. Note

that the iterates λ̂k and η̂k are not explicitly needed in Algorithm 1, but they are necessary

to measure the optimality error and define the primal-dual iterate sequence that is analyzed

in Theorem 2.2.1.

A fast rate of convergence can be proven under the following sufficient second-order

optimality assumptions [11].

Assumption 2.2.1. Suppose that x∗ is an optimal solution of the NLP (2.4) with cor-

responding KKT multipliers λ∗, µ∗, and η∗, satisfying the following properties:

(1) Strict complementarity holds;

(2) the linear independence constraint qualification (LICQ) holds at x∗, i.e., the gradi-

ents of the constraints that hold with equality at x∗ are linearly independent;

(3) the projection of the Lagrangian Hessian H∗ =
∑

j∈D(x∗) µ
∗
j∇2

xxrj(x
∗
j) into the null

space of the gradients of the active constraints is positive definite.

Under these assumptions, the basic SQP algorithm reduces to Newton’s method applied

to the optimality conditions of (2.4) and the following result holds [59].

Theorem 2.2.1. Suppose that Assumption 2.2.1 holds and that the initial iterate x0 and

multipliers µ0 (used in the Hessian calculation) are sufficiently close to x∗ and µ∗, respec-

tively. Then the iterates (xk+1, λ̂k, µ̂k, η̂k) generated by the basic SQP algorithm, Algorithm

1, converge to (x∗, λ∗, µ∗, η∗) at a quadratic rate.

30

2.2.3. Penalty function

Theorem 2.2.1 is a local convergence result. Practical SQP algorithms include mechanisms

that make sure that the iterates eventually reach such a neighborhood, even if the starting

point is far away. To this end, we employ the exact penalty function

(2.8) φ(x; ρ) = cTx+ ρ
∑
j∈J

[rj(xj)]
+

in which ρ > 0 is a penalty parameter. Note that we define φ in terms of all conic constraints

J , even though rj appears in (2.4c) only for j ∈ D(x∗). We do this because the proposed

algorithm does not know D(x∗) in advance and the violation of all cone constraints needs

to be taken into account when the original problem (2.1) is solved. Nevertheless, in this

chapter, we may safely ignore the terms for j ̸∈ D(x∗) because for j ∈ E(x∗) we have xk
j = 0

and hence [rj(x
k)]+ = 0 for all k due to (2.5d), and when j ∈ N (x∗), we have rj(x

k
j) < 0

when xk is close to x∗ since rj(x
∗
j) < 0.

It can be shown, under suitable assumptions, that the minimizers of φ(· ; ρ) over the set

defined by the linear constraints (2.4b),

(2.9) X = {x ∈ Rn : Ax ≤ b},

coincide with the minimizers of (2.4) when ρ is chosen sufficiently large. Because it is not

known upfront how large ρ needs to be, the algorithm uses an estimate, ρk, in iteration k,

which might be increased during the course of the algorithm.

To ensure that the iterates eventually reach a minimizer of φ(· ; ρ), and therefore a

solution of (2.4), we require that the decrease of φ(· ; ρ) is at least a fraction of that achieved

in the piece-wise linear model of φ(· ; ρ) given by

31

(2.10) mk(xk + d; ρ) = cT (xk + d) + ρ
∑

j∈D(xk)

[rj(x
k
j) +∇rj(xk

j)
Tdj]

+,

constructed at xk. More precisely, the algorithm accepts a trial point x̂k+1 = xk + d as a

new iterate only if the sufficient decrease condition

φ(x̂k+1; ρk)− φ(xk; ρk) ≤ cdec

(
mk(xk + d; ρk)−mk(xk; ρk)

)
(2.11)

(2.10)
= cdec

(
cTd− ρk

∑
j∈D(xk)

[rj(x
k
j)]

+

)

holds with some fixed constant cdec ∈ (0, 1). The trial iterate x̂k+1 = xk+dk with dk computed

from (2.5) might not always satisfy this condition. The proposed algorithm generates a

sequence of improved steps of which one is eventually accepted.

However, to apply Theorem 2.2.1, it would be necessary that the algorithm take the

original step dk computed from (2.5); see Step 4 of Algorithm 1. Unfortunately, x̂k+1 = xk+dk

might not be acceptable even when the iterate xk is arbitrarily close to a non-degenerate

solution x∗ satisfying Assumption 2.2.1 (a phenomenon called the Maratos effect [55]). Our

remedy is to employ the second-order correction step [26], sk, which is obtained as an optimal

solution of the QP

min
s∈Rn

cT (dk + s) + 1
2
(dk + s)THk(dk + s)(2.12a)

s.t. A(xk + dk + s) ≤ b,(2.12b)

rj(x
k
j + dkj) +∇rj(xk

j + dkj)
T sj ≤ 0, j ∈ D(x∗),(2.12c)

xk
j + dkj + sj = 0, j ∈ E(x∗).(2.12d)

32

For later reference, let λ̂S,k, µ̂S,k and η̂S,k denote optimal multiplier vectors corresponding to

(2.12b)–(2.12d), respectively. The algorithm accepts the trial point x̂k+1 = xk + dk + sk if

it yields sufficient decrease (2.11) with respect to the original SQP step d = dk. Note that

(2.12) is a variation of the second-order correction that is usually used in SQP methods, for

which (2.12c) reads

rj(x
k
j + dkj) +∇rj(xk

j)
T (dkj + sj) ≤ 0, j ∈ D(x∗),

and avoids the evaluation of ∇rj(xk
j + dkj). In our setting, however, evaluating ∇rj(xk

j + dkj)

takes no extra work and (2.12c) is equivalent to a supporting hyperplane, see Chapter 2.3.1.

As the following theorem shows (see, e.g., [26] or [18, Section 15.3.2.3]), this procedure

computes steps with sufficient decrease (2.11) and results in quadratic convergence.

Theorem 2.2.2. Let Assumption 2.2.1 hold and assume that the initial iterate x0 and

multipliers µ0 are sufficiently close to x∗ and µ∗, respectively. Further suppose that ρk = ρ∞

for large k where ρ∞ > µ∗
j for all j ∈ D(x∗).

(1) Consider an algorithm that generates a sequence of iterates by setting

(xk+1, λk+1, µk+1, ηk+1) = (xk + dk, λ̂k, µ̂k, η̂k) or (xk+1, λk+1, µk+1, ηk+1) = (xk +

dk + sk, λ̂S,k, µ̂S,k, η̂S,k) for all k = 0, 1, 2, Then (xk, λk, µk, ηk) converges to

(x∗, λ∗, µ∗, η∗) at a quadratic rate.

(2) Further, for all k, either x̂k+1 = xk+dk or x̂k+1 = xk+dk+sk satisfies the acceptance

criterion (2.11).

33

2.2.4. Optimality conditions for SOCP

The proposed algorithm aims at finding an optimal solution of the SOCP (2.1), or equiva-

lently, values of the primal variables, x∗ ∈ Rn, and the dual variables, λ∗ ∈ Rm and z∗j ∈ Rnj

for j ∈ J , that satisfy the necessary and sufficient optimality conditions [2, Theorem 16]

c+ ATλ∗ − z∗ = 0,(2.13a)

Ax∗ − b ≤ 0 ⊥ λ∗ ≥ 0,(2.13b)

Kj ∋ x∗
j ⊥ z∗j ∈ Kj, j ∈ J .(2.13c)

A thorough discussion of SOCPs is given in the comprehensive review by Alizadeh and

Goldfarb [2]. The authors consider the formulation in which the linear constraints (2.1b)

are equality constraints, but the results in [2] can be easily extended to inequalities.

The primal-dual solution (x∗, λ∗, z∗) is unique under the following assumption.

Assumption 2.2.2. (x∗, λ∗, z∗) is a non-degenerate primal-dual solution of the SOCP

(2.1) at which strict complementarity holds.

The definition of non-degeneracy for SOCP is somewhat involved and we refer the reader

to [2, Theorem 21]. Strict complementarity holds if x∗
j + z∗j ∈ int(Kj) and implies that: (i)

x∗
j ∈ int(Kj) =⇒ z∗j = 0; (ii) z∗j ∈ int(Kj) =⇒ x∗

j = 0; (iii) x∗
j ∈ bd(Kj) \ {0} ⇐⇒ z∗j ∈

bd(Kj) \ {0}; and (iv) not both x∗
j and z∗j are zero.

34

2.3. Algorithm

The proposed algorithm solves the NLP formulation (2.3) using a variation of the SQP

method. Since the functional formulation of the cone constraints (2.3c) might not be differ-

entiable at all iterates or at an optimal solution, the cones are approximated by a polyhedral

outer approximation using supporting hyperplanes.

The approximation is done so that the method implicitly identifies the constraints that

are extremal-active at an optimal solution x∗, i.e., E(x∗) = E(xk) for large k. More precisely,

we will show that close to a non-degenerate optimal solution, the steps generated by the

proposed algorithm are identical to those computed by the QP subproblem (2.5) for the

basic SQP algorithm for solving (2.4). Consequently, fast local quadratic convergence is

achieved, as discussed in Chapter 2.2.2.

2.3.1. Supporting hyperplanes

In the following, consider a particular cone Kj and let Yj be a finite subset of {yj ∈ Rnj :

ȳj ̸= 0, yj0 ≥ 0}. We define the cone

(2.14) Cj(Yj) =
{
xj ∈ Rnj : xj0 ≥ 0 and ∇rj(yj)Txj ≤ 0 for all yj ∈ Yj

}
generated by the points in Yj. For each xj ∈ Kj we have rj(xj) ≤ 0, and using

(2.15) ∇rj(xj) =

(
−1,

x̄T
j

∥x̄j∥

)T

,

we obtain for any yj ∈ Yj that

∇rj(yj)Txj =
1

∥ȳj∥
ȳTj x̄j − xj0 ≤

1

∥ȳj∥
∥ȳj∥∥x̄j∥ − xj0 = rj(xj) ≤ 0.

35

Therefore Cj(Yj) ⊇ Kj. Also, for yj ∈ Yj, consider xj = (1, ȳTj /∥ȳj∥)T . Then

∇rj(yj)Txj =
ȳTj
∥ȳj∥

ȳj
∥ȳj∥

− 1 = 1− 1 = 0,

and also rj(xj) = ∥x̄j∥ − xj0 = ȳj/∥ȳj∥ − 1 = 0. Hence xj ∈ Cj(Yj) ∩ Kj. Therefore, for any

yj ∈ Yj, the inequality

(2.16) ∇rj(yj)Txj ≤ 0

defines a hyperplane that supports Kj at (1, ȳj/∥ȳj∥). In summary, Cj(Yj) is a polyhedral

outer approximation of Kj, defined by supporting hyperplanes.

In addition, writing Yj = {yj,1, . . . , yj,m}, we also define the cone

(2.17) C◦j (Yj) :=

{
−

m∑
l=1

σj,l∇rj(yj,l) + ηjej0 : σj ∈ Rm
+ , ηj ≥ 0

}
.

For all xj ∈ Cj(Yj) and zj = −
∑m

l=1 σj,l∇rj(yj,l) + ηjej0 ∈ C◦j (Yj), we have

xT
j zj = −

m∑
l=1

σj,l∇rj(yj,l)Txj + ηjxj0 ≥ 0

because ∇rj(yj,l)Txj ≤ 0 and xj0 ≥ 0 from the definition of Cj(Yj). Therefore C◦j (Yj) is

included in the dual of the cone Cj(Yj).

Now define R = [−∇rj(yj,1), . . . ,−∇rj(yj,m), ej0] and let zj ∈ Rnj be in the dual of

Cj(Yj). Since this implies that xT
j zj ≥ 0 for all x ∈ Cj(Yj) = {Rnj : RTxj ≥ 0}, Farkas’

lemma yields that zj = R · (σT , η)T for some σj ∈ Rm
+ and ηj ≥ 0, i.e., zj ∈ C◦j (Yj).

Overall we proved that C◦j (Yj) defined in (2.17) is the dual of Cj(Yj), and since Cj(Yj) ⊇

Kj, this implies C◦j (Yj) ⊆ Kj.

36

Algorithm 2 Preliminary SQP Algorithm

Require: Initial iterate x0 and sets Y0
j for j ∈ J .

1: for k = 0, 1, 2 · · · do
2: Choose Hk.
3: Solve subproblem (2.18) to get step dk.
4: Set xk+1 ← xk + dk.
5: Set Yk+1

j ← Y+
pr,j(Yk

j , x
k
j) for j ∈ J .

6: end for

2.3.2. QP subproblem

In each iteration, at an iterate xk, the proposed algorithm computes a step dk as an optimal

solution of the subproblem

min
d∈Rn

cTd+ 1
2
dTHkd(2.18a)

s.t. A(xk + d) ≤ b,(2.18b)

rj(x
k
j) +∇rj(xk

j)
Tdj ≤ 0, j ∈ D(xk),(2.18c)

xk
j + dj ∈ Cj(Yk

j), j ∈ J .(2.18d)

Here, Hk is a positive semi-definite matrix that captures the curvature of the nonlinear

constraint (2.3c), and for each cone, Yk
j is the set of hyperplane-generating points that have

been accumulated up to this iteration. From (2.14), we see that (2.18d) can be replaced by

linear constraints. Consequently, (2.18) is a QP and can be solved as such.

Algorithm 2 describes a preliminary version of the proposed SQP method based on this

subproblem. Observe that the linearization (2.18c) can be rewritten as

0 ≥ rj(x
k
j) +∇rj(xk

j)
Tdj = ∥x̄k

j∥ − xk
j0 − dj0 +

(x̄k
j)

T d̄j

∥x̄k
j∥

=
1

∥x̄k
j∥

(x̄k
j)

T (x̄k
j + d̄j)− (xk

j0 + dj0) = ∇rj(xk
j)

T (xk
j + dj)

37

and is equivalent to the hyperplane constraint generated at xk
j . Consequently, if xk

j ̸∈ Kj,

then rj(x
k
j) > 0 and (2.18c) acts as a cutting plane that excludes xk

j . Using the update rule

(2.19) Y+
pr,j(Yj, xj) =

Yj ∪ {xj} if x̄j ̸= 0 and rj(xj) > 0,

Yj otherwise,

in Step 5 makes sure that xk
j is excluded in all future iterations.

In our algorithm, we initialize Y0
j so that

(2.20) Y0
j ⊇ Ŷ0

j := {eji : i = 1, . . . , nj − 1} ∪ {−eji : i = 1, . . . , nj − 1}.

In this way, xj = 0 is an extreme point of Cj(Y0
j), as it is for Kj, and the challenging aspect

of the cone is already captured in the first subproblem. By choosing the coordinate vectors

eji we have ∇rj(eji)Txj = xji − xj0, and the hyperplane constraint (2.16) becomes a very

sparse linear constraint.

When Hk = 0 in each iteration, this procedure becomes the standard cutting plane al-

gorithm for the SOCP (2.1). It is well-known that the cutting plane algorithm is convergent

in the sense that every limit point of the iterates is an optimal solution of the SOCP (2.1),

but the convergence is typically slow. In the following chapters, we describe how Algo-

rithm 2 is augmented to achieve fast local convergence. The full method is stated formally

in Algorithm 3.

2.3.3. Identification of extremal-active cones

We now describe a strategy that enables our algorithm to identify those cones that are

extreme-active at a non-degenerate solution x∗ within a finite number of iterations, i.e.,

38

E(xk) = E(x∗) for all large k. This will make it possible to apply a second-order method and

achieve quadratic local convergence.

Consider the optimality conditions for the QP subproblem (2.18):

c+Hkdk + AT λ̂k +
∑

j∈D(xk)

µ̂k
j∇xrj(x

k)− ν̂k = 0,(2.21a)

A(xk + dk)− b ≤ 0 ⊥ λ̂k ≥ 0,(2.21b)

rj(x
k
j) +∇rj(xk

j)
Tdkj ≤ 0 ⊥ µ̂j ≥ 0, j ∈ D(xk),(2.21c)

Cj(Yk
j) ∋ xk

j + dkj ⊥ ν̂k
j ∈ C◦j (Yk

j), j ∈ J .(2.21d)

Here, λ̂k, µ̂k
j , and ν̂k

j are the multipliers corresponding to the constraints in (2.18); for

completeness, we define µ̂k
j = 0 for j ∈ J \ D(xk). In (2.21a), ∇xrj(x

k) is the vector in Rn

that contains ∇rj(xk
j) in the elements corresponding to xj and is zero otherwise. Similarly,

ν̂k ∈ Rn is equal to ν̂k
j in the elements corresponding to xj for all j ∈ J and zero otherwise.

Let us define

(2.22) Ŷk
j :=

Yk

j ∪ {xk
j}, if j ∈ D(xk),

Yk
j , if j ∈ J \ D(xk).

It is easy to verify that, for j ∈ D(xk), ∇rj(xk
j)x

k
j = rj(x

k
j) and hence rj(x

k
j)

T (xk
j + dk) ≤ 0

from (2.21c). As a consequence we obtain xk
j + dkj ∈ Cj(Ŷk

j) for all j ∈ J . Furthermore,

ν̂k
j ∈ C◦j (Yk

j) implies that

ν̂k
j = −

m∑
l=1

σk
j,l∇rj(ykj,l) + ηkj ej0

for suitable values of σk
j,l ≥ 0 and ηkj ≥ 0. Then ẑkj := −µ̂k

j∇rj(xk) + ν̂k
j ∈ C◦j (Ŷk

j) and

39

(2.23) ẑk = c+Hkdk + AT λ̂k

from (2.21a). In conclusion, if (d, λ̂k, µ̂k, ν̂k) is a primal-dual solution of the QP subproblem

(2.18), then (d, λ̂k, ẑk) satisfies the conditions

c+Hkdk + AT λ̂k − ẑk = 0,(2.24a)

A(xk + dk)− b ≤ 0 ⊥ λ̂k ≥ 0,(2.24b)

Cj(Ŷk
j) ∋ xk

j + dkj ⊥ ẑkj ∈ C◦j (Ŷk
j), j ∈ J ,(2.24c)

which more closely resembles the SOCP optimality conditions (2.13). Our algorithm main-

tains primal-dual iterates (xk+1, λ̂k, ẑk) that are updated based on (2.24).

Suppose that strict-complementarity holds at a primal-dual solution (x∗, λ∗, z∗) of the

SOCP (2.1) and that (xk+1, λ̂k, ẑk)→ (x∗, λ∗, z∗). If j ̸∈ E(x∗) then x∗
j ∈ Kj implies x∗

j0 > 0.

As xk
j converges to x∗

j , we have xk
j0 > 0 and therefore j ̸∈ E(xk) for sufficiently large k.

This yields E(xk) ⊆ E(x∗). We now derive a modification of Algorithm 2 that ensures that

E(x∗) ⊆ E(xk) for all sufficiently large k under Assumption 2.2.2.

Consider any j ∈ E(x∗). We would like to have

(2.25) ẑkj ∈ int(C◦j (Ŷk
j))

for all large k, since then complementarity in (2.24c) implies that xk+1
j = xk

j + dkj = 0 and

hence j ∈ E(xk+1) for all large k. We will later show that Assumption 2.2.2 implies that

ẑkj → z∗j and that there exists a neighborhood Nϵ(z
∗
j) = {zj ∈ Rnj : ∥zj − z∗j ∥ ≤ ϵ} of z∗j so

that zj ∈ int(C◦j (Ŷ0
j ∪ {−yj})) if zj, yj ∈ Nϵ(z

∗
j); see Remark 2.4.2. This suggests that some

40

vector close to −z∗j should eventually be included in Ŷk
j because then (2.25) holds when ẑkj

is close enough to z∗j . For this purpose, the algorithm computes

žk = c+ AT λ̂k,

which also converges to z∗j (see (2.13a)), and sets Yk+1
j to Y+

du,j(Yk
j , x

k
j , ž

k
j), where

(2.26) Y+
du,j(Yj, xj, zj) =

Yj ∪ {−zj} if xj ̸= 0, z̄j ̸= 0 and rj(zj) < 0,

Yj otherwise.

The update is skipped when xk
j = 0 (because then j is already in E(xk) and no additional

hyperplane is needed), and when ¯̌zkj = 0 or rj(ž
k
j) ≥ 0, which might indicate that z∗j ̸∈ int(Kj)

and j ̸∈ E(x∗).

2.3.4. Fast NLP-SQP steps

Now that we have a mechanism in place that makes sure that the extremal-active cones are

identified in a finite number of iterations, we present a strategy that emulates the basic SQP

Algorithm 1 and automatically takes quadratically convergent SQP steps, i.e., solutions of

the SQP subproblem (2.5), close to x∗. For the discussion in this chapter, we again assume

that x∗ is a unique solution at which Assumption 2.2.2 holds.

Suppose that E(xk) = E(x∗) for large k due to the strategy discussed in Chapter 2.3.3.

This means that the outer approximation (2.18d) of Kj for j ∈ E(x∗) is sufficient to fix xk
j

to zero and is therefore equivalent to the constraint (2.5d) in the basic SQP subproblem.

However, (2.18) includes the outer approximations for all cones, including those for j ̸∈ E(x∗),

which are not present in (2.5). Consequently, the desired SQP step from (2.5) might not be

feasible for (2.18).

41

As a remedy, at the beginning of an iteration, the algorithm first computes an NLP-SQP

step as an optimal solution dS,k of a relaxation of (2.18),

min
d∈Rn

cTd+ 1
2
dTHkd(2.27a)

s.t. A(xk + d) ≤ b(2.27b)

rj(x
k
j) +∇rj(xk

j)
Tdj ≤ 0, j ∈ D(xk)(2.27c)

xk
j0 + dj0 ≥ 0, j ∈ D(xk) \ Êk(2.27d)

xk
j + dj ∈ Cj(Yk

j) j ∈ Êk,(2.27e)

where Êk = E(xk). In this way, the outer approximations are imposed only for the currently

extremal-active cones, while for all other cones only the linearization (2.27c) is considered,

just like in (2.5), with the additional restriction (2.27d) that ensure xk+1
j0 ≥ 0. Let λ̂k, µ̂k

j , η̂
k
j ,

and ν̂k
j be the optimal corresponding to the constraints in (2.27) (set to zero for non-existing

constraints) and define ẑk as in (2.23). Then the optimality conditions (2.24) hold again,

this time with dk = dS,k, but instead of (2.22) we have

(2.28) Ŷk
j :=

{xk
j} if j ∈ D(xk) \ Êk,

Yk
j ∪ {xk

j} if j ∈ Êk ∩ D(xk),

Yk
j if j ∈ Êk \ D(xk).

When xk is not close to x∗ and E(x∗) ̸= E(xk), QP (2.27) might result in poor steps that

go far outside of Kj for some j ∈ D(xk) \ Êk and undermine convergence. Therefore, we

iteratively add more cones to Êk until

(2.29) xk
j0 + dS,kj0 > 0 only for j ∈ J \ Êk,

42

i.e., when a cone is approximated only by its linearization (2.27c), the step does not appear

to target its extreme point. This property is necessary to show that E(xk) = E(x∗) for all

large k also for the case that new iterates are computed from (2.27) instead of (2.18). Note

that in the extreme case Êk = J and (2.27) is identical to (2.18). This loop can be found in

Steps 6–9 in Algorithm 3.

Since there is no guarantee that (2.27) yields iterates that converge to x∗, the algorithm

discards the NLP-SQP step in certain situations and falls back to the original method to

recompute a new step from (2.18), as in the original method. In Chapter 2.3.6 we describe

how we use the exact penalty function (2.8) to determine when this is necessary.

2.3.5. Hessian matrix

Motivated by (2.6), we compute the Hessian matrix Hk in (2.18) and (2.27) from

(2.30) Hk =
∑

j∈D(xk)

µk
j∇2

xxrj(x
k),

where µk
j ≥ 0 are multiplier estimates for the nonlinear constraint (2.3c). Because ∇2rj(x

k
j)

is positive semi-definite and µk
j ≥ 0, also Hk is positive semi-definite.

In the final phase, when we intend to emulate the basic SQP Algorithm 1. Therefore, we

set µk+1
j = µ̂k

j for j ∈ D(xk), where µ̂k
j are the optimal multipliers for (2.27c), when the fast

NLP-SQP step was accepted. But we also need to define a value for µk+1
j when the step is

computed from (2.18) where, in addition to the linearization of rj, hyperplanes (2.18d) are

used to approximate all cones. By comparing the optimality conditions of the QPs (2.18)

and (2.5) we now derive an update for µk+1
j .

Suppose that j ∈ D(xk+1) ∩ D(xk). Then (2.21a) yields

43

(2.31) cj +Hk
jjd

k
j + AT

j λ̂
k + µ̂k

j∇rj(xk
j)− ν̂k

j = 0,

where Hk
jj = µk

j∇2rj(x
k
j) because of (2.30). Here, the dual information for the nonlinear

constraint is split into µ̂k
j and ν̂k

j and needs to be condensed into a single number, µk+1
j , so

that we can compute Hk from (2.30) in the next iteration.

Recall that, in the basic SQP Algorithm 1, the new multipliers µk+1
j are set to the optimal

multipliers of the QP (2.5), which satisfy

(2.32) cj +Hk
jjd

k
j + AT

j λ̂
k + µk+1

j ∇rj(xk
j) = 0.

A comparison with (2.31) suggests to choose µk+1
j so that µk+1

j ∇rj(xk
j) ≈ µ̂k

j∇rj(xk
j) − ν̂k

j .

Multiplying both sides with ∇rj(xk
j)

T and solving for µk+1 yields

µk+1
j = µ̂k

j −
∇rj(xk

j)
T ν̂k

j

∥∇rj(xk
j)∥2

.

Note that µk+1
j = µ̂k

j if the outer approximation constraint (2.18d) is not active and therefore

ν̂k
j = 0 for j. In this case, we recover the basic SQP update, as desired.

Now suppose that j ∈ D(xk+1) \ D(xk). Again comparing (2.31) with (2.32) suggests a

choice so that µk+1
j ∇rj(xk+1

j) ≈ −ν̂k
j , where we substituted ∇rj(xk

j) by ∇rj(xk+1
j) because

the former is not defined for j ̸∈ D(xk). In this case, multiplying both sides with ∇rj(xk+1
j)T

and solving for µk+1 yields

µk+1
j = −

∇rj(xk+1
j)T ν̂k

j

∥∇rj(xk+1
j)∥2

.

44

In summary, in each iteration in which (2.18) determines the new iterate, we update

(2.33) µk+1
j =

µ̂k
j −

∇rj(x
k
j)

T ν̂kj
∥∇rj(xk

j)∥2
j ∈ D(xk+1) ∩ D(xk)

−∇rj(x
k+1
j)T ν̂kj

∥∇rj(x
k+1
j)∥2

j ∈ D(xk+1) \ D(xk)

0 otherwise.

The choice above leads to quadratic convergence for non-degenerate instances, but it is

common for the global convergence analysis of SQP methods to permit any positive semi-

definite Hessian matrix Hk, as long as it is bounded. Since we were not able to exclude the

case that µk
j or 1/x

k
j0 are unbounded for some cone j ∈ J , in which case Hk defined in (2.30)

is unbounded, we fix a large threshold cH > 0 and rescale the Hessian matrix according to

(2.34) Hk ← Hk ·min{1, cH/∥Hk∥}

so that ∥Hk∥ ≤ cH in every iteration. In this way, global convergence is guaranteed, but the

fast local convergence rate might be impaired if cH is chosen too small so that Hk defined in

(2.30) must be rescaled. Therefore, in practice, we set cH to a very large number and (2.34)

is never actually triggered in our numerical experiments.

2.3.6. Penalty function

The steps computed from (2.18) and (2.27) do not necessarily yield a convergent algorithm

and a safeguard is required to force the iterates into a neighborhood of an optimal solution.

Here, we utilized the exact penalty function (2.8) and accept a new iterate only if the

sufficient decrease condition (2.11) holds.

45

As discussed in Chapter 2.3.4, at the beginning of an iteration, the algorithm first com-

putes an NLP-SQP step dS,k from (2.27). The penalty function can now help us to decide

whether this step makes sufficient progress towards an optimal solution, and we only accept

the trial point x̂k+1 = xk + dS,k as a new iterate if (2.11) holds with d = dS,k.

If the penalty function does not accept dS,k, there is still a chance that dS,k is making

rapid progress towards the solution, but, as discussed in Chapter 2.2.2, the Maratos effect

is preventing the acceptance of dS,k. As a remedy, we compute, analogously to (2.12), a

second-order correction step sk for (2.27) as a solution of

(2.35)

min
s∈Rn

cT (dS,k + s) + 1
2
(dS,k + s)THk(dS,k + s)

s.t. A(xk + dS,k + s) ≤ b,

rj(x
k
j + dS,kj) +∇rj(xk

j + dS,kj)T sj ≤ 0, j ∈ D(xk),

xk
j0 + dS,kj0 + sj0 ≥ 0, j ∈ D(xk) \ Êk,

xk
j + dS,kj + sj ∈ Cj(Yk

j), j ∈ Êk,

and accept the trial point x̂k+1 = xk + dS,k + sk if it satisfies (2.11) with d = dS,k. Let again

λ̂k, µ̂k
j , η̂

k
j , and ν̂k

j denote the optimal multipliers in (2.35) and define ẑk as in (2.23). The

optimality conditions (2.24) still hold, this time with dk = dS,k + sk and

(2.36) Ŷk
j :=

{xk
j + dS,kj }, if j ∈ D(xk) \ Êk,

Yk
j ∪ {xk

j + dS,kj }, if j ∈ D(xk) ∩ Êk,

Yk
j , if j ∈ Êk.

46

If neither dS,k nor dS,k + sk has been accepted, we give up on fast NLP-SQP steps and

instead revert to QP (2.18) which safely approximates every cone with an outer approxima-

tion. However, the trial point x̂k+1 = xk + dk with the step dk obtained from (2.18) does not

necessarily satisfy (2.11). In that case, the algorithm adds xk + dk to Yk
j to cut off xk + dk

and resolves (2.18) to get a new trial step dk. In an inner loop (Steps 21–31), this procedure

is repeated until, eventually, a trial step is obtained that satisfies (2.11). We will show that

(2.11) holds after a finite number of iterations of the inner loop.

It remains to discuss the update of the penalty parameter estimate ρk. One can show (see

Lemma 2.4.1) that an optimal solution of x∗ of the SOCP with multipliers z∗ is a minimizer

of ϕ(·, ρ) over the set X defined in (2.9) if ρ > ∥z∗J ,0∥∞, where z∗J ,0 = (z∗1,0, . . . , z
∗
p,0)

T . Since

z∗ is not known a priori, the algorithm uses the update rule ρk = ρnew(ρ
k−1, zk) where

(2.37) ρnew(ρold, z) :=

ρold if ρold > ∥zJ ,0∥∞

cinc · ∥zJ ,0∥∞ otherwise,

with cinc > 1. We will prove in Lemma 2.4.5 that the sequence {zk}∞k=1 is bounded under

Slater’s constraint qualification. Therefore, this rule will eventually settle at a final penalty

parameter ρ∞ that is not changed after a finite number of iterations.

During an iteration of the algorithm, several trial steps may be considered and a pre-

liminary parameter value is computed from (2.37) for each one. At the end of the iteration,

the parameter value corresponding to the accepted trial step is stored. Note that the accep-

tance test for the second-order correction step from (2.35) needs to be done with the penalty

parameter computed for the regular NLP-SQP step from (2.27).

47

Algorithm 3 SQP Algorithm for SOCP.

Require: Initial iterate x0 ∈ X with xj,0 ≥ 0, multipliers µ0
j ∈ R+, penalty parameter

ρ−1 > 0; constants cdec ∈ (0, 1), cinc > 1, and cH > 0.
1: Initialize Y0

j so that (2.20) is satisfied.
2: for k = 0, 1, 2, . . . do
3: Compute Hk using (2.30). Rescale according to (2.34) if ∥Hk∥ > cH .

4: Set Êk ← E(xk).

5: Compute dS,k, λ̂k, µ̂k, ẑk from (2.27) and (2.23) and set x̂k+1 = xk + dS,k.

6: while {j ∈ J : xk
j0 + dS,kj0 = 0} ̸⊆ Êk do

7: Set Êk ← Êk ∪ {j ∈ J : xk
j0 + dS,kj0 = 0}.

8: Recompute dS,k, λ̂k, µ̂k, ẑk from (2.27) and (2.23) and set x̂k+1 = xk + dS,k.
9: end while
10: Compute candidate penalty parameter ρk = ρnew(ρ

k−1, ẑk), see (2.37).
11: if (2.11) holds for d = dS,k then
12: Set Yk+1

j ← Y+
pr,j(Yk

j , x
k
j) using (2.19) and set dk = dS,k.

13: Set µk+1 = µ̂k and go to Step 33.
14: end if
15: Compute sk, λ̂k, µ̂k, ẑk from (2.35) and (2.23) and set x̂k+1 = xk + dS,k + sk.

16: if (2.11) holds for d = dS,k and {j ∈ J : xk
j0 + dS,kj0 + sk = 0} ⊆ Êk then

17: Set Yk+1
j ← Y+

pr,j(Yk
j , x

k
j) and dk = dS,k.

18: Set µk+1 = µ̂k and go to Step 33.
19: end if
20: Set Yk,0

j ← Yk
j .

21: for l = 0, 1, 2, . . . do
22: Compute dk,l, λ̂k, µ̂k, ẑk from (2.18) and (2.23) and set x̂k+1 = xk + dk,l.
23: Compute candidate penalty parameter ρk = ρnew(ρ

k−1, ẑk).
24: if (2.11) holds for d = dk,l then

25: Set Yk+1
j ← Y+

pr,j(Y
k,l
j , xk

j) and dk = dk,l.
26: Go to Step 32.
27: end if
28: Set Yk+1

j ← Y+
pr,j(Y

k,l
j , x̂k+1

j), see (2.19).

29: Compute žk = c+ AT λ̂k.
30: Update Yk,l+1

j ← Y+
du,j(Y

k,l+1
j , x̂k+1

j , žkj), see (2.26).
31: end for
32: Compute µk+1 from (2.33).

33: Compute žk = c+ AT λ̂k and update Yk+1
j ← Y+

du,j(Y
k+1
j , xk

j , ž
k
j).

34: Set xk+1 ← x̂k+1.
35: If (xk+1, λ̂k, ẑk) satisfy (2.13), stop.
36: end for

48

2.3.7. Complete algorithm

The complete method is stated in Algorithm 3. To keep the notation concise, we omit “for

all j ∈ J ” whenever the index j is used. We assume that all QPs in the algorithm are solved

exactly.

Each iteration begins with the computation of the fast NLP-SQP step where an inner loop

repeatedly adds cones to Êk until (2.29) holds. If the step achieves a sufficient decrease in the

penalty function, the trial point is accepted. Otherwise, the second-order correction for the

NLP-SQP step is computed and accepted if it yields a sufficient decrease for the NLP-SQP

step. Note that the second-order correction step is discarded if it does not satisfy (2.29) since

otherwise finite identification of E(x∗) cannot be guaranteed. If none of the NLP-SQP steps

was acceptable, the algorithm proceeds with an inner loop in which hyperplanes cutting

off the current trial point are repeatedly added until the penalty function is sufficiently

decreased. No matter which step is taken, both xk
j and žkj are added to Yk

j according to the

update rules (2.19) and (2.26) and the multiplier µk for the nonlinear constraints is updated.

In most cases, a new QP is obtained by adding only a few constraints to the most

recently solved QP, and a hot-started QP solver will typically compute the new solution

quickly. For example, in each inner iteration in Steps 6–9, hyperplanes for the polyhedral

outer approximation for cones augmenting Êk are added to QP (2.27). Similarly, each inner

iteration in Steps 21–31 adds one cutting plane for a violated cone constraint. In Steps 5

and 15, some constraints are removed compared to the most recently solved QP, but also

this structure could be utilized.

The algorithm might terminate because one of QPs solved for the step computation is

infeasible. Since the feasible regions of the QP are outer approximations of the SOCP (2.1),

this proves that the SOCP instance is infeasible; see also Remark 2.4.1.

49

2.4. Convergence analysis

2.4.1. Global convergence

In this chapter, we prove that, under a standard regularity assumption, all limit points of the

sequence of iterates are optimal solutions of the SOCP, if the algorithm does not terminate

with an optimal solution in Step 35. We also explore what happens when the SOCP is

infeasible.

We make the following assumption throughout this chapter.

Assumption 2.4.1. The set X defined in (2.9) is bounded.

Since x0 ∈ X by the initialization of Algorithm 3 and any step satisfies (2.21b), we have

xk ∈ X for all k. Similarly, (2.24c) and (2.14) imply that

(2.38) xk
j0 ≥ 0 for all k ≥ 0 and j ∈ J .

We start the analysis with some technical results that quantify the decrease in the penalty

function model.

Lemma 2.4.1. Consider an iteration k and let dk be computed in Step 5 or Step 22 in

Algorithm 3. Further let ρk > ρkmin, where ρkmin = ∥ẑkJ ,0∥∞ with ẑk defined in (2.23). Then

the following statements are true.

(1) We have

mk(xk + dk; ρk)−mk(xk; ρk) ≤ −(dk)THkdk − (ρk − ρkmin)
∑
j∈J

[rj(x
k
j)]

+ ≤ 0.

50

(2) If xk is not an optimal solution of the SOCP, then

(2.39) mk(xk + dk; ρk)−mk(xk; ρk) < 0.

Proof. Proof of (1): Consider any j ∈ D(xk). Because dk is a solution of (2.18) or

(2.27), there exist λ̂k and ẑk so that the optimality conditions (2.24) hold. Let j ∈ J . Since

ẑkj ∈ C◦(Ŷk
j), the definition (2.17) implies that

ẑkj = −
mk

j∑
l=1

σ̂k
l,j∇rj(ykj,l) + η̂kj ej0,

where Ŷk
j =

{
ykj,1, . . . , y

k
j,mk

j

}
and σ̂k

l,j, η̂
k
j ∈ R+.

Using (2.15) we have ẑkj0 =
∑mk

j

l=1 σ̂
k
l,j + η̂kj ≥

∑mk
j

l=1 σ̂
k
l,j. Together with (xk

j + dkj)
T ẑkj = 0

from (2.24c) and (x̄k
j)

T ȳkl,j ≤ ∥x̄k
j∥ · ∥ȳkl,j∥ this overall yields

−(dkj)T ẑkj = (xk
j)

T ẑkj = xk
j0ẑ

k
j0 −

mk
j∑

l=1

σ̂k
l,j(x̄

k
j)

T
ȳkl,j
∥ȳkl,j∥

≥ xk
j0ẑ

k
j0 −

mk
j∑

l=1

σ̂k
l,j∥x̄k

j∥

≥ xk
j0ẑ

k
j0 − ẑkj0∥x̄k

j∥ = −zkj0rj(xk
j) ≥ −zkj0[rj(xk

j)]
+.

Further, we have from (2.24b) that 0 = (Axk + Adk − b)T λ̂k and therefore (dk)TAT λ̂k =

−(Axk − b)T λ̂k ≥ 0 since λ̂k ≥ 0 and xk ∈ X.

Using these inequalities and (2.24a), the choice of ρkmin yields

0 = (dk)T
(
c+Hkdk + AT λ̂k − ẑk

)
≥ cTdk + (dk)THkdk −

∑
j∈J

ẑkj0[rj(x
k
j)]

+

≥ cTdk + (dk)THkdk − ρkmin

∑
j∈J

[rj(x
k
j)]

+.

51

Finally, combining this with (2.10) and (2.18c) or (2.27c), respectively, we obtain

mk(xk + dk; ρk)−mk(xk; ρk) = cTdk − ρk
∑

j∈D(xk)

[rj(x
k
j)]

+

= cTdk − ρk
∑
j∈J

[rj(x
k
j)]

+

≤ −(dk)THkdk − (ρk − ρkmin)
∑
j∈J

[rj(x
k
j)]

+.

For the second equality, we used that rj(x
k
j) = 0− xk

j0 ≤ 0 for j ̸∈ D(xk) by (2.38) and the

definition of D(xk). Since Hk is positive semi-definite, ρk > ρkmin, and [rj(x
k
j)]

+ ≥ 0, the

right-hand side must be non-positive.

Proof of (2): Suppose xk ∈ X is not an optimal solution for the SOCP. If xk is not

feasible for the SOCP, xk must violate a conic constraint and we have [rj(x
k
j)]

+ > 0 for some

j ∈ J . Since Hk is positive semidefinite and ρk − ρkmin > 0, part (1) yields (2.39).

It remains to consider the case when xk is feasible for the SOCP, i.e., [rj(x
k
j)]

+ = 0 for

all j. To derive a contradiction, suppose that (2.39) does not hold. Then part (1) yields

0 = mk(xk + dk; ρk)−mk(xk; ρk)

= −(dk)THkdk − (ρk − ρkmin)
∑
j∈J

[rj(x
k
j)]

+ = −(dk)THkdk ≤ 0.

Because Hk is positive semi-definite, this implies Hkdk = 0. Further, since also

0 = mk(xk + dk; ρk)−mk(xk; ρk)
(2.10)
= cTdk − ρk

∑
j∈D(xk)

[rj(x
k
j)]

+ = cTdk,

the optimal objective value of (2.18) or (2.27), respectively, is zero. At the same time,

choosing dk = 0 is also feasible for (2.18) or (2.27) and yields the same objective value.

52

Therefore, also dk = 0 is an optimal solution of (2.18) or (2.27) and the optimality conditions

(2.24) hold for some multipliers. Because C◦j (Ŷk
k) ⊆ Kj, the same multipliers and dk = 0

show that the optimality conditions of the SOCP (2.13) also hold. So, xk is an optimal

solution for the SOCP, contradicting the assumption. □

The following lemma shows that the algorithm is well-defined and will not stay in an

infinite loop in Steps 21–31.

Lemma 2.4.2. Consider an iteration k and let dk be computed in Step 5 or Step 22 in

Algorithm 3. Suppose that xk is not an optimal solution of the SOCP. Then

(2.40) φ(xk + dk,l; ρk)− φ(xk; ρk) ≤ cdec

(
mk(xk + dk,l; ρk)−mk(xk; ρk)

)
after a finite number of iterations in the inner loop in Steps 21–31.

Proof. Suppose the claim is not true and let {dk,l}∞l=0 be the infinite sequence of trial

steps generated in the loop in Steps 21–31 for which the stopping condition in Step 24 is

never satisfied, and let dk,∞ be a limit point of {dk,l}∞l=0. We will first show that

(2.41) [rj(x
k
j + dk,∞j)]+ = 0 for all j ∈ J .

Let us first consider the case when x̄k
j + d̄k,∞j = 0 for some j ∈ J . Then rj(x

k
j + dk,∞j) =

∥x̄k
j + d̄k,∞j ∥ − (xk

j0 + dk,∞j0) = −(xk
j0 + dk,∞j0) ≤ 0 and (2.41) holds.

Now consider the case that x̄k
j+d̄k,∞j ̸= 0 for j ∈ J . Since dk,∞ is a limit point of {dk,l}∞l=0,

there exists a subsequence {dk,lt}∞t=0 that converges to dk,∞. We may assume without loss of

generality that x̄k
j + d̄k,ltj ̸= 0 for all t. Then, for any t, by Step 30, xk

j + dk,ltj ∈ Yk,lt+1

j . In the

inner iteration lt+1, the trial step d
k,lt+1

j is computed from (2.18) and satisfies xk
j + d

k,lt+1

j ∈

53

Cj(Yk,lt
j), which by definition (2.14) implies

∇rj(xk
j + dk,ltj)T (xk

j + d
k,lt+1

j) ≤ 0.

Taking the limit t→∞ and using the fact that ∇rj(vj)Tvj = rj(vj) for any vj ∈ Kj yields

rj(x
k
j + dk,∞j) = ∇rj(xk

j + dk,∞j)T (xk
j + dk,∞j) ≤ 0,

proving (2.41). In turn (2.41) implies that the ratio

φ(xk + dk,l; ρk)− φ(xk; ρk)

mk(xk + dk,l; ρk)−mk(xk; ρk)
=

cTdk,l + ρk([rj(x
k
j + dk,lj)]+ − [rj(x

k
j)]

+)

cTdk,l − ρk[rj(xk
j)]

+

converges to 1. Note that the ratio is well-defined since mk(xk + dk,l; ρk) −mk(xk; ρk) < 0

due to Lemma 2.4.2(2). It then follows that (2.40) is true for sufficiently large l. □

Lemma 2.4.3. Suppose that there exists ρ∞ > 0 so that ρk = ρ∞ > 0 for all large k.

Then any limit point of {xk}∞k=0 is an optimal solution of the SOCP (2.1).

Proof. From (2.11) and the updates in the algorithm, we have that

φ(xk+1; ρ∞)− φ(xKρ ; ρ∞) =
k∑

t=Kρ

(
φ(xt+1; ρ∞)− φ(xt; ρ∞)

)

≤ cdec

k∑
t=Kρ

(
mt(xt + dt; ρ∞)−mt(xt; ρ∞)

)
for k ≥ Kρ. Since the SOCP cannot be unbounded below by Assumption 2.4.1, the left-hand

side is bounded below as k →∞. Lemma 2.4.1(1) shows that all summands are non-positive

and we obtain

(2.42) lim
k→∞

(
mk(xk + dk; ρ∞)−mk(xk; ρ∞)

)
= 0.

54

Using Lemma 2.4.1(1), we also have

lim
k→∞

(
(dk)THkdk + (ρ∞ − ρkmin)

∑
j∈J

[rj(x
k
j)]

+

)
= 0.

Since Hk is positive semi-definite and ρ∞ − ρkmin ≥ ρ∞ − ρ∞min > 0, this implies that

[rj(x
k
j)]

+ → 0 for all j ∈ J , i.e., all limit points of {xk}∞k=0 are feasible. This also yields

limk→∞(dk)THkdk = 0, and since Hk is positive semi-definite and uniformly bounded due to

(2.34), we have

(2.43) lim
k→∞

Hkdk = 0.

Using (2.42) together with (2.10) and [rj(x
k
j)]

+ → 0, we obtain

(2.44) 0 = lim
k→∞

(
cTdk − ρ∞

∑
j∈D(xk)

[rj(x
k
j)]

+

)
= lim

k→∞
cTdk.

Now let x∗ be a limit point of {xk}∞k=0. Since X is bounded, dk is bounded, and conse-

quently there exists a subsequence {kt}∞t=0 of iterates so that xkt and dkt converge to x∗ and

d∞, respectively, for some limit point d∞ of dk. Define gkt = Hktdkt for all t. Then, looking

at the QP optimality conditions (2.24), we see that dkt is also an optimal solution of the

linear optimization problem

(2.45)

min
d∈Rn

(c+ gkt)Td

s.t. A(xkt + d) ≤ b,

xkt
j + dj ∈ Cj(Ŷkt

j), j ∈ J .

Now suppose, for the purpose of deriving a contradiction, that x∗ is not an optimal

solution of the SOCP. Since we showed above that x∗ is feasible, there then exists a step

55

d̃∗ ∈ Rn so that x̃ = x∗ + d̃∗ is feasible for (2.1) and cT d̃∗ < 0. Then, because Kj ⊆ Cj(Ŷkt
j),

for each t, d̃kt = x∗ − xkt + d̃∗ is feasible for (2.45), and because dkt is an optimal solution

of (2.45), we have (c + gkt)Tdkt ≤ (c + gkt)T d̃kt . Taking the limit t → ∞, we obtain

cTd∞ ≤ cT d̃∗ < 0, where we used limt→∞ gkt = limt→∞ Hktdkt = 0, due to the definition of

gkt and (2.43). However, this contradicts (2.44). Therefore, x∗ must be a solution of the

SOCP. □

For later reference, we highlight the limit (2.43) established in the above proof.

Lemma 2.4.4. Suppose that there exists ρ∞ > 0 so that ρk = ρ∞ > 0 for all large k.

Then limk→∞Hkdk = 0.

We are now ready to prove that the algorithm is globally convergent under the following

standard regularity assumption.

Assumption 2.4.2. The SOCP is feasible and Slater’s constraint qualification holds,

i.e., there exists a feasible point x̃ ∈ Rn and ϵ > 0 so that x̃ + v is feasible for any v ∈ Rn

with ∥v∥ ≤ ϵ.

This assumption implies that the multiplier estimates are bounded.

Lemma 2.4.5. Suppose that Assumption 2.4.2 holds. Then {ẑk} is bounded.

Proof. Let x̃ and ϵ be the quantities from Assumption 2.4.2. Note that the QP corre-

sponding to the optimality conditions (2.24) is

min
d∈Rn

cTd+ 1
2
dTHkd

s.t. A(xk + d) ≤ b, xk
j + dj ∈ Cj(Ŷk

j), j ∈ J .

56

Since xk+1 = xk + dk when dk is the step accepted by the algorithm, it follows that xk+1 is

an optimal solution of the QP

Oprimal = min
x∈Rn

(cT −Hkxk)x+ 1
2
xTHkx

s.t. Axk+1 ≤ b, xk+1
j ∈ Cj(Ŷk

j), j ∈ J ,

the Lagrangian dual of which is

Odual = max
x,z∈Rn,λ∈Rm

− bTλ− 1
2
xTHkx(2.46a)

s.t. c−Hkxk +Hkx+ ATλ− z = 0,(2.46b)

z ∈ C◦j (Ŷk
j), j ∈ J , λ ≥ 0.(2.46c)

By (2.24), (xk+1, λ̂k,ẑk) is a primal-dual optimal solution of these QPs.

Define v = −ϵ ẑk

∥ẑk∥ . Then ∥v∥ ≤ ϵ, and Assumption 2.4.2 implies that x̃+v ∈ Kj ⊆ Cj(Ŷk
j).

Since ẑk ∈ C◦j (Ŷk
j), we have with (2.46b) that

(2.47) 0 ≤ (x̃+ v)T ẑk = vT ẑk + x̃T (c−Hkx̃+Hkxk+1 + AT λ̂k).

Since Hk is positive definite, it is

(2.48) 0 ≤ (x̃− xk+1)THk(x̃− xk+1) = x̃THkx̃− 2x̃THkxk+1 + (xk+1)THkxk+1.

Furthermore, Slater’s condition implies strong duality, that is

bT λ̂k +
1

2
(xk+1)THkxk+1 = −Odual = −Oprimal

= −(c−Hkxk)Txk+1 − 1
2
(xk+1)THkxk+1.(2.49)

57

Finally, since x̃ is feasible for the SOCP, (2.1b) and λ̂k ≥ 0 imply x̃TAT λ̂k ≤ bT λ̂k. Sub-

tracting vT ẑk on both sides of (2.47), this, together with (2.48) and (2.49), yields

ϵ∥ẑk∥ ≤ x̃T c− 1

2
x̃THkx̃+

1

2
(xk+1)THkxk+1 + bT λ̂k

= x̃T c− 1

2
x̃THkx̃− cTxk+1 − 1

2
(xk+1)THkxk+1.

The first two terms are independent of k, and since X is bounded by Assumption 2.4.2 and

Hk is uniformly bounded by (2.34), we can conclude that ẑk is uniformly bounded. □

It is easy to see that the penalty parameter update rule (2.37) and Lemma 2.4.5 imply

the following result.

Lemma 2.4.6. Suppose Assumption 2.4.2 holds. Then there exists ρ∞ and Kρ so that

ρk = ρ∞ > ρ∞min, where ρ∞min ≥ ρkmin = ∥zkJ ,0∥∞ for all k ≥ Kρ.

We can now state the main convergence theorem of this chapter.

Theorem 2.4.1. Suppose that Assumptions 2.4.1 and 2.4.2 hold. Then Algorithm 3

either terminates in Step 35 with an optimal solution, or it generates an infinite sequence

of iterates {(xk+1, λ̂k, ẑk)}∞k=0, each limit point of which is a primal-dual solution of the

SOCP (2.1).

Proof. Let {(xkt+1, λ̂kt , ẑkt)} be a subsequence converging to a limit point (x∗, λ∗, z∗).

No matter whether an iterate is computed from the optimal solution of (2.18), (2.27), or

(2.35), the iterates satisfy the optimality conditions (2.24). In particular, from (2.24c) we

have for any j ∈ J that ẑktj ∈ C◦j (Ŷ
kt
j) ⊆ Kj and (xkt+1

j)T ẑktj = 0. In the limit, we obtain

z∗j ∈ Kj (since Kj is closed) and (x∗
j)

T z∗j = 0. Lemma 2.4.6 yields that ρk = ρ∞ for all

large k, and so Lemma 2.4.3 implies that x∗ is feasible, i.e., x∗
j ∈ Kj. Therefore, (2.13c)

58

holds. Using Lemma 2.4.4 we can take the limit in (2.24a) and (2.24b) and deduce also the

remaining SOCP optimality conditions (2.13a) and (2.13b) hold at the limit point. □

Remark 2.4.1. In case the SOCP is infeasible, we have two possible outcomes. Ei-

ther, Algorithm 3 terminates in some iterations because one of the QPs is infeasible, or

limk→∞ ρk =∞ (reverse conclusion of Lemma 2.4.3).

2.4.2. Identification of extremal-active cones

We can only expect fast local convergence under some non-degeneracy assumptions. Through-

out this chapter, we assume that Assumption 2.2.2 holds. Under this assumption, (x∗, λ∗, z∗)

is the unique optimal solution [2, Theorem 22], and Theorem 2.4.1 then implies that

lim
k→∞

(xk+1, λ̂k, ẑk) = (x∗, λ∗, z∗).

First, we prove a technical result that describes elements in C◦j (Yj) in a compact manner.

For this characterization to hold, condition (2.20) for the initialization Y0
j of the set of

hyperplane-generating points is crucial.

Lemma 2.4.7. Let yj ∈ Rnj with ȳj ̸= 0 and yj0 ≥ 0. Further, let Φj(zj, yj) :=

zj0 − ∥z̄j + ȳj∥1 − ∥ȳj∥. Then the following statements hold for zj, yj ∈ Rnj :

(1) zj ∈ C◦j (Y0
j ∪ {yj}) if Φj(zj, yj) ≥ 0.

(2) zj ∈ int(C◦j (Y0
j ∪ {yj})) if Φj(zj, yj) > 0.

Proof. For (1): Suppose Φj(zj, yj) ≥ 0, then

zj0 ≥ ∥z̄j + ȳj∥1 + ∥ȳj∥.

59

Define s̄j = z̄j + ȳj and choose σ+
j ∈ Rnj−1

+ and σ−
j ∈ Rnj−1

+ so that s̄j = σ+
j − σ−

j and

|sji| = σ+
ji + σ−

ji for all i = 1, . . . , nj − 1. Then we have

zj0 =

nj−1∑
i=1

σ+
ji +

nj−1∑
i=1

σ−
ji + σj + ηj

z̄j = s̄j − ȳj = σ+
j − σ−

j − σj
ȳj
∥ȳj∥

with σj = ∥ȳj∥ and some ηj ∈ R+. Using (2.15), this can be rewritten as

zj = −
nj−1∑
i=1

σ+
ji∇rj(−eji)−

nj−1∑
i=1

σ−
ji∇rj(eji)− σj∇rj(yj) + ηjej0.

By the definition of C◦j in (2.17), this implies that zj ∈ C◦j (Ŷ0
j ∪ {yj}) where Ŷ0

j is defined in

(2.20). Since Ŷ0
j ⊆ Y0

j from (2.20), we have C◦j (Ŷ0
j ∪ {yj}) ⊆ C◦j (Y0

j ∪ {yj}), and the claim

follows.

For (2): Suppose Φj(zj, yj) > 0. Because Φj is a continuous function, there exists a

neighborhood Nϵ(zj) around zj so that Φj(ẑj, yj) > 0 for all ẑj ∈ Nϵ(zj). From part (1) we

then have Nϵ(zj) ⊆ C◦j (Y0
j ∪ {yj}), and consequently zj ∈ int(C◦j (Y0

j ∪ {yj})). □

Theorem 2.4.2. For all k sufficiently large, we have E(xk) = E(x∗).

Proof. Choose j ̸∈ E(x∗), then x∗
j ̸= 0. Because xk

j → x∗
j , it is x

k
j ̸= 0 or, equivalently,

j ̸∈ E(xk) for k sufficiently large. For the remainder of this proof we consider j ∈ E(x∗)

and show that j ∈ E(xk) for large k. Note that strict complementarity in Assumption 2.2.2

implies that z∗j ∈ int(Kj), i.e., rj(z
∗
j) < 0, and consequently z∗j0 > 0.

First consider the iterations in which fast NLP-SQP steps are accepted in Steps 11 or

16. For the purpose of deriving a contradiction, suppose there exists an infinite subsequence

so that xkt+1 = xkt + dS,kt or xkt+1 = xkt + dS,kt + skt and j ̸∈ Êkt . Then j ̸∈ Êkt implies

60

xkt+1
j0 > 0 (according to the termination condition in the while loop in Step 6). We also have

Ŷkt
j = {x̌kt

j } where x̌kt
j = xkt

j from (2.28) or x̌kt
j = xkt

j + dS,ktj from (2.36). Condition (2.24c)

yields zktj ∈ C◦j ({x̌
kt
j }), so by (2.17) it is zktj = −σj∇rj(x̌kt

j)+ηjej0 for some σj, ηj ≥ 0, as well

as xkt+1
j ∈ Cj({x̌kt

j }), which by (2.14) implies ∇rj(x̌kt
j)

Txkt+1
j ≤ 0. Then complementarity

yields

0 = (zktj)Txkt+1
j = −σj∇rj(x̌kt

j)
Txkt+1

j + ηjx
kt+1
j0 ≥ ηjx

kt+1
j0 .

Since xkt+1
j0 > 0 and ηj ≥ 0, we must have ηj = 0, and consequently zktj = −σj∇rj(x̌kt

j). It is

easy to see that rj(−σj∇rj(x̌kt
j)) = 0. Since zktj → z∗j , continuity of rj yields rj(z

∗
j) = 0, in

contradiction to z∗j ∈ int(Kj). We thus showed that j ∈ Êk for all large iterations k in which

the NLP-SQP step was accepted, and consequently (2.28) and (2.36) yield Ŷk
j = Yk

j for such

k.

In all other iterations (2.22) holds, and overall we obtain

(2.50) Y0
j ⊆ Yk

j ⊆ Ŷk
j for all sufficiently large k.

Let us first consider the case when z̄∗j = 0. Then ∥z̄∗j ∥ − z∗j0 = rj(z
∗
j) < 0 yields z∗j0 > 0. To

apply Lemma 2.4.7 choose any i ∈ {1, . . . , nj − 1} and let yj = eji. Then ∥yj∥1 = ∥yj∥ = 1

and Φj(z
∗
j , yj) = z∗j0 > 0. Since ẑkj → z∗j and Φj is continuous, Φj(ẑ

k
j , yj) > 0 for sufficiently

large k, and by Lemma 2.4.7, ẑkj ∈ int(C◦j (Y0
j ∪ {yj})). Since yj ∈ Y0

j and (2.50) holds,

we also have ẑkj ∈ int(C◦j (Ŷk
j)). General conic complementarity in (2.24c) then implies that

xk+1
j = xk

j + dkj = 0 for all large k, or equivalently, j ∈ E(xk) for k sufficiently large, as

desired.

Now consider the case z̄∗j ̸= 0. For the purpose of deriving a contradiction, suppose there

exists a subsequence {xkt}∞t=0 so that j ̸∈ E(xkt), i.e., xkt ̸= 0, for all t. Because žkj → z∗j ,

61

z̄∗j ̸= 0, and rj(z
∗
j) < 0, we may assume without loss of generality that rj(ž

kt
j) < 0 and

¯̌zktj ̸= 0 for all t. Using this and xkt
j ̸= 0, we see that the update rule (2.26) in Step 33 adds

−žktj to Ykt+1
j . With (2.50), we have

(2.51) −žktj ∈ Y
kt+1
j ⊆ Ykt+1

j ⊆ Ŷkt+1

j for all t.

Recall the mapping Φj defined in Lemma 2.4.7 and note that Φj(z
∗
j ,−z∗j) = z∗j0 −

∥z̄∗j ∥ = −rj(z∗j) > 0. Since both ẑkj and žkj converge to z∗j and Φj is continuous, it is

Φj(ẑ
kt+1−1
j ,−žktj) > 0 for all large t, and therefore, by Lemma 2.4.7, ẑ

kt+1−1
j ∈ int(C◦j (Y0

j ∪

{−žktj)}))
(2.51)

⊆ int(C◦j (Ŷ
kt+1−1
j)) for all large t. Conic complementarity in (2.24c) then implies

that x
kt+1

j = x
kt+1−1
j +d

kt+1−1
j = 0. This is a contradiction of the definition of the subsequence

{xkt}∞t=0. □

Remark 2.4.2. In the proof of Theorem 2.4.2, we saw that Φj(z
∗
j ,−z∗j) > 0 if j ∈ E(x∗)

and z̄∗j ̸= 0. Since Φj is continuous, this implies that there exists a neighborhood Nϵ(z
∗
j) so

that Φj(zj,−yj) > 0, and consequently zj ∈ int(C◦j (Y0
j ∪ {−yj})), for all zj, yj ∈ Nϵ(z

∗
j).

2.4.3. Quadratic local convergence

As discussed in Chapter 2.2.1, since x∗ is a solution of the SOCP (2.1), it is also a solution of

the nonlinear problem (2.4). We now show that Algorithm 3 eventually generates steps that

are identical to SQP steps for (2.4). Then Theorem 2.2.2 implies that the iterates converge

locally at a quadratic rate.

We first need to establish that the assumptions for Theorem 2.2.2 hold.

Lemma 2.4.8. Suppose that Assumption 2.2.2 holds for the SOCP (2.1). Then Assump-

tion 2.2.1 holds for the NLP (2.4).

62

Proof. Let λ∗ and z∗ be the optimal multipliers for the SOCP corresponding to x∗,

satisfying (2.13). Assumption 2.2.2 implies that λ∗ and z∗ are unique [2, Theorem 22].

Let j ∈ D(x∗) and define µ∗
j = z∗j0 ≥ 0. If 0 = rj(x

∗
j) = x∗

j0 − ∥x̄∗
j∥, complementar-

ity (2.13c) implies, for all i ∈ {1, . . . nj}, that 0 = x∗
j0z

∗
ji + x∗

jiz
∗
j0 = ∥x̄∗

j∥z∗ji + x∗
jiz

∗
j0,, or

equivalently, z∗ji = −z∗j0
x∗
ji

∥x̄∗
j∥
; see [2, Lemma 15]. Using (2.15), this can be written as

(2.52) z∗j = −z∗j0∇rj(x∗
j) = −µ∗

j∇rj(x∗
j).

On the other hand, if rj(x
∗
j) < 0, i.e., the constraint (2.4c) is inactive, then x∗

j ∈ int(Kj)

and complementarity (2.13c) yields z∗j = 0 (see [2, Definition 23]) and therefore µ∗
j = 0.

Consequently, (2.52) is also valid in that case. Finally, we define ν∗
j = z∗j for all i ∈ E(x∗).

With these definitions, (2.13a) can be restated as

(2.53) c+ ATλ∗ +
∑

j∈D(x∗)

µ∗
j∇rj(x∗)− ν∗ = 0,

where ν∗ ∈ Rn is the vector with the values of ν∗
j at the components corresponding to

j ∈ E(x∗) and zero otherwise. We now prove parts (1), (2), and (3) of Assumption 2.2.1.

Proof of (1): Let j ∈ D(x∗
j). We already established that rj(x

∗
j) < 0 yields µ∗

j = 0. Now

suppose that rj(x
∗
j) = 0. Then x∗

j ∈ bd(Kj) \ {0}. Since strict complementarity is assumed,

we have z∗j ∈ bd(Kj) \ {0} (see the comment after Assumption 2.2.2), which in turn yields

z∗j ̸= 0 and hence µ∗
j ̸= 0.

Proof of (2): Since we need to prove linear independence only of those constraints that

are active at x∗, we consider only those rows AA of A for which (2.4b) is binding.

Without loss of generality suppose x∗ is partitioned into four parts, (x∗)T = ((x∗
B)

T (x∗
I)

T

(x∗
E)

T (x∗
F)

T), where x∗
B, x

∗
I , and x∗

E correspond to the variables in the cones B = {j ∈

63

J : rj(x
∗
j) = 0, x∗

j ̸= 0}, I = {j ∈ J : rj(x
∗
j) < 0}, and E = E(x∗), respectively, and

x∗
F includes all components of x∗ that are not in any of the cones. Further suppose that

(x∗
B)

T = ((x∗
1)

T . . . (x∗
pB
)T), where B = {1, . . . , pB}, and that AA is partitioned in the same

way.

Primal non-degeneracy of the SOCP implies all that matrices of the form [AA]1 · · · [AA]pB [AA]I [AA]E [AA]F

α1∇r1(x∗
1)

T · · · αpB∇rpB(x∗
pB
)T 0T vT 0T

have linear independent rows for all scalars αi and vectors v, not all zero [2, Eq. (50)]. This

implies that the rows of AA, together with the gradient of any one of the binding constraints

in (2.4c) and (2.4d) are linearly independent. Because the constraint gradients, which are of

the form ∇rj(x∗
j) and eij, share no nonzero components when extended to the full space, we

conclude that the gradients of all active constraints are linearly independent at x∗, i.e., the

LICQ holds.

Proof of (3): For the purpose of deriving a contradiction, suppose that there exists a

direction d ∈ Rn \ {0} that lies in the null space of the constraints of (2.4) that are binding

at x∗ and for which dTH∗d ≤ 0.

Since d is in the null space of the binding constraints, we have AAd = 0, ∇rj(x∗)Td = 0

for j ∈ B, and dj = 0 for all j ∈ E . Premultiplying (2.53) by dT gives

(2.54) 0 = cTd+ (λ∗)T AAd︸︷︷︸
0

+
∑
j∈B

µ∗∇rj(x∗)Td︸ ︷︷ ︸
0

+
∑
j∈I

µ∗︸︷︷︸
0

∇rj(x∗)Td+ (ν∗)Td︸ ︷︷ ︸
0

= cTd.

64

What remains to show is that d is a feasible direction for the SOCP, i.e., there exists

β > 0 so that x∗ + βd is feasible for the SOCP. Because of (2.54), this point has the same

objective value as x∗ and is therefore also an optimal solution of the SOCP. This contradicts

the fact that Assumption 2.2.2 implies that the optimal solution is unique [2, Theorem 22].

By the definition of H∗ in Assumption 2.2.1 and the choice of d, we have

0 ≥ dTH∗d =
∑

j∈D(x∗)

µ∗
jd

T
j ∇2rj(x

∗
j)dj =

∑
j∈B

µ∗
jd

T
j ∇2rj(x

∗
j)dj.

Since for all j ∈ B, the Hessian ∇2rj(x
∗
j) is positive semi-definite and µ∗

j > 0 from Part (i),

this yields dTj ∇2rj(x
∗
j)dj = 0 for all j ∈ B.

Let j ∈ B. Then from (2.7)

(2.55) 0 = dTj ∇2rj(x
∗)dj =

∥d̄j∥2∥x̄∗
j∥2 − (d̄Tj x̄

∗
j)

2

∥x̄∗
j∥3

.

The definition of B implies rj(x
∗
j) = 0 and so x∗

j0 = ∥x̄∗
j∥. Since dj is in the null space of

∇rj(x∗
j), we have 0 = ∇rj(x∗

j)
Tdj = −dj0+

d̄Tj x̄j

∥x̄∗
j∥
, which in turn yields dj0x

∗
j0 = d̄Tj x̄

∗
j . Finally,

using these relationships together with (2.55) gives

0 = ∥d̄j∥2∥x̄∗
j∥2 − (d̄Tj x̄

∗
j)

2 = ∥d̄j∥2 (x∗
j0)

2 − (dj0x
∗
j0)

2

and so d2j0 = ∥d̄j∥2. All of these facts imply that for any β ∈ R,

∥x̄∗
j + βd̄j∥2 − (x∗

j0 + βdj0)
2

=∥x̄∗
j∥2 + 2βd̄Tj x̄

∗
j + β2∥d̄j∥2 −

(
(x∗

j0)
2 + 2βdj0x

∗
j0 + β2d2j0

)
= 0,

which implies rj(x
∗
j + βdj) = 0 and therefore x∗

j + βdj ∈ Kj.

65

Further, because d lies in the null space of the active constraints, we have, for any β ∈ R,

that x∗
j + βdj = 0 ∈ Kj for all j ∈ E(x∗) and AA(x

∗ + βd) = bA. Finally, since rj(x
∗
j) < 0

and hence x∗
j ∈ int(Kj) for all j ∈ J \ (E(x∗) ∪ B), and since x∗

j is strictly feasible for all

non-binding constraints in (2.1b), there exists β > 0 so that x∗ + βd satisfies all constraints

in (2.1). □

Theorem 2.4.3. Suppose that cH > ∥H∗∥. Then the primal-dual iterates (xk+1, λ̂k, ẑk)

converge locally to (x∗, λ∗, z∗) at a quadratic rate.

Proof. We already established in Theorem 2.4.1 that the iterates converge to the optimal

solution, and since Hk → H∗ and cH > ∥H∗∥, the Hessian is not rescaled according to (2.34)

in Step 3. Using Theorem 2.4.2 we know that, once k is sufficiently large, the step dS,k

computed in Step 5 of Algorithm 3 is identical with the SQP step from (2.5) for (2.4); we

can ignore (2.27d) here because x∗
j0 > 0 and dS,kj0 → 0 and therefore this constraints is not

active for large k. This also implies that the condition in Step 6 is never true and thus

Êk = E(x∗). If the decrease condition in Step 11 is not satisfied, by a similar argument we

have that sk computed in Step 15 is the second-order correction step from (2.12) for (2.4).

Due to Lemma 2.4.8 we can now apply Theorem 2.2.2 to conclude that either dS,k or dS,k+sk

is accepted to define the next iterate for large k and that the iterates converge at a quadratic

rate. □

2.5. Numerical Experiments

In this chapter, we examine the performance of Algorithm 3. First, using randomly

generated instances, we consider three types of starting points: (i) uninformative default

starting point (cold start), (ii) solution of a perturbed instance, (iii) solution computed by

an interior-point SOCP solver whose accuracy we wish to improve. Then we briefly report

66

results using the test library CBLIB. The numerical experiments were performed on an

Ubuntu 22.04 Linux server with a 2.1GHz Xeon Gold 5128 R CPU and 256GB of RAM.

2.5.1. Implementation

We implemented Algorithm 3 in MATLAB R2021b, with parameters cdec = 10−6, cinc = 2,

cH = 1012, and ρ−1 = 50. In each iteration, we identify E(xk) = {j ∈ J : ∥xk
j∥∞ < 10−6}

and D(xk) = {j ∈ J \ E(xk) : ∥x̄k
j∥ > 10−8}. The set Y0

j is initialized to Ŷ0
j (see (2.20)),

and λ0 is a given starting value for λ, if provided, and zero otherwise. In addition, since the

identification of the optimal extremal-active set E(x∗) requires z∗j ∈ C◦j (Yj), we add −ž0j to

Y0
j , where ž0 = c+ ATλ0.

The algorithm terminates when the violation of the SOCP optimality conditions (2.13)

for the current iterate satisfies

(2.56) E(xk, λk, žk) = max

∥[Axk − b]+∥∞, ∥(Axk − b) ◦ λk∥∞, ∥[−λk]+∥∞

maxj∈J
{
[rj(x

k)]+, [rj(ž
k)]+, |(xk

j)
T žkj |

}
 ≤ ϵtol

with žk = c+ ATλk, for some ϵtol > 0.

As in [81], the sufficient descent condition (2.11) is slightly relaxed by

φ(x̂k+1; ρk)− φ(xk; ρk)− 10ϵmach|φ(xk; ρk)| ≤ cdec
(
mk(xk + d; ρk)−mk(xk; ρk)

)
to account for cancellation error, where ϵmach is the machine precision. Finally, to avoid

accumulating very similar hyperplanes that would lead to degenerate QPs, we do not add

a new generating point vj to Yk
j if there already exists yj ∈ Yk

j such that
∥∥∥ v̄j
∥v̄j∥ −

ȳj
∥ȳj∥

∥∥∥
∞
≤

10−10.

67

In these experiments, we disabled the second-order correction step (Steps 15–19) because

we noticed that it was never accepted in practice. In a more sophisticated implementation,

one would include a heuristic that attempts to detect the Maratos effect and then triggers

the second-order correction step in specific situations.

The QPs were solved using ILOG CPLEX V12.10, with optimality and feasibility toler-

ances set to 10−9 and “dependency checker” and “numerical precision emphasis” enabled,

using the primal simplex method. When CPLEX did not report a solution status “optimal”

and the QP KKT error was above 10−9, a small perturbation was added to the Hessian

matrix, i.e., we replaced Hk by Hk + 10−7 · I. This helped in some cases in which CPLEX

(incorrectly) reported that Hk was not positive semi-definite. If CPLEX still did not find

a QP solution with KKT error less than 10−9, we attempted to resolve the QP with the

barrier method, the dual simplex method, and the primal simplex method again, until one

was able to compute a solution. If all solvers failed for QP (2.27), the algorithm continued

in Step 21. If no solver was able to solve (2.18), we terminated the main algorithm and

declared a failure.

We emphasize that the purpose of our implementation is to assess whether the proposed

algorithm exhibits behavior that validates the stated goals: Convergence from any starting

point and rapid local convergence to highly accurate solutions. In its current implementation,

it requires more computation time than highly sophisticated commercial solvers such as

MOSEK or CPLEX, which were developed over decades and have highly specialized linear

algebra routines that are tightly integrated into the algorithms. As we observed at the end

of Chapter 2.3.7, many of the QPs in Algorithm 3 that are solved in succession are similar

to each other, and savings in computation times should therefore be achievable. However,

our prototype implementation based on the Matlab CPLEX interface does not allow us to

68

n m K solved total SQP total total
iter iter QP (2.27) QP (2.18)

200 60 10 30 6.67 6.67 9.77 0.00
400 120 20 30 7.20 7.20 11.57 0.00
1000 300 50 30 7.23 7.23 12.17 0.00
200 60 4 30 7.53 7.07 11.83 0.90
400 120 8 30 8.27 7.77 14.20 1.00
1000 300 20 30 8.67 7.80 15.93 1.83
200 60 2 30 8.47 7.87 13.90 1.20
400 120 4 30 8.87 8.07 15.30 1.60
1000 300 10 30 9.47 8.43 17.27 1.97

Table 2.1. Results with x0 = 0, ϵtol = 10−7, average per-size statistics taken
over 30 random instances. “solved”: number of instances solved (out of 30);
“total iter”: total number of iterations in Algorithm 3; “SQP iter”: number of
iteration in which NLP-SQP step was accepted in Steps 11 or 16; “total QP
(2.27)” / “total QP (2.18)”: Total number of QPs of that type solved.

utilize callback functions for adding or removing hyperplanes. Achieving these savings in

computation time thus requires a more sophisticated implementation, a task that is outside

of the scope of this paper. Consequently, we do not report solution times here.

2.5.2. Randomly generated QCQPs

The experiments were performed on randomly generated SOCP instances of varying sizes,

specified by (n,m,K). Here, n,m ≥ 1 are the number of variables and linear constraints,

respectively. K ≥ 1 specifies the number of cones of each “activity type”: |E(x∗)| = K,

|{j ∈ J : rj(x
∗
j) = 0, x∗

j ̸= 0}| = K, and |{j ∈ J : rj(x
∗
j) < 0}| = K, i.e., there are K

cones that are extremal-active, K that are active at the boundary, and K that are inactive

at the optimal solution x∗. The dimensions of the cones are randomly chosen. In addition,

there are variables that are not part of any cone, with bounds chosen in a way so that the

non-degeneracy assumption, Assumption 2.2.2, holds. A detailed description of the problem

generation is stated in Appendix A.

69

Table 2.1 summarizes the performance of the algorithm with an uninformative starting

point x0 = 0. Each row lists average statistics for a given problem size (n,m,K), taken over

30 random instances. We see that the proposed algorithm is very reliable and solved every

instance to the tolerance ϵ = 10−7. The average number of iterations is mostly between 7–9,

during most of which the second-order NLP-SQP step was accepted.

To give an idea of the computational effort, we report the number of times QPs (2.27)

and (2.18) were solved. And we can draw further conclusions from this data: Consider, for

example, the last row. At the beginning of each iteration, QP (2.27) is solved to obtain the

NLP-SQP step. The difference with the total number of iterations, i.e., 17.27-9.47=7.80,

gives us the total number of times in which the guess Êk of the extremal-active cones needed

to be corrected in Steps 6–9. In other words, on average, the loop Steps 6–9 is executed

7.80/9.47=0.82 times per iteration. Similarly, the last column tells us the total number of

iterations of the loop in Steps 21–31. The loop was only executed when the NLP-SQP step

was not accepted, so in 9.47-8.43=1.04 iterations, taking 1.97/1.04=1.89 loop iterations on

average.

The experiments are presented in three groups where the ratio between n and K is kept

constant. As the number of cones, K, decreases from one group to the next, the average

size of the individual cones increases by a factor of 2.5 and 2, respectively. This increase

seems to result in slightly more iterations in which the SQP step was rejected, indicating

that the simple linearization (2.27c) of the non-extremal-active cones becomes sometimes

insufficiently accurate.

The remaining experiments in this chapter investigate to which degree the algorithm is

able to achieve our primary goal of taking advantage of a good starting point. We begin with

an extreme situation, in which we first solve an instance with the interior-point SOCP solver

70

n m K total SQP total total Mosek final
iter iter QP (2.27) QP (2.18) error error

200 60 10 1.10 1.07 1.10 0.07 2.33e-06 1.63e-10
400 120 20 1.03 1.00 1.03 0.03 2.67e-06 1.70e-10
1000 300 50 1.07 1.03 1.07 0.03 3.49e-06 1.76e-10
200 60 4 1.03 1.03 1.03 0.00 5.97e-06 1.69e-10
400 120 8 1.00 1.00 1.00 0.00 2.28e-06 1.87e-10
1000 300 20 1.03 0.83 1.03 0.27 5.20e-06 1.72e-10
200 60 2 1.00 1.00 1.00 0.00 2.02e-06 1.53e-10
400 120 4 1.13 1.10 1.13 0.03 4.85e-06 2.03e-10
1000 300 10 1.20 1.10 1.20 0.13 1.22e-05 2.41e-10

Table 2.2. Result with MOSEK solution as x0, ϵtol = 10−9. All instances were
solved. “Mosek error”: Optimality error E (2.56) at Mosek solution; “final
error”: Optimality error E at final iterate of Algorithm 3.

n m K solved total SQP total total
iter iter QP (2.27) QP (2.18)

200 60 10 30 1.00 0.97 1.00 0.07
400 120 20 30 1.00 0.97 1.00 0.03
1000 300 50 30 1.00 0.97 1.00 0.07
200 60 4 30 1.00 1.00 1.00 0.00
400 120 8 30 1.00 0.93 1.00 0.07
1000 300 20 30 1.00 0.87 1.00 0.20
200 60 2 30 1.00 1.00 1.00 0.00
400 120 4 30 1.00 0.97 1.00 0.03
1000 300 10 30 1.07 1.00 1.03 0.07

Table 2.3. Result with 10−3 perturbation, ϵtol = 10−7.

MOSEK V9.1.9 (called via CVX), using the setting cvx precision=high corresponding to

the MOSEK tolerance ϵ = ϵ
2/3
mach, and give the resulting primal-dual solution as starting

point to Algorithm 3. Choosing any tighter MOSEK tolerances leads to failures in several

problems. Table 2.2 summarizes the results. In all cases, the algorithm converges rapidly

to an improved solution, reducing the error by 4 orders of magnitude, most of the time

with only a single second-order iteration. The Mosek error was dominated by the violation

of complementarity. This demonstrates the ability of the proposed method to improve the

accuracy of a solution computed by an interior-point method.

71

n m K solved total SQP total total
iter iter QP (2.27) QP (2.18)

200 60 10 30 1.20 1.07 1.00 0.19
400 120 20 30 1.33 1.17 1.00 0.73
1000 300 50 30 1.60 1.23 1.02 1.29
200 60 4 30 1.27 1.13 1.02 0.71
400 120 8 30 1.67 1.27 1.16 0.48
1000 300 20 30 2.10 1.40 1.27 0.57
200 60 2 30 1.67 1.33 1.24 0.42
400 120 4 30 2.30 1.87 1.30 0.38
1000 300 10 30 3.67 2.53 1.53 0.59

Table 2.4. Result with 10−1 perturbation, ϵtol = 10−7.

For the final experiments, summarized in Tables 2.3 and 2.4, the starting point is the

MOSEK solution of a perturbed problem, in which 10% of the objective coefficients c were

perturbed by uniformly distributed random noise of the order of 10−3 and 10−1, respectively.

For the small perturbation, similar to Table 2.2, Algorithm 3 terminated in one iteration most

of the time. More iterations were required for the larger perturbation, but still significantly

fewer compared to the uninformative starting point, see Table 2.1.

2.5.3. CBLIB instances

To demonstrate the robustness of the algorithm we also solved instances from the Conic

Benchmark Library CBLIB [31]. Some instances involve rotated second-order cone con-

straints, and we reformulated them so that they fit into our standard form (2.1). We chose

all 1,575 instances with at most 10,000 variables and 10,000 constraints. Integer variables

were relaxed to be continuous.

Table 2.5 shows the statistics for the starting point x0 = 0, where instances were grouped

into sets of problems with similar names, and the remaining ones are collected in misc. The

method was able to solve 99.2% of the instances, where 10 problems could not be solved due

72

Problem # var # con # soc solved/ total SQP iter warm/
subset total iter iter iter cold

10/20* 3024.0 6030.6 336.0 10/11 6.5 6.5 0.57
achtziger * 2314.0 1856.7 257.0 6/7 21.3 10.2 0.53
as * 4909.0 5695.7 669.0 20/20 10.4 8.4 0.37
ck * 2376.0 2375.0 15.0 90/90 5.8 4.6 0.40
classical * 159.3 200.4 1.0 409/409 7.3 7.3 0.49
clay* 457.2 691.9 82.9 11/12 67.6 13.2 1.31
estein* 103.1 165.2 14.0 9/9 18.3 4.4 0.30
flay* 175.0 408.0 4.0 10/10 7.0 3.6 0.34
fo[7-9]* 208.6 540.2 15.9 19/19 12.3 3.0 0.53
m[3-9]* 150.2 370.5 12.8 8/8 10.9 4.0 0.44
nb* 3098.8 321.0 816.0 4/4 4.8 4.2 3.43
netmod* 989.7 2593.0 4.7 3/3 4.0 4.0 0.33
no7 * 169.0 438.0 14.0 5/5 10.6 4.4 0.46
o[7-9] * 183.2 466.9 14.7 9/9 8.7 3.2 0.66
pp-* 2960.0 2221.0 370.0 6/6 12.8 12.8 0.17
robust * 253.9 298.3 2.0 420/420 6.8 6.8 0.67
sched * 7361.5 3685.0 1.5 4/4 12.5 10.0 0.35
shortfall * 249.9 294.3 2.0 420/420 7.8 7.8 0.37
slay* 393.0 936.0 14.0 14/14 8.6 7.0 0.27
sssd-* 286.0 314.5 18.0 16/16 7.6 5.6 0.42
stolpe07-* 1483.0 1202.0 164.7 3/3 29.0 18.3 0.71
tls* 521.4 989.8 51.6 5/6 7.6 7.0 0.49
turbine* 201.6 289.3 52.4 7/7 4.9 4.9 0.30
uflquad-* 8011.0 6811.0 1333.3 3/4 15.3 14.7 0.19
wiener * 2297.5 2508.5 71.3 41/45 12.4 9.9 0.43
misc 1534.1 1374.5 158.9 11/14 10.5 7.6 0.33

Table 2.5. Results for CBLIB instances, averaged per problem group, ϵtol =
10−5. “Problem subset”: name of problem group; “# var”: number of vari-
ables; “# con”: number of linear constraints; “# soc”: number of second-order
cone constraints; “solved/total”: number of solved vs. total instances; “total
iter”: number of iterations in Algorithm 3; “SQP iter”: number of iterations
in which NLP-SQP step was accepted; “iter warm/iter cold”: iterations for
warm start divided by iterations for cold start (only for instances solved in
both settings).

to failures of the QP subproblem solver, and Algorithm 3 exceeded the maximum number

of 200 iterations in 2 cases. In comparison, MOSEK, with default settings, failed on 5 in-

stances (those were solved correctly with Algorithm 3), incorrectly declared 3 instances to be

73

infeasible, and labeled 6 instances to be unbounded (of which 3 were solved by Algorithm 3).

We observed that some instances, especially those in the clay*, fo[7-9]*, m[3-9]*, no7*,

o[7-9] * subsets, are degenerate, having an optimal objective function value of 0, and the

assumption necessary to prove fast local convergence is violated. This matches the observa-

tions in the table, where the SQP step was accepted only in a relatively small fraction of the

iterations.

To showcase the warm-starting feature of the algorithm, we took the 1,563 previously

successfully solved instances, perturbed 10% of the entries of the final primal-dual iterate by

a random perturbation, uniformly chosen in [−0.1, 0.1], and used this as the starting point

for a warm-started run. Here, QP subproblem failure occurred in 3 cases and 2 instances

exceeded the iteration limit. As we can see from the last column in Table 2.5, on average,

the number of iterations was reduced in most cases, often by more than 50%.

2.6. Concluding remarks

We presented an SQP algorithm for solving SOCPs and proved that it converges from

any starting point and achieves local quadratic convergence for non-degenerate SOCPs. Our

numerical experiments indicate that the algorithm is reliable, converges quickly when a

good starting point is available, and produces more accurate solutions than a state-of-the-

art interior-point solver.

Future research would investigate whether the proposed algorithm is a valuable alterna-

tive for interior-point methods for small problems or for the solution of a sequence of related

SOCPs. An efficient implementation of the algorithm beyond our Matlab prototype would

be tightly coupled with a tailored active-set QP solver that efficiently adds or removes cuts

instead of solving each QP essentially from scratch. Parametric active-set solvers such as

74

qpOASES [25] or QORE [70] might be suitable options since they do not require primal or

dual feasible starting points.

75

CHAPTER 3

RestartSQP: A Sequential Qudratic Programming Solver

3.1. Introduction

This chapter presents a new open-source software package called RestartSQP. This soft-

ware package implements a Sequentially Quadratic Programming (SQP) method designed

to solve nonlinear optimization problems (NLP) of the form given in (1.1), that is

min
x∈Rn

f(x) s.t. c(x) = 0, d(x) ≤ 0.

In this formulation, the objective function f : Rn → R, as well as the equality constraints

c : Rn → Rmc and inequality constraints d : Rn → Rmd , are assumed to be twice-continuously

differentiable.

SQP methods and interior-point methods are two commonly used approaches for handling

constrained problems of the form (1.1). SQP methods aim to find an approximate solution

by iteratively solving a sequence of quadratic programming (QP) subproblems. On the other

hand, interior-point methods seek to construct a continuous path that leads to an optimal

solution of (1.1). This path is typically parameterized by a positive value called µ, which

can be interpreted as a perturbation applied to the optimality conditions of the problem.

When solving nonlinear programming problems, SQP methods typically focus on solving

linear equations involving a subset of variables and constraints. In contrast, interior-point

methods solve linear systems that incorporate all the constraints and variables.

76

Interior point methods are widely recognized for their effectiveness in solving large-

scale nonlinear optimization problems. However, despite previous research on the topic

(e.g.,[36, 84, 37]), the utilization of a “warm start” remains challenging within the frame-

work of interior point methods in practice. The interior point methods pose challenges when

it comes to adapting them to solve a sequence of related NLP problems. This difficulty

can be attributed to the “path-following” interpretation of interior-point methods. In the

neighborhood of an optimal solution, taking a step along the primal path x(µ) of the per-

turbed solution is well-defined. However, attempting to take a step onto this path from a

neighboring point becomes highly sensitive to perturbations. This sensitivity can lead to

numerical instability and pose challenges in maintaining the desired convergence properties

when solving a sequence of related NLP problems.

Compared to the interior-point method, SQP methods have the ability to take advantage

of a good initial starting point. In particular, when active-set QP solvers (discussed in

Chapter 3.2.2) are employed, SQP methods can rapidly converge to the optimal solution with

a few numbers of iterations, given a near-optimal point as an initial input. Consequently,

SQP methods are highly suitable for addressing a sequence of related NLP problems, as the

optimal solution obtained from the previous NLP can be effectively leveraged to efficiently

solve subsequent NLPs. This can be particularly useful in many applications, including

optimal control and trajectory planning [62, 10], hydropower reservoir modeling [22], air

traffic management [66], multiperiod AC optimal power flows [50, 56, 68] and many more.

The software implements Fletcher’s Sℓ1QP method [27] and utilizes the parametric

active-set method to solve QP subproblems. The parametric active-set method is specifically

tailored to handle sequences of QP problems, making it highly suitable for this purpose. The

versatility of RestartSQP extends beyond its role as a regular NLP solver, as it also offers the

77

distinctive capability of “warm-starting” NLPs. This means it can handle dynamic changes

in constraint values and seamlessly incorporate additional constraints during the optimiza-

tion process. Moreover, RestartSQP supports a crossover feature from interior point method

solvers like Ipopt.

3.1.1. Overview

This chapter is structured as follows: In Chapter 3.2, we provide preliminary information

on SQP methods and QP methods to establish a foundation for the subsequent discussions.

Chapter 3.3 presents an overview of the Sℓ1QP algorithm that has been implemented in the

RestartSQP software and the updating rule for adjusting the penalty parameter. In Chapter

3.4, we delve into the implementation details of RestartSQP. Finally, in Chapter 3.5, we

present the numerical results obtained from applying RestartSQP to various problems. This

includes benchmarking against the CUTE NLP test set [12] and conducting warm-start

experiments to assess the performance and effectiveness of the software.

3.2. Preliminaries

3.2.1. The SQP method

SQP methods have been one of the active research topics in the field of optimization and one

of the most efficient methods for solving nonlinear constrained optimization problems of the

form (1.1). Its origins can be traced back to the work by Wilson [83] in 1963. Subsequently,

the method gained popularity through the works of Biggs [8], Han [43], and Powell [64],

who extended its applicability to general nonlinear constraints during the 1970s. For a more

comprehensive history of SQP methods and a detailed list of references, interested readers

can refer to [34, 27, 59, 18].

78

Over the past few decades, a number of reliable and efficient general-purpose SQP solvers

have been developed and have proven their effectiveness. These solvers have been widely

used in various applications and have demonstrated their ability to efficiently solve non-

linear constrained optimization problems. Some notable examples include NLPQLP [69],

SNOPT[33], KNITRO [82].

The basic idea of the SQP method is to model the NLP at a given approximate solution

xk by the quadratic program (QP) subproblem

(3.1)

min
p∈Rn

∇f(xk)Tp+ 1
2
pTHkp

s.t. c(xk) +∇c(xk)Tp = 0,

d(xk) +∇d(xk)Tp ≤ 0,

where Hk is a symmetric matrix. It then uses the solution pk to construct a better ap-

proximate solution xk+1. This process is iterated to create a sequence of iterates that will

converge to x∗.

The local convergence of SQP methods relies on having knowledge of the active inequality

constraints of the NLPs 1.1 at the local minimum x∗. This assumption can be supported by

the following theorem.

Theorem 3.2.1 ([67]). Given x∗ a local solution of (1.1) at which the KKT conditions

are satisfied for some vectors (λ∗, µ∗). Suppose that LICQ, strict complementarity, and

second-order sufficient conditions hold at (x∗, λ∗, µ∗). If (xk, λk, µk) is sufficiently close to

(x∗, λ∗, µ∗), then there is a local solution of the QP subproblem (3.1) whose active set Ak is

the same as the active set A(x∗) of the nonlinear program (1.1).

79

The SQP method possesses several important properties that are worth noting. First, it

is important to recognize that the SQP method is not a feasible-point method. This means

that the points in the iterate sequence {xk} generated by the SQP method do not necessarily

need to be feasible with respect to the constraints of the nonlinear programming problem

(NLP). In other words, the iterates do not have to satisfy the constraints during the course

of the optimization process.

Second, by employing active-set QP solvers for the subproblems, the SQP method has

the advantage of leveraging a good initial starting point. This capability enables the method

to perform “warm-starting”, wherein it utilizes optimal information obtained from solving a

nearby NLP to accelerate the solution process for a subsequent NLP. By incorporating this

warm-start strategy, the SQP method can significantly improve computational efficiency and

convergence speed.

However, it is important to acknowledge that the SQP method is primarily designed for

small to medium-scale problems. Each iteration of the SQP method involves solving a QP

subproblem, which can be computationally expensive. Therefore, for large-scale problems,

the SQP method may not be the most efficient approach. The computational cost associated

with solving the QP subproblems should be taken into consideration when deciding on the

appropriate optimization method.

Despite the potential computational cost, the SQP method often converges in fewer

number of function/gradient evaluations compared to interior point methods. This property

makes it particularly advantageous in situations where the evaluations of the objective func-

tion and its gradients dominate the computational cost of solving the optimization problem.

80

3.2.2. QP methods

The efficiency of SQP methods relies heavily on the availability of fast and accurate algo-

rithms for solving QP subproblems. Methods for solving QPs can be broadly categorized

into two main types: active-set methods and interior-point methods.

Active-set methods aim to identify the correct active set, which consists of the constraints

that are satisfied with equality at the optimal solution of the QP. One advantage of active-set

methods is their suitability for “warm-starting”. This means that if a good estimate of the

optimal active set or a favorable starting point is provided, the algorithm can converge to

the optimal solution with only a few iterations.

However, it is worth noting that active-set methods also have their limitations. They

may encounter challenges when dealing with degenerate constraints. Additionally, for large-

scale problems with a significant number of constraints, the computational cost of active-set

methods can become prohibitive. In contrast to active-set methods, interior-point methods

offer an alternative approach for solving QPs. The interior-point QP solvers can be useful

for handling large-scale QP instances. Therefore, the choice between these methods depends

on the problem characteristics, problem size, and available computational resources. Over

the past few decades, numerous solvers have been developed, demonstrating the importance

and popularity of this approach. A detailed list of software for solving QPs can be found in

[39].

One relatively recent approach to solving QP problems is the parametric active-set

method. This method is particularly suitable for situations where prior knowledge or in-

formation can be utilized to expedite the QP solution or when high solution accuracy is

required. It is well-suited for SQP methods, where a sequence of QP problems needs to be

81

solved. The fundamental concept behind this method is to trace the solution of a linear

homotopy parameterized by τ ∈ [0, 1], connecting an optimization problem with a known

solution at τ = 0 to the problem that needs to be solved at τ = 1. This approach, initially

proposed by Best [7] and subsequently implemented by Ferreau et al. [25] and Schork [70],

aims to solve the following QP problems:

(3.2)

min
x(τ)∈Rn

1
2
x(τ)THx(τ) + g(τ)Tx(τ)

s.t. Ax(τ) ≤ b(τ). (λ(τ))

Here, A ∈ Rm×n, H ∈ Rn×n, g(τ), and b(τ) are affine-linear functions of the parameter

τ ∈ [0, 1]. It is assumed that m > n. Before delving into the algorithm’s specifics, let us

introduce the concept of the working set within the context of (3.2).

Definition 3.2.1 (Active set for (3.2)). For a given τ ∈ [0, 1] and x(τ) ∈ Rn, the index

set

A(x(τ)) := {i ∈ [m] : aTi x(τ) = bi(τ)}

is referred to as the active-set A(τ) at x(τ), where ai is the i-th row vector of A.

Definition 3.2.2 (Working set for (3.2)). For a given τ ∈ [0, 1] and x(τ) ∈ Rn, the

working set W(τ) is defined as the subset of the active set A(x(τ)), where the vectors {ai}

for i ∈ W(τ) are linearly independent.

The parametric QP method is an active set method that involves maintaining the working

set W(τ) and its corresponding Lagrangian multiplier vector λ(τ) for the active constraints.

During the solution process, the method identifies a finite number of breakpoints τ 0, · · · , τK

with K > 0 satisfying the following ordering:

82

0 = τ 0 < τ 1 < · · · < τM−1 < τK = 1.

The method initiates with τ 0 = 0, utilizing a known primal-dual solution (x(0), λ(0)) and

the corresponding working setW(0). At each iteration, denoted by k, the method determines

search directions to update the primal variable x(τ k+1), its multiplier vector λ(τ k+1), and

the working set W(τ k+1). The working set is modified by adding, deleting, or exchanging

constraints at the end of each interval. The method terminates when the optimal solution

is achieved at τ = 1, or further increments in τ lead to either an infeasible problem or an

unbounded objective.

It is worth noting that the parametric QP method is capable of handling scenarios where

the Hessian matrix H and constraint matrix A change from one problem to another. Suppose

we have an optimal primal-dual solution (x∗, λ∗) and an optimal working set W∗ for the QP

problem:

min
x∈Rn

1
2
xTHx+ gTx s.t Ax ≤ b

and we aim to solve another QP problem:

min
x∈Rn

1
2
xT H̃x+ g̃Tx s.t Ãx ≤ b̃

with new matrices H̃, Ã, vectors g̃, and b̃. In this case, we can define the affine linear functions

g and b as follows: b(0) = b+ (Ã−A)x∗, b(1) = b̃, g(0) = g− (H̃ −H)x∗ + (Ã−A)Tλ∗, and

g(1) = g̃. Additionally, the initial working set can be set as W(0) =W∗.

An important property of the parametric QP method is that it requires initialization with

the optimal solution of a QP. In other words, the solution and working set corresponding to

τ = 0 need to be provided. When a sequence of QP problems is solved, the solution and

83

working set from the preceding problem are commonly used to initialize the next problem.

For the first QP in a sequence, an auxiliary problem with a trivial solution is typically

defined. For instance, given H and A, one can define the QP with b(0) ≥ 0 and g(0) ≥ 0.

Then (x(0), λ(0)) = (0, 0) can be the optimal solution for this auxiliary QP.

Because of this property, the utilization of parametric QP methods offers a notable

advantage for solving QPs. Unlike other methods that may require a feasible solution to

start the algorithm, parametric QP methods do not necessarily need a primal or dual feasible

solution for initialization. This eliminates the need for a Phase-1 procedure commonly used

in primal or dual active-set methods.

However, it is important to note that the working set W(0) for this auxiliary problem

may differ significantly from the optimal working set W(1) for the first QP we aim to solve.

Consequently, the initialization phase, which involves solving the auxiliary QP before pro-

ceeding to the first QP, may require a considerable number of iterations. This initialization

process is often referred to as a “cold start” since it begins with an unfavorable starting point.

On the other hand, if we define QP(0) as a closed QP problem to QP(1) during the initial-

ization phase, with a known optimal solution (x(0), λ(0)) and optimal working set W(0),

it can significantly reduce the number of iterations and facilitate a “warm start” for the

entire sequence of QPs. This warm-start property is particularly valuable when considering

“warm-starting” NLPs, as discussed in detail in Chapter 3.4.5.

The parametric QP method, with its ability to exploit these warm-starting properties, is

highly suitable for applications where warm-starting is desired. It naturally fits within SQP

methods for solving sequences of problems.

84

3.3. Algorithm

In this chapter, we describe the Sℓ1QP method introduced by Fletcher [27]. The algo-

rithm, outlined in Algorithm 4, aims to convert a constrained optimization problem into an

unconstrained problem using the exact ℓ1 penalty function defined as:

ϕ1(x; π) = f(x) + π(∥c(x)∥1 + ∥[d(x)]+∥1),

where π > 0 is the penalty parameter and [d(x)]+ denotes the positive part of d(x).

Let us define:

qk(x; π) =f(xk) +∇f(xk)T (x− xk) + 1
2
(x− xk)THk(x− xk)+

π
(
∥c(xk) +∇c(xk)T (x− xk)∥1 + ∥[d(xk) +∇d(xk)T (x− xk)]+∥1

)
where Hk is the Hessian of the Lagrangian function at xk, given by

(3.3) Hk = ∇2
xxL(xk, λk, µ) = ∇2

xxf(x
k) +

mc∑
i=1

λi∇2
xx∇ci(xk) +

md∑
i=1

µi∇2
xxdi(x

k),

or an approximation of it. Here λ and µ are the Lagrange multipliers associated with the

equality c and inequality constraints d, respectively. The function qk can be seen as an

ℓ1-penalty function with a local affine approximation for c and d, as well as a quadratic

approximation for the objective function f .

Fletcher made the observation that the minimization of the ℓ1-penalty function can be

achieved by solving a sequence of non-differentiable unconstrained subproblems. These sub-

problems are given in the following form:

85

min
x∈Rn

qk(x; π).

To address this optimization task, Fletcher proposed the utilization of a trust-region

method. In particular, for a fixed value of π, the corresponding trust-region subproblem

takes the following form:

min
p∈Rn

qk(xk + p; π) subject to ∥p∥∞ ≤ ∆k,

where ∆k > 0 represents the trust-region radius at iteration k.

This subproblem is equivalent to the following smooth quadratic program:

min
p∈Rn,u∈Rm

∇f(xk)Tp+ 1
2
pTHkp+ π(eT s+c + eT s−c + eT s+d)(3.4a)

s.t. c(xk) +∇c(xk)Tp+ s−c − s+c = 0, (λ̂k)(3.4b)

d(xk) +∇d(xk)Tp− s+d ≤ 0, (µ̂k)(3.4c)

−∆ke ≤ p ≤ ∆ke, s+c , s−c , s+d ≥ 0,(3.4d)

where e denotes a vector of ones. In this formulation, the auxiliary variables s+c and s−c

can be interpreted as the positive and negative parts, respectively, for the affine function

c(xk) +∇c(xk)Tp. Similarly, s+d represents the positive part of d(xk) +∇d(xk)Tp.

One advantage of this formulation is that the QP subproblem (3.4) is always feasible even

when the linearized constraints are inconsistent in (3.1). This characteristic allows for the

effective utilization of warm-start strategies, leading to reduced solution times in practical

implementations.

86

After solving the QP subproblem (3.4), the algorithm determines whether to accept the

step pk by evaluating the ratio:

(3.5) θk =
ϕ1(x

k; π)− ϕ1(x
k + pk; π)

qk(xk; π)− qk(xk + pk; π)
.

The numerator in the ratio represents the actual reduction in the merit function between

the current iterate xk and the trial iterate xk + pk, while the denominator is the predicted

reduction in the merit function. The ratio θk serves as a measure of the accuracy of the

second-order approximation of the nonlinear programming problem within the trust region,

ensuring the global convergence of the trust-region algorithm. The trial iterate xk + pk is

accepted if θk ≥ ηs, where ηs ∈ (0, 1) is a constant.

Due to the implicit minimization of the ℓ1-penalty function, there is a possibility of en-

countering the Maratos effect [55]. The Maratos effect is a phenomenon that can arise when

using algorithms based on merit functions for optimization problems with an implicit ℓ1-

penalty function. It refers to the situation where these algorithms fail to converge rapidly

because they reject steps that would make progress toward a solution. This rejection is typ-

ically due to the merit function’s evaluation, which incorporates both the objective function

and penalty terms for constraint violations.

When the penalty parameter is very large, the penalty terms can dominate the merit

function, causing an excessive focus on meeting constraints rather than optimizing the ob-

jective. Consequently, the algorithm can become overly conservative and reject steps that

could potentially lead to improvements in the objective function.

To address the issue posed by the Maratos effect, a second-order correction step is intro-

duced as a mitigation strategy. This correction step aims to reduce the constraint violation

and enable algorithms to overcome the difficulties associated with the Maratos effect. The

87

second-order correction step is computed by solving the following QP subproblem:

(3.6)

min
s∈Rn
∇f(xk)T (pk + s) + 1

2
(pk + s)THk(pk + s) + π(eT s+c + eT s−c + eT s+d)

s.t. c(xk + pk) +∇c(xk)T s+ s−c − s+c = 0, (λ̃k)

d(xk + pk) +∇d(xk)T s− s+d ≤ 0, (µ̃k)

−∆ke ≤ pk + s ≤ ∆ke, s+c , s−c , s+d ≥ 0.

Note that the second-order correction is only performed when the ratio test fails, i.e., when

θk < ηs with the previously calculated step pk. In such cases, a second-order correction is

applied to refine the solution. After solving the second-order correction QP problem (3.6),

the trial iterate is updated as xk+1 = xk+pk+sk, and the ratio (3.5) is updated accordingly.

A ratio test is then performed again to determine whether the trial iterate is accepted or

rejected. For the discussion of the convergence properties of the trust-region method with

the second-order correction steps, see [85].

Upon accepting or rejecting the trial iterate, the trust-region radius ∆k is updated.

Specifically, if the ratio θk is greater than a predetermined constant ηe ∈ (0, 1) and the step

pk is active at the trust-region bounds, the trust-region radius is increased. Conversely, if

the ratio θk is smaller than a constant ηc with ηc < ηe, the trust-region radius is decreased.

The process continues until a stopping criterion is met, such as reaching a maximum

number of iterations, satisfying an optimality condition, or achieving a desired level of accu-

racy.

88

It can be proved that, under certain regularity conditions, the Sℓ1QP method can achieve

a local quadratic convergence rate. For a comprehensive analysis of the convergence prop-

erties of the Sℓ1QP method, please refer to the works by Fletcher [27] and Burke et al.

[15].

3.3.1. Penalty parameter update

We want to note that the efficiency of the Sℓ1QP method largely relies on the appropriate

choice of penalty parameter π. If the π is too small, the algorithm may generate iterates away

from the optimal solution. On the other hand, if π is too large, the algorithm will converge

slowly as the merit function focuses more on minimizing the constraint violations. Thus,

the value of π must be chosen carefully. In our implementation, we adopt the technique of

updating penalty parameters described in [16] and [59, Chapter 18].

The detailed procedure of the penalty update technique is described in Algorithm 5. In

the implementation, we perform the penalty update procedure after calculating the SQP

step pk in line 4 in Algorithm 4.

To explain this technique, we need to define the piecewise linear model of the constraint

violation at an iterate xk as

mk(p) = ∥c(xk) +∇c(xk)Tp∥1 + ∥[d(xk) +∇d(xk)Tp]+∥1.

The procedure begins by first computing SQP steps pk from (3.4) with the previous value of

the penalty parameter πk. If mk(pk) = 0, i.e., the constraints (3.4b) and (3.4c) are satisfied

at pk, then the value of πk is kept. Otherwise, the solution to the following optimization

problem

89

Algorithm 4 Sℓ1QP

Require: Initial starting point x0 ∈ Rn; dual multipliers λ0 ∈ Rmc , µ0 ∈ Rmd ; trust-region
radius ∆0 > 0; maximum trust-region radius ∆max ≥ ∆0; initial penalty parameter
π0 > 0; constant ηc, ηe ∈ (0, 1) with ηc < ηe, ηs ∈ (0, 1

2
), γc ∈ (0, 1), γe > 1, ϵ1, ϵ2 ∈ (0, 1).

1: k ← 0.
2: while xk not optimal do
3: Evaluate Hk from (3.3) with (xk, λk, µk).

4: Solve (3.4) for (pk, λ̂k, µ̂k).
5: Compute the ratio

θk =
ϕ1(x

k; π)− ϕ1(x
k + pk; π)

qk(xk; π)− qk(xk + pk; π)
.

6: if θk ≥ ηs then ▷ Successful iteration
7: (xk+1, λk+1, µk+1)← (xk + pk, λ̂k, µ̂k).
8: else
9: Solve (3.6) for (pk, λ̃k, µ̃k).
10: Recompute the ratio

θk =
ϕ1(x

k.π)− ϕ1(x
k + pk + sk; π)

qk(xk; π)− qk(xk + pk + sk; π)
.

11: if θk ≥ ηs then ▷ Successful iteration
12: (xk+1, λk+1, µk+1)← (xk + pk + sk, λ̃k, µ̃k).
13: else ▷ Unsuccessful iteration
14: (xk+1, λk+1, µk+1)← (xk, λk, µk).
15: end if
16: end if
17: if θk < ηc then
18: ∆k+1 = γc∥pk∥. ▷ Decrease trust-region radius
19: else
20: if θk > ηe and ∥p∥∞ = ∆k then
21: ∆k+1 ← min{γe∆k, ∆max}. ▷ Increase trust-region radius
22: else
23: ∆k+1 ← ∆k.
24: end if
25: end if
26: k ← k + 1.
27: end while
28: (x∗, λ∗, µ∗)← (xk, λk, µk)
29: return Optimal primal-dual solution (x∗, λ∗, µ∗).

90

min
p∈Rn

mk(p) s.t. ∥p∥∞ ≤ ∆k,(3.7)

will be required to determine the value of the new penalty parameter πk+1. Let its optimal

solution denote by p∞. If mk(p∞) = 0, it means that the linearized constraints are feasible

within the trust region. The procedure then choose the value of πk+1 > πk such that

mk(p(πk+1)) = 0, where p(πk+1) is the optimal solution of (3.4) with the penalty parameter

value πk+1. If mk(∞) > 0, then choose πk+1 that satisfies

mk(0)−mk(p(πk+1)) ≥ γ1(m
k(0)−mk(p∞)).(3.8)

for some γ1 ∈ (0, 1). That is, the reduction of mk from the new SQP step p(πk+1) is at least

a fraction of the reduction given by p∞.

In addition to this requirement, the updating strategy also needs the penalty function

to significantly reduce the infeasibility measure. This reduction is important to encourage

the acceptance of a good step. Sometimes, a step p(πk+1) calculated by solving (3.4) with a

particular πk+1 may satisfy m(pk+1) = 0 or the condition given by (3.8), but only result in

a small decrease in the quadratic model qk. In such cases, the nonlinearity of the objective

and constraints could overshadow this minor improvement. Consequently, the step p(πk+1)

might cause the penalty function ϕ1 to increase, leading to its rejection. To prevent this

undesirable behavior, the updating strategy further requires that after computing a trial

value πk+1 and a search direction pk = p(πk+1), the following condition must hold:

qk(xk; πk+1)− qk(xk + pk; πk+1) ≥ γ2π
k+1(mk(0)−mk(pk))

91

where γ2 ∈ (0, 1) is a predetermined constant.

Algorithm 5 Penalty Update

Require: SQP step pk from line 4 of Algorithm 4; previous penalty parameter πk; γ1, γ2 ∈
(0, 1); initial parameter for penalty parameter increment β > 1.

1: if mk(pk) = 0 then
2: Set πk+1 ← πk.
3: else
4: Compute p∞ by solving (3.7).
5: p(πk,0)← pk, πk,0 ← πk.
6: l← 0.
7: if mk(p∞) = 0 then
8: while mk(p(πk,l)) > 0 do
9: πk,l+1 ← β · πk,l.
10: Solve (3.4) with πk,l+1 for (p(πk,l+1), λ̂k, µk).
11: l← l + 1.
12: end while
13: else
14: while mk(0)−mk(p(πk,l)) < γ1(m

k(0)−mk(p∞)) do
15: πk,l+1 ← β · πk,l.
16: Solve (3.4) with πk,l+1 for (p(πk,l+1), λ̂k, µ̂k).
17: l← l + 1.
18: end while
19: end if
20: pk ← p(πk,l), πk+1 ← πk,l;
21: end if
22: while qk(xk; πk+1)− qk(xk + pk; πk+1) < γ2π

k+1(mk(0)−mk(pk)) do
23: πk+1 ← β · πk+1.
24: Solve (3.4) with the new value of πk+1 for (pk, λ̂k, µ̂k).
25: end while
26: return Updated SQP step pk and dual multipliers (λ̂k, µ̂k); new penalty parameter πk+1

3.4. Details of the Implementation

Before going into the details of the implementation, we want to note that the formulation

described in (1.1) may be generalized in a straightforward manner to a form where x and

c have both upper bound and lower bound. From now on, we will consider the generalized

92

case of the NLP problem in the following form:

min
x∈Rn

f(x)(3.9a)

s.t. cL ≤ c(x) ≤ cU , (λc)(3.9b)

xL ≤ x ≤ xU , (λx)(3.9c)

where c : Rn → Rm, f : Rn → R are twice continuously differentiable, cL ≤ cU and xL ≤ xU .

Note that the components of cL and xL can be −∞ and components of cU and xU can be

+∞.

In this chapter, we present a comprehensive account of the implementation of the basic

algorithm outlined in Algorithm 4. We will cover key aspects such as iterate initialization,

the ratio test, termination checks, and the efficient handling of “warm-starting” NLPs in

the software. We also discuss the lazy cut generation approach, which involves generating

constraints on demand during the optimization process. This technique can significantly

reduce the computational burden by selectively introducing constraints only when necessary.

3.4.1. Shifting the initial starting points

In our implementation, we shift the initial starting points x0 if necessary such that the

bound constraints are always satisfied. Specifically, let x̃0 be the given starting point at the

beginning of the algorithm, we set

x0
i =

xL,i, if x̃0
i < xL,i,

xU,i, if xU,i < x̃0
i ,

x̃0
i otherwise,

93

for i = 1, · · · , n. This shifting is done to ensure that the initial starting point is feasible for

the bound constraints. The shifted starting point x0 is then used to initialize the algorithm.

By that, we can reduce the number of constraints of the QP subproblem applied to (3.9)

by combining the trust-region constraint with the linearized constraint applied to (3.9c).

The QP subproblem for iteration k is then given by

(3.10)

min
p∈Rn,u,v∈Rm

∇f(xk)Td+ 1
2
pTHkp+ ρeT (u+ v)

s.t. cL ≤ c(xk) +∇c(xk)Tp+ u− v ≤ cU ,

max(−∆k, xk
L,i − xk

i) ≤ pi ≤ min(∆k, xk
U,i − xk

i), i ∈ [n],

u, v ≥ 0.

where u and v are the slack variables for the linearized constraints applied to (3.9b). With

this formulation, an SQP search direction pk can be computed in the way that every iterate

xk satisfies bound constraints. In addition, the linearized constraints violation for a search

direction p will be computed as

mk(p) =∥[cL − c(xk)−∇c(xk)Tp]+∥1 + ∥[c(xk) +∇c(xk)Tp− cU]
+∥1.

3.4.2. Ratio test

To handle round-off errors, we replace the criterion in the step 11 of Algorithm 4 by

(
ϕ1(x

k; π)− ϕ1(x
k + pk; π) + ϵk

)
≥ ηs ·

(
qk(xk; π)− qk(xk + pk; π) + ϵk

)
,

where

ϵk = 10−10 ·max{|f(xk)|,mk(0)}.

94

In situations where the predicted reduction is non-positive, i.e., qk(xk; π)−qk(xk+pk; π) ≤

0, the algorithm takes the following actions: it forbids the step pk, throws exceptions, and

terminates the algorithm.

3.4.3. Termination checks

To determine an iterate xk is optimal, we perform a check to verify if the primal-dual pair

(xk, λk
c , λ

k
x) satisfies the KKT conditions.

Specifically, we compute violations of primal feasibility, stationarity, and complementar-

ity to determine optimality. This step is performed immediately after the acceptance of a

new step. It is worth noting that since the iterate xk is computed from the QP subprob-

lem (3.10), there is no need to check the feasibility of the bound constraints (3.9c) or the

correctness of the signs of the corresponding multipliers. The violations of primal feasibility

and complementarity are computed as follows:

vprimal = max
{
∥[cL − c(xk)]+∥∞, ∥[c(xk)− cU]

+∥∞
}
,

vcompl = max
i∈[n],j∈[m]

min

{
[λk

x,i]
+, xk

i − xL,i

}
,min

{
[−λk

x,i]
+, xU,i − xk

i

}
min

{
[λk

c,j]
+, cj(x

k)− cL,j

}
,min

{
[−λk

c,j]
+, cU,j − cj(x

k)
}
 .

For checking the violation for the dual feasibility, we calculate it by

vstat =

∥∥∥∇f(xk) +∇cj(xk)λk
c − λk

x

∥∥∥
∞

max
(
1, ∥λ

k
x∥1+∥λk

c∥1
100(n+m)

) .

The algorithm determines that the point xk satisfies the KKT conditions if the maximum

violation among the three quantities is below a user-defined tolerance τSQP, i.e.,

95

max{vstat, vprimal, vcompl} ≤ τSQP,

By default, the value of τSQP is set to 10−6.

3.4.4. QP solvers

The software has been integrated with two parametric QP solvers, QPoases[25] and QORE[70].

In addition to the parametric QP method, we have also integrated the software with Ipopt[81],

a state-of-the-art interior point method for nonlinear programming.

3.4.5. “Warm starts” of nonlinear programming

In this chapter, we describe the warm-start strategy employed in the software, focusing on the

application of parametric quadratic programming (QP) methods discussed in Chapter 3.2.2.

Before discussing the specific implementation techniques, it is crucial to establish a clear

understanding of the concept of “warm-start” NLPs.

The warm-start strategy in our context involves utilizing information obtained from the

optimal solution of a previous NLP as the initial starting point for the current optimization

problem. By reusing this initial solution effectively, we can expedite the convergence process

and improve overall computational efficiency.

Specifically, let us consider the following two NLPs:

(3.11)

min
x∈Rn

f 0(x)

s.t. c0L ≤ c0(x) ≤ c0U , (λ0
c)

x0
L ≤ x ≤ x0

U , (λ0
x)

96

and

(3.12)

min
x∈Rn

f 1(x)

s.t. c1L ≤ c1(x) ≤ c1U , (λ1
c)

x1
L ≤ x ≤ x1

U , (λ1
x)

where f 1 : Rn → R, f 1 : Rn → R, c0 : Rn → Rm and c1 : Rn → Rm. We assume that ciL ≤ ciU

and xi
L ≤ xi

U and f i, ci are twice continuously differentiable for i = 0, 1. We assume the

optimal primal-dual solution (x0,∗, λ0,∗
c , λ0,∗

x) and the optimal working set W0,∗ for the first

NLP (3.11) are known.

In SQP methods, warm-starting involves taking the optimal solution (x0,∗, λ0,∗
c , λ0,∗

x) and

optimal working set W0,∗ obtained from the previous NLP problem, (3.11), as the initial

starting point for the new NLP problem, (3.12). This previous solution information is used

to set up the QP subproblems accordingly during the SQP iterations. By utilizing the

previous NLP solution as a warm start, the SQP method can potentially converge faster and

require fewer iterations to reach the optimal solution for the new NLP problem.

The parametric QP method offers numerous advantages when solving a sequence of QP

problems, particularly during the solution process for QP subproblems within an SQP frame-

work. It allows for efficient updates of the solution and working set from the previous QP

problem, thereby facilitating a “warm start” for subsequent QPs in the sequence. In this

context, if the QP solver’s internal data for the previous NLP problem (3.11) is retained,

the first SQP problem for the new NLP problem (3.12) can be considered as the subsequent

QP in this sequence.

In scenarios where the QP solver’s internal data for the previous NLP problem (3.11) is

not available, such as when the previous NLP is not solved using the parametric QP method,

97

initializing the QP problem sequences for the new NLP problem (3.12) becomes necessary.

The common approach is to use an auxiliary QP with a trivial solution, known as a “cold

start” initialization as mentioned in Chapter 3.2.2. However, this cold start initialization

may require a significant number of QP iterations before reaching the optimal solution for the

first QP in the sequence. Despite the benefits of warm-starting provided by the parametric

QP method, this initial phase of solving the auxiliary QP can still involve a substantial

number of iterations.

To address the challenges posed by the cold start initialization and reduce the number of

iterations required, we propose explicitly defining a QP problem using the optimal solution

(x0,, λ0,
c , λ

0,∗
x) and the optimal working set W0,∗ obtained from the previous NLP solution.

In this approach, we aim to setW0,∗ as the optimal working set for the defined QP problem,

allowing the parametric QP methods to leverage the known information from the previous

NLP solution more effectively.

The QP problem is constructed as follows:

min
p∈Rn,u,v∈Rm

1
2
pT∇2

xxL0(x0,∗, λ0,∗
c , λ0,∗

x)p+∇f(x0,∗)Tp+ ρeT (u+ v)

s.t. c0L − c(x0,∗) ≤ ∇c(x0,∗)Tp+ u− v ≤ c0U − c(x0,∗)

max(−∆, x0
L,i − x0,∗

i) ≤ pi ≤ min(∆, x0
U,i − x0,∗

i), i ∈ [n]

u, v ≥ 0.

In this formulation, L0 represents the Lagrangian function for the previous NLP problem

(3.11). The parameter ρ > 0 is chosen such that ρ > ∥λ0,∗
c ∥∞, and ∆ > 0 is the user-defined

initial trust-region radius for the new NLP problem (3.12). The optimal solution for this QP

problem is (p, u, v) = (0, 0, 0) with the optimal working set W0,∗. By utilizing this manually

98

defined QP problem, we can eliminate the cold start initialization and solve the first QP in

the sequence more efficiently.

By employing the warm-start strategy at both the SQP solver level and QP solver level,

the software can efficiently solve a sequence of NLPs. It is important to note that the

effectiveness of the warm-start approach relies on the similarity between the solutions and

optimal working sets of each NLP in the sequence. When the solutions and optimal working

sets are close to each other, the warm-start strategy can significantly improve convergence

speed and overall computational efficiency.

3.4.5.1. Cross-over from Ipopt. Interior-point methods are renowned for their effective-

ness in solving large-scale optimization problems. However, one limitation of these methods

is the lack of precise information regarding the active constraints at the solution. This can

lead to less accurate solutions and sensitivity information. To address this, the software

incorporates a crossover feature that transitions from the interior-point method to the SQP

method at the estimated interior-point solution.

The crossover feature serves two purposes. First, it allows users to initially solve the NLP

using the interior-point method, obtaining an estimated solution. Then, by transitioning

to the SQP method, a more accurate solution can be obtained, along with the correct

identification of the active set and sensitivity information. This improves the understanding

of the problem’s constraints and enhances the overall solution quality.

Moreover, the crossover feature is particularly valuable when solving a sequence of similar

NLPs. The interior-point method can be employed for solving the initial NLPs in the se-

quence, providing efficient solutions to these problems. Subsequently, the crossover function

is activated, enabling the SQP method to solve the subsequent NLPs.

99

To perform the crossover functionality, we first use Ipopt, an interior-point solver, to

obtain the optimal solution x∗. Using this solution, the software explicitly identifies an

estimate of the active set. The identified active set, along with the optimal solution, is then

passed as initial input to the SQP method. Specifically, we employ the following formulas

to determine an estimation of the active set for bound constraints and general constraints,

denoted by A∗
x and A∗

c respectively:

A∗
x,i =

inactive,
x∗
i−xL,i

max(τp,λ∗
x,i)

> τactive and
xU,i−x∗

i

max(τp,−λ∗
x,i)

> τactive,

active above, xU,i = xL,i or τactive ≥ x∗
i−xl,i

max(τp,λ∗
x,i)

>
xu,i−x∗

i

max(τp,−λ∗
x,i)

,

active below, otherwise,

and

A∗
c,j =

inactive,
cj(x

∗)−cL,j

max(τp,λ∗
c,j)

> τactive and
cU,j−cj(x

∗)

max(τp,−λ∗
c,j)

> τactive,

active above, cU,j = cL,j and λ∗
c,j ≤ 0, or τactive ≥ cj(x

∗)−cL,j

max(τp,λ∗
j)

>
cU,j−cj(x

∗)

max(τp,−λ∗
j)
,

active below, otherwise.

By default, τactive is set to be 10
−4 and τp is set to be 10

−16. We choose to use the interior point

method solver initially because it excels in cold starting for large-scale NLPs. In contrast,

the SQP method with an active-set QP solver may require numerous QP iterations, making

it less efficient compared to the interior point method.

It should be noted that the effectiveness of this warm-start strategy depends on the

strict complementarity condition being satisfied at the optimal solution. However, in prac-

tical applications, we have observed that this approach encounters challenges when strict

complementarity fails, such as the nonlinear programming problems from AC optimal power

flow.

100

Moreover, it is important to consider that the cost associated with performing crossover

depends on the specific problem at hand. In small or medium-scale problems, the additional

computational cost of the crossover procedure is generally a small fraction of the total solution

cost. In these cases, it is advantageous to employ crossover to achieve a more accurate

solution. However, for large-scale or highly degenerate problems, the cost of crossover may

become significant. Thus, it is recommended to carefully evaluate the trade-off between

improved solution accuracy and the additional computational cost incurred by the crossover

procedure in such scenarios.

3.4.6. Lazy constraints generations for nonlinear programming

In the software, we implemented a lazy constraint generation scheme for solving NLPs. This

approach is particularly useful in two scenarios: when solving a sequence of NLPs with an

increasing number of constraints, or when dealing with an NLP that has a large number of

constraints. Examples include the SDP relaxation of ACOPF, which involves an exponential

number of nonlinear constraints in the problem formulation [46].

The process, described in Algorithm 6, involves solving the NLP with a selected subset

of constraints and successively adding additional constraints (referred to as “cuts”) to the

problem and resolving it. In particular, we solve

min
x∈Rn

f(x)

s.t. cL,i ≤ ci(x) ≤ cU,i, i ∈ I ⊆ [m],

xL ≤ x ≤ xU ,

for a selected subset of constraints I, and then add additional constraints to the problem

and resolve it.

101

Algorithm 6 Lazy Constraint Generation for NLP

1: Choose an initial subset of constraints I0 ⊆ [m] for the NLP, ensuring that the NLP
remains bounded below.

2: Set k ← 0.
3: Solve the NLP with the constraints defined by I0, obtaining the solution (xk, λk

x, λ
k
c).

4: while Vk = {i ∈ [m] \ Ik : xk violate constraint ci} is not empty do

5: Choose a set of constraints indices V̂k ⊆ V̂k.
6: Update the constraint set: Ik+1 ← Ik ∪ V̂k.
7: Solve the NLP with the constraints defined by Ik+1, obtaining the solution

(xk+1, λk+1
c , λk+1

x).
8: Increment k: k ← k + 1.
9: end while
10: return Optimal solution: x∗ = xk.

The algorithm begins by selecting an initial subset of constraints, I0, which chosen in

a way that the NLP remains bounded below and easy to solve. Then, in each iteration,

the NLP is solved using the current set of constraints, and if any violated constraints are

found, a subset of those constraints is added to the constraint set for the next iteration. This

process continues until no more violated constraints are found. Finally, the optimal solution,

denoted as x∗, is obtained as the solution from the last iteration.

When applying the lazy constraint generation scheme to a sequence of NLPs, it becomes

essential to handle the “warm-start” transition from one NLP to the next. Specifically,

between each pair of NLPs, the methods needs to transition from the NLP defined by (3.9),

that is,

min
x∈Rn

f(x)

s.t. cL ≤ c(x) ≤ cU , (λc)

xL ≤ x ≤ xU , (λx)

to a new NLP with additional constraints defined by

102

min
x∈Rn

f(x)

s.t. cL ≤ c(x) ≤ cU , (λc)

c̃L ≤ c̃(x) ≤ c̃U , (λc̃)

xL ≤ x ≤ xU , (λx)

where c̃ : Rn → Rm̃ are twice-continuously differentiable, c̃L and c̃U satisfies c̃L ≤ c̃U .

To achieve efficient warm-starting and avoid the cold-start initialization, a similar strat-

egy as discussed in Chapter 3.4.5 is employed. Specifically, when the optimal solution

(x∗, λ∗
c , λ

∗
x) and its optimal working set W∗ for (3.9) are available, we construct an addi-

tional QP problem to handle the additional constraints and facilitate warm-starting when

using the parametric QP solver. The QP problem is formulated as follows:

min
p∈Rn,u,v∈Rm

1
2
pT∇2

xxL(x∗, λ∗
c , λ

∗
x)p+∇f(x∗)Tp+ ρeT (u+ v)

(3.14a)

s.t. cL − c(x∗) ≤ ∇c(x∗)Tp+ u− v ≤ cU − c(x∗)

(3.14b)

min(c̃L,i − c̃i(x
∗),−ϵ) ≤ ∇c̃i(x∗)Tp+ ui − vi ≤ max(c̃U,i − c̃i(x

∗), ϵ), i ∈ [m̃](3.14c)

max(−∆, xL,i − x∗
i) ≤ pi ≤ min(∆, xU,i − x∗

i), i ∈ [n](3.14d)

u, v ≥ 0.(3.14e)

In this formulation, the constant ϵ > 0 is carefully chosen such that the constraint (3.14c)

is not active, ensuring that the optimal working set W∗, along with the trivial solution

(p, u, v) = (0, 0, 0), remains optimal for (3.14). By employing this additional QP, the para-

metric QP solver can avoid cold-start initialization for the QP subproblem sequence in the

103

SQP algorithm. Instead, it utilizes the optimal information obtained from the previously

solved NLPs.

This lazy constraint generation approach has been integrated with the cross-over strategy

discussed in Chapter 3.4.5.1. Initially, the interior point solver Ipopt is invoked to solve the

initial NLP defined by I0 in line 3. Following the completion of the first NLP solve, the

algorithm transitions to the SQP method to handle additional constraints and proceeds to

solve all subsequent NLPs using this approach.

The lazy constraint generation approach provides a more efficient solution for NLPs with

a large number of constraints by avoiding the inclusion of all constraints initially. Instead,

it incrementally incorporates necessary constraints based on the current solution, thereby

reducing the computational burden. It is worth noting that the selection of the initial subset

of constraints, I0, as well as the order in which constraints are added, can significantly

impact the efficiency and quality of the solution.

This approach is particularly advantageous when dealing with NLPs that have a large

number of constraints, especially when the number of constraints is exponentially large. In

such cases, the gradual addition of constraints based on the current solution proves superior

to solving the problem with all constraints using an NLP solver. However, it is important

to consider that for NLPs with a small or medium-sized number of constraints, employing

an NLP solver to solve the problem with all constraints may be more efficient and faster.

Thus, the choice of approach should be made based on the specific problem characteristics

and computational resources available.

104

Option Description Default

trust region ratio decrease tol
If ratio ≤ trust region ratio decrease tol, then the trust-region
radius for the next iteration is decreased for the next iteration
(ηc in Algorithm 4) .

1e-8

trust region ratio accept tol
If ratio ≥ trust region ratio increase tol and the search direction
hits the trust-region boundary, the trust-region radius will be
increased for the next iteration (ηe in Algorithm 4).

1e-8

trust region decrease factor Factor used to reduce the trust-region size (ηc in Algorithm 4). 0.5

trust region increase factor Factor used to increase the trust-region size (ηe in Algorithm 4). 2.0

trust region init size Initial trust-region radius (∆0 in Algorithm 4). 10.0

trust region max value
Maximum value of trust-region radius allowed for the radius
update (∆max in Algorithm 4).

1e10

trust region min value
Minimum value of trust-region radius allowed for the radius
update.

1e-16

penalty parameter init value Initial value of the penalty parameter (π0 in Algorithm 4). 10.0

penalty update tol Tolerance for trigger penalty parameter update. 1e-6

penalty parameter increase factor Factor by which penalty parameter is increased (β in Algorithm 5). 10.0

gamma 1 Parameter for penalty update (γ1 Algorithm 5). 0.1

gamma 2 Parameter for penalty update (γ2 Algorithm 5). 1e-6

penalty parameter max value Maximum value of the penalty parameter. 1e8

penalty iter max
Maximum number of penalty parameter update allowed in a
single iteration in the main algorithm.

200

penalty iter max total Maximum number of penalty paremter update allowed in total 100

perform second order correction Perform the second-order correction during the main iteration. true

qp solver max num iterations
The maximum number of iterations for the QP solver in
solving each QP.

1e5

lp solver max num iterations
The maximum number of iterations for the QP solver in
solving each LP.

1e5

Table 3.1. Summary of algorithmic parameters in RestartSQP with their re-
spective default values

3.5. Numerical Results

In this chapter, we present the numerical results. We tested the software on the bench-

mark NLP test set CUTE [12]. The numerical experiment is performed on a macOS Ventura

Version 13.1 with a 2.3GHz Intel i9 processor and 16GB RAM.

RestartSQP is run on the test set using the default option values specified in Table 3.1.

In additional to the termination criterion mentioned in the previous chapter, the algorithm

will also stop if the trust-region becomes too small or if the penalty parameter becomes

too small. The algorithm is executed with a CPU time limit of 3 minutes and an iteration

limit of 3000. The test instances were solved using the AMPL interface, utilizing the .nl

105

files generated from the AMPL model provided by [79]. Specifically, we selected instances

with a number of variables and constraints smaller than or equal to 50000, resulting in a

total of 737 available instances for our analysis. However, for instances argauss, grouping,

and lewispol, they were excluded from the analysis due to their limited degrees of free-

dom. Additionally, the instances dallasl, dallasm, hs068, and hs069 were excluded due to

evaluation errors encountered within the AMPL interface. fletcbv3, fletchbv, indef,

static3 are removed because they appeared unbounded below.

In the following chapters, we conducted a practical performance evaluation of RestartSQP

using different QP subsolvers. Specifically, we first analyze the performance of RestartSQP

with the QORE parametric QP solver and assess its warm-start capability. Next, we will

examine the performance of the SQP solver utilizing the Ipopt interior point method solver

as its QP subsolver. The evaluation is performed on the remaining 726 instances from the

CUTE test set. For the evaluation, we utilized the starting points provided in the AMPL

model whenever available. If not available, we use trivial starting points instead.

3.5.1. Using QORE as QP subsolver

We executed RestartSQP on the CUTE instances, employing QORE [70] as the QP sub-

solver. QORE was compiled with multiple linear solvers, including UMFPACK, MA27,

MA57, and MA86. The configuration of QORE includes the following settings:

• The qore umpack ordering option was set to cholmod, specifying the ordering

method used by the UMFPACK solver within QORE.

• The qore ma57 ordering option was set to amd, determining the ordering method

employed by the MA57 solver within QORE.

106

• We assigned a value of 1e-14 to the qore basis repair tol option, controlling the

tolerance used in the basis repair process of QORE.

• The threshold pivoting tolerance for both UMFPACK and MA57 solvers was set

to 0.1, determining when a pivot is considered too small during the factorization

process.

• The near-zero element drop tolerance for both UMFPACK and MA57 solvers was

set to 2.22e−16, specifying when a numerical value is considered close to zero during

factorization.

• Lastly, the threshold pivoting tolerance for the MA27 solver was also set to 0.1,

governing the selection of pivotal elements during the factorization process.

Among the 726 instances, RestartSQP successfully solved 689 of them within the desig-

nated time limit. Out of these, 572 instances were solved to optimal. The detailed statistics

can be found in Table B.1. It is worth noting that most of the failures were attributed to

the exception where the predicted reduction was non-positive. Additionally, there were 17

instances that encountered unclassified internal errors.

Here is a breakdown of the failures:

• 7 instances failed due to exceeding the maximum number of iterates. 1.

• 55 instances failed because the predicted reduction is non-positive. 2.

• 3 instances failed because the trust region radius became too small. 3.

1These instances are cresc50, fletcher, himmelbd, hs063, minc44, osbornea, and polak2
2These instances are beale, broydn7d, bt4, cresc100, cresc132, cube, deconvu, dixmaang, dixmaanj,
dixmaank, errinros, flosp2hh, flosp2hm, flosp2tm, genhumps, hadamals, hairy, hart6, heart6ls,
heart8ls, hs024, hs029, hs036, hs037, hs038, hs056, humps, launch, loghairy, logros, methanl8,
nonmsqrt, optmass, palmer1e, palmer3b, palmer3e, palmer4a, palmer4e, palmer5a, palmer5b, palmer5e,
palmer6e, palmer7a, palmer7e, palmer8a, palmer8e, pfit1, pfit1ls, pfit2, pfit2ls, sinquad, spanhyd,
svanberg, watson, and woods
3These instances are cantilvr, chemrctb, and himmelbj

107

• 14 instances encountered failure because the penalty parameter became too large.

4.

• 14 instances failed because the QP solver exceeded the maximum number of itera-

tions. 5.

• 17 instances terminated because of internal QP solver errors. 6.

• 4 instances failed due to QORE declaring the QP as unbounded. 7.

• 3 instances failed due to QORE declaring them infeasible. 8.

Currently, it is important to acknowledge that parametric QP solvers, like QORE, may

not yet match the robustness and maturity of well-established interior-point QP solvers

such as Ipopt. As QORE is still undergoing development, it lacks some of the mature

error-handling capabilities found in established solvers like Ipopt. As RestartSQP keeps

improving, we will continue working on enhancing and fine-tuning the parametric active-set

method used in the SQP solver. We expect that these efforts will lead to a more reliable and

effective performance of QORE as the subsolver for our SQP method in the future.

3.5.1.1. Warm start for perturbed programs. In this chapter, we present a result of

warm-starting. The process begins by utilizing Ipopt with default options to generate solu-

tion (x∗, λ∗
c , λ

∗
xL
, λ∗

xU
) for the original problem. Here, λ∗

xL
represents the optimal multiplier

for the lower bound constraints, while λ∗
xU

represents the multiplier for the upper bound

constraints. The time limit for Ipopt is set to 3 minutes. Out of 724 instances, 697 are

4These instances are artif, core1, core2, disc2, discs, hs013, huestis, optctrl3, optctrl6, s365mod,
semicon1, semicon2, vanderm2, and vanderm4
5These instances are bloweya, bloweyc, britgas, clnlbeam, cvxqp3, gausselm, haifam, hvycrash,
noncvxu2, nuffield2, orthrds2, reading1, ubh1, and vanderm1
6These instances are aug2dcqp, bloweyb, catenary, dittert, drcavty3, eigenbco, haldmads, hanging,
hs108, lch, minperm, nuffield, porous1, qpcstair, sawpath, twirism1, and vanderm3
7These instances are aug2dqp, hs084, lakes, and lminsurf
8These instances are dixmaand, kissing, and scosine

108

solved to either optimality or acceptable levels within the time limit. The optimal multiplier

λ∗
x is obtained by calculating λ∗

xL
− λ∗

xU
∗.

To introduce variations, we perturb the optimal primal-dual solution obtained from

Ipopt. Random uniform perturbations are generated for 10% of the entries in each vector

(x∗, λ∗
c , λ

∗
xL
, λ∗

xU
), with perturbation values ranging from −10−3 to 10−3. The resulting per-

turbed optimal solution is denoted as (xperturbed, λperturbed
c , λperturbed

xL
, λperturbed

xU
). Furthermore,

we calculate the perturbed multiplier λperturbed
x by subtracting λperturbed

xU
from λperturbed

xL
. These

perturbed solutions serve as the initial primal-dual starting point for the SQP algorithm.

To identify the initial working set, we apply a similar rule as described in Chapter 3.4.5.1,

but utilize the perturbed optimal solution, i.e.,

Ax,i =

inactive,
xperturbed
i −xL,i

max(τp,λ
perturbed
x,i)

> τactive and
xU,i−xperturbed

i

max(τp,−λperturbed
x,i)

> τactive,

active above, xU,i = xL,i or τactive ≥ xperturbed
i −xl,i

max(τp,λ
perturbed
x,i)

>
xu,i−xperturbed

i

max(τp,−λperturbed
x,i)

,

active below, otherwise,

and

Ac,j =

inactive,
cj(x

perturbed)−cL,j

max(τp,λ
perturbed
c,j)

> τactive and
cU,j−cj(x

perturbed)

max(τp,−λperturbed
c,j)

> τactive,

active above,

cU,j = cL,j and λperturbed
c,j ≤ 0, or

τactive ≥
cj(x

perturbed)− cL,j

max(τp, λ
perturbed
j)

>
cU,j − cj(x

perturbed)

max(τp,−λperturbed
j)

,

active below, otherwise.

These working sets also serve as the initial input for the SQP algorithm.

The SQP algorithm then runs with QORE as the QP subsolver, using the same configu-

ration as in Chapter 3.5.1. The detailed results are presented in Table B.2.

109

Out of the 697 instances, 644 instances terminated within the 180-second time limit, and

588 instances were solved to optimality. However, some instances encountered failures due

to various reasons. A breakdown of the failures is as follows:

• 22 instances failed because the predicted reduction is non-positive. 9

• One instance failed because the trust-region radius became too small. This instance

is arwhead.

• 6 instances encountered failure because the penalty parameter became too large. 10.

• 6 instances failed because the QP solver exceeded the maximum number of iter-

ations. These instances are arglinc, core2, corkscrw, flosp2hm, gausselm and

sreadin3

• 16 instances terminated because of internal QP solver errors. 11

• 3 instances failed due to the QP solver reporting the QP problem is unbounded 12

• 2 instances failed due to exceeding the maximum number of iterates13.

A notable observation is that for those solved instances, 90% of them take less than 3

iterations with a total number of QP iterations less than 60, demonstrating the effectiveness

of warm-starting both on the SQP solver level and the QP solver level.

3.5.1.2. Using Ipopt as QP subsolver. In this chapter, we run RestartSQP on the

CUTE instances, using Ipopt as the selected QP subsolver. Ipopt was compiled with MA27

linear solver and was configured with a tolerance of 1e-12 and an acceptable tolerance of

9These instances are arglinb, avion2, blockqp1, blockqp3, blockqp5, deconvu, flosp2hl, flosp2th,
flosp2tl, flosp2tm, hs002,, hs029, hs037, hs041, lch, makela3, manne, pentagon, probpenl, rk23, s368
and steenbrf
10These instances are coshfun, discs, goffin, optmass, orthrds2, and smmpsf
11These instances are dallass, eigenb2, gouldqp2, gridnetf, haifam, hs108, hvycrash, kissing, minperm,
ngone, reading2, sipow3, spanhyd, twirism1, vanderm1 and vanderm3
12These instances are brainpc7, reading1, and svanberg.
13These instances are meyer3 and scosine

110

1e-8. Additionally, we set bound relax factor in Ipopt option to 0 and we disabled the

scaling of the QP by setting option value nlp scaling method to “none”.

We chose this specific setup to test RestartSQP since it will be used in the two-stage

optimization algorithm described in the next chapter. Currently, Ipopt and RestartSQP

are the only dependencies for the two-stage algorithm, and therefore, we aim to ensure its

reliability and performance under this configuration for future applications.

Using Ipopt as the QP subsolver, we obtained successful solutions for 696 instances within

the specified time limit. Out of these, 640 instances were solved to optimality. The detailed

statistics can be found in Table B.3. However, it is important to note that some instances

did not converge to the optimal solution. Here is a breakdown of the failures:

• 12 instances failed due to exceeding the maximum number of iterates. 14.

• 5 instances failed because the predicted reduction is non-positive. 15.

• The instance core1 failed because the trust-region region became too small.

• 13 instances encountered failure because the penalty parameter became too large.

16.

• 15 instances failed because the QP solver exceeded the maximum number of itera-

tions. 17.

• 2 instances failed due to Ipopt throwing an error saying the QP problem formulation

is invalid, 18

14These instances are chemrctb, cresc50, discs, himmelbd, hs063, orthrds2, orthrege, osbornea,
palmer5a, palmer5e, palmer7a, and steenbrc
15These instances are hs013, launch, nonmsqrt, palmer2, and steenbre
16These instances are artif, britgas, fletcher, hs093, huestis, lakes, optctrl3, optctrl6, s365mod,
ssebnln, vanderm2, vanderm3, and vanderm4
17These instances are core2, flosp2hh, flosp2hm, flosp2th, flosp2tm, meyer3, orthrgdm, orthrgds,
palmer1c, palmer2e, scosine, scurly10, sinquad, steenbrb, and vardim
18These instances are cantilvr, semicon1

111

• 6 instances failed due to the failure of Ipopt’s restoration phase. 19.

• 2 instances failed due to errors in Ipopts step computation. 20.

We have observed that Ipopt performs better as a QP subsolver, just as anticipated. Its

robustness contributes to the overall performance of the SQP solver as well.

3.6. Conclusing Remarks

In this chapter, we presented the development of a new C++ implementation of the

SQP method. This implementation features the utilization of parametric QP methods and

can efficiently handle a sequence of NLPs or crossover from the interior-point method. The

practical performance of the RestartSQP software was demonstrated using the CUTE test

set, and we conducted warm-start experiments to evaluate its effectiveness.

By incorporating warm-starting techniques at both the SQP solver level and the QP

solver level, we can leverage the progress made in previous NLPs to accelerate convergence

and significantly reduce the computational effort required for subsequent optimization prob-

lems. The warm-start approach has shown promising results in achieving rapid convergence.

However, it is worth noting that the parametric active-set method utilized in the imple-

mentation may not be suitable for solving large-scale QP problems. Additionally, the QP

solver QORE is still under development and lacks mature error handling compared to well-

established solvers like Ipopt.

In the upcoming chapter, we will use RestartSQP as an integral part of the implemen-

tation for the two-stage optimization algorithm. This will allow us to showcase the full

potential of the software in solving complex optimization problems in practical applications.

19These instances are ncvxqp2, ncvxqp7, ncvxqp8, sawpath, smbank, and spanhyd
20These instances are steenbrf, twirism1

112

CHAPTER 4

A Decomposition Algorithm for Continuous Nonlinear Two-Stage

Optimization Problems

4.1. Introduction

In this chapter, we discuss a novel decomposition algorithm for nonlinear continuous

two-stage problems, where the first-stage problem is given as

min
xi∈RnP

i ,z∈Rn0

f0(z) +
N∑
i=1

f̂i(xi)(4.1a)

s.t c0(z) = 0,(4.1b)

d0(z) ≤ 0,(4.1c)

P̂iz − xi = 0, i = 1, . . . , N,(4.1d)

together with N (N ≥ 0) second-stage problems of the form

f̂i(xi) = min
yi∈Rni

fi(yi)(4.2a)

s.t ci(yi) = 0,(4.2b)

di(yi) ≤ 0,(4.2c)

Piyi − xi = 0.(4.2d)

Here, fi : Rni −→ R, ci : Rni −→ Rmc
i , and di : Rni −→ Rmd

i are assumed to be twice-

continuously differentiable. The shared variables xi ∈ RnP
i are subvectors of the first-stage

113

variables z, formally defined as projections in (4.1d), where the nP
i ×n0-dimensional projec-

tion matrices P̂i contain rows of the identity matrix. Similarly, the second-stage variables yi

in (4.2d) is defined by nP
i × ni-dimensional projection matrices Pi. In this chapter, we will

also refer to the first-stage problem as the master problem and the second-stage problems

as the subproblems.

Instances like these often arise from the sample-average approximation of stochastic two-

stage problems [4, 52, 65, 9], in which a first-stage decision has to be made before uncertain

data in the second stage is revealed. In this setting, once the unknown data is realized, the

second-stage problem determines a recourse action to minimize the corresponding second-

stage cost. The goal then is to minimize the overall expected costs, where the randomness

is approximated by N scenarios.

In some cases, networks with specific structures also give rise to two-stage formulations.

For one of the applications considered in our numerical experiments, an electrical power grid

is decomposed into a high-voltage transmission network (the first-stage problem) and a set

of distribution networks (the second-stage problems) connected to the transmission grid at

specific buses [61, 77, 76].

In contrast to approaches like Benders’ algorithm for linear instances [6], the new method

does not construct a first-stage problem that incorporates information from the second-stage

problems by means of additional constraints (cuts) that are added sequentially to the first-

stage problem. Instead, the proposed method solves the first-stage problem (4.1) directly,

keeping the value functions f̂i as part of the objective function.

A distinguishing strength of the new approach is that it can utilize standard nonlinear

optimization solvers that handle the nonlinearity of the instances in a natural way. To make

this work, however, we need to address a challenge that makes the direct application of a

114

fast second-order nonlinear optimization solver for the first-stage problems impossible: The

second-stage value function f̂i is typically not differentiable at values of xi when the set of

inequality constraints (4.2c) that are active at the optimal solution changes as xi is varied.

To overcome this predicament, the proposed algorithm relies on a smoothing approach that

results in a smooth approximation of the value function f̂i so that a standard nonlinear

optimization method can be used to solve the smoothed first-stage problem. The smoothing

technique is described in Chapter 4.3.

4.1.1. Related work

Two-stage optimization decomposition algorithms have become increasingly popular in the

field of optimization for addressing large-scale problems with a hierarchical structure. In

particular, stochastic programs pose significant challenges due to their exponential growth

in size and complexity as the number of scenarios increases. To tackle these difficulties,

decomposition algorithms such as Benders decomposition [6, 78] have been developed to

solve linear programming and mixed-integer linear programming stochastic problems.

Benders decomposition, initially introduced for linear problems, was later generalized by

Geoffrion [32] to handle nonlinear two-stage problems. This algorithm iteratively constructs

a linear approximation of the master problem. At each iteration, the master problem is

solved to obtain a feasible solution for the first-stage variables. Then, the subproblems

are solved with the fixed first-stage solution, generating information to enhance the master

problem’s objective value. This information typically takes the form of linearized cuts or

dual information. The algorithm continues this iterative process until convergence, usually

determined by a stopping criterion such as the duality gap or a specified number of iterations.

However, a drawback of Benders decomposition is that the master problem may contain a

115

large number of constraints, resulting in the repetitive solving of subproblems.

To overcome the limitations of Bender’s decomposition method, which requires convex-

ity, gradient-based two-stage decomposition algorithms have been developed. One notable

decomposition framework in this category is Collaborative Optimization (CO), introduced

by Braun [13]. The algorithm employs an inexact penalty function to decompose the prob-

lem and create independent subproblems by introducing copies of global variables. However,

both the CO master problem and subproblems suffer from degeneracy [19].

To address this issue, DeMiguel and Murray [20] proposed alternative formulations and

algorithms. The Inexact Penalty Decomposition algorithm utilizes an inexact penalty func-

tion, while the Exact Penalty Decomposition algorithm combines an exact penalty function

with a barrier term. Both algorithms have been shown to achieve local convergence at a su-

perlinear rate under mild assumptions. It is worth noting that tuning the penalty parameter

in the exact penalty formulation can be challenging [14]. Other methods for addressing CO

include [72, 42].

Our algorithm builds upon the work proposed by [77], which introduced the initial for-

mulation and methodology. The smoothing technique utilized in our algorithm has been

adapted from the broader field of general bilevel programming [71, 74, 48]. It is important

to note that the two-stage optimization problem can be viewed as a special case of bilevel

programming. Furthermore, our work shares similarities with [1, 73], where the subproblems

are smoothed using a barrier term.

4.1.2. Overview

Chapter 4.3 introduces the smoothing technique that renders the second-stage recourse func-

tion differentiable, and discussed the computation of derivatives for the first-stage problem.

116

The overall decomposition framework is then described in Chapter 4.4. Chapter 4.6 gives a

detailed description of our implementation, followed by extensive numerical experiments in

Chapter 4.7.

4.2. Preliminaries

4.2.1. Full recourse property

For the most part of the paper, we make the following assumption on the second-stage

problems:

Assumption 4.2.1. The second-stage problem has the full recourse property, that is, it

is feasible for any value of xi.

However, to relax this assumption, the implemented algorithm considers a penalty-based

second-stage problem defined as

f̂i(xi; ρ) = min
yi,ti,wi

fi(yi) + ρ
∑
j

(tij + wij)(4.3a)

s.t ci(yi) = 0,(4.3b)

di(yi) ≤ 0,(4.3c)

Piyi − xi + ti − wi = 0(4.3d)

ti, wi ≥ 0.(4.3e)

117

In this formulation, the coupling constraint (4.2d) can be violated, but at the price that

the ℓ1-norm of the violation, ∥Piyi− xi∥1, multiplied by a positive penalty parameter ρ > 0,

is added to the objective function. Then, if there exists a particular value of xi for which

the original second-stage problem is feasible, the relaxed formulation is feasible for any xi,

i.e., it has the strong recourse property, and the algorithm described in the coming chapters

can be applied to the relaxed formulation.

Under certain standard regularity assumptions, it can be shown that solving the relaxed

formulation with a sufficiently large penalty parameter ρ can yield an optimal solution to the

original unrelaxed problem. Specifically, if ρ is greater than the optimal multiplier of (4.3d),

then the relaxed formulation can capture an optimal solution. However, determining the

appropriate value of ρ in advance is not feasible as it depends on the specific problem instance

and its characteristics. To address this, updating rules can be developed to dynamically

adjust the value of ρ during the solution process.

118

4.2.2. Two-stage problem

The two-stage problem, as defined by equations (4.1) and (4.2), can be reformulated as an

undecomposed problem given by:

min
x,y,z

f0(z) +
N∑
i=1

fi(yi)(4.4a)

s.t. c0(z) = 0, (ξ0)(4.4b)

d0(z) ≤ 0, (λ0)(4.4c)

P̂iz − xi = 0, (η̂i) ∀i ∈ [N],(4.4d)

ci(yi) = 0, (ξi) ∀i ∈ [N],(4.4e)

di(yi) ≤ 0, (λi) ∀i ∈ [N],(4.4f)

Piyi − xi = 0, (ηi) ∀i ∈ [N].(4.4g)

In the above formulation, the Lagrange multipliers associated with constraints (4.4b)–

(4.4g) are denoted as (ξ0, λ0, {η̂i}Ni=1, {ξi}Ni=1, {λi}Ni=1, {ηi}Ni=1). To simplify notation, we use ξ

to represent (ξ0, ξ1, · · · , xN) and λ to represent (λ0, λ1, · · · , λN). Additionally, η̂ represents

(η̂1, · · · , η̂N), and η represents (η1, · · · , ηN).

Throughout this chapter, we assume that the following assumptions hold for the unde-

composed problem (4.4):

Assumption 4.2.2. There exists a local solution (z∗, x∗, y∗) to the undecomposed prob-

lem (4.4) with Lagrange multipliers (ξ∗, λ∗, η̂∗, η∗) at which LICQ and the following KKT

conditions hold:

119

(4.5)

∇zf0(z
∗) +∇zc0(z

∗)ξ∗0 +∇zd0(z
∗)λ∗

0 +
N∑
i=1

P̂ T
i η̂

∗
i = 0,

∇yifi(y
∗
i) +∇yici(y

∗
i)ξ

∗
i +∇yidi(y

∗
i)λ

∗
i + P T

i η
∗
i = 0, i ∈ [N],

−η̂∗i − η∗i = 0, i ∈ [N],

c0(z
∗) = 0,

d0(z
∗) ≤ 0,

P̂iz
∗ − x∗

i = 0, i ∈ [N],

ci(y
∗
i) = 0, i ∈ [N],

di(y
∗
i) ≤ 0, i ∈ [N],

Piy
∗
i − x∗

i = 0, i ∈ [N],

λ∗
0 ≥ 0,

λ∗
i ≥ 0, i ∈ [N],

λ∗
0 ◦ d0(z∗) = 0,

λ∗
i ◦ di(y∗i) = 0, i ∈ [N].

Assumption 4.2.3. Let (z∗, x∗, y∗) be a local solution with the corresponding Lagrange

multipliers (ξ∗, λ∗, η̂∗, η∗) to the undecomposed problem (4.4) that satisfies the KKT condi-

tions (4.5), and strict complementarity holds.

Assumption 4.2.4 (Second-order sufficient condition). Let (z∗, x∗, y∗) be a local solution

with the corresponding Lagrange multipliers (ξ∗, λ∗, η̂∗, η∗) to the undecomposed problem (4.4)

that satisfies the KKT conditions (4.5), and the second-order sufficient condition holds at

this local solution.

120

4.2.3. First-stage problem optimality conditions

The first-order optimality conditions for the first-stage problem (4.1) are given by the fol-

lowing lemma.

Lemma 4.2.1. Suppose (z∗, x∗) is a local solution to the first-stage problem (4.1) and

that LICQ holds at (z∗, x∗) , then there exists Lagrange multipliers (ξ∗0 , λ
∗
0, η̂

∗) that satisfies

the following conditions:

(4.6)

∇zL0(z
∗, x∗, ξ∗0 , λ

∗
0, η̂

∗) = 0,

∇xi
L0(z

∗, x∗, ξ∗0 , λ
∗
0, η̂

∗) = 0, i ∈ [N],

c0(z
∗) = 0,

d0(z
∗) ≤ 0,

P̂iz
∗ − x∗

i = 0, i ∈ [N],

λ∗
0 ≥ 0,

λ∗
0 ◦ d0(z∗) = 0,

where L0(z
∗, x∗, ξ∗0 , λ

∗
0, η̂

∗
0) is the Lagrangian function of the first-stage problem (4.1), i.e.,

L0(z, x, ξ0, λ0, η̂) = f0(z) + c0(z)
T ξ0 + d0(z)

Tλ0 +
N∑
i=1

(P̂iz − xi)
T η̂i.

Let F0 be the vector function defined as

121

(4.7) F0(z, x, ξ0, λ0, η̂) =

∇zL0(z, x, ξ0, λ0, η̂)

∇xL0(z, x, ξ0, λ0, η̂)

c0(z)

[d0(z)]
+

P̂ z − x

[−λ0]
+

λ0 ◦ d0(z)

,

where P̂ is a matrix that contains the rows P̂i for i ∈ [N]. Then the KKT conditions (4.6)

can be written in the following form as a set of nonlinear equations:

F0(z
∗, x∗, ξ∗0 , λ

∗
0, η̂

∗) = 0.

4.3. Smoothing the Second-stage Problems

4.3.1. Barrier problem formulation

As discussed earlier, a direct application of a fast second-order nonlinear optimization solver

to the first-stage problem is not practical, since the functions f̂i(xi) are not differentiable at

points where there is a change in the set of second-stage constraints that are active at the

optimal solution.

We give a simple example in Example 4.3.1 from [76] to illustrate this issue.

Example 4.3.1. Consider the following two-stage problem

min
x∈R2

f̂(x)

122

Figure 4.1. The function f̂(x) is not differentiable at (x∗
1, x

∗
2) = 0.

with the second-stage problem given by

f̂(x) = min
y∈R

y

s.t y ≥ 2x1,

y ≥ x2,

y ≥ −x1 − x2.

The optimal solution is (x∗
1, x

∗
2, y

∗) = 0, and the optimal value is 0. However, the function

f̂(x) is not differentiable at (x∗
1, x

∗
2) = 0.

To overcome this dilemma, we replace the inequality constraints in the second-stage

problem with log-barrier terms that are added to the objective function. This leads to the

classical barrier problem formulation

123

min
yi∈Rni ,si∈Rmd

i

fi(yi)− µ

md
i∑

j=1

log(sij)

s.t ci(yi) = 0,

di(yi) + si = 0,

Piyi − xi = 0,

with barrier parameter µ > 0 and slack variables si. We denote f̂i(xi;µ) as the approximation

of its optimal objective based on this barrier problem formulation. Since now there are no

inequality constraints left, a change in the set of active inequality constraints can no longer

lead to non-differentiability.

Let us assume, for the purpose of this discussion, that the second-stage problems are

convex. This implies that ci is affine, and both fi and di are convex functions. Additionally,

we assume that the optimal solutions to these problems are unique. It is a well-known result

that as µ approaches zero, the optimal solution y∗(xi;µ) of the approximation (4.8) converges

to the optimal solution y∗(xi) of the original subproblem.

Based on this convergence behavior, we can construct an approximation f̂i(xi;µ) of the

original value function f̂i(xi) by utilizing the optimal solution y∗(xi;µ) from (4.8). It is

desirable for f̂i(xi;µ) to be differentiable and converge to f̂i(x
∗
i) as µ goes to zero. In other

words, we can interpret µ as a smoothing parameter that determines the closeness of the

approximation f̂i(xi;µ) to f̂i(x
∗
i).

124

This provides the basis for the decomposition algorithm described later in Chapter 4.4:

We obtain an optimal solution of the original two-stage problem by solving a sequence of

smoothed two-stage problems where µ is driven to zero.

For further analysis, we make the following assumptions on the second-stage problems.

We assume that Assumption 4.2.1 holds for the original subproblem (4.2). It implies that

the smoothed subproblem (4.8) is also feasible for any xi and µ > 0.

4.3.2. Natural approximation of the value function

With a fixed value of µ and utilizing the optimal solution y∗(xi;µ) obtained from solving

the smoothed subproblem (4.8), a natural approach to approximating the value function is

to substitute y∗(xi;µ) into the objective function of the original subproblem presented in

equation (4.2). Hence, we define the approximation of the value function as follows:

(4.9) f̂i(xi;µ) := fi(y
∗
i (xi;µ)).

The approximation of f̂i stated above allows us to compute the gradient and Hessian

information using the chain rule on the approximated objective f̂i(xi;µ), i.e.,

∇xi
f̂i(xi;µ) = ∇xi

y∗i (xi;µ)∇yifi(y
∗
i)

∇2
xixi

f̂i(xi;µ) = ∇xi
y∗i (xi;µ)∇2

yiyi
fi(y

∗
i)∇xi

y∗i (xi)
T +

ni∑
j=1

∂fi
∂yij

(y∗i)∇2
xixi

y∗ij(xi).

To compute the gradient and Hessian information for the approximated optimal value func-

tion, we need to calculate the quantities ∇xi
y∗i (xi) and ∇2

xixi
y∗ij(xi). These quantities can be

obtained using the implicit function theorem.

125

4.3.2.1. Application of implicit function theorem. Before going into the detailed

derivations, we need to make the following assumption:

Assumption 4.3.1. The objective function fi and constraints ci, di are three times

differentiable in yi.

Given Assumption 4.2.1, we let (y∗i , s
∗
i) = (y∗i (xi;µ), s

∗
i (xi;µ)) be the primal solution

with corresponding Lagrange multipliers (ξ∗i , λ
∗
i , η

∗
i) = (ξ∗i (xi;µ), λ

∗
i (xi;µ), η

∗
i (xi;µ)). Then

the following perturbed KKT conditions hold:

∇yiLi(y
∗
i , s

∗
i , ξ

∗
i , λ

∗
i , η

∗
i ;x

∗
i) = 0,

ci(y
∗
i) = 0,

di(y
∗
i) + si = 0,

Piy
∗
i − xi = 0,

s∗i ◦ λ∗
i − µe = 0,

where Li is the Lagrangian function of the subproblem (4.2), i.e,

Li(yi, si, ξi, λi, ηi;xi) = fi(yi) + ci(yi)
T ξi + (di(yi) + si)

Tλi + (Piyi − xi)
Tηi.

Let u∗
i (xi) = (y∗i (xi), s

∗
i (xi), ξ

∗
i (xi), λ

∗
i (xi), η

∗
i (xi)), the optimality conditions can be rewritten

as

126

(4.11) Fi(xi, u
∗
i (xi);µ) =

∇yiLi(y
∗
i , s

∗
i , ξ

∗
i , λ

∗
i , η

∗
i ;xi)

ci(y
∗
i)

di(y
∗
i) + s∗i

Piy
∗
i − xi

s∗i ◦ λ∗
i − µe

= 0.

The application of the implicit function theorem to derive ∇xi
y∗i (xi) and ∇2

xixi
y∗i (xi) can

be accomplished using (4.11). For the first-order derivative, we apply the chain rule directly

to Fi and obtain

0 = ∇xi
(Fi(xi, u

∗
i (xi))) = ∇xi

F (xi, u
∗
i (xi)) +∇xi

u∗
i (xi)∇ui

F (xi, u
∗
i (xi)).

Here, ∇ui
F T
i denotes the Jacobian of Fi with respect to ui, given by

(4.12) ∇ui
F T
i =

∇2
yiyi
Li 0 ∇yici ∇yidi P T

i

∇yic
T
i 0 0 0 0

∇yid
T
i I 0 0 0

Pi 0 0 0 0

0 Λi 0 Si 0

,

where Λi = diag(λ∗
i), Si = diag(s∗i). To obtain ∇xi

u∗
i (xi), we solve the following linear

system:

(4.13) ∇ui
Fi(xi, u

∗
i (xi))

T∇xi
u∗
i (xi)

T = −∇xi
Fi(xi, u

∗
i (xi))

T .

127

Given that Fi is linear in xi, the right-side of (4.13) is given by

−∇xi
Fi =

[
0 0 0 InP

i
0

]
.

It indicates that ∇xi
u∗
i is a submatrix of ∇ui

F−T
i that corresponds to the variables ηi. It

should be noted that ∇xi
u∗
i = (∇xi

y∗i ,∇xi
s∗i ,∇xi

ξ∗i ,∇xi
λ∗
i ,∇xi

η∗i) ∈ RnP
i ×Ki , where Ki =

ni + mc
i + 2md

i + nP
i is the total number of rows of Fi. Solving (4.13) for ∇xi

u∗
i requires

solving a linear system nP
i times. Finally, the desired quantity ∇xi

y∗i is a submatrix of the

first ni rows of ∇xi
u∗
i .

For deriving second-order derivatives, we apply the chain rule again. By fixing xij and

xik, and using the fact that Fi is linear in xi we have

(4.14)

0 =
∂2

∂xij∂xik

Fi(xi, u
∗
i (xi))

=
∂

∂xik

[
∂Fi

∂xij

(xi, u
∗
i (xi)) +∇ui

Fi(xi, u
∗
i (xi))

T ∂u∗
i

∂xij

(xi)

]
=

∂

∂xik

[
∇ui

Fi(xi, u
∗
i (xi))

T ∂u∗
i

∂xij

(xi)

]
where

∂

∂xik

[
∇ui

Fi(xi, u
∗
i (xi))

T ∂u∗
i

∂xij

(x)

]
=
(∂

∂xik

∇ui
F T
i (xi, u

∗
i (xi))

) ∂u∗
i

∂xij

(x) +∇ui
Fi(xi, u

∗
i (xi))

T ∂2u∗
i

∂xik∂xij

(x)

=
∂∇ui

F T
i

∂xik

(xi, u
∗
i (xi))

∂u∗
i

∂xij

(xi) +
∂u∗

i

∂xij

(xi)∇2
uiui

Fi(xi, u
∗
i (xi))

∂u∗
i

∂xik

(x)+

∇ui
Fi(xi, u

∗
i (xi))

T ∂2u∗
i

∂xik∂xij

(xi).

128

with
∂u∗

i

∂xij
(xi)

T∇2
uiui

F (x, u(xi))
∂u∗

i

∂xik
(xi) defined as

(4.15)

∂u∗
i

∂xij

(xi)
T∇2

uiui
Fi(xi, u

∗
i (xi))

∂u∗
i

∂xik

(xi) =

(
∂u∗

i

∂xij
(xi))

T∇2
uiui

Fi,1(xi, u
∗
i (xi))(

∂u∗
i

∂xik
(xi))

...

(
∂u∗

i

∂xij
(xi))

T∇2
uiui

Fi,Ki
(xi, u

∗
i (xi))(

∂u∗
i

∂xik
(xi))

 .

We further note that since∇ui
F T
i given in (4.12) is independent of xi, we have

∂∇uiF
T
i

∂xik
(xi, u

∗
i (xi)) =

0. From this, we reduce (4.14) to

0 =
∂u∗

i

∂xij

(xi)∇2
uiui

Fi(xi, u
∗
i (xi))

∂u∗
i

∂xik

(x) +∇ui
Fi(xi, u

∗
i (xi))

T ∂2u∗
i

∂xik∂xij

(xi).

The desired quantity
∂2u∗

i

∂xik∂xij
(xi) can be then calculated from

∂2u∗
i

∂xij∂xik

= −∇ui
F−T
i

[∂u∗
i

∂xij

(xi)
T∇2

uiui
Fi(xi, u

∗
i (xi))

∂u∗
i

∂xik

(xi)
]

(4.16)

Here, the Jacobian term ∇ui
F T
i used in the expression only needs to be factorized once and

can be reused in all calculations of both first-order and second-order derivatives.

Remark 4.3.1. We want to note that for l = 1, . . . , ni, we have

(4.17) ∇2
uiui

Fi,l =
∂

∂yil
(∇ui

Fi,l)
T

which involves computing the third-order derivative of Li with respect to y. In other words,

to calculate ∇2
uiui

Fi,l, it is necessary to determine the third-order derivatives of fi, ci, and

di. For l corresponding to the condition ci(yi) = 0, we have

129

∇2
uiui

Fi,l =

∇2
yiyi

ci,l(yi) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

.

Similarly, for l corresponding to the condition di(yi) + si = 0, we have

∇2
uiui

Fi,l =

∇2
yiyi

di,l(yi) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

.

For l corresponding to the condition Piyi = xi, we have ∇2
uiui

Fi,l = 0. Finally, for l corre-

sponding to the condition si ◦ λi − µe = 0, we have

∇2
uiui

Fi,l =

0 0 0 0 0

0 0 0 diag(el) 0

0 0 0 0 0

0 0 0 0 0

0 diag(el) 0 0 0

,

where el is the l-th unit vector.

4.3.2.2. Limitations of the natural approximation. The natural approximation dis-

cussed in the previous chapter has demonstrated effectiveness in various cases, such as its

130

successful application in solving two-stage ACOPF problems [77]. However, it is important

to be aware of its limitations. Understanding these limitations can help identify scenarios

where alternative approaches may be more suitable. The following limitations should be

taken into consideration.

Firstly, the computational complexity of the natural approximation can be a significant

limitation, particularly when dealing with a second-stage problem that involves nonlinear

objectives fi and constraints ci, and di. Computing the second-order derivative of the La-

grangian function Li from (4.17) requires evaluating the third-order derivatives of fi, ci, and

di. However, evaluating third-order derivatives is often infeasible in popular optimization

modeling languages such as AMPL [30] and JuMP [53], which only provide interfaces for

second-order derivatives. Even when third-order derivatives are available, calculating the

Hessian term remains computationally expensive. In particular, to compute the (i, j)-th

term of ∇2
xixi

u∗
i from (4.16), a set of Ki bilinear products defined in each entry of (4.15)

is required. This is followed by solving a linear system specified in (4.16). This procedure

needs to be repeated O((nP
i)

2) times. When the dimension of the connecting variables xi

is large (i.e., nP
i is large), the computation can potentially demand a significant amount of

memory.

Another limitation of the natural approximation is that it can introduce spurious non-

convexity. This can be seen in the following example.

131

Example 4.3.2. Consider the following second-stage problem:

f̂(x1, x2) = min
y∈R17

0.063y1 + 0.048y2 + 0.077y3 + 0.054y4 + 0.032y5+

0.077y6 + 0.061y7 + 0.093y8 + 0.065y9 + 0.020y10+

(y11 + y12 + y13 + y14 + y15) + 0.1(y16 + y17)

s.t. − x1 + y1 + y2 + y3 + y4 + y5 + y16 = 0,

− x2 + y6 + y7 + y8 + y9 + y10 + y17 = 0,

y3 + y6 + y11 ≥ 5.5,

y4 + y7 + y12 ≥ 5.7,

y5 + y8 + y13 ≥ 2.3,

y6 + y9 + y14 ≥ 6.2,

y7 + y10 + y15 ≥ 1.3,

yi ≥ 0, i = 1, . . . , 17.

Example 4.3.2 is visualized in Figure 4.2, and the smoothed second-stage objective func-

tion f̂(x1, x2;µ) is visualized in Figure 4.3. Although the second-stage subproblem is linear,

the smoothed second-stage objective function f̂(x1, x2;µ) is not convex in this case. The

nonconvexity of the smoothed second-stage objective function f̂(x1, x2;µ) is evident from

Figure 4.3.

4.3.3. Log-barrier approximation of the value function

In the previous chapter, we discussed the approximation of the first-order derivatives of

the objective function of the second-stage problem f̂i, utilizing chain rules and the implicit

132

Figure 4.2. Value function f̂(x1, x2) for Example 4.3.2

Figure 4.3. Smoothed second-stage objective function f̂(x1, x2;µ) for Example
4.3.2 with natural approximation and µ = 0.1

function theorem. Computing the gradients requires solving multiple linear systems, as

shown in equation (4.13). Furthermore, computing the Hessian for f̂i(xi) is expensive, as it

necessitates the third-order derivative of the Lagrangian function Li.

In this chapter, we will present an alternative approach to approximate f̂i. This approach

considers adding the barrier term −µ
∑

j log(sij) into the approximated objective function,

133

which gives

(4.18) f̂i(xi;µ) := fi(y
∗
i (xi;µ))− µ

ni∑
j=1

log(s∗ij(xi;µ)).

In other words, f̂i(xi;µ) represents the optimal objective function value of the barrier problem

for a given vector xi and parameter µ. Based on this formulation, we can establish the

following lemma.

Lemma 4.3.1. Suppose that (y∗i , s
∗
i) is a local optimal solution for the smoothed subprob-

lem (4.8) together with the associated Lagrange multipliers (ξ∗i , λ
∗
i , η

∗
i) satisfying the second-

order sufficient conditions, then

(4.19) ∇xi
f̂i(xi;µ) = −η∗i (xi)

and

(4.20) ∇2
xixi

f̂i(xi;µ) = −∇xi
η∗i (xi)

T .

Proof. The equation (4.19) follows from [54, Chapter 11], and the equation (4.20) can

be derived by taking the derivative on both sides of (4.19). □

The previous lemma demonstrates that the gradient and Hessian of the approximated

objective function f̂i(xi;µ) can be computed efficiently by retrieving the Lagrange multipliers

η∗i (xi) from the optimal primal-dual information of the smoothed subproblem (4.8). The

Hessian term −(∇xi
η∗i)

T corresponds to a submatrix of −(∇xi
u∗)T and can be calculated

using (4.13).

Compared to the natural approximation discussed in Chapter 4.3.2, the log-barrier ap-

proximation offers a more efficient Hessian calculation. While the natural approximation

134

Figure 4.4. Smoothed second-stage objective function f̂(x1, x2;µ) for Example
4.3.2 with log-barrier approximation and µ = 0.1

necessitates the computation of third derivatives for the objective function fi and constraints

ci and di, the log-barrier approximation relies solely on their second derivatives. Moreover,

since the Lagrange multipliers η∗i can be obtained directly upon solving the smoothed sub-

problem (4.8), the computational cost mainly arises from solving (4.13). It is worth noting

that even the simplest calculation of first-order derivatives using the natural approximation

would require solving (4.13). Therefore, the log-barrier approximation offers computational

advantages in terms of efficiency and simplicity in comparison to the natural approximation.

Furthermore, it is important to note that the log-barrier approximation represents a con-

vex approximation of the smoothed second-stage objective function f̂i(xi;µ). To illustrate

this, Figure 4.4 depicts the visualized smoothed second-stage objective function f̂(x1, x2;µ)

with the log-barrier approximation. As compared to Figure 4.3, the log-barrier approxi-

mation results in a convex representation of the smoothed second-stage objective function

f̂(x1, x2;µ).

Remark 4.3.2. As shown in Figure 4.4, the log-barrier approximation exhibits a steep

curvature as x1 and x2 approach 0, and it gets worse as µ goes to 0. This steep curvature can

135

potentially introduce numerical challenges during the optimization process. In Chapter 4.6,

we will address this issue and provide a detailed discussion of its implementation, including

strategies to mitigate the numerical difficulties associated with the steep curvature of the

log-barrier approximation.

4.4. Decomposition Framework

4.4.1. Perturbed two-stage formulation

This chapter presents the formal algorithm for solving the two-stage optimization problem

given by equations (4.1) and (4.2). With the smoothed problem formulation given by equa-

tion (4.8), our framework solves the following perturbed two-stage problem:

(4.21)

min f0(z) +
N∑
i=1

f̂i(xi;µ)

s.t c0(z) = 0,

d0(z) ≤ 0,

P̂iz − xi = 0, i ∈ [N].

Here, f̂i(xi;µ) approximates f̂i using either equation (4.9) or (4.18) for a sequence of

barrier parameters {µk} such that µk → 0. As the barrier parameter µk goes to zero, the

solution of the perturbed two-stage problems can recover that of the original problem.

136

4.4.2. Overall algorithm

The two-stage decomposition algorithm, as described in Algorithm 7, has been proven to

converge, as discussed in [76]. The algorithm consists of outer and inner iterations. Dur-

ing the outer iteration, the objective is to solve the perturbed two-stage problems using a

smoothing parameter µk. In each outer iteration, the perturbed two-stage problem is solved,

and the smoothing parameter is updated iteratively until it becomes smaller than a specified

tolerance level τ .

During each outer iteration, the perturbed two-stage problem is solved, and the smooth-

ing parameter is decreased to obtain a new value µk+1. The smoothing parameter is updated

iteratively until it is smaller than a specified tolerance level τ .

On the other hand, the inner iteration involves the use of a nonlinear optimization method

to solve the first-stage problem. At each inner iteration l, we update the iterate xk,l
i according

to the first-stage problem variable zk,l. The subproblems are then solved using xk,l
i as a fixed

parameter, and the gradient and/or Hessian information for f̂i are computed. Using this

information, we update the first-stage problem variable zk,l+1. The inner iteration continues

until the perturbed first-stage problem is solved to optimality.

Specifically, an NLP solver will be responsible for solving the first-stage problem until

the KKT error for the first-stage problem is smaller than a specified tolerance τmaster, i.e.,

we want the iterate (zk, xk, ξk0 , λ
k
0, η̂

k) to satisfy ∥F0(z, x, ξ0, λ0, η̂)∥ ≤ τmaster(µ
k), where F0

is the KKT residual for the first-stage problem given by (4.7), and τmaster is a tolerance

depends on µk. To solve the first-stage problem, one can employ a quasi-Newton method

[20] or an SQP method for the subproblem, an interior-point method is typically preferred

due to the smoothed reformulation (4.8).

137

During each iteration of the master NLP solver, the gradient and/or Hessian quantities

for the second-stage value function f̂i must be determined. As such, the subproblem solver

is invoked whenever the master solver requires these quantities. In order to apply the im-

plicit function theorem for gradient/Hessian calculations, as discussed in Chapter 4.3, it is

essential to solve the subproblems to optimality. However, in practical implementations,

the subproblems are typically solved up to a predefined tight tolerance level. For further

information on this aspect, we recommend referring to Chapter 4.6.

Algorithm 7 Two-stage Decomposition Algorithm

Require: Initial smoothing parameter µ0, initial iterate z0, stopping tolerance τ , τmaster for
the main algorithm and the first-stage problem solver respectively.

1: k ← 0
2: while µk > τ do
3: Solve first-stage problem (4.21) with an NLP solver with initial iterate zk and toler-

ance level τmaster(µ
k) for zk+1.

Whenever the NLP solver requires f̂i or its derivatives, solve the corresponding
subproblem (4.8) with xk

i , µ
k and calculate the required quantities.

4: Decrease µk for µk+1.
5: k ← k + 1.
6: end while

4.5. Extrapolation Steps

In this chapter, we discuss the selection of starting points in Algorithm 7 when the

penalty parameter changes from µk to µk+1. The goal is to choose a point that is as close as

possible to a stationary point u(µk+1). To achieve this, we explore an approach proposed by

[40] that employs a composite extrapolation step, resulting in a fast local convergence rate.

Specifically, we will explain how to derive the extrapolation step in a two-stage setup, building

upon the work of [40]. Before we proceed, we first introduce the following assumptions.

138

Assumption 4.5.1. The first-stage problem (4.1) only contains equality constraints.

That is

min
x,z

f0(z) +
N∑
i=1

f̂i(xi;µ)

s.t. c0(z) = 0,

P̂iz − xi = 0, ∀i ∈ [N].

With this assumption, we define the smoothed undecomposed problem as follows.

min
x,y,z,s

f0(z) +
N∑
i=1

fi(yi)− µ
∑
j

log(sij)(4.22a)

s.t. c0(z) = 0, (ξ0)(4.22b)

P̂iz − xi = 0, (η̂i) i ∈ [N],(4.22c)

ci(yi) = 0, (ξi) i ∈ [N],(4.22d)

di(yi) + si = 0, (λi) i ∈ [N],(4.22e)

Piyi − xi = 0, (ηi) i ∈ [N].(4.22f)

Remark 4.5.1. Assumption 4.5.1 can be satisfied by identifying the active constraints in

the first-stage problem (4.1). When utilizing an SQP method to solve the first-stage problem,

it automatically detects the optimal active set in proximity to the solution, provided that

LICQ holds and the strict complementarity condition are satisfied.

Let (z∗, x∗, y∗) the optimal solution of the problem (4.22), the first-order optimality

conditions of the problem (4.22) are given by

139

(4.23)

∇zf0(z
∗) +∇zc0(z

∗)ξ∗0 +
N∑
i=1

P̂ T
i η̂

∗
i = 0,

−η̂∗i − η∗i = 0, ∀i ∈ [N],

c0(z
∗) = 0,

P̂iz
∗ − x∗

i = 0, ∀i ∈ [N],

∇yifi(y
∗
i) +∇yici(y

∗
i)ξ

∗
i +∇yidi(y

∗
i)λ

∗
i + P T

i η
∗
i = 0, ∀i ∈ [N],

ci(y
∗
i) = 0, ∀i ∈ [N],

di(y
∗
i) + s∗i = 0, ∀i ∈ [N],

Piy
∗
i − x∗

i = 0, ∀i ∈ [N],

si ◦ λ∗
i − µe = 0, ∀i ∈ [N],

where ξ∗0 , η̂
∗
i are the optimal Lagrange multipliers for the constraints (4.22b) and (4.22c),

respectively, and ξ∗i , λ
∗
i , η

∗
i are the optimal Lagrange multipliers for the constraints (4.22d),

(4.22e) and (4.22f), respectively.

Now define

F0(z, x, ξ0, η̂, η;µ) =

∇zf0(z) +∇zc0(z)ξ0 + P̂ T η̂

−η̂ − η

P̂ z − x

c0(z)

,

and

140

Fi(yi, xi, si, ξi, ηi, λi;µ) =

∇yifi(yi) +∇yici(yi)ξi +∇yidi(yi)λi + P T
i ηi

ci(yi)

di(yi) + si

Piyi − xi

si ◦ λi − µe

.

With the above definitions, the optimality conditions (4.23) can be written as

(4.24) F (x, y, z, s, ξ, λ, η̂, η;µ) =

F0(z, x, ξ0, η̂, η;µ)

F1(y1, x1, s1, ξ1, η1, λ1;µ)

...

FN(yN , xN , sN , ξN , ηN , λN ;µ)

= 0.

Now let u0 = (z, x, η̂, ξ0), ui = (yi, si, ξi, ηi, λi) and u = (u0, u1, . . . , uN), and further let

uk = u(µk) be the solution of F (u;µk) = 0, and assume that µk is small enough, so that the

Jacobian ∇uF (u;µk)T is nonsingular and the implicit function yields that

∇µu(µ
k)T = −∇uF (u(µk);µk)−T∇µF (u(µk);µk)T

=

∇u0F
T
0 ∇u1F

T
0 · · · ∇uN

F T
0

∇u0F
T
1 ∇u1F

T
1 · · · 0

...
...

. . .
...

∇u0F
T
N 0 · · · ∇uN

F T
N

−1

0

e1

...

eN

where ei is a vector of length equal to the number of rows of Fi with only the part corre-

sponding to si ◦ λi − µe equals to ones, i.e., ei = (0 0 0 0 e)T .

141

Using the first-order Taylor expansion of u(µ) about µk, we derive the extrapolation point

as

uk,EX = u(µk) +∇µu(µ
k)T (µk+1 − µk).

The composite extrapolation step is then defined as combining a Newton step ∆u solved by

∇uF (uk;µk+1)T∆uk = −F (uk;µk+1)

and the extrapolation step, i.e.,

uk,PD = uk,EX +∆uk

= u(µk) +∇µu(µ
k)T (µk+1 − µk)−∇uF (u(µk);µk)−TF (u(µk);µk)

= uk +∇uF (uk;µk)−T

0

e1

...

eN

(µk+1 − µk)−

F0

0

...

0

.

The step ∆uk
0 can be solved by the Schur complement method:

(
∇u0F

T
0 −

N∑
i=1

∇ui
F T
0 (∇ui

Fi)
−T∇u0F

T
i

)
∆uk

0 = −F0 −
N∑
i=1

∇ui
F T
0 ∇ui

F−T
i ei(µ

k+1 − µk)

The implementation details for the extrapolation step are presented in Chapter 4.6.5.

4.6. Details of the Implementation

In this chapter, we present a detailed description of the implementation of the two-

stage algorithm. The algorithm is implemented in C++, and it comes with interfaces in

142

C, AMPL [30], and JuMP [53]. The software relies on RestartSQP described in Chapter 3

for solving the master problem and Ipopt [81] for solving smoothed subproblems. The

chapter is organized as follows. We first present the software design and discuss the reverse

communication used in the software. Then, we discuss how we modify RestartSQP and

Ipopt to solve the master problem and subproblems respectively.

4.6.1. Software design

This chapter presents the software design for the two-stage problem decomposition algorithm

and provides an overview of how to set up and solve a problem. The software structure of

the decomposition algorithm is illustrated in Figure 4.5. In this design, the solvers for the

first-stage problem and subproblems operate as separate subroutines, each having its own

optimization model.

To optimize the two-stage problem, a main driver program is necessary to coordinate the

master solver and the subproblem solvers, facilitating the exchange of information between

them. Algorithm 8 presents the pseudocode for the main driver program.

In the main driver program, the master solver, and subproblem solvers are initialized at

the beginning. The first-stage optimization model is passed to the master solver, while each

second-stage optimization model is passed to the respective second-stage subproblem solvers.

Additionally, exchange data objects are created and maintained throughout the execution

of the main driver program. The exchange data objects serve the purpose of transmitting

updated first-stage variables xi and the smoothing parameter µ to each subproblem solver.

It is also responsible for sending optimal second-stage problem information to the master

problem solver, including f̂i as well as its gradient and Hessian information, once each sub-

problem is solved optimally. These exchange data structures enable communication between

143

the solvers, facilitating the transfer of relevant information. Status from the master solver,

namely master status, is shared among the solvers and is updated by the master problem

solver to track the progress and determine the next step in the optimization process. This

status is used to monitor the convergence or any other relevant information.

The main driver program follows an iterative process to solve the two-stage problem

using the master solver and subproblem solvers. At the beginning of each iteration, the

master solver is invoked to determine the next status. If gradient and Hessian information

are required from the subproblems, the status is set to solve subproblems. The master

solver retains internal iteration information and returns the status to the main driver.

The main driver then shares relevant first-stage problem information, such as the current

variable xk
i and smoothing parameter µk, with each subproblem solver. It waits for the

subproblem solvers to solve their respective subproblems. Within each subproblem solver,

the gradient ∇xi
f̂i and Hessian ∇2

xixi
f̂i are calculated and stored in the exchange data.

The master problem solver uses the gradient and Hessian information obtained from the

subproblem solvers to continue its iteration and update the status. If the master solver

returns an optimal solution with the current smoothing parameter µk for a tolerance τmaster,

then µk is updated by the master problem solver, and subsequent iterations are based on the

new smoothing parameter µk+1. This process continues until the smoothing parameter be-

comes small enough, indicating that the first-stage problem has been solved to the requested

overall tolerance τ .

It is important to highlight that the SQP algorithm described in Chapter 3 has been

modified to use the reverse communication protocol when employed as the master solver

in this two-stage algorithm. By utilizing reverse communication, the SQP function returns

control to the caller whenever quantities such as derivative information are required but

144

all internal intermediate information of the SQP solver can be stored. Additionally, the

subproblem solution processes can be run in parallel, taking advantage of the independence

of each subproblem solver as an individual subroutine.

Figure 4.5. Decomposition algorithm software structure

Algorithm 8 Main driver program

1: Initialize master program solver and provide it with master problem model.
2: Initialize each subproblem solver and provide it with its subproblem model.
3: Initialize exchange data.
4: while True do
5: Call master problem solver with exchange data to compute a new trial point. Upon

return, the master solver will modify the exchange data and return master status.
6: if master status does not require the solution of subproblems then
7: break
8: end if
9: Call subproblem solvers to solve all subproblems and calculate required information.

Upon return, each subproblem solver will update the exchange data.
10: end while
11: Get current primal-dual iterates from master problem solver and subproblem solvers.
12: return master status, primal-dual iterates

145

4.6.2. Interfaces

The software comes equipped with a C interface for both the first-stage problem and sub-

problem optimization models. Furthermore, the software has been integrated with two op-

timization modeling languages, AMPL[30] and JuMP [53]. This feature allows users to

conveniently and effectively formulate and solve their optimization models using the syn-

tax and tools provided by these languages, in conjunction with the algorithms and solvers

implemented in our software.

4.6.3. Master solver

We employ the SQP algorithm discussed in Chapter 3 to tackle the master problem. To utilize

the reverse communication mechanism outlined in Chapter 4.6.1, we have made specific

modifications to Algorithm 4 in our implementations.

Firstly, we have introduced an option in the SQP solver to allow users to specify whether

the solver should employ the reverse communication mechanism. When this option is set to

false, the solver exclusively solves the master problem using the regular SQP algorithm.

On the other hand, if the option is set to true, the solver object will promptly return to the

main driver without solving any QP subproblems. The primal variables requiring evaluation

are explicitly stored in the exchange data structure and passed back to the main driver.

The return status of the SQP solver is adjusted accordingly to indicate that the solver is

awaiting the solutions of subproblems at the trial iterate. Once the main driver receives this

return status, it invokes the subproblem solvers to solve all the subproblems and calculates

the gradient and Hessian information for the trial iterate. These quantities are then stored

in the exchange data structure and returned to the main driver, awaiting transmission to

146

the SQP solver. Once all subproblems are solved, and the gradient/Hessian information

is obtained, the main driver calls the SQP solver again, providing the gradient/Hessian

information obtained from the subproblem solvers. The SQP solver then proceeds to solve

the QP subproblem and continues with the subsequent steps of the SQP algorithm. This

cycle repeats whenever new gradient/Hessian information for a new point is required.

4.6.4. Subproblem solver

In the implementation, we utilized the open-source package Ipopt [81] for solving the sub-

problems defined in equation (4.3). In this chapter, we will provide insights into how Ipopt

internally handles the subproblem and computes the gradient and Hessian information. We

will describe the implementation details for both the natural approximation and the log

barrier approximation. Finally, we discuss the heuristics we implemented for improving the

numerical stability of the subproblem solver.

To simplify notation, we denote the vector yi from (4.3) as yorigi and represent the triplet

(yorigi , ti, wi) as simply yi. We can rewrite problem (4.3) as follows:

min
yi

fi(yi; ρ)(4.25a)

s.t c̃i(yi) = 0,(4.25b)

P̃iyi − xi = 0,(4.25c)

dL,i ≤ di(yi) ≤ dU,i,(4.25d)

yL,i ≤ yi ≤ yU,i,(4.25e)

147

where fi(yi; ρ) = fi(y
orig
i)+ρ

(∑
j tij + wij

)
is the penalized objective function, and P̃i =

[Pi 0 0]. The bounds yL,i ∈ [−∞,∞)ni × {0}2nP
i , yU,i ∈ (−∞,∞]ni+2nP

i , dL,i ∈ [−∞,∞)md,i ,

and dU,i ∈ (−∞,∞]md,i are assumed to satisfy yL,i < yU,i and dL,i < dU,i, where the strict

inequality holds in every vector component.

In the internal structure of Ipopt, the subproblem (4.25) is reformulated as follows:

min
yi,si

fi(yi; ρ)

s.t ci(yi) = 0,

P̃iyi − xi = 0,

di(yi)− si = 0,

yL,i ≤ yi ≤ yU,i,

dL,i ≤ si ≤ dU,i.

We define the projection matrix PyL,i so that PyL,i yL,i filters the finite elements of yL,i and

the relationship yL,i ≤ yi is equivalent to RyL,i(yi) := PyL,i(yi − yL,i) ≥ 0. These operators

are similarly defined for the other bounds, e.g., RdU ,i(si) := PdU ,i(dU,i−si). We further define

Pxi
= (0mc

i×nP
i
, I) and ci(yi) = (c̃i(yi), P̃iyi), then the constraints (4.25c) and (4.25d) can be

written jointly as ci(yi)− Pxi
xi = 0.

With this notation, the smoothed subproblem with a fixed barrier parameter µ > 0 will

be in the form:

148

(4.26)

min
yi,si

fi(yi; ρ)− µ
(∑

log(RyL,i(yi)) +
∑

log(RyU ,i(yi))+∑
log(RdL,i(si)) +

∑
log(RdU ,i(si))

)
s.t ci(yi)− Pxi

xi = 0,

di(yi)− si = 0.

Here, the term
∑

log(w) for w ∈ Rn denotes
∑n

i=1 log(wi).

4.6.4.1. Modification to Ipopt. To solve the smoothed subproblem (4.26) and utilize

the linear algebra subroutines in Ipopt, we introduced specific modifications to the existing

Ipopt implementation. The following adjustments were implemented:

(1) We changed Ipopt’s option to enable the solver to terminate at a specified barrier

parameter µ. This modification allows us to solve the smoothed subproblem (4.26)

with a fixed µ, as required by our approach.

(2) We enabled Ipopt’s warm-start option for solving the second-stage problems. By

keeping the ipopt object, we retained all internal information and data structures,

including iterate values and matrix factorization. This feature allows us to utilize

the solution from a subproblem with smoothing parameter µk as a warm start for

solving the subsequent subproblem with smoothing parameter µk+1.

(3) We introduced an option to specify the minimum number of iterations to be executed

by the interior-point method. This addition is crucial to ensure that the internal

linear algebra subroutine in Ipopt possesses up-to-date factorization information.

In some scenarios, when the interior-point method terminates after zero iterations

and declares optimality, the linear algebra routine may not accurately reflect the

149

changes made to the current optimal solution. By enforcing at least one iteration, we

guarantee that the linear algebra subroutine is appropriately updated and maintains

consistency with the latest solution.

(4) We added a termination option based on search direction size in the interior-point

method. Specifically, we terminate the interior-point method if the search direc-

tion size is below a specified threshold. This modification is for handling the ill-

conditioned Hessians from the QP problem in the SQP algorithm. This option is

only turned on for nonlinear problems.

4.6.4.2. Derivative Computations. In Chapter 4.3, we presented two techniques for ap-

proximating the optimal objective gradient information of the subproblem. The first method,

described in Chapter 4.3.2, involves substituting the optimal solution y∗i (xi;µ) of (4.8) into

the objective function f and employing the implicit function theorem in conjunction with

the chain rule to obtain the derivative information. The second method, described in Chap-

ter 4.3.3, utilizes a log-barrier approximation for smoothed subproblem objective. By that,

the optimal multiplier and Jacobian information can be directly used for calculating the gra-

dient and Hessian information for f̂i. This chapter addresses the computation of derivatives

for (4.26) utilizing both of these methods. We explain how we adapt and employ the existing

implementations in Ipopt to efficiently compute the derivative information.

For simplicity, we omit the index i in this chapter except for some dimensional notation.

The problem that Ipopt is solving for given x, ρ and µ is then of the form

150

f̂(xi; ρ, µ) = min
y,s

f(y; ρ)− µ
(∑

log(RyL(y)) +
∑

log(RyU (y))+∑
log(RdL(s)) +

∑
log(RdU (s))

)
s.t c(y)− Pxx = 0,

d(y)− s = 0.

Let u = (y, s, λc, λd, zL, zU , vL, vU). When solving the subproblems, the interior-point

algorithm implemented in Ipopt computes the Newton step for the following system of equa-

tions:

F (x, u; ρ, µ) =

∇yf(y; ρ) +∇yc(y)λc +∇yd(y)λd − P T
yL
zL + P T

yU
zU

−λd − P T
dL
vL + P T

dU
vU

c(y)− Pxx

d(y)− s

zL ◦RyL(y)− µe

zU ◦RyU (y)− µe

vL ◦RdL(s)− µe

vU ◦RdU (s)− µe

= 0.

It computes the Jacobian of F and solves linear systems with the Jacobian. The Jacobian

of F is

151

∇uF (x, u; ρ, µ)T =

∇2
yyL(u) 0 ∇c(y) ∇d(y) −P T

yL
P T
yU

0 0

0 0 0 −I 0 0 −P T
dL

P T
dU

∇c(y)T 0 0 0 0 0 0 0

∇d(y)T −I 0 0 0 0 0 0

ZLPyL 0 0 0 PyL Y 0 0 0

ZUPyU 0 0 0 0 −PyU Y 0 0

0 VLPdL 0 0 0 0 PdL S 0

0 VUPdU 0 0 0 0 0 −PdU S

,

which is stored as a sparse matrix in Ipopt.

When the solver returns optimal solution u∗(x) = (y∗, s∗, λ∗
c , λ

∗
d, z

∗
L, z

∗
U , v

∗
L, v

∗
U) for a fixed

µ, we can compute the optimal objective gradient information ∇xu
∗ based on the implicit

function theorem (4.13). Specifically, given that the derivative of F with respect to the

first-stage variables is

∇xF (x, u) =

[
0 0 −P T

x 0 0 0 0 0

]
,

∇xu
∗ then is obtained by calling Ipopt’s internal linear system solver for the linear system

of the following form:

152

∇uF (x, u∗; ρ, µ)T
∂u∗

∂xj

=

0

0

−emc
i+j

0

0

0

0

0

(4.28)

for j = 1, · · · , nP
i . The gradient information (∇xu

∗)T is then explicitly stored as

(∇xu
∗)T =

[
∂u∗

∂x1
· · · ∂u∗

∂x
nP
i

]

for later use in the computation of the Hessian. The required quantity (∇xy
∗)T is then the

first ni +2md
i rows of (∇xu

∗)T . The gradient of the subproblem objective ∇xf̂i is computed

from the chain rule as

∇xf̂ = ∇xy
∗∇yf(y; ρ).

Our implementation of the Hessian computation using implicit function theorem is lim-

ited to cases where the subproblem objective fi is quadratic and the constraints are linear.

As we discussed in Chapter 4.3.2, when dealing with a general nonlinear objective function

fi and constraints ci and di, it is necessary to calculate a third derivative in order to compute

the derivative of the Lagrangian function. However, obtaining third derivative information

is challenging, as most mathematical optimization modeling languages and their interfaces

153

are not equipped to provide it. Moreover, even for quadratic constraints ci and di, comput-

ing the Hessian requires evaluating the constraints Hessian mc
i + md

i times, which can be

computationally expensive in terms of function evaluations. Therefore, implementation is

restrictive when the second-order derivative information of the constraints is zero.

Recall that for calculating the Hessian of f̂i, we have the following formula from the chain

rule:

∇2
xxf̂(x) = ∇xy

∗(x)∇2
yyf(y

∗; ρ)∇xy
∗(x)T +

∑
l

∂f

∂yl
(y∗)∇2

xxy
∗
l (x).

In our implementation, we compute the (j, k) entries of ∇2
xxf̂ from

[∇2
xxf̂i]jk =

(
∂y∗

∂xj

)T

∇2
yyf(y

∗; ρ)
∂y∗

∂xk

+

(
∂2y∗

∂xj∂xk

)T

∇yf(y)

for j = 1, · · · , nP
i and k = 1, · · · , nP

i . The first term is computed using gradient information

∇xy
∗ and performing a matrix-vector multiplication. The second term is computed by first

solving the following linear system

(4.29) ∇uFi
∂2u∗

∂xj∂xk

= −
[∂u
∂xj

(x)T∇2
uuFi(x, u

∗; ρ, µ)
∂u

∂xk

(x)
]
.

The right hand side vector ∂u
∂xj

(x)T∇2
uuF (x, u∗; ρ, µ) ∂u

∂xk
(x) is defined as

∂u

∂xj

(x)T∇2
uuF (x, u∗; ρ, µ)

∂u

∂xk

(x) =

(∂u
∂xj

(x))T∇2
uuF1(x, u

∗; ρ, µ)(∂u
∂xk

(x))

...

(∂u
∂xj

(x))T∇2
uuFK(x, u

∗; ρ, µ)(∂u
∂xk

(x))

 ,

where Fi(x, u
∗; ρ, µ) is the i-th row of F (x, u∗; ρ, µ) and K is the total number of rows of

F (x, u∗; ρ, µ).

154

With quadratic objective and linear constraints, we can calculate (4.15) by using the

following formula:

∂u

∂xj

(x)T∇2
uuF (x, u∗; ρ, µ)

∂u

∂xk

(x) =

(∂u
∂xj

(x))T∇2
uuF1(x, u

∗; ρ, µ)(∂u
∂xk

(x))

...

(∂u
∂xj

(x))T∇2
uuFK(x, u

∗; ρ, µ)(∂u
∂xk

(x))

=

0

0

0

0(
PyL

∂y
∂xj

(x)
)
◦ ∂zL

∂xk
(x) +

(
PyL

∂y
∂xk

(x)
)
◦ ∂zL

∂xj
(x)(

PyU
∂y
∂xj

(x)
)
◦ ∂zU

∂xk
(x) +

(
PyU

∂y
∂xk

(x)
)
◦ ∂zU

∂xj
(x)(

PdL
∂s
∂xj

(x)
)
◦ ∂vL

∂xk
(x) +

(
PdL

∂s
∂xk

(x)
)
◦ ∂vL

∂xj
(x)(

PdU
∂s
∂xj

(x)
)
◦ ∂vU

∂xk
(x) +

(
PdU

∂s
∂xk

(x)
)
◦ ∂vU

∂xj
(x)

.

Given the above expression, we solve the linear system (4.29) following these steps. First,

we use the above expression to fill in the right-hand side of the system, employing the stored

values of ∇xu
∗. To compute these values, we extract subvectors of ∇xu

∗ to perform element-

wise products and vector additions. We then use the Ipopt internal linear solver to solve

the linear system corresponding to (4.29). The result, ∂2u∗

∂xj∂xk
, is a vector of length equal to

that of u. It comprises a subvector consisting of the first ni elements, represented as ∂2y∗

∂xj∂xk
.

We then calculate the dot product between the ∂2y∗

∂xj∂xk
and ∇yf and add the product to(

∂y∗

∂xj

)T
∇2

yyf(y
∗; ρ) ∂y

∗

∂xk
to get the (j, k)-th entry of ∇2

xxf̂ . Note that this process is repeated

for all j = 1, · · · , nP
i and for all k = 1, · · · j given the symmetric structure of the Hessian.

155

Next, we delve into the detailed calculation procedure to compute the gradient and Hes-

sian for the log-barrier approximation of f̂ . After the solver Ipopt solver Ipopt returns

u∗(x) = (y∗, s∗, λ∗
c , λ

∗
d, z

∗
L, z

∗
U , v

∗
L, v

∗
U) as the optimal solution, we can determine the gradient

∇xf̂ by identifying the relevant multiplier within λ∗
c and assigning the negative of that as

∇xf̂ . This approach allows us to obtain the gradient efficiently without additional function

evaluations. To compute the second-order derivative, we calculate (∇xu
∗)T by solving the

linear system (4.28) as discussed previously. This enables us to obtain the required informa-

tion for the Hessian matrix. Specifically, we select the rows corresponding to Px in (∇λ∗
c)

T

to obtain the submatrix that represents the Hessian.

Overall, this approach provides an efficient and accurate method for calculating the

gradient and Hessian using the information obtained from the solver Ipopt. By leveraging

the results from Ipopt and solving the linear system (4.28) using Ipopt’s internal linear

solver subroutines, we can avoid unnecessary function evaluations and achieve computational

savings. Moreover, within the two-stage algorithm framework, there is no need to solve linear

systems or perform symbolic factorization of the matrix since these tasks are already handled

internally by Ipopt.

4.6.5. Extrapolation step calculation

In this chapter, we present the implementation details for extrapolation step calculation. For

simplicity, we will consider the case where N = 1 and assume that the first-stage problem

has no inequality constraints as before.

Consider the undecomposed problem (4.4). At an iterate (uk
0, u

k
1), the primal-dual

interior-point method for the undecomposed problem with a barrier parameter µl computes

156

a search direction (∆uk
0,∆uk

1) by solving the linear system

(4.30)

∇u0F
T
0 ∇u1F

T
0

∇u0F
T
1 ∇u1F

T
1

∆uk

0

∆uk
1

 = −

F0(u
k
0, u

k
1;µl)

F1(u
k
0, u

k
1;µl)

In our decomposition algorithm, we usually adjust the subproblem variable uk

1 so that

F1(u
k
0, u

k
1;µl) = 0, but in order to mirror the fast local convergence, we now need to al-

low for non-zero residuals.

In a regular interior-point method, the residual of the primal-dual optimality conditions is

monitored as a termination test. Newton’s steps for µl are taken until the following criterion

is satisfied:

(4.31)

∥∥∥∥∥∥∥
F0(u

k
0, u

k
1;µl)

F1(u
k
0, u

k
1;µl)

∥∥∥∥∥∥∥ ≤ cµµl.

Once the tolerance in equation (4.31) is achieved, the barrier parameter is updated ac-

cording to rules like the following [81]:

(4.32) µl+1 ← min{0.2µl, µ
1.5
l }.

Then, the solution to the new barrier problem is initiated. Once the iterates are close

to a second-order sufficient solution, one step in the barrier problem already satisfies the

optimality conditions, and the barrier parameter is reduced again. This process leads to fast

local convergence.

To mimic the strategy of fast local convergence, we need to incorporate additional com-

putations into our algorithm. First, we compute the Newton step by solving the linear

system (4.30). This step helps us determine the direction in which we should update our

157

iterates. Additionally, we calculate the overall residual using equation (4.31), which serves

as a termination criterion for the algorithm.

Algorithm 9 presents a potential strategy for the extrapolation step. This algorithm

performs the extrapolation step within the decomposition framework. It starts with the

regular decomposition step and checks if the termination test ∥F0(u
k
0, u

k
1)∥ ≤ cµµl is satisfied.

If it is, the algorithm decreases µ using equation (4.32) and computes the Newton step using

equation (4.30). The new overall iterate is then computed with the fraction-to-the-boundary

parameter αftbr. If the termination test (4.31) holds for the new iterate, it is accepted and

the algorithm proceeds to decrease µ again. Otherwise, the algorithm checks the progress

of the first-stage problem objectives computed from the extrapolated iterates. If there is

progress, the corresponding iterate is accepted, otherwise, it is discarded. The algorithm

then repeats the process by going back to the regular decomposition step.

4.7. Numerical Results

In this chapter, we present the numerical results of our proposed two-stage optimization

algorithm. We provide a comprehensive evaluation of the algorithm’s performance using

various scenarios and real-life applications.

First, we illustrate the behavior of the algorithm through a simple example to demon-

strate its effectiveness. Next, we analyze the parallel scalability of the algorithm on a set

of two-stage Quadratically Constrained Quadratic Programs (QCQPs) to understand its

efficiency in utilizing computational resources.

In addition to the experimental results, we also evaluate the algorithm’s performance on

two real-life applications: the supply-allocation problem and the linear power flow problem.

The supply-allocation problem is derived from a distributionally robust two-stage stochastic

158

Algorithm 9 Extrapolation step

1: Perform an SQP iteration.
2: if Termination test ∥F0(u

k
0, u

k
1)∥ ≤ cµµl holds then

3: Decrease µl with (4.32).
4: Solve (4.30) to get (∆uk

0,∆uk
1).

5: Compute new overall iterate

(ǔk+1
0 , ǔk+1

1) = (uk
0, u

k
1) + αftbr(∆uk

0,∆uk
1),

where αftbr is the step size that makes sure that the faction-to-the-boundary rule is
satisfied.

6: if Termination test (4.31) holds for (ǔk+1
0 , ǔk+1

1) then
7: Set (uk+1

0 , uk+1
1)← (ǔk+1

0 , ǔk+1
1) and k ← k + 1.

8: Go to step 3.
9: end if
10: Extract zk from uk

0 and compute first-stage problem objective f0(z
k) + f̂1(x

k
1;µl+1)

and its gradient. This involves a subproblem solve.
11: Extract žk+1 from ǔk+1

0 and compute first-stage problem objective f0(ž
k+1) +

f̂1(x̌
k+1
1 ;µl+1) and its gradient. This involves a subproblem solve.

12: if f0(ž
k+1) + f̂1(x̌

k+1
1 ;µl+1) ≤ f0(z

k) + f̂1(x
k
1;µl+1) then

13: Set zk+1 ← žk+1 and k ← k + 1.
14: else
15: Discard žk+1 and let zk unchanged.
16: end if
17: end if
18: Go to step 1

programming problem [24], and we compare the performance of the algorithm using the

natural approximation and the log-barrier approximation in different problem settings. For

the linear power flow problem, we specifically investigate the impact of the extrapolation

step. The results obtained from this real-life application demonstrate the effectiveness of the

extrapolation step in improving the overall performance of the algorithm. This evaluation

showcases the algorithm’s capability to handle complex power flow problems efficiently and

accurately.

All computations are performed on a Linux machine equipped with a 2.1GHz Intel Xeon

Gold 5128 R CPU and 256 GB of memory. The machine is equipped with 40 cores. The

code is compiled using GCC 11.3.0. To solve the second-stage problems and the quadratic

159

subproblems in the SQP algorithm, we utilize the Ipopt solver with the MA27 linear solver.

Parallelization is implemented using OpenMP to leverage the available computational re-

sources efficiently.

Unless stated otherwise, the algorithm starts with an initial smoothing parameter µ0 =

10−3 and declares convergence when µ reaches τ = 10−6. The smoothing parameter is

decreased using a formula µk+1 = max(0.2µk, τ). The parameter τmaster, representing the

tolerance of the master solver, is set to 0.1µk for each iteration k to control the convergence

criteria. For all instances, the algorithm is initialized with unit initial primal points for both

the master and subproblems. Specifically, the initial primal points are set as (1 · · · 1).

Additionally, trivial initial multipliers are employed during the algorithm’s execution.

4.7.1. Simple Example Illustration

We illustrate the behavior of the two-stage optimization algorithm through a simple example

presented in Example 4.3.1. That is

min
x∈R2

f̂(x),

where

f̂(x) = min
y∈R

y

s.t y ≥ 2x1,

y ≥ x2,

y ≥ −x1 − x2.

Table 4.1 summarizes the algorithm’s performance for different initial values of the

smoothing parameter µ. The table includes the initial µ value, the total number of master

160

Table 4.1. Summary of the algorithm’s performance for different initial values
of the smoothing parameter (µ) on Example 4.3.1.

initial µ iter #obj eval #grad eval avg subiter
5.0× 10−1 16 26 26 3.19
1.0× 10−1 16 25 22 3.25
2.0× 10−2 21 29 22 3.71
4.0× 10−3 25 32 22 3.96
8.0× 10−4 31 37 22 4.23
1.6× 10−4 31 36 19 4.26
3.2× 10−5 37 41 20 4.11
1.0× 10−6 43 44 16 4.19

solver iterations required for convergence, the number of master problem objective function

evaluations, the number of master problem gradient evaluations, and the average number of

iterations within each subproblem solve using Ipopt.

The table highlights the impact of the initial µ value on the algorithm’s performance.

As the initial µ decreases, the number of iterations, objective function evaluations, gradient

evaluations, and the average number of iterations within each subproblem solves using Ipopt

increase. However, it’s important to note that when the initial µ value is too large, such

as 5.0× 10−1, the number of function evaluations may also increase, and even the iteration

numbers can increase.

These findings emphasize the significance of selecting an appropriate initial µ value, as it

can significantly affect the convergence behavior of the algorithm. In general, a larger initial

µ value leads to faster convergence. However, it’s crucial to consider the specific problem and

find a balance between convergence speed and computational efficiency when determining

the optimal initial µ value.

Additionally, Table 4.2 gives detailed running statistics when using the initial smoothing

parameter 1.0e-1. Each row in the table corresponds to an outer iteration of the algorithm,

and the columns represent the number of main solver iterations for each specific µ, the

161

objective function value at the end of an outer iteration, and the average number of Ipopt

iterations per SQP iteration for a specific µ. The results show that as the value of µ decreases,

the number of iterations decreases as well. This observation suggests that the warm-start

option of Ipopt is effective in leveraging previous solutions and accelerating the convergence

of subsequent subproblems.

Table 4.2. Summary of results for running Example 4.3.1 using initial smooth-
ing parameter 1.0e-01

µ objective iter avg subiter
1.00e-01 1.9676075787642622e+00 6 5.67
2.00e-02 6.1884278735360931e-01 1 3.00
4.00e-03 1.6883277819541642e-01 2 2.50
8.00e-04 4.2779367948723813e-02 1 2.00
1.60e-04 1.0358404051701563e-02 1 2.00
3.20e-05 2.4321549027190212e-03 2 1.50
6.40e-06 5.5849379902085184e-04 1 1.00
1.28e-06 1.2607932349957993e-04 1 1.00
1.00e-06 1.0021655452956751e-04 1 1.00

4.7.2. Two-stage Quadratically Constrained Quadratic Programs

We consider a randomly generated two-stage QCQP problem in the following form:

min
x∈Rn0

1
2
xTQ0x+ cT0 x+

N∑
i=1

f̂i(xi)(4.33a)

s.t. r0j + 0.5xTQ0jx+ cT0jx ≤ 0, j = 1, ...,m0,(4.33b)

with

f̂i(x̂) = min
yi∈Rni

1
2
yTi Qiyi + cTi yi(4.34a)

s.t. rij + 0.5yTi Qijyi + cTijyi + bTijx̂ ≤ 0, j = 1, ...,mi.(4.34b)

162

The matrices Q0 and Qi, i = 0, · · · , N , are diagonal matrices with non-negative entries. The

vector x̂ ∈ Rnc is a subvector of x that connects the first-stage and second-stage variables,

where x̂ corresponds to the first nc entries of x.

To generate test data for the QCQP problems, we follow the procedure described in

Algorithm 10. In this set of experiments, we choose n0 ∈ {50, 100} and ni = 10n0. The

number of constraints for the first stage is m0 = 10, and for the second-stage problems, we

consider different numbers of constraints: mi ∈ {5, 10, 20, 50}. The number of subproblems

takes values of N ∈ {32, 64, 128, 256, 1024}. Additionally, we set the number of connected

components as nc = 10. The number of active constraints mA
0 is set to be 0.2m0 and mA

i is

set to be 0.2mi. The matrix density is set to be 0.05.

The test was conducted using AMPL interfaces, and all subproblem solves was executed in

parallel with 32 threads to leverage parallel computing capabilities. The performance of the

algorithm on the set of QCQP problems is illustrated in Figure 4.6. Specifically, Figure 4.6a

presents the algorithm’s performance for n0 = 50, while Figure 4.6b shows the performance

for n0 = 100. In both figures, the different lines represent the number of constraints for the

subproblems. We observe that the running time exhibits a linear relationship as the number

of subproblems increases.

Additionally, we analyze the impact of the number of threads on the running time for a

single problem instance. Figure 4.7 illustrates this relationship, indicating the reduction in

computational time achieved by solving subproblems in parallel. The relationship between

the number of threads and running time exhibits a log-linear pattern. However, it is note-

worthy that the reduction in running time from increasing the number of threads from 16 to

32 is not significant. This observation may be attributed to the limited parallelism available

163

Algorithm 10 QCQP test data generation

Require: The number of first-stage variables n0; the number of second-stage variables ni;
the number of first-stage constraints m0; the number of second-stage constraints mi; the
number of subproblems N ; the number of connected components nc. Matrix density d
of Q0j and Qij. A pre-specified optimal solution x∗. y∗i . Number of active constraints
mA

0 .m
A
i for i ∈ [N].

1: Generate Q0 as a diagonal matrix with positive entries from uniform(0.1, 1).
2: Generate Qi similarly for i ∈ [N].
3: Generate Q0j as diagonal matrices with density d for diagonal entries, nonzero entries

from uniform(0, 1).
4: Generate Qij similarly for i ∈ [N].
5: Sample c0j entries from the standard normal distribution, setting entries corresponding

to zero diagonal entries of Q0j to zero.
6: Sample cij similarly for i ∈ [N].
7: Sample bij entries from standard normal distribution for i ∈ [N], j ∈ [mi].
8: Generate optimal multiplier λ∗

0 for (4.33b). Select the first mA
0 of entries as non-zero,

sample from uniform(0.1, 1).
9: Calculate r0j as

r0j =

{
−1

2
x∗Q0jx

∗ − cT0jx
∗, if j ≤ mA

0 ,

−1
2
x∗Q0jx

∗ − cT0jx
∗ − ϵ0j, otherwise,

where ϵ0j are sampled from uniform(0.1, 1).
10: Calculate rij as

rij =

{
−1

2
y∗iQijy

∗
i − cTijy

∗
i − bTijx̂

∗, if j ≤ mA
i ,

−1
2
y∗iQijy

∗
i − cTijy

∗
i − bTijx̂

∗ − ϵij, otherwise,

where ϵij are sampled from uniform(0.1, 1).
11: Generate λ∗

i for (4.34b). Here we assume that λ∗
i is the same for all i.

12: Calculate c0 = −Q0x
∗ −

∑mA
0

j=1(Q0jx
∗ + c0j) · λ∗

0j first, then subtract the first nc entries
of c0 by

∑n
i=1

∑mi

j=1 bijλ
∗
ij.

13: Calculate ci = −Qiy
∗
i −

∑mA
i

j=1(Qijy
∗
i + cij) · λ∗

ij.
14: return Q0, Qi, Q0j, Qij, c0, ci, c0j, cij, bij, r0j, rij.

in the master problem solver. Despite this, parallel computing still provides notable benefits,

as evidenced by the overall reduction in running time with increasing thread counts.

164

Table 4.3. Notation for the supply allocation problem

Sets
g ∈ G Set of facilities
d ∈ D Set of demand sites
Parameters
ℓg > 0 Upper limit on supply installed at facility g
cgd > 0 Unit cost of satisfying demand at site d from facility g
ρ > 0 Unit cost for subcontracted demand
h > 0 Unit cost for holding inventory
ξid Random demand at site d of realization i
Decision variables
xg Supply allocated to facility g
ygd Amount supplied by facility g to site d
ud Shortfall subcontracted at site d
vg Excess supply held at facility g

4.7.3. Supply-allocation problem

We consider a deterministic version of a two-stage supply-allocation problem introduced in

[24]. The problem involves allocating supplies to facilities in the first stage and satisfying

demand at minimum cost in the second stage. When supply is insufficient, a penalty cost

is incurred for each unit of subcontracted demand, and holding costs are incurred for excess

supply at facilities. Table 4.3 provides an overview of the notation used in the problem

formulation. The two-stage optimization problem is formulated as

min
x

1

N

N∑
i=1

V (x, ξi)

s.t. 0 ≤ x ≤ ℓ,

165

(a) n0 = 50

(b) n0 = 100

Figure 4.6. Two-stage algorithm performance for QCQP problems. The x-axis
represents the number of subproblems. The y-axis represents the running time
(in seconds). Each line corresponds to a different number of constraints for
the subproblems.

166

Figure 4.7. Parallel scalability: impact of the number of threads on running
time on a two-stage QCQP problem. n0 = 100, ni = 1000, N = 1024, m0 =
10, mi = 50. The x-axis represents the number of threads used for parallel
computation. The y-axis represents the corresponding running time in seconds.

where

V (x, ξi) = min
y,u,v

∑
g∈G

∑
d∈D

cgdygd +
∑
d∈D

ρud +
∑
g∈G

hvg

s.t.
∑
d∈D

ygd + vg = xg ∀g ∈ G,

∑
g∈G

ygd + ud ≥ ξid ∀d ∈ D,

ygd, ud, vg ≥ 0 ∀g ∈ G, d ∈ D.

We follow a similar setup as described in [24], with |G| ∈ {5, 10, 20}, |D| ∈ {20, 30, 50},

ρ = 10, and h = 1. The unit cost of satisfying demand, cgd, is determined as the Euclidean

distance between facility g and demand site d. The locations of both facilities and demand

sites are randomly generated within the unit square. The limit on installed capacity, ℓg,

is uniformly generated from the interval [100, 200]. We consider 1000 realizations for the

random demands. Each demand is generated from a lognormal distribution with parameters

167

µ = 1 and σ = 1. We assume that demands were independent and identically distributed

across sites.

Table 4.4 provides a comparison between the natural approximation and the log-barrier

approximation in the context of the supply allocation problem. The table includes the

number of SQP iterations (iter), the average number of Ipopt iterations per SQP iteration

(avg subiter), and the total running time (in seconds) for each combination of facilities and

demand sites. We want to note that for the instance with 10 facilities and 50 demand sites,

the algorithm using the natural approximation converged to a non-optimal solution.

The results demonstrate notable differences between the two approximations. In terms

of the number of iterations, the log-barrier approximation generally requires fewer SQP it-

erations compared to the natural approximation for the same problem instance. Regarding

computational time, the log-barrier approximation also outperforms the natural approxima-

tion. The total running time for solving the problem is lower when using the log-barrier

approximation compared to the natural approximation for the same problem instance. This

indicates that the log-barrier approximation is more computationally efficient and requires

less time to obtain the solution. The reduced computational time for the log-barrier approx-

imation can be attributed to its more efficient derivative computation procedure.

4.7.4. Linear power flow problem

We conducted an experiment on a two-stage linear power flow problem, where we optimized

the transmission and distribution systems. The first-stage problem focused on the optimiza-

tion of the transmission system using the IEEE PGLib 500-bus test system, which involved

870 variables and 466 constraints. The second-stage problems involved optimizing the dis-

tribution system using the IEEE LVTestCase, with five subproblems each comprising 403

168

facilities
demand
sites

log-barrier approximation natural approximation
iter avg subiter time iter avg subiter time

5 20 49 3.79 3.4751 231 4.25 25.6457
5 30 62 4.72 5.7516 253 4.48 31.7653
5 50 38 4.50 3.6483 206 4.33 29.4467
10 20 74 4.69 9.3833 303 5.02 81.6899
10 30 69 5.41 10.8582 211 3.61 60.6383
10 50 54 5.27 9.9066 272 3.96 97.4558
20 20 133 4.94 38.0356 412 4.78 402.2237
20 30 85 6.21 29.4327 407 5.01 477.3704
20 50 117 5.24 46.0824 335 5.66 526.6822

Table 4.4. Summary of the results for the supply allocation problem, with
1000 subproblems. facilities represent the number of facilities in the problem
instance. demand sites represent the number of demand sites in the problem
instance. iter denotes the number of SQP iterations performed by the algo-
rithm. avg subiter denotes the average number of Ipopt iterations for solving
all the second-stage problems per SQP iteration. The time represents the to-
tal running time (in seconds) the algorithm takes to solve the problem. For
the instance with 10 facilities and 50 demand sites, the algorithm using the
natural approximation failed to converge to an optimal solution.

variables and 394 constraints. For detailed formulations, please refer to [61, 77, 76]. The

test instance is running directly from PowerModelsITDs.jl [61].

In Table 4.5, we present a comparison of the algorithm’s performance with and without

the extrapolation step. The table provides detailed running statistics for each smoothing

parameter value during the outer iteration, with the algorithm terminating when µ reaches

1e-5. The results reveal several observations. Firstly, the algorithm with the extrapolation

step demonstrates a faster convergence rate at the master solver level, requiring fewer iter-

ations to converge after the first outer iteration. Furthermore, at the subproblem level, the

use of extrapolation steps leads to a reduced average number of iterations per subproblem

solved with Ipopt.

169

w/o extrapolation w/ extrapolation
µ iter avg subiter iter avg subiter

1e-1 65 6.09 65 6.09
2e-2 9 3.84 5 2.60
4e-3 10 3.90 4 2.25
8e-4 11 3.76 3 2.00
1.6e-4 11 3.38 3 1.67
3.2e-5 11 3.55 2 1.50
1e-5 7 3.74 2 1.50

Table 4.5. Comparison of results on the linear power flow problem with and
without the extrapolation step. Each row represents an outer iteration with
a specific µ value. The “iter” column denotes the number of SQP iterations
performed, while the “avg subiter” column indicates the average number of
Ipopt iterations incurred per subproblem solve per SQP iteration.

4.8. Concluding Remarks and Future Directions

In this chapter, we present a novel advancement in the field of continuous nonlinear two-

stage optimization problems. Our approach builds upon a new approximation scheme based

on the smoothing technique proposed by [77]. By leveraging this innovative technique, we

achieve faster convergence speeds and significantly improve computational efficiency.

We have developed a new C++ software package that enables the practical application

of the algorithm. This software allows for the practical application of the algorithm and

provides valuable insights into its performance through extensive numerical experiments.

Looking ahead, our software is poised for further development and expansion. We aim to

extend its capabilities to tackle even larger-scale two-stage nonlinear optimization problems,

addressing more challenging real-world applications, like nonlinear ACOPF. Additionally, we

envision potential advancements in handling general nonlinear bilevel optimization problems,

broadening the scope of its applicability and impact.

170

References

[1] Aiyoshi, E., and Shimizu, K. Hierarchical decentralized systems and its new solution

by a barrier method. IEEE Transactions on Systems, Man and Cybernetics, 6 (1981),

444–449.

[2] Alizadeh, F., and Goldfarb, D. Second-order cone programming. Mathematical

Programming 95, 1 (2003), 3–51.

[3] ApS, M. The MOSEK optimization toolbox for MATLAB manual. Version 9.1, 2019.

[4] Barbarosoǧlu, G., and Arda, Y. A two-stage stochastic programming framework

for transportation planning in disaster response. Journal of the Operational Research

Society 55 (2004), 43–53.

[5] Ben-Tal, A., and Nemirovski, A. On polyhedral approximations of the second-

order cone. Mathematics of Operations Research 26, 2 (2001), 193–205.

[6] Benders, J. F. Partitioning procedures for solving mixed-variables programming prob-

lems. Numer. Math. 4, 1 (1962), 238–252.

[7] Best, M. J. An algorithm for the solution of the parametric quadratic programming

problem. In Applied mathematics and parallel computing. Springer, 1996, pp. 57–76.

[8] Biggs, M. Constrained minimization using recursive equality quadratic programming.

Numerical Methods for Nonlinear Optimization (1972), 411–428.

171

[9] Birge, J. R., and Louveaux, F. Introduction to stochastic programming. Springer

Science & Business Media, 2011.

[10] Bitar, G., Vestad, V. N., Lekkas, A. M., and Breivik, M. Warm-started

optimized trajectory planning for asvs. IFAC-PapersOnLine 52, 21 (2019), 308–314.

[11] Boggs, P. T., and Tolle, J. W. Sequential quadratic programming. Acta numerica

4 (1995), 1–51.

[12] Bongartz, I., Conn, A. R., Gould, N., and Toint, P. L. Cute: Constrained

and unconstrained testing environment. ACM Transactions on Mathematical Software

21, 1 (1995), 123–160.

[13] Braun, R. D. Collaborative optimization: an architecture for large-scale distributed

design. PhD thesis, Stanford University, 1996.

[14] Brown, N. F., and Olds, J. R. Evaluation of multidisciplinary optimization tech-

niques applied to a reusable launch vehicle. Journal of Spacecraft and Rockets 43, 6

(2006), 1289–1300.

[15] Burke, J. V. A robust trust region method for constrained nonlinear programming

problems. SIAM Journal on Optimization 2, 2 (1992), 325–347.

[16] Byrd, R. H., Nocedal, J., and Waltz, R. A. Steering exact penalty methods for

nonlinear programming. Optimization Methods and Software 23, 2 (2008), 197–213.

[17] Coey, C., Lubin, M., and Vielma, J. P. Outer approximation with conic certifi-

cates for mixed-integer convex problems. Mathematical Programming Computation 12,

2 (2020), 249–293.

172

[18] Conn, A. R., Gould, N. I., and Toint, P. L. Trust region methods. SIAM, 2000.

[19] DeMiguel, A.-V., and Murray, W. An analysis of collaborative optimization meth-

ods. In 8th symposium on multidisciplinary analysis and optimization (2000), p. 4720.

[20] DeMiguel, V., and Murray, W. A local convergence analysis of bilevel decompo-

sition algorithms. Optimization and Engineering 7 (2006), 99–133.

[21] Diehl, M., Jarre, F., and Vogelbusch, C. H. Loss of superlinear convergence

for an sqp-type method with conic constraints. SIAM Journal on Optimization 16, 4

(2006), 1201–1210.

[22] Dogan, M. S., Lund, J. R., and Medellin-Azuara, J. Hybrid linear and non-

linear programming model for hydropower reservoir optimization. Journal of Water

Resources Planning and Management 147, 3 (2021), 06021001.

[23] Drewes, S., and Ulbrich, S. Subgradient based outer approximation for mixed inte-

ger second order cone programming. In Mixed integer nonlinear programming. Springer,

2012, pp. 41–59.

[24] Duque, D., Mehrotra, S., and Morton, D. P. Distributionally robust two-stage

stochastic programming. SIAM Journal on Optimization 32, 3 (2022), 1499–1522.

[25] Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., and Diehl, M.

qpoases: A parametric active-set algorithm for quadratic programming. Mathematical

Programming Computation 6, 4 (2014), 327–363.

[26] Fletcher, R. Second order corrections for non-differentiable optimization. Numerical

Analysis (1982), 85–114.

173

[27] Fletcher, R. Practical methods of optimization. John Wiley & Sons, 2013.

[28] Fletcher, R., Gould, N. I., Leyffer, S., Toint, P. L., and Wächter, A.

Global convergence of a trust-region sqp-filter algorithm for general nonlinear program-

ming. SIAM Journal on Optimization 13, 3 (2002), 635–659.

[29] Fletcher, R., Leyffer, S., and Toint, P. L. On the global convergence of a

filter-sqp algorithm. SIAM Journal on Optimization 13, 1 (2002), 44–59.

[30] Fourer, R., Gay, D. M., and Kernighan, B. W. AMPL: A mathematical pro-

gramming language. AT & T Bell Laboratories Murray Hill, NJ, 1987.

[31] Friberg, H. A. Cblib 2014: a benchmark library for conic mixed-integer and contin-

uous optimization. Mathematical Programming Computation 8 (2016), 191–214.

[32] Geoffrion, A. M. Generalized benders decomposition. Journal of Optimization The-

ory and Applications 10 (1972), 237–260.

[33] Gill, P. E., Murray, W., and Saunders, M. A. Snopt: An sqp algorithm for

large-scale constrained optimization. SIAM Review 47, 1 (2005), 99–131.

[34] Gill, P. E., Murray, W., and Wright, M. H. Practical optimization. SIAM,

2019.

[35] Goldberg, N., and Leyffer, S. An active-set method for second-order conic-

constrained quadratic programming. SIAM Journal on Optimization 25, 3 (2015), 1455–

1477.

174

[36] Gondzio, J. Warm start of the primal-dual method applied in the cutting-plane

scheme. Mathematical Programming 83, 1-3 (1998), 125–143.

[37] Gondzio, J., and Grothey, A. A new unblocking technique to warmstart inte-

rior point methods based on sensitivity analysis. SIAM Journal on Optimization 19, 3

(2008), 1184–1210.

[38] Goswami, N., Mondal, S. K., and Paruya, S. A comparative study of dual active-

set and primal-dual interior-point method. IFAC Proceedings Volumes 45, 15 (2012).

[39] Gould, N., and Toint, P. L. A quadratic programming page. https://www.

numerical.rl.ac.uk/people/nimg/qp/qp.html.

[40] Gould, N. I., Orban, D., Sartenaer, A., and Toint, P. L. Superlinear con-

vergence of primal-dual interior point algorithms for nonlinear programming. SIAM

Journal on Optimization 11, 4 (2001), 974–1002.

[41] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[42] Haftka, R. T., and Watson, L. T. Multidisciplinary design optimization with

quasiseparable subsystems. Optimization and Engineering 6 (2005), 9–20.

[43] Han, S.-P. Superlinearly convergent variable metric algorithms for general nonlinear

programming problems. Mathematical Programming 11, 1 (1976), 263–282.

[44] Hayashi, S., Okuno, T., and Ito, Y. Simplex-type algorithm for second-order cone

programmes via semi-infinite programming reformulation. Optimization Methods and

Software 31, 6 (2016), 1272–1297.

https://www.numerical.rl.ac.uk/people/nimg/qp/qp.html
https://www.numerical.rl.ac.uk/people/nimg/qp/qp.html

175

[45] Hei, L., Nocedal, J., and Waltz, R. A. A numerical study of active-set and

interior-point methods for bound constrained optimization. InModeling, Simulation and

Optimization of Complex Processes: Proceedings of the Third International Conference

on High Performance Scientific Computing, March 6–10, 2006, Hanoi, Vietnam (2008),

Springer, pp. 273–292.

[46] Hijazi, H., Coffrin, C., and Van Hentenryck, P. Polynomial sdp cuts for opti-

mal power flow. In 2016 Power Systems Computation Conference (PSCC) (2016), IEEE,

pp. 1–7.

[47] ILOG, I. User’s Manual for CPLEX V12.9.0., 2019.

[48] Ishizuka, Y., and Aiyoshi, E. Double penalty method for bilevel optimization prob-

lems. Annals of Operations Research 34, 1 (1992), 73–88.

[49] Kato, H., and Fukushima, M. An sqp-type algorithm for nonlinear second-order

cone programs. Optimization Letters 1, 2 (2007), 129–144.

[50] Kim, Y., and Anitescu, M. A real-time optimization with warm-start of multiperiod

ac optimal power flows. Electric Power Systems Research 189 (2020), 106721.

[51] Lau, M. S. A comparison of interior point and active set methods for fpga implemen-

tation of model predictive control. In 2009 European Control Conference (ECC) (2009),

IEEE, pp. 156–161.

[52] Liu, C., Fan, Y., and Ordóñez, F. A two-stage stochastic programming model

for transportation network protection. Computers & Operations Research 36, 5 (2009),

1582–1590.

176

[53] Lubin, M., Dowson, O., Garcia, J. D., Huchette, J., Legat, B., and Vielma,

J. P. Jump 1.0: recent improvements to a modeling language for mathematical opti-

mization. Mathematical Programming Computation (2023), 1–9.

[54] Luenberger, D. G., and Ye, Y. Linear and nonlinear programming, vol. 2. Springer,

1984.

[55] Maratos, N. Exact penalty function algorithms for finite dimensional and control

optimization problems. PhD thesis, Imperial College London, 1978.

[56] Marley, J. F., Molzahn, D. K., and Hiskens, I. A. Solving multiperiod opf prob-

lems using an ac-qp algorithm initialized with an socp relaxation. IEEE Transactions

on Power Systems 32, 5 (2016), 3538–3548.

[57] Molzahn, D. K., and Hiskens, I. A. A survey of relaxations and approximations

of the power flow equations. Foundations and Trends in Electric Energy Systems 4, 1-2

(2019), 1–221.

[58] Nayakakuppam, M., Overton, M., and Schemita, S. SDPpack user’s guide-

version 0.9 Beta, 1997.

[59] Nocedal, J., and Wright, S. Numerical optimization. Springer Science & Business

Media, 2006.

[60] Okuno, T., Yasuda, K., and Hayashi, S. Sl1qp based algorithm with trust region

technique for solving nonlinear second-order cone programming problems. Interdisci-

plinary Information Sciences 21, 2 (2015), 97–107.

177

[61] Ospina, J., Fobes, D. M., Bent, R., and Wächter, A. Modeling and rapid pro-

totyping of integrated transmission-distribution opf formulations with powermodelsitd.

jl. IEEE Transactions on Power Systems (2023).

[62] Paiva, L. T., and Fontes, F. Adaptive time-mesh refinement in optimal control

problems with state constraints. Discrete and Continuous Dynamical Systems 35, 9

(2015), 4553–4572.

[63] Potra, F. A., and Wright, S. J. Interior-point methods. Journal of Computational

and Applied Mathematics 124, 1-2 (2000), 281–302.

[64] Powell, M. J. The convergence of variable metric methods for nonlinearly constrained

optimization calculations. In Nonlinear programming 3. Elsevier, 1978, pp. 27–63.

[65] Prékopa, A. Stochastic programming, vol. 324. Springer Science & Business Media,

2013.

[66] Raghunathan, A. U., Gopal, V., Subramanian, D., Biegler, L. T., and

Samad, T. Dynamic optimization strategies for three-dimensional conflict resolution

of multiple aircraft. Journal of guidance, control, and dynamics 27, 4 (2004), 586–594.

[67] Robinson, S. M. Perturbed kuhn-tucker points and rates of convergence for a class of

nonlinear-programming algorithms. Mathematical Programming 7 (1974), 1–16.

[68] Schanen, M., Gilbert, F., Petra, C. G., and Anitescu, M. Toward multiperiod

ac-based contingency constrained optimal power flow at large scale. In 2018 Power

Systems Computation Conference (PSCC) (2018), IEEE, pp. 1–7.

178

[69] Schittkowski, K. Nlpqlp: A fortran implementation of a sequential quadratic pro-

gramming algorithm with distributed and non-monotone line search–user’s guide. Tech.

rep., Department of Computer Science, University of Bayreuth, 2006.

[70] Schork, L. A parametric active set method for general quadratic programming. Mas-

ter’s thesis, Heidelberg University, Germany, 2015.

[71] Shimizu, K., and Aiyoshi, E. A new computational method for stackelberg and min-

max problems by use of a penalty method. IEEE Transactions on Automatic Control

26, 2 (1981), 460–466.

[72] Sobieszczanski-Sobieski, J., Altus, T. D., Phillips, M., and Sandusky, R.

Bilevel integrated system synthesis for concurrent and distributed processing. AIAA

journal 41, 10 (2003), 1996–2003.

[73] Tammer, K. The application of parametric optimization and imbedding to the foun-

dation and realization of a generalized primal decomposition approach. Mathematical

research 35 (1987), 376–386.

[74] Tsaknakis, I., Khanduri, P., and Hong, M. An implicit gradient method for

constrained bilevel problems using barrier approximation. In ICASSP 2023-2023 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2023),

IEEE, pp. 1–5.

[75] Tseng, P. Second-order cone programming relaxation of sensor network localization.

SIAM Journal on Optimization 18, 1 (2007), 156–185.

179

[76] Tu, S. Two-Stage Decomposition Algorithms and Their Application to Optimal Power

Flow Problems. PhD thesis, Northwestern University, 2021.

[77] Tu, S., Wächter, A., and Wei, E. A two-stage decomposition approach for ac

optimal power flow. IEEE Transactions on Power Systems 36, 1 (2020), 303–312.

[78] Van Slyke, R. M., and Wets, R. L-shaped linear programs with applications to

optimal control and stochastic programming. SIAM Journal on Applied Mathematics

17, 4 (1969), 638–663.

[79] Vanderbei, R. J. Cute models. https://vanderbei.princeton.edu/ampl/nlmodels/cute/.

[80] Vanderbei, R. J., and Yurttan, H. Using loqo to solve second-order cone pro-

gramming problems. Tech. rep., Priceton University, 1998.

[81] Wächter, A., and Biegler, L. T. On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming. Mathematical Program-

ming 106, 1 (2006), 25–57.

[82] Waltz, R. A., and Nocedal, J. Knitro 2.0 user’s manual. Ziena Optimization,

Inc.[en ligne] disponible sur http://www. ziena. com (September, 2010) 7 (2004), 33–

34.

[83] Wilson, R. B. A simplicial algorithm for concave programming. PhD thesis, Harvard

University, 1963.

[84] Yildirim, E. A., and Wright, S. J. Warm-start strategies in interior-point methods

for linear programming. SIAM Journal on Optimization 12, 3 (2002), 782–810.

h

180

[85] Yuan, Y.-X. On the superlinear convergence of a trust region algorithm for nonsmooth

optimization. Mathematical Programming 31, 3 (1985), 269–285.

[86] Zhadan, V. The variant of primal simplex-type method for linear second-order cone

programming. In Optimization and Applications: 12th International Conference, OP-

TIMA 2021, Petrovac, Montenegro, September 27–October 1, 2021, Proceedings (2021),

Springer, pp. 64–75.

[87] Zhang, X., Liu, Z., and Liu, S. A trust region sqp-filter method for nonlinear

second-order cone programming. Computers & Mathematics with Applications 63, 12

(2012), 1569–1576.

181

APPENDIX A

Generation of random instances

The test instances used for the numerical experiments have the form

min
x∈Rn

p∑
j=1

cTj xj + cTp+1xp+1

s.t.

p∑
j=1

Ajxj + Ap+1xp+1 = b,

xj ∈ Kj, j ∈ [p],

xj0 ≤ 1000, 0 ≤ xp+1 ≤ 1000,

where (c1, · · · cp, cp+1) ∈ Rn1 × · · · × Rnp × Rnp+1 is the partition of the objective vector c,

and (A1, · · · , Ap+1) is the partition of the column vectors of constraint matrix A ∈ Rm×n.

The subvector xp+1 includes all optimization variables that are not in any of the cones.

In contrast to the original SOCP (2.1), this formulation includes linear equality con-

straints, but it is straightforward to generalize Algorithm 3 and its convergence proofs for

this setting. The formulation above also includes large upper bounds on all variables so that

the set X defined in (2.9) is bounded. However, the upper bounds were chosen so large that

they are not active at the optimal solution.

Algorithm 11 describes how the data for these instances are generated. The algorithm

generates an optimal primal-dual solution in a way so that, at the solution, K0 cones are

extremal-active, for KI cones the optimal solution lies in the interior of the cone, and for

182

Algorithm 11 Random Instance Generation

Require: n (number of variables), m (number of linear constraints), p (total number of
cones), K0 (number of extremal-active cones), KI (number of inactive cones), KB (num-
ber of cones active at the boundary, excluding extremal-active cones), d (density of
nonzeros in constraint matrix). Conditions: n,m, p,K0, KI , KB ∈ Z+, d ∈ (0, 1],
p = K0 +KI +KB, n > 2p, n > m+KB + ⌊(m+KB)/2⌋.

1: Randomly choose positive integers n1, . . . , nK0 so that nj ≥ 2 and
∑K0

j=1 nj = ⌊(m +

KB)/2⌋.
2: Randomly choose positive integers nK0+1, . . . , np so that nj ≥ 2 and

∑p
j=K0+1 nj =

m+KB.
3: for j = 1, . . . , K0 do ▷ Generate x∗

j = 0, z∗j ∈ int(Kj)
4: Set x∗

j ← 0.

5: Sample z̄j ∼ (−10, 10)nj−1, z∗j0 ∼ (1, 5) and ϵj ∼ (0, 1). Set z̄∗j ← (2 + ϵ)
z∗j0
∥z̄j∥ z̄j.

6: end for
7: for j = K0 + 1, . . . , K0 +KI do ▷ Generate z∗j = 0, x∗

j ∈ int(Kj)
8: Set z∗j ← 0.

9: Sample x̄j ∼ (−10, 10)nj−1, x∗
j0 ∼ (1, 5) and ϵj ∼ (0, 1). Set x̄∗

j ← (2 + ϵ)
x∗
j0

∥x̄j∥ x̄j.

10: end for
11: for j = K0 +KI + 1, . . . , p do ▷ Generate z∗j , x

∗
j ∈ bd(Kj)

12: Sample x̄j ∼ (−10, 10)nj−1 and x∗
j0 ∼ (1, 5). Set x̄∗

j ←
x∗
j0

∥x̄j∥ x̄j.

13: Sample β ∼ (1, 5). Set z̄∗j ← −βx̄∗
j and z̄∗j0 ← βx∗

j0

14: end for
15: Set nfix ← n−m−KB −

∑K0

j=1 nj and nfree ← n− nfix −
∑p

j=1 nj.
16: for j = 1, . . . , nfix do
17: Set [x∗

p+1]j ← 0 and sample [z∗p+1]j ∼ (1, 5).
18: end for
19: for j = nfix + 1, . . . , nfree do
20: Set [z∗p+1]j ← 0 and sample [x∗

p+1]j ∼ (1, 5).
21: end for
22: Sample linear independent rows Ai ∼ (−5, 5)n with density d, for i = 1, · · · ,m.
23: Call pcond to calculate primal condition number cp and call dcond to calculate dual

condition number cd.
24: if cp > 105 or cd > 105 then go to Step 2 and redo the process.
25: Sample λ∗ ∼ (1, 10)m. Set b← Ax∗ and c← −ATλ∗ + z∗.
26: return A, b, c, x∗, λ∗, z∗.

KB the optimal solution is at the boundary but not the extreme point of the cone. In

our experiments, there is an equal number of K of each type. The number of variables

that are active at the lower bound, nfix, is chosen in a way so that the optimal solution

183

is non-degenerate. The linear constraints reduce the number of degrees of freedom by m,

each extremal active cone by nj, and each otherwise active cone by 1. Step 15 calculate the

number of constraints that are active at zero so that the total number of degrees of freedom

fixed by constraints equals n. Lastly, in Step 23, we use pcond and dcond functions provided

in SDPPack [58] to double-check if a generated instance is also numerically non-degenerate.

These functions return the primal and dual conditions numbers, cp and cd, respectively, and

we discard an instance if either number is above a threshold. Only about 1% of instances

created were excluded in this manner.

184

APPENDIX B

CUTE Result

nVar Number of variables

nConstr Number of constraints

iter Number of SQP iteration

QP iter Total number of QP iteration

objective Objective value upon return

#obj Number of objective function evaluations

#grad Number of gradient function evaluations

cpu time Total CPU time in seconds

exitflag

0 : Optimal

-2 : Exceed maximum number of iterations

-3 : Predicted reduction is non-negative

-4 : Trust-region radius is too small

-8 : Penalty parameter is too large

-21: QP solver internal error

-22: QP solver reports the problem is infeasible

-23: QP solver reports the problem is unbounded

-24: QP solver exceeds the maximum number of iterations

-30: Unknown QP error

-32: QP error: Ipopt has restoration phase failed

-33: QP error: Ipopt has error in step computation

185

B.1. With QORE as QP solver

Table B.1. Table of results on the CUTE test set for RestartSQP using QORE
as QP subsolver

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

3pk 30 0 6 40 0 1.720118e+00 7 7 0.0017

aircrfta 5 5 2 13 0 0.000000e+00 3 3 0.0005

aircrftb 8 3 20 69 0 1.208028e-23 22 12 0.0015

airport 84 42 12 357 0 4.795270e+04 13 13 0.0263

aljazzaf 3 1 20 46 0 7.500499e+01 24 18 0.0014

allinit 4 3 13 37 0 1.670596e+01 14 9 0.0011

allinitc 4 4 16 58 0 3.048876e+01 18 16 0.0014

allinitu 4 0 9 15 0 5.744384e+00 10 7 0.0006

alsotame 2 3 4 16 0 8.208499e-02 5 5 0.0005

arglina 100 0 1 101 0 1.000000e+02 2 2 0.0131

arglinb 10 0 1 14 0 4.634146e+00 2 2 0.0003

arglinc 8 0 1 10 0 6.135135e+00 2 2 0.0003

argtrig 100 100 3 206 0 0.000000e+00 4 4 0.0503

artif 5000 5000 22 22758 -8 0.000000e+00 36 12 19.1410

arwhead 5000 0 6 5006 0 -2.664535e-15 7 7 1.6963

aug2d 20192 9996 4 84915 0 1.687411e+06 5 5 160.7029

aug2dc 20200 10194 4 85588 0 1.818392e+06 5 5 147.8718

aug2dcqp 20200 10194 0 22754 -21 1.010000e+04 1 1 30.5820

aug2dqp 20192 10194 0 27291 -23 9.900000e+03 1 1 36.3020

aug3d 3873 1000 1 6485 0 5.540677e+02 2 2 2.1362

aug3dc 3873 1000 1 5874 0 7.712624e+02 2 2 1.6051

aug3dcqp 3873 1000 1 5664 0 9.933621e+02 2 2 1.3578

aug3dqp 3873 1000 1 4374 0 6.752376e+02 2 2 1.0953

avgasa 8 10 1 13 0 -4.412171e+00 2 2 0.0003

avgasb 8 10 1 12 0 -4.483219e+00 2 2 0.0003

avion2 49 15 43 232 0 9.468012e+07 48 23 0.0106

186

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

bard 3 0 7 10 0 8.214877e-03 8 8 0.0005

batch 46 73 7 479 0 2.591803e+05 8 8 0.0237

bdexp 5000 0 10 5011 0 1.963835e-03 11 11 0.6248

bdqrtic 1000 0 9 1009 0 3.983817e+03 10 10 0.0995

beale 2 0 292 431 -3 4.522242e-01 293 206 0.0096

bigbank 2230 1112 20 7059 0 -4.205696e+06 21 21 2.0189

biggs3 6 3 10 29 0 3.115215e-14 12 9 0.0009

biggs5 6 1 38 100 0 2.835358e-02 39 26 0.0037

biggs6 6 0 57 153 0 1.940162e-11 58 34 0.0032

biggsb1 1000 999 1 3993 0 1.499999e-02 2 2 0.4646

biggsc4 4 7 1 28 0 -2.450000e+01 2 2 0.0005

blockqp1 2005 1001 1 1303 0 -9.964999e+02 2 2 1.0076

blockqp2 2005 1001 1 1074 0 -9.961011e+02 2 2 1.0540

blockqp3 2005 1001 1 1990 0 -4.974999e+02 2 2 1.5286

blockqp4 2005 1001 1 1081 0 -4.980982e+02 2 2 1.3056

blockqp5 2005 1001 1 1990 0 -4.974999e+02 2 2 1.3660

bloweya 2002 1002 0 100000 -24 -7.343399e-04 1 1 28.5870

bloweyb 2002 1002 0 838 -21 -6.010044e-04 1 1 0.2646

bloweyc 2002 1002 0 100000 -24 -6.010044e-04 1 1 30.8620

booth 2 2 1 5 0 0.000000e+00 2 2 0.0002

box2 3 1 8 18 0 1.656702e-20 10 6 0.0006

box3 3 0 7 10 0 1.901209e-13 8 7 0.0005

bqp1var 1 1 1 4 0 0.000000e+00 2 2 0.0002

bqpgabim 50 4 1 57 0 -3.790343e-05 2 2 0.0012

bqpgasim 50 0 1 49 0 -5.519814e-05 2 2 0.0008

bratu1d 1001 0 8 1497 0 -8.518927e+00 9 9 0.0864

bratu2d 4900 4900 2 61583 0 0.000000e+00 3 3 114.9517

bratu2dt 4900 4900 5 55081 0 0.000000e+00 6 6 97.2834

bratu3d 3375 3375 3 25675 0 0.000000e+00 4 4 75.1642

britgas 450 360 1 108225 -24 5.822179e+00 2 2 7.2676

187

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

brkmcc 2 0 2 4 0 1.690426e-01 3 3 0.0003

brownal 10 0 6 24 0 7.976678e-11 7 7 0.0007

brownbs 2 0 47 51 0 0.000000e+00 48 35 0.0014

brownden 4 0 8 12 0 8.582220e+04 9 9 0.0011

broydn3d 10000 10000 4 20002 0 0.000000e+00 5 5 27.5723

broydn7d 1000 0 10 4122 -3 3.1000137+102 11 7 0.3110

broydnbd 5000 5000 5 12672 0 0.000000e+00 6 6 11.4956

brybnd 5000 0 7 5007 0 1.294855e-13 8 8 1.4892

bt1 2 1 8 33 0 -9.999999e-01 11 7 0.0009

bt10 2 2 6 11 0 -1.000000e+00 7 7 0.0005

bt11 5 3 7 21 0 8.248917e-01 8 8 0.0007

bt12 5 3 11 53 0 6.188118e+00 19 8 0.0012

bt13 5 2 15 46 0 0.000000e+00 18 15 0.0010

bt2 3 1 11 15 0 3.256821e-02 12 12 0.0008

bt3 5 3 2 12 0 4.093023e+00 3 3 0.0004

bt4 3 2 3 23 -3 -1.860893e+01 7 1 0.0006

bt5 3 2 47 146 0 9.617151e+02 92 23 0.0032

bt6 5 2 9 22 0 2.770447e-01 12 9 0.0007

bt7 5 3 18 91 0 4.039999e+02 27 12 0.0021

bt8 5 2 14 51 0 1.000006e+00 23 10 0.0012

bt9 4 2 12 55 0 -1.000000e+00 18 10 0.0009

byrdsphr 3 2 85 212 0 -4.683300e+00 170 44 0.0054

camel6 2 2 11 27 0 -2.154638e-01 12 7 0.0006

cantilvr 5 1 61 134 -4 2.914991e-01 123 5 0.0021

catena 32 11 21 513 0 -2.307774e+04 32 12 0.0094

catenary 496 166 15 2043 -21 -1.667768e+06 23 10 0.1418

cb2 3 3 6 17 0 1.952222e+00 8 6 0.0006

cb3 3 3 8 25 0 1.999999e+00 11 7 0.0007

cbratu2d 882 882 1 8382 0 0.000000e+00 2 2 2.6935

cbratu3d 1024 1024 1 3789 0 0.000000e+00 2 2 1.5554

188

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

chaconn1 3 3 4 10 0 1.952224e+00 5 5 0.0004

chaconn2 3 3 4 9 0 1.999999e+00 5 5 0.0004

chainwoo 1000 0 75 6722 0 7.077184e+01 76 50 0.3375

chandheq 100 100 9 209 0 0.000000e+00 10 10 0.1175

chebyqad 50 0 64 798 0 5.024788e-03 65 31 0.5427

chemrctb 1000 1000 344 19744 -4 0.000000e+00 685 164 6.4453

chenhark 1000 0 1 720 0 -2.000000e+00 2 2 0.0358

chnrosnb 50 0 55 156 0 1.297084e-14 56 42 0.0064

cliff 2 0 27 29 0 1.997866e-01 28 28 0.0011

clnlbeam 1499 1000 0 102843 -24 3.496824e+02 1 1 18.4583

clplatea 4970 0 6 4978 0 -1.259209e-02 7 6 1.9062

clplateb 4970 0 11 5123 0 -6.988222e+00 12 10 1.8305

clplatec 4970 0 1 4971 0 -5.020724e-03 2 2 1.5752

cluster 2 2 12 38 0 0.000000e+00 17 9 0.0009

concon 15 11 8 73 0 -6.230795e+03 12 9 0.0016

congigmz 3 5 5 27 0 2.800000e+01 6 6 0.0008

coolhans 9 9 14 133 0 0.000000e+00 19 11 0.0034

core1 65 115 51 1808 -8 6.059484e+01 75 30 0.0945

core2 157 134 24 1846 -8 7.424797e+01 37 16 0.1060

coshfun 61 20 466 3191 0 -7.732663e-01 932 228 0.2882

cosine 10000 0 5 10007 0 -9.999000e+03 6 6 3.1551

cragglvy 5000 0 24 5024 0 1.688215e+03 25 23 0.7292

cresc100 6 200 26 3769 -3 6.791142e+01 37 5 0.3023

cresc132 6 2654 33 59017 -3 6.783529e+01 43 5 25.5266

cresc4 6 8 450 1161 0 8.718975e-01 895 224 0.0405

cresc50 6 100 3000 7987 -2 5.981437e-01 5996 1497 0.8386

csfi1 5 4 68 262 0 -4.907520e+01 121 36 0.0058

csfi2 5 4 67 229 0 5.501760e+01 127 36 0.0060

cube 2 0 18 26 -3 1.421377e+00 19 12 0.0011

curly10 10000 0 13 10447 0 -9.968383e+05 14 9 7.3853

189

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

curly20 10000 0 15 13819 0 -9.968383e+05 16 10 17.1323

curly30 10000 0 17 14845 0 -9.968383e+05 18 11 26.5784

cvxbqp1 10000 0 1 1 0 2.250225e+06 2 2 0.0187

cvxqp1 1000 500 1 5140 0 1.087511e+06 2 2 0.9898

cvxqp2 10000 2500 1 16726 0 8.184245e+07 2 2 21.6840

cvxqp3 10000 7500 0 107529 -24 5.625562e+07 1 1 172.1075

deconvb 51 0 38 629 0 3.352686e-03 39 21 0.0215

deconvc 51 1 59 1224 0 6.241270e-09 119 24 0.0454

deconvu 51 0 958 14620 -3 7.751394e-09 959 475 0.5537

degenlpa 20 14 1 112 0 3.060349e+00 2 2 0.0042

degenlpb 20 15 1 124 0 -3.073124e+01 2 2 0.0050

demymalo 3 3 6 17 0 -3.000000e+00 8 6 0.0010

denschna 2 0 5 7 0 2.213909e-12 6 6 0.0007

denschnb 2 0 9 11 0 3.721375e-17 10 7 0.0007

denschnc 2 0 10 12 0 2.177679e-20 11 11 0.0012

denschnd 3 0 35 42 0 5.818610e-08 36 32 0.0029

denschne 3 0 9 11 0 1.000000e+00 10 10 0.0005

denschnf 2 0 6 8 0 6.513246e-22 7 7 0.0010

dipigri 7 4 9 60 0 6.806300e+02 15 6 0.0024

disc2 28 23 27 791 -8 0.000000e+00 41 17 0.0225

discs 36 69 13 5465 -8 1.372472e+01 20 8 0.1716

dittert 327 264 2 287 -21 -2.000000e+00 3 3 0.0223

dixchlng 10 5 10 56 0 2.471897e+03 12 11 0.0035

dixchlnv 100 50 17 542 0 3.018525e-22 18 18 0.0627

dixmaana 3000 0 9 7631 0 1.000000e+00 10 7 0.6238

dixmaanb 3000 0 14 11018 0 1.000000e+00 15 10 1.2844

dixmaanc 3000 0 13 11012 0 1.000000e+00 14 9 1.3088

dixmaand 3000 0 7 11543 -22 1.175238e+04 8 4 1.2354

dixmaane 3000 0 24 10262 0 1.000000e+00 25 14 0.8539

dixmaanf 3000 0 34 14038 0 1.000000e+00 35 17 1.7386

190

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

dixmaang 3000 0 10 14321 -3 1.444361e+06 11 6 1.5736

dixmaanh 3000 0 57 15947 0 1.000000e+00 58 30 1.8970

dixmaani 3000 0 20 12032 0 1.000000e+00 21 13 0.9950

dixmaanj 3000 0 10 13127 -3 6.045509e+05 11 6 1.4484

dixmaank 3000 0 62 16189 -3 1.465817e+01 63 32 2.0279

dixmaanl 3000 0 96 20460 0 1.000000e+00 97 49 2.7458

dixon3dq 10 0 1 11 0 3.204747e-30 2 2 0.0003

djtl 2 0 29 38 0 -8.951544e+03 30 14 0.0011

dnieper 61 24 3 189 0 1.874401e+04 4 4 0.0059

dqdrtic 5000 0 1 5001 0 0.000000e+00 2 2 0.4679

dqrtic 5000 0 38 14974 0 2.110693e-05 39 39 2.5647

drcavty3 10816 816 0 11645 -21 0.000000e+00 1 1 39.4230

dtoc1l 14985 9990 5 44979 0 1.253381e+02 6 6 76.5233

dtoc1na 1485 990 5 4466 0 1.270202e+01 7 6 1.0079

dtoc1nb 1485 990 6 4668 0 1.593777e+01 11 6 1.0908

dtoc1nc 1485 990 45 7245 0 2.496981e+01 90 23 2.6630

dtoc1nd 735 490 94 4641 0 1.277580e+01 187 48 1.6355

dtoc2 5994 3996 7 20072 0 5.086762e-01 9 7 16.6841

dtoc3 14997 9998 3 74975 0 2.352624e+02 4 4 123.5581

dtoc4 14997 9998 3 43196 0 2.868538e+00 4 4 68.5464

dtoc5 9998 4999 3 19998 0 1.535102e+00 4 4 14.0880

dtoc6 10000 5000 11 64751 0 1.348506e+05 12 12 51.1794

dual1 85 1 1 140 0 3.501296e-02 2 2 0.0069

dual2 96 1 1 99 0 3.373367e-02 2 2 0.0077

dual3 111 1 1 118 0 1.357558e-01 2 2 0.0127

dual4 75 1 1 65 0 7.460906e-01 2 2 0.0037

dualc1 9 215 1 16 0 6.155251e+03 2 2 0.0021

dualc2 7 229 1 19 0 3.551306e+03 2 2 0.0021

dualc5 8 278 1 13 0 4.272325e+02 2 2 0.0021

dualc8 8 503 1 29 0 1.830936e+04 2 2 0.0049

191

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

edensch 2000 0 7 2007 0 1.200328e+04 8 8 0.1242

eg1 3 0 7 12 0 -1.429306e+00 8 7 0.0004

eg2 1000 0 3 1003 0 -9.989473e+02 4 4 0.0651

eg3 101 200 4 207 0 6.717997e-02 5 5 0.0248

eigena 110 0 20 85 0 5.614295e-21 21 15 0.0113

eigena2 110 55 2 345 0 4.992010e-30 3 3 0.0221

eigenaco 110 55 78 1999 0 1.585725e-12 137 41 0.4643

eigenals 110 0 137 1349 0 6.544500e-18 138 74 0.4718

eigenb 110 0 79 1929 0 9.724754e-10 80 50 0.2666

eigenb2 110 55 2 402 0 1.800000e+01 3 3 0.0253

eigenbco 110 55 59 2690 -21 9.001730e+00 107 25 0.3697

eigenbls 110 0 79 1929 0 9.724759e-10 80 50 0.2901

eigenc2 462 231 347 4010 0 4.025962e-18 692 173 11.5089

eigencco 30 15 42 472 0 1.656932e-20 80 21 0.0268

eigmaxa 101 101 11 514 0 -3.000000e+00 13 11 0.0577

eigmaxb 101 101 7 1197 0 -9.674353e-04 8 8 0.0902

eigmaxc 22 22 5 110 0 -1.000000e+00 6 6 0.0038

eigmina 101 101 2 404 0 1.000000e+00 3 3 0.0633

eigminb 101 101 7 796 0 9.674353e-04 8 8 0.0693

eigminc 22 22 5 111 0 1.000000e+00 6 6 0.0040

engval1 5000 0 7 5007 0 5.548668e+03 8 8 0.8787

engval2 3 0 13 19 0 1.122731e+02 14 10 0.0007

errinros 50 0 21 118 -3 6.458821e+01 22 14 0.0032

expfit 2 0 14 21 0 2.405105e-01 15 7 0.0006

expfita 5 22 12 70 0 1.136611e-03 13 13 0.0016

expfitb 5 102 14 521 0 5.019365e-03 15 15 0.0170

expfitc 5 502 14 1686 0 2.330257e-02 15 15 0.0873

explin 120 0 12 139 0 -7.237562e+05 13 13 0.0021

explin2 120 0 11 134 0 -7.244591e+05 12 12 0.0020

expquad 120 10 12 471 0 -3.624599e+06 14 9 0.0091

192

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

extrasim 2 1 1 5 0 1.000000e+00 2 2 0.0005

fccu 19 8 3 83 0 1.114910e+01 4 4 0.0016

fletcbv2 100 0 1 101 0 -5.140067e-01 2 2 0.0027

fletchcr 100 0 10 110 0 6.449151e-18 11 8 0.0037

fletcher 4 5 3000 6021 -2 4.000000e+00 3001 3001 0.1380

flosp2hh 691 0 1 853 -3 8.704390e+05 2 1 0.1119

flosp2hl 691 0 3 747 0 3.887054e+01 4 4 0.0948

flosp2hm 691 0 2 820 -3 2.731203e+03 3 3 0.1054

flosp2th 691 0 7 755 0 1.000000e+01 8 8 0.1229

flosp2tl 691 0 1 811 0 1.000000e+01 2 2 0.0971

flosp2tm 691 0 2 788 -3 1.000000e+01 3 3 0.0998

fminsrf2 1024 0 43 4893 0 1.000000e+00 44 22 0.7452

fminsurf 1024 0 71 9354 0 1.000000e+00 72 35 101.7804

freuroth 5000 0 10 5012 0 6.081591e+05 11 8 0.8713

gausselm 1495 3962 1 115214 -24 -1.000000e+00 3 1 78.0569

genhs28 10 8 1 27 0 9.271736e-01 2 2 0.0012

genhumps 5 0 25 57 -3 1.657565e+04 26 16 0.0024

genrose 500 0 1010 2493 0 1.000000e+00 1011 757 0.7759

gigomez1 3 3 3 14 0 -3.000000e+00 5 3 0.0005

gilbert 1000 1 18 3779 0 4.820272e+02 20 19 0.2892

goffin 51 50 2 193 0 1.314504e-13 3 3 0.0127

gottfr 2 2 7 27 0 0.000000e+00 11 6 0.0007

gouldqp2 699 349 1 1279 0 1.879984e-04 2 2 0.1086

gouldqp3 699 349 1 1146 0 2.065155e+00 2 2 0.1392

gpp 250 498 5 2038 0 1.440092e+04 9 6 0.7304

gridneta 13284 6724 1 27828 0 3.049829e+02 2 2 24.9178

gridnetb 13284 6724 1 49596 0 1.433232e+02 2 2 63.5907

gridnetc 7564 3844 1 24237 0 1.618702e+02 2 2 16.0570

gridnetd 7565 3844 3 20439 0 5.664443e+02 4 4 19.1548

gridnete 7565 3844 3 26845 0 2.065546e+02 4 4 25.5768

193

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

gridnetf 7565 3844 3 24224 0 2.421089e+02 4 4 30.8966

gridnetg 61 36 4 130 0 7.331702e+01 5 5 0.0052

gridneth 61 36 4 136 0 3.962626e+01 5 5 0.0057

gridneti 61 36 4 151 0 4.024746e+01 5 5 0.0058

growth 3 0 67 104 0 1.004040e+00 68 48 0.0034

growthls 3 0 67 104 0 1.004040e+00 68 48 0.0029

gulf 3 0 25 43 0 1.044496e-17 26 18 0.0019

hadamals 100 0 11 388 -3 6.669565e+01 12 12 0.0202

hadamard 65 256 1 484 0 1.000000e+00 2 2 0.0417

hager1 10001 5001 1 16841 0 8.807970e-01 2 2 14.7071

hager2 10000 5000 1 20306 0 4.320822e-01 2 2 16.9382

hager3 10000 5000 1 20306 0 1.409612e-01 2 2 18.1063

hager4 10000 5000 1 17402 0 2.794030e+00 2 2 15.3574

haifam 85 150 1 100125 -24 -5.398098e+00 3 2 3.2544

haifas 7 9 29 281 0 -4.500000e-01 56 14 0.0052

hairy 2 0 19 30 -3 4.690335e+02 20 7 0.0007

haldmads 6 42 13 554 -21 3.311440e-01 23 6 0.0093

hanging 300 180 16 5325 -21 -2.067989e+02 33 7 0.4112

harkerp2 100 0 4 5 0 -5.000000e-01 5 5 0.0041

hart6 6 0 1 5 -3 -4.081494e-01 2 1 0.0003

hatflda 4 0 8 18 0 3.442013e-11 9 6 0.0006

hatfldb 4 1 8 24 0 5.572809e-03 10 6 0.0006

hatfldc 4 3 4 17 0 1.137789e-20 5 5 0.0010

hatfldd 3 0 13 15 0 1.404407e+01 14 14 0.0009

hatflde 3 0 12 14 0 1.528320e+01 13 13 0.0007

hatfldf 3 3 15 82 0 0.000000e+00 27 9 0.0020

hatfldg 25 25 12 248 0 0.000000e+00 17 9 0.0108

hatfldh 4 7 1 29 0 -2.450000e+01 2 2 0.0006

heart6 6 6 207 811 0 0.000000e+00 407 104 0.0340

heart6ls 6 0 28 96 -3 3.038264e+01 29 14 0.0016

194

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

heart8 8 8 14 298 0 0.000000e+00 22 10 0.0051

heart8ls 8 0 16 77 -3 7.749085e+01 17 8 0.0014

helix 3 0 24 39 0 5.714551e-15 25 18 0.0011

hilberta 10 0 1 42 0 7.979703e-07 2 2 0.0005

hilbertb 50 0 1 51 0 1.445383e-27 2 2 0.0017

himmelba 2 2 1 5 0 0.000000e+00 2 2 0.0002

himmelbb 2 0 100 101 0 0.000000e+00 101 55 0.0024

himmelbc 2 2 6 19 0 0.000000e+00 8 6 0.0010

himmelbd 2 2 3000 6024 -2 0.000000e+00 3010 2997 0.1530

himmelbe 3 3 2 8 0 0.000000e+00 3 3 0.0003

himmelbf 4 0 7 13 0 3.185717e+02 8 8 0.0006

himmelbg 2 0 9 11 0 2.549820e-17 10 6 0.0005

himmelbh 2 0 7 10 0 -9.999999e-01 8 5 0.0004

himmelbi 100 12 15 365 0 -1.754999e+03 16 16 0.0070

himmelbj 45 16 58 325 -4 -1.906112e+03 114 4 0.0278

himmelbk 24 14 4 29 0 5.181434e-02 5 5 0.0014

himmelp1 2 2 7 9 0 -5.173784e+01 8 8 0.0004

himmelp2 2 3 8 15 0 -6.205386e+01 9 9 0.0006

himmelp3 2 4 4 11 0 -5.901312e+01 5 5 0.0008

himmelp4 2 5 4 11 0 -5.901312e+01 5 5 0.0004

himmelp5 2 5 13 36 0 -5.901312e+01 14 11 0.0010

himmelp6 2 5 1 1 0 -5.901312e+01 2 2 0.0002

hong 4 1 7 22 0 1.347306e+00 8 8 0.0007

hs001 2 1 31 47 0 7.034748e-15 32 25 0.0013

hs002 2 1 8 17 0 4.941229e+00 9 8 0.0005

hs003 2 1 1 2 0 0.000000e+00 2 2 0.0002

hs004 2 2 2 6 0 2.666666e+00 3 3 0.0006

hs005 2 2 7 32 0 -1.913222e+00 8 6 0.0007

hs006 2 1 1 6 0 4.930380e-32 3 2 0.0003

hs007 2 1 16 36 0 -1.732050e+00 25 11 0.0010

195

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs008 2 2 5 9 0 -1.000000e+00 6 6 0.0005

hs009 2 1 4 6 0 -4.999999e-01 5 4 0.0004

hs010 2 1 8 11 0 -1.000000e+00 9 9 0.0007

hs011 2 1 5 8 0 -8.498464e+00 6 6 0.0005

hs012 2 1 9 28 0 -3.000000e+01 17 7 0.0008

hs013 2 1 18 36 -8 1.001353e+00 19 19 0.0011

hs014 2 2 5 10 0 1.393464e+00 6 6 0.0005

hs015 2 3 6 53 0 3.065000e+02 8 6 0.0010

hs016 2 4 6 39 0 2.314466e+01 7 7 0.0012

hs017 2 4 10 40 0 1.000000e+00 11 10 0.0010

hs018 2 4 6 23 0 5.000000e+00 9 7 0.0007

hs019 2 4 5 21 0 -6.961813e+03 6 6 0.0006

hs020 2 4 6 35 0 4.019872e+01 7 7 0.0007

hs021 2 3 1 8 0 -9.995999e+01 2 2 0.0003

hs022 2 2 4 8 0 9.999999e-01 5 5 0.0004

hs023 2 5 5 28 0 2.000000e+00 6 6 0.0006

hs024 2 3 3 3 -3 -1.336458e-02 4 1 0.0003

hs026 3 1 17 30 0 1.232329e-10 21 15 0.0011

hs027 3 1 49 125 0 3.999999e-02 95 27 0.0032

hs028 3 1 1 5 0 3.944304e-31 2 2 0.0003

hs029 3 1 5 11 -3 -1.000000e+00 8 1 0.0004

hs030 3 4 1 6 0 1.000000e+00 2 2 0.0003

hs031 3 4 5 13 0 5.999999e+00 6 6 0.0005

hs032 3 2 1 9 0 1.000000e+00 2 2 0.0003

hs033 3 3 4 5 0 -3.999999e+00 5 5 0.0003

hs034 3 5 10 35 0 -8.340328e-01 20 8 0.0009

hs035 3 1 1 5 0 1.111111e-01 2 2 0.0003

hs036 3 4 2 2 -3 -1.000000e+03 3 1 0.0002

hs037 3 2 2 2 -3 -1.000000e+03 3 1 0.0002

hs038 4 0 8 12 -3 7.877189e+00 9 9 0.0007

196

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs039 4 2 12 55 0 -1.000000e+00 18 10 0.0011

hs040 4 3 3 19 0 -2.500009e-01 4 4 0.0006

hs041 4 5 2 2 0 2.000000e+00 3 3 0.0003

hs042 4 2 5 13 0 1.385786e+01 6 6 0.0005

hs043 4 3 9 68 0 -4.400000e+01 17 7 0.0013

hs044 4 6 1 3 0 -1.499999e+01 2 2 0.0003

hs046 5 2 33 105 0 6.332185e-08 64 20 0.0032

hs047 5 3 21 110 0 3.131472e-09 38 16 0.0025

hs048 5 2 1 9 0 3.648481e-30 2 2 0.0003

hs049 5 2 15 23 0 6.962487e-09 16 16 0.0010

hs050 5 3 8 31 0 1.078143e-19 9 9 0.0009

hs051 5 3 1 12 0 3.574525e-31 2 2 0.0003

hs052 5 3 1 11 0 5.326647e+00 2 2 0.0003

hs053 5 3 1 12 0 4.093023e+00 2 2 0.0003

hs054 6 1 1 9 0 1.928571e-01 2 2 0.0003

hs055 6 6 2 17 0 6.333333e+00 3 3 0.0005

hs056 7 4 2 12 -3 -1.000000e+00 5 1 0.0004

hs057 2 3 3 11 0 2.845966e-02 5 4 0.0005

hs059 2 3 9 28 0 -6.749505e+00 10 9 0.0008

hs060 3 1 6 10 0 3.256820e-02 7 7 0.0005

hs061 3 2 6 25 0 -1.436461e+02 8 7 0.0007

hs062 3 1 6 18 0 -2.627251e+04 7 6 0.0007

hs063 3 2 3000 6017 -2 9.680000e+02 3002 3001 0.1179

hs064 3 1 15 59 0 6.299842e+03 20 16 0.0018

hs065 3 4 5 23 0 9.535288e-01 7 6 0.0006

hs066 3 5 7 30 0 5.181632e-01 14 5 0.0009

hs067 10 21 34 149 0 -1.162026e+03 65 22 0.0068

hs070 4 1 13 27 0 1.795701e-01 15 10 0.0014

hs071 4 2 5 10 0 1.701401e+01 6 6 0.0005

hs072 4 6 9 73 0 7.276788e+02 11 10 0.0014

197

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs073 4 3 2 17 0 2.989437e+01 3 3 0.0006

hs074 4 4 38 119 0 5.126498e+03 52 25 0.0031

hs075 4 4 38 127 0 5.174412e+03 52 25 0.0033

hs076 4 3 1 8 0 -4.681818e+00 2 2 0.0003

hs077 5 2 10 24 0 2.415051e-01 14 10 0.0009

hs078 5 3 4 26 0 -2.919700e+00 5 5 0.0007

hs079 5 3 4 16 0 7.877682e-02 5 5 0.0006

hs080 5 3 7 18 0 5.394984e-02 8 8 0.0007

hs081 5 3 15 66 0 4.388512e-01 24 11 0.0018

hs083 5 3 4 20 0 -3.066553e+04 5 5 0.0006

hs084 5 3 0 4 -23 -2.351243e+06 1 1 0.0004

hs085 5 48 10 26 0 -1.905155e+00 17 9 0.0019

hs086 5 10 3 34 0 -3.234867e+01 4 4 0.0009

hs087 11 6 11 88 0 8.827597e+03 12 12 0.0018

hs088 2 1 16 42 0 1.362656e+00 19 15 0.0022

hs089 3 1 22 95 0 1.362656e+00 30 17 0.0037

hs090 4 1 40 212 0 1.362656e+00 70 19 0.0070

hs091 5 1 21 81 0 1.362656e+00 28 16 0.0047

hs092 6 1 33 165 0 1.362656e+00 57 19 0.0088

hs093 6 2 10 58 0 1.350759e+02 20 6 0.0014

hs095 6 4 2 3 0 1.561952e-02 3 3 0.0003

hs096 6 4 2 3 0 1.561952e-02 3 3 0.0003

hs097 6 4 5 15 0 3.135809e+00 7 6 0.0006

hs098 6 4 5 15 0 3.135809e+00 7 6 0.0005

hs099 23 18 16 247 0 -8.310798e+08 17 17 0.0066

hs100 7 4 9 60 0 6.806300e+02 15 6 0.0011

hs100lnp 7 2 11 45 0 6.806300e+02 17 9 0.0012

hs100mod 7 4 8 42 0 6.787547e+02 15 5 0.0012

hs101 7 6 20 219 0 1.809764e+03 26 16 0.0034

hs102 7 6 16 199 0 9.118805e+02 22 11 0.0034

198

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs103 7 6 14 195 0 5.436679e+02 21 11 0.0031

hs104 8 6 14 93 0 3.951163e+00 22 8 0.0021

hs105 8 9 10 53 0 1.151396e+03 11 11 0.0087

hs106 8 14 1716 4020 0 7.049248e+03 3431 859 0.1667

hs107 9 14 21 379 0 5.055011e+03 34 15 0.0080

hs108 9 14 8 247 -21 -6.718773e-01 14 4 0.0035

hs109 9 10 23 183 0 5.326851e+03 31 18 0.0039

hs110 10 0 4 34 0 -4.577846e+01 5 4 0.0006

hs111 10 3 23 276 0 -4.737064e+01 37 17 0.0046

hs111lnp 10 3 23 276 0 -4.737064e+01 37 17 0.0045

hs112 10 3 11 73 0 -4.776109e+01 12 12 0.0017

hs113 10 8 5 33 0 2.430620e+01 6 6 0.0009

hs114 10 11 27 110 0 -1.768806e+03 49 19 0.0046

hs116 13 28 175 496 0 9.758750e+01 347 89 0.0381

hs117 15 5 5 24 0 3.234867e+01 6 6 0.0008

hs118 15 17 2 26 0 6.648204e+02 3 3 0.0006

hs119 16 8 7 97 0 2.448996e+02 8 8 0.0026

hs21mod 7 7 1 20 0 -9.595999e+01 2 2 0.0004

hs268 5 5 1 14 0 7.219114e-12 2 2 0.0004

hs35mod 3 2 1 6 0 2.500000e-01 2 2 0.0006

hs3mod 2 1 1 4 0 0.000000e+00 2 2 0.0002

hs44new 4 6 1 3 0 -1.500000e+01 2 2 0.0003

hs99exp 31 21 54 535 0 -1.008062e+09 92 38 0.0197

hubfit 2 1 1 4 0 1.689349e-02 2 2 0.0004

hues-mod 10000 2 13 65465 0 3.482448e+07 14 14 55.9720

huestis 10000 2 11 57403 -8 8.358408e+10 12 12 47.7188

humps 2 0 30 44 -3 2.138289e+04 31 18 0.0009

hvycrash 202 150 12 103239 -24 -2.254036e-01 20 7 2.0446

hypcir 2 2 6 20 0 0.000000e+00 8 6 0.0005

integreq 100 100 2 202 0 0.000000e+00 3 3 0.0438

199

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

jensmp 2 0 9 11 0 1.243621e+02 10 10 0.0006

kissing 127 903 25 14723 -22 1.413553e+00 50 11 2.2163

kiwcresc 3 2 12 38 0 -6.776352e-08 20 8 0.0011

kowosb 4 0 17 33 0 3.075056e-04 18 9 0.0010

ksip 20 1001 1 1148 0 5.757979e-01 2 2 0.0997

lakes 90 78 11 1104 -23 6.069344e+11 12 12 0.0411

launch 25 29 48 838 -3 9.512672e+00 79 17 0.0191

lch 600 1 0 505 -21 2.586969e+05 1 1 0.0284

liarwhd 10000 0 12 10012 0 8.198347e-22 13 13 8.4733

linspanh 97 33 1 72 0 -7.699999e+01 2 2 0.0031

liswet1 10002 10000 1 26769 0 3.612061e+01 2 2 23.1894

liswet10 10002 10000 1 24357 0 4.948391e+01 2 2 20.7017

liswet11 10002 10000 1 24497 0 4.951524e+01 2 2 20.8351

liswet12 10002 10000 1 27270 0 -3.314380e+03 2 2 24.1918

liswet2 10002 10000 2 21232 0 2.499996e+01 3 3 16.4498

liswet3 10002 10000 1 19836 0 2.499980e+01 2 2 14.5672

liswet4 10002 10000 1 19824 0 2.499980e+01 2 2 14.6010

liswet5 10002 10000 1 19838 0 2.499981e+01 2 2 14.5093

liswet6 10002 10000 1 19897 0 2.499986e+01 2 2 14.6920

liswet7 10002 10000 1 25994 0 4.987922e+02 2 2 22.0970

liswet8 10002 10000 1 25807 0 7.144874e+02 2 2 22.1193

liswet9 10002 10000 1 28041 0 1.963305e+03 2 2 24.9196

lminsurf 15625 496 0 2774 -23 1.000000e+00 1 1 1.5957

loadbal 31 31 7 51 0 4.528510e-01 8 8 0.0018

loghairy 2 0 6 7 -3 6.552519e+00 7 1 0.0003

logros 2 0 11 12 -3 1.275930e+00 12 2 0.0004

lootsma 3 3 4 5 0 2.000000e+00 5 5 0.0004

lotschd 12 7 2 49 0 2.398415e+03 3 3 0.0010

lsnnodoc 5 4 6 51 0 1.231124e+02 7 7 0.0010

lsqfit 2 1 1 4 0 3.378698e-02 2 2 0.0003

200

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

madsen 3 6 13 70 0 6.164324e-01 23 8 0.0015

madsschj 81 158 783 7191 0 -7.972837e+02 1546 391 4.2405

makela1 3 2 15 75 0 -1.414213e+00 29 6 0.0014

makela2 3 3 9 47 0 7.199999e+00 15 7 0.0009

makela3 21 20 54 355 0 -1.387778e-17 103 28 0.0076

makela4 21 40 2 35 0 0.000000e+00 3 3 0.0009

mancino 100 0 5 127 0 1.677174e-21 6 6 0.0393

manne 1094 730 1 270 0 -9.745725e-01 2 2 0.0525

maratos 2 1 8 24 0 -1.000000e+00 15 5 0.0007

maratosb 2 0 211 315 0 -1.000000e+00 212 156 0.0063

matrix2 6 2 10 16 0 9.536743e-07 11 11 0.0007

maxlika 8 8 10 53 0 1.151396e+03 11 11 0.0103

mconcon 15 16 8 78 0 -6.230795e+03 13 9 0.0020

mdhole 2 0 2 3 0 0.000000e+00 3 3 0.0003

methanb8 31 0 72 256 0 4.784765e-20 73 39 0.0178

methanl8 31 0 361 1889 -3 9.540468e-03 362 181 0.0949

mexhat 2 0 9 11 0 -4.009999e-02 10 7 0.0005

meyer3 3 0 416 554 0 8.794585e+01 417 344 0.0230

mifflin1 3 2 10 41 0 -1.000000e+00 21 6 0.0015

mifflin2 3 2 10 54 0 -1.000000e+00 18 6 0.0021

minc44 311 262 3000 11603 -2 2.575683e-03 5996 1496 27.1996

minmaxbd 5 20 62 448 0 1.157064e+02 121 31 0.0099

minmaxrb 3 4 1 7 0 0.000000e+00 3 2 0.0004

minperm 1113 1033 4 229 -21 2.499999e-01 7 4 0.0599

minsurf 64 32 1 125 0 1.000000e+00 2 2 0.0047

mistake 9 13 18 247 0 -1.000000e+00 35 7 0.0048

model 1831 339 1 185 0 5.742163e+03 2 2 0.0278

mosarqp1 2500 700 1 1762 0 -9.528754e+02 2 2 0.1887

mosarqp2 900 600 1 1064 0 -1.597482e+03 2 2 0.0666

msqrtals 1024 0 106 24552 0 3.615234e-11 107 51 177.7508

201

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

msqrtbls 1024 0 86 23658 0 3.595141e-11 87 41 145.8149

mwright 5 3 9 38 0 2.497880e+01 11 8 0.0011

nasty 2 0 1 3 0 1.534091e-72 2 2 0.0002

ncvxbqp1 10000 0 1 9584 0 -1.985543e+10 2 2 6.3145

ncvxbqp2 10000 0 1 8673 0 -1.329056e+10 2 2 5.4847

ncvxbqp3 10000 0 1 5169 0 -6.470378e+09 2 2 3.0478

ncvxqp1 1000 500 1 7085 0 -7.163867e+07 2 2 1.2096

ncvxqp2 1000 500 1 8131 0 -5.780691e+07 2 2 1.4146

ncvxqp3 1000 500 1 7552 0 -3.123876e+07 2 2 1.1894

ncvxqp4 1000 250 1 2756 0 -9.398212e+07 2 2 0.3329

ncvxqp5 1000 250 1 2688 0 -6.633766e+07 2 2 0.3201

ncvxqp6 1000 250 1 2271 0 -3.515589e+07 2 2 0.2604

ncvxqp7 1000 750 1 14621 0 -4.352453e+07 2 2 3.7517

ncvxqp8 1000 750 1 15438 0 -3.049666e+07 2 2 4.1419

ncvxqp9 1000 750 1 16038 0 -2.157081e+07 2 2 3.7392

ngone 100 1273 71 1197 0 -6.376367e-01 143 33 0.2989

noncvxu2 1000 0 215 324645 -24 2.431469e+04 216 108 48.5667

noncvxun 1000 0 81 7766 0 2.656813e+03 82 43 0.2145

nondia 9999 0 5 10006 0 2.306591e-25 6 6 4.2736

nondquar 10000 0 19 10021 0 4.139781e-10 20 20 7.4667

nonmsqrt 9 0 235 398 -3 7.518036e-01 236 138 0.0116

nonscomp 10000 0 8 10010 0 3.059438e-14 9 9 2.7079

nuffield 861 8001 2 130355 -21 -2.697031e+00 5 1 115.9462

nuffield2 2382 7923 0 100000 -24 -0.000000e+00 1 1 115.6763

nuffield continuum 2 1 3 7 0 -2.549414e+00 4 4 0.0009

obstclal 96 0 1 38 0 1.397897e+00 2 2 0.0018

obstclbl 96 0 1 73 0 2.875038e+00 2 2 0.0021

obstclbu 96 0 1 57 0 2.875038e+00 2 2 0.0019

odfits 10 6 9 52 0 -2.380026e+03 10 10 0.0026

oet1 3 1002 1 313 0 5.382431e-01 2 2 0.0333

202

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

oet2 3 1002 7 3408 0 8.715964e-02 10 6 0.3574

oet3 4 1002 1 264 0 4.505052e-03 2 2 0.0296

oet7 7 1002 68 12685 0 2.069736e-03 132 31 1.4050

optcdeg2 1199 800 3 18380 0 2.295734e+02 4 4 3.5370

optcdeg3 1199 800 3 13734 0 4.614566e+01 4 4 2.2344

optcntrl 32 21 2 158 0 5.500000e+02 3 3 0.0060

optctrl3 122 81 0 711 -8 1.560050e+06 1 1 0.0458

optctrl6 122 81 0 711 -8 1.560050e+06 1 1 0.0471

optmass 66 55 8 457 -3 -1.468523e-01 15 3 0.0215

optprloc 30 30 6 136 0 -1.641977e+01 13 5 0.0056

orthrdm2 4003 2000 5 13076 0 1.555328e+02 7 6 50.7529

orthrds2 203 100 24 107143 -24 1.397629e+03 36 14 4.4093

orthrega 517 256 62 12771 0 1.414055e+03 119 36 2.7787

orthregb 27 6 1 44 0 1.449963e-28 2 2 0.0007

orthrege 36 20 796 1934 0 6.071141e-01 1590 400 0.2846

osbornea 5 0 3000 5294 -2 4.695101e-02 3001 1500 0.1295

osborneb 11 0 18 42 0 4.013773e-02 19 13 0.0022

oslbqp 8 8 1 26 0 6.250000e+00 2 2 0.0005

palmer1 4 0 32 48 0 1.175460e+04 37 19 0.0013

palmer1a 6 0 49 84 0 8.988362e-02 50 34 0.0025

palmer1b 4 0 30 42 0 3.447354e+00 31 21 0.0015

palmer1c 8 0 6 38 0 9.759799e-02 7 7 0.0008

palmer1d 7 0 5 26 0 6.526825e-01 6 6 0.0006

palmer1e 8 0 11 45 -3 3.570721e+00 12 9 0.0010

palmer2 4 0 35 63 0 3.651089e+03 36 19 0.0013

palmer2a 6 0 75 121 0 1.716073e-02 76 62 0.0033

palmer2b 4 0 21 33 0 6.233946e-01 22 16 0.0011

palmer2c 8 0 4 30 0 1.442139e-02 5 5 0.0006

palmer2e 8 0 6 36 0 1.163139e-01 7 6 0.0011

palmer3 4 0 31 57 0 2.265958e+03 32 16 0.0013

203

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

palmer3a 6 0 82 143 0 2.043142e-02 83 66 0.0041

palmer3b 4 0 15 30 -3 2.346901e+02 16 10 0.0008

palmer3c 8 0 4 36 0 1.953763e-02 5 5 0.0006

palmer3e 8 0 4 22 -3 1.507276e-01 5 5 0.0006

palmer4 4 0 37 72 0 2.285383e+03 38 19 0.0028

palmer4a 6 0 15 56 -3 2.051506e+00 16 10 0.0010

palmer4b 4 0 24 46 0 6.835138e+00 25 18 0.0010

palmer4c 8 0 5 37 0 5.031069e-02 6 6 0.0006

palmer4e 8 0 92 292 -3 3.712711e-01 93 48 0.0054

palmer5a 8 0 119 226 -3 2.146426e-01 124 84 0.0049

palmer5b 9 0 53 129 -3 1.146864e-02 58 37 0.0029

palmer5c 6 0 3 15 0 2.128086e+00 4 4 0.0004

palmer5d 4 0 4 12 0 8.733939e+01 5 5 0.0007

palmer5e 8 0 4 18 -3 2.961811e+00 5 5 0.0006

palmer6a 6 0 138 248 0 5.594883e-02 151 101 0.0065

palmer6c 8 0 5 41 0 1.638742e-02 6 6 0.0007

palmer6e 8 0 16 61 -3 1.292492e-01 17 10 0.0012

palmer7a 6 0 25 59 -3 2.874189e+01 26 26 0.0020

palmer7c 8 0 7 35 0 6.019856e-01 8 8 0.0006

palmer7e 8 0 8 44 -3 5.170740e+02 9 8 0.0007

palmer8a 6 0 25 61 -3 7.719709e+00 26 26 0.0026

palmer8c 8 0 6 40 0 1.597680e-01 7 7 0.0007

palmer8e 8 0 427 1065 -3 6.340525e-01 428 214 0.0173

penalty1 1000 0 47 4389 0 9.686340e-03 48 44 60.8410

penalty2 100 0 19 119 0 9.709608e+04 20 20 0.0463

pentagon 6 15 7 60 0 1.462141e-04 8 5 0.0017

pentdi 1000 0 1 3 0 -7.500000e-01 2 2 0.0015

pfit1 3 0 14 23 -3 1.355458e+02 15 8 0.0008

pfit1ls 3 0 14 23 -3 1.355458e+02 15 8 0.0006

pfit2 3 0 14 21 -3 6.310268e+01 15 7 0.0006

204

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

pfit2ls 3 0 14 21 -3 6.310268e+01 15 7 0.0006

pfit3 3 0 88 125 0 5.566516e-21 89 66 0.0033

pfit3ls 3 0 88 125 0 5.566516e-21 89 66 0.0033

pfit4 3 0 382 603 0 2.371073e-20 383 269 0.0125

pfit4ls 3 0 382 603 0 2.371073e-20 383 269 0.0150

polak1 3 2 7 13 0 2.718281e+00 8 8 0.0007

polak2 11 2 3000 3004 -2 -2.971073e+13 3001 3001 0.1154

polak3 12 10 9 148 0 5.933002e+00 16 7 0.0026

polak4 3 3 4 7 0 -2.953681e-16 5 5 0.0009

polak5 3 2 43 137 0 5.000000e+01 77 29 0.0033

polak6 5 4 318 1736 0 -4.399999e+01 616 157 0.0279

porous1 4900 4900 0 721 -21 0.000000e+00 1 1 0.5241

portfl1 12 1 1 11 0 2.048627e-02 2 2 0.0004

portfl2 12 1 1 12 0 2.968923e-02 2 2 0.0004

portfl3 12 1 1 11 0 3.274970e-02 2 2 0.0004

portfl4 12 1 1 11 0 2.630695e-02 2 2 0.0004

portfl6 12 1 1 11 0 2.579179e-02 2 2 0.0004

powell20 1000 1000 5 4981 0 5.214578e+07 6 6 0.5891

powellbs 2 2 24 77 0 0.000000e+00 43 17 0.0017

powellsq 2 2 62 220 0 0.000000e+00 114 32 0.0043

power 1000 0 1 1001 0 0.000000e+00 2 2 0.0455

probpenl 500 0 19 519 0 -4.850917e-07 20 20 0.4013

prodpl0 60 29 10 321 0 6.091923e+01 12 9 0.0097

prodpl1 60 29 8 278 0 5.303701e+01 10 7 0.0069

pspdoc 4 1 12 23 0 2.414213e+00 13 8 0.0007

pt 2 501 1 391 0 1.783942e-01 2 2 0.0213

qpcboei1 384 348 8 4424 0 1.443386e+07 9 9 0.3655

qpcboei2 143 140 7 1490 0 8.293665e+06 8 8 0.0648

qpcstair 467 356 2 2054 -21 2.141900e+05 3 3 0.2400

qpnboei1 384 348 7 4678 0 8.449924e+06 8 8 0.3877

205

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

qpnboei2 143 140 8 1415 0 1.271825e+06 9 9 0.0621

qpnstair 467 356 9 3246 0 5.146033e+06 10 10 0.3427

qr3d 155 0 388 1270 0 4.967249e-15 389 195 1.5728

qr3dbd 127 0 100 346 0 5.433610e-14 101 51 0.2662

qr3dls 155 0 388 1270 0 4.967383e-15 389 195 1.6389

qrtquad 120 10 16 490 0 -3.648088e+06 18 12 0.0108

quartc 10000 0 41 29977 0 2.620441e-05 42 42 8.4409

qudlin 12 0 1 13 0 -7.200000e+03 2 2 0.0002

reading1 10001 5000 3 124140 -24 -7.019024e-02 6 2 115.9778

reading2 15003 10002 2 26494 0 -1.258021e-02 3 3 52.0719

reading3 202 102 2 255 0 -6.702236e-32 3 3 0.0106

recipe 3 3 2 8 0 0.000000e+00 3 3 0.0003

rk23 17 11 13 147 0 8.333333e-02 20 9 0.0043

robot 14 9 6 62 0 1.339073e+01 8 7 0.0014

rosenbr 2 0 28 40 0 4.260063e-22 29 22 0.0010

rosenmmx 5 4 132 496 0 -4.400000e+01 264 64 0.0123

s332 2 102 11 785 0 2.992435e+01 19 9 0.0183

s365mod 7 9 889 1908 -8 2.500000e-01 898 887 0.0514

sawpath 593 786 0 4918 -21 1.483193e+03 1 1 0.9174

scon1dls 1000 0 313 17267 0 1.606123e-11 314 239 1.0497

scosine 10000 0 20 6983 -22 1.804312e+03 21 2 3.5914

scurly10 10000 0 30 83297 0 -9.945407e+05 31 23 84.8311

scurly20 10000 0 32 34338 0 -9.966678e+05 33 25 57.4581

scurly30 10000 0 32 36788 0 -9.974118e+05 33 26 92.6072

semicon1 1000 1000 41 5723 -8 0.000000e+00 62 22 1.4579

semicon2 1000 1000 21 8177 -8 0.000000e+00 32 12 1.9594

sim2bqp 2 0 1 3 0 0.000000e+00 2 2 0.0002

simbqp 2 1 1 4 0 -2.220446e-16 2 2 0.0002

simpllpa 2 2 1 3 0 1.000000e+00 2 2 0.0002

simpllpb 2 3 1 3 0 1.099999e+00 2 2 0.0003

206

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

sineali 20 0 3 5 0 -1.827032e+03 4 4 0.0003

sineval 2 0 56 85 0 1.409206e-18 57 42 0.0019

sinquad 10000 0 4 10004 -3 1.474312e-02 5 5 11.8170

sipow1 2 10000 1 972 0 -1.000000e+00 2 2 0.7433

sipow1m 2 10000 1 971 0 -1.000000e+00 2 2 0.7194

sipow2 2 5001 1 185 0 -1.000000e+00 2 2 0.0736

sipow2m 2 5001 1 182 0 -1.000000e+00 2 2 0.0752

sipow3 4 10000 1 224 0 5.356507e-01 2 2 0.1802

sipow4 4 10000 1 4858 0 2.728283e-01 2 2 3.8269

sisser 2 0 16 18 0 9.640368e-09 17 13 0.0006

smbank 117 64 20 452 0 -7.129292e+06 21 21 0.0344

smmpsf 720 263 22 2383 0 1.046985e+06 23 23 0.2723

snake 2 2 2 15 0 -2.373656e-13 3 3 0.0010

sosqp1 20000 10001 1 38587 0 -5.249689e-13 2 2 54.4829

sosqp2 20000 10001 1 37297 0 -4.998699e+03 2 2 70.7995

spanhyd 97 33 31 1644 -3 2.398075e+02 36 15 0.0566

spiral 3 2 173 788 0 -2.798963e-11 326 105 0.0195

sreadin3 10001 5001 1 5001 0 0.000000e+00 2 2 6.0966

srosenbr 10000 0 28 60028 0 2.130031e-18 29 22 11.4345

sseblin 194 72 10 993 0 1.617060e+07 11 11 0.0488

ssebnln 194 96 47 1762 0 1.617060e+07 67 29 0.0988

ssnlbeam 33 20 4 262 0 3.377724e+02 5 5 0.0064

stancmin 3 2 5 16 0 4.250000e+00 6 6 0.0005

steenbra 432 108 8 1040 0 1.695767e+04 9 9 0.0762

steenbrb 468 108 484 23594 0 9.075855e+03 485 250 1.4593

steenbrc 540 126 162 2648 0 1.837538e+04 189 90 0.2141

steenbrd 468 108 404 21485 0 9.144724e+03 406 211 1.2803

steenbre 540 126 1228 86628 0 2.745916e+04 1229 624 5.6801

steenbrf 468 108 69 1767 0 2.826795e+02 78 40 0.1014

steenbrg 540 126 1479 111404 0 2.742092e+04 1483 750 7.3592

207

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

supersim 2 2 1 4 0 6.666666e-01 2 2 0.0002

svanberg 5000 5000 3 58941 -3 9.165666e+03 5 2 41.5320

swopf 83 92 4 294 0 6.786014e-02 5 5 0.0244

synthes1 7 7 4 24 0 5.171320e+00 9 5 0.0009

tame 2 1 1 5 0 1.232595e-32 2 2 0.0003

tfi2 3 10001 1 883 0 6.490420e-01 2 2 0.6826

tointqor 50 0 1 53 0 1.175472e+03 2 2 0.0008

trainf 20008 10002 3 79612 0 3.103384e+00 4 4 174.1029

tridia 10000 0 1 10001 0 3.430769e-24 2 2 2.7102

trimloss 142 75 7 255 0 9.060000e+00 8 8 0.0142

try-b 2 1 9 18 0 0.000000e+00 11 9 0.0014

twirism1 343 313 8 22827 -21 -1.780800e-01 15 6 3.1104

twobars 2 2 11 31 0 1.508652e+00 20 9 0.0020

ubh1 17997 12000 0 100000 -24 0.000000e+00 1 1 126.2072

vanderm1 100 199 10 181396 -24 0.000000e+00 21 4 12.9324

vanderm2 100 199 16 26345 -8 0.000000e+00 28 9 3.6439

vanderm3 100 199 3 9549 -21 0.000000e+00 6 2 1.1143

vanderm4 9 17 48 437 -8 0.000000e+00 65 33 0.0139

vardim 100 0 25 125 0 0.000000e+00 26 26 0.0558

watson 31 0 10 301 -3 7.358741e-04 11 11 0.0046

weeds 3 0 23 30 0 9.205435e+03 24 23 0.0010

womflet 3 3 8 24 0 0.000000e+00 12 6 0.0008

woods 10000 0 8 10008 -3 1.969297e+04 9 9 2.1469

yao 2002 2003 1 9974 0 1.977046e+02 2 2 2.5958

yfit 3 0 46 60 0 6.669720e-13 47 39 0.0027

yfitu 3 0 46 60 0 6.669720e-13 47 39 0.0023

zangwil2 2 0 1 3 0 -1.819999e+01 2 2 0.0003

zangwil3 3 3 4 22 0 0.000000e+00 5 5 0.0006

zecevic2 2 4 1 8 0 -4.125000e+00 2 2 0.0003

zecevic3 2 4 45 165 0 9.730945e+01 89 23 0.0029

208

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

zecevic4 2 4 5 20 0 7.557507e+00 6 6 0.0006

zigzag 64 50 8 301 0 3.161734e+00 11 8 0.0120

zy2 3 2 4 5 0 2.000000e+00 5 5 0.0004

B.2. Warm-start Using Perturbed Optimal Solution

Table B.2. Table of warm-start results on the CUTE test set for RestartSQP

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

3pk 30 0 1 1 0 1.720118+00 2 2 0.0006

aircrfta 5 5 1 1 0 0.000000+00 2 2 0.0003

aircrftb 8 3 1 1 0 8.000173-13 2 2 0.0003

airport 84 42 4 13 0 4.795270+04 5 5 0.0052

aljazzaf 3 1 1 1 0 7.500499+01 2 2 0.0002

allinit 4 3 2 2 0 1.670596+01 3 3 0.0004

allinitc 4 4 2 3 0 3.049413+01 3 3 0.0002

allinitu 4 0 1 1 0 5.744384+00 2 2 0.0002

alsotame 2 3 1 2 0 8.208499-02 2 2 0.0003

arglina 100 0 1 1 0 9.999999+01 2 2 0.0135

arglinb 10 0 1 22 -3 4.642266+00 2 1 0.0004

arglinc 8 0 2 107393 -24 6.145743+00 3 1 0.3783

argtrig 100 100 2 2 0 0.000000+00 3 3 0.0134

arwhead 5000 0 45 5044 -4 -1.519877-09 46 7 1.8024

aug2d 20192 9996 1 1 0 1.687411+06 2 2 0.1094

aug2dc 20200 10194 1 30 0 1.818392+06 2 2 0.2110

aug2dcqp 20200 10194 1 15 0 6.498179+06 2 2 0.1519

aug2dqp 20192 10194 1 1 0 6.237011+06 2 2 0.1157

aug3d 3873 1000 1 6268 0 5.540677+02 2 2 2.4905

aug3dc 3873 1000 1 1 0 7.712624+02 2 2 0.0205

209

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

aug3dcqp 3873 1000 1 56 0 9.933621+02 2 2 0.0406

aug3dqp 3873 1000 1 8 0 6.752376+02 2 2 0.0388

avgasa 8 10 1 2 0 -4.412171+00 2 2 0.0003

avgasb 8 10 1 2 0 -4.483219+00 2 2 0.0003

avion2 49 15 1 22 -3 9.468023+07 2 1 0.0007

bard 3 0 1 1 0 8.214877-03 2 2 0.0002

batch 46 73 2 26 0 2.591803+05 3 3 0.0011

bdexp 5000 0 0 0 0 1.324840-06 1 1 0.0014

bdqrtic 1000 0 2 2 0 3.983817+03 3 3 0.0085

bdvalue 5000 5000 1 1 0 0.000000+00 2 2 0.0191

beale 2 0 0 0 0 4.342569-18 1 1 0.0001

bigbank 2230 1112 1 12 0 -4.205696+06 2 2 0.0350

biggs3 6 3 1 1 0 3.181446-13 2 2 0.0002

biggs5 6 1 1 1 0 1.449749-10 2 2 0.0002

biggs6 6 0 1 1 0 1.312266-10 2 2 0.0003

biggsb1 1000 999 1 1 0 1.499999-02 2 2 0.0028

biggsc4 4 7 1 10 0 -2.450000+01 2 2 0.0004

blockqp1 2005 1001 1 1 -3 -9.964767+02 2 1 0.0687

blockqp2 2005 1001 1 49 0 -9.961011+02 2 2 0.1483

blockqp3 2005 1001 1 1 -3 -4.974846+02 2 1 0.0712

blockqp4 2005 1001 1 57 0 -4.980982+02 2 2 0.1933

blockqp5 2005 1001 1 1 -3 -4.974846+02 2 1 0.0706

bloweya 2002 1002 1 1 0 -4.553071-02 2 2 0.0966

bloweyb 2002 1002 1 1 0 -3.045265-02 2 2 0.0940

bloweyc 2002 1002 1 1 0 -3.036381-02 2 2 0.0983

booth 2 2 1 1 0 0.000000+00 2 2 0.0003

box2 3 1 1 1 0 3.862337-33 2 2 0.0002

box3 3 0 1 1 0 6.185938-30 2 2 0.0002

bqp1var 1 1 0 0 0 -7.479521-09 1 1 0.0001

bqpgabim 50 4 1 3 0 -3.790343-05 2 2 0.0006

210

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

bqpgasim 50 0 1 3 0 -5.519814-05 2 2 0.0005

brainpc7 6905 6900 0 277 -23 3.927065-04 2 1 162.8901

bratu1d 1001 0 1 1 0 -8.518927+00 2 2 0.0032

bratu2d 4900 4900 1 1 0 0.000000+00 2 2 0.0849

bratu3d 3375 3375 1 1 0 0.000000+00 2 2 0.2432

brkmcc 2 0 0 0 0 1.690426-01 1 1 0.0001

brownal 10 0 1 1 0 1.116698-13 2 2 0.0003

brownbs 2 0 0 0 0 0.000000+00 1 1 0.0001

brownden 4 0 2 2 0 8.582220+04 3 3 0.0003

broydn3d 10000 10000 1 1 0 0.000000+00 2 2 0.0470

broydn7d 1000 0 2 2 0 3.450050+02 3 3 0.0055

broydnbd 5000 5000 2 2 0 0.000000+00 3 3 0.0803

brybnd 5000 0 2 2 0 8.021454-18 3 3 0.0597

bt1 2 1 1 1 0 -1.000000+00 2 2 0.0002

bt10 2 2 1 1 0 -1.000000+00 2 2 0.0002

bt11 5 3 1 1 0 8.248917-01 2 2 0.0003

bt12 5 3 1 1 0 6.188118+00 2 2 0.0003

bt13 5 2 0 0 0 -7.494096-09 1 1 0.0001

bt2 3 1 1 1 0 3.256824-02 2 2 0.0003

bt3 5 3 1 1 0 4.093023+00 2 2 0.0003

bt4 3 2 1 1 0 -3.704768+00 2 2 0.0003

bt5 3 2 1 1 0 9.617151+02 2 2 0.0003

bt6 5 2 1 1 0 2.770450-01 2 2 0.0003

bt7 5 3 1 1 0 3.064997+02 2 2 0.0003

bt8 5 2 0 0 0 1.000000+00 1 1 0.0001

bt9 4 2 1 1 0 -1.000000+00 2 2 0.0003

byrdsphr 3 2 1 1 0 -4.683300+00 2 2 0.0003

camel6 2 2 0 0 0 -2.154638-01 1 1 0.0001

cantilvr 5 1 1 1 0 1.339956+00 2 2 0.0002

catena 32 11 1 1 0 -2.307775+04 2 2 0.0004

211

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

catenary 496 166 1 1 0 -3.484032+05 2 2 0.0015

cb2 3 3 1 1 0 1.952224+00 2 2 0.0003

cb3 3 3 1 1 0 2.000000+00 2 2 0.0003

cbratu2d 882 882 1 1 0 0.000000+00 2 2 0.0124

cbratu3d 1024 1024 1 1 0 0.000000+00 2 2 0.0397

chaconn1 3 3 1 1 0 1.952224+00 2 2 0.0002

chaconn2 3 3 1 1 0 2.000000+00 2 2 0.0003

chainwoo 1000 0 2 2 0 6.362471+01 3 3 0.0031

chandheq 100 100 1 1 0 0.000000+00 2 2 0.0147

chebyqad 50 0 13 22 0 5.386315-03 14 10 0.2125

chemrctb 1000 1000 1 1 0 0.000000+00 2 2 0.0048

chenhark 1000 0 1 11 0 -2.000000+00 2 2 0.0022

chnrosnb 50 0 2 2 0 1.582934-16 3 3 0.0004

cliff 2 0 4 4 0 1.997866-01 5 5 0.0003

clnlbeam 1499 1000 3 27331 0 3.448762+02 4 4 6.1623

clplatea 4970 0 2 2 0 -1.259209-02 3 3 0.0432

clplateb 4970 0 2 2 0 -6.988222+00 3 3 0.0461

clplatec 4970 0 1 1 0 -5.020724-03 2 2 0.0253

cluster 2 2 1 1 0 0.000000+00 2 2 0.0002

concon 15 11 1 2 0 -6.230795+03 2 2 0.0003

congigmz 3 5 1 1 0 2.799999+01 2 2 0.0003

coolhans 9 9 1 1 0 0.000000+00 2 2 0.0003

core1 65 115 1 809 0 9.105624+01 3 2 0.0481

core2 157 134 0 100000 -24 7.290065+01 1 1 3.2597

corkscrw 8997 7000 0 100000 -24 9.068793+01 1 1 145.8280

coshfun 61 20 0 19 -8 9.712808-08 1 1 0.0017

cosine 10000 0 2 2 0 -9.999000+03 3 3 0.0347

cragglvy 5000 0 2 2 0 1.688215+03 3 3 0.0207

cresc4 6 8 2 7 0 8.718975-01 3 3 0.0005

csfi1 5 4 1 1 0 -4.907520+01 2 2 0.0003

212

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

csfi2 5 4 0 0 0 5.501760+01 1 1 0.0001

cube 2 0 0 0 0 1.753567-24 1 1 0.0001

curly10 10000 0 2 2 0 -1.003162+06 3 3 0.1245

curly20 10000 0 2 2 0 -1.003162+06 3 3 0.2657

curly30 10000 0 2 2 0 -1.003162+06 3 3 0.4341

cvxbqp1 10000 0 1 1 0 2.250225+06 2 2 0.0164

cvxqp1 1000 500 1 11 0 1.087511+06 2 2 0.0277

cvxqp2 10000 2500 1 79 0 8.184245+07 2 2 0.7256

dallass 46 31 0 103 -21 -3.239350+04 1 1 0.0058

deconvc 51 1 41 191 0 2.569477-03 69 19 0.0228

deconvu 51 0 4 4 -3 5.730984-03 5 5 0.0025

demymalo 3 3 1 1 0 -2.999999+00 2 2 0.0003

denschna 2 0 0 0 0 1.102837-23 1 1 0.0001

denschnb 2 0 0 0 0 9.860761-32 1 1 0.0001

denschnc 2 0 0 0 0 2.177679-20 1 1 0.0001

denschnd 3 0 9 9 0 1.222451-08 10 10 0.0006

denschne 3 0 1 1 0 2.227301-13 2 2 0.0002

denschnf 2 0 0 0 0 6.513246-22 1 1 0.0001

dipigri 7 4 1 2 0 6.806300+02 2 2 0.0003

disc2 28 23 15 220 0 1.562500+00 31 5 0.0108

discs 36 69 0 1337 -8 1.444961+01 1 1 0.0450

dittert 327 264 1 1 0 -1.997596+00 2 2 0.0089

dixchlng 10 5 2 2 0 2.471897+03 3 3 0.0005

dixchlnv 100 50 2 2 0 2.419489-22 3 3 0.0049

dixmaana 3000 0 1 1 0 1.000000+00 2 2 0.0062

dixmaanb 3000 0 1 1 0 1.000000+00 2 2 0.0110

dixmaanc 3000 0 1 1 0 1.000000+00 2 2 0.0108

dixmaand 3000 0 1 1 0 1.000000+00 2 2 0.0120

dixmaane 3000 0 1 1 0 1.000000+00 2 2 0.0066

dixmaanf 3000 0 1 1 0 1.000000+00 2 2 0.0120

213

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

dixmaang 3000 0 1 1 0 1.000000+00 2 2 0.0115

dixmaanh 3000 0 1 1 0 1.000000+00 2 2 0.0117

dixmaani 3000 0 1 1 0 1.000000+00 2 2 0.0062

dixmaanj 3000 0 1 1 0 1.000000+00 2 2 0.0116

dixmaank 3000 0 1 1 0 1.000000+00 2 2 0.0115

dixmaanl 3000 0 1 1 0 1.000000+00 2 2 0.0117

dixon3dq 10 0 1 1 0 0.000000+00 2 2 0.0003

djtl 2 0 1 1 0 -8.951544+03 2 2 0.0003

dnieper 61 24 1 1 0 1.874401+04 2 2 0.0006

dqdrtic 5000 0 1 1 0 2.509036-34 2 2 0.0058

dqrtic 5000 0 43 44 0 1.380912-08 44 15 0.0665

dtoc1l 14985 9990 1 1 0 1.253381+02 2 2 0.1180

dtoc1na 1485 990 1 1 0 1.270202+01 2 2 0.0357

dtoc1nb 1485 990 1 1 0 1.593777+01 2 2 0.0350

dtoc1nc 1485 990 1 1 0 2.496981+01 2 2 0.0356

dtoc1nd 735 490 1 1 0 1.275156+01 2 2 0.0137

dtoc2 5994 3996 1 1 0 5.086765-01 2 2 0.0379

dtoc3 14997 9998 1 1 0 2.352624+02 2 2 0.0659

dtoc4 14997 9998 1 1 0 2.868538+00 2 2 0.0666

dtoc5 9998 4999 1 1 0 1.535111+00 2 2 0.0333

dtoc6 10000 5000 1 1 0 1.348506+05 2 2 0.0360

dual1 85 1 1 6 0 3.501296-02 2 2 0.0063

dual2 96 1 1 1 0 3.373367-02 2 2 0.0072

dual3 111 1 1 1 0 1.357558-01 2 2 0.0073

dual4 75 1 1 3 0 7.460906-01 2 2 0.0037

dualc1 9 215 1 1 0 6.155251+03 2 2 0.0009

dualc2 7 229 1 1 0 3.551306+03 2 2 0.0009

dualc5 8 278 1 1 0 4.272325+02 2 2 0.0010

dualc8 8 503 1 9 0 1.830936+04 2 2 0.0022

edensch 2000 0 2 2 0 1.200328+04 3 3 0.0079

214

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

eg1 3 0 1 3 0 -1.429306+00 2 2 0.0003

eg2 1000 0 2 2 0 -9.989473+02 3 3 0.0179

eg3 101 200 1 196 0 1.540743-33 3 2 0.0312

eigena 110 0 2 27 0 1.283811-16 3 3 0.0090

eigena2 110 55 2 2 0 1.544785-23 3 3 0.0039

eigenaco 110 55 2 2 0 8.999177-17 3 3 0.0126

eigenals 110 0 2 2 0 1.425016-15 3 3 0.0130

eigenb 110 0 2 2 0 3.963127-12 3 3 0.0095

eigenb2 110 55 0 295 -21 1.799603+01 2 1 0.0259

eigenbco 110 55 2 2 0 5.735917-18 3 3 0.0128

eigenbls 110 0 2 2 0 3.962938-12 3 3 0.0129

eigenc2 462 231 2 2 0 8.014228-20 3 3 0.0430

eigencco 30 15 1 1 0 1.023484-11 2 2 0.0008

eigmaxb 101 101 1 1 0 -9.674354-04 2 2 0.0016

eigmaxc 22 22 1 1 0 -1.000000+00 2 2 0.0005

eigminb 101 101 1 1 0 9.674354-04 2 2 0.0017

engval1 5000 0 2 2 0 5.548668+03 3 3 0.0183

engval2 3 0 2 2 0 1.537610-18 3 3 0.0003

errinros 50 0 3 3 0 4.040449+01 4 4 0.0006

expfit 2 0 0 0 0 2.405105-01 1 1 0.0001

expfita 5 22 1 1 0 1.136611-03 2 2 0.0004

expfitb 5 102 1 1 0 5.019365-03 2 2 0.0006

explin 120 0 0 0 0 -7.237562+05 1 1 0.0001

explin2 120 0 0 0 0 -7.244591+05 1 1 0.0001

expquad 120 10 1 25 0 -3.624599+06 2 2 0.0014

extrasim 2 1 1 1 0 1.000000+00 2 2 0.0002

extrosnb 10 0 60 85 0 3.151063-12 61 38 0.0034

fccu 19 8 1 1 0 1.114910+01 2 2 0.0004

fletcbv2 100 0 1 1 0 -5.140067-01 2 2 0.0005

fletchcr 100 0 2 2 0 6.717228-17 3 3 0.0007

215

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

fletcher 4 5 1 2 0 1.165685+01 2 2 0.0003

flosp2hl 691 0 8 367 -3 6.462626+01 9 2 0.1547

flosp2hm 691 0 1 100134 -24 1.397378+06 2 1 31.0094

flosp2th 691 0 2 10 -3 1.114218+09 3 3 0.0220

flosp2tl 691 0 1 2 -3 1.564988+02 2 1 0.0141

flosp2tm 691 0 1 5 -3 1.397349+06 2 1 0.0150

fminsrf2 1024 0 1 1 0 1.000000+00 2 2 0.0067

fminsurf 1024 0 1 1 0 1.000000+00 2 2 2.1780

freuroth 5000 0 2 2 0 6.081591+05 3 3 0.0246

genhs28 10 8 1 1 0 9.271736-01 2 2 0.0003

genhumps 5 0 1 1 0 3.703859-28 2 2 0.0003

genrose 500 0 2 2 0 1.000000+00 3 3 0.0021

gigomez1 3 3 1 1 0 -3.000000+00 2 2 0.0003

gilbert 1000 1 2 2 0 4.820272+02 3 3 0.0067

goffin 51 50 2 187 -8 2.954266-05 3 3 0.0277

gottfr 2 2 1 1 0 0.000000+00 2 2 0.0002

gouldqp2 699 349 0 168 -21 1.995334-04 1 1 0.0212

gouldqp3 699 349 1 11 0 2.065155+00 2 2 0.0026

gpp 250 498 2 13 0 1.440092+04 3 3 0.0835

gridneta 13284 6724 1 40 0 3.049829+02 2 2 0.1049

gridnetb 13284 6724 1 1 0 1.433232+02 2 2 0.0890

gridnetc 7564 3844 1 160 0 1.618702+02 2 2 0.2176

gridnetd 7565 3844 2 8579 0 5.664443+02 3 3 10.5912

gridnete 7565 3844 1 14518 0 2.065546+02 2 2 23.9609

gridnetf 7565 3844 0 1355 -21 2.421200+02 1 1 15.9704

gridnetg 61 36 1 5 0 7.331702+01 2 2 0.0010

gridneth 61 36 1 279 0 3.962626+01 2 2 0.0052

gridneti 61 36 1 1 0 4.024746+01 2 2 0.0007

growth 3 0 3 3 0 1.004040+00 4 4 0.0004

growthls 3 0 3 3 0 1.004040+00 4 4 0.0004

216

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

gulf 3 0 2 2 0 2.139958-17 3 3 0.0004

hadamals 100 0 2 5 0 2.531641+01 3 3 0.0033

hager1 10001 5001 1 1 0 8.807970-01 2 2 0.0291

hager2 10000 5000 1 1 0 4.320822-01 2 2 0.0362

hager3 10000 5000 1 1 0 1.409612-01 2 2 0.0451

hager4 10000 5000 1 2376 0 2.794030+00 2 2 2.2396

haifam 85 150 0 109 -21 -4.500036+01 1 1 0.0073

haifas 7 9 4 76 0 -4.499999-01 9 2 0.0014

hairy 2 0 0 0 0 2.000000+01 1 1 0.0001

haldmads 6 42 3 7 0 3.303040-02 4 4 0.0008

hanging 300 180 4 547 0 -6.201760+02 5 5 0.0664

harkerp2 100 0 1 40 0 -5.000000-01 2 2 0.0037

hart6 6 0 2 2 0 -3.322886+00 3 3 0.0003

hatflda 4 0 1 1 0 6.584295-14 2 2 0.0003

hatfldb 4 1 1 2 0 5.572809-03 2 2 0.0003

hatfldc 4 3 1 1 0 1.289489-12 2 2 0.0003

hatfldd 3 0 1 1 0 6.692488-08 2 2 0.0003

hatflde 3 0 1 1 0 4.438232-07 2 2 0.0003

hatfldf 3 3 1 1 0 0.000000+00 2 2 0.0003

hatfldg 25 25 1 1 0 0.000000+00 2 2 0.0005

hatfldh 4 7 1 10 0 -2.450000+01 2 2 0.0004

heart6 6 6 1 1 0 0.000000+00 2 2 0.0003

heart6ls 6 0 3 3 0 2.579327-28 4 4 0.0004

heart8 8 8 1 1 0 0.000000+00 2 2 0.0004

heart8ls 8 0 2 2 0 1.205648-15 3 3 0.0004

helix 3 0 1 1 0 1.271711-29 2 2 0.0003

hilberta 10 0 1 1 0 9.727142-28 2 2 0.0003

hilbertb 50 0 1 1 0 1.315952-36 2 2 0.0014

himmelba 2 2 1 1 0 0.000000+00 2 2 0.0002

himmelbb 2 0 0 0 0 2.126863-21 1 1 0.0001

217

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

himmelbc 2 2 1 1 0 0.000000+00 2 2 0.0003

himmelbe 3 3 1 1 0 0.000000+00 2 2 0.0002

himmelbf 4 0 1 1 0 3.185717+02 2 2 0.0003

himmelbg 2 0 0 0 0 3.632999-22 1 1 0.0001

himmelbh 2 0 0 0 0 -1.000000+00 1 1 0.0001

himmelbi 100 12 0 0 0 -1.754999+03 1 1 0.0001

himmelp1 2 2 0 0 0 -6.205386+01 1 1 0.0001

himmelp2 2 3 1 1 0 -8.198031+00 2 2 0.0003

himmelp3 2 4 0 0 0 -5.901312+01 1 1 0.0001

himmelp4 2 5 0 0 0 -5.901312+01 1 1 0.0001

himmelp5 2 5 0 0 0 -5.901312+01 1 1 0.0001

himmelp6 2 5 0 0 0 -5.901312+01 1 1 0.0001

hong 4 1 1 1 0 1.347306+00 2 2 0.0002

hs001 2 1 0 0 0 5.894625-16 1 1 0.0001

hs002 2 1 1 1 -3 4.941229+00 2 1 0.0002

hs003 2 1 1 1 0 0.000000+00 2 2 0.0002

hs004 2 2 1 1 0 2.666666+00 2 2 0.0002

hs005 2 2 0 0 0 -1.913222+00 1 1 0.0001

hs006 2 1 1 1 0 0.000000+00 2 2 0.0002

hs007 2 1 1 1 0 -1.732050+00 2 2 0.0003

hs008 2 2 1 1 0 -1.000000+00 2 2 0.0003

hs009 2 1 1 1 0 -4.999999-01 2 2 0.0003

hs010 2 1 1 1 0 -1.000000+00 2 2 0.0003

hs011 2 1 1 1 0 -8.498464+00 2 2 0.0003

hs012 2 1 1 1 0 -3.000000+01 2 2 0.0003

hs013 2 1 0 0 0 9.945785-01 1 1 0.0001

hs014 2 2 1 1 0 1.393464+00 2 2 0.0003

hs015 2 3 1 1 0 3.064999+02 2 2 0.0002

hs016 2 4 0 0 0 2.314466+01 1 1 0.0001

hs017 2 4 2 3 0 1.000000+00 3 3 0.0003

218

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs018 2 4 1 1 0 5.000000+00 2 2 0.0003

hs019 2 4 1 1 0 -6.961813+03 2 2 0.0003

hs020 2 4 0 0 0 4.019872+01 1 1 0.0001

hs021 2 3 1 4 0 -9.995999+01 2 2 0.0003

hs022 2 2 1 1 0 1.000000+00 2 2 0.0003

hs023 2 5 0 0 0 1.999999+00 1 1 0.0001

hs024 2 3 1 1 0 -1.000000+00 2 2 0.0003

hs025 3 3 2 2 0 2.084767-17 3 3 0.0005

hs026 3 1 1 1 0 8.398750-15 2 2 0.0003

hs027 3 1 1 1 0 4.000000-02 2 2 0.0003

hs028 3 1 1 1 0 0.000000+00 2 2 0.0003

hs029 3 1 1 1 -3 -2.262107+01 2 1 0.0003

hs030 3 4 1 1 0 1.000000+00 2 2 0.0002

hs031 3 4 1 1 0 6.000000+00 2 2 0.0003

hs032 3 2 1 1 0 1.000000+00 2 2 0.0003

hs033 3 3 1 1 0 -4.585786+00 2 2 0.0003

hs034 3 5 1 2 0 -8.340324-01 2 2 0.0003

hs035 3 1 1 2 0 1.111111-01 2 2 0.0003

hs036 3 4 1 2 0 -3.299999+03 2 2 0.0003

hs037 3 2 1 1 -3 -3.455838+03 2 1 0.0002

hs038 4 0 2 2 0 2.523899-16 3 3 0.0003

hs039 4 2 1 1 0 -1.000000+00 2 2 0.0003

hs040 4 3 1 1 0 -2.500001-01 2 2 0.0003

hs041 4 5 1 1 -3 1.926050+00 2 1 0.0003

hs042 4 2 1 1 0 1.385786+01 2 2 0.0003

hs043 4 3 2 4 0 -4.400000+01 3 3 0.0003

hs044 4 6 1 2 0 -1.300000+01 2 2 0.0003

hs045 5 0 1 2 0 1.000000+00 2 2 0.0002

hs046 5 2 1 1 0 4.554769-15 2 2 0.0003

hs047 5 3 1 1 0 2.700098-11 2 2 0.0003

219

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs048 5 2 1 1 0 0.000000+00 2 2 0.0004

hs049 5 2 1 1 0 2.093819-12 2 2 0.0003

hs050 5 3 1 1 0 2.659116-19 2 2 0.0003

hs051 5 3 1 1 0 2.465190-32 2 2 0.0003

hs052 5 3 1 1 0 5.326647+00 2 2 0.0003

hs053 5 3 1 1 0 4.093023+00 2 2 0.0004

hs054 6 1 1 1 0 1.928571-01 2 2 0.0003

hs055 6 6 2 8 0 6.333333+00 3 3 0.0005

hs056 7 4 1 1 0 -3.455999+00 2 2 0.0003

hs057 2 3 0 0 0 3.064761-02 1 1 0.0001

hs059 2 3 1 1 0 -7.802789+00 2 2 0.0003

hs060 3 1 1 1 0 3.256824-02 2 2 0.0003

hs061 3 2 1 1 0 -1.436461+02 2 2 0.0003

hs062 3 1 3 3 0 -2.627251+04 4 4 0.0004

hs063 3 2 1 1 0 9.617151+02 2 2 0.0003

hs064 3 1 0 0 0 6.299838+03 1 1 0.0001

hs065 3 4 2 3 0 9.535288-01 3 3 0.0003

hs066 3 5 1 1 0 5.181632-01 2 2 0.0003

hs067 10 21 1 2 0 -1.162026+03 2 2 0.0004

hs070 4 1 1 1 0 9.401973-03 2 2 0.0003

hs071 4 2 1 1 0 1.701401+01 2 2 0.0003

hs072 4 6 0 0 0 7.276783+02 1 1 0.0001

hs073 4 3 1 1 0 2.989437+01 2 2 0.0003

hs074 4 4 1 1 0 5.126498+03 2 2 0.0003

hs075 4 4 1 1 0 5.174412+03 2 2 0.0003

hs076 4 3 1 2 0 -4.681818+00 2 2 0.0003

hs077 5 2 1 1 0 2.415051-01 2 2 0.0003

hs078 5 3 1 1 0 -2.919700+00 2 2 0.0003

hs079 5 3 1 1 0 7.877686-02 2 2 0.0003

hs080 5 3 1 1 0 5.394983-02 2 2 0.0003

220

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs081 5 3 1 1 0 5.394983-02 2 2 0.0003

hs083 5 3 2 4 0 -3.066553+04 3 3 0.0004

hs084 5 3 1 1 0 -5.280335+06 2 2 0.0002

hs085 5 48 4 5 0 -1.905155+00 5 5 0.0009

hs086 5 10 1 5 0 -3.234867+01 2 2 0.0004

hs087 11 6 2 13 0 8.827597+03 3 3 0.0006

hs088 2 1 0 0 0 1.362646+00 1 1 0.0002

hs089 3 1 2 2 0 1.362656+00 3 3 0.0007

hs090 4 1 2 2 0 1.362656+00 3 3 0.0008

hs091 5 1 2 2 0 1.362656+00 3 3 0.0010

hs092 6 1 2 2 0 1.362656+00 3 3 0.0013

hs093 6 2 2 3 0 1.350759+02 3 3 0.0004

hs095 6 4 1 1 0 1.561952-02 2 2 0.0002

hs096 6 4 1 1 0 1.561952-02 2 2 0.0002

hs097 6 4 2 4 0 3.135809+00 3 3 0.0004

hs098 6 4 2 4 0 3.135809+00 3 3 0.0003

hs099 23 18 2 2 0 -8.310798+08 3 3 0.0007

hs100 7 4 1 2 0 6.806300+02 2 2 0.0003

hs100lnp 7 2 1 1 0 6.806300+02 2 2 0.0003

hs100mod 7 4 1 2 0 6.787547+02 2 2 0.0003

hs101 7 6 11 83 0 1.809764+03 21 5 0.0020

hs102 7 6 9 74 0 9.118805+02 18 5 0.0020

hs103 7 6 3 12 0 5.436679+02 4 4 0.0006

hs104 8 6 8 45 0 3.951163+00 17 4 0.0016

hs105 8 9 1 1 0 1.136360+03 2 2 0.0020

hs106 8 14 717 1575 0 7.049248+03 1432 356 0.0901

hs107 9 14 1 1 0 5.055011+03 2 2 0.0003

hs108 9 14 0 2 -21 -6.747588-01 1 1 0.0005

hs109 9 10 2 2 0 5.326851+03 3 3 0.0004

hs110 10 0 1 1 0 -4.577846+01 2 2 0.0003

221

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs111 10 3 1 1 0 -4.776109+01 2 2 0.0004

hs111lnp 10 3 1 1 0 -4.776109+01 2 2 0.0004

hs112 10 3 1 1 0 -4.776109+01 2 2 0.0003

hs113 10 8 2 4 0 2.430620+01 3 3 0.0005

hs114 10 11 1 1 0 -1.768806+03 2 2 0.0003

hs116 13 28 8 69 0 9.758750+01 16 5 0.0024

hs117 15 5 2 20 0 3.234867+01 3 3 0.0006

hs118 15 17 1 5 0 6.648204+02 2 2 0.0004

hs119 16 8 1 1 0 2.448996+02 2 2 0.0004

hs21mod 7 7 1 4 0 -9.595999+01 2 2 0.0003

hs268 5 5 1 1 0 3.092281-11 2 2 0.0003

hs35mod 3 2 1 1 0 2.500000-01 2 2 0.0003

hs3mod 2 1 1 1 0 0.000000+00 2 2 0.0002

hs44new 4 6 1 2 0 -1.500000+01 2 2 0.0003

hs99exp 31 21 1 1 0 -1.008062+09 2 2 0.0003

hubfit 2 1 1 2 0 1.689349-02 2 2 0.0003

hues-mod 10000 2 1 28 0 3.482448+07 2 2 0.3728

huestis 10000 2 0 0 0 3.482448+11 1 1 0.0016

humps 2 0 0 0 0 6.178161-23 1 1 0.0001

hvycrash 202 150 1 121 -21 -1.442099-01 3 2 0.0101

hypcir 2 2 1 1 0 0.000000+00 2 2 0.0003

integreq 100 100 1 1 0 0.000000+00 2 2 0.0085

jensmp 2 0 0 0 0 1.243621+02 1 1 0.0001

kissing 127 903 0 461 -21 1.000001+00 1 1 0.1140

kiwcresc 3 2 1 1 0 -1.832301-17 2 2 0.0003

kowosb 4 0 1 1 0 3.075056-04 2 2 0.0003

lakes 90 78 1 1 0 3.505247+05 2 2 0.0010

lch 600 1 1 1979 -3 -4.278012+00 3 1 1.1479

liarwhd 10000 0 2 2 0 4.085322-20 3 3 1.3782

linspanh 97 33 1 44 0 -7.700000+01 2 2 0.0017

222

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

liswet1 10002 10000 2 31604 0 3.612064+01 3 3 63.2918

liswet10 10002 10000 1 7721 0 4.948391+01 2 2 9.7906

liswet11 10002 10000 1 6763 0 4.951524+01 2 2 8.8242

liswet12 10002 10000 1 10199 0 -3.314380+03 2 2 12.7284

liswet2 10002 10000 3 25317 0 2.499990+01 4 4 39.6691

liswet3 10002 10000 1 8640 0 2.499980+01 2 2 9.0417

liswet4 10002 10000 1 8288 0 2.499980+01 2 2 8.8171

liswet5 10002 10000 1 4844 0 2.499981+01 2 2 6.0570

liswet6 10002 10000 1 4817 0 2.499986+01 2 2 6.0532

liswet7 10002 10000 1 6749 0 4.987922+02 2 2 8.9898

liswet8 10002 10000 1 8543 0 7.144874+02 2 2 11.4500

liswet9 10002 10000 1 10348 0 1.963305+03 2 2 14.6796

lminsurf 15625 496 1 1 0 9.000000+00 2 2 0.1718

loadbal 31 31 1 13 0 4.528510-01 2 2 0.0006

loghairy 2 0 0 0 0 1.823215-01 1 1 0.0001

logros 2 0 0 0 0 0.000000+00 1 1 0.0001

lootsma 3 3 1 1 0 1.414213+00 2 2 0.0003

lotschd 12 7 1 1 0 2.398415+03 2 2 0.0003

lsqfit 2 1 1 2 0 3.378698-02 2 2 0.0003

madsen 3 6 1 1 0 6.164324-01 2 2 0.0003

madsschj 81 158 2 257 0 -7.972837+02 3 3 0.0350

makela1 3 2 1 1 0 -1.414213+00 2 2 0.0003

makela2 3 3 1 1 0 7.199999+00 2 2 0.0003

makela3 21 20 1 12 -3 4.011808-08 3 1 0.0005

makela4 21 40 1 20 0 3.970466-23 2 2 0.0009

mancino 100 0 2 2 0 1.937943-21 3 3 0.0119

manne 1094 730 1 137 -3 -9.736259-01 3 1 0.0251

maratos 2 1 1 1 0 -1.000000+00 2 2 0.0003

maratosb 2 0 0 0 0 -1.000000+00 1 1 0.0001

matrix2 6 2 1 3 0 1.147943-41 2 2 0.0004

223

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

maxlika 8 8 1 1 0 1.136360+03 2 2 0.0020

mccormck 50000 0 1 1 0 -4.566161+04 2 2 0.1100

mconcon 15 16 1 2 0 -6.230795+03 2 2 0.0003

mdhole 2 0 0 0 0 1.835221-13 1 1 0.0001

methanb8 31 0 5 5 0 5.062205-15 6 6 0.0017

methanl8 31 0 5 5 0 5.062385-15 6 6 0.0017

mexhat 2 0 0 0 0 -4.010000-02 1 1 0.0001

meyer3 3 0 3000 3000 -2 8.794585+01 3001 3001 0.1313

mifflin1 3 2 1 1 0 -1.000000+00 2 2 0.0003

mifflin2 3 2 1 1 0 -1.000000+00 2 2 0.0003

minc44 311 262 1 1 0 2.572988-03 2 2 0.0085

minmaxbd 5 20 9 127 0 1.157064+02 19 3 0.0027

minperm 1113 1033 4 19042 -21 3.597274-04 9 2 10.1097

minsurf 64 32 1 1 0 1.000000+00 2 2 0.0008

mistake 9 13 1 25 0 -1.000000+00 3 2 0.0009

morebv 5002 2 1 1 0 1.704725-12 2 2 0.0139

mosarqp1 2500 700 1 287 0 -9.528754+02 2 2 0.0468

mosarqp2 900 600 1 106 0 -1.597482+03 2 2 0.0104

msqrta 1024 1024 1 1 0 0.000000+00 2 2 0.2327

msqrtals 1024 0 3 3 0 6.656775-15 4 4 5.4463

msqrtb 1024 1024 1 1 0 0.000000+00 2 2 0.2289

msqrtbls 1024 0 3 3 0 1.171856-12 4 4 5.4250

mwright 5 3 1 1 0 2.497881+01 2 2 0.0003

nasty 2 0 0 0 0 0.000000+00 1 1 0.0001

ncvxbqp1 10000 0 0 0 0 -1.985543+10 1 1 0.0017

ncvxbqp2 10000 0 1 1 0 -1.331510+10 2 2 0.0169

ncvxbqp3 10000 0 1 1 0 -6.437652+09 2 2 0.0188

ncvxqp6 1000 250 1 1 0 -3.408012+07 2 2 0.0050

ngone 100 1273 0 2 -21 -6.332900-01 1 1 0.0067

noncvxu2 1000 0 1 1 0 2.317572+03 2 2 0.0450

224

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

noncvxun 1000 0 1 1 0 2.316808+03 2 2 0.0015

nondia 9999 0 3 3 0 8.945414-17 4 4 2.8358

nondquar 10000 0 0 0 0 1.634974-09 1 1 0.0025

nonscomp 10000 0 2 110 0 2.253142-18 3 3 0.0962

nuffield continuum 2 1 0 0 0 -2.549414+00 1 1 0.0001

obstclal 96 0 1 4 0 1.397897+00 2 2 0.0007

obstclbl 96 0 1 6 0 2.875038+00 2 2 0.0007

obstclbu 96 0 1 6 0 2.875038+00 2 2 0.0007

odfits 10 6 1 1 0 -2.380026+03 2 2 0.0004

optcdeg2 1199 800 1 832 0 2.295734+02 2 2 0.2144

optcdeg3 1199 800 1 1023 0 4.614566+01 2 2 0.2632

optctrl3 122 81 1 1 0 2.048016+03 2 2 0.0011

optctrl6 122 81 1 1 0 2.048016+03 2 2 0.0011

optmass 66 55 0 197 -8 -1.895424-01 1 1 0.0177

optprloc 30 30 2 19 0 -1.641977+01 3 3 0.0015

orthrdm2 4003 2000 2 2 0 1.555328+02 3 3 12.5221

orthrds2 203 100 1 226 -8 1.544304+03 3 1 0.0402

orthrega 517 256 2 2 0 1.508635+03 3 3 0.0513

orthregb 27 6 6 59 0 2.531975-16 13 4 0.0048

orthrege 36 20 64 161 0 1.517387+00 127 30 0.0478

osbornea 5 0 2 2 0 5.464894-05 3 3 0.0009

osborneb 11 0 1 1 0 4.013773-02 2 2 0.0012

oslbqp 8 8 1 1 0 6.250000+00 2 2 0.0006

palmer1 4 0 6 6 0 1.175460+04 7 7 0.0015

palmer1a 6 0 1 1 0 8.988362-02 2 2 0.0006

palmer1b 4 0 1 1 0 3.447354+00 2 2 0.0006

palmer1c 8 0 1 1 0 9.759799-02 2 2 0.0008

palmer1d 7 0 1 1 0 6.526825-01 2 2 0.0006

palmer1e 8 0 2 2 0 8.352682-04 3 3 0.0009

palmer2 4 0 5 10 0 3.651089+03 6 5 0.0013

225

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

palmer2a 6 0 1 1 0 1.716073-02 2 2 0.0007

palmer2b 4 0 2 2 0 6.233946-01 3 3 0.0009

palmer2c 8 0 1 1 0 1.442139-02 2 2 0.0007

palmer2e 8 0 1 1 0 2.153524-04 2 2 0.0007

palmer3 4 0 3 3 0 2.265958+03 4 4 0.0011

palmer3a 6 0 1 1 0 2.043142-02 2 2 0.0007

palmer3b 4 0 2 2 0 4.227647+00 3 3 0.0008

palmer3c 8 0 1 1 0 1.953763-02 2 2 0.0007

palmer3e 8 0 1 1 0 5.074084-05 2 2 0.0007

palmer4a 6 0 1 1 0 4.060613-02 2 2 0.0006

palmer4b 4 0 2 2 0 6.835138+00 3 3 0.0008

palmer4c 8 0 1 1 0 5.031069-02 2 2 0.0006

palmer4e 8 0 1 1 0 1.480042-04 2 2 0.0007

palmer5b 9 0 3 3 0 9.752492-03 4 4 0.0016

palmer5c 6 0 1 1 0 2.128086+00 2 2 0.0008

palmer5d 4 0 1 1 0 8.733939+01 2 2 0.0007

palmer6a 6 0 1 1 0 5.594883-02 2 2 0.0009

palmer6c 8 0 1 1 0 1.638742-02 2 2 0.0011

palmer6e 8 0 1 1 0 2.239550-04 2 2 0.0007

palmer7c 8 0 1 1 0 6.019856-01 2 2 0.0009

palmer8a 6 0 1 1 0 7.400969-02 2 2 0.0006

palmer8c 8 0 1 1 0 1.597680-01 2 2 0.0006

palmer8e 8 0 1 1 0 6.339307-03 2 2 0.0006

penalty1 1000 0 17 1403 0 9.686210-03 18 16 47.9589

penalty2 100 0 2 2 0 9.709608+04 3 3 0.0089

pentagon 6 15 1 19 -3 1.366693-04 3 1 0.0008

pentdi 1000 0 1 21 0 -7.500000-01 2 2 0.0039

pfit1 3 0 4 4 0 1.424232-16 5 5 0.0005

pfit1ls 3 0 4 4 0 1.424232-16 5 5 0.0006

pfit2 3 0 5 5 0 5.862905-17 6 6 0.0008

226

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

pfit2ls 3 0 5 5 0 5.862905-17 6 6 0.0007

pfit3 3 0 5 5 0 3.997588-16 6 6 0.0006

pfit3ls 3 0 5 5 0 3.997588-16 6 6 0.0007

pfit4 3 0 5 5 0 1.595551-16 6 6 0.0006

pfit4ls 3 0 5 5 0 1.595551-16 6 6 0.0007

polak1 3 2 1 1 0 2.718281+00 2 2 0.0004

polak3 12 10 2 5 0 5.933003+00 3 3 0.0007

polak4 3 3 2 4 0 2.060150-17 3 3 0.0005

polak5 3 2 1 1 0 5.000000+01 2 2 0.0004

polak6 5 4 3 5 0 -4.400000+01 4 4 0.0007

porous1 4900 4900 3 3 0 0.000000+00 4 4 0.3644

porous2 4900 4900 2 2 0 0.000000+00 3 3 0.2476

portfl1 12 1 1 4 0 2.048627-02 2 2 0.0005

portfl2 12 1 1 6 0 2.968923-02 2 2 0.0006

portfl3 12 1 1 1 0 3.274970-02 2 2 0.0004

portfl4 12 1 1 2 0 2.630695-02 2 2 0.0005

portfl6 12 1 1 4 0 2.579179-02 2 2 0.0005

powell20 1000 1000 1 204 0 5.214578+07 2 2 0.0462

powellbs 2 2 2 2 0 0.000000+00 3 3 0.0004

power 1000 0 1 1 0 7.717710-32 2 2 0.0015

probpenl 500 0 1 26 -3 9.724295-05 3 1 0.6697

prodpl0 60 29 2 38 0 6.091923+01 3 3 0.0022

prodpl1 60 29 2 33 0 5.303701+01 3 3 0.0020

pspdoc 4 1 1 1 0 2.414213+00 2 2 0.0004

pt 2 501 1 385 0 1.783942-01 2 2 0.0300

qpcboei1 384 348 1 153 0 1.443386+07 2 2 0.0205

qpcboei2 143 140 1 91 0 8.293665+06 2 2 0.0071

qpcstair 467 356 1 60 0 6.204391+06 2 2 0.0150

qpnboei1 384 348 1 153 0 8.459253+06 2 2 0.0217

qpnboei2 143 140 1 127 0 1.271825+06 2 2 0.0089

227

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

qpnstair 467 356 1 61 0 5.146033+06 2 2 0.0149

qr3d 155 0 3 3 0 7.153960-17 4 4 0.0279

qr3dbd 127 0 1 1 0 5.817246-11 2 2 0.0071

qr3dls 155 0 3 3 0 7.153961-17 4 4 0.0313

qrtquad 120 10 1 2 0 -3.648088+06 2 2 0.0008

quartc 10000 0 43 44 0 3.328625-08 44 16 0.1944

qudlin 12 0 0 0 0 -7.200000+03 1 1 0.0001

reading1 10001 5000 0 537 -23 -1.604670-01 1 1 1.8573

reading2 15003 10002 0 27 -21 -1.256853-02 1 1 0.2183

reading3 202 102 2 280 0 -1.022739-16 3 3 0.0370

recipe 3 3 1 1 0 0.000000+00 2 2 0.0004

res 18 14 1 1 0 0.000000+00 2 2 0.0007

rk23 17 11 1 122 -3 8.409016-02 3 1 0.0048

robot 14 9 1 1 0 1.339072+01 2 2 0.0007

rosenbr 2 0 0 0 0 3.743975-21 1 1 0.0002

rosenmmx 5 4 3 5 0 -4.400000+01 4 4 0.0007

s332 2 102 1 1 0 2.992435+01 2 2 0.0007

s365mod 7 9 2 3 0 5.213990+01 3 3 0.0007

s368 100 0 1 1 -3 -5.525068-08 2 1 0.0213

scon1dls 1000 0 2 2 0 6.249170-13 3 3 0.0062

scosine 10000 0 3000 3246 -2 -9.297359+03 3001 2988 58.0278

scurly10 10000 0 16 16 0 -9.755310+05 17 17 1.1599

scurly20 10000 0 16 16 0 -9.736919+05 17 17 2.5504

scurly30 10000 0 23 71 0 -9.753515+05 24 20 5.7870

semicon1 1000 1000 2 2 0 0.000000+00 3 3 0.0104

semicon2 1000 1000 1 1 0 0.000000+00 2 2 0.0061

sim2bqp 2 0 0 0 0 0.000000+00 1 1 0.0001

simbqp 2 1 1 1 0 0.000000+00 2 2 0.0003

simpllpa 2 2 1 1 0 1.000000+00 2 2 0.0003

simpllpb 2 3 1 1 0 1.100000+00 2 2 0.0003

228

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

sineval 2 0 0 0 0 5.787362-43 1 1 0.0001

sinquad 10000 0 12 41 0 9.809346-11 13 11 13.3140

sinrosnb 1000 1000 2 2 0 -9.990100+04 3 3 0.0069

sipow1 2 10000 1 2382 0 -1.000000+00 2 2 3.2359

sipow1m 2 10000 1 1 0 -1.000000+00 2 2 0.0214

sipow2 2 5001 1 1642 0 -1.000000+00 2 2 1.1911

sipow2m 2 5001 1 839 0 -1.000000+00 2 2 0.4840

sipow3 4 10000 0 0 -21 5.356507-01 1 1 0.0159

sisser 2 0 0 0 0 8.121606-13 1 1 0.0001

smbank 117 64 1 1 0 -7.129292+06 2 2 0.0018

smmpsf 720 263 1 1034 -8 1.046985+06 2 1 0.1806

snake 2 2 1 1 0 -6.082374-17 2 2 0.0003

sosqp1 20000 10001 1 1 0 3.406944-10 2 2 0.0626

sosqp2 20000 10001 1 2836 0 -4.998699+03 2 2 15.4964

spanhyd 97 33 0 103 -21 2.397392+02 1 1 0.0045

spiral 3 2 2 3 0 1.410253-13 3 3 0.0004

sreadin3 10001 5001 0 100000 -24 -6.446787-05 1 1 166.4634

srosenbr 10000 0 3 3 0 1.061785-20 4 4 0.0307

sseblin 194 72 1 262 0 1.617060+07 2 2 0.0166

ssebnln 194 96 3 195 0 1.617060+07 4 4 0.0136

ssnlbeam 33 20 1 1 0 3.377724+02 2 2 0.0006

stancmin 3 2 1 6 0 4.249999+00 2 2 0.0004

steenbrf 468 108 2 35 -3 4.614767+02 3 3 0.0046

supersim 2 2 1 1 0 6.666666-01 2 2 0.0004

svanberg 5000 5000 0 1120 -23 8.361405+03 1 1 1.1308

swopf 83 92 1 1 0 6.785976-02 2 2 0.0009

tame 2 1 1 1 0 0.000000+00 2 2 0.0004

tointqor 50 0 1 1 0 1.175472+03 2 2 0.0009

tridia 10000 0 1 1 0 2.027283-31 2 2 0.0153

trimloss 142 75 1 71 0 9.060000+00 3 2 0.0030

229

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

try-b 2 1 1 1 0 4.935752-25 2 2 0.0003

twirism1 343 313 0 124 -21 -9.362848-01 1 1 0.0470

twobars 2 2 1 1 0 1.508652+00 2 2 0.0004

ubh1 17997 12000 1 1 0 1.116000+00 2 2 0.0702

ubh5 19997 14000 1 1 0 1.115906+00 2 2 0.0975

vanderm1 100 199 0 1056 -21 0.000000+00 1 1 0.1839

vanderm3 100 199 0 105 -21 0.000000+00 1 1 0.0549

vanderm4 9 17 0 0 0 0.000000+00 1 1 0.0003

vardim 100 0 2 2 0 2.533251-22 3 3 0.0061

watson 31 0 2 2 0 2.514755-13 3 3 0.0012

weeds 3 0 0 0 0 9.205435+03 1 1 0.0001

womflet 3 3 1 1 0 6.050000+00 2 2 0.0004

woods 10000 0 2 2 0 1.193753-12 3 3 0.0317

yao 2002 2003 1 4425 0 1.977046+02 2 2 1.0153

yfit 3 0 1 1 0 6.753437-13 2 2 0.0006

yfitu 3 0 1 1 0 6.759538-13 2 2 0.0003

zangwil2 2 0 0 0 0 -1.819999+01 1 1 0.0002

zangwil3 3 3 1 1 0 0.000000+00 2 2 0.0003

zecevic2 2 4 1 1 0 -4.125000+00 2 2 0.0004

zecevic3 2 4 0 0 0 9.730944+01 1 1 0.0001

zecevic4 2 4 1 1 0 7.557507+00 2 2 0.0004

zigzag 64 50 3 233 0 3.161734+00 5 3 0.0069

zy2 3 2 1 1 0 2.000000+00 2 2 0.0002

230

B.3. With Ipopt as QP solver

Table B.3. Table of results on the CUTE test set for RestartSQP using Ipopt
as QP subsolver

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

3pk 30 0 6 76 0 1.720118e+00 7 7 0.0149

aircrfta 5 5 2 13 0 0.000000e+00 3 3 0.0034

aircrftb 8 3 20 452 0 1.364822e-23 28 12 0.0662

airport 84 42 12 191 0 4.795270e+04 13 13 0.0701

aljazzaf 3 1 20 311 0 7.500499e+01 24 18 0.0401

allinit 4 3 13 213 0 1.670596e+01 16 9 0.0310

allinitc 4 4 16 345 0 3.048876e+01 18 16 0.0455

allinitu 4 0 11 120 0 5.744384e+00 12 8 0.0151

alsotame 2 3 4 32 0 8.208499e-02 5 5 0.0056

arglina 100 0 1 17 0 1.000000e+02 2 2 0.0197

arglinb 10 0 1 20 0 4.634146e+00 2 2 0.0038

arglinc 8 0 1 20 0 6.135135e+00 2 2 0.0037

argtrig 100 100 3 18 0 0.000000e+00 4 4 0.0610

artif 5000 5000 22 1226 -8 0.000000e+00 36 12 6.1030

arwhead 5000 0 6 120 0 -2.664535e-15 7 7 0.4707

aug2d 20192 9996 4 166 0 1.687411e+06 5 5 11.2424

aug2dc 20200 10194 4 199 0 1.818392e+06 5 5 13.9551

aug2dcqp 20200 10194 5 354 0 6.498179e+06 6 6 16.3920

aug2dqp 20192 10194 5 370 0 6.237011e+06 6 6 21.0607

aug3d 3873 1000 1 8 0 5.540677e+02 2 2 0.0350

aug3dc 3873 1000 1 8 0 7.712624e+02 2 2 0.0312

aug3dcqp 3873 1000 1 26 0 9.933621e+02 2 2 0.0867

aug3dqp 3873 1000 1 30 0 6.752376e+02 2 2 0.1217

avgasa 8 10 1 14 0 -4.412171e+00 2 2 0.0029

avgasb 8 10 1 16 0 -4.483219e+00 2 2 0.0032

avion2 49 15 1344 41673 0 9.468012e+07 1671 673 6.8619

231

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

bard 3 0 11 118 0 8.214877e-03 12 9 0.0222

batch 46 73 7 633 0 2.591803e+05 8 8 0.1356

bdexp 5000 0 10 72 0 1.963835e-03 11 11 0.1452

bdqrtic 1000 0 9 129 0 3.983817e+03 10 10 0.1494

bdvalue 5000 5000 0 0 0 0.000000e+00 1 1 0.0010

beale 2 0 17 151 0 6.721860e-14 18 12 0.0224

bigbank 2230 1112 20 776 0 -4.205696e+06 21 21 1.5900

biggs3 6 3 10 99 0 3.115215e-14 13 9 0.0143

biggs5 6 1 54 705 0 8.406381e-17 65 28 0.0871

biggs6 6 0 93 992 0 6.995473e-11 94 58 0.1162

biggsb1 1000 999 1 23 0 1.500000e-02 2 2 0.0242

biggsc4 4 7 1 32 0 -2.449999e+01 2 2 0.0052

blockqp1 2005 1001 1 12 0 -9.964999e+02 2 2 0.0235

blockqp2 2005 1001 1 13 0 -9.961011e+02 2 2 0.0258

blockqp3 2005 1001 1 23 0 -4.974999e+02 2 2 0.0368

blockqp4 2005 1001 1 14 0 -4.980982e+02 2 2 0.0265

blockqp5 2005 1001 1 101 0 -4.974999e+02 2 2 0.2166

bloweya 2002 1002 1 30 0 -1.852786e-02 2 2 0.0369

bloweyb 2002 1002 1 18 0 -1.702787e-02 2 2 0.0250

bloweyc 2002 1002 1 33 0 -1.304396e-02 2 2 0.0401

booth 2 2 1 8 0 0.000000e+00 2 2 0.0020

box2 3 1 8 68 0 1.656702e-20 10 6 0.0098

box3 3 0 7 46 0 1.011994e-15 8 8 0.0067

bqp1var 1 1 1 7 0 1.229571e-13 2 2 0.0019

bqpgabim 50 4 1 17 0 -3.790343e-05 2 2 0.0032

bqpgasim 50 0 1 20 0 -5.519813e-05 2 2 0.0034

brainpc0 6905 6900 98 4888 0 1.499638e-03 194 48 70.3225

brainpc1 6905 6900 16 910 0 9.867441e-10 31 8 11.8917

brainpc2 13805 13800 15 986 0 4.110379e-11 28 8 33.2319

brainpc3 6905 6900 73 3857 0 2.736970e-07 140 34 54.0099

232

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

brainpc4 6905 6900 105 5224 0 1.357826e-06 209 51 74.4317

brainpc5 6905 6900 79 4244 0 1.497035e-06 156 38 58.9591

brainpc6 6905 6900 57 3187 0 1.639157e-07 111 26 42.9293

brainpc7 6905 6900 57 2994 0 1.435337e-07 110 26 49.1765

brainpc9 6905 6900 200 10492 0 1.023217e-06 397 98 148.7290

bratu1d 1001 0 8 153 0 -8.518927e+00 9 9 0.0826

bratu2d 4900 4900 2 12 0 0.000000e+00 3 3 0.3646

bratu2dt 4900 4900 5 31 0 0.000000e+00 6 6 0.7583

bratu3d 3375 3375 3 19 0 0.000000e+00 4 4 4.5546

britgas 450 360 30 12042 -8 2.619208e+01 50 14 11.8628

brkmcc 2 0 2 13 0 1.690426e-01 3 3 0.0027

brownal 10 0 6 42 0 7.976678e-11 7 7 0.0081

brownbs 2 0 47 384 0 0.000000e+00 48 35 0.0575

brownden 4 0 8 59 0 8.582220e+04 9 9 0.0104

broydn3d 10000 10000 4 26 0 0.000000e+00 5 5 0.2747

broydn7d 1000 0 19 715 0 4.820121e+02 20 12 0.4716

broydnbd 5000 5000 5 33 0 0.000000e+00 6 6 0.2975

brybnd 5000 0 7 92 0 1.294855e-13 8 8 0.6104

bt1 2 1 8 149 0 -9.999999e-01 11 7 0.0238

bt10 2 2 6 42 0 -1.000000e+00 7 7 0.0073

bt11 5 3 7 51 0 8.248917e-01 8 8 0.0088

bt12 5 3 3 23 0 6.188118e+00 4 4 0.0043

bt13 5 2 107 2185 0 1.225686e-13 200 55 0.3229

bt2 3 1 11 84 0 3.256821e-02 12 12 0.0159

bt3 5 3 2 34 0 4.093023e+00 3 3 0.0059

bt4 3 2 12 265 0 -4.551055e+01 23 7 0.0383

bt5 3 2 38 783 0 9.617151e+02 72 21 0.1097

bt6 5 2 9 76 0 2.770447e-01 12 9 0.0121

bt7 5 3 22 437 0 3.603797e+02 34 14 0.0637

bt8 5 2 9 102 0 1.000003e+00 10 10 0.0165

233

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

bt9 4 2 12 159 0 -1.000000e+00 18 10 0.0234

byrdsphr 3 2 89 1539 0 -4.683300e+00 178 44 0.2184

camel6 2 2 8 113 0 -1.031628e+00 9 6 0.0207

cantilvr 5 1 3 84 -30 2.243652e+00 7 3 0.0164

catena 32 11 28 5504 0 -2.307774e+04 48 15 0.8704

catenary 496 166 286 16225 0 -3.484031e+05 404 149 5.6402

cb2 3 3 6 52 0 1.952224e+00 7 7 0.0088

cb3 3 3 5 38 0 1.999999e+00 6 6 0.0067

cbratu2d 882 882 1 6 0 0.000000e+00 2 2 0.0277

cbratu3d 1024 1024 1 6 0 0.000000e+00 2 2 0.1028

chaconn1 3 3 4 30 0 1.952224e+00 5 5 0.0055

chaconn2 3 3 4 28 0 1.999999e+00 5 5 0.0053

chainwoo 1000 0 64 1239 0 4.792811e+01 65 41 0.5813

chandheq 100 100 9 57 0 0.000000e+00 10 10 0.2097

chebyqad 50 0 74 1847 0 5.386315e-03 75 34 1.1000

chemrctb 1000 1000 3000 134928 -2 0.000000e+00 4666 1494 177.4651

chenhark 1000 0 1 23 0 -1.999999e+00 2 2 0.0104

chnrosnb 50 0 55 414 0 1.297084e-14 56 42 0.0685

cliff 2 0 27 195 0 1.997866e-01 28 28 0.0307

clnlbeam 1499 1000 3 496 0 3.448762e+02 4 4 0.6508

clplatea 4970 0 6 50 0 -1.259209e-02 7 6 0.2525

clplateb 4970 0 11 92 0 -6.988222e+00 12 10 0.4384

clplatec 4970 0 1 6 0 -5.020724e-03 2 2 0.0308

cluster 2 2 7 44 0 0.000000e+00 8 8 0.0078

concon 15 11 8 195 0 -6.230795e+03 12 9 0.0318

congigmz 3 5 5 85 0 2.799999e+01 6 6 0.0136

coolhans 9 9 20 637 0 0.000000e+00 27 16 0.0958

core1 65 115 157 13355 -4 9.390046e+01 276 54 3.7078

core2 157 134 31 6230 -24 7.243439e+01 50 16 6.1937

corkscrw 8997 7000 20 2215 0 9.068782e+01 31 11 18.6022

234

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

coshfun 61 20 394 16837 0 -7.732618e-01 784 193 2.7488

cosine 10000 0 29 848 0 -9.999000e+03 30 13 2.9260

cragglvy 5000 0 14 195 0 1.688215e+03 15 15 0.7500

cresc100 6 200 1720 58952 0 5.676028e-01 3435 856 20.4005

cresc4 6 8 452 20277 0 8.718975e-01 894 225 2.6985

cresc50 6 100 3000 88685 -2 5.959294e-01 5995 1497 22.3916

csfi1 5 4 20 473 0 -4.907520e+01 32 12 0.0707

csfi2 5 4 42 1179 0 5.501760e+01 72 24 0.1771

cube 2 0 38 277 0 4.115625e-17 39 28 0.0429

curly10 10000 0 13 420 0 -1.003162e+06 14 9 4.9596

curly20 10000 0 15 620 0 -1.003162e+06 16 10 17.0756

curly30 10000 0 17 698 0 -1.003162e+06 18 11 29.2805

cvxbqp1 10000 0 1 12 0 2.250225e+06 2 2 0.5577

cvxqp1 1000 500 1 701 0 1.087511e+06 2 2 4.5382

dallass 46 31 17 412 0 -3.239322e+04 20 16 0.0674

deconvb 51 0 34 667 0 3.142623e-03 35 16 0.1235

deconvc 51 1 37 1407 0 3.203098e-03 72 19 0.2674

deconvu 51 0 1303 20885 0 4.743366e-10 1304 647 4.4202

degenlpa 20 14 1 185 0 3.060349e+00 2 2 0.0242

degenlpb 20 15 1 238 0 -3.073124e+01 2 2 0.0315

demymalo 3 3 6 56 0 -3.000000e+00 8 6 0.0081

denschna 2 0 5 30 0 2.213909e-12 6 6 0.0049

denschnb 2 0 9 63 0 3.721375e-17 10 7 0.0084

denschnc 2 0 10 61 0 2.177679e-20 11 11 0.0131

denschnd 3 0 35 299 0 1.742452e-08 36 28 0.0433

denschne 3 0 9 62 0 4.066134e-13 10 10 0.0099

denschnf 2 0 6 36 0 6.513246e-22 7 7 0.0092

dipigri 7 4 9 141 0 6.806300e+02 15 6 0.0186

disc2 28 23 24 572 0 1.562500e+00 38 15 0.0915

discs 36 69 3000 114691 -2 1.569549e+01 5992 1495 27.3094

235

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

dittert 327 264 59 2862 0 -1.997596e+00 118 28 7.7971

dixchlng 10 5 10 246 0 2.471897e+03 12 11 0.0330

dixchlnv 100 50 17 3450 0 3.018525e-22 18 18 2.0746

dixmaana 3000 0 8 112 0 1.000000e+00 9 6 0.1260

dixmaanb 3000 0 30 1448 0 1.000000e+00 31 17 2.2565

dixmaanc 3000 0 23 1283 0 1.000000e+00 24 13 2.1467

dixmaand 3000 0 16 1375 0 1.000000e+00 17 12 2.3326

dixmaane 3000 0 12 283 0 1.000000e+00 13 8 0.2074

dixmaanf 3000 0 37 2032 0 1.000000e+00 38 20 3.0018

dixmaang 3000 0 41 2011 0 1.000000e+00 42 23 2.9795

dixmaanh 3000 0 44 2437 0 1.000000e+00 45 24 3.8908

dixmaani 3000 0 11 202 0 1.000000e+00 12 8 0.1710

dixmaanj 3000 0 49 2155 0 1.000000e+00 50 27 3.3199

dixmaank 3000 0 40 2103 0 1.000000e+00 41 22 3.0695

dixmaanl 3000 0 52 2392 0 1.000000e+00 53 28 3.4708

dixon3dq 10 0 1 8 0 1.953219e-27 2 2 0.0033

djtl 2 0 29 229 0 -8.951544e+03 30 14 0.0388

dnieper 61 24 3 110 0 1.874401e+04 4 4 0.0225

dqdrtic 5000 0 1 27 0 7.533621e-29 2 2 0.0976

dqrtic 5000 0 38 886 0 2.110693e-05 39 39 0.9708

dtoc1l 14985 9990 5 31 0 1.253381e+02 6 6 0.6390

dtoc1na 1485 990 5 37 0 1.270202e+01 7 6 0.2119

dtoc1nb 1485 990 6 73 0 1.593777e+01 11 6 0.3085

dtoc1nc 1485 990 45 1069 0 2.496981e+01 90 23 3.4497

dtoc1nd 735 490 94 2700 0 1.277580e+01 187 48 4.1056

dtoc2 5994 3996 7 94 0 5.086762e-01 9 7 0.4609

dtoc3 14997 9998 3 128 0 2.352624e+02 4 4 1.1097

dtoc4 14997 9998 3 27 0 2.868538e+00 4 4 0.2915

dtoc5 9998 4999 3 23 0 1.535102e+00 4 4 0.1322

dtoc6 10000 5000 11 181 0 1.348506e+05 12 12 0.8916

236

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

dual1 85 1 1 22 0 3.501296e-02 2 2 0.0105

dual2 96 1 1 17 0 3.373367e-02 2 2 0.0104

dual3 111 1 1 23 0 1.357558e-01 2 2 0.0175

dual4 75 1 1 18 0 7.460906e-01 2 2 0.0080

dualc1 9 215 1 189 0 6.155251e+03 2 2 0.0871

dualc2 7 229 1 123 0 3.551306e+03 2 2 0.0459

dualc5 8 278 1 66 0 4.272325e+02 2 2 0.0316

dualc8 8 503 1 145 0 1.830936e+04 2 2 0.0962

edensch 2000 0 7 93 0 1.200328e+04 8 8 0.1349

eg1 3 0 7 48 0 -1.429306e+00 8 7 0.0073

eg2 1000 0 3 19 0 -9.989473e+02 4 4 0.0099

eg3 101 200 25 618 0 4.998986e-11 33 13 0.2195

eigena 110 0 24 916 0 2.521753e-11 25 17 0.6025

eigena2 110 55 2 112 0 3.217073e-30 3 3 0.0822

eigenaco 110 55 2 2381 0 0.000000e+00 3 3 3.4615

eigenals 110 0 20 15022 0 5.629040e-21 21 15 13.3695

eigenb 110 0 112 2214 0 1.113201e-14 113 68 1.4477

eigenb2 110 55 2 70 0 1.800000e+01 3 3 0.0443

eigenbco 110 55 379 13925 0 5.771244e-17 748 186 12.8462

eigenbls 110 0 112 2204 0 1.113201e-14 113 68 1.6470

eigencco 30 15 69 1863 0 3.109317e-15 135 34 0.3769

eigmaxa 101 101 11 506 0 -1.300000e+01 14 10 0.1369

eigmaxb 101 101 7 134 0 -9.674353e-04 8 8 0.0415

eigmaxc 22 22 5 59 0 -1.000000e+00 6 6 0.0127

eigmina 101 101 2 30 0 9.999999e-01 3 3 0.0093

eigminb 101 101 7 102 0 9.674353e-04 8 8 0.0298

eigminc 22 22 5 80 0 9.999999e-01 6 6 0.0156

engval1 5000 0 7 103 0 5.548668e+03 8 8 0.4301

engval2 3 0 18 165 0 2.822411e-25 19 15 0.0244

errinros 50 0 51 462 0 3.990415e+01 52 36 0.0779

237

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

expfit 2 0 12 121 0 2.405105e-01 13 6 0.0173

expfita 5 22 12 130 0 1.136611e-03 13 13 0.0235

expfitb 5 102 14 274 0 5.019365e-03 15 15 0.0697

expfitc 5 502 14 452 0 2.330257e-02 15 15 0.2616

explin 120 0 12 131 0 -7.237562e+05 13 13 0.0250

explin2 120 0 11 107 0 -7.244591e+05 12 12 0.0193

expquad 120 10 5 202 0 -3.624599e+06 6 6 0.0403

extrasim 2 1 1 7 0 1.000000e+00 2 2 0.0019

extrosnb 10 0 0 0 0 0.000000e+00 1 1 0.0001

fccu 19 8 3 58 0 1.114910e+01 4 4 0.0101

fletcbv2 100 0 1 6 0 -5.140067e-01 2 2 0.0020

fletchcr 100 0 20 650 0 2.579539e-12 21 9 0.1152

fletcher 4 5 1 93 -8 4.000000e+00 2 2 0.0176

flosp2hh 691 0 0 0 -24 8.704390e+05 1 1 44.6641

flosp2hl 691 0 2 39 0 3.887054e+01 3 3 0.1821

flosp2hm 691 0 0 0 -24 8.704390e+05 1 1 39.2773

flosp2th 691 0 0 0 -24 8.704200e+05 1 1 60.1766

flosp2tl 691 0 1 20 0 1.000000e+01 2 2 0.0925

flosp2tm 691 0 0 0 -24 8.704200e+05 1 1 58.4854

fminsrf2 1024 0 43 871 0 1.000000e+00 44 22 0.9644

fminsurf 1024 0 71 1208 0 1.000000e+00 72 35 150.3860

freuroth 5000 0 10 116 0 6.081591e+05 11 8 0.3056

genhs28 10 8 1 9 0 9.271736e-01 2 2 0.0022

genhumps 5 0 134 2493 0 1.500287e-14 135 67 0.3159

genrose 500 0 1010 8129 0 1.000000e+00 1011 756 2.3379

gigomez1 3 3 3 38 0 -2.999999e+00 5 3 0.0064

gilbert 1000 1 18 443 0 4.820272e+02 20 19 0.2968

goffin 51 50 2 50 0 6.220801e-12 3 3 0.0309

gottfr 2 2 7 104 0 0.000000e+00 11 6 0.0168

gouldqp2 699 349 1 36 0 1.879984e-04 2 2 0.0199

238

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

gouldqp3 699 349 1 16 0 2.065155e+00 2 2 0.0100

gpp 250 498 5 190 0 1.440092e+04 8 6 0.7571

gridneta 13284 6724 1 78 0 3.049829e+02 2 2 0.5273

gridnetb 13284 6724 1 34 0 1.433232e+02 2 2 2.9143

gridnetc 7564 3844 1 90 0 1.618702e+02 2 2 0.5830

gridnetd 7565 3844 3 108 0 5.664443e+02 4 4 0.4906

gridnete 7565 3844 3 50 0 2.065546e+02 4 4 1.3380

gridnetf 7565 3844 3 144 0 2.421089e+02 4 4 1.5902

gridnetg 61 36 4 45 0 7.331702e+01 5 5 0.0104

gridneth 61 36 4 33 0 3.962626e+01 5 5 0.0086

gridneti 61 36 4 49 0 4.024746e+01 5 5 0.0118

growth 3 0 101 1018 0 1.004040e+00 102 72 0.1682

growthls 3 0 100 1101 0 1.004040e+00 101 71 0.1902

gulf 3 0 25 209 0 1.044508e-17 26 18 0.0303

hadamals 100 0 11 317 0 2.531641e+01 12 12 0.1659

hadamard 65 256 1 13 0 1.000000e+00 2 2 0.0087

hager1 10001 5001 1 16 0 8.807970e-01 2 2 0.0935

hager2 10000 5000 1 22 0 4.320822e-01 2 2 0.1309

hager3 10000 5000 1 13 0 1.409612e-01 2 2 0.1042

hager4 10000 5000 1 28 0 2.794030e+00 2 2 0.1548

haifam 85 150 31 1826 0 -4.500036e+01 60 18 0.6266

haifas 7 9 15 276 0 -4.500000e-01 28 8 0.0437

hairy 2 0 44 488 0 2.000000e+01 45 25 0.0631

haldmads 6 42 36 1296 0 1.223711e-04 65 19 0.2466

hanging 300 180 64 1683 0 -6.201760e+02 118 32 0.8663

harkerp2 100 0 4 395 0 -4.999999e-01 5 5 0.1718

hart6 6 0 13 131 0 -3.322886e+00 14 9 0.0215

hatflda 4 0 8 87 0 3.442012e-11 9 6 0.0125

hatfldb 4 1 8 125 0 5.572809e-03 9 6 0.0200

hatfldc 4 3 4 24 0 1.139153e-20 5 5 0.0049

239

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hatfldd 3 0 30 241 0 6.615113e-08 31 23 0.0407

hatflde 3 0 35 297 0 4.434401e-07 36 27 0.0435

hatfldf 3 3 15 356 0 0.000000e+00 27 9 0.0525

hatfldg 25 25 12 404 0 0.000000e+00 17 9 0.0721

hatfldh 4 7 1 25 0 -2.449999e+01 2 2 0.0042

heart6 6 6 88 2911 0 0.000000e+00 156 47 0.4502

heart6ls 6 0 1541 17844 0 1.263034e-18 1542 769 2.6417

heart8 8 8 38 1740 0 0.000000e+00 72 20 0.2549

heart8ls 8 0 305 4070 0 6.079206e-16 306 152 0.5587

helix 3 0 17 170 0 6.840700e-17 18 12 0.0254

hilberta 10 0 1 9 0 2.172410e-20 2 2 0.0021

hilbertb 50 0 1 7 0 4.172678e-28 2 2 0.0028

himmelba 2 2 1 8 0 0.000000e+00 2 2 0.0020

himmelbb 2 0 54 475 0 4.224972e-23 55 32 0.0692

himmelbc 2 2 6 60 0 0.000000e+00 8 6 0.0104

himmelbd 2 2 3000 42061 -2 0.000000e+00 3010 2997 6.4449

himmelbe 3 3 2 15 0 0.000000e+00 3 3 0.0031

himmelbf 4 0 7 60 0 3.185717e+02 8 8 0.0093

himmelbg 2 0 9 74 0 2.549820e-17 10 6 0.0114

himmelbh 2 0 7 49 0 -9.999999e-01 8 5 0.0080

himmelbi 100 12 15 140 0 -1.754999e+03 16 16 0.0429

himmelbj 45 16 26 763 0 -1.910344e+03 27 26 0.1403

himmelbk 24 14 4 87 0 5.181434e-02 5 5 0.0178

himmelp1 2 2 8 72 0 -6.205386e+01 9 9 0.0140

himmelp2 2 3 8 77 0 -6.205386e+01 9 9 0.0125

himmelp3 2 4 4 40 0 -5.901312e+01 5 5 0.0067

himmelp4 2 5 4 37 0 -5.901312e+01 5 5 0.0065

himmelp5 2 5 8 137 0 -5.901312e+01 9 9 0.0217

himmelp6 2 5 1 7 0 -5.901312e+01 2 2 0.0020

hong 4 1 7 80 0 1.347306e+00 8 8 0.0127

240

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs001 2 1 31 230 0 7.034741e-15 32 25 0.0365

hs002 2 1 8 61 0 4.941229e+00 9 8 0.0100

hs003 2 1 1 20 0 5.342625e-13 2 2 0.0034

hs004 2 2 2 15 0 2.666666e+00 3 3 0.0031

hs005 2 2 7 96 0 -1.913222e+00 8 6 0.0155

hs006 2 1 1 16 0 8.332343e-30 3 2 0.0031

hs007 2 1 16 185 0 -1.732050e+00 25 11 0.0280

hs008 2 2 5 34 0 -1.000000e+00 6 6 0.0060

hs009 2 1 4 29 0 -4.999999e-01 5 4 0.0053

hs010 2 1 8 57 0 -1.000000e+00 9 9 0.0095

hs011 2 1 5 37 0 -8.498464e+00 6 6 0.0065

hs012 2 1 9 120 0 -3.000000e+01 17 7 0.0195

hs013 2 1 16 313 -3 1.034983e+00 17 11 0.0499

hs014 2 2 5 39 0 1.393464e+00 6 6 0.0069

hs015 2 3 6 185 0 3.065000e+02 8 6 0.0293

hs016 2 4 6 110 0 2.314466e+01 7 7 0.0177

hs017 2 4 10 216 0 1.000000e+00 11 10 0.0317

hs018 2 4 6 60 0 5.000000e+00 9 7 0.0103

hs019 2 4 5 121 0 -6.961813e+03 6 6 0.0188

hs020 2 4 6 109 0 4.019872e+01 7 7 0.0174

hs021 2 3 1 10 0 -9.995999e+01 2 2 0.0023

hs022 2 2 4 30 0 9.999999e-01 5 5 0.0054

hs023 2 5 5 47 0 2.000000e+00 6 6 0.0083

hs024 2 3 2 15 0 -9.999999e-01 3 3 0.0032

hs025 3 3 0 0 0 3.283499e+01 1 1 0.0001

hs026 3 1 15 106 0 1.021028e-10 17 15 0.0174

hs027 3 1 49 950 0 3.999999e-02 95 27 0.1319

hs028 3 1 1 8 0 1.828801e-28 2 2 0.0023

hs029 3 1 9 170 0 -2.262741e+01 18 6 0.0258

hs030 3 4 1 8 0 1.000000e+00 2 2 0.0020

241

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs031 3 4 5 42 0 5.999999e+00 6 6 0.0075

hs032 3 2 1 22 0 1.000000e+00 2 2 0.0037

hs033 3 3 5 32 0 -4.585786e+00 6 6 0.0061

hs034 3 5 8 123 0 -8.340324e-01 15 7 0.0196

hs035 3 1 1 9 0 1.111111e-01 2 2 0.0021

hs036 3 4 2 73 0 -3.299999e+03 3 3 0.0117

hs037 3 2 4 79 0 -3.455999e+03 5 5 0.0131

hs038 4 0 52 417 0 2.143728e-20 53 39 0.0603

hs039 4 2 12 159 0 -1.000000e+00 18 10 0.0237

hs040 4 3 3 21 0 -2.500009e-01 4 4 0.0044

hs041 4 5 5 42 0 1.925925e+00 6 6 0.0077

hs042 4 2 5 37 0 1.385786e+01 6 6 0.0063

hs043 4 3 9 149 0 -4.400000e+01 17 7 0.0237

hs044 4 6 1 11 0 -1.299999e+01 2 2 0.0024

hs045 5 0 0 0 0 2.000000e+00 1 1 0.0001

hs046 5 2 33 663 0 6.332767e-08 64 20 0.1066

hs047 5 3 21 295 0 3.131472e-09 38 16 0.0457

hs048 5 2 1 8 0 5.980551e-29 2 2 0.0020

hs049 5 2 15 97 0 6.962487e-09 16 16 0.0165

hs050 5 3 8 85 0 1.078143e-19 9 9 0.0140

hs051 5 3 1 7 0 1.222734e-29 2 2 0.0019

hs052 5 3 1 11 0 5.326647e+00 2 2 0.0025

hs053 5 3 1 10 0 4.093023e+00 2 2 0.0022

hs054 6 1 1 8 0 1.928571e-01 2 2 0.0020

hs055 6 6 1 11 0 6.666666e+00 2 2 0.0025

hs056 7 4 85 1715 0 -3.456000e+00 165 45 0.2530

hs057 2 3 2 20 0 3.064761e-02 3 3 0.0040

hs059 2 3 9 95 0 -6.749505e+00 10 9 0.0161

hs060 3 1 6 40 0 3.256820e-02 7 7 0.0074

hs061 3 2 6 65 0 -1.436461e+02 8 7 0.0111

242

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs062 3 1 6 87 0 -2.627251e+04 7 6 0.0139

hs063 3 2 3000 45017 -2 9.680000e+02 3002 3001 6.8756

hs064 3 1 15 263 0 6.299842e+03 20 16 0.0406

hs065 3 4 5 77 0 9.535288e-01 7 6 0.0118

hs066 3 5 7 120 0 5.181632e-01 14 5 0.0197

hs067 10 21 34 659 0 -1.162026e+03 65 22 0.1239

hs070 4 1 63 833 0 9.401973e-03 64 34 0.1260

hs071 4 2 5 46 0 1.701401e+01 6 6 0.0079

hs072 4 6 9 227 0 7.276788e+02 11 10 0.0340

hs073 4 3 2 43 0 2.989437e+01 3 3 0.0078

hs074 4 4 10 168 0 5.126498e+03 11 11 0.0270

hs075 4 4 10 220 0 5.174412e+03 11 11 0.0347

hs076 4 3 1 9 0 -4.681818e+00 2 2 0.0021

hs077 5 2 10 88 0 2.415051e-01 14 10 0.0147

hs078 5 3 4 29 0 -2.919700e+00 5 5 0.0054

hs079 5 3 4 26 0 7.877682e-02 5 5 0.0052

hs080 5 3 7 54 0 5.394984e-02 8 8 0.0091

hs081 5 3 22 496 0 5.394967e-02 40 14 0.0751

hs083 5 3 4 81 0 -3.066553e+04 5 5 0.0136

hs084 5 3 4 119 0 -5.280335e+06 5 5 0.0180

hs085 5 48 18 745 0 -1.905155e+00 31 13 0.1606

hs086 5 10 3 56 0 -3.234867e+01 4 4 0.0104

hs087 11 6 12 310 0 8.827597e+03 15 12 0.0496

hs088 2 1 16 229 0 1.362656e+00 19 15 0.0359

hs089 3 1 22 366 0 1.362656e+00 30 17 0.0558

hs090 4 1 37 748 0 1.362656e+00 56 17 0.1120

hs091 5 1 68 1459 0 1.362656e+00 104 32 0.2228

hs092 6 1 82 1838 0 1.362656e+00 139 37 0.2816

hs093 6 2 1 195 -8 3.869985e+01 2 2 0.0290

hs095 6 4 2 30 0 1.561952e-02 3 3 0.0049

243

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs096 6 4 2 26 0 1.561952e-02 3 3 0.0046

hs097 6 4 6 88 0 4.071246e+00 7 7 0.0138

hs098 6 4 6 98 0 4.071246e+00 7 7 0.0149

hs099 23 18 16 1054 0 -8.310798e+08 17 17 0.1685

hs100 7 4 9 141 0 6.806300e+02 15 6 0.0225

hs100lnp 7 2 11 142 0 6.806300e+02 17 9 0.0224

hs100mod 7 4 8 140 0 6.787547e+02 15 5 0.0220

hs101 7 6 21 958 0 1.809764e+03 30 14 0.1446

hs102 7 6 20 702 0 9.118805e+02 30 14 0.1061

hs103 7 6 14 619 0 5.436679e+02 21 11 0.0922

hs104 8 6 12 233 0 3.951163e+00 22 9 0.0371

hs105 8 9 21 304 0 1.136360e+03 22 15 0.0614

hs106 8 14 1076 30014 0 7.049248e+03 2145 539 4.7253

hs107 9 14 7 264 0 5.055011e+03 8 8 0.0451

hs108 9 14 25 785 0 -8.660254e-01 46 12 0.1294

hs109 9 10 12 354 0 5.326851e+03 14 13 0.0639

hs110 10 0 4 24 0 -4.577846e+01 5 4 0.0048

hs111 10 3 68 1928 0 -4.776109e+01 134 35 0.3127

hs111lnp 10 3 68 1928 0 -4.776109e+01 134 35 0.2796

hs112 10 3 11 165 0 -4.776109e+01 12 12 0.0243

hs113 10 8 5 44 0 2.430620e+01 6 6 0.0080

hs114 10 11 27 604 0 -1.768806e+03 49 19 0.1007

hs116 13 28 528 18125 0 9.758750e+01 1005 264 3.1040

hs117 15 5 5 75 0 3.234867e+01 6 6 0.0120

hs118 15 17 2 25 0 6.648204e+02 3 3 0.0074

hs119 16 8 7 164 0 2.448996e+02 8 8 0.0254

hs21mod 7 7 1 23 0 -9.595999e+01 2 2 0.0041

hs268 5 5 1 31 0 -3.922195e-12 2 2 0.0049

hs35mod 3 2 1 22 0 2.500000e-01 2 2 0.0038

hs3mod 2 1 1 23 0 4.008242e-13 2 2 0.0037

244

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

hs44new 4 6 1 16 0 -1.499999e+01 2 2 0.0032

hs99exp 31 21 72 4452 0 -1.008062e+09 131 47 0.7257

hubfit 2 1 1 10 0 1.689349e-02 2 2 0.0022

hues-mod 10000 2 13 768 0 3.482448e+07 14 14 2.1688

huestis 10000 2 11 878 -8 8.358408e+10 12 12 2.4204

humps 2 0 197 2699 0 6.332003e-11 198 95 0.3523

hvycrash 202 150 29 1683 0 -9.204833e-11 32 30 0.5050

hypcir 2 2 6 64 0 0.000000e+00 8 6 0.0109

integreq 100 100 2 13 0 0.000000e+00 3 3 0.0402

jensmp 2 0 9 52 0 1.243621e+02 10 10 0.0122

kissing 127 903 124 4851 0 1.000000e+00 245 55 12.0279

kiwcresc 3 2 12 169 0 -6.776327e-08 20 8 0.0255

kowosb 4 0 17 158 0 3.075056e-04 18 9 0.0260

ksip 20 1001 1 32 0 5.757979e-01 2 2 0.0870

lakes 90 78 10 4163 -8 7.168891e+11 12 10 1.1507

launch 25 29 60 3459 -3 8.120209e+00 97 21 0.6287

lch 600 1 33 1718 0 -4.287718e+00 55 19 0.8350

liarwhd 10000 0 12 239 0 9.128279e-24 13 13 2.1534

linspanh 97 33 1 10 0 -7.700000e+01 2 2 0.0050

liswet1 10002 10000 1 227 0 3.612064e+01 2 2 2.1139

liswet10 10002 10000 1 426 0 4.948391e+01 2 2 4.0561

liswet11 10002 10000 1 211 0 4.951524e+01 2 2 2.1925

liswet12 10002 10000 1 4818 0 -3.314380e+03 2 2 45.1656

liswet2 10002 10000 1 70 0 2.499996e+01 2 2 0.7235

liswet3 10002 10000 1 28 0 2.499980e+01 2 2 0.2933

liswet4 10002 10000 1 29 0 2.499980e+01 2 2 0.2820

liswet5 10002 10000 1 30 0 2.499981e+01 2 2 0.3086

liswet6 10002 10000 1 32 0 2.499986e+01 2 2 0.3203

liswet7 10002 10000 1 1141 0 4.987922e+02 2 2 10.3169

liswet8 10002 10000 1 1900 0 7.144874e+02 2 2 17.4555

245

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

liswet9 10002 10000 1 5024 0 1.963305e+03 2 2 45.9733

lminsurf 15625 496 52 973 0 9.000000e+00 53 28 41.7000

loadbal 31 31 7 90 0 4.528510e-01 8 8 0.0174

loghairy 2 0 249 2611 0 1.823215e-01 250 142 0.3478

logros 2 0 49 472 0 0.000000e+00 50 32 0.0700

lootsma 3 3 5 32 0 1.414213e+00 6 6 0.0060

lotschd 12 7 2 63 0 2.398415e+03 3 3 0.0105

lsnnodoc 5 4 6 89 0 1.231124e+02 7 7 0.0141

lsqfit 2 1 1 10 0 3.378698e-02 2 2 0.0022

madsen 3 6 11 184 0 6.164324e-01 17 9 0.0286

madsschj 81 158 39 871 0 -7.972837e+02 65 20 2.5599

makela1 3 2 7 91 0 -1.414213e+00 11 5 0.0143

makela2 3 3 4 39 0 7.200000e+00 5 5 0.0064

makela3 21 20 102 3122 0 6.076394e-10 192 46 0.4877

makela4 21 40 2 23 0 5.018208e-12 3 3 0.0053

mancino 100 0 5 59 0 1.677174e-21 6 6 0.0396

manne 1094 730 7 1382 0 -9.745725e-01 11 4 1.8686

maratos 2 1 8 107 0 -1.000000e+00 15 5 0.0165

maratosb 2 0 9 172 0 -1.000000e+00 10 7 0.0236

matrix2 6 2 10 111 0 9.536747e-07 11 11 0.0169

maxlika 8 8 21 302 0 1.136360e+03 22 15 0.0602

mccormck 50000 0 7 76 0 -4.566161e+04 8 6 1.6678

mconcon 15 16 8 186 0 -6.230795e+03 13 9 0.0340

mdhole 2 0 2 16 0 1.254430e-13 3 3 0.0048

methanb8 31 0 38 610 0 6.372356e-17 39 19 0.1031

methanl8 31 0 104 2178 0 1.438438e-20 105 54 0.3821

mexhat 2 0 9 97 0 -4.009999e-02 10 7 0.0146

meyer3 3 0 16 224 -24 6.211027e+04 17 12 2.3475

mifflin1 3 2 10 146 0 -1.000000e+00 18 6 0.0228

mifflin2 3 2 13 216 0 -1.000000e+00 24 9 0.0319

246

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

minc44 311 262 18 1080 0 2.573028e-03 32 11 2.6556

minmaxbd 5 20 32 757 0 1.157064e+02 52 17 0.1231

minmaxrb 3 4 1 23 0 5.037081e-13 3 2 0.0041

minsurf 64 32 1 8 0 1.000000e+00 2 2 0.0027

mistake 9 13 25 741 0 -1.000000e+00 49 12 0.1172

model 1831 339 1 253 0 5.742163e+03 2 2 0.0841

morebv 5002 2 0 0 0 1.039542e-11 1 1 0.0018

mosarqp1 2500 700 1 16 0 -9.528754e+02 2 2 0.0311

mosarqp2 900 600 1 17 0 -1.597482e+03 2 2 0.0273

mwright 5 3 9 103 0 2.497880e+01 11 8 0.0163

nasty 2 0 1 7 0 3.260214e-30 2 2 0.0018

ncvxbqp1 10000 0 1 260 0 -1.985543e+10 2 2 19.3703

ncvxbqp2 10000 0 1 1255 0 -1.331266e+10 2 2 114.2473

ncvxqp1 1000 500 1 6135 0 -7.150698e+07 2 2 93.3200

ncvxqp2 1000 500 0 3769 -32 -2.812500e+05 1 1 66.8926

ncvxqp3 1000 500 1 4658 0 -3.028511e+07 2 2 84.3789

ncvxqp4 1000 250 1 4984 0 -9.397376e+07 2 2 42.8570

ncvxqp5 1000 250 1 4742 0 -6.625286e+07 2 2 41.3188

ncvxqp6 1000 250 1 3720 0 -3.415570e+07 2 2 33.4697

ncvxqp7 1000 750 0 5136 -32 -4.924687e+05 1 1 127.3195

ncvxqp8 1000 750 0 6546 -32 -2.812500e+05 1 1 162.3879

ncvxqp9 1000 750 1 5174 0 -2.151924e+07 2 2 132.2894

ngone 100 1273 13 1225 0 -6.332838e-01 25 7 2.7639

noncvxun 1000 0 51 25210 0 2.318491e+03 52 28 8.2986

nondia 9999 0 5 81 0 2.306591e-25 6 6 0.5829

nondquar 10000 0 19 163 0 4.139821e-10 20 20 0.8096

nonmsqrt 9 0 466 8786 -3 7.518004e-01 467 361 2.1599

nonscomp 10000 0 8 129 0 6.785647e-10 9 9 0.5802

nuffield continuum 2 1 3 20 0 -2.549414e+00 4 4 0.0041

obstclal 96 0 1 14 0 1.397897e+00 2 2 0.0033

247

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

obstclbl 96 0 1 13 0 2.875038e+00 2 2 0.0028

obstclbu 96 0 1 13 0 2.875038e+00 2 2 0.0029

odfits 10 6 9 141 0 -2.380026e+03 10 10 0.0220

oet1 3 1002 1 38 0 5.382431e-01 2 2 0.0345

oet2 3 1002 5 155 0 8.715963e-02 7 6 0.1573

oet3 4 1002 1 19 0 4.505052e-03 2 2 0.0209

oet7 7 1002 1008 53353 0 4.445574e-05 2012 502 55.7626

optcdeg2 1199 800 3 221 0 2.295734e+02 4 4 0.1538

optcdeg3 1199 800 3 157 0 4.614566e+01 4 4 0.1119

optcntrl 32 21 2 71 0 5.500000e+02 3 3 0.0121

optctrl3 122 81 0 302 -8 1.560050e+06 1 1 0.0652

optctrl6 122 81 0 302 -8 1.560050e+06 1 1 0.0587

optmass 66 55 8 898 0 -1.895425e-01 15 5 0.1943

optprloc 30 30 6 226 0 -1.641977e+01 13 5 0.0416

orthrdm2 4003 2000 5 40 0 1.555328e+02 7 6 0.1336

orthrds2 203 100 3000 168339 -2 8.444699e+02 5986 1495 38.9906

orthrega 517 256 89 3936 0 1.414055e+03 173 46 2.2090

orthregb 27 6 1 7 0 0.000000e+00 2 2 0.0021

orthrege 36 20 3000 58712 -2 6.076161e-01 5997 1497 9.2466

orthrgdm 10003 5000 2 1766 -24 6.010870e+03 4 3 95.3252

orthrgds 10003 5000 1 547 -24 1.663221e+03 3 2 87.2181

osbornea 5 0 3000 71141 -2 4.696251e-02 3001 1500 13.3056

osborneb 11 0 18 164 0 4.013773e-02 19 13 0.0231

oslbqp 8 8 1 22 0 6.250000e+00 2 2 0.0032

palmer1 4 0 32 397 0 1.175460e+04 37 19 0.0521

palmer1a 6 0 48 776 0 8.988362e-02 49 28 0.1141

palmer1b 4 0 30 394 0 3.447354e+00 31 21 0.0603

palmer1c 8 0 2 67 -24 1.254715e+04 3 3 2.7411

palmer1d 7 0 5 129 0 6.526825e-01 6 6 0.0266

palmer1e 8 0 104 2276 0 8.352682e-04 105 73 0.5322

248

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

palmer2 4 0 38 506 -3 6.396239e+03 39 12 0.0695

palmer2a 6 0 73 791 0 1.716073e-02 74 52 0.1173

palmer2b 4 0 21 233 0 6.233946e-01 22 16 0.0340

palmer2c 8 0 4 107 0 1.442139e-02 5 5 0.0272

palmer2e 8 0 13 332 -24 2.956358e-02 14 6 3.5179

palmer3 4 0 33 397 0 2.265958e+03 34 17 0.0520

palmer3a 6 0 83 891 0 2.043142e-02 84 60 0.1249

palmer3b 4 0 33 393 0 4.227647e+00 34 21 0.0516

palmer3c 8 0 4 89 0 1.953763e-02 5 5 0.0174

palmer3e 8 0 453 5441 0 5.074084e-05 454 326 0.8333

palmer4 4 0 32 389 0 2.285383e+03 33 17 0.0527

palmer4a 6 0 57 615 0 4.060613e-02 58 40 0.0787

palmer4b 4 0 33 384 0 6.835138e+00 34 21 0.0463

palmer4c 8 0 5 114 0 5.031069e-02 6 6 0.0222

palmer4e 8 0 41 789 0 1.480042e-04 42 28 0.1427

palmer5a 8 0 3000 45081 -2 4.694674e-02 3004 1591 8.1198

palmer5b 9 0 859 11527 0 9.752492e-03 862 435 1.7581

palmer5c 6 0 3 31 0 2.128086e+00 4 4 0.0045

palmer5d 4 0 4 49 0 8.733939e+01 5 5 0.0066

palmer5e 8 0 3000 34594 -2 2.110970e-02 3001 2015 5.6025

palmer6a 6 0 131 1342 0 5.594883e-02 132 94 0.1706

palmer6c 8 0 5 113 0 1.638742e-02 6 6 0.0283

palmer6e 8 0 58 653 0 2.239550e-04 59 36 0.0910

palmer7a 6 0 3000 47007 -2 1.033667e+01 3001 2051 8.7401

palmer7c 8 0 7 153 0 6.019856e-01 8 8 0.0329

palmer7e 8 0 108 2255 0 1.015389e+01 109 52 0.3360

palmer8a 6 0 93 1058 0 7.400969e-02 94 56 0.1294

palmer8c 8 0 6 133 0 1.597680e-01 7 7 0.0319

palmer8e 8 0 116 2252 0 6.340517e-01 117 56 0.3426

penalty1 1000 0 47 905 0 9.686340e-03 48 44 95.2224

249

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

penalty2 100 0 19 116 0 9.709608e+04 20 20 0.0530

pentagon 6 15 18 282 0 1.365219e-04 19 11 0.0387

pentdi 1000 0 1 21 0 -7.499999e-01 2 2 0.0110

pfit1 3 0 365 3093 0 3.876847e-14 366 271 0.3947

pfit1ls 3 0 365 3093 0 3.876847e-14 366 271 0.3749

pfit2 3 0 233 2125 0 1.210046e-16 234 179 0.2841

pfit2ls 3 0 233 2125 0 1.210046e-16 234 179 0.2874

pfit3 3 0 166 1581 0 2.703838e-15 167 122 0.2176

pfit3ls 3 0 166 1581 0 2.703838e-15 167 122 0.2153

pfit4 3 0 105 1055 0 2.802046e-20 106 80 0.1504

pfit4ls 3 0 105 1055 0 2.802046e-20 106 80 0.1524

polak1 3 2 7 60 0 2.718281e+00 8 8 0.0084

polak2 11 2 17 347 0 5.459815e+01 26 12 0.0470

polak3 12 10 44 1344 0 5.933003e+00 78 21 0.1872

polak4 3 3 4 38 0 3.478794e-13 5 5 0.0059

polak5 3 2 51 1274 0 5.000000e+01 93 28 0.1614

polak6 5 4 42 742 0 -4.400000e+01 70 19 0.1021

porous1 4900 4900 14 397 0 0.000000e+00 18 12 13.2729

porous2 4900 4900 11 2697 0 0.000000e+00 16 8 85.4244

portfl1 12 1 1 11 0 2.048627e-02 2 2 0.0025

portfl2 12 1 1 11 0 2.968923e-02 2 2 0.0028

portfl3 12 1 1 12 0 3.274970e-02 2 2 0.0023

portfl4 12 1 1 11 0 2.630695e-02 2 2 0.0039

portfl6 12 1 1 10 0 2.579179e-02 2 2 0.0020

powell20 1000 1000 5 477 0 5.214578e+07 6 6 0.4646

powellbs 2 2 24 435 0 0.000000e+00 43 17 0.0564

powellsq 2 2 48 968 0 0.000000e+00 76 27 0.1252

power 1000 0 1 18 0 2.243323e-30 2 2 0.0184

probpenl 500 0 32 1512 0 -3.793242e+05 33 33 45.8092

prodpl0 60 29 10 184 0 6.091923e+01 13 9 0.0342

250

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

prodpl1 60 29 8 129 0 5.303701e+01 10 7 0.0244

pspdoc 4 1 12 225 0 2.414213e+00 13 8 0.0315

pt 2 501 1 37 0 1.783942e-01 2 2 0.0163

qpcboei1 384 348 8 1088 0 1.443386e+07 9 9 1.0171

qpcboei2 143 140 7 979 0 8.293665e+06 8 8 0.4046

qpcstair 467 356 9 1174 0 6.204391e+06 10 10 1.0354

qpnboei1 384 348 7 3098 0 8.441646e+06 8 8 4.0689

qpnboei2 143 140 8 2443 0 1.285269e+06 9 9 1.3672

qpnstair 467 356 7 1085 0 5.146033e+06 8 8 1.1208

qr3d 155 0 400 5469 0 1.056285e-17 401 201 4.4267

qr3dbd 127 0 109 1271 0 1.463707e-15 110 55 0.6970

qr3dls 155 0 400 5489 0 1.056276e-17 401 201 4.6852

qrtquad 120 10 16 525 0 -3.648088e+06 17 12 0.0948

quartc 10000 0 41 1868 0 2.620441e-05 42 42 3.9871

qudlin 12 0 1 33 0 -7.199999e+03 2 2 0.0042

reading1 10001 5000 38 3292 0 -1.602479e-01 76 17 15.5652

reading2 15003 10002 1 29 0 -1.258248e-02 2 2 0.2418

reading3 202 102 8 269 0 -1.393623e-12 16 2 0.0654

recipe 3 3 2 15 0 0.000000e+00 3 3 0.0031

res 18 14 0 0 0 0.000000e+00 1 1 0.0001

rk23 17 11 8 163 0 8.333333e-02 13 7 0.0278

robot 14 9 6 370 0 1.339073e+01 8 7 0.0510

rosenbr 2 0 28 191 0 4.260063e-22 29 22 0.0248

rosenmmx 5 4 34 593 0 -4.400000e+01 57 15 0.0781

s332 2 102 11 288 0 2.992435e+01 19 9 0.0611

s365mod 7 9 17 1119 -8 2.214991e+04 27 12 0.1485

s368 100 0 0 0 0 0.000000e+00 1 1 0.0058

sawpath 593 786 0 0 -32 1.483193e+03 1 1 0.0876

scon1dls 1000 0 286 3925 0 6.954942e-10 287 239 1.8589

scosine 10000 0 0 0 -24 8.774948e+03 1 1 32.6125

251

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

scurly10 10000 0 0 0 -24 7.308607e+15 1 1 124.9546

semicon1 1000 1000 6 272 -30 0.000000e+00 8 7 0.2159

semicon2 1000 1000 48 3551 0 0.000000e+00 70 29 3.5591

sim2bqp 2 0 1 22 0 2.809411e-13 2 2 0.0037

simbqp 2 1 1 23 0 5.103734e-13 2 2 0.0036

simpllpa 2 2 1 10 0 1.000000e+00 2 2 0.0034

simpllpb 2 3 1 11 0 1.100000e+00 2 2 0.0020

sineali 20 0 10 159 0 -1.899796e+03 11 5 0.0213

sineval 2 0 56 439 0 1.409214e-18 57 42 0.0730

sinquad 10000 0 10 256 -24 1.891797e-03 11 6 143.5391

sinrosnb 1000 1000 0 0 0 -9.990100e+04 1 1 0.0006

sipow1 2 10000 1 26 0 -1.000000e+00 2 2 0.1881

sipow1m 2 10000 1 27 0 -1.000000e+00 2 2 0.1897

sipow2 2 5001 1 23 0 -1.000000e+00 2 2 0.0859

sipow2m 2 5001 1 23 0 -1.000000e+00 2 2 0.0865

sipow3 4 10000 1 20 0 5.356507e-01 2 2 0.2091

sipow4 4 10000 1 21 0 2.728283e-01 2 2 0.1984

sisser 2 0 16 118 0 1.763695e-08 17 13 0.0203

smbank 117 64 14 366 -32 -5.209253e+06 15 15 0.1435

smmpsf 720 263 22 726 0 1.046985e+06 23 23 0.3994

snake 2 2 2 83 0 5.910853e-14 3 3 0.0110

sosqp1 20000 10001 1 14 0 -6.203209e-10 2 2 0.3632

sosqp2 20000 10001 1 33 0 -4.998699e+03 2 2 0.4429

spanhyd 97 33 2 1743 -32 1.809102e+04 3 3 0.7689

spiral 3 2 116 2529 0 -6.789938e-11 221 90 0.3335

sreadin3 10001 5001 1 22 0 -7.308899e-05 2 2 0.1317

srosenbr 10000 0 28 319 0 2.191610e-18 29 22 1.2812

sseblin 194 72 10 407 0 1.617060e+07 11 11 0.0995

ssebnln 194 96 6 1458 -8 1.917493e+07 7 7 0.4234

ssnlbeam 33 20 4 164 0 3.377724e+02 5 5 0.0246

252

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

stancmin 3 2 5 75 0 4.250000e+00 6 6 0.0138

steenbra 432 108 8 241 0 1.695767e+04 9 9 0.5841

steenbrb 468 108 2 145 -24 1.141837e+05 3 3 53.0812

steenbrc 540 126 3000 170908 -2 2.619867e+04 3923 1496 76.4851

steenbre 540 126 81 4519 -3 2.824541e+04 87 37 36.7733

steenbrf 468 108 109 24777 -33 3.521270e+02 112 55 10.3788

supersim 2 2 1 8 0 6.666666e-01 2 2 0.0022

svanberg 5000 5000 8 302 0 8.361422e+03 15 8 4.2001

swopf 83 92 4 63 0 6.786014e-02 5 5 0.0176

synthes1 7 7 4 204 0 5.171320e+00 9 5 0.0266

tame 2 1 1 8 0 0.000000e+00 2 2 0.0020

tfi2 3 10001 1 38 0 6.490420e-01 2 2 0.2907

tointqor 50 0 1 7 0 1.175472e+03 2 2 0.0026

trainf 20008 10002 3 98 0 3.103384e+00 4 4 0.9514

trainh 20008 10002 5 822 0 1.231197e+01 6 6 11.6358

tridia 10000 0 1 18 0 2.915330e-24 2 2 0.1085

trimloss 142 75 4 116 0 9.060000e+00 5 5 0.0311

try-b 2 1 6 85 0 1.000002e+00 7 7 0.0113

twirism1 343 313 24 15424 -33 -5.197412e-02 40 13 56.1140

twobars 2 2 11 160 0 1.508652e+00 20 9 0.0262

ubh1 17997 12000 8 449 0 1.116000e+00 9 9 5.0441

ubh5 19997 14000 10 499 0 1.116000e+00 11 11 7.6995

vanderm2 100 199 18 6022 -8 0.000000e+00 34 8 28.1966

vanderm3 100 199 33 11319 -8 0.000000e+00 58 15 52.3997

vanderm4 9 17 13 1067 -8 0.000000e+00 22 9 0.1679

vardim 100 0 0 0 -24 1.310583e+14 1 1 10.1184

watson 31 0 12 263 0 2.513681e-09 13 13 0.0777

weeds 3 0 37 399 0 2.587277e+00 38 26 0.0561

womflet 3 3 22 307 0 1.444300e-10 34 13 0.0414

woods 10000 0 50 649 0 2.297634e-10 51 38 3.2568

253

name nVar nConstr iter QP iter exitflag objective #obj #grad cpu time

yao 2002 2003 2 1323 0 1.977046e+02 3 3 2.7741

yfit 3 0 46 386 0 6.669720e-13 47 39 0.0638

yfitu 3 0 46 386 0 6.669720e-13 47 39 0.0626

zangwil2 2 0 1 7 0 -1.820000e+01 2 2 0.0020

zangwil3 3 3 4 64 0 0.000000e+00 5 5 0.0132

zecevic2 2 4 1 9 0 -4.124999e+00 2 2 0.0035

zecevic3 2 4 45 865 0 9.730945e+01 89 23 0.1366

zecevic4 2 4 5 41 0 7.557507e+00 6 6 0.0099

zigzag 64 50 9 287 0 3.161734e+00 13 8 0.0618

zy2 3 2 4 28 0 2.000000e+00 5 5 0.0074

254

APPENDIX C

Schur Complement View of the Log-Barrier Approximation

We consider the log-barrier approximation discussed in Chapter 4.3.3 for the second-stage

problem and assume that Assumption 4.5.1 holds. Let u0 = (z, x, η̂, ξ0), ui = (yi, si, ξi, ηi, λi)

and u = (u0, u1, . . . , uN), To solve the nonlinear system of equations (4.24), we aim to

compute the Newton step ∆u by solving the following linear system (C.1):

(C.1)

∇u0F
T
0 ∇u1F

T
0 · · · ∇uN

F T
0

∇u0F
T
1 ∇u1F

T
1 · · · 0

...
...

. . .
...

∇u0F
T
N 0 · · · ∇uN

F T
N

∆u0

∆u1

...

∆uN

= −

F0

0

...

0

In this linear system, ∇u0F

T
0 represents the Jacobian of F0 with respect to u0, ∇ui

F T
0 rep-

resents the Jacobian of F0 with respect to ui, and ∇ui
F T
i represents the Jacobian of Fi with

respect to ui. Assuming that ∇u0F0 is invertible, we can express ∆u0 as follows:

∆u0 = −

(
∇u0F

T
0 −

N∑
i=1

∇ui
F T
0 (∇ui

Fi)
−T∇u0F

T
i

)−1

F0

where ∇ui
F T
i is given by equation (4.12), and the expression for ∇u0F

T
0 is:

∇u0F
T
0 =

∇2
zzL0 0 P̂ T ∇zc

T
0

0 0 −I 0

P̂ −I 0 0

∇zc0 0 0 0

255

Furthermore, we have:

∇ui
F0 = ∇u0F

T
i =

[
0 −Ei 0 0

]
where Ei is a matrix of the form:

Ei =

[
0 0 0 Ix,i 0

]T
Here, Ix,i is a matrix that has the block corresponding to xi as the identity matrix and the

remaining blocks as zeros. With that, we have

(
∇u0F

T
0 −

N∑
i=1

∇ui
F T
0 (∇ui

Fi)
−T∇u0F

T
i

)
=

∇2
zzL0 0 P̂ T ∇zc

T
0

0 −
∑N

i=1 E
T
i (∇ui

Fi)
−TEi −I 0

P̂ −I 0 0

∇zc0 0 0 0

.

With the given expressions, we can reorder equation (C.1) and expand ∆u0 and F0 as follows:

∇2
zzL0 0 P̂ T ∇zc

T
0

0 −
∑N

i=1E
T
i (∇ui

Fi)
−TEi −I 0

P̂ −I 0 0

∇zc0 0 0 0

∆z

∆x

∆η̂

∆ξ0

=

−∇zL0

−(∇xL0 − η)

−(P̂ z − x)

−c0(z)

256

We can see that ∆u0 is the solution to the following SQP subproblem:

min
1

2
∆zT∇2

zzL0∆z +
1

2

N∑
i=1

∆xT
i (−ITx,i(∇ui

Fi)
−T Ix,i)∆xi

+∇zf0(z)
T∆z +

N∑
i=1

(−ηi)T∆xi

s.t. c0(z) +∇zc0(z)
T∆z = 0,

P̂i(z +∆z)− (xi +∆xi) = 0, ∀i ∈ [N]

From the given formulation, we can observe that the gradient ∇xi
f̂i can be expressed as −ηi,

and the Hessian ∇2
xixi

f̂i of the objective function of the i-th subproblem can be expressed as

(−ITx,i(∇ui
Fi)

−T Ix,i).

We further note that the matrix Ix,i(∇ui
Fi)

−T Ix,i is a submatrix of ∇ui
F−T
i , with both

rows and columns corresponding to the variables xi. By examining equation (4.13), we can

observe that ∇xi
uT
i is essentially the submatrix of ∇ui

F−T
i with columns corresponding to

xi. And from the definition of ui in this chapter, ∇xi
ηTi is a submatrix of ∇xi

uT
i with rows

corresponding to the variable xi. Thus, we can conclude that ∇xi
ηTi = ITx,i(∇ui

Fi)
−T Ix,i,

which is consistent with the discussion in Lemma 4.3.1.

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Sequential Quadratic Programming Method for Second-Order Conic Programs
	1.2. Nonlinear Two-Stage Decomposition Algorithm
	1.3. Notation and Definitions

	Chapter 2. A Quadratically Convergent Sequential Programming Method for Second-Order Cone Programs Capable of Warm Starts
	2.1. Introduction
	2.2. Preliminaries
	2.3. Algorithm
	2.4. Convergence analysis
	2.5. Numerical Experiments
	2.6. Concluding remarks

	Chapter 3. RestartSQP: A Sequential Qudratic Programming Solver
	3.1. Introduction
	3.2. Preliminaries
	3.3. Algorithm
	3.4. Details of the Implementation
	3.5. Numerical Results
	3.6. Conclusing Remarks

	Chapter 4. A Decomposition Algorithm for Continuous Nonlinear Two-Stage Optimization Problems
	4.1. Introduction
	4.2. Preliminaries
	4.3. Smoothing the Second-stage Problems
	4.4. Decomposition Framework
	4.5. Extrapolation Steps
	4.6. Details of the Implementation
	4.7. Numerical Results
	4.8. Concluding Remarks and Future Directions

	References
	Appendix A. Generation of random instances
	Appendix B. CUTE Result
	B.1. With QORE as QP solver
	B.2. Warm-start Using Perturbed Optimal Solution
	B.3. With Ipopt as QP solver

	Appendix C. Schur Complement View of the Log-Barrier Approximation

