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ABSTRACT

In this thesis we present methods for estimating network metrics via random walk

sampling. More specifically, we generalize the Hansen-Hurwitz estimator and the Horvitz-

Thompson estimator to estimate the shortest path length distribution (SPLD), closeness

centrality ranking, and clustering coefficients of a network. Those are important metrics

to a network, but when a network is large measuring the exact value is computationally

expensive. Therefore we adopt random walk sampling to collect information as we explore

the network, and then provide estimations for these metrics.

Inspired by the strong ability of random walks to uncover shortest paths in a net-

work, we first propose estimators for the shortest path length distribution (SPLD). There

are two problems associated with this estimating process: 1) pairs of nodes (dyads) are

sampled with unequal probabilities by a random walk, 2) the actual shortest path length

(SPL) cannot by observed from the induced subgraph. To deal with the unequal selection

probabilities issue, we generalize the Hansen-Hurwitz estimator and Horvitz-Thompson

estimator (and their ratio forms) and apply them to the sampled dyads. Based on theory

of Markov chains we prove that the selection probability of a dyad is proportional to the

product of the degrees of the two nodes. To approximate the actual SPL for a dyad, we
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use the observed SPL in the induced subgraph for networks with large degree variability,

i.e., the standard deviation is at least two times of the mean, and we estimate the SPL

using landmarks for networks with small degree variability. We find that an estimator

based on a random walk with at least 20% sampling budget can achieve high estimation

accuracy, and save 94% to 96% of the computational time. To the best of our knowledge,

this is the first non-parametric algorithm that can estimate the SPLD of a network with-

out knowledge of the degree distribution.

Using the same techniques to account for unequal selection probabilities and approxi-

mating SPLs between sampled nodes, we then estimate the closeness centrality of sampled

nodes. But in order to estimate the closeness centrality ranking of a node, which is more

of interest rather than the closeness centrality value, we introduce two more steps in the

algorithm. We first apply a weighted kernel estimator to estimate the smooth popula-

tion cumulative distribution function (CDF) of closeness centrality, and then compute the

estimated closeness centrality rank of a node from that estimated CDF. This algorithm

provides a continuous function as an estimate for the population CDF of closeness cen-

trality and an accurate estimate for the rank of closeness centrality of each node in the

network.

We finally look at the clustering coefficients of a network. The clustering coefficient

of a graph measures the average probability that two neighbors of a node are themselves

neighbors. People have defined the global clustering coefficient (GCC) and the local

clustering coefficient (LCC). The global clustering coefficient (GCC) is the fraction of
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paths of length two that are closed in the network, and the local clustering coefficient

(LCC) for a single node is the fraction of pairs of neighbors of the node that are connected.

The average LCC (ALCC) is the unweighted average LCC, while the GCC is equal to a

weighted average of the LCCs of the nodes, where the weight is proportional to
(ki2 )∑n
j=1 (kj2 )

where ki is the degree of node i. We generalize the Hansen-Hurwitz estimator to estimate

the GCC and the ALCC. By simulation studies and applications to real networks, we find

that if we can observe all neighbors of a sampled node and count the exact number of

connections among the neighbors, the estimators for both the GCC and the ALCC will

be unbiased with small variance.
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CHAPTER 1

Introduction

1.1. Problem Statement

1.1.1. Estimating Shortest Path Length Distributions

In a large network, the shortest paths between nodes are of particular importance be-

cause they are likely to provide the fastest and strongest interaction between nodes [1].

Although measures such as diameter and mean distance [2] [3] [4] have been studied ex-

tensively, the entire shortest path length distribution (SPLD) has received little attention.

While the shortest path for a pair of nodes is measurable by existing algorithms such as

breadth-first search, measuring the shortest paths for all pairs of nodes in a large network

is computationally expensive [5].

In this dissertation, we first study the problem of estimating SPLDs in networks via

random walk sampling. In particular, for each possible value of the shortest path length

(SPL), we estimate the fraction of dyads with that value of SPL. There are two aspects

to the problem. First, if a dyad is observed in the sample, the observed SPL in the

sample may exceed the actual SPL in the population. Second, the dyads observed in a

random walk sample have unequal chances of being included in the sample. With re-

gard to the former aspect, Ribeiro, Basu, and Towsley [6] have shown that in a network

with large degree variability, random walks often uncover the shortest paths. In other
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words, for two nodes in a network where the variance of degree distribution is very large,

the observed shortest path in the subgraph induced by a random walk sample is usually

the true shortest path in the population. This property is present in scale-free networks

where the degree distribution follows the power law. In this dissertation, we’ve shown

that this property extends to networks whose degree distribution has a large coefficient

of variation (c.v.), i.e., whose ratio of standard deviation to mean is large. On the other

hand, Potamias et al. [5] have shown that in large networks, when calculating the actual

distance is computationally expensive, one can use precomputed information to obtain

fast estimates of the actual distance in very short time. More specifically, one can first

choose a small fraction of nodes as landmarks and compute distances from every node to

them. When the distance between a pair of nodes is needed, it can be estimated quickly

by combining their precomputed distances to the landmarks.

With regard to dyads’ unequal probabilities of being selected in the sample, we draw

upon classical sampling theory for estimating totals from samples of elements included

with unequal probabilities. The estimators we use are Hansen-Hurwitz estimator [7] and

Horvitz-Thompson estimator [8]. Both estimators will be used in original form and ratio

form to estimate the fraction of dyads with a particular value of SPL. The ratio form is

defined with the numerator equal to the estimator of the number of dyads with a particular

value of SPL and the denominator equal to the estimator of the total number of dyads.

To develop the Hansen-Hurwitz estimator, we derive from theory of Markov chains [2]

[9] [10] that the expected number of appearances of a dyad in a random walk sample

with a sufficiently large number of steps is approximately proportional to the product



22

of the degrees of the two nodes. This result allows application of the Hansen-Hurwitz

estimator to the sample including a duplicate selection of nodes. To develop the Horvitz-

Thompson estimator, we approximate the random walk sampling of nodes by an adjusted

multinomial sampling model in t draws, with t equal to the number of steps in the random

walk. Then we apply the Horvitz-Thompson estimator to the sample excluding duplicate

nodes.

1.1.2. Estimating Closeness Centrality Ranking

Closeness centrality measures how close a node is to other nodes in a given network. It

gives high values for more central nodes and low values for less central ones. A node

with high value of closeness centrality might have better access to information at other

nodes or more direct influence on other nodes [2]. Mathematically, the closeness central-

ity of a node is computed as the inverse of the mean distance from the node to other nodes.

In reality, we are more interested in the relative importance of a node rather than

its closeness centrality value. That is, we are more interested in the rank of a node’s

closeness centrality. In order to find the exact closeness centrality rank of a node, we need

to first compute the closeness centrality of all nodes in the network, and then compare

the closeness centrality of that node to other nodes to find its rank. The computation

complexity for this process is O(m · n) for a network with n nodes and m edges, which

can be very expensive for large networks.
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The second problem we study in this dissertation is to estimate the closeness central-

ity ranking of a node in a network via random walk sampling. There are three stages in

the estimating process: 1) estimating closeness centrality of nodes from a random walk

sample; 2) estimating the population cumulative distribution function (CDF) of closeness

centrality from the estimated closeness centrality of the sampled nodes; 3) for a given

node, computing its estimated closeness centrality rank from the estimated population

CDF of closeness centrality.

In order to estimate the closeness centrality of a sampled node, we first apply the

Hansen-Hurwitz estimator to estimate the network size and the sum of geodesic distances

from that node to all other nodes, and then take their ratio as an estimate for closeness

centrality. The issue with this process is that it is time-consuming to measure the exact

geodesic distances between sampled nodes, so we use approximations. For networks with

large c.v., we use the observed geodesic distances in the induced subgraph to approximate

the actual geodesic distances. For networks with small c.v., we use distances computed

from distances to landmarks as an approximation.

There are two issues associated with the process of estimating the population CDF of

closeness centrality . First, the nodes are sampled with unequal probabilities by the ran-

dom walk, so the unweighted empirical distribution of the estimated closeness centrality

of sampled nodes is a biased estimator for the population CDF. To solve this problem, we

adopt an weighted estimator with weight proportional to the inverse of the node degree.

Second, the weighted empirical distribution function is a discrete function with number
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of values equal to the number of nodes in the sample, so we cannot get an accurate

estimate of closeness centrality for each node in the population due to the existence of

duplicate values. To smooth the empirical distribution function, we apply a weighted

kernel estimator with Gaussian kernel and weight proportional to the inverse of the node

degree.

1.1.3. Estimating Clustering Coefficients

The clustering coefficient, also called transitivity, of a graph measures the average prob-

ability that two neighbors of a node are themselves neighbors. Social networks tend

to have large clustering coefficients. Typically the probability that two neighbors of a

node are themselves neighbors is between about 10% and 60% [2] (p.262). However in

many cases, the value of clustering coefficient can be sharply different from what it is

expected to be in a random network where edges are formed at random between pairs

of nodes with a fixed probability. Two networks can have very different clustering coef-

ficients even if they have the same degree distribution. Measuring clustering coefficients

is important and has attracted much attention since the definition was proposed in 1988.

But it is computationally expensive to measure the exact value of clustering coefficient

of a network. More specifically, the running time is O(n3) [11] for a network with n nodes.

In this dissertation we finally study the problem of estimating clustering coefficients

via random walk sampling. People have defined the global clustering coefficient (GCC)

and the local clustering coefficient (LCC). The global clustering coefficient (GCC) is the
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fraction of paths of length two that are closed in the network. The local clustering co-

efficient (LCC) for a single node is the fraction of pairs of neighbors of the node that

are connected. The average LCC (ALCC) is the unweighted average LCC. The GCC is

equal to a weighted average of the LCCs of the nodes, where the weight is proportional

to
(ki2 )∑n
j=1 (kj2 )

where ki is the degree of node i. An equivalent definition of the GCC is the

fraction of node triplets with 2 or more edges that are triangles (i.e., have 3 edges). We

developed estimation methods for the GCC and the ALCC by generalizing the Hansen-

Hurwitz estimator.

The two definitions of the GCC motivate different estimators. The definition in terms

of weighted average LCC leads to a strategy of considering each sampled node: first go-

ing over each node, (1) counting the number of connections among its neighbors and (2)

computing the total number of pairs of its neighbors, and then taking the ratio of the sum

of (1) across all nodes to the sum of (2) across all nodes. We used the Hansen-Hurwitz

estimator to get unbiased estimators for the numerator and denominator respectively and

then take the ratio. One problem with this approach is that we need to observe all neigh-

bors of a sampled node to count the number of connections among them, and this will

increase cost. We consider using the number of connections in the induced subgraph to

estimate the actual number, but this can lead to potential bias and increase standard

error for the estimator.
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The definition involving trianges leads to an estimator that is the ratio of the estimated

number of triangles to the number of triples with at least 2 edges. The numerator and de-

nominator are based on the Hansen-Hurwitz estimator. The problem with this approach

is that unless the sample size is extremely large, i.e., the random walk is extremely long,

the theoretical expected number of times a triplet is selected deviates from its empirical

value and this will result in bias in the estimator. We introduce using bootstrap to correct

for this bias.

Estimation of the ALCC is much simpler. We estimate the sum of LCCs and the

network size, and then use their ratio to estimate the ALCC.

1.2. Contributions

This dissertation presents methods for estimating shortest path length distribution,

closeness centrality ranking, and clustering coefficients of a network via random walk

sampling. For a large network, it is computationally expensive to measure the exact value

of these metrics. We adopt random walk sampling to collect information when exploring

the network and use our proposed estimators to provide efficient and accurate estimates

for these metrics. The main contributions of this thesis are listed as follows:

• The expected number of appearances of a dyad (pair of nodes) in a sufficiently long

random walk is approximately proportional to the product of the degrees of the two

nodes
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When applying the Hansen-Hurwitz estimator to estimate number of dyads

with each path length and to estimate the total number of dyads during the esti-

mating process for SPLD, we need to know the expected number of appearances

of a dyad in a random walk to a proportional degree. It is widely known that

expected number of appearances of a node in a sufficiently long random walk is

proportional to its degree. Inspired by that, we use theory of Markov chains [2] [9]

and results from Anderson’s [10] to prove that The expected number of appear-

ances of a dyad (pair of nodes) in a sufficiently long random walk is approximately

proportional to the product of the degrees of the two nodes.

• Approximation of SPLs between each pair of sampled nodes

During the estimating process for SPLD and for closeness centrality ranking,

we need to know the SPL between each pair of sampled nodes, but we can not mea-

sure the exact value of it from the subgprah induced by the random walk. Based on

analytical results from Ribeiro, Basu, and Towsley [6] and Potamias et al. [5], we

propose to approximate the SPL between a pair of sampled nodes by its observed

SPL in the induced subgprah for networks with large c.v. (c.v. > 2) and by the

minimum of the sum of the nodes’ shortest distances to the pre-selected landmarks

for networks with small c.v. (c.v. < 2). Applications to simulated networks and

real networks show that this approximation is appropriate to most networks.

• A non-parametric estimating algorithm for shortest path length distribution (SPLD)
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In order to estimate the SPLD, previous researchers have proposed various es-

timating algorithms, but most of them are based on the knowledge of the degree

distribution. For example, Katzav et al. [1] showed two complementary analytical

approaches for calculating the distribution of shortest path lengths in Erdős-Rényi

networks, and Nitzan et al. [12] presented some analytical results for the DSPL

between random pairs of nodes in configuration model networks. To the best of

our knowledge, the estimating algorithm for SPLD proposed in this thesis is the

first non-parametric algorithm that can estimate the SPLD of a network without

knowledge of the degree distribution.

• An accurate estimate of closeness centrality ranking for each node in the network

In the previous work for estimation of closeness centrality ranking, researchers

are either only considering the top k nodes with the highest closeness centrality

[13] [14] or using an sigmoid curve with a general value of slope for all networks

[15]. In this thesis, we propose first using the weighted kernel estimator based on

estimated closeness centrality of sampled nodes to estimate the population CDF

of closeness centrality, which is different for each network, and then computing an

accurate estimate for the closeness centrality ranking for each node in the network

by the estimated CDF.

• Accurate estimation of clustering coefficients

We generalize the usage of Hansen-Hurwitz estimator to estimate the global

clustering coefficient (GCC) and the average local clustering coefficient (ALCC).
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By simulation studies and applications to real networks, we find that if we can

observe all neighbors of a sampled node and count the exact number of connections

among the neighbors, the estimators for both the GCC and the ALCC will be

unbiased with small variance.
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CHAPTER 2

Background

2.1. Preliminary Definitions

Let G = (V,E) be a finite graph (network), where V is the set of nodes with |V | = n

and S is the set of edges with |E| = m. Let i ∈ {1, ..., n} denote a node in the graph,

and r ∈ {1, ..., N} denote dyad (i, j), i, j = 1, ..., n, j 6= i, in the graph, where N =
(
n
2

)
is

the number of dyads in the graph. An induced subgraph G∗ = (V ∗, E∗) of G, is a graph

formed from a subset of the nodes V ∗ ⊂ V and all of the edges E∗ ⊂ E connecting pairs

of nodes in V ∗.

The adjacency matrix A [2] (p.111) of a graph is the matrix with element Aij such

that

Aij =

 1 if there is an edge from node i to node j,

0 otherwise.

A graph is undirected if Aij = Aji for all i and j, i.e., the adjacency matrix A is sym-

metric. In this paper, we only consider undirected networks without self-edges, so the

adjacency matrix is symmetric and the diagonal elements are all zero.

The degree [2] (p.133) of node i, denoted as ki, in a graph is the number of edges

connected to it. For an undirected graph, the degree can be written in terms of the
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adjacency matrix as

(2.1) ki =
n∑
j=1

Aij =
n∑
j=1

Aji

We define pk to be the fraction of nodes in the network to have degree k, and the degree

distribution to be the collection of the pk’s for k = 0, 1, ..., n− 1. We denote < k > as the

first moment and < k2 > as the second moment of the degree distribution.

A path [2] (p.136) in a network is any sequence of nodes such that every consecutive

pair of nodes in the sequence is connected by an edge in the network. A graph is con-

nected if and only if there exists a path between any pair of nodes. A graph is primitive

if Ak > 0 for some positive integer k < (n− 1)nn. In a primitive graph, a path of length

k exits between every pair of nodes for some positive integer k. The length [2] (p.136)

of a path in a network is the number of edges traversed along the path. The shortest

path [2] (p.139), also known as geodesic path, is a path between two nodes such that no

shorter path exists. The diameter L of a graph is the longest shortest path between any

two nodes. Note that the diameter is finite for connected graphs.

Let lr = lij ∈ {1, ..., L} denote the true shortest path length (SPL), also known as the

geodesic distance, of dyad r in the population graph G. The mean distance M of a graph,

is the average of shortest path lengths of all dyads in the graph. We define fl to be the

fraction of dyads in the network to have SPL l, and the Shortest Path Length Distribution

(SPLD) to be the collection of fl’s for l = 1, 2, ..., L
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2.2. Random Walk Sampling

Random walk sampling is a class of network sampling methods that have arisen re-

cently and has been applied widely in large networks, due to its strong ability of ‘crawling’

in the network. In this dissertation, we define a single random walk {Xt} with length t

(t steps) in a given graph G = (V,E) as follows:

1) Select a node u with equal probability 1/n from V ;

2) If node u has ku neighbors, i.e., node u has degree ku, include one of its neighbors,

say v, with equal probability 1/ku into the sample;

3) In turn, conditionally independent of previous steps, one of v’s neighbor nodes is

selected with equal probability 1/kv from the set of v’s neighbors;

4) Repeat this process until the desired length t of the random walk is reached.

In the real world, some random walks are self-avoiding, in which case an edge or a

node cannot be visited twice. However, in this dissertation we only consider random walks

that are allowed to go along edges more than once, visit nodes more than once, or retrace

their steps along an edge just traversed. In other words, we may have duplicates in our

random walk sample.

2.2.1. Sampling Algorithm

For a given network G = (V,E), we first take a simple random sample of H distinct

nodes U = {u1, ..., uH}, and start a random walk from each of them. The H random

walks are independent after the starting nodes. We define the sampling budget, denoted

by β, 0 < β < 1, to be the ratio of total steps of the H random walks to the networks
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size n, and let each random walk take B = βn/H steps.

Let X(h) = (X
(h)
1 , ..., X

(h)
B ), h = 1, ..., H, denote the sequence of nodes visited by the

hth walker. Let V (h) denote the set of distinct nodes visited by the hth walker, and |V (h)|

denote the number of nodes in set V (h). Note that |V (h)| ≤ B as a node can be revisited

during the random walk. Let E(h) denote the set of edges in E that have both endpoints

in V (h).

Let V ∗ =
⋃h=H
h=1 V (h) denote the set of distinct nodes visited by the any of the H

random walks, and E∗ denote the set of edges in E that have both of their endpoints in

V ∗. Then G∗ = (V ∗, E∗) is the induced subgraph obtained by connecting nodes in V ∗

using edges in E∗. The observed shortest path length between any two sampled nodes

will be measured from G∗.

2.3. Scale-free Networks

Many of the research papers in graph theory concern the Erdős-Rényi random graphs.

A Erdős-Rényi random graph G(n, p) is a graph with n nodes and each edge is assigned

independently to to each pair of distinct nodes with probability p ∈ (0, 1) [16] (p.156). By

this definition, the degree distribution for a Erdős-Rényi random graph follows a binomial

distribution:

(2.2) pk =

(
n− 1

k

)
pk(1− p)n−1−k.
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As demonstrated by Newman [2] (p.402), in the limit of large n, G(n, p) has a Poisson

degree distribution:

(2.3) lim
n→∞

pk = e−c
ck

k!
,

where c = (n − 1)p is the mean degree of G(n, p). According to the property of Poisson

distribution, the variance of degree distribution is always equal to the mean of degree

distribution.

The model is widely studied because of its simple structure. However, recent empirical

results [17] show that for many real-world networks the degree distribution significantly

deviates from a Poisson distribution. In particular, for many real-world networks, the

degree distribution has a power-law tail

(2.4) pk ∝ k−α,

where α is the exponent of the power law. Such networks are called scale-free. Typically,

the values in α from real networks are in range [2, 3], although values slightly outside this

range are possible and are observed occasionally [2] (p.248).

Scale-free networks possess some unusual properties as compared to other networks.

One of the nicest properties is the existence of hubs. The definition for hubs is vague in

the literature. In this dissertation we define a hub in a network to a node whose degree

is in the upper tail of the degree distribution. Intuitively, nodes with small degrees are

usually connected through hubs. Therefore hubs in a network play an important role in
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information exchange and shortening the shortest paths between nodes. As we will discuss

later, scale-free networks have a smaller average geodesic distance than other networks.

The existence of hubs is a significant difference between random networks and scale-free

networks. In random networks, the expected degree is comparable for every node, and

thus fewer hubs emerge.

The emergence of hubs can be explained by the growth algorithm of a scale-free net-

work. A widely used model is the preferential attachment model [17]:

The network begins with an initial connected network of m0 nodes. New nodes are

added to the network one at a time. Each new node is connected to m ≤ m0 existing

nodes with a probability that is proportional to the number of edges that the existing

nodes already have. Formally, the probability that the new node is connected to node i

is ki∑
j kj

, where ki is the degree of the node i and the sum is taken over all pre-existing

nodes j. Numerical simulations [17] indicated that this network evolves into a scale-free

network with α = 3.

In Figure 2.3.1 below, we illustrate the comparison between scale-free networks and

Erdős-Rényi random graph.
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Figure 2.3.1. Scale-free network vs. Erdős-Rényi random graphs [18].

(a) Comparing a Poisson function with a power-law function (α = 2.1) on a linear

plot. Both distributions have < k >= 11.

(b) The same curves as in (a), but shown on a log-log plot, allowing us to inspect the

difference between the two functions in the high-k regime.

(c) An Erdős-Rényi random network with < k >= 3 and n = 50, illustrating that

most nodes have comparable degree around < k >. The variation in degrees is

very small.

(d) A scale-free network with α = 2.1 and < k >= 3, illustrating that numerous small-

degree nodes coexist with a few highly connected hubs. The size of each node is

proportional to its degree, therefore the large ones are hubs in the network.
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2.4. The Horvitz-Thompson Estimator and the Hansen-Hurwitz Estimator

Suppose we have a population of elements {1, 2, ...,M} and yi is the characteristic of

interest associated with element i, i = 1, ...,M . Let ty =
∑M

i=1 yi denote the total of yi’s.

In order to estimate ty from samples of elements selected with unequal probabilities, we

can use the Horvitz-Thompson estimator for samples drawn without replacement and the

Hansen-Hurwitz estimator for samples drawn with replacement.

Suppose a sample of size m is drawn without replacement from the population, and

the inclusion probability for element yi is πi > 0. Let Zi be an indicator variable such that

Zi = 1 if element i is in the sample and 0 otherwise. The Horvitz-Thompson estimator

[8] of the population total ty is

(2.5) t̂HTy =
M∑
i=1

Ziyi
πi

,

with mean

(2.6) E(t̂HTy ) = ty,

and variance

(2.7) V ar(t̂HTy ) =
M∑
i=1

M∑
k>1

(πiπj − πik)(
yi
πi
− yk
πk

)2.

Next suppose a sample of size m is drawn with replacement in m independent draws

from the population, and that on each draw the probability of selecting element yi is

βi. Let Qi denote the number of times element yi selected in the sample, so that
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Q1, ..., QM ∼ multinomial(β1, ..., βM ;m), E(Qi) = mβi, and
∑N

i=1Qi = m.The Hansen-

Hurwitz estimator [7] of the population total ty =
∑M

i=1 yi is

(2.8) t̂HHy =
1

m

M∑
i=1

Qiyi
βi

,

with mean

(2.9) E(t̂HHy ) = ty,

and variance

(2.10) V ar(t̂HHy ) =
1

m

M∑
i=1

βi(yi/βi − ty)2.

More generally, we will consider sample selections that could be dependent with vary-

ing selection probabilities for different draws. Thus, we define a more general form of

t̂Hy H as

(2.11) t̂y
GHH

=
M∑
i=1

Qiyi
E(Qi)

.

This is always unbiased for ty as long as E(Qi) > 0. The variance of t̂GHHy can be esti-

mated if the sample is selected with replication.

Note that we can also estimate the total from a sample obtained by sampling with

replacement by a Horvitz-Thompson estimator. If we reduce the sample obtained by sam-

pling with replacement to a subsample by excluding the duplicates, we will get the sub-

sample consisting of distinct elements from the population, which is analogous to a sample
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obtained by sampling without replacement but with random sample size. Therefore we

can apply the idea of estimating the population total by Horvitz-Thompson estimator to

the subsample, provided we can calculate πi terms.
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CHAPTER 3

Related Work

3.1. Approximating Shortest Path Length

3.1.1. Ability of Random Walks to Uncover Shortest Paths

The strong ability of random walks to discover the shortest paths in networks with large

degree variability was shown by Ribeiro, Basu, and Towsley [6]. They found that the

ability of random walks to find shortest paths bears no relation to the paths they take,

but instead relies on the large variance of the degree distribution of the network.

They proved two important results for networks with large degree variability. First,

even with a relatively small number of steps, a single random walk is able to traverse a

large fraction of edges. Let < kr > denote the rth moment of the degree distribution.

They show that for a single random walk with t steps, the number of edges discovered by

the random walk is approximately <k2>−<k>
<k>

t, which is very large for networks with large

variance in degree distribution. Second, two random walks cross with high probability

after a small percentage of nodes have been visited. The first result indicates that the

observed SPLs in the induced subgraph are very likely to be the true SPLs in the popu-

lation. With a large fraction of edges visited by the random walk, the true shortest paths

are very likely to be observed. The second result implies that a single random walk has

the potential to explore a large area in the population network, instead of staying around
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the small area close to itself. This property provides the possibility of using a single ran-

dom walk to uncover the true SPLs. We will verify this property in later sections. These

observations provide the possibility of using random walks to uncover shortest paths in

networks with large degree variability.

Their simulation results on some real networks are also very promising. For most

real-world networks they tested, more than 65% of the shortest paths observed in the

sampled graph by random walk sampling are the true shortest paths in the parent graph,

and more than 90% of the shortest paths observed in the sampled graph by random walk

sampling are within one hop of the true shortest paths in the parent graph. The only

exception is a network whose degree variability measured by <k2>−<k>
<k>

t is much smaller

than other networks.

3.1.2. Estimating Shortest Distances by Landmarks

Computing the shortest distance, i.e., the length of the shortest path between arbitrary

pairs of nodes, has been a prominent problem in computer science. In an unweighted

graph with n nodes and m edges, the shortest distances between one node and all other

nodes can be computed by the Breadth First Search (BFS) algorithm in time O(m + n)

[5]. To measure the distances between all pairs of nodes, one can implement the BFS

algorithm n times in time O(n2 +mn), which is quadratic in the number of nodes. There-

fore, in large networks, computing the exact shortest distances between all pairs of nodes
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is computationally expensive. To improve the efficiency, several fast approximation algo-

rithms have been developed recently.

Most of the approximation algorithms are landmark-based methods. They start from

selecting a small set of nodes called landmarks. Then the actual distances from each

landmark to all other nodes in the graph are computed by BFS and stored in memory.

By using the precomputed shortest distances from the landmarks, the distance between

an arbitrary pair of nodes can be computed in almost constant time. The algorithm pro-

posed by Potamias et al. [5] is one of the landmark-based methods to quickly estimate

the the length of the point to point shortest path.

Their algorithm is based on the triangle inequalities for the geodesic distance. That

is, given any three nodes s, u, and t, the geodesic distances between them satisfy the

following inequalities:

(3.1) lst ≤ lsu + lut,

(3.2) lst ≥ |lsu − lut|.

Note that if u lies on one of the shortest paths from s to t, then inequality (3.1) holds

with equality.

In the pre-computing step, a set of d landmarks D are selected from the graph, and

the actual distances between each landmark and all other nodes are computed by BFS. In
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the estimating step, by the above inequalities, the actual geodesic distance between node

s and t satisfies:

(3.3) L ≤ lst ≤ U,

where

(3.4) L = maxj∈D|lsj − ljt|,

(3.5) U = mini∈D{lsi + lit}.

By experiments, Potamias et al. [5] proposed simply using the upper bound U as an

estimate to the geodesic distance. That is,

(3.6) lst ≈ mini∈D{lsi + lit}.

This algorithm takes O(d) time to approximate the distance between a pair of nodes and

requires O(dm+ dn) space for the pre-computation data.

Note that the approximation will be very precise if many shortest paths pass through

the landmarks. That is, the best set of landmarks consists of the most ”central” nodes in

the graph, and more specifically, the nodes with high betweenness centralities. In graph

G, let nist be the number of shortest paths between node s and node t passing node i,

and gst be the total number of shortest paths between s and t, the betweenness centrality

of node i is defined to be
∑

st
nist
gst

. Intuitively, it measures the fraction of shortest paths
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passing node i. Generally, nodes with high degrees usually have high betweenness central-

ities but nodes with high betweenness centralities don’t always have high degrees. One

example would be a graph consisting of two clusters which are connected trough a single

node. The connecting node has only degree 2 but its betweenness centrality is really high.

Measuring the betweenness centrality of a node requires the information of shortest

paths between all nodes in the sample, which can not be observed from the sample. As an

alternative, Potamias, Bonchi, Castillo, et al. [5] came up with two basic strategies based

on other centrality measures for selecting landmarks: (i) high degree nodes and (ii) nodes

with high estimated closeness centrality, where the closeness centrality is the inverse of

the average distance from a node to all other nodes. They defined the estimation error to

be the average of |l̂− l|/l across all pairs of sampled nodes, where l is the actual distances

and l̂ is the approximation. Regarding to the size of the set of landmarks, they found

from the application to some real networks that, with 100 landmarks, the estimation error

is at less than 10% in 3 of the 5 real networks, and between 10% and 20% in the other 2

real networks.

3.2. Estimating Shortest Path Length Distributions (SPLD)

The shortest paths are of particular importance because they are likely to provide the

fastest and strongest interaction between nodes in a network [1]. Up to now, measures

such as the diameter and the mean distance have been studied extensively, but the entire

shortest path length distribution (SPLD) has apparently attracted little attention. This

distribution is of great importance as it’s closely related to dynamic properties such as
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velocities of network spreading processes [19]. More specifically, it plays a key role in

the temporal evolution of dynamical processes on networks, such as signal propagation,

navigation, and epidemic spreading [20].

3.2.1. The Small World Effect

One of the most interesting and widely studied of network phenomena is the small world

effect : in many networks, the distances between nodes are surprisingly small. The first

empirical study of this phenomenon goes back to Stanley Milgram’s letter-passing experi-

ment in the 1960s, in which he asked each of the randomly chosen “starter” individuals to

try forwarding a letter to a designated “target” person living in the town of Sharon, MA,

a suburb of Boston. It turned out that the letters made it to the target in a remarkably

small number of steps, around six on average. Therefore, this phenomenon is also called

“six degrees of separation”.

With complete network data and measuring methods available these days, it is pos-

sible to measure or estimate the distances between nodes, and the small world effect has

been verified explicitly. In mathematical terms, the small-world effect is the condition

that the mean distance M is small. In fact, following the mathematical models, the mean

distance for Erdős-Rényi random graphs was shown to scale as log n [2] (p.422).

What’s more, analytical results have shown that the mean distances for scale-free

networks are even smaller. Chung and Lu [3], showed that for certain families of ran-

dom graphs with given expected degrees the average distance is almost surely of order
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log n/ log d̃ . Here d̃ denotes the second-order average degree defined by d̃ =
∑
w2
i∑
wi

, where

wi denotes the expected degree of the ith node. More specifically, for scale-free networks

with α > 3, they proved that the average distance is almost surely of order log n/ log d̃.

However, many Internet, social, and citation networks are scale-free networks with ex-

ponents in the range 2 < α < 3, for which the mean distance is almost surely of order

log log n, but have diameter of order log n (subject some mild constraints for the average

distance and maximum degree, see Chung and Lu [3] for details). This was followed by

the study by Cohen and Havlin [4], who showed, using analytical argument, that the mean

distance M ∼ log log n for 2 < α < 3, M ∼ log n/ log log n for α = 3, and M ∼ log n for

α > 3.

To summarize, the small world effect on scale-free networks with 2 < α < 3 yields

the nice property that the mean distance and the diameter are of scale log log n and log n

respectively. For instance, a scale-free network of size n = 10000 has diameter only around

9. A small diameter leads to a small range of SPL, and thus it’s practical to estimate the

SPLD, which consists of the percentage of dyads with a particular value of SPL for each

possible value of SPL.

3.2.2. Previous Estimating Methods for SPLD

Katzav et al. [1] showed two complementary analytical approaches for calculating the dis-

tribution of shortest path lengths in Erdős-Rényi networks, based on recursion equations

for the shells around a reference node and for the paths originating from it. However,

Erdős-Rényi graphs are not widely observed in real networks and are often only of research



47

interest because of their simple structure. In practice, we are more interested in a wider

class of networks.

Other researchers such as Bauckhage, Kersting, and Rastegarpanah [19] have char-

acterized shortest path histograms of networks by the Weibull distributions. Empirical

tests with different graph topologies, including scale-free networks, have confirmed their

theoretical prediction. However, each real network has its own parameter values of the

Weibull distribution, and it is hard to find those values without full access to the network.

What’s more, even if we can measure the shortest distance between any pair of nodes in

a network, it is very time-consuming when the network is large [5]. In chapter 4 we will

propose a method for estimating the SPLD of a population graph by the sample data

generated by random walks.

3.2.3. Estimating SPLD in Configuration-model Networks

Nitzan et al. [12] presented some analytical results for the DSPL between random pairs

of nodes in configuration model networks. A configuration model is a method for gener-

ating random networks from given degree sequence. More specifically, in a configuration

network, the degrees of all nodes are pre-defined and represented as half-links or stubs.

When forming a network, two nodes are chosen uniformly at random and connected with

an edge using up one of each node’s stubs. This process continues until we run out of

stubs and the result is a network with the pre-defined degree sequence. Nitzan et al. [12]

proposed that if the degree distribution of an empirical network is known, the configu-

ration model is ideal to be used as a null model for analyzing some network properties,
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including DSPL. Therefore this is a model-based approach to estimate the DSPL. Apply-

ing this idea to our case where the degree distribution is unknown, a possible approach is

to estimate the DSPL of a network based on its estimated degree distribution.

For a population network G of size n with known degree distribution pk, according

to the analytical results of Nitzan et al. [12], the tail distribution of the shortest path

lengths can be expressed as

(3.7) P (d > l) = P (d > 0)
l∏
l′

mn,l′ ,

where

(3.8) mn,l =
n−2∑
k=1

pk(m̃n−1,kl−1)k,

and

(3.9) m̃n,l =
n−2∑
k=1

k

c
pk(m̃n−1,kl−1)k−1

with c being the average degree, for l ≥ 2, and

(3.10) mn,1 =
n−1∑
k=1

pk(1−
1

n− 1
)k,

and

(3.11) m̃n,1 =
n−1∑
k=1

k

c
pk(1−

1

n− 1
)k−1

for l = 1.
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Then the proportion of dyads with SPL l can be computed from

(3.12) fl = P (d > l − 1)− P (d > l),

for l = 1, 2, ..., n− 1.

When the network is not fully accessible and the true degree distribution is unknown,

we can estimate the degree distribution pk by the Hansen-Hurwitz ratio estimator

(3.13) p̂k =

∑
i∈s x

k
i k
−1
i∑

i∈s k
−1
i

,

where xki = 1 if the degree of node i is k and zero otherwise.

If we use the estimated degree distribution p̂k instead of pk in equations (3.7) - (3.12),

then we will get an configuration-model estimator (CME) from equation (3.12), denoted

as f̂ml . In this estimating process, the bias can come either from estimating the degree

distribution or from computing the DSPL from the estimated degree distribution, but the

variance only comes from estimating the degree distribution.

3.3. Estimating Closeness Centrality Ranking

Closeness centrality measures the mean distance from a node to other nodes. It gives

low value for more central nodes and high value for less central ones. A node with low

value of closeness centrality might have better access to information at other nodes or

more direct influence on other nodes [2]. For instance, in a social network, a person with

low closeness centrality might find it easier to spread their opinions to other people or

receive comments from other people. The closeness centrality of a node can be computed
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by taking the ratio of the network size and the sum of distances from the node to all other

nodes in the network. It can be computed by breadth first search (BFS) and the the time

complexity for it is O(m) where m is the number of edges in the network.

In reality, we are more interested in the relative importance of a node rather than

its closeness centrality value. That is, we are more interested in the rank of closeness

centrality of a node. It takes two steps to compute the rank: 1) computing the closeness

centrality of all nodes; 2) for a given node, comparing its closeness centrality to those

of other nodes to find its rank. The first step takes O(n · m) time and the second step

takes O(n) so the time complexity for the entire process is O(n ·m). Therefore it will be

computationally expensive to find the exact rank of a node in a large network.

Due to the high complexity of computing closeness centrality of all nodes in a net-

works, it has attracted researchers toward several areas related to measuring the closeness

centrality of a node. Kas et al. [21] and Yen, Yeh, and Chen [22] developed some methods

for updating closeness centrality in dynamic networks. Other researchers such as Cohen

et al. [23] and Wang [24], proposed some faster algorithms to approximate closeness

centrality. Another popular area is identifying a few top nodes with highest closeness

centrality. Okamoto, Chen, and Li [13] combined existing methods on calculating exact

values and approximate values of closeness centrality and presented new algorithms to

rank the top-k vertices with the highest closeness centrality. Ufimtsev and Bhowmick [14]

presented a fast and scalable algorithm for identifying the high closeness centrality node
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by group testing.

When it comes to closeness centrality ranking, Wehmuth and Ziviani [25] proposed a

method called DACCER (Distributed Assessment of the Closeness CEntrality Ranking)

to approximate the closeness centrality ranking. They indicated that the ranking based

on local neighborhood volume computed by DACCER is highly correlated with the node

ranking based on the traditional closeness centrality, in both simulated and real world

networks. However, they didn’t go further showing how people can use DACCER to es-

timated the closeness centrality ranking of a node.

The most relevant work for closeness centrality ranking is done by Saxena, Gera, and

Iyengar [15]. They proposed a heuristic method to fast estimate the closeness rank of a

node in O(α·m) time complexity, where α = 3. They observed that in real world scale-free

social networks, the reverse ranking versus closeness centrality follows a sigmoid curve as

shown in Figure 3.3.1. Mathematically, they found that a 4-parameter logistic equation

can fit the curve well:

(3.14) Rrev(u) = n+
1− n

1 + (C(u)
cmid

)p
,

where Rrev(u) is the reverse ranking of node u, C(u) is the closeness centrality of node

u, cmid is the closeness centrality of middle ranked node in the network, and p denotes

slope of the logistic curve at the middle point. Once the reversed ranking is estimated,
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the actual ranking Ract can be computed as

(3.15) Ract = n−Rrev + 1.

Figure 3.3.1. Plot of reverse ranking versus closeness centrality.

Due to properties of the sigmiod function, cmid can be computed by (cmin + cmax)

where cmin is the minimum closeness centrality and cmax is the maximum closeness cen-

trality in the network. After analyzing the relationship between closeness centrality and

node degree, they proposed estimating cmax and cmin by ĉmax = C(u) where u is the node

with largest degree in the network and ĉmin = C(w) where w is a node chosen uniformly

at random from all the nodes farthest away from u u. After measuring the slope p of

the sigmoid curse for 20 real world networks, they observed that the slope ranges from

10 to 15 and that the slight variation in the estimation of p does not cause more error

in the ranking, so the average of p from the real world networks can be used for estimation.
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This approximation method is simple and works well for scale-free networks but still

has some issues: 1) Estimating cmid requires first finding the node with largest degree

in the network and then finding all nodes farthest away from that node, which can be

time-consuming in large networks; 2) Based on the 20 real world networks they studied,

they found a range and provided a single estimation for the slope p for all network, but

for other real world networks the slope can go beyond that range; 3) This sigmoid curve

estimation is only verified for scale-free networks, while there are still real world networks

which are not scale-free. In chapter 5 we will present an estimation method for closeness

centrality ranking that will 1) only require information from a random walk sample, 2)

provide different estimated curves for different networks, and 3) work for networks which

are either scale-free or not scale-free.

3.4. Estimating Clustering Coefficients

Clustering coefficients serve as an important measure for network transitivity. The

history of clustering coefficients goes back to 1998. Watts and Strogatz [26] first intro-

duced local clustering coefficient ci for a single node i, which is the fraction of connected

neighbors of node i, and then proposed using the average of local clustering coefficients

(ALCC) to measure network clustering. Later on, Newman, Watts, and Strogatz [27] pro-

posed using global clustering coefficient (GCC) , which is the fraction of paths of length

two that are closed in the network, as an alternative measure of network clustering. While

ALCC is the unweighted average of ci, GCC is the weighted average of ci with weight

proportional to ki(ki − 1), where ki is the degree of node i.
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These are two different measures and can give substantially different numbers for a

given network [2] (p.204). The major difference between the two measures is that GCC

captures the totality of network members’ experience, which may be dominated by low

clustering among high degree nodes [28]. On the other hand, ALCC tends to be domi-

nated by the nodes with low degrees, since they have small denominators in computing ci

[2] (p.204). Nowadays, people prefer using the second measurement due to its simplicity

in interpretation and computation.

The running time to compute the exact clustering coefficient for a network is O(n3)

[11]. Therefore it is computationally expensive to run the naive computing algorithm for

large networks and estimation is needed. There are two major directions of estimation:

estimating with access to the entire network and estimating via sampling. In most real

cases, only part of the network is accessible and information can be collected as we crawl

the network by some sampling method such as random walk sampling. In this work we

will focus on estimating through sampling, with random walk sampling in particular.

Schank and Wagner [29] developed an efficient algorithm to estimate GCC and ALCC

via sampling. The running time is only O(1) for estimating ALCC and O(n) for GCC.

However, the algorithm assumes that the adjacency matrix of the entire network is ac-

cessible and triplets can be sampled with appropriate pre-computed probabilities. As we

discussed, this is not very practical in most real cases.
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Some other researchers have developed estimation methods via sampling when the

entire network is not accessible. In these methods, relevant information is collected as

we explore nodes through random walk. Ribeiro and Towsley [30] showed that Frontier

sampling, which performs m dependent random walks in the graph, can provide a better

estimation performance than regular random walk in networks which are disconnected or

have loosely connected components. Others like Gjoka et al. [31] and Cem and Sarac [32]

have proposed using Metropolis-Hastings random walk sampling that samples nodes uni-

formly on large online social networks to estimate clustering coefficient. These methods

require the inclusion of all neighbors of sampled nodes in order to perform estimation,

which will greatly increase the sampling cost in large networks.

To make it more efficient, Katzir and Hardiman [11] proposed using random walk but

without the requirement of including neighbors of sampled nodes. The only information

they need in addition to the sampled nodes themselves is if there’s a tie between the nodes

before and after the focal nodes. They first derived unbiased estimators for both GCC

and ALCC and then used simulation to show that the estimators are unbiased with small

variance with only a small sampling fraction. But decreasing sampling cost will result in

less information in the sample, which will potentially increase estimations error. Consider

the following two cases: 1) we are able to observe all neighbors of sampled nodes and

obtain the actual number of connections among the neighbors in the population graph;

2) we are not able to observe all neighbors of sampled nodes, but instead we can induce a

subgraph by connecting the sampled nodes if they are connected in the population, and

observe number of connections among the neighbors in the induced subgraph. Apparently,



56

the information in the first case in richer than the information in the second case. We

will show in chapter 6 that for most real networks, the estimation performance in the first

case is much better than the second case.
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CHAPTER 4

Estimation of Shortest Path Length Distributions

4.1. Overview

In a network, the shortest paths between nodes are of great importance as they allow

the fastest and strongest interaction between nodes. However measuring the shortest

paths between all nodes in a large network is computationally expensive. In this chapter

we propose a method to estimate the shortest path length (SPL) distribution of a network

by random walk sampling. To deal with the unequal inclusion probabilities of dyads

(pairs of nodes) in the sample, we generalize the usage of Hansen-Hurwitz estimator

and Horvitz-Thompson estimator (and their ratio forms) and apply them to the sampled

dyads. Based on theory of Markov chains we prove that the selection probability of a dyad

is proportional to the product of the degrees of the two nodes. To approximate the actual

SPL for a dyad, we use the observed SPL in the induced subgraph for networks with large

degree variability, i.e., the standard deviation is at least two times of the mean, and for

networks with small degree variability, estimate the SPL using landmarks for networks

with small degree variability. By simulation studies and applications to real networks,

we find that 1) for large networks, high estimation accuracy can be achieved by using a

single random or multiple random walks with total number of steps equal to at least 20%

of the nodes in the network; 2) About 94% to 96% reduction in computational time can

be achieved by using sampling and approximation of SPLs between sampled nodes; 3)



58

the estimation performance increases as the network size increases but tends to stabilize

when the network is large enough; 4) a single random walk performs as well as multiple

random walks; 5) the generalized Hansen-Hurwitz ratio estimator is most preferable to

use in practice due to its high estimation accuracy and easiness in computation.

4.2. Intuition

Recall that in a scale-free network, most nodes with small degrees are connected

through hubs. Our approach is based on the following intuition: random walks in scale-

free networks usually take steps along the shortest paths between pairs of nodes. This

nice behavior is attributed to the existence of hubs.

Consider an extreme case of a network with only one hub to which all other nodes are

connected. Then the random walk always goes back to the hub before moving to another

node, which indeed is following the shortest path of length 2 between the nodes before

and after the hub. Next consider a network with multiple hubs, but still, all other nodes

are connected only to the hubs. In this case a random walk starting from any node will

have to go back to the hub to which the node is connected to get to another node, which

forces the random walk to travel along the shortest path for a pair of nodes.

More generally, if there are some but very few connections between nodes which are

not hubs, a random walk might have the chance to traverse a path that is not the shortest

path between two nodes, but the chance is small. Figure 4.2.1 shows how multiple random

walks recover shortest paths in a scale-free network.
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Figure 4.2.1. Illustration of a RW sample path. Green nodes: starting

nodes; blue nodes: nodes visited by the random walks; purple edges: edges

used by the walks to explore the graph [6].

4.3. Problem Definition

Consider a connected and undirected network G = (V,E) with n nodes, m edges, and

diameter L. Then the shortest path length distribution (SPLD) of G is defined as

(4.1) fl =
Nl

N
, l = 1, ..., L

where Nl is the number of dyads with SPL l, and N =
∑L

l=1Nl = nC2 is the total number

of dyads (pairs of nodes) in G.

4.4. Estimating Methods

In order to estimate the fraction fl of dyads with SPL l, we need to first estimate Nl,

the number of dyads with SPL l in the population graph. Let N̂l denote the estimate

for Nl, and fl can be estimated by f̂l = N̂l
N

. Note that sometimes we want to use a ratio
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estimator f̂ rl = N̂l
N̂

, in which case we also estimate N , the total number of dyads in the

population graph.

4.4.1. The Unweighted Estimator

A naive approach to estimate population SPLD is to simply use the SPLD of the induced

subgraph G∗ as an estimate. Let N∗l denote the number of dyads with SPL l in G∗, and

N∗ denote the total number of dyads in G∗, the unweighted estimator for fl is

(4.2) f̂uwl =
N∗l
N∗

, l = 1, ..., L.

However, this simple estimator may suffer from two sources of bias. First, the dyads

are sampled with unequal probabilities due to the nature of random walk sampling. More

specifically, dyads with shorter SPLs are more likely to be sampled than those with longer

SPLs. Therefore, with the unweighted estimator, fl for small value of l is likely to be over

estimated, and fl for large value of l is likely to be under estimated. Second, the observed

SPL in G∗ might be longer than the actual SPL G, and thus fl for small value of l is

likely to be under estimated, and fl for large value of l is likely to be over estimated.

4.4.2. The Hansen-Hurwitz Estimator

Let s = {X(1), X(2), ..., X(H)} denote the set of sequences of nodes visited by H random

walks, including duplicates, and let |s| = H ·B denote the size of s. Let I(X
(h)
b = i) denote

an indicator variable taking the value 1 if node i is visited at bth step in hth random walk,

and zero otherwise. Let qi =
∑H

h=1

∑B
b=1 I(X

(h)
b = i), i = 1, ..., n denote the number of

times node i appears in sample s, and define φi = E(qi)/|s|. We assume 0 < E(qi) < |s|
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∀i, and thus 0 < φi < 1 ∀i. Since
∑n

i=1 qi = |s|,
∑n

i=1 φi = 1. Therefore, the φi’s form a

probability distribution over the n nodes.

Let r, r = 1, ..., N represent dyad (i, j), i = 1, ..., n− 1, j = i+ 1, ..., n in the popula-

tion graph. Let S = {(X(h1)
b1

, X
(h2)
b2

) : h1, h2 ∈ {1, ..., H}, b1, b2 ∈ {1, ..., B}, X(h1)
b1
6= X

(h2)
b2
}

denote the set of dyads whose members are any two distinct nodes in s. That os, S

is the sequence of dyads visited by the H random walks, including duplicates. Define

Qr = qiqj, i = 1, ..., n− 1, j = i+ 1, ..., n as the number of times dyad r appears in sam-

ple S, and let |S| =
∑N

r=1Qr denote the size of S. Notice that there may be duplicates

in the sample of nodes s, but to a dyad, we only include pairs consisting of two different

nodes, therefore |S| is a random variable with |S| =
(|s|

2

)
−
∑n

i=1

(
qi
2

)
. Define ψr = E(Qr)

E(|S|)

and assume 0 < E(Qr) < |S| ∀r, therefore 0 < ψr < 1 ∀r. Since
∑N

r=1 Qr = |S|,∑N
r=1 ψr = 1. Therefore, the ψr’s form a probability distribution over the N dyads.

Let lr ∈ {1, ..., L} denote the true SPL of dyad r in the population graph. Let ylr,

r ∈ {1, ..., N} and l ∈ {1, ..., L}, denote an indicator variable taking value ylr = 1 if lr = l

and zero otherwise. Thus Nl =
∑N

r=1 y
l
r is the number of dyads with SPL l in the popu-

lation, and N =
∑L

l=1

∑N
r=1 y

l
r is the total number of dyads in the population.

According to 2.11, the generalized Hansen-Hurwitz estimator for Nl is

(4.3) N̂HH
l =

1

|S|

N∑
r=1

Qry
l
r

ψr
, l = 1, ..., L
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The generalized Hansen-Hurwitz estimator for N is

(4.4) N̂HH =
1

|S|

N∑
r=1

Qr

ψr
, l = 1, ..., L

In order to apply (4.3) and (4.4) we need to compute or estimate ψr. We first recall

some definitions and results for Markov chains. We call a sequence of random variables

{Xt : t = 1, 2, ...} a discrete-time Markov chain (DTMC) if it satisfies

(4.5) P (Xt+1 = it+1|Xt = it, Xt−1 = it−1, .., X1 = i1) = P (Xt+1 = it+1|Xt = it),

for all t ≥ 1 and i1, i2, ..., it+1 ∈ Ω, where Ω is a finite or countable state space.

4.4.2.1. Inclusion Probability of a Dyad

A DTMC is finite if Ω is finite. A DTMC is homogeneous if it satisfies

(4.6) P (Xt+1 = j|Xt = i) = Pi,j for all i, j ∈ Ω, independent of t.

We call the probabilities Pi,j’s the transition probabilities. Let P denote a matrix with

element Pi,j at its position of ith row and jth column. We call P the transition matrix

for a homogeneous DTMC. Since we will only consider finite DTMCs in this paper, we

denote Ω = {1, 2, ..., n} for simplicity.

Let pi(t) denote the probability that {Xt} is in state i at time t, and let p(t) =

(p1(t), p2(t), ..., pn(t))T denote the vector of probabilities. For a finite homogeneous DTMC
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we have

(4.7) pT (t+ 1) = pT (t)P .

A probability vector p = (p1, p2, ..., pn)T is called a stationary distribution for a ho-

mogeneous DTMC with transition matrix P , if it satisfies

(4.8) pT = pTP .

State j is said to be accessible from state i if P n
i,j > 0 for some n ≥ 0. If state i is

accessible from state j and state j is accessible from state i, i and j are said to commu-

nicate. A DTMC is called irreducible if all of its states communicate with each other. A

state i is aperiodic if the greatest common divisor of {n ≥ 0 : P n
i,i > 0} is 1. A DTMC is

called aperiodic if all of its states are aperiodic.

Proposition 1 [2] (p.157-159): A single random walk {Xt} on a graph G = (V,E)

of size n is a finite homogeneous DTMC with a stationary distribution p = (k1
K
, ..., kn

K
)T ,

where K =
∑

w kw.

Proof: Consider a random walk {Xt} that starts at a certain node and takes t steps.

Suppose {Xt} is at node i at time t− 1, then the probability that it will be at node j 6= i

at time t is 1/ki, by the definition of random walk sampling in section 2.2, given that i is

connected to j, i.e., Aij = 1. That is

(4.9) P (Xt = j|Xt−1 = i) =
Aij
ki
.
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Therefore, {Xt} is a homogeneous DTMC with finite state space {1, 2, ..., n} and

transition probabilities Pi,j =
Aij
ki

. Let P denote the transition matrix of {Xt}, then

P = D−1A, where D is the diagonal matrix with elements ki’s for i = 1, ..., n.

Let p = (k1
K
, k2
K
, ..., kn

K
)T , where K =

∑
w kw.

pTD−1A =

(
k1
K

k2
K

... kn
K

)


A11

k1

A12

k1
... A1n

k1

A21

k2

A22

k2
... A2n

k2

...
...

. . .
...

An1
kn

An2
kn

... Ann
kn



(4.10)

=

(∑n
i=1

ki
K
Ai1
ki

∑n
i=1

ki
K
Ai2
ki

...
∑n

i=1
ki
K
Ain
ki

)
(4.11)

=

(
1
K

∑n
i=1Ai1

1
K

∑n
i=1Ai2 ... 1

K

∑n
i=1Ain

)
=

(
k1
K

k2
K

... kn
K

)
= pT(4.12)

That is, pT = pTP . Since pi > 0 and
∑

j pj = 1, p is a stationary distribution for

{Xt}.

Proposition 2: If G is connected and has at least one triangle, the finite homoge-

neous DTMC {Xt} from Proposition 1 is irreducible and aperiodic.

Proof: Since G is connected, any node in the is accessible by any other node. That

is, all states of {Xt} communicate with other, and thus {Xt} is irreducible. For any node

in G, it can be either in a triangle or not. Suppose i is any node in a triangle, then
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starting from itself, i can be reached by either 2 steps or 3 steps, that is P 2
i,i > 0 and

P 3
i,i > 0. Therefore i is an aperiodic state. Consider any node j which is not in a triangle

and suppose that its shortest distance to node i is l, then starting from itself, j can be

reached by either 2l + 2 steps or 2l + 3 steps, that is P 2l+2
i,i > 0 and P 2l+3

i,i > 0. Therefore

j is also an aperiodic state. Since all states in {Xt} are aperiodic, {Xt} is aperiodic.

Proposition 3: If a single random walk {Xt} initiates from its stationary distribu-

tion p on a connected graph G with at least one triangle, then φi = E(qi)/t = ki/K, and

limt→∞ψr = αkikj, where α = 2[(
∑

w kw)2 −
∑

w k
2
w]−1, and K =

∑n
w=1 kw.

Proof: Let q = (q1, q2, ..., qn)T , where qi = number of times node i appears in the

sample, and p = (p1, p2, ..., pn)T , where pi = ki
K

. According to Anderson’s (1989) results

for irreducible and aperiodic Markov chains,

(4.13) E(q) = pt,

and

(4.14) lim
t→∞

Cov(q)

t
= C,

where C is a square matrix with constant elements.

From (4.13), we have E(qi)
t

= ki
K

, for i = 1, ..., n.
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In general an = O(bn) indicates limt→∞ an/bn = c, where c is a constant, and an =

o(bn) indicates limt→∞ an/bn = 0, so we have

(4.15) Cov(qi, qj) = o(t2), and V ar(qi) = o(t2) ∀i.

The expected number of times dyad r appears in sample S is

E(Qr) = E(qiqj) = E(qi)E(qj) + Cov(qi, qj) = pipjt
2 + o(t2)(4.16)

The expected number of dyads (including duplicates) in sample S is

E(|S|) =

(
t

2

)
−

n∑
i=1

E(
qi(qi − 1)

2
)(4.17)

=

(
t

2

)
− 1

2

n∑
i=1

(E(q2
i )− E(qi))(4.18)

=

(
t

2

)
− 1

2

n∑
i=1

(E2(qi)− E(qi) + V ar(qi))(4.19)

=

(
t

2

)
− 1

2

n∑
i=1

tpi(tpi − 1) + o(t2)(4.20)

=
1

2
t(t− 1)− 1

2
(t2

n∑
i=1

p2
i − t) + o(t2)(4.21)

=
1

2
(1−

n∑
i=1

p2
i )t

2 + o(t2)(4.22)
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In the long run, the expected fraction that dyad r appears in sample S is

lim
t→∞

ψr = lim
t→∞

E(Qr)

E|S|
(4.23)

= lim
t→∞

2pipjt
2 + o(t2)

(1−
∑n

i=1 p
2
i )t

2 + o(t2)
(4.24)

=
2pipj

1−
∑n

i=1 p
2
i

(4.25)

=
2

kikj
(
∑
w kw)2

1−
∑
w k

2
w

(
∑
w kw)2

(4.26)

=
2kikj

(
∑

w kw)2 −
∑

w k
2
w

(4.27)

For simplicity we can write limt→∞ψr = αkikj, where α = 2[(
∑

w kw)2 −
∑

w k
2
w]−1.

Therefore, the generalized Hansen-Hurwitz estimator for Nl is

(4.28) N̂HH
l =

1

|S|

N∑
r=1

Qry
l
r

αkikj
, l = 1, ..., L,

and the generalized Hansen-Hurwitz estimator for N is

(4.29) N̂HH =
1

|S|

N∑
r=1

Qr

αkikj
, l = 1, ..., L.

The generalized Hansen-Hurwitz estimator for the fraction of dyads with SPL l is

(4.30) f̂HHl =
N̂HH
l

N
=

∑N
r=1

Qrylr
αkikj

|S|N
, l = 1, ..., L,
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and the generalized Hansen-Hurwitz ratio estimator for the fraction of dyads with SPL

l is

(4.31) f̂HH.ral =
N̂HH
l

N̂HH
=

∑N
r=1

Qrylr
kikj∑N

r=1
Qr
kikj

, l = 1, ..., L

4.4.3. The Horvitz-Thompson Estimator

In the Hansen-Hurwitz estimator illustrated above, we take the average of all observed

dyads, including duplicates, to estimate Nl and N . Alternatively, we can consider apply-

ing the Horvitz-Thompson estimator to the subsample obtained by excluding duplicate

observations.

Let s∗ = V ∗ denote set of distinct nodes visited by H random walks, and |s∗| =∑H
h=1 |V (h)| denote the sample size of s∗. Since s∗ is derived from s by excluding the du-

plicates, |s∗| is a random variable depending on s. Let zi, i = 1, ..., n denote the number

of times node i appears in sample s∗. In our case zi is an indicator variable such that

zi = 1 if i ∈ s∗ and zero otherwise. Let τi = E(zi) denote the inclusion probability of

node i in the subsample s∗, which is indeed the probability that node i ever appears in

sample s. Since
∑n

i=1 zi = |s∗|, we have
∑n

i=1 τi = E(|s∗|).

Let S∗ denote the set of all pairs of nodes in s∗, and let |S∗| denote the size of S∗. Let

Zr, i = 1, ..., n − 1, j = i + 1, ..., n denote the number of times dyad r = (i, j) appears

in sample S∗. In our case Zr is an indicator variable such that Zr = 1 if r ∈ S∗ and
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zero otherwise. Let πr = E(Zr) denote the inclusion probability of dyad r in the sub-

sample S∗, which is indeed the probability that dyad r ever appears in sample S. Since∑N
r=1 Zr = |S∗|, we have

∑N
r=1 πr = E(|S∗|).

Due to the lack of knowledge about the full network G = (V,E) as well as computa-

tional considerations, we will use an approximation for estimating πr, r ∈ S∗. If a single

random walk {Xt} initiates from its stationary distribution p on a connected graph G

with at least one triangle, in the long run,

(4.32) πr ≈ τiτj, for r = 1, 2, ..., N,

where

τi =
|s∗|∑n
i=1 θi

θi for i = 1, 2, ..., n,(4.33)

and

(4.34) θi = 1− (1− ki∑
w kw

)t for i = 1, 2, ..., n.

Heuristic proof: To derive the expected number of appearances of dyads in S, we

used (4.14) but did not need to use the form of the matrix C. A simple sampling model

that satisfies (4.13) and (4.14) is multinomial sampling with t draws and probability

pi = ki∑
w kw

for node i to be sampled at each draw. For multinomial sampling,

E(qi) = tpi,(4.35)
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and

Cov(qi, qj) =

 −tpipj, i 6= j,

tpi(1− pi), i = j,
(4.36)

and hence (4.13) and (4.14) are satisfied.

Under multinomial sampling, the probability that node i is ever included in the sample

by step t is

(4.37) θi = 1− (1− pi)t.

The joint probability that i and j are both included in the sample is

(4.38) θr = θij =
t−1∑
x=1

P (zi = 1|qj = x)P (qj = x).

Note that

(4.39) P (qj = x) =

(
t

x

)
pxj (1− pj)t−x,

and

(4.40) P (zi = 1|qj = x) = 1− (1− pi
1− pj

)t−x,
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so

θr =
t−1∑
x=1

(
t

x

)
pxj (1− pj)t−x[1− (1− pi

1− pj
)t−x](4.41)

=
t−1∑
x=1

(
t

x

)
pxj (1− pj)t−x −

t−1∑
x=1

(
t

x

)
pxj (1− pi − pj)t−x(4.42)

= 1− (1− pij)t − ptj − [(1− pi)t − (1− pi − pj)t − ptj](4.43)

= 1− (1− pi)t − (1− pj)t + (1− pi − pj)t.(4.44)

Since

θiθj = [1− (1− pi)t][1− (1− pj)t](4.45)

= 1− (1− pi)t − (1− pj)t + (1− pi − pj + pipj)
t(4.46)

≈ 1− (1− pi)t − (1− pj)t + (1− pi − pj)t if pipj is negligible,(4.47)

and as pipj is verified to be negligible by simulations in this case, we can estimate θr by

(4.48) θr ≈ θiθj.

The only problem in approximation by multinomial sampling is that we assume the

draws are independent, while it is not the case in random walk sampling since a node can’t

be sampled twice consecutively. Therefore, θi under the multinomial sampling model over

estimates τi, the inclusion probability of node i in random walk sampling. To adjust for

the overestimation, we can use the one of the following two approaches to estimate τi,
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and then estimate πr by

(4.49) πr ≈ τiτj.

Approach 1: Using the fact
∑n

r=1 τi = E(|s∗|) as a constraint for τi, we can estimate

τi by

(4.50) τi =
|s∗|∑n
i=1 θi

θi,

Approach 2: Using the fact
∑

i∈s∗ τ
−1
i = n, we can choose the exponent t∗ < t for

the random walking sampling such that

(4.51) (
∑
i∈s∗

1

1− (1− φi)t∗
− n)2

is minimized, and estimate τi by

(4.52) τi = 1− (1− φi)t
∗
.

Simulation results have shown that both (4.50) and (4.52) can provide a good estima-

tion for τi.

The Horvitz-Thompson estimator for Nl is

(4.53) N̂HT
l =

N∑
r=1

Zry
l
r

πr
, l = 1, ..., L,

and the Horvitz-Thompson estimator for N is

(4.54) N̂HT =
N∑
r=1

Zr
πr
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The Horvitz-Thompson estimator for the fraction of dyads with SPL l is

(4.55) f̂HTl =
N̂HT
l

N
=

∑N
r=1

Zrylr
πr

N
, l = 1, ..., L

and the Horvitz-Thompson ratio estimator for the fraction of dyads with SPL l is

(4.56) f̂HT.ral =
N̂HT
l

N̂HT
=

∑N
r=1

Zrylr
πr∑N

r=1
Zr
πr

, l = 1, ..., L

4.4.4. Approximating actual SPLs between sampled nodes

As discussed in previous sections, in a network with n nodes and m edges, the time com-

plexity to measure the actual distances between all pairs of nodes is O(mn + n2). This

is computationally expensive for large networks. With our proposed estimators discussed

above, we only need measure the distances between sampled nodes to estimate the SPLD

of the population graph. Let β∗ denote the ratio of number of nodes in the induced sub-

graph to the number of nodes in the population graph, where 0 < β∗ ≤ β and β is the

sampling budget. The computation time of actual distances between all sampled nodes

is O(β∗mn+ β∗n2). For β∗ = 20%, only measuring the actual distances between sampled

nodes will bring a 80% reduction in computation time.

However, according to some approximation methods for SPLs discussed in previous

sections, we can approximate the actual SPLs between sampled nodes instead of actually

measuring them. And by doing that we can achieve further reduction in computation

time. In the following section we will revise the approximation methods from Ribeiro,

Basu, and Towsley [6] and Potamias, Bonchi, Castillo, et al. [5] and apply them to our
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random walk samples.

1) For networks with large c.v., approximate actual SPLs by observed SPLs in the

induced subgraph.

Based on theoretical and simulation results from Ribeiro, Basu, and Towsley [6], in

scale-free networks, random walks have strong ability to uncover the true shortest paths,

so the actual SPLs between sampled nodes can be approximated by the their observed

SPLs in the subgraph induced by the random walk sample. More specifically, for a pair

of sampled nodes (i, j), the actual SPL lij between them in the population graph G can

be approximated by the observed SPL in the induced subgraph G∗.

More generally, it is the existence of hubs in scale-free networks that makes random

walks able to find the shortest paths, as discussed in section 4.1. Therefore in this paper,

we generalize the condition for random walks to uncover shortest paths to networks with

relatively large variance in degree distribution, compared to the mean degree < k >. Let

c.v. =

√
V ar(k)

<k>
=
√
<k2>−<k>2

<k>
denote the coefficient of variation of the degree distribution

as a measure of the relative variance. A large c.v. is needed in order for the random walks

to uncover the shortest paths, and we will discuss in section 5.1 about how large the c.v.

needs to be.

In an induced subgraph with β∗n nodes, the computing time for single source shortest

paths is reduced to O(β∗m + β∗n) by BFS within the induces subgraph. Applying BFS
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to β∗n sampled nodes in the induced subgraph, the time complexity for computing SPLs

between all sampled nodes is O(β∗2mn + β∗2n2). Comparing to measuring the actual

distance between sampled nodes, i.e., applying BFS to sampled nodes in the population

graph, doing BFS only in the induced subgraph can save us (1 − β∗) × 100% in compu-

tation time.

2) For networks with small c.v., approximate actual SPLs using landmarks.

For networks with small c.v. in degree distribution, since random walks can’t find the

shortest paths in the induced subgraph, we need to implement breadth-first search (BFS)

on sampled nodes in the population graph to find the shortest paths. However, based on

findings by Potamias, Bonchi, Castillo, et al. [5], the BFS doesn’t have to be applied to

all sampled nodes. Instead, one can apply BFS to only a fraction of the sampled nodes

to find their shortest distances to all other nodes, and use that information to estimate

the shortest distances between other sampled nodes. More specifically, one can first se-

lect a set of nodes as landmarks, denoted as D, pre-compute the SPLs from landmarks

to all other nodes by BFS in the population graph, and estimate the SPL between any

arbitrary pair of nodes s and t by minj∈D{lsj + ljt}. The estimation will be very precise if

many shortest paths contain the selected landmarks. From their experiments, using 100

nodes with highest degrees from the population seems a fairly good strategy for choosing

landmarks.
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In this work, we propose selecting landmarks from the sample. This is because we are

only interested in the SPLs between nodes in the sample, and landmarks from the sample

will be more likely to be on the shortest paths between nodes in the sample. Also it is

costly to select landmarks from the population since we need to observe the degrees of

all nodes. Let γ denote the the ratio of number of landmarks to number of nodes in the

induced subgraph G∗. From the sample we will choose the top γβ∗n nodes in their actual

degrees as landmarks. We will discuss the size of landmark set, i.e., the value of γ, in

later sections.

In an induced subgraph with β∗n nodes and γβ∗n landmarks, the computing time

for SPLs between a single landmark and all other nodes in the sample is still O(m + n),

since the BFS needs to be implemented in the population graph to compute the actual

distances. Invoking the BFS γβ∗n times, the computing time for SPLs between all land-

marks and all other nodes in the sample is O(γβ∗mn+ γβ∗n2). Comparing to measuring

the actual distance between sampled nodes, i.e., applying BFS to all sampled nodes in

the population graph, doing BFS only to the landmarks can save us (1 − γ) × 100% in

computation time. This is for the pre-computing stage.

For the estimation stage, for any arbitrary pair of nodes, it only takes γβ∗n time to go

through the distances from these two nodes to each landmark and choose the minimum

sum as the estimated SPL. Note that with BFS applied to landmarks, the distances

between γβ∗n landmarks and all other nodes in the sample have already been identified,

therefore we just need to estimate the distances between (1 − γ)β∗n nodes that are not
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used as landmarks. Applying γβ∗n numerical search to
(

(1−γ)β∗n
2

)
≈ 1

2
(1−γ)2β∗2n2 pairs of

nodes in the sample, the computing time for estimating distances between sampled nodes

that are not landmarks is about O(γ(1 − γ)2β∗3n3) after we have the pre-computation

data.

4.5. Application of Estimating Methods

In practice, sometimes we are only able to crawl part of the network, so we are re-

stricted to observing the degrees of the sampled nodes. To apply the estimators in section

4.4 to estimating the SPLD for a network, we need to estimate ψr’s and πr’s of the sam-

pled nodes and c.v of degree distribution by the degrees of nodes in the sample.

Following the mathematical expressions of c.v., ψr, and πr, we can estimate them by

the estimated first moment k1 and the second moment k2 of the degree distribution. The

estimation for k1 and k2 can be achieved by Hansen-Hurwitz ratio estimator. Suppose a

single random walk {Xt} initiates from its stationary distribution p = (k1
K
, k2
K
, ..., kn

K
)T on

a connected graph G with at least one triangle such that

(4.57) φi =
ki
K

=
ki
nk1

.

Then we can estimate the first moment k1 by

(4.58) k̂1 =
K̂

n̂
=

1
|s|
∑

i∈s
ki
φi

1
|s|
∑

i∈s
1
φi

=

1
|s|
∑

i∈s
ki
ki
K

1
|s|
∑

i∈s
1
ki
K

=
|s|∑
i∈s k

−1
i

.
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Similarly, we can estimate the second moment k2 by

(4.59) k̂2 =

1
|s|
∑

i∈s
k2i
φi

1
|s|
∑

i∈s
1
φi

=

1
|s|
∑

i∈s
k2i
ki
K

1
|s|
∑

i∈s
1
ki
K

=

∑
i∈s ki∑
i∈s k

−1
i

.

4.5.1. Estimation of c.v.

We can estimate c.v. by

(4.60) ˆc.v. =

√
k̂2 − (k̂1)2

k̂1

.

4.5.2. Estimation of ψr

For Hansen-Hurwitz estimator, we can estimate α in ψr = αkikj by

(4.61) α̂ =
2

(nk̂1)2 − nk̂2

,

and can therefore estimate ψr by

(4.62) ψ̂r =
2

(nk̂1)2 − nk̂2

kikj.

Note that for Hansen-Hurwitz ratio estimator (4.31), we can just plug in the observed

degrees ki and kj of sampled nodes, and don’t need to estimate any selection probabilities.
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4.5.3. Estimation of πr

For Horvitz-Thompson estimator, we can estimate τi identified in (6.16) by

(4.63) τ̂i =
|s∗|
n ˆ̄θ

θ̂i,

where

(4.64) θ̂i = 1− (1− ki

nk̂1

)t

and

(4.65) ˆ̄θ =

1
|s|
∑

i∈s
θ̂i
φi

1
|s|
∑

i∈s
1
φi

=

1
|s|
∑

i∈s
θ̂i

ki/K

1
|s|
∑

i∈s
1

ki/K

=

∑
i∈s

θ̂i
ki∑

i∈s
1
ki

.

Consequently, we can estimate πr by

(4.66) π̂r = τ̂iτ̂j.

4.6. Evaluation Metrics

To evaluate the performance of an estimator, we take K random walk samples from

the population graph G, compute the estimate from each sample, and then apply the

following four evaluating metrics to get an overall assessment for the estimator.

4.6.1. Box plots

We first plot the histogram of the population SPLD. For each value of the population SPL,

we place a box plot of sample estimates on the corresponding position of the histogram.
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Figure 4.6.1 is an example of box plots of Hansen-Hurwitz ratio estimates based on 100

samples taken from a scale-free network of size 1000. For each sample, a single random

walk of 200 steps is used to produce the induced subgraph for the sample SPL to be

observed.

Figure 4.6.1. Box plots of estimated SPLDs on the histogram of population SPLD.

4.6.2. Mean Absolute Difference (MAD)

For each value of population SPL l, the Mean Absolute Difference (MAD) for the esti-

mated fraction P̂ (l) is

(4.67) mad(l) = E(|P̂ (l)− P (l)|).
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The empirical MAD for SPL l from K samples is

(4.68) MAD(l) =
1

K

∑
k

|P̂k(l)− P (l)|,

with estimated variance

(4.69) ˆV ar(MAD(l)) =
1

K

∑
k(|P̂k(l)− P (l)| −MAD(l))2

K − 1
.

Averaging all possible values of population SPL, the MAD for the estimated SPLD P̂

is

(4.70) MAD =
1

L

∑
l

MAD(l),

with estimated standard error

(4.71) ŝe(MAD) =
1

L

√∑
l

ˆV ar(MAD(l))

4.6.3. Root Mean Square Error (RMSE)

For each value of population SPL l, the Root Mean Square Error (RMSE) for the estimated

fraction P̂ (l) is

(4.72) rmse(l) =

√
E[(P̂ (l)− P (l))2].

The empirical RMSE for SPL l from K samples is

(4.73) RMSE(l) =

√
1

K

∑
k

(P̂k(l)− P (l))2,
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with estimated variance

(4.74) ˆV ar(RMSE(l)) =
1

K

∑
k(

√
(P̂k(l)− P (l))2 −RMSE(l))2

K − 1
.

Averaging all possible values of population SPL, the RMSE for the estimated SPLD

P̂ is

(4.75) RMSE =
1

L

∑
l

RMSE(l),

with estimated standard error

(4.76) ŝe(RMSE) =
1

L

√∑
l

ˆV ar(RMSE(l)).

4.6.4. Kullback-Leibler Divergence (KL)

To measure the difference between two discrete distributions: estimated SPLD P̂k from

the kth sample, and population SPLD P , we can use the symmetrised Kullback-Leibler

divergence:

(4.77) KL(k) =
∑
l

P̂k(l)log
P̂k(l)

P (l)
+
∑
l

P (l)log
P (l)

P̂k(l)
.

The average Kullback-Leibler divergence over all K samples is

(4.78) KL =
1

K

∑
k

KL(k),
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with estimated standard error

(4.79) ŝe(KL) =

√
1

K

∑
k(KL(k)−KL)2

K − 1

In practice, since the values of KL are much almost ten times as large as the values of

MAD and RMSE, we will use KL/10 to keep the three numerical measures in the same

scale.

4.7. Simulation Study

In this section, we present several simulation studies to assess the performance of the

methods we proposed in Section 4. More specifically, by using the evaluation techniques

discussed in section 4.6, we 1) test on different values of c.v. of degree distribution to

explore the conditions for random walks to uncover shortest paths; 2) test on various

lengths and numbers of random walks and different estimators to find the best sampling

design; 3) compare our estimates based on approximated SPLs to the unweighted sample

SPLDs and estimates based on actual SPLs to evaluate the estimation performance.

4.7.1. Conditions for Random Walks to Uncover Shortest Paths

In Section 4.4.4, we generalized the condition for random walks to uncover shortest paths

to having a large c.v. of degree distribution. In this section, we will first verify the strong

ability of random walks from scale-free networks in uncovering shortest paths. And based

on that, we will explore the range of c.v. which allows the random walks to perform well

in uncovering shortest paths in general networks. To assess the performance, we will look

at the proportion of shortest paths uncovered by the random walk sample. We will use
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networks with gamma degree distributions as an example of general networks.

In addition, as discussed by Ribeiro, Basu, and Towsley [6], in networks with large

degree variability, the fraction of edges with at least one its endpoints visited by the ran-

dom walk is large. In this paper, we are more concerned about the fraction of edges in

the induced subgraph, i.e., with edges with both endpoints visited by the random walk,

because they are what we use to measure sample SPLs. If more edges are included in the

induced subgraph, it is more likely to observe the true shortest paths from the sample.

Let E.f denote the fraction of edges with both of its endpoints visited by the random

walk, that is, the fraction of edges in the induced subgraph. One should expect large

values of E.f for networks with large value of c.v.

For each network of size 1000, a single random walk of 200 steps is implemented to

produce the induced subgraph. For each dyad in the subgraph, we take the difference

between its sample SPL (SPL observed in the induced subgraph) and population SPL

(SPL observed in the population graph, i.e., true SPL). Note that the sample SPL is

always as large as or larger than the population SPL, as a node may take more steps in

the subgraph to reach another node than it would in the population graph. Therefore the

value of this difference has a range {0, 1, 2, ...}. For each value of population SPL, we plot

the distribution of difference between sample SPL and population SPL. The proportion

of uncovered shortest paths by the random walk sample is equal to the proportion of

zero difference between sample SPL and population SPL. Therefore, we expect a large

proportion with zero difference to show that the random walk sample is performing well
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in uncovering the true SPL.

1) Scale-free networks v.s. Erdős-Rényi networks

We first compare a Erdős-Rényi network and a scale-free network, both of which have

average degree around 6. In Figure 4.7.1, we observe a large proportion of zero differ-

ence for each value of SPL in the scale-free network, which indicates that random walks

have strong ability in uncovering the true shortest paths. However, in the Erdős-Rényi

network, we don’t see a large proportion of zero difference, for any value of SPL greater

than 1. Therefore the ability of random walks to uncover the true shortest paths in the

Erdős-Rényi is very weak. This is to be expected, since the c.v. of degree distribution

of the scale-free network is much larger than that of the Erdős-Rényi network. What’s

more, we notice that E.f in the scale-free network is larger than that in the Erdős-Rényi

network, which also explains why random walks are doing a better job in uncovering

shortest paths in the scale-free network.
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(a) Erdős-Rényi, n = 1000, β = 0.2 (b) scale-free, n = 1000, β = 0.2

Figure 4.7.1. Erdős-Rényi network v.s. scale-free network: distribution of

difference between sample SPL and population SPL.

2) General Networks

A more general condition for random walks to uncover shortest paths is that the degree

distribution has a large coefficient of variation (c.v.). To explore how large the c.v. needs

to be in order for the random walk to perform well in uncovering the shortest paths, we

compare 4 networks with gamma degree distributions.

As one would expect, as the c.v. increases from 0.8 in network (c) to 2.4 in network (f),

E.f increases, which means more edges are observed in the induced subgraph, and there-

fore the proportion of zero difference between sample SPL and population SPL increases.

When c.v. reaches 1.8 in network (e), the distribution of difference between sample SPL

and population SPL looks very close to that for the scale-free network in Figure 4.7.1.
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When c.v. increases from 1.8 in network (e) to 2.4 in network (f), there is still an increase

in the proportion of zero difference between sample SPL and population SPL, but not

very substantial. One should also notice that c.v. for the scale-free network in Figure

4.7.1 is 2.4. Combining the empirical results from some real networks in section 6, we

get some insight about the value of c.v. we need for the random walk to perform well in

uncovering shortest paths:

1) If the c.v. is much smaller than 2, the random walk is not able to uncover the

shortest paths;

2) If the c.v. is around 2, the random walk has the ability to uncover the shortest

paths, but the performance may vary from case to case;

3) If the c.v is much larger than 2, the random walk has strong ability to uncover most

of the shortest paths between the sampled nodes.

As network (f) has the same value of c.v. as the scale-free network (b), we will use

degree sequence generated from Gamma(0.125, 40) + 1 to generate networks as an exam-

ple for networks with large c.v. in the rest of this simulation section. And we will use

degree sequence generated from Gamma(1, 5) + 1 (setting for network (c)) to generate

networks as an example for networks with small c.v.. In order to evaluate the estimation

performance, for a given network, a specific sampling design and a specific estimator, a

total of K = 100 random walk samples will be drawn from the network. An estimate will

be computed from each of the samples. Then the 100 estimates will be used to construct

the the box plots and calculate the three numerical measures discussed in section 4.6.
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(c) Gamma(1,5)+1, n = 1000, β = 0.2 (d) Gamma(0.5,10)+1, n = 1000, β = 0.2

(e) Gamma(0.25,20)+1, n = 1000, β = 0.2 (f) Gamma(0.125,40)+1, n = 1000, β = 0.2

Figure 4.7.2. Networks with Gamma degree distribution: distribution of

difference between sample SPL and population SPL.
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4.7.2. Sampling designs for Random Walks

In this section, we will explore random walk sampling designs for estimating the popula-

tion SPLD. We will also compare the performance of different estimators. Basically, we

will answer the following four questions:

1) For networks with large c.v., how many steps do we need in a single random walk

in order to get a good estimation?

2) For networks with small c.v., how many nodes do we need to use as landmarks and

how many steps do we need in a single random walk in order to get a good estimation?

3) Will multiple random walks outperform a single random walk, given fixed sampling

budget?

4) For a fixed sampling design, how will the performance differ by using different

estimators?

4.7.2.1. Length of Random Walks for Networks with Large c.v.

For networks with large c.v. in degree distribution, we use the observed SPLs in the

induced subgraph to approximate the actual SPLs between sampled nodes. In order to see

the effect of length of a single random walk on the estimation performance, we implement

single random walks with sampling budget β = 0.05(0.05)0.5, where x = a(r)b means x

increasing from a to b, with r increment at each time. This process is applied to networks

with c.v. = 2.4 and size n = 1, 000, n = 5, 000, and n = 10, 000. The estimator we use

here is the generalized Hansen-Hurwitz ratio estimator, denoted as HH.ra.
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In Figure 4.7.3, the values of the three numerical measures of accuracy keep decreas-

ing, as we increase the sampling budget from 0.05 to 0.5. That means, the estimation

performance is improving as the single random walk gets longer, which is to be expected.

However, the improvement is dramatic as the sampling rate reaches 0.2, and becomes mod-

erate beyond that. Therefore, it is appropriate to set the minimum sampling budget β to

be around 0.2 for the estimation to perform well. Let’s now assume β∗ = β = 0.2, then the

computing time of approximating SPLs between all sampled nodes is 0.04n(m+n). Com-

paring it to the computing time of actual distances between all sampled nodes 0.2n(m+n),

approximating the SPLs leads to 80% reduction in computational time. Recalling that

the original computing time for DSPL is n(m+ n), using sampling and approximation of

SPLs achieves 96% reduction in computational time for networks with large c.v..

Another thing we can notice from Figure 4.7.3 is that the estimation performance is

better in larger networks. More specifically, as we increase the network size, the estimates

stay unbiased and their variance gets smaller. One possible reason for this phenomenon is

the small world effect. For a fixed sampling budget, the sample size increases linearly with

the network size, while the shortest path lengths only increases in the log scale. Therefore

even with the same sampling budget, a random walk in a large network is relatively

“longer” than that in a small network, and thus has a stronger ability in uncovering the

shortest paths.
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(a) n = 1000, c.v. = 2.4 (d) n = 1000, c.v. = 2.4, β = 0.2

(b) n = 5000, c.v. = 2.4 (e) n = 5000, c.v. = 2.4, β = 0.2
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(c) n = 10000, c.v. = 2.4 (f) n = 10000, c.v. = 2.4, β = 0.2

Figure 4.7.3. Estimation performance of the generalized Hansen-Hurwitz

ratio estimator versus sampling budget (β) of the random walk in a networks

with large c.v., measured by MAD, RMSE, and KL (low values are bet-

ter).

4.7.2.2. Size of Landmarks and Length of Random Walks for Networks with

Small c.v.

For networks with small c.v. in degree distribution, due to the lack of powerful hubs,

random walks lack strong ability to uncover shortest paths. As discussed in section 4.4.4,

an alternative way is to use landmarks to estimate the SPLs between sampled nodes. We

proposed using nodes in the sample with high degrees as landmarks, and a remaining

question is the size of landmark set.

In order to see the effect of landmark size and single random walk length on the

estimation performance, we will:
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1) Fix the sampling budget at β = 0.2 and let γ = 0.05(0.05)0.5 to find the minimum

fraction γ0 for good estimation;

2) Fix the fraction of landmarks at γ = γ0, implement single random walks with sam-

pling budget β = 0.05(0.05)0.5, and check if a random walk with β < 0.2 is also acceptable.

The above process is applied to networks with c.v. = 0.8 and size n = 1, 000,

n = 5, 000, and n = 10, 000, as shown in Figure 4.7.4 and 4.7.5. The estimator we

use here is the generalized Hansen-Hurwitz estimator, denoted as HH.ra.

In Figure 4.7.4, the values of the three numerical measures are decreasing as γ in-

creases from 0.05 to 0.2, and stay almost stable after 0.3. Thus we can use γ0 = 0.3 as

the minimum fraction of landmarks. In Figure 4.7.5, for large networks when n = 5, 000

or n = 10, 000, the estimation performance is very good if we use a sampling budget as

large as β = 0.2. We can also use s smaller sampling budget such as 0.15 or even 0.1

for large networks since the estimation error will not increase too much. If we assume

β∗ = β = 0.2 and use γ = 0.3, the pre-computing time of approximating SPLs between all

sampled nodes is 0.06n(m+ n). Comparing it to the computing time of actual distances

between all sampled nodes 0.2n(m+ n), approximating the SPLs leads to 70% reduction

in computational time. Recalling that the original computing time for DSPL is n(m+n),

using sampling and approximation of SPLs achieves 94% reduction in computational time

for networks with small c.v..
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Similar to networks with large c.v., for networks with small c.v. we also notice that

the estimation performance is better in larger networks. A possible reason is that as we

increase the network size and fix sampling budget and landmark fraction, the number of

landmarks is getting larger. And with more landmarks it is more likely to get a precise

estimation of the SPLs between sampled nodes.

On the other hand, Figure 4.7.6 shows the change of RMSE as we increase the land-

mark size γ for different values of random walk length β. As expected, the lines for larger

β are below the lines for smaller β. The means if the random walk is longer, less landmarks

are needed. To save computation time of breadth-first search, we want the value of βγ

to be as small as possible. The questions remains whether to use large β and small γ or

to use small β and large γ. Ideally the latter is better because by doing that we can also

save the sampling cost. Suppose we want the RMSE to be as small as 0.01, there are four

available combinations of β and γ listed in Table 4.1 to achieve this accuracy. Among

them β = 0.1 and γ = 0.5 is the best because it achieves both the smallest sampling

budget and the shortest computation time for BFS.
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(a) n = 1000, c.v. = 0.8, β = 0.2 (d) n = 1000, c.v. = 0.8, β = 0.2, γ = 0.3

(b) n = 5000, c.v. = 0.8, β = 0.2 (e) n = 5000, c.v. = 0.8, β = 0.2, γ = 0.3
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(c) n = 10000, c.v. = 0.8, β = 0.2 (f) n = 10000, c.v. = 0.8, β = 0.2, γ = 0.3

Figure 4.7.4. Estimation performance of the generalized Hansen-Hurwitz

ratio estimator versus size (γ) of landmarks in a network with small c.v.,

measured by MAD, RMSE and KL (low values are better).
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(a) n = 1000, c.v. = 0.8, γ = 0.3 (d) n = 1000, c.v. = 0.8, γ = 0.3, β = 0.2

(b) n = 5000, c.v. = 0.8, γ = 0.3 (e) n = 5000, c.v. = 0.8, γ = 0.3, β = 0.2
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(c) n = 10000, c.v. = 0.8, γ = 0.3 (f) n = 10000, c.v. = 0.8, γ = 0.3, β = 0.2

Figure 4.7.5. Estimation performance of the generalized Hansen-Hurwitz

ratio estimator versus sampling budget (β) of the random walk in a network

with small c.v., measured by MAD, RMSE, and KL (low values are bet-

ter).
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(a) RMSE (b) 1/RMSE

Figure 4.7.6. Estimation performance of the generalized Hansen-Hurwitz

ratio estimator versus size (γ) of landmarks for different sampling budgets

(β) of the random walks in a network with n = 5000 and c.v. = 0.8 (small

c.v.).

β γ βγ

0.4 0.25 0.1

0.3 0.3 0.09

0.2 0.375 0.075

0.1 0.5 0.05

Table 4.1. Comparison of combinations of sampling budget of the random

walk (β) and landmark size (γ) to achieve RMSE ≈ 0.01 in a network with

n = 5000 and c.v. = 0.8 (small c.v.).
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4.7.2.3. Number of Random Walks

To compare the estimation performance with a single random walk and multiple ran-

dom walks, we fix the total sampling budget and takeH independent random walk samples

with H ranging from 1 to 6. For networks with large c.v., we fix the total sampling budget

at β0 = 0.2. For networks with small c.v., we fix the total sampling budget at β0 = 0.2

and use γ0 = 0.3 as the landmark fraction.

As we can observe in Figure 4.7.7, for both networks, the three numerical measures are

stable as we increase the number of random walks from 1 to 6. Therefore, when keeping

the total sampling budget fixed, using multiple random walks will not improve the estima-

tion performance. In the case of networks with large c.v, the reason for this phenomenon

is explained by Ribeiro, Basu, and Towsley [6]. As they have shown in their work, if the

network has a large variance in degree distribution, two random walks intersect with high

probability, and thus the subgraph induced by multiple random walks will be very similar

to that induced by a single random walk. In the case of networks with small c.v., where

we use landmarks to estimate the SPLs between sampled nodes, although the landmarks

found by a single random walk and those by multiple random walks are not necessarily

the same, our simulation showed that they have similar and high betweenness centralities.

We can therefore infer that they will play similar roles in estimating the distances between

other nodes.
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(a) n = 5000, c.v. = 2.4, β = 0.2 (b) n = 5000, c.v. = 0.8, β = 0.2, γ = 0.3

Figure 4.7.7. Estimation performance of the generalized Hansen-Hurwitz

ratio estimator versus number (H) of random walks, measured by MAD,

RMSE, and KL (low values are better).

4.7.2.4. Comparison of Estimators

In this section, we compare the performances of the four estimators proposed in sec-

tion 4.4. For generalized Hansen-Hurwitz estimator, Horvitz-Thompson estimator, and

Horvitz-Thompson ratio estimator, ψr’s and πr’s are estimated by the expressions dis-

cussed in section 4.5, therefore the estimates are denoted by HH.or.s, HT.or.s, and HT.ra.s,

respectively. For generalized Hansen-Hurwitz ratio estimator, we just need to use the ac-

tual degrees of sampled nodes to compute the estimates, thus the estimates are denoted as

HH.ra. The comparison based on numerical evaluations measures and comparison based

on box plots are shown in Figure 4.7.8.
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From the numerical comparison, one can observe that the Horvitz-Thompson ratio

estimator is doing a slightly better job than the other three estimators. As we can ob-

serve from the comparison of box plots, the Horvitz-Thompson ratio estimator exhibits

smaller variance than the Hansen-Hurwitz ratio estimator. There are two reasons for this

phenomenon. According to the Rao-Blackwell theorem [33] (p.342), if θ̂ is an unbiased

estimator of θ and θ∗ = E(θ̂|T ) where T is the sufficient statistic for θ, then θ∗ is also

an unbiased estimator of θ and V ar(θ∗) ≤ V ar(θ̂), and the inequality is strict unless θ is

a function of T . That is, for any unbiased estimator that is not a function of the suffi-

cient statistic, one may always obtain an unbiased estimator, depending on the sufficient

statistic, that is better in terms of smaller variance. For the finite population sampling

situation, the minimal sufficient statistic T is the unordered set of distinct, labeled ob-

servations [34]. Therefore, the Hansen-Hurwitz estimator t̂HH is not a function of the

minimal sufficient statistic while the Horvitz-Thompson estimator t̂HT is. Note that both

t̂HH and t̂HT are unbiased estimators for t. Based on the Rao-Blackwell theorem, we

can always find another unbiased estimator W = E(t̂HH |T ) such that W has a smaller

variance than t̂HH , while we cannot find such an estimator for t̂HT as t̂HT = E(t̂HT |T ).

Therefore t̂HT is expected to have a smaller variance than t̂HH . Second, since the ratio

form ensures that the estimated fractions for all values of SPL sum to 1, it stabilizes

the estimators and therefore has a smaller variance than the original form. Theses two

reasons make it not surprising for the Horvitz-Thompson ratio estimator to perform best

among the four estimators.
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In Figure 4.7.9, we compare the performance of the Horvitz-Thompson ratio estima-

tor and the generalized Hansen-Hurwitz ratio estimator by plotting their RMSE versus

the sampling budget β. As one can observe, for the Horvitz-Thompson ratio estimator,

we can use a smaller sampling budget to achieve the same estimation precision as the

generalized Hansen-Hurwitz ratio estimator. For example, in network (a), the estimation

precision by the generalized Hansen-Hurwitz ratio estimator with 20% sampling budget

can be achieved by the Horvitz-Thompson ratio estimator with only about 12.5% sam-

pling budget. People can choose to use the Horvitz-Thompson ratio estimator to save

sampling cost while achieving a high estimation accuracy. But given that the generalized

Hansen-Hurwitz ratio estimator requires less computational work and its estimation per-

formance is close to that of the Horvitz-Thompson ratio estimator, it is still preferable to

use in practice.



104

(a) n = 5000, c.v. = 2.4, β = 0.2 (b) n = 5000, c.v. = 2.4, β = 0.2

(c) n = 5000, c.v. = 0.8, β = 0.2, γ = 0.3 (d) n = 5000, c.v. = 0.8, β = 0.2, γ = 0.3

Figure 4.7.8. Estimation performance versus estimators, measured by

MAD, RMSE, and KL (low values are better).
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(a) n = 5000, c.v. = 2.4, β = 0.2 (b) n = 5000, c.v. = 0.8, β = 0.2, γ = 0.3

Figure 4.7.9. RMSE of the generalized Hansen-Hurwitz ratio (HH.ra) esti-

mator and the Horvitz-Thompson ratio estimator (HT.ra.s) versus sampling

budget (β).

4.7.3. Evaluation of Estimation

In order to evaluate how well our estimates from section 4.4 perform in estimating the

population SPLD, we first compare the generalized Hansen-Hurwitz ratio estimates, de-

noted by HH.ra, to the unweighted sample SPLDs observed from the induced subgraphs,

denoted by UW. Note that by using HH.ra, we are correcting bias from UW, but the bias

to be corrected for networks with large c.v. and networks with small c.v are different. For

networks with large c.v., we only correct the bias from unequal sampling probabilities,

because we are still using the observed SPLs between sampled nodes from the induced

subgraph. For networks with small c.v., we correct bias from both unequal sampling prob-

abilities and not observing the true SPLs between sampled nodes, as we use landmarks
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to estimate those SPLs.

From the numerical comparison of UW and HH.ra in Table 4.2, one can observe that

for both networks, about 90% of the estimation error in UW is reduced by using HH.ra.

In Figure 4.7.10, one can observe that for networks with large c.v. as shown in (a), the

box plots for UW are shifted to the left of the population SPLD. This is because dyads

with shorter SPLs are more likely to the be sampled than dyads with longer SPLs, and

thus the fractions of dyads with shorter SPLs are over estimated while the fractions of

dyads with long SPLs are under estimated. Therefore for networks with large c.v., bias

from unequal sampling probabilities is dominating in the estimation error of UW. For

networks with small c.v. as shown in (b), the box plots for UW are shifted to the right

of the population SPLD. This is because the many observed SPLs are longer than the

true SPLs. Therefore in networks with small c.v., bias from not observing the true SPLs

between sampled nodes is dominating in the estimation error of UW, and thus correcting

it is necessary. For both networks, after applying HH.ra, the box plots stay at the right

positions on the histogram with short whisker, which means the estimates are unbiased

and have small variance.

On the other hand, in order to see how much we can improve if we can actually observe

the true SPLs between sampled nodes, we compare our HH.ra based on approximated

SPLs, to the generalized Hansen-Hurwitz estimates based on the true SPLs between sam-

pled nodes, denoted by HH.ra.l. As we can observe, there will still be some improvement

if we use the latter, but the improvement will not be huge. More specifically, in Table



107

4.2, the improvement from HH.ra to HH.ra.l is only about 10%. In Figure 4.7.10, we can

also see that the box plots for HH.ra and those for HH.ra.l are really close. Therefore

in practice, we will prefer to base our estimates on the approximated SPLs for saving

computation time and not loosing much estimation accuracy.

n = 5000, c.v. = 2.4 n = 5000, c.v. = 0.8

β = 0.2 β = 0.2, γ = 0.3

MAD RMSE KL MAD RMSE KL

UW .114 .115 0.161 .101 .103 .213

HH.ra .010 .012 .0025 .011 .014 .003

HH.ra.l .009 .011 .0023 .010 .013 .003

Table 4.2. Numerical comparison of the unweighted sample SPLD observed

from the induced subgraphs (UW), the generalized Hansen-Hurwitz ratio

estimates based on approximated SPL (HH.ra), and the generalized Hansen-

Hurwitz ratio estimates based on actual SPL (HH.ra.l).
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(a) n = 5000, c.v. = 2.4, β = 0.2 (b) n = 5000, c.v. = 0.8, β = 0.2, γ = 0.3

Figure 4.7.10. Box plots of the unweighted sample SPLD observed from the

induced subgraphs (UW), the generalized Hansen-Hurwitz ratio estimates

based on approximated SPL (HH.ra), and the generalized Hansen-Hurwitz

ratio estimates based on actual SPL (HH.ra.l)

4.8. Adjusted Estimator by Weighted Average

While the estimators we proposed and discussed in the previous sections are non-

parametric estimators which are not based on the degree distribution of the population

network, Nitzan et al. [12] presented some analytical results for the DSPL between ran-

dom pairs of nodes in configuration model networks, as discussed in section 3.5. In Figure

4.8.1, we compared the estimation performance of the generalized Hansen-Hurwitz ratio

estimator (HHE), f̂GHH.rl , and that of the configuration-model estimator (CME), f̂ml .

For both networks, the CME is biased. More specifically the proportions of dyads with

shorter SPLs are over estimated and the proportions of dyads with longer SPLs are under
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estimated. To investigate the source of bias, we also computed the CME using the actual

degree distribution. As one can observe, the bias in the CME is not corrected by using the

actual degree distribution, so we can infer that the bias is from computing the DSPL from

the estimated degree distribution, instead of from estimating the degree distribution. On

the other hand, the HHE is almost unbiased in network (a) with large c.v. and slightly

biased in network (b) with small c.v. where the proportions of dyads with shorter SPLs

are under estimated and the proportions of dyads with longer SPLs are over estimated.

Since the bias of the HHE and the bias of the CME have different directions, we consider

using the weighted average of them to adjust for any possible bias of the HHE.

(a) n = 1000, c.v. = 2.4, β = 0.2 (b) n = 1000, c.v. = 0.8, β = 0.2, γ = 0.3

Figure 4.8.1. Box plots of the generalized Hansen-Hurwitz estimator

(HHE), the configuration-model estimator based on estimated degree dis-

tribution (CME), and the he configuration-model estimator based on actual

degree distribution (CME with a.d.).
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Letting α, 0 < α < 1, denote the weight for the HHE, we define the adjusted estima-

tor(AE), denoted as f̂adjl , to be

(4.80) f̂adjl = αf̂GHH.rl + (1− α)f̂ml .

Recall that the goal of using the weighted average is to improve the estimation perfor-

mance, so we will use root mean square error (RMSE) as a measure of that. Theoretically

the optimal weight α∗ will be to the weight by which the RMSE of the weighted average

is minimized, i.e.,

(4.81) α∗ = argmin
α

RMSE(f̂adjl )

In practice, an intuitive approach to find the theoretical α∗ is to solve equation

(4.82) M = αMGHH.r + (1− α)Mm

for α, where M is the true average SPL of graph G, MGHH.r is the average SPL computed

from HHE f̂GHH.rl , and Mm is the average SPL computed from CME f̂ml . That is

(4.83) α∗ =
M −Mm

MGHH.r −Mm
.

In Figure 4.8.2, we plotted the adjusted estimates with weight found by Eq.(4.83)

for (a) a simulated network with c.v. = 0.8 and (b) a real network: P2P network with

c.v. = 0.9. For both networks, the weighted average has smaller bias variance for each

SPL, so the RMSE of the weighted average will be smaller than the HHE.
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(a) simulated network n = 1000, c.v. = 0.8 (b) P2P network, c.v. = 0.9

Figure 4.8.2. Box plots of the generalized Hansen-Hurwitz estimator

(HHE), the configuration-model estimator based on estimated degree dis-

tribution (CME), and the adjusted estimator (AE) with weight found by

(4.83).

From results in Figure 4.8.2, using equation (4.83) is a reasonable approach to find

the optimal weight α∗. However in practice, we won’t know the true average SPL M

without full access to the population network. Therefore we need to seek for a practical

solution for weight that works for most networks. In general, if we want to pick one value

for α for all networks, it’s better to set the value large rather than small. If the value of

α we use is large, then it will be a little too conservative to some networks with small

c.v., i.e., we are not making the maximum improvement, but we are still making some

improvement for those networks and are not over-correcting the bias for networks with

large c.v.. However, if we use a small value of α, then more weight is put on to the CME,

and we will be over-correcting the bias for networks with large c.v.. After calculating α∗’s

for 6 simulated networks with various values of c.v., we found that α = 0.8 is a reasonable
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choice. The RMSE reduced by using the optimal α and that by using α = 0.8 is listed on

Table 4.3.

pk c.v. α∗ RMSE RMSE Reduction in Reduction in

by HHE by CME RMSE (α = α∗) RMSE (α = 0.8)

Gamma(4, 1.25) 0.41 0.42 0.0212 0.0205 42.13% 24.73%

Gamma(2, 2.5) 0.57 0.57 0.0196 0.0249 28.61% 21.67%

Gamma(1, 5) 0.87 0.6 0.0260 0.0252 28.04% 18.45%

Gamma(0.8, 6.25) 0.97 0.62 0.0330 0.0292 25.57% 16.52%

Gamma(0.5, 10) 1.18 0.86 0.0224 0.0367 8.59% 10.33%

Gamma(0.25, 20) 1.66 0.85 0.0260 0.0496 9.77% 10.79%

Table 4.3. Reduction in RMSE by using the adjusted estimator (AE).

4.9. Real Networks

In this section, we test our SPLD estimation methods on data from eight real world

networks. These data are available on the SNAP (Stanford Network Analysis Project)

website. To simplify the analysis, we only consider nodes in the largest connected compo-

nent. Table 4.4 summarizes the basic information for each network used in out test. These

networks vary in size, number of edges, average degree, and most importantly, coefficient

of variation. We compare the HH.ra estimates based on observed SPLs from induced

subgraph (obs SPL) versus those based on estimated SPLs by landmarks (est SPL). For

estimates based on observed SPLs from induced subgraph, we use a single random walk

with 20% sampling budget. For estimates based on estimated SPLs by landmarks, we

use a single random walk with 20% sampling budget and 30% of the sampled nodes as
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landmarks. The results are shown in Table 4.5, Figure 4.9.1, and Figure 4.9.1.

As shown in plot (a), (b), and (c) in Figure 4.9.1, the estimates based on observed

SPLs of the first three real networks, Oregon, AS-733, and Email-Enron are very good.

This is not surprising, as the c.v.’s for those networks are all much larger than 2, which

indicates the existence of hubs. In addition, the performance on Email-Enron network is

the best among these three, as measured by the small values in MAD, RMSE, and KL

in Table 4.5. This is also to be expected, since Email-Enron network has the largest size

among the three. According to our discussion in previous sections, our estimation method

tends to perform better for larger networks.

When the c.v. gets closer to 2, the performance of estimation based on observed SPLs

varies from case to case. For example, the SPLD of CA-HepPh network is a little over-

estimated, while the SPLD of Wiki-Vote network is very well estimated. As one can

observe, the average distance in CA-HepPh network is longer than the average distance

in Wiki-Vote network, therefore random walks in CA-HepPh network are having a harder

time in finding the true shortest paths. The performance of estimation is getting worse as

the c.v. decreases to some value below 1.5, and even below 1. For networks CA-HepTh,

CA-GrQc, and P2P, the SPLDs are highly over estimated. The worst case happens to

the P2P network, which only has c.v. = 0.9. Since there’s no powerful hub in networks

(f), (g), and (h) , its really hard for random walks to find the shortest paths.
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Alternatively, we can base the estimates on the estimated SPLs by landmarks. As one

can notice, for networks whose estimates based on the observed SPLs are good, such as

(a), (b), (c), and (e), there won’t be much improvement if we base the estimates on the

estimated SPLs. However, for networks with small value in c.v., whose estimates based on

the observed SPLs are far from the true SPLDs, such as (f), (g), and (h), using estimated

SPLs will correct the bias from not observing true SPLs in the induced subgraph and

therefore result in much better estimation performance.

Network nodes edges < k > cv E.f

Oregon 10.7K 22K 4.1 7.6 0.162

AS-733 6.4K 13.2K 4.3 5.8 0.140

Email-Enron 33.7K 361.7K 21.5 3.5 0.298

CA-HepPh 11.2K 235.2K 42 2.29 0.361

Wiki-Vote 7.1K 103.7K 29.3 2.06 0.254

CA-HepTh 8.6K 49.6K 11.5 1.12 0.107

CA-GrQc 4.2K 26.8K 12.9 1.34 0.129

P2P 10.9K 40K 7.4 0.9 0.093

Table 4.4. Basic information of real networks.
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HH.ra by MAD RMSE KL

Oregon obs SPL .012 .014 .0032

est SPL .011 .014 .0029

AS-733 obs SPL .016 .021 .0055

est SPL .016 .020 .0051

Email-Enron obs SPL .0069 .009 .0023

est SPL .0085 .010 .0032

CA-HepPh obs SPL .026 .032 .026

est SPL .016 .022 .011

Wiki-Vote obs SPL .014 .018 .0028

est SPL .015 .018 .0029

CA-HepTh obs SPL .028 .034 .054

est SPL .010 .015 .012

CA-GrQc obs SPL .031 .038 .062

est SPL .015 .024 .0225

P2P obs SPL .086 .087 .13

est SPL .009 .010 .0012

Table 4.5. Numerical evaluation measures of estimated SPLDs of real net-

works: HH.ra by observed SPL (β = 0.2) v.s. HH.ra by estimated SPL by

landmarks (β = 0.2, γ = 0.3).
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(a) Oregon (c.v. = 7.6) (b) AS-733 (c.v. = 5.8)

(c) Email-Enron (c.v. = 3.5) (d) CA-HepPh (c.v. = 2.29)

Figure 4.9.1. Box plots of estimated SPLDs of real networks: HH.ra by

observed SPL (β = 0.2) v.s. HH.ra by estimated SPL by landmarks (β =

0.2, γ = 0.3)(part 1).
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(e) Wiki-Vote (c.v. = 2.06) (f) CA-HepTh (c.v. = 1.12)

(g) CA-GrQc (c.v. = 1.34) (h) P2P (c.v. = 0.9)

Figure 4.9.2. Box plots of estimated SPLDs of real networks: HH.ra by

observed SPL (β = 0.2) v.s. HH.ra by estimated SPL by landmarks (β =

0.2, γ = 0.3)(part 2).

4.10. Summary of Results

By applying the estimators proposed in section 4.4 and evaluation metrics discussed

in section 4.6 to the simulated networks studied in section 4.7, we have the following

findings:
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• When a network has c.v. > 2 in degree distribution, random walks have strong

ability to discover the actual shortest paths between sampled nodes. Therefore

we can use the observed SPLs between sampled nodes in the induced subgraph to

approximate their actual SPLs.

• When a network has c.v. < 2 in degree distribution, random walks don’t have

strong ability to discover the actual shortest paths between sampled nodes. There-

fore we need to do breadth-first search in the population graph to get the actual

SPLs, but only to a fraction, such as 30%, of the sampled nodes (known as ”land-

marks”), and use that information to approximate the SPLs between other sampled

nodes.

• The estimation performance improves as sampling budget increases, with dramatic

improvement as the sampling budget reaches 20% and moderate improvement

beyond that.

• If we use 20% as sampling budget, using sampling and approximation of SPLs

between sampled nodes will achieve 96% reduction in computational time for net-

works with large c.v. and 94% reduction for networks with small c.v..

• If we fix the total sampling budget, such as 20%, using a single random walk

performs equally well as using multiple random walks.

• To a small degree, the Horvitz-Thompson ratio estimator outperforms the other

estimators, but the generalized Hansen-Hurwitz ratio estimator is still preferable

to use in practice given its high estimation accuracy and easiness in computation.

• The estimation performance improves as the network size increases, but tends to

be stable once the network is large enough, such as of size n = 5000 or larger.
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• When the Hansen-Hurwitz ratio estimator is slightly biased for networks with small

c.v., we can use the weighted average of it and a configuration-model estimator

proposed by Nitzan, Katzav, Kühn, et al. [12] to adjust for bias. A reasonable

weight to use for the Hansen-Hurwitz ratio estimator is 0.8.

4.11. Discussion and Future Work

In this chapter we studied methods for estimating SPLDs in networks via random walk

sampling. More specifically we applied Hansen-Hurwitz estimator, Horvitz-Thompson es-

timator, and their ratio forms to estimate SPLDs by subgraphs induced by random walk

samples. There are two problems associated with this estimating process: 1) we are not

able to observe the actual SPLs between sampled nodes from the induced subgraph; 2)

pairs of nodes are sampled with unequal probabilities so the unweighted estimator is bi-

ased. To solve the first problem, we used approximations for SPLs. We approximated

the actual SPLs between sampled nodes by their observed SPLs in the induced subgraph

for networks with large c.v. and by the minimum of the sum of their distances to land-

marks for networks with small c.v.. To deal with the second problem, we used weighted

estiamtors: the Hansen-Hurwitz estimator for samples with duplicate and the Horvitz-

Thompson estimator for samples without duplicates. For the Hansen-Hurwitz estimator,

by theory of Markov chains we showed that the inverse of the weight of a pair is approxi-

mately proportional to the product of the degrees of the two nodes when the random walk

is sufficiently long. For the Horvitz-Thompson estimator we approximated the random

walk sampling of nodes by an adjusted multinomial sampling model, and computed the
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weight accordingly.

By applying our proposed estimators to some simulated networks and real networks,

we have found that 1) for large networks, high estimation accuracy can be achieved by

using a single random or multiple random walks with total number of steps equal to at

least 20% of the nodes in the network; 2) about 94% to 96% reduction in computational

time can be achieved by using sampling and approximation of SPLs between sampled

nodes; 3) the estimation performance increases as the network size increases but tends to

stabilize when the network is large enough; 4) a single random walk performs as well as

multiple random walks; 5) the Horvitz-Thompson ratio estimator performs best among

the four estimators.

While the estimator for networks with large c.v. is unbiased, the estimator for net-

works with small c.v. is slightly biased, due to the lack of estimation accuracy for SPLs

between sampled nodes. In section 4.8, we proposed using the weighted average of the

Hansen-Hurwitz ratio estimator and a configuration-model estimator developed by Nitzan,

Katzav, Kühn, et al. [12] to adjust for bias. After developing the theoretical optimal weight

and applying it to several simulated networks we found that 0.8 is a reasonable weight

to use for the Hansen-Hurwitz ratio estimator, and thus the weight for the configuration-

model estimator is 0.2. Based on our simulation results, this adjustment is helpful in

reducing the bias. However, it only works for some real networks and cannot fully elimi-

nate the bias. Therefore one future direction of this work is to develop alternative methods

to further reduce the bias in estimating SPLDs for networks with small c.v.. There are
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two possible approaches: 1) applying or inventing an algorithm to approximate the SPLs

between sampled nodes that can work better than using landmarks; 2) developing a bet-

ter way to adjust for bias from estimator of SPLD based on approximated SPLs using

landmarks.
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CHAPTER 5

Estimation of Closeness Centrality Ranking

5.1. Overview

Closeness centrality measures how close a node is to other nodes in a given network.

In reality people are more interested in the rank of closeness centrality as it measures

the relative importance of a node in the network. People need to compute the closeness

centrality of all nodes in the network in order to find the exact rank of a node, and this

is computationally expensive for large networks. In this chapter we study the problem of

estimating closeness centrality rank via random walk sampling through three stages: 1)

estimating closeness centrality of nodes from a random walk sample by Hansen-Hurwitz

ratio estimator and approximated geodesic distances; 2) estimating the population cumu-

lative distribution function (CDF) of closeness centrality by weighted kernel estimator;

3) for a given node, computing its estimated closeness centrality rank from the estimated

CDF of closeness centrality. Application to simulated networks and real networks show

that the weighted rank estimator performs well in estimating the closeness centrality rank-

ing of a given node: 1) for networks with large c.v.(c.v. > 2), the estimator is unbiased

with moderate standard deviation; 2) for networks with small c.v.(c.v. < 2), the estimator

is slightly biased due to the bias in geodesic distance estimation, but not to a large extent.
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5.2. Definitions

Closeness centrality is a metric that measures how close a node is to other nodes in

a given network. Mathematically, in a network with n nodes, the closeness centrality of

node i, denoted as ci, is defined as the inverse of the mean geodesic distance from node i

to all nodes in the network:

(5.1) ci =
n∑n
j=1 lij

,

where lij is the geodesic distance between node i and node j in the population network.

In reality, we are more interested in the rank of closeness centrality of a node in a

network. It can measure the relative importance of a node in information delivery in a

network. The closeness centrality rank of node i, denoted by Ri, Ri ∈ {1, 2, ..., n}, is the

relative position of node i in the network, based on its value of closeness centrality. For

instance, in a network with n nodes, Ri = 1 if node i has the largest value of ci in the

network, and Ri = n if node i has the smallest value of ci in the network.

Mathematically, we can compute the rank of closeness centrality Ri of node i from its

closeness centrality ci and the CDF of closeness centrality of the network. Let C denote the

random variable for closeness centrality, and let F (c) = P (C ≤ c) denote the cumulative

distribution function (CDF), also called distribution function, of closeness centrality of

the network. In a network with n nodes, we can compute the rank of closeness centrality
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Ri of node i by

(5.2) Ri = (n+ 1)− nF (ci).

5.3. Estimating Methods

When the network is large, computing the closeness centrality for all nodes can be

time consuming, therefore the actual CDF of the network will be unknown. In this case

we consider using sampling to estimate the CDF of closeness centrality of the network

first, and then plug in the value of closeness centrality of a particular node to estimate

its rank of closeness centrality. More specifically, the estimation process has three stages:

1) Estimate closeness centrality of sampled nodes;

2) Estimate the CDF of closeness centrality of population network from the estimated

closeness centrality of sampled nodes;

3) For a particular node, plug in its closeness centrality value into the estimated CDF

to estimate its rank of closeness centrality.

5.3.1. Estimating closeness centrality of sampled nodes

Recall that V ∗ is the set of distinct nodes visited by the H random walks. Let |V ∗| denote

the the size of V ∗. Let dij denote the observed geodesic distance between node i and node

j in the induced subgraph G∗. For any sampled node i, we define its observed closeness

centrality in the sample as

(5.3) cobsi =
|V ∗|∑
j∈V ∗ dij

.
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However, cobsi is biased since 1) nodes in V ∗ are sampled with unequal probabilities

by random walk sampling and 2) the observed geodesic distance dij is not always equal

to the actual geodesic distance lij. To solve the first problem, we generalize the Hansen-

Hurwitz estimators to account for the unequal selection probabilities. To solve the second

problem, we adopt different strategies to approximate the actual geodesic distance lij for

networks with different values of c.v.. For networks with large c.v., we approximate lij by

the observed geodesic distance dij. For networks with large c.v., we approximate lij using

landmarks.

1) Generalized Hansen-Hurwitz Estimator

Let s = {X(1), X(2), ..., X(H)} denote the set of sequences of nodes visited by H ran-

dom walks, including duplicates, and let |s| = H ·B denote the size of s. Let I(X
(h)
b = i)

denote an indicator variable taking the value 1 if node i is visited at the bth step in the hth

random walk, and zero otherwise. Let qi =
∑H

h=1

∑B
b=1 I(X

(h)
b = i), i = 1, ..., n, denote

the number of times node i appears in sample s and let q = (q1, q2, ..., qn)T .

Let ti =
∑n

j=1 lij denote the total geodesic distances from node i to all nodes in the

network, then ci = n
ti

. Using the generalized Hansen-Hurwitz estimator, we can estimate

ti and n by

(5.4) t̂i =
n∑
j=1

qjlij
E(qj)

,
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and

(5.5) n̂ =
n∑
j=1

qj
E(qj)

,

and therefore we can estimate ci by

(5.6)
n

t̂i
=

n∑n
j=1 qjlij/E(qj)

,

or the ratio estimator

(5.7)
n̂

t̂i
=

∑n
j=1 qj/E(qj)∑n
j=1 qjlij/E(qj)

.

Let p = (p1, p2, ..., pn)T , where pi = ki
K

with K =
∑

w kw. As shown in [35], a single

random walk {Xt} on a connected graph G = (V,E) with at least one triangle is an

irreducible and aperiodic Markov chain with a stationary distribution p. According to

Anderson’s (1989) results for irreducible and aperiodic Markov chains, E(q) = pt. Apply-

ing this in our case, we will have E(qj) = |s|kj
K

. We define the Hansen-Hurwitz estimator

for ci by actual geodesic distances as

(5.8) ĉHH.li =
n

K
|s|
∑n

j=1 qjlij/kj
,

and define the Hansen-Hurwitz ratio estimator for ci by actual geodesic distances as

(5.9) ĉHH.ra.li =

∑n
j=1 qj/kj∑n
j=1 qjlij/kj

.

2) Approximating geodesic distances between sampled nodes
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Ribeiro, Basu, and Towsley [6] have shown that random walks have strong ability in

uncovering the shortest paths in networks with high degree variability. Zheng and Spencer

[35] have shown this property generalized to networks with large c.v. (e.g., c.v. > 2). For a

network with large c.v, we propose using the observed geodesic distance dij in the induced

subgraph to estimated the actual geodesic distance lij in the population graph for dyad

(i, j).

For networks with small c.v. in degree distribution, since random walks can’t find the

shortest paths in the induced subgraph, we need to implement breadth-first search (BFS)

on sampled nodes in the population graph to find the shortest paths. However, based on

findings by Potamias, Bonchi, Castillo, et al. [5], the BFS doesn’t have to be applied to

all sampled nodes. Instead, one can apply BFS to only a fraction of the sampled nodes to

find their shortest distances to all other nodes, and use that information to estimate the

shortest distances between other sampled nodes. More specifically, one can first select a

set of nodes as landmarks, denoted as D, pre-compute the SPLs from landmarks to all

other nodes by BFS in the population graph, and estimate the SPL between any arbitrary

pair of nodes i and j by minv∈D{liv + lvj}.

We define the Hansen-Hurwitz estimator for ci by estimated geodesic distances as

(5.10) ĉHHi =
n

K
|s|
∑n

j=1 qj l̂ij/kj
,
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and define the Hansen-Hurwitz ratio estimator for ci by estimated geodesic distances as

(5.11) ĉHH.rai =

∑n
j=1 qj/kj∑n
j=1 qj l̂ij/kj

,

where l̂ij = dij for networks with c.v. > 2 and l̂ij = minv∈D{liv + lvj} for networks with

c.v. < 2.

5.3.2. Estimating the population CDF of closeness centrality

In this section, we develop methods to estimate the CDF of closeness centrality of the

population graph using the estimated closeness centralities of sampled nodes. Intuitively,

one would use the empirical distribution of the estimated closeness centrality of sampled

nodes (empirical estimated CDF) to approximate the shape of distribution of closeness

centrality of population graph. This will give us a general idea of how well the estimated

CDF fits the true CDF, but we cannot get an accurate estimate of CDF for each node in

the population using the empirical estimated CDF. This is because the empirical CDF is

a discrete function with number of values equal to the elements in the data set. Since the

sample size is always smaller than the population size, the number of possible values in

the empirical estimated CDF is smaller than that in the true population CDF, and thus

there will be many equal values for the estimates of CDF. In order to deal with this issue,

we apply kernel estimator to smooth the empirical estimated CDF and get a continuous

estimated CDF.

1) Empirical estimated CDF
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If the elements are sampled with equal probabilities, we can approximate the empirical

CDF of population by the empirical CDF of sampled nodes. The unweighted estimated

empirical CDF is

(5.12) F̂ (c) =

∑
i∈s I(Ci ≤ c)

|s|
.

If the elements are sampled with unequal probabilities, the empirical CDF of sampled

nodes deviates from the empirical CDF of population. Instead we need to use a weighted

empirical CDF of sampled nodes to approximate the empirical CDF of population. The

weighted estimated empirical CDF is

(5.13) F̂w(c) =

∑
i∈swiI(Ci ≤ c)∑

i∈swi
,

where wi = K/ki.

2) Smoothed Estimated CDF

Kernel density estimation is a commonly-used technique to get a continuous estimator

for the population density from a sample of discrete values. Mathematically, for a positive

real number h, the kernel density estimator p̂(·) is defined as

(5.14) p̂(y) =
1

nh

n∑
j=1

K(
y − Yj
h

),−∞ < y <∞,

where K(·) is a continuous, nonnegative density function satisfying
∫∞
−∞K(u)du = 1, also

known as the kernel, h is known as the smoothing parameter or the bandwidth, and n is
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the sample size.

Some commonly-used kernels include Gaussian kernel, biweight kernel, Epanechnikov

kernel, and triangular kernel. Different kernels lead to different density estimates, but

they tend to be very similar. In this paper we choose to use the Gaussian kernel:

(5.15) K(u) =
1√
2π
exp{−1

2
u2}.

The choice of smoothing parameter h is another issue in using the kernel estimator. In

general, large value in h will lead to a smoother estimator, but it might not be accurate

enough to capture the important features of the data. In contrast, small value in h will

capture the data feature very well but it might not satisfy the desired level of smoothness.

Therefore a good choice of h is a balance of desired level of smoothness and the ability of

capturing the important features of the data. In this work, after analyzing the results for

several different values of h, we choose to use h = 0.01.

Once we have the kernel density estimator p̂(·), we can compute the smoothed distri-

bution function F̂K(y) by

(5.16) F̂K(y) =

∫ y

−∞
p̂(t)dt,−∞ < y <∞.

Consider the case of a Gaussian kernel, we have

(5.17) p̂(y) =
1

nh

n∑
j=1

φ(
y − Yj
h

),−∞ < y <∞,
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where φ(·) is the density function of the standard normal distribution, and therefore

(5.18) F̂K(y) =
1

n

n∑
j=1

∫ y

−∞

1

h
φ(
t− Yj
h

)dt,−∞ < y <∞.

After some algebra using the change-of-variable u = (t− Yj)/h, we have

(5.19) F̂K(y) =
1

n

n∑
j=1

Φ(
y − Yj
h

),−∞ < y <∞,

where Φ(·) is the distribution function of the standard normal distribution.

Applying Eq. (5.19) to our case of estimating the CDF of closeness centrality, the

smoothed estimated CDF is defined as

(5.20) F̂s(c) =
1

|s|
∑
i∈s

Φ(
c− Ci
h

).

Here Ci is a random variable that denotes the value of closeness centrality of sampled node

i. In section 6.2, we will compare the estimation performance by using the actual closeness

centrality ci and that by using the estimated closeness centrality ĉHH.rai or ĉHH.ra.li .

While the above methodology is based on a sample where the elements are sampled

with equal probabilities, we can also extend the usage of kernel estimator to the case

where elements are sampled with unequal probabilities. More specifically, we define the

smoothed weighed estimator for CDF as

(5.21) F̂w
s (c) =

1∑
i∈swi

∑
i∈s

wiΦ(
c− Ci
h

),
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where wi = 1/φi = K/ki.

5.3.3. Estimating closeness centrality rank of a given node

For a particular node i in a network with closeness centrality ci, if F (c) is known, we can

compute its rank of closeness centrality Ri by plugging ci into Eq.(5.2). However in many

real cases, F (c) is unknown and we need to estimate it through Eq.(5.20) or Eq.(5.21).

Therefore, we define the estimated rank of node i through F̂s(c)as

(5.22) R̂i = (n+ 1)− bnF̂s(ci)c,

where bxc means rounding x down to its closest integer, and define the estimated rank of

node i through F̂w
s (c)as

(5.23) R̂w
i = (n+ 1)− bnF̂w

s (ci)c.

5.4. Evaluation Metrics

In this section, we list some numerical metrics for evaluating the estimation perfor-

mances of 1) closeness centrality of sampled nodes, 2) CDF of closeness centrality of

population graph and, 3) closeness centrality rank of a given node.
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5.4.1. Mean Absolute Error (MAE)

To evaluate the estimation performance of closeness centrality of a sampled node ĉi, we

use mean absolute error. Mean absolute error (MAE) measures the average absolute dis-

tance between the estimate and the parameter.

For kth sample, the MAE for ĉi is

(5.24) MAEc
k =

1

|s|
∑
i∈s

|ĉi − ci|.

Across K samples, the average of MAEc is

(5.25) mean(MAEc) =
1

K

K∑
k=1

MAEc
k,

and the standard deviation of MAEc is

(5.26) s.d.(MAEc) =

√√√√ 1

K

K∑
k=1

(MAEc
k −mean(MAEc))2.

5.4.2. Kolmogorov-Smirnov Distance (KS)

To measure the estimation performance of smoothed CDF of closeness centrality of popu-

lation graph F̂s(c), we use Kolmogorov-Smirnov distance. Kolmogorov-Smirnov distance

(KS) measure the maximum distance between two distribution functions. For kth sample,

the KS for F̂s(c) is

(5.27) KSk = sup
ci

|F̂s(ci)− F (ci)|.
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Across K samples, the average of KS is

(5.28) mean(KS) =
1

K

K∑
k=1

KSk,

and the standard Deviation of KS is

(5.29) s.d.(KS) =

√√√√ 1

K

K∑
k=1

(KSk −mean(KS))2.

5.4.3. Percentage Mean Absolute Error (PMAE)

To evaluate the estimation performance of closeness centrality ranking of a given node

R̂i, we use percentage mean absolute error (PMAE).

For kth sample, MAE for R̂i is

(5.30) MAER
k =

1

n

n∑
i=1

|R̂i −Ri|,

and the PMAE for R̂i is

(5.31) PMAER
k =

MAER
k

n
× 100%

Across K samples, the average of PMAER is

(5.32) mean(PMAER) =
1

K

K∑
k=1

PMAER
k ,

and the standard deviation of PMAER is

(5.33) s.d.(PMAER) =

√√√√ 1

K

K∑
k=1

(PMAER
k −mean(PMAER))2.
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5.5. Simulation Study

In this section, we test our estimators developed in section 5.3 using some graphical

tools and the numerical metrics discussed in section 5.4 for the three stages in estimating

the rank of closeness centrality respectively. We do the evaluation for both a network

of size n = 1000 with large c.v. (c.v. = 2.5) and a network n = 1000 with small c.v.

(c.v. = 0.7). From each population network, K = 100 random walks samples are taken

with sampling budget β = 0.3, i.e., each random walk takes B = 300 steps. For the

network with large c.v., we use the observed geodesic distances in the induced subgraph

to approximate the actual geodesic distances between sampled nodes. For the network

with small c.v., we use distances computed from landmarks to approximate the actual

geodesic distances between sampled nodes.

5.5.1. Estimating closeness centrality of sampled nodes

In Figure 5.5.1 and 5.5.2, we plot the estimated closeness centrality of sampled nodes

versus their actual closeness centrality for a network with large c.v. (c.v. = 2.5) and

that for a network with small c.v. (c.v. = 0.7). The four estimators are a) the observed

closeness centrality from the induced subgraph ĉobsi , b) Hansen-Hurwitz estimator based

on approximated geodesic distances ĉHHi , c) Hansen-Hurwitz ratio estimator based on

approximated geodesic distances ĉHH.rai , and d) Hansen-Hurwitz ratio estimator based on

actual geodesic distances ĉHH.ra.li .

For the network with large c.v. (c.v. = 2.5), ĉobsi and ĉHHi do not perform very well.

For ĉobsi , most estimated ci’s are greater than the actual ci’s, especially for nodes with
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large ci’s, so the bias is not negligible. ĉHHi is less biased but the variance is large. On

the other hand, ĉHH.rai and ĉHH.ra.li perform well in terms of being unbiased and having

small variance. ĉHH.ra.li performs slightly better than ĉHH.rai for nodes with small ci’s, but

not to a remarkable extent. This can also be verified by the numerical error measures

listed on the left table from Table 5.1. The MAE’s of ĉobsi and ĉHHi are much greater

than the MAE’s of ĉHH.rai and ĉHH.ra.li , while the MAE of ĉHH.rai is only slightly larger

than the MAE of ĉHH.rai . Therefore, for a network with large c.v., approximating the

actual geodesic distances using the observed geodesic distances in the induced subgprah

is reasonable, and ĉHH.rai is preferable to use in practice.

For the network with small c.v. (c.v. = 0.7), the estimation performances are slightly

different. For ĉobsi and ĉHHi , most estimated ci’s are smaller than the actual ci’s, and the

variance is large. ĉHH.rai and ĉHH.ra.li perform similarly, but some ci’s are under estimated

by ĉHH.rai , especially for nodes with small ci’s. This is due to the fact that by using

landmarks, the approximated geodesic distance is always greater than or equal to the

actual geodesic distance, therefore the denominator in Eq. (5.11) tends to be greater

than the denominator in Eq. (5.9). Also from the right table from Table 5.1, we can

observe that the average MAE can be reduced by about 40% if we use ĉHH.ra.li instead

of ĉHH.rai . ĉHH.rai is slightly biased, and this bias may result in bias in the estimation for

CDF, which we will discuss it in section 6.2.
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a) ĉobsi v.s. ci b) ĉHHi v.s. ci

c) ĉHH.rai v.s. ci d) ĉHH.ra.li v.s. ci

Figure 5.5.1. Closeness centrality of sampled nodes: scatter plots of esti-

mated values v.s. actual values. Network: n = 1000, c.v. = 2.5.
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a) ĉobsi v.s. ci b) ĉHHi v.s. ci

c) ĉHH.rai v.s. ci d) ĉHH.ra.li v.s. ci

Figure 5.5.2. Closeness centrality of sampled nodes: scatter plots of esti-

mated values v.s. actual values. Network: n = 1000, c.v. = 0.7.
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Estimator mean(MAEc) s.d.(MAEc)

cobsi 0.0389 0.0062

cHHi 0.0315 0.0192

cHH.rai 0.0112 0.0046

cHH.ra.li 0.0091 0.0030

Estimator mean(MAEc) s.d.(MAEc)

cobsi 0.0326 0.006

cHHi 0.0422 0.0063

cHH.rai 0.0113 0.0018

cHH.ra.li 0.0069 0.0018

Table 5.1. Numerical comparison of estimators for closeness centrality of

sampled node. Left: network of size n = 1000 with c.v. = 2.5; right:

network of size n = 1000 with c.v. = 0.7.

5.5.2. Estimating the population CDF of closeness centrality

In Figure 5.5.3 and Figure 5.5.4, we plot the smoothed estimated CDF’s along with the

actual CDF for a network with large c.v. (c.v. = 2.5) and that for a network with small

c.v. (c.v. = 0.7). The four estimators are a) unweighted smoothed estimator F̂s(c) based

on ci, b) weighted smoothed estimator F̂w
s (c) based on ci, c) unweighted smoothed esti-

mator F̂s(c) based on ĉi, and d) weighted smoothed estimator F̂w
s (c) based on ĉi. Here

ĉi refers to the Hansen-Hurwitz ratio estimator ĉHH.rai based on approximated geodesic

distances.

For the network with large c.v. (c.v. = 2.5), the unweighted estimates deviate from the

actual CDF, as we can observe from plot a) and plot c) in Figure 5.5.3 . This is because

nodes are sampled with unequal probabilities. More specifically, nodes with large degrees

are more likely to be sampled by random walks. So the unweighted estimators are biased.
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On the other hand, the weighted estimators perform much better. Both of them are un-

biased, as we can observe from plot b) and plot d). The one based on ci performs slightly

better than the one based on ĉi with a smaller variance. From the left table on Table

5.2, we can also notice that there’s a dramatic reduction in KS if we change from the un-

weighted estimators to the weighted estimators, but the reduction is not very substantial

if we change from the weighted estimator based on ĉi to the weighted estimator based on ci.

For the network with small c.v. (c.v. = 0.7), the results are slightly different. For

estimators based on ci, the estimation performances are similar to those from the network

with large c.v.. That is, the unweighted estimator is biased and the weighted estimator is

unbiased with small variance. But for estimators based on ĉi, as we discussed in section

6.1, since ĉi’s are biased for some nodes with small ci’s, the estimation of CDF is affected.

For the unweighted estimator based on ĉi, the bias from ĉi and bias from unequal selection

probabilities cancel out to some extent for nodes with small ci’s, so the estimated CDFs

based on ĉi are actually less biased than those based on ci. For the weighted estimator

based on ĉi, the bias from ĉi makes the CDFs slightly over estimated for nodes with small

ci’s. The bias from ĉi makes the KS distance of the unweighted estimator based on ĉi

similar to the KS distance of the weighted estimator based on ĉi, as shown on the right

table from Table 5.2.
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a) F̂s(c) by ci b) F̂w
s (c) by ci

c) F̂s(c) by ĉi d) F̂w
s (c) by ĉi

Figure 5.5.3. Smoothed estimated population CDFs of closeness centrality.

Network: n = 1000, c.v. = 2.5.
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a) F̂s(c) by ci b) F̂w
s (c) by ci

c) F̂s(c) by ĉi d) F̂w
s (c) by ĉi

Figure 5.5.4. Smoothed estimated population CDFs of closeness centrality.

Network: n = 1000, c.v. = 0.7.
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Estimator mean(KS) s.d.(KS)

F̂s(c) by ci 0.4689 0.0361

F̂w
s (c) by ci 0.0725 0.0351

F̂s(c) by ĉi 0.4481 0.0786

F̂w
s (c) by ĉi 0.1313 0.0780

Estimator mean(KS) s.d.(KS)

F̂s(c) by ci 0.2423 0.0331

F̂w
s (c) by ci 0.0585 0.0293

F̂s(c) by ĉi 0.1717 0.0456

F̂w
s (c) by ĉi 0.1656 0.0725

Table 5.2. Numerical comparison of estimators for population CDF of close-

ness centrality. Left: network of size n = 1000 with c.v. = 2.5; right:

network of size n = 1000 with c.v. = 0.7.

5.5.3. Estimating closeness centrality ranking of a given node

As discussed in section 4.3.3, once we have the smoothed estimated CDF, we can estimate

the closeness centrality rank of a given node through Eq. (5.22) or Eq. (5.23). In this

section, we use plot of average estimated rank with confidence band and PMAE of R̂i to

evaluate the estimation performance of different estimators for Ri.

We display the plots for the network with large c.v. (c.v. = 2.5) in Figure 5.5.5. If

we base the estimator on actual closeness centrality ci, as shown in plot a) and plot b),

the unweighted estimator Ri is biased and the weighted estimator Rw
i is unbiased. This

is consistent with the results of estimation of CDFs. The variances for both estimators

are small as the confidence bands are narrow. If we base estimator on estimated closeness

centrality ĉi, as shown in plot c) and plot d), we still have the same pattern for aver-

age estimated rank as we have for the one using ci, but the variances increase since the

confidence bands get wider. This indicates that for network with large c.v., using the
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observed geodesic distances in the induced subgraph to approximate the actual geodesic

distances will keep the unbiased estimator unbiased, and slightly increase the variance of

the estimator. If we refer to Table 5.3, we can also notice that the estimation performance

has a dramatic improvement if we change from the unweighted estimator to the weighted

estimator, but approximating geodesic distances don’t have a substantial influence on the

estimation performance.

When it comes to the network with small c.v. (c.v. = 0.7), the results are similar to

the results for estimated CDFs as discussed in section 6.2. The estimators based on ci

behave similarly to those for the network with large c.v.. One thing to notice is that the

bias for the unweighted estimator is milder in this case. For the estimators based on ĉi,

since we have two sources of bias, and they can cancel out to some extent, the unweighted

estimator is less biased than expected and the weighted estimator is more biased than

expected. The biases for the two estimators are in opposite directions, but if measured

by PMAE, they have similar estimation performances as shown on Table 5.4.
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a) Ri by ci b) Rw
i by ci

c) Ri by ĉi d) Rw
i by ĉi

Figure 5.5.5. Average of estimated rank with confidence interval. Network:

n = 1000, c.v. = 2.5.
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a) Ri by ci b) Rw
i by ci

c) Ri by ĉi d) Rw
i by ĉi

Figure 5.5.6. Average of estimated rank with confidence interval. Network:

n = 1000, c.v. = 0.7.



147

Estimator mean(PMAER) s.d.(PMAER)

R̂i by ci 27.23% 2.43%

R̂w
i by ci 3.28% 1.97%

R̂i by ĉi 25.95% 5.69%

R̂w
i by ĉi 6.64% 4.81%

Table 5.3. Numerical comparison of estimators for closeness centrality rank-

ing: network of size n = 1000 with c.v. = 2.4.

Estimator mean(PMAER) s.d.(PMAER)

R̂i by ci 16.00% 2.33%

R̂w
i by ci 2.80% 1.75%

R̂i by ĉi 8.60% 3.65%

R̂w
i by ĉi 10.06% 4.79%

Table 5.4. Numerical comparison of estimators for closeness centrality rank-

ing: network of size n = 1000 with c.v. = 0.7.

5.5.4. Length of Random Walks

In Figure 5.5.7, we plot the estimation performance versus sampling budgets for networks

with sizes of 1000, 5000, and 10000 and c.v. equal to 2.4 and 0.8. We display the esti-

mation performance of the three steps in the estimating process for closeness centrality

ranking: 1) the estimation performance of closeness centrality of sampled nodes is mea-

sured by mean absolute error (MAE), 2) the estimation performance of population CDF

is measured by Kolmogorov-Smirnov distance (KS), and 3) the estimation performance
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of closeness centrality ranking is measured by percentage mean absolute error (PMAE).

First of all, we observe that the estimation performance improves as we increase the

network size from 1000 to 5000, but tends to stabilize once the network size is large enough,

as we don’t observe any substantial difference between n = 5000 and n = 10000. The

following analysis is based on networks of size 5000 and 10000. For networks with large

c.v. (c.v. = 2.4), the estimation performance for the three steps, as we can observe from

plots (a), (c), and (e), improves as we increase the sampling budget. The improvement is

dramatic before β = 0.2 and moderate after β = 0.2. We can also observe this behavior

pattern in the estimation performance of the first step for networks with small c.v. (c.v. =

0.8), as shown in plot (b). Therefore, we can set β = 0.2 as the minimum sampling budget

to achieve a good estimation performance for closeness centrality ranking.
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a) MAE, c.v. = 2.4 b) MAE, c.v. = 0.8

c) KS, c.v. = 2.4 d) KS, c.v. = 0.8
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e) PMAE, c.v. = 2.4 f) PMAE, c.v. = 0.8

Figure 5.5.7. Estimating performance versus sampling budget β (low values

are better).

5.6. Real networks

In this section, we apply our proposed estimators for closeness centrality rank to some

real networks. These data are available on the SNAP (Stanford Network Analysis Project)

website. To simplify the analysis, we only consider nodes in the largest connected com-

ponent. The first four columns of Table 5.5 summarize the basic information for each

network used in this section. These networks vary in size, number of edges, average de-

gree, and coefficient of variation. For each network, K = 100 random walk samples with

sampling budget β = 0.3 are taken, and an estimate is computed from each sample by

the weighted rank estimator R̂w
i based on ci estimated from the Hansen-Hurwitz ratio

estimator ĉHH.rai . To approximate the actual geodesic distances, we use the observed ge-

odesic distances in the induced subgprah for networks with c.v. > 2, and use estimations

through landmarks for networks with c.v. < 2. To measure the estimation performance,
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we use the average estimated rank with confidence band as graphical tool and the MAE

of R̂w
i as numerical metric.

As we can observe from Figure 5.6.1 and Figure 5.6.2, the estimator is almost unbiased

for all real networks. For some networks, such as Oregon, AS-733, and P2P network, there

are some minor fluctuations on the plots of average estimated ranks, but there’s no major

deviation from a diagonal line with intercept 0 and slope 1. As for variance, the estimator

is very stable for some networks such as Wiki-Vote and P2P, where the confidence bands

are very narrow. While the variances for some networks are slightly larger, such as CA-

HepTh and CA-GrQc, they are still in moderate range. If we refer to the numerical

measure listed on the last two columns on Table 5.5, we can also notice that the average

PMAEs for R̂w
i are all under 10%, except for CA-GrQc whose average PMAE is only

slightly above 10% Both the graphs and the numerical metrics show that our proposed

estimator R̂w
i for closeness centrality ranking performs well in real networks.
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Network nodes edges < k > c.v. mean(PMAER) s.d.(PMAER)

Oregon 10.7K 22K 4.1 7.6 5.18% 3.26%

AS-733 6.4K 13.2K 4.3 5.8 5.67% 3.96%

Email-Enron 33.7K 361.7K 21.5 3.5 5.37% 4.14%

CA-HepPh 11.2K 235.2K 42 2.29 9.54% 6.20%

Wiki-Vote 7.1K 103.7K 29.3 2.06 3.73% 2.84%

CA-HepTh 8.6K 49.6K 11.5 1.12 7.02% 5.30%

CA-GrQc 4.2K 26.8K 12.9 1.34 11.02% 6.97%

P2P 10.9K 40K 7.4 0.9 5.97% 2.54%

Table 5.5. Basic information and estimation summary of real networks.
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a) Oregon b) AS-733

c) Email-Enron d) CA-HepPh

Figure 5.6.1. Average of estimated rank with confidence interval for real

network (part 1).
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e) Wiki-Vote f) CA-HepTh

g) CA-GrQc h) P2P

Figure 5.6.2. Average of estimated rank with confidence interval for real

network (part 2).
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5.7. Summary of Results

By applying the estimators and evaluation metrics to several simulated networks and

real networks, we develop the following findings:

• The Hansen-Hurwitz ratio estimator provides unbiased estimate with small vari-

ance for the closeness centrality of sampled nodes. For networks with c.v. > 2,

using observed geodesic distances in the induced subgraph as an approximation for

actual geodesic distances doesn’t bring notable bias to the estimator. For network

with c.v. < 2, using estimated geodesic distances by landmarks brings some bias

to nodes with small closeness centrality, but not to a large extent.

• The weighted kernel estimator performs well in estimating CDF of closeness cen-

trality of the population network. For network with c.v. > 2, the unweighted

estimator is biased and the bias is reduced substantially in the weighted estimator.

For networks with c.v. < 2, there two sources of bias in the unweighted estimator:

bias from estimating closeness centrality and bias from unequal selection probabil-

ities. The two biases cancel out to some extent to make the unweighted estimator

less biased than expected. On the other hand, the weighted estimator is also

slightly biased due to the existence of bias from estimating closeness centrality.

The interaction of biases makes the estimation performance for the unweighted

estimator and that for the weighted estimator similar for networks with c.v. < 2.

• The estimation performance of closeness centrality rank follows the pattern of CDF

estimation. In general, the rank computed from the weighted kernel estimator for

CDF provides good estimation for the rank. More specifically, the estimator for
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networks with c.v. > 2 is unbiased with moderate standard deviation, and the

estimator for networks with c.v. < 2 is slightly biased but not to a large extent.

5.8. Discussion and Future Work

In this chapter we proposed estimating closeness centrality ranking of a node in a

network via random walk sampling. We first applied Hansen-Hurwitz ratio estimator to

estimate the closeness centrality of nodes sampled by a random walk, then used weighted

kernel estimator to estimate the population CDF of closeness centrality, and finally com-

puted the estimated rank by the estimated CDF. There are three challenges in the esti-

mating process: 1) the actual geodesic distances between sampled nodes are unknown;

2) the nodes are sampled with unequal probabilities so their unweighted empirical dis-

tribution of closeness is biased for the population CDF; 3) the empirical distribution is

a discrete function with number of possible values equal to the number of nodes in the

sample, so we cannot get an accurate estimation of rank for each node in the population.

We adopted a weighted estimator to deal with the unequal selection probabilities and

applied kernel estimator to smooth the empirical distribution. Therefore the second and

third problems are perfectly solved. To deal with the first challenge, we used different

strategies for networks with different values in c.v.. For networks with large c.v.(c.v. > 2),

we used the observed geodesic distances in the induced subgraph to approximate the ac-

tual distances. It works very well as random walks have strong ability in finding the

shortest paths in networks with large c.v.. It follows that the estimation performance for
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the three stages is consistently good as expected.

For networks with small c.v.(c.v. < 2), we estimated the geodesic distance between

a pair of sampled nodes by taking the minimum of the sum of their geodesic distances

to the pre-selected landmarks. Since the distance estimated by this algorithm is always

equal to or greater than the actual distances, it brings some bias in estimating closeness

centrality of sampled nodes, and thus slightly affects the estimation of CDF of closeness

centrality and the ranking estimation. A possible direction for future work is to invent or

apply an algorithm that will provide better estimation for geodesic distances in network

with small c.v., so that the bias can be further reduced in estimating closeness centrality

of sampled nodes, population CDF of closeness centrality, and finally closeness centrality

ranking.
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CHAPTER 6

Estimation of Clustering Coefficients

6.1. Overview

The clustering coefficient of a graph measures the average probability that two neigh-

bors of a node are themselves neighbors. However it is computationally expensive to

measure the exact value of clustering coefficient of a network. In this chapter we study

the problem of estimating the clustering coefficient via random walk sampling. We gen-

eralize the Hansen-Hurwitz estimator to estimate the global clustering coefficient (GCC)

and the average local clustering coefficient (ALCC). By simulation studies and applica-

tions to real networks, we find that 1) If we can observe all neighbors of a sampled node

and count the exact number of connections among the neighbors, the estimators for both

the GCC and the ALCC will be unbiased with small variance; 2) If we can only observe

the neighbors of a sampled node in the induced subgraph, we need to estimate the number

of connections among the neighbors in the population graph using that number in the

induced subgraph. The error from this estimating process may lead to bias in the GCC

estimator and the ALCC estimator and largely increase the estimation error. Therefore in

practice it is highly recommended to observe all neighbors of a sampled node to maintain

a high estimation accuracy.
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6.2. Definitions

The clustering coefficient of a graph measures the average probability that two ran-

domly selected neighbors of a node are themselves neighbors. Mathematically, we define

the global clustering coefficient (GCC) [2] (p.199), denoted by C, to be the fraction of

paths of length two that are closed in the network. The global clustering coefficient C

can be computed through two equivalent definitions.

For a given node i in a graph G = (V,E), the number of paths of length two going

through node i is the number of pairs of neighbors of i, which is
(
ki
2

)
= ki(ki−1)

2
, where ki

is the degree of node i. The number of closed paths of length two going through node i is

the number of edges among the neighbors of i, which we denote by ei. Therefore we can

compute the global clustering coefficient C by

(6.1) C =

∑n
i=1 ei∑n
i=1

(
ki
2

) =
2
∑n

i=1 ei∑n
i=1 ki(ki − 1)

.

On the other hand, a triangle in a network involves three paths of length two that

are closed. Let λ(G) denote the number of triangles in network G, and τ(G) denote the

number of paths of length two that are open. So we can alternatively compute the global

clustering coefficient C by

(6.2) C =
3λ(G)

3λ(G) + τ(G)
.
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In addition, we can define a local clustering coefficient for a single node as the average

probability that a pair of the node’s neighbors are neighbors of one another. Mathemati-

cally, we define the local clustering coefficient [2] (p.201) of node i, denoted by ci, to be

the fraction of connected neighbors of node i, i.e.,

(6.3) ci =
ei(
ki
2

) .
Based on that, Watts and Strogatz [26] proposed another measure of clustering coeffi-

cient for the entire network, which is the unweighted mean of local clustering coefficients

for each node, and we call it average local clustering coefficient (ALCC):

(6.4) CWS =
1

n

n∑
i=1

ci.

Note that the ALCC CWS defined by Eq.(6.4) is an unweighted average of LCCs,

and the GCC C defined by Eq.(6.1) is a weighted average of LCCs with weight equal

to
(ki2 )∑n
j=1 (kj2 )

for node i with degree ki. To distinguish the two estimators for GCC based

on two definitions, we call it estimator based on weighted average LCC if it’s based on

Eq.(6.1) and estimator based on triangles if it’s based on Eq.(6.2.)

6.3. Estimating Method

In this section, we develop estimating methods for the global clustering coefficient C

through Def. (6.1) and Def. (6.2), and for the average local clustering coefficient CWS

through Def. (6.4), by applying generalized Hansen-Hurwitz estimator as defined in Eq.

(2.11).
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6.3.1. Estimating Global Clustering Coefficient Based on Weighted Average

of LCC

Let s = {X(1), X(2), ..., X(H)} denote the set of sequences of nodes visited by H random

walks, including duplicates, and let |s| = H · B denote the size of s. Let I(X
(h)
b = i)

denote an indicator variable taking the value 1 if node i is visited at the bth step in the hth

random walk, and zero otherwise. Let qi =
∑H

h=1

∑B
b=1 I(X

(h)
b = i), i = 1, ..., n, denote

the number of times node i appears in sample s and let q = (q1, q2, ..., qn)T .

Suppose for a sampled node i we can observe the degree ki and the number of edges

ei among the neighbors of i. Let te =
∑n

i=1 ei denote the total number of closed paths of

length two and let tk =
∑n

i=1
ki(ki−1)

2
denote the total number of paths of length two, and

notice that

(6.5) C =
te

tk
.

Using the generalized Hansen-Hurwitz estimator, we can estimate te and tk by

(6.6) t̂e =
n∑
i=1

qiei
E(qi)

,

and

(6.7) t̂k =
n∑
i=1

qiki(ki − 1)/2

E(qi)
,
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and therefore we can estimate C through Def. (6.1) by

(6.8)
t̂e

t̂k
=

∑n
i=1

qiei
E(qi)∑n

i=1
qiki(ki−1)/2

E(qi)

.

Let p = (p1, p2, ..., pn)T , where pi = ki
K

with K =
∑

w kw. As shown in [35], a single

random walk {Xt} on a connected graph G = (V,E) with at least one triangle is an

irreducible and aperiodic Markov chain with a stationary distribution p. According to

Anderson’s (1989) results for irreducible and aperiodic Markov chains, E(q) = pt. Apply-

ing this in our case, we will have E(qi) = |s|ki
K

, and therefore we can estimate C through

Def. (6.1) by

(6.9)
t̂e

t̂k
=

∑n
i=1 qiei/ki∑n

i=1 qi(ki − 1)/2
.

In some real cases however, we only observe the neighbors of node i when they are

also visited by the random walk, and therefore we can observe the connections between

those neighbors. In other words, the actual value of ei can’t be observed by random walk

sampling and thus needs to be estimated. Recall that G∗ denotes the subgraph induced

by the sampled nodes. Let k∗i denote the observed degree of sampled node i in G∗ and

let e∗i denote the observed connections between neighbors of node i in G∗. We propose

estimating ei by

(6.10) êi =
ki
k∗i
e∗i .
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We define the Hansen-Hurwitz estimator for global clustering coefficient C based on

weighted average of LCC through Def. (6.1) by ei as

(6.11) ĈAE
HH1 =

∑n
i=1 qiei/ki∑n

i=1 qi(ki − 1)/2
,

and define the Hansen-Hurwitz estimator for global clustering coefficient C based on

weighted average of LCC through Def. (6.1) by êi as

(6.12) ĈHH1 =

∑n
i=1 qiêi/ki∑n

i=1 qi(ki − 1)/2
.

6.3.2. Estimating Global Clustering Coefficient Based on Triangles

Let w, w = 1, ...,M , represent a triple of nodes (i, j, v), i = 1, ..., n − 2, j = i +

1, ..., n − 1, v = j + 1, ..., n, in the population graph. Suppose we have a single ran-

dom walk X = {X1, X2, ..., XB}, define S = {(Xb1 , Xb2 , Xb3), b1 < b2 < b3, b1, b2, b3 ∈

{1, ..., B}, Xb1 6= Xb2 6= Xb3} to be the sequence of triplets visited by the random walk.

The three nodes in each triplet are distinct, but any node may appear multiple times in

the random walk, therefore it’s also possible to have duplicates of triplets in S. Suppose

we have multiple random walks, i.e., H > 1, recall that s = {X(1), X(2), ..., X(H)}

with X(h) = (X
(h)
1 , ..., X

(h)
B ), h = 1, ..., H, represents the set of sequences of nodes

visited by H random walks, including duplicates. Define S = {(X(h1)
b1

, X
(h2)
b2

, X
(h3)
b3

) :

h1 ≤ h2 ≤ h3, h1, h2, h3 ∈ {1, ..., H}, bi < bj if hi = hj, i, j = 1, 2, 3, i 6= j, b1, b2, b3 ∈

{1, ..., B}, X(h1)
b1
6= X

(h2)
b2
6= X

(h3)
b3
} to be the sequence of triplets visited by the H random

walks.
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Define Qw = qiqjqv, i = 1, ..., n − 2, j = i + 1, ..., n − 1, v = j + 1, ..., n, as the

number of times triplet w appears in S, and let |S| =
∑M

w=1 Qw denote the size of

S. Notice that there may be duplicates in the sample of nodes, but to form a triplet,

we only include three distinct nodes, therefore |S| is a random variable with |S| =(|s|
3

)
−
∑n

i=1

(
qi
3

)
−
∑n

i=1[
(
qi
2

)∑
j 6=i qj]. Define ψw = E(Qw)

E(|S|) and assume 0 < E(Qw) < |S|

∀w, therefore 0 < ψw < 1 ∀w. Since
∑M

w=1 Qw = |S|,
∑M

w=1 ψw = 1. Therefore, the ψw’s

form a probability distribution over the M triplets.

Let A∗ denote the adjacency matrix of the induced subgraph G∗. Let yλw, w ∈

{1, ...,M}, denote an indicator variable taking value yλw = 1 if triple w = (i, j, v) forms

an triangle (has three edges) in G∗ and zero otherwise. Let yτw, w ∈ {1, ...,M}, denote

an indicator variable taking value yτw = 1 if triple w = (i, j, v) forms a path of length two

that is open (has two edges) in G∗ and zero otherwise.

The generalized Hansen-Hurwitz estimator for λ(G) is

(6.13) λ̂(G) =
M∑
w=1

Qwy
λ
w

E(Qw)
,

where

(6.14) yλw = A∗ijA
∗
jvA

∗
iv.
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The generalized Hansen-Hurwitz estimator for τ(G) is

(6.15) τ̂(G) =
M∑
w=1

Qwy
τ
w

E(Qw)
,

where

(6.16) yτw = A∗ijA
∗
jv(1− A∗iv) + A∗ij(1− A∗jv)A∗iv + (1− A∗ij)A∗jvA∗iv

If we already know the value of yλw for triplet w, we can also compute yτw by

(6.17) yτw = A∗ijA
∗
jv + A∗ijA

∗
iv + A∗jvA

∗
iv − 3yλw.

According to Def. (6.2), the generalized Hansen-Hurwitz estimator for C is

(6.18)
3λ̂(G)

3λ̂(G) + τ̂ (G)
=

3
∑M

w=1
Qwyλw
E(Qw)

3
∑M

w=1
Qwyλw
E(Qw)

+
∑M

w=1
Qwyτw
E(Qw)

.

According to the simulation results in Section 6.2, E(Qw) ∝ kikjkv on average in

the long run. Therefore, we define the Hansen-Hurwitz estimator for global clustering

coefficient C based on triangles through Def. (6.2) as

(6.19) ĈHH2 =
3
∑M

w=1
Qwyλw
kikjkv

3
∑M

w=1
Qwyλw
kikjkv

+
∑M

w=1
Qwyτw
kikjkv

.

According to simulations in Section 6.2, ψw ∝ kikjkv on average across K = 100 ran-

dom walks with B = 80 steps in a network of size n = 100. This implies ψw = αkikjkv,

where α =
∑

i 6=j 6=v kikjkv. However ψw deviates from αkikjkv in a single random walk

with moderate length. This is due to the fact that nodes are not sampled independently
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in random walk sampling. In fact, since random walk sampling is implemented by going

through connections among nodes, a triplet with at more connection will be more likely

to be sampled than a triplet with less or no connection, even if the the products of nodes

degrees for the two triplets are equal. So the empirical ψw for the former tends to be

higher than than αkikjkv and the empirical ψw for the latter tends to be lower than than

αkikjkv. Therefore, if we use αkikjkv for ψw in the estimation process, λ(G) and τ(G)

will be biased. More specifically, since the triplets we use to compute λ(G) have three

connections and the triplets we use to compute τ(G) have two connections, αkikjkv tends

to be smaller than the empirical ψw for those triplets, and thus λ(G) and τ(G) will be

over estimated.

According to Eq. (6.18), ĈHH2 will be unbiased if E(λ̂(G))
λ(G)

= E(τ̂(G))
τ(G)

, even though λ̂(G)

and τ̂(G) are biased. But based on simulations results presents in Table 6.2, E(λ̂(G))
λ(G)

6=
E(τ̂(G))
τ(G)

, so ĈHH2 will be biased.

6.3.2.1. Application of Bootstrap to Correct for Bias

In order to correct for bias of ĈHH2, we apply a bootstrap. The bias for ĈHH2 is

(6.20) bias(ĈHH2) = E(ĈHH2)− C,

and the relative bias for ĈHH2 is

(6.21) r.bias(ĈHH2) =
E(ĈHH2)− C

C
.
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For a subgraph G∗ of size n∗ induced by sample s, let Cs denote its actual global

clustering coefficient defined by Def. (6.2). To apply the bootstrap, we take K random

walk subsamples from G∗ with B = βn∗, and from each of the subsamples we estimate

Cs by Eq. (6.19), denoted as Ĉb
s , b = 1, ..., K.

For each sample s, we define the estimated bias for ĈHH2 as

(6.22) ˆbias(ĈHH2) =
1

K

K∑
b=1

Ĉb
s − Cs,

and the estimated relative bias for ĈHH2 as

(6.23) ˆr.bias(ĈHH2) =
1
K

∑K
b=1 Ĉ

b
s − Cs

Cs
.

We can correct for bias of ĈHH2 through either bias or relative bias. We define the

Hansen-Hurwitz estimator for C based on triangles with bias correction by bootstrap as

(6.24) ĈB1
HH2 = ĈHH2 − ˆbias(ĈHH2),

and define the Hansen-Hurwitz estimator for C based on triangles with relative bias

correction by bootstrap as

(6.25) ĈB2
HH2 =

ĈHH2

ˆr.bias(ĈHH2) + 1
.
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6.3.3. Estimating Average Local Clustering Coefficient

Let tc =
∑n

i=1 ci denote the sum of local clustering coefficient. Using the generalized

Hansen-Hurwitz estimator, we can estimate tc by

(6.26) t̂c =
n∑
i=1

qici
E(qi)

,

where ci = ei/
(
ki
2

)
, and estimate network size n by

(6.27) n̂ =
n∑
i=1

qi
E(qi)

.

According to Anderson [10] and Zheng and Spencer [35], E(qi) = |s|ki
K

, therefore we can

estimate CWS by

(6.28)
t̂c

n̂
=

∑n
i=1 qici/ki∑n
i=1 qi/ki

.

In some real cases, we cannot observe ei and need to estimate it through êi = ki
k∗i
e∗i .

We define the Hansen-Hurwitz estimator for average local clustering coefficient through

Def.(6.4) based on ei as

(6.29) ĈAE
WS =

∑n
i=1 qici/ki∑n
i=1 qi/ki

,

and define the Hansen-Hurwitz estimator for average local clustering coefficient through

Def.(6.4) based on êi as

(6.30) ĈWS =

∑n
i=1 qiĉi/ki∑n
i=1 qi/ki

,
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where ĉi = êi/
(
ki
2

)
.

6.4. Evaluation Metrics

To evaluate the performance of an estimator, we take K random walk samples from the

population graph G, compute the estimate from each sample, and estimate the sampling

distribution by a histogram. On the numerical side, in addition to bias and standard de-

viation, we use normalized root mean square error (NRMSE) to get an overall assessment

for the estimator.

6.4.1. Histograms

We plot histograms of the estimates to show the estimated probability distribution of

the estimates. In general, a symmetric and unimodal histogram will be ideal. A more

concentrated histogram indicates smaller variance of the estimator than a histogram which

is more spread out. We also plot the true value of clustering coefficient (red vertical dash

line) along with the histogram to indicate if the estimator is biased. In Figure 6.4.1 we

plot the histogram of ĈHH1 based on K = 100 estimates, and the true value of global

clustering coefficient C = 0.0085.
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Figure 6.4.1. Histogram of ĈHH1, true clustering coefficient C = 0.0085.

6.4.2. Normalized Root Mean Square Error (NRMSE)

Normalized root mean square error (NRMSE) is a measure used to quantify the relative

error of an estimator θ̂ with respect to its true value θ. It is defined as

(6.31) NRMSE(θ̂) =

√
E(θ̂ − θ)2

θ
.

6.5. Simulation Study

In this section, we present several simulation studies to assess the performance of

methods proposed in section 6.3. More specifically, by simulations, we 1) assess the

adequacy of assumption
e∗i
ei

=
k∗i
ki

and compare estimation performance based on ei and

êi for ĈHH1 and ĈWS; 2) discuss the ’draw-by-draw’ probabilities for triplets and their

influence on bias for ĈHH1; 3) evaluate the effectiveness of bootstrap to bias-correction; 4)
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compare the performance of estimators proposed in Section 4 and the estimator proposed

by [11]; 5) analyze the effect of different sampling budget (β) and find the best sampling

design for ĈHH1 and ĈWS.

6.5.1. Influence of Estimating number of neighbors on Estimation Perfor-

mance

In this simulation, we first check the adequacy of assumption
e∗i
ei

=
k∗i
ki

, and then evaluate

the effect of error êi by comparing estimation performance of ĈAE
HH1 and ĈHH1. In order

to make histograms and compute NRMSE for the two estimators, K = 100 random

walk samples are taken from a scale-free network of size n = 1000. For each random

walk sample, a single random walk of length B = 300 is implemented. The true value of

clustering coefficient of the population network is C = 0.0085.

Since Eq. (6.10) is based on assumption
e∗i
ei

=
k∗i
ki

, we want to check if this equality

holds for most sampled nodes through simulation. In Figure 6.5.1 (a), we plot
e∗i
ei

versus

k∗i
ki

for all sampled nodes. As we can observe, there’s a lot of dispersion in the plot. In

Figure 6.5.1 (b), we plot the histogram of ratio
e∗i /ei
k∗i /ki

. We can see that in this case, for a

large proportion of the sampled nodes, this ratio is around 1. More specifically, for 55%

of the sampled nodes, ratio
e∗i /ei
k∗i /ki

is within range (0.5, 1.5).
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(a) Plot of
e∗i
ei

versus
k∗i
ki

(b) Histogram of
e∗i /ei
k∗i /ki

Figure 6.5.1. Left: Plot of
e∗i
ei

versus
k∗i
ki

; right: Histogram of
e∗i /ei
k∗i /ki

.

The error in êi may increase bias and standard deviation in the estimating process. In

Figure 6.5.2 we plot (a) the histogram of ĈHH1 and (b) the histogram of ĈAE
HH1 . In Table

6.1, we list the numerical comparisons of the two estimators. As we can observe, in this

case both estimators are unbiased, but ĈHH1 has larger standard deviation than ĈAE
HH1.

In Section 7, we will show that for some real networks, using estimated ei increases both

bias and standard deviation of the the estimator. Therefore it is preferable to use actual

ei if it is observable.
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(a) Histogram of ĈHH1 (b) Histogram of ĈAE
HH1

Figure 6.5.2. Left: histogram of ĈHH1; right: histogram of ĈAE
HH1, true

global clustering coefficient C = 0.0085.

Estimator Bias SD NRMSE

ĈAE
HH1 0.0002 0.0011 0.134

ĈHH1 0.0003 0.0022 0.262

Table 6.1. Numerical comparison of ĈAE
HH1 and ĈHH1, true global clustering

coefficient C = 0.0085.

6.5.2. ’Draw-by-draw’ Probabilities for Triplets

In order to find the theoretical ψw on average in the long run, we did the following

simulation. From a scale-free network of size n = 100, we take K = 100 random walk

samples, each of which takes B = 80 steps. For each triple w = (i, j, v) in G, we plot

E(Qw), its average number of occurrence in the 100 random walks, i.e., total number

of occurrence in the 100 random walks divided by 100, versus kikjkv, the product of
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corresponding node degrees, as shown in Figure 6.5.3. As we can observe, there’s roughly a

linear relationship between E(Qw) and kikjkv, and cor(E(Qw), kikjkv) = 0.92. Therefore,

we can infer that E(Qw) ∝ kikjkv in the long run. Since ψw is defined as E(Qw)
E(|S|) and ψw

forms a probability distribution, we have

(6.32) ψw = αkikjkv,

where α =
∑

i 6=j 6=v kikjkv, and we call ψw the ’draw-by-draw’ probability for triplet w.

(a) for all triplets (b) for triplets where kikjkv < 1000

Figure 6.5.3. Plot of Qw versus kikjkv.

However, there two problems with using αkikjkv for φw in the estimating process.

First, as we can observe from plot (b), the variation of E(Qw) is very large when kikjkv is

small. Second, as discussed in section 4.3.2, in a single random walk, unless the random

walk is extremely long (for example, a random walk with B = 2000 steps from a network

of size n = 100), the empirical ψw is not equal to αkikjkv. Due to the nature of random

walk sampling, the empirical ψw for a triplet with more edges between its nodes tends
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to be larger than αkikjkv and the empirical ψw for a triplet with fewer edges between its

nodes tends to be smaller than αkikjkv, even if their products of degrees are equal. In

Figure 6.5.4, we demonstrate this phenomenon using a small network with only 5 nodes

{a, b, c, d, e}. Consider a extreme case where the random walk only takes 3 steps, then φw

for triplet w = {a, b, d} is zero while ψw for triplet w = {a, b, c} is greater than zero, even

if the products of node degrees for these two triplets are both 4. This is because there

are two connection among w = {a, b, c} and the random walk is able to traverse the three

nodes in 3 steps, while for w = {a, b, d} there’s only one connection and the the random

walk is not able to visit all three nodes in 3 steps.

Figure 6.5.4. A small network with 5 nodes.

Because of that, if we use αkikjkv for ψw in the estimation process, λ(G) and τ(G)

will be over estimated. To verify this, we computed estimates for λ(G) and for τ(G) from

the K = 100 random walks samples with B = 80 from a scale-free network of size n = 100

, and listed the summary in Table 6.2. As we can observe, the relative bias of τ̂ is greater

than than the relative bias of λ̂, i.e., E(τ̂)
τ

> E(λ̂)
λ

, therefore C tend to be underestimated

according to Eq.(6.18).
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Estimator θ̂ θ E(θ̂) E(θ̂)
θ

Relative Bias

λ̂ 31 75 2.42 142%

τ̂ 951 3472 3.65 265%

Table 6.2. Relative bias for λ̂(G) and τ̂(G).

6.5.3. Bootstrap Bias Correction

As discussed in Section 4.3.3, we will apply bootstrap to correct for bias. In this simulation

study, we take K = 100 random walk samples from a scale-free network of size n = 1000.

The true value of clustering coefficient of the population network is C = 0.0085. For each

random walk sample, a single random walk of length B = 300 is implemented. From each

subgraph of size n∗ induced by random walk sample, K = 100 random walk subsamples

are taken with B = 0.3n∗ steps. For each sample, the bias and relative bias for ĈHH2 will

be estimated through Eq.(6.22) and Eq.(6.23) by using the estimates from the subsamples.

We will correct the bias for ĈHH2 through Eq.(6.24) and Eq.(6.25).

6.5.3.1. Estimating Bias by Bootstrap

In Figure 6.5.5, we plot the histograms for ˆbias(ĈHH2) and histogram for ˆr.bias(ĈHH2)

by bootstrap, along with the true empirical bias. As one can observe from plot (a),

bias(ĈHH2) is underestimated by ˆbias(ĈHH2) while ˆr.bias(ĈHH2) is almost unbiased esti-

mator for r.bias(ĈHH2).
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(a) Histogram of estimated bias (b) Histogram of estimated relative bias

Figure 6.5.5. Histograms of estimated bias and relative bias for ĈHH2 by bootstrap.

6.5.3.2. Comparison of ĈHH2, Ĉ
B1
HH2, and ĈB2

HH2

In Figure 6.5.6, we plot histograms of estimates for ĈHH2, ĈB1
HH2 and ĈB2

HH2. In Table

6.3, we list the numerical comparison of the three estimators. As we can observe, the bias

of ĈHH2 is not negligible. Using ĈB1
HH2 is over-correcting the bias so the bias is changed

to another direction. Using ĈB2
HH2 is effective in reducing bias as it reduced the bias to

−0.0003. But on the other hand, the standard deviation of ĈB2
HH2 is larger than that of

ĈHH2, which is a common consequence of bias correction. People may still prefer using

ĈHH2 in real cases as 1) it has smaller NRMSE and 2) the computational time is shorter

without doing the bootstrapping.
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(a) Histogram of ĈHH2 (b) Histogram of ĈB1
HH2

(c) Histogram of ĈB2
HH2

Figure 6.5.6. Histograms of ĈHH2 and adjusted ĈHH2 by bootstrap, true

global clustering coefficient C = 0.0085.
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Estimator Bias SD NRMSE

ĈHH2 -0.0023 0.0047 0.6243

ĈB1
HH2 0.0055 0.0069 1.0401

ĈB2
HH2 -0.0003 0.0057 0.6778

Table 6.3. Numerical comparison of ĈHH2, ĈB1
HH2, and ĈB2

HH2, true global

clustering coefficient C = 0.0085.

6.5.4. Comparison of ĈHH1 and ĈHH2

In this section, we compare our estimators ĈHH1 and ĈHH2 for estimating global clustering

coefficient C. We will first compare their computational time and them compare their

estimation performance by looking at NRMSE.

6.5.4.1. Computational Time

For a random walk sample with H = 1 random walk and β sampling fraction, let β∗

denote the fraction of unique sampled nodes, i.e., the size of the induced sub graph is

β∗n. For ĈHH1 we only need to go over each sampled node and count the connections

among its neighbors in the sub graph. Therefore the computational time for ĈHH1 is

β∗n
(
k̄∗

2

)
≈ 1

2
β∗k̄∗n, where k̄∗ is the average degree in the induced sub graph.

For ĈHH2, intuitively we need to go over each sampled triplet to check if it is a triangle

or a path of length 2, and the computational time is
(
β∗n

3

)
≈ 1

6
(β∗n)3. However among all

triplets, the fraction of triangles or the fraction of paths of length 2 is so small, i.e., most

triplets have at most one connection, that going through each triplet is not necessary. In
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fact, we can quickly get a list of triangles from command triangles in R package igraph,

so we just need to look into those triplets for the λ part. For the τ part, we just need

to find the triplets with exactly two connections. According to [2], the (i, j)th element of

A ∗A gives the number of paths of length 2 between node i and node j. If (i, j)th element

of A ∗ A ∗ (1− A) is greater than zero, then there’s are least one path of length between

node i and node j, but i and j are not directly connected. Instead of going over each

triplet, we only need to go over each non-zero element in the lower or upper triangle of

matrix A ∗A ∗ (1−A) to find the third element in each path of length two. Therefore the

computational time for ĈHH2 will be at most
(
β∗n

2

)
≈ 1

2
(β∗n)2.

Since the computational time for ĈHH1 is in order O(n) and the computational time

for ĈHH2 is in orderO(n2), it can be much more expensive to compute ĈHH2 if the network

is large. For instance, in our example with n = 1000, B = 300, and K = 100, we have

β∗ ≈ 0.2 and k̄∗ ≈ 3. The computational time will be 300 for ĈHH1 and be at most 2000

for ĈHH2. In reality, the network size is usually much larger than n = 1000, therefore the

computational time for ĈHH2 will be even greater for real networks.

6.5.4.2. Estimation Performance

In Table 6.4, we list the numerical comparison for estimation performance of ĈHH1

and ĈHH2. The simulation is based on K = 100 random walk samples scale-free network

of size n = 1000. Each of the random walks takes B = 300 steps and the true global

clustering coefficient is C = 0.0085. As we can observe, ĈHH1 is unbiased and has smaller

standard deviation than ĈHH2, and thus has a smaller NRMSE. In order to check if this
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is consistent across different lengths of random walks, we also compare the NRMSE for

the two estimators with different sampling budgets β in Figure 6.5.7. Since ĈHH1 has the

smaller NRMSE across different sampling budgets, it is preferable for use in practice.

Estimator Bias SD NRMSE

ĈHH1 0.0003 0.0022 0.2620

ĈHH2 -0.0023 0.0047 0.6243

Table 6.4. Numerical comparison of ĈHH1 and ĈHH2, true global clustering

coefficient C = 0.0085.

Figure 6.5.7. Comparison of ĈHH1 and ĈHH2 by bar plot for sampling frac-

tion β = 0.2, 0.3, 0.4, 0.5, true global clustering coefficient C = 0.0085.
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6.5.5. Length of Random Walks

In Figure 6.5.8 we plot the estimation performance measured by normalized root mean

square error (NRMSE) for two estimators: estimator for the global clustering coefficient

based on weighted average LCC (ĈHH1) and estimator for the average local clustering

coefficient (ĈWS). The plots are made for networks with sizes equal to 1000, 5000, and

10000, and c.v. equal to 0.8 and 2.4.

For networks with large c.v. (c.v. = 2.4), as shown in plots (a), (c), and (e), the esti-

mation performances of the GCC estimator ĈHH1 are similar in networks with difference

sizes, while the estimation performances of the ALCC estimator ĈWS improves as the net-

work size increases. For both estimators, the NRMSE decreases as the sampling budget

β increases, but when β > 0.3 the decrease is not as dramatic as it is when β < 0.3. For

networks with small c.v. (c.v. = 0.8), as shown in plots (b), (d), and (f), the estimation

performances of both ĈHH1 and ĈWS are similar in networks with different sizes. As β

increases, NRMSE decreases, and the rate of decrease in NRMSE also decreases. While

we don’t observe a change point in the rate of decrease in networks with small c.v., we

recommend to set β = 0.3 as the minimum sampling budget based on our observation

from networks with large c.v..
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a) n = 1000, c.v. = 2.4 b) n = 1000, c.v. = 0.8

c) n = 5000, c.v. = 2.4 d) n = 5000, c.v. = 0.8
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e) n = 10000, c.v. = 2.4 f) n = 10000, c.v. = 0.8

Figure 6.5.8. NRMSE of estimator for GCC (ĈHH1) and estimator for

ALCC (ĈWS) versus sampling budget β (low values are better).

6.6. Real Networks

In this section, we apply our proposed estimators for global clustering coefficient C and

average local clustering coefficient CWS to some real networks. These data are available

on the SNAP (Stanford Network Analysis Project) website. To simplify the analysis, we

only consider nodes in the largest connected component. Table 6.5 summarizes the basic

information for each network used in this section These networks vary in size, number of

edges, average degree, coefficient of variation, and most importantly, C and CWS. For each

network, K = 100 random walk samples with sampling budget β = 0.3 are taken, and an

estimate is computed from each sample and each estimator. For numerical comparison,

we use the mean, bias, relative bias (r.bias), standard deviation (s.d.), coefficient of

variation (c.v.), root mean square error (RMSE), and normalized root mean square error
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(NRMSE) to measure the estimation performance. For graphical comparison, we use

bar plot of NRMSE to measure the estimation performance.

Network nodes edges < k > c.v. C CWS

Oregon 10.7K 22K 4.1 7.6 0.0093 0.2970

AS-733 6.4K 13.2K 4.3 5.8 0.0096 0.2522

Email-Enron 33.7K 361.7K 21.5 3.5 0.0581 0.5092

CA-HepPh 11.2K 235.2K 42 2.29 0.6594 0.6216

Wiki-Vote 7.1K 103.7K 29.3 2.06 0.1255 0.1396

CA-HepTh 8.6K 49.6K 11.5 1.12 0.2811 0.4816

CA-GrQc 4.2K 26.8K 12.9 1.34 0.6289 0.5566

P2P 10.9K 40K 7.4 0.9 0.0054 0.0062

Table 6.5. Basic information of real networks.

For global clustering coefficient C, we compare the estimation performance of ĈAE
HH1,

ĈHH1 and the estimator proposed by Katzir and Hardiman [11], which we denote as

ĈHKG. The numerical comparison is listed in Table 6.6 and the bar plots are shown in

Figure 6.6.1. As we can observe, ĈAE
HH1 and ĈHKG are unbiased for all networks, and ĈHH1

is biased for most networks. On the other hand, ĈAE
HH1 has smaller s.d. than ĈHKG and

thus performs the best among the three estimators, except for network Wiki-Vote. This

is due to the fact that ĈAE
HH1 uses the largest amount of information from the population

network among the three estimators. More specifically, to compute ĈAE
HH1, we observe the

actual ei for each sampled node. For ĈHH1, we only observe e∗i in the induced subgraph

and use that to estimate ei, and for ĈHKG we only observe if there’s a connection between
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the node before the focal node and the node after the focal node, for each node visited

by the random walk. The richer the information is, the more precise the estimator is. In

addition, the NRMSEs for all networks are very small (under or close to 0.2). Therefore

in practice, if we are able to observe all neighbors of each sampled node, ĈAE
HH1 is preferable.

For some networks, such as Email-Enron, CA-HepPh, CA-HepTh, and CA-GrQc, the

estimation performance of ĈHH1 is close to that of ĈAE
HH1. This is because ĈHH1 is almost

unbiased for for those networks, as we can observe from Table 6.6.1. Therefore bias is the

main source of estimation error for ĈHH1. For network Wiki-Vote, ĈHH1 performs best

among the three estimators.
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Network Estimator bias r.bias s.d. c.v. RMSE NRMSE

Oregon ĈAE
HH1 0.0000 -0.0001 0.0007 0.0730 0.0007 0.0726

ĈHH1 0.0055 0.5959 0.0011 0.1228 0.0057 0.6083

ĈHKG 0.0000 -0.0030 0.0026 0.2760 0.0026 0.2746

AS-733 ĈAE
HH1 0.0001 0.0087 0.0008 0.0812 0.0008 0.0813

ĈHH1 0.0048 0.4964 0.0013 0.1312 0.0049 0.5133

ĈHKG 0.0005 0.0570 0.0034 0.3523 0.0034 0.3551

Email-Enron ĈAE
HH1 -0.0001 -0.0015 0.0027 0.0327 0.0027 0.0325

ĈHH1 0.0094 0.1100 0.0031 0.0366 0.0099 0.1159

ĈHKG 0.0002 0.0027 0.0046 0.0537 0.0046 0.0535

CA-HepPh ĈAE
HH1 0.0003 0.0004 0.0102 0.0155 0.0102 0.0155

ĈHH1 -0.0282 -0.0427 0.0163 0.0248 0.0325 0.0493

ĈHKG -0.0005 -0.0008 0.0190 0.0288 0.0189 0.0286

Wiki-Vote ĈAE
HH1 -0.0206 -0.1640 0.0016 0.0127 0.0206 0.1645

ĈHH1 -0.0124 -0.0987 0.0025 0.0195 0.0126 0.10067

ĈHKG 0.0122 0.0974 0.0104 0.0829 0.0160 0.1279

CA-HepTh ĈAE
HH1 -0.0116 -0.0414 0.0629 0.2239 0.0637 0.2266

ĈHH1 -0.0620 -0.2206 0.0667 0.2373 0.0908 0.3232

ĈHKG -0.0108 -0.0384 0.0635 0.2259 0.0641 0.2281

CA-GrQc ĈAE
HH1 -0.0541 -0.0860 0.0797 0.1267 0.0959 0.1526

ĈHH1 -0.1006 -0.1600 0.0981 0.1560 0.1402 0.2229

ĈHKG -0.0555 -0.0883 0.0876 0.1392 0.1033 0.1643
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P2P ĈAE
HH1 0.0000 -0.0043 0.0002 0.0451 0.0002 0.0451

ĈHH1 -0.0021 -0.3893 0.0004 0.0691 0.0021 0.3953

ĈHKG 0.0000 0.0029 0.0015 0.2816 0.0015 0.2802

Table 6.6. Numerical comparison of ĈAE
HH1, ĈHH1, and ĈHKG for GCC.

Figure 6.6.1. Comparison of ĈAE
HH1, ĈHH1, and ĈHKG by bar plot for global

clustering coefficient C.

For local clustering coefficient CWS, we compare the estimation performance of ĈAE
WS,

ĈWS and the estimator proposed by Katzir and Hardiman [11], which we denote as ĈHKL.

The numerical comparison is listed in Table 6.7 and the bar plots are shown in Figure
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6.6.2. As we can observe, ĈAE
WS and ĈHKL are unbiased for all networks, and ĈWS is

biased for most networks. On the other hand, ĈAE
WS has smaller s.d. than ĈHKL and thus

performs the best among the three estimators with the smallest NRMSE. Again this

is due to the fact that ĈAE
WS uses the largest amount of information from the population

network among the three estimators. Except for network P2P, the NRMSEs are all very

small (under 0.2). Therefore in practice, ĈAE
WS is most preferable if we are able to observe

all neighbors of each sampled node. For some networks, such as AS-733 and Oregon,

where ĈWS is almost unbiased, the estimation performance of ĈWS is close to that of

ĈAE
WS. For network Wiki-Vote, ĈWS performs best among the three estimators.
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Network Estimator bias r.bias s.d. c.v. RMSE NRMSE

Oregon ĈAE
WS 0.0009 0.0029 0.0217 0.0730 0.0216 0.0727

ĈWS -0.0057 -0.0191 0.0214 0.0721 0.0221 0.0743

ĈHKL -0.0001 -0.0002 0.0223 0.0752 0.0222 0.0748

AS-733 ĈAE
WS 0.0006 0.0025 0.0265 0.1049 0.0263 0.1044

ĈWS -0.0065 -0.0260 0.0259 0.1027 0.0266 0.1054

ĈHKL 0.0001 0.0002 0.0314 0.1243 0.0312 0.1237

Email-Enron ĈAE
WS 0.0016 0.0032 0.0294 0.0577 0.0293 0.0575

ĈWS -0.0899 -0.1766 0.0264 0.0518 0.0937 0.1839

ĈHKL 0.0011 0.0021 0.0306 0.0601 0.0305 0.0598

CA-HepPh ĈAE
WS 0.0049 0.0079 0.0321 0.0517 0.0323 0.0520

ĈWS -0.1570 -0.2527 0.0381 0.0613 0.1616 0.2599

ĈHKL 0.0026 0.0042 0.0432 0.0695 0.0430 0.0692

Wiki-Vote ĈAE
WS 0.0173 0.1242 0.0205 0.1469 0.0268 0.1922

ĈWS 0.0063 0.0453 0.0197 0.1413 0.0207 0.1482

ĈHKL 0.0234 0.1677 0.0325 0.2327 0.0400 0.2867

CA-HepTh ĈAE
WS -0.0013 -0.0027 0.0238 0.0493 0.0237 0.0492

ĈWS -0.0830 -0.1724 0.0252 0.0523 0.0867 0.1801

ĈHKL -0.0037 -0.0077 0.0295 0.0613 0.0296 0.0615

CA-GrQc ĈAE
WS 0.0006 0.0011 0.0409 0.0736 0.0407 0.0732

ĈWS -0.0777 -0.1395 0.0418 0.0750 0.0881 0.1583

ĈHKL -0.0002 -0.0003 0.0475 0.0853 0.0472 0.0848
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P2P ĈAE
WS 0.0001 0.0211 0.0019 0.3096 0.0019 0.3088

ĈWS -0.0020 -0.3285 0.0018 0.2922 0.0027 0.4387

ĈHKL 0.0003 0.0422 0.0029 0.4672 0.0029 0.4667

Table 6.7. Numerical comparison of ĈAE
WS, ĈWS, and ĈHKL for ALCC.

Figure 6.6.2. Comparison of ĈAE
WS, ĈWS, and ĈHKL by bar plot for average

local clustering coefficient CWS.

6.7. Summary of Results

By applying the estimators and evaluation techniques to several simulated networks

and real networks, we developed the following findings:
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• For the GCC, if we can observe the actual nmber of connections among neighbors

of each sampled node, the estimator based on weighted average of LCCs is unbiased

with small variance.

• For the GCC, bootstrapping the estimator based on triangles can reduce bias but

at the cost of increasing the standard error, and can increase the NRMSE. It also

has a longer computing time than the estimator based on weighted average of

LCCs. Therefore estimation based on weighted average of LCCs is preferable to

estimation based on triangles.

• For the ALCC, if we can observe the actual number of connections among neighbors

of each sampled node, the estimator is unbiased with small variance.

• For both the GCC and the ALCC, if we can not observe the actual number of

connections among neighbors of each sampled node, and need to estimate it using

the number observed from the induced subgraph, the bias and NRMSE of the

estimator tend to increase appreciably. Therefore in practice, it is recommended

to observe the actual number of connections among neighbors of each sampled

node to minimize the estimation error, even if it will increase sampling cost.

6.8. Discussion and Future Work

In this chapter we applied random walk sampling and generalized the usage of Hansen-

Hurwitz estimator to estimate the global clustering coefficient (GCC) and the average local

clustering coefficient (ALCC) of a network. For the GCC, we developed two estimators

based on weighted average LCC and on triangles respectively. The former is unbiased

with small variance if we can observe all neighbors of sampled nodes. The latter is biased
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due to lack of knowledge of the exact inclusion probability of a triplet when the random

walk has moderate length. We can use bootstrap to correct for this bias but at the cost

of increasing the standard error and NRMSE. For the ALCC, we can get an unbiased

estimator with small variance if we can observe all neighbors of sampled nodes. We ap-

plied the estimator for the GCC based on weighted average LCC and the estimator for

ALCC to some real networks, and found that our estimators outperform the estimators

proposed by Katzir and Hardiman [11] if we can observe all neighbors of sampled nodes.

There are two directions for future work. 1) In this work, when we are not able

to observe all neighbors of a sampled node, we used the ratio of its observed degree in

the induced subgraph and its actual degree to estimate the ratio of its observed number

connections among neighbors in the induced subgraph and its actual number of connec-

tions among neighbors. This estimation brings bias in the estimator for the GCC based

weighted average LCC and the estimator for the ALCC. We can try to reduce the bias

by finding an alternative estimation for the ratio of connections among neighbors. 2)

The estimator for the GCC based on triangles has two issues. First the computational

times is too long, and second it is biased. To deal with the bias issue, we used bootstrap

but it increased the standard deviation so that the NRMSE of the estimator adjusted

by bootstrap is greater than the NRMSE of the original estimator. In order to reduce

both bias and standard deviation, some adjustment is needed for the theoretical inclusion

probabilities of triplets so that they are closer to the empirical ones.
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