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ABSTRACT

Models of Persuasion

Itai Sher

I study several aspects of a game-theoretic model of persuasion. A speaker attempts to

persuade a listener to take an action which is highly ranked by the speaker. The listener

knows the speaker’s preference but is uncertain about what the speaker can say. The

listener can commit to a persuasion rule, which is a response to the speaker’s messages.

Chapter 1 provides an introduction.

Chapter 2 studies conditions under which optimal persuasion rules are deterministic

and credible, extending results of Glazer and Rubinstein (2006) from two to many actions.

Chapter 3 studies the lattice theoretic structure underlying the persuasion problem.

I study implementable outcome functions (i.e., mappings from types to actions induced

by some persuasion rule). Families of implementable outcome functions which can arise

in some persuasion problem correspond to interior systems on the set of types, a notion

from lattice theory. This leads to a characterization of messages as being essential or

redundant.
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Chapter 4 studies the additional structure which imposed by the assumption that the

speaker does not face time, attention, or other similar communication constraints. The

absence of such constraints is captured by the notion of normality of Bull and Watson

(2007), and related to the nested range condition of Green and Laffont (1986). Under

normality, the representation in terms of interior systems reduces to one in terms of

quasi-orders.

The main result of Chapter 5 is that in the finite case, the listener’s utility function

is guaranteed to be a modular function of the set of implementable outcome functions

exactly when normality holds; otherwise, the listener’s utility function may not be quasi-

supermodular. It follows that under normality, all messages become more persuasive as

the interests of the speaker and listener become more aligned, and when normality fails,

one can always find a counter-example. Likewise, under normality, there always exists a

symmetric optimal rule, whereas when it fails, examples in which all optimal rules are

asymmetric are found.

Chapter 6 studies an integer programming formulation of the problem.
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CHAPTER 1

Introduction

This dissertation studies several aspects of a game-theoretic model of persuasion, in-

volving a speaker and a listener. The listener can choose one of several actions. The

speaker knows the true state, prefers higher actions (according to some ranking) and may

make a statement in order to persuade the listener to take a high action. The listener’s

preference depends on the state and he must commit to a decision rule–called a persuasion

rule–in response to the speaker’s messages before the interaction.

An important property of the model studied here is that while the speaker’s prefer-

ences are known to the listener, the set of messages available to the speaker is not known.

Thus, in selecting a persuasion rule, the listener must only reason about what the speaker

could say in various circumstances. The main contribution of this dissertation is a charac-

terization of the underlying lattice structure of the persuasion problem, which provides an

approach to analyzing the diverse possibilities which can arise in this setting. However, I

also deal with aspects of the persuasion problem which do not directly invoke the lattice

structure. In the remainder of this chapter, I will outline the contributions of the chapters

of this dissertation, and then I will present the basic model which is developed in different

ways throughout.

Chapter 2 studies the determinism and credibility of optimal persuasion rules. A

persuasion rule is deterministic if in response to each message, it selects a single action,

rather than a probability distribution over many actions. A persuasion rule is credible
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if the commitment assumption is unnecessary. In other words, a persuasion rule f is

credible if the timing of the game can be reversed so that first–anticipating the listener’s

response–the speaker sends a message m using a (possibly mixed) strategy which is a

best response to f , and then, for any message m which the speaker uses with positive

probability, the listener actually finds it in his interest to play f(m) given the speaker’s

strategy. Glazer and Rubinstein (2006) showed that when there are two actions, there

exists an optimal persuasion rule which is both credible and deterministic. In a related

model, Glazer and Rubinstein (2004) found that the optimal persuasion rule is credible

but not necessarily deterministic.

In Chapter 2, I extend the analysis of Glazer and Rubinstein (2006) to the case where

the listener can choose from several actions and not just two. This extension is interesting

for several reasons. To begin with, with several actions it is no longer necessarily true that

there exists an optimal persuasion rule which is either credible or deterministic. Thus,

we can ask, what properties of the problem would lead to the existence of such optimal

rules. Secondly, in the case of multiple actions, a concavity property is relevant to both

determinism and credibility, and this is hidden in the case of two actions.

With respect to both determinism and credibility, it is possible to get partial results

without any special assumptions on the utility functions aside from the assumption that

the speaker’s preferences are known and strict, where the latter assumption was also made

by Glazer and Rubinstein (2006). These partial results fall short of ensuring the existence

of either an optimal deterministic or optimal credible persuasion rule, but their restriction

to the case of two actions ensures the existence of an optimal deterministic credible rule.
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Moreover, it is possible to establish existence of an optimal credible deterministic persua-

sion rule under stronger conditions on the utility functions. However, these conditions

are always satisfied in the case of two actions. In a sense, looking from the perspective

of multiple actions, the results of Glazer and Rubinstein are over-determined. One can

look at them as special cases of either the partial results with many actions, or of the

results guaranteeing the existence of an optimal deterministic credible rule under stronger

assumptions.

The partial results are as follows. First, there always exists an optimal persuasion

rule f such that (i) for every message m, f(m) either puts probability one on a single

action or f(m) is a probability distribution over two non-adjacent actions (according to

the ranking representing the speaker’s ordinal preference), and (ii) any best response to

f gives each type of speaker a utility equal to the utility to some pure action. This falls

short of determinism. However, with two actions (i) implies the existence of an optimal

deterministic persuasion rule, since there are no non-adjacent actions. (ii) also implies

the existence of an optimal deterministic persuasion rule, because when there are only

two actions, over which the speaker is not indifferent, the only way to give the every type

of speaker the utility to some pure action is by actually giving him that pure action with

probability one. One can also show that for every persuasion rule f which is optimal

among deterministic rules, and any pair of adjacent actions a and a′, there is a speaker

strategy σ which is a best response to f and such that for any message m with f(m) = a,

conditional on the distribution of types and σ, the listener would not be better off playing

a′ than a after seeing m, and such that the same condition also holds when the roles of a

and a′ are reversed. This falls short of implying credibility because the strategy σ depends
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on the pair of actions a and a′, and nothing is said about deviations other then a and a′.

Nevertheless, if there are only two actions, this clearly implies credibility. In fact, as one

might expect the proof of this fact is essentially the same as Glazer and Rubinstein’s proof

for two actions. Notice however that the logic here depends on the result that with two

actions there exists an optimal deterministic persuasion rule, because we are not assuming

that f is optimal, only that it is optimal among deterministic rules.

A sufficient condition for the existence of an optimal deterministic persuasion rule

with many actions is that at every state, the listener’s state-dependent utility function is

a concave transformation of the speaker’s state-independent utility function. A sufficient

condition for the ensuring that any persuasion rule which is optimal among deterministic

persuasion rules is credible is that that there exists some state-independent real valued

function r representing the speaker’s ordinal preferences, such that the listener’s utility

function is a concave transformation of r at every state of the world. It is not necessary

that r represent the speaker’s cardinal preferences, but if it does, then it follows from the

above that there exists an optimal deterministic credible persuasion rule.

Chapter 3 examines the lattice structure underlying the persuasion problem. Here

and throughout the remainder of the dissertation, I restrict attention to deterministic

persuasion rules. In a persuasion problem, the choice set for the listener is implicitly the

set of outcome functions–i.e. functions from states to actions–which are consistent with

the speaker’s incentives. I characterize the choice sets which can arise in some persuasion

problem. The characterization is in terms of a notion from lattice theory known as an

interior system. This is a family of sets of types of speaker which contains the empty set,
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the set of all types, and is closed under union. I show that for a fixed number of actions,

interior systems correspond one-to-one with the possible choice sets for the listener.

The characterization has several consequences for the structure of the listener’s deci-

sion problem. For instance, if one knows which outcome functions are feasible when there

are two actions, one can infer which outcome functions would be feasible with k actions.

Moreover, for a fixed number of actions, I define a closure operator τ which allows one to

infer the feasibility of some outcome functions from the feasibility of others. A family of

outcome functions corresponds to a choice set in some persuasion problem if and only if

it is a fixed point of τ . This means that in a persuasion problem, for the listener, hav-

ing some choices entails having other choices, and reflects the listener’s ability to make

decisions based on arbitrary properties of the speaker’s messages.

The representation of the listener’s possible choice sets also allows me to undertake

a detailed analysis of the structure of messages. I provide a method for inferring all

important information about messages from the listener’s choice set. Moreover, I identify

a set of essential messages and show that all other messages are redundant. In deciding

which arguments to find persuasive, the listener must only consider essential messages.

Essential messages are characterized both from a global perspective (i.e., relative to the

set of all messages), and from a local perspective (i.e., relative to the messages available

to a given type). The maximum possible number of essential messages when there are n

types is shown to be approximately
(
n
n/2

)
.

Chapter 4 studies the additional structure which is imposed on the persuasion prob-

lem when it is assumed that the speaker can summarize his information. An important

distinction in persuasion situations concerns the question of whether the speaker has the
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ability to present all of his information, or on the other hand, faces time or attention con-

straints which limit his ability to present all of his information. The assumption that the

messages available to the speaker depend on the state can be used to model the speaker’s

inability to provide all his information. For example, consider a job applicant, who may

or may not have time to present all of his qualifications. If the job applicant faces a time

constraint, the applicant may have a message corresponding to each of his qualifications,

but no message corresponding to all of his qualifications. The absence of time constraints

can be modeled by assuming that the applicant has a single message which corresponds

to all of his qualifications. Presentation of this message is tantamount to the transmission

of all of his information.

In Chapter 4, I use the lattice theoretic characterization derived in Chapter 3 to

study what additional structure is imposed on the speaker’s choice set when it is assumed

that the speaker can summarize his information. In order to define formally what it

means to be able to summarize, I consider a condition on the message space known as

normality. This notion was introduced by Bull and Watson (2007), and is similar to an

earlier concept known as the nested range condition, which was introduced by Green and

Laffont (1986). These authors studied mechanism design environments with provability,

and their focus was primarily to find conditions, such as normality, which validate a version

of the revelation principle in such environments. Related papers include Deneckere and

Severinov (2001), Forges and Koessler (2005) and Singh and Wittman (2001).1 In contrast

1Singh and Wittman (2001) study implementation with and without the nested range condition. Unlike
these authors, I provide a method of identifying whether a family of outcome functions could be the choice
set in any persuasion problem, use a lattice-theoretic characterization to study properties of optimal
persuasion rules, and show how these properties depend on conditions such as normality. Other more
distantly related papers which deal with implementation and related issues under provability include Bull
and Watson (2004) and Lipman and Seppi (1995).
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to these papers, my primary focus is not the revelation principle but rather the effect of

the ability to summarize on other properties in a persuasion setting.

I show that under normality, the representation of the listener’s choice set in terms

of interior systems reduces to a representation in terms of quasi-orderings. In particular,

under normality, a family of outcome functions corresponds to the listener’s choice set

for some specification of the persuasion problem if and only if it is the family of outcome

functions which are monotone with respect to some quasi-ordering. Thus the notion of

an interior system generalizes that of a quasi-ordering precisely by providing a means of

representing gaps in the speaker’s ability to summarize information. In fact, one can use

this analysis to identify precisely which choices are not available to the listener because

of the speaker’s inability to summarize: these choices correspond to outcome functions

which are monotone but which do not satisfy a stronger condition. In particular, there

is some action such that the listener cannot separate the types who receive at least that

action from those who do not.

I also introduce the related notion of weak normality. Intuitively, weak normality is

intended to capture the situation in which the speaker can summarize small, but not large

pieces of information. For example, suppose that if the speaker has time to relate a piece

of information A, as well as a piece of information B, he has time to relate both, but

he does not have time to relate all of his information. This can be made rigorous by an

assumption which allows the speaker to summarize finite but not infinite collections of

information. As discussed above, the listener’s choice set is always a lattice. However,

I prove that it is a sublattice of the set AT of all functions from the set of types to the

set of actions (ordered by the componentwise order) if and only if the message structure
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satisfies weak normality. The listener’s choice set is a subcomplete sublattice of AT if

and only if the message structure is normal. With finitely many types, the notions of

normality and weak normality coincide, as do the notions of sublattice and subcomplete

sublattice.

Chapter 5 uses the characterizations derived in the previous chapters to analyze some

qualitative properties of the persuasion situation. I find that the property of normality is

critical, assuming finitely many types so that normality and weak normality are equivalent.

In particular I find that the comparative statics of the persuasiveness of messages depends

on normality. Secondly, I find that the existence of symmetric optimal persuasion rules

depends on normality. Thus optimal persuasion rules may be necessarily asymmetric

which, I interpret in terms of the requirement that certain messages must be treated

nonliterally.

The first step, leading to these results is a result showing that the speaker’s ability–or

lack thereof–to summarize information can be represented as a property of the listener’s

utility function, when considered directly as a function of the lattice of implementable

outcome functions. I show that the listener’s objective function can always be represented

as a modular function of this lattice if and only if normality holds. Moreover, whenever

it does not hold, one can specify the listener’s objective in such a way that it is not even

quasi-supermodular. This is a consequence of the fact that with finitely many types,

normality is necessary and sufficient for the listener’s choice set to be a sublattice of AT .

The listener’s utility function is easily seen to be a modular function of AT . Thus, only

under normality does it inherit this property when considered as a function of the set of

implementable outcome functions.
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This has consequences in terms of comparative statics. In particular, it is intuitive that

if the interests of the speaker and the listener become more aligned in every state, then

the listener will grant the speaker a weakly higher (i.e., more preferred) action in every

state, but this conclusion is valid for all specifications of the listener’s objective only if the

speaker can summarize his information. Otherwise, the listener may choose a persuasion

rule which makes the speaker better off in some states and worse off in others. This

conclusion can be translated into a result about messages: under normality as interests

become more aligned, all messages become more persuasive, but when normality fails,

some message may become less persuasive.

Secondly, I show that failure of normality is critical for the ability for the solution to

the persuasion problem to represent certain pragmatic phenomena. In a series of papers,

Glazer and Rubinstein (2003, 2004, 2006) used models of persuasion similar to the model

studied in this dissertation to provide a model which could represent certain pragmatic

phenomena in a strategic setting. Pragmatics is the subfield of linguistics which studies

conversational meaning, which is meaning that arises in conversation over and above

the literal meaning of the words used. In a classical account, Grice (1989) proposed

certain cooperative principles of conversation to account for such phenomena. However,

as Glazer and Rubinstein point out, such phenomena can arise in strategic situations in

which agents would not be expected to obey Grice’s cooperative principles. They present

a series of examples in which structurally identical messages are treated differently by

optimal persuasion rules. This can be interpreted as representing conversational meaning,

because under the optimal persuasion rule, messages which do not differ structurally, and

hence in their “literal meaning” are treated differently. While Glazer and Rubinstein
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never explicitly mention the notion of normality, it so happens that all the examples that

they present violate normality. In other words, all these examples feature something like

time constraints. I show that this is not an accident. In particular, under normality,

the listener’s problem corresponds to maximization of a modular–hence supermodular–

function on a lattice. By a well known result, this implies that the set of maximizers is a

lattice, hence has a greatest element. I define a formal notion of symmetry for persuasion

problems, and show that under normality the greatest element of the lattice of maximizers

can always be implemented by a symmetric persuasion rule, that is, a persuasion rule

which treats messages which are structurally the same similarly. Thus while there may be

optimal rules which treat structurally identical messages differently, this does not happen

essentially in the sense that such different treatment is never a necessary condition for a

solution of the persuasion problem.

I also identify a class of non-normal problems where no optimal symmetric rule ex-

ists. Ideally, one would like to show that whenever normality fails one could specify the

listener’s utility function in some way so that there would be no optimal symmetric rule.

Unfortunately this is not possible for a rather trivial reason; the message structure may

be such that every pair of messages are structurally different from one another. However

another theorem is possible which emphasizes the same point. In the counter-examples

to the existence of symmetric optimal rules when the message structure is not normal,

there are collections of messages {m1,m2, . . . ,mn} which are structurally identical but

such that no optimal rule treats them all in the same way. Suppose for example that

every optimal rule treats m1 and m2 differently, in that f(m1) = a1 and f(m2) = a2. Of

course, it is possible to find another optimal persuasion rule f ′ such that f ′(m1) = a2
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and f ′(m2) = a1. But there may be no optimal rule which assigns either a1 or a2 to both

m1 and m2. Thus the treatment of m1 and m2 is interdependent at the optimal rule.

Such interdependence is impossible for any pair of messages, regardless of whether they

are structurally the same or not, under normality. However, one can always specify the

listener’s utility function so that such interdependence emerges for some pair of messages

whenever normality fails.

Chapter 6 relates the approach of the research of this dissertation to the “L-principle”

of Glazer and Rubinstein (2006), which is an integer program whose solution is equivalent

to that of the persuasion problem. I use the lattice theoretic approach to extend the

“L-principle” to multiple actions, and show that it reduces to the well-known maximal

closure problem under normality with two actions.

1.1. The Model

Assume that there is a speaker and a listener. The listener may be one of several

types in a set T . The speaker is of type t with probability π(t) > 0. For each type

t ∈ T , there is a nonempty set M(t) of messages which are available to t. In other words,

different types have different messages at their disposal. I assume that for all t ∈ T ,

M(t) 6= ∅, which means that each type can say something. Let M be the set of all

possible messages, so that
⋃
t∈T M(t) ⊆ M. I refer to the set-valued map M : T ⇒ M,

as the message correspondence. The tuple (T,M,M(·)) is called a message structure.

Except for in Chapters 3 and 4, T and M are assumed to be finite.

Most models in which the set of available messages depends on the type (e.g., Milgrom

and Roberts (1986), Lipman and Seppi (1995)) rationalize this dependence either by the
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assumption that the speaker must present hard evidence or that the penalties to certain

messages, which are interpreted as “lies”, are severe. Such an interpretation is appropriate

here, but a broader interpretation is also possible. For example, in a political debate, the

potential answers which a candidate perceives in response to a question may depend on

his personality, his way of thinking, or the ideology of his party. If one simply counts the

number of sentences that a speaker could possibly say, it is very implausible that a speaker

would consider all possibilities, and one would expect that idiosyncratic characteristics of

a speaker will determine which possibilities he considers. A second function of the varying

message space, as will be explained in Section 4.1, will be to model the possibility that a

speaker may not be able to present all his information.

The listener selects actions from a finite set A := {1, . . . , k}. It is often convenient to

write A = {a1, . . . , ak}, but formally the action aj is identified with the number j. The

speaker has a continuous strictly increasing von Neumann-Morgenstern utility function

u : A → R, which does not depend on his type. Thus, the speaker prefers higher actions

independently of his type. The listener has a von Neumann-Morgenstern utility function

v : A × T → R. Thus, the listener’s utility depends both on the action, and on the

speaker’s type.

A persuasion rule is a function f : M → ∆A, in other words, a function which maps

messages into probability measures over actions. A speaker strategy σ : T → ∆(M) which

maps types into probability distributions over messages. I also use the notation σ(t,m)

to denote the probability that type t plays message m. Let Σ be the set of all speaker

strategies.

The timing of the game between the speaker and the listener is as follows:
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(1) The listener commits to a persuasion rule f .

(2) Nature selects the speaker’s type according to π

(3) The speaker selects–possibly randomly–a message m ∈M(t).

(4) An action is selected according to the probability distribution f(m).

The idea behind this timing is that the listener searches for the best rule for responding

to the speaker’s request.

Define an outcome function to be a function g : T → ∆A mapping types into proba-

bility measures over actions. Let Ef(m) be the expectation operator with respect to the

probability measure f(m). A persuasion rule f implements an outcome function g if there

exists a sender strategy σ ∈ Σ satisfying:

∀t ∈ T,∀m ∈ M, σ(t,m) > 0 ⇒ m ∈ argmaxm∈M(t)Ef(m)[u(a)]

∀t ∈ T, g(t) =
∑

m∈M(t)

σ(t,m)f(m)

A deterministic persuasion rule is a persuasion rule f such that f(m) always puts prob-

ability one on a single action, and likewise a deterministic outcome function g is an

outcome function such that g(t) always puts probability one on a single action. When

speaking of deterministic persuasion rules, I treat such rules as functions f : M → A,

and likewise a deterministic outcome function is treated as a function g : T → A. Notice

that deterministic persuasion rules always implement deterministic outcome functions.

Whereas implementation is generally a many-to-many relation between persuasion rules

and outcome functions, when restricting attention to deterministic persuasion rules, it is

a many-to-one relation. It is not difficult to see that a deterministic persuasion rule f
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implements a deterministic outcome function function g if and only if

(1.1) g(t) = max{f(m) : m ∈M(t)},

In the deterministic case, since the implemented outcome function is unique, we write

g = gf for the outcome function implemented by f . A deterministic outcome function g

is implementable if there exists a deterministic persuasion rule f that implements it.

A persuasion rule f is optimal if it gets the highest possible expected utility for the

listener given that the speaker chooses the strategy which is best for the listener among

his best responses. An optimal deterministic persuasion rule is a persuasion rule which is

both optimal and deterministic. A persuasion rule is optimal among deterministic rules

if it is optimal given that the listener’s choice is restricted to deterministic rules.

.
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CHAPTER 2

Determinism and Credibility

This chapter extends results of Glazer and Rubinstein (2006) concerning determinism

and credibility of optimal persuasion rules. Glazer and Rubinstein (2006) showed that,

in the case of two actions, there is an optimal deterministic persuasion rule. Moreover,

they showed that any optimal persuasion rule can be credibly implemented in the sense

that there is exists a sequential equilibrium of the game in which the speaker moves first

and the listener does not commit to a persuasion rule, whose outcome is the same as the

outcome of the optimal rule.

In this chapter I extend these results to the case of multiple actions. This is interesting

in part because the results of Glazer and Rubinstein (2006) do not hold generally in the

case of multiple actions, but only under certain assumptions on the utility functions of

the players. Thus an examination of the multiple action case yields additional insight as

to why and when such results would be true generally. It turns out moreover that a set of

conditions sufficient for the existence of optimal deterministic persuasion rules is closely

related to conditions sufficient for credible implementation of optimal deterministic rules.

The determinism and credibility results play different roles with respect to the re-

search presented in this dissertation. Both pertain to the scope of the analysis. In later

chapters, I study the lattice structure underlying deterministic persuasion rules, and use

this structure to develop comparative statics results, as well as results which pertain to

the structure of the set of optima. Restricting attention to deterministic rules is justified
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in part by the fact that they are natural and have an interesting structure. However, the

justification is bolstered by the analysis of this chapter which shows that there is a broad

class of specifications of the model for which deterministic rules are optimal.

The credibility result plays a similar role in terms of determining the scope of the

analysis. There may be instances in which the commitment to a persuasion rule is plausi-

ble; the listener may announce in advance what arguments he would find persuasive, and

his commitment to such an announcement may be enforced by his reputation. Neverthe-

less, in many persuasive situations, commitment is not possible. The credibility result

says that under certain assumptions, conclusions derived from studying optimal persua-

sion rules under commitment are always consistent with equilibrium predictions about

the outcome of persuasion without commitment. Among all persuasion rules consistent

with equilibrium, those which are designed to optimize the listener’s objective may be of

special interest.

Section 2.1 of this chapter presents conditions under which some optimal persuasion

rule is deterministic. The condition is that at every state of the world, the listener’s utility

function is a concave transformation of the speaker’s utility function. A surprising result is

that regardless of whether this condition holds, there always exists an optimal persuasion

rule in which every speaker type gets an expected utility equal to the utility of some pure

action. Section 2.2 studies conditions under which optimal persuasion rules can be credibly

implemented. More specifically, conditions are found under which persuasion rules which

are optimal among deterministic rules can be credibly implemented. This means that

conditions are found under which the best deterministic persuasion rule can be credibly

implemented even when there is a random persuasion rule which dominates it. When
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combined with the results of Section 2.1, this implies conditions under which persuasion

rules which are optimal relative to all rules–random and deterministic–can be credibly

implemented. The condition under which rules which persuasion rules which are optimal

among deterministic rules can be credibly implemented is that there exists a strictly

increasing function of the actions r such that at every state of the world, the listener’s

utility function is a concave transformation of r. If r is the speaker’s utility function,

then the conditions of both the determinism and credibility results are simultaneously

satisfied.

2.1. Optimality of Deterministic Persuasion Rules

This section will present two results. The first result shows that there always exists

an optimal persuasion rule, which gives each type of speaker an expected utility equal

to the utility of some pure action. The second result establishes conditions under which

there is an optimal deterministic persuasion rule.

Theorem 2.1. There is an optimal persuasion rule f such that (1) for every message

m ∈ M, either f(m) selects a single action with probability 1, or f(m) randomizes over

two non-adjacent actions, and (2) in any best response to f , each type of speaker gets an

expected utility equal to the utility to some pure action.

Proof. See Section 2.3.1. �

A sketch of the proof is as follows. First, it is not difficult to see that there must be an

optimal rule f ∗ and a speaker best response σ∗ to f ∗ such that (i) each type t of speaker

sends some message mt with probability 1 according to σ∗ (where different types may

send the same message), (ii) σ∗ is a best response which maximizes the expected utility
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of the listener among speaker best responses to f ∗, and (iii) f ∗ assigns the lowest action

with probability 1 to any message which is not equal to mt for some type t. Therefore,

the listener can restrict attention to persuasion rules which satisfy (iii) with respect to

the fixed set of messages M∗ = {mt : t ∈ T} described in (i). Enumerate the messages in

M∗ so that M∗ = {m1, . . . ,mn}. Any persuasion rule f satisfying (iii)1 then corresponds

to a vector α = (αij)
i=1,...,n
j=1,...,k ∈ [0, 1]nk, where αij is the probability that the persuasion rule

selects action aj if message mi is reported. Assuming that the speaker uses strategy σ∗,

the listener’s expected utility is linear in α. Noting that each type of speaker has the same

preferences, choose α to maximize the listener’s expected utility subject to the constraint

that the ranking (in terms of weak inequalities) of the speaker’s utility to sending any

message in M∗ is the same as under f ∗, as well as inequalities guaranteeing that αi is

a probability distribution over actions for each i. It is easy to see that the set of points

P satisfying these constraints is a polytope (i.e., the convex hull of a finite number of

points in Rnk). P was designed specifically so that the fact that σ∗ is a best response to

f ∗ implies that σ∗ is a speaker best response to any persuasion rule f corresponding to a

point α ∈ P . Next observe that the vector α∗ corresponding to the optimal persuasion f ∗

belongs to P . Therefore, any α which maximizes the listener’s expected utility subject to

belonging to P must correspond to an optimal persuasion rule. Since, when maximizing a

linear function on a polytope, some maximizer is always an extreme point of the polytope,

the proof is completed by examining the constraints defining P to show that any extreme

1relative to the fixed set M∗.
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point β of P satisfies:

k∑
j=1

u(aj)β
i
j ∈ {u(a1), . . . , u(ak)}.(2.1)

|{j : βij > 0}| ≤ 2.(2.2)

for all i. Note that (2.1) and (2.2) together imply that at any extreme point β of P , if

βij1 > 0, βij2 > 0, then j2 6= j1 + 1.

An alternative way to see that property (ii) must hold is to observe that given any

optimal persuasion rule f ∗ and speaker best response σ∗ satisfying (i)-(iii), then it is

already the case that any message m not used in equilibrium is assigned to a single action

with probability one by f ∗, and for any m = mt which is such that f ∗(mt) assigns positive

probability to more than two actions, it is possible to take probability mass off an action aj

which gives the listener either the lowest or the second lowest expected utility conditional

on mt and transfer it other actions which give the speaker a weakly higher expected utility

while keeping the speaker’s expected utility to message mt unchanged, so that σ∗ is still a

best response for the speaker. In fact, since f ∗ is already optimal, probability mass must

be transferred from aj to actions which give the listener the same expected utility as aj

conditional on mt. Thus we can see that there is an optimal persuasion rule such that

for every message m, f ∗(m) puts positive probability on at most two actions. To see that

f ∗ can be constructed so that whenever f ∗(m) puts positive probability on exactly two

actions, these can be assumed to be non-adjacent, we must appeal to the fact that the

extreme points of P have property (2.1).
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The following example shows that in general it is not possible to strengthen Theorem

2.1 to the statement that there is an optimal deterministic persuasion rule.

Example 2.1. Suppose that there are two types, t1, and t2. As always, it is assumed

that each type occurs with positive probability. Assume that the message correspondence

is given by M(t1) = M(t2) = {m1,m2}. Suppose that A = {a1, a2, a3}, u(aj) = j for all

aj ∈ A. Suppose further that v is given by:

v a1 a2 a3

t1 1 0 1
t2 0 1 0

Figure 2.1. Listener’s Utility Function

Recall that the optimal rule is defined in such a way that if there are multiple speaker best

responses to the optimal rule, then the speaker selects the best response which is best for

the listener. In light of this consideration, there are two optimal persuasion rules, each

of which responds to one message with action a2 and to the other by randomizing over

actions a1 and a3 with equal probability. Notice that–consistent with Theorem 2.1–each

type of speaker gets a utility of 2, which is the same as that type’s utility to action a2. �

In the example above, v(·, t1) is not a concave transformation of u. The condition that

at every state of the world, the speaker’s utility function is a concave transformation of

the listener’s utility function is sufficient for a deterministic optimal persuasion rule, both

in the continuous and discrete case.
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Theorem 2.2. Assume that for all t ∈ T , there exists a concave function ct : R → R

such that for all a ∈ A, v(a, t) = ct(u(a)). Then there is an optimal deterministic

persuasion rule.

Proof. As in the proof of Theorem 2.1, one can argue that there must exist an optimal

persuasion rule f ∗ and a speaker best response σ∗ to f ∗ satisfying (i)-(iii).2 The listener’s

utility to σ∗ and f ∗ is:

(2.3)
∑
t∈T

Ef∗(mt)[ct(u(a))]π(t).

Theorem 2.1 says that there is an optimal persuasion rule in which each type of speaker

receives the utility to some pure action. It is clear from the proof sketch of Theorem

2.1 that this property cannot conflict with (i)-(iii). This implies that f ∗ could have been

chosen so that for each mt ∈ M∗, there exists at ∈ A such that u(at) = Ef∗(mt)[u(a)].
3

Now consider the persuasion rule f ∗∗ which assigns the lowest action with probability 1

to any message outside M∗, and such that for each mt ∈ M∗, f ∗∗(mt) selects at with

probability 1. Every message delivers the same utility to the speaker under both f ∗ and

f ∗∗. So σ∗ is a best response to f ∗∗, and the listener’s utility to f ∗∗ and σ∗ is:

(2.4)
∑
t∈T

Ef∗∗(mt)[ct(u(a))]π(t) =
∑
t∈T

ct(u(a
t))π(t) =

∑
t∈T

ct(Ef∗(mt)[u(a)])π(t).

It follows from Jensen’s inequality that (2.4) is at least as large as (2.3), so the optimality

of f ∗ implies the optimality of f ∗∗, and f ∗∗ is deterministic. �

2See the discussion after Theorem 2.1.
3If there exist t, t′ such that mt = mt′ , then assume at = at′ .
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The analysis above puts an interesting perspective on the result in Glazer and Rubin-

stein (2006) that in the case of two actions, there always exists an optimal deterministic

rule. Consider the following two statements:

(1) There exists an optimal rule which gives each type of speaker the utility to a pure

action.

(2) There exists an optimal deterministic rule.

(1) is just Theorem 2.1. (2) implies (1), but the converse is not true. In order to establish

(2) with many actions, we must assume that the listener’s utility function is a concave

transformation of the speaker’s utility function at every state. The latter condition is

trivially satisfied with only two actions. Thus (1) and (2) are equivalent with two actions,

which is the case studied by Glazer and Rubinstein (2006). Moreover, in the case of two

actions, an optimal non-deterministic persuasion rule which gives every type of speaker

the utility to a pure action can only assign non-degenerate probability distributions to

messages which are not used in equilibrium, and in fact, always implements the same

outcome function as some deterministic persuasion rule. This is not true in the case of

many actions. Given the equivalence of (1) and (2) in the case of two actions, the proof

of Glazer and Rubinstein (2006) does not reveal the role of the concavity assumption in

going from (1) to (2).4 In fact the theorem in Glazer and Rubinstein (2006) can be viewed

as a special case both of Theorem 2.1 and of Theorem 2.2. Notice finally that, with two

actions, the existence of an optimal deterministic rule is also equivalent to part (i) of

Theorem 2.2, which says that there exists an optimal persuasion rule such that for every

4This is not intended as a criticism, but rather shows the value added by looking at the case of multiple
actions.
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message m, f(m) either plays a single action with probability one or randomizes over two

non-adjacent actions.

2.2. Credibility of Optimal Persuasion Rules

In the case of two actions, Glazer and Rubinstein (2006) show that any optimal per-

suasion rule can be credibly implemented, meaning that there is a game in which the

speaker moves first, the listener does not commit, and a sequential equilibrium of that

game with the same outcome as the given optimal rule.

Glazer and Rubinstein (2006) provide the following counter-example to the proposition

that any rule which is optimal among deterministic rules can be credibly implemented

when there are more than two actions. The following is almost identical to the example

presented there, although I will extend the example to show that it is not generally possible

to credibly implement an optimal persuasion rule when there are more than two actions.5

Example 2.2. Suppose that there are two types T = {t1, t2}, and the probability

distribution π is such that π(t1) = .4 and π(t2) = .6. There are three actions {a1, a2, a3},

and the message correspondence is given by M(t1) = {m1},M(t2) = {m1,m2}. The

following is the listener’s utility function:

v a1 a2 a3

t1 0 −1 1
t2 0 1 −1

Figure 2.2. Listener’s Utility Function

Restricting attention to deterministic rules, any optimal rule must have the property that

type t2 attains at least as high an action as type t1. This is because type t2 can always

5This is how Glazer and Rubinstein (2006) describe what they are doing, but this is incorrect.
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mimic type t1. It follows that the unique optimal persuasion rule among deterministic

rules is the rule f such that f(m1) = a1 and f(m2) = a2. However, in this case, upon

seeing m1, the listener would know that the speaker’s type is t1, and therefore would

prefer to take action a3. So the optimal rule among deterministic rules is not credibly

implementable.

Glazer and Rubinstein implicitly restrict attention to deterministic rules in this ex-

ample, despite the fact that deterministic rules may not be optimal when there are more

than two actions.6 In fact, in this example, as long as u(a1) < u(a2) < u(a3), but regard-

less of the exact values, an optimal rule cannot be deterministic. In particular, consider

the random rule f ′, which responds to message m2 by taking action a2, and responds to

m1 by taking action a1 with probability u(a3)−u(a2)
u(a3)−u(a1)

, and taking action a3 with probability

u(a2)−u(a1)
u(a3)−u(a1)

. This random rule would make the speaker indifferent between messages m1

and m2, and assuming that t1 chooses m1 (as he must), and t2 chooses m2, this rule

improves upon the optimal deterministic rule. Note however that this random rule is

also not credible because upon seeing m2, the listener would prefer to take action a3 with

probability 1 rather than randomizing over a1 and a3.

In fact f ′ is an optimal rule, which establishes the desired conclusion, namely that

with more than two actions, it may not be possible to credibly implement an optimal

persuasion rule. To see that f ′ is an optimal persuasion rule, observe that the listener

can implement an outcome function g if and only if

3∑
i=1

[g(t2)(ai)− g(t1)(ai)]ri ≥ 0,

6Notice that this example cannot satisfy the sufficient condition found in the previous section for the
optimality of some deterministic rule.
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where g(t)(a) is the probability that g(t) selects a. In other words, the listener can

implement an outcome function g if and only if g gives type t2 a higher expected utility

than type t1. It follows that an outcome function such that g(t2)(a1) > 0 cannot be give

the listener the highest expected utility among implementable outcome functions, because

this implies that g(t1)(a3) < 1, and thus the listener could simultaneously increase the

probability that type t2 gets a2 and the probability that type t1 gets a3, in the process

increasing his own utility. So, at the optimum, g(t2)(a1) = 0. Likewise g(t1)(a2) = 0

because otherwise transferring the probability mass in g(t1) from a2 to a1 would be feasible

and increase the listener’s utility.

Given that the support of an optimal implementable outcome function g(t2) is con-

tained in {a2, a3}, it now follows from Theorem 2.1 that there either is an optimal im-

plementable outcome function g′ such that g′(t2)(a2) = 1, or else an optimal imple-

mentable outcome function g′′ such that g′′(t2)(a3) = 1. If g′ is optimal, then as we have

seen, the listener will choose g′(t1) with support contained in {a1, a3}, and the listener

would like to choose g(t1) to put as much probability mass as possible on a3 subject to

the constraint that Eg(t1)[u(a)] ≤ u(a2). This occurs when g′(t1)(a1) = u(a3)−u(a2)
u(a3)−u(a1)

and

g′(t1)(a3) = u(a2)−u(a1)
u(a3)−u(a1)

, so that the total expected utility for the listener given g′ is:

.4
(u(a2)− u(a1)

u(a3)− u(a1)

)
+ .6 > 0.

On the other hand, if g′′ is optimal, then we must have g′′(t1)(a3) = 1, but then the

listener’s expected utility given g′′ is .4 − .6 = −.2, but this means that g′′ cannot be

optimal, which in turn implies that g′ is optimal. However, as we have seen above, g′
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corresponds to a persuasion rule f ′ described above, which, as we have seen, cannot be

credibly implemented. �

I now present the formal definition of credibility.

Definition 2.1. A deterministic persuasion rule f is credible if there exists a speaker

strategy σ such that:

(2.5)

∀t ∈ T,∀m ∈ M, σ(t,m) > 0 ⇒ f(m) = gf (t).

(2.6)

∀m ∈ M,
∑
t∈T

σ(t,m) > 0 ⇒ f(m) ∈ argmaxa∈A

∑
t∈T

v(a, t)
σ(t,m)π(t)∑
t∈T σ(t,m)π(t)

.

(2.7)

∀m ∈ M,
∑
t∈T

σ(t,m) = 0 ⇒ ∃µ ∈ ∆({t ∈ T : m ∈M(t)}),

f(m) ∈ argmaxa∈A

∑
t∈T

v(a, t)µ(t).

Condition (2.5) defines sender strategy σ to be a best response to f . Condition (2.6)

says that for any message which is played with positive probability by some sender type,

f specifies a best response for the listener conditional on seeing m when the listener

computes his updated belief via Bayes’ rule using π and σ. (2.7) says that when the

speaker sees a message m which is not sent in equilibrium, f specifies an action which

is a best response to some belief µ which only puts positive probability on types who

could have sent m. This amounts to a sequential equilibrium because any such µ can
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be generated as the limit of beliefs induced by totally mixed speaker strategies which

converge to σ.

The following theorem gives conditions under which a persuasion rule which is optimal

among deterministic persuasion rules can be credibly implemented.

Theorem 2.3. Suppose that

(*): there exists a strictly increasing function r : {i, . . . , k} → R, such that for all

t ∈ T , there exists a concave function ct : R → R with v(ai, t) = ct(r(i)).

Then any persuasion rule which is optimal among deterministic rules can be credibly

implemented.

Proof. See Section 2.3.2. �

Notice that if v satisfies (*) with r defined by r(i) := u(ai), then by combining Theorem

2.2 and 2.3, there exists an optimal persuasion rule which can be credibly implemented,

and moreover, every optimal persuasion rule which is deterministic can be credibly im-

plemented. The difference between the requirements of the theorems is that Theorem 2.2

requires that the listener’s utility function be a concave transformation of the speaker’s

utility function at every state of the world in order for there to exist an optimal determin-

istic rule, whereas Theorem 2.3 requires that at every state, the listener’s utility function

be a concave transformation of some strictly increasing function which is independent of

the state.

The following theorem gives some insight as to the role of the concavity assumption

(*):
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Theorem 2.4. Let f be a persuasion rule which is optimal among deterministic per-

suasion rules, and then for any j, j + 1 such that 1 ≤ j ≤ k − 1, there exists a speaker

strategy σ which is a best response to f , and such that for any m with f(m) = aj, the lis-

tener (weakly) prefers action aj to aj+1 conditional on the event that the speaker sends m

and for any m′ such that f(m′) = aj+1, the speaker (weakly) prefers aj+1 to aj conditional

on the event that the speaker sends m′.

This theorem does not require assumption (*), and is very similar to the credibility

result in Glazer and Rubinstein (2006). The proof is similar to the proof of their theorem,

and also to Step 1 of the proof of Theorem 2.3 in Section 2.3.2. In view of Example

2.2, the conclusion of Theorem 2.3 does not generally hold without (*). A comparison of

Theorems 2.3 and 2.4 suggests two related roles for the assumption (*). First, if f is a

persuasion rule which is optimal among deterministic rules, then by Theorem 2.4 be able

to find a speaker best response σ1 to f such that (i) given σ1, upon seeing any message

m such that f(m) = aj, the listener would prefer aj to aj+1, as well as a speaker best

response σ2 such that (ii) given σ2, upon seeing any message m with f(m) = aj, the

listener would weakly prefer aj to aj−1. On the other hand, it may not be possible to find

any speaker best response σ which satisfies both (i) and (ii) simultaneously. Assumption

(*) is sufficient to ensure the existence of a speaker strategy which satisfies both (i) and

(ii) simultaneously. Secondly, Theorem 2.4 does not guarantee that for ` < i < j, or

` > i > j, there exists a speaker best response σ such that whenever f(m) = a`, upon

seeing m, the listener prefers a` to both ai or aj. Assumption (*) also guarantees the

existence of such a speaker best response.
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One might conjecture that the condition (*) is more than is required and that it

would be sufficient that the listener’s utility function be “single-peaked” at every state

of the world, or, more precisely, that the difference d(j, t) = v(aj+1, t) − v(aj, t) satisfies

a single-crossing property whereby for j1 < j2, d(j1, t) ≤ 0 ⇒ d(j2, t) ≤ 0 and d(j1, t) <

0 ⇒ d(j2, t) < 0. However, this property would not be strong enough, as the following

example demonstrates.

It is interesting to compare this with the requirement in Theorem 2.2, which requires

that for each t ∈ T , there is a concave function ct with the property that for all t ∈ T ,

v(ai, t) = ct(ri). Given that ri is increasing in i, both of these requirements are clearly

consistent with one another, so that when they both hold, they imply that there is in

fact an optimal rule which is deterministic and that every optimal rule which is also

deterministic can be credibly implemented, so that some optimal rule can be credibly

implemented.

Example 2.3. Consider the following example. T = {t1, t2, t3}. M(t1) = M(t2) =

{m1},M(t3) = {m1,m2}. Suppose that for all t ∈ T , π(t) = 1/3. Suppose that the

listener’s utility function is given by:

v a1 a2 a3

t1 0 1 4
t2 0 −2 −3
t3 −1 0 −2

Figure 2.3. Listener’s Utility Function

This listener utility function satisfies the single-crossing condition described above.
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Let us now restrict attention to deterministic persuasion rules. It is easy to verify

that the unique optimal deterministic persuasion rule is given by f ∗ with f ∗(m1) = a1,

f ∗(m2) = a2. On the other hand, this rule is not credible because upon seeing m1, the

listener would be better off taking action a3.

It then follows from Theorem 2.3 that there does not exists a strictly increasing func-

tion r : R → R and a family of concave functions {ct : R → R}t∈T such that for all

i ∈ {1, 2, 3} and t ∈ T , ct(r(i)) = v(ai, t). To see this directly, without appeal to Theorem

2.3, assume for contradiction that such r and ct exist. Then considering type t2, we have:

−2

r(2)− r(1)
=
ct2(r(2))− ct2(r(1))

r(2)− r(1)
≥ ct2(r(3))− ct2(r(2))

r(3)− r(2)
=

−1

r(3)− r(2)

or equivalently,

r(3)− r(2)

r(2)− r(1)
≤ 1

2
.

On the other hand, considering t1, we have:

1

r(2)− r(1)
=
ct1(r(2))− ct1(r(1))

r(2)− r(1)
≥ ct1(r(3))− ct1(r(2))

r(3)− r(2)
=

3

r(3)− r(2)
,

which implies that

r(3)− r(2)

r(2)− r(1)
≥ 3,

a contradiction. �
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2.3. Proofs

2.3.1. Proof of Theorem 2.1

Consider an optimal persuasion rule f ∗, and suppose that the speaker responds with a

strategy σ∗ which maximizes the utility of the listener among the speaker’s best responses

to f ∗. We may assume wlog that for all t ∈ T , there exists mt ∈ M(t) such that

σ∗(t,mt) = 1, because all messages which the speaker is using with positive probability

must give both the speaker and the listener the same expected utility. Notice that it may

be that t 6= t′, but mt = mt′ . Let

M∗ := {m ∈ M : ∃t ∈ T,m = mt}.

Let F ∗ be the set of persuasion rules which assign each m 6∈ M∗ the lowest action with

probability 1. We may assume wlog that f ∗ ∈ F ∗.

Let us write M∗ = {m1, . . . ,mn} where the messages are enumerated in such a way

that:

i < j ⇒ Ef∗(mi)[u(a)] ≤ Ef∗(mj)[u(a)].

Note that any persuasion rule f ∈ F ∗ can be associated with a vector α = (αij)
i=1,...,n
j=1,...,k ∈

[0, 1]nk, where for all mi ∈ M∗, and aj ∈ A, αij is the probability that f(mi) selects action

aj. Likewise, for any α ∈ [0, 1]kn with
∑

j α
i
j = 1 for all i, let fα be the corresponding

persuasion rule.

It is possible that there exist two distinct messages mi1 and mi2 in M∗ such that

Ef∗(mi1
)[u(a)] = Ef∗(mi2

)[u(a)]. Group messages in M∗–or equivalently, their indices–

together into blocks B` such that two messages belong to the same block if and only if
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they give the speaker the same expected utility according to f ∗. Suppose that the blocks

{B1, . . . , Bp} are enumerated so that types in smaller blocks receive a lower expected

utility than types in higher blocks. Next, for i = 1, . . . , n, define:

cij =
∑
t∈Ti

v(aj, t)π(t),

where Ti = {t ∈ T : mt = mi}. Now consider the following linear program:

max
α∈Rnk

n∑
i=1

k∑
j=1

αijc
i
j s.t.(2.8)

k∑
j=1

u(j)αi1j =
k∑
j=1

u(j)αi2j if ∃`, s.t. i1, i2 ∈ B`(2.9)

k∑
j=1

u(j)αi1j ≤
k∑
j=1

u(j)αi2j if ∃`1, `2 s.t. `1 < `2, i1 ∈ B`1 , i2 ∈ B`2(2.10)

k∑
j=1

αij = 1 ∀i = 1, . . . , n(2.11)

αij ≥ 0 ∀i = 1, . . . , n,∀j = 1, . . . , k.(2.12)

Let P be the polytope defined by constraints (2.9)-(2.12). (Note that P is nonempty

because it contains some α∗ corresponding to f ∗. Also P is bounded as it is contained in

the hypercube [0, 1]nk.)

The fact that playing mt with probability 1 was a best response to f ∗ along with the

way that the blocks were defined implies that for any type t, and α ∈ P , playing mt with

probability 1 is a best response to fα for t. Moreover,
∑n

i=1

∑k
j=1 α

i
jc
i
j is the listener’s

expected utility when he plays fα and each type t of speaker responds by playing mt.

Optimality of f ∗ and σ∗, along with the facts that σ∗(t,mt) = 1 for all t ∈ T and f ∗ = fα∗
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for some α∗ ∈ P imply that any α which solves (2.8) is such that fα is an optimal

persuasion rule. Given this consideration, the theorem is implied by the following lemma.

Lemma 2.1. If β is an extreme point of P , then for all i = 1, . . . , n

k∑
j=1

u(aj)β
i
j ∈ {u(a1), . . . , u(ak)}.(2.13)

|{j : βij > 0}| ≤ 2.(2.14)

Notice in particular that (2.13) and (2.14) together imply that for any extreme point

β of P , if for some i, j1, and j2, β
i
j1
> 0 and βij2 > 0, then j2 6= j1 + 1.

Proof of Lemma 2.1. I choose β ∈ P , and argue first that if β does not satisfy (2.13)

for some i, then β is not an extreme point of P . First, notice that by construction, larger

blocks contain types with larger indices. It then follows from constraints (2.9) and (2.10)

that:

i1 < i2 ⇒
k∑
j=1

u(aj)β
i1
j ≤

k∑
j=1

u(aj)β
i2
j .

Separate indices i into blocks {B̂1, . . . , B̂p} such that i1 and i2 are in the same block if∑k
j=1 u(aj)β

i1
j =

∑k
j=1 u(aj)β

i2
j , and i1 is in a smaller block (i.e., block with a smaller

index) than i2 if
∑k

j=1 u(aj)β
i1
j <

∑k
j=1 u(aj)β

i2
j . Notice that the blocks so constructed

are (weakly) coarser than the initial blocks {B1, . . . , B`}, and so also p ≤ `. If β does

not satisfy (2.13) for all i, then there must be some i0 such that
∑n

j=1 u(aj)β
i0
j = q 6∈

{u(a1), . . . , u(ak)}. Clearly u(a1) < q < u(ak). i0 belongs to some block B̂h and for all

i ∈ B̂h,
∑k

j=1 u(aj)β
i
j = q. It follows that for all i ∈ B̂h and all j = 1, . . . , k, βij 6= 1, and

moreover for each i ∈ B̂h, there must exist at least two indices j1, j2, such that βij1 , β
i
j2
6= 0.

In fact, for each i ∈ B̂h, define j(i) to be the smallest index j such that βij 6= 0, and j(i)
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to be the largest index j such that βij 6= 0. By what was just argued j(i) < j(i) for all

i ∈ B̂h. Define:

x =


∑k

j=1 u(aj)β
i
j, for some i ∈ B̂h−1 if h > 1;

u(1), if h = 1.

y =


∑k

j=1 u(aj)β
i
j, for some i ∈ B̂h+1 if h < p;

u(n), if h = p.

Notice that x < q < y. Choose some εi0 > 0 such that:

(2.15) [u(aj(i0))− u(aj(i0))]εi0 < min{q − x, y − q}

Now I define two vectors β, β ∈ Rnk. For all i 6∈ B̂p, and all j = 1, . . . , k, define βi
j

=

β
i

j = βij. For each i ∈ B̂h \ {i0}, define εi to the be solution to:

(2.16) [u(aj(i))− u(aj(i))]εi = [u(aj(i0))− u(aj(i0))]εi0

Notice that εi > 0. For each i ∈ B̂h (including i0), if j 6∈ {j(i), j(i)}, define βi
j
= β

i

j = βij.

Again for i ∈ B̂h (including i0), define β
i

j(i) = βij(i) − εi, β
i

j(i) = βi
j(i)

+ εi, β
i

j(i)
= βij(i) +

εi, β
i

j(i)
= βij(i) − εi. If some component of β or β is not strictly between 0 and 1, replace

all the εi by γεi for some sufficiently small γ > 0, so that all components of β and β

are strictly between 0 and 1. Notice that this would not violate (2.15) or (2.16). It now

follows that β and β satisfy all constraints of the form (2.11) and (2.12). (2.16) implies

that β and β satisfy all constraints of the form (2.9). Moreover if the block B̂h contains

several blocks in {B1, . . . , B`}, then (2.16) also implies that the corresponding constraints
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of the form (2.10) are satisfied. Finally, that the rest of the constraints of the form (2.10)

are satisfied follows from (2.15). Thus β and β both belong to P . On the other hand,

by construction, 1
2
β + 1

2
β = β. It follows that β is not an extreme point of P . This

establishes that any extreme point of P satisfies (2.13).

Next, assume that β ∈ P does not satisfy (2.14), or in other words, for some i0 =

1, . . . , k, there exist j1 < j2 < j3 such that for j ∈ {j1, j2, j3}, βi0j > 0. For j′ ∈ {j1, j2, j3},

define β̂j′ := βi0j′ /
∑

j∈{j1,j2,j3} β
i0
j . So for β̂j ∈ [0, 1] and

∑
j∈{j1,j2,j3} β̂j = 1. Define

(2.17) z := β̂j1u(aj1) + β̂j2u(aj2) + β̂j3u(aj3).

First, I consider the possibility that z = u(aj2). Then define δ, γ ∈ Rnk such that whenever

either i 6= i0, or j 6∈ {j1, j2, j3}, γij = δij = βij. On the other hand, γi0j2 =
∑

j∈{j1,j2,j3} β
i0
j ,

and for j ∈ {j1, j3}, γi0j = 0, δi0j2 = 0, and for j ∈ {j1, j3}, δi0j = βi0j /(1− β̂j2). Then notice

that for all i:

(2.18)
k∑
j=1

u(aj)β
i
j =

k∑
j=1

u(aj)γ
i
j =

k∑
j=1

u(aj)δ
i
j

It then follows from the fact that β ∈ P , that both γ and δ belong to P . Notice next that

β = β̂j2γ + (1− β̂j2)δ, which implies that β is not an extreme point of P .

Next, consider the possibility that z 6= u(aj2), and assume moreover that u(aj2) < z.

(The case in which z < u(aj2) is similar.) Define ζ, η ∈ [0, 1] by the following equations:

ζu(aj1) + (1− ζ)u(aj3) = z(2.19)

ηu(aj2) + (1− η)u(aj3) = z(2.20)
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Now define γ, δ ∈ Rkn such that whenever either i 6= i0 or j 6∈ {j1, j2, j3}, βij = γij = δij.

Moreover, γi0j1 = (
∑

j∈{j1,j2,j3} β
i0
j )ζ, γi0j2 = 0, γi0j3 = (

∑
j∈{j1,j2,j3} β

i0
j )(1 − ζ), δi0j1 = 0, δi0j2 =

(
∑

j∈{j1,j2,j3} β
i0
j )η, δi0j3 = (

∑
j∈{j1,j2,j3} β

i0
j )(1− η). Notice that this implies (2.18) holds in

this case as well, which implies that since β belongs to P , so do γ and δ. Notice next that

it must be the case that η > β̂j1 . So define θ = β̂j1/ζ ∈ [0, 1]. It then follows from (2.19)

and (2.20) that

θζu(aj1) + (1− θ)ηu(aj2) + [θ(1− ζ) + (1− θ)(1− η)]u(aj3) = z,

where θζ = β̂j1 . On the other hand, notice that:

1− θ = 1− β̂j1
ζ

=
ζ − β̂j1
ζ

=

u(aj3
)−z

u(aj3
)−u(aj1

)
− β̂j1

u(aj3
)−z

u(aj3
)−u(aj1

)

=
u(aj3)− z − βj1(u(aj3)− u(aj1))

u(aj3)− z

=
u(aj3)− β̂j1u(aj1)− β̂j2u(aj2)− β̂j3u(aj3)− β̂j1(u(aj3)− u(aj1))

u(aj3)− z

=
(β̂j1 + β̂j2)u(aj3)− β̂j1u(aj1)− β̂j2u(aj2)− β̂j1(u(aj3)− u(aj1))

u(aj3)− z

=
β̂j2(u(aj3)− u(aj2))

u(aj3)− z
=

β̂j2
u(aj3

)−z
u(aj3

)−u(aj2
)

=
β̂j2
η
,

where (2.17) was invoked during the course of the definition. It follows that (1−θ)η = β̂j2 .

Recalling that θζ = β̂j1 , it follows from (2.17) that θ(1 − ζ) + (1 − θ)(1 − η) = β̂j3 . It

follows from these considerations that β = θγ+(1−θ)δ, implying that β is not an extreme

point of P . �
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2.3.2. Proof of Theorem 2.3

2.3.2.1. Preliminaries. Here, I will present several definitions which will be useful in

the course of the proof.

For each type t, let (t) (resp., (t)) be the smallest (resp., greatest) index of an action

in argmaxa∈Av(a, t).

Next, for any any deterministic persuasion rule f , and 1 ≤ k ≤ `, define:

M(f, `) := {m ∈ M, f(m) = a`}

T (f, `) := {t ∈ T : gf (t) = a`}

Σ(f, `) := {σ ∈ Σ : ∀m ∈M(f, `) : σ(t,m) > 0 ⇒ gf (t) = a`}

M(f, `) is that set of messages which lead to action a` under persuasion rule f . T (f, `) is

the set of types who receive action a` when best responding to persuasion rule f . Σ(f, `)

is the set of speaker strategies in which any type t who would get action a` in a best

response to f is best responding. Clearly, Σ(f, `) is nonempty.

For 1 < ` < k, σ ∈ Σ,m ∈ M, and deterministic persuasion rule f , define:

V`(m,σ) :=
∑
t∈T

[v(a`, t)− v(a`−1, t)]σ(t,m)π(t)

W`(m,σ) :=
∑
t∈T

[v(a`+1, t)− v(a`, t)]σ(t,m)π(t)

and define:
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NW`
(f, `, σ) := {m ∈M(f, `) : W`(m,σ) > 0}

N∗
W`

(f, `, σ) := {m ∈M(f, `) : W`(m,σ) = 0}

NW`
(f, `, σ) := {m ∈M(f, `) : W`(m,σ) < 0}

Let NV`
(f, `, σ), N∗

V`
(f, `, σ), and NV`

(f, `, σ) be defined similarly, except that the function

V` takes the place of W` in the definitions above. Notice that if
∑

t∈T σ(t,m) = 0, then

m belongs to both N∗
V`

(f, `, σ) and N∗
W`

(f, `, σ).

For any σ ∈ Σ, t∗ ∈ T,m1,m2 ∈M(t), and ε ∈ (0, σ(t,m1)), define:

σ(t∗,m1,m2,ε) :=


σ(t,m)− ε, if (t,m) = (t∗,m1) ;

σ(t,m) + ε, if (t,m) = (t∗,m2);

σ(t,m), otherwise.

Thus σ(t,m1,m2,ε) is a strategy which–conditional on type t–shifts ε probability mass from

m1 to m2, and is defined provided that such a redistribution is possible.

We may assume without loss of generality that for all m ∈ M, f(m) 6∈ {a1, ak},

because if not, it is possible to add actions a0 and ak+1 such that the listener’s utility to

a0 and ak+1 is so low for every type of speaker that these actions would never be used

in an optimal rule. This can be done in such a way that v(ai, t) will still satisfy the

assumptions of the theorem, and the optimal rules with and without the actions a0 and

ak+1 will coincide.
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2.3.2.2. Step 1. I will now show that there exists σ ∈ Σ(f, `) such that for all m ∈

M(f, `),W`(m,σ) ≤ 0. To this end, consider the program:

min
σ∈[0,1]T (f,`)×M(f,`)

∑
m∈M(f,`)

[max{0,
∑

t∈T (f,`)

{[v(a`+1, t)− v(a`,t)]π(t)}σ(t,m)}]

s.t. m 6∈M(t) ⇒ σ(t,m) = 0

∀t ∈ T,
∑

m∈M(t)∩M(f,`)

σ(t,m) = 1.

This is the minimization of a continuous function over a compact set. Therefore, it takes

on a minimum value. The problem can equivalently be written as:

Y ∗ = min
σ∈Σ(f,`)

I(σ)

where

I(σ) :=
∑

m∈M(f,`):W`(σ,m)>0

W`(σ,m)

Clearly Y ∗ ≥ 0. I would like to argue that Y ∗ = 0. This would establish that there is

a speaker best response σ to f such that upon seeing a message m played with positive

probability by σ, such that f(m) = a`, the listener would never have an incentive to select

action a`+1 instead.

By continuity of the objective and compactness of the constraint set, in order to show

that Y ∗ = 0, it is sufficient to argue that for any σ ∈ Σ(f, `), if I(σ) > 0, then there exists

σ′ ∈ Σ(f, `) such that I(σ′) < I(σ).

Suppose that
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i: there exists t∗ ∈ T with (t∗) ≤ `, such that for some m1 ∈ NW`
(f, `, σ),

σ(t∗,m1) > 0, and there exists m2 ∈M(t∗) ∩N∗
W`

(f, `, σ).

Then for some small ε > 0, define a new strategy σ0 := σ(t∗,m1,m2,ε). Notice that if ε is

chosen sufficiently small, then W`(σ0,m1) < 0. Since (t∗) < `, and by (*),

v(a`+1, t
∗)− v(a`, t

∗) < 0.

Recall also that we assume that π(t∗) > 0. So:

W`(σ0,m2) = W`(σ,m2) + ε[v(a`+1, t
∗)− v(a`, t

∗)]π(t∗) < W`(σ,m2) = 0.

Notice that I(σ0) = I(σ). This procedure is repeated until i is no longer true. Let σ1 be

the strategy that results. Notice that I(σ1) = I(σ).

Next, assume that

ii: there exists t∗ ∈ T with (t∗) ≤ `, such that for some m1 ∈ NW`
(f, `, σ1),

σ1(t
∗,m1) > 0, and there exists m2 ∈M(t∗) ∩NW`

(f ′, `, σ1).

Then, define a new strategy σ2 := σ
(t∗,m1,m2,ε)
1 . Notice that if ε is chosen sufficiently small,

σ2 is well-defined, and W`(σ2,m1) < 0 and W`(σ2,m2) > 0.

Since (t∗) ≤ `, v(a`+1, t
∗)− v(a`, t

∗) < 0. So since, π(t∗) > 0,

I(σ2) = I(σ1) + [W`(σ2,m2)−W`(σ1,m2)]

= I(σ3) + ε[v(a`+1, t)− v(a`, t)] < I(σ3) = I(σ).

So we have found a strategy σ2 ∈ Σ(f, `) such that I(σ2) < I(σ), as desired.
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So we derive the conclusion we want if ii is true. On the other hand, assume for

contradiction that ii is not true. Then consider f ′ defined by:

f ′(m) :=

 a`+1, if m ∈ O;

f(m), otherwise;

where O := NW`
(f, `, σ1) ∪N∗

W`
(f, `, σ1). Then define:

S := {t ∈ T : gf (t) = a`,∃m ∈M(t) ∩O},

Then for each t ∈ S, define:

α(t) :=
∑

m∈NW`
(f,`,σ1)

σ(t,m)

Then notice that the payoff to the listener given rule f ′ conditional on the event {t ∈ S}

is:

1

π(S)
[
∑
m∈O

∑
t∈T

v(a`+1, t)σ1(t,m)π(t) +
∑
t∈S

v(a`+1, t)π(t)α(t)]

On the other hand the payoff to f conditional on {t ∈ S} is:

1

π(S)
[
∑
m∈O

∑
t∈T

v(a`, t)σ1(t,m)π(t) +
∑
t∈S

v(a`, t)π(t)α(t)]

Notice that by the definition of O:

∑
m∈O

∑
t∈T

v(a`+1, t)σ1(t,m)π(t)−
∑
m∈O

∑
t∈T

v(a`, t)σ1(t,m)π(t) > 0,

where the strict inequality follows from the fact that I(σ1) > 0, so the probability that a

message in NW`
(f, `, σ1) is used is nonzero. On the other hand, recall that σ1 does not
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satisfy i or ii. It follows that if t ∈ S, α(t) > 0, it is not possible that (t) ≤ `. So it must

be the case that if α(t) > 0, then (t) > `, but this means that:

∑
t∈S

v(a`+1, t)π(t)α(t)−
∑
t∈S

v(a`, t)π(t)α(t) ≥ 0.

So–recalling that every best speaker best response to a deterministic persuasion rule gives

the listener the same expected utility–conditional on {t ∈ S} f ′ attains a higher utility

for the listener than f . On the other hand, conditional on {t 6∈ S}, f ′ and f attain the

same utility. So f ′ attains a higher utility than f a contradiction.

2.3.2.3. Step 2. In this step, I will show that there exists σ ∈ Σ(f, `) such that for all

m ∈M(f, `),W`(m,σ) ≤ 0 and V`(m,σ) ≥ 0.

It follows from the above argument that there exists σ ∈ Σ(f, `) such that I(σ) = 0,

which means that for all m ∈M(f, `),W`(m,σ) ≤ 0. Define:

Σ∗(f, `) := {σ ∈ Σ(f, `) : ∀m ∈M(f, `),W`(m,σ) ≤ 0}

Then Σ∗(f, `) 6= ∅ by the above argument. Now consider the following program:

max
σ∈[0,1]T (f,`)×M(f,`)

∑
m∈M(f,`)

[min{0,
∑

t∈T (f,`)

{[v(a`, t)− v(a`−1, t)]π(t)}σ(t,m)}]

s.t. m 6∈M(t) ⇒ σ(t,m) = 0

∀t ∈ T (f, `),
∑

m∈M(t)∩M(f,`)

σ(t,m) = 1

∀m ∈M(f, `),
∑

t∈T (f,`)

[v(a`+1, t)− v(a`, t)]π(t)σ(t,m) ≤ 0.
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Notice that this is the maximization of a continuous function on a nonempty compact set.

(the above argument established non-emptiness). Therefore, it attains a maximum, and

that maximum can be at most 0.

Notice that this can be rewritten as

X∗ = max
σ∈Σ∗(f,`)

K(σ)

where

K(σ) =
∑

m∈M(f,`):V`(m,σ)<0

V`(m,σ)

I want to show that X∗ = 0. This would establish that there is a speaker best response

σ to f such that upon seeing a message m played with positive probability by σ, such

that f(m) = a`, the listener would never have an incentive to select action a`+1 or a`−1

instead.

Since, as argued above K(σ) attains a maximum on Σ∗(f, `), in order to establish that

X∗ = 0, it is sufficient to argue that if K(σ) < 0, then it is possible to find σ′ ∈ Σ∗(f, `)

with K(σ′) > K(σ).

So suppose that K(σ) < 0. Before proceeding, I must prove a lemma:

Lemma 2.2. For all σ′ ∈ Σ(f, `) and all m ∈M(f, `):

V`(m,σ
′) < 0 ⇒ W`(m,σ

′) < 0

Proof. Using (*), we have:
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0 > V`(m,σ
′) =

∑
t∈T

[v(a`, t)− v(a`−1, t)]σ
′(t,m)π(t)

=
∑
t∈T

[ct(r(`))− ct(r(`− 1))]σ′(t,m)π(t)

= (r(`)− r(`− 1))
∑
t∈T

[ct(r(`))− ct(r(`− 1))

r(`)− r(`− 1)

]
σ′(t,m)π(t)

> (r(`)− r(`− 1))
∑
t∈T

[ct(r(`+ 1))− ct(r(`))

r(`+ 1)− r(`)

]
σ′(t,m)π(t)(2.21)

=
r(`)− r(`− 1)

r(`+ 1)− r(`)

∑
t∈T

[ct(r(`+ 1))− ct(r(`))]σ
′(t,m)π(t)

=
r(`)− r(`− 1)

r(`+ 1)− r(`)
W`(m,σ

′),

where the key inequality (2.21) follows from the concavity of ct, and the fact that r is

strictly increasing. Again, since r is a strictly increasing function, the above implies that

W`(m,σ
′) < 0. �

Now assume that:

iii: There exists t∗ ∈ T with (t) < ` and m1 ∈ NV`
(f, `, σ) such that σ(t∗,m1) > 0

and and there exists m2 ∈M(t) ∩N∗
V`

(f, `, σ).

The consider the strategy σ0 := σ(t,m1,m2,ε). Notice that V`(m1, σ) < 0, and by Lemma 2.2

W`(m1, σ) < 0. If ε is chosen sufficiently small, then V`(m1, σ0) < 0 and W`(m1, σ0) < 0.

Notice moreover that V`(m2, σ) = 0,W`(m2, σ) ≤ 0, and by (*), V`(m2, σ0) < 0, and so by

Lemma 2.2, W`(m2, σ) < 0. Finally, notice that K(σ0) = K(σ) and σ0 ∈ Σ∗(f, `). Now

iterate the process until it can no longer be iterated, arriving at a strategy σ1 ∈ Σ∗(f, `)

for which iii does not hold. Note that K(σ) = K(σ1).
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Next suppose that:

iv: There exists t∗ ∈ T with (t∗) < ` and m1 ∈ NV`
(f, `, σ1) and there exists

m2 ∈M(t) ∩NV`
(f, `, σ1).

For some small ε > 0, define σ2 = σ
(t,m1,m2,ε)
1 . Notice that if ε is chosen sufficiently small,

then V`(m1, σ2) < 0, and so by Lemma 2.2, W`(m1, σ2) < 0. Also if ε is chosen sufficiently

small, then V`(m2, σ2) > 0,W`(m2, σ2) < W`(m2, σ1) ≤ 0. So σ2 ∈ Σ∗(f, `). On the other

hand V`(m1, σ2) > V`(m1, σ1), so K(σ2) > K(σ1), as desired.

So, we derive the conclusion we want if iv is true. Now, assume for contradiction

that iv is false. Note that since σ1 ∈ Σ∗(f, `), σ1 is a best response to f for all types

t ∈ T (f, `). We may also assume that σ1 is a best response for all types t 6∈ T (f, `). Now,

consider the strategy f ′′ defined by:

f ′′(m) =

 a`−1, if m ∈ NV`
(f, `, σ1) ;

f(m), otherwise.

Now consider a speaker strategy σ′′, such that for all t 6∈ T (f, `) and all m ∈ M,

σ′′(t,m) = σ1(t,m). Next define

Z := {t ∈ T (f, `) : M(t) ∩M(f, `) ⊆ NV`
(f, `, σ)}.

If t ∈ Z, then for all m ∈ M, σ′′(t,m) = σ1(t,m). Finally, if t ∈ T (f, `) \ Z, then

∑
m∈NV`

(f,`,σ1)

σ′′(t,m) = 1.
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It is easy to see that σ′′ is a best response to f ′′. Notice that the listener’s payoff to f ′′

conditional on the event {t ∈ Z} is:

(2.22) ∑
{m∈NV`

(f,`,σ)}

∑
t∈T

v(a`−1, t)σ1(t,m)π(t)−
∑

{t∈T (f,`)\Z}

∑
{m∈NV`

(f,`,σ)}

v(a`−1, t)σ1(t,m)π(t)

In contrast, the listener’s payoff to f conditional on {t ∈ Z} is:

(2.23)
∑

{m∈NV`
(f,`,σ)}

∑
t∈T

v(a`, t)σ1(t,m)π(t)−
∑

{t∈T (f,`)\Z}

∑
{m∈NV`

(f,`,σ)}

v(a`, t)σ1(t,m)π(t).

It follows from the definition of NV`
(f, `, σ) that

(2.24)
∑

{m∈NV`
(f,`,σ)}

∑
t∈T

v(a`−1, t)σ1(t,m)π(t) >
∑

{m∈NV`
(f,`,σ)}

∑
t∈T

v(a`, t)σ1(t,m)π(t),

where the inequality is strict because K(σ1) < 0. Next notice that it follows from the

definition of Z, the fact that iii is false, and the assumption that iv is false, that if

t ∈ T (f, `) \ Z, then (t) ≥ `. But this implies that:

(2.25)∑
{t∈T (f,`)\Z}

∑
{m∈NV`

(f,`,σ)}

v(a`, t)σ1(t,m)π(t) ≥
∑

{t∈T (f,`)\Z}

∑
{m∈NV`

(f,`,σ)}

v(a`−1, t)σ1(t,m)π(t).

Recalling again that the listener’s payoff given any best response to a deterministic per-

suasion rule is the same, equations (2.22)-(2.25) imply that the listener receives a higher

payoff in response to persuasion rule f ′′ than to f , which contradicts the assumption that

f is optimal among deterministic persuasion rules. So K(σ) = K(σ1) < 0 implies that iv

must be true, in which case, we derived the desired conclusion.
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2.3.2.4. Step 3. In this step, I establish that there exists a speaker strategy σ which

satisfies (2.5) and (2.6) relative to f .

Recall that we are assuming wlog that the is a persuasion rule f which is optimal

among deterministic rules and such that for all m ∈ M, f(m) 6∈ {a1, ak}. Steps 1 and 2

imply that there exists a speaker best response σ to f such that for all m ∈ M such that

f(m) = a` with 1 < ` < k,

∑
t∈T

[v(a`, t)− v(a`+1, t)]σ(t,m)π(t) ≥ 0

∑
t∈T

[v(a`, t)− v(a`−1, t)]σ(t,m)π(t) ≥ 0.

In other words, upon seeing a message m which is sent with positive probability according

to σ, it is never in the listener’s interest to take either the next highest or the next lowest

action, as opposed to the action dictated by the persuasion rule f .

Next consider aj with aj > a`+1. Suppose that j = `+h. Notice that (*) implies that:

v(a`+1, t)− v(a`, t)

r(`+ 1)− r(`)
≥ v(aj, t)− v(a`, t)

r(j)− r(`)
,

or equivalently,

r(j)− r(`)

r(`+ 1)− r(`)
[v(a`+1, t)− v(a`, t)] ≥ v(aj, t)− v(a`+1, t)

So invoking the fact that r is increasing:

0 ≥ r(j)− r(`)

r(`+ 1)− r(`)

∑
t∈T

[v(a`+1, t)−v(a`, t)]σ(t,m)π(t) ≥
∑
t∈T

[v(aj, t)−v(a`, t)]σ(t,m)π(t).
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So the listener is never better off taking any action which is higher than the one dictated

by f when he sees a message m which is played with positive probability by σ.

On the other hand for ai < a`−1:

r(`)− r(i)

r(`)− r(`− 1)
[v(a`, t)− v(a`−1, t)] ≤ v(a`, t)− v(ai, t)

So:

0 ≤ r(`)− r(i)

r(`)− r(`− 1)

∑
t∈T

[v(a`, t)− v(a`−1, t)]σ(t,m)π(t) ≤
∑
t∈T

[v(a`, t)− v(ai, t)]σ(t,m)π(t)

This implies that the listener is never better off taking any action which is lower than the

one dictated by f when he sees a message which is played with positive probability by σ.

2.3.2.5. Step 4. Say that a persuasion rule f is weakly credible if there exists a speaker

strategy σ which satisfies (2.5) and (2.6) relative to f . So far I have shown that every

persuasion rule f which is optimal among deterministic rules is weakly credible. It remains

to strengthen this to credibility. Notice that in so doing, the statement of the theorem

is such that we are allowed to alter the persuasion rule as long as this does not alter the

induced outcome function. This is achieved by the following lemma.

Lemma 2.3. Assume that the listener’s utility function satisfies (*), and let f be a

weakly credible persuasion rule which is optimal among deterministic rules. Then, if the

listener’s utility function satisfies (*), then there exists a credible deterministic persuasion

rule f ′ which implements the same outcome function as f .

Proof. Since f is weakly credible, there exists a sender strategy σ such that for all

m ∈ M :
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∑
t∈T

σ(t,m) > 0 ⇒ f(m) ∈ argmaxa∈A

∑
t∈T

v(a, t)σ(t,m)π(t)

For every m ∈ M, define:

h(m) := min{aj : ∃t ∈ T,m ∈M(t) and aj ∈ argmaxa∈Av(a, t).}

Then define:

f ′(m) :=

 f(m), if
∑

t∈T σ(t,m) > 0 ;

h(m), otherwise.

For each m ∈ M, let µm(t) = σ(t,m) if
∑

t∈T σ(t,m) > 0 and suppose that µm puts

probability one on some type t with h(m) ∈ argmaxa∈Av(a, t) and m ∈ M(t) otherwise.

By the definition of h, µm is well defined for each m ∈ M. Note that for all m ∈ M,

f ′(m) ∈ argmaxa∈A

∑
t∈T

v(a, t)µm(t),

by the credibility of f and the definition of f ′. To complete the proof, it is sufficient

to show that σ is a best response to f ′. Since σ is a best response to f , if σ is not a

best response to f ′, there must be some type t∗ and some message m∗ ∈ M(t∗) with∑
t∈T σ(t,m∗) = 0, and such that h(m∗) = f ′(m∗) > gf (t

∗). Let S 6= ∅ be the set of all

types t such that m∗ ∈M(t) and h(m∗) > gf (t). It follows σ′ defined by:

σ′(t,m) =


σ(t,m), if t 6∈ S;

1, if t ∈ S and m = m∗;

0, otherwise.
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is a best response to the persuasion rule f ′′ defined by

f ′′(m) =

 h(m∗), if m = m∗;

f(m), otherwise.

Notice that for all t ∈ S, a(t) ≥ h(m∗) by the definition of h. By (*), it then follows that

f ′′ and σ′ attain a higher utility for the listener than f and σ, a contradiction.7 So σ is a

best response to f ′, completing the proof. �

7Recall that all best responses to f–which is deterministic–induce the same outcome function and hence
the same utility for the listener.
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CHAPTER 3

The Lattice Structure of the Persuasion Problem

The purpose of this chapter is to reveal an underlying lattice theoretic structure to

the persuasion problem. In Section 2.1, I found conditions under which there exists an

optimal deterministic rule, and therefore also deterministic outcome functions. In this

chapter, I restrict attention to deterministic persuasion rules. The justification for this

restriction can either be taken to be that the assumption that the conditions of Theorem

2.2 hold, namely that the listener’s utility function is a concave transformation of the

speaker’s utility function at every state of the world, or else that the class of deterministic

persuasion rules induces a natural structure on the problem. The lattice structure which

is studied in this section will be seen to be useful in Chapter 5 for analyzing qualitative

properties of the persuasion problem within a very broad class of message structures.

In the model described in Section 1.1, the listener’s choice set is viewed as the set

of persuasion rules. However, the listener’s assessment of a persuasion rule is dependent

on the message correspondence; what the listener really cares about is which outcome

function will be implemented. The interaction of the message correspondence and the set

of persuasion rules is not very transparent. It would be advantageous to represent the

listener’s choice set directly as the set of implementable outcome functions. In fact, once

this is done, the persuasion rules and the message correspondence become redundant. It

is possible to recover all important information about the message correspondence from

the family of implementable outcome functions. In particular, one can recover what I
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will refer to as the essential messages from the set of implementable outcome functions;

messages which are not essential cannot be recovered, but also have no effect on what

is feasible for the listener given the essential messages. Essential messages are identified

in terms of a certain lattice-theoretic notion, and therefore this approach–which eschews

the message correspondence–enables the use of lattice theory in order to characterize the

structure of messages.

In order to pursue the approach just described, I will study properties which are

common to all persuasion situations. In particular, I will give a complete answer the

question: when is a family of outcome functions exactly the family of implementable

outcome functions for some message correspondence? This has several consequences. In

particular, I provide a method for inferring what outcome functions are implementable for

k actions from knowledge of what outcome functions are implementable with 2 actions.

Moreover, I show that the family of implementable outcome functions has certain closure

properties. In other words, I will show how choices are linked for the listener in the sense

that having certain choices entails having certain other choices. Finally, the analysis

allows me to pursue the fine-grained analysis of messages.

In contrast to Chapter 2, where T and M were assumed to be finite, it is assumed in

this chapter that T and M are of arbitrary (finite or infinite) cardinality.1 Notice that

since in this chapter, we are concerned only with which deterministic outcome functions

are implementable the probability measure π is irrelevant, and therefore it is unnecessary

1Of course, restricting attention to deterministic persuasion rules when T is infinite is not justified by
Theorem 2.2. However, since the theory is very similar when T is infinite as when T is finite, it is worth
developing in the more general setting. Moreover, the infinite case allows one to discuss some distinctions
which are absent in the finite case.
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to define a sigma algebra on T . The definition of implementation can be taken to be (1.1)

regardless of the cardinality of T and M.

The chapter is split into four parts. Section 3.1 will analyze the case of two actions,

which will be used as a building block for the main results in Section 3.2 which apply for

an arbitrary number of actions. Section 3.3 then studies the consequences of the previous

sections for the structure of messages. Section 3.4 presents an example that demonstrates

some of the main ideas introduced in the previous sections. Section 3.5 contains proofs

not contained in the main body of the chapter.

3.1. 2 Actions

With two actions, imagine that the speaker makes a request of the listener. Then a2

corresponds to acceptance of the request, and a1 corresponds to rejection. Each persuasion

rule can be represented by the set Q = {m ∈ M : f(m) = a2} of messages it accepts.

So there is a one-to-one correspondence between persuasion rules and subsets of M. The

following terminology will prove to be convenient: think of a subset Q of M as a question

with the wording: “Can you make some statement in Q? If so, I will accept your request.”

A message m ∈ Q is an answer to Q. To the question Q, there corresponds the acceptance

set AQ defined as:

AQ = {t ∈ T : M(t) ∩Q 6= ∅}.

So AQ is the set of types who have some answer to the question Q. As Q corresponds to

a persuasion rule, AQ corresponds to the outcome function implemented by Q.

If AQ1 ⊆ AQ2 then Q1 is a more difficult question than Q2, in that fewer types can

answer Q1 than Q2. A more difficult question is worse for the speaker ex ante, and also
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at least as bad ex post. Define

(3.1) I = {AQ : Q ⊆ M}

to be the set of all acceptance sets as questions vary. I corresponds to the family of

implementable outcome functions when k = 2.

Notice that T ∈ I because T = AM, the acceptance set of the question which accepts

all messages. Likewise ∅ ∈ I because ∅ = A∅, the acceptance set corresponding to the

question which rejects all messages. The following is an important observation.

Observation 3.1. I is closed under union.

To see this notice that for any J ⊆ I, it is possible to write J = {AQ : Q ∈ Q}

where Q ⊆ 2M is some family of questions. Then consider the question Q∗ which accepts

a message if and only if it answers some question in Q, or in other words, Q∗ =
⋃
Q.

Then AQ∗ =
⋃
{AQ : Q ∈ Q}.

Observation 3.1 provides a simple but abstract property. What is its significance

in intuitive terms? As explained above, each question Q corresponds to a persuasion

rule f : M → {a1, a2}. In general, such persuasion rules may be simple or complex, in

that they may depend on any property of messages. Observation 3.1 holds because no

restriction is placed on these rules. This means that there are no limits on the listener’s

ability to ask “complex” questions. If some rules were possible, but other rules were not,

then Observation 3.1 would not hold.

An immediate consequence of Observation 3.1 is:

Corollary 3.1. (I,⊆) is a complete lattice.
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This follows because every family of sets which contains the empty set and is closed

under union is a complete lattice. Equating equivalent questions (i.e., questions Q1 and

Q2 such that AQ1 = AQ2), this means that for every family of questions Q, there is a

unique question Q∗ which is the easiest question that is at least as hard as every question

in Q, and a unique question Q∗ which is the hardest question which is no harder than

any question in Q. If there were limits on the listener’s ability to ask questions, then even

after equating equivalent questions, this would not be true.

Observation 3.1 and Corollary 3.1 hold also when T and M are infinite (and of any

infinite cardinality). It is important to note that the supremum in (I,⊆) always corre-

sponds to the union; on the other hand, the infimum does not generally correspond to

the intersection, but is always contained within the intersection.

Example 3.1. Imagine that the speaker observes a pair of signals, xi, i = 1, 2, taking

on values in {0, 1}. Suppose that the speaker must show exactly one of the two signals to

the listener, and cannot lie. The types and message correspondence can be represented

as follows:

M(t1) = {(x1, 0), (x2, 0)}

M(t2) = {(x1, 1), (x2, 0)}(3.2)

M(t3) = {(x1, 0), (x2, 1)}

M(t4) = {(x1, 1), (x2, 1)}.
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The message (x1, 0) proves that the value of the first signal is 0, and the other messages

are defined analogously. It possible to represent the set I using a device from lattice

theory known as a Hasse diagram:

{t1, t2, t3, t4}

{t1, t2, t3}

gggggggggggggggggggggg
{t1, t2, t4}

ooooooooooo
{t1, t3, t4}

OOOOOOOOOOO

{t2, t3, t4}

WWWWWWWWWWWWWWWWWWWWWW

{t1, t2}

ppppppppppp
{t1, t3}

NNNNNNNNNNN

gggggggggggggggggggggggggg {t2, t4}

WWWWWWWWWWWWWWWWWWWWWWWWWW

ppppppppppp
{t3, t4}

NNNNNNNNNNN

∅

WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

PPPPPPPPPPPPPP

nnnnnnnnnnnnnn

ggggggggggggggggggggggggggggg

Figure 3.1. Hasse Diagram for an Interior System

To see the relation of this diagram to the message correspondence presented in (3.2), notice

that {t1, t2} corresponds to the acceptance set for the question which only accepts the

message (x2, 0), since only t1 and t2 have this message. Likewise {t1, t2, t3} corresponds to

the acceptance set for the question which accepts (x1, 0) and (x2, 0). Every set of types in

the diagram is the acceptance set for some question. In general, the idea behind a Hasse

diagram is that a line moving up from one set, say ∅, to another, say {t1, t2} means that

{t1, t2} is a next largest element after ∅, in that {t1, t2} is larger than ∅, and there is no

other set in I which contains ∅, and is contained in {t1, t2}. As stated by Corollary 3.1,

the set I is a lattice. The join (least upper bound) of any pair of elements in I is the union

of those elements. For example, the join of {t1, t2} and {t2, t4}, written {t1, t2} ∨ {t2, t4}

is equal to the union {t1, t2} ∪ {t2, t4} = {t1, t2, t4}. By contrast the meet (greatest lower

bound) of any two elements is not necessarily the intersection. For example the meet of
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{t1, t2} and {t2, t4}, written {t1, t2} ∧ {t2, t4}, is not their intersection {t2}, but rather is

∅. Likewise, {t1, t2, t3} ∧ {t2, t3, t4} does not equal the intersection {t2, t3} but instead is

∅. This reflects the fact that acceptance of certain types may be tied to a choice between

acceptance of other types. For example, the fact that {t1, t2} ∧ {t2, t4} = ∅ reflects the

fact that in order to accept type t2, it is necessary to accept either t1 or t4. Once we

draw the Hasse diagram, or more generally, find a description of the set I, it is no longer

necessary to consider the speaker’s messages at all, when asking questions such as: “what

is feasible?” or “what is optimal?” Later, it will be shown that it is not even necessary to

draw the entire Hasse diagram, but rather we can focus on certain special elements. �

3.2. k Actions

I will now show how the case with two actions serves as a foundation for the case with

an arbitrary number of actions. I will present two results–Theorems 3.1 and 3.2–that

together will answer the question posed in the beginning of this chapter, namely: what

properties characterize the family of implementable outcome functions corresponding to

some message correspondence? I will also demonstrate the consequences described at

the beginning of this chapter, i.e., show how one can infer what outcome functions are

implementable with k actions from what outcome functions are implementable with 2

actions (see Corollary 3.2), as well as demonstrate some closure properties of the set of

implementable outcome functions (see Corollary 3.3).

The first step is to extend the definitions which were presented in the previous section

to the case of k actions. Consider any persuasion rule f : M → A. Such a persuasion

rule can be represented by a sequence of sets of messages (M1,M2, . . . ,Mk) where Mj is
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the set of messages m such that f(m) = aj. In order to show the parallelism with the

case k = 2 for each j = 1, . . . , k, define:

Qj =
k⋃
`=j

M`,

and replace (M1,M2, . . . ,Mk) by (Q1, Q2, . . . , Qk). Thus the sequence (Q1, Q2, . . . , Qk)

represents (M1,M2, . . . ,Mk) cumulatively. In fact, it is possible to eliminate the first

component and write (Q2, . . . , Qk) because Q1 = M. I refer to the tuple (Q2, . . . , Qk)

as a k-question. Notice that it must be the case that Q2 ⊇ Q3 ⊇ · · · ⊇ Qk. Given this

representation, it is possible to think of any persuasion rule as a sequence of progressively

more difficult questions, yielding progressively higher rewards.

To every k-question Q = (Q2, . . . , Qk), there corresponds the sequence (AQ2 , . . . , AQk
)

where AQj
is the acceptance set corresponding to the question Qj. Notice here that even

with k actions, I still refer to sets AQ as acceptance sets, and I = {AQ : Q ⊆ M} as the

family of acceptance sets.

Setting AQ1 = T and AQk+1
= ∅, k-question Q implements outcome function g : T →

{a1, . . . , ak} iff:

(3.3) g(t) = aj ⇔ t ∈ AQj
\ AQj+1

In other words, the k-question Q implements the outcome function g if g assigns aj to

t whenever Qj is the hardest question in Q that t can answer. This follows from the

definition of implementation (see 1.1) when Q is associated with the persuasion rule f

from which it was derived.
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Summarizing what has been accomplished, we have represented implementable out-

come functions in a way which is parallel to the case k = 2. That is to say, in the case

k = 2, an implementable outcome function was associated with the set of types who got

the high action. The construction above says that in the general case, we may represent

an implementable outcome functions as a sequence of sets of types (i.e., acceptance sets),

which are decreasing according to inclusion. The next step is to make this parallelism

more precise.

Call a family F of subsets of T an interior system if (i) ∅ ∈ F , (ii) T ∈ F , and

(iii) F is closed under union.2 In Section 3.1, we saw that with two actions, the family

of implementable outcome functions can be represented as an interior system. For any

interior system define:

C(F , k) := {(F2, . . . , Fk) : F2, . . . , Fk ∈ I, F2 ⊇ F3 ⊇ · · · ⊇ Fk}.

Thus C(F , k) is the family of decreasing sequences of sets from F of length k−1, possibly

with repetitions. A decreasing sequence of sets in F of length k− 1 is called a k-chain on

F , so that C(F , k) is the set of k-chains on F . Notice that C(F , 2) = F .

The following theorem employs the construction presented above to provide important

structural information about the family of implementable outcome functions. In partic-

ular, it shows how the question of what is implementable in the case of arbitrary k can

be reduced to the question of what is implementable when k = 2. Moreover, it will end

2The term “interior system” comes from the fact that every interior system is naturally associated with
an interior operator, similar to interior operators found in topology. The dual of an interior system is a
closure system. Each closure system is associated with a closure operator. Although both closure systems
and interior systems have been extensively studied in lattice theory, closure systems are more common.
However, every statement about closure systems corresponds to a statement about interior systems by
the principle of duality from lattice theory.
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up providing half of the answer to the question posed at the beginning of the section,

namely: how can one know whether a family of outcome functions is the implementable

family for some message correspondence?

Theorem 3.1. Fix a message structure (T,M,M(·)), and let I = {AQ : Q ⊆ M}

be the induced interior system of acceptance sets. Then if there are k actions, the imple-

mentable outcome functions correspond one-to-one with the elements of C(I, k).

Proof. It was shown above how, starting with an implementable outcome function

and the persuasion rule which implements it, one can derive a k-chain on I. It is clear

from (3.3) that two distinct k-chains cannot correspond to the same outcome function.

Finally, I want to show that every k-chain (I2, . . . , Ik) ∈ C(I, k) corresponds to some

implementable outcome function. Since for j = 2, . . . , k, Aj ∈ I, there exists Qj such

that Ij = AQj
. Notice that the sets Qj may not be decreasing (according to inclusion).3

Nevertheless, one can define a persuasion rule g by the formula in (3.3), and it is easy to

verify that the persuasion rule f such that f(m) = aj ⇔ m ∈ Qj \
⋃k
i=j+1Qi implements

g. �

There are several consequences of Theorem 3.1.4 The following consequence is notable:

Corollary 3.2. Fix a message structure. If one knows what outcome functions are

implementable when there are two actions but does not directly know the message structure,

then one can infer what outcome functions are implementable when there are k actions.

3One could argue that the Qj can be chosen so that they are decreasing, although this step is unnecessary
in order to complete the argument.
4Equation (3.3)–which was used in the proof–can also be used to show that an outcome function g is
implementable if and only if each type has a message which is not available to any type which is assigned
a lower action, a theorem proved for a similar preference structure by Singh and Wittman (2001).
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This is an immediate consequence of the theorem, but to see how to actually make

the inference, note that as was seen in Section 3.1, and as stated by Theorem 3.1, the

set of implementable outcome functions with two actions corresponds one-to-one with the

family I = C(I, 2) of acceptance sets. If one knows the set of implementable outcome

functions with two actions, it is easy to construct I: for each implementable outcome

function g, I contains the sets I = {t ∈ T : g(t) = a2}, and does not contain any

sets which cannot be formed in this way. Of course, if one does not know the message

structure, then one will not know how to represent I in the form AQ for some Q ⊆ M. To

discover whether an outcome function g′ is implementable when there are k actions, form

the family of k-chains C(I, k). We saw in Section 3.1 that I must contain T , which means

that T can actually be inferred by looking at the graphs of the implementable outcome

functions. Setting I0 = T , Ik+1 = ∅, and using Theorem 3.1, it follows that in order to

check whether outcome function g′ is implementable with k actions, it suffices to check

whether there exists (I2, . . . , Ik) ∈ C(I, k) satisfying g′(t) = aj ⇔ t ∈ Ij \ Ij+1. Similarly,

it is clear that if one starts with the outcome functions which are implementable with

k ≥ 2 actions, one can infer which outcome functions are implementable with k′ actions

for any k′. What this reasoning highlights is that once the set I is formed, one no longer

needs to consider messages at all in order to study the question of implementability.

Another consequence of Theorem 3.1 is that the set of implementable outcome func-

tions satisfies certain closure properties. This is easiest to demonstrate by means of

example.

Example 3.2. Suppose that when there are three types and three actions, we know

that the outcome functions below are implementable.
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g1 g2

t1 7→ a1 t1 7→ a3

t2 7→ a2 t2 7→ a2

t3 7→ a3 t3 7→ a1

Figure 3.2. Implementable Outcome Functions

Then we can infer that the outcome function:

g3

t1 7→ a3

t2 7→ a1

t3 7→ a2

Figure 3.3. Implementable Outcome Function

is also implementable. To see this, note that g1 corresponds to the 3-chain ({t2, t3}, {t3}),

and g2 corresponds to the 3-chain ({t1, t2}, {t1}). From this, it follows that {t1} and

{t3} both belong to I. Since I is closed under union, {t1, t3} belongs to I. Therefore,

({t1, t3}, {t1}) is a 3-chain in C(I, k). This 3-chain corresponds to the outcome function

g3, and therefore g3 is implementable. �

The reasoning from the example can be generalized:

• Start with a set G of outcome functions. Consider the family

E = {{t ∈ T : g(t) ≥ aj} : g ∈ G, j = 2, . . . , k} ∪ {T, ∅},

where actions aj are ordered by ≤ according to their indices. Let F be the closure

of E under arbitrary union. Define:

τ(G) = {g ∈ {a1, . . . , ak}T : ∃(I2, . . . , Ik) ∈ C(F , k),∀t,∀j, g(t) = aj ⇔ t ∈ Ij \ Ij+1},
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where as usual, I1 = T, Ik+1 = ∅.

It follows from Theorem 3.1 that if H is the family of implementable outcome functions

induced by some message correspondence and if G ⊆ H, then τ(G) ⊆ H. However,

what is not yet clear is whether τ(G) is the family of implementable outcome functions

corresponding to some message correspondence. In other words, Theorem 3.1 tells us

that families of implementable outcome functions are closed under the operation τ , but

it leaves open the possibility that such families must satisfy other requirements. The

following theorem shows that there are no other requirements, and so completes the

answer to the question with which we started: how can one know whether a family of

outcome functions is the family of implementable outcome functions corresponding to

some message correspondence?

Theorem 3.2. Let F be any interior system. Then there exists a message structure

whose induced family of acceptance sets is F .

Proof. Choose M so that |M| = |F|, and choose a one-to-one map F 7→ mF from F

to M. Then define a message correspondence by:

M(t) = {mF : t ∈ F, F ∈ F}.

In other words, t has one message for each element F of F to which he belongs. Since

T ∈ F , mT ∈M(t), for all t ∈ T , so M(t) 6= ∅. As usual, let I = {AQ : Q ⊆ M}. I want

to prove that I = F . For any F ∈ F , A{mF } = F , so F ⊆ I. Next consider Q ⊆ M.

AQ =
⋃
{A{mF } : mF ∈ Q} =

⋃
{F : mF ∈ Q} ∈ F ,
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where membership in F follows because F is closed under union. So I ⊆ F . So F = I.

�

With this theorem, we have answered the question posed above. To summarize:

Corollary 3.3. For any family of outcome functions G, the smallest family of outcome

functions containing G and corresponding to the set of implementable outcome functions

for some message correspondence is τ(G). In particular G is the family of implementable

outcome functions corresponding to some message correspondence if and only if G = τ(G).

Thus families of implementable outcome functions for some message correspondence

are precisely the fixed points of τ . As a consequence of Tarski’s fixed point theorem, the

family of such families is itself a complete lattice when ordered by inclusion. Moreover, and

more importantly, in the finite case, τ provides a method for checking whether a family

of outcome functions is the implementable family for some message correspondence.

Example 3.3. This continues Example 3.2. Let g1 and g2 be as in Example 3.2, and

assume again that g1 and g2 are implementable. Next consider the outcome function:

g4

t1 7→ a1

t2 7→ a3

t3 7→ a2

Figure 3.4. Outcome Function

Can we infer whether g4 is implementable? Theorem 3.2 can be used to answer this

question. Consider the following pair of interior systems:
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{t1, t2, t3} {t1, t2, t3}

{t1, t2}

rrrrrrrrrr
{t1, t3} {t2, t3}

LLLLLLLLLL

{t1, t2}

rrrrrrrrrr
{t1, t3} {t2, t3}

LLLLLLLLLL

{t1}

rrrrrrrrrrr
{t2}

LLLLLLLLLLL

rrrrrrrrrrr
{t3}

LLLLLLLLLLL

{t1}

rrrrrrrrrrr
{t3}

LLLLLLLLLLL

∅

MMMMMMMMMMMMM

qqqqqqqqqqqqq ∅

MMMMMMMMMMMMM

qqqqqqqqqqqqq

Figure 3.5. Two Interior Systems

Using the interior system on the left, it is possible to build 3-chains corresponding to

g1, g2, and g4 (and in fact, corresponding to any outcome function). On the other hand,

in the interior system on the right, it is possible to build 3-chains corresponding to g1

and g2 but it is not possible to build the 3-chain ({t2, t3}, {t2}) which corresponds to

g4. Using Theorem 3.2, and verifying that the Hasse diagram on the right represents

an interior system (i.e., is closed under union, and contains T and ∅), it follows that

there is some message structure which generates it. But then by Theorem 3.1, g4 is not

implementable given this message structure. So we can conclude that implementability

of g1 and g2 does not imply implementability of g4 (nor, of course, does it imply that g4

is not implementable). �

Before concluding this section, I extend the notion of difficulty of question from the

case of two actions to k as well. In particular define the ordering ≤ on C(I, k) by:

(3.4) (A2, . . . , Ak) ≤ (B2, . . . , Bk) ⇔ Aj ⊆ Bj,∀j = 2, . . . , k.
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Thus, we can say that k-question (Q2, . . . , Qk) is more difficult than k-question (R1, . . . , Rk)

if (AQ2 , . . . , AQk
) ≤ (AR2 , . . . , ARk

). In other words, a more difficult k-question is one

which assigns to every type a lower action, and hence makes every type at least weakly

worse off.

Observation 3.2. (C(I, k),≤) is a complete lattice.

To see this, note first that the product of complete lattices is a complete lattice under

the product ordering, and then that C(I, k) is a subset of the k-fold product I × · · · × I

which, moreover, is closed under supremum and infimum of subsets within the product

lattice.

3.3. Join-Irreducible Elements and Essential Messages

In this section, I will complete the task of showing that the message correspondence

and persuasion rules are redundant. To do this, I will show how one can recover all im-

portant information about the message correspondence from the family of implementable

outcome functions. A basic notion from lattice theory which will be employed for this

purpose is that of a join-irreducible element. Within an interior system–or any lattice, for

that matter–join-irreducible elements play a role which is analogous to the role played by

prime numbers relative to the natural numbers. In particular, join-irreducible elements

are the basic elements out of which all other elements of the interior system can be built.

Join-irreducible elements will be shown to correspond to essential messages, i.e., messages

which cannot be eliminated from the message correspondence without altering the family

of implementable outcome functions.



76

A non-empty element F of a family of sets F is said to be join-irreducible in F iff

∀G,H ∈ F :

F = G ∪H ⇒ F = G or F = H.

Thus an element F of an interior system is join-irreducible if it cannot be expressed as the

union of two elements G and H, both of which are distinct from F . Let J(F) be the set

of join-irreducible elements of F . The following fact shows that the set of join-irreducible

elements of an interior system is exactly the set of elements out of which all other elements

of the interior system can be built.

Fact 3.1. Let F be an interior system on a finite set T . Then every element F of

F is a union of some subset of J(F), and no element F of J(F) can be expressed as a

union of elements in F \ {F}.

This means that the set J(F) summarizes all information about the interior system.

In particular, in the finite case, the entire interior system can be recovered through the

equation:

F = {
⋃
G : G ⊆ J(F)}

Moreover, for any set K ⊆ F such that J(F) 6⊆ K, we have F 6= {
⋃
G : G ⊆ K}. In fact

there is no way to recover all the information about an interior system from any proper

subset of J(F).

The following lemma says that every join-irreducible element is the acceptance set for

a one-message question.
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Lemma 3.1. Suppose T is finite. Let I be the family of acceptance sets induced by

message structure (M, T,M(·)), and let F ∈ J(I). Then there exists m ∈ M such that

A{m} = F .

Proof. Since F ∈ I, there exists Q ⊆ M such that F = AQ. But then F =
⋃
{A{m} :

m ∈ Q}. Since F ∈ J(I), there is m ∈ Q such that F = A{m}. �

Notice that if F ∈ F but F 6∈ J(F), there may not exist m ∈ M such that A{m} = F .

In other words, the conclusion of the lemma can only be derived when F is join-irreducible.

Call a message m ∈ M essential if A{m} ∈ J(I). In other words, a message is essential

if the set of types who can send it is a join-irreducible element of I. Call a collection

M0 of essential messages complete if {A{m} : m ∈ M0} = J(I). Lemma 3.1 implies

that a complete set of essential messages always exists. Finally, call a complete collection

M0 of essential messages minimal if no proper subset of M0 is a complete set of essential

messages. The following lemma shows that if M0 is a complete and minimal set of essential

messages, then all other messages are redundant.

Theorem 3.3. Suppose T is finite. Consider a message structure (T,M,M(·)), and

assume k actions. Let M0 ⊆ M be a minimal and complete set of essential messages, and

define M0(t) = M(t) ∩M0. Then (T,M,M(·)) and (T,M0,M0(·)) generate the same set

of implementable outcome functions.

Proof. Let I be the family of acceptance sets induced by (T,M,M(·)). Since M0 is

a minimal and complete set of essential messages, one can construct a bijection F 7→ mF

from J(I) to M0. Let I0 be the family of acceptance sets generated by (T,M0,M0(·)).

Clearly, I0 ⊆ I. Next choose I ∈ I. Then, by Fact 3.1, there exists J ⊆ J(I) such that
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⋃
J = I. But then defining Q = {mF : F ∈ J }, AQ = I.5 So I ∈ I0. So I = I0, and the

proof is completed by Theorem 3.1. �

The proof of Theorem 3.3 provides a method for recovering all non-redundant messages

from a family G of implementable outcome functions. In particular, first identify the

corresponding interior system I. Then for each element F of J(I), select a message

which is available exactly to the types in F . The resulting message correspondence will

generate G. Each message in the range of the message correspondence so constructed

will be equivalent to a message in the message correspondence which originally generated

G. The original message correspondence may have had additional messages, but these

messages were redundant, and for that reason it is impossible to know whether these

messages existed on the basis of the information in G. So, we have now shown that the

message correspondence is dispensable in the sense that all important information about

it is contained in G.

Essential messages have been defined globally relative to the entire interior system.

This is useful for establishing that the acceptance sets corresponding to the essential

messages provide all the information necessary for constructing the set of implementable

outcome functions. It will also prove useful for analyzing the maximum possible number of

non-redundant messages. On the other hand, one can characterize the essential messages

in a local manner. This will be done by means of the notion of a maximally informative

message. A message m is maximally informative for a type t speaker if t does not have a

message which rules out strictly more types thanm. Formally, the setM#(t) of maximally

5In particular, considering I = T , this establishes that for all t ∈ T , M0(t) 6= ∅, so that M0(·) is a
legitimate message correspondence.
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informative messages for type t is defined:

M#(t) := {m ∈M(t) : ∀m′ ∈M(t), A{m′} 6⊂ A{m}},

where “⊂” means proper subset. Note that nothing rules out the possibility that there

is some redundancy in the speaker’s set of maximally informative messages, in the sense

that two maximally informative messages may correspond to the same acceptance set.

Even when there is no redundancy in M#(t), the speaker may have several maximally

informative messages. The presence of more than one maximally informative message is

caused by constraints which limit the speaker’s ability to present all his information. For

example, suppose that the speaker has ten minutes to present as much information as he

can. Ten minutes is not enough time for the speaker to present all the information that

he has. The maximally informative messages would correspond to what the speaker could

communicate if he used the ten minutes to convey as much information as possible. There

would generally be several distinct ways to do this, depending on which information the

speaker chooses to convey in the time allotted. On the other hand, if the speaker stops

talking after only five minutes, he has not provided a maximally informative message.

The following theorem relates a speaker’s maximally informative messages to the set

of essential messages.

Theorem 3.4. Suppose T is finite. A message is essential if and only if it is maximally

informative for some type. Consequently

(3.5) J(I) = {A{m} : m ∈
⋃
t∈T

M#(t)}.
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The proof relies on a standard fact about interior systems and is presented in Section

3.4. The theorem says that if a message m is one of type t’s maximally informative mes-

sages, then m is essential. The converse is not true: it is not necessarily the case that

every essential message belonging to M(t) is maximally informative for t. Some essen-

tial messages are more informative than others, but each essential message is maximally

informative for some type.

Theorems 3.3 and 3.4 together imply that in implementing any outcome function, it is

without loss of generality that each type uses messages which are maximally informative

to some type. The theorems do not directly say that it is without loss of generality that

each type t uses a message that is maximally informative for t, but this is also true. In

particular, any implementable outcome function can be implemented by means of a k

question Q = (Q2, . . . , Qk). Now consider the k-question R = (R2, . . . , Rk) such that

Rj = {m : A{m} ⊆ AQj
,m is essential}.

It is easy to see that R implements the same outcome function as Q, and that every

type t who answers the most difficult question in R which he can answer, can answer it

using a message in M#(t). Returning to the example of a time constrained speaker, this

means that it is without loss of generality that the listener will only grant the speaker an

action which is better than the worst action if the speaker uses all of his time to convey

as much information as possible, regardless of the listener’s objective. There is some

analogy between this observation and the revelation principle. Intuitively, the revelation

principle says that it is without loss of generality that a speaker will report his type–i.e.,
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provide all his information.6 Clearly, this cannot happen under time constraints, but it is

still without loss of generality that the speaker gives some maximally informative report.

When time constraints are lifted, and there is a unique maximally informative report, one

recovers the revelation principle.

The use of join-irreducible elements makes it relatively easy to answer questions which

might be quite difficult to address otherwise. For example, suppose that one knows the

number of types is n, but knows nothing else about the message structure. Suppose

now that one learns that there are ` messages. Will this piece of knowledge provide any

information about what is implementable? Clearly, if ` = 1, then it is possible to infer

that the only implementable outcome functions are the ones which assign the same action

to each type. How big does ` have to be so that no information is provided? In other

words, what is the smallest number of messages which would not limit the generality of

the model when there are n types?

Define:

b(n) = max{|J(F)| : F is an interior system on {1, . . . , n}}.

Thus b(n) is the maximum number of join-irreducible elements in an interior system on a

ground set of size n.

Fact 3.2.
(

n
bn/2c

)
≤ b(n) ≤

(
n

bn/2c

)
(1 + 1

n1/2 ).

6As discussed by Bull and Watson (2007), in an environment with evidence in which the revelation
principle holds, it may generally not be sufficient for a type to present all their evidence, but there may
also be a role for a “truthful” cheap talk message. However, the speaker’s preferences in this model
coupled with the restriction to deterministic persuasion rules eliminates any productive role for cheap
talk.
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This fact follows from theorems of Sperner (1928) and Kleitman (1976), and is ex-

plained further in Section 3.5.2. It is therefore clear that b(n)/2n → 0. In other words,

as n gets large, b(n) is much smaller than the size of the powerset of {1, . . . , n}.

Formally, say ` messages are unrestrictive for n types if every family of outcome

functions which are implementable given some message structure with n types are imple-

mentable given some message structure with n types and ` messages.

Theorem 3.5. The smallest number of messages which are unrestrictive for n types

is b(n).

Proof. This theorem is an immediate consequence of Theorem 3.3. �

The bound b(n) given in the theorem is independent of the number k of actions. From

another perspective, b(n) is the maximum possible number of essential messages when

there are n types.

This subsection has focused on the finite case. When T is infinite, Fact 3.1 is no

longer true. In fact join-irreducible elements play a much less important role when T is

infinite, and it is no longer without loss of generality that each type communicates one

of his maximally informative messages. The analog of Theorem 3.5 when T is infinite (of

any infinite cardinality) is:

Theorem 3.6. Suppose T is infinite. The smallest cardinality of the set of messages

which is unrestrictive is |2T |.

Proof. See Section 3.5.3. �
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3.4. An Example

This section will demonstrate some of the main concepts introduced above by means

of an example. Below is an example which shows an interior system with the maximum

possible number of join-irreducible elements when there are three types (b(3) = 4):

{t1, t2, t3}

{t1, t2}

rrrrrrrrrr
{t1, t3} {t2, t3}

LLLLLLLLLL

{t1}

LLLLLLLLLLL

∅

�������������������

Figure 3.6. Maximum Number of Join Irreducible Elements

Every element in the interior system displayed above except for ∅ and {t1, t2, t3} is join-

irreducible, so that there are four join-irreducible elements. In general, one can read off the

join-irreducible elements–and hence also the essential messages–from a Hasse diagram, by

looking for those elements which have exactly one immediate predecessor, in other words,

have exactly one edge moving down to another element. In order for this to be the interior

system induced by some message correspondence, there must be one message per join-

irreducible element (i.e., which can be used by types contained in that join-irreducible

element), and the rest of the messages are redundant. Looking back at Example 3.1 for

join-irreducible elements, it is clear that there are four of these elements, since there are

four elements with exactly one immediate predecessor. Since Example 3.1 contains four
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types, and 4 < 6 =
(
4
2

)
, Example 3.1 is not one which requires the maximum number of

messages when there are four types.

I will now use the diagram to analyze what is implementable when there are k actions.

First, consider the question of whether the decision to assign t1 an action at least as high

as ai puts any constraint on what must be assigned to other types. The answer is no. To

see this start with any outcome function g1 such that g1(t1) = a` with ` < i ≤ j. Form

the corresponding k-chain (I2, . . . , I`, . . . , Ij, . . . , Ik). Then t1 only occurs in sets Ih with

index at most `. It is easy to see from the diagram that

(I2, . . . , I`, I`+1 ∪ {t1}, . . . , Ij−1 ∪ {t1}, Ij ∪ {t1}, Ij+1, . . . , Ik)

is also a k-chain, and the corresponding outcome function g2 only differs from g1 in that

g2(t1) = aj. So it is always possible to grant type t1 a higher action without changing the

action of any other type.

Next, consider the question of whether the decision to assign t2 an action at most as

high as ai puts any constraint on what must be assigned to other types. The answer is

yes. If (I2, . . . , Ik) is the k-chain corresponding to an outcome function g1 which gives

t1 an action aj with j ≤ i, then Ij must be some set in the diagram containing t1, and

any set I` with j < ` in the k-chain must be a subset of I` not containing t1. I` can be

nonempty only if I` = {t2, t3} and Ij = {t1, t2, t3}. This means is that if t1 is assigned at

most ai, this requires that types t2 and t3 are given at most ai unless they are assigned

the same action.

The above discussion shows that the join-irreducible elements simultaneously corre-

spond to the messages and to the constraints faced by the listener.
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3.5. Proofs

3.5.1. Proof of Theorem 3.4

Suppose m ∈ M(t), but A{m} 6∈ J(I). Then there exist I, I ′ ∈ I such that A{m} =

I ∪ I ′, I 6= A{m}, I
′ 6= A{m}. Then w.l.o.g., t ∈ I. So for some Q ⊆ M, I = AQ. So for

some m′ ∈ Q, t ∈ A{m′}, and A{m′} is a proper subset of A{m}, implying that m 6∈M#(t).

So a maximally informative message for some type is essential.

Next suppose that m 6∈
⋃
t∈T M

#(t). If A{m} = ∅, then m is not essential, since

∅ 6∈ J(I). So suppose A{m} 6= ∅. Then for each t ∈ A{m}, there exists mt ∈ M(t) such

that A{mt} ⊂ A{m} and A{m} =
⋃
{A{mt} : t ∈ A{m}}. Since T is finite, it is possible to find

some B ⊆ A{m} such that A{m} =
⋃
{A{mt} : t ∈ B}, but for all s ∈ B, A{m} is a proper

subset of
⋃
{A{mt} : t ∈ B \ {s}}. So choose some s ∈ B, and A{m} = A{ms} ∪

⋃
{A{mt} :

t ∈ B \ {s}}, and A{m} 6= A{ms}, A{m} 6=
⋃
{A{mt} : t ∈ B \ {s}}. So m is not essential.

So being essential implies being maximally informative to some type.

(3.5) then follows from Lemma 3.1. �

3.5.2. Explanation of Fact 3.2

The lower bound comes from Sperner (1928), who proved that the maximum number of

sets in an antichain included in a powerset lattice on a ground set of size n is
(

n
bn/2c

)
. The

closure of this antichain under union is an interior system and the set of join-irreducible

elements in this interior system is the antichain.

The upper bound is based on a paper of Kleitman (1976), which found an upper

bound on the maximum size of a subset of a powerset lattice on a ground set of size n
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containing no two sets and their union. The precise form of the bound comes from Greene

and Kleitman (1978).

3.5.3. Proof of Theorem 3.6

In the infinite case, the relevant notion is no longer the cardinality of the collection of

join-irreducible elements, but rather the minimum cardinality of a join-dense set, where a

join-dense set J is a set in an interior system F is a set J ⊆ F such that every element

of F is a union of elements of J . In the finite case, the unique minimum cardinality join

dense set is the set of join-irreducible elements, but in the infinite case these two concepts

diverge. When T is infinite, The minimum cardinality join-dense set in the family of

acceptance sets I is clearly bounded above by |2T |. In fact, it is exactly |2T |. This follows

from the fact that for any infinite set of cardinality T , there exists an antichain in 2T

(i.e., a collection of sets no two of which are ordered by inclusion) of cardinality 2T and

whose union is T . Let X be this antichain, then I = {
⋃
Y : Y ⊆ X} is an interior system

whose minimal cardinality join-dense set is X , and in fact, X is the set of join-irreducible

elements of I in this case. �
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CHAPTER 4

Normal Message Structures

The analysis of the previous chapter allowed for arbitrary message correspondences.

In Section 4.1, I will explain how message correspondences may be used to represent

limitations on a speaker’s ability to summarize information, as occurs when a speaker

faces time constraints, or the listener is subject to attention constraints. In Section 4.2, I

will present a condition–known as normality–which was originally introduced by Bull and

Watson (2007), and which is related to the nested range condition of Green and Laffont

(1986), and which imposes the condition that a speaker does not face any constraints

which limit his ability to summarize his information. Then I will study the lattice struc-

ture of families of implementable outcome functions–much in the spirit of the previous

chapter–under the assumption of normality. It will be found that under the assumption

of normality the family of implementable outcome functions can always be represented as

the set of monotone outcome functions with respect to some ordering relation, whereas

in the absence of normality, the family of implementable outcome functions can never be

represented in this way. Section 4.3 will introduce the notion of weak normality, which

intuitively means that the speaker can summarize small (i.e. finite) but not large (i.e. in-

finite) amounts of information, and study properties of families of implementable outcome

functions which satisfy this assumption.
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4.1. How Message Correspondences Represent Inability to Completely

Summarize Information

There are many circumstances in which a speaker has the option of making each of

several statements, but does not have the option of making all these statements. For

example, in making a speech, time constraints or the limits imposed by the audience’s

attention span, may force a speaker to choose which statements to make and which state-

ments to omit. When the speaker is limited in this way, I say that he is forced to be

selective in the presentation of information. On the other hand when the speaker has the

option of presenting all his information, either using one statement or many, I say the

speaker can summarize his information. The notion of summary often has the connota-

tion of a brief statement which makes one’s main points. However, that is not how it is

used here. I use “summary” to mean complete summary, or in other words, a statement

or series of statements which provide all of one’s information. In the sense in which the

term is used here, the speaker can summarize his information when there are no time,

attention, or other constraints which prevent this. It is also possible to talk about sum-

marizing a specific part of one’s information, for example summarizing one’s information

about a topic. This would correspond to presenting all of one’s information about that

topic. I sometimes use the term combine instead of summarize, as it is sometimes signif-

icantly more natural, especially when discussing a part of the speaker’s information. In

this section, I will explain how the message correspondence can be used to formally model

these notions.
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Consider the following example of a message correspondence:

M(t1) = {m0,m1,m2}

M(t2) = {m0,m1}(4.1)

M(t3) = {m0,m2}

M(t4) = {m0}

The messages m1 and m2 are independent in this example in the sense that knowledge

that type t can send m1 does not help one to predict whether he can send m2, and vice

versa. If type t2 were eliminated, then an asymmetry would be created in that ability to

send of m1 would imply ability to send of m2, but the converse would not be true. If t3

were eliminated as well, then a stronger dependence of the messages would be created in

that ability to send m1 depends on ability to send m2 and vice versa.

The ability to summarize information can be understood in terms of a kind of depen-

dence as well. Suppose again that all four types in (4.1) exist. Message m1 means that

the type is either t1 or t2, and m2 means that the type is either t1 or t3, but there is

no message which summarizes these two messages, and says that the type is t1. If there

are are two rounds of communication, over which the message correspondence remains

constant, then t1 could combine these messages by first sending m1 and then m2. Equiv-

alently, if t1 could combine his messages with the word “and” (written &), he could send

message m1&m2. Both of these methods provide the speaker with a communication that

is available exactly when he has both messages m1 and m2. Suppose now that we rewrite
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t1’s message space and add two types, t5 and t6, as follows:

M(t1) = {m0,m1,m2,m3}

M(t5) = {m0,m1,m2,m3,m4}

M(t6) = {m0,m4}

Then m3 can be interpreted as m1&m2, since it is available to exactly the types who have

m1 and m2. This example also shows that the ability to combine messages may be partial,

as t5 can combine messages m1 and m2 by using m3, but cannot combine m1 and m4.

Below, when the effect of being able to completely summarize information information

is studied, I will assume only that the speaker can summarize all of his information, not

that he can combine any part.

I conclude this section with a final caveat: the slogan here is that “not all messages

are created equal.” Imagine that the speaker read part of the newspaper this morning.

Different types of speaker read different parts of the newspaper where these parts may

overlap in all kinds of ways (different stories, different parts of the same story, different

stories on the same topic, etc.). The speaker is only willing to report facts that he

actually read, and this is how the messages depend on the type. Then messages may

stand in complex relationships, and there may be no intuitively independent messages

like m1 and m2 above.
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4.2. Normality

The analysis of Chapter 3 allowed for the possibility that the speaker faces time,

attention, or other constraints which force him to be selective in the presentation of in-

formation. In this section, I will analyze precisely what changes when such constraints

are lifted, and therefore the speaker has the capacity to completely summarize his infor-

mation. The construction and results of Chapter 3 will prove to be very useful for this

purpose. In this section as well as the next chapter, I will show that the ability to combine

information is critical for multiple properties simultaneously.

The first task is to define formally what it means for the speaker to be able to sum-

marize his information. Recall from Section 4.1 that a message here is interpreted to

mean a total communication. For example, in a job interview, if an applicant has ten

qualifications, and has the option of presenting any five or fewer qualifications, then one

could model every set of five or fewer qualifications as a message. If the speaker were

constrained in terms of the order in which the qualifications could be presented, then

one would model every sequence respecting these constraints as a message. Given that

messages are treated as total communications, in the job interview example, a definition

of the ability to summarize information which would say that the speaker could present

as many qualifications as he has would not be appropriate because it is a definition in

terms of the “parts” of messages rather than in terms of the messages themselves.

The definition which I use to impose the condition that a speaker can summarize all

of his information comes from Bull and Watson (2007), and is similar to the nested range

condition of Green and Laffont (1986).
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Definition 4.1. A message structure (T,M,M(·)) is normal if ∀t,∃m(t) ∈ M(t),

such that

∀s ∈ T,m(t) ∈M(s) ⇒M(t) ⊆M(s).

m(t) is referred to as t’s maximal message.

To relate this to the discussion of Section 4.1, recall that in that section, it was

explained that if there are two messages, m1 and m2, and one wanted to have a message

which means “m1 andm2”, the way that this would be done is to give a messagem3 exactly

to the types who have both m1 and m2. m3 is then a message which communicates both

m1 and m2. What normality says is simply that for every collection {m1,m2, . . . ,m`}

of messages such that for some type t, {m1,m2, . . . ,m`} = M(t), there exists a message

m(t) which is available to exactly those types who can say {m1,m2, . . . ,m`}. This means

that m(t) actually belongs to {m1,m2, . . . ,m`}. To understand this, consider again the

example above in which m3 was used to mean “m1 and m2”. Then a type can send m3 if

and only if that type can send m1 and m2. Equivalently, a type can send m3 if and only if

that type can send every message in the set {m1,m2,m3}. Notice that if {m1,m2, . . . ,m`}

is not equal to M(t) for any type t, then normality does not say anything about the ability

to summarize {m1,m2, . . . ,m`}. For example {m1,m2, . . . ,m`} may be a proper subset

of M(t) for some type t. Normality would then not imply that the speaker has a message

which which is equivalent to “m1 and m2 and . . . and m`”, but it does imply that the

speaker has a message which is equivalent to the conjunction of all the messages in the

larger set M(t). Section 4.5.1 contains an example which demonstrates this point, namely

that when the message correspondence satisfies normality, there may still be subsets of a
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speaker’s information which the speaker cannot exactly summarize.

In a multi-agent mechanism design environment with provability, Bull and Watson

(2007) show that normality implies a version of the revelation principle (their strong

revelation principle). In particular, if normality holds, then every implementable outcome

function can be implemented in such a way that each agent reports his maximal message

m(t). In their framework an agent may also report a cheap talk message, but in the

current framework, since all types of speaker have the same preference, and once we

restrict attention to deterministic persuasion rules, there can be no productive role for

cheap talk. In a related paper, Deneckere and Severinov (2001) assume that agents can

send as many messages as they want to the mechanism designer and show that a version

of the revelation principle holds in such an environment. As the preceding discussion

makes clear, in the current model this assumption is stronger than normality. In their

framework, Deneckere and Severinov (2001) show that the mechanism designer only has

to consider incentive constraints for a type t which keep him from pretending to be type

s where M(s) ⊆ M(t). It is not hard to see that this conclusion continues to hold if one

makes the weaker assumption that the message structure is normal. Forges and Koessler

(2005) also study a related model, and emphasize the point, which translated into my

terminology, is that in order for the revelation principle to hold, it is only necessary that

the speaker be able to summarize all his information, not that he can summarize any part

of his information. In what follows, and unlike the papers described above, my concern

is not with the revelation principle. Although I will not treat the revelation principle

formally, I will point out where the revelation principle could have been used instead of

the reasoning I employ.
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Corollary 3.2 established that in order to know what outcome functions are imple-

mentable with k actions, it is sufficient to know which outcome functions are imple-

mentable with 2 actions. In other words, it is sufficient to know the family I of acceptance

sets. The next theorem characterizes the families of acceptance sets induced by normal

message structures. The proof uses two ingredients. The first ingredient is the definition

of normality, namely that the speaker has a message which summarizes all his informa-

tion. The second ingredient is the fact that I is closed under union. Recall that this is

true because the listener can choose to assign actions to messages according to any rule

he wishes, no matter how complex. Thus the proof of the theorem combines the speaker’s

ability to summarize information, and the listener’s ability to ask any question he wishes.

Theorem 4.1. Let I be the family of acceptance sets induced by (T,M,M(·)). I is

closed under intersection if and only if (T,M,M(·)) is normal.

Proof. See Section 4.5.2. �

Above, we saw that in general, the only property–other than containing T and ∅–which

is shared by all families of acceptance sets is that they are closed under union. Now we

see that the property which is shared by all families of acceptance sets corresponding to

normal message structures is that they are closed under union and intersection. A family

of sets closed under union and intersection is sometimes referred to as a “ring of sets.”

Since a ring of sets can have at most n join-irreducible elements, an immediate corollary

of the theorem–invoking Theorem 3.3–is:

Corollary 4.1. Under normality, n messages are without loss of generality for n

types.
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Compare this corollary with Theorem 3.5, which said that in the general case b(n)–

that is, approximately
(
n
n/2

)
–messages is the smallest number of messages which is without

loss of generality when there are n types. There are in fact, several ways to derive

the corollary. For example, one could observe that under normality the set M#(t) of

maximally informative messages is essentially unique in the sense that any pair of messages

that it contains are equivalent. This observation and Theorem 3.4 also imply the corollary.

To summarize the consideration which is important here:

Observation 4.1. Under normality, {m(t) : t ∈ T} is a minimal and complete set of

essential messages.

A third method of deriving the corollary would be to appeal to the versions of the rev-

elation principle described above. However, the methods of deriving this corollary which

do not appeal to the revelation principle have the advantage of explaining Corollary 4.1

using the same principles which were used to derive Theorem 3.5, where the revelation

principle would not have been available. Therefore these other methods explain the rela-

tionship between the numbers b(n) when normality may not hold and n when normality

is assumed to hold.

I now provide an alternative characterization of the implementable outcome functions.

A quasi-order is a relation which is reflexive and transitive. Henceforth, I assume a ring of

sets R on T contains both T and ∅, as well as being closed under union and intersection.

Given any interior system I, one can define a quasi-order 4I by:

t1 4I t2 ⇔ ∀I ∈ I, t1 ∈ I ⇒ t2 ∈ I.
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On the other hand for any quasi-order 4, one can define a ring of sets R4 by:

R4 = {{t ∈ T : ∃s ∈ S : s 4 t} : S ⊆ T}

It is not hard to see that for any ring of sets R, R4R = R and for all quasi-orders

4, 4R4=4. It then follows from the fact that every ring of sets is an interior system

that there is a one-to-one correspondence between rings of sets and quasi-orders. On the

contrary, if I is an interior system but not a ring of sets, then of course R4I 6= I. For

any quasi-order 4, say that an outcome function g is 4-monotone if:

∀t1, t2 ∈ T, t1 4 t2 ⇒ g(t1) ≤ g(t2),

Moreover, for any quasi-ordering, there is a natural message correspondence M4 with

range T , satisfying:

(4.2) M4(t) = {s ∈ T : s 4 t}

That normality is related to transitivity can be seen from its ancestor, the nested

range condition of Green and Laffont (1986).1 Among other things, the following theorem

provides an alternative characterization of families of implementable outcome functions

induced by normal message correspondences.

1In the first part of their paper, Green and Laffont (1986) assume that the type space is equal to the
message space. The nested range condition is then defined to be the condition that t3 ∈ M(t2) and
t2 ∈ M(t1) implies t3 ∈ M(t1). This is essentially a transitivity condition but keep in mind that when
writing ti ∈ M(tj), ti is a message and tj is a type. The authors also assume that the speaker can tell
the truth: for all t, t ∈ M(t), which is essentially reflexivity. They also provide an example of a message
structure of the form (4.2), and state that it implies the nested range condition, although do not specify
whether 4 is a quasi, partial, or linear order, nor do they make the stronger observation that the set of
message structures (with message space T ) satisfying the nested range condition and the condition that
for all t, t ∈ M(t) correspond one-to-one with the set of quasi-orders.
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Theorem 4.2. Fix a message structure (T,M,M(·)). Let I be the induced family of

acceptance sets.

(i) ∀t1, t2, t1 4I t2 ⇔M(t1) ⊆M(t2).

(ii) Every implementable outcome function is 4I-monotone.

(iii) Every 4I-monotone outcome function is implementable if and only if (T,M,M(·))

is normal.

(iv) (T,M,M(·)) and (T, T,M4I(·)) induce the same set of implementable outcome

functions if and only if (T,M,M(·)) is normal.

(v) G is the set of 4-monotone outcome functions for some quasi-order 4 on T if

and only if G is the set of implementable outcome functions for some normal message

structure.

Proof. See Section 4.5.3. �

The notion that under normality, the implementable outcome functions are exactly

those in which types with more messages (according to inclusion) get higher actions could

have been derived from the more general observation discussed above that in mechanism

design environments with provability, under normality, one must only consider incentive

constraints involving types who can say more mimicing types who can say less, combined

with the particular preference structure in this model. However, Theorem 4.2 says much

more. In particular, it says that (for a fixed k), families of implementable outcome

functions induced by normal message structures correspond one-to-one with the set of

quasi-orders on the set of types. Thus under normality, a quasi-order 4 on T summarizes

all exogenous information determining what is implementable. One may assume the

message space is T , and that the message correspondence is M4(·). If the message struc-
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ture is not normal, then 4 does not summarize all information about implementability,

but it does provide some information about it. In particular, every implementable out-

come function is monotone, but monotonicity is not sufficient for implementability. Thus

quasi-orders serve a role which is analogous with respect to normal message structures

to the role served by interior systems with respect to arbitrary message structures. So

interior systems generalize quasi-orders and are necessary for representing limitations on

the ability to summarize information.

If we start from a message structure (T,M,M(·)) violating normality with acceptance

sets I, and form the message structure (T, T,M4I(·)) and consider the set G4 of 4I-

monotone outcome functions, how do these objects relate to the situation with which

we started? (T, T,M4I(·)) is equivalent to the message structure which we would get

if we allowed types to send a message corresponding to all their messages, so that we

restored the ability to summarize, and G4 is the set of outcome functions that would be

implementable if it was possible for types to summarize. Thus, we can exactly identify

which outcome functions are not implementable because of the inability to summarize in

the original structure: namely the 4I-monotone functions which do not correspond to

any k-chain with elements drawn form I.

4.3. Weak Normality

In this section, I discuss a weaker notion than normality in the case that the speaker

may be able to summarize small amounts of information, but he cannot summarize large

pieces of information. Here “small” will mean finite and “large” will mean infinite. The

definition is as follows:
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Definition 4.2. A signal structure (T,M,M(·)) is weakly normal if for every for

all t ∈ T , and all finite M0 ⊆M(t), there exists a message m(M0, t) ∈M(t) such that for

all s ∈ T , if m(M0, t) ∈M(s), then M0 ⊆M(s).

The following lemma shows that normality and weak normality coincide when T is

finite:

Lemma 4.1. (i) Normality implies weak normality.

(ii) If T is finite, normality and weak normality are equivalent.

Proof. (i) If normality holds, then for all finite M0 ⊆ M(t), we can set m(M0, t) =

m(t).

(ii) Suppose that T is finite. Define an equivalence relation on messages such that two

messages are equivalent if they are accessible to exactly the same set of types. Notice

that if a type has one message in an equivalence class, that type has all messages in that

equivalence class. Let M be a selection of exactly one message from each equivalence

class. If T is finite, then M must be finite. Thus M ∩M(t) is finite and nonempty. To

complete the proof, set m(t) = m(M ∩M(t), t). �

Thus, the difference between normality and weak normality only comes out in the case

where T is infinite. The following theorem is the analog of Theorem 4.1.

Theorem 4.3. Let I be the family of acceptance sets induced by (T,M,M(·)). I is

closed under finite intersection if and only if (T,M,M(·)) is weakly normal.

Proof. See Section 4.5.4. �

Since Theorem 4.1 holds also when T is infinite, the difference between the implica-

tions of normality and weak normality for I when T is infinite is that normality implies



100

that I is a ring of sets (closed under arbitrary union and arbitrary intersection), whereas

weak normality only implies that I is a topology (closed under arbitrary union and finite

intersection). Employing Theorem 3.2 we can see that every topology corresponds to

some message structure so that there is quite a rich set of structures to choose from. One

can use this representation to show that in general there are monotone outcome functions

which are not implementable under weak normality. Since topologies are not closed under

arbitrary intersection, types of speaker will generally not have a unique maximally infor-

mative message. The most dramatic illustration of this occurs when assuming a countable

number of types, there may be a message structure which can only be generated of the

set of messages has the cardinality of the continuum:

Example 4.1. Consider the Cartesian product {0, 1}2ℵ0 endowed with the product

topology. By Theorem 2.3.15 in Engelking (1989), {0, 1}2ℵ0 has a countable dense set X.

Let the set of types T = X. Let I be the induced topology on X. It is shown in Example

2.3.37 of Engelking (1989) that I does not have a countable base, and a similar argument

can be used to show directly that the smallest cardinality of a base of I is 2ℵ0 .2 This

means that the minimal cardinality of a join-dense set in I is 2ℵ0 , which means that one

cannot construct the corresponding message correspondence without using 2ℵ0 messages.

The following theorem characterizes normality and weak normality in purely lattice-

theoretic terms.

2Since 2ℵ0 is obviously an upper bound on the cardinality of a base of any topology on a countable set,
if one assumes the continuum hypothesis, it follows from the fact that I does not have a countable base
that the minimum cardinality of a base of I is 2ℵ0 . What I mean by using a similar argument to show
this “directly” is providing an argument which does not invoke the continuum hypothesis.
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Theorem 4.4. Let (T,M,M(·)) be a message structure and let G be the induced family

of implementable outcome functions. Then:

(i) (G,≤) is a sublattice of (AT ,≤) if and only if (T,M,M(·)) is weakly normal.

(ii) (G,≤) is a subcomplete sublattice of (AT ,≤) if and only if (T,M,M(·)) is normal.

Proof. See Section 4.5.5. �

Several remarks about this theorem are in order. First notice that it follows form Ob-

servation 3.2 that the set of implementable outcome functions (G,≤) is always a complete

lattice. However, as Theorem 4.4 shows, (G,≤) is not a subcomplete sublattice of (AT ,≤)

when weak normality fails, and is not even a sublattice of (AT ,≤) when weak normality

fails. This is because when weak normality fails the meet of some pair of elements in G

will fail to coincide with the meet of that pair in AT , and when normality fails the meet

of some collection of elements in G will fail to coincide with the meet of that collection

in AT . Notice, however that an arbitrary sublattice (resp., subcomplete sublattice) of

AT may not correspond to a weakly normal (resp., normal) family of implementable out-

come functions relative to some message correspondence because it may not correspond to

any family of implementable outcome functions. A final remark concerns an interesting

relation between part (ii) of Theorem 4.4 and Theorem 4.2. An alternative proof the

proposition that normality implies that the family of implementable outcome functions G

is a subcomplete sublattice of AT would be as follows. Part (v) of Theorem 4.2 implies

that G is the subset of AT which is monotone with respect to some quasi-order 4. More-

over, taking into account that A is finite, the minimum and maximum of an arbitrary

collection of 4-monotone functions are also 4-monotone.
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4.4. Max, Min, Join and Meet

In this section, I will briefly discuss the relations between the operations of componen-

twise maximum and minimum and the join and meet within the lattice of implementable

outcome functions, as well as the effect of applying the operations of componentwise

maximum and minimum to persuasion rules to the join and the meet of the implemented

outcome functions. The property of normality studied above is relevant to these relations.

Let G be a family of implementable outcome functions for some message structure.

Then as discussed in the previous section (G,≤) is a complete lattice where ≤ is the

componentwise order. LetH ⊆ G. Then define maxH to be the componentwise maximum

of the elements of H, and likewise define minH to be the componentwise minimum of the

elements of H. Notice that there is a strong analogy between max with many actions and

union with two actions; likewise there is strong analogy between min and intersection.

The following theorem confirms this:

Theorem 4.5. Let H be a collection of implementable outcome functions. Then for

all t ∈ T :

∨
H = maxH(4.3) ∧
H ≤ minH(4.4)

If the message structure is normal, then:

(4.5)
∧
H = minH

Proof. See subsection 4.5.6. �
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Equation (4.3) gives a fact for the operation max which is analogous to the fact that

an interior system is closed under union. (4.4) gives a property of min which is analogous

to the fact that an interior system may not be closed under intersection, so that the meet

of a collection of set within an interior system may be a strict subset of the intersection

of the sets in that collection. However, under normality, the meet does coincide with the

intersection, and the analogous fact for min is presented in (4.5).

Notice that for a family of outcome functions to be closed under max is a weaker

property than for the family to be a fixed point of τ , and thus not every family of

outcome functions closed under max is the set of implementable outcome functions for

some message correspondence. Likewise, closure under max and min is a weaker property

than being the implementable family for some normal message correspondence.

Next, we examine the properties of the operations max and min when operating on

persuasion rules rather than outcome functions.

Theorem 4.6. Let F be a collection of persuasion rules, and define:

f ∗(m) := max{f(m) : f ∈ F}(4.6)

f∗(m) := min{f(m) : f ∈ F}(4.7)

Then:

gf∗ =
∨
{gf : f ∈ F}(4.8)

gf∗ ≤
∧
{gf : f ∈ F}(4.9)

Proof. See Section 4.5.7. �
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The following example shows that (4.9) cannot generally be strengthened to an equality

even under normality.

Example 4.2. Suppose that T = {t},M(t) = {m1,m2} and that there are two

actions. Then consider the persuasion rules f1, f2 defined by f1(m1) = a2, f1(m2) =

a1, f2(m1) = a1, f2(m2) = a2. Then g = gf1 = gf2 where g(t) = a2, so gf1 ∧ gf2 = g. But

defining f∗ as in (4.7), gf∗(t) = a1, so gf∗ < g. �

4.5. Proofs and Examples

4.5.1. Example of Normal Message Structure in Which the Speaker Cannot

Summarize Parts of His Information

Suppose that T = {t0, t1, t2, t3, t4},M = {m(t0),m(t1),m(t2),m(t3),m(t4)}, and that:

M(t0) = {m(t0),m(t1),m(t2),m(t3),m(t4)}

M(t1) = {m(t1)}

M(t2) = {m(t2)}

M(t3) = {m(t1),m(t2),m(t3)}

M(t4) = {m(t1),m(t2),m(t4)}

It is easy to verify that the above message structure satisfied normality. The following is

a Hasse diagram which only displays the acceptance sets which correspond to questions

that only accept a single message, or in other words, acceptance sets of the form A{m}:
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{t0, t1, t3, t4} {t0, t2, t3, t4}

{t0, t3}

nnnnnnnnnnnn
{t0, t4}

PPPPPPPPPPPP

{t0}

nnnnnnnnnnnnnn

Figure 4.1. Single Message Acceptance Sets

Notice that since type t0 can send any message, this is also a diagram of the acceptance

sets corresponding to one-message questions which t0 can answer. Thus the sets in this

diagram can be thought of as the “meanings” of the messages which type t0 can use.

Notice that these meanings are not closed under intersection. Thus normality does not

mean that a type can combine any part of this information, only that a type can summarize

all of his information. In particular, t0 can summarize all of his information by sending

message m0, which corresponds to the set {t0}.

4.5.2. Proof of Theorem 4.1

First assume that the message structure is normal. Consider B ⊆ I. Now, consider a

question Q which accepts exactly the messages {m(t) : t ∈
⋂
B}. Then clearly

⋂
B ⊆ AQ.

On the other hand consider type s 6∈
⋂
B. This means that for all t ∈

⋂
B, there exists

A ∈ I such that t ∈ A, s 6∈ A. So by the definition of I, for all t ∈
⋂
B, there exists

m ∈M(t) such that m 6∈M(s). Normality then implies that for all t ∈
⋂
B, m(t) 6∈M(s).

So s 6∈ AQ. So
⋂
B = AQ. So

⋂
B ∈ I, and I is closed under intersection.

Next assume I is closed under intersection. I argue that the message structure is

normal. Consider any t ∈ T , and consider the family D := {A ∈ I : t ∈ A}. D is
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not empty, since T ∈ D. Closure under intersection implies that
⋂
D ∈ I. It follows

that there exists some question Q such that
⋂
D = AQ. Since t ∈ AQ, there must exist

some message m∗ ∈ M(t) such that m∗ ∈ Q. I will argue that m∗ can be treated as t’s

maximal message m(t). In particular consider any s ∈ T such that m∗ ∈ M(s). Then

s ∈ AQ =
⋂
D. Now consider any m ∈ M(t). Then A{m} ∈ D. So since s ∈

⋂
D,

s ∈ A{m}. So m ∈ M(s). So M(t) ⊆ M(s). This validates the identification of m∗ and

m(t), establishing normality. �

4.5.3. Proof of Theorem 4.2 and Related Facts

First I discuss some facts relating to R4 and 4R. It is well-known in lattice theory that

every partial order corresponds to a ring of sets. Every ring of sets also corresponds

to a partial order on its join-irreducible elements. The join-irreducible elements do not

exactly correspond to the ground set of the ring of sets, but the join irreducible-elements

can be put in one-to-one correspondence with blocks which contain elements of the ground

set that always co-occur within the elements of the ring of sets. This explains why we

associate rings of sets with quasi-orders rather than with partial orders (which are also

anti-symmetric). If we imposed the condition–which is inconvenient for other reasons–

that two types cannot have exactly the same set of messages, then quasi-orders would be

replaced by partial orders.

Now I prove the parts of Theorem 4.2.

(i): Suppose that t1 4I t2. Then for all m ∈ M, t1 ∈ A{m} ⇒ t2 ∈ A{m}. So M(t1) ⊆

M(t2). On the other hand, if M(t1) ⊆ M(t2), then for all Q ⊆ M, t1 ∈ AQ ⇒ t2 ∈ AQ.

So t1 4I t2.
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(ii): If t1 4I t2, then in any k-chain (I2, . . . , Ik), the highest index set Ih which contains

t1 must also contain t2.

(iii): First suppose that (T,M,M(·)) is normal. Then consider a monotone outcome

function g. Then g is implemented by the k-question such that:

Qj = {m(t) : g(t) ≥ aj}

To see this consider any type such that g(t) = aj. Then t ∈ AQj
, but by monotonicity for

any s ∈ T , if g(s) = aj+1, then M(s) \M(t) 6= ∅, so m(s) 6∈ M(t). So t cannot answer

Qj+1.

On the other hand, suppose that normality is violated. Then there must be some type

t0 and some collection S of types such that M(t0) ⊆
⋃
s∈SM(s) but M(s) 6⊆ M(t0) for

all s ∈ S. So consider the following monotone outcome function:

g(t) =

 a2, if t0 4I t;

a1, otherwise.

This outcome function cannot be implemented because any question Q which accepts t0

must accept some s ∈ S, but t0 64I s.

(iv) Notice that s 4I t ⇔ M4I(s) ⊆ M4I(t). This part of the theorem then follows

from (i), (ii) and (iii).

(v) Let G be the set of monotone outcome functions for 4, and consider the message

structure (T, T,M4(·)), with family of acceptance sets I. Then invoking (i), it is easy

to see that 4=4I , and since (T, T,M4(·)) is normal, it follows from (ii) and (iii) that

G is exactly the implementable family for (T, T,M4(·)). On the other hand, suppose
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that G is the set of implementable outcome functions for some message correspondence

(T,M,M(·)), and let I be the corresponding family of acceptance sets. Then by (ii) and

(iii), G is the family of outcome functions which is implementable relative to 4I . �

4.5.4. Proof of Theorem 4.3

Assume that (T,M,M(·)) is weakly normal. I want to prove that I is closed under finite

intersection, for which it is sufficient to prove that it is closed under pairwise intersection.

Choose A1, A2 ∈ I. Then there exist Q1, Q2 ⊆ M such that A1 = AQ1 , A2 = AQ2 .

Consider the question R ⊆ M defined by:

R = {m({m1,m2}, t) : m1 ∈ Q1 ∩M(t),m2 ∈ Q2 ∩M(t), t ∈ A1 ∩ A2}.

Such a question exists by weak normality. Suppose that t ∈ A1 ∩ A2. Then there exists

m1 ∈ Q1 ∩M(t) and m2 ∈ Q2 ∩M(t). Then since by weak normality m({m1,m2}, t) ∈

M(t), t can answer R. So A1 ∩ A2 ⊆ AR. Now consider a type s 6∈ A1 ∩ A2. Then either

s has no answer to Q1 or s has no answer to Q2. In any event, weak normality implies

that for all m({m1,m2}, t) ∈ R, m({m1,m2}, t) 6∈ M(s). So t 6∈ AR. So AR ⊆ A1 ∩ A2.

So AR = A1 ∩ A2. So A1 ∩ A2 ∈ I, implying that I is closed under finite intersection.

Next assume I is closed under finite intersection. I want to prove that the message

structure is weakly normal. Now choose t ∈ T and a finite nonempty M0 ⊆ M(t). Then

weak normality implies that there exists Q ⊆ M such that

AQ =
⋂
{A{m} : m ∈M0}.

Since M0 ⊆M(t), t ∈ AQ. This means that there must be some m∗ ∈ Q such that m∗ ∈
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M(t). I will argue that we can treat m∗ as m(M0, t). This means that I want to show

that for all s ∈ T , if M0 6⊆ M(s), then m∗ 6∈ M(s). However if M0 6⊆ M(s), then there

exists m ∈M0 such that s 6∈ A{m}. So s 6∈ AQ. So m∗ 6∈M(s). �

4.5.5. Proof of Theorem 4.4

The proof requires a lemma:

Lemma 4.2. If G is the family of implementable outcome functions for some message

correspondence, and let H ⊆ G. Then define g∗ ∈ AT by:

g∗(t) := max{g(t) : g ∈ H}.

Then g∗ ∈ H.

Proof. Let I be the corresponding interior system. Then for every g ∈ H, let

(Ig2 , . . . , I
g
n) be the corresponding n-chain in C(I, n). Then notice that (

⋃
g∈H I

g
2 , . . . ,

⋃
g∈H I

g
n)

also belongs to C(I, n) and corresponds to g∗. �

Proof of (i). Let g1, g2 ∈ G. Then notice that the join of g1 and g2 in AT is max(g1, g2),

and the meet of g1 and g2 in AT is min(g1, g2). By Lemma 4.2, max(g1, g2) ∈ G. Thus,

to prove that weak normality implies that G is a sublattice of AT , it is sufficient to

show that min(g1, g2) belongs to G. So take g1, g2, and assume weak normality. Let

(I1
2 , . . . , I

1
n), (I

2
2 , . . . , I

n
2 ) be the corresponding n-chains in C(I, n). Then by Theorem 4.3,

(I1
2 ∩ I2

2 , . . . , I
1
n ∩ I2

n) ∈ C(I, n). It is easy to see that (I1
2 ∩ I2

2 , . . . , I
1
n ∩ I2

n) corresponds to

min(g1, g2). So min(g1, g2) ∈ G.
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Now suppose that the message structure is not weakly normal. Then by Theorem

4.3, there exist I1, I2 ∈ I such I1 ∩ I2 6∈ I. It is then easy to see that the minimum of

the outcome functions corresponding to the n-chains (I1, . . . , I1) and (I2, . . . , I2) do not

belong to G, implying that G is not a sublattice of AT .

The proof of (ii) is similar, except that weak normality is replaced by normality,

pairwise minimum is replaced by arbitrary minimum, pairwise intersection is replaced by

arbitrary intersection, and Theorem 4.3 is replaced by Theorem 4.1. �

4.5.6. Proof of Theorem 4.5

Notice since maxH is the join of H in AT . Since G ⊆ AT , it follows that in or-

der to show (4.3), it is sufficient to establish that maxH ∈ G. For each g ∈ H, let

(Ig2 , . . . , I
g
k) be the corresponding k-chain in C(I, k). Then notice that maxH corresponds

to (
⋃
g∈H I

g
2 , . . . ,

⋃
g∈H I

g
k), since in the latter each type gets at least action aj if and only

if that type gets at least aj in some g ∈ H. But (
⋃
g∈H I

g
2 , . . . ,

⋃
g∈H I

g
k) ∈ C(I, k), so

maxH ∈ G.

(4.4) follows from the fact that minH is the join of H in AT , and G ⊆ AT .

Notice that since by Theorem 4.1, I is closed under intersection if and only if the mes-

sage structure is normal. Hence an argument like that establishing (4.3) with intersection

taking the place of union can be used to establish (4.5) when the message structure is

normal. �

4.5.7. Proof of Theorem 4.6

Let M f
j be the set of messages which attain at least action aj given persuasion rule f .
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Then the k-chain corresponding to f ∗ is:

(AS
f∈F M

f
2
, . . . , AS

f∈F M
f
k
) = (

⋃
f∈F

AMf
2
, . . . ,

⋃
f∈F

AMf
k
),

where the right hand side corresponds to max{gf : f ∈ F}, which by Theorem 4.5 implies

(4.8).

(4.9) follows because for each f ∈ F , gf∗ ≤ gf . �
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CHAPTER 5

Comparative Statics and Symmetry

In this chapter, I will define the listener’s utility directly as a function of the set of

implementable outcome functions. I will find properties of the objective, properties of

the set of optima, and comparative statics for which normality of the signal structure is

critical. This will show qualitatively how the listener’s decision is affected by the speaker’s

ability to summarize information.

The chapter is split into five sections. Section 5.1 develops the main results on prop-

erties of the listener’s utility function defined directly on the lattice of implementable

outcome functions, properties of the set of optima, and comparative statics. The analysis

takes place under the assumption that the set of types is finite, and normality is found

to be a critical property. Section 5.2 briefly considers the infinite case, and describes how

in this case weak normality plays the role which normality plays in the finite case. The

significance of the infinite case is also discussed. Section 5.3 shows the significance of the

comparative statics derived in Section 5.1 in terms of types for the persuasiveness of indi-

vidual messages. Section 5.4 shows how normality is critical for the symmetry properties

of optimal persuasion rules. This is relevant to the question of when messages are inter-

preted according to their literal meaning, as opposed to in terms their of conversational

meaning, a question addressed by the field of pragmatics. The results complement earlier

results of that section complement earlier results by Glazer and Rubinstein (2003, 2004,



113

2006) by showing that failure of normality is critical for the sort of pragmatic phenomena

studied in those papers.

5.1. Properties of the Listener’s Utility Function

Throughout this chapter, I assume that both T and M are finite, and moreover that

there is some fixed number n of actions. Let G be the family of implementable outcome

functions induced by some message structure. (G,≤) can be considered as a partially

ordered set where g1 ≤ g2 if and only if for all t, g1(t) ≤ g2(t). In other words, g1 ≤ g2 if

every type gets a higher action under g2 than under g1. We know from Theorem 3.1 that

if I is the family of acceptance sets, the elements of G correspond one-to-one with the

elements of C(I, k). Moreover the ordering relation ≤ on G coincides with the ordering

relation in terms of difficulty–with smaller elements being more difficult–defined in (3.4)

on C(I, k), when elements of G are associated with the corresponding elements in C(I, k).

It then follows from Observation 3.2 that (G,≤) is a lattice. We will go on to define the

listener’s utility directly on the lattice G. The following standard definitions provide

properties of functions defined on a lattice.

Definition 5.1. A function h on a lattice (X,≤) is

• modular if h(x) + h(y) = h(x ∨ y) + h(x ∧ y).

• supermodular if h(x) + h(y) ≤ h(x ∨ y) + h(x ∧ y).

• quasi-supermodular if

h(x ∧ y) ≤ h(x) ⇒ h(y) ≤ h(x ∨ y)

h(x ∧ y) < h(x) ⇒ h(y) < h(x ∨ y)
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Notice that modularity implies supermodularity, which in turn, implies quasi-super-

modularity.

Next I define the listener’s expected utility directly as a function of the implementable

outcome functions. In particular for any g ∈ G, let:

(5.1) V (g; v, π) :=
∑
t∈T

v(g(t), t)π(t).

The theorems below will generalize over listener utility functions v in a set V. The

theorems will be true if V is any of the following three sets:

RA×T(5.2)

{v ∈ RA×T : ∃u ∈ S,∀t ∈ T, ∃ concave ct ∈ RR, v(·, t) = ct ◦ u}(5.3)

{v ∈ RA×T : ∀t ∈ T, ∃ concave ct ∈ RR, v(·, t) = ct ◦ u},(5.4)

where S is the set for strictly increasing functions from A to R, and in (5.4), u is any

element of S. The theorems in this chapter will generally state the equivalences among

several conditions, and the theorems will be strongest when V is interpreted as either

(5.2) or (5.4), depending on the direction of the proof. The reason that (5.3) is of interest

is that it shows that theorems of this chapter hold when restricting attention to utility

functions satisfying the condition given in Theorem 2.3, guaranteeing that the persuasion

rule which is optimal among deterministic persuasion rules can be credibly implemented.

The reason that (5.4) is of interest is that it shows that the theorems of this chapter hold

when restricting attention to utility functions satisfying the condition given in Theorem

2.2 guaranteeing that there is an optimal deterministic persuasion rule when the speaker’s
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utility function is some fixed u ∈ S. Likewise, the theorems of this chapter generalize over

a set Π of probability measures which can either be ∆(T ) or the elements of ∆(T ) which

give each type a positive probability.

For any v ∈ V and π ∈ Π, let:

B(v, π) = argmaxg∈GV (g; v, π).

First I will prove that the speaker’s ability to summarize his information can be repre-

sented as a property of the listener’s objective function.

Theorem 5.1. Suppose that T is finite. Let G be the family of implementable outcome

functions induced by (T,M,M(·)). The following three statements are equivalent:

(1) (T,M,M(·)) is normal.

(2) For all v ∈ V and π ∈ Π, V (g; v, π) is a modular function of g on (G,≤).

(3) For all v ∈ V and π ∈ Π, V (g; v, π) is a quasi-supermodular function of g on

(G,≤).

Proof. See Section 5.5.2. �

This theorem says that under normality, the listener’s objective is always a modular

function, but when weak normality fails, it is always possible to find a specification of the

listener’s objective such that it is not even quasi-supermodular. Notice that V (·; v, π) is

obviously modular on AT , and therefore on any sublattice of AT . Theorem 4.4 says that

normality is sufficient for G to be a sublattice of AT . Given the finiteness of T , normality

is also necessary. Given that G is a sublattice of AT , the modularity is preserved. When

the lattice G is not a sublattice of AT , one can specify v and π such that the weaker



116

property of quasi-supermodularity is not preserved. This is the main idea underlying the

theorem.

To emphasize that counter-examples to modularity, and moreover, the stronger prop-

erty of supermodularity are not difficult to generate when normality fails, but on the

contrary, are the norm, I present the following theorem, which shows that interesting

examples of supermodular listener utility functions may be difficult to come by when

the message structure is not normal. Notice, in particular, that by Theorem 4.1, the as-

sumptions on the message structure made by the following theorem are inconsistent with

normality.

Theorem 5.2. Suppose that for all t ∈ T , there exist m1,m2 ∈ M such that A{m1} ∩

A{m2} = {t}, but for all t ∈ T and m ∈ M, A{m} 6= {t}. Then V (·; v, π) is supermodular

on G only if the persuasion rule which assigns every type the lowest action is optimal.

Proof. See Section 5.5.3. �

An example of a message structure which would satisfy the assumptions of the previous

theorem would be one in which the speaker observes an element x of some product set∏`
i=1Xi, and can report at least half of the components of x (both the value xi and the

index i to which it corresponds), but cannot report all of the components. The type of

the speaker is then x. Notice that under these assumptions, type x is the only type who

can report both that the first `/21 components are (x1, . . . , x`/2), and that the last `/2

components are (x`/2 +1, . . . , x`), but it is not possible for type x to report his type. This

shows that the hypotheses of the theorem are satisfied. The theorem then says that the

1Assume for simplicity that ` is even.
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listener’s utility function can be a supermodular function of his choice set in this case

only if the persuasion rule which assigns the lowest action to every message is optimal.

The next theorem characterizes normality in terms of the structure of the set of optima.

Theorem 5.3. Suppose T is finite. Let G be the family of implementable outcome

functions induced by (T,M,M(·)). The following three conditions are equivalent:

(1) (T,M,M(·)) is normal.

(2) For every v ∈ V and π ∈ Π, (B(v, π),≤) is a sublattice of (G,≤).

(3) For every v ∈ V and π ∈ Π, (B(v, π),≤) has a greatest element.

(4) For every v ∈ V and π ∈ Π, (B(v, π),≤) has a least element.

Proof. See Section 5.5.4. �

The proof that (1) implies (2) uses a standard result on maximizing supermodular

functions on a lattice to show that under normality, the set of optimal decisions (i.e.

outcome functions) for the listener forms a lattice. The greatest element of this lattice

corresponds to the optimal decision which is best for the speaker and ant the least element

corresponds to the optimal decision which is worst for the speaker. In contrast, when

normality fails, the theorem says that one can always find a counter-example, i.e., an

objective function for the listener such that the optimal decisions do not form a lattice,

and moreover an objective such that the set of maximizers does not have a greatest

element, and an objective such that the set of maximizers does not have a least element.

In fact, the proof shows that one can construct a single counter-example in which the

set of maximizers has neither a greatest nor a least element. This is easiest to explain in

the case of two actions. In this case, we know from Theorem 4.1 that the family of sets
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of types who receive the higher action is not closed under intersection. The proof of the

theorem analyzes what must be happening locally in I where closure under intersection

fails. In particular, this analysis shows that it is always possible to link acceptance of

some collection of “good” types (i.e., types the listener would like to accept) to a choice

among several collections of “bad” types; in order to accept the good types, the listener

must accept at least some of these bad types, and in fact the listener’s objective can be

chosen so that he is indifferent between at least two of the collections of bad types. The

listener’s desire not to accept both of these collections implies that there is no greatest

optimal decision, and his inability to accept the good types without accepting the bad

types implies that there is no least optimal decision.

The properties described above have comparative statics consequences. Intuitively,

one might expect that if the interests of the speaker and listener become more aligned

for every type of speaker, then the listener will ask the speaker an easier question, in the

sense that he will choose a persuasion rule which gives each type of speaker a weakly

higher action in every state. Formally, consider two specifications of the listener’s utility

function v1, v2, satisfying the following increasing differences2 relationship:

(5.5) v1(aj+1, t)− v1(aj, t) ≤ v2(aj+1, t)− v2(aj, t),∀t ∈ T, ∀j = 1, . . . , k − 1

If v1 and v2 stand in the relation (5.5), we say that the interests of the speaker and

listener are more aligned given v2 than given v1. Of course, in essence, all that matters

is whether this relationship holds after v2 is multiplied by some positive constant. (5.5)

2This may be modeled formally as increasing differences between the action aj and a parameter θ by
modeling the listener’s utility function as a function w(aj , t, θ) parameterized by θ, where there is some
ordering relation on the parameter set, and assuming that w(aj+1, t, θ)− w(aj , t, θ) is increasing in θ.
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says that the slope of v2(·, t) is greater than the slope of v1(·, t) everywhere.3 This means

that in moving from v1 to v2, the interests of the speaker and the listener have become

more aligned, because on the one hand the speaker always prefers a higher action, and

when the listener benefits from choosing a higher action is more beneficial under v1 than

under v2, and when it is costly for the listener to choose a higher action, then it is less

costly under v2 than under v1. So one would naturally expect that the listener would ask

the speaker an easier question under v2 than under v1. However, things are a bit more

complicated because the question of whether the speaker can summarize his information

turns out to be important for this reasoning.

In order to express this relationship, it is important to note that the there may not

be a unique optimal decision for the listener, but rather there may be multiple optimal

decisions, where formally, the choice set is viewed as the set of implementable outcome

functions rather than as the set of persuasion rules. I treat comparisons between sets of

optima in the standard way, in terms of a relation between subsets of a lattice, known as

the strong set order, and written v. To define this order, consider a lattice (X,≤), and

let Y1, Y2 ⊆ X. Then the strong set order v is defined by:

Y1 v Y2 ⇔ ∀y1 ∈ Y1,∀y2 ∈ Y2, y1 ∧ y2 ∈ Y1, y1 ∨ y2 ∈ Y2.

When Y1 and Y2 are singletons, then v coincides with ≤, so that if there are unique

optima, in Theorem 5.4 below, v reduces to ≤. To get a sense for v when the sets

being compared are not singletons, consider, for example, the case where the lattice is

3Formally, for any mapping q : A× T → R which is increasing in its first argument: v2(aj+1,t)−v2(aj ,t)
q(aj+1,t)−q(aj ,t) ≥

v1(aj+1,t)−v1(aj ,t)
q(aj+1,t)−q(aj ,t) , so that the “distance” between successive actions is not an issue.
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the interval [0, 1] with the usual order. Then two subintervals [a, a] and [b, b] satisfy

[a, a] v [b, b] if a ≤ b and a ≤ b.

Theorem 5.4. Suppose T is finite, and let G be the family of implementable outcome

functions induced by (T,M,M(·)).

(i) If v1 and v2 are related as in (5.5), then if g2 ∈ B(v2, π), g1 ∈ B(v1, π), and

g2 ≤ g1, then g1 ∈ B(v2, π) and g2 ∈ B(v1, π).

(ii) If v1 and v2 are related as in (5.5) and (T,M,M(·)) is normal, then B(v1, π) v

B(v2, π).

(iii) If (T,M,M(·)) is not normal, then it is possible to find v1 and v2 satisfying (5.5)

such that ∀g1 ∈ B(v1, π),∀g2 ∈ B(v2, π), g1 6≤ g2 and g2 6≤ g1.

Proof. See Section 5.5.5.

With regard to the intuitive comparative static described above–namely, that as the

interests of the speaker and listener become more aligned for every type of speaker, then

the optimal outcome function will be such that the listener always grants the speaker

a higher action–the theorem shows that this result depends on the speaker’s ability to

summarize information. In describing the parts of the theorem, I will talk as if B(v1, π)

and B(v2, π) are singletons, so that there is a single optimal decision given both v1 and

v2, although in general, this need not be the case. Part (i) says that regardless of the

properties of the message structure, if the interests of the speaker and listener become

more aligned as described above, then the listener will not uniformly give the speaker

a lower action. Part (ii) says that if the message structure is normal, then when the

interests of the speaker and listener become more aligned, the listener will grant every
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type of speaker a higher action. Once it is established that the listener’s expected utility

is a supermodular function of the implementable outcome functions, then part (ii) follows

from standard comparative statics results; thus the key insight behind (ii) is actually

Theorem 5.1. Finally, part (iii) says that when the message structure is not normal, it is

always possible to find a pair of utility functions v1 and v2, such that the movement from v1

to v2 represents a change in which the interests of the speaker and listener become aligned,

but some types of speaker get a higher action under v2 and others get a higher action

under v1. The basic intuition is that when the listener decides whether to grant a speaker

of type t a higher action, then when the speaker cannot summarize his information, the

listener must decide on the basis of what information to grant the speaker a higher action,

where this decision impacts which other types will receive a higher action as well. It may

be the case that the listener’s and speaker’s interests become more aligned for every type

of speaker, but that this change also influences the trade-off that the listener faces in

terms of what information to use to grant a certain type a higher action; if the listener

decides to request different information of a type t in order to grant him a higher action,

this may cause other types, who had access to the old but not the new information, to

get a lower action.

The theorem then shows that the ability to summarize information is critical for an

intuitive comparative statics result, in the sense that when normality does not hold, it

is always possible to find a counter-example. It is natural to ask whether there may be

some assumption about the relationship between the listener’s utility function and the

message structure which would rule out such counter-examples. I now present one such



122

assumption, although it is rather strong. This exercise does however reveal something

about the nature of the counter-examples which I found above.

Imagine a heterogenous population of types, some of which have the capacity to sum-

marize their information, and others who do not. There could be several reasons for such

a heterogeneity. For example, the time constraints faced by a speaker may stem from

his personal circumstances rather than from some external constraint. Alternatively, one

might imagine that some types have information that comes in a concise form and others

have information that comes in a diffuse form. In principle, the inability to summarize

information could be taken as either a positive or negative signal by the listener. I will

consider a case in which it is taken as a negative signal. Of course, the listener may or may

not be able to infer whether a type has the capacity to summarize from the information

that he presents. Formally, I will say that type t can summarize if

(5.6) ∃m(t) ∈M(t),∀s ∈ T,m(t) ∈M(s) ⇒M(t) ⊆M(s)

Otherwise, type t cannot summarize. Notice that condition (5.6) is the same as the

condition in Definition 4.1–the definition of normality. The difference is that condition

(5.6) applies locally, in the sense that some types may satisfy it and others may not,

whereas normality is the condition that all types can summarize. Now consider the

following assumption on the listener’s preferences:

(5.7) if t cannot summarize, then v(aj+1, t)− v(aj, t) ≤ 0,∀j = 1, . . . , k − 1.

This says that when the speaker cannot summarize then the listener and speaker’s interests

are completely opposed. The model allows both for the possibility that when the speaker
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cannot summarize, then this can be deduced from the message which he sends, so that

some messages are inherently incomplete, and for the possibility that the listener cannot

deduce from the message alone, whether or not the speaker can summarize. The latter case

is more interesting when assumption (5.7) is imposed, since when the listener recognizes

a message as incomplete he can always choose the lowest action.4 For an example of a

simple situation in which the listener cannot infer from the messages alone whether or

not the speaker can summarize, assume that T = {t1, t2, t3}, and M(t1) = {m1},M(t2) =

{m2},M(t3) = {m1,m2}. Then types t1 and t2 can summarize, and type t3 cannot, but

the listener cannot infer from the message that he receives whether or not the speaker

can summarize.

Theorem 5.5. If v satisfies (5.7), then for all π, V (g; v, π) is a supermodular function

of g on (G,≤).

Proof. See appendix.

It is an immediate consequence of this theorem that in this case, one can establish a

comparative statics result as in part (ii) of Theorem 5.4.

Corollary 5.1. Suppose that v1 and v2 both satisfy (5.7). Suppose moreover that v1

and v2 are related as in (5.5). Then for all π, B(v1, π) v B(v2, π).

This shows that normality is not necessary for the result in (ii) of Theorem 5.4 provided

that one makes strong enough assumptions about the listener’s utility function, and in

particular, about how the listener’s utility relates to the message structure.

4Implicitly this reasoning relies on the argument presented in Section 3.3 that it is without loss of
generality that each type of speaker presents a maximally informative message.
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5.2. Infinitely Many Types

The previous section assumed that the set T of types was finite. The main theorem

was Theorem 5.1. Theorem 5.1 is, in large part, a consequence of Theorem 4.4, which says

that under normality, the lattice G of implementable outcome functions is a sublattice of

AT . Modularity of the listener’s utility function when defined on AT is then preserved

as we move to G. However, Theorem 4.4 shows that a weaker property then normality,

namely, weak normality, is both necessary and sufficient for G to be a sublattice of AT

when the set of types is infinite. Recall that normality and weak normality coincide when

the set of types is finite. It is therefore worthwhile to ask which of the properties studied

in the previous section survive when we consider infinite sets of types.

The reason for considering the infinite case is twofold. The first–and most important–

reason is that it shows that results in this chapter do not essentially depend on the fact that

under normality, it is without lost of generality that the speaker presents his essentially

unique5 maximally informative message; weak normality does not imply an essentially

unique maximally informative message when there are infinitely many types. Rather, the

critical fact underlying the results of this chapter is lattice-theoretic and is presented in

Theorem 4.4, namely that the set of implementable outcome functions is a sublattice of

AT if and only if the message structure satisfies weak normality.6 The second reason for

considering the infinite case is that it models the interesting situation in which a speaker

can summarize small, but not necessarily large, collections of statements.

5This maximally informative message is “essentially unique” in the sense that under normality, any other
maximally informative message m satisfies A{m} = A{m(t)}.
6However, as implied by Observation 3.2, the set of implementable outcome functions is always a complete
lattice.
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Suppose for simplicity that the set T of types is countably infinite. I assume that for

all a ∈ A,
∑

t∈T |v(a, t)|π(t) <∞, which implies that for all g ∈ G, |V (g; v, π)| <∞.

I will now briefly discuss, which of the results which were presented in the previous

section survive in the infinite case when the property of normality is replaced with that

of weak normality. To begin with, as mentioned above, Theorem 5.1, which was the

main theorem of the previous section survives. Theorem 5.3 partially survives. Certainly

weak normality implies that the set of optima is a (possibly empty) sublattice. This

corresponds to the implication (1) implies (2). I do not know whether (2) would still

imply (1), although I conjecture that it does. The proof of this implication in the finite

case depends on the finiteness assumption. One would not expect either (1) or (2) to

imply either (3) or (4), when weak normality is substituted in normality, because unlike

in the finite case, in the infinite case, a lattice may not have a greatest or least element.

Conditions under which the set of maximizers is a subcomplete sublattice–which would

imply (3) and (4)–are known, but one would have to apply them within this model. Parts

(i) and (ii) of Theorem 5.4 would go through under weak normality in the infinite case.

The proof of (iii) in the finite case relies on finiteness, and so it is not clear whether it would

be preserved in the infinite case, although I conjecture that it would. Finally, Theorem

5.6–and hence Corollary 5.1–would survive in the infinite case, under weak normality.

5.3. Persuasiveness of Messages

In this section, I translate Theorem 5.4 into a theorem which directly addresses the

question of how persuasive individual messages are, and what happens to the persuasive-

ness of messages as interests become more aligned.
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Throughout this section I will use F∗(v, π) to denote the set of optimal persuasion

rules given v and π. This notation assumes that the message correspondence held fixed.

I sometimes write F∗(v) when π is assumed to be held fixed.

Definition 5.2. Let M∗ ⊆ M. The messages in M∗ are jointly more persuasive

given v2 than given v1 if:

(5.8)

∀f1 ∈ F∗(v1),∃f2 ∈ F∗(v2),∀m ∈ M∗, f1(m) ≤ f2(m)

(5.9)

∀f2 ∈ F∗(v2),∃f1 ∈ F∗(v1),∀m ∈ M∗, f2(m) ∈ {gf2(t) : m ∈M(t)} ⇒ f1(m) ≤ f2(m).

The messages in M∗ are jointly less persuasive given v2 than given v1 if the messages

in M∗ are (strictly) jointly more persuasive given v1 than given v2.

A message m ∈ M is strictly more persuasive given v2 than given v1 if:

max{f1(m) : f1 ∈ F(v1)} ≤ max{f2(m) : f2 ∈ F(v2)}(5.10)

(5.11)

min{f1(m) : f1 ∈ F(v1), f1(m) = gf1(t)} ≤ min{f1(m) : f2 ∈ F(v1), f2(m) = gf2(t)},

where either (5.10) or (5.11) holds with a strict inequality. m is strictly less persuasive

given v2 than given v1 if m is strictly more persuasive given v1 than given v2.

(5.8) of the above definition says that starting with v1, and a persuasion rule f1 which

is optimal given v1, it is possible to find a persuasion rule f2 which is optimal given
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v2 such that all messages in M∗ get the speaker a weakly higher action under f2 than

under f1. (5.9) says that starting from f2 which is optimal under v2, it is possible to

find a persuasion rule f1 which is optimal under v1 and such that all messages m ∈ M∗

which would have been optimal for any speaker type to use under v1, gets a weakly lower

action under f1 than under f2. In other words, any message whose use might have been

observed under f2 gets a weakly lower action under f1. An example below will show why

this qualification is made in (5.9).

To any persuasion rule f , there corresponds a persuasion rule f ′ such that (i) f and

f ′ are equivalent in the sense that they implement the same outcome function, and (ii)

every message (which is available to some type) is a best response to f ′ for some type.

Thus if we restrict attention to persuasion rules with property (ii), then the qualification

in (5.9) can be removed.

Note that (5.10) and (5.11) give similar definitions for individual messages to be strictly

more persuasive.

The following lemma is useful.

Lemma 5.1. Suppose that g ∈ G. Then define a persuasion rule f by:

(5.12) f(m) := min{g(t) : m ∈M(t)}.7

Then g = gf . Moreover, for all f ′, if gf ′ = g, then for all m ∈
⋃
t∈T M(t), f ′(m) ≤ f(m).

Proof. See Section 5.5.7

7The value of f on m ∈ M \
⋃

t∈T M(t) is clearly irrelevant.
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In fact, for any implementable outcome function g, the function f defined in (5.12) is

the persuasion rule implementing g which has the property (ii) described above, or in other

words, which makes every message which is available to some type a best response to f

for some type. The following theorem uses the preceding lemma to provide a comparative

statics result for the persuasiveness of messages under normality.

Theorem 5.6. Assume that the message structure is normal. Then the messages in

M become jointly more persuasive as interests become more aligned.

Proof. See Section 5.5.8. �

The following example shows why the qualification in (5.9) in the definition of “more

persuasive” messages is necessary if one would like to prove a theorem like Theorem 5.6.

Example 5.1. Suppose that k = 2, T = {t1, t2},M(t1) = {m1,m2},M(t2) = {m2}.

Notice that the message structure is normal. Suppose that π(t) = 1/2 for t ∈ {t1, t2}.

Moreover, suppose that v1 and v2 are given by:

v1 a1 a2

t1 1 0

t2 0 1

v2 a1 a2

t1 0 1

t2 0 1

Then interests are more aligned under v2 than under v1, but notice that f2 defined by

f2(m1) = a2, f2(m2) = a1 is an optimal persuasion rule given v2. On the other hand, the

unique optimal persuasion rule f1 such that f1(m1) = a1, f2(m2) = a2 is the unique opti-

mal persuasion rule given v1. This means that there does not exist an optimal persuasion

rule given v1 which assigns m2 a weakly lower action than does f2. This shows that (5.9)
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in Definition 5.2 could not have been strengthened to be:

∀f2 ∈ F∗(v2),∃f1 ∈ F∗(v1),∀m ∈ M∗, f1(m) ≤ f2(m),

if we would like to prove Theorem 5.6. Nevertheless, notice that as implied by Theorem

5.6, it would never be optimal for any speaker type to use m2 given f2. Moreover, f2

which assigns the highest action a2 to all messages is optimal given v2.

Theorem 5.7. Assume that the message structure is not normal. Then there exist

listener utility functions v1, v2 and message m such that:

(1) Preferences are more aligned given v2 than v1.

(2) m is strictly less persuasive given v2 than v1.

Proof. See Section 5.5.9. �

The following informal example shows intuitively why some messages may become less

persuasive as interests become more aligned.

Example 5.2. Suppose that the listener must decide on whether to undertake one of

two projects, A or B. A third alternative is to stay with a status quo option. The speaker

prefers the status quo.8 The listener would like to base his decision on the testimony of

two experts. Each expert has a definite opinion as to which project is better. If both

experts agree as to which project is better, then the listener would like to select this better

project. However, if the experts disagree, then the listener would prefer to take the status

quo option.

8It does not matter what the speaker’s preference is with respect to the comparison of the projects A
and B.
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Suppose that only the speaker, and not the listener, has access to the experts’ testi-

monies. However there is only time for the speaker to present the testimony of one expert.9

Thus the message structure is not normal. There are four possible states, corresponding

to the possible pairs of opinions of the two experts. Suppose that each of these states

is equiprobable, and that the listener gets a utility of 1 if he takes the right action in a

given state, and 0 if he takes the wrong action, so that the listener would like to choose

a persuasion rule which minimizes the number of mistakes.

There are two optimal persuasion rules in this example:

(1) Take the status quo action if speaker proves that one expert supports A. Other-

wise take B.

(2) Take the status quo action if speaker proves that one expert supports B. Other-

wise take A.

Now, suppose that we start with persuasion rule (1). Next suppose that the benefit of

project B goes down when B is optimal. This amounts to an increased alignment of

interests.10 But now notice that persuasion rule (1) is no longer optimal. To see this,

notice that at an optimal persuasion rule, the listener must not undertake the project at

some state of the world where it would be worthwhile. Given that the listener must make

such a mistake, he would prefer to make this mistake when the inferior project would

be optimal. However under persuasion rule (1), he does just the opposite. In particular,

notice that according the the definition of persuasiveness of messages, the message that

one of the experts supports B becomes less persuasive.

9I assume for definiteness that the speaker can present both the opinion of one expert along with that
expert’s identity. However, it does not matter for the purpose of the example whether or not the speaker
can present the expert’s identity.
10This can be made rigorous in terms of the relation given in (5.5).
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5.4. Symmetry

In this section, I present results which are relevant to endogenous interpretation of

messages in a persuasive situation. Part of the motivation of Glazer and Rubinstein

(2003, 2004, 2006) comes from the field of pragmatics. Pragmatics studies conversational

meaning, or in other words, the meaning that words and sentences acquire in conversation

over and above their literal or semantic meanings. Glazer and Rubinstein point out that

the classical account of conversational implicature proposed by Grice (1989) assumes

cooperative behavior on the part of the participants to the conversation. On the other

hand, conversational implicature is possible also in strategic settings, so Grice’s account

cannot be complete. Glazer and Rubinstein propose a game theoretic account which is

designed to handle conversational implicature in a simple strategic interaction.

In this section, I use the tools developed previously to further analyze what is necessary

for conversational implicature in strategic interactions. I do so by means of the concept

of symmetry. Roughly, two messages are symmetric if from a structural point of view,

they cannot be told apart. In other words, the messages can only be distinguished if we

have labels, but are structurally indistinguishable. I treat a pair of symmetric messages as

having the same literal meaning. The question then becomes: under what conditions must

messages with the same literal meanings be treated differently in an optimal persuasion

rule. Glazer and Rubinstein have found examples in which the optimal rule treats what I

here refer to as symmetric messages differently. The contribution here is threefold; first,

I formally define the notion of symmetry. Secondly, I show that under normality there

always exists a symmetric optimal persuasion rule. Thirdly, I show that at least within a

certain class of examples, when normality fails, it is possible to find persuasion situations
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in which all optimal rules are asymmetric. Once the definition of symmetry is presented

it is not hard to come to the third point from an examination of some of Glazer and

Rubinstein’s examples, and in fact this can be understood to be related to the main point

of a slightly different model in Glazer and Rubinstein (2003). Nevertheless, Glazer and

Rubinstein (2003) only presents an example and they do not present the general formal

definition of symmetry found here, nor do they identify the role of normality. The second

contribution is important because it shows that time constraints or more generally some

departure from the case of normality is necessary to generate conversational meaning, or

in other words, essentially different treatment of messages with the same literal meaning

in settings such as those studied here.

Definition 5.3. A pair of bijections (ϕ, ψ) where ϕ : T → T and ψ : M → M is a

symmetry if:

M(ϕ(t)) = {ψ(m) : m ∈M(t)}(5.13)

v(ai, ϕ(t)) = v(ai, t)(5.14)

π(ϕ(t)) = π(t)(5.15)

Let Φ be the set of all symmetries.

Thus a symmetry is a pair of mappings, one from types to types, and the other from

messages to messages, which preserve all structural features. If m′ = ψ(m) for some

symmetry, then the messages m and m′ cannot be distinguished without labels.

Not surprisingly, the set of symmetries is a group:
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Lemma 5.2. Φ is a group under the operation • defined by:

(ϕ1, ψ1) • (ϕ2, ψ2) := (ϕ1 ◦ ϕ2, ψ1 ◦ ψ2)

with inverse

(ϕ, ψ)−1 = (ϕ−1, ψ−1)

and identity (ϕI, ψI) with ϕI(t) = t, ψI(m) = m.

Proof. See Section 5.5.10.

The following theorem states some useful properties of symmetries.

Theorem 5.8. Suppose that (ϕ, ψ) is a symmetry.

(1) gf ◦ ϕ = gf◦ψ

(2) V (gf ; v, π) = V (gf◦ψ; v, π)

(3) If f is an optimal persuasion rule, then so is f ◦ ψ.

Proof. See Section 5.5.11. �

(1) says that if (ϕ, ψ) is a symmetry, and f is a persuasion rule, then composing the

outcome function implemented by f with ϕ leads to the same outcome function as com-

posing f with ψ to arrive at a new persuasion rule, and then taking the outcome function

implemented by this new persuasion rule. As a consequence, if g is any implementable

outcome function, so is g ◦ ϕ, as one would expect. (2) says that the listener’s payoffs to

f and f ◦ ψ are the same. (3) is an immediate consequence of (3), and says that the set

of optimal persuasion rules is closed under composition with ψ for any symmetry (ϕ, ψ).
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The next definition uses the notion of a symmetry defined above to define a notion of

symmetry which applies to persuasion rules.

Definition 5.4. A persuasion rule f is symmetric if for every symmetry (ϕ, ψ):

f = f ◦ ψ.

Theorem 5.9. For any symmetric persuasion rule f and any symmetry (ϕ, ψ),

(5.16) gf = gf ◦ ϕ.

Proof. Choose any symmetry (ϕ, ψ). Since f is symmetric, f = f ◦ ψ. (5.16) then

follows from (1) of Theorem 5.8. �

The next theorem shows that pragmatic phenomena cannot arise under normality. In

other words, under normality, there is always an optimal persuasion rules which treats

every pair of symmetric messages in the same way. Thus persuasiveness of such messages

can be interpreted as being a function only of their content.

Theorem 5.10. Suppose that the message structure is normal. Then there is a sym-

metric optimal persuasion rule.

Proof. Let f be any optimal persuasion rule. Then consider the rule:

(5.17) f ∗(m) = max{f ◦ ψ(m) : (ϕ, ψ) ∈ Φ}

It follows from part (3) of Theorem 5.8 that gf◦ψ is an optimal implementable outcome
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function for each (ϕ, ψ) ∈ Φ, and moreover by Theorem 4.6,

gf∗ =
∨
{gf◦ψ : (ϕ, ψ) ∈ Φ.}

It follows from the normality of the message structure and Theorem 5.3 that gf∗ is an

optimal implementable outcome function.

It remains only to show that f ∗ is a symmetric persuasion rule. For for any (ϕ′, ψ′) ∈ Φ

and any m ∈ M:

f ∗ ◦ ψ′(m) = max{f ◦ ψ(ψ′(m)) : (ϕ, ψ) ∈ Φ}(5.18)

= max{f ◦ ψ′′(m) : (ϕ′′, ψ′′) ∈ Φ • (ϕ′, ψ′)}(5.19)

= max{f ◦ ψ′′(m) : (ϕ′′, ψ′′) ∈ Φ}(5.20)

= f ∗(m)(5.21)

where (5.18) and (5.21) follow from (5.17), and (5.20) follows from the fact that from

Lemma 5.2, Φ is a group under •, so that Φ • (ϕ′, ψ′) = Φ. �

Example 5.3. Assume that T = [0, 1]n. Suppose that any type t = (t1, . . . , tn) can

show any h (or fewer) components of t. More formally, for any J ⊆ {1, . . . , n} and t ∈ T ,

define:

tJ = {(tj, j) : j ∈ J},

and suppose that M(t) := {tJ : |J | ≤ h}. Thus, t can reveal both the value and the index

of at most h components, where moreover, it is assumed that 1 ≤ h < n. This means

that t can show at least 1 but not all of his components. Note that all types face the same
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bound h on the number of components that they can show. Suppose that there are two

actions A = {a1, a2}, and the listener’s utility function takes the following form:

v(a2, t) = w(
∑
i

ti)

v(a1, t) = 0

where w is increasing and for some ` with h < ` ≤ n:

w(`− 1) < 0 < w(`).

In other words, there is some critical number ` such that if the speaker has at least `

components equal to 1, then the listener would like to take the speaker’s preferred action

a2, and otherwise, the listener would like to take action a1.

Claim 5.1. In the above non-normal persuasion problem, if it is not optimal to reject

every message, then every optimal persuasion rule is asymmetric.

Proof. Assume that f is a symmetric optimal rule which accepts some message m ∈⋃
t∈T M(t); that is, f(m) = a2. By optimality, there must be some t∗ with

∑
i t
∗
i =: p ≥ `

and J ⊆ {1, . . . , n}, |J | ≤ h with f(t∗J) = a2. In other words, optimality implies that if

f accepts some message m ∈
⋃
t∈T M(t), there must be some type who has that message

who the listener would like to accept. Note that for every q with h ≤ q < p, there exists

sq ∈ T with
∑

i s
q
i = q and sqJ = t∗J . By symmetry, f accepts some message from every

type such that h ≤
∑

i ti ≤ p. It follows that the optimal rule f is unique, and accepts

exactly messages of the form {(1, j) : j ∈ J} with |J | = h. But the rule f ′ which accepts
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every message accepted by f except {(1, j) : 1 ≤ j ≤ h} would do better, contradiction.

�

One might want to be able to show that whenever the message structure is not nor-

mal, then one can specify the utility functions in such a way that there does not exist a

symmetric optimal rule. However, this might not be possible for a rather trivial reason,

namely, it might be that the only symmetry is (ϕI, ψI), that is the pair of identity maps.

Then there will exist a symmetric optimal rule regardless of the specification of the lis-

tener’s utility and regardless of whether the message structure is normal. The following

theorem tries to generalize the observations relating to symmetry to message structures

in which the only symmetry is the trivial one. In the counter-examples to the existence of

symmetric optimal rules when the message structure is not normal, there are collections

of messages {m1,m2, . . . ,mn} such that for every pair of messages mi, mj, there exists a

symmetry (ϕi,j, ψi,j) with ψi,j(mi) = mj but such that no optimal rule treats them all in

the same way. Suppose for example that every optimal rule treats m1 and m2 differently,

in that f(m1) = a1 and f(m2) = a2. Of course, it is possible to find another optimal

persuasion rule f ′ such that f ′(m1) = a2 and f ′(m2) = a1. But there may be no optimal

rule which assigns either a1 or a2 to both m1 and m2. Thus the treatment of m1 and m2

is interdependent at the optimal rule. Such interdependence is impossible for any pair of

messages, regardless of whether they are symmetric or not, under normality. However,

one can always specify the listener’s utility function so that such interdependence emerges

for some pair of messages whenever normality fails:

Theorem 5.11. The following conditions are equivalent:
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(1) The message structure is not normal.

(2) There exists listener utility function v and probability distribution π, and a pair

of messages m1,m2 such that the following conditions hold non-vacuously

∀f ∈ F(v, π), f(m1) = ak ⇒ f(m2) < ak(5.22)

∀f ∈ F(v, π), f(m2) = ak ⇒ f(m1) < ak(5.23)

Proof. In the course of the proof of Theorem 5.3 in Section 5.5.4, it was shown that

whenever the message structure is not normal, it is possible to construct a utility function

v and probability distribution π such that for some S ⊆ T with |S| ≥ 2:

g ∈ B(v, π) ⇒ ∃I ∈ I, |I ∩ S| = 1, and g = gI ,

and moreover,

S ⊆ {I : gI ∈ B(v, π)}

So for t1, t2 ∈ S with t1 6= t2, there exists m1 ∈ M(t1),m2 ∈ M(t2), f1, f2 ∈ F(v) such

that f1(m1) = ak, f2(m2) = ak. (5.22) and (5.23) hold non-vacuously for m1 and m2. �

To summarize, normal persuasion problems differ from non-normal persuasion prob-

lems in that within non-normal problems, the persuasiveness of messages may be interde-

pendent within the class of optimal rules, whereas in normal problems, this is impossible.

In particular, in the case of non-normal problems there may be interdependence between

symmetric messages, causing them to be treated differently. Thus all optimal persuasion

rules in non-normal problems may be asymmetric.
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5.5. Proofs

5.5.1. Preliminaries

The following notation will be very useful in the proofs that follow. For any S ⊆ T , and

j = 2, . . . , k define the gSj ∈ AT by:

(5.24) gSj (t) :=

 aj, if t ∈ S;

aj−1, otherwise.

I write gS for gSk . The rest of this section is phrased in terms of gS, but all facts will

continue to hold if gS were replaced by gSj . Let I be the family of acceptance sets and G

be the family of implementable outcome functions. Then for any B ∈ I (T, . . . , T, B) ∈

C(n, k), and (T, . . . , T, B) corresponds to gB. This implies that:

(5.25) B ∈ I ⇔ gB ∈ G.

Note also that for any B,C ∈ I:

gB ∧ gC = gB∧C(5.26)

gB ∨ gC = gB∨C = gB∪C ,(5.27)

where on the left hand side, ∧ and ∨ are evaluated within G and on the right hand side,

∨ and ∧ are evaluated within I.

5.5.2. Proof of Theorem 5.1

First I prove that (1) implies (2). Observe that V (g; v, π) :=
∑

t∈T v(g(t), t)π(t) is modular
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on the lattice AT . It follows from (i) of Theorem 4.4 that normality implies that G is a

sublattice of AT . This implies that modularity is preserved moving from AT to G.

Notice next it is immediate that 2 implies 3 because modularity is a stronger property

than quasi-supermodularity.

I will complete the proof by showing that when normality fails, it is possible to find v

and π such that V (·; v, π) is not quasi-supermodular on G.

By Theorem 4.1, if (T,M,M(·)) is not normal, then I is not closed under intersection.

It then follows from the finiteness of T that there exist B,C ∈ I such that B ∩ C 6∈ I.

This implies that B 6⊆ C and C 6⊆ B. In particular, there exists t1 ∈ B \ C. Given

that B ∩ C 6∈ I, B ∧ C must be a proper subset of B ∩ C. This means that there exists

t0 ∈ (B ∩ C) \ (B ∧ C). Since t0 ∈ C, t1 6∈ C, it follows that t0 6= t1.

Next, choose π ∈ Π with π(t) > 0 for all t ∈ T . Assume, next that v(ak−1, t) = 0

for all t ∈ T . Next, assume that v(ak, t1) < 0, v(ak, t0)π(t0) > −v(ak, t1)π(t1), and for all

t ∈ T \ {t0, t1}, v(ak, t) = 0. Notice that all of these assumptions on v are consistent with

v belonging to (5.4) for any u ∈ S.

By (5.25), gB, gC ∈ G. So:

V (gB ∧ gC ; v, π)− V (gB; v, π) = V (gB∧C ; v, π)− V (gB; v, π)(5.28)

=
∑

t∈B\(B∧C)

(v(ak−1, t)− v(ak, t))π(t)(5.29)

= −
∑

t∈B\(B∧C)

v(ak, t)π(t)(5.30)

= −[v(ak, t0)π(t0) + v(ak, t1)π(t1)](5.31)

< 0(5.32)
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where (5.28) follows from (5.26), (5.29) follows from the fact that gB and gB∧C agree

everywhere except on B \ (B ∧C), (5.30)-(5.32) follow from the assumptions on v and π.

On the other hand,

V (gC ; v, π)− V (gB ∨ gC ; v, π) = V (gC ; v, π)− V (gB∪C ; v, π)(5.33)

=
∑
t∈B\C

(v(ak−1, t)− v(ak, t))π(t)(5.34)

= −v(ak, t1)π(t1)(5.35)

> 0,(5.36)

where (5.33) follows from (5.27), (5.34) follows from the fact that gC and gB∪C only differ

on B \ C, and (5.35)-(5.36) follow from the assumptions on v and π.

Finally, note that (5.28)-(5.32) and (5.33)-(5.36) are together inconsistent with quasi-

supermodularity of V (·; v, π). �

5.5.3. Proof of Theorem 5.2

Consider t ∈ T , and m1,m2 ∈ M such that A{m1} ∩ A{m2} = {t}. Let I1 = A{m1}, I
2 =

A{m2}. Suppressing v, π in V (·; v, π), notice that for any j such that 2 ≤ j ≤ k, it is easy

to see that µj : 2T → R defined by

(5.37) µj(S) = V (gSj )− V (g∅j ) =
∑
t∈S

[v(aj, t)− v(aj−1, t)]π(t)

is a signed measure on 2T . So:

(5.38) µj(I
1) + µj(I

2) = µj(I
1 ∪ I2) + µj(I

1 ∩ I2).
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Invoking (5.26) and (5.27), supermodularity of V implies:

(5.39) V (gI
1

j ) + V (gI
2

j ) ≤ V (gI
1∪I2
j ) + V (gI

1∧I2
j ),

Subtracting 2V (g∅j ) from both sides of (5.39), we arrive at:

µj(I
1) + µj(I

2) ≤ µj(I
1 ∪ I2) + µj(I

1 ∧ I2).

Now, using (5.38) this is equivalent to:

µj(I
1 ∩ I2) ≤ µj(I

1 ∧ I2),

But by the assumptions of the theorem I1 ∩ I2 = {t}, I1 ∧ I2 = ∅, so this is equivalent to

µj({t}) ≤ 0, and using the definition of µj, (5.37),

∑
t∈T

[v(aj, t)− v(aj−1, t)]π(t) ≤ 0.

Since t and j were arbitrary (provided j ≥ 2), it follows that the persuasion rule which

assigns the lowest action to every message is optimal. �

5.5.4. Proof of Theorem 5.3

That (1) implies (2) follows from Theorem 5.1 and the fact that the set of maximizers of

a supermodular function on a lattice is itself a sublattice. (3) and (4) both follow from

(2) because every finite lattice has a greatest and least element.

To complete the proof, it is sufficient to show that if (T,M,M(·)) is not normal, then
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there exist v and π such that the induced set of maximizers has neither a greatest nor a

least element.

Lemma 5.3. Let X be a finite set and let Y ⊆ 2X \ ∅ be an antichain with |Y| ≥ 2.

Then there exists Z ⊆ X such that for all Y ∈ Y, Z ∩ Y 6= ∅, and there exist Y1, Y2 ∈ Y

such that Y1 ∩ Y2 ∩ Z = ∅ and |Y1 ∩ Z| = |Y2 ∩ Z| = 1.

Proof. Start with a set Z0 = ∅, and Y0 = Y , and repeatedly perform the following

steps, which transform sets Zi and Yi into Zi+1 and Yi+1.

(1) If |Yi| > 1, then choose some xi ∈
⋃
Yi \

⋂
Yi, and set Zi+1 = Zi ∪ {xi},Yi+1 =

Yi \ {Y ∈ Yi : xi ∈ Y }.

(2) If |Yi| = 1, stop.

To see that this procedure is well-defined, notice that if |Yi| > 1, then |Yi+1| ≥ 1. Clearly,

this procedure terminates in finite time. Suppose that the procedure terminates at step

`. Notice that both Y`−1 \ Y` and Y` are nonempty. Y` contains a single element Y1.

Choose any Y2 ∈ Y`−1 \ Y`. Since Y is an antichain, then there exists x` ∈ Y1 \ Y2. Now

set Z = Z` ∪ {x`}. Notice that Y1 ∩ Z = {x`}, Y2 ∩ Z = {x`−1}, and x` 6= x`−1, so Y1, Y2,

and Z satisfy all the properties required by the lemma. �

If (T,M,M(·)) is not weakly normal, by Theorem 4.3, there exists B,C ∈ I such that

B 6⊆ C,C 6⊆ B,B ∨ C = B ∪ C, and B ∧ C is a strict subset of B ∩ C. Let:

A := {A ∈ I : B ∩ C ⊆ A}

Notice that since B ∩ C 6∈ I, B ∩ C 6∈ A. Moreover, since B ∈ A, A is not empty.

Therefore, since I, and hence A is finite, there must be a nonempty subset D of A of
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minimal elements of A. Notice that since B,C ∈ A, there must be D,E ∈ D such that

D ⊆ B and E ⊆ C. Moreover, any set A in I which is a subset of both B and C is a

proper subset of B ∩ C because B ∩ C 6∈ I. It follows that since D,E ∈ A and hence

are supersets of B ∩ C, D 6= E. Therefore, D contains at least two elements. Moreover,

notice that D is an anti-chain and that every element of D contains B ∩ C as a proper

subset. It follows that the set:

F := {A \ (B ∩ C) : A ∈ D}

is an anti-chain containing at least two elements. Therefore, by Lemma 5.3, there is a set

Z ⊆
⋃
F such that for all A ∈ F , A ∩ Z 6= ∅, and there exist two distinct sets F,G ∈ F

such that F ∩ Z = {t1}, G ∩ Z = {t2} where t1 6= t2.

Letting |T | = n, choose π such that π(t) = 1/n for all t ∈ T , and v such that for

all t ∈ T , and all j < k − 1, v(aj, t) < min{v(ak−1, t), v(ak, t)}. Suppose that for all

t ∈ T , v(ak−1, t) = 0. For each t ∈ Z, define v(ak, t) = −1. Notice that B ∩ C 6= ∅, since

otherwise it would belong to I. For every t ∈ B ∩ C, assume v(ak, t) > |Z|. This is well

defined because by construction of Z, B ∩ C ∩ Z = ∅. For all t ∈ T \ (Z ∪ (B ∩ C)), set

v(ak, t) = 0. These assumptions are consistent with v belonging to (5.4) for any u ∈ S.

Next, note that it follows from the definitions of F andG that F∪(B∩C), G∪(B∩C) ∈

I. So by (5.25), gF∪(B∩C), gG∪(B∩C) ∈ G. Moreover, the properties of v imply that

gF∪(B∩C), gG∪(B∩C) ∈ B(v, π); to see this, notice that the payoffs are such that the listener’s

top priority is to assign action ak to every type in B ∩ C, but it is not possible to assign

action ak to all these types without assigning ak to at least one t in Z. gF∪(B∩C) and

gG∪(B∩C) assign ak to just one t ∈ Z. Notice any that any g ∈ G which is greater than
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both gF∪(B∩C) and gG∪(B∩C) must assign ak to at least two types in Z (t1 and t2), and

hence cannot be optimal. Nor can any g ∈ G which is less than both gF∪(B∩C) and

gG∪(B∩C) be optimal, because any such g cannot assign ak to all types in (B ∩ C). It

follows that B(v, π) has neither a greatest nor a least element. �

5.5.5. Proof of Theorem 5.4

(i): Assume that g1 and g2 satisfy the assumptions of part (i) of the theorem, so that in

particular, g2 ≤ g1. Optimality of g1 relative to v1 implies:

0 ≤ V (g1; v1, π)− V (g2; v1, π)(5.40)

=
∑
t∈T

[v1(g1(t), t)− v1(g2(t), t)]π(t)

≤
∑
t∈T

[v2(g1(t), t)− v2(g2(t), t)]π(t)(5.41)

= V (g1; v2, π)− V (g2; v2, π)(5.42)

where (5.41) follows from (5.5). Since g2 is optimal relative to v2, this implies that g1 is

optimal relative to v2. A similar argument implies that g2 is optimal relative to v1.

(ii): Suppose that the listener’s utility function must be drawn from {v1, v2}, which can

also be thought of as a parameter set. Suppose, moreover, that {v1, v2} is an ordered set,

where the ordering ≺ satisfies v1 ≺ v2. Then, where v ∈ {v1, v2}, algebra similar to that

in (5.40)-(5.42) shows that V (g; v, π) has increasing differences in g and v. On the other

hand, Theorem 5.1 implies that V (g; v, π) is supermodular in g for all v. Theorem 2.8.1 in

Topkis (1998), which says that a parameterized collection of supermodular functions on

a lattice which have increasing differences in the parameter has optimal solutions which
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are increasing (under the strong set order) in the parameter implies (ii).

(iii): If normality fails, then following, in a more compact and slightly different form,

the construction in Theorem 5.3, we perform the following steps (see the proof of Theorem

5.3 in Section 5.5.4 for justification): it is possible to find sets B,C ∈ I such that

B ∩ C 6∈ I, let D be the ⊆-minimal sets in {A ∈ I : B ∩ C ⊆ A}. Then, it is possible

to find a set Z such that Z ∩ B ∩ C = ∅, but such that Z intersects every element of

D. It is possible to choose sets F and G in D11 and types t1, t2 such that t1 6= t2 and

F ∩ Z = {t1}, G ∩ Z = {t2}. For every t ∈ T , assume v1(ak−1, t) = v2(ak−1, t) = 0. For

every t ∈ B∩C (which must be nonempty), assume v1(ak, t) = v2(ak, t) > 2|Z|. For every

t ∈ Z \ {t1, t2}, assume v1(ak, t) = v2(ak, t) = −2. For some small ε assume:

v1(ak, t1) = −1

v1(ak, t2) = −(1− ε)

v2(ak, t1) = −(1− 3ε)

v2(ak, t2) = −(1− 2ε),

and for every t 6∈ (B ∩ C) ∪ Z, v1(ak, t) = v2(ak, t) = 0.

Next note that for all u ∈ S, it is possible to satisfy

v1(aj, t) = v2(aj, t) < min{v1(ak−1, t), v1(ak, t), v2(ak−1, t), v2(ak, t)}

for all 1 ≤ j < k − 1 and t ∈ T consistently with v1 and v2 belonging to the set (5.4)

defined in terms of u.

11These sets are slightly different but related to the sets F and G in the proof of Theorem 5.3 since they
belong to D rather than F .
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Notice, moreover that v1 and v2 satisfy the relation given in (5.5). Set π(t) = 1/n

with n = |T | for all t ∈ T . On the other hand, using reasoning similar to that found at

the end of the proof of Theorem 5.3 in Section 5.5.4, one can see that every g1 ∈ B(v1, π)

will be such that g1 = gH for some H ∈ I such B ∩ C ⊆ H and H ∩ Z = {t1}. Likewise

for every g2 ∈ B(v2, π) will be such that g2 = gI for some I ∈ I such that B ∩C ⊆ I and

I ∩ Z = {t2}. As t1 6= t2, the set of optimal satisfy the condition in (iii). �

5.5.6. Proof of Theorem 5.5

Lemma 5.4. Choose any B,C ∈ I. If t ∈ (B∩C)\(B∧C), then t cannot summarize.

Proof. Assume that t can summarize. It follows from (5.6) that:

(5.43) ∀m ∈M(t), A{m(t)} ⊆ A{m}.

Since B,C ∈ I, there exist questionsQ and R, such that B = AQ, C = AR. If t ∈ AQ∩AR,

then there exists mQ ∈ Q,mR ∈ R such that mQ,mR ∈M(t). But then by (5.43):

I 3 A{m(t)} ⊆ A{mQ} ∩ A{mR} ⊆ AQ ∩ AR.

It follows that A{m(t)} ⊆ AQ ∧AR = B ∧C. So if t can summarize then if t ∈ B ∩C, then

t ∈ B ∧ C, which implies that t 6∈ (B ∩ C) \ (B ∧ C). �

We now strengthen the preceding lemma:

Lemma 5.5. Choose any g1, g2 ∈ G. Then if [min(g1, g2)](t) 6= [g1 ∧ g2](t), then t

cannot summarize.
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Proof. Let (I1
2 , . . . , I

1
k) and (I2

2 , . . . , I
2
k) be the k-chains corresponding respectively to

the outcome functions g1 and g2. Then (I1
2 ∩ I2

2 , . . . , I
1
k ∩ I2

k) and (I1
2 ∧ I2

2 , . . . , I
1
k ∧ I2

k)

correspond to min(g1, g2) and g1 ∧ g2 respectively. If [min(g1, g2)](t) 6= [g1 ∧ g2](t), then

[g1 ∧ g2](t) < aj = [min(g1, g2)](t) for some j ∈ {2, . . . , k}. So t ∈ (I1
j ∩ I2

j ) \ (I1
j ∧ I2

j ). So

by Lemma 5.4, t cannot summarize. �

Assume the hypotheses of the theorem. Now choose g1, g2 ∈ G. Let us omit v in π

in U(·; v, π), and instead write U(·). Then modularity of U on AT along with (4.3) in

Theorem 4.5) implies:

U(g1) + U(g2) = U(g1 ∨ g2) + U(min(g1, g2))

It follows that U is supermodular if and only if for all g1, g2 ∈ G:

(5.44) U(min(g1, g2)) ≤ U(g1 ∧ g2)

Let S := {t ∈ T : [min(g1, g2)](t) 6= [g1 ∧ g2](t)}. Then

(5.45) U(min(g1, g2))−U(g1 ∧ g2) =
∑
t∈S

[v([min(g1, g2)](t), t)− v([g1 ∧ g2](t), t)]π(t) ≤ 0,

where the inequality follows from the fact that by Lemma 5.5, every t in S cannot sum-

marize, and (5.7). (5.45) implies (5.44), and so completes the proof. �

5.5.7. Proof of Lemma 5.1

Since g ∈ G, there must exist persuasion rule f ′′ such that g = gf ′′ . Now choose any

t ∈ T . Then there must be some mt ∈ T such that f ′′(mt) = g(t). This means that for
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all s ∈ T , such that mt ∈M(s), g(s) ≥ g(t). So

g(t) = min{g(s) : mt ∈M(s)} = f(mt) ≤ gf (t).

On the other hand note that every message m ∈ M(t) must be such that f(m) =

min{g(s) : m ∈ M(s)} ≤ g(t). So t can get at most g(t) under f , or in other words,

gf (t) ≤ g(t). So g(t) = gf (t).

Next consider any f ′ such that gf ′ = g. Then choose any m ∈
⋃
t∈T M(t). Then for

all t ∈ T such that m ∈ M(t), f ′(m) ≤ g(t). So f ′(m) ≤ min{g(t) : m ∈ M(t)} = f(m).

�

5.5.8. Proof of Theorem 5.6

Suppose that interests are more aligned under v2 than under v1. Let f1 ∈ F∗(v1). Then

gf1 ∈ B(v1, π). By part (ii) of Theorem 5.4, there exists g ∈ B(v2, π) such that gf1 ≤ g.

Define f2 by:

f2(m) = min{g(t) : m ∈M(t)}

for all m ∈
⋃
t∈T M(t).12 By Lemma 5.1, g = gf2 , which implies that f2 ∈ F∗(v2). Now

choose m ∈
⋃
t∈T M(t). Then f1(m) ≤ min{gf1(t) : m ∈ M(t)} ≤ min{g(t) : m ∈

M(t)} = f2(m). This establishes (5.8).

Next choose f ′2 ∈ F(v2). This implies that gf ′2 ∈ B(v2, π). It follows from part (ii) of

Theorem 5.4 that there exists g′ ∈ B(v1, π) such that g′ ≤ gf ′2 . Now, define:

f ′1(m) := min{g′(t) : m ∈M(t)}.

12We may assume that f2 assigns the highest action to every m ∈ M \
⋃

t∈T M(t).
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for any m ∈
⋃
t∈T M(t).13 Then by Lemma 5.1, g′ = gf ′1 . Now choose any m ∈

⋃
t∈T M(t)

such that f ′2(m) ∈ {gf ′2(t) : m ∈ M(t)}. Then choose t ∈ T such that f ′2(m) = gf ′2(t).

Then:

f ′2(m) = gf ′2(t) = g′(t) ≥ gf ′1(t) ≥ f ′1(m),

where the first inequality follows from the fact that g′ ≥ gf ′1 , and the second inequality

follows from m ∈M(t). �

5.5.9. Proof of Theorem 5.7

In the course of the proof of part (iii) of Theorem 5.4 in Section 5.5.5, it was shown that

whenever the message structure is not normal, it is possible to construct utility functions

v1 and v2 such that for some type t∗:

g1 ∈ B(v1, π) ⇒ (∃H ∈ I, t∗ ∈ H and g1 = gH)

g2 ∈ B(v2, π) ⇒ (∃I ∈ I, t∗ 6∈ I, and g2 = gI)

It follows that there exists f1 ∈ F(v1) and m∗ ∈ M(t∗) such that f1(m
∗) = ak. On the

other hand, for all f2 ∈ F2(v2), f2(m
∗) < ak. So (5.10) with the roles of v1 and v2 reversed

holds for m∗ with a strict inequality. Moreover, for any g1 ∈ B(v1, π), g1(t
∗) = ak, so

for any f1 ∈ F(v1) if f1(m
∗) = gf1(t), then f1(m

∗) = ak, the highest possible action. So

(5.11) holds with the roles of v1 and v2 reversed. �

5.5.10. Proof of Theorem 5.2

First I prove that if (ϕ1, ψ1), (ϕ2, ψ2) ∈ Φ, then (ϕ1, ψ1) • (ϕ2, ψ2) ∈ Φ. Notice first that

13We may assume that f ′1 assigns the lowest action to any m ∈ M \
⋃

t∈T M(t).
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ϕ1 ◦ ϕ2 is a bijection from T to T and that ψ1 ◦ ψ2 is a bijection from M to M. Next

observe, using (5.13) for (ϕ1, ψ1) and (ϕ2, ψ2), we have that:

M(ϕ1 ◦ ϕ2(t)) = {ψ1(m) : m ∈M(ϕ2(t))}

= {ψ1(m) : m ∈ {ψ2(m) : m ∈M(t)}}

= {ψ1 ◦ ψ2(m) : m ∈M(t)}

, implying (5.13) for (ϕ1, ψ1) • (ϕ2, ψ2).

Likewise, using (5.14) and (5.15) for (ϕ1, ψ1) and (ϕ2, ψ2):

v(ai, t) = v(ai, ϕ2(t)) = v(ai, ϕ1 ◦ ϕ2(t))

π(t) = π(ϕ2(t)) = π(ϕ1 ◦ ϕ2(t)),

implying (5.14) and (5.15) for (ϕ1, ψ1) • (ϕ2, ψ2). This establishes that Φ is closed under

•.

Next notice that for any (ϕ, ψ) ∈ Φ,

(ϕI, ψI) • (ϕ, ψ) = (ϕ, ψ) • (ϕI, ψI) = (ϕ, ψ).

So (ϕI, ψI) is the identity element of Φ.

Next I prove that if (ϕ, ψ) ∈ Φ, then (ϕ, ψ)−1 = (ϕ−1, ψ−1) ∈ Φ. So assume (ϕ, ψ) ∈

Φ. First notice that ϕ−1 and ψ−1 are bijections. Choose t ∈ T . Then there must

be some s ∈ T such that ϕ(s) = t. This means that ϕ−1(t) = s. We know that

M(t) = M(ϕ(s)) = {ψ(m) : m ∈ M(s)}. Since ψ is a bijection from M to M, this
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implies that ψ is a bijection from M(s) to M(t). So ψ−1 is a bijection from M(t) to

M(s). So M(ϕ−1(t)) = M(s) = {ψ−1(m) : m ∈ M(t)}. So (ϕ−1, ψ−1) satisfies (5.13) .

Next, note that v(ai, ϕ
−1(t)) = v(ai, ϕ(ϕ−1(t))) = v(ai, t), where the first equality follows

from the fact that (ϕ, ψ) satisfy (5.14), implying that (ϕ−1, ψ−1) satisfy (5.14). Likewise

π(ϕ−1(t)) = π(ϕ(ϕ−1(t))) = π(t), implying that (ϕ−1, ψ−1) satisfies (5.15), and hence that

(ϕ, ψ)−1 ∈ Φ.

Observing that:

(ϕ, ψ)−1 • (ϕ, ψ) = (ϕ, ψ) • (ϕ, ψ)−1 = (ϕI, ψI),

it follows that (ϕ, ψ)−1 is the inverse of (ϕ, ψ) in Φ.

Finally, notice that • is obviously associative. This completes the proof that Φ is a

group under •. �

5.5.11. Proof of Theorem 5.8

(1): Note that for each t ∈ T , there exists mt ∈M(t) such that f ◦ ψ(mt) = gf◦ψ(t), and

for all m ∈ M(t), f ◦ ψ(m) ≤ gf◦ψ(t). But invoking (5.13) and the fact that (ϕ, ψ) is

a symmetry, this implies that given persuasion rule f , ψ(mt) attains a higher action for

type ϕ(t) than any other message in M(ϕ(t)). So gf (ϕ(t)) = f(ψ(mt)) = gf◦ψ(t).

(2):

V (gf ; v, π) =
∑
t∈T

v(gf (ϕ(t)), ϕ(t))π(ϕ(t))(5.46)

=
∑
t∈T

v(gf◦ψ(t), ϕ(t))π(ϕ(t))(5.47)
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=
∑
t∈T

v(gf◦ψ(t), t)π(t)(5.48)

= V (gf◦ψ; v, π),(5.49)

where (5.46) follows from the fact that ϕ is a bijection from T to T , (5.47) follows from

part (5.13) of the theorem, and (5.48) follows from the fact that (ϕ, ψ) is a symmetry.

(3) is an immediate consequence of (2). �
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CHAPTER 6

Relation to the L-principle

In this chapter, I will compare the approach taken in the previous chapters to the

approach taken by Glazer and Rubinstein (2006). The previous chapter illustrates the

advantages of the current approach. We were able to find properties of the listener’s op-

timization problem which hold exactly when the speaker can summarize information. We

derived comparative statics under the assumption that speaker can summarize informa-

tion, and also under the assumption that if the speaker cannot summarize his information,

then the listener views his request for a high action negatively. We were also able to show

the significance of normality for symmetry of the optimal rule. Previously, we studied

extensively the properties of the listener’s choice set as well as the structure of messages.

However, ultimately, the approach taken here is complementary with the approach taken

by Glazer and Rubinstein, as this section will demonstrate.

First I will present a formulation of the listener’s problem presented by Glazer and

Rubinstein. Then in Section 6.1, I will generalize this formulation to k actions and relate

it to the approach to taken here. Finally, in Section 6.2, I will show how under normality

and with two actions, the program studied by Glazer and Rubinstein specializes to a well

known linear program known as the “maximal closure problem.”

Glazer and Rubinstein (2006) find a integer programming formulation of the listener’s

problem when there are two actions. They consider the case where T can be partitioned

into two disjoint sets A and R where A contains the “good types” and R contains the “bad



155

types”. In this case, the utility to rejection a1 can be normalized to be zero regardless of

the type. The utility of acceptance a2 is 1 for types in A and −1 for types in R. It is not

difficult to see–as the authors point out–that when k = 2, nothing essential is lost when

restricting to this special case.

In order to further attack this problem, the authors employ a constraint called the

“L-principle” which relates to an idea originally introduced in the context of a different

but related model in Glazer and Rubinstein (2004). A pair (t, S) where t ∈ A and S ⊆ R

is said to be an L if for any m ∈ M(t), there is an s ∈ S such that m ∈ M(s). If t ∈ A,

this means that when the speaker’s type is t, the listener would like to accept the speaker’s

request. However when the type belongs to S ⊆ R, the listener would like to reject the

speaker’s request. If (t, S) is an L, this means that any message which can be sent by a

good type t, can also be sent by some bad type in S. An L, (t, S) is minimal if there

does not exist a S ′ which is a proper subset of S such that (t, S ′) is also an L. Glazer and

Rubinstein (2006) show that the solution to the listener’s problem has the same value as

the program:

min
{µt}t∈T

∑
t∈T

π(t)µt

s.t. µt ∈ {0, 1} for all t ∈ T(6.1) ∑
s∈{t}∪S

µs ≥ 1 for every minimal L, (t, S).

The basic idea is that µt is the probability of error conditional on type t, that is, the

probability of accepting t if t ∈ R or rejecting t if t ∈ A. The listener attempts to
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minimize error subject to the constraint that the sum of errors over every minimal L is

at least 1.

6.1. Relation of the L-principle to Essential Messages and Generalization to

k actions

In this section, I will use the representation I have been developed above to write down

an integer programming formulation of the listener’s problem for k actions. I will then

specialize to k = 2 and show that the program reduces to (6.1), so that the constraints

of this program generalize the L-principle. Notice that it is not clear how to extend the

L-principle to k actions, since this principle relied on the distinction between good and

bad types which no longer exists with k actions. Moreover, the objective in (6.1) is to

minimize the listener’s probability of error, and the L-constraints impose conditions on

the error probabilities. The notion of error which is employed–accepting a bad type or

rejecting a good type–are particular to the case k = 2.

The program and approach presented here differs from the program presented by

Glazer and Rubinstein in several other ways. In particular, looking at the L-constraints,

it is clear that these constraints rely on information not just about what is incentive-

feasible, but also on information about the listener’s utility function, since an L, (t, S)

must be such that the utility of accepting type t is positive and the utility of accepting

types in S is negative.

I will break the argument into two parts. First, I will use the results of the previous

sections to write down a set of constraints which correspond exactly to the set of im-

plementable outcome functions as a set of linear constraints. Then I will use properties
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of the listener’s utility function to eliminate constraints which are not binding. For the

latter exercise, I will use the assumption that that the listener’s utility function is con-

cave in the action for all types. A similar argument would apply if I assumed that the

listener’s utility was a concave transformation of some monotone function of the actions.

Interestingly, this was essentially the same assumption which was necessary to generalize

Glazer and Rubinstein’s result about optimal deterministic credible persuasion rules to

k actions. Splitting the exercise into two steps has the value of separating what one can

deduce from considering the speaker’s incentives from what one can deduce from consid-

ering properties of the listener’s utility function. This could be useful if one wanted to

perform a related exercise in neighboring models. For example, suppose that one assumed

that the listener was limited in some way with respect to the persuasion rules which he

could choose.

Another difference between the approach taken here and the approach in Glazer and

Rubinstein is that I will not appeal to messages directly but rather will appeal to the

representation of the family of implementable outcome functions which was developed

in Chapter 3. Given the results in that chapter, one could easily translate this back

into the language of messages. The advantage of the current approach is that–despite

not explicitly mentioning messages–it relates the constraints in a more detailed way to

the structure of the speaker’s messages. In particular, the approach shows how in writing

down the constraints, it is sufficient to restrict attention to essential messages, and is more

detailed with respect to the question of which messages are relevant for which constraints.

So consider a vector ν = {νjt }
j=1,...k
t∈T ∈ {0, 1}T×k. ν is to be interpreted as a binary

vector which encodes which action is assigned to which type. For example νjt = 1 means
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that type t gets action aj and νjt = 0 means that type t does not get action aj. Vectors ν

such that for some t, and i 6= j, νit = νjt = 1 are impossible to interpret, but the constraints

presented below will rule them out. Now start with a message structure and form the

family I of acceptance sets corresponding to this structure, as described in Chapter 3.

Define:

I = {ν ∈ {0, 1}T×k : ∃(I2, . . . , Ik) ∈ C(I, k),∀j = 1, . . . , k,∀t, νjt = 1 ⇔ t ∈ Ij \ Ij+1},

where as usual I1 = T, Ik+1 = ∅. Using Theorem 3.1, one can see that ν ∈ I if and only if

ν is a binary vector which represents some implementable outcome function.

Now define N (t) to be the set of ⊆-minimal elements of I containing t. Thus, every

element of F of N (t) is such that F = A{m} for some message m which is maximally

informative for type t. Next define N ∗(t) = {F \ {t} : F ∈ N (t)}. Thus, N ∗(t) is the

set that results from removing t from every element of N (t). There is one special case

to keep in mind here, although it does not introduce any complications. Notice that

N (t) = {{t}} ⇔ {t} ∈ I. In other words, t has a message which distinguishes him

from all other types if and only if his unique (up to equivalence) maximally informative

message is the one that distinguishes him from all other types. If N (t) = {{t}}, then

N ∗(t) = {∅}. I point out this case because it is qualitatively a bit different from other

cases, but it does not present any problems for the approach taken here.

A blocking set for a family S of sets is a set B which intersects every member of S. A

blocking set B is minimal if no proper subset is a blocking set. Let B(t) be the collection

of minimal blocking sets for N ∗(t). The following Lemma expresses implementablity in

terms of a set of linear constraints:
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Lemma 6.1. Assume ν ∈ {0, 1}T×k. ν ∈ I is equivalent to the joint satisfaction of

the following two conditions:

∀t ∈ T,
k∑
j=1

νjt = 1(6.2)

∀t ∈ T, ∀j = 2, . . . , k,∀B ∈ B(t),
∑
s∈B

k∑
i=j

νis ≥ νjt(6.3)

Proof. See Section 6.3.1. �

The final step is to use information from the listener’s utility function to eliminate

many non-binding constraints. Then we will arrive at a formulation which generalizes

(6.1).

I make the simplifying assumption that for each t ∈ T , there is a unique action ai

which maximizes v(ai, t), and define (t) to be the index of this action. Below, I will

discuss the minor changes necessary without this assumption. Define:

Bj(t) := {B ∈ B(t) : ∀s ∈ B, (s) < j}

Thus Bj(t) contains only blocking sets B such that for every type t ∈ B, aj is suboptimal

from the listener’s perspective, and moreover it is optimal for the listener to assign every

type in B an action lower than aj. These types are the analog of bad types in the case

k = 2, but it is now necessary to define bad types locally relative to an action aj. Finally,

let η(t) = min({j : v(aj, t) < v(a1, t)}∪{k+1}). Thus η(t) is the action with lowest index

among those which are worse than the lowest action. Note that constraint (6.7) below is

vacuous if η(t)− 1 = 1.
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Theorem 6.1. Assume that v(aj, t) is concave in aj and for all t ∈ T , π(t) 6= 0. Then

the listener’s problem is equivalent to the program:

max
ν

∑
t∈T

k∑
j=1

v(aj, t)π(t)νjt(6.4)

s.t. ∀t ∈ T,∀j = 1, . . . , k, νjt ∈ {0, 1}(6.5)

∀t ∈ T,
k∑
j=1

νjt = 1(6.6)

∀t ∈ T,∀j = 2, . . . , η(t)− 1,∀B ∈ Bj(t),
∑
s∈B

k∑
i=j

νis ≥ νjt(6.7)

in the sense that the value of this program is the value of the listener’s problem, and ĝ is

an optimal implementable outcome function if and only if there exists a solution ν̂ to this

program such that for all t and j, ĝ(t) = aj ⇔ ν̂jt = 1.

Proof. See Section 6.3.2. �

Notice that the last constraint differs from (6.3) in that B(t) has been replaced by

Bj(t), and also in the sense that one only considers constraints corresponding to j ≤ η(t).

This may involve the elimination of many constraints relative to (6.3). If I had not

assumed that v(ai, t) had a unique maximizer, then (t) could have been defined as either

the smallest or largest index of an maximizer of v(ai, t). More constraints would have been

eliminated in (6.7) if the largest were chosen, but given this choice, while the the problem

would still have had the value of the listener’s problem, the set of optimal implementable

outcome functions could only have been ensured to be a subset of the set of solutions to

the program.

Consider the case considered by Glazer and Rubinstein (2006) in which k = 2, and
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in which for all t, v(a1, t) = 0, for t ∈ A, v(a2, t) = 1, and for t ∈ R, v(a2, t) = −1. Then

the error probability µt can be defined as 1 − ν2
t if t ∈ A and ν2

t if t ∈ R. If t ∈ R, then

η(t) = 2, and hence there is no constraint corresponding to (6.7). On the other hand it

t ∈ A, then η(t) = 3, so there generally is a set of such constraints. Note finally that for

t ∈ A, (t, S) is a minimal L if and only if S ∈ B2(t), and then:

∑
s∈S∪{t}

µs ≥ 1 ⇔
∑
s∈S

ν2
s ≥ ν2

t ,

and there is only one summation rather than two on the left hand side because k = 2.

Thus the program (6.1) is derived as a special case.

6.2. Normality and the Maximal Closure Problem

In this section, I consider what happens to the program introduced in the previous

section when normality holds and k = 2. This is a special case of (6.1). I make the

further simplifying assumption that if t1 6= t2, then M(t1) 6= M(t2). In other words, no

pair of types has exactly the same set of messages. Then the relation 4I is not only a

quasi-order, but also a partial order (reflexive, transitive, and antisymmetric).

Under normality, N (t) contains only one element; in particular, this is the element

N(t) :=
⋂
{I ∈ I : t ∈ I}. In Theorem 4.2, we saw that under normality, the set of

implementable outcome functions is the set of outcome functions which are monotone

with respect to 4I . It is easy to confirm that for types t1, t2, t1 4I t2 ⇔ t2 ∈ N(t1).

Moreover, B(t) = {{s} : s ∈ N(t) \ {t}}. In the case k = 2, we can normalize v(a1, t) = 0

for all t ∈ T , and then write w(t) := v(a2, t)π(t), and define νt := ν2
t . Then, given the

assumption νt ∈ {0, 1}, constraint (6.2) becomes redundant, and maximization of (6.4)
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subject to (6.2) and (6.3) is equivalent to:

max
ν

∑
t∈T

w(t)νt

s.t. ∀t ∈ T, νt ∈ {0, 1}

∀t, s ∈ T, t 4I s⇒ νt ≤∗ νs.

It follows from Lemma 6.1 that this program corresponds to the listener’s problem in this

case. This is a well-known linear program studied by Picard (1976) and others known

as the maximal closure problem. For a recent discussion of this problem, see Hochbaum

(2001). The problem has the interpretation of choosing a set of nodes on a directed graph

so as to maximize some weight function (taking both positive and negative values), and

subject to the constraint that if a node x1 is chosen and a directed edge points from x1

to x2, then x2 must be chosen as well. Here the nodes correspond to the types, and an

edge points from type t1 to type t2 if t2 is in immediate successor of t1 relative to 4I .

The maximal closure problem has been extensively studied in settings very different

from the one studied here. The problem can be viewed as a special case of the max-

flow min-cut problem, and the comparative statics result in (ii) of Theorem 5.4 when

specialized to the case k = 2 coincides with the well-known comparative statics result for

the minimum cut problem. (See Theorems 3.7.2 and 3.7.4 in Topkis (1998)).

6.3. Proofs

6.3.1. Proof of Lemma 6.1

In order to prove Lemma 6.1, I first have to prove Lemma 6.2.
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Lemma 6.2. ν ∈ I is equivalent to the joint satisfaction of the following two condi-

tions:

∀t ∈ T,
k∑
j=1

νjt = 1(6.8)

∀t ∈ T, νjt = 1 ⇒ ∃I t ∈ N (t),∀s ∈ I t \ {t},∃is ≥ j, νiss = 1(6.9)

Proof. (6.8) follows from ν ∈ I because there is exactly one j such that t ∈ Ij \ Ij+1.

Next choose ν ∈ I, and let (I2, . . . , Ik) be the corresponding element of C(I, k). Choose

t ∈ T and suppose νjt = 1. Then t ∈ Ij, and there must be some I t ⊆ N (t) such that

t ∈ I t ⊆ Ij. It follows that for each s ∈ I t \ {t}, s ∈ Ij, so the unique is such that

s ∈ Iis \ Iis+1 must be at least as large as j, establishing (6.9).

Next assume (6.8) and (6.9). Notice that (6.8) implies that for each t ∈ T , there is

a unique j such that νjt = 1 and for all i 6= j, νit = 0. To establish ν ∈ I, we must find

(I2, . . . , Ik) ∈ C(I, k) corresponding to ν. Define Ij = {t ∈ T : ∀i, νit = 1 ⇒ i ≥ j}.

Then clearly the sequence (I2, . . . , Ik) is decreasing according to ⊆. It remains only to

show that each Ij belongs to I. Since I is closed under union, and I t ∈ N (t) ⊆ I, it is

sufficient to show that:

(6.10) Ij =
⋃
t∈Ij

I t =: J.

Since for all t, t ∈ I t, Ij ⊆ J . To prove that J ⊆ Ij, it is sufficient to show that for all

t ∈ Ij, I
t ⊆ Ij. So choose t ∈ Ij. Then there exists i ≥ j such that νit = 1. So by (6.9),

I t ⊆ Ii ⊆ Ij, where the last inclusion follows from i ≥ j and the fact that (I2, . . . , Ik) is a

decreasing sequence, establishing (6.10) and hence completing the proof. �
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I now use Lemma 6.2 to prove Lemma 6.1. It follows from Lemma 6.2 that it is

sufficient to prove that (6.9) and (6.3) are equivalent given (6.2). So first assume (6.9).

Choose t and j. If νjt = 0, then (6.3) is automatically satisfied. So suppose νjt = 1. Then

by (6.9), there exists I t ∈ N (t) such that for all s ∈ I t \ {t}, there exists is ≥ j such

that νist = 1. Then by the definition of B(t), every B ∈ B(t) must contain at least one

s ∈ I t \ {t}. It follows that
∑

s∈B
∑k

i=j ν
i
s ≥ 1, and hence (6.3) is satisfied.

Next assume (6.3). Now assume for contradiction that (6.9) is violated from some t.

It follows that for some j, νjt = 1, and for every F ∈ N ∗(t), there is some sF ∈ F such

that for all i ≥ j, νsF
i = 0. Notice that {sF : F ∈ N (t)} is a blocking set for N ∗(t), so

there is some B ⊆ {sF : F ∈ N ∗(t)} with B ∈ B(t), and
∑

s∈B
∑k

j=1 ν
i
s = 0, contradicting

(6.3). �

6.3.2. Proof of Theorem 6.1

Proof of Theorem 6.1. It follows from Theorem 3.1 that the listener’s problem is equivalent

to maximizing the objective in (6.4) subject to the constraint that ν ∈ I and (6.5). It

then follows from Lemma 6.1 that the listener’s problem is equivalent to maximizing the

objective in (6.4) subject to (6.5), (6.6) and (6.3). Thus, I would like to show that there

is a solution to the program (6.4)-(6.7) that will satisfy (6.3).

Since (6.3) can differ from (6.7) in two ways: the index j is only required to vary from

2 to η(t), rather than from 2 to k, and B(t) is replaced by Bj(t), for clarity, I break the

argument into two steps. In the first step, I deal with the Bj(t), and in the second with

η(t). So in place of (6.3), I first consider:
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(6.11) ∀t ∈ T, ∀j = 2, . . . , k, ∀B ∈ Bj(t),
∑
s∈B

k∑
i=j

νis ≥ νjt ,

So I would like to show that if we take any ν which is feasible with respect to the constraints

(6.5), (6.6), and (6.11) but which violates some constraint in (6.3), then one can find ν̂

which satisfied constraints (6.5), (6.6), and (6.11), and more of the constraints in (6.3),

and which attains a strictly higher utility for the listener. Henceforth, I will omit mention

of (6.5) and (6.6) because it will be obvious that these constraints will always remain

satisfied. In what follows the notation (6.11-(t, B, j)) as the constraint of the form (6.7)

for which νjt is on the left hand side of the inequality and summation is over the blocking

set B, and similar notation will be used for constraints in (6.3) and (6.7).

So consider ν satisfying all constraints in (6.11) but violating some constraint (6.3-

(t0, B0, j0)). First I argue that:

(6.12) ∃F ∗ ∈ N ∗(t0),∀t ∈ T : (t ∈ F ∗ and (t) < j0) ⇒
k∑

i=j0

νit = 1.

Assume for contradiction that (6.12) is false. Then for all F ∈ N ∗(t),∃sF ∈ F such that

(sF ) < j0 and
∑k

i=j0
νisF

= 0. But then there must exist B ⊆ {sF : F ∈ N ∗(t)} such that

B ∈ Bj(t0), and it follows that constraint (6.11-(t0, B, j0)) is violated, a contradiction.

So choose F ∗ satisfying (6.12), and define ν̂ by:

ν̂it =


1, if i = j0, t ∈ F ∗, (t) ≥ j0,

∑k
i=j0

νit = 0;

0, if i 6= j0, t ∈ F ∗, (t) ≥ j0,
∑k

i=j0
νit = 0;

νit , otherwise.
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I argue that ν̂ still satisfies all constraints of the form (6.3-(t, B, j)) which were satisfied

by ν (including all constraints of the form (6.11)-(t, B, j)). Since ν only differs from ν̂

by assigning some types higher actions, if νjt ≥ ν̂jt , then the fact that ν satisfied (6.3-

(t, B, j)) implies that ν̂ satisfies this constraint as well. Therefore, the only case left to

consider is when ν̂jt = 1, νjt = 0. But by the definition of ν̂, this only happens when

t ∈ F ∗ and j = j0. This implies that there is some H ∈ N ∗(t) such that H ⊆ F ∗ ∪ {t0}.

Also, by the definition of ν̂, (6.12), and the fact that νj0t0 = 1, every s ∈ F ∗ ∪ {t0} is

such that
∑k

i=j0
ν̂is = 1. Since every B ∈ Bj(t) must contain some s ∈ H ⊆ F ∗ ∪ {t0},

this implies that (6.3-(t, B, j)) is satisfied. A similar–but slightly simpler–argument shows

that constraint (6.3-(t0, B0, j0))–which was not satisfied by ν, is satisfied by ν̂. Finally,

note that the concavity of v(ai, t) in ai and the fact that π(t) 6= 0 for all t ∈ T , and

the way that ν̂ differs from ν, implies that the listener is strictly better off under ν̂ than

under ν. To summarize, we have shown how starting from ν we can find ν̂ which satisfies

strictly more constraints and makes the speaker strictly better off.

The preceding argument establishes that any solution to (6.4)-(6.6) and (6.11) is a

solution to (6.4)-(6.6) and (6.3). Next, I argue that any solution to (6.4)-(6.7) is a solution

to (6.4)-(6.6) and (6.11). Again, I neglect mention of (6.5) and (6.6), as they will be

satisfied throughout. So choose some ν satisfying (6.7) but not (6.11). Let j0 be the

greatest index j ≥ 2 such that ν violates some constraint of the form (6.11-(t, B, j)),

and let S be the set of types s such that (6.11-(s, B, j0)) is violated. Notice that since

constraints of the form (6.7) are all satisfied, then for all s ∈ S, η(s) < j0, and that for

all s ∈ S, νj0s = 1. Let |S| =: p. Choose some t0 ∈ S, and define ` = max{maxK(t0, F ) :
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F ∈ N ∗(t0)}, where

K(t0, F ) = {j : ∀t ∈ F, (t) < j ⇒
k∑
i=j

νit = 1}.

Note that ` is well defined because for all t,
∑k

i=1 ν
i
t = 1. Assume for contradiction that

` ≥ j0. Then choose F ∈ N ∗(t0) so that maxK(t0, F ) = `. Note that any B ∈ Bj(t0)

must contain some element from {t ∈ F : (t) < j0} ⊆ {t ∈ F : (t) < `}, which then

implies by the definition of ` and the way F was chosen that all constraints of the form

(6.11-(t0, B, j0)) are satisfied, a contradiction. So ` < j.

Let F ∗ ∈ N (t) be such that maxK(t0, F
∗) = `. Define

ν̂it :=


1, if t = t0 and i = `;

0, if t = t0 and i 6= `.

νit , otherwise.

Then note that since for every t ∈ F ∗, (t) < `⇒
∑k

i=` ν
i
t = 1, then every constraint of the

form (6.7-(t0, B, j)) is satisfied. Now assume for contradiction that there is some t1 and

some constraint of the form (6.7-(t1, B1, j1)) which is violated by ν̂. Since this constraint

was satisfied by ν, it must be violated now because t0 is assigned a lower action and so

νht1 = 1 for some h > `. Moreover, for the same reason, there must be some H ∈ N ∗(t1)

such that t0 ∈ H and for all s ∈ H \ {t0}, (t) < h ⇒
∑k

i=1 ν
i
t =

∑k
i=1 ν̂

i
t = 1. But

then there exists some D ∈ N ∗(t0) such that D ⊆ H ∪ {t1}, which implies that for all

t ∈ D, (t) < h⇒
∑k

i=h ν
i
t = 1. So K(D, t0) ≥ h, contradiction. Notice that ν̂ is such that

the number of types s for whom some constraint of the form (6.7-(s, B, j0)) is violated

is now p − 1. We iterate the procedure until all constraints of the form (6.7-(s, B, j))



168

are satisfied. Notice that in the process the listener’s utility only changes in types which

were initially assigned actions higher than η(t) are now assigned lower actions, so that by

concavity of v(ai, t) in ai and the fact that π(t) 6= 0 for all t ∈ T , the listener is strictly

better off. �
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