
 
 
 
 
 

A Tutorial on Approaching the  
Topic Modeling of Bank Regulation 

 
 

By 
 
 

Loretta Clare Ardaugh 
 
 
 

Thesis Project 
Submitted in Partial Fulfillment of the 

Requirements for the Degree of 
 
 

MASTER OF SCIENCE IN PREDICTIVE ANALYTICS 
 
 

May, 2017 
 
 
 

Alianna J. Maren, Ph.D., First Reader 
San Cannon, Ph.D., Second Reader  



	
   	
   	
   2	
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by Loretta Clare Ardaugh 2017 
All Rights Reserved 

 
 
 
 
 
  



	
   	
   	
   3	
  
Abstract 

A Tutorial on Approaching the 
Topic Modeling of Bank Regulation 

 

Loretta Clare Ardaugh 

 

 
Regtech, a reference to the application of new technologies to bank regulation, mandates a 
conversation about reducing the burden of bank regulation by letting computers take over some 
of the handling of regulatory text.  Bank regulations and the related manuals, guidance, or other 
supplements are mostly unstructured.  Software tools and statistical models have evolved to 
“read” unstructured text and create actionable insights by way of “text analytics”, but there are 
only limited cases of use and application within bank regulation.  I contribute to this discussion 
by reviewing the text of regulatory guidance using text analytics tools.  The model I employ 
seeks to determine the “topics” in which documents may be categorized.  In this context, a 
“topic” division may be based on the bank activity to which the regulation applies, the regulator 
who authored the text, or even a time period in which the regulatory text was relevant.  My 
objective was to appreciate whether the model could identify the first example - topics based 
upon the bank activity to which the regulatory text applied. I find that the model’s “topics” are 
aligned with those of experts, plus are suggestive of a next level deeper than the experts’ topics. 
However, the model is sensitive to changes in the formatting and word choices in the underlying 
text and processing choices applied.  While the findings promise that there is opportunity in 
managing regulatory text with text analytics to create efficiency for the human implementers of 
regulation, they also show the importance of considering how the underlying text will affect the 
outcome.  To that end, I recommend that creators of the text take the needs of text analytics work 
into account.  
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Abbreviations and acronyms list 

 
 
 

Letter cases are modified in text analytics.  Abbreviations and acronyms used here apply 
regardless of case.  Some of the abbreviations and acronyms are found in the paper only in 
discussions of their place in lists of most probable terms.  
 
 
 
	
  

BoW bag of words 

BSA Bank Secrecy Act 

DTM document term matrix 

FBO Foreign Banking Organization(s) 

Fed Federal Reserve Board, Banks, or System 

FFIEC  Federal Financial Institutions Examination Council 

FIBO Financial Industry Business Ontology 

FinCEN Financial Crimes Enforcement Network 

Fintech Technology in the Financial Industry, usually disruptive 

FRBOG 
Acronym used as an adjective referring to the Federal Reserve 
Board of Governor topic assignments  

LDA Latent Dirichlet Allocation 

MRR Market Risk Rule 

OFAC Office of Foreign Assets Control 

Regtech Technology in Regulation, usually disruptive 

SLHC  Savings and Loan Holding Company(ies) 

SRL Supervision and Regulation Letter(s) 
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Executive summary 

 
Compliance	
  with	
  regulation	
  is	
  a	
  critical	
  function	
  in	
  a	
  banking	
  organization.	
  	
  The	
  number	
  of	
  

regulations	
  that	
  apply	
  to	
  a	
  particular	
  organization	
  will	
  be	
  dependent	
  upon	
  its	
  size,	
  the	
  

activities	
  in	
  which	
  it	
  engages,	
  and	
  its	
  geographic	
  footprint.	
  	
  Its	
  charter	
  and	
  structure	
  will	
  

determine	
  the	
  number	
  of	
  regulators	
  to	
  which	
  it	
  is	
  accountable.	
  	
  While	
  regulators	
  will	
  

collaborate	
  to	
  release	
  a	
  single	
  regulatory	
  document	
  when	
  there	
  is	
  shared	
  responsibility,	
  

each	
  may	
  prepare	
  a	
  press	
  release,	
  FAQs,	
  guidance	
  or	
  other	
  material	
  that	
  accompanies	
  the	
  

regulation.	
  	
  A	
  banking	
  organization	
  may	
  choose	
  to	
  monitor	
  proposed	
  regulations	
  by	
  

monitoring	
  any	
  combination	
  of	
  Congressional	
  discussions,	
  media	
  reports,	
  proposals	
  for	
  

comments,	
  applicable	
  comment	
  letters	
  submitted,	
  and	
  transcripts	
  of	
  speeches	
  of	
  

regulators.	
  	
  Once	
  a	
  regulation	
  is	
  implemented	
  by	
  regulators	
  and	
  banking	
  organizations,	
  

supervision	
  of	
  banking	
  organizations	
  includes	
  testing	
  compliance	
  with	
  the	
  regulations	
  and	
  

that	
  may	
  include	
  reviewing	
  banking	
  organizations’	
  policies,	
  procedures,	
  meeting	
  minutes,	
  

and	
  other	
  text	
  documents,	
  often	
  a	
  repeated	
  process	
  at	
  a	
  specified	
  interval	
  of	
  time.	
  	
  A	
  

current	
  initiative	
  of	
  regulators	
  is	
  to	
  tailor	
  regulation	
  by	
  create	
  different	
  versions	
  of	
  

regulation	
  according	
  to	
  the	
  activities	
  and	
  complexity	
  of	
  the	
  banking	
  organizations.	
  	
  At	
  the	
  

same	
  time	
  as	
  tailoring	
  will	
  reduce	
  the	
  regulatory	
  burden	
  overall,	
  it	
  increases	
  the	
  amount	
  of	
  

regulatory	
  text	
  a	
  banking	
  organization	
  must	
  assess	
  for	
  applicability.	
  	
  

Text	
  analytics	
  offers	
  great	
  possibility	
  for	
  reducing	
  the	
  burden	
  of	
  regulation	
  by	
  

automating	
  the	
  process	
  of	
  ingesting	
  regulations	
  and	
  related	
  text.	
  	
  Software	
  tools	
  have	
  

simplified	
  the	
  process	
  of	
  transforming	
  text	
  to	
  “tokens”,	
  where	
  tokens	
  may	
  be	
  a	
  single	
  word,	
  

a	
  multi-­‐word	
  noun	
  phrase,	
  or	
  any	
  combination	
  of	
  text.	
  	
  Readings	
  in	
  text	
  analytics	
  offer	
  a	
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variety	
  of	
  algorithms	
  which	
  can	
  be	
  used	
  to	
  elicit	
  insights	
  from	
  a	
  file	
  of	
  tokens.	
  	
  Text	
  

analytics	
  is	
  an	
  important	
  tool	
  in	
  Regtech,	
  a	
  movement	
  to	
  improve	
  the	
  regulatory	
  process	
  

through	
  technology.	
  	
  	
  

This	
  paper	
  shares	
  a	
  process	
  of	
  how	
  one	
  may	
  approach	
  the	
  application	
  of	
  text	
  

analytics	
  to	
  ingest	
  regulation	
  by	
  demonstrating	
  some	
  of	
  the	
  choices	
  involved	
  and	
  how	
  they	
  

impacted	
  the	
  outcome	
  in	
  this	
  small-­‐scale	
  effort.	
  	
  The	
  text	
  used	
  is	
  a	
  sample	
  of	
  the	
  Federal	
  

Reserve	
  (Fed)	
  Supervision	
  and	
  Regulation	
  Letters	
  (SRLs),	
  a	
  series	
  of	
  guidance	
  on	
  

supervisory	
  policies	
  and	
  procedures.	
  	
  	
  The	
  sample	
  includes	
  125	
  SRLs	
  that	
  were	
  1)	
  issued	
  

inclusive	
  of	
  and	
  between	
  2006	
  and	
  2016	
  and	
  2)	
  were	
  in	
  active	
  status	
  as	
  of	
  December	
  31,	
  

2016.	
  	
  I	
  explored	
  the	
  classification	
  of	
  SRLs	
  as	
  a	
  proxy	
  for	
  the	
  myriad	
  of	
  regulatory	
  

communications	
  and	
  some	
  of	
  the	
  related	
  text	
  submitted	
  by	
  banking	
  organizations	
  to	
  show	
  

compliance.	
  	
  	
  

For	
  classification,	
  I	
  used	
  a	
  Latent	
  Dirichlet	
  Allocation	
  (LDA)	
  model,	
  a	
  probabilistic	
  

model	
  that	
  attempts	
  to	
  replicate	
  the	
  generation	
  of	
  the	
  submitted	
  text	
  in	
  order	
  to	
  group	
  

documents	
  that	
  have	
  been	
  generated	
  from	
  the	
  same	
  process	
  into	
  a	
  topic.	
  	
  The	
  LDA	
  model	
  

requires	
  a	
  bag	
  of	
  words	
  (BoW)	
  as	
  input.	
  	
  A	
  BoW	
  is	
  a	
  file	
  of	
  tokens	
  and	
  usually	
  the	
  tokens’	
  

frequency,	
  but	
  may	
  make	
  include	
  various	
  weighted	
  versions	
  of	
  tokens.	
  	
  I	
  apply	
  LDA	
  four	
  

times	
  to	
  show	
  the	
  effects	
  of	
  changes	
  in	
  output	
  across	
  changes	
  in	
  the	
  BoW.	
  	
  I	
  use	
  the	
  

simplest	
  creation	
  of	
  a	
  BoW	
  in	
  the	
  first	
  run,	
  using	
  all	
  of	
  the	
  text	
  in	
  an	
  SRL	
  PDF.	
  	
  I	
  then	
  tweak	
  

the	
  BoW	
  to	
  show	
  the	
  effect	
  on	
  LDA	
  outcomes	
  from	
  a	
  couple	
  simple	
  string	
  changes.	
  	
  In	
  a	
  

third	
  run	
  of	
  LDA,	
  I	
  use	
  a	
  BoW	
  which	
  includes	
  only	
  nouns	
  and	
  adjectives	
  extracted	
  from	
  the	
  

letter	
  body	
  of	
  the	
  SRL.	
  	
  And	
  then	
  in	
  a	
  final	
  run,	
  the	
  BoW	
  is	
  manipulated	
  to	
  show	
  effects	
  of	
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modifying	
  a	
  common	
  practice	
  in	
  which	
  tokens	
  are	
  “stemmed”,	
  or	
  replaced	
  by	
  the	
  word	
  

stem.	
  	
  	
  

In	
  my	
  work,	
  I	
  find	
  that	
  LDA	
  based	
  upon	
  the	
  simplest	
  BoW	
  produces	
  strong	
  results	
  

when	
  I	
  compare	
  the	
  model	
  classifications	
  to	
  expert	
  classifications.	
  	
  However,	
  tweaking	
  the	
  

BoW	
  provided	
  useful	
  results	
  as	
  well	
  in	
  addition	
  to	
  more	
  meaningful	
  terms	
  used	
  to	
  define	
  

the	
  classifications.	
  	
  Unlike	
  regressions	
  and	
  other	
  traditional	
  models,	
  LDA	
  does	
  not	
  yet	
  have	
  

a	
  dominant	
  framework	
  of	
  measures	
  of	
  conceptual	
  soundness.	
  	
  Human	
  topic	
  review	
  most	
  

often	
  serves	
  as	
  the	
  measure	
  of	
  stability	
  and	
  sensitivity.	
  	
  By	
  comparing	
  four	
  cases,	
  I	
  show	
  

sensitivity	
  of	
  the	
  LDA	
  output	
  to	
  choices	
  made	
  either	
  as	
  the	
  BoW	
  is	
  created	
  or	
  as	
  tokens	
  are	
  

managed.	
  	
  I	
  conclude	
  that	
  the	
  choices	
  in	
  formatting	
  are	
  important	
  and	
  that	
  text	
  analytics	
  of	
  

regulatory	
  text	
  would	
  be	
  facilitated	
  by	
  regulators’	
  consideration	
  of	
  a	
  need	
  for	
  landmarks	
  

within	
  the	
  text	
  and	
  overall	
  consistency	
  when	
  creating	
  regulatory	
  communications.	
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This paper considers an application of text analytics to the text of a banking regulator’s 

supervisory guidance series.  The intent is to introduce text analytics as a tool to facilitate more 

efficient regulatory compliance by enabling speedier ingestion of supervisory guidance.  Perhaps 

banks and regulators will work under a common ontology, where regulatory material can 

speedily find its home in the bank, not just for the benefit of those responsible for its 

implementation, but also within the banks’ technology systems to relate banks’ policies to 

regulation or even risk processes to regulation, kicking off internal approvals and presentations 

and even submissions of information to regulators.   

Specifically, I conducted exploratory text analysis, feature selection, and topic modeling 

using the text of the Federal Reserve (Fed) Supervision and Regulation Letters (SRLs). SRLs are 

issued by the Fed in accordance with its mission “to ensure the safety and soundness of the 

nation’s banking and financial system and to protect the credit rights of consumers”1.  SRLs 

include policies and procedures and are targeted at either or both of the Fed’s staff responsible 

for supervising regulated entities and the regulated entities’ staff responsible for complying with 

applicable regulations.  My analysis is conducted entirely in R in an RStudio environment using 

a myriad of R packages which support text manipulation and analytics. 
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Section 1.1 Statement of opportunity 

There are many opportunities to employ text analytics in the banking business as well as in the 

related business of regulating banks and central bank activities generally.  Existing banking 

applications of text analytics are varied in purpose and design but, as is the case in many 

industries, do not yet realize the full potential of text analytics.  To identify the state of text 

mining in the financial industry, (Kumar and Ravi 2016) conducted a survey of 89 relevant 

papers or conference presentations from various literature sources, including Springer and 

Elsevier.  They found that the 89 applications of text analytics fall into the business categories of 

stock or foreign exchange rate prediction, cyber fraud identification, and customer relationship 

management and that these applications employed varied techniques, including classification, 

sentiment analysis, and clustering.  Literature shows research is expanding in the application of 

text analytics beyond the areas identified in (Kumar and Ravi 2016).  A particular exploration of 

interest for this paper is work related to a call to move beyond the text analytics conducted in just 

one organization to instead create a framework for shared text analytics applications which will 

facilitate greater efficiency in processes that are shared between banks and their regulators.   I 

will add to that exploration by conducting text analytics on a regulatory guidance communication 

series.  Next, I set the context for my study by providing a high-level explanation of bank 

regulation.   

Banking is a heavily regulated industry.  Regulation defines the activities in which banks 

may engage and how the regulation of those activities will be conducted.  Regulation is often 

supplemented with guidance	
  and	
  the	
  text	
  I	
  study	
  in	
  this	
  paper,	
  SRLs,	
  represents	
  just	
  one	
  

series	
  of	
  guidance.	
  	
  The	
  language	
  of	
  the	
  SRLs	
  is	
  formal,	
  which	
  lends	
  itself	
  to	
  an	
  automated	
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text	
  process,	
  e.g.,	
  a	
  misspelling	
  would be extremely rare (the concept of formality is further 

explored in Appendix 1).	
  	
   

The text of regulation is not static.  Following are a few examples of how regulations 

changed in response to changes in the business of banking or changes in the environment in 

which banks operate.  In recent decades, technology and economic conditions accelerated the 

rate of change in how banking is conducted and banks’ operations and balance sheets display a 

commensurate increase in complexity. Regulation responded to that increase in complexity.  

Regulation also must respond to pressures on the banking industry, such as occurred following 

the recent financial crisis when awareness of taxpayer exposure to the costs of failed banks 

expanded.  Regulatory changes may be demanded by the financial industry.  As the differences 

between a small bank conducting a basic banking business and a large bank providing global 

financial services continues to increase, a movement towards “tailored” regulation has begun.  

Tailored regulation results in multiple versions of supervisory text according to the 

characteristics of banks to which it is applicable.   

The amount of text is further multiplied by existence of multiple bank regulators.  Due to 

the evolution of the United States’ banking system, there are many regulators to whom banking 

organizations must respond, depending on the charter and structure of the organization, its size, 

and the activities in which it is engaged.  Prudential federal regulators of banks in the U.S. 

include the Fed, the Federal Deposit Insurance Corporation, and the Office of the Comptroller of 

the Currency.2  In addition, there are state regulators that are defined by each state.  The lines of 

regulatory authority are explained in two reports referenced for this paper, (GAO 2016) and 

(Murphy 2015).  A	
  final	
  version	
  of	
  a	
  regulation	
  is	
  communicated	
  by	
  each	
  of	
  the	
  applicable	
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regulators,	
  along	
  with	
  each	
  regulator’s	
  versions	
  of	
  related	
  material	
  including	
  manuals	
  

and	
  procedural	
  letters	
  –	
  all	
  of	
  which	
  must	
  be	
  assessed	
  by	
  a	
  regulated	
  entity	
  for	
  

applicability.	
  	
  	
  

Ingesting	
  these	
  text	
  communications	
  is	
  time-­‐consuming	
  for	
  the	
  regulated	
  entities.	
  	
  

In	
  historical	
  periods	
  of	
  slow	
  regulatory	
  changes	
  and/or	
  relatively	
  smaller	
  banking	
  

organizations,	
  a	
  banking	
  organization	
  may	
  have	
  had	
  a	
  regulatory	
  officer	
  with	
  a	
  small	
  unit	
  of	
  

staff	
  who	
  read	
  the	
  information	
  and	
  routed	
  the	
  text	
  to	
  those	
  responsible	
  for	
  implementation	
  

–	
  that	
  model	
  is	
  no	
  longer	
  appropriate	
  in	
  banking	
  organizations	
  as	
  the	
  speed	
  and	
  quantity	
  of	
  

text	
  increases.	
  	
  A	
  well-­‐designed	
  implementation	
  of	
  a	
  text	
  analytics	
  program	
  within	
  a	
  bank	
  

may	
  increase	
  a	
  banks’	
  capacity	
  to	
  ingest	
  material	
  not	
  previously	
  ingested,	
  identify	
  hidden	
  

topics	
  in	
  the	
  regulatory	
  text,	
  provide	
  a	
  map	
  from	
  incoming	
  regulatory	
  text	
  to	
  existing	
  bank	
  

systems,	
  and/or	
  facilitate	
  the	
  creation	
  of	
  derivative	
  information	
  for	
  targeted	
  operational	
  

areas.	
  	
  On	
  a	
  macro	
  level,	
  text	
  analytics	
  may	
  be	
  used	
  to	
  help	
  build	
  a	
  framework	
  through	
  

which	
  SRLs	
  and	
  other	
  regulatory	
  text	
  may	
  be	
  consistently	
  identified,	
  managed,	
  and	
  

differentiated	
  according	
  to	
  the	
  entities	
  or	
  activities	
  covered.	
  	
  That	
  level	
  will	
  require	
  

consideration	
  of	
  the	
  text	
  analytics	
  process	
  during	
  the	
  state	
  of	
  creating	
  regulatory	
  text.	
  

In	
  describing	
  the	
  objective	
  of	
  my	
  text	
  analytics	
  effort,	
  I	
  refer	
  to	
  (Miner	
  et	
  al.	
  2012).	
  	
  

Authors	
  describe	
  seven	
  practice	
  areas	
  of	
  text	
  analytics:	
  	
  Information	
  Extraction,	
  Natural	
  

Language	
  Processing,	
  Concept	
  Extraction,	
  Web	
  Mining,	
  Information	
  Retrieval,	
  Document	
  

Clustering,	
  and	
  Document	
  Classification4.	
  	
  (Miner	
  et	
  al.	
  2012)	
  provides	
  a	
  decision	
  tree	
  to	
  

determine	
  the	
  primary	
  practice	
  of	
  interest.	
  	
  The	
  tree	
  identifies	
  my	
  effort	
  as	
  “Document	
  

Classification”	
  although	
  opportunities	
  to	
  aid	
  ingestion	
  of	
  regulatory	
  materials	
  exist	
  in	
  each	
  

practice. 
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Section 1.2 Justification 

(Gattuso and Katz 2016) on the Heritage Foundation’s website tell us that between 2009 and 

2015 “federal agencies issued 229 new major regulations that increased burdens, and only 26 

reductions”.  Costs and benefits are discussed in any consideration of a new regulation.  The 

opportunities offered by text analytics could impact that discussion as text analytics holds the 

potential of reducing costs of implementing regulation in the long-term.  

 Fintech (short for technology in finance) has become a well-known term in the banking 

industry and refers to disruptive technology in the financial industry.  Regtech is a sibling to 

Fintech and the term’s use has been spreading over the last couple of years.  In (van Liebergen et 

al. 2016), the Institute of International Finance (IIF) defines Regtech as “the use of new 

technologies to solve regulatory and compliance requirements more effectively and efficiently” 

and as “a niche market, requiring collaboration between unlikely partners: regulators and 

regulatory experts, technology and software developers, and entrepreneurs willing to invest. ”  

An extensive amount of text is exchanged between regulators and the regulated entities.  

Consider the annual stress test process that ensures banks’ have adequate capital to withstand 

challenging economic scenarios.  Text analytics offers the possibility of using the regulators’ text 

to set up a framework for creation of the qualitative text submission required for compliance 

with the regulation.  Perhaps it may be so simple as ensuring the language of the regulation and 

the banks’ labels for policies and procedures match, and then creating an automated tool could 

read new regulation and either highlight areas of policies and procedures that may require change 

or extract the policies and procedures for creation of a submission packet.  Perhaps upon receipt 

of new regulatory text, a bank may, in an automated fashion, use text analytics to identify 

whether the regulation requires changes to its activities through evaluation of a profile of a bank 
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against the regulatory text and where there is a relationship, using the text of regulation to 

extract related text from a database of a banks policies, procedures, meeting presentation 

templates, etc.  I focus on using text analytics to classify the text of regulatory guidance to the 

end of appreciating how the text itself affects the success of the classification, just a small piece 

of the work of Regtech.  To further support exploring the application of text analytics to bank 

regulatory information, I have collected quotations from several of the collaborators in Regtech.  

Publication date:  2016 
Publisher:  Deloitte 
Publication title:  RegTech is the new FinTech 
How agile regulatory technology is helping firms better understand and manage their 
risks  

 
Relevant section heading:  What Is RegTech & Why Do We Need It? 
Link: Deloitte Reference 
 
Quote 

Kent Mackenzie (Deloitte Director, Edinburgh) sees a significant opportunity for 
so-called RegTech providers to bring clarity and efficiency into the way in which 
regulation is interpreted, how compliance is managed and most of all how 
reporting is and will be automated. The use of cognitive technologies and 
enhanced analytics is beginning to help the industry rapidly and automatically 
understand not just explicit meaning from regulation but also the implicit 
meaning or ‘nuance’ that is so often a challenge to digest and assess. As we all 
know data is meaningless unless it is organized in a way that enables people to 
understand it, analyse it and ultimately make decisions and act upon it i.e. by 
creating consumable information. In recent work Kent has undertaken for clients 
in deploying RegTech solution, they have been able to identify the ‘1 to many’ 
relationship for the first time, i.e. where 1 control satisfies many regulations, or 
where a single regulatory paragraph requires many multiple controls.  

Publication date: March, 2016 
Publisher:  Institute of International Finance 
Publication title:  Regtech in Financial Services: Technology Solutions for Compliance 
and Reporting 
Relevant section heading: “I. Regulatory and Reporting Requirements That Would 
Benefit From Regtech” 
Link:  IIIF Reference 
Quote:   
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7. Making financial institutions more aware of regulatory developments 
Identifying new regulations applying to the organization, flagging their potential 
implications, and allocating the accompanying reporting and compliance 
obligations to the right organizational units is a complex task requiring 
significant capacity and human resources to interpret the regulations.  Large FIs 
operating in multiple jurisdictions are faced with local, regional and global 
regulations that are constantly changing.  It is challenging to keep track of the 
different regulations being promulgated, especially since regulators publish new 
regulations in different formats.  Analyzing how regulations compare to each 
other, and on which points they are consistent, and then applying obligations in a 
coherent way within the institution is a particular challenge. 
 

 
Publication date:  July, 2016 
Publisher:  Financial Conduct Authority 
Publication title:  Feedback Statement FS16/4 Call for input on supporting the 
development and adopters of RegTech 
Relevant section heading:  “What RegTech could be introduced?”, subheading  
Link: FCA Reference 
Quote 
 

Integrate, standardise and understand 
Technology that drives efficiencies by closing the gap between intention and 
interpretation  
Semantic tech and data point models  
Technology that converts regulatory text into a programming language.  

• Machine-readable regulation would allow more automation and could 
significantly reduce the cost of change.  

• It could also help ensure greater consistency between the intentions of a 
regulation and its implementation.  

Shared data ontology  
A formal naming and definition of the types, properties, and interrelationships 
of entities.  

• Sharing a common understanding of the structure of regulatory data 
would improve efficiency, reduce costs, ease interactions and help remove 
ambiguity.  
… 

New directions  
Technology that allows regulation and compliance processes to be looked at 
differently (please note that this is not an exhaustive list)  
Inbuilt compliance  
Regulatory requirements can be coded into automated rules applied when 
relevant.  
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A system that can automatically apply the regulatory ‘programme code’ would 
improve compliance, reducing regulatory and staff costs.  
 
 

Publication date:  2016 
Publisher:  EYGM Limited 
Publication title:  Innovating with RegTech – Turning regulatory compliance into a 
competitive advantage 
Relevant section heading:  RegTech in practice 
Link: EY Reference 
Quote 

Regulatory compliance automation 
Future RegTech platforms will be used to interpret regulations, including 
upcoming changes.  
 

 
Publication date:  January, 2017 
Publisher:  KPMG N.V. 
Publication title:  Will regtech save us from regulations?  
Relevant section heading:  There are hardly any regtech early adopters. What do you 
expect from a technology that has not yet proven itself? 
Link: KPMG Reference 
Quote 
 

(AnneMarie) Smit: “What do all the regulations say, what do I have to comply 
with and how do all these various rules inter-relate? Nowadays, staff are 
manually comparing thousands of pages of regulations. No one’s really arguing 
against the fact that technology can do a better job.” 
(Rens) Rozekrans: “We’re in the process of proving it ourselves. Currently we’re 
working on a service for customers which will connect KPMG’s expertise with 
that of IBM Watson. Our ambition is to market a cognitive system, within a year, 
that will map various legislation in detail for organisations. It’s a complex system 
that requires significant investment, but we can keep the costs down because 
basically we’ll be able to offer it to any organisation.” 
 
 

Publication date:  January, 2017 
Publisher:  Chris Skinner (from his biography: “Mr. Skinner is a regular commentator on 
BBC News, Sky News, CNBC and Bloomberg about banking issues; he is a Judge on 
many awards programs including the Asian Banker’s Retail Excellence Awards, as well 
as working closely with leading banks such as HSBC, the Royal Bank of Scotland, 
Citibank and Société Générale, as well as the World Economic Forum.”) 
Publication title:  Chris Skinner’s Blog 
Relevant section heading:  The Semantic Regulator (#Regtech Rules) 
Link: The Finanser Reference 
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Quote, but first please note an acronym used, “FIRO” – it is the Financial Industry 
Regulatory Ontology actively worked on by Ireland’s Governance, Risk and Compliance 
Technology Centre, as described by Mr. Skinner. 
 
 

…thus, a regulatory ontology such as FIRO can help: 
Financial services companies to monitor, assess, and apply a multitude of 
regulations within and across regulatory domains to business processes and data; 
  Model the regulations to help simplify their consumption; 
  Make it simpler for enterprises to map GRC policies onto 

regulations and perform Regulatory Change Management; 
  Help organisations keep abreast of the ramifications of complex 

interacting regulatory rules and policies; 
  Reason over regulations to identify risks and compliance issues; 
  Contribute to the emergence of SMART Regulation. 

There’s quite a lot more on this area if interested, as it’s all about 
the rise of RegTech.  

 

In summary, I have presented the context for my study and a strong justification for the work of 

applying a topic modeling technique to supervisory guidance.  My work will provide useful 

information for the implementation of a text analytics application to ingest regulatory 

communications on a small scale in addition to providing considerations for creators of the 

communication as they make formatting choices.  
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Section 2.1 The application of text mining in central bank activities 

 
In 2015, the Bank of England published Handbook - No. 33 Text Mining for Central Banks 

(Bholat et al. 2015).   The focus of the publication is on “unsupervised machine learning 

techniques because they resonate with the Bank’s evolving ‘big data’ ethos.”  As a justification 

of need for their handbook, the authors cite two interesting works.  The first (Bank of England 

2015) is a discussion paper in which authors discuss how machine learning techniques applied to 

social media can measure uncertainty about the economy, explain how policy communications 

are interpreted, and improve the collection of economic indicators.  Of relevance to my paper is 

the Handbook’s authors’ discussion of using text mining to elucidate interactions between 

monetary and supervisory policies through measuring “textual interconnectedness” as a proposed 

regulation is considered and note that the measure “could help quantify ex ante the potential 

adverse interactions between monetary, macro-prudential, and micro-prudential changes.”  

Another interesting example included in their report is (Li et al. 2015) in which text mining was 

used to measure changes in overall size and word additions and deletions over time in the United 

States Code.  The authors conclude with a discussion of the process of text mining and a 

description of models utilized.   

The Fed also has turned its eye to text mining.  With respect to monetary policy, I 

identified articles in which sentiment analysis was performed.  On one end, (Cannon 2015) 

shows text mining with and without sentiment analysis in order to better understand how 

monetary policy discussions may be or have been interpreted.  On the other end, (Sinha 2014) 

and (Shapiro, Sudhof, and Wilson 2017) have published studies on how text mining news with 

sentiment analysis can be used to form features for use in econometric models.  With respect to 

the Fed’s supervision and regulation duties, (Goldsmith-Pinkham, Hirtle, and Lucca 2016) 
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published insights from text analytics of supervisory findings.  Insights into the findings were 

gained through the application of the Latent Dirichlet Allocation (LDA) topic modeling 

technique and then the topic assignments were used as a feature in a regression to understand the 

relationship between examination findings and other characteristics of bank health.  

A working paper from Bank of Canada (Hendry and Madeley 2010) uses a topic model to 

identify themes in various monetary policy communications.  The authors found overlap among 

themes and used a method of regressing a theme on a following theme in an iterative process 

until they found a final set of orthogonal themes.  Themes were then used as features in 

econometric models.  

In response to the implementation of the Single Supervisory Mechanism in Eurozone 

countries in 2014, (Nopp and Hanbury 2015) consider sentiment as an aid to fill the need for 

expanded information about banks’ risk appetites.  In a first case, the authors extract CEOs’ 

annual letters and outlook articles from banks’ annual reports, apply sentiment tags to indicate 

whether words are positive, negative, or uncertain, and compare these outcomes to the 

fluctuation magnitude of the tier 1 capital ratio (a capital measure that accounts for risk via a 

risk-weighted asset denominator) on an aggregated basis.  They also regress the fluctuation of 

the tier 1 capital ratio on the negativity sentiment score and find it is significant, but note that 

additional analysis indicated the findings do not hold at an individual bank level.  In a second 

case, the authors label the extracted texts according to the fluctuation direction of the tier 1 

capital measure, eliminate words that are too common or not informative in the model, and use 

the remaining information to train a model to classify text according to the future fluctuation 

direction.  The authors do not find this technique successful when it is compared to a non-
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modeled approach. The authors conclude that sentiment work may provide valuable insights 

into the macroprudential environment for supervisors when additional research has been done.       
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Section 2.2 Techniques of text analytics 

(Blei 2012) explains the multitude of considerations to address before running LDA.  Blei tells 

us we will be computing the posterior probabilities and describes them as “the conditional 

distribution of the topic structure given the observed documents”.   He explains the intractability 

of computing the denominator of the posterior, labeled the marginal probability of the 

observations and described as “the probability of seeing the observed corpus under any topic 

model”.  He explains that while other methods approximate the posterior with sampling methods, 

such as a Markov chain, the variational methods “posit a parameterized family of distributions 

over the hidden structure and then find the member of that family that is closest to the posterior.  

Thus the inference problem is transformed to an optimization problem.”  He describes a number 

of extensions to LDA to address corpuses that violate assumptions, such as a correlated topic 

model which seeks to account for correlation between topics.  Finally, he tells us about future 

directions, such as are fleshed out further in papers discussed below.     

 (Zhu, Blei and Laffterty 2006) posits that LDA as originally set out will not 

accommodate the inclusion of domain knowledge.  They propose “tagLDA” as a potential 

solution, where “tag” may refer to domain-specific tags, part of speech tags, html tags, or even a 

tag for the section of the document from which the word was taken.  They note their paper does 

not address tags for “higher order” terms such as bigrams and that one way of handling the tags 

may be to build a k-topic model for each group of terms in which we are interested.  However, 

they then present a version of LDA which will account intra-process for the tags by accounting 

for the tag as the word probabilities are determined.  Finally, the authors discuss the lack of 

advantage of tagLDA for document classification and specify future work to support the 

incorporation of domain knowledge into the LDA process.  
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 (Handler et al. 2016) considers multiple tools to support extraction of noun phrases 

and begin with a case for moving beyond the unigram bag of words (BoW) because unigrams 

will not “preserve meaningful multiword phrases”. The authors propose a pattern-based 

extraction method which relies upon existing tag applications, using a definition of noun phrase 

as defined in the paper.  Their technique takes into account coordinating conjunctions as well as 

parenthetical post-modifiers (their example is a 4-gram, “401(k)”) and numerical modifiers.  

Term sequences are tagged with pairs of start and end symbols.  The authors found their method 

provided phrases that were “less ambiguous and more interpretable than unigrams”.   

 (Chuang, Manning, and Heer 2012) considers the issue of keyphrase utilization versus 

unigram.   Their study is focused on how humans perceive visualizations of text, such as word 

clouds.  They distinguish between work done to facilitate search effectiveness/information 

retrieval and work done to facilitate “document understanding”.  They consider the risk of 

creating nonsense when we employ trigrams.  In a study of descriptions of text formed by 

humans, the authors observed humans’ use of primarily multiword terms, especially noun 

phrases.  The humans who participated in their study also gravitated to mid-frequency terms, 

rather than most or least frequent terms. Humans’ descriptions also varied according to the 

number of documents being reviewed and the terms humans selected were not randomly 

positioned. The study authors used this information as input to a logistic regression to model 

“keyphrase quality” and went on to build an algorithm to create word clouds according to a 

number of factors.  

  (Chang et al. 2009) discusses the lack of a standard measure when the goal of topic 

modeling is exploration in an unsupervised fashion rather than predictive.  They tell us “While 

this common latent space has explored for over two decades, its interpretability remains 
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unmeasured.”  Two human-based assessments were designed to measure the quality of topics 

and assignments.  The first task is labeled word intrusion, and “measures how semantically 

‘cohesive’ the topics inferred by a model are and tests whether topics correspond to natural 

groupings for humans”.  The second task, topic intrusion, “measures how well a topic model’s 

decomposition of a document as a mixture of topics agrees with human associations of topics 

with a document”.  The authors’ experiment with human detection of word and topic intrusion 

validated the use of applying topic modeling to group documents into topics and the authors note 

a possibility of someday progressing to a “computational proxy that simulates human 

judgments.”   
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Section 2.3 Specific applications of text analytics 

 
(Lau, Law, and Wiederhold 2005) describe government regulations as “semi-structured text 

documents that are often voluminous, heavily cross-referenced between provisions and even 

ambiguous”.  In their paper, they discuss similarity analysis of government regulations in 

general, including both state and federal regulations, along with the handbooks and guidance 

related to the regulation.  The authors propose a design for a tool which would be made widely 

available and used to identify similarities in regulations which may otherwise be “hidden” from a 

reader of the regulations.  Their tool would take advantage of the “natural hierarchy” in 

regulations and support the regulated entities’ need to identify material related to regulatory 

concepts and access linked features, such as exceptions and measurements.  The authors find 

their system identifies “’hidden” similarities among regulations.  Their future plans include using 

the same technology to identify conflicts among regulations.  

 In a novel application of the topic model, (Doyle and Elkan 2009) proposes financial 

topic models, in which the topics demonstrate the network relationship of publicly-traded 

companies.  A “topic” will include identifiers for companies assigned to the topic.  Unlike the 

data challenges that exist when measuring systemic risk via company relationships (e.g., loans), 

the stock price data used by the authors is more readily available.  The grouping of companies as 

a “topic” may facilitate the identification of the “network” and improve the understanding of 

interconnectedness which increases systemic risk in the financial system.  
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Section 2.4 Ontologies dealing with bank supervision 

 
(Bonsón-Ponte et al. 2009) discusses the increasing complexity of banking supervision in the 

European Union and focuses primarily on the qualitative and quantitative information required 

from banking organizations by supervisors. They present a case for creating a shared ontology to 

facilitate communication between supervisors and supervised.  They posit that benefits will 

include simpler re-use of information to prove compliance and the creation of a record of 

decision processes which will facilitate the use of decision technologies.  With respect to the 

latter, they consider the need for support of an ontology as not just a role of the organizations’ 

technology functions but also potentially requiring overall cultural transformation in the 

organization.  

(Bennett 2013) introduces the Financial Industry Business Ontology (FIBO).  He refers to 

FIBO as a step to resolve the “reconciliation hell” of data management in the financial services 

industry.  The author posits that a common vocabulary is not a solution in the problem of 

integrating data derived from different systems and encourages a conceptual model which 

supports the linkage between business requirements and deliverables.  Existing web language  

principles will be enhanced to support the FIBO.  Bennett concludes that implementation of the 

FIBO with the incorporate unambiguous shared meaning of concepts will be of value in the 

management of the systemic risk which is of concern to regulators.   

(McCarthy 2013) tackles a specific case of the lack of an unambiguous shared language.  

He calls for technology based on language used by both market participants and regulators which 

will support real-time identification of high-frequency trading irregularities.  As others have 

done, McCarthy notes the important role of regulation in the stability of the financial system and 
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the corresponding mounting complexity of the regulation.  In his case for a shared language in 

regulation, he presents a visualization of the regulatory structure, copied here in Figure 1. 

 

Figure 1. The web of regulators. Source: This graphic is a copy of Figure 2 of Financial Industry Ontologies for Risk 
and Regulation Data (FIORD) – A Position Paper, published in Springer Conference Series and also available at 
ARAN	
  Library	
  .	
  
	
  
	
   For comparison to McCarthy’s graphic in Figure 1, I include here a reference from 

Financial Regulation: Complex and Fragmented Structure Could Be Streamlined to Improve 

Effectiveness (GAO 2016).  (GAO 2016) does not discuss ontologies, but fragmentation and 

overlapping authority which is discussed would be aided by a common ontology. Later	
  in	
  the	
  

paper,	
  I	
  develop	
  a	
  measure	
  to	
  assess	
  the	
  results	
  of	
  conducting	
  topic	
  modeling	
  on	
  the	
  SRLs.	
  	
  

The	
  measure	
  is	
  based	
  upon	
  a	
  very	
  small	
  part	
  of	
  what	
  is	
  a	
  very	
  large	
  and	
  complex	
  ontology. 
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Figure 2.  GAO graphic of regulatory structure.  This is graphic is a copy of a figure located on page 2 of the 
Highlights version of FINANCIAL REGULATION: Complex and Fragmented Structure Could Be Streamlined to 
Improve Effectiveness, GAO-16-175 available at GAO Report.  
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Chapter 3.  Modeling process   
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Section 3.1 A text analytics technique to apply to SRLs 

 
I offer several examples of how document classification may be conducted using text analytics 

and then focus on the method I adopt for this paper. A first example is the classification of 

documents according to sentiment.  While sentiment is most often determined by identifying 

words according to whether they evoke a positive or negative feeling, sentiment may also tell us 

about other feelings relevant in finance, such as opportunity or restriction.  All sentiment analysis 

relies upon a dictionary which assigns feelings to terms.  (Loughran and McDonald 2011) found 

that words read as negative in the “usual” sense are not so in finance, including such words as 

“tax” and “cost”.   In another example of classification, we may look to text analytics to classify 

our documents according to a “named entity”.  For example, named entity recognition may 

enable classification of SRLs according to their relationship with banking laws, such as the Bank 

Secrecy Act (BSA) or the Dodd-Frank Wall Street Reform and Consumer Protection Act of 

2010.  Or classification may be made according to a lexical complexity score.  This classification 

may identify regulatory text which perhaps is inconsistent with the plain language requirements 

of federal banking agencies as mandated in the Gramm-Leach-Bliley Act of 2009 and of other 

federal agencies as mandated in the Plain Writing Act of 2010.  Another example is classification 

according to overall similarity or differences between documents.  Perhaps text analytics would 

be used to classify SRLs by associated regulations even when the SRLs and regulations were not 

co-located or cross-referenced.   

The text analytic modeling method I adopt for document classification is “topic 

modeling” using a probabilistic generative model named LDA. LDA seeks to identify similar 

documents based on the co-occurrence of words.  Using the co-occurrence information, LDA 

will model two probability distributions – one relating topics to words and the second relating 
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documents to topics. In addition to the topics to which the documents are assigned, LDA will 

return a list of terms, by topic, with the probability that finding that term in a document will 

indicate the document belongs to that topic.  The topic is the “hidden” information detected by 

LDA, while the words of each document are the observed information. A “topic” may tell us 

about the underlying theme of the document to enable classification, but we may also gain 

insights into authorship, temporal, or other factors that generated the documents included in the 

topic. LDA is referred to as a mixed-membership model because it is designed to deal with 

documents that fit into multiple topics with varying probabilities, which accommodates the 

structure of bank regulatory text where seldom will any one piece fit into one topic exclusively.  

The remainder of this paper focuses on topic modeling by LDA. Perhaps the relatively simple 

SRL series does not justify text analytics, as benefits of humans’ superior text classification 

skills would outweigh the costs of an implementation of text analytics.  But SRLs are just one 

series of regulatory communication within many and those many are escalating rapidly in 

quantity and complexity.   

In two of the four cases of applying LDA to the SRLs, I use natural language processing 

to tag words for their part of speech. The work of technology to create tags for part of speech is 

challenged to understand the context of the word’s use and if a word can play different roles in a 

sentence.  Compare how a human versus a computer would tackle the task of inferring the 

meaning of “banks” in the following sentences:  

SRL guidance applies to banks.  
He banks using a piggy bank.  
There are trees on the river banks.  
The plane banks when there is snow on the ground.  

 
 I will include one last level of general description of methodology here – machine learning.  
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Machine learning methods run in a data-driven fashion instead of the traditional rules-based 

fashion. Machine learning models may be categorized as supervised or unsupervised and LDA, 

one of many machine learning methods, may be used as either supervised or unsupervised.  

Running LDA in an unsupervised fashion drives the model to look for relationships without the 

benefit of a predefined targeted relationship. My application of LDA to SRLs is unsupervised.   

While for this specific case of the SRLs, we have access to a human expert’s classification 

system and could have added that system as the model’s supervision, I chose not to share those 

classifications with the model.  From my results, I would like to be able to draw a conclusion 

about the use of LDA on bank regulatory text regardless of whether it has been labeled by a 

human expert.  Note though that I do use the classifications after the model has run to compare 

results of modeling the topics to show the change in results from changes in processing.  
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Section 3.2 An Objective Measure of model performance 

Unsupervised LDA does not yet have the pervasive goodness of fit standards found in traditional 

models.  Although I will later discuss some subjective review of LDA topic assignments, I 

wanted an objective measure to compare outcomes of choices made in creating the BoW as well 

as running the LDA. For this objective measure, I use LDA’s grouping of SRLs into topics 

compared to the grouping done in the experts’ FRBOG topics.  All but two SRLs were assigned 

to at least one of 33 topics by FRBOG experts.  To facilitate the creation of a measure, I made 

assignments of the two SRLs not otherwise assigned.  SR0904 discusses “Applying Supervisory 

Guidance and Regulations on the Payment of Dividends, Stock Redemptions, and Stock 

Repurchases at Bank Holding Companies” and I assigned it to the Capital Adequacy topic.  

SR1215 discusses “Investing in Securities without Reliance on Nationally Recognized Statistical 

Rating Organization Ratings” and I assigned it to the Securities topic.      

To familiarize ourselves with the FRBOG topics, we review some descriptive charts. The 

FRBOG topics represent an ontology level, as we see in Figure 3. In Figure 4, we see that more 

SRLs are categorized as Examination and Supervision Guidance (ExamSupGuidance) than in 

any other category, just one SRL is categorized in each of Fraud-Related Activities (Fraud) and 

Affiliate Transactions (Affiliate), and varying numbers of SRLs are categorized in the remaining 

FRBOG topics.   

 In Figure 5, we see SRL issuance by year for those SRLs in our sample.  In Figure 6, we 

review the number of FRBOG topics into which each SRL is categorized.  We see that while 

many SRLs are a member of just one or two FRBOG topics, some are included in more.  An 

outlier is SR1319, which is a member of 10 FRBOG topics.   
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 For my objective measure of LDA performance, I will count the number of SRLs in an 

LDA topic that fall into the FRBOG topics most represented in the LDA topic and second most 

represented FRBOG topic in the LDA topic. This method does not give consideration to “ties” in 

the representation of FRBOG topics in the LDA topics and so a tie is agnostic to the choice of 

FRBOG topic matching to the LDA topic.  In that respect, there is some arbitrariness which 

prevents us from interpreting the meaning of the LDA topic assignment according to the FRBOG 

topic labels.  Labeling LDA topics often requires human intervention.  
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Figure 3. A 3-level partial 
ontology for SRLs. 
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Figure	
  4.	
  Histogram	
  for	
  counts	
  of	
  SRLs	
  by	
  FRBOG	
  topic. 

 

 Using this method, any LDA topic 

made up of just one or two SRLs will 

automatically match to FRBOG topic grouping 

at 100%.   Rigor of the measure would be 

improved by introducing a penalty term for 

these cases.  Though I do not create a penalty 

term, I will note such LDA topics in the 

upcoming results section.   
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The code for this process is 

described in Appendix 3. From here on, I 

refer to this measure as the “Objective 

Measure”.  
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Chapter 4.  The application of the LDA topic model to the SRLs 
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Section 4.1 The corpus 

 
In the context of text analytics, the word “corpus” refers to the collection of documents used in 

the analytics.  I obtained the SRLs for the corpus from a Fed website.  The website allows 

download of the SRLs as text via a print file, a PDF, or an html file.  All SRLs in effect are 

accessible at the website and are listed by year of issuance or by topic (hereafter those topics are 

referred to as FRBOG topics).  Despite a description of PDFs as “often the hardest to extract 

from” in Taming Text, I chose to download the PDF versions of the SRLs and downloaded 125  

SRLs.  The 125 SRLs were those issued between and inclusive of 2006 to 2016, if the letter 

remained active as of December 31, 2016.  I used the R package PDFTOOLS to transform the 

PDF files into text. 

 SRLs follow a traditional letter format.  I considered their structure in order to identify 

“landmarks” which may enable my extraction of metadata or the elimination of text I feared may 

distract the model later on.  Here I will briefly discuss the structure of SRLs and related possible 

or actual actions based upon them.  I discuss the pieces as landmarks because of their impact on 

how text mining is conducted and to also note inconsistencies which perhaps may become an 

area of opportunity as regulators seek to facilitate text analytics. 

• Identifier:  The header includes the SRL identifier, which is in a format such as 

“SR”+YY+##, where ## is the one-up number assigned within a year.  The format of the 

identifier differed between letters according to whether a space was placed between “SR” 

and YY, a hyphen was used between YY and ##, or a leading zero was used in ##. While 

these differences are not noticed when humans are reading one letter at a time, they 

prevent simple retrieval of the identifier for inclusion in metadata. 
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• Addressee and subject:  These potential landmarks are in a section that extends in an 

abbreviated horizontal fashion.  First, an addressee is provided; second, a subject is 

given.  Letters are usually addressed to 1) the Reserve Bank head of the function 

responsible for the supervision area that implements the related regulation and 2) the 

financial institutions required to comply with the letter.   The field may begin with “TO 

THE OFFICER” or “OFFICER”, an inconsistency which limits its use as a landmark.  

The subject begins with “SUBJECT”, which I did use as a landmark to extract the first 

line of the subject as metadata for my corpus.  I was challenged to extract the full subject 

as there was no landmark to use as a stopping point for multi-line subjects.   

• Applicability:  The next landmark is a box of text defining “Applicability”.  The 

included text in this boxed section specifies to which regulated entities the guidance 

applies based upon size, activities, or other characteristics.  I believe this represents a best 

practice as a text miner could test applicability to rules and, if appropriate, stop ingesting 

and skip modeling if the guidance was not applicable in a particular mining case. I did 

not include this information in my metadata as the box is included beginning in 2011 and 

my sample began in 2006.   

• The body of the letter:  This part is the text of interest when seeking insights. 

• The end of the letter body:  The body of the letter ends with a paragraph with question 

referral information.  In some cases, I used the start of the question referral sentence as a 

landmark to stop ingesting.  Identifying the start of the sentence was made time-

consuming by the variety of wording used and on occasion, the lack of uniqueness of the 

start of the sentence.  When the wording of the question referral sentence was not unique 

in an SRL, I instead used the signature field as a stop landmark.  While the html versions 



	
   	
   	
   42	
  
of SRLs appear to consistently use the words “signed by”, the PDFs are inconsistent in 

its use.  The signers’ names were used then to establish a stop landmark, but in some 

cases, middle initials were inconsistently applied.   

• Letter attachments and lists of superseded SRLs, attachments to the current SRL, 

and/or cross-references: While lists of superseded SRLs, attachments to the current 

SRL, and cross-references to other SRLs or regulatory information are important, they 

were not useful in this application of topic modeling.  In addition, some SRLs include 

relevant attachments in their entirety while others only include the reference to the name 

of the attachment.  In consideration of the potential effect on term frequencies of 

inconsistently included attachments, in some cases I removed them by stopping text 

extraction at the question reference paragraph or the signature line.  
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Section 4.2 Corpus to BoW to document term matrix (DTM) 

Text analytics often requires the creation of a BoW.  A BoW is created by breaking the long 

character strings of each document in the corpus into a file of individual “tokens”. Tokens may 

be words from the text or combinations of the words.  Moving from a corpus to a BoW follows a 

well-established set of steps. However, how the steps are performed – the order, the tools used, 

etc. – will affect the BoW and that affects the outcome of LDA.  In a last step, the BoW is 

transformed to a DTM.  A DTM is the input to text analytics models and consists of tokens for 

columns and documents for rows, with matrix cells filled with frequencies of tokens within 

documents.  Here, I discuss the steps and related choices I made.   

Step 1. Tokens 

Sentences or phrases must be split into words.  In my program, I did this by using R’s string 

manipulation capabilities.  I retained all words from each SRL PDF file, using a space as the 

boundary of a word. 

Step 2.  Text case  

Depending upon the defaults for handling text case, a computer may not identify same words as 

such if case is different.  While I wouldn’t want the computer to differentiate “Thesis” from 

“thesis”, I would want “ARMS” (when capitalized, the acronym for adjustable-rate mortgages) 

differentiated from the word “arms”.  While the former is simple to solve, the latter is not.   

“ARMS” is just one example of the many acronyms that introduce complexity into text analytics 

and while it is simple to adjust a single acronym, consistent model results will occur only if a 

consistent way of handling the universe of acronyms exists.  Most often all text is made 

lowercase in preparation of the BoW, even acronyms.  I chose to do that using R’s TM package.   
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Step 3.  White space 

There’s almost always going to be some extra white space in lines of text, such as often occurs 

around bullets.  That space may interfere with how words are tokenized.  The usual practice is to 

remove this space.  I used R’s TM package for this. 

Step 4.  Punctuation 

My next step addressed punctuation.  A computer will not recognize “regulations” as the same 

token as “regulations:” or “regulation’s”, so common practice is to strip all or almost all 

punctuation from the corpus in the transformation to BoW.  I used R’s TM package for this step 

as well, but included an option to preserve intra-word-dashes.  The SRLs included many 

hyphenated terms which should be distinguished as not just additional occurrences of one 

component word.  

Step 5.  Numbers 

In most applications, numbers are removed in the conversion to BoW.  That was appropriate for 

this exercise as well, and R’s TM package was used to do so.  However, future work is called for 

as it is easy to identify an example in which removing numbers may not have been appropriate, 

such as if the text mining task was to identify applicability of an SRL to a particular bank using 

the asset size cutoff set out in the Applicability section of the SRL.  

Step 6.  Stop words  

“Stop words” are often removed from the corpus as well.  Stop words are a list of commonly 

used words which should be excluded from the BoW.  Examples include “a”, “the”, “above”.  I 

used the R TM package list of English stop words.  Most everyone may agree removal of “the” is 

appropriate, but other suggested stop words may not be universally accepted as appropriate.      

Step 7.  Word stems 
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A next step is often to stem words.  When words are stemmed, they may be stemmed to 

remove pluralization, to find a root of a word, or something in between.  In a video from 

Cambridge Machine Learning Summer School 2009, David Blei tells us “there’s no good reason 

not to stem” and reminds us that consideration should be given to tolerance for stemming’s effect 

on the interpretability of LDA output.  Stemming resulted in consistent overall performance 

improvements in my study according to the Objective Measure.  I used the R TM package 

stemming process.  

Step 8.  Too rare or too common terms (aside from stop words) 

A final step is my process was too address too rare or too common terms.  Consider two SRLs 

that both discussed “influenza”, an atypical topic for bank regulation.  When I observed the 

challenge of removing too rare terms without removing “influenza”, I chose to keep all rare 

terms, even if they occurred just once.  I expect in the context of bank regulation rare words will 

be insightful.  On the other hand, there are many, many common words in regulation, beginning 

with regulators’ names, “supervision”, or “regulation”, which are not likely to be useful in 

classifying documents.  These too common words can prevent LDA from creating meaningful 

topics.  In this BoW preparation, words that were present in more than 50 of the 125 SRLs in the 

corpus were excluded by employing the TM package.   

Step 9.  Transformation to DTM 

LDA most commonly uses a DTM in which matrix cells contain unweighted token frequencies.  

In some applications, the DTM’s cells may instead include weighted versions of term 

frequencies.  
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At completion of these steps, our DTM created by the R TM package has 21,889 non-

sparse (non-zero) token entries.  The token entries represent 63,332 tokens in total, of which 

there are 3,526 unique tokens.    
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Section 4.3 Topics in a Simple Case 

LDA was applied to the DTM created in Section 3.5.  LDA is commonly referred to as a “BoW 

model” in which tokens are interchangeable and order is not significant. (Blei, Ng, and Jordan 

2003) “emphasize that an assumption of exchangeability is not equivalent to an assumption that 

the random variables are independent and identically distributed”.  They state that it is rather 

“conditionally independent and identically distributed, where the conditioning is with respect to 

an underlying latent parameter of a probability distribution.”  The preparation steps described in 

Section 3.5 will bring the SRL BoW closer to meeting this assumption, enough so that LDA can 

be used.  Though beyond the scope of this paper, there is a large amount of research exploring 

ways of relaxing this assumption.  For example, (Wallach 2006) describes a bigram language 

model which aims to predict one word based on the preceding word.   

 LDA requires that we set “k”, the number of topics in the model.  “k” is assumed to be 

known and fixed.  The parameter is commonly set through mathematical methods or human 

expertise.  For this case, I chose to rely upon the human expertise used to create the FRBOG 

topics in Figure 3.  There were 33 FRBOG topics to which SRLs are assigned on a one-SRL-to-

many-topic basis.  LDA is a mixed-membership model in which documents may be allocated to 

more than one topic and this is consistent with the human FRBOG expert’s classification.  Based 

upon the overlap, the number of SRLs in my sample, and LDA performance according to the 

Objective Measure, I chose to use k = 23.   

As a Bayesian model, LDA will begin with priors and then update them with observed 

information until the model converges on posterior probabilities of a document’s inclusion in a 

topic and a topic’s inclusion of a token. Choices about priors must take into consideration the 

generative nature of LDA as LDA seeks to explain how documents were generated from the 
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terms of a topic.  Factors considered include expectations about the outcomes as well as 

whether any mathematical derivations were appropriate.  α, which tells us about the distribution 

of documents over topics, and β, which tells us about the distribution of topics over terms, are 

both assumed to be “sampled once in the process of generating a corpus” unless priors are given 

to the LDA code (Blei, Ng, and Jordan 2003). For the α prior, I chose to set a value to initiate 

the process of estimating topic proportions.  (Griffiths and Steyvers 2004) recommended 

beginning with an α = 50 / k, which in this version of my model equaled 2.17.  I applied trial and 

error to explore outcomes using other values, and settled at 2.7 as it produced the highest 

Objective Measure given the other model choices.  When a symmetry assumption is met, a 

higher value of α implies that documents are more likely to include multiple topics; when 

symmetry is not met, the higher α will imply documents load mostly to one topic.  

A final choice in my LDA was the method of estimation of the probabilities of topics 

over terms and documents over topics. I chose the variational inference method discussed earlier 

with an implementation using the R Topicmodels package.   
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Section 4.4 Results of the Simple Case 

After the completion of the steps described above, LDA results are reviewed.  First, we review 

the Objective Measure which tells us that 102 of the 125 SRLs were grouped within an LDA 

topic’s most common two FRBOG topics.  

The output of the LDA process provides probabilities that documents and terms have 

been generated from an LDA topic.  First, I discuss the probability of a document having been 

generated from an LDA topic.   (Grun and Horn 2017), the R Topicmodels documentation, 

defines gamma (γ) as a matrix of “parameters of the posterior topic distribution for each 

document”.   Since our model allows for documents to have membership in more than one topic, 

the LDA topic of greatest interest is the one from which an SRL was most likely to have been 

generated.  In Figure 7, we see γ for each SRL within the LDA topic from which the SRL was 

most likely generated.  Most SRLs have a high probability of having been generated from the 

terms of the LDA topic to which they were assigned, but not all.  To review a couple of specific 

SRLs, let’s begin with SR1212 in LDA topic 4 which has γ of .54.  This tells us LDA was 

challenged in identifying if SR1212 belonged in LDA topic 4.  The probability of SR1212 

having been generated from the terms of LDA topic 13 was .46, not too far behind.  In contrast, 

we see in LDA topic 8 that SR1314 and SR1604 have γ of over .99, telling us that there is a very 

high probability that the SRLs were generated from terms in this topic.  The γ chart is useful also 

as a quick glance at how SRLs are spread across the LDA topics.  We expect that LDA topics 

will be useful classifications and contain an appropriate share of SRLs, as opposed to say 22 

SRLs in their own individual topic and the remaining 103 SRLs in the one remaining LDA topic.  

As a precursor to anticipated future work in which I will review the evolution of regulatory text 

relative to banks’ financial statistics, I also plot γ of each SRL according to the year(s) in which 
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the SRL was issued in Figure 8.  Using these charts, we see how some SRLs loaded mostly to 

one LDA topic (spikes) while others loaded to multiple LDA topics (low bounce). We note that 

some years’ SRLs have no representation in some LDA topics, such as the 2010 SRLs with γ < 

.00 across the board in LDA topic 8.  We see that SRLs issued in 2013 and 2016 are included in 

many of the LDA topics, likely reflecting the regulatory environment which called for varied 

regulatory changes. 
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Next, we review β, the probability of a term within a topic, which tells us the terms we are 

most likely to see in a document generated from the related topic. Because we stemmed, the top 

terms are returned as stems. We review the top ten most probable terms by plotting β for each 

LDA topic in Figure 10.  In LDA topic 3, we see that “test” is somewhat defining of the LDA 

topic, where β tells us there is more than a 0.08 probability that an occurrence of “test” has been 

generated from LDA topic 3. If an SRL includes both “test” and “stress”, there is a bit more than 

.15 probability that it will have been generated from LDA topic 3.  In LDA topic 5, “audit” has a 

β near 0.08.  We see “firm” in LDA topic 16 with a similar level β, a bit surprising since firm is 

not a very specific term and perhaps “firm” would be added to stop words in a future run.  On the 

other hand, if we look at LDA topic 1, we see the highest β of terms is just a bit over 0.02 for 

“access”.  If we compare LDA topics 11 and 18, we’ll see “surveil” and “rate” switch places as 

the most probable and least probable (among the top 10) terms, though the level of probability 

differs.  We see also an odd term, “-site”, in both LDA topics 8 and 18.   

 We’ll take advantage of noticing the “-site” to discuss some opportunities for 

improvement in how we topic model regulatory text.  SRLs use the terms onsite and offsite most 

often to describe where examination work takes place.  There is inconsistent use of the hyphen in 

the SRLs, i.e., “offsite” might be “offsite” or it might be “off-site”.  No SRL includes just “-site”; 

instead, we are seeing in the β plot the effect of pre-processing choices.  When “off” was 

removed during the stop word process, we were left with “-site”, and since I selected to preserve 

intra-word hyphens, “-site” passes through the model and turns out to be an important term.  

What is important to note is that without further exploration we don’t know whether “-site” 

supports the LDA process better than “onsite” and “offsite” – the term frequency of “-site” will 

have a higher term frequency than that of “onsite” or “offsite” individually but here we only have 
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“-site” when an SRL author chose to use a hyphen. While consistency in hyphenation is a 

good goal, we cannot say for certain the direction of the effect on results.  For example, an 

author of SRLs that used the hyphen may be a specialist in the BSA and an author of SRLs that 

did not use the hyphen may be a specialist in managing market risk.  Unintentionally, the 

inconsistency may help to differentiate the topics.    
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document’s 
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 Earlier I mentioned the 102 / 125 SRLs were grouped according to the Objective 

Measure.  While that was one way of reviewing results, another is to review other classifications 

that this simple run of LDA found.  To explore that, next I subjectively review some specific 

LDA topic assignments in comparison to FRBOG topic assignments.  

Example 1.  LDA topics where the FRBOG topic “Capital Adequacy” was prominent 

In Figure 4, we see that we begin with 16 SRLs in the FRBOG topic “Capital Adequacy”.  Three 

of these 16 make up LDA topic 3 in its entirety.  This LDA topic 3 had high βs for “test” and 

“stress”.  Here LDA has gone beyond “Capital Adequacy” to detect that these three SRLs are 

related to tests of adequate capital under stressed economic scenarios.  LDA topic 7 includes just 

two SRLs, which both address the impact of market risk on capital adequacy.  We see “stress” 

and “test” show up in LDA topic 7’s highest probability terms, both not at the level at which they 

showed up in LDA topic 3.  We see “model” at the topic of LDA topic 7’s terms, and “mrr” (in 

its capitalized form, an acronym for Market Risk Rule), in the fourth from the top spot.  We also 

see a high representation of “Capital Adequacy” in LDA topic 15, in which the top term was 

“rule” with β = 0.06, and the common factor seems to be these SRLs establish rules for capital 

calculations.  In LDA topic 16, we see two more “Capital Adequacy” SRLs – these two SRLs 

were issued simultaneously and establish the same provisions but are tailored for different asset 

size and complexity of the entities to which they were applied.  Finally, we see “Capital 

Adequacy” again for each of the three SRLs that make up LDA topic 23.  These three SRLs 

discuss how a bank manages its capital directly and we see top terms such as “dividend” and 

“repurchase”.  We begin to appreciate that LDA may be working towards creating subsets of the 

FRBOG topics. 
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Example 2.  LDA Topic 14 

LDA topic 14 includes 13 SRLs, with six drawn from the FRBOG topic “BSA/OFAC” (Bank 

Secrecy Act / Office of Foreign Assets Control), two drawn from “Liquidity Risk”, and the 

remainder drawn from other FRBOG topics in single occurrence. Though there is limited 

commonality of content, it seems the defining commonality of these SRLs is that they are issued 

on an interagency level, though the LDA topic does not represent the universe of SRLs with 

interagency guidance.  Interagency guidance is usually provided as an attachment to an SRL and 

the authors of interagency guidance are different than those of Fed-specific guidance.  Top terms 

include  “measure”, “special”, and “internet”, while the first occurrence of a BSA/OFAC-

specific term, “fincen” (in its capitalized form, the acronym for Financial Crimes Enforcement 

Network), shows up in position nine of the top ten terms.  Here, we must consider whether the 

interagency effect is strong enough to trump the effect of underlying content similarities and how 

that may be remedied in the future when the classification goal is to classify on content.  

 In summary, we see that LDA provided meaningful grouping according to the Objective 

Measure and is also providing some insights into subsets of SRLs within and across FRBOG 

topics.  LDA was not set up to duplicate the mapping of each SRL into the universe of applicable 

topics as is done by the FRBOG experts, but LDA has certainty created topics that are aligned 

with the FRBOG topics.   The alignment is strong enough to have shown that text analytics will 

enable the work of Regtech to create a framework for automating the movement of regulatory 

communication between regulators and the regulated.  As this was the simplest BoW using 

standard pre-processing steps, we’ll next review some tweaks to appreciate how LDA responds 

to deviations. 
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Section 4.5 Note on sentiment analysis 

 
As an area of inquiry separate from the topic 

modeling work, I provide a note on sentiment 

analysis, using the BoW created in the Simple 

Case before stemming and stopword 

elimination was applied.   As noted above, 

sentiment analysis utilizes a dictionary that 

assigns feelings, or sentiments, to terms used 

in the corpus. So long as dictionaries allow for 

the use of unstemmed words, the unstemmed 

versions will allow for greater precision in 

sentiment scoring.   For example, “acquirer” 

may not reflect sentiment in SRLs, but “acquirers” may reflect negative sentiment if it is usually 

the case that only failed institutions have more than one acquirer.  The word counts of SRLs are 

displayed in Figure 10 to the extent it aids in setting a benchmark.  (Note that this is an output of 

QDAP, and may differ from other word counts used in this paper as word count is affected by 

treatment of hyphens, exclusion of too common words, etc.). 

Sentiment analysis of the SRL corpus is made quite challenging by the lack of a 

dictionary specific to bank regulation.  Words that may be perceived as positive or negative in 

consumer reviews or even in financial disclosures may not be so in bank regulatory 

communications. I began an exploration of sentiment analysis to determine if it would aid in the 

labeling of regulatory communications as “permissive” or “restrictive” and found that it did not 

when using the available dictionaries which were not developed for bank regulation.  I share 
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Figure 10. A display of SRLs according to a word count 
calculated by QDAP.  Most SRLs are relatively brief. 
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results of the application of two dictionaries to the SRLs here to introduce a case for the 

creation of a sentiment dictionary specific to bank regulators’ communications.  

 First, I use the R QDAP package’s “polarity” function which enables the comparison of 

the polarity in language across documents or time.  I use only the function’s assignment of words 

as “positive” or “negative”. Next, we consider the most frequent of each of positive and negative 

words.  The QDAP package assigns sentiment based on a dictionary introduced in (Hu and Liu 

2004) which discussed mining opinion features in customer reviews. In Figure 11, we see that 

“risk” and “risks” are the most frequent negative words.   In Figure 12, we see that “guidance” 

 

Figure 11.  QDAP's identification of negative words. 
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is the most common positive word and in general there are more “positive” terms than 

“negative”.  The dictionary’s assignments of sentiment are inconsistent with usage in SRLs. 
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Because “risk” was such an outlier, I show its 

associates and dispersion, using text mining 

capabilities from the TM and QDAP packages.  The 

“findAssoc” function identifies terms that co-occur 

with a term of interest, where co-occurrence is 

determined by exceeding a least amount of correlation 

an associate must have with the term of interest.  In 

Figure 13, we see interesting co-occurrences, such as 

an association with “management”.  Further 

investigation is required to distinguish between 

insightful co-occurring terms and terms that naturally 

coincide with “risk” at a high frequency.  Some 

expected terms that are missing from the list of 

associates include the adjectives most often used to 

describe risk, such as “credit” or “reputational”.   

 

 

 

 

 

 

 
 
Figure 13.  Terms most associated with “risk” using the TM 
package function “findAssoc”.  ●
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In reviewing the dispersion plot in Figure 

14, we see that there is no concentration of 

use of “risk”, it’s everywhere in the SRLs.  

We would expect these results as both 

banking and bank regulation are inherently 

businesses of managing risk.     

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.  Dispersion of  
the term “risk”  
throughout the SRLs.  
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 For the second application of sentiment analysis, I employ the R Tidytext package.  

Tidytext now includes the “loughran” dictionary as a sentiment tool, available only through the 

GitHub version for now3.  I mentioned (Loughran and McDonald 2011) earlier in this paper. 

(Loughran and McDonald 2011) finds that “almost three-fourths of negative word counts in 10-

K filings based on the Harvard dictionary are typically not negative in a financial context.”  

Their work included the expansion of sentiment categories to classify words as negative, 

positive, uncertainty, litigious, strong modal, or weak modal.   As an introduction, we review 

polarity charts using the “loughran” option in Tidytext.  In Figure 15, we review the  

 

Figure 15. Tidytext’s largest contributors to sentiment, using everything that reads as text in the SRL PDF files. 
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Figure 16.  A new version of Figure 15 that excludes those terms that occurred in more than 50 SRLs. 

sentiment of words occurring more than 70 times in the Simple Case corpus, and in Figure 16, 

we review the same but qualified now to exclude the terms which show up in more than 50 of the 

SRLs. In comparing the two charts, we see that “questions” falls off due to its inclusion in more 

than 50 of the SRLs.  ‘Questions” was labeled a “negative” word, but has no sentiment 

connotation in usage when it was directing a SRL reader what to do should he/she have a 

question.  We see “may” and “risk” fall off; they were designated as indicating uncertainty.  We 

did not “stop” month names, so we are uncertain the context of the usage of “may”, and I would 
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“negative”, its use in bank regulation is somewhat neutral, especially since regulators began 

conducting stress tests to determine banks’ capital adequacy.   

 While sentiment analysis provides a different lens through which to review the text of the 

SRLs, it did not show sentiment.  There are many contradictions when using a limited scope 

dictionary that was not designed for the SRLs.  Even when using a finance-based dictionary, we 

see that contradictions can result when applied specifically to bank regulation.  
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Chapter 5.  Changes to process choices of the Simple Case 
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Section 5.1 Tweaks Set 1: “-site”, “page”, and De Novos 

We’ll add a little extra to the preparation of the BoW here, again using R’s string manipulation 

capabilities, and compare results to the Simple Case.  The goal of the tweaking is to demonstrate 

how seemingly small changes in the preparation of the BoW can dramatically affect the outcome 

of the LDA process.  In addition to the changes I describe blow, I made other similar changes 

and employed several versions of each of a custom stopword and custom stemming list.  In all 

cases, the LDA topic outcome changed but not in a consistently positive way as measured by the 

Objective Measure and/or subjectively.  Instead of showing the results of a single best outcome,  

I will show the impact of select changes to introduce a case for consistent formatting and shared 

master stopword and stemming lists. With that in mind, I add a caveat this section to say that I 

chose these tweaks to create an important effect, but the development of techniques that will be 

used in facilitating regulatory compliance should have a well-defined method rather than one-off 

tweaking.  Three “tweaks” are described here. 

1. In relation to the discussion in Section 3.5, “off-site” and “on-site” will be 

made “offsite” and “onsite” throughout the BoW before any stop word removal 

occurs. 

2. In response to “page” showing up in some top term lists in intermediate LDA 

results, “page” is tossed out of the corpus at the start of forming a BoW.  

3. To retain the concept of “de novo” (or “De Novo” because we are doing this 

before we lower case) becomes “denovo”.  De Novo refers to a new bank 

starting from scratch, an important concept in regulation and the targeted 

entities of some SRLs.   
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With over 100,000 words in the corpus, it may not be expected that just these changes will 

make much of a difference in the outcome.  It turns out that the Objective Measure increases 

from 102 / 125 to 106 / 125.  Because LDA is a machine learning method, these small code 

changes resulted in quite different output.  LDA is not just reassigning SRLs with these terms, it 

is looking at all of the co-occurrences again.  We review γ and β charts in Figures 17, 18, and 19.  

This LDA’s Topic 9 is a little crowded, and we see the top term is “ffiec” (in its capitalized form, 

the acronym for Federal Financial Institutions Examination Council), which tells us attachments 

continue to have an effect.  Though some LDA topics are similar, there are many differences.  

We also see the surfacing of some named entities in the top terms, such as “slhc” (in its 

capitalized form, the acronym for Savings and Loan Holding Company), but we see the stemmer 

didn’t know what to do with these acronyms, e.g., both “slhc” and “slhcs” made it into top terms.  

I provide the same plots of LDA output for comparison to the Simple Case. 

 



	
   	
   	
   69	
  

 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

21 22 23

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0

0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0

sr0615

sr1114

sr1502

sr1617

sr1006

sr1012

sr1406

sr1603

sr0707

sr0805

sr1110

sr1315

sr1508

sr1604

sr0901

sr1312

sr1511

sr0809

sr1215

sr1318

sr0613
sr0706
sr0716
sr0909
sr1001
sr1106
sr1109
sr1202
sr1214
sr1305
sr1309
sr1316
sr1319
sr1320
sr1509
sr1614

sr1107

sr0710

sr0904

sr1008

sr1410

sr1512

sr1515

sr1101

sr1404

sr1103
sr1111
sr1112
sr1113
sr1212
sr1216
sr1308
sr1409
sr1618

sr1310
sr1313
sr1314
sr1321
sr1606
sr1608
sr1611

sr0614

sr0719

sr0605
sr0701
sr0705
sr0718
sr0812
sr1002
sr1010
sr1017
sr1115
sr1303
sr1517

sr1108

sr1207

sr1403

sr0807

sr1607

sr1616

sr1204

sr1307

sr1324

sr1516

sr0711
sr1203
sr1304
sr1323
sr1405
sr1504
sr1506
sr1513

sr0712
sr0907
sr1016
sr1205
sr1210
sr1211
sr1317
sr1605

sr0601
sr1005
sr1011
sr1306
sr1505
sr1510
sr1609
sr1613
sr1615

sr0617

sr1612

sr1619

sr1518

sr1519

sr0604

sr0608

sr1301

sr1311

sr1402

sr1602

sr0808

sr1217

sr1401

sr1408

sr1507

γ

Distribution of SRLs By LDA Topic − Little Extra Prep
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been generated from this 
topic, for the Simple 
Case plus Tweaks 1. 
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Figure 18.  A version of Figure 17 divided by issue year.  
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a document’s 
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Section 5.2 Tweaks Set 2:  Nouns and adjectives 

The inclusion of named entities is helpful in the interpretation of β plots in Section 3.6.  In this 

set of tweaks, we’ll make BoW changes expected to help LDA focus on concepts and named 

entities. A best way of doing this would be to feed LDA noun phrases.  I describe work towards 

that end in Appendix 2 but that work will extend beyond this thesis.  As a next best to noun 

phrases, I decided to focus on the letter body and extract just nouns and adjectives for inclusion 

in the BoW while retaining Tweaks Set 1.  We will see that, for this particular study, we lose 

some of the Objective Measure in order to gain more meaningful top terms.  My steps are 

described here.  

Step 1.  Extracting the SRL body 

I use the SRL landmarks in order to extract just the text that is between the letter’s subject and 

the letter’s question referral paragraph (or the signature when the question referral is not unique).  

This was done with R’s string processing capabilities. 

Step 2.  Make adjustments to the R package used for pre-processing 

So far, I have been using R’s TM package.  In order to identify parts of speech, I’ll use R’s 

QDAP package, specifically the POS function.  In addition to tagging all terms for their part of 

speech, this function automatically strips white space, removes punctuation, removes numbers, 

and lowers case so I trade the TM package code for the QDAP code. 

Step 3.  Extract nouns and adjectives  

The POS function applied in Step 2 tags each word with a part of speech.  It uses the Penn Tree 

Bank tags described earlier.  I mentioned earlier in the paper that part of speech tagging is quite 

complex and in a corpus even this size is not expected to be perfect. From the tagged terms 
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output from the QDAP POS function, I uses R’s string capabilities to extract all terms tagged 

as nouns or adjectives.   

Step 4. Stemming  

Like the primary case, I stem using the R TM package.   

Step 5.  Adjust the determination of terms too common to be helpful 

I tested changes to the level of occurrence of a term that would determine if it were tossed due to 

being too common.  In the Simple Case BoW, I excluded terms that were included in more than 

50 SRLs.  In this Noun and Adjective BoW, I exclude terms only if they are included in more 

than 63 SRLs.  This is ½ of the SRLs.   

The DTM now has 13,736 non-sparse entries (versus 21,889 in the original case) with 

2,306 unique terms (versus 3,526 in the original case).  In Figures 20, 21, and 22, we may review 

γ  and β plots as before.  The Objective Measure shows that only 95 of the 125 SRLs grouping 

within LDA topics according to the FRBOG topics.  However, the subjective measure of the 

value of LDA improves as the list of top terms is now more insightful.  The use of a BoW made 

up of nouns and adjectives is more likely to produce terms with intrinsic value that may be used 

to interpret an LDA topic.  I also liked that the most “crowded” LDA topic includes less than in 

the Simple Case.  Here, the most crowded LDA topic has just 11 SRLs.  We may consider that 

somewhat offset by an increase of one to two LDA topics with just one SRL.  

In summary, while the terms LDA works with have greater value for interpretation, we 

lost results according to the Objective Measure.  We’ll review one more set of tweaks.  
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Figure 20.  Probabilities 
that specified SRLs have 
been generated from this 
topic, for the Tweaks 2 
BoW. 
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Figure 21.  A version of Figure 20 divided by issue year.  
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Figure 22.  For 
Tweaks  2, the 
probabilities that 
these terms 
indicate a 
document’s 
inclusion in the 
topic.   
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Section 5.3 Tweaks Set 3:  Two examples of the power of stemming 

I make two changes to the Noun and Adjective BoW formed by the work described in Section 

3.7 to further demonstrate the impact of choices in BoW preparation.  We will see how stemming 

decisions, in this case, improve our overall results.  

Step 1. Stemming one acronym 

We see acronyms showing up in the top term list and can expect many will be of importance in 

topic modeling.  However, the TM package stemming function will not remove the “s” on a 

plural of an acronym since the acronym is not in its dictionary.  The first BoW change I will 

make here is to make singular any plural versions of the acronym for Foreign Banking 

Organizations – “FBOs” will become “FBO”.   

Step 2.  Modifying stemming for one root 

The words of interest here stems to the root “consid”.  I will use R’s string capabilities to replace 

each occasion of ” consideration”, “considerations”, or “considerable”, with the token 

“spconsideration”.  Consider (no pun intended!) the lexical dispersion plot in Figure 13.  The 

lexical dispersion plot displays the SRL corpus with number of words on the horizontal axis, 

beginning with 2006 SRLs and ending on the right with 2016 SRLs.  When “consideration”, 

“considerations” and “considerable” stem to “consid”, word dispersion in the top plot shows 

“consid” is quite common and, depending on setting, will likely be removed with other too 

common terms.  In the middle plot, we view the dispersion of “consideration” and 

“considerations”.  The pattern is quite different than in the top plot.  The bottom plot shows 

dispersion of “considerable” and we see that “considerable” may be an important distinguishing 

term.  Modifying the consideration and considerable tokens improved the Objective Measure.  

Anecdotally, I expect what happened is that “consider” carries no connotation, but when SRLs 
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include the word “considerable”, the related noun likely is more burdensome or of concern 

and is co-occurring with terms that indicate such.   

Figure 23.  A display of the location of the term specified to the right, where the dialogue begins with the 2006 
SRLs.  
These two changes resulted in an increase of eight in the Objective Measure, from 95 / 125 after 

Tweaks Set 2 to 103 / 125 after making the changes. Although the Objective Measure is not at 

the level of the Simple Case, we see that the creation of a dictionary for use in acronym 

stemming and an understanding of stemming are critical to obtaining successful LDA topics.  

We review γ plots in Figures 24 and 25.  We see that we continue to have one LDA topic to 

which a single SRL has been allocated but note that it is a different SRL now isolated.  It is 

interesting to observe the counts of SRLs in each LDA topic as there is somewhat of a tendency 

for just a few SRLs or relatively many SRLs.  We review the β plot for this scenario in Figure 26 

and discuss a couple examples of latent topics as we did in the Simple Case.   
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Example 1 SRLs on modeling and stress tests  

Recall that the Simple Case’s LDA topic 3 included three SRLs related to stress testing, but one 

of the three related to banks’ capital requirement calculations in accordance with Basel capital 

standards.  That SRL, SR1304 is now in LDA topic 9 with another SRL on Basel guidance, and 

both of those SRLs are joined in an FRBOG subcategory of the FRBOG topics.  LDA topic 9 has 

a top term of “model” with β just over 0.12.  A third SRL in LDA topic 9 includes an SRL on the 

Fed’s model risk management guidelines.  This version of LDA has a topic 23 that is more 

focused on stress testing and includes the four SRLs that make up stress testing guidance.   

Example 2 “Real Estate” in LDA topic 16 

The FRBOG topic of “Real Estate” is divided into the following subtopics:  Appraisals (four 

SRLs in my sample), Commercial Real Estate (three SRLs in my sample) and Residential Real 

Estate/Mortgages (ten SRLs in my sample). LDA topic 16 includes 11 SRLS made up of six of 

the SRLs in the FRBOG subgroup Residential Real Estate/Mortgages, two from the FRBOG 

subgroup Appraisals, and one from the FRBOG subgroup Commercial Real Estate which is 

related to loan workouts.  With an improved stop word list and stemming process, I expect that 

LDA could arrive at a high correspondence at a subtopic level in addition to the topic level 

measured by the Objective Measure. 
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Figure 25.  A version of Figure 24 divided by issue year.  
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Chapter 6.  Summary of results 
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In Table 1, I summarize the results including those discussed in Chapter 3.   

Summary of Work 
  Simple Tweaks 1 Tweaks 2 Tweaks 3 
Head of SRL In BoW In BoW Eliminated Eliminated 
Subject as metadata Retained Retained Retained Retained 
Tail of SRL In BoW In BoW Eliminated Eliminated 
Part of speech tagging None None By QDAP By QDAP 
Use of part of speech tags NA NA Nouns,Adjs Nouns,Adjs 
Lower case TM TM QDAP QDAP 
Strip white space TM TM QDAP QDAP 
Remove punctuation TM TM QDAP QDAP 
Remove stopwords TM TM NA NA 
Stem TM TM TM TM 
Reduction of sparse terms None None None  None 
Reduction of common terms > 50 SRLs > 50 SRLs > 63 SRLs > 63 SRLs 
Results:          
DTM Word Count 63332 63332 33674 33671 
Non-sparse entries 21889 21894 13736 13743 
Corpus unique term count 3526 3525 2306 2308 
Objective Measure 102 106 95 103 
LDA topics where n=<2 5 4 5 4 
Table 1.  A summary of the results of applying LDA topic modeling to four different BoWs.  

 

In reviewing the LDA results for the Objective Measure, we see that LDA does a good job 

relative to the human experts’ FRBOG topics.  Some of the FRBOG topics cross LDA topics and 

we looked at a few examples where we see that LDA may find subtopic areas of similarity.   

 From a review of the results of tweaking a simple BoW, we see that a word’s inconsistent 

hyphenation, inclusion in a stop word list, or stem choice can have a significant impact on our 

results. We note also the special handling required for acronyms.   

 Figure 27 compares the LDA topic results of the Simple Case and the Tweaks, in which 

we can see how LDA topic members grouped according to FRBOG topics.  
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Figure 27.  Reviewing the extent to which SRLs grouped by a common latent factor that corresponded to the 
FRBOG topic groups. 	
  

 In summary, R packages were used to conduct topic modeling of SRL PDFs and find 

useful classifications that follow the lines of expert classifications and are suggestive of a next 

level of commonality.  Having done this in an unsupervised fashion, i.e., without defining a 

desired target outcome, allows us to see the level of classification achievable without 

intervention.  As concern over changing regulation and scarce resources escalates, this finding 

takes on greater significance.  An application of topic modeling on regulatory text will find all 

pertinent guidance on a specific issue, without being subject to human intervention to pre-

identify and label the issues.   
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Chapter 7.  Conclusions 
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In this paper, I consider ways of forming a BoW of a specific series of bank regulatory 

guidance and apply LDA to model topics based on the BoWs.  I expect that my findings will 

contribute to the work of Regtech to create automated sharing of regulatory information between 

regulators and regulated.  We see that topic modeling produces promising results, but those 

results are dependent on applying best practices to BoW formation.  To that end, I make the 

following recommendations related to the preparation of communications.   

• When information is communicated in the form of a series or other designation of like 

documents, contents should be standardized and consistent across formats. For 

example, attachments should be consistently included or not included and the use of 

“signed by” preceding a signature should be consistent in all formats. 

• Fields that may be drawn in by text analytics as metadata should be formatted 

consistently whenever possible.  

• Landmarks in the communication may be critical to implementing effective text 

analytics.  Consistency of text, form, and placement of landmarks is necessary to 

establish them as such within the text. 

• Grammar rules on hyphenation may be complicated, but consistent use of hyphens is 

necessary.  A standard may include applicable grammar rules in addition to practices 

specific to the industry. 

• The effectiveness of stemming is related to the actions taken by the stemmer, e.g., 

singularizing plurals or using the root.  Decisions about stemming should take into 

consideration how any outputted lists of terms will be used in addition to common 

word usage.  Common word usage will enlighten identification of terms for which 

inference is diluted by stemming.   
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• A stop word list for text analytics of bank regulatory information must be agreed 

upon and consistently applied.   

• Acronyms are troublesome in text analytics. A special stemming dictionary will help, 

or perhaps it will be determined that making an acronym plural or possessive could be 

done in some way that would not create a new “token” different than the acronym 

itself.   

• Concepts should be referenced consistently as much as possible.  Consider SR0605, 

in which we see “influenza pandemic” when describing “preparedness” but 

“pandemic influenza” when describing “outbreak”.  Or SR 1607, in which we see 

“prepaid access card” in the subject but “prepaid card” everywhere else.   

• I mention earlier the laws that require the use of plain language in Federal agency 

proposed and final rulemakings.  In addition to that requirement in the Plain Writing 

Act of 2010 and the Gramm-Leach-Bliley Act of 2009, we also now have the DATA 

Act of 2014 which addresses standards in communicating information about federal 

expenditures.  I believe that these requirements should be extended to encompass a 

set of best practices for creating communications that will not unnecessarily hinder 

text analytics efforts.   
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Chapter 8.  Future work 
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A	
  future	
  work	
  will	
  research	
  alternative	
  sentiment	
  dictionaries	
  and	
  potentially	
  begin	
  

building	
  a	
  dictionary	
  applicable	
  to	
  bank	
  regulatory	
  text	
  and	
  perhaps	
  other	
  regulatory	
  text.	
  	
  

Such	
  a	
  dictionary	
  would	
  include	
  words	
  that	
  are	
  “restrictive”	
  versus	
  “permissive”	
  in	
  banking	
  

regulation.	
  	
  

A	
  second	
  work	
  will	
  be	
  to	
  explore	
  the	
  expansion	
  of	
  the	
  use	
  of	
  word	
  clouds.	
  	
  I	
  

particularly	
  appreciate	
  the	
  promise	
  of	
  data	
  visualizations	
  to	
  share	
  statistically-­‐gained	
  

insights	
  without	
  a	
  requirement	
  that	
  the	
  viewer	
  understand	
  statistics.	
  (Castella	
  and	
  Sutton	
  

2014)	
  discusses	
  expanding	
  the	
  use	
  of	
  word	
  clouds	
  to	
  create	
  “word	
  storms.”	
  	
  They	
  discuss	
  

using	
  word	
  clouds	
  as	
  a	
  tool	
  to	
  compare	
  individual	
  documents,	
  to	
  view	
  changes	
  in	
  

documents	
  over	
  time,	
  and	
  to	
  establish	
  a	
  hierarchy	
  among	
  the	
  documents.	
  	
  They	
  

recommend	
  new	
  algorithms	
  which	
  would	
  increase	
  control	
  over	
  the	
  cloud	
  content	
  more	
  

than	
  is	
  provided	
  by	
  current	
  word	
  cloud	
  tools.	
  	
  An	
  example	
  of	
  what	
  added	
  control	
  may	
  

provide	
  is	
  a	
  visualization	
  of	
  “small	
  multiples”	
  of	
  clouds	
  that	
  display	
  the	
  same	
  word	
  in	
  the	
  

same	
  place	
  in	
  the	
  cloud	
  across	
  the	
  storm.	
  	
  I	
  used	
  the	
  R	
  package	
  wordcloud	
  to	
  create	
  some	
  

comparative	
  clouds	
  as	
  an	
  initial	
  step	
  in	
  this	
  direction.	
  	
  I	
  include	
  a	
  word	
  storm	
  of	
  

comparisons	
  of	
  the	
  SR	
  Letters	
  issued	
  in	
  2016	
  in	
  Appendix	
  4.	
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End	
  Notes	
  

	
  
1. Federal Reserve Purposes and Functions. 
2. Murphy 2015 
3. Silge, J. at http://stackoverflow.com/questions/43282771/loading-­‐loughran-­‐finance-­‐
sentiment-­‐into-­‐tidytext	
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In this appendix, I share a review of a formality measure available from the R QDAP 
package.  First, QDAP is used to assign the Penn Treebank Project part of speech (POS) tags1 to 
the extracted letter body text.  For example, here is a tagged sentence from SR1619:   
 

the/DT agencies/NNS plan/NN to/TO issue/VB a/DT series/NN of/IN faqs/NNS 
between/IN now/RB and/CC the/DT implementation/NN date/NN of/IN the/DT 
standard/JJ to/TO address/VB questions/NNS on/IN the/DT implementation/NN  
of/IN cecl/NN 

 
The POS tagger provides useful information, although like any tagger for parts of speech, is not 
perfect.  We see that though “plan” is used in the sentence above as a verb, it is tagged as a noun.  
Though “standard” is used as a noun, it is tagged as an adjective.  However, “cecl”, has been 
appropriately tagged as a noun.  “cecl” is an acronym for “Current Expected Credit Loss” and in 
this sentence it is understood to be “current expected credit loss methodology” or “current 
expected credit loss model”.      

Using the POS tagged corpus, the QDAP package allows us to easily compute a 
Formality Score (F-score) based upon (Heylighen and Dewaele 2002).  In referencing an earlier 
paper by Heylighen, (Heylighen and Dewaele 2002) explores the role of context in 
communication and tell us “In order to minimize ambiguity and maximize the objectivity and 
universality of its statements, science tries to express its result as much as possible through 
formal languages (Heylighen, 1999)”. I would argue that SRLs fall into the same category as 
“science” where objectivity is favored over ambiguity and only limited background information	
  
should	
  be	
  needed	
  to	
  understand.	
  	
  	
  

The	
  F-­‐score	
  formula as reported in QDAP documentation is 
	
  

𝐹 = 50  
𝑛! −   𝑛!

𝑁 + 1 	
  
	
  

𝑤ℎ𝑒𝑟𝑒          𝑓 = {𝑛𝑜𝑢𝑛,𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝑝𝑟𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝑎𝑟𝑡𝑖𝑐𝑙𝑒}  	
  
	
  

                            𝑐 = {𝑝𝑟𝑜𝑛𝑜𝑢𝑛, 𝑣𝑒𝑟𝑏,𝑎𝑑𝑣𝑒𝑟𝑏, 𝑖𝑛𝑡𝑒𝑟𝑗𝑒𝑐𝑡𝑖𝑜𝑛}	
  
	
  

𝑁 =    (𝑓 + 𝑐 + 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠)              	
  
	
  
where f and c categories use the Penn tree bank POS tags listed in Table A1.   

To establish a benchmark for the F-score, we may refer to (Heylighen and Dewaele, 2002 
p. 316) which reports scores for “Information Writing” and “Prepared Speeches” in the English 
language, which were 61 and 50, respectively.  For the SRL corpus with SRL bodies only, 
QDAP output reports 103,339 words have a formality score of 77.81.  For the entire corpus, 
QDAP output reports 183,292 words with a formality score of 78.5 (implying attachments tend 
towards greater formality).  QDAP author Tyler Rinker in (Rinker 2013) reminds us that 
(Heylighen and Dewaele 2002) establish a sample size of “a few hundred words for the measure 
to be minimally reliable5” so we review the formality score of each SRL with caution.   
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Noun Adjective Preposition Articles Pronoun Verb Adverb Interjection 
NN CD IN “a”  PRP MD RB UH 

NNS JJ RP “the”  PRP$ VB RBR   
NNP JJR TO   WDT VBD RBS   

NNPS JJS     WP VBG WRB   
POS PD*     WP$ VBN     

        EX VBP     
*underlying code derives PD = DT - articles   VBZ     

Table A1. POS Groupings Used in QDAP Formality Score numerator.  Source: thesis writer's 
interpretation of code that underlies QDAP function "formality". 
	
  

First, I present two pairs of triplots in Figure A1.  The first of each pair is the division of 
the corpus according part of speech, the second of the pair is according to the formality 
component. For the second triplot, I calculated the number of formal words and the number of 
contextual words according to the QDAP tag specification for those categories as used in the 
formality score, with an exception in how I handled articles which was made for simplicity in 
coding.  The first pair represents just the SRL bodies, the second represents everything in the 
PDF.  We see just slight differences in the pairs, and that overall the plots indicate high noun 
usage and formality. 

We will also look at plots of the QDAP formality output.  In Figure A2, we compare 
information about the components of formality for the SRL bodies versus the full PDF contents. 
In Figures A3 and A4, we compare the same plots but with detail for each of the most recent 
SRLs.  The plots are useful in identifying the direction of the text analytics, e.g., consider that 
one SRL, SR1614, is a bit of a outlier for pronouns, due to information technology, “IT”.  
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Figure	
  A1.	
  	
  Triplots	
  of	
  the	
  SRL	
  BoW	
  composition	
  in	
  POS	
  and	
  formality	
  componenets.	
  



	
   	
   	
   109	
  

	
  

all

0 .25 .5 .75 1
proportion

al
l

cont form other

Percent Contextual−Formal
cont form (all)

0 .25 .5 .75 1 0 .25 .5 .75 1 0 .25 .5 .75 1

all

proportion

al
l

noun

adj

prep

art

pro

verb

adverb

Percent Parts of Speech By Contextual−Formal

●103339
●all

77.50 77.75 78.00 78.25
formality

al
l

word count ● 103339

F Measure (Formality)

all

0 .25 .5 .75 1
proportion

al
l

cont form other

Percent Contextual−Formal
cont form (all)

0 .25 .5 .75 1 0 .25 .5 .75 1 0 .25 .5 .75 1

all

proportion

al
l

noun

adj

prep

art

pro

verb

adverb

Percent Parts of Speech By Contextual−Formal

●183292
●all

78.00 78.25 78.50 78.75
formality

al
l

word count ● 183292

F Measure (Formality)

SRL	
  bodies	
  

Everything	
  
in	
  the	
  PDF	
  

Figure	
  A2.	
  	
  QDAP	
  formality	
  plots	
  for	
  two	
  versions	
  of	
  the	
  BoW.	
  	
  



	
   	
   	
   110	
  
	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  
	
  

	
   	
  

sr1619
sr1618
sr1617
sr1616
sr1615
sr1614
sr1613
sr1612
sr1611
sr1609
sr1608
sr1607
sr1606
sr1605
sr1604
sr1603
sr1602
sr1519
sr1518
sr1517
sr1516
sr1515
sr1513
sr1512
sr1511
sr1510
sr1509
sr1508
sr1507
sr1506
sr1505
sr1504
sr1502
sr1410
sr1409
sr1408
sr1406
sr1405
sr1404
sr1403
sr1402
sr1401

0
.25

.5
.75

1
proportion

SRL_ID

cont
form

other

Percent C
ontextual−Form

al
cont

form
(all)

0
.25

.5
.75

1
0

.25
.5

.75
1

0
.25

.5
.75

1
sr1619
sr1618
sr1617
sr1616
sr1615
sr1614
sr1613
sr1612
sr1611
sr1609
sr1608
sr1607
sr1606
sr1605
sr1604
sr1603
sr1602
sr1519
sr1518
sr1517
sr1516
sr1515
sr1513
sr1512
sr1511
sr1510
sr1509
sr1508
sr1507
sr1506
sr1505
sr1504
sr1502
sr1410
sr1409
sr1408
sr1406
sr1405
sr1404
sr1403
sr1402
sr1401

proportion

SRL_ID

noun

adj

prep

art

pro

verb

adverb

Percent Parts of Speech By C
ontextual−Form

al
●

●
●

●
●

●

●●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●●
●

●
●

●

●
●

●
●

●
●

●●
●

●
●

●
●

545
30542172

1622
250

244
1941

859
796

256358
240

256
1369

952
445

561
1948

224
204

1496
736

216
887777

409
534

2042
358686

299
1109

215
488

439
975

408447
779

25581927
355

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sr1619
sr1618
sr1617
sr1616
sr1615
sr1614
sr1613
sr1612
sr1611
sr1609
sr1608
sr1607
sr1606
sr1605
sr1604
sr1603
sr1602
sr1519
sr1518
sr1517
sr1516
sr1515
sr1513
sr1512
sr1511
sr1510
sr1509
sr1508
sr1507
sr1506
sr1505
sr1504
sr1502
sr1410
sr1409
sr1408
sr1406
sr1405
sr1404
sr1403
sr1402
sr1401

75.0
77.5

80.0
82.5

form
ality

SRL_ID

word count
●

●
●

1000
2000

3000

F M
easure (Form

ality)

Figure	
  A3.	
  	
  QDAP	
  formality	
  plot	
  for	
  selected	
  SRLs,	
  using	
  the	
  SRL	
  body	
  only.	
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Figure	
  A4.	
  	
  QDAP	
  formality	
  plot	
  for	
  selected	
  SRLs,	
  using	
  everything	
  in	
  the	
  SRL	
  PDFs.	
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Section	
  1	
  of	
  Appendix	
  2	
  	
  Overview	
  of	
  work	
  on	
  noun	
  phrases	
  

In	
  the	
  first	
  runs	
  of	
  LDA	
  models,	
  I	
  used	
  a	
  BoW	
  that	
  was	
  intended	
  to	
  include	
  noun	
  phrases.	
  	
  At	
  
the	
  beginning,	
  I	
  attempted	
  to	
  derive	
  noun	
  phrases	
  via	
  the	
  use	
  of	
  a	
  tokenizer,	
  but	
  my	
  
Objective	
  Measure	
  results	
  fell	
  significantly	
  and	
  meaning	
  in	
  LDA’s	
  highest	
  probability	
  terms	
  
for	
  a	
  topic	
  lost	
  interpretability.	
  	
  Returning	
  meaningful	
  terms	
  was	
  a	
  secondary	
  goal	
  to	
  my	
  
primary	
  goal	
  of	
  determining	
  whether	
  LDA	
  would	
  provide	
  meaningful	
  themes	
  in	
  topics.	
  	
  
Though	
  I	
  hoped	
  noun	
  phrases	
  such	
  as	
  “Federal	
  Reserve”	
  would	
  be	
  pushed	
  out	
  as	
  a	
  too	
  
common	
  phrase,	
  I	
  wanted	
  to	
  retain	
  noun	
  phrases	
  such	
  as	
  “credit	
  risk”,	
  “reputational	
  risk”,	
  
or	
  “anti-­‐money	
  laundering”.	
  	
  In	
  (O’Connor	
  2016)	
  discuss	
  of	
  the	
  work	
  of	
  (Handler	
  et	
  al.	
  
2016),	
  he	
  discusses	
  the	
  stand-­‐alone	
  nature	
  of	
  a	
  noun	
  phrase	
  and	
  defined	
  BaseNP	
  =	
  (Adj	
  |	
  
Noun)	
  *	
  Noun,	
  where	
  NP	
  is	
  an	
  abbreviation	
  of	
  “noun	
  phrase”.	
  	
  He	
  also	
  recognizes	
  two	
  other	
  
versions	
  of	
  noun	
  phrases,	
  but	
  my	
  work	
  stopped	
  with	
  the	
  first	
  one.	
  	
  (Handler	
  et	
  al.	
  2016)	
  
and	
  this	
  presentation	
  discuss	
  the	
  R	
  package	
  PHRASEMACHINE	
  which	
  I	
  have	
  not	
  yet	
  tried.	
  	
  
Here,	
  I	
  describe	
  my	
  noun	
  phrase	
  work	
  as	
  it	
  is	
  informational	
  but	
  	
  incomplete.	
  	
  	
  
	
   For	
  this	
  work,	
  I	
  used	
  the	
  results	
  of	
  the	
  R	
  package	
  QDAP	
  POS	
  function.	
  	
  I	
  began	
  by	
  
exploring	
  combinations	
  of	
  just	
  one	
  adjective	
  or	
  noun	
  plus	
  a	
  noun.	
  	
  To	
  extract	
  this	
  
information,	
  I	
  used	
  an	
  idea	
  presented	
  in	
  a	
  stack	
  overflow	
  post,	
  specifically	
  member	
  42-­‐‘s	
  
response	
  on	
  January	
  5,	
  2011	
  to	
  a	
  question	
  “Extracting	
  noun+noun	
  or	
  (adj|noun)+noun	
  
from	
  Text”.	
  	
  Member	
  42-­‐	
  suggested	
  a	
  simple	
  solution	
  of	
  using	
  R’s	
  grepl	
  function	
  to	
  test	
  for	
  
noun	
  or	
  adjective	
  tags,	
  and	
  when	
  found,	
  using	
  R’s	
  base	
  functions	
  to	
  set	
  a	
  new	
  variable,	
  a	
  
“switch”	
  if	
  you	
  will,	
  to	
  “true”	
  or	
  “false”.	
  	
  	
  He	
  followed	
  setting	
  the	
  switch	
  by	
  testing	
  a	
  relevant	
  
record’s	
  switch	
  along	
  with	
  the	
  first	
  previous	
  record’s	
  switch	
  simultaneously.	
  	
  	
  
	
   Member	
  42-­‐‘s	
  suggestion	
  was	
  the	
  core	
  of	
  my	
  noun	
  phrase	
  creation,	
  and	
  here	
  I	
  
describe	
  how	
  I	
  expanded	
  on	
  it.	
  	
  	
  To create a detectable end of sentence marker that would 
persist after punctuation was removed, I replaced each period with “. meowed.” (In throes of the 
thesis, this noun phrase formation had me up in the middle of the night coding while the TV was 
on.  In searching for a word that is always a verb and not likely to ever show up in an SRL letter, 
I dismissed “hoarded”, “renovate”, “survived”, “baked”, and other words that come to mind 
when late-night television is in the background.  After all, cash may be “hoarded”, the closing  
institution in a merger “survived”, etc.) Sometimes one or both of the members of the noun-
adjective pairs were also a member in a different pairing, and in some cases strings of pairs 
occurred.  After creating indicators of starts and stops of one or any number of pairs, I created 
ngrams by iterating over the BoW and combining pair members with hyphens. Last, I dropped 
all terms that were neither nouns nor adjectives.  I describe the code further in the following 
section but first, here, I review selected output. 
	
  
Examples of ngrams that indicated promise included: 

term-funding 
state-banking-agency 
state-member-banks 
strong-risk-management-practice 

 
Examples of ngrams that indicated the string-combination process may have gone too far 
included: 
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traditional-stresstesting-program-banking-organization 
standard-specificrisk-calculation-supervisor 

 
An example of signs of token formation contradicting the principles upon which LDA is based in 
that I was creating sparse terms: 
 

troubled-debt-restructurings-tdrs  versus  troubled-debt-restructurings 
toptier-banking-entity versus toptier-bank 

 
And finally, an example of code weaknesses and an incorrect POS tag: 

 
supervisory-staff-commence 

	
  
Any ngram that was moving beyond 7 terms was converted to some smaller ngram and single 
nouns.  Overall, this effort had become over-engineered for the purpose of this thesis and non-R 
tools will perform this process more efficiently in future work.  But it remains an educational 
case and I will explore it further later as the noun phrases, even as they were built here, may 
facilitate named entity recognition. 
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Section	
  2	
  of	
  Appendix	
  2	
  A	
  description	
  of	
  R	
  Code	
  

	
  
I	
  will	
  use	
  this	
  example	
  sentence	
  from	
  an	
  SRL	
  throughout	
  this	
  appendix.	
  	
  
	
  

Because the specific special measures imposed regarding 311 entities can vary, covered 
financial institutions should refer to FinCEN’s rulemaking or order pertaining to each 311 
entity for guidance regarding the nature, applicability, and scope of the imposed special 
measures. meowed. 

 
The POS function I used included other text preparation steps, such as punctuation removal.   
 

because/IN the/DT specific/JJ special/JJ measures/NNS imposed/VBN regarding/VBG 
entities/NNS can/MD vary/VB covered/VBN financial/JJ institutions/NNS should/MD 
refer/VB to/TO fincens/NNS rulemaking/VBG or/CC order/NN pertaining/NN to/TO 
each/DT entity/NN for/IN guidance/NN regarding/VBG the/DT nature/NN 
applicability/NN and/CC scope/NN of/IN the/DT imposed/VBN special/JJ 
measures/NNS meowed/VBN 

 
In next steps, I create indicators.  First, an indicator is TRUE when the tag includes “JJ” for 
adjective or “NN” for noun.  Second, an additional indicator is set to TRUE when a term with a 
TRUE first indicator is preceded by a term that also had a TRUE first indicator.  I then query 
these tags to find the position of a term in a string of sort-of noun phrases.  For example, if the 
first indicator is TRUE, and the preceding and following terms are FALSE, it is assigned “S” for 
a single noun or adjective.  Another example is the handling of strings.  When  both indicators 
were true, the term was assigned an “L” to indicate a potentially last term in a noun or adjective 
string.  When a term was TRUE for adjective or noun but FALSE for last member of a pair, and 
it was followed by an “L” item, it was assigned a “1”.  The program then traversed over the 
strings of terms labeled “L” to identify whether it was a true “L” or a second term in a three term 
string, and so on.  Our sentence with the indicators appears next.   
 

Term	
   Tag	
  
NN,	
  
JJ?	
   >	
  1	
  ?	
   Plan	
  

because	
   IN	
   FALSE	
   FALSE	
   out	
  
the	
   DT	
   FALSE	
   FALSE	
   out	
  
specific	
   JJ	
   TRUE	
   FALSE	
   1	
  
special	
   JJ	
   TRUE	
   TRUE	
   2	
  
measures	
   NNS	
   TRUE	
   TRUE	
   L	
  
imposed	
   VBN	
   FALSE	
   FALSE	
   out	
  
regarding	
   VBG	
   FALSE	
   FALSE	
   out	
  
entities	
   NNS	
   TRUE	
   FALSE	
   S	
  
can	
   MD	
   FALSE	
   FALSE	
   out	
  
vary	
   VB	
   FALSE	
   FALSE	
   out	
  
covered	
   VBN	
   FALSE	
   FALSE	
   out	
  
financial	
   JJ	
   TRUE	
   FALSE	
   1	
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institutions	
   NNS	
   TRUE	
   TRUE	
   L	
  
should	
   MD	
   FALSE	
   FALSE	
   out	
  
refer	
   VB	
   FALSE	
   FALSE	
   out	
  
to	
   TO	
   FALSE	
   FALSE	
   out	
  
fincens	
   NNS	
   TRUE	
   FALSE	
   S	
  
rulemaking	
   VBG	
   FALSE	
   FALSE	
   out	
  
or	
   CC	
   FALSE	
   FALSE	
   out	
  
order	
   NN	
   TRUE	
   FALSE	
   1	
  
pertaining	
   NN	
   TRUE	
   TRUE	
   L	
  
to	
   TO	
   FALSE	
   FALSE	
   out	
  
each	
   DT	
   FALSE	
   FALSE	
   out	
  
entity	
   NN	
   TRUE	
   FALSE	
   S	
  
for	
   IN	
   FALSE	
   FALSE	
   out	
  
guidance	
   NN	
   TRUE	
   FALSE	
   S	
  
regarding	
   VBG	
   FALSE	
   FALSE	
   out	
  
the	
   DT	
   FALSE	
   FALSE	
   out	
  
nature	
   NN	
   TRUE	
   FALSE	
   1	
  
applicability	
   NN	
   TRUE	
   TRUE	
   L	
  
and	
   CC	
   FALSE	
   FALSE	
   out	
  
scope	
   NN	
   TRUE	
   FALSE	
   S	
  
of	
   IN	
   FALSE	
   FALSE	
   out	
  
the	
   DT	
   FALSE	
   FALSE	
   out	
  
imposed	
   VBN	
   FALSE	
   FALSE	
   out	
  
special	
   JJ	
   TRUE	
   FALSE	
   1	
  
measures	
   NNS	
   TRUE	
   TRUE	
   L	
  
meowed	
   VBN	
   FALSE	
   FALSE	
   out	
  
Table A2. Tag indicators.   

 
Only NN and JJ tagged items are retained for the next step.  A better process would have 
addressed coordinating conjunctions, determiners, and articles.   
 

Term	
   Tag	
   NN,	
  JJ?	
   >	
  1	
  ?	
   Plan	
  
specific	
   JJ	
   TRUE	
   FALSE	
   1	
  
special	
   JJ	
   TRUE	
   TRUE	
   2	
  
measures	
   NNS	
   TRUE	
   TRUE	
   L	
  
entities	
   NNS	
   TRUE	
   FALSE	
   S	
  
financial	
   JJ	
   TRUE	
   FALSE	
   1	
  
institutions	
   NNS	
   TRUE	
   TRUE	
   L	
  
fincens	
   NNS	
   TRUE	
   FALSE	
   S	
  
order	
   NN	
   TRUE	
   FALSE	
   1	
  
pertaining	
   NN	
   TRUE	
   TRUE	
   L	
  
entity	
   NN	
   TRUE	
   FALSE	
   S	
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guidance	
   NN	
   TRUE	
   FALSE	
   S	
  
nature	
   NN	
   TRUE	
   FALSE	
   1	
  
applicability	
   NN	
   TRUE	
   TRUE	
   L	
  
scope	
   NN	
   TRUE	
   FALSE	
   S	
  
special	
   JJ	
   TRUE	
   FALSE	
   1	
  
measures	
   NNS	
   TRUE	
   TRUE	
   L	
  
Table A3.  Nouns and adjectives.  

 
Code then traverses over the NN or JJ terms to decide if they are output as a single term (“S”) or 
should be concatenated.  I add a hyphen between terms when they are concatenated.  From this 
effort, the BoW is left with the following list.  I chose this sentence as it included results that will 
act deceptively in the LDA process.  The LDA process will not recognize the linkage of specific-
special-measures and special-measures.  The LDA process is also unlikely to encounter another 
“nature-applicability”.   
 

ngrams	
  
specific-­‐special-­‐measures	
  
entities	
  
financial-­‐institutions	
  
fincens	
  
order-­‐pertaining	
  
entity	
  
guidance	
  
nature-­‐applicability	
  
scope	
  
special-­‐measures	
  
Table A4. Output. 

 
I believe that my technique may prove useful in a more thorough application but in its current 
form we see how easily the ambiguity in created ngrams may work against the machinations of 
LDA.   
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Appendix	
  3	
  
	
  

A	
  description	
  of	
  the	
  R	
  code	
  which	
  creates	
  the	
  success	
  measure	
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Output	
  from	
  the	
  LDA	
  model	
  
includes	
  a	
  file	
  of	
  the	
  topic	
  
assignments	
  of	
  each	
  SRL.	
  	
  
Among	
  other	
  information,	
  the	
  
file	
  includes	
  the	
  topic	
  
assignment	
  –	
  “VEMtopics”	
  and	
  
the	
  SRL_ID.	
  	
  A	
  subset	
  is	
  
displayed	
  in	
  Table	
  A5.	
  	
  	
  
	
  
A	
  “long”	
  file	
  is	
  manually	
  
created	
  based	
  upon	
  
information	
  from	
  the	
  FRBOG	
  
website.	
  	
  The	
  FRBOG	
  website	
  
categorizes	
  SRLs	
  into	
  broad	
  
topics,	
  such	
  as	
  “Accounting”.	
  
SRLs	
  may	
  be	
  categorized	
  into	
  more	
  than	
  one	
  topic.	
  	
  A	
  
subset	
  of	
  this	
  file	
  is	
  displayed	
  in	
  Table	
  A6.	
  	
  	
  
	
  
	
  

	
  
Merging	
  on	
  SRL_ID,	
  a	
  new	
  “long”	
  dataset	
  is	
  
created	
  in	
  which	
  we	
  can	
  now	
  see	
  all	
  of	
  the	
  
“BOGTopicL”	
  that	
  have	
  been	
  grouped	
  into	
  the	
  
LDA	
  topic.	
  	
  A	
  subset	
  of	
  this	
  file	
  is	
  displayed	
  in	
  
Table	
  A7.	
  	
  We	
  see	
  in	
  the	
  yellow	
  and	
  peach	
  
highlighted	
  rows	
  that	
  SRLs	
  may	
  be	
  associated	
  
with	
  1	
  or	
  more	
  FRBOG	
  topics.	
  	
  The	
  blue	
  
highlighted	
  rows	
  display	
  some	
  of	
  the	
  SRLs	
  
assigned	
  to	
  topic	
  “7”	
  by	
  LDA	
  and	
  those	
  FRBOG	
  
topics	
  associated	
  with	
  the	
  SRLs.	
  	
  	
  
	
  
Our	
  goal	
  here	
  is	
  to	
  see	
  if	
  the	
  SRLs	
  have	
  been	
  
grouped	
  into	
  LDA	
  topics	
  similarly	
  to	
  the	
  
grouping	
  into	
  FRBOG	
  topics	
  by	
  an	
  expert	
  
human.	
  	
  We	
  do	
  this	
  without	
  regard	
  to	
  the	
  
FRBOG	
  topic	
  label,	
  and	
  instead	
  look	
  for	
  the	
  
most	
  frequent	
  FRBOG	
  topic	
  label	
  among	
  the	
  
SRLs	
  assigned	
  to	
  LDA	
  topic,	
  and	
  then	
  look	
  
again	
  for	
  a	
  most	
  frequent	
  FRBOG	
  topic	
  label	
  
among	
  the	
  remaining	
  SRLs	
  assigned	
  to	
  the	
  
LDA	
  topic.	
  	
  We’ll	
  follow	
  the	
  evolution	
  of	
  the	
  
remaining	
  process	
  using	
  examples	
  from	
  the	
  
LDA	
  topic	
  assignment	
  “1”.	
  	
  	
  

	
  

VEMtopics	
   SRL_ID	
  
1	
   sr1108	
  
1	
   sr1207	
  
1	
   sr1403	
  
2	
   sr1001	
  
2	
   sr1006	
  
2	
   sr1010	
  
2	
   sr1106	
  
2	
   sr1107	
  
2	
   sr1324	
  
2	
   sr1410	
  
2	
   sr1603	
  

Table	
  A5.	
  VEM	
  Topics	
  

SRL_ID	
   BOGTopicL	
  
sr0601	
   BSA/OFAC	
  
sr0604	
   InternalControls	
  
sr0605	
   Opsrisk	
  
sr0605	
   BusContinuity	
  	
  
sr0608	
   ExamSupGuidance	
  
sr0608	
   Securities	
  
sr0608	
   Asset/Wealth	
  
sr0613	
   InfoSec	
  
sr0614	
   ExaminerCredsCOI	
  
sr0614	
   ConfidentialInfo	
  
sr0614	
   InfoSec	
  
sr0615	
   ALLL	
  
sr0615	
   RealEstate	
  
sr0617	
   ALLL	
  
sr0701	
   RealEstate	
  
sr0701	
   ALLL	
  
Table	
  A6.	
  FRBOG	
  topics	
  

	
  	
  	
  SRL_ID	
   VEMtopics	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  BOGTopicL	
  
sr0601	
   3	
   BSA/OFAC	
  
sr0604	
   7	
   InternalControls	
  
sr0605	
   14	
   OpsRisk	
  
sr0605	
   14	
   BusContinuity	
  
sr0608	
   19	
   ExamSupGuidance	
  
sr0608	
   19	
   Securities	
  
sr0608	
   19	
   Asset/Wealth	
  
sr0613	
   4	
   InfoSec	
  
sr0614	
   18	
   ExaminerCredsCOI	
  
sr0614	
   18	
   ConfidentialInfo	
  
sr0614	
   18	
   InfoSec	
  
sr0615	
   7	
   ALLL	
  
sr0615	
   7	
   RealEstate	
  
sr0617	
   7	
   ALLL	
  
sr0701	
   8	
   RealEstate	
  
sr0701	
   8	
   ALLL	
  
sr0705	
   8	
   Accounting	
  
sr0705	
   8	
   Asset/Wealth	
  
sr0705	
   8	
   CreditRisk	
  
sr0705	
   8	
   LegalRepRisk	
  

Table	
  A7.	
  LDA	
  topics	
  with	
  FRBOG	
  topics	
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In	
  this	
  example	
  run	
  of	
  LDA,	
  topic	
  1	
  included	
  
SRLs	
  1108,	
  1207,	
  and	
  1403.	
  In	
  Table	
  A8,	
  we	
  
see	
  that	
  multiple	
  FRBOG	
  topics	
  were	
  
associated	
  with	
  2/3	
  SRLs	
  and	
  that	
  each	
  of	
  the	
  
SRLs	
  in	
  LDA	
  topic	
  1	
  is	
  associated	
  with	
  FRBOG	
  
topic	
  “CapAdequacy”.	
  
	
  

	
  
	
  
	
  
Using	
  “ddply”	
  from	
  the	
  R	
  package	
  plyr,	
  I	
  find	
  the	
  
maximum	
  frequency	
  among	
  FRBOG	
  topics	
  of	
  SRLs	
  
assigned	
  to	
  LDA	
  topics.	
  	
  We	
  see	
  “CapAdequacy”	
  for	
  
LDA	
  topic	
  1.	
  	
  This	
  is	
  displayed	
  in	
  Table	
  A9.	
  	
  
	
  
These	
  “maximums”	
  are	
  then	
  merged	
  back	
  to	
  the	
  
larger	
  dataset	
  and	
  the	
  associated	
  SRLs	
  are	
  
extracted	
  from	
  the	
  dataset.	
  	
  The	
  remaining	
  rows	
  
are	
  then	
  submitted	
  for	
  a	
  repeat	
  of	
  the	
  process.	
  	
  In	
  
Table	
  A10,	
  we	
  see	
  the	
  new	
  frequencies	
  of	
  the	
  
FRBOG	
  topics	
  found	
  for	
  the	
  remaining	
  SRLs	
  of	
  
each	
  LDA	
  topic.	
  	
  In	
  Table	
  A11,	
  we	
  see	
  the	
  most	
  
frequent	
  FRBOG	
  topic	
  for	
  each	
  LDA	
  topic,	
  as	
  we	
  
did	
  in	
  Figure	
  5.	
  	
  We	
  see	
  the	
  LDA	
  topic	
  1	
  highlighted	
  
in	
  yellow.	
  	
  An	
  aside:	
  	
  Two	
  rows	
  are	
  highlighted	
  in	
  
blue	
  to	
  call	
  out	
  the	
  lack	
  of	
  a	
  second	
  most	
  frequent	
  
FRBOG	
  topic	
  –	
  in	
  LDA	
  topic	
  10,	
  all	
  3	
  SRLs	
  had	
  a	
  
FRBOG	
  topic	
  of	
  “Apps”	
  and	
  only	
  “Apps”.	
  	
  In	
  Figure	
  
8,	
  we	
  see	
  that	
  the	
  code	
  identified	
  the	
  common	
  
occurrence	
  of	
  “CapAdequacy”	
  among	
  our	
  LDA	
  
topic	
  1	
  SRLs.	
  	
  	
  
	
  
For	
  understanding,	
  it	
  is	
  critical	
  to	
  note	
  at	
  this	
  point	
  
that	
  the	
  concept	
  of	
  “CapAdequacy”	
  should	
  not	
  be	
  
used	
  to	
  draw	
  conclusions.	
  	
  The	
  code	
  extracted	
  
SRLs	
  based	
  upon	
  the	
  most	
  frequent	
  first-­‐found	
  

common	
  FRBOG	
  topic.	
  	
  For	
  example,	
  in	
  LDA	
  topic	
  13,	
  all	
  FRBOG	
  topics	
  associated	
  with	
  the	
  
SRLs	
  within	
  the	
  LDA	
  topic	
  13	
  were	
  unique.	
  	
  Most	
  frequent	
  topic	
  was	
  the	
  first-­‐found	
  topic	
  
with	
  a	
  frequency	
  of	
  1,	
  next	
  most	
  frequent	
  topic	
  was	
  the	
  next	
  occurring	
  topic	
  with	
  a	
  
frequency	
  of	
  1	
  among	
  the	
  remaining	
  SRLs	
  in	
  topic	
  13.	
  This	
  introduces	
  arbitrariness	
  in	
  the	
  
identification	
  of	
  the	
  top	
  term.	
  	
  Our	
  goal	
  was	
  to	
  identify	
  if	
  LDA	
  topics	
  grouped	
  SRLs	
  in	
  the	
  
manner	
  of	
  an	
  expert	
  human,	
  not	
  whether	
  the	
  descriptive	
  word	
  or	
  phrase	
  for	
  topic	
  labeling	
  
was	
  appropriate.	
  	
  	
  	
  
	
  

SRL_ID	
   VEMtopics	
   BOGTopicL	
  
sr1108	
   1	
   CapAdequacy	
  
sr1207	
   1	
   CapAdequacy	
  
sr1207	
   1	
   ExamSupGuidance	
  
sr1207	
   1	
   LiquidityRisk	
  
sr1403	
   1	
   LiquidityRisk	
  
sr1403	
   1	
   CapAdequacy	
  
Table	
  A8.	
  FRBOG	
  topics	
  within	
  LDA	
  topic	
  

VEMtopics	
   max	
   maxBOGt	
  
1	
   3	
   CapAdequacy	
  
2	
   4	
   LiquidityRisk	
  
3	
   3	
   CommunityBkg	
  
4	
   5	
   Accounting	
  
5	
   2	
   Accounting	
  
6	
   4	
   ExamSupGuidance	
  
7	
   4	
   RealEstate	
  
8	
   4	
   CreditRisk	
  
9	
   3	
   CapAdequacy	
  
10	
   3	
   Apps	
  
11	
   4	
   SLHC	
  
12	
   1	
   Asset/Wealth	
  
13	
   1	
   Accounting	
  
14	
   6	
   RealEstate	
  
15	
   3	
   Apps	
  
16	
   1	
   	
  	
  
17	
   2	
   CreditRisk	
  
18	
   3	
   BSA/OFAC	
  
19	
   2	
   ExamSupGuidance	
  
20	
   1	
   Apps	
  

Table	
  A9.	
  Max	
  FRBOG	
  topic,	
  round	
  1	
  

VEMtopics	
   BOGTopicL	
   freq	
  
1	
   ExamSupGuidance	
   1	
  
1	
   LiquidityRisk	
   2	
  

Table	
  A10.	
  LDA	
  topic	
  2,	
  round	
  2.	
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At	
  this	
  point	
  in	
  this	
  process,	
  a	
  dataset	
  includes	
  a	
  
variable	
  “toptop”	
  which	
  is	
  1	
  if	
  an	
  SRL	
  was	
  matched	
  
to	
  the	
  most	
  frequent	
  FRBOG	
  topic	
  within	
  the	
  LDA	
  
topic,	
  2	
  if	
  an	
  SRL	
  was	
  matched	
  to	
  the	
  next	
  most	
  
frequent	
  FRBOG	
  topic	
  within	
  the	
  LDA	
  topic,	
  and	
  
NA	
  if	
  it	
  didn’t	
  match	
  to	
  either.	
  	
  As	
  R	
  reads	
  NA	
  as	
  
less	
  than	
  1,	
  “SO”	
  was	
  created	
  to	
  hold	
  1	
  or	
  2	
  if	
  	
  
there	
  had	
  been	
  a	
  match,	
  or	
  3	
  if	
  not.	
  Our	
  sample	
  
included	
  125	
  SRLs	
  and	
  transforming	
  to	
  a	
  long	
  
dataset	
  with	
  one	
  row	
  per	
  SRL/FRBOG	
  topic	
  
resulted	
  in	
  260	
  rows	
  for	
  this	
  example	
  run	
  so	
  we	
  
must	
  transfom	
  to	
  1	
  row	
  per	
  SRL.	
  	
  An	
  SRL	
  within	
  an	
  
LDA	
  topic	
  which	
  matched	
  to	
  either	
  of	
  the	
  2	
  most	
  
frequent	
  FRBOG	
  topics	
  is	
  a	
  match.	
  	
  Of	
  course	
  this	
  is	
  
more	
  meaningful	
  in	
  an	
  LDA	
  topic	
  with	
  15	
  SRLs	
  
than	
  an	
  LDA	
  topic	
  with	
  2	
  SRLS,	
  but	
  nevertheless	
  it	
  
provides	
  a	
  comparative	
  measures	
  for	
  various	
  runs	
  
of	
  LDA	
  modeling	
  of	
  SRLs.	
  	
  Matches	
  to	
  FRBOG	
  
topics	
  within	
  a	
  LDA	
  topic	
  tell	
  us	
  of	
  how	
  LDA	
  may	
  
have	
  duplicated	
  some	
  of	
  the	
  effort	
  of	
  an	
  expert	
  
human.	
  	
  In	
  Table	
  A13,	
  we	
  see	
  match	
  status	
  within	
  
the	
  first	
  2	
  LDA	
  topics.	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  

VEMtopics	
   max	
   maxBOGt	
  
1	
   2	
   LiquidityRisk	
  
2	
   2	
   BSA/OFAC	
  
3	
   3	
   ExamSupGuidance	
  
4	
   4	
   ALLL	
  
5	
   2	
   AssetQual	
  
6	
   3	
   LegalRepRisk	
  
7	
   3	
   Apps	
  
8	
   3	
   Accounting	
  
9	
   2	
   ExamSupGuidance	
  
11	
   3	
   ExamSupGuidance	
  
12	
   1	
   CorpCompliance	
  
13	
   1	
   CapAdequacy	
  
14	
   4	
   CreditRisk	
  
15	
   3	
   ExamSupGuidance	
  
16	
   1	
   ExamSupGuidance	
  
17	
   1	
   CommunityBkg	
  
18	
   2	
   ConfidentialInfo	
  
19	
   1	
   Asset/Wealth	
  
20	
   1	
   CapAdequacy	
  

Table	
  A11.	
  Max	
  FRBOG	
  topic,	
  round	
  1	
  

VEMtopics	
   BOGTopicL	
   SRL_ID	
  
1	
   CapAdequacy	
   sr1403	
  
1	
   CapAdequacy	
   sr1108	
  
1	
   CapAdequacy	
   sr1207	
  

Table	
  A12.	
  	
  Completed	
  LDA	
  topic	
  1.	
  

VEMtopics	
   SRL_ID	
   BOG_TOPIC	
   SO	
   countkey	
  
1	
   sr1403	
   CapAdequacy	
  &	
  LiquidityRisk	
   1	
   MatchTo2	
  
1	
   sr1108	
   CapAdequacy	
   1	
   MatchTo2	
  
1	
   sr1207	
   CapAdequacy	
  &	
  ExamSupGuidance	
  &	
  LiquidityRisk	
   1	
   MatchTo2	
  
2	
   sr1107	
   CapAdequacy	
  &	
  LiquidityRisk	
  &	
  InternalControls	
  &	
  MarketRisk	
   1	
   MatchTo2	
  
2	
   sr1006	
   LiquidityRisk	
   1	
   MatchTo2	
  
2	
   sr1603	
   ExamSupGuidance	
  &	
  FBO	
  &	
  LiquidityRisk	
   1	
   MatchTo2	
  
2	
   sr1001	
   LiquidityRisk	
  &	
  MarketRisk	
   1	
   MatchTo2	
  
2	
   sr1410	
   BSA/OFAC	
   2	
   MatchTo2	
  
2	
   sr1106	
   BSA/OFAC	
   2	
   MatchTo2	
  
2	
   sr1010	
   ExamSupGuidance	
   3	
   NoMatch	
  
2	
   sr1324	
   LegalRepRisk	
  &	
  OpsRisk	
  &	
  IntlActivities	
   3	
   NoMatch	
  

Table	
  A13.	
  	
  Identified	
  matches,	
  by	
  SRL,	
  of	
  FRBOG	
  top	
  2	
  topics	
  to	
  LDA	
  topic	
  combinations.	
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Recall	
  we	
  have	
  results	
  of	
  LDA	
  based	
  upon	
  different	
  
BoWs.	
  	
  Table	
  A14	
  is	
  summarized	
  to	
  a	
  count	
  of	
  
matches	
  in	
  a	
  single	
  case,	
  which	
  was	
  just	
  one	
  example.	
  	
  	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  
	
  

	
   	
  

fVEMtopics	
   MatchTo2	
   NoMatch	
  
1	
   3	
   0	
  
2	
   6	
   2	
  
3	
   4	
   5	
  
4	
   6	
   11	
  
5	
   2	
   4	
  
6	
   5	
   1	
  
7	
   7	
   8	
  
8	
   4	
   6	
  
9	
   3	
   0	
  
10	
   3	
   0	
  
11	
   5	
   0	
  
12	
   1	
   0	
  
13	
   2	
   0	
  
14	
   8	
   5	
  
15	
   5	
   1	
  
16	
   2	
   0	
  
17	
   2	
   0	
  
18	
   5	
   1	
  
19	
   2	
   4	
  
20	
   2	
   0	
  

	
  
77	
   48	
  

Table	
  A14.	
  Summary	
  matches.	
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Appendix	
  4	
  
	
  

Comparison	
  clouds	
  	
  
	
  

Figure	
  A.5.	
  The	
  next	
  four	
  pages	
  of	
  2016	
  SRLs,	
  
	
  in	
  comparison	
  cloud	
  format,	
  with	
  comparison	
  on	
  the	
  left	
  and	
  commonality	
  on	
  the	
  right.	
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