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ABSTRACT

System–Level Synthesis and Verification

Nikolaos Liveris

As device sizes decrease, more functionality can be placed in an integrated circuit. There-

fore, the design complexity of these circuits increases. To deal with complexity, designers

move to higher abstraction levels. Currently, the highest abstraction level is the system-

level. In our work we investigate the synthesis and verification problem at the system-level.

We examine ways to increase the energy efficiency of specific system-level designs.

Moreover, we propose an algorithm to retime a system-level description, so that its per-

formance becomes optimal. Retiming is a powerful synthesis operation that can be used

to change the schedule of a design. We investigate the optimization power of synthesis

operations, like retiming, and propose a sequence of synthesis operations that is complete

for the transformation of sequential circuits.

The verification problem is hard. Checking equivalence between two designs or check-

ing whether a design satisfies a given assertion is proven to have high computational

complexity in the general case. We describe ways to simplify the verification problem.

First, we show that the verification problem can be simplified by considering it during
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synthesis without restricting the optimization power of the synthesis operations. Then

we show how abstraction can enable the use of efficient automated verification tools.
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CHAPTER 1

Introduction

Over the last years transistor sizes have dramatically shrunk. This reduction enabled

designers to put more transistors and because of that more functionality on a single chip.

As a result, the complexity of the designs has increased. To deal with the increasing

complexity designers use abstraction, i.e., only the necessary details of the design are

considered before a specific design decision is made. All other information is abstracted.

System

Module

Gate

Circuit

Device

Figure 1.1. The different abstraction levels for a digital integrated circuit.

In Figure 1.1 the different abstraction levels that are used for digital integrated circuits

can be seen [75]. The lowest level is the device level at which the physical behavior of

the semiconductor devices is considered. Next is the circuit level at which the design is

represented as a set of interconnected transistors. At the gate level the building blocks

are gates and the transistor-level implementation of each gate is abstracted. At the next

abstraction level the basic building block is the module, e.g. an adder, or a multiplier.
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Finally, the highest abstraction level is the system level, at which the building blocks are

systems, e.g., processors, RAMs, or IP cores.

At each abstraction level design decisions are made that constrain the design space.

This process is called synthesis. Another way to describe synthesis is as the process

that produces a structural representation from a behavioral representation at each level

of abstraction [26]. The structural representation is a more detailed view of the design

and contains all the constraints added by the synthesis process. The behaviors of the

constrained design are a subset of the behaviors that are allowed by the initial description.

Therefore, the constrained design is called an implementation and the initial description

a specification at each abstraction level [54].

After synthesis the designer needs to certify that the result of synthesis is correct. This

process is called verification and in most cases it is much harder than synthesis. Verifi-

cation checks whether certain assertions are valid for the design, whether the constrained

design is equivalent to the initial design, or whether each behavior of the implementation

is a valid behavior of the specification. Abstraction is also critical for the verification task,

as we will see in subsequent chapters.

The characteristics of system-level descriptions vary based on the application domain,

the design restrictions, and the designer’s style. The system-level design space is called in

some cases a continuum [17]. In Figure 1.2 a graphical representation of the continuum

can be seen. The horizontal axis represents the abstraction level used for the data types

of the application, while the vertical axis represents the sequential abstraction.
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Encoding
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Figure 1.2. The System-Level continuum adopted from [17].

In the next two sections we introduce system-level synthesis (Section 1.1) and verifi-

cation (Section 1.2). In Section 1.3 we describe the related work in this field. Then in

Section 1.4 we give a roadmap of this thesis.

1.1. Synthesis at the System-Level

The highest-level of abstraction for digital circuits is the system-level. At this level

decisions are made for the execution of the processes of the system. Such decisions could

specify, for example, the time a process should be executed and the kind of resources that

are needed for the process’s execution. After those design decisions are made, the design

space is more constrained and the designer can move to a lower level of abstraction. When

done automatically, this task of constraining the design by making specific decisions is

called synthesis.

In Figure 1.3 a possible flow for system-level synthesis can be seen. The input is the

specification of the system in a high-level language, such as C,C++ [80], SystemC [71],



20

and some design requirements. The design requirements are associated with some of the

quality metrics of the design, e.g., performance, energy consumption, area.

SL -
Specification

Design
Requiments

Partitioning

Resource
Allocation/
Mapping

Scheduling

Communication
Synthesis

ArchitectureRTL Software

SL Synthesis

Figure 1.3. System-Level synthesis.
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Typical tasks that are executed during system-level synthesis are partitioning [29, 53],

resource allocation and mapping [82, 46], scheduling, and communication synthesis (Chap-

ters 2–4). First the specification is partitioned into processes with different characteristics.

The reason is that different synthesis approaches are used for processes with different char-

acteristics. For example, processes that are dominated by arithmetic operations can be

implemented in hardware, while processes with data-dependent behavior, which cannot be

predicted at compile-time, will be implemented in software. The second step is to allocate

computing and memory resources for these processes. Some of the processes are going to

be mapped to specific IP cores. During the next step, i.e., scheduling, the starting time

of each process is determined. During the communication synthesis the way the processes

communicate is defined.

The four system-level synthesis tasks are related and the results of one task affect

the design space of the others. The order in which these tasks are executed could vary

depending on the application and the requirements. Figure 1.3 shows one possible order.

The output of system-level synthesis is an RTL (Register Transfer Level) [26] de-

scription for the processes that are going to be implemented in hardware. Software is

generated for the processes that are going to be executed on programmable cores. More-

over, a description of the architecture is included in the output. The description includes

the processors or other resources that are needed and the communication architecture.

The communication architecture can be the definition of a bus architecture or a set of

point-to-point connections or a network topology.
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In our work we focus on scheduling, communication synthesis, and RTL generation.

The synthesis operations that we use are applicable to the structural representation of

the system-level description.

1.2. Verification at the System-Level

The result of synthesis is to produce another more constrained design whose behaviors

are a subset of the behaviors that the original design could have. It is important to be

able to certify that the result of synthesis is correct. This process is called verification

and is harder than synthesis.

For descriptions at different points of the system-level continuum (Figure 1.2) different

abstractions and verification algorithms can be used. Moreover, the verification approach

is different if equivalence between two designs or the validity of an assertion on a design

is checked.

The input to equivalence checking is two designs, one is the specification or golden

model and the second is the implementation or the result of synthesis. The purpose of

equivalence checking is to prove that the two designs have the same behavior for any

possible input or to provide a counterexample that shows the opposite. At the RTL, if

the registers of the two designs can be matched, combinational techniques can be used.

However, at higher abstraction levels at which we are not provided with a relation between

the state variables of the two designs, the verification approach is more complicated. The

general problem is PSPACE complete, as we will see in subsequent chapters.

The input to assertion checking is a design and a property to be checked. The property

could be as specific as a boolean condition over the value of a variable or could be as
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general as the temporal specification of a design. The verification algorithm checks that all

possible behaviors allowed by the design and its environment do not violate the assertion.

1.3. Related Work

Our focus for system-level synthesis will be on the scheduling and communication

synthesis steps. As input to the algorithms of those steps we will consider behavioral and

structural models that capture the relevant details of the system-level description and any

constraints imposed by the previous steps of partitioning and resource allocation. The

model we will use most frequently is the Synchronous Data Flow.

Synchronous Dataflow Graphs (SDFs) are considered a useful way to model Digital

Signal Processing applications [55]. This is because in most cases the portions of DSP ap-

plications, where most of the execution-time is spent, can be described by processes or ac-

tors with constant rates of data consumption and production. Moreover, efficient memory

and execution-time minimization algorithms have been developed for SDF graphs [12, 35].

Energy consumption is one quality metric for digital integrated circuits. The main

sources of energy consumption are dynamic and static power dissipation. Static or leak-

age power is expected to become the dominant power dissipation component for future

technologies [37]. Therefore, techniques to reduce the leakage power are needed.

Work on leakage reduction at the higher levels of design has been focused on replacing

cells or submodules of the design with ones with the same functionality but higher thresh-

old voltage (e.g. [47]). Although these techniques can lead to significant reductions, they

are not applicable to parts of the design that come as hard cores or when the available

time slack changes, even with a low frequency, e.g. by the user of the system. In these
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cases, techniques are needed that are adaptive to environment changes and do not require

resynthesis of IP cores. Such techniques include Dynamic Voltage Scaling [15], Adaptive

Body Biasing [48], and Power Gating [37]. In Chapter 2 we will present a technique that

uses power gating to reduce energy consumption.

Another quality metric of digital designs is performance. Most applications come

with tight throughput or latency constraints. Those constraints are dealt with during the

scheduling task. During that task synthesis operations are used to improve the perfor-

mance of the design. One of those operations, retiming, has been used widely in the past

to optimize the cycle time or resources of gate-level graph representations [57, 60, 88]. A

lot of work has been done on extending retiming on SDF graphs [70, 91]. More specifi-

cally, retiming has been proposed to facilitate vectorization [90] and to minimize the cycle

length of these graphs [70].

Govindarajan and Gao have proposed an algorithm to determine a non-blocking sched-

ule for an SDF graph for maximum throughput [35]. However, there are design cases in

which a non-blocking schedule is not feasible. This happens when a part of the applica-

tion’s behavior is determined dynamically at run-time, or when some of the application’s

processes share resources with higher-priority processes. These processes are normally

executed on a programmable processor, while the computationally expensive part of the

application is run on dedicated resources, has predictable execution time, and is conve-

niently modeled as an SDF. In case there are data dependencies between the SDF actors

and the processes executed on the programmable processors, a non-blocking schedule may

not be feasible. Then the blocking schedule with the minimum cycle length is equivalent

to minimum latency of the static part of the application (Chapter 3).
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O’Neil and Sha proposed an algorithm to reduce the clock cycle of a graph below a

threshold using retiming [70]. In Chapter 3 we propose an optimal algorithm for retiming

SDF graphs. The purpose is to minimize the length of the complete cycle of a SDF

graph. The algorithm produces better results than any existing approach and it is orders

of magnitude faster than O’Neil’s algorithm.

Retiming can be used in conjunction with another synthesis operation called resyn-

thesis. Resynthesis is an operation that changes the circuit structure without changing

the function of the combinational logic. There is a long history of investigations and de-

bates on whether a sequence of retiming and resynthesis is complete for any sequentially

equivalent transformation.

Malik [62] gave the first (partial) positive answer to this question. He proved that

retiming and resynthesis are complete for any state re-encoding, and for some other trans-

formations. Zhou et al. [89] provided the first negative answer by proving that some se-

quentially equivalent transformations cannot be done by retiming and resynthesis, which

also helped to discover and fix an error in Malik’s result [76]. The sweep operation, which

adds or removes registers not used by any output, is needed for these transformations.

However, it is an open question whether retiming and resynthesis with sweep are complete

for general sequential transformations. In Chapter 4, we provide a complete answer to

the open question.

Zhou et al. [89] also started an investigation on the complexity of retiming and

resynthesis verification problem. Since the general sequential equivalence verification is

PSPACE-complete, a different complexity category may indicate that the gap between

retiming and resynthesis and sequential transformation is big. Jiang and Brayton [39]
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later showed that the complexity of retiming and resynthesis verification is also PSPACE-

complete. We examine their proof and point out parts that are unclear. Based on those

we consider the membership of retiming and resynthesis verification an open question.

Despite its optimization power, the Retiming and Resynthesis (RnR) sequence is not

widely used due to the complexity of checking sequential equivalence [39] between the

initial and final design. There is a need, therefore, for efficient verification methods that

preserve the optimization power of the retiming and resynthesis sequence.

Van Eijk developed an efficient method for checking sequential equivalence between

two designs that is based on finding equivalent signals in the two circuits [85]. Jiang

et. al. showed that the method is complete for sequences of retiming and resynthesis

transformations with no more than one resynthesis step [40]. If more than one resynthesis

step is applied and the verification procedure shows that the outputs are not equivalent,

no conclusion can be drawn.

Ashar et. al. demonstrated that circuits with the Complete-1-Distinguishability (C-1-

D) property can be verified with an efficient and complete method [4]. In C-1-D circuits

each pair of distinct states produces different output values for some input and, therefore,

each state is distinguishable from any other in a single cycle. If one of the two circuits to

be checked for equivalence satisfies the C-1-D property, sequential equivalence checking

can be reduced to combinational equivalence checking. Not all circuits satisfy C-1-D and,

therefore, the authors developed a method to enforce this property by modifying the

structure of the circuit. However, a side effect of the modifications to enforce C-1-D is

that the optimization power of retiming and resynthesis is reduced.
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A complete method to check for sequential equivalence of two circuits without restric-

tions on the synthesis part is model checking, i.e., reachability analysis [23]. Starting with

the initial state of the circuits a forward traversal of the state space can be performed to

check whether a “bad state”, i.e., a state that shows the two circuits are not equivalent,

can be reached. During each iteration the method uses the next state relation to increase

the set of reachable states. In backward reachability analysis the process starts from the

set of bad states and checks whether an initial state is reachable using the inverse of the

next state relation. The number of iterations that this method requires to produce a

useful answer is generally hard to compute. Without this bound, if the set of reachable

states does not converge after a specific number of iterations, no conclusion can be drawn

for the correctness of the transformations.

To improve the efficiency of reachability analysis and reduce the number of iterations

without destroying completeness, a number of structural optimizations have been pro-

posed [50, 36]. For example, retiming can be used to reduce the number of variables

before the traversal starts. These techniques can be used in conjunction with the ideas

proposed in Chapter 5.

The approach we describe in that Chapter targets the equivalence checking of a pair

of circuits, one of which has been obtained from the other by a sequence of retiming and

resynthesis transformations. We extend the C-1-D property to C-k-D, where k ∈ N. A

circuit fulfills the C-k-D property if every two non-equivalent states can be distinguished

in k cycles or less.

In addition to model checking, theorem provers can be used for formal verification.

For theorem provers both the system and its desired properties are expressed as formulas
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in some mathematical logic and the theorem prover finds a proof from axioms of the

system. SVC [8] and its enhanced version CVC [81] are automatic theorem provers for first

order logic. PVS [72] combines decision procedures and model checking with interactive

proof. Theorem provers in contrast to model checkers can handle infinite state spaces but

generally require manual intervention and are hard to use.

CBMC [19] uses a system-level specification of the circuit, written in C, to verify the

RTL model. The techniques to capture the model are the same as in BMC approaches and

a bit-level SAT solver [67] is used to produce a counterexample or to prove the correctness

of the assertions.

In Chapter 6 we describe an alternative approach to CBMC for verifying properties

of an RTL description using its system level specification. The approach is orders of

magnitude faster than CBMC for computational intensive applications by sacrificing bit-

level accuracy, which may not be needed during the early stages of the verification process.

The back-end tool used in the framework is Mathematica, a well known commercial

symbolic analysis tool.

Even though using abstraction for the data types can speed up verification for some

designs, in general the large number of cores in a System-on-Chip can make verifica-

tion intractable. Because the number of cores is large, the algorithms developed for the

communication of those cores are parameterized, i.e., they work for any number of cores.

These algorithms are distributed and are executed by all cores to ensure cooperation when

resources are shared. In such cases, the SoC can be thought as a distributed system.

Automated methods for the verification of distributed systems can only be applied to

relatively small finite-state systems. However, most distributed algorithms are specified
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for an arbitrary number of processes. More specifically, the number N of processes present

in the distributed system is a parameter and the algorithm is expected to work for any

valid value of the parameter. We call these systems parameterized systems. An instance

of the parameterized system is the system built for a specific value of N . Although

automated methods, i.e., model checking, can be used for the verification of instances

with small number of processes, they can neither be efficiently applied to large instances

nor prove that all possible instances of a system are correct. In those cases abstraction is

necessary.

Using abstraction a finite-state system can be derived from a parameterized system.

We call the derived system the abstract system. If the correctness condition holds for the

abstract system, then it holds for all instances of the parameterized system. Since the

state space of the abstract system is finite, model-checking can be used to check whether

it satisfies the correctness condition.

A number of abstraction methods have been developed for high-atomicity parameter-

ized systems [21, 74, 9, 30]. High-atomicity parameterized systems are systems in which

the number of variables each process can read or write in one atomic step increases, as the

parameter N increases. Since for large N such communication operations become very

expensive, we focus on low-atomicity systems.

Our work targets a specific class of fault-tolerant systems; self-stabilizing systems. Self-

stabilizing systems are systems that automatically recover after any transient fault [27].

For those systems liveness properties, i.e., properties that specify that something good will

eventually happen, are more relevant than safety properties, i.e., properties that specify

that nothing bad will happen. This is because transient faults can bring the system in
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any arbitrary state, making all states in the state space reachable (Section 7.2). Since we

focus on self-stabilizing systems, we consider only abstraction methods for the verification

of liveness properties.

For the verification of liveness properties in low-atomicity parameterized distributed

systems two abstraction techniques have been developed: the method of invisible rank-

ing [33] and the method of control abstraction [52, 43]. The idea behind the method

of invisible ranking is to bound the number of processes needed to prove a correctness

property for a class of parameterized systems [33]. The approach can be used for the

verification of properties of the form 2(p→ 3r), i.e., for every state satisfying assertion

p there is a future state satisfying assertion r. It is not known how other liveness proper-

ties can be checked using this method. Moreover, in some cases the number of required

processes is large (128 for the dining philosophers problem).

An alternative approach is the method of control abstraction. The idea behind control

abstraction is to abstract away an arbitrary number of symmetric processes by using a

particular process called network invariant. Then the correctness property is checked in

the abstract system, which is composed of a small finite number of processes and the

network invariant [43]. There are two difficulties that have restricted the applicability

of this method. The first is that there is no automated method for the construction of

the network invariant. Existing automated approaches for the construction of network

invariants target only safety properties [58]. The second is that the network invariant

must have the same set of observable variables as the system of symmetric processes

abstracted by it. Because of this constraint, the usage of control abstraction has been

restricted to ring topologies of processes [45], in which each process reads the variables of
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only two neighbors. It has also been successfully applied on systems where the number of

shared variables does not increase with the number of processes. An example is a mutual

exclusion algorithm with all processes sharing only one semaphore [43].

In Chapter 7 we present an abstraction technique that builds on the theory of con-

trol abstraction. This is the first abstraction technique that can be used to prove the

correctness of low-atomicity, parameterized self-stabilizing systems, whose number of ob-

servable variables may increase with the number of processes in the system. The case

studies demonstrate that our abstraction technique is not trivial and can be applied to

distributed algorithms to which no other abstraction technique has been successfully ap-

plied.

The derived abstract system is relatively small and its state space does not increase

exponentially with the number of states of the abstracted symmetric processes, as it is the

case in [74]. The proposed abstraction technique handles both weak and strong fairness

constraints for the abstracted processes, as opposed to previous works [9]. Finally, because

it uses syntax manipulation, the complexity of the algorithms building the transition

relation is low compared to approaches that use decision procedures (MONA) [74, 9].

1.4. Roadmap of the Thesis

The goal of system-level synthesis is to constrain the behavior of the design, so that

its quality metrics are optimized. There exist several quality metrics for digital circuits

that depend on the intended usage of the system. In our work synthesis targets energy

consumption and performance as quality metrics.
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We present an algorithm for reducing the energy consumption of a system-level design.

The algorithm can be applied to pipelined designs and is used to define a schedule for

each pipeline stage. The energy consumption is reduced by increasing the number of

consecutive cycles each hardware unit is disconnected from the power line. The number

of switches from sleep to active mode for those units is also reduced. The approach is

presented in Chapter 2.

A new algorithm for improving the performance of a system-level design is described

in Chapter 3. The algorithm can be applied to systems with processes that have constant

production and consumption rate. This type of systems is very common in the signal

processing and communication domains. Our algorithm produces a static schedule with

the shortest running-time and is faster than any existing approach. The algorithm uses a

well-known synthesis operation called retiming [57] to improve the scheduling.

Most synthesis approaches are centered around specific synthesis operations, e.g., re-

timing. It is, therefore, interesting to investigate the power of those operations. In

Chapter 4 we examine the power of several synthesis operations and we prove that a

sequence of five operations is complete for any sequential transformation.

Even though system-level synthesis approaches can significantly improve the quality

metrics of a design, their adoption is hindered by the verification complexity. Designers

hesitate to use synthesis algorithms, unless they can verify their results. However, veri-

fication of sequential circuits is a hard problem. To simplify the problem we can modify

synthesis operations to provide hints to the verification procedure. Moreover, for some

application domains abstraction can enable the use of fast verification tools.
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Figure 1.4. The structure of this thesis.

In Chapter 5 we consider the combined synthesis and verification problem for sequen-

tial circuits. Without reducing the optimization power or complexity of synthesis, we can

simplify the verification procedure by enforcing specific properties on the design before

synthesis starts. Then equivalence checking of the original and the transformed design is

much faster in some cases.

In Chapter 6 we describe a new framework for verifying computation intensive appli-

cations. Computation intensive applications use a lot of arithmetic operations which are

not efficiently handled by bit-level verification procedures. We sacrifice bit-level accuracy,
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which may not be important at the system-level, to improve the running-time of verifica-

tion. The proposed framework is based on Mathematica [87], a well-known commercial

symbolic analysis tool.

In Chapter 7 we present a number of abstraction techniques that can enable the use of

model checking for parameterized systems. Parameterized systems have an arbitrary num-

ber of processes with the same behavior. The abstraction techniques target self-stabilizing

systems, i.e., systems that recover from any transient fault. Conditions of completeness

for the abstraction technique are also defined and its effectiveness is demonstrated on a

number of case studies.

Finally, in Section 8 we give our conclusions. In Figure 1.4 a flow chart of the work

presented in this thesis can be seen.
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CHAPTER 2

Energy Optimization of Pipelined System-Level Steaming

Applications

2.1. Introduction

Synchronous Dataflow Graphs (SDFs) are considered a useful way to model Digital

Signal Processing applications [55]. This is because in most cases the portions of DSP

applications, where most of the execution-time is spent, can be described by processes or

actors with constant rates of data consumption and production.

Energy consumption is one quality metric for digital integrated circuits. The main

sources of energy consumption are dynamic and static power dissipation. Static or leak-

age power is expected to become the dominant power dissipation component for future

technologies [37]. Therefore, techniques to reduce the leakage power are needed.

Work on leakage reduction at the higher levels of design has been focused on replacing

cells or submodules of the design with ones with the same functionality but higher thresh-

old voltage (e.g. [47]). Although these techniques can lead to significant reductions, they

are not applicable to parts of the design that come as hard cores or when the available

time slack changes, even with a low frequency, e.g. by the user of the system. In these

cases, techniques are needed that are adaptive to environment changes and do not require

resynthesis of IP cores. Such techniques include Dynamic Voltage Scaling [15], Adaptive

Body Biasing [48], and Power Gating [37]. We focus on the latter technique.
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Figure 2.1. System structure. At the first level of hierarchy the system is a
pipelined chain-structured graph. The processes (nodes) of the second level
can be independently power gated. Cross edges between pipeline stages are
implemented using buffers.

With power gating, a hardware module is shut down when it is idle. This way the

stand-by leakage of the module is reduced. The switching from active to sleep mode

and back to active has an energy penalty caused mainly by the loading of the nodes to

normal Vdd levels [37]. In this work we try to decrease energy consumption by reducing

the number of times the mode switch occurs.

Our approach is to try to find the number of consecutive iterations for each pipeline

stage of a chain-structured SDF graph. This problem is similar to vectorization [77], but

in our case instead of trying to maximize the consecutive number of executions, we try to

maximize the energy savings taking into account the energy penalty paid by adding more

buffers to each channel. Dynamic programming techniques have been used to determine a
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schedule for a chain-structured SDF, so that the memory requirements are minimized [68].

In our approach, the buffer requirements are increased, whenever this increase leads to a

reduction of the total energy consumption.

The throughput of the application does not change after applying our method. More-

over, our method guarantees that any latency increase does not cause data loss. In general

for streaming multimedia applications throughput constraints are important and less em-

phasis is put on latency [38]. Our technique is applicable only to streaming applications,

for which a latency increase is acceptable.

In Section 2.2 we explain the model we use to describe pipelined system-level appli-

cations. Section 2.3 defines the problem we try to tackle. In Section 2.4 the theoretical

issues of the problem are addressed, while Section 2.5 describes an algorithm that can be

used to solve it. Finally, in Sections 2.6 and 2.7 we present experimental results and draw

conclusions.

2.2. Model Description

In this section we describe the model we use for system-level pipelined applications.

Table 2.1 summarizes the definitions of the symbols used in this chapter. In Figure 2.1

the structure of the model can be seen.

2.2.1. Chain-Structured SDFs

In an SDF G = (V,E) each node represents a process and each edge a channel, in which

the tail produces data and the head consumes data. We assume a global clock for the

whole system. Functions p : E → N, c : E → N, and w : E → Z
+
0 represent the

production, consumption rates, and the number of initial tokens (delays) of each channel.
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Symbol Definition

qs number of executions (instances) of stage s in one complete cycle
p(i, i+ 1) number of tokens produced on cross edge (i,i+1) as a result of one

execution of stage si

c(i, i+ 1) number of tokens of cross edge (i,i+1) consumed as a result of one
execution of stage si+1

w(i, i+ 1) number of initial tokens (delays) on cross edge (i,i+1)
b(i, i+ 1) number of buffers on cross edge (i,i+1)
l(Gs) execution time in cycles for each instance of a pipeline stage s
l(v) the number of cycles process v ∈ Vs must remain active during the

execution of one instance of s
Esm(v) energy overhead for switching modes from active to sleep and back

to active for process v
∆P(v) power difference between active and sleep mode when process v is

idle
Lcc period of execution for a complete cycle of the pipeline (chain-

structured SDF graph)
Ls period of invocation for pipeline stage s, initially equal to Lcc

qs

xs number of consecutive instance executions of pipeline stage s, ini-
tially equal to 1

ρ quality metric of the solution, applicable only to unirate SDF graphs
Es(v) energy savings from a process v

Ep(i, i+ 1) energy penalty on cross edge (i,i+1)
Et(x̃) the total energy savings after subtracting the total energy penalty

on the channels for a solution x̃
N the set of natural numbers
Z

+
0 the set of non-negative integers (N ∪ {0})

Table 2.1. Definition of the symbols used in this chapter.

In order for an SDF to be executable with bounded memory, the system Γq̃ = 0 should

have non-trivial solutions, where Γ is the topology matrix of G [55]. The vector with the

minimum positive integers in the solution space, q̃, is called the repetition vector and each

entry represents the number of times the corresponding node should be executed during

each complete cycle of the graph. An SDF is called consistent if it has a repetition vector

and the system does not deadlock [73].
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A proper subset of E in the graph may not have either a tail or a head. These are the

input and output edges with which the SDF communicates with its environment.

In case all production and consumption rates are equal with 1, the graph is called

a unirate SDF. Otherwise, it is called a multirate SDF. A unirate SDF has a repetition

vector with all entries 1.

The subset of SDFs we are interested in can be represented in the first level of hierarchy

as a chain-structured directed multi-graph G = (S,E) [68] with nodes that are all executed

in parallel. We define G as a graph with |S| nodes, for which there are labels s1, s2, ..., s|S|,

such that each edge e ∈ E can be directed only from si to si+1 for any i. Therefore, there

can be multiple edges between two nodes, but edges can only connect nodes, whose labels

differ by one, in the direction from the smallest label to the greatest. We call these nodes

pipeline stages or stages and we call the edges between pipeline stages cross edges.

Properties of hierarchical clustering of SDFs are described in [73]. In our case we

assume the clustering has been done to satisfy an average throughput constraint for the

graph and to minimize the cost of pipelining on cross edges. Here we assume that the data

a stage consumes have to be available until the end of the stage’s execution. Moreover,

the memory to store the data produced by a stage should be available before the starting

time of that stage.

All input edges of the application SDF become cross edges, whose head is s1 and whose

tail is stage s0, which is external and we have no control over it. An external stage s|S|+1

is defined for the output edges, as well. Each stage s is already synthesized and has an

execution time of l(s) cycles.
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2.2.2. Processes

Each pipeline stage s can be represented by a directed graph Gs = (Vs, Es), where Vs is

the set of processes and Es is the set of edges (channels) between the processes.

Function l : V → N returns the number of clock cycles process v ∈ Vs must remain

active during the execution of s.

We assume that when a process v is idle, it can be in an active and power-hungry or

a sleep and power-efficient mode. The power difference is ∆P(v) = Pacm − Pslm , where

Pacm and Pslm are the power in active and sleep mode. Pac2slm(v) and Psl2acm(v) are

the average power consumptions during switching modes and tac2slm(v), tsl2acm(v) the

time periods needed for the switching. Then if v does not switch mode the total energy

dissipated in the slack time is:

Eac = ∆t · Pacm

while if it is switched to sleep mode the total energy dissipated is:

Esl = (∆t− tac2slm − tsl2acm) · Pslm + tac2slm · Pac2slm + tsl2acm · Psl2acm

The energy savings for switching a node v from active to sleep mode during some time

interval ∆t, in which the process is idle, are

Es(v) = Eac(v)− Esl(v)

= ∆t · (Pacm(v)− Pslm(v))

−Pac2slm(v) · tac2slm(v)− Psl2acm(v) · tsl2acm(v)

+Pslm(v) · tac2slm(v) + Pslm(v) · tsl2acm(v)

= ∆t ·∆P(v)− Esm(v) (2.1)
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where Esm, the energy penalty paid each time node v switches mode, is

Esm(v) = Pac2slm(v) · tac2slm(v) + Psl2acm(v) · tsl2acm(v)

−Pslm(v) · tsl2acm(v)− Pslm(v) · tac2slm(v)

We assume that Pacm ,Pslm ,Pac2slm ,Psl2acm ,tac2slm,tsl2acm are given for all nodes and we can

compute Esm from these values.

Note that Pac2slm and Psl2acm account for both the dynamic and static power. More-

over, we consider Esm constant, whenever ∆t is large enough so that ∆t ·∆P > Esm . If

any state registers are present in a process, they are not put in sleep mode, so that the

state of the process can be preserved.

While each stage is defined by its ability to be executed in parallel with other stages,

each process is defined by its ability to change mode independently of other processes1.

2.2.3. Communication Channels

Communication channels are represented by directed edges, which connect processes or

pipeline stages. Each edge can be implemented as a FIFO buffer. The amount of storage

required for the buffer is given by the maximum number of tokens b(e) at any time on

the edge, which is determined by the schedule of the SDF. Since we do not modify the

schedule inside a pipeline stage, we focus on the energy consumption of cross edges only.

The energy consumed on a cross edge is an increasing non-linear function of b(e) and

can be different for each edge, since the size of the tokens, the interconnect, and access

patterns may be different.

1Note that at this level each process represents a hardware unit. Since the graph Gs can have cycles and
because of the definition of l(v), our model does not prevent resource sharing.
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We use the symbol Ep(e, b(e)) for the static and dynamic energy consumed on the

memory implementing the channel e, if e requires memory space for b(e) tokens.

2.2.4. Scheduling and Throughput

A complete cycle or iteration of the graph consists of the execution of each stage s qs

times, where qs is the corresponding entry for s in the repetition vector. We say that

there are qs invocations or instances of s in one complete cycle of G. We denote si the

ith instance of a stage s. Since G runs for an infinite number of times, i ∈ Z+. For

completeness we include instance s0, which is not executed. Instance s0 is considered to

be completed before any other stage starts its first instance.

Static scheduling imposes an ordering on the execution of events. A parallel schedule

is a partial order on the set of the events. The partial order can be defined by a reflexive,

anti-symmetric, and transitive relation R of precedence on the events. We denote as

α � β or (α, β) ∈ R the fact that event α happens before β happens. If α and β are

not ordered by the relation, (α, β) 6∈ R and (β, α) 6∈ R, the two events can occur in any

order, even at the same time. An event can be the starting time or the ending time of the

execution of a node. We can extend this relation to the execution of instances of stages.

More specifically, we denote as αi ≺ βj the fact that the ending time of instance i of

stage α happens before the starting time of instance j of stage β. The relation ≺ is also

transitive.

The edges of the graph define precedence constraints that restrict the number of

available schedules that can be generated. Since all nodes (processes and stages) may

carry state from one iteration to the next ∀k ∈ 1..qv : vk−1 ≺ vk.
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The buffer size of a channel should be large enough to store the maximum number

of tokens present at that channel at any time. Suppose that ≺ defines a consistent and

admissible schedule, then:

∀(u, v) ∈ E, ∀i ∈ N, let jmax
∆
= max{j | j ∈ Z

+
0 ∧ vj ≺ ui}, then

b(u, v) = max
∀i

(i · p(u, v)− jmax · c(u, v)) + w(u, v) (2.2)

The above formula holds because during the ith instance of the producer (i− 1) · p(u, v)

tokens have already been produced and p(u, v) are being produced during that iteration.

Meanwhile, jmax instances of the consumer have already completed execution and, there-

fore, jmax · c(u, v) tokens have been consumed. To the total number of tokens present we

need to add the w(u, v) initial tokens.

We assume that the token production at the inputs is periodic. That means that if a

complete cycle is executed within Lcc, then for each input edge i the period is Li = Lcc

qi
,

where qi is the number of instances in a complete cycle. Note that, since the input graph

is assumed to be consistent, we do not need to worry about the existence of the qi values.

Each stage should have an average invocation period of Ls = Lcc

qs
. Therefore, l(Gs) ≤ Ls.

2.3. Problem Formulation

As we saw in Equation 2.1, energy can be saved by switching the operation mode of

some processes when enough idle time is available. One way to increase the energy savings

could be to consecutively execute the stage for an integer number of times x > 1 and then

allow its processes to be in sleep mode for a longer interval. This may increase the buffer
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Figure 2.2. Execution of the pipeline stage si in the initial configuration
(xi = 1).
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Figure 2.3. Execution of the pipeline stage si after the transformation
(xi = 3).

requirements for the input and output channels. However, the switching mode penalty

can now be shared across different instances for some of the processes of the stage.

The transformation can be described as replacing stage s by s′, whose firing rules can

be derived by multiplying by x the number of required inputs tokens for s. Moreover, s and

s′ have the same process graph, which for s′ is repeated x times for each invocation, and,

therefore, l(Gs′) = x · l(Gs). For the edges connected to s ∀(t, s) ∈ E : c(t, s′) = x · c(t, s)

and ∀(s, t) ∈ E : p(s′, t) = x · p(s, t).

It is easy to prove that the topology matrix of the graph G after the transformation

has the same rank and since the graph is acyclic, the graph is still consistent [55].
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An example is shown in Figures 2.2 and 2.3. In the first figure for stage si the x value

equals 1. Every L cycles si is idle for L − l(Gsi
) cycles. If this interval is long enough,

some of the processes of si can be switched to sleep mode. The penalty for switching from

active to sleep and back to active is Esm every L cycles for those processes. In Figure

2.3 the addition of 2 extra buffers allows si to execute for three consecutive times. The

idle time increases and potentially more processes can be shut down. Besides that, the

penalty for the mode switch Esm is paid once every 3 · L cycles for each process. If there

is a change in the input rate and the slack becomes zero, the two additional buffers can

be shut down and the stage can operate as in the first case. We assume that such changes

happen with a very low frequency, e.g. the changes are caused by the user of the system,

and there is a small set of predefined values for the input rate. For each of these values

we solve the following problem.

Given a multirate, consistent, hierarchical graph G = (V,E) with the first level of

hierarchy being a chain-structured multigraph, and a quality metric ρ, find the number

of consecutive executions xs ∈ N for each stage s, so that the energy savings are not less

than (1 − ρ) · Emax, where Emax are the maximum energy savings that can theoretically

be achieved by any solution to this problem.

2.4. Theoretical Exploration

In this section we reduce the search space of the solution. The solution space of the

problem is N
|S|. Using properties of the problem, the quality metric, and the energy

penalty on the additional buffers we find an upper bound on the x values, making the
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solution space finite. This upper bound affects the complexity of the proposed algorithm

and its running-time as shown in Sections 2.5 and 2.6.

3 L

3 l(Gs) v executing

Gs and v idle

Gs executing

l(v)

3L-3 l(Gs)

3L-3 l(Gs) + l(Gs) - l(v)=
3L - ( 2l(Gs)+l(v) )

Figure 2.4. Idle time for type-1 processes.
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Figure 2.5. Idle time for type-2 processes.

2.4.1. Energy Savings on Processes

Using Equation (2.1) we can explore the energy savings that can be obtained by any

process. Suppose that Gs is the graph representing pipeline stage s and xs is the number

of consecutive executions of Gs. We can distinguish two types of processes.

Type-1 Processes. Processes v ∈ Gs for which

(l(Gs)− l(v)) ·∆P(v) < Esm(v) (2.3)
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are Type-1 processes.

Process v is invoked xs times with a period of l(Gs) cycles (Figure 2.4). Let st(v) and

et(v), st(Gs) and et(Gs) be the start and end time of intervals l(v), l(Gs), respectively.

In the first iteration v can be invoked after st(v)− st(Gs) cycles and in the xsth iteration

it can be put to sleep mode for et(Gs)− et(v). Therefore, in the first and last iterations v

is in active mode for l(Gs) + l(v). In the rest xs − 2 iterations v is not switched to sleep

mode, since Inequality (2.3) suggests that this would cause an energy loss. Therefore, the

total time spent in active mode after xs · Ls cycles is (xs − 2) · l(Gs) + l(Gs) + l(v) or

(xs − 1) · l(Gs) + l(v) and the energy savings in this case are:

Es(v) = (xs · Ls − (xs − 1) · l(Gs)− l(v))∆P(v)− Esm(v)

Therefore, on average the energy savings in Ls cycles are:

Es(v) = (Ls −
(xs − 1)l(Gs) + l(v)

xs

)∆P(v)−
Esm(v)

xs

(2.4)

Lemma 2.1. The energy savings after Ls cycles of Type-1 process v ∈ Gs are upper

bounded by (Ls − l(Gs)) ·∆P(v).

Proof. : Follows from Equation 2.4 for x→∞. �

From Equation (2.4) we can express the energy savings difference obtained by increas-

ing xs from x1 to x2 as

∆Es(v)(x2, x1) =
x2 − x1

x2 · x1

(
Esm(v)−∆P(v) · (l(Gs)− l(v))

)
(2.5)

which is always greater than zero, since x2 > x1 and because of Inequality (2.3). Since

∆Es(v)(x2, x1) is positive, Es(v) is an increasing function of xs for all Type-1 processes.
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Type-2 Processes. Processes v ∈ Gs for which

(l(Gs)− l(v)) ·∆P (v) ≥ Esm(v) (2.6)

are classified as Type-2 processes.

In this case during each of the x − 1 executions of the pipeline stage Gs, the process

can be put to idle mode for l(Gs)− l(v) cycles.

Lemma 2.2. The energy savings of a Type-2 process v ∈ Gs are independent of xs.

Proof. Let xs be the number of consecutive executions of Gs. Then the energy savings

for process v in xs · Ls cycles are:

Es(v) = (xs · Ls − (xs − 1) · l(Gs)− l(v)) ·∆P(v)− Esm(v)
︸ ︷︷ ︸

savings due to idle time after the xsth ex. of Gs

+

+(xs − 1) ·
(
(l(Gs)− l(v)) ·∆P(v)− Esm(v)

)

︸ ︷︷ ︸

savings during the first xs − 1 ex. of Gs

= (xs · Ls − xs · l(v)) ·∆P(v)− xs · Esm(v)

which means that the energy savings in Ls cycles are

Es(v) = (Ls − l(v)) ·∆P(v)− Esm(v)

Therefore, the energy savings are independent of xs. �

For both Type-1 and Type-2 processes we need to multiply the above findings for Ls

by qs to obtain the energy savings in Lcc cycles.
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2.4.2. Energy Penalty on Edges

In Section 2.2.3 we saw that the energy penalty on an edge is a non-linear, increasing

function E(e, b(e)) with respect to the buffer size b(e). Therefore, it is important to study

how the buffer size of a cross edge is affected by the transformation, in order to estimate

the energy penalty.

Determining the minimum buffer sizes for a sequential deadlock free schedule has been

done in the past [2]. However, in our case we want to find the buffer sizes for a given

parallel schedule, for which we are allowed to make as few assumptions as possible. For

that reason we use formula (2.2).

A simplistic approach would be to consider the buffer size of a cross edge to be an

increasing function of the x values of the stages. Even though this approach is simplistic

it helps us draw some useful conclusions for the more general cases.

Unirate Case. If the input graph is a unirate graph, a more realistic approach would

be to consider the buffer size as the lcm function of the x values of the adjacent stages. In

the graph before the transformation is applied q̃ = [11...1] and each stage is invoked once

every L cycles. After the transformation the average rate of invocation for each instance

remains the same. In lcm(xi, xi+1) ·L cycles we know that si is executed lcm(xi,xi+1)
xi

times,

which correspond to lcm(xi, xi+1) instances before the transformation. Moreover, si+1 is

invoked lcm(xi,xi+1)
xi+1

times during the lcm(xi, xi+1) · L cycles. Therefore, if sk
i+1 ≺ sl

i, then

∃d1 ∈ N such that ∀l

k = (d
l

lcm(xi,xi+1)
xi

e − d1) ·
lcm(xi, xi+1)

xi+1
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Because of (2.2), b(e) = max∀l(l · p(e) − k · c(e)) + w(e). For l = d2 ·
lcm(xi,xi+1)

xi
, where

d2 ∈ N, b(e) is maximized:

b(e) = d2 ·
lcm(xi, xi+1)

xi
· p(e)− (d2 − d1) ·

lcm(xi, xi+1)

xi+1
c(e) + w(e)

Since after the transformation p(e) = xi and c(e) = xi+1,

b(e) = d2 ·
lcm(xi, xi+1)

6 xi
· 6 xi − (d2 − d1) ·

lcm(xi, xi+1)

6 xi+1
· 6 xi+1 + w(e)

⇒ b(e) = d1 · lcm(xi, xi+1) + w(e)

In this case the buffer size and, because of that, the energy penalty are increasing functions

with respect to the lcm(xi, xi+1).

Multirate Case. The multirate case is similar to the unirate case except that the entries

in the repetition vector need to be taken into account as well. Without the transformation,

stage si completes qi executions and stage si+1 completes qi+1 executions during one

complete cycle. After the transformation that is not necessarily true. However, for the

transformed graph we know that lcm(xi, xi+1, qi, qi+1) defines a period during which si

completes lcm(xi,xi+1,qi,qi+1)
xi

and si+1
lcm(xi,xi+1,qi,qi+1)

xi+1
executions. Solving as for the unirate

case, we can find that the buffer sizes, b(e) = d1 · lcm(xi, xi+1, qi, qi+1) + w(e) are an

increasing function of lcm(xi, xi+1, qi, qi+1).

Since in all the above cases the information that we have about each edge is that they

are increasing functions of b(e), we can collapse all edges between two stages to one. The

new function is given by: E
(i,i+1)
p =

∑

∀econnecting i to i+1Ep(e, b(e)). Function E
(i,i+1)
p is
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also an increasing function with respect to the buffer sizes on all channels between stages

i and i+ 1.

2.4.3. Energy Savings Limit and xmax

From the previous sections we can derive the formula for the total energy savings Et =

∑

∀s

∑

∀v∈Gs
Es(v) −

∑|S|
i=0Ep

(i,i+1). This is the function we want to maximize. In this

section we derive a bound on the x values of the stages to prune the search space of the

problem. We start again from the simplistic case assuming that the buffer sizes are an

increasing function of the xis and move to more realistic cases.

We denote as b(i) the buffer sizes of edges that connect stages i and i+ 1.

Let v ∈ Gs be a Type-1 process and

C(v)
∆
=

L ·∆P(v)− l(Gs) ·∆P(v)

Esm(v)−∆P(v) · (l(Gs)− l(v)))

a constant for that node that depends only on the input graph. Let

C(G)
∆
= min

∀v∈Type-1
C(v)

Then the following Lemma can be proved.

Lemma 2.3. If G is a unirate graph and b(i) = f(xi, xi+1) are increasing functions

with respect to both xi and xi+1, and x̃ = [x1x2...x|S|] is the optimal solution resulting in

maximum total energy savings Emax
t , then for any 0 < ρ < 1 and xmax = d 1

ρ·C(G)
e, there

exists x̃′ = [x′1x
′
2...x

′
|S|] with ∀i ∈ 1..|S| : 1 ≤ x′i ≤ xmax , for which the total energy savings

E ′
t are greater or equal to (1− ρ) · Emax

t .
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Proof. Starting with x̃ = [x1x2...x|S|] we can construct x̃′ = [x′1x
′
2...x

′
|S|] by letting:

x′i =







xi : xi ≤ xmax

xmax : xi > xmax

Suppose that Emax
t are the total energy savings obtained by x̃ and E ′

t are the total energy

savings obtained by x̃′.

Energy savings for all Type-2 processes are the same for x̃ and x̃′, since they are

independent of the x values (Lemma 2.2).

The values of b̃ = [f(x0, x1)f(x1, x2)...f(x|S|, x|S|+1)] are all greater or equal to the

values b̃′ = [f(x0, x
′
1)f(x′1, x

′
2)...f(x′|S|, x|S|+1)]. (The values of x0 and x|S|+1 cannot change

as stages 0 and |S|+1 are external). And since E
(i,i+1)
P (b(i)) is also an increasing function

of b(i), the energy penalty on edges for x̃′ are less or equal to the ones for x̃.

Therefore, the total energy for x̃′ is at least as much as for x̃ considering Type-2

processes and cross edges. The energy savings difference for Type-1 processes is the

upper bound of the energy difference Emax
t − Enew

t . For any stage si for which xi ≤ xmax

the energy difference is again zero. For each v ∈ Gsi with v being a Type-1 process and

xi > xmax , we have from Equation (2.5) that

Es(v, xi)− Es(v, xmax ) =
xi − xmax

xi · xmax

(Esm(v)−∆P(v) · (l(G)− l(v)))

for L cycles.
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We want Es(v,xi)−Es(v,xmax )
Es(v,xi)

< ρ, where ρ is a real number with 0 < ρ < 1, which denotes

the desired quality ratio, for all Type-1 processes v.

Es(v, xi)− Es(v, xmax )

Es(v, xi)
≤ ρ⇔

Lemma 1
⇔

Es(v, xi)− Es(v, xmax )

L ·∆P(v)− l(G) ·∆P(v)
≤ ρ⇔

Equation 2.5
⇔

xi − xmax

xi · xmax

(Esm(v)−∆P(v) · (l(G)− l(v))) ≤

(L ·∆P(v)− l(G) ·∆P(v)) · ρ⇔

C(v)=
L·∆P(v)−l(G)·∆P(v)

Esm (v)−∆P(v)·(l(G)−l(v)))
⇔

xi − xmax

xi · xmax

≤ ρ · C(v)⇔

⇔
1

ρ · C(v) + 1
xi

≤ xmax ⇔

xmax∈N
⇔ it is sufficient:d

1

ρ · C(v)
e ≤ xmax

where C(v) depends on the input graph. For xmax of the graph G we need to find

C(G) = min∀v∈Type-1C(v).

For that xmax the total energy savings E ′
t for x̃′ are (1− ρ) · Emax

t ≤ E ′
t. �

For example, if the designer chooses ρ = 0.05, we can find xmax from the input graph

and ρ. Then Lemma 2.3 states that there exists x̃′, whose entries are all less or equal to

xmax and the energy savings for x̃′ are E ′
t ≥ 0.95 · Emax

t .

Unirate Graphs. A similar approach can be followed for b(i) = fi(lcm(xi, xi+1)), where

for all i ∈ 1..|S|, fi : N→ N is an increasing function.
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Lemma 2.4. If G is a unirate graph, fi : N → N is an increasing function, b(i) =

fi(lcm(xi, xi+1)) for each cross edge (i, i+ 1), and x̃ = [x1x2...x|S|] is the optimal solution

resulting in maximum total energy savings Emax
t , then for any 0 < ρ < 1 and xmax =

(d 1
ρ·C(G)

e)2, there exists x̃′ = [x′1x
′
2...x

′
|S|] with ∀i ∈ 1..|S| : 1 ≤ x′i ≤ xmax , for which the

total energy savings are greater or equal to (1− ρ) · Emax
t .

Proof. First we assume that xi−1 ≤ xmax and xi+1 ≤ xmax and show how we can

replace xi of the solution x̃ by x′i ≤ xmax :

x′i =







xi : xi ≤ xmax

m · n : xi > xmax , xg ≤ m · n ≤ xmax

max (m,n) : xi > xmax ,m · n > xmax

d xg

m·n
e ·m · n : xi > xmax , xg > m · n

where m = gcd (xi−1, xi), n = gcd (xi, xi+1). The value xg is given by xg = d 1
ρ·C(G)

e,

and xmax = xg
2.

As before, Type-2 process energy savings are independent of the values of xi. For

Type-1 processes the choice of xg and the fact that x′i either is equal to xi or has a value

≥ xg implies that the energy savings of x̃′ are bounded from below by (1 − ρ) multiplied

with the energy savings of x̃ (Lemma 2.3).

Therefore, in order to prove the lemma, it is sufficient to show that lcm(xi−1, xi) ≥

lcm(xi−1′, xi′) and lcm(xi, xi+1) ≥ lcm(xi′, xi+1′).

It is easy to see that it holds for xi ≤ xmax . For xi > xmax we have:

i. if m · n > xmax , then x′i = max (m,n), and we can assume x′i = m without loss of
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generality. Then,

lcm(xi−1, x
′

i
) =

xi−1 · x
′

i

gcd (xi−1, x
′

i
)

=

xi−1· 6 m

6 m
= xi−1 < max (xi−1, xi) ≤ lcm(xi−1, xi)

lcm(x′

i
, xi+1) ≤ lcm(xi, xi+1)⇔

m· 6 xi+1

gcd (m,xi+1)
≤

k ·m· 6 xi+1

gcd (xi, xi+1)
⇔

m

gcd (m, l · n)
≤

k ·m

n
⇔

m · n

gcd (m, l · n)
≤ k ·m = xi

which is always true because

m · n

gcd (m, k · n)
≤

m · n

gcd (m,n)
≤ lcm(m, n) ≤ xi

as xi is a common multiple of both m and n. In this case m > xg as m · n > xmax = xg
2

and m < xmax as m = gcd(xi−1, xi), with xi−1 ≤ xmax .

ii. if xg ≤ m · n ≤ xmax , then x′i = m · n and

lcm(xi−1, x
′
i) =

xi−1 ·m · n

gcd (xi−1,m · n)
≤

xi−1 · x
′
i

m
≤

xi−1 · xi

m
≤ lcm(xi−1, xi)

The same way we can prove lcm(xi+1, x
′
i) < lcm(xi+1, xi)

iii. if m · n < xg , then x′i = d xg

m·n
e ·m · n

In this case:

lcm(xi−1, x
′
i) =

xi−1 · x
′
i

gcd (xi−1, x
′
i)
≤

xi−1 · x
′
i

m
≤

xi−1 · xi

m
≤ lcm(xi−1, xi)

The same way we can prove that lcm(x′i, xi+1) ≤ lcm(xi, xi+1).
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The proof so far works for the case of a single value xi > xmax with xi−1 and xi+1 less

or equal to xmax . If instead of a single value xi there is a number of consecutive values

xl+1, ..., xr−1 that are greater than xmax with xl, xr ≤ xmax , we follow the procedure

above using xl as xi−1 and xr as xi+1. The value x′i given by the procedure is the value

of all xl+1, ..., xr−1. From the above we know that lcm(xl, x
′
l+1) ≤ lcm(xl, xl+1) and

lcm(x′r−1, xr) ≤ lcm(xr−1, xr). For all other cross edges with l < k < r : lcm(x′k, x
′
k+1) =

x′i ≤ xmax ≤ lcm(xk, xk+1) since both xk and xk+1 are greater than xmax . Values xl and

xr always exist as x0 = x|S|+1 = 1. �

Multirate Graphs. For multirate graphs the buffer sizes depend on the q values. Using

a similar approach as for unirate graphs could result in describing xmax as a function of

q. The q values though can grow exponentially with the input graph [73] and, therefore,

a more general method is needed to derive xmax .

From Lemma 1 we can derive a bound on the energy savings that can be achieved.

Let Es(∞) be the sum of the savings for Type-1 processes when x goes to infinity, and

Es(1) when x = 1. Also let Ep(1) be the value of the energy penalty when x = 1.

Let ymax
i be the minimum value, for which the energy penalty becomes E

(i,i+1)
p (e, ymax

i ) ≥

Es(∞)−Es(1)+Ep(1). We know that increasing yi to a value greater than ymax
i can cause

only energy loss, since the savings cannot become greater than Es(∞) and E
(i,i+1)
p (e, yi)

is increasing with respect to yi. Therefore, any yi > ymax
i causes an energy penalty that

exceeds any energy savings obtained by the Type-1 processes.

Since the energy penalty for all edges is already given (most probably in form of

an array of values), binary search can be applied to each of the (|S| + 1) functions

E
(i,i+1)
p to find ymax

i . The binary search procedure can start with a very large value



57

Y as the maximum value for y that is determined by computational precision limits or

area constraints. We know that yi = lcm(xi, xi+1, qi, qi+1). Since we also have xmax
i ≤

lcm(xmax
i, xi+1, qi, qi+1) = yi and xmax

i ≤ lcm(xi−1, xmax
i, qi−1, qi) = yi−1, it holds xmax

i ≤

min (yi−1, yi). If for each stage i xmax
i = min (yi−1, yi), then xmax = max∀i(xmax

i) can be

chosen as the maximum value for the whole design. Any increase of x above that value

for any of the stages causes energy loss compared to the case, in which all x values are 1.

Lemma 2.5. For the optimal solution x̃ of the multirate problem the following property

holds: ∀i ∈ 1..|S| : 1 ≤ xi ≤ xmax .

Proof. Suppose ˜xini = [1 1 ...1]. Suppose that x̃ is the optimal solution and ∃xi ∈

x̃ : xi > xmax . Then from the above discussion it holds Et(x̃) < Et( ˜xini), which is a

contradiction. �

This method can be applied to a unirate graph as well, and, therefore, we use it in

conjunction with the approaches for unirate graphs described above. We use the minimum

of the two xmax values produced. The running time of the binary search method described

above is O(|S| · log Y ).

2.5. Dynamic Programming Solution

In this section we describe a dynamic programming algorithm which can determine

the x values for maximum energy savings given a quality metric. The algorithm is needed

because the size of the solution space is still large after bounding the x values with xmax .

Exhaustive search requires O(xmax
|S|) steps to find the x values for maximum energy

savings.
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Figure 2.6. Dynamic Programming Algorithm. The solution for subchain
(i, j) depends only on values xi−1 and xj+1. In a xmax

2 array the best
configuration of (i, j) is stored for each value combination of xi−1 and xj+1.

In Figure 2.8 the algorithm can be seen. The inputs are the graph which is partitioned

in pipeline stages and a quality metric in case the graph is unirate. After initialization,

the algorithm determines xmax using the procedures described in Section 2.4. The purpose

of the rest of the algorithm is to solve independently the problem for each subchain and

combine the solutions to find the optimal solution for the chain-structured graph.

The intuition behind the DP solution is that the values xi−1 and xj+1 are the only

external values that can affect the optimal solution for a subchain from stage i to stage

j. More specifically, if i, ..., j is a subchain with 1 ≤ i < j ≤ |S|, the best configuration

for this subchain, i.e. the vector of x values [xi, ..., xj] that provides maximum energy

savings, depends only on the x values of the stage exactly before the subchain, i.e., xi−1,

and the stage after the subchain, i.e., xj+1, (Figure 2.6). Therefore, an xmax
2 matrix

can be constructed storing the maximum energy savings that can be obtained for that

subchain for each value of the pair (xi−1, xj+1). Such a matrix can gradually be built

for all possible subchains of the problem. This array is denoted as es[|S|][|S|][xmax ][xmax ]
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in the algorithm of Figure 2.8. As an example, element es[i, j, xi−1, xj+1] holds the best

configuration for subchain starting at stage i and ending at stage j, when the x value for

stage i− 1 is xi−1 and for stage j + 1 it is xj+1.

After finding xmax the algorithm starts by creating the es array for subchains of length

0. The entries filled during this phase are the ones on the main diagonal of the simplified

array es of Figure 2.6. For each es[i][i] the xmax
2 matrix is built from the energy savings

for stage i and the energy penalty of both cross edges (i− 1, i), (i, i+1) for that stage. In

the second phase the algorithm fills the entries for subchains with two elements. Finally,

in the third phase the energy savings for all remaining subchains are found. The reason

for the separate treatment of subchains with two and more than two elements is to make

sure that the energy penalty for the same cross edge is not taken twice into account. The

maximum energy savings for the whole graph are stored at position es[1][|S|][1][1]. This

entry represents the whole chain with x0 = x|S|+1 = 1. As mentioned before, we assume

that stages s0 and s|S|+1 are external and we have no control over them. Therefore, their

x values remain 1. Array xbest[|S|, |S|, xmax , xmax ] stores the decision taken at each step

and information necessary to retrieve the optimal solution.

The algorithm searches all possible values from 1 to xmax for x, at each subproblem

and, therefore, it solves each subproblem optimally. Moreover, since the subproblems are

independent, the algorithm finds the solution with the maximum total energy savings for

all 1 ≤ xi ≤ xmax .

At each step the algorithm computes the energy savings and energy penalty using

functions Es and Ep. The function for the energy savings can be implemented as described

in Section 2.4. More specifically, during initialization, i.e. InitEs(G) step, we can find the
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Application CD-to-DAT K-means K-means
(multirate,#stages=3) (unirate, #stages=10) (unirate, #stages=3)

Input Rate 50% 25% 12.5% 11.1 % 8.33% 6.67% 33.33 % 25% 12.5%
Alg. Exec. (secs) 2.97 2.97 2.98 144.39 29.26 3.37 5.79 0.7 0.06

xmax 71 71 71 169 100 49 100 49 16
Savings Increase 15.17% 5.25% 2.27% N/A 107.31% 6.71% 900.38% 24.25% 0%

Table 2.2. Experimental Results for several input rates. The input rates are

expressed as a percentage of the worst case input rate. The increase in energy

savings is ”N/A” when the energy savings of power gating with x=1 for all stages

are 0.

energy savings for the Type-2 processes, which are independent of x and, therefore, we do

not need to recompute them during the iterations of the algorithm. For Type-1 processes

of each stage s we can use the following formula to find the energy savings for a specific x

Es(x) =
∑

∀v∈Gs

Ls ·∆P(v) −
x− 1

x

∑

∀v∈Gs

l(Gs) ·∆P(v) −
1

x

∑

∀v∈Gs

(l(v) ·∆P(v) + Esm(v))

It is clear from the equation above that all summations can be computed during the

initialization step (InitEs). Then Es can be computed in constant time for each new

value of x. It is assumed that the functions Ep are given by the user in the form of an

array and, therefore, the energy penalty for a pair of x values can be returned in constant

time. Consequently, the algorithm’s complexity is O(|S|3 · xmax
3 + |S| · log Y ) and its

memory space requirements are O(|S|2 · xmax
2).

Theorem 2.1. The solution found by the dynamic programming algorithm produces

total energy savings Ealg
t (xmax ), which are at least (1 − ρ) · Emax

t , if the energy penalty

at the cross edges (i, i+ 1) is an increasing function of both xi, xi+1 and xmax is given by

xmax = d 1
ρ·C(G)

e.
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Proof. From Lemma 3, we know that there is at least one solution for which ∀i, 1 ≤

xi ≤ xmax . for which Et ≥ (1 − ρ) · Emax
t . Since the algorithm produces the maximum

energy savings for all solutions with 1 ≤ xi ≤ xmax , E
alg
t ≥ Et ⇒ Ealg

t ≥ (1−ρ) ·Emax
t . �

Theorem 2.2. The solution found by the dynamic programming algorithm produces

total energy savings Ealg
t (xmax ), which are at least (1− ρ) ·Emax

t , if the energy penalty at

the cross edges (i, i + 1) is an increasing function of lcm(xi, xi+1) and xmax is given by

xmax = xg
2, xg ≥ d

1
ρ·C(G)

e.

Proof. Can be proven similarly to Theorem 1 using Lemma 4. �

Theorem 2.3. The solution found by the dynamic programming algorithm produces

total energy savings Ealg
t (xmax ) = Emax

t , if the energy penalty at the cross edges (i, i + 1)

is an increasing function of lcm(xi, xi+1, qi, qi+1) and xmax is given by the binary search

procedure described above for multirate graphs.

Proof. Let x̃ be the optimal solution. Then ∀i with 1 ≤ i ≤ |S|, it holds that

1 ≤ xi ≤ xmax (Lemma 5). Since the algorithm finds the optimal solution within that

space, it finds the optimal solution to the problem. �

2.6. Experimental Results

The algorithm was implemented as a C++ program taking consistent graphs as an

input and determining the x values for each pipeline stage. For the experiments we

normalized the power of all components using the static power of the 32-bit latch. The

static power of 32-bit output multipliers was set to 25 and the 32-bit cla adders 4 times

that of the latch. The static power of the decoding logic for the channels was considered
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at the same level as the static power of the latches. On the channels the dynamic power

increase with x, caused by the extra wiring and control, was considered 50% of the static

power increase. The switching mode overhead was considered equal with the energy

savings obtained by 10 cycle time slack.
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Figure 2.7. Energy savings obtained by our technique and power gating (red

and blue) compared to the savings obtained by applying only power gating (blue)

for several input rates of 3 applications: CD-to-DAT (left), 10-stage pipeline K-

means (middle), 3-stage pipeline K-means (right). The input rates are expressed

as a percentage of the worst case input rate below the name of the application.

We applied the algorithm on three pipelined architectures. The first is the CD to

DAT sample-rate conversion graph adopted from [68]. Each of the 3 SDF actors of the

multirate graph was considered a pipeline stage. The FIR filters were assumed to be 4-tap

filters implemented with multipliers. Upsampling, filtering, and downsampling units were

considered independent processes forming together one stage. So, in total there were 3

stages in the first level of hierarchy executing in parallel. The second application was the
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unirate 10-stage pipelined K-means clustering with euclidean distances adopted from [31].

The third was a 3-stage pipelined architecture for K-means clustering. In the latter case

the first two, intermediate four, and last four pipeline stages of the 10-stage pipelined

K-means were merged to form a 3-stage pipeline. Figure 2.7 shows the energy savings

obtained by our algorithm compared to the energy savings taken by applying power gating

only (all x values equal to 1). In all graphs a mode switch occurred for a process only if

the energy savings obtained by the switch exceeded the energy overhead Esm .

For each application we tried several input rates. As stated in the introduction we

assume that the set of input rates is predefined and changes in the input rates happen

with a low frequency (e.g. user-controlled). For higher input rates the idle time in each

complete cycle is shorter. Therefore, the energy savings obtained by power gating (all x

values equal to 1) are low or zero. For these cases applying the proposed technique has

a significant impact as seen from the last row of Table 2.2. As the input rate is reduced,

mode transitions occur less often. The energy consumption because of the mode switch

overhead becomes less significant and, consequently, the additional savings obtained by

the proposed technique decrease.

For the 3-stage pipelined K-means gains are produced in higher input rates than for

the 10-stage pipelined architecture. The reasons for this are that more Type-1 processes

are sharing the penalty paid on the cross edges of one stage, and that the slack for each

process is increased because the latency of each stage (l(G)) is longer. In Table 2.2 the

results are shown. Finally, in Table 2.3 the effect of the ρ value on running-time can be

seen. In this case the energy savings are the same for different ρ values. However, a higher
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Application 10-stage K-means 3-stage K-means
Input Rate 6.67% 25%

ρ 0.90 0.95 0.90 0.95
Alg. Exec. Time(sec) 3.37 351 0.7 44.1

xmax 49 225 49 196
Increase in En. Savings 6.71% 6.71% 24.25% 24.25%

Table 2.3. Effect of the ρ value on running-time.

ρ value offers a guarantee for the proximity to the optimal solution, whereas a lower ρ

value results in a shorter running-time.

2.7. Summary

In this chapter we presented an approach to reduce energy consumption using power

gating. An analysis framework was presented and a theoretical bound on the number

of consecutive iterations was derived for chain-structured pipelines. An algorithm was

developed that can give an optimal solution for the total energy savings. In the next

chapter we show how we can improve the performance of an application described as an

SDF graph.
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Algorithm DP-for x values

Input: A chain structured SDF graph G = (S, E) representing the pipeline

stages, a quality metric ρ which will be used if G is unirate, and

functions E
(i,i+1)
p (xi, xi+1) returning the energy overhead for cross edges

between stages i and i+1.

Output: Two arrays xbest [|S|, |S|, xmax , xmax ] and es[|S|, |S|, xmax , xmax ] from

which the optimal solution can be extracted.

InitEs(G);

xmax ← DetermineXmax(G,ρ);
for i ← 1 to |S| do // main diagonal d = 0

for xi−1 ← 1 to xmax do

for xi+1 ← 1 to xmax do

for xi ← 1 to xmax do

enew
s ← Ei

s(xi)− E
(i−1,i)
p (xi−1, xi)− E

(i,i+1)
p (xi, xi+1)

if (es[i, i, xi−1, xi+1] < enew
s ) then

es[i, i, xi−1, xi+1]← enew
s ;xbest [i, i, xi−1, xi+1]← xi

for i← 1 to |S| − 1 do // init step for d = 1
for xi−1 ← 1 to xmax do

for xi+2 ← 1 to xmax do

for xnode ← 1 to xmax do

// xnode represents xi and xi+1 in this loop

enew1
s ← es[i, i, xi−1, xnode ] + Ei+1

s (xnode)− E
(i+1,i+2)
p (xnode , xi+2)

enew2
s ← es[i+ 1, i+ 1, xnode , xi+2] + Ei

s(xnode)− E
(i−1,i)
p (xi−1, xnode)

enew
s ← max(enew1

s , enew2
s )

node ← (enew1
s > enew2

s )
if (es[i, i+ 1, xi−1, xi+2] < enew

s ) then

es[i, i+ 1, xi−1, xi+2]← enew
s ;xbest [i, i+ 1, xi−1, xi+2]← (node, xnode)

for d← 2 to |S| − 1 do //diagonal count
for i← 1 to |S| − d do

j ← i+ d
for k ← 1 to j − i− 1 do

for xi−1 ← 1 to xmax do

for xj+1 ← 1 to xmax do

for xi+k ← 1 to xmax do

enew
s ← es[i, i+ k − 1, xi−1, xi+k] + Ei+k

s (xi+k) + es[i+ k + 1, j, xi+k, xj+1]
if (es[i, j, xi−1, xj+1] < enew

s ) then

es[i, j, xi−1, xj+1]← enew
s ;xbest [i, j, xi−1, xj+1]← (i+ k, xi+k)

Return xbest , es;

Figure 2.8. Pseudocode describing the dynamic programming algorithm.
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CHAPTER 3

Performance Optimization of Synchronous Data Flow Graphs

3.1. Introduction

In Chapter 2 we introduced Synchronous Dataflow (SDF) Graphs and described an

approach to reduce energy consumption of system-level pipelines described as chain-

structured SDF Graphs. In this chapter we show a retiming algorithm to optimize the

performance of any application that can be described as a general SDF Graph.

SDF Graphs are considered a useful way to model DSP applications [55]. This is

because in most cases the portions of DSP applications, where most of the execution-time

is spent, can be described by processes or actors with constant rates of data consumption

and production. Moreover, efficient memory and execution-time minimization algorithms

have been developed for SDF graphs [12, 35].

Retiming has been used widely in the past to optimize the cycle time or resources

of gate-level graph representations [57, 60, 88]. A lot of work has also been done on

extending retiming on SDF graphs [70, 91]. More specifically, retiming has been proposed

to facilitate vectorization [90] and to minimize the cycle length of these graphs [70].

Govindarajan and Gao have proposed an algorithm to determine a non-blocking sched-

ule for an SDF graph for maximum throughput [35]. However, there are design cases in

which a non-blocking schedule is not feasible. This happens when a part of the applica-

tion’s behavior is determined dynamically at run-time, or when some of the application’s
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tasks share resources with higher-priority tasks. These tasks are normally executed on a

programmable processor, while the computationally expensive part of the application is

run on dedicated resources, has predictable execution time, and is conveniently modeled

as an SDF. In case there are data dependencies between the SDF actors and the tasks

executed on the programmable processors, a non-blocking schedule may not be feasible.

Then a blocking schedule for the SDF is necessary and the blocking schedule with the min-

imum cycle length is equivalent to minimum latency of the static part of the application

(Figures 3.1,3.2).

O’Neil and Sha proposed an algorithm to reduce the clock cycle of a graph below a

threshold using retiming [70]. We propose an optimal algorithm for retiming SDF graphs.

The purpose is to minimize the length of the complete cycle of a SDF graph. Two versions

of the algorithm are shown. Both produce better results than any existing algorithm.

Moreover, the second one is orders of magnitude faster than O’Neil’s algorithm.

In Sections 3.2 and 3.3 we present the basic properties of SDF graphs. An optimal

algorithm for minimizing the period of a blocking schedule for an SDF is described in

Section 3.3. Then in Section 3.4 the first version of the retiming algorithm is presented

and in Section 3.5 its correctness is proven. An improved version of this algorithm is

described in Section 3.6. Finally in Sections 3.8 and 3.9 the experimental results and

conclusions are presented.
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Figure 3.1. Initial SDF schedule.
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Figure 3.2. Improved
SDF schedule.

3.2. Synchronous Data Flow Graphs

A short description of Synchronous Data Flow graphs is given in Section 2.2. Here

we summarize their basic properties that we are going to use in this chapter. For a more

detailed description of the SDF properties the user should refer to the literature [55].

An SDF graph is a directed graph G = (V,E, d, p, c, w), in which d : V → R
+ is a

function giving the execution delay of a node, and p, c, w : E → N are functions which

give the production rate, consumption rate, and initial number of tokens of each edge.

Table 3.1 lists all these symbols with their definitions.

In this work only live and consistent SDFs are considered, which can execute without

deadlock and with finite memory for an infinite number of times. A necessary condition

for a graph to be consistent is

P0
∆
= ( ∀(u, v) ∈ E : qu · p (u, v) = qv · c (u, v) )
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We assume that computing resource constraints for a specific actor are captured by loops,

i.e. edges with the same node as head and tail. The number of delays of each loop

determines the number of actor executions that can occur concurrently. The production

and consumption rate of the loop are set to 1.

If an actor carries state there is a loop on the node representing the actor with p =

c = 1. The number of delays on the node denote the distance of the dependency in terms

of number of executions. As an example for an FIR filter the number of delays is 1,

since each instance execution depends on the previous one. Instances of the same SDF

node can execute concurrently as long as they do not violate self-dependencies and other

constraints imposed by the structure of the graph. The ordering of the produced output

tokens and consumed input tokens is taken care by the control mechanism of the edge.

The period for a gate-level graph [57] is defined by the longest path in the graph. In

that time all nodes must be executed exactly once. In a consistent SDF graph different

nodes can have different average invocation rates. The solution with the minimum positive

integers to the state equations gives the number of times each node needs to be executed

in a system period or complete cycle of the graph. In a blocking schedule complete cycles

of the graph cannot be overlapped. Therefore, the length of the complete cycle can be

considered the period of the graph. We consider only blocking schedules for SDF graphs.

3.3. Retiming Properties for SDF Graphs

3.3.1. Node r Values

In gate-level retiming [57] the r(v) value of a node v denoted the number of registers

moved from each output edge to the input edges of v.
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Retiming in SDF is applied on instance executions of a node v. Each instance execution

consumes c(u, v) tokens from each incoming edge (u, v) and produces p(v, z) tokens to each

outgoing edge (v, z). Increasing r(v) by one is equivalent to “canceling” the execution of

one instance of v. Therefore, the outgoing edges have their weights decreased by p(v, z)

and the incoming edges have their weights increased by c(u, v). For (u, v) ∈ E the number

of delays wr(u, v) after each retiming step is given by

wr(u, v) = w(u, v) + r(v) · c(u, v)− r(u) · p(u, v) (3.1)

Since for any valid retiming the final number of delays on each edge must be non-

negative,

P1
∆
= (∀(u, v) ∈ E : wr(u, v) ≥ 0)

must hold for any valid retiming.

It can be easily proven that any retiming solution with integer values satisfying the

above properties defines a new graph which belongs to the reachable space of the initial

graph [91].

3.3.2. Computing the Max-Length Path

The longest path computation in previous works was done either on the EHG (Equivalent

Homogeneous Data-Flow Graph) [70] or the precedence graph [35]. We show a way to

compute the longest path by using the original SDF graph.

If the repetitions vector of a graph is q = [q1, q2, ... , q|V |], then each system iteration

(or complete cycle of the graph) will include qv executions of SDF node v. We call these

qv instance executions of v.
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We know that since the edges implement FIFO channels, there exists an implicit

partial order for the executions of the instances of v. For each node v with k ∈ N and

1 < k ≤ qv:

t(v, k − 1) ≤ t(v, k) (3.2)

where t(v, k) is the arrival time at the inputs of the instance k of node v. In order to find

the maximum longest path of one complete cycle of the graph it is enough to find the

max∀v∈V (t(v, qv) + d(v)).

A recursion equation we can use for this purpose is

t (v, k) = max
∀(u,v)∈E

(t (u, l) + d (u)) (3.3)

where the l instance of node u is given by

l = d
k · c(u, v)− wr(u, v)

p(u, v)
e (3.4)

The above equations define an ASAP scheduling. Instance k of node v is executed im-

mediately after all the necessary tokens are present in the input FIFO channels. The

instances, on which k depends on, are found for each edge incoming to v by (3.4). For

the kth instance to be executed k · c(u, v) tokens must have been available on each chan-

nel (u, v) ∈ E. The lth instance of u node is the first instance that guarantees that

the wr(u, v) already present tokens together with the l · p(u, v) produced in the current

complete cycle reach this number.
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In (3.4), l can be less than or equal to zero. This means that the kth instance of v

node depends on the qu + l instance of the previous complete cycle. We require

∀u ∈ V, ∀l ∈ Z : (l ≤ 0⇒ t(u, l) + d(u) = 0)

This property makes the scheduling blocking. As instance k cannot start execution before

time 0, when the current complete cycle begins, this property prevents complete cycles

from overlapping.

We can make (3.3) weaker by replacing equality. Then the following property needs

to hold

P2
∆
=









∀v ∈ V,∀(u, v) ∈ E, ∀k ∈ Z :

Let l
∆
=dk·c(u,v)−wr(u,v)

p(u,v)
e in

(1 ≤ k ≤ qv)⇒ ( t(v, k) ≥ t(u, l) + d(u) )









The blocking schedule property is equivalent to

P3
∆
=

(
∀v ∈ V, ∀k ∈ Z : (k < 1) ⇒ ( t(v, k) = −d(v) )

)

P2 and P3 are more general and hold for any valid blocking scheduling instead of an

ASAP blocking scheduling of the instance nodes.

3.3.3. Optimal Period

For the period T of a blocking schedule of an SDF graph, it must hold

∀v ∈ V, ∀k ∈ Z : (1 ≤ k ≤ qv)⇒ t(v, k) + d(v) ≤ T
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Because of (3.2) the following property is necessary and sufficient

P4
∆
= (∀v : t (v, qv) + d (v) ≤ T )

for T to be the period of the schedule. The period T can be considered as a function of

the retiming vector r = [r1, r2, ... , r|V |], which ranges over R
+. For the optimal period

T (r) of a blocking schedule the following property holds

P5
∆
= (∀r′ : T (r) ≤ T (r′))

3.3.4. Problem Formulation

Given a consistent SDF graph G = (V,E, d, p, c, w) find a retiming r and minimum

complete cycle length T (r) that satisfy properties P1-P5.

3.4. Retiming Algorithm

In this section the retiming algorithm is described. The algorithm can be seen in

Figures 3.3,3.4, and 3.5.

The algorithm uses procedures get t and init t to find the arrival times. From P4 we

note that only the last (qth) instance of each node is important to find the period of the

complete cycle. Therefore, it is sufficient to compute ∀v ∈ V, t(v, qv) and the arrival times

of their dependencies. Procedure get t achieves that by recursively calling itself on the

dependencies of an instance node. Therefore, the procedure avoids computing the arrival

nodes of instance nodes that cannot change the arrival time of (v, qv) for any v ∈ V .
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Symbol Definition

qv number of executions (instances) of node v in one complete cycle
d(v) execution time for each instance of node v

p(u, v) number of tokens produced on edge (u, v) as a result of an exe-
cution of node u

c(u, v) number of tokens of edge (u, v) consumed as a result of an exe-
cution of node v

w(u, v) number of initial tokens (delays) on edge (u,v) in the input graph
r(v) retiming value for node v

r vector 1× |V | containing the retiming values for all nodes of the
graph

wr(u, v) number of delays on edge (u, v) after r has been applied to the
graph

t(v, k) arrival time for the instance k of node v, the time when the
tokens for the kth instance are available ∀(u, v) ∈ E

T latency of a complete cycle of the SDF graph, equals the period
of a blocking schedule

N the set of natural numbers including 0
Z the set of integers

R
+ the set of positive real numbers, which are greater than 0

Table 3.1. Definition of the symbols used in this chapter. Some of these
symbols have already been defined in Chapter 2, but we repeat them here
for the reader’s convenience.

The procedure avoids recomputation of the arrival times of the same instance nodes

by maintaining an array t[|V |, qv]. This array holds the arrival times of the nodes already

computed. Initially, the entries of this array are set to −∞ (could be any illegal number)

by procedure init t . Any computed arrival time is stored in the array. Arrival times are

only computed if the value in the array is −∞, or else the already computed value is

returned.

Property P3 is preserved by the first two lines of procedure get t .

By implementing get t as a memory function working directly on the SDF, the expen-

sive construction of an EHG or a precedence graph is avoided.
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Restricting the computation of the arrival times to only those instances that can

affect the period has an effect on the properties discussed above. More specifically, it is

equivalent to relaxing P2 to be valid only for the the qth instance of each nodes and its

dependencies. It is easy to show though that for any result using these arrival times we

can obtain arrival times for all node instances that validate P2 using an ASAP algorithm.

For efficiency reasons, however, the algorithm does not compute the arrival times for all

nodes in each iteration. Predicate P2 can be replaced by a weaker predicate P2′. P2′ is

true, whenever for the arrival times obtained there exists an algorithm S to compute the

rest of the node instance arrival times, such that P2 can be validated

P2′
∆
= (∃S : P2)

With the arrival times obtained by get t , predicate P2′ is true.

The algorithm in Figure 3.5 starts by initializing the memory function elements for

all arrival times to −∞. Then it sets ∀v, r(v) = 0 and computes the arrival times for all

(v, qv). After finding the maxt = max(t(v, qv) + d(v)), it sets Tstep = maxt and enters the

while loop. In each iteration of the while loop, r(vn) is increased by 1, where vn is the

node for which maxt = t(vn, qvn
) + d(vn) in the previous iteration. If maxt < Tstep , then

Tstep becomes equal to maxt and the algorithm tries to find another r with T (r) < Tstep .

Each time an r-value changes the algorithm recomputes the arrival times using the

memory function. This way after each r change the algorithm keeps predicates P2′ and

P3 invariant. P4 is always satisfied by maxt and the current iteration’s r. Therefore, it

is satisfied by (ro, Tstep) when the algorithm exits.
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In order, to understand the reason P1 is kept invariant as well, we have to refer to

(3.4). An edge (v, z) can have w′
r(v, z) < 0 if before the change of r(v) to r(v) + 1, there

were wr(v, z) < p(v, z) tokens. But in that case

lv = d
qz · c(v, z)− wr(v, z)

p(v, z)
e

P0
= d

qv · p(v, z)− wr(v, z)

p(v, z)
e

≥ d
qv · p(v, z)

p(v, z)
e = qv

lv≤qv
⇒

lv = qv

But that means that (z, qz) instance can only start after (v, qv) has completed execution

and, therefore,

t(z, qz) + d(z) > t(z, qz) ≥ t(v, qv) + d(v) = maxt (3.5)

which is a contradiction. P1 is also an invariant of the algorithm. Only property P5

may not be true after initialization and becomes true upon termination of the while loop

algorithm, as proven in the next section.

proc init t(v,k)
for each v ∈ V

for each k ← 1 to qv
t[v, k]← −∞;

endfor;

endfor;

Figure 3.3. Procedure for initializing the arrival times.

3.5. Algorithm Correctness

In this section the correctness of the algorithm is proven. Our analysis is restricted

to strongly connected graphs. In Section 3.7 it is shown how to extend the approach
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proc get t(v,k,r)
if (k < 1) then

return −d(v);
fi;

if (t[v, k] 6= −∞) then

return t[v, k];
fi;

maxt← −1;
for each (u, v) ∈ E

l ← dk·c(u,v)−wr(u,v)
p(u,v)

e;

t1 ←get t(u,l)+d(u);
if (maxt < t1) then

maxt← t1;
fi;

endfor;

t[v, k]← maxt;
return t[v, k];

Figure 3.4. Procedure for getting the arrival time of a node.

to graphs with input/output channels, sources and sinks. Properties of the solution of

the problem are proved in Section 3.5.1. Based on these properties we prove the two

termination conditions and the correctness of the algorithm (Sections 3.5.2, 3.5.3).

3.5.1. Analysis

In this section we analyze the properties of strongly connected SDF graphs. The main

results of this section are Theorem 3.1 and Lemma 3.5. Theorem 3.1 provides a justifica-

tion on the algorithm’s choice for the node to be retimed and is used in the proof of the

optimality of the algorithm. Lemma 3.5 describes the nature of the possible solutions.

The definitions of a dependency walk and a critical dependency walk provide the neces-

sary concepts for understanding the proofs. Finally, Lemmas 3.1–3.4 are used in the proof

of Theorem 3.1.
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Algorithm SDF Retiming

Input: An SDF graph G = (V,E, d, p, c, w).
Output: A pair (r, Tmin) which represents an

optimal retiming r satisfying minimum

complete cycle execution time Tmin.

maxt← 0;
init t();

for each v in V do

r(v)← 0;t(v, qv)← get t(v,qv);
if t(v, qv) + d(v) > maxt then

maxt← t(v, qv) + d(v);vn ← v;
fi;

endfor;

Tstep ← maxt;
while

(
(∃v : r(v) < qv) ∧ ( 6 ∃v : r(v) > 2 · qv · |V |)

)
do

r(vn)← r(vn) + 1;
init t();

for each v in V do

t(v, qv)← get t(v,qv);
if t(v, qv) + d(v) > maxt then

maxt← t(v, qv) + d(v);vn ← v;
fi;

endfor;

if maxt < Tstep then

ro ← r;
Tstep ← maxt;

fi;

endwhile;

Return (ro, Tstep);

Figure 3.5. Pseudocode describing the first version of the retiming algorithm.

By using the ordered pair (v, l) we denote a node v and the instance number l, for

which 1 ≤ l ≤ qv.

Lemma 3.1. Let (u, v) be an edge in E, 1 ≤ lv ≤ qv, and

lu
∆
= d

lv · c(u, v)− wr(u, v)

p(u, v)
e
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Figure 3.6. An example of a dependence walk.

There is a dependency relation between node instances (u, lu) and (v, lv), if and only if

1 ≤ lu ≤ qu.

Proof. If there is a dependency relation, then execution of (v, lv) can only start in

the current complete cycle after the execution of (u, lu) has completed. Assume lu > qu,

then node instance (u, lu) belongs to a future complete cycle and (v, lv) must wait for

(u, lu) execution. This is a contradiction as we assume that the scheduling is blocking

and complete cycles do not overlap. Therefore, lu ≤ qu holds. Now assume lu < 1, then

(u, lu) belongs to the previous complete cycle. When the current complete cycle starts,

execution of (u, lu) has already been completed. Therefore, no dependency exists in the

current complete cycle between (u, lu) and (v, lv), which is a contradiction. Consequently,

1 ≤ lu ≤ qu holds.

Assume that 1 ≤ lu ≤ qu. Then by Equation 3.4 node instance (v, lv) has to wait for

the completion of (u, lu) for the necessary tokens to be created in the current complete

cycle. Therefore, there is dependency relation between (u, lu) and (v, lv). �
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Definition 3.1. A dependence walk

W = (v0, l0)→ (v1, l1)→ ...→ (vn, ln)

is a walk in the SDF graph G in which the execution of (vi, li) can only start after the

execution of (vi−1, li−1) has been completed for all i, 0 ≤ i < n.

That means that there is a dependence relation between every two consecutive node

instances in the dependence walk.

For each (vi, li) it holds that t(vi, li) ≥ t(vi−1, li−1) + d(vi−1). Also note that in W

there can be multiple appearances of the same SDF node with a different label each time

(Figure 3.6). That means that there could be (vi, li) and (vj, lj) with vi = vj and li 6= lj.

Moreover, in W an SDF edge may be used multiple times to define a dependency. From

now the term walk denotes a dependence walk in the SDF graph.

Definition 3.2. A critical walk is a walk for which

∀i : (1 ≤ i ≤ n)⇒ (t(vi, li) = t(vi−1, li−1) + d(vi−1))

and t(v0, l0) = 0.

For a critical walk the first node starts exactly at time 0, which is the beginning of the

complete cycle. All other nodes start exactly at the time their predecessor in the walk

has completed execution.
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Lemma 3.2. Suppose W = (v0, l0) → ... → (vn, ln) is a critical walk and t(vn, qn) +

d(vn) = T (r) for a retiming vector r, then for any retiming vector r′ for which a depen-

dence walk W ′ = (v0, l
′
0)→ ...→ (vn, l

′
n) exists, T (r′) ≥ T (r) holds.

Proof. Since W ′ is still a valid walk in the graph, each edge in it specifies a depen-

dency. Therefore, the following property holds

∀i : ( 0 ≤ i < n )⇒ ( t′(vi+1, li+1) ≥ t′(vi, li) + d(vi) )

For the first node instance of the walk t′(v0, l
′
0) ≥ 0 = t(v0, l0). If for k, t′(vk, lk) ≥

t(vk, lk) holds, then for k + 1

t′(vk+1, lk+1) ≥ t′(vk, lk) + d(vk) ≥ t(vk, lk) + d(vk) = t(vk+1, lk+1)

So, by induction t′(vn, ln) ≥ t(vn, ln), which implies T (r′) ≥ T (r). �

Lemma 3.3. Suppose W = (v0, l0) → ... → (vn, ln) is a dependence walk. Let u be

any node, such that ∀i ∈ 1..n : vi 6= u, i.e. none of the node instances in W is a node

instance with u. Then by increasing the r value of u, W remains a dependency walk in

the graph.

Proof. If r(u) changes value, the number of weights only on edges, which are incoming

or outgoing to u, will change. Since for all consecutive node instances (vi, li) and (vi+1, li+1)

in W , u 6= vi and u 6= vi+1, none of the edges of W has their wr(vi, vi+1) modified.

Therefore, from Lemma 3.1, the dependence relations between the node instances in

W = (v0, l0) → ... → (vn, ln) are preserved. Consequently, W is still a dependence walk

in the graph. �
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The following lemma is about the case of increasing the r value of any node of the

walk, except the last node. More specifically, it states that if we increase the r value of

any node u, such that there exists node instance (u, lu) in W , but u 6= vn, a walk with

the same number of elements and the same nodes will exist in the graph.

Lemma 3.4. Suppose W = (v0, l0) → ... → (vn, ln) is a dependency walk. Let u be

any node in V such that there exists an node instance (u, lu) in W, but u 6= vn. If the

r-value of node u is increased by ∆ru, another dependency walk

W ′ = (v0, l
′
0)→ ...→ (vn, l

′
n)

exists in the graph with

l′i =







li : vi 6= u

li + ∆ru : vi = u
(3.6)

Proof. We are going to start from node instance (vn, l
′
n) = (vn, ln) and walk backwards

by induction to prove that W ′ exists. For vn the above relation holds, since vn 6= u and

l′n = ln by the way instance node (vn, l
′
n) was chosen.

Suppose that it holds for node instance (vi, l
′
i) with i ∈ 1..n, then we show that it

holds for node instance (vi−1, l
′
i−1), for which vi−1 is the node before vi in W and l′i−1 is

instance of node vi−1, on which (vi, l
′
i) depends, as given by (3.4). In the proof we use

(i− 1, i) to denote the edge (vi−1, vi).

For vi−1 and vi there are 4 cases:

Case 1: vi−1 6= u ∧ vi 6= u

In this case l′i = li by the induction assumption and wr(i − 1, i) = w′
r(i − 1, i), since

r′(vi−1) = r(vi−1) and r′(vi) = r(vi). Because of (3.4), that implies l′i−1 = li−1.
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Case 2: vi−1 = u ∧ vi 6= u

In this case l′i = li by the induction assumption and w′
r(i−1, i) = wr(i−1, i)−∆ru·p(i−1, i).

Then

l′i−1 = d
l′i · c(i− 1, i)− w′

r(i− 1, i)

p(i− 1, i)
e

= d
li · c(i− 1, i)− wr(i− 1, i) + ∆ru · p(i− 1, i)

p(i− 1, i)
e

= d
li · c(i− 1, i)− wr(i− 1, i)

p(i− 1, i)
e+ ∆ru

= li−1 + ∆ru

Case 3: vi−1 6= u ∧ vi = u

In this case l′i = li + ∆ru by the induction assumption and w′
r(i − 1, i) = wr(i − 1, i) +

∆ru · c(i− 1, i). Then

l′i−1=d
l′i · c(i− 1, i)− w′

r(i− 1, i)

p(i− 1, i)
e

=d
(li + ∆ru) · c(i− 1, i)− wr(i− 1, i)−∆ru · c(i− 1, i)

p(i− 1, i)
e

=d
li · c(i− 1, i)− wr(i− 1, i) + ∆ru · c(i− 1, i)−∆ru · c(i− 1, i)

p(i− 1, i)
e

=li−1

Case 4: vi−1 = u ∧ vi = u

In this case l′i = li + ∆ru by the induction assumption. The edge in the SDF graph that

models this dependency is a loop (u, u). Since the production rate of such an edge is equal
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to the consumption rate, it holds

w′
r(i− 1, i) = wr(i− 1, i)− p(i− 1, i) ·∆ru + c(i− 1, i) ·∆ru

= wr(i− 1, i)

Then

l′i−1 = d
l′i · c(i− 1, i)− w′

r(i− 1, i)

p(i− 1, i)
e

= d
(li + ∆ru) · c(i− 1, i)− wr(i− 1, i)

p(i− 1, i)
e

But because p(i− 1, i) = c(i− 1, i), it holds that

l′i−1 = d
li · c(i− 1, i)− wr(i− 1, i) + ∆ru · p(i− 1, i)

p(i− 1, i)
e

= li−1 + ∆ru

As we note in all cases, the l′i−1 as given by (3.4) satisfies (3.6). For 0 ≤ i ≤ n,

l′i−1 ≥ li−1 ≥ 1 holds. Since the increase of the r(u) value should not violate P1, (∀(u, v) ∈

E : w′
r(u, v) ≥ 0) ⇒ (∀(u, v) ∈ E : (u 6= v) ⇒ (wr(u, v) ≥ p(u, v) · ∆ru)). Because of

(3.4), this implies

∀i ∈ 0..(n− 1) :

(
( (vi = u) ∧ (vi+1 6= u) ) ⇒ ( li ≤ qu −∆ru )

)

l′i=li+∆ru

⇔ ∀i ∈ 0..(n− 1) :

( ( (vi = u) ∧ (vi+1 6= u) ) ⇒ ( l′i ≤ qu ) )
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For the case vi = u and vi+1 = u, since it holds that vn 6= u, there exists node vj such

that for all k ∈ j..n, vk 6= u. Suppose vj−1 = u, then l′j−1 ≤ qu. That implies that for all

i, with i < j and vi = u, li < qu holds. Consequently, for each vi = u, 1 ≤ l′i ≤ qu, and,

therefore, W ′ exists. �

Theorem 3.1. Suppose for a retiming r that t(vn, qn) + d(vn) = T (r). If ∃ r′ such

that T (r′) < T (r) and ∀v, r′(v) ≥ r(v), then r′(vn) > r(vn).

Proof. Since t(vn, qn) + d(vn) = T (r), there exists a critical walk W = (v0, l0) →

... → (vn, ln) with t(v0, l0) = 0. Suppose r′(vn) = r(vn). The transition from r to r′

on the graph can be done by a sequence of transformation increasing the value of one

node u ∈ V − {vn} at a time. However, after each of these transformations a walk

W ′ = (v0, l
′
0) → ... → (vn, l

′
n) exists in the graph, as shown in Lemmas 3.3 and 3.4.

Therefore, and because of Lemma 3.2, T (r′) ≥ T (r) which is a contradiction. �

Lemma 3.5. If r is a retiming solution such that ∀v ∈ V : t(v, qv) ≤ T (r), then

∀k ∈ Z the retiming vector r′ = [r1 + k · q1, r2 + k · q2, ..., r|V | + k · q|V |], is also a solution

with T (r′) = T (r).
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Proof. For r′ the number of delays on edge (u, v) is

w′
r(u, v) = w(u, v) + r′(v) · c(u, v)− r′(u) · p(u, v)

= w(u, v) + (r(v) + k · qv) · c(u, v)

−(r(u) + k · qu) · p(u, v)

= w(u, v) + r(v) · c(u, v)− r(u) · p(u, v)

+k · (qv · c(u, v)− qu · p(u, v))

P0
= w(u, v) + r(v) · c(u, v)− r(u) · p(u, v)

(3.1)
= wr(u, v)

So, number of delays on each edge are equal for r and r′ and therefore T (r) = T (r′) and

r′ is a solution for all k. �

Therefore, if one retiming solution exists for T then infinite solutions exist. However,

from the following equation

r′ = [r1 + k · q1, r2 + k · q2, ... , r|V | + k · q|V |]

it can be shown that ∃k ∈ Z such that

BO1 ∀v ∈ V : r(v) ≥ 0

BO2 ∃u : r(u) < qu

The retiming solutions for the minimum Tmin are called optimal solutions. The solutions

that satisfy BO1 and BO2 are called the basic optimal solutions. It can be proven when
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the algorithm terminates it returns a basic optimal condition. The termination conditions

that guarantee optimality are discussed in the next section.

3.5.2. First Termination Condition

In this section we prove the first termination condition that guarantees optimality.

Lemma 3.6. After initialization and at each iteration of the algorithm of Figure 3.5,

if (∃r : T (r) < Tstep), then the following property holds (∃u : r(u) < qu).

Proof. After initialization, for all nodes r0(v) = 0 < qv. If T (r0) = Tmin then r0 is a

basic optimal solution and the lemma holds.

Suppose that T (r0) = Tstep > Tmin. That means that there exists r such that T (r) <

Tstep. Let ro be a basic optimal solution with Tmin = T (ro) < Tstep = T (r0). Initially,

for all v it holds that r0(v) = 0 ≤ ro(v). Suppose that for r it holds that ∀v : r(v) ≤ ro(v)

and T (r) > T (ro). There must exist a critical walk W = (v0, l0) → . . . → (vn, ln) such

that t(vn, ln)+d(vn) = T (r). By Theorem 1, we know that r(vn) < ro(vn). The algorithm

in each iteration increases the value of vn by 1 leaving all other r values unchanged.

However, this implies that after the change r′(vn) = r(vn) + 1 ≤ ro(vn). And because all

other r values are left unchanged, after the iteration of the algorithm ∀v : r(v) ≤ ro(v).

Therefore, inductively, ∀v : r(v) ≤ ro(v) holds. Because of BO2, there exists u ∈ V such

that r(u) ≤ ro(u) < qu. �

Lemma 3.6 also specifies a property on the existence of Tmin. In each iteration of the

algorithm Tstep, which is the minimum period found so far, is kept constant and T (r) is
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the target for reduction until T (r) < Tstep. Based on Lemma 3.6, if

(

( 6 ∃u : r(u) < qu)⇒ ¬
(

∃r : T (r) < Tstep

) )

⇔
(

( 6 ∃u : r(u) < qu)⇒ ¬
(

Tmin < Tstep

) )

⇔
(

(∀v : r(v) ≥ qv)⇒
(

Tmin = Tstep

) )

The above property makes (∀v, r(v) ≥ qv) a termination condition for the algorithm.

If it is true Tmin = Tstep and the r-vector (r : T (r) = Tstep), as found in the previous

iterations of the algorithm is one basic optimal solution.

Theorem 3.2. If (∀v : r(v) ≥ qv) the algorithm exits with one basic optimal condition.

Proof. Follows from the discussion above. �

In the section below the second termination condition is discussed.

3.5.3. Second Termination Condition

In this section we show a second termination condition that guarantees the correctness of

the algorithm.

Lemma 3.7. After initialization and at each iteration of the algorithm of Figure 3.5,

as long as ∃r such that T (r) < Tstep, for each node v there exists node u 6= v, such that

(u, v) ∈ E and b r(v)
qv
c − b r(u)

qu
c ≤ 2

Proof. After initialization the property holds because ∀v : r(v) = 0. Suppose that it

holds after k iterations of the algorithm. Then at the k + 1 iteration, let vn be the node
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with t(vn, qn) + d(vn) ≥ Tstep . The new r value of vn is r′(vn) = r(vn) + 1. If the critical

walk of vn is composed only of nodes vn then 6 ∃r such that T (r) < Tstep and the algorithm

exits. Otherwise, even after r(v) is increased there exist u 6= v with (u, v) ∈ E, such that

b r(v)
qv
c − b r(u)

qu
c ≤ 2, as we show below. Moreover, if before the change there existed z 6= v

with (v, z) ∈ E and b r(z)
qz
c − b r(v)

qv
c ≤ 2, this continues to hold after the change, as well.

Let u be the last node in the critical walk with u 6= vn. If u is the ith node of the walk,

vi = u and vi+1 = vn. Then in order for the walk to be valid for the successive elements

(u, li) and (vi+1, li+1), it must hold 1 ≤ li. A necessary condition for 1 ≤ li, because of

Equation 3.4, is that

li+1 · c(u, vn)− wr(u, vn) > 0

⇒ li+1 · c(u, vn)− w(u, vn)− r(vn) · c(u, vn)

+r(u) · p(u, vn) > 0

w(u,vn)>0
⇒ li+1 · c(u, vn)− r(vn) · c(u, vn) + r(u) · p(u, vn) > 0

⇒ li+1 − r(vn) + r(u) ·
p(u, vn)

c(u, vn)
> 0

P0
⇒ li+1 − r(vn) + r(u) ·

qvn

qu
> 0

⇒
li+1

qvn

−
r(vn)

qvn

+
r(u)

qu
> 0

li+1≤qvn⇒ 1 >
r(vn)

qvn

−
r(u)

qu

⇒ 1 > b
r(vn)

qvn

c − 1− b
r(u)

qu
c ⇒ 2 > b

r(vn)

qvn

c − b
r(u)

qu
c

⇒ 2 ≥ b
r(vn) + 1

qvn

c − b
r(u)

qu
c

So, the property holds for v.
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Suppose there was node z in the graph, with (v, z) ∈ E, for which b r(z)
qz
c − b r(v)

qv
c ≤ 2.

Then after the change, since r′(v) > r(v),

b
r(z)

qz
c − b

r′(v)

qv
c ≤ b

r(z)

qz
c − b

r(v)

qv
c ≤ 2

Therefore, by induction the property holds. �

Lemma 3.8. After initialization and at each iteration of the algorithm of Figure 3.5,

if (∃r : T (r) < Tstep), then the following property holds (∀v : r(v) ≤ 2 · qv · |V |).

Proof. After initialization and at each iteration of the algorithm, if (∃r : T (r) <

Tstep), then (∃u : r(u) < qu) (Lemma 3.6). For u the value b r(u)
qu
c is 0.

Suppose that there exists v such that r(v) > 2·qv ·|V |. This implies that b r(v)
qv
c ≥ 2·|V |.

That means that there exists y ∈ V , such that y 6= v and

b
r(v)

qv
c − b

r(y)

qy
c ≤ 2⇒ 2 · |V | − b

r(y)

qy
c ≤ 2

⇒ 2 · (|V | − 1) ≤ b
r(y)

qy
c (3.7)

Continuing the same way for the rest |V | − 2 nodes of the graph, it can be proven that

the minimum r value of the last node z of this sequence is

2 · (|V | − (|V | − 1)) ≤ b
r(z)

qz
c

⇒ 2 ≤ b
r(z)

qz
c ⇒ 2 · qz ≤ r(z)

If that holds, then ( 6 ∃u : r(u) < qu) which is a contradiction. �
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From the lemma above we can conclude the correctness of the algorithm based on the

termination condition ∃v ∈ V : r(v) > 2 · qv · |V |.

Theorem 3.3. If ∃v ∈ V : r(v) > 2 · qv · |V | the algorithm exits with one basic optimal

condition.

Proof. The reasoning for proving this theorem is the same as the one used for the

proof of Theorem 3.2. �

Since the while loop of the algorithm of Figure 3.5 terminates based on the condition

(∀v ∈ V : r(v) ≥ qv) ∨ (∃v ∈ V : r(v) > 2 · qv · |V |)

the algorithm returns the basic optimal solution (Theorems 3.2, 3.3).

3.5.4. Algorithm’s Complexity

From the second termination condition a bound can be derived for the number of iterations

of the while loop. The sum of the r values can be

∑

v∈V

r(v) ≤
∑

v∈V −{u}

(2 · |V | · qv) + (qu − 1) + 1

The node u is assumed to be the node that satisfies the BO2 condition. The r values

of the rest of the nodes (Lemma 3.8) form the first term and 1 more move is needed to

terminate the algorithm.
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If as qave = 1
|V |

∑

v∈V qv we represent the average q value over all nodes then the sum

is upper bounded by
∑

v∈V

r(v) ≤ 2 · |V |2 · qave

Since in each iteration of the while loop the sum on the left side changes by 1, the number

of iterations is bounded by 2 · |V |2 · qave .

In each iteration the necessary arrival times are computed. In the worst case the

arrival computation takes
∑

∀(u,v)∈E

qv = |E| · |V | · qave

Therefore, the total worst case complexity is O(|V |3 · |E| · q2
ave).

3.6. Improved Version of the Retiming Algorithm

The running time of the algorithm can be improved if we relax P1 not to be valid after

each step of the algorithm, but be valid upon termination. That allows the algorithm to

do multiple r value changes without having to find the arrival times of the node instances.

Two additional conclusions can be drawn from the previous section. First, from The-

orem 3.1 we observe that the order in which we change the r values, while approaching a

basic optimal solution, is not important. If there exists a critical walk in the graph and for

the last node vn of the walk Tstep ≤ t(vn, ln)+d(vn), then for any r′ for which T (r′) < Tstep ,

the r value of vn is r(vn) < r′(vn). Second, from Lemmas 3.2-3.4 we see that by increasing

the r(vn) value of a node for which t(vn, qn) + d(vn) ≥ Tstep cannot improve the arrival

time of nodes vm 6= vn. Therefore, if before the r(vn) change, t(vm, qm) + d(vm) ≥ Tstep

was valid, after the change t(vm, qm) + d(vm) ≥ Tstep remains valid.
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ro(C) = 0 r(C) = 0 tf(C,qC) = 5
ro(D) = 0 r(D) = 0 tf(D,qD) = 1
ro(E) = 0 r(E) = 0 tf(E,qE) = 2
ro(F) = 0 r(F) = 0 tf(F,qF) = 2

Tstep= 5 Q1= {C} Q2 = { }

WC=F1  B1  C1

ro(A) = 0 r(A) = 0 tf(A,qA) = 1
ro(B) = 0 r(B) = 0 tf(B,qB) = 3
ro(C) = 1 r(C) = 1 tf(C,qC) = 2
ro(D) = 0 r(D) = 0 tf(D,qD) = 3
ro(E) = 0 r(E) = 0 tf(E,qE) = 4
ro(F) = 0 r(F) = 0 tf(F,qF) = 2

Tstep= 4 Q1 ={E} Q2 = { }

WE=C1  D1  E4

Figure 3.7. The algorithm’s execution on an SDF representing a spectrum
analyzer (Steps A-C).

Using these conclusions, the algorithm can be modified to store all nodes, which have

t(vm, qm) + d(vm) ≥ Tstep , each time the arrival times are computed. Then modify their r

values and then compute the arrival times again. That way though, it is not guaranteed

that P1 remains invariant. Therefore, after each change all edges, which have their weight

reduced, are checked for P1. If P1 does not hold, the necessary r change will be done to

validate P1. The change is correct, as long as it is minimum, because in the basic optimal

solution P1 must hold for all edges.
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Tstep= 4 Q1={E } Q2 = { }
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ro(A) = 0 r(A) = 0 tf(A,qA) = 2
ro(B) = 0 r(B) = 0 tf(B,qB) = 3
ro(C) = 1 r(C) = 1 tf(C,qC) = 2
ro(D) = 0 r(D) = 0 tf(D,qD) = 3
ro(E) = 0 r(E) = 3 tf(E,qE) = 4
ro(F) = 0 r(F) = 0 tf(F,qF) = 2

Tstep= 4 Q1 ={E} Q2 = { }

WE=C1  D1  E4

Figure 3.8. The algorithm’s execution on an SDF representing a spectrum
analyzer (Steps D-F).

The necessary change to make the number of delays of an edge positive is

w(u, v) + r(v) · c(u, v) + ∆r(v) · c(u, v)− r(u) · p(u, v) ≥ 0

⇒ ∆r(v) ≥ d
r(u) · p(u, v)− w(u, v)

c(u, v)
e − r(v)

Since r(u) is less than or equal to ro(u), r(v) + ∆r(v) must be less than or equal to

ro(v), otherwise condition P1 does not hold for the basic optimal solution, which is a

contradiction.
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WE = C1  D1  E4 WF = C1  D1  F1

Figure 3.9. The algorithm’s execution on an SDF representing a spectrum
analyzer (Steps G-I).

The improved version of the algorithm can be seen in Figure 3.11. The algorithm

maintains two queues. The first queue (Q1) holds the nodes for which it is known that

their values must be increased for Tstep to be reduced. The while loop with condition

Q1 6= ∅ increases the value of each of these nodes. The queue does not contain double

entries, since when filled each node is checked only once (done by the for-loops of the

algorithm).

The second queue (Q2) stores the edges for which P1 has been invalidated. For those

edges, the r value of the head node is increased to restore the validity of P1, if needed.
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K WF = D1  F1WA = D1  E4  A16

WB=D1  E4  A16  B1

ro(A)=0 r(A)=16 tf(A,qA)=3
ro(B)=0 r(B)=1 tf(B,qB)=4
ro(C)=1 r(C)=2 tf(C,qC)=2
ro(D)=0 r(D)=2 tf(D,qD)=1
ro(E)=4 r(E)=8 tf(E,qE)=2
ro(F)=0 r(F)=1 tf(F,qF)=3

Tstep= 3 Q1 =
{A,B,E} Q2 = { }

Figure 3.10. The algorithm’s execution on an SDF representing a spectrum
analyzer (Steps J-K).

Note that although Q2 does not contain double entries, the head node of two or more

edges may be the same in some cases. Therefore, before restoring P1, it is necessary to

check how large the increase of ∆r(u) should be. The check for ∆r(u) > 0 in the while

loop with condition Q2 6= ∅, does exactly this.

At the end of each iteration the r values of all nodes in Q1 have been increased, and P1

has been validated for all edges, before the computation of the arrival times starts again,

which generates new entries in Q1. In the case maxt < Tstep , Q1’s unique entry is the node

v for which t(vn, qn) + d(vn) = maxt. Otherwise, all nodes for which t(v, q) + d(v) ≥ Tstep

enter the queue.

Both theorems for the termination condition are still valid.
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Algorithm SDF Retiming Improved

Input: An SDF graph G = (V,E, d, p, c, w).
Output: A pair (r, Tmin) which represents an optimal retiming r

satisfying minimum complete cycle execution time Tmin.

1. maxt← 0;Q1← ∅;Q2← ∅; init t();

2. for each v in V do

3. r(v)← 0;t(v, qv)← get t(v,qv);
4. if t(v, qv) + d(v) > maxt then maxt← t(v, qv) + d(v);vn ← v;
5. endfor;

6. Tstep ← maxt; Q1.enqueue(vn);
7. while

(
(∃v : r(v) < qv) ∧ ( 6 ∃v : r(v) > 2 · qv · |V |)

)
do

8. while(Q1 6= ∅)
9. vn ← Q1.dequeue(); r(vn)← r(vn) + 1;
10. foreach (vn, u) ∈ E do

11. if (wr(vn, u) < 0) then Q2.enqueue(vn, u);
12. endfor;

13. endwhile;

14. while(Q2 6= ∅)
15. (x, u)← Q2.dequeue();

16. ∆r(u)← d r(x)·p(x,u)−w(x,u)
c(x,u)

e − r(u);

17. if (∆r(u) > 0) then

18. r(u)← ∆r(u) + r(u);
19. foreach (u, z) ∈ E do

20. if (wr(u, z) < 0) then Q2.enqueue(u, z);
21. endfor;

22. fi;

23. endwhile;

24. init t();

25. for each v in V do

26. t(v, qv)← get t(v,qv);
27. if t(v, qv) + d(v) > maxt then maxt← t(v, qv) + d(v);vn ← v;
28. if t(v, qv) + d(v) ≥ Tstep then Q1.enqueue(v);
29. endfor;

30. if maxt < Tstep then

31. ro ← r;Tstep ← maxt;Q1.enqueue(vn);
32. fi;

33.endwhile;

34.Return (ro, Tstep);

Figure 3.11. Pseudocode describing the improved retiming algorithm.
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The worst-case complexity of the algorithm remains the same. However, its practical

efficiency is improved, as verified by the experimental results presented in Section 3.8.

In Figures 3.7– 3.10 the algorithm’s execution on an SDF representing a spectrum

analyzer is displayed:

A The spectrum analyzer graph as taken from [70].

B The values of some variables of the program when line 7 of the algorithm (Figure

3.11) is reached for the first time. The value tf (v, qv) = t(v, qv) + d(v) represents

the finish time of qv instance of node v. Node C has the longest finish time and

is entered in Q1 to be retimed (lines 4,6).

C Values of the variables when the program reaches line 7 after the first iteration of

the while loop. The minimum cycle has been reduced and the optimal solution

has been updated (lines 30-31).

D-F The values of the variables for each of the next iterations of the while loop at line

7. The change of r by 1 each time guarantees the optimality of the algorithm

(proof of Lemma 3.6).

G The cycle length is reduced, the optimal solution is updated, and node B is

entered in Q1 (lines 30-31).

H-I Since Tstep is not updated, all nodes with tf ≥ Tstep are entered in Q1 (line 28).

J In the next iteration some edges have negative weights. The values of the vari-

ables, when program reaches line 14 of the algorithm, are displayed. For clarity

a sanitized version of the Q2 state is shown.

K After the line 14 while-loop has been executed, the r-values violate the first

termination condition, therefore, the algorithm will not execute another iteration
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of the line 7 while-loop. The ro values will be returned and the retimed graph

for these values is displayed in Figure G.

3.7. Source, Sink Nodes - Input Output Channels

A B C3 2

1 1

4

4
2 3

1 1 1

2

2
3

1 1

2

2

2

I O
1

1 1

p(e) c(e)w(e)

     d   q
A   2   2
B   3   3
C   5   2
 I    0    1
O   0   1

Figure 3.12. The equivalent strongly connected graph obtained by trans-
forming the graph of Figure 3.1

The analysis presented in this chapter is based on strongly connected graphs.

If a graph has source and sink nodes, then it can be easily transformed to a strongly

connected graph by introducing a new node I with qI = 1 and d(v) = 0. Then for each

source s of the graph an edge (I, s) is included in E with c(I, s) = 1, p(I, s) = qs, and

w(I, s) = 0. Moreover, for each sink t an edge (t, I) is included in E with p(t, I) = 1

and c(t, I) = qt. The number of weights on these edges can be considered as a very large

number W . It is easy to prove that P0 is still valid after this transformation and the

graph is consistent.
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As shown in the motivational example, there are SDF graphs which include input and

output channels. These channels model the system’s communication with its environ-

ment. Input and output channels are represented by edges, whose tail and head node,

respectively, are missing from the graph. The head and tail of these edges are nodes that

do not belong to the system under consideration, as opposed to sources and sinks of the

graphs. We assume that if e is an input channel incident to node v, all qv · c(e) tokens

needed by v for the current complete cycle are available at time 0.

For retiming graphs with input/output channels two nodes are added I and O. All

output edges are connected to O and all input edges become incident from I. The two

nodes I and O are connected with an edge (O, I) with p(O, I) = c(O, I) = w(O, I) = 1.

Moreover, qI = qO = 1 for the new nodes. Each output edge e incident from node v is

replaced by (v,O) with p(v,O) = p(e),c(v,O) = c(e) ·qv, and w(v,O) = w(e). In a similar

way, every input edge e incident to node v is replaced by (I, v) with c(I, v) = c(e),p(I, v) =

p(e) · qv, and w(I, v) = w(e). The delays of the two nodes with be d(I) = d(O) = 0.

These modifications on the graph have two important implications. First, since d(I) =

d(O) = 0 the assumption that for each v ∈ V d(v) > 0 does not hold anymore. This

assumption was used to prove that P1 is an invariant (Inequality 3.5). After the addition

of the new nodes the correctness of the first algorithm cannot be proven anymore. This

is not a problem though for the improved version, since P1 is relaxed and validated again

by using the Q2 queue. Second, the newly added edge (O, I) represents the dependence

of the inputs of the next cycle on the outputs of the current cycle (Figure 3.1). Initially,

w(O, I) = 1 and the weight of this edge should not become 0, since that would mean

that the inputs for a complete cycle can be produced instantly during the complete cycle,
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T execution time (sec)
Graph

O’Neil’s First Improved O’Neil’s First Improved

s27 104 104 104 0.014 0.006 0.004
s208.1 185 152 152 0.162 0.049 0.010
s298 174 174 174 0.425 0.086 0.015
s344 259 180 180 0.242 0.140 0.012
s349 310 255 255 0.693 0.153 0.024
s382 414 414 414 2.612 0.112 0.015
s386 275 275 275 0.495 0.140 0.014
s444 202 202 202 0.310 0.123 0.011
s526 632 604 604 0.859 0.314 0.061
s641 234 226 226 0.430 1.193 0.039
s820 256 247 247 1.034 0.473 0.031
s953 430 430 430 2.388 1.127 0.057

Table 3.2. Comparison of retiming algorithms for graphs generated with
qmax = 4.

which is not a correct model of the environment of the system. In this case, the improved

version of the algorithm can make

P6
∆
= (w(O, I) ≥ 1)

hold upon termination, the same way as it ensures P1. Edge (O, I) is entered in Q2

after an r change if w(O, I) < 1 and it is adjusted accordingly during the execution of

the loop that empties Q2. The way this type of constraints can be handled by O’Neil’s

algorithm [70] is not known.

3.8. Experimental Results

In this Section we present the experimental results obtained by applying the retiming

algorithms on a number of graphs. First, the experimental setup is explained. Then two
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T execution time (sec)
Graph

O’Neil’s First Improved O’Neil’s First Improved

s27 129 104 104 0.084 0.005 0.006
s208.1 538 538 538 29.014 0.219 0.015
s298 765 704 704 2m:18.526 0.468 0.048
s344 975 905 905 6m:29.149 0.707 0.071
s349 1124 907 907 2m:01.058 1.187 0.108
s382 780 772 772 1m:04.163 1.23 0.083
s386 795 701 701 11.891 0.651 0.059
s444 1140 840 840 36.331 1.504 0.097
s526 1528 1498 1498 15m:05.460 2.998 0.252
s641 897 624 624 19.648 7.414 0.247
s820 895 816 816 30.478 2.548 0.140
s953 819 773 773 26.242 18.522 0.522

Table 3.3. Comparison of retiming algorithms for graphs generated with
qmax = 16.

T execution time (sec)
Graph

O’Neil’s First Improved O’Neil’s First Improved

s27 459 416 416 1.924 0.012 0.060
s208.1 834 834 834 2m:50.537 1.287 0.049
s298 1083 1027 1027 55m:30.897 2.696 0.095
s344 2534 2468 2468 70m:29.472 3.457 0.415
s349 1503 1415 1415 8m:18.343 4.140 0.257
s382 1312 1273 1273 19m:29.061 5.261 0.344
s386 938 806 806 1m:40.775 2.733 0.129
s444 1185 888 888 48m:18.215 2.825 0.191
s526 2161 2007 2007 120m:00.000 7.796 0.479
s641 690 610 610 54.758 9.837 0.534
s820 1594 1573 1573 46m:26.437 11.805 0.622
s953 1776 1776 1776 5m:26.620 16.650 0.919

Table 3.4. Comparison of retiming algorithms for graphs generated with
qmax = 32.

sets of experiments are presented. In the first set the graphs do not contain any zero delay

nodes. In this type of graphs all algorithms are applicable. So, the three algorithms are
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T Execution
Graph

Initial Final Time (sec)

s27 368 351 0.005
s208.1 1035 852 0.020
s298 1052 742 0.045
s344 1062 928 0.164
s349 933 833 0.016
s382 951 908 0.021
s386 745 650 0.051
s444 902 882 0.027
s526 1690 1690 0.009
s641 694 665 0.011
s820 1264 1219 0.032
s953 1558 1558 0.010

Table 3.5. Results for zero-delay node graphs generated with qmax = 32.

compared based on the resulting cycle length and their execution time. In the second set

of experiments zero delay nodes are included in the graphs to model communication with

the environment. Moreover, a constraint on the weights is applied on edge (O, I). This

type of graphs can only be handled by the improved version of the retiming algorithm.

The results show the algorithm can produce the optimal period even for large graphs in

short execution time.

3.8.1. Experimental Setup

The graphs were obtained from the ISCAS89 benchmarks. For the delay a random integer

was assigned between 1 and 30. The q value of each node was also selected randomly

between 1 and the value qmax . Three values (4, 16, 32) have been used for qmax to observe

how the performance of the algorithms scales with this parameter. After the q value of

each node was assigned, the p and c values of every edge were chosen in such a way, so that
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the graph would be consistent. More specifically, p(u, v) = qv

gcd(qu,qv)
and c(u, v) = qu

gcd(qu,qv)
.

This method creates the minimum consumption and production rates for each edge for

specific q values of the graph.

Two additional nodes I and O were included with qI = qO = 1. I was connected to all

primary inputs of the graph and O to all primary outputs. Edge (O, I) was included with

w(O, I) = 1. For graphs with no zero delay nodes d(O) and d(I) were chosen randomly

as integers from [1, 30]. These values were used in the first set of experiments. In the

second set d(O) = d(I) = 0.

Initially, non-zero weights were assigned to 50% of the total edges in the graph. The

value of an edge weight was a random integer in [1, qmax ]. Then the graph was checked

for liveness and if a deadlock was detected, the weights of each input channel (u, v) of a

node that could not execute were increased by c(u, v). This process was repeated until

the graph was live.

O’Neil’s algorithm applies retiming to reduce the cycle length below a constraint given

as an input. If the algorithm is used to find the minimum cycle length a linear search

must be performed on the possible cycle length values, which are integers. Binary search

cannot be performed, since it is not guaranteed that if the algorithm returns a retiming

for cycle length T1, it will not return false for cycle length T2 > T1. We implemented

O’Neil’s algorithm to compare it with the two new algorithms.

3.8.2. Strongly Connected Graphs with No Zero-Delay Nodes

On strongly connected graphs with no zero delay nodes all three algorithms are applicable.

Tables 3.2, 3.3, and 3.4 summarize the results in terms of running time and period. The
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first and improved algorithm always produce the same period T , since both of them find

the optimal solution for a specific graph. The period found by these two algorithms is

in all cases at least as good as the period found by O’Neil’s algorithm. The difference

depends on the randomly generated graph. In some cases it is 0 and in other cases it can

be more then 20%. The execution time of the improved version is much faster than the

other two algorithms, especially for larger graphs. As qave grows the running time of the

three algorithms increases. However, the impact of that parameter is more significant for

the running time of O’Neil’s algorithm. The reason is that the size of the EHG and the

complexity of the algorithms working on it depend on qave [35].

3.8.3. Strongly Connected Graphs with Additional Constraints

In this section the performance of the improved retiming algorithm is shown for strongly

connected graphs with the additional constraint that r(I) ≥ r(O). This case represents

the most realistic scenario for the purpose of minimizing the cycle length of SDF graphs.

Table 3.5 shows the execution time and resulting cycle length for the improved algo-

rithm for graphs generated with qmax = 32. The other two algorithms cannot be applied

on this problem instance. For O’Neil’s algorithm it is not known how it can handle

constraints like P6. Moreover, the first version of the retiming algorithm cannot handle

constraints like P6 and under presence of zero delay nodes its correctness does not hold.

3.9. Summary

In this chapter two optimal algorithms were presented for minimum cycle length re-

timing of SDF graphs. The first is an optimal algorithm for retiming strongly connected
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graphs, whereas the second works on any graph including graphs with input and output

channels, is faster, and can handle additional constraints. The experimental results show

that the improved version is orders of magnitude faster than existing approaches [70]

and produces better results. In the next chapter we discuss the optimization power of

synthesis operation like retiming.
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CHAPTER 4

Optimization Power of Synthesis Operations

4.1. Introduction

In the previous chapter we saw how we can apply retiming to a SDF Graph. Retiming

is a general synthesis operation that can be applied to structural descriptions at several

abstraction levels. In this chapter we investigate the optimization power of synthesis oper-

ations like retiming. The results of this chapter can be used in two ways for system-level

synthesis. First, if the nodes represent combinational modules, i.e., adders, multiplies,

multiplexors, instead of gates then the power of synthesis operations at the system-level

is examined. Second, even when the nodes of the structural description represent gates,

RTL operations are still relevant to system-level synthesis. This is because the purpose

of system-level synthesis is to generate an RTL description for the processes that will be

executed in hardware. Synthesis operations, like retiming and resynthesis, can improve

the efficiency of the generated RTL description.

In the rest of this chapter we use RTL representations to derive the power of the

synthesis operations. However, the results hold even for higher-level representations, in

which the building blocks of the structure are combinational modules instead of gates.

Logic synthesis algorithms originally targeted the optimization of PLA implementa-

tions; this was followed by research in synthesizing more general multilevel logic imple-

mentations. Currently, the central thrust in logic synthesis is sequential synthesis, i.e.,
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the automatic optimization of the entire system. This is for designs specified at the struc-

tural level in the form of netlists, or at the behavioral level, i.e., in the form of finite state

machines. De Micheli [26] gives an excellent introduction to logic synthesis.

We will be concerned with sequential designs. These can be specified at the behavioral

level, as finite state machines (FSMs), or at the structural level, as netlists of gates and

registers.

Retiming is a powerful sequential optimization step that can be applied to sequential

designs described at the netlist level. It can be used to optimize the clock period or

the registers area of a design. Logic synthesis is an operation that changes the circuit

structure without changing the function of the combinational logic. It has been shown

that given two designs, one of netlists has been derived from the other by a sequence of

retiming and resynthesis, a certain equivalence relation (namely, steady-state equivalence)

exists between them. However, the converse is not well understood, and there is a long

history of investigations and debates on whether a sequence of retiming and resynthesis

is complete for any sequentially equivalent transformation.

Malik [62] gave the first (partial) positive answer to this question. He proved that

retiming and resynthesis are complete for any state re-encoding, and for some other trans-

formations. Zhou et al. [89] provided the first negative answer by proving that some se-

quentially equivalent transformations cannot be done by retiming and resynthesis, which

also helped to discover and fix an error in Malik’s result [76]. The sweep operation, which

adds or removes registers not used by any output, is needed for these transformations.

However, it is an open question whether retiming and resynthesis with sweep are complete

for general sequential transformations.
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In this chapter, we provide a complete answer to the open question. We proved

that retiming and resynthesis with sweep are complete, but with one caveat: at least

one resynthesis operation needs to look through the register boundary into the logic of

previous cycle. We even showed that this one-cycle reachability is required for retiming

and resynthesis to be complete for re-encodings with different code length, an extension

to Malik et al. [63]. It also demonstrates that reachability information cannot be captured

by these structural operations. Therefore, they are complete for transformations based on

all steady states unless reachability information is provided. Our completeness proof is a

constructive one that applies five operations in the order of sweep, resynthesis, retiming,

resynthesis, and sweep. We will discuss the implications of such a result and some practical

limitations on resynthesis.

Zhou et al. [89] also started an investigation on the complexity of retiming and

resynthesis verification problem. Since the general sequential equivalence verification is

PSPACE-complete, a different complexity category may indicate that the gap between

retiming and resynthesis and sequential transformation is big. Jiang and Brayton [39]

later showed that the complexity of retiming and resynthesis verification is also PSPACE-

complete. We examine their proof and point out parts that are unclear. Based on those

we consider the membership of retiming and resynthesis verification an open question.

Our results have very important practical implications. Since retiming and resynthesis

with sweep are complete, sequential optimization tools can be centered around them.

If any reachability information is provided to the optimization, it is also critical to be

supplied to the verification. Our completeness proof also indicates that the resynthesis

needs to generate exponential-size circuits to complete some transformations (including
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some re-encoding ones). However, no practical resynthesis is so powerful. Under realistic

limitations, retiming and resynthesis verification is much simpler. Indeed, the recent

sequential equivalence checking algorithms [79, 84, 40] effectively try to show that two

circuits are equivalent by deriving the retiming relationships between them.

4.2. Background

Netlists and FSMs. We introduce two formalisms for representing designs, namely

netlists and finite state machines (FSMs). Netlists are structural and consist of an inter-

connection of gates and registers. Finite state machines are behavioral and specify how

the system changes its states and produces outputs responding to inputs. We leave for

the readers to ponder which representation is more abstract.

Definition 4.1. A Finite State Machine (FSM) is a quintuple (Q, I,O, λ, δ) where

Q is a finite set referred to as the states, I, and O are finite sets referred to as the

set of inputs and outputs respectively, δ : Q × I → Q is the next-state function, and

λ : Q× I → O is the output function.

The output and next state functions can be inductively extended to the domains

Q× I+ → O+ and Q× I+ → Q, respectively; we continue to use λ and δ to denote these

extended functions.

Definition 4.2. A netlist is a directed graph, where the nodes correspond to elemen-

tary circuit elements, and the edges correspond to wires connecting these elements. Each

node is labeled with a distinct variable wi. For simplicity, we will assume that the netlist

is Boolean, i.e. all variables take values in B = {0, 1}. The three basic circuit elements

are primary inputs, registers, and gates. Primary input nodes have no fanins; registers
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have a single input. Associated with a gate g on n-inputs w1, w2, . . . , wn is a function

from Bn to B. Some nodes are designated as being primary outputs.

Given a value to each input and a state (an assignment of values to registers), one

can uniquely compute the value of each node in the netlist by evaluating the functions at

gates. A netlist η on inputs i1, i2, . . . , in, outputs o1, o2, . . . , om and registers r1, r2, . . . , rk

bears a natural correspondence to an FSM Mη on inputs X = Bn, outputs Y = Bm,

and state space Q = Bk. The next-state function of Mη is defined by the composed logic

gates in the following manner: for each register ri we can find a function fi : Q × Ri

by composing the functions of the gates from the inputs and register outputs to the

input of the register. We will refer to fi as the next-state function of the register i.

Then δMη
(w1, w2, . . . , wn, r1, r2, . . . , rk) : Q×X → Q is simply [f1f2 . . . fk]. Similarly, the

output function is defined by composing the functions of gates from inputs and registers

to output nodes.

Retiming, Resynthesis, and Sweep. Retiming, resynthesis, and sweep are structural

operations applied on netlists.

Retiming consists of moving a given number of registers between the inputs and out-

puts of each combinational node. A retiming can be described mathematically by a lag

function, which gives for each combinational node, the number of registers that are moved

from each fanout to each fanin.

Combinational synthesis restructures the netlist within the register boundaries without

changing its functionality. It leaves the FSM of the design unchanged. Retiming becomes

very powerful when it is interspersed with resynthesis of the netlist within the changed
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register boundaries. This is the basis for the retiming and resynthesis (RnR) paradigm

proposed in [25, 63].

Sweep, the simplest among the operations, adds or removes registers not used by any

output. Since synthesis normally simplifies the circuit structure, sweep is usually met as

an operation removing redundant registers and logic.

Sequential Equivalence.

Definition 4.3. Two states s and t are equivalent if and only if for every finite input

sequence π, the outputs resulting on applying π are equal.

Definition 4.4. Two netlists C and D are FSM-equivalent if and only if every state

c ∈ C is equivalent to some state d ∈ D, and every state d ∈ D is equivalent to some

state c ∈ C.

Definition 4.5. The steady state set of a design D, denoted by D∞ is the subset of

states such that for each state s there is an input sequence π which drives this state to

itself, i.e., λD(s, π) = s. The remaining set of states is called the transient state set.

Notice that once a design starts up in any state, it will eventually be and remain in

steady states.

Theorem 4.1 ([56]). If design C has been obtained from design D by a sequence of

retiming moves, the steady state set of C is FSM-equivalent to the steady state set of D.

Retiming becomes very powerful when it is combined with (combinational) resynthesis

operations (the RnR paradigm). However, since resynthesis itself does not change the

state transition graph of a design, we have the following corollary.
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Corollary 4.1. If design C has been obtained from design D by a sequence of retiming

and combinational resynthesis moves, the steady state set of C is FSM-equivalent to the

steady state set of D.

Designated Initial State. We will not assume a designated initial state for our circuits.

If we do want to force a circuits into a designated initial state we can explicitly model

the reset circuitry along with the registers: indeed, this is the approach suggested for

retiming initial states in [78], as opposed to the approach in [83, 32], where the implicit

initial state values have to be retimed across gates.

One optimization advantage of considering designated initial states is that the syn-

thesis algorithms have greater flexibility since the synthesis tool can potentially take

advantage of don’t cares arising from the set of states unreachable from the initial state.

However, it is easy to show that for designs which have designated initial state, retiming

and resynthesis is strictly weaker than a sequential optimization algorithm which uses

unreachability don’t cares (for example, [59]).

However, in general, commercial synthesis tools do not use unreachability don’t cares.

This is simply because computing the set of unreachable states is computationally very

expensive on real designs; the theoretical complexity of this problem is PSPACE-complete:

Theorem 4.2 ([5]). Given two netlists C and D, and two states s from MC, t from

MD, checking whether s and t are equivalent is PSPACE-complete in the size of the

netlists.
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4.3. Sweep is Necessary

Even though it is commonly suspected that retiming and resynthesis are not complete

for all steady state transformations, Zhou et al. [89] was the first giving a proof. They

designed two pairs of circuits and proved that the first pair cannot be transformed to each

other even though they are FSM-equivalent. The second pair was also conjectured so.

We show here that both pairs are incomplete, using the same reasoning they used for the

first pair. The two pairs of circuits are shown in Figure 4.1.

s

sa

a

b

b

0

1

0

1

0

1

first pair

second pair

Figure 4.1. Examples showing incompleteness of retiming and resynthesis.

Lemma 4.1. Retiming and resynthesis cannot transform one circuit to the other for

either pair in Figure 4.1.

Proof. The next state function of the left circuit in each pair contains a permutation

on the set {0, 1}2, which has cardinality of 4. No matter what resynthesis does, the
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Figure 4.2. Retiming and resynthesis are more powerful with sweep.

smallest cut size on the combinational part must be at least 2. Therefore, the next

retiming step cannot reduce the number of registers. Since the next state function of the

new circuit still has the property as the old one, any later retiming and resynthesis steps

can not reduce the number of registers, either. This means that no sequence of retiming

and resynthesis can transform the left circuits to the right ones. �

However, it was also noted in [89] that with the sweep operation, the first pair of

circuits are transformable to each other, as shown in Figure 4.2. We investigate whether

the sweep is also of help in the second pair of circuits and find that, with re-encoding

and sweep, they can be transformed, as shown in Figure 4.3. However, when trying to

design a sequence of retiming and resynthesis to do the re-encoding, instead of direct

applying Malik’s theorem, we found that re-encoding is harder than previous thought and

resynthesis needs to be slightly enhanced for retiming to be complete for re-encoding. The

details will be presented in the next section.
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Figure 4.3. Second pair is completed by re-encoding and sweep.

4.4. Re-encoding is Hard

The first attempt to answer this question was made by Malik et al. [63] via the following

result which relates designs with different state encoding:

Theorem 4.3 ([63]). If two circuits have the same symbolic FSM, then one circuit

can be obtained from another by a sequence of retiming and resynthesis.

However, the above theorem cannot be applied to re-encodings with different code

length. we have the following result. This result also shows a sharp difference between

reachability and retiming and resynthesis.

Lemma 4.2. Without any reachability information, some re-encodings with different

code length cannot be completed by any sequence of retiming and resynthesis.
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Proof. As we already mentioned in previous section, in Figure 4.3, even though the

second circuit is a re-encoding of the first one, it cannot be transformed from the first

one by a sequence of retiming and resynthesis. This can be proved by considering all

the states in the second circuit, including all the ignored unreachable states, as shown

in Figure 4.4. Since new cycles are created in the STG of the second circuit, based on

the characterization of STG transformations by Jiang and Brayton [39], retiming and

resynthesis cannot produce such a circuit. �
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011 110
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0,--0,--

0,--

1 1

10

000 001

111 010

0,--

0,--0,--

0,--
0

01

1,00 1,01

1,11 1,10

0

Figure 4.4. Unreachable states need to be considered in re-encoding of dif-
ferent length.

Although re-encodings with same code length can be done by retiming and resynthesis,

their verification problem is not easy. The following theorem shows that the problem is

PSPACE-hard by reducing reachability problem to it.

Theorem 4.4 ([7]). Checking whether two circuits with the same number of registers

are re-encoding of each other is PSPACE-hard.



118

In [39] an answer about the membership of retiming and resynthesis equivalence in

PSPACE is explored. Retiming and resynthesis equivalence is reduced to immediate

equivalent state minimization of the two machines and then graph isomorphism starting

from known initial states. It is unclear though how graph isomorphism can be checked in

PSPACE. Moreover, the proof for completeness is based on the reduction of reachability to

checking whether the State Transition Graphs of the two circuits are isomorphic including

the transient states. The assumption is that all dangling1 states can be merged to non-

dangling states. However, due to the binary representation of the FSM, this is not always

possible. An example can be seen in Figure 4.5 in which no retiming and resynthesis

transformation can merge the immediate equivalent states s1 and s3 . The reason is that

for n registers the number of states in the State Transition Graph must be 2n. When binary

representation is used and the dangling states cannot be ignored, the State Transition

Graphs of two retiming and resynthesis equivalent circuits may not be transformable to

isomorphic graphs.

4.5. Completeness under Reachability

We first show a revised result for re-encoding transformation.

Lemma 4.3. When the resynthesis is allowed to use the reachability information gen-

erated from one cycle, retiming and resynthesis are complete for all re-encoding transfor-

mations, including those with different coding lengths.

Proof. The proof is similar to Malik et al. [63], using schematics for circuits in Fig-

ure 4.6. Starting with a circuit C with the smaller encoding length n, the identity function

1Dangling states are inductively defined as states that have no predecessors or states whose predecessors
are all dangling. All other states are considered non-dangling.
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s1

s2 s3

s4

Figure 4.5. State transition graph. Immediate equivalent states s1 and s3

cannot be merged using retiming and resynthesis in a circuit with binary
representation.

at the register outputs is resynthesized to f · f−1 where f is the one-to-one mapping from

states of C to states of the target circuit D. Then retiming moves the registers forward

over f . The third step resynthesizes f−1 · C · f into D. However, when D is encoded on

a longer length m, the one-cycle reachability information will identify the states corre-

sponding to those in C, which will help to generate D. �

The key to the completeness of retiming and resynthesis for re-encodings is the exis-

tence of a mapping from the states of one machine to those of the other that preserves

the transitions. Such a mapping is called refinement mapping [1].

Definition 4.6. For two equivalent finite state machines (Q1, I, O, λ1, δ1) and (Q2, I, O, λ2, δ2),

a refinement mapping is a function f : Q1 → Q2 such that for any s ∈ Q1, s and f(s)

are equivalent, and further for any i ∈ I,

f(δ(s, i)) = δ(f(s), i).
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Figure 4.6. One-cycle reachability makes retiming and resynthesis complete
for re-encodings.

Abadi and Lamport [1], studying the verification of one system implementing another,

proved that, if S1 implements S2, then one can add auxiliary history and prophecy ve-

riables to S1 to form an equivalent system Shp
1 and find a refinement mapping from Shp

1

to S2 under three very general hypotheses: S1 is machine closed, S2 has finite invisible

nondeterminism, and S2 is internally continuous. For deterministic finite state machines,

they are always true. The following result is simply a corollary of the main theorem of

Abadi and Lamport [1]. But we will give a direct proof to avoid detouring via general

(infinite nondeterministic) system models.

Theorem 4.5. If two deterministic FSMs C and D are equivalent, then one can add

history variables to C to form an equivalent FSM C ′, and find an onto refinement mapping

from C ′ to D.
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Figure 4.7. Transformation from a circuit to an equivalent one by retiming
and resynthesis with sweep.

Proof. For C = (QC , I, O, λC , δC) and D = (QD, I, O, λD, δD), we can have

QC′

∆
= {(c, d) ∈ QC ×QD : c ∼= d}

λC′((c, d), i)
∆
= λC(c, i)

δC′((c, d), i)
∆
= (δC(c, i), δD(d, i))
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It is straight-forward to check that f(c, d) = d for any (c, d) ∈ QC′ is a refinement mapping

from C ′ ∆
= (QC′ , I, O, λC′ , δC′) to D. �

The proof only gives a simple construction without considering efficiency; for any

states c and d such that c ∼= d, we need only add a history variable to record the part

of d that is independent of c, instead of the whole d. In the special case where each d is

total dependent on c, no histroy variable is needed, and the refinement mapping is the

generating function of d from c.

With the refinement mapping, a completeness result can be given as follows.

Theorem 4.6. If two circuits are equivalent, then one of them can be transformed to

the other by a sequence of sweep (inverse), resynthesis, retiming, resynthesis, and sweep,

given that the second resynthesis operation is allowed to use one-cycle reachability.

Proof. For two equivalent circuits C and D, their corresponding FSMs are deter-

minitic and equivalent. Based on Theorem 4.5, a set of history registers and their next

state functions can be added to C to make it C ′, and an onto refinement mapping can be

found from C ′ to D. Denote the mapping by F . Adding unobservable registers and their

next state functions is just an inverse of the sweep operation.

If F is an one-to-one mapping, then F−1 exists. Otherwise, we expand F with the

register outputs of C and denote by F−1 the function that generate the state of C ′ from

the output of F . Resynthesis can generate F and F−1 connected at the register output

of circuit C ′. Then retiming moves the registers to the outputs of F . Since F is a

refinement mapping from C ′ to D, the relocated registers give the states of circuit D in

parallel with (possibly partial) states of circuit C. The circuit composed of F−1, H (the
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history transition), and F can be re-synthesized into the circuit D in parallel with another

circuit (partial C). Then a sweep operation will remove all unobservable part to produce

circuit D. The sequence of the five operations are shown in Figure 4.7. A key operation

in the second re-synthesis operation is to have the output from D, instead of C. This

cannot be done if the register vectors Vc and Vd are assumed to be independent (as in

pure combinational synthesis). However, with the observation that Vd = F (Vc) from the

previous cycle, the output O can be synthesized out solely from Vd. �

4.6. Practical Resynthesis

Retiming and resynthesis with sweep is much cheaper than doing more general se-

quential optimizations, e.g. extracting the set of unreachable states from an initial state

and using them as don’t cares [59, 18], because of the following lemma.

Lemma 4.4. Given a circuit C and an initial state, checking whether a given state is

reachable is PSPACE-complete.

Until now we have assumed that resynthesis can make any change to the combinational

part of the circuit, as long as its state transition graph is preserved. In some cases this

assumption may not be realistic due to the way logic optimization algorithms work. As

discussed above, some resynthesis transformations can only be performed, if a reachability

relation is available. Finding such a reachability relation is computationally expensive.

Moreover, resynthesis does not normally add redundant members, i.e., registers or primary

inputs, in the support set of a register or primary output.

A redundant member in the support set of a function is a member whose value never

matters in determining the value of the function. More formally, let r be a primary output
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or a register input whose value is given by r = f(R), where f is a combinational function

and R is a set of register outputs and primary inputs. An element q ∈ R is redundant if

for any valuation a of R − {q}, it holds f(a)|q=0 = f(a)|q=1. In such a case there always

exists combinational function f̃ , such that f̃(R− {q}) = f(R).

The observations on the way resynthesis works help us establish structural similarities

between the original and the transformed circuit. We start with property P1, which states

that resynthesis does not increase the set of registers and inputs a register depends on.

More precisely,

P1 For any register r if r′ = f(R) before resynthesis and r′ = f̃(R̃) after resynthesis, it

holds

R̃ ⊆ R

where f, f̃ are combinational functions and R, R̃ sets of registers and primary inputs.

As the following lemma shows this property can be violated only if resynthesis uses

reachability information or adds redundancy to the circuit.

Lemma 4.5. If the resynthesis step does not use any reachability relation and does not

add redundant members in the support set of a primary output or register, then property

P1 holds.

Proof. Assume that there exists register r in the circuit and before the resynthesis

step r = f(R) and after the resynthesis step r = f̃(R̃) and R̃ 6⊆ R. Then there exists

register or input x such that x ∈ R̃ and x 6∈ R. Since the resynthesis step does not add

redundant members in the support set, we know that the value of r cannot be a constant
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and that there exist a valuation b for R̃ − {x}, such that r has a different value when

x = 0 than when x = 1. Without loss of generality we assume that r = x for b.

Now assume that A is the set of valuations for R such that every element in R ∪ R̃

has the same value as in b. If R − R̃ = ∅, then A has only one element a for which

r = f(a) has a constant value and some assignment of x can violate f(R) = f̃(R̃). This

is a contradiction as the resynthesis step guarantees that always f(R) = f̃(R̃) holds.

Therefore, there exists a set of registers and inputs R1 = R − R̃. With the same

reasoning as before we can show that there exist some valuations in A for which r = 1

and some for which r = 0. Let a be a valuation of R1 such that r = 0. In order for

f(R) = f̃(R̃) to be true, it must be the case that a ⇒ (x = 0) holds in all reachable

states. Since we assume that any combination of input values is possible at any state of

the circuit, the above relation is a relation for the state variables that needs to hold in

all states of the circuit. This implies that resynthesis used reachability information to

exclude the states, in which a ∧ (x = 1) and this is a contradiction. �

The following well-known result for retiming is useful for proving structural similarities.

Lemma 4.6. The number of registers on a cycle is preserved during retiming.

For all the results below the transformed circuit is the circuit obtained from the original

by a sequence of retiming and resynthesis transformations. Let N(C) denote the number

of registers on cycle C of the graph.

Lemma 4.7. Each cycle of the transformed circuit can be mapped to a cycle of the

original circuit with the same number of registers.
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Proof. Assume we have a circuit G1 = (V1, E1) and we apply a countable sequence of

retiming and resynthesis transformations to obtain circuit Gn = (Vn, En). We prove the

lemma by induction. For the base case the graph G1 is isomorphic to itself and, therefore,

the mapping is from each cycle to itself. Now assume that for every cycle Ck of graph Gk

obtained after k steps of retiming and resynthesis transformations there exists a cycle C1

in G1 with the same number of registers.

We want to prove that for every cycle Ck+1 of Gk+1 there exists a cycle C1 in G1 with

N(Ck+1) = N(C1). Using the induction hypothesis, it is sufficient to show that every

cycle of Gk+1 can be mapped to a cycle of Gk with the same number of registers.

In case Gk+1 is obtained from Gk by retiming, the structure of the graph remains the

same. The reason is that no vertices or edges are added or removed and only the numbers

of registers on the edges change. From Lemma 4.6 we know that the number of registers

on each cycle are preserved. Consequently, each cycle of Gk+1 can be mapped to the cycle

with the same sequence of edges in Gk, which has the same number of registers.

For the case Gk+1 is obtained from Gk by resynthesis we assume Ck+1 is any cycle

in Gk+1. Since combinational cycles are not allowed, cycle Ck+1 must have at least one

register. That means there exists m ∈ N and a sequence of registers r1, ..., rm with a cyclic

dependency, i.e.,

rm = f̃m(R̃m−1) ∧ rm−1 ∈ R̃m−1

rm−1 = f̃m−1(R̃m−2) ∧ rm−2 ∈ R̃m−2

...
...

r1 = f̃1(R̃m) ∧ rm ∈ R̃m
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Resynthesis does not remove registers from the circuit. Moreover, because of Property

P1, we have that for all j ∈ 1..m : rj⊕m1 = fj⊕m1(Rj) ⇒ R̃j ⊆ Rj
2. This implies that

rj ∈ Rj, and, therefore, the cyclic dependency exists in Gk, as well. In addition, the

specific cycle in Gk has the same number of registers, i.e., m, as Ck+1. �

Using the Lemma above we can prove the following lemma for paths from primary

inputs to cycles of the graph.

Lemma 4.8. Each path from an input pin to a cycle with nr registers of the trans-

formed circuit can be mapped to a path from the same input pin to a cycle with nr registers

of the original circuit.

Proof. As in the case of Lemma 4.7 the proof is by induction. Circuit G1 = (V1, E1) is

the initial circuit to which we apply a sequence of retiming and resynthesis transformations

to obtain circuit Gn = (Vn, En). The base case is trivial, since G1 is isomorphic to itself.

Now assume that graph Gk is obtained after k steps of retiming and resynthesis trans-

formations. For every path Pk from a primary input i to a cycle with nr registers of graph

Gk there exists a path P1 in G1 that connects the same primary input i to a cycle with

nr registers.

It is sufficient to show that if Gk+1 is obtained from Gk by retiming or resynthesis,

then for every path Pk+1 of Gk+1 from primary input i to a cycle with nr registers can

be mapped to a path Pk of Gk from the same primary input i to a cycle with the same

number of registers. Then because of the induction hypothesis by composition of the

mappings the paths of Gk+1 can be mapped to the paths of G1.

2The expression a⊕m b denotes a + b modulo m.
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In case Gk+1 is obtained from Gk by retiming the two graphs are isomorphic to each

other. Then each path Pk+1 can be mapped to the path Pk with the same sequence of

edges. Because of Lemma 4.6 the two paths connect to cycles with the same number of

registers.

In case Gk+1 is obtained from Gk by resynthesis let Pk+1 be any path from a primary

input i to a register r in cycle Ck+1. From Lemma 4.7 we know that there exists cycle Ck

in Gk with the same number of registers as Ck+1 that includes register r. Consequently,

it is sufficient to show that there exists path Pk from i to r in Gk.

From the existence of Pk+1 we know that there exists m ∈ N such that

rm = f̃m(R̃m−1) ∧ rm−1 ∈ R̃m−1

rm−1 = f̃m−1(R̃m−2) ∧ rm−2 ∈ R̃m−2

...
...

r1 = f̃1(R̃0) ∧ i ∈ R̃0

with r = rm. Since for all j ∈ 0..m − 1 : R̃j ⊆ R, a path from i to r exists in Gk, as

well. �

Similarly, we can prove the following result for paths from cycles to the outputs

Lemma 4.9. Each path from a cycle with nr registers to an output pin of the trans-

formed circuit can be mapped to a path from a cycle with nr registers to the same output

pin of the original circuit.

Finally, the following lemma can be proved for input to output paths.
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Lemma 4.10. Each path from a primary input to a primary output in the transformed

circuit can be mapped to a path connecting the same primary input to the same primary

output in the original circuit.

Procedures for sequential equivalence checking exploit structural similarities to sim-

plify the verification problem [84, 40]. We believe that the above results will have practical

implications and help researchers design more efficient verification algorithms.

4.7. Summary

We have shown that retiming and resynthesis with sweep are almost complete for all

steady state equivalent transformations, in the sense that resynthesis needs to get one-

cycle reachability information by looking into previous phase. Without such information,

they cannot even complete re-encodings with different code length. It suggests that

a powerful sequential optimization tool can be built around retiming, resynthesis, and

sweep, and also suggests to enhance each resynthesis step to employ one-cycle reachability

by looking into previous phase. In practice, resynthesis may not generate exponential-size

circuits and may have other restrictions. Those restrictions can make the retiming and

resynthesis equivalence checking easier. In the next chapter we will consider the combined

synthesis-verification problem.
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CHAPTER 5

Combined Synthesis and Verification

5.1. Introduction

To cope with the increasing complexity of digital circuits, design methodologies move

to higher-levels of abstraction. The push to higher abstraction levels provides synthesis

with more opportunities for optimization, but makes the verification task more complex.

Synthesis algorithms that optimize sequential circuits, i.e., circuits containing registers

besides combinational logic, are not an exception.

As we saw in Chapter 4, a powerful optimization technique for sequential circuits is

a sequence of retiming and resynthesis operations [63] (RnR sequence). Resynthesis is

a combinational transformation that can be applied to blocks of logic between registers.

Retiming is a sequential transformation that moves registers across gates generating new

logic blocks that give resynthesis new opportunities for optimization. The optimization

power of the RnR sequence has been discussed in many works [89]. Despite its opti-

mization power, the RnR sequence is not widely used due to the complexity of checking

sequential equivalence [39] between the initial and final design. There is a need, therefore,

for efficient verification methods that preserve the optimization power of the retiming and

resynthesis sequence.

Van Eijk developed an efficient method for checking sequential equivalence between

two designs that is based on finding equivalent signals in the two circuits [85]. Jiang
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et. al. showed that the method is complete for sequences of retiming and resynthesis

transformations with no more than one resynthesis step [40]. If more than one resynthesis

step is applied and the verification procedure shows that the outputs are not equivalent,

no conclusion can be drawn.

Ashar et. al. demonstrated that circuits with the Complete-1-Distinguishability (C-1-

D) property can be verified with an efficient and complete method [4]. In C-1-D circuits

each pair of distinct states produces different output values for some input and, therefore,

each state is distinguishable from any other in a single cycle. If one of the two circuits to

be checked for equivalence satisfies the C-1-D property, sequential equivalence checking

can be reduced to combinational equivalence checking. Not all circuits satisfy C-1-D and,

therefore, the authors developed a method to enforce this property by modifying the

structure of the circuit. However, a side effect of the modifications to enforce C-1-D is

that the optimization power of retiming and resynthesis is reduced.

A complete method to check for sequential equivalence of two circuits without restric-

tions on the synthesis part is reachability analysis [23]. Starting with the initial state of

the circuits a forward traversal of the state space can be performed to check whether a

“bad state”, i.e., a state that shows the two circuits are not equivalent, can be reached.

During each iteration the method uses the next state relation to increase the set of reach-

able states. In backward reachability analysis the process starts from the set of bad states

and checks whether an initial state is reachable using the inverse of the next state relation.

The number of iterations that this method requires to produce a useful answer is generally

hard to compute. Without this bound, if the set of reachable states does not converge
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after a specific number of iterations, no conclusion can be drawn for the correctness of

the transformations.

To improve the efficiency of reachability analysis and reduce the number of iterations

without destroying completeness, a number of structural optimizations have been pro-

posed [50, 36]. For example, retiming can be used to reduce the number of variables

before the traversal starts. These techniques can be used in conjunction with the ideas

proposed in this chapter.

The approach we describe targets the equivalence checking of a pair of circuits, one

of which has been obtained from the other by a sequence of retiming and resynthesis

transformations. We extend the C-1-D property to C-k-D, where k ∈ N. A circuit fulfills

the C-k-D property if every two non-equivalent states can be distinguished in k cycles or

less. The contributions of our work are the following:

(1) We extend C-1-D to C-k-D for an integer k. Since every circuit with the C-k-D

property satisfies also the C-m-D for all m ≥ k, our approach is more general

than C-1-D. Therefore, it can be applied to more circuits, if we are not allowed

to modify the circuit before synthesis.

(2) We show how we can prove sequential equivalence for circuits that satisfy the

C-k-D property by unrolling the product circuit a bounded number of times.

The presented verification technique is complete, in the sense that if it fails we

know that there is a problem with the retiming and resynthesis transformations

we applied.

(3) We present a method to modify a circuit, so that it satisfies C-k-D.
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(4) We derive a method to apply a sequence of retiming and resynthesis transfor-

mations to the modified circuit, so that the optimization power of retiming and

resynthesis is not restricted. This implies that the obtained optimized circuit is

the same as the circuit obtained without the modifications we applied to make

its verification easier. Moreover, the complexity of retiming and resynthesis is

not increased by the modification.

Our experimental results show that enforcing the C-k-D property with additional logic

and outputs can speed up the verification procedure.

The modification on the circuit to enforce the C-k-D property, i.e., contribution 3, is

similar to target enlargement [10]. However, the method we propose is applicable even

when BDD construction cannot be completed. Moreover, it is a structural transformation

that is applied before synthesis and without affecting the synthesis result it improves the

verification running-time.

In the next section we describe the notation we use and we define the problem we want

to solve. Then in Section 5.3 we define the C-k-D property and show how it is related

to output equivalence. Moreover, we describe a method to modify a circuit to satisfy the

C-k-D property. In Section 5.4 we explain how we can check sequential equivalence for a

pair of circuits, one of which satisfies the C-k-D property and the other is obtained from

the first by a sequence of retiming and resynthesis transformations. Then in Section 5.5 we

demonstrate a method to apply unrestricted retiming and resynthesis to a circuit which

has been modified to satisfy the C-k-D property. The method is independent of the way

C-k-D was enforced. Finally, in Section 5.6 our experimental results are described and in

Section 5.7 we share our conclusions.
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5.2. Preliminaries

In this section we introduce the concepts we use in this chapter. Some of them have

already been defined in Section 4.2, but we repeat them here for the reader’s convenience.

5.2.1. Models

We introduce two formalisms for representing circuits, namely netlists and finite state

machines (FSMs). Netlists are structural and consist of an interconnection of gates and

registers. Finite state machines are behavioral and specify how the system changes its

states and produces outputs responding to inputs.

A netlist is a directed graph, where the nodes correspond to elementary circuit el-

ements, and the edges correspond to wires connecting these elements. The three basic

circuit elements are primary inputs, registers, and gates. Primary input nodes have no

fanins; registers have a single input. Associated with a gate g on n-inputs w1, w2, . . . , wn is

a function from Bn to B, where B = {0, 1}. Some nodes are designated as being primary

outputs.

A Finite State Machine (FSM) is a quintuple (Σ, I, O, λ, δ) where Σ is a finite set

referred to as the states, I, and O are finite sets referred to as the set of inputs and

outputs respectively, δ : Σ × I → Σ is the next-state function, and λ : Σ × I → O is the

output function.

The output and next state functions can be inductively extended to the domains

Σ × I+ → O+ and Σ × I+ → Σ, respectively, where A+ is the set of finite, non-empty

sequences of elements of the set A. We continue to use λ and δ to denote these extended

functions.
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Given a value to each input and a state (an assignment of values to registers), one

can uniquely compute the value of each node in the netlist by evaluating the functions at

gates. A netlist η on inputs i1, i2, . . . , in, outputs o1, o2, . . . , om and registers r1, r2, . . . , rk

bears a natural correspondence to an FSM Mη on inputs X = Bn, outputs Y = Bm,

and state space Σ = Bk. The next-state function of Mη is defined by the composed logic

gates in the following manner: for each register ri we can find a function δi : Σ × X by

composing the functions of the gates from the inputs and register outputs to the input

of the register. We will refer to δi as the next-state function of the register i. Then

δMη
(w1, w2, . . . , wn, r1, r2, . . . , rk) : Σ×X → Σ is simply [δ1δ2 . . . δk]. Similarly, the output

function is defined by composing the functions of gates from inputs and registers to output

nodes.

Two circuits are called compatible if they have the same set of primary inputs and

primary outputs. We restrict the equivalence problem on pairs of compatible circuits.

For two compatible circuits Ca and Cb the product circuit Cx = Ca × Cb is defined.

The netlist of the product circuit is built by joining the corresponding primary inputs

and connecting the corresponding outputs to xor-gates. The outputs of those xor gates

become the outputs of the product circuit. The outputs of the product circuit are all zero

in state s, if the outputs of the two circuits are equal in s. The set Σx of states of the

product circuit is given by Σa × Σb, where Σa, Σb are the set of states of Ca and Cb.

From the FSM the State Transition Graph (STG) of the circuit can be built. The

STG has one node for each state and its edges represent the transitions that can occur

between states in one clock cycle. The longest shortest path between any two nodes of

the STG is called the diameter of the circuit.
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For any circuit element o, we denote as o(x) the value of the element after x cycles. For

a predicate φ over circuit elements (e.g., registers, inputs), φ(x) is obtained by replacing

each circuit element with its value after x cycles.

5.2.2. Retiming and Resynthesis

Retiming and resynthesis are structural operations applied on netlists.

Retiming consists of moving a given number of registers between the inputs and out-

puts of each combinational node [57]. A retiming can be described mathematically by a

lag function, which gives for each combinational node, the number of registers that are

moved from each fanout to each fanin.

Resynthesis restructures the netlist within the register boundaries without changing

its functionality. It leaves the FSM of the design unchanged.

Retiming becomes very powerful when it is interspersed with resynthesis of the netlist

within the changed register boundaries. This is the basis for the retiming and resynthesis

(RnR) paradigm proposed in [63].

5.2.3. State Characterization and Equivalence

We assume an initial state is specified for each circuit. After starting from the initial

state, the set of states that the circuit can enter are called reachable.

A state s of a circuit is dangling , iff either it has no predecessor states or all its

predecessor states are dangling [39]. Let D represent the set of dangling states. The

states in Σ−D are called non-dangling (Figure 5.1).
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s1 s2
s3

s4s5 s6s0

s7

Figure 5.1. In the displayed STG states s0, s1, s6, and s7 are dangling.
The rest are non-dangling states.

Let Ca and Cb be two compatible circuits with FSMs (Σa, I, O, λa, δa) and (Σb, I, O, λb, δb).

Then two states sa ∈ Σa and sb ∈ Σb are equivalent, i.e., sa ≈ sb, if and only if

∀i ∈ I+ : λa(sa, i) = λb(sb, i)

Two compatible circuits with a prespecified initial state are sequentially equivalent, iff

their initial states are equivalent. Two compatible circuits are RnR equivalent , iff one can

be obtained from the other by a sequence of retiming and resynthesis transformations.

5.2.4. Complete-1-Distinguishability

Definition 5.1. A circuit C satisfies the C-1-D property iff for every pair of non-

equivalent states s1 and s2 there exists some input value i ∈ I such that λ(s1, i) 6= λ(s2, i).

Note that our definition of C-1-D property is more general than previous approaches [4]

because we require that non-equivalent states are distinguishable, as opposed to distinct
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states. Clearly, every circuit that has the C-1-D property, as defined in [4], satisfies the

C-1-D property defined above.

5.2.5. Problem Formulation

Assume we have two circuits Ca and Cb. Circuit Cb has been obtained from Ca by a se-

quence of retiming and resynthesis transformations. The purpose of those transformations

is to create an optimized and sequentially equivalent version of Ca.

Definition 5.2. Complete RnR Equivalence Checking Problem: Prove that Ca and Cb

are sequentially equivalent or find whether Cb cannot be obtained from Ca by a sequence

of retiming and resynthesis operations.

We will refer to the Complete RnR Equivalence Checking Problem as RnR checking

for simplicity. Obviously, this problem can be solved by model checking. However, we

are interested in forcing a bound to the number of iterations after which we give a solu-

tion to the RnR checking problem. This bound should be forced without restricting the

optimization power of the synthesis part, i.e., the retiming and resynthesis sequence.

5.3. Exploiting the Output Equivalence to Derive C-k-D

We are given two compatible circuits; the original circuit Ca and the transformed

circuit Cb. Our first step for proving their equivalence is to build the product circuit

Cx. In this section we show how to exploit the structure of Cx starting from the outputs

to derive a relation between the registers of Ca and Cb (Section 5.3.1). Then we define

C-k-D and show how it is related to the characteristic predicate of the relation between
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the registers.(Section 5.3.2). This predicate is used to derive an invariant for Cx. By

modifying the structure of the circuit, we can enforce C-k-D (Section 5.3.3).

5.3.1. Output Equivalence

Every output of the product circuit Cx has the value 0 in all reachable states, if and

only if Ca and Cb are sequentially equivalent. By construction of Cx this is equivalent to

corresponding outputs oa and ob being equal in all those states. Outputs oa and ob can

be expressed as a function of the registers and inputs that drive them. The function can

be extracted by traversing the netlist backwards from the outputs until a register or a

primary input is met. Since the inputs cannot be restricted, this is a relation over the

registers of the two circuits that must hold for all input values. More precisely, let λa, λb

be the combinational functions that give the values of oa and ob, and Ra = {p1, p2, ..., pm},

Rb = {q1, q2, ..., qn}, Ia, Ib be the set of registers and inputs that are connected to oa and

ob by a combinational path, then

oa = ob ⇔ ∀i ∈ I : λa(p1, p2, ..., pm, i) = λb(q1, q2, ..., qn, i) (5.1)

where I = Ia ∪ Ib.

We define as χ0 the characteristic predicate over the registers in Ra ∪ Rb that are

connected to the outputs by a path of 0 registers, i.e.,

χ0
∆
= ∀i ∈ I : λa(p1, p2, ..., pm, i) = λb(q1, q2, ..., qn, i)

Predicate χ0 is satisfied by those states of the product circuit that have an output value

of 0 for any input.
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As we saw in Section 5.2.1, the next state function δ is composed of a number of δi

functions, each giving the value of a register in the next state as a function of the registers

and the input. Function δri
of register ri can be extracted from the circuit by traversing

the signal that drives ri backwards until a register or an input is met. By replacing the

registers of (5.1) with the functions giving their value in the next state, predicate χ1 is

generated.

Predicate χ1 defines a relation between the register values of the two circuits that are

connected by a path of exactly one register to the outputs oa and ob. The predicate uses

the inputs connected to those outputs by a path of 0 or 1 register to determine which

states of the product circuit cause oa = ob in the next cycle for any input, i.e.,

χ1 ⇒ o(1)
a = o

(1)
b

or, equivalently,

χ1 ⇒ χ
(1)
0

As an example, consider the two circuits shown in Figure 5.2. For those circuits we

have

χ0 = (p1 ∨ p2)↔ (q1 ∧ q2)

χ1 = ∀i ∈ {0, 1} : ((i ∧ p4) ∨ p3)↔
(
(i ∧ q4) ∨ q3

)

States sa = {p1 = 0, p2 = 0, p3 = 0, p4 = 1} and sb = {q1 = 1, q2 = 0, q3 = 1, q4 = 0}

satisfy χ0. Therefore, the output of the product circuit is zero in state (sa, sb). However,
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(sa, sb) does not satisfy χ1. For input i = 1 the next state of the product circuit violates

χ0 and the output is 1.

p1

p2p3
p4

i
q1

q2q3
q4

i

Figure 5.2. Two example circuits.

Similarly, by processing the circuit structure we extract χk from χk−1 for any k ∈ N.

Moreover, we build the predicates in the same way for all outputs and for each k ≥ 0 we

take their conjunction. Therefore, the states that satisfy χk guarantee that for all xor-ed

output pairs (oa, ob) and for all input values, oa = ob after k cycles. By construction, it

holds

χk ⇒ χ
(1)
k−1 (5.2)

for all k ≥ 1. By the definition of χk, for a pair of states satisfying ¬χk there exists an

input sequence of length k, such that a pair of corresponding outputs is different after k

cycles.

States of the product circuit that satisfy the conjunction

ψk
∆
=

∧

i∈0..k

χi
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have the same output values for the next k cycles. States of the two circuits that are

equivalent must satisfy ψk for any k, i.e.,

∀(sa, sb) ∈ Σa × Σb : sa ≈ sb ⇒ (sa, sb) |= ψk (5.3)

In the worst case the evaluation of ψk for a state requires Ik+1 input values. However, by

the method described above only the inputs relevant to producing the output values are

processed in each of the k + 1 cycles.

5.3.2. Complete-k-Distinguishability

In this section we define the C-k-D property and show how we can find whether a circuit

satisfies it. First, we define a property for states.

Definition 5.3. A pair of states s1 and s2 of circuit C is k-Distinguishable iff there

exists some input sequence i of length m ≤ k, such that λ(s1, i) 6= λ(s2, i).

Definition 5.4. A circuit C satisfies the C-k-D property, iff every pair of non-

equivalent states s1 and s2 is k-Distinguishable.

If we take the product Cx of C with itself, then states s1 and s2 are k- Distinguishable,

if and only if

(s1, s2) 6|= ψk−1

Therefore, circuit C has the C-k-D property, if and only if

∀(s1, s2) ∈ Σx : s1 ≈ s2 ⇔ (s1, s2) |= ψk−1 (5.4)
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which follows from the definition of C-k-D and (5.3).

By the definition of C-k-D, if any circuit satisfies the C-k-D property, then it satisfies

the C-m-D property for all m ≥ k. Therefore, C-1-D is the most restricted property

of this class. More specifically, the circuits satisfying C-1-D are a subset of the circuits

satisfying C-k-D for any k ≥ 1.

Lemma 5.1. For every circuit C there exists k ∈ N such that C has the C-k-D

property, where k is bounded from above by the diameter of Cx = C × C.

5.3.3. Convergence

For verification purposes it is useful to have an invariant of the product circuit that

implies correctness. Property ψk−1 implies output equivalence in the current state by

construction. In this section we show that for a circuit C that satisfies C-k-D, ψk−1 is also

an invariant of the product of C with itself (Lemma 5.2). Moreover, we show how we can

transform the product circuit Cx = C × C, so that formula (5.4) holds for Cx. Then in

Section 5.4 we show how we can use ψk−1 to check equivalence between the original and

the transformed circuit.

Lemma 5.2. If C fulfills the C-k-D property, then ψk−1 is an invariant of Cx.

Proof. From (5.4) we know that (s1, s2) |= ψk−1 if and only if s1 and s2 are equivalent.

The equivalence of these states implies that for any input i ∈ I their next states are also

equivalent, and, therefore, satisfy ψk−1 (Formula 5.3). �

As we can see from the proof of Lemma 5.2, it is sufficient that Cx satisfies formula (5.4)

for ψk−1 to be an invariant of Cx.
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In Figure 5.3 a Venn diagram of the state space of the product circuit can be seen.

The sets of states satisfying ψk−1, .., ψ0 are displayed. The set of states satisfying ψm is a

subset of the states satisfying ψm−1, as ψm = ψm−1 ∧ χm. In order for ψk−1 not to be an

invariant, there must be a state s satisfying ψk−1 and having a next state s1, such that

s1 6|= ψk−1. That means that s1 |= ¬χk−1, since s |=
∧

i∈0..k−1 χi implies that all states

that we can reach from s in one cycle, including s1, satisfy
∧

i∈0..k−2 χi, which is equivalent

to ψk−2. This follows from (5.2). Moreover, from the fact that s1 |= ¬χk−1 ∧ ψk−2 we

know that the path from s to a state that violates output equivalence is exactly of length

k. Each state on that path satisfies a different ψ predicate and, therefore, each state on

that path is distinct.

 0=x0

 1=x0 /\ x1

 k-2=x0 /\ x1/\ .../\xk-2

 k-1=x0 /\ x1/\ .../\xk-2/\ xk-1

...

Figure 5.3. A Venn diagram of the states that can guarantee output equiv-
alence for the next 0 ≤ m ≤ k − 1 cycles.

It is possible to enforce any circuit to satisfy the C-k-D predicate, e.g., by the method

described in [4]. However, this is not the only method. Methods to achieve this goal can

be applied not only on C, but also on the product Cx = C × C of the circuit with itself.

In Section 5.5.1 we show a way to apply retiming and resynthesis without restrictions,

which is independent of the method with which the C-k-D property was enforced.
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r2

r3

r5

r4

Figure 5.4. An example circuit.

r1

r2

r3

r5

r4

Figure 5.5. The circuit
after the transformation.

As an example, consider the circuit of Figure 5.4. We take the product Cx of that

circuit with itself and denote the registers of the first and second copy as r1a, ..., r5a and

r1b, ..., r5b respectively. For Cx we have

χ0 = (r1a ∧ r2a)↔ (r1b ∧ r2b)

χ1 = (r3a ∧ r4a ∧ r5a)↔ (r3b ∧ r4b ∧ r5b)

χ2 = (r1a ∧ r2a)↔ (r1b ∧ r2b)

(5.5)

States sa = [r1a = 0, r2a = 0, r3a = 0, r4a = 1, r5a = 0] and sb = [r1b = 1, r2b = 0, r3b =

0, r4b = 1, r5b = 0] satisfy ψ1 = χ0∧χ1, but not χ2. In order to enforce ψ1 as an invariant,

we create pseudooutputs and connect to them the registers with a path of 2 registers to

an existing output. The set of registers satisfying this requirement is R2 = {r1, r2}. The

new circuit can be seen in Figure 5.5. After simplifications, for the new product circuit
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we have

χ′
0 = (r1a ↔ r1b) ∧ (r2a ↔ r2b)

χ′
1 = (r3a ↔ r3b) ∧ ((r4a ∧ r5a)↔ (r4b ∧ r5b))

States sa and sb do not satisfy χ′
0 and as a result they cannot satisfy ψ′

1 = χ′
0 ∧χ

′
1. It can

be shown that ψ′
1 is an invariant of the modified product circuit and, therefore, the new

circuit has the C-2-D property. Next, we formally describe the transformation.

Given a k ∈ N and a circuit C we modify the product Cx = C ×C of the circuit with

itself, so that formula (5.4) holds for Cx. This has the same effect as enforcing the C-k-D

property on C. Assume that Cx is the product of the circuit with itself. We build ψk−1

and check whether it is an invariant. This check can be formulated as

∀(sa, sb) ∈ Σx : (sa, sb) |= ψk−1 ⇒ (sa, sb) |= χk

The reason we do not need to check
∧

j∈0..k−1 χj is that we know that it is satisfied by

formula (5.2) and the definition of ψk−1. We assume that k is chosen in such a way that

the above check is tractable. If the formula above is false, then we know that the circuit

C does not have the C-k-D property1. Then we chose 1 ≤ m ≤ k, so that the number

|Rm| of registers connected by a path of m registers to an output is minimum. We create

for each register r ∈ Rm a pseudo-output with the name orm
and connect the register to

the output.

1The case of a bug is not realistic, as we assume that C is sequentially equivalent to itself.
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Let us denote as χ′
0, ψ

′
k−1 the predicates of the circuit after the first modification. For

each state (sa, sb) with (sa, sb) 6|= χm we know that there must be at least one register in

Rm that has a different value in sa than in sb. By connecting those registers to outputs,

when we consider χ′
0, we have that (sa, sb) 6|= χ′

0. Therefore, if we start again the process

of deriving ψ′
k−1, this time ψ′

k−1 implies ψk+m−1. If ψ′
k−1 fails the invariant test, we repeat

the same process after identifying another number m′. Then the next predicate ψ′′
k−1 tried

implies ψk+m+m′−1. This process continues until ψk−1 becomes an invariant. During this

process the number of input variables for the computation of ψk−1 remain bounded by

k · |I| and the number of state variables are bounded by the number |R| of registers in the

product circuit. Since for the number m chosen in each iteration we have m ≥ 1 and the

diameter is an upper bound for k, eventually this process terminates. The advantage of

this approach is that it is easy to apply as it does not require the BDD construction for

ψn−1 for some n. For example, if for some n ∈ N the BDD construction of ψn−1 cannot

be completed, by applying the transformation we can enforce ψl−1 as an invariant with

l < n. Then ψl−1 could be easier to compute. The choice of k for the target invariant

ψk−1 should be made in such a way that ψk−1 can be computed.

The modification we described is applied to the product circuit. However, it does

not prevent us from obtaining the transformed circuit by applying a sequence of retiming

and resynthesis operations. In Section 5.5.1 we show how we can apply these operations

without restricting their optimization power or increasing their complexity.
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5.4. Checking RnR Equivalence when the Original Circuit is C-k-D

In this section we show how we can check the equivalence between the original and the

transformed circuit when we know that the original circuit fulfills the C-k-D property. The

check can be done by unrolling the product circuit a bounded number of times. First, we

prove some properties for the non-dangling states of the original Ca and the transformed

circuit Cb. Using these properties we show that ψk−1 is an invariant of those circuits in

the non-dangling state space, if Ca satisfies the C-k-D property. Based on this result we

prove the completeness of our method, i.e., if the checks fail, Cb cannot be obtained from

Ca using retiming and resynthesis operations. Finally, we show how to check sequential

equivalence between Ca and Cb.

Lemma 5.3. If the original circuit Ca is RnR equivalent to the transformed circuit

Cb, then for every non-dangling state of Cb there exists an equivalent non-dangling state

in the STG of Ca.

Proof. We prove the theorem by induction. The base case, before any step of the RnR

sequence, is trivial as the transformed circuit is identical to the original circuit and the

STGs are isomorphic. Assume that the lemma holds after m steps of the RnR sequence,

we prove that it holds after the m+ 1 step has been applied.

The first case is that the m + 1 step is a resynthesis step. Then the STG of the

transformed circuit is preserved. Therefore, for every non-dangling state of Cb, there

exists an equivalent non-dangling state in the STG of Ca.
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The second case is that the m+1 is a retiming step. Let Cm
b , Cm+1

b be the transformed

circuits before and after the m step, respectively. Retiming does not create new non-

dangling states, but merges equivalent non-dangling states or splits non-dangling states

to equivalent non-dangling states [39]. Consequently, for every non-dangling state in the

STG of Cm+1
b , there exists an equivalent non-dangling state in the STG of Cm

b . �

Lemma 5.4. If the original circuit Ca has the C-k-D property and the transformed

circuit Cb is RnR equivalent to Ca, then ψk−1 is an invariant of the product circuit Ca×b =

Ca × Cb in the non-dangling state space.

Proof. Let us assume Ca has the C-k-D property and Cb is RnR equivalent, but ψk−1

is not an invariant of Ca×b. Then there exist k distinct states (s1, t1), ..., (sk, tk) in Ca×b

such that

∀m ∈ 1..k − 1 : ∃i ∈ I : (δa(sm, i), δb(tm, i)) = (sm+1, tm+1)

∀m ∈ 1..k − 1 : (sm, tm) |= ψk−m

(sk, tk) |= ¬χ0

Since Ca has the C-k-D property, there is no state x such that (s1, x) |= ψk−1 and

s1 6≈ x. This implies that t1 is either non-equivalent to any state of Ca or t1 is equivalent

to some state y of Ca for which (s1, y) 6|= ψk−1. In the first case we have that t1 is a dangling

state or Cb is not RnR equivalent to Ca (Lemma 5.3), which is a contradiction. Therefore,

t1 is equivalent to y with (s1, y) 6|= ψk−1. This implies that there exists m < k − 1, such

that (s1, y) 6|= χm. However, then there exists an input i ∈ Im for which λb(t1, i) =

λa(y, i) 6= λa(s1, i). Consequently, (s1, t1) 6|= ψk−1, which is a contradiction. �
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Based on the lemmas above, if we are given an initial state (sia, sib) for the product

circuit, we can use the following method

∃sa ∈ Σa, ∃i ∈ I
nd : δa(sa, i) = sia (5.6)

∃sb ∈ Σb, ∃i ∈ I
nd : δb(sb, i) = sib (5.7)

(sia, sib) |= ψk−1 (5.8)

∀(sa, sb) ∈ Σa×b, ∀i ∈ I
nd : δ(sa, sb, i) |= ψk−1 ⇒

δ(sa, sb, i) |= χk (5.9)

where nd is the register depth of the initial circuit. The first two formulas check that the

initial states of the two circuits are non-dangling. They can be posed as SAT problems.

The third formula checks the initial state of the product circuit satisfies ψk−1. Finally,

the last formula checks that ψk−1 is an invariant in the non-dangling state space. By

considering only states reachable after nd cycles, the check is restricted to non-dangling

states.

If Ca×b satisfies formulas (5.6)–(5.9), then Ca and Cb are sequentially equivalent. This

is because the product circuit starts from non-dangling states. Then dangling states

are not reachable. Moreover, ψk−1 is an invariant and it implies output equivalence by

construction. The following theorem shows that if Ca is a C-k-D circuit and one of the

formulas does not hold, then either Ca and Cb are not RnR equivalent or the initial states

include dangling states.
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Theorem 5.1. If Ca satisfies the C-k-D property, the initial state of the product circuit

is non-dangling and either formula (5.8) or (5.9) does not hold, then Ca and Cb are not

RnR equivalent.

Proof. Since the initial state of the product circuit is non-dangling, formulas (5.6)

and (5.7) must hold. Then from Lemma 5.4, it follows that the circuits are RnR equivalent

only if (5.9) holds. Moreover, if (5.8) does not hold, either dangling states are included

in the initial state set (contradiction), or the circuits are not RnR equivalent. �

We believe that the assumption for (sia, sib) is reasonable. If sia is a dangling state,

then the problem of finding a corresponding state after retiming may be unsolvable.

From Theorem 5.1 and the discussion above, we know that if (5.6)– (5.9) hold, then

Ca and Cb are sequentially equivalent. If one of them does not hold, then Cb cannot have

been obtained from Ca by a sequence of retiming and resynthesis transformations, i.e.,

Cb is not RnR equivalent to Ca. There may be a case that Cb is not RnR equivalent to

Ca, but the two circuits are sequentially equivalent. In that case the checks for (5.8) and

(5.9) may succeed or fail. In such a case a failure of the checks can point to an error of

our RnR transformation implementation. A success is also a good result, because even

though there may be a problem in the way the RnR transformation was implemented,

the two circuits are sequentially equivalent. Ideally, in this case we would like to get both

results. Our method gives only one of the results.

5.5. Applying Retiming and Resynthesis without Restrictions

In Section 5.3 we presented methods to check whether a circuit C has the C-k-D

property and transform the product circuit Cx = C × C, so that property ψk−1 becomes
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an invariant. In this section we show how we can apply retiming and resynthesis on C

without restrictions from that transformation (Section 5.5.1). More specifically, with our

method neither the optimization power of retiming and resynthesis is reduced nor their

complexity is increased. Our method is independent of the way the modified circuit is

obtained. It guarantees that after the retiming and resynthesis for some m ∈ N the

predicate ψm−1 is an invariant of the product circuit after the synthesis. Finally, we show

how to obtain the transformed circuit after verification (Section 5.5.2).

5.5.1. Method to Apply Unrestricted Retiming and Resynthesis

We assume that we are given the modified product circuit Cx that has been augmented

with additional gates and outputs by a method enforcing the C-k-D property, e.g., the

method of Section 5.3.3. We also assume that in Cx we can distinguish the two copies of

C, namely, C1 and C2, and the additional logic and outputs C3. More specifically, each

node and edge of the product circuit is colored from the set {c1, c2, c3} based on its origin.

A c3 edge can be driven by a gate of any color. However, a c1 or c2 edge can be driven

only by a node of the same color. Predicate ψk−1 is an invariant of Cx. Our purpose is to

apply a sequence of retiming and resynthesis transformations on C2, the second copy of

C, without being restricted by the additional logic. Moreover, after the transformation

we want the product circuit to have ψm−1 as an invariant for a known m.

Before a resynthesis step we extract C2 from Cx by considering all circuit nodes and

edges marked with c2. All c3 edges that are driven by a c2 node are left hanging, i.e., not

driven by any node, by this transformation. We express each of these edges as a function

of c2 registers and primary inputs. Then we add logic to C3, so that the only edges
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SAT on miter with ABC
Without Addit. Logic With Addit. Logic

Bench
Exec Time (sec) k Exec Time (sec) k

s635 4 >4 4 2
s838 10.6 >4 6 3
s938 7.4 >4 5.4 2
s953 437 >4 3.6 2
s967 651 >4 5.6 2
s1196 3.7 2 3.4 1
s1512 >2000 >4 27.25 2
s3271 >2000 >4 >2000 2

Table 5.1. Running-time and k value for which ψk becomes an invariant.
For the SAT on the miter case, the computation is terminated if the running-
time is greater than 2000 secs, or k is greater than 4. Enforcing ψk−1 as an
invariant can significantly speed up sequential equivalence checking in some
cases.

VIS: backward traversal VIS: forward traversal
Without Addit. With Addit. Without Addit. With Addit.

Bench
Logic (sec) Logic (sec) Logic (sec) Logic (sec)

s635 > 2000 1.2 > 2000 > 2000
s838 74.6 15.6 1.7 4.2
s938 >2000 0.75 > 2000 > 2000
s953 4.41 1.28 1.4 1.4
s967 3.7 3.7 2.9 2.5
s1196 1.1 1 0.9 0.8
s1512 > 2000 21.28 > 2000 > 2000
s3271 > 2000 > 2000 > 2000 > 2000

Table 5.2. Experimental results with vis (backward and forward traversal)
with and without the additional logic that enforces ψk−1. The computation
is terminated if the running-time is greater than 2000 secs. Enforcing ψk−1

as an invariant can significantly speed up sequential equivalence checking
in some cases.

hanging, i.e., not driven by a node, are the edges that would be driven by a C2 register

or a primary input. It is easy to extract the additional logic by traversing backwards a c2

node that drives a c3 edge until a register or a primary input is met in each path. Then
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this logic is replicated and added to C3. Then we apply resynthesis on C2. The resynthesis

optimization is unrestricted as only nodes and edges of C2 are considered. Resynthesis

does not remove registers or inputs and after the step we can bring the modified version

of C2 back in Cx by connecting c2 nodes (registers, inputs) to the corresponding hanging

c3 edges.

Before a retiming step we extract C2 from Cx again. We maintain a mapping between

the hanging c3 edges and the c2 nodes that drive those edges. We retime C2 as an

independent circuit. Retiming does not change the circuit structure, so we reconnect the

modified C2 to obtain Cx by preserving the mapping. Nodes belonging to C2 that drive

c3 edges may have a lag value r that is different than 0. In such a case, the number

of registers on the c3 edges need to be adjusted, so that the weights of the edges are

consistent with the lag (r-) values.

If for a c2 node v that drives a c3 edge we have r(v) < 0, then we add to the c3 edge

−r(v) number of registers. These registers have been moved across v from its fan-in,

which are c2 edges. Therefore, this move is based on pre-existing registers. Based on the

results proved on Section 5.4, we know that after such a retiming move ψk−1 should still

be an invariant of the product circuit Cx in its non-dangling state space.

In the case that r(v) > 0 for a c2 node v driving a c3 edge, then we remove r(v)

registers from the c3 edge. If the weight of the edge becomes negative, we try to adjust

the r(u) value of the head u of the edge, which is a c3 node. This may cause other edges

to have negative values. The paths from all these edges terminate at a single pseudo

output o2. The end result may be that we have to adjust the value of the pseudo output

2We call o a pseudo output because it is added by our method and it is not an output of the original
circuit.
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o. In that case the effect of the additional logic is moved in the past. Therefore, instead

of ψk−1 the predicate that must be an invariant of the product circuit is ψk−1+r(o). Every

time we retime a pseudo output, we adjust the number m, for which ψm−1 must be an

invariant of the modified product circuit. Using this number, at the end of the retiming

and resynthesis sequence, we will derive ψm−1 and require that the checks described in

Section 5.4 succeed, in order for the two circuits to be sequentially equivalent.

The method described in this section resembles recording the transformation history

of retiming and resynthesis. In [66] a similar method is presented. There are important

differences between that approach and our method. First, in [66] verification relies on

synthesis to record the candidate problems to be solved. If the problems are solved

successfully, then the circuits are assumed equivalent. However, it is unclear whether a

bug in recording synthesis history can result in a false positive. Moreover, that technique

is described for a tool that uses a specific data structure to represent a logic network,

namely And-Inverter-Graphs. Our technique is general in that the data passed from

synthesis to verification are in the form of a circuit. Therefore, synthesis and verification

can use different data structures. In terms of efficiency, our approach creates new nodes

only when required for the fan-in cones of the pseudo-outputs, while the approach in [66]

stores every node created during synthesis. Moreover, it stores one node for each move

of a register over a gate during a retiming operation. Because of that, restrictions on the

synthesis part may become necessary for the approach in [66] to be practical.
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5.5.2. Method to Obtain Transformed Circuit

The product circuit obtained by the method of the previous section can be used for

verification purposes. However, after verification we want to extract only the optimized

copy C2 of the product circuit. It is easy to see that by taking only the nodes and edges

colored by c2, we have the optimized version. The extracted C2 circuit is the same as the

circuit obtained by applying retiming and resynthesis to C1. The reason is that during

the optimization the additional edges and nodes were not considered.

5.6. Experimental Results

In this section we present experimental results for our approach. We used the ABC

framework [11] and VIS [14] to test our ideas. Checking formula (5.9) is the most difficult

step of our approach, so we focus on the implementation and results for that part. With

ABC we implemented the check as a SAT problem on a miter. More specifically, the

predicate ψk−1 is built as a BDD after unrolling the product circuit and applying universal

quantification on the inputs. The result is appended to the circuit specifying χk using the

utility of ABC that implements a BDD as a circuit of muxes. Then we check whether for

any input sequence and state ψk−1 ∧ ¬χk is satisfiable 3.

We tried to verify a number of ISCAS benchmarks with and without additional logic

that enforces the C-k-D property (Tables 5.1 and 5.2). The pairs of circuits that we tried

are retiming and resynthesis equivalent. The first two columns display the running time

and the k value of the verification procedure without the additional outputs and logic.

3The approach in [10] for building the BDD for target enlargement or the SAT approach for quantifi-
cation [65] could be more efficient for checking formula (5.9). However, we do not expect that another
method will significantly change the improvement shown in the results and the conclusions drawn by
them.
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The value k is the number for which ψk becomes an invariant. The next two columns

show the same results when the additional outputs were included in the circuits. Except

for the additional outputs and the logic driving them the pairs of circuits are in both

cases the same. The circuits with and without the additional logic were then checked

with VIS. We tried both backward (columns 5 and 6) and forward traversal (columns 7

and 8) traversal with VIS. The VIS-command we used on the circuits is “seq verify” with

option “-r” for variable reordering.

In many cases the running time of the procedure is substantially reduced. Examples

are the cases of s635, s938, and s1512. VIS does not terminate in 2000 secs without

the additional logic. However, the computation of ψk−1 with additional logic takes a few

seconds in those cases. Enforcing ψk−1 can speed up the verification in VIS, as well, when

it operates in backward traversal. The additional logic does not have any significant effect

for the forward traversal. For the check of ψk−1 as an invariant, the speed up obtained by

enforcing a small k is significant in most cases.

From the results we conclude that by using the additional logic we can significantly

speedup the checking procedure in some cases. The described procedure is based on

BDDs and, therefore, does not scale well compared to SAT based procedures, e.g., [40].

However, those procedures are not proved complete for retiming and resynthesis sequences

with more than one resynthesis step. We conclude that enforcing the C-k-D property can

simplify the verification task without restricting the synthesis part.
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5.7. Summary

In this chapter we extended the property of C-1-D to C-k-D and we showed how we

can check circuits for equivalence if one of them satisfies the C-k-D property. We also

presented a technique to enforce the C-k-D property on a circuit and then apply a sequence

of retiming and resynthesis transformations without restricting their optimization power

or increasing their complexity. Our method provides a bound to the number of timeframes

that need to processed during verification and is complete in the sense that any result

provides useful information. Our experimental results show that enforcing the C-k-D

property can speed up the verification process. In the next chapters we will show how

abstraction can be used to simplify the verification problem.
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CHAPTER 6

An Efficient System-Level to RTL Verification Framework for

Computation-Intensive Applications

6.1. Introduction

It is known that almost two thirds of the design cycle of a digital integrated circuit

is spent on verifying its functionality [49]. As designs become more complicated and

time-to-market periods decrease, the needs for efficient verification frameworks increase.

For verifying digital integrated circuits several approaches exist. One is the simulation

based verification, whose drawbacks are the long execution time and the inability to

assure correctness of the design. On the other hand, formal verification can be an efficient

alternative to prove that specific properties of the design hold.

Formal verification methods include Symbolic Model Checking and Theorem Proving.

In Model checking [22], the temporal logic specification is used to check system properties

where the system is modeled as a finite state machine. Symbolic Model Checking, with

boolean encoding of the finite state machine as ordered binary decision diagrams (BDDs)

can handle more than 1020 states [64]. On the other hand, Bounded Model Checking

(BMC) for linear temporal logic (LTL) can be reduced to propositional satisfiability in

polynomial time where bound is the maximal length of a counterexample and solved using

SAT solvers [13].
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For Theorem provers both the system and its desired properties are expressed as

formulas in some mathematical logic and the theorem prover finds a proof from axioms

of the system. SVC [8] and its enhanced version CVC [81] are automatic theorem provers

for first order logic. PVS [72] combines decision procedures and model checking with

interactive proof. Theorem provers in contrast to model checkers can handle infinite state

spaces but generally require manual intervention and are hard to use.

It is a common practice to write a System Level functional description of the digital

IC in the first design stages. This description after verification can be used as the golden

model for the Register Transfer Level implementation of the circuit. One approach for this

kind of verification is CBMC [19], which uses a C specification of the circuit to verify the

RTL model. The techniques to capture the model are the same as in BMC approaches and

a bit-level SAT solver [67] is used to produce a counterexample or to prove the correctness

of the assertions.

In this chapter we describe an alternative approach to CBMC for verifying proper-

ties of an RTL description using its System Level specification. The approach is orders

of magnitude faster than CBMC for computational intensive applications by sacrificing

bit-level accuracy, which may not be needed during the early stages of the verification

process. Morevoer, if the implementation of arithmetic operations is the same in the

golden model and the RTL description, a verification procedure working at the bit-level

may not be needed. The back-end tool used in our framework is Mathematica, a well

known commercial symbolic analysis tool. In the next section we describe the motivation

behind this approach. In Section 6.3 we formulate the problem that needs to be solve,

while in Sections 6.4 and 6.5 we explain the reasons behind using Mathematica and the
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proposed framework in more detail. Finally, Sections 6.6 and 6.7 present our results and

conclusions.

6.2. Motivation

In this section we discuss the motivation behind the usage of word level techniques

and Mathematica. As mentioned before, CBMC is the only bounded model checking

approach for verifying properties of an RTL implementation based on a System Level

description. CBMC uses a SAT solver as the back-end tool for proving the assertion or

providing a counterexample. The whole program needs to be converted in a Conjunctive

Normal Form (CNF), which will be the input to the SAT solver [67].

A major bottleneck for the SAT solver is the memory requirements of a CNF. If the

required memory exceeds the available physical memory, the swap file will be employed.

Therefore, all non-local accesses for the formula will involve the disk and become very

expensive. There are two factors that will determine the size of a CNF, the number of

clauses and the number of literals.

The number of clauses depends on the logic that the circuit will implement. Arithmetic

operations like addition, or multiplication produce a large number of clauses [20]. A be-

havioral System Level description of a computational intensive application is expected to

include mainly arithmetic operations. Therefore, for computational intensive applications

the number of generated clauses can make the usage of a SAT solver inefficient.

Besides the number of clauses, the number of literals of a CNF will impact the running

time and depends again on the logic of the circuit. The arithmetic operations affect that

number depending on the type of operators and the size of input operands. Moreover,
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the number of literals increases with the number of cycles for which the model checking

is performed. However, given the area constraints in the synthesis of digital circuits and

that significant properties require a large amount of cycles to be proved, the bound in the

number of cycles cannot be small for realistic designs and that can lead to an explosion

in the memory requirements. As an example in [19] for a DRAM Arbiter, which is not

expected to have many arithmetic operations, the memory usage was 2GB for sufficiently

large bounds.

The above discussion reveals the need for a higher level of a abstraction for the System

Level and the RTL models used for verification. Especially, for computational intensive

applications verification techniques at the word level would be extremely useful for the

reasons mentioned above. By representing the two models using a conjunction of word

level formulas many important properties of a computational intensive description can be

verified, as will be shown in the next sections. The cycle accuracy of the RTL description

can be maintained, however the bit accuracy will be lost. The bit accurate implementation

of the design can verified later in the design cycle when word level design faults have been

eliminated.

Approaches that have already used word level techniques for verification problems

include [72],[8], [81]. None of these approaches can handle multiplication of two variables

in an efficient way. In [24] the authors used SVC [8] to verify assembly routines used in

DSP software. Because SVC uses uninterpreted functions to handle all operations except

addition and subtraction, the authors had to support user-defined properties, which would

specify for example the multiplication is a commutative operator. Moreover, heuristics

were written for operand reordering and expression normalization.
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Since computational intensive applications are expected to have a large amount of

complicated arithmetic expressions, the designer would need to define all the important

properties for multiplication and division. Then the properties that combine two or more

operators also have to be specified, like a(b+ c) = ab+ac. Furthermore, the heuristics for

simplifying or reducing complex arithmetic expressions should be as complete as possible

for these applications. Obviously, the manual effort for verifying computational intensive

applications using these word level tools is large and makes their usage for this kind of

verification problems inappropriate.

In conclusion, there is a need for another approach to functional verification of compu-

tation intensive applications. This approach should be able to prove functional correctness

by bringing variables to the infinite domain, so that the verification procedure will be fast

and should use word-level provers that will not require manual effort from the user for

defining the properties of commonly used arithmetic operators like non-linear multiplica-

tion.

6.3. Problem Formulation

In this section we formulate the problem that we try to solve. Given a System Level

and a synchronous, single-clocked RTL description, with a mapping of corresponding

input variables, a bound in terms of clock cycles, and an assertion inserted in the code,

we try either to prove that the assertion is true for that specific bound and for all valid

input values, or find a counterexample that can make the assertion false. We try to solve

the problem by bringing all variables to the infinite-precision domain.
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6.4. Mathematica

Mathematica [87] is a technical computing package with a very rich library for symbolic

computation. It includes solvers for sets of formulas in different domains (Boolean, Integer,

Real) and has built-in the properties of the most commonly used arithmetic operators of

each domain. The advantage of Mathematica is that is a generic package and, therefore,

the user will not have to spend manual effort to express the properties of word level

operations. Moreover, it is a powerful symbolic analysis tools and supports solvers at

the integer and real domain, avoiding the translation of arithmetic expressions to binary

numbers. Finally, arithmetic expression manipulation with Mathematica has been used

efficiently in the past for several compiler problems [41], [42].

6.5. Verification Framework

In this section we will present the EVRM (Efficient VeRification based on Mathemat-

ica) framework. A schematic representation of EVRM is shown in Figure 6.1. As it can

be seen from this figure the framework can be broken into three parts. The first and

second parts implement the transformation of the System-Level and RTL descriptions

to word level expressions. The third part generates the Mathematica statements from

these expressions. Then these statements are going to be the input to the Mathematica

Kernel, which is going to either prove the validity of the asserted property or provide a

counterexample, for which the property is invalid. In the next sections we describe each

part of the framework in more detail.
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Figure 6.1. The EVRM framework.

6.5.1. System-Level description to Word-Level Expressions

The SL description is transformed to word level expressions using the techniques presented

in [20]. Currently, the input SL description should be in ANSI C. The first step is to

unwind all loops in the code and to transform switch statements to if statements. Then
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the code is converted in a Static Single Assignment (SSA) form. At the end of the

transformation phase the code consists of assignment statements and if statements.

6.5.2. Register Transfer Level description to Word-Level Expressions

For this process we assume that the RTL description represents a Finite State Machine of

a single clock design. The process starts by finding the registers of the circuit. Then the

program is transformed to a set of assignment statements and if statements by modifying

the control structures of the description. This process is described in detail in [20].

6.5.3. Word-Level Equations

After transforming the two descriptions in sequential programs that contain only if state-

ments and assignments, the generation of guarded word-level equations starts.

A guarded word-level equation has the form:

(cond) ? var = Expr1 : var = Expr2

where cond is a binary variable that represents the conjunction of all conditions that

should be true, in order for the assignment to be executed. These are the conditions of

the nested if-statements, in the blocks of which the assignment is placed. The conditions

are represented by:

ExprLeft Operator ExprRight

where Operator can be any of the >,<,==, ! =, >=, <= and ExprLeft, ExprRight are

arithmetic expressions consisting of constants, variables, parenthesized subexpressions,

and arithmetic operators, like +,−, ∗, /. The same applies for Expr1 and Expr2 of the
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guarded word level equation. In the guarded word level equation var is the name of the

variable that is assigned.

All guarded word-level expressions are later transformed to Mathematica statements.

The above generic guarded word level expression will be translated to:

{
cond&& var == Expr1

}
∣
∣
∣

∣
∣
∣

{
!(cond) && var == Expr2

}

The variables of the above expressions can have several types. Most commonly used for

DSP applications are Integers and Reals. Variables may also have compound types and

indexed multi-dimensional arrays can be used in all arithmetic expressions.

6.5.3.1. FindInstance statement. After all expressions, which represent the constraints

imposed by the two descriptions, are transformed to equivalent Mathematica expressions,

the asserted expression will also be transformed. Then the conjunction of the all con-

straints and the negation of the assertion will be the expression that if it is satisfiable

then the asserted property does not hold. Satisfiability of this expression means that there

are inputs that satisfy all constraints imposed by the descriptions of the specification and

the implementation and satisfy the negated property as well. Therefore, the property is

not valid for all inputs.

Mathematica version 5.0 has a statement that allows the user to find an instance of

a set of variables that makes an expression valid. The syntax of the generated statement

will be:

FindInstance [ E1 &&E2 &&...&&!A
︸ ︷︷ ︸

expression

,

variables
︷ ︸︸ ︷

{a, b, c, ...} , D ]
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The first argument is the expression which may become true for an instance of the

set of variables given as a second argument. The third argument D is the domain to

which the variables belong. The domain can be Integers, Reals, or Booleans in this

case. As explained previously the generated statement by EVRM sets as first argument

the conjunction of the constraints (E1, E2, ...) and the negated assertion A. The set of

variables given as the second argument are the set of all inputs and variables of the

description.

The FindInstance exits either by reporting the empty set, in which case it has proven

that there are no values for the variables that can make the expression hold, or by reporting

values for the variables that will make the expression hold.

6.5.3.2. Optimizations. In the CBMC approach the SL and RTL descriptions were

translated to a CNF. Bit vector arithmetic operations in this case were transformed to

CNF by using actual circuit gate representation. Since these circuits normally work on two

input variables, there was no way to reduce the problem instance by replacing variables

with their definition. However, in our case replacing a variable with its actual definition

can reduce the size of the input expression and the cardinality of the variables set for the

FindInstance statement.

So, if a == b + c is an input word level expression with guard == TRUE, then it

was transformed to a statement a = b + c, which was executed before FindInstance.

Moreover, a == b + c could be removed from the set of constraint expressions and did

not need to be part of the first argument of FindInstance, since it was forced. Added

to that, a was removed from the set of variables, as Mathematica would replace every
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...
mse=0;
for (i=0;i<N;i++) {
  for(j=0;j<N;j++) {
    c1 = a[i][j]*a[i][j];
    c2 = 2*b[i][j]*a[i][j];
    c3 = b[i][j]*b[i][j];
    mse+=c1-c2+c3;
  }
}
mse = mse/(N*N);
assert(mse==yhwOut);

...
msee1v5=c1e1v4+c3e1v4+msee1v4-c2e1v4;
msee1v6=msee1v5/ 4;
...
FindInstance[!(msee1v6 == msehwNexte1v1)\
,{ahwe1v0el1, ahwNexte1v0el1,...,b11e1v0},\
Integers]

Translation
&

Optimization

Mathematica
Kernel

...
In[227]:=
In[228]:=
In[229]:=
In[230]:=
Out[230]=
{{ahwe1v0el1 -> -227,
ahwNexte1v0el1 -> 88,
ahwNexte1v0el2 -> -5,
ahwNexte1v0el3 -> 34,
ahwNexte1v0el4 -> -7,
...,
b11e1v0 -> -118}}

...
In[227]:=
In[228]:=
In[229]:=
Out[229]= {}
In[230]:=

Counterexample

Proof of 
Validity

Figure 6.2. Example demonstrating the code generated by the framework.

instance of a with b + c. This optimization was applied to non-guarded expressions and

reduced the problem instances.

Figure 6.2 shows some example instances of the generated statements and the output

of Mathematica for a part of a C program.
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Application Matrix Mult FIR Laplace Sobel MSE

System-level lines 27 15 19 24 19
RTL lines 185 106 129 146 97

Chaff input clauses 1,034,271 145,635 8,964 28,885 339,010
Chaff input literals 308,158 44,024 4,547 10,332 101,206

Mathematica input expressions 3,701 1,037 294 303 222
Mathematica input variables 99 51 165 170 33

Table 6.1. Characteristics of the applications that were used for the exper-
imental results.

Application Matrix Multiplication FIR Laplace Sobel MSE

CBMC > 5 h > 5 h > 5 h > 5 h > 5 h
EVRM 5:06 min 1:14 min 10:27 min 44:40 min 0:41 min

Table 6.2. Time to Prove Validity of the Assertion.

Application Matrix Multiplication FIR Laplace Sobel MSE

CBMC 14:52 min > 5 h > 5 h > 5 h 40:27 min
EVRM 5:23 min 1:17 min 0:37 min 7:07 min 0:40 min

Table 6.3. Time to Produce Counterexample.

6.6. Experimental Results

In this section the experimental results for 5 benchmarks will be presented. The char-

acteristics of each benchmark are summarized in Table 6.1. The system-level specification

of each application was written in C. The RTL implementation was described in RTL C.

All results were taken on SUN Ultrasparc machines, with OS Solaris 9, and 256MB of

physical memory. As explained above, the results are compared to CBMC as existing

word-level solvers,to the best of our knowledge, cannot handle frequently used arithmetic

operators without manual effort for the specification of the operators’ properties.
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Matrix Multiplication. This application implemented the multiplication of two 3x3

matrices. The assertion was checking whether the element of the last row and last col-

umn of the resulting matrix was the same for the two descriptions. For the system-level

description the input values were stored in 2 dimensional matrices, whereas in the RTL

implementation they were stored in single dimensional register arrays. Moreover, the el-

ements of the resulting matrix were computed in a column-wise manner in system-level

and in a row-wise in the RTL description. Added to that, the structure of the code was

completely different for the two descriptions. In the system-level specification a 3-deep

loop nest was implementing the multiplication after the initialization stage, compared

to an 18-state RTL implementation, which produced the multiplication result after 140

cycles.

As shown in Table 6.2 for a correct version of the RTL implementation, it took almost

5 minutes for the EVRM framework to prove correctness for any two input matrices.

This time is broken into two parts, the time to generate the statements and expressions

from the two descriptions and the time it takes for Mathematica to read these state-

ments and expressions and produce a result. The generation part took 4 minutes and the

Mathematica part took 1 minute. With CBMC after 5 hours no result could be produced.

In the second experiment done with this application a bug was inserted in the RTL

implementation. The bug was in the initialization of one of the variables. As shown in

Table 6.3 it takes almost 5 minutes for EVRM to produce a counterexample, while for

CBMC the time is close to 15 minutes. In case the matrices were larger, like 4x4 or 5x5

the difference could be larger as the memory requirements of CBMC would increase.
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FIR filter. The next application used was a 4-tap FIR filter. The assertion was checking

for the equivalence of the last element of the output array. The RTL description was

implemented as an FSM of 12 states and produced the result after 65 cycles.

EVRM proved the equivalence of the two descriptions in less than 2 minutes, out

of which 1 minute was spent in the generation of the statements and expressions for

Mathematica.

In the second experiment for this application a bug was added for the output result.

This time the bug would affect only a subset of the possible output values. The bug forced

the output values for the RTL implementation not to exceed the value 8192, whereas

for the system-level specification the result could be any integer value. EVRM found

a counterexample after 1 minute and 17 seconds. In both cases the running time with

CBMC was more than 5 hours.

Laplace Transform. This application implemented one step of the Laplace transforma-

tion. The values were stored in an two dimensional array in the System Level description,

whereas in the RTL they were in a one dimensional array of registers. Moreover, the order

of the computations was different in the two models.

EVRM proved that the output value of the two descriptions was equal for all inputs

in almost 10 minutes. For the faulty version of the same algorithm a counterexample was

found in less than a minute. The fault was the removal of the condition that did not allow

the array elements to exceed the value 255 in the RTL description. For CBMC the bound

of 5 hours was reached before an answer was given by the program.

Sobel Transform. This application was implementing the Sobel Transform. The as-

sertion checked to whether the computation of the new value based on its eight neighbor
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points was correct for the RTL implementation. It took almost 45 min for EVRM to

prove the validity of the property.

The second experiment was done with a faulty implementation. The original RTL

implementation was implementing the abs function by checking if the difference for the

horizontal sobel transform was negative and in that case multiplying by -1. This was

deleted in the faulty implementation allowing negative results of the difference. Again

this bug will not be visible for all inputs as many will produce positive values for the

horizontal difference. It took about 7 minutes for EVRM to find a counterexample that

invalidated the assertion.

In both cases after 5 hours CBMC did not produce any result.

Mean Squared Error Computation. The last application was implementing mean squared

error computation. The input to the algorithm were two 2x2 matrices for which the mse

value was computed by the SL and RTL descriptions. EVRM could prove correctness for

this property in time less than a minute.

The second experiment with this application involved the addition of bug in the RTL

description. The inserted bug affected the initialization of a variable. Again EVRM found

a counterexample after 40 secs. In this case CBMC provides a counterexample for the

assertion after 40 minutes.

6.7. Summary

In this chapter we have presented a new approach for the verification of specific prop-

erties of an RTL implementation based on an executable System Level specification. The

new framework is intended for computational intensive applications and is based on word



174

level techniques and uses Mathematica for the satisfiability procedure. The current ap-

proaches for the same problem are based on bit level SAT solvers.The results show orders

of magnitude of performance improvement compared to CBMC, a tool used for RTL to

SL verification. The next chapter provides abstraction techniques that can be used for

the verification of self-stabilizing systems, i.e., systems that recover from any transient

fault.
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CHAPTER 7

Abstraction Techniques for Parameterized Self-Stabilizing

Systems

7.1. Introduction

Automated methods for the verification of distributed systems can only be applied to

relatively small finite-state systems. However, most distributed algorithms are specified

for an arbitrary number of processes. More specifically, the number N of processes present

in the distributed system is a parameter and the algorithm is expected to work for any

valid value of the parameter. We call these systems parameterized systems. An instance

of the parameterized system is the system built for a specific value of N . Although

automated methods, i.e., model checking, can be used for the verification of instances

with small number of processes, they can neither be efficiently applied to large instances

nor prove that all possible instances of a system are correct. In those cases abstraction is

necessary.

Using abstraction a finite-state system can be derived from a parameterized system.

We call the derived system the abstract system. If the correctness condition holds for the

abstract system, then it holds for all instances of the parameterized system. Since the

state space of the abstract system is finite, model-checking can be used to check whether

it satisfies the correctness condition. Deriving an abstract system requires deep knowledge
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of the specification of the system and model checking and, therefore, general abstraction

methods are desirable.

A number of abstraction methods have been developed for high-atomicity parameter-

ized systems [21, 74, 9, 30]. High-atomicity parameterized systems are systems in which

the number of variables each process can read or write in one atomic step increases, as the

parameter N increases. Since for large N such communication operations become very

expensive, we focus on low-atomicity systems.

Our work targets a specific class of fault-tolerant systems; self-stabilizing systems. Self-

stabilizing systems are systems that automatically recover after any transient fault [27].

For those systems liveness properties, i.e., properties that specify that something good will

eventually happen, are more relevant than safety properties, i.e., properties that specify

that nothing bad will happen. This is because transient faults can bring the system in

any arbitrary state, making all states in the state space reachable (Section 7.2). Since we

focus on self-stabilizing systems, we consider only abstraction methods for the verification

of liveness properties.

For the verification of liveness properties in low-atomicity parameterized distributed

systems two abstraction techniques have been developed: the method of invisible rank-

ing [33] and the method of control abstraction [52, 43]. The idea behind the method

of invisible ranking is to bound the number of processes needed to prove a correctness

property for a class of parameterized systems [33]. The approach can be used for the

verification of properties of the form 2(p→ 3r), i.e., for every state satisfying assertion
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p there is a future state satisfying assertion r. It is not known how other liveness proper-

ties can be checked using this method. Moreover, in some cases the number of required

processes is large (128 for the dining philosophers problem).

An alternative approach is the method of control abstraction. The idea behind control

abstraction is to abstract away an arbitrary number of symmetric processes by using a

particular process called network invariant. Then the correctness property is checked in

the abstract system, which is composed of a small finite number of processes and the

network invariant [43]. There are two difficulties that have restricted the applicability

of this method. The first is that there is no automated method for the construction of

the network invariant. Existing automated approaches for the construction of network

invariants target only safety properties [58]. The second is that the network invariant must

have the same set of observable variables as the system of symmetric processes abstracted

by it. As an example, consider a system with N processes in which each process has one

variable that can be read by all other processes. In such a system the number of variables

that each process can read increases with N and, therefore, a network invariant with

a fixed set of variables cannot be constructed. Because of this constraint, the usage of

control abstraction has been restricted to ring topologies of processes [45], in which each

process reads the variables of only two neighbors. It has also been successfully applied

on systems where the number of shared variables does not increase with the number of

processes. An example is a mutual exclusion algorithm with all processes sharing only

one semaphore [43].

In this chapter we present an abstraction technique that builds on the theory of con-

trol abstraction. The proposed technique is split into 3 parts. Each part is independent
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and can be used as a stand-alone transformation. To the best of our knowledge, this is

the first abstraction technique that can be used to prove the correctness of low-atomicity,

parameterized self-stabilizing systems, whose number of observable variables may increase

with the number of processes in the system. The case studies demonstrate that our ab-

straction technique is not trivial and can be applied to distributed algorithms to which no

other abstraction technique has been successfully applied. Moreover, sufficient conditions

under which the abstraction technique is complete are established.

The derived abstract system is relatively small and its state space does not increase

exponentially with the number of states of the abstracted symmetric processes, as it is the

case in [74]. The proposed abstraction technique handles both weak and strong fairness

constraints for the abstracted processes, as opposed to previous works [9]. Finally, because

it uses syntax manipulation, the complexity of the algorithms building the transition

relation is low compared to approaches that use decision procedures (MONA) [74, 9].

We give a short description of self-stabilizing systems in Section 7.2. In Section 7.3 we

describe the notation we use and the systems we consider. Section 7.4 gives an overview of

the proposed 3-step abstraction technique and Sections 7.5,7.6, and 7.7 explain each step

in detail. We demonstrate the application of the technique to a number of self-stabilizing

systems in Section 7.8.

7.2. Self-Stabilizing Systems

Self-stabilizing systems are systems that can automatically recover from any transient

fault [27]. This type of fault-tolerance is desirable in many distributed systems [6, 51, 86].
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We distinguish two types of self-stabilizing systems; “strict-stabilizing” and “pseudo-

stabilizing” systems [16]. After a fault, a strict-stabilizing system will eventually enter a

state in which it satisfies the correctness property and starting from that state it cannot

violate the correctness property anymore. Formally, let φ denote the correctness property,

a strict-stabilizing system satisfies the LTL (Linear Temporal Logic) property 3φ and

2(φ → 2φ), starting from any fault state. A pseudo-stabilizing system will eventually

get into states where the correctness property will never be violated. The LTL property is

given as 32φ. Although pseudo-stabilization is weaker, it is sufficient for many practical

applications.

System designers reason about the correctness of self-stabilizing systems by considering

all states in the state space as initial states. The assumption is that the initial state is the

first state after a transient fault. Therefore, the system can start from any state and must

eventually recover, if no more faults occur. A common proof method for self-stabilizing

systems is the method of convergence stairs [27, 34]. A finite sequence of predicates

is defined p0, ..., pm with p0 = True and pm = φ being the correctness property of the

system. Then the designer proves that in the system if eventually always pi is satisfied,

then eventually always pi+1 is satisfied for all i ∈ 0..m− 1. In LTL, it is 32pi → 32pi+1.

By this method, the pseudo-stabilization 32pm (or persistence property) can be proved.

In addition, by showing that the safety property 2(pm → 2pm) holds, strict-stabilization

is also established. Proving the liveness properties 32pi → 32pi+1 is the hardest step of

this method and, therefore, we focus on this type of properties in this work. Unfortunately,

most self-stabilizing systems are complicated and proving their correctness manually is not
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an easy task. Therefore, there is a need for enabling the usage of automatic verification

techniques for these systems.

7.3. Systems and Notations

A parameterized system is composed of N identical processes. Each process P (i) is

an instantiation of a generic specification P (id) with id = i ∈ 1..N . The ids of the

processes are used for naming convenience and no relation is specified over them. The

generic process is defined as P (i) = (Vi,Wi, VL(i),Θi, ρi, Li), where

Vi is the set of all variables that process i can read or write.

Wi is the set of owned variables that process other than i can modify (Wi ⊆ Vi).

VL(i) is the set of local variables that no process other than i can read or modify

(VL(i) ⊆ Wi).

Θi is a predicate over the variables in Vi that specifies the set of initial values that

the variables can have.

ρi is the next state relation.

Li is the liveness property.

We assume that the domains of all variables are finite. Moreover, the size of Wi is finite

and independent of N .

A set S of processes is called composable if there is no process in S that can read

a local variable of another process or write a variable owned by another process [43].

From the composable set S of processes we can create new processes by the parallel

asynchronous composition of some processes in S. Let A
∆
= (VA,WA, VLA,ΘA, ρA, LA) and

B
∆
= (VB,WB, VLB,ΘB, ρB, LB) be two processes in S, then their parallel asynchronous
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composition C
∆
= A‖B is given by C = (VC ,WC , VLC ,ΘC , ρC , LC), where VC = VA ∪ VB,

WC = WA ∪WB, VLC = VLA ∪VLB, ΘC = ΘA ∧ΘB, ρC = ρA ∪ ρB, and LC = LA ∧LB. In

case C is closed, i.e., it has no interaction with its environment, we restrict all variables

of C to be local variables VC = WC = VLC .

The closed parameterized system Q(N) is given by the parallel asynchronous com-

position of a composable set of N symmetric processes Q(N) = P (1)‖P (2)‖...‖P (N).

Equivalently, Q(N) can be defined as a process (V, V, V,Θ, ρ, L) with V =
⋃

i∈1..N Vi,

Θ =
∧

i∈1..N Θi, ρ =
⋃

i∈1..N ρi, and L =
∧

i∈1..N Li. All variables of the system are local,

since we assume that Q(N) has no interaction with its environment. A state of the system

is an interpretation of all the variables in V . The set of all states is denoted by Σ.

The next state relation ρi is defined using a set of atomic actions A(i). Each action α

has a precondition (or enable condition) prec(α), which is a proposition over the variables

observable to the process, and an effect part eff(α), which describes the values of the

variables in the next state s′, as a function of the current state s. Therefore, α can be

described as1 α = prec(α) ∧ eff(α). A state pair (s, s′) ∈ ρ, if and only if there exists

i ∈ 1..N and α ∈ A(i), such that prec(α) is true for s and the pair of states (s, s′) satisfies

eff(α). For all states s ∈ Σ, (s, s) belongs to ρ. Our model is equivalent to the interleaving

semantics, as only one process executes an action during each transition.

1Actions also contain conjuncts of the form m′ = m for each variable m of V that must remain unchanged.
Therefore, the effect of an action may be considered as the conjunct of ε(α)∧unch(α). In the last formula
ε(α) is a boolean combination of predicates of the form m′ = g(s), and unch(α) is the conjunction of
predicates of the form m′ = m. We say that an action “reads” a variable n, when n appears in the
expression g(s) of a predicate m′ = g(s) of ε(α). An action “modifies” or “writes” a variable m, when
there is a predicate m′ = g(s) in ε(α) and g(s) 6= m. This classification is based on the syntax and can
be performed by static analysis.
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We assume that all actions can be expressed in disjunctive normal form (dnf), i.e., as a

disjunction, in which each disjunct is a conjunction of propositions (non quantified atomic

formulas) over variables in V and V ′. All next state variables, i.e., variables of V ′, should

appear in exactly one proposition of each disjunct, and be the left hand side expression of

that proposition. Moreover, the propositions with next state variables should be equality

relations.

The liveness property Li is a restriction imposed on the infinite behaviors of the system.

It can include the conjunction of strong and weak fairness properties specified on some

of the actions in A(i). We use Wi and Si to represent the sets of actions with weak and

strong fairness properties respectively. Then Li →
∧

α∈Wi
wf(α)∧

∧

α∈Si
sf(α). The weak

and strong fairness properties are defined as

wf(α)
∆
= (23¬prec(α)) ∨ (23〈eff(α)〉)

sf(α)
∆
= (32¬prec(α)) ∨ (23〈eff(α)〉)

The expression 〈eff(α)〉 evaluates to true when action α is executed and the system’s state

changes [54]. Therefore, for a pair of states (s, s′), it holds

(s, s′) |= 〈eff(α)〉 ⇔ (s, s′) |= eff(α) ∧ s′ 6= s (7.1)

We denote as αbvar1 ← var2, var3 ← var4, ..., vark ← vark+1c the predicate obtained

from α by replacing each occurrence of the variables var1, var3, ..., vark with var2, var4,

..., vark+1. We will use this notation even if some of the variables var1, var3, ..., vark do
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not appear in α. If none of these variables appear in α, then α remains unchanged after

this operation.

A sequence σ = s0, s1, ... of states, with σ ∈ Σω, is a behavior of Q(N) if σ satisfies the

specification Q(N). More specifically, it must hold that s0 |= Θ, ∀i ≥ 0 : (si, si+1) ∈ ρ,

and σ |= L.

We classify the variables that may exist in Q(N) as global variables, communication

registers, and local variables. The set Vg of global variables is defined as

Vg
∆
=

⋃

i∈1..N

Vi −
⋃

i∈1..N

Wi

These are the variables that are not owned by any process and, therefore, they are the

equivalent of multi-reader, multi-writer variables. We require that the size of this set is

finite and independent of the number of processes in the system. The set Vcr of variables

represents the set of communication registers and is defined as

Vcr
∆
=

⋃

i∈1..N

(
Wi − VL(i)

)

Each communication register is a single-writer, multi-reader variable. We require that

there is at most one communication register per process and we reserve the name cr[i]

for the communication of process P (i), in case such a variable exists2. Finally, the set VL

of local variables in the system is given by

VL =
⋃

i∈1..N

VL(i)

2The extension to a fixed number of communication registers is straightforward.
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Symbol Definition

cr[j] the communication register of process P (j); only process P (j) can modify this vari-
able but all processes can read it

Dvar the domain of variable var

eff(α) the effect of an action α; it defines the next state values of the system variables
H a state predicate expressed over the variables in Vg ∪

⋃

i∈1..N VL(i)∪{cr[i]|i ∈ 1..N};
the correctness property we target is of the form 32H → 32J

IH the network invariant generated during control abstraction
J a state predicate expressed over the variables in Vg ∪VL(1) ∪{cr[1]}; the correctness

property we target is of the form 32H → 32J

Li the liveness condition of a process i; evaluated only on infinite sequences
lcr[j] the local variable of process P (j) that is a copy of its communication register; these

variables are added after the first step of the technique
N the number of processes in the system

P (j) a process with id = j instantiated from the generic process P (id)
prec(α) the precondition or enable condition of an action α

Q(N) the parameterized system with N processes

Q̃(N) the system obtained after applying the first step of the abstraction technique

Q̆(N) the system obtained after applying the second step of the abstraction technique
S the set of actions with strong fairness conditions

sf(α) the strong fairness condition of action α

Vg the fixed set of global variables that any process can read and modify

Vcr

∆
= {cr[j]|j ∈ 1..N} the set of communication registers; each communication register
is a single-writer multi-reader variable

VL(i) the set of local variables of process P (i), which no process other than P (i) can read
or modify

Vi the set of all variables process P (i) can read or modify
Wi the set of owned variables of process P (i)
W set of actions with weak fairness conditions

wf(α) weak fairness condition of action α

Θi the initial condition of process P (i)
ρ next state relation of a system; (s1, s2) ∈ ρ ⇔ (∃a ∈ A : (s1, s2) |= a), where A is

the set of actions
ΠV (s) the projection of the state s on the set of variables (or variable) V

Σ the set of states of the system
ϕ the correctness property; for self-stabilizing systems it is equal to 32H → 32J

Table 7.1. Definition of the symbols used in this chapter.

These are single-writer, single-reader variables. We require that the size of the set VL(i) is

finite and independent of N . However, the size of VL depends on the number of processes
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in the system. We call the property that no process P (j) can read or write a variable in

VL(i) for i 6= j, the locality restriction. For a process P (i) all variables that can be read

or written and do not belong to VL(i) are the observable variables. These variables can be

observed by the environment of the process and are used for the communication between

the process and its environment, which includes other processes.

If one action α can be obtained from another action β of the same process by replacing

any appearance of one communication register cr[k] with another communication register

cr[j], then α and β are called syntactically equivalent. A formal description of this relation

is given in Section 7.5.2.

We now present our assumptions for the systems we consider. Then we elaborate

on the reasons for making these assumptions and their implications. Note that these

assumptions may not be necessary for each step of our technique. In the section describing

each step we mention the sufficient conditions for soundness and completeness. However,

restrictions Λ1 – Λ3 characterize the systems to which we want to apply all steps of our

technique.

Λ1. Actions can either read or write at most one communication register in each

atomic step.

Λ2. The preconditions of the actions do not depend on the values of the communica-

tion registers. Therefore, reading a communication register can only be done by

the effect part of an action.

Λ3. There is no pair of actions that are not syntactically equivalent and have the

same effect in a state. More specifically, if α ∈ Wi ∪ Si, then for any action
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β ∈ A(i) with β 6= α

∀(s, s′) ∈ ρ : (s, s′) 6|= ( 〈eff(α)〉 ∧ 〈eff(β)〉 )

We believe that the above constraints are common among many applications. Restric-

tion Λ1 specifies the low-atomicity constraint. The restriction Λ2 has been used in other

works ([61],Chapter 9). The reason for this restriction is that reading a communication

register is a more expensive operation than reading a local variable and, therefore, should

be an atomic action. The decision of a process to execute an action should be based

on local variables only. Consequently, communication registers should be copied to local

variables before their value is used in the precondition of an action. The intuition behind

Λ3 is that any transition (s, s′) other than the stuttering step can be caused by only one

action. However, syntactically equivalent actions are not restricted by Λ3. Most systems

with a program counter for each process satisfy the Λ3 restriction. More specifically, if

each instruction has a different successor, the effect of each action of one process is dis-

tinct. Since the program counter is a local variable of each process, the effect of each

action cannot be simulated by an action of a different process. The restrictions Λ1 – Λ3

do not need to hold for the fixed set of global variables in Vg.

The above restrictions are needed to enable the abstraction of the communication

registers by one global variable using syntactic transformations (Section 7.5). Because of

restrictions Λ1 and Λ2 and the interleaving semantics the value of only one communication

register is important in any state. Restrictions Λ2 and Λ3 make it possible to maintain

fairness conditions after the syntactic transformations.
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We assume that the correctness property is given in the form 32H → 32J . This

type of condition is very common as a subgoal for self-stabilizing systems. For these

systems it usually states that once the environment of a process satisfies a specific persis-

tence condition (32H), the process must satisfy a persistence condition (32J), which is

independent of the number of processes in the system. We consider process 1 to be the

special process that must satisfy 32J . Therefore, J is expressed over the variables in

Vg ∪Wi.

In this section we presented the assumptions for the systems we consider and the

notation we use. Table 7.1 displays some commonly used symbols and their definitions.

In the next section we give an overview of the proposed technique for the verification of

these systems.

7.4. Overview of our Approach

In this section we give an overview of the proposed abstraction technique for checking

the correctness of parameterized self-stabilizing systems.

0. Preprocessing: Transform the system to a closed system of N processes, which is

amenable to our approach.

1. Reducing the observable state space: Abstract the set of observable variables of

each process to a fixed finite set, if the size of the observable state space depends

on N (Section 7.5).

2. Simplifying the correctness property: Simplify the correctness property from

32H → 32J to 32J , by transforming the system to a system that satisfies

2H (Section 7.6).
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3. Constructing a network invariant: Generate a process I that is a network invari-

ant for Q(N) (Section 7.7).

4. Model-checking: Verify that (P (1)‖I) |= 32J by model-checking. If no coun-

terexample is found, then for all N : Q(N) |= (32H → 32J).

Some self-stabilizing systems do not satisfy the assumptions made in Section 7.3.

For example, if the domains of some variables are not finite or if there exist relations

specified over the ids of the processes, the preprocessing step makes the system amenable

to our technique. During the preprocessing step data abstraction [44] or other abstraction

techniques can be employed.

For systems amenable to our technique the size of the observable state space of each

process may depend on N . In those cases, control abstraction is not directly applicable.

During the Reducing the observable state space step, the set of observable variables of each

process is abstracted to a fixed finite set. This happens by making all communication

registers owned by P (2), ..., P (N) local variables and allowing the communication to occur

through a fixed set of new global variables. The communication actions of the system and

the liveness conditions have to be modified, as well. The purpose of this step is to enable

the step of control abstraction.

In the next step the correctness property is simplified from 32H → 32J to 32J

by transforming the system to a system that preserves 2H. This a sound and complete

transformation for self-stabilizing systems. After the transformation the correctness prop-

erty, i.e., 32J , is expressed over the variables in Vg ∪ VL(1) enabling the abstraction of

the set of variables
⋃

i∈2..N VL(i).
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The next step is to generate the network invariant. The generation of the actions

is based on syntax analysis of the distributed algorithm and on the property H. After

generating the network invariant I, the last step is to use model-checking on the system

composed of process P (1) and I. If (P (1)‖I) satisfies the simplified property 32J , then

the parameterized Q(N) system satisfies 32H → 32J for all N . The last step can be

performed automatically by any model-checking tool.

We assume that the preprocessing step, if needed, has already been applied to the

input algorithms. Hence, we focus on the Reducing the observable state space, Simplifying

the correctness property, and Constructing a network invariant steps.

7.5. Reducing the Observable State Space

In this section we describe the first step of the proposed abstraction technique. The

goal of this step is to reduce the number of observable variables of each process to a

fixed finite set. This reduction enables the method of network invariants, i.e., control

abstraction, to abstract the state space of an arbitrary number of processes.

For the soundness of the abstraction method described in this step the system does not

have to be self-stabilizing. However, it needs to satisfy conditions Λ1 – Λ3. Moreover, the

correctness property ϕmust be an LTL property in which the only temporal operators that

can occur are 2 and 3. Note that self-stabilizing systems comply with this requirement

(Section 7.2).

Let V 2..N
cr

be the set of the communication registers, whose owners are the processes

P (2)− P (N), i.e.,

V 2..N
cr

∆
= {cr[j] | j ∈ 2..N}
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The purpose of this step is to replace these variables with a global variable cra[2] and a set

of N − 1 local variables, i.e., one local variable lcr[j] for each process P (j) (Figure 7.1).

The idea behind this transformation is that because of the low-atomicity constraint (Λ1)

and the interleaving semantics at most one variable of V 2..N
cr

can be read or written during

each transition of the system. Therefore, before the action that causes the transition is

executed, only one communication register and its value are important. Hence, instead

of N − 1 communication registers, we use only one global variable (cra[2]) and give each

process P (j), j ∈ 2..N , the ability to copy the value stored in lcr[j] to cra[2]. The

variable lcr[j] stores the value that the communication register cr[j] would have in the

original system. In the next section we formally define the transformation and prove its

soundness.

7.5.1. Obtaining the Abstract System

We denote the system produced during this step as Q̃(N). System Q̃(N) is defined by

a composition of a number of processes. We show how the specification of the special

process P̃1 and the generic process P̃ (i) can be obtained.

The new specification P̃1 is given by P̃1 = (Ṽ1,W1, VL(1),Θ1, ρ̃1, L̃1), where

Ṽ1: The set Ṽ1 of variables is obtained by removing from V1 all communication reg-

isters of processes P (2), ..., P (N) and adding the new variable cra[2]. More for-

mally,

Ṽ1
∆
= V1 − V

2..N
cr
∪ {cra[2]}
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P1

P2PN

Pk

Pk-1
cr[k+1]

cr[N] cr[1]

cr[k]

cr[2]

cr[k-1]Pk+1

write
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P cr

P cr

...
...

P1

P2PN

Pk

Pk-1Pk+1
cra[2]

cra[1]

... ...

lcr[k+1]

lcr[N]

lcr[k-1]

lcr[2]

lcr[k]

write

read

P cr

P cr

Figure 7.1. Left is the process graph before the transformation. Each pro-
cess writes to its own communication register and reads the communication
registers of all processes. For clarity the read edges only of P (1) and P (k)
are shown. The right part represents the system after the transformation.
The new variable cra[2] is a global variable. It is a multi-reader, multi-
writer variable. The new local variables lcr are shown next to each process.

ρ̃1: The new next state relation ρ̃1 is given by a new set Ã1 of actions. For each

action of the original set A(1) a new action is included in Ã1. The new action

is obtained by replacing with cra[2] any occurrence of a communication register

cr[j] where j ∈ 2..N . More formally,

Ã1
∆
= {αbcr[j]← cra[2]c | α ∈ A(1), j ∈ 2..N}

There are no actions of P (1) that modify communication registers of V 2..N
cr

.

L̃1: There are three kinds of liveness constraints that the transformed process has;

weak, strong, and constant fairness constraints. Each action α̃ of the new sys-

tem, which can be obtained by any element of a subset As of A(1), inherits the

strongest among the fairness conditions specified on the actions of As. Let W̃1

and S̃1 be the subsets of Ã1 that contain the actions with weak and strong fairness
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constraints, respectively. Then we have

S̃1
∆
= {αbcr[j]← cra[2]c | α ∈ S1, j ∈ 2..N}

W̃1
∆
= {αbcr[j]← cra[2]c | α ∈ W1, j ∈ 2..N} − S̃1

where W1 and S1 are the sets of actions of A(1) with weak and strong fairness

conditions.

Besides the strong and weak fairness conditions on actions, liveness conditions

related to constants are specified. Let FS be the finite domain of each commu-

nication register. Then suppose that for any N and for all behaviors of Q(N),

there exists some k ∈ 2..N and vk ∈ FS, such that it holds 2(cr[k] = vk). If

there exists an action α ∈ W1, reading cr[k], we define condition c(α) obtained

from eff(α) by replacing each occurrence of cr[k] with the value vk, i.e.,

c(α)
∆
= eff(α)bcr[k]← vkc

We define constraint

cf(α)
∆
= 23¬prec(α) ∨ 23〈c(a)〉

For an action α ∈ S1 accessing cr[k], the corresponding constraint will be

cf(α)
∆
= 32¬prec(α) ∨ 23〈c(a)〉

Note that index k does not need to be the same for all behaviors. If the fairness

properties are specified on a set of syntactically equivalent read actions that are
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defined for all i ∈ 2..N , the existence of a constant value in V 2..N
cr

for all behaviors

of Q(N) is sufficient for creating the constraint. We denote as C1 the set of the

actions from which constant fairness conditions are generated. Then L̃1 can be

expressed as

L̃1 =
∧

α̃∈W̃1

wf(α̃) ∧
∧

α̃∈S̃1

sf(α̃) ∧
∧

α∈C1

cf(α)

For convenience we rename the communication register of P̃1 as cra[1]. The sets of local

and owned variables and the initial condition remain the same.

Similarly, the generic process P̃ (i) = (Ṽi, W̃i, ṼL(i), Θ̃i, ρ̃i, L̃i) is defined.

Ṽi: The set Ṽi is obtained by removing the communication registers cr[2], ..., cr[N ]

and adding the new global variable cra[2]3 and the local variable lcr[i]. Formally,

Ṽi
∆
= Vi − V

2..N
cr
∪ {cra[2], lcr[i]}

W̃i: The set of owned variables of each process becomes equal to the set of local

variables. This is because the only variable of Wi in the original system that

can be read by another process is the communication register cr[i]. Since this

variable is removed, it holds W̃i = ṼL(i).

ṼL(i): To the set ṼL(i) of local variables the variable lcr[i] is added, i.e.,

ṼL(i)
∆
= VL(i) ∪ {lcr[i]}

3Variable cr[1] is renamed to cra[1] but only for naming convenience.
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Θ̃i: The predicate Θ̃i is generated from Θi by replacing each occurrence of cr[i] with

lcr[i], i.e.,

Θ̃i
∆
= Θbcr[i]← lcr[i]c

ρ̃i: The next state relation ρ̃i is defined by a new set of actions Ã(i) obtained from

A(i). For each action of A(i) we create an action in Ã(i) by replacing any

occurrence of cr[j] ∈ V 2..N
cr

with cra[2]. Set A(i) may also contain actions that

write a value to cr[i]. We replace each conjunct cr[i]′ = ε(α) of a disjunct of an

action α, where ε(α) 6= cr[i], with two conjuncts that specify the values of cra[2]

and lcr[i] in the next state, i.e., cra[2]′ = ε(α) and lcr[i]′ = ε(α). A conjunct of

the form cr[i]′ = cr[i] is replaced with cra[2]′ = cra[2] and lcr[i]′ = lcr[i].

Moreover, an action α̃0
i is added that is always enabled and modifies cra[2]

to lcr[i] leaving all other variables unchanged, i.e.,

α̃0
i

∆
= ∧ cra[2]′ = lcr[i]

∧

var∈V −{cra[2]}

var′ = var

L̃i: The weak, strong, and constant fairness properties of the new specification are

built the same way as L̃1 was built from L1. Namely, each action α̃ inherits

the strongest fairness constraint among the constraints of the actions that can

be used to generate α̃. Constant fairness constraints are added if there exist

constant values that the generic process must read based on fairness properties.

The action α̃0
i does not have any fairness constraint.
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An additional initial condition is added to the new system restricting the variable

cra[2] to have the same value as one of the registers lcr[j] for j ∈ 2..N . In our formulation

to include the new initial predicate θg, we define a new process Pinit
∆
= (V, ∅, ∅, θg, ∅,True)

with θg
∆
= ∃j ∈ 2..N : lcr[j] = cra[2]. This new process has no actions, owned variables,

or liveness conditions and, therefore, does not specify any temporal property other than

an assertion for the initial state. The transformed system after the application of this

step is given by

Q̃(N) = Pinit‖P̃1‖P̃ (2)‖...‖P̃ (N)

where P̃ (2), ..., P̃ (N) are instantiations of the generic process P̃ (i). Alternatively, we

consider Q̃(N) as a closed process Q̃(N) = (Ṽ , Ṽ , Ṽ , Θ̃, ρ̃, L̃), where each component is

defined by the composition of the process Pinit, P̃1, P̃ (2), ..., P̃ (N).

If the correctness property of the system is expressed over variables in V 2..N
cr

, these vari-

ables are replaced with the corresponding local copies lcr. Formally, the new correctness

property ϕ̃ is defined as

ϕ̃
∆
= ϕbcr[2]← lcr[2], ..., cr[N ]← lcr[N ]c

The following theorem states that the abstraction technique is sound.

Theorem 7.1. If for N ∈ N it holds that Q̃(N) |= ϕ̃, then Q(N) |= ϕ.
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Actions of P (i) for all i ∈ 1..N
There are N − 1 syntactically
equivalent x actions for each process,
one for each neighbor.

∃j ∈ {1..N} − {i} : x(j)
∆
= v[i]′ = cr[j]

The y action writes to cr[i]

y
∆
=∧ v[i] 6= 1
∧ cr[i]′ = v[i]

Actions of P̃1

x
∆
= v[1]′ = cra[2]

y
∆
=∧ v[1] 6= 1
∧ cra[1]′ = v[1]

Actions of P̃ (i) for all i ∈ 2..N

∃j ∈ 1..2 : x(j)
∆
= v[i]′ = cra[j]

y
∆
=∧ v[i] 6= 1
∧ cra[2]′ = v[i]
∧ lcr[i]′ = v[i]

α̃0
i

∆
= cra[2]′ = lcr[i]

[Initial state ]
Process.action

−→ New value(s)






cr[1] = 1
cr[2] = 1
cr[3] = 0
cr[4] = 1







P (1).x(4)
−→ v[1] = 1

P (2).x(3)
−→ v[2] = 0

P (2).y
−→ cr[2] = 0

P (1).x(2)
−→

v[1] = 0
P (1).y
−→ cr[1] = 0







cra[1] = 1 cra[2] = 1
lcr[2] = 1
lcr[3] = 0
lcr[4] = 1







α̃0
4−→ cra[2] = 1

P (1).x
−→ v[1] = 1

α̃0
3−→ cra[2] = 0

P (2).x(2)
−→ v[2] = 0

P (2).y
−→ cra[2] = 0

P (1).x
−→

v[1] = 0
P (1).y
−→ cra[1] = 0

Figure 7.2. This is an example of the application of the transformation.
Upper left figure shows the actions of Q(N). Upper right figure shows
the actions of Q̃(N). For simplicity the part of each action specifying the
variables left unchanged is not shown. The upper sequence is part of a
behavior of the original system. The bottom sequence is the corresponding
behavior segment of the abstract system. The projections of two behavior
segments over the variables in V − V 2..N

cr
are stuttering equivalent. Only

the relevant values are displayed in the figure.

Proof. The proof is based on the theory of refinement mappings [1]. We augment

system Q(N) with a prophecy variable4 π ∈ 2..N to obtain system Q(N)π. The prophecy

variable π holds the index of the next communication register in V 2..N
cr

that will be read

4A history variable is a variable that records past information and does not affect the behavior of the
system. A prophecy variable is similar to a history variable, but instead of recording past information,
it predicts future information.
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or written. The initial value of π can be any element of 2..N . We add one more action

απ that is always enabled and changes π to any of the values in 2..N . Action απ leaves

all other variables of the system unchanged. All other actions of the new system do not

modify π. Actions that read or modify variable cr[j] ∈ V 2..N
cr

are guarded by condition

π = j. The new system’s liveness condition is the temporal formula L which is the liveness

condition of Q(N). It is easy to prove then that Q(N)π is a system obtained from Q(N)

by adding a prophecy variable.

We define a function f from the state space of Q(N)π to the state space of Q̃(N) and

show that it is a refinement mapping. Let sc = (e, cr[1], cr[2], ..., cr[N ], π) be a state of

Q(N)π, where e ∈ sc[V−Vcr−{π}]. Then f(sc) = (e, cra[1], cra[2], lcr[2], lcr[3], ..., lcr[N ]),

where cra[1] = cr[1], lcr[2] = cr[2], ..., lcr[N ] = cr[N ] and cra[2] = cr[π]. In order for

f to be a valid refinement mapping the following conditions need to be satisfied [1]:

R1. For each sc in the state space of Q(N)π :

(a) ΠṼ −V 2..N
lcr

−{cra[2]}(f(sc)) = ΠV −V 2..N
cr

−{π}(sc)

(b) ΠV 2..N
lcr

(f(sc)) = ΠV 2..N
cr

(sc)

where the operator ΠV (s) denotes the projection of the state s over the set V of

variables and set V 2..N
lcr

is the set of local variables {lcr[j] | j ∈ 2..N}.

R2. f(F π) ⊆ Fa, where F π is the set of initial states of Q(N)π and F̃ the set of initial

states of Q̃(N).

R3. If (sc, tc) ∈ ρ
π then (f(sc), f(tc)) ∈ ρ̃ or f(sc) = f(tc), where ρπ is the next state

relation of Q(N)π.

R4. f(X π) ⊆ L̃, where X π is the set of computations specified by Q(N)π.
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Properties R1 and R2 hold by construction of Q(N)π and Q̃(N). From R1 it follows that

all variables over which ϕ is expressed have an 1-to-1 mapping to variables of Q̃(N) over

which ϕ̃ is expressed. For R3 we can show that the transition caused by an action β of

Q(N)π, which originated from an action α of the original system, can be simulated in

the abstract system by a transition using α̃, which is the action created from α by the

procedure described above. A transition caused by απ can be simulated by the transition of

an action α̃0
j in the abstract system. Property R4 is the hardest to prove. Let f(σπ) 6|= La

be a sequence, such that σπ |= Q(N)π. We show that this leads to a contradiction.

Sequence f(σπ) must violate a weak, strong, or constant fairness property of L̃. Assume

f(σπ) violates the weak fairness property of action α̃. Then there exists action α in the

original system, from which α̃ is obtained, such that σπ |= 23¬prec(α) ∨ 23〈eff(α)〉. If

σπ |= 23¬prec(α), then we know f(σπ) |= 23¬prec(α̃), since α and α̃ have the same

precondition which is expressed over variables in V −Vcr only (assumption Λ2). Therefore,

it must hold that σπ |= 23〈eff(α)〉. If action α does not read or modify a variable in Vcr,

we know that f(σπ) |= 23〈eff(α̃)〉. Consequently, αmust read or modify a communication

register. Then using assumption Λ3, we can show that 〈eff(α)〉 is infinitely often satisfied

because α or a syntactically equivalent action is executed infinitely often. In either case

we have that f(σπ) |= 23〈eff(α̃)〉, which leads to a contradiction.

For example, if α reads a variable cr[j], then σπ |= 23〈eff(α)bcr[j] ← cr[π]c〉. This

implies that f(σπ) |= 23〈eff(α)bcr[j]← cra[2]c〉, or, equivalently,f(σπ) |= 23〈eff(α̃)〉.

In a similar way, we can prove that strong and constant fairness conditions of L̃ are

satisfied by any sequence f(σπ) with σπ a behavior of Q(N)π. �
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In case Q(N) is a self-stabilizing system, system Q̃(N) is not only a sound abstraction

of Q(N), but has the additional property that every reachable state is an initial state.

Lemma 7.1. If the system Q(N) is self-stabilizing, every reachable state of system

Q̃(N) is an initial state.

Proof. We show that Θ̃ is an invariant of Q̃(N). If Q(N) is self-stabilizing, then

Θi equals5 True for all i ∈ 1..N . Therefore, for system Q̃(N) we have Θ̃ = θg. Every

action α̃ of Ã(i) that changes the value of cra[2] either assigns the same value to lcr[i]

or copies the value of lcr[i] to cra[2]. Actions of Ã1 do not modify cra[2]. Hence, θg is

preserved by all actions of Q̃(N). Predicate θg holds initially and is an invariant of Q̃(N).

Consequently, all reachable states of Q̃(N) are initial states. �

If ϕ is expressed in the form 23H → 23J , as it is expected for self-stabilizing

systems, then only H needs to modified for ϕ̃ to be obtained. This is because variables

cr[2], ..., cr[N ] do not appear in J , which is expressed over the owned variables W1 of the

special process P (1). The new correctness property is denoted as 32H̃ → 32J .

Next section describes sufficient conditions for the completeness of the abstraction

technique.

7.5.2. General Conditions for Completeness of the Abstraction Technique

In this subsection we present the conditions under which this step of the abstraction

technique is complete.

5In some languages predicate Θi may specify the domain of each variable owned by P (i). The proof holds
in this case, as well.
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An important concept is that of syntactically equivalent actions. Suppose α and β are

actions of Q(N). Then α ≡se β if and only if α and β belong to the same process and β

can be obtained from α by replacing every instance of cr[j] with cr[k], where j and k are

constants in 2..N . The relation ≡se is an equivalence relation. All actions of the same

equivalence class are transformed to one action by our technique.

The following conditions are sufficient for completeness

C1 Every reachable state of the system is an initial state.

C2 The read actions of the system form equivalence classes, such that the size of

each equivalence class is not bounded from above by a constant as N increases.

C3 The number of processes in the system is not bounded from above.

C4 For all N1 and N2 with N1 < N2, the systems Q(N1) and Q(N2) have the same

formula as liveness constraint.

C5 No read action has a fairness constraint.

If Q(N) is a self-stabilizing system, then C1 is always true. Conditions C2 and C3 are

commonly satisfied by uniform parameterized systems, in which no process distinguishes

a finite number of its neighbors as special processes. Distributed algorithms that read

the values of all neighbors in a loop, which is not an atomic action, satisfy condition C5.

Finally, in many cases condition C4 is satisfied as well. This is because the environment

of process 1 is normally not constrained by fairness conditions. A fairness constraint on

the environment, i.e., an expectation that the environment at some point in the future

will execute an action under some conditions, can sometimes be added to the condition

32H of the original condition property (32H → 32J). Therefore, by increasing the

convergence steps we can remove some fairness requirements for the environment.
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Theorem 7.2. If C1 – C5 hold and Q̃(N) 6|= 32H̃ → 32J , then ∃K ≥ N : Q(K) 6|=

32H → 32J .

Proof. The idea of the proof is to construct a counterexample for some instance of the

concrete system using the counterexample of the abstract system. Since the correctness

property is a liveness property, the abstract counterexample is a lasso-shaped sequence,

i.e., a cycle and a path leading from an initial state to a state in the cycle. This cycle

represents the infinite part of the counterexample. However, because in our case the

correctness property is 32H̃ → 32J , all states of the cycle satisfy H̃ and there is at least

one state that satisfies ¬J . Moreover, every state is an initial state (C1) and, therefore,

we can consider only the cycle in the counterexample, which satisfies 32H̃ ∧ 23¬J .

Using this cycle we can produce a cycle in the concrete state space, which is a behavior

of Q(K) for some K ≥ N .

First, we determine the number of processes K in the concrete system. Then us-

ing induction we show how we can create a concrete counterexample from the abstract

counterexample.

To determine the number K of processes we consider the reads in the cycle of the

abstract counterexample. There could be a read action α̃ performed by a process j in

the abstract counterexample, such that for any k in the equivalence class of that action

α in the concrete system cra[2] 6= cr[k], i.e., the value, which cra[2] has, is not equal

to a communication register that process j could read by executing action α. Because

of condition C3 we can add more processes in the system; and due to C2, we know that

by increasing the number of processes, we can add at least one new process m to the

equivalence class of the read action of j. Since any reachable state is an initial state and
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because the processes are uniform, we choose cr[m] = cra[2] and a corresponding valid

local state for m. Consequently, we start from a state s0 in the abstract cycle and for

each transition (si, si+1), we determine whether the action α̃ that caused the transition

is a read action. In case α̃ is a read action, let [α]se be the equivalence class of actions

from which α̃ was obtained. We make sure that there is at least one process j with

lcr[j] = cra[2] in si and one action of [α]se reading cr[j]. We repeat these steps until

we check all transitions of the cycle. We denote the number of processes in the system

after the procedure as K. The added processes do not perform any action and, therefore,

their local states and owned variables maintain the same values. Consequently, we still

have a cycle in the extended state space. Moreover, because of C4 there are no fairness

constraints added that could be violated.

The second step of the proof is to build the concrete counterexample for system Q(K)

from the abstract counterexample. We start again from state s0. We create state t0 by

assigning to the local variables, i.e,
⋃

i∈1..K VL(i), of the K processes the same values as in

s0. We do the same for the global variables in Vg. For the communication registers we

assign the values of the local copies, i.e., ∀j ∈ 1..N : cr[j] = lcr[j]. For every transition

(si, si+1) of the abstract system caused by α̃, we create transition (ti, ti+1) in the concrete

system by executing action α from which α̃ is obtained. If α̃ is an α̃0
j action, i.e., it is

not obtained from an action in the original system, we execute the stuttering step. The

action α determined this way has the same effect on the local and global variables as

α̃. For the communication registers the effect is the same as the effect of α̃ on the local

copies. The preconditions of the actions do not depend on the communication registers

and, therefore, if α̃ is enabled in si, α is enabled in ti.
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Since property J is expressed over the variables in V −V 2..N
cr

and the projections of the

two counterexamples on these variables are stuttering equivalent sequences, the concrete

cycle satisfies 23¬J . Moreover, the new processes N + 1, ..., K added to the system are

assigned a state that another process in 2, ..., N has. Since there are no relations over

ids in H, the concrete cycle satisfies 32H, as well. Actions used which do not read

any communication register have single corresponding actions in abstract system with

the same fairness conditions. Therefore, their fairness conditions are satisfied. Moreover,

because of condition C5 the fairness conditions of the read actions cannot be violated. �

Conditions C1 – C5 are sufficient to prove completeness, but not all of them are

necessary. For example, C2 – C4 are not needed if the equivalence classes of the read

actions include all elements of cr[1], ..., cr[N ]. In such a case we do not need to extend the

number of processes of the system. Conditions C4 and C5 are very restrictive. Therefore,

for a specific class of self-stabilizing systems, i.e., silent self-stabilizing systems, we define

an alternative set of conditions in the next section.

7.5.3. Silent Self-Stabilizing Systems and Completeness Conditions

For a special class of self-stabilizing systems, which are called silent self-stabilizing sys-

tems, we can define less restrictive conditions for completeness. A silent self-stabilizing

system is a self-stabilizing system in which after a process has recovered from a fault, its

output becomes fixed [27]. In our formulation that means that its communication register

will maintain a constant value. Assume that the assertion H of the correctness condition

implies that there exists a process P (k) that is silent. Moreover, there is a correction de-

pendency of the special process P (1) on the silent process. More specifically, it is assumed
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that after the system satisfies H, the process P (1) will eventually recover after reading

the value of cr[k] no matter what other values it may read or actions it may execute. For

those systems we can prove that the abstraction method of this step is complete.

First we define the exclusive correction dependency. If the recovery of P (1) depends

only on value vk and is independent of the values of the other communication registers,

as long as H is satisfied, we say that the relation between P (1) and P (k) is an exclusive

correction dependency.

In the case of a silent self-stabilizing algorithm we can replace conditions C4 and C5

with the conditions below.

C4’ Condition H implies the existence of a silent process P (k) with k ∈ 2..N for any

N .

C5’ The recovery of P (1) is exclusively dependent on P (k).

C6’ All read actions of P (1) form one syntactically equivalence class of N−1 elements.

C7’ The read actions of processes P (2), ..., P (N) do not have fairness constraints.

Conditions C1 – C3 and C4’ – C7’ are sufficient for the completeness of the approach.

In the case of silent self-stabilizing systems, conditions C4’ – C7’ are less restrictive than

C4 and C5.

Theorem 7.3. If conditions C1 – C3 and C4’ – C7’ hold, then the abstraction method

is complete.

Proof. Assume that for the abstract system Q̃(N) we obtain a counterexample. As in

the proof of Theorem 7.2 we are interested only in the cyclic part of the counterexample,
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which satisfies 2H̃ ∧23¬J . This is because starting from any state of the cycle, we can

build an infinite behavior that is a counterexample.

Because of C6’ there is only one read action that reads the cr[k] variable. We call

this action β. Let us assume that P̃1 does not read variable cra[2], when cra[2] = vk.

Since the counterexample is valid for the abstract system, it satisfies all fairness constraints

including the constant fairness constraints. We start by assuming that there is no constant

fairness constraint created from action β for value vk. Then there is no fairness constraint

on the read action β of P (1) in the original system that guarantees that the register cr[k] is

read. Because of that any infinite behavior of Q(N) that is obtained by never allowing the

action β to be executed is a valid counterexample for the system. Therefore, there must

be a fairness constraint on β, which implies the existence of a constant fairness constraint

in the abstract system. Since value vk is never read, the constant fairness constraint

is satisfied by the precondition of action β. We create a concrete counterexample from

the abstract counterexample. We replace every action that does not read cra[2] with

its corresponding action in the concrete system. For the read actions of P (1) we do not

need to increase the number of processes because of the assumption on the equivalence

class size (C6’). Moreover, in the case of a read action coming from another process we

increase the number of processes, so that the equivalence classes can be extended. If

action β has a weak fairness condition in the concrete system, then there is a state sa in

the abstract counterexample, such that sa |= ¬prec(β). The precondition of β is expressed

over variables in VL(1) and, consequently, there is a state sc in the cycle of the concrete

extended state space, such that sc |= ¬prec(β). Because of that P (1) satisfies all its read
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fairness constraints. All other fairness constraints are also satisfied (C7’). Therefore, the

concrete counterexample is a valid counterexample.

The last case is when P̃1 reads the value vk in the abstract counterexample. We

denote as sa the state before the read and sb the state after the read. If we try to build

an extended system and create a concrete counterexample by taking the corresponding

actions of the original system, we may fail. The reason is each action that is syntactically

equivalent to β may have a fairness constraint. Since all these actions are transformed

to one action in the abstract system with one fairness constraint, the infinitely often

execution of that action is sufficient to create a valid abstract counterexample. However,

this is not the case in the concrete system, in which all N − 1 actions of that equivalence

class need to executed infinitely often. Let ta and tb be the corresponding states of sa

and sb in the extended concrete state space. We create an execution segment from ta

to a state tN−1
b by executing N − 1 read actions. This execution segments satisfies the

additional fairness requirements. Then by taking the segment from tN−1
b to ta we create

an infinite behavior that is a counterexample in the concrete state space. In state ta all

read actions are enabled. We choose one of those actions, βj, that reads communication

register cr[j] 6= vk with j ∈ 2..N − {k}. If after the execution of βj there is no finite

sequence that can make the read action enabled again then we are done. Otherwise, let

the new state in which β is enabled be t1b . If in state t1b every execution starting with

β satisfies the specification, we reach a contradiction. This is because we assumed that

P (1) is dependent exclusively on value vk of variable cr[k]. Therefore, there still exists

an infinite counterexample from t1b to itself that satisfies the constant fairness constraint
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and the constraint of βj. By induction using the same arguments we can show that a

counterexample for the extended concrete system exists. �

7.6. Simplifying the Correctness Property

In this section we describe how we can be transform the system Q(N) using the cor-

rectness property6
32H → 32J . This step does not reduce the state space of the system.

However, it reduces the number of reachable states and, more importantly, it allows us to

express the correctness condition as a persistence property over the variables in Vg ∪W1.

Therefore, this step enables the abstraction of variables in
⋃

i∈2..N VL(i) in subsequent

steps. We assume that Q(N) = (V, V, V,Θ, ρ, L) is given by the parallel asynchronous

composition of a set of processes, which can include a special process P1, a generic process

P (i), and a process Pinit that is used for the specification of additional initial conditions.

Generic process P (i) = (Vi, VL(i), VL(i),Θi, ρi, Li) is used for the instantiation of processes

P (2), ..., P (N). For the generic process we assume that the set of owned variables is equal

to the set of local variables, which is true after the application of the first step. Moreover,

because the set Vg of global variables of the system is fixed and finite, the size of the

observable state space of each process does not depend on N .

The only condition for soundness and completeness of this step is that every reachable

state that satisfies H is also an initial state. This is always the case for self-stabilizing sys-

tems, even after the application of the first step of our abstraction technique (Lemma 7.1).

6We will use H, Q(N), etc., instead of H̃, Q̃(N), etc., to denote the input to this step. We do that
to simplify the description as the first step of the abstraction technique may not be necessary for some
algorithms.
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7.6.1. Transformation

Using the following lemma we can transform the first part of the correctness property to

a safety property.

Lemma 7.2. If every reachable state that satisfies H is an initial state, then for any

N Q(N) |= 32H → 32J if and only if Q(N) |= 2H → 32J

Proof. We start with the direction

(Q(N) |= 2H → 32J)⇒ (Q(N) |= 32H → 32J)

Suppose it holds Q(N) |= 2H → 32J and there is a behavior σ = s0, s1, ... of Q(N) for

which σ 6|= 32H → 32J . Then

σ 6|= ¬ (32H) ∨32J ⇒ σ |= 32H ∧23¬J ⇒ σ |= 32H ∧ σ |= 23¬J

Consequently, there exists j ≥ 0 such that the execution segment starting at state sj

satisfies alwaysH and has infinitely many ¬J states. Since sj is a reachable state satisfying

H, it is also an initial state by the hypothesis. Therefore, there exists sequence τ = t0, t1, ...

with ti = sj+i, ∀i ≥ 0. Sequence τ is also a behavior of Q(N) and satisfies 2H ∧ 23¬J .

However, that means that τ 6|= 2H → 32J , which implies that Q(N) 6|= 2H → 32J .

This is a contradiction.

For the direction

(Q(N) |= 32H → 32J)⇒ (Q(N) |= 2H → 32J) (7.2)
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we note that any behavior σ of Q(N) that satisfies 2H satisfies 32H as well. Therefore,

for any σ such that σ |= 2H ∧ 23¬J the following property holds σ |= 32H ∧ 23¬J .

Consequently, whenever the conclusion of the implication (7.2) is false, the hypothesis is

false, too. �

From Lemma 7.2 we know that we can replace the correctness property with 2H →

32J . Any counterexample for the property 2H → 32J must satisfy 2H. Therefore,

we can transform the system Q(N) to a new system Q̆(N) whose computations are those

computations of Q(N) that satisfy 2H.

Lemma 7.3. For the system Q̆(N) which includes exactly those computations of Q(N)

for which 2H holds, we have Q̆(N) |= 32J ⇔ Q(N) |= 2H → 32J .

System Q̆(N) can be built by requiring that initially H holds and that any transition of

the system preserves property H. More specifically, Q̆(N) has initial condition Θ̆ = H∧Θ.

In addition, from the relation ρ of Q(N), we can define the next state relation ρ̆ of Q̆(N)

as ρ̆ = {〈s, s′〉 ∈ ρ | s′ |= H}. The sets of variables and the liveness conditions of

the two systems are the same. We can prove that every computation of Q(N) that is

not a computation of Q̆(N) has at least one state that violates H. Therefore, and from

Lemmas 7.2 and 7.3, the theorem below follows.

Theorem 7.4. If every reachable state that satisfies H is an initial state of Q(N),

then for any N it holds Q(N) |= 32H → 32J if and only if Q̆(N) |= 32J .

One thing to notice about the new system Q̆(N) is that all reachable states are initial

states.
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7.6.2. Action Based Transformation

The transformation described in the previous section is a sound and complete transfor-

mation for systems in which every reachable state is an initial state. This transformation

can be used in some cases without additional modifications. However, there are cases in

which we are required to preserve the locality constraint of the system. Moreover, we

need the next state relation ρ̆ of Q̆(N) to be defined based on a set of actions for the

subsequent steps of the methodology. In this section we define set of actions Ă(i) for each

process P (i) of Q̆(N) from the set of actions A(i) of Q(N) using the property H. In

addition, we specify the conditions under which the locality constraint is preserved.

The transformation we describe in this section is a syntactic transformation of the

actions. We change the next state expressions, so that an action is executed only if

the next state satisfies H. Otherwise, a stuttering step is made. The weak and strong

fairness conditions on the actions are the same as those in Q(N). The result is that the

new system Q̆(N) has exactly those computations of Q(N) that satisfy 2H. The reason is

that stuttering steps cannot satisfy the fairness constraints of the actions (Formula (7.1)).

Therefore, a sequence σ of Σω either satisfies or violates the liveness constraints of both

systems.

Now we describe the action based transformation in detail. As we saw in Section 7.3

every action can be rewritten in disjunctive normal form. For each disjunct we create a

predicate p from H by replacing the occurrence of each variable var with the expression

that gives its value in the next state, if the action is executed. Then we replace the

right-hand side ε(α) of each proposition var′ = ε(α) by the expression ITE(p, ε(α), var),

where ITE() stands for if-then-else operator. This operator returns the second argument,
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if the first argument evaluates to true. Otherwise, it returns the third argument. If a

proposition has the form var′ = var, then the proposition remains unchanged.

If the next state satisfies the predicate H, then all conditions of the ITE expressions

evaluate to true and the assignments happen as if the original action α was executed.

However, if the next state does not satisfy H, then all conditions in the ITE expressions

evaluate to false and the assignments of the original action cannot occur. In that case the

variables are assigned the values they have in the current state (var′ = var). The next

state relation produced is a subset of the next state relation of the original system.

The syntactic transformation we described may violate the locality restriction. This

is because the property check in the ITE expression may require the process to access

variables local to other processes. We show that if H is the conjunction of a number of

predicates, each expressed on a specific set of variables then locality is preserved. The

reason is that each action includes in the ITE check only the predicates that it can violate.

The following condition is sufficient for this purpose.

Φ1 H is of the form H = Γ ∧∆ ∧ ∀i ∈ 2..N : E(i), where Γ is a predicate expressed

over the variables in Vg, ∆ is a predicate expressed over the variables in W1, and

E(i) is a predicate expressed over the variables in VL(i).

This form is expected for systems that are composed of a number of identical up to

renaming processes. Then E(i) is the condition for each process, ∆ is the condition for

(the special) process 1, and Γ is the condition for the global variables. Note that if any of

the predicates Γ,∆, E(i) is missing, it can be replaced with True. Moreover, if H includes

an additional conjunct that specifies the existence of a silent process, this conjunct can

be removed after the first step of the abstraction technique. This type of conjunct is
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normally of the form ∃k ∈ 2..N : lcr[k] = vk which is also an invariant for P (k). If vk

is a constant value, a constant fairness constraint is added to the system during the first

step, which guarantees fairness for the effect of reading vk.

If Φ1 is satisfied, the checks of the ITE expressions happen only on the relevant

variables. For example, an action of P (i) can only violate Γ and E(i) and, therefore,

needs to check only those conditions to find if it preserves H. Therefore, the predicate

check in the ITE expression can be expressed over the variables in Vg and VL(i) and the

locality restriction is fulfilled. In addition, because the size of Vg ∪ VL(i) is independent of

N , the low-atomicity constraint is preserved. Consequently, the following theorem holds.

Theorem 7.5. If property Φ1 holds, then the locality property of the distributed algo-

rithm holds after the transformation.

The algorithm for the syntactical transformation is displayed in Figures 7.3 and 7.4.

The first part is a procedure for creating a disjunct of an action and the second part

returns the new sets of actions Ă(i) and Ă1. The second set is the set of actions of

the special process P1 in the transformed system. The first set is the set of actions

of the generic process based on which processes P (2), ..., P (N) will be instantiated. In

Figures 7.5 and 7.6 an example of the application of the transformation can be seen. In the

next section we describe the approach of finding a network invariant for the transformed

system.
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proc create disjunct(d,predicate)
p := predicate;

Vp := ∅;
foreach var appearing in p

Vp := Vp ∪ {var};
mark all occurrences of var in p;

endfor;

foreach var ∈ Vp

let var′ = ε(α) be a conjunct of d;

replace all marked occurrences of

var in p with ε(α);
endfor;

foreach conjunct c of d

if c has the form var′ = ε(α)
if ε(α) is not var then

replace c with var′ =
ITE(p, ε(α), var);

fi;

fi;

endfor;

Return d;

Figure 7.3. Procedure for creating a new disjunct using a predicate.

7.7. Finding a Network Invariant

In this section we present a method for building a network invariant for the system

Q(N). For the system Q(N), which is the input to this step, we assume that every

process has a finite number of observable variables and this number is independent of N .

Moreover, we assume that the correctness property is expressed over the set W1 of P1’s

owned variables and that the size of this set is independent of N . Note that after the first

two steps of the abstraction technique the system is expected to satisfy these properties.

However, the number of processes in the system still depends on N and because of that

the local state space of the processes, i.e., the variables in VL =
⋃

i∈1..N VL(i), is different



214

Algorithm Create set Ă from H

Input: The sets A(i), A1 of actions of

the generic process P (i) and

the special process P1

Output: The sets of actions Ă(i) and Ă1

Ă(i) := ∅;
for each action αi of A(i)

ᾰi := False;

foreach disjunct d of αi

d1 := create disjunct(d,Γ ∧ E(i));
ᾰi := ᾰi ∨ d1;

endfor;

Ă(i) := Ă(i) ∪ {ᾰi};
endfor;

Ă1 := ∅;
for each action α of A1

ᾰ := False;

foreach disjunct d of α

d1 := create disjunct(d,Γ ∧∆);

ᾰ := ᾰ ∨ d1;

endfor;

Ă1 := Ă1 ∪ {ᾰ};
endfor;

Return Ă(i), Ă1;

Figure 7.4. Algorithm for creating Ă(i), Ă1.

for every instance of the system. In this section we reduce the local state space to a fixed

finite set by building a network invariant.

We first define a few concepts which are important for the method of network invari-

ants. We use the symbol vM to denote modular abstraction [43]. Assume A and B are

two processes. Then B is a modular abstraction of A, i.e., A vM B, if and only if A

and B have the same set of observable variables and each observable behavior of A is an

observable behavior of B for any environment. An observable behavior of A is a sequence

obtained by projecting a behavior of the closed system (A‖Penv) on the set of observable



215

H = Γ ∧∆ ∧
∧

∀k∈2..N : E(k)

Γ
∆
= (gdis = min dis)⇔ (gid = fid)

E(k)
∆
= (ldis[k] = min dis)⇔ (lid[k] = fid)

∆
∆
= E(1)

ldis[k], cdis[k], gdis ∈ {min dis , gt min dis , any dis}
lid[k], cid[k], gid ∈ {fid , oid}

Initial condition: Θ = True

Actions of process P (i) for all i ∈ 1..N

α
∆
= ∧cid[i]′ = gid

∧cdis[i]′ = gdis

β
∆
= ∧cdis[i] = min dis

∧gid′ = cid[i]
∧lid[i]′ = cid[i]
∧gdis′ = gt min dis

∧ldis[i]′ = gt min dis

γ
∆
= ∧cdis[i] = any dis

∧gid′ = cid[i]
∧lid[i]′ = cid[i]
∧gdis′ = any dis

∧ldis[i]′ = any dis

δ
∆
= ∧gid′ = lid[i]
∧gdis′ = ldis[i]

Figure 7.5. The initial system and the processes before the second step of
the abstraction technique. For the variables we have Vg = {gdis, gid} and
VL(i) = {cid[i], cdis[i], lid[i], ldis[i]}. The fairness constraints and the
part of the actions that describe which variables are left unchanged are not
shown.

variables of A, where Penv is the specification of the environment. Formally, if A and B

are defined as A = (VA,WA, VLA,ΘA, ρA, LA), B = (VB,WB, VLB,ΘB, ρB, LB), we have

A vM B ⇔







∧ VA − VLA = VB − VLB (Same set of observable variables)

∧ ∀Penv : ∀σ : σ |= (A‖Penv)⇒ ∃τ : ∧ Π(VA−VLA)(σ) = Π(VB−VLB)(τ)

∧ τ |= (B‖Penv)

(7.3)
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Initial condition: Θ = H

Actions of process P (i) for all i ∈ 1..N

α
∆
= ∧cid[i]′ = gid

∧cdis[i]′ = gdis

β
∆
= ∧cdis[i] = min dis

∧gid′ = ITE(cid[i] = fid , cid[i], gid)
∧lid[i]′ = ITE(cid[i] = fid , cid[i], lid[i])
∧gdis′ = ITE(cid[i] = fid , gt min dis , gdis)
∧ldis[i]′ = ITE(cid[i] = fid , gt min dis , ldis[i])

γ
∆
= ∧cdis[i] = any dis

∧gid′ = ITE(cid[i] 6= fid , cid[i], gid)
∧lid[i]′ = ITE(cid[i] 6= fid , cid[i], lid[i])
∧gdis′ = ITE(cid[i] 6= fid , gt min dis , gdis)
∧ldis[i]′ = ITE(cid[i] 6= fid , gt min dis , ldis[i])

δ
∆
= ∧gid′ = ITE(E(i), lid[i], gid)
∧gdis′ = ITE(E(i), ldis[i], gdis)

Figure 7.6. The system of Figure 7.5 after the application of the second
step of the abstraction technique.

In (7.3) Penv is any process composable with both A and B, i.e., any process that does

not change the variables in WA and WB. This process describes the behavior of the

environment. Sequence σ is a behavior of the system (A‖Penv) and τ is a behavior of the

system (B‖Penv). An important property of modular abstraction is that for any process

C which is composable with both A and B we have

A vM B ⇒ A‖C vM B‖C

A network invariant I is a special process that is used as a modular abstraction of an

arbitrary number of symmetric processes [45, 43, 52]. We use the network invariant to

abstract the processes P (2), ..., P (N) which are all created from the specification of the

generic process P (i). In order for a process I to be a correct network invariant it must
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satisfy the following two conditions:

P (i) vM I (7.4) I||I vM I (7.5)

In this section we show how the user can exploit property H to create a process IH that

fulfills (7.4) and (7.5). Property H is important because it restricts the possible behaviors

of the environment. Therefore, even though the conditions (7.4) and (7.5) have to hold

for any environment, we know that the specific environment of each group of processes

P (2), ..., P (N) is part of the systemQ(N) that always satisfies H. Because of that, process

IH has two operational modes; normal and chaotic. Process IH is in the normal mode, as

long as it observes its environment satisfying H. In this mode the observable behavior of

IH is consistent with the actions of the generic process P (i). Moreover, IH preserves H

when assigning new values to its local variables. Process IH enters the chaotic mode only

if the environment violates H. In that mode IH ’s actions are restricted only by ownership

conditions.

We formally define IH as IH
∆
= (VI , VLI , VLI ,ΘI , ρI ,True) and describe how it can be

obtained from the specification of the generic process P (k) = (Vk, VL(k), VL(k),Θk, ρk, Lk):

VLI : The set VLI of local variables is obtained by the set VL(k) of the generic process

P (k) by renaming each variable var[k] as varI . Moreover, a new variable mode

is added to that set

VLI
∆
= {varI |var[k] ∈ VL(k)} ∪ {mode}
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VI : The set VI of variables IH can read or modify is given by

VI
∆
= (Vk − VL(k)) ∪ VLI (7.6)

The set Vk − VL(k) contains the variables cra[1] and cra[2] after the first step of

our abstraction technique.

ΘI : The initial condition ΘI is the conjunct of two conditions. The first is obtained

from Θk by replacing the occurrence of each variable var[k] ∈ VL(k) with the

corresponding variables varI ∈ VLI . The second is the predicate mode = normal,

which specifies that initially IH is in the normal operation mode.

ρI : The next state relation ρI is built from a new set of actions AI . Process IH starts

in the normal mode, in which its actions have the same observable behavior

as the actions of the generic process P (k). It changes to chaotic mode, once

it observes that the environment has violated property H. The actions of the

normal operation mode are built from the actions of A(k). The actions in the

chaotic mode are less restricted.

We start with the actions in the normal mode. For each action α ∈ A(k) we

create a new action αi by generating one by one its disjuncts from the disjuncts

of α. More specifically, for each disjunct of α the conjuncts that describe the next

state values of local variables are replaced with conjuncts that assign any value in

the domain of the variables. For example, a conjunct of the form var[k]′ = ε(α)

is replaced with var′I ∈ Dvar[k], where Dvar[k] is the domain of var[k] and

varI is the renamed version of var[k]. In all other conjuncts the only change

is that the local variables are replaced with their renamed versions (Figures 7.7
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and 7.8). Then the action is brought back into disjunctive normal form. Since

we do not want the next local state to be a state that violates H, we preserve H

by the method we described in Section 7.6.2. More specifically, we replace the

assignments to the local variables by ITE, i.e., if-then-else, expressions, whose

checks guarantee that if H could be violated by the disjunct, the action executed

is the stuttering step. If H satisfies Φ1 (Section 7.6), then the conjuncts that

are used in the ITE check are Γ, which is the conjunct defined over the global

variables7, and E, which is the conjunct specified over the local variables VLI .

Predicate E is obtained from E(k) by variable renaming.

The actions obtained by the procedure above have observable behavior that

is consistent with the actions of P (k). The reason is that on the conjuncts

that specify the next state values of global variables only renaming was done.

Therefore, the effect of each action on those variables is consistent with the effect

the action has when executed by a generic process that is in the same the local

state as IH . The next local state of IH is any state that satisfies H.

To the precondition of each of these actions conjuncts (mode = normal) and

Γ are added. This is because these actions are executed only in the normal mode

and only when the Γ conjunct of H is satisfied. Process IH cannot check the

∆ conjunct of H, as it is expressed over the local variables of P (1). Moreover,

E is expressed over its own local variables and the environment cannot violate

it. Conjunct mode′ = mode is added to all disjuncts of all actions of the normal

mode.

7In Γ two conjuncts for the valid values of cra[1] and cra[2] are added.
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An action αn2c is included in AI for the transition from the normal mode

to the chaotic mode. This action is enabled when after the environment of IH

violates Γ in the normal mode, i.e., mode = normal ∧ ¬Γ, and assigns to all

variables that IH can modify any value in their domains. More specifically, a

conjunct var′ ∈ Dvar is added for each variable var ∈ VI − {cra[1], mode}. The

value chaotic is assigned to variable mode, as IH enters the chaotic mode.

A single action αc is included in AI for the chaotic mode. It is enabled when

mode = chaotic and it assigns to each variable var ∈ VI − {cra[1], mode} any

value in their domains. Variable mode remains unchanged, as IH cannot return

to the normal mode. The algorithm for the creation of AI from A(k) is displayed

in Figure 7.9.

There is no liveness condition for process IH . The following theorem states that IH is a

network invariant of any group of processes created from the generic process P (k).

Theorem 7.6. The system IH is a network invariant for the processes P (2)‖...‖P (N)

for any N ∈ N.

Proof. We need to show that IH satisfies (7.4) and (7.5). We start with (7.4). Pro-

cesses P (k) and IH have the same set of observable variables by construction. Now assume

that Penv is any process that is composable with P (k) and IH . We denote as Θenv its

initial condition. We show that for any behavior σ = s0, s1, ... of (P (k)‖Penv) there exists

a behavior τ = t0, t1, ... of (IH‖Penv) such that ∀n ≥ 0 : ΠVk−VL(k)
(sn) = ΠVI−VLI

(tn).

We first notice that for every variable of (P (k)‖Penv) there is a corresponding variable

in (IH‖Penv). System (IH‖Penv) has the additional variable mode to which none of the
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proc transform conjunct(c)
foreach var[k] ∈ VL(k)

replace each occurrence of var[k] in c

with the corresponding variable of VLI;

endfor;

Return c;

Figure 7.7. Procedure for transforming a conjunct c.

proc transform disjunct(dk)
d := True;

foreach conjunct c of dk

if ∃var[k] ∈ VL(k) that appears in c

if c is part of eff(αk)
let c = (var′ := ε(αk));
if var 6∈ VL(k)

c :=transform conjunct(c);

d := d ∧ c;

endif;

elseif c is part of prec(α)
c :=transform conjunct(c);

d := d ∧ c;

endif;

else

d := d ∧ c;

endif;

enfor;

foreach varI in VLI

let DvarI
be the domain of varI;

create conjunct cnew := (var′I ∈ DvarI
);

d := d ∧ cnew;

endfor;

Return d;

Figure 7.8. Procedure for transforming a disjunct d.

variables of the former system is mapped to. We know that s0 |= Θk ∧Θenv, so we build

t0 with the same values for all corresponding variables and mode = normal. For every

transition (si, si+1) we build a transition (ti, ti+1) with ΠVk−VL(k)
(si+1) = ΠVI−VLI

(ti+1) as

follows:
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Algorithm Create set AI using H

Input: The set A(k) of actions of process P (k)
Output: The set of actions AI

AI := ∅;
for each action αk of A(k)

α := False;

foreach disjunct dk of αk

d := transform disjunct(dk);

α := α ∨ d;

endfor;

bring α into dfn;

AI := AI ∪ {α};
endfor;

foreach α in AI

AI := AI − {α};
foreach disjunct d of α

d := d ∧ (mode = normal) ∧ Γ;
d := create disjunct(d,Γ ∧ E);

endfor;

AI := AI ∪ {α};
endfor;

αn2c := False;

foreach var ∈ VI ∪ VLI

let Dvar be the domain of var;

c := var′ ∈ Dvar;

αn2c := αn2c ∧ c;

endfor;

αn2c := αn2c ∧ (mode = normal) ∧ ¬Γ ∧ (mode′ = chaotic);
AI := AI ∪ {αn2c};
αc := False;

foreach var ∈ VI ∪ VLI

let Dvar be the domain of var;

c := var′ ∈ Dvar;

αc := αc ∧ c;

endfor;

αc := αc ∧ (mode = chaotic);
AI := AI ∪ {αc};
Return AI;

Figure 7.9. Algorithm for creating AI . The function create disjunct is
displayed in Figure 7.3.
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Did
∆
= {fid, oid}

Ddis
∆
= {min dis, any dis, gt min dis}

Actions of IH

α
∆
= mode = normal

∧Γ
∧cidIH

′ ∈ Did

∧cdisIH
′ ∈ Ddis

∧ ∨lidIH
′ = fid

∨ldisIH
′ = min dis

∧ ∨lidIH
′ = oid

∨ldisIH
′ ∈ {any dis, gt min dis}

β
∆
= ∧mode = normal

∧Γ
cdisIH = min dis

∧gid′ = ITE(cidIH = fid, cidIH , gid)
∧gdis′ = ITE(cidIH = fid, gt min dis, gdis)
∧cidIH

′ ∈ Did

∧cdisIH
′ ∈ Ddis

∧ ∨lidIH
′ = fid

∨ldisIH
′ = min dis

∧ ∨lidIH
′ = oid

∨ldisIH
′ ∈ {any dis, gt min dis}

γ
∆
= ∧mode = normal

∧Γ
cdisIH = any dis

∧gid′ = ITE(cidIH 6= fid, cidIH , gid)
∧gdis′ = ITE(cidIH 6= fid, gt min dis, gdis)
∧cidIH

′ ∈ Did

∧cdisIH
′ ∈ Ddis

∧ ∨lidIH
′ = fid

∨ldisIH
′ = min dis

∧ ∨lidIH
′ = oid

∨ldisIH
′ ∈ {any dis, gt min dis}

δ
∆
= ∧mode = normal

∧Γ
∧gid′ = ITE(E(i), lidIH , gid)
∧gdis′ = ITE(E(i), ldisIH , gdis)
∧cidIH

′ ∈ Did

∧cdisIH
′ ∈ Ddis

∧ ∨lidIH
′ = fid

∨ldisIH
′ = min dis

∧ ∨lidIH
′ = oid

∨ldisIH
′ ∈

{any dis, gt min dis}

αn2c
∆
= ∧mode = normal

∧¬Γ
∧gid′ ∈ Did

∧gdis′ ∈ Ddis

∧cidIH
′ ∈ Did

∧cdisIH
′ ∈ Ddis

∧lidIH
′ ∈ Did

∧ldisIH
′ ∈ Ddis

∧mode′ = chaotic

α2
∆
= ∧mode = chaotic

∧gid′ ∈ Did

∧gdis′ ∈ Ddis

∧cidIH
′ ∈ Did

∧cdisIH
′ ∈ Ddis

∧lidIH
′ ∈ Did

∧ldisIH
′ ∈ Ddis

Figure 7.10. The actions of the network invariant IH for the example of
Figure 7.6. For simplicity the actions are shown in a more compact form
than disjunctive normal form and the part of the actions describing the
variables left unchanged is omitted.
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(1) If Penv executes the action that causes the transition, the same action is enabled

in ti and its execution causes (IH‖Penv) to move to a state ti+1 in which all

corresponding variables have the same values.

(2) Let P (k) be the process that executes the action α that causes the transition. If Γ

has not been violated before any action of P (k) executed so far, then α preserves

H. For any such action, there is a corresponding action αI of the normal mode

of IH with one of its disjuncts having the same effect as α. State ti+1 is obtained

by choosing this disjunct of αI . Action αI is enabled, as Γ has not been violated

before actions of IH and, therefore, IH is in the normal mode.

(3) Let P (k) be the process that executes the action α that causes the transition. If

Γ has been violated before an action of P (k), then we cannot guarantee that α

preserves H. However, in that case IH is or enters the chaotic mode. For every

effect that α has, the actions αn2c and αc have a disjunct that produces the same

effect on the corresponding variables. Therefore, there exists ti+1 as a result of

those actions.

Since IH has no liveness condition, it is a modular abstraction of the generic process P (i).

The next step is to show that IH‖IH vM IH . First, we notice that IH does not

have any observable owned variables. Therefore, by renaming the local variables of two

processes created from the specification of IH , these two processes become composable.

More specifically, we use ids from the set {1, 2} for naming convenience and rename each

varI ∈ VLI as varI [1] for one process and as varI [2] for the other. Then we augment

the system IH‖IH with prophecy variable π ∈ {1, 2}. This variable stores the id of the

next of the two processes to execute a step. Every action of IH with id= 1 is guarded by
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π = 1 and every action of the other process is guarded by π = 2. After every action π can

take any value in {1, 2}. The π variable does not affect the behavior of the two processes

and is only used as a prophecy variable. Moreover, the assigned ids are used only for

naming convenience and do not affect the observable behavior of the system IH‖IH . To

distinguish between the two processes we denote them as IH [1] and IH [2].

In the same way as in the first part of the proof, we show that IH [1]‖IH [2] vM

IH . More specifically, we show that for any process Penv that is composable with IH

and for any behavior σ = s0, s1, ... of the system (IH [1]‖IH [2]‖Penv), there is a behavior

τ = t0, t1, ... of (IH‖Penv) such that ∀n ≥ 0 : ΠVI−VLI[1]−VLI[2]
(sn) = ΠVI−VLI

(tn). We call

(IH [1]‖IH [2]‖Penv) the first system and (IH‖Penv) the second.

There is an one-to-one mapping between the observable variables of the two systems.

The same holds for all local variables of Penv. For the variables that are local to the two

IH processes of the first system and the IH of the second, we create the following relation

∀n ≥ 0 : ΠvarI [π](si) = ΠvarI
(ti) for every variable varI ∈ VLI − {mode}. That means

that in the second system all local variables of IH , except mode, have the same values as

the local variables of the IH process that will execute the next step in the first system,

i.e., IH [π].

State s0 satisfies Θenv ∧ ΘI[1] ∧ ΘI[2] ∧ π ∈ {1, 2}. We build state t0 by assigning

to each corresponding variable the same value. Moreover, for the local variables of IH

we assign values equal to the values of the local variables of IH [π]. For every transition

(si, si+1) we build a transition (ti, ti+1) with ΠVI−VLI[1]−VLI[2]
(si+1) = ΠVI−VLI

(ti+1) and

ΠVLI[π]−{mode}(si) = ΠVLI−{mode}(ti) as follows:
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(1) If Penv executes the action that causes the transition, the same action is enabled

in ti and its execution causes (IH‖Penv) to move to a state ti+1 in which all

corresponding variables have the same values. The local variables of IH and

IH [π] do not change, so their relation is preserved.

(2) Assume that IH [π] executes an action α that causes the transition and mode[1] =

mode[2] = normal in si+1. Then IH is also in the normal mode, as before the

execution of its actions in this behavior Γ is satisfied. Moreover, the global

variables have the same values and the values of the variables in VI[π] are the

same as the values of the variables in VI . Hence, process IH can execute one of

the actions with the same effect on the global variables. If α sets π′ to 1, the next

local state of IH is the same as that of IH [1], else it is the same as the IH [2]. This

is possible because both processes have a local state that satisfies H, so there is

some disjunct of the action to bring IH to either state.

(3) Assume that IH [π] executes an action α that causes the transition and mode[1] =

chaotic∨mode[2] = chaotic in si+1. Then IH is also in the chaotic mode in ti+1, as

before one of its actions, Γ has been violated. Since either αn2c or αc is executed

in ti, process IH has less restrictions. The effect of the action it executes can

be the same as IH [π]. Moreover, the next local state is the local state of IH [π′]

independent of whether this state violates H. The variable mode of IH remains

to chaotic for the rest of the behavior.

Since there is no liveness condition, IH is a modular abstraction of IH [1]‖IH [2]. �
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Local variables that are used neither in the precondition of any action nor in the

computation of the next state value of a variable can be eliminated for further reduction

of the state space of IH .

7.7.1. Completeness

In this section we present sufficient conditions for completeness of the third step. The

following conditions are sufficient for the construction of a counterexample for system

Q(N) from a counterexample of the system (P (1)‖IH):

C1 Every reachable state of the system is an initial state.

C2 The number of processes in the system is not bounded from above.

C3 For all N1 and N2 with N1 < N2, the systems Q(N1) and Q(N2) have the same

formula as liveness constraint.

C4 Actions of P (k) for k ∈ 2..N that modify variables in Vg do not modify variables

in VL(k).

Condition C1 is always true for system Q(N). Conditions C2 and C3 have been discussed

in Section 7.5.2. Condition C4 is satisfied by systems in which any write action on one of

the variables in Vg preserves the local state space of the process.

Theorem 7.7. If Q(N) satisfies conditions C1 – C4 and (P (1)‖IH) 6|= 32J , then

∃K ∈ N such that Q(K) 6|= 32J .

Proof. We assume we have a counterexample for the system (P (1)‖IH). As in the

proof of Theorem 7.1 we focus only on the cycle of the counterexample (C1). For every

action that IH executes in this cycle, we add a process P (k) in the system Q(N) with
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the same local state as the local state of IH before the action. Because of C1 such a state

is a valid initial state for process P (k). If C4 is satisfied, then the addition of the new

process does not prevent us from forming a cycle. This is because each process P (k) has

the same local state before and after the action and does not need to execute any other

action to maintain this local state. Because of C3 no additional fairness constraints are

added to the extended system. Moreover, condition C2 allows the addition of processes

for any number of actions IH executes in the cycle. For each action of P (1) in the abstract

counterexample, there is a corresponding action in the concrete system. The cycle formed

this way is a behavior of the system8 Q(K) for K ∈ N. Since the property J is specified

over the variables in W1, the cycle formed in the state transition graph of Q(K) violates

32J . �

7.8. Case Studies

In this section we demonstrate the effectiveness of our technique on 3 self-stabilizing

algorithms; spanning-tree construction, leader-election, and coloring. All 3 case stud-

ies satisfy the conditions for soundness after the preprocessing step. The conditions for

completeness are not necessary, but sufficient for the automated creation of the concrete

counterexample. The algorithms presented here do not satisfy all conditions for com-

pleteness. Therefore, we cannot exclude the possibility of a spurious counterexample.

However, proving correctness in all 3 cases demonstrates the effectiveness of our approach

as a sound abstraction technique.

8As mentioned above each process of system Q(K) has a fixed number of observable variables because of
the transformations applied during the previous steps of the technique.



229

7.8.1. Spanning-Tree Construction

The first example we applied our abstraction technique is a variant of Arora and Gouda’s

low-atomicity spanning-tree algorithm [3]. In this algorithm each node P (i) stores the

root of the tree in variable root[i], its distance from the root in dis[i], and its parent in

the tree in F[i]. The parent is the neighbor node with the minimum distance from the

root. The root of the tree becomes the node with the maximum id in the graph. The

communication register of P (i) is defined as cr[i]
∆
= (root[i], dis[i]).

In the original low-atomicity spanning tree algorithm, each process stores local copies

of the communication registers of all its neighbors. Clearly, in this case the number of

local variables of process P (i) depends on the number of its neighbors. Therefore, our

technique cannot be applied on the original version of the algorithm. We replace this

set of variables with only one local copy ncre[i]. Each process i is given one action per

neighbor j that copies the communication register of the neighbor to the local copy, i.e.,

ncre[i]′ = cr[j]. All actions of the process have strong fairness conditions.

Another problem with the original algorithm is that the variables have large or infinite

domains. We abstract the system, so that the variables take values from finite sets. More

specifically, the domain of the root variables becomes Droot = { LtR , EqR , GtR }, where

LtR , EqR , and GtR stand for “less than the root id”, “equal to the root id”, and

“greater than the root id”, respectively. For the distance, we assume that the special

process P (1) is at distance l from the root and we reduce the set to a few values of

interest, i.e., Ddis = {⊥, l − 2, l − 1, l, l + 1,>}. Finally, the domain of the parent field is

abstracted to DF = { node 1 , not neighbor , neighbor l-1 , neighbor geq l }.
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The subgraph obtained by process P (1) and its neighbors is not a closed system, but

part of an arbitrary graph. We make the system closed by adding an action to each

of the processes P (2), ..., P (N) that has the same effect as the action reading any valid

value of the removed processes. Finally, because communication registers are used in the

preconditions of some actions, we add local copies of the communication registers for all

processes.

The system obtained after the preprocessing step is amenable to our technique. It

satisfies all constraints for soundness and is a silent self-stabilizing algorithm. We want to

prove that after all nodes in distance l− 1 from the root have stabilized, then eventually

a node in distance l from the root will stabilize. More specifically, property H specifies

that floating root ids have been eliminated, the nodes that are in distance l− 1 from the

root have stabilized, and all other nodes that have identified the root hold distance values

greater or equal to l. Property J specifies that the node P (1) in distance l stabilizes. Due

to symmetry we can conclude that all nodes in distance l stabilize. Formally, we want to
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prove that for this system 32H → 32J , where

H
∆
= ∧ lcr[1] = cr[1]

∧ lcr[1].root ∈ { LtR , EqR }

∧ lcr[1].root = EqR ⇒ lcr[1].dis ≥ l

∧ ncre[1].root ∈ { LtR , EqR }

∧

j∈2..N

lcr[j].root ∈ { LtR , EqR }

∧

j∈2..N

lcr[j].root = EqR ⇒ lcr[j].dis ≥ l − 1

∧

j∈2..N

ncre[j].root ∈ { LtR , EqR }

∧

j∈2..N

nF[j] 6= not neighbor ⇒ (ncre[j].root = EqR ⇒ lcr[j].dis ≥ l − 1)

∧

j∈2..N

nF[j] = not neighbor ⇒ (ncre[j].root = EqR ⇒ lcr[j].dis ≥ l − 2)

∧ ∃j ∈ 2..N : lcr[j].root = EqR ∧ lcr[j].dis = l − 1 ∧ F[j] ∈ { not neighbor }

J
∆
= lcr[1].root = EqR ∧ lcr[1].dis = l ∧ F[1] ∈ { neighbor l-1 }

The first 4 conjuncts of H form ∆, which is the condition specified for the special

process P (1). The first one specifies that the communication register and its local copy

have the same value, or equivalently, process P (1) has executed its first write action since

the beginning of the execution. The second specifies that any floating id that is greater

than the maximum id in the graph, which is the id of the root, has been eliminated. The

third is an inductive property, which specifies that if P (1) has the correct id value then
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its distance value is greater or equal to l. The fourth conjuncts specifies that the variable

ncre[1], which holds the value of one of its neighbors, does not contain a floating id.

The next 5 conjuncts of H form ∀k ∈ 2..N : E(k). The first three are similar to

conjuncts contained in ∆. The next 2 determine whether the last value read by each of

those processes belongs to a process outside of the closed system ( not neighbor ), where

processes of distance l − 2 can be found. The last conjunct of H specifies that there is

at least one neighbor of P (1) that is at distance l − 1 from the root and has stabilized.

Property J specifies that P (1) stabilizes.

During the first step of our technique a constant fairness condition is added. Since

this a silent self-stabilizing system, the set of N − 1 read actions of process P (1), i.e.,

∃j ∈ 2..N :

αr(j)
∆
= ∧ ncre[1]′ = cr[j]

∧ nF[1]′ = ITE(cr[j] = ( EqR , l − 1), neighbor l-1 , neighbor geq l )

∧

var∈V −{ncre[1],nF[1]}

var′ = var

create the constant fairness constraint cf(αr)
∆
= 23〈c(αr)〉, where

c(αr)
∆
= (ncre[1] = ( EqR , l − 1)) ∧ (nF[1] = neighbor l-1 )

After applying all steps of our technique, we obtain a system composed of the trans-

formed version of process P (1) and the network invariant. We described the system

(P (1)‖IH) in smv and used TLV [69] to check the 32J property. It took TLV 35 sec to
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prove this property. From the proof we can conclude the ∀N ≥ 2 : (P (1)‖P (2)‖...‖P (N)) |=

32H → 32J .

7.8.2. Leader Election

For the leader election algorithm ([27],p35) a number of processes form an arbitrary

connected graph. The purpose of the algorithm is that eventually all processes will agree

on the process with the minimum id in the graph to be the leader. In order to achieve

that, each process stores a candidate leader and its distance from the leader. Then it

reads the values of all its neighbors. If there is a candidate with id smaller than its own

leader or with the same id and smaller distance, the process updates its candidate with

that value and its distance by incrementing the distance read by 1. The update happens

only if the distance of the neighbor’s candidate is less than a prespecified constant M ,

which represents the maximum number of nodes in the graph.

If one of the processes i is initialized with a candidate id v in variable leader which

is smaller than any of the ids in the graph and any of the other nodes’ candidates,

then v is going to be stored in other neighbors’ leader variable and from them again

to i. However, each time this “floating” id moves from one node to another, the value

of distance increases. Therefore, eventually distance becomes greater than M for all

nodes and the value v does not appear in the leader variables of the graph.

For this algorithm we assume that min id is the smallest floating id and min dist is

its minimum distance value in the graph and we prove that eventually always if a node

has min id as a candidate, the distance will be greater than min dist. We use P (1) as

the special process, but due to symmetry the proof can be generalized.
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This system is not a finite state system because variables storing candidate leaders

and distances take values from an infinite domain. Therefore, we abstract those variables

to a few values of interest, i.e., {min id, other id} for the candidates and {min dist,

gt min dist, any dist} for the distance, where gt min dist denotes greater than min

distance. We abstract the part of the graph that does not belong to process 1 and its

neighbors and the loop structure that reads the values of all neighbors. After the prepro-

cessing step we are left with a parameterized system that is amenable to our technique.

The property H = Γ ∧∆ ∧ ∀k ∈ E(k) and J are given by9

Γ = True

∆ = ∧ candidate[1] = min id⇒ distance[1] 6= any dist

∧ leader[1] = min id⇒ dis[1] 6= any dist

E(k) = ∧ candidate[k] = min id⇒ distance[k] 6= any dist

∧ leader[k] = min id⇒ dis[k] 6= any dist

J = ∧ candidate[1] = min id⇒ distance[1] = gt min dist

∧ leader[1] = min id⇒ dis[1] = gt min dist

Each process executes a low-atomicity algorithm with single-writer, multi-reader com-

munication registers. Moreover, the preconditions of the actions depend on the program

counter or on local variables. The usage of the program counter makes the system sat-

isfy Λ3, as discussed in Section 7.3. The communication register for this algorithm is

cr[j] = (leader[j], dis[j]). After the application of our technique the system has a fixed

9The rest of the conjuncts in the code have to do with the domain of the variables.
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number of observable variables and is amenable to control abstraction. Performing control

abstraction we obtain a finite-state system with 500,000 states. We specified the system

in TLA+. Then we used the TLC model checker [54], which is based on explicit state

enumeration, to prove the correctness of the algorithm. TLC took 22 minutes to prove

the property 23J of the abstract system.

7.8.3. Coloring

We apply our technique on the self-stabilizing coloring algorithm ([27],p162). The purpose

of this algorithm is to assign a color to each process, such that no two neighbor processes

have the same color. Each process keeps reading the values of all its neighbors, stores the

values of the neighbors with an id greater than its id, and assigns to its color variable a

color that none of the neighbors with a higher id have.

We want to prove that eventually always a process will have a color that none of its

neighbors with higher id numbers have, if eventually always the neighbors with higher ids

are silent processes, i.e., the values of their communication registers are constant. We use

P (1) as the special process and with data abstraction we make the state space of each

process finite. Then we apply our technique and prove the desired property. We specify

the system in TLA+. TLC requires 1 minute and the total number of states is 26,496.

In one of the actions of the program, a process makes a call to a function choose()

with arguments the set of all colors except the colors of its neighbors with higher ids. If

no fault occurs or after a process has completed its first actions, it is guaranteed that the

argument passed to choose() has at least one element. This is because the number of

colors is always greater than the number of neighbors of a node. However, if we start in a
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state in which the two sets are equal, the argument passed to choose() is the empty set.

Therefore, it is important that choose() is able to return a color if called with the empty

set and not crash10.

7.9. Summary

This article describes an abstraction technique for a class of self-stabilizing algorithms.

The abstraction technique is the first that can be used to prove the correctness of low-

atomicity, parameterized self-stabilizing systems with an unbounded number of observable

variables for each process. The abstract system derived by the proposed approach is

relatively small. As the case studies show the abstraction technique is not trivial and

can be applied to a number of self-stabilizing algorithms. Moreover, the conditions of

completeness of each step are defined.

Not all self-stabilizing algorithms can be directly handled by our abstraction technique.

There are algorithms containing variables with infinite domains, loop structures that read

the values of all its neighbors, or relations specified on the ids of the processes. Moreover,

in many distributed systems a process and its neighbors do not form a closed system, but

are part of a larger arbitrary graph. There are ways to make these algorithms amenable to

our abstraction technique during the preprocessing step. However, the focus of this work

is the abstraction of a parameterized self-stabilizing system with an unbounded number

of observable variables for each process. The proposed abstraction technique enables

automated verification methods, i.e., model-checking, to check the correctness of a class

of self-stabilizing algorithms.

10In the paper [28] from which the paragraph in [27] is motivated, the authors mention that.
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CHAPTER 8

Conclusions

8.1. Summary

Our work targeted the system-level synthesis and verification of digital integrated cir-

cuits. Several algorithms were developed that can improve the quality of synthesis. More

specifically, a dynamic programming algorithm was presented that produces a sched-

ule with reduced energy consumption for a system-level pipelined streaming application.

Moreover, a retiming algorithm was developed for applications that can be represented

as Synchronous Data Flow graphs. The algorithm produces a schedule with the mini-

mum iteration latency. Furthermore, the optimization power of the synthesis operations

was explored and a sequence of synthesis operations was proposed that can perform any

sequential transformation.

System-level and high-level synthesis will be widely adopted only if the correctness of

their results can be checked. However, in most cases the verification problem is harder

than synthesis. We proposed several approaches to speed up verification. The first is

based on recording the history of the transformation during synthesis. Even though by

using this approach the speedup can be significant in some cases, the most efficient way

to improve verification runtime is by using abstraction. We presented several abstraction

methods. The first can be used for computational intensive system-level applications, in

which a bit accurate description is not necessary. In that case we represent all data types
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in the word-level. The second enables the use of automated tools for the verification of

parameterized self-stabilizing systems. The technique abstracts an arbitrary number of

processes to a small finite state system.

8.2. Future Work

There are still many interesting problems in this field. A very important problem

is to define a framework for sequential synthesis that is verifiable by efficient sequential

equivalence checking procedures. We saw that the sequence of retiming and resynthesis

operations is a powerful synthesis paradigm, but has a number of limitations. Moreover,

it does not guarantee that the result of synthesis can be checked by any method other

than model checking. Therefore, it is useful to consider whether there exists a synthesis

framework that is more powerful than the RnR sequence and whose results can be verified

by a more efficient verification method.

Transactional memories is another interesting research field. For deriving the opti-

mization power of retiming and resynthesis we assumed that the functions between the

blocks of register are combinational. The reason is that the evaluation of these functions

is an atomic action by the system, i.e., an action that is indivisible and happens instantly

before the rising edge of the clock. Transactional memories are an architectural imple-

mentation that can guarantee atomicity for actions performing memory operations. It

would useful to consider the optimization power of retiming as a scheduling operation

when transactional memories are involved.

In Chapters 2 and 3 we saw how synthesis operations applied to the structural rep-

resentation of the design defined the scheduling and communication between processes.
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In most cases the structural representation is more complete than the behavioral repre-

sentation. For example, control units could be missing in the behavioral representation.

An investigation on the effect and optimization power of other structural synthesis oper-

ations would be very interesting. Since the structural representation is more complete,

the quality of the synthesis result could be improved.

Finally, the type of abstraction used during verification should be decided by the ab-

straction used during synthesis. It is interesting to see how we can pass information stored

during the synthesis phase for the verification procedure, such that the complexity of the

verification is reduced, while the possibility of a false positive answer is eliminated. This

requires that the information passed can be independently checked during verification.

Research in this area can tackle the kind of information and data structures that are

needed for this approach.
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