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ABSTRACT

Essays on Inference in Partially Identi�ed Models

Federico Andrés Bugni

This dissertation is composed of three chapters, each contributing to di¤erent aspects

of the literature of partially identi�ed econometric models.

In the �rst chapter, I introduce a bootstrap procedure to perform inference in the class

of partially identi�ed econometric models de�ned by �nitely many moment equalities and

inequalities. I provide two di¤erent versions: one to cover each element of the identi�ed

set with a prespeci�ed probability and the other to cover the identi�ed set itself with a

prespeci�ed probability. I compare my bootstrap procedure, a competing asymptotic ap-

proximation and the subsampling procedure proposed by Chernozhukov, Hong and Tamer

[23] in terms of the rate at which they achieve the desired coverage level. Under certain

conditions, I show that inference based on my bootstrap and asymptotic approximation

should eventually be more precise than inference based on subsampling. A Monte Carlo

study con�rms this �nding in a small sample simulation.

In the second chapter, I adapt the speci�cation test for functional data developed by

Bugni, Hall, Horowitz and Neumann [19] to the presence of missing observations. By
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using a worst case scenario approach, my method is able to extract all the information

available in the data while being agnostic about the nature of the missing observations.

Under the null hypothesis, my speci�cation test will reject the null hypothesis with a

probability that, in the limit, does not exceed the signi�cance level of the test. Moreover,

the power of the test converges to one whenever the distribution of the non-missing data

conveys that the null hypothesis is false. The procedure is illustrated by using it to test

the hypothesis that a sample of wage paths was generated by a speci�c equilibrium job

search model.

The third chapter explores the causal relationship between the child labor legislation

dictated by several U.S. states between 1880 and 1910 and the spectacular decrease in

child occupation rates during this period. Previous literature has studied this connection

using di¤erencing techniques in binary choice models, which I show to be inadequate. I

develop a model with multiple equilibria to analyze the labor market mechanism by which

the legislation a¤ects the household�s decision to send their children to work. Based on

this model, it is possible to establish if the legislation was e¤ective and if it constituted a

benign policy or not, which sheds new light to previous results.
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CHAPTER 1

Bootstrap Inference on Partially Identi�ed Models

1.1. Introduction

This paper contributes to the growing literature on inference in partially identi�ed

econometric models. A model is said to be partially identi�ed or set identi�ed when the

sampling process and the maintained assumptions restrict the value of the parameter of

interest to a set, called the identi�ed set, which is smaller than the logical range of the

parameter but potentially1 larger than a single point. Partially identi�ed models arise

naturally in economic models when strong and usually unrealistic assumptions are traded

by weaker and more credible assumptions. The literature on partially identi�ed models

in econometrics has been largely developed and popularized by Manski (See, for example,

Manski [40] and Manski [41]).

The goal of this paper is twofold. The �rst objective is to introduce a novel bootstrap

procedure to construct con�dence sets for a wide class of partially identi�ed models. In

large samples, our bootstrap procedure achieves exactly the desired coverage probability.

The second objective is to compare our bootstrap procedure with competing inferential

procedures in terms of the rate of convergence of the error in the coverage probability,

that is, in terms of the rate at which they achieve the desired coverage level. To the

1If the parameter of interest is restricted to a single point, the model is said to be point identi�ed. Since
a singleton is a special type of set, point identi�ed models are a special case of partially identi�ed models.
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best of our knowledge, this is the �rst paper performing this type of comparison among

competing inferential procedures for partially identi�ed models.

The objective of this paper is to perform hypothesis tests in partially identi�ed mod-

els. Based on the duality between hypothesis testing and con�dence sets, the hypothesis

testing problem can be translated into the construction of con�dence sets that cover the

object of interest with a minimum prespeci�ed probability. Unlike the point identi�ed lit-

erature, there are two possible objects of interest. On the one hand, the object of interest

can be the identi�ed set itself. A set Cn (1� �) is a con�dence set for the identi�ed set

with level (1� �) if and only if the following property is satis�ed,

(1.1) inf
P2F

lim inf
n!1

P (�I (P) � Cn (1� �)) � (1� �)

where �I (P) denotes the identi�ed set for a certain distribution of observables P that

belongs to a set of possible distributions F . On the other hand, the object of interest can

be each of the elements of the identi�ed set. The rationale behind this approach is that

if all parameters of the identi�ed set are covered, then the true parameter that generated

the observations will also be covered. A set Cn (1� �) is a con�dence set for each element

of the identi�ed set with (1� �) level if and only if the following property is satis�ed,

(1.2) inf
P2F

inf
�2�I(P)

lim inf
n!1

P (� 2 Cn (1� �)) � (1� �)

The distinction between these two constructions was pointed out by Imbens and Manski

[38], who show that the con�dence set for the identi�ed set will also be a con�dence set

for each of its elements. In accordance with this distinction, we provide two versions of
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our bootstrap procedure: one that covers the identi�ed set with a �xed probability and

the other one that covers each element of the identi�ed set with a �xed probability.

A con�dence set is said to provide consistent inference in level if it satis�es the corre-

sponding coverage requirement (condition (1.1) or (1.2), depending on which is the object

of interest) with equality. In other words, a con�dence set results in consistent inference

in level if, in large samples, it achieves exactly the desired coverage level. This is a desir-

able property since it implies that the con�dence set is not excessively large, which would

result in unnecessary loss of statistical power of the underlying hypothesis test. We show

that our bootstrap procedure provides consistent inference in level.

Our results on con�dence regions for partially identi�ed models build upon the crite-

rion function approach introduced by Chernozhukov, Hong and Tamer [23] (henceforth,

CHT). In their paper, they implement their inference using a resampling technique called

subsampling. In essence, we provide a way to implement the criterion function approach

in a wide class of econometric models using an alternative resampling technique, the

bootstrap. Our bootstrap procedure di¤ers qualitatively from replacing the subsampling

method provided by CHT [23] with the bootstrap, that is, we do not merely propose

a bootstrap analogue of their subsampling method. In fact, we show that a bootstrap

analogue of their subsampling procedure would, in general, fail to be consistent in level.

The di¤erence between our bootstrap method and the bootstrap analogue of CHT [23]�s

subsampling lies in the choice of the bootstrap criterion function, which is the key to our

consistency result. Following similar techniques to those used to implement our bootstrap
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scheme, we also propose an asymptotic approximation to perform inference. In indepen-

dent research, a similar asymptotic approximation has also been proposed by Soares [60],

CHT [23] and Andrews and Soares [5].

There are currently many methods available to implement inference in partially iden-

ti�ed econometric models. Given the choice of the criterion function, the researcher can

implement inference using our bootstrap, our asymptotic approximation or subsampling.

Since all these methods provide consistent inference in level (that is, they all manage to

achieve the desired goal, asymptotically), an important basis of comparison is the rate

at which the error in the coverage probability vanishes (that is, the rate at which this

goal is achieved). If two methods have errors in the coverage probability that converge to

zero at di¤erent rates, then the one that converges faster will eventually be more accurate

than the one that converges slower. We show that, under certain conditions, our boot-

strap and our asymptotic approximation both have error in the coverage probability that

converges to zero at the same rate, which is a faster rate than the one obtained by using

subsampling. Hence, under these conditions, our results imply that inference based on

our bootstrap and our asymptotic approximation should eventually be more precise than

inference based on subsampling. Our Monte Carlo simulation shows that this di¤erence

in accuracy can be important in applications of moderate sample sizes.

The rest of the paper is organized as follows. Section 1.2 reviews the literature of

inference in partially identi�ed models, and section 1.3 provides an introduction to the

criterion function approach. As we have already anticipated, we can construct con�dence

sets for two di¤erent objects of interest and the remainder of the paper deals with these

two separately. In section 1.4, we consider the construction of con�dence sets for the
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identi�ed set. Section 1.4.1 introduces our assumptions and provides examples of econo-

metric models where they are satis�ed. Our bootstrap procedure is introduced in section

1.4.2, where we also demonstrate its consistency in level and we analyze its error in cov-

erage probability. In section 1.4.3, we consider the two competing inferential procedures:

subsampling and asymptotic approximation, for which we also show consistency in level

and analyze the error in coverage probability. These inferential methods are compared

using a Monte Carlo simulation in section 1.4.4. Section 1.5 repeats this analysis for the

construction of con�dence sets for each element of the identi�ed set. The structure of

section 1.5 is similar to the one of section 1.4. We introduce the setup, we present the

bootstrap procedure and show its properties, we perform the comparison with alternative

inferential schemes and we provide a Monte Carlo simulation. Section 1.6 concludes the

paper and provides directions for further research. The appendix collects all the proofs

of the paper.

1.2. Literature review

There is now a growing literature on inference on partially identi�ed (or set identi�ed)

parameters. As we mentioned in the introduction, the objective of this literature is to

construct con�dence sets that cover the object of interest with a prespeci�ed probability.

The most natural way of constructing con�dence sets is to expand the boundaries of

an estimator of the identi�ed set. For identi�ed sets whose boundary is a functional of the

observed data, this approach can be easy to implement. For examples of this approach, see

Horowitz and Manski [37] or Imbens and Manski [38] (when sets are intervals) and Rosen
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[57] (when sets are polyhedrons). Beresteanu and Molinari [11] extend this approach to

more general settings by using developments on set valued random variables.

An alternative approach to constructing con�dence sets for partially identi�ed models

is the criterion function approach, introduced by CHT [23]. The �rst step of this ap-

proach is to de�ne a function, called the criterion function, that is minimized exclusively

at the identi�ed set. Con�dence sets are generated by inverting the sample analogue of

this function. This procedure is attractive because it can automatically handle problems

that would be very hard to deal with a more direct approach. In order to implement

their inference, CHT [23] propose a subsampling approximation and an asymptotic ap-

proximation. In relation to this approach, Manski and Tamer [42] provided a consistent

estimator of the identi�ed set based on criterion functions.

According to the literature on inference in point identi�ed models, the rates of con-

vergence of subsampling procedures are likely to be slow, relative (for example) to the

asymptotic approximation or the bootstrap approximation. See, for example, Horowitz

[36], Bickel, Götze and van Zwet [14], Politis and Romano [53] and Politis, Romano and

Wolf [54]. Under certain conditions, we show that these results extend to a wide class

of partially identi�ed models. Moreover, we show that these rates of convergence deter-

mine the rate at which the error in the coverage probability vanishes. As a consequence,

inferential methods with a faster rate of convergence are eventually more precise than

inferential methods with a slower rate of convergence.

Andrews, Berry and Jia [3] consider games with discrete strategies, where the para-

meters are restricted by necessary conditions imposed by the Nash equilibrium. In these

games, the parameters are usually partially identi�ed due to the existence of multiple
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equilibria. They provide a method to perform inference that di¤ers signi�cantly from

ours. Pakes, Porter, Ho and Ishii [52] consider estimation and inference for points in the

boundaries of the identi�ed set of partially identi�ed models. Their inferential method

has the advantage that it is simple to implement and does not depend on the unknown

number of binding moment inequalities. In general, their method results in con�dence

sets whose asymptotic coverage may exceed the desired coverage, that is, conservative

inference.

Romano and Shaikh ([55] and [56]) consider the general problem of constructing cov-

erage regions using a subsampling stepdown control procedure that is comparable to CHT

[23]�s subsampling construction. They formally show that the subsampling stepdown con-

trol procedure cannot be replaced by a bootstrap stepdown control procedure. Rosen [58]

studies the problem of inference in partially identi�ed models de�ned by one-sided mo-

ment inequalities, similar to the one studied in this paper. The limiting distribution of

his test statistic depends on the number of inequalities that are binding at the current

parameter value which, of course, is unknown. In order to overcome this di¢ culty, he re-

places the unknown number of binding moment conditions by a known lower bound. The

resulting test statistic is asymptotically pivotal and, thus, straightforward to implement

but admittedly results in conservative inference.

Blundell, Gosling, Ichimura and Meghir [16] study the wage distribution in the labor

force taking into account the selection problem generated by unemployment. Since they

only observe wages for people who work, the distribution of wages in the labor force is

partially identi�ed. They propose the bootstrap as a method for inference but do not

formally investigate its asymptotic validity or analyze its properties. Galichon and Henry
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([28] and [29]) consider inference on a general class of partially identi�ed models. To im-

plement their inference, they develop a new bootstrap method, called dilation bootstrap,

which di¤ers considerably from the traditional bootstrap. Their inferential procedure

presents signi�cant computational advantages with respect to alternative methods, but,

to the best of our knowledge, the proof of the consistency in level of the dilation bootstrap

is under progress. In research independent to ours, Soares [60] constructs coverage sets

for each parameter in the identi�ed set for the type of econometric models considered in

this paper. He develops an asymptotic approximation that is similar to the one proposed

by CHT [23] and by this paper.

Andrews and Soares [5] study the power of the hypothesis tests in partially identi�ed

models de�ned by moment inequalities. They introduce an inference method called gen-

eralized moment selection (GMS), in which information about the slackness of the sample

moment conditions is used to infer which population moment conditions are binding.

Our bootstrap and our asymptotic approximation can be considered special cases of their

GMS procedure. Their results indicate that GMS tests are more powerful than alternative

competing inferential methods, such as subsampling. In this sense, their results provide

an interesting complement to our work: they recommend using GMS to test hypothesis

in partially identi�ed models based on the power of the test and we do so based on the

accuracy of the approximation.

Canay [21] studies the problem of inference on the parameters that compose the

identi�ed set and shows that a criterion function based on empirical likelihood has certain

optimality properties. Stoye [61] revisits the analysis of Imbens and Manski [38] and

reveals the importance of a supere¢ ciency assumption.
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For partially identi�ed models whose identi�ed set is an interval, Imbens and Manski

[38] discuss the issue of uniformity of the inference. A con�dence set provides robust

inference if it provides consistent inference in level not only for a �xed probability distrib-

ution, but uniformly for a class of probability distributions2. They illustrate the problem

by showing how con�dence sets for partially identi�ed models based on pointwise as-

ymptotics provide very misleading results in the limiting case when the upper and lower

bounds of the interval coincide and the parameter of interest becomes point identi�ed.

Romano and Shaikh ([55] and [56]) provide conditions under which their subsampling

construction achieves uniform coverage. Soares [60], Andrews and Guggenberger [4] and

Andrews and Soares [5] show that these concerns extend to the general class of partially

identi�ed models de�ned by moment inequalities. The reason is that, in this class of

models, test statistics have pointwise asymptotic distributions that are discontinuous in

the true distribution generating the data but such discontinuity is not present in the �nite

sample distribution. In research developed independently to ours, Soares [60] and An-

drews and Soares [5] show how to construct con�dence sets that provide uniform coverage

using asymptotic approximations based on similar techniques to the ones proposed in this

paper.

1.3. The criterion function approach

Suppose that the economic model is known up to a parameter �; that belongs to a

parameter space � � R�: According to the model, the observations are sampled from a

distribution P (�0) ; where �0 denotes the true value of the parameter. Since the model

2Formally, this requires modifying the requirement of equations (1.1) or (1.2) so that infP2F is computed
before taking lim infn!1 : See, e.g., Andrews and Guggenberger [4] and Andrews and Soares [5].
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is partially identi�ed, the sampling distribution does not completely determine �0, but,

rather, restricts it to a certain set, denoted �I (P (�0)) or, more succinctly3, �I :

The objective of inference is to construct con�dence sets that cover the object of

interest with a prespeci�ed probability. As mentioned in the introduction, the object of

interest can be the identi�ed set itself or can be each element of the identi�ed set. The

criterion function approach provides a very general procedure for both coverage objectives

in a relatively simple way.

In the criterion function approach we de�ne a non-negative function of the parameter

space, denoted by Q; that equals zero if and only if � belongs to the identi�ed set. This

function is referred to as criterion function since it provides a criterion that characterizes

the identi�ed set. We denote its sample analogue by Qn: The basic idea of the criterion

function approach is to construct a (1� �) con�dence region of the object of interest,

denoted Cn (1� �) ; using a lower level set of the sample analog of the criterion function,

namely,

(1.1) Cn (1� �) = f� 2 � : anQn (�) � cn (�)g

where fang+1n=1 is a sequence of constants that makes the (asymptotic) distribution of

anQn (�) non-degenerate. Cn (1� �) will be a con�dence set for the identi�ed set or for

each element of the identi�ed set depending on how cn (�) is de�ned: On the one hand,

Cn (1� �) is a con�dence region for the identi�ed set with level (1� �) (condition (1.1))

if; for every � in the parameter space, cn (�) is equal to cn, the (1� �) quantile of the

distribution of sup�2�I anQn (�). On the other hand, Cn (1� �) is a con�dence region for

3The dependence on P (�0) can be dropped without risk of confusion because we consider inference for a
�xed probability distribution.
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each element of the identi�ed set with level (1� �) (condition (1.2)) if for every � in the

parameter space; cn (�) is set to be the (1� �) quantile of the distribution of anQn (�).

Once we have chosen the criterion function (and with it, its sample analogue), all

that remains to construct the con�dence sets is a way to approximate quantiles of the

distribution of either sup�2�I anQn (�) or anQn (�) for every � in the parameter space.

This approximation problem is non-standard precisely because the econometric model is

partially identi�ed.

For a general class of models, CHT [23] show how to construct these con�dence sets

using subsampling. For the particular class of models considered in this paper, several

papers4 show how to construct these con�dence sets by simulation from an estimate of

the asymptotic distribution. One of the contributions of this paper is to show how the

bootstrap can be used to perform this construction.

1.4. Con�dence sets for the identi�ed set

We now consider the construction of con�dence sets that cover the identi�ed set with

a minimum prespeci�ed probability. Formally, our objective is to construct a random

set that satis�es equation (1.1). The construction of con�dence sets for the identi�ed set

is harder than the construction of con�dence sets for each element of the identi�ed set.

Once the �rst problem has been solved and analyzed, the second problem can be solved

and analyzed with similar techniques. Therefore, we devote the main body of the paper

to the construction and analysis of the �rst problem and leave the second one for the �nal

section.

4The asymptotic approximation procedure has been independently proposed by Soares [60], CHT [23],
Andrews and Soares [5] and earlier versions of this paper.
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The con�dence sets considered in this section can be related to a hypothesis testing

problem. Romano and Shaikh [56] show that a con�dence region for the identi�ed set

can be interpreted as a test for the family of null hypotheses H� : � 2 �I indexed by

� 2 � while controlling for the familywise error rate, that is, the probability of even one

false rejection. We provide an analogous interpretation of this statement. Suppose that

for a certain set S (S � �) ; we want to test the null hypothesis H0 : S � �I versus the

alternative hypothesis H1 : S 6� �I , while keeping the probability of a false rejection to

be less or equal than (1� �) : A con�dence set that satis�es condition (1.1) contains all

sets S � � that will fail to reject the aforementioned null hypothesis.

1.4.1. Setup

In this section, we introduce the assumptions that de�ne our econometric model. We

consider two separate set of assumptions. The �rst set of assumptions will be more

general and will constitute what we call the general model. The second set of assumptions

will be a particular subset of the �rst one and will give rise to what we refer to as the

conditionally separable model. The reason to consider these two setups separately is that

consistency in level can be obtained under the assumptions of the general model but

results regarding rates of convergence require the stronger framework imposed by the

conditionally separable model.

After introducing and explaining these assumptions, we provide examples of relevant

economic models where these are satis�ed.

1.4.1.1. General model. The following assumptions constitute our general model in

the independent and identically distributed (i.i.d.) setting.
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(A1) For the probability space (
;B;P) ; let Z : 
 ! Z be a random vector. We

observe an i.i.d. sample Xn � fZigni=1 :

(A2) The parameter space, denoted by �; is a compact and convex subset of a �nite

dimensional Euclidean space R� (� < +1):

(A3) The identi�ed set, denoted by �I ; is given by,

�I =
n
� 2 � :

n
E (m (Z; �)) � ~0

oo
where m (z; �) : Z��! RJ is a (jointly) measurable function and E (m (Z; �)) :

�! RJ is a lower semi-continuous function. Moreover, �I is a proper subset of

�:

(A4) For every � 2 � and every j = 1; 2; :::; J; the variance of mj (Z; �) is positive and

�nite. For every z 2 Z; f(m (z; �)� E (m (Z; �))) : � 2 �g is a separable subset

of l1J (�) ; the space of bounded functions that map � into RJ . The empirical

process associated to the random variable m (Z; �), given by,

vn (m�) = n�1=2
nX
i=1

(m (Zi; �)� E (m (Z; �)))

is stochastically equicontinuous, i.e., for any " > 0,

lim
�#0
lim sup
n!1

P �

 
sup
�2�

sup
f�0:k�0��k��g

kvn (m�)� vn (m�0)k > "

!
= 0

where k�k denotes Euclidean distance and P � denotes the outer measure5 with

respect to P:

5Let (
;B;P) be a probability space. For any arbitrary subset of 
; denoted A; its outer measure is
de�ned by P � (A) = infS�B fP (S) : A � Sg :
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We brie�y comment on some of the assumptions. Assumption (A1) requires that the

sample is i.i.d.. The result of consistency of the bootstrap procedure proposed in this paper

is based on laws of large numbers, central limit theorems and laws of iterated logarithm.

Consistency of our bootstrap procedure can be generalized to non i.i.d. settings, provided

that these results hold and, of course, that the resampling method is adequately adjusted.

Assumption (A3) de�nes the identi�ed set as the intersection of �nitely many weak

moment inequalities. These weak inequalities are upper bounds of the expectation of

a random function. Of course, we can trivially accommodate lower bounds by changing

signs and we can accommodate equality restrictions by combining upper and lower bounds.

Notice that assumption (A3) allows the identi�ed set to be empty. A valuable feature

of our inference procedure is that if the identi�ed set is empty, then, eventually, our

con�dence set will be equal to the smallest possible con�dence set6, almost surely.

The present setup allows for econometric models de�ned by conditional moment con-

ditions as long as the covariates have �nite support7. To see why, suppose that the

conditioning covariate X has �nite support given by SX and let the identi�ed set be given

by,

�I =

(
� 2 � :

\
x2SX

fE (M (Y; �) jX = x) � 0g
)

where M (y; �) : Y � � ! RJ is a jointly measurable function and for every x 2

SX ; E (M (Y; �) jX = x) : � ! RJ is lower semi-continuous. This identi�ed set can

6With the criterion function approach, the smallest possible con�dence set is equal to �̂I (0) =
f� 2 � : anQn (�) � 0g :
7The methods proposed in this paper cannot directly handle covariates with in�nite support. If this is the
case, one can still use our techniques by partitioning the support of the continuous covariate into �nitely
many cells. In this process, some information will be lost, and so our method will result in conservative
inference.
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be equivalently reformulated in the form required by assumption (A3). By de�ning

Z = (Y;X) : 
! Y � SX and m (Z; �) =M (Y; �) 1 [X = x] we get,

�I =

(
� 2 � :

\
x2SX

fE (M (Y; �) 1 [X = x]) � 0g
)

which has the structure required by assumption (A3).

Assumption (A4) introduces the regularity conditions introduced to apply the law of

iterated logarithm and the (Donsker) central limit theorem in our proofs.

1.4.1.2. Conditionally separable model. The following assumptions constitute our

conditionally separable model in the i.i.d. setting.

(B1) For the probability space (
;B;P) ; let (X; Y ) : 
 !
�
SX � RJ

	
be a random

vector, where the support of X, denoted SX ; is composed of K values (�nite

support): We observe an i.i.d. sample Xn � fXi; Yigni=1 :

(B2) The parameter space, denoted by �; is a compact and convex subset of a �nite

dimensional Euclidean space R� (� < +1):

(B3) The identi�ed set �I is given by,

�I =

(
� 2 � :

K\
k=1

fE (Y �M (�; xk) jxk) � 0g
)

where , for each x 2 SX ; M (�; x) : � ! RJ is continuous. Moreover, �I is a

proper subset of �:

(B4) For every x 2 SX and j = 1; 2; :::; K; the variance of fYjjX = xg is positive and

�nite.

(B5) For every x 2 SX , fY jX = xg has �nite fourth absolute moments.
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This setup is a particular case of the general model that strengthens assumptions (A3)

and (A4). In the presence of covariates, assumption (A3) of the general model de�nes the

identi�ed set as the intersection of moment inequalities of the form E (m (Z; �) jX = x) �

0: The assumption (B3) strengthens this by requiring that the conditional expectation

E (m (Z; �) jX = x) can be separated into the expectation of a random variable that does

not involve �; given by E (Y jX = x) ; and a conditionally non-stochastic term that in-

volves �; given by M (�; x) : Subtracting the (conditional) mean to the stochastic process

fY �M (�;X) jX = xkg results in a random vector (i.e., no dependency on the parameter

�); and so the separability and stochastic equicontinuity conditions required by (A4) are

trivially satis�ed.

1.4.1.3. Examples. We consider three examples of economic models that satisfy the

assumptions of our frameworks.

Example 1. Inference on the mean with missing or censored data

This example was �rst considered by Manski [40]. Suppose that we are interested in

performing inference on the mean of a random variable, denoted by fZjXg, and assume

that the support of X is composed of K values, SX = fxkgKk=1 : Our parameter of interest

is the following K dimensional vector: � = fE (ZjX = xk)gKk=1 :

In our random sample of observations of fZjXg ; certain observations are missing (or

are censored) and we are unwilling to make assumptions about the distribution of these

observations. Let U denote the binary variable that takes value one if the observation is

unobserved and zero otherwise. By the law of iterated expectations,

E (ZjX) = E (ZjU = 0; X)P (U = 0jX) + E (ZjU = 1; X) (1� P (U = 0jX))
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The observed sample will identify the mean conditional on being observed and the prob-

ability of observation, but will be silent about the mean conditional on being unobserved.

Nevertheless, we may be able to establish logical lower and upper bounds for fZjXg ; de-

noted by ZL (X) and ZH (X) ; respectively8. The identi�ed set for our parameter of interest

is,

�I =

8><>:� 2 � :
K\
k=1

8><>: E (Z (1� U) + ZL (X)U jX = xk)� �k � 0

�k � E (Z (1� U) + ZH (X)U jX = xk) � 0

9>=>;
9>=>;

Under random sampling and regularity conditions, this model satis�es the assumptions of

the conditionally separable framework.

Example 2. Inference on parametric models with missing or censored data

Suppose that our model predicts that for a known function f;

E (Z � f (X; �) jW ) = 0

where Z is the explained variable, X is the explanatory variable, � is the parameter of

interest and W is an exogenous variable. Typical examples of this setup are linear index

models, such as the linear model, the probit model or the logit model.

Suppose that certain observations of the explained variable are missing (or censored).

Let U denote the binary variable that takes value one if the observation is unobserved and

zero otherwise. By the law of iterated expectations,

E (Z � f (X; �) jW ) =

8><>: E (Z � f (X; �) jW;U = 0)P (U = 0jW )+

+E (Z � f (X; �) jW;U = 1)P (U = 1jW )

9>=>;
8When the event has no logical lower (repectively, upper) bound, then ZL (X) = �1 (repectively,
ZH (X) = +1):
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Suppose that fZjWg has logical lower and upper bounds, given by ZL (W ) and ZH (W ) ;

respectively. Also assume that the support of W is given by �nitely many values: SW =

fwkgKk=1 : Under this conditions, the identi�ed set for the parameter of interest is given

by,

�I =

8><>:� 2 � :
K\
k=1

8><>: �E (Z (1� U) + ZH (W )U � f (X; �) jW = wk) � 0

E (Z (1� U) + ZL (W )U � f (X; �) jW = wk) � 0

9>=>;
9>=>;

Under random sampling and regularity conditions, this model satis�es the assumptions of

the general framework. Moreover, it also satis�es the assumptions of the conditionally

separable model when the explanatory variable X is exogenous.

Example 3. Multiplicity of equilibria in games

Consider the two player static entry game with complete information considered by

Tamer [62]. In this model, two players (i = 1; 2) have to simultaneously decide whether

to enter a market (yi = 1) or not (yi = 0).

The Nash Equilibrium strategy for player i = 1; 2 is given by yi = 1 [y�i � 0] ; where

y�i denotes the pro�ts of entering the market for player i. These pro�ts are assumed to be

given by y�i = xi�i + y�i�i + ui; where (x1; x2) 2 Rd represents the vector of exogenous

variables, (u1; u2) is a random vector of latent variables with conditional density fu (�j
),

and � = (�1; �2;�1;�2;
) is the vector of parameters of interest.

Given the structure of the model and under reasonable assumptions, Tamer [62] shows

that the model has multiple of equilibria. Without imposing any equilibrium selection
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assumptions, an implication of the model is that the identi�ed set is given by,

�I =

8>>>><>>>>:� 2 � :
\
x2SX

8>>>><>>>>:
P ((0; 0) jx) = �1 (x; �) ;

P ((1; 1) jx) = �2 (x; �) ;

�3 (x; �) � P ((0; 1) jx) � �4 (x; �)

9>>>>=>>>>;

9>>>>=>>>>;
where �1 (x; �) ; �2 (x; �) ; �3 (x; �) and �4 (x; �) are known functions that are continuous

on �.

Provided that the covariates have �nite support, random sampling and regularity con-

ditions, this model satis�es the assumptions of the conditionally separable framework. In

Ciliberto and Tamer [24], this model is generalized to more than two players and ap-

plied to the airline industry. This generalization also satis�es all the assumptions of our

conditionally separable framework.

1.4.2. Bootstrap procedure

In this section, we introduce our bootstrap procedure to construct con�dence regions for

the identi�ed set. As discussed in section 1.3, such con�dence region can be constructed

by approximating the (1� �) quantile of the distribution of,

�n � sup
�2�I

anQn (�)

where Qn is the sample analogue criterion function and fang+1n=1 is a sequence of constants

that makes the (asymptotic) distribution of anQn (�) non-degenerate.

In order to implement any inferential procedure based on the criterion function ap-

proach, we need to complete certain steps. First, we need to de�ne the criterion function
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for our problem. Second, we need to generate an estimator of the identi�ed set. This

estimator is not our �nal goal, but an intermediate step in our inference problem. Third,

we need to de�ne the resampling procedure that implements our inference.

1.4.2.1. Criterion function. By de�nition, a function Q : � ! R is a valid criterion

function if it is non-negative and takes value zero if and only if it is evaluated at a

parameter in the identi�ed set. The following lemma characterizes all possible criterion

functions for the type of models considered in this paper.

Lemma 4. Under assumption (A3), the function Q : � ! R is a valid criterion

function if and only if it is of the form,

Q (�) = GP

��
[E (mj (Z; �))]+

	J
i=1

�
where [x]+ = x1 [x � 0] and GP : RJ+ ! R is a non-negative function such that GP (y) = 0

if and only if y = ~0.

The lemma implies that there are many possible criterion functions. The notation

GP reveals that, in principle, the criterion function could depend on the probability

distribution P: Also, notice that the criterion function need not be continuous. As we will

soon show, if we assume certain properties about this function we will obtain desirable

asymptotic results, such as consistency in level and rates of convergence. With this

objective in mind, we consider the following assumption.
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(CF) The population criterion function is given by one of the following two functions,

Q (�) =
JX
j=1

wj [E (mj (Z; �))]+

Q (�) = max
�
wj [E (mj (Z; �))]+

	J
j=1

where fwjgJj=1 are (arbitrary) positive constants.

Throughout this paper, we will focus on criterion functions that satisfy assumption

(CF), but some of our results will extend to more general criterion functions. In particular,

we will sometimes refer to the following generalization of assumption (CF).

(CF�) The population criterion function is given by Q (�) = G
��
[E (mj (Z; �))]+

	J
j=1

�
;

where G : RJ+ ! R is a non-negative function that does not depend on P, is

strictly increasing in every coordinate, weakly convex, continuous, homogeneous

of degree � and satis�es G (y) = 0 if and only if y = 0:

Clearly, assumption (CF) is a particular case of assumption (CF�). In the general

model, consistency of the bootstrap is shown under assumption (CF) whereas in the

conditionally separable model, consistency of the bootstrap is shown under assumption

(CF�). Rates of convergence and error in the coverage probability in the conditionally

separable model will di¤er depending on which assumption we use. In particular, the

rates of convergence we can show under assumption (CF) are slightly better than those

we can show under assumption (CF�)9. Since the criterion function is a choice of the

9Under the conditional separable model and under assumption (CF), we will show that the bootstrap
approximation has error in the coverage probability of order n�1=2: In the same model but under as-
sumption (CF�), the same techniques will show that the bootstrap procedure has error in the coverage
probability of order n�1=2 lnn (corollary 44 in the appendix).
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econometrician and since assumption (CF) allows us to prove better rates of convergence,

we will restrict attention to it in the main text.

In the literature, alternative criterion functions have been considered. For example,

CHT [23] and Andrews and Soares [5] consider dividing each expectation by its standard

deviation, that is,

Q (�) = G

 ��
E (mj (Z; �))

� (mj (Z; �))

�
+

�J
j=1

!
This ensures that the criterion function is not a¤ected by rescaling of the moment inequal-

ities. We can also adopt this rescaling in our bootstrap procedure without a¤ecting the

consistency of the approximation or any of the rates of convergence results10. We prefer

not to do so in the main text to keep the notation simple.

1.4.2.2. Estimation of the identi�ed set. By de�nition, the identi�ed set is the subset

of the parameter space that satis�es Q (�) = 0: Therefore, the analogy principle suggests

de�ning the estimate of the identi�ed set as the collection of parameters that satisfy

Qn (�) = 0. In the context of sets de�ned by moment inequalities, this set estimate would

be given by,

�̂API =
n
� 2 � : fEn (mj (Z; �)) � 0gJj=1

o
where for every j = 1; 2; :::; J; En (mj (Z; �)) denotes n�1

Pn
i=1mj (Zi; �) : This set estimate

will be called the analogy principle estimator. Notice that it is possible that this estimator

is empty.

The estimator of the identi�ed set is an ingredient in the construction of con�dence

sets for the identi�ed set. An estimator of the identi�ed set is adequate for the purpose of

inference if it allows us to construct con�dence sets that are consistent in level. In settings

10This result is simple to show and it is omitted from the paper for the sake of brevity.
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of practical relevance, the analogy principle estimator is not an adequate estimator for

the purpose of inference.

This problem has been considered by CHT [23]. They propose an estimator of the

identi�ed based on two modi�cations of the sample criterion function. First, they rede-

�ne the sample criterion function so its minimum value is zero11. Second, in the spirit

of Manski and Tamer [42], they estimate the identi�ed set with the set of parameters

whose value of the modi�ed criterion function is less than an amount that converges to

zero at a suitable rate. In order to perform inference in the class of partially identi�ed

models considered in this paper, it is su¢ cient to adopt only the second of these two

modi�cations. Evading the �rst modi�cation is computationally valuable, since we avoid

solving additional optimization problems to approximate the distribution of the statistic.

Our estimate of the identi�ed set is constructed as follows. Let f�ng+1n=1 be a positive

sequence such that �n=
p
n = o (1) and

p
ln lnn=�n = o (1) (almost surely). For example,

�n = lnn or �n = ln lnn satisfy these requirements. Our estimate is given by,

�̂I (�n) =
n
� 2 � :

�
En (mj (Z; �)) � �n=

p
n
	J
j=1

o
The requirements on the sequence f�ng+1n=1 can be explained intuitively. If the identi-

�ed set is non-empty, the requirement that �n is positive and satis�es
p
ln lnn=�n = o (1)

implies that for almost all sample sequences, the set estimator will eventually include

the identi�ed set. Intuitively, we are arti�cially expanding the sample analogue estimate

of the identi�ed set in order to eventually include the identi�ed set, almost surely. If

11To their initial choice of criterion function (denoted Qn (�)); they de�ne the modi�ed criterion function

to be ~Qn (�) = Qn (�) � inf~�2�Qn

�
~�
�
: Thus, by construction, the in�mum of the modi�ed criterion

function over the parameter space is zero.
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we expand the set too much, that is, if �n increases too rapidly, we run into the risk of

distorting the asymptotic results. This is avoided by requiring that �n=
p
n = o (1). The

following lemma formalizes these �ndings.

Lemma 5. Assume (A1)-(A4). Let f�ng+1n=1 be a positive sequence such that �n=
p
n =

o (1) and
p
ln lnn=�n = o (1) ; almost surely, and de�ne �̂I (�n) as follows,

�̂I (�n) =
n
� 2 � :

�
En (mj (Z; �)) � �n=

p
n
	J
j=1

o
For a sequence of positive numbers f"ng+1n=1 such that "n=

p
n = o (1) and �n="n =

o (1) ; almost surely, and de�ne �I ("n) =
n
� 2 � : fE (mj (Z; �)) � "n=

p
ngJj=1

o
: If the

identi�ed set is non-empty then,

P
�
lim inf

n
�I � �̂I (�n) � �I ("n)

o�
= 1:

and if the identi�ed set is empty then,

P
�
lim inf

n
�̂I (�n) = ?

o�
= 1

When the identi�ed set is non-empty, our set estimate will eventually be �sandwiched�

between two sets, almost surely. These sets are the identi�ed set and a sequence of sets

that converges to the identi�ed set. When the identi�ed set is empty, our set estimate

will eventually become empty, almost surely.

The restrictions on the sequence f�ng+1n=1 provide little guidance on how to implement

the estimator (and the inference based on it) in a �nite sample setting. We will comment

on this important practical question in the next subsection.
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1.4.2.3. The procedure. We now introduce our bootstrap procedure to construct con-

�dence sets for the identi�ed set with a prespeci�ed probability. We will actually propose

two di¤erent procedures: one to be used if the model satis�es the assumptions of the

general model and one to be used exclusively if the model satis�es the assumptions of the

conditionally separable model.

Bootstrap procedure for the general model. The following bootstrap method is in-

tended for the general model, and so, in particular, it can also be applied to the condi-

tionally separable model. For this procedure, our main result will be the consistency in

level.

(1) Choose a positive sequence f�ng+1n=1 such that �n=
p
n = o (1) and

p
ln lnn=�n =

o (1) ; almost surely,

(2) Estimate of the identi�ed set with;

�̂I (�n) =
n
� 2 � :

�
En (mj (Z; �)) � �n=

p
n
	J
j=1

o
(3) Repeat the following for s = 1; 2; :::; S: Construct bootstrap samples of size n; by

sampling randomly with replacement from the data. Denote the bootstrapped

observations by fZ�i g
n
i=1 and for every j = 1; 2; :::; J; let E�n (mj (Z; �)) denote

n�1
Pn

i=1mj (Z
�
i ; �) : Compute,

��n =

8>>>>><>>>>>:
sup

�2�̂I(�n)
G

0B@
8><>: [

p
n (E�n (mj (Z; �))� En (mj (Z; �)))]+ �

�1 [En (mj (Z; �)) � ��n=
p
n]

9>=>;
J

j=1

1CA if �̂I (�n) 6= ?

0 if �̂I (�n) = ?
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(4) Let ĉBn (1� �) be the (1� �) quantile of the bootstrapped distribution of ��n;

approximated with arbitrary accuracy from the previous step. The bootstrap

estimate of the (1� �) coverage region for the identi�ed set is given by,

ĈBn (1� �) =
�
� 2 � :

p
nQn (�) � ĉBn (1� �)

	
In order to implement our procedure, we need to specify the sequence f�ng+1n=1 de-

scribed in the �rst step. This sequence enters the procedure in two places. First, it enters

in the estimation of the identi�ed set (step 2) and, second, it enters in indicator term in

the bootstrap criterion function (step 3)12. The restrictions on the rate of the sequence

f�ng+1n=1 in �rst step provide little guidance on how to choose this sequence in a practical

application. In our Monte Carlo simulations, the sequences �n = ln lnn and �n = lnn

seemed to provide similar and satisfactory results. Based on these �ndings, it appears

that the �nite sample performance of our inferential method does not depend critically

on the speci�c choice of this sequence.

The key to the consistency in level of our bootstrap procedure is the bootstrap analogue

criterion function de�ned in step 3. In particular, it is essential to the consistency result

that we introduce (a) the indicator function term 1 [En (mj (Z; �)) � ��n=
p
n] and (b)

the recentering term (that is, subtracting the sample moment from the bootstrap sample

moment). The indicator function term is similar to the parametric bootstrap proposed

by Andrews [2]. The properties required on the sequence f�ng+1n=1 imply that this term

indicates whether the corresponding population moment inequality is binding, eventually,

12In principle, the sequence f�ng+1n=1 in steps 2 and 3 could be two di¤erent sequences provided that
they both satisfy the rate requirements in step 1. The formal arguments in the appendix allow these two
sequences to di¤er. We restrict both sequences to coincide in order to simplify the notation.
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almost surely13. Because of these two terms, this procedure di¤ers qualitatively from the

bootstrap version of the subsampling methods provided by CHT [23]. These di¤erences

are analyzed in the appendix (section A.2.1).

Bootstrap procedure for the conditionally separable model. In the conditionally sepa-

rable model, we will be interested in obtaining rates of convergence (and with them, error

in the coverage probability). In order to understand why we need to introduce a separate

bootstrap method for the conditionally separable model, we need to distinguish between

whether the design of the covariates is �xed or random. The design of the covariates refers

to how the econometrician perceives the distribution of covariates in the sample. If the

design of the covariates is �xed, then the distribution of the covariates is considered to be

non-stochastic (or stochastic and conditioned upon) and if the design of the covariates is

random, it is considered to be stochastic. Of course, the inference we perform is di¤erent

depending on the case.

If the covariates are perceived as �xed, then the cell frequency of the covariates is a

constant and we can show that the bootstrap procedure for the general model will deliver

rates of convergence of order n�1=2: If the covariates are perceived as random, then the cell

frequency of the covariates is random. If this is the case, our arguments will only be able

to show that the bootstrap procedure proposed in the previous section produces rates of

order n�1=2 lnn ln lnn (instead of n�1=2). Nevertheless, it is possible to design a bootstrap

method which can achieve rates of convergence of order n�1=2 independently of the design

13If the moment inequality is binding then, eventually, the corresponding indicator function will be equal
to one, almost surely and if the moment inequality is not binding then, eventually, the corresponding
indicator function will be equal to zero, almost surely.
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of the covariates. This will be referred to as the bootstrap procedure specialized for the

conditionally separable case and it consists of the following steps:

(1) Choose a positive sequence f�ng+1n=1 such that �n=
p
n = o (1) and

p
ln lnn=�n =

o (1) ; almost surely,

(2) Estimate of the identi�ed set with,

�̂I (�n) =

�
� 2 � :

n
p̂k (En (Yjjxk)�Mj (�; xk)) � �np

n

oJ�K
(j;k)=1

�
;

(3) Repeat the following for s = 1; 2; :::; S: Construct bootstrap samples of size n; by

sampling randomly with replacement from the data. Denote the bootstrapped

observations by fY �
i ; X

�
i g
n
i=1, and for every k = 1; 2; :::; K; and j = 1; 2; :::; J let

E�n (Yjjxk) = n�1
Pn

i=1fY �
j;ijX�

i = xkg and p̂�k = n�1
Pn

i=1 1 [X
�
i = xk] : Compute,

��n =

8>>>>>>>><>>>>>>>>:
sup

�2�̂I(�n)
G

0BBBBB@
8>>>><>>>>:
[
p
np̂�k (E�n (Yjjxk)� En (Yjjxk))]+ �

�1

264 p̂k (En (Yjjxk)�Mj (�; xk))

� ��n=
p
n

375
9>>>>=>>>>;

J�K

(j;k)=1

1CCCCCA if �̂I (�n) 6= ?

0 if �̂I (�n) = ?

(4) Let ĉBn (1� �) be the (1� �) quantile of the bootstrapped distribution of ��n;

simulated with arbitrary accuracy from the previous step. The bootstrap estimate

of the (1� �) coverage region for the identi�ed set is given by,

ĈBn (1� �) =
�
� 2 � :

p
nQn (�) � ĉBn (1� �)
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If the covariates are �xed by design, the general bootstrap procedure and the one

specialized for conditionally separable model are identical. When the design is random,

these two methods di¤er in step 3. In particular, when the estimator for the identi�ed

set is non-empty, the argument inside the [�]+ function is a random vector rather than a

random function. This is the key feature that allows us to obtain rates of convergence of

order n�1=2:

1.4.2.4. Consistency in level of the bootstrap approximation. In this section, we

analyze the asymptotic properties of our bootstrap procedure. As a �rst step, we show

that the distribution of the statistic of interest has a certain asymptotic representation.

The statement of this theorem and its proof can be found in the appendix (theorem 36). In

order to deduce properties of our bootstrap approximation, we establish that, conditional

on the sample, our bootstrap approximation has an analogous asymptotic representation

(theorem 38). These two theorems are the key to establish the remaining results of the

section.

The following lemma characterizes the limiting distribution of the statistic of interest.

Lemma 6. Assume (A1)-(A4) and (CF�). If the identi�ed set is non-empty, then

limm!1 P (�m � h) = P (H (�) � h) ; where H is the function and � is the random process

described in theorem 36. If the identi�ed set is empty, then for every n 2 N, P (�n � h)

= 1 [h � 0].

Moreover, limm!1 P (�m � h) is continuous for all h 6= 0:

The previous lemma indicates that the only possible discontinuity of the limiting

distribution of the statistic of interest can14 occur at zero. The possibility of a discontinuity

14We can construct examples which do and which do not have discontinuity at zero.
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at zero is a consequence of undertaking the criterion function approach, since the criterion

function maps all realizations where the restrictions imposed by the identi�ed set are

satis�ed into zero. By choosing the criterion function adequately (with assumption (CF�)),

we make zero the only possible discontinuity point.

The following theorem shows that the bootstrap distribution converges pointwise to

the limiting distribution of the statistic of interest for almost all sample sequences.

Theorem 7. Assume (A1)-(A4) and (CF�). If the identi�ed set is non-empty, then

for any h 2 R in the continuity set of the limiting distribution;

lim
n!1

���P (��n � hjXn)� lim
m!1

P (�m � h)
��� = 0

almost surely: If the identi�ed set is empty, then for any h 2 R;

lim
n!1

���P (��n � hjXn)� lim
m!1

P (�m � h)
��� = 0

almost surely.

The traditional de�nition of bootstrap consistency (see, e.g., Hall [32] or Horowitz

[36]) requires that the conditional distribution of our bootstrap estimate converges to the

limiting distribution of the statistic of interest, uniformly over the real line. In the case

when the identi�ed set is empty, we have shown that the limiting distribution is degen-

erate at zero and, eventually, our bootstrap approximation also becomes degenerate at

zero, almost surely. In this case, uniform convergence is achieved by pointwise conver-

gence at zero. In the case when the identi�ed set is non-empty, the limiting distribution
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has a discontinuity at zero. Given this discontinuity, it is possible that the bootstrap

approximation we propose fails to converge (pointwise) at zero.

To resolve this issue, our strategy will be to exclude the discontinuity point from

our goal. Except on an arbitrarily small neighborhood around zero, we show that the

bootstrap approximation is consistent. To this end, we introduce an alternative de�nition

of consistency of bootstrap, namely the consistency of the bootstrap on a set.

De�nition 8 (Bootstrap consistency on a set S). The bootstrap estimate of the dis-

tribution of interest is consistent on a set S � R if and only if for any " > 0,

lim
n!1

P

�
sup
h2S

���P (��n � hjXn)� lim
m!1

P (�m � h)
��� > "

�
= 0

The de�nition of bootstrap consistency on a set weakens the traditional de�nition

of bootstrap consistency. Instead of requiring uniform convergence over the real line, it

requires uniform convergence over a certain set. This new de�nition of consistency will

be good enough for our purposes if, with probability approaching one, S includes the

quantile we are interested in approximating. As we will explain soon, for the purpose of

hypothesis testing, it su¢ ces to consider a compact subset of the real line that excludes

zero. This leads to a result we call bootstrap consistency on any set excluding zero.

Theorem 9 (Bootstrap consistency on any set excluding zero). Assume (A1)-(A4)

and (CF�). If the identi�ed set is non-empty then, for any � > 0;

P

 
lim
n!1

sup
jhj��

���P (��n � hjXn)� lim
m!1

P (�m � h)
��� = 0! = 0
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and if the identi�ed set is empty then,

P

�
lim inf

�
sup
h2R

���P (��n � hjXn)� lim
m!1

P (�m � h)
��� = 0�� = 1

In the case of non-empty identi�ed sets, we have dealt with the discontinuity at zero

by simply excluding this point from the analysis. But is this point important to obtain a

bootstrap approximation at zero? The answer is negative. By theorem 36 and lemma 6,

it follows that limm!1 P (�m � 0) � 0:5. Thus, by the lack of pointwise convergence at

zero, we might be unable to approximate a quantile of the distribution that is to the left

of the median of the asymptotic distribution. Since the purpose of the approximation is

to construct con�dence sets, we are typically interested in approximating the 90, 95 and

99 percentiles of the distribution. All these quantiles will map into values for which our

consistency result holds, with probability approaching one.

Based on theorem 9, we can show consistency in level of our bootstrap con�dence sets.

Corollary 10 (Consistency in level - bootstrap approximation). Assume (A1)-(A4)

and (CF�). If the identi�ed set is non-empty then, for any � 2 [0; 0:5)

lim
n!1

P
�
�I � ĈBn (1� �)

�
= (1� �)

1.4.2.5. Rates of convergence of the bootstrap approximation. For the rest of this

section, we focus on the conditionally separable model, which is described by assumptions

(B1)-(B5). For this framework, we can obtain precise rates of convergence of our bootstrap

approximation to the �nite sample distribution of the statistic of interest. The following

result follows from the representation theorems 36 and 38 and the Berry-Esseén theorem.
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Theorem 11 (Rate of convergence - bootstrap approximation). Assume (B1)-(B5)

and (CF) and choose the bootstrap procedure to be the one specialized for the conditionally

separable model. If the identi�ed set is non-empty then, for any � > 0,

sup
jhj��

jP (��n � hjXn)� P (�n � h)j = Op
�
n�1=2

�
and if the identi�ed set is empty then,

P

�
lim inf

�
sup
h2R

jP (��n � hjXn)� P (�n � h)j = 0
��

= 1

We proposed a bootstrap approximation to the distribution of interest in order to

construct con�dence sets with a prespeci�ed coverage probability. Since this constitutes an

approximation, our con�dence sets will not have exactly the desired coverage probability.

The di¤erence between the desired coverage and the actual coverage is referred to as the

error in the coverage probability (ECP). By the consistency in level result of the previous

subsection, the error in the coverage probability of our bootstrap approximation converges

in probability to zero. In the conditionally separable model, theorem 11 can be used to

provide an upper bound of the rate at which this convergence occurs. We state this result

as a corollary of theorem 11.

Corollary 12 (ECP - bootstrap approximation). Assume (B1)-(B5), (CF) and choose

the bootstrap procedure to be the one specialized for the conditionally separable model. If

the identi�ed set is non-empty then, for any � 2 [0; 0:5) ;

���P ��I � ĈBn (1� �)
�
� (1� �)

��� = O
�
n�1=2

�
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and if the identi�ed set is empty then, for any � 2 [0; 1],

P
�
lim inf

n
ĈBn (1� �) = �̂I (0)

o�
= 1

In terms of coverage, the only relevant case is the non-empty identi�ed set, since the

empty set is trivially covered by any con�dence set. According to the previous corollary,

in the conditionally separable case, the error in the coverage probability converges to zero

at a rate of order n�1=2:

1.4.3. Alternative procedures

In previous sections, we proposed a bootstrap scheme to perform inference in partially

identi�ed models. We showed that it is consistent in level and we characterized its error in

coverage probability. In this subsections, we consider two alternative inferential methods.

1.4.3.1. Subsampling. One can consider di¤erent subsampling procedures in order to

approximate the distribution of interest. For example, one can use the subsampling scheme

proposed by CHT [23] or one can consider the subsampling analogue of the bootstrap

procedure proposed in preceding sections. The basic di¤erence between the two is that

the subsampling analogue of our bootstrap procedure will include a recentering term and

an indicator function term 1 [En (mj (Z; �)) � ��n=
p
n] whereas CHT [23]�s subsampling

will not have such terms15. When the identi�ed set is non-empty, the di¤erence between

these two will converge in probability to zero16.

15The recentering term does not a¤ect the consistency of the approximation, since it converges in proba-
bility to zero. Nevertheless, its rate of convergence (in probability) is of order (bn=n)1=2; where bn denotes
the subsampling size. This rate is relatively slow, compared to the one obtained by the fact that we are
drawing samples without replacement. We conjecture that this produces even slower rates of convergence
than the one obtained by a subsampling procedure that does include recentering.
16See lemma 54 in the appendix for the proof.
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Our subsampling procedure is as follows:

(1) Choose a positive sequence f�ng+1n=1 such that �n=
p
n = o (1) and

p
ln lnn=�n =

o (1) ; almost surely,

(2) Estimate of the identi�ed set with,

�̂I (�n) =
n
� 2 � :

�
En (mj (Z; �)) � �n=

p
n
	J
j=1

o
(3) Repeat the following step for s = 1; 2; :::; S. Construct a subsample of size bn

(with bn !1 and bn=n = o (1)) by sampling randomly without replacement from

the data. Denote these observations by
�
ZSSi

	bn
i=1
and for every j = 1; 2; :::; J; let

ESSbn;n (mj (Z; �)) denote b�1n
Pbn

i=1mj

�
ZSSi ; �

�
: Compute,

�SSbn;n =

8>>>>>>>>><>>>>>>>>>:
sup

�2�̂I(�n)
G

0BBBBB@
8>>>><>>>>:

264pbn
0B@ ESSbn;n (mj (Z; �))+

�En (mj (Z; �))

1CA
375
+

�

�1 [En (mj (Z; �)) � ��n=
p
n]

9>>>>=>>>>;

J

j=1

1CCCCCA if �̂I (�n) 6= ?

0 if �̂I (�n) = ?

(4) Let ĉSSbn;n (1� �) be the (1� �) quantile of the distribution �SSbn;n; simulated with

arbitrary accuracy from the previous step. The subsampling estimate of the

(1� �) coverage region for the identi�ed set is given by,

ĈSSbn;n (1� �) =
�
� 2 � :

p
nQn (�) � ĉSSbn;n (1� �)

	
If the model is conditionally separable, we can choose to use a subsampling procedure

specialized for the framework. In this case, the expression for �SSbn;n in step 3 would be
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replaced by,

�SSbn;n =

=

8>>>>>>>>><>>>>>>>>>:
sup

�2�̂I(�n)
G

0BBBBB@
8>>>><>>>>:

264pbnp̂SSk
0B@ ESSbn;n (Yjjxk)+

�En (Yjjxk)

1CA
375
+

�

�1 [p̂k (En (Yjjxk)�Mj;k (�)) � ��n=
p
n]

9>>>>=>>>>;

J�K

(j;k)=1

1CCCCCA if �̂I (�n) 6= ?

0 if �̂I (�n) = ?

where, for each k = 1; 2; :::; K; and j = 1; 2; :::; J , ESSbn;n (Yjjxk) = b�1n
Pbn

i=1fY SS
j;i jXSS

i =

xkg and p̂SSk = b�1n
Pbn

i=1 1
�
XSS
i = xk

�
:

We can establish theorems along the lines of theorem 9 for the subsampling approx-

imation (theorem 46 in the appendix). Based on these results, we can demonstrate the

consistency in level of the subsampling approximation.

Corollary 13 (Consistency in level - subsampling approximation). Assume (A1)-(A4)

and (CF) and let fbng+1n=1 be a positive sequence such that bn ! 1 and bn=n = o (1). If

the identi�ed set is non-empty then, for any � 2 [0; 0:5) ;

lim
n!1

P
�
�I � ĈSSbn;n (1� �)

�
= (1� �)

We can also establish the rate of convergence that can be used to �nd the error in the

coverage probability of the subsampling approximation.

Corollary 14 (ECP - subsampling approximation). Assume (B1)-(B5), (CF), that

the distribution of fY jX = xkgKk=1 is strongly non-lattice and let fbng
+1
n=1 be a positive

sequence such that bn !1 and bn=n = o (1) : If the identi�ed set is non-empty then, for
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any � 2 [0; 0:5) ;

���P ��I � ĈSSbn;n (1� �)
�
� (1� �)

��� = O
�
bn=n+ b�1=2n

�
If the identi�ed set is empty then, for any � 2 [0; 1],

P
�
lim inf

n
ĈSSbn;n (1� �) = �̂I (0)

o�
= 1

The corollary establishes an upper bound on the rate at which the error in coverage

probability of the subsampling approximation converges to zero. In terms of coverage, the

relevant case is the non-empty identi�ed set. In this case, this upper bound depends on

the choice of the subsampling size, re�ecting the usual trade-o¤ when we choose the sub-

sampling size: increasing subsampling size increases the precision of the averages within

a subsample but decreases the total number of subsamples available. The choice of bn

that minimizes this upper bound is bn = O
�
n2=3

�
; which results in error in the coverage

probability of order n�1=3.

Under certain conditions, we can establish that this rate constitutes not just an upper

bound on the error in the coverage probability, but also a lower bound. We now describe

the arguments but the formal derivations are provided in the appendix (section A.2.6).

Under the assumptions of corollary 14 and using the asymptotic expansion in Babu and

Singh [6], we show that the conditional distribution of our subsampling approximation

has the following asymptotic representation,

(1.1) P
�
�̂SSbn;n � hjXn

�
| {z }
Subsampling approx.

= P (�n � h)| {z }
Exact distribution

+K1 (h) b
�1=2
n +K2 (h)

bn
n
+op

�
bn
n
+ b�1=2n

�
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uniformly over h � � (for any � > 0); where K1 (h) and K2 (h) are two non-random

functions given in the appendix (lemma 47). From this equation, if follows that, for any

h � �; the absolute value of the di¤erence between the subsampling approximation and the

exact �nite sample distribution is minimized by choosing subsampling size bn = C (h)n2=3;

where C (h) minimizes
���K1 (h)C (h)

�1=2 +K2 (h)C (h)
��� ; subject to C (h) > 0: If K1 (h)

and K2 (h) share the sign, then the convergence rate of the approximation cannot be

faster than n�1=3:

For the purpose of inference, we will be interested in values of h in a neighborhood of

the (1� �) quantile of the the limiting distribution, which we denote c1 (1� �) : Typi-

cally, the (1� �) level of interest is greater than 0.72 (usually: 90%, 95% or 99%) and in

the appendix (lemma 47), we show that for all (1� �) 2 (0:72; 1) ; K2 (c1 (1� �)) is pos-

itive. Therefore, if K1 (c1 (1� �)) is also positive, then the subsampling approximation

converges to the distribution of interest at exactly the rate n�1=3 (see corollaries 50 and 52

in the appendix). The conditions under which K1 (c1 (1� �)) is positive involve restric-

tions on the moments of fY jX = xkgKk=1 that, to the best of our knowledge, lack intuitive

interpretation. In the case that K1 (c1 (1� �)) is non-positive, it might be possible to

set the right hand side of equation (1.1) to be op
�
n�1=3

�
by a particularly judicious choice

of C (h) : However, this approach would not be very practical, since it requires careful

empirical selection of the subsampling size based on computation of K1 (c1 (1� �)) and

K2 (c1 (1� �)). In practice, based on asymptotic approximation of equation (1.1), the

subsampling size is likely to be chosen as bn = Cn2=3 for a �xed C > 0: In this case, unless

K1 (c1 (1� �))C�1=2 +K2 (c1 (1� �))C = 0, the subsampling approximation will also

converge to the exact distribution at a rate of n�1=3:
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According to previous sections, the bootstrap delivers error in the coverage probability

of order n�1=2: Hence, in the conditionally separable model and under certain conditions,

the error in the coverage probability of the bootstrap is eventually smaller than the error

in the coverage probability produced by subsampling.

1.4.3.2. Asymptotic approximation. Theorem 36 shows that the limiting distribu-

tion of the statistic of interest converges weakly to a continuous function of a tight Gauss-

ian process with a certain variance-covariance function. An asymptotic approximation

can be constructed by replacing the unknown Gaussian process by a consistent estimate.

This procedure will be shown to be consistent in level and, if we restrict attention to

the separable framework, will be shown to have the same upper bound on the rate of

convergence as our bootstrap procedure.

Formally, we consider the following steps:

(1) Choose a positive sequence f�ng+1n=1 such that �n=
p
n = o (1) and

p
ln lnn=�n =

o (1) ; almost surely,

(2) Estimate of the identi�ed set with,

�̂I (�n) =
n
� 2 � :

�
En (mj (Z; �)) � �n=

p
n
	J
j=1

o
(3) Repeat the following step for s = 1; 2; :::; S: Simulate a zero-mean Gaussian

process where, for each f�1; �2g � �; its covariance function is given by,

�̂ (�1; �2) = En [(m (Z; �1)� En (m (Z; �1))) (m (Z; �2)� En (m (Z; �2)))0]
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Denote this Gaussian process by Ẑ : 
n ! lJ1 (�) : Compute,

�AAn =

8>><>>:
sup

�2�̂I(�n)
G

 �h
Ẑj (�)

i
+
� 1 [En (mj (Z; �)) � ��n=

p
n]

�J
j=1

!
if �̂I (�n) 6= ?

0 if �̂I (�n) = ?

(4) Let ĉAAn (1� �) be the (1� �) quantile of the distribution �AAn simulated with

arbitrary accuracy from the previous step. The subsampling estimate of the

(1� �) coverage region for the identi�ed set is given by,

ĈAAn (1� �) =
�
� 2 � :

p
nQn (�) � ĉAAn (1� �)

	
If the model is conditionally separable then, in step 3, we simulate from a zero-mean

normal vector with variance-covariance matrix given by,

�̂ = En
��
f1 (X = xk) [Yj � En (Yjjxk)]gJ�K(j;k)=1

��
f1 (X = xk) [Yj � En (Yjjxk)]gJ�K(j;k)=1

�0�

Following the steps we used for the bootstrap approximation, we can prove consistency

in level for the asymptotic approximation (theorem 56 in the appendix).

Corollary 15 (Consistency in level - asymptotic approximation). Assume (A1)-(A4)

and (CF�). If the identi�ed set is non-empty then, for any � 2 [0; 0:5)

lim
n!1

P
�
�I � ĈAAn (1� �)

�
= (1� �)

Moreover, we can also establish the rate of convergence (theorem 57 in the appen-

dix) which can be used to �nd the error in the coverage probability of the asymptotic

approximation.
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Corollary 16 (ECP - asymptotic approximation). Assume (B1)-(B4) and (CF). If

the identi�ed set is non-empty then, for any � 2 [0; 0:5) ;

���P ��I � ĈAAn (1� �)
�
� (1� �)

��� = O
�
n�1=2

�
If the identi�ed set is empty then, for any � 2 [0; 1],

P
�
lim inf

n
ĈAAn (1� �) = �̂I (0)

o�
= 1

For the conditionally separable model, the bootstrap and the asymptotic approxima-

tion have the same (upper bound) of the order of the error in the coverage probability. In

other words, the bootstrap does not seem to be providing asymptotic re�nements17. This

is not surprising because the statistic of interest is not asymptotically pivotal. Finally,

notice that the asymptotic approximation is implemented by simulation and therefore,

requires exactly the same amount of computation as the bootstrap approximation.

1.4.4. Monte Carlo simulations

In order to evaluate the �nite sample behavior of the di¤erent inferential methods, consider

the following binary choice model with missing data. Suppose that we are interested in

the decision of individuals between two mutually exclusive and exhaustive choices: choice

17In order to obtain asymptotic re�nements, one could consider a computer intensive procedure called
prepivoting or bootstrap iteration. The basic idea is to perform a bootstrap procedure on the bootstrap
estimates. This has the e¤ect of performing an approximation which includes one additional term in the
Edgeworth expansion. This procedure was introduced by Beran [9] and Beran [10], formally analyzed
by Hall and Martin [33] and described in Hall [32] and Horowitz [36]. The study of the validity of the
prepivoting procedure in this setting is out the scope of this paper.
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0 or choice 1. Let Y denote this choice, which is assumed to be generated by,

Y = 1 [X� � "]

where X is a vector of observable vector of explanatory variables with support denoted

by S (X), " is an unobservable explanatory variable and � denotes the parameters of

interest. Assume that " � N (0; 1) independent of X; which implies that we adopt the

probit model. Therefore,

P (Y = 1jX = x) = E (Y jX = x) = � (x�)

where � denotes the standard normal CDF.

Now suppose that we observe the covariates for every respondent but, for some re-

spondents, we do not get to observe the choice. Denote by W the indicator function that

takes value one if the choice is observed and zero otherwise. An i.i.d. sample will identify

the distribution of the covariates, the distribution of choices conditional on the choice

being observed and the probability of observing a response. The identi�ed set is given by,

�I =

8<:� 2 � : \
x2S(X)

fE (YW jx) � � (x�) � E (YW + (1�W ) jx)g

9=;
We consider the following four Monte Carlo designs which di¤er in the de�nition of

the support of X and in the value of E (YW jx) and E (W jx) for every x in the support

of X: The designs are described in table 1.1.

For all simulations we will sample N = 600 observations, with 100 observations for the

�rst covariate, 200 observations for the second covariate and 300 observations for the third
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Covariate values
x1 = (1; 0) x2 = (0; 1) x3 = (1; 1)

Design 1 E (YW jx) �(�0:5) �(�0:5) �(�0:5)
E (W jx) 2�(�0:5) 2�(�0:5) 2�(�0:5)

x1 = (1; 0) x2 = (0; 1) x3 = (1; 1)
Design 2 E (YW jx) �(�0:5) �(�0:5) �(�1)

E (W jx) 2� (�0:5) 2� (�0:5) �(�1) + �(�0:5)

x1 = (1; 0) x2 = (0; 1) x3 = (�1; 0)
Design 3 E (YW jx) �(�0:5) �(�0:5) �(�0:5)

E (W jx) �(�0:5) + � (0) 2�(�0:5) �(�0:5) + � (0)

x1 = (1; 0) x2 = (0; 1) x3 = (�1; 0)
Design 4 E (YW jx) �(�0:5) �(0) �(�0:5)

E (W jx) �(�0:5) + �(0:1) � (0)+� (�1) �(�0:5) + � (0:1)

Table 1.1. Monte Carlo designs

covariate. For each value of the covariate, we sample fY jXg and fW jXg independently

from a Bernoulli distribution with the mean speci�ed by the table. We treat the design

as random.

For our criterion function we choose G (y) =
PK

k=1

PJ
j=1 [yj;k]+, which satis�es as-

sumption (CF). Each of the numbers presented in the table are the average of the result

of 1000 Monte Carlo simulations. In each simulation, the distribution of the bootstrap,

subsampling and asymptotic approximation are approximated from (the same) 200 Monte

Carlo draws.

In order to implement our bootstrap and our asymptotic approximation we need to

specify the sequence f�ng+1n=1. We conducted simulations with �n = ln lnn and �n = lnn

and both speci�cations provide similar and satisfactory results. From this experience, we
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conjecture that the results are relatively robust to the choice of the sequence f�ng+1n=1 :

For the sake of brevity, we only report results with �n = ln lnn:

1.4.4.1. Design 1. The identi�ed set is described by a pair of moment inequalities for

each of the three covariate values. Combining these restrictions, the identi�ed set is

described by �gure 1.1.

Figure 1.1. Identi�ed set for �rst Monte Carlo design

The distinctive characteristic of this design is that the identi�ed set has non-empty

interior everywhere and that the boundaries of the identi�ed set are de�ned by, at most,

two constrains satis�ed with equality. As a consequence, in this particular case, we can

obtain consistent inference using bootstrap, subsampling and asymptotic approximation

even if we set �n = 0.

We present the result of constructing coverage sets in table 1.2. The �rst six rows

correspond to subsampling procedures. Rows one to four correspond to di¤erent versions
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of the subsampling proposed by CHT [23]18. Rows �ve and six correspond to the sub-

sampling procedure proposed in section 1.4.3.1. Any of these subsampling procedures

require specifying the subsampling size bn. For the sake of brevity, we show the results

for bn = n=2 and bn = n=3 but the results for other choices of subsampling size produced

qualitatively similar results. According to CHT [23] and the analysis in section 1.4.3.1,

the subsampling procedures with �n = ln lnn produce consistent inference in level. Rows

seven and eight correspond to the naive bootstrap considered in section A.2.1, that is,

the inferential procedure that results from replacing the subsampling method proposed

by CHT [23] with the bootstrap. Recall that, in general, the naive bootstrap will produce

inconsistent inference. Rows nine and ten correspond to our bootstrap procedure and our

asymptotic approximation, respectively. According to the theoretical results in sections

1.4.2.4 and 1.4.3.2, both inferential schemes generate consistent inference in level. For

each empirical coverage, we perform a two sided hypothesis test of whether the empirical

coverage coincides with the desired coverage, and the result is represented by stars in the

usual way19.

We �rst analyze the results of subsampling. When �n = 0; both subsampling pro-

cedures coincide and given the characteristics of this particular design, should produce

consistent inference in level. Our simulations reveal that these procedures result in signif-

icant undercoverage in small samples. When �n = ln lnn; both subsampling procedures

should be consistent in level.

18When implementing this bootstrap analogue, we have respected the way CHT [23] estimate the iden-
ti�ed set. Also, in their paper, they envision the possibility of performing iterations on their procedure.
Our results were obtained with only one iteration.
19One star means signi�cant at 10% level, two stars mean signi�cant at 5% level and three stars mean
signi�cant at 1% level.
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Empirical coverage
Procedure 75% 90% 95% 99%

CHT�s Subsampling (bn = n=2; �n = 0) 47.9%��� 65.8%��� 76.1%��� 88.0%���

CHT�s Subsampling (bn = n=3; �n = 0) 57.9%��� 78.0%��� 85.3%��� 94.4%���

CHT�s Subsampling (bn = n=2; �n = ln lnn) 100%��� 100%��� 100%��� 100%���

CHT�s Subsampling (bn = n=3; �n = ln lnn) 100%��� 100%��� 100%��� 100%���

Our Subsampling (bn = n=2; �n = ln lnn) 47.5%��� 66.3%��� 75.9%��� 87.9%���

Our Subsampling (bn = n=3; �n = ln lnn) 57.7%��� 77.5%��� 85.9%��� 94.7%���

Naive bootstrap (�n = 0) 72.5%� 89.3% 94.2% 98.8%
Naive bootstrap (�n = ln lnn) 100%��� 100%��� 100%��� 100%���

Our bootstrap (�n = ln lnn) 74.9% 89.8% 95.4% 99.0%
Our asymptotic approximation (�n = ln lnn) 74.2% 89.5% 95.0% 99.6%

Table 1.2. Results of �rst Monte Carlo design

Even though the subsampling scheme proposed by CHT [23] is consistent, the results

in section A.2.1 in the appendix hint that it could su¤er from overcoverage in small samples

(due to what we refer as the expansion problem). This is con�rmed by our simulations.

The subsampling procedure of section 1.4.3.1 su¤ers from undercoverage. The poor

performance of the subsampling procedures can be attributed to slow rates of convergence.

If we implement the naive bootstrap with �n = 0 we obtain an accurate approximation.

This is a consequence of the simple structure of the current setup and, as we will show, does

not hold in general. In turn, when the naive bootstrap is implemented with �n = ln lnn;

we su¤er from overcoverage. This is a result of the expansion problem, described in section

A.2.1 in the appendix.

The �nal two procedures correspond to the procedures proposed in this paper. As the

table reveals, both approximations with �n = ln lnn achieve a very satisfactory perfor-

mance.

1.4.4.2. Design 2. The identi�ed set in this design is described by �gure 1.2.
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Figure 1.2. Identi�ed set for the second Monte Carlo design

As in the previous design, the identi�ed set has non-empty interior everywhere. The

di¤erence with respect to the previous design is that there is one point in the identi�ed

set, the point (�1; �2) = (�0:5;�0:5) ; where one of the restrictions, namely �1 + �2 � 0;

is both irrelevant and satis�ed with equality. By the arguments provided in section A.2.1

in the appendix, it is not hard to see that the naive bootstrap procedure will not produce

consistent inference (no matter how �n is chosen).

The failure of the naive bootstrap in this design is related to the boundary problems

studied by Andrews [2]. The intuition is as follows. The identi�ed set includes the point

(�1; �2) = (�0:5;�0:5) ; which happens to satisfy, with equality, three of the restrictions

that de�ne the identi�ed set. In turn, the sample analogue estimate of the identi�ed set

will, almost surely, never include any point where three of these restrictions are satis�ed

with equality. Hence, the binding/non-binding structure of the identi�ed set will almost

never coincide with the binding/non-binding structure of its sample analogue.
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Empirical coverage
Procedure 75% 90% 95% 99%

CHT�s subsampling (bn = n=2; �n = 0) 43.7%��� 63.9%��� 72.7%��� 87.3%���

CHT�s subsampling (bn = n=3; �n = 0) 55.2%��� 72.1%��� 81.7%��� 92.6%���

CHT�s subsampling (bn = n=2; �n = ln lnn) 100%��� 100%��� 100%��� 100%���

CHT�s subsampling (bn = n=3; �n = ln lnn) 100%��� 100%��� 100%��� 100%���

Our subsampling (bn = n=2; �n = ln lnn) 43.4%��� 64.3%��� 73.3%��� 88.3%���

Our subsampling (bn = n=3; �n = ln lnn) 55.6%��� 74.7%��� 84.3%��� 93.8%���

Naive bootstrap (�n = 0) 70.1%��� 88.0%�� 93.5%�� 98.6%
Naive bootstrap (�n = ln lnn) 100%��� 100%��� 100%��� 100%���

Our bootstrap (�n = ln lnn) 75.5% 91.6%� 95.9% 99.0%
Our asymptotic approximation (�n = ln lnn) 75.0% 91.8%� 95.4% 99.0%

Table 1.3. Results of second Monte Carlo design

The results are presented in table 1.3. The subsampling procedures have a mediocre

�nite sample behavior. If we set �n = 0; all subsampling procedures su¤er from under-

coverage. When �n = ln lnn; the subsampling procedure proposed by CHT [23] su¤ers

from overcoverage whereas the subsampling procedure of section 1.4.3.1 still su¤ers from

undercoverage. Again, we attribute the bad performance of these subsampling schemes

to their slow convergence rates.

By the arguments in section A.2.1 of the appendix, the naive bootstrap with �n =

ln lnn su¤ers from overcoverage. On the other hand, the naive bootstrap with �n = 0

su¤ers from undercoverage as a consequence of boundary problems.

Our bootstrap and our asymptotic approximation exhibit a very satisfactory perfor-

mance.

1.4.4.3. Design 3. Figure 1.3 depicts the situation of the identi�ed set.

This design di¤ers from the previous two in that the identi�ed set has empty interior

and, with positive probability, the analogy principle estimate of the identi�ed set will be
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Figure 1.3. Identi�ed set for third Monte Carlo design

Empirical coverage
Procedure 75% 90% 95% 99%

CHT�s subsampling (bn = n=2; �n = 0) 34.3%��� 40.4%��� 43.0%��� 44.3%���

CHT�s subsampling (bn = n=3; �n = 0) 37.8%��� 42.9%��� 43.9%��� 45.4%���

CHT�s subsampling (bn = n=2; �n = ln lnn) 100%��� 100%��� 100%��� 100%���

CHT�s subsampling (bn = n=3; �n = ln lnn) 100%��� 100%��� 100%��� 100%���

Our subsampling (bn = n=2; �n = ln lnn) 45.6%��� 45.6%��� 45.6%��� 45.7%���

Our subsampling (bn = n=3; �n = ln lnn) 45.6%��� 45.6%��� 45.7%��� 45.7%���

Naive bootstrap (�n = 0) 45.6%��� 45.7%��� 45.7%��� 45.7%���

Naive bootstrap (�n = ln lnn) 100%��� 100%��� 100%��� 100%���

Our bootstrap (�n = ln lnn) 76.2% 89.9% 95.7% 98.8%
Our asymptotic approximation (�n = ln lnn) 76.4% 90.5% 95.8% 98.9%

Table 1.4. Results of third Monte Carlo design

empty. This illustrates why we need to expand our estimate with the positive sequence

f�ng+1n=1 in order to generate an estimator of the identi�ed set that is adequate for infer-

ence. By arguments in section A.2.1 of the appendix, the introduction of this sequence

will produce inconsistencies in the naive bootstrap, because of the expansion problem.

Even if we obtain a non-empty sample estimate of identi�ed set with �n = 0, the naive

bootstrap will not lead to consistent inference due to the boundary problems.
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The results are given in table 1.4. As usual, the subsampling procedures have a

mediocre �nite sample behavior. If we set �n = 0; all subsampling procedures su¤er

from undercoverage. When �n = ln lnn; the subsampling procedure proposed by CHT

[23] su¤ers from overcoverage whereas the subsampling procedure described in section

1.4.3.1 still su¤ers from undercoverage. As usual, we suspect that the bad performance is

associated to the slow convergence rates.

By the arguments in section A.2.1 of the appendix, the naive bootstrap with �n =

ln lnn should result in overcoverage. This is con�rmed by the �nite sample behavior. The

di¤erence between this design and the previous ones is that if we set �n = 0; then, with

probability 0.5, this estimated set will be empty, which leads to undercoverage, as shown

in the table.

Our bootstrap and our asymptotic approximation procedures combined with �n =

ln lnn, we obtain a very satisfactory �nite sample performance.

1.4.4.4. Design 4. In this case, the identi�ed set is empty or, equivalently, the model

is misspeci�ed. Since the identi�ed set is empty, the empirical coverage is trivially 100%.

Therefore, in this design we will compare the relative sizes of the coverage sets for di¤erent

inferential methods. In order to achieve this task, we need to de�ne a measure of size of

the coverage sets generated by the di¤erent inferential methods. For any con�dence set

Cn � �; we consider the following function,

�(Cn) =

8><>: sup�2Cn f
p
nQn (�)g if Cn 6= ?

0 if Cn = ?
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�-size of con�dence set
Procedure 75% 90% 95% 99%

CHT�s subsampling (bn = n=2; �n = 0) 0.03 0.05 0.05 0.07
CHT�s subsampling (bn = n=3; �n = 0) 0.04 0.05 0.06 0.08
CHT�s subsampling (bn = n=2; �n = ln lnn) 1.98 2.12 2.22 2.38
CHT�s subsampling (bn = n=3; �n = ln lnn) 1.81 1.98 2.09 2.30
Our subsampling (bn = n=2; �n = ln lnn) 0.14 0.16 0.17 0.19
Our subsampling (bn = n=3; �n = ln lnn) 0.13 0.15 0.16 0.18
Naive bootstrap (�n = 0) 0.20 0.23 0.24 0.37
Naive bootstrap (�n = ln lnn) 2.66 2.88 3.01 3.25
Our bootstrap (�n = ln lnn) 0.54 0.74 0.87 1.11
Our asymptotic approximation (�n = ln lnn) 0.54 0.75 0.88 1.11

Table 1.5. Results of fourth Monte Carlo design

The function � constitutes a metric for the size of con�dence sets generated by the

criterion function approach, which is the case in all the inferential procedures analyzed

in this paper. Given any pair of con�dence sets constructed using the criterion function

approach, denoted Cn and C 0n; either C
0
n � Cn or C 0n � Cn (or both) and, moreover, if

Cn � C 0n then �(Cn) � �(C 0n) and if C 0n � Cn then �(C 0n) � �(Cn) :

In table 1.5, we compare the average sizes of the coverage sets for the design, using the

average value of the function � over the Monte Carlo trials. In this case, it only makes

sense to compare those methods that are known to produce consistent inference. These

are: the subsampling proposed by CHT [23] with �n = ln lnn (rows three and four),

the subsampling of section 1.4.3.1 (rows �ve and six), our bootstrap (row nine) and our

asymptotic approximation (row ten).

The subsampling proposed by CHT [23] results in con�dence sets that are relatively

big and the subsampling proposed in section 1.4.3.1 results in con�dence sets that are
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relatively small. Our bootstrap procedure and our asymptotic approximation generate

con�dence sets in between these two.

1.5. Con�dence sets for each element of the identi�ed set

In this section, we consider the problem of constructing a con�dence set that covers

each element of the identi�ed set with a minimum prespeci�ed probability. Formally, we

are after the construction of a con�dence set Cn (1� �) that satis�es condition (1.2).

This construction involves the inversion of simple hypothesis tests. For each point in

the parameter space, we perform a hypothesis test, that results in either rejection or lack

of rejection. The con�dence set for each element of the identi�ed set consists of all the

points in the parameter space that are not rejected.

The con�dence sets considered in this section can be related to a hypothesis testing

problem. Suppose that for a certain parameter value � 2 �; we want to test the null

hypothesis H0 : � 2 �I versus the alternative hypothesis H1 : � 62 �I ; while keeping the

probability of a false rejection to be less or equal than (1� �) : A con�dence set that

satis�es condition (1.2) contains all parameters � 2 � for which we fail to reject the

aforementioned null hypothesis. In partially identi�ed models, we can only restrict the

true parameter that generated the data to the identi�ed set. Therefore, a parameter value

� is a candidate to be the true parameter if and only if it belongs to the identi�ed set.

In this sense, the hypothesis H0 : � 2 �I can be interpreted as the hypothesis that � is a

candidate for the true parameter value.
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1.5.1. Setup

The following set of assumptions conform our econometric model in the i.i.d. setting.

(C1) For the probability space (
;B;P) ; let Z : 
 ! Z be a random vector. We

observe an i.i.d. sample Xn � fZigni=1 :

(C2) The parameter space, denoted by �; is a compact and convex subset of a �nite

dimensional Euclidean space R� (� < +1):

(C3) The identi�ed set, denoted by �I ; is given by,

�I =
n
� 2 � :

n
E (m (Z; �)) � ~0

oo
where for each � 2 �; m (z; �) : Z ! RJ is a measurable function. Moreover, �I

is a proper subset of �:

(C4) For every � 2 � and every j = 1; 2; :::; J; the variance of mj (Z; �) is positive and

�nite.

(C5) For every � 2 �; m (Z; �) has �nite fourth absolute moments.

Assumptions (C1)-(C4) constitute a weaker set of assumptions than the ones conform-

ing the general model of section 1.4.1 (assumptions (A1)-(A4)). When the objective is

to construct con�dence sets for each point in the identi�ed set, these assumptions will

deliver consistency in level of our inferential procedures.

When we add assumption (C5) to assumptions (C1)-(C4), we obtain results regarding

rates of convergence and error in the coverage probability. As opposed to the problem

of construction of con�dence set for the identi�ed set, we do not need to assume that

the model is conditionally separable to obtain these results. The intuition for this is as
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follows. In this problem, we are performing individual hypothesis tests for each value

in the parameter space. Once the value of the parameter is �xed, we are dealing with

random vectors rather than random processes. Hence, under the appropriate moment

conditions, we obtain rates of convergence similar to those obtained in the conditionally

separable model.

The formal arguments that deliver consistency and rates of convergence are analogous

to the ones used for the conditionally separable framework. Hence, by the same reasoning,

the bootstrap procedure that is introduced next could be adapted to work on non i.i.d.

random settings without a¤ecting the consistency result.

For the type of con�dence sets considered in this section, we can generalize the class

of criterion functions used. In particular, under criterion functions that satisfy assump-

tion (CF�), we will be able to show consistency in level of our bootstrap approximation.

Moreover, dividing the sample moment conditions by the sample standard deviations in

the sample analogue criterion function will not a¤ect consistency in level or the rates of

convergence.

1.5.2. Bootstrap procedure

We now introduce the bootstrap procedure to construct a con�dence region for each

element of the identi�ed set. As discussed in section 1.3, such con�dence region can be

constructed by approximating the (1� �) quantile of the distribution of

�n (�) � anQn (�)
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for each � in the parameter space, where Qn is the sample analogue criterion function and

fang+1n=1 is a sequence of constants that makes the (asymptotic) distribution of anQn (�)

non-degenerate.

For this purpose, we propose the following bootstrap scheme.

(1) Choose a positive sequence f�ng+1n=1 such that �n=
p
n = o (1) and

p
ln lnn=�n =

o (1) ; almost surely,

(2) Estimate of the identi�ed set with,

�̂I (�n) =
n
� 2 � :

�
En (mj (Z; �)) � �n=

p
n
	J
j=1

o
(3) Repeat the following step for s = 1; 2; :::; S and for every � 2 �: Construct

bootstrap samples of size n; by sampling randomly with replacement from the

data. Denote the bootstrapped sample by fZ�i g
n
i=1 and for every j = 1; 2; :::; J

let E�n (mj (Z; �)) denote n�1
Pn

i=1mj (Z
�
i ; �). Compute,

��n (�) = 1
h
� 2 �̂I (�n)

i
�G

0B@
8><>: [

p
n (E�n (mj (Z; �))� En (mj (Z; �)))]+ �

�1 [
p
nEn (mj (Z; �)) � ��n]

9>=>;
J

j=1

1CA
(4) Let ĉBn (�; 1� �) be the (1� �) quantile of the bootstrapped distribution of

��n (�) ; simulated with arbitrary accuracy from the previous step,

(5) The bootstrap estimate of the (1� �) coverage region for each element in the

identi�ed set is given by,

ĈBn (1� �) =
�
� 2 � :

p
nQn (�) � ĉBn (�; 1� �)

	



66

The asymptotic approximation analogue of this procedure was also independently

introduced by Soares [60], CHT [23] and Andrews and Soares [5].

It should be noted that the bootstrap procedure we advocate di¤ers qualitatively from

replacing the subsampling scheme of CHT [23] with the bootstrap. As in the previous

section, we refer to the latter resampling scheme as the naive bootstrap. In section A.3.1

of the appendix, we show that, in general, the naive bootstrap results in inconsistent

inference. The reason for the inconsistency can be directly related to the inconsistency of

the bootstrap on the boundary, studied by Andrews [2].

1.5.3. Properties of the bootstrap approximation

The formal analysis of the bootstrap can be established with representation theorems

along the lines used to construct con�dence sets for the identi�ed set. For the sake

of brevity, these theorems are stated and proved in the appendix. These representation

theorems characterize the limiting distribution and prove bootstrap consistency excluding

zero, which allows us to deduce the consistency in level of the bootstrap approximation.

Corollary 17 (Consistency in level - bootstrap approximation). Assume (C1)-(C4)

and (CF�). If � belongs to the boundary of �I then, for any � 2 [0; 0:5) ;

lim
n!1

P
�
� 2 ĈBn (1� �)

�
= 1� �

If � belongs to the interior of �I then, for any � 2 [0; 1] ;

lim
n!1

P
�
� 2 ĈBn (1� �)

�
= 1
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If � does not belong to �I then, for any � 2 [0; 1] ;

lim
n!1

P
�
� 62 ĈBn (1� �)

�
= 1

Moreover, by adding assumption (C5), we can obtain rates of convergence, which

allows us to deduce the error in the coverage probability.

Corollary 18 (ECP - bootstrap approximation). Assume (C1)-(C5) and (CF). If �

belongs to the boundary of �I , then, for any � 2 [0; 0:5) ;

���P �� 2 ĈBn (1� �)
�
� (1� �)

��� = O
�
n�1=2

�
If � belongs to the interior of �I , then, for any � 2 [0; 1] ;

���P �� 2 ĈBn (1� �)
�
� 1
��� = O

�
n�1
�

If � does not belong to �I , then, for any � 2 [0; 1] ;

P
�
� 2 ĈBn (1� �)

�
= O

�
n�1
�

If we replace assumption (CF) with assumption (CF�) then the only result that changes

is that when � belongs to the boundary of �I ; for any � 2 [0; 0:5) ;

���P �� 2 ĈBn (1� �)
�
� (1� �)

��� = O
�
n�1=2 lnn

�
For any parameter on the boundary of the identi�ed set, the probability of belonging

to the con�dence set converges to the desired level with rates of order n�1=2 (under (CF)).
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Outside the boundary of the identi�ed set, the coverage probability converges to the

desired value at a faster rate.

Exactly as in sections 1.4.3.1 and 1.4.3.2, we can propose an asymptotic approximation

and a subsampling approximation. These inferential schemes are completely analogous

to the bootstrap procedure and are presented in the appendix (sections A.3.6 and A.3.5).

Using the same techniques, we can study the rate of convergence and the error in the

coverage probability for these alternative methods. Such analysis reveals the following:

a) The bootstrap and the asymptotic approximation have the same (upper bound)

on the order of the error in the coverage probability. The bootstrap does not

provide re�nements.

b) When the parameter belongs to the boundary of the identi�ed set, the subsam-

pling approximation provides an upper bound on the rate of convergence of order

n�1=3 (by choosing bn = O
�
n2=3

�
). In this case, we can also establish an asymp-

totic expansion similar to equation (1.1) which implies conditions under which

the rate of convergence obtained by subsampling is no better than n�1=3: Out-

side of the boundary of the identi�ed set, subsampling achieves the same rates

of convergence as both the bootstrap and the asymptotic approximation.

In summary, our bootstrap and our asymptotic approximation both provide the similar

rates of convergence and, under certain conditions, both are orders of magnitude better

than the ones obtained by subsampling.

In order to evaluate the �nite sample behavior of the inferential methods, we construct

con�dence sets that cover each element of the identi�ed set for each of the designs of section
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1.4.4. The results of these simulations are in line with the results of section 1.4.4 and

provided in the appendix (section A.3.7)

1.6. Conclusion

This paper contributes to the growing literature of inference in partially identi�ed or

set identi�ed econometric models. We build on the criterion function approach to set

inference proposed by Chernozhukov, Hong and Tamer [23].

The �rst contribution of this paper is to introduce a novel bootstrap procedure to

construct coverage sets for a wide class of partially identi�ed models. The models consid-

ered are those de�ned by �nitely many moment inequalities and equalities, which includes

many applications of economic interest.

In the context of inference in partially identi�ed models, there are two possible goals.

The �rst one is to construct a con�dence set for the identi�ed set and the second one is to

construct a con�dence set for each element of the identi�ed set. These two constructions

are related to two di¤erent and relevant hypothesis testing problems. In order to satisfy

both of these objectives, we provide two distinct versions of our bootstrap procedure.

Asymptotically, the coverage level provided by our con�dence sets converges to the desired

coverage level or, equivalently, our procedure is shown to be consistent in level (i.e., not

conservative). This constitutes an advantage relative to other inferential procedures that

have been proposed in the literature.

Our bootstrap method is shown to be qualitatively di¤erent from replacing the sub-

sampling procedure proposed by Chernozhukov, Hong and Tamer [23] with the bootstrap.
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Performing this replacement will not result in consistent inference due to several prob-

lems20. Our bootstrap procedure avoids these problems by an adequate de�nition of the

bootstrap criterion function.

The second contribution of our paper is to analyze the rate at which each of the

competing inferential methods achieve the desired coverage probability, also known as the

error in the coverage probability. Under certain assumptions, we derive the error in the

coverage probability of our bootstrap approximation, our asymptotic approximation21 and

a subsampling approximation like the one proposed by Chernozhukov, Hong and Tamer

[23].

We show that our bootstrap approximation and our asymptotic approximation have

error in the coverage probability of (at most) order n�1=2. Under certain conditions, we

show that the error in the coverage probability of the subsampling approximation con-

verges to zero at a rate of n�1=3: As a consequence, under these conditions, our bootstrap

and our asymptotic approximation should eventually provide inference that is more precise

that the competing subsampling approximation.

Monte Carlo simulations reveal that our bootstrap approximation and our asymp-

totic approximation have a satisfactory �nite sample performance. By considering di¤er-

ent setups, the examples show how our inferential methods are not a¤ected by neither

boundary nor expansion problems. Moreover, the simulations show that our bootstrap

20These two problems are described in detail in the supplementary appendix (sections A.2.1 and A.3.1).
The �rst problem is related to the inconsistency of the bootstrap in the boundary, studied by Andrews
[2] and the second problem is what we refer to as the expansion problem.
21As we mentioned earlier, this approximation was independently introduced by Soares [60], Andrews
and Soares [5], Chernozhukov, Hong and Tamer [23] and working paper vesions of this paper.
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and our asymptotic approximation exhibit a much better �nite sample performance than

subsampling, in accordance to the results regarding error in the coverage probability.

There are various extensions of this paper to be considered for further research. An

important extension would be to allow for continuous covariates, which requires modifying

the formal arguments in non trivial ways. Another important extension would be to

study the robustness of the bootstrap method proposed in this paper, that is, whether

the results obtained by our inferential method hold uniformly over a relevant class of

probability distributions. For con�dence sets for each element of the identi�ed set, this

problem is treated in detail by Andrews and Soares [5]. By using the same arguments,

we can establish that the inference provided by our bootstrap procedure is also uniformly

consistent in level.
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CHAPTER 2

Speci�cation Test for Missing Functional Data

2.1. Introduction

Economic data are frequently generated by stochastic processes that can be modeled

as occurring in continuous time. The data may then be treated as realizations of random

functions (functional data). Examples include wage paths and asset prices or returns.

In this case, economic theory may provide a parametric model for the data, that is, a

stochastic process that is known up to a �nite dimensional parameter that may be the

true process that generated the data. In such cases, a natural research question is whether

the parametric model is the right model for the data, that is, whether there is a parameter

value for which the model is the data generating process. This type of hypothesis test is

referred to as a speci�cation test.

In a recent paper, Bugni, Hall, Horowitz and Neumann [19] (hereafter, referred to

as BHHN [19]) developed the �rst method for carrying out a speci�cation test for func-

tional data. Their contribution constitutes the generalization of the Cramér-von Mises1

speci�cation test to the distribution of random functions that depend on an unknown

�nite-dimensional parameter vector. Their procedure contributes to the literature by

introducing functional data approaches to speci�cation testing in econometrics and by

1BHHN [19] also implement the functional data analogue of the Kolmogorov-Smirnov speci�cation test
for functional data. Nevertheless, the Cramér-von Mises test is preferred to the Kolmogorov-Smirnov
test since it tends to be more powerful in �nite-dimensional settings and it is easier to compute in the
in�nite-dimensional setting.
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developing parametric bootstrap methods that facilitate the use of techniques based on

integration over functional spaces.

One weakness of the speci�cation test in BHHN [19] is that it does not allow for

the existence of missing observations. Both the theoretical results and the empirical

implementation of the test require the econometrician to observe a sample of independent

and identically distributed functions. This does not only forbid functions to be missing,

but it also forbids functions from being unobserved in certain periods, that is, from

having missing sections. Unfortunately, this is a strong restriction: missing data is a

pervasive problem in most data samples and functional data samples are no exception.

The particular feature of functional data is that observations can present missing sections,

rather than being completely unobserved.

One might wonder if the speci�cation test developed by BHHN [19] can still be applied

to a functional data sample with missing observations by eliminating any observations that

present missing sections. There are two reasons why this procedure should be avoided.

First, the results of this test cannot be extrapolated to the distribution of the data unless

we assume that the observed data is a representative sample of the general data, that is,

unless missing data is missing at random2. If the assumption fails, our test results will be

contaminated by sample selection bias, which invalidates our test results. Second, in the

speci�c case of functional data, eliminating observations that have some missing sections

will eliminate valuable information contained in their non-missing sections.

2This assumption will fail when there is a selection process deciding which observations are missing and
which are not. See, for example, Heckman [35] and Manski [40]. As explained by Manski [40] and
Manski [41], this assumption cannot be tested, precisely because the corresponding hypothesis depends
on the unobserved data.
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The objective of this paper is to provide a speci�cation test that can be applied to

functional data which is allowed to have missing observations. In order to deal with the

missing data problem, we adopt a worst case scenario approach in the spirit of Manski [40]

and Manski [41], which is able to extract all the possible information about the observed

data and still be agnostic about the nature of the unobserved data. This approach has the

advantage of producing correct conclusions independently of the true distribution of the

missing data. Unfortunately, this approach has an unavoidable cost. Without assumptions

about the nature of the missing data, the test statistic is partially or set identi�ed, that

is, it can only be restricted to an interval, even asymptotically. In practice, this implies

that it is possible that the hypothesis test is inconclusive, that is, it is not possible to

reject or to not reject the null hypothesis. This inconclusive outcome can happen both

under the null hypothesis and under the alternative hypothesis.

The remaining of the paper is organized as follows. Section 2.2 describes the hypothesis

test developed in BHHN [19]. Section 2.3 studies the identi�cation problem posed by the

missing data, which is the basis of our hypothesis test. In section 2.4, we introduce our

hypothesis test and analyze its theoretical properties. Monte Carlo evidence is presented

in section 2.5 and the empirical application to the NLSY79 data is shown in section 2.6.

Section 2.7 concludes the paper. All the proofs of the paper are collected in the appendix.

2.2. The BHHN speci�cation test

In this section, we brie�y describe the BHHN [19] speci�cation test. The observables

of the economic phenomenon of interest are random functions distributed according to

the data generating process denoted by X: Each realization of X is assumed to belong
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to L2 (D), almost surely, where L2 (D) denotes the space of square integrable functions

de�ned on the space D: The econometrician observes a random sample of size n of these

functions, denoted byXn: The econometrician conjectures that the data generating process

behaves according to a certain process, denoted by Y�; which is known up to a �nite-

dimensional parameter � that belongs to a parameter space �: We assume that for all

� 2 �; Y� also belongs to L2 (D), almost surely. The objective of the hypothesis test is to

decide whether the model fY� : � 2 �g is a correct speci�cation for X; or not. Formally,

the hypotheses of the test are as follows,

(2.1)
H0 : 9� 2 �; such that X and Y� are equally distributed

H1 : /9� 2 �; such that X and Y� are not equally distributed

For any non-stochastic function x 2 L2 (D) and for any � 2 �; the cumulative distri-

bution function of X and Y� are de�ned as follows,

FX (x) = P (X (t) � x (t) ;8t 2 D)

FY (xj�) = P (Y� (t) � x (t) ;8t 2 D)

Under the null hypothesis, there exists a parameter value � 2 � such that FX (x) =

FY (xj�) for all x 2 L2 (D) and, under the alternative hypothesis, no such parameter

value exists.

Let � be a bounded and non-degenerate measure3 on L2 (D) : As in BHHN [19], we can

measure distance between the distributions of X and Y� with functional-data analogue of

3For example, this can be the Gaussian process described in BHHN [19].
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the Cramér-von Mises two-sample statistic, given by the following integral,

(2.2) T (X;Y�) =

Z
(FX (x)� FY (xj�))2 � (dx)

We assume that there is a unique parameter value that minimizes T (X;Y�), which we

denote by �0: The minimized value of T (X; Y�) allows us to reexpress the hypotheses of

our test: under the null hypothesis, T (X; Y�0) = 0; and under the alternative hypothesis,

T (X; Y�0) > 0:

The hypothesis test developed by BHHN [19] is implemented by estimating the pa-

rameter �0, replacing cumulative distribution functions by their sample analogues and

computing integrals by Monte Carlo integration methods. The asymptotic distribution

of the test statistic is approximated using the bootstrap. Formally, the test involves the

following sequence of steps.

(1) Estimate the parameter �0 root-n-consistently4 and denote the estimate by �̂0:

(2) Compute the sample test statistic, T̂
�
X; Y�̂0

�
, which is given by,

T̂
�
X; Y�̂0

�
= 1

V

VP
j=1

�
F̂X (Zj)� F̂Y

�
Zjj�̂0

��2

4Since the model is known up to a �nite dimensional parameter, one could use maximum likelihood
estimation. Another possibility is to use the following estimator,

�̂0 = argmin
�2�

n
T̂ (X;Y�)

o
where T̂ (X;Y�) is the sample test statistic described in the second step.
Both estimators are examples of extremum estimators and can be shown to be root-n-consistent under
mild regularity conditions. See, e.g., Amemiya [1].
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where fZjgVj=1 is a random sample5 of � and, for every x 2 L2 (D) ; F̂X (x) and

F̂Y

�
xj�̂0

�
are the sample analogue of the distribution functions, given by,

F̂X (x) =
1
n

Pn
i=1 1 (X

i (t) � x (t) ;8t 2 D)

F̂Y

�
xj�̂0

�
= 1

m

Pm
i=1 1

�
Y i
�̂0
(t) � x (t) ;8t 2 D

�
where

n
Y i
�̂0

om
i=1

is a random sample6 of Y�̂0.

(3) For s = 1; 2; :::; S; repeat the following two steps,

(a) Construct a bootstrap sample of size n of Y�̂0 ; and denote it by X
�
n : Estimate

the parameter from the bootstrap sample, denoting the estimate by �̂
�
0.

(b) Compute the simulated test statistic, denoted T̂
�
X�; Y�̂�0

�
:

(4) Denote by t�
�̂0
(1� �) the (1� �) quantile of the simulated values of nT̂

�
X�; Y�̂�0

�
:

(5) Decide the outcome of the test in the following way,

Outcome Decision

t�
�̂0
(1� �) < nT̂

�
X; Y�̂0

�
Reject H0

nT̂
�
X; Y�̂0

�
� t�

�̂0
(1� �) Do not reject H0

According to the results in BHHN [19], the test has the right level under the null

hypothesis, is consistent under a �xed alternative hypothesis and has non-trivial power

against sequence of local alternative hypotheses whose distance from the null hypothesis

is O
�
n�1=2

�
: The test exhibits excellent performance in Monte Carlo simulations.

5The sample size V is chosen so that T̂
�
X;Y�̂0

�
is an arbitrarily good approximation ofR �

F̂X (x)� FY
�
xj�̂0

��2
d� (x) :

6The sample size m is chosen so that F̂Y
�
xj�̂
�
is an arbitrarily good approximation of FY

�
xj�̂
�
:
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2.3. Identi�cation analysis for missing functional data

We now consider how missing data in the a functional data sample a¤ects the BHHN

[19] speci�cation test. It does so in two ways. First, missing data may a¤ect our ability

to consistently estimate the parameter �0 (step 1). This will certainly be the case our

estimator is obtained by maximum likelihood method based on the value of all the ob-

servations in the interval D. If we cannot compute the estimate, we cannot compute the

test statistic (step 2) and we also will be unable to simulate the critical value (step 3).

Second, missing data will forbid us from identifying the distribution of the observables,

which we denoted by FX .

The �rst problem may be avoided if we manage to estimate the parameter (root-n)

consistently in spite of the missing data problem. For example, suppose that our sample

consists of observations of sample paths of an economic phenomenon over of two years

and we su¤er from sample attrition exclusively during the second year. It may be possible

to estimate the parameter using exclusively the information of the �rst year, where the

sample is completely observed. In comparison, the second problem is unavoidable. If we

are unwilling to make assumptions about the nature of the missing data, any period of

unobserved data for functions in our sample implies that the distribution of the data is

unidenti�ed.

For most of the analysis of the paper, we will assume that the �rst problem can be

avoided, that is, we will assume there is a root-n consistent estimator of �0; and so we

will focus the analysis on providing an answer to the second problem7.

7In section 2.4.4 we consider how the results can be modi�ed when a root-n consistent estimator of �0 is
unavailable.
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The derivation of the test will proceed as follows. The �rst step will be to derive the

identi�ed set of the distribution of the sample. The second step will be to use this set

to derive worst case scenario bounds for the test statistic. In the �rst two steps, we will

assume that we know the population from where the observed data is sampled (of course,

missing data is still unobserved) and, as a consequence, we compute the population version

of these worst case scenario bounds. In the �nal step, we replace use sample analogue

estimation and Monte Carlo integration to obtain estimates of the worst case scenario

bounds, which allows us to implement a speci�cation test for missing data.

2.3.1. Identi�ed set for the cumulative distribution function

This section characterizes the identi�ed set for the cumulative distribution function of the

observables when there is missing functional data.

We will assume that the random sample consists of functions of time, whose paths

are observed over an interval denoted by D: Suppose that this interval can be divided

into K periods, which we denote by D1;D2; :::;DK : These periods are de�ned so that, in

every period, every function in the sample is either observed (not missing) or unobserved

(missing). In other words, no function can be partly observed and unobserved in any

of these periods. Since there are K periods where a function can be either observed

or unobserved, there are potentially 2K missing data patterns8. Let the integer valued

variable � indicate the pattern of missing data, so � 2
�
1; 2; :::; 2K

	
: For each possible

pattern of missing data, we can split the function into observed and unobserved sections.

Under the missing data pattern �; denote by O (�) and U (�) those periods that are

8In applications, it is possible that the number of missing data patterns is much smaller. For example, if
missing data is caused by permanent sample attrition, there can only beK possible missing data patterns.
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observed and unobserved, respectively. Without loss of generality, the possible missing

data patterns can be labeled so that � = 1 denotes the case when there is no missing

data, and therefore, O (1) = D and U (1) = ?: For example, consider a two-period model,

i.e. K = 2: In this case, there are four possible missing data patters, which are described

in the following table.

� Description of the pattern O (�) U (�)

1 Not missing in period 1 and not missing in period 2 D ?

2 Not missing in period 1 and missing in period 2 D1 D2

3 Missing in period 1 and not missing in period 2 D2 D1

4 Missing in period 1 and missing in period 2 ? D

By the law of total probability, we can rewrite FX (x) as,

(2.1) FX (x) =
2KX
j=1

P (X (t) � x (t) ;8t 2 Dj� = j)P (� = j)

For any j 2
�
1; 2; :::; 2K

	
; consider the following derivation,

P (X (t) � x (t) ;8t 2 Dj� = j) =

= P
�
\Ki=1 fX (t) � x (t) ;8t 2 Dig j� = j

�
= P (fX (t) � x (t) ;8t 2 O (j)g \ fX (t) � x (t) ;8t 2 U (j)g j� = j)

=

8><>: P (fX (t) � x (t) ;8t 2 U (j)g j� = j; fX (t) � x (t) ;8t 2 O (j)g) �

�P (fX (t) � x (t) ;8t 2 O (j)g j� = j)

9>=>;
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To simplify notation, denote FX (x;O (j) j� = j) = P (fX (t) � x (t) ;8t 2 O (j)g j� = j)

and, by convention, FX (x;O (1) j� = 1) = FX (xj� = 1) : Using the previous derivation in

equation 2.1, we deduce that,

(2.2)

FX (x) = FX (xj� = 1)P (� = 1)+

+
P2K

j=2

8><>: P (fX (t) � x (t) ;8t 2 U (j)g j� = j; fX (t) � x (t) ;8t 2 O (j)g) �

�FX (x;O (j) j� = j)P (� = j)

9>=>;
From a random sample with missing data we can identify the frequency of each

missing data pattern (that is, P (� = j) for every j = 1; 2; :::; 2K) and the distribu-

tion of the random sample of functions where these functions are observed (that is,

FX (x;O (j) j� = j) for every j = 1; 2; :::; 2K): Missing data generates an identi�cation

problem because we know nothing about the (conditional) distribution of the random

sample of functions where these functions are not observed (that is, about the expression

P (fX (t) � x (t) ;8t 2 U (j)g j� = j; fX (t) � x (t) ;8t 2 O (j)g) for all j = 2; 3; :::; 2K):

We obtain worst case scenario bounds for the distribution of the data by imposing logical

bounds to these expressions.

Lemma 19. For any x 2 L2 (D) ; the worst case scenario bounds for FX (x) are given

by,

FX (xj� = 1)P (� = 1) � FX (x)

FX (x) � FX (xj� = 1)P (� = 1) +
2KX
j=2

FX (x;O (j) j� = j)P (� = j)

Moreover, these bounds are sharp.
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The worst case scenario bounds described by lemma 19 are sharp in the sense that for

a �xed x 2 L2 (D) ; the value of FX (x) cannot be restricted any further.

In addition to the restrictions imposed by lemma 19, the distribution of the data needs

to satisfy the restrictions imposed by the fact that it is a cumulative distribution function.

Denote by x�1 and x+1 the functions that map every element of D into minus and plus

in�nity, respectively, i.e., for every t 2 D, x�1 (t) = �1 and x+1 (t) = +1: We denote

by � the set of functions that map L2 (D) into R that satis�es the de�ning properties of

a cumulative distribution function, that is, if F 2 �; then F : L2 (D) ! [0; 1], and (i)

8x1; x2 2 L2 (D) such that x1 (t) � x2 (t) for every t 2 D, then F (x1) � F (x2) ; (ii) F is

right continuous, (iii) limx!x�1 F (x) = 0 and (iv) limx!x+1 F (x) = 1:

The following lemma characterizes the identi�ed set for the cumulative distribution

function of the data.

Lemma 20. De�ne FLX : L2 (D) ! R and FHX : L2 (D) ! R as follows. For every

x 2 L2 (D) ;

FLX (x) = FX (xj� = 1)P (� = 1)

FHX (x) = FX (xj� = 1)P (� = 1) +
2KX
j=2

FX (x;O (j) j� = j)P (� = j)

The identi�ed set for FX ; denoted H (FX) ; is given by,

H (FX) =
�
� \

�
G : FLX � G � FHX
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Lemma 19 implies that, for every x 2 L2 (D) ; FX is constrained by a lower bound

and an upper bound, denoted, respectively, by FLX and FHX . Since FX is a cumulative

distribution function, FX belongs to the set �: Lemma 20 states that the identi�ed set

for FX is only composed of all the cumulative distribution functions that are restricted

by the worst case scenario bounds imposed by lemma 19.

It should be noted that not every mapping from L2 (D) into R that satis�es the worst

case scenario bounds imposed by lemma 19 is a cumulative distribution function. For

example, the lower worst case scenario bound, FLX ; satis�es these bounds but is not a

cumulative distribution function as limx!x+1 F
L
X (x) = P (� = 1) ; which is less than one

whenever there is missing data.

2.3.2. Bounds for the test statistic

In this section, we use the identi�ed set for the cumulative distribution function of the

data to develop worst case scenario bounds for the population version of the test statistic.

The following theorem presents the result.

Theorem 21. Let TL (X; Y�0) and TH (X;Y�0) be de�ned as follows,

TL (X; Y�0) = inf
G2H(FX)

Z
(G (x)� FY (xj�0))2 � (dx)

TH (X; Y�0) = sup
G2H(FX)

Z
(G (x)� FY (xj�0))2 � (dx)

The population version of the test statistic satis�es the following worst case scenario

bounds,

TL (X; Y�0) � T (X; Y�0) � TH (X; Y�0)
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Moreover, these bounds are sharp.

The presence of missing data opens a gap between the worst case lower bound of the

test statistic and the worst case upper bound of the test statistic. This gap re�ects our

ignorance about the distribution of the missing data. The worst case scenario bounds

for the population test statistic provided in the theorem are sharp, in the sense that the

possible values for the test statistic cannot be restricted any further9. In this sense, these

bounds represent the best we can o¤er with the available information.

In the hypothetical case in which we know the population of the observed data, com-

puting the sharp worst case scenario bounds is complicated because they require calcu-

lation of in�mum or supremum on H (FX) ; which is a set of functions. To circumvent

this computational problem, we can consider alternative worst case scenario bounds that

are easier to compute. Instead of computing in�mum or supremum over the set H (FX) ;

these alternative bounds are the result of restricting to the following strict superset of

H (FX) ;

H0 (FX) =
�
G : FLX � G � FHX

	
Essentially, H0 (FX) ignores the restriction imposed by the fact that the distribution of

the data needs to satisfy the de�ning properties of a cumulative distribution function.

9Formally, there is some distribution of the missing data such that the resulting test statistic is arbitrarily
close to both the upper or the lower bound.
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Theorem 22. Let T 0L (X; Y�0) and T
0
H (X;Y�0) be de�ned as follows,

T 0L (X; Y�0) = inf
G2H0(FX)

Z
(G (x)� FY (xj�0))2 � (dx)

T 0H (X; Y�0) = sup
G2H0(FX)

Z
(G (x)� FY (xj�0))2 � (dx)

where H0 (FX) =
�
G : FLX � G � FHX

	
: The population version of the test statistic satis-

�es the following worst case scenario bounds,

T 0L (X; Y�0) � T (X; Y�0) � T 0H (X; Y�0)

Moreover, these bounds are equivalent to those which result of imposing the alternative

worst case scenario bounds individually for every x 2 L2 (D) (i.e., the ones derived in

lemma 19). Consequently, the worst case bounds can be computed as follows,

T 0L (X;Y�0) =

Z 8><>: 1
�
FY (xj�0) < FLX (x)

� �
FLX (x)� FY (xj�0)

�2
+

+1
�
FY (xj�0) > FHX (x)

� �
FHX (x)� FY (xj�0)

�2
9>=>;� (dx)

T 0H (X; Y�0) =

Z
max

n�
FLX (x)� FY (xj�0)

�2
;
�
FHX (x)� FY (xj�0)

�2o
� (dx)

The only advantage of the alternative worst case scenario bounds with respect to the

sharp ones is that they have a simple closed form expression. The potential disadvantage

of the alternative bounds is that they may not be sharp, that is, they might not exhaust all

the information contained in the data. The following theorem refers to this disadvantage.
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Theorem 23. The alternative worst case scenario lower bound coincides with the

sharp worst case scenario lower bound,

T 0L (X; Y�0) = TL (X;Y�0)

The alternative worst case scenario upper bound is greater or equal than the sharp worst

case scenario upper bound,

T 0H (X; Y�0) � TH (X; Y�0)

This weak inequality might or might not be strict.

The result shows that alternative worst case scenario lower bound is sharp but the

alternative worst case scenario upper bound may or may not be sharp.

2.3.3. Alternative identifying assumptions

Until now, we have considered the identi�ed set of the distribution of the data and the

test statistic without making any assumptions about the nature of the missing data. In

certain situations, the econometrician might be willing to introduce a priori information

about the distribution of the missing data which can restrict the distribution of the data.

This is the content of the following lemma.

Lemma 24. Suppose that for every x 2 L2 (D) and j 2
�
2; :::; 2K

	
we assume that,

BL
j (x) � FX (x; U (j) j� = j; fX (t) � x (t) ;8t 2 O (j)g) � BH

j (x)
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De�ne RLX : L2 (D) ! R and RHX : L2 (D) ! R in the following way. For every x 2

L2 (D) ;

RLX (x) = FX (xj� = 1)P (� = 1) +
2KX
j=2

BL
j (x)FX (x;O (j) j� = j)P (� = j)

RHX (x) = FX (xj� = 1)P (� = 1) +
2KX
j=2

BH
j (x)FX (x;O (j) j� = j)P (� = j)

The restricted identi�ed set for FX ; denoted HR (FX) ; is given by,

HR (FX) =
�
� \

�
G : RLX � G � RHX

		
The previous lemma shows how a priori information about the missing data can be

incorporated to obtain a new identi�ed set for the cumulative distribution function of the

data10. This can be used to establish the worst case scenario bounds for the test statistic

with additional information. We do so in the following theorem.

Theorem 25. Suppose that for every x 2 L2 (D) and j 2
�
2; :::; 2K

	
we assume that,

BL
j (x) � FX (x; U (j) j� = j; fX (t) � x (t) ;8t 2 O (j)g) � BH

j (x)

These bounds will determine a restricted identi�ed set for the distribution of the data,

denoted HR (FX) ; and given in lemma 24. Let TRL (X; Y�0) and T
R
H (X; Y�0) be de�ned as

10Notice that the identi�ed set derived without any a priori information (lemma 20) is the special case
of the one derived in lemma 24 when for every x 2 L2 (D) and for every j 2

�
2; :::; 2K

	
; BLj (x) = 0 and

BHj (x) = 1:
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follows,

TRL (X; Y�0) = inf
G2HR(FX)

Z
(G (x)� FY (xj�0))2 � (dx)

TRH (X; Y�0) = sup
G2HR(FX)

Z
(G (x)� FY (xj�0))2 � (dx)

Then, the population version of the test statistic satis�es the following worst case scenario

bounds,

TRL (X; Y�0) � T (X; Y�0) � TRH (X;Y�0)

Moreover, these bounds are sharp.

In the next subsections, we provide examples of additional information about the

missing data that results in restricted worst case scenario bounds.

2.3.3.1. Example 1: Missing at random. Missing a random is an extreme assump-

tion that delivers an extreme result: point identi�cation of the distribution of the data.

Condition 26 (Missing at random). Observations are randomly selected into the dif-

ferent missing data patterns. As a consequence, the unobserved data are distributed in the

same way as the observed data, and so, for every j 2
�
2; :::; 2K

	
;

FX (x; U (j) j� = j; fX (t) � x (t) ;8t 2 O (j)g) =

= FX (x; U (j) j� = 1; fX (t) � x (t) ;8t 2 O (j)g)

where � = 1 represents the subsample with no missing data.
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Under this assumptions, the restricted worst case scenario bounds collapse to a unique

value, which is the population value of the test statistic,

TRL (X; Y�0) = TRH (X; Y�0) =

Z
(FX (x)� FY (xj�0))2 � (dx)

This assumption is underlying every study where missing observations are ignored

or eliminated from the sample. In particular, it is implicit in the empirical application

conducted in BHHN [19].

2.3.3.2. Example 2: Stochastic domination. In certain functional data settings,

the econometrician might be willing to assume that the distribution of the unobserved

functions �rst order stochastically dominates (or is dominated by) the distribution of

observed functions. In this case, the test statistic can be restricted to a strict subset of

the sharp worst case scenario bounds.

Usually, the stochastic domination assumption can be motivated by an assumption

about how data becomes missing. As an example, consider a sample constituted by wage

paths for a cross section of individuals. If we are willing to assume that a part of the

wage path that is missing is likely to be caused by unemployment, then this can imply

that the distribution of wages that are unobserved dominates the distribution of wages

that are observed. A similar example occurs when the sample is constituted by a cross

section of stock prices paths, where missing data might be caused by bankruptcy.

Condition 27 (Stochastic domination). The distribution of unobserved functions �rst

order stochastically dominates (or is dominated by) the distribution of the observed func-

tions. Formally, if the distribution of unobserved functions dominates the distribution of
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the observed functions, then, for every j 2
�
2; :::; 2K

	
;

FX (x; U (j) j� = j; fX (t) � x (t) ;8t 2 O (j)g) �

� FX (x; U (j) j� = 1; fX (t) � x (t) ;8t 2 O (j)g)

where � = 1 represents the subsample with no missing data. If the distribution of un-

observed functions is dominated by the distribution of the observed functions, then, the

direction of the previous inequality is reversed.

If the distribution of unobserved functions dominates the distribution of the observed

functions, we deduce the following worst case scenario bounds for the distribution of the

data at any x 2 L2 (D) and j 2
�
2; :::; 2K

	
;

BL
j (x) � FX (x; U (j) j� = j; fX (t) � x (t) ;8t 2 O (j)g) � BH

j (x)

where BL
j (x) = FX (x; U (j) j� = 1; fX (t) � x (t) ;8t 2 O (j)g) and BH

j (x) = 1. If, in-

stead, the distribution of the observed data is dominated by the distribution of the unob-

served data, then for x 2 L2 (D) and j 2
�
2; :::; 2K

	
, the previous restriction holds with

BL
j (x) = 0 and BH

j (x) = FX (x; U (j) j� = 1; fX (t) � x (t) ;8t 2 O (j)g). Theorem 25

provides the sharp restricted worst case scenario bounds for the test statistic, which will

be narrower than the unrestricted bounds.

2.4. Speci�cation test for missing functional data

This section utilizes the identi�cation analysis of section 2.3 to develop our speci�ca-

tion test for missing functional data.
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2.4.1. Assumptions

In order to derive properties of the proposed hypothesis test, we consider the following

set of assumptions,

(A1) The observed data, denoted by Xn = fX1; X2; :::Xng ; is the result of missing

data a¤ecting an independent and identically distributed random sample from

the population whose cumulative distribution function is FX :

(A2) (i) �0 is uniquely de�ned as follows,

�0 = argmin
�2�

fT (X; Y�)g

(ii) �̂ is a estimator for �0 that has the following asymptotic representation,

n1=2
�
�̂ � �0

�
= n�1=2

nX
i=1


 (Xi) + op (1)

where 
 is a p-vector valued function such that E (
 (X)) = 0 and cov (
 (X)) is

non-singular and
R

 (X)0
 (X)� (dx) <1:

(A3) @FY (�j�) =@� exists for all � in an open set O that contains �0: Moreover,

sup
�2O

Z
@FY (xj�)

@�0
@FY (xj�)

@�
d� (x) <1

and

lim
"!0

Z X
i;j=1;2;:::;p

sup
k���0k�"

�������
h
@FY (xj�)
@�i

� @FY (xj�0)
@�i

i
�

�
h
@FY (xj�)
@�j

� @FY (xj�0)
@�j

i
������� d� (x) = 0

where k� � �0k denotes the Euclidean distance between � and �0:
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(A4) � is the measure induced by the following Gaussian process,

Z (t) =

1X
k=1

�kNk�k (t)

where, for all k 2 N; 0 < j�kj � Ck�d for some constants C < 1 and d > 1;

fNkg+1k=1 is a sequence of independent standard normal random variables and

�k (t) =
p
2 sin (k�t) :

These assumptions are exactly the assumptions imposed by BHHN [19]. In particular,

notice that assumption (A2)-(ii) implies that missing data does not preclude our ability

to estimate the parameter �0 in a root-n-consistently. As we mentioned in section 2.3,

this is possible when, for example, all the functions in the random sample are observed

in a certain period (typically, the �rst one).

2.4.2. Implementation of the test

In order to implement the test, we replace cumulative distribution functions by their

sample analogues. Our speci�cation test for missing functional data is given by the

following steps,

(1) Estimate �0 using an estimation procedure that is root-n consistent under the

presence of missing data. Denote this estimate �̂0:

(2) Estimate the sharp upper and lower bounds for the cumulative distribution func-

tion of the data, denoted, respectively, by F̂LX and F̂
H
X . For every x 2 L2 (D) ;
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these are given by,

F̂LX (x) = F̂X (xj� = 1) P̂ (� = 1)

F̂HX (x) = F̂X (xj� = 1) P̂ (� = 1) +
2KX
j=2

F̂X (x;O (j) j� = j) P̂ (� = j)

where, for every x 2 L2 (D) ; and for every j = 1; 2; :::; K; the expressions

P̂ (� = j) and F̂X (x;O (j) j� = j) are the sample analogue estimators, given by,

P̂ (� = j) = 1
n

Pn
i=1 1 (�

i = 1)

F̂X (x;O (j) j� = j) =

0B@ 1
n

Pn
i=1 1 (X

i (t) � x (t) ;8t 2 O (j)) �

�1 (�i = 1)

1CA�P̂ (� = j)
��1

and, by convention, F̂X (xj� = 1) = F̂X (x;O (1) j� = 1) :

(3) Estimate the identi�ed set for the cumulative distribution function of the data,

denoted by Ĥ (FX), and given by,

Ĥ (FX) =
n
� \

n
G : F̂LX � G � F̂HX

oo
(4) Estimate the sharp worst case scenario lower and upper bounds, given by,

T̂L
�
X; Y�̂0

�
= inf

G2Ĥ(FX)

1
V

VP
j=1

�
G (Zj)� F̂Y

�
Zjj�̂0

��2
T̂H
�
X; Y�̂0

�
= sup

G2Ĥ(FX)

1
V

VP
j=1

�
G (Zj)� F̂Y

�
Zjj�̂0

��2
where fZjgVj=1 is a random sample of �.

(5) For s = 1; 2; :::; S; repeat the following two steps,
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(a) Construct a bootstrap sample of size n of Y�̂0 ; and denote it by X
�
n : Estimate

the parameter from the bootstrap sample, denoting the estimate by �̂
�
0.

(b) Compute the simulated test statistic, denoted T̂
�
X�; Y�̂�0

�
:

(6) Denote by t�
�̂0
(1� �) the (1� �) quantile of the simulated values of nT̂

�
X�; Y�̂�0

�
:

(7) Decide the outcome of the test in the following way,

Outcome Decision

t�
�̂0
(1� �) < nT̂L

�
X; Y�̂0

�
� nT̂H

�
X;Y�̂0

�
Reject H0

nT̂L
�
X; Y�̂0

�
� nT̂H

�
X;Y�̂0

�
� t�

�̂0
(1� �) Do not reject H0

nT̂H
�
X; Y�̂0

�
� t�

�̂0
(1� �) < nT̂L

�
X;Y�̂0

�
Inconclusive

Notice how the existence of a root-n-consistent estimator of �0 allows us to simulate

the distribution of the test statistic under the null even under the presence of missing

data.

Recall from section 2.3.2 that missing data opens a gap between the population lower

and upper worst case scenario bound, re�ecting our ignorance about the missing data.

The gap in the population test statistic gets mapped into a gap of its sample analogue and,

as a consequence, the hypothesis test has an inconclusive region. This is an undesired but

unavoidable consequence of having missing data and imposing no assumptions regarding

their distribution.

As we argued in section 2.3.2, the population sharp worst case scenario bounds are

hard to compute since they require solving an optimization problem in a functional space.

The estimation of the bounds is obtained by Monte Carlo integration and hence, instead of
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solving an optimization problem in functional spaces, we need to solve a �nite dimensional

(but possibly large) optimization problem. This is shown in the following lemma.

Lemma 28. Let fZjgVj=1 denote the random of � in the fourth step of our procedure.

Consider the consider the following set,

Ŝ =

8><>: s 2 RV : 8j 2 f1; 2; :::V g ; F̂LX (Zj) � sj � F̂HX (Zj)

8j; k 2 f1; 2; :::V g ; if Zj (t) � Zk (t) 8t 2 D =) sj � sk

9>=>;
Then,

T̂L
�
X;Y�̂0

�
= min

g2Ŝ

1
V

VP
j=1

�
gj � F̂Y

�
Zjj�̂0

��2
T̂H
�
X; Y�̂0

�
= max

g2Ŝ

1
V

VP
j=1

�
gj � F̂Y

�
Zjj�̂0

��2
The previous lemma shows that computing the estimate of the lower and upper sharp

worst scenario bounds amounts to solving a V -dimensional optimization problem subject

to boundaries and monotonicity constraints. The optimization problem in lemma 28 has a

quadratic objective function and linear inequality constrains and the challenge in solving

it lies entirely in the dimension of the problem, which grows with V; the quality of our

Monte Carlo approximation11.

Even though the optimization problem described in lemma 28 can be solved numeri-

cally, its implementation is slow and exposes the researcher to obtaining incorrect solutions

if he computes local optima with global optima. In order to avoid these complications,

11This problem can be solved by MATLAB�s FMINCON function. As starting values of the optimization
problem, we suggest the use the estimate of the alternative worst case scenario bounds, described in
lemma 29.
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we might consider estimating the alternative worst case scenario bounds, de�ned in the-

orem 22. In order to implement a hypothesis test based on these bounds, we replace the

estimate of the sharp identi�ed set for the cumulative distribution function of the data in

step 3 with the estimate of its strict superset, given by,

Ĥ0 (FX) =
n
G : F̂LX � G � F̂HX

o
The rest of the test proceeds exactly as before. In particular, in step 4, we will obtain the

following estimate of the alternative worst case scenario bounds for the test statistic,

T̂L
�
X; Y�̂0

�
= inf

G2Ĥ0(FX)

1
V

VP
j=1

�
G (Zj)� F̂Y

�
Zjj�̂0

��2
T̂H
�
X; Y�̂0

�
= sup

G2Ĥ0(FX)

1
V

VP
j=1

�
G (Zj)� F̂Y

�
Zjj�̂0

��2
The following lemma provides an explicit formula for these bounds.

Lemma 29. Let fZjgVj=1 denote the random of � in the fourth step of our procedure.

The estimates for the alternative worst case scenario bounds are given by,

T̂ 0L
�
X; Y�̂0

�
= 1

V

VP
j=1

8><>: 1
h
F̂Y

�
Zjj�̂0

�
< F̂LX (Zj)

i �
F̂LX (Zj)� F̂Y

�
Zjj�̂0

��2
+

+1
h
F̂Y

�
Zjj�̂0

�
> F̂HX (Zj)

i �
F̂HX (Zj)� F̂Y

�
Zjj�̂0

��2
9>=>;

T̂ 0H
�
X;Y�̂0

�
= 1

V

VP
j=1

max

��
F̂LX (Zj)� F̂Y

�
Zjj�̂0

��2
;
�
F̂HX (Zj)� F̂Y

�
Zjj�̂0

��2�

Recall that theorem 23 indicated that, at the population level, the sharp worst case

scenario lower bound coincided with the alternative worst case scenario lower bound and

the sharp worst case scenario upper bound was smaller or equal to the alternative worst
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case scenario upper bound. The following result shows the same relationship holds for

the estimates of these bounds.

Theorem 30. The estimate of the alternative worst case scenario lower bound coin-

cides with the estimate of the sharp worst case scenario lower bound,

T̂ 0L
�
X; Y�̂0

�
= T̂L

�
X; Y�̂0

�
The estimate of the alternative worst case scenario upper bound is greater or equal than

estimate of the sharp worst case scenario upper bound,

T̂ 0H
�
X; Y�̂0

�
� T̂H

�
X; Y�̂0

�
This weak inequality might or might not be strict.

Based on the previous result, the following corollary follows.

Corollary 31. The following results are true,

(1) The test based on the estimate of the sharp worst case scenario bounds rejects if

and only if the test based on the alternative worst case scenario bound rejects.

(2) If the test based on the estimate of the alternative worst case scenario bounds

does not reject then the test based on the sharp worst case scenario bounds will

also not reject.

(3) If the test based on the estimate of the of the sharp worst case scenario bounds

is inconclusive then the test based on the alternative worst case scenario bounds

will also be inconclusive.
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2.4.3. Properties of the test

As in any other hypothesis test, the properties of the hypothesis test depend on whether

the null hypothesis is true or false (that is, whether T (X; Y�0) is zero or positive). In the

presence of missing data, the true value of the test statistic also depends on whether the

(population) worst case scenario bounds we use are zero or positive. The following table

describes all the possibilities,

H0 is true H0 is false

TL (X; Y�0) = 0; TH (X;Y�0) = 0 case 1 impossible

TL (X; Y�0) = 0; TH (X;Y�0) > 0 case 2 case 3

TL (X; Y�0) > 0; TH (X;Y�0) > 0 impossible case 4

The columns of the table represent the unknown truth that we are interested in learning

and the rows represent the truth that can be identi�ed from the population a¤ected by

the missing data. The �rst row (case 1) corresponds to the case when the null hypothesis

is true and this can be learnt from the observed population. The last row (case 4)

corresponds to the case when the null hypothesis is false and this can be learnt from the

population. Finally, the middle row (cases 2 and 3) represents the situation where we

cannot decide if the null hypothesis is true or not, even if we knew the data generating

process of the observed data.

The table implicitly assumes that we are using the sharp worst case scenario bounds

given in theorem 21 (hence, the classi�cation of tows based on TL (X; Y�0) and TH (X;Y�0)):



99

If other worst case scenario bounds are utilized12, then we will still have the four cases

described by the table, except that the relevant population version for the worst case

scenario bounds will be replaced by these other bounds.

The �rst two theorems refer to the behavior of the test under the null hypothesis,

which occurs in cases 1 and 2.

Theorem 32. Let assumptions (A1)-(A4) hold and suppose that the null hypothesis

is true. Then,

lim sup
n!1

P
�
t�
�̂0
(1� �) < nT̂L

�
X;Y�̂0

�
� nT̂H

�
X; Y�̂0

��
� �

Theorem 32 implies that the level of the test is correct but it may result in conservative

inference. Recall from section 2.2 that when there is no missing data, the upper and lower

bounds collapse and coincide with the test statistic in BHHN [19], which results in a non-

conservative hypothesis test. Hence, our hypothesis test is conservative solely due to the

presence of missing data.

Before stating further results about the hypothesis test, we establish the following

intermediate lemma, which is the key to the subsequent results.

Lemma 33. Let assumptions 1-4 hold. Then, the estimates of the sharp (alternative,

restricted) worst case scenario bounds are consistent for the population sharp (alternative,

restricted) worst case scenario bounds.

12For example, we could use the alternative worst case scenario bounds derived in theorem 22 or, if
additional information about the missing data is available, we could use the restricted worst case scenario
bounds derived in theorem 25.
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Based on this lemma, we can establish two additional conclusions. The �rst one is an

undersirable feature of our hypothesis test.

Theorem 34. Let assumptions (A1)-(A4) hold, suppose that the null hypothesis is

true and TH (X; Y�0) > 0 (case 2). Then,

lim
n!1

P
�
nT̂L

�
X;Y�̂0

�
� nT̂H

�
X; Y�̂0

�
� t�

�̂0
(1� �)

�
= 0

Theorem 34 indicates that if the null hypothesis is true but the population worst

case scenario bounds do not contain this information, then the probability of making the

correct decision (not rejecting) converges to zero. The next result constitutes a desirable

feature of our test.

Theorem 35. Let assumptions (A1)-(A4) hold, suppose that the null hypothesis is

false and TL (X; Y�0) > 0 (case 4). Then,

lim
n!1

P
�
t�
�̂0
(1� �) < nT̂L

�
X;Y�̂0

�
� nT̂H

�
X; Y�̂0

��
= 1

Theorem 35 shows that whenever the null hypothesis is false and the worst case sce-

nario contain this information (that is, the population upper bound is zero), then the

probability of making the right decision (rejecting) converges to one. In other words,

the test is consistent against �xed alternative hypothesis that can be discovered from

information in the population.

In order to provide a complete characterization of the properties of the hypothesis

test, we should consider the behavior of the bounds when the null hypothesis is false but

this is undetectable from the worst case scenario bounds (case 3). This would require
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studying the properties of the estimate of the lower worst case scenario bound under the

alternative hypothesis which is out of the scope of this paper.

2.4.4. Analysis when root-n consistent estimator of �0 is unavailable

As we described in the section 2.3, missing data might create two possible identi�cation

problems to the BHHN [19] test. The �rst problem occurs because missing data can

destroy the point identi�cation of the parameter �0; which would hinder the possibility of

estimating it in a consistently. The second problem occurs because missing data destroys

the point identi�cation of the distribution of the data. We have argued that for certain

applications a root-n consistent estimator of �0 might be available even under the presence

of missing data. On the other hand, any observations with missing data will result in

the loss of point identi�cation of the distribution of the data. In this sense, we argued

that the �rst identi�cation problem might be avoidable, whereas the second problem is

inevitable. Based on this distinction, we have constructed our speci�cation test under

the assumption that a root-n consistent estimator exists (assumption 2.(ii)) and we have

focused our analysis on the second identi�cation problem.

This section brie�y considers how our analysis changes when missing data destroys the

point identi�cation of �0: Assume now that the available data restricts the parameter to

a certain set �I (P) (where �I (P) � �), that is, �0 is partially identi�ed or set identi�ed

and �I (P) is referred to as the identi�ed set.

The identi�ed set can be estimated consistently using recent developments by Manski

and Tamer [42] and Chernozhukov, Hong and Tamer [23]. Using a worst case scenario

approach, we can de�ne the identi�ed set by �I (P) = f� 2 � : TH (X; Y�) � 0g and then,
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the estimate of the identi�ed set would be given by,

�̂I =
n
� 2 � : nT̂H (X; Y�) � "n

o
where f"ng+1n=1 is a sequence that converges to zero at a suitable rate.

In a conceptual manner, it is not hard to extend our analysis of section 2.3 to the

case when the parameter is partially identi�ed. In the procedure proposed in previous

sections, both the worst case scenario bounds and the distribution of the test statistic

depend on the parameter value. Consequently, if the parameter of interest can only be

restricted to a set, we should run a hypothesis test for each value of the estimate of the

identi�ed set. If the individual test for every parameter value in the estimate of the

identi�ed set is rejected, then we reject the null hypothesis. If the individual test for

every parameter value in the estimate of the identi�ed set is not rejected, then we do not

to reject the null hypothesis. In any other case, the test is inconclusive. As expected, the

lack of identi�cation of the parameter implies that the hypothesis test becomes even less

informative. Moreover, if performing the hypothesis test for only one parameter value is

already a computationally demanding task, doing it for a set of parameter values seems

to be computationally prohibitive. The study of the properties of the test considered in

this subsection is out of the scope of the current paper.

2.5. Monte Carlo simulations

In this section, we develop two Monte Carlo experiments to study the performance

of our speci�cation test. In the �rst experiment, observations are conjectured to be the

wage paths simulated from the Burdett-Mortensen labor market model. In the second
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experiment, observations are conjectured to be return paths of stock prices speci�ed by

the Black-Scholes model.

2.5.1. Simulations from the Burdett-Mortensen model

For our �rst Monte Carlo simulations, we consider a two sector version of the Burdett-

Mortensen labor market model. For a detailed description of the model, see Burdett and

Mortensen [20], Mortensen [47] and Bowlus, Kiefer and Neumann [17].

In this model, �rms can be classi�ed into two groups: low productive �rms, with

productivity PL and high productive �rms, with productivity PH . In order to produce

the homogeneous good, �rms need to form a match with workers. This matching process

is a¤ected by frictions: it takes time for unemployed workers and for vacant �rms to

discover each other and agree to produce.

We now describe the dynamics of the model from the point of view of the worker.

At each point in time, workers in this economy can be employed (matched with a �rm)

or unemployed (unmatched). At a Poisson rate �0; unemployed workers receive a job

o¤er with a wage distributed according to an endogenous o¤er distribution, denoted by

F . In equilibrium, unemployed workers will only receive o¤ers that are higher than their

reservation wage, denoted r; and will hence be immediately accepted. Employed workers

receive two types of shocks. First, at a Poisson rate �1; they receive a new job o¤er, which

they will only accept if it represents an improvement to the current wage rate. Second, at

a Poisson rate �; they receive a shock that destroys their current match and leaves them

immediately unemployed.
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Firms choose the wage o¤er to maximize the pro�ts of production. In equilibrium,

�rms will be indi¤erent between every wage in the support of the endogenous distribution

F : lower wage means higher pro�ts when the job o¤er is accepted but also means that

the job position will remain vacant for a longer period of time.

In our simulations, an observation is the wage path of an individual over three years.

For the same model simulation, we generate two sets of data. In the �rst data, the

benchmark, there is no missing data. In the second set of data, 10% of the sample is

not observed exclusively on the third period. The �rst year of data is observed for every

individual and so the parameter of the model will be estimated exclusively based on this

information. In order to implement the test we use the following test parameter values:

n = 2000; m = 1000; k = 4; T = 159 (159 months, or 3 years), S = 1000 and V = 200: In

order to be able to compute 1000 Monte Carlo replications for each missing data pattern

and for each of the hypothesis in a fast manner, we implement our hypothesis test using

alternative worst case scenario bounds.

2.5.1.1. Simulations under the null. The parameter values for our simulations under

the null are the following: �0 = 0:03; �1 = 0:01; � = 0:0035; r = 100; P1 = 500, P2 = 1000:

Moreover, We assume that half of the �rms are low productivity �rms and the other half

are high productivity �rms.

Table 2.1 describes the results of 1000 simulations. For each signi�cance level, we

compute the percentage of simulations where the test results in rejection, lack of rejection

or inconclusive.

Our simulations indicate that relatively few missing observations with any sort of

missing data pattern implies that the test is almost completely inconclusive.
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Sample � = 10% � = 5% � = 1%
Rej. No Rej Inc. Rej. No rej Inc. Rej. No rej Inc.

No MD 6.8% 93.2% 0% 2.6% 97.4% 0% 0.7% 99.3% 0%
With MD 0.5% 0% 99.5% 0.1% 0% 99.9% 0% 0% 100%

Table 2.1. Results of simulations under the null

Sample � = 10% � = 5% � = 1%
Rej. No rej Inc. Rej. No rej Inc. Rej. No rej Inc.

No MD 87.1% 12.9% 0% 82.3% 17.7% 0% 67.4% 32.6% 0%
With MD 0.5% 0% 99.5% 0.4% 0% 99.6% 0% 0% 100%

Table 2.2. Results of simulations under the �rst alternative hypothesis

2.5.1.2. Simulations under the alternative. We consider two alternative hypothesis

from the Burdett-Mortensen model. These alternative hypothesis are inspired by features

present in actual labor markets that are ignored by the model.

In the �rst alternative hypothesis, we allow for factors other than the wage level to

a¤ect the quality of the job. In the previously described model, a job (o¤er) is completely

characterized by the wage level. This is obviously a simpli�cation as, in reality, jobs are

described by a vector of characteristics, where only one of them being the wage. As a

consequence of this simpli�cation, employed workers will only accept a new job o¤er if

the new wage is higher than the current wage and, hence, all job to job transitions will

generate upward jumps in the wage pro�le. As BHHN [19] point out, this is not veri�ed

in the NLSY79 data, where 32% of the job to job transitions result in wage decreases. We

model this by allowing that with a certain probability, denoted by �; an employed worker

will accept to change to a job that pays less than his actual wage. Table 2.2 presents

simulations for � = 0:5 and the remaining parameters �xed at the same values as in the

null hypothesis.
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Sample � = 10% � = 5% � = 1%
Rej. No rej Inc. Rej. No rej Inc. Rej. No rej Inc.

No MD 99.6% 0.4% 0% 99.3% 0.7% 0% 98.5% 1.5% 0%
With MD 38.9% 0% 61.1% 26.5% 0% 73.5% 11.2% 0% 88.8%

Table 2.3. Results of simulations under the second alternative hypothesis

When there is missing data, the behavior of the test under this alternative hypoth-

esis resembles the one under the null hypothesis. Relatively few percentage of missing

observations can result in an inconclusive test.

In our second alternative hypothesis we introduce unobserved heterogeneity in the

workforce. We allow for workers to be of two types: stable and unstable, which will

di¤er in their transition rates. Stable workers will have transition rates determined by the

following parameters: �0 = 0:03; �1 = 0:01; � = 0:0035; whereas unstable workers will have

transition rates determined by the following parameters: �0 = 0:06; �1 = 0:02; � = 0:007:

As a consequence, unstable workers will transition more often between employment and

unemployment and from job to job than stable workers. Table 2.3 presents simulations

from this alternative hypothesis.

In this case, the hypothesis test has a signi�cant rejection rate even under the presence

of missing data.

2.5.2. Simulations from the Black-Scholes model

The Black-Scholes model is the cornerstone of the option pricing �nance literature. Based

on a set of simple assumptions, this model delivers a closed form formula for the price

of an European call or put option. One key assumption in this model is that the return



107

to the value of the underlying asset price behaves like a Brownian motion with a non-

stochastic drift and a non-stochastic volatility process. In its most simplistic version, the

drift and the volatility are assumed to be constant.

If we assume that the remaining assumptions of the Black-Scholes model hold, a

test of whether the returns of the underlying behave like a Brownian motion would be

a speci�cation test for the Black-Scholes model. With this motivation as background,

Cuesta-Albertos, del Barrio, Fraiman and Maltrán [25] present Monte Carlo simulations

of this speci�cation test. We produce our simulations using their design. The return

paths are distributed according the following stochastic process,

R (t) =
�
s1 + s2t

2 + s3 sin (2�t)
�
W (t) +

�
a1t+ a2t

2 + a3 sin (2�t)
�

whereW is a standard Brownian motion and the s�s and the a�s are constants. Under the

null hypothesis that returns are distributed according to a Brownian motion, a1 represents

the drift, s1 represents the volatility and s2, s3, a2 and a3 are all equal to zero. By setting

di¤erent values for the s�s and the a�s, we generate 18 di¤erent speci�cations, which are

described in table 2.4. Notice that only speci�cations 1 and 3 satisfy the null hypothesis

(Brownian motion without and with drift, respectively), whereas the rest of the models

are example of the alternative hypothesis.

Our simulated data represents 100 randomly selected stock �rm prices, which we

intend to observe continuously over two years. If our data is composed of stock return

paths, missing data naturally occurs when �rms go out of business and stop being traded.

We (randomly) choose 10% of the sample to be missing during the second year. The

parameters of the test are as follows: n = 100; m = 200; k = 4; T = 2 (two years),
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Model s2 s3 a1 a2 a3 Formula for the return process Hypothesis type
1 0 0 0 0 0 W (t) Null
2 0 0 0 1 0 W (t) + t2 Alternative
3 0 0 1 0 0 W (t) + t Null
4 0 0 1 1 0 W (t) + t+ t2 Alternative
5 1 0 0 0 0 (1 + t2)W (t) Alternative
6 1 0 0 1 0 (1 + t2)W (t) + t2 Alternative
7 1 0 1 0 0 (1 + t2)W (t) + t Alternative
8 1 0 1 1 0 (1 + t2)W (t) + (t+ t2) Alternative
9 0 0 0 0 1 W (t) + sin (2�t) Alternative
10 0 0 1 0 1 W (t) + (t+ sin (2�t)) Alternative
11 1 0 0 0 1 (1 + t2)W (t) + sin (2�t) Alternative
12 1 0 1 0 1 (1 + t2)W (t) + (t+ sin (2�t)) Alternative
13 0 1 0 0 0 (1 + sin (2�t))W (t) Alternative
14 0 1 0 1 0 (1 + sin (2�t))W (t) + t2 Alternative
15 0 1 1 0 0 (1 + sin (2�t))W (t) + t Alternative
16 0 1 1 1 0 (1 + sin (2�t))W (t) + (t+ t2) Alternative
17 0 1 0 0 1 (1 + sin (2�t))W (t) + sin (2�t) Alternative
18 0 1 1 0 1 (1 + sin (2�t))W (t) + (t+ sin (2�t)) Alternative

Table 2.4. Monte Carlo designs

S = 200 and V = 200: The true parameter vector �0 = (a1; s1) is estimated by sample

analogue estimation using complete sample from the �rst period.

For the 1000 Monte Carlo replications, we implement the test procedure using the

sharp and the alternative worst case scenario bounds. The results from the hypothesis

test based on the sharp worst case scenario bounds are presented in table 2.5.

The results of these simulations show how our speci�cation test can produce infor-

mative results even if we use the worst case scenario approach in the presence of missing

functional data.

Under the null hypothesis (models 1 and 3) the test has rejection rates that are lower

than the signi�cance levels, as expected from theorem 32. Also, as expected, the per-

centage of tests that are not rejected (inconclusive) increase (decrease) as the signi�cance
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Model � = 10% � = 5% � = 1%
Rej. Not rej. Inc. Rej. Not rej. Inc. Rej. Not rej. Inc.

1 0.8% 17.9% 81.3% 0% 42.7% 57.3% 0% 82.2% 17.8%
2 16.6% 1.9% 81.5% 7.5% 4.5% 88.0% 1.6% 26.5% 71.9%
3 0.4% 14.4% 85.2% 0% 38.7% 61.3% 0% 79.2% 20.8%
4 11.3% 0.4% 88.3% 4.3% 2.9% 92.8% 0.6% 29.6% 70.8%
5 33.2% 0.2% 66.6% 18.3% 2.0% 79.7% 4.6% 12/8% 82.6%
6 42.7% 0.1% 57.2% 25.4% 1.0% 73.6% 5.0% 11.0% 84.0%
7 36.6% 0% 63.4% 21.3% 0.9% 77.8% 5.1% 10.2% 84.7%
8 30.7% 0.3% 69% 15.2% 1.0% 83.8% 2.5% 9.4% 88.1%
9 99.7% 0% 0.3% 99.0% 0% 1.0% 96.1% 0% 3.9%
10 100% 0% 0% 100% 0% 0% 99.7% 0% 0.3%
11 99.7% 0% 0.3% 98.5% 0% 1.5% 93.3% 0% 6.7%
12 100% 0% 0% 99.9% 0% 0.1% 99.5% 0% 0.5%
13 87.7% 0.3% 12.3% 75.5% 0.7% 23.8% 43.7% 7.3% 49.0%
14 91.4% 0% 8.6% 81.8% 0.1% 18.1% 56.2% 3.3% 40.5%
15 87.7% 0.1% 12.2% 75.7% 0.5% 23.8% 41.3% 4.1% 54.6%
16 92.1% 0.1% 7.8% 79.8% 0.4% 19.8% 49.6% 3.1% 47.3%
17 99.8% 0% 0.2% 99.7% 0% 0.3% 98.7% 0% 1.3%
18 100% 0% 0% 100% 0% 0% 99.9% 0% 0.1%
Table 2.5. Results of simulations using the sharp worst case scenario bounds

level decreases. Under certain versions of the alternative hypothesis, the test presents

relatively high rejection rates, especially when the stochastic process includes sinusoidal

trends or volatilities.

Table 2.6 presents the results of performing the hypothesis test based on the alternative

worst case scenario bounds for the same simulations.

As explained in corollary 31, using the alternative worst case scenario bounds leads to

equal percentage of rejected simulations, lower percentage of non-rejected simulations and,

consequently, higher percentage of inconclusive simulations than the ones obtained from

using sharp worst case scenario bounds. In this particular model, the di¤erence between

the alternative and the sharp worst case scenario upper bounds is very small. Given that
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Model � = 10% � = 5% � = 1%
Rej. Not rej. Inc. Rej. Not rej. Inc. Rej. Not rej. Inc.

1 0.8% 17.8% 81.4% 0% 42.5% 57.5% 0% 82.2% 17.8%
2 16.6% 1.9% 81.5% 7.5% 4.4% 88.1% 1.6% 26.3% 72.1%
3 0.4% 14.4% 85.2% 0% 38.6% 61.4% 0% 79.2% 20.8%
4 11.3% 0.4% 88.3% 4.3% 2.8% 92.9% 0.6% 27.8% 71.6%
5 33.2% 0.2% 66.6% 18.3% 2.0% 79.7% 4.6% 12.8% 82.6%
6 42.7% 0.1% 57.2% 25.4% 1.0% 73.6% 5.0% 10.9% 84.1%
7 36.6% 0% 63.4% 21.3% 0.9% 77.8% 5.1% 10.2% 84.7%
8 30.7% 0.3% 69% 15.2% 1.0% 83.8% 2.5% 9.4% 88.1%
9 99.7% 0% 0.3% 99.0% 0% 1.0% 96.1% 0% 3.9%
10 100% 0% 0% 100% 0% 0% 99.7% 0% 0.3%
11 99.7% 0% 0.3% 98.5% 0% 1.5% 93.3% 0% 6.7%
12 100% 0% 0% 99.9% 0% 0.1% 99.5% 0% 0.5%
13 87.7% 0.3% 12.3% 75.5% 0.7% 23.8% 43.7% 7.3% 49.0%
14 91.4% 0% 8.6% 81.8% 0.1% 18.1% 56.2% 3.3% 40.5%
15 87.7% 0.1% 12.2% 75.7% 0.5% 23.8% 41.3% 4.0% 54.7%
16 92.1% 0.1% 7.8% 79.8% 0.4% 19.8% 49.6% 3.0% 47.4%
17 99.8% 0% 0.2% 99.7% 0% 0.3% 98.7% 0% 1.3%
18 100% 0% 0% 100% 0% 0% 99.9% 0% 0.1%
Table 2.6. Results of simulations using the alternative worst case scenario bounds

the alternative worst case scenario bounds are much easier and faster to compute, these

results encourage the econometrician to use the alternative worst case scenario bounds.

2.6. Empirical Illustration

In this section, we use the test developed in this paper to test whether the observations

of wage processes from the NLSY79 are distributed according to the Burdett-Mortensen

model described in section 2.5.1.

2.6.1. Description of the data

Our data are composed of young individuals (ages 17 to 22, in our sample), �rst inter-

viewed in 1979, who are re-interviewed in subsequent years. In each interview year, each
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individual is asked about their job spells that occurred since the last interview. The

�rst job spell reported in an interview corresponds to the main job spell (called the cur-

rent/most recent job spell) but the interview process allows up to 5 job spells between

interviews. For each job spell, the individual reports the start week and the stop week of

the job spell as well as its wage rate. With this information, we can construct the wage

path for each individual from 198213 until 1991. We express all wages in terms of weekly

remuneration and in terms of 1990 U.S. dollars using the Consumer Price Index14.

The Burdett-Mortensen model assumes that workers in the economy are ex-ante ho-

mogeneous. Even though our sample contains very heterogeneous group of individuals,

we hope that we can condition on observable characteristics to obtain an homogeneous

sample. Following Bowlus, Kiefer and Neumann [17], we restriction attention to white

males that are High school or GED graduates and who are not in the military sample.

This constitutes a sample of 816 individuals. We eliminate from the sample individuals

who, at any point in the survey, presented problems in their duration data15 or reported

having weekly wages of over a thousand 1990 U.S. dollars16. This reduces our representa-

tive sample to 589 individuals. Finally, in order to estimate the parameter consistently,

we require the relevant sample to be completely observed over a certain period of time.

Hence, we eliminate all observations that have any kind of missing data during 1982,

which represents only 53 individuals or less than 10% of the sample. This produces the

sample which we use for our hypothesis test, composed of 536 individuals.

13Even though we have data since 1979, we avoid using the �rst three years of the sample since, during
those years, some of the individuals of the sample were less than 20 years of age and their job market
opportunities could be di¤erent from their older counterparts.
14This information is publicly available in the U.S. Bureau of Labor Statistics website.
15These problems are either negative job spell duration or missing time information.
16This type of trimming is also utilized by Bowlus, Kiefer and Neumann [17].
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2.6.2. Missing data

Our sample is mildly a¤ected by missing wage information. Of a total of 536 individuals,

433 individuals (80.7%) have no missing wage information and 103 individuals (19.3%)

have some episode of missing wage information. Moreover, only 6.07% of all the weeks in

the sample are missing.

From the 103 individuals with some missing data, 58 of them (56.3%) su¤er from

attrition from the sample, that is, the individuals are lost at some point and remain

unobserved for the rest of the sample. From the remaining 45 individuals, there are

very few episodes that violate attrition. These �gures indicate that sample attrition is a

common explanation for missing observations in the NLSY79 survey.

Figure 2.1 presents the evolution of the percentage of individuals with missing data.

The percentage of missing data is (almost) weakly increasing in time. Again, this is

also indicative that most of the missing data is caused by sample attrition. For those

individuals who have missing information, the average number of missing weeks is 166.4,

which represents 31.6% of the weeks in our sample. The histogram of the number of

missing weeks for this subset of individuals is shown in �gure 2.2.

Even thought there are certain individuals with a huge number of missing information,

most of the individuals in the sample have relatively few missing observations.

2.6.3. Test results

We now describe the result of testing whether the Burdett-Mortensen model is the right

speci�cation for the wage processes in the NLSY79 survey. After discarding individuals
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Figure 2.1. Percentage of individuals with missing data

with any missing data, BHHN [19] strongly reject the null hypothesis that the four sec-

tor Burdett-Mortensen model is the right speci�cation for the data. We implement the

speci�cation test for a one, two, three, four and �ve sector Burdett-Mortensen model.

Table 2.7 presents the estimated sharp worst case scenario bounds for the test statistic,

as well as the 90th, 95th and 99th quantiles of the statistic under the null hypothesis.

Our speci�cation test strongly rejects each of the speci�cations of the Burdett-Mortensen

model17. In other words, the information contained in the sample with missing data is

17The table presents the outcome of one run of the hypothesis test. Since the implementation of the test
includes random components, the test was repeated several times. All of these repetitions resulted in the
rejection of the null hypothesis.
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Figure 2.2. Number missing weeks for individuals with missing data

Model Sharp WCSB Quantiles under H0

nT̂L(X; Y �̂0
) nT̂H(X; Y �̂0

) t�
�̂0
(90%) t�

�̂0
(95%) t�

�̂0
(99%)

One sector 68.53 119.08 0.15 0.17 0.23
Two sectors 33.68 69.53 0.68 0.93 1.85
Three sectors 52.66 97.04 0.47 0.63 0.86
Four sectors 37.41 72.54 0.39 0.48 0.83
Five sectors 36.78 72.48 0.40 0.56 1.84

Table 2.7. Results of test on NLSY79 data using sharp worst case scenario bounds

su¢ cient to reject the model without making any assumptions about the nature of the

missing observations.

For the sake of comparison, we also implement the speci�cation test using the alter-

native worst case scenario bounds for the test statistic.
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Model Alternative WCSB Quantiles under H0

nT̂L(X; Y �̂0
) nT̂H(X; Y �̂0

) t�
�̂0
(90%) t�

�̂0
(95%) t�

�̂0
(99%)

One sector 68.53 119.20 0.15 0.17 0.23
Two sectors 33.68 69.64 0.68 0.93 1.85
Three sectors 52.66 97.04 0.47 0.63 0.86
Four sectors 37.41 72.59 0.39 0.48 0.83
Five sectors 36.78 72.68 0.40 0.56 1.84

Table 2.8. Results of test on NLSY79 data using alternative worst case
scenario bounds

As shown by theorem 30, the only di¤erence between the two sets of bounds is that

the alternative worst case scenario upper bounds are higher or equal than the sharp worst

case scenario bounds. Table 2.8 reveals that the di¤erence between the upper bounds is

very small. As expected from 31, the speci�cation test using the alternative worst case

scenario bounds also rejects each of the speci�cations of the Burdett-Mortensen model.

2.7. Conclusion

This paper develops a speci�cation test for functional data that allows for the presence

of missing observations. In order to deal with the missing data problem, we adopt a worst

case scenario approach which is agnostic about the distribution of the missing data. The

speci�cation test adapts the Cramér-von Mises speci�cation test developed in Bugni, Hall,

Horowitz and Neumann [19] to missing data.

In order to develop the speci�cation test, we study the identi�cation problem caused

by missing observations. We show how missing data implies that the distribution of the

functional data is partially identi�ed and derive the sharp worst case scenario bounds for

the distribution of the Cramér-von Mises statistic proposed by Bugni, Hall, Horowitz and

Neumann [19]. We use the analogue principle to estimate these bounds and to implement
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a speci�cation test. Our speci�cation test can have thee outcomes: rejection of the null

hypothesis, lack of rejection of the null hypothesis or inconclusive. The possibility of an

inconclusive result is an undesired but unavoidable consequence of the existence of missing

data and our unwillingness to impose assumptions regarding its distribution.

The theoretical properties of our speci�cation test depend not only on whether the null

hypothesis is true or false, but also on whether this can be learnt from the distribution

of observed data. Under the null hypothesis, our speci�cation test will reject the null

hypothesis with a probability that, in the limit, does not exceed the signi�cance level of

the test. Unfortunately, the presence of missing data implies that the rejection rate may be

conservative. Under the alternative hypothesis, the behavior of the test depends critically

on whether this can be learnt from the distribution of the observed data. Whenever

the distribution of the observed data contains enough information to reveal that the null

hypothesis is false, our hypothesis test is consistent, that is, the power of the hypothesis

test that converges to one.

The Monte Carlo evidence reveals that the behavior of the test depends strongly on the

type of economic model and the type of hypothesis that is being considered. In certain

situations, a small amount of missing data is enough to render our speci�cation test

completely uninformative but, in other situations, the test presents informative results.

As an empirical illustration, we test whether observations of the wage process in the

NLSY79 are distributed according to the Burdett-Mortensen labor market model. In

the 1982 - 1991 period, 19.3% of the individuals in the survey are a¤ected by some

form of missing data, typically caused by sample attrition. Even under the presence of

missing data, our speci�cation test strongly rejects that the Burdett-Mortensen model
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is the correct framework for the NLSY79 data. This illustration constitutes an ideal

application of our speci�cation test, since it delivers informative results even though we

have missing data and we adopt a worst case scenario approach about the nature of the

missing observations.
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CHAPTER 3

Child Labor Legislation: E¤ective, Benign, Both or Neither?

3.1. Introduction

In 2002, the International Labor Organization�s Statistical Information and Moni-

toring Program on Child Labor [50] estimated that 211 million children, or 18% of the

children ages 5 to 14 in the world were economically active1. According to Edmonds and

Pavcnik [27], the majority of these children lived in low income countries and only 2%

lived in what we refer to as developed countries. These �gures reveal that a working child

in contemporary U.S. would also be extremely unusual. This has not always been the

case. Until the end of the nineteenth century, child labor was both common and legal

in developed economies. According to U.S. census data from 1880 (see Carter and Sutch

[22]), 32% of boys and girls ages 10 to 15 declared having a gainful occupation. This rate

fell signi�cantly between 1880 and 1930: according to 1930 census data, the employment

rate for children ages 10 to 15 was only 2%.

Among the reasons of such phenomenal decline, one can mention the growing oppo-

sition to child labor which ultimately materialized into a body of legislation restricting

employers from hiring children2. According to Moehling [45], Moehling [46] and Basu

[7], various degrees of resistance against child labor had always existed in the U.S., but
1A child is economically active if he or she works for wages (cash or in-kind), works in the family farm
in the production and processing of primary products for the market, barter or own consumption, or is
unemployed and looking for these types of work.
2For a description of the evolution of the legislation body against child labor, see Ogburn [49] and
Moehling [46].
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this opposition developed into a well-organized social movement in the 1880s and 1890s.

Between 1880 and 1920, this movement was successful in enacting state-wide child labor

legislation in many U.S. states. Typically, these laws took the form of state-wide prohibi-

tion for children of less than a certain age (typically, 14 years old) to be employed in the

manufacturing sector. By 1910, child labor activists realized that employers had in�uence

over certain state legislatures which limited the progress that could be made at the state

level. Therefore, they decided to shift lobbying e¤orts from a state to a federal child

labor legislation. After several unsuccessful attempts, the Fair Labor Standards Act was

enacted in 1938. This is the federal law that currently prohibits employment of minors in

occupations considered oppressive.

The objective of this paper is to characterize the e¤ect caused by child labor legislation

on child labor participation during the period 1880-1900. This issue is not of exclusive

interest to economic historians: as the I.L.O. �gures reveal, child labor is still a problem

in certain parts of the world.

Existing literature has focused only on studying the e¤ectiveness of the legislation, that

is, whether the legislation managed to reduce child labor participation or not. This paper

will revisit some of these results focusing on certain methodological criticisms. Moreover,

we will also focus on what the labor market mechanisms by which the child labor legislation

a¤ected child labor are. By taking these into account, we may be able to establish if the

legislation constituted a benign policy or not, that is, whether the legislation imposed

constrains to the behavior of children (not benign) or whether it generated a change in

the labor market equilibrium (benign). We argue that this novel analysis can help provide

a new perspective on previous results.
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It is not obvious that child labor legislation reduced child labor. Existing literature,

most notably, Nardinelli [48] for the U.K. and Moehling [46] for the U.S., explain that

the passing of such legislation could be followed by a reduction on child labor demand

generated by external factors (e.g. change in technology or in�ow of immigrants).

The e¤ectiveness of the law in curtailing child labor during this period has been

previously studied in the literature, most notably by Moehling [45] and Moehling [46].

In her dissertation, Moehling [45] uses a di¤erence-in-di¤erences estimation procedure

to estimate the e¤ect of child labor legislation using exclusively 1900 U.S. census data.

She estimates a binary choice model and computes the di¤erence in the labor market

participation of younger and older 14-year-olds (group di¤erence), between states that

did and did not issue child labor legislation (spatial di¤erence). Her estimation reveals

that child labor laws imposed constraints on children participation in the labor market.

Moehling [46] incorporates observations from the 1880 and 1910 U.S. census to study the

same problem. The new dataset allows her to use a di¤erence-in-di¤erence-in-di¤erences

estimator to evaluate the e¤ectiveness of the legislation. She computes the di¤erence in

labor market participation between 13 and 14-year-olds (group di¤erence), between 1900

and 1880 (and also 1910 and 1900) (time di¤erence) and between states that did and did

not issue child labor legislation (spatial di¤erence). Her conclusion is that child labor

laws were ine¤ective in reducing child labor. Moehling states: �Although the predicted

probabilities for the treatment group�13-year-old boys living in the states that enacted

the age minima of 14�fell substantially between 1880 and 1900, so too did the predicted

probabilities for the control groups�.



121

Even though Moehling [45] and Moehling [46] provide a very detailed study of this

problem, we believe there are two problems with their di¤erencing estimation procedure.

The �rst issue is that in non-linear models, like the ones required to model binary explana-

tory variables such as (child) labor participation, di¤erencing estimator procedures do not

identify the object of interest. The second issue is that di¤erencing estimators assume

that there is only one labor market equilibrium at the end of the nineteenth century. In

the presence of multiplicity of equilibria, such as the one described by Basu and Van [8],

di¤erencing estimators may underestimate the e¤ect of the legislation.

Other papers in the literature have studied the determinants for child labor market

participation and their relationship with child labor legislation. Sanderson [59] uses a

cross section of data to compare employment rates between states with and without child

labor legislation. This data will be a¤ected by state �xed e¤ects, which one can control

for with panel data. Based on anecdotal evidence, Osterman [51] provides a detailed

description of changes in the unskilled labor market (which includes child labor) at the

end of the nineteenth century. Brown, Christiansen and Philips [18] study how changes

in economic conditions and in the legislation impacted child labor in the U.S. fruit and

vegetable canning industry. Goldin [31] studies the determinants of child labor using

1880 Philadelphia census data. Margo and Finegan [43] examine the e¤ect of compulsory

schooling laws and child labor laws on school attendance.

The rest of the paper proceeds as follows. In section 3.2, we discuss the inadequacy of

di¤erencing methods in identifying the e¤ect of the legislation on child labor. Section 3.3

develops a simple but formal model to analyze the e¤ect of the legislation. Section 3.4
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de�nes the econometric procedure for estimation and inference and section 3.5 presents

the results. Section 3.6 concludes.

3.2. Discussion

Our objective is to study the e¤ect of the U.S. state-wide child labor legislation on

the behavior of the working children at the end of the nineteenth century. By 1880,

arguably none of the U.S. states had established any serious body of legislation, and by

1900, a signi�cant subset of the U.S. states had already established state-wide prohibition

for children to be employed in the manufacturing sector. If child labor legislation is

considered an exogenous event, we can analyze this situation using the natural experiment

framework3. In the jargon of this literature, the e¤ect of the legislation on child labor

is called treatment e¤ect, children in states where the legislation was imposed are the

treatment group, children in states where the legislation was not imposed are the control

group, 1880 is a pre-treatment year and 1900 is a post-treatment year.

3.2.1. Di¤erencing in non-linear models

Moehling [45] and Moehling [46] use di¤erencing estimation techniques to estimate the

treatment e¤ect of the child labor legislation on child labor participation. In this section,

we argue that this estimation method will not identify the treatment e¤ect, precisely

because the dependent variable of interest is non-linear.

Consider the following setup. There are two periods: period 1 and period 2. During

period 1, no state had issued child labor legislation and, by period 2, some states had

issued child labor legislation. We refer to those states that had such laws by period 2 as B

3For a rigorous treatment of these issues, see Meyer [44] or Woodridge [64].
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states (treatment group) and we refer to the remaining states as A states (control group).

Period 1 Period 2

A states No C.L.L. No C.L.L.

B states No C.L.L. C.L.L.

It is natural to allow for time �xed e¤ects and state �xed e¤ects to a¤ect children

employment. Time �xed e¤ects are time-speci�c factors a¤ecting all the states and state

�xed e¤ects are state-speci�c factors a¤ecting each state in both periods. In order to

identify the treatment e¤ect of the legislation, we assume that the legislation is the only

factor a¤ecting exclusively B states in the second period.

The household�s decision of sending a child to work is modeled with a binary response

model. Denote by w the binary variable of interest that takes value of one if the child is

employed and zero otherwise. Denote by d2 the binary variable that takes value of one

if the observation corresponds to the second period and zero if it corresponds to the �rst

period. Denote by dB the binary variable that takes the value of one if the observation

corresponds to any of the B states and zero if it corresponds to any of the A states.

Naturally, the interaction of these two variables is given by d2dB. Finally, denote by x

the vector of the remaining variables that a¤ect the decision. The structure of the binary

response model is,

w =

8><>: 1 if �1d2 + �2dB + �3d2dB + �x � "

0 if �1d2 + �2dB + �3d2dB + �x < "



124

where " denotes an unobserved random term with a known continuous distribution, whose

cumulative distribution function is denoted by F . From this model, we deduce the fol-

lowing equation,

P (w = 1jd2; dB; d2dB; x) = E (wjd2; dB; d2dB; x) = F (�1d2 + �2dB + �3d2dB + �x)

The object of interest, which we will refer as �treatment e¤ect�, is the change in the

probability of employment caused by issuing child labor legislation while keeping state

e¤ects, time e¤ects and controls constant. By assuming that the child labor legislation is

the only factor a¤ecting exclusively B states in the second period, the e¤ect of child labor

legislation can be represented by going from d2dB = 0 to d2dB = 1; while keeping d2;

dB and x constant. Formally, the treatment e¤ect is given by,

TE
�
d�2; d �B; �x

�
= P

�
w = 1jd�2; d �B; d2dB = 1; �x

�
� P

�
w = 1jd�2; d �B; d2dB = 0; �x

�
where d�2; d �B and �x are the relevant values that are used to evaluate the treatment e¤ect.

When the model is linear, i.e., when F is the identity function, we deduce the following

conclusions about the treatment e¤ect,

(1) The treatment e¤ect is constant and coincides with �3, the coe¢ cient of the

interaction term,

TE
�
d�2; d �B; �x

�
= E

�
wjd�2; d �B; d2dB = 1; �x

�
� E

�
wjd�2; d �B; d2dB = 0; �x

�
= �3
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(2) The treatment e¤ect is equivalent to the di¤erence-in-di¤erences estimator,

DD (�x) =

8><>: [E (wjd2 = 1; dB = 1; �x)� E (wjd2 = 0; dB = 1; �x)] +

� [E (wjd2 = 1; dB = 0; �x)� E (wjd2 = 0; dB = 0; �x)]

9>=>; = �3

When the model is non-linear, the treatment e¤ect is given by,

(3.1) TE
�
d�2; d �B; �x

�
= F

�
�1d�2 + �2d �B + �3 + ��x

�
� F

�
�1d�2 + �2d �B + ��x

�
and the two previous conclusions are no longer valid because of the nonlinearity of the

model. The treatment e¤ect is neither a constant (i.e. it does not coincide with the coef-

�cient of the interaction term, �3)4 nor does it coincide with the di¤erence-in-di¤erences

estimator,

(3.2) DD (�x) = [F (�1 + �2 + �3 + ��x)� F (�1 + ��x)]� [F (�2 + ��x)� F (��x)]

In fact, it is relatively straightforward to construct examples where di¤erence-in-di¤erences

and the treatment e¤ect have opposite signs5.

Therefore, a di¤erence-in-di¤erence procedure will not identify the treatment e¤ect in

a non-linear model (such as the one we required in our analysis). The same conclusion

applies to the di¤erence-in-di¤erence-in-di¤erences estimator proposed by Moehling [46].

The treatment e¤ect can be consistently estimated by plugging in the estimates for the

parameter of the model into equation (3.1).

4Nevertheless, the treatment e¤ect and the coe¢ cient �3 will share the sign.
5For example, consider F (x) = � (x) (probit model), and set �x = d�2 = d �B = 0, �1 = 0:1; �2 = �1:5;
�3 = 0:1: Since �3 > 0; then TE (0; 0; 0) > 0; but calculations reveal that DD (0; 0; 0) < 0:
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One might also consider estimating the di¤erences in treatment e¤ects between the

treatment and control groups. If we denote by
�
d�2Y ; d �BY ; �xY

�
the vector of covariate

values for young children (treatment group) and by
�
d�2O; d �BO; �xO

�
the vector of covariate

values for old children (control group), then the di¤erence in treatment e¤ects is given by,

(3.3) DTE = TE
�
d�2Y ; d �BY ; �xY

�
� TE

�
d�2O; d �BO; �xO

�
If our object of interest is the treatment e¤ect for young children, the di¤erence in treat-

ment e¤ect will identify it if and only if the treatment e¤ect for old children is zero. In

the next subsection, we will explain why multiplicity of equilibria can cause the treatment

e¤ect for old children to be di¤erent from zero.

3.2.2. Di¤erencing with multiplicity of equilibria

In a seminal paper, Basu and Van [8], developed a reduced form model of child labor. The

model is based on two main assumptions or axioms. The �rst one is the luxury axiom,

by which a family will send the children to work only if the family�s income from non-

child labor sources is su¢ ciently low. Children have very important opportunity costs of

working, such as not receiving education or not enjoying their leisure. As decision makers,

the parents are forced to send their kids to work when the family income is so low that

the work of every member of the household is necessary for survival. The second axiom

is the substitution axiom, by which from a �rm�s point of view, adult and child labor are

substitutes.

When these assumptions are incorporated into a household decision model where the

main source of family income is labor, the model can present a downward sloping supply
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of aggregate labor. If the wage is very low, then families are forced to send their children

to work, generating a high aggregate labor supply. If the wage is very high, then working

parents can support their entire household by themselves and avoid sending their children

to work, generating a low amount of labor supply. When combined with a downward

sloping demand for labor, this model has the possibility of generating multiplicity of

equilibria.

We can adopt the Basu and Van [8] model to analyze the equilibrium of the labor

market in the U.S. at the end of the nineteenth century. Consider a situation where there

are young and old children. The separation between young and old occurs at 14 years of

age, which is precisely the cuto¤ imposed by the child labor legislation.

Suppose labor market conditions are such that there is only one equilibrium in which

every household decides to send its children to work. When child labor legislation is

imposed, young children are removed from the labor market and old children keep working.

In this case, looking at the di¤erence in treatment e¤ects between young and old children

correctly identi�es the e¤ect of the law. This is the reasoning followed by Moehling [45]

and Moehling [46].

Instead, suppose that the labor market is such that there are two stable equilibria

described by Basu and Van [8]. In this case, a ban on young child labor may generate

a change from the equilibrium with high child labor to one with low child labor. Young

child labor is directly reduced by the prohibition, but general equilibrium forces cause an

increase in wage that justi�es overall reduction in child labor. In this case, child labor

legislation is extremely e¤ective, in the sense that it reduces the labor participation of

all children, and not only young children covered by the law. Moreover, the legislation



128

is benign, because instead of constraining the behavior of economic agents, it causes a

change to an equilibrium where agents voluntarily respect the law. In this case, the

di¤erence in treatment e¤ects will fail to identify the e¤ect of the law. Even though the

law is extremely e¤ective in reducing young child labor, it also reduces old child labor and

hence, the e¤ectiveness of the law is underestimated by the di¤erence in treatment e¤ects.

It is possible that this could explain Moehling [46] �nding: �Although the predicted

probabilities for the treatment group�13-year-old boys living in the states that enacted

the age minima of 14�fell substantially between 1880 and 1900, so too did the predicted

probabilities for the control groups�.

3.3. Economic model

In this section, we consider a structural model of the economy along the lines of Basu

and Van [8].

3.3.1. Setup

Consider the following overlapping-generations model. Each household in the economy is

composed of two individuals: a parent and a child. An agent in the economy lives four

periods. He is a young child in the �rst period, an old child in the second period, a young

adult in the third period and an old adult in the fourth period. In the �rst two periods of

his life, the individual lives under the supervision of the adult, who makes all decisions in

the household. At the end of the second period, the old adult dies, the old child becomes

a young adult and gives birth to a young child. For the two remaining periods of his life,

he will be the decision maker in his household.
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The �ow utility of the adult is given by,

u (ci;a; ci;k; li;k) = u (ci;a + ci;k; ( + �1 [i = y]) (1� li;k))

where i 2 fo; yg denotes the age of the household, ci;a refers to the adult�s consumption,

ci;k refers to the child�s consumption and li;k 2 f0; 1g is a binary variable indicating

whether the child works or not. The indicator variable 1 [i = y] takes a value of one if we

are referring to a young household (which includes a young child) and zero otherwise.

In this model, an adult is altruistic in two ways: he cares about his child�s consumption

and his child�s leisure6. When an old child works, his parent su¤ers a disutility of  > 0.

When a young child works, his parents su¤ers a disutility of ( +�), where � > 0 represents

the extra cost of forcing a young child to work. We assume that the utility function is

weakly increasing in both coordinates. Moreover, we assume that the household has a

subsistence consumption level, denoted by �C, such that if the household consumes less

than this amount, the adult only cares about maximizing consumption and child leisure

becomes irrelevant7. These features imply that adult�s preferences satisfy the leisure axiom

in Basu and Van [8].

A household�s wealth is given by labor income. Households are subject to period

budget constraints, and we assume, for simplicity, that there is no borrowing or lending,

ci;a + ci;k = wa + wkli;k

6Preference towards children�s leisure could also be representing taste for kid�s education.
7This feature is not necessary to get the main results of the model, but it helps to strengthen the intuition.
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where wa represents the equilibrium wage for the employed adult and wk represents the

equilibrium wage for the employed child8.

In every period 2N simultaneous families coexist: N young families andN old families.

At the end of each period, each young family becomes an old family and each old family

becomes a young family (the old adult dies, the old child becomes a young adult and gives

birth to a young child)9.

We now model the production sector in this economy. There is a continuum of per-

fectly competitive �rms, each producing the unique manufactured good according to the

following production function,

f
�
Lda; L

d
k; K

�
= F

�
Lda +

Ldk
�
;K

�

where F is a strictly increasing, marginally decreasing and homogeneous of degree one

function. Labor input is measured in adult labor equivalent units, Lda + Ldk=�; where

Lda and L
d
k are the amounts of adult and child labor demanded, respectively. Implicit

in the equation is that adults and children are perfect substitutes in production: one

working adult produces the same amount as � (> 0) working children10. This introduces

the substitution axiom by Basu and Van [8].

Capital for production is provided by wealthy capitalist families, who own certain

amount of physical capital and o¤er it to the �rms in a �xed supply. We denote this �xed

supply by �K: In return, these families earn a rental rate of capital given by r:

8Implicit in the notation is the fact that �rms discriminate between adults and children, but not between
young and old adults and young and old children. This is mainly assumed for simplicity.
9Even though the age structure in this economy may be unrealistic, the objective is to keep a constant
proportion of young and old children and adults in the economy.
10We assume that a child is less productive than a grown up and, therefore, � > 1:
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3.3.2. Optimal Decisions

Pro�t maximization implies that equilibrium adult wage is given by,

wa = F1
�
(2 + (ly;k + lo;k) =�)N; �K

�
where F1 represents the derivative of the production function with respect to labor. The

substitutability between child and adult labor implies the following relationship between

wages,

wk = wa=�

The household head makes the child employment decision. If the household is old, the

optimal decision is given by,

lo;k =

8><>: 1 if u (wa;  ) � u (wa + wk; 0)

0 if u (wa;  ) � u (wa + wk; 0)

and if the household is young and there is no child labor legislation, the optimal decision

is given by,

ly;k =

8><>: 1 if u (wa;  + �) � u (wa + wk; 0)

0 if u (wa;  + �) � u (wa + wk; 0)

Notice that if young families decide to send their children to work, then old families will

also decide to do so.
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3.3.3. Equilibria in the model

This model can generate three di¤erent equilibria, each of them characterized by which

are the economically active children. We assume the parameters of the model are such

that all three equilibria exist11, which are characterized in the following subsections.

3.3.3.1. The �all children work� equilibrium. In this equilibrium, all children in

the economy work. Adult wage is given by wa = F1
�
(1 + 1=�) 2N; �K

�
and child wage

is given by wk = F1
�
(1 + 1=�) 2N; �K

�
=�: The necessary and su¢ cient condition for the

existence of this equilibrium is,

u
�
F1
�
(1 + 1=�) 2N; �K

�
;  + �

�
� u

�
F1
�
(1 + 1=�) 2N; �K

�
(1 + 1=�) ; 0

�
This condition holds, for example, if the equilibrium wage for the adult is below the

subsistence level but the combined wages of the adult and the children are over this level

(that is, wa < �C and wk + wa � �C): Therefore, every adult forces his child to work, no

matter his age, in order to guarantee the subsistence of the family.

3.3.3.2. The �no children work�equilibrium. In this equilibrium, none of the chil-

dren in the economy work. Adult wage is given by wa = F1
�
2N; �K

�
and child wage is

given by wk = F1
�
2N; �K

�
=�: The necessary and su¢ cient condition for the existence of

this equilibrium is,

u
�
F1
�
2N; �K

�
;  
�
� u

�
F1
�
2N; �K

�
; 0
�

In order for this condition to hold, it is necessary that equilibrium adult wages are above

the subsistence level (that is, wa > �C):

11This is not necessarily true for every parameter value.
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3.3.3.3. The �only old children work�equilibrium. In this equilibrium, old families

send their old children to work and young families prefer not to send their young children

to work. Adult wage is given by wa = F1
�
(2 + 1=�)N; �K

�
and child wage is given by

wk = F1
�
(2 + 1=�)N; �K

�
=�: The necessary and su¢ cient condition for the existence of

this equilibrium is,

u
�
F1
�
(2 + 1=�)N; �K

�
;  + �

�
�

� u
�
F1
�
(2 + 1=�)N; �K

�
(1 + 1=�) ; 0

�
� u

�
F1
�
(2 + 1=�)N; �K

�
;  
�

In order for this condition to hold, it is necessary that equilibrium adult wages are above

the subsistence level (that is, wa > �C):

3.3.4. The e¤ect of child labor legislation

As mentioned earlier, we assume that all three equilibria exist as shown in �gure 3.1. For

low wages, all the households of the economy will decide to send their children to work. At

intermediate wages, old parents will send their old children to work but young parents will

decide not to. Finally, when wages are high enough, all families are su¢ ciently wealthy

to avoid sending their children to work.

3.3.4.1. Pre-legislation equilibrium. In 1880, the U.S. labor market was character-

ized by high levels of child labor participation12. Based on this observation, we assume

that the pre-legislation situation was an �all children work�equilibrium. Therefore, the

12In the 1880 U.S. census, 47% of boys ages 10 to 13 and 63% of boys ages 14 to 15 were reported working
for wages. The corresponding �gures for girls are 36% and 39%, respectively.
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Figure 3.1. Multiple equilibria

pre-legislation equilibrium wages are given by,

F1
�
2 (1 + 1=�)N; �K

�
= wprea = wprek =�

The situation is depicted in �gure 3.2, which represents the equilibrium for both young

and old families.

Figure 3.2. Pre-equilibrium situation
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3.3.4.2. Post-legislation equilibrium. We now introduce child labor legislation to our

model. Since the bulk of state-wide child labor legislation issued in the U.S. at the end of

the nineteenth century was a ban on child labor for children of less than 14 years of age,

we set the cuto¤ age between young and old children at 14 years old.

The e¤ect of the child labor legislation depends on whether the legislation is properly

enforced or not. In order to explore more interesting results, suppose that the legislation

is properly enforced. In this case, the e¤ect of the law depends on the fundamentals of the

economy. As a consequence of the prohibition, young children are forced out of the labor

market and thus, the pre-legislation �all children work�equilibrium is eliminated. The

elimination of young child labor supply causes an increase in wages, which determines the

general equilibrium e¤ect of the legislation according tot the following cases.

Case 0: Ine¤ective legislation. In this case, legislation has no e¤ect on child labor

participation and the post-legislation situation is identical to the pre-legislation situation.

This is shown in �gure 3.3. This outcome is only possible if the legislation is not enforced.

Figure 3.3. Case 0: no e¤ect
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Case 1: Distortive legislation. In this case, the prohibition of young child labor pro-

duces a mild increase in equilibrium wages, which is not su¢ cient to induce changes in

households�decisions. Old households still decide to send their old children to work and,

in absence of legislation, young households would do so too. The child labor legislation is

not Pareto optimal and therefore, not benign13.

This is shown in �gure 3.4. The legislation is e¤ective in reducing young child labor

and ine¤ective in reducing old child labor.

Figure 3.4. Case 1: small distortive e¤ect

Case 2: Small benign legislation. In this case, the elimination of young child labor

produces a greater increase in wages. The raise in family�s income is large enough to

induce young families to remove their children from the labor market, but not enough to

convince old families to remove their children from the labor market.

The legislation causes a switch between two equilibria. In this case, the pre- and post-

legislation equilibrium are both Pareto optimal situations. This is represented in �gure

13This would also be the outcome if the �all children work�equilibrium were the only equilibrium in the
economy.
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3.5. As a consequence of the child labor laws, young child labor is reduced and old child

labor remains high. Notice how this case is observationally equivalent to the previous

one.

Figure 3.5. Case 2: small benign e¤ect

Case 3: Large benign legislation. In this case, the removal of young child labor pro-

duces a big increase in wages, causing a signi�cant increase in household income. This

induces all families to remove their children from the labor force, regardless of their age.

As in the previous case, the legislation causes a switch between equilibria and the post-

legislation equilibrium is also Pareto optimal.

Figure 3.6 depicts the situation. The legislation is e¤ective in reducing child labor

levels across all ages, even though the legislation is only explicitly targeted to young

children. Moreover, notice hat computing di¤erences in treatment e¤ects between treated

and untreated children would severely underestimate the treatment e¤ect on young child

labor14.

14In our simple theoretical illustration, the labor market participation for both children goes from 100%
to 0% but the di¤erence in the treatment e¤ects is zero.
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Figure 3.6. Case 3: large benign e¤ect

3.3.4.3. Conclusions. The following table summarizes how young and old child labor

participation can help us characterize whether child labor legislation was e¤ective and/or

benign.

Equilibrium level of... Legislation is... Di¤. in T.E. between

Old child Young child E¤ective E¤ective Benign? young & old equals

participation participation on young? on old? T.E. on young?

Case 0 constant constant No No Yes Yes

Case 1 constant decreases Yes No No Yes

Case 2 constant decrease Yes No Yes Yes

Case 3 decreases decreases Yes Yes Yes No

The legislation is e¤ective in reducing young (old) child labor if the treatment e¤ect on

young (old) children is negative. Treatment e¤ects can be directly estimated by plugging

in our estimators in equation 3.1.
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The legislation is benign if its e¤ect is not restricting the household�s behavior but

rather changing the pre-legislation equilibrium to a di¤erent one, where families with

young children voluntarily choose to comply with the legislation.

From our previous analysis, case 1 is the only one where the legislation is not benign.

Unfortunately, cases 1 and 2 are observationally equivalent and hence, we will only be

able to determine that the legislation is benign in cases 0 and 3. In case 0, the legislation

has no e¤ect whatsoever, which makes it benign in a non-interesting way. In case 3, the

legislation causes a reduction in old child labor, distinguishing it from the remaining cases.

3.4. Econometric methodology

In this section, we describe the econometric model and the data used for our inference.

3.4.1. Econometric model

Denote by w the binary variable of interest that takes value of one if the child is employed

and zero otherwise. We assume that w is determined by the following binary response

model,

w =

8><>: 1 if �1d2 + �2dB + �3d2dB + �x+ " � 0

0 if �1d2 + �2dB + �3d2dB + �x+ " < 0

where d2 is the binary variable that takes value of one if the observation occurred in

1900 (period 2) and zero if it occurred in 1880 (period 1), dB is the binary variable that

takes the value of one if the observation corresponds to a state that issued child labor

legislation in 1990 (B states) and zero otherwise (A states), d2dB is their interaction, x

are remaining observable controls and " denotes an unobserved random term. We assume
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" is independent and normally distributed, i.e. we adopt a probit speci�cation15. If we

denote the parameters of the model by � = [�1; �2; �3; �] and we denote the observable

covariates vector by X = [d2; dB; d2dB; x] ; the probability of employment evaluated at

X is given by,

P (w = 1jd2; dB; d2dB; x) = F (X�)

The parameters of the model can be consistently and asymptotically e¢ ciently esti-

mated by maximum likelihood estimation16. We denote the estimated parameters �̂ =h
�̂1; �̂2; �̂3; �̂

i0
. In this case, the estimate of the probability of employment evaluated at

X is given by,

P̂ (w = 1jd2; dB; d2dB; x) = F (X�̂)

Under the usual regularity conditions,
p
n (�̂ � �) is an asymptotically normally dis-

tributed vector with mean zero and variance covariance matrix given by the Outer Product

matrix (or, equivalently, Hessian matrix), which we denote by V (�) ; and whose consistent

estimator is denoted V (�̂) :

In the results section, we will be interested in testing whether the probability of chil-

dren employment is zero or not. Using the Delta method, we deduce that,

p
n (F (X�̂)� F (X�))

d! N (0; f (X�)X 0V (�)Xf (X�))

15The logit model produced similar results.
16For an excellent reference on maximum likelihood estimation and all other topics in this subsection, see
Amemiya [1].
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where f denotes the derivative of F: This result can be used to show that, under the null

hypothesis that the probability of employment at X is zero (H0 : F (X�) = 0); then,

n (F (X�̂))2

f (X�̂)X 0V (�̂)Xf (X�̂)

d! �1

where �1 denotes the chi-squared distribution with one degree of freedom.

The treatment e¤ect of the legislation corresponds to the change in the probability

of employment caused exclusively by the child labor legislation, keeping the remaining

covariates at a speci�c level of interest. Under our assumptions, the treatment e¤ect

can be identi�ed by computing the di¤erence in the probability from a situation with no

child labor legislation (d2dB = 0) to a situation with child labor legislation (d2dB = 1),

keeping the remaining covariates constant at a speci�c level of interest. If we denote X0 =�
d�2; d �B; 0; �x

�
and X1 =

�
d�2; d �B; 1; �x

�
; then the treatment e¤ect evaluated at

�
d�2; d �B; �x

�
is given by,

TE
�
d�2; d �B; �x

�
= F (X1�)� F (X0�)

and it can be consistently estimated by,

TÊ
�
d�2; d �B; �x

�
= F (X1�̂)� F (X0�̂)

In the results section, we will be interested in testing whether the treatment e¤ect is

zero or not. Using the Delta method, under the null hypothesis that the treatment e¤ect
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at
�
d�2; d �B; �x

�
is zero (H0 : TE

�
d�2; d �B; �x

�
= 0), then,

n
�
TÊ

�
d�2; d �B; �x

��2
[(f (X1�̂)X1 � f (X0�̂)X0)V (�̂) (X 0

1f (X1�̂)�X 0
0f (X0�̂))]

d! �1

3.4.2. Details of the empirical methodology

The data were constructed from a random sample of individual level records from the 1880

and 1900 U.S. federal censuses17 which are part of the Integrated Public Use Microdata

Series or IPUMS18. The 1880 dataset is a 1-in-100 sample containing data on over 107,000

households and 502,000 individuals and the 1900 dataset is a 1-in-760 sample containing

data on over 89,000 households and 366,000 individuals.

Following Moehling [46], we restrict attention to children living in non-agricultural

households with at least one parent19. We also restrict our analysis to white children,

since white and non-white kids faced di¤erent labor market opportunities. To simplify

the construction of variables, we restrict attention to households that contained only one

family and to children who were sons or daughters of the household head20.

In order to implement our inference, we need to adopt a working de�nition of a child.

We de�ne children to be individuals of ages 13 and 14, where 13-year-olds play the role of

young children and 14-year-olds play the role of old children21. Since the labor market for

17Moehling [46] also uses information from the 1910 U.S. census. In the 1910 census, 81% of the children
ages 10 to 15 have missing employment information. Since employment information is necessary to
construct our dependent variable, we decided not to use this census year. For the 1880 and 1900 censuses,
the percent of missing employment information is always below 18%.
18The IPUMS data and its description are publicly available at http://www.ipums.umn.edu.
19Children in agricultural households worked mainly in agriculture, which was not targeted by the child
labor movement at the end of the century.
20We eliminate few observations of children between 12 and 15 years of age who were parents.
21We have also conducted the analysis de�ning children to be individuals of ages 12 to 15, where 12 to
13 are young children and 14 and 15 are the old children. This alternative de�nition is produces similar
results, and therefore we consider that our conclusions are robust to how children are de�ned.
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boys and girls were considered relatively di¤erent, we run separate estimations for each

of these groups.

We now discuss the main variables in the study. The dependent variable of the study

is a binary variable that indicates whether the child has a gainful occupation or not

(possibly restricted to occupation in certain sector). Ideally, we would like to observe

if an individual held any type of gainful occupation, whether regular and intermittent

but, unfortunately, the census data only reports each individual�s regular or usual form

of employment. As a consequence, we will be limited to study the e¤ect of child labor

legislation on children that work on a regular basis.

Following Moehling [46], we run two separate estimations. In the �rst one, the depen-

dent variable indicates if the individual works regularly in any sector22. In the second one,

the dependent variable indicates if the individual works regularly in the manufacturing

sector23. Observations with missing occupational information are ignored24.

The typical state-wide child labor legislation imposed a variety of restrictions: mini-

mum age limits for employment in the manufacturing sector, maximum work hour limits,

minimum school enrollment and minimum grade completion requirements. Following

Moehling [46], we focus on the minimum age for employment in the manufacturing sec-

tor since this is the one that imposed greater constraints on the employment of children.

Speci�cally, we de�ne child labor legislation to be the prohibition of children of less than

14 years of age to be employed in the manufacturing sector. Until 1880, almost none of

22A child will not be considered to have a regular gainful occupation if, according to the 1950-occupation
classi�cation, he is at school, keeps the house, helps his parents, is unemployed or without occupation, is
invalid or disabled with no occupation reported or has any other non-occupation.
23A child will be considered to work in this sector if, according to the 1950-occupational classi�cation,
he is employed in a craftsmen or operatives category.
24There is no missing occupational information in the 1880 census and less than 18% in the 1900 census.
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the U.S. states had passed child labor legislation and, according to Sanderson [59], these

laws had little publicity and were poorly enforced. By 1900, already eleven states had

issued child labor legislation.

We now proceed to explain the construction of the explanatory variables. The in-

formation regarding which states passed child labor legislation between 1880 and 1900

can be found in Ogburn [49], which is reproduced in Moehling [46]. We are also guided

by Moehling [46] in the choice of our control variables. To control for the household�s

wealth we include the household head�s age and squared age, his Duncan socioeconomic

index and his occupational score. We also include variables indicating whether the head

reported having no occupation, whether he had an occupation that required no skills,

and whether he had a professional or technical occupation25. In addition to that, binary

variables indicating whether the head could read and/or write are included as well. We

also control for the months that the household head has been unemployed in the previous

year. We include binary variables that indicate whether the mother and/or the father

were absent, whether the child and/or the parents were foreign born, the number of older

and younger sisters and brothers, and the presence in the household of children of less

than 5 years of age. To capture the human capital stock of the child, we include binary

variables that indicate whether the child could read and/or write. To capture the size

of the labor market we introduce binary variables that indicate whether the household

lived in an area with high population level (25,000 or more habitants), medium popula-

tion level (between 2,500 and 24,999 habitants) or low population level (less than 2,500

habitants, omitted). We also introduce variables that indicate the metropolitan status of

25Excluded categories include occupations that require skill, clerical occupation, sales, managers, propri-
etors and o¢ cials.
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the household, that is, whether the household was located outside a metropolitan area

(Metro1), in a central city within a metropolitan area (Metro2) or outside a central city

within a metropolitan area (Metro3, omitted).

Summary statistics for all the variables used in the regressions are provided in tables

3.1 and 3.2.

3.5. Results

This section reports the results of the estimation.

3.5.1. Regression estimates

Table 3.3 provides the estimates of the parameters of the likelihood of having an occu-

pation in any sector, i.e. general employment. We indicate statistical signi�cance of the

coe¢ cients with the usual star notation26. Under the assumptions of the model, the sign

of the coe¢ cient associated to the variable d2dB is the sign of the treatment e¤ect of the

child labor legislation on the child labor. In all the samples, the child labor legislation

reduced the probability of having an occupation in any sector.

Table 3.4 presents the estimates of the parameters for the likelihood of having an

occupation in the manufacturing sector. Results indicate that child labor legislation

reduced the probability of having an occupation in the manufacturing sector.

26One star means signi�cant at 10% level, two stars mean signi�cant at 5% level and three stars mean
signi�cant at 1% level.
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Boys Girls
Variable
Works in any sector
Works in manuf.
d2dB
dB
d2
Metro Area 1
Metro Area 2
U.S. born
Absent father
Absent mother
No. children under 5
School
Read
Write
No. older brother
No. younger brother
No. older sister
No. younger sister
Head�s age
Head�s age2

Head reads
Head writes
Head S.E.I.
Head�s occup. score
Head�s unemp. months
Parents born in U.S.
Medium population
Big population
Head has no occup.
Head is unskilled
Head is professional

Mean Std. dev. N.
0.142 0.349 5737
0.028 0.166 5737
0.225 0.418 5737
0.476 0.499 5737
0.466 0.499 5737
0.323 0.468 5737
0.096 0.295 5737
0.919 0.272 5737
0.129 0.335 5737
0.034 0.181 5737
0.605 0.826 5737
1.837 0.369 5737
0.958 0.201 5737
0.944 0.229 5737
0.731 0.945 5737
1.027 1.106 5737
0.698 0.906 5737
1.013 1.1 5737
44.761 7.726 5737
2063.227 731.151 5737
0.922 0.269 5737
0.905 0.293 5737
24.253 22.363 5737
23.552 12.486 5737
0.911 2.205 5084
0.505 0.5 5737
0.218 0.413 5737
0.38 0.485 5737
0.113 0.317 5695
0.229 0.42 5695
0.035 0.184 5695

Mean Std. dev. N.
0.054 0.225 5726
0.009 0.097 5726
0.258 0.438 5726
0.493 0.5 5726
0.518 0.5 5726
0.33 0.47 5726
0.1 0.3 5726
0.928 0.258 5726
0.128 0.334 5726
0.033 0.178 5726
0.611 0.826 5726
1.855 0.352 5726
0.973 0.162 5726
0.962 0.191 5726
0.738 0.954 5726
1.038 1.123 5726
0.67 0.899 5726
1.008 1.117 5726
44.584 7.813 5726
2048.785 739.002 5726
0.926 0.262 5726
0.909 0.287 5726
24.776 22.759 5726
23.875 12.744 5726
0.844 2.144 5093
0.507 0.5 5726
0.229 0.42 5726
0.393 0.488 5726
0.11 0.313 5689
0.235 0.424 5689
0.041 0.199 5689

Table 3.1. Summary statistics for young children

3.5.2. E¤ectiveness analysis

Table 3.5 provides estimates of the probability of child employment in any sector with

and without child labor legislation. By computing the di¤erence between these two, we
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Boys Girls
Variable
Works in any sector
Works in manuf.
d2dB
dB
d2
Metro Area 1
Metro Area 2
U.S. born
Absent father
Absent mother
No. children under 5
School
Read
Write
No. older brother
No. younger brother
No. older sister
No. younger sister
Head�s age
Head�s age2

Head reads
Head writes
Head S.E.I.
Head�s occup. score
Head�s unemp. months
Parents born in U.S.
Medium population
Big population
Head has no occup.
Head is unskilled
Head is professional

Mean Std. dev. N.
0.438 0.496 5333
0.1 0.299 5333
0.236 0.424 5333
0.492 0.5 5333
0.47 0.499 5333
0.352 0.478 5333
0.097 0.295 5333
0.895 0.307 5333
0.159 0.366 5333
0.036 0.187 5333
0.462 0.748 5333
1.554 0.497 5333
0.962 0.19 5333
0.949 0.219 5333
0.680 0.875 5333
1.089 1.181 5333
0.609 0.824 5333
1.061 1.147 5333
46.609 7.796 5333
2233.147 763.71 5333
0.913 0.282 5333
0.892 0.311 5333
23.045 22.333 5333
22.532 13.088 5333
0.87 2.168 4528
0.485 0.5 5333
0.224 0.417 5333
0.406 0.491 5333
0.15 0.357 5286
0.224 0.417 5286
0.034 0.181 5286

Mean Std. dev. N.
0.18 0.384 5135
0.038 0.19 5135
0.268 0.443 5135
0.513 0.5 5135
0.524 0.499 5135
0.337 0.473 5135
0.097 0.296 5135
0.909 0.288 5135
0.142 0.349 5135
0.037 0.189 5135
0.5 0.767 5135
1.635 0.481 5135
0.975 0.155 5135
0.967 0.179 5135
0.672 0.88 5135
1.096 1.176 5135
0.59 0.825 5135
1.107 1.2 5135
46.47 7.63 5135
2217.694 745.364 5135
0.927 0.26 5135
0.91 0.286 5135
25.41 23.429 5135
23.647 13.424 5135
0.855 2.102 4456
0.504 0.5 5135
0.224 0.417 5135
0.396 0.489 5135
0.129 0.336 5090
0.208 0.406 5090
0.044 0.205 5090

Table 3.2. Summary statistics for old children

also compute an estimate of the treatment e¤ect of the child labor legislation on child

labor. The remaining control variables are evaluated at �ve di¤erent values of interest:

(a) the U.S. average on both periods, (b) the pre-treatment (1880) average on non-treated
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Young children Old children
Variable Boys Girls Boys Girls
d2dB -0.542��� -0.292 -0.0897 -0.540���

d2 -0.342��� -0.235 -0.313��� 0.342��

dB -0.121 0.0175 -0.0886 0.530���

Metro area 1 0.192 0.490�� 0.256 0.156
Metro area 2 -0.108 0.204 -0.0651 0.472���

U.S. born -0.270� -0.427��� -0.386��� -0.253�

Absent father 0.552��� 0.549�� 0.164 0.537��

Absent mother 0.240 -0.217 -0.0652 -0.222
No. children under 5 -0.209��� -0.208�� -0.0894 -0.0836
School -1.990��� -1.660��� -2.073��� -1.908���

Reads 1.321��� 0.0550 0.278 0.419
Writes -1.003��� 0.425 -0.0472 -0.421
No. older brothers 0.0513 -0.0322 0.0118 -0.0516
No. younger brothers 0.0903�� 0.0878� 0.142��� 0.0451
No. older sisters -0.147��� 0.0930 -0.0118 0.0879
No. younger sisters 0.116��� 0.175��� 0.0553 0.129���

Head�s age 0.0757 -0.0636 -0.0143 -0.0206
Head�s age2 -0.000798 0.000658 0.000194 0.000273
Head reads -0.310 -0.236 0.00439 -0.632
Head reads -0.0114 0.0624 -0.376 0.453
Head writes -0.00827� -0.0187��� -0.008�� -0.0178���

Head�s S.E.I -0.00356 0.0127 0.0107 0.0169
Head�s unemp. months 0.0260 0.0166 0.0469��� 0.0486���

Parents born in U.S. -0.0385 -0.193 0.0303 0.0407
Medium population -0.142 -0.0370 -0.0270 0.0488
Big population -0.369 -0.120 -0.163 0.457��

Head has no occup. -0.611 dropped -0.366 0.407
Head is unskilled 0.225�� 0.209� 0.0366 0.169�

Head is professional 0.151 0.378 -0.360 -0.237
Constant 1.314 2.649�� 3.473��� 1.3465
Number of observations 2348 2388 2344 2375

Table 3.3. Probit estimates of the likelihood of having an occupation in any sector

states (A states), (c) the pre-treatment (1880) average on treated states (B states), (d)

the post-treatment (1900) average on non-treated states (A states) and, �nally, (e) the

post-treatment (1900) average on treated states (B states).
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Young children Old children
Variable Boys Girls Boys Girls
d2dB -0.360 -0.687� -0.184 -1.265���

d2 -0.0206 0.818��� 0.175 1.044���

dB -0.451�� 0.379 -0.117 0.595**
Metro area 1 0.231 0.166 -0.169 0.918*
Metro area 2 0.0547 -0.376 -0.506��� 0.446
U.S. born -0.313 -0.534�� -0.213* -0.114
Absent father 0.704�� 0.554 0.223 -0.498
Absent mother 0.224 -0.136 0.253 -0.425
No. children under 5 -0.183 0.111 0.0178 -0.0139
School -1.411��� -1.72��� -1.165��� -1.606���

Reads 0.418 0.557 -0.384 1.181
Writes -0.0771 -0.102 0.739 -0.974�

No. older brothers 0.0280 -0.206� 0.105�� -0.218��

No. younger brothers 0.0588 -0.0956 0.0672 0.0426
No. older sisters -0.124 0.0583 -0.0829 -0.0731
No. younger sisters 0.169�� -0.0500 0.0191 -0.0361
Head�s age -0.127�� -0.0463 -0.0458 0.0821
Head�s age2 0.00136�� 0.000742 0.000539 -0.000694
Head reads -0.330 0.594 0.0379 -1.119
Head writes 0.153 -0.679 -0.331 1.423
Head�s S.E.I. -0.0515��� -0.0195 -0.0187��� 0.00651
Head�s occup. score 0.0969��� 0.0317 0.0449��� -0.0236
Head�s unemp. months 0.0607�� 0.0559� 0.00568 0.0479
Parents U.S. born -0.371�� -0.363 -0.450��� -0.385�

Medium population -0.691*** 0.0132 -0.270** 0.0970
Big population -0.395 0.332 -0.0460 -0.190
Head has no occup. 0.907 dropped 1.051** 0.708
Head is unskilled 0.606*** 0.0975 0.297*** 0.170
Head is professional dropped dropped -0.0989 0.156
Constant 2.085 0.00608 0.662 -2.955
Number of observations 2267 2278 2344 2375
Table 3.4. Probit estimates of the likelihood of having an occupation in
manufacturing sector

Child labor legislation generated a signi�cant decrease in the probability of employ-

ment for young boys and a (barely) insigni�cant decrease in probability of employment
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Young children
Boys Girls

With CLL No CLL T.E. With CLL No CLL T.E.
1880-1900 US 5.29%��� 14.11%��� -8.82%��� 0.26%� 0.62%��� -0.36%
1880, A states 11.06%�� 24.78%��� -13.71%��� 0.23% 0.55%��� -0.32%��

1880, B states 6.94%��� 17.41%��� -10.46%��� 0.61%� 1.35%��� -0.73%
1900, A states 3.76%�� 10.80%��� -7.03%��� 0.09% 0.24%�� -0.15%
1900, B states 1.85%��� 6.13%��� -4.28%�� 0.29%��� 0.69%�� -0.36%

Old children
Boys Girls

With CLL No CLL T.E. With CLL No CLL T.E.
1880-1900 US 20.55%��� 23.20%��� -2.64% 1.18%�� 4.24%��� -3.06%���

1880, A states 30.60%��� 33.81%��� -3.21% 0.32% 1.38%��� -1.08%���

1880, B states 24.46%��� 27.36%��� -2.90% 1.82%�� 6.03%��� -4.21%���

1900, A states 16.15%��� 18.45%��� -2.29% 0.58%� 2.36%��� -1.78%���

1900, B states 11.90%��� 13.78%��� -1.88% 4.04%��� 11.40%��� -7.36%��

Table 3.5. Likelihood of employment in any sector and treatment e¤ects

for young girls. Also, the legislation generated an insigni�cant decrease in the probability

of employment for older boys and signi�cant decrease in the probability of employment

of older girls.

Table 3.6 describes the e¤ectiveness of the child labor legislation in reducing child

labor in the manufacturing sector. The legislation produced insigni�cant decreases in

probability of employment for all groups of children.

3.5.3. Benignity analysis

Child labor legislation decreased general employment levels of young and old boys, but

the decrease is statistically signi�cant only for young boys. In this case, we do not have

su¢ cient evidence to decide if the legislation had a benign e¤ect on general employment

for boys. This type of outcome could be caused by a benign legislation (case 2) or
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Young children
Boys Girls

With CLL No CLL TE With CLL No CLL TE
1880-1900 US 0.13% 0.41%�� -0.27% 0.00% 0.01% -0.01%
1880, A states 0.38% 1.06%�� -0.67% 0.00% 0.00% -0.00%
1880, B states 0.07% 0.23% -0.16% 0.00% 0.01% -0.01%
1900, A states 0.20% 0.60%�� -0.39% 0.00% 0.01% -0.01%
1900, B states 0.03% 0.13% -0.09% 0.01% 0.16% -0.14%

Old children
Boys Girls

With CLL No CLL TE With CLL No CLL TE
1880-1900 US 2.27%�� 3.47%��� -1.19% 0.00% 0.29% -0.29%
1880, A states 2.69%� 4.06%��� -1.36% 0.00% 0.01% -0.01%
1880, B states 1.91%�� 2.95%��� -1.03% 0.00% 0.21% -0.21%
1900, A states 2.71%�� 4.08%��� -1.37% 0.00% 0.31% -0.31%
1900, B states 1.82%��� 2.82%��� -0.99% 0.11% 3.68% -3.57%

Table 3.6. Likelihood of employment in manufacturing sector and treatment e¤ects

by a distortive legislation (case 1). Girls present the opposite pattern. The legislation

reduced general employment levels of young and old girls, but the reduction is statistically

signi�cant only for old girls. According to our analysis, this is evidence that the reduction

of employment of girl labor caused by the imposition of child labor legislation was benign

(case 3).

Since the child labor legislation was found to be ine¤ective in reducing manufactur-

ing employment for all groups of children, we deduce that, in terms of manufacturing

employment, it represented a trivially benign public policy (case 0).

3.6. Conclusions

Between 1880 and 1930, the employment rate of children ages 10 to 15 decreased by

over 75% in the U.S. economy. During this period, several U.S. states dictated state-

wide child labor legislation that imposed minimum age restrictions for employment in the
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manufacturing sector. This paper studies whether this child labor legislation contributed

to the decline in child labor market participation.

In addition to evaluating whether the legislation was e¤ective or not, we analyze the

labor market mechanism by which this takes place. This analysis may allow us to establish

if the legislation constituted a benign policy or not, that is, whether the legislation imposed

constraints to the behavior of the children (not benign) or whether it generated a change

in labor market equilibrium (benign).

The e¤ectiveness of the child labor legislation in reducing child labor had already

been addressed in the literature, mainly by Moehling [45] and Moehling [46]. In her

work, Moehling estimates a non-linear model (probit or logit) to analyze the children�s

employment decision and applies di¤erencing estimation methods to characterize the e¤ect

of the legislation. We show that di¤erencing estimation methods are inadequate to study

the e¤ectiveness of child labor legislation. First, di¤erencing estimators do not identify

the treatment e¤ect of interest in non-linear models, such as the one used to analyze labor

market participation. Second, when the economy presents multiple equilibria, di¤erencing

estimators may severely underestimate the e¤ect of the legislation.

In order to analyze the consequences of child labor legislation, we develop a model

along the lines of Basu and Van [8], which takes into account the possible multiplicity

of equilibria. This model allows us to derive observable consequences to identify whether

the legislation was e¤ective and/or benign.

We conduct separate estimates for young children (13-year-olds), who were legally

prohibited to work in the manufacturing sector, and old children (14-year-olds), who were

free to work. Our estimates indicate that the legislation was e¤ective in reducing general
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employment for young boys, for old girls and, mildly, for young girls. Based on this

information, we can deduce that the legislation was benign for general employment of

girls. Unfortunately, our results do not allow us to decide if the legislation was benign for

general employment of boys. When we conduct the estimation for labor participation in

the manufacturing sector, we �nd that child labor legislation was ine¤ective in reducing

child labor for both girls and boys and, hence, trivially benign.
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APPENDIX A

Bootstrap Inference on Partially Identi�ed Models

A.1. Notation

� Throughout this appendix, �a.s.�abbreviates almost surely, �w.p.a.1�abbrevi-

ates with probability approaching one, �WLLN�and �SLLN�refer to the weak

and strong law of large numbers, respectively, �CLT�refers to the central limit

theorem and �LIL�refers to the law of iterated logarithm.

� For any � 2 �; we denote P (m�) � E (m (Z; �)) ; Pn (m�) � En (m (Z; �)) �

n�1
Pn

i=1m (Zi; �) and v (m�) �
p
n (Pn � P) (m�) : For any � 2 � and j =

1; :::; J; P (mj;�) � E (mj (Z; �)) ; Pn (mj;�) � n�1
Pn

i=1mj (Zi; �) and v (mj;�) �
p
n (Pn � P) (mj;�) :

� We refer to the space of bounded that map � into RJ as l1J (�) and the space of

bounded continuous functions that map � into RJ as CJ (�) : For both spaces, we

use the uniform metric, denoted kyk1 ; i.e. 8y 2 l1J (�) ; kyk1 � sup�2� ky (�)k :

For matrix spaces, we use the Frobenius norm, i.e. 8M 2 Rm�n; kMk �qPm
i=1

Pn
j=1M

2
[i;j]:

� For any s 2 N; the space of Borel measurable convex sets in Rs is denoted

by Cs : For any function H : A1 ! A2; and any set S � A2; H
�1 (S) �

fx 2 A1 : H (x) 2 Sg : Also, for any " > 0 and any set S � Rs; de�ne S" �
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fx 2 Rs : 9x0 2 S \ kx� x0k � "g : Finally, for any set S � Rs; Int (S) denotes

interior of S and @S denotes boundary of S:

� For any square matrix � 2 Rr�r and any Borel measurable set A; �� (A) denotes

P (Z 2 A) where Z � N (0;�) : If � is non-singular, �� (x) denotes the density

of Z; where Z � N (0;�) :

A.2. Con�dence set for the identi�ed set

A.2.1. Di¤erences with the naive bootstrap

The bootstrap procedure we propose to cover the identi�ed set di¤ers qualitatively from

replacing the subsampling scheme in CHT [23] with the traditional bootstrap. In the

latter, we would construct the following criterion function,

Q�;APn (�) = G
��
[E�n (mj (Z; �))]+

	J
j=1

�
We denote this function by Q�;APn (�) since it represents the analogy principle criterion

function for the bootstrap sample. Given that this procedure could be naively suggested

based on the subsampling scheme from CHT [23], we refer to it as the naive bootstrap.

When we combine this analogy principle criterion function with subsampling, we pro-

duce consistent inference. When we combine this analogy principle criterion function

with the bootstrap, we obtain two problems which, in general, will result in inconsistent

inference in level. The �rst problem is caused by the estimation of the identi�ed set.

Recall from section 1.4.2.2 that we estimate the identi�ed set by allowing the sample re-

strictions to be violated by a certain amount that converges to zero at a suitable rate. In

other words, we estimate the identi�ed set by arti�cially expanding the sample analogue
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by a certain amount. The introduction of this expansion will not be (asymptotically)

problematic for inference based on subsampling but will generate inconsistent inference

based on the bootstrap. We will refer to this problem as the expansion problem. The

second problem is directly related to the well-known inconsistency of the bootstrap in the

boundary of the parameter space. This problem was studied by Andrews [2] who suggests

using subsampling as one possible solutions to this problem.

In order to understand the nature of these problems, we provide two examples. These

examples show three things. First, replacing the subsampling procedure in CHT [23]

with the bootstrap does not result in consistent inference in level. Second, our proposed

bootstrap procedure corrects these inconsistencies. Finally, these problems are not present

in the subsampling procedure.

A.2.1.1. Problem 1: the expansion problem. The objective is to construct a con�-

dence set for the following identi�ed set,

�I = f� 2 � : E (Y1) � � � E (Y2)g

where E (Y1) = E (Y2) = 0: Note that the identi�ed set is composed of only one point, that

is, the parameter is point identi�ed. Suppose that the sample fY1;i; Y2;igni=1 is i.i.d. such

that for every i = 1; 2; :::; n; (Y1;i; Y2;i) � N (0; I2) ; where Ik denotes the k � k identity

matrix. Notice that all assumptions of the conditionally separable model are satis�ed.

Since �I = f0g ; the distribution of interest is given by: �n =
p
nQn (0) ; which, by the

central limit theorem, converges weakly to G
�
[�1]+ ; [�2]+

�
; where � � N (0; I2) :

Now consider estimation of the identi�ed set. The key feature of this setup is that

even though the identi�ed set is non-empty (because E (Y1) � E (Y2)); the sample analogue
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estimate of the identi�ed set, given by: �̂API = f� 2 � : En (Y1) � � � En (Y2)g ; is empty

with positive probability (in this case, with probability 0:5). Hence, using the estimator

�̂API for inference will not produce consistent inference. This illustrates why we need to

introduce the sequence f�n=
p
ng+1n=1 to estimate the identi�ed set. Our estimator for the

identi�ed set is given by,

�̂I (�n) =
�
� 2 � : En (Y1)� �n=

p
n � � � En (Y2) + �n=

p
n
	

By the requirements on the sequence f�ng+1n=1 ; this estimator will eventually be non-empty,

almost surely.

Consider performing inference combining the bootstrap and the analogy principle cri-

terion function, that is, the naive bootstrap. In this setting, we will obtain the following

statistic,

��;APn = 1
h
�̂I (�n) = ?

i
max

8>>>>>>>><>>>>>>>>:

G

0B@ �p
bn (E�n (Y1)� En (Y1)) + �n

�
+
;�p

bn (En (Y1)� E�n (Y2))� �n
�
+

1CA ;

G

0B@ �p
bn (E�n (Y1)� En (Y2))� �n

�
+
;�p

bn (En (Y2)� E�n (Y2)) + �n
�
+

1CA

9>>>>>>>>=>>>>>>>>;
We now show that for a set of probability measure one, the conditional distribution of

the right hand side diverges to in�nity. For any " > 0; consider the following events,

A =
n�p

n (E�n (Y1)� En (Y1) ;E�n (Y2)� En (Y2)) jXn
	 d! N (0; I2)

o
B = lim inf

nn
�̂I (�n) = ?

o
\
���pn (En (Y1)� En (Y2))�� � �n=2

	o
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Let ! 2 fA \Bg : Since ! 2 B; 9N 2 N such 8n � N ,

��;APn � max

8><>: G
�
[
p
n (E�n (Y1)� En (Y1)) + �n]+ ; [

p
n (En (Y2)� E�n (Y2))� 1:5�n]+

�
;

G
�
[
p
n (E�n (Y1)� En (Y1))� 1:5�n]+ ; [

p
n (En (Y2)� E�n (Y2)) + �n]+

�
9>=>;

Since ! 2 A, the conditional distribution of the right hand side diverges to in�nity, a.s..

By the LIL and the requirements on f�ng+1n=1, P (A) = 1 (see proof of lemma 5). By

theorem 2.1 in Bickel and Freedman [13], P (B) = 1: Hence, P (A \B) = 1 and the naive

bootstrap is inconsistent in level, a.s. Hence, inference based on ��;APn will almost surely

result in 100% coverage.

The intuition for this result is as follows. The estimation of the identi�ed set requires

the introduction of the sequence f�ng+1n=1 ; which enters directly into the [�]+ term of the

bootstrap version of the analogy principle criterion function. Since this term diverges to

in�nity, it is not surprising that the statistic also diverges to in�nity. As we show next,

our proposed criterion function corrects this problem by removing this term from the [�]+

term.

If we choose to use our proposed bootstrap method, we have the following statistic,

��n = 1
h
�̂I (�n) 6= ?

i
�

�max
�2�̂I

8><>:G
0B@ [

p
n (E�n (Y1)� En (Y1))]+ 1 [En (Y1)� � � ��n=

p
n] ;

[
p
n (En (Y2)� E�n (Y2))]+ 1 [� � En (Y2) � ��n=

p
n]

1CA
9>=>;
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Consider ! 2 fA \B0g where B0 is de�ned by,

B0 = lim inf

8><>:
n
f0g 2 �̂I (�n)

o
\ f
p
nEn (Y1) � ��ng\

\f
p
nEn (Y2) � ��ng

9>=>;
Since ! 2 B0; 9N 2 N; such that 8n � N;

��n = G
��p

n (E�n (Y1)� En (Y1))
�
+
;
�p
n (En (Y2)� E�n (Y2))

�
+

�
Since ! 2 A; the conditional distribution of the right hand side converges weakly to

G
�
[�1]+ ; [�2]+

�
where � � N (0; I2) ; a.s.. By the same arguments as before, P (A0 \B) =

1 and, thus, our proposed criterion function leads to consistent inference in level.

It is important to understand that the inconsistency of the naive bootstrap is a con-

sequence of combining the analogy principle criterion function with the bootstrap rather

than with subsampling. If the analogy principle criterion function is applied to subsam-

pling samples (with subsampling size bn) we obtain the following statistic,

�SS;APbn;n
= 1

h
�̂I (�n) = ?

i
max

8>>>>>>>>><>>>>>>>>>:

G

0B@
hp

bn
�
ESSbn;n (Y1)� En (Y1)

�
+

p
bn�np
n

i
+
;hp

bn
�
En (Y1)� ESSbn;n (Y2)

�
�

p
bn�np
n

i
+

1CA ;

G

0B@
hp

bn
�
ESSbn;n (Y1)� En (Y2)

�
�

p
bn�np
n

i
+
;hp

bn
�
En (Y2)� ESSbn;n (Y2)

�
+

p
bn�np
n

i
+

1CA

9>>>>>>>>>=>>>>>>>>>;
where for i = 1; 2; ESSbn;n (Yi) denotes the sample average of Yi in the subsample.
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For any " > 0; consider the following events,

B00 = lim inf

8><>:
n
f0g 2 �̂I (�n)

o
\

\
n��pbn (En (Y1)� En (Y2))�� � (1 + ")p2 (bn ln lnn) =no

9>=>;
Consider ! 2 fA \B00g : If the sequence f�ng+1n=1 is chosen such that b

1=2
n �nn

�1=2 =

o (1) a.s., then, conditionally on the sample, �SS;APbn;n
converges weakly to G

�
[�1]+ ; [�2]+

�
where � � N (0; I2) : By usual arguments, P (A00 \B) = 1: Hence, subsampling results

in consistent inference. Just like with the bootstrap, the estimation of the identi�ed set

introduces the sequence
�p

bn�n=
p
n
	+1
n=1

into the [�]+ term of the statistic. The key

di¤erence with the bootstrap is that this sequence converges to zero (instead of diverging

to in�nity), so it does not a¤ect the asymptotic distribution. Notice that even though

the sequence
�
�n
p
bn=
p
n
	+1
n=1

may converge to zero, it may represent a non-negligible

number in small samples. As a consequence, it would not be surprising that subsampling

might still exhibit some overcoverage.

A.2.1.2. Problem 2: boundary problem. In order to isolate this problem from the

previous one, we consider an example where we can estimate the identi�ed set without

the need of introducing any expansion (that is, we can set �n = 0 in �̂I (�n)).

Consider the following identi�ed set,

�I = f� 2 � : max fE (Y1) ;E (Y2)g � �g

where E (Y1) = E (Y2) = 0: In order to perform inference, we have an i.i.d. sample of

fY1;i; Y2;igni=1 : For concreteness, assume that for every i = 1; 2; :::; n; (Y1;i; Y2;i) � N (0; I2) :
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Notice that all assumptions of the conditionally separable model are satis�ed. The dis-

tribution of interest is given by: �n = sup�2�I
p
nQn (�) ; which, by the central limit

theorem, converges weakly to G
�
[�1]+ ; [�2]+

�
; where � � N (0; I2) :

As opposed to the previous example, the identi�ed set has non-empty interior and the

sample analogue estimate will always be non-empty. Hence, we can estimate the identi�ed

set with the analogy principle estimate, �̂I (0) = f� 2 � : max fEn (Y1) ;En (Y2)g � �g.

Now consider performing inference combining the bootstrap and the analogy principle

criterion function, that is, the naive bootstrap. For any constant c > 0; consider the

following events,

A =
n�p

n (E�n (Y1)� En (Y1) ;E�n (Y2)� En (Y2)) jXn
	 d! N (0; I2)

o
B = lim sup

nn
�̂I (0) 6= ?

o
\
�p

n (En (Y1)� En (Y2)) < �c
	o

Suppose that ! 2 fA \Bg : Since ! 2 B, there exists a subsequence fnkg+1k=1 such

that, along this subsequence, �̂I (0) is non-empty and
p
nk (Enk (Y1)� Enk (Y2)) < �c:

Along this subsequence,

��;APnk
� G

��p
n
�
E�nk (Y1)� Enk (Y1)

�
� c
�
+
;
�p
n
�
E�nk (Y2)� Enk (Y2)

��
+

�
and since ! 2 A; then the right hand side converges weakly to G

�
[�1 � c]+ ; [�2]+

�
; where

� � N (0; I2). By usual arguments, P (A \B) = 1: This implies that the naive bootstrap is

not consistent in level. One may relate this result with the inconsistency of the bootstrap

on the boundary of the parameter space (see, Andrews [2]). The boundaries of the

unknown identi�ed set are determined by the parameters E (Y1) and E (Y2) ; which happen
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to coincide. In any bootstrap sample, the boundaries of the sample identi�ed set are

determined by En (Y1) and En (Y2) ; which will almost never coincide. As a consequence,

the structure of the boundaries in the population and in the sample almost surely di¤er,

producing inconsistency of the naive bootstrap.

Now suppose that we choose to use our proposed bootstrap procedure. Assume that

! 2 fA \B0g where B0 is the following event,

B0 = lim inf
nn
0 2 �̂I (0)

o
\
�p

nEn (Y1) � ��n
	
\
�p

nEn (Y2) � ��n
	o

Since ! 2 B0; 9N 2 N; such that 8n � N; 0 2 �̂I (0) ;
p
n En (Y1) � ��n and

p
n En (Y2) � ��n: Thus, for any ! 2 B0; conditional on the sample and 8n � N;

��n = G
��p

n (E�n (Y1)� En (Y1))
�
+
;
�p
n (E�n (Y2)� En (Y2))

�
+

�
Since ! 2 A; the conditional distribution of the right hand side converges weakly to

G
�
[�1]+ ; [�2]+

�
; where � � N (0; I2) : By usual arguments P (A \B0) = 1 and so, our

bootstrap is consistent in level.

Exactly as in the previous example, we note that the inconsistency of the naive boot-

strap is a consequence of using bootstrap instead of subsampling. When we use subsam-

pling (with sample size bn) with the analogue principle criterion function, we obtain the
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following statistic,

�SS;APbn;n
= 1

h
�̂I (0) 6= ?

i
�

�

8>>>>>>>><>>>>>>>>:

G

0B@ �p
bn
�
ESSbn;n (Y1)� En (Y1)

��
+
;�p

bn
�
ESSbn;n (Y2)� En (Y1)

��
+

1CA 1 [En (Y1) � En (Y2)] +
+G

0B@ �p
bn
�
ESSbn;n (Y1)� En (Y2)

��
+
;�p

bn
�
ESSbn;n (Y2)� En (Y2)

��
+

1CA 1 [En (Y1) < En (Y2)]

9>>>>>>>>=>>>>>>>>;
Let ! 2 fA \B00g ; where B00 is given by,

B00 = lim inf
nn
0 2 �̂I (0)

o
\
n���pbn (En (Y1)� En (Y2))

��� � (1 + ")p2 (bn ln lnn) =noo
Since (bn ln lnn) =n = o (1) and applying previous arguments, �SS;APn;bn

converges weakly

to G
�
[�1]+ ; [�2]+

�
; where � � N (0; I2) : Since P (A \B00) = 1; we deduce subsampling

generates consistent inference in level.

A.2.2. Preliminary results

Proof of lemma 4. This proof is elementary and is therefore omitted. �

Proof of lemma 5. Part 1. The de�nition of �I implies the following sequence of

inequalities,

sup
�2�I

max
j=1:J

Pn (mj;�) �

8><>: sup�2�I maxj=1:J (Pn � P) (mj;�)+

+ sup�2�I maxj=1:J P (mj;�)

9>=>; � n�1=2 sup
�2�

max
j=1:J

vn (mj;�)
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Therefore, the event fsup�2�maxj=1:J vn (mj;�) � �ng implies the event
n
�I � �̂I (�n)

o
and so,

P
�
lim inf

n
�I � �̂I (�n)

o�
�

JX
j=1

P

�
lim inf

�
sup
�2�

jvn (mj;�)j � �n

��
� J + 1

Since
p
ln lnn=�n = o (1), by the LIL for empirical processes (see, e.g., Kuelbs [39]), the

right hand side expression is equal to one. The de�nition of �̂I (�n) implies the following

sequence of inequalities,

sup
�2�̂I(�n)

max
j=1:J

P (mj;�) � sup
�2�̂I(�n)

max
j=1:J

(P� Pn) (mj;�) + sup
�2�̂I(�n)

max
j=1:J

Pn (mj;�)

� n�1=2
�
�n � inf

�2�
min
j=1:J

vn (mj;�)

�

Therefore, the event finf�2�minj=1:J vn (mj;�) � ��ng and 2�n="n = o (1) implies the

event
n
�̂I (�n) � �I ("n)

o
and so,

P
�
lim inf

n
�̂I (�n) � �I ("n)

o�
�

JX
j=1

P

�
lim inf

�
sup
�2�

jvn (mj;�)j � �n

��
� J + 1

and for the same reasons as before, the right hand side expression is one. Elementary

properties of lim inf operator complete the proof.

Part 2. Since the function P (m�) : � ! RJ is lower-semi continuous and the set �

is compact, maxj=1:J P (mj;�) achieves a minimum on �: Since �I = ?, such minimum

value is a positive value $ > 0; and so,

inf
�2�

max
j=1:J

Pn (mj;�) �

8><>: inf�2�minj=1:J (Pn � P) (mj;�)+

+ inf�2�maxj=1:J P (mj;�)

9>=>; � n�1=2 inf
�2�

min
j=1:J

vn (mj;�) +$
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Therefore, the event finf�2�minj=1:J vn (mj;�) � ��ng implies the event
n
�̂I (�n) = ?

o
and hence,

P
�
lim inf

n
�̂I (�n) = ?

o�
�

JX
j=1

P

�
lim inf

�
sup
�2�

jvn (mj;�)j � �n

��
� J + 1

and for the same reasons as before, the right hand side expression is one. �

A.2.3. Representation results

Theorem 36. Assume (A1)-(A4), (CF�) and that �I 6= ?. Then, �n = H (vn (m�))+

�n; where,

(1) for any " > 0; limn!1 P
� (j�nj > ") = 0;

(2) vn (m�) : 
n ! l1J (�) is an empirical process that converges weakly to a tight

zero-mean Gaussian process, denoted �; with covariance function,

� (�1; �2) = E [(m (Z; �1)� E (m (Z; �1))) (m (Z; �2)� E (m (Z; �2)))0]

for each f�1; �2g 2 �;

(3) H : l1J (�) ! R is continuous, non-negative, weakly convex and H (y) = 0

implies that for some �0 2 � and for some j = 1; 2; :::; J; yj (�0) � 0.

If we assume (B1)-(B4), (CF) and that �I 6= ?, then, for some r 2 N \ [1; J �K] ;

�n = ~H
�p

n �Z
�
+ ~�n; where,

(1) for any "n = O
�
n�1=2

�
; P
����~�n��� > "n

�
= o

�
n�1=2

�
;
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(2) �Z : 
n ! Rr is a zero mean sample average of n i.i.d. observations from a dis-

tribution with variance-covariance matrix is Ir: If we add (B5), this distribution

has �nite third absolute moments,

(3) ~H : Rr ! R is continuous, non-negative and weakly convex. For all � > 0, any

jhj � � > 0 and any sequence "n = o (1) ; ~H�1 ((h� "n; h+ "n]) � ~H�1 (fhg)�n

where �n = O ("n). Finally, ~H (y) = 0 implies that for some non-zero vector

b 2 Rr, b0y � 0.

If, instead, we assume (A1)-(A4), (CF�) and that �I = ?, then �n = 0.

Proof. Part 1. Let �n be de�ned as,

�n = sup
�2�I

G

�n�p
nPn (mj;�)

�
+

oJ
j=1

�
� sup
�2�I

G
��
[vj;n (m�)]+ 1 [P (mj;�) = 0]

	J
j=1

�

and set H (y) = sup�2�I G
��
[yj]+ 1 [P (mj;�) = 0]

	J
j=1

�
:

Point 1. Restrict attention to � 2 �I and �x " > 0 arbitrarily. By de�nition of vn (m�),

�n � 0 and so it su¢ ces to show P � (�n > ") = o (1). For any positive sequence f"ng+1n=1

such that
p
ln lnn="n = o (1) and "n=

p
n = o (1) ; denote An =

�
sup�2�I kvn (m�)k � "n

	
:

By the LIL for empirical processes (see, e.g. Kuelbs [39]), P (Acn) = o (1) and so, it su¢ ces

to show P � (�n > " \ An) = o (1).

Denote: Gn;1 (�) = G
��
[
p
nPn (mj;�)]+

	J
j=1

�
, �Gn;1 = sup�2�I Gn;1 (�) ; Gn;2 (�) =

G
��
[vn (mj;�)]+ 1 [P (mj;�) = 0]

	J
j=1

�
and �Gn;2 = sup�2�I Gn;2 (�) :

By de�nition of supremum, for every " > 0; implies that 9� 2 �I so that Gn;1 (�) +

"=2 � �Gn;1 and so, the event f�n > " \ Ang is equivalent to,

�
f�n > "g \

�
9� 2 �I :

�
Gn;1 (�) + "=2 � �Gn;1

	
\ fGn;1 (�)�Gn;2 (�) � "=2g

	
\ An
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The event f9� 2 �I : fGn;1 (�)�Gn;2 (�) � "=2gg implies 9j 2 f1; 2; :::; Jg such that

Pn (mj;�) � 0 and P (mj;�) < 0 : Let
�
Pf1;2;::;Jg=?

	
denote the set of all non-empty subsets

of f1; 2; ::; Jg and for any S 2
�
Pf1;2;::;Jg=?

	
; let �S denote

�
Pf1;2;::;Jg=?

	
=S: For any

S 2
�
Pf1;2;::;Jg=?

	
; consider the random set Dn (S) be given by,

Dn (S) =

(
�I \

\
j2S
fPn (mj;�) � 0g

)

Therefore, f9� 2 �I : fGn;1 (�)�Gn;2 (�) � "=2gg implies
S
S2fPf1;2;::;Jg=?g f9� 2 Dn (S)g.

For any S 2
�
Pf1;2;::;Jg=?

	
and n 2 N; de�ne the following two non-random sets,

~Dn (S) =

(
�I \

\
j2S

�
P (mj;�) 2

�
�"n=

p
n; 0
�	)

D (S) =

(
�I \

\
j2S
fP (mj;�) = 0g

)

For any S 2
�
Pf1;2;::;Jg=?

	
; ff9� 2 Dn (S)g \ Ang implies

nn
9� 2 ~Dn (S)

o
\ An

o
: Also,

8S 2
�
Pf1;2;::;Jg=?

	
, lim ~Dn (S) = \n2N ~Dn (S) = D (S) ; which implies that 8� > 0;

9N 2 N such that 8n � N;
n
9� 2 ~Dn (S)

o
implies f9�0 2 D (S) : k� � �0k < �g : It follows

that 8� > 0, 9N 2 N such that 8n � N; f�n > " \ Ang is equivalent to the event,

[
S2fPf1;2;::;Jg=?g

8><>:f�n > " \ Ang \

8><>: 9 (�; �0) 2 fDn (S)�D (S)g :

k� � �0k � � \
�
Gn;1 (�) + "=2 � �Gn;1

	
9>=>;
9>=>;

Now, 8� > 0, 8S 2
�
Pf1;2;::;Jg=?

	
, the event,

f�n > "g \
�
9 (�; �0) 2 fDn (S)�D (S)g : k� � �0k � � \

�
Gn;1 (�) + "=2 � �Gn;1
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leads to the following derivation,

G
��
[vn (mj;�)]+

	
j2S ; f0gj2 �S

�
+
"

2
(1)

� G

�n�p
nPn (mj;�)

�
+

o
j2fPn(mj;�)�0g

; f0gj2fPn(mj;�)<0g

�
+
"

2

(2)

� sup
~�2�I

G

�n�p
nPn

�
mj;~�

��
+

oJ
j=1

�
(3)

� sup
~�2�I

G

�n�
vn
�
mj;~�

��
+
1
�
P
�
mj;~�

�
= 0
�oJ

j=1

�
+ "

(4)

� G

�n�
vn
�
mj;�0

��
+

o
j2S

; f0gj2 �S
�
+ "

where
(1)

� holds because � 2 Dn (S) � �I ;
(2)

� holds because
�
Gn;1 (�) + "=2 � �Gn;1

	
;
(3)

�

holds because �n > " and
(4)

� holds because �0 2 D (S) : As a consequence,(
sup
�2�I

sup
k�0��k��

����G��[vn (mj;�)]+
	
j2S ; f0gj2 �S

�
�G

�n�
vn
�
mj;�0

��
+

o
j2S

; f0gj2 �S
�����
)
>
"

2

By continuity, 8� > 0, 9N 2 N such that 8n � N , the event f�n > " \ Ang implies

the event sup�2�I supk�0��k�� kvn (m�)� vn (m�0)k > : As a consequence,

lim sup
n!1

P � (�n > " \ An) � lim sup
n!1

P �

 
sup
�2�

sup
k�0��k��

kvn (m�)� vn (m�0)k > 

!

Taking � # 0 and by stochastic equicontinuity, this part is completed.

Point 2. The empirical process vn (m�) : 
n ! l1J (�I) is asymptotically equicontin-

uous in probability (with respect to the Euclidean metric) and �I is totally bounded

(for this metric): By multivariate CLT, for every �nite collection of elements of �I ;

fvn (m�m)gMm=1 converges to a Gaussian random vector with a variance covariance ma-

trix whose (m1;m2) element is given by � (�m1 ; �m2). Arguments in van der Vaart and

Wellner [63] (theorem 1.5.7. and example 1.5.10.), complete this proof.
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Point 3. The function H (y) = sup�2�I G
��
[yj]+ 1 [P (mj;�) = 0]

	J
j=1

�
is trivially con-

tinuous and non-negative. Weak convexity can be veri�ed by de�nition. We now show

that 9 (�0; j) 2 f�I ; (1; 2; :::; J)g such that P (mj;�0) = 0 : Since that E (m (Z; �)) is a lower

semi-continuous function, �I is closed or equivalently, � \ �cI is open. Now proceed by

contradiction. That is, suppose that 8� 2 �I , maxj=1:J P (mj;�) < 0 ; which implies that

�I is open. By assumption, 9�0 2 �\�cI . By the case under consideration, �I 6= ?, and

so 9�00 2 �I : Consider the set S = f� 2 � : �00� + �0 (1� �) ; � 2 [0; 1]g. By de�nition,

it is a convex set (hence, connected). Moreover, S can be expressed as the union of two

non-empty open sets by intersecting it with �I and �cI . This is a contradiction. As a

corollary, H (y) = 0 implies that yj (�0) � 0:

Part 2. ~�n is given by,

~�n = sup
�2�I

G

0BB@
8><>:
264 pnp̂k (En (Yjjxk)� E (Yjjxk))+

+
p
np̂k (E (Yjjxk)�Mj;k (�))

375
+

9>=>;
J�K

(j;k)=1

1CCA+

� sup
�2�I

G

0BB@
8><>: [

p
np̂k (En (Yjjxk)� E (Yjjxk))]+ �

�1 [pk (Mj;k (�)� E (Yjjxk)) = 0]

9>=>;
J�K

(j;k)=1

1CCA
Point 1. De�ne yn =

p
np̂k (En (Yjjxk)� E (Yjjxk)), p̂ = fp̂kgKk=1 and the functions

Rn (�; y; �) and R (y; �) as follows,

Rn (�; y; �) = G

 �n�
yj;k +

p
n�k (E (Yjjxk)�Mj;k (�))

�
+

oJ
j=1

�K
k=1

!

R (y; �) = G

�n�
[yj;k]+ 1 [pk (Mj;k (�)� E (Yjjxk)) = 0]

	J
j=1

oK
k=1

�
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Then, ~�n = sup�2�I Rn (pn; yn; �)� sup�2�I R (yn; �) :

Denote pL = min fpkgKk=1 and � =
n
� :
PK

k=1 �k = 1; �k � pL=2
o
: For any sequence

f"ng+1n=1 with "n = o (1), consider the following derivation,

p
nP
����~�n��� > "n

�
=

=

8>>>>>>>><>>>>>>>>:

p
nP

0B@ ��sup�2�I Rn (p̂; yn; �)� sup�2�I R (yn; �)�� > "n\

\
�
p̂ 2 � \ kynk � n1=4

	
1CA+

+
p
nP

0B@ ��sup�2�I Rn (p̂; yn; �)� sup�2�I R (yn; �)�� > "n\

\
�
p̂ 62 � [ kynk > n1=4

	
1CA

9>>>>>>>>=>>>>>>>>;
�

8><>:
p
n1
�
sup�2� supkyk�n1=4

��sup�2�I Rn (�; y; �)� sup�2�I R (y; �)�� > "n
�
+

+
p
nP
�
kynk > n1=4

�
+
PK

k=1

p
nP (p̂k � pL=2)

9>=>;
By Chebyshev�s Inequality,

p
nP
�
kynk > n1=4

�
= o (1) and, therefore, it follows that

8k = 1; 2; :::; K;
p
nP (p̂k � pL=2) = o (1) : To conclude this point, we show that 9N 2 N

such that 8n � N; 8� 2 �; 8y : kyk < n1=4; sup�2�I Rn (�; y; �) = sup�2�I R (y; �) : By

assumption �I is non-empty and compact, the functions Rn (�; y; �) and R (y; �) are upper

semi-continuous, which implies that both achieve a maximum. The rest of the argument

works by explicit calculation of the maxima in a case by case fashion. This is tedious but

elementary.

Points 2 and 3. We �rst show that fp̂k (En (Yjjxk)� E (Yjjxk))gJ�K(j;k)=1 = B �Z where �Z

is an average of i.i.d. vectors with zero mean, V (Zi) = Ir and, under (B5), Zi �nite third

moments.
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Notice that fp̂k (En (Yjjxk)� E (Yjjxk))gJ�K(j;k)=1 is the average of i.i.d. vectors with

zero mean, variance-covariance matrix given by the block diagonal matrix �, whose

kth block is given by pkVk and Vk denotes the variance of fY jX = xkg. For every

k = 1; 2; :::; K; let rk be the rank of Vk and let Bk be the J � rk dimensional matrix

(with rank rk) such that BkB0
k = pkVk: Then, 8i = 1; 2; :::; n; 9Zk;i 2 Rrk such that:

(Yi � E (Y jxk)) 1 [Xi = xk] = BkZk;i. Let B = [B1; B2; :::; Bk]
0 so that, by construction,

� = BB0 and let Zi = [Z1;i; Z2;i; :::; ZK;i]
0 : Hence, 8i = 1; 2; :::; n; 9Zi 2 Rr so that:

f(Yi;j � E (Yjjxk)) 1 [Xi = xk]gJ�K(j;k)=1 = BZi: Since the variance of BZi equals BB0 and

B has full rank, V (Zi) = Ir : Finally, if fYijXi = xkgKk=1 is assumed to have �nite third

moments, then Zi will also have �nite third moments. By averaging these observations,

we notice that fp̂k (En (Yjjxk)� E (Yjjxk))gJ�K(j;k)=1 = B �Z.

Next, consider the function ~H (y) : Rr ! R,

~H (y) = sup
�2�I

�
G

�n�
B(j;k)y

�
+
1 [pk (Mj;k (�)� E (Yjjxk)) = 0]

oJ�K
(j;k)=1

��

We show that the function has the desired properties. This function is continuous and non-

negative by the same arguments as in the previous part. Weak convexity can be veri�ed

by de�nition. By arguments in part 1, 9 (�0; (j; k)) 2 f�I ; f1; 2; :::; Jg � f1; 2; :::; Kgg

such that E (Yjjxk) = Mj;k (�0) and hence, ~H (y) = 0 implies that for b = B(j;k) 6= ~0,

b0y � 0:

The remaining property is the one that requires the special functional forms imposed

by assumption (CF). Consider yA 2 ~H�1 ((hB � "n; hB + "n]) ; that is, 9hA : khA � hBk <

"n such that ~H (yA) = hA:We need to show that 9yB 2 Rr such that kyA � yBk � O ("n)

and ~H (yB) = hB: We consider �rst the case when G (x) =
PJ

j=1wjxj for w > 0: For
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any z 2 Rr; Let g (z; �) = G

�n�
B(j;k)z

�
+
1 [pk (Mj;k (�)� E (Yjjxk)) = 0]

oJ�K
(j;k)=1

�
: Since

g (z; �) depends on � through indicator functions, then we classify �I into �nitely many

subsets, according to the behavior they induce on the J �K indicator functions. From

each group, we can extract one representative. Let f�1; �2; :::; ��g denote the group of

such representatives. By de�nition, 8z 2 Rr; max�2�I g (z; �) = max�2f�1;:::;��g g (z; �).

For any (z; �) 2 fRr;�Ig ; let �+ (z; �) denote the subset of f1; 2; :::; J �Kg such that

Mj;k (�) = E (Yjjxk) and B(j;k)z > 0 and let �0 (z; �) denote the subset of f1; 2; :::; J �Kg

such that Mj;k (�) = E (Yjjxk) and B(j;k)z = 0:

Let f�1; :::; �mg denote the subset of the representatives such that maximize g (yA; �) :

Consider any arbitrary �0 2 f�1; :::; �mg : By de�nition yA 2 Rr satis�es the following

equations: 8 (j; k) 2 �0 (yA; �0) : B(j;k)x = 0 and 8 (j; k) 2 �+ (yA; �0) : B(j;k)x = hA;(j;k) >

0: By summing the equations for (j; k) 2 �+ (yA; �0) ; we get
P

(j;k)2�+(yA;�0) hA;(j;k) = hA:

Thus, yA 2 Rr satis�es the following system,264 P(j;k)2�+(yA;�0)B(j;k)�
B(j;k)

�
(j;k)2�0(yA;�0)

375x =
264 hAh

~0
i
(j;k)2�0(yA;�0)

375
We can repeat this process for the rest of the maximizers, i.e., 8�00 2 f�2; :::; �mg n�0.

Instead of expressing the information contained in �0 (yA; �
00) as

P
(j;k)2�+(yA;�00)B(j;k) =

hA we reexpress it as,
P

(j;k)2�+(yA;�00)B(j;k) �
P

(j;k)2�+(yA;�0)B(j;k) = 0; which gives the

following new equations,264 P(j;k)2�+(yA;�00)B(j;k) �
P

(j;k)2�+(yA;�0)B(j;k)�
B(j;k)

�
(j;k)2�0(yA;�00)

375x =
264 0h

~0
i
(j;k)2�0(yA;�00)

375
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If we put together all the equations from � 2 f�1; �2; :::; �mg in this manner, we will

produce a system of linear equations, that can be expressed as [C1; C2]
0 x = [hA;~0]

0 where

the matrix [C1; C2]
0 does not depend on hA: Consider the homogenous system C2x = ~0:

The matrix C2 may or may not have full rank, but can always be reduced to a system

C3x = ~0, where C3 has full rank. Since hA > 0; [C1; C3]
0 has full rank. If this rank is

r; then yA =
�
[C1; C3]

0��1 [hA;~0]0: If the rank is less than r; we can any add additional
(equality) restrictions that are satis�ed by yA; of the form C4x = c; until [C1; C3; C4]

0

has rank r: It is easy to see that C4 constructed this way will not depend on yA. Then,

yA =
�
[C1; C3; C4]

0��1 [hA;~0; c]0:
Consider yB =

�
[C1; C3; C4]

0��1 [hB;~0; c]0: By construction kyA � yBk = O ("n) ; (where

[C1; C3; C4] does not depend on yA): By construction and continuity, 8� 2 f�1; :::�mg

�+ (yA; �) = �+ (yB; �) and if
P

(j;k)2�+(yA;�)B(j;k)yA = hA; then
P

(j;k)2�+(yB ;�)B(j;k)yB =

hB: Also by construction, 8� 2 f�1; :::�mg then �0 (yA; �) = �0 (yB; �) : By continu-

ity, 8 (j; k) 2 f1; 2; :::; J �Kg such that Mj;k (�) = E (Yjjxk) and B(j;k)yA < 0; then

B(j;k)yB < 0: As a consequence, 8� 2 f�1; :::�mg ; g (yB; �) = hB: By continuity, 8� 2

f�1; :::; ��g n f�1; :::�mg ; g (yB; �) < hB: Thus, by construction, ~H (yB) = hB.

The arguments for G (x) = maxi=1;:::;J�K fwixig for positive weights fwigJ�Ki=1 are

similar and, therefore, omitted.

Part 3. If �I = ?; then, by de�nition, �n = 0: �

Theorem 37. If we assume (B1)-(B4), (CF�) and that �I 6= ?; then, for some

r 2 N \ [1; J �K] ; �n = ~H
�p

n �Z
�
+ ~�n; where,

(1) for any "n = O
�
n�1=2

�
; P
����~�n��� > "n

�
= o

�
n�1=2

�
;
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(2) �Z : 
n ! Rr is a zero mean sample average of n i.i.d. observations from a

distribution with variance-covariance matrix Ir : If we add (B5), this distribution

has �nite third absolute moments,

(3) ~H : Rr ! R is continuous, non-negative, weakly convex and homogeneous of

degree �. For any � > 0, any jhj � � > 0 and any sequence "n = o (1) ;n
~H�1 (fhg"n) \ kyk � O

�p
gn
�o
�
n
~H�1 (fhg)

o�n
where �n = O

�p
gn"n

�
. Fi-

nally, ~H (y) = 0 implies for some non-zero vector that for a non-zero vector

b 2 Rr; b0y � 0.

Proof. The de�nitions of �Z and ~H are exactly the same as in theorem 36. Ho-

mogeneity of degree � can be veri�ed by de�nition. To conclude, we need to show that

8h � �;
n
~H�1 (fhg"n) \ kyk � O

�p
gn
�o
�
n
~H�1 (fhg)

o�n
where �n = O

�p
gn"n

�
: Con-

sider y0 2 ~H�1 (fhg"n) such that ky0k � O
�p

gn
�
. De�ne y = y0 (h=h0)1=� : By homogene-

ity of degree �; ~H (y) = h: By de�nition:

ky0 � yk � ky0k
���1� (h0=h)�1=���� � O (

p
gn)max

n
1� (h0=h)�1=� ; (h0=h)�1=� � 1

o
where jh0 � hj � "n: For �xed h; jhj � � > 0; and h0 2 (h� "n; h+ "n] ; a �rst order Tay-

lor series argument implies that max
n
1� (h0=h)�1=� ; (h0=h)�1=� � 1

o
� O (jh0 � hj) =

O ("n) : As a consequence, ky0 � yk � O
�p

gn"n
�
; completing the proof. �

Theorem 38. Assume (A1)-(A4), (CF�) and that �I 6= ?. Then, ��n = H (v�n (m�))+

��n; where,

(1) for any " > 0; limn!1 P
� (j��nj > "jXn) = 0; a.s.,
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(2) fv�n (m�) jXng : 
n ! l1J (�) is an empirical process that converges weakly to the

same Gaussian process as in theorem 36, a.s.,

(3) H : l1J (�)! R is the same function as in theorem 36.

If we assume (B1)-(B4), (CF), that �I 6= ? and we choose the bootstrap procedure to

be the one specialized for the conditionally separable model, then, for r as in theorem 36;

��n =
~H
�p

n �Z�
�
+ ~�

�
n; where,

(1) for any "n = O
�
n�1=2

�
; P
����~��n��� > "njXn

�
= o

�
n�1=2

�
, a.s.,

(2)
�
�Z�jXn

	
: 
n ! Rr is a zero mean sample average of n independent observations

from a distribution with variance covariance matrix V̂ : If we also assume (B5),

this distribution has �nite third moments, a.s., and
V̂ � Ir � Op

�
n�1=2

�
,

(3) ~H : Rr ! R is the same function as in theorem 36.

If, instead, we assume (A1)-(A4), (CF�) and that �I = ? then, lim inf f��n = 0g, a.s..

Proof. Part 1. By the CLT for bootstrapped empirical processes applied to Donsker

classes (see, e.g., Giné and Zinn [30]), fv�njXng
d! � in l1J (�) ; a.s., where � is the same

Gaussian process as in theorem 36. The function H (y) : l1J (�)! R given by

H (y) = sup
�2�I

G
��
[yj (�)]+ 1 [P (mj;�) = 0]

	J
j=1

�
is continuous and so, by the continuous mapping theorem (see, e.g., van der Vaart and

Wellner [63]), fH (v�n) jXng
d! H (�) ; a.s.:

Conditional on the sample, let Hn : l
1
J (�)! R be the following function,

Hn (y) = sup
�2�̂I(�n)

G
��
[yj (�)]+ 1

�
Pn (mj;�) � �~�n=

p
n
�	J

j=1

�
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Let ��n be de�ned as: �
�
n = H (v�n (m�))�Hn (v

�
n (m�)). If 8" > 0; P (j��nj > "jXn) = o (1) ;

a.s., then fHn (v
�
n) jXng

d! H (Z) ; a.s.. In fact, this concludes the proof since the function

H has all the required properties.

Step 1: Show that limn!1 P (�
�
n � 0jXn) = 1; a.s.. Denote by An the following event,

An =

(n
�I � �̂I (�n)

o\(\
�2�

\
j=1:J

�
P (mj;�) � 0 =) Pn (mj;�) � �~�n=

p
n
	))

By de�nition, An implies f��n � 0g : Conditional on the sample, An is non-random, and

so it su¢ ces to show P (lim inf fAng) = 1; which follows from the LIL.

Step 2: Show that 8" > 0; P (��n > "jXn) = o (1) ; a.s. For any � > 0; let �I (�)

= f� 2 � : P (m�) � �g and let H� (y) : l1J (�) ! R denote the function H� (y) =

sup�2�I(�)G
��
[yj (�)]+ 1 [P (mj;�) � ��]

	J
j=1

�
: Consider a positive sequence f"ng+1n=1 such

that "n = o (1) ; (�n=
p
n) "�1n = o (1) and (~�n=

p
n) "�1n = o (1) ; a.s..

Step 2.1: We now show limn!1 P (Hn (v
�
n (m�)) � H"n (v�n (m�)) jXn) = 1; a.s.: Let

A0n denote the following event,

A0n =

(n
�̂I (�n) � �I ("n)

o\(\
�2�

\
j=1:J

�
Pn (mj;�) � �~�n=

p
n =) P (mj;�) � �"n

	))

The event A0n implies fHn (v
�
n (m�)) � H"n (v�n (m�))g and therefore, it is su¢ cient to show

that P (lim inf fA0ng) = 1; which follows from the LIL.

Step 2.2: Let ��n;1 be de�ned by,

��n;1 =

8><>: sup�2�I("n)G
��
[v�n (mj;�)]+ 1 [P (mj;�) � �"n]

	J
j=1

�
+

� sup�2�I G
��
[v�n (mj;�)]+ 1 [P (mj;�) � �"n]

	J
j=1

�
9>=>;
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then, we show that 8" > 0; lim supn!1 P �
�
��n;1 > "jXn

�
= 0 a.s..

Fix " > 0: For any � 2 �; de�ne the following functions,

Gn;1 (�) = G
��
[v�n (mj;�)]+ 1 [P (mj;�) � �"n]

	J
j=1

�
Gn;2 (�) = G

��
[v�n (mj;�)]+ 1 [P (mj;�) � �"n]

	J
j=1

�
and set �Gn;1 = sup�2�I("n)Gn;1 (�) and

�Gn;2 = sup�2�I Gn;2 (�) : With these de�nitions,

��n;1 = �Gn;1 � �Gn;2 and so, it follows that the event
�
��n;1 > "jXn

	
implies the event�

9� 2 f�I ("n) \�cIg : Gn;1 (�) + "=2 � �Gn;1jXn
	
:

Let
�
Pf1;2;::;Jg=?

	
denote the set of all non-empty subsets of the set f1; 2; ::; Jg and

8S 2
�
Pf1;2;::;Jg=?

	
; let �S denote f1; 2; :::; Jg =S: Then,

f�I ("n) \�cIg =
[

S02fPf1;2;::;Jg=?g
S1\S2=�S0

8>>>><>>>>:� \
8>>>><>>>>:

nT
j2S0 fP (mj;�) 2 (0; "n]g

o
TnT

j2S1 fP (mj;�) 2 [�"n; 0]g
o

TnT
j2S2 fP (mj;�) < �"ng

o
9>>>>=>>>>;

9>>>>=>>>>;
For any S 2

�
Pf1;2;::;Jg=?

	
; consider the sets Dn (S) and D (S) given by,

Dn (S) =

8<:� \
8<:
(\
j2S
fP (mj;�) 2 [�"n; "n]g

)\8<:\
j2 �S

fP (mj;�) < �"ng

9=;
9=;
9=;

D0
n (S) =

8<:� \
(\
j2S
fP (mj;�) = 0g

)\8<:\
j2 �S

fP (mj;�) < �"ng

9=;
9=;

According to these de�nitions, the event
�
��n;1 > "jXn

	
implies the following event,

[
S2fPf1;2;::;Jg=?g

�
9� 2 Dn (S) : Gn;1 (�) + "=2 � �Gn;1jXn
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For every S 2
�
Pf1;2;::;Jg=?

	
and 8� > 0; 9N 2 N : 8n � N; f� 2 Dn (S)g implies

f9�0 2 D0
n (S) : k� � �0k < �g : Thus, 8S 2

�
Pf1;2;::;Jg=?

	
and 8� > 0; 9N 2 N such that

8n � N; the event
�
9� 2 Dn (S) : Gn;1 (�) + "=2 � �Gn;1jXn

	
is equivalent to the event,

�
9 (�; �0) 2 fDn (S)�D0

n (S)g :
�
k� � �0k � � \Gn;1 (�) + "=2 � �Gn;1

	
jXn
	

Therefore, 8� > 0; 9N 2 N such that 8n � N , the event
�
��n;1 > "jXn

	
is equivalent

to the event,

[
S2fPf1;2;::;Jg=?g

8><>:���n;1 > "
	
\

8><>: 9 (�; �0) 2 fDn (S)�D0
n (S)g :�

k� � �0k � � \Gn;1 (�) + "=2 � �Gn;1
	
9>=>;
�������Xn

9>=>;
Now, 8� > 0, 8S 2

�
Pf1;2;::;Jg=?

	
, the event,8><>:���n;1 > "

	
\

8><>: 9 (�; �0) 2 fDn (S)�D0
n (S)g :�

k� � �0k � � \Gn;1 (�) + "=2 � �Gn;1
	
9>=>;
�������Xn

9>=>;
leads to the following derivation,

G
��
[v�n (mj;�)]+

	
j2S ; f0gj2 �S

�
+
"

2
(1)

� sup
~�2�I("n)

G

�n�
v�n
�
mj;~�

��
+
1
�
P
�
mj;~�

�
� �"n

�oJ
j=1

�
(2)

� sup
~�2�I

G

�n�
v�n
�
mj;~�

��
+
1
�
P
�
mj;~�

�
� �"n

�oJ
j=1

�
+ "

(3)

� G

�n�
v�n
�
mj;�0

��
+

o
j2S

; f0gj2 �S
�
+ "



184

where
(1)

� holds by
�
Gn;1 (�) + "=2 � �Gn;1

	
,
(2)

� holds because
�
��n;1 > "

	
and

(3)

� holds

because f�0 2 D0
n (S)g : By the same arguments as in the proof of theorem 36 (part 1),

8� > 0; 9 > 0 such that,

lim sup
n!1

P �
�
��n;1 > "jXn

�
� lim sup

n!1
P �

 
sup
�2�I

sup
k�0��k��

kv�n (m�)� v�n (m�0)k > 

�����Xn
!

If we take � # 0; the right hand side can be shown to be equal to zero a.s., using arguments

of theorem 2.4 in Giné and Zinn [30] (equation 2.16).

Step 2.3: Let ��n;2 be de�ned by,

��n;2 =

8><>: sup�2�I G
��
[v�n (mj;�)]+ 1 [P (mj;�) � �"n]

	J
j=1

�
+

� sup�2�I G
��
[v�n (mj;�)]+ 1 [P (mj;�) � 0]

	J
j=1

�
9>=>;

We show that 8" > 0; lim supn!1 P
� ���n;2 < "jX

�
= 0 a.s.. The structure of the argu-

ments are similar to the ones used in the previous step and, therefore, omitted.

Step 3: Combine steps 1 and 2 to complete the proof.

Part 2. Step 1: Show that f~p�k (E�n (Y jxk)� En (Y jxk))g
K
k=1 is the average of n (con-

ditionally) independent observations from the sample distribution, with variance �̂ and

�nite third moments, a.s.. For every k = 1; 2; :::; K; let ~p�k � �pk in the �xed design case

and ~p�k � p̂�k in the random design case.

In the �rst case, suppose that the design is �xed. Let fn1; n2; :::; nKg denote the

number of observations of each covariate value, which implies that
PK

k=1 nk = n: For each

k = 1; 2; :::; K; we sample nk observations by sampling randomly with replacement from

the sample fYijXi = xkg : Denote this sample by
�
Y �
i;k

	nk
i=1

: The (Y;X) pairs produced in

this fashion constitutes our bootstrap sample, denoted X �
n :We construct a sample of size
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n; such that the �rst n1 observations are given by
�
Y �
i;1 � �Y1; 01�J ; :::; 01�J

	n1
i=1

; the second

n2 observations are given by
�
01�J ; Y

�
i;2 � �Y2; 01�J ; :::; 01�J

	n2
i=1

; and so on. This results in

n observations of J �K dimensional vectors,
n��

Y �
i;k � En (Y jxk)

�
1 [Xi = xk]

	K
k=1

on
n=1

;

and whose average is f�pk (E�n (Y jxk)� En (Y jxk))g
K
k=1. Conditional on the sample (and

the design), these observations are independent, with variance �̂ and �nite third moments,

a.s.. In the second case, suppose that the design is random. This is the usual bootstrap

of pairs (X; Y ) and the same result follows from simpler arguments.

Step 2: The next step is to show that: f~p�k (E�n (Y jxk)� En (Y jxk))g
K
k=1 = B �Z�, where

BB0 = � and �Z� is the average of a sample of an independent sample with (conditional)

mean zero, variance covariance V̂ such that
V̂ � Ir = Op

�
n�1=2

�
and �nite third mo-

ments, a.s.. We cover proof for the random design case (the �xed design case only requires

change of notation).

As in the proof of theorem 36 (part 2), 8k = 1; 2; :::; K; let rk be the rank of Vk and

let Bk be the J � rk dimensional matrix (with rank rk) such that BkB0
k = pkVk:We show

that 8i = 1; 2; :::; n, there exists Z�k;i 2 Rrk such that: Y �
i 1 [X

�
i = xk] = BkZ

�
k;i:

If fY �
i ; X

�
i g is such that X�

i 6= xk and since Bk has full rank, Z�k;i = 0. If fY �
i ; X

�
i g

is such that X�
i = xk and since we resample our observations, then for some Zk;i 2

Rrk ; (Y �
i � En (Y jxk)) = Bk (Zk;i � En (Zjxk)) : Since Bk has full rank, the value of

(Y �
i � En (Y jxk)) determines a unique value for (Zk;i � En (Zjxk)). Hence, we choose,

Z�k;i = (Zk;i � En (Zjxk)) 1 [X�
i = xk]. By repeating 8k = 1; :::; K; we construct Z�i =�

Z�1;i; :::; Z
�
K;i

�
such that f(Y �

i � En (Y jxk)) 1 [X�
i = xk]gKk=1 = BZ�i .

By construction, fZ�i g
n
i=1 is a sample of random vectors sampled from a distribution

with (conditional) mean zero. Now add assumption (B5). By construction, V (BZ�i jXn) =
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�̂; and therefore:
�̂� � = B �V̂ � Ir�B0

 where V̂ = V (Z�i jXn) : By de�nition, V̂

is the sample variance of fZigni=1 : Since B 2 R(J�K)�r has rank r and by the CLT, it

follows that
V̂ � IR � O

�
n�1=2

�
. Finally, since f(Y �

i � En (Y jxk)) 1 [X�
i = xk]gKk=1 has

�nite third moments, a.s., Z�i also has �nite third moments, a.s..

Step 3: We now show that ��n = ~H
�p

n �Z�
�
+ ~�

�
n where ~H is the same function as in

theorem 36 and for any sequence f"ng+1n=1 such that "n = O
�
n�1=2

�
; P (j��nj > "njX ) =

o
�
n�1=2

�
; a.s.. Let Pf(1:J)�(1:K)g denote the set of all subsets of f(1; :::; J)� (1; :::; K)g

and for every S 2 Pf(1:J)�(1:K)g ; let �S = f(1; :::; J)� (1; :::; K)g nS:

Step 3.1: Let S 2 Pf(1:J)�(1:K)g and suppose that 9�0 2 �I such that for (j; k) 2 S;

pk (E (Yjjxk)�Mj (�0; xk)) = 0: We show that 9N 2 N such that 8n � N , 9� 2 �̂I (�n)

such that p̂k (En (Yjjxk)�Mj (�; xk)) � �~�n=
p
n for (j; k) 2 S; a.s.. In particular, we

show this for � = �0; i.e., we show that,

P
�
lim inf

nn
�0 2 �̂I (�n)

o
\
�
p̂k (En (Yjjxk)�Mj (�0; xk)) � �~�n=

p
n
	
(j;k)2S

o�
= 1

This result follows from the LIL for random vectors (see, e.g., Billingsley [15]).

Step 3.2: For S 2 Pf(1:J)�(1:K)gn? , suppose that /9� 2 �I such that for (j; k) 2

S; pk (E (Yjjxk)�Mj (�; xk)) = 0: We show that 9N 2 N such that 8n � N; /9� 2

�̂I (�n) such that: p̂k (En (Yjjxk)�Mj (�n; xk)) � �~�n=
p
n for (j; k) 2 S:, a.s.. For

S 2 Pf(1:J)�(1:K)gn? ; let 	n (S) to be given by:

	n (S) =

8<:� 2 � :
8<: \
(j;k)2S

�
p̂k (En (Yjjxk)�Mj (�; xk)) � �~�n=

p
n
	9=;
9=;

It su¢ ces to show that: lim inf
n
/9� 2

n
�̂I (�n) \	n (S)

oo
; a.s..
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Step 3.2.1: We show that if for S 2 Pf(1:J)�(1:K)gn? ; /9� 2 �I such that for (j; k) 2 S;

pk (E (Yjjxk)�Mj (�; xk)) = 0; then 9$ > 0 such that,8>>><>>>:� 2 � :
8>>><>>>:
�
max
(j;k)2S

jpk (Mj (�; xk)� E (Yjjxk))j � $

�T
T( T

(j;k)2 �S
fpk (E (Yjjxk)�Mj (�; xk)) � 0g

)
9>>>=>>>;
9>>>=>>>; �

� f�cI \�g

To show this, notice that the problem inf�2�I
�
max(j;k)2S jpk (Mj (�; xk)� E (Yjjxk))j

	
achieves a minimum and, by hypothesis, the minimum cannot be zero. Assign this mini-

mum to $ > 0:

Step 3.2.2: For any ' � 0; de�ne the set R (') as,

R (') =
n
� 2 � :

n
fpk (E (Yjjxk)�Mj (�; xk)) � 'gJ�K(j;k)=1

oo
Notice that lim'!0R (') = �I : By continuity of fMj (�; xk)gJ�K(j;k)=1 and step 3.2.1; 9� > 0;

such that,

R (�) �

8>>><>>>:� 2 � :
8>>><>>>:
�
max
(j;k)2S

jpk (Mj (�; xk)� E (Yjjxk))j > $

�S
S( S

(j;k)2 �S
fpk (E (Yjjxk)�Mj (�; xk)) > �g

)
9>>>=>>>;
9>>>=>>>;

Step 3.2.3: By elementary properties, lim inf
n
/9� 2

n
�̂I (�n) \	n (S)

oo
; a.s. holds

if we show that,

(A.1) P
�
lim sup

n
9� 2

n
�̂I (�n) \	n (S) \R (�)

oo�
= 0
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(A.2) P
�
lim sup

n
9� 2

n
�̂I (�n) \R (�)c

oo�
= 0

To show (A.1), use step 3.2.2 to deduce,

n
�̂I (�n) \	n (S) \R (�)

o
�

�

8>>><>>>:
�
�̂I (�n) \	n (S) \ max

(j;k)2S
jpk (Mj (�; xk)� E (Yjjxk))j > $

�
[

[
( S
(j;k)2 �S

n
�̂I (�n) \ pk (E (Yjjxk)�Mj (�; xk)) > �

o)
9>>>=>>>;

Thus, it su¢ ces to show that,

(A.3)

P

�
lim sup

�
9� 2

�
�̂I (�n) \	n (S) \ max

(j;k)2S
jpk (Mj (�; xk)� E (Yjjxk))j > $

���
= 0

and 8 (j; k) 2 �S;

(A.4) P
�
lim sup

n
9� 2

n
�̂I (�n) \ pk (E (Yjjxk)�Mj (�; xk)) > �

oo�
= 0

To show (A.3), notice that,

�
�̂I (�n) \	n (S) \ max

(j;k)2S
jpk (Mj (�; xk)� E (Yjjxk))j > $

�
�

�
[

(j;k)2S

8><>:
n
p̂kMj (�; xk) +

�np
n
� p̂kEn (Yjjxk) � p̂kMj (�; xk)� ~�np

n

o
\

fpk (Mj (�; xk)� E (Yjjxk)) > $ [ pk (Mj (�; xk)� E (Yjjxk)) < �$g

9>=>;
�

[
(j;k)2S

8><>:
n
jp̂k (En (Yjjxk)� E (Yjjxk))j � $

2
� maxf�n;~�ngp

n

o
[
�
jpk � p̂kjmax�2� (Mj (�; xk)� E (Yjjxk)) > $

2

	
9>=>;
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and so, the result follows from the SLLN. To show (A.4), notice that, for (j; k) 2 �S;

n
�̂I (�n) \ pk (E (Yjjxk)�Mj (�; xk)) > �

o
�

�
�
fpk (E (Yjjxk)�Mj (�; xk)) > �g \

�
p̂k (En (Yjjxk)�Mj (�; xk)) < �n=

p
n
		

�

8><>: fp̂k (E (Yjjxk)� En (Yjjxk)) � ��n=
p
n+ �=2g[

[f(pk � p̂k) (E (Yjjxk)�Mj (�; xk)) > �=2g

9>=>;
and so, again, the result follows from the SLLN.

Now consider (A.2). Notice that,

P
�
lim sup

n
9� 2

n
�̂I (�n) \R (�)c

oo�
=

= P

0BBB@lim sup
8>>><>>>:9� 2

8>>><>>>:� :
8>>><>>>:

J;KT
(j;k)=1

fp̂k (En (Yjjxk)�Mj (�; xk)) � �n=
p
ng

\
J;KS

(j;k)=1

fpk (E (Yjjxk)�Mj (�; xk)) > �g

9>>>=>>>;
9>>>=>>>;
9>>>=>>>;
1CCCA

�
J;KX

(j;k)=1

8><>: P
�
lim sup

�
p̂k (E (Yjjxk)� En (Yjjxk)) > �

4

	�
+

+P
�
lim sup

�
jpk � p̂kj jsup�2� (E (Yjjxk)�Mj (�; xk))j > �

2

	�
9>=>;

and the right hand side is zero by SLLN.

Step 3.3: Let ~��n be de�ned as follows,

~��n = ~H
�p

n �Z�
�
= sup

�2�I

�
G

�n�
B(j;k) �Z

��
+
1 [pk (E (Yjjxk)�Mj (xk; �)) = 0]

oJ�K
(j;k)=1

��

and then ~�
�
n = ��n � ~��n: From steps 3.1, it follows that lim inf

n
~�
�
n � 0

o
; a.s. and

from and 3.2, if follows that lim inf
n
~�
�
n � 0

o
; a.s.. Combining both results, we deduce
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that lim inf
n
~�
�
n = 0

o
; a.s. and thus, for any non-negative sequence "n = O

�
n�1=2

�
;

p
nP
����~��n��� > "njXn

�
= o (1) ; a.s..

Part 3. By de�nition
n
�̂I (�n) = ?

o
implies f��n = 0g : By lemma 5, if �I = ?;

lim inf
n
�̂I (�n) = ?

o
; a.s.. �

Theorem 39. If we assume (B1)-(B4), (CF�) and that �I 6= ?, then, ��n = ~H
�p

n �Z�
�

+ ~�
�
n; where,

(1) for any "n = O
�
n�1=2

�
; P
����~��n��� > "njXn

�
= o

�
n�1=2

�
, a.s.,

(2)
�
�Z�jXn

	
: 
n ! Rr is a zero mean sample average of n independent observations

from a distribution with variance covariance matrix V̂ : If we also assume (B5),

this distribution has �nite third moments, a.s., and
V̂ � Ir � Op

�
n�1=2

�
,

(3) ~H : Rr ! R is the same function as in theorem 37.

Proof. Trivial from the proof of theorem 38 and theorem 37. �

A.2.4. Consistency results

Proof of lemma 6. Part 1. Follows from theorem 36 and the CLT for empirical

processes.

Part 2. If �I = ?, then limn!1 P (�n = h) = 1 [h = 0] ; which is continuous at h if

and only if h 6= 0: If �I 6= ?, then by the �rst part, limn!1 P (�n = h) = P (H (�) = h) :

Since H � 0, we only need to consider h > 0: By theorem 36, H is weakly convex and

lower semicontinuous and so, the result follows from theorem 11.1 in Davydov, Lifshits

and Smorodina [26] (part (i)). �
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Proof of theorem 7. The proof follows directly from theorem 38 by using CLT for

empirical processes. �

Proof of theorem 9. Part 1. Consider the case �I 6= ?: Fix � > 0 arbitrarily. By

lemma 7, for every jhj � �; limn!1 jP (��n � hjXn)� P (H (�) � h)j = 0; a.s.. By lemma

6, P (H (�) � h) is continuous for every jhj � �: The combination of the two implies the

result.

Part 2. Now consider �I = ?: By theorem 38, lim inf fP (��n � hjXn) = 1 [h � 0]g ;

a.s., which implies uniform convergence, a.s.. �

Corollary 40. Suppose that �I 6= ?: For any � 2 [0; 0:5), de�ne qBn (1� �) �

P
�
��n � ĉBn (1� �) jXn

�
: Then,

��qBn (1� �)� (1� �)
�� = op (1) :

Proof. By lemma 6, limn!1 P (�n � h) = P (H (�) � h) with � � N (0; Ir) : By

theorem 36, H (�) � 0 implies that 9j 2 f1; :::; Jg and 9�0 2 �I such that � (�0) � 0:

Since � (�0) � N (0; V ar (mj (Z; �0))) with V ar (mj (Z; �0)) > 0; then: P (H (�) � 0) �

P (� (�0) � 0) � 0:5 < 1� �:

Let c1 (1� �) denote the (1� �) quantile of the limiting distribution. By lemma 6,

for any h > 0; P (H (�) � h) is continuous, and so 8� 2 [0; 0:5) ; P (H (�) � c1 (1� �)) =

1� �, which implies c1 (1� �) > 0:

By theorem 9, supjhj�� jP (��n � hjXn)� P (H (�) � h)j � "=2 w.p.a.1. For any "=2 >

0; choose � > 0 so that fc1 (1� �+ "=2) � �g : By the continuity of P (H (�) � h) this

implies that,

lim
n!1

P ((1� �) � P (��n � c1 (1� �+ "=2) jXn) � (1� �) + ") = 1
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By de�nition,

f(1� �) � P (��n � c1 (1� �+ "=2) jXn)g �
�
ĉBn (1� �) � c1 (1� �+ "=2)

	
�
�
(1� �) � P

�
��n � ĉBn (1� �) jXn

�
� P (��n � c1 (1� �+ "=2) jXn)

	
Therefore,

lim
n!1

P
���P ���n � ĉBn (1� �) jXn

�
� (1� �)

�� � "
�
�

� lim
n!1

P

0B@ (1� �) � P
�
��n � ĉBn (1� �) jXn

�
�

� P (��n � c1 (1� �+ "=2) jXn) � (1� �) + "

1CA = 1

completing the proof. �

Proof of corollary 10. Fix � 2 [0; 0:5) : It su¢ ces to show that 8" > 0; 9N 2 N;

such that 8n � N;
���P ��I � ĈBn (1� �)

�
� (1� �)

��� < ": Fix " > 0 and consider the

following derivation,

���P ��I � ĈBn (1� �)
�
� (1� �)

��� �(A.5)

�

8>>>><>>>>:
+
��P ��n � ĉBn (1� �)

�
� P

�
H (�) � ĉBn (1� �)

���+
+
��P �H (�) � ĉBn (1� �)

�
� P

�
��n � ĉBn (1� �) jXn

���+
+
��P ���n � ĉBn (1� �) jXn

�
� (1� �)

��

9>>>>=>>>>;
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The right hand side of equation (A.5) is the sum of three terms. For any � > 0; the �rst

term satis�es,

��P ��n � ĉBn (1� �)
�
� P

�
H (�) � ĉBn (1� �)

��� �(A.6)

� sup
jhj��

jP (�n � h)� P (H (�) � h)j+ 2 � 1
���ĉBn (1� �)

�� < �
�

By theorem 36 and the arguments used in the proof of theorem 9, 8� > 0; the �rst term

in the right hand side of equation (A.6) is o (1). Next, we show that the second term of

the right hand side of equation (A.6) is op (1). It su¢ ces to show that 9� > 0 such that

ĉBn (1� �) � �; w.p.a.1. By the arguments in corollary 40, 8� 2 [0; 0:5) ; c1 (1� �) > 0:

By lemma 6, the limiting distribution attains (1� �) level at c1 (1� �) and is continuous

on [0; c1 (1� �)] : Then, by intermediate value theorem, 9� 2 (0; c1 (1� �)) such that

P (H (�) � �) = ((1� �)� 0:5) =2 + 0:5; and so, pick � = �. Hence, by theorem 9,

jP (��n � �jXn)� ((1� �)� 0:5) =2 + 0:5j =
���P (��n � �jXn)� lim

n!1
P (�n � �)

��� = op (1)

and hence, P (��n � �jXn) < (1� �) ; w.p.a.1. By de�nition of quantile, (1� �) �

P
�
��n � ĉBn (1� �) jXn

�
; and so, by the monotonicity of the CDF, ĉBn (1� �) � � = �;

w.p.a.1.

The second term on hand side of equation (A.5) is op (1) by theorem 9. Finally, the

third term is op (1) by corollary 40. Combining the three terms, the left hand side of

equation (A.5) is op (1) and since it is non-stochastic, it has to be o (1) : �
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A.2.5. Rates of convergence results

Lemma 41. Let ~H be the function in theorem 36, let � � N (0;�) with non-singular

� 2 Rr�r and let f"ng+1n=1 be a positive sequence with "n = o (1). Then, 8� > 0;

sup
jhj��

���P � ~H (�) 2 (h� "n; h+ "n]
���� � O ("n)

Proof. First, consider h � ��. Since ~H (�) � 0 and "n = o (1) then, eventually,

h+ "n < 0 and so P
�
~H (�) � h+ "n

�
= 0:

Now consider h � �: Since "n = o (1) ; h � "n > 0, eventually. Since h > 0 and

"n = o (1) then by theorem 36; ~H�1 ((h� "n; h+ "n]) �
n
~H�1 (fhg)

on
for n = O ("n) :

The submultiplicative property of the matrix norm implies that ��1=2
n
~H�1 (fhg)

on
�n

��1=2 ~H�1 (fhg)
o�n

for some �n = O ("n).

By theorem 36, ~H is continuous and weakly quasiconvex, and since h 6= 0, ~H�1 (fhg)

= @ ~H�1 ((�1; h]) ; where ~H�1 ((�1; h]) 2 Cr . By the submultiplicative property of the

matrix norm, ��1=2@ ~H�1 ((�1; h]) = @��1=2 ~H�1 ((�1; h]) with ��1=2 ~H�1 ((�1; h]) 2

Cr . Combining all these steps, we deduce that,

P
�
~H (�) 2 (h� "n; h+ "n]

�
� P

�
# 2

n
@��1=2 ~H�1 ((�1; h])

o�0n�

where # � N (0; Ir) and ��1=2 ~H�1 ((�1; h]) 2 Cr . Corollary 3.2. in Bhattacharya and

Rao [12] (with s = 0) completes the proof. �

Proof of theorem 11. Fix � > 0 arbitrarily and let fgng+1n=1 be any positive sequence

such that gn = O
�
n�1=2

�
:

Part 1. Consider the case when �I 6= ?:
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Step 1: show that supjhj��
���P (�n � h)� P

�
~H (#) � h

���� � O
�
n�1=2

�
where # �

N (0; Ir) : For h � ��; the statement holds since both �n and ~H (#) are non-negative.

For h � �; from theorem 36, P (�n � h)� P (j�nj > gn) + P
�
~H
�p

n �Z
�
� h+ gn

�
, which

implies that,

sup
jhj��

8><>: P (�n � h)+

�P
�
~H (#) � h

�
9>=>; �

� sup
jhj��

8><>: P
�
~H
�p

n �Z
�
� h+ gn

�
� P

�
~H (#) � h+ gn

�
+

+P
�
~H (#) 2 (h� gn; h+ gn]

�
+ P

����~�n��� > gn

�
9>=>;

�

8><>: supjhj��

���P �pn �Z 2 ~H�1 ((�1; h+ gn])
�
� �Ir

�
~H�1 ((�1; h+ gn])

����+
+supjhj�� P

�
~H (#) 2 (h� gn; h+ gn]

�
+ P

����~�n��� > gn

�
9>=>;

From theorem 36, 8 jhj � �, 8gn; ~H�1 ((�1; h+ gn]) 2 Cr ; which implies that;

sup
jhj��

8><>: P (�n � h)+

�P
�
~H (#) � h

�
9>=>; �

�

8><>: supA2Cr
��P �pn �Z 2 A�� �Ir (A)��+

+supjhj�� P
�
~H (#) 2 (h� gn; h+ gn]

�
+ P

����~�n��� > gn

�
9>=>;

The right hand side is a sum of three terms. By the Berry-Esseén theorem, the �rst

term is O
�
n�1=2

�
; by lemma 41, the second term is O (gn) = O

�
n�1=2

�
and by theorem

36, the last term is o
�
n�1=2

�
: If we combine this result with the analogous argument for

P (�n > h) (instead of P (�n � h)) we complete this step.
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Step 2: show that supjhj��
���P (��n � hjXn)� P

�
~H
�
#̂
�
� hjXn

���� � Op
�
n�1=2

�
where

#̂ � N
�
0; V̂

�
and V̂ is the sample variance of fZigni=1. For h � ��; the statement

holds since both ��n and ~H
�
#̂
�
are non-negative. For h � �; theorem 36 implies, that

conditional on the sample, ��n = ~H
�p

n �Z�
�
+ ~�

�
n; where P

����~��n��� > gnjXn
�
= o

�
n�1=2

�
;

a.s.. By the same argument as in the previous step, it follows that,

sup
jhj��

n
P (��n � hjXn)� P

�
~H
�
#̂
�
� hjXn

�o
�

�

8><>: supA2Cr
��P �pn �Z� 2 AjXn�� �V̂ (A)��+

+supjhj�� P
�
~H
�
#̂
�
2 (h� gn; h+ gn] jXn

�
+ P

����~��n��� > gnjXn
�
9>=>;

The right hand side is a sum of three terms. Conditional on the sample (and on the

design), �Z� is the average of independent observations with mean zero, variance-covariance

V̂ and �nite third moments, w.p.a.1. Thus, the Berry-Esseén theorem implies that the

�rst term is Op
�
n�1=2

�
: By the CLT,

V̂ � Ir � Op
�
n�1=2

�
and so, V̂ is non-singular,

w.p.a.1. Thus, by lemma 41, the second term is Op
�
n�1=2

�
. By theorem 38, the last

term is op
�
n�1=2

�
: We combine this with the same argument for P (��n > hjXn) (instead

of P (��n � hjXn)).

Step 3: show that supjhj��
���P � ~H (#) � h

�
� P

�
~H
�
#̂
�
� hjXn

���� = Op
�
n�1=2

�
for

# � N (0; Ir) and #̂ � N
�
0; V̂

�
; with

V̂ � Ir � Op
�
n�1=2

�
. It su¢ ces to show thatR

Rr
���V̂ (x)� �Ir (x)

�� dx = Op
�
n�1=2

�
; which follows from simple arguments.

Step 4: Combine steps 1, 2, and 3 to conclude the proof for the case �I 6= ?.
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Part 2. Now suppose that �I = ?. By lemma 5, lim inf
n
�̂I (�n) = ?

o
; a.s.. Since

the event
n
�̂I (�n) = ?

o
implies the event f8h 2 R : P (��n � hjXn) = 1 [h � 0]g, this

completes the proof. �

Corollary 42. Suppose that �I 6= ?. For any � 2 [0; 0:5), de�ne qBn (1� �) �

P
�
��n � ĉBn (1� �) jXn

�
: Then,

��qBn (1� �)� (1� �)
�� � Op

�
n�1=2

�
.

Proof. Let c1 (1� �) denote the (1� �) quantile of the limiting distribution. By

arguments in corollary 40, c1 (1� �) > 0: By the proof of theorem 11, 8� > 0 and

8 > 0; 9K > 0 such that 8n 2 N;

P

 
sup
jhj��

jP (��n � hjXn)� P (H (#) � h)j � Kn
�1=2

!
� 1� 

where # � N (0; Ir) : Take "n = Kn
�1=2 and choose � > 0 so that 9N 2 N so that

8n � N; fc1 (1� �+ "n) > �g : As a consequence, 8n � N ,

P

0B@
�������
P
�
��n � c1

�
1� �+Kn

�1=2� jXn�+
�P

�
H (#) � c1

�
1� �+Kn

�1=2��
������� � Kn

�1=2

1CA � 1� 

By the continuity of P (H (#) � h), P
�
H (#) � c1

�
1� �+Kn

�1=2�� = 1��+Kn
�1=2;

so that 8n � N ,

P
�
(1� �) � P

�
��n � c1

�
1� �+Kn

�1=2� jXn� � (1� �) + 2Kn
�1=2� � 1� 
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By de�nition,

�
(1� �) � P

�
��n � c1

�
1� �+Kn

�1=2� jXn�	 �
�
�
ĉBn (1� �) � c1

�
1� �+Kn

�1=2�	
�
�
(1� �) � P

�
��n � ĉBn (1� �) jXn

�
� P

�
��n � c1

�
1� �+Kn

�1=2� jXn�	
Therefore, 9N 2 N so that 8n � N ,

P
���P ���n � ĉBn (1� �) jXn

�
� (1� �)

�� � 2Kn
�1=2� �

� P
�
(1� �) � P

�
��n � ĉBn (1� �) jXn

�
� (1� �) + 2Kn

�1=2� �
� P

�
(1� �) � P

�
��n � c1

�
1� �+Kn

�1=2� jXn� � (1� �) + 2Kn
�1=2� � 1� 

This conclusion can be extended 8n 2 N by appropriate choice of K. �

Proof of corolary 12. Part 1. Suppose that �I 6= ?: First, notice that the eventn
�I � ĈBn (1� �)

o
occurs if and only if the event

�
�n � ĉBn (1� �)

	
occurs: For any

K > 0; consider the following derivation,

���P ��n � ĉBn (1� �)
�
� (1� �)

�� > Kn�1=2
	

�

8><>:
���P ��n � ĉBn (1� �)

�
� P

�
��n � ĉBn (1� �) jXn

��� > (K=2)n�1=2	[
[
���P ���n � ĉBn (1� �) jXn

�
� (1� �)

�� > (K=2)n�1=2	
9>=>;

�

8><>: supjhj��
�
jP (�n � �)� P (��n � �jXn)j > (K=2)n�1=2

	
[

[
�
ĉBn (1� �) < �

	
[
���P ���n � ĉBn (1� �) jXn

�
� (1� �)

�� > (K=2)n�1=2	
9>=>;
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Hence,

P
���P ��n � ĉBn (1� �)

�
� (1� �)

�� > Kn�1=2
�
�

�

8>>>><>>>>:
P
�
supjhj�� jP (�n � �)� P (��n � �jXn)j > (K=2)n�1=2

�
+

+P
�
ĉBn (1� �) < �

�
+

+P
���P ���n � ĉBn (1� �) jXn

�
� (1� �)

�� > (K=2)n�1=2�

9>>>>=>>>>;
Pick " > 0 arbitrarily. The right hand side is a sum of three terms. For a K large enough;

the �rst term is smaller than "=3 by theorem 11. By the arguments in corollary 10,

ĉBn (1� �) � �, w.p.a.1 and so, 9N 2 N such that 8n � N , the second term smaller than

"=3. The third term is smaller than "=3 by corollary 42. By choosing K appropriately,

we can extend 8n 2 N:

Part 2. Now suppose that �I = ?: By theorem 38, lim inf f��n = 0g ; a.s., or equiva-

lently, for any � 2 [0; 1] ; lim inf
�
ĉBn (1� �) = 0

	
; a.s., concluding the proof. �

Lemma 43. Let ~H be the function in theorem 37 and assume that � � N (0;�) with

non-singular � 2 Rr�r. Then, 8� > 0,

sup
jhj��

P
�
~H (�) 2

�
h� n�1=2; h+ n�1=2

��
� O

�
n�1=2 lnn

�
Proof. Consider the following derivation for "n = n�1=2:

sup
jhj��

P
�
~H (�) 2 (h� "n; h+ "n]

�
= sup

jhj��
P
�
# 2 ��1 ~H�1 (fhg"n)

�
�
(
sup
jhj��

P

�
# 2

�
��1 ~H�1 (fhg)

�O("npgn)�
+ P (k#k > O (

p
gn))

)
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where # � N (0; Ir) :

Choose gn = ln
�
n(1+)

�
for some  > 0: By theorem 37 and corollary 3.2 in Bhat-

tacharya and Rao [12], the �rst term on the right side is O
�
"n
p
gn
�
: By theorem 1 in

Hüsler, Liu and Singh [34], P
�
k#k > O

�p
gn
�� �

"n
p
gn
��1 � O

�
exp

�
�gn

2

�
g
(r�3)=2
n n1=2

�
= O (1) : Since "n

p
gn = O

�
n�1=2 lnn

�
; the proof is completed. �

Corollary 44. Assume (B1)-(B5) and (CF�) and choose the bootstrap procedure to

be the one specialized for the conditionally separable model. If �I 6= ? then, for any

� 2 [0; 0:5) ; ���P ��I � ĈBn (1� �)
�
� (1� �)

��� = O
�
n�1=2 lnn

�
and if �I = ? then, for any � 2 [0; 1],

P
�
lim inf

n
ĈBn (1� �) = �̂I (0)

o�
= 1

Proof. Follows from arguments used to prove theorems 11 and 12 under the result of

lemma 43. �

A.2.6. Subsampling

A.2.6.1. Subsampling with recentering.

Theorem 45. Let fbng+1n=1 be such that bn !1 and bn=n = o (1) :

If we assume (A1)-(A4), (CF�) and that �I 6= ?, then, �SSbn;n = H
�
vSSbn;n (m�)

�
+ �SSbn;n;

where,

(1) for any " > 0; limn!1 P
� ����SSbn;n�� > "jXn

�
= 0; a.s..
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(2)
�
vSSbn;n (m�) jXn

	
: 
n ! l1J (�) is an empirical process that converges weakly to

the same Gaussian process as in theorem 36, a.s..

(3) H : l1J (�)! R is the same function as in theorem 36.

If, instead, we assume (B1)-(B4), (CF) and that �I 6= ?, then, for r as in theorem

36; �SSbn;n =
~H
�p

bn �Z
SS
bn;n

�
+ ~�

SS

bn;n; where,

(1) lim inf
n
~�
SS

bn;n = 0
o
; a.s..

(2)
�
�ZSSbn;njXn

	
: 
n ! Rr is a zero mean sample average of bn observations sampled

without replacement from a distribution with variance covariance matrix V̂ : If we

also assume (B5), this distribution has �nite third moments, a.s., and
V̂ � Ir �

Op
�
n�1=2

�
.

(3) ~H : Rr ! R is the same function as in theorem 36.

If, instead, we assume (A1)-(A4), (CF�) and that �I = ? then, lim inf
�
�SSbn;n = 0

	
,

a.s..

Proof. This proof follows the proof of theorem 36 very closely. We only focus on the

di¤erences.

Part 1. By the CLT for empirical processes, vn (m�) : 
n ! l1J (�) converges weakly

to the tight Gaussian process we denote by � (see, e.g., theorem 1.5.7 in van der Vaart and

Wellner [63]). Moreover, � has uniformly continuous sample paths, a.s.. Since the space

of continuous functions on a compact space is separable, assumption 7.4.1 in Politis et al.

[54] is satis�ed, and so, by theorem 7.4.1 of Politis et al. [54], vSSbn;n converges weakly to

�:



202

Part 2. The CLT for sample averages of bootstrapped vectors is replaced by the CLT

for averages of subsampled vectors, as in theorem 2.2.1 of Politis et al. [54]. The conclu-

sion that lim inf
�
�SSbn;n = 0

	
; a.s. was already shown in theorem 36. �

Theorem 46 (Consistency of subsampling excluding zero). Assume (A1)-(A4), (CF�)

and let fbng+1n=1 be such that bn !1 and bn=n = o (1). If �I 6= ? then, for any � > 0;

P

 
lim
n!1

sup
jhj��

���P ��SSbn;n � hjXn
�
� lim

m!1
P (�m � h)

��� = 0! = 0
and if �I = ? then,

P

�
lim inf

�
sup
h2R

���P ��SSbn;n � hjXn
�
� lim

m!1
P (�m � h)

��� = 0�� = 1
Proof. This proof follows the arguments of the proof of theorem 9. �

Proof of corollary 13. This proof follows the arguments of the proof of theorem

10. �

Lemma 47. Assume that the distribution of fY jX = xkgKk=1 is strongly non-lattice

and that bn !1 and bn=n = o (1) : Then,

P
�p

bn
�
ESSbn;n (Z)� En (Z)

�
2 SjXn

�
= �(S)+K1 (S) b

�1=2
n +K2 (S) bn=n+op

�
b�1=2n + bn=n

�
uniformly in S 2 Cr ; where supS2Cr jK1 (S)j < +1 and supS2Cr jK2 (S)j < +1:

For ~H as in theorem 36, # � N (0; Ir) and any  > 0; let hL and hH be de�ned such

that P
�
~H (#) � hL

�
= 0:72 and P

�
~H (#) � hH

�
= 1� and de�ne the function � () =n

S 2 Cr : 9h 2 [hL; hH ] : S =
n
y 2 Rr : ~H (y) � h

oo
. Then, infS2�() jK2 (S)j > 0.
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Proof. Part 1. For any S 2 Cr ; De�ne Sn (S) =
n
x 2 Rr : (1� bn=n)

�1=2 y 2 S
o
.

Notice that S 2 Cr if and only if Sn (S) 2 Cr : By de�nition,

P
�p

bn
�
ESSbn;n (Z)� En (Z)

�
2 S

���Xn� =
= P

�p
bn (1� bn=n)

�1=2 �ESSbn;n (Z)� En (Z)� 2 Sn (S)���Xn�
Babu and Singh [6] provide a Edgeworth expansion for averages of samples without

replacement from a �nite population, uniformly on classes of functions. For indicator

functions over Borel measurable convex sets (inRr) combined with results in Bhattacharya

and Rao [12], we deduce that,

P
�p

bn
�
ESSbn;n (Z)� En (Z)

�
2 S

���Xn� = �(Sn (S)) + b�1=2n K1 (S) + op
�
b�1=2n

�
uniformly in S 2 Cr ; 8S 2 Cr ; K1 (S) is given by,

K1 (S) =

=
X

�2
n
b2Nr:

Pr

j=1
bj=3

o
1Q

j=1;:::;r

�j!
E

 Q
j=1;:::;r

(Zj � E (Zj))�j
!Z

y2S

 Q
j=1;:::;r

@�j� (y)

@yj

!
dy

In order to deduce this result from Babu and Singh [6], we replace sample moments

by population moments, introducing a term that is Op
�
n�1=2

�
= op

�
b
�1=2
n

�
; uniform in

S 2 Cr ; and we replace b�1=2n K1 (Sn (S)) by b
�1=2
n K1 (S), which introduces the a term

that is o
�
b
�1=2
n

�
; uniform in S 2 Cr : Since the normal distribution has �nite absolute

moments of all orders, we deduce that supS2Cr jK1 (S)j < +1:
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By change of variables and a Taylor expansion argument,

� (Sn (S)) = � (S) +K2 (S) bn=n+ o (bn=n)

uniformly in S 2 Cr ; where K2 (S) = P (# 2 S)E (1� #0#j# 2 S) for # � N (0; Ir) :

Hence, supS2Cr jK2 (S)j < +1: The expansion follows from combining both arguments.

Part 2. 8 > 0; we now show that 9C = C () > 0; such that infS2�() jK2 (S)j � C:

Consider any S 2 � () : Since ~H is homogenous of degree � (with � � 1, by convexity);

if y 2 S; then 8� 2 [0; 1] ; �y 2 S:

Case 1: r = 1: By homogeneity of degree � of ~H, S = [�y1; y2] for some y1 � 0 and y2 �

0: By de�nition, K2 (S) = K2 ([0; y2]) +K2 ([�y1; 0]) : By inspection, K2 ([0; y2]) � 0 with

strict inequality if y2 2 (0;+1) : By symmetry, the same result applies to K2 ([�y1; 0]) :

Since P (# 2 S) 2 [0:72; 1� ] ; either y1 or y2 is both positive and �nite. Then, 9CA > 0

such that infS2�() P (# 2 S)E (1� #0#j# 2 S) � CA:

Case 2: r > 1: Since E (1� #0#) � �1 and by the homogeneity; then for a �xed

probability given by P (# 2 S) ; E (1� #0#j# 2 S) is maximized if the probability mass is

completely assigned to a circle around zero. For any S, let c > 0 be de�ne by P (# 2 S)

= P (#0# � c) and by construction: E (1� #0#j# 2 S) � E (1� #0#j#0# � c), which im-

plies P (# 2 S)E (1� #0#j# 2 S) � P (#0# � c)E (1� #0#j#0# � c) : Since P (# 2 S) �

0:72; then c � 2:52, which implies that E (1� #0#j#0# � c) < 0: By continuity of the

function f (c) = P (#0# � c)E (1� #0#j#0# � c) ; it follows that 9CB > 0, such that

supS2�() fP (# 2 S)E (1� #0#j# 2 S)g � �CB:

The result follows by considering C = min fCA; CBg. �
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Corollary 48. Assume (B1)-(B5), (CF), that the distribution of fY jX = xkgKk=1 is

strongly non-lattice and let bn !1 and bn=n = o (1) : If �I 6= ? then, for any � > 0,

sup
jhj��

��P ��SSbn;n � hjXn
�
� P (�n � h)

�� � Op
�
b�1=2n + bn=n

�
If �I = ? then,

P

�
lim inf

�
sup
h2R

��P ��SSbn;n � hjXn
�
� P (�n � h)

�� = 0�� = 1
Proof. Part 1. Consider �rst the case when �I 6= ?:

As a �rst step, we show that: supjhj��
��P ��SSbn;n � hjXn

�
� limm!1 P (�m � h)

�� =
Op

�
b
�1=2
n + bn=n

�
. By theorem 45, limm!1 P (�m � h) = �

�
~H�1 ((�1; h])

�
and for

any positive sequence "n = O
�
n�1=2

�
;

sup
jhj��

�
P
�
�SSbn;n � hjXn

�
� �

�
~H�1 ((�1; h])

��
�

�

8>>>><>>>>:
supjhj��

�������
P
�p

bn
�
ESSbn;n (Z)� En (Z)

�
2 ~H�1 ((�1; h+ "n]) jXn

�
+

��
�
~H�1 ((�1; h+ "n])

�
�������+

+P
����~�SSbn;n��� > "njXn

�
+ supjhj���

�
~H�1 ((h� "n; h+ "n])

�
9>>>>=>>>>;

The upper bound is a sum of three terms. By lemma 47, the �rst term isOp
�
b
�1=2
n + bn=n

�
;

by theorem 45, the second term is op
�
n�1=2

�
and by lemma 6, the third term is Op

�
n�1=2

�
:

Thus, the whole expression is Op
�
b
�1=2
n + bn=n

�
: The step is completed by repeating

the argument with the reverse inequality. The following step would be to show that:

supjhj�� jlimm!1 P (�m � h)� P (�n � h)j = Op
�
n�1=2

�
, which was shown in the proof

of theorem 11. Combining both steps, we complete the result.



206

Part 2. The case when �I = ? follows from the arguments in the proof of theorem

11. �

Corollary 49. Assume (B1)-(B5), (CF), that the distribution of fY jX = xkgKk=1 is

strongly non-lattice and let bn !1 and bn=n = o (1). For any � 2 [0; 0:5) ; qSSbn;n (1� �)

� P
�
�SSbn;n � ĉSSbn;n (1� �) jXn

�
: If �I 6= ?; then,

��qSSbn;n (1� �)� (1� �)
�� � Op

�
b�1=2n + bn=n

�
Proof. This proof follows the same arguments as in corollary 42. �

Proof of corolary 14. This proof follows the same arguments as in corollary 12. �

Corollary 50. Assume that the distribution of fY jX = xkgKk=1 is strongly non-lattice

and let bn !1 and bn=n = o (1). Assume that K1

�
~H�1 ((�1; c1 (1� �)])

�
> 0; where

K1 : Cr ! R is de�ned as in lemma 47, c1 (1� �) is de�ned by P
�
~H (#) � c1 (1� �)

�
=

1� � and where ~H is the function de�ned in theorem 36 and # � N (0; Ir).

If �I 6= ? then, 8" > 0; 9� > 0; 9C > 0 and 9N 2 N such that 8n � N ,

P

�
inf

h2[c1(1��)��;c1(1��)+�]

���P ��SSbn;n � hjXn
�
� lim

m!1
P (�m � h)

��� � C
�
b�1=2n + bn=n

��
� 1�"

and also 8" > 0; 9� > 0; 9C 0 > 0 and 9N 0 2 N such that 8n � N 0,

P

�
inf

h2[c1(1��)��;c1(1��)+�]

��P ��SSbn;n � hjXn
�
� P (�n � h)

�� � C 0
�
b�1=2n + bn=n

��
� 1� "
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Proof. Denote n as follows,

n = sup
h2R

���P ��SSbn;n � hjXn
�
� P

�
~H
�p

bn
�
ESSn (Z)� En (Z)

��
� hjXn

����
By theorem 45, �SSbn;n =

~H
�p

bn
�
ESSn (Z)� En (Z)

��
+~�

SS

bn;n with lim inf
n
~�
SS

bn;n = 0
o
; a.s..

Since
n
~�
SS

bn;n = 0
o
implies

�
n1=2n = 0

	
; it follows that n = op

�
n�1=2

�
.

Combining this result with lemma 47, and since 8 jhj � �; ~H�1 ((�1; h]) 2 Cr ; we

deduce that,

P
�
�SSbn;n � hjXn

�
� lim

m!1
P (�m � h) =

= K1

�
~H�1 ((�1; h])

�
b�1=2n +K2

�
~H�1 ((�1; h])

�
bn=n+ op

�
b�1=2n + bn=n

�
uniformly in jhj � �:

The absolute value of the right hand side is minimized by bn = 	n2=3; where 	 = 	(h)

is selected to minimize
���K1

�
~H�1 ((�1; h])

�
	(h)�1=2 +K2

�
~H�1 ((�1; h])

���� ; subject to
	(h) > 0: By the de�nition of K1 (S) for S 2 Cr , by properties of the function ~H and by

the same arguments used in lemma 41, it is not hard to show that K1

�
~H�1 ((�1; h])

�
is

continuous in h for jhj � �: Since K1

�
~H�1 ((�1; c1 (1� �)])

�
> 0 then, by continuity;

9� > 0 such that 8h 2 [c1 (1� �)� �; c1 (1� �) + �] ; K1

�
~H�1 ((�1; h])

�
> 0 and

K2

�
~H�1 ((�1; h])

�
> 0; which implies that the expression to be minimized is positive.
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Then, for any subsampling size, 9 ~C > 0 and 9N 2 N : 8n � N;

P

0BBBB@ inf
h2[c1(1��)��;c1(1��)+�]

����������
K1

�
~H�1 ((�1; h])

�
b
�1=2
n +

+K2

�
~H�1 ((�1; h])

�
bn=n

+op

�
b
�1=2
n + bn=n

�
����������
> ~C

�
b�1=2n + bn=n

�
1CCCCA

> 1� "

which implies the �rst result, by taking C 2
�
0; ~C

�
: To get the second result, combine

the �rst result with: supjhj�� jP (�n � h)� limm!1 P (�m � h)j = Op
�
n�1=2

�
and choose

C 0 2 (0; C) : �

Lemma 51. For any �L; �H such that (�L; �H) � (�; 1) ; let hL and hH be such that

P
�
~H (#) � hL

�
= �L and P

�
~H (#) � hH

�
= �H , where ~H is the function de�ned in

theorem 36 and # � N (0; Ir). If (1� �) 2 (�L; �H) ; then,

lim
n!1

P
�
ĉSSbn;n (1� �) 2 (hL; hH)

�
= 1

Proof. This follows from corollary 48 and the arguments in corollary 42. �

Corollary 52. Assume that the distribution of fY jX = xkgKk=1 is continuous and let

bn ! 1 and bn=n = o (1). Let (1� �) 2 [0:72; 1) denote the level of interest and let

c1 (1� �) be de�ned by P
�
~H (#) � c1 (1� �)

�
= 1��; where ~H is the function de�ned

in theorem 36 and # � N (0; Ir). Moreover, assume that K1

�
~H�1 ((�1; c1 (1� �)])

�
>

0 where K1 is de�ned as in lemma 47. If the identi�ed set is non-empty, then, 9C > 0
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and 9N 2 N such that 8n � N ,

��P ��I � CSSbn;n (1� �)
�
� (1� �)

�� � C
�
b�1=2n + bn=n

�
Proof. By the result in theorem 45 and since (1� �) 2 [0; 0:5) ; the (1� �) quantile

of P
�
�SSbn;n � hjXn

�
will be positive; w.p.a.1. By properties of the function ~H; w.p.a.1,

the (1� �) quantile of P
�
�SSbn;n � hjXn

�
can represent a level higher than (1� �) only

if ESSbn;n (Z) coincides for at least two subsamples. If the original sample is continuously

distributed, then no two subsamples will coincide, a.s.. Therefore, for any " > 0; 9N 2 N

such that 8n � N0; P
�
qSSbn;n (1� �) = (1� �)

�
> 1� "=2.

By corollary 50 and lemma 51, 9� > 0 such that 8" > 0; 9K > 0 and N1 2 N such

that 8n � N1,

P

0B@ inf
h2[c1(1��)��;c1(1��)+�]

�������
P
�
�SSbn;n � hjXn

�
+

�P (�n � h)

������� � C
�
b�1=2n + bn=n

�1CA � 1� "=4

P
�
ĉSSbn;n (1� �) 62 [c1 (1� �)� �; c1 (1� �) + �]

�
� "=4
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Hence 8n � N1,

1� "=4 �

� P

�
inf

h2[c1(1��)��;c1(1��)+�]

��P ��SSbn;n � hjXn
�
� P (�n � h)

�� � C
�
b�1=2n + bn=n

��

�

8>>>><>>>>:
P

0B@
�������
P
�
�SSbn;n � ĉSSbn;n (1� �) jXn

�
+

�P
�
�n � ĉSSbn;n (1� �)

�
������� � C

�
b
�1=2
n + bn=n

�1CA+
+P

�
ĉSSbn;n (1� �) 62 [c1 (1� �)� �; c1 (1� �) + �]

�

9>>>>=>>>>;
�

8><>:P
0B@ ��P ��SSbn;n � ĉSSbn;n (1� �) jXn

�
� P

�
�n � ĉSSbn;n (1� �)

���
� C

�
b
�1=2
n + bn=n

�
1CA+ "=4

9>=>;
which implies that 8n � N1;

P
����P ��I � ĈSSbn;n (1� �)

�
� qSSbn;n (1� �)

��� � C
�
b�1=2n + bn=n

��
� 1� "=2

Therefore: 8" > 0; 9N = max fN0; N1g 2 N : 8n � N;

" �

8><>: P
����P ��I � ĈSSbn;n (1� �)

�
� qSSbn;n (1� �)

��� < C
�
b
�1=2
n + bn=n

��
+

+P
�
qSSbn;n (1� �) 6= (1� �)

�
9>=>;

� P
����P ��I � ĈSSbn;n (1� �)

�
� (1� �)

��� < C
�
b�1=2n + bn=n

��
Since the event inside the probability is non-random, then 9N 2 N such that 8n � N it

does not occur. �

A.2.6.2. Subsampling with no recentering (a la CHT).

Theorem 53. Let fbng+1n=1 be such that bn !1 and bn=n = o (1) :
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If we assume (A1)-(A4), (CF�) and that �I 6= ?, then, �SS;CHTbn;n
= H

�
vSSbn;n (m�)

�
+

�SS;CHTbn;n
; where,

(1) for any " > 0; limn!1 P
�
�����SS;CHTbn;n

��� > "jXn
�
= 0; a.s..

(2)
�
vSSbn;n (m�) jXn

	
: 
n ! l1J (�) is an empirical process that converges weakly to

the same Gaussian process as in theorem 36, a.s..

(3) H : l1J (�)! R is the same function as in theorem 36.

Proof. This proof is similar to the one in theorem 45. We only point out how the

proof changes given that there is no recentering.

By theorem 45 and the properties of the function H, it follows that,

�SS;CHTbn;n
= H

�n
vSSbn;n (mj;�) +

p
bn ( �mj (�)� E (mj (�)))

oJ
j=1

�
+ �SSbn;n

where 8" > 0; limn!1 P
�
�����SS;CHTbn;n

��� > "=2jXn
�
= 0; a.s.. Therefore, in order to complete

this step, it su¢ ces to show that 8" > 0;

lim
n!1

P �

0B@
�������
H
��
vSSbn;n (mj;�) +

p
bn ( �mj (�)� E (mj (�)))

	J
j=1

�
+

�H
��
vSSbn;n (mj;�)

	J
j=1

�
������� > "=2

1CA = 0; a.s.

Since the function H is assumed to be continuous, it is su¢ cient to show that 8� > 0;

lim inf
�
sup�2�

pbn ( �m (�)� E (m (�))) < �
	
; a.s.. Since (ln lnn) bn=n = o (1) ; this

follows from the LIL for empirical processes (see, e.g., Kuelbs [39]). �

Lemma 54 (Comparison with CHT�s subsampling). Assume (A1)-(A4), (CF�). Let

fbng+1n=1 be such that bn ! 1 and bn=n = o (1) and let �SS;CHTbn;n
denote the subsampling
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statistic proposed by CHT [23]. If �I 6= ?, then 8" > 0;

P
�
lim
n!1

P �
�����SS;CHTbn;n

� �SSbn;n
��� > "jXn

�
= 0
�
= 1

If �I = ?, then,

P
�
lim inf

n
�SSbn;n � �

SS;CHT
bn;n

o�
= 1

Proof. Part 1. Follows directly from theorem 53.

Part 2. Since �SS;CHTn;bn
� 0 and since lim inf

�
�SSn;bn = 0

	
; a.s. then it follows that

lim inf
n
�SSn;bn � �

SS;CHT
n;bn

o
; a.s.. �

A.2.7. Asymptotic approximation

Theorem 55. Assume (A1)-(A4), (CF�) and that �I 6= ?. Then, �AAn = H
�
Ẑ (�)

�
+

�AAn ; where,

(1) for any " > 0; limn!1 P
� ����AAn �� > "jXn

�
= 0; a.s.,

(2)
n
Ẑ (�) jXn

o
: 
n ! l1J (�) is an empirical process that converges weakly to the

same Gaussian process as in theorem 36, a.s.,

(3) H : l1J (�)! R is the same function as in theorem 36.

If, instead, we assume (B1)-(B4), (CF), �I 6= ? and we construct �AAn by simulating

Ẑ independently from a zero mean normally distributed vector with variance covariance

matrix �̂ then, for r as in theorem 36; �AAn = ~H
�
�̂
�
+ ~�

AA

n ; where,

(1) for any "n = O
�
n�1=2

�
; P
����~�AAn ��� > "njXn

�
= o

�
n�1=2

�
, a.s.,

(2)
n
�̂jXn

o
: 
n ! Rr is a zero mean normally distributed vector with variance

covariance matrix V̂ . If we also assume (B5),
V̂ � Ir � Op

�
n�1=2

�
,
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(3) ~H : Rr ! R is the same function as in theorem 36.

If, instead, we assume (A1)-(A4), (CF�) and that �I = ? then, lim inf
�
�AAn = 0

	
,

a.s..

Proof. This proof follows the proof of theorem 36 very closely. �

Theorem 56 (Consistency of asymptotic approximation excluding zero). Assume

(A1)-(A4) and (CF�). If �I 6= ? then, for any � > 0;

P

 
lim
n!1

sup
jhj��

���P ��AAn � hjXn
�
� lim
m!1

P (�m � h)
��� = 0! = 0

and if �I = ? then,

P

�
lim inf

�
sup
h2R

���P ��AAn � hjXn
�
� lim
m!1

P (�m � h)
��� = 0�� = 1

Proof. This proof follows the arguments of the proof of theorem 9. �

Proof of corollary 15. This proof follows the arguments of the proof of theorem

10. �

Theorem 57 (Rate of convergence - asymptotic approximation). Assume (B1)-(B4)

and (CF). If the identi�ed set is non-empty then,

sup
jhj��

��P ��AAn � hjXn
�
� P (�n � h)

�� � Op
�
n�1=2

�
If the identi�ed set is empty then,

P

�
lim inf

�
sup
h2R

��P ��AAn � hjXn
�
� P (�n � h)

�� = 0�� = 1
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Proof. This proof follows the arguments of the proof of corollary 11. �

Proof of corollary 16. This proof follows the arguments of the proof of corollary

12. �

A.3. Con�dence sets for each element of the identi�ed set

A.3.1. Di¤erences with the naive bootstrap

The bootstrap procedure to cover each element of the identi�ed set di¤ers qualitatively

from replacing the subsampling scheme in CHT [23] with the traditional bootstrap. Ex-

actly as in section A.2.1, we refer to the procedure of replacing the subsampling scheme

in CHT [23] with the traditional bootstrap as naive bootstrap.

In general the naive bootstrap will produce inconsistent inference. Consider the fol-

lowing example. Let �I = f� 2 � : E (Y ) � �g and assume that Y � N (0; 1) and 0 2 �:

The criterion function is given by Q (�) = G
�
[E (Y )� �]+

�
; and its sample analogue

is Qn (�) = G
�
[En (Y )� �]+

�
: Hence, the distribution of interest is given by: �n (�) =

p
nQn (�)

d! G
�
[#]+

�
1 [� = 0] ; where # � N (0; 1) :

Consider performing inference for � = 0 combining the bootstrap and the analogy

principle criterion function, that is, the naive bootstrap. In this setting, we will obtain

the following statistic,

��;APn (0) = G
��p

n (E�n (Y )� En (Y )) +
p
n (En (Y )� E (Y ))

�
+

�
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For any c > 0; consider the following sets,

A =
n�p

n (E�n (Y )� En (Y )) jXn
	 d! N (0; 1)

o
B = lim inf

�p
n (En (Y )� E (Y )) < �c

	
Let ! 2 fA \Bg : Since ! 2 B; 9N 2 N such that 8n � N , the conditional distribution

of ��;APn (0) satis�es,

��;APn (0) � G
��p

n (E�n (Y )� En (Y ))� c
�
+

�
Since ! 2 A, the conditional distribution of the right hand side converges weakly to

G
�
[#� c]+

�
; where # � N (0; 1) : By the LIL we can deduce that P (B) = 1 and by

theorem 2.1 in Bickel and Freedman [13], P (A) = 1: Hence, this procedure leads to

inconsistent inference.

Instead, suppose that we use our proposed bootstrap procedure to perform inference

for � = 0. In this case,

��n (0) = 1
h
0 2 �̂I (�n)

i
G
��p

n (E�n (Y )� En (Y1))
�
+
1
�p
nEn (Y ) � ��n

��
Let ! 2 fA \B0g where B00 is given by,

B0 = lim inf
���pnEn (Y )�� � �n

	
Since ! 2 B0; 9N 2 N such that 8n � N , the conditional distribution of ��;APn (0) satis�es,

��n (0) = G
��p

n (E�n (Y )� En (Y1))
�
+

�
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Since ! 2 A, the conditional distribution of the right hand side converges weakly to

G
�
[#]+

�
; where # � N (0; 1) : By the LIL we can deduce that P (B0) = 1 and by theorem

2.1 in Bickel and Freedman [13], P (A) = 1: Hence, the proposed bootstrap inference

leads to consistent inference.

Finally, we note that the inconsistency of the naive bootstrap is a consequence of using

bootstrap instead of subsampling. When we use subsampling (with sample size bn) with

the analogue principle criterion function, we obtain the following statistic,

�SS;APbn;n
(0) = G

�hp
bn
�
ESSbn;n (Y )� En (Y )

�
+
p
bn (En (Y )� E (Y ))

i
+

�

For any " > 0; let B00 be given by,

B00 = lim inf
n���pbn (En (Y )� E (Y ))

��� � (1 + ")p2 (bn ln lnn) =no
Let ! 2 fA \B00g : If (bn ln lnn) =n = o (1) and using previous arguments, �SS;APbn;n

(0)

converges weakly to G
�
[�]+

�
; where � � N (0; 1) : Since P (A \B00) = 1; we deduce

subsampling generates consistent inference in level.

A.3.2. Representation results

Theorem 58. Assume (C1)-(C4), (CF�).

(1) If � 2 @�I then, for some r 2 N \ [1; J ] ; �n (�) = H�

�p
n �Z (�)

�
+ �n (�), where:

(a) for any "n = O
�
n�1=2

�
; P (j�n (�)j > "n) = o

�
n�1=2

�
;
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(b) �Z (�) : 
n ! Rr is a zero mean sample average of n i.i.d. observations

from a distribution with non-singular variance-covariance matrix V = Ir : If

assumption (C5) is added, then this distribution has �nite fourth moments,

(c) H� : Rr ! R is continuous, non-negative, weakly quasi-convex and homo-

geneous of degree �. H� (y) = 0 implies for some non-zero vector b 2 Rr;

b0y � 0. For any � > 0, any jhj � � > 0 and any sequence "n = o (1) ;�
H�1
� (fhg"n) \ kyk � O

�p
gn
�	
�
�
H�1
� (fhg)

	�n where �n = O
�p

gn"n
�
.

If we add (CF), then any � > 0, any jhj � � > 0 and any sequence

"n = o (1) ;
�
H�1
� (fhg"n)

	
�
�
H�1
� (fhg)

	n where n = O ("n) :

(2) If � 2 Int (�I) ; then lim inf f�n (�) = 0g ; a.s..

(3) If � 62 �I ; then lim�n (�) = +1; a.s..

Proof. This proof follows the proof of theorems 36 and 37 very closely. �

Theorem 59. Assume (C1)-(C4), (CF�).

(1) If � 2 @�I then, for r as in theorem 58; ��n (�) = H�

�p
n �Z� (�)

�
+ ��n (�), where:

(a) for any "n = O
�
n�1=2

�
; P (j��n (�)j > "njXn) = o

�
n�1=2

�
; a.s.,

(b)
�
�Z� (�) jXn

	
: 
n ! Rr is a zero mean sample average of n i.i.d. observa-

tions from a distribution with a variance-covariance matrix V̂ which is a.s.

non-singular. If assumption (C5) is added, then
V̂ � Ir � Op

�
n�1=2

�
and

the distribution has �nite fourth moments, a.s.,

(c) H� : Rr ! R is the same function as in theorem 58.

(2) If � 2 Int (�I) ; then lim inf f��n (�) = 0g ; a.s..

(3) If � 62 �I ; then lim inf f��n (�) = 0g ; a.s..
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Proof. This proof follows the proof of theorems 38 and 39 very closely. �

A.3.3. Consistency results

Theorem 60 (Bootstrap consistency on any set excluding zero). Assume (C1)-(C4),

(CF�).

(1) If � 2 @�I then, 8� > 0,

P

 
lim
n!1

sup
jhj��

���P (��n (�) � hjXn)� lim
m!1

P (�m (�) � h)
��� = 0! = 1

(2) If � 2 Int (�I) then,

P

�
lim
n!1

sup
h2R

���P (��n (�) � hjXn)� lim
m!1

P (�m (�) � h)
��� = 0� = 1

Proof. This proof follows the proof of theorem 9. �

Proof of corollary 17. Part 1. Follows the proof of theorem 10.

Part 2. By the case under consideration, 9$ > 0 such that maxj�J E (mj (Z; �)) �

�$: Hence, by the LIL, lim inf fmaxj�J
p
nEn (mj (Z; �)) < ��ng ; a.s.. Since the event

fmaxj�J
p
nEn (mj (Z; �)) < ��ng implies the events f

p
nQn (�) = 0g and f��n (�) = 0g,

P
�
lim inf

n
� 2 ĈBn (1� �)

o�
= 1:

Part 3. 9j = 1; 2; :::; J; E (mj (Z; �)) = $ > 0: By LIL, lim inf f
p
nEn (mj (Z; �)) > �ng ;

a.s.. The event f
p
nEn (mj (Z; �)) > �ng implies � 62 �̂I (�n) which, in turn, implies

that ��n (�) = 0: Also, f
p
nEn (mj (Z; �)) > �ng implies that

p
nQn (�) > 0: Therefore,

P
�
lim inf

n
� 62 ĈBn (1� �)

o�
= 1. �
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A.3.4. Rates of convergence results

Theorem 61 (Rates of convergence). Assume (C1)-(C5), (CF�). Then,

(1) If � 2 @�I then 8� > 0,

sup
jhj��

jP (��n (�) � hjXn)� P (�n (�) � h)j � Op
�
n�1=2 lnn

�
and if we further assume (CF), then 8� > 0,

sup
jhj��

jP (��n (�) � hjXn)� P (�n (�) � h)j � Op
�
n�1=2

�
(2) If � 2 Int (�I), then,

P

�
lim inf

�
sup
h2R

jP (��n (�) � hjXn)� P (�n (�) � h)j = 0
��

= 1

Proof of theorem 61. This proof follows the proof of theorem 11. �

Proof of corollary 18. Part 1. Follows the proof for corollary 12.

Part 2. 9$ > 0 such that maxj=1;:::;J E (mj (Z; �)) � �$: By de�nition, the eventn
� 62 ĈBn (1� �)

o
equals the event

�p
nQn (�) > ĉBn (�; 1� �)

	
: The latter event implies

that 9j = 1; :::; J such that f
p
nEn (mj (Z; �)) > 0g ; which, in turn, implies that 9j =

1; :::; J such that the event f
p
n (En (mj (Z; �))� E (mj (Z; �))) >

p
n$g occurs. Thus,

it su¢ ces to show that 8j = 1; :::; J; P (
p
n (En (mj (Z; �))� E (mj (Z; �))) >

p
n$) =

O (n�1) ; which follows from Chebyshev�s inequality.

Part 3. 9j = 1; 2; :::; J; E (mj (Z; �)) = $ > 0: By de�nition,
n
� 2 ĈBn (1� �)

o
is equivalent to

�p
nQn (�) � ĉBn (�; 1� �)

	
; which implies that either f

p
nQn (�) = 0g

or
�
ĉBn (�; 1� �) > 0

	
: Notice that f

p
nQn (�) = 0g implies f

p
nEn (mj (Z; �)) � 0g and
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�
ĉBn (�; 1� �) > 0

	
implies f

p
nEn (mj (Z; �)) � �ng : Since 8n 2 N; �n > 0, their union

implies f
p
nEn (mj (Z; �)) � �ng : Thus, P

�p
n (En (mj (Z; �))� E (mj (Z; �))) >

p
n$
2

�
= O (n�1) ; which follows from Chebyshev�s inequality. �

A.3.5. Subsampling procedure

(1) Choose a positive sequence f�ng+1n=1 such that
p
ln lnn=�n = o (1) and �n=

p
n =

o (1) a.s.,

(2) Estimate of the identi�ed set with,

�̂I (�n) =
n
� 2 � :

�
En (mj (Z; �)) � �n=

p
n
	J
j=1

o
(3) For every � 2 � and for s = 1; 2; :::; S; repeat the following steps,

(a) Construct subsamples of size bn (with bn ! 1 and bn=n = o (1)) by

sampling randomly without replacement from the data. For each subsam-

ple, denote the observations by
�
ZSSi

	bn
i=1
, and compute ESSbn;n (mj (Z; �)) =

b�1n
Pbn

i=1m
�
ZSSi ; �

�
:

(b) For each subsample, compute,

�SSbn;n (�) = 1
h
� 2 �̂I (�n)

i
�G

0B@
8><>:
�p
bn
�
ESSbn;n (mj (Z; �))� En (mj (Z; �))

��
+
�

�1 [En (mj (Z; �)) � ��n=
p
n]

9>=>;
J

j=1

1CA
(4) Let ĉSSbn;n (�; 1� �) be the (1� �) quantile of the simulated distribution of �SSbn;n (�) ;

simulated with arbitrary accuracy from the step 3,
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(5) The asymptotic approximation estimate of the (1� �) coverage region for the

each parameter in the identi�ed set is given by,

ĈSSbn;n (1� �) =
�
� 2 � :

p
nQn (�) � ĉSSbn;n (�; 1� �)

	

A.3.6. Asymptotic approximation

(1) Choose a positive sequence f�ng+1n=1 such that
p
ln lnn=�n = o (1) and �n=

p
n =

o (1) a.s.,

(2) Estimate of the identi�ed set with,

�̂I (�n) =
n
� 2 � :

�
En (mj (Z; �)) � �n=

p
n
	J
j=1

o
(3) For every � 2 � and for s = 1; 2; :::; S; repeat the following steps,

(a) Obtain random observation from the N
�
~0; �̂ (�)

�
; denoted by Ẑ (�) :

(b) Compute,

�AAn (�) = 1
h
� 2 �̂I (�n)

i
�G

 �h
Ẑj (�)

i
+
� 1
h
En (mj (Z; �)) � � �np

n

i�J
j=1

!

(4) Let ĉAAn (�; 1� �) be the (1� �) quantile of the simulated distribution of �AAn (�) ;

simulated with arbitrary accuracy from the step 3,

(5) The asymptotic approximation estimate of the (1� �) coverage region for each

parameter in the identi�ed set is given by,

ĈAAn (1� �) =
�
� 2 � :

p
nQn (�) � ĉAAn (�; 1� �)
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A.3.7. Monte Carlo simulations

In order to evaluate the �nite sample behavior of the inferential methods, we construct

con�dence sets that cover each element of the identi�ed set for each of the designs of

section 1.4.4. For a detailed description of the four Monte Carlo designs, as well as

comments on the choice of f�ng+1n=1 and the subsampling size, the reader is referred to

that section.

Our objective is to cover each element of the identi�ed set. In order to evaluate the

performance of each of the inferential methods, we compare the coverage of one point

in the identi�ed set. If this point is chosen in the interior of the identi�ed set, then the

coverage will converge to one at a relatively fast rate, regardless of the method used.

In order to make the comparison interesting, we choose a point in the boundary of the

identi�ed set, where the inferential methods di¤er in their convergence rates.

A.3.7.1. Design 1. Table A.1 compares the coverage probability for � = (�0:5; 0) : The

table shows that the subsampling procedures lack a satisfactory �nite sample performance.

The subsampling procedure proposed by CHT [23] su¤ers from overcoverage whereas the

subsampling procedure of section 1.4.3.1 su¤ers from undercoverage. In small samples,

CHT�s [23] subsampling might be a¤ected by the same problems as the boundary problems

a¤ecting the naive bootstrap. The naive bootstrap procedure su¤ers from signi�cant

overcoverage. This is to be expected, given that it is inconsistent.

Our bootstrap and our asymptotic approximation procedures present a satisfactory

�nite sample performance.
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Empirical coverage
Procedure 75% 90% 95% 99%

CHT�s subsampling (bn = n=2) 93.5%��� 99.5%��� 99.9%��� 100%���

CHT�s subsampling (bn = n=3) 89.2%��� 98.7%��� 99.5%��� 100%���

Our subsampling (bn = n=2; �n = ln lnn) 64.1%��� 79.0%��� 87.4%��� 94.2%���

Our subsampling (bn = n=3; �n = ln lnn) 67.6%��� 84.5%��� 90.8%��� 95.9%���

Naive bootstrap 100%��� 100%��� 100%��� 100%���

Our bootstrap (�n = ln lnn) 75.0% 91.2% 94.5% 98.5%
Our asymptotic approximation (�n = ln lnn) 78.5%��� 92.9%�� 96.6%��� 99.3%

Table A.1. Results of �rst Monte Carlo design

Empirical coverage
Procedure 75% 90% 95% 99%

CHT�s subsampling (bn = n=2) 93.1%��� 99.6%��� 100%��� 100%���

CHT�s subsampling (bn = n=3) 87.2%��� 98.8%��� 99.9%��� 99.9%���

Our subsampling (bn = n=2; �n = ln lnn) 57.2%��� 74.5%��� 82.3%��� 91.9%���

Our subsampling (bn = n=3; �n = ln lnn) 63.5%��� 80.8%��� 89.3%��� 96.1%���

Naive bootstrap 100%��� 100%��� 100%��� 100%���

Our bootstrap (�n = ln lnn) 73.6% 89.6% 94.8% 98.7%
Our asymptotic approximation (�n = ln lnn) 78.4%�� 91.9%�� 96.1% 98.6%

Table A.2. Results of second Monte Carlo design

A.3.7.2. Design 2. Table A.2 compares the coverage probability for � = (�0:5;�0:5) :

The performance of the di¤erent inferential methods is similar to the one in the �rst

design.

A.3.7.3. Design 3. Table A.3 compares the coverage probability for � = (0; 0) : The

performance of the di¤erent inferential methods is similar to the one in the �rst design,

except that the asymptotic approximation seems to be a¤ected by overcoverage.

A.3.7.4. Design 4. Table A.4 compares the coverage probability for � = (0; 0) : In this

design, the identi�ed set is empty or equivalently, the model is misspeci�ed. This, in this

case, covering the point (0; 0) implies making a type II error. For this reason, we do not
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Empirical coverage
Procedure 75% 90% 95% 99%

CHT�s subsampling (bn = n=2) 93.5%��� 99.9%��� 100%��� 100%���

CHT�s subsampling (bn = n=3) 87.4%��� 99.2%��� 100%��� 100%���

Our subsampling (bn = n=2; �n = ln lnn) 69.2%��� 81.3%��� 86.7%��� 94.4%���

Our subsampling (bn = n=3; �n = ln lnn) 73.2% 85.4%��� 91.8%��� 97.1%���

Naive bootstrap 100%��� 100%��� 100%��� 100%���

Our bootstrap (�n = ln lnn) 79.3%��� 91.5% 96.1% 99.2%
Our asymptotic approximation (�n = ln lnn) 86.1%��� 95.7%��� 98.3%��� 99.7%��

Table A.3. Results of third Monte Carlo design

Empirical coverage
Procedure 75% 90% 95% 99%

CHT�s subsampling (bn = n=2) 49.8% 91.5% 99.3% 100%
CHT�s subsampling (bn = n=3) 36.4% 79.0% 92.9% 99.8%
Our subsampling (bn = n=2; �n = ln lnn) 15.2% 26.0% 34.2% 51.4%
Our subsampling (bn = n=3; �n = ln lnn) 18.5% 32.1% 42.6% 61.0%
Naive bootstrap 100% 100% 100% 100%
Our bootstrap (�n = ln lnn) 24.0% 43.4% 56.4% 75.3%
Our asymptotic approximation (�n = ln lnn) 32.3% 55.0% 68.4% 81.7%

Table A.4. Results of fourth Monte Carlo design

test whether the empirical coverage coincides with the desired coverage level but, instead

compare the methods in terms of which is providing lowest coverage.

In this case, our bootstrap and our asymptotic approximation lead to coverage sets

that are smaller than the one generated by CHT [23]�s subsampling but larger than the

one generated by the subsampling procedure of section 1.4.3.1. As expected, the naive

bootstrap leads to coverage sets that are relatively too large.
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APPENDIX B

Speci�cation Test for Missing Functional Data

B.1. Notation

� Throughout this appendix, we abbreviate �cumulative distribution function�by

CDF,

� For x1; x2 2 RK ; we de�ne kx1 � x2k �
qPK

k=1 (x1;k � x2;k)
2 and for G1; G2 2

L2 (D) ; we de�ne kG1 �G2k� �
R
(G1 (x)�G2 (x))

2 d� (x) :

B.2. Identi�cation analysis for missing functional data

Proof of lemma 19. The construction of the bounds follows directly from deriva-

tions provided in the main text, so it only remains to be show that they are sharp. For

any x 2 L2 (D) and a value F (x) that satis�es the worst case scenario bounds, de�ne the

vector,

fP (fX (t) � x (t) ;8t 2 U (j)g j� = j; fX (t) � x (t) ;8t 2 O (j)g)g2
K

j=2

in any way such that the following equation is satis�ed,

(B.1)

F (x)� FX (xj� = 1)P (� = 1) =

=
P2K

j=2

8><>: P (fX (t) � x (t) ;8t 2 U (j)g j� = j; fX (t) � x (t) ;8t 2 O (j)g) �

�FX (x;O (j) j� = j)P (� = j)

9>=>;



226

To provide a concrete example, consider the case when the vector is a vector of constants,

that is, 8j = 2; 3; :::; 2K ;

P (fX (t) � x (t) ;8t 2 U (j)g j� = j; fX (t) � x (t) ;8t 2 O (j)g) =

=
F (x)� FX (xj� = 1)P (� = 1)P2K

s=2 FX (x;O (s) j� = s)P (� = s)

Since F (x) satis�es the worst case scenario bounds then, as long as equation (B.1) is

satis�ed, then 8j = 2; 3; :::; 2K ;

P (fX (t) � x (t) ;8t 2 U (j)g j� = j; fX (t) � x (t) ;8t 2 O (j)g) 2 [0; 1]

and hence it is a valid number for a probability. Hence, every value inside the worst case

scenario bounds is feasible, completing the proof. �

Proof of lemma 20. In order to prove that H (FX) =
�
� \

�
G : FLX � G � FHX

		
;

we need to show two statements: (1) FX 2
�
� \

�
G : FLX � G � FHX

		
and (2) if F 2�

� \
�
G : FLX � G � FHX

		
; then F is a valid CDF for X:

Part 1. Since FX is a CDF, FX 2 � and by lemma 19, FX 2
�
G : FLX � G � FHX

	
:

Part 2. Suppose that F 2
�
� \

�
G : FLX � G � FHX

		
: Then, 8x 2 L2 (D) ; we can

de�ne,

P (fX (t) � x (t) ;8t 2 U (j)g j� = j; fX (t) � x (t) ;8t 2 O (j)g) =

=
F (x)� FX (xj� = 1)P (� = 1)P2K

s=2 FX (x;O (s) j� = s)P (� = s)

for every j = 2; 3; :::; 2K :Given that F 2
�
� \

�
G : FLX � G � FHX

		
; it is not hard to ver-

ify that 8j = 2; 3; :::; 2K P (fX (t) � x (t) ;8t 2 U (j)g j� = j; fX (t) � x (t) ;8t 2 O (j)g)
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2 �: Hence, we have constructed the CDF for the missing data such that F is the CDF

of X. �

Proof of theorem 21. This proof is trivial. To show that the bounds are sharp, we

need to clarify the de�nition of sharpness. Sharpness of the upper (lower) bound means

that 9G 2 H (FX) such that
R
(G (x)� FY (xj�0))2 � (dx) is arbitrary close to the upper

(lower) bound (the bounds need not be exactly achieved). �

Proof of theorem 22. Part 1. Lower bound. For every x 2 L2 (D) ; consider the

problem,

(B.2) inf
FLX(x)�f�FHX (x)

(f � FY (xj�0))2

The unique solution to problem (B.2) is,

G��L (x) = FY (xj�0) 1
�
FLX (x) � FY (xj�0) � FHX (x)

�
+

+FLX (x) 1
�
FLX (x) > FY (xj�0)

�
+ FHX (x) 1

�
FY (xj�0) > FHX (x)

�
We can use this function to construct a function G�L : L2 (D)! R such that 8x 2 L2 (D) ;

G�L (x) = G��L (x) : By de�nition, 8x 2 L2 (D) ; FLX (x) � G�L (x) � FHX (x) or, equivalently,

G�L 2 H0 (FX) and therefore,

T 0L (X; Y�0) =

Z
inf

FLX(x)�f�FHX (x)
(f � FY (xj�0))2 � (dx)

=

Z 8><>: 1
�
FY (xj�0) < FLX (x)

� �
FLX (x)� FY (xj�0)

�2
+

+1
�
FY (xj�0) > FHX (x)

� �
FHX (x)� FY (xj�0)

�2
9>=>;� (dx)



228

Part 2. Upper bound. For every x 2 L2 (D) ; consider the problem,

(B.3) sup
FLX(x)�f�FHX (x)

(f � FY (xj�0))2

There are eight possible solutions for the problem (B.3), which we denote by
�
G��H;j (x)

	8
j=1
.

These solutions can be characterized by,

G��H;j (x) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

FLX (x)

8>>>><>>>>:
1

264 FLX (x)l(2:a) FY (xj�0)l(1:a) FHX (x)

FY (xj�0)� FLX (x)m(3:a) FHX (x)� FY (xj�0)

375+
+1
�
FY (xj�0)m(1:b) FHX (x)

�

9>>>>=>>>>;+

+FHX (x)

8>>>><>>>>:
1

264 FLX (x)l(2:a) FY (xj�0)l(1:a) FHX (x)

FY (xj�0)� FLX (x)l(3:b) FHX (x)� FY (xj�0)

375+
+1
�
FLX (x)m(2:b) FY (xj�0)

�

9>>>>=>>>>;

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
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where l(1:a); m(1:b); l(2:a); m(2:b); m(3:a) and l(3:b) denote either strict or weak inequalities,

giving rise to the eight solutions. These eight solutions are shown in the following table,

Solution l(1:a) m(1:b) l(2:a) m(2:b) m(3:a) l(3:b)

j = 1 � > � > � <

j = 2 � > � > > �

j = 3 � > < � � <

j = 4 � > < � > �

j = 5 < � � > � <

j = 6 < � � > > �

j = 7 < � < � � <

j = 8 < � < � > �

We can use any of these solutions to construct a function G�H : L2 (D)! R such that

8x 2 L2 (D) ; 9j 2 f1; 2; :::; 8g such that G�H (x) = G��H;j (x) : By de�nition, 8x 2 L2 (D) ;

8j 2 f1; 2; :::; 8g ; FLX (x) � G��H;j (x) � FHX (x) so, G
�
H 2 H0 (FX) and therefore,

T 0H (X; Y�0) =

Z
sup

FLX(x)�f�FHX (x)
(f � FY (xj�0))2 � (dx)

=

Z
max

n�
FLX (x)� FY (xj�0)

�2
;
�
FHX (x)� FY (xj�0)

�2o
� (dx)

completing the proof. �

Proof of theorem 23. Part 1. Lower bound.

Step 1. For every x 2 L2 (D) ; consider G�L (x) de�ned according to the proof of

theorem 22. We now show that G�L 2
�
� \

�
G : FLX � G � FHX

		
: By construction,
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G�L 2
�
G : FLX � G � FHX

	
; so we only need to verify that G�L 2 �: We verify the prop-

erties one by one:

(i) Monotonicity. Let x1; x2 2 L2 (D) and x1 (t) � x2 (t) 8t 2 D: Since FY (xj�0) ;

FLX (x) and F
H
X (x) are weakly increasing in x; FY (x1j�0) � FY (x2j�0) ; FLX (x1) � FLX (x2)

and FHX (x1) � FHX (x2) :

Case 1: Suppose that FLX (x1) > FY (x1j�0) ; so G� (x1) = FLX (x1) : Case 1.1: If

FLX (x2) > FY (x2j�0) ; then G�L (x2) = FLX (x2) � FLX (x1) = G�L (x1) : Case 1.2: If

FLX (x2) � FY (x2j�0) � FHX (x2) ; then G�L (x2) = FY (x2j�0) � FLX (x2) � FLX (x1) =

G�L (x1) : Case 1.3: If F
H
X (x2) < FY (x2j�0) ; then G�L (x2) = FHX (x2) � FLX (x2) �

FLX (x1) = G�L (x1) :

Case 2: Suppose that FLX (x1) � FY (x1j�0) � FHX (x1) ; so G
�
L (x1) = FY (x1j�0) :

Case 2.1: If FLX (x2) > FY (x2j�0) ; then G�L = FLX (x2) > FY (x2j�0) � FY (x1j�0) =

G�L (x1) : Case 2.2: If F
L
X (x2) � FY (x2j�0) � FHX (x2) ; then G�L (x2) = FY (x2j�0) �

FY (x1j�0) = G�L (x1) : Case 2.3: If F
H
X (x2) < FY (x2j�0) ; then G�L (x2) = FHX (x2) �

FHX (x1) � FY (x1j�0) = G�L (x1) :

Case 3: Suppose that FY (x1j�0) > FHX (x1) ; so G
�
L (x1) = FHX (x1) : Case 3.1: If

FLX (x2) > FY (x2j�0) ; then G�L (x2) = FLX (x2) > FY (x2j�0) � FHX (x1) = G�L (x1) : Case

3.2: If FLX (x2) � FY (x2j�0) � FHX (x2) ; then G�L (x2) = FY (x2j�0) � FY (x1j�0) >

FHX (x1) = G�L (x1) : Case 3.3: If F
H
X (x2) < FY (x2j�0) ; then G�L (x2) = FHX (x2) �

FHX (x1) = G�L (x1) :

(ii) Right Continuity. Consider an arbitrary convergent sequence fxn : n 2 Ng such

that 8n 2 N; xn 2 L2 (D) and xn � xn+1: Denote limn!1 xn = �x: The objective is to

show that limn!1G
�
L (xn) = G�L (�x) : Since G

�
L (x) is a combination of FY (xj�0) ; FLX (x)
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and FHX (x) ; which are right continuous, the limit can only be discontinuous if, at the

limit, the de�nition of the function G�L switches from one function to another one and the

value of these two functions di¤er. There are three cases to consider.

Case 1: 8n 2 N; FY (xnj�0) < FLX (xn) and so G
�
L (xn) = FLX (xn) : Taking limits and

using right continuity, FY (�xj�0) � FLX (�x) : In this case, in the limit, the function G
�
L

either does not switch its de�nition from function or, if it does, then the value of these

two functions coincide. As a consequence, limn!1G
�
L (xn) = G�L (�x) :

Case 2: 8n 2 N; FLX (xn) � FY (xnj�0) � FHX (xn) and so G
�
L (xn) = FY (xnj�0) :

Taking limits and using right continuity, FLX (�x) � FY (�xj�0) � FHX (�x) : In this case,

in the limit, the function G�L does not switch its de�nition and so limn!1G
�
L (xn) =

FY (�xj�0) = G�L (�x) :

Case 3: 8n 2 N; FY (xnj�0) > FHX (xn) and so G
�
L (xn) = FHX (x) : The rest of the

argument is analogous to case 1.

(iii) limx!x�1 G
�
L (x) = 0: This follows from limx!x�1 F

H
X (x) = 0; limx!x�1 F

L
X (x) =

0; and limx!x�1 FY (xj�0) = 0:

(iv) limx!x+1 G
�
L (x) = 1: Note that limx!x+1 F

H
X (x) = 1; limx!x+1 FY (xj�0) = 1,

but, in general, limx!x�1 F
L
X (x) < 1: Thus, only verify limx!x+1 1

�
FLX (x) > FY (xj�0)

�
=

0; which follows from limx!x�1 F
L
X (x) < 1 = limx!x+1 FY (xj�0) :

Step 2. From the previous two steps,

kG�L � FY (�j�0)k� =

Z
min

FLX(x)�f�FHX (x)
(f � FY (xj�0))2 d� (x)

� inf
F2f�\fG:FLX�G�FHX gg

Z
(F (x)� FY (xj�0))2 d� (x)

� kG�L � FY (�j�0)k�
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where the �rst equality holds by de�nition of G�L and last inequality follows from G�L 2�
� \

�
G : FLX � G � FHX

		
: As a consequence,

TL (X; Y�0) = kG�L � FY (�j�0)k� =
Z
(G�L (x)� FY (xj�0))2 d� (x)

completing the part.

Step 3. For every x 2 L2 (D) ; recall the functions
�
G��H;j (x)

	8
j=1

de�ned according to

the proof of theorem 22. We now show that /9G�H 2 � such that 8x 2 L2 (D) ; 9j 2

f1; 2; :::; 8g such that G�H (x) = G��H;j (x) : If this were the case, then limx!x+1 G
�
H (x) = 1:

Since limx!x+1 F
L
X (x) < 1 and limx!x+1 F

H
X (x) = 1; limx!x+1 G

�
H (x) = 1 requires that,

(B.4) lim
x!x+1

8>>>><>>>>:
1

264 FLX (x)l(2:a) FY (xj�0)l(1:a) FHX (x)

FY (xj�0)� FLX (x)l(3:b) FHX (x)� FY (xj�0)

375+
+1
�
FLX (x)m(2:b) FY (xj�0)

�

9>>>>=>>>>; = 1

Since limx!x+1
�
FY (xj�0)� FLX (x)

	
> 0 and limx!x+1

�
FHX (x)� FY (xj�0)

	
= 0, re-

gardless of how l(3:b) is de�ned along the sequence x ! x+1; limx!x+1 G
�
H (x) = 1

requires that,

(B.5) lim
x!x+1

1

264 FLX (x)l(2:a) FY (xj�0)l(1:a) FHX (x)

FY (xj�0)� FLX (x)l(3:b) FHX (x)� FY (xj�0)

375 = 0
Also, since limx!x+1 FY (xj�0) = 1 < limx!x+1 F

L
X (x) = P (� = 1) ; regardless of how

m(2:b) is de�ned along the sequence x! x+1;

(B.6) lim
x!x+1

1
�
FLX (x)m(2:b) FY (xj�0)

�
= 0
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Hence, we obtain a contradiction between the requirements of equations (B.4), (B.5) and

(B.6).

Part 2. Upper bound. We now show that the inequality in the following expression,

TH (X; Y�0) �
Z

max
FLX(x)�f�FHX (x)

(f � FY (xj�0))2 d� (x)

can be both an equality or a strict inequality, depending on FY (�j�0) ; FHX and FHX :

Example 1. Let FY (�j�0) ; FHX and FHX be such that 8x 2 L2 (D) ; FY (xj�0) = FHX (x) >

FLX (x) and
R �

FLX (x)� FY (xj�)
�2
d� (x) = M < +1: In this case, no matter how m(2:b)

and l(3:b) are de�ned in the solution of problem (B.3), 1
�
FLX (x)m(2:b) FY (xj�0)

�
= 0 and

1
�
FY (xj�0)� FLX (x)l(3:b) FHX (x)� FY (xj�0)

�
= 0; which implies that: 8x 2 L2 (D) and

8j 2 f1; 2; :::; 8g ; G��H;j (x) = FLX (x) ; and so, G
�
H = FLX :

By the derivation in step 2, G�H does not satisfy with the properties of a CDF, so

we cannot use the argument of the lower bound to claim our result. Instead, we will

construct a sequence of functions that will be CDFs and will be arbitrarily close to G�H :

Now consider the following alternative sequence of functions: fG�m : m � 1g such that

8x 2 L2 (D) ;

G�m (x) = FLX (x) 1 [x (t) � m : 8t 2 D] + (1� 1 [x (t) � m : 8t 2 D])

It is easy to verify that 8m 2 N; G�m satis�es the property of a CDF and moreover,

m! +1; kG�m �G�Hk� =
R
(1� 1 [x (t) � m : 8t 2 D]) d� (x) = o (1) :

Fix " > 0 and set � so that max
n
� + 2�1=2M; � + 2�1=2

�
� + 2�1=2M +M

�1=2o � ":

Since kG�m �G�Hk� = o (1) ; 9N (") 2 N such that 8m � N (") ; kG�m �G�Hk� � �: As a
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consequence, 8m � N (") ;

kG�H � FY (�j�0)k� =

Z
(G�H (x)�G�m (x) +G�m (x)� FY (xj�0))2 d� (x)

�

8><>: kG�m �G�Hk� + kG�m � FY (�j�0)k�+

+2
R
(G�m (x)�G�H (x)) (G

�
m (x)� FY (xj�0)) d� (x)

9>=>;
� kG�m � FY (�j�0)k� + � + 2�1=2

�
� + 2�1=2M +M

�1=2
� kG�m � FY (�j�0)k� + "

As a consequence, 8m � N (") ;

kG�H � FY (�j�0)k� =

Z
max

FLX(x)�f�FHX (x)
(f � FY (xj�0))2 d� (x)

� sup
F2f�\fG:FLX�G�FHX gg

Z
(F (x)� FY (xj�0))2 d� (x)

� kG�m � FY (�j�0)k�

� kG�H � FY (�j�0)k� � "

where the third inequality follows from the fact that G�m 2
�
� \

�
G : FLX � G � FHX

		
:

As a consequence of the previous chain of inequalities, we deduce that,

TH (X; Y�0) =

Z
max

FLX�f�FHX
(f (x)� FY (xj�0))2 d� (x)

completing the example.

Example 2. Let FHX > FLX and let FY (�j�0) be de�ned as follows: 8x 2 L2 (D) ;

FY (xj�0) = FLX (x) 1
�
FHX (x) < 0:5

�
+ FHX (x) 1

�
FHX (x) � 0:5

�
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Let �x1 2 L2 (D) such that FHX (�x1) = 0:5 > FLX (�x1) and let �x2 2 L2 (D) such that 8t 2 D,

�x2 (t) < �x1 (t) and FLX (�x2) < FLX (�x1) < FHX (�x2) < 0:5. Notice that FHX (x) � FLX (x) is

de�ned as follows,

FHX (x)� FLX (x) =
2KX
j=2

P (X (t) � x (t) ;8t 2 O (j) j� = j)P (� = j)

By this de�nition, FHX (�x1)�FLX (�x1) � FHX (�x2)�FLX (�x2) and we will further assume that

FHX (�x2)� FLX (�x2) � � > 0 for some � > 0:

If x 2 L2 (D) is such that FHX (x) < 0:5; then FY (xj�0) = FLX (x) < FHX (x) and so,

8j 2 f1; 2; :::; 8g G��H;j (x) = FHX (x). Similarly, if x 2 L2 (D) is such that FHX (x) � 0:5;

then FLX (x) < FY (xj�0) = FHX (x) and so, 8j 2 f1; 2; :::; 8g ; G��H;j (x) = FLX (x) : In other

words, the solution to problem (B.3) is unique and, therefore, G�H is given by the following

expression: 8x 2 L2 (D)

G�H (x) = FHX (x) 1
�
FHX (x) < 0:5

�
+ FLX (x) 1

�
FHX (x) � 0:5

�
and as a result,

Z
max

FLX�f�FHX
(f (x)� FY (xj�0))2 d� (x) =

Z �
FHX (x)� FLX (x)

�2
d� (x)

Notice that G�H is not weakly increasing and so G
�
H 62 �.

The next step is to show that: TH (X; Y�0) <
R
maxFLX�f�FHX (f � FY (xj�0))2 d� (x) :

Suppose not. Therefore 8" > 0, 9F 2
�
� \

�
G : FLX � G � FHX

		
such that,

Z �
FHX (x)� FLX (x)

�2
d� (x)�

Z
(F (x)� FY (xj�0))2 d� (x) < "
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Hence, it su¢ ces to show that 8F 2
�
� \

�
G : FLX � G � FHX

		
there is a positive lower

bound for
R �

FHX (x)� FLX (x)
�2
d� (x) �

R
(F (x)� FY (xj�0))2 d� (x) : Consider the fol-

lowing derivation,

Z �
FHX (x)� FLX (x)

�2
d� (x)�

Z
(F (x)� FY (xj�0))2 d� (x) =

=

8><>:
R
fFHX <0:5g

�
FHX (x)� FLX (x)

�2 � �F (x)� FLX (x)
�2
d� (x)+

+
R
fFHX �0:5g

�
FHX (x)� FLX (x)

�2 � �F (x)� FHX (x)
�2
d� (x)

9>=>; =

=

8>>>><>>>>:
R �

FHX (x)� F (x)
� �
F (x)� FLX (x)

�
d� (x)+

+
R
fFHX <0:5g

�
FHX (x)� F (x)

� �
FHX (x)� FLX (x)

�
d� (x)+

+
R
fFHX �0:5g

�
FHX (x)� FLX (x)

� �
F (x)� FLX (x)

�
d� (x)

9>>>>=>>>>;
Since F 2

�
G : FLX � G � FHX

	
; the right hand side is a sum of three non-negative terms.

Therefore,

Z �
FHX (x)� FLX (x)

�2
d� (x)�

Z
(F (x)� FY (xj�0))2 d� (x) �

� �max

8><>:
R
fFHX <0:5\fFHX �FLX>�gg

�
F (x)� FLX (x)

�
d� (x) ;R

fFHX <0:5\fFHX �FLX>�gg
�
FHX (x)� F (x)

�
d� (x)

9>=>;
We divide the rest of the analysis into two cases. Case 1: F (�x1) > FLX (�x1) : Let

F (�x1) � FLX (�x1) = � > 0: By right continuity of F and FLX , there is a set of functions

su¢ ciently close to the function �x1 (in the L2 (D) metric) such that for every function

of this set F � FLX � �=2 > 0: This set of functions could be constructed from functions

such that 8t 2 D; y (t) � �x1 (t) that are su¢ ciently close to �x1. By our de�nition of the

measure �; this set can be constructed so that it has positive �measure. This construction
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provides a positive lower bound for the expression for the �rst term of the maximum on

the right hand side, which would provide a positive lower bound for the left hand side.

Case 2: F (�x1) = FLX (�x1) : Since F (�x2) � F (�x1) and we assumed that FLX (�x1) < FHX (�x2) ;

then F (�x2) < FHX (�x2) : Let F
H
X (�x2) � F (�x2) = � > 0: In the same way as in case 1, by

right continuity of F and FHX , there is a set of functions with positive � measure that are

su¢ ciently close to the function �x2 (in the L2 (D) metric) such that for every function in

this set FHX � F � �=2 > 0: This provides a positive lower bound for the expression for

the second term of the maximum on the right hand side, which would provide a positive

lower bound for the left hand side.

This completes the analysis of the example and the proof. �

Proof of lemma 24. This proof follows same arguments as the proof of lemma 20.

�

Proof of theorem 25. This proof follows same arguments as the proof of theorem

21. �

B.3. Speci�cation test for missing functional data

Proof of lemma 28. Consider the optimization problem to compute the estimate of

the sharp worst case scenario lower bound. The value of the objective function depends

on the function G only thought V values: fG (Zj)gVj=1 : Hence, we need to check that (1)

if G 2 Ĥ (FX), then fG (Zj)gVj=1 2 Ŝ and (2) If g 2 Ŝ; then 9G 2 Ĥ (FX) such that

8j 2 f1; 2; :::V g ; G (Zj) = gj:
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Part 1. Since G 2
n
G : F̂LX � G � F̂HX

o
; then 8j 2 f1; 2; :::V g ; F̂LX (Zj) � G (Zj) �

F̂HX (Zj) : Moreover, since G 2 �; G is monotonic and hence, 8j; k 2 f1; 2; :::V g ; Zj � Zk

implies gj � gk:

Part 2. If g 2 Ŝ; then 9G 2 Ĥ (FX) such that 8j 2 f1; 2; :::V g ; G (Zj) = gj:

For any " > 0; de�ne ZV+1 = (1 + ")maxj2f1;2;:::V g fZjg and de�ne gV+1 = 1: It is

evident that ZV+1 2 L2 (D) : Then, consider the following function G : L2 (D) ! R;

G (Z) = maxj2f1;2;:::V+1g fgj1 [Zj � Z]g : We claim that this is a CDF that satis�es with

our requirements. We check these requirements one by one.

(a) 8j 2 f1; 2; :::V g ; G (Zj) = gj: Suppose this is not true for some j 2 f1; 2; :::V g.

Then, 9h 2 f1; 2; :::V g such that Zj � Zh and gj < gh; violating monotonicity.

(b) Monotonicity. For Z1; Z2 2 L2 (D) ; if Z1 � Z2; then G (Z1) � G (Z2) : If Z1 � Z2;

then 8j 2 f1; 2; :::V g ; gj1 [Zj � Z1] � gj1 [Zj � Z2] and therefore, G (Z1) � G (Z2) :

(c) Right continuity. Consider an arbitrary convergent sequence fxn : n 2 Ng such

that 8n 2 N; xn 2 L2 (D) and xn � xn+1: Denote limn!1 xn = �x: This result follows from

the fact that 1 [Zj � xn]! 1 [Zj � x] :

(d) limx!x�1 G (x) = 0: If x ! x�1; then, eventually, 8j 2 f1; 2; :::V g ; x < Zj and

so, G (x) = 0:

(e) limx!x+1 G (x) = 1: If x ! x+1; then, eventually, 8j 2 f1; 2; :::V g ; x > Zj: By

de�nition gV+1 = maxj2f1;2;:::V+1g fgjg = 1: �

Proof of lemma 29. This proof follows same arguments as the proof of theorem

22. �

Proof of theorem 30. The proof is exactly the same as the proof of theorem 23. �
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Proof of corollary 31. This proof follows from the result in theorem 30. Since

T̂ 0L
�
X;Y�̂0

�
= T̂L

�
X; Y�̂0

�
; then when t�̂0 (1� �) < nT̂L

�
X; Y�̂0

�
� nT̂H

�
X; Y�̂0

�
it is

also the case that t�̂0 (1� �) < nT̂ 0L
�
X; Y�̂0

�
� nT̂ 0H

�
X; Y�̂0

�
: On the other hand, if

nT̂L
�
X; Y�̂0

�
� nT̂H

�
X; Y�̂0

�
� t�̂0 (1� �) then it is still possible that nT̂ 0L

�
X; Y�̂0

�
�

t�̂0 (1� �) < nT̂ 0H
�
X;Y�̂0

�
although it is impossible that t0

�̂0
(1� �) < nT̂ 0L

�
X; Y�̂0

�
�

nT̂ 0H
�
X; Y�̂0

�
: �

Proof of theorem 32. From theorem 2 in BHHN [19] we know that,

lim
n!1

P
�
nT̂
�
X; Y�̂0

�
> t�̂0 (1� �)

�
= 1� �

where T̂
�
X; Y�̂0

�
represents the (unknown) test statistic that we would compute if we

were to observe the complete dataset. By de�nition, T̂L
�
X; Y�̂0

�
� T̂

�
X;Y�̂0

�
and hence,

for every n;

P
�
nT̂L

�
X; Y�̂0

�
> t�̂0 (1� �)

�
� P

�
nT̂
�
X; Y�̂0

�
> t�̂0 (1� �)

�
computing the limit in�mum on both sides, the result follows. �

Proof of lemma 33. In this proof we will focus of the lower bounds, that is, we will

show that:
���T̂L �X;Y�̂0�� TL (X; Y�0)

��� = op (1) ; but analogous arguments can be used to

show that the analogous result for the upper bounds, that is,
���T̂H �X; Y�̂0�� TH (X; Y�0)

���
= op (1) :

Step 1. Let � be the space of pairs of functions (F1; F2) de�ned by the following proper-

ties: (i) F1 : L2 (D)! R, F2 : L2 (D)! R and (ii) 8x 2 L2 (D) ; 0 � F1 (x) � F2 (x) � 1;

(iii) F1 and F2 are weakly increasing, (iv) limx!!�1 F1 (x) = 0 and limx!+1 F2 (x) = 1:
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De�ne the functions 	H : � ! R+, �	H : � ! R+; ~	H : � ! R+ and 	̂H : � ! R+

as follows,

	H (F1; F2) = sup
F2f�\fG:F1�G�F2gg

Z
(F (x)� FY (xj�0))2 d� (x)

�	H (F1; F2) = sup
F2f�\fG:F1�G�F2gg

Z �
F (x)� FY

�
xj�̂0

��2
d� (x)

~	H (F1; F2) = sup
F2f�\fG:F1�G�F2gg

Z �
F (x)� F̂Y

�
xj�̂0

��2
d� (x)

	̂H (F1; F2) = sup
F2f�\fG:F1�G�F2gg

1
V

VP
j=1

�
F (Zj)� F̂Y

�
Zjj�̂0

��2
where fZj : j = 1; 2; :::; V g is a random sample distributed according to �: By de�nition:

TH (X; Y�0) = 	H
�
FLX ; F

H
X

�
and T̂H

�
X; Y�̂0

�
= 	̂H

�
F̂LX ; F̂

H
X

�
: Therefore,

���T̂H �X; Y�̂0�� TH (X; Y�0)
��� �

8>>>>>>>><>>>>>>>>:

���	̂H �F̂LX ; F̂HX �� ~	H

�
F̂LX ; F̂

H
X

����+
+
���~	H �F̂LX ; F̂HX �� �	H

�
F̂LX ; F̂

H
X

����+
+
����	H �F̂LX ; F̂HX ��	H �F̂LX ; F̂HX ����+
+
���	H �F̂LX ; F̂HX ��	H �FLX ; FHX ����

9>>>>>>>>=>>>>>>>>;
In the remaining steps, we show that the right hand side of both expressions is op (1) :

Step 2. In this step, we show that
���	H �F̂LX ; F̂HX ��	H �FLX ; FHX ���� = op (1) :

Step 2.1. Consider any (F1; F2) 2 � such that f� \ fG : F1 � G � F2gg is non-empty

and 	H (F1; F2) < +1. We want to show that for any sequence of f(F1;n; F2;n) : n 2 Ng

such that,

kF1;n � F1k� + kF2;n � F2k� = o (1)

then: 	L (F1;n; F2;n)�	L (F1; F2) = o (1) and 	H (F1;n; F2;n)�	H (F1; F2) = o (1) :
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Fix " > 0 and set "0 2 (0; ") : Since 	H (F1; F2) < +1; pick "1 > 0 such that,

"1 + 2 ("1)
1=2
�
"0 + "1 + 2 ("1)

1=2 (	H (F1; F2))
1=2 +	H (F1; F2)

�1=2
= "� "0

By de�nition of supremum, 9G�n 2 f� \ fF1;n � G � F2;ngg such that,

	H (F1;n; F2;n)� "0 � kG�n � FY (�j�0)k�

Moreover, we can �nd G0n 2 f� \ fG : F1 � G � F2gg such that, 9N ("1) 2 N; such that

8n � N;

kG0n �G�nk� =
Z
(G0n (x)�G�n (x))

2
d� (x) � "1

To show this, de�ne, 8n 2 N;

G0n (x) =

8><>: G�n (x) 1 [F1 (x) � G�n (x) � F2 (x)] +

+F1 (x) 1 [G
� (x) > F1 (x)] + F2 (x) 1 [F2 (x) > G� (x)]

9>=>;
and so, 8n � N ("1) ;

kG0n �G�nk� =

Z 0B@ (F2 (x)�G�n (x)) 1 [G
�
n (x) > F2 (x)] +

+ (F1 (x)�G�n (x)) 1 [F1 (x) > G�n (x)]

1CA
2

d� (x)

� kFn;2 � F2k� + kFn;1 � F1k� � "1

The part is completed by showing that 8n 2 N; G0n 2 f� \ fG : F1 � G � F2gg : It

is clear that G0n 2 fG : F1 � G � F2g by construction. Since G�n 2 �, F1;n � F2;n;

limx!�1 F1;n = 0; limx!+1 F2;n = 1 and F1;n and F2;n are weakly increasing and right

continuous, it follows that G0n 2 �:
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As a consequence,

	H (F1;n; F2;n)� "0 �
Z
(G�n (x)� FY (xj�0))2 d� (x)

=

Z
(G�n (x)�G0n (x) +G0n (x)� FY (xj�0))2 d� (x)

� "1 +	H (F1; F2) + 2 ("1)
1=2 (	H (F1; F2))

1=2

And so, by de�nition of "1, 8n � N ("1) ; 	H (F1;n; F2;n) � "+	H (F1; F2) :

By reversing the roles, and repeating the argument, we deduce that,

	H (F1; F2)� "0 �

�

8><>: "1 +	H (F1;n; F2;n)+

+2 ("1)
1=2
�
"0 + "1 + 2 ("1)

1=2 (	H (F1; F2))
1=2 +	H (F1; F2)

�1=2
9>=>;

And so, by our de�nition of "1;8n � N ("1) ; then 	H (F1; F2) � " + 	H (F1;n; F2;n) :

Finally, de�ne N (") = N ("1) : For arbitrary " > 0; 9N (") such that 8n � N (") ;

j	H (F1;n; F2;n)�	H (F1; F2)j � ":

Step 2.2. Let �0 � �; be such that 8 (F1; F2) 2 �0; 	(F1; F2) < +1: By the law

of large numbers,
�
F̂LX ; F̂

H
X

�
p!
�
FLX ; F

H
X

�
and so, by Slutzky�s Lemma,

F̂LX � FLX


�
+F̂HX � FHX


�
= op (1). As a consequence of step 1.1. and arguments similar to those used

in the proof of Slutzky�s Lemma: 	H
�
F̂LX ; F̂

H
X

�
= 	H

�
FLX ; F

H
X

�
+ op (1), completing this

step.

Step 3. In this step, we show that
����	H �F̂LX ; F̂HX ��	H �F̂LX ; F̂HX ���� = op (1).
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Step 3.1. For any (�; x) 2 f�; L2 (D)g denote _FY (xj�) = @FY (xj�) =@�: A Taylor

series expansion gives,

F̂Y

�
xj�̂0

�
� FY (xj�0) = _FY (xj�0)

�
�̂0 � �0

�
+
�
_FY

�
xj~�
�
� _FY (xj�0)

��
�̂0 � �0

�
where ~� is between �0 and �̂0: Consider the following derivation,

Z �
FY

�
xj�̂0

�
� FY (xj�0)

�2
d� (x)

�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

��̂0 � �0

�2 R _FY (xj�0)0 _FY (xj�0) d� (x)+

+
��̂0 � �0

�2 R
8><>:
Pp

i;j=1

��� _FY;i �xj~��� _FY;i (xj�0)
��� �

�
��� _FY;j �xj~��� _FY;j (xj�0)

���
9>=>; d� (x)+

+

8>>>>><>>>>>:

��̂0 � �0

�2 �qR _FY (xj�0)0 _FY (xj�0) d� (x)�

2

vuuuutR Pp
i;j=1 sup

k���0k<"

8><>:
��� _FY;i �xj~��� _FY;i (xj�0)

��� �
�
��� _FY;j �xj~��� _FY;j (xj�0)

���
9>=>; d� (x)

9>>>>>=>>>>>;
+ op (1)

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
and by assumptions 2 and 3, the right hand side is Op (n�1) :

Step 3.2. Consider the following derivation,

Z �
F (x)� FY

�
xj�̂0

��2
d� (x) =

=

Z �
F (x)� FY (xj�0) + FY (xj�0)� FY

�
xj�̂0

��2
d� (x)

�

8><>:
R
(F (x)� FY (xj�0))2 d� (x) +

R �
FY

�
xj�̂0

�
� FY (xj�0)

�2
d� (x)+

+
qR

(F (x)� FY (xj�0))2 d� (x)
rR �

FY

�
xj�̂0

�
� FY (xj�0)

�2
d� (x)

9>=>;



244

Taking supremum with respect to F 2
�
� \

�
G : FLX � G � FHX

		
on both sides, using

steps 2 and the fact that TH (X; Y�0) <1; it follows that,

�	H

�
F̂LX ; F̂

H
X

�
�	H

�
F̂LX ; F̂

H
X

�
�

�

8><>:
R �

FY

�
xj�̂0

�
� FY (xj�0)

�2
d� (x)+

+
p
TH (X; Y�0) + op (1)

rR �
FY

�
xj�̂0

�
� FY (xj�0)

�2
d� (x)

9>=>;
and the right hand side is op (1) by step 2.1.

Reversing the roles and repeating the argument it follows that,

	H

�
F̂LX ; F̂

H
X

�
�

�

8><>:
�	H

�
F̂LX ; F̂

H
X

�
+
R �

FY

�
xj�̂0

�
� FY (xj�0)

�2
d� (x)+

+
p
	H (FLX ; F

H
X ) + op (1)

rR �
FY

�
xj�̂0

�
� FY (xj�0)

�2
d� (x)

9>=>;
from where we can deduce that: �	H

�
F̂LX ; F̂

H
X

�
�	H

�
F̂LX ; F̂

H
X

�
� op (1) : Combining this

with the previous result, we complete the step.

Step 4. In this step, we show that
���~	H �F̂LX ; F̂HX �� �	H

�
F̂LX ; F̂

H
X

���� = op (1).

By the law of large numbers, 8 (x; �) 2 fL2 (D) ;�g ; F̂Y (xj�)
p! FY (xj�) : This

asymptotic result holds for any �xed sample by increasing the number of simulations

used to approximate FY (xj�) : Following the arguments in BHHN [19], it follows that,

Z �
F̂Y

�
xj�̂0

�
� FY

�
xj�̂0

��2
d� (x) = op (1)

The rest of the arguments follows from arguments that are very similar to those used in

step 2.
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Step 5. By theorem 3 in BHHN [19],
���	̂H �F̂LX ; F̂HX �� ~	H

�
F̂LX ; F̂

H
X

���� = op (1). This

completes the proof. �

Proof of theorem 34. By theorem 2 in BHHN [19], t�
�̂0
(1� �) = t�0 (1� �) + n;

where n = op (1) and t�0 (1� �) is given by,

t�0 (1� �) = inf
h2R

fP (V0 > h) � (1� �)g

where V0 =
R
(� (x) + (@FY (xj�0) =@�0) �)2 d� (x), � is a Gaussian process on [0; 1] having

the same covariance structure as the indicator process 1 [X (t) � x (t) : t 2 D] and � is a

p-variate random variable whose mean is 0; covariance matrix is cov (
 (X)) and satis-

�es E (�� (x)) = E (
 (X) (1 [X (t) � x (t) : t 2 D]� FX (x))) : From these conditions, we

deduce that t�0 (1� �) is a positive and �nite number.

Fix " = TH (X; Y�0) =2 and consider the following derivation.

P
�
nT̂H

�
X; Y�̂0

�
� t�

�̂0
(1� �)

�
=

=

8><>: P
�
nT̂H

�
X; Y�̂0

�
� t�0 (1� �) + n \ jnj > "

�
+

P
�
nT̂H

�
X; Y�̂0

�
� t�0 (1� �) + n \ jnj � "

�
9>=>;

� P (jnj > ") + P
�
T̂H
�
X;Y�̂0

�
� (t�0 (1� �) + ") =n

�
Since t�0 (1� �) <1; 9N 2 N such that 8n � N;

(t�0 (1� �) + ") =n� TH (X; Y�0) < �TH (X; Y�0) =2 = �"
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Therefore, 8n � N;

P
�
nT̂H

�
X;Y�̂0

�
� t�

�̂0
(1� �)

�
� P (jnj > ") + P

����T̂H �X;Y�̂0�� TH (X; Y�0)
��� > "

�
taking limits on both sides, we deduce that P

�
nT̂H

�
X; Y�̂0

�
� t�

�̂0
(1� �)

�
= o (1) ; which

completes the proof. �

Proof of theorem 35. This proof follows same arguments as the proof of theorem

34. �


	ABSTRACT
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1. Bootstrap Inference on Partially Identified Models
	1.1. Introduction
	1.2. Literature review
	1.3. The criterion function approach
	1.4. Confidence sets for the identified set
	1.5. Confidence sets for each element of the identified set
	1.6. Conclusion

	Chapter 2. Specification Test for Missing Functional Data
	2.1. Introduction
	2.2. The BHHN specification test
	2.3. Identification analysis for missing functional data
	2.4. Specification test for missing functional data
	2.5. Monte Carlo simulations
	2.6. Empirical Illustration
	2.7. Conclusion

	Chapter 3. Child Labor Legislation: Effective, Benign, Both or Neither?
	3.1. Introduction
	3.2. Discussion
	3.3. Economic model
	3.4. Econometric methodology
	3.5. Results
	3.6. Conclusions

	References
	Appendix A. Bootstrap Inference on Partially Identified Models
	A.1. Notation
	A.2. Confidence set for the identified set
	A.3. Confidence sets for each element of the identified set

	Appendix B. Specification Test for Missing Functional Data
	B.1. Notation
	B.2. Identification analysis for missing functional data
	B.3. Specification test for missing functional data


