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ABSTRACT

New Insights from Network Theory and Analysis:

From the Mechanics of Granular Materials to the Robustness of Cellular Metabolism

Ashley Gerard Smart

Granular matter and living cells represent two extremes of what have come to be regarded

as complex systems – systems characterized by a richness in global behavior that is not

easily deduced from the interactions of their individual parts, even when those interactions

are simple and well understood. On the one hand, granular matter is perhaps the simplest

prototype of a complex system, whereas living cells are among the most complex of the

complex systems studied in science.

Recently, network theory has emerged as a valuable framework for analyzing, clas-

sifying, and understanding complex systems. In this dissertation, we use networks –

applying established analysis techniques as well as developing new techniques – to inves-

tigate specific problems pertaining to granular matter and cellular metabolisms. From

network analysis we gain new insights into (1) the distributions of particle pressures in

bi-disperse granular packings; (2) the structural evolution of a gradually tilted granu-

lar bed; (3) the transport properties of granular media; and (4) the relationship between
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structure and robustness of cellular metabolisms. The studies on granular systems are sup-

ported by particle dynamics simulations; the study on metabolic robustness is supported

by genome-scale in silico reconstructions of Escherichia coli, Saccharomyces cerevisiae,

Methanosarcina barkeri, and Staphylococcus aureus.
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CHAPTER 1

Overview and Organization

Nearly every facet of life involves complexity. Even simple, individual actions (flying

from New York to L.A., viewing a website, turning on a light switch) are made possible

by a complex underlying system of interacting parts (the air traffic system, the internet,

the electrical power grid). Complex systems have resisted traditional paradigms – they

are characterized by a richness in global behavior that is not easily deduced from the

interactions of their individual parts, even when those interactions are simple and well

understood. They exhibit emergence, self-organization and adaptability [1]. They are

observed in physical, biological, social, and economic systems [2]. While complex systems

are not new – complexity long predates humankind – the capacity to analyze, classify, and

understand complex systems has only recently begun to emerge as a science. Tools such as

cellular automata and networks are being developed into a framework for the systematic

study of these kinds of systems. But much remains to be learned. In this dissertation,

we investigate specific problems pertaining to two classes of complex systems – granular

matter and cellular metabolism – from the vantage point of network analysis.

1.1. Granular Matter, Living Cells: Unique Examples of Complex Systems

Granular matter can be loosely defined as matter composed of discrete, solid particles

– it represents perhaps the simplest prototype of what have come to be known as complex

systems [3, 4]. Interactions between individual particles are relatively simple and well
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understood – interparticle contacts are repulsive, frictional, dissipative and, in some cases,

adhesive. But knowledge of these interactions reveals little about the collective behavior

of the system. The simple rules that govern granular interactions yield a surprisingly

rich array of phenomena: fingering at the leading edge of the granular front in a rotating

tumbler [5], localized excitations in a shallow vibrated granular bed [6], and spontaneous

segregation in shaken or rotated systems [7–10] are just a few examples. In fact, no

single description can universally describe granular matter – under various conditions, it

can behave like a solid, liquid, or gas [11].

At the other end of the spectrum, living cells are among the most complex of the

complex systems studied in science. Whereas the components in a granular system (solid

particles) are similar and behave virtually identically (i.e., they obey Newton’s laws of mo-

tion), the components in a cell comprise numerous distinct classes and functional groups,

each with very specialized tasks – ATP synthase is responsible for producing energy from

adenosine diphosphate; messenger RNA carry genetic information to ribosomes for protein

synthesis. Whereas granular particles interact, indiscriminantly, with whichever particles

are nearby, cellular components must be transported – often selectively – to allow for very

specific interactions. Granular materials experience only a few types of stresses – e.g.,

compression, shear. Cells, however, must adapt to temperature fluctuations, changes in

food supply, pH, mutations, and other stresses, while maintaining the ability to perform

critical processes such as reproduction and metabolization.

Although they represent extrema, granular matter and cellular systems both typify

the evolution of the complex system as a new paradigm. Isaac Newton’s early attempt

to describe force propagation in granular matter was simple and deterministic – grain
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(a) (b)

(c) (d)

Figure 1.1. The evolution of the complex system as a new para-
digm. (a) A sketch from Isaac Newton’s Principia describes force propa-
gation in a granular system – grain a presses against b, which presses against
c, and so on (Image from [12]). (b) The pathway representation of glycol-
ysis, a metabolic process (from [13]). Although (a) and (b) are both valid
descriptions, they are limited. Neither comes close to capturing all aspects
of the underlying complexity. The emergence of new analytical tools have
redefined our view of complex systems. They include cellular automata –
such as the ‘q’ model which is used to describe forces in a granular packing
(c) – and networks – such as those used to describe metabolic structure in
living organisms (d) (from [14]) .
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‘a’ presses against grain ‘b’, which presses against ‘c’, and so on [12] (See Fig. 1.1a).

Similarly, the earliest conceptualizations of the cell metabolism resembled assembly lines,

comprising sets of independent, linear reaction pathways (Fig. 1.1b). But recently, new

descriptions and tools have emerged. For example, forces in granular matter are frequently

studied from the vantagepoint of ensemble theory [15], or cellular automata [16]; the

cell metabolism is now widely regarded as a highly interconnected set of reactions and

metabolites. In both cases, scientific understanding has been aided by the arrival and

development of a new framework – networks.

1.2. Networks, and Complex Systems Analysis

We define a network as a system of nodes (vertices) connected by edges (links). Adopt-

ing this definition, the ‘network’ description can be applied to an extraordinary range of

systems – language patterns [17], transportation systems [18], social interactions [19], etc.

In fact, any system composed of interacting parts can be described as a network. Perhaps

the biggest recent impact of network theory has been to reveal underlying similarities

between systems that, at first glance, appear completely unrelated.

In this dissertation we apply the network framework, separately, to granular and

cellular systems. In studying granular systems, we are concerned primarily with granular

packings – that is, granular matter in a solid-like, compressed state. In studying cell

behavior, we focus on cellular metabolism – the process by which nutrients are converted

into energy, waste, and cellular components.
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1.3. Organization

The dissertation is organized into two parts. Part I deals with granular packings, and

comprises three independent case studies. In Case Study I (Pressure in a Bi-disperse

Granular Packing), we investigate effects of of particle size dispersity on the structure of

forces in granular networks. In Case Study II (Forces in a Tilted Bed), we use network

concepts to gain insight into the granular phenomenon of shear failure. Finally, in Case

Study III (Effects of Self-Organization on Transport in Granular Matter), we explore

the relationship between granular network structure and transport properties. Part II of

the dissertation deals with the cell metabolism. Specifically, we explore the relationship

between structure and robustness of metabolic networks (Case Study IV: Robustness

of Metabolic Networks). We conclude with a brief discussion of some potential future

research directions regarding granular and metabolic networks.

Each of the case studies are self-contained, with a methods section, results, and a brief

discussion. Also, each case study has self-consistent notation (whenever possible, we use

consistent notation throughout the whole of the dissertation, but occasionaly, variables

are defined differently for different case studies). Also, each chapter is preceded by a brief

sentence or phrase – extracted from the body of the chapter – that reflects an essential

finding or result. The phrase is followed by an abstract-like introduction; together, they

are meant to orient the reader with the ensuing chapter material.
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CHAPTER 2

Introduction to Part I

‘granular force structure can be distinguished by a unique hallmark –

heterogeneity and self-organization.’

In 1957, a relatively simple experiment performed by Dantu – in which photoelastic

disks were compressed by a piston – provided the first true glimpse of how force propagates

through a granular system [20]. The result was remarkable. Stresses were localized into

an intricate, weaving network of chains. Granular systems – at scales on the order of sev-

eral particles – deviated significantly from the often assumed continuum approximation.

The result spawned a new paradigm in granular physics, and a new challenge: to un-

derstand the origins of granular micro-structure, and its implications towards macroscale

phenomena. Ensuing studies have confirmed, in precise and quantitative terms, what

Dantu observed in his early experiment: granular force structure can be distinguished by

a unique hallmark – heterogeneity and self-organization.

2.1. Heterogeneity and Self-Organization in Granular Matter

Experiments [22–26], phenomenological models [22,27,28], particle dynamics simula-

tions [22,23,29], Monte Carlo simulations [15,30,31], thermodynamics analogies [32,33],

and analytical solutions [34] indicate that a relatively few inter-particle contacts in a

granular packing tend to support most of the compressive load. The remaining contacts
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Figure 2.1. An unusual medium. Dantu’s experimental with photoelas-
tic rods compressed by a piston reveals an intricate network of force chains.
Image from [21]

support little. This yields a force probability distribution function p(f) that has a broad-

tail at high forces. The precise form of p(f) remains an open issue. In jammed packings

of rigid particles, evidence supports exponential decay of p(f) at large f , with a peak at

small f [24,25]. Such packings are well described by the relationship proposed by Mueth

et al. [24]:

(2.1) p(f) = α
[

1 − β exp(−f 2)
]

exp(−γf)

where the coefficients are α ≈ 3, β ≈ 0.75 and γ ≈ 1.5. (Fig. 2.2, curve b)

If the packing is at or above the jamming transition (i.e., slow flow) the peak at small

f disappears, and p(f) decays monotonically [35,36]. In (2.1), this corresponds to β → 0.

(Fig. 2.2, curve a)

It has been argued – from a theoretical basis – that if particles are either (1) very

soft, or (2) allowed to freely explore the entire phase space, as by tapping, the large force
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Figure 2.2. The contact force distribution for a vertically com-
pressed granular packing. The data represent the contact force distri-
bution, p(f), for a typical granular packing used in this dissertation. The
data exhibit a peak at small forces and exponential decay at large forces,
and are described by eq. (2.1), with coefficients α = 3, β = 1.78, and
γ = 1.5 (curve (b)). Curve (a) represents an upper limit, and is typical of
granular packing near the the jamming transition. Curve (c) represents a
lower limit, and has been proposed for granular packings of either very soft
particles, or particles allowed to freely explore the entire phase space (as
explained in the text).

decay of p(f) may be faster than exponential, approaching Gaussian [23,32,37]. (The

γf term in (2.1) approaches γf 2, see Fig. 2.2, curve c)

The force distributions observed for the packings used in this dissertation exhibit a

peak at small forces and exponential decay at large forces, consistent with (2.1), with

coefficients α = 3, β = 1.78, and γ = 1.5 (See Fig. 2.2).

Although less precisely understood, elements of self-organization in granular matter

are also evident, and are extensively documented in the literature: spatial and force

correlations are known to extend over distances on the order of tens of particles [38]; strong

and weak contacts have been found to comprise sub-groups that align along opposing axes
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in response to shear [39]; and so-called force chains, chains of highly compressed particles,

are observed to interconnect, forming intricate sub-networks [40].

2.2. Some Open Questions

The heterogeneous, self-organized nature of granular force structure complicates sev-

eral questions that might otherwise be straightforward:

• When does size matter in a granular packing? Granular materials rarely

consist of uniformly sized particles. In fact, a distribution of sizes is often desired

– space filling arrangements of large and small particles are known to enhance

strength in materials such as concrete [41]. But how small is too small? How

is load distributed between small and large particles, and when do the small

particles become irrelevant?

• What causes granular matter to flow? Shear failure, perhaps more than

any other granular phenomenon, generates widespread interest: geologists and

civil engineers aim to predict the occurrences of avalanches, mudslides, and earth-

quakes [42,43]; chemical and process engineers aim to know why different materi-

als flow at different tilting angles [44,45]; physicists aim to understand jamming

and its relation to the glass transition [46,47]. Although certain structural pre-

cursors to the flow transition are known – increasingly large fluctuations [48];

anisotropy in p(f), with p(f) in the shear direction exhibiting monotonic de-

cay [49]; emergence of a percolating network of contacts at the Coulomb friction

limit – current understanding of shear failure is, at best, incomplete.
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• How does granular matter transport heat? Granular materials are unusual

transport media. A sound wave initiated at one end of a granular packing is

dispersed and distorted when it reaches the other end [50–52]. Metallic powders

heat and coalesce non-uniformly when sintered. A slight change in pressure is

the difference between ‘on’ and ‘off’ in a conducting granular switch [53]. Each

of these behaviors are sensitive to granular force structure.

The ability to answer such questions hinges on our capacity to distill detailed structural

data into physically meaningful information. It is here that the network viewpoint has

emerged as a useful paradigm.

2.3. A Networks Framework

In Part I of the dissertation, we employ the network description to investigate some

of the questions listed above. We represent each particle as a node, i. Two nodes i and

j are connected by an edge, cij , if the particles are contacting (see Fig. 2.3). The normal

force along the contact defines an edge weight, fij . On occasion, we will employ a ‘vector’

edge form, ~cij, where ~cij is the vector connecting the centers of two contacting particles i

and j (generally, the direction in which the vector points is unimportant, i.e., ~cij and ~cji

are interchangeable. The edge weight, fij , is always scalar and positive.

The network viewpoint is accompanied by new statistical methods – including con-

cepts such as percolation, clustering, and new measures of distance [54]. However, the

application of these tools to granular matter is not straightforward. We develop some

of these tools for application to specific problems in granular physics. The resulting

tool set includes both established and new concepts: in some instances we simply tailor
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Figure 2.3. The granular packing as a network. (Left) A granular
packing, consisting of two-dimensional disks between vertical walls. (Right)
The network representation. Each line (edge) represents an interparticle
contact; the width of the line (edge weight) corresponds to the normal force
along the contact.

conventional granular concepts to the networks view, whereas other instances represent a

significant leap from the traditional granular paradigm (and can be thought of as tailoring

networks concepts to the granular view).

We can organize the tool set according to scale. At one extreme, we analyze the

granular network based on the statistics of single elements – contacts and particles. Such

measures provide the basis for Case Studies I (Partitioning of Pressure in Bi-Disperse

Granular Media) and IIa (Evolving Forces and Structure in a Gradually Tilted Bed:

Predicting Stress). At a slightly larger scale, we can consider structural motifs comprised

of a few clustered elements. This is our approach in Case Study IIb (Evolving Forces and

Structure in a Gradually Tilted Bed: Loops and Fragility). A third subset of tools can

be used to analyze network structure and organization at a scale much larger than the
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grain size – these tools guide our approach to Case Study III (Effects of Self-Organization

on Transport in Granular Matter). All work is supported by 2-D particle dynamics

simulations (see Appendix).
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CHAPTER 3

Case Study I: Pressure in Size Bi-disperse Granular Packings

‘...the subsets (of large and small particles) display different statistics

from the whole, and each other.’

Most granular systems – natural, industrial, and experimental – have size dispersity.

In materials such as cement, detergent, and soil, particle sizes may vary by an order of

magnitude or more. In experiments, size-dispersity is often introduced to generate random

packing structures. Still, the influence of size dispersity on the granular force structure

remains imprecisely understood, largely because disperse systems are frequently analyzed

much like monodisperse systems – all particles, regardless of size, are treated as a single

set and assumed to share common statistical properties. Rarely are forces and stresses

distinguished according to particle size. But stress properties within a granular packing

are size dependent – the subsets (of large and small particles) display different statistics

from the whole, and each other.

In this chapter, we look separately at the force statistics of small and large particles

in bi-disperse packings, observing notable traits: (1) smaller particles are more likely to

experience extreme (either very low or very high) pressures; and (2) although pressure

distributions for small and large particles are very different, there is a special region

where their average pressures are the same. This region, which we call the equipartion
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region, spans a large range of size and fill ratios. We use numerical simulations to predict

the ‘equipartition’ region, and consider its dependence on material properties such as

interparticle friction.

3.1. Methods

We simulate two-dimensional systems of rough disks using Particle Dynamics – normal

contact forces are calculated using the linear-spring dashpot model, and tangential forces

are calculated using the Cundall and Strack model (See Appendix). We consider systems

with interparticle friction equal to µ = 0.5 and 0.2. Packings are prepared by compression

– a fixed force is applied to the horizontal walls, compressing the granular system to a

specified vertical pressure, Py, and yielding a static, nearly isotropic granular packing.

The final system dimensions approximate a square. The granular system is bounded in

the vertical direction by infinitely rough walls – where we impose a no-slip condition –

and in the horizontal direction by a periodic boundary. (See Fig. 3.1)

Particle size distributions are bi-disperse, with size ratios of small to large particles,

d∗ = ds/dl, ranging from 0.1 to 1. For each size ratio, we consider a range of volume

fractions, φs, where φs is the volume fraction of small particles:

(3.1) φs =
nsπ(ds/2)2

nsπ(ds/2)2 + nlπ(dl/2)2
.

where ni is the total number of particles of type i. (See Fig. 3.2)
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Figure 3.1. Bidisperse granular packing, compressed between ver-
tical walls. 1250 large particles (gray) and 1250 small particles (blue) with
size ratio d∗ = 0.5 and coefficient of friction µ = 0.5, compressed vertically
to a pressure of Py. The volume fraction of small particles, φs, is 0.2.

Figure 3.2. The d∗, φs parameter space. Large particles are shaded gray,
small particles are blue.
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Figure 3.3. The particle pressure distribution in a bidisperse pack-
ing. The pressure distribution, p(Π), shown for a packing with d∗ = 0.5
and φs = 0.2. The distribution has a peak at low pressures and decays
exponentially at high pressures (see inset). p(Π) can be viewed as the su-
perposition of p(Πl)(large particles) and p(Πs) (small particles). Note that
there exists a finite probability for Π = 0, i.e. p(Π = 0), p(Πs = 0), and
p(Πl = 0) are greater than 0. (Π values have been normalized with respect
to the mean.)

3.2. The Pressure Distribution, Decomposed Into Subsets

We define the particle pressure, Πi, as the average pressure acting on the surface of a

particle i:

(3.2) Πi =
1

πdi

∑

j

fij

where j are neighboring particles. We can then calculate the probability distribution

function, p(Π), for particle pressures in a granular packing. Like p(f), p(Π) is heteroge-

neous and broad-tailed, with most particles experiencing low pressure a few experiencing

high pressure (See Fig. 3.3, and contrast inset with Fig. 2.2). The pressure distribution

has a peak at low pressures and decays exponentially at large pressures.
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We gain a more complete picture by decomposing p(Π) into its small and large subsets,

p(Πs) and p(Πl) (Fig. 3.3). We take a system with d∗ = 0.5 and φs = 0.2 as an example,

noting that

(1) The pressure distribution for small particles, p(Πs), is broader than for large

particles, p(Πl) (we say that p(Πs) has greater breadth); and

(2) despite markedly different distribution curves, the total pressure is partitioned

equally between small and large particles, that is, Πs and Πl are nearly the same

(this can be seen more clearly in Fig. 3.4, as discussed below).

To our knowledge, (1) has been neither discussed nor formally acknowledged in the existing

literature. In what follows, we quantify the effect and offer a physical explanation. Equal

partial pressures (2) was first observed by Tsongui et al. [55] for 2-D packings with the

following d∗,φs pairs: 0.6, 0.45; 0.4, 0.30; and 0.4, 0.49. We extend their work, looking at

a broader range in the d∗, φs parameter space.

3.3. An Explanation for the Dependence of Breadth on Particle Size

The distribution p(Πs) is – over the entire range of d∗ and φs – broader than p(Πl).

Physically, this means that smaller particles are more likely than large particles to experi-

ence extreme pressures – either very small or very large. The difference can be quantified

in terms of breadth, b:

(3.3) b = Π20 − Π60

where Πx is the value for which P (Π > Πx) = x. b can be visualized on the cumulative

distribution function, P (Π > Π′) (See Fig. 3.4). In general bs is larger than bl, and
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Figure 3.4. Breadth, and the particle pressure distribution. The
cumulative distribution function, P (Π > Π′), is shown for a packing with
d∗ = 0.7 and φ = 0.4. The breadth, b, is equal to Π20 −Π60, where Π20 and
Π60 are the values for which P (Π > Π20) = 0.2 and P (Π > Π60) = 0.6,
respectively.

the difference between the two increases with the difference in particle size (i.e., bs − bl

increases as d∗ goes to zero, see Fig. 3.5a). The phenomena can be explained by concepts

of sampling statistics.

Consider a sample of n events, where the value, vi, of an individual event is drawn

from some arbitrary distribution, p(v). The mean value of the sample is q:

(3.4) q =
1

n

n
∑

i

vi

The variance of the resulting probability distribution, p(q), is inversely related to

sample size. Specifically,

(3.5) σq ∝ n−1/2,
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Figure 3.5. Breadth as a function of particle size, coordination
number. (a) Breadth, b, of the pressure distribution is greater for small
particles than for large; the difference increases with increasing size dispar-
ity (decreasing d∗). (b) b is inversely related to coordination number, Z,
with all data collapsing onto the curve b ∝ Z−1.24. Key – △(φs = 0.2);
⋄(φs = 0.4); ◦(φs = 0.6). Filled and outlined symbols denote large and
small particles, respectively, in each bi-disperse packing.

where σq is the variance – or, precisely, the standard deviation – of the resulting distri-

bution of q values. In other words, as more samples are taken, the mean of the sampled

group more precisely estimates the mean of the entire set.

In the granular packing, analogues to q, n and v are Π, Z and f , respectively, where

Z is the coordination number, and f is contact force. Each particle pressure, Πi, then

represents the average of a sample of Zi contacts, whose values are drawn from the contact

force distribution, p(f). It follows that the variance, or breadth, of p(Π) should decrease

as Z increases. (Since smaller particles have lower coordination number, it also follows

that b should be largest for small particles). A fit of the data (Fig. 3.5b) confirms that b

is inversely related to Z, specifically:

(3.6) b ∝ Z−1.24
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b is an unusually strong function of Z (compare to equation (3.5)). This is likely

because the ‘sampling’ of forces by a particle in a granular packing is correlated, not

random; selection of one extreme value of f increases the probability of selecting additional

values of f from the same extreme. This exaggerates the normal variation that would

occur in random sampling.

3.4. Equal (and Unequal) Partitioning of Pressures

Close inspection reveals that the areas under the curves P (Πs) and P (Πl) in Fig. 3.4

are approximately equal; i.e., the average pressures Πs and Πl are approximately the same.

This tendency of granular matter towards equal ‘partial pressures’ is not obvious – it was

only recently shown to occur in two-dimensional size bi-disperse systems (peculiarly, 3-D

packings do not exhibit equal partitioning of pressures) [55].

Equal partial pressures occurs over a limited range in the d∗, φs parameter space.

Below some critical size ratio, dc, equipartition of partial pressures breaks down, yielding

Πs < Πl. In [55], it is posited that dc corresponds to the size ratio at which small

particles can fit in the interstices between large particles. For a triangular packing of

large particles, this is dc ≈ 0.15. We find that dc in a frictional system can be much

larger, and is a function of the volume packing ratio φs. Regions of equal and unequal

partitioning can be represented on the d∗, φs parameter space (See Fig. 3.6).

Equipartition breaks down when both d∗ and φs are small, i.e. when the difference in

size between the two classes of particles is large and the system is composed mostly of

large particles (we say that large particles form the matrix). The curve dc(φ) separates
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Figure 3.6. Regions of equal and unequal partial pressures, µ = 0.5.
The ratio Π∗ = Πs/Πl drops sharply for d∗ < dc(φs), indicating unequal par-
titioning of pressure. dc is approximated by the iso-curve, Π∗ = 0.9 (dashed
line). The points a, b, and c on the d∗,φs parameter space correspond to
the packings shown in Fig. 3.7.

(a) d∗ = 0.1, φs = 0.5 (b) d∗ = 0.3, φs = 0.3 (c) d∗ = 0.5, φs = 0.1

Figure 3.7. Near-critical packings in the d∗, φx parameter space.
Boxed areas indicate shielded, low pressure areas.
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Figure 3.8. Regions of equal and unequal partitioning of pressure,
µ = 0.2. The ratio Π∗ = Πs/Πl drops sharply for d∗ < dc(φs), indicating
unequal partitioning of pressure. dc is approximated by the iso-curve, Π∗ =
0.9 (dashed line).

regions of equal and unequal partition. Below dc, in the non-equipartition region, Π∗

decreases approximately linearly as either d∗ or φs is decreased.

One explanation for the breakdown of equipartition may be that, at certain size ratios

and fill fractions, larger particles tend to ‘shield’ smaller particles from the external com-

pressive force. For example, consider a packing with d∗ = 0.1 and φs > 0.5. The packing

consists of large particles in a matrix of small particles, and the probability that two large

particles touch is virtually zero. The packing displays equal partitioning of pressure. As

φs is decreased to φs ≈ 0.5, the volume fill fraction of small particles is small enough

that large particles may touch each other (See Fig. 3.7a). Small particles lying in the

space near one of these large-large contacts may be shielded from the external compressive

force; the area near the large-large contact is effectively a ‘low-pressure’ area (this area

is denoted by the red-box in Fig. 3.7a). As φs is decreased further, large particles touch

more frequently, and more low-pressure areas are created.
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At larger values of d∗, more large particles are needed to form a shielded space. For

example, at d∗ = 0.3, small particles are too large to fit in the area between two, or even

a cluster of three contacting large particles. But a cluster of four or five large particles

form a shielded space large enough to encompass small particles (See Fig. 3.7b). At

d∗ = 0.5, clusters of five to six large particles may form a sufficiently large shielded space

(Fig. 3.7c).

The equipartition results above are for frictional packings with µ = 0.5. For µ = 0.2,

the behavior is qualitatively similar, but equipartition occurs over a larger range in the

d∗, φs parameter space (see Fig. 3.8).

3.4.1. A Virtual Work Solution

Tsoungui et al. predict equipartition in 2-D packings, on the basis of ‘virtual work’ [55].

Specifically, they propose the following relationships for partial pressures:

(3.7) Πs =
Pext

ρ

(

1 − d∗

ρφs

∂ρ

∂d∗

)

(3.8) Πl =
Pext

ρ

(

1 +
d∗

ρ(1 − φs)

∂ρ

∂d∗

)

where Pext is the externally applied pressure and ρ is the packing density. It follows that

Πs = Πl if and only if ∂ρ
∂d∗

= 0. If ∂ρ
∂d∗

is negative, small particles experience greater

pressure; the opposite is true if ∂ρ
∂d∗

is positive.

It is unclear whether our results can be reconciled with the virtual work solution, as

outlined above. Although we do find ∂ρ
∂d∗

= 0 in the equipartition region, we find ∂ρ
∂d∗

< 0
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in the region with Πs < Πl, which seems to contradict the virtual work solution. The

observed disagreement may be related to so-called rattlers, particles with Π = 0, which

are presumed to be absent from the packings modeled by Tsoungui et al., but may be

present at large concentrations in the granular packings considered in this study. Also,

an important assumption in the Tsoungui model is that all contact forces are identical;

this assumption does not accurately describe most granular packings (see Section 2.2).

3.5. Discussion

The distinctions between forces on small and large particles in a size-bidisperse gran-

ular packing can be intriguing. Both of the primary results discussed above – that small

particles are more likely to experience extreme pressures, and that equipartion of pressure

occurs over a limited region – may have important practical implications. Consider, for

example, the fragmentation of rocks or powders by crushing, a process relevant to both

geology and powder technology [56]. It is possible that the differences in stress experi-

enced by small and large particles in a packing may affect both overall crushing rates and

final particle size distributions.

There are several possible extentions to the current work. More simulations, and

perhaps experiments, should be performed to understand the relationship between our

‘shielded space’ hypothesis, and the virtual work model. Also, we have considered a

single preparation method, and just two friction coefficients; it may be interesting to

know if other preparation methods friction coefficients result in different dc(φs) behavior.
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CHAPTER 4

Case Study IIa. A Gradually Tilted Bed: Predicting Stress

‘We derive a relationship describing the rate of memory loss...(which)

appears to apply universally to packings with various friction coefficients.’

Perhaps the single defining characteristic of a granular packing is its response to shear

stress – it dictates material strength as well as slow flow properties; it determines the

occurrence of mudslides and gives rise to surprising segregation patterns in mixtures

[57–59]. The shear response, however, is not easily predicted, even when the contributing

material properties – particle shape, size, surface roughness, hardness, and adhesion – are

known [60]. In fact, nonuniformity of granular packings means that the shear stress itself

is often ill-defined and difficult to describe (even stresses in a symmetric granular pile, a

relatively simple system, can be puzzling [61,62]).

Shear in granular matter is complicated by memory effects – stresses in a granular

packing depend on the history of its preparation (this is why we leave behind footprints

while walking along a beach). In turn, granular memory – and memory loss – depends

on material properties such as friction and adhesion (this is why footprints left in wet

sand look very different from those left in dry sand). This results in a unique mechan-

ics problem, where internal stresses depend not only on boundary conditions, but also

preparation and material properties. [42,43,63]
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In this chapter, we investigate a prototypical granular system exhibiting memory and

memory loss – a bed prepared via sedimentation and then gradually tilted under gravity.

The preparation process results in residual shear stress, or memory, which slowly vanishes

as the system is tilted. Accordingly, stresses within the bed evolve in a non-trivial manner.

We propose a physical model describing stress evolution in the tilted bed, premised on

the concept that the stress tensor is decomposable into two independent contributions:

a residual stress contribution, which decreases with tilting angle, and a gravity-induced

stress contribution, which increases with tilting angle.

In what follows, we (1) generate a dimensionless scaling relationship, collapsing stress

data for beds with various friction coefficients onto a single curve; and (2) derive a relation-

ship describing the rate of memory loss (the rate at which the residual stress contribution

decreases) as a function of tilting angle. The dimensionless form of the memory loss

function appears to apply universally to packings with various friction coefficients. Im-

portantly, the results suggest that the scaling relationship might be used to predict the

marginal angle of stability – prior to failure – from stress data sampled over a small tilting

range.

4.1. Methodology

Randomly packed beds are generated by a sedimentation process (see Appendix). The

horizontal boundary is periodic (no vertical walls), and the floor is infinitely rough, i.e.,

particles touching the floor are not permitted to move horizontally. Particle radii are

normally distributed with a variance equal to 10 percent of the mean in order to prevent

crystallization. The bed is 120d wide and approximately 20d deep, where d is the mean
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particle diameter (Fig. 4.1a). We examine the role of interparticle friction, considering

various packings over the range 0 ≤ µ ≤ 0.5, where µ is the Coulomb friction coefficient.

The tilting protocol begins after particles have been allowed to fully settle and equili-

brate in the bed. We fix the orientation of the bed and allow θg, the angle of the gravity

vector with respect to vertical, to increase in increments (for low tilting rates, this is

equivalent to fixing the orientation of gravity and incrementally tilting the bed). See Fig.

4.2a for a definition of the tilting angle, θg. We alternate one-second tilting intervals (con-

stant rotation rate of 0.01 rad/sec) with one-second rest intervals, allowing fluctuations

caused by tilting to dissipate prior to generating each network matrix. We only consider

networks formed at tilt angles at or below the marginal angle of stability. That is, the

data and analysis in this and the next chapter apply to quasi-static, solid-like granular

packings, not flowing material.

The resulting packing can be viewed as a network (See Fig. 4.1b). Due to gravity,

contact forces, f , in the network tend to increase with depth. We remove this effect by

normalizing contact force with respect to depth:

(4.1) f ′

ij =
fij

(H − yij)/H

where yij is the vertical position of the contact. H is the depth of the bed,

(4.2) H = 2
1

nc

∑

yij

where nc is the number of contacts, and the sum is taken over all contact pairs. We

exclude the top two layers of contacts – contacts with (H − yij) < 2d – from our analysis,

in order to avoid unrealisticly high values of f ′

ij . The normalized network yields a more



41

0

5

10

15

20

25
g

(a)

0

5

10

15

20

25
g

(b)

0 20 40 60 80 100 120
0

5

10

15

20

25
g

(c)

Figure 4.1. The granular bed as a network. (a) 2500 granular particles
are allowed to settle under gravity and come to rest, forming a granular bed
about 20 particle diameters deep and 120 particles in length (although the
horizontal boundaries are periodic). The layer of particles touching the bed
(shaded red)are fixed in place approximating an infinitely rough floor. (b)
The bed can be represented as a network, where each contact is represented
by an edge, and each edge is weighted according to the normal force along
its corresponding contact. Thicker lines near the base signify a pressure
gradient: pressure increases with increasing vertical depth. (c) The same
network with edges normalized with respect to depth, so that the average
edge weight of a layer is independent of its depth.
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(a) (b)

Figure 4.2. Defining tilting angle, orientations. (a) In tilting experi-
ments, it is the direction of gravity – not the bed – which is tilted. During
initialization, the gravity vector is directed downward. The tilting angle,
θg = 0, is the angle formed between the gravity vector and the downward
vertical, such that a counterclockwise motion of the gravity vector corre-
sponds to an increase in θg. θg has 2π periodicity. (b) ϕ, which we use to
define stress orientation, is similar to θg, except that stress, unlike gravity,
is symmetric: it acts equally and oppositely in both directions along a line.
As a result, ϕ has π periodicity (e.g., there is no distinction between the
vertical downward and vertical upward directions). In both figures, the val-
ues in parenthesis indicate the equivalent direction or orientation measured
in the clockwise direction.

accurate average of the dimensionless shear stress and the shear orientation (See Fig.

4.1c).

4.1.1. Calculating the Stress Tensor: Dimensionless Shear and Orientation

We wish to derive the dimensionless shear stress and shear orientation for each granular

network. To do so, we calculate the angular variation of the normal stress, σ(ϕ), by

averaging the individual contributions of each contact in the network (See Fig. 4.2b for
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a definition of orientation, ϕ). The individual contribution, σi(ϕ), of a contact i depends

on its orientation and force:

(4.3) σi(ϕ) = ξifi (~ci · ~eϕ)2

where ~eϕ is the unit vector in the direction ϕ , ~ci is the contact vector, fi is the force along

contact i, and ξi represents the contact density for contacts oriented in the direction ~ci,

which yields the desired units of force per unit area. (We do not calculate ξi explicitly,

rather we take ξi to be constant and independent of contact orientation; the term then

cancels upon non-dimensionalization of the stress tensor.) The average normal stress

varies with ϕ as

(4.4) σ(ϕ) =
1

N

N
∑

i

σi(ϕ)

The resulting function σ(ϕ) can be described by a sine wave:

(4.5) σ(ϕ) = a + b sin(2(ϕ − ϕo))

such that the principal stresses, σ1 and σ2, have magnitude a±b (we adopt, as convention,

σ1 = a+b and σ2 = a−b) and the dimensionless shear stress, τ , has extrema τ+ = τ ∗ = b/a

and τ− = −τ ∗ (See Fig. 4.3). ϕo indicates the orientations of the principal stress axes,

(ϕσ,+, ϕσ,−), and the maximum shear planes, (ϕτ,+, ϕτ,−):

(4.6) ϕσ,+ = ϕo + π/4 = ϕo − 3π/4
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(4.7) ϕσ,− = ϕo + 3π/4 = ϕo − π/4

(4.8) ϕτ,+ = ϕo + π/2 = ϕo − π/2

(4.9) ϕτ,− = ϕo = ϕo ± π

For example, if ϕo = 0, then the principal stress axes form 45 degree angles with the

horizontal (ϕσ,+ = π/4, ϕσ,− = 3π/4) while the shear stress has negative and positive

extrema oriented along the horizontal and vertical axes (ϕτ,+ = π/2, ϕτ,− = 0). (The

stress tensor can be equivalently viewed as a Mohr Circle centered on (a, 0), with radius

equal to b.)

In the following section, we consider the evolution of τ ∗ and ϕo as functions of the

tilting angle, θg. We review their qualitative behavior, and then put forth a quantitative

model.

4.2. Predicting Qualitative Behavior of the Stress Tensor: Investigating

Limits

Granular beds prepared via sedimentation (see Appendix) tend to exhibit stress anisotropy,

even prior to tilting. The vertical pressure, σy, is typically larger than horizontal pres-

sure, σx, such that the untilted bed has some initial shear stress, τo > 0, and an initial

orientation ϕo(θg = 0) = −π/4 (that is, the maximum shear planes form 45 degree angles

with horizontal). We call this initial shear stress, τo, the residual shear stress.
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Figure 4.3. Sine wave representation of the stress tensor of a gran-
ular bed, at various tilting stages. The angular variation of normal
stress, σ(θ), is described by a sine wave, where the amplitude, b, divided
by the mean normal stress, a = 0.5 for the graphs shown here, yields the
dimensionless shear stress, τ ∗. As the tilting angle increases from 0 to the
marginal angle of stability, θm

g , the orientation of the plane of maximum
positive shear, ϕτ,+, shifts from π/4 to the horizontal, π/2. (The plane
of maximum positive shear for each curve is indicated by a line passing
through a circle.)
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As θg is increased from zero, the influence of the residual shear stress wanes, and

gravity-induced shear stress increases. As θg approaches the angle of marginal stability,

θm
g – the tilting angle beyond which steady flow occurs – we expect the following behavior.

First, because steady shear flow is in the horizontal direction, we expect ϕτ,+ to converge

with π/2, the horizontal (i.e., ϕo → 0 as θg → θm
g ). Second, as gravitational forces become

the dominant source of shear, we expect τ ∗ to converge with the predicted dimensionless

shear for a body resting on an incline:

(4.10) τ ∗(θg) = tan θg

We find that the limiting behavior of the simulated packed beds is in relative agree-

ment with the expectations: ϕo increases from roughly −π/4 to 0 and τ ∗(θg) converges –

particularly in beds with low µ – to tan θg (see Figs. 4.4 and 4.5). In beds with higher µ,

we find that τ ∗(θg) < tan θg for large tilting angles. This may be an effect of the rough

floor – the distribution of particle-floor contacts may be skewed, not symmetric about the

normal to the floor surface, such that the assumption of a flat surface overestimates the

true incline between the bed and the floor. Similar behavior is found in the literature [64].

Above, we have shown that the properties of the stress tensor at the limits θg = 0 and

θg = θm
g can be deduced in a rather straightforward manner; the quantitative transition

between the two, however, is a much more complicated prediction. Below we propose a

physical model for stress evolution in a tilted bed and show that, from it, we can derive

a scaling relation describing ϕo as a function of θg.
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Figure 4.4. Stress orientation as a function of tilting angle. We plot
data for granular beds with various Coulomb friction, µ. In each case, ϕo

increases from roughly −π/4 to 0 (to plot data in the positive quadrant, we
have plotted −ϕo). Filled markers indicate the marginal angle of stability,
θm

g . The plane of maximum positive shear at each limit is indicated by a
line passing through a circle.

4.3. The Relationship Between Tilting and Stress: A Physical Model

We develop a physical model on the premise that stress in the granular packing can

be decomposed into two contributions: a residual stress contribution (whose normal and

shear stress contributions we label as σr and τr, respectively) and a gravitational stress

contribution (σg and τg). The orientations of the two contributions are fixed in space

(ϕo,r = −π/4, ϕo,g = 0), and their maximum dimensionless shear stresses, τ ∗

r and τ ∗

g are

functions of the tilting angle, θg. Based on these criteria, we can derive a relationship

between the individual shear stress contributions, τ ∗

r (θg) and τ ∗

g (θg), and the orientation

of the resultant stress tensor, ϕo(θg).



48

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2
τ∗

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

τ∗

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3

θ
0

0.05

0.1

0.15

0.2

0.25

0.3

τ∗

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

θ
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

µ = 0 µ = 0.1

µ = 0.2

µ = 0.4

µ = 0.3

µ = 0.5

g g

τ ο

Figure 4.5. Dimensionless shear as a function of tilting angle. We
plot τ ∗(θg) for granular beds with various Coulomb friction, µ. Frictional
beds tend to exhibit significant residual shear, τo in the untilted state. As θg

increases, τ ∗ tends to approach the expected limit for a solid body resting
on an inclined plane, tan θg (indicated by a solid line). Exceptions are the
cases with high µ, for which it is proposed that the deviation, τ ∗ < tan θg

may be an effect of the rough floor.

4.3.1. Calculating ϕ as a function of τ ∗

r , τ ∗

g

We begin by reviewing a relatively simple case: maximum shear orientation in a single

stress field. Consider a box located in a stress field whose principal stresses are oriented

along the x and y axes, such that σy > σx > 0, and τxy = τyx = 0 (see Fig. 4.6). When

the box is tilted some angle, ϕ′, and the stress field remains fixed, the stresses acting on
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the surfaces of the box change as a function of ϕ′. Specifically,

(4.11) σy′(ϕ′) = σy cos2 ϕ′ + σx sin2 ϕ′

(4.12) σx′(ϕ′) = σx cos2 ϕ′ + σy sin2 ϕ′

The orientations of the principal stress axes, ϕσ,±, are recovered by maximizing or

minimizing the difference (σy′ − σx′) with respect to ϕ′:

(4.13) 0 =
d(σy′(ϕ′) − σx′(ϕ′))

dϕ′

(4.14) 0 = 4(σy − σx)(cos ϕσ,± sin ϕσ,±)

By definition, the maximum shear stress, τ ∗, is equal to 1/2 the difference of the principal

stresses, σy − σx, so that

(4.15) 0 = 2τ ∗(cos ϕσ,± sin ϕσ,±)

In this case, we recover the original principal stress axes orientations, ϕσ,± = 0, π/2. As

a rule, the maximum shear planes form 45 degree angles with the principal stress axes,

such that ϕτ,± = ±π/4.

4.3.2. Stress field superposition

We now consider a slightly more complicated problem – superposition of the residual and

gravity-induced stress tensors. The residual portion has principal stress axes, σr,1, σr,2,
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Figure 4.6. Transforming stress as a function of orientation. (left)
We can calculate normal stress as a function of orientation, by consid-
ering a box subjected to a stress field with principal stresses σy and σy.
If the box is tilted by some angle ϕ′, new normal stresses are a func-
tion of tilt angle: σy′ = f(σy, σx, ϕ

′), σx′ = f(σy, σx, ϕ
′). (right) Angu-

lar variation of the normal stress resulting from two superimposed stress
tensors (σr,1, σr,2 and σg,1, σg,2) can be calculated in a similar manner:
σ1′ = f(σr,1, σr,2, σg,1, σg,1, ϕ

′), σ2′ = f(σr,1, σr,2, σg,1, σg,1, ϕ
′)

with ϕσ,+
r = 0 and ϕσ,−

r = π/2 (so that the planes of maximum shear form 45◦ angles with

the floor). The gravity-induced portion has principal stress axes σg,1, σg,2, with ϕσ,+
g = π/4

and ϕσ,−
g = −π/4 (so that the planes of maximum shear are horizontal and vertical, with

respect to the floor, see Fig. 4.6). A box subjected to this stress field, and tilted at an

angle, ϕ′, from the vertical, experiences normal stresses

(4.16) σ1′(ϕ
′) = σr,1 cos2 ϕ′ + σr,2 sin2 ϕ′ + σg,1 cos2(π/4 − ϕ′) + σg,2 sin2(π/4 − ϕ′)

(4.17) σ2′(ϕ
′) = σr,2 cos2 ϕ′ + σr,1 sin2 ϕ′ + σg,2 cos2(π/4 − ϕ′) + σg,1 sin2(π/4 − ϕ′)
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As previously, we can calculate the orientations of the principal stress axes by setting the

derivative of the expression (σ1′(ϕ
′) − σ2′(ϕ

′)) equal to zero:

(4.18) 0 = −4(σr,1−σr,2)(cos ϕσ,± sin ϕσ,±)+4(σg,1−σg,2)(cos(π/4−ϕσ,±) sin(π/4−ϕσ,±))

(4.19) 0 = −2(τ ∗

r )(cos ϕσ,± sin ϕσ,±) + 2(τ ∗

g )(cos(π/4 − ϕσ,±) sin(π/4 − ϕσ,±))

We then get the expression

(4.20)
τ ∗

r

τ ∗
g

=
cos(π/4 − ϕσ,±) sin(π/4 − ϕσ,±)

cos ϕσ,± sin ϕσ,±

We consider ϕσ,+, recalling its relationship with ϕo:

(4.21) ϕσ,+ = ϕo + π/4

Thus, we derive the following relationship between ϕo and the stress contributions τ ∗

r , τ ∗

g :

(4.22)
τ ∗

r

τ ∗
g

=
cos(−ϕo) sin(−ϕo)

cos(ϕo + π/4) sin(ϕo + π/4)

Eq. (4.22) indicates that ϕo – the lone variable on the right hand side – can be expressed

in terms of the relative contributions of residual and gravity-induced shear stress – the

ratio comprising the left hand side. As ϕo → π/4 (which corresponds to the orientation

of the residual shear stress), the denominator goes to zero, appropriately indicating that

τ ∗

r >> τ∗

g , and the residual portion is the sole contributor to shear stress. Likewise,

as ϕo → 0 (which corresponds to the orientation of gravity-induced shear stress), the

numerator goes to zero, indicating that τ ∗

g >> τ∗

r , and gravitational portion is the sole
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contributor to shear stress. Next, we non-dimensionalize (4.22) and produce a scaling

relationship for ϕo as a function of tilting angle.

4.3.3. Non-dimensionalization and scaling

We define the following dimensionless variables:

(4.23) θg =
θg

θm
g

(4.24) τ ∗

g =
τ ∗

g

τm

(4.25) τ ∗

r =
τ ∗

r

τ o

where τm = τ ∗(θg = θm
g ) and τ o = τ ∗(θg = 0). We can then restate (4.22) in terms of the

dimensionless variables:

(4.26)
τ ∗

r(θg)

τ ∗

g(θg

=
τm

τ o

cos(−ϕo(θg)) sin(−ϕo(θg))

cos(ϕo(θg) + π/4) sin(ϕo(θg) + π/4)

We denote the right hand side of (4.26) as ζ(ϕ), so that

(4.27)
τ ∗

r(θg)

τ ∗

g(θg

= ζ(ϕ)

A plot of ζ(ϕ) versus θg yields a collapse of the data for granular beds of various µ (see

Fig. 4.7). Thus we can say – even prior to obtaining its specific form – that the function

τ ∗

r(θg)/τ
∗

g(θg) is universal. Next, we consider system constraints and propose functional

forms for τ ∗

r(θg) and τ ∗

g(θg).
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Figure 4.7. Stress orientation scaling. The right hand side of (4.26),
defined as ζ(ϕ), is plotted against θg, showing a collapse of the data for
granular beds with various Coulomb friction, µ. Lines passing through
circles indicate the orientation of the planes of maximum shear for ζ(ϕ) >>
1 and ζ(ϕ) << 1, and the shaded line, ζ = 1, indicates τ ∗

r = τ ∗

g. The solid

line represents a fit of the data to the function θg/(1 − θg)
λ, with λ = 0.3.

4.3.4. τ ∗

r and τ ∗

g as functions of θg

The functions τ ∗

r(θg) and τ ∗

g(θg) should display the following limiting behavior:

(4.28) τ ∗

g(θg = 0) = 0

(4.29) τ ∗

g(θg = 1) = 1

(4.30) τ ∗

r(θg = 0) = 1

(4.31) τ ∗

r(θg = 1) = 0
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Over the tilting range considered in this study, the relationship τ ∗

g = tan θg, which

defines gravity-induced shear on an inclined plane, is roughly linear (i.e., τ ∗

g ≈ θg). Thus,

we propose a linearly increasing function for gravitational shear:

(4.32) τ ∗

g(θg) = θg

The function τ ∗

r(θg) defines the rate of memory loss – the rate at which the system

loses the footprint of its initial preparation. τ ∗

r(θg) should decrease monotonically – but

not necessarily linearly – from 1 to 0. We propose the form:

(4.33) τ ∗

r(θg) = (1 − θg)
λ

such that (4.26) becomes

(4.34)
(1 − θg)

λ

θg

= ζ(ϕ)

A nonlinear fit of the tilting data yields λ ≈ 0.3.

4.4. Discussion

Our selected geometry, a granular bed with periodic horizontal boundaries, affords a

convenient test of the hypotheses that (1) memory effects in a granular packing can be

isolated from tilting effects, and (2) stress evolution can be modeled as a superposition

of the two effects. Although the geometry is specific, the implications of the results

are broad, and promising. We find not only that the superposition model can be used to

describe stress evolution, but also that systems – when appropriately scaled – evolve in the

same way, irrespective of interparticle friction. An important end result is a relationship
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Figure 4.8. Memory loss as a function of tilting. We plot empirical
values for the residual stress, τ ∗

r(θg) = θgζ(θg) as a function of θg. The

function τ ∗

r(θg) defines the rate of memory loss – the rate at which the
system loses the footprint of its initial preparation; The solid line represents
a fit to the expression (1 − θg)

λ, with λ = 0.3.

that describes, quantitatively, how memory is lost as a granular bed is tilted. Such

information may ultimately aid understanding of granular memory and memory loss in

more complicated geometries.
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CHAPTER 5

Case Study IIb. A Gradually Tilted Bed: Loops and Fragility

‘...there are specific granular meso-structures – contact loops – which can

support a finite range of compatible loads...the concentration and type of

these structures present in a granular packing may indicate its stability.’

Stress evolution in a tilted bed implies complex, underlying dynamics in the granular

network – new contacts are formed, old contacts are destroyed, and forces along enduring

contacts change in magnitude as the bed is tilted. A practical question arises: do these

changes have a coordinated effect on the structure of the granular packing, its strength

and resilience? The prevailing view is yes – granule-scale changes that occur as a granular

bed is tilted conspire to make it weaker and less resilient to perturbation [48]. This is

why disturbing a level surface of sand results in only a localized failure (if any at all),

while disturbing an inclined surface of sand is likely to trigger an avalanche.

This increased susceptibility to perturbation, known as fragility, is conceptually well

understood. Cates et al. offer a precise description:

Its (fragile matter) incremental response can be elastic only to compatible

loads; incompatible loads, even if small, will cause finite, plastic reorgani-

zations. [65]
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Although the dependence of fragility on structure is inherent, there currently exist no

quantitative roadmap that relates the two. In this chapter, we probe structure-fragility

relationships, revisiting the problem of the gradually tilted bed. We propose that there

are specific granular meso-structures – contact loops – which can support a finite range

of compatible loads, and that the concentration and type of these structures present in a

granular packing may indicate its stability (and therefore, fragility). We find that contact

loop structure in the granular bed (1) is sensitive to material properties; (2) deviates

from the expected structure of a randomly wired lattice; and (3) is uniquely dependent

on tilting angle. Furthermore, we introduce ξ as a quantitative measure of loop stability,

and show that increased tilting results in a gradual destabilization of individual loops.

The collective analysis yields a set of measurable structural changes characterizing the

destabilization of a gradually tilted granular bed. (Again, the data and analysis in this

chapter apply to quasi-static, solid-like granular packings, not flowing material.)

5.1. Contact Loops as Stable Structural Elements

A granular network can be viewed as a collection of meso-scale contact structures

called contact loops (we define a contact loop as a path along the granular network that

forms a non-intersected circuit) [66]. These loops are significant in that they are the

smallest structural arrangements that can support load perturbation, as illustrated by

the following thought experiment.

Consider three particles arranged in a straight line. The contact forces, f12 and f23,

define the external compressive forces, fa and fc, which are exerted at either end (see Fig.

5.1). It is easy to see that any orientational perturbations of the external compressive
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Figure 5.1. Contact loops as stable meso-structures. A linear contact
structure (f12, f23) can support linear compression (fa, fb). But any pertur-
bation of the compressive force (e.g., f ′

a) yields a load that is incompatible
with the linear contact structure. For this reason we say that contact chains
are fragile. On the other hand, contacts arranged in a triangular loop can
support various compressive loads, fa, fb and fc.

force results in an incompatible load [65]. Given the arrangement of particles, there is no

combination of f12 and f23 that can support even a slight change in the direction of one of

the externally applied forces. The incompatible load causes the linear contact structure

to buckle.

Now consider the same particles arranged in a triangular loop, with contact forces f12,

f23 and f13. Again, the contact structure defines a set of external compressive forces: fa,

fb, and fc. In this case, however, an orientational perturbation can be supported by an

adjustment of the forces (f12, f23 and f13) without deforming the contact structure. In fact,

we can define a finite range of compatible loads (the number of compatible arrangements

is infinite), whereas the contact line has only one compatible load. The same is true for
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larger contact loops and lines. For this reason, we say that contact loops are the smallest

mechanically stable elements in a granular network; they can be viewed as the building

blocks which comprise a stable network.

In the following sections, we investigate the statistics of contact loops in various gran-

ular networks. How often do loops arise? Which sizes are most prevalent? When do they

destabilize and deform?

5.2. Contact Loop Statistics

Loops consisting of as many as seven edges occur with regularity in 2-D granular

networks (see Fig. 5.2). Networks formed with smoother particles are denser and contain

more low-order loops, whereas networks formed with rough particles are porous and more

likely to contain higher order loops. In networks formed by particles with µ < 0.3, third

order loops are the most frequently occurring loop size; in those formed by particles with

µ > 0.3, fourth order loops occur most frequently.

The result suggests that networks formed by smooth particles are more stable (and

less fragile) than those formed by rough particles – a conclusion stemming from the

rationale that smaller loops, because they are more densely packed, are more stable to

compression. It is reasonable, though perhaps not obvious, that rough particles should

form more fragile networks. Higher friction granular systems are increasingly likely to

jam far from equilibrium, forming more fragile networks.
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Figure 5.2. Distributions of contact loops in untilted granular beds.
Loop fractions (nl equals the total number of loops divided by the total
number of nodes, or particles) are presented for granular systems with µ
ranging from 0 to 0.5 (the tilting angle, θg, is zero. Increasing surface friction
corresponds to a decreasing fraction of low order loops an an increasing
fraction of high order loops. The dashed curve is the analytical solution for
a randomly wired triangular lattice and the dotted curve is the numerical
result from random rewiring in a granular network (both with Z = 4).

5.2.1. Loops in a Randomly Wired Lattice

We can compare loop statistics in the granular packing to those expected for a randomly

wired lattice. We consider an infinite triangular lattice, with edges placed randomly

between neighboring nodes. The probability, pe of finding an edge between any two

neighboring node pairs is

(5.1) pe =
Z

6
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where Z is the mean coordination number, or mean number of edges connected to a node

(Z = 2Ne/Nn). It follows that the probability, pl,3, that a group of three neighboring

particles are connected by a triangular set of edges is equal to p3
e. Since there are 2Nn

unique potential triangular arrangements, the expected number of third-order loops is

(5.2) N rand
l,3 = 2Nnp3

e

It is useful to represent the expected number of loops as a fraction:

(5.3) nrand
l,3 =

N rand
l,3

Nn

= 2p3

e

In a similar manner, we can derive nrand
l,4 . In this case pl,4 is equal to p4

e(1 − pe), and

the number of unique potential arrangements is equal to 3Nn, resulting in

(5.4) nrand
l,4 = 3p4

e (1 − pe)

Using the same methodology for higher order loops, we obtain:

(5.5) nrand
l,5 = 6p5

e (1 − pe)
2

(5.6) nrand
l,6 = 20p6

e (1 − pe)
3 + p6

e (1 − pe)
6

(5.7) nrand
l,7 = 36p7

e (1 − pe)
4 + 6p7

e (1 − pe)
7
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We check the analytical prediction against the numerical outcome of randomly rewiring

the neighboring particles in a granular packing, finding good agreement (compare dashed

and dotted curves in Fig. 5.2).

Loop distributions in granular packings can differ significantly from the randomly

wired lattice model – granular packings tend to have fewer third-order loops and more

fourth-order loops than a randomly wired lattice (See Fig. 5.2). This is likely attributable

to two factors. First the granular packing structure is not a triangular close-packed crys-

tal, as per the randomly wired lattice, rather it approximates a glassy, random packing.

Secondly, in the lattice model, we assume that nodes are connected to their neighbors

with equal, random probability. However, the force balance constraint in real packings

causes certain combinations of contacts to be preferable and more likely to occur than

others.

5.2.2. Effects of Tilting on Loop Structure

Loop structure in the granular bed evolves as it is gradually tilted under gravity. Here, we

focus on the changing fraction of third- and fourth-order loops. The third-order loop frac-

tion decreases markedly as the bed approaches the angle of marginal stability indicating

– according to the previously stated rationale – that the bed becomes more fragile as it is

tilted (this agrees with our intuitive understanding of tilting and granular fragility)(See

Fig. 5.3). The decrease in third-order loops, however, is tied to a decrease in coordination

number, Z. A plot of nl,3 versus Z shows that nl,3, over the entire range of µ and all

tilting angles, is a strong function of coordination number (See Fig. 5.4). From (5.3), we

expect n1,3 ∝ Z3. The actual dependence observed in the granular packings is stronger.
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Figure 5.3. Fraction of third order loops as a function of tilting
angle. The relative fraction of third order loops, n∗

l = nl/nl,o, tends to
decrease with increasing tilting angle. This decrease is accompanied by a
decrease in the mean coordination number Z (denoted by a dashed line).

A fit of the form

(5.8) nl,3 = α (Z − β)γ ,

yields α = 0.13, β = 1.39 and γ = 3.53.

Note that the curve which describes nl,3(Z) as a function of packing density (i.e.

nl,3(Z) in untilted beds with various µ) also describes nl,3(Z) over the tilted angles. As a

result, we say that the effects of tilting on nl,3 are generic: nl,3 can always be described

as a function of Z, and the tilting effect cannot be distinguished from packing density

effects.

On the contrary, tilting has a unique effect on the fourth-order loop fraction, nl,4. In

granular beds with µ > 0.1, nl,4 tends initially to decrease with increasing tilting angle,

then increase prior to reaching the marginal angle of stability (a possible explanation
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Figure 5.4. Third-order loop fraction and coordination number.
From the randomly wired lattice model, we expect nl,3 = 2(Z/6)3 (dashed
curve). The data, however, are best fit by the functional form α(Z − β)γ,
with α = 0.13, β = 1.39, and γ = 3.53 (solid line). Data points for var-
ious packing densities and tilting angles lie on the same curve, indicating
that tilting effects are generic. (Arrows indicate the direction of increasing
tilting angle.)

is that third-order loops destabilize and become fourth-order loops as the system nears

failure). Unlike nl,3, the curve describing nl,4(Z) as a function of packing density tends to

underestimate the fraction of of fourth-order loops when the bed is tilted, such that the

tilting effect can be distinguished from the packing density effects (See Fig. 5.5).

5.3. Weighted Contact Loops

Loop structures, as described above, are purely topological constructs; they are de-

fined solely by their number of comprising edges. However, loops with an identical number

of edges do not necessarily have identical stability: the magnitude and arrangement of

contact forces factor heavily into whether a particular loop will be able to withstand
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Figure 5.5. Fourth-order loop fraction and coordination number.
From the randomly wired lattice model, we expect nl,4 = 3(Z/6)4(1−Z/6)
(dashed curve). In this case loop fractions in the untilted beds are described
by a fit of the form α(Z −β)γ(1−Z/6)η(solid line). For beds with µ > 0.1,
nl,4(Z) tends a deviation from the calculated fit grows as θg approaches
the marginal angle of stability, indicating that tilting effects on nl,4 are
unique.(Contrast with Fig. 5.4

perturbation. Below, we show that relative loop stability can be quantified with a weight-

ing function, ξ. We then use ξ to revisit the problem of the tilted bed, constructing a

more complete relationship between tilting and destabilization and identifying additional

unique effects of tilting on network structure.

5.3.1. From Qualitative to Quantitative: Giving Stability a Number

For any contact loop there is a finite range of compatible loads, which corresponds to

the allowable set of contact loop forces. Consider a third-order loop, where the contact

forces, f12, f23 and f13, define the resulting compressive force vectors fa, fb, and fc (See

Fig. 5.6). The most stable arrangement of contact forces is f12 = f23 = f13, such that
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each of the resulting compressive force vectors lies in the center of its stable range, and

small perturbations in either directions are unlikely to compromise the loop. On the other

hand, consider the arrangement f12 << f23 ≈ f13, for which the compressive force vectors

lie near the edge of the stable region (See Fig. 5.6). A slight perturbation is likely to

move the loop into an unstable region. This loop property is captured with the weighting

function, ξ:

(5.9) ξi,j,k =

(

fij

f

) (

fjk

f

)(

fik

f

)

(5.10) f =
1

3
(fij + fjk + fik)

where i, j and k are neighboring particles that form a loop. ξi,j,k = 1 for a loop with equally

weighted edges (the most stable force arrangement) and approaches zero as the relative

weight of any edge in a loop goes to zero. ξ can be mapped onto a three dimensional

phase space, where each dimension corresponds a contact force, and the stable region can

be represented by an equilateral triangle. ξ = 1 lies at the center of the triangle and

ξ = 0 lies at the perimeter, such that the inner region of the triangle corresponds to

greater stability and the outer regions corresponds to increased fragility. We validate ξ as

a stability indicator by mapping trajectories of ξ for individual loops in a gradually tilted

bed.

Recall that the granular bed is tilted in intervals (1 second tilting interval followed by

a 1 second rest interval). We label the granular network prior to each tilting interval as

a stage, n, such that n = 1 corresponds to θg = 0, n = 2 corresponds to θg = 0.1, and
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Figure 5.6. Mapping of loop structures. The stability of a loop can be
represented as a function, ξ(f12, f23, f13), of the contact forces which make it
up. (a) Loops with ξ ≈ 1 (i.e. f12 ≈ f23 ≈ f13) are very stable and lie near
the center of the stable region (represented as a square on the triangular
map, at right). (b) Loops with ξ ≈ 0 (i.e. f12 << f23 ≈ f13) are marginally
stable and lie near the perimeter of the stable region (represented as a circle
on the triangular map).

so on. This description affords a convenient distinction between stable and marginally

stable triples: we say that a triple that exists during stage n is stable if, and only if, it

also exists during stage n + 1. Alternatively, we say that a triple that exists during stage

n, but not stage n + 1 is marginally stable.

A comparison of ξ values for stable and marginally stable triples suggests that ξ is

indeed an indicator of stability. In frictional systems, the mean value of ξ drops from 0.58

for triples classified as stable (ξstable) to 0.30 for triples classified as unstable (ξmarginal),
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Figure 5.7. Stability trajectories of individual loops. Trajectories of
third-order loops are mapped in the f12, f23, f13 triangular phase space for
(a) a bed of rough particles (µ = 0.5) and (b) a bed of smooth particles
(µ = 0). (Arrows indicate the net trajectory over the life span of the loop.)
The overall tendency is for loops to migrate from the center of the triangle
towards the perimeter. Each blue circle represents a stable stage in the loop
trajectory, with a red circle indicating the final, marginally stable stage
(after which the loop becomes unstable and fails). In systems of rough
particles, ξstable is 0.58 (denoted by the solid blue isostability curve) and
ξmarginal is 0.30 (denoted by the dashed red isostability curve). In systems
of perfectly smooth particles, ξstable is 0.59 and ξmarginal is 0.41.

indicating that marginally stable triples tend to lie near the perimeter and stable triples

towards the center of the stable triangle. (On the other hand, ξstable ≈ ξmarginal would

suggest that ξ is a poor indicator of stability.) In systems with perfectly smooth particles,

the difference is less pronounced – ξstable = 0.59 and ξmarginal = 0.41. We can visualize

these results by plotting ξstable and ξmarginal as isostability curves on the stable triangle.

The multi-stage trajectories of individual triples include several, seemingly random leaps,

but have an overall tendency to migrate towards the outer region of the stable space (See

Fig. 5.7).
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Figure 5.8. Loop stability as a function of tilting. The normalized
mean loop stability (ξ∗) tends to decrease as the tilting angle (θg) is in-
creased.

5.3.2. Effects of Tilting, Revisited

We previously showed that small loops in a granular packing tend to decrease in number

as the bed is tilted; they also decrease in stability. The normalized mean stability of

third-order loops,

(5.11) ξ∗l,3 =
ξl,3

ξ
o

l,3

can decrease by as much as 15% over the static tilting range (See Fig. 5.8). The mean

stability of fourth-order loops, ξ∗l,4 behaves similarly. These are unique effects of tilting:

mean loop stability in an untilted bed, ξ
o

l,3, is roughly independent of packing density,

indicating that the tilting effect on loop stability can be isolated from density effects (See

Fig. 5.9).
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Figure 5.9. Loop stability and coordination number. A decrease in
loop stability can be isolated as a tilting effect. ξ is roughly independent of
packing density, but decreases with increasing tilting angle, suggesting that
ξ varies independently of Z, and the observed decrease in ξ as a function of
tilting is unique (contrast with Fig. 5.3). Arrows indicate the direction of
increasing tilting angle.

5.4. Discussion

Questions regarding stability and fragility of granular packings have garnered much

recent attention. Many studies use continuum-scale concepts (such as fabric tensor [67])

while others target statistics of single contacts. But perhaps the continuum scale is too

large, and the single contact scale too small, for a suitable mechanical description of

stability – it may be argued that granular stability and fragility arise from structures

on the order of a few particles. In two-dimensions, these structures are contact loops.

A contact loop analysis yields valuable insights: loop structure in a granular packing

is strongly dependent on friction coefficient; granular packings (particularly frictional

packings) are especially rich in fourth order loops, compared to a random lattice model;

and tilting has unique, destabilizing effects on loop structure.



71

Other important questions may be addressed in future studies. For example, we have

shown that third-order loops tend to migrate from the center of the stable triangular

region to the perimeter, and then fail. But where on the perimeter do they most often

exit? Near a vertex (i.e., f12 ≈ f23 << f13), or a midpoint (i.e., f12 << f23 ≈ f13)? Such

information would be important for understanding failure mechanics. Also, we know

that single forces in a granular packing exhibit spatial organization; are loop structures

spatially organized as well? Do they destabilize (i.e., ξ → 0) in clusters, chains, or

randomly? Answers to these types of questions – along with possible extensions to three

dimensions – may represent a significant step towards a first-principles understanding of

stability and fragility in granular packings.
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CHAPTER 6

Case Study III. Effects of Self-Organization on Transport

‘...self-organization in the granular network promotes efficient trans-

port...this can be understood within the framework of network theory’

Transport in heterogeneous media is a phenomenon of broad scope and ubiquitous

importance – propagation of acoustic waves in sand [50, 51], electrical conductivity of

nanocomposite materials [68], and liquid flows in porous media are just a few examples

relevant to physics [69], engineering, and material science. Of these heterogeneous media,

granular matter, which exhibits both heterogeneity and self-organization, is unique.

In this chapter, we investigate – via numerical experiments – relationships between

heterogeneity, self-organization and transport. Specifically, we consider heat transfer – a

phenomenon relevant to industrial applications such as sintering and powder metallurgy,

among others. We find that self-organization in the granular network promotes efficient

transport and that, to a large extent, this relationship can be understood within the

framework of network theory. Concepts such as distance, efficiency, and betweenness

centrality are revealing. A simulated network attack experiment further demonstrates the

utility of network theory as a predictive tool.

This chapter is based on published work by Smart et al. [70].
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6.1. Methodology

We simulate two-dimensional systems of rough disks using Particle Dynamics – normal

contact forces are calculated using the linear-spring dashpot model, and tangential forces

are calculated using a damped variation of the Cundall and Strack model. The distribution

of particle diameters is poly-disperse (normally distributed about the mean, d, with 5%

variance to reduce crystallization) and all particles have a friction coefficient µ = 0.5. The

granular system is bounded in the vertical direction by infinitely rough walls – where we

impose a no-slip condition – and in the horizontal direction by a periodic boundary.

Granular packings are prepared via a three-stage simulation. In the initiation stage,

N = 2500 point particles, with diameters equal to zero, are placed at random inside a box

of prescribed width (Lx) and height (Ly). Next, in the growth stage, particles grow to their

pre-specified sizes. In this stage, growing particles can collide, transferring small amounts

of kinetic energy through dissipative collisions. In the compression stage, force is applied

to the vertical walls, compressing the granular system to a specified vertical pressure,

Py, and yielding a static, nearly isotropic granular packing. (Although the horizontal

pressure, Px, is not explicitly controllable, it tends to be nearly the same as the vertical

pressure.) The resultant packing fractions, φ = (LxLy)
−1

∑N
i=1

π(di/2)2, range from 0.803

to 0.807. The final system dimensions approximate a square, with lengths Lx = 50d and

Ly ≈ 49d. See fig.6.1, top.

The granular packings can be viewed as networks: each particle is represented as a

node, with two nodes connected by an edge if the corresponding particles are in con-

tact. Specifically, we consider the weighted network, or force network, in which edges
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Figure 6.1. The granular packing as a network. (top) A system of
rough disks is compressed between two walls (the horizontal boundaries are
periodic). (bottom) The granular packing can be represented as a force
network where nodes (representing particles) are connected by edges if the
particles are contacting. Edge weight (line width) is proportional to the
normal force along the corresponding contact.

are weighted according to the magnitude of normal force, f , along their corresponding

contacts. See fig.6.1, bottom.

6.1.1. Heat Transfer Model

The local heat transfer coefficient, Hij, between two contacting particles i and j is di-

rectly related to the area of their contact interface and, consequently, the magnitude of

compressive force, fij . Specifically,

(6.1) Hij = Af η
ij

where A is a collective term that includes particle diameter, the thermal conductivity

of the solid material, and the effective Young modulus, each of which can be assumed
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constant for a system of nearly uniform particles. Previously determined values of η range

from 1/3 (analytical result for perfectly smooth, Hertzian spheres [71]) to 1.4 (analytical

result incorporating surface roughness [72]) to 2.4 (experimental result for rough, spherical

particles). In the current study we consider values of η over the range 0 to 3.

Two assumptions simplify the heat transfer calculations. First, we assume that the

Biot number for granular particles is small, i.e., inter-particle resistance to heat transfer

is large compared to intra-particle resistance, such that temperature distribution within

a particle is homogeneous. This assumption is generally valid if the inter-particle contact

radius is much smaller than the characteristic particle radius, as is typically the case

for packings of hard, round granular particles (in our simulations, the ratio of contact

radius to particle radius is on the order of 10−3). Secondly, we assume that the interstitial

space between particles is perfectly insulating (which approximates the behavior of a gas-

solid particulate system), such that heat transfer occurs exclusively along inter-particle

contacts. Interfacial heat fluxes across each inter-particle contact are then given by

(6.2) Qij = Hij(Tj − Ti)

where Qij is the flux from particle j to i ; and the temperature evolution of particle i is

found by integrating its energy balance over small time steps ∆t:

(6.3)
∆Ti

∆t
=

1

mici

∑

j

Qij
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where interparticle fluxes, Qij , are summed over neighboring particles j, and mi and ci are

the particle mass and heat capacity, respectively (the computational procedure is based

on the method used by Vargas and McCarthy [73]).

6.2. Heterogeneity, Self-organization and Granular Heat Transfer

The heat transfer network (which has edges weighted by their heat transfer coefficient,

Hij) is related to, but not necessarily the same as the force network (which has edges

weighted by fij). Recall the relationship between Hij and fij:

(6.4) Hij = Af η
ij .

When η = 1 the two networks are, for all practical purposes, identical. But changes in

η affect the structure of the heat transfer network. Most importantly heterogeneity in

the heat transfer network increases dramatically with η – the distribution of heat transfer

coefficients, p(H), shifts from exponential to power-law decay, as η increases from 1 to 3.

For η = 3, some contacts may have Hij as large as 102 times the mean (see Fig. 6.2). We

show below that effects of heterogeneity, along with effects of self-organization, greatly

impact the transport properties of a granular medium.

We isolate the influences of heterogeneity and self-organization on granular heat trans-

fer in the following way. For each granular network we create (1) an equivalent uniformly

weighted network (which exhibits neither heterogeneity nor organization of contact forces)

and (2) a randomly rewired network (which exhibits heterogeneity, but not organization

of contact forces). For any given granular packing, all three networks – the self-organized

granular network (SO), the uniformly weighted network (UW ), and the randomly rewired
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Figure 6.2. Heterogeneity in the heat transfer network. For η = 1,
the heat transfer network is identical to the force network, and the proba-
bility distribution of single contact heat transfer coefficients, p(H), decays
exponentially at large Hij. For η = 3, p(H) decays as a power-law, and
some contacts may have Hij as large as 102 times the mean.

network (RR) – have identical topology. No edges are destroyed or formed in either mod-

ification; only their weights are changed. See fig.6.3. In the UW network all edge weights

are set equal to the mean, and in the RR network edge weights are randomly reassigned,

such that the sum over all edge weights in the network is unchanged from the original

SO network. Two numerical heat transfer experiments – one transient, one steady state

– reveal substantial differences between the transport properties of the real and modified

networks, illustrating the effects of heterogeneity and self-organization.

6.2.1. Transient Heat Transfer: Calculating Thermal Diffusivity

In the first experiment, we calculate thermal diffusivity, α, by measuring the propagation

speed of a traveling heat front. We define the initial temperature of the system (walls and
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SO UW RR

Figure 6.3. Modifying the granular force network. The granular force
network (SO) exhibits self-organization of edge weights (contact forces, f).
In the uniformly weighted network (UW ) all weights are set equal to the
mean, f . In the randomly rewired network (RR), edge weights from the SO
network have been randomly reassigned. All three networks have identical
topology.

particles) to be zero. Then, at time t = 0, we impose a step change in the temperature

at the bottom wall (Ty=0 = 1). A threshold temperature (we choose T ∗ = 0.01) defines

a heat front, which propagates in the positive y direction as heat flows from the hot to

the cold wall. See fig.6.4. At small t, the system approximates transient conduction in

an infinite slab, such that thermal diffusivity can be estimated by plotting the average

position of the heat front – or penetration depth, δ – versus t1/2 [74]. Specifically, for

T ∗ = 0.01,

(6.5) δ(t) = 3.12α1/2t1/2

A comparison of the SO, UW and RR networks is revealing – the calculated thermal

diffusivity of the self-organized network is markedly higher than that of the uniformly

weighted and randomly rewired networks. Specifically, αSO/αUW is a monotonically in-

creasing, power-law function of the exponent η (recall that η relates the inter-particle heat
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Figure 6.4. Transient calculation of the thermal diffusivities of self-
organized, uniformly weighted, and randomly rewired networks.
(a) At t = 0, a step change in the temperature of the bottom wall is induced
(from Ty=0 = 0 to Ty=0 = 1), resulting in a vertically propagating heat front.
Shaded particles correspond to those with a temperature greater than the
threshold, T ∗ = 0.01, and the solid line corresponds to the penetration
depth, δ, of the heat front. (b) At small t, penetration depth increases as
t1/2, such that a plot of δ vs. t1/2 yields a line with slope 3.12α1/2 (inset).
In general, thermal diffusivity of the self-organized (SO) network is signif-
icantly greater than that of the uniformly weighted (UW ) and randomly
rewired (RR) counterparts. All data shown are generated with η = 2.



80

transfer coefficient to contact force):

(6.6) αSO/αUW = 1 + βηγ

with β = 0.39 and γ = 2.31, such that αSO/αUW is greater than one for all η > 0.

See fig.6.5. The disparity between the self-organized and uniformly weighted networks

is not explained by heterogeneity of inter-particle forces. The randomly rewired network

– which, compared to the self-organized network, has an identically heterogeneous force

(edge weight) distribution – is a relatively poor heat transfer medium, defined by a ratio

αRR/αUW that is less than one for all η > 0. See fig.6.5.

6.2.2. Steady State Heat Transfer: Effective Conductivity

In the second experiment, we measure the effective conductivity of the SO, UW, and RR

networks by allowing each system to evolve to a steady, equilibrium temperature profile.

Then, consistent with Fourier’s Law, the equilibrium flux across any line of constant y is

directly proportional to the effective conductivity, k:

(6.7) qy|y=c =
k

Ly

(

Ty=0 − Ty=Ly

)

, 0 ≤ c ≤ Ly

Qualitatively, the results closely parallel those of the transient experiment – the self-

organized network exhibits significantly higher conductivity than the uniformly weighted

network, with kSO/kUW similarly approximated by a monotonically increasing power-law

function of η. Again, the difference is not adequately explained by the heterogeneity of

inter-particle forces, as the randomly rewired network has relatively low effective conduc-

tivity, defined by a ratio kRR/kUW that is less than one for all η > 0. See Fig. 6.5
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In theory, the transient and steady-state methods are equivalent approaches towards

calculating the conductivity of a regular material – by definition, α ≡ k/(ρCp), where ρCp

is the thermal capacity. Indeed, this appears to hold true for the UW networks, for which

the steady-state-calculated conductivity, kUW , and the transient-calculated conductivity,

kUW
tr = ρCpα

UW , are close. That is, the normalized difference,

(6.8) ǫUW =

(

kUW
tr − kUW

)

kUW

is small (
〈

ǫUW
〉

, averaged over all η, is −0.06 ± 0.01, where the error interval represents

a standard deviation), indicating that the transient method tends to slightly, yet consis-

tently, underestimate the effective conductivity of the UW networks. This is likely an

effect of finite system size. On the other hand, the differences ǫRR and ǫSO – defined as for

the UW network – can be large (
〈

(ǫRR
〉

= 0.11± 0.16,
〈

ǫSO
〉

= 0.51± 0.50) and increase

as a function of η (for η = 3, ǫRR and ǫSO are 0.32 and 1.27, respectively), indicating a

tendency for the transient method to overestimate effective conductivity as heterogene-

ity increases. Such anomalous behavior is known to potentially occur in heterogeneous,

disordered media [75].

6.2.3. A Networks Vantage Point: Distance and Efficiency.

The above results indicate that heterogeneity and self-organization of forces promote

efficient heat transfer in granular media. This is not altogether surprising – for η = 1,

it can be shown that the condition that gives rise to self-organization (i.e., balanced

compressive force at each particle) is also the condition that optimizes conductivity [76].

However, the set of networks that lie away from this optimum (a set that includes the
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Figure 6.5. Alternative measures of conductive efficiency in a gran-
ular packing. Heat transfer properties of the self-organized network
(empty circles) and the randomly rewired network (filled circles) are nor-
malized with respect to the uniformly weighted network and plotted as
a function of η. All curves are well approximated by a power-law fit,
f(η) = 1 + βηγ (dashed lines), with two important implications: (1) Self-
organization tends to promote efficient transport – the ratios αSO/αUW and
kSO/kUW are greater than one for all η > 0; and (2) the network metric,
path efficiency, quantitatively describes the relative conductivities of SO,
UW, and RR networks. The fit parameters (β, γ) are: 0.39,2.31 (αSO/αUW );
0.16, 2.11 (kSO/kUW ); 0.26, 1.78 (ESO/EUW ); -0.24, 0.69 (αRR/αUW ); -0.29,
0.77 (kRR/kUW ); -0.29, 0.71 (ERR/EUW ).

UW and RR networks, as well as the SO networks with η 6= 1) is not well understood. It

is here that concepts of network theory are particularly useful, providing a quantitative

means towards understanding the relationship between heterogeneity, self-organization,

and transport efficiency. Particularly, we consider the concept of network distance.
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In an un-weighted network, the distance between two nodes is defined as the minimum

number of edges required to connect them along the network. By defining a length, lij ,

for each edge in the network, distance can be adapted to describe the connectivity of

weighted networks – it is equal to the smallest sum of edge lengths from the set of all

possible connecting paths between two nodes [54]. We are careful to distinguish between

network distance measures (e.g. edge length) and the more familiar, physical measures of

distance (e.g. Euclidean distance) – edge length, and therefore network distance, needs

not correspond to physical proximity of node pairs. As we are concerned primarily with

heat transfer, it is advantageous to define the edge length, lij , as the inverse of the local

heat transfer coefficient, Hij, such that the distance along an inter-particle contact is

proportional to its resistance to heat transfer.

Path efficiency, defined as the inverse of the distance between node pairs, provides a

quantitative measure of node to node conductivity; efficient paths have low resistance to

heat transfer [77]. Indeed, a path efficiency analysis of the SO, UW, and RR networks

yields remarkable results – similar to the thermal diffusivity and effective conductivity, the

average path efficiency, E, of node-to-wall paths in the SO network is greater than that of

the UW and RR networks. (Path distances are calculated using the Djikstra algorithm

[78].) In fact, the network calculated efficiency ratios, ESO/EUW and ERR/EUW , are

virtually identical functions of η as the measured effective conductivity ratios, kSO/kUW

and kRR/kUW . See fig.6.5.

Increased efficiency, as a result of self-organization, is a pervasive theme in network

theory. In several naturally occurring networks, known as small-world networks, long-

range connections cause the average distance between node pairs to remain surprisingly
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small even as the systems become very large [79]. Although granular networks are not

small-world, the presence of spatially correlated, inter-connecting force chains plays a role

similar to long-range connections, providing highly conductive conduits that effectively

decrease the size of the transport network. This point is further illustrated in the following

network attack experiment.

6.3. Network Responses to Attack

In terms of heat transfer, the effect of removing edges from the granular network is

clearly deleterious – network conductivity diminishes with each additional edge removed.

But an intriguing question arises: Which edge removal strategy yields the most rapid de-

crease in effective conductivity? We consider three such strategies: one random, one based

on local heat transfer properties, and one – formulated within the networks framework –

that incorporates both local properties and large-scale organization.

Random Removal. Random edge removal, or failure, serves as a benchmark – we

remove edges at random and calculate the resulting change in the effective conductivity

of the network.

Targeted Removal (Local Heat Transfer Coefficient). A naive hypothesis is that con-

tacts with largest heat transfer coefficient, H , are most important for heat transfer. The

second removal strategy – removing edges in decreasing order of H – is a test of this

hypothesis. Since heat flow is in the vertical direction, we remove edges according to their

vertical component, Hy. We find that the alternative - removing edges solely according

to the scalar magnitude H - is less effective (data not shown).
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Targeted Removal (Betweenness Centrality). Generally, many of the shortest paths

between nodes in a network may pass through one or more common edges. Such an edge

is said to have high betweenness centrality, B, where Bij of an edge connecting nodes i and

j is defined as the number of shortest paths in which it is included, divided by the total

number of shortest paths. B is a particularly useful quantity in that it incorporates both

local heat transfer properties and large-scale organization. Thus, as the third strategy, we

remove edges according to their betweenness. The procedure is iterative – the single edge

with largest B is removed, B values are then recalculated, and the process is repeated.

(We note that an edge removal, in the current context, affects only the transport

properties of the network. That is, we do not consider the resultant disturbance to the

mechanical equilibrium of the packing, such that a removal can be thought of, precisely, as

replacing a conducting edge with a perfectly insulating edge that supports an equivalent

mechanical load.)

We find that effective conductivity decreases most rapidly when edges are targeted

according to betweenness (the least effective strategy is random failure). See fig.6.6. The

inferable corollary is significant as well – the important contacts for heat transfer in a

granular network are those with high betweenness. The role of high betweenness edges and

nodes in complex networks is relatively well understood – they tend to act as connectors,

controlling information flows and linking otherwise isolated clusters in various networks.

High betweenness edges in the granular network appear to perform similar functions.
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Figure 6.6. Network responses to random and strategic attack.
In a network attack experiment, three node-removal strategies are em-
ployed: random removal, removal according to local heat transfer coeffi-
cient (LHTC ) and removal according to betweenness centrality (BC ). The
normalized conductivity, k∗ = k/k0, decreases fastest when edges are re-
moved according to the BC strategy (the least effective strategy is random
removal). (inset) A threshold analysis reveals paths of high betweenness
centrality, i.e. paths of low resistance in a granular network (edges with
B > 2.5B are darkened)

6.4. Discussion

Granular heat transfer serves as a prototype for transport in heterogeneous, complex-

structured media, revealing that (1) self-organization substantially impacts the transfer

properties of a medium, and (2) this influence can be largely understood within the

networks framework.

The impact of self-organization on conductivity is remarkable in its magnitude – under

realistic heat transfer conditions, the conductivity or thermal diffusivity of a self-organized

network (in this case, the granular contact network) may be several times larger than that

of a comparable uniformly weighted network. Perhaps more surprising, however, are the
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quantitative insights provided by network measures. Network distance (or more specifi-

cally, it’s inverse – path efficiency) reproduces, typically within about a single standard

deviation, the numerically calculated relationship between conductivities of the granu-

lar networks and their modified counterparts (uniformly weighted and randomly rewired

networks). Another network measure, betweenness centrality, is shown to be useful for

identifying the important contacts for heat transfer.

That network theory – with suitable adaptations – translates well to granular matter

is broadly significant: its implications likely extend to other force-dependent granular

transport phenomena (such as electrical conductivity and acoustic wave propagation), as

well as other heterogeneous transport media (such as composite materials and porous

media). These various transport systems, unified by a common need to understand re-

lationships between structural, dynamical and equilibrium properties, constitute an ideal

testing ground for applications of novel concepts in network theory.
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CHAPTER 7

Introduction to Part II

Cells are among the most complex of the complex systems studied in science. As

genomes are uncovered, the extent of cellular complexity comes into clear focus: a single

cell can consist of tens of thousands of components – genes, proteins, enzymes, and other

metabolites – existing in a delicate, interactive, and dynamic balance. The library of data,

when approached via traditional methods of biology, is overwhelming. However, network

theory provides an efficient statistical mechanical framework for extracting information

at the genome, protein, and metabolism level [13]. In Part II of the dissertation, we use

network analysis techniques to investigate metabolism-level cell behavior.

7.1. Constructing Metabolic Networks

The cell metabolism is a set of interacting bio-chemical reactions that converts nutri-

ents into products (energy, cellular components, and waste products). This system can

be thought of as a network of metabolites (each substrate or product of an intracellular

reaction is a metabolite) and reactions. Below, we review the several ways to represent

such a system as a network.

One method is to represent each metabolite as a node, where two nodes are connected

by an edge if the metabolites participate in the same reaction (see Fig. 7.1a). This

representation, which we call the metabolite reconstruction, yields networks with striking

characteristics, most notably scale-free and small world properties [80–82]. That is,
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Figure 7.1. Constructing metabolic networks (a) Metabolite recon-
struction of the glycolysis reaction, atp + D-glucose → adp + D-glucose6-
phosphate + h. Directed edges connect the participating metabolite nodes.
(b) Modified Metabolite reconstruction, where only the structurally related
metabolite pairs are connected by edges. (c) Bi-partite graph, with both
metabolite (circle) and reaction nodes (square). We adopt the Bi-partite
graph representation for our study on metabolic robustness.

node degree distributions in metabolite reconstructions (the node degree, k, is equal to the

number of edges connected to a node) obeys power-law scaling, and the average number of

edges required to connect any two nodes on the network remains small (≈ 3) even when the

system is large (≈ 103 nodes) [80]. In short, the structure of metabolite reconstructions

is similar to other naturally occurring networks such as air-transport networks, social

networks, and the internet, among others [14,83].
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The results, however, are potentially misleading. On one hand, it can be argued that

the node degree distribution in metabolic networks is best viewed not as a power-law,

but as the superposition of a few exponentially-decaying sub-components [84]. On the

other hand, and perhaps more importantly, it is unclear whether the metabolite network

representation conveys useful information regarding bio-synthesis [85]. Shortest paths in

the metabolite network tend to pass through highly connected currency metabolites (such

as ATP, NADP, H2O, etc.) and, although they may indicate regulatory properties, they

do not necessarily correspond to valid biosynthetic pathways.

An alternative network representation incorporates an additional criterion – metabo-

lite nodes are connected with an edge if they (1) participate in the same reaction and (2)

are structurally related (See Fig. 7.1b). In this way, currency metabolites neither inflate

the node degree distribution nor deflate the mean shortest path. By this and related recon-

struction methods, it can be argued that metabolic networks are not small world [86,87].

However, a problem remains – paths in the modified metabolite representation do not

necessarily indicate valid biosynthetic pathways.

A third representation is the bi-partite graph, which has also been called the s-graph

representation [88,89] (Fig. 7.1c). The bi-partite graph consist of two types of nodes,

metabolite nodes and reaction nodes, with a metabolite node connected to a reaction node

if it participates as either a substrate or product. The bi-partite representation retains

the important biochemistry of the network and is well suited for flux balance analysis and

robustness studies. We adopt the bi-partite representation for Part II of the dissertation.
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7.2. Cellular Robustness

The literature regarding robustness of metabolic networks is considerable. In par-

ticular, Flux Balance Analysis (FBA) and related numerical methods have been used –

with remarkable success – to predict the effects of enzyme, reaction, and metabolite dele-

tion [90–92]. However, the levels of detail and specificity associated with these methods

make it difficult to extract generic trends. They identify what happens when a network

node is affected, but not why. Recently, studies have begun to try to answer the ‘why’ –

i.e., explain how network structure affects robustness [85,93]. In the following chapter,

we apply an algorithm that is based on the principles of FBA, but that also offers the

necessary flexibility to investigate generic relationships between network structure and

robustness.

We consider the metabolic networks of four species (Fig. 7.2, Table 7.1):

(1) Escherichia coli (761 metabolites, 931 reactions), a potentially dangerous bac-

terium which can cause food poisoning in humans;

(2) Saccharomyces cerevisiae (1061, 1149), a yeast belonging to the kingdom Fungi

and commonly used to produce ethanol via fermentation;

(3) Staphylococcus aureus (606, 645), a pathogenic bacterium widely known for its

methicillin-resistant strain, MRSA, which is a leading cause of hospital infection;

(4) Methanosarcina barkeri(558, 619), an anaerobic archaea that can be found in

the bovine intestinal tract, and is thought to be a major producer of atmospheric

methane.

Notably, each of the above are single-cell organisms, and S. cerevisiae is the lone eukaryote

(i.e., has a nuclear membrane) of the group. Each of the in silico reconstructions are
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compiled and generously supplied by the Palsson group (University of California at San

Diego) [94–97].

Figure 7.2. Microorganisms used in our study. The robustness of
E.coli, S. cerevisiae, M. barkeri, and S. aureus metabolisms are investigated
in Part II of the dissertation.

Organism Reconstruction Metabolites Reactions
E. coli iJR904 761 931
S. cerevisiae iND750 1061 1149
S. aureus iSB619 606 645
M. barkeri msb4100046-s7 558 619

Table 7.1. Metabolic reconstructions used in our study. All recon-
structions are provided by Palsson and others [94–97].
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CHAPTER 8

Case Study IV. Cascading Failure in Metabolic Networks

‘...aside from E. coli, the metabolic networks are exceptionally robust...(owing)

primarily to the organization of non-rigid branches.’

The complexity of metabolic networks can be overwhelming – their architecture, de-

spite being reconstructible at great levels of detail, remains poorly understood. Have

cellular metabolisms naturally evolved to an optimal state? How does the metabolism

respond to stress? Can it be altered to produce desired products? Such questions, ad-

dressing the relationship between metabolic form and function, are relevant to a broad

scientific community, yet remain open [85]. In this chapter, we investigate the form-

function relationship by looking at the influence of topology on robustness in metabolic

networks.

It is well known that the removal of a single gene from a metabolic network - and

consequently, its corresponding enzyme and reaction(s) - can have a cascading effect,

resulting in the ‘knockout’ of several additional reactions and metabolites [89, 93, 98].

Such behavior is a common occurrence in complex networks - a single overloaded line in a

power transmission network can lead to a blackout spanning millions of homes [99], a small

nucleus of trendsetters can shift popular opinion [100], and congestion on a single router

can lead to large-scale internet collapse. However, the mechanisms by which cascades
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occur, and thus the network features that either induce or mitigate them, can differ

significantly between systems. Metabolic networks are special, in that the mechanisms

of metabolic robustness can seem counter to typical complex systems. For example,

in typical scale free networks high degree nodes, or hubs, are most critical to network

function – their removal quickly disables the network. But in metabolic networks the

removal of low degree nodes may affect network function as much as, if not more, than

those with high degree [85]. In this study, we use a topology-based algorithm, based on

a Boolean interpretation of the flux balance criteria, to study cascading failure in E. coli,

S. cerevisiae, S. aureus, and M. barkeri metabolic networks.

We find that, aside from E. coli, the metabolic networks are exceptionally robust

– that is, they exhibit organizational motifs that reduce the likelihood of large failure

cascades, as evidenced by comparison with randomly wired networks. We decompose

the network into groups of rigid clusters and non-rigid branches (terms that we we will

define below), and provide evidence that the enhanced robustness of metabolic networks

owes primarily to the organization of non-rigid branches. We also show – by modeling

random failure cascades as percolation on a Bethe Lattice – that the composition of the

metabolic networks is sub-critical with respect to the formation of rigid clusters, and

likely super-critical with regards to non-rigid branching.

8.1. Methodology and Failure Algorithm

We represent the cellular metabolism as a directed, bi-partite graph, with two types

of nodes - one representing chemical reactions and the other representing metabolites. An

edge connects a metabolite node to a reaction node if the metabolite participates in the
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reaction as a reactant (in which case the edge is directed towards the reaction node) or

product (in which case the edge is directed towards the metabolite node).

8.1.1. The Topological Flux Balance Criteria

Any metabolite, in order to persist in the metabolic network, must be able to maintain a

steady, non-zero concentration (this is also the central argument of FBA [90]). It follows

that, as a minimum requirement for flux balance, each metabolite must participate in

at least one generating and one consuming reaction – the concentration of a metabolite

that is consumed but not generated diminishes to zero, whereas the concentration of a

metabolite that is generated but not consumed grows towards infinity. The topological

equivalent is that each metabolite node must have at least one incoming and one outgoing

edge. In terms of node degree, k, we say that a metabolite node, i, is viable if and only

if kin,i, kout,i ≥ 1.

Exceptions to the topological flux balance (TFB) criteria are (1) external metabolite

nodes, which represent extracellular compounds such as nutrients and products; and (2)

dead-end metabolite nodes which represent metabolites that, due to incomplete in silico

reconstructions, appear to participate in either no generating or no consuming reactions.

We treat external and dead-end metabolite nodes as infinite reservoirs; they are the only

metabolite nodes allowed to exist in the network with either kin or kout = 0. (Transport -

including diffusion - across cell membranes is considered a reaction, such that extra- and

intra-cellular versions of the same metabolite are distinguished as separate nodes.)
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In practice, metabolites may also be consumed or produced by non-metabolic pro-

cesses, e.g. DNA replication. However, rates of non-metabolic consumption and produc-

tion tend to be small, relative to typical steady state metabolic fluxes.

8.1.2. The Failure Algorithm

Prior to node deletions, all metabolite nodes (excluding external and dead-end nodes)

meet the TFB criteria. However, the removal of a reaction node, along with its associated

edges, may leave a neighboring metabolite node with either kin or kout = 0. Such a node

is said to be dead, and is subsequently deleted from the network along with each reaction

in which it participates (a reaction is viable – or can maintain a steady, non-zero flux –

if and only if each of its reactants and products are viable). The result is an iterative

algorithm by which the removal of a single reaction node can lead to large-scale cascading

failure in the metabolic network:

(1) Initiate failure by deleting, or ‘killing’, a node and each of its connecting edges

(both incoming and outgoing edges are removed)

(2) Delete any metabolite node for which kin or kout = 0, along with each of its

remaining edges.

(3) Delete any reaction node that shares an edge with a dead metabolite, along with

each of its remaining edges.

Steps 2 and 3 are iterated until all remaining reaction nodes and metabolite nodes meet

the flux balance criterion (see Fig. 8.1). The algorithm is similar, in spirit, to that used

in [89].
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Figure 8.1. The cascading failure algorithm. (I) The metabolic net-
work is represented as a bi-partite graph, with directed edges connecting
metabolite nodes (circles) to reaction nodes (squares). Reaction 6 is re-
versible, and represented as a coupled pair of reaction half nodes. (II-IV)
The removal of a single reaction node (5) has a cascading effect, resulting
in the removal of several additional reactions and metabolite nodes, as well
as the fixing of reaction 6 in the forward direction. (See Section 8.1.3 for
an explanation regarding the treatment of reversible reactions)

A subtle, yet significant feature of the TFB failure algorithm is that it allows for

bi-directional cascades. A reaction node deletion affects both its product and reactant

metabolites, such that failure can cascade both forwards (towards products) and back-

wards (towards nutrients) along the network. This is biologically significant - assuming

there are no alternative pathways, pathways that ‘funnel’ into a removed node are ren-

dered non-operational, as are those that emanate from it.
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8.1.3. A Note on the Treatment of Reversible Reactions

Reversible reactions give rise to a special problem – the TFB criteria fail if a metabolite

node has incoming and outgoing edges connecting to the same reaction node. Consider

a metabolite that is both fed and consumed exclusively by a single reversible reaction.

Although the metabolite meets the TFB criteria, one can see that it and its associated

reaction are effectively dead, since the reversible reaction must have zero net flux. Alter-

native approaches found in the literature are typically inadequate; they include treating

reversible reactions as two separate reaction nodes (which gives rise to the same prob-

lem) and treating reversible reactions as directed reactions (which yields a less robust

network) [89].

We resolve the reversibility anomaly by representing each reversible reaction as a

coupled pair of reaction half-nodes, where one half-node is deleted if the topology of a

neighboring node fixes the direction of positive reaction flux (See reaction 6 in Fig. 8.1).

For example, if the lone incoming edge of a metabolite node is connected to the forward

half-node of a reversible reaction, the reaction is necessarily fixed in the forward direction

and the corresponding reverse half-node is deleted. This precludes the possibility for

self-producing, self-consuming metabolites in the network.

8.2. Results – Cascade Damage

Failure cascades are initiated by the removal of a single reaction node (this may cor-

respond to failure of a enzymes due to knockout or inhibition). The resultant cascade

can be characterized by its total number of reactions killed, dr (we refer to this as the

damage).
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For each network, we generate a cumulative distribution function (CDF), P (dr ≥ d) –

the probability that a random reaction node removal will produce a damage greater than

or equal to d (see Fig. 8.2). This distribution characterizes the robustness of a network.

Damage CDFs for S. cerevisiae, E. coli, M. barkeri, and S. aureus are similar: they are

broad-tailed when plotted on linear axes (not shown), indicating that while most cascades

are small (≈ 90% of cascades have dr ≤ 10), some are quite large (the largest cascades

range from dr ≈ 50 to dr ≈ 80, depending on the species). These large failures represent

catastrophic – and likely lethal – events, so that the behavior of the CDF at large d is

of special interest. We find that the CDFs initially decay at a rate which is close to a

power-law, but for large d they tend to tail off at a rate which is faster and closer to

exponential decay.

What do these distributions signify? In part, they signify that the structures of

these metabolic networks are exceptionally robust. We show below that large cascades

in the metabolic network occur with much lower frequency than would be expected in a

comparable, randomly wired network.

8.2.1. Metabolic vs. Randomly Wired Networks

We can identify the role of organization in the metabolic network – to either enhance or

decrease robustness – by contrasting failure properties of real metabolic networks with

randomly wired networks.

For each species, we construct randomly wired networks using the real metabolic

network as the starting point. Pairs of edges are randomly switched, or rewired, conserving

both node degree and edge orientation (k, kin, and kout for each node are the same as
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Figure 8.2. Damage distributions Damage probabilities are presented as
Cumulative Distribution Functions, plotted on log-log axes. At small d, the
CDFs tend to decay at a rate that is close to a power-law (dashed lines); at
large d, they tend to tail off at a rate which is closer to exponential decay.
With the exception of E.coli, the networks are less susceptible to large
cascades than comparable randomly wired networks (solid lines), suggesting
that organizational motifs present in the metabolic networks act to enhance
robustness.

in the original metabolic network). A minimum of 100ne switching moves are performed

to ensure equilibrium, where ne is the total number of edges in the network (switching

is performed according to the method discussed in [101]). The resulting networks – like

the corresponding real metabolic networks – have power law degree distributions, but –

unlike real metabolic networks – lack organizational motifs.

We find that, for small cascade events, the randomly wired networks behave similarly

to real metabolic networks (see Fig. 8.2). However, at large d, the CDFs of randomly
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wired and real metabolic networks diverge – randomly wired networks are significantly

more susceptible to large cascades (dr larger than about 20). An exception is the E.coli

network, which has nearly identical CDFs for its real and rewired versions. For the other

species, the evidence suggests the existence of robustness-enhancing structural features.

In the following sections, we attempt – via statistical analysis – to identify these features.

8.3. Rigid Clusters, Non-Rigid Branches

It is useful to distinguish metabolite nodes according to node degree: uniquely produced–

uniquely consumed (UPUC) nodes have kin = kout = 1; branching, susceptible nodes have

either kin or kout = 1; and branching, non-susceptible nodes have both kin and kout > 1.

(We have adopted the term UPUC from [93].)

Consider a cluster of UPUC metabolite nodes adjoined by reaction nodes (i.e., a UPUC

node feeds a reaction that has a UPUC product node, which in turn feeds another reaction

that has a UPUC product node, and so on, see Fig. 8.3). This cluster displays the special

property that if any of its reaction nodes are killed, the entire cluster will necessarily be

killed; at minimum, a cascade will propagate until it is bounded by branched nodes. For

this reason, we say that any cluster of nodes that does not contain a branched metabolite

node is rigid (it follows that a non-circular cluster with n reaction nodes has n − 1

metabolite nodes, and every reaction node is part of a rigid cluster of at least size 1).

A branched metabolite node, on the other hand is a non-rigid element, it may either

propagate or halt a cascading failure, depending on the direction of propagation, and

whether or not it is susceptible.
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Figure 8.3. Rigid clusters in the metabolic network. The metabolic
network can be decomposed into its rigid and non-rigid portions, where
rigid portions, or clusters, are clusters of contiguous nodes that do not
contain a branched metabolite node. In this example, a and b are rigid
clusters of size nr = 1 and nr = 5, respectively. A rigid cluster has the
distinguishing property that the removal of any of its nodes will necessarily
‘kill’ all remaining nodes in the cluster.

Rigid clusters in the metabolic networks analyzed here tend to range in size from 1

to about 20 reaction nodes. The cluster size CDF decays roughly as a power law – most

clusters comprise just 1 or 2 reaction nodes, but a few can be large (see Fig. 8.4). Notably,

the CDFs of the metabolic networks are similar to those of the corresponding randomly

wired networks. This suggests that no organizing principle governs the clustering of

UPUC metabolite nodes.

Next, we show that the random formation of rigid clusters approximates percolation

on a Bethe Lattice.

8.3.1. A Bethe Lattice Model for Failure Cascades

The Bethe Lattice – an infinite tree consisting of self-similar branches – is a widely popular

model for percolation problems (see Fig. 8.5). It is one of few lattices on which percolation

can be solved analytically [102]. The key parameter governing percolation on the Bethe
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Figure 8.4. Rigid cluster size distributions. Rigid cluster size CDFs
tend to decay at a rate close to power law. Notably, there is a relatively
small difference between the cluster size distributions of real metabolic net-
works (data points) and their randomly rewired versions (solid lines). No-
tably rigid cluster formation in a randomly wired metabolic network can
be accurately modeled as random percolation on a Bethe Lattice (dashed
lines are the Bethe Lattice prediction), where all species have sub-critical
composition (γ < 1).

Lattice is the branching parameter, b:

(8.1) b = k − 1

where k is the node degree. The branching parameter, in turn, determines the critical

probability for percolation, ω∗:

(8.2) ω∗ =
1

b
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If neighboring nodes are connected (i.e., their connecting edge is turned ‘on’) with prob-

ability ω equal to ω∗, the system is critical – clusters of connected nodes form with a size

distribution that is scale-free, exhibiting power-law decay. Specifically, the probability,

pω∗(s), of forming a cluster of size s is

(8.3) pω∗(s) ∝ s−5/2

Where s is the number of nodes in a cluster. This system can be characterized by a

critical parameter, γ = ω/ω∗, which is equal to one at criticality. Systems with γ > 1

are supercritical – they yield an infinitely percolating cluster of connected nodes with

a cluster size distribution that decays slower than power law. Systems with γ < 1 are

sub-critical, and yield a cluster size probability curve that decays faster than power law.

Specifically, the subcritical cluster size probability distribution, pω(s), is

(8.4) pω(s) ∝ s−5/2 exp(−s(ωe − ω∗)2)

(The above solutions are outlined in [102]).

Bond percolation on the Bethe lattice is analogous to rigid cluster formation in a

metabolic network. Consider, for example, a metabolic network in which each reaction

has two substrates and two products (i.e., each reaction node has degree, kr, equal to 4).

The reaction nodes correspond to nodes in the Bethe lattice, and – in this ideal case –

produce self-similar branching (in modeling rigid cluster formation, the mean metabolite

node degree is inconsequential). Two reaction nodes will be connected on a rigid cluster if

they are connected by a UPUC metabolite node. The metabolite nodes in the metabolic

network are equivalent to the edges on the Bethe lattice – a UPUC metabolite node
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Figure 8.5. Rigid cluster formation, modeled as percolation on a
Bethe Lattice. (a) A Bethe lattice with branching parameter, b = 3.
Edges can be turned ‘on’ (red) with some probability, ω, producing various-
sized clusters of connected nodes. (b) An isolated cluster on the Bethe
lattice. (c) Rigid cluster formation on the metabolic network can be viewed
in a similar manner: reaction nodes represent the nodes on the Bethe Lattice
(squares), single-in-single-out metabolite nodes represent ‘on’ edges (filled
circles), and branched metabolite nodes represent ‘off’ edges (outlined cir-
cles).

represents an edge that is turned ‘on’, while a branching metabolite node represents an

edge that remains ‘off’.

In the above example we have assumed that all reactions have identical degree. This

closely approximates real metabolic networks, in which most reactions have kr equal to

4 or 5, and variation in degree distribution is small. We therefore replace k in the Bethe

Lattice model with the mean reaction node degree, 〈kr〉. Thus, the key parameters for

percolation of rigid clusters on a randomly wired metabolic network are:

(8.5) b = 〈kr〉 − 1

(8.6) ω∗ =
1

〈kr〉 − 1
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The probability, pe of two reactions being connected by a UPUC metabolite node is equal

to the number of edges connected to UPUC metabolite nodes divided by the total number

of edges:

(8.7) ω =
ne,UPUC

ne

The critical parameter, γ, for rigid cluster formation is then

(8.8) γ =
nUPUC(〈kr〉 − 1)

ne

We find that each of the metabolic networks has a subcritical composition (see Table

8.1). Furthermore, the Bethe Lattice solution matches – with good agreement – the

actual rigid cluster size distributions observed in both the real and randomly rewired

metabolic networks (see dashed curve in Fig. 8.4).

This result (1) confirms our previous finding that the distribution of rigid cluster sizes

in the metabolic network does not result from any particular organizing principle and

also (2) validates the Bethe Lattice as a model for rigid cluster formation in metabolic

networks. In the following section, we incorporate branching metabolites to construct a

more complete picture of cascading failure.

Organism b (= 〈kr〉 − 1) ω (=ne,UPUC/ne) γ
E. coli 3.63 0.14 0.52
S. cerevisiae 3.47 0.16 0.54
S. aureus 3.80 0.16 0.61
M. barkeri 3.73 0.19 0.72

Table 8.1. Key percolation parameters in the metabolic networks.
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8.4. Branching Structure in Metabolic Networks

A single cascade may comprise multiple rigid clusters. If a rigid cluster is connected

to the branch feeding edge (either the lone incoming or lone outgoing edge) of a branched,

susceptible node, it will produce a failure cascade that propagates to other rigid clusters.

The probability, P (ns ≥ n′

s), that a failure cascade contains at least n′

s rigid clusters is

broad-tailed – most cascades contain just one or two rigid clusters, but a few contain

many (i.e., 20-40 rigid clusters, see Fig. 8.6). The observed P (ns) for metabolic networks

is – by comparison to randomly wired networks – unusually small. This is particularly

true in S.cerevisiae, M.barkeri, and S. aureus, for which random rewiring produces a

significant probability for cascades with ns > 100. The result suggest that branched nodes

in metabolic networks are organized in a way that increases robustness. Furthermore,

for all species except E. coli, the curve P (ns > n′

s) for the randomly wired networks

decays slower than power law (i.e., d2 [log P (ns > n′

s)] /d [log n′

s]
2 > 0) suggesting that the

metabolic composition may be supercritical with respect to branching.

8.5. Discussion

The species we have considered are found to be exceptionally robust; by decomposing

failure cascades into rigid and non-rigid parts, we have shown that robustness derives pri-

marily from the organization of the non-rigid parts. But E. coli is an intriguing anomaly.

This may result from an incomplete in-silico reconstruction. Feist et al. have recently

released an expanded genome-scale E. coli reconstruction, which has 2077 reactions and

1039 unique metabolites [103]. The updated E. coli model will possibly yield different

cascading failure behavior.
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Figure 8.6. Branch distributions. The probability, P (ns), that a failure
cascade in a metabolic network contains at least ns rigid clusters is broad-
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on the species. Random rewiring significantly increases the probability for
large ns – especially in the cases of S.cerevisiae, M.barkeri, and S. aureus.
P (ns) for randomly wired versions are represented as solid lines.

The results of the current study are broadly significant. The Bethe lattice model –

which we have used to predict rigid cluster formation – is a first attempt at mathematical

modeling of failure in a metabolic network. It is likely that the Bethe lattice model can

be adapted to include non-rigid portions of a cascading failure. This would be a powerful

mathematical description of a system that, to our knowledge, has only been previously

analyzed from an empirical standpoint.
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CHAPTER 9

Looking Forward: Perspectives and Ideas for Future Studies

We have merely scratched the surface of what can be accomplished with network anal-

ysis. In Part I, we applied network tools to prototypical granular systems, but one can

imagine that the same tools – loop analysis, path distance, etc. – might be extended

and applied to a myriad of different granular systems with varying material properties

and boundary conditions. In Part II we introduced a topology-based failure algorithm for

the studying metabolic networks. This work may also have valuable extentions: cascad-

ing failure behavior may serve as a benchmark for testing various theories of metabolic

organization.

9.1. Granular Networks: From Two to Three Dimensions

The analysis in Part I was limited exclusively to two-dimensional granular packings.

An obvious extension is from two- to three- dimensions. In most cases, differences between

two and three dimensional networks are quantitative, not qualitative. For example the

distinguishing properties of granular networks – heterogeneity and self-organization –

are present in both 2- and 3-D granular systems. Both 2- and 3-D packings exhibit

exponentially decaying force distributions; both exhibit spatial correlations of forces.

A few properties change significantly: the packing fraction of randomly close packed

disks is ≈ 0.82 for disks and ≈ 0.65 spheres; the maximum coordination number increases

from 6 in 2-D systems to 12 in 3-D systems; and 3-D systems can assume a larger variety of
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Figure 9.1. Some minimal stable units in a 3-D granular packing.
(a) tetrahedron (b) square pyramid (c) triangular prism (d) cube. We define
a minimal stable units as a structure that (1) can support 3-D perturbations
of a compressive load, and (2) loses this robustness to perturbation if any
one of its elements are removed.

packing structures. In some cases these differences have significant physical implications.

For example, equipartition of pressure (Chapter 3) is observed over a large parameter

space in 2-D systems, but not observed in 3-D systems [55]. But perhaps the area most

enriched by the introduction of a third dimension is loop statistics (Chapter 4).

In two dimensions, contact loops are the smallest structures that can support a finite

range of compatible loads. In three dimensions, the smallest stable structure – and the

most common structure observed in real packings – is a tetrahedral arrangement (which

has four particles and six contacts). We say that the tetrahedral structure is a minimal

stable unit – if any of its elements are removed, the remaining structure is unstable to 3-D

perturbations. Other such structures are likely present: square pyramids (5 particles, 8

contacts), triangular prisms (6, 9), and cubes (8, 12), among others (see Fig. 9.1). These

minimal stable units – like loops in two-dimensions – may be viewed as the building blocks

for a stable three-dimensional packing. Likewise, the concentration and types of minimal

stable units may indicate fragility in three-dimensions.
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9.2. Granular Networks: Looking at Mixed Systems

Part I, with the exception of Chapter 3 (Case I: Pressure in a Size Bi-disperse Granular

Packing), deals with systems composed of nearly uniform particles. Only in Chapter 3 do

we consider properties that arise in a disperse system of small and large particles. But

dispersity – of size, shape, density and other material properties – may affect a much

broader range of phenomena. For example, concentrations of the various loop structures

(and minimal stable units, in 3-D) are likely to change with variations in size-dispersity.

Little is known about the kind of loops present in a packing with bi-modal size distribution.

Mixing may have its most dramatic effect on transport. Consider a packing composed

of particles of type 1, with uniform conductivities (k1). If one of the particles is replaced

with a second type of particle that has k2 6= k1, the effective conductivity of the packing

changes. But by how much? What is the effect of replacing a second particle? A third?

We approximate such an experiment, replacing a single edge in the granular network with

a ‘superconducting’ edge that has infinite conductivity, and measuring the overall gain

in effective conductivity (see Fig. 9.2). From path distance analysis, it is clear that the

change in conductivity depends not only on the properties of the substituted edge, but also

on the structure of the surrounding force network. Currently, there is a limited capacity

to understand the transport properties of a granular packing with a disperse distribution

of conductivities, but network approaches may yield valuable insight.

9.3. Granular Networks: From Simulations to Experiments

With few exceptions, the granular networks discussed in this dissertation are generated

by particle dynamics simulations (see Appendix). However, technological advances are
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Figure 9.2. Conductive gain in a granular network, when the con-
ductivity of an edge is changed. For each edge in the granular network,
we calculate a single edge conductive gain – the increase in effective con-
ductivity of the total network when the conductivity of that edge is set to
infinity. We find that conductive gain is dependent not only the properties
of the edge, but the organization of the surrounding network. (a) Conduc-
tive gain is weakly related to the conductivity, hij , of the replaced edge. (b)
Conductive gain is inversely related to the distance of the mean shortest
path connecting the edge to both walls – all edges with a conductive gain of
greater than 1% lie on a path which is shorter than some threshold distance,
which in this case is about 40 units (dashed line).

making it increasingly possible to obtain detailed, accurate granular networks from ex-

periments. For example, constructing force networks using photoelastic disks has become

an especially popular and effective technique [40]. Such tecniques may make it possible

to extend the studies discussed in this dissertation to real granular systems. For example,

much work has already been done regarding force distributions in a real packings, so an

experimental study on pressure distributions in bi-disperse packings (as we have done

numerically in Chapter 3) should be a feasible extension. Similarly, we expect that the

contact structure of a tilted granular bed can be measured with sufficient accuracy to

perform analyses similar to that of Chapters 4 and 5.
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Perhaps the most intriguing translation from simulations to experiments is regarding

the relationship between heat transfer and force structure (Chapter 6). Experiments have

been done measuring heat flow and temperature profiles in granular sytems [104]. Like-

wise, there are numerous experiments measuring the force structure of granular packings

(see Chapter 2). Although inferences between the two are often made, to our knowledge,

no granular experiment has simultaneously measured heat flows and force structure. Such

an experiment could provide new quantitative insights into the role of the granular force

network as a transport medium.

9.4. Metabolic Networks: The Origins of Robustness

Several theories exist surrounding the organizational structure of metabolic networks.

It has been separately suggested that metabolic networks are scale-free and structured

similarly to the hub and spokes of the air transport system [80], that they are modular

[105–107], that they are ‘highly optimized’ [88],and that they are hierarchical [108,

109]. The cascading algorithm presented in Chapter 8 (Cascading Failure in Metabolic

Networks) is an ideal testbed for examining these theories. For example, a first step has

already been taken – we have shown that failure properties of the metabolic network

are not recovered from the scale-free model. Our randomization, although it conserved

scale-free structure, produced a dramatic change in robustness. To the same end, one can

conceive randomizations that conserve other properties – modularity, hierarchy – in order

to determine their impact on metabolic function.
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APPENDIX A

Particle Dynamics

Particle dynamics (PD) is a powerful tool for studying granular systems. The tech-

nique is based on the methodology of molecular dynamics developed for the study of

liquids and gases: a force model is used to calculate forces exerted on discrete particles,

and ensuing particle motion is calculated by integrating Newton’s laws of translational

and rotational motion,

(A.1)
dv

dt
=

1

m

∑

fn

(A.2)
dω

dt
=

1

I
r
∑

fs.

A.1. Force Model

We simulate granular systems with repulsive, dissipative contacts. These features are

captured by the linear spring-dashpot model [110]:

(A.3) fn = −knαij − γn
dαij

dt
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Figure A.1. Definition of variables used in the PD force model.

where kn is the Hookean spring constant, γn is the dissipation term, and α is the inter-

particle overlap,

(A.4) αij = max ((ri + rj) − aij , 0) .

so that fn is zero for non-overlapping particles.

Frictional contacts may exert tangential force, i.e. transmit torque. Tangential forces

are modeled using the Cundall and Strack method [111]:

(A.5) fs = −min (|ksζ | , |µfn|) · sign(ζ)

where ks is the tangential stiffness, µ is the Coulomb friction coefficient, and ζ is the

tangential displacement occur

(A.6) ζ(t) =

∫ t

to

vs(t
′)dt′
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Here, vs is the relative tangential velocity between the two contacting particles.

The linear dashpot and Cundall and Strack models are among the simplest force mod-

els that capture the essential characteristics of granular contact: repulsion, dissipation,

and friction. There are many others [110]. However, for systems like those considered in

this dissertation, it can be shown that packing geometry is the primary determinant of

force structure, and details of the force model (e.g. Hertzian vs. Hookean spring force)

have little effect on the resulting force network [29].

A.2. System preparation

All granular packings are prepared via a three-stage procedure that is similar, in

spirit, to the Lubachevsky-Stillinger method of producing jammed packings [112]. The

first two stages in the preparation are always the same: (1) in the initiation stage, N point

particles, with diameters equal to zero, are placed at random inside a box of prescribed

width, Lx, and height, Ly; (2) in the growth stage, particles grow to their pre-specified

sizes. In the growth stage, growing particles can collide, transferring small amounts of

kinetic energy through dissipative collisions. Neither stage includes gravity as a body

force.

The final stage in the preparation depends on the system considered. In Chapters

3 and 6, we investigate granular packings compressed between vertical walls, such that

the final stage is a compression stage. A fixed force is applied to the vertical walls,

compressing the granular system to a specified vertical pressure, Py, and yielding a static,

nearly isotropic granular packing. (Although the horizontal pressure, Px, is not explicitly
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Figure A.2. The three-stage preparation procedure.

controlled, it tends to be nearly the same as the vertical pressure.) The final system

dimensions approximate a square, with lengths Ly ≈ Lx = d
√

N .

In Chapters 4 and 5, we investigate a granular system tilted under gravity, such that

the final stage is a sedimentation stage. Gravity is introduced and particles are allowed to

settle, under their own weight, into an jammed state. The final dimensions approximate

a rectangle, with Lx ≈ 5h, where h is the bed height.

In all cases, simulations are ended when the system has sufficiently reached equilib-

rium. That is, the ratio of potential energy (Ep) to kinetic energy (Ek) is much greater

than 1, for both translational and rotational energy. Typically, Etrans
p /Etrans

k ≈ 106 and

Erot
p /Erot

k ≈ 105. The resulting packing fractions, φ = (LxLy)
−1

∑N
i=1

π(di/2)2, range

from 0.800 to 0.801.
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A.3. Outlook

With appropriate force models, parameters, and boundary conditions, PD models are

capable of reproducing a wide range of granular phenomena, showing good qualitative

and quantitative agreement with experimental results [113]. The result of a single PD

simulation, however, is as specific as a single experiment - prediction is gained but under-

standing is not assured. The value gained from a PD simulation hinges on the techniques

used to analyze its results. Network theory provides several insightful tools, as illustrated

by the simulation cases presented in this dissertation.
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