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ABSTRACT 

Macrophages are innate immune cells that are traditionally thought to be specialists in 

phagocytosis. More recent evidence suggest that macrophages reside in nearly every organ and 

readily adapt to local microenvironmental signals, leading to highly plastic phenotypes across and 

within tissues. Therefore, rather than treating it as a homogenous cell population, new studies 

should consider the functional heterogeneity that may exist among macrophages. A better 

understanding of macrophage heterogeneity can inform on potential therapeutic strategies, as 

macrophages play central pathological roles in numerous diseases. The emergence of high-

throughput RNA profiling assays offers great potential in characterizing macrophage heterogeneity 

by facilitating direct comparison of gene expression profiles between different subpopulations. 

The introduction of single cell technology further enables the identification of new macrophage 

subpopulations. Given the “big data” nature of high-throughput assays, the development of novel 

computational algorithms and their rigorous application is crucial to gain meaningful insights from 

the experiments. In this thesis, we demonstrated how integrative computational analysis of bulk 

and single cell RNA-seq data can improve our understanding of macrophage heterogeneity across 

organisms and tissues. We characterized macrophage subpopulations residing in murine synovium 

and human pediatric livers, while assessing changes to their phenotypes under pathological 

conditions. We further extended the concept of cellular heterogeneity beyond macrophages, where 

we uncovered the existence of murine synovial monocyte populations distinct from circulation. In 

the last part of the thesis, we identified a major weakness in the current analytical workflow for 

transcriptional data and developed a web application called MAGNET, which aims to improve 

functional enrichment analysis for macrophage-related genomic data.  



4 
 

ACKNOWLEDGEMENTS 

Five years ago, I boarded a one-way flight bound for Chicago, an incredible city I have never 

thought I would set foot on, and embarked on my journey at Northwestern University for the PhD 

degree in biomedical informatics. It was an honor to be a part of the exciting research happening 

in this novel and ever-changing field. This incredible journey would not have been possible without 

the support from numerous wonderful people, which I dedicate this section of the thesis to.  

 

First and foremost, I would like to express my highest gratitude to my advisor and mentor, 

Dr. Deborah Winter, who encouraged me to become a better computational biologist. Without your 

continuous support and guidance, it would have been impossible to overcome the numerous 

challenges encountered in my research and finish this thesis. I especially want to thank you for 

your mentorship in developing important skills including public speaking, independent critical 

thinking, and tackling a problem from multiple perspectives. I would also like to extend my 

appreciation towards the members from my thesis committee, Dr. Edward Thorp, Dr. Benjamin 

Singer, and Dr. Jiping Wang for their generous availability and valuable advice. I want to further 

thank Dr. Justin Starren and Dr. Cara Gottardi for managing and supporting the amazing 

biomedical informatics track within Driskill Graduate Program.  

 

I am deeply grateful for the wonderful colleagues and collaborators I had the pleasure of 

working with. To the members of Winter Lab, especially Kishore, Anna, Gaurav, Monica, Blair, 

Yidan, Sam (not me), and Lucia, thank you all so much for being the friendliest, kindest, and 

supportive group of people I have ever been with. I will cherish our memories together in the lab 

dearly. To my colleagues in the former bioinformatics office, Ziyou, Marjorie, and Sam (also not 



5 
 

me), I will never forget the light-hearted atmosphere and our sense of comradeship. It was truly a 

pleasure to share the same office with you guys. I also want to thank my dear friends from our 

cohort Chang, Guangyuan, and Dylan for being awesome food and travel buddies. Thank you for 

accompanying me throughout the long journey, cheering me up when I was feeling down, and 

making our lives interesting through thought-stimulating conversations.  

 

Last but not least, I cannot express enough love and gratitude towards my mother Annie, my 

father Carl, and my younger sister Judy. Thank you for being my greatest supporters and the best 

life mentors. I could not have completed this journey without your unconditional love and support. 

It is truly a blessing to be born your son and brother. Thank you all so much! 

 

 

 

 

 

 

 

 

 

 



6 
 

PREFACE 

Chapter 1 consists of an overall survey on the current understanding of macrophage heterogeneity, 

and how bulk and single cell RNA sequencing assays can be applied to further our knowledge of 

the matter. A review of the current technology and computational analysis strategies for these 

assays is also included.  

 

Chapter 2 is adapted from original research articles entitled “Synovial Macrophage Heterogeneity 

Confers Differential Response to Acute and Chronic Inflammatory Arthritis.” (Chen & 

Montgomery et al., in preparation) and “Critical Role of Synovial Tissue-resident Macrophage 

Niche in Joint Homeostasis and Suppression of Chronic Inflammation (Huang et al. 2021, Science 

Advances, 3rd author). This chapter describes the elucidation of macrophage heterogeneity in 

synovial tissue in the context of arthritis by performing integrative analysis of bulk and scRNA-

seq data. 

 

Chapter 3 contains some results from an original research article entitled “A novel tissue-resident 

non-classical monocyte population forms a critical barrier to inflammation in the synovium” 

(Montgomery et al., in revision, 2nd author). This chapter extends the concept of synovial myeloid 

heterogeneity through the discovery and characterization of extra-vascular resident monocytes. 

The applications of bulk and scRNA-seq data analysis is again emphasized.  

 

Chapter 4 is derived from an original research article entitled “Transcriptional Profiling of 

Pediatric Cholestatic Livers Identifies Three Distinct Macrophage Populations” (Taylor et al. 2021, 

PLoS One, 2nd author) and is reproduced here with the permission of the copyright holder. This 
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chapter discusses how scRNA-seq analysis can facilitate the identification of distinct macrophage 

subsets across human patients with pediatric cholestasis.  

 

Chapter 5 is adapted from an original research article entitled “MAGNET: A Web-based 

Application for Gene Set Enrichment Analysis Using Macrophage Data Sets” (Chen et al., in 

revisions). This chapter introduces a novel, interactive web application for performing enrichment 

analyses on custom gene sets that are specifically relevant to macrophages.  

 

Chapter 6 contains a brief summary of the previous chapters, concluding remarks, and future 

perspectives on high-throughput sequencing assays and macrophage heterogeneity. 
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CHAPTER 1: INTRODUCTION 

1.1  Identity and plasticity of tissue resident macrophages 

1.1.1 Functional diversity of macrophages 

First described in the late 19th century by Elie Metchnikoff [1, 2], macrophages are a group of 

immune cells in mammals that specializes in phagocytosis, a process where they physically engulf 

and digest foreign particles such as bacteria. For decades, macrophages along with other members 

of the mononuclear phagocyte system (MPS) [3] have been regarded as first line defenders of the 

innate immune system. Common functions attributed to macrophages includes scavenging of 

foreign pathogens through phagocytosis [4, 5], activation of adapt immune responses via 

interaction with dendritic cells (DCs) and lymphocytes [6], and regulation of inflammation by 

secretion of various cytokines and chemokines [7].  

 

Findings from recent studies have led to major paradigm shifts in our understanding of 

macrophage biology. It is now clear that macrophages reside in virtually every tissue and organ 

under homeostatic conditions, and they are capable of tissue-specific phenotypes and functions 

well-beyond innate immunity [8, 9]. For example, microglia, the resident macrophages of the brain, 

participate in synapse pruning during development [10, 11]. Kupffer cells of the liver are involved 

in breaking down erythrocytes and recycling of heme [12, 13]. Alveolar macrophages of the lung 

play major roles in removing foreign particles from the respiratory surfaces [14, 15]. A non-

exhaustive list of known tissue-specific functions of resident macrophages are provided in Table 

1. In addition to inter-tissue diversity, functional specialization of macrophages can exist within 

individual tissues as well. Macrophages in the lung, for example, have been classified into three 

major subpopulations – alveolar macrophages and two subsets of interstitial macrophages. They 
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occupy different anatomical compartments within lung, possess distinct morphologies, and 

participate in varied biological processes ranging from alveoli homeostasis to immune surveillance 

[15, 16]. Intra-tissue functional diversity has also been documented for macrophages in the liver 

[17], intestines [18, 19], brain [20, 21], and other organs. These studies, along with others, highlight 

the functional diversity of macrophages.  

 

A complex network of biological factors underlies and contribute to the observed functional 

diversity of macrophages, which can be roughly categorized into three major themes: ontogeny, 

local environment, and inflammation. Each of them will be described in more details in the 

subsequent sections.  

 

1.1.2 Ontogeny 

It was the prevailing view that macrophages in tissues are replenished and replaced exclusively 

by circulating monocytes derived from bone marrow progenitors [3]. However, this classical 

model of hematopoietic differentiation failed to explain the presence of long-living tissue resident 

macrophages that are able to self-maintain through local proliferation [22-24]. This raised the 

possibility that some macrophages may owing their origins to embryonic precursors that predates 

bone marrow hematopoiesis, which have been experimentally confirmed thanks to the 

development of novel fate-mapping techniques [25-27].  

 

Current consensus in the field indicates that there are at least three distinct embryonic origins 

for macrophages, arising in successive waves. The first wave, called primitive hematopoiesis, is 

derived from the yolk sac mesoderm at around embryonic day (E) 7.0 [25, 28]. This is followed 
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by the appearance of erythro-myeloid precursors (EMPs) from the hemogenic endothelium of yolk 

sac between E8.0-8.5, termed transient definitive hematopoiesis due to their inability to persist in 

immune-compromised animals [29]. EMPs migrate into the fetal liver after the initial 

establishment of blood circulation and give rise to primitive monocytes [30]. Definitive 

hematopoiesis, which represents the third wave, is characterized by the colonization of immature 

hematopoietic stem cells (HSCs) in fetal liver at E10.5 [31]. With the establishment of fetal HSCs, 

fetal liver become the primary hematopoietic organ in the embryo from E12.5 onwards. These 

precursor HSCs will also enter the fetal bone marrow and eventually develop into adult HSCs. 

Thus, the developmental origins of tissue resident macrophages can be traced to three sources: 

yolk sac, fetal liver, and bone marrow [29, 32, 33]. 

 

It is now widely accepted that macrophage populations are substantially derived from 

embryonic precursors, but with considerable variation across tissues. Microglia is the only known 

population to be exclusively derived from the yolk sac, with minimal changes over lifetime [25, 

34]. Macrophages residing in lung [35] and liver [36], on the other hand, originated primarily from 

fetal liver monocytes, while also harboring smaller populations of bone marrow-derived 

populations. Cardiac macrophages are also primarily derived from fetal liver, but the proportion 

of bone marrow-derived cells increases with age [37]. Intestinal macrophages were long thought 

to be composed of exclusively bone marrow derived macrophages and is continuously replenished 

from circulation [38]. This view has however been recently disproved with the identification of 

long-living macrophages with embryonic origins, characterized by their surface expression of 

TIM-4 and CD4 [19]. Therefore, with the exception of microglia, the majority of tissues harbor 

multiple subsets of macrophage with distinct ontogenic histories (Table 1).  
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Table 1 Functional diversity and plasticity of tissue resident macrophages.  

Tissue Ontogeny 
Environmental 

signals 

Master 

TF(s) 

Specialized 

Functions 
Citations 

Brain Yolk sac M-CSF 
SALL1, 

SMAD2/3 
Synapse pruning [11] 

Kupffer cells 

(liver) 
Fetal liver DLL4, NOTCH LXRα, ID3 

Erythrocyte 

metabolism 
[13] 

Alveolar 

space (lung) 
Fetal liver  GM-CSF PPARγ Surfactant clearing [15] 

Peritoneal 

space 

Yolk sac + 

BM 
Retinoic acid GATA6 

Interaction with B1 

lymphocytes 
[39, 40] 

Red pulp 

(spleen) 
Fetal liver Heme SPIC Blood homeostasis [41] 

Intestines 
Fetal liver 

+ BM 

TGF-β, 

NOTCH 
RUNX3 

Interaction with 

microbiome 
[18, 42] 

Langerhans 

cells 

(epidermis) 

Yolk sac + 

Fetal liver 
TGF-β, IL34 ID2 

Antigen uptake and 

transportation to 

lymph nodes 

[27, 43] 

Kidney 
Fetal liver 

+ BM 
? 

AHR, 

NFATC (?) 
Renal homeostasis  [44] 

Heart 
Fetal liver 

+ BM 
? ? Electrical conduction [45] 

 

1.1.3 Local environment 

Experimental evidence indicated that ontogenic heterogeneity alone is unlikely to account for 

the functional plasticity observed in macrophages across tissues. van de Laar et al. [46] showed 

that upon transplantation into newborn Csf2rb-/- mice, which lacks alveolar macrophages, wild 

type embryonic progenitors regardless of origins, including yolk sac, fetal liver, and bone marrow, 
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are all able to develop into functioning alveolar macrophages with no discernable differences in 

transcriptional profiles. Lavin et al. [47] further demonstrated that adult peritoneal macrophages 

are able to acquire up to 70% of gene expression patterns of alveolar macrophages when adoptively 

transferred into lung. [47]. Collectively, these two studies implicate local tissue environment as 

another major factor that influence the phenotypes and functions of macrophages.  

 

The development and establishment of macrophage identity is controlled by a number of 

master transcription factors (TFs), including PU.1 [48, 49] and MAFB [50]. Emerging evidence 

suggest environmental signals encountered in tissue by macrophages are also capable of inducing 

additional TFs that contribute to the distinct gene expression profiles observed across tissues [47, 

51]. For example, retinoic acid is known to trigger the transcription of GATA6, which is an 

essential regulator in the development of peritoneal macrophages [40]. Heme induces the 

expression of SPI-C, which mediates the development of red pulp macrophages [52]. The 

induction of PPARG-γby GM-CSF is required for establishment and maintenance of alveolar 

macrophage identity [53]. Other examples of tissue-specific environmental signals and induced 

regulatory TFs is provided in Table 1. The mechanism behind environmental regulation likely 

goes beyond transcriptional level. Macrophages exhibit distinct enhancer profiles across tissues, 

exemplified by the divergent patterns of histone modification (e.g., H3K4me1 & H3K27ac) and 

open chromatin landscapes. These differential enhancer sites are disproportionately enriched for 

bind motifs of the tissue-specific TFs, insinuating targeted remodeling of the epigenomic 

landscapes triggered by environmental signals [47, 54]. In summary, tissue-specific environmental 

stimuli play a major role in shaping the identity of resident macrophages through regulation on 

both transcriptional and epigenetic levels. 
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The influence of local environment is emphasized and summarized in the niche model 

proposed by Guilliams et al. [55]. By definition, a niche represents a physical foundation or 

scaffold for macrophage residence that directly regulate the sizes and identities of tissue-specific 

populations. The niche acts as a major source of environmental signals that confer their specialized 

functions and their ability to self-maintain through inducing transcription of key TFs. The 

macrophages would in turn also provide benefits to their niche [56]. The dependence of microglia 

to their surrounding environment is an example of the niche model in action. Neurons and glial 

cells secrete IL34 [57] and CSF1 [58], respectively. They both are non-alternative ligands for the 

CSF1R receptor, which is an essential factor for the survival of microglia [59]. Microglia in turn 

contribute to the development and homeostasis of neurons and glial cells [58, 60]. The concept of 

macrophage niche is not limited to the whole tissue, as evidence of distinct niches on the sub-tissue 

level have been extensively documented. For example, liver consists of multiple anatomical zones, 

which act as distinct niches for macrophage development by promoting their interaction with 

different cell types and environmental cues. Within the perisinusoidal space, hepatocytes, stellate 

cells, and endothelial cells collaboratively scaffold the Kupffer cells and imprint their identities 

through synergistic NOTCH-BMP signaling, which induces the lineage-specific TF LXR-α [61, 

62]. On the other hand, the liver capsule harbors a distinct population of capsular macrophages. 

Their identities are conferred through direct interfacing with the hepatic parenchyma and 

peritoneal cavity, with specialized dendrites extending into the sinusoids [63]. Spleen is another 

organ that contains multiple niches, where the white pulp, marginal zone, and red pulp each give 

rise to distinct macrophage subpopulations owing to their very different local environments [64]. 

In conclusion, the local environment defined and sustained by niches within tissues is a primary 
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contributor to the functional plasticity of tissue resident macrophages. It is however important to 

note that niches are not static and can be rapidly altered when homeostasis is disrupted, such as 

inflammatory conditions.  

 

1.1.4 Inflammation 

Inflammation is the protective immune response that occurs when the body encounters external 

challenges, such as bacterial infection and tissue injury [65]. Macrophages play central roles in 

promoting, maintaining, and resolving inflammation [7]. The resulting changes to local tissue 

environment, however, can render the niche unsuitable for pre-existing resident macrophages, 

which often leads to their necroptosis [66, 67]. The loss of tissue resident macrophages results in 

the opening of niches, which are then filled up either through local proliferation of surviving 

resident macrophages or the recruitment of circulating bone marrow monocytes in a CCR2-

dependent manner [68, 69]. With an altered local environment, the newly differentiated and 

surviving macrophages adopt distinct identities and functional programs compared to those under 

homeostatic conditions. There are conflicting reports on the ultimate fate of recruited macrophages, 

however. A study in liver suggest that cells recruited from circulation eventually become 

transcriptionally indistinguishable from embryonically derived Kupffer cells after the subsidence 

of inflammation [69], while another study of peritoneal inflammation indicated that recruited 

macrophages adopt a distinct immature transitory state that persisted long-term compared to 

resident cells [70]. It is possible that the degree of restoration to steady state from inflamed tissue 

environment is the deciding factor of recruited macrophage phenotype. The evidence of trained 

immunity, where monocyte-derived macrophages are seemingly able to “memorize” the initial 

insult and elicit stronger immune responses for future challenges [71, 72], further suggest that 
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changes to the local tissue environment due to inflammation have the potential of reprogramming 

the identities of macrophages. 

 

Although their exact functional roles vary across tissues and disease models, macrophages 

exhibit a common pattern of phenotypic shift over the course of inflammation. At the onset of 

infection/injury, classical Ly6C+ (CD14+CD16- in humans) monocytes [73] are predominately 

recruited into tissue. Macrophages differentiated from this initial wave specialize in the secretion 

of various pro-inflammatory cytokines such as IL-1B and TNF that propagate the magnitude of 

inflammation and facilitate the recruitment of other immune cells [74]. They also actively 

participate in the removal of potential pathogens and tissue debris from dying cells through 

phagocytosis [75]. After the initial wave, monocyte infiltration gradually become of primarily non-

classical Ly6C- (CD14+CD16+ in humans) phenotype [73]. This coincides with the shift from the 

effector phase of inflammation to resolution [76, 77]. Macrophage derived from non-classical 

monocytes promote the resolution process through secretion of anti-inflammatory cytokines 

including IL6 and IL10 [78]. They also directly partake in the remodeling and regeneration of 

tissue by promoting angiogenesis and fibrosis [79]. The pro-reparative functions of macrophages 

are not always beneficial, as it is also possible that the inflammation process be never fully resolved, 

at which point it become chronic rather than acute. The constant remodeling of extracellular matrix 

mediated by pro-reparative macrophages often results in permanent tissue scarring and impairment 

of function, as observed in pulmonary fibrosis [80] and cardiovascular diseases [81]. In summary, 

macrophages are critical to both the propagation and resolution of inflammation.  

 

The term polarization is often used to describe the phenotypic changes to macrophages 
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encountering pathological conditions. Traditionally, macrophage polarization is classified into two 

major types: M1 (classical activation) and M2 (alternative activation). M1 polarization can be 

induced through stimulation by LPS, and is characterized as being pro-inflammatory. M1 

macrophages possess enhanced ability to eliminate pathogens through secretion of chemicals like 

reactive oxygen species (ROS) and nitrogen radicals. In contrast, M2 polarization can be activated 

via IL-4 and is characterized as being anti-inflammatory. M2 macrophages are potent producers of 

growth factors such as TGF-β and VEGF, which promotes wound repair and tissue-remodeling 

processes [82, 83]. Although easy to understand, the concept of M1/M2 polarization is largely 

being viewed as being too simplistic. A study that profiled and analyzed macrophage 

transcriptomes after administration of 28 different stimuli revealed that there are at least 9 major 

dimensions of polarization [84]. Furthermore, our previous understanding of macrophage 

polarization is based solely on in vitro experiments, and there is no evidence that macrophages 

with the exact phenotypes of M1 or M2 polarization exist in vivo [85]. Examples of in vivo 

polarization responses that are specific to the tissue type and pathological condition is just starting 

to be examined. In the case of skeletal muscle injury, both recruited and resident macrophages aid 

in the regeneration of muscle fiber by stimulating the proliferation and differentiation of myogenic 

progenitor cells (MPCs). During the process, macrophages exhibit a wide range of transcriptional 

profiles spanning from pro-inflammatory to pro-reparative depending on the timepoint of injury 

progression and the cell types they interacted with [76, 86]. The multi-faceted response of 

macrophages under inflammatory conditions have also been documented in myocardial infarction 

[87, 88], chronic obstructive pulmonary disease (COPD) [89], non-alcoholic fatty liver disease 

(NASH) [90], and many other diseases [91]. Thus, the polarization of macrophages in vivo should 

be considered a multidimensional process rather than a black or white M1 versus M2 dichotomy 
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[92]. 

 

1.2  Combining FACS and bulk RNA-sequencing to study macrophage heterogeneity  

1.2.1 FACS and macrophage biology 

Flow cytometry is an experimental technique for measuring physical characteristics of 

individual cells or particles. In brief, a light source is focused onto the particles being examined, 

which are directed and guided by fluidic systems. The resulting light scatter upon striking the 

particles is then recording by optical instruments, converted to digital signals, and then analyzed 

computationally [93]. Fluorescence-activated cell sorting (FACS) is considered a specialized type 

of flow cytometry, possessing the capability of distinguishing and isolating multiple cell 

populations. This is achieved by pre-labeling the single cells with fluorescent-tagged antibodies 

specific to cell surface protein markers of choice. Cells with different surface markers will then 

exhibit differing fluorescent emittance when ran through the flow cytometer, enabling their 

separation from others [94, 95]. For example, macrophages can be isolated by targeting their 

surface expression of CD11b and F4/80, while T cells can be identified through CD3, CD4, and 

CD8 (BD Biosciences). FACS has therefore seen widespread use in the field of immuno-cell 

biology, where populations of different lineages are often examined separately and thereby 

requires purification from the heterogeneous blood or tissue samples beforehand. 

 

In addition to the major immune lineages, FACS is also a powerful experimental technique 

for discovering and characterizing subpopulations within a specific lineage. In the case of 

macrophages, FACS has been utilized to define distinct macrophage and dendritic cell (DC) 

subsets in the lung, where surface markers including CD206, Siglec F, and MHCII are found to be 
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major indicators for distinguishing subsets [96]. Other notable examples of employing FACS in 

macrophage-related studies include mapping the developmental trajectory of tissue resident 

macrophages [26, 97, 98] and characterizing changes to subpopulations under diseased conditions 

[88, 99, 100]. In summary, FACS is an essential tool for studying the heterogeneity of macrophages 

and is ubiquitously utilized across macrophage-related studies. 

 

1.2.2 RNA-sequencing technology 

 After isolation by FACS, examining the differences in their gene expression patterns is a very 

desirable way to characterize individual macrophage populations. The quantification of gene 

expression is usually done by measuring the abundance of messenger ribonucleic acid (mRNA). 

This is based on the central dogma of biology, where deoxyribonucleic acids (DNA) are first 

transcribed into mRNA, which are then translated into amino acids and eventually become 

functioning proteins [101]. Given the fact that the process of mRNA transcription is selective at 

active gene loci on DNA, the relative abundance of mRNA molecules is a good indicator of 

differing gene expressions and in extension protein functions between sorted cell populations.  

  

 Over the past few decades, the technology for deciphering nucleotide sequences like 

DNA and RNA has seen tremendous improvements. The traditional method for sequencing DNA 

was introduced by Frederick Sanger in 1977. The method involves the selective incorporation of 

four possible complementary dideoxynucleotides (ddNTPs – Adenine (A), Thymine (T), Cytosine 

(C), and Guanine (G)) to the DNA strand being sequenced. The ddNTPs are radioactively or 

fluorescently tagged and would terminate the chain elongation process by DNA polymerase, which 

enables the determination of individual DNA nucleotides through gel electrophoresis [102]. 
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Sanger sequencing was the prevailing DNA sequencing method for over 40 years, but it suffers 

from the limitations of low scalability and being labor intensive. For instance, the human genome 

project, which utilizes Sanger sequencing, took 13 years and 3 billion dollars to deliver the first 

completed draft of our genome [103]. Thus, the demand for higher capacity and cost-effective 

nucleotide sequencing led to the introduction of many high throughput sequencing, also known as 

next-generation sequencing (NGS) in the last couple decades [104].  

 

There are currently three major commercial NGS systems: Roche 454, Illumina Genome 

Analyzer, and SOLiD/Ion torrent from Life Sciences [105]. Although their underlying chemistry 

differs, all three systems employed the concepts of massive parallelization and multiplexing. Here, 

the procedures of the Illumina platform are briefly described as they are employed in the 

experiments in this thesis. First, sequencing libraries are prepared by extracting nucleotide 

sequences from cells, fragmenting into shorter reads, and ligating adapter sequences to the reads. 

Next, each read is replicated up to 1000 times in close proximity on the surface of flow cell 

channels through the process of “bridge amplification”, forming dense clusters of double-stranded 

reads. Third, a sequencing cycle is initiated by administering fluorescently tagged dNTPs with 

reversible chain elongation terminators. Fluorescence is emitted when a single complementary 

dNTP is incorporated on each read, which are captured and converted into digital signals by optical 

instruments. By distinguishing the colors of the emitted fluorescence, the identities of nucleotides 

can be deciphered across large number of reads at once. Finally, the terminators are cleaved and 

the dNTPs are added again to sequence the next base of the reads. This “sequencing by synthesis 

(SBS)” process is repeated over multiple cycles until reaching the predetermined read length, 

which is typically between 50 and 300 bases [106]. Compared to Sanger sequencing, NGS methods 
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like Illumina are able to sequence multiple biological samples simultaneously while providing 

better coverage of genomic regions due to their ability to demultiplex reads and their much higher 

sequencing capacity. We have thus seen widespread adoption of NGS assays for genome-wide 

experiments in recent years.  

 

The next-gen assays most commonly employed for gene expression profiling are microarray 

and RNA-seq. Microarray is the older technology out of the two, and it functions by utilizing a 

specialized chip spotted with complementary DNA (cDNA) probes representing individual genes 

or transcripts. Expression differences among genes then can be observed and quantified by 

hybridizing sample RNA fragments against the probes [107, 108]. Microarray is highly applicable 

in clinical settings, especially for diagnostic purposes due to its relatively standardized nature [109]. 

However, it is limited by our current knowledge of transcriptomes, and therefore cannot be used 

for the discovery of unannotated genes and splicing variants. RNA-seq, on the other hand, utilizes 

the aforementioned NGS technology to obtain both the nucleotide sequences and expression levels 

of mRNA fragments [110]. RNA-seq involves an extra step of reverse transcribing mRNA 

fragments into cDNA, but otherwise the downstream procedures are shared with DNA sequencing. 

In comparison to microarray, RNA-seq has the advantage of being able to discover novel 

transcripts and possessing lower background noises due to its lack of hybridization step. It is also 

able to quantify absolute and wider ranges of expression levels as opposed to microarray, where 

expression estimates are relative [111]. Given these advantages, combining FACS and RNA-seq 

have become an extremely popular approach to characterize and compare the gene expression 

patterns between inter- and intra-tissue resident macrophage subsets.  
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There are several important factors to consider when designing an RNA-seq experiment. First, 

an RNA-seq run can be configured to either output single reads or paired end reads, where 

sequencing is performed on both ends of a fragment in opposite direction. While being more costly, 

a paired end run can provide extra information of read positioning in the genome, making it more 

suitable for tasks such as de novo genome assembly and discovery of structural rearrangements. 

For simpler tasks like comparing gene expression levels between samples, the cheaper single read 

runs are usually sufficient [112]. Second, two major methods exist for RNA extraction and 

purification during library prep, which are ribosomal RNA (rRNA) depletion and poly(A) tail 

enrichment. Similar to the choice between single versus paired end reads, rRNA depletion cost 

more but require less input materials and is less prone to biases towards the 3’ end of fragments. 

rRNA depletion is therefore a desirable choice when working with samples of lower quality and 

for detection of splicing isoforms, while poly(A) enrichment is more appropriate for expression 

profiling on the whole gene level [113]. Third, the target number of reads to be sequenced in a run, 

also known as the sequencing depth or library size, need to be determined before executing the 

assay. Higher sequencing depths provides the benefits of better transcriptome coverage and 

therefore higher statistical powers when testing for differentially expressed genes, but may also 

amplify the noises from contamination and off-target transcripts. It is therefore suggested to utilize 

pilot runs and saturation curves to gauge the expected improvements to transcriptome coverage 

from increasing sequencing depth [114]. Finally, the number of biological replicates is another 

essential design factor. Albeit 3 replicates for each experimental group is commonly seen in studies, 

the actual optimal number is heavily affected by the underlying biological variability of the system 

being studied. Therefore, power analysis calculations should always be carried out beforehand to 

estimate the number of replicates to be used [115]. To summarize, the optimal parameter choices 
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when planning an RNA-seq experiment ultimately depends on the balance between experimental 

goals, desired statistical power, and budget. 

 

1.2.3 Computational analysis of RNA-seq data 

After conversion from fluorescent intensities into digital signals by sequencing machines, it is 

up to the computational pipelines to process and interpret the generated RNA-seq data. There is 

currently no consensus on how to “optimally” analyze RNA-seq data, as bioinformatic applications 

are continuously introduced with various functions and purposes. It is therefore up to the 

researchers to decide which combinations of bioinformatic tools best fit their research scenarios 

and goals. The computational analysis of RNA-seq data can be roughly categorized into distinct 

steps, which are described below: 

 

A. Demultiplexing 

The raw data generated by Illumina sequencers is stored in the Binary Base Call (BCL) format, 

which contains nucleotide base call and quality information for each location on the flow cell 

in each sequencing cycle. Software like bcl2fastq [116] would sort and assign sequenced reads 

back to individual biological samples based on the distinct read barcodes added during library 

prep, known as the process of demultiplexing. The demultiplexed data are outputted as FASTQ 

files, which is the standard input format for most bioinformatic tools.  

 

B. Quality control 

Raw reads of low quality are removed in this step to prevent technical artifacts and 

contamination from confounding analysis downstream. Metrics often utilized to assess overall 



30 
 

read quality include Phred scoring (Q30), GC content, adaptor contamination, duplication 

levels, and sequence overrepresentation. Tools such as FastQC [117], Trimmomatic [118], and 

RSeQC [119] are commonly employed for quality control of RNA-seq data.  

 

C. Genome alignment or assembly 

The next major step is to align the filtered reads to a reference genome or transcriptome if it is 

available. Most aligner software developed is based on the classic Burrows-Wheeler transform 

[120] and Needleman-Wunsch [121] algorithms. Some well-known examples include Bowtie 

[122] and BWA [123]. Some applications designed specifically for aligning RNA reads are 

able to account for potential splicing junctions, either by leveraging existing annotations or 

detecting new ones. Examples of popular “splice-aware” aligners include STAR [124], 

HISAT2 [125], and TOPHAT2 [126]. If a reference genome is not available, de novo assembly 

of transcripts can be performed using specialized tools like Trinity [127] and Oases [128].  

 

D. Expression quantification 

After the reads are aligned to the reference genome, there are multiple methods to quantify the 

expressions of individual transcripts or genes. The most straightforward method is to assign 

the uniquely mapped reads to genes based on existing annotations of exon coordinates, and is 

implemented in tools such as HTSeq-count [129] and featureCounts [130]. With this simple 

approach, ambiguously mapped reads are discarded and splicing variations cannot be 

recovered. On the other hand, applications like Cufflinks [131], RSEM [132], and StringTie 

[133] utilizes expectation maximization or graph-based approaches to enable more accurate 

estimation of splicing variant abundances [134], at the cost of being more computationally 
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intensive. Finally, tools including Kallisto [135] and Salmon [136] introduced the concept of 

“pseudoalignment”, where genome alignment and expression quantification are essentially 

merged into a single step by modelling the relationships of k-mer occurrences between 

sequenced reads and reference transcripts. These alignment free tools provide massive 

improvements in speed and memory usage while exhibiting comparable overall accuracy to 

alignment-based applications, but is limited in their power for isoform discovery and 

quantifying lowly expressed transcripts [137].  

 

After performing the steps mentioned above, the outputted data usually come in the form of 

count matrices, where rows represent genes or transcripts, columns represent individual biological 

samples, and cell values constitute the number of sequenced reads for each gene-sample pair. The 

subsequent analyses from count matrices become a lot more open ended, as appropriate strategies 

largely depend on specific research scenarios and therefore varies from experiment to experiment. 

Here, I detailed some of the tasks most often undertaken for downstream RNA-seq analyses.  

 

E. Normalization 

Normalization of count matrices is considered an essential step in the workflow, as technical 

variance across samples can lead to batch effects and confound downstream interpretation. The 

most commonly used method is Counts Per Million (CPM), where the count values are divided 

by the library sizes/sequencing depths of each sample and scaled by a factor of 1000000. Other 

popular normalization methods include Fragments Per Kilobase of transcript per Million 

(FPKM), Reads Per Kilobase of transcript per Million (RPKM), and Transcripts Per Million 

(TPM), which also remove the bias from gene or transcript lengths in addition to library sizes 
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[138].  

 

F. Filtering out noises 

Genes with low normalized expression values should be excluded from further analysis, given 

that they have a higher likelihood of being technical noises. The low threshold for expression 

value can be visually determined by plotting the distributions of gene number across their range 

of expression levels for all samples [139].  

 

G. Exploratory analysis 

To assess sample variability within and between groups and identify potential outlier samples, 

correlation coefficients across samples can be calculated using normalized expression values 

and visualized in heatmaps, while scatter plots of individual gene expressions are often utilized 

to examine relationships between any two samples. Another commonly employed method is 

Principal Component Analysis (PCA), which is a classic dimensionality reduction algorithm 

that enables visualizing distribution of samples in a 2-dimensional plot [140].  

 

H. Differential Expression Analysis 

Traditional parametric statistical tests such as T-test and ANOVA are unsuitable for the 

identification of differentially expressed genes (DEGs) because gene expression counts usually 

do not conform to their assumption of data normality. More sophisticated statistical models 

designed specifically for RNA-seq data are implemented in the popular DESeq2 [141] and 

EdgeR [142] packages, which utilizes negative binomial distribution to model count variability. 

Other often used packages for DE analysis includes baySeq, NOISeq and limma, which utilizes 
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Bayesian, non-parametric, and linear statistical models respectively [143-145]. For 

identification of differential splicing variants, the pipeline of HISAT – StringTie – Ballgown is 

suggested to be an effective approach [146]. Differentially up- and downregulated genes 

between conditions are usually determined by thresholding on both p-values and expression 

fold changes. 

 

I. Clustering 

Clustering is the task to categorize genes with similar expression patterns into different groups. 

Similarity between genes can be quantified through distance metrics such as Euclidean, 

Manhattan, and correlation. There are two major algorithms for gene expression data clustering, 

hierarchical and k-means clustering. Hierarchical clustering works by first treating each sample 

as a cluster, then iteratively merge the two most similar samples together until all clusters are 

merged, generating a dendrogram in the process. The final clustering can be determined by 

drawing a cutoff line on the dendrogram. On the other hand, K-means clustering operates by 

initializing a k number of “centroids”, or mean of cluster, at random locations and assigning 

individual samples to them. The sample assignments and centroid locations are updated 

iteratively until the sum of distances between centroids and their assigned samples is 

minimized. The value of k needs to be supplied by user, and can be roughly estimated through 

elbow and silhouette methods [139].  

 

J. Functional Characterization  

After obtaining DEGs or clusters, it is important to characterize and understand the biological 

relevance of these individual gene sets. This is typically achieved through executing statistical 
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enrichment tests, such as Fisher’s exact and hypergeometric tests, against a standardized 

biological knowledge repository like Gene Ontology (GO) [147] and KEGG pathways [148] 

to attribute specific biological processes to each gene set. Popular applications for performing 

functional enrichment tests includes GOrilla [149], DAVID [150], and PANTHER [151]. Gene 

set enrichment analysis (GSEA) is another commonly used alternative, where a user-supplied 

gene list ranked by either p-values or fold changes is compared against a pre-defined gene set 

retrieved usually from Molecular Signatures Database (MSigDB) [152]. An enrichment score 

and its significance are calculated based whether genes in the pre-defined set is statistically 

overrepresented towards the top or bottom of the ranked gene list [153, 154].   

 

1.2.4 Examples and limitations of employing FACS and bulk RNA-seq in macrophage-

related studies 

 Given the advantages outlined above, it is a very popular experimental approach to first 

isolate individual macrophage populations using FACS, and then subject them to gene expression 

profiling to functionally characterize and compare across subpopulations. One of the earlier 

examples was performed as part of the Immunological Genome Project (Immgen) [155], in which 

researchers aim to reconstruct complete gene regulatory networks for immune cell lineages. 

Gautier et al. [51] extracted macrophages from murine spleen, lung, peritoneal, and brain tissues 

and performed microarray on them. They confirmed the diverse gene expression patterns among 

macrophages from different tissues and was able to infer TFs that drives the regulatory programs 

of individual populations using the Ontogenet algorithm [156]. A more comprehensive study 

performed later by Lavin et al. [47] isolated macrophages from eight different tissues and 

performed bulk RNA-seq instead, providing a higher-resolution catalogue of tissue resident 
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macrophage expression signatures. In addition, the authors were able to predict regulatory TFs 

more confidently by directly profiling their epigenomic landscapes using ATAC-seq and ChIP-seq. 

The combination of FACS followed by RNA-seq is also commonly utilized to interrogate 

macrophages within a specific tissue. For example, Matcovich-Natan et al. [157] and Thion et al. 

[158] extracted microglia precursors over multiple time points during fetal and post-natal 

development and profiled their gene expression patterns across the time course.  

 

 However, some limitations exist for this approach. First, prior knowledge of protein surface 

markers is required to separate cell populations. Therefore, FACS is inherently limited in its power 

for discovery of novel macrophage subpopulations. Furthermore, given that most FACS 

experiments utilize sorting panels of only a few dozen surface markers, one cannot exclude the 

possibility of rare and novel subpopulations being sorted together within larger populations even 

when using “gold standard” marker panels. When bulk RNA-seq assays are performed, this results 

in the potential transcriptional heterogeneity being masked and unrecoverable even by 

computational analyses since gene expressions of the sorted cells are averaged out early in the 

workflow. Fortunately, the introduction of single cell RNA-sequencing technologies (scRNA-seq) 

provides a direct answer to these limitations.  

 

1.3 Using Single Cell RNA-sequencing to study macrophage heterogeneity 

1.3.1 scRNA-seq technology 

As a more recent technological breakthrough, expression profiling on the single-cell level 

was first introduced in 2009 by Tang et al., where a single mouse blastomere was analyzed [159]. 

Many more powerful scRNA-seq protocols have subsequently been introduced and can be roughly 
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characterized as either well-based or droplet-based depending on their cell capture approaches. As 

their names suggest, well-based methods (e.g., SMART-seq [160] & CEL-seq [161]) involve 

separating the extracted cells into “wells” on a microchip, providing potentially better sequencing 

coverage for each individual cell but is limited in the number of cells that can be profiled at once. 

In contrast, droplet-based methods (e.g., Drop-seq [162] & 10X Chromium [163]), which were 

introduced later, involve capturing cells into droplets through microfluidic devices and possess 

much higher throughput than well-based methods. scRNA-seq protocols also varies in their 

coverage of transcripts, where some would provide full-length information, like Smart-seq and 

Quartz-seq [164], while others are biased for 3’ end of transcripts, including CEL-seq and MARS-

seq [165]. Currently, the most widely adopted protocol by far is 10X Chromium, which is a 

commercialized droplet-based 3’-end method that is shown to exhibit overall better performance 

across multiple benchmarking metrics [166].  

 

Compared to traditional bulk RNA-seq, library preparation for scRNA-seq protocols like 10X 

chromium involves largely parallel steps, including reverse transcription and PCR amplification. 

A key difference for 10X chromium library prep is the barcoding of single cells, which occurs 

when individual cells are captured and encapsulated in microfluidic droplets containing unique 

barcode sequences. Another major feature of 10X chromium protocol is the use of unique 

molecular identifiers (UMIs), which is another kind of barcode sequence for tagging individual 

transcripts [167]. PCR duplication bias is a major obstacle for scRNA-seq protocols due to the 

much lower input RNA available for each library (individual cells vs biological replicates), which 

can be significantly ameliorated through incorporation of UMIs before the amplification step. 

These modifications to the protocol enable the profiling of single-cell transcriptomes at very high-
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throughput – a single run of 10X chromium is able to report the gene expressions of up to 80000 

cells.  

scRNA-seq enjoy the major advantage of being able to reveal previously underappreciated 

heterogeneity within cell populations, and have therefore experience widespread applications in 

macrophage-related studies. It is commonly utilized as an exploratory tool to uncover novel 

macrophage subpopulations within tissue, especially in the context of pathological conditions. For 

example, scRNA-seq aided in the identification of a novel aortic macrophage subset associated 

with atherosclerosis, characterized by the expression of Trem2 and a potential functional role in 

lesion calcification [168]. Other examples of scRNA-seq application includes the examination of 

microglia heterogeneity in brain tissues with glioma [169] and the identification of two previously 

unknown lung interstitial macrophage subsets that are functionally distinct [170]. scRNA-seq is 

also especially useful for the characterization of macrophage environmental niches, since all cell 

types that contribute to a niche can be profiled unbiasedly. This was exemplified in Joshi et al., 

where scRNA-seq and ligand-receptor interaction analysis was performed to confirm the roles of 

monocyte-derived alveolar macrophages and M-CSF signaling in the establishment of fibrotic 

niche [171]. The introduction of single cell spatial transcriptomics methods provides further 

potential for accurate delineation of macrophage niches [172]. In summary, scRNA-seq is a highly 

potent experimental method for unbiased investigation of macrophage heterogeneity that has 

quickly gained popularity in recent years. 

 

1.3.2 Computational analysis of scRNA-seq data 

The initial computational processing of scRNA-seq data is largely similar to traditional bulk 

RNA-seq. Usually handled through automated pipelines like Cell Ranger [163], the sequenced 
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reads are first demultiplexed to their individual cells of origins. The reads of low quality are 

trimmed and then aligned to the reference genome. UMIs, rather than individual reads, are 

aggregated into a count matrix with gene annotations as rows and cell barcodes as columns. Finally, 

the count matrix is filtered by a specialized algorithm to remove barcodes with low RNA content, 

which likely represent technical artifacts rather than functional, intact cells [173].  

 

After obtaining the filtered gene by cell UMI matrix, there are many specialized 

packages/tools available for its downstream analysis, such as Seurat [174], scater [175], and 

Scanpy [176]. These packages implemented specialized modifications to their workflow to 

account for features specific to single cell data. Namely, scRNA-seq data usually exhibits higher 

technical variance, data dimensions, and count sparsity. relative to their bulk counterpart. Here, I 

will briefly describe the major steps in a typical Seurat analytical workflow, which is currently the 

most popular tool for downstream analysis, and highlight the differences to the analysis for 

traditional bulk RNA-seq data: 

 

A. Quality control 

In contrast to bulk RNA-seq, another round of quality control is usually performed in the 

downstream analysis for scRNA-seq data because they are more prone to higher level of 

technical noises. Specifically for droplet-based methods, the cell capturing process and failed 

amplification can lead to the missed detection, or dropout, of certain transcripts. It is also 

possible that broken cells or even multiple cells (doublets) can be encapsulated in droplets, 

resulting in low quality data. Therefore, Seurat suggest removing the low-quality cells by 

thresholding on the number of expressed genes and UMI counts. The proportion of 
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mitochondrial reads is another useful indicator for low-quality cells, as mitochondrial RNA 

fragments are usually disproportionately retained in broken or dead cells. 

 

B. Normalization 

Seurat implemented a very straightforward approach of normalizing scRNA-seq data by 

correcting for total UMI counts in each cell, log-transforming, and multiplying by a scaling 

factor of 10000. Other more sophisticated normalization methods that aim to remove the effects 

of technical drop out events have been introduced and implemented in scran [177] and 

sctransform [178] packages.  

 

C. Dimensionality reduction 

scRNA-seq data are high dimensional in nature, as they contain information for thousands of 

genes and cells at once. To facilitate user interpretation, it is preferable to computationally 

project the data into a lower dimensional space to enable visualization of distinct cell 

populations while maximizing the information retained (Figure 1.3.2). In practice, only the 

highly variable genes are used as input to focus on the strongest biological signals. There are 

three popular algorithms for reducing the dimensions of scRNA-seq data, which are Principal 

Component Analysis (PCA) [140], t-Distributed Stochastic Neighbor Embedding (t-SNE) 

[179], and Uniform Manifold Approximation and Projection (UMAP) [180]. 

 

PCA possesses the advantage of scaling up well to large datasets while being easily 

interpretable, due to the fact that each individual gene’s contribution to a principal component 

(PC) can be manually inspected. However, a major drawback of PCA is that it can only detect 
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linear relationships, which can be inadequate to describe the inherently nonlinear single cell 

data. Nowadays, PCA is often performed as a preprocessing step in scRNA-seq workflows 

including Seurat to reduce overhead computational burdens and technical noises, where the 

top-ranking (10-30) PCs are selected as the input for the other two dimensionality reduction 

algorithms. t-SNE and UMAP, on the other hand, are both designed to resolve non-linear 

relationships and are therefore well suited for scRNA-seq data. UMAP, which was developed 

particularly for visualization of single cell data, is generally better at recapitulating continuous 

biological transitions compared to t-SNE due to its improved handling of both local and global 

distances. It also possesses the advantages of being deterministic and having much better 

runtimes and scalability than t-SNE [181]. UMAP has therefore increasingly replaced t-SNE 

as the prime choice for dimensional reduction and visualization of scRNA-seq data.  

 

D. Clustering 

After the visualization of individual cells on a two- or three-dimensions plot is achieved, 

unsupervised clustering can be applied to group cells with similar expression profiles together. 

Seurat and many other packages like Scanpy perform the clustering of single cells using the 

Louvain algorithm [182]. It is a modularity optimization algorithm that operates on a k-nearest 

neighbor (KNN) graph with edges drawn between single cells with similar gene expression 

patterns. The graph is then iteratively partitioned into clusters of highly interconnected regions. 

The number of resulting clusters can be indirectly controlled by a “resolution” parameter 

supplied by user. While other single cell clustering methods that utilizes other algorithms like 

K-means [183] and self-organizing map (SOM) [184] also exist, a systematic evaluation study 

has shown that Louvain clustering consistently outperform all other methods when applied on 
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scRNA-seq data. 

 

E. Cell annotation 

Annotation of cell identities is a crucial step in the workflow after obtaining clusters, but there 

is currently no consensus of what represents the best approach. This is mostly because the 

definition of a “cell type” is ambiguous and is largely a question of resolution. For example, 

while lung macrophage subpopulations possess distinct expression signatures, they would look 

like a homogenous population when compared to other immune cells such as T cells. Seurat 

suggest simply using a couple of previously published gene markers to manually annotate 

clusters. This is obviously subjective and prone to biases, but many published studies still rely 

solely on this marker-based approach. Methods that perform automated cluster annotation is 

just beginning to be introduced [185]. Some examples include the marker databased-based 

CellAssign [186], correlation-based SingleR [187], and supervised classification-based 

Garnett [188]. It is recommended that both manual and automated approaches be carried out 

to increase the confidence of final annotation [189].  

 

F. Differential expression analysis  

Differential expression analysis in the context of single cell data usually involves identifying 

genes with distinct expressions in one cluster compared to others. Seurat uses a simple non-

parametric Wilcoxon Rank Sum Test by default, but many other tools designed specifically for 

scRNA-seq data are also available. Some notable examples include MAST [190], SCDE [191], 

and DESingle [192], which utilize different statistical models like Poisson [191] and Zero-

Inflated Negative Binomial [192] distributions to deal with specific characteristics of single 
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cell data, such as dropout events [193]. Applications originally designed for bulk RNA-seq 

analysis, including DESeq2 [141] and EdgeR [142], have also seen extensive use in scRNA-

seq studies. A benchmarking study showed that the resulting DEGs can differ considerably 

when using different tools on the same datasets, but there is no major performance loss with 

bulk RNA-seq tools compared to those dedicated for scRNA-seq data [194]. 

 

In addition to core workflow, there are other optional tasks for scRNA-seq analysis that are 

often performed depending on the scenarios and needs of individual studies, which are described 

below in no particular order:  

  

G. Count imputation 

Owing to the high dropout rates in single cell data, imputation methods that aim to “recover” 

some of missing gene expression values are developed and can be a viable approach prior to 

data normalization. Commonly used tools for this task includes SAVER [195], MAGIC [196], 

and AutoImpute [197], each utilizing very different statistical approaches. 

 

H. Regressing out biological and technical effects 

Seurat and Scanpy both implemented the function to remove known biological or technical 

covariates specified by user via simple linear regression [189]. It is especially common to 

regress out the effects from cell cycle genes since they often mask the signals from other 

underlying biological processes. Other more specialized methods that rely on mixture models 

is implemented in f-scLVM package [198].  
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I. Dataset integration 

As scRNA-seq experiments become more affordable, it may be desirable to perform multiple 

assays across different biological conditions (e.g., healthy versus diseased tissue) and compare 

the resulting datasets directly. This can be achieved through numerous single cell data 

integration algorithms such as Canonical Correlation Analysis (CCA) [199], Mutual Nearest 

Neighbors (MNN) [200], and Harmony [201]. Besides direct integration of multiple datasets, 

algorithms like Cell Anchoring [174] also enables the projection of cell annotations from one 

dataset to another. These single cell specific methods differ from typical batch correction 

approaches such as ComBat [202] in that they strive to preserve the cell compositional 

variations that may exist between datasets. 

 

J. Trajectory inference 

Being able to examine transcriptomes on the resolution of single cells enables the inference of 

cell state transitions and differentiation branching processes. In brief, a trajectory line is drawn 

over cells by modeling the continuous gradient of gene expression changes. Each cell is 

assigned a value based on its location on the inferred trajectory, termed “pseudotime”. Popular 

tools that perform trajectory inference includes Monocle3 [203], TSCAN [204], SlingShot 

[205], and PAGA [206]. Trajectory inference can be performed to supplement clustering 

analysis as the latter separate cells into discrete groups, and is therefore unable to capture subtle 

transitional states across distinct populations. 

 

K. Gene regulatory network (GRN) reconstruction 

By surveying for gene co-expression patterns across cells, the complex regulatory interactions 
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between genes and environmental stimuli can potentially be recapitulated. The method 

development for GRN reconstruction is still in its infancy, however, with research efforts 

ongoing for both bulk and single cell RNA-seq data. Tools currently available for single cell 

data include SCENIC [207], which functions by leveraging and integrating co-expressing TFs 

and cis-regulatory motif information. On the other hand, SingleCellSignalR [208] focuses on 

the identification of ligand-receptor (LR) interactions by utilizing a curated database while 

accounting for dropout events using a regularized prediction score. 

 

In summary, there have been tremendous progress in the development of analytical tools for 

scRNA-seq data analysis since the technology’s introduction merely a decade ago. The 

development of other single cell protocols such as CITE-seq [209] and scATAC-seq [210], which 

profiles cell surface protein markers and open chromatin regions respectively, further broadens the 

horizon for future tool development. New analytical methods being developed for the integrative 

analysis of multimodal single cell data [211, 212] holds great potential for more thorough 

investigation of macrophage heterogeneity and functional plasticity.  
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Figure 1. Common tasks for computational analysis of bulk and single cell RNA-seq 

experiments.  
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1.4 Summary and Objectives 

Macrophages are a group of immune cells that display remarkable functional diversity and 

plasticity, which are vastly underappreciated until recently. The introduction of next-generation 

sequencing technology facilitated deeper interrogation of macrophage transcriptomes between 

specific subpopulations isolated by FACS. The rising popularity of scRNA-seq assays further 

enabled the characterization of macrophage heterogeneity and plasticity at an unprecedented 

resolution. In this thesis, I will demonstrate how integrative computational analysis of bulk and 

single cell RNA-seq data can be utilized to further our understanding of macrophage heterogeneity 

across multiple tissue and disease models in both mouse and humans. First, we characterized and 

defined subpopulations of resident joint macrophages and then assessed their transcriptional 

changes under arthritic conditions. In the next chapter, we extended the concept of resident 

macrophage diversity to myeloid cells in general by confirming the presence of long-living non-

classical monocytes residing in synovial space, which are functionally and ontogenically distinct 

from circulating ones. In chapter 4, the focus was shifted to hepatic macrophages, where we 

uncovered the existence of three distinct subpopulations associated with human pediatric 

cholestasis. Finally, after identifying a major shortcoming with current analytical workflows, I 

developed a novel web application that aims to improve functional enrichment analysis for 

macrophage-related genomic data.  
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CHAPTER 2 

Characterizing the heterogeneity of synovial macrophages 

 

Chapter 2 is adapted from original research articles entitled “Synovial Macrophage 

Heterogeneity Confers Differential Response to Acute and Chronic Inflammatory Arthritis.” (Chen 

& Montgomery et al., in preparation) and “Critical Role of Synovial Tissue-resident Macrophage 

Niche in Joint Homeostasis and Suppression of Chronic Inflammation (Huang et al. 2021, Science 

Advances). They are reproduced here with the permission of the copyright holders.  
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2.1 Introduction 

Macrophages are innate immune cells that participate in phagocytosis and maintenance of 

homeostasis [5, 213, 214]. It is now well established that macrophages reside in nearly every tissue 

in steady state and readily adapt to local microenvironmental signals, leading to specialized tissue 

functions and phenotypes [47, 54, 215]. For example, microglia, the resident macrophages of the 

brain, participate in synapse pruning during development [10, 216]. Kupffer cells of the liver are 

involved in breaking down erythrocytes and recycling of heme [12, 13]. Alveolar macrophages of 

the lung play major roles in removing foreign particles from the respiratory surfaces [14, 15]. 

These studies, along with others, highlight the plasticity and functional diversity of macrophages. 

Within the joint tissue, macrophage resides in both the synovial lining and interstitial or sub-lining 

spaces [217]. Their specialized function remains to be formally elucidated, but they are commonly 

thought to participate in the homeostatic maintenance of joint function by clearance of cartilage 

and bone debris from the synovial fluid [218, 219]. In addition to homeostatic and anti-

inflammatory properties, emerging evidence suggest that macrophages residing in the synovial 

lining form a physical barrier that shields the synovial cavity, protecting it from external 

perturbation and potentially regulate the chemical composition of synovial fluid [219, 220].  

 

It was traditionally thought that tissue macrophages were exclusively derived from circulating 

monocytes through hematopoiesis in the adult bone marrow [221]. More recent studies have 

challenged this paradigm, reporting the existence of tissue-resident macrophage subsets that are 

derived from embryonic progenitors, populate tissues during early fetal development, and are long-

lived with minimal replenishment from circulation [8, 26, 29, 222, 223]. Thus, considerable 

ontogenic and functional heterogeneity for macrophages can exist within tissues. Macrophages in 
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the lung, for example, have been classified into tissue-resident alveolar macrophages and two 

subtypes of monocyte-derived interstitial macrophages [224]. Recent studies that utilized fate-

mapping and single cell profiling techniques demonstrated that synovial macrophages in both mice 

and humans are also composed of distinct subsets with embryonic or bone marrow origins [220, 

225-228]. Whether finer subdivisions and subset-specialized functions exist for synovial 

macrophages at steady state is incompletely understood. A better characterization of synovial 

macrophage subpopulations is a prerequisite for a more detailed assessment of macrophage 

phenotypes under diseased conditions, as different subsets may exhibit distinct responses. 

 

As the most abundant resident immune cells in the joint [229], synovial macrophages are 

central players in the pathogenesis of RA, which remains one of the most prevalent autoimmune 

disorders [230, 231]. RA is associated with chronic inflammation of the synovial membrane, which 

eventually leads to degradation of cartilage and bone structures as the disease progress [232]. 

Macrophages drive RA-associated synovial inflammation through secretion of pro-inflammatory 

cytokines, degradation of extracellular matrix, and recruitment of other immune cells, including 

neutrophils and T cells [233-235]. Synovial macrophages also mediate the destruction of cartilage 

and bone structures through signaling interaction with fibroblasts and osteoclasts [236, 237]. 

Inflammation in the joint is accompanied by the expansion of activated and proliferating synovial 

macrophages [219, 238]. We have previously utilized chimera models and selective depletion 

approaches to demonstrate that resident synovial macrophages are required for the attenuation of 

arthritis. In contrast, recruitment of peripheral monocytes, which differentiate into macrophages, 

is required for both the propagation and resolution phases of arthritis, highlighting the time-

dependent plasticity of monocyte-derived macrophages [225]. How monocyte infiltration alters 
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the preexisting synovial macrophage heterogeneity and their functions during disease progression 

remain to be elucidated. A better understanding of synovial macrophage dynamics over the course 

of inflammatory arthritis could potentially help pinpoint pathways and therapeutic targets for 

treating RA that are specific to particular subpopulations. 

 

In this study, we employed an integrative approach of fate mapping and transcriptional 

profiling to define four distinct subsets of synovial macrophages at steady state. We utilized two 

mouse models, serum transfer induced arthritis (STIA) and collagenase-induced arthritis (CIA), 

which represent acute and chronic arthritis respectively, to assess the function of identified subsets 

in response to joint inflammation. We uncovered evidence of more diverse transcriptional 

responses during chronic inflammatory arthritis compared to acute. Finally, we used our definition 

of murine subpopulations to characterize human synovial macrophage heterogeneity in RA 

patients. We observed significant associations between proportions of macrophage subsets with 

RA disease severity and treatment responsiveness.  

  

In Chen et al., we employed an integrative approach of bulk and single cell transcriptional 

profiling to characterize the heterogeneity of synovial macrophages at steady state, defining four 

distinct subpopulations based on the expression of Cx3cr1 and MHCII. We utilized two mouse 

models, serum transfer induced arthritis (STIA) and collagenase-induced arthritis (CIA), which 

represent acute and chronic arthritis respectively, to assess the function of identified 

subpopulations in response to joint inflammation. Finally, we used our definition of murine sub-

populations to characterize human synovial macrophage heterogeneity in RA patients. Collectively, 

our results indicate that heterogeneity of synovial macrophages confers differential response to 
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acute and chronic inflammatory arthritis.  

 

In Huang et al., we utilized a novel mouse model developed by our group called HUPO, 

where the RA risk locus Flip (FLICE-like inhibitory protein) [239] was deleted through mediation 

of Cre recombinase under the control of a CD11c promoter. HUPO mice spontaneously develop 

chronic arthritis that is dependent on macrophages for its initiation, with the incidence increasing 

with age to 80% by ~22 weeks after birth [240]. We identified F4/80hiMHCII− (FH1) macrophages, 

in which Flip was highly expressed, as the dominant tissue-resident macrophage subset, which was 

essential during homeostasis for maintaining niche integrity. In contrast, Flip was reduced in 

F4/80hi macrophages in HUPO, associated with reduction of the FH1 subset, opening a niche and 

permitting the influx of circulating proinflammatory monocytes, which differentiated into the 

F4/80hiMHCII+ (FH2) subset. Genes important in macrophage tissue residency are reduced in 

monocytes from inflammatory RA synovium, suggesting a role for the disruption of the synovial 

resident macrophage niche in the transition from preclinical to clinical RA and the progression of 

disease. 

 

2.2 Synovial Macrophage Heterogeneity Confers Differential Response to Acute and 

Chronic Inflammatory Arthritis 

 

2.2.1 Materials and Methods 

Mice (Performed by Anna Montgomery) 

C57Bl/6 and CX3CR1f/wtCreER.zsGFP mice were purchased from Jackson Laboratory. 

Mice were housed in specific pathogen-free facilities at Northwestern University. All experimental 
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procedures were carried out on female mice aged 8-10 weeks unless otherwise stated. The mice 

were bred and maintained in the Northwestern University barrier animal facility, and all procedures 

followed ethical guidelines and approved by Northwestern IACUC. 

 

Arthritis induction (Performed by Anna Montgomery) 

Serum transfer arthritis (STIA) was induced by the injection of K/BxN serum obtained at 8 

weeks from the progeny of the KRN X NOD [72]. Collagen-induced arthritis (CIA) was induced 

by injecting an emulsion of complete Freund's adjuvant and type II collagen [65]. Disease was 

assessed using clinical scoring 3 times per week for 21 days for STIA and 62 days for CIA.  

 

Processing of murine synovial tissue (Performed by Anna Montgomery) 

Joints were removed from hindpaw in pairs following euthanasia and perfusion. Skin and toes 

were removed from each paw and bone marrow were flushed from exposed tibia with sterile HBSS. 

Synovial tissue was then infused with 1.5ml/joint of ankle digestion buffer (2.4mg/mL dispase II, 

2mg/mL collagenase D, 0.2mg/mL DNAse I in HBSS pH 7.2-7.6) before incubation at 37C for 1h 

with shaking. Cells were then agitated through a 40-um mesh filter. Erythrocyte lysis was 

performed using 1x PharmLyse. Dead cells were stained with eFluor 506 viability dye 

(eBioscience) (1:1000 dilution). Cells were incubated with FcBlock (BD Bioscience) and stained 

with antibodies (see table) for fluorescence-activated cell sorting (FACS). 23count eBeads 

(Thermo Fisher) were utilized to calculate cell counts. Flow cytometry analysis was performed 

using FlowJo software. Statistical analysis of flow-cytometry data was carried out in GraphPad 

Prism. Data shown is mean minimum N=6 ±SEM. P values were calculated using unpaired T Test, 

and were considered statistically significant if P<0.05. 
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Mouse single cell RNA-seq library preparation and analysis 

For murine steady-state (day 0) and peak (day 7) STIA samples, CD45+CD11b+Ly6G-

SiglecF- cells were sorted. RNA libraries were prepared using droplet-based 10x Chromium Single 

Cell 3’ Solution v2. The libraries were sequenced on Illumina Nextseq machines. Reads were 

processed and aligned to mm10 reference genome using mkfastq and count commands of 

cellranger v2 pipeline [163]. Subsequent analyses, including quality control, unsupervised 

clustering, and visualization of individual gene expressionwere carried out using Seurat v2 

package [199] in R. Low quality cells that have < 500 detected genes or > 30% mitochondrial 

reads were removed. tSNE dimensionality reduction and Leiden graph-based unsupervised 

clustering were performed with top principal components (PC) chosen based on elbow plots 

(Steady state: 15 PCs; D7 STIA: 16 PCs) and resolution parameter of 0.8. SingleR package v1.0.5 

[187] was used to annotate cells with Immgen reference cell types and flow-sorted macrophage 

subsets from bulk RNA-seq data (described in next section). Identification of marker genes was 

done by running Wilcoxon tests implemented in FindAllMarkers with 0.25 min.pct and 0.25 logFC 

cutoff. Cell cycle scoring was performed using G2/M and S phase gene sets provided in Seurat, 

converted to orthologous mouse genes using BioMart R package. Steady state was compared 

against the steady state subsets defined in this study by running Seurat AddModulesScore function 

with the reported Culemann gene markers as input. Trajectory analysis was performed on steady 

state sample using reduceDimension and orderCells functions from Monocle2 package [241]. 

Genes differentially expressed across the trajectory were identified through differentialGeneTest 

function and three gene modules were obtained by executing plot_pseudotime_heatmap. 

Projection of steady state subset annotations onto D7 STIA sample was performed using label 

transfer method through FindTransferAnchors and Transfer data functions[174] with top 15 PCs 
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from steady state data as reference data. Pearson correlations between steady state and D7 STIA 

macrophage subsets was calculated on the averaged expression profiles across single cells. The 

relative expression signatures of the bulk steady state and STIA time course RNA-seq clusters 

were computed and visualized in D7 STIA sample using Seurat AddModuleScore and FeaturePlot 

functions. The clustered heatmap of select marker gene expressions across Day 7 single cells was 

generated using ComplexHeatmap package.  

 

Bulk RNA-seq library preparation and analysis 

For each of the four macrophage subpopulations, RNA was extracted using PicoPure RNA 

Isolation kit (ThermoFisher) as per manufacturer’s instructions. Library prep was performed using 

QuantSeq 3’ mRNA sequencing kit (Lexogen) and sequenced on Illumina NextSeq. The resulting 

BCL sequencing files were demultiplexed using bcl2fastq into FASTQ format. The reads were 

trimmed using BBDuk v37.22 ( http://jgi.doe.gov/data-and-tools/bb-tools/), aligned to mm10 

genome with STAR [124], and mapped to reference gene exons using HTseq [129] to generate a 

matrix of gene expression counts. Raw counts are normalized to counts per million (CPM) to 

account for differing read depth across samples. Expressed genes were defined as those with 

expression greater than 16 CPM in at least 4 samples. This results in 7668 expressed genes for 

steady state, 8513 genes for STIA, and 9388 genes for CIA datasets. Principal component analysis 

(PCA) was performed using the prcomp function with data scaling and centering. Forcalculating 

the expression foldchange relative to Day 0 of STIA and CIA time course experiments, CPM values 

lower than 16 were adjusted to 16 to minimize confounding noises from lowly expressed genes. 

Temporally differential genes across the STIA and CIA time courses were defined as those with at 

least 2-fold change in expression between day 0 and any subsequent time points in at least one 

http://jgi.doe.gov/data-and-tools/bb-tools/


55 
 

macrophage subsets. K-means clustering and heatmap visualization on CPM values (steady state) 

or log expression foldchanges relative to day 0 (STIA and CIA time course) was performed using 

Morpheus web app (https://software.broadinstitute.org/morpheus). For each steady state K-means 

cluster, we quantified the percentage of temporally differentially genes using the prior definition 

across the STIA time course and macrophage subsets. MAGNET web app (https://magnet-

winterlab.herokuapp.com/magnet) was utilized to determine hypergeometric enrichment of the 

steady state clusters against published gene sets from Lavin et al. [47]. Gene ontology (GO) 

analyses of biological processes were performed using GOrilla webtool [149] with 8513 (STIA) 

and 9388 (CIA) expressed genes as background. Transcription factor binding motif enrichment 

analysis was carried out with HOMER [49]using each k-means cluster as input and expressed 

genes as background. GSVA R package [242] was utilized to compute the combined relative 

expression scores for putative downstream target genes of select TFs. The downstream target genes 

for the select TFs were obtained from Dorothea database [243] by filtering for positive regulatory 

direction (mor=1) and using all levels of confidence (A-E). To assess the similarity between STIA 

and CIA clusters, log enrichment of overlapping genes ((size of overlap/ # of genes in STIA 

cluster)/(# of genes in CIA cluster/ size of background)) cluster was calculated, with significance 

determined through hypergeometric test using 8168 shared expressed genes as background. All 

computational analyses were performed using R v3.6.3, with figures generated via ggplot2 

package. 

 

Human synovial biopsy data processing and analysis 

RA patients were recruited as part of the RhEumatoid Arthritis SynOvial tissue Network 

(REASON) consortium. Minimally invasive ultrasound-guided joint biopsies were performed as 

https://software.broadinstitute.org/morpheus
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previously described [244]. In brief, ultrasound scanning over wrist joint was used to locate the 

region of greatest synovitis. Two lidocaine injections were performed into the target joint to ensure 

anesthesia and a clear path for the biopsy device. A Quick Core Biospy needle was then used to 

retrieve synovial tissue with the aid of continuous real-time ultrasound imaging. This procedure 

was repeated to obtain a total of 12 samples for each patient. 

 

Mechanical disaggregation of collected tissue samples was performed on a GentleMACS 

dissociator (Miltenyi Biotec). Tissues were then infused with a digestion buffer [RPMI 1640 

(Sigma), Liberase TL (Roche, 0.1mg/mL) and DNase (Roche, 0.1mg/mL)] and minced with 

scissors. Tissue suspensions were incubated for one hour at 37°C with aggressive disaggregation 

pre- and post- incubation. The digestion reaction was quenched with MACS buffer (Miltenyi 

Biotec) and the tissue suspension was filtered over a 40-micron filter. Red blood cells were lysed 

(BD PharmLyse) and then washed twice with HBSS (Thermo Fisher). Cells were counted 

(Invitrogen Countess) and stained with a viability dye (Supplemental Table 1; 0.5 μL/mL, 15 min., 

25°C, dark). Cells were then washed twice with MACS buffer, incubated with Fc block (BD 

Bioscience), stained with antibodies, washed twice and re-suspended in MACS buffer and kept on 

ice until sorting. Synovial immune cells were sorted on a BD FACSAria SORP instrument (BD 

Bioscience). 

 

Sorted CD45+ synovial immune cells, with the exception of sample 1022, which was 

additionally enriched for CD11B+ myeloid cells, were utilized as input for 10x Genomics 

Chromium Next GEM 3’ v2 or v3 library preparation protocol. Reads were aligned to hg19 

reference genome and processed with cellranger v3 pipeline. To account for variability among 
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samples, quality control was performed by filtering for cells that possess < 10% mitochondrial 

reads and have > 0.4*median and < 3*median read counts for each sample. The human samples 

were integrated using Seurat anchoring method (FindIntegrationAnchors and IntegrateData) with 

30 CCA dimensions and visualized by tSNE using top 10 PCs. CITE-seq was performed on two 

of the samples (hs5, hs6), with antibody intensities normalized using CLR method in 

NormalizeData function. To distinguish myeloid cells from other lineages, a scoring system was 

devised using top myeloid marker genes identified in mouse samples, which were converted to 

their human orthologous counterparts using BioMart package [245]. Briefly, this was achieved by 

leveraging the hidden AddModuleScore function within the Seurat package. Originally introduced 

by Tirosh et al. [246], the algorithm consists of the following steps: 

1) Assign all genes into bins (n=25 by default) based on their average expressions across all cells.  

2) Assuming that we are calculating the combined module score for 10 query genes, generate a 

control gene set by randomly selecting 10 genes from the matching expression bins for each 

query gene. 

3) Compute scores for query and control gene sets by calculating mean expression of all genes 

for each cell. 

4) Subtract control scores from query scores, and the resulting number for each cell is the 

enrichment module score for all query genes combined. 

The AddModuleScore function was implemented in Seurat as an internal function for the 

calculation of cell cycle scores and is not directly mentioned in the user vignettes. This leads to 

missed potential for more innovative analytical strategies due to its flexibility of deriving module 

scores for gene sets of any context and sizes. Here, we computed myeloid signature scores using 

the top 6 marker genes (Ctss, Fcer1g, Psap, Crip1, Lyz1, Ftl1, Npc2, Fxyd5) and observed a clear 
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bimodal distribution across the cells (Figure 2.2.6), enabling in silico separation of myeloid cells 

with a simple cutoff.  

 

To annotate the four synovial macrophage subpopulations defined in mice onto identified 

human myeloid cells, we developed a gene signature scoring approach that again utilizes the 

AddModuleScore function: 

1) Top 10 marker genes for each of the four macrophage subpopulations from D7 STIA sample, 

ordered by fold changes, were used to calculate gene module scores for each human cell (Table 

2).  

2) The scores were normalized separately by each patient into the range of -1 and 1 to account 

for variability across samples.  

3) The minimum scoring cutoff for annotating a cell was set to the equivalent of the pre-

normalization score of 0 (Figure 2.2.1).  

4) Each cell was assigned to the macrophage population with the highest normalized score above 

the minimum cutoffs. If normalized scores for all populations is below the minimum cutoffs, 

the cell is annotated as N/A.  

 

The overall quality of the annotations was assessed by comparing the overlaps between annotated 

subsets and cluster labels from de novo clustering (resolution = 0.2). The same approach was 

applied for the analysis of the AMP [227] dataset. Similarity of our defined macrophage subsets 

with published clusters in Alivernini et al [17, 18] was determined by calculating the fraction of 

their top 20 reported markers that overlapped with the list of differentially expressed genes for 

each of our subpopulations. Significance of overlap was determined by hypergeometric 
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distribution with the expressed genes as background, defined as those that were present in more 

than 25% of cells for at least one subpopulation (n = 6063). A FWER cutoff of 0.05 was applied 

based on Bonferroni correction. 

 

Table 2 Top 10 marker genes of the four macrophage subpopulations from D7 STIA sample 

used for calculation of gene module scores 

MA MB MC MD 

CTSB PLAC8 PF4 IL1B 

LGMN HP SEPP1 HLA-DQB1 

SYNGR1 TMSB10 MRC1 CD74 

MS4A7 IFITM3 C1QC PTGS2 

PSAP LYZ MAF BTG1 

CD63 MGST1 CTSB TGFB1 

APOE MSRB1 GAS6 SRGN 

C1QC IFITM2 CCL7 NFKBIA 

GRN TYROBP ITM2B CXCL2 

FABP5 FAU LGMN CLEC4E 
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Figure 2.2.1 Histogram of normalized gene module scores across patients for the four 

macrophage populations. The red lines represent the minimum scoring cutoffs for annotating a 

cell.  

 

To assess the association between macrophage subset proportions and RA severity, we examined 

multiple RA clinical parameters, including clinical disease activity index (CDAI), swollen joint 

count (SJC), tender joint count (TJC), and Disease Activity Score-28 with C-reactive protein 

(DAS28-CRP). Shannon index was computed to summarize the proportional diversity of 

macrophage subsets. Using available data from follow up clinic visits (6 week and > 12 week after 
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initial visit), patients were categorized as either low severity (HS6), responsive to treatment (HS0, 

HS1, HS5), non-responsive to treatment (HS3, HS4), or no follow-up (HS2) based on the trends 

of CDAI over the visits. Differentially expressed genes between responsive and non-responsive 

patients were obtained by down sampling each patient to 80 cells to minimize bias stemming from 

individual patients with high cell numbers, and then performing Seurat Wilcoxon signed-rank test 

using FindMarkers function with their averaged expression profiles. GO analysis was executed 

with GOrilla with the DE genes as input and expressed genes (same definition as above) as 

background.  

 

2.2.2 Results 

Single cell RNA-seq reveals 4 populations of synovial macrophages in mice. 

To investigate the heterogeneity of mononuclear cells in murine synovium, we performed 

single-cell RNA-sequencing (scRNA-seq) on sorted CD45+CD11b+Ly6G-SiglecF- cells from 

ankle joints of healthy mice. A total of 6444 cells passed quality thresholds and 11 cell clusters 

were identified (Figure 2.2.2A, S2.2.2A-B). Clusters 0-7 were determined to be monocytes or 

macrophages, encompassing 98% of all profiled cells using canonical markers and SingleR 

algorithm, which assigns cell identities based on correlation with Immgen reference data (Figure 

S2.2.2C-D). Cluster 8-10 were assigned identities of fibroblasts, neutrophils, and migratory DCs 

based on documented gene markers, respectively (Figure S2.2.2E). These data confirm that the 

majority of the single cells profiled in this experiment are monocytes/macrophages. 

 

At least two subpopulations of synovial macrophages of differing ontogenic origins, 

embryonic and monocytic, were previously documented [218]. In agreement, we also observed 



62 
 

two distinct groups of clusters with correlated gene expression signatures (Figure 2.2.2B). A closer 

look at individual differential markers in turn revealed four major expression patterns across the 

clusters. Clusters 0-3 specifically expressed markers associated with tissue residency and 

homeostasis, including Pf4, Cd163, Lyve1 and Sepp1 [8, 51, 168]. Conversely, clusters 4-7 

preferentially expressed antigen presentation genes such as H2-Eb1 and Cd74, as well as those 

associated with arthritic inflammation, including Il1b, Ccl17, and Tnip3 [247-249]. Within the two 

correlated cluster groups, cluster 3, in addition to upregulating tissue resident genes, also had high 

expression of genes implicated in the macrophage population that forms the synovial lining, 

including Cx3cr1, Vsig4, Pmepa1, and Sparc [219, 220]. On the other hand, cluster 7 expressed 

higher number of transcripts typical of classical monocytes in addition to antigen presentation 

genes, including Ly6c2, Plac8, and Thbs1 [250, 251] (Figure 2.2.2C-D). Taken together, our data 

suggest four subgroups of synovial macrophages exists in the synovium based on distinct gene 

expression signatures. These subsets are initially named as MA (cluster 3), MB (cluster 7), MC 

(cluster 0-2), and MD (cluster 4-6) (Figure 2.2.2E). We then compared the expression signatures 

of the subsets to those reported in Culemann et al. [220], where six myeloid populations were 

defined (Figure S2.2.2F). We observed that MA subset is enriched for the signatures of Cx3cr1+ 

lining macrophages, while MC is similar to Retnla+ and Aqp1+ interstitial macrophages. MB and 

MD subsets are in turn enriched for the signatures of MHCII+ interstitial macrophages. The 

differing enrichment patterns of gene signatures from an independent dataset support the 

transcriptional and potentially functional distinctness of the defined subsets.  

 

To explore the potential developmental relationships between the four defined subsets, we 

performed trajectory inference as implemented in Monocle2 package [241], where a potential cell 
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differentiation path was reconstructed by modelling the gradients of gene expression changes. We 

set MB as the starting point due to their expression of classical monocytic markers and inferred a 

trajectory that goes through MD cells, coinciding with the gradual downregulation of classical 

monocytic and infiltration markers (Figure 2.2.2F, S2.2.2G). These data implicate MD as a 

possible differentiation product from MB cells. A portion of MD exhibited heightened cell cycle 

gene signatures compared to other subtypes (Figure S1H), insinuating their potential expansion 

after differentiation. The trajectory then branched off, with one proceeding into MA and another 

ending in MC, suggesting that MA and MC subsets likely represent distinct terminal populations 

rather than being on the same differentiation path (Figure 2.2.2F). Differentially expressed genes 

along the trajectory were then clustered into three modules based on their relative expressions as 

the function of pseudotime, corresponding to the three observed branches (Figure S2.2.2G, I). In 

summary, we uncovered 4 distinct synovial macrophage subpopulations where two of the 

populations appear to be terminally differentiated, indicative of tissue resident cells using scRNA-

seq. 
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Figure 2.2.2 Single cell RNA-seq reveals 4 populations of synovial macrophages in mice.  

(A) TSNE of 11 clusters from 6444 steady state CD45+CD11b+Ly6G-SiglecF- cells. (B) 

Correlation heatmap of averaged expression profiles for single cell clusters.  (C) Violin plots 

representing log-normalized expression values of select cluster markers. (D) Heatmap of scaled 

expression values for top 10 marker genes ranked by foldchange from each single cell cluster. (E) 

TSNE visualization of defined synovial macrophage subsets. (F) Inferred pseudotime trajectory of 

single cells visualized on DDRTree dimensional reduced space, separated by subset annotations. 

The starting point of the trajectory is on the left. 
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Figure S2.2.2 (A) Schematic showing the collection and FACSorting of synovial myeloid cells. 

(B) Quality control cutoffs for the scRNA-seq experiment. The metrics used includes the number 

of expressed genes in each cell, % of mitochondrial reads in each cell, and number of principal 

components (PCs) for dimensionality reduction. (C) Expressions of select myeloid marker genes. 

(D) Heatmap illustrating SingleR assignment of Immgen reference cell types. (E) Expressions of 

select non-myeloid marker genes, including fibroblasts, neutrophils, and migratory DCs. (F) 

Mean expression module scores for gene signatures of myeloid subpopulations reported in 

Culemann et al. in MA-MD subsets. (G) Heatmap illustrating genes differentially expressed as a 

function of the trajectory. The genes are clustered into three gene modules based on their relative 

expression patterns along the trajectory. Select genes for each module are indicated on the right. 

(H) Cell cycle scoring of single cells using S phase (left) and G2/M phase genes (right). The 

scores are superimposed on tSNE plots. (I) Pseudotime values inferred by Monocle 2 (top left) 

and combined expression module scores for the three gene modules superimposed on tSNE plot. 

 

Transcriptional profiles of 4 synovial macrophage populations supports differing functions 

and ontogeny 

We next ask whether the four defined synovial macrophage subsets can be isolated 

definitively using antibodies to cell surface proteins. CITE-seq was performed on 

CD45+CD11b+Ly6G-SiglecF-CD64+Ly6C- synovial cells. The surface expression pattern of 

CX3CR1 and MHCII identified the 4 macrophage subsets (Figure 2.2.3A, S2.2.3A), which was 

confirmed by flow cytometry (Figure 2B). Concordant relative proportions of cells were observed 

between the subsets defined by scRNA-seq and flow (Figure S2.2.3B), indicating that our 

sampling of single cells was representative of true myeloid heterogeneity in the joint. Given that 



68 
 

traditional bulk RNA-seq provides higher data resolution than scRNA-seq experiments, we 

performed bulk RNA-seq on the four sorted subsets to extensively characterize their transcriptional 

profiles. We confirmed that the 4 bulk subsets are transcriptionally distinct from each other (Figure 

S2.2.3C) and similar to their corresponding scRNA-seq subsets by assigning single cell identities 

with SingleR using the bulk profiles as reference (Figure 2.2.3C). The expression patterns of 

Cx3cr1 and H2-Eb1 (MHCII) were also consistent with cell surface expression pattern observed 

via CITE seq and by flow cytometry (Figure S2.2.3D). Collectively, these document the presence 

of four distinct macrophage subpopulations in the synovial tissue.  

 

We then utilized unsupervised k-means clustering to identify differential gene expression 

patterns among the four macrophage subsets, along with FACsorted blood classical (CM) and non-

classical (NCM) monocytes. Monocyte samples were included in the clustering to highlight gene 

signatures that are specific to individual synovial macrophage subpopulations. Previously, we were 

able to establish concordance between the MA-MD subsets and the subpopulations defined in 

Culemann et al [220] (Figure S2.2.2F). Similarly, here we defined six bulk gene expression clusters 

that defined MA (lining), MC (interstitial), MB and MD (monocyte-derived), and blood monocytes 

(pan-monocyte to NCM) (Figure 2.2.3D-E, S2.2.3D-E). The lining cluster (MA) includes genes 

linked to the formation of synovial lining, such as Vsig4 and Trem2 [220] and associated with GO 

processes including ossification  and positive regulation of bone mineralization (Figure S2.2.3F). 

We further observed the enrichment of MEF2 TF binding motifs within the gene promoters of 

lining cluster, which are known to govern the development and differentiation of numerous cell 

lineages [252]. Mef2a, in particular, has been shown to promote terminal differentiation of 

macrophages [252, 253]. Mef2c has also been implicated in formation of bone and cartilage 
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structures [254], reflecting the cluster’s enrichment of ossification processes (Figure 2.2.3F, 

S2.2.3H). The interstitial cluster (MC) consisted of previously reported key markers of 

macrophage homeostasis and localization, including Sepp1, Fxyd2, Mafb, and Aqp1 [9, 168, 220]. 

This cluster was enriched for the motifs of KLF TF family, which are well-characterized regulators 

of macrophage polarization [255]. Members of the KLF TFs specifically expressed in MC subset 

include Klf3, 4, and 9, which promote anti-inflammatory programs [256-258] while Klf3 promotes 

cartilage maintenance and repair [259]. On the other hand, the monocyte-derived cluster (MB and 

MD) consisted of leukocyte activation genes such as Cxcl1 and Spp1 [260, 261], while also 

expressing genes associated with antigen presentation (e.g., Cd74, H2-Eb1) (Figure S2.2.3F). This 

cluster exhibited enrichment of NFkB-p65 motif, a master regulator of innate inflammation 

processes through initiation of early response genes such as Tnf and Il1b after translocation into 

nucleus [262] (Figure 2.2.3, S2.2.3H). Notably, the gene signatures of the monocyte-derived 

cluster do not overlap with those of circulating monocytes (Figure 2D), with similar patterns 

observed in the correlations between blood monocytes and MB & MD subsets (Figure S2.2.3C). 

Furthermore, the motifs for IRF TF family, another major initiator of acute innate inflammation, 

were enriched specifically in classical monocytes (CM) but not monocyte-derived cluster (Figure 

S2.2.3H). NFKB and IRF TFs are reported to cross-regulate during inflammatory signaling owing 

to the presence of TF binding sites of both families within each other’s downstream targets [263]. 

The distinct enrichment patterns for NFKB and IRF binding motifs suggest that MB and MD 

subsets may interact closely with classical monocytes in a complementary fashion when generating 

an immune response. These observations indicate that although MB and MD subsets express gene 

markers indicating monocytic origins, they are transcriptionally distinct from circulating 

monocytes and may possess synovial-specific functions.  
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To further understand how synovial macrophage subsets relate transcriptionally to resident 

macrophages from other tissues, we compared the k-means clusters with published gene sets from 

Lavin et al. [47] using hypergeometric tests implemented in MAGNET web tool (Figure S2.2.3G). 

Significant overlaps were observed between the lining cluster and microglia, the interstitial cluster 

and lung alveolar macrophages, and the monocyte-derived cluster and intestinal macrophages. 

Microglia and alveolar macrophages are of exclusively embryonic origins, whereas intestinal 

macrophages are derived predominately from bone marrow monocytes [29], indicating that 

synovial macrophage subsets may possess differing ontogenic histories. To more definitively 

examine their origins, we crossed a tamoxifen-inducible CX3CR1-Cre (CX3CR1CreER) mouse with 

a GFP reporter mouse (zsGFP) to generate a mouse (CX3CR1CreER.zsGFP) in which CX3CR1+ 

cells express GFP after administration of tamoxifen (TMX). We then utilized CX3CR1CreER.zsGFP 

mice for fate-mapping studies of synovial macrophages. TMX was delivered at E15 to pregnant 

mothers from the cross of CX3CR1CreER with zsGFP mice, which will allow for identification of 

embryonically derived cells that are not derived from the yolk sac. TMX-naïve 

CX3CR1CreER.zsGFP mice provided control to estimate background levels of GFP.  The MHC- 

synovial population regardless of the expression of Cx3Cr1 were positive for GFP (62 4.6% 

MHCII-CX3CR1+; 56 3.9% MHCII-CX3CR1-), while MHCII+Cx3CR1+ and 

MHCII+Cx3CR1- synovial macrophage were just above the negative control (Figure 2.2.3G). 

These data indicate the majority of MHCII- synovial macrophage population is derived from the 

fetal liver monocytes, consistent with a previous report [225]. 
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Figure 2.2.3. Transcriptional profiles of 4 synovial macrophage populations supports 

differing functions and ontogeny 

(A) Normalized single cell surface expressions of CD64 (CD64-FcgRI), CX3CR1, and MHCII (I-

A-I-E), as measured by CITE-seq. (B) Flow cytometry classification of synovial macrophage 

subpopulations: CX3CR1+MHCII- (MA), CX3CR1+MHCII+ (MB), CX3CR1-MHCII- (MC), 

and CX3CR1-MHCII+ (MD). (C) Heatmap illustrating SingleR assignment of synovial 

macrophage subpopulations from bulk RNA-seq data to steady state single cell. (D) K-means 

clustering (K = 6) of 4525 differentially expressed genes among the four sorted synovial 

macrophage and two blood monocyte subsets. (E) Gene expression of select marker genes from 

synovial lining, interstitial, and mono-derived K-means clusters. (F) Percent presence of DNA 

binding motifs for select TFs in the promoters of K-mean cluster genes (left), gene expression of 

the TFs as measured by bulk RNA-seq (center), and GSVA-inferred expression scores for 

downstream target genes of the TFs from Dorothea database (right). (G) Percent of GFP+ cells 

across synovial macrophage subsets in E15 progeny mice with tamoxifen administered and control 

steady state mice with and without tamoxifen.  
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Figure S2.2.3 (A) Annotations of the four synovial macrophage subsets in the CITE-seq 

experiment and surface expressions of CD64, CX3CR1, and I-A-I-E visualized in UMAP. (B) 

Quantification of the 4 subsets in scRNA-seq (top) and flow cytometry (bottom).  (C) Pairwise 

correlations of gene expression profiles between replicates as measured by bulk RNA-seq data. (D) 

Gene expression of Cx3cr1, H2-Eb1, Ly6c2, and Plac8. (E) Gene expression of select marker genes 

from pan-monocyte, classical monocyte, and non-classical monocyte K-means clusters. (F) Select 

gene ontology (GO) pathways significantly enriched across K-means cluster. (G) Comparison of 

k-means gene clusters to gene signatures of tissue resident macrophages from Lavin et al. 2014. 

Red cells indicate hypergeometric p-value < 0.05 whereas blue cells indicate p-value > 0.95. (H) 

Significance of DNA binding motif enrichments for select TF families across k-means clusters. 

The color scale represents -log10(p-value) as computed by HOMER. 

 

Acute inflammatory arthritis alters the transcriptional landscapes of synovial macrophages 

subsets 

Infiltration of circulating monocytes and their subsequent differentiation into activated 

macrophages is a hallmark of inflammation [68]. To investigate how the four subsets of synovial 

macrophages are altered during acute inflammatory arthritis, we utilized the mouse model of serum 

transfer induced arthritis (STIA), which represents the effector phase and requires monocytes and 

macrophages [264]. The clinical arthritic scores peaked at day 7 and largely returned to steady 

state levels by day 21 after the induction of arthritis (Figure 2.2.4A) consistent with previous 

studies [225, 265, 266]. Similarly, the height of synovial macrophage subset expansion occurred 

at the nadir of inflammatory arthritis development i.e., day 7 (Figure 2.2.4B-C). We then performed 

bulk RNA-seq on the sorted synovial macrophage subsets at day 7, 13 and 21 post serum transfer 
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to distinguish the functions of synovial macrophage subsets in response to STIA. All macrophage 

subpopulations were transcriptionally more dissimilar at day 7 and 13 compared with day 0, while 

macrophages from day 0 compared to day 21 were similar based on Principal Component Analysis 

(PCA) (Figure S2.2.4A). MB exhibited the largest number of differentially expressed genes 

relative to day 0 for all subsequent timepoints (Figure S2.2.4B), suggesting major contributions to 

the pathogenesis of STIA from this particular subset. 

 

We defined 1772 genes that were differentially expressed between day 0 and any subsequent 

time point in at least one macrophage subset. We obtained 6 clusters of temporal gene expression 

patterns using unsupervised K-means clustering (Figure 2.2.4D-E). The first three clusters 

encompassed genes upregulated over the course of STIA. Comparison to steady state gene clusters 

(Figure 2.2.4D) revealed that genes preferentially expressed in blood monocytes (pan-monocyte, 

CM, and NCM) were elevated across all subsets during STIA (Figure S2.2.4D) and exhibited 

strong overlap with these 3 clusters (Figure S2.2.4C). Cluster Up I included genes upregulated in 

all four subsets that peaked at days 7 and 13 post-serum transfer. These genes were associated with 

leukocyte activation and cell chemotaxis (e.g., Thbs1, Ccr2, Il1b, Malt1), further supporting that 

all subpopulations partake in the promotion of inflammatory reactions and recruitment of immune 

cells [234]. Cluster Up I also contained genes involved in collagen catabolic and tissue remodeling 

pathways (e.g., Mmp9, Mmp14, Ctsk, Spp1), and were disproportionately elevated in MC and MD 

subsets (Figure 2.2.4F). This specific set of genes have been associated with RA-related cartilage 

destruction [267-269]. Cluster Up II consisted of upregulated genes peaking at day 3 and were the 

most pronounced in MB and MD subsets. These genes (e.g., Ifitm3, Isg15, Rsad2, Ifit1, Mnda) are 

commonly associated with acute inflammatory processes, such as production and response to Type 
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I interferons. Early activation of Type I interferon pathways have been observed in rheumatic 

patients and is murine models of arthritis [270-272]. Motif enrichment analysis on this cluster 

revealed significant enrichments for the IRF TF binding motif, which was previously attributed to 

classical monocytes in steady state (Figure S2.2.3H, S2.2.4E). Cluster Up III also included genes 

upregulated specifically in MB cells, but remain elevated throughout 21 days after serum transfer. 

Genes associated with adaptive immune response are overrepresented in the cluster, including Ctsc 

[273], Cd48 [274, 275], and Bach2 [276, 277], insinuating a potential MB-specific role in 

facilitating the activation of CD4+ T cell subsets during RA [278]. This cluster also included 

additional genes linked to RA pathogenesis and susceptibility, such as Itgal [279], Cd82 [280], and 

Irak4 [281]. Given that STIA represented an acute model of arthritis, this observation raises the 

question of whether MB subset specifically remained altered transcriptionally after subsidence of 

inflammation. To investigate, we computed and tabulated the changes in expression at day 7 and 

21 relative to day 0 to distinguish genes involved in acute inflammation and those that remained 

altered after resolution of STIA (Figure S2.2.4G). We found that compared to the other three 

subsets, MB possessed the highest number of genes that were elevated at both day 7 and 21 post 

serum-transfer (Figure S2.2.4H). In summary, these findings indicate that while all four 

macrophage subsets exhibited evidence of monocytic recruitment on the gene expression level, 

biological processes and individual gene markers associated with inflammatory arthritis were 

upregulated unevenly across the subsets during the time course, suggesting divergent roles in STIA 

pathogenesis. 

 

Clusters Down I-III encompassed genes downregulated in response to STIA (Figure 2.2.4D). 

Cluster Down I consisted of genes downregulated specifically in MC and MD subsets and were 
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enriched for multiple signal transduction pathways, such as MAPK cascade and cAMP-mediated 

signaling (e.g., Atf3, Jun, Lpar1, Dusp6) (Figure 2.2.4D-E, Figure S2.2.4D). While previous 

studies have shown that both MAPK [282] and cAMP [283] pathways are involved in the 

pathogenesis of RA, decreased expression of these genes may not be associated with reduced 

activity at the protein level. Conversely, a recent mouse study demonstrated that impaired 

differentiation of synovial macrophages contributes directly to the development of inflammatory 

arthritis by opening a niche that permits influx of activated monocytes [284]. Thus, the temporary 

downregulation of MAPK- and cAMP-associated genes during STIA perhaps reflects this 

phenomenon as both pathways are central participants in macrophage differentiation processes 

[285, 286]. Cluster Down II included genes associated with cell cycle processes (e.g., Mki67, 

Ccnd2, Top2a, Kif23, and Cdkn2d) and are downregulated specifically in MB subset. 

Inflammatory responses are known to suppress proliferation in macrophages by shifting their 

metabolic programs from a Myc-dependent to Hif1a-dependent manner [287]. Given that Myc is 

a downstream target of MAPK pathway [288, 289], the suppression of cell cycle processes is 

consistent with the observations in Cluster Down I. Genes in Cluster Down III are in turn primarily 

downregulated in MA cells and included those previously reported in lining macrophages (e.g., 

Sparc, Pmepa1) [219, 220], as well as those associated with ossification (e.g., Gas6, Bmp2) [290, 

291] and cell adhesion (e.g., Lyve1, Csf1r, Axl) [292-294] GO processes. Comparison to steady 

state gene clusters (Figure 2.2.3F) revealed the overall downregulation of lining and interstitial 

genes across all subsets. The lining signature disproportionately overlapped with Cluster VI 

whereas the interstitial signature overlapped more with Cluster IV, supporting the notion that the 

tissue-resident MA and MC subsets temporarily lost their distinct phenotypes over the course of 

STIA (Figure S2.2.4C). This is further corroborated by the overall downregulation of downstream 
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target genes for MEF2A and KLF3 (Figure S2.2.4F), which were previously attributed to synovial 

resident subsets during steady state. Collectively, these data suggest that synovial macrophage 

subsets during STIA underwent transcriptional changes indicative of monocyte influx from 

circulation and diminishment of their steady state identities. 

 

We next utilized the CX3CR1CreER.zsGFP reporting system to definitively assess the 

contribution of circulating monocytes during STIA (Figure S2.2.4I). TMX was administered at 

Day -1 and Day 0 of STIA time course to adult CX3CR1CreER.zsGFP mice, which would 

specifically label CX3CR1-expressing already present in the synovium (MA and MB subsets). In 

healthy mice that serve as negative control (no STIA TMX D-1 & D0), all subsets exhibited subtle 

increases in GFP positivity over a 21-day time course (MA: 32.85% MB: 23.57% MC: 18.19% 

MD:14.11%), indicating local proliferation and minimal contribution from circulation, consistent 

ith previous reports [220, 225]. In contrast, the mice that underwent serum-transfer (STIA TMX 

D-1 & D0) displayed large decreases in GFP positivity for the two CX3CR1+ subsets (MA: -

51.00% MB: -41.62%), suggesting significant cell replacements by circulation in at least these 

populations. To better quantify the monocytic contributions across the four macrophage 

compartments, we performed an additional experiment by administering TMX at Day 3 after 

serum-transfer, which would label cells that recently entered the synovium instead of those already 

residing within. All four subsets exhibited increases in GFP positivity over the 21-day time course 

(MA: 23.08% MB: 30.74% MC: 23.14% MD: 32.78%). These results from fate-mapping 

experiments suggest that circulating monocytes are key contributors to all four compartments of 

synovial macrophages during inflammatory arthritis. 
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Figure 2.2.4. Acute inflammatory arthritis alters the transcriptional landscapes of synovial 

macrophages subsets 

(A) Clinical arthritic scores over the course of STIA. (B-C) Proportions of synovial macrophages 

subsets over time. (D) K-means clustering (K = 6) of 1772 differentially expressed genes across 

the STIA time course, visualized as fold-changes between the mean expressions of each timepoint 

and day 0 expressions. Expression trend lines are indicated on the right. (E) Gene expressions of 

representative genes for each K-mean cluster. (F) Relative gene expressions of select Gene 

Ontology processes across macrophage subsets and STIA time course. Size of circles indicate 

proportion of genes expressed above the average of all samples while color represents mean 

expression Z-scores across all samples.  
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Figure S2.2.4 (A) PCA of gene expression profiles between replicates from STIA time course. 

Text indicates number of days after serum transfer. (B) Quantification of up- and down-regulated 

genes (2-fold) for each time point relative to day 0 of STIA. (C) Log enrichment of gene overlap 

between steady state and STIA K-means clusters. (D) Percent of steady state K-mean cluster genes 

(Figure 2D) expressed differentially (2-fold relative to day 0) across the STIA time course and 

synovial macrophage subsets. (E) Significance of DNA binding motif enrichments for select TF 

families across STIA k-means clusters. The color scale represents -log10(p-value) as computed by 

HOMER. (F) GSVA-inferred expression scores for downstream target genes of MEF2A, KLF3, 

and NFKB-p65 from Dorothea database across macrophage subsets and STIA time course. (G) 

Scatter plots of expression fold changes relative to Day 0 STIA for Day 7 and Day 21. (H) 

Quantification of acute (Day 7 only; red), persistent (Days 7 & 21; purple), and resolution (Day 

21 only; light blue). (I) Percent of GFP+ cells across macrophage subsets and STIA time course 

with different experimental conditions: healthy mice with tamoxifen doses at Day 0 and Day 0-1 

(left), STIA mice with tamoxifen doses at Day 0 and Day 0-1 (middle), and STIA mice with a 

tamoxifen dose at Day 3 of the time course. The background % of GFP expressions (Cre) are 

indicated in dashed lines. 

 

The induction of STIA give rise to macrophages with specialized transcriptional profiles 

that extend beyond their steady state definitions 

 

We previously identified 4 populations of synovial macrophages via scRNA seq at steady state. 

We then isolated and performed scRNA-seq on synovial CD45+CD11b+Ly6G-SiglecF- cells from 

mice 7 days after K/BxN serum transfer to confirm the identity of these populations during 
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inflammatory arthritis. A total of 10 clusters consisting of 3916 cells were identified (Figure 

S2.2.5A-C) with the majority of them confirmed as monocytes/macrophages via singleR (Figure 

S2.2.5D). we annotated the identities of Day 7 STIA macrophages using the Seurat label transfer 

algorithm with the steady state data as reference [199] to assess the changes in transcriptional 

composition of synovial macrophage subsets in response to STIA. The relative proportions of 

annotated MB cells expanded during STIA compared to steady state (3.09% to 64.91%), consistent 

with the observed patterns using flow cytometry. On the other hand, the tissue resident subsets 

(MA and MC), exhibited a marked reduction in their proportion at day 7 STIA (MA: 15.80% to 

0.78%; MC: 56.49% to 19.04%) (Figure 2.2.5A-B). Macrophages from Day 7 STIA displayed a 

higher correlation with monocyte-derived MB and MD compared to tissue-resident MA and MC 

subsets from steady state, potentially reflecting the influx of circulating monocytes (Figure 

S2.2.5E). This is corroborated by the expansions of previously defined blood monocyte and 

monocyte-derived signatures (Figure 2.2.3D) and the near-complete loss of lining and interstitial 

signatures in single cells from Day 7 STIA compared to steady state (Figure S2.2.5F-H). We then 

investigated the expressions of pseudotime gene modules identified previously (Figure S2.2.2I) in 

single cells from both steady state and Day 7 STIA samples to confirm the relative expansion of 

monocyte-derived gene signatures from another angle. The expression scores of the three modules 

were distinctly enriched in steady state MB/MD, MC, and MA subsets (Figure 2.2.5C), 

respectively, which are consistent with their inferred locations on the trajectory (Figure 2.2.2F). In 

contrast, the combined expression of Middle and Late modules were relatively diminished in 

macrophages from Day 7 STIA, whereas Early module expression remained specifically elevated 

in MB and MD cells (Figure 2.2.5D). These data suggest that steady state differentiation process 

for synovial macrophages may be disrupted or delayed during inflammatory arthritis.  
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We next investigated whether the four annotated macrophage subsets under STIA conditions 

retained a distinct transcriptional profile from steady state despite the decrease in heterogeneity. 

The gene expression pattern of Cx3cr1 and MHCII (H2-Eb1) was retained among the four subsets, 

with the exception of MC population, which exhibited elevated MHCII gene expression at day 7 

STIA compared to steady state (Figure 2.2.5E). All four macrophage subsets also preferentially 

expressed their characteristic gene markers as identified during steady state, albeit the markers for 

monocyte-derived MB and MD subsets are also upregulated across the tissue-resident MA and MC 

cells (Figure 2.2.5F). These observations suggest that synovial macrophage subsets at D7 STIA 

remained transcriptional distinct from each other, but with decreased heterogeneity compared to 

their steady state counterparts.  

 

The analysis of the STIA time course using bulk RNA-seq indicated that STIA-induced 

transcriptional responses maybe subset-specific. We examined the expression of K-means clusters 

obtained with bulk RNA-seq at Day 7 STIA (Figure 2.2.4D) with sc-RNA seq at day 7 to gain a 

clearer picture on the single cell level (Figure 2.2.5G, S2.2.5H). The cluster expression signatures 

were not enriched evenly in single cells, even within the same annotated macrophage subset 

(Figure 2.2.5H, S2.2.5F-G). Specifically, STIA Up I was predominately upregulated in MC/MD 

subsets and was associated with leukocyte activation and collagen catabolic processes. While 

genes linked to leukocyte activation (e.g., Spp1, Fn1, Il1b) exhibited relatively uniform expression 

across the MD cells at Day 7 STIA, those associated with collagen catabolism (e.g., Mmp9, Acp5, 

Ctsk) were upregulated only in a small subset of cells annotated as MC. Likewise, STIA Up II 

cluster, which was upregulated specifically in MB subset and attributed to Type I interferon 
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response, was also enriched only in a subset of labeled MB cells at Day 7 STIA. STIA Up III 

cluster was another MB-specific cluster containing genes associated with antigen presentation and 

adaptive immune response. Antigen presentation genes (e.g., H2-Eb1, H2-Aa) was expressed 

highly but unevenly across all Day 7 STIA macrophage subsets, even among MHCII-positive MB 

and MD subsets defined at steady state. Conversely, multiple adaptive immune response genes 

(e.g., Ctsc, Anxa1, Cd48) exhibited relatively uniform enrichments across Day 7 STIA 

macrophages. These findings imply that despite the overall decrease of transcriptional 

heterogeneity due to monocyte recruitment, the induction of STIA potentially give rise to 

macrophages with specialized transcriptional profiles that extend beyond their steady state 

definitions.  
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Figure 2.2.5. The induction of STIA give rise to macrophages with specialized 

transcriptional profiles that extend beyond their steady state definitions 

(A-B) tSNE visualization and proportions of annotated macrophage subsets for (A) steady state 

and (B) day 7 STIA after label transfer. (C-D) 3D scatterplot visualizing the expression module 

scores of three pseudotime gene modules identified in Figure 1 in (C) steady state and (D) day 7 

STIA single cells. (E) Log-normalized gene expressions for Cx3cr1 and H2-Eb1 in steady state 

and day 7 STIA single cells. (F) Averaged log expressions of top 10 steady state subset gene 

markers (Figure 1D) in steady state (blue) and day 7 STIA (red) macrophage subsets. (G) tSNE 

plots visualizing the expression module scores for the Up I-III clusters from STIA time course K-

means (Figure 3D) in day 7 STIA single cells and a schematic (top left) showing their relative 

enrichments across macrophage subsets. (H) Heatmap of log-normalized expressions values for 

select STIA Up I-III cluster markers in day 7 single cells. The cells are grouped by their subset 

annotations and hierarchically clustered.  
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Figure S2.2.5 (A) TSNE of 10 clusters from 3916 Day 7 STIA CD45+CD11b+Ly6G-SiglecF- 

cells. (B) Distributions of # of genes expressed, UMIs, and percentage of mitochondrial gene 

expression with the cutoffs for quality control. (C) Cell cycle scoring of Day 7 STIA single cells 

using S phase (top) and G2/M phase genes (down), visualized on tSNE. (D) Heatmap illustrating 

SingleR assignment of Immgen reference cell types. (E) Correlation heatmap of averaged 

expression profiles for steady state and Day 7 STIA macrophage subsets. (F) tSNE plots 

visualizing the expression module scores for the Up I-III clusters from STIA time course K-means 

(Figure 2.2.4D) in steady state single cells. (G) Heatmap of log-normalized expressions values for 

select STIA Up I-III cluster markers in steady state single cells. The cells are grouped by their 

subset annotations and hierarchically clustered. (H) tSNE plots visualizing the expression module 

scores for the Down I-III clusters from STIA K-means in steady state (top) and Day 7 STIA 

(bottom) single cells and a schematic (left) showing their relative enrichments across macrophage 

subsets. 

 

Genes associated with acute inflammatory processes in synovial macrophage subsets exhibit 

persistent dysregulation during chronic inflammatory arthritis 

 

Collagen induced arthritis (CIA) is an inflammatory arthritic model that emulates chronic 

synovial inflammation rather than acute inflammation as in STIA. We therefore utilized the CIA 

model to investigate how synovial macrophage subsets respond during chronic inflammatory 

arthritis [295]. We performed RNA-seq on the four macrophage subsets on day 0, 27, 41, and 62 

post 2nd collagen injection. In contrast to STIA, the clinical severity scores do not return to steady 

state levels 62 days post injection (Figure 2.2.6A) and proportions of all four macrophage 
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subpopulations are expanded throughout the CIA time course (Figure 2.2.6B-C). The 

transcriptional profiles exhibited similar patterns in CIA and STIA, where replicates from day 62 

remained distinct from day 0 replicates (Figure S2.2.6A). We computed the expression foldchanges 

of temporally variable genes (N = 3348) between Days 41 and 62 relative to Day 0 of CIA time 

course. Day 41 was chosen as the reference time point for peak inflammation in CIA due to its 

overall high correlations with Day 7 transcriptional profiles from STIA model (Figure S2.2.6B) to 

further investigate how chronic inflammation manifest in CIA model as opposed to STIA. Genes 

were classified as Acute (absolute 2-foldchanges at Day 41 only), Persistent (Both Day 41 and 62), 

or Chronic (Day 62 only) (Figure S2.2.6C). We found that the majority of DE genes from CIA 

experiment were classified as Persistent in all subsets (Figure S2.2.6C), as opposed to STIA 

(Figure S2.2.4H). These data are consistent with overall increase in slopes of the fold changes 

between the two reference timepoints (D62 vs D41 for CIA, D21 vs D7 or STIA) across all 

macrophage subsets (MA: 0.36 to 0.57; MB: 0.44 to 0.61; MC: 0.19 to 0.48; MD: 0.19 to 0.46). 

Furthermore, the majority of Acute genes previously defined in STIA model, which are those 

altered at Day 7 but not Day 21 post serum transfer, remained altered at Day 62 of CIA time course 

(Figure 2.2.6D). In addition, all subsets during CIA exhibit similar expression patterns compared 

to STIA time course on the levels of K-means clustering (Figure 2.2.6E), biological processes 

(Figure 2.2.6F), and individual genes (Figure 2.2.6G). This indicate that persistent dysregulation 

of genes previously associated with STIA is the hallmark of chronic inflammatory arthritis.  

 

To compare the transcriptional signatures between CIA and STIA models more closely, we 

clustered the temporally variable genes into six clusters by their fold-changes in gene expression 

relative to day 0 using K-means (Figure S2.2.6D-E). Genes in cluster I were upregulated over the 
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CIA time course in all subsets, and included genes associated with cell chemotaxis (e.g., Spp1, 

Lgals3) [261, 296], lipid storage (e.g., Cav1, Soat1) [297, 298], and collagen catabolic (e.g., Ctsk, 

Mmp14) [299, 300] processes . These processes were also observed in the STIA experiment, 

evident by the significant number of genes shared between CIA cluster I and STIA Up I-III clusters 

(Figure S2.2.6E). While genes linked to leukocyte activation and chemotaxis processes displayed 

similar dynamics over both STIA and CIA time courses, those involved in osteoclastic process 

remain elevated at Day 62 CIA specifically in MC subset. Interestingly, the upregulation of Type 

I interferon genes, a major characteristic of MB subset during STIA time course, is seemingly 

absent in CIA (Figure S2.2.6F). On the other hand, cluster II consisted of genes downregulated 

over the course of CIA in all subsets, which is supported by their significant overlap with genes 

from STIA Down I-III clusters (Figure S2.2.6E). Genes associated with ossification processes (e.g., 

Fgfr1, Fermt2) exhibited persistent downregulation in CIA compared to STIA, with MA and MB 

subsets showing the most pronounced patterns. Additionally, we observed the relative absence of 

downregulation for MAPK cascade and cell communication pathways in MD subset during CIA 

compared to STIA time course (Figure S2.2.6F). Patterns of sustained downregulation were also 

observed for downstream target genes of TFs MEF2A and KLF3 (Figure S2.2.6G-H), which was 

previously attributed to maintenance of steady state synovial macrophage functions (Figure 2.2.3). 

Clusters IV and V in turn represent up and down-regulated genes specific to MB subset during 

CIA. These two clusters overlapped significantly with their counterpart MB-specific clusters in 

STIA (Up III and Down II) (Figure S2.2.6E). MB-specific pathways previously characterized in 

STIA time course therefore displayed similar patterns during CIA, with the persistent upregulation 

of adaptive immune response (e.g., Cd48, Bach2) and downregulation of cell cycle genes (e.g., 

Top2a, Mki67) observed in MB cells. Cluster IV additionally consisted of genes linked to positive 
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regulation of RNA metabolic processes, including Nfkb1 and Nlrp3. The enrichment of response 

to growth factors process (e.g., Xbp1, Lgmn) was also observed in this cluster, but not in STIA. 

These findings suggest that MB subsets may assume a more transcriptionally activated phenotype 

in response to CIA. Collectively, these data suggest that persistent alterations of specific biological 

processes previously characterized in STIA model, especially those associated with acute 

inflammation, contribute substantially to the chronic profile of the CIA model.   

 

We also observed clusters that were specific to particular subsets. For instance, clusters II 

and III consisted of genes upregulated specifically in MA/MB and MC/MD subsets, respectively 

(Figure S2.2.6D). Genes in cluster II were enriched for protein deSUMOylation process, including 

Uspl1 and Senp7 (Figure S2.2.6D). Small ubiquitin-like modifiers (SUMOs) are a subgroup of 

post-translational epigenetic modifiers [301] and their dysregulation have been linked to apoptosis, 

cell migration, and chronic cartilage degradation in RA through modifications of MMP proteins 

[302]. Cluster II also contained genes downregulated specifically in MC and MD subsets, such as 

Jun and Lpar1. These genes were also present in the MC/MD-specific STIA Cluster Down I 

(Figure S2.2.6E). Cluster III included genes associated with dendritic cell (DC) differentiation, 

such as Ltbr and Tnfsf9 [303, 304] (Figure S5D). Evidence of DC differentiation from myeloid 

cells have been reported in RA, which are facilitated through growth factors present in synovial 

fluid and may contribute to the activation of inflammatory-type Th1 responses [305, 306]. In 

summary, the variations in gene expression patterns observed between CIA MA/MB and MC/MD 

compartments, which were not present in STIA, provide insights into the differing response of 

synovial macrophage subsets that potentially underlie the chronic pathology of CIA model.  
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Figure 5. Genes associated with acute inflammatory processes in synovial macrophage 

subsets exhibit persistent dysregulation during chronic inflammatory arthritis 

(A) Clinical arthritic scores over the course of CIA. (B-C) Proportions of synovial macrophage 

subsets over time. (D) Scatter plots of CIA Day 41 and Day 62 expression fold change relative to 

Day 0. Red dots represent STIA acute genes defined in Figure S2.2.4. (E) Average log expression 

fold change relative to Day 0 for select biological processes across STIA and CIA time courses. 

(F) Relative gene expression of STIA-related biological processes (Figure 2.2.4) across 

macrophage subsets during CIA time course. Size of circles indicate proportion of genes expressed 

above the average of all samples while color represents mean expression Z-scores across all 

samples. (G) Gene expressions of select genes for highlighted biological processes.  
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Figure S2.2.6 (A) PCA of gene expression profiles between replicates from CIA time course. 

Text indicates number of days after serum transfer. (B) Correlations of gene expression profiles 

between day 7 STIA subpopulations and CIA subpopulations over time. (C) Quantification of acute 

(Day 41 only; red), persistent (Days 41 & 62; purple), and chronic (Day 62 only; light blue). (D) 

K-means clustering (K = 6) of the mean fold-change of 3428 differentially expressed genes across 

the CIA time course in at least one macrophage subset. (E) Log2 enrichments of gene overlap 

between STIA and CIA K-means clusters. Asterisks indicate adjusted hypergeometric p-value < 

0.05. (F) Average log expression fold change relative to Day 0 for select biological processes 

across STIA and CIA time courses. Numbers of genes expressed in STIA and CIA models are 

indicated at top. (G) GSVA-inferred expression scores for downstream target genes of MEF2A, 

KLF3, and NFKB-p65 from Dorothea database across macrophage subsets and STIA time course. 

(H) Significance of DNA binding motif enrichments for select TF families across CIA k-means 

clusters. The color scale represents -log10(p-value) as computed by HOMER. 

 

Human RA patients exhibit patterns of synovial macrophage heterogeneity similar to mice 

To investigate whether our characterization of synovial macrophage heterogeneity in mice 

can be translated into humans, we performed scRNA-seq on sorted CD45+ synovial immune cells 

of 7 RA patients, which were collected through the RhEumatoid Arthritis SynOvial tissue Network 

(REASON) (Table 3-4) [307]. Integrating patient samples yielded a total of 18718 cells across 

multiple immune cell lineages, including B, T/NK, neutrophils, and myeloid cells (Figure S2.2.7A). 

We computationally isolated 3727 myeloid cells by creating a gene module score using human 

orthologs of 6 signature macrophage genes derived from our murine single cell data (Figure 

2.2.7A). We further verified the myeloid population using individual gene and surface protein 
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expression (Figure S2.2.7B-C). 

 

We adopted a similar approach based on gene module scoring to determine whether human 

synovium exhibit macrophage heterogeneity similar the murine synovium. We utilized the top 10 

orthologous genes ranked by log fold change from the murine single cell data to compute module 

scores for each mouse macrophage subset in individual human synovial cells. We then normalized 

the score and ranked to annotate specific mouse macrophage subsets onto single cells from RA 

patients (see method section for details) (Figure 2.2.7B, S2.2.7D). The resulting annotation 

allowed for distinct separation of the four subsets especially the tissue-resident (MA and MC) 

/monocyte-derived (MB and MD) axis (Figure 2.2.7C). The transcriptional distinctiveness among 

the four macrophage subsets in humans was supported by their prominent overlap with individual 

clusters obtained through unbiased graph-based clustering (Figure S2.2.7E-F) and by surface 

protein expression as measured by CITE-seq (Figure S2.2.7G). These data suggest that human 

myeloid cells are also composed of subsets that parallel mouse synovial macrophage subsets.  

 

Recently, two studies investigated the heterogeneity of human synovial macrophages in RA 

patients. One of them profiled over 32000 synovial macrophages across RA patients with different 

clinical states and identified four major subpopulations, categorizable by surface expression of 

MERTK [228]. We observed similarities between MA-MD subsets and their four populations by 

assessing the overlap of significant marker genes. Specifically, MA and MC subsets corresponded 

to TREM2hi and LYVE1+ subpopulations, respectively. These two populations were classified as 

MERTK+ by flow cytometry, which were shown to possess a unique transcriptional profile 

associated with remission maintenance and were enriched with numerous anti-inflammatory 
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regulators. On the other hand, the marker genes of MB and MD subsets overlapped with those 

reported in MERTK- subpopulations, which were also CLEC10A+ and S100A12+. The MERTK- 

macrophages were associated with pro-inflammatory phenotypes and were predominately 

enriched in treatment-naïve or -resistant RA patients (Figure S2.2.7H). Another recent study is 

from the Accelerating Medicines Partnership (AMP) consortium, which profiled synovial myeloid 

cells from patients with OA and RA at varying levels of leukocyte-infiltration [227]. We annotated 

MA-MD synovial macrophage subsets onto single cells from the AMP study using top 10 marker 

genes ranked by fold change from our human data (Figure S2.2.7I-J). We found that cells from 

OA and leukocyte-poor RA patients, which exhibited lower Krenn inflammation scores, were 

predominately labeled as tissue-resident MA and MC subsets. In contrast, cells from leukocyte-

rich RA patients were mostly labeled monocyte-derived MB and MD subsets (Figure S2.2.7K). 

Collectively, these findings indicate that our findings from mouse models and projection onto 

human patients are congruent with previous published classification schemes for human synovial 

macrophages. 

 

Considerable variation in proportions of macrophage subsets was observed across patients 

(Figure 2.2.7D). Given that comparison with other published studies suggest that subset 

proportions may be linked to clinical properties, we next investigated whether such variations are 

associated with disease severity among patients included in this study. The seven patients were 

classified as responsive to treatment, non-responsive to treatment, low disease severity, or no 

follow up according to reported Clinical Disease Activity Index (CDAI) from initial and follow up 

(if available) clinic visits up to 18 weeks after synovial biopsy procedure and subsequent change 

in therapy (Figure 2.2.7E). We identified that the distribution of the macrophage subsets, which 
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can be quantified via Shannon diversity index, were significantly associated with less severe RA 

activity based on CDAI values from the initial clinic visit (Figure 2.2.7F). We further observed 

that the proportions of MA and MC exhibited negative correlation with disease severity across 

multiple metrics from the initial visit, including CDAI, Disease Activity Score-28 with C-reactive 

protein (DAS28-CRP), Disease Activity Score-28 with erythrocyte sedition rate (DAS28-ESR), 

swollen joint count (SJC), and tender joint count (TJC), whereas positive correlations was 

observed for MB subset proportions. On the other hand, no clear patterns were found for the MD 

subset (Figure S2.2.7L). These data suggest that the relative proportions of the synovial 

macrophage subsets can potentially be indicative of disease severity in RA patients.  

 

Lastly, we sought to determine whether the transcriptional profiles of synovial macrophages 

differ between RA patients that were responsive to treatment and those that were not. GO 

enrichment analysis revealed that the responsive patients exhibit relative upregulation of genes 

associated with antigen presentation (e.g., HLA-DQA1, HLA-DRB1) and macromolecule 

biosynthetic process (e.g., APOE, NR4A2) based on differential gene expression of macrophages 

from the responsive and non-responsive groups of patients. Numerous genes attributed to 

CLEC10A+ subset in Alivernini et al. [228], including RPS proteins, REL, and BTG1 were 

elevated in responsive patients. On the other hand, patients that did fail to respond to treatment 

preferentially upregulated genes linked to glycolytic process (e.g., GAPDH, ALDOA) and cell 

adhesion (e.g., FLNA, ANXA1). Non-responsive patients also shared multiple genes with the 

SPP1+ subset from Alivernini et al., such as MIF, S100A10, and CD36 (Figure 2.2.7G-H). The 

CLEC10A+ and SPP1+ subpopulations were associated with RA patients who have active disease. 

These results shed light on the potential functional diversity in synovial macrophages that may 
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underlie the variation in treatment responsiveness among RA patients.  



101 
 

Figure 2.2.7. Human RA patients exhibit patterns of synovial macrophage heterogeneity 

similar to mice 

(A) TSNE visualization of 18718 CD45+ synovial immune cells from biopsy samples of 7 RA 

patients. 3727 mononuclear phagocytes were isolated through module scoring and filtering (> 0.3) 

of myeloid signature genes. (B) Enrichment of module scores in human synovial mononuclear 

phagocytes derived from top 10 gene markers from murine steady state macrophage subsets. (C) 

Annotation of murine synovial macrophage subsets on human cells and (D) breakdown of 

proportions by patients. (E) Clinical Disease Activity Index (CDAI) of the RA patients at initial 

clinical visit, 6-week follow-up, and >12-week follow-up. Patients were categorized as low 

severity, responsive, non-responsive, and no follow up based on their CDAI trends across the clinic 

visits. (F) Scatterplot of CDAI values at initial visit and Shannon diversity index computed from 

the relative proportions of macrophage subsets for each patient. The correlation coefficient and p-

value is indicated on the top left. (G) Scatterplot of averaged log expression values between 

responsive and non-responsive patients. The top 25 DE genes are colored. (H) Heatmap of relative 

gene expressions for top 25 responsive and non-responsive DE genes grouped by patient 

responsiveness and synovial macrophage subsets. The genes are ordered by hierarchical clustering. 
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Figure S2.2.7 (A) SingleR assignment of human BluePrint reference cell types. (B) Gene 

expressions and (C) surface expressions of select myeloid marker genes/proteins. (D) Heatmap 

indicating module scores of the 4 murine macrophage subpopulations in human cells grouped by 

annotation results. (E) UMAP clustering of human synovial myeloid cells and (F) the proportional 

distribution of the four macrophage subpopulations among the clusters. (G) Violin plots showing 

surface expressions of select proteins. (H) Enrichments of overlaps between significant marker 

genes of MA-MD macrophage subsets and 9 clusters reported in Alivernini et al. 2020 [76] (I-J) 

tSNE of single cells from AMP study [77] colored by (I) RA disease subtype and (J) annotations 

of MA-MD subsets. (K) Quantification of annotated MA-MD subsets among cells from different 

RA disease subtypes. (L) Scatterplots showing relationships of various clinical variables against 

proportions of each macrophage subset. TJC: Tender Joint Count, SJC: Swollen Joint Count, 

DAS28-CRP: Disease Activity Score-28 with C-reactive protein, CDAI: Clinical Disease Activity 

Index. 

 

Table 2.2 Clinical characteristics of REASON RA patients 
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Table 2.3 Sequencing statistics of REASON RA patients 

 

 

2.2.3 Discussion 

In this study, we demonstrate the existence of four macrophage subpopulations in healthy 

murine joint synovium that are categorizable by surface expression of CX3CR1 and MHCII. The 

MA and MC subsets, which are MHCII-, would typically be considered tissue-resident 

macrophages based on their transcriptional profile and lineage-tracing results suggesting that they 

are derived from embryonic progenitors. This is in line with our prior studies suggesting that 

MHCII- synovial macrophages were long-lived and radio-resistant [225]. The two sub-populations 

are further distinguished by the unique expression of genes, such as Vsig4, Sparc, and Cx3cr1, in 

CX3CR1+ MA. The CX3CR1+ synovial lining population described in Culemann et al. express 

the same marker genes [220]. This is in contrast to the interstitial cells presented in that study 

which represent the majority of synovial macrophages. Thus, we conclude that MA form the 

synovial lining, while MC localize to the interstitium. The distinct gene expression signatures and 

localizations of the MA and MC subpopulations suggest they exhibit specialized function in 

maintaining joint homeostasis.  

 

In contrast, we propose the MHCII+ MB and MD subsets are monocyte-derived cells. Both 
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populations highly express genes associated with antigen presentation and inflammation, but MB 

cells have higher expression of genes associated with circulating monocytes, such as Ly6c2 and 

Plac8. Given that our single-cell gating does not explicitly exclude monocytes, the MB subset may 

not represent a permanent state, but instead include cells that have recently infiltrated into the 

synovium and have yet to fully shed their patrolling phenotype. Based on our approaches, it is not 

possible to determine whether these cells are truly embedded in synovial tissue or associated with 

the vasculature. The transient state of these cells is supported by the considerable expansion and 

subsequent contraction of MB in the peak of inflammatory arthritis. We also observe that these 

cells are on the extreme end of the pseudotime trajectory opposite MA and MB. On the other hand, 

MD macrophages exhibit more similarities to the MC subset and it is likely that the MC-MD axis 

aligns to our previous results showing that MHCII+ transition into MHCII- cells [225]. We also 

observe the highest expression of genes associated with proliferation in MD macrophages, which 

is consistent with the MHCII+ proliferating cells in the Culemann et al study [220]. Taken together, 

the MB and MD sub-populations may not exhibit discrete functions in steady state but rather reflect 

the dynamics of macrophage heterogeneity in the joint synovium. 

 

Other studies have presented a classification of synovial macrophages in the human joint [227, 

228]. In the published AMP study, Zhang et al. used single-cell RNA-seq to categorize four sub-

populations of CD14+ myeloid cells from synovial tissue in RA and OA patients as IL1B+ pro-

inflammatory, NUPR1+, C1QA+, and IFN-activated [227]. In is not entirely clear whether all 

synovial macrophages would be identified through this method. Nevertheless, we find that the 

expression profile of NUPR1+ is consistent with our synovial lining (MA) macrophages while the 

other subpopulations are less obviously matched with our subsets. However, using our 
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classification system, we are able to independently assign human cells to MA-MD in both AMP 

data and our own novel single-cell data set of CD45+ immune cells from synovial biopsy of RA 

patients with a range of clinical presentations. We are able to demonstrate that an expanded MB 

subset is associated with RA, particularly in patients with high disease severity, while MA exhibits 

the opposite trend. Alivernini et al. reported to 9 single-cell clusters among synovial macrophages 

from RA patients which they group into TREM2+FOLR2+, TREM2-FOLR2+, HLA+CD48+ and 

CD48+ subpopulations [228]. Although there was variability across clusters, the populations 

associated with healthy and/or RA remission in their study were generally similar to our MA and 

MC populations, while those associated with active RA linked to MB and MD. The general 

consensus of synovial macrophage populations across studies and species suggests that our results 

truly reflect the underlying biology but differences in experimental and computational approaches 

may lead to slight differences. 

 

In agreement with prior studies [225, 228, 235], we found that cell counts of all four 

subpopulations are expanded in response to inflammatory arthritis using two distinct and well-

established mouse models: STIA and CIA [295, 308]. This likely reflects the infiltration of 

monocytes from circulation, which has been extensively documented in multiple tissues 

encountering immune challenges [79, 80, 88, 309, 310]. While we see a substantial rise in the 

expression of monocyte-associated genes in STIA, we do not observe a significant increase in cell 

cycle genes. In fact, cell cycle genes are actually downregulated in MB, indicating that recruitment 

is a more probably explanation for the expansion then proliferation. By flow cytometry, we observe 

the greatest increase in MB on day 7 post-STIA compared with other populations. Similarly, MB 

and MD exhibit a greater increase in relative abundance than MA and MC in the day 7 single-cell 
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data. This supports the idea that cells must transition through the MB and MD states before they 

are able to fill the tissue-resident niche of MA and MC [55, 56]. However, it is not entirely 

consistent with the niche model which proposes that there is a finite limit on the number of tissue-

resident macrophages at any given time. Moreover, synovial lining macrophages However, this 

discrepancy may be related to the limitations of quantifying macrophage sub-populations by flow 

cytometry. Based on single-cell RNA-seq, we observe a relative decrease in MA and MC but this 

data does not provide an accurate method to achieve and absolute quantification. 

 

Due to the functional heterogeneity of synovial macrophages at steady state, we might expect 

them to exhibit a variety of responses in the development of RA. However, our data demonstrates 

that in addition to the increase in monocyte gene expression mentioned above, all sub-populations 

generally exhibit a similar up-regulation of inflammatory and immune response pathways as well 

as a down-regulation of homeostasis. MB is distinguished by having the most extreme response, 

while MA exhibits the least. The exception is for genes associated with tissue-residence and the 

synovial lining phenotype. These genes are down-regulated in all sub-populations, but particularly 

in MA where they were highest at steady-state. These results suggest that there is a disruption of 

synovial lining macrophage function and phenotype during the development of arthritis and is 

consistent with the proposal that they form a physical barrier that shields the joint from external 

perturbation. The artificial depletion of CX3CR1+ synovial lining macrophages led to the onset of 

arthritis [220] and RA patients appear to be depleted of these cells [227, 228]. Nevertheless, the 

causal relationship in disease is unclear: does the loss of MA macrophage cause arthritis or is it 

simply a symptom of the development of inflammation. 
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Comparative analysis of acute (STIA) and chronic (CIA) arthritis mouse models highlights 

the differences over time in arthritis resolution vs. propagation. In STIA, the macrophage sub-

populations largely return to their steady-state numbers and transcriptional profile by day 21. In 

contrast, the majority of CIA-associated transcriptional changes are maintained at day 62.  

Generally, the changes associated with the development of arthritis – increase of inflammatory 

genes and decrease of homeostasis – are shared in both models. However, the macrophage sub-

populations in CIA exhibit additional long-term effects such as the upregulation of genes 

associated with connecting tissue replacement and neutrophil apoptosis in MA. These changes 

may be indicative of development of fibrosis [9] and a shift to a non-inflammatory equilibrium 

[10]. It is also noteworthy that the MB phenotype does as strongly drive CIA as it does in STIA, 

but this distinction may be more related to the change in timeframe of the experiments than a true 

difference in the pathogenesis. 

 

In this study, we defined a classification system to describe murine synovial macrophage 

heterogeneity that we translated to characterize the macrophage niche in synovial tissue from RA 

patients. Our results demonstrate that the orthologous counterparts of murine macrophages exist 

in humans and are relevant to disease. Our findings may inform the development of novel 

therapeutic strategies for treating RA. Future studies can explore strategies to control the relative 

proportions of synovial macrophage subpopulations. Our results indicate the potential to alter the 

gene regulatory programs of individual macrophage subsets to induce and suppress pro-resolution 

and inflammatory phenotypes, respectively. Since the model of monocyte infiltration and 

macrophage expansion is generally relevant to inflammation, the findings from this study can also 

be applied to better understand the roles of different macrophages subpopulations in inflammatory 
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diseases of other tissues. 

 

2.3 Critical role of synovial tissue–resident macrophage niche in joint homeostasis and 

suppression of chronic inflammation 

 

2.3.1 Materials and Methods 

Mice (Performed by Qi-Quan Huang) 

CD11c-Flip-KO (HUPO) mice are generated by crossing Flipflox/flox mice with CD11c-Cre-

GFP transgenic mice (CD11ccre) [C57BL/6J-Tg (Itgax-cre,-EGFP) 4097Ach/J, Jackson stock 

007567] [239]. Control mice were littermates or age/gender-matched mice that genotyped as 

Flipflox/+CD11ccre or Flipflox/floxCD11c+. HUPO mice 22 ≤ age ≤ 37 (median = 31) weeks old were 

used unless otherwise stated. For some experiments, HUPO mice (4 to 16 weeks) with no arthritis 

or within 1 to 2 or 4 to 6 weeks of arthritis onset were used.  

 

HUPO or control mice on C57BL/6 CD45.1+ background were generated by crossing with 

CD45.1 congenic strain (B6.SJL-Ptprca Pepcb/BoyJ, Jackson stock 002014). All mice were breed 

on the C57BL/6 background. All genotyping was performed by polymerase chain reaction using 

genomic DNA extracted from tail biopsies. CD45.1 or CD45.2 background was determined by 

flow cytometry. The mice were bred and maintained in the Northwestern University barrier animal 

facility, and all procedures followed ethical guidelines and approved by Northwestern IACUC. 

 

Clinical evaluation of arthritis (Performed by Qi-Quan Huang) 

The incidence and severity of HUPO arthritis were assessed by clinical examination (8, 40). 
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The clinical score was quantitated from the sum of joint swelling/inflammation (graded 0 to 3 per 

each limb) and joint deformity (including toe flexion, contraction, and shortening; 0 to 3 per each 

limb) and the grip strength (0 to 4), the maximum score being 28 [240]. Incidence was defined as 

at least one swollen, inflamed, or deformed joint. 

 

Flow cytometric immunophenotyping (Performed by Qi-Quan Huang) 

Circulating monocytes and the BM precursors, as well as synovial macrophages, were 

characterized by flow cytometry using multicolor fluorochrome-conjugated antibodies to cell 

surface and intracellular markers. Blood was drawn by cardiac puncture immediately after 

euthanizing or submandibular puncture after isoflurane anesthesia. EDTA-anticoagulated whole 

blood was used for flow. BM cells were isolated from femurs after lysing the red blood cells. 

Synovial cells were dissected from ankle joints with the methods modified from our earlier 

publication [225]. Ankles were cut 3 mm above the heel, and skin was removed from the feet. The 

toes were disarticulated by pulling with blunt forceps, and tibiotalar joint was opened via posterior 

access to expose the synovial lining. The opened BM cavity in the tibia was thoroughly flushed 

with Hanks’ balanced salt solution to remove BM cells. The dissected joint was incubated in 

collagenase D (1 mg/ml) for 60 min at 37°C. The released cells were filtered through a 40-mm 

nylon mesh, and the resulting single-cell suspensions were used. 

 

BM monocyte progenitors and macrophage dendritic cell precursors and BMMs were defined 

using cocktails containing antibodies to CD117, CD115, CD135, CD11b, and Ly6C gating on the 

Lin− population (18). Circulating monocytes were defined using cocktails containing antibodies 

to CD45, CD11b, CD115, Ly6G, Ly6C, CD62L, F4/80, Cx3cr1, and MHCII. Synovial 
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macrophages were defined using cocktails containing CD45, CD11b, Ly6G, Ly6C, MHC class II 

(I-A/I-E, MHCII), F4/80, CD64, Siglec F, CD11c, and CX3CR1. Alveolar macrophages were 

defined as Siglec F+CD64+F4/80+CD11c+CD11b−. Synovial macrophage CD115, CD206, 

CD163, and TGFBR2 were identified by intracellular staining (41). The live/dead cell marker 

Aqua (Invitrogen) accompanied every run. Data were acquired on BD LSR II flow cytometer (BD 

Biosciences), and analysis was performed using FlowJo software (Tree Star Inc.). 

 

For details on in vivo experiments including BrdU (Invitrogen) incorporation assays, 

monocyte and synovial depletion, and fluroscent Dil-lip uptake, please refer to the original 

manuscript for full details. 

 

Bone marrow reconstitution and parabiosis (Performed by Qi-Quan Huang) 

BM chimeras were established in a CD45.1/CD45.2 mismatched manner. BM recipients, 

control or HUPO on CD45.1 background were lethally irradiated (γ-radiation, 1100 rads). After 4 

hours, 5 × 106 donor whole BM cells from CD45.2 HUPO or control mice were administered by 

retro-orbital injection. Recipients received sulfamethoxazole (50 mg/ml) and trimethoprim (8 

mg/ml) in the drinking water for 8 weeks. Arthritis was evaluated by clinical scoring. Blood and 

ankles were harvested at 15 weeks and characterized by flow cytometry. 

 

CD45.1/CD45.2 mismatched mice, control-control (three pairs), HUPO-control (six pairs), 

and HUPO-HUPO (three pairs) of the same gender and age and similar in body weight were paired 

by parabiosis (42) performed by the Microsurgery Core of Northwestern University. Food and 

water were supplied at the bottom of cages, and 1-ml saline per mouse was subcutaneously injected 
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as needed between 1 and 4 weeks after surgery, depending on the body weight. Two weeks after 

procedures, chimerism was determined by flow cytometry of peripheral blood cells. Arthritis was 

evaluated by clinical scoring starting 2 weeks after the procedure. Blood and ankles were harvested 

5 or 10 weeks after parabiosis, and the cell populations were analyzed by flow cytometry. 

 

Preparation of the RNA-seq library (Performed by Qi-Quan Huang) 

HUPO mice with established arthritis and littermate or age/gender-matched control mice were 

euthanized to harvest blood and ankle cells for RNA-seq. CM and NCM and five subsets of STMs 

from ankles were stained by multicolor fluorochrome-conjugated antibodies as described and then 

sorted at the Northwestern University Flow Cytometry Core Facility using a FACSAria III 

instrument (BD Biosciences). Each HUPO sample was from an individual mouse; however, some 

ankle samples from control mice were combined because of the limited number of cells. RNA was 

extracted from each sorted cell population (>400 cell count) using the Arcturus PicoPure RNA 

Isolation Kit (Applied Biosciences) according to the manufacturer’s instructions. Total RNA was 

used for library construction, which included 49 samples across six control and seven HUPO 

populations of cells. Full-length cDNA synthesis and amplification were carried out with the 

Clontech SMART-Seq v4 Ultra Low Input RNA Kit. Subsequently, Illumina sequencing libraries 

were prepared from the amplified full-length cDNA with the Nextera XT DNA Library Preparation 

Kit. Before sequencing, the prepared libraries were quantified with Qubit and validated on a 

Bioanalyzer with a high sensitivity DNA chip. The sequencing of the libraries used an Illumina 

NextSeq 500 NGS System. Single 75-bp reads were generated with dual indexing, and the libraries 

were sequenced to an average depth of 21.8 million reads. These procedures were performed at 

the NUSeq core Facility of Northwestern University. 
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RNA-seq analysis 

The sequencing library was demultiplexed, and the quality of DNA reads was evaluated using 

FastQC. Adapters were trimmed, and reads of poor quality or aligning to ribosomal RNA 

sequences were filtered. The sequenced reads were aligned to the Mus musculus genome (mm10) 

using STAR [124]. Read counts for each gene were calculated using htseq-count [129] in 

conjunction with a gene annotation file for 23,337 genes obtained from UCSC (University of 

California Santa Cruz; http://genome.ucsc.edu). Raw gene expression counts were normalized to 

fragments per kilobase per million (FPKM) using cufflinks [131]. These procedures were 

performed at the Quantitative Data Science Core of Northwestern University. 

 

Quality control for the 49 samples was performed excluding five low-quality samples 

(alignment < 82%, duplicates > 66%, and mapped reads < 2.3 × 106) from groups with >3 

replicates. To maintain consistent numbers of replicates (n = 3) in each experimental group, we 

removed the least correlated sample from an additional three control mice under the assumption 

that the most similar samples better reflect steady-state conditions. We also removed two HUPO 

samples from F4/80hi subsets that appeared to have been contaminated on the basis of the high 

expression of neutrophil-specific genes. Thus, 39 samples reflecting three replicates for each of 

the 13 groups remained. We defined 7778 expressed genes with log2 (FPKM + 1) ≥ 4 in at least 2 

of the 39 individual samples. Mixed sexes were used in the experiments, since the HUPO 

phenotype was not significantly different between male and female mice. Further, removing genes 

on the sex chromosomes (X and Y) did not affect the results of the transcriptional analysis. 
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K-means clustering for control mice was performed for genes that fulfilled the following 

criteria: (1) mean expression across replicates in at least one of the subsets was [log2 (FPKM + 1)] 

≥ 4; (2) there was a log2 fold change of ≥1 in one subset compared with any other; and (iii) P < 

0.05 by analysis of variance (ANOVA) across subsets. DEGs for a given population of myeloid 

cells between HUPO and control mice were defined by the following criteria: (i) The mean 

expression for a given population in either group was ≥4; (ii) the magnitude of the log2 fold change 

between HUPO and control was ≥1; and (iii) P < 0.05 by t test between HUPO and control in any 

one of the five subsets. Because of the low cell numbers, there was no FI2 subset harvested from 

control mice for RNA-seq analysis. Therefore, the expression of the HUPO FI2 subset is given 

without a matching control. 

 

The GENE-E software (https://software.broadinstitute.org/GENE-E/) was used for the 

pairwise Pearson’s correlation and K-means clustering analyses, performed using the default 

settings. PCA was performed using the prcomp function in R with the FPKM matrix of the 

expressed genes. GO associations were determined by Gorilla [149]. 

 

To identify TF binding motifs, we used the findMotifs.pl function with default parameters in 

the HOMER software package [49]. To identify the potential contributions of TF regulation to 

HUPO macrophages, we compared the proportion of genes with selected TF binding motifs 

between the up- or down-regulated genes and those not significantly changed in HUPO 

macrophage subsets. 

 

Human scRNA-seq analysis 
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A processed human scRNA-seq dataset was obtained from Zhang et al [227]. The top 20 up- 

and down-regulated genes ranked by the sum of fold changes in the HUPO FH1 and FH2 subset 

from Figure 2.3.6A, which have orthologs present in the human dataset, were used for module 

score calculation performed using FindModuleScore function in Seurat v3.1.0 package [174] with 

default parameters. 

 

Statistical analysis 

All quantitative data are presented as means ± SEM. Statistical analysis between two groups 

was performed with unpaired two-tailed Student’s t test. For multiple comparisons, one-way 

ANOVA was used followed by Tukey’s pairwise mean comparison. Correlations were determined 

by Pearson’s linear correlation. The Bonferroni correction was performed when a single value was 

compared with multiple variables, and the corrected P value (pc) was presented. To investigate the 

enrichment of gene sets of interest, the significance of the observed gene numbers was determined 

by performing permutations (10,000×) to generate putative background distributions. Comparison 

of module scores and single-cell gene expressions between disease groups was performed with 

pairwise Wilcoxon rank-sum test. All significance levels were set at P < 0.05. 

 

2.3.2 Results  

STM subsets during homeostasis 
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To define STMs, we used an established gating strategy [311, 312], subsetting the CD11b+ 

population by expression of Ly6C, MHCII, and F4/80 (Figure 2.3.1A). ST F4/80+ macrophages 

were separated into those that were F4/80int (FI) and F4/80hi (FH). The FI population was then 

gated into three subsets based on Ly6C and MHCII expression (FI1, FI2, and FI3). We defined the 

Ly6C+ FI1 and FI2 subsets as STMs to distinguish them from true monocytes in the circulation, 

BM, and spleen [313]. Supporting this distinction, clear differences in the expression of CD64, 

F4/80, and MHCII were noted between classical monocytes (CM) and FI1 and FI2 macrophages, 

although the mean fluorescence intensity of Ly6C was similar (Figure 2.3.1B). The F4/80hi 

population was further characterized as MHCII− (FH1) and MHCII+ (FH2). Peripheral blood 

classical and non–classical monocytes (NCM) were identified by subsetting CD11b+CD115+ cells 

by Ly6C and CD62L (Figure 2.3.1C). 

Figure 2.3.1 Gating strategy for synovial tissue macrophage subsets and monocytes during 

homeostasis defined by flow cytometry. (A) Gating Strategy for identifying 
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CD11b+F4/80+CD64+ total synovial tissue macrophages and the 5 distinct subsets, named as FI1, 

FI2, FI3, FH1 and FH2. (B) Representative (of 3 independent experiments) expression of cell 

surface markers on CM and FI1 and FI2 macrophages by fluorescent intensity. (C) Gating strategy 

for characterizing blood monocytes. 

 

Distinct patterns of gene expression across subsets of STMs 

We next examined transcriptional profiles by bulk RNA-seq. The control FI2 subset was 

omitted because of low cell numbers. We defined 7778 genes as expressed in this dataset. Principal 

components analysis (PCA) suggested that each subset represented a distinct population of 

myeloid cells with CM and NCM from the blood clearly segregating (Figure 2.3.2A). Pairwise 

correlation between subsets demonstrated a strong association between CM and NCM and a 

modest correlation of the FI1 synovial macrophage subset and CM (Figure 2.3.2B), consistent with 

the notion that this population differentiated from CM [26]. Notably, the FH1 subset demonstrates 

arguably the most distinct expression profile, in that it does not highly correlate to any other subset. 

 

To identify specific patterns of gene expression shared across STM subsets and CM, we 

performed unsupervised k-means clustering of 1936 genes that were differential across these 

populations (Figure 2.3.2C). We included CM in the clustering to highlight gene sets that were 

specific to the STMs and because CM migrate into tissues under homeostatic conditions [311, 312]. 

We identified six distinct clusters of genes that were predominantly expressed in CM (cluster I), 

in FI1 (cluster II), or FI3 (cluster III) or shared to varying degrees across FI1, FI3, FH2, and FH1 

macrophages (clusters IV to VI). The distinct set of genes associated with each cluster suggests 

differential functions, ontogeny, and degree of differentiation (Figure 2.3.2C-D). Genes in cluster 
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VI are expressed in all STM subsets, but not CM, and include generic macrophage functions such 

as inflammatory response and metabolic processes. In contrast, cluster IV peaks in the FH1 subset 

and contains genes associated with tissue-specific functions, such as Cfs1r and Il10rb, which are 

involved with the maintenance of mature macrophages [314]. This is reinforced by the expression 

of key macrophage maturity genes in cluster IV, such as Lamp1, Rab7, and Vamp3, important for 

lysosomal function and autophagy, and Msr1 and CD68, scavenger receptors important for 

maintaining homeostasis. 
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Figure 2.3.2 Distinct patterns of gene expression across subsets of STMs during homeostasis 

determined by RNA-seq. (A and B) PCA and pairwise Pearson’s correlation coefficient of gene 

expression (total 7778 genes expressed) from wild-type mice, across individual samples from 

blood CM and NCM and STM subsets (FI1, FI3, FH1, and FH2). (C) K-means clustering of 1936 

differentially expressed genes (DEGs) across CM and the STM subsets. (D) Representative 

examples of RNA expression from genes identified in each of the six clusters in (C), presented as 

the means ± 1 SE in fragments per kilobase per million (FPKM). 

 

STMs are increased in HUPO mice, while the FH1 subset is reduced 

Next, we examined STMs in HUPO mice and age-matched, littermate controls, at 22 to 37 

weeks of age, when arthritis progression stabilized. The majority of F4/80+ macrophages of 

control mice were in the synovial lining, and they were increased in the both the lining and 

sublining of HUPO mice with arthritis (Figure 2.3.3A). The patterns of the populations of STMs 

defined by flow cytometry were distinct between HUPO mice with or without arthritis and age-

matched littermate controls (Figure 2.3.3B). The total number of CD11b+CD64+F4/80+ 

macrophages was increased in HUPO mice with arthritis, and the percentages of the FI1 through 

FH2 subsets were variably increased in HUPO mice with arthritis (Figure 2.3.3C). In contrast, FH1 

STMs were significantly reduced in HUPO mice with arthritis, compared to those without arthritis 

or controls, and this subset inversely correlated with arthritis score and duration, while 

granulocytes, but not B cells, were positively associated (Figure S2.3.3A). The expression of 

MHCII was higher and F4/80 was lower on HUPO FH1, compared with control macrophages 

(Figure S2.3.2B), suggesting reduced differentiation of the HUPO FH1 macrophages that were 

present. Although evaluation of every tissue was not performed, CD11c+ macrophages were also 
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reduced in the lungs of HUPO mice (Figure S2.3.3C). The FH1 subset was reduced in young (4 to 

16 weeks) HUPO mice before the onset of arthritis on clinical exam and before a significant 

increase of total STMs or the FH2 subset (Figure 2.3.3D). Further, on histologic exam, low levels 

of inflammation and joint damage were observed before the onset of clinical arthritis, similar to 

preclinical or early RA (14), which increased over time, as arthritis severity increased (Figure 

2.3.3E-F). These observations suggest that the reduction of the FH1 subset in HUPO mice may be 

associated with the development of arthritis. Of potential relevance to the increase of HUPO 

arthritis incidence with age (peak week, ~22), under homeostatic conditions, STMs decreased with 

age, and the FH1:FH2 ratio was (P < 0.01) reduced in older mice (Figure S2.3.3D). 
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Figure 2.3.3 Altered histology and STM subsets during chronic arthritis and before disease 

onset in HUPO mice. (A) Immunohistochemistry of ankle joints using anti-F4/80 or control IgG 

for control or HUPO mice with arthritis. Right panel presents number of F4/80+ cells/0.01 mm2 

and average lining thickness. (B) Representative flow cytometry of STMs from control and HUPO 

mice. (C) Number of total CD11b+CD64+F4/80+ STMs (left) and frequency of each subset in 

control and HUPO with or without arthritis mice. (D) The number of FH1, total, and FH2 STMs 

for mice comparing control and HUPO mice with or without arthritis identified between 1 to 2 and 

4 to 6 weeks. (E) Clinical scores and (F) histologic examination for young mice without or with 

arthritis. B: bone; C: cartilage; arrows identify synovial lining, and brackets identify the sublining 

in (A) and (F). Statistical analyses were performed by Student’s two-tailed t test for (A) and one-

way analysis of variance (ANOVA) plus Tukey. *P < 0.05, **P < 0.01, and ***P < 0.001 among 

indicated groups. I indicates inflammation and C indicates cartilage destruction in (F). 

 

 

Figure S2.3.3 (A) Pearson’s correlations of FH1 macrophages, granulocytes and B cells to arthritis 

clinical scores and arthritis duration in HUPO mice as indicated in each panel. (B) Differential 
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expression of MHCII and F4/80 on HUPO and control FH1 macrophages. (C) Alveolar 

macrophages, defined as SiglecF+CD64+CD11c+F4/80+CD11b-, from control and HUPO mice 

(B-C). (D) The number of total STM from control mice, and the FH1 to FH2 ratio for the indicated 

age groups. Statistical analyses were determined by Pearson’s linear correlation for (left panel of 

D) or by 2-tailed Student's t- test performed for (B, C and right panel of D). ** p< 0.01 and *** 

p< 0.001 between indicated groups. 

 

HUPO monocytes exhibit proinflammatory potential 

Utilizing mainly 5-bromo-2’-deoxyuridine (BrdU) incorporation experiments, we found that 

migration of circulating monocytes, rather than local proliferation, is responsible for the increase 

of STMs in HUPO mice. The monocytes are able to readily differentiate into all subtypes of F4/80hi 

STMs by filling the vacant niches, although the FH1 subset remained reduced. We also confirmed 

that targeting Flip in STMs did not alter the apoptosis and proliferation of FH subsets during 

inflammation (See complete manuscript for full details). We therefore examined the circulating 

monocytes to better understand how they might contribute to HUPO arthritis. The total number of 

monocytes, specifically the CM, were significantly (P < 0.001) increased in HUPO mice with 

arthritis, and the expression of MHCII was increased (P < 0.001) on HUPO CM and NCM (Figure 

2.3.4A). Of the 4480 genes expressed in either HUPO or control CM or NCM, 150 differentially 

expressed genes (DEGs) were up-regulated in both populations in HUPO mice, while 139 were 

down-regulated in both (Figure S2.3.4B). Of the DEGs in CM and NCM of HUPO mice, those up-

regulated in both were enriched in the Gene Ontology (GO) pathway functions that may promote 

inflammation and adaptive immunity (Figure 2.3.4A), while no GO pathways exhibited a false 

discovery rate (FDR) P value < 1 for other combinations of genes up or down. In addition, 
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supporting the role of adaptive immunity in the progression of arthritis, although conventional 

dendritic cells (cDC) were reduced in the spleens of HUPO mice [240], dendritic cells (DC), 

identified as CD45+CD11b+MHCII+CD64−, were increased in the ST of HUPO mice with 

arthritis, compared to those without arthritis or controls (Figure 2.3.4D). Further, at 4 weeks before 

the onset of arthritis on clinical exam, cartilage proteoglycans were reduced in the cartilage of 

HUPO joints (Figure 2.3.4E), providing a potential antigenic source that may contribute to the 

anti-aggrecan antibodies previously observed in progressive HUPO arthritis [240]. 

 

Figure 2.3.4 Increased circulating monocytes in HUPO mice exhibit arthritogenic potential. 

(A) Analysis of circulating monocytes. From left to right: the representative flow cytometry, the 

numbers of total monocytes, the frequency of CM and NCM and the MHCII+ CM and NCMs. (B) 
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Scatterplot showing fold change of genes expressed in HUPO or control, CM or NCM. DEGs are 

presented in colors, and the numbers of genes in each sector are identified. (C) The top GO terms 

for DEGs in red from panel B. All GO terms for the genes in other sectors were not significantly 

enriched. (D) DCs identified as CD45+CD64-MHCII+CD11b+, in HUPO compared with control 

joints. (E) Cartilage proteoglycans were identified by Safranin-O staining of ankle sections from 

4-week-old control or HUPO mice. The areas in black boxes were enlarged in panels on the right. 

Data presented as loss of proteoglycan on a 0-4 scale. B= bone, C and arrows indicate cartilage. 

Values are mean ±1 SE. Statistical analyses by one-way ANOVA with Tukey adjustment (A, D) 

and by 2-tailed Student’s t-test (E). ** p< 0.01 and *** p< 0.001 between the indicated groups. 

 

Synovial macrophage subsets in HUPO mice are more similar to CM 

Next, we isolated and performed RNA-seq on circulating monocytes and STMs from HUPO 

mice with arthritis. On the basis of global gene expression, we observed that the HUPO FI2, FI3, 

FH2, and FH1 subsets appear more closely related to each other (Figure 2.3.5A) than in controls 

(Figure 2.3.1A). In addition, when comparing each of the HUPO subsets to their control 

counterparts, we observed that FI1 subsets, which maintain their already high monocyte similarity, 

were only marginally different between HUPO and control mice (Figure 2.3.5B). In contrast, 

HUPO FH2 appears to be the most altered subset from its control counterpart, consistent with a 

high monocyte replacement in the HUPO FH2 population. In support of the monocyte origin of 

HUPO macrophages, the CM genes that were up-regulated in at least three of four HUPO 

macrophage subsets (n = 128) were enriched for interferon regulatory factor (IRF), PU.1-IRF, and 

CCAAT-enhancer-binding protein (C/EBP) binding motifs (Figure S2.3.6A). 
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To further determine how STMs differ between health and chronic inflammation, we defined 

2021 DEGs, up- or down-regulated between HUPO and control mice in at least one of the myeloid 

subsets. We identified six HUPO-signature (HS) clusters demonstrating distinct expression 

patterns across STM subsets compared with control mice (Figure 2.3.5C). The HUPO FI2 subset, 

with no control counterpart, was included in the clustering. HS clusters I, IV, and V demonstrate 

expression patterns that were decreased in one or more HUPO subsets. Notably, cluster V genes, 

with decreased expression in HUPO FH2 and FH1 subsets, were consistent with functions 

associated with macrophage tissue residency during homeostasis (Figure 2.3.5C-D). In contrast, 

clusters II, III, and VI contain genes that generally were increased in expression in HUPO mice, 

which include GO pathways enriched for genes involved in inflammation, adenosine triphosphate 

metabolic processes, and glycolysis (Figure 2.3.5E). 
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Figure 2.3.5 Transcriptional profiling supports the origin of HUPO STMs as circulating 

monocytes and identifies functional differences. (A) PCA of gene expression for individual 
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samples from HUPO mice. (B) Comparison of Pearson’s correlation coefficient of mean gene 

expression between each cell population from control and HUPO mice (n = 3). Total genes 

expressed (n=7778) were used for (A) and (B). (C) K-means clustering of DEGs (n = 2021) 

between control and HUPO subsets, identifying HUPO-signature (HS) genes. The genes from 

HUPO FI2 subset, which do not have a control counterpart, were included in the clustering. (D) 

Examples of genes important in macrophage efferocytosis and tissue residency, identified in (C), 

cluster V. (E) Examples of genes involved in the glycolytic pathway, identified in (C), cluster VI. 

Statistical analysis was performed by two-tailed Student’s t test (D and E). Individual values and 

the means ± 1 SE are presented. *P < 0.05, **P < 0.01, and ***P < 0.001 among indicated groups. 

 

The tissue-resident macrophage phenotype is lost in HUPO and replaced by a 

proinflammatory profile 

To further define the distinction between HUPO and control F4/80hi macrophages, we 

compared the genes expressed (4500) in either FH1 or FH2 subset in HUPO mice or controls 

(Figure 2.3.6A). DEGs upregulated in the HUPO FH1 subset alone included IL1b and neutrophil 

chemokine genes (Cxcl1, Cxcl2, and Cxcl3), which may contribute to the neutrophil recruitment 

into the HUPO joints [240]. GO pathways increased in HUPO FH1 and FH2 macrophages were 

significantly enriched in genes involved in leukocyte migration and innate immune response 

(Figure 2.3.6B). A significant number (173, P < 0.0001) of genes were downregulated in both 

HUPO FH1 and FH2, including those important in maintaining macrophage tissue residency such 

as Csfr1, Cx3cr1, Timd4, and Vsig4. Further, proteins expressed by DEGs important in 

macrophage tissue residency were also reduced in the HUPO FH1 and/or FH2 subsets by flow 

cytometry (Figure 2.3.6C). In addition, Mef2c was significantly reduced in HUPO FH2 
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macrophages, and DEGs down-regulated in both the HUPO FH1 and FH2 populations were 

enriched for myocyte enhancer factor 2 (MEF2) transcription factor (TF) binding motifs compared 

with those genes not down-regulated in either (Figure S2.3.6B-C). These observations are in line 

with role of MEF2C in regulating the macrophage tissue–resident identity [47, 157]. Notably, of 

the 356 genes from Fig. 2.3.1C, cluster IV that we previously associated with macrophage tissue–

resident identity, 57 (P < 0.0001) were reduced in both HUPO FH1 and FH2 subsets (Figure 

2.3.6D), suggesting that the macrophage tissue residence phenotype was robustly diminished in 

HUPO mice. 

 

To identify a mechanism for the reduction of the FH1 subset in HUPO mice, we examined 

the ability of phagocytosis of liposomes, as a surrogate for phagocytosis of apoptotic cells, to 

promote the differentiation of FH2 macrophages, determined by the reduction of MHCII 

expression. This approach was chosen since the expression of genes for receptors contributing to 

efferocytosis was reduced in HUPO FH2 macrophages (Figure 2.3.5D). Dil-lip injected into the 

ankles of control mice resulted in the reduction of MHCII expression on FH2 macrophages that 

phagocytosed Dil-lip compared to those that did not. No reduction of MHCII was observed on 

HUPO FH2 macrophages that phagocytosed Dil-lip, and this was significantly different (P < 0.001) 

compared with the controls (Figure 2.3.6E). These observations directly demonstrate that 

phagocytosis of liposomes was capable of promoting macrophage differentiation under 

homeostatic conditions, which was not observed with HUPO FH2 macrophages. 

 

To determine whether the differences observed in FHI and FH2 macrophages from HUPO-

associated arthritis were conserved in human disease, we compared gene expression in scRNA-
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seq previously performed on RA synovium [227]. Overall, we found that of the 20 genes that were 

most up- or down-regulated in HUPO F4/80hi macrophages, the module scores of those up-

regulated were modestly increased, while those down-regulated were significantly reduced, in 

monocytes from leukocyte-rich RA ST (Figure 2.3.6F-G, S2.3.6D-E). Specifically, we noted that 

the expression of genes associated with increased HUPO expression, including S100A9 and 

VEGFA, was higher in ST monocytes from patients with leukocyte-rich RA ST (Figure 2.3.6F). 

On the other hand, genes associated with decreased HUPO expression, such as CX3CR1, TIMD4, 

VSIG4, and TGFBR2, were significantly decreased in expression in leukocyte-rich RA ST, 

suggesting that the loss of tissue residence phenotype is conserved in highly inflammatory human 

disease (Figure 2.3.6F). Together, these observations suggest that the reduction of the FH1 subset 

in HUPO mice emptied a niche, into which monocyte-derived FH2 macrophages entered but, in 

the absence of Flip and under chronic inflammatory conditions, demonstrated limited ability to 

differentiate into bona fide tissue-resident macrophages, capable of suppressing chronic 

inflammation, which may be relevant to the pathogenesis of RA. 
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Figure 2.3.6 The tissue-resident macrophage phenotype is lost in F4/80hi HUPO STMs and 

in RA ST. (A) Scatterplot showing fold change of genes expressed in HUPO/control FH1/FH2 

subsets. DEGs and their numbers are in colors, and select genes are labeled. (B) Top GO terms for 

genes in red and dark blue from (A). (C) Flow cytometry for protein expression of genes 

downregulated in HUPO mice from (A), as MFI and % positive. (D) Overlap of 356 genes from 

the control STM cluster IV in Figure 2.3.1C with genes in (A). (E) Following (16 to 40 hours) 

ankle injection of Dil-lip, control, and HUPO cells were harvested and MHCII on the FH2 subsets 

determined for Dil+ and Dil− cells. *P < 0.05, **P < 0.01, and ***P < 0.001 among indicated 

groups, for C and E. (F and G) Module scores (box plots) of top 20 up-regulated (F) or 20 down-

regulated genes (G) in HUPO FH1 and FH2 (A) and the representative genes (violin plots) 

expressed in osteoarthritis (OA) and RA leukocyte–poor or RA leukocyte–rich synovial tissue 

[227]. Statistics: Two-tailed Student’s t test (C and E); comparison with expected background 

distribution from 10,000 permutations (A and D) and pairwise Wilcoxon rank (F and G). Absolute 

P values between groups (F and G). 
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Figure S2.3.6 (A) The percent of monocyte genes that contain an instance of the given TF binding 

motif that were either up-regulated in at least 3 HUPO synovial tissue macrophage subsets (n=128) 

or not up-regulated in any subset (n= 1912). (B) Mef2c gene expression in HUPO or control FH1 

or FH2 subsets. (C) The percent of genes containing an instance of the MEF2 binding motif in 

HOMER recognized genes that were either downregulated in both HUPO FH1 and FH2 (from 

dark blue in Figure 2.3.6A) or not differential in either (from grey in Figure 2.3.6A). (D) tSNE 

plot of human synovial monocytes categorized by disease types [227]. (E). Module scores of top 

20 up- and down-regulated FH1/2 genes in HUPO, for the OA and RA synovial tissue monocytes. 

Statistical analysis was performed by 2-sided Student’s t-test. *** p< 0.001 among indicated 

groups. 

 

2.3.3 Discussion 

Our observations suggest a novel mechanism for the transition from preclinical disease to 

active RA. During homeostasis, the FH1 subset was the dominant tissue-resident population, while 

the smaller FH2 subset was the F4/80hi population that was slowly proliferating. In HUPO mice, 

macrophages are necessary for the initiation of disease, while T and/or B lymphocytes are required 

for progression [240]. Here, we demonstrate that the HUPO FH1 subset was reduced before and 

after disease onset, while the other subsets were variably increased shortly after arthritis onset and 

during chronic inflammation. BrdU labeling, transcriptional profiling, and parabiosis experiments 

established that circulating monocytes readily differentiated into F4/80hi macrophages in HUPO 

mice, which was minimal during homeostasis, but with the reduction of Flip, in the environment 

of chronic inflammation, exhibited limited ability to differentiate into bona fide FH1 tissue–

resident macrophages. 
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Recent studies demonstrate that, like most tissue-resident populations with the exception of 

microglia, which renew from fetal hematopoietic stem cells, CX3CR1+ synovial lining 

macrophages derive during early embryonic development [220, 311]. Our analysis demonstrates 

that the FH1 and FH2 populations represent long-lived tissue-resident macrophages, which 

maintain their population in steady state via local proliferation of the FH2 subset, with minimal 

replenishment from circulating monocytes. These findings support recent observations that 

identify CX3CR1+ lining and CX3CR1− interstitial STMs, consistent with our CX3CR1+ FH1 

and CX3CR1lo FH2 subsets, as the populations maintained with limited contribution from 

circulating monocytes [220]. Further, supporting the similarity of the interstitial CX3CR1− and 

FH2 populations, each was the primary subset that proliferated under homeostatic conditions. 

MHCII expression on most F4/80hi populations of tissue-resident macrophages is relatively 

homogeneous, except for dermal macrophages, which demonstrate low and high MHCII subsets 

[311], similar to the STMs under steady-state conditions. Previous reports have shown that 

phagocytosis of apoptotic cells facilitates the differentiation of the MHCII+ subset to become 

MHCII− and is important in maintaining tissue residency and tissue homeostasis [225, 315, 316]. 

The differentiation of CX3CR1−MHCII+ macrophages into CX3CR1+ synovial lining 

macrophages [220] is consistent with the transition of FH2 into FH1 macrophages under 

homeostatic conditions. We speculate that the CD45+ cell apoptosis noted in the joints of the wild-

type mice may contribute to this process through efferocytosis [316]. Our observations suggest the 

synovial tissue resident macrophages function to suppress chronic inflammation, not only serving 

as a barrier and dampening serum transfer–induced arthritis [220] but also capable of suppressing 

chronic inflammation following recruitment and differentiation of Flip-replete monocytes to the 

synovium. 
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In contrast to homeostatic conditions, the BrdU and parabiosis experiments demonstrated that 

HUPO circulating monocytes entered the joints readily differentiating into F4/80hi macrophages; 

however, the transition from FH2 to fully functional FH1 cells was impaired. The lack of enhanced 

local proliferation of the F4/80hi HUPO macrophages 30 min after BrdU administration is distinct 

from observations in acute serum transfer–induced arthritis [220] and the early inflammatory phase 

of atherosclerosis in which monocytes are recruited, differentiate into macrophages, and expand 

by proliferation [317]. Further, bacterial infection results in Kupffer cell necroptosis and recruited 

monocytes proliferate, differentiating into tissue-resident macrophages [66]. In contrast, in HUPO 

arthritis, which is chronic, the influx of monocytes primarily accounted for the expansion of the 

FH2 population. The reduction of FI3 and FH2 HUPO macrophages, concurrent with the reduction 

of NCM, but not CM, following the injection of clodronate liposomes, suggests that these 

macrophage subsets derive from NCM, although this was not directly documented. The HUPO 

monocytes entering the joints were highly enriched in pathways of innate immunity, antigen 

presentation, and interferon signaling, which, together with the increase of DCs in the HUPO 

synovial tissue and the systemic reduction of regulatory T cells present in HUPO mice, contribute 

to the development of autoantibodies to joint constituents such as aggrecan and the progression of 

arthritis [240]. This scenario is distinct from the setting where the niche is disrupted under 

noninflammatory conditions, into which homeostatic monocytes enter, acquire a tissue resident 

phenotype, and restore the niche [46, 69]. 

 

In HUPO mice with arthritis, the FH1 population was greatly reduced, while the FH2 

population was expanded. Although Flip was reduced in both FH1 and FH2 macrophages under 

inflammatory conditions, neither population exhibited increased apoptosis compared with control 
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mice. Previously, we demonstrated that apoptosis of human monocytes was rescued by the increase 

of FLIP observed during in vitro differentiation into macrophages [318]. The reduction of FLIP in 

human in vitro–differentiated macrophages results in Fas-mediated apoptosis. In contrast, using 

lineage negative murine BM progenitors, we demonstrated that the reduction of Flip prevented 

macrophage differentiation in vitro, which was not associated with increased apoptosis and was 

not rescued by caspase inhibitors [239]. Together, these observations support the potential role of 

Flip in monocyte to tissue-resident macrophage differentiation, under chronic inflammatory 

conditions, which promoted macrophage survival despite the reduction of Flip. 

 

In HUPO mice, the FH1 subset replenished to a limited degree by circulating monocytes, 

determined by BrdU and parabiosis, and demonstrated a restricted tissue-resident transcriptional 

profile. A potential mechanism preventing HUPO F4/80hi macrophages from attaining tissue 

residency may be the reduction of the requisite genes. For example, CD115/CSFR1 was reduced 

in HUPO F4/80hi macrophages, together with TFs downstream of CD115, such as Klf2 and Klf4, 

which are involved in the development of macrophage tissue residency and the ability to silently 

clear apoptotic cells [316]. Efferocytosis is known to drive the differentiation of monocytes to 

tissue-resident macrophages under homeostatic conditions, in an acute self-limited model of 

arthritis and following myocardial ischemia [225, 315, 316]. Our data suggest that decreased 

phagocytosis of apoptotic cells may also contribute to the decreased FH1 population in HUPO 

mice. Receptors responsible for efferocytosis including CD206 and CD163, which are highly 

expressed on phagocytic macrophages, were reduced in HUPO FH2 macrophages compared with 

controls, and apoptotic CD45+ cells were greatly reduced in the chronic inflammation of the 

HUPO joints. The forced reduction of CD206 reduces efferocytosis [315], and mice deficient in 
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CD206 develop more severe experimental arthritis [319]. CD163, a scavenger receptor, is 

important in suppressing inflammation [320]. Our observations, combined with the parabiosis data, 

demonstrate that, although the molecular mechanism remains to be defined, Flip was necessary, 

but not sufficient, for the differentiating monocytes to fully acquire a tissue-resident, homeostatic 

phenotype during chronic inflammation. 

 

Our observations concerning the role of STMs and circulating monocytes in the initiation and 

progression of arthritis in HUPO mice appear relevant to the pathogenesis of RA, although FLIP 

is highly expressed in RA STMs [321]. The mechanisms targeting ST in the transition from 

preclinical to clinical disease are not known. Our data suggest a novel mechanism, which reduction 

of tissue-resident macrophages predisposes joints to the development of arthritis, by opening a 

niche permitting the influx of activated monocytes and other inflammatory cells. Consistent with 

this notion, the FH1 subset was reduced before the onset of clinical arthritis and restoration of this 

subset from wild-type mice suppressed inflammation in HUPO mice. HUPO monocytes expressed 

a transcriptional profile enriched in pathways that support inflammation and adaptive immunity, 

which likely contributed to the progression of disease. Similarly, monocytes from patients with 

RA are enriched in pathways involved in interferon signaling, inflammatory response, and anti-

apoptosis [322], supporting a role for activated monocytes in the pathogenesis of RA. Before the 

onset of RA, patients also exhibit circulating autoantibodies and inflammatory mediators [323]. 

Further, the incidence of RA increases with age [324], while murine tissue–resident alveolar and 

human BM CD68+ macrophages [325, 326] and mouse STMs all decrease with age. In addition, 

MHCII− tissue–resident–like macrophages are reduced in patients with active RA compared with 

those with osteoarthritis [227], and genes relevant to macrophage tissue residency such as 
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CX3CR1, VSIG4, TIMD4, and TGFBR2 are reduced in leukocyte-rich RA ST. Also, circulating 

monocytes from patients with RA exhibit a defect in their ability to differentiate into M2-like 

macrophages, mediated by miR-155, resulting in reduced expression of CD206 and CD163, and 

increased proinflammatory mediators [327]. Consistent with our interpretation, recently published 

data demonstrate that when therapy is stopped or reduced in individuals with RA while their 

disease is in remission, those with increased MerTK+CD206+CD163+ tissue–resident 

macrophages, expressing transcriptomes enriched in anti-inflammatory signatures, on ST biopsy, 

are less likely to experience a recurrence of the joint inflammation [228]. Together, these 

observations identify a critical role for tissue-resident macrophages in the pathogenesis of chronic 

arthritis and raise the possibility for targeted treatments that prevent disease from developing in 

individuals with preclinical RA or maintaining remission by modulation of the STM populations. 
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CHAPTER 3 

Uncovering the existence of extravascular synovial resident monocytes 

 

Chapter 3 contains some results from an original research article entitled “Tissue-resident, 

extravascular Ly6c- monocytes are critical for inflammation in the synovium” (Montgomery et al., 

in revisions) and is reproduced here with the permission of the copyright holder. 
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3.1 Introduction 

In recent years, our understanding of the mononuclear phagocyte system has expanded, 

highlighting previously unknown complexities in cell origin and function. However, to date,few 

studies have examined a role for monocytes in tissues, with the majority of studies centered on 

circulating monocytes, or monocyte-derived macrophages. Circulating monocytes exist in 3 main 

states, characterized by CCR2, CX3CR1, CD43 and Ly6c in mice: classical (CM) 

(CCR2+CX3CR1lowCD43-Ly6chi), intermediate (IM) (CCR2+CX3CR1low CD43+Ly6cint), and 

non-classical (NCM) (CCR2-CX3CR1hiCD43+Ly6clow) [328, 329]. Previous studies have shown 

that NCMs are derived from CM in bone marrow and in circulation. CM require CCR2 to exit the 

bone marrow, while NCM utilize sphingosine-1-phosphate receptor 5 (S1PR5) and/or CX3CR1. 

Consequently, CCR2-/- mice have reduced numbers of CM in circulation, while S1PR5-/- and 

CX3CR1-/- mice have reduced NCM [330]. NCMs also require CEBP/β for transcriptional 

activation of NR4A1 and CSF1R to maintain survival [331]. As such, NR4A1-/- and CEBP/β-/- 

mice also display markedly reduced numbers of circulating NCM. While transcriptional studies 

have exposed critical gene signatures for CM and NCM in the bone marrow and circulation, no 

such studies examined monocyte heterogeneity and their function at the tissue level.    

 

In contrast to well-characterized inflammatory CM [330], the direct impact of NCM in steady 

state and inflammation is unclear. The current dogma for circulating NCM centers on barrier 

maintenance due to the ability of NCM to adhere and patrol the endothelium [332]. In this context, 

NCM maintain the endothelium, scavenge debris, and elicit removal of damaged endothelial cells 

by neutrophils [332]. To date, only one study has proposed the existence of an NCM population in 

tissue [333]. The investigators identified a CD64+ CD16.2+ subpopulation among extravascular 
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CD45+Ly6clo cells in the lung that are derived from circulating NCM and require NR4A1. These 

cells were considered monocytes but were putative precursors for interstitial macrophages. It is 

not clear whether similar populations are found in other tissues due to the dearth of studies that 

have identified NCM in tissue that are distinct from circulating NCM. 

 

It is established that recruitment of monocytes to the inflamed synovium is a requisite for 

sustainment and progression of rheumatoid arthritis (RA) [235]. Support for a functional role for 

NCM in RA comes from murine models. While complete ablation of circulating monocytes using 

clodronate-laden liposomes (Clo-lip) prevents the effector phase of K/BxN serum transfer-induced 

arthritis (STIA) [225], pathology is restored exclusively with transfer of NCM, not CM [225, 334]. 

CX3CR1-/- mice also display a marked reduction in STIA [335]. In contrast, depletion of CM via 

anti-CCR2 antibody or deficiency in CCR2 has no effect on arthritis development in STIA [225], 

TNFα-Tg mice [336], or collagen-induced arthritis [337]. However, NR4A1-/- mice remain 

sensitive to STIA and CIA regardless of reduced numbers of circulating NCMs [338, 339]. Taken 

together, these studies present a quandary on the role that NCMs play in RA.  

 

To distinguish differential and distinct functional roles of NCMs, we focused on identifying 

the heterogeneity of CD64-Ly6c- monocytes in tissue. We uncovered three subpopulations of 

synovial CD64-Ly6c- cells, which lake known markers of macrophages and can be separated by 

their expression of MHCII as well as their intra- and extra-vascular location in the mouse synovium.  

The CD64-Ly6c- cells which were MHCII+ were identified as dendritic cells and were localized 

to extra vascular compartment of the synovium. The remaining two populations, intra-vascular 

CD64-Ly6c- cells retain a similar phenotype to circulating NCM, independent of NR4A1 and 
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CCR2, and long-lived. Furthermore, extra-vascular CD64-Ly6C- are critical for pathology of 

inflammatory arthritis, via an LFA dependent mechanism. These data document an essential role 

for newly described tissue-resident CD64-Ly6c- cells in inflammatory arthritis. 

 

3.2 Materials and Methods 

Mice (Performed by Anna Montgomery) 

Breeder pairs were purchased and experimental mice bred in house, and/or acclimated in 

barrier and specific pathogen-free animal facility at the Center for Comparative Medicine, 

Northwestern University. Female mice were used for all RA-like studies. All experimental 

procedures were carried out on mice aged 8-10 weeks (unless stated otherwise in aging studies). 

To induce serum transfer arthritis, 85μL/20g/mouse was given intravenously (I.V). All procedures 

were approved by the Institutional Animal Care and Use committee at Northwestern University. 

 

Flow cytometry analysis (Performed by Anna Montgomery) 

To prepare single-cell suspensions from joint, joints were removed from hind paws following 

euthanasia, perfused, and stored on ice in sterile HBSS. Skin and toes were removed from each 

paw and bone marrow flushed from exposed tibia with sterile HBSS through a 30G needle. 

Synovial tissue was then infused with 1.5mL/joint of ankle digestion buffer (2.4mg/mL dispase II, 

2mg/mL collagenase D, 0.2mg/mL DNAse I in HBSS pH 7.2-7.6) before incubation at 37oC for 

1h with shaking. Cells were then aggravated through a 40-μm mesh filter. Red blood cells were 

removed with lysis 250μL/sample (1x PharmLyse in sterile water) at room temperature for 1 

minute. Dead cells were stained with eFluor 506 viability dye (1:1000 dilution). Cells were 

incubated with FcBlock (BD Bioscience) and stained with selected antibodie. Cells were fixed 
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with 10% PFA at 4C for 20 minutes. To prepare single cell suspensions from blood, 90μL blood 

collected by cardiac puncture was incubated with FcBlock and selected antibodies. Red blood cells 

were lysed with FACS lyse at rt for 10 minutes (1x in sterile water) and single-cell suspensions 

were acquired on BD LSR II or BD Symphony. For all FACSorting studies, cells were acquired 

on a BD FACSAria. Count eBeads were used in joint preparations to calculate cell numbers. 

Fluorescence minus one sample were used to set gates. Compensation and analysis of flow-

cytometry data was carried out in FlowJo V10. 

 

Bulk RNA sequencing (Performed by Gaurav Gadhvi and Shang-Yang Chen) 

RNA from FACSorted synovial cells was extracted using PicoPure RNA Isolation kit as per 

manufacturer’s instructions. Bulk RNA-seq shown in Figure 3.1 was carried out using QuantSeq 

3’ mRNA sequencing kit, while bulk RNA-seq shown in Figure 3.4 utilized full-length SMART-

seq v4 Ultra Low Input Kit for Sequencing.  

 

Following the sequencing, libraries in the form of BCL files were obtained from Illumina’s 

BaseSpace platform and demultiplexed (using bcl2fastq v2.17.1.14) to convert them into FastQ 

read format for further processing. The QuantSeq reads were then processed further by trimming 

the adapters, low quality bases and short reads (using BBDuk version 37.22 with the following 

parameters: k=13 ktrim=r useshortkmers=t mink=5 qtrim=r trimq=10 minlength=20). After 

trimming, remaining reads were aligned to the mouse genome reference mm10 (Mus Musculus / 

UCSC assembly GRCm38) using STAR [124]. Aligned reads in BAM format were mapped to the 

reference transcriptome (Mus Musculus GRCm38.87) to obtain exon counts and generate gene 

expression tables using the tool HTSeq [129]. The SMART- seq reads were trimmed using 
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Trimmomatic (version 0.36) [118] to remove adapter sequences, low quality bases and short reads 

(minimum length = 20bp). After trimming, remaining reads were aligned to the mm10 genome 

reference (Mus Musculus / UCSC assembly GRCm38) with Tophat aligner (tophat 2.1.0) [126]. 

The aligned reads in BAM format were mapped to gene exons by HTSeq as above using the 

reference transcriptome GTF file (Mus Musculus GRCm38.87). 

 

All gene expression counts were scaled to read depth using counts per million reads mapped 

(CPM). To filter out lowly expressed genes, genes with no group mean above 7 CPM in the relevant 

cell types were excluded from the analysis. Differentially expressed genes (DEG) across multiple 

cell types were defined as genes with a difference of 2-fold between any two groups. K-means 

clustering of DEG was carried out in Gene-E. GO enrichment was calculated using GOrilla [149] 

on each cluster with all DEGs as background. Expressed genes, K-means clustering, and GO 

processes for all datasets are provided in supplemental files for each figure. Volcano plots were 

generated in R (version 3.3.1). Principal Component Analysis (PCA) and Pearson’s correlation 

were performed on expressed genes and visualized with R (version 3.3.1). In Figure 3.1, monocyte 

populations were compared with CD64+ macrophages that were isolated from the same mice and 

sorted into 4 subpopulations based on the cell surface expression of CX3CR1 and MHCII. 

 

Single-cell RNA sequencing 

RNA libraries for single-cell analysis were prepared using 10x Chromium Single Cell 3’ 

Solution v3. Reads were processed and aligned to mm10 mouse reference genome using mkfastq 

and count commands of cellranger 3.1.0 pipeline [163]. Subsequent analyses, including quality 

control, unsupervised clustering, identification of cluster markers, and visualization of gene 
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expression were carried out using Seurat v3.1 package in R. Samples were individually assessed 

and filtered based on the number of UMI counts and % mitochondrial reads per cell. To account 

for technical variability, sample-specific thresholds were used as indicated below: 

 

Table 3.1 Quality control metrics and cutoffs for scRNA-seq samples 

Genotype Total 

Cells 

Detected 

Median 

Genes/Cell 

Median 

UMIs/Cell 

Min 

UMI/cell 

Max 

UMI/cell 

Max % 

MT 

reads/Cell 

# cells 

after 

filtering 

C57Bl/6 9447 2681 9323 4000 35000 7 7160 

CCR2-/- 4867 3184 12927 5500 40000 7 3621 

NR4A1-/- 13375 818 1494 4000 38000 7 2867 

LFA1-/- 7908 2622 8880 3500 31000 5 5444 

Ly6C-

MHCII-

CITE-seq 

3529 3236 11887 3500 45000 5 2967 

Ly6c-

MHCII+ 

CITE-seq 

8753 3196 11547 4500 40000 5 6061 

CD64+ 

CITE-seq 

9914 3001 9238 5000 40000 10 6051 

RA 

patient 

CITE-seq 

2754 4270 20758 8454 63404 10 1614 

 

For the initial analysis on the C57BL/6 sample, selection of variable genes was performed 

using the default vst method with nfeatures set to 2000. UMAP dimensionality reduction and 

unsupervised graph-based clustering were performed with top 16 principal components (PC) and 

resolution parameter of 0.2. SingleR package v1.0.5 [187] was used to annotate cells with Immgen 

reference cell types [155]. Differentially expressed genes for each subpopulation were defined 

log(fold-change)>|0.25| and adjusted p-value<0.05 by Wilcoxon test with Benjamini-Hochberg 

procedure for False Discovery Rate. Module scores of cell type signatures based on manually 
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selected genes were computed using AddModuleScore function with default parameters (Table 

3.2). Pearson’s correlations were calculated between the averaged expression profiles of single-

cell subpopulations and bulk RNA-seq on monocyte populations (Figure 3.1). Cell cycle scoring 

was performed using G2/M and S phase gene sets provided in Seurat, converted to orthologous 

mouse genes using BioMart R package. Cells in subpopulations 0, 1, and 3 were further classified 

as either MHCII+ or MHCII– by a threshold of 2 on normalized expression of H2-Eb1. Co-

expression of H2-Eb1 with MHCII+/- compartment genes was visualized using DimPlot function 

with blend=TRUE parameter.  

Table 3.2 Genes used in calculation of cell-type-specific module scores 

PB CM PB NCM Syn Ly6c- cDC 

Fcgr1 Cebpb C1qa Adam19 

Ifnar2 Nr4a1 C5ar1 Ap1s3 

Irf5 Cx3cr1 Ccl2 Ass1 

Irf7 Il17ra Cd74 Bcl11a 

Myd88 Il10ra Gas6 Btla 

Stat1 Csf1r H2-Aa Ccr7  
Irf1 Lyve1 Flt3   

Mafb Gpr132   
Retnla Gpr68   
Cd14 Gpr82   
Cd209d H2-Eb2   
Trem2 Hmgn3   
Rab31 Kit    

Klri1    
Kmo    
P2ry10    
Rab30    
Septin6    
Slamf7    
Traf1    
Zbtb46 
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Similarity of our annotation with published clusters in Culemann et al [220] was determined 

by calculating the fraction of their top 20 reported markers that overlapped with the list of 

differentially expressed genes for each of our subpopulations: Cycling (2), Monocyte (4) and cDC 

(5) as well as MHCII+ and MHCII-. Significance of overlap was determined by hypergeometric 

distribution with the expressed genes as background, defined as those that were present in more 

than 25% of cells for at least one subpopulation (n = 6344). A FWER cutoff of 0.05 was applied 

based on Bonferroni correction for 35 comparisons (Supp Table 2E). To assign C57BL/6 myeloid 

cells to either i.v. or e.v. Syn Ly6c-, or mono-DC singleR was run with the bulk RNA-seq on these 

populations as reference.  

 

For the processing of CITE-seq samples, dimensionality reduction was performed with top 

10 PCs. Antibody intensities were normalized using CLR method in NormalizeData function. 

Identities of individual cells were annotated via the FindTransferAnchors and TransferData 

functions using the top 30 PCs and C57BL/6 sample as reference data. The analysis of scATAC-

seq experiment was carried out using Signac 1.3.0 package. Quality control was performed with 

the following cutoffs: fragments in peak region > 4000 and < 40000, percentage of reads in peaks 

> 40%, ratio reads in ENCODE blacklist regions < 0.02, nucleosome binding signal < 1.2, and 

transcriptional start site (TSS) enrichment score > 2. Latent semantic indexing (LSI) was 

performed through RunTFIDF and RunSVD functions, followed by UMAP dimensionality 

reduction using 2:30 LSI components. Annotation of cell identities was performed by integrating 

and transferring labels from C57BL/6 CITE-seq data. Per-cell activity scores of JASPAR2020 

transcription factor (TF) motifs was inferred through chromVAR wrapper function implemented 

within Signac package. 



148 
 

 

For annotation of human myeloid cells, we first merged the Ly6c-MHCII- and the CD64+ 

CITE-seq data carrying over the annotations from the former. Then, we defined the markers genes 

for MHCII- cells (e.v. Syn Ly6c-) using FindAllMarkers and chose the top 10 by fold-change with 

human orthologs. Next, we calculated the module score in cells from either the AMP CD14+ 

scRNA-seq dataset [227] or our own RA Patient CITE-seq data using AddModuleScore.. We also 

performed de novo clustering (10 PCs and 0.6 resolution) on the latter data to determine which 

cluster exhibited the highest expression of the MHCII- module and link this with RNA expression 

and ADT intensity of other genes/surface markers. 

 

Integration of C57BL/6 cells with other samples was executed using Seurat anchoring method 

with 30 CCA dimensions and visualized by UMAP using top 13 (B6 with CCR2-/- and NR4A1-

/-) and 15 (B6 with LFA1-/-) PCs. Subpopulation labels were determined by the majority label of 

C57BL/6 annotated cells in each cluster. Relative contributions of the integrated samples were 

calculated by down-sampling to 2000 (B6 with CCR2-/- and NR4A1-/-) and 3000 (B6 with LFA1-

/-) cells for each sample after clustering, with significance determined through chi-square test. GO 

processes were obatined using GOrilla on genes increased or decreased in expression log2(fold-

change)>|0.25|, adjusted p-value<0.05 by Wilcoxon test with Benjamini-Hochberg) in LFA1-/- 

MHCII- compartment compared to C57Bl/6 with the 14144 expressed genes as background. 

 

Intra and extra vascular labeling of immune cells (Performed by Anna Montgomery) 

To label intra-vascular immune cells, anti-CD45 BUV661 antibody was administered I.V. at 

6μg/mouse in 200μl sterile PBS. Mice were then returned to housing environment for 5 minutes 
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before euthanasia or for 1 hour before administration of second I.V. anti-CD43 BUV395 antibody. 

In studies using STIA, K/BxN serum was administered 5 minutes after anti-CD45 BUV661 

antibody, 60 minutes prior to anti-CD43 BUV395 antibody as previously described. 

 

Monocyte depletion (Performed by Anna Montgomery) 

For depletion studies, 200μl/mouse clodronate-laden liposomes were given I.V. 24 hours prior 

to euthanasia. All mice were perfused with 20mL with ice-cold HBSS following euthanasia to 

remove circulating cells and retain adherent intra-vascular cells. 

 

Bone marrow chimeras (Performed by Anna Montgomery) 

See original manuscript for details 

 

Statistical analysis 

All statistical analysis was carried out in GraphPad Prism V8. P-values less than 0.05 were 

considered statistically significant using two-tailed unpaired t-test with equal variance. 
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3.3 Results 

Non-classical monocytes in the synovium are distinct from those in the circulation 

We sought to determine the contribution of circulating NCM to inflammatory arthritis by 

inducing STIA in NR4A1-/- mice, which are depleted of NCM in peripheral blood (PB) (Figure 

3.1A, S3.1A-B). NR4A1-/- mice developed STIA of comparable severity and onset to C57Bl/6 

controls (Figure 3.2B), in agreement with a previous report [338]. Flow cytometry was then 

performed to identify monocyte populations that are preserved in the synovium of NR4A1-/- mice, 

which may explain the sensitivity of these mice to inflammatory arthritis. We identified a novel 

synovial myeloid niche defined as CD45+CD11b+Ly6G-SigF-CD64- of which the majority were 

Ly6C-. Based on this gating strategy synovial macrophages (CD64+) were the most abundant 

myeloid population in the synovium (Figure S3.1C), while Ly6C- represented 10% of the synovial 

mononuclear phagocyte compartment, and Ly6C+ and Ly6Cint cells composed less than 1%. 

Synovial Ly6C- (Syn Ly6C-) cell numbers remained unchanged in NR4A1-/- mice (Figure 3.1C) 

even while NCM were markedly reduced in PB. In order to confirm that Syn Ly6C- cells were not 

dependent on CCR2, STIA was induced in CCR2-/- mice lacking CM in PB (Figure 3.1D, S3.1B). 

CCR2-/- mice also showed comparable clinical scores in STIA to C57Bl/6 controls (Figure 3.1E) 

as reported in previous studies [225, 335] and their numbers of synovial Ly6c- cells were 

unchanged compared to controls (Figure 3.1F). Taken together, these data confirm that neither 

subtype of circulating monocyte is required for inflammatory arthritis, while a newly identified 

population of Syn Ly6C- cells is independent of NR4A1 and CCR2, lacks expression of 

macrophage associated markers and may play an essential role in STIA. 

 

Cell numbers were measured throughout disease to determine the response of synovial tissue 
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myeloid populations during STIA. Synovial Ly6C+ and Ly6C- numbers significantly expanded on 

D3 (p=0.003, p=0.006) and D7 (p=0.003, p=0.03) post-STIA compared to D0, while Ly6Cint cells 

were not significantly different at any timepoint (Figure 3.1G). By D14, synovial Ly6C+ cells 

returned to baseline whereas Ly6C- cells plateaued on D14 and D21 compared to D0 (p= 0.05, 

p=0.02). Similarly, PB CM reach a peak prior to 21 days post-STIA while PB NCM continue to 

increase (Figure 3.1H).  

 

To determine whether synovial NCM exhibit a distinct transcriptional state from circulating 

monocytes, we isolated CM and NCM from PB (PB CM, PB NCM) and Syn Ly6c- from hind 

joints of mice for bulk RNA sequencing (RNA-seq). Given PB IM are likely an intermediate cell 

state, these cells were excluded from our studies. PB CM, PB NCM and Syn. NCM exhibited 

distinct transcriptional profiles from each other (Figure 3.1I, S3.1D). We then compared expression 

of genes preferentially associated with PB CM vs. PB NCM as described in Mildner et al. [331]. 

Expression of monocyte genes in PB CM and PB NCM largely aligned with expectations, but Syn 

Ly6C- cells did not uniformly express PB CM genes – such as Irf7, Ccr2, Ifi30, Mmp8, and Cebpd 

– or those associated with PB NCM – such as Apoe, Csf1r, Fcgr4, Pparg, Nr4a1, and Cx3cr1 

(Figure 3.1J). Furthermore, loss of NR4A1 had a minimal effect on the transcriptional profile 

between synovial Ly6C- cells compared to WT (Figure 3.1K, S3.1E). These data show that Syn 

Ly6C- cells are transcriptionally distinct from circulating cells and are not NR4A1 dependent. 

 

K-means clustering of 5116 differentially expressed genes identified 3 gene clusters 

preferentially expressed by PB CM, PB NCM, or Syn Ly6C- cells (Figure 3.1L). Compared to 

other clusters, the Syn. NCM cluster (cluster 3) was enriched for genes associated with 
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extracellular matrix organization, hormone secretion, cell division, cell adhesion, and regulation 

of biological processes (Figure S3.1F). Additionally, increased expression of genes involved in 

antigen presentation (H2-Aa and Cd74), immune activation (Cd9, Pf4, and Cd36), complement 

(C1qa, C1qb, and C1qc) and pro-fibrotic/repair (Gas6 and Cd163) were detected in NCMs 

compared to PB CM and PB NCM (Figure 3.1L). We found that on the individual gene and global 

level, Syn Ly6C- cells exhibited a distinct transcriptional profile from each of the four CD64+ 

synovial macrophage populations (Figure 3.1M, Figure S3.1G-H). Taken together, these data 

uncover a novel CD64-Syn Ly6c- population present in the synovium. 
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Figure 3.1 Synovial NCM are phenotypically distinct from circulating NCM. (A) Numbers of 

classical (CM), intermediate (IM), and non-classical (NCM) monocytes in the peripheral blood 

(PB), (B) STIA severity and (C) numbers of CM, IM, and NCM in synovium of C57Bl/6 compared 

to NR4A1-/-mice, and in C57Bl/6 compared to CCR2-/-mice (D-F). (G) Changes in numbers of 

synovial CM, IM, and NCM, and (H) PB CM, IM, and NCM during STIA. Data shown are n>=4 

±S.E.M, *= P<0.05, **= P<0.01, ****=P<0.001. (I) Pairwise Pearson’s correlation of global gene 

expression between replicates of Syn. NCM, PB CM and PB NCM. (J) Fold-change expression of 

monocyte associated genes from Mildner et al. [331] (K) PCA of 10206 genes expressed by PB 

CM, PB NCM, Syn. NCM from C57Bl/6 and NR4A1-/-mice. (L) k-means clustering of 5115 

differential genes (LogFC >1) across PB CM, PB NCM, and Syn. NCM, (M) Mean expression of 

representative genes from PB CM, PB NCM, Syn Ly6C- and Syn Mac populations (RNA-seq data: 

n=3, error bars indicate SEM). 
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Figure S3.1 (A) Flow gating strategy for identification of PB monocyte sub-populations in 

C57Bl/6, (B) NR4A1-/- and CCR2-/- mice, and (C) Flow gating strategy for identification of Syn. 
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monocytes (CD64-) and macrophages (CD64+). (D) PCA of 10206 genes expressed by PB CM, 

PB NCM, and Syn. NCM. (E) Visualization of clusters from Figure 1L with expression in PB CM 

and Syn. NCM from NR4A1-/- mice. F) Significantly enriched GO processes in cluster 3 from 

Figure 1L with preferential expression in Syn. NCM (P<0.05). (G) PCA of 9661 genes expressed 

in PB CM, PB NCM, Syn. NCM and Syn. macrophages. (H) Volcano plot of differentially 

expressed genes (LogFC > 1) between Syn. NCM and Syn. macrophages. 

 

Single-cell RNA-sequencing identifies novel synovial NCM population 

We utilized single-cell RNA-seq (scRNA-seq) to investigate heterogeneity of Syn Ly6C- 

(CD45+CD11b+Ly6G-SigF-Tim4-CD64-). We defined 6 clusters (0-5) of mononuclear 

subpopulations using unsupervised graph-based clustering of 7160 cells sequenced from C56BL/6 

mice (Figures 3.2A, S3.2A-B). The expression of Cd14 and Itgam (CD11b) confirmed that the 

sorted cells were of myeloid lineage, while low expression of Fcgr1 (CD64), Timd4 (Tim4) and 

Mertk confirms non-macrophage classification (Figures 3.2B, S3.2C). Using SingleR and 

reference ImmGen dataset we found that subpopulations 0-3 exhibited a mixture of monocyte, 

macrophage, and DC annotations expected of tissue-resident myeloid cells, while subpopulations 

4 and 5 were primarily assigned to monocytes and DC respectively (Figure 3.2C). Subpopulation 

4 also displayed similarity to PB CM and PB NCM, suggesting these may be monocytes retained 

in tissue vasculature or cells that were not removed by perfusion (Figures 3.2D, S3.2B, S3.2D-F). 

Subpopulation 5 had the highest expression of genes associated with conventional DCs [340] 

(Figures 3.2E, S3.2G). Subpopulation 2 expressed high levels of cell cycle genes (Figure S3.2H-

J), suggesting theses cells were actively dividing. Therefore, the formerly labelled Syn Ly6c- 

compartment contains a mixture of cells with different identities from monocytes to DC.  
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We then performed scRNA-seq on CD45+CD11b+Ly6G-SiglecF-Tim4-CD64- synovial cells 

from NR4A1-/- and CCR2-/- mice at steady state to determine whether their compositions were 

179 affected by CCR2 or NR4A1 deficiency (Figure 2F, Supplemental Table 2C). These datasets 

were integrated with control cells (C57Bl/6) and the subpopulation annotation was superimposed 

(Figure S2K). The distribution of CCR2-/- and NR4A1-/- cells across the 6 subpopulations was 

significantly different from controls (p<2.2e-16, p=4.89e-10) (Figure 2G), suggesting that at least 

some of these cells are derived from circulating monocytes. In particular, the depletion of 

subpopulation 4 in CCR2-/- supports the contribution of classical monocytes. 

 

Although subpopulations 0, 1 and 3 all had high similarity to Syn Ly6C- cells from Figure 

3.1 (Figures 3.2D, S3.2E), the variability in gene expression profiles suggested they may be 

distinct subtypes. In particular, subpopulation 1 exhibited higher expression of certain genes 

associated with the DC lineage (Figures 3.2E, S3.2B). Since MHCII genes (H2-Eb1, Ab1, Aa, 

DMb1, DMa) are associated with DCs, we partitioned subpopulations 0, 1 and 3 based on their 

expression, specifically on H2-Eb1 (Figure S3.2L-M). As expected, the MHCII+ compartment 

exhibited elevated expression of genes associated with monocyte derived DCs (mono-DCs), 

including Cd209a, Cd74, and Nr4a3 [341-343] (Figure 3.2I). The remaining non-DC MHCII- 

fraction was enriched for genes that are known to regulatory function in inflammation, lipid 

metabolism and angiogenesis including Crip2, Fxyd2, and Rnase4 [344-346] (Figure 3.2G). 

Furthermore, there was no significant difference in the proportion of cells annotated as MHCII- vs 

MHCII+ in CCR2-/- mice and MHCII- cells were increased in NR4A1-/- mice (Figure S3.2N). 

Collectively, these data demonstrate that MHCII- cells represent a distinct Ly6c- population 

residing in the synovium of mice, which is independent of CCR2 and NR4A1. 
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We next compared our single-cell data to those recently published using on CD11b+ myeloid 

cells from murine synovium. The differentially expressed genes associated with our 

subpopulations were compared to the top 20 marker genes for the single-cell myeloid 

subpopulations (excluding neutrophils) identified by Culemann et al. at day 5 post-STIA [220] 

(Figure S2O). The MHCII- cells displayed a high unique overlap in genes with the CX3CR1+, 

RELMa+, MHCII+, and CCR2+ARG1+ populations, while MHCII+ cells overlapped genes from 

MHCII+DC as well as CX3CR1+ and MHCII+ populations from the Culemann dataset (Figure 

S2O). The cycling cells and monocyte populations overlapped significantly with STMN1+ 

proliferating cells and CCR2+IL1B+ mononuclear cells respectively (Figure S2O). These results 

support the identification of these individual populations, but do not exactly match the Culemann 

clusters, which were sorted on CD45+CD11B+Ly6G- and so contain large numbers of 

macrophages which greatly outnumber the tissue-resident synovial Ly6c- cells [220].  



159 
 

 

 

 



160 
 

Figure 3.2: Single-cell RNA-sequencing analysis of joint myeloid niche identifies tissue Syn 

Ly6c- cells. (A) UMAP depicting 6 subpopulations of total Ly6c- (CD45+CD11b+Ly6G-SiglecF-

Tim4-CD64-Ly6c-) cells from scRNA-seq data. (B) Expression of myeloid markers Cd14 and Itgam. 

(C) Percent of cells in each subpopulation assigned to ImmGen cell types by singleR. (D) Module 

score for each scRNA-seq subpopulation representing expression of key genes in PB CM, PB 

NCM, Syn Ly6c- and E) cDC. (F) Integration of scRNA-seq data on total Ly6c- 

(CD45+CD11b+Ly6G-SiglecF-Tim4-CD64-Ly6c-) cells from CCR2-/- and NR4A1-/- mice with 

C57Bl/6 (sub-sampled to 2000 cells). (G) Proportion of cells annotated as each subpopulation in 

C57Bl/6, CCR2-/- and NR4A1-/- mice. (H) Re-classification of cluster 2 as Cycling cells, cluster 4 

as Monocytes, cluster 5 as cDCs and clusters 0, 1, and 3 as MHCII+ or MHCII- based on expression 

of H2-eb1. (I-J) Ridge plots and UMAP visualization of gene expression by MHCII. 

compartment.  P-value by Wilcoxon test is indicated. 
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Figure S3.2: (A) Quality control of CD45+CD11b+Tim4-CD64- cells by subpopulation from 

C57Bl/6 mice showing number of genes, number of UMIs, and percent mitochondrial reads per 

cell. (B) Relative expression of top 5 marker genes (by fold change) across subpopulations 0-5. 

(C) Normalized expression of macrophage-associated genes across clusters. (D) Pearson’s 

correlation between gene expression in scRNA-seq subpopulations and bulk RNA-seq of PB CM, 

PB NCM, and Syn Ly6c-. (E) Normalized expression of CM, (F) NCM and (G) DC associated 

genes. (H) Normalized expression of S-phase and (I) G2-phase module genes. (J) Visualization of 

expression of cell cycle genes. (K) Integration of scRNA-seq data from CCR2-/- and NR4A1-/- 

mice with superimposed C57Bl/6 annotations. (L) Expression of MHCII genes H2-Ab1, H2-Aa, 

H2-DMb1, H2-DMa. (M) Relative expression of top 20 differentially expressed genes between the 

MHCII+ and MHCII- cells. (N) Ratio of cells annotated as either MHCII+ or MHCII- in C57Bl/6, 

CCR2-/- and NR4A1-/- mice. (O) Fraction overlap of differentially expressed genes from C57Bl/6 

scRNA-seq subpopulations with top 20 markers of myeloid populations from murine synovium at 

day 5 post-STIA identified in [220]. * indicates significant p-value by hypergeometric test after 

FWER correction. 

 

Synovial Ly6c- cells exist as three distinct populations  

To validate our partitioning of cells based on MHCII expression, we separately sorted 

synovial CD45+CD11b+Ly6G-SiglecF-CD64- cells into Ly6c-MHCII+ and Ly6c-MHCII- 

compartments from the same mice for Cellular Indexing of Transcriptomes and Epitopes by 

sequencing (CITE-seq) providing both transcriptional (RNA) and surface marker (Antibody-

Derived Tags – ADT) data (Figure S3.33A). By comparison of the transcriptional profiles, we 
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annotated these cells as belonging to the 5 populations from Figure 3.2. As expected, the Ly6c-

MHCII- cells contained an expanded proportion of MHCII- and monocyte populations with a very 

small MHCII+ population and no cDC (Figure 3.3A-B, S3.3B). In contrast, the Ly6c-MHCII+ cells 

were almost entirely annotated as the MHCII+ population with a very minor MHCII- population 

(Figure S3.3B-C). In addition, a substantial portion of the Ly6c-MHCII- cells were annotated as 

cycling cells and these appeared to include neutrophils (Figure S3.3D). Further, the surface marker 

intensity of CD163, FrB, C5aR and Vista discriminated the MHCII- populations from the MHCII+ 

and monocytes (Figure 3.3C). Next, we examined the epigenomic landscape of synovial 

CD45+CD11b+Ly6G-SiglecF-CD64-Ly6c-MHCII- cells using single-cell assay for transposase-

accessible chromatin by sequencing (scATAC-seq) assay. We transferred the transcriptional 

annotations based on similarity with chromatin accessibility levels at the corresponding genes and 

obtained similar proportions of the populations (Figure 3.3D). Using this data to assess 

transcription factor (TF) activity, we found that MAFB and MYC were specific to the MHCII- 

population while FLI1 and IRF8 were affiliated with the cycling cell and the monocyte populations, 

respectively (Figures 3.3E-F). Thus, sorting on cell surface levels of MHCII effectively enriched 

for non-DC Syn Ly6c- cells. However, the Ly6c-MHCII- compartment still contains both standard 

monocytes and the novel MHCII- population.  

 

To further distinguish these 2 populations of Syn Ly6c-cells, we investigated whether they 

differed in anatomical location. We used an established in vivo intra-vascular labeling system 

followed by flow cytometry [347]. Only intra-vascular cells were labelled by administering 

intravenously (I.V.) a fluorescently conjugated anti-CD45 antibody (αCD45-BUV661-(I.V.) prior 

to euthanasia (Figures 3.3G-H). Over 90% of the circulating leukocytes were labeled 5 min post 
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I.V. (Figure S3.3E). Thus, immune cells which co-label with αCD45-BUV661-(I.V.) and the ex 

vivo (E.V.) Anti-CD45 antibody (αCD45-AF700-(E.V.) are considered intra-vascular, while single 

positive αCD45-AF700-(E.V.) cells are extra-vascular. Synovial macrophages were distinguished 

using CD64+ and Tim4+ (Figure 3.3G). Intra-and extra-vascular cells were then gated based on 

CD45+CD11b+Ly6G-SiglecF-Tim4-CD64-Ly6c- expression to isolate the synovial Ly6c- cells. The 

intravascular population (i.v. Syn Ly6c-) displayed higher expression of CX3CR1 and CD43 

(Figure 3.3H), reminiscent of circulating NCMs. Meanwhile extra-vascular (e.v.) cells were 

divided based on the expression of MHCII to obtain e.v. Syn Ly6c- and mono-DC. We confirmed 

the identity of the MHCII+ compartment as mono-DC due to increased expression of DC 

transcription factor ZBT46 using zDC-cre mice crossed with zsGFP reporter mice (zDC-GFP), 

consistent with the scRNA-seq data (Figure S3.3F-H). Numerically, the mono-DC had the highest 

number, while the e.v. Syn Ly6c- cells were ~3X less and the i.v. Syn. Ly6c- cells were less than 

500 per synovium (Figure 3.3I). These numbers are consistent with the scRNA-seq data in Figures 

1 and 2. Using flow cytometry to compare cell surface levels, we found that FcRIV and Treml4 

discriminated i.v. Syn Ly6c- cells, while Folrb, VISTA and Lyve1were higher in some but not all 

e.v. Syn Ly6c- cells (Figure S3.3I).  
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Figure 3.3 Identification of intra- and extra- vascular Syn Ly6c- cells by flow cytometry. (A) 

Annotation of single-cell RNA-seq data on CD45+CD11b+Ly6G-SiglecF-Tim4-CD64-Ly6c- cells 

from C57Bl/6 mice based on subpopulations defined in total Syn Ly6c- cells (CD45+CD11b+Ly6G-

SiglecF-Tim4-CD64-Ly6c-) (Figure 3.2H). (B) Expression of genes associated with MHCII- 
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(Fxyd2), MHCII+ (Cd74), cycling (Top2a), and monocyte (Plac8) subpopulations. (C) Intensity by 

ADT count of surface markers using CITE-seq. (D) Annotation of scATAC-seq data on 

CD45+CD11b+Ly6G-SiglecF-Tim4-CD64-Ly6c-MHCII- cells from C57Bl/6 mice, based on 

subpopulations defined in total Syn Ly6c- cells (Figure 3.2H). (E) Transcription Factor (TF) 

activity and (F) expression of corresponding genes associated with MHCII- (MafB & MYC) 

Cycling (Fli1), and monocyte (Irf8) subpopulations. (G-H) Gating strategy to distinguish intra-

vascular and extra-vascular Syn Ly6c- cells and mono-DC. (I) Numbers of Syn Ly6c- and mono-

DC in hindjoints of C57Bl/6 mice in steady state.   
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Figure S3.3. (A) Sorting strategy for CD45+CD11b+Ly6G-SiglecF-Tim4-CD64- into Ly6c-MHCII- 

(lower left pane), CD64+ (middle pane), and Ly6c-MHCII- (lower right pane). (B) Annotation of 

single-cell RNA-seq data from CD45+CD11b+Ly6G-SiglecF-Tim4-CD64-Ly6c-MHCII+ cells from 

C57Bl/6 mice, with data from total Syn Ly6c- cells clusters from Figure 3.2H. (C) Frequency of 

cells annotated as MHCII-, MHCII+, cDC, monocytes or cycling cells in total Syn Ly6c- cells, Ly6c-

MHCII- and Ly6c-MHCII+ (CD45+CD11b+Ly6G-SiglecF-Tim4-CD64-Ly6c-MHCII+) cells. (D) 

Expression of neutrophil-associated genes in subpopulations from the Ly6c-MHCII- sorted cells. 

(E) I.V. labeling of cells in peripheral blood using i.v. anti-CD45 antibody. (F) Expression of GFP 

in peripheral blood monocytes and (G) synovial cells from representative zbt46.zsGFP and control 

mice. (H) Quantification of the percent of cells that are ZBT positive (based on GFP expression) 

in i.v. Syn Ly6c-, mono-DC, e.v. Syn Ly6c- and Syn CD64+ cells. Values are mean of N>4 ±SEM. 

P-value was calculated using unpaired t-test. ***=p<0.005, ****=p<0.001. (I) Surface expression 

of FMO, TREM4, FcgRIV, Folrb, VISTA, and Lyve1 in i.v. Syn Ly6c- (blue) and e.v. Syn Ly6c- 

cells (red) measured by flow cytometry.  

 

Intra-and extra-vascular synovial Ly6c- exhibit different functionality 

To investigate the properties of the two Syn Ly6c- populations (i.v. and e.v.) and contrast them 

with mono-DCs (Syn Ly6c-MHCII+), we compared the transcriptional profiles of these cells using 
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bulk RNA-seq. Each population was highly reproducible across replicates and characterized by 

unique transcriptional profiles (Figures 3.4A, S3.4A). We further confirmed the relationship of the 

bulk-sorted cells to the subpopulations identified by scRNA-seq using singleR to assign labels 

based on the bulk data.  We merged the CD45+CD11b+Ly6G-SiglecF-CD64- cells from the Ly6c-

MHCII+ and Ly6c-MHCII- compartments (Figure3. 3) into one dataset and confirmed that the 

MHCII- cells were assigned to e.v. Syn Ly6c- cells monocytes to i.v. Syn Ly6c- cells and the MHCII+ 

population to mono-DCs (Figure 3.4B). Comparable results were obtained when assessing the 

level of expression of markers for the single-cell annotations in the bulk dataset (Figure S3.4B). 

Cycling cells from Ly6c-MHCII+ and Ly6c-MHCII- were assigned to mono-DC and e.v. Syn Ly6c-, 

respectively and associated genes were expressed in both populations as well. Taken together, these 

data demonstrate that there are 3 populations of Syn Ly6c- (CD45+CD11b+Ly6G-SiglecF-Tim4-

CD64-), i.v. Syn Ly6c-, e.v. Syn Ly6c-, and mono-DC based on 3 separate scRNA-seq studies as 

well as bulk RNA-seq.  

 

We then performed k-means clustering on 5127 differentially expressed genes across these 

populations to define 4 clusters: one each with expression specific to i.v. Syn Ly6c- cells (1), mono-

DC (2) and e.v. Syn Ly6c- cells (3) and a final cluster (4) preferentially expressed in both mono-

DC and e.v. Syn Ly6c- cells (Figure S4C, Supplemental Table 4A). The i.v. Syn Ly6c- cells 

expressed the highest levels of Cx3cr, Spn (CD43), Cebpb and Nr4a1, genes associated with PB 

NCM (Figure3.4C). Further, the bulk sorted mono-DC population preferentially expressed DC-

associated genes including Cd74, Cd209a, Zbtb46 and Flt3 (Figure3.4D). Meanwhile, e.v. Syn 

Ly6c- cells expressed genes observed above in MHCII- cells, such as Alox5, Pf4, Fxyd2 and Rnase4 

(Figure 3.4E). The cluster specific to i.v. Syn Ly6c- cells was enriched for genes associated with 
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collagen fibril organization (Col6a1/2, Col4a1/2, Adamts2), blood vessel morphogenesis (Smad4, 

Pdgfra, Syk). and blood vessel development (Akt1, Notch2, Foxo1) (Figure 3.4F). As expected, 

the mono-DC-specific cluster was enriched for genes involved in MHCII antigen presentation 

molecules (H2-Aa, Cd74), as well as genes involved in myeloid DC differentiation (Irf4, Dcstamp, 

Btf3), and genes that play a role in T-cell differentiation (Ccr7, Stat5a, Tnfsf9) (Figure 3.4F). For 

the e.v. Syn Ly6c- cell-specific cluster, enriched GO processes included complement receptor 

mediated signaling (C1qa/c, C5ar1, Fcna/b), and chemotaxis and cell migration pathways 

including Pf4, Pmp22, P2ry12 (Figure 3.4F). Additionally, the leukotriene metabolic pathway was 

enriched in this cluster with genes including Alox5, Ltc4s, and Ncf1. The cluster shared between 

mono-DC and e.v. Syn Ly6c- included cell cycle (Ccna2, Tubb6, Cdc23), DNA repair (Lig1, Hdac9, 

Cdca5) and cellular component organization or biogenesis (Rpf2, Ipo4, Lmna) (Figures 3.4F, 

S3.4D).   

 

Next, we sought to identify the human equivalent of the e.v. Syn Ly6c- population utilizing 

single-cell data sets on myeloid cells isolated from the human synovium. To help distinguish these 

cells from that macrophage majority, we first merged the Ly6c-MHCII- CITE-seq data with CD64+ 

macrophages from the same mice (Figure S3.4E). We were then able to define an e.v. Syn Ly6c- 

module based on the unique gene markers for MHCII – cells. Previous studies from the AMP 

consortium presented scRNA-seq data on CD14+ mononuclear cells sorted from human synovium 

of RA, split into Leukocyte-rich vs. Leukocyte-poor, and OA patients (Figure 3.4G) [227]. We 

were able to identify a small subset of these cells that resembled e.v. Syn Ly6c- (Figure 3.4H); OA 

and Leukocyte-poor RA patients tended to exhibit higher levels of the MHCII module (Figure 3.4I). 

Similarly, these genes were highest in the NUPR1+ and IFN-activated clusters defined by AMP to 
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be affiliated with leukocyte-poor RA and OA (Figures S3.4F-G). Next, we performed CITE-seq 

on sorted CD45+CD11b+ synovial cells from an RA patient, which was collected through the 

RhEumatoid Arthritis SynOvial tissue Network (REASON) [244]. We performed de novo 

clustering to divide these 1614 cells into 11 clusters (Figure 3.4J). Then, using the same module 

score approach, we found that cluster 7 expressed the higher levels of e.v. Syn Ly6c- genes (Figure 

3.4K, S3.4H).  Using the ADT data, we found that these cells exhibit myeloid cell surface markers 

(Figure S4I), including CD14, and are TIM4+ (Figure 3.4L). These cells also express TimD4 and 

Trem2 at the RNA level, suggesting they may be related to the TREM2high cells reported by 

Alivernini et al [228] to be over-represented in Healthy synovium (Figure S3.4J). Overall, these 

findings demonstrate that Syn CD14+Tim4+ cells represent the human ortholog of e.v. Syn Ly6c- 

cells.  
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Figure 3.4 Extra-vascular tissue location confers phenotype of Syn Ly6C- cells. (A) Pairwise 

Pearson’s correlation of global gene expression between replicates of i.v. Syn Ly6c-, mono-DC and 

e.v. Syn Ly6c- cells. (B) Merging of scRNA-seq cells from CD45+CD11b+Ly6G-SiglecF-Tim4-

CD64-Ly6c-MHCII- (Figure 3.3A) and CD45+CD11b+Ly6G-SiglecF-Tim4-CD64-Ly6c-MHCII+ 

cells (Figure S3.3B), annotation by subpopulation, and assignment to i.v. Syn Ly6c-, mono-DC or 

e.v. Syn Ly6c- populations using the bulk transcriptional data as reference in singleR. (C) Genes 

with preferential expression in i.v.NCM, (D) mono-DC and (E) e.v. Syn Ly6c-. (F) Relative 

expression of representative genes from GO processes associated with i.v. Syn Ly6c- cells, mono-

DC, e.v. Syn Ly6c- cells. (G) CD14+ scRNA-seq cells originating from Leukocyte-poor RA, 

Leukocyte-rich RA, and OA patients in published AMP data [227]. (H) Expression of MHCII- gene 

module in CD14+ cells from AMP data. (I) MHCII- module score by cell origin in AMP data. (J) 

Clustering of CD45+CD11B+ synovial cells based on gene expression from CITE-seq on an 

ultrasound guided synovial biopsy from a RA patient collected through the RhEumatoid Arthritis 

SynOvial tissue Network (REASON). (K) MHCII- module score by cluster in RA patient data. (L) 

Intensity by ADT count of surface markers CD14 and TIM-4 on RA patient synovial cells.  
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Figure S3.4 (A) PCA of 10270 expressed genes from i.v. Syn Ly6c-, mono-DC and e.v. Syn Ly6c- 

cells. (B) Expression of marker gene sets from single-cell RNA-seq total Ly6c- subpopulations 
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(Figure 3.2H) in bulk populations. Color of circle indicates z-score normalized expression while 

size indicates % of genes in the set expressed in the given sample above their mean value. (C) K-

means clustering of 5127 differentially expressed genes across i.v. Syn Ly6c- cells, mono-DC and 

e.v. Syn Ly6c- cells. (D) Example genes with preferential expression in both e.v. Syn Ly6c- cells 

and mono-DC. (E) Merging of scRNA-seq cells from CD45+CD11b+Ly6G-SiglecF-Tim4-CD64-

Ly6c-MHCII- and CD45+CD11b+Ly6G-SiglecF- CD64+ sorted cells (Figures 3.3A, S3.3B), with 

Ly6c- subpopulation annotations. (F-G) CD14+ scRNA-seq cells annotated as IL1B+, NUPR1+, 

C1QA+, or IFN-activated clusters in published AMP data [227], and their MHCII- module score. 

(H) Expression of MHCII- gene module, (I) Intensity by ADT count of surface markers CD45, 

CD11B, and CD11C and (J) gene expression of Timd4 and Trem2 in CD45+CD11b+ synovial cells 

from an ultrasound guided synovial biopsy of a RA patient collected through the RhEumatoid 

Arthritis SynOvial tissue Network (REASON).  

 

LFA1 is required for STIA induced reverse extravasation of e.v. Syn Ly6c- cells and its 

deletion reduces pro-inflammatory transcriptional profile of e.v. Syn Ly6C- cells 

Using lineage tracing techniques, we confirmed that e.v. Syn Ly6C- cells are derived 

embryonically, radioresistant, and capable of self-renewal but can be replenished from circulating 

monocytes when the synovial niche is disrupted. We further observed that the rapid expansion of 

e.v. Syn Ly6C- cells are critical to the development of inflammatory arthritis. Interestingly, using 

a modified in vivo intra-vascular labeling system, we uncovered evidence that e.v. Syn Ly6C- cells 

are capable of reverse transmigration, giving them continuous access to the vasculature. (See 

original manuscript for full details) 
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To investigate if contact with vasculature by e.v. Syn Ly6c- mice is required for development 

of STIA, we used LFA1-/- mice. Previously studies have shown that LFA is required for leukocyte 

extravasation into tissue and for STIA [279]. LFA1-/- mice failed to develop inflammatory arthritis 

(Figure 3.5A) consistent with other’s work [279, 348] There were no significant differences in the 

numbers of PB CM, PB NCM, i.v. and e.v. Syn Ly6c- cells between LFA1-/- mice and control mice 

at steady state (Figure 3.5B-D). However, neither LFA-/- Syn Ly6c- population exhibited the 

expansion in response to arthritogenic serum (Figure 3.5E) observed in C57Bl/6 mice. In addition, 

LFA1-/- e.v. Syn Ly6c- cells did not undergo increased labeling with αCD43-BUV395-(IV)) 1hr 

following STIA as compared to C57Bl/6 mice, suggesting access to vasculature does not increase 

in response to inflammatory stimulus in LFA1-/- mice (Figure 3.5F).   

 

To determine how LFA1 deletion affected Syn Ly6c- cells on the transcriptional level, we 

performed scRNA-seq on isolated CD45+CD11b+Ly6G-SiglecF-Tim4-CD64-Ly6c- synovial cells 

from LFA1-/- mice at steady state. As before, we integrated and superimposed the 6 subpopulations 

(0-5) defined from C57Bl/6 mice on 3500 LFA1-/- cells (Figures 3.5G, S3.5A). LFA1-/- mice 

displayed an altered distribution of cells across the 6 subpopulations (p<2.2x10-16) (Figure S3.5B-

C) but the ratio of MHCII+ to MHCII- cells was comparable to C57Bl/6 mice (Figure 3.5H). LFA-

/- e.v. Syn Ly6c- cells exhibited decreased expression of genes associated with chemotaxis (Ccl17, 

Itgb2, Ccl9), defense response (Arg1, Mif, Cfp, Itgax), regulation of cell adhesion (Ccr5, Lgals3, 

Adam8) and stress response (Pycard, Flt1, Prdx5, Vegfa) (Figure 3.5I-J). In contrast, genes 

associated with regulation of cell differentiation (Fos, Cd36, Mef2c, Mafb, Csf1r), regulation of 

angiogenesis (Tcf4, Pf4, Tgfbr2), and response to wounding (Macf1, Aqp1, Cfh) were increased 

in expression in LFA-/- e.v. Syn Ly6c- cells compared to C57Bl/6 (Figure 3.5I-J). Based on these 
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data, we demonstrate that e.v. Syn Ly6c- are associated with chemotaxis of leukocytes such as 

granulocytes to the synovium during inflammation.  
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Figure 3.5 Deletion of LFA1 reduced pro-inflammatory phenotype of e.v. Syn Ly6C- cells. (A) 

STIA clinical score in C57Bl/6 and LFA1-/- mice. (B) PB monocytes and (C-D) i.v. Syn Ly6C-, 

and e.v. Syn Ly6C- cells in C57Bl/6 and LFA1-/- in steady-state. (E) Number of i.v. Syn Ly6C-, 

e.v. Syn Ly6C- cells and Syn Ly6G+ cells 1hr post-STIA in C57Bl/6 and LFA1-/- mice. (F) e.v. 

Syn Ly6C- cells labeled with I.V αCD43-BUV395 in steady state and 1hr post-STIA. (G) 

Integration of scRNA-seq data on CD45+CD11b+Tim4-CD64- cells from LFA-/- mice with 

C57Bl/6. To obtain comparable numbers, both datasets were sub-sampled to 3000 cells. (H) Ratio 

of cells annotated as either MHCII+ or MHCII- in C57Bl/6 and LFA1-/- mice. (I) Selected GO 

processes associated with differentially expressed genes in the MHCII- compartment (representing 

e.v. Syn Ly6C- cells) between LFA1-/- and C57Bl/6 mice. (J) Ridge plots of representative genes 

that are increased or decreased in expression in MHCII- cells from LFA1-/- compared with 

C57Bl/6 mice. Graphs are mean N>4 +SEM P-value was calculated with unpaired t-test. * = 

p<0.05, ** = p<0.01. 
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Figure S3.5 (A) Integration of scRNA-seq data from LFA1-/- mice with superimposed C57Bl/6 

annotations. (B-C) Proportion of cells annotated as each subpopulation in LFA1-/- and C57Bl/6 

mice and chi-squared residuals. 

 

3.4 Discussion 

Over the past several years, numerous studies have characterized CM and NCM in circulation 

and contrasted these with differentiated macrophages in the tissue. Our study is the first to identify 

two synovial populations that exist in the tissue but do not exhibit canonical macrophage markers. 

First, we described a distinct population of i.v. Ly6c- cells that are transcriptionally similar to PB 

NCM and require NR4A1 but remain attached to the vessel wall even after perfusion. Then, 

through injection of intravenous antibody we confirm the extravascular localization of an e.v. Syn 

Ly6c- population that is negative for surface expression of CD64 and Tim4 and is transcriptionally 

distinct from both circulating monocytes, synovial macrophages and DCs. These Syn Ly6c- cells 

are long-lived, terminal cells that do not require CCR2, NR4A1 or LFA for development. In fact, 

e.v. Syn Ly6c- cells development may be NOD2 dependent, as this has previously been linked to 

restoring circulating NCM lacking NR4A1 [349]. Finally, we show a population of cells 

corresponding to e.v. Syn Ly6c- cells are present in synovial biopsies from RA patients and their 

depletion prevents experimental RA in mice. Taken together, our data suggests that e.v. Syn Ly6c- 

cells represent a novel population of synovial mononuclear cells involved in pathology of RA.   

 

In order to explore the heterogeneity of tissue Syn Ly6c- myeloid cells but exclude 

macrophages, we performed single-cell RNA-seq on CD45+CD11b+Ly6G-SiglecF-CD64-MHCII- 

and CD45+CD11b+Ly6G-SiglecF-CD64-MHCII+ mononuclear phagocytes from the synovium 
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during steady state. Analysis of these data enabled us to distinguish a subpopulation of monocyte-

derived dendritic cells from i.v. and e.v. Syn Ly6c- cells via MHCII expression. We also compared 

our total Ly6c- fraction (CD45+CD11b+Ly6G-SiglecF-CD64-Ly6c-) subpopulations with 6 myeloid 

cell (CD45+CD11b+Ly6G-) populations harvested from STIA mouse joints on disease day 5 [220]. 

Although subpopulations defined by Culemann were annotated as macrophages, their FACS 

strategy did not exclude monocytes, thus explaining the high level of overlap between their 

populations with our CD45+CD11b+Ly6G-SiglecF-Tim4-CD64- MHCII+ and MHCII- cells.    

 

Further, two recent studies utilized scRNA seq to characterize human myeloid cells from the 

joints of RA patients [227, 228]. By using a module score based on marker genes to annotate cells, 

we identified MHCII- (e.v. Syn Ly6c-) cells among the 4 monocyte subpopulations defined by 

Zhang and colleagues [227]. The data support a higher presence of a corresponding e.v. Syn Ly6c- 

population in human synovium from leukocyte poor RA and OA tissue, although the study is 

limited due to the small number of CD14+ cells (750) in the AMP study. The Alivernini group 

performed scRNA-seq on CD64+CD11b+CD3-CD19-CD20-CD56-CD49-CD117-CD15- synovial 

cells from healthy controls as well as from RA patients who are treatment-naïve/resistant or in 

clinical remission [228]. Based on the transcriptional profile of the cells we identified as e.v. Syn 

Ly6c-, we propose there is overlap with their definition of Trem2+ cells.  However, these prior 

studies did not enable us to determine whether e.v. Syn Ly6c- cells could be identified by flow 

cytometry. Thus, we utilized our CITE-seq data from the REASON studies and determined that 

the e.v. Syn Ly6c- cells corresponded with the TIM4+ cells. Our data as well as those from Alvernini 

et al demonstrate that Timd4 is only expressed in one synovial monocyte/macrophage population 

(TREM2hi), which are the largest population in the healthy and UPA patients. Moreover, we 
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observed that the human ortholog of e.v. Syn Ly6c- cells were present in normal and OA patients 

at higher proportion than RA patients using the AMP dataset. Since in mice, TIM4+ cells are 

typically considered macrophages and Timd4 was not uniquely expressed on murine e.v. Syn Ly6c- 

cells, these data suggest a lack of conservation of Tim4 between mice and human and that TIM4 

may have a different function in mice vs humans.  Thus, these provide the foundation for future 

study of our novel e.v. Syn Ly6c- cells in the context of human disease.  

 

Prior studies on the role of monocytes in RA have presented conflicting results. As has been 

observed previously and confirmed in this study, clo-lip prevent the development of RA by ablating 

all circulating monocytes [225, 334]. Our data expand upon these findings by establishing the 

redundant role of PB monocytes in inflammatory arthritis and identifying the critical e.v. Syn Ly6c- 

population distinct from PB monocytes but susceptible to clo-lip killing. Our previous finding that 

restoring NCM following monocyte depletion enables the progression of STIA appears to conflict 

with sensitivity of NCM-deficient NR4A1-/- mice to arthritis [338, 339]. The data presented here 

resolve this conflict, by confirming the preservation of e.v. Syn Ly6c- cells in NR4A1-/- mice and 

by extension of this PB NCM may replenish the e.v. Syn Ly6c- niche when required. This process 

has been well established in embryonic macrophages, which can be replenished from bone marrow 

derived cells following injury [350, 351] 

 

e.v. Syn Ly6C- cells may represent a terminal monocyte population. Although they lack 

canonical macrophage surface markers CD64, MERTK, and TIM4, e.v. Syn Ly6c- express the gene 

for MafB and our results indicate that MAFB is highly active as a TF in these cells. MafB has been 

previously associated with tissue macrophages over monocytes [47] and is central for suppressing 
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macrophage proliferation [352]. Our experiments determined that e.v. Syn Ly6C- cells maintain 

their ability to proliferate and do not differentiate into macrophages. The e.v. Syn Ly6C- cells are 

also negative for the DC master regulator Zbt46 [353, 354] as compared to the mono-DCs. 

Collectively, these data support e.v. Syn Ly6c- cells as a self-renewing terminal monocyte 

population that is distinct from DCs and macrophages in the tissue.  

 

Increased vascularity and enhanced permeability of the synovium has been associated with 

RA and experimental models of arthritis [355-357]. In steady-state, access to the synovium is 

restricted by the size of the particle [358], consistent with failure of the Clo-lip to eliminate 

synovial macrophages. However, since e.v. Syn Ly6C- cells in the synovium are susceptible to 

depletion by Clo-lip, we proposed that these cells have access to the vasculature. By using a second 

i.v. labeling system, we demonstrate labeling of e.v. Syn Ly6c- cells over time indicating access to 

the vasculature by antigen sampling across the endothelium as exhibited by CX3CR1+ 

macrophages [359] or through full reverse transmigration from synovium to the intra-vascular 

space. One group demonstrated bidirectional transmigration of monocytes across hepatic 

sinusoidal endothelium [360], and another showed that reverse transmigration contributes to the 

development of pathogenic foam cells in atherosclerosis [361]. In support of the former, we show 

that e.v. Syn Ly6c- cells from LFA deficient mice do not respond to STIA with proliferation or 

increased vascular labeling, suggesting an e.v. Syn Ly6c- cell restricted mechanism. This suggests 

a role for e.v. Syn Ly6c- cells in surveying the vascular endothelium, maintaining barrier integrity, 

and responding to potential pathogens. These roles have been established in PB NCM within the 

vasculature [332] and therefore e.v. Syn Ly6c- may play a complementary role in the extra-vascular 

niche.  
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LFA1 is required for monocyte crawling [362] and has been implicated in the pathogenesis 

of arthritis [279, 363]. Neutrophils also express LFA1 and are a critical cell for inflammation in 

STIA, where their influx into joints is LFA1 dependent [348]. Therefore, involvement of 

neutrophils in e.v. Syn Ly6c- cell response to STIA cannot be excluded. Nonetheless, these data 

support that e.v. Syn Ly6c- cells are involved in inflammatory responses during STIA via LFA1 

dependent mechanisms. 

 

Future experiments may be required to further investigate the phenotype of e.v. Syn Ly6c- 

cells. Given the highly plastic nature of mononuclear phagocytes, culturing cells in vitro results in 

populations skewed artificially based on culture conditions, and cell differentiation. For these 

reasons, e.v. Syn Ly6c- cells were not cultured in vitro to assess functionality or morphology. 

Although beyond the scope of this study, a future approach using in vivo imaging may be useful 

to further characterize the location and morphology of e.v. Syn Ly6c- monocytes.  

 

To the best of our knowledge, we are the first to identify a population of tissue Ly6c- cells 

distinct from DCs and macrophages in mice, with a corresponding population identified in human 

RA synovium. These e.v. Syn Ly6c- cells respond rapidly to inflammatory signals, drastically 

expand in numbers, and traverse perivascular space via an LFA-dependent mechanism in arthritis. 

Our data support a role for e.v. Syn Ly6c- cells as instigators of synovial inflammation leading to 

the pathogenic cascade in inflammatory arthritis. 
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CHAPTER 4 

Defining macrophage subsets in human pediatric cholestatic livers 

 

Chapter 4 contains analytical findings from an original research article entitled “Transcriptional 

Profiling of Pediatric Cholestatic Livers Identifies Three Distinct Macrophage Populations” 

(Taylor et al. 2021, PLoS One) and is reproduced here with the permission of the copyright holder. 
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4.1 Introduction 

Macrophages are a heterogeneous and plastic cell population that respond to environmental 

signals in various cholestatic liver diseases [364-366]. Tissue-resident macrophages of the liver, 

also termed Kupffer cells, are self-renewing cells that are present in the liver at birth and promote 

tolerance in homeostasis [367]. In the setting of liver injury, tissue-resident macrophages can adopt 

a pro-inflammatory state and additional monocyte-derived macrophages may be recruited from the 

peripheral circulation to the liver [69, 368, 369]. This leads to a heterogeneous population of 

macrophages that may have distinct functions in disease. 

 

Prior studies have presented conflicting evidence for a role of macrophages in obstructive 

cholestasis. Recruited monocytes have been shown to have a protective role against infection in 

the setting of murine bile duct ligation [370]. In contrast, CCR2-mediated recruitment of 

monocyte-derived macrophages in a murine model of primary sclerosing cholangitis has been 

implicated in the mechanism of liver injury and fibrosis [371]. Similarly, macrophages have been 

associated with the pathogenesis of murine parenteral nutrition-associated cholestasis via toll-like 

receptor 4 (TLR4)-mediated activation [372] and production of interleukin-1 beta (IL-1β) [373].  

Furthermore, reduced farnesoid x receptor (FXR) signaling is thought to induce activation of the 

macrophage inflammasome in cholestasis and endotoxemia, thereby promoting IL-1β release and 

increasing immune susceptibility in cholestasis [374]. However, the precise subsets of 

macrophages responsible for cholestatic liver injury and repair have not been fully characterized. 

 

Macrophages have also been more specifically implicated in biliary atresia (BA), an 
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obstructive cholangiopathy of infants thought to arise from an aberrant immune response to a self-

antigen. While there are two major forms of BA, isolated BA (iBA) and syndromic BA (BASM) 

with associated malformations, evidence supports a similar antigen-driven immune response in 

both subtypes [375]. Evidence supporting a role for macrophages in this mal-adaptive immune 

response include the observation that increased numbers of macrophages correlate with poor 

prognosis in human BA [376-378]. Hepatic macrophages are also increased in the rotavirus-

induced murine model of BA [379]. In addition, macrophage depletion in a murine model of BA 

improved bile duct obstruction [380]. These studies demonstrate a central role for macrophages in 

promoting liver injury in BA but fail to identify the specific pathogenic versus pro-restorative 

macrophage subsets. 

 

In this chapter, we defined human liver macrophage heterogeneity in cholestasis by 

comparing scRNA-seq data between patients with cholestasis from BA or Alagille Syndrome 

(ALGS, a non-immune etiology of obstructive cholestasis), non-diseased pediatric liver, and 

previously published normal hepatic macrophages [381]. We identify novel hepatic macrophage 

subsets in obstructive cholestasis that are distinct from non-diseased macrophages by leveraging 

the ability of scRNA-seq to define cell sub-populations. We further demonstrate reduced 

expression of regulatory genes across all cholestatic macrophage subsets that may contribute to 

loss of immune tolerance in cholestasis. Taken together, our results lay the foundation for future 

mechanistic studies and development of macrophage-specific immune modulatory therapies.  
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4.2 Materials and Methods 

Human tissue samples (Performed by Sarah Taylor) 

Formalin-fixed, paraffin-embedded liver tissue sections from non-diseased donor liver (n = 

5), and BA (n = 6), and ALGS (n = 6) patients at the time of liver transplantation were obtained 

from the pathology archives of Ann & Robert H. Lurie Children’s Hospital of Chicago. Fresh liver 

tissue was obtained from the explanted liver of 3 patients with cholestatic liver disease (2 with BA 

and 1 with ALGS) and 1 patient with a hepatic tumor at the time of liver transplantation.  

Laboratory data was collected retrospectively from the hospital admission for liver transplantation.  

Written informed consent was obtained from each patient’s legal guardians including in the study.  

The study protocol conforms to the ethical guidelines of the Declaration of Helsinki as reflected 

in a prior approval by the Institutional Review Board of Lurie Children’s Hospital of Chicago.  

All methods were conducted in accordance with the Institutional Review Board’s guidelines and 

regulations.   

 

Flow cytometry and scRNA-seq library construction (Performed by Sarah Taylor) 

A total of 1.9 x 107 cells were obtained from digestion of ALGS liver, 2.2 x 107 from BASM, 

4.92 x 107 from iBA, and 1.1 x 108 from CL. We stained single cell suspensions from each sample 

with antibodies to detect cell viability and expression of the CD45 common leukocyte antigen. 90–

100,000 live CD45+ cells were collected by fluorescence activated cell sorting with a viability of 

94% for ALGS, 84% for BASM, 76% for iBA, and 87% for NC (Figure S4.1). scRNA-seq libraries 

were prepared using the Single Cell 3’ v2 Reagent Kit for BASM and ALGS and the v3 Reagent 

Kit for iBA and NC (Figure S4.2). Gel Beads in Emulsion containing single cells were generated 
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by the 10x Genomics Chromium Controller in the Northwestern Next Generation Sequencing 

Facility. Barcoded libraries were sequenced on the Illumina HiSeq 4000 platform. Raw sequence 

data was processed using the 10X Genomics Cell Ranger 3.1.0 pipeline for de-multiplexing, 

trimming, aligning, and mapping to genes. After filtering of the scRNA-seq data 5,027 immune 

cells in ALGS, 2,633 immune cells in BASM, 5,927 immune cells in iBA, and 4,691 immune cells 

in NC were detected (Figure S4.2). 

 

Single-cell RNA-seq analysis  

To define the hepatic immune cell heterogeneity, we analyzed each single cell library using 

the Seurat v3 package [174, 199]. Filtering parameters for each sample were set to include genes 

expressed in > 3 cells. Cells were included with gene counts >200 and < 5000, and with < 20% 

mitochondrial genome. We next ran the functions LogNormalize (scale factor 10,000), ScaleData, 

and RunPCA on each dataset. Variability in each principal component was visualized by the 

ElbowPlot function (Figure S4.2C). Based on this analysis we clustered the cells by the 

FindNeighbors function (15 dimensions for ALGS, 17 for BASM, 12 for iBA, and 10 for NC) and 

FindClusters (resolution of 0.5 for each cholestatic sample and 0.2 for NC). Cell clusters were 

visualized by Uniform Manifold Approximation and Projection (UMAP) using the function 

RunUMAP. Using lineage-specific marker genes, we annotated each cluster as myeloid (CD68, 

CEBPB, CLEC9A), T and natural killer (NK) cells (CD3D, CD8A, NKG7), and B cells (CD79A 

without MZB1) plasma cells (CD79A co-expressed with MZB1), and dividing cells (TOP2A). To 

confirm our cell assignments we used SingleR [187] to compare all clusters from each patient to 

the reference bulk transcriptome data from Immgen [155]. We also separately compared our 

disease-specific myeloid clusters to the Immgen database to further refine our myeloid subset 
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annotations prior to integrated analysis.  

 

We next performed integrated clustering on the mononuclear phagocyte cells from each 

cholestatic patient and ran FindIntegrationAnchors and IntegrateData on ALGS clusters 5, 8, 10, 

BASM clusters 0, 6, 7, and iBA 3, 6, 9, 11, and 12. We determined the conserved genes within 

each integrated myeloid cluster by the function FindConservedMarkers. To compare our diseased 

macrophages to normal macrophages, we imported previously published single-cell data on non-

diseased adult human liver from 5 donors with a median age of 41.0 years (interquartile range 23.5 

to 54.5 years) [381]. We used the same cell-specific annotations and assigned this normal dataset 

as the reference in further SingleR analysis of our cholestatic macrophages. The degree of 

similarity between groups was further assessed visually by UMAP and by correlation analysis of 

shared genes (Morpheus, https://software.broadinstitute.org/morpheus).  

 

We used Monocle 3 [203] for trajectory analysis of non-diseased macrophages, where a 

principal graph was fitted on to a dimensional-reduced UMAP space and then each cell assigned 

a “pseudotime” value depending on its relative location on the inferred graph. By grouping cells 

into 5 clusters based on their pseudotime values, we applied the function FindGeneModules to 

identify 2 gene modules upregulated at the beginning (pseudotime 0-5) and end (pseudotime (20-

25) of the trajectory to best represent the non-inflammatory and inflammatory macrophage profiles, 

respectively. Finally, to ascertain if differences in the transcriptional signatures may be secondary 

to patient age, we compared macrophages from the NC liver sample to the adult normal 

macrophages by correlation and pseudotime analyses as described above. 

 

https://software.broadinstitute.org/morpheus


190 
 

Immunofluorescence and quantification of macrophage subsets (Performed by Sarah Taylor) 

We next characterized protein expression for genes that differentiated the 3 cholestatic 

macrophage subsets by immunofluorescence using the Vectra Multispectral Imager in the 

Northwestern Immunotherapy Assessment Core. Baking and dewaxing were performed on 

formalin-fixed, paraffin-embedded tissue sections. Using the Opal 7-color automation kit (Akoya 

Biosciences, Marlborough, MA, USA) slides were stained for CD68 (Abcam ab955), CD69 

(Abcam ab233396), C1Q (Abcam ab268120), and S100A8/9 (Abcam ab22506). Whole slide 

fluorescent imaging was performed followed by multispectral imaging of three 2.01 mm x 1.5 mm 

areas per slide (Phenochart and Vectra software). We next used inForm software to phenotype the 

cells and analyzed the cell data with phenoptrReports 0.2.9 package in R. Based on gene expression 

data we defined LAM on histology as CD68+C1Q+S100A8/9-CD69-, MLM as CD68+C1Q-

S100A8/9+CD69-, and AM as CD68+C1Q+/-S100A8/9-CD69+. Using these definitions, we 

compared abundance on histology by disease group. 

 

4.3 Results 

Increased macrophage numbers in obstructive cholestasis as compared to healthy liver 

controls 

We performed immunohistochemistry on histology samples from donor livers, and BA and 

ALGS patient livers at the time of liver transplantation to determine whether the hepatic 

macrophage population is expanded in cholestatic liver disease (Figure 4.1A). No histologic 

abnormality was present among donors with the exception of one individual liver which exhibited 

hepatocyte swelling. Mean age for donor patients rounded down to the nearest month was 68 

months (SD 113, n = 5). No laboratory data was available for donor controls. All BA and ALGS 



191 
 

liver samples had prominent fibrosis or cirrhosis at the time of tissue collection. Mean age rounded 

down to the nearest month for BA patients was 7 months (SD 1, n = 6) and 105 months (SD 78, n 

= 6) or 8 years and 9 months for ALGS cases. Difference in age between the 3 groups was not 

statistically significant by ANOVA (p = 0.12). Mean direct bilirubin within 24 hours prior to 

transplant was not significantly different between disease groups at 9.6 mg/dL (SD 8.0, n = 6) for 

BA and 12 mg/dL (SD 7.7, n = 6) for ALGS (p = 0.65 by paired t-test). We found increased number 

of CD68+ macrophages in BA liver as compared to control with a mean of 1332 cells/mm2 in BA 

versus 601 cells/mm2 in non-diseased pediatric liver tissue (p = 0.04) (Figure 4.1B). While ALGS 

samples also exhibited greater numbers (1040 cells/mm2) of CD68+ macrophages, it did not reach 

significance compared to control (Figure 4.1B). The pronounced influx of macrophages in 

cholestatic liver disease suggests they may play a pathogenic role in cholestatic-induced liver 

injury. 
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Figure 4.1 Increased hepatic macrophages in cholestatic liver disease. (A) Representative 

immunohistochemistry staining with the macrophage marker anti-CD68 in samples taken at the 

time of liver transplantation from the iBA, BASM, and ALGS patients also used for scRNA-seq 

are shown compared to a normal donor liver sample. (B) Quantitative analysis of entire sections 

from wedge biopsies showed a significantly increased number of CD68+ macrophages in BA 

patients, with individual samples processed for scRNA-seq shown in blue (iBA), green (BASM) 

and red (ALGS). 

 

Variable immune cell composition between BASM and ALGS 

We next performed scRNA-seq on CD45+ live cells isolated from each liver sample to better 

evaluate immune cell infiltration in obstructive cholestasis (Figure 4.2A). We classified single-cell 

clusters into 5 immune cell types and a population of dividing cells in the cholestatic liver samples 

using lineage-specific marker genes (Figure 4.2B-C). Different clusters of the same cell type were 

highly correlated within each sample and between the samples thereby supporting the lineage 

annotation (Figure S4.2A-B). Further, the lineage annotations were confirmed by SingleR [187], 

which compares each cell against a reference dataset of population-level transcriptional profiles 

(in this case, the Immgen database [155]) (Figure S4.2C). Lastly, one cluster in each patient 

expressed high levels of cell cycle genes [382], which would indicate dividing cells (Figure S4.2D). 

T and NK cells were the most abundant immune cell population in both samples, comprising 73%, 

48%, and 54% of total immune cells in ALGS, BASM, and iBA respectively (Figure 4.2D). 

Mononuclear phagocytes were the next largest population in BASM and iBA, but not in ALGS. 

This discrepancy may reflect the difference in disease etiology. 
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Figure 4.2 Single-cell RNA-seq enables immune cell characterization in cholestatic liver 

disease. (A) Hepatic CD45+ cells were isolated from liver tissue at the time of liver transplantation 

by FACS for scRNA-seq analysis. (B) UMAP of scRNA-seq data showing 11 clusters in ALGS 

(left) and BASM (middle) and 13 clusters in iBA (right) patient samples. (C) Clusters were 

assigned to cell types based on the expression of lineage-specific genes (blue = T/NK cells; red = 

B cells; green = plasma cells; orange = MNP; pink = other myeloid cells; purple = dividing cells) 

in ALGS, BASM, and iBA (left to right). (D) UMAPs were re-colored by cell type and proportion 

of immune cells demonstrates greater numbers of MNP cells in BASM (middle) as compared to 

ALGS (right) and iBA (right). 
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Figure S4.2: (A) Pairwise Pearson’s correlation of average gene expression between each cluster 

in ALGS, (left), BASM (middle), and iBA (right) organized by cell type annotation (pink = other 

myeloid; orange = MNP; blue = T/NK cells; red = B cells; green = plasma cells; purple = dividing 

cells). (B) Clustering of cell types between patients by principal component analysis. (C) SingleR 

analysis of clusters from ALGS (left), BASM (middle), and iBA (right) compared to Immgen 

database reference dataset confirmed our cell cluster assignments. (D) Dividing cells were 

identified in each patient sample by expression of the cell cycle genes CDK1, UBE2C, and TOP2A. 

 

Three distinct macrophage populations in obstructive cholestasis 

To better understand macrophage heterogeneity in obstructive cholestasis, we focused our 

analysis on the clusters annotated as MNP and other myeloid cells. Our SingleR results suggested 

these clusters contained a mixture of macrophages, dendritic cells (DCs), and neutrophils (Figure 

4.3A). For further analysis, we excluded neutrophils, which were found in BASM (cluster 8) and 

iBA (cluster 7) and defined by distinct expression of neutrophil genes, such as FCGR3B and S100P 

[383], and lack expression of macrophage genes, such as CD68 and CTSB (Figure 4.3B). We then 

performed integrated clustering on MNP cells from all patients to define 3 macrophage subsets 

and 3 dendritic cell subsets (Figure 4.3C-D, S4.3). Three macrophage clusters were identified by 

the lineage-specific markers CD68, CEBPB, CD14, and CD69, (Figure4.3C-D). The dendritic 

cells were annotated using markers described previously [384] to identify a CD1C positive subset, 

CLEC9A positive subset, and plasmacytoid DC (pDC) subset (Figure 4.3C-D). All macrophage 

populations were represented in each patient (Figure 4.3E, S4.3). Together, these findings suggest 

common macrophage subsets may arise from environmental cues in the setting of cholestasis.  
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We next sought to characterize the cross-disease transcriptional signature of each 

inflammatory macrophage subset and defined MΦ1 as lipid-associated macrophages (LAM), MΦ2 

as monocyte-like macrophages (MLM), and MΦ3 as adaptive macrophages (AM) (Figure 4.4A -

B). LAM demonstrated the highest expression of genes associated with lipid metabolism including 

APOC1, APOE, LGMN, FABP5. There was also high overlap with genes previously reported in 

LAM from human adipose tissue including TREM2 (Figure S4.4). [385] MLM were defined by 

genes previously identified in monocytes, including S100A8, S100A9, VCAN [386-388]. Finally, 

AM were enriched for genes associated with lymphocyte activation including CD2, CD7, CCL5, 

CCL4, CD3D, IL7R. As we have previously defined these immune cells as macrophages, the 

increased expression of genes involved in adaptive immunity suggest these cells may have 

engulfed lymphocytes or play a role in regulation of lymphocyte response.  

 

To validate these three populations across cholestatic liver disease, we performed 

immunofluorescence on a large cohort of patients. We chose markers for each population based on 

their differential gene expression by scRNA-seq (Figure 4.4B). Using these markers, we 

demonstrated the presence of all subsets across the fixed BA and ALGS samples from Figure 4.1 

through overlap with CD68 expression (Figure 4.4C). Since not all individual cells in a population 

expressed the relevant marker, we expect this approach to have lower sensitivity than specificity 

as supported by differences between histology and gene expression analyses for the BASM, iBA, 

and ALGS samples (Figure 4.4D). Thus, the percent of each population is likely to be an 

underestimate and may explain the proportion of CD68+ cells not assigned to any population. 

Despite these differences, comparing the number of cells in each population between 6 BA and 6 

ALGS patients shows that LAM tends to account for a greater proportion of macrophages in BA 
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(Figure 4.4E). In contrast, the AM population is larger on average in ALGS patients. Further study 

is required to determine whether this difference reflects disease pathogenesis. 
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Figure 4.3 Integrated analysis of myeloid cells across patients identifies 3 distinct 

macrophage subsets in cholestasis. (A) Comparison of annotated ALGS (5, 8, and 10, left), 

BASM (0, 6, 7, and 8, middle) and iBA (3, 6, 7, 9, 11, and 12, right) myeloid cell clusters with 

reference data set identified neutrophil clusters in BASM and iBA. (B) While all other clusters 

expressed macrophage and/or dendritic cell markers, BASM cluster 8 and iBA cluster 7 expressed 

neutrophil markers FCGR3B and S100P. (C) UMAP of remaining MNP cells showed 6 integrated 

clusters. (D) Expression of key markers enabled identification of CD1c+ DCs (light green), 

CLEC9A+ DCs (dark green), pDCs (red), and 3 macrophage subsets (light blue, dark blue, and 

pink) across ALGS (red), BASM (green), and iBA (blue) patients. (E) BASM (green) and iBA 

(blue) cells represented the majority in the macrophage clusters. 
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Figure 4.4. The transcriptional signature of macrophage subsets is conserved across patients. 

(A) Each macrophage subset exhibited a unique transcriptional signature that was similar between 

ALGS (red), BASM (green), and iBA (blue) patients. (B) Ridge plot demonstrates the expression 

of genes upregulated in each subset including C1QC and C1QA in lipid-associated macrophages, 

S100A8 and S100A9 in monocyte-like macrophages, and CD69 in adaptive macrophages. (C) 

Representative images of immunofluorescence identifying co-localization of each protein marker 

with anti-CD68 to identify LAM, MLM, and AM. (D) The relative contribution of each subset to 
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total cholestatic macrophages was compared between the BASM, iBA and ALGS patients with 

corresponding scRNA-seq data (left to right). (E) Average percent of total CD68+ cells with 

standard error of mean for each macrophage subset in 6 BA and 6 ALGS patients with prior CD68 

quantification. 
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Figure S4.4 (A) Visualization of clusters from integrated analysis of myeloid cells on original 

UMAP from Fig 2 and the proportion of MNP cells for ALGS, (B) BASM, and (C) iBA. (D) 

Pairwise Pearson’s correlation of average gene expression between integrated cholestatic myeloid 

clusters. (E) Violin plots showing expression of genes associated with lipid-associated 

macrophages in human adipose tissue are most highly expressed in lipid-associated macrophages 

from cholestatic livers [385].  

 

Reduced expression of immune-regulatory genes in obstructive cholestasis as compared to 

non-diseased human liver 

We took advantage of single-cell data that was previously published using non-diseased adult 

livers [381] to determine how macrophages from cholestatic livers compared to those from healthy 

livers. We reproduced the 20 clusters from the original study of which 2 were labelled as 

“inflammatory” (IM) and “non-inflammatory” (NM) macrophages (Figure S4.5A). Although this 

data included all cell types, not just CD45+ cells, annotation of immune cell types using lineage-

specific markers led to analogous results (Figure S4.5B). To overcome technical variability 

between datasets limiting the utility of co-clustering, we used SingleR, Correlation analysis, and 

single gene and gene set comparisons to evaluate similarities and differences between macrophage 

subsets. All 3 populations of cholestatic macrophages were more similar to the IM than NM 

(Figure 4.5A-B); AM was the least correlated overall (0.84) compared to LAM (0.89) and MLM 

(0.89) (Figure 4.5B).  

 

To determine whether the differences between datasets was due to older age of the controls, 

we performed scRNA-seq on a pediatric non-cholestatic (NC) pediatric liver sample. The NC case 
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was an 11-year-old female whose explanted liver demonstrated some areas of necrosis consistent 

with changes after chemotherapy and chronic inflammation with margins negative for tumor. 

Through a comparable scRNA-seq analysis workflow, we identified two populations of 

macrophages, which we label Ped1 and Ped2 (Figure 4.5B and S4.5C-G). Unlike the cholestatic 

macrophages, these populations clearly recapitulate the dichotomy of adult NM and IM (Figure 

4.5B). Moreover, while all cholestatic macrophages demonstrated decreased expression of 

immunoregulatory genes (MARCO, HMOX1, and CD5L), Ped2 expressed these genes at 

comparable levels to NM (Figure 4.5C). The cholestatic populations, LAM and AM, exhibited 

distinct transcriptional signatures from both adult and pediatric macrophages subsets (Figure 4.5C). 

In contrast, the genes that defined MLM were also increased in adult IM and Ped2 (Figure 4.5C). 

Interestingly, expression of NR1H4, which encodes FXR and is thought to play a role in 

macrophage inflammasome activation in cholestasis, is negligible across all macrophages (Figure 

S4.6A). Taken together, our findings support the emergence of disease-specific macrophages in 

cholestasis that may mediate inflammation via different pathways than FXR signaling. 

 

Although transcriptionally distinct, macrophages in the diseased liver may be derived from 

their healthy counterparts. Using Monocle, we defined a pseudotime trajectory beginning in NM 

(pseudotime 0) and ending in IM (pseudotime 25) (Fig 5D, Figure S4.6B). We then identified 2 

modules associated with high expression at these endpoints: the non-inflammatory module 

included genes such as CD5L, MARCO, and VCAM1 whereas the inflammatory module included 

LYZ, S100A8, and VCAN (Figure 4.5E, S4.6). In support of the limited effect of age on healthy 

macrophage heterogeneity, the former modules were highest in Ped1, while the latter was highest 

in Ped2. In contrast, we found that no cholestatic macrophage subset expressed high levels of the 
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non-inflammatory module (Figure 4.5F). However, MLM exhibited high expression of the 

inflammatory module, possibly indicating a common origin with IM (Figure 4.5F). This analysis 

demonstrates the transcriptional variability across cholestatic macrophages beyond the dichotomy 

of healthy liver macrophages. 
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Figure 4.5 Cholestatic macrophages are distinct from non-diseased hepatic macrophages. (A) 

All three cholestatic macrophage subsets were primarily assigned by SingleR to previously 

published inflammatory macrophages (IM) in non-diseased liver. (B) The mean gene expression 

of each cholestatic macrophage subset was more highly correlated with inflammatory 

macrophages (IM) than non-inflammatory macrophages (NM) (left). Of the two macrophage 

subsets in pediatric non-cholestatic (NC) liver, Ped1 was most similar to NM, while Ped2 was 

similar to IM (right). (C) Violin plots of individual genes that define similarities and differences in 

expression between cholestatic macrophage subsets as compared to healthy adult and pediatric NC 

macrophages. (D) Pseudotime analysis of healthy adult macrophages given a beginning (indicated 

with black circle) at NM (light purple) inferred a trajectory ending in IM (dark purple). (E) The 

non-inflammatory module contained genes with expression peaking at pseudotime 0–5, while the 

inflammatory module peaked at pseudotime 20–25. (F) The non-inflammatory module is lowly 

expressed across all cholestatic macrophages whereas MLM demonstrated high expression of the 

inflammatory module. 
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Figure S4.5 (A) UMAP reproducing the 20 clusters of cells, including inflammatory macrophages 

(IM, cluster 4) and non-inflammatory macrophages (NM, cluster 10), from previously published 

scRNA-seq of non-diseased livers[381]. (B) Expression of lineage-specific genes verifies the 

identify of immune cells clusters (blue = T/NK cells; red = B cells; green = plasma cells; purple = 

dividing cells; orange = MNP). The UMAP is recolored by cell type and the proportion of immune 

cells is shown. (C) UMAP of scRNA-seq data from a pediatric non-cholestatic liver (NC) shows 

10 clusters of cells. (D) Feature plot demonstrates expression of lineage-specific genes by cell 

cluster (blue = T/NK cells; red = B cells; green = plasma cells; orange = MNP; pink-other myeloid 

cells; purple = dividing cells; gray = endothelial cells). (E) Comparison of gene expression across 

all myeloid cell clusters identifies cluster 3 as neutrophils expressing FCGR3B and S100P, CD1c+ 

dendritic cells as cluster 7, and cluster 1 and 4 as macrophage clusters. (F) Single-R analysis using 

previously published data from adult normal livers as the reference [381] supports our cluster 

assignments with the addition of neutrophil and dividing cell clusters. (G) Re-colored UMAP by 

cell type and proportion of immune cells demonstrates high numbers of MNP and T/NK cells with 

contribution of endothelial cells from possible contamination. 
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Figure S4.6 (A) Violin plots showing expression of individual genes involved in inflammasome 

activation across cholestatic and non-cholestatic macrophage subsets. (B) Macrophages from non-

diseased liver (NL) were categorized into 5 groups based on their inferred pseudotime. (C) From 

23 modules of genes with pseudotime-associated expression, we chose module 4 with increased 

expression at pseudotime 0–5 to represent the non-inflammatory module and module 2 with 

increased expression at pseudotime 20–25 to represent the inflammatory module. (D) Visualization 

of gene expression for these 2 modules in non-cholestatic pediatric liver macrophages shows that 

module 4 is upregulated in Ped1 macrophages similar to non-inflammatory adult macrophages and 

module 2 is upregulated in Ped2 macrophages similar to inflammatory adult macrophages (IM). 

(E) Comparison to cholestatic macrophages demonstrated low expression of the non-inflammatory 

module across all subsets whereas MLM demonstrated high expression of the inflammatory 

module. 

 

4.4 Discussion 

We are the first to perform scRNA-seq on pediatric cholestatic liver to define the macrophage 

transcriptional profile in obstructive cholestasis. Hepatic macrophages play a critical role in 

maintaining immune tolerance in the setting of persistent exposure to bacterial antigens from the 

intestine. Loss of this tolerogenic phenotype in the setting of inflammation may be of particular 

importance in ongoing hepatic injury in obstructive cholestasis. Here, we identify three 

populations of pathogenic macrophages independent of underlying etiology that may contribute to 

liver injury in obstructive cholestasis. No cholestatic macrophage subset was characterized by 

expression of immune regulatory genes as seen in normal adult NM and a subset of macrophages 

in non-cholestatic pediatric liver (Ped1). Our data thereby suggest that tissue resident macrophages, 
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such as NM previously reported [381], may be absent or transcriptionally altered by the tissue 

microenvironment in cholestatic liver injury. Instead, all 3 cholestatic macrophage subsets were 

most similar to IM, supporting a role for monocyte-derived macrophages or inflammatory 

polarization of tissue resident macrophages in disease. The population of monocyte-like 

macrophages had the greatest upregulation of genes encoding the S100 proteins in addition to 

TREM1, known to amplify the innate immune response [389], suggesting this population may 

have recently infiltrated [390]. We also defined a subset of lipid-associated macrophages that had 

the highest expression of genes involved in TLR signaling (e.g. GPNMB [391], MT1G and MT1X 

[392, 393]).  Lastly, we demonstrate the presence of a novel adaptive macrophage subset with 

increased RORA gene expression, which has been shown to promote anti-inflammatory 

polarization of hepatic macrophages in a murine model of nonalcoholic steatohepatitis [394] and 

a human monocyte cell line [395]. The transcriptional profiling of these distinct subsets may 

identify macrophage-specific targets to ultimately inhibit monocyte recruitment, block TLR-

mediated macrophage activation, or re-program macrophages to an anti-inflammatory phenotype. 

 

While macrophages have been implicated in immune-mediated hepatic injury from 

cholestasis [370-374, 376-380], the exact mechanism is not well known. Current medical therapies 

for cholestatic liver disease include FXR agonists, which in addition to regulating the bile acid 

pool may also inhibit macrophage inflammasome activation based on prior studies [374]. However, 

we demonstrate an absence of NR1H4 encoding FXR in cholestatic macrophages despite evidence 

of TLR signaling and inflammasome activation. As macrophages play a role in cholestatic liver 

injury, this finding highlights the lack of current cell-specific immune-modulatory strategies and 

the need for a deeper understanding of the immune response to cholestasis. 
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LAM in our samples were characterized by C1Q expression, however, non-cholestatic 

macrophages, in particular NM, also exhibited C1Q staining on immunofluorescence suggesting 

LAM may arise from inflammatory polarization of tissue-resident macrophages. In contrast to 

normal macrophages, LAM had a gene signature that was more similar to recently published data 

on TREM2+ lipid-associated macrophages in murine adipose tissue [385]. This gene signature was 

also similar to human hepatic macrophages during obesity and may represent a conserved response 

to loss of metabolic homeostasis [385]. As hypercholesterolemia is a common sequela of 

cholestasis, the TREM2+ LAM in our samples may arise from C1Q+ normal macrophages in 

response to similar metabolic derangements. However, LAM in our study differed in that they had 

an overall inflammatory gene signature despite expression of TREM2 previously shown to 

promote anti-inflammatory macrophage polarization [385, 396]. Targeting the TREM2 molecular 

pathway may be an important therapeutic target to re-program hepatic macrophages to an immune 

regulatory phenotype and reduce the consequences of hypercholesterolemia in cholestasis. 

 

The mechanism of disease pathogenesis in BA is hypothesized to be multifactorial, including 

an aberrant immune response to a cognate antigen [397] whereas ALGS is a genetic disease 

resulting in bile duct paucity. Thus, while the aim of the current study was to identify a common 

cholestatic macrophage phenotype, there are likely etiology-specific differences in the immune 

pathways for macrophage activation that require further investigation in larger studies. However, 

despite this limitation, we provide important insight into hepatic macrophage heterogeneity in 

cholestatic liver disease compared to healthy livers. Despite age differences, it is worth noting that 

macrophages from a non-cholestatic pediatric patient demonstrated a similar dichotomy as adult 
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hepatic macrophages. This finding suggests that the distinct transcriptional signature of cholestatic 

macrophages is not a result of age-specific differences or technical differences between datasets 

such as variation in sample isolation, processing and digestion protocols, or experimental design. 

Lastly, we acknowledge that our findings may not be limited to obstructive cholestasis and may 

overlap with other causes of end-stage liver disease characterized by cirrhosis and portal 

hypertension. A recent study on adult cirrhotic livers described a population of scar-associated 

macrophages in cirrhosis [398] that appear most similar to cholestatic LAM and express higher 

levels of TREM2, CD9, LGALS3, and SPP1. Future studies will more clearly define the 

similarities and differences in subset-specific macrophage function by patient age, stage of 

cholestatic liver disease, and etiology of cirrhosis.  

 

In this study, we have used single-cell transcriptional analysis of pediatric cholestatic liver 

samples to identify macrophage subsets at greater resolution than previously described 

characterization by ontogeny or M1 versus M2 polarization [292]. With ongoing work, we will 

strengthen conclusions on the hepatic macrophage transcriptional signature in different cholestatic 

liver diseases and identify common therapeutic targets to reprogram macrophages and slow disease 

progression. More specifically, we highlight expression of the immune regulatory genes RORA 

and TREM2 within these inflammatory subsets that may be potential therapeutic targets to 

ameliorate inflammatory injury in obstructive cholestasis. Future work to correlate our findings to 

the immune cell subsets present earlier in disease will provide important insight into cell-specific 

therapeutic strategies to improve prognosis shortly after disease onset. Identifying molecular 

targets to reprogram hepatic macrophages in cholestasis may also have therapeutic implications 

for other etiologies of liver diseases and reduce the medical burden of end-stage liver disease. 
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CHAPTER 5 

MAGNET: A Web-based Application for Gene Set Enrichment Analysis Using Macrophage 

Data Sets 

 

Chapter 5 is adapted from an original research article entitled “MAGNET: A Web-based 

Application for Gene Set Enrichment Analysis Using Macrophage Data Sets” (Chen et al., In 

revisions). 

 

 

 

 

 

 

 

 

 

 

 



216 
 

5.1 Introduction 

Analysis of next-generation sequencing (NGS) experiments, such as RNA-seq, often 

produces long lists of genes as output, such as those differentially expressed between two or more 

conditions. It is therefore a logical and critical next step to identify the biological relevance 

associated with these genes. Typically, this is achieved through functional enrichment analyses that 

utilize standardized biological knowledge repositories, including Gene Ontology (GO), Kyoto 

Encyclopedia of Genes and Genomes Pathways (KEGG) [148] and Molecular Signatures Database 

(MsigDB) [152]. These repositories annotate sets of genes with defined biological terms. These 

biological terms are then associated with input gene lists by calculating the overlap and performing 

statistical enrichment tests to assess significance. A large number of computational tools have been 

developed for performing this type of enrichment analysis by querying these repositories. Some of 

the most popular tools includes GOrilla [149], DAVID [150, 399], IPA [400], and BiNGO [401]. 

Although these applications provide an effective way to characterize user-supplied gene lists and 

are now considered an essential step in typical bioinformatic workflows, they are often limited to 

generic results that do offer new insights to domain-specific questions. There are a number of 

reasons for this limitation including: the attempt to provide terms that encompass all of biology; 

the static nature of the source repositories that do not account for the latest research; and the broad 

nature of the annotation scheme.  

 

These issues are exemplified when endeavoring to perform gene set enrichment analysis on 

the results of genomic experiments on macrophages. Macrophages are highly plastic immune cells 

that are found in virtually every tissue in health as well as having an essential role in in innate 
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immune response [8, 29]. They exhibit highly specialized functions, depending on their tissue of 

residence and exhibit divergent responses to environmental and pathogenic stimuli [47, 54]. They 

have been implicated in numerous pathological models and are being investigated as potential 

therapeutic targets in various diseases [402]. For this reason, their genomic landscape has been the 

subject of many studies across multiple biomedical disciplines [403]. However, in our experience, 

typical gene set enrichment analysis tools using standardized repositories will primarily return 

generic terms related to the role of macrophages in immune response and inflammation, regardless 

of the context of the original experiment. Alternatively, when a set of ubiquitously expressed genes 

is included as background to account for the macrophage transcriptome, the tools may return no 

significant results at all. This is because the standardized repositories do not include annotation 

terms to describe the novel and specialized functions of macrophages. Instead, many canonical 

macrophage genes are associated with the role of macrophages in innate immunity despite their 

relevance to other biological processes and gene pathways. The plasticity of macrophages 

exacerbates this limitation, but the same issue arises across domains in studies that investigate the 

condition-specific function of particular cell types. Thus, there is a great demand for an application 

that can provide precise, relevant results in accordance with the latest research. 

 

These challenges inspired us to develop MAGNET (Macrophage Annotation of Gene 

Network Enrichment Tool), an interactive web application based in Python, by utilizing the curated 

annotations from prior macrophage studies instead of terms from standardized biological 

knowledge repositories. These annotations can be curated from published manuscripts and data 

repositories, such as Gene Expression Omnibus (GEO) [404], that describe gene expression 

patterns defined by comparing macrophages across experimental conditions, such as different 



218 
 

tissues, disease status, or time. Although a wealth of information has been published on 

macrophage function and identity using genomic assays, it is not always easy for a researcher 

outside the original study to utilize these results. MAGNET overcomes the obstacles associated 

with retrieving the data and performing bioinformatic analysis by providing the user with a user-

friendly graphical interface to compare their data with multiple other studies in parallel. By 

outputting the results of gene set enrichment analyses against these updated and domain-specific 

annotations, we show that MAGNET provides a relevant and unique characterization of user-

supplied gene lists in an accessible and flexible manner. 

 

5.2 Methods 

Overview of MAGNET 

We developed MAGNET, a web-based interactive application for assessing and visualizing 

enrichments of user-supplied lists of genes against annotations curated from published literature 

on murine macrophage gene expression. The application is implemented using Python/Django 

framework with PostgreSQL database integration. It is publicly available at https://magnet-

winterlab.herokuapp.com. The overview schematic of MAGNET is shown in Figure 5.1. Th The 

user must input at least one gene list to query as well as a second gene list specifying the 

background set. Typically, we would expect the lists to originate from an RNA-seq or similar 

experiment, but it is not necessary. The overlap of the query gene list with MAGNET’s annotations 

is then compared against the overlap with the background gene set using the hypergeometric 

distribution. The significant annotations are visualized in multiple formats – as a heatmap of 

enrichment/depletion, table of significantly enriched results, and network of intersecting 

annotations – to facilitate user interpretation of results.  
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Figure 5.1 Overview schematic of MAGNET workflow. The user-supplied gene list(s) are 

compared with annotated gene sets that have been curated from published macrophage datasets.  

The significance of the overlap is assessed using the hypergeometric distribution to identify 

enriched (and depleted) MAGNET annotations. The results are visualized in heatmap, table, and 

network formats. 

 

Table 5 Datasets currently included in the MAGNET database. 

 
Title Authors Year Journal Summary Citation 

Tissue-resident macrophage 
enhancer landscapes are shaped 
by the local microenvironment 

Lavin et al. 2014 Cell 11 gene sets: 
bulk RNA-seq 
on tissue 
resident 
macrophages 
from 7 tissues 

[47] 

Gene expression profiles and 
transcriptional regulatory 
pathways underlying mouse 
tissue identity and diversity 

Gautier et 
al.  

2012 Nature 
Immunology 

4 gene sets: 
microarray on 
tissue-resident 
macrophages 
from 4 
tissue/organs 

[51] 

Transcriptional Heterogeneity and 
Lineage Commitment in Myeloid 
Progenitors 

Paul et al.  2015 Cell 19 gene sets: 
single-cell 
RNA-seq on 
myeloid 
progenitors in 
bone marrow 

[405] 

Microglia development follows a 
stepwise program to regulate 
brain homeostasis 

Matcovitch-
Natan et al.  

2016 Science 7 gene sets: 
bulk RNA-seq 
on 
developmental 
stages of 
microglia 

[157] 

Monocyte-derived alveolar 
macrophages drive lung fibrosis 
and persist in the lung over the 
life span 

Misharin et 
al.  

2017 Journal of 
Experimental 
Medicine 

5 gene sets: 
bulk RNA-seq 
on monocytes 
and 
macrophages 
in the lung 
during 
pulmonary 
fibrosis 

[80] 

Microbiome Influences Prenatal 
and Adult Microglia in a Sex-

Thion et al.  2018 Cell 7 gene sets: 
microarray on 

[158] 
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Specific Manner developmental 
stages of 
microglia 

Locally renewing resident 
synovial macrophages provide a 
protective barrier for the joint 

Culemann 
et al. 

2019 Nature 7 gene sets: 
single-cell 
RNA-seq on 
synovial 
macrophages 
in the arthritic 
joint 

[220] 

 

5.2.3 User Interfaces 

MAGNET implements two modes of input for the query gene list input (Figure 5.1A). In the 

traditional “single” mode, the user submits a single column of genes via the input box or file upload.  

This mode operates in an analogous manner to typical gene set enrichment analysis with MAGNET 

calculating the enrichment of this gene list against all database annotations. In contrast, MAGNET 

is the first application, of which we are aware, to offer the option of multiple parallel queries. In 

‘multiple’ mode, the user can analyze multiple gene lists simultaneously by uploading a comma-

separated file that consists of two columns: the first contains the genes while the second assigns 

them to different lists. The purpose of this feature is to enable the user to perform parallel 

enrichment analyses across related gene lists without requiring multiple queries and visualize the 

results as a single output. For example, the multiple query mode is particularly useful for analyzing 

a gene list that has been clustered and provides the enrichment for each cluster independently. 

Regardless of the query mode, MAGNET also requires the user to input a background gene list 

either through the text box or a file upload. This background is part of the hypergeometric 

calculation described below. Finally, the user may select which curated datasets from the 

MAGNET database against which to perform enrichment analysis. In addition to the datasets 

currently included, users also have the ability to upload custom datasets against which to test their 
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query. This original feature enables users to perform meta-analysis between any two datasets, 

greatly increasing the flexibility of the application.  

 

MAGNET also includes two further interfaces for exploring datasets and genes in the 

database. Each curated dataset is linked to a documentation page listing essential information on 

the source, including the full citation information, abstract, link to PubMed, and details on the 

annotated gene sets (Figure 5.2B). For genes, we have implemented an interface that enables the 

user to query the MAGNET annotations for individual genes (Figure 5.2C). One or more genes 

can be entered as input and a table of the associated gene sets across all datasets is returned as 

output. Through this interface, the user can explore the MAGNET database without performing a 

full enrichment analysis. 
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Figure 5.2 MAGNET user interfaces. A. Gene Set Enrichment Interface: The user is required to 

upload query and background gene lists, select background calculation mode, and choose the 

datasets to be included in the analysis. There is also the option for the user to upload one or more 

custom datasets. B. Dataset Interface: This interface provides information on the source of each 

dataset. Lavin et al., 2014 is shown as an example. C. Individual Gene Interface: The user can 

enter genes to query against the MAGNET database of annotations. FCGR1, the gene encoding 
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the macrophage surface marker CD64, is shown as an example. 

 

Hypergeometric Enrichment Analysis 

Like other common gene set enrichment analysis tools, such as GOrilla (4) and DAVID (5, 

6), MAGNET utilizes the hypergeometric distribution to identify annotation terms that are 

significantly enriched among the query genes. MAGNET calculates the number of overlapping 

genes (k) independently between the user-supplied gene list (s) and each annotation. Then, the 

significance of that value is calculated using the hypergeometric distribution which gives the 

probability of observing an overlap of k or more genes by chance given the size of the query and 

annotation: 

 

         𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑙𝑖𝑠𝑡 

         𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑟𝑦 𝑙𝑖𝑠𝑡 

         𝐾 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑀𝐴𝐺𝑁𝐸𝑇 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒 𝑠𝑒𝑡  

         𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑟𝑦 𝑙𝑖𝑠𝑡 𝑎𝑛𝑑  

                  𝑀𝐴𝐺𝑁𝐸𝑇 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒 𝑠𝑒𝑡 

 

𝑃(𝑥 ≥ 𝑘) =   ℎ𝑔(𝑘; 𝑁, 𝐾, 𝑛) = ∑
(𝐶𝑖

𝑛)(𝐶𝐾−𝑖
𝑁−𝑛)

𝐶𝐾
𝑁

min(𝑛,𝐾)

𝑖=𝑘

  𝑤ℎ𝑒𝑟𝑒  𝐶𝑏
𝑎 =  

𝑎!

𝑏! (𝑎 − 𝑏)!
 

 

The resulting probability is reported as the p-value of enrichment. Likewise, the complementary 

probability (1-p), reflects the significance of depletion. Since each calculation of overlap 
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represents a different hypothesis, MAGNET also outputs an adjusted p-value to account for 

multiple comparisons using the Benjamini-Hochberg method for False Discovery Rate (FDR) 

[406].  The total number of comparisons is the number of query gene lists multiplied by the 

number of annotations across all datasets. 

 

MAGNET offers two settings for determining the number of genes in the background which affects 

the value of the parameters N and n (Figure 5.3): 

 

1. INTERSECT: The background N is given as the intersection between the user-supplied 

background and the total genes in the dataset containing the annotation in question. Consequently, 

n is given as the intersection between user-supplied query list and the total dataset. This is the 

default mode of calculation. 

 

2. USER: N and n are simply defined as the user-supplied background and query lists, respectively. 

This option may be preferable when there is limited overlap between the user-supplied background 

and the MAGNET dataset.  

 

The hypergeometric tests are performed sequentially on each pair of query gene list(s) and 

annotated gene sets from curated datasets selected or uploaded by the user.  
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Figure 5.3 Comparison of the two settings for background in the hypergeometric test 

performed by MAGNET. In this example, there are 560 and 460 genes in a query gene list and 

annotated gene set, respectively, with an overlap of 100 between the two. There are 7000 genes in 

the user-supplied background with 4000 overlapping the 5000 genes from the dataset. The overlap 

calculations and hypergeometric p-values are illustrated for the two background settings: A. 

INTERSECT and B. USER. 

 

Visualization of results 

MAGNET generates three types of outputs to facilitate easy interpretation and visualization 

of results for the user: HEATMAP, TABLE, and NETWORK: 

 

HEATMAP: The first output consists of a heatmap corresponding to each dataset selected for 

analysis, which are color-coded red or blue to reflect significant enrichments and depletions, 
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respectively (Fig 5.4A). Within each heatmap, the row(s) represent the query gene list(s) while the 

columns represent annotated gene sets from MAGNET or custom datasets. A slider widget is 

provided to enable the user to select their desired p-value cutoffs and update the heatmaps 

interactively. A mouse-over function allows the user to see additional information on the overlap, 

including description of the gene set, raw and adjusted p-values, and parameters used for 

hypergeometric test. Utilizing heatmaps to visualize significance allows the user to easily assess 

all the comparisons in a data set simultaneously. Each heatmap may be downloaded separately as 

a png file. 

 

TABLE: The second output is a table listing all the significantly enriched gene sets (Fig 5.4B). The 

table includes sortable columns for the name of the source dataset, the name of the annotation, the 

p-value, the FDR adjusted p-value, and the parameters used in the hypergeometric calculation. The 

final column reports the full list of genes in the overlap. The contents in the table are updated 

dynamically depending on the p-value cutoff chosen. The table can be downloaded as a csv file. 

 

NETWORK: The third output is a graph depicting the network of shared genes between different 

MAGNET annotations with the enrichment results superimposed (Figure 5.4C). The widths of the 

edges correspond to the proportion of genes shared between two annotated gene sets, whereas the 

color of the nodes represent the significance by p-value.  The underlying graph remains constant 

and can be visualized to understand the overlap between datasets (Fig S5.1). In the multiple query 

mode, the user must specify which gene list to visualize. The network visualization is generated 

through an interactive Cytoscape [407] plugin that enables the user to set the position of different 

elements. This novel method of visualizing these results allows the user to appreciate how the 
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different annotations are related across multiple datasets.  

 

Any user-supplied query, background, or custom dataset genes that are not found in the MAGNET 

database are reported at the bottom of the output page to allow the user to catch inconsistencies in 

the nomenclature.  
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Figure 5.4 Example output of MAGNET using gene clusters reported in Koch et al., 2018 as 

input. A. Heatmap output of results against curated dataset Lavin et al. 2014 with p-value cutoffs 

of 0.05 and 0.95 for enrichment and depletion, respectively. B. Table output of significantly 

enriched annotations. Only the first 10 rows of the table are shown. C. Network output for 

visualizing Cluster 1 results with the three datasets from A. 
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Figure S5.1 Network visualization of all gene sets curated in MAGNET. 

 

5.3 Results 

To assess the performance of MAGNET on a real-world example, we used an independent 

RNA-seq dataset that compared gene expression of microglia, brain-resident macrophages, 

between mice bred with no microbiota (germ-free) and control adult mice [157]. The experiment 

was designed to assess the effect of the microbiome on microglia development in the brain. The 

original publication reported a total of 322 microbiome-dependent genes with decreased 
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expression in germ-free mice. As reported in the original study, the top hits from GO analysis of 

these genes largely comprises generic biological terms associated with inflammation and 

overlapping terms reflecting the same small set of genes (Figure 5.5A). Using the 7764 expressed 

genes documented in the publication as background, we analyzed the 322 genes as a single query 

with INTERSECT setting in MAGNET (Table S5.2). Then, we summarized the results as a bar 

graph of enrichment (given by the ratio of overlapping genes in each gene set) to compare 

annotations within a dataset. MAGNET reproduced the association of these genes with mature 

microglia genes as reported in the original publication (Matcovitch-Natan et al. 2016 - Mature 

microglia A2 (7) , p = 0.0292), suggesting that microglia maturity is dependent on an 

intact  microbiome (Figure 5.5B) [157]. However, we also observed that yolk sac genes are 

significantly enriched among the microbiome-dependent gene list (Matcovitch-Natan et al. 2016 - 

Yolk sac (1), p = 0.0001): this novel result may indicate another means by which microglia 

development is perturbed in germ free mice. We next compared these results with MAGNET 

annotations stemming from a second more recent study of microglia development (Thion et al 

2018) and find that the Progenitor 1 (1) (p = 0.0200) and Embryonic 2 (5) (p = 0.0007) genes sets 

are enriched rather than either adult gene set (Figure 5.5B) [158]. While these results appear 

contradictory to the prior publication, there is room for interpretation as the gene sets do not 

entirely line up between datasets (Figure S5.2A). In addition, we ran MAGNET with the 

INTERSECT setting to query the enrichment specifically across microglia development genes 

but we observed similar results when MAGNET is run with the wider gene context in USER 

setting (Fig S5.2B). Aside from small technical differences, the likely explanation for the 

discrepancy between data sets is the difference in the sex of the mice used in each study: 

Matcovich-Natan et al. used only female mice while Thion et al. utilized both males and females. 
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Thus, the user may infer that sex affects the role of the microbiome in microglia development – 

which is indeed supported by data in the latter study demonstrating that loss of microbiota 

disproportionately perturbs the microglial phenotype of female mice – and can plan follow-up 

experiments to test this hypothesis. By simplifying comparison of user-supplied gene lists with 

published datasets, MAGNET enables further insight into macrophage biology. 
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Figure 5.5 Running MAGNET with single query mode. A. Significant GO processes enriched 

for the 322 microbiome-related genes [157]. B. Ratio of overlapped microbiome-associated genes 

(k) to each reference gene set (K) from Matcovich-Natan et al. 2016 [157] and Thion et al. 2018 

[158]. The dashed line indicates the expected distribution of genes, which is defined as the 

proportion of microbiome-associated genes in all expressed genes (n = 7764).  
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Figure S5.2 Alternate options for MAGNET with single query mode. A. Network 

visualization from MAGNET showing enrichment of Matcovitch-Natan et al. 2016 and Thion et 

al. 2018 datasets using the query list of microbiome-dependent genes with INTERSECT setting. 

B. The ratio of genes in each annotated gene set from the Matcovich-Natan et al. 2016 [157] and 

Thion et al. 2018 [158] datasets that overlap the microbiome-dependent gene list as calculated by 

MAGNET with USER setting. The dashed line indicates the expected ratio based on the total 

number of microbiome-dependent and dataset genes. * indicates P-value < 0.05 for the 

significance of enrichment.  

 

Next, we tested the multiple query mode in MAGNET using another independent RNA-seq 

dataset that profiled gene expression in alveolar macrophages from a murine model of lung 

transplantation [139]. The experiment was designed to compare naïve alveolar macrophages with 

those isolated from newly implanted lungs at 2- and 24-hours post-reperfusion. The processed 

dataset consists of 7166 differentially expressed genes that clustered into 6 different expression 

patterns using k-means (Figure 5.6A). The original publication reported the top GO hit for each 

cluster; however, because the enrichment was calculated separately for each cluster, it is not 

possible to compare terms in order to build a cohesive narrative. To better understand how these 

processes vary across the whole dataset, we used them as custom datasets in MAGNET with these 

6 clusters as input in multiple query mode and the 7166 genes as background (Figure 5.6B and 

Table S5.3). We find that some of these processes are, in fact, shared across clusters. Moreover, 

we also input the 6 clusters in the multiple query mode of MAGNET (INTERSECT) using the 

built-in datasets (Fig S5.3 and Table S5.3). We then chose select annotations across datasets to 

feature as a bubble plot (Fig 5.6C). For instance, the genes that are preferentially expressed at 24 
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hours (Cluster 1) are highly enriched for STMN1+ proliferating cells (7) from the Culemann et al. 

2019 dataset (p=2.95x10-95). This is consistent with the unique enrichment of the GO process Cell 

cycle in this cluster. Other MAGNET annotations that share genes with Culemann 7 (Fig S5.1) and 

are associated with cell cycle in their respective datasets – such as Thion et al 2018 - Progenitor 3 

(3) and Matcovitch-Natan et al 2016 - Early microglia E1/E2 (2/3) – were also enriched (Fig S5.3). 

In addition, we find that Cluster 1 genes significantly overlap Misharin et al 2017 – AM 

differentiation (p=8.15x10-95) which suggests that there is similarity in gene expression after 

transplantation and as monocytes differentiate into alveolar macrophages during fibrosis. These 

results fit with the current paradigm of infiltrating monocytes replacing tissue-resident 

macrophages following a disruption to the niche [55]. The hypothesis that the AM compartment 

in this dataset comprises monocyte-derived cells starting at 2 hours post-reperfusion is further 

supported by the enrichment of monocyte-related annotations in Cluster 3 ((Culemann et al. 2019 

- CCR2+IL1B+ infiltrating macrophages (1); Misharin et al. 2017 - Infiltrating monocytes (2)). 

Similarly, the shift from annotations representing more mature phenotypes (Thion et al 2018 - 

Adult 2 (7); Matcovitch-Natan et al. 2016 - Mature microglia A1 (6)); Culemann et al. 2019 - 

CX3CR1+ lining macrophages (2)), particularly in Cluster 5, suggests that the original tissue-

resident macrophages are replaced. Finally, MAGNET allows the user to determine how the genes 

in a given annotation distribute across the query gene lists. As an example, we visualized the gene 

set specific to Lung macrophages (4) from Lavin et al 2014 and found that nearly half the genes 

that overlap this dataset are in Clusters 5 and 6 (Fig 5.6D). Taken together, we demonstrated that 

MAGNET’s multiple query mode enables parallel comparison of gene lists to expand conventional 

enrichment results and leverage the latest macrophage research for a more complete picture of the 

underlying biology. 
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Fig 6. Running MAGNET with multiple query mode. A. Schematic of the 6 gene 

expression clusters defined in Koch et al 2018. Red in each row indicates the cluster(s) with the 

highest relative expression. B. Heatmap visualization from MAGNET showing enrichment of GO 

processes across the 6 clusters from Koch et al. 2018 using a custom user dataset with USER 

setting[139]. C. Enrichment of select MAGNET gene sets across the 6 clusters from Koch et al. 

2018 with INTERSECT setting. The color scale reflects p-values (-log10) whereas the size 

indicates the ratio of genes in each annotated gene set that overlap the 6 clusters from Koch et al. 

2018 
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Figure S5.3 Heatmap visualization from MAGNET with multiple query mode. The results 

show enrichment for all current datasets in multiple query mode of 6 gene expression clusters from 

Koch et al. 2018 with INTERSECT setting. 

 

5.4 Discussion 

The explosion of high-throughput genomic data has facilitated rapid developments in 

bioinformatic tools for gene set enrichment analysis in the past couple decades. The majority of 

available enrichment tools aim to be all-encompassing to maximize the ability to handle data across 

the full range of different biological experiments. However, given the breadth and depth of 

biological domains, it is difficult to achieve this goal and still return results that are relevant to 

specific questions. In macrophage biology, this issue is exacerbated as macrophages demonstrate 

an astounding plasticity and play a role in multiple developmental, homeostatic, and disease 

processes [29, 402]. The inability of conventional enrichment tools to capture this variability is 

illustrated by the preponderance of generic terms among the results. For example, many 

contemporary studies focus on interrogating macrophage heterogeneity within a tissue in a disease 

model compared with steady state [80, 97, 99, 284, 408]. These studies are commonly interested 

in differences in ontogeny and function between macrophage subpopulations (i.e., monocyte-

derived vs. tissue-resident). Thus, a tool that returns the term “inflammation” or “defense response” 

is unlikely to lead to meaningful biological insights. Since conventional gene set enrichment 

analysis is not designed for domain-specific research questions, their potential to foster cutting-

edge research is limited. 

 

We therefore designed MAGNET to address this issue by utilizing the vast amount of 
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annotated macrophage datasets available rather than standardized knowledge repositories. 

MAGNET represents an innovative approach to gene set enrichment analysis for domain-specific 

questions. Using Matcovitch-Natan et al. 2016 and Koch et al 2018 as examples, we demonstrated 

that MAGNET provides relevant and unique results when characterizing macrophage-related gene 

lists. Furthermore, MAGNET offers several novel functionalities that have not previously been 

incorporated into conventional enrichment tools including: multiple query mode, a gene search 

interface, alternate visualizations (heatmap and network), and the ability to upload custom dataset 

annotations. As an easily accessible online application with modifiable parameters, MAGNET is 

an approachable and flexible tool. We expect MAGNET to serve as a valuable addition to the 

bioinformatic workflow associated with genomic analysis in the field of macrophage biology.  

 

Because it is based on a manually curated database, MAGNET exhibits some inherent 

limitations. First, the selection and availability of datasets might lead in unintentional bias in the 

annotations towards certain tissues, disease states, and other comparisons. This shortcoming is 

somewhat ameliorated by enabling the user to upload their own dataset(s), allowing for meta-

analysis between any two experiments. In addition, manual curation means that the time required 

to incorporate a new dataset is the major bottleneck for scaling up the database. Due to differences 

in availability of data, some datasets are more difficult in process that others. As we continue to 

expand MAGNET, we will explore the possibility of automating the curation process using web 

scraping methods, with the goal of striking a balance between quality versus quantity. Finally, 

since the value of each dataset is dependent on the experimental and analytical approach of the 

original study, there may be variability in the relevance the output annotations. Moreover, different 

datasets may be associated with similar annotations (ex. tissue-resident macrophages in Lavin et 
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al., 2014 and Gautier et al., 2012), but result in divergent enrichment results. Thus, the user must 

use their best judgement to assess results and resolve any discrepancies. 

 

We plan to continuously optimize and introduce new functionalities to MAGNET. For 

example, we plan to include additional metrics to improve the interpretability of enrichment results. 

The Jaccard index, which provides an intuitive assessment of similarity between gene sets, would 

extend the multiple query mode by enabling comparison of all user-supplied query gene lists 

against an entire MAGNET dataset. Another possibility is to output an odds ratio that, unlike p-

values for which the magnitude should not be compared across tests, would provide a metric for 

ranking and prioritization of enriched annotations. In the current implementation, MAGNET may 

be used to annotate gene lists from experiments on other species by first converting into the murine 

orthologs. However, as the number of studies performed increases (for example, in humans), we 

intend to implement independent species-specific versions of the application. Furthermore, beyond 

gene sets, a similar approach based on published datasets could be used to annotate genomic 

regions, such as promoters and enhancers, as demonstrated by other tools [409, 410]. In the larger 

context, the software behind MAGNET could easily be adapted to other domains where 

conventional gene set enrichment tools are similarly limited. We envision that the introduction of 

MAGNET will catalyze the developments of similar and more targeted applications for different 

cell types, tissues, or fields, such as cancer and neurobiology.   
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Chapter 6. Concluding remarks 

6.1 Summary 

The development of NGS technology revolutionized the research of many biological domains, 

and the biology of macrophage is no exception. With their genetic blueprints being increasingly 

accessible and affordable, we now know that macrophages display remarkable diversity in their 

gene regulatory programs and functions, which are shaped primarily by their surrounding tissue 

environments. The introduction of single cell genomic assays further enables researchers to 

unbiasedly investigate and characterize the heterogeneity of macrophage populations that are 

previously thought to be homogenous within specific organs. However, the unprecedented 

throughput of NGS experiments also meant that datasets are now larger and more complex than 

ever. Rigorous development and application of novel bioinformatic algorithms is therefore 

essential to transform raw data generated from sequencing machines into interpretable biological 

insights. In this thesis, I provided examples on how integrative analysis of bulk and single cell 

RNA-seq data can contribute to our understanding of macrophage heterogeneity across different 

biological conditions.  

 

In Chapter 2, we uncovered the existence of distinct macrophage subsets residing within the 

synovial tissue. In Section 2.2, we first utilized scRNA-seq to define the four potential 

subpopulations. Guided by information from single cell data, the four populations are confirmed 

and isolated through FACS and subjected to bulk RNA-seq for more thorough characterization, 

revealing distinct gene regulatory programs. The ability to discover novel cell populations of 

scRNA-seq and the higher throughput and less noisy nature of bulk RNA-seq complement each 
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other well, making their combination a desirable strategy to investigate macrophage heterogeneity. 

It is important to emphasize that we did not define novel subsets based solely on the resulting 

single cell clustering labels, which have been the case in many published studies. Results from 

clustering algorithms should be treated with caution, as they often depend on user-supplied 

parameters and can easily lead to arbitrary grouping of cells. We therefore employed multiple 

methods, including computing cell-cell correlations, examining top marker genes, and automatic 

assignment of identities by external references to rigorously assess the quality of clustering and 

merge the ones that likely came from homogenous populations. Utilizing two mouse models of 

arthritis, we next documented the proportional changes of the four subsets and the convergence of 

their transcriptional signatures towards a monocytic phenotype during pathological conditions. 

Finally, we were able to project the characterized mouse macrophage subsets onto human arthritic 

patients by developing a novel computational framework based on gene set scoring. The 

correlations between macrophage subset proportions and disease severity in patients may inform 

on potential innovative therapeutic strategies that modulate the relative proportions of subsets. In 

Section 2.3, following up on the observation that steady state macrophage heterogeneity is 

disrupted under diseased conditions, we utilized a novel mouse model of arthritis (FLIP deletion) 

developed in house to investigate the dynamics of monocyte infiltration and their differentiation 

into synovial resident macrophages. Leveraging the power of RNA-sequencing and traditional wet 

lab experiments, we uncovered evidence of impaired differentiation into a distinct terminal subset 

in FLIP-/- mice. This particular macrophage subset exhibited transcriptional signatures indicative 

of protective phenotypes against chronic inflammation, again highlighting the roles of tissue 

resident macrophages in disease pathogenesis and their potential for being therapeutic targets.  
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In chapter 3, utilizing a similar strategy of performing scRNA-seq followed by FACS and 

bulk RNA-seq, we showed that cellular heterogeneity that is previously underappreciated extends 

beyond tissue resident macrophages. We identified and characterized two populations of synovial 

resident monocytes that differs in their localization relative to vasculatures. We provided evidence 

that they are long-lived and maintained independently from circulation by performing 

computational integrative analysis of monocytes from control and CCR2/NR4A1 KO mice. Finally, 

we demonstrated that extravascular synovial monocytes contribute to the development of 

inflammatory arthritis in a LFA1-dependent manner by examining their transcriptional profiles. In 

chapter 4, we shifted our focus away from the joint to another organ, liver. We employed scRNA-

seq to define three distinct macrophages across pediatric liver samples of BA and ALGS with 

distinctive transcriptional profiles. Efforts are currently underway to identify similarities and 

differences in these macrophage subsets across etiologies of cholestatic liver disease by 

investigating their counterparts in mouse model. In summary, these two chapters showcased the 

ability of single cell/bulk transcriptional profiling and computational analysis in advancing our 

knowledge of cellular heterogeneity across different cell and tissue types. 

 

After analyzing multiple macrophage transcriptional datasets in the preceding chapters, a 

recurring and essential step encountered in the workflow is to attribute biological significance to 

the identified genes of interest. However, current approaches that utilizes standardized knowledge 

repositories to perform gene set/pathway enrichment statistical tests often fails to produce results 

relevant to macrophage biology. Therefore, in chapter 5, I developed a web application called 

MAGNET for performing functional enrichment tests specifically for macrophage-related 

genomic data. The main motive behind the application is that expert-annotated gene sets in 
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published literature related to macrophage biology, which are often hidden in supplemental 

materials and underutilized, would be a more suitable choice as reference for functional enrichment 

tests than standardized repositories that attempts to encompass all facets of biology. We also 

introduced novel methods for visualizing enrichment results for multiple gene sets at once. It is 

envisioned that the introduction of MAGNET would encourage the development of similar 

applications for more targeted and improved functional enrichment analysis in other biological 

domains. 

 

6.2 Limitations and future directions 

 Even though the findings presented in this dissertation demonstrated the power of 

transcriptional profiling in investigating macrophage heterogeneity, it is not surprising that several 

overarching limitations exists. First of all, although the identification of tissue macrophage subsets 

in mouse models provided evidence of their differing functions in disease, their existence and 

pathogenic roles remains to be validated in humans. The novel algorithm of orthologous gene 

signature projection introduced in Chapter 2.2 showed potential in identifying human counterparts, 

but the small sample size (n=7) rendered it impossible to confidently investigate the functions in 

RA for each projected macrophage subset. Fortunately, as NGS assays become increasingly 

affordable and integrated with the standard workflows of patient tissue collection in clinical studies, 

we are optimistic that the amount of available sequencing data from human patients will increase 

substantially within the near future. Another issue in defining murine tissue macrophage subsets is 

the biological variations that exist between different mouse models, which can potentially alter the 

proportions and phenotypes of constituting cell populations, including macrophages. Differences 

in flow cytometry gating strategies also renders it challenging to compare and reconcile the 
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definitions of potential tissue resident macrophage subpopulations identified across different 

studies. For instance, it remains to be investigated how the four subsets identified in Chapter 2.2 

relates to the two resident subsets isolated in Chapter 2.3.  

 

Another major limitation in this dissertation is that biological processes entail a lot more than 

gene expression. Characterization of transcriptional landscapes is merely scratching the surfaces 

of the complex regulation operating behind macrophage heterogeneity. One of the major future 

direction, which is already underway in our group, is to employ other functional genomic NGS 

assays such as ATAC-seq [210] and ChIP-seq [411]. These two assays enable the mapping of 

epigenomic features, including open chromatin regions, promoter and enhancer locations, and 

binding sites of specific TFs, thus would allow us to infer the potential regulatory mechanisms 

underlying the diversified transcriptional profiles and functions of tissue macrophages more 

confidently. The recently introduced single cell versions of these epigenomic assays, scATAC-seq 

and scChIP-seq [412], can also be of great utility for interrogating the heterogeneity among 

macrophages. Another exciting potential application is spatial genomics, which is a newly 

developed technology that aims to profile the genomic information of single cells while 

simultaneously recording their relative localization within their native tissue environments [413]. 

Given the major roles of local environments in shaping the functional plasticity of tissue resident 

macrophages, employing spatial genomics can directly aid in elucidating the interactions between 

macrophages and the surrounding cells that potentially confer their identities. In summary, 

performing genomics assays that profiles different biological information and integrating their 

findings, also known as the “multi-omics” approach, can potentially enable us to gain an even 

clearer picture of how tissue resident macrophages function and interact with the surround 
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environments in both health and disease.  

 

Finally, although bioinformatics as a field has prospered thanks to the development of various 

high-throughput sequencing assays. The development of computational methods to handle the 

processing and interpretation of sequencing data is still in its infant stage, especially for single cell 

experiments. This leads to numerous analytical methods being developed for the same 

bioinformatic tasks, with no consensus on whether one is more superior over others. For instance, 

more than 20 software packages for annotating the identities of single cells have been developed 

[414], while over 40 algorithms, a staggering number, are available for tackling the problem of 

trajectory inference [415]. Therefore, albeit we executed rigorous and robust computational 

analyses throughout this thesis, it is definitely possible that slightly different results may arise if 

we switched out some components in the workflow. Efforts for benchmarking different 

bioinformatic algorithms often relies on either computationally generated references or the so-

called “gold-standard” datasets, where pre-determined labels are compared to results generated 

from algorithms being benchmarked [416]. Reference datasets generated in silico offer the 

advantage of being completely objective with known ground truths but cannot be trusted to emulate 

real biological variations. On the other hand, the “gold-standard” datasets, while representing real 

biological variations, is highly susceptible to selection bias and the fallacy of circular logic – the 

reference labeling are often determined by some of the methods being benchmarked. Therefore, I 

believe one of the most important future directions for the bioinformatics field is to strive for 

improved benchmarking datasets, both quantitatively and qualitatively. For quantitative 

improvement, central repositories that collect large amounts of benchmarking data can be very 

beneficial. Currently available examples include VariBench and VariSNP, where datasets of 
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validated human genetic variants are curated [417]. A similar application of transcriptomic datasets 

collaboratively maintained by the community would facilitate the streamlining and standardization 

of benchmarking efforts. The development of cross-dataset integration methods can also 

potentially aid in improving the power and robustness of benchmarking data by combining similar 

datasets into one. In regard to qualitative improvement, obtaining multi-omics information for each 

dataset by performing multiple genomic assays can possibly improve the labeling accuracy 

significantly. A major endeavor is being spearheaded ENCODE Consortium, with the goal of 

identifying and curating all functional regulatory elements in human genome. The emergence of 

the accompanying multi-omics data integration algorithms [418] also further assist in the creation 

of high quality “gold-standard” datasets. Collectively, collaborative efforts by the research 

community to improve the quantity and quality of benchmarking datasets is crucial for future 

development and evaluation of bioinformatic applications and algorithms.  

 

In summary, the incorporation of multi-omics NGS assays, development of novel algorithms, 

and improvement in benchmarking methodologies holds great promise to address the limitations 

discussed above and further revolutionize understanding of macrophage heterogeneity in humans. 
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