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Abstract 

 

Soft Tissue Cutting in Core Biopsy 

Marco Giovannini 

 

Hollow biopsy needles are widely adopted medical devices for the removal of biological 

tissue to better identify a lesion or an abnormality observed through a physical exam or a 

radiology scan. These procedures can provide significantly more information than most medical 

tests, and they are usually performed on dermis layers, bone lesions, breast masses, lymph 

nodes, and the prostate. The quality of the samples mainly depends on the forces exerted by the 

needle during the cutting process. The reduction of these forces is critical to extract high-quality 

tissue samples. The most important factors that affect the cutting forces are the geometry of the 

needle tip and its motion while it is penetrating the tissue. However, optimal needle tip 

configurations and cutting parameters are not well established for biopsy procedures. 

This thesis, articulated in four topics, aims to investigate the geometry and cutting forces 

of biopsy needles. First, analytical models related to the cutting angles of several needle tip 

designs are presented and compared. Several needle tip geometries were ground and tested on 

different phantom tissues at different speeds. Second, novel three-dimensional (3D) needle 

geometries were conceived, and mathematical models were formulated to compute the cutting 

angles and tissue fracture forces. The proposed methodology was demonstrated on helical 
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needles, which were then manufactured and tested on soft tissue. Third, the characterization of 

polyvinyl chloride (PVC) tissue, which is commonly used to mimic human skin, was performed 

by means of uniaxial tests. Data coming from tissue characterization were used to calibrate a 3D 

FEM model to predict the cutting force during the insertion of core biopsy needles. Fourth, the 

application of bio-inspired micro-serrated cutting edges on the cutting edge of hollow needles 

was considered. Micro-serrations were created by adopting laser micro-machining, and their 

effectiveness was verified through the development of analytical and computational models.  

The outcome of this study can benefit several clinical procedures, especially core and skin 

biopsy, in which a cannula device is adopted to cut and collect soft tissue samples. 
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Nomenclature 

 

𝒂 𝒕 × 𝒏𝒓 

𝐴𝑐 Cylindrical area of the cannula in contact with the tissue 

𝐴𝑐𝑜 Area of the tissue in contact with the biopsy punch 

𝐴𝑆𝐸𝑅𝑅 Area of the tissue in contact with a standard biopsy punch 

𝐴𝑆𝑇𝐴𝑁𝐷 Area of the tissue in contact with a micro-serrated biopsy punch 

𝐴𝑡 Area of the tissue subjected to elastic deformation 

𝛼 Rake angle at a point on the cutting edge 

𝛽 Unknown weights 

𝛼𝑝 Material constant adopted in the Ogden model 

𝒃 𝒕 × 𝒏 

𝑩 Left Cauchy-Green deformation tensor 

𝛽 Multiplication factor 

𝑐 Parametric covariance function 

𝑪 Correlation function 

𝛾 Angular position of a point on the needle cutting edge 

𝛾ℎ Angular position of a point on the helical profile 

𝛾𝑛  Angular position of a point on the cylindrical profile 

𝑑𝑒 External needle diameter 

𝑑𝑓𝑖𝑛𝑎𝑙 Needle displacement at which the needle is stopped 

𝑑𝑖 Internal needle diameter 

𝑑𝑟𝑢𝑝 Needle displacement at which the first crack initiates 

𝑑ℎ Incremental displacement along the direction of 𝐹𝐻 

𝑑𝑟 Resultant needle displacement along the rake face 

𝑑𝑣 Incremental needle displacement along the direction of 𝐹𝑉 

𝐷 Material constant in the Arruda-Boyce model 

𝑒𝑖𝑗  Engineering strain 

𝐸 Young`s modulus of tissue 
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휀 Angle identified on the rake face 

𝑓𝑖() Basis function 

𝑓𝐻𝑐𝑢𝑡 Cutting force perpendicular to the needle axis per unit of axial displacement 

𝑓𝑉𝑐𝑢𝑡 Cutting force parallel to the needle axis per unit of axial displacement 

𝑭 Deformation gradient 

𝑭𝒆𝒙𝒑 Vector of experimental fracture forces 

𝐹𝐹 Friction force 

𝐹𝐹𝐻 Friction force perpendicular to the needle axis 

𝐹𝐹𝑉 Friction force parallel to the needle axis 

𝐹𝐻 Force perpendicular to the needle axis 

𝐹𝐻𝑐𝑢𝑡 Cutting force perpendicular to the needle axis 

𝐹𝐻𝑒𝑙 Tangential force due to the elastic tissue deformation 

𝐹𝐻𝑟𝑢𝑝 Fracture force perpendicular to the needle axis  

𝐹𝐻𝑓 Force perpendicular to the needle axis at the final penetration depth 

𝐹𝑁 Force acting on the external surface of the needle 

𝐹𝑠𝑢𝑟𝑓 Surface function representing the surface of a conical needle tip 

𝐹𝑉 Force parallel to the needle axis 

𝐹𝑉𝑐𝑢𝑡 Cutting force parallel to the needle axis 

𝐹𝑉𝑒𝑙 Axial force due to the elastic tissue deformation 

𝐹𝑉𝑓 Force parallel to the needle axis at the final penetration depth 

𝐹𝑉𝑟𝑢𝑝 Fracture force parallel to the needle axis 

𝐹⊥ Fracture force perpendicular to the cutting edge 

𝐹∥ Fracture force parallel to the cutting edge 

𝜃 Included angle at a point on the cutting edge 

𝒈 𝑛 × 1 vector with 𝑖𝑡ℎ element 𝑐(𝒙𝑖, 𝒙
∗) = �̂�2𝑟(𝒙𝑖, 𝒙

∗) 

G Geometrical factor 

𝒉 𝟏 − 𝟏𝑻𝑽−1𝒈(𝒙′) 

𝜂 Poisson ratio of tissue 

𝐼𝑘  Left Cauchy-Green deformation tensor invariants 

𝐽 Determinant of deformation tensor 
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𝐽𝑒 Nonlinear energy release rate 

𝑙𝑏 Bevel length 

𝑙𝑐 Length of the cutting edge with respect to the needle axis 

𝑙𝑓𝑖𝑛  Final length of the tissue column 

𝑙𝑖𝑛𝑖𝑡 Original length of the tissue column 

𝑙𝑡 Total needle length 

𝑘 Slice/push ratio 

K Shear constant 

𝐾𝑖  Crack intensification factor 

𝜆 Inclination angle at a point on the cutting edge 

𝜆𝑘 Principal stretches  

𝜆𝑚 Locking stretch 

𝜇 Shear modulus of the Arruda-Boyce model 

𝜇𝑑 Coulomb dynamic friction coefficient 

𝜇𝑑𝑎 Coulomb dynamic friction coefficient along the axial direction 

𝜇𝑑𝑟 Coulomb dynamic friction coefficient along the tangential direction 

𝜇𝑝 Material constants adopted in the Ogden model 

𝑚 Coefficient that accounts for the nonlinearity of the material 

𝑛𝑠 Number of micro-serrations 

𝒏 Normal vector to the 𝑥𝑦-plane 

𝒏𝒄 Normal vector to the cylindrical surface 

𝒏𝒓 Normal vector to the rake face 

𝒏𝒖 Unit vector normal to the rake face 

𝑁 Material constant adopted in the Ogden model 

𝑁𝑅 Contact force applied on the rake face 

𝑂𝑋𝑌𝑍 Coordinate system assigned to the needle tip for grinding 

𝑂∗𝑋∗𝑌∗𝑍∗ Coordinate system assigned to the grinding surface 

𝜉 Bevel angle 

𝜉0 Zero-mean Gaussian Process 

𝑝 Hydrostatic stress 
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𝑝ℎ Pitch of the helix 

𝑝𝑛 Contact pressure 

𝑃𝑙 Number of planes in multi-plane needles 

𝑃𝑖𝑗 Engineering stress 

𝑞 Number of responses 

𝑟𝑐 Radius of the arc of the micro-serration 

𝑟ℎ Radius of the conical helix 

𝑟𝑛 Radius of the needle 

𝑟𝑛𝑖 Internal radius of the needle 

𝑟𝑛𝑜 External radius of the needle 

𝑟𝑠 Radius at the tip of the micro-serration 

𝑟𝑠𝑝ℎ, 𝜃𝑠𝑝ℎ, 𝑧𝑠𝑝ℎ Spherical coordinate system - spatial coordinates 

𝑅𝑠𝑝ℎ,Θ𝑠𝑝ℎ, 𝑍𝑠𝑝ℎ Spherical coordinate system - material coordinates 

𝑟𝑡 Radius of the deformed tissue column 

𝑟𝑡𝑖𝑝 Radius of the needle tip 

𝑅 Strain energy release rate 

𝑹𝒏 Rotation Matrix 

𝜌 Angle between micro-serrations 

𝑆 Needle rotation/translation ratio 

𝜎𝑖𝑗  Cauchy Stress 

𝜎𝑣
2 Process variance 

𝒕 Tangent vector to the cutting edge 

𝒕𝒖 Unit vector tangent to the cutting edge 

𝑇𝑒𝑙  Torque due to the elastic tissue deformation 

𝑈 Strain energy density function 

𝒗 Velocity vector 

𝑣𝑟  Needle rotational velocity 

𝑣𝑎 Needle axial velocity 

𝑣⊥ Velocity perpendicular to the cutting edge 

𝑣∥ Velocity parallel to the needle’s cutting edge 
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𝑽 Covariance matrix 

𝑤 Length of the cutting edge 

𝑊𝐶  Work needed to propagate the crack 

𝑊𝐹 Work performed by the friction force 

𝑊𝑁 Work performed by the needle 

𝜑 Inclination angle of the cylindrical surface 

𝜙 Rotation angle between consecutive bevel planes 

𝜙𝑔 Angle included between the grinding surface and 𝑍∗ 

𝒙 Inputs of computer simulator 

𝑿𝒏 Vector of the coordinates of the cylindrical needle surface 

𝑿𝒏𝝋 Vector of the coordinates of the cylindrical surface inclined at an angle 𝜑 

𝑦(𝒙) Random process 

𝑥𝑦𝑧 Coordinates of the needle tip 

𝑥ℎ𝑦ℎ𝑧ℎ Coordinates of the conical helix 

𝑥𝑖𝑦𝑖𝑧𝑖  Coordinates of a point on the internal cutting edge  

𝑥𝑛𝑦𝑛𝑧𝑛 Coordinates of the cylindrical needle surface 

𝑥𝑜𝑦𝑜𝑧𝑜 Coordinates of a point on the external cutting edge  

𝑥𝑛𝜑𝑦𝑛𝜑𝑧𝑛𝜑 Coordinates of the cylindrical surface inclined at an angle 𝜑 

𝒚 Responses in the training data set 

𝜓 Angle of the helix 

𝛀 𝑑𝑖𝑎𝑔(𝟏𝟎𝝎) 

𝝎 Scale parameters 
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1 Introduction 

 

1.1 Motivation  

Numerous surgical cutting tools such as medical needles and biopsy punches are frequently 

used in minimally invasive procedures, aimed both at the extraction of tissue and at the delivery 

of medical fluids for common operations like regional anesthesia and special treatments.  

Bone marrow biopsy (Fig. 1.1) is a critical medical procedure that is aimed at the removal of 

a small amount of fluid and cells from inside the bone. This procedure is of vital importance to 

diagnose diseases and disorders associated with red and white blood cells such as 

thrombocytopenia and leukemia. During bone marrow biopsies (Krause, 1981), a stainless steel 

hollow needle with an external diameter ranging from 18 to 11-gauge is inserted at the targeted 

location by a rotational motion to sever the tissue (Fig. 1.1 a). Then, a tissue sample is extracted 

by using a syringe or other means.  

A similar procedure to bone marrow biopsy is adopted by several breast biopsy devices such 

as the Mammotome (Devicor Medical Product, Inc.), where a rotational biopsy needle, typically 

of 14-gauge, is used to cut and extract tissue samples (Shin, 2016). Breast cancer is one of the 

most commonly diagnosed cancers among American women (American Cancer Society, 2017), 

and breast biopsy is the fundamental test for diagnosis. 

Similar needles are used for skin biopsies, whereby a cutaneous lesion is extracted and 

delivered to a pathologist to perform the diagnosis. In punch biopsy, hollow needles—usually 

called biopsy punches (BP)—are pressed down into the skin to extract a tissue sample. BPs are 

the primary medical tools adopted for diagnosing skin disorders (Zuber, 2002) such as skin 
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cancer, which has a higher incidence than all other cancers combined in the United States (Linos 

et al., 2016). If a punch biopsy is performed incorrectly, a pathologist's interpretation of a skin 

biopsy can be limited or erroneous. 

 

 

In the above-described medical procedures, the ability of the hollow needle to effectively 

sever the biological tissue, without compromising the quality of the samples before their 

extraction, is a critical factor. In fact, it was observed that larger biopsy samples could be 

obtained by lowering the forces applied to the needle during the cutting process (Moore et al., 

2012a). 

Needle insertion accuracy is another issue that arises during biopsy procedures, because: (i) 

the needle tends to deflect on its route to the target (Abolhassani & Patel, 2006a) and (ii) the 

targeted sample is constantly moving during needle insertions (Oldfield et al., 2015). Both effects 

are caused by the mechanical behavior of soft tissue, which experiences large deformations 

before the fracture is initiated. 

  
a) b) 

Figure 1.1. Biopsy procedures: (a) bone marrow biopsy (National Cancer Institute © (2007) 
Terese Winslow LLC, U.S. Govt. has certain rights), (b) skin biopsy (image by BruceBlaus, 
distributed under a CC BY-SA 4.0 license). 
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Although the above medical procedures have been widely adopted, the problems related to 

the optimal cutting of soft tissue have, so far, not been completely addressed. In this research, 

the focus will be placed on the cutting performances of hollow needles, which are mainly adopted 

for core biopsy procedures. 

 

1.2 Objectives 

The work presented in this thesis aims to enhance the fundamental understanding of tissue 

cutting by investigating: (i) the geometry and (ii) the cutting motions of medical needles. 

 The first goal of this research is to investigate the design of the needle tips and propose novel 

geometries. The geometry of the needle’s cutting edge fulfills a critical function in enhancing the 

cutting of soft tissue to maximize the quantity of the tissue sample that can be extracted. Since 

the dawn of modern medicine, only a few studies have proposed novel needle tip configurations. 

In this research, helical cutting edges characterized by a three-dimensional (3D) profile and 

micro-serrated cutting edges are conceived, analyzed, and tested.  

The second goal of this research is to study the cutting motions of medical needles. 

Nowadays, most of the tissue cutting performed in clinical environments relies on the judgment 

and ability of the physician or the surgeon to perform the cut. However, in the foreseeable future, 

the number of incisions and medical operations assisted by automated arms and robots will 

increase. This will enhance the performance of cutting procedures by assigning specific speeds 

and motions to medical devices to ease and optimize tissue cutting. 

Computational and analytical methods will be proposed to study the impact of novel cutting 

edges and motions on the cutting efficiency in soft tissue. All the investigated medical devices 
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will undergo comprehensive testing on a customized testbed by adopting phantom soft tissue 

samples that approximate human tissue. 

 The proposed general approaches (analytical, computational, and experimental) are 

intended to prove the effectiveness of the proposed novel ideas and their applicability to current 

medical devices and procedures. The hope is that the results of this research can be used to 

develop smarter cutting tools and automated systems for surgical simulation and robot-assisted 

surgical procedures. 

 

1.3 Literature review 

A review of the state of the art in tissue cutting is now presented in this section. The impact 

of needle cutting edge geometries on cutting forces and on the overall quality of the extracted 

tissue samples (Section 1.3.1) has been previously researched. However, few studies were 

focused on the application of serrated and micro-serrated patterns on the cutting edge of medical 

devices to enhance their performances (Section 1.3.2). Further, only a few research explored the 

implementations of different motions (rotational, vibrational) during soft tissue cutting (Section 

1.3.3).  

 

1.3.1 Cutting edge geometry  

The force required to cut soft tissue is highly affected by the geometry of the cutting edge of 

the medical device being used. The geometry is mainly defined by its included angle 𝜃 and its 

radius (Han et al., 2012). Small values of both the included angle (15°~30°) and of the cutting 

edge radius (10~20 µm) are crucial to achieving the maximum possible cutting edge sharpness 

(Atkins, 2009). In this regard, it was assessed (Atkins, 2009) that small included angles and 
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cutting edge radii eventually lead to improved sharpness of the cutting tool (Marsot et al., 2007; 

Mccarthy et al., 2010; Mcgorry et al., 2005; Moore et al., 2010).  

Moore et al. (Moore et al., 2010) derived relationships between the inclination angle, rake 

angle and the needle tip insertion length for different needle tip styles and assessed how they 

directly affect the cutting force and the quality of the biopsy tissue sample. In a separate study, 

Moore et al. (Moore et al., 2012a) also observed that the geometry of the needle tips directly 

affects the insertion force and the biopsy sample size.  

A core biopsy needle is mainly composed of a hollow cannula, which is characterized by an 

outer and inner diameter (Fig. 1.2). Commercially, different needle tip geometries are offered, 

which range from the one-plane bevel tip to multi-plane needles characterized by planes 

oriented symmetrically or asymmetrically. 

 

   
a) b) c) 

Figure 1.2. Biopsy needles: (a) commercial bone marrow biopsy needle “Jamshidi,” (b) hollow 
cannula cross-section, and (c) multi-plane symmetric and nonsymmetric needles (Moore et al., 
2010). 
  

Few researcher studies (Han et al., 2012; Moore et al., 2012b) have specifically analyzed the 

cutting parameters of different needle geometries including the inclination angle, the included 
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angle and the rake angle as they are defined in oblique cutting (Boothroyd & Knight, 2005; David 

A. Stephenson, 2016). Han et al. (Han et al., 2012) provided analytical models for the 

determination of the included and inclination angles for different needle cutting edges. The goal 

was to achieve a deeper understanding of the effect of different needle geometries (one-plane, 

multi-planes) on the angles defined at the needle’s cutting edge. Moore et al. (Moore et al., 2011) 

applied the principles from metal cutting theory to model hollow biopsy needle tips and to 

identify the geometrical parameters that uniquely define their geometry. 

Despite the abundance of research on the influence of cutting angles on the performances of 

needles and blades, few studies have analyzed the cutting motion that is adopted during bone 

marrow and breast biopsy procedures, where a hollow needle is advanced to a depth ranging 

from 20 to 80 mm while it is rotated. Furthermore, no studies have demonstrated the ability of 

novel needle tip geometries to lower the cutting forces of rotating hollow needles for biopsy 

procedures. Current needle tip geometries are mainly composed of one or multiple surfaces 

formed by two-dimensional (2D) profiles, which are extruded in one or more directions (Han et 

al., 2012; Moore et al., 2012b). This geometrical limitation simplifies the manufacturing process 

of the needle. However, current technology allows for the generation of virtually any three-

dimensional (3D) surface, and while it may require a more sophisticated manufacturing process, 

it can also provide more efficient cutting capabilities. In this work, 3D needle tip geometries will 

be proposed, which are inspired by helical drills commonly used for cutting of polymers and 

metals (Che et al., 2012; Ehmann & Malukhin, 2012; Lin et al., 1995). A similar helical shape, 

described by its implicit surface equation, was proposed by Ehmann et al. (Ehmann et al., 2012). 

However, not all 3D needle geometries can be expressed in analytical form, and if the final needle 

geometry originates from the intersection of parametric surfaces, the application of numerical 
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methods is necessary to determine the 3D needle profile (Barnhill & Kersey, 1990; Hartmann, 

2003), as it will be described in Chapter 3. Further, the medical devices proposed in the prior art 

(Che et al., 2012) were not manufactured and tested on phantom tissue to observe the effect of 

the helical geometry on the insertion forces. 

 

1.3.2 Micro-serration effect  

The presence of serrations on the cutting edge of kitchen knives and garden tools is quite 

common, and their general benefits to the cutting process that are also observable in nature are 

well established (Meyers et al., 2008). For instance, serrated cutting edges are usually adopted 

when slicing through fibrous materials, since serrated edges tend to “grab” or grip the surface. 

In fact, because the high points on the serration meet the object first, there will be more pressure 

per area available at these high points that will ease the initiation of the cutting process. 

Moreover, plain cutting edges will also lose their sharpness faster than serrated edges. This 

happens because, during a cutting process, the tip of the serrations will be responsible for the 

first contact with the soft tissue, thus becoming dull first, but also preventing the inner curvature 

of the serrations from early-stage damage. However, beyond these preliminary considerations, 

little research has been performed about the effectiveness of serrations and the relationships 

between their geometry, size, and cutting performance for their prospective application in 

medical devices.  

In seeking a better approach to study the generation of serration patterns on the cutting edge 

of medical devices, Atkins and several other researchers (Atkins, 2009; Chen et al., 2012; Meyers 

et al., 2008) have already performed some preliminary studies related to the presence of 
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serrated cutting edges that mimic certain animal features, such as the quill of a porcupine, spine 

of a caterpillar, stinger of a bee, a mosquito’s proboscis and a fish’s teeth. 

Cho et al. (Cho et al., 2012) investigated the cutting capabilities of the quills of porcupines. 

They observed that the microscopic barbs on the quill have a fundamental role in minimizing the 

force necessary for penetration. An analogous phenomenon was also noticed by Ma et al. (Ma et 

al., 2011), who studied the microstructure of a caterpillar’s spine, capable of penetrating the skin 

with a minimal insertion force (about 173 µN) and without fracture. Ling et al. (Ling et al., 2016, 

2017) observed similar effects when investigating the impact of a honeybee’s stinger and its 

microstructured barbs on insertion and pull forces (Fig. 1.3).  

 

  
a) b) 

  
c) d) 

Figure 1.3. SEM images of a honeybee’s stinger and of an acupuncture needle: (a) stinger, (b) 
stinger tip, (c) barbs on the stinger, (d) and acupuncture needle (Ling et al., 2017). 
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The results showed that the presence of the barbs on the stinger facilitates its easy 

penetration in the skin and strong adhesion during its removal. 

The above-mentioned studies were also extended to a mosquito’s proboscis, and several 

scientists explored its properties and tried to replicate it to obtain bioinspired microneedles 

(Jaiswal & Muthuswamy, 2015; Lenau et al., 2017; Ramasubramanian et al., 2008; Shoffstall et 

al., 2018). In fact, the mosquito proboscis is characterized by several micro-serrations, which are 

ultimately aimed to ease penetration and reduce nerve stimulation. Previous research was 

conducted to observe the geometry of its micro serrations. Izumi et al. (Izumi et al., 2011, 2008) 

have shown the effectiveness of the insertion of silicon microneedles inspired by the mosquito’s 

proboscis into artificial skin. 

Effects similar to the ones described above have also been observed with micro-needles 

created by MEMS techniques during insertion in the presence of vibrational motion (Izumi et al., 

2011). Hollow micro-needles, made of silicon, were also fabricated by Oka et al. (Oka et al., 2002). 

The needles featured a jagged shape similar to that of a mosquito’s maxilla and were capable of 

penetrating the surface of hard silicon rubber through standard insertion. Besides lithography 

and etching, three-dimensional laser lithography was also adopted to obtain microneedles 

inspired by the mosquito proboscis, but the process can be extremely expensive (Suzuki et al., 

2018). Other researchers employed a similar technique to fabricate needles inspired by the 

honeybee’s stinger (Sahlabadi & Hutapea, 2018), which resulted in a decrease in the penetration 

force by 46% in bovine liver tissue tests. Chen et al. investigated similar bioinspired needles by 

proposing a novel three dimensional additive manufacturing method (Chen et al., 2018). The 

presence of barbs on the microneedles enhances stress concentration at their location, which, in 

turn, determines the reduction of insertion and frictional forces.  
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Aoyagi et al. (Aoyagi et al., 2008, 2012) have proven the cutting efficiency of serrated profiles, 

also from a computational standpoint (Fig. 1.4). As shown in Fig. 1.4, the harpoon shape of the 

mosquito proboscis causes stress concentrations at many points, which eases its insertion into 

the skin. 

 

 
Figure 1.4. Effect of jagged shape on stress concentration (Aoyagi et al., 2008). 

 

Kong et al. (Kong & Wu, 2009, 2010) have also performed a study on the prediction of the 

insertion force of the mosquito’s fascicle from an experimental and computational standpoint. 

They identified the nanometer-sized tip radius of the mosquito’s fascicle as one of the causes of 

its extremely low insertion force (18 µN). However, few research studies have been performed 

on the impact of micro-serrations—similar to those seen on the mosquito’s proboscis—on 

insertion forces and their possible implementation on the cutting edge of medical devices, 

including knives, needles, and BPs.  
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1.3.3 Cutting motion  

One of the critical aspects of the cutting process of soft tissue is represented by the relative 

motion of the cutting edge with respect to the reference target tissue that needs to be cut. Several 

researchers have focused their attention on this subject to provide a deeper understanding of 

the parameters and conditions that could lead to an optimal cutting motion. For instance, the 

effect of insertion velocity on the force has been studied by Heverly et al. and Hing et al. (Heverly 

et al., 2005; Hing et al., 2006). Their results show that higher insertion velocities lead to lower 

tissue deformation during cutting. 

Atkins et al. (Atkins et al., 2004) investigated the effectiveness of a slicing motion on the 

cutting forces of a blade by using an energy-based fracture mechanics approach. They 

demonstrate that an increase in the slice/push ratio dramatically reduces the cutting forces. Also, 

Han et al. (Han & Ehmann, 2013a) researched tissue cutting mechanics and focused specifically 

on the application of efficient cutting motions for biopsy needles. They observed that the 

combination of rotational and translational motion has the potential to improve cutting 

performance. 

Abolhassani et al. (Abolhassani et al., 2006a, 2007a, 2004, 2006b, 2007b) observed the 

impact of rotational motion on the needle’s axial force. Meltsner et al. (Meltsner et al., 2007) 

performed similar studies on 18-gauge hollow cannulas for brachytherapy robots and observed 

that the needle’s rotational motion leads to a reduction of insertion forces with a minimal 

increase in tissue damage. Furthermore, Wan et al. (Wan et al., 2005) noticed that rotating a 

brachytherapy cannula can lead to the minimization of the displacement error during its 

insertion. Badaan et al. (Badaan et al., 2011) have also explored the application of rotational 

motion to commercial needles of various sizes to improve lesion targeting (Fig. 1.5). 
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a) b) 

Figure 1.5. Rotating needles: (a) revolving needle driver supported by a Remote Center of 
Motion (RCM) orientation module and (b) target displacements with no-revolve, when rotating 
while inserting and after the insertion (post-revolve) (Badaan et al., 2011). 

 

Very few research studies have focused on the development of new cutting motions that 

could further reduce the cutting force and address the need for efficient cutting in clinical 

environments. To successfully address this gap, inspiration from the mosquito’s proboscis will 

be taken, as a mosquito's insertion is characterized by painless penetration and high targeting 

accuracy (Izumi et al., 2008; Kong et al., 2009). As observed by Aoyagi et al. and Izumi et al. 

(Aoyagi et al., 2008; Izumi et al., 2008), the mosquito`s proboscis vibrations range between 1 to 

30 Hz and provide a crucial contribution to tissue penetration along the jagged cutting edge (Fig. 

1.6). In their work, Aoyagi et al. (Aoyagi et al., 2008) combined micro-needles like the mosquito’s 

proboscis, which are composed of a central straight needle and two jagged outer ones. Cutting 

experiments with the fabricated micro-needles into artificial skin were carried out, and the 

effectiveness of vibrational motion in easing the insertion of jagged needles was confirmed.  
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a) b) 

Figure 1.6. An example of resistance force detected by the load cell for insertion with (a) 
straight and (b) jagged microneedle at a vibration of 30 Hz (Izumi et al., 2008). 

 

Begg et al. (Begg & Slocum, 2014) observed how the application of linear vibrational motions, 

with frequencies ranging from 50 to 500 Hz and amplitudes ranging from 0.1 to 3 mm, lead to a 

consistent decrease of the cutting forces in hypodermic needle insertion. Also, the application of 

ultrasonic devices, with frequencies ranging from 23 to 60 kHz and amplitudes ranging from 80 

to 200 µm, lead to similar reductions in the axial force (Zucker Karl A., 2001). However, these 

ultrasonic devices can also cause more immediate tissue damage (Begg & Slocum, 2014). 

Vibrational motions were also adopted by marketed devices such as the “GentleSharp” (U.S. 

Patent No. 10219832, 2014), a blood sampling system for animal studies, which adds a low-

frequency oscillatory motion to the axial needle motion to reduce the puncture force. Several 

researchers also investigated different techniques for performing needle insertion by actuated 

steerable cannulas for prostate biopsy and diagnostic procedures. Ayvali et al. implemented a 

multi-degrees of freedom actuated cannula to deliver diagnostic toolings, like a needle or 

surgical video camera (Ayvali et al., 2012). However, the cutting motion that is adopted during 

skin biopsy and procedures has not been analyzed. 

 



38 
 

1.4 Outline  

According to the stated objectives, this thesis suggests a scientific approach for (i) the design 

of novel biopsy needle cutting edges and cutting motions, (ii) the development of manufacturing 

processes necessary for their realization, and (iii) their testing on phantom tissue. This thesis 

also provides analytical and computational models for the prediction and simulation of cutting 

forces during biopsy needle insertions. 

In Chapter 2, analytical models related to the cutting angles of several needle tip designs will 

be defined and compared. Furthermore, several experimental cutting tests will be performed 

with different cannula tip designs to assess: (i) the optimal geometry for rotating insertion, and 

(ii) the benefits of rotational motions at different needle axial speeds and on different phantom 

materials. 

Chapter 3 focuses on the development of mathematical models to compute the main cutting 

angles and fracture forces related to needle tips characterized by any three-dimensional (3D) 

surface. The proposed methodology will be applicable to virtually any needle geometry. The 

analytical results will be compared with the ones related to one-plane bevel needles, which 

represent the most common geometry adopted in clinical environments. Furthermore, a helical 

geometry will be designed, manufactured, and tested on phantom tissue for translational and 

rotational insertions. 

Chapter 4 explores the characterization of phantom tissue by uniaxial compression and 

tension tests. Data coming from the tissue characterization were used to calibrate an analytical 

model, and the finite element method (FEM) models to predict the cutting force during the 

insertion of core biopsy needles. The phantom tissue was modeled as a hyperelastic material 
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using several constitutive models, and experimental tests were performed to assess the 

reliability of the proposed tissue characterization method.  

Chapter 5 investigates the effects of micro-serrated cutting edges on soft tissue cutting by 

means of biopsy punches (BP). A setup for laser ablation of BP cutting edges will be implemented 

and micro-features manufactured on their cutting edges. Insertion tests will be performed with 

the aim of investigating the influence of BP micro-serrations on the cutting force. 3D finite 

element simulations will be performed regarding the deformation of hyperelastic soft tissue 

undergoing large deformations. 

 Finally, Chapter 6 presents the conclusions on the work that has been accomplished and 

outlines the future directions for the further development of this research.  
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2 Design and Cutting Motions of Rotating Needles 

 

In this chapter, cutting motions used during bone marrow and breast biopsy procedures are 

analyzed in detail. During these procedures, a hollow needle is advanced to depths ranging from 

20 to 80 mm to collect tissue samples for further analysis and diagnosis. The ultimate goal is to 

provide a series of guidelines for clinicians and surgeons to correctly choose the needle tip 

geometry and motion speeds for rotating insertions. First, the mathematical models related to 

the cutting parameters and forces of hollow needles with different needle tip geometries are 

explained and compared. Second, the experimental methods adopted during this research are 

introduced. They include the setups for (i) manufacturing and testing of hollow needles, and (ii) 

characterization of soft materials by means of uniaxial tests. Third, the performance of conical, 

bevel, and multi-plane needles is studied through penetration tests into phantom tissue. Finally, 

several tests at different axial and rotational speeds are performed on different phantom tissues. 

The results will identify the optimal geometry and motion parameters that lower the cutting 

forces to obtain larger biopsy samples (Moore et al., 2010). The findings of this research are 

applicable to bone marrow biopsy, breast biopsy, and several clinical settings where hollow 

needles or similar medical devices are used. This chapter is based on Giovannini et al. 

(Giovannini et al., 2018a). 

 

2.1 Mathematical Models for Rotating Hollow Needles 

In this section, different hollow needle (cannula) designs—including conical, one-plane 

bevel, and multi-plane bevel tip needles—will be explored. The tip geometry and cutting angle 
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computations for each needle will be described first, while their manufacturing process will be 

presented in Section 2.3. 

 

2.1.1 Analytical Models for Conical and One-Plane Bevel Cannulas 

The cannula tip geometry can be mainly described by two parameters: the included angle 𝜃 

and the inclination angle 𝜆 (Han et al., 2012; Moore et al., 2010), which depend on the cannula’s 

geometry. 𝜃 is defined as the angle between the rake face and the cylindrical side surface, while 

𝜆 represents the angle between the vector 𝒕 tangent to the cutting edge and the 𝑥𝑦-plane (Fig. 

2.1). One-plane bevel cannulas are also characterized by the bevel angle (𝜉), which is the angle 

at which the plane was ground, and it is equal to 𝜃 in conical cannulas (Fig. 2.1). According to 

previous studies (Han et al., 2012), it is desirable to have a small 𝜃 and large 𝜆 values to reduce 

the cutting force. 

 

        
a) b) 

Figure 2.1. Illustration of needle geometries: (a) conical and (b) one-plane bevel cannula tip. 
geometries (b).  
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To define 𝜃 and 𝜆, the angular position of a point on the cutting edge must be assigned by the 

angle 𝛾 (Fig. 2.1b). According to Han et al. (Han et al., 2012), 𝜃 and 𝜆 can be calculated from: 

   𝜃(𝛾) = 𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠(𝑐𝑜𝑠𝜉𝑐𝑜𝑠𝛾)                   0 < 𝜉 ≤
𝜋

2
 (2.1) 

   𝜆(𝛾) = 𝑎𝑟𝑐𝑠𝑖𝑛
|𝑐𝑜𝑡𝜉𝑠𝑖𝑛𝛾|

√1 + 𝑐𝑜𝑡2𝜉𝑠𝑖𝑛2𝛾
               0 < 𝜉 ≤

𝜋

2
 (2.2) 

Figure 2.2 shows the comparison between conical and one-plane bevel cannulas with bevel 

angles (𝜉) equal to 15°, 45° and 75°. Conical hollow cannulas have a constant included angle, 

while in one-plane bevel cannulas, both 𝜃 and 𝜆 vary with the cannula angle (𝛾) (Fig. 2.2). In this 

regard, one-plane bevel cannulas feature greater inclination angles (𝜆), than conical cannulas, 

which have a null 𝜆 since their cutting edge is perpendicular to the cannula axis. The presence of 

the bevel could potentially ease the penetration process, especially for one-plane bevel cannulas 

with bevel angles (𝜉) equal to 15° and 45°, due to the consistent decrease of the needle cross-

section for these bevel angles.  

 

  
a) b) 

Figure 2.2. (a) Included angle 𝜃 and (b) inclination angle 𝜆 for conical bevel cannulas. 
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In this study, conical and one-plane bevel cannulas with 𝜉 equal to 15°, 45°, and 75° will be 

manufactured and their cutting performance tested in Section 2.4. 

 

2.1.2 Analytical Models for Symmetric Multi-Plane Cannulas  

One-plane bevel cannulas seem to represent a viable solution for effectively cutting soft 

tissue, but they are characterized by an asymmetric design that could lead to higher forces during 

their rotating insertion (detailed in Section 2.4). For this reason, symmetric multi-plane tip 

designs will be proposed and analyzed here (Fig. 2.3). 

 

 

 

  
a) b) c) 

Figure 2.3. (a) Illustration of the tip geometry of two-plane, (b) three-plane bevel cannulas, and 
(c) its 3D scan after manufacturing, with the deviations with respect to the CAD model. 

 

In multi-plane needles, the cutting edge is obtained by the intersection between two or more 

bevel planes. These cannulas are characterized by a constant bevel angle (𝜉), which represents 

the angle between each of the planes and the cannula axis. The included angle (𝜃) is defined as 



44 
 

the angle between the cannula’s cutting edges, while 𝜆 is defined in a manner identical to the 

one-plane bevel cannula. Multi-plane cannulas are also characterized by the angle 𝜙, which is the 

rotation angle between consecutive bevel planes and is equal to 𝜙 = 2𝜋/𝑃𝑙, where 𝑃𝑙 represents 

the number of planes. According to Han et al. (Han, 2014), 𝜃 and 𝜆 for multi-plane cannulas can 

be obtained from: 

         𝜃(𝜉) = 𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠(𝑐𝑜𝑠2𝜉𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛2𝜉)            0 < 𝜉 ≤
𝜋

2
                     𝜙 =

2𝜋

𝑃𝑙
 (2.3) 

        𝜆(𝛾) = 𝑎𝑟𝑐𝑠𝑖𝑛
|𝑐𝑜𝑡𝜉𝑠𝑖𝑛𝛾|

√1 + 𝑐𝑜𝑡2𝜉𝑠𝑖𝑛2𝛾
                            0 < 𝜉 ≤

𝜋

2
               −

𝜋

𝑃𝑙
< 𝛾 ≤

𝜋

𝑃𝑙
 

+ 

+               𝜆(𝛾) = 𝑎𝑟𝑐𝑡𝑎𝑛|𝑠𝑖𝑛𝛾𝑐𝑜𝑡𝜉|          0 < 𝜉 ≤
𝜋

2
   −

𝜋

𝑃
<

𝛾 ≤
𝜋

𝑃
 

(2.4) 

Figure 2.4 illustrates the value of the included angle 𝜃 for cannulas with a different number 

of planes. A small bevel angle (𝜉) leads to a small included angle (𝜃), and for a fixed value of 𝜉, 

the value of 𝜃 increases with the number of planes, 𝑃𝑙. When 𝑃𝑙 is equal to 2, the minimal value 

of 𝜃 is reached and for 𝑃𝑙 > 3, 𝜃 increases consistently making the geometry less efficient for 

cutting purposes (Fig. 2.4). 

 

  

a) b) 

Figure 2.4. (a) Included angle 𝜃 and (b) inclination angle 𝜆 for multi-plane cannulas. 
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The inclination angle (𝜆) varies as a function of the cannula angle (𝛾), and its behavior is 

identical through the angle span related to each plane of the cannula (Eq. (2.4)). When 𝑃𝑙 is equal 

to 2, the maximum value of 𝜆 is reached; greater values of 𝑃𝑙 cause lower values of 𝜆 (Fig. 2.4) 

and, consequently, increase the axial cutting force (Han et al., 2012). 

 

2.2 Analytical Models for Insertion Cutting Forces 

During insertion, the hollow needle, or cannula, is pressed against the tissue at a steady 

speed, parallel to its longitudinal axis (𝑣𝑎), while it is rotated in one direction (𝑣𝑟). The cannula 

is acted upon by the axial cutting force (𝐹𝑉), which is perpendicular to the cutting edge, and the 

cutting force (𝐹𝐻), which is tangential to the cutting edge of the cannula (Fig. 2.5). Each of these 

two forces (𝐹𝑉, 𝐹𝐻) have two components: (i) a rupture force, which determines the initial 

fracture of the tissue (𝐹𝑟𝑢𝑝), and (ii) a cutting force (𝐹𝑐𝑢𝑡), which is responsible for the crack 

growth in the tissue (Giovannini et al., 2018b).  

𝐹𝑉 = 𝐹𝑉𝑟𝑢𝑝 + 𝐹𝑉𝑐𝑢𝑡 (2.5) 

𝐹𝐻 = 𝐹𝐻𝑟𝑢𝑝 + 𝐹𝐻𝑐𝑢𝑡 (2.6) 

Figure 2.5 shows the behavior of 𝐹𝑉 and 𝐹𝐻 during needle penetration. The tissue is first 

subjected to an elastic deformation until the first crack initiates at 𝑑𝑟𝑢𝑝, (Phase I); then 𝐹𝑉 

increases until the peak force is reached, i.e., the rupture force (𝐹𝑉𝑟𝑢𝑝 at 𝑑𝑟𝑢𝑝). In Phase II, the 

needle is advancing into the soft tissue while it is steadily cutting it. 𝐹𝑉 continues increasing to a 

maximal value, called the final force (𝐹𝑉𝑓), until the cannula is stopped. These phases are also 

evident in the 𝐹𝐻 profile (Fig. 2.5 ) and it is possible to identify the value of the fracture force 
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(𝐹𝐻𝑟𝑢𝑝
) in the tangential direction by observing its value for a similar penetration depth that 

marks 𝐹𝑉𝑟𝑢𝑝. In the next subsection, each force component will be analyzed in more detail. 

 

 
 

(a) (b) 

Figure 2.5. (a) 3D model of the cannula with cutting forces (FV, FH) and (b) their behavior during 
needle penetration highlighting the cutting phases (I, II), the rupture forces (FVrup, FHrup) and 
the final axial and tangential forces (FVf, FHf). 

 

2.2.1 Fracture Force 

According to Atkins et al. (Atkins et al., 2004), when the material being cut is not permanently 

deformed, the work performed by the cutting tool (𝑊𝑁) is equal to the sum of the work needed 

to propagate the crack (𝑊𝑐) and the work dissipated due to the friction between the material and 

the tool (𝑊𝐹):  

𝑊𝑁  = 𝑊𝐶 + 𝑊𝐹 (2.7) 

One can further develop each term of this equation (Atkins et al., 2004), where the work 

performed by the needle is equal to the sum of the work performed by the axial cutting force 
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(𝐹𝑉) in the axial direction (𝑑𝑣) and the work performed by the tangential force (𝐹𝐻) in the 

tangential direction (𝑑ℎ): 

𝑊𝑁 = 𝐹𝑉𝑑𝑣 + 𝐹𝐻𝑑ℎ (2.8) 

The work due to the propagation of the crack is calculated by (Atkins, 2009): 

𝑊𝐶 = 𝑅𝑤𝑑𝑣 (2.9) 

where 𝑅 is the strain release rate and 𝑤 is the tool contact length, which is equal to the internal 

circumference of the needle cutting edge (𝑤 = 𝜋𝑑𝑖 = 2𝜋𝑟𝑛𝑖). The friction work (𝑊𝐹) originated 

from the contact between the material and the tool, can be obtained from the product between 

the friction force (𝐹𝐹) and the resultant displacement of the needle along the rake face (𝑑𝑟), as 

shown in Fig. 2.6 (Atkins, 2009): 

𝑊𝐹 = 𝐹𝐹𝑑𝑟 (2.10) 

𝑑𝑟 = √(
𝑑𝑣

cos (𝜃)
)

2

+ 𝑑ℎ2 
(2.11) 

 

 
Figure 2.6. 3D model of the cutting edge during a slicing motion. 
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Since floppy offcuts are in contact with the needle, Coulomb friction is assumed, and the 

friction force is equal to 𝐹𝐹 = 𝜇𝑑𝑁𝑅, where 𝑁𝑅 is equal to the contact force on the rake face of the 

needle and 𝜇𝑑 is the Coulomb dynamic friction coefficient. The equilibrium equation along the 𝑉 

direction can be written as (Fig. 2.7): 

𝐹𝑉 = 𝐹𝐹𝑐𝑜𝑠(휀)𝑐𝑜𝑠(𝜃) + 𝑁𝑅𝑠𝑖𝑛(𝜃) =  𝑁𝑅(𝜇𝑑𝑐𝑜𝑠(휀)𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃)) (2.12) 

which leads to: 

𝑁𝑅 =
𝐹𝑉

(𝜇𝑑𝑐𝑜𝑠(휀) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃))
 (2.13) 

 

 
Figure 2.7. Free body diagram of the tool. 

 

According to Fig. 2.6, the angle 휀 can be expressed as: 

 휀 = tan−1 (
𝑑ℎ𝑐𝑜𝑠(𝜃)

𝑑𝑣
) = tan−1(𝑘𝑐𝑜𝑠(𝜃)) (2.14) 

where 𝑘 represents the ratio between the displacements in the tangential and axial directions 

(𝑘 = 𝑑ℎ/𝑑𝑣), which is also equal to the ratio between the speed parallel (𝑣∥) and perpendicular 

to the cutting edge (𝑣⊥). For conical needles, since their cutting edge is perpendicular to the 

needle axis, the speed parallel to the cutting edge (𝑣∥) is equal to the rotational speed (𝑣𝑟); the 

speed perpendicular to the cutting edge (𝑣⊥) is equal to the axial speed (𝑣𝑎). Consequently, the 

work balance can be written as: 
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𝐹𝑉 + 𝐹𝐻𝑘 = 𝑅𝑤 +  𝜇𝑑

𝐹𝑉

(𝜇𝑑𝑐𝑜𝑠(휀) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃))

1

𝑐𝑜𝑠(𝜃)
√𝑘2𝑐𝑜𝑠2(𝜃) + 1 (2.15) 

From Eq. (2.15), the fracture forces in the axial direction 𝐹𝑉𝑟𝑢𝑝 and in the tangential direction 

𝐹𝐻𝑟𝑢𝑝 can be written as: 

𝐹𝑉𝑟𝑢𝑝 = 𝐹𝑉 =
𝑅𝜋𝑑𝑖

1 + 𝑘2 −
𝜇𝑑√(𝑘 𝑐𝑜𝑠(𝜃))2 + 1

𝑐𝑜𝑠(𝜃) (𝜇𝑑𝑐𝑜𝑠(휀) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃))

 
(2.16) 

𝐹𝐻𝑟𝑢𝑝 = 𝐹𝐻 =
𝑅𝜋𝑑𝑖𝑘

1 + 𝑘2 −
𝜇𝑑√(𝑘 𝑐𝑜𝑠(𝜃))2 + 1

𝑐𝑜𝑠(𝜃) (𝜇𝑑𝑐𝑜𝑠(휀) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃))

 
(2.17) 

This force model does not consider the impact of different needle tip geometries, which 

requires the development of finite element simulation models, but it describes the impact of the 

slice/push ratio (𝑘), friction coefficient (𝜇𝑑) and strain energy release rate (𝑅) on the fracture 

force (Fig. 2.8).  

 

  
a) b) 

Figure 2.8. (a) Fracture forces (FVrup, FHrup) vs. different slice/push ratios, calculated for 
different friction coefficients (µd) and (b) different strain energy release rates, 𝑅. 
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The optimal slice push ratio is obtained from the intersection between the analytical curve 

referred to the fracture force in the axial direction (𝐹𝑉𝑟𝑢𝑝) and the one related to the fracture 

force in the tangential direction (𝐹𝐻𝑟𝑢𝑝). Higher friction coefficients (Fig. 2.8a) and tougher 

materials (Fig. 2.8b) lead to higher fracture forces, which, in turn, determine an increase of the 

optimal slice push ratio to cut the material. 

 

2.2.2 Cutting Force 

The cutting force (𝐹𝑉𝑐𝑢𝑡) is mostly composed of the friction force (Begg et al., 2014) and can 

be evaluated by the product of the coefficient of dynamic friction (𝜇𝑑) and the normal force 

applied to the inner and outer cannula surfaces. Begg et al. (Begg et al., 2014) evaluated the 

normal force (𝐹𝑁) acting on the external surface of the needle by considering the pressure that 

the tissue is exerting in the radial direction as the needle is inserted. The formula to calculate 𝐹𝑁 

is derived from the interface pressure for a pin press-fit into a hole as (Slocum, 1992): 

𝐹𝑁 = 𝐴𝑐

𝐸

2(1 + 𝜂)
= 2𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝑥

𝐸

 2(1 + 𝜂)
=  

𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝐸

 (1 + 𝜂)
𝑥 (2.18) 

where 𝐴𝑐  represents the sum of the inner and outer areas of the cannula that are in contact with 

the tissue, 𝑟𝑒 the outer radius of the cannula (𝑟𝑛𝑜 = 𝑑𝑒/2, Fig. 2.1a), 𝑥 the cannula’s displacement 

in the axial direction (𝑥), 𝐸 the Young’s modulus of the tissue evaluated for a small strain, and 𝜂 

the Poisson ratio. The cutting force (𝐹𝑉𝑐𝑢𝑡) in the axial direction is given by (Begg et al., 2014): 

𝐹𝑉𝑐𝑢𝑡 = 𝜇𝑑𝑎 𝐹𝑁 = 𝜇𝑑𝑎

𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝐸

 (1 + 𝜂)
𝑥 (2.19) 

where 𝜇𝑑𝑎 is the coefficient of dynamic friction in the axial direction and it is a function of the 

slice/push ratio 𝑘 (𝜇𝑑𝑎 = 𝑓(𝑘)). The friction force can also be expressed per unit of axial 

displacement by dividing Eq. (2.19) by 𝑥: 
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𝑓𝑉𝑐𝑢𝑡 = 𝜇𝑑𝑎

𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝐸

 (1 + 𝜂)
 (2.20) 

By following the same approach (Eqs. (2.19)), it is possible to calculate the cutting force in 

the tangential direction (𝐹𝐻𝑐𝑢𝑡): 

𝐹𝐻𝑐𝑢𝑡 = 𝜇𝑑𝑟

𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝐸

 (1 + 𝜂)
𝑥 (2.21) 

where 𝜇𝑑𝑟 is the dynamic friction coefficient in the rotational direction due to the contact 

between the cannula’s surfaces and soft tissue. The overall axial cutting force (𝐹𝑉) required to 

insert the cannula into the tissue is equal to (Begg et al., 2014; Han et al., 2013a):  

𝐹𝑉 =
2𝑅𝜋𝑟𝑛𝑖

1 + 𝑘2 −
𝜇𝑑√(𝑘 𝑐𝑜𝑠(𝜃))2 + 1

𝑐𝑜𝑠(𝜃) (𝜇𝑑𝑐𝑜𝑠(휀) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃))

+ 𝜇𝑑𝑎

𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝐸

 (1 + 𝜂)
𝑥 

(2.22) 

This analytical formulation assumes that the cannula is not deformed during tissue cutting. 

A similar approach can be adopted to calculate the force in the tangential direction, 𝐹𝐻 , where 

the formulations of the fracture force (𝐹𝐻𝑟𝑢𝑝) and of the cutting force (𝐹𝐻𝑐𝑢𝑡) were shown 

respectively in Eq. (2.17) and Eq. (2.21), and can be added to obtain the overall tangential 

force, 𝐹𝐻: 

𝐹𝐻 = 
2𝑅𝜋𝑟𝑛𝑖𝑘

1 + 𝑘2 −
𝜇𝑑√(𝑘 𝑐𝑜𝑠(𝜃))2 + 1

𝑐𝑜𝑠(𝜃) (𝜇𝑑𝑐𝑜𝑠(휀) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃))

+ 𝜇𝑑𝑟

𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝐸

 (1 + 𝜂)
𝑥 

(2.23) 

Further, during the application of the slicing motion, the friction force (𝐹𝐹) (Eq. (2.10)), acts in 

the direction of the resulting displacement and can be expressed as the vector sum of its 

components (𝐹𝐹𝑉, 𝐹𝐹𝐻): 

𝐹𝐹 = √𝐹𝐹𝑉
2 + 𝐹𝐹𝐻

2= 𝜇𝑑𝑁𝑅 (2.24) 
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where the friction coefficient (𝜇𝑑) in Eq. (2.22) and Eq. (2.23), can be calculated as: 

𝜇𝑑=√𝜇𝑑𝑎
2 + 𝜇𝑑𝑟

2 (2.25) 

By combining Eq. (2.25) with Eq. (2.23) and Eq. (2.22), the resultant axial (𝐹𝑉) and tangential 

(𝐹𝐻) cutting force required to insert the cannula into the tissue can be expressed as follow:  

𝐹𝑉 =
2𝑅𝜋𝑟𝑛𝑖

1 + 𝑘2 −
√𝜇𝑑𝑎

2 + 𝜇𝑑𝑟
2√(𝑘 𝑐𝑜𝑠(𝜃))2 + 1

𝑐𝑜𝑠(𝜃) (√𝜇𝑑𝑎
2 + 𝜇𝑑𝑟

2𝑐𝑜𝑠(휀) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃))

+ 𝜇𝑑𝑎

𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝐸

 (1 + 𝜂)
𝑥 

(2.26) 

𝐹𝐻 =
2𝑅𝜋𝑟𝑛𝑖𝑘

1 + 𝑘2 −
√𝜇𝑑𝑎

2 + 𝜇𝑑𝑟
2√(𝑘 𝑐𝑜𝑠(𝜃))2 + 1

𝑐𝑜𝑠(𝜃) (√𝜇𝑑𝑎
2 + 𝜇𝑑𝑟

2𝑐𝑜𝑠(휀) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃))

+ 𝜇𝑑𝑟

𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝐸

 (1 + 𝜂)
𝑥 

(2.27) 

In Section 2.5.1, the analytical values of the fracture and cutting forces will be compared with 

experimental values. The axial (𝐹𝑉𝑐𝑢𝑡) and tangential cutting forces (𝐹𝐻𝑐𝑢𝑡) can be obtained by 

subtracting the rupture force from the value of 𝐹𝑉 and 𝐹𝐻 at the final penetration depth (Fig. 2.5). 

These values can be expressed per unit displacement (𝑓𝑉𝑐𝑢𝑡) and they are adopted as the metrics 

to assess needle performance with different designs in cutting soft tissue after initial fracture, 

i.e.: 

𝐹𝑉𝑐𝑢𝑡 = 𝐹𝑉𝑓 − 𝐹𝑉𝑟𝑢𝑝 (2.28) 

 𝑓𝑉𝑐𝑢𝑡 =
𝐹𝑉𝑓 − 𝐹𝑉𝑟𝑢𝑝

𝑑𝑓𝑖𝑛𝑎𝑙 − 𝑑𝑟𝑢𝑝

 

 

(2.29) 

 

2.3 Experimental Methods for Rotating Needles 

In this section, the experimental methods used in this study are introduced. They include the 

setups for (i) needle grinding, and (ii) cutting test on phantom tissue. 
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2.3.1 Needle Grinding Process 

Hollow needles with different tip configurations were manufactured using 14-gauge 

cannulas that are very common in the clinical environment, and are characterized by an external 

diameter (𝑑𝑒) of 2.108 mm and an internal diameter (𝑑𝑖) of 1.6 mm (Fig. 2.1). Section 2.3.1.1 will 

introduce a kinematic description of the needle grinding processes, while Section 2.3.1.2 will 

present the grinding machine components. 

 

2.3.1.1 Coordinate systems and kinematics in needle grinding 

During the manufacturing process, the desired geometry is generated from the relative 

motion of the grinding wheel and the needle tip. Two coordinate systems are defined to describe 

the process. They are located respectively at the needle tip and at the grinding wheel surface. 

Figure 2.9 shows the position of the coordinate systems. 

 

 

Figure 2.9. Geometric schematics with coordinate systems of the needle grinding process. 

 

The Z* axis represents the spindle axis and describes the rotation of the needle tip axis Z. The 

intersection between the Z* axis and the grinding wheel surface coincides with the origin O*, 
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while the Y* axis direction is obtained by the right-hand rule. The coordinate system OXYZ is 

assigned to the needle tip (Fig. 2.9), where the Z axis represents the needle axis, the Y axis is 

parallel to the Y* axis, and the X axis is obtained by the right-hand rule. 

During the grinding operations, the needle progressively translates towards the grinding 

wheel along a direction parallel to the Z* axis, while it is rotating around the Z axis to obtain a 

conical tip geometry. The surface generated by the relative motion of the needle can be expressed 

in O*X*Y*Z as (Che et al., 2012; Lin et al., 1995): 

𝑍∗ = −
√𝑋∗2 + 𝑌∗2

𝑡𝑎𝑛(𝜙𝑔)
 (2.30) 

The coordinate system OXYZ is obtained from O*X*Y*Z* by applying the transformation (Che 

et al., 2012): 

[

𝑋∗

𝑌∗

𝑍∗

1

] = [

𝑐𝑜𝑠𝜑 0 𝑠𝑖𝑛𝜑 𝑋0
∗

0 1 0 𝑌0
∗

−𝑠𝑖𝑛𝜑 0 𝑐𝑜𝑠𝜑 𝑍0
∗

0 0 0 1

] [

𝑋
𝑌
𝑍
1

] (2.31) 

where: 

𝑋0
∗ = −𝐻𝑠𝑖𝑛𝜑 (2.32) 

𝑌0
∗ = 0 (2.33) 

𝑍0
∗ =

𝑋0
∗

𝑡𝑎𝑛 (𝜙𝑔)
 (2.34) 

This transformation allows the expression of Eq. (2.30) in OXYZ coordinates, which shows 

the surface generated by the relative motion of the needle. This operation yields the following 

function (𝐹𝑠𝑢𝑟𝑓) which represents the surface of a conical needle tip: 

𝐹𝑠𝑢𝑟𝑓 = −𝑋𝑠𝑖𝑛𝜑 + 𝑍𝑐𝑜𝑠𝜑 +
√(𝑋𝑐𝑜𝑠𝜑 + 𝑍𝑠𝑖𝑛𝜑 − 𝐻𝑠𝑖𝑛𝜑)2 + 𝑌2 − 𝐻𝑠𝑖𝑛𝜑

𝑡𝑎𝑛𝜙𝑔

= 0 (2.35) 
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For 𝑌 = 0, the conical surface turns into a single plane describing a one-bevel plane: 

 𝑋(𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛𝜑𝑡𝑎𝑛𝜙𝑔) + 𝑍(𝑐𝑜𝑠𝜑𝑡𝑎𝑛𝜙𝑔 + 𝑠𝑖𝑛𝜑) − 2𝐻𝑠𝑖𝑛𝜑 = 0 (2.36) 

The bevel angle 𝜉 (Fig. 2.1), which is adopted to describe one-plane bevel tip geometries, can 

be calculated as:  

𝜉 = 𝜙𝑔 − 𝜑  (2.37) 

Equation (2.36) is also applicable for describing multi-plane geometries, where the angle 𝜙 

identifies the different planes that will be ground. The distance 𝐻 can be expressed as a function 

of the distance 𝑂𝐶 and the angles 𝜑 and 𝜙𝑔 (Fig. 2.9) as:  

𝐻 = 𝑂𝐶(𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜑𝑡𝑎𝑛(90° − 𝜙𝑔 + 𝜑))  (2.38) 

These equations allow the determination of the kinematic relationships between the X, Y, and 

Z axes, which are used to control the machine as it will be explained in the following section.  

 

2.3.1.2 Five-axis needle grinding machine 

A 5-axis grinding machine system (Che et al., 2012; Lin et al., 1995) was adopted to generate 

needles with different tip designs. This machine allows the rotation of the grinding wheel axis 

(𝑟5) to generate needle tips characterized by different cutting angles and to move the needle in 

two translational directions (𝑡1 and 𝑡2) and two rotational directions (𝑟3, 𝑟4). As described in 

Section 2.3.1.1, the Z axis coincides with the needle axis, while the X axis is parallel to the motion 

axis, 𝑡2. The position of the needle tip along the Z axis is controlled by the motion axis 𝑡1. The Y 

axis is perpendicular to X and Y axes, and it is described by the rotation of the needle (𝑟3) around 

the Z* axis (Fig. 2.10b). 
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a) b) 

Figure 2.10. (a) Grinding machine system and (b) the schematics of the main axes. 

 

 During these grinding operations, 𝑟3 is equal to zero and, therefore, the needle does not move 

along the Y* axis. The acute angle between the grinding wheel surface plane and the Z* axis 𝜙, 

can be controlled by the motion 𝑟5, while the rotation of the needle around its axis, Z, can be 

controlled by the stepper motor acting on the rotational direction 𝑟4. The acute angle between 

the Z and Z* axes (𝜑) is constant due to the machine set up and is equal to 10 degrees.  

A straight cup grinding wheel (100 mm diameter, 33 mm thickness, 8 mm rim thickness and 10 

mm back thickness, made of ceramic material) was used for the grinding operations. The needles 

were mounted in an ER8 collet, which is placed on a shaft connected to the stepper motor. During 

the grinding operations of one-plane and multi-plane bevel needles, the needle was kept in place 

by the stepper motor, and it was not rotating. However, during the grinding operations of conical 

needle tips, the cannula was rotated at 1,000 rpm. During machining, the needle was moving 

towards the grinding wheel at feed rates ranging from 0.02 to 0.5 mm/s.  
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2.3.2 Insertion Testbed 

Cutting tests were performed on a custom-built testbed (Han et al., 2013a) with the goal of 

evaluating the cutting forces during the penetration of needles into soft tissue. The testbed is 

composed of a linear motor module, a stepper motor, a needle fixture, a three-component 

piezoelectric force dynamometer, a torque sensor, and a controller (Fig. 2.11). 

The Copley linear motor module is responsible for the linear insertion. It has a resolution of 

12 μm, and it can reach a maximal velocity of 10 m/s with a peak acceleration of 222 m/s2. A 

stepper motor (Model: HT17-268, Applied Motion Products) with a 1.8º step angle and a holding 

torque of 0.16 Nm is used to impart the rotational motion of the needle. The linear motor is 

controlled by a Copley Xenus digital drive (Model: XTL-230-18-S), while the stepper motor is 

controlled by a step motor drive (Model: STR2, Applied Motion Products). 

 

 Figure 2.11. Testbed for the measurement of cutting forces and torques. 
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A customized fixture is used to attach the cannula to the shaft of the stepper motor. The 

fixture is composed of steel support in which a shank collet holder accommodates an ER8 collet 

for clamping the needle. Cutting forces are measured by a Kistler 9067 3-component 

piezoelectric dynamometer with a threshold of 0.01 N. Torque measurements are obtained by a 

torque sensor (FUTEK TFF425), capable of measuring a maximal torque of 0.1412 Nm with an 

output of 2.188 mV/V. Before each insertion, the radial runout of the needle was verified with a 

dial indicator and corrected to be limited to 20 µm or less. Both the sensors and actuators are 

placed on a granite table, but on different bases so that the vibrations induced by the linear 

actuator and the stepper motor will not affect the force measurements.  

All the data was recorded with a NI Data acquisition board DAQ Card - 6036E at a 1,000 Hz 

sampling rate and then processed using LabView programs. The signal measurements from each 

experiment are filtered and post-processed in MATLAB after passing them through a low pass 

filter with a stop band of 50 Hz. The phantom tissue samples are placed on an aluminum plate 

which is affixed to the torque sensor. 

 

2.3.3 Phantom Tissue 

The experimental results in this thesis are based on cutting tests performed on phantom 

tissue, commonly utilized in several medical investigations (Podder et al., 2005b) for its 

homogeneity and consistency. The phantom tissue was made of Polymerizing Vinyl Chloride 

(PVC) mixture composed of 8116SS plastic (𝑃) with 4116S plastic softener (𝑆) (M-F 

Manufacturing, Texas) in a ratio 𝑆/𝑃 equal to 0, 0.25, 0.5, 1. However, PVC does not have fluid 

inside that leads to greater friction forces during needle penetration in comparison to insertions 

performed in biological tissue. To make the PVC material more realistic, a lubricating agent was 
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added into the PVC sample to simulate the interstitial fluids of the tissue as suggested by Wang 

et al. and Li et al. (Li et al., 2015; Wang et al., 2014). In this study, white mineral oil (Swan Mineral 

Oil, Smyrna, TN) was added in the amount of 5% with respect to the overall mixture. The tissue 

was then heated to 180°C and poured into a mold to obtain phantom blocks. By following this 

procedure, four different phantom materials were prepared (Table 2.1). Each phantom material 

is characterized by different properties since bone marrow tissue has an effective Young`s 

modulus that ranges from 0.25 to 24.7 kPa (Jansen et al., 2015), while breast tissues are 

characterized by Young`s modulus ranging from 7.5 to 66 kPa (Gefen & Dilmoney, 2007). The 

characterization of phantom tissue will be described in detail in Chapter 4, where the definition 

of the constitutive equations will be essential for the elaboration of the computational model. 

 

Table 2.1. Young`s modulus for each phantom tissue characterized by a different 
softener/plastic ratio (𝑆/𝑃).  
 

𝐑𝐚𝐭𝐢𝐨 𝐒/𝐏 𝐘𝐨𝐮𝐧𝐠`𝐬 𝐌𝐨𝐝𝐮𝐥𝐮𝐬 (𝐤𝐏𝐚) 

0 32.96 

0.25 20.30 

0.5 13.60 

1 4.88 

 

2.4 Impact of Different Needle Tips on Cutting Forces 

In this section, several 14-gauge needles with different tip designs were generated (Section 

2.1) and tested on phantom tissue composed of 8116SS plastic with 4116S plastic softener in a 

ratio 𝑆/𝑃 equal to 0.25, which was described in Section 2.3.3. 

Each needle was inserted six times into the target tissue to a penetration depth of 23 mm. 

During the insertion process, the needles were steadily rotated counterclockwise as during 
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typical clinical procedures. The rotational (𝑣𝑟) and translational speeds (𝑣𝑡) were set 

respectively to 2 mm/s and 1 mm/s through all the tests. The analysis of the cutting forces for 

the conical and one-plane bevel needles will be presented in Section 2.4.1, while Section 2.4.2 

will show a similar analysis for multi-plane needles. 

 

2.4.1 Needle Tip Effect on Conical and One-Plane Bevel Needles 

Insertions with conical needles and one-plane bevel needles with different included angles 

(𝜃) equal to 15°, 45°, 75°, and 90° were performed to observe the impact of different tip 

geometries. Needles with 𝜃 = 900, will be referred to as cylindrical needles (cyl.) in the figures 

that follow (Fig. 2.12 and 2.13). All the tests were run according to the specifics provided in the 

introduction of Section 2.4. By comparing the values of the rupture forces (𝐹𝑉𝑟𝑢𝑝, 𝐹𝐻𝑟𝑢𝑝) and 

cutting forces (𝑓𝑉𝑐𝑢𝑡, 𝑓𝐻𝑐𝑢𝑡), it is apparent that the needle tip design has a crucial role in the 

penetration of the cannula into soft tissue. 

Figure 2.12 shows that conical needles with smaller included angles tend to lead to smaller 

axial fracture forces. The same behavior was also observed for one-plane bevel needles. In 

addition, insertions performed with one plane-bevel needles result in lower axial fracture forces 

than insertions executed with conical needles with the same included angle 𝜃 (Fig. 2.12a). For 

instance, one-plane bevel needles with 𝜃 equal to 15° generate an axial fracture force that is 

47.4% lower than the axial force measured during conical needle insertion (Fig. 2.12a). On the 

contrary, the tangential fracture force observed during conical and one-plane bevel needle 

insertions tends to have higher values with respect to the value measured for cylindrical needle 

insertion. 
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a) b) 

Figure 2.12. (a) Fracture (FVrup, FHrup) and (b) cutting force values (FVcut, FHcut) for cylindrical 
(𝜃 = 90°), conical and one-plane bevel needles (θ = 15°, 45°, 75°). 

 

Figure 2.12b illustrates the value of the cutting forces per unit displacement in both axial 

(𝑓𝑉𝑐𝑢𝑡), and tangential directions (𝑓𝐻𝑐𝑢𝑡). The experimental values of the cutting forces for bevel 

needles are similar to the values observed for the conical needles, except for the one-plane bevel 

needles with 𝜃 equal to 15° and 45°, which exhibit lower cutting forces in the axial direction.  

This result suggests that the force necessary for cutting the tissue after initial rupture is less 

dependent on the needle tip geometry, which mostly affects the fracture forces.  

To confirm that insertion forces are dependent on the needle geometry, an unpaired two-

tailed test was developed to compare the value of the axial and tangential forces (Tables 2.2 and 

2.3) for cylindrical (𝜃 = 900) and conical/bevel needle insertions at the maximum penetration 

depth (𝐹𝑉𝑓, 𝐹𝐻𝑓) (Fig. 2.5b). The test was not applied to the fracture (𝐹𝑟𝑢𝑝) and cutting forces 

(𝐹𝑐𝑢𝑡), since their identification across all the experimental data can be subject to interpretation 

(Fig. 2.5). The test assumes unequal variances between samples and was run with a significance 

level (𝛼) equal to 0.05. Table 2.2 presents the test outcomes for the best performing needle tip 
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configurations, which are compared to a cylindrical needle. For instance, for the one-plane bevel 

needle, the axial force ( 𝜇 = 0.584 𝑁, 𝜎 = 0.040) is 36.21% lower (p-value = 1.52 × 10−7) than 

the axial force measured with a cylindrical needle (𝜇 = 0.915, 𝜎 = 0.041). The presence of 

conical and one-plane bevel tips leads to lower axial fracture forces (Fig. 2.13a) and 

consequently higher variations of ∆𝐹𝑉𝑓 in the axial force (∆𝐹𝑉𝑓 =
𝐹𝑉𝑓𝑏𝑒𝑣𝑒𝑙−𝐹𝑉𝑓𝑐𝑦𝑙

𝐹𝑉𝑓𝑐𝑦𝑙
100%) at the 

maximum penetration depth. This behavior is probably determined by the concentration of the 

insertion force on a smaller contact area, which leads to tissue fracture at a lower value of the 

axial force.  

 

Table 2.2. The mean value (𝜇), standard deviation (𝜎), p-value, t-test result, and force variation 
(ΔFVf) related to the value of the force in the axial direction at the maximum penetration depth 
for cylindrical (cyl.), conical (con.), one-plane (bev.) and two- and three-plane needles. 
 

Needle 𝝁 𝝈 p-Value Result 𝚫𝑭𝑽𝒇(%) 

Cyl. (𝜃 = 90°) 0.915 0.041 - - - 

Con. (𝜃 = 15°) 0.825 0.054 0.0166 PASSED -9.83 

Bev. (𝜃 = 15°) 0.584 0.040 1.52 × 10−7 PASSED -36.21 

Bev. (𝜃 = 45°) 0.629 0.027 4.08 × 10−7 PASSED -31.25 

Two-Plane 0.591 0.020 1.05 × 10−6 PASSED -35.45 

Three-Plane 0.704 0.048 2.29 × 10−5 PASSED -23.07 

 

Table 2.3 confirms that the values of the tangential force observed during conical and one-

plane bevel needle insertions at the maximum penetration depth present similar values as 

insertions performed with a cylindrical needle. In fact, the values of the force variation in the 

tangential direction are quite limited ( −12.61% < ∆𝐹𝐻𝑓 < −9.22%) and for a bevel needle with 

𝜃 = 45°, it was not possible to assess from the t-test whether its tangential force (𝐹𝑉𝑓) is higher 

or lower than the tangential force measured for a cylindrical needle. 
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Table 2.3. The mean value (𝜇), standard deviation (𝜎), p-value, t-test result, and force variation 
(ΔFHf) related to the value of the force in the tangential direction at the maximum penetration 
depth for cylindrical (cyl.), conical (con.), one-plane (bev.) and two- and three-plane needles. 
 

Needle 𝝁 𝝈 p-Value Result 𝚫𝑭𝑯𝒇(%) 

Cyl. (𝜃 = 90°) 1.285 0.184 - - - 

Con. (𝜃 = 15°) 1.122 0.089 0.1198 PASSED -12.61 

Bev. (𝜃 = 15°) 1.167 0.024 0.2125 PASSED -9.22 

Bev. (𝜃 = 45°) 1.291 0.122 0.9564 NOT PASSED -0.43 

Two-Plane 1.659 0.087 0.0046 NOT PASSED +29.02 

Three-Plane 1.549 0.082 0.0228 NOT PASSED +20.47 

 

According to the preceding analysis, needle tip geometry mostly affects the axial fracture 

forces. Insertions performed with one-plane bevel needles with 𝜃 equal to 15° and 45° are 

characterized by the lowest axial forces (Fig. 2.13), and a slight reduction in the value of the final 

tangential force (Table 2.3). However, one-plane bevel needles are characterized by an 

asymmetric tip geometry, which causes several oscillations in the tangential force behavior (𝐹𝐻), 

especially for 𝜃 equal to 15° (Fig. 2.13b).  

 

  
a) b) 

Figure 2.13. (a) Axial force (FV) and (b) tangential force (FH) during needle penetration for 
cylindrical (θ = 90°), conical (θ = 15°) and one-plane bevel needles (θ = 15°, 45°, 75°). 
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With the purpose of improving the behavior of one-plane bevel needles, symmetric multi-

plane needles (Section 2.1.2) were designed, manufactured, and tested. The results will be 

shown in Section 2.4.2. 

 

2.4.2 Needle Tip Effect in Symmetric Multi-Plane Needles 

Symmetric needle tip geometries with an included angle 𝜃 of 15° and two- and three-plane 

bevel needles were studied and compared to cylindrical needles, which are characterized by an 

infinite number of planes. The goal was to investigate multi-plane geometries and their impact 

on rupture (𝐹𝑉𝑟𝑢𝑝 , 𝐹𝐻𝑟𝑢𝑝) and cutting forces (𝑓𝑉𝑐𝑢𝑡 , 𝑓𝐻𝑐𝑢𝑡).  

Figure 2.14 shows that the values of the axial fracture force are higher in insertions 

performed with multi-plane needles rather than in insertions executed with a one-plane bevel 

needle. However, the force reduction ∆𝐹𝑉𝑓 for multi-plane bevel needles is consistent (Table 2.3).  

 

 
Figure 2.14. Fracture (FVrup, FHrup) and cutting force values (fVcut, fHcut) for needles with one, two, 
three, and infinite (cylindrical) number of planes. 
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or a two-plane bevel needle, the axial force (𝜇 = 0.591, 𝜎 = 0.020) is 35.45% lower (p-value 

= 1.05 × 10−6) than the axial force measured for a cylindrical needle (𝜇 = 0.915, 𝜎 = 0.041). 

Tangential forces observed during multi-plane bevel needle insertions have higher values in 

comparison to the same type of forces measured for the one-plane bevel needle (Fig. 2.14, Table 

2.3). However, it was not possible to assess from the t-test whether the tangential force for multi-

plane needles is higher or lower than the tangential force for a cylindrical needle (Table 2.3). 

Figure 2.15b shows how the values of the tangential force reached by the one-plane bevel 

needles are lower than the respective force values reached by multi-plane needles. However, 

multi-plane needle insertions do not present the fluctuations typical of one-plan bevel needle 

penetrations (Fig. 2.13b), and they are still effective in reducing the axial force (Fig. 2.15a). For 

these reasons, two and three-plane bevel needles represent the best needle geometries to lower 

the cutting forces during soft tissue cutting. 

 

  
a) b) 

Figure 2.15. (a) Axial force (FV) and (b) tangential force (FH) behavior during needle 
penetration for cylindrical, one-plane, and multi-plane bevel needles (θ = 15°). 
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2.5 Impact of Different Cutting Motions on Cutting Forces 

In this section, the impact of the rotational motion on the cutting forces is investigated. In 

Section 2.5.1, the effect of the slice push/ratio (𝑘) on the cutting forces will be analyzed and the 

results will be compared with the force values obtained from the analytical models described in 

Section 2.2. In Sections 2.5.2 and 2.5.3, additional experimental cutting tests will be described in 

order to identify the optimal slice/push ratio for different needle axial speeds (Section 2.5.2) and 

different materials (Section 2.5.3). In all the tests, the 14-gauge cannula will be inserted 23 mm 

into the target phantom tissue while it was steadily rotated counterclockwise.  

 

2.5.1 Impact of the Slice/Push Ratio on Cutting Forces 

The first objective was to study the impact of the slice/push ratio on the fracture and cutting 

forces during needle insertion. To this end, a conical needle with an included angle 𝜃 of 15° was 

used; the translational speed (𝑣𝑡) was set to 1 mm/s and the slice/push ratios (𝑘 = 𝑣𝑟/𝑣𝑡) , were 

set to 0, 0.25, 0.5, 1, 1.5, 2, 3 and 4. The cannula was inserted five times for each scenario for a 

total of 40 insertions into phantom tissue. This tissue was composed of 8116SS plastic with 

4116S plastic softener in a ratio 𝑆/𝑃 equal to 0.5, as described in Section 2.3.3. For each insertion, 

the values of the rupture force component for both axial (𝐹𝑉𝑟𝑢𝑝) and tangential forces (𝐹𝐻𝑟𝑢𝑝) 

were recorded, while the values of the cutting force components (𝑓𝑉𝑐𝑢𝑡, 𝑓𝐻𝑐𝑢𝑡) were calculated 

from the experimental measurements (Section 2.2.2). Figure 2.16 shows the values of the 

fracture forces for different values of the slice/push ratio. The experimental force values were 

measured on the cutting testbed (Section 2.3.2) and compared with the results from the 

analytical models presented in Section 2.2. Table 2.4 sums up the parameter values for the 

prediction of the cutting forces, according to Eqs. (2.22)-(2.23), and material characterization 
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results (Section 2.3.3). The Poisson coefficient, 𝜂, is considered equal to 0.5, which is the 

theoretical value for incompressible materials.  

 

Table 2.4. Function parameters that are necessary to calculate the theoretical values of the axial 
and tangential cutting force (Eqs. (2.16)-(2.17)). 
 

Parameter Value 

𝑅 35 J/m2 

𝐸 12 .9 kPa 

𝜂 0.5 

 

The dynamic friction coefficients, 𝜇𝑑𝑎 and 𝜇𝑑𝑟 (Eqs. (2.22)-(2.23)), are a function of the 

slice/push ratio (𝑘), and were obtained through a polynomial fit of the experimental cutting 

forces (Table 2.5).  

Each mark in Fig. 2.16 represents the mean value of five insertions performed for a specific 

𝑘 with the related error bars. It is apparent that as soon as the needle starts to rotate (𝑘 = 0.25), 

the value of the axial force (𝐹𝑉𝑟𝑢𝑝) drops by approximately 45% and its minimum value at 𝑘 = 4 

is 83% lower than the value of 𝐹𝑉𝑟𝑢𝑝 for 𝑘 = 0. However, the reduction rate in the axial fracture 

force (𝐹𝑉𝑟𝑢𝑝) is quite limited for 𝑘 > 1.5. Instead, the tangential fracture force (𝐹𝐻𝑟𝑢𝑝) tends to 

slightly increase for increasing values of 𝑘.  

These results suggest that a slice/push ratio ranging from 1 to 2 (1 < 𝑘 < 2) is highly 

recommended to decrease the fracture forces. The results are aligned with the findings obtained 

in previous studies performed with similar medical devices (Han et al., 2013a). The presence of 

the slicing motion determines a rise of localized stresses in the contact area and decreases the 

amount of axial force needed to initiate the fracture of the tissue. 
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Figure 2.16. Mean value and error bar of fracture forces (FVrup, FHrup) and the related analytical 
model curves (Eqs. (2.16)-(2.17)). 

 

Table 2.5. Polynomial regression equation with related R2 and RMSE for dynamic friction 
coefficients as a function of the slice/push ratio (𝑘). 
 

𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 Polynomial Regression Equation R2 RMSE 

𝜇𝑑𝑎(𝑘) 0.002418 𝑘2 − 0.0294𝑘 + 0.294 0.925 0.001 

𝜇𝑑𝑟(𝑘) −0.03423 𝑘2 + 0.2181𝑘 + 0.0542 0.942 0.034 

 

Figure 2.17 shows the behavior of the cutting forces per unit displacement (𝑓𝑉𝑐𝑢𝑡, 𝑓𝐻𝑐𝑢𝑡) after 

fracture is initiated. From Fig. 2.17, it can be noticed that the impact of the rotational motion on 

the axial cutting forces is quite limited: 𝑓𝑉𝑐𝑢𝑡 decreases by 21% for insertions performed at 𝑘 =

4 with respect to insertions performed at 𝑘 = 0.25. In fact, the needle is advancing at the same 

axial speed for each 𝑘 and, consequently, the rotational motion does not greatly affect the cutting 

force in the axial direction. Instead, tangential cutting forces increase consistently for higher 

values of 𝑘 (𝑘 > 0.5) since the needle is rotating at a faster speed for increasing values of the 

slice/push ratio (𝑘).  
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Figure 2.17. Mean values and error bars of cutting force (fVcut, fHcut) and the related analytical 
model curves (Section 2.2.2, Table 2.5). 

 

These results suggest that a slice/push ratio smaller than 1.5 is recommended to contain the 

increase of tangential cutting forces after fracture initiation. Figure 2.18 shows the axial and 

tangential force behavior and confirms the impact of the rotational motion on lowering the axial 

fracture force and increasing the tangential force during cannula insertion. 

 

  
a) b) 

Figure 2.18. (a) Axial force (FV) and (b) tangential force (FH) behavior during needle 
penetration for different slice/push ratios, 𝑘. 
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2.5.2 Impact of the Slice/Push Ratio at Different Axial Speeds 

In these tests, the goal was to assess the impact of the rotational motion on tissue cutting at 

several axial speeds since clinical needle insertion velocities may vary from 0.4 to 10 mm/s 

(Dimaio & Salcudean, 2003). A conical 14-gauge cannula with an included angle 𝜃 of 15° was 

inserted at translational speeds (𝑣𝑡) equal to 0.5, 1, 2, 4 and 6 mm/s. For each insertion speed, 

the slice/push ratio (𝑘 = 𝑣𝑟/𝑣𝑡) was set to 0, 0.25, 0.5, 1, 1.5, 2, 3 and 4. The cannula was inserted 

five times for each scenario for a total of 200 insertions. For each insertion, the maximum value 

of the axial cutting force (𝐹𝑉), and the maximal value of the tangential cutting force (𝐹𝐻), during 

the needle insertions were recorded. The values of the rupture forces (𝐹𝑟𝑢𝑝) , are not highlighted 

in this analysis because it was extremely difficult to identify the penetration depth at which soft 

tissue fractures for slice/push ratios (𝑘), greater than 2, and axial speeds greater than 1mm/s. 

Figure 2.19 shows the maximum values of the axial and tangential forces (𝐹𝑉 and 𝐹𝐻) for 

different slice/push ratios and different axial speeds. The surfaces represent the best polynomial 

fits for 𝐹𝑉 and 𝐹𝐻 as a function of the slice push ratio (𝑘) and translational speed (𝑣𝑡).  

 

  
a) b) 

Figure 2.19. (a) Maximum axial forces (FV) and (b) tangential forces (FH) for insertions 
performed at different slice/push ratios and different insertion speeds. The experimental 
points with related error bars are also shown. 
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The data fit in Fig. 2.19b (Eq. (2.39)) was realized with a 2nd order polynomial surface and 

provided an 𝑅2 = 0.977 with a root-mean-square deviation (RMSE) equal to 0.1 (Table 2.6): 

𝐹𝐻(𝑘, 𝑣𝑡) = −0.0561 + 0.457𝑘 + 01258𝑣𝑡 − 0.0743 𝑘2 + 0.1058𝑘𝑣𝑡 − 0.0217𝑣𝑡
2 (2.39) 

 
For each insertion speed, the minimum value of the axial force is achieved at the maximum 

value of the slice push ratio, 𝑘 (Fig. 2.19a). However, the rotational motion is more effective for 

axial speeds ranging from 0.5 to 2 mm/s for which the axial force decreases respectively by 50% 

and 35% for insertions performed at 𝑘 = 1 with respect to insertions performed without any 

rotations (𝑘 = 0). Moreover, the reduction of the axial cutting forces is particularly consistent 

for low slice/push ratios (𝑘 < 2), as observed previously in Section 2.5.1. These findings show 

how the application of rotational motion is particularly crucial at low insertion speeds, which 

are usually very common in the clinical environment to reduce distress on tissues and organs. 

Figure 2.19b illustrates how tangential forces are mostly independent of the values of the 

axial speeds and are directly dependent on the value of the slice/push ratio. The greater the value 

of 𝑘 is, the greater will be the rotational speed and, consequently, the tangential force during the 

cutting procedure. 

 

Table 2.6. Polynomial regression equation with related R2 and RMSE values for the axial and 
tangential forces as a function of the slice/push ratio (𝑘) and speed (vt). 
 

Force Polynomial Regression Equation R2 RMSE 

𝐹𝑉(𝑘, 𝑣𝑡) 
0.888 − 0.653𝑘 + 0.216𝑣𝑡 + 0.251 𝑘2 + 0.047𝑘𝑣𝑡 − 0.0217𝑣𝑡

2

− 0.0317 𝑘3 − 0.009 𝑘2𝑣𝑡 − 0.0019𝑘𝑣𝑡
2 

0.923 0.090 

𝐹𝐻(𝑘, 𝑣𝑡) 
−0.0561 + 0.457𝑘 + 01258𝑣𝑡 − 0.0743 𝑘2 + 0.1058𝑘𝑣𝑡

− 0.0217𝑣𝑡
2 

0.977 0.108 
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2.5.3 Impact of the Slice/Push Ratio for Different Materials 

In these tests, the goal was to assess the impact of the rotational motion on tissue cutting of 

different phantom materials described in Section 2.3.3. In fact, core biopsies are performed on 

different organs and soft tissues such as breast tissue, bone marrow, and prostate. Each of these 

tissues possesses different material properties. For this reason, rotating insertions were 

performed on four different phantom materials (Table 2.1), with Young`s modulus ranging from 

5 to 32 kPa. For each material, a conical 14-gauge cannula needle with an included angle 𝜃 of 15° 

was inserted at a translational speed (𝑣𝑡) equal to 1 mm/s and at slice/push ratios (𝑘) equal to 

0, 0.25, 0.5, 1, 1.5, 2, 3 and 4. The cannula was inserted five times for each scenario for a total of 

160 insertions. For each insertion, the maximum value of the axial cutting force (𝐹𝑉) and of the 

tangential cutting force (𝐹𝐻) during the insertions were recorded as in Section 2.4. Figure 2.20 

shows the values of the axial and tangential forces (𝐹𝑉 and 𝐹𝐻) for different slice/push ratios and 

different phantom materials. 

 

  
a)  b) 

Figure 2.20. (a) Maximum axial forces (FV) and (b) tangential forces (FH) for insertions 
performed at different slice/push ratios on different phantom materials. The experimental 
points with related error bars are also shown. 
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The surfaces, in Fig. 2.20, represent the polynomial fits of 𝐹𝑉 and 𝐹𝐻 as a function of the slice 

push ratio (𝑘), and of the Young`s modulus. The corresponding surface coefficients, 𝑅2 and RMSE 

are given in Table 2.7. For each material, the minimum value of the axial force is achieved at the 

maximum value of the slice push ratio, 𝑘 (Fig. 2.20a). However, the rotational motion is more 

effective for hard phantom materials, characterized by Young’s modulus (𝐸) nearly equal to or 

higher than 13 kPa. In fact, for these materials, the axial force decreases between 75% and 60% 

for insertions performed at 𝑘 = 4 in comparison to insertions performed without any rotations 

(𝑘 = 0). Moreover, the reduction of the axial cutting forces is particularly consistent for 𝑘 < 1.  

hese results show how the application of rotational motion is particularly crucial for “hard” 

tissues rather than for soft tissues (𝐸 < 10 kPa). Figure 2.20b illustrates how tangential forces 

are consistently higher for harder phantom materials. In particular, the tangential force has a 

higher increase rate with the slice/push ratio for materials with Young`s modulus (𝐸) equal to 

or higher than 21 kPa. 

 

Table 2.7. Polynomial regression equation with related R2 and RMSE values for the axial 
and tangential forces as a function of the slice/push ratio (𝑘) and Young`s modulus (𝐸). 

 

Force Polynomial Regression Equation R2 RMSE 

𝐹𝑉(𝑘, 𝐸) 
0.1354 + 0.0377𝑘 + 0.0083𝐸 + 0.0073 𝑘2

− 0.009𝑘𝐸 + 0.0012𝐸2 
0.982 0.065 

𝐹𝐻(𝑘, 𝐸) 
0.0905 + 0.22𝑘 − 0.0211𝐸 − 0.0479 𝑘2

+ 0.0103𝑘𝐸 + 0.001𝐸2 
0.966 0.096 

 

2.6 Conclusions on Rotating Needles 

In this chapter, an experimental study related to the impact of rotational motions during core 

biopsy procedures was performed. The ultimate goal was to provide a series of guidelines for 
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clinicians and surgeons to properly select the best needle tip geometry and cutting parameters 

for rotating needle insertions. 

The study was conducted on 14-gauge cannula needles, which are common medical devices 

used for breast and bone marrow biopsies. The analytical models related to the cutting angles of 

several needle tip designs were analyzed and compared. Furthermore, a series of experimental 

cutting tests were performed with different cannula tip designs to assess: (i) the optimal 

geometry for rotating insertions, (ii) the benefits of rotational motions at different needle axial 

speeds, and (iii) on different phantom materials. 

The results show that needles with low included angles (𝜃) and high inclination angles (𝜆) 

lead to lower cutting forces, as suggested by the analytical models. Two- and three-plane bevel 

needles with an included angle 𝜃 of 15° or lower represent the best tip geometries for soft tissue 

cutting. The application of these geometries during rotating needle insertion lower the axial 

fracture cutting force. 

The analysis of the cutting motions at different slice/push ratios shows that the application 

of rotational motions leads to: (i) consistent decrease of the axial fracture forces, up to 80%, 

especially for 𝑘 < 2, and (ii) a consistent increase of the tangential cutting forces after fracture 

is initiated. For this reason, a slice/push ratio of at least 1 is recommended before the rupture of 

soft tissue occurs. On the other hand, a slice/push ratio below 1.5 is recommended once the 

needle has penetrated the material. Moreover, the application of rotational motions is more 

critical for: (i) axial speeds ranging from 0.5 to 2 mm/s, which are the most common in a clinical 

environment, and for (ii) soft materials characterized by Young`s modulus equal or higher than 

13 kPa. 
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Additional investigations are needed on: (i) performing cutting tests on different phantom 

and biological tissues, such as pork skin or chicken breast, and (ii) developing analytical models 

to predict cutting forces. The findings of this study can be applied and extended to several biopsy 

procedures in which a cannula is adopted to extract a tissue sample from the human body. 
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3 Design and Models of Helical Hollow Needles 

 

In the present chapter, 3D needle tip geometries will be proposed, which are inspired by 

helical drills, usually adopted for cutting of polymers and metals (Che et al., 2012; Ehmann et al., 

2012; Lin et al., 1995). Current needle tip geometries are mainly obtained from a two-

dimensional (2D) profile, which is extruded in one or more directions (Han et al., 2012; Moore 

et al., 2012b). However, current technology allows for the generation of virtually any three-

dimensional (3D) surface. Even though such a surface may require a more sophisticated 

manufacturing process, this new geometry can also enhance the needle’s cutting capabilities 

(Fig. 3.1). The fundamental goal is to demonstrate the design, mathematical models, 

manufacturing, and testing of helical needles. The proposed methodology can be applied to study 

any 3D needle geometry. First, the parametric equations that define the geometry of helical 

needles will be shown. The resulting surface will be defined and processed by using 3D computer 

aided design (CAD) and mesh software. The mathematical models to compute the cutting angles 

and fracture forces will be resolved and compared to the analytical models of the one-plane 

biopsy needle, commonly used in the clinical practice. Second, the experimental setup for the 

manufacture of helical needles is presented in detail. Finally, the performance of the helical 

needle geometry will be demonstrated through several insertions into phantom tissue. The 

results will prove the benefits accrued by the adoption of helical needles, which lead to lower 

cutting forces, and consequently provide larger biopsy samples (Moore et al., 2011). The findings 

of this study can be implemented by biomedical engineers to optimize the helical geometry and 

conceive novel 3D cutting edges for core biopsy examinations. This chapter is based on 

Giovannini et al. (Giovannini et al., 2019). 
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a) b) c) 

Figure 3.1. (a) Illustration of the breast biopsy device “Mammotome,” (b) hollow needle 
generated by a 2D profile, and (c) hollow needle generated by a 3D profile. 

 

3.1 Mathematical Models for Helical Needles 

In the present section, the design of helical needles will be investigated and applied to a 14-

gauge cannula, which is commonly used for core biopsies. The tip geometry and cutting angle 

formulations will be explained and compared to those related to the widely used one-plane bevel 

needles. The manufacturing process of the helical needles will be presented in Section 3.2. 

 

3.1.1 Geometric Description  

The helical needle tip geometry can be obtained from the intersection of a conical helicoid 

with the cylindrical surface of the hollow needle (Ehmann et al., 2012). This geometry will be 

adopted to demonstrate the proposed procedure for the computation of the cutting angles for 

any arbitrary 3D needle geometry. A Cartesian coordinate system is defined with its 𝑥ℎ- and 𝑦ℎ-
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axes passing through the origin of the conical helix and with the 𝑧ℎ-axis aligned with its 

longitudinal axis (Fig. 3.2). The parametric equations that describe the conical helix are: 

                  𝑥ℎ = −𝑧ℎ  𝑡𝑎𝑛(𝜓) 𝑐𝑜𝑠(𝛾ℎ) (3.1) 

           𝑦ℎ = −𝑧ℎ  𝑡𝑎𝑛(𝜓) 𝑠𝑖𝑛(𝛾ℎ)  (3.2) 

            𝑧ℎ = −
𝑝ℎ

2𝜋
 𝛾ℎ   (3.3) 

where 𝜓 and 𝑝ℎ are respectively the angle and the pitch of the helix, while 𝛾ℎ defines the angular 

position on the helical profile. The radius of the conical helix 𝑟ℎ is given by: 

               𝑟ℎ = 𝑧ℎ 𝑡𝑎𝑛(𝜓)  (3.4) 

The surface of the hollow needle is defined in a different Cartesian coordinate system (Fig. 

3.2), where the 𝑥𝑛- and 𝑦𝑛-axes pass through the center of the needle’s circular base and the 𝑧𝑛-

axis is parallel to the 𝑧ℎ-axis. The needle’s cylindrical surface is defined by the following 

parametric equations: 

      𝑥𝑛 = 𝑟𝑛 𝑐𝑜𝑠(𝛾𝑛)  (3.5) 

𝑦𝑛 = 𝑟𝑛 𝑠𝑖𝑛(𝛾𝑛) (3.6) 

               𝑧𝑛 = 𝑧  (3.7) 

where 𝑟𝑛 is the radius of the hollow needle and can refer to the external radius of the needle (𝑟𝑛𝑜) 

or to the internal radius (𝑟𝑛𝑖), 𝛾𝑛 is the angular position on the cylindrical profile, and 𝑧 

represents the height of the needle. The cylindrical surface is centered at the origin of the 𝑥𝑛- 

and 𝑦𝑛-axes, and it is rotated by an angle 𝜑 with respect to the conical helix.  
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a) 

  
b) c) 

Figure 3.2. (a) Schematics of the intersection between the conical helical surface and the 
cylindrical surface and (b, c) the 3D geometrical model. 

 

The final coordinates of the needle surface can be obtained by multiplying Eq. (3.5)-(3.7) by 

the rotation matrix 𝑅𝑛: 

𝑿𝒏𝝋 = 𝑹𝒏𝑿𝒏  (3.8) 

[

𝑥𝑛𝜑

𝑦𝑛𝜑

𝑧𝑛𝜑

] = [
cos (𝜑) 0 sin (𝜑)

0 1 0
−sin (𝜑) 0 cos (𝜑)

] [

𝑥𝑛

𝑦𝑛

𝑧𝑛

] (3.9) 
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The resulting profile of the helical needle cutting edge can be obtained by intersecting the 

conical helical surface (Eqs. (3.1)-(3.3)) with the cylindrical surface of the needle (Eq. (3.9)). The 

analytical equation of the intersection profile between two surfaces can be easily determined 

only in simple cases (Barnhill et al., 1990). Several algorithms (Hartmann, 2003), which are 

embedded in commercial software, are usually adopted in more complex scenarios. For this 

reason, the helical profile of the needle cutting edge was obtained by defining the surfaces in CAD 

software (Fig. 3.3) and postprocessing them to investigate their geometry. 

 

 

 

a) b) 

Figure 3.3. (a) Illustration of the helical needle’s cutting edge and (b) its 3D scan after 
manufacturing, with the deviations with respect to the CAD model. 

 

The cannula tip geometry can be characterized by three cutting angles (Han et al., 2012; 

Moore et al., 2010; Zheng et al., 2008): the inclination angle (𝜆), the included angle (𝜃), and the 

rake angle (𝛼). Previous studies (Han et al., 2012) observed that a small 𝜃 and a large 𝜆 and 𝛼, 



81 
 

lead to lower tissue fracture forces. In the next subsections, each parameter and variable 

introduced in Figs. 3.3 and 3.4 to define the needle’s geometry will be defined. Furthermore, a 

methodology to compute each cutting angle (𝜃, 𝜆, 𝛼) will be devised and demonstrated on a 

helical needle characterized by 𝑝ℎ of 100 mm, 𝜓 of 10°, and 𝜑 of 13.5°. 

To demonstrate the general validity of the above procedure for virtually any 3D surface, the 

determination of the parameters 𝜃, 𝜆, and 𝛼 for the one-plane bevel needle (Table 3.2), will be 

demonstrated and compared to the helical tip. The helical needle parameters (𝑝, 𝜓, 𝜑) were 

chosen to compare helical needles with one-plane needles characterized by an identical length 

of the cutting edge (𝑙𝑐). 

 

 

 

a) b) 

Figure 3.4. (a) Illustration of one-plane bevel cutting edge and (b) the related 3D scan after 
manufacturing, with the deviations with respect to the CAD model. 
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3.1.2 Inclination Angle (λ) 

To analyze the needle’s cutting angles, the needle geometry was imported into a 3D mesh 

processing software (Hypermesh), and a Cartesian coordinate system was defined with its 𝑥- 

and 𝑦-axes parallel to the base of the needle and the 𝑧-axis collinear with its longitudinal axis. 

The inclination angle, 𝜆 (Fig. 3.3), corresponds to the angle included between the vector 𝒕 tangent 

to the needle’s cutting edge and the 𝑥𝑦-plane with normal vector 𝒏, where 𝒏 = [0 0 1]. The cross 

product between 𝒕 and 𝒏 allows to express the inclination angle (𝜆) , as:  

𝜆𝑜 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
|𝑧𝑜′(𝛾)|

√𝑟𝑛𝑜
2+𝑧𝑜′(𝛾)2

)   (3.10) 

𝜆𝑖 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
|𝑧𝑖′(𝛾)|

√𝑟𝑛𝑖
2+𝑧𝑖′(𝛾)2

)   (3.11) 

where 𝜆, 𝑧′ and 𝑟𝑛 can refer to the outside cutting edge (𝜆𝑜, 𝑧𝑜′, 𝑟𝑛𝑜) or to the inside cutting edge 

of the needle (𝜆𝑖, 𝑧𝑖′, 𝑟𝑛𝑖) and 𝑧′ refers to the first-order derivative of the cutting edge, which is 

assumed to be continuous (class 𝐶1). To compute the inclination angle, 𝜆 (Fig. 3.3), the meshes 

related to the external and internal cutting edges were composed of 363 and 302 linear elements 

of 50 µm length. The coordinates of each element’s nodes were then imported into MATLAB and 

fitted to a Fourier distribution (𝑅2 = 1.000) to obtain the needle tip profile 𝑧𝑜(𝛾) and its 

derivative 𝑧𝑜′(𝛾), as shown by the following equations: 

𝑧𝑜(𝛾) = 𝑎0 + 𝑎1 𝑐𝑜𝑠(𝑤𝛾) + 𝑏1 𝑠𝑖𝑛(𝑤𝛾) + 𝑎2 𝑐𝑜𝑠(2𝑤𝛾)
+ 𝑏2 𝑠𝑖𝑛(2𝑤𝛾) + 𝑎3 𝑐𝑜𝑠(3𝑤𝛾) + 𝑏3 𝑠𝑖𝑛(3𝑤𝛾) + 𝑎4 𝑐𝑜𝑠(4𝑤𝛾) 
+ 𝑏4 𝑠𝑖𝑛(4𝑤𝛾) + 𝑎5 𝑐𝑜𝑠(5𝑤𝛾) + 𝑏5 𝑠𝑖𝑛(5𝑤𝛾) 

(3.12) 

       𝑧𝑜
′ (𝛾) = −𝑤𝑎1 𝑠𝑖𝑛(𝑤𝛾) + 𝑤𝑏1 𝑐𝑜𝑠(𝑤𝛾) − 2𝑤𝑎2 𝑠𝑖𝑛(2𝑤𝛾)
+ 2𝑤𝑏2 𝑠𝑖𝑛(2𝑤𝛾) − 3𝑤𝑎3 𝑠𝑖𝑛(3𝑤𝛾) + 3𝑤𝑏3 𝑐𝑜𝑠(3𝑤𝛾)
− 4𝑤𝑎4 𝑠𝑖𝑛(4𝑤𝛾) + 4𝑤𝑏4 𝑐𝑜𝑠(4𝑤𝛾) − 5𝑤𝑎5 𝑠𝑖𝑛(5𝑤𝛾)
+ 5𝑤𝑏5 𝑐𝑜𝑠(5𝑤𝛾) 

(3.13) 
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The same procedure was adopted to calculate the helical tip profile on the inside cutting edge 

𝑧𝑖(𝛾) and its derivative 𝑧𝑖′(𝛾). Both the outside and inside helical tip profiles were compared 

with the ones related to the bevel needle (Fig. 3.5), which can be formulated through analytical 

equations (Han et al., 2012; Moore et al., 2012b), as shown in Table 3.1. Figure 3.5a shows that 

in the proximity of the tip (𝛾= 157°), the helical tip presents a narrower outside profile, 𝑧𝑜(𝛾), 

and a steeper derivative function, 𝑧𝑜′(𝛾), with respect to the bevel tip; while the internal tip 

profiles of the helical and bevel tip ( 𝑧𝑖(𝛾)) seem quite similar (Fig. 3.5b). 

 

  

a) b) 

Figure 3.5. (a) Fourier fitting and analytical models (Table 3.1) for the outside and (b) inside 
cutting edge profiles of helical and bevel needles. 

 

Figure 3.6 shows the values of the inclination angles, which were computed and plotted as a 

function of the angle 𝛾 and the 𝑧 axis of helical (Eq. (3.10)-(3.11)) and bevel needle tips (Table 

(3.2)). In order to facilitate a comparison between different cutting edge profiles, the origin of 

the 𝑧 axis was set at the starting point of the external cutting edge, (𝑧 = 0), which corresponds 

to the origin of the angle 𝛾 (Figs. 3.3-3.4).  
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a) b) 

Figure 3.6. (a) Inclination angle (λ), for helical and bevel needles with respect to the angle γ and 
(b) to the distance 𝑧 from the starting point of the cutting edge. 

 

In bevel needles (Fig. 3.6), the inclination angle (𝜆), is equal to zero at the bottom (𝛾 = 0°, 𝑧 =

0) and at the top of the needle tip (𝛾 = 180°, 𝑧 ≅ 8 mm) and it is symmetric with respect to the 

angle 𝛾. Helical needles (Fig. 3.7a) present an asymmetric behavior of the inclination angle 

profiles, thus enhancing the flexibility of designing the needle tip for both the inside and the 

outside cutting edge.  

 

  

a) b) 

Figure 3.7. SEM pictures showing: (a) the helical and (b) bevel needle tips. 



85 
 
Furthermore, the shape of the helical cutting edges (Fig. 3.7), allows one to maintain higher 

values of 𝜆 at the needle tip (Fig. 3.6b) for values of 𝑧 between 4 mm and 8 mm (4 < 𝑧 < 8). It 

has been proven through mechanistic modeling that higher values of the inclination angle (𝜆), 

and of the rake angle (𝛼), in hollow biopsy needles lead to lower tissue fracture forces (Han et 

al., 2012; Moore et al., 2011). 

 

Table 3.1. Needle tip profiles and their derivatives for the outside (zo(γ)) and inside cutting 
edges (zi(γ)) (Han et al., 2012; Moore et al., 2012b). 
 

z (γ) 𝐇𝐞𝐥𝐢𝐜𝐚𝐥 𝐍𝐞𝐞𝐝𝐥𝐞 𝐁𝐞𝐯𝐞𝐥 𝐍𝐞𝐞𝐝𝐥𝐞 

𝑧𝑜(𝛾) 

3.535 − 3.884 𝑐𝑜𝑠(𝑤𝛾) + 0.696 𝑠𝑖𝑛(𝑤𝛾) + 0.339 𝑐𝑜𝑠(2𝑤𝛾) −
0.551 𝑠𝑖𝑛(2𝑤𝛾) + 0.033 𝑐𝑜𝑠(3𝑤𝛾) + 0.161 𝑠𝑖𝑛(3𝑤𝛾) −
0.0378 𝑐𝑜𝑠(4𝑤𝛾) −0.0325 𝑠𝑖𝑛(4𝑤𝛾) +  0.0205 𝑐𝑜𝑠(5𝑤𝛾) −
0.002 𝑠𝑖𝑛(5𝑤𝛾)    [𝑤 = 0.999; 𝑅2 = 1.00]  

𝑟𝑜(1 − 𝑐𝑜𝑠𝛾)𝑐𝑜𝑡𝜉 

𝑧𝑜′(𝛾) 

−𝑤3.884 𝑠𝑖𝑛(𝑤𝛾) + 𝑤0.696 𝑐𝑜𝑠(𝑤𝛾) − 2𝑤0.339 𝑠𝑖𝑛(2𝑤𝛾) +
2𝑤0.551 𝑠𝑖𝑛(2𝑤𝛾) + 3𝑤0.033 𝑠𝑖𝑛(3𝑤𝛾) + 3𝑤0.161 𝑐𝑜𝑠(3𝑤𝛾) −
4𝑤0.0378 𝑠𝑖𝑛(4𝑤𝛾) − 4𝑤0.0325 𝑐𝑜𝑠(4𝑤𝛾) + 𝑤0.020 𝑠𝑖𝑛(5𝑤𝛾) −
𝑤0.002 𝑐𝑜𝑠(5𝑤𝛾)  [𝑤 = 0.999] 

𝑟𝑜𝑠𝑖𝑛𝛾𝑐𝑜𝑡𝜉 

𝑧𝑖(𝛾) 
2.675 − 2.866 𝑐𝑜𝑠(𝑤𝛾) + 0.303 𝑠𝑖𝑛(𝑤𝛾) + 0.2 𝑐𝑜𝑠(2𝑤𝛾) − 0.26 𝑠𝑖𝑛(2𝑤𝛾) −
0.001 𝑐𝑜𝑠(3𝑤𝛾) + 0.058 𝑠𝑖𝑛(3𝑤𝛾) − 0.009 𝑐𝑜𝑠(4𝑤𝛾) + 1.988 𝑠𝑖𝑛(4𝑤𝛾) +
 0.003 𝑐𝑜𝑠(5𝑤𝛾)   [𝑤 = 1.006; 𝑅2 = 1.00]  

𝑟𝑖(1 − 𝑐𝑜𝑠𝛾)𝑐𝑜𝑡𝜉 

𝑧𝑖′(𝛾) 
−𝑤2.866 𝑠𝑖𝑛(𝑤𝛾) + 𝑤0.303 𝑐𝑜𝑠(𝑤𝛾) − 2𝑤0.2 𝑠𝑖𝑛(2𝑤𝛾) +
2𝑤0.26 𝑠𝑖𝑛(2𝑤𝛾) − 3𝑤0.001 𝑠𝑖𝑛(3𝑤𝛾) + 3𝑤0.058 𝑐𝑜𝑠(3𝑤𝛾) −
4𝑤0.009 𝑠𝑖𝑛(4𝑤𝛾) + 4𝑤1.988 𝑐𝑜𝑠(4𝑤𝛾) − 𝑤0.003 𝑠𝑖𝑛(5𝑤𝛾)  [𝑤 = 1.006] 

𝑟𝑖𝑠𝑖𝑛𝛾𝑐𝑜𝑡𝜉 

 

3.1.3 Included Angle (θ) 

The included angle, 𝜃, is related to the rake face, which represents the surface included 

between the outside (𝑧𝑜(𝛾)) and inside cutting edges ( 𝑧𝑖(𝛾)) of the needle (Figs. 3.3- 3.4). The 

angle 𝜃 is defined as the angle between the vector normal to the rake face (𝒏𝒓) and the vector 

normal to the cylindrical face of the needle (𝒏𝒄) which is equal to: 𝒏𝒄 = [𝑐𝑜𝑠(𝛾)  𝑠𝑖𝑛(𝛾)  0]. The 

dot product between the unit vectors 𝒏𝒓 and 𝒏𝒄 allows one to express the included angle 𝜃 as: 
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𝜃 = 𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠 (𝒏𝒓 ∙ 𝒏𝒄) (3.14) 

To determine the components of the normal vector (𝒏𝒓), the mesh of the rake face of the 

helical needle was generated. The mesh was composed of 1,889 quadrilateral elements of 

symmetric group 4 (S4). The Computer Vision System Toolbox™ algorithms built in MATLAB 

were used to compute the surface normals, 𝒏𝒓 (Fig. 3.8b). The included angle (𝜃), was then 

computed for each node of the mesh and plotted in 3D (Fig. 3.8c). 

 

 

 

 

a) b) c) 

Figure 3.8. (a) Illustration of the mesh of the rake face, (b) the related normals for a few selected 
points of the mesh, and (c) the values of the angle 𝜃. 

 

Figure 3.9 shows the comparison between the behavior of the included angle (𝜃) for helical 

and one-plane bevel needles. It is observed (Fig. 3.9b) that the helical geometry allows for lower 

included angles at each point located in the upper part of the needle’s rake face (2 < 𝑧 < 8), 

which is the first part of the needle that enters in contact with the tissue during cutting. 

According to previous studies (Atkins, 2009; Han et al., 2012), small included angles play a 
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crucial role in decreasing soft tissue fracture forces in needles and knives for medical and food 

applications. 

 

 

 

a) b) 

Figure 3.9. (a) Included angle, 𝜃, for helical and bevel needles vs. the angle γ and (b) vs. the 
distance 𝑧 from the starting point of the cutting edge. 

 

3.1.4 Rake Angle (α) 

The rake angle (𝛼) is identified as the angle included between vectors 𝒂 and 𝒃 which 

intersects on the needle’s cutting edge profile (David A. Stephenson, 2016; Moore et al., 2012b). 

The vector 𝒂 is perpendicular to the plane formed by the vector 𝒕 that is tangent to the needle’s 

cutting edge, and by the vector 𝒏𝒓 perpendicular to the rake face. Vector 𝒃 is perpendicular to 

the plane formed by the vector 𝒕 that is tangent to the needle’s cutting edge, and by the vector 𝒏 

perpendicular to the 𝑥𝑦-plane (Figs. 3.3-3.4). Both the vectors 𝒂 and 𝒃 can be determined from 

the following cross products (Moore et al., 2012b): 

𝒂 = 𝒕 × 𝒏𝒓  (3.15) 

𝒃 = 𝒕 × 𝒏  (3.16) 
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The vectors 𝒕, 𝒏 and 𝒏𝒓 were determined in Sections 3.1.1 and 3.1.2. The resulting rake angle, 

𝛼, is then obtained from (Moore et al., 2012b): 

𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝒂 ∙ 𝒃

|𝒂||𝒃|
) (3.17) 

The results for the outside and inside helical tip are presented in Fig. 3.10, where 𝛼 is 

computed also for the one-plane bevel needle (Table 3.2).  

 

 
 

a) b) 

Figure 3.10. (a) Rake angle, α, for helical and bevel needles vs. the angle γ and (b) vs. the 
distance 𝑧 from the start point of the cutting edge. 

 

The helical needle tip presents more favorable geometry for tissue cutting for 𝑧 > 4 mm, for 

which the value of the rake angle (𝛼) is higher with respect to the value obtained for the bevel 

needle geometry. Furthermore, bevel needles present identical rake angle values with respect to 

the 𝑥𝑦-plane, since: 

  𝛼(0° < 𝛾 < 180°) = 𝛼(180° < 𝛾 < 360°) (3.18) 

 
whereas helical needles present an asymmetric behavior that could be exploited to lower the 

insertion forces. 
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Table 3.2. Cutting parameters (𝜃, 𝜆, 𝛼) for helical and bevel needles. 
 

𝐍𝐞𝐞𝐝𝐥𝐞 𝝀 𝜽 𝜶 

Helical 𝑎𝑟𝑐𝑠𝑖𝑛 (
|𝑧𝑜′(𝛾)|

√𝑟𝑛𝑜
2 + 𝑧𝑜′(𝛾)2

) 𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠 (𝒏𝒓 ∙ 𝒏𝒄) 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝒂 ∙ 𝒃

|𝒂||𝒃|
) 

Bevel 𝑎𝑟𝑐𝑠𝑖𝑛
|𝑐𝑜𝑡𝜉𝑠𝑖𝑛𝛾|

√1 + 𝑐𝑜𝑡2𝜉𝑠𝑖𝑛2𝛾
 𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠(𝑐𝑜𝑠𝜉𝑐𝑜𝑠𝛾) 𝑎𝑟𝑐𝑐𝑜𝑠√𝑐𝑜𝑠2𝛾𝑠𝑖𝑛2𝜉 + 𝑠𝑖𝑛2𝛾 

 

3.1.5 Fracture Forces and Slice/Push Ratio 

During tissue cutting, the needle’s tip is subjected to an axial force (𝐹𝑎), which is parallel to 

the needle’s longitudinal axis and a tangential force (𝐹𝑡), which is tangent to its external 

cylindrical surface (Fig. 3.11). These forces can be decomposed into 𝐹⊥ and 𝐹∥, the forces 

perpendicular and tangent to the needle’s cutting edge, respectively (Fig. 3.11). They play a 

fundamental role in tissue fracture. The cutting forces 𝐹⊥ and 𝐹∥ can be determined as shown in 

Section 2.2.1: 

𝐹⊥ = 
2𝑅𝜋𝑟𝑛𝑖𝐺

1 + 𝑘2 −
𝜇𝑑√(𝑘 𝑐𝑜𝑠(𝜃))2 + 1

𝑐𝑜𝑠(𝜃) (𝜇𝑑𝑐𝑜𝑠(휀) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃))

 
(3.19) 

𝐹∥ =
2𝑅𝜋𝑟𝑛𝑖𝑘𝐺

1 + 𝑘2 −
𝜇𝑑√(𝑘 𝑐𝑜𝑠(𝜃))2 + 1

𝑐𝑜𝑠(𝜃) (𝜇𝑑𝑐𝑜𝑠(휀) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃))

 
(3.20) 

where 𝑅 is the strain energy release rate of the tissue, 𝑘 is the slice/push ratio (𝑘 = 𝑣∥ 𝑣⊥) ⁄  

between 𝑣∥ and 𝑣⊥: the velocities tangential and perpendicular to the needle’s cutting edge, 

respectively. 𝐺 is a geometrical factor (0.3:0.4), which takes into account the needle contact 
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length at fracture, and it was considered 10% smaller for helical needles since they present a 

narrower tip (Fig. 3.7). 

 

Figure 3.11. Helical cannula tip. The geometry and the main vectors representing directions, 
velocities, and forces. 

 

The velocity 𝑣∥ can be calculated from the dot product between the velocity vector 𝒗 (𝒗 =

[−𝑣𝑟 𝑠𝑖𝑛(𝛾)  𝑣𝑟 𝑐𝑜𝑠(𝛾)   𝑣𝑎] ) and the unit vector 𝒕𝒖, which is tangent to the needle’s cutting edge 

profile (Han, 2014). For one plane bevel needles the tangent vector 𝒕𝒖 can be expressed as: 

𝒕𝒖 = [
− 𝑠𝑖𝑛(𝛾) 

√1 + 𝑐𝑜𝑡2(𝜉)𝑠𝑖𝑛2(𝛾)
    

𝑐𝑜𝑠(𝛾) 

√1 + 𝑐𝑜𝑡2(𝜉)𝑠𝑖𝑛2(𝛾)
   

𝑠𝑖𝑛(𝛾) cot (𝜉)

√1 + 𝑐𝑜𝑡2(𝜉)𝑠𝑖𝑛2(𝛾)
] (3.21) 

The velocity 𝑣∥ can then be obtained by (Han, 2014): 

𝑣∥ = 𝒗 ∙ 𝒕𝒖 =
𝑣𝑟 + 𝑣𝑎𝑐𝑜𝑡(𝜉)𝑠𝑖𝑛(𝛾)

√1 + 𝑐𝑜𝑡2(𝜉)𝑠𝑖𝑛2(𝛾)
 (3.22) 

The velocity 𝑣⊥ can be consequently calculated from: 𝑣⊥ = √|𝑣|2 − 𝑣∥
2. The resulting 

slice/push ratio can be expressed as (Han, 2014): 
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𝑘 =
𝑣∥

𝑣⊥

=
|𝑆 + cot(𝜉) sin (𝛾)|

|1 − 𝑆 cot(𝜉) sin (𝛾)|
 (3.23) 

where 𝑆 is the needle rotation/translation ratio (𝑆 = 𝑣𝑟 𝑣𝑎)⁄ , which represents the ratio 

between the rotational speed of the needle (𝑣𝑟) and the speed parallel to the longitudinal needle 

axis (𝑣𝑎). The slice/push ratio 𝑘 varies along the cutting edge, depending on the radial position 

𝛾 of a point K at which 𝑘 is calculated (Fig. 3.11) and it consequently determines the variation in 

the forces 𝐹⊥ and 𝐹∥. The same procedure to calculate the slice push ratio (𝑘), can also be used 

for helical needles, where the unit tangent vector 𝒕𝒖 can be obtained from the vector 𝒕 computed 

in Section 3.1.2.  

Figure 3.12a shows the behavior of the tangential (𝐹∥) and perpendicular (𝐹⊥) fracture forces 

as a function of angle 𝛾 for helical and bevel needles characterized by the geometry described in 

Section 3.1.  

 

 

 
a) b) 

Figure 3.12. (a) Fracture force values for helical and bevel needles vs. the angle (𝛾) for a 
rotation/translation ratio (𝑆), equal to 0.3 and (b) the behavior of the mean value of the fracture 
forces for different rotation/translation ratios (𝑆). 

 



92 
 

The dynamic friction coefficients (𝜇𝑑), and the strain energy release rate (𝑅), were considered 

equal respectively to 0.4 (Section 2.2.1) and 45 J/m2, which are common values adopted for 

similar soft tissue (Han et al., 2013a). The maximum value of 𝐹⊥ is reached at the base of the 

needle’s rake face (𝛾 = 0°) and at the tip of the cutting edge. This corresponds to 𝛾 = 180° for 

the one-plane bevel needle, and to 𝛾 = 157° for the helical needle (Fig. 3.11).  

The comparison between the fracture forces of the helical and bevel needles is performed by 

considering the average value of the forces as a function of the angle. The average force values 

are plotted for different rotation/translation ratios (𝑆) (Fig. 3.12b). According to the analytical 

model, helical needles and bevel needles present similar force behavior at different ratios 𝑆. 

Helical needles have the potential to lower the tangential fracture forces for 𝑆 > 2 and increase 

the perpendicular fracture forces for 𝑆 > 0.5. This force model helps to predict the value of the 

fracture forces (Section 3.1.5), but it also presents several limitations. For instance, it is 

extremely challenging to correctly evaluate the length of the contact (𝑤) between the needle and 

soft tissue when fracture occurs. Further, the dynamic friction coefficients (𝜇𝑑), and the tissue 

strain energy release rate (𝑅), are considered to be constant at different needle 

rotation/translation ratios (𝑆), (Han et al., 2013a), since the main emphasis of this research is to 

determine the impact of 3D needle geometries on the cutting forces. The cutting speed might 

have an impact on the friction coefficient, while its effect on the tissue strain energy release rate 

(𝑅), is not relevant (Wang et al., 2014). 

 

3.2 Manufacturing Process for Helical Needles 

Helical needles were obtained from a 14-gauge 304 stainless cannula, which is commonly 

used for hypodermic needles. A vertical machining center (VF-2 model, Haas Automation Inc., 
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Oxnard, CA) was used to generate the helical needle tip (Fig. 3.13). The 3D geometry of the helical 

needles was imported into Unigraphics NX (Siemens PLM Software, Plano, TX), a Computer-

Aided Manufacturing software (CAM) to generate the toolpath. This machining center allows the 

rotation of the tool, its translation in the vertical direction (𝑍) and the translation of the needle 

in two orthogonal directions (𝑋, 𝑌) to generate helical needle tips. 

 The resolution of the translational axes is 0.002 mm. The tool used was a carbide ball mill 

with a diameter of 1.588 mm. The 14-gauge cannulas were set in an ER8 collet, which was located 

on a vice positioned on the table of the machining center. 

 

 

Figure 3.13. VF-2 Haas vertical machining center with the motion axes (𝑋, 𝑌, 𝑍) and the main 
components of the manufacturing setup highlighted. 

 

During the milling operations, the needle was moving in the 𝑋 and 𝑌 directions, while the 

tool was rotating at 10,000 rpm and progressively shaping the needle at a feed rate of 0.08 

mm/min. After machining, the needle tips were manually deburred and cleaned by a Bransonic 
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ultrasonic bath (Branson Ultrasonics Corp., Danbury, CT). In addition, a Dremel Multipro rotary 

tool (Dremel, Mount Prospect, IL) was used to polish the rake face of the needle with a felt 

polishing wheel. The 3D profile was measured with a surface measurement system (ALICONA 

InfiniteFocus) and compared to the CAD model. 

 

3.3 Impact of Helical Needles on Experimental Cutting Forces 

Helical needle geometry was validated by performing several cutting tests on the custom-

built testbed (Section 2.3.2). The cannula was inserted into phantom tissue composed of the 

8116SS plastic with the 4116S plastic softener 𝑆/𝑃 ratio equal to 0.25 (as described in Section 

2.3.3). The fundamental objective was to understand: (i) the effect of the needle tip configuration 

on the cutting forces (Section 3.3.1), and (ii) the behavior of the fracture forces at different 

rotation/translation ratios (𝑆 = 𝑣𝑟 𝑣𝑎).⁄  

 

3.3.1 Helical Needle`s Impact on Cutting Forces 

Needle fracture forces were measured for a helical needle ( 𝑝ℎ = 100 mm, 𝜓 = 10°, 𝜑 = 13.5°) 

and a one-plane bevel needle (𝜉=14.5°), both with the same length of the cutting edge (𝑙𝑐). The 

tests were performed on phantom tissue (Section 2.3.2) for translational and rotational 

insertions. In the first scenario, the needles were inserted without the addition of any rotation 

(𝑣𝑟 = 0 mm/s), at a translational speed (𝑣𝑡) of 1 mm/s (Dimaio et al., 2003). During rotational 

insertions (𝑣𝑟 = 2 mm/s), the needles were rotated counterclockwise, while they were advanced 

into the tissue, as it takes place during core biopsies. The ratio between the rotational and 

translational speeds was maintained at 2, which is the suggested value to decrease the insertion 

forces (Han et al., 2013a). During each insertion, the needle was translated for 23 mm in the axial 
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direction, and each experiment was repeated six times. Figure 3.14 displays the cutting forces 

for translational and rotational insertions. The tangential force is not shown for translation 

insertions since it is equal to zero (Fig. 3.14b). 

 

 

 

a) b) 

Figure 3.14. (a) Cutting force behavior in the axial (Fa) and (b) tangential direction (Ft) for 
helical and bevel needles. 

 

From the plots (Fig. 3.14), it is evident that the helical needle tip configuration exhibits a 

consistent decrease of the axial and tangential force during rotational (𝑣𝑟  = 2 mm/s) and 

translational insertions (𝑣𝑟  = 0 mm/s). For instance, the helical needle force profile represented 

in the plot (Fig. 3.14a) is characterized by an axial force (at 23 mm), which is 38.3% lower than 

the axial force observed during bevel needle penetration. 

An unpaired one-tailed test was performed to analyze the statistical implications related to 

the axial and tangential force measurements for helical and bevel needles (Table 3.3). The test 

was performed with a significance level (𝛼) equal to 0.05, while the variances between the 

samples were considered unequal. The test compared the force values measured at a needle 

displacement of 23 mm. For rotating insertions performed with a helical needle, the axial 
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force (𝜇 = 0.341 N, 𝜎 = 0.0243 N) is 20.1% lower (p-value = 9.52 × 10−4) than the axial force 

observed with a bevel needle (𝜇 = 0.427 N, 𝜎 = 0.029 N); a similar trend was observed when 

comparing the tangential forces (Table 3.3). Also, translational insertions performed with the 

helical needle led to lower axial forces than the insertions performed with the bevel needle. For 

both rotating and translational insertions, the force variation (∆𝐹) was calculated between the 

means (𝜇) of the tangential and axial forces (∆𝐹𝑉 =
𝐹𝑎_𝑏𝑒𝑣𝑒𝑙−𝐹𝑎_ℎ𝑒𝑙𝑖𝑐𝑎𝑙

𝐹𝑎_𝑏𝑒𝑣𝑒𝑙
100%). The statistical results 

are summarized in Table 3.3. 

 

Table 3.3. The mean value (𝜇), standard deviation (𝜎), p-value, and force variation (∆𝐹) for 
helical and bevel needles. The p-value is not reported for bevel needle insertions since they 
represent the term of comparison. 
 

Force 𝒗𝒓(mm/s) 𝝁(𝑵) 𝝈(𝑵) p-Value 𝜟𝑭 (%) 

𝐹𝑎_𝑏𝑒𝑣𝑒𝑙 0 0.446 0.023 - - 

𝐹𝑎_ℎ𝑒𝑙𝑖𝑐𝑎𝑙 0 0.354 0.036 1.3 × 10−3 -20.53 

𝐹𝑎_𝑏𝑒𝑣𝑒𝑙 2 0.427 0.029 - - 

𝐹𝑎_ℎ𝑒𝑙𝑖𝑐𝑎𝑙 2 0.341 0.024 9.5 × 10−4 -20.07 

𝐹𝑡_𝑏𝑒𝑣𝑒𝑙 2 0.824 0.047 - - 

𝐹𝑡_ℎ𝑒𝑙𝑖𝑐𝑎𝑙 2 0.686 0.065 8.4 × 10−3 -16.70 

 

 These trends confirm the indications obtained from the analytical models, where helical 

needle geometry improved cutting angles (𝜆, 𝜃, 𝛼) compared to bevel needles. 

 

3.3.2 Helical Needle`s Impact at Different Slice/Push Ratios 

In the previous section, it was observed that helical needles lead to a reduction in tangential 

and axial forces during rotational cutting. In this section, the effect of the cutting parameters on 

the fracture forces is investigated. The fundamental goal is to understand the optimal needle 
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rotation/translation ratio (𝑆 = 𝑣𝑟 𝑣𝑎)⁄  that can lead to lower fracture forces. In the cutting tests, 

the helical needle described in Section 3.1, was inserted into the phantom tissue while it was 

steadily rotated. 

The needle’s axial speed (𝑣𝑎) was set to 1 mm/s and the rotation/translation ratio, 𝑆, was set 

to 0.25, 0.5, 1, 1.5, 2, and 3. The needle was inserted five times for each value of 𝑆. The values of 

the axial (𝐹
𝑎
) and tangential force at fracture (𝐹

𝑡
) (Fig. 3.14a) were recorded by the piezoelectric 

dynamometer and torque sensor described in Section 2.3.2. The value of 𝐹𝑡 was determined by 

dividing the torque at fracture by the needle’s radius. The experimental fracture force, 𝑭𝒆𝒙𝒑, is 

composed of forces 𝐹𝑎 and 𝐹𝑡—𝑭𝒆𝒙𝒑 = [
𝐹𝑡

2
   

𝐹𝑡

2
  𝐹𝑎]—where the force 𝐹𝑡 was split equally 

between the 𝑥- and 𝑦-axes. The analytical values of the fracture forces 𝐹⊥ and 𝐹∥ computed in 

Section 3.1.5 (Eq. (3.19)-(3.20)) were projected in the direction of the needle’s z-axis and in the 

𝑥- and 𝑦-directions related to the torque sensor. The experimental values of the fracture forces 

were then compared to the values from the analytical model for each rotation/translation ratio 

(Fig. 3.15). Each mark in Fig. 3.15 identifies the mean value of five insertions executed for each 

value of 𝑆. From the experimental values in Fig. 3.15, it is evident that the axial force at fracture 

(𝐹𝑎) tends to decrease with increasing 𝑆 ratios while the tangential force at fracture (𝐹𝑡), tends 

to only slightly increase for 𝑆 > 0. According to these experimental results, a 

rotation/translation ratio higher than 1.5 (𝑆 > 1.5) is suggested to lower the fracture forces for 

helical needles. The application of the rotational motion during needle insertion causes an 

increase of stresses in the portion of tissue in contact with the needle tip and reduces the axial 

force necessary to fracture the material (Abolhassani et al., 2007b; Han et al., 2012). The 

analytical model predicts the behavior of the experimental values quite accurately. The 
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discrepancies between the experimental and the analytical values are due to the fact that at 

different values of 𝑆, the contact length (𝑤) between the needle and soft tissue tends to vary, 

while in the analytical model it is assumed to be constant.  

 

 

Figure 3.15. The mean value, error bar, and analytical values of fracture forces. 

 

3.4 Optimization of Helical Geometry 

In the previous sections, the choice of the helical needle parameters (Section 3.1) was 

performed to compare helical needles with one-plane needles characterized by an identical 

length of the cutting edge (𝑙𝑐). Then, for each needle configuration the mathematical models 

were resolved to compute the main cutting angles. However, the relationship between the helical 

needle geometry (angles 𝜓, 𝜑) and the resulting main cutting angles (𝜆, 𝜃, 𝛼) was not explored. 

In this section, a Gaussian process model will be adopted to estimate the resulting cutting angles 

for a given combination of input angles. First, a review of the Gaussian process (GP) modeling 

will be provided (Section 3.4.1), then a GP model and an objective function will be formulated to 
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identify the optimal combinations of input parameters to create a helical needle geometry 

characterized by the desired cutting angles (Section 3.4.2). 

 

3.4.1 Review on Gaussian Process Modeling 

Since the rise of simulation-based science and engineering, surrogate modeling has become 

a promising tool that can replace expensive computer simulations. Even real experiments can be 

replaced with fast and accurate surrogate models. Of particular interest has been the use of 

Gaussian processes (GP’s), proposed by Sacks et al. (Sacks et al., 1989) as surrogates. GP models 

can interpolate the data by viewing the response surface as a realization of a Gaussian random 

process. They also have a natural mechanism to model noisy data (i.e., to avoid interpolation) 

and have been widely used in a variety of applications, such as determining the response 

sensitivities to inputs, (Hassaninia et al., 2017; Tao et al., 2017), microstructure reconstruction 

(Bostanabad et al., 2016a, 2016b, 2018b), and enabling tractable and efficient Bayesian 

calibration and bias correction (Bostanabad et al., 2018a; Zhang et al., 2019).  

In this work, the GP emulators (aka surrogates, metamodels, or models) were adopted to 

replace a computer simulator and, therefore, to estimate the outputs, which are represented by 

the length of the needle’s cutting edge (𝑙𝑐) and the minimum and maximum values of the cutting 

angles (𝜆, 𝜃, 𝛼). The outputs and inputs of the computer simulator are denoted by 𝑦 and by the 𝑑 

dimensional vector 𝒙 = [𝑥(1), 𝑥(2), … , 𝑥(𝑑)]
𝑇

 where 𝒙 ∈ ℝ𝑑 that represents the input angles of the 

helical geometry (𝜓, 𝜑).  

The input-output relation is assumed to be a realization of the random process 𝑦(𝒙): 

𝑦(𝒙) = ∑ 𝛽(𝑖)𝑓𝑖(𝒙)ℎ
𝑖=1 + 𝜉0(𝒙)   (3.24) 
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where 𝑓𝑖(𝒙)’s are some pre-determined sets of basis functions, 𝜷 = [𝛽(1), … . , 𝛽(ℎ)]
𝑇

 are unknown 

weights, and 𝜉
0
(𝒙) is a zero-mean GP characterized with its parametric covariance function, 𝑐(∙,∙) 

as: 

𝑐𝑜𝑣(𝜉(𝒙), 𝜉(𝒙′)) = 𝑐(𝒙, 𝒙′) = 𝜎𝑣
2𝑟(𝒙, 𝒙′) (3.25) 

where 𝑟(⋅) is the correlation function having the property 𝑟(𝒙, 𝒙) = 1 and 𝜎𝑣
2 is the process 

variance.  

 

 

Figure 3.16. GP model scheme for the optimization of the helical needle geometry. 

 

Various correlation functions have been developed in the literature, with the most widely used 

one being the Gaussian correlation function: 

𝑟(𝒙, 𝒙′) =  exp{−(𝒙 − 𝒙′)𝑇𝛀(𝒙 − 𝒙′)} (3.26) 

where 𝛀 = 𝑑𝑖𝑎𝑔(𝟏𝟎𝝎) and 𝝎 = [𝜔(1), 𝜔(2), … , 𝜔(𝑑)]
𝑇
, −∞ < 𝜔𝑖 < ∞ are the roughness or scale 

parameters. The collection of 𝜎2 and 𝝎 are called the hyperparameters.  

With the formulation in Eq. (3.24) and given 𝑛 training pairs of (𝒙𝑖 , 𝑦𝑖), GP modeling requires 

finding a point estimate for 𝜷, 𝝎, and 𝜎2 via either maximum likelihood estimation (MLE) or 

cross-validation (CV). Here, an MLE and constant process mean (i.e., ∑ 𝛽𝑖𝑓𝑖(𝒙)ℎ
𝑖=1 = 𝛽) were 

GP  
Model 

𝒙 (𝜓, 𝜑) �̂� (𝑙𝑐 , 𝜆(min,max), 𝜃(min,max), 
𝛼(min,max)) 

Training 

Data Set 

𝒚 
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adopted. These choices are widely practiced because high predictive power is provided while 

computational costs are minimized (Bostanabad et al., 2018a; Gramacy & Apley, 2015; 

MacDonald et al., 2013). 

MLE requires maximizing the multivariate Gaussian likelihood function, or equivalently: 

[�̂�, 𝜎�̂�
2, �̂�] =

argmin 

𝛽, 𝜎2, 𝝎 
(
𝑛

2
𝑙𝑜𝑔(𝜎2) +

1

2
log(|𝑪|) +

1

2𝜎2
(𝒚 − 𝟏𝛽)𝑇𝑪−1(𝒚 − 𝟏𝛽)) (3.27) 

where log(∙) is the natural logarithm, 𝟏 is an 𝑛 × 1 vector of ones, and 𝑪 is the 𝑛 × 𝑛 correlation 

matrix with its (𝑖, 𝑗)𝑡ℎ element 𝐶𝑖𝑗 = 𝑟(𝒙𝑖, 𝒙𝑗) for 𝑖, 𝑗 = 1, … , 𝑛. Setting the partial derivatives with 

respect to 𝛽 and 𝜎2 to zero yields: 

�̂� = [𝟏𝑇𝑹−1𝟏]−1𝟏𝑇𝑪−1𝒚  (3.28) 

𝜎�̂�
2 =

1

𝑛
(𝒚 − 𝟏�̂�)

𝑇
𝑪−1(𝒚 − 𝟏�̂�) (3.29) 

Substituting these values into Eq. (3.27) and eliminating the constants: 

�̂� =
argmin 

𝝎 
𝑛𝑙𝑜𝑔(𝜎�̂�

2) + log(|𝑪|) =
argmin 

𝝎 
𝐿 (3.30) 

 By numerically minimizing 𝐿 in Eq. (3.30) one can find �̂�. Many global optimization 

methods such as pattern searches (Audet & Dennis, 2002), and particle swarm optimization 

(Toal et al., 2011) have been employed to solve for �̂� in Eq. (3.30) (Bessa et al., 2017; Hassaninia 

et al., 2017). To guarantee global optimality in this case, the optimization is done numerous times 

with different initial guesses. It is noted that, in practice, the search space of 𝜔𝑖 is generally 

limited to [−20, 5] rather than (−∞,∞) since the correlation exponentially changes as a function 

of 𝜔𝑖. 

Upon completion of MLE, the following closed-form formula can be used to predict the 

response at any 𝒙∗: 
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�̂�(𝒙∗) = �̂� + 𝒈𝑇(𝒙∗)𝑽−1(𝒚 − 𝟏�̂�)   (3.31) 

where 𝒈(𝒙∗) is an 𝑛 × 1 vector with its 𝑖𝑡ℎ element 𝑐(𝒙𝑖 , 𝒙
∗) = 𝜎�̂�

2𝑟(𝒙𝑖 , 𝒙
∗), 𝑽 is the covariance 

matrix with its (𝑖, 𝑗)𝑡ℎ element �̂�2𝑟(𝒙𝑖 , 𝒙𝑗), and 𝒚 = [𝑦1, … , 𝑦𝑛]𝑇 are the responses in the training 

dataset, which is built by computing outputs 𝒚, for 𝑛 helical needle configurations. The posterior 

covariance between the responses at the two inputs 𝒙∗ and 𝒙′ reads: 

𝑐𝑜𝑣(𝑦∗, 𝑦′) = 𝑐(𝒙∗, 𝒙′) − 𝒈𝑇(𝒙∗)𝑽−1𝒈(𝒙′) + 𝒉𝑇(𝟏𝑇𝑽−1𝟏)−1𝒉 (3.32) 

where 𝒉 = (𝟏 − 𝟏𝑻𝑽−1𝒈(𝒙′)).  

If the training dataset has multiple outputs, such as in the current scenario, one may fit either 

a single-response GP emulator to each response or a multi-response GP to all the responses. The 

procedure from Conti et al. (Conti et al., 2009) was adopted, and the above formulations were 

extended to simulators with 𝑞 responses by placing a constant mean for each response (i.e., 𝜷 =

[𝛽(1), … . , 𝛽(𝑞)]
𝑇

) and employing the separable covariance function: 

𝑐𝑜𝑣(𝜉(𝒙), 𝜉(𝒙′)) = 𝑐(𝒙, 𝒙′) = 𝚺 ⊗ 𝑟(𝒙, 𝒙′)     (3.33) 

where ⊗ denotes the Kronecker product and 𝚺 is the 𝑞 × 𝑞 process covariance matrix with its 

off-diagonal elements representing the covariance between the corresponding responses at any 

fixed 𝒙. The MLE approach described above can also be applied to multi-response datasets in 

which case 𝜎 will be replaced with Σ (Bayarri et al., 2007; Conti & O’hagan, 2010). 

Finally, GPs can address noise and smooth the data (i.e., avoid interpolation) via the so-called 

nugget or jitter parameter, 𝛿, in which case 𝑪 is replaced with 𝑪𝛿 = 𝑪 + 𝛿𝑰𝑛×𝑛. If 𝛿 is used, the 

estimated (stationary) noise variance in the data would be 𝛿𝜎�̂�
2 (Bostanabad et al., 2018a). 
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3.4.2 GP Application to Helical Needle Geometry 

The Gaussian Process model will be adopted to estimate the resulting cutting angles for given 

angles of the helical needles. The model is characterized by 2 inputs, which include the cone angle 

of the conical helix (𝜓) and the inclination angle of the needle (𝜑), and 7 outputs, which include 

the length of the needle’s cutting edge (𝑙𝑐) and the minimum and maximum values of the cutting 

angles (𝜆, 𝜃, 𝛼). This model was formulated by adopting a training data set composed of 25 

helical needle configurations. For each needle configuration, which was obtained from a different 

combination of the inputs values, the 7 outputs were computed by following the same procedure 

described in Section (3.1). The resulting closed-form formula (Eq. (3.31)) allows the prediction 

of the response �̂� at any input 𝒙∗, within a 95% confidence interval. The following plots (Fig. 

3.17) show the value of one of the predicted outputs, such as the cutting length 𝑙𝑐 , at each 

combination of the inputs. Further, it is possible to adopt Eq. (3.31) to formulate the objective 

function and calculate the input angles depending on the desired goal. For instance, it is possible 

to choose an objective function in order to design a helical needle characterized by a minimal 

cutting length. In this scenario, the objective function will be equal to one of the outputs, such as 

the cutting length (3.34). By minimizing the objective function, it is possible to obtain the inputs 

which allow for the design of the desired geometry. 

𝑚𝑖𝑛(𝐹) =  𝑌(𝑙𝑐) (3.34) 

In a similar way, it is possible to create an objective function with the goal of identifying a 

helical needle geometry, characterized by a minimum included angle, 𝜃, and a maximum 

inclination angle, 𝜆: 
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𝑚𝑖𝑛(𝐹) =  
𝑌(𝜃)

𝑌(𝜆)
 (3.35) 

 

 
 

 

a) b) 
Figure 3.17. (a) Cutting length (lc) and (b) the maximum value of the inclination angle (𝜆) for 
different combinations of inputs, as predicted by the GP model. 

 

The following table (Table 3.4) shows the different values of the inputs, depending on the 

objective function that was formulated.  

 

Table 3.4. Objective function 𝐹, with the computed values for the input angles (𝜓,𝜑).  
 

Objective Function (𝑭) 𝝍 𝝋 

𝑚𝑖𝑛(𝜃)𝐴𝑁𝐷 𝑚𝑎𝑥 (𝜆) 9.57 16.55 

𝑚𝑖𝑛(𝑙𝑐) 𝐴𝑁𝐷 𝑚𝑎𝑥 (𝜆) 20.65 11 

𝑚𝑖𝑛(𝑙𝑐) 𝐴𝑁𝐷 𝑚𝑖𝑛 (𝜃) 13.32 8.95 

 

Therefore, it is possible to determine the optimal helical geometry, depending on the 

composition of the objective function. 
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3.5 Conclusions on Helical Needles 

For the first time, a biopsy needle characterized by a three-dimensional cutting edge was 

conceived and demonstrated by developing a helical geometry. The fundamental objective of this 

study was to provide the framework for biomedical engineers to develop needles characterized 

by any 3D shape and better understand their geometry and effectiveness.  

The helical geometry was applied to a 14-gauge cannula, which is usually adopted in breast 

biopsies. The mathematical models were resolved to compute the main cutting angles and the 

fracture forces related to helical needles. The proposed methodologies can be applied to virtually 

any needle geometry. The analytical results were compared with the ones related to one-plane 

bevel needles, which represent the most common geometry in practice. Furthermore, a helical 

geometry was manufactured and tested on phantom tissue for translational and rotational 

insertions. The measurement of the cutting forces demonstrates that the helical geometry leads 

to a 20% decrease of the axial and translational forces. Moreover, several cutting tests were 

performed at different rotational/translational ratios, and they show a reduction of the 

perpendicular and tangential fracture forces for 𝑆 > 1.5. The experimental results were mostly 

aligned with the analytical estimation of the fracture forces that were obtained from the 

formulated model for the helical geometry. 

In addition, a physics-informed Gaussian process metamodel was adopted to investigate the 

sensitivity of needle cutting length and main cutting angles 𝜓 and 𝜑. The results show that it is 

possible to predict the main helical needle cutting angles, for any combination of the inputs, and, 

therefore, optimize the helical geometry by formulating a proper objective function. 

Further research is needed to develop novel 3D shapes for the needle’s cutting edge. 

Optimization of the helical geometry—to lower the cutting forces by considering parameters 
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such as the pitch of the helix, 𝑝ℎ— is worth exploring as well. The optimization of the helical 

shape requires a separate investigation to assess how different combinations of these three 

parameters (𝜓, 𝜑, and 𝑝ℎ) affect the resulting rake face and needle cutting edge geometry. 

The results of this study can be utilized to improve breast and bone marrow biopsies, and 

they can be extended to different biopsy examinations where a hollow needle is adopted to 

collect tissue samples. 
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4 Soft Tissue Characterization 

 

This chapter reports on the characterization of polyvinyl chloride (PVC) tissue, which is 

commonly used to mimic human skin. This phantom material is commonly adopted in 

biomedical studies to investigate the behavior of medical devices such as biopsy needles and 

surgical scalpels for various diagnostic and therapeutic procedures. The correct assessment of 

the mechanical properties of this phantom tissue is crucial in order to properly mimic the 

biological tissue and foster the studies in this field. 

Specifically, this phantom material has been adopted by Podder et al. (Podder et al., 2005a), 

who used polyvinylchloride (PVC) – a liquid plasticizer as phantom material. In their work, they 

utilized PVC tissue to analyze the impact of the geometry of brachytherapy needles on their 

insertion accuracy. Moore et al. (2011) also used a similar material in their studies. They 

investigated the impact of the blade’s inclination and rake angles on the cutting force in hollow 

needle tissue cutting. 

Despite the wide-ranging adoption of this material in previous literature, very few studies 

have been directed towards the experimental characterization of its mechanical behavior and its 

correlation with computational and experimental measurements when this phantom tissue is in 

use. In this study, we perform the characterization of phantom tissue by uniaxial tests, and we 

proceed to the formulation of a FEM model in order to predict the insertion forces for hollow 

biopsy needle insertions.  

The phantom tissue used is composed of 8116SS plastic (𝑃) mixed with 4116S Plastic 

Softener (𝑆) in different ratios, 𝑆/𝑃, equal to 0, 0.25, 0.5, 1. Uniaxial tests were performed on a 

universal material testing machine, and a 3D digital image correlation (DIC) system was used to 
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detect the strain in the tissue specimen. Data coming from the tissue characterization was used 

to calibrate a 3D FEM model to predict the cutting force during the insertion of core biopsy 

needles. The phantom tissue was modeled as a hyperelastic material using several constitutive 

models, and experimental tests were performed to assess the reliability of the proposed tissue 

characterization method. This chapter has benefited from several discussions with Newell 

Moser. 

 

4.1 Experimental Methods for Uniaxial Tests 

 

4.1.1 Tension Test 

Tension tests were performed on the produced phantom tissue since soft solids tend to fail 

under critical tensile stresses (Reyssat et al., 2012). The tests were conducted on a universal 

testing machine MTS Sintech 20/G, which was equipped with a 150 g capacity load cell (Fig. 4.1). 

The crosshead of the machine was moved at 1 mm/s, which approximately corresponds to the 

strain rates that characterize tissue deformation during needle insertion. The specimens were 

prepared according to ASTM D-412 C. The 3D digital image correlation (DIC) method was used 

to measure large strains. To this end, a random speckle pattern was created on the surface of the 

specimen by applying a thin coating of white and black spray paint. A high-resolution CCD 

camera (CMLN-13S2M-CS, Point Grey Research) and a 35 mm compact fixed focal length lens 

(Techspec series, Edmund Optics) were used to capture images of the deforming specimens. An 

example of a deformed gel phantom specimen at the beginning of a tension test and prior to 

tensile fracture is shown in Fig. 4.1. 

. 
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Figure 4.1. Uniaxial tension testbed with the DIC 3D System. 

 

The strain was analyzed using the VIC software tool DIC-3D (provided by Correlated 

Solutions, Inc.) (Mguil-Touchal et al., 1997).  

 

4.1.2 Compression Test 

Compression tests were run on the same machine (MTS Sintech 20/G) as the tension tests. 

The specimens with a diameter of 38 mm and a length of 30 mm were prepared by using a 

cylindrical mold (Fig. 4.2). Nylon sheets were positioned between the top and the bottom 

surfaces of the specimen and the uniaxial machine crossheads to reduce friction in the contact 

zone. 
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 Figure 4.2. Setup for the compression test and related mold. 

 

The crosshead compressed the tissue at the same speed as the tension tests (1mm/s) until 

an engineering strain of 70% was reached or the specimen fractured. The plots of the stress and 

strain curves obtained from the tension and compression tests will be shown and discussed in 

Section 4.2.3. 

 

4.2 Soft Tissue Constitutive Models 

During medical procedures, soft tissues usually experience large deformations and 

displacements before fracture initiates. For this reason, their mechanical behavior is often 

modeled by adopting hyperelastic models, where the stresses (𝜎𝑖𝑗) are expressed as a function 

of the strain energy density function (𝑈), and the material is considered incompressible. The 

Cauchy stress can be calculated as (Bower, 2010): 

𝜎𝑖𝑗 = 2 [(
𝜕𝑈

𝜕𝐼1
+ 𝐼1

𝜕𝑈

𝜕𝐼2
) 𝐵𝑖𝑗 − (𝐼1

𝜕𝑈

𝜕𝐼1
+ 2𝐼2

𝜕𝑈

𝜕𝐼2
)
𝛿𝑖𝑗

3
−

𝜕𝑈

𝜕𝐼2
𝐵𝑖𝑘𝐵𝑘𝑗] + 𝑝𝛿𝑖𝑗  (4.1) 
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where 𝑝 is the hydrostatic stress, 𝐵 is the Left Cauchy-Green deformation tensor and 𝐼1 and 𝐼2 

are its first and second invariants. Since material characterization is performed by means of 

uniaxial tests, the experimental data are available as engineering stress (𝑃11) and strain (𝑒11), 

which can be converted to Cauchy stresses (𝜎11) and stretches (𝜆11) (Reddy, 2008):  

𝜎11 = 𝑃11(𝑒11 + 1) (4.2) 

𝜆11 = 𝑒11 + 1 (4.3) 

During uniaxial tests, the deformation tensor 𝐹 is: 

𝑭 =

[
 
 
 
 
 
𝜆11 0 0

0
1

√𝜆11

0

0 0
1

√𝜆11]
 
 
 
 
 

 (4.4) 

while the Left Cauchy-Green deformation tensor is obtained as (Reddy, 2008):  

𝑩 = 𝑭 ∙ 𝑭𝑻 (4.5) 

During uniaxial tests, the stresses 𝜎22 and 𝜎33 are equal to zero, which allows the calculation of 

the hydrostatic stress 𝑝 (Eq. (4.6)) as: 

𝑝 = −2 [(
𝜕𝑈

𝜕𝐼1
+ 𝐼1

𝜕𝑈

𝜕𝐼2
)𝐵33 − (𝐼1

𝜕𝑈

𝜕𝐼1
+ 2𝐼2

𝜕𝑈

𝜕𝐼2
)
1

3
−

𝜕𝑈

𝜕𝐼2
𝐵3𝑘𝐵𝑘3] (4.6) 

The strain energy density function (𝑈) is defined in a different way for each material model. 

In this study, the following popular hyperelastic models will be considered: (i) Arruda-Boyce 

model, and (ii) Ogden model. For each material model, the formula to calculate the Cauchy stress 

in the axial direction (𝜎11) will be identified to allow the determination of the material constants 

by fitting the results to the experimental data points obtained from the uniaxial tests (Section 

4.2.3). 
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4.2.1 Arruda-Boyce Model 

The Arruda-Boyce model is a hyperelastic constitutive model that is based on the statistical 

representation of a material—usually rubber—characterized by a cubic volume element with 

eight chains along the diagonal direction. Its strain energy density function can be expressed by 

using the first five terms of the inverse Langevin function (Bower, 2010): 

𝑈 = 𝜇 (∑
𝐶𝑖

𝜆2𝑖−2

5

𝑖=1

(𝐼1
𝑖 − 3𝑖)) +

1

𝐷
(
𝐽2 − 1

2
− 𝑙𝑛(𝐽)) (4.7) 

where 𝜇 and 𝐷 are material parameters and the constants 𝐶𝑖  are equal to: 

𝐶1 =
1

2
, 𝐶2 =

1

20
, 𝐶3 =

11

1050
, 𝐶4 =

19

7000
, 𝐶5 =

519

673750
 (4.8) 

For incompressible materials, 𝐽 is equal to 1, so Eq. (4.7) becomes:  

𝑈 = 𝜇 (∑
𝐶𝑖

𝜆2𝑖−2

5

𝑖=1

(𝐼1
𝑖 − 3𝑖)) (4.9) 

The derivatives of 𝑈 can now be defined as: 

𝜕𝑈

𝜕𝐼1
= 𝜇 (∑

(𝑖 − 1)𝐶𝑖

𝜆2𝑖−2

5

𝑖=1

𝐼1
𝑖−1) (4.10) 

𝜕𝑈

𝜕𝐼2
= 0 (4.11) 

The hydrostatic stress (Eq. (4.6)) can then be written as:  

𝑝 = −2 [(
𝜕𝑈

𝜕𝐼1
)𝐵33 −

1

3
(𝐼1

𝜕𝑈

𝜕𝐼1
)] (4.12) 

The Cauchy stress (Eq.(4.2)) in the axial direction (𝜎11) is: 

𝜎11 = 2
𝜕𝑈

𝜕𝐼1
[𝐵11 − 𝐵33] (4.13) 
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4.2.2 Ogden Model 

The Ogden model is a hyperelastic constitutive model where the strain energy density 

function is directly expressed as a function of the principal stretches (“Abaqus 6.13 Online 

Documentation,” 2013; Ogden, 1972):  

𝑈 = ∑
2𝜇

𝑖

𝛼𝑖
2

𝑁

𝑖=1

(𝜆1
𝛼𝑖 + 𝜆2

𝛼𝑖 + 𝜆3
𝛼𝑖 − 3) + ∑

1

𝐷𝑖

(𝐽 − 1)2𝑖

𝑁

𝑖=1

 (4.14) 

where 𝑁, 𝜇𝑖, 𝛼𝑖 and 𝐷𝑖  are material properties. For incompressible materials, 𝐽 is equal to 1, and 

the Cauchy stress can be obtained from:  

𝜎𝑖 = 𝜆𝑖

𝜕𝑈

𝜕𝜆𝑖

− 𝑝 (4.15) 

During uniaxial tests the principal stresses 𝜎2 and 𝜎3 are equal to zero, while the principal 

stretches are equal to: 𝜆2 = 𝜆3 = 𝜆1
−

1

2. The hydrostatic stress 𝑝 can be calculated as: 

𝑝 = 𝜆3

𝜕𝑈

𝜕𝜆3

= ∑
2𝜇𝑖

𝛼𝑖

𝑁

𝑖=1

(𝜆1
−

1
2
𝛼𝑖) (4.16) 

The Cauchy stress in the axial direction (𝜎1) can then be written as: 

𝜎1 = ∑
2𝜇𝑖

𝛼𝑖

𝑁

𝑖=1

(𝜆1
𝛼𝑖 − 𝜆1

−
1
2
𝛼𝑖) (4.17) 

 

4.2.3 Identification of Material Constants 

For each PVC phantom tissue, each one characterized by a different mixture ratio (Section 

2.3.3), the experimental data from the uniaxial tests were fitted with the material models 

(described in the previous section) by using the least squares method. For each material model, 

the material constants, the correlation coefficient 𝑅2 and the root mean square deviation 
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(𝑅𝑀𝑆𝐸) were determined. Figure 4.3 shows the uniaxial test curves obtained from the samples 

adopted for the tension and compression tests. 

 

 

Figure 4.3. True Cauchy stress (σ11) vs. stretches (λ1) in the axial direction for a mixture with 
an 𝑆/𝑃 ratio equal to 0, coming from different samples. 

 

Figure 4.4 shows the uniaxial test curves with the fitted material model for one of the 

phantom tissue mixtures. 

 

 

Figure 4.4. True Cauchy stress (σ11) vs. stretches (λ1) in the axial direction for a mixture with 
an 𝑆/𝑃 ratio equal to 0. 
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The material constants and the fitting coefficients are presented in Table 4.1 for one of the 

phantom tissue mixtures, while the other plots and tables are given in Appendix A. The Arruda-

Boyce model fits the experimental data better, and its material parameters will be adopted later 

for the elaboration of analytical models and FEM simulations.  

 

Table 4.1. Material constants and fitting coefficients for each material model for a mixture with 
an 𝑆/𝑃 ratio equal to 0. 

 

Model Material Constants R2 RMSE 

𝐴𝑟𝑟𝑢𝑑𝑎 − 𝐵𝑜𝑦𝑐𝑒 𝜇 = 0.00418      𝜆 = 1.15 0.967 0.0298 

𝑂𝑔𝑑𝑒𝑛 
𝜇1 = −0.0255  𝛼1 = −3.91 
𝜇2 =  0.0088    𝛼2 = 4.74 
𝜇3 = 0.0249      𝛼3 = −4.09 

0.9606 0.0328 

 

4.3 Analytical Force  

In this section, the soft tissue constitutive models will be verified by estimating the value of 

the cutting forces from an analytical standpoint. The material parameters obtained in Section 4.2 

will be adopted to calculate the force values when the needle is inserted, both with and without 

rotation. The results will be compared with experimental results obtained by using the testbed 

introduced in Section 2.3.2. 

 

4.3.1 Needle Insertion without Rotation 

During Phase I (Section 2.2), the needle is first subjected to an axial force due to the elastic 

tissue deformation (𝐹𝑉𝑒𝑙), which can be calculated as: 

𝐹𝑉𝑒𝑙  = 𝜎1𝐴𝑡 (4.18) 
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where 𝜎1 represents the Cauchy stress in the axial direction and 𝐴𝑡 represents the area of the 

tissue that is subjected to the elastic deformation. In this scenario, the overall tissue deformation 

is approximated with the deformation of a tissue column characterized by a radius (𝑟𝑡), which is 

approximately equal to 2~3 times (𝛽 = 2~3) the internal radius of the needle (Fig. 2.1): 

𝐴𝑡 = 𝜋𝑟𝑡
2 = 𝜋 (𝛽

𝑑𝑖

2
)

2

= 𝜋𝛽2 𝑑𝑖
2

4
 (4.19) 

The Cauchy stress in the axial direction (𝜎1) can be obtained from the Arruda-Boyce model 

by adopting Eqs. (4.13), (4.10), (4.5): 

𝜎11 = 2𝜇 (∑
(𝑖 − 1)𝐶𝑖

𝜆2𝑖−2

5

𝑖=1

𝐼1
𝑖−1) [

𝜆3 − 1

𝜆
] (4.20) 

where the stretches are calculated as the ratio between the final length of the compressed tissue 

column (𝑙𝑓𝑖𝑛) and the original length (𝑙𝑖𝑛𝑖𝑡). Further, the final length of the compressed tissue 

column (𝑙𝑓𝑖𝑛) can be expressed as the difference between the initial length of the tissue (𝑙𝑖𝑛𝑖𝑡), 

and the distance covered from the needle tip in the axial direction (represented by the 

coordinate 𝑥): 

𝜆 =
𝑙𝑓𝑖𝑛

𝑙𝑖𝑛𝑖𝑡

= 
𝑙𝑖𝑛𝑖𝑡 − 𝑥

𝑙𝑖𝑛𝑖𝑡

 (4.21) 

By adopting Eqs. (4.18)-(4.20), the axial force (𝐹𝑉𝑒𝑙) can be calculated as:  

𝐹𝑉𝑒𝑙 = 2𝜇 (∑
(𝑖 − 1)𝐶𝑖

𝜆2𝑖−2

5

𝑖=1

𝐼1
𝑖−1) [

𝜆3 − 1

𝜆
] (𝜋𝛽2

𝑑𝑖
2

4
) (4.22) 

Figure 4.5 shows the comparison between the experimental insertion force profiles and the 

ones computed by adopting Eq. (4.22). The behavior of the axial force is similar to the one 

observed in the experiments, although the analytical formulation simplifies the final 
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configuration of the deformed tissue, by approximating it to the deformation of a tissue column. 

For this reason, the deformation of the tissue will be further investigated in Section 4.4 by 3D 

FEM simulations. 

 

 
Figure 4.5. Comparison of axial forces obtained from the analytical model with the 
experimental measurements performed on the testbed (Section 2.3.2). The cannula was 
moving at the same axial speed as during the material testing (1 mm/s). 

 

4.3.2 Needle Insertion with Rotation 

When the slicing motion is applied to the biopsy needle, the targeted tissue is subjected to 

compression and torsion. The material equilibrium configuration (Lai et al., 2010) when 

considering a spherical coordinate system, can be written as: 

𝑟𝑠𝑝ℎ =  𝜆1𝑅𝑠𝑝ℎ       𝜃𝑠𝑝ℎ = Θ𝑠𝑝ℎ + KZ𝑠𝑝ℎ      𝑧𝑠𝑝ℎ = 𝜆3Z𝑠𝑝ℎ (4.23) 

where 𝐾 represents the amount of shear, while 𝑟𝑠𝑝ℎ,𝜃𝑠𝑝ℎ, 𝑧𝑠𝑝ℎ represent the spatial coordinates 

and 𝑅𝑠𝑝ℎ , Θ𝑠𝑝ℎ , Z𝑠𝑝ℎ represent the material coordinates. The axial (𝐹𝑉𝑒𝑙) and tangential forces 
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(𝐹𝐻𝑒𝑙) due to the elastic deformation of the tissue can be calculated from its state of stress, where 

the tensors 𝑭 and 𝑩 can be expressed as (Lai et al., 2010): 

    𝑭 = [

𝜆1 0 0
0 𝜆1 𝑟𝑠𝑝ℎ𝐾

0 0 𝜆3

]                   (4.24) 

               𝑩 = [

𝜆1
2 0 0

0 𝜆1
2 + 𝑟𝑠𝑝ℎ

2𝐾2 𝑟𝑠𝑝ℎ𝐾𝜆3

0 𝑟𝑠𝑝ℎ𝐾𝜆3 𝜆3
2

] (4.25) 

Since the material is considered as incompressible, the principal stretches are equal to: 𝜆1 = 

𝜆2 = 𝜆3
−

1

2. The Cauchy stresses can be obtained by adopting Eq. (4.1) and Eq. (4.11):  

𝜎𝑖𝑗 = 2 [
𝜕𝑈

𝜕𝐼1
𝐵𝑖𝑗 − (𝐼1

𝜕𝑈

𝜕𝐼1
)
𝛿𝑖𝑗

3
] + 𝑝𝛿𝑖𝑗  (4.26) 

where the value of 𝑝, can be simplified in the equations, by considering the following equilibrium 

equations (Lai et al., 2010): 

𝜕𝜎𝑟𝑟

𝜕𝑟
+

𝜎𝑟𝑟 − 𝜎𝜃𝜃

𝑟𝑠𝑝ℎ

= 0,
𝜕𝜎𝜃𝜃

𝜕𝜃𝑠𝑝ℎ
= 0,

𝜕𝜎𝑧𝑧

𝜕𝑧𝑠𝑝ℎ
= 0 (4.27) 

which allows the determination of the following stresses: 

𝜎𝑧𝑧 =
𝜕𝑈

𝜕𝐼1
(2𝜆3

2 − 2𝜆1
2 − 𝑟𝑠𝑝ℎ

2𝐾2) (4.28) 

𝜎𝜃𝑧 = 2(
𝜕𝑈

𝜕𝐼1
) 𝑟𝑠𝑝ℎ𝐾𝜆3 (4.29) 

These equations can be used to calculate the axial force (𝐹𝑉𝑒𝑙) and the twisting torque (𝑇𝑒𝑙): 

𝐹𝑉𝑒𝑙 = ∫ 𝜎𝑧𝑧2𝜋𝑟𝑠𝑝ℎ𝑑𝑟𝑠𝑝ℎ

𝑟𝑡

0
 (4.30) 

𝑇𝑒𝑙 = ∫ 𝑟𝑠𝑝ℎ𝜎𝜃𝑧
2𝜋𝑟𝑠𝑝ℎ𝑑𝑟𝑠𝑝ℎ

𝑟𝑡

0
 (4.31) 
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which can be simplified as:  

𝐹𝑉𝑒𝑙 = 𝜋𝜇(∑
(𝑖 − 1)𝐶𝑖

𝜆2𝑖−2

5

𝑖=1

𝐼1
𝑖−1)(2𝜆3

2
𝑟𝑡

2 − 2𝜆1
2
𝑟𝑡

2 −
𝑟𝑡

4𝐾2

2
) (4.32) 

𝑇𝑒𝑙 = 𝜋𝜇𝐾(∑
(𝑖 − 1)𝐶𝑖

𝜆2𝑖−2

5

𝑖=1

𝐼1
𝑖−1)𝜆3𝑟𝑡

4 (4.33) 

The tangential force (𝐹𝐻𝑒𝑙) can be obtained by dividing 𝑇𝑒𝑙  by the radius of the tissue that is 

deformed. However, it is difficult to estimate the amount of shear 𝐾, since this deformation takes 

place in the tangential direction. For this reason, 𝐹𝐻𝑒𝑙 can be approximated by multiplying the 

axial force 𝐹𝑉𝑒𝑙 by the Coulomb friction coefficient 𝜇𝑑: 

𝐹𝐻𝑒𝑙 = 𝐹𝑉𝑒𝑙  𝜇𝑑 (4.34) 

Figure 4.6 shows the comparison between the experimental and the analytical forces when 

the Arruda Boyce Model is used. 

 

  
a) b) 

Figure 4.6. (a) Comparison of axial and (b) tangential forces obtained from the analytical model 
with the experimental measurements performed on the testbed (Section 2.3.2). The cannula 
was moving at the same axial speed as during the material testing (1 mm/s). 
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The behavior of the axial force obtained from the analytical model is similar to the one observed 

in the experiments. On the other hand, the behavior of the tangential force presents some 

discrepancies with respect to the analytical formulation, although it is able to capture the overall 

trend. For this reason, the deformation of the tissue, when slicing motion is applied, will be 

further investigated in Section 4.4 by adopting 3D FEM simulations. 

 

4.4 Finite Element Model Validation for Hollow Needles 

In this section, the soft tissue constitutive models will be verified by performing several 

computational studies related to the insertion of hollow needles into soft tissue. The material 

parameters obtained in Section 4.2 will be adopted to formulate the finite element simulations, 

and the results will be compared with experimental results obtained by using the testbed 

introduced in Section 2.3.2. 

 

4.4.1 Hollow Needle Insertion without Rotation 

 

4.4.1.1 3D Finite Element Model  

In this section, a 3D finite element model is formulated with ABAQUS to simulate the 

interaction between a hollow needle and soft tissue, while it is pressed against the tissue, without 

any rotation (an example of the input file is given in Appendix B1). In this computational study, 

the axial reaction force computed at the needle will be compared with the one experimentally 

measured.  



121 
 
The hollow needle was described as a discrete rigid body. Its geometry was characterized by 

an outside diameter of 2.4 mm (𝑑𝑒), an inside diameter of 2 mm (𝑑𝑖), a bevel length of 0.6 mm 

(𝑙), a tip radius of 15 µm and an included angle (𝜃) of 13° at the cutting edge (Fig. 4.7).  

  

 
 (a) (b) 

Figure 4.7. Schematics of a BP (or hollow needle) tip: (a) CAD model and (b) cross-section 
showing the inner diameter (di), outer diameter (de), total length (lt), bevel length (lb), cutting 
tip radius (rtip) and included angle (𝜃). 

 

A translational motion was applied to the cannula that moves parallel to the thickness of the 

tissue, and it is constrained with respect to the remaining translational and rotational motions. 

The mesh of the hollow needle was composed of three dimensional triangular (R3D3) and 

quadrilateral (R3D4) elements. Specifically, the finite element mesh of the commercial BP mesh 

was realized with HyperMesh, and it was built with 37,255 nodes, 37,105 R3D4 elements, and 

24 R3D3 elements. The soft tissue block was considered as a deformable body, and it was 

represented by a cylinder with a radius of 10 mm and a thickness of 7.5 mm. Since the model is 

symmetric with respect to the 𝑥𝑧- and 𝑦𝑧-planes, a quarter of the cylinder with symmetric 

boundary conditions was used in the simulations (Fig. 4.8) as the soft tissue. The base of the 

tissue was completely constrained, while the external cylindrical surface was assumed to be free. 
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The mesh was built by adopting three-dimensional eight-node hexahedral elements (C3D8) and 

three-dimensional six-node wedge elements (C3D6).  

 

 

a) 

 

b) 

Figure 4.8. 3D Finite element model of hollow needle insertion. The geometry of the cannula 
and of the soft tissue is shown in the 3D view (a). The mesh is refined in the proximity of the 
cutting-edge area (b). 

 

The finite element mesh consisted of 920,345 nodes, 882,900 C3D8 elements and 5,400 C3D6 

elements. The mesh consisted of 325 elements along the radius, 36 elements around the circular 

edge, and 151 elements through the thickness of the block. In the proximity of the cutting area, 

which interacts with the hollow needle, the number of elements has been consistently increased. 

In fact, to define the stress gradient in the tissue being cut by a cannula with a radius at the tip of 
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15 µm, the mesh of the tissue was composed of approximately 1 µm elements in the tissue-

cutting edge interaction zone (Fig. 4.8b). 

The tissue was modeled by hyperelastic constitutive models and, in particular, the Arruda-

Boyce model, where the material constants 𝑐1, 𝜆𝑚, and 𝐷1 are equal to 0.00418, 1.15, and 2.14, 

respectively (Table 4.1). The material constant 𝐷1 can be obtained from the Poisson’s ratio of the 

material, 𝜂. For incompressible materials, 𝜂 can be considered equal to 0.5. However, in 

Abaqus/Explicit, this constraint must be relaxed for calculation purposes, so a Poisson’s ratio 

equal to 0.495 was considered. Because of the large number of elements, the simulations were 

performed using the explicit algorithm, which is commonly used to simulate dynamic processes. 

The insertion process studied in this section can be considered a quasi-static process, given the 

slow speed at which the needle is moving (1~5 mm/s). In this scenario, specific considerations 

are required when explicit dynamics is used to model quasi-static events. In fact, it would be 

computationally very expensive to model this process in its natural time scale, since that would 

require an excessive number of time increments. To counteract this effect, the needle insertion 

speed was increased by 60 times, and the tissue mass was increased by 200 times, allowing a 

consistent increase of the time step. These approximations can be implemented as long as the 

kinetic energy of the tissue is consistently lower than its internal energy. By doing so, the 

simulation could be completed in 75 hours with 48 CPUs.  

During the simulation, the cutting edge of the hollow needle was pushed towards the tissue 

for 5 mm. Since soft solids can fail under critical tensile stresses (Reyssat et al., 2012), the 

contour plots related to the 1st principal stresses in the tissue contact zone were observed (Fig. 

4.9). Figure 4.9 shows the contour plots of the maximum principal stress when the hollow needle 

reaches a penetration depth of 1 mm and 5 mm. The stresses are highly localized in the cutting 
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edge-tissue contact zone, and they are higher at a higher depth. The maximum principal stress is 

found to assume positive (tensile) values at the higher penetration depth (Fig. 4.9), and it is 

probably the primary reason for a fracture in soft materials. (Reyssat et al., 2012). 

 

 

 

a) b) 

 

 c) d) 

Figure 4.9. (a, c) Contour plots of the maximum principal stress for a cannula inserted to a 
penetration depth of 1 mm and (b, d) of 5 mm. 

 

Figure 4.10 shows the comparison between the experimental insertion force profiles and the 

ones computed by finite element simulations. The behavior of the axial force is similar to the one 

observed in the experiments, although the force values are approximately 20% lower than the 
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average values obtained from the five experimental force measurements. This discrepancy is due 

to some of the approximations made to simulate the phenomena. For instance, the material could 

not be considered perfectly incompressible in the FEM model, while the speed of the needle and 

the mass of the tissue were significantly increased. Because of the high computational cost of this 

3D simulation, a 2D simulation was built, and it will be presented in the next section.  

 

 

Figure 4.10. Comparison of axial forces obtained from the 3D FEM simulation with the 
experimental measurements performed on the testbed. The cannula was moving at the same 
axial speed adopted during the material testing (1 mm/s). 

 

4.4.1.2 2D Finite Element Model 

In this section, a 2D finite element model (Fig. 4.11)was formulated with ABAQUS/standard 

to simulate the interaction between a hollow needle and soft tissue (an example of the input file 

is given in Appendix B2). The goal is to simulate the same insertion as in Section 4.4.1.1 but using 

a fraction of the computational cost. The hollow needle was modeled as a rigid analytical surface 

and, therefore, did not require a mesh. Its geometry and motion were set to be equal to the 
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geometry of the hollow conical needle used in the experiments and in the previous simulation 

(Fig.4.7).  

 

 

a) 
 

 
b) 

Figure 4.11. 2D Finite element model of hollow needle insertion. The mesh and geometry of 
the soft tissue are shown in the side view (a). The elements were swept around the simulation 
axis to provide a 3D view of the simulation (b).  

 

The soft tissue block was considered as a deformable body, and it was represented by a 2D 

cross-section with a radius of 7 mm and a thickness of 7 mm. The base of the tissue was 
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completely constrained, while the other surfaces were assumed to be free. The mesh was built 

by adopting two-dimensional four-node axisymmetric elements (CAX4R). The finite element 

mesh consisted of 54,540 nodes and 54,058 CAX4R elements. The mesh consisted of 302 

elements along the radius and 179 elements through the thickness of the block. The mesh has 

been designed to be denser where the hollow needle enters in contact with the soft tissue, where 

the elements have a 2 µm length (Fig. 4.11a). In the simulation, the same material parameters, 

as in the previous 3D simulation, were used. The Poisson’s ratio, 𝜂, was considered equal to 

0.475, which helps the convergence of the simulation. By adopting a 2D model, the simulation 

could be completed in only two hours while using 24 CPUs, which is 72 times quicker than the 

3D simulation. 

 Figure 4.12 shows the comparison between contour plots of the maximum principal stress 

in the region of contact for 3D (Fig. 4.12a) and 2D (Fig. 4.12b) simulations when the hollow 

needle reaches a penetration depth of approximately 5 mm.  

 

 

 

a) b) 

Figure 4.12. Contour plot of the maximum principal stress at the contact zone between the 
cannula and soft tissue for (a) 3D and (b) 2D FEM model (b). 
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A further confirmation that the 2D axisymmetric simulation and 3D FEM simulation, 

presented in Section 4.4.1.1, can provide similar results can be obtained by the comparison 

between the axial forces at the cannula for the two simulations (Fig. 4.13). Figure 4.13 shows 

how the 2D FEM simulation provides a force prediction of the cannula axial force, which is 

approximately 17% lower than the force prediction obtained from the 3D FEM simulation, but 

for a fraction of the computational cost. 

 

 
Figure 4.13. Comparison of axial forces obtained from the experimental measurements and 
from the 2D and 3D finite element simulation. The cannula was moving at the same axial speed 
adopted during the material testing (1 mm/s), without any rotation. 

 

Despite the fact that the 2D and 3D FEM simulations do not analyze the crack initiation in 

soft tissue, they provide a good prediction of the cannula’s axial force. However, both the models 

presented in Section 4.4.1, cannot be adopted in order to simulate the rotation of the cannula, 

while it is moving towards the tissue. In fact, in the 3D model (Section 4.4.1.1), the deformation 

of the tissue, in the direction of the cannula rotation, would lead to the collapse of one element 
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into another, while the 2D model (Section 4.4.1.2) does not provide the third spatial dimension 

to account for the deformation of the elements outside the plane. For these reasons, a different 

3D model will be presented in Section 4.4.2. 

 

4.4.2 Hollow Needle Insertion with Slicing Motion 

An additional 3D finite element model was formulated (Fig. 4.14) to simulate the rotation of 

the hollow needles while penetrating the tissue (an example of the input file is given in Appendix 

B3). In this scenario, the previous 3D and 2D simulations are not adequate to capture this 

phenomenon, because of the consistent deformation of the elements in the plane perpendicular 

to the one in which the needle is moving. For this reason, a new computational model, similar to 

the one adopted by Han (Han, 2014) was built where the soft tissue was approximated as a single 

slice of a tissue, characterized by a radius of 10 mm, a depth of 7.5mm and an in-plane degree 

span equal to 5°.  

The hollow needle was described as a discrete rigid body. Its geometry was set equal to the 

one defined in Section 4.4.1 (Fig. 4.7). Translational and rotational motions were applied to the 

cannula that moves parallel to the thickness of the tissue, and it is constrained with respect to 

the remaining motions. The mesh of the hollow needle was performed in an identical manner, as 

in the 3D FEM simulation presented in Section 4.4.1.1. 

The geometry and motion of the cannula allow one to build an axisymmetric model, where 

the tissue is represented by a cylindrical sector, and periodic boundary conditions can be applied 

to the lateral linear surfaces of the sector to simulate the full cylinder. The radius, thickness, and 

azimuth angle of the cylindrical sector were equal to 10 mm, 7.5 mm, and 5 degrees, respectively 

(Fig. 4.14). The base of the tissue was completely constrained, while the external cylindrical 
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surface was assumed to be free. The mesh was built with three-dimensional eight-node 

hexahedral elements (C3D8) and three-dimensional six-node wedge elements (C3D6). The finite 

element mesh consisted of 53,001 nodes, 26,250 linear hexahedral elements of type C3D8RH, 

and 150 linear wedge elements of type C3D6H. The mesh consisted of 350 elements along the 

radius, 1 element around the circular edge, and 151 elements through the thickness of the block. 

In the proximity of the cutting area, which interacts with the hollow needle, the number of 

elements has been consistently increased. In fact, to define the stress gradient in the tissue being 

cut by a cannula with a radius at the tip of 15 µm, the mesh of the tissue was composed of 0.8 µm 

elements in the tissue-cutting edge interaction zone (Fig. 4.14). 

 

 

 

a) b) 

   
c) d) 

Figure 4.14. 3D Finite element model of hollow needle insertion. The mesh of the BP and of 
the soft tissue is shown: (a) in the side view, (b) 3D view, and (c) top view. (d) The mesh is 
refined in the proximity of the cutting-edge.  
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In the simulation, the same material parameters as those for the previous 3D simulations 

were used. The insertion process studied in this section can be considered a static process 

because of the slow speed at which the needle is moving (1 mm/s). The results from this FEM 

model were first compared with the ones obtained from the previous 3D model (Section 4.4.1.1) 

for cannula insertion without rotation. Figure 4.15 shows the configuration for deformed soft 

tissue in the current model and in the one presented in Section 4.4.1.1. 

 

  

a) b) 

 

c) 

Figure 4.15. (a,b) Configuration of the soft tissue during deformation for the different 3D FEM 
models and (c) experimental and computational values of the axial force. 
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Figure 4.15c shows that the computational values of the axial force provided by the current 

model (“Slice Model”) are aligned with the values obtained in the 3D model presented in the 

previous section (“Symm. Model”). Furthermore, the current model, which considers only a slice 

of soft tissue, was implemented by using both an implicit and an explicit algorithm. For this 3D 

model, the implicit algorithm proved to be more efficient than the explicit one and allowed the 

simulation to complete in only 4 hours while using 48 CPUs. Since the current FEM model (“Slice 

Model”), lead to accurate results, the same model was adopted to simulate tissue deformation, 

when the cannula is entering the soft material while it is rotating (Fig. 4.16).  

 

 

 a) b) 

 

 

c) d) 

Figure 4.16. (a, b) Contour plot of maximum principal stress for the insertion of a cannula and 
experimental and computational values of the (c) axial force and (d) torque. The cannula axial 
speed was equal to 1 mm/s with a slice/push ratio, 𝑘, equal to 0.5. 
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Figure 4.16 shows how the maximum principal stresses are highly localized in the cutting 

edge-tissue contact zone, and they achieve higher values (4 MPa) with respect to the values 

obtained when the cannula is not rotating (Fig. 4.9). The reaction torque, due to the tangential 

force, 𝐹𝐻, applied to the cutting edge of the needle (Fig. 2.5, Chapter 2), was compared with the 

experimental values obtained from the torques sensor in the testbed (Section 2.3.2). 

The predicted values of the axial force are approximately 18% lower than the average 

experimental axial force (Fig. 4.16c) while the computational values related to the torque are 

10% lower than the minimum experimental torque values (Fig. 4.16d). Despite the discrepancies 

with the experimental data, the 3D FEM model was able to provide meaningful results and 

proved the correctness of the material constants adopted in the constitutive model. 

 

4.4.3 Estimation of the Friction Coefficient in Tissue Cutting 

In order to predict the axial and tangential force during tissue cutting, it is important to 

estimate the friction forces that arise from the contact between tissue and the cannula, especially 

when a slicing motion is applied. In fact, the rotation of the cannula determines the relative 

motion of the tissue on the cylindrical needle surface. From Chapter 2 (Section 2.2.2), the friction 

force in the axial (𝐹𝑉𝑓𝑟) and tangential direction (𝐹𝐻𝑓𝑟) can be determined by using the following 

equations: 

𝐹𝑉𝑓𝑟 = 𝜇𝑑𝑎

𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝐸

 (1 + 𝜂)
𝑥 (4.35) 

𝐹𝐻𝑓𝑟 = 𝜇𝑑𝑟

𝜋(𝑟𝑛𝑖 + 𝑟𝑛𝑜)𝐸

 (1 + 𝜂)
𝑥 (4.36) 
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The values of the friction forces and of the friction coefficients (𝜇𝑑𝑎 , 𝜇𝑑𝑟) were calculated 

from the experimental measurements, (Sections 2.5), for the same phantom tissue adopted in 

the finite element models (Sections 4.4.1- 4.4.2).  

 

Table 4.2. Polynomial regression equation with related R2 and RMSE for the dynamic friction 
coefficients as a function of the slice/push ratio (𝑘). 
 

𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 Polynomial Regression Equation R2 RMSE 

𝜇𝑑𝑎(𝑘) 0.00087 𝑘2 − 0.0194𝑘 + 0.328 0.823 0.018 

𝜇𝑑𝑟(𝑘) −0.03382 𝑘2 + 0.2726 𝑘 + 0.1243 0.99 0.022 

 

Figure 4.17a shows the behavior of the friction forces per unit displacement (𝑓𝑉𝑓𝑟, 𝑓𝐻𝑓𝑟) and 

the values of the friction coefficients at different slice/push ratios (Fig. 4.17b). The axial (𝑓𝑉𝑓𝑟) 

and tangential friction forces (𝑓𝐻𝑓𝑟) show a similar trend with respect to the plot in Section 2.5.1, 

which is related to a softer phantom tissue (𝑆/𝑃 =0.5).  

 

 

 

a) b) 

Figure 4.17. (a) Mean values and error bars of the cutting forces (fVcut, fHcut) the analytical model 
curves (Eqs. (4.35)-(4.36), Table 4.2), and (b) the related friction coefficients. 
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The value of the friction coefficient (𝜇𝑑) for a slice/push ratio equal of 0.5, is equal to 0.4 

(𝜇𝑑 = 0.4), and it was adopted during the simulations related to hollow needle insertions with 

slicing motions (Section 4.4.2). Figure 4.18 shows the experimental and computational values of 

the axial force and torque for different values of the friction coefficient, 𝜇𝑑. The friction 

coefficient mainly affects the tissue deformation force in the tangential direction (shown in Fig. 

4.18b by plotting torque); this is because the relative motion between the cannula and the tissue 

causes the material to slide across the needle cutting edge. From Fig. 4.18b, it is apparent that 

the adoption of a friction coefficient ranging from 0.35 to 0.4, allows for a better approximation 

of the experimental behavior of the torque, as it was expected from the previous findings (Fig. 

4.17). 

 

  

a) b) 

Figure 4.18. Experimental and computational values of the (a) axial force and (b) torque for 
different values of the friction coefficient (µd). The cannula axial speed is equal to 1 mm/s with 
a slice/push ratio, 𝑘, equal to 0.5. 
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4.5 Conclusions on Tissue Characterization 

In this chapter, an experimental and computational study related to the characterization of 

phantom tissue was performed. The fundamental objective was to provide an experimental 

method to determine the mechanical properties of soft tissue, which can be adopted to predict 

its deformation using computational models.  

The study was performed on polyvinyl chloride (PVC) tissue, which is commonly used to 

mimic human skin. Uniaxial tests were performed on a universal material testing machine, and 

a 3D digital image correlation (DIC) system was used to detect the strain on the tissue specimen. 

The material constants for several hyperelastic models were determined. The Arruda-Boyce and 

Ogden models allowed for a better approximation of the experimental behavior of soft tissue 

and, consequently, their material parameters were used in several computational models to 

predict the needle cutting force and torque. Two scenarios were simulated where: (i) the cannula 

is pushed towards the tissue without the addition of any rotation, and (ii) the cannula is rotated 

while pushed toward the tissue. 

The results show that 2D axisymmetric finite element models provide an accurate prediction 

of the needle insertion force when the cannula is solely pushed towards the tissue. In fact, the 

computational values of the axial force obtained from the 2D FEM model are aligned both with 

the experimental results and with the values obtained from the 3D FEM model. These 

computational values for axial forces are approximately 20% lower than the values recorded 

from the experimental measurements 

In addition, a 3D FEM model was developed to efficiently simulate the rotation of the cannula 

while it is moving towards the tissue. Comparisons between experimental data and FEM 

simulations show good correspondence, with a prediction error of the axial force below 20%, 
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and prove the accuracy of the characterization process. Moreover, the computational models 

confirmed that the maximum principal stress in the cutting area assumes higher values when the 

slicing motion is imposed on the cannula. 

Additional investigations are needed by performing computational models which: (i) 

consider the strain rate sensitivity of soft material, and (ii) consider the process of crack 

initiation in soft tissue. 
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5 Micro-Texturing of Hollow Needles for Skin Biopsies 

 

In the current chapter, the cutting-edge geometry of biopsy punches (BP), commonly 

adopted in skin biopsy, is analyzed in detail. As mentioned in Section 1.1, during skin biopsy, 

hollow needles, also referred to as biopsy punches (BP), are pressed down into the skin to extract 

a tissue sample to diagnose skin diseases, such as skin cancer. In this context, the cutting 

efficiency of these medical tools plays a crucial role in improving the extraction of optimal quality 

and quantity of tissue samples. In this section, we explore how soft tissue cutting may be 

improved by imparting micro-textures—inspired by nature, especially by mosquitos—on the tip 

of biopsy punches. In fact, the mosquito’s maxilla has numerous micro-teeth, which enhance its 

penetration into the skin and diminish nerve stimulation during puncture. Few research studies 

have focused on the impact of micro-serrations—similar to ones on a mosquito’s proboscis—on 

insertion forces, and their potential role in medical devices such as biopsy punches (Section 

1.3.2). The ultimate goal is to expand the results from previous studies and explore the 

application of micro-serrations in biopsy punches. Commercial and micro-serrated BPs are 

investigated with the aim of clarifying the influence of micro-serrations on tissue cutting forces. 

First, the experimental setup for the manufacturing of BPs is explained. Second, the performance 

of commercial and serrated BPs is studied through BP penetrations into phantom tissue. Finally, 

3D and 2D FEM simulations are performed to provide additional insights into stress generation 

in the cutting area. The experimental results will prove that significant reductions in the 

puncture force of BPs are achievable. This chapter is based on Giovannini et al. (Giovannini et al., 

2017). 
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5.1 Experimental Setup for Micro-Serrated Biopsy Punches 

 

5.1.1 Laser Ablation Process 

To generate micro-features on the tip of commercial biopsy punches (BP), a picosecond laser 

with a wavelength of 532 nm was used. This laser (Giovannini et al., 2015) was coupled with a 

5-axis motion system and a controller with a resolution of 0.01 μm. The system facilitates the 

rotation and translation of the needle (or workpiece) during the laser ablation process (Han, 

2014). The setup is displayed in Fig. 5.1. The main components are (i) needle fixtures, and (ii) 

focusing and vision subsystem.  

 

  
Figure 5.1. The axes of the motion system (X, Y, Z, B, C) and the main components of the laser 
setup are highlighted. 

 

The needle fixture subsystem consists of a micro-adjuster, an adapter, an ER8 collet, and a 

shaft. The ER8 collet holds the biopsy punch during the laser machining process, and it is 

mounted on a shaft, which is connected to the laser’s stage through a micro-adjuster. The 
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focusing and vision subsystem consists of a polarizing beam splitter, a polarization-insensitive 

beam splitter, a laser focusing lens, a fiber optical illuminator, a CCD camera, a camera lens, and 

a notch filter. The CCD camera captures magnified images of the workpiece, and its focal position 

is aligned with the laser focus (Han et al., 2013b). 

 

5.1.2 Micro Serration Design 

Micro-serrations were generated on a commercial BP with a circular cutting edge. This BP is 

characterized by the same cannula geometry presented in Section 4.4 (Fig. 4.7), and the micro-

features were generated on its cutting edge by adopting laser ablation. The laser power was set 

to 0.75 W and the frequency of laser pulses to 100 kHz. The serrated profile is defined by its 

radius at the tip (𝑟𝑠), the arc radius (𝑟𝑐) and the angle between two consecutive serrations (𝜌). 

Figure 5.2 shows the laser path used to generate the micro-features on the BP cannula. 

 

  
(a) (b) 

Figure 5.2. (a) Laser path for generating serrations on BP’s cutting edge and (b) the geometry 
of the micro-serrations. 

 

In this work, the laser followed an offset path, shown in red in Fig. 5.2a, with respect to the 

ultimate shape. The laser trajectory used an overlap of 90%. It progressively ablated the 
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material, eventually leading to the generation of the desired features along the cutting edge of 

the biopsy punch (an example of the code for laser ablation is given in Appendix C). 

Several micro-serration patterns were designed, manufactured, and tested on different BP 

cutting edges. Each pattern had a circular profile (Fig. 5.2) with different arc radii (𝑟𝑐) that 

ranged from 50 µm to 600 µm (Table 5.1). The radius at the serration edges (𝑟𝑠), after laser 

processing, was approximately equal to 15 µm for all micro-serrated BPs, while the radius at the 

cutting edge (𝑟𝑡𝑖𝑝) was not affected by the ablation process (Fig. 5.2).  

The minimal arc radius for the BP serrations (𝑟𝑐) was set to 50 µm. Micro-serrations with a 

serration radius (𝑟𝑐) smaller than 50 µm, does not significantly impact the original geometry of 

the BP’s cutting edge. In fact, the tip radius (𝑟𝑡𝑖𝑝) of the BP cutting edge is equal to 15 µm (Fig. 

4.7) and any serrations with a serration radius (𝑟𝑐) of the same order as the tip radius (𝑟𝑡𝑖𝑝), 

would not lead to any effective change in the cutting edge geometry. The serration configurations 

are presented in Table 5.1. 

 

Table 5.1. Serration configurations. Each configuration is identified by a different micro-
serration radius (rc) (Fig. 5.2). 

 

𝐈𝐃 𝐫𝐜 (μ𝐦) 

𝐶1   50 

𝐶2 150 

𝐶3 250 

𝐶4 400 

𝐶5 600 

 

Following the laser ablation process, the geometry of each BP’s cutting edge was verified by 

using a 3D profilometer (Fig. 5.3). 
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Figure 5.3. Optical image of micro-serrations generated on BP’s cutting tip. The external 
diameter is equal to 2.4 mm, internal diameter to 2 mm, while the arc radius of the BP’s micro-
serrations is equal to 400 µm. 

 

5.2 Fracture Mechanics Approach 

During the insertion of the biopsy punch, the puncture force can be analyzed by studying the 

fracture mechanics related to the BP insertion. According to the J integral method (Ryu et al., 

2011), a crack will propagate inside the tissue when the energy generated by the insertion is 

equal or greater than the energy needed to extend the crack (𝑅), i.e.:  

𝐽𝑒  ≥ 𝑅 (5.1) 

where 𝑅 is defined as the strain energy release rate that represents the energy required to 

propagate the crack. The nonlinear energy release rate (𝐽𝑒) is equal to the derivative with respect 

to the contact area (𝐴𝑐𝑜) of the difference between the strain energy of the tissue (𝑈) and the 

external work applied by the punch (𝑊𝑁) (Anderson, 2005; Atkins et al., 2004): 

𝐽𝑒 =
𝑑 (𝑈 − 𝑊𝑁)

𝑑𝐴𝑐𝑜

 (5.2) 

When tissue fracture occurs at the end of Phase I (Fig. 5.5 b), the punch is stationary and its 

work (𝑊𝑁) during crack propagation is equal to zero, so 𝐽𝑒 accounts only for the strain energy: 
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𝐽𝑒 =
𝑑𝑈

  𝑑𝐴𝑐𝑜

 (5.3) 

In this scenario, it is extremely challenging to calculate 𝑈, because of the complexity of the 

crack geometry. Further, the strain energy can be derived from the stress by adopting the 

constitutive equations of the tissue. According to Mahvash et al. (Mahvash & Dupont, 2009), it 

can be assumed that the pressure (𝑝𝑛) over the contact area (𝐴𝑐𝑜) between the punch and the 

tissue is constant and that the resulting stresses in the soft tissue are proportional to the contact 

pressure. In light of these considerations, it is possible to establish a proportional relationship 

between 𝐽𝑒 and the contact pressure (𝑝𝑛) which also includes a crack intensification factor, 𝐾𝑖 , 

(Atkins & Mai, 1985) and a coefficient, 𝑚, which accounts for the nonlinearity of the material as: 

𝐽𝑒 ∝ 𝐾𝑖𝑝𝑛
𝑚 (5.4) 

Since the contact pressure (𝑝𝑛) is equal to the ratio between the axial force (𝐹𝑉) that pushes 

the BP and the contact area (𝐴), Eq. (5.4) can be rearranged as (Mahvash et al., 2009): 

𝐹𝑉 ∝ √
𝑅

𝐾𝑖

𝑚

 𝐴𝑐𝑜 (5.5) 

According to Eq. (5.5), the axial force at puncture is proportional to the contact area between 

the BP and soft tissue (Mahvash et al., 2009). During insertions performed with micro-serrated 

BPs the contact area (𝐴𝑆𝐸𝑅𝑅) is lower than the contact area (𝐴𝑆𝑇𝐴𝑁𝐷) during insertions performed 

with standard BPs. In fact, micro-serrated edges exert the cutting force over reduced contact 

areas, i.e.: 

A𝑆𝐸𝑅𝑅 < 𝐴𝑆𝑇𝐴𝑁𝐷 (5.6) 

√
𝑅

𝐾𝑖

𝑚

 ASERR < √
𝑅

𝐾𝑖

𝑚

 𝐴𝑆𝑇𝐴𝑁𝐷 (5.7) 
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(a) (b) 

Figure 5.4. 3D geometric model of (a) standard and (b) micro-serrated BP. The contact area at 
the BP tip is highlighted. 

 

The effects of the reduced contact area lead to the decrease of the puncture force during 

insertions with micro-serrated BPs, and to an increase in the localized stresses in the soft tissue 

to be further discussed in Section 5.3. Since this phenomenon is due to the presence of the 3D 

texture (Fig. 5.4) at the micro-scale level, it is difficult to analyze it from an analytical perspective, 

and it will be further investigated in Section 5.4 by adopting 3D FEM simulations. 

 

5.3 Experimental Cutting Forces of Micro-Serrated Biopsy 

Punches 

In this section, the outcomes of experimental insertions will be studied with the purpose of 

investigating the influence of micro-features (Section 5.3.1) on the cutting performance of biopsy 

punches. In addition, the impact of micro-serrations of different sizes on the resulting cutting 

force will be ascertained (Section 5.3.2). 

 

𝐴𝑆𝐸𝑅𝑅 

 

𝐴𝑆𝑇𝐴𝑁𝐷 
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5.3.1 Insertion of Micro-Serrated BPs 

The mosquito’s maxilla represents an optimal model for efficient penetration with a low 

insertion force and efficient penetration (Izumi et al., 2008). Imitating its jagged outer shape can 

potentially lead to significant benefits. Commercial and micro-serrated biopsy punches were 

inserted at an axial speed of 0.25 mm/s, by adopting the same testbed that was introduced in 

Section 2.3.2, (Fig. 5.5a).  

 

 
a) 

 
b) 

Figure 5.5. (a) Testbed for the measurement of cutting forces of biopsy punches and (b) axial 
force behavior for a commercial BP highlighting the different penetration phases. 
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The penetration depth was set to 9 mm, and five cuts were executed for each biopsy punch. 

In this scenario, the biopsy punch cutting force was measured by a 3D piezoelectric 

dynamometer. During the penetration of the punch, different phases can be observed reflecting 

a behavior similar to what has already been established for solid needle insertions (Fig. 5.5b). 

In the first phase, Phase (I), deformation, begins when the needle touches the phantom tissue 

and ends when the first crack initiates. In this phase, the biopsy punch deforms the soft tissue 

without cutting, and the axial force increases until a peak force is reached. This force is defined 

as the puncture force and determines the initial fracture of the soft tissue and the beginning of 

penetration. This study is mainly focused on investigating the effect of micro-serrations on the 

puncture force. In Phase II, the soft tissue is subjected to a temporary relaxation that follows the 

fracture event. This phase, referred to as the relaxation phase, is characterized by a reduction of 

the axial force. During Phase III, the cutting phase, the biopsy punch is advancing into the soft 

tissue while it is steadily cutting it. In this phase, the increase of the force is mostly due to the 

proportional increase of the friction force between the BP surface and the soft tissue. The last 

phase, Phase IV, sees a decrease in the measured force due to the extraction of the punch.  

In this study, insertions with commercial and micro-serrated biopsy punches were 

performed to observe the effectiveness of the technique and highlight the advantages of micro-

serrations (Fig. 5.6). By comparing the force profiles for biopsy punches with and without micro-

serrations, it is evident that the forces at puncture are substantially different. 

Figure 5.6 shows the axial force for a commercial and a micro-serrated BP with a “C4” texture 

(Table 5.1). The presence of micro-serrations on BP’s cutting tip leads to a reduction of the 

puncture force from 1.19 N to 0.75 N.  
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Figure 5.6. Axial force at puncture for a standard biopsy punch BP with and without “C4” micro-
serrations (Table 5.1) at an insertion speed of 0.25 mm/s. 

 

An unpaired t-test, which assumes unequal variances between samples, was performed by 

using the force data measured during commercial and micro-serrated BP insertions. For micro-

serrated BP with a “C4” texture (Fig. 5.7), the axial force (𝜇= 0.87, 𝜎= 0.1) proved to be 22.5% 

lower (p-value= 0.016) than the axial force measured during insertions with commercial BPs (𝜇 

= 1.12, 𝜎 = 0.04). This phenomenon can be explained by the concentration of higher localized 

stresses (Section 5.2) in the contact area between the micro-serrations and soft tissue that 

provokes its earlier fracture. In fact, the application of micro-serrations also leads to a reduction 

of the tissue’s initial displacement (Fig. 5.6) at fracture from 6.6 mm (𝑑𝑆𝑇𝐴𝑁𝐷) to 6.05 mm 

(𝑑𝑆𝐸𝑅𝑅).  
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5.3.2 Texture Depth Effect in Micro-Serrated BP Insertion 

To better understand the influence of micro-serrations, similar experiments were conducted 

using BPs with different texture sizes (Table 5.1). The measured cutting forces were 

approximately between 0.8 N and 1.15 N for all tested punches. Micro-serrations with larger 

texture depths (Fig. 5.7), lead to lower cutting forces and consequently to higher variations in 

the axial force (𝛥𝐹 =
𝐹𝑆𝐸𝑅𝑅−𝐹𝑆𝑇𝐴𝑁𝐷

𝐹𝑆𝐸𝑅𝑅
100%). Unpaired two tailed-tests (significance level, 𝛼, equal 

to 0.05) were run by comparing the forces measured during insertions of commercial and micro-

serrated BPs (Table 5.2). The results show that micro-serrated biopsy punches lead to a 

reduction of the BP axial force between 7 % and 30%.  

The fact that deeper textures lead to lower cutting forces is mainly due to the manner in 

which micro-serrations engage with soft tissue during BP penetration. For instance, insertions 

performed with BPs with a texture radius of 400 μm present a smaller contact area between the 

BP and tissue than insertions performed with BPs with a texture radius of 150 μm (Fig. 5.7).  

 

 
Figure 5.7. Mean value and error bar of puncture force for standard and textured BPs with 
different micro-serration radius, rc (Fig. 5.2). 
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The presence of larger micro-serrations on the BP likely determines higher localized stresses 

in soft tissue, since the contact area is smaller. This will also be observed in the following 

computational study (Section 5.4). 

 

Table 5.2. The mean value (𝜇), standard deviation (𝜎), p-value and force variation value 
presented for each serration configuration. 
 

𝐈𝐃 𝛍 𝛔 𝐩 − 𝐯𝐚𝐥𝐮𝐞 𝚫𝐅 (%) 

C1 1.14 0.030 0.004  2.03 

C2 1.04 0.017 0.016 −7.24 

C3 0.92 0.064 0.001 −17.59 

C4 0.84 0.009 0.001 −22.55 

C5 0.79 0.027 3.14E − 06 −29.90 

 

The reduction in the cutting force is not consistent (𝛥𝐹 = 2%, Fig. 5.7) for micro-serrated 

punches with a texture radius of 50 µm. This is due to the fact that this texture radius is 

comparable to the tip radius at BP’s cutting edge (𝑟𝑡𝑖𝑝 = 15 µm) and it does not dramatically alter 

the geometry of the cutting edge. 

 

5.4 Computational Study of BP Insertion 

In this section, computational studies related to the insertion of micro-serrated biopsy 

punches will be performed. In Section 5.4.1, a comparison between a standard and a micro-

serrated BP will be presented by adopting 3D FEM simulations aimed at studying the stresses 

induced in the contact area by the micro-serrated profiles. In Section 5.4.2, the impact of the 

micro-serration radius on the cutting performance of BPs will be evaluated through 2D FEM 

simulations. This choice is dictated by the high computational cost of 3D FEM simulations for 
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modeling serrated cutting edges and the possibility of adopting a plane stress condition for this 

case. 

 

5.4.1 Computational Study of Micro-Serrated BPs 

To provide additional insights into the efficacy of micro-serrations, a FEM model was 

formulated (Fig. 5.8) in ABAQUS, while the mesh for the biopsy punch and the soft tissue was 

realized with HyperMesh (an example of the input file is given in Appendix B4). In this 

computational study, two different cases were analyzed where the same tissue block was 

indented by a commercial BP in the first scenario and by a micro-serrated BP (ii), with a texture 

depth of 600 µm in the second scenario. 

The BP was described as a discrete rigid body. Its geometry was set to be equal to the 

geometry of the BPs adopted during the experiments (Fig. 4.7). A translational motion parallel 

to the thickness of the tissue was applied to the BP, and it was constrained with respect to the 

remaining translational and rotational motions. The mesh of the BPs consisted of three 

dimensional triangular (R3D3) and quadrilateral (R3D4) elements. Specifically, the finite 

element mesh of the commercial BP mesh was built with 37,255 nodes, 37,105 R3D4 elements, 

and 24 R3D3 elements. More elements were used to mesh the micro-serrated BP to have a better 

definition of the serrated edges. The mesh of the micro-serrated BP was built with 148,637 

nodes, 146,689 R3D4 elements, and 3,896 R3D3 elements. 

The soft tissue block was considered to be a deformable body, and it was represented by a 

cylinder with an external radius of 1.5 mm and an internal radius of 0.5 mm and a thickness of 

2.5 mm. Since the model is symmetric with respect to the 𝑥𝑧- and 𝑦𝑧-planes, a quarter of the 

cylinder with symmetric boundary conditions was used in the simulations (Fig. 5.8) as the soft 
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tissue. The base of the tissue was completely constrained, while the external cylindrical surface 

was assumed to be free. The mesh was built by adopting three-dimensional eight-node 

hexahedral elements (C3D8) and three-dimensional six-node wedge elements (C3D6).  

 

 
 

a) b) 

 
c) d) 

Figure 5.8. 3D Finite element model for insertion with (a) standard and (b) and micro-serrated. 
The mesh is refined in the proximity of the micro-serrations (c, d). 
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The finite element mesh consisted of 2,499,690 nodes, 2,371,968 C3D8 elements and 78,300 

C3D6 elements. The soft tissue mesh consisted of 90 elements along the radius, 29 elements 

through the thickness of the block, and 5 to 80 elements around the circular edge. This 

distribution of the elements was necessary to define the stress gradient in the tissue since the 

cannula radius at the tip is equal to 15 µm. The resulting mesh was characterized by 1 µm 

elements in the tissue-cutting edge interaction zone (Fig. 5.8d). The tissue was modeled by 

adopting hyperelastic constitutive models (Arruda-Boyce model), where the material constants 

c1, λm, and D1 are respectively equal to 0.0238, 2.024, and 0.705 (𝑆/𝑃 ratio equal to 0.25, 

Appendix A). 

During the simulation, the cutting edge of the BP was pushed towards the tissue. The stresses 

generated in the contact zone during cutting with the commercial BP and with the micro-

serrated BP were compared. All the model parameters were kept identical in the two 

simulations, including the mesh, boundary conditions, and constitutive model of the soft tissue. 

Since soft solids can fail under critical tensile stresses (Reyssat et al., 2012), the 1st principal 

stresses in the tissue contact zone were investigated. 

 

 a) 
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b) 

Figure 5.9. Contour plot of maximum principal stress for the insertion of (a) micro-serrated and 
(b) standard BP. In the zoomed area, the BP cutting edge is hidden in order to show the stress 
distribution in the contact area. 

 

Figure 5.9 shows the contour plot of the maximum principal stress when commercial BP 

reaches a penetration depth of 500 µm. The stresses are highly localized in the cutting edge-

tissue contact zone. The maximum tensile stress is found to be distributed at the external side of 

the cutting edge-tissue contact zone, and it is approximately equal to 5 MPa (Fig. 5.9a). The 

tensile stress results from the stretching of the tissue surface, while the internal side of the 

cutting edge-tissue contact zone is characterized by negative values of the principal stress. For 

insertions performed with micro-serrated BPs (Fig. 5.9a), the simulations show that for the same 

BP penetration depth (500 µm), the stresses are exclusively localized at the corner of the micro-

serrations, and they are approximately one order of magnitude higher than the maximum 

principal stresses recorded for indentations with commercial BPs. 

The presence of micro-features along the tip of the BP cannula leads to a rapid rise of the 

stresses in localized areas, which favors the initiation of fracture and the consequent cutting of 



154 
 

the soft tissue. Figure 5.10 shows the comparison between the experimental insertion force 

profiles and the ones computed by finite element simulations for commercial and serrated BPs.  

 

 
Figure 5.10. Comparison of axial forces obtained from the experimental measurements and 
from the finite element simulation for standard and serrated BPs. 

 

The behavior of the axial force is similar to the one observed in the experiments, although 

the force values are slightly lower due to several approximations in the finite element model. For 

instance, the needle insertion speed was increased by 4 times, and the tissue density was 

increased by 200 times, in order to increase the time step of the simulation. Also, the BP 

penetration was set to be equal to 600 µm in the effort to limit the computational cost of the 

simulation. 

Despite the fact that these simulations do not analyze the crack initiation in soft tissue, they 

provide a framework to understand the reasons why micro-serrations on devices are more 

effective in soft tissue cutting. The serrated profile causes an earlier rise in the contact forces, 
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which then leads to an earlier fracture of the tissue, and lower cutting forces in comparison to 

plain edge profiles. 

 

5.4.2 Computational Study of Different Micro-Serrations 

To further investigate the impact of the micro-serration size on cutting efficiency, a finite 

element analysis was performed (Fig. 5.11) with ABAQUS standard (an example of the input file 

is given in Appendix B5). Two scenarios were considered where the same tissue block was 

indented by micro-serrated BPs with a texture radius of 50 µm in the first scenario, and by a 

texture radius of 400 µm in the second scenario. A 2D finite element model, rather than a 3D one, 

was built for each scenario. In fact, in the first model, the BP is characterized by a fine micro-

texture radius (50 µm), that would require a high computational cost if implemented in a FEM 

3D model.  

The micro-serrated biopsy punch was defined as a rigid body. The BP geometry was 

approximated by a rectangular blade 2.75 mm wide and 2 mm thick. In the simulations, the BP 

indented the tissue for 0.5 mm, and it was constrained in the other directions.  

The size of the tissue slab cross-section is equal to 10 mm in width and 4 mm in thickness. A 

plane stress assumption was made in the model to describe micron-scale deformations without 

excessively impacting the computational costs of the simulation. The base of the tissue was 

completely constrained, while the other sides were set free of loads. The mesh of the tissue 

consisted of 94,996 linear quadrilateral elements of type CPS4R. The minimum size of the 

elements is equal to 10 µm in the cutting zone. As in the previous FEM simulations, the tissue 

was modeled by the Arruda-Boyce model.  
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Figure 5.11. 2D Finite element model of biopsy punch insertion. The mesh and geometrical 
dimensions of the model are highlighted. 

 

One simulation for each micro-serrated BP insertion was performed. By comparing the 

contour plots related to the maximum penetration depth reached by the BP (Fig. 5.12), it can be 

noticed that the contact area is smaller for micro-serrated BPs with a larger textured depth (𝑟𝑐 

= 400 µm), as it was described in Section 5.2. This leads to higher localized stresses in soft tissue. 

For a cutting depth of 0.5mm, a BP with 400 µm serrations induced maximum principal stress 

(in soft tissue) that was two times higher than the one induced by a BP with 50 µm serrations. 

 

 
a) 
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b) 

Figure 5.12. Contour plot of the maximum principal stress related to the insertion of a biopsy 
punch with a micro-serration radius of (a) 50 µm and (b) 600 µm. 

 

Even though the values of the maximum principal stress (Fig. 5.12) are much lower than the 

values found during 3D simulations (Section 5.4.1), they explain how serrations with different 

sizes have a different impact on soft tissue cutting. Micro-serrations with a larger texture depth 

lead to an earlier rise of tensile stresses, causing its earlier fracture and a decrease in the cutting 

force, as was indicated in the experimental results (Fig. 5.6).  

 

 Figure 5.13. Comparison of axial forces obtained from the 2D FEM simulations related to 
insertions performed with a standard biopsy punch and with biopsy punches, characterized by 
micro-serration radii ranging from 50 µm to 600 µm. 
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5.5 Conclusions on Micro-Serrated Biopsy Punch Insertion 

In this chapter, the effects of serrated biopsy punches on soft tissue cutting were investigated. 

A setup for laser ablation of BP cutting edges was implemented, and micro-features were 

manufactured on their cutting edges. Insertion tests were performed with the aim to investigate 

the influence of BP micro-serrations on the cutting force. 3D finite element simulations were 

performed regarding the deformation of hyperelastic soft tissue undergoing large deformations. 

This computational study was able to capture the micro- and macro-scale aspects of the cutting 

phenomena before the fracture of the hyperelastic soft tissue.  

The results show that micro-serrations on the cutting tip of the BP cannula, lead to significant 

reductions of the cutting forces and potentially to less pain during soft tissue cutting. The 2D 

finite element simulations provide insights related to the comparison between the performances 

of BPs, characterized by micro-serrations of different sizes. 

 In the future, additional computational studies related to micro-scale modeling and soft 

tissue cutting should be performed. To this end, it is crucial to develop FEM models to predict 

the cracking of the tissue and the evolution of the insertion forces over a wider range of 

displacements. The rise of stresses in localized tissue areas, due to the presence of BP micro-

serrations, should be further investigated to analyze possible implications in terms of tissue 

damage and consequences on surface integrity. 

The manufacturing of micro-serrations on BPs with different geometries and dimensions 

should be considered. According to this study, the presence of micro-serrations increases the BP 

cutting efficiency but may also make BP’s cutting edge more fragile and prone to breakage. 

Therefore in the future, an optimum balance should be identified to obtain efficient and resilient 

micro-serration geometries.  
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6 Conclusions and Future Work 

 

6.1 Conclusions 

Hollow medical needles are frequently used in minimally invasive procedures, mainly aimed 

at the extraction of tissue, the delivery of medical fluids for common operations like regional 

anesthesia, and special treatments such as skin biopsy, breast biopsy, and bone marrow biopsy. 

Although the above medical procedures have been widely practiced, the problems related to the 

optimal cutting of soft tissue have not been completely addressed. In this research, the focus was 

placed on various metrics related to the cutting performance of hollow needles. The work 

presented in this thesis aimed to enhance the fundamental understanding of tissue cutting by 

investigating: (i) the geometry, and (ii) the cutting motions of medical needles. The main 

outcomes of this dissertation can be summarized as: 

• An analytical and experimental study related to the impact of rotational motions during core 

biopsy procedures was performed. Needles with low included angles and high inclination 

angles lead to lower cutting forces, as suggested by the analytical models. Two- and three-

plane bevel needles with an included angle of 15°, or lower, represent the optimal tip 

geometries for soft tissue cutting. The analysis of the cutting motions at different slice/push 

ratios shows that the application of rotational motion leads to (i) consistent decrease of the 

axial fracture forces, up to 80%, especially for a slice/push ratio that is less than 2, and (ii) a 

consistent increase of the tangential cutting forces after fracture is initiated. For this reason, 

it is recommended to adopt a slice/push ratio of at least 1 before rupture of the soft tissue 

occurs and of no more than 1.5, once the needle is penetrating. Moreover, the application of 
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rotational motions is more critical for: (i) axial speeds ranging from 0.5 to 2 mm/s, which are 

the most common in a clinical environment, and for (ii) soft materials characterized by 

Young`s modulus equal or higher than 13 kPa.  

• Core biopsy needles characterized by a three-dimensional cutting edge were conceived and 

demonstrated by developing a helical geometry. The helical geometry was applied to a 14-

gauge cannula, which is usually adopted to perform breast biopsies. The mathematical 

models were resolved to compute the main cutting angles and the fracture forces related to 

helical needles. The proposed methodologies can be applied to virtually any needle 

geometry. Furthermore, a helical geometry was manufactured and tested on phantom tissue 

for translational and rotational insertions. The measurement of the cutting forces 

demonstrates that the application of the helical geometry leads to a 20% decrease of the axial 

and translational forces. Moreover, cutting tests performed at different 

rotational/translational ratios have shown a reduction of the perpendicular and tangential 

fracture forces for ratio larger than 1.5. The experimental results were mostly aligned with 

the analytical estimates of the fracture forces obtained from the formulated model for the 

helical geometry. Finally, a physics-informed Gaussian process metamodel was adopted to 

statistically investigate the sensitivity of the needle’s cutting length and of its main cutting 

angles to the helix angle and to the rotation angle of the cannula. The results show that it is 

possible to predict the main helical needle cutting angles for any combination of the input 

angles, and therefore optimize the helical geometry by formulating a proper objective 

function. 

• An experimental and computational study related to the characterization of phantom tissue 

was performed. The fundamental objective was to provide an experimental method to 
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determine the mechanical properties of PVC soft tissue, which can be adopted to predict its 

deformation. Uniaxial tests were performed on a universal material testing machine, and a 

3D digital image correlation (DIC) system was used to detect the strain on the tissue 

specimen. The material constants for several hyperelastic models were determined. Two 

scenarios were studied in which: (i) the cannula is pushed towards the tissue without the 

addition of any rotation, and (ii) the cannula is rotated while pushed toward the tissue. The 

results show that analytical models can predict the overall behavior of cutting forces, while 

FEM studies can provide more accurate results. To this end: (i) 2D axisymmetric finite 

element models were developed to predict the needle insertion force when the cannula is 

solely pushed towards the tissue, and (ii) 3D FEM models were developed to efficiently 

simulate the rotation of the cannula while it is moving towards the tissue. Comparisons 

between experimental data and FEM simulations show good correspondence and prove the 

accuracy of the characterization process. Moreover, the computational models confirmed 

that the maximum principal stress in the cutting area assumes higher values when a slicing 

motion is imposed on the cannula. 

 

• A setup for laser ablation of BP cutting edges was implemented, and micro-features were 

manufactured on their cutting edges. Insertion tests were performed with the aim to 

investigate the influence of BP micro-serrations on the cutting force. 3D finite element 

simulations have been performed regarding the deformation of hyperelastic soft tissue 

undergoing large deformations. The results show that micro-serrations on the cutting tip of 

the BP cannula, lead to significant reductions of the cutting forces and potentially to less pain 

during soft tissue cutting. The 2D finite element simulations provide insights related to the 
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comparison between the performances of BPs, characterized by micro-serrations of different 

sizes. 

 

6.2 Future Work 

The work presented in this thesis has shown evidence that the application of rotational 

cutting motions and novel 3D cutting edge geometries have the potential to affect the 

performances of core-biopsy needles positively. Additional investigations can be performed by: 

• Executing cutting tests on heterogeneous anisotropic phantom tissues, which are aimed to 

model a specific part of the human body, such as the skin or bone marrow, depending on the 

biopsy procedure under investigation. In fact, biological tissue is characterized by a fibrous 

structure, which varies from organ to organ, and can be artificially reproduced to obtain a 

better assessment of the needle geometry under study; 

• Executing cutting tests on biological tissues: first on animal tissue and, during later stages, 

on patients, by fostering the collaboration with medical schools. In fact, some biopsy 

procedures, such as breast biopsy, can be performed with semi-automated devices, (e.g., 

Mammotome), which can be equipped with force sensors to test different needle geometries 

in real clinical settings; 

• Developing alternative 3D shapes for the needle’s cutting edge and further optimizing the 

helical geometry in order to lower the cutting forces. Further, the development of each 3D 

geometry can be tailored to the tissue that will be targeted by the procedure (breast tissue, 

skin tissue) and to the specific characteristics of the patients, such as age or clinical 

conditions; 
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• Developing additional methods for the manufacturing of 3D needle geometries. Additional 

manufacturing methods can be considered to manufacture novel 3D geometries including 

Laser-Induced Plasma Machining (LIPMM) and freeform grinding methods, which can 

generate the desired geometry more efficiently; 

• Formulating computational models which: (i) consider the strain rate sensitivity of soft 

materials, (ii) considering the process of crack initiation in soft tissue, especially when slicing 

motions are applied. The 3D simulation of the fracture process in soft materials is largely 

unexplored and can bring new insights that could lead to the optimization of the cutting 

process; 

• Optimization of micro-serration geometry. Alternative micro-serration designs, 

characterized by different geometries and dimensions, can be considered in future studies. 

Further, the presence of micro-serrations increases the biopsy punch cutting efficiency but 

may also make the biopsy punch’s cutting edge more fragile and prone to breakage. 

Therefore in the future, an optimum balance should be identified to obtain efficient and 

resilient micro-serration geometries.  
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Appendix A: Soft Tissue PVC Parameters 

 

A1. S/P ratio: 0.25 

Table A1. Material constants and fitting coefficients for phantom tissue with an 𝑆/𝑃 ratio 
equal to 0.25. 

 

Model Material Constants R2 RMSE 

𝐴𝑟𝑟𝑢𝑑𝑎 − 𝐵𝑜𝑦𝑐𝑒 𝜇 = 0.238     𝜆 = 2.024 0.9776 0.0206 

𝑂𝑔𝑑𝑒𝑛 
𝜇1 = −0.0136  𝛼1 = 4.538 
𝜇2 =  0.0143     𝛼2 = 4.658 
𝜇3 = 0.00053     𝛼3 = −5.94 

0.9647 0.0206 

 

A2. S/P ratio: 0.5 

Table A2. Material constants and fitting coefficients for phantom tissue with an 𝑆/𝑃 ratio equal 
to 0.5. 
 

Model Material Constants R2 RMSE 

𝐴𝑟𝑟𝑢𝑑𝑎 − 𝐵𝑜𝑦𝑐𝑒 𝜇 = 0.0058   𝜆 = 1.35 0.984 0.0058 

𝑂𝑔𝑑𝑒𝑛 
𝜇1 = −0.175  𝛼1 = −1.58 
𝜇2 =  0.0113    𝛼2 = 3.798 
𝜇3 = 0165     𝛼3 = −1.74 

0.998 0.0018 

 

A3. S/P ratio: 1 

Table A3. Material constants and fitting coefficients for phantom tissue with an 𝑆/𝑃 ratio equal 
to 1. 
 

Model Material Constants R2 RMSE 

𝐴𝑟𝑟𝑢𝑑𝑎 − 𝐵𝑜𝑦𝑐𝑒 𝜇 = 0.0008   𝜆 = 1.198 0.834 0.018 

𝑂𝑔𝑑𝑒𝑛 
𝜇1 = −0.0255  𝛼1 = −3.91 
𝜇2 =  0.0088     𝛼2 = 4.74 
𝜇3 = 0.0249     𝛼3 = −4.09 

0.997 0.002 
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Appendix B: Abaqus Input Files 

 

B1. 3D FEM Model 
 

*Heading 
** Job name: jt3av50 Model name: 3D FEM Model 
** Generated by: Abaqus/CAE 6.14-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=BP_mesh2 
*Node 
**37255 lines 
*Element, type=R3D4 
**37105 lines 
*Element, type=R3D3 
**24 lines 
*Node 
  37256,     0.,           0.,           6. 
*Nset, nset=BP_mesh2-RefPt_, internal 
37256,  
*Nset, nset=Set-1 
 37256, 
*Element, type=MASS, elset=Set-1_Inertia-1_ 
37130, 37256 
*Mass, elset=Set-1_Inertia-1_ 
0.5e-08,  
*End Part 
**   
*Part, name=tis33 
*Node 
**920345 lines 
*Element, type=C3D8R 
**882900 lines 
*Element, type=C3D6 
**5400 lines 
*Elset, elset=Set-1, generate 
   7367,  895666,       1 
** Region: (Section-3:Set-1), (Controls:EC-1) 
*Elset, elset=_I1, internal 
**55182 lines 
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** Section: Section-3 
*Solid Section, elset=_I1, controls=EC-1, material=Tissue 
, 
** Region: (Section-3:Set-1), (Controls:Default) 
*Elset, elset=_I2, internal 
**338 lines 
** Section: Section-3 
*Solid Section, elset=_I2, material=Tissue 
, 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=BP_mesh2-1, part=BP_mesh2 
          0.,           0.,        15.85 
          0.,           0.,        15.85,           1.,           0.,        15.85,         180. 
*End Instance 
**   
*Instance, name=tis33-1, part=tis33 
*End Instance 
**   
*Nset, nset=Set-5, instance=BP_mesh2-1, generate 
     1,  37255,      1 
*Nset, nset=Set-6, instance=BP_mesh2-1, generate 
     1,  37255,      1 
*Nset, nset=Set-7, instance=BP_mesh2-1 
 37256, 
*Nset, nset=Set-9, instance=BP_mesh2-1 
 37256, 
*Nset, nset=Set-10, instance=tis33-1 
**1633 lines 
*Nset, nset=Set-11, instance=tis33-1 
**1633 lines 
*Nset, nset=Set-12, instance=tis33-1 
**381 lines 
*Elset, elset=TissueDef, instance=tis33-1, generate 
   7367,  895666,       1 
*Elset, elset=b_Set-7, instance=BP_mesh2-1, generate 
     1,  37129,      1 
*Elset, elset=b_Set-10, instance=BP_mesh2-1, generate 
     1,  37129,      1 
*Nset, nset=_PickedSet49, internal, instance=BP_mesh2-1 
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 37256, 
*Elset, elset=_Surf-2_S1, internal, instance=tis33-1, generate 
   7367,  895517,     150 
*Surface, type=ELEMENT, name=Surf-2 
_Surf-2_S1, S1 
*Elset, elset=_m_Surf-5_SPOS, internal, instance=BP_mesh2-1, generate 
     1,  37129,      1 
*Surface, type=ELEMENT, name=m_Surf-5 
_m_Surf-5_SPOS, SPOS 
** Constraint: Constraint-1 
*Rigid Body, ref node=_PickedSet49, elset=b_Set-10 
*End Assembly 
**  
** ELEMENT CONTROLS 
**  
*Section Controls, name=EC-1, DISTORTION CONTROL=YES, hourglass=ENHANCED 
1., 1., 1. 
*Amplitude, name=Amp-1 
             0.,              0.,           0.108,          6.5 
**  
** MATERIALS 
**  
*Material, name=Tissue 
*Density 
20e-08, 
*Hyperelastic, arruda-boyce 
 0.00418, 1.15, 2.14 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=Tissue_contact 
*Friction 
 0.28, 
*Surface Behavior, pressure-overclosure=HARD 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BP_buondary Type: Displacement/Rotation 
*Boundary 
Set-9, 1, 1 
Set-9, 2, 2 
Set-9, 4, 4 
Set-9, 5, 5 
Set-9, 6, 6 
** Name: bottomfixed Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
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Set-12, ENCASTRE 
** Name: xsy Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Set-10, XSYMM 
** Name: ysy Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Set-11, YSYMM 
**  
** INTERACTIONS 
**  
** Interaction: Int-1 
*Contact, op=NEW 
*Contact Inclusions 
m_Surf-5 , Surf-2 
*Contact Property Assignment 
 ,  , Tissue_contact 
*Contact Formulation, type=PURE MASTER-SLAVE 
m_Surf-5 , Surf-2 , MASTER 
** ---------------------------------------------------------------- 
**  
** STEP: Step-1 
**  
*Step, name=Step-1, nlgeom=YES 
*Dynamic, Explicit 
, 0.108 
*Bulk Viscosity 
0.06, 1.2 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BP_motion Type: Displacement/Rotation 
*Boundary, amplitude=Amp-1 
Set-7, 3, 3, -1. 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, number interval=1, time marks=NO 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, number interval=50 
*Node Output 
A, RF, U, V 
*Element Output, directions=YES 
EVF, LE, PE, PEEQ, PEEQVAVG, PEVAVG, S, SVAVG 
*Contact Output 
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CFORCE, CSTRESS 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, time interval=0.0021 
*Element Output, elset=TissueDef, variable=PRESELECT 
*Integrated Output, elset=TissueDef, variable=PRESELECT 
*Energy Output, elset=TissueDef, variable=PRESELECT 
*Incrementation Output, variable=PRESELECT 
*End Step 
 
 

B2. 2D FEM Model 
 
*Heading 
** Job name: jaxi4 Model name: 2D FEM Model 
** Generated by: Abaqus/CAE 6.14-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=BP 
*End Part 
**   
*Part, name=Tissue 
*Node 
**54540 lines 
*Element, type=CAX4RH 
**54058 lines 
*Nset, nset=Set-1, generate 
     1,  54540,      1 
*Elset, elset=Set-1, generate 
     1,  54058,      1 
** Section: Section-1 
*Solid Section, elset=Set-1, material=Tissue 
, 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=BP-1, part=BP 
          0.,          0.5,           0. 
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*Node 
      1,           0.,          10.,           0. 
*Nset, nset=BP-1-RefPt_, internal 
1,  
*Nset, nset=Set-1 
 1, 
*Surface, type=SEGMENTS, name=m_Surf-1 
*Rigid Body, ref node=BP-1-RefPt_, analytical surface=m_Surf-1 
*Element, type=MASS, elset=Set-1_Inertia-1_ 
1, 1 
*Mass, elset=Set-1_Inertia-1_ 
5e-09,  
*End Instance 
**   
*Instance, name=Part-2-1, part=Tissue 
          0.,          -7.,           0. 
*End Instance 
**   
*Nset, nset=Set-1, instance=Part-2-1 
**19 lines 
*Elset, elset=Set-1, instance=Part-2-1 
**19 lines 
*Nset, nset=Set-2, instance=BP-1 
 1, 
*Nset, nset=Set-3, instance=Part-2-1 
**12 lines 
*Elset, elset=Set-3, instance=Part-2-1, generate 
 22913,  23091,      1 
*Nset, nset=Set-4, instance=Part-2-1 
**19 lines 
*Elset, elset=Set-4, instance=Part-2-1 
**19 lines 
*Nset, nset=Set-8, instance=BP-1 
 1, 
*Nset, nset=Tissue, instance=Part-2-1, generate 
     1,  54540,      1 
*Elset, elset=Tissue, instance=Part-2-1, generate 
     1,  54058,      1 
*Nset, nset=_PickedSet19, internal, instance=Part-2-1, generate 
     1,  54540,      1 
*Elset, elset=_PickedSet19, internal, instance=Part-2-1, generate 
     1,  54058,      1 
*Nset, nset=_PickedSet20, internal, instance=Part-2-1, generate 
     1,  54540,      1 
*Elset, elset=_PickedSet20, internal, instance=Part-2-1, generate 
     1,  54058,      1 
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*Elset, elset=_s_Surf-1_S2, internal, instance=Part-2-1, generate 
   179,  23091,    179 
*Elset, elset=_s_Surf-1_S4, internal, instance=Part-2-1, generate 
 23092,  53880,    179 
*Surface, type=ELEMENT, name=s_Surf-1 
_s_Surf-1_S2, S2 
_s_Surf-1_S4, S4 
*End Assembly 
*Amplitude, name=Amp-1 
             0.,              0.,              1.,              5.5 
**  
** MATERIALS 
**  
*Material, name=Tissue 
*Density 
 1e-06, 
*Hyperelastic, arruda-boyce 
 0.00418,  1.15, 10.7 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=IntProp-1 
1., 
*Friction, slip tolerance=0.005 
 0.28, 
*Surface Behavior, pressure-overclosure=HARD 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Set-1, ENCASTRE 
** Name: BC-3 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Set-3, XSYMM 
**  
** INTERACTIONS 
**  
** Interaction: Int-1 
*Contact Pair, interaction=IntProp-1, type=SURFACE TO SURFACE 
s_Surf-1, BP-1.m_Surf-1 
** ---------------------------------------------------------------- 
**  
** STEP: Step-1 
**  
*Step, name=Step-1, nlgeom=YES, inc=1000000 
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*Static, stabilize, allsdtol=0.05, continue=YES 
0.001, 1., 1e-09, 1. 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BC-4 Type: Displacement/Rotation 
*Boundary, amplitude=Amp-1 
Set-8, 1, 1 
Set-8, 2, 2, -1. 
Set-8, 6, 6 
*Adaptive Mesh Controls, name=Ada-1 
1., 0. 
**  
** CONTROLS 
**  
*Controls, reset 
*Controls, analysis=discontinuous 
*Controls, parameters=field, field=displacement 
0.01, 0.1, , , , , ,  
*Controls, parameters=field, field=hydrostatic fluid pressure 
0.01, 0.1, , , , , ,  
*Controls, parameters=field, field=rotation 
0.01, 0.1, , , , , ,  
*Controls, parameters=field, field=electrical potential 
0.01, 0.1, , , , , ,  
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT, number interval=50, time marks=NO 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT, number interval=50, time marks=NO 
*End Step 
 
 

B3. 3D FEM Model: Insertion with Slicing Motion 
 

*Heading 
** Job name: jpb3 Model name: 3D FEM Slice Model 
** Generated by: Abaqus/CAE 6.14-2 
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*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=BP_mesh2 
*Node 
**37255 lines 
*Element, type=R3D4 
**37105 lines 
*Element, type=R3D3 
**24 lines 
*Node 
  37256,           0.,           0.,           6. 
*Nset, nset=BP_mesh2-RefPt_, internal 
37256,  
*Nset, nset=Set-1 
 37256, 
*End Part 
**   
*Part, name=Tisspbc 
*Node 
**53001 lines 
*Element, type=C3D6H 
**150 lines 
*Element, type=C3D8RH 
**26100 lines 
*Elset, elset=Set-1 
**1641 lines 
** Region: (Section-3:Set-1), (Controls:Default) 
*Elset, elset=_I1, internal, generate 
   1,  150,    1 
** Section: Section-3 
*Solid Section, elset=_I1, material=Tissue 
, 
** Region: (Section-3:Set-1), (Controls:EC-1) 
*Elset, elset=_I2, internal, generate 
  1001,  27100,      1 
** Section: Section-3 
*Solid Section, elset=_I2, controls=EC-1, material=Tissue 
, 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
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**   
*Instance, name=BP_mesh2-1, part=BP_mesh2 
          0.,           0.,         16.3 
          0.,           0.,         16.3,           1.,           0.,         16.3,         180. 
*End Instance 
**   
*Instance, name=Tisspbc-1, part=Tisspbc 
*End Instance 
**   
*Elset, elset=b_Set-3, instance=BP_mesh2-1, generate 
     1,  37129,      1 
*Nset, nset=Set-1, instance=Tisspbc-1 
1, 
*Nset, nset=Set-2, instance=Tisspbc-1 
2, 
**Repeat until 52850 
*Nset, nset=_PickedSet95, internal, instance=Tisspbc-1 
**22 lines 
*Nset, nset=_PickedSet98, internal, instance=BP_mesh2-1 
 37256, 
*Nset, nset=_PickedSet104, internal, instance=BP_mesh2-1 
 37256, 
*Elset, elset=_Surf-2_S1, internal, instance=Tisspbc-1 
**11 lines 
*Surface, type=ELEMENT, name=Surf-2 
_Surf-2_S1, S1 
*Elset, elset=_Surf-5bp_SPOS, internal, instance=BP_mesh2-1, generate 
     1,  37129,      1 
*Surface, type=ELEMENT, name=Surf-5bp 
_Surf-5bp_SPOS, SPOS 
*Elset, elset=_m_Surf-3_SPOS, internal, instance=BP_mesh2-1, generate 
     1,  37129,      1 
*Surface, type=ELEMENT, name=m_Surf-3 
_m_Surf-3_SPOS, SPOS 
*Elset, elset=_s_Surf-3_S1, internal, instance=Tisspbc-1 
 
*Surface, type=ELEMENT, name=s_Surf-3 
_s_Surf-3_S1, S1 
*Nset, nset="_T-Datum csys-2", internal 
**52851 lines 
*Transform, nset="_T-Datum csys-2", type=C 
   0.,   0.,     0.,    0.,   0.,    1 
**Constraint: Eqn-1 
*Equation 
2 
Set-1, 1, 1. 
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Set-2, 1, -1. 
***Similar conditions until Eqn-158549 
** Constraint: Constraint-1 
*Rigid Body, ref node=_PickedSet104, elset=b_Set-3 
*End Assembly 
**  
** ELEMENT CONTROLS 
**  
*Section Controls, name=EC-1, hourglass=ENHANCED 
1., 1., 1. 
*Amplitude, name=Amp-1 
             0.,              0.,              1.,             6.5 
**  
** MATERIALS 
**  
*Material, name=Tissue 
*Hyperelastic, arruda-boyce 
 0.00418,  1.15, 10.7 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=Tissue_contact 
1., 
*Friction, slip tolerance=0.005 
 0.40, 
*Surface Behavior, pressure-overclosure=HARD 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Tisbottom Type: Displacement/Rotation 
*Boundary 
_PickedSet95, 1, 1 
_PickedSet95, 2, 2 
_PickedSet95, 3, 3 
_PickedSet95, 4, 4 
_PickedSet95, 5, 5 
_PickedSet95, 6, 6 
**  
** INTERACTIONS 
**  
** Interaction: Int-1 
*Contact Pair, interaction=Tissue_contact, type=SURFACE TO SURFACE 
s_Surf-3, m_Surf-3 
** ---------------------------------------------------------------- 
**  
** STEP: Step-1 
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**  
*Step, name=Step-1, nlgeom=YES, inc=1000000, convert sdi=YES 
*Static, stabilize, allsdtol=0.05, continue=YES 
0.001, 1., 1e-09, 1. 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BPmotion Type: Displacement/Rotation 
*Boundary, amplitude=Amp-1 
_PickedSet98, 1, 1 
_PickedSet98, 2, 2 
_PickedSet98, 3, 3, -1. 
_PickedSet98, 4, 4 
_PickedSet98, 5, 5 
_PickedSet98, 6, 6, 0.5 
**  
** CONTROLS 
**  
*Controls, reset 
*Controls, analysis=discontinuous 
*Controls, parameters=field, field=displacement 
0.01, 0.1, , , , , ,  
*Controls, parameters=field, field=hydrostatic fluid pressure 
0.01, 0.1, , , , , ,  
*Controls, parameters=field, field=rotation 
0.01, 0.1, , , , , ,  
*Controls, parameters=field, field=electrical potential 
0.01, 0.1, , , , , ,  
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT, number interval=100, time marks=NO 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT, number interval=100, time marks=NO 
*End Step 
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B4. 3D FEM Model: Micro-Serrated Biopsy Punches 
 
*Heading 
** Job name: jms325 Model name: 3D Microserration Model 
** Generated by: Abaqus/CAE 6.14-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=BP_serr_d600um_step 
*Node 
**148637 lines 
*Element, type=R3D4 
**146689 lines 
*Element, type=R3D3 
**3896 lines 
*Node 
 148638,           0.,  -7.26360068e-17,   5.80000019 
*Nset, nset=BP_serr_d600um_step-RefPt_, internal 
148638,  
*Nset, nset=Set-1 
 148638, 
*Element, type=MASS, elset=Set-1_Inertia-1_ 
150586, 148638 
*Mass, elset=Set-1_Inertia-1_ 
5e-09,  
*End Part 
**   
*Part, name=Tissue 
*Node 
**2499690 lines 
*Element, type=C3D8R 
**2371968 lines 
*Element, type=C3D6 
**78300 lines 
*Elset, elset=Set-1 
**153142 lines 
** Region: (Section-tissue400:Set-1), (Controls:EC-1) 
*Elset, elset=_I1, internal 
**148248 lines 
** Section: Section-tissue400 
*Solid Section, elset=_I1, controls=EC-1, material=Tissue 
, 
** Region: (Section-tissue400:Set-1), (Controls:Default) 
*Elset, elset=_I2, internal 
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**4894 lines 
** Section: Section-tissue400 
*Solid Section, elset=_I2, material=Tissue 
, 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=BP_serr_d600um_step-1, part=BP_serr_d600um_step 
          0.,           0.,        15.85 
          0.,           0.,        15.85,           0.,           1.,        15.85,         180. 
*End Instance 
**   
*Instance, name=Tissue-1, part=Tissue 
*End Instance 
**   
*Nset, nset=Set-42, instance=BP_serr_d600um_step-1 
 148638, 
*Nset, nset=Set-43, instance=BP_serr_d600um_step-1 
 148638, 
*Nset, nset=Set-45, instance=Tissue-1, generate 
2485369, 2568691,       1 
*Nset, nset=Set-46, instance=Tissue-1 
**171 lines 
*Nset, nset=Set-47, instance=Tissue-1 
**171 lines 
*Nset, nset=b_Set-40, instance=BP_serr_d600um_step-1, generate 
      1,  148637,       1 
*Elset, elset=b_Set-40, instance=BP_serr_d600um_step-1, generate 
      1,  150585,       1 
*Nset, nset=b_Set-44, instance=BP_serr_d600um_step-1, generate 
      1,  148637,       1 
*Elset, elset=b_Set-44, instance=BP_serr_d600um_step-1, generate 
      1,  150585,       1 
*Nset, nset=_PickedSet131, internal, instance=BP_serr_d600um_step-1 
 148638, 
*Elset, elset=_BP_serr_SPOS, internal, instance=BP_serr_d600um_step-1, generate 
      1,  150585,       1 
*Surface, type=ELEMENT, name=BP_serr 
_BP_serr_SPOS, SPOS 
*Elset, elset=_Tissue_S1, internal, instance=Tissue-1, generate 
 152049,  236540,       1 
*Surface, type=ELEMENT, name=Tissue 
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_Tissue_S1, S1 
** Constraint: Constraint-2 
*Rigid Body, ref node=_PickedSet131, elset=b_Set-44 
*End Assembly 
**  
** ELEMENT CONTROLS 
**  
*Section Controls, name=EC-1, hourglass=ENHANCED 
1., 1., 1. 
*Amplitude, name=Amp-1 
             0.,              0.,           1.25,            1.25 
**  
** MATERIALS 
**  
*Material, name=Tissue 
*Density 
 200e-06, 
*Hyperelastic, arruda-boyce 
 0.0238, 2.024, 0.705 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=IntProp-1 
*Friction 
 0.28, 
*Surface Behavior, pressure-overclosure=HARD 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BP_boundary Type: Displacement/Rotation 
*Boundary 
Set-42, 1, 1 
Set-42, 2, 2 
Set-42, 4, 4 
Set-42, 5, 5 
Set-42, 6, 6 
** Name: Encastre Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Set-45, ENCASTRE 
** Name: Xsymm Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Set-47, XSYMM 
** Name: Ysymm Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Set-46, YSYMM 
** ---------------------------------------------------------------- 
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**  
** STEP: Step-1 
**  
*Step, name=Step-1, nlgeom=YES 
*Dynamic, Explicit 
, 1.25 
*Bulk Viscosity 
0.06, 1.2 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BP_motion Type: Displacement/Rotation 
*Boundary, amplitude=Amp-1 
Set-43, 3, 3, -1. 
**  
** INTERACTIONS 
**  
** Interaction: Int-1 
*Contact, op=NEW 
*Contact Inclusions 
BP_serr , Tissue 
*Contact Property Assignment 
 ,  , IntProp-1 
*Contact Formulation, type=PURE MASTER-SLAVE 
BP_serr , Tissue , MASTER 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, number interval=1, time marks=NO 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT, number interval=125 
**  
** HISTORY OUTPUT: H-Output-2 
**  
*Output, history, time interval=0.025 
*Energy Output, elset=Tissue-1.Set-1 
ALLAE, ALLCD, ALLCW, ALLDC, ALLDMD, ALLFD, ALLIE, ALLKE, ALLMW, ALLPD, ALLPW, 
ALLSE, ALLVD, ALLWK, ETOTAL 
*End Step 
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B5. 2D FEM Model: Micro-Serrated Biopsy Punches 
 

*Heading 
** Job name: jserr4002 Model name: 3D Microserration Model 
** Generated by: Abaqus/CAE 6.14-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=BPserr400 
*End Part 
**   
*Part, name=TissueBlock 
*Node 
**95872 lines 
*Element, type=CPS4R 
**94996 lines 
*Nset, nset=Set-175, generate 
     1,  95872,      1 
*Elset, elset=Set-175, generate 
     1,  94996,      1 
** Section: ArrudaBoyceSection 
*Solid Section, elset=Set-175, material=ArrudaBoyceAbq 
1., 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=TissueBlock-1, part=TissueBlock 
*End Instance 
**   
*Instance, name=BPserr400-1, part=BPserr400 
3.6800004956546,          4.25,           0. 
*Node 
      1,   1.32000005,           2.,           0. 
*Nset, nset=BPserr400-1-RefPt_, internal 
1,  
*Nset, nset=Set-1 
 1, 
*Surface, type=SEGMENTS, name=m_Surf-5 
**19 lines 
*Rigid Body, ref node=BPserr400-1-RefPt_, analytical surface=m_Surf-5 
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*Element, type=MASS, elset=Set-1_Inertia-1_ 
1, 1 
*Mass, elset=Set-1_Inertia-1_ 
0.001,  
*End Instance 
**   
*Nset, nset=Set-12, instance=TissueBlock-1 
** 47 lines 
*Elset, elset=Set-12, instance=TissueBlock-1 
**47 lines 
*Nset, nset=Set-13, instance=BPserr400-1 
 1, 
*Elset, elset=_s_Surf-7_S4, internal, instance=TissueBlock-1 
**40 lines 
*Elset, elset=_s_Surf-7_S2, internal, instance=TissueBlock-1, generate 
 65659,  80264,    127 
*Surface, type=ELEMENT, name=s_Surf-7 
_s_Surf-7_S4, S4 
_s_Surf-7_S2, S2 
*End Assembly 
*Amplitude, name=Amp1 
             0.,              0.,              1.,              3.25 
**  
** MATERIALS 
**  
*Material, name=ArrudaBoyceAbq 
*Density 
 4e-07, 
*Hyperelastic, arruda-boyce 
 0.0238, 2.024,  1.41 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=ContactProp 
1., 
*Friction, slip tolerance=0.005 
 0.28, 
*Surface Behavior, pressure-overclosure=HARD 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Encastre Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Set-12, ENCASTRE 
**  
** INTERACTIONS 
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**  
** Interaction: Int-1 
*Contact Pair, interaction=ContactProp, type=SURFACE TO SURFACE 
s_Surf-7, BPserr400-1.m_Surf-5 
** ---------------------------------------------------------------- 
**  
** STEP: Blade_insertion 
**  
*Step, name=Blade_insertion, nlgeom=YES, inc=100000 
*Dynamic,application=QUASI-STATIC,initial=NO 
0.001,1.,1e-05 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BP_motion Type: Displacement/Rotation 
*Boundary, amplitude=Amp1 
Set-13, 1, 1 
Set-13, 2, 2, -1. 
Set-13, 6, 6 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, number interval=1, time marks=NO 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT, number interval=100, time marks=NO 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT, number interval=100, time marks=NO 
*End Ste 
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Appendix C: Code for Laser Ablation 

 

;REPETITION RATE:   100 kHz 
;LASER POWER OF 532 NM LASER:  0.75W 
 
dvar $feed, $overlap, $pulse_time, $passover, $pass2, $radius, $beam_dia, $overlap_R, $dist_R, 
$comp, $radius_i, $comp_i 
      
SECONDS   
   
$beam_dia = 0.02 
$radius_i= 0.150 
$comp_i= 0.05 
$radius= 0.150 
$comp= 0.05 
 
$overlap_R = 0.95 
$dist_R = (1-$overlap_R)*$beam_dia   
 
$passover= 0.020/$dist_R ; 
$pass2= 80; 60  
 
$feed =0.1;  
 
G92 X-0.05 Y-0.05 ; set zero  
G92 C0 
 
T0 
 
G44 X Y ; activate possible compensation on x and y axe 
 
T1 ; load the laser beam: tool table available from CNC operator interface,  
 
G91                  
 
PSOPULSE X TIME 10 5   CYCLES 10000000 ; original 40 20 
 
REPEAT  16   ; Make serrations all around the circumference 
 
   
 REPEAT $passover 
   
   PSOCONTROL X FIRE 
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   G01 G41 X$comp  F $feed  ; 
   G1  Y0.05               ; 
   G03 X-($radius*2) Y0 I-$radius J0  ;  
    
   PSOCONTROL X OFF 
    
   G1 Y -0.05 
      G40 X$comp 
   G0 X (2*$radius_i-2*$comp_i) 
      $radius = $radius - $dist_R 
   $comp = $comp - $dist_R 
    
    END REPEAT 
 
 
PSOPULSE X TIME 10 5   CYCLES 10000000;ORIGINAL 20 10 
 
 
 
   REPEAT $pass2    ; Make serrations all around the circumference 
 
   
   PSOCONTROL X FIRE 
    
   G01 G41 X$comp_i   F $feed  ; 
   G1  Y0.05               ; 
   G03 X-($radius_i*2) Y0 I-$radius_i J0  ;  
    
   PSOCONTROL X OFF 
    
   G1 Y -0.05 
                G40 X$comp_i 
   G0 X (2*$radius_i-2*$comp_i) 
   
     
    END REPEAT 
 
G98 LINEAR Y 0.0 C22.5 F1.0 E 5 
 
END REPEAT 
  
T0 ; unload the tool: laser beam  
 
END 
 


