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ABSTRACT 
 

 Each movement we make represents the final output of complex processes in the nervous 

system. Studies of motor control often attempt to minimize further complication by using 

controlled environments to generate repeated movements. However, in natural situations, the 

motor system faces the much more complicated task of interacting with an uncertain 

environment. Often this uncertainty arises from noise. For example, when attempting to swat a 

fly, we must rely on an erratic visual cue (the fly’s flight path) to estimate its future location and 

then develop the appropriate motor command. In this case, the goal of the sensorimotor system is 

to translate noisy sensory information into the single most appropriate action. At other times, 

uncertainty arises from the presence multiple discrete options. For example, when picking out an 

apple at the store, we examine the color and size of each one first and then reach to the one we 

deem best. In this situation, the uncertainty does not pertain to the executed movement itself—

after all, the locations of the apples are static—but rather to the expected consequences for each 

option. The goal of the sensorimotor system in this case is to use sensory cues (and/or previous 

experiences) to decide between the multiple possible actions. Regardless of the source and type 

of uncertainty encountered during motor control, the sensorimotor system should also use the 

result (missing the fly or picking a rotten apple) to inform future situations. In this work, I 

examine how primary motor cortex (M1) and dorsal premotor cortex (PMd) plan and execute 

reaching movements when faced with noisy sensory information or multiple potential reach 

targets. I show that when faced with noisy information about a target location, PMd develops a 

low-fidelity reach plan, reflecting a subjective sense of uncertainty about the decision. I then 

show that when faced with two potential reach targets, neither PMd nor M1 contains multiple 
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plans for both targets. Instead, motor cortex appears to decide on one option very quickly and 

later switches if required. Finally, I show that both PMd and M1 contain differential responses to 

the consequences (success or failure) of executed movements, potentially revealing a mechanism 

for driving motor learning within the network. These results together provide insight into how 

motor cortices cope with uncertainty when planning and executing movements.  
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CHAPTER 1: INTRODUCTION 

Any interaction with the environment includes some degree of uncertainty. Uncertainty 

can arise at multiple stages during movement preparation and execution, and needs to be 

considered by the sensorimotor system if movements are to be effective. In the following 

sections, I will outline the various sources of noise and ambiguity as well as their behavioral 

consequences. I will then review the literature that aims to explain these behavioral 

consequences through hypothesized and/or observed neural mechanisms in the sensorimotor 

system. Finally, I will present a brief overview of reward-based motor learning, its application to 

uncertain motor tasks, and the potential implications for motor cortex. 

 

TYPES OF UNCERTAINTY  

Overview 

 Fittingly, the meaning of the term uncertainty is not precise. It has been used in different 

motor control contexts to indicate completely different phenomena. Various sources of noise and 

uncertainty impact decision-making, movement planning, and movement execution, each with 

different implications for motor control. Given the wide range of potential meanings, it is 

necessary to clarify the types of uncertainty that factor into the type of motor planning that I will 

explore later. In this section I will provide a brief overview of the types of uncertainty relevant to 

the task of movement planning, as well as published observations that indicate their impact on 

behavior.  
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Environmental and sensor noise 

 Noise first arises in the environment itself, which is often dynamic and stochastic. Using 

the example from the abstract, swatting a fly is challenging largely because of the 

unpredictability of the fly’s path. The consequence of this kind of environmental noise from a 

motor control perspective is the lack of an explicit endpoint goal. The brain must plan an action 

using only an internally-generated estimate of the fly’s future location based on its current 

location and movement, and incorporating transmission delays in the visual and motor systems. 

Since the endpoint goal cannot be generated from an external reference, any errors or uncertainty 

introduced during the process of estimation will add to the total uncertainty contained in the 

movement plan itself.  

The challenge of estimating an endpoint goal is compounded by the imperfect nature of 

sensory systems. Even vision—though a high acuity sense—does not perfectly reflect the state of 

the world. This is especially evident through optical illusions, where context can bias the 

perception of color, size, etc (Franz, Gegenfurtner, Bülthoff, & Fahle, 2000; Weiss, Simoncelli, 

& Adelson, 2002). More common in experimental paradigms is the use of confusing stimuli that 

push the limits of perception. This is evident in discrimination tasks across multiple sensory 

modalities, including vision (A. K. Churchland, Kiani, & Shadlen, 2008; Coallier, Michelet, & 

Kalaska, 2015; Newsome, Britten, & Movshon, 1989), audition (Ritter, Simson, & Vaughan, 

1972), and somatosensation (Hernandez et al., 2010; Mountcastle, Steinmetz, & Romo, 1990; 

Romo, Brody, Hernández, & Lemus, 1999; Romo, Hernández, & Zainos, 2004). In a classic 

study by Newsome, et al (Newsome et al., 1989), subjects observed a large cluster of dots—
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some moving to left and some to the right—and were tasked with determining which movement 

direction was most prevalent. In this type of situation, the line between environmental noise and 

sensory noise is blurred. While the dot movement is stochastic (suggesting an environmental 

noise source), an ideal observer would be perfectly able to complete the task (i.e.,, any difficulty 

in doing so must arise from sensory noise). Since motor control is a practical, rather than 

theoretical endeavor, there seems little reason to consider these as two separate cases. Therefore, 

I will use the term sensory uncertainty to refer to the uncertainty resulting from either pure 

environmental noise, limitations of the sensory system, or a combination of both. 

While vision may be the most common modality used to modify uncertainty in 

experimental settings, it is certainly not the only sense necessary for movement and subject to 

noise. Proprioception, the sense of body position, is essential for effective natural control. In the 

absence of proprioception (equivalent to infinite proprioceptive uncertainty), movements require 

significant cognitive effort and a heavy reliance on vision (Abbott, 2006). Even in healthy 

individuals, proprioception is subject to significant drift over time (Bowditch & Southard, 1882; 

Wann & Ibrahim, 1992). This proprioceptive noise induces uncertainty in the state of the effector 

(e.g., hand position and limb orientation in the case of reaching), which makes it difficult to plan 

the necessary muscle activations even if the endpoint goal is perfectly described. Under these 

limitations in sensation (namely vision and proprioception), the task faced by the motor system 

amounts to planning a movement from one poorly defined location to another.  
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Motor and neural noise 

 The motor system, like the sensory system, also contains noise. When subjects are asked 

to make repeated reaches to a clear visual target, the hand trajectories and endpoints are variable 

(M. M. Churchland, Afshar, & Shenoy, 2006; Robert J Van Beers, Haggard, & Wolpert, 2004). 

Some of this variability might be attributable to noise in proprioception (and to a lesser extent, 

vision), but under ideal experimental conditions the impact of sensory noise should be small. 

Ultimately, all movements rely on signals transmitted from motor brain areas to muscles. The 

contractions of those muscles are not perfectly reliable, meaning that equivalent neural 

commands are not guaranteed to result in equivalent movements. Noise at the neuromuscular 

junction (Hamilton, Jones, & Wolpert, 2004; Jones, Hamilton, & Wolpert, 2002; Osu et al., 

2004), as well as factors like fatigue (Cortes, Onate, & Morrison, 2014), diminish the reliability 

of the command-to-output relationship and add uncertainty at the execution level.  

 Even with a perfectly deterministic relationship between neural signals and muscle 

contractions, movement accuracy would still be limited by variability in the neural signals 

themselves. Neural firing is inherently stochastic, with action potentials approximating a Poisson 

process (Ma, Beck, Latham, & Pouget, 2006; Shadlen & Newsome, 1998; Tolhurst, Movshon, & 

Dean, 1983). The brain can limit the impact of this variability in individual neurons by 

combining signals from large neural populations. However, recent studies examining the 

behavior of neural populations during movement planning suggest that a great deal of variability 

in motor output arises from noise in planning-related neural activity (Afshar et al., 2011; M. M. 

Churchland, A. Afshar, et al., 2006). Thus, even if the brain had perfect knowledge of the 

environment, the movement endpoint goal, and the state of the limb, the stochastic nature of 
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neural signals and muscle activation would inject variability and uncertainty into the motor 

output.  

 In addition to purely internal motor noise (e.g.,muscle contractions), external factors can 

also impact uncertainty in movement execution. For example, using a tool or reaching for an 

object adds uncertainty at the execution level by changing the dynamics of the arm. Natural 

movements cannot depend purely on a feedback control strategy due to the delays in both the 

sensory and motor systems. Instead, the brain likely generates an internal model of the body’s 

dynamics for feedforward control through the formation and calibration of a so called “internal 

inverse model” (Reza Shadmehr & Mussa-Ivaldi, 1994; Daniel M Wolpert, Ghahramani, & 

Jordan, 1995). Accuracy of movements therefore depend on the accuracy of the internal model. 

If the dynamics of the effector (e.g.,arm holding a hammer) are unknown, they must be 

estimated, and any such estimation necessarily induces uncertainty in the motor output. 

However, while uncertainty in the internal model is certainly exacerbated by external forces 

(grasped objects, etc.), a similar but smaller effect likely exists for all movements. We can safely 

assume that part of the uncertainty and noise in movement execution arises from an imperfect 

knowledge of the dynamical state of the body.  

 

Noise versus ambiguity 

The sources of uncertainty outlined above all fall under the general category of noise. 

That is, uncertainty in motor control arises from the inability of the sensorimotor system to 

perfectly control the movement from point A to point B. But how does the brain arrive at the 

decision to move to point B in the first place? Rarely do we encounter situations where there is 
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only one possible movement. We live in a world full of choices, and must constantly decide 

between multiple potential actions. This type of uncertainty is separate from the stochastic noise 

present in the sensory and motor systems, and instead reflects ambiguity that must be addressed 

through higher-order decision-making processes. In the simple example presented in the abstract 

(choosing an apple at the store), the brain must consider the array of movement options and then 

decide which one to perform. Often there are multiple factors involved in that decision, including 

the expected reward (this apple is bigger), energy expenditure (that apple is farther away), and 

previous experience (those apples were rotten last week).  

The creation of a movement plan in the brain represents the output of a decision-making 

process. For this reason, experiments studying decision-making are often performed within 

motor control contexts such as target-based reaching tasks. Task designs usually combine aspects 

of environmental and sensory noise and provide partial evidence for two possible choices. In the 

classic example by Newsome, et al (Newsome et al., 1989)—described in the above section 

regarding environmental and sensory noise—subjects observed a stochastic dot motion stimulus 

that (noisily) indicated whether to reach to the right or to the left. Variants of this task—noisy 

stimuli with a binary choice—are common in studies of decision-making in the context of motor 

control . While this approach certainly induces uncertainty at the higher-order decision-making 

level, it does not cause any significant low-level or execution-related uncertainty. That is, while 

there may be significant uncertainty about which target to choose, the targets themselves are well 

defined. Regardless of how noisy the cue may be, once a decision is made the subsequent 

movement is essentially trivial. This is not the case for tasks in which the target (Izawa & 

Shadmehr, 2008; Tassinari, Hudson, & Landy, 2006) or feedback of the effector (Konrad P 

Kording & Wolpert, 2004; Wei & Kording, 2010) is obscured with noise. Both types of tasks 
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require compensation for environmental and/or sensory uncertainty, but at different points in the 

pathway that processes sensation into movement execution.   

 

BEHAVIORAL EFFECTS OF UNCERTAINTY 

Overview 

 Uncertainty is ubiquitous in motor control, and its effects on sensation, decision-making, 

and movement execution directly influence task behavior. Much of what is known or 

hypothesized about uncertainty processing in the brain has come not from direct neural 

recordings, but rather from examining these behavioral outcomes. The specific neural 

mechanisms of uncertainty processing are still up for debate, but there is little question that the 

brain does indeed take uncertainty into account when planning and controlling movement. In this 

section I will provide an overview of the existing literature describing the effects of different 

types of uncertainty on behavior and the hypothesized governing principles that may explain 

them.  

 

Bayesian integration: combining multiple cues 

 As described earlier in this introduction, the stochastic nature of the environment and 

noisy, imperfect sensory systems create significant obstacles for motor control. One general 

method for improving accuracy in the face of noisy signals is to combine information from 

multiple modalities. For example, accurate estimates of both arm position and target location are 

necessary for motor control. However, as discussed previously, the estimates provided by both 
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vision and proprioception are corrupted by noise. Rather than rely on either sense alone, 

performance can be improved by combining estimates from both. 

 The optimal combination of uncertain cues was formalized centuries ago by Thomas 

Bayes (Bayes, 1763). Assuming Gaussian noise, the final combined estimate should weight the 

two individual estimates in inverse proportion to their variances. Intuitively, this means that an 

estimate that is reliable (small variance) should be weighted more strongly than one that is 

unreliable (large variance). The resulting estimate has smaller variance than either of the 

individual estimates.  

 Evidence for Bayesian integration has been found in a number of sensory tasks, 

suggesting that it is (or least approximates) a basic aspect of sensation. When attempting to 

locate the source of an object, subjects combine visual and auditory information in a Bayesian 

manner (Alais & Burr, 2004; Battaglia, Jacobs, & Aslin, 2003). Similarly, both vision and touch 

are used when estimating features (e.g.,orientation, location, etc.) of an object (Ernst & Banks, 

2002). More applicable to the case of motor control, van Beers (R. J. van Beers, Baraduc, & 

Wolpert, 2002) showed that subjects used a Bayesian combination of vision and proprioception 

when estimating hand location. While these examples show evidence for the combination of two 

separate sensory systems (i.e., vision/audition, vision/touch, vision/proprioception), Bayesian 

behavior has also been observed when using multiple cues from a single modality. For example, 

perception of surface slant depends on both binocular information and surface texture (Hillis, 

Watt, Landy, & Banks, 2004; Knill & Saunders, 2003), which are both visual in nature. From 

these experiments and others, it appears that humans compensate for uncertainty caused by 

limitations in sensory acuity (or environmental noise) by combining estimates from multiple 

modalities. 
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 While Bayesian integration defines the optimal linear combination of two estimates, the 

specifics of the desired behavior can change what is actually “optimal”. For example, a study by 

Greenwald et al. (Greenwald & Knill, 2009) explored how subjects relied on two types of visual 

cues (again, binocular information and texture) when grasping an object or when placing it on a 

surface. They found that subjects relied more on binocular information when grasping, since 

depth information was more relevant in that task. Likewise, a paper by Sober and Sabes (Sober 

& Sabes, 2005) explored the weighting of proprioception and vision during a reaching task. 

Executing a reach involves planning the action in an external coordinate frame (“I want to reach 

to that cup”) and then translating that plan into the appropriate muscle contractions. Sober and 

Sabes found that while external goals relied heavily on vision, the translation into movement 

relied on proprioception. In this case, the “optimal” plan differed even between the stages of a 

single reach. Another version of task-specific optimality can be seen through the influence of 

environmental factors. When subjects are asked to reach to a target while avoiding some nearby 

obstacle, they will bias their movements accordingly (Greenwald & Knill, 2009; 

Trommershauser, Gepshtein, Maloney, Landy, & Banks, 2005; Trommershäuser, Maloney, & 

Landy, 2003). Similarly, a recent paper by Acerbi et al (Acerbi, Vijayakumar, & Wolpert, 2017) 

examined the online correction of reaches to uncertain targets. They found that subjects’ 

compensatory corrections to a perturbation in cursor position changed as a function of target 

uncertainty. When the target was more uncertain, subjects corrected less while still maintaining a 

high level of task success. Thus, evidence from sensorimotor behavior indicates Bayesian 

integration is employed by the sensorimotor system to optimize task-specific performance.     
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Bayesian integration: incorporating prior experience 

 The cue-combination studies referenced above indicate that estimation of a single 

quantity (e.g.,object location, orientation, etc.) can be improved by combining information from 

multiple senses. But often we must rely on information from only a single sensory modality, as 

when estimating the location of a silent object using only vision. It may appear at first that the 

reliability (certainty) of such an estimate is simply equivalent to that of the immediate sensory 

inputs. However, there is another source of information available that can improve 

performance—experience. In the Bayesian framework, this is referred to as the prior, while 

current sensory information is termed the likelihood. As an example of how incorporating a prior 

can improve behavior, consider the act of reaching for a doorknob in a dark room. It may be too 

dark see anything but the outline of the door (i.e.,, a weak likelihood estimate), but experience 

indicates that the knob will be located on one side about three feet from the floor (i.e.,, strong 

prior estimate). The fact that nobody would attempt to find a doorknob by first reaching over 

their head is a testament to the influence of prior experience on sensorimotor behavior.  

 There is experimental evidence to indicate that sensorimotor behavior is strongly 

influenced by prior knowledge—sometimes with detrimental effects. A 2002 study by Weiss et 

al (Weiss et al., 2002) investigated motion perception of simple visual stimuli and found that 

errors could be explained by an underlying expectation (prior) of low velocities. A study of the 

perception of object orientation found that perception was influenced by subjects’ expectations 

about the location of the light source (Mamassian & Landy, 2001). Evidence of prior weighting 

is not only found in visual perception tasks. In the somatosensory system, two temporally and 

spatially offset taps on the arm can elicit the sensation of additional taps that “jump” along the 

length of the arm—an illusion called the “cutaneous rabbit effect”. Goldreich et al (Goldreich, 
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2007) showed that this illusion likely arises from the expectation that something moving along 

the arm will do so with limited speed. In these examples, conscious sensation itself was affected 

by prior belief and expectation.  

 While some priors are likely developed over the course of a lifetime (e.g., the expectation 

that light sources tend to be overhead), others develop on a much faster timescale. In a 2004 

paper by Kording and Wolpert (Konrad P Kording & Wolpert, 2004), subjects performed 

reaches to a target with only brief, noisy visual feedback about their cursor location. 

Additionally, on each trial the cursor was offset from the actual hand location by a random 

amount drawn from a Gaussian distribution with non-zero mean. As predicted by Bayesian 

models, the subjects’ reach trajectories indicated that they weighted the visual feedback and 

average cursor offset according to their relative uncertainty. Importantly, this integration 

occurred despite the subjects reporting no conscious knowledge that the cursor was offset. This 

result demonstrates that priors can be quickly integrated into behavior, and do so at an 

unconscious level within the sensorimotor system.  

 The concept of Bayesian integration in the sensorimotor system can also be extended to 

the continuous, moment-by-moment control of movement. Due to errors at the level of 

movement execution (see section motor and neural noise), the motor output must constantly be 

compared with the desired action and subsequently corrected. A 2008 study by Izawa and 

Shadmehr (Izawa & Shadmehr, 2008) investigated the effect of uncertainty on movement 

correction through reaches to blurry targets. On some trials, the target jumped (imperceptibly) to 

a new location midway through the reach, forcing a correction of the movement trajectory. The 

speed and magnitude of this corrective movement depended on the blurriness (uncertainty) of the 

initial target; the more uncertain the initial target, the faster and larger the subject’s corrective 
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movement. This result is predicted by a Bayesian approach to online correction in which 

estimates (priors) are continually updated using current sensory information. Thus, whether at 

the scale of a lifetime or a couple hundred milliseconds, sensorimotor behavior appears to be 

largely influenced by experience and expectation. 

   

Behavior with multiple available actions  

 The term “uncertainty” can refer to either stochastic noise or ambiguity in available 

choices. The two-alternative forced choice (2AFC) framework gauges perception of a stimulus 

(with variable noise-based uncertainty) through a subject’s choice of target (target A or target B). 

The process of completing such a task includes sensory processing, high level decision-making, 

and motor-level execution. However, in most cases, the entirety of task-relevant uncertainty is 

contained within the sensory and decision-making processing stages. The noisy cue induces 

uncertainty in the visual system, which in turn creates uncertainty in the decision about which 

target to choose. However, given the binary nature of the task, the uncertainty does not bleed 

through into the output. No matter the uncertainty in the cue, the mapping from decision to 

action is determined entirely by the premise of the task (e.g., rightward dot motion indicates a 

rightward reach), a transformation which appears to occur rapidly (Gallivan, Stewart, Baugh, 

Wolpert, & Flanagan, 2017). The only type of uncertainty that persists throughout the movement 

in these types of tasks is the uncertainty about choice outcome. This is likely important for motor 

learning (explored in later sections), but does not have a direct impact on low-level control of the 

chosen movement itself. 
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 A variant of the 2AFC task that more directly ties ambiguity-related uncertainty to the 

actual movement is the go-before-you-know paradigm. In this scenario, subjects are again 

provided with two potential targets, but are only provided with information about which is 

correct once a movement has been initiated. Unlike the standard 2AFC task, where movement 

reflects the rule-based mapping from decision-making to motor output, a go-before-you-know 

task integrates the two processes.  

 One consistent observation in ambiguous target tasks is the presence of intermediate 

movements (Chapman et al., 2010; Gallivan, Logan, Wolpert, & Flanagan, 2016; Georgopoulos, 

Kalaska, & Massey, 1981; Haith, Huberdeau, & Krakauer, 2015; He & Kowler, 1989; Henis & 

Flash, 1995; Stewart, Baugh, Gallivan, & Flanagan, 2013). Given two possible targets of equal 

likelihood, subjects tend to direct their initial reach trajectory somewhere between the targets. 

This phenomenon has been interpreted as either (1) the result of averaging two simultaneous 

reach plans, or (2) an optimal strategy used to improve task performance. The spatial averaging 

viewpoint suggests that when confronted with multiple possible actions, the brain constructs 

simultaneous, parallel reach plans (Chapman et al., 2010; Gallivan et al., 2016; Pastor-Bernier & 

Cisek, 2011). When movement is initiated before the choice can be made, the two plans are 

executed at once, combining to form a single, intermediate movement. The alternative view 

proposes that intermediate movements arise from a single reach plan that is directed between the 

two choices in a way that offers a task-relevant advantage (Haith et al., 2015; Nashed, Diamond, 

Gallivan, Wolpert, & Flanagan, 2017; A. L. Wong & Haith, 2017). Supporting this view is the 

observation that intermediate movements are not typically observed for fast reaches (A. L. Wong 

& Haith, 2017). When reaches are relatively slow, intermediate movements can bring the hand 

closer to both targets while the appropriate corrective action is planned. However, fast reaches do 
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not allow enough time to plan a corrective movement following reach initiation, so intermediate 

movements are not beneficial. Similarly, the presence of barriers between the two targets also 

eliminates the presence of intermediate movements (Burk, Ingram, Franklin, Shadlen, & 

Wolpert, 2014; Haith et al., 2015). These results suggest that intermediate movements are 

intentional and functional elements of motor control, rather than errors resulting from inadequate 

or simultaneous reach specification. In the following section I will review the implication of each 

interpretation on the neural basis of decision-making and movement planning.   

  

MOTOR CORTEX 

Overview 

 To translate action intent into voluntary movement, the nervous system must ultimately 

output signals to control the activation of muscles. The transformation from high-level action 

goals into muscle contraction likely involves multiple regions throughout the central nervous 

system, including frontal brain areas and motor cortices, as well as the cerebellum, brainstem, 

and spinal cord. Of particular interest are the primary motor and premotor cortices, which 

contain direct outputs to the spinal cord. In the following sections, I will review these two 

cortical areas and their hypothesized involvement in movement planning and execution.  

  

Primary motor cortex 

 Primary motor cortex—also referred to as Brodmann Area 4 or M1—lies on the most 

posterior aspect of the frontal lobe, and extends from the anterior wall of the central sulcus to the 

precentral gyrus. The main cytoarchitectonic feature that distinguishes the primary motor cortex 
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from other nearby motor areas is the presence of large pyramidal neurons in layer 5, called Betz 

cells. Betz cells comprise a portion of the output pyramidal neurons originating in M1 that 

project directly to the spinal cord through the corticospinal pathway. In addition to corticospinal 

projections, M1 also contains neurons that project to brainstem nuclei through the corticobulbar 

pathway. Though considered primarily a cortical output structure, M1 is extensively 

interconnected with other cortical and subcortical areas, including premotor areas in the frontal 

lobe, parietal cortex, thalamus, the cerebellum, and basal ganglia (Dum & Strick, 2002; Hoover 

& Strick, 1999; Kelly & Strick, 2003; Purves, Augustine, Fitzpatrick, & Katz, 1997).  

 A major feature of the primary motor cortex—and indeed what first led to its discovery—

is the ease with which electrical stimulation causes movement (Fritsch & Hitzig, 1960; Penfield 

& Boldrey, 1937). Experiments exploiting the low stimulation thresholds found that electrically 

stimulating different sub regions of M1 elicited different types of movement. This led to the 

characterization of the topographical structure within M1. Stimulation of the most medial aspect 

caused movements in the lower extremities. Stimulations more lateral elicited movements in the 

trunk and proximal arm, followed by lower arm and hands. The most lateral stimulations caused 

movement in the face and mouth. This organization generally tracks the somatotopy in the 

sensory cortex, which is located just posterior to the motor cortex across the central sulcus.  

 While these early stimulation experiments characterized the general mediolateral 

organization in M1, later electrophysiological studies also identified functional differences along 

the anteroposterior dimension. Recordings from single neurons in the arm region of M1 indicated 

that neurons located closer to or within the central sulcus more directly related to muscle activity 

than did those more anterior in M1 (D. J. Crammond & Kalaska, 1996; Johnson, Ferraina, 

Bianchi, & Caminiti, 1996). A more recent study using retrograde labeling provided anatomical 
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support for these results, finding that a large percentage of sulcal M1 neurons projected directly 

onto motor neurons (Rathelot & Strick, 2009). In contrast, M1 output neurons originating from 

the gyrus projected onto interneuronal circuits within the spinal cord. The distinction between 

these two output types led the authors to conclude that the region of M1 that lies within the 

central sulcus is an evolutionarily newer structure (“new M1”). The development of direct 

control of lower motor neurons likely allows for more precise and dexterous control over hand 

and finger movements. More general and gross movement—such as proximal limb movement—

is therefore hypothesized to reside within “old M1” on the precentral gyrus.  

  Although the primary motor cortex is clearly involved with the generation of voluntary 

movement, the exact mechanism of control has long been a subject of debate. In the late 1960s, 

electrophysiological recordings from awake, behaving monkeys showed a correlation between 

the discharge rate of individual pyramidal tract neurons (originating from M1) and force 

generation at the wrist (Evarts, 1968). Since then, several other studies have shown a direct 

relationship between neural activity in M1 and the strength of force production or muscle 

contraction (Holdefer & Miller, 2002; Kakei, Hoffman, & Strick, 1999; Morrow, Jordan, & 

Miller, 2007; Pohlmeyer, Solla, Perreault, & Miller, 2007). This might be expected, given that 

much of the output from M1 projects on the spinal cord and motor neurons. However, even 

though the outputs from M1 must at some level control muscle activation, the exact “language” 

of M1 activity is still an open question.  

 One popular view of the neural “code” employed by M1 arose in the 1980s with the work 

of Georgopoulos (Georgopoulos, Kalaska, Caminiti, & Massey, 1982). He recorded the activity 

of individual neurons in M1 and found that the rate of discharge modulated with the direction of 

hand motion during reaching. Furthermore, the relationship to reach direction could be well 
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approximated by a sinusoid (tuning curve) with parameters fit to the baseline firing rate, 

modulation depth, and preferred direction. The preferred direction (often shortened to PD) refers 

to the direction of hand movement corresponding to the highest firing rate for a given neuron. 

This kinematic framework in which individual M1 neurons are represented as encoding high-

level features of movement found a strong foothold, especially in the recent field of brain 

machine interfaces (Carmena et al., 2003; Chapin, Moxon, Markowitz, & Nicolelis, 1999; 

Serruya, Hatsopoulos, Paninski, Fellows, & Donoghue, 2002; Taylor, Tillery, & Schwartz, 2002; 

Wessberg, Stambaugh, Kralik, & Beck, 2000). While the approach provides a simple signal for 

control purposes, it does not fully capture the nature of M1 activity, which can also correlate 

with other factors such as force or muscle activity and even posture (Scott & Kalaska, 1995; 

Scott, Sergio, & Kalaska, 1997). This might indicate a highly integrated, multimodal 

representation in M1. It might also imply that the mechanism of movement generation is not 

based on any parameterization. This concept will be explored at greater length in a later section, 

Analyzing motor cortical signals. 

 

Dorsal premotor cortex 

 Directly anterior to the primary motor cortex on the precentral gyrus is the premotor 

cortex, also known as Brodmann area 6. The area can be distinguished from the primary motor 

cortex by the lack of layer 5 Betz cells, and from the prefrontal cortex by the lack of layer 4 

granulation (Purves et al., 1997; Rajkowska & Goldman-Rakic, 1995). The scope of “premotor 

cortex” encompasses several distinct areas, including the supplementary motor area (SMA) along 

the most medial aspect, and dorsal and ventral premotor areas (PMd and PMv), split by the spur 
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of the arcuate sulcus (Lu, Preston, & Strick, 1994; Picard & Strick, 2001). Activity within these 

three main divisions has been shown to correlate with aspects of voluntary motor control. SMA 

appears to be largely involved with movement sequencing (Mushiake, Inase, & Tanji, 1991; 

Tanji, Shima, & Mushiake, 1996). PMv displays a wide range of movement-related effects, 

including visual and somatosensory integration and the coordination of reaching and grasping 

(Eiji Hoshi & Tanji, 2002; E. Hoshi & Tanji, 2006; Jeannerod, Arbib, Rizzolatti, & Sakata, 1995; 

Murata et al., 1997; Romo et al., 2004). PMd, which is the focus of my investigations presented 

later, can be further divided—around the level of the genu of the arcuate sulcus—into rostral 

(PMDr) and caudal (PMDc) aspects (Picard & Strick, 2001). These rough divisions (despite no 

clear anatomical boundary) segregate the two main functional roles observed in PMd. The caudal 

aspect (PMDc) seems closely tied to movement planning and execution (D. J. Crammond & 

Kalaska, 2000; Weinrich & Wise, 1982), not unlike the adjacent primary motor cortex. The 

rostral aspect (PMDr) more closely resembles prefrontal areas, with responses that appear to 

reflect task-related abstractions like rule-based transformations from visual cues to movement 

(Mirabella, Pani, & Ferraina, 2011; Ohbayashi, Ohki, & Miyashita, 2003). Intracortical electrical 

stimulation of PMDr can even elicit eye movement (Fujii, Mushiake, & Tanji, 2000), also 

suggesting integration with the visual system.  

 The premotor areas are strongly connected to the primary motor cortex, as well as 

subcortical structures (e.g., basal ganglia) and the parietal cortex (Dum & Strick, 2002; Kurata, 

1991; Stetson & Andersen, 2014). Traditionally the connection between premotor cortex and 

primary motor cortex was viewed as hierarchical, with premotor areas thought to perform high-

level processing and primary motor cortex the control of low-level motor output. However, the 

finding that premotor and supplementary motor cortices significantly contribute to the 
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corticospinal pathway challenges this view (Dum & Strick, 1991; Martino & Strick, 1987). 

While premotor areas may indeed play an important role in processing the signals that arrive in 

M1, they also have a means of directly controlling movement. Electrical stimulation of premotor 

cortex has been shown to elicit movement, though at higher current thresholds than primary 

motor cortex (Weinrich & Wise, 1982).  

 Electrophysiological studies of the dorsal premotor cortex have mainly focused on the 

role that the caudal region (adjacent to M1) has in movement planning. Analysis methods of 

PMd activity largely mirror those used on primary motor cortex activity, using directional tuning 

curves to describe discharge as a function of reach angle. This approach first led to the 

observation that activity in PMd could indicate the direction of a visually cued reach long before 

the movement was initiated (D. J. Crammond & Kalaska, 2000; Godschalk, Lemon, Kuypers, & 

Van der Steen, 1985; Riehle & Requin, 1989). Such kinematic representations persisted even 

when the visual cue was removed, suggesting that they were indeed related to movement 

planning, and not just the presence of a visual cue (P. Cisek & Kalaska, 2005; D. J. Crammond 

& Kalaska, 2000). PMd appears to operate using a diverse set of movement plan representations, 

and displays a mix of externally-driven (i.e.,, visual location of a target) and motor-related (i.e.,, 

associated reach direction) activity (Batista et al., 2007; M. M. Churchland, Santhanam, & 

Shenoy, 2006; Gail, Klaes, & Westendorff, 2009; Shraga Hocherman & Wise, 1990; McGuire & 

Sabes, 2009; Messier & Kalaska, 2000; Pesaran, Nelson, & Andersen, 2006; Schaffelhofer & 

Scherberger, 2016; L. Shen & Alexander, 1997). This mixed selectivity suggests that part of 

PMd’s role in planning may be to transform visual cues to the appropriate movement plan.  

Regardless of the specific coordinate frame, PMd is clearly involved in the planning of 

goal-directed movement. A major question, then, is how planning processes proceed in the face 
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of goal ambiguity. The first description of PMd activity under incomplete goal specification 

came in a 1989 paper by Riehle and Requin (Riehle & Requin, 1989). Monkeys were cued to 

two different magnitudes of wrist extension and wrist flexion. On most trials, the monkeys were 

given simultaneous information about the required direction (extension/flexion) and extent. 

However, on other trials, the delivery of information was sequential, creating periods of partial 

goal specification. PMd activity on these trials suggested that it could begin to plan aspects of the 

upcoming movement even in the absence of a fully specified target. This observation was 

extended through work by Bastian et al. in 1998 (Bastian, Riehle, Erlhagen, & Schöner, 1998), 

who found that early planning-related activity in PMd appeared to represent a single reach plan 

whose width changed to encompass the full range of potential reach targets. In 2005, Cisek and 

Kalaska (P. Cisek & Kalaska, 2005) studied PMd planning activity when presented with two 

opposing reach targets. They showed that when the two targets first appeared, PMd 

simultaneously developed two corresponding reach plans. Following a visual cue identifying the 

correct target, the correct representation was strengthened, and the incorrect representation was 

suppressed. This study led to widescale acceptance that PMd can simultaneously represent 

multiple discrete reach plans. However, this result has only been shown using trial-averaged, 

single neuron analyses. It is possible that the apparent simultaneous representation is in fact an 

artifact of trial-averaging, and that PMd only ever plans one reach at a time (and switches that 

plan if necessary). In Chapter 3, I provide evidence of this alternative hypothesis, using 

population recordings to track moment-by-moment reach planning.  
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Analyzing motor cortical signals 

 Since the origins of in vivo neural recordings, our understanding of brain function has 

relied heavily on single neuron recordings. In the motor cortices, individual neurons were found 

to correlate with both kinematic (Georgopoulos et al., 1982; S Hocherman & Wise, 1991; 

Messier & Kalaska, 2000) and kinetic (Evarts, 1968; Georgopoulos, Ashe, Smyrnis, & Taira, 

1992; Kakei et al., 1999) features of limb control control. This led to a search for the true 

“language” of motor cortex. Does motor cortex represent movement kinematics or kinetics? Are 

representations developed in a global coordinate frame, a visual coordinate frame, or an intrinsic 

(e.g., joint) coordinate frame? Unfortunately, experiments designed to differentiate these 

possibilities often came to the unsatisfying conclusion that motor cortex contains a mixed 

representation encompassing virtually any and all features related to movement (Batista et al., 

2007; Pesaran et al., 2006). Regardless, most approaches continued with the general assumption 

that activity from single neurons reflected the representation (or encoding) of some unknown—

and probably complex—movement parameter(s).  

 The parameter-based view of motor cortical activity did prove useful for decoding 

purposes (Serruya et al., 2002; Taylor et al., 2002), and still forms the basis of many current 

analytical approaches. However, there are features of motor cortical activity that seem 

inconsistent with this approach. Temporal firing rate profiles are highly variable, both across 

neurons and across different movements (M. M. Churchland & Shenoy, 2007). This dynamic 

complexity can result in a single neuron appearing to display different tuning properties 

(e.g.,preferred direction) at different times within a single movement (Fu, Flament, Coltz, & 

Ebner, 1995; Mason, Johnson, Fu, Gomez, & Ebner, 1998), even rotating one hundred and 

eighty degrees between the planning and execution phases of a movement. Kinematic tuning 
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properties in M1 also shift when reaching against external forces (Sergio & Kalaska, 1998). 

These observations make little sense if neurons are assumed to consistently represent the values 

of specific movement parameters. Both the need for multivariable coordinate frames (i.e., 

combined representations of visual coordinates, force generation, kinematics, etc.) and 

inconsistencies even within those coordinate frames (rotating PDs) draws the parameter-based 

view of motor cortex into question.  

 While motor cortical activity does unquestionably correlate with external movement 

parameters like reach direction, the goal of motor cortex is to generate movement, not represent 

it (Fetz, 1992; Kalaska & Crammond, 1992). There is no obvious reason why single neuron 

activity must reflect representation of any movement variable. The motor cortex—a deeply 

interconnected network of neurons—must ultimately output signals to control coordinated spinal 

cord circuits and muscle contractions. Rather than attempt to interpret the activity of single 

neurons with respect to extrinsic movement variables directly, it may be more appropriate to 

view them in relation to the function of the entire network. This population-based approach 

offers a mechanism for movement generation that can also explain the single-neuron phenomena 

(e.g.,dynamic preferred directions) seemingly at odds with a representational view (M. M. 

Churchland, G. Santhanam, et al., 2006; Michaels, Dann, & Scherberger, 2016).  

 Population-based analysis methods are particularly useful when applied to 

simultaneously recorded neuron data. Early electrophysiological experiments were limited to 

recordings from one or a small number of electrodes driven into the brain. However, with the 

development of chronic multi-electrode arrays came the ability to record from tens to hundreds 

of neurons simultaneously. An increasingly popular approach for analyzing array recordings is to 

use dimensionality reduction methods. Dimensionality reduction begins with the assumption that 
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although a brain area may contain millions or billions of individual neurons, the network 

functions at a much more limited scale. The goal of dimensionality reduction is to use the 

correlations between individual neurons to reveal a small number (on the order of tens) of large-

scale patterns in the population activity. Interpretation of the activity within the context of the 

low-dimensional space is often referred to as the “neural state”. These methods have been used 

on data combined across sessions from highly stereotypic movements to provide general insight 

into motor cortical network function (M. M. Churchland et al., 2012; Elsayed, Lara, Kaufman, 

Churchland, & Cunningham, 2016). However, the most compelling application is to 

simultaneously recorded activity, which can allow the neural state to explain individual 

movement features. An instantaneous readout of the neural state can prediction reaction time 

(Afshar et al., 2011; Michaels, Dann, Intveld, & Scherberger, 2015) and even hesitation and 

change of mind (Kaufman, Churchland, Ryu, & Shenoy, 2015). The utility of low-dimensional 

neural states in single-trial analysis will be discussed more in Chapter 3.  

 

NEURAL MECHANISMS OF UNCERTAINTY PROCESSING 

Overview  

 As described in previous sections, behavior on motor tasks is affected by environmental, 

sensory, and motor uncertainty. Importantly, injecting noise and uncertainty into, say, a sensory 

cue, does not simply increase variance in the motor output. Instead, behavior may be biased in a 

way that implies knowledge of the uncertainty itself. For the brain to incorporate uncertainty 

necessitates a neural mechanism (or multiple mechanisms) for representing uncertainty. 

Theoretical neuroscientists have posited several potential means by which cortex might achieve 
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uncertainty representation. Here I will review a few of the most common hypotheses, and discuss 

the potential implications for motor cortex function. I will also discuss hypothesized neural 

mechanisms for dealing with choice ambiguity.  

 

Models of noise compensation 

The brain might represent uncertainty in an arbitrary signal in two basic ways: (1) it 

could encode separate estimates for the value itself (e.g.,its mean) and its uncertainty 

(e.g.,variance), or (2) it could represent the full distribution of possible values. Most modeling 

approaches assume the latter case, and suggest that cortical signals do not simply reflect single 

parameter values, but distributions. These approaches can be loosely grouped together as 

population code models.  

The concept of the population code is based on neural tuning, which is described in the 

above sections discussing motor cortex. Neurons in sensory and motor areas tend to display 

broad tuning characteristics with respect to external variables like visual motion or reach 

direction. In many cases this tuning is unimodal, with neurons responding maximally (via firing 

rate) for one specific stimulus or parameter value. The result of these tuning characteristics is 

that a single stimulus value will elicit graded responses throughout the neural population. Due to 

the inherent variability in neural firing, this population response can be readily interpreted as a 

probability distribution (J. M. Beck et al., 2008; Deneve, Latham, & Pouget, 2001; Ma et al., 

2006; Salinas & Abbott, 1994; Sanger, 2003), forming the basis of the probabilistic population 

code (PPC) hypothesis.  
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PPC models achieve probability representation through gain modulation.  That is, more 

uncertain stimuli elicit weaker responses. This model of cortical function has favorable 

properties, in part due to the Poisson-like nature of neural firing. The Poisson distribution is a 

member of the exponential family of functions, and is therefore particularly useful for Bayesian 

integration since distributions can be combined through addition rather than multiplication. Thus, 

multisensory integration in a PPC framework requires only the summing of neural responses 

(Jazayeri & Movshon, 2006; Ma et al., 2006). The model offers a simple and plausible 

mechanism by which the inherent properties of individual neurons can underlie optimal macro-

level behavior. However, it is unclear how easily PPC—which relies on mean rates—might 

encompass other aspects of Bayesian inference. For example, it does not naturally include 

marginalization, which describes the dependence of a given probability on the considered set of 

possible outcomes (Lochmann & Deneve, 2011). It also considers all neurons as independent 

samples of a stimulus, which is likely a poor assumption considering the interconnected nature of 

cortex.  

A separate model suggests that neural activity might represent a sampling of internal 

representations of the environment (Berkes, Orbán, Lengyel, & Fiser, 2011; Hinton & 

Sejnowski, 1983; Hoyer & Hyvärinen, 2003). Under this model, cortex performs Bayesian 

inference to update the posterior distribution over all environmental states that may have led to 

the observed sensory input. This view attributes the variability observed in neural spiking patters 

to a different source than the PPC model. The PPC model assumes that a single input elicits 

stochastic neural responses, and thus neural variance is simply a result of intrinsic properties of 

neurons themselves. Alternatively, the sampling models suggest that neural variance reflects the 

unavoidable uncertainty in performing Bayesian inference. That is, each sample of neural 
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activity reflects the (essentially noiseless) representation of a single world state that may have led 

to the observed sensory input (Hoyer & Hyvärinen, 2003). Neural variability thus arises from the 

distribution of inferred world states. The sampling model predicts that increased uncertainty in a 

sensory cue will increase temporal variability, interneuron variability, or both. This contrasts 

with the PPC model, which predicts lower overall firing rates (and thus lower variability, per 

Poisson statistics) with increased uncertainty.  

A third popular model of uncertainty representation suggests that uncertainty is 

represented through the temporal dynamics of individual neurons (Deneve, 2008a, 2008b). Like 

the sampling model, this temporal model assumes that neural activity reflects an inferred world 

state. However, under this model, the activity of a single neuron reflects an update to the 

evidence it receives regarding a single environmental parameter. More specifically, each neuron 

spikes when its synaptic input cannot be readily predicted from its own recent firing history. This 

model accurately recreates many features of neural firing, including Poisson firing statistics. 

Uncertainty representation is directly incorporated into the model, as noise affects the probability 

that a neuron will receive novel supporting evidence.  

Each of the three models described above has found limited physiological support, which 

likely indicates that none fully encapsulates the nature of neural uncertainty representation. 

Additionally, the models have only been used to explicitly model sensory areas like the middle 

temporal visual area (MT). Uncertainty representation within motor areas thus remains largely 

speculative. As mentioned by Ma (2006), it is unclear if uncertainty representation even makes 

sense within motor areas, since movement generation likely necessitates a single motor 

representation. The results provided in Chapter 2 aim to address this open question of uncertainty 

representation within motor areas.  
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Models of decision-making between multiple options 

Modeling the processing of ambiguity-related uncertainty is equivalent to modeling 

decision-making. Given two or more potential options, how does the brain use the available 

information (if any differentiating information even exists) to decide between them? On this 

front, the most notable and widespread modeling approach has been the “bounded integrator” 

(Bogacz & Gurney, 2007; Carpenter & Williams, 1995; Grossberg & Pilly, 2008; Mazurek, 

2003; Ratcliff, 1978; Reddi, Asrress, & Carpenter, 2003; Smith & Ratcliff, 2004; Stone, 1960; 

Usher & McClelland, 2001; Wang, 2002; K. F. Wong & Wang, 2006). In this model (assuming 

two potential targets), sensory evidence for each target accumulates over time. The difference in 

evidence thus represents the decision variable, and must surpass a predefined threshold to reach a 

final decision. This model accurately predicts behavioral phenomena, such as the effect of 

sensory evidence on reaction time and the presence of incorrect choices (Carpenter & Williams, 

1995; Ratcliff, 1978; Reddi et al., 2003; Smith & Ratcliff, 2004). As with noise-based 

uncertainty models, the bounded integrator model has been applied mostly in the context of 

vision and eye movement (Carpenter & Williams, 1995; Grossberg & Pilly, 2008; Mazurek, 

2003; Reddi et al., 2003; Smith & Ratcliff, 2004). Indeed, neural activity in multiple eye-related 

brain areas has been found to closely mimic an integrator during decision-making (Gold & 

Shadlen, 2000; Leon & Shadlen, 2003; Munoz & Wurtz, 1995; K. Shen & Pare, 2007).  

In the reaching system, a model of decision-making based on “biased competition” 

between action choices (P. Cisek, 2006, 2007) closely resembles a bounded integrator. This 

model frames the simultaneous encoding result observed in PMd (see Dorsal premotor cortex) as 
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the fundamental mechanism by which movement decisions are made. In a standard bounded 

integrator model, decisions depend on the difference in evidence between multiple options. The 

biased competition model instead assumes a distinct representation for each action possibility. 

The strength of each representation is consequently affected by sensory evidence (which “biases” 

the competition between options) as well as inhibitory connections between the corresponding 

sub-populations. Single neuron results appear to support the biased competition model in PMd 

(Coallier et al., 2015; Pastor-Bernier & Cisek, 2011), although alternative interpretations will be 

discussed in Chapter 5.  

A problematic feature of the bounded integrator model is its sluggish response to changes 

in evidence. That is, if evidence were to quickly switch from supporting target A to target B, the 

new evidence would only slowly be incorporated into the output. Neural recordings in PMd 

suggest a more instantaneous response to evidence, which does not fit with the integrator model 

of decision making (Thura & Cisek, 2014). An extension of the biased competition model, called 

the urgency gating model (Thura, Beauregard-Racine, Fradet, & Cisek, 2012), was developed to 

deal with this issue. The urgency gating model posits that decision-making areas (principally 

PMd) don’t integrate sensory evidence, but rather track it on a moment-by-moment basis. The 

evidence is then combined with a time-varying urgency signal, which dictates the certainty 

required to for a decision. This model captures the tradeoff that exists between making quick 

decisions with little evidence and waiting for more information. 

 



37 
 

REINFORCEMENT AND MOTOR LEARNING 

Overview 

 The elements of movement planning and execution described thus far consider only 

individual movements performed on short timescales. However, motor control is not limited to 

the task of generating useful movement, but also includes the process of learning what “useful” 

means in different contexts. This is especially true in conditions of high uncertainty, when initial 

performance is likely to be poor. Learning is an integral aspect of controlling movement, and 

requires incorporating previous movement outcomes (e.g.,success or failure) into the processes 

underlying future motor plans. In the following sections I will provide a brief overview of motor 

learning, with an emphasis on long-term, reward-based learning.  

 

Both internal and external feedback drives motor learning 

 The motor system is inherently adaptive, as evidenced by the ability to learn and improve 

motor performance in novel contexts. Two illustrative examples of this are curl field reaching 

experiments and visual perturbation experiments. During a classic curl field reaching experiment 

by Shadmehr and Mussa-Ivaldi (Reza Shadmehr & Mussa-Ivaldi, 1994), subjects were asked to 

make targeted reaching movements using a manipulandum that applied forces to distort the 

dynamics of movement. Initially, trajectories displayed strong deviations from normal reaches, 

but over time subjects learned to properly account for the new dynamics to produce straight 

reaches. Importantly, when the forces were removed, subjects temporarily made errors in the 

opposite direction. These errors under normal conditions indicated that the previous adaptation 

did not represent a cognitive strategy that could be applied or ignored, but rather a fundamental 
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restructuring of the motor system itself. Similar results were found for visual perturbation 

experiments, in which subjects gradually adapted to shifted visual feedback (Martin, Keating, 

Goodkin, Bastian, & Thach, 1996). Again, returning to the normal condition elicited oppositely-

directed errors. These two experimental paradigms demonstrate that the sensorimotor 

transformation from sensory input to movement execution is a highly adaptive process. 

 The motor learning processes involved in dynamic or visual perturbation experiments—

and indeed motor learning in general—were traditionally thought to be wholly internal (Doya, 

2000; Mazzoni & Krakauer, 2006; R. Shadmehr & Krakauer, 2008). That is, motor adaptation 

was thought to depend only on the comparison between desired motor output and observed 

sensory feedback. Under this view, external factors like reward are extraneous to the task of 

motor adaptation. This interpretation was bolstered by a result from Mazzoni and Krakauer 

(2006), which showed that motor adaptation can at times be maladaptive. Subjects made 

reaching movements under a visuomotor rotation that offset cursor movement from hand 

movement by forty-five degrees. They were instructed at the start of the experiment to 

compensate for the perturbation by aiming for an adjacent target. This cognitive strategy led to 

successful compensation at first, but performance degraded over time as implicit learning within 

the sensorimotor system gradually “corrected” for the imposed rotation. This result suggests that 

correspondence between motor intent and sensory feedback (i.e., sensory prediction error) is the 

driving force behind motor adaptation. 

 While sensory prediction error may drive motor adaptation, it cannot account for the 

entirety of motor learning. As discussed in previous sections, movement execution requires both 

an extrinsic action plan and subsequent transformation of that plan into motor (muscle) signals. 

Motor adaptation through sensory prediction error describes the process by which the goal-to-
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output transformation can be continually updated. However, in the absence of sensory feedback, 

task-related feedback can still be used to drive motor learning. In their 2011 paper, Izawa and 

Shadmehr showed that subjects can successfully adapt to a visuomotor rotation when only 

provided with feedback of their reaches’ success or failure (Izawa & Shadmehr, 2011). Result-

based feedback can also modulate the extent of motor adaptation, with reward and punishment 

differentially affecting aspects of learning (Abe et al., 2011; Galea, Mallia, Rothwell, & 

Diedrichsen, 2015). A punishment signal (loss of reward) significantly increased the rate of 

motor adaptation compared to sensory feedback alone. A separate study showed that reward-

related feedback enhanced adaptation for both gradual and abrupt perturbations (Nikooyan & 

Ahmed, 2015). These results and others (Dayan & Balleine, 2002; Hollerman & Schultz, 1998; 

O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003; W. Schultz, 2006) indicate the strong 

influence of external reward-related feedback on motor learning.  

 

Neural substrates of motor learning 

Both sensory feedback (i.e., sensory prediction error) and reward-related feedback 

contribute to motor learning, but are likely governed by separate neural systems. The primary 

candidate area driving motor adaptation from sensory prediction error is the cerebellum (R. 

Shadmehr & Krakauer, 2008; R. Shadmehr, Smith, & Krakauer, 2010; Tseng, Diedrichsen, 

Krakauer, Shadmehr, & Bastian, 2007). Supporting this hypothesis are studies showing that 

individuals with cerebellar deficits have difficulty in learning motor skills (Nicolson et al., 1999; 

Sanes, Dimitrov, & Hallett, 1990). The strong interconnection between cerebellum and the 

premotor and primary motor cortices (Dum & Strick, 2002) indicates a potential means by which 
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the cerebellum could directly influence motor plans throughout learning. Facilitation of the 

motor cortex using transcranial direct current stimulation (TDCS) improves motor learning 

(Nitsche et al., 2003), which strengthens the argument that the cerebellum facilitates learning 

through direct modification of cortical structures.  

The effect of reward-related feedback on motor learning is thought to operate through 

dopaminergic signaling arising in the basal ganglia (Frank, Woroch, & Curran, 2005; Hollerman 

& Schultz, 1998; Wolfram Schultz, 1998, 2000, 2002). Dopaminergic neurons have widespread 

influence, and as a result, reward-related signals have been characterized in a number of different 

brain areas, including the midbrain, prefrontal cortex, and motor cortices (Matthew R Roesch & 

Olson, 2003, 2004; Wolfram Schultz, 2000; Wallis & Kennerley, 2010). The anterior cingulate 

cortex is also strongly implicated in reward-based learning (Cohen & Ranganath, 2007; 

Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006). Event-related potentials (ERP) 

measured through electroencephalography (EEG) are thought to arise in the anterior cingulate 

cortex, and appear to signal reward-prediction error (Cohen & Ranganath, 2007). The anterior 

cingulate cortex shares connections with motor cortices (Paus, 2001), providing yet another 

potential pathway by which reward might influence motor cortical function. Given the 

widespread cortical effect of dopaminergic signaling, it is quite reasonable to assume that motor 

cortex itself might hold signatures of reward-related feedback. In Chapter 4, I present evidence 

that reward (or more accurately, failure) signals do indeed exist within motor cortex.   
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SUMMARY 

 In this chapter, I provided an overview of the different types of uncertainty that influence 

sensorimotor function, and their effects on behavioral outcomes. I also reviewed the potential 

neural mechanisms (mainly within motor cortex) that might address the problem of moving 

under uncertainty. Since motor control involves both movement generation as well as movement 

optimization, I summarized the effect of movement outcome (i.e., reward) on motor learning and 

the brain areas that might provide reward-based influence on motor cortex. In the subsequent 

chapters, I will present evidence that motor cortices (dorsal premotor cortex and primary motor 

cortex) are intimately engaged in uncertainty processing and modified by reward-based 

feedback. Chapter 2 investigates how environmental uncertainty in a reach goal affects 

movement representations during planning and execution. Chapter 3 addresses movement 

planning with multiple potential targets, and shows single-trial results that contradict current 

models of decision-making in PMd. In Chapter 4, I move from movement planning to movement 

outcome, and provide evidence of reward-related signaling within motor cortex. In Chapter 5, I 

discuss the findings from Chapters 2 through 4 and the implications for the functional roles of 

PMd and M1 during movement planning, decision-making, and motor learning.  
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CHAPTER 2: UNCERTAINTY LEADS TO PERSISTENT EFFECTS ON REACH 

REPRESENTATIONS IN DORSAL PREMOTOR CORTEX 

 

Brian M Dekleva, Pavan Ramkumar, Paul A Wanda, Konrad P Kording, Lee E Miller 

 

FOREWORD 

 This chapter is an adapted version of a paper published by eLife (2016). In it, we aim to 

address the question, “How does noise-related uncertainty in a reach goal affect planning- and 

execution-related cortical activity?”. We find that monkeys’ uncertainty about where to reach is 

reflected—throughout the entirety of planning and execution—in the activity in dorsal premotor 

cortex, but not primary motor cortex. This result not only indicates that PMd is sensitive to task 

uncertainty, but also suggests potential properties of decision-making within the motor system. 

As discussed in Chapter 1, decisions are often thought to reflect the output of processes within 

PMd. However, here we show that during targeted reaching, the quality of the decision 

represented in PMd might be limited by subjective sense of uncertainty. Implications of this 

finding on decision-making, error correction, and learning will be discussed in Chapter 5.  
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ABSTRACT 

Every movement we make represents one of many possible actions. In reaching tasks 

with multiple targets, dorsal premotor cortex (PMd) appears to represent all these possible 

actions simultaneously. However, in many situations we are not presented with explicit choices. 

Instead, we must estimate the best action based on noisy information and execute it while still 

uncertain of our choice. Here we asked how both M1 and PMd represented reach direction 

during a task in which a monkey made reaches based on noisy, uncertain target information. We 

found that with increased uncertainty, neurons in PMd actually enhanced their representation of 

unlikely movements throughout both planning and execution. The magnitude of this effect was 

highly variable across sessions, and was correlated with a measure of the monkeys’ behavioral 

uncertainty.  These effects were not present in M1. Our findings suggest that PMd represents and 

maintains a full distribution of potentially correct actions.  

 

INTRODUCTION 

Each motor action we perform reflects only one of the many available or considered 

actions. In some situations, the full set of potential actions comprises a set of discrete choices 

(e.g., which of these three apples should I pick?). In these cases, the task for the sensorimotor 

system is to evaluate each option and decide which will lead to the most favorable outcome. 

However, these “target selection” situations represent only one type of motor related decision-

making. In many other scenarios the sensorimotor system cannot simply select between multiple 

explicit options, but instead must estimate the best action based on continuous – and often noisy 



44 
 

– sensory information and learned experience. Reaching toward a familiar object seen only in the 

peripheral vision, or under poor illumination is one such example. 

Though target selection represents only one type of sensorimotor task, it dominates the 

current literature on neural correlates of motor-related decision making. This is true for both the 

visuomotor system (Basso & Wurtz, 1997; Britten, Newsome, Shadlen, Celebrini, & Movshon, 

1996; Fetsch, Pouget, DeAngelis, & Angelaki, 2011; Newsome et al., 1989; Shadlen & 

Newsome, 2001) and the reaching system (Bastian, Schoner, & Riehle, 2003; P. Cisek & 

Kalaska, 2005; Coallier et al., 2015; Messier & Kalaska, 2000; Thura & Cisek, 2014). These 

studies do vary significantly in the method by which they provide cues to elicit a motor response. 

These cues may indicate different parameters of the action, such as the direction or extent of the 

movement (Bastian et al., 2003; D. Crammond & Kalaska, 1994; Gail et al., 2009; Messier & 

Kalaska, 2000; Welsh & Elliott, 2005). They can be discrete (Meegan & Tipper, 1998; Thura & 

Cisek, 2014; Wood et al., 2011) or continuous (Gold & Shadlen, 2001; Hernandez et al., 2010; 

Resulaj, Kiani, Wolpert, & Shadlen, 2009), and can even span different sensory modalities 

(Hernandez et al., 2010; Romo et al., 2004). However, all share a common characteristic: the 

action is directed towards one of multiple mutually exclusive targets. This mutual exclusivity is a 

constraint specific to the task of target selection and does not exist in target estimation, since no 

explicit options are presented. It is therefore not obvious how the results from target selection 

tasks may or may not extend to the case of target estimation.  

In both target selection and estimation, there is some degree of uncertainty in the decision 

making process as well as the final decision itself. This uncertainty largely depends on the 

ambiguity of the available cues. If the task includes a completely unambiguous cue indicating the 

correct choice, the decision will contain practically no uncertainty whatsoever. For example, one 
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standard multiple target selection task used in non-human primate reaching studies (Bastian et 

al., 2003; P. Cisek & Kalaska, 2005) briefly presents a monkey with two or more potential reach 

targets before indicating the correct one. In this situation the animal may be initially uncertain 

about which target is correct, but that uncertainty vanishes with the disambiguating cue. Variants 

of this task provide more ambiguous cues and allow the animal to choose one of two targets 

while still unsure about the correct choice (Coallier et al., 2015; Thura & Cisek, 2014). These 

kinds of tasks result in decisions that are made despite a lingering uncertainty in the decision.  

  Studies of reach-related brain areas during target selection tasks have suggested that the 

dorsal premotor cortex (PMd) plays a significant role in sensorimotor decision-making. 

Historically, PMd has been viewed as a movement planning area, displaying activity consistent 

with a representation of upcoming movements to visual targets (Paul Cisek, Crammond, & 

Kalaska, 2003; L. Shen & Alexander, 1997; Weinrich & Wise, 1982). Later studies showed that 

these pre-movement representations can include multiple simultaneous potential targets (P. Cisek 

& Kalaska, 2005) and reflect motor plans even in the absence of visual targets (Klaes, 

Westendorff, Chakrabarti, & Gail, 2011). Furthermore, the representations during multiple-target 

tasks are modulated by decision-related variables (Coallier et al., 2015; Pastor-Bernier & Cisek, 

2011). These more recent results are consistent with an interpretation that activity in dorsal 

premotor cortex modulates with the complexity (or uncertainty) of a motor decision. 

In general, sensorimotor decision-making should take into account the uncertainty 

present in all task-relevant information sources – namely the current sensation and prior 

experience. When sensation provides a highly reliable action cue (e.g., when reaching toward a 

well-lit, foveated object), it can be used exclusively to plan and execute the appropriate motor 

output. However, as uncertainty in sensation increases, it becomes more beneficial to combine 
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sensory information with information learned through prior experience. The optimal method for 

integrating sensory and prior information was formulated centuries ago as Bayes’ theorem 

(Bayes, 1763). A direct application of Bayes’ theorem states that cues should be weighted in 

inverse proportion to their variance (Knill & Saunders, 2003; K. P. Kording & Wolpert, 2006). 

The Bayes optimal decision will lead to better results than either cue alone, but will still contain 

a certain degree of uncertainty.  

Bayesian models have been used to describe human behavior in a wide array of 

psychophysical studies (Cheng, Shettleworth, Huttenlocher, & Rieser, 2007), including visual 

(Knill & Saunders, 2003; Mamassian & Landy, 2001; Weiss et al., 2002), auditory (Battaglia et 

al., 2003), somatosensory (Goldreich, 2007), cross-modal (Alais & Burr, 2004; Ernst & Banks, 

2002; Gu, Angelaki, & Deangelis, 2008; Rowland, Stanford, & Stein, 2007), and sensorimotor 

(Greenwald & Knill, 2009; Konrad P Kording & Wolpert, 2004; Trommershauser, Maloney, & 

Landy, 2008; R. J. van Beers et al., 2002) applications. In these tasks, behavior generally 

matched the predictions of various Bayesian models of optimal performance, which has been 

taken as evidence that the brain does indeed incorporate information about the relative 

uncertainty of various cues when planning and executing movements.   

To probe the effect of target estimation uncertainty on M1 and PMd, we designed a task 

in which monkeys estimated the location of reach targets using knowledge of the average target 

location (learned through experience) and noisy visual cues. Although M1 activity appeared to 

reflect only the direction of the executed reach, we found that the monkeys’ uncertainty about 

where to reach correlated with changes in PMd activity during both movement planning and 

execution. The magnitude of these uncertainty-related effects in PMd was spatially tuned. 

Neurons whose strongest response direction (their preferred direction, or PD) was aligned with 
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the planned reach direction remained largely unchanged, while neurons with PDs opposite the 

reach direction experienced a significant increase in activity with increased uncertainty. Neurons 

with intermediate PDs displayed somewhat smaller uncertainty-related effects. The uncertainty-

related change in this off-direction neural activity varied considerably across sessions, not only 

because of experimentally altered prior and likelihood uncertainty, but also apparently because 

of the monkeys’ own subjective uncertainty in their final action decisions. We found that the 

magnitude of these cross-session differences correlated with estimates of the monkey’s decision-

related uncertainty.   

 

RESULTS 

Task Performance During Reaching to Certain and Uncertain Targets 

Our goal in this study was to understand the effect of uncertainty on movement 

representations in the motor system. To this end, we designed a behavioral task in which 

monkeys (two Rhesus macaques) made decisions about where to reach using a planar robotic 

manipulandum, based on the learned history of target distributions and uncertain visual cues. 

During the first block of trials, the monkeys made center-out reaches with an instructed delay to 

well-specified (zero uncertainty) targets that were randomly distributed across eight locations 

(Fig. 2.1A, top). In the second block of trials, the target locations were randomly drawn from a 

circular normal (von Mises) prior distribution centered on a single direction that remained 

constant for the remainder of the session. Additionally, the monkey did not receive veridical 

feedback about the location of the target, but instead saw a noisy distribution of five (monkey M) 

or ten (monkey T) lines (Fig. 2.1A, bottom). These lines were drawn from a likelihood  
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Figure 2.1 | Experimental setup and behavior 

Experimental setup and behavior. (A) Monkeys made planar center-out reaches with 

instructed delay to visual targets. Illustrations on right show target locations (black) and 

reach trajectories (gray) for trials in the center out and uncertainty blocks for an example 

session. In the center out block, targets were distributed uniformly across eight directions 

and were cued with no uncertainty. In the uncertainty block, targets were sampled from a 

von Mises distribution and cued with stochastically sampled lines with either low or high 

variance. (B) Scatter plots of cue centroid versus reach direction for three sessions, with 

each dot representing a single trial. Under high uncertainty, the endpoints reflected an 

increased bias toward the average target location – indicated by a reduction in slope – and 

increased variability surrounding the fit line. (C) With the exception of two datasets from 

monkey M, fits to the behavioral scatter plots reveal reduced slope (negative ∆cue 

weighting) for higher uncertainty targets. All datasets show greater residual variance with 

greater uncertainty. 
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distribution – also von Mises – centered on the correct target location and provided the monkey 

with noisy information about the target location. Each session contained at least two likelihood 

distributions of low and high variance, randomly interleaved across trials.  

Therefore, during uncertainty trials, the monkey had two pieces of information available 

to estimate the target location: (1) the noisy visual cue and (2) a learned estimate of the 

distribution of previous target locations. According to Bayes’ rule, optimal performance on the 

task would require the monkey to use the centroid of the displayed line segments (likelihood 

estimate) and the average target location (prior estimate), weighted according to the inverse of 

their variances. In general, this means that using an appropriately weighted sum of both the 

likelihood and prior estimates will on average result in fewer errors than either cue alone.   

Fits to the scatter plot between the centroid of the visual cue and the reach direction 

reveal the monkey’s relative weighting of the visual cue (the likelihood) and its estimate of the 

average target location (the prior; see methods for more information). A fitted line with a slope 

of zero would indicate complete reliance on the prior, while a slope of one would indicate 

reliance only on the likelihood. Panel B of Figure 2.1 shows several representative sessions. In 

each, the monkey relied more on the visual cue when its uncertainty was low (blue symbols) than 

when it was high (red symbols). We summarize the difference in visual cue weighting between 

the uncertainty conditions (∆cue weighting) for each session by subtracting the slopes of the 

fitted lines. The negative values of ∆cue weighting in Figure 2.1C reveal that both monkeys 

almost always relied less on the visual cue during high uncertainty trials. This indicates that the 

monkeys combined information from both the displayed lines and the average target location in a 

Bayesian-like manner to estimate the location of the required reach target.  
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Figure 2.2 | Neural recordings and directional tuning 

(A) Each monkey was implanted with two 96-channel microelectrode arrays, 

targeting the primary motor cortex (M1) and dorsal premotor cortex (PMd). (B) An 

example raster of a neuron in PMd displaying directional tuning, summarized below 

in three temporal periods: visual (V), delay (D) and movement (M). (C) Percentage 

of neurons from each session with significant tuning in each of the temporal periods. 
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Although there was a general tendency towards lesser weighting of the visual cue when it 

was more uncertain, there was a great deal of variability in that trend across sessions. In some 

instances, fits to the two uncertainty conditions revealed large differences in visual cue weighting 

(Fig. 2.1B red and blue fitted slopes, session 14) while in others the relative weight was nearly 

identical (Fig. 2.1B, session 18). Similarly, the behavioral uncertainty (as measured using the 

variance of the fit residuals) was sometimes very different between two conditions (Fig. 2.1 inset 

distributions, session 5) and sometimes nearly identical (Fig. 2.1, session 14). We characterized 

the total difference in uncertainty between the two conditions (∆behavioral uncertainty) for each 

session by subtracting the circular standard deviation of the fit residuals. These two within-

session metrics (∆cue weighting and ∆behavioral uncertainty) were very weakly correlated for 

monkey M and negatively correlated for monkey T (Fig. 2.1C). This variability provided a 

diverse set of uncertainty-related behavioral effects on which to examine neural activity.   

 

Neural Activity 

During the center out block of trials (zero uncertainty, eight discrete targets) many 

neurons in PMd displayed a robust burst of activity in the visual time period, followed by a more 

moderate, tonic response for the remainder of the delay period (e.g., Fig. 2.2B). We more 

formally described the population trends by calculating the percentage of neurons tuned in the 

visual (V), delay (D), and movement (M) time periods. The results for each session are shown in 

Figure 2.2C. We performed the same analysis for M1 neurons (Fig. 2.2C, right).  In general, M1 

displayed a bias toward delay and movement period tuning while PMd showed about equal 

percentages of tuned neurons for each time period.  
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Figure 2.3 | Single unit activity in PMd 

(A) Raster plot for an example neuron. Activity is aligned to either the visual 

cue appearance (left) or movement onset (M; right). Colors indicate zero (black), 

low (blue), and high (red) uncertainty conditions. (B) Directional tuning for 

other example neurons. Due to the nature of the task, reaches made during 

uncertain conditions with a non-uniform prior did not span all directions. Many 

neurons showed an increase in delay (D) or movement (M) activity as a function 

of uncertainty. Bounds on the tuning plots represent bootstrapped 95% 

confidence of the mean estimate. 
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Figure 2.4 | Single unit activity in M1 

(A) Raster plot for an example neuron with same conventions as Figure 2.3. (B) 

Directional tuning for other example neurons. In general, M1 activity was well-

modulated by reach direction, but appeared to be largely unaffected by the 

uncertainty condition. Bounds on the tuning plots represent bootstrapped 95% 

confidence of the mean estimate. 
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During the remaining experimental blocks consisting of uncertain targets, we found many 

neurons in PMd to be more active during high uncertainty trials than low uncertainty trials (red 

vs. blue in Figure 2.3). This effect was most prominent during the delay (D) period, with some 

carryover into movement (M). Some neurons that had been essentially inactive during the block 

of zero-uncertainty reaches became strongly activated during the delay period of high-

uncertainty trials (e.g.,c77u1 and c29u1, Fig. 2.3). We also noted that there was a greater 

tendency for increased activity in those neurons having PDs that were not aligned to the direction 

of movement (e.g.,c31u1 and c87u1, Fig. 2.3). Importantly, we found that greater uncertainty 

only ever led to increased activity. 

M1 neurons did not display nearly the same degree of modulation with uncertainty as 

PMd neurons (Fig. 2.4). We observed neurons with strong directional tuning in all time periods, 

but this tuning was consistent across all uncertainty conditions. In general, analysis of single unit 

behavior suggested that M1 activity reflected only the reach direction and was largely unaffected 

by uncertainty. 

 

Quantifying effects of uncertainty on firing rates 

The anecdotal observations in Figures 3 and 4 strongly suggest that higher uncertainty 

leads to increased neural discharge in PMd but not in M1. Additionally, the magnitude of the 

uncertainty-related effect in individual PMd neurons was dependent on the neurons’ tuning 

characteristics. A neuron experienced the greatest uncertainty-related activity increase when the 

reach was directed away from its preferred direction. To further examine this relationship  
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Figure 2.5 | Tuning-related changes in activity with uncertainty 

Tuning-related changes in activity with uncertainty. (A) Spatiotemporal activity maps for PMd and M1. Neurons 

were binned on each trial by the distance between their preferred directions and the reach direction. Color indicates 

average change in firing rate from baseline in spikes per second. Left and right plots in each panel are alighend to 

taget onset (T) and reach onset (R) respectively. (B) Average change from baseline for SD and OD neurons in the 

initial center-out block (zero uncertainty; top) and subsequent blocks with low (bue) or high (red) uncertainty targets 

(bottom). High uncertainty trials resulted in reduced early activity for both SD and OD neurons, but an increase in 

OD activity for the remainder of the delay and movement phases. ORTH neurons were omitted for visibility. Error 

bars represent bootstrapped 95% confidence bounds on the mean estimate. For all plots, PDs were calculated 

separately for visual, delay, and movement epochs. 



56 
 

 

between tuning and uncertainty-related activity changes, we created spatiotemporal activity maps 

for both cortical areas in the manner of Cisek and Kalaska (2005) (Fig. 2.5). We binned each 

neuron’s responses based on the angle between its PD and the reach direction. We then averaged 

across trials, resulting in population activity profiles centered on the reach direction.  

In the zero-uncertainty condition, many PMd neurons displayed a burst of activity 

directly following cue appearance. This quickly resolved into a clear, maintained representation 

of the upcoming reach direction throughout the remainder of the delay and movement periods 

(Fig. 2.5A, top left). In contrast, M1 activity built more slowly as the trial evolved, ultimately 

producing a strong spatial representation of the executed reach direction (Fig. 2.5A, top right). 

However, while the recruitment of M1 neurons during low and high uncertainty conditions was 

similar (Fig. 2.5A, right), the representation in PMd differed significantly across these 

conditions. During high uncertainty trials, the representation of the reach direction was present 

but significantly less distinct, most notably due to increased activity in neurons with PDs far 

away from the reach direction (Fig. 2.5A, bottom left). To summarize this tuning-related effect, 

we partitioned the neurons into three groups for each trial: same direction (SD; preferred 

direction within 45 degrees of the reach direction), opposite direction (OD; preferred direction 

within 45 degrees of the anti-reach direction), and orthogonal direction (ORTH; preferred 

direction within 45 degrees orthogonalthe reach direction). After averaging the activity of these 

populations, it became clear that while both SD and OD neurons in PMd were less active 

immediately after high-uncertainty target appearance, the OD neurons increased their activity in 

the subsequent D and M periods. Thus the main effect of higher target uncertainty was an  
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Figure 2.6 | Relationship between PMd activity and behavioral uncertainty 

(A) Thin lines indicate the average difference in firing rate between high and low uncertainty trials for individal 

sessions.  Heavy lines mark the mean across sessions. While SD neurons displayed an average change near zero, 

activity for ORTH and OD neurons was consistently higher for high uncertainty trials (B) Differences in firing rate 

between high and low uncertainty conditions as a function of the difference in behavioral uncertainty for a single 

time window 500-700 ms after target appearance.  The correlation was weak for same direction neurons, but 

strongly positive for orthogonal and opposite direction neurons. Thus, the greater the difference in behavioral 

uncertainty, the larger the difference in activity for ORTH and OD neurons. Marker size indicates the number of 

contributing neurons for each session (C) The slopes from B calculated during the visual period (50-250ms after 

target appearance (left) and for 100ms time windows throughout the delay (middle) and movement (right) periods. 

The larger effect of behavioral uncertainty on OD and ORTH activity compared to SD activity persisted throughout 

planning and execution. (D) R2 values for the linear fits in C. Filled symbols in C and D represent significant 

correlations, p < 0.05. All error bars represent bootstrapped 95% confidence bounds on the mean estimates. 
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increase in the PMd activity in neurons with preferred directions further away from the reach 

direction. 

To summarize this uncertainty effect over sessions, we calculated the difference in 

average firing rates between low and high uncertainty conditions for SD, ORTH, and OD 

neurons. In most sessions, ORTH and OD activity during the delay and movement periods was 

significantly greater in the high uncertainty condition, while SD activity showed little change 

(Fig. 2.6A – monkey M; Fig. 2.7A – monkey T). However, the increase in OD activity varied 

considerably across sessions. We reasoned that the sessions with the greatest OD activity 

differences might correspond to the sessions with the greatest differences in the monkeys’ 

uncertainty. To test this, we calculated the difference in behavioral uncertainty (∆behavioral 

uncertainty) between uncertainty conditions for each session (see Methods: behavioral task). By 

plotting the activity differences as a function of ∆behavioral uncertainty, we found strong 

positive correlations for OD activity, but none for SD (Fig. 2.6B – monkey M; Fig. 2.7B – 

monkey T). For monkey M, the slope of the relation increased from SD to ORTH to OD neurons 

(Fig. 2.6B), consistent with the single-session example shown in Figure 2.5. We found very 

similar effects of uncertainty among OD neurons for monkey T (Fig. 2.7B). These findings 

suggest that as the monkeys became less certain about their decision of where to reach, the 

representations of less likely reach directions increased.    

We also found that the tuning-related effect of uncertainty persisted throughout the 

entirety of movement planning and even after the initiation of the reach. We applied the analysis 

in Figure 2.6B to different time periods throughout the trial and plotted the slopes (Fig. 2.6C) 

and R2 (Fig. 2.6D) relating ∆behavioral uncertainty to changes in SD, ORTH, and OD activity. 

For both monkeys, the difference in OD activity first displayed a significant correlation with  
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Figure 2.7 | Summary of uncertainty related activity in PMd for Monkey T 

All conventions as in Fig. 2.6. Although we had only five sessions for monkey T, by splitting larger sessions into 

multiple blocks we obained 11 total data points. Specifics are given in Table 2.2. 
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Figure 2.8 | Summary of uncertainty-related activity in M1 for both monkeys 

All conventions as in Figs. 2.6, 2.7. Specifics of how we obtained datapoints for monkey T in panels B and D are 

given in Table 2.2. 
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∆behavioral uncertainty during the visual period (figured 6 and 7, panels C and D). This effect 

persisted throughout the remainder of the delay period and the initiation of movement. ORTH 

activity displayed a similar trend but with a consistently shallower slope, indicating a weaker 

effect of uncertainty. SD neurons never displayed any significant correlation with uncertainty. 

For monkey T, only OD activity was consistently correlated with uncertainty throughout the 

delay and movement periods (Fig. 2.7C, D). Thus it appears that movement representations in 

PMd remain affected by decision-related uncertainty leading up to and throughout execution of a 

movement.  

There was also substantial cross-session variability in the M1 firing rate measured 

between high and low uncertainty. For monkey M, SD activity was generally lower for high 

uncertainty trials and OD activity was slightly higher (Fig. 2.8A). However, there was rarely any 

correlation between the firing rate difference and the difference in behavioral uncertainty. For 

monkey M, SD activity was negatively correlated with uncertainty at the beginning of the delay 

period (300-400ms following target appearance; Fig. 2.8C). This effect dissipated quickly and 

was never observed for monkey T. As a result, we conclude that behavioral uncertainty had no 

significant effect on M1 activity during movement planning or execution.   

Although the correlations between behavioral uncertainty and OD activity in PMd were 

significant, we considered the possibility that the neural effects were actually driven directly by 

the monkeys’ relative weighting of the visual cue. To disassociate these two possibilities, we 

examined the independent correlations of OD activity with each of the two metrics in selectively 

subsampled groups of sessions. When we chose sessions that caused ∆behavioral uncertainty and 

∆cue weighting to be highly correlated (further exaggerating their normal relation), both metrics 

explained the change in OD activity (Fig. 2.9A). However, for subsampled groups of sessions  
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Figure 2.9 | Differences in PMd activity correlate with differences in behavioral uncertainty  

(A) Eighteen sessions (filled symbols) selected for monkey M in order to increase the correlation 

between ∆behavioral uncertainty and ∆cue weighting (top). Across these select sessions both metrics 

could explain the observed differences in OD activity (bottom). (B) Alternate subsampling that 

minimized the correlation between the two behavioral metrics (top). This resampling did not change 

the correlation between changes in OD activity and ∆behavioral uncertainty (lower left). However, it 

eliminated the correlation between ∆cue weighting and OD activity (lower right). (C) Correlations of 

OD differences with ∆behavioral uncertainty (filled) and ∆cue weighting (open) for 1000 unique 18-

session subsamples. Each is plotted against the correlation between ∆behavioral uncertainty and ∆cue 

weighting. The correlation with ∆behavioral uncertainty was consistently stronger than with ∆cue 

weighting, while the correlation with ∆cue weighting was only strong when ∆cue weighting and 

∆behavioral uncertainty were well correlated with each other. (D) Same as in C, but for monkey T. 

Each subsample contains six trial blocks. Unlike monkey M, ∆cue weighting and ∆behavioral 

uncertainty were negatively correlated across sessions. Regardless, OD activity in PMd was still 

positively correlated with ∆behavioral uncertainty. 
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with poor correlation between the two metrics, only ∆behavioral uncertainty remained well 

correlated with OD activity (Fig. 2.9B).  In fact, differences in OD activity correlated better with 

∆behavioral uncertainty than with ∆cue weighting for almost any randomly subsampled group of 

sessions for either monkey (Fig. 2.9C, D).  This suggests that the firing rate changes in PMd 

actually reflect differences in the monkeys’ overall decision-related uncertainty, not merely the 

uncertainty associated with the visual cue. 

Another way of examining the evolution of target-related information in M1 and PMd is 

to use it to predict the monkey’s choice of reach direction. For a representative session, Figure 

2.10A (left) shows that, although it was possible to predict the monkey’s reach direction from 

PMd activity, the predictions were consistently less accurate for high uncertainty trials than for 

low uncertainty trials. Accuracy rather rapidly reached these levels within about 200ms of target 

appearance, but then increased more slowly throughout the remainder of the trial. On the other 

hand, the ability to decode reach direction from M1 improved steadily through the delay period 

(Fig. 2.10A, right). This was true for both high and low uncertainty trials, with only slightly 

higher delay-period decoding accuracy for low uncertainty trials. At the time of movement 

initiation, the M1 decoder was equally accurate for both conditions. 

Across all sessions, we observed results similar to the single session example. The PMd 

decoder nearly always performed better during low uncertainty trials than high uncertainty trials 

(Fig. 2.10B), especially during the visual and delay periods. PMd decoding generally did 

improve at the time of movement, however the difference in decoder performance between low 

and high uncertainty conditions remained significant. T-Tests on the performance difference 

between low and high uncertainty revealed significantly better low-uncertainty performance in  
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Figure 2.10 | Decoding reach direction from neural activity on single trials 

Based on PD computed during center-out (zero-uncertainty) reaches. (A) The performance of PMd (left) 

and M1 (right) decoders as a function of time for one example session. Performance is defined as one 

minus the circular variance of the decoder error (B) PMd decoder performance in low v. high uncertainty 

conditions for four 200ms time windows spanning target appearance to movement in all sessions for both 

monkeys. Each point represents a single session from monkey M (closed) or monkey T (open) (C) Same 

as in B, but for M1. 
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all behavioral periods for monkey M (p < 0.05) and all except the movement time period for 

monkey T (discounting sessions with overall poor decoding, see Methods).  In M1, decoding 

performance was also slightly better for low uncertainty trials during the visual and delay periods 

(t-Test, p < 0.05), although only for monkey M (Fig. 2.10C). This effect of uncertainty was much 

smaller than that observed in PMd. At the time of movement there was no bias in performance 

between low and high uncertainty trials. In general, we found decoding from M1 to be more 

accurate than from PMd, and less affected by uncertainty – especially at the time of movement.  

 

Controls 

We considered several alternate explanations for the effects of uncertainty, including 

differences in the visual stimuli, inhomogeneous distribution of the target prior over sessions, 

and variations in the kinematics of reaching.  

To test for possible visual effects, we performed three control sessions with a single 

monkey (monkey M) in which half of the high-uncertainty trials contained an additional, 

different colored line segment at the correct target location (Fig. 2.11A). These sham trials had 

almost exactly the same visual properties as high uncertainty trials, but did not actually induce 

any uncertainty. The monkey learned to rely entirely on the new cue line (Fig. 2.11B).  

Comparing the difference in activity between actual high uncertainty and sham uncertainty trials, 

we found that OD (and to some extent ORTH) activity was greater under the actual uncertainty 

conditions (Fig. 2.11C). This suggests that our main finding of uncertainty-related changes in 

ORTH and OD activity cannot be explained simply as the result of differences in the visual 

information. 
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Figure 2.11 | Controls for visual properties and average reach directions 

(A) Design of a control experiment to test whether the uncertainty-related effect could be explained solely by 

differences in the visual stimuli between conditions. Half of the trials contained a high-uncertainty cue (top left) 

and the other half contained sham high-uncertainty trials that included an additional line of a different color to 

indicate the veridical target location (top right). (B) Reaching errors were much smaller for the sham trials, 

indicating that the monkey learned to rely on the veridical cue. (C) Thin lines indicate the average difference in 

firing rate between actual and sham uncertainty trials for individal sessions.  Heavy lines mark the mean across 

sessions. OD activity was higher during high uncertainty trials, despite the nearly equivalent visual properties (D) 

Control to test whether the neural effects could be explained by differences in the average target location across 

sessions. We selected two groups of sessions that each contained a consistent average reach direction. (E) 

Correlations between changes in OD and ORTH activity and ∆behavioral uncertainty for the two groups of sessions, 

500-700 ms after target appearance. OD and ORTH activity within each group of sessions still correlated with 

∆behavioral uncertainty. 
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We also considered the possibility that the effects on neural activity resulted from changes 

in the average target location (and subsequent reach direction) across sessions. We tested this 

possible explanation by analyzing only groups of sessions that shared a single average target 

direction. Figure 2.11D shows the distribution of reach directions for two groups of sessions for 

Monkey M in which the average target location was at either 0 or 90 degrees. Analyzing these 

two sets of sessions separately revealed a correlation between changes in OD/ORTH activity and 

∆behavioral uncertainty (Fig. 2.11E) that was very similar to the full data set (Figs 7 and 8). 

We anticipated that both the reaction time and peak speed might be affected by the target 

uncertainty, and might indirectly give rise to the firing rate changes we observed in PMd. In fact, 

these differences were rather small, but to test this possibility, we resampled the trials in a given 

session to reverse the sign of the uncertainty effect on either reaction time or peak speed (Figure 

S2.1). These manipulations had no effect on the correlation between PMd activity and 

∆behavioral uncertainty, indicating that the difference was not simply driven by kinematics. 

 

DISCUSSION 

Summary 

In this study, we set out to examine the neural effects within the motor system of 

uncertainty during a target estimation task. We showed that when visual cues of target location 

were made less informative, monkeys biased their reach direction toward the average target 

location that they had learned over the course of previous trials (their prior estimate) in a 

Bayesian-like manner. Activity in dorsal premotor cortex (PMd) changed systematically as a 

function of the resulting uncertainty in the monkeys’ final estimate of target location, with higher 
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uncertainty leading to higher activity in PMd neurons. This effect was not present in primary 

motor cortex (M1). The extent to which uncertainty affected the activity of PMd neurons 

depended on their directional tuning properties. Neurons with preferred directions aligned to the 

ultimate reach direction showed no correlation with uncertainty, while those with orthogonal or 

opposite direction tuning displayed significant increases in activity with increased uncertainty. 

This can be interpreted as an increase in uncertainty causing in increase in the representation of 

less likely movements directions.  

 

Representation of the process of target selection versus estimation 

The uncertainty-related effect in PMd was present not only during movement planning, 

but also during execution – a result not readily predicted from previous studies. Several studies 

have recorded from PMd neurons as monkeys chose between multiple potential reach options (P. 

Cisek & Kalaska, 2005; Coallier et al., 2015; Klaes et al., 2011; Pastor-Bernier & Cisek, 2011; 

Thura & Cisek, 2014). Some even included ambiguous cues (Coallier et al., 2015; Thura & 

Cisek, 2014), which we might expect to induce uncertainty in the monkeys’ decisions. The 

resulting representations of potential actions in PMd reflected in some sense the uncertainty in 

the choice prior to movement execution. However, in no studies before ours did this ambiguity in 

reach representation within PMd persist throughout movement execution. One study that used 

gradually accumulating evidence to trigger movement choice (Thura & Cisek, 2014) found that 

greater ambiguity in the evidence resulted in increased strength of the ultimately non-selected 

target representation prior to movement. About 300ms prior to movement, the activity 

corresponding to the selected target reached a peak that was consistent regardless of the level of 
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evidence.  By the time of movement initiation, there was no evidence-related difference in 

activity for neurons tuned either to the selected or non-selected target. This is at odds with our 

finding of a persistent effect of uncertainty on the representation in PMd throughout the 

execution of movement.  

That we did not observe a resolution in the reach representation prior to movement 

execution may reflect a difference in the decision-making processes associated with target 

estimation and target selection. Inherent to target selection is the knowledge that the correct 

action will only be one of several mutually exclusive options. That is information that can be 

integrated into the decision-making processes within sensorimotor areas like PMd. Since 

reaching anywhere that is not an explicit target will lead to failure, it is reasonable for the system 

to enforce a policy that the representation at the time of movement can only reflect one of the 

explicit target options. However, in target estimation tasks there are no such constraints on the 

executed action.  

 

Differences in the roles of PMd and M1 

This difference between target selection and estimation has important implications for the 

assumed roles of M1 and PMd within the sensorimotor system. Results from target selection 

tasks suggest that movement decisions result from the output of a biased neural competition 

between potential actions within PMd or related brain areas (P. Cisek, 2007; Gallivan et al., 

2016; Pastor-Bernier & Cisek, 2011). This interpretation – that PMd ultimately decides on an 

action which is then transmitted to M1 – is especially convincing given the findings that 

decision-related variables (e.g.,difficulty, uncertainty, etc.) have no effect on PMd activity at the 
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time of movement initiation (Thura & Cisek, 2014). However, that an uncertain representation 

persisted throughout execution in our task may indicate that PMd is not necessarily the final step 

in the motor decision-making process. Instead, PMd may just reflect an updated estimate of the 

distribution of potentially useful actions, which is then translated into action by a downstream 

area such as M1. Perhaps the difference between a representation of remaining potential 

movements and a single selected action is less evident in target selection tasks. 

Our results suggest that PMd contains a representation of something similar to the 

probability distribution of potentially useful reach directions. Furthermore, this representation 

appears relatively static, and does not resolve into a single unambiguous reach representation at 

any point in the delay or movement phases. M1, on the other hand, seems relatively unaffected 

by uncertainty and simply reflects the direction of the executed reach. These findings imply that 

PMd is not solely responsible for “deciding” which movement to execute, but instead contains 

only a noisy representation of potential reach directions that must be interpreted in some way by 

downstream areas like M1. Thus, we suggest that the processing that occurs in the connections 

between PMd and M1 “denoises” the PMd representation to provide a single, unambiguous 

movement decision.  

The reach decoding results (Fig. 2.10) support the interpretation that PMd activity does 

not resolve into an unambiguous representation of reach direction prior to movement. At the time 

of movement initiation, decoding performance significantly improved from that of the delay-

period levels, especially for high uncertainty trials. However, we still observed a bias towards 

better performance in decoding low uncertainty trials. M1, on the other hand, showed a steady 

increase in reach-related information leading up to movement initiation, that was slightly skewed 

towards better accuracy under low uncertainty. At the time of movement initiation, M1 was able 
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to decode reach direction with high accuracy, regardless of uncertainty condition.  From these 

observations, we speculate that the decision about where to reach is not explicitly determined in 

PMd, but rather in the connections between PMd and M1. The noisy representation of potential 

actions in PMd appears to be pruned by M1, ultimately producing a single unambiguous motor 

command.  

A downstream selection process could potentially occur through a maximum a posteriori 

(MAP) readout of the PMd representation. This kind of mechanism is not only consistent with 

the results of the current and previous studies, but could potentially explain the neural basis of 

sensorimotor learning. For example, we would expect that in very high uncertainty conditions 

(e.g., a novel behavioral task), PMd might contain nearly equal representations of all possible 

movements. As a consequence, small fluctuations due to noise within PMd would cause large 

variability in a downstream readout, driving exploration of the environment. As learning 

progressed and uncertainty decreased, the motor output would begin to converge on the optimal 

movement decision.  

 

PMd reflects uncertainty in the decision, not the visual cue 

Our task varied the monkeys’ uncertainty in target estimation by manipulating both the 

history of target distribution and the noise in visual cues. We found that PMd activity changed 

not as a function of the weighting of those two pieces of information, but rather in proportion to 

the total uncertainty in the monkeys’ final decision. This suggests that PMd contains uncertainty-

related information pertaining to the final action decision that incorporates a range of 

information beyond that of the immediate target uncertainty. If uncertainty in visual information 
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were the sole driving force of changes in PMd planning- and execution-related activity, we 

would have observed very little difference in activity across sessions, since the visual cue 

properties were largely equivalent for all sessions. Instead, we found that activity modulated with 

the total behavioral uncertainty, which is a combination of visual uncertainty and prior 

expectation. This suggests that PMd likely reflects the combined uncertainty of all information 

sources relevant to a movement decision.  

 

Comparison with existing theoretical models of uncertainty 

There exist a number of theoretical models that address the potential neural 

representation of uncertainty (Deneve, 2008a; Hinton & Sejnowski, 1983; Hoyer & Hyvärinen, 

2003; Ma et al., 2006; Zemel, Dayan, & Pouget, 1998). The predictions from these models 

encompass a wide range of neural behaviors, including temporal dynamics (Deneve, 2008a) and 

variability in spike timing (Deneve, 2008a; Hoyer & Hyvärinen, 2003). Unfortunately, our 

experimental design prevents us from performing fair and comprehensive tests of these model 

predictions. For example, our use of a static visual cue and instructed delay limits the potential 

interpretations regarding dynamic uncertainty codes. For these reasons, we hesitate to make any 

strong statements about the validity of any given models.  

Despite the limitations of our experimental design, our results do bear some resemblance 

to admittedly simplistic interpretations of a few theoretical models. A probabilistic population 

code (PPC) model predicts that firing rates across a population should reflect the probability 

distribution – high uncertainty should therefore result in lower peak activity and higher non-peak 

activity (Ma et al., 2006). We did indeed observe an increase in non-peak activity with increased 
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uncertainty, and the spatiotemporal activity plots in Figure 2.5 do convincingly resemble 

probability distributions of reach direction. However, we did not see any consistent decrease in 

the peak activity with increasing uncertainty, which prevents us from interpreting the population 

activity as representing a true probability distribution. These findings also argue against the 

concept of divisive normalization, in which the total activity remains equivalent when 

representing multiple potential targets (P. Cisek & Kalaska, 2005; Pastor-Bernier & Cisek, 

2011), at least in the context of target estimation. 

 

Conclusions 

Our results provide new insight into the behavior of PMd during movement planning. It is 

already well established that PMd can simultaneously represent all potential actions when faced 

with multiple, mutually exclusive visual targets (Bastian et al., 2003; P. Cisek & Kalaska, 2005). 

Our results provide the additional observation that PMd also represents and retains a distribution 

of potential motor plans that are not explicitly presented, but arise as possibilities during 

uncertain target estimation. The question of why this representation is maintained for the 

problem of target estimation but not target selection is an interesting one. One possibility is that 

it is simply an unavoidable result of the maintained, noisy inputs to PMd. That is, in the absence 

of explicit reach targets, the fidelity of the representation in PMd may be limited by the quality 

of available information. On the other hand, maintaining heightened representations of 

alternative movements in high uncertainty conditions be useful to the sensorimotor system for 

more rapid error correction or to drive subsequent motor learning. Experiments designed to test 
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these alternatives could help to further our understanding of the role of PMd in movement 

planning.  

 

METHODS 

All surgical and experimental procedures were fully consistent with the guide for the care 

and use of laboratory animals and approved by the institutional animal care and use committee of 

Northwestern University under protocol #IS00000367. 

 

Behavioral task  

The monkeys were seated in front of a vertical monitor and controlled an on-screen cursor 

using a planar robotic manipulandum. The behavioral task involved two or more blocks of trials. 

In the first block, monkeys performed a basic center-out reaching task with an instructed delay 

period. The monkey held the cursor within a central target for a random length center-hold 

period (700 – 1000 ms), after which a target (15 degrees wide) appeared in one of eight well-

defined locations, distributed equally around an outer ring (Fig. 2.1A, top). Following an 

additional random delay period (700 – 1000 ms) the center target disappeared and the monkey 

received an auditory signal cueing him to reach to the outer target. Upon reaching the outer ring, 

the cursor froze. If the cursor was within the target, the monkey heard a success tone and 

received a small amount of juice. Otherwise, the monkey heard a failure tone and received no 

juice reward.   
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In the remaining (uncertainty) trial blocks, the target locations θ were not distributed 

uniformly among eight locations as before, but were instead selected randomly from a von Mises 

(circular normal) prior 

 𝑓(𝜃) =  
𝑒𝜅 cos (𝜃− 𝜇)

2𝜋 𝐼0(𝜅)
 Eq. 2.1 

The mean of this prior distribution (μ) was always fixed for the duration of a session, but could 

vary in width (κ) across trial blocks. Additionally, during uncertainty trials the monkeys did not 

receive veridical visual cues about the target until the end of the trial. Instead, during planning 

and execution they were only shown several small lines (five for monkey M, ten for monkey T) 

sampled from a likelihood distribution (also von Mises) centered on the target location (Fig. 

2.1A, bottom). These lines gave the monkey information about the target location, but with 

different levels of uncertainty depending on the variance of the distribution. Each session 

contained two different likelihood distributions, which were randomly interspersed across trials. 

The exact parameters used for each session are provided in Table 2.1. Upon reaching to the outer 

ring, the cursor froze and the ambiguous cue lines were replaced with the actual target (15 

degrees, all conditions). The monkey subsequently received (or did not receive) reward as in the 

center out trial block.  

 Although we directly specified the variance (and therefore uncertainty) in the target 

distribution and the visual cue, the monkeys’ subjective estimates of those parameters could 

deviate considerably from their true values. We therefore used the monkeys’ actual responses 

throughout the session to estimate two values: the monkeys’ weighting of the current visual cue, 

and the total uncertainty remaining in the monkeys’ final estimate of the required reach direction. 

To do this, we assumed a Bayesian-like model of cue integration in which the final estimate was 
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the product of likelihood (visual cue) and prior (distribution of target locations) probability 

distributions. We modeled both of these as von Mises distributions. The product of two von 

Mises distributions can be approximated by a third, with mean 

 𝜇3 =  𝜇1 + 𝑡𝑎𝑛−1 (
sin (𝜇2− 𝜇1)

𝑘1
𝑘2

 +cos (𝜇2− 𝜇1)
) Eq. 2.2 

 To obtain an estimate of the relative weighting of the visual cue for each uncertainty condition, 

we substituted the true target centroid location for 𝜇2, the true average target location for 𝜇1, and 

then fit (
𝑘1

𝑘2
) to minimize the sum of the squared residuals between the model outputs and the 

monkeys’ actual reach directions. The resulting equation for 𝜇3 describes the general function 

relating the centroid of the visual cue and the reach direction. (red and blue lines; Fig. 2.1B). 

Except for cases in which |𝜇2 −  𝜇1| is very large, this can be suitably approximated by the linear 

function 

 𝜇3 ≅  𝜇1 +  
𝑘2

𝑘1+𝑘2
 (𝜇2 −  𝜇1)  Eq. 2.3 

In all further analysis, we use the slope term (
𝑘2

𝑘1+𝑘2
) as a proxy for our estimate of the monkeys’ 

relative weighting of the visual cue with respect to the summed prior and likelihood uncertainty. 

Slopes close to one represent high reliance on the visual cue, while slopes close to zero represent 

high reliance on the average prior target location.   

The slope metric described above reveals only the monkeys’ relative uncertainties in the 

likelihood and prior. It does not contain any information about the total magnitude of uncertainty 

present in the monkeys’ decisions. We estimated this total uncertainty from the monkeys’ 

behavior, by calculating the circular standard deviation of the residuals from each behavioral fit 

like those shown in Figure 2.1B. It is important to note that the behavioral uncertainty can be 
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affected by uncertainty in the estimate of average target location, uncertainty in the visual cue, 

and potentially other internal variables affecting the monkeys’ behavior that we did not control 

(e.g.,motivation, attention). 

Neural Recordings and Analysis 

Throughout the experiments we recorded from neurons in M1 and PMd (Fig. 2.2A) using 

chronically implanted 96-channel microelectrode arrays (Blackrock Microsystems). Monkeys 

received appropriate pre- and post-operative antibiotics and analgesics. We identified single 

neurons from each session using offline sorter by isolating clusters within a principle component 

space projected from the waveform shapes of putative neurons (Plexon Inc., Dallas TX). There 

was likely significant overlap between sessions of the populations of recorded neurons, but we 

made no effort to track the identity of neurons across sessions. On each session, we used the 

activity from the center-out block of trials (zero uncertainty, eight target locations) to 

characterize the directional tuning characteristics of all neurons. Since many neurons (especially 

those in PMd) can have complex temporal profiles, we calculated preferred directions (PDs) in 

three distinct time periods: visual (50-250ms after target appearance), delay (300-700ms post-

target), and movement (0-200ms after initiation of the reach) using a generalized linear model 

with Poisson noise: 

 

 𝜆 =  exp [𝛼 +  𝛽 cos(𝜃 − 𝜃∗)], Eq. 2.4 

 

where 𝜆 is a vector of firing rates across trials, 𝜃 is a vector of reach directions, 𝜃∗ is the 

preferred direction, and 𝛼, 𝛽 are scaling parameters. For each neuron, we also obtained 
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confidence bounds on the fit parameters through bootstrapping. A neuron was only considered to 

be significantly tuned if 95% of the bootstrapped estimates of 𝜃∗ were within forty-five degrees 

of the mean estimate. Due to the lower neuron count for monkey T, we relaxed this constraint to 

accept neurons with bootstrapped PDs within ninety degrees of the mean. For all analyses, we 

used only the preferred directions calculated within the appropriate time period (for example, 

delay-period tuning for all delay-period analyses). When analyzing a given time period, we 

excluded neurons without significant tuning in that period. Full details on the numbers of tuned 

neurons for all sessions is provided in Table 1.1.  

 

Single Trial Decoding Analysis 

We used a simple decoding approach based on each neuron’s PD, computed from data 

collected during the center-out (zero-uncertainty) task. We first divided neurons according to 

their PDs, creating sixteen bins of 22.5 degrees each. We then averaged the activity of all 

neurons within each bin and fit a cosine to the resulting activity profile. The peak of this cosine 

defined the decoded reach direction. We characterized decoder performance for each uncertainty 

condition as one minus the circular variance of decoder error. Circular variance is bounded by 0 

and 1. Therefore, a performance of 0 represents that the decoder did no better than random 

guessing, and a performance of 1 represents perfect decoding of the reach direction. This metric 

is similar to VAF, except it is not normalized by the total variance of the reach distribution. This 

is important in our dataset which contained very non-uniform distributions of reach directions.  It 

provides a fair comparison of decoder performance regardless of differences in distributions 

between sessions or uncertainty conditions.  
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We assessed the effect of uncertainty condition on decoding performance by performing t-

tests on the distributions of differences between low and high conditions for each monkey and 

time period. For monkey T, low neuron counts made decoding on a trial-by-trial basis much less 

accurate. Therefore, when assessing biases, we only included sessions in which the decoder 

performance on low uncertainty trials was greater than 0.5.  
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FIGURE SUPPLEMENTS 

Table 2.1 | Experimental details for all sessions 

In some instances we obtained multiple sessions from the same day (sessions 3-4, 5-7, 8-10, 11-12, 13-14, 16-17, 

and 26-27). In these cases, the sessions shared the same sorted neurons and center out trials. Uncertain trial blocks 

could differ in either target distribution or visual cue properties. 
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Table 2.2 | Subsampling of sessions for monkey T 

Due to low sample size for monkey T, we subdivided larger sessions to obtain separate blocks 

of 100+ trials each. Here we show the trials contributing to each trial block and the subsequent 

numbers of low- and high-uncertainty trials. 
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Figure S 2.1 | Kinematic controls 

(A) Example distribution of peak reach speed for high and low uncertainty conditions. (B) Distribution of peak 

speeds for same session as in A, subsampled to reverse the condition-dependent difference. (C) Plot showing the 

difference in average peak speed between low and high uncertainty conditions for the full and reverse-sampled 

datasets. (D) Thin lines indicate the average difference in firing rate between high and low uncertainty conditions 

for an individal session, subsampled to reverse the trend of peak speed. Heavy lines mark the mean across sessions. 

(E) Example distribution of reaction time for high and low uncertainty conditions. (F) Distribution of reaction times 

for same session as F, subsampled to reverse the condition-dependent difference. (G) Plot showing the difference 

in average reaction time between low and high uncertainty conditions for the full and reverse-sampled datasets. (H) 

Same as in D. Average differences in peak speed and reaction time cannot explain the neural effect. 
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CHAPTER 3: SINGLE REACH PLANS IN DORSAL PREMOTOR CORTEX 

Brian M Dekleva, Konrad P Kording, Lee E Miller 

 

FOREWORD  

 This chapter contains a version of a paper recently submitted for publication. In it, I 

address the question of how PMd responds when faced with multiple potential reach targets. This 

extends the work in Chapter 2, which focused on planning related to a single—albeit noisy—

goal. As discussed in Chapter 1, prominent hypotheses of motor decision making are centered on 

the concept of simultaneous representations of multiple options. These models are supported by 

physiological studies in motor areas, but the evidence has come only through trial-averaged, 

single-neuron recordings. Here I use a large population of simultaneously recorded neurons in 

PMd to search for simultaneous reach plans on individual trials. I show that in fact, the evidence 

for simultaneous planning is suspect, and can be explained by specific behavioral artifacts. This 

surprising result has significant implications for our interpretation of decision-making in PMd, 

which will be discussed in Chapter 5.  
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ABSTRACT  

 In many situations, we are faced with multiple potential actions, but must wait for more 

information before knowing which to perform. Movement scientists have long asked whether in 

these delayed-response situations the brain plans both potential movements simultaneously, or if 

it simply chooses one and then switches later if necessary. To answer this question, we used 

simultaneously-recorded activity from populations of neurons in macaque dorsal premotor cortex 

to track moment-by-moment deliberation between two potential reach targets. We found that the 

neural activity only ever indicated a single reach plan (with some targets favored more than 

others), and that initial plans often predicted the monkeys’ behavior on both free-choice trials 

and incorrect trials. Our results suggest that cortex plans only one option at a time, and that 

decisions are strongly influenced by the initial response to the available set of movement options 

 

INTRODUCTION 

We often prepare for a movement by surveying the possible actions available and then 

waiting for more information before deciding. For example, a tennis player waiting to receive a 

serve can anticipate that he will need to perform a forehand or backhand return, but needs to first 

observe the trajectory of the ball before deciding between those two options. Likewise, we can 

plan to grasp an object without yet knowing which hand posture will be most useful. Similar 

parallels can be drawn for almost all types of movements, indicating that initial deliberation 

between potential actions is a ubiquitous aspect of motor control. 

Although the initial deliberation between multiple potential actions is a widespread 

phenomenon, the neural processes underlying it are largely unknown. The brain could respond in 
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two ways: (1) by simultaneously representing several potential options, or (2) by initially 

representing only one and then later switching if necessary. Several behavioral studies have 

attempted to disentangle these two possibilities, most notably through the go-before-you-know 

paradigm in which a subject is given multiple reach targets and is then forced to move before 

knowing which is correct. Early movement trajectories are often directed in between the two 

presented options, which some have interpreted as a spatial averaging of two simultaneous plans 

(Chapman et al., 2010; Gallivan et al., 2016; Gallivan et al., 2017; Ghez et al., 1997; Stewart et 

al., 2013; Wood et al., 2011). However, an intermediate movement is not necessarily indicative 

of multiple simultaneous plans, and might instead reflect a single plan optimized for the task 

(Haith et al., 2015; Nashed et al., 2017; A. L. Wong & Haith, 2017). Thus, the neural processes 

that underlie the deliberation between potential movements cannot be readily interpreted from 

the movements themselves.  

A few studies have directly recorded from individual neurons in motor cortex to probe 

planning-related activity in the face of multiple discrete movement options. Invariably, the 

results from these studies have supported a “simultaneous representation” hypothesis (P. Cisek & 

Kalaska, 2005; Coallier et al., 2015; Klaes et al., 2011; Pastor-Bernier & Cisek, 2011; Platt & 

Glimcher, 1997). However, these studies rely on single electrode recordings and trial-averaged 

data, with the implicit assumption that all trials reflect a single consistent process. Since delay-

period planning activity has no measurable external signature, it is unclear how well this 

assumption actually holds. To accurately examine the wholly internal neural processes at play 

during movement deliberation requires analysis on the timescale of individual trials.  

An alternative to averaging across trials is to combine the information obtained from 

many simultaneously recorded neurons. This population-based approach has increasingly been 
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adopted in motor areas, where it provides a reliable estimate of limb movement (Afshar et al., 

2011; Carmena et al., 2003; Mante, Sussillo, Shenoy, & Newsome, 2013; Michaels et al., 2015; 

Pohlmeyer et al., 2007; Serruya et al., 2002; Taylor et al., 2002; Wessberg et al., 2000). An 

important, less exploited advantage of simultaneous recordings over trial-averaging is the ability 

to probe neural processes that have no measurable behavioral outcome. Multiple studies have 

used population recordings from cortex to identify changes of mind on single trials of a multiple 

potential target reaching task (Kaufman et al., 2015; Kiani, Cueva, Reppas, & Newsome, 2014). 

This ability to interpret activity on a short timescale in the absence of behavioral correlates thus 

provides a means to investigate deliberation between movement options.  

Here we used simultaneous recordings from dorsal premotor cortex (PMd) of the 

macaque monkey to monitor the development of movement plans in the face of two potential 

movement options. Using dimensionality reduction methods on the population activity, we 

tracked the moment-by-moment planning in these areas over the course of single trials. We 

found that when presented with two options, PMd quickly developed a movement plan for one of 

them. This initial plan was strongly predictive of the monkey’s eventual behavior (including 

freely chosen movements, reaction times, and task errors). Our results show no evidence of 

simultaneous representation in premotor cortex during the deliberation between multiple 

potential options, and indicate that ultimate movement decisions are strongly influenced by 

initial responses to the possible choices. 
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RESULTS 

We trained two rhesus macaques on a center-out reaching task in which they controlled 

an on-screen cursor using a planar manipulandum (Fig 3.1a). Each session consisted of both 1-

target and 2-target trials, randomly interspersed. On 2-target trials the monkey first positioned 

the cursor in the central target, after which two targets appeared spaced 180 degrees apart (Fig 

3.1c, left). The targets remained on screen for between 750 and 1000 milliseconds (Target On), 

and then disappeared for 250-500 milliseconds (Target Blank) before reappearing for another 

250-500 milliseconds (Cue). Finally, the central target disappeared and a tone cued the monkeys 

to reach to the target (Go). 1-target trials followed the same basic structure, except that the 

monkey was only shown one outer target throughout the trial (Fig 3.1d, left). On roughly ten 

percent of 2-target trials (“free-choice” trials) we omitted the Cue epoch, and instead instructed 

the monkey to reach immediately after the Target Blank epoch (Fig 3.1d, bottom). In all 

conditions, the monkeys made approximately straight reaches to the targets (Fig 3.1c,d, right).   

The information from a single neuron is too noisy to provide reliable decoding of single-

trial intent. Hence, our goal was to take advantage of the simultaneity of our recordings made 

from chronically implanted 96-electrode arrays (Blackrock microsystems) to obtain an estimate 

of the time-evolution of the recorded population’s low-dimensional “neural state” (Afshar et al., 

2011; Ames, Ryu, & Shenoy, 2014; Elsayed et al., 2016; Kao et al., 2015; Kaufman, Churchland, 

Ryu, & Shenoy, 2014; Kaufman et al., 2015; Michaels et al., 2015). For this dimensionality 

reduction approach to be valid, the correlations between neurons must remain fixed. However, if 

multiple targets are represented simultaneously in cortex, this may not be true. Consider three 

neurons with 1-target tuning functions such that neurons one and two are highly correlated with  
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Figure 3.1 | Experimental setup 

(a) Monkeys used a planar manipulandum to control a cursor. 

(b) Array placement in dorsal premotor (PMd) and primary 

motor (M1) cortex (CS = central sulcus, AS = Arcuate sulcus, 

PCD = precentral dimple). (c) Task events during single-target 

trials and resulting cursor trajectories for a single dataset. The 

monkeys reached to one of eight possible targets following an 

instructed delay. (d) Task events during two-target trials and 

resulting cursor trajectories. The monkeys were initially 

presented with two opposing targets. On the majority of trials, 

the correct target was displayed during the Cue epoch; roughly 

10% did not contain a Cue epoch. Instead, the monkeys were 

forced to select one of the two targets with no information 

about which would lead to reward (“free-choice” trials). 
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each other, but anti-correlated with neuron three (Fig 3.2a). If the population contained only one 

movement plan at a time (the stay-or-switch hypothesis), all correlations would remain 

consistent (Fig 3.2c). If instead the population planned both targets simultaneously, then all 

neurons would display the same response to a given pair of targets, regardless of the eventual 

reach direction. This behavior would cause some neuron pairs (e.g., neurons one and three) to be 

negatively correlated on 1-target trials, but positively correlated on 2-target trials (Fig 3.2b). 

Such nonstationarity would invalidate the dimensionality reduction-based approach. 

To examine the question of whether neural correlations remained fixed, we estimated the 

covariance between all pairs of neurons during the Target Blank epoch of both 1- and 2-target 

trials (single session example shown in Figure 3.2d). Over all sessions, we found that pairwise 

covariances did not change systematically between trial types (>90% of neuron pairs maintained 

the same sign; Fig 3.2e). These results most closely matched simulated results from the 

postulated stay-or-switch encoding hypothesis, not simultaneous encoding. This suggested that a 

dimensionality reduction approach would be valid to examine single-trial neural encoding. 

We used principal components analysis (PCA) to reduce the population activity to a 

denoised, 10-dimensional “neural state”. We then used the neural state to calculate at each point 

in time the likelihood that the monkey was planning a reach to each of the eight possible targets 

(Fig 3.3a). Figure 3.3b shows the time course of the likelihoods for all eight directions 

throughout an example 1-target (rightward) trial (corresponding to the neural state trace shown in 

Figure 3.3a). As expected, the greatest likelihood, evident shortly after target appearance, was for 

a rightward reach. This representation persisted until the end of the trial. To display single-trial 

results more compactly, we will from here on present only the difference in likelihood 

(Δlikelihood) between the target direction and the anti-target direction (Figure 3.3c). This   
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Figure 3.2 | Hypothesized neural responses to multiple simultaneously 

encoded targets 

(a) Activity of three hypothetical neurons as a function of reach direction 

during single-target trials. All three are cosine tuned, but neurons 1 and 2 are 

most active for the same reach direction (about 140 degrees), while neuron 3 is 

most active for a reach in the opposite direction. (b) top: Hypothesized tuning 

of the neurons from a during two-target trials, given a simultaneous encoding 

scheme, in which all three neurons should have the same tuning form. bottom: 

Plot of the pair-wise covariances during 1-target vs. those during 2-target trials 

for 100 simulated “simultaneous encoding” neurons. (c) Same as in b, but under 

the stay-or-switch hypothesis in which only one of the two possible reach 

directions is encoded at a time. (d) Pairwise covariances for 1- and 2-target 

trials from a single session. In general, there was no systematic change in 

covariance between the two conditions. (e) Percentage of all neuron pairs with 

significantly non-zero covariances that differed in sign between single-target 

and two-target trials. For both monkeys (black – monkey C, grey – monkey 

M), the observed data closely resemble the simulated stay-or-switch response. 
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Figure 3.3 | Reach representations in PMd on single-target 

trials 

(a) Low-dimensional representation of the neural activity 

throughout a single trial (black). Blue and grey clusters reflect 

all neural states that occurred during reaches to rightward and 

leftward targets, respectively. (b) The likelihood that the neural 

state reflected a reach to each of the eight directions calculated 

throughout the course of a trial. (c) Differences in likelihood 

between the displayed target direction and the opposite 

direction for two target directions. Each trace reflects a single 

trial. 
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approach proved capable of accurately decoding the target direction from planning activity 

(Target Blank period) on 1-target trials (97% - monkey C, 98% - monkey M, cross-validated). 

The results from the covariance analysis (Fig 3.2) suggested that even on 2-target trials, 

the monkeys planned only one reach at a time. To track this evolving reach plan, we decoded the 

neural activity on 2-target trials in the same way as we did for 1-target trials. Figure 3.4a shows 

single-trial target decodes from all left/right 2-target trials in a single session (Fig 3.4a). As 

expected, reaches to the left were clearly distinguishable from those to the right in the neural 

state at the time of movement execution (after Go cue). However, activity early in the trials 

overwhelmingly resembled rightward reach plans (88%). Both monkeys had a preference for one 

target over the other for most target pairs (Fig 3.4b). However, an individual monkey’s 

preferences were not consistent across sessions, nor were they governed by a clear spatial bias. 

Monkey M, for example, preferred upward and rightward reach plans on the first session, but 

downward and leftward plans on the third session. Monkey C seemed to treat each pair 

independently, with no apparent patterns either within or across sessions.  

To validate the observed target preferences during initial planning, we compared each 

monkey’s decoded preferences to their actual reaches on free-choice trials. Free-choice did not 

contain a Cue epoch, so the monkeys were forced to pick one of the two targets without any 

information about which was correct. Over all sixteen left/right free-choice trials from the 

example session in Figure 3.4, the monkey reached to the rightward target eleven times (69%, 

Fig 3.5a). This bias mirrors the rightward preference that we observed in initial plans on cued 2-

target trials. Across all target pairs, we found a strong correspondence between the target 

preferences decoded from cued 2-target neural activity and the actual reach preferences  
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Figure 3.4 | Preferential reach representations in PMd 

during two-target trials 

(a) The difference in likelihoods (as in Figure 1c) for all 

left/right trials in a single session. Blue traces indicate those for 

which the monkey was cued to the right. Red traces indicate a 

cue to the right. In the epoch prior to cue appearance, 88% of 

activity indicated a rightward reach plan (b) Distribution of 

neural preferences across target axes from all sessions (black – 

monkey C, grey – monkey M).  (c) Neural preferences were not 

stable across sessions. Each point reflects the neural preference 

for the given axis on a particular session (example from a is 

indicated with an asterisk). 
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displayed on free-choice trials (Fig 3.5b). This correlation with behavior indicates that our 

decoding of the neural state accurately reflected the monkey’s plan, even early in the trial.  

While the monkeys tended to display a strong preference for one target in each pair 

(~75:25% on average; Fig 3.4b), the preference was almost never absolute (100:0%). Thus at 

times, the monkeys began planning to move to a target that they generally did not favor. While 

the results from Figure 3.5b show that initial plans were largely predictive of free-choice 

responses, it was unclear to what extent that correlation depended on the favorability of the 

initially planned target. Were initial plans made to favored targets more likely to be carried 

through to execution than those to non-favored targets? To answer this question, we first 

characterized the favored target for each target pair by identifying the most common reach plan 

(from activity in the Target Blank period) across trials. On each free-choice trial, we then 

decoded the initial reach plan and determined whether it matched the eventual reach direction. 

We found no difference between initial plans to favored and non-favored targets; both were 

equally predictive of the reach direction (Fig 3.5c). This suggests that while there appears to be a 

general long-term preference for some targets over others, decisions made on individual trials are 

largely determined by the initial plan.  

While in general our findings suggest the existence of only single-reach plans, the 

strengths of those plans varied widely across trials. Consider the left/right responses in Figure 

3.4a. While most early trial activity indicated rightward reach plans, we also observed trials with 

leftward (negative ∆likelihood) or weak-to-nonexistent plans (∆likelihood near zero). Since we 

define plan strength as the difference between two likelihood calculations, a weak plan could in 

theory result from two strong, simultaneous plans. However, our results from Figure 3.2 argue 

against this possibility. We predicted that the magnitude of the reach plan on individual trials  
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Figure 3.5 | Neural preferences match behavioral choice 

preferences 

(a) Δlikelihood plots for all left/right free-choice trials in the 

example session from Figure 4a. The monkey chose the 

rightward target on eleven of the sixteen trials (b) Across all 

sessions, the monkeys’ decisions on guess trials for each axis 

correlated with the calculated neural preference. Circles 

correspond to monkey C, squares to monkey M. White, grey, 

and black fills correspond to the different sessions, in order (d) 

Bar plot indicating the degree to which Target Blank period 

activity successfully predicted the monkeys’ choices on guess 

trials for each session and target axis. Black bars correspond to 

monkey C, grey to monkey M. 
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would correlate with some aspect of the kinematics of the executed movement. To test this, we 

calculated the magnitude of ∆likelihood in a 100ms window preceding the Go cue on each two-

target trial and compared it to the subsequent reaction time. Figure 3.6a shows this relationship 

for all leftward reaches on an example session. Reaction times were markedly shorter when 

∆likelihood indicated a strong leftward plan at the time of the Go cue, and longer when it 

indicated a rightward plan. This negative correlation between decoded plan strength and reaction 

time occurred for nearly all reach directions for both monkeys (Fig 3.6b). A linear mixed effects 

model confirmed the negative relationship after accounting for differences across reach 

directions and sessions (monkey C: coeff=–165, p = 0.00011; monkey M: coeff=–174, p≈0). We 

found a similar negative correlation between ∆likelihood and reaction time on free-choice trials 

(Fig 3.6c,d; monkey C: coeff=–238, p = 0.00013; monkey M: coeff=–126, p=0.0046). These 

results indicate that switching a reach plan or developing a new plan delayed the initiation of 

movement.  

Although both monkeys understood the two-target task, at times they chose the incorrect 

target (monkey C: 16%, monkey M: 27%). Using the same decoding approach as before, we 

examined the progression of reach plans during these error trials to understand the source of 

incorrect movement choices. Using the reach plans decoded early (Target Blank) and late (Cue) 

in the trial, we characterized three types of errors that encompassed over 97% of all errors. 

During type 1 error trials, the monkey maintained a consistent reach plan throughout, and did not 

deviate from it even after receiving a cue to the opposite target (Fig 3.7a). During type 2 errors, 

the monkey switched to the correct plan after cue presentation, but then reverted to the initial, 

incorrect plan upon receiving the Go cue (Fig 3.7b). Finally, type 3 errors represent last-second 

switches to the incorrect target, despite having planned the correct reach throughout the trial (Fig  
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Figure 3.6 | Effect of pre-Go representations on reaction 

time during two-target trials 

 (a) Reaction time as a function of the strength of the reach 

representation in PMd calculated 100ms prior to the Go cue for 

all leftward reaches on two-target trials during a single session. 

Reaction times decreased as the calculated strength of the 

representation increased. (b) Histogram of the slopes (as 

calculated in a) for all target axes from all sessions. (monkey C 

– black, monkey M – grey). (c) As in a for all reaches to the 

upper left target during free-choice trials. Reaction time 

decreased with the strength of the decoded representation. (d) as 

in b for free-choice trials. 
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3.7c). The two monkeys were not equally predisposed to each error type (Fig 3.7d). Monkey C 

made fewer errors over all, and committed types 1 and 2 with about equal frequency. Monkey M 

made more errors that were predominantly type 1. However, although monkey M appeared more 

likely to ignore the cue altogether than did monkey C, the high incidence of type 1 and type 2 

errors suggests that errors overwhelmingly arose due to overconfidence in the initial plan. This 

was true for both initial plans made to favored targets and those to non-favored target (Fig 3.7d).  

 

DISCUSSION 

We found that when faced with two potential reach targets, monkeys formed only a 

single motor plan. This finding was unexpected, given that several previous studies support a 

simultaneous encoding mechanism during movement planning (Christopoulos, Bonaiuto, & 

Andersen, 2015; P. Cisek, 2007; P. Cisek & Kalaska, 2005; Coallier et al., 2015; Gallivan et al., 

2016; Gallivan et al., 2017; Klaes et al., 2011; McKinstry, Dale, & Spivey, 2008; Pastor-Bernier 

& Cisek, 2011). It may be that premotor cortex is incapable of planning multiple movements 

simultaneously, but that the trial averaging approaches used by previous studies were unable to 

differentiate between simultaneous encoding and single encoding with strong planning 

preferences. When we replicated the trial-averaged guess-and-switch control analysis from Cisek 

and Kalaska (P. Cisek & Kalaska, 2005), our results initially appeared to support the 

simultaneous encoding interpretation (Fig 3.S1). However, additional simulations showed that 

this was a spurious result caused by strong target preferences (Fig 3.S2). A stricter version of the 

test—modified to remove the effect of target preferences—revealed no evidence of simultaneous 

encoding (Fig 3.S1).  
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Figure 3.7 | Heterogeneity in types of errors 

(a) An example error (dark) made to the rightward target when 

cued to the left (monkey M, session 2). This type of error can 

be characterized as an early plan that is not changed even after 

receiving a contradictory cue (error type 1). Light traces 

indicate all correct trials with the same leftward cue (b) An 

incorrect reach to the bottom target (monkey C, session 1). This 

type of error can be characterized as a late reversion to the initial 

plan (type 2). (c) An incorrect reach the leftward target 

(Monkey M, session 1). This error represents a late switch away 

from the correct target plan (type 3). (d) Histogram showing the 

frequency of each error type for both monkeys (monkey C – 

black, monkey M – grey). Filled and open segments indicate 

whether the errors were made to a favored or non-favored 

target, respectively. 
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It is possible that the monkeys in previous studies did not have target preferences during 

early planning. However, choice biases appear to be quite common in two target tasks (Kaufman 

et al., 2015; Klaes, Schneegans, Schoner, & Gail, 2012; Klaes et al., 2011). Some studies have 

attempted to minimize this effect by explicitly adjusting reward values (Klaes et al., 2011) or 

other aspects of the task (Kaufman et al., 2015) to encourage reaches to non-favored targets. 

Carefully executed, these approaches can equalize the number of movements to each target. 

However, eliminating biases in the final choice does not necessarily eliminate biases during 

planning. We found that while early planning activity did largely predict free choices, it was not 

without exception. There were some trials in which PMd activity suggested one reach direction 

throughout the trial, only to switch just moments before movement execution (Fig 5a). This type 

of last-second switching was relatively rare in our experiment, but a task designed to balance 

choices may simply encourage more frequent plan switching. If so, analysis based on the 

assumption that all targets are treated equally may not be valid during early planning phases of 

the trial. Trial-averaging methods simply cannot provide the temporal resolution necessary for 

determining instantaneous states of mind in high-order brain areas.   

The monkeys in our study displayed quite strong preferences, but the source of those 

preferences is not obvious. They were not consistent across sessions, so it is unlikely that they 

resulted from the minimization of a cost function based on physiology or task performance (e.g., 

effort, energy expenditure, etc.) (Cos, Belanger, & Cisek, 2011; Morel, Ulbrich, & Gail, 2017; R. 

Shadmehr, Huang, & Ahmed, 2016). Rather, it seems that they reflected the monkeys’ attempts 

at strategies that they believed could increase the likelihood of reward. Since the reward structure 

on free-choice trials was completely random, no such successful strategy was possible. The 

apparent randomness of the target preferences may therefore reflect the monkeys’ 
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overinterpretation of brief patterns in the target presentations or even unsubstantiated guesses. 

Determining the source of target preferences and their effect on planning would require further 

experiments with a dynamic reward structure.  

 The high degree to which the initial reach plan predicted free-choice behavior suggests 

that early responses in PMd strongly influence the eventual movement decision. Supporting this 

idea is the observation that early reach plans on error trials almost always matched the movement 

direction (these type 1 and type 2 errors accounted for over 90% of all errors; Fig7d). That is, the 

monkeys made errors either because they unwaveringly stuck with their initial plan or switched 

back to it after briefly considering the other option. Changes of mind have been observed before 

in cortex (Bollimunta, Totten, & Ditterich, 2012; Kaufman et al., 2015; Kiani et al., 2014; 

Pastor-Bernier, Tremblay, & Cisek, 2012; Thura & Cisek, 2014), but not in direct contradiction 

to an explicit visual cue. In these cases, it appears that the monkey’s first reaction to the pair of 

targets carried more weight than the subsequent—and completely informative—visual cue. This 

may indicate influence from another brain area overriding sensory inputs, or biases within PMd 

that resist changes away from an initial plan. 

  Recording from a large neural population allowed us to decode planning-related activity 

on a short timescale. Since the plans decoded early in the trial were predictive of both reach 

direction and reaction time on free-choice trials, we can be confident in the validity of the 

decoded neural states throughout the trial. This high temporal resolution was especially 

necessary when examining the link between instantaneous reach plans at the time of the Go cue 

and subsequent reaction time. Similar to previous studies (Ames et al., 2014; Coallier et al., 

2015; Riehle & Requin, 1993), we found that the strength of the decoded reach plan was 

negatively correlated with reaction time on both 2-target and free-choice trials. This extended to 
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trials with incorrect plans at the time of the Go cue, where switching came at the cost of a 

significantly longer reaction time (Fig 3.6a). On the other end of the spectrum, 2-target trials 

with strong plans to the correct target sometimes showed very rapid reaction times (Fig 3.6a). 

Movement planning and execution are thought to involve separate neural processes (Haith, 

Pakpoor, & Krakauer, 2016), and our results suggest that the timing of movement execution is 

highly variable. The fastest reaction times indicate that the monkeys initiated movements in 

anticipation of the Go cue (Mark M Churchland, Byron, Ryu, Santhanam, & Shenoy, 2006; 

Rosenbaum, 1980). However, on trials with strong incorrect plans they were still able to 

withhold movement initiation to re-plan for the correct reach. This may suggest that the monkeys 

knew when they were planning the wrong reach, and that they delayed movement initiation to 

allow for the time needed to correct the plan.  

The ability to interpret a quickly changing neural state with high temporal resolution is 

essential when studying high order brain functions like decision-making. While trial-averaged 

analysis methods have contributed a great deal to our understanding of movement planning and 

decision-making, they may at times suggest an oversimplified view of neural processes. The 

heterogeneity in single-trial responses observed in this study and others suggest that decision-

making cannot be fully explained through a simple model of weighted sensory cues. Large-scale 

recordings (likely in multiple brain areas simultaneously) are almost certainly necessary to fully 

characterize the processes leading to a decision.  
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METHODS 

Subjects 

We trained two male rhesus macaque monkeys (Macaca mulatta) to make reaches using 

a planar robotic manipulandum for water or juice reward. All procedures were approved by the 

Northwestern University Institutional Animal Care and Use Committee (Protocol number 

#IS00000367) and were consistent with the Guide for the Care and Use of Laboratory Animals.  

 

Behavioral task 

The monkeys sat in a chair facing a vertical monitor and used a planar robotic 

manipulandum to control an on-screen cursor. Each 2-target trial (40%) began once the monkey 

held the cursor within a central target (1.5cm radius) for 500 ms, after which two outer targets 

appeared (target on; 750—1000ms), always 180 degrees apart. The target locations were 

restricted to eight different locations, equally spaced at a radius of 7cm. After the target on 

period, the outer targets briefly disappeared (target off; 250—500ms). This provided a time 

window in which we could analyze the neural response to the previously presented targets with 

little chance of visual confounds. After this target off period, one of the targets reappeared (cue 

on; 250—500ms), providing the monkey with complete information of the correct. The missing 

target then reappeared, returning to the initial 2-target presentation. The center target was 

extinguished, and a tone signaled the monkey to move (go; <5s). The trial ended when the cursor 

reached one of the outer targets. If the target was correct (as indicated by the target presented 

during the cue on period), the monkey received a success tone coincident with delivery of a 
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liquid reward. If incorrect, the monkey received a failure tone and the screen displayed the 

location of the correct target.  

One target trials (40%) followed the same structure as above, except only the correct 

target was ever shown. Thus the monkey had complete information about the correct target from 

the beginning of the trial. On twenty percent of all trials, we omitted the cue period altogether. 

This resulted in 2-target free-choice trials (10%), where the monkey was forced to choose one of 

the two targets without any information as to which was correct. We maintained the same reward 

structure during these trials, so there was always a 50% chance that the monkey would receive a 

reward. The 1-target trials without cue period were not used in any analyses.  

 

Neural recordings and preprocessing 

Both monkeys were implanted with two chronic, 96-electrode arrays (Blackrock 

Microsystems, Salt Lake City UT) positioned over the arm area of primary motor cortex (M1; 

1.5mm electrode length) and straddling the rostral/caudal division of dorsal premotor cortex 

(PMd; 1.0mm electrode length). We discriminated single neurons offline by isolating clusters 

within a principal components space calculated from the waveform shapes of putative neurons 

(Plexon Inc., Dallas TX). For monkey C this yielded unit counts of 143, 143, and 108. For 

monkey M: 154, 132, and 114.  

We used the spiking events from each recorded unit to calculate a continuous estimate of 

firing rate by first convolving with a half-Gaussian kernel (s.d. 150ms) and then downsampling 

to 200Hz. We chose a half-Gaussian kernel to ensure a causal relationship between spiking 
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events and the estimated firing rate. We then applied a square root transform to all firing rate 

estimates.  

 

Functional correlations: estimation and simulation 

For the neural correlation hypothesis testing shown in Figure 3.2d,e, we wished to 

compare only the components related to reach direction. We assumed that each pairwise 

covariance 𝑐𝑜𝑣𝑡𝑜𝑡𝑎𝑙(ℎ𝑖, ℎ𝑗) resulted from the linear sum of the desired reach direction tuning-

related covariance 𝑐𝑜𝑣𝑡𝑢𝑛𝑖𝑛𝑔(ℎ𝑖, ℎ𝑗) and noise covariance 𝑐𝑜𝑣𝑛𝑜𝑖𝑠𝑒(ℎ𝑖, ℎ𝑗). We obtained 

𝑐𝑜𝑣𝑡𝑢𝑛𝑖𝑛𝑔,1𝑇(ℎ𝑖, ℎ𝑗)—that is, the tuning-related covariance across all 1-target trials—directly by 

averaging the firing rates (square root transformed) to each target direction. For 2-target trials, 

we could not calculate a mean firing rate per target direction, since the monkey could have been 

planning a reach to either target (or both or neither). Instead, we assumed that the noise 

covariance would not change drastically between 1-target and 2-target trials and then estimated 

the tuning covariance: 

 

 𝑐𝑜𝑣𝑡𝑢𝑛𝑖𝑛𝑔,2𝑇(ℎ𝑖, ℎ𝑗) =  𝑐𝑜𝑣𝑡𝑜𝑡𝑎𝑙,2𝑇(ℎ𝑖, ℎ𝑗) −  𝑐𝑜𝑣𝑛𝑜𝑖𝑠𝑒,1𝑇(ℎ𝑖, ℎ𝑗), Eq. 3.1 

 

To simulate the covariance changes expected given a stay-or-switch response (Figure 3.2e), 

we first calculated non-parametric tuning curves 𝑓𝑖(𝜃) and noise covariance matrix Σ(𝐻) from 1-

target trials. For each simulated 2-target trial, we randomly selected between the two possible 

reach directions according to the choice preferences exhibited on 2-target free-choice trials. We 

then modeled the activity of all neurons by taking the direction-related firing rates (from the 
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tuning curves) and adding noise drawn from a multivariate Gaussian distribution defined by 

Σ(𝐻). Finally, we applied the same analysis as described above using the simulated firing rates. 

To simulate the simultaneous encoding response, we followed the same procedure as for 

the stay-or-switch simulation, except using modified tuning curves. We assumed a simple model 

of simultaneous tuning in which each neuron’s firing rate reflected the larger of the two firing 

rates expected for either target alone. That is, given the tuning curve 𝑓𝑖(𝜃), where 𝜃 is the reach 

direction, we defined each simultaneous encoding tuning curve to be  

 

𝑔𝑖(𝜃) = max [𝑓(𝜃), 𝑓(𝜃 + 180°)]    Eq. 3.2 

 

We calculated the percentages in Figure 3.2e from neuron pairs for which the 

bootstrapped 95% bounds of 𝑐𝑜𝑣𝑡𝑢𝑛𝑖𝑛𝑔,1𝑇 and 𝑐𝑜𝑣𝑡𝑢𝑛𝑖𝑛𝑔,2𝑇 did not span zero. This restriction 

prevented any potential effects from being diluted by neuron pairs for which we could not 

adequately estimate the tuning-related covariance.  

 

Dimensionality reduction and reach plan likelihood estimation 

On each session, we grouped all 1-target firing rates into the matrix 𝑀 ∈  ℝ𝑁 × 𝑇, where 

N is the number of neurons and T is the number of time points obtained by concatenating all 1-

target trials. We then performed PCA on the matrix M and projected all firing rates (from 1-

target, 2-target, and 2-target free-choice) onto the top ten principal axes. This provided a 10-

dimensional neural state at every point in time.  
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We used the neural state readout 𝑆 to interpret, at every time point, the likelihood that the 

population activity corresponded to a reach plan to each of the eight possible target directions. 

For each 1-target reach direction 𝑖, we assembled the neural states (from 500ms post-target 

appearance until trial completion) observed across all trials into the set {𝐶𝑖}. We then used the 

Mahalanobis distance 𝐷𝑀 between the neural state and the training set to determine the 

likelihood that the neural state corresponded to direction 𝑖: 

 

 𝑃(𝑖|𝐷𝑀(𝑆, {𝐶𝑖})) =  
𝑃(𝐷𝑀(𝑆, {𝐶𝑖})|𝑖)

∑ 𝑃(𝐷𝑀(𝑆, {𝐶𝑖})|𝑗)8
𝑗=1

    Eq. 3.3 

 

Note that our calculation of 𝑃(𝑖) is dependent only on 𝐷𝑀(𝑆, {𝐶𝑖}) and not 𝐷𝑀(𝑆, {𝐶𝑗≠𝑖}). That 

is, the likelihood of each direction depends only on the distance of the neural state to the training 

set of that same direction. Thus, the likelihood values for all states do not sum to one. This was 

to allow for the possibility of dual or intermediate reach plans during 2-target trials, which could 

lead to neural states convincingly similar to multiple training sets. 

The Δlikelihood value used throughout the results reflects the difference in likelihood 

values between either the two presented target directions (2-target trials) or the single presented 

target and the opposite direction (1-target trials).  

 

Reaction time correlation 

We defined reaction time as the time from the go cue to the time when the cursor had 

moved 1cm along a line projected from center to outer target. Using other definitions of reaction 

time based on velocity did not change the results.   
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We used a linear mixed effects model to test for a general correlation between reaction 

time and Δlikelihood across all reach directions and sessions. We used the fitlme function in 

Matlab (Mathworks) with reaction time as the response variable, Δlikelihood as the predictor 

variable, and reach direction (separated by session) as the grouping variable, with uncorrelated 

random effects for intercept and Δlikelihood.  

 

SUPPLEMENTARY MATERIALS 

Our results suggest that monkeys plan a single reach on any given 2-target trial, 

contradicting previous reports of simultaneous reach representations in PMd. We speculate that 

this different result might have been due to our use of many neurons recorded simultaneously, 

rather than single unit recordings aggregated across sessions. However, it is also possible that the 

monkeys in our study simply adopted a strategy that differed from that of the earlier studies. To 

differentiate between these two possible explanations, we replicated several single-neuron 

analyses from previous studies. We reasoned that if our monkeys had used a different strategy, 

then our single-neuron results should not resemble those from studies finding simultaneous 

representation. 

In Fig 3.S1a,b, and c, we show the results when we applied the three major analyses used 

by Cisek and Kalaska (2005) to our data. We used only neurons recorded during single sessions 

to avoid the possibility of duplicates. On 2-target trials, directional tuning appeared to be 

narrower and overall activity lower than on 1-target trials, matching the results from the 

referenced paper. Additionally, the analysis in Fig 3.S1c indicates that most neurons were more 

active during 2-target trials than would be expected under a guess-and-switch approach. This  
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Figure S 3.1 | Single neuron analysis and guess-and-switch 

control analysis 

 (a) Plot of normalized tuning width during 1-target and 2-target 

trials (See Cisek and Kalaska, 2005) (b) Firing rates of single 

neurons for targets in their preferred direction on 1- and 2-target 

trials (see Cisek and Kalaska, 2005) (c) Control used by Cisek 

and Kalaska (2005) to discount the possibility of a guess-and-

switch approach. Skew toward 100% suggests simultaneous 

representation (d) Same analysis as in c, but using only 1-target 

PDs.  
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result therefore appears to support the simultaneous representation hypothesis, in contradiction to 

our main result. However, we found this to be the case only if we calculated neuronal preferred 

directions for the 2-target trials separately from the 1-target trials, as was done in the original 

studies. Since the simultaneous representation hypothesis assumes there is no change in PD 

between 1- and 2-target trials, using a single PD calculated only from 1-target trials should not 

affect the results. Nonetheless, we found that this simple constraint eliminated all evidence of 

simultaneous representation (Fig 3.S1d).  

We hypothesized that the inconsistency of the results between Supplementary Figures c 

and d was due to target preferences during planning that influenced the 2-target tuning curve 

calculations. To test this, we ran a simulation of stay-or-switch planning on a 2-target task using 

a population of 500 artificial neurons. Each neuron’s directional tuning followed an 

exponentiated sine wave (amplitude between 5 and 10Hz), with equally distributed preferred 

directions and Poisson noise. We simulated 4000 1-target trials and 4000 2-target trials, 

imposing on the 2-target trials either a weak or strong target preference (Fig 3.S2a). The imposed 

target preferences meant that for the 0/180 degree target pair, we simulated a 0 degree target plan 

for either 60% (weak preference) or 90% (strong preference) of trials. From the resulting 

simulated firing rates, we recalculated separate preferred directions for 1-target and 2-target 

trials. The differences between these two calculations were usually quite small (Fig 3.S2b), 

which at first glance seems to indicate that the two can be used interchangeably. However, the 

control analyses (Fig 3.S2c,d) showed that this was not the case. Using separate PD calculations 

when target preferences were strong caused a spurious result that appeared to strongly support 

the simultaneous representation hypothesis (Fig 3.S2c, red distribution highly skewed toward 

100%). Restricting the PDs to those calculated from 1-target trials corrected this problem, and  
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Figure S 3.2 | Stay-or-switch with biases can mimic 

simultaneous tuning 

 (a) Weak (top; 60%) and strong (bottom; 90%) target 

preferences used to simulate stay-or-switch population activity. 

(b) Rose plots showing the difference in preferred directions 

between 1-Target and 2-Target trials for the simulated 

population. Top corresponds to the session with weak target 

preferences (60%), bottom to strong (90%). (c) Analysis (from 

Cisek and Kalaska, 2005) used to test for the possibility of a 

stay-or-switch approach. Rightward skew is meant to support 

the simultaneous encoding hypothesis. (d) Same analysis as in 

c, but only using PDs calculated during 1-Target trials.  
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correctly discounted the simultaneous hypothesis (Fig 3.S2d, bimodal red distribution spanning 

50%). When target preferences were weak, the analysis successfully ruled out the possibility of 

simultaneous encoding (Fig 3.S2c,d, grey bars; slight skew above 50% was due to non-

symmetric tuning profiles and completely overlapped the 1-target distribution). These results 

show how seemingly valid assumptions (e.g., that a small average difference between two PD 

calculations would be inconsequential) can lead to misleading interpretations.  
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CHAPTER 4: PREMOTOR AND MOTOR CORTICES ENCODE REWARD 

Pavan Ramkumar, Brian Dekleva, Sam Cooler, Lee Miller, Konrad Kording 

 

FOREWORD  

 This chapter is a version of an article published by PLOS ONE in 2016. The idea for this paper 

began with the peculiar observation (made by Sam Cooler and me) that neurons in PMd seemed to 

display bursts of activity at the end of failed trials. Typical motor cortex experiments are not particularly 

suited to discovering this this type of effect for two main reasons: (1) the behavioral tasks do not contain a 

significant number of failures and (2) analyses are restricted to the neural activity occurring strictly within 

each trial. The task we used in Chapter 2 is somewhat unique in that frequent failure was unavoidable. 

This made any related neural effect much more noticeable. Still, it seemed possible—and indeed even 

likely—that the result-dependent activity differences we saw reflected some movement-related confound. 

For example, perhaps after failing the monkey made a rapid movement back to the start target so he could 

begin a new trial. To address these kinds of possibilities, Pavan Ramkumar modeled single-neuron 

activity by incorporating every conceivable confounding variable. To our surprise, nothing but trial 

outcome could account for the differences in post-trial activity. We thus concluded that motor cortex may 

in fact receive transient reward- or failure-dependent signaling. The absence of previous results on this 

front made the finding unexpected. However, the great extent of learning that occurs within motor cortex 

itself (see Chapter 1) provides an explanation for why such signaling could—and indeed should—exist. 

This concept will be discussed further in Chapter 5.  
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ABSTRACT 

Rewards associated with actions are critical for motivation and learning about the 

consequences of one’s actions on the world. The motor cortices are involved in planning and 

executing movements, but it is unclear whether they encode reward over and above limb 

kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd) 

and primary motor (M1) neurons that corresponds to an increase in firing rates when a trial was 

not rewarded regardless of whether or not a reward was expected. We show that this signal is 

unrelated to error magnitude, reward prediction error, or other task confounds such as reward 

consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. 

The availability of reward information in motor cortex is crucial for theories of reward-based 

learning and motivational influences on actions. 

 

INTRODUCTION 

How the brain learns based on action outcomes is a central question in neuroscience. 

Theories of motor learning have usually focused on rapid, error-based learning mediated by the 

cerebellum, and slower, reward-based learning mediated by the basal ganglia (Shmuelof & 

Krakauer, 2011). Different combinations of reward and sensory feedback result in different 

learning rates. For instance, positive and negative rewards influence motor learning differently 

(Abe et al., 2011; Galea et al., 2015). When reward is combined with sensory feedback, it can 

accelerate motor learning (Nikooyan & Ahmed, 2015). Reward is thus a fundamental aspect of 

learning (Dayan & Balleine, 2002; Hollerman & Schultz, 1998; O'Doherty et al., 2003; W. 

Schultz, 2006). Various reward signals have been characterized in the midbrain, prefrontal and 

limbic cortices (Matthew R Roesch & Olson, 2003, 2004; M. R. Roesch & Olson, 2005; 
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Wolfram Schultz, 2000; Wallis & Kennerley, 2010). Yet, we do not know how neurons in the 

motor system obtain the reward information that could be useful for planning subsequent 

movements. 

The dorsal premotor cortex (PMd) and the primary motor cortex (M1) are known to be 

involved in planning and executing movements. We know this because movement goals (e.g., 

direction of upcoming movement), kinematics (e.g., position, velocity and acceleration) and 

dynamics (e.g.,forces, torques, and muscle activity) are reflected in the firing rates of motor 

cortical neurons (Ashe & Georgopoulos, 1994; Cheney & Fetz, 1980; Evarts, 1968; 

Georgopoulos et al., 1992; Holdefer & Miller, 2002; Morrow et al., 2007; Scott & Kalaska, 

1995). If movement plans need to be modified based on previous actions, then information about 

their outcomes must reach motor cortices. In many real-world settings, task outcomes typically 

manifest in the form of reward. 

Recently, Marsh et al. (Marsh, Tarigoppula, Chen, & Francis, 2015) have shown a robust 

modulation of M1 activity by reward expectation both during movement and observation of 

movement. To further investigate the nature of this potential reward signal, we trained monkeys 

to reach to targets based on noisy spatial cues and rewarded them for correct reaches. We 

induced different reward expectation on a trial-by-trial basis and quantified the representation of 

reward in PMd and M1. We observed that ~28% of PMd neurons and ~12% of M1 neurons 

significantly modulated their firing rates following trials that were not rewarded. The effect 

could not be explained simply by kinematic variables such as velocity or acceleration, reward 

consumption behavior, or upcoming movement plans, nor by task variables that may bias 

successful task performance, such as the noise in the target cue, the reward history, or the 
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precision of the reach. This effect might constitute an important piece in the larger puzzle of how 

motor plans are modified based on reward. 

 

RESULTS 

Our goal in this study was to investigate whether the motor system — in addition to 

planning and executing actions — also encodes responses to reward, which are key for learning 

about the environment and modifying motor plans. To this end, we trained two macaque 

monkeys to make center–out reaches to uncertain targets and rewarded them for successful 

reaches. The monkeys made reaching movements while grasping the handle of a planar 

manipulandum, their hand position represented by an on-screen cursor (Fig 4.1A). During this 

task, we recorded from two 96-channel microelectrode arrays (Fig 4.1B, Blackrock 

Microsystems), chronically implanted in the primary motor cortex (M1) and the dorsal premotor 

cortex (PMd). 

A trial began when the monkey moved the cursor to the central target (Fig 4.1C). The 

true location of the target was not shown. Instead, a noisy cue was presented at a 7-cm radial 

distance from the center to indicate the approximate location of the outer target. The cue 

comprised a cluster of line segments generated from a distribution centered on the true target. 

Monkeys were trained to reach only after a combined visual/auditory go cue, which was 

delivered after a variable (0.8–1.0 s) delay period following cue appearance. At the end of the 

reach, the actual circular target (15° diameter) was displayed. If the monkey had successfully 

reached the target, an appetitive auditory cue announced the subsequent delivery of a juice 

reward. If the reach ended outside the target, an aversive auditory cue announced the failure of 

the reach and no reward was delivered. After the end of the trial, the monkey was cued to return  
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Figure 4.1 | Reaching task to uncertain targets 

 (A) Monkeys made center–out reaches using a planar manipulandum that 

controlled an on-screen cursor. (B) We recorded from chronic microelectrode 

arrays implanted in dorsal premotor cortex (PMd) and primary motor cortex (M1). 

CS: central sulcus, AS: arcuate sulcus, PCD: precentral dimple (C) Monkeys 

reached towards a target that was cued using a set of 5 line segments, whose 

dispersion varied from trial to trial. In each trial, the true target location was 

sampled from a von Mises “prior” distribution centered at 90° (clockwise from the 

rightmost point on the annulus) with one of two concentration parameters 

specifying a broad or narrow prior. The line segments making up the cue were then 

sampled from a “likelihood” von Mises distribution centered on the target location, 

with one of two concentration parameters ( = 5 or 50 for Monkey M and  = 1 or 

100 for Monkey T) specifying a broad or narrow spread. Adapted from Dekleva et 

al., 2016. 
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to the center target in order to begin the next trial. The median inter-trial interval across animals 

and sessions was 2.79 ± 0.25 seconds. On any given trial, since the actual target was not shown, 

the monkey had to infer its location, potentially by combining the information in the noisy target 

cue with prior knowledge accumulated about the target location in previous trials (Dekleva, 

Ramkumar, Wanda, Kording, & Miller, 2016). 

We assume that the monkeys calibrated their expected reward based on the cue 

uncertainty. To manipulate their reward expectation, we varied cue uncertainty from trial to trial. 

Specifically, we determined the dispersion of the line segment cluster on each trial by drawing 

the location of each line segment from either a narrow or a broad distribution (see Fig.1 for 

details). A narrower spread of line segments indicated the target location with lesser uncertainty 

than a broader spread. To verify that animals indeed change their reward expectation, we looked 

at the latency of movement onset after the go cue. We found that animals indeed started their 

reach later on average when they were more uncertain about the target location (35 ± 28 ms for 

narrow spreads; 111 ± 16 ms for broad spreads; mean ± SEM across animals and sessions). Thus, 

manipulating the dispersion on each trial is likely to have induced trial-by-trial changes in reward 

expectation. 

 

Neural coding of reward 

We asked if the firing rates of PMd and M1 neurons indicated whether a reward was 

obtained in the trial by comparing the peristimulus time histograms (PSTHs) aligned to the end 

of the trial timestamp (corresponding to the auditory cue that indicated whether a reward will be 

delivered) for rewarded and unrewarded trials. We matched the kinematics of the trials across the 

two conditions to control for trivial firing rate consequences of behavioral differences (see Fig  
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Figure 4.2 | Neural coding of reward 

(A, B) Example neurons from PMd and M1 showing reward modulation that persisted after controlling for 

kinematic differences between rewarded and unrewarded trials (see S1 File, Fig. A). Error bars show standard 

errors (SEMs) across trials. Vertical dashed line at zero indicates the time of reward.  (C, D) Trial-averaged, 

population-averaged normalized firing rates (mean ± SEMs across neurons) for PMd and M1 from two monkeys. 

For each session, significant differences between rewarded and unrewarded peak PSTH amplitudes are indicated 

using an asterisk. PMd shows a clear increase after unrewarded trials compared to kinematically-matched 

rewarded trials.  
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4.S1 and Table A for details about matching kinematics). We found that ~28% of PMd neurons 

and ~12% of M1 neurons modulated their firing rates in response to reward or lack thereof. 

Nearly 25% of all PMd neurons recorded increased their firing rates following unrewarded trials 

compared with rewarded trials (Figs. 2A, 2B show example PMd and M1 neurons from one 

session). In comparison, only ~3% of PMd neurons increased their firing rates after rewarded 

trials. For M1, these numbers were ~8% and ~4%, respectively. 

We then determined the extent to which this effect was visible across the entire 

population. To do so, we normalized single neuron PSTHs computed from kinematically-

matched trials by setting the peak of each PSTH to 1, and computing separate PTSHs for M1 and 

PMd. There was a significant increase in population-wide normalized firing rate following 

unrewarded trials in both monkeys (Fig 4.2C, D). PMd had a significant effect in all 9 sessions (6 

from Monkey M and 3 from Monkey T), whereas the effect in M1 was significant in only 2 out 

of 9 sessions.  

The firing rate effect of unrewarded trials in PMd and to a lesser extent, M1, is 

completely confounded by the fact that only successful trials were rewarded. Thus, increased 

firing rate for unrewarded trials could potentially be an intrinsic signal of success or failure, or 

might indicate some other correlate of the outcome of a goal-directed movement. To eliminate 

this confound, we ran a separate experiment on one monkey (Monkey M) in which we withheld 

reward in a subset of successful reaches. We found that firing rates increased even for these 

successful but unrewarded trials (Fig 4.S2), suggesting that the increased activity following 

unsuccessful trials is related to lack of extrinsic reward, not an intrinsic measure of task outcome. 
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Figure 4.3 | Generalized linear modeling of reward coding.  

Model predictions for two example neurons are shown. Left: PSTHs for rewarded (blue) and unrewarded (red) 

trial subsets are shown for the test set, along with corresponding single-trial rasters for both data and model 

predictions on the test set. Right: Component predictions corresponding to each covariate. 
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Putative reward signal is not explained away by task confounds 

Several other variables could potentially confound this putative reward signal as well. As 

we did for kinematic differences (Fig 4.S1), examining groups of rewarded and unrewarded trials 

that are matched for these confounding variables is a potential means of disambiguating the 

source of the effect. Yet, adequately matching all possible confounding variables is impossible 

because of the trade-off between precise matching of numerous potential confounds, and 

adequate remaining sample size. Instead, we controlled for potential confounds by using multiple 

linear regression models of trial-by-trial firing rates. Specifically, we modeled single neuron 

spike trains using Poisson generalized linear models (GLMs) (Fernandes, Stevenson, Phillips, 

Segraves, & Kording, 2014; Park, Meister, Huk, & Pillow, 2014; Ramkumar et al., 2016). See 

Methods for more information. 

To construct the GLM, we modeled neural spike counts during a 2-second epoch (–0.5 to 

1.5 seconds, in 10-ms bins) around the reward onset. Spike counts were modeled as a function of 

the reward, which we represented as a binary variable (+1 for rewarded trials, –1 for unrewarded 

trials), aligned to the reward onset. In addition, we included the following confounding variables 

in the multiple regression. 

 

1. Kinematics. PMd and M1 neurons are known to encode kinematic variables during movement 

planning and execution (Ashe & Georgopoulos, 1994; M. M. Churchland, G. Santhanam, et 

al., 2006; Georgopoulos et al., 1992). Therefore, we included instantaneous velocity and 

acceleration time series, binned in 10-ms time bins. 
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2. Uncertainty. Previous work has suggested that PMd can encode plans for more than one 

potential target (P. Cisek & Kalaska, 2005) and we have recently shown that PMd encodes 

uncertainty about the reach target location (Dekleva et al., 2016). Further, cue uncertainty 

influences the likelihood of a successful outcome, since monkeys are more successful in low-

uncertainty trials. Although we did not find an effect of uncertainty on PSTHs aligned to 

reward time (Fig 4.S3), we included a measure of trial-specific uncertainty as a confounding 

variable. Specifically, we used the dispersion of the target cue line segments, where dispersion 

is the largest circular distance between all possible pairs of line segments. 

  

3. Reward history. The outcome of the previous trial (and more generally, the history of reward) 

can influence the level of satiety, and thus the motivation and perceived value of a potential 

reward (Matthew R Roesch & Olson, 2004). To control for this possibility, we included the 

previous trial’s outcome as a binary covariate (+1 for success, –1 for failure).  

 

4. Error. The reward-related signal might be useful for reinforcement learning (temporal 

difference learning) if it encoded some information about the discrepancy between the reach 

direction and the true target direction (presented visually at the end of the trial). To test 

whether PMd/M1 neurons encode error magnitude, we included the unsigned reaching error 

(reach precision) as a covariate. 

  

5. Return goal. Another potential confound is that the movement plan for the return reach to the 

center target may be modulated by recently obtained reward. Although a separate control 

analysis (Fig 4.S4) suggested there were no systematic differences between return reach 
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planning for rewarded and unrewarded trials, here we controlled for this possibility by 

including a covariate that specified the return reach direction; in particular, we used two 

covariates specifying the direction cosines (cosine and sine) of the return reach direction. 

 

Environmental covariates — uncertainty, error, and reward — that are potential causes of 

firing rate changes, invariably lead spikes in M1 and PMd. By contrast, movements are the 

consequence of motor cortical activity. Therefore, kinematic variables are likely to lag spikes. To 

model these latency differences for the different covariates, we used temporal basis functions 

(see Methods for details). 

Our model accurately captured the reward-related activity of many neurons. Comparing 

the data and cross-validated fit (see Methods) panels of Fig 4.3, we see that the trial-averaged 

data PSTHs and trial-averaged model-predicted firing rates are extremely similar. Across 70 

PMd and 191 M1 neurons in a representative session (Monkey M, session 4), the model 

explained almost all the variance in the trial-averaged data (mean ± standard deviation of R2 = 

0.96 ± 0.05 and 0.93 ± 0.08 for PSTHs averaged across successful and unsuccessful trials, 

respectively). These high R2s suggest that the model includes almost all potential sources of 

predictable variance. Therefore, if the reward covariate cannot be explained away by the 

confounding covariates, it is likely that the neurons represent reward. 

To understand whether the reward covariate explains a significant fraction of the 

variance, we visualized the predictions of individual model covariates (reward, kinematics, 

uncertainty, reward history, error, and return goal), for rewarded and unrewarded trial subsets. 

Among all model covariates, only the reward covariate made different predictions for firing rates 

in rewarded and unrewarded trials (Fig 4.3, right panels); the predictions of other covariates were  
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Figure 4.4 | Across-session summary of reward encoding 

(A) The distribution of effect sizes across the population from one session in each monkey (Monkey M, 

Session 4 and Monkey T, Session 1) as measured by mean relative pseudo-R2s are shown for kinematics, 

return reach goal, and reward. A large fraction of neurons in both PMd and M1 remained statistically 

significantly modulated by reward after controlling for cue uncertainty, reward in the previous trial, error 

magnitude, instantaneous kinematics, and planning of the return reach. (B) A stacked bar shows the number 

of significant neurons at the 2-sigma level for each session. The representative session for which histograms 

of effect sizes are shown above is indicated with a black border. 
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similar across these conditions. This preliminary analysis of example neurons seemed to suggest 

that reward was indeed the predominant driver of firing rate variance. 

To quantify the marginal effects of reward, kinematics and other confounding variables, 

we also built partial models leaving each covariate out and then comparing these respective 

partial models against the full model using the relative pseudo-R2 metric as a measure of effect 

size (see Methods for definitions and details). Briefly, we used two-fold cross-validation to 

quantify error estimates on pseudo-R2s. We used each half of the data as a training set to fit the 

full and partial models and computed the pseudo-R2s on the other half (the test set). We obtained 

95% confidence intervals (CIs) on the cross-validated test set pseudo-R2 by bootstrapping on the 

test sets and used these to determine which neurons were significantly predicted by the covariate 

of interest at the 2 and 5 significance levels (see Methods). 

Three of the covariates accounted for a large fraction of the variance in PMd and M1 

firing rates. As expected, a large number of neurons (41/70 in PMd, and 179/191 in M1; 2 

significance criterion; Fig 4.4A, left panel) were significantly modulated by reach kinematics 

(instantaneous velocity and acceleration) in a representative session (Monkey M, session 4). 

Further, many neurons (20/70 PMd and 67/191 M1; Fig 4.4A, middle panel) encoded the 

direction of the upcoming return reach. However, a large fraction of PMd (48/70), and M1 

(75/191) neurons also encoded reward (Fig 4.4A, right panel). By comparison, a negligible 

number of neurons in either PMd or M1 encoded cue uncertainty (1), error magnitude (3) or 

reward history (15) — these were likely false positives that did not survive a multiple-

comparison correction. These results were very similar across multiple sessions in both monkeys 

(Fig 4.4B). For Monkey T, the quality of the M1 array had degraded at the time of these 
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experiments, and the spike-sorted neurons had extremely low firing rates, insufficient to fit 

reliable multivariate GLMs. Therefore we were only able to quantify the effects in PMd.  

In the generalized linear models, we could not directly control for actual reward 

consumption, which involves mouth and neck movements, and might therefore affect firing rates 

in PMd and M1. However, we mainly observed increases in neural activity when reward was not 

received. This would only be possible if the monkey had made more vigorous mouth or neck 

movements in the absence of reward, than while actually consuming reward (e.g.,by potentially 

sucking harder on the tube when no reward was delivered). We could not quantitatively control 

for this possibility because we did not measure kinematics or EMG signals from the face. 

However, we made doubly sure that the monkey correctly interpreted the auditory cue signaling 

lack of reward. To do this, we filmed one monkey during a separate session (Monkey M; see Fig 

4.S5) and observed that it simply sat still during trials when no reward was delivered, without 

making any oral contact with the reward delivery tube. Therefore, the robust reward signal 

cannot be explained by reward consumption. Taken together, our results suggest that a large 

fraction of PMd and M1 neurons encode the outcome of the task independently of uncertainty, 

error magnitude, kinematics, reward history, reward consumption, and the return reach plan.  

 

DISCUSSION 

We asked if the premotor and motor cortices, implicated in planning and executing 

movements, might also represent the reward associated with those movements. We found a 

strong representation of reward in PMd firing rates, with a lesser effect in M1. The increase in 

firing rates was observed in response to the absence, and to a lesser extent, the occurrence of 

extrinsic reward, but not the intrinsic success or failure of the trial. We then asked if the reward 
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signal encoded motivation or satiety (modeled by reward history), prediction error (modeled by 

cue uncertainty), or movement precision (modeled by error magnitude), but found no evidence 

for any such signals. We also confirmed that although kinematics and return movement planning 

could explain firing rate variance, neither of them could explain away the reward signal. 

Although the motor cortex has traditionally been thought of as a brain area that sends control 

signals to the spinal cord and muscles, recent studies (Marsh et al., 2015) including ours, 

establish the important additional effect of reward on motor cortex activity. 

One weakness of this experiment is the lack of statistical power to ask if there were trial-

by-trial reward dependent learning effects. The target location and the dispersion of the cue lines 

were drawn at random on each trial; hence, there was very little opportunity to transfer 

knowledge from one trial to the next. As trial-by-trial learning is generally relatively slow (and 

further slowed by high feedback uncertainty (Wei & Kording, 2010) we expected only a small 

trial-by-trial effect. Not surprisingly then, we did not find that the reward signal was directly tied 

to the behavioral performance of subsequent trials. If and how the reward signal does influence 

trial-by-trial learning should be investigated with further experiments. A second weakness of our 

design, which is typically common across many animal experiments, is that it does not rule out 

the possibility of covert motor rehearsal following error or lack of reward. Such rehearsal might 

activate premotor and motor cortices without resulting in overt behavior. Although we rule out 

any direction-specific effects of the reported reward outcome signal, it is impossible to 

definitively rule out the influence of covert rehearsal. This is an important constraint that future 

experiments must contend with. 

Reward is a central feedback mechanism that regulates motivation, valuation, and 

learning (Wolfram Schultz, 2000; W. Schultz, 2006). Existing computational theories of this 
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phenomenon, such as reinforcement learning and temporal difference learning (Hollerman & 

Schultz, 1998; O'Doherty et al., 2003), have been successful in explaining the dopaminergic 

prediction error signal, but reward coding in the brain is far more heterogeneous and pervasive 

than just that (Dayan & Balleine, 2002; Wallis & Kennerley, 2010). The large majority of brain 

areas implicated in reward processing, such as basal ganglia, ventral striatum, ventral tegmental 

area, and the orbitofrontal cortex, are predictive in nature, with predictions including reward 

probability, reward expectation, and expected time of future reward (Wolfram Schultz, 2000). 

Dopaminergic neurons in the ventral striatum also encode the mismatch between predicted and 

obtained rewards, combining reward prediction with reward feedback. Thus far, only the lateral 

prefrontal cortex has been shown to encode reward feedback without any predictive component. 

To our knowledge, the previous studies examining reward-related signaling in the premotor and 

motor cortices (Marsh et al., 2015; Matthew R Roesch & Olson, 2003, 2004) reported a 

predictive code for reward magnitude and reward expectation but not for reward outcome or 

feedback. Previous studies have implicated the motor cortex in error-related signaling 

(Diedrichsen, Hashambhoy, Rane, & Shadmehr, 2005; Nir Even-Chen, Stavisky, Kao, Ryu, & 

Shenoy, 2015). Here, we show for the first time that single neurons in premotor and motor 

cortices encode reward-related feedback. Our finding adds another piece to the heterogeneity of 

reward representation in the midbrain and cortex, which will help extend future theories of 

reward-based learning. 

The latency of the reward signal in PMd and M1 is on the order of 400–600 milliseconds. 

This latency is much slower than the rapid (~100 ms) reward prediction error signal observed in 

dopaminergic neurons in the midbrain (Dommett et al., 2005; Wolfram Schultz, 1998). Thus, the 

pathway to reward outcome representation in the motor cortex is likely to be mediated by the 
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basal ganglia-thalamo-cortical loop. In particular, we know the striatum, which receives 

projections from reward-sensitive dopaminergic neurons, feeds back to the cortex through other 

basal ganglia structures and the thalamus (Haber, 2011). The anterior cingulate cortex is also 

implicated in decision-making based on past actions and outcomes (Kennerley et al., 2006). This 

is an alternate possibility for the origin of the signal that we observe in premotor and motor 

cortices. Thus, it is likely that the motor cortex, along with prefrontal cortex and other areas, 

reflects rather than generates the reward signal. 

At present, the function of this reward outcome signal in the motor cortices is unclear. A 

recent EEG-fMRI study (Fouragnan, Retzler, Mullinger, & Philiastides, 2015) suggests that two 

distinct value systems shape reward-related learning in the brain. In particular, they found that an 

earlier system responding preferentially to negative outcomes engaged the arousal-related and 

motor-preparatory brain structures, which could be useful for switching actions if needed. 

Therefore, the reward signal in PMd and M1 could potentially induce the cortical connectivity 

changes required for correcting subsequent motor plans based on mistakes. Further investigations 

of our finding might thus potentially reveal the mechanisms by which the brain acquires new 

motor skills. 

Behavioral studies of motor control are at the advanced stage of describing trial-to-trial 

learning and generalization to novel contexts using sophisticated Bayesian decision theory and 

optimal control models (Galea et al., 2015; K. P. Kording & Wolpert, 2006; Krakauer & 

Mazzoni, 2011; R. Shadmehr et al., 2010; Daniel M Wolpert & Ghahramani, 2004). Yet, we are 

only beginning to understand how different neural systems work together to achieve these 

behaviors. We have shown a robust reward signal in premotor and motor cortex that is not 

simply the result of movement kinematics or planning. Establishing a link between this reward 
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signal and motor learning could potentially open up a new area of research within computational 

motor control. 

 

METHODS 

Single-neuron and population PSTHs 

We calculated peri-stimulus time histograms (PSTHs) of firing rates (spikes/s), in 25-ms 

windows aligned to the reward timestamp and averaged them across trials. Error bars were 

computed as standard errors of mean across trials. To test whether neurons were significantly 

modulated by reward, we compared mean firing rate in a [0, 1.5] second interval after the reward 

timestamp across rewarded and unrewarded trials using a one-sided t-test, with a significance 

level of  = 0.05, Bonferroni-corrected for the number of neurons recorded in a single session. 

To calculate population-averaged PSTHs, we took the mean trial-averaged PSTHs, normalized 

them to have a peak firing-rate of 1, and then averaged these across neurons. Error bars were 

computed as standard errors of mean across trials. 

 

Generalized Linear Modeling: Temporal basis functions 

We used raised-cosine temporal basis functions to model the latencies between 

environmental events, firing rates, and kinematics. We used 4 basis functions with equal widths 

of 400 ms, and equispaced from each other with centers separated by 200 ms. We convolved 

each covariate time series with its respective basis set and then used these to predict firing rates. 

To prevent discontinuities between trial epochs, we zero-padded each trial with 500 ms (i.e.,, 50 

time bins of 10 milliseconds, each), concatenated them, convolved the zero-padded time series, 

and then removed the zero-padding. 
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Generalized Linear Modeling: Model fitting 

We fit models using the Matlab glmnet package which solves the convex maximum-

likelihood optimization problem using coordinate descent (Friedman, Hastie, & Tibshirani, 2010; 

Hastie, Tibshirani, & Friedman, 2009). To prevent overfitting, we regularized model fits using 

elastic-net regularization (Qian, Hastie, Friedman, Tibshirani, & Simon, 2013). We did not 

optimize the hyperparameters, but we found that a choice of = 0.1 (which determines the 

weight of the regularization term) and  = 0.1 (which weights the relative extent of L1 and L2 

regularization) resulted in comparable training and test-set errors, and therefore did not 

inordinately over-fit or under-fit the data. We also cross-validated the model by fitting it to one 

random half of the trials and evaluating it on the other half. To evaluate model goodness of fit, 

we computed the pseudo-R2, which is related to the likelihood ratio. The idea of the pseudo-R2 

metric is to map the likelihood ratio into a [0, 1] range, thus extending the idea of the linear R2 

metric to non-Gaussian target variables. We used McFadden’s definition of pseudo-R2 

(Fernandes et al., 2014; McFadden, 1973; Ramkumar et al., 2016). For each neuron, we 

computed bootstrapped 95% confidence intervals of the pseudo-R2s. 

 

Generalized Linear Modeling: Model comparison 

To quantify whether individual covariates explain unique firing rate variance, we used 

partial models, leaving out the covariate of interest and comparing this partial model against the 

full model. To quantify this nested model comparison, we also used the relative pseudo-R2 

metric. We obtained 95% confidence intervals on this metric using bootstrapping, for each cross-
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validation fold. We then treated the minimum of the lower bounds and the maximum of the 

upper bounds across cross-validation folds as confidence intervals. From these CIs, we 

approximated 2 and 5 significance levels, by calculating appropriate lower bounds for each 

significance level and comparing these lower bounds against zero. 

 

SUPPLEMENTARY MATERIALS 

Matching kinematics does not explain away reward signal 

Motor cortical activity strongly predicts the kinematics of movement, such as its velocity 

and direction (Galea et al., 2015; Nikooyan & Ahmed, 2015). More confident or highly 

motivated reaches may be initiated earlier or performed faster, and may thus result in neural 

firing rate differences between successful and unsuccessful trials that are actually unrelated to 

reward. Two aspects of our task design could have potentially influenced variables such as 

confidence or motivation. First, even before movement onset, cue uncertainty can influence 

movement-planning confidence — the target location can be inferred with higher confidence 

from low-uncertainty cues than high-uncertainty cues. Second, after the trial completion, failure 

to secure reward might increase the urgency or desire to secure a reward in the next trial. 

Therefore, we asked whether kinematics— including latency of the return movement onset, 

instantaneous velocity, and acceleration —were systematically different between rewarded and 

unrewarded trials. Indeed, we found that monkeys started their return movement earlier for 

unrewarded trials, presumably because drinking the juice reward costs time and attention. The 

trial-averaged velocity and acceleration traces, when aligned to the time of reward (Fig 4.S1A, 

left panel), revealed small but significant differences between successful and unsuccessful trials. 

Therefore, any differences in neural firing rates related to reward might actually be attributed to  
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Figure S 4.1 | Velocity and acceleration control 

Traces for rewarded (blue) and unrewarded (red) conditions averaged across all trials (unmatched) and 

across trials selected to have similar latencies and amplitudes for one representative session (Monkey M, 

session 4). The dashed line at zero represents the reward onset. (B) PSTHs of example neurons (mean ± 

SEM) from the same representative session for unmatched and matched conditions.session. The 

representative session for which histograms of effect sizes are shown above is indicated with a black border. 
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Table 4.1 | Number of trials before and after matching for kinematics 

 

  



136 
 

kinematic differences. To control for these differences before analyzing the neural data, we 

matched the kinematics across conditions from 200 ms onwards after the reward (Fig 4.S1A, 

right panel) by selectively subsampling trials with similar return-movement peak velocities and 

latencies. For Monkey M, we included all trials where the peak velocity was between 11 and 16 

cm/s, and the peak time was between 550 and 950 milliseconds. For Monkey T, we included all 

trials where the peak time was between 550 and 950 milliseconds, with no restriction on peak 

velocity. 

 

Putative reward signal is not related to intrinsic success 

Because all successful trials were rewarded, it was not possible to tell whether the motor 

system actually encoded a failure in accurate movement completion, or the absence of extrinsic 

reward. Therefore, in a separate control experiment, we attempted to make this distinction by 

including a set of catch trials during the low uncertainty condition. In these catch trials the 

monkey was not rewarded, despite being successful. By comparing PSTHs for regular trials with 

PSTHs for these catch trials, we found that firing rates increased for any unrewarded trial, 

whether or not the animal had been successful (Fig 4.S2), Therefore, PMd and M1 neurons 

encode the presence or absence of extrinsic reward, not intrinsic success or task outcome. 

 

Reward signal was not related to prediction error 

Dopaminergic neurons in the midbrain and prefrontal cortex are known to encode the 

mismatch between the magnitude of expected and obtained reward (Hollerman & Schultz, 1998). 

This difference is known as the reward prediction error, and is a useful learning signal in 

computational models of reinforcement learning (Abe et al., 2011; Shmuelof & Krakauer, 2011).  
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Figure S 4.2 | Tuning to extrinsic reward, not intrinsic success 

PMd neurons increased their firing rates (trial-averaged, normalized, mean ± SEM) when no reward was 

received, for successful as well as unsuccessful trials. The dashed line at zero indicates the reward onset 

time 
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Therefore, we asked if the firing-rate increases in PMd and M1 resulting from the absence of 

reward might encode reward-prediction errors. Expected reward likelihood was indirectly related 

to the visual uncertainty of the target cue, which was displayed unpredictably in each trial by 

sampling from one of two distributions — a narrow one (low uncertainty) and a broad one (high 

uncertainty). Monkeys were more successful in low uncertainty trials and thus may have 

associated them with greater expectation of reward. A violation of this expectation would result 

in a reward-prediction error; a neural code for reward-prediction error magnitude would predict 

higher firing rates for successful high-uncertainty and failed low-uncertainty trials. To this end, 

we compared reward-aligned PSTHs for rewarded and unrewarded trials, separately for high and 

low uncertainty conditions. We found that unrewarded trials always had higher firing rates than 

did rewarded trials regardless of cue uncertainty (example neurons in Fig 4.S3). Thus, unlike 

midbrain dopaminergic neurons, motor cortical neurons do not encode reward-prediction errors. 

 

Reward signal is distinct from return movement plan 

The post-reward-related increase in firing rates could potentially be explained by the fact 

that consuming the reward costs time and attention. Since consuming the reward takes attention 

away from planning the return movement, it could be that the return reach plan is better attended 

to in the unrewarded trials. If this were the case, the apparent reward-related activity that we 

observed should be explained by the return movement plan. One test for this confound is to 

examine whether the putative reward activity is spatially tuned to the return reach direction. We 

tested for this possibility by constructing a spatio-temporal activity plot over the entire  
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Figure S 4.3 | No effect of uncertainty on reward encoding 

PSTHs aligned to the time of reward (dashed line at zero) for example neurons from PMd and M1. The 

averages are separated by both trial outcome (rewarded or unrewarded) and cue uncertainty (low vs. high). 

Firing rates were strongly modulated by reward but not uncertainty, suggesting that the code is not related 

to reward-prediction error. 
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population, in which activity was averaged across both neurons and trials, separated into bins by 

the difference between each neuron’s preferred direction and the return-reach direction of the 

trial (Fig 4.S4). We used 64 uniformly spaced directional bin centers between –π and π, and time 

bins of 25 milliseconds. Although we observed a slight increase in the activity profile (Fig 4.S4, 

top and middle panels: 200–500 ms after reward in PMd and 500–800 ms in M1) for return 

reaches toward the preferred direction, there was no significant difference between rewarded and 

unrewarded trials (Fig 4.S4, bottom panels). These results suggest that the return reach plan is 

independent of the reward signal. 

 

  



141 
 

 
Figure S 4.4 | Reward signal was not spatially tuned 

Single session, monkey M: A spatiotemporal activity profile over the entire population, separated by the 

circular distance between the upcoming return reach direction and each neuron’s preferred direction, 

averaged across trials. Blue border: rewarded trials, Red border: unrewarded trials, Black border: 

difference. An increase in activity profiles for upcoming return reaches in a given neuron’s preferred 

direction for both classes of trials is indicative of the spatial tuning for the return reach plan. No significant 

differences were found between rewarded and unrewarded trials, suggesting that the spatially-tuned return 

reach plan was independent of reward encoding. 
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Figure S 4.5 | No mouth movements in unrewarded trials 

The increase in firing rate after lack of reward could potentially be explained by increased mouth or neck movement 

activity, e.g.,if the monkey would suck harder at the tube. We filmed the monkey’s behavior after rewarded 

(example above) and unrewarded trials (example below) but found that in general, the monkey did not make contact 

with the tube after unrewarded trials. 
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CHAPTER 5: DISCUSSION 

SUMMARY 

 In Chapter 1, I provided an overview of the elements of motor control related to 

uncertainty, namely the execution of movement under noisy and/or ambiguous conditions, as 

well as how outcomes of those movement can drive motor learning. In Chapters 2 and 3, I 

presented work that aimed to characterize the roles of dorsal premotor cortex (PMd) and primary 

motor cortex (M1) in the planning and execution of reaching movements when faced with two 

main types of uncertainty: (1) noise, and (2) ambiguity. I found that when faced with noisy 

information about the location of a reach target, monkeys, like  humans (Konrad P Kording & 

Wolpert, 2004; Tassinari et al., 2006), integrate both sensory and prior information to obtain 

nearly optimal task performance (see Chapter 2). During planning and execution, target 

representations within PMd were strongly modulated by the magnitude of the monkeys’ 

subjective feelings of uncertainty about their choices (as estimated from behavior). Surprisingly, 

this uncertainty-related component of neural activity did not resolve prior to action initiation. 

Rather, after emerging quickly upon trial onset, it persisted throughout the movement. M1 

activity, on the other hand, did not change with uncertainty, suggesting separate roles of PMd 

and M1 in the transition from action selection to action execution.   

From these results, I then moved to the question of target ambiguity (Chapter 3). 

Specifically, does uncertainty in a decision between two discrete targets induce the same neural 

effects in PMd as does uncertainty about a single noisy target? To address this question, I trained 

monkeys to perform a reaching task in which I first presented two opposing targets before 

indicating which was correct. According to a well-respected model (P. Cisek, 2007), the initial 
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presentation of two targets should elicit simultaneous representations in PMd. However, I found 

that population activity on single trials only ever indicated one movement plan at a time. 

Furthermore, I showed how preferences for certain targets—a commonly observed 

phenomenon—can lead to a spurious finding of simultaneous representation when using the trial-

averaged analysis methods of the prior study. These results show that PMd does not reflect the 

uncertainty caused by choice ambiguity, and likely has a different role in motor decision-making 

than previously thought. 

Finally, in Chapter 4, I presented evidence of activity in PMd and M1 that reflected the 

signaling of task failure (i.e., no reward). These areas are normally—and understandably—

studied during movement planning and execution. However, the motor cortex is also highly 

adaptive, and can quickly learn to control movement as circumstances change (e.g., as a result of 

altered limb dynamics or modified sensory feedback). This adaptability indicates a direct 

influence of task-related feedback on the motor system. In support of this, we found that neurons 

in both PMd and M1 displayed a transient response in activity following a task failure cue. 

Although we can only speculate on the corresponding mechanism, our result shows evidence that 

motor cortex receives input regarding task-specific performance. In the following sections, I will 

discuss the implications of results from Chapters 2, 3, and 4 both with respect to existing 

literature and in relation to each other.  
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PMD AND M1 DURING DECISION-MAKING 

Overview  

 As stated in the title of a 2012 paper by Wolpert and Landy (D. M. Wolpert & Landy, 

2012), “motor control is decision-making”. Each movement reflects the output of complex 

processes incorporating multisensory cues, anticipated risks and rewards, and prior 

experiences—all of which are plagued by noise and uncertainty. Knowledge of how the motor 

system arrives at a single executed movement plan under such uncertainty is central to 

understanding motor control in general. In Chapters 2 and 3 I presented results from PMd and 

M1 during the planning and execution of reaches under two different types of uncertainty 

(environmental/sensory noise and ambiguous target choice). M1 displayed no uncertainty-related 

changes in activity, and appeared to encode the executed reach reliably under all uncertainty 

conditions. In contrast, PMd was strongly affected by sensory noise, but not target ambiguity, for 

the duration of movement planning and execution. In the following sections, I will discuss how 

we might incorporate these results into a cohesive view of PMd and M1 as elements of a motor 

decision-making neural process. 

  

Planning movements under noise-related uncertainty  

In order to hypothesize about the neural mechanisms underlying movement generation in 

the presence of uncertainty, we first need to understand how motor cortex actually “represents” 

movement at the most basic level. This is still an open question in motor neuroscience. 

Traditionally, motor cortex activity has been analyzed from a parameter-centric viewpoint, in 

which the firing rates of individual neurons correspond to values of movement-related variables 

(e.g., hand velocity, muscle activation). Even in low-uncertainty conditions, tuning properties 
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tend to be broad, meaning that neurons exhibit gradated activity with movement parameters (e.g., 

reach direction). A neuron that is strongly active during rightward reaching will also be active—

although less so—for neighboring reach directions. As a result, the entire neural population can 

be interpreted as containing weighted representations of all possible movements. The same 

concept naturally extends to more uncertain conditions: higher uncertainty leads to a broader 

distribution of represented movements.  

If motor cortex—particularly PMd—represents the full distribution of potential 

movements, what then determines the singular, executed motor decision? A prominent model of 

motor cortex places PMd as the primary motor decision-making area (P. Cisek, 2006, 2007; 

Thura & Cisek, 2014). In this model, a movement plan develops in M1 only after PMd arrives at 

a final decision. However, the results from Chapter 2 contradict this hypothesis, as PMd activity 

reflected uncertainty in the reach goal throughout planning and execution. The fact that PMd did 

not arrive at a final, de-noised movement representation prior to (or even after) movement onset 

suggests that motor decision-making does not take place exclusively within PMd.  

 Although uncertainty leads to persistent effects in PMd, it does not appear to affect M1 

directly at any point during movement planning or execution (Chapter 2). These two 

observations together suggest that movement decision-making—that is, the final specification of 

a single movement in cortex—occurs in the connections between PMd and M1. This could 

perhaps result from differing levels of lateral inhibition in the two areas. Lateral inhibition 

describes the inhibitory effect that an excited neuron can have on neighboring neurons. This 

allows for a “sharper”, more specific representation by preventing incidental activation of nearby 

but functionally dissimilar neurons. Although more commonly described in sensory brain areas, 

lateral inhibition is present in motor cortex as well (Asanuma & Rosén, 1973). The strength of 
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lateral inhibition in motor cortex is modulated via input from the basal ganglia, with separate 

regions projecting to primary motor and premotor cortices (S. Beck & Hallett, 2011). This 

independent control of the allowable specificity in movement representation raises the possibility 

that movement plans become fully defined during the transition from PMd to M1 via increased 

lateral inhibition in the latter.   

 

A population-based interpretation of uncertain movement representations  

More recently, some neuroscientists have rejected the traditional parameter-based views 

in favor of a “population dynamics” interpretation of cortex (Ames et al., 2014; M. M. 

Churchland et al., 2012; M. M. Churchland, Cunningham, Kaufman, Ryu, & Shenoy, 2010; 

Michaels et al., 2016). This view stresses the influence of recurrent connections within neural 

populations, that result in constrained, population-wide patterns of correlated activity which can 

be driven by external inputs. Under this interpretation, there is no explicit relationship between 

individual neurons and specific movement parameters. Movement planning instead involves 

setting the initial state of the population that will, following a largely constrained dynamical 

evolution, generate the temporal patterns of cortical activity required to control muscles (and/or 

spinal circuits). How this translation from planning to execution might occur under uncertain 

conditions is not obvious. With the parameter-based approach, uncertainty could be described as 

causing a broadening of (i.e.,, greater uncertainty in) the distribution of represented movements. 

Under the population dynamics hypothesis, the same intuition does not hold, since movements 

are not “represented” in the first place. However, we can reframe “representation” in the 

dynamical context to mean the initial population state that ultimately produces a given 
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movement. In low uncertainty situations, the population achieves an initial state that is highly 

predictive of the movement, and so can also be said to accurately “represent” that movement. 

Under high uncertainty, the population might not achieve such well-specified initial states and 

instead settle on intermediate states that unfold somewhat unpredictably upon movement 

execution. The resulting variability in motor output might even contribute to motor learning in 

high uncertainty situations (Herzfeld & Shadmehr, 2014).  

As with the representation-based interpretation, finalization of the motor plan from a 

dynamic system viewpoint likely occurs only during the transition from planning to execution. 

Dimensionality reduction-based analysis methods of population activity suggest that movement 

preparation and movement execution correspond to different low-dimensional, orthogonal 

subspaces (Elsayed et al., 2016; Stavisky, Kao, Ryu, & Shenoy, 2017). That is, activity 

constrained to one correlation structure is used during planning, while a separate but functionally 

linked correlation structure (within the same neural population) is used during execution. Upon 

movement initiation, the neural state (that component set within the planning subspace) unfolds 

into the execution subspace to produce movement. Adding uncertainty to a movement plan might 

affect activity within the planning subspace such that the transformation to the execution 

subspace is less predictable. Even so, these uncertain initial states still elicit precise motor-

related dynamics, as evidenced by the lack of uncertainty-related effects on M1 or movement 

kinematics (Chapter 2). Regardless of whether one adopts a parameter- or dynamics-based 

perspective of motor cortex, the production of a single executed movement from an uncertain 

plan likely results from the inherent clarification that occurs in the transition between planning 

(i.e., PMd-dominated) and execution (i.e., M1-dominated).  
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Motor plan transformation from PMd to M1 

In the previous sections I suggested that final movement decisions are not completed 

within a planning phase, but rather emerge from a forced transition between planning and 

movement domains. The main role of PMd might then be to simply transform task-relevant 

inputs (e.g.,multisensory cues, prior knowledge) into a motor-planning context. This view is 

consistent with the apparent mixed selectivity of PMd neurons (Batista et al., 2007; M. M. 

Churchland, G. Santhanam, et al., 2006; Gail et al., 2009; McGuire & Sabes, 2009; Messier & 

Kalaska, 2000; Pesaran et al., 2006; Schaffelhofer & Scherberger, 2016; L. Shen & Alexander, 

1997), which includes both external goal coordinates and internal, execution-level movement 

representations. Further evidence can be found in the time-varying nature of PMd neural 

responses, which suggests some change in coordinate system even within a single reach plan. For 

example, cells exhibit strong, short-latency bursts of activity that appear to represent the 

locations of visual stimuli, but quickly shift to represent the associated movements. As a more 

extreme example, as monkeys learn to associate certain spatial cues with oppositely directed 

reaches (e.g.,an upward target that indicates a downward reach), PMd first appears to encode the 

cue location, then later the reach direction (Klaes et al., 2011). This is consistent with the view 

that PMd is involved with translating behaviorally relevant cues into an appropriate motor 

context. If the main function of PMd is indeed as a simple “translator” of the motor system, then 

it is expected that uncertainty present in sensory inputs will exist in the motor plan as well.  
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PERSISTENCE OF UNCERTAIN REACH PLANS IN PMD 

Overview 

 The previous discussion of action finalization addressed the obstacle that persistent 

uncertainty-related effects in PMd may pose for movement execution. I proposed that the 

uncertainty in a movement plan might be filtered out during the transition from planning to 

execution. This explains how movements can be executed in the absence of a well-developed 

plan, but does not address why uncertain reach plans persist throughout movement in PMd. It is 

possible that this persistence serves no function, but is simply a side effect of separate 

mechanisms controlling movement planning and movement initiation (Haith et al., 2016; A. L. 

Wong, Goldsmith, Forrence, Haith, & Krakauer, 2017). It is also possible that maintaining an 

uncertain plan contributes to motor control in some way. In the following sections, I present two 

possible contributions: error correction and/or motor learning.  

  

Error correction 

 Many of the reaching tasks used to study motor cortex (e.g., the center-out paradigm) 

involve ballistic movements. Ballistic reaches—especially when following an instructed delay 

period—are preferable experimentally because they can be completely separated into movement 

planning and open-loop movement execution components. This simplified motor behavior limits 

the number of potential confounds for analysis purposes, but is not representative of motor 

control in general. In most situations, we do not simply plan movements and then execute them 

in a fully feedforward manner. Rather, we make series of complex, continuous movements and 

use feedback to correct them.  



151 
 

 The reach plans observed in PMd might persist throughout movement to aid in correcting 

the ongoing movement. As discussed above and in Chapter 1, PMd appears to have a role in 

transforming visual cues into motor commands. It strongly connects with M1 and contains 

significant corticospinal projections, suggesting both indirect and direct influences on movement 

execution. These properties make it a likely candidate for aiding in online movement correction. 

In support of this view, a study in human subjects showed that disrupting PMd via transcranial 

magnetic stimulation (TMS) greatly reduced error correction during a visuomotor adaptation task 

(Lee & van Donkelaar, 2006). Thus, the persistence of reach plans throughout movement may 

not reflect “persistence” of a previous motor plan, but rather an ongoing process for modifying 

the action if necessary.    

 If PMd does indeed contribute to error correction, what might the results from Chapter 2 

suggest about the impact of uncertainty on this process? Unfortunately, the experimental 

approach used in Chapter 2 was not designed to address error correction directly, so the results 

are ill-suited for developing a specific model. However, the general observation that uncertain 

stimuli induced uncertain (i.e., broad or poorly-specified) representations in PMd provides some 

insight into previous behavioral observations. For example, subjects reaching to an uncertain 

target location can quickly adjust their reaches if the target suddenly jumps to a new location 

(Izawa & Shadmehr, 2008). The same corrective movements are delayed and smaller when the 

initial reach is toward a more certain target. This behavioral phenomenon might be a direct result 

of uncertainty-related effects in PMd. The broadened representations in PMd may reflect 

something akin to contingency plans which can be quickly executed if needed. 
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Motor learning 

 Another possible role of persistent uncertainty-related movement plans in PMd is in 

guiding motor learning. While M1 is largely studied for its role in movement execution, it is also 

highly plastic (Sanes & Donoghue, 2000). Motor learning generally requires knowledge of both 

the intended movement and its outcome. Reach plans in PMd might therefore persist throughout 

movement in order to interact with subsequent result-dependent signaling. I will discuss this 

possibility—and the potential relationship with the failure-based signaling described in Chapter 

4—in greater depth in a following section.  

 If PMd does indeed maintain movement representations for the purpose of motor 

learning, then we should expect uncertainty in those representations to affect learning in some 

way. The experimental setup in Chapter 2 was not designed to track learning, so the results do 

not provide direct evidence that uncertainty in PMd affects the rate of motor learning. However, 

the results do show that PMd contains information about the subjective level of uncertainty in the 

executed movement. There is also ample behavioral evidence that sensory uncertainty slows the 

rate of motor learning (Wei & Kording, 2010). I suggest that these two observations might be 

linked; that PMd activity at the time of movement completion directly contributes to functional 

changes within motor cortex.  

 

EFFECTS OF NOISE BUT NOT AMBIGUITY IN PMD 

 The results from Chapter 3 show that when monkeys were confronted with two potential 

reach targets, PMd activity only ever reflected a motor plan to one of them. This directly 

contradicts previous studies describing a parallel motor encoding mechanism in PMd during 
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similar tasks (P. Cisek & Kalaska, 2005; Coallier et al., 2015; Klaes et al., 2011; Pastor-Bernier 

& Cisek, 2011). As mentioned in Chapter 3 it may be the case that the single-neuron and trial-

average based analyses used in these studies were ill equipped to discriminate between parallel 

encoding and single reach encoding when the monkeys had intrinsic target selection biases. 

Although it is impossible to rule out that the difference was a result of task or monkey 

differences between the current and former studies, the results in Chapter 3 show no evidence of 

simultaneous representation.  

 The apparent lack of simultaneous reach representations in PMd was surprising, given 

not only the previous studies, but also the results from Chapter 2. When faced with the task of 

estimating target location from noisy information, the level of uncertainty clearly affected the 

representation in PMd. Specifically, we concluded that under high uncertainty, PMd represents a 

broad distribution of potential movements (or in the dynamics-based interpretation, a flexible 

and ill-defined initial state). It seems only logical, then, that when faced with the ambiguity of 

multiple targets, PMd might contain a multimodal distribution reflecting the potential 

movements. The fact that we did not observe this may help to explain the type of motor 

processing performed in PMd—i.e.,, its position in the sensorimotor pipeline.  

The term “uncertainty” is commonly used to describe both noise and ambiguity. 

However, these have different implications for the development of a motor plan. In the case of 

noise-related uncertainty (as in Chapter 2), there is no single sensory cue that can be used as a 

reference to specify the movement goal. Instead, the sensorimotor system must use the available 

information (sensory cues, prior knowledge, idiosyncratic preferences, etc.) to generate the 

motor plan from the ground up. Alternatively, planning under target ambiguity involves a more 

top-down type of processing. Although the choice between options may be unclear, the 
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alternative movements themselves are well-defined. Once a choice is made, the motor planning 

aspect is drastically simplified. Thus, the two cases differ mainly in the quality of final action 

specification: noise forces the motor system to develop an internally-generated movement plan, 

while ambiguity ultimately transposes into a goal-directed movement. Brain areas responsible for 

low-level movement execution are unlikely to respond differently during single and multi-target 

tasks.  

Following from the above reasoning, it is possible that we did not observe simultaneous 

representation in Chapter 3 because PMd is further downstream in the decision-making process 

than is commonly believed. The current view—which was developed from the simultaneous 

encoding result—is that movement-related decisions are made directly within motor structures 

rather than high level, cognitive brain areas (Christopoulos et al., 2015; P. Cisek, 2006, 2007; 

Pastor-Bernier & Cisek, 2011; Thura & Cisek, 2014). However, this might overstate the scope of 

PMd. PMd is ultimately an output-level brain area. While its response to visual targets and its 

role in movement planning do suggest some degree of higher-order processing, it seems unlikely 

that PMd is responsible for every type of movement related decision. The lack of evidence for 

simultaneous reach representations instead suggests that PMd is involved with the translation of 

high-level goals into movement, and not the decision-making processes that define those high-

level goals.  

Another possible reason why PMd did not exhibit simultaneous encoding might be that 

the monkeys’ behavioral strategies simply did not require it. The simultaneous encoding 

hypothesis relies heavily on an assumption—albeit a plausible one—of how one should complete 

a two-target task. To experimenters, simultaneous encoding is an attractively simple mechanism: 

the brain equally represents all possible actions, and then those representations compete (biased 
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by the available information) until only one is left. However, consider the basic structure of the 

task used by Cisek and Kalaska (2005). Two targets appear onscreen, followed by a cue to 

indicate which one is correct. This task can be performed with only a single reach plan (to one of 

the targets) combined with a matching rule to dictate whether to switch (i.e., does the color of the 

cue match the color of the planned target?). The monkeys’ behavior in our experiments suggests 

such a strategy. Admittedly, the task in Chapter 3 didn’t explicitly require the monkeys to 

memorize the locations and features of the two targets. However, if this memorization 

component is essential for eliciting simultaneous plan representations in PMd, then we cannot 

conclude that such simultaneous representation is a general neural mechanism of decision-

making. No matter the reasoning behind the difference in results (task demands, monkey 

preferences, etc.), the results from Chapter 3 argue strongly against the interpretation that 

simultaneous representation reflects a ubiquitous aspect of ambiguity-related decision-making—

if it exists at all. 

  

TASK OUTCOME AND MOTOR CORTEX 

External versus internal outcome signaling 

 The results from Chapter 4 provide evidence for transient, result-based (no reward) 

signaling in both PMd and M1. Reward and failure can alone drive motor learning in the absence 

of continuous visual feedback or even endpoint error (Izawa & Shadmehr, 2011; Nikooyan & 

Ahmed, 2015). The presence of some type of outcome signal in motor cortex is therefore not 

entirely surprising. However, it is not clear why the effect was limited to just the absence of 

external reward. A recent study also found outcome-dependent changes in motor cortex while 
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monkeys used a brain-computer interface (BCI) to move a cursor to different targets on a screen 

(N. Even-Chen, Stavisky, Kao, Ryu, & Shenoy, 2017). However, they concluded that the 

increases in activity were driven by error rather than task failure or lack of external reward. 

These two different results suggest that outcome-related signaling is a flexible mechanism that 

can be modified for different task constraints. 

 The main question surrounding the result from Chapter 4 and that shown by Even-Chen 

et al. is whether the outcome-related signals are based on external rewards or an internal 

evaluation of movement. Chapter 4 suggests an external signal source (reward) while Even-Chen 

et al. suggest an internal source (error in cursor location). This can potentially be explained by a 

difference in the sources of errors for the two tasks. In the task from Chapter 4, monkeys made 

simple, straight reaching movements that were well-practiced over multiple sessions and over 

years of natural arm control. Thus, is unlikely that there was ever significant deviation between 

their intended movements and their executed movements (i.e., internal reach errors). We can 

therefore assume that failure on the task largely resulted from the monkeys’ misunderstanding of 

the task, rather than an inability to accurately control movement. Conversely, the BCI control 

paradigm used by Even-Chen et al. naturally involves more “motor” error, since motor intent 

cannot be perfectly decoded from neural activity. The main source of failure was therefore an 

inability to accurately control movement, rather than confusion about the task itself. This 

difference in the source of error and task performance might explain the two different types of 

outcome signals. When poor task performance is driven by a misunderstanding of the task, the 

outcome-based signal in motor cortex depends on external reward (or lack thereof). When poor 

task performance is caused by inaccurate motor control, it depends on internal errors. This 
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hypothesis provides a physiological basis for the claim that the estimated source of task error 

impacts motor learning and generalization (Berniker & Kording, 2008). 

 

Potential utility of outcome-based signaling 

 One reason why motor cortex might respond strongly to failure is because of the potential 

need for a corrective movement. The increased activity we observed in motor cortex following 

failed trials may reflect heightened alertness meant to facilitate the formation of a new movement 

plan. This view is supported by an imaging study in humans (Fouragnan et al., 2015), which 

provided evidence for a fast, failure-dependent increase in brain areas tied to both movement 

planning and arousal. Due to the design of the behavioral task used in Chapter 4 (which was the 

same as Chapter 2), there was no opportunity to correct or re-attempt a failed movement, yet we 

observed failure-based responses nonetheless. It seems likely then that these signals reflect a 

subconscious, automatic mechanism of the reward-motor circuitry, and not an explicit or 

conscious strategy.  

 Alternatively, increased motor cortical activity following trial failure might indicate a 

mechanism for driving motor learning. The ultimate purpose of the sensorimotor system is to 

make useful and beneficial interactions with the environment. Failure indicates that the motor 

system should modify its behavior to improve the chance of reward in future situations. This 

motivational component might rely on the connections between motor cortex and the reward-

related basal ganglia. Recordings from the substantia nigra of monkeys indicate that the strength 

of responses from dopaminergic neurons following reward is larger when the reward is 

unexpected (Hollerman & Schultz, 1998). This reward-related feedback is also tied to greater 
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retention of a learned motor behavior (Fouragnan et al., 2015). Alternatively, punishment results 

in faster learning rates during motor adaptation (Galea et al., 2015), indicating that failure-related 

feedback can facilitate changes within motor areas. It is beyond the scope of this thesis to 

hypothesize about the specific mechanisms of motor learning at the level of individual neurons. 

However, I propose that motor cortex (PMd, M1, and potentially other motor areas) might 

receive failure-based signaling from the basal ganglia to increase plasticity and enhance motor 

learning through functional reorganization. 

 

Interaction between uncertainty and task outcome 

 The modeling approach used in Chapter 4 to characterize neural responses did not reveal 

any significant effect of uncertainty (as estimated from cue dispersion; see Chapter 4) on the 

magnitude of failure-related responses. This is somewhat surprising, since failure should be more 

unexpected on trials with lower uncertainty and therefore likely to induce a greater response in 

motor cortex. This expectation follows from current knowledge of reinforcement learning, which 

suggest that the magnitude of result prediction error (that is, the unexpectedness of success or 

failure) influences learning rate (Galea et al., 2015; Nikooyan & Ahmed, 2015; Schonberg, Daw, 

Joel, & O'Doherty, 2007). Learning is disincentivized when uncertainty is high to prevent 

overcorrection or over-adaptation to uninformative noise.  

 It is possible that we found no effect of uncertainty on the failure-based response because 

the metric did not accurately capture the true level of uncertainty. We defined “uncertainty” as 

the dispersion in the visual cue (refer to Chapter 2). However, this estimate was likely a poor 

proxy for the monkeys’ actual subjective assessment of uncertainty. The results from Chapter 2 
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show that the amount of uncertainty in a reach plan cannot be gauged from task parameters 

alone. To gain a more accurate estimate would require either evaluation of behavioral responses 

(such as the endpoint variance metric used in Chapter 2) or inference directly from planning-

related neural activity.  

 Even if the magnitude of the failure-based response does not change with movement 

uncertainty, it is still possible that there exists some interactive effect. There is evidence that 

failure-based signaling in premotor areas inhibits the consolidation of motor memories 

(Fouragnan et al., 2015), presumably to avoid similar errors in the future. High uncertainty reach 

plans in PMd might cause similar effects, even for successful movements. Chapter 2 shows that 

high uncertainty principally causes an increase in PMd activity, which persists throughout 

movement. While likely originating from separate sources—failure signaling suggests input from 

serotinergic midbrain structures (Fouragnan et al., 2015)—both failure and high uncertainty 

appear to have similar effects on PMd. Thus, even if a highly uncertain movement is successful, 

the corresponding increase in activity caused by the uncertainty might act to interrupt 

dopaminergic reinforcement mechanisms. While speculative, this kind of mechanism could 

explain the slow learning rates observed under high uncertainty conditions (Burge, Ernst, & 

Banks, 2008; Wei & Kording, 2010).    

 

LIMITATIONS AND SUGGESTED FUTURE DIRECTIONS 

Overview 

While the results presented here provide new insight into the contributions of PMd and 

M1 to motor control and motor learning, there are a number of limitations that should be 
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addressed by future work. In the following sections, I identify those limitations and discuss what 

I believe are deficits in both the experimental and analytical approaches used. I also offer 

suggestions for possible directions of future work that might improve and/or extend the scope 

and impact of these initial findings.  

 

Noise-related uncertainty and PMd – Chapter 2  

The examination of noise-related uncertainty during reach planning (Chapter 2) was 

founded on a traditional, parameter-based view of cortex. These approaches are not ideal for 

large, simultaneously recorded populations of neurons. The tuning curves and preferred 

directions associated with these analyses can (and do) change throughout the course of a trial, 

and many neurons must be discarded because they do not have the required properties (e.g.,non-

cosine tuning). For these reasons, and perhaps others, we were unable to identify any single-trial 

effects of uncertainty. Future work should reexamine the data collected from Chapter 2 using 

modern, population-based analyses. It is possible that a dimensionality reduction technique 

similar to the one used in Chapter 3 (Byron et al., 2009; Kaufman et al., 2015) might provide an 

accurate moment-by-moment estimate of uncertainty. This would open the possibility of tracking 

the effect of learning on uncertainty, or characterizing how uncertain movement decisions 

develop on individual trials. 

In addition to these analytical considerations, the results from Chapter 2 could also be 

clarified and extended through supplementary experiments. One of the most compelling findings 

was that uncertainty-related effects in PMd persisted throughout movement. However, the 

interpretation of this result is unclear. As noted, it might indicate a mechanism for movement 

correction or for aiding motor learning. A future experiment incorporating a target jump (a la 
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Izawa and Shadmehr) could reveal a correlation between reach plan uncertainty (determined 

directly from PMd) and properties of the corrective movement. Similarly, a motor learning task 

could be used to examine how the uncertainty of a single movement might affect the extent of 

adaptation on a subsequent trial.  

 

Ambiguity and decision-making – Chapter 3  

 The results from Chapter 3 argue against the view that PMd represents all potential 

movement plans simultaneously. This contradicts the results from previous experiments 

(Christopoulos et al., 2015; P. Cisek & Kalaska, 2005; Coallier et al., 2015; Klaes et al., 2011; 

Thura & Cisek, 2014) with similar—but not the same—task designs. Future experiments should 

attempt to fully replicate the structure of those tasks, but incorporate simultaneous population 

recordings in PMd to track the moment-by-moment reach plans.  

 Beyond the representation of single versus multiple reaches, the results also indicate a 

strong influence of target preferences (biases) on decision-making in ambiguous situations. 

However, future experiments are needed to illuminate the origins and strengths of those biases. 

The task could be altered to provide unequal rewards to manipulate the monkey’s target bias, and 

to determine how such a reward structure and altered bias might change the neural response. 

Providing higher rewards for initially non-preferred targets would undoubtedly increase the 

proportion of reaches to those targets. However, would the neural responses immediately 

following target appearance change to reflect the new target preferences? It is possible that the 

monkey would simply learn to switch to those plans mid-trial, without any change to the short-

latency neural responses thus revealing... Similar experiments could also help quantify the 

subjective values attributed to preferred targets. For example, free-choice responses (or reach 
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plans decoded from neural activity) could be used to modify the reward structure continuously 

until behavior suggested equal preference for all targets. The associated rewards would indicate 

the strength of the initial preference.  

 

Outcome signaling – Chapter 4 

  As in Chapter 2, the results from Chapter 4 were based on the behavior of single neurons. 

Population-wide analytical methods may be able to illuminate trial-by-trial differences in failure 

signaling that were not visible in individual neurons. Also, the potential interaction between 

uncertainty and the failure signal should be reevaluated using an improved estimate of 

uncertainty based on behavior and/or neural markers.  

The main limitation of Chapter 4, however, is that the task was not designed to test 

specifically for failure signaling. Additional experiments should be performed to directly address 

the various hypothetical implications of a failure signal: (1) facilitation of corrective movement 

planning, (2) increased plasticity and (3) blocked memory consolidation. The effect on corrective 

planning could easily be tested by presenting a second, unexpected target on some trials. 

Correlation between the size of the failure signal and some aspect of the secondary movement 

(e.g., reaction time or velocity) would provide convincing evidence that it facilitates motor plan 

switching. Alternatively, a standard motor adaptation task (e.g., visual rotation) with a condition 

providing only outcome-related feedback (Izawa & Shadmehr, 2011) could be used to address 

whether the failure signal observed in cortex directly affects motor learning.  
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CONCLUSION 

 Planning and executing movements is rarely a trivial matter. The sensorimotor system 

must account for various sources of sensory and intrinsic noise, consider multiple potential 

actions, and continuously update its understanding of how to interact with a stochastic and 

dynamic environment. The work here provides initial steps for understanding how two 

components of the motor system—PMd and M1—contribute to those tasks. Movement plans in 

PMd (but not M1) are sensitive to noise-related uncertainty in the reach goal, an effect that 

persists throughout movement execution. Upon movement termination, both PMd and M1 

respond to failure with bursts of activity. Together these results suggest an important role of PMd 

and M1 in planning and executing uncertain movements, and learning from task outcomes. 
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