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Abstract

Traditionally, research on perception and sensory systems has considered the senses as independent

and modular functions that only converge after sufficient processing in unisensory areas. Recently,

however, that view has been called into question with a number of demonstrations of multisensory

interactions that may occur as early as primary cortex. In the following studies, I demonstrate

evidence for early and remarkably content-specific multisensory interactions. First, I demonstrate

that auditory influences on visual flicker detection which critically depend on stimulus frequency,

eccentricity, and temporal correspondence. Next, I extend my investigation of early multisensory

integration processes by exploring how visual processing of speech includes rapid and highly

specific exchanges of information. Finally, I demonstrate a novel multivariate decoding technique

using deep recurrent convolutional neural networks that allows further insight into the dynamic

relationship between neurophysiological processes and perception. Taken together, this research

represents a radical departure from the traditional view of multisensory perception by highlighting

the strikingly early nature of multisensory interactions as well as novel techniques to further explore

them.
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Chapter 1

Introduction

Sensory systems have traditionally been considered independent modular functions. Multisensory

processing has therefore been thought of as a hierarchical process that occurs only after sufficient

processing in unimodal areas. For example, Ghazanfar and Schroeder (2006) describe a large body

of research demonstrating multisensory interactions in higher-order association cortex such as

STS, IPS, and areas in the frontal lobe. Recent evidence, however, has challenged this view by

demonstrating early multisensory interactions within cortical areas that have traditionally been

considered unimodal.

Critically, before identifying areas that exhibit multisensory interactions, it is necessary to

have a complete definition of what signifies such interactions. In several earlier studies, activity

in unimodal cortex during multisensory tasks was often ignored or misattributed. Current studies

define multisensory interactions as a modulation or elicitation of activity in one modality by

a separate sensory modality. Kayser and Logothetis (2007) outline three basic principles of

multisensory interactions: (1) interactions are subject to spatial constraints such that responses are

greater when stimuli are in the same location across the modalities, (2) interactions are subject to

temporal constraints such that responses are greater when stimuli occur in close temporal proximity,

and (3) multisensory interactions abide by the principle of inverse effectiveness such that response
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enhancement is greater when one modality provides little information alone. In the context of this

framework, a variety of recent findings have suggested that multisensory interactions may happen

early within unimodal cortices.

Behaviorally, multisensory interactions are often characterized by speeded reaction times. For

example, Molholm et al. (2002) demonstrated in a reaction time task that responses to multisensory

stimuli were faster than the responses to unimodal stimuli, and they exceeded the upper limit

specified by Miller’s race model (Miller, 1982). By exceeding the race model, multisensory

interactions demonstrate non-linear effects such that response times are faster than the summation

of unimodal responses. Multisensory interactions may also be characterized by perceptual changes,

such as during the sound-induced-flash illusion, in which presenting two beeps in close temporal

proximity to a flash can induce the perception of a second illusory flash (Mishra et al., 2010, 2007;

Shams et al., 2000, 2002). Similarly, delivering sub threshold TMS to peripheral visual cortex

with simultaneous auditory stimulation can induce phosphene perception when stimulation is both

spatially and temporally congruent (Bolognini et al., 2010). While these results suggest strong

multisensory influences at sites of early sensory processing, behavioral responses are limited in

that they do not allow us to precisely understand the sites and timing of such multisensory effects.

To better understand multisensory interactions, techniques including neuroanatomical tracing,

electrophysiology, and imaging can provide additional insight. Ultimately, it is necessary to use

a combination of techniques to account for the limits of each individually. For example, while

fMRI has excellent spatial resolution, it lacks the temporal resolution to precisely classify the

time course of activity. And, while EEG provides excellent temporal resolution, it lacks detailed

spatial resolution of fMRI. Electrocorticography (ECoG) provides both excellent spatial (3-5 mm)

and temporal (1 ms) resolution, but is limited in that patients may present with deficits stemming

from intractable epilepsy and electrodes are placed based on clinical needs and therefore may

not lie within the immediate area of interest. Therefore, a thorough investigation of multisensory
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interactions must incorporate information from multiple techniques and consider the strengths and

limitations of each.

Mounting evidence supports the hypothesis that direct connectivity between auditory and visual

cortices is thought to underlie many of these multisensory effects (e.g., Clavagnier et al., 2004;

Falchier et al., 2002; Ghazanfar and Schroeder, 2006; Rockland and Ojima, 2003). Schroeder

and Foxe (2005) describe connectivity between auditory and visual areas as early as A1 to the

periphery of V1. Although these connections are sparse, the authors speculate they may underlie

some multisensory interactions, particularly by modulating activity through excitatory or inhibitory

feedback. Indeed, in the following studies, we provide additional evidence for early multisensory

interactions that occur only in the periphery and may rely on these neural pathways.

Using fMRI and PET, several studies have demonstrated modulation of activity in unimodal

cortex from multisensory stimulation. Noesselt et al. (2007) investigated the differences between

auditory and visual cortices when streams of information were temporally correspondent. Using

directed-information-transfer, a statistical technique to identify the flow of information with the

brain, they observed increased information flow from STS to both A1 and V1 during temporal

correspondence, leading them to speculate that the observed effects may have resulted from back

propagation from STS to unimodal cortices. Martuzzi et al. (2007) attempted to further clarify

the sites and timing of such multisensory interactions by analyzing the dynamics of the BOLD

response. They demonstrated cross-sensory responsiveness to unimodal stimulation (e.g., primary

auditory cortex was responsive to visual stimuli). In addition, they performed latency analysis to

look at the time course of activation and discovered that multisensory stimulation led to reduced

latency in unimodal responses, consistent with the previously discussed behavioral facilitation.

Recent evidence for a potential top-down influence on these early multisensory interactions was

provided by a study in which auditory activation in visual cortex was observed during unimodal

stimulation, however only in subjects who had previously been exposed to a bimodal condition

(Zangenehpour and Zatorre, 2010). Using functional connectivity analyses, the authors demonstrate
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correlation in activity between A1 and V1 suggesting that the observed activity may result from

direct connectivity. The dependence on previous exposure suggests a top-down influence such

that auditory stimulation may serve as preparatory information only when expected. Interestingly,

several studies in the visual cognition literature have demonstrated a reduced influence of top-

down effects on areas early in the visual ventral stream. The modulatory effects described by

Zangenehpour and Zatorre (2010) may suggest multisensory features provide enhanced top-down

feedback, allowing activity in earlier sensory cortices to be modulated.

EEG and MEG have also been used to investigate the timing of multisensory interactions, as

they have the advantage of providing extremely fine temporal resolution. Molholm et al. (2002)

found early audiovisual interactions corresponding to the timing of the C1 visual component,

suggesting even initial stages of visual processing within unimodal cortex might be modulated by

multisensory stimulation. Using MEG, Shams et al. (2005) demonstrated modulation of visual

cortex at extremely short latencies during perception of the sound-induced-flash illusion. In a

follow up study, Mishra et al. (2007) used EEG to further investigate the timing of modulatory

effects in response to the sound-induced-flash illusion. They found that perception of the illusion

was associated with early modulation of both auditory and visual cortex. Additionally, they reported

changes in gamma power in visual cortex associated with perception of the illusion.

While traditional views of sensory processing held that multisensory interactions only occurred

in higher-level association cortex, a number of recent findings have challenged that view. Across a

variety of techniques, accumulating evidence points to interactions within unimodal cortex at even

the earliest stages of processing. These interactions may occur based on feedback from higher levels

or even direct connectivity between cortices. In the following studies, I provide additional evidence

for early multisensory interactions with converging evidence pointing towards reliance upon direct

neural pathways between auditory and visual corticies. Additionally, while existing evidence points

to such early multisensory interactions as purely modulatory, using novel techniques for trial-by-
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trial decoding of information, I provide evidence of highly specific exchanges of multisensory

information within early sensory cortex.

In Chapter 2, I demonstrate auditory influences on visual flicker detection which critically

depend on stimulus frequency, eccentricity, and temporal correspondence. The pattern of specificity

demonstrated in this study, in tandem with relevant evidence from neuroanatomical and neuro-

physiological studies, suggests a likely role of direct neural connectivity which underlies these

effects.

In Chapter 3, I extend my investigation of early multisensory integration processes by exploring

how visual processing of speech includes rapid and highly specific exchanges of information. Using

deep convolutional neural networks, I demonstrate that viewing speech movements and hearing

speech generate similar dynamic activity in auditory cortex, suggesting real-time content-specific

crossmodal interactions in early sensory processing.

In Chapter 4, I highlight a novel technique for decoding electrophysiologic information using

recurrent convolutional neural networks. I provide evidence for robust end-to-end classification

using this technique without any feature preprocessing, reducing the potential for bias in the

decoding pipeline.

In summary, this investigation demonstrates the early nature of multisensory binding processes

which are potentially reliant upon direct neural connectivity. These results represent a dramatic

departure from the traditional modular view of multisensory processing by highlighting highly

specific exchanges of information at early stages of cortical perceptual processing.
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Chapter 2

Amplitude-modulated sounds selectively

facilitate the detection of fast peripheral

flicker with 90° phase sensitivity

2.1 Abstract

Auditory-visual interactions in the real world involve sustained dynamic stimuli. While many

laboratory studies focused on single isolated auditory-visual events, some investigated dynamic

crossmodal interactions using amplitude-modulated (AM) sounds and visual flicker. These stud-

ies revealed slow (<4 Hz) crossmodal binding mechanisms that mediate conscious tracking of

crossmodal synchrony and synchrony-based crossmodal attention capture, as well as revealed

crossmodal temporal mechanisms that influence perceived number and rate of visual flashes by

strongly weighting the more reliable auditory temporal processing. Do dynamic sounds also di-

rectly influence the processing of visual dynamic signals? We demonstrate that AM sounds reduce

flicker-detection thresholds in the periphery (not in the fovea), preferentially for a fast flicker rate

(e.g., 12 Hz) above the temporal limit for consciously tracking auditory-visual synchrony ( 4 Hz)
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but not for a slower rate (e.g., 3 Hz), with sensitivity to 90° (but not 180°) crossmodal phase-shift.

This pattern of spatiotemporal specificity in combination with the relevant knowledge from neu-

roanatomy and neurophysiology suggest that AM sounds boost responses of frequency-doubling

visual neurons to subtle flicker, potentially through direct neural connections from auditory cortex

that target the peripherally-tuned neurons in visual cortex.

2.2 Introduction

Temporal coincidence of multisensory stimuli has been shown to provide perceptual enhancements.

For example, a flash presented simultaneously with a beep appears brighter than a flash presented in

isolation (e.g., Bolognini et al., 2010; Stein et al., 1996). Research investigating these multisensory

interactions has primarily focused on single isolated events. However, in the real world we often

encounter trains of multisensory events dispersed in time and space. For example, while enjoying

a drink at a street café and casually looking at people engaged in conversations, you may hear

rhythmic footsteps and notice a group of tourists entering your peripheral vision. It remains unclear

how rhythmic auditory and visual stimuli interact in central and peripheral visual fields. Here we

examined how hearing amplitude-modulated sounds influenced the detection of visual flicker.

Previous research suggests that the perception of temporal features is strongly influenced by

auditory signals. For example, perceived intervals and durations of auditory-visual events are

primarily determined by auditory signals (e.g., Burr et al., 2009; Ortega et al., 2014). Relevant

to the current study, the perceived rate of visual flicker is influenced by the rate of concurrent

amplitude-modulated sounds (e.g., Gebhard and Mowbray, 1959; Recanzone, 2003; Wada et al.,

2003). Further, a rapid succession of two auditory pulses can generate the illusory perception of two

visual flashes from a single flash — the sound-induced flash illusion (e.g., Shams et al., 2000, 2002).

These crossmodal effects demonstrate that auditory rhythms can influence the perceived timing,

rate, and number of visual flashes, likely reflecting a greater weighting of auditory information in
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making temporal decisions due to the superior temporal resolution provided by the auditory system

(e.g., Alais and Burr, 2004; Ernst and Bülthoff, 2004). However, these effects do not necessarily

require that auditory rhythms influence the visual processing of flicker. In the current study, we

investigated whether amplitude-modulated (AM) sounds facilitated the detection of synchronized

visual flicker and whether they generated flicker perception of a non-flickered image.

Previous research suggests that the perception of temporal features is strongly influenced by

auditory signals. For example, perceived intervals and durations of auditory-visual events are

primarily determined by auditory signals (e.g., Burr et al., 2009; Ortega et al., 2014). Relevant

to the current study, the perceived rate of visual flicker is influenced by the rate of concurrent

amplitude-modulated sounds (e.g., Gebhard and Mowbray, 1959; Recanzone, 2003; Shipley, 1964;

Wada et al., 2003). Further, a rapid succession of two auditory pulses can generate the illusory

perception of two visual flashes from a single flash — the sound-induced flash illusion (e.g., Shams

et al., 2000, 2002). These crossmodal effects demonstrate that auditory rhythms can influence

the perceived timing, rate, and number of visual flashes, likely reflecting a greater weighting of

auditory information in making temporal decisions due to the superior temporal resolution provided

by the auditory system (e.g., Alais and Burr, 2004; Ernst and Bülthoff, 2004). However, these

effects do not necessarily require that auditory rhythms influence the visual processing of flicker.

In the current study, we investigated whether amplitude-modulated (AM) sounds facilitated the

detection of synchronized visual flicker and whether they generated flicker perception of a static

image.

We considered several factors that may influence the effects of AM sounds on flicker detection,

visual eccentricity, flicker rate, and phase. In photopic vision, most aspects of visual perception,

including pattern, motion, and flicker perception, are degraded in the periphery (relative to the

fovea) at least when stimulus size is held constant (see Strasburger et al. (2011), for a review).

Thus, based on the principle of “inverse effectiveness” of crossmodal interactions (e.g., Stein and

Stanford, 2008), concurrent auditory information might be more effective in influencing peripheral
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rather than foveal visual processing. Indeed, human behavioral research has generally demonstrated

stronger auditory effects on the perception of peripherally presented visual stimuli (e.g., Noesselt

et al., 2005; Regan and Spekreijse, 1977; Shams et al., 2002, 2001). Furthermore, a retrograde

tracing study in monkeys has shown that crossmodal neural connections from auditory cortex

primarily target the peripheral representations of visual cortex (e.g., Clavagnier et al., 2004; Falchier

et al., 2002; Hall and Lomber, 2008). To test the possibility that AM sounds might selectively

influence flicker detection in the periphery, we compared flicker detection between the fovea and a

large retinal eccentricity (56°).

It is reasonable to expect that any facilitative effects of AM sounds on visual flicker detection

would depend on phase alignment. If auditory AM signals were to facilitate the processing of

visual flicker signals, they should boost visual responses in phase with the flicker. We note that both

auditory and visual cortices include neural populations that respond primarily to either stimulus

onsets or offsets, thus responding at the stimulus modulation rate — the frequency-following

neurons — and those that respond well to both stimulus onsets and offsets, thus responding at

twice the stimulus modulation rate — the frequency-doubling neurons (e.g., Benucci et al., 2007;

Hubel and Wiesel, 1968; Kim et al., 2011; Qin et al., 2007; Recanzone, 2000). If crossmodal

interactions between AM sounds and visual flicker are mediated by the frequency-following

neurons, the interactions should be abolished when AM sounds and visual flicker are 180° out-of-

phase. Alternatively, if the crossmodal interactions are mediated by the frequency-doubling neurons,

the interactions should be unchanged whether AM sounds and visual flicker are in-phase or 180°

out-of-phase because the responses of the frequency-doubling neurons would be synchronized in

either case. The responses of the frequency-doubling neurons would be out-of-phase if AM sounds

and visual flicker are 90° phase-shifted. Thus, if AM sounds influence visual flicker detection

through the frequency-following neurons, a 180° and 90° phase shifts should both abolish the

crossmodal effect, whereas if AM sounds influence visual flicker detection through the frequency-

doubling neurons, a 180° phase shift should have no effect whereas a 90° phase shift should abolish
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the crossmodal effect. We included a 180° phase shift in Experiment 1, and a 90° phase shift in

Experiments 2 and 3.

Are phase-specific interactions limited by the observers’ ability to perceptually judge cross-

modal phase alignment? Using a variety of periodically changing auditory and visual stimuli,

Fujisaki and Nishida (2005) have demonstrated that perceptual judgments of auditory-visual phase

alignment have an upper limit of 4 Hz. Thus, if the perceptual limit of auditory-visual phase

judgments is reflected in a temporal limit of phase-specific auditory-visual interactions, AM sounds

should not facilitate visual flicker detection beyond 4 Hz. Alternatively, because the auditory

system is sensitive to much higher modulation rates than the visual system (e.g., O’Connor et al.,

2011; Van Hateren, 1993), AM sounds might strongly facilitate the detection of rapid visual flicker

regardless of whether auditory-visual phase could be perceptually discriminated. We thus used

three temporal rates, 3 Hz (for which auditory-visual phase discrimination is reliable), 6 Hz (just

above the temporal limit of auditory-visual phase discrimination), and 12 Hz (well above the

temporal limit of auditory-visual phase discrimination).

In summary, we investigated how AM sounds influenced visual flicker detection as a function

of visual eccentricity, flicker rate, auditory-visual phase, and the perceptual judgment of auditory-

visual alignment. Anatomical evidence of auditory-visual neural connectivity in mammals (e.g.,

Cappe and Barone, 2005; Clavagnier et al., 2004; Falchier et al., 2002; Rockland and Ojima,

2003) and the principle of inverse effectiveness predicted that the crossmodal effect should target

peripheral vision. The potential involvement of the frequency-following neurons predicted that

the crossmodal effect should be abolished by both a 90° and a 180° auditory-visual phase shifts,

whereas the potential involvement of the frequency-doubling neurons predicted that the crossmodal

effect should be abolished by a 90° (but not by a 180°) auditory-visual phase shift. Finally, whereas

the potential involvement of the mechanisms that allow perceptual judgments of auditory-visual

alignment predicted that the crossmodal effect would have the temporal limit of 4 Hz, the potential

involvement of a crossmodal mechanism that takes advantage of the superior temporal resolution
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of the auditory system to compensate for the relatively low temporal resolution of the visual system

predicted that the crossmodal effect would be especially effective for the detection of fast flicker.

2.3 Experiment 1

2.3.1 Method

Participants

Twelve individuals from Northwestern University gave informed consent to participate in this

experiment. Five were trained psychophysical observers and seven were undergraduate students

who participated for partial course credit. They all had normal or corrected-to-normal vision and

normal hearing, and were tested individually. The five psychophysically trained observers were

tested with 3 Hz, 6 Hz, and 12 Hz auditory-visual modulations, but because the data from 3 Hz

and 6 Hz modulations little differed, we only included 3 Hz and 12 Hz modulations for the seven

undergraduate participants, and the presented analyses were conducted only for 3 Hz and 12 Hz

modulations. The undergraduate participants were tested in two sessions (about a week apart) to

increase the reliability of the data by obtaining two flicker-detection thresholds for each sound

condition (see below). Two of those participants did not return for the second session and another

participant used incorrect response keys throughout the first session, so that only one threshold

value per condition was obtained from these three undergraduate participants.

Stimuli and Procedures

Participants were tested in a dimly lit room with their heads stabilized using a chin rest. Visual

stimuli were presented with three 6 mm red LEDs (each subtending 1.15° of visual angle) mounted

on a large black cardboard surface (103° horizontal by 81° vertical) positioned 30 cm from the

participant. The LEDs were placed at the center (the foveal condition) as well as at 56° to
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the left and right of the center (the peripheral condition). Auditory stimuli were square-wave

amplitude-modulated tones (2500 Hz) presented through a piezoelectric speaker positioned directly

below each LED (4° visual angle center-to-center). Presentations of auditory and visual stimuli

were controlled by an Arduino Uno microcontroller providing sub-millisecond timing accuracy.

The timing of auditory and visual signals was verified using a photoresistor circuit and digital

oscilloscope to measure the onset of auditory and visual signals. A Macbook Pro computer running

MATLAB with PsychToolbox extensions (Brainard, 1997; Pelli, 1997) was used to control the

experiment and to record participants’ responses.

Participants performed a two-interval forced choice task. On each trial, they were presented

with two stimulus intervals, and decided which interval contained visual flicker and responded with

a button press while maintaining central eye fixation. The flicker and no-flicker intervals were

each 1.5-s long separated by a 1-s inter-stimulus interval (ISI). Flicker consisted of square-wave

luminance modulation at 3 Hz or 12 Hz (6 Hz was also included for the five psychophysically

trained observers).

There were four sound conditions (Figure 2.1). On an AM-in-phase trial, an AM sound

in-phase with visual flicker was presented during the flicker interval, whereas an unmodulated

control sound was presented during the no-flicker interval (Figure 2.1, top row). On an AM-180°-

phase-shifted trial, an AM sound 180° phase-shifted from the visual flicker was presented during

the flicker interval, whereas an unmodulated control sound was presented during the no-flicker

interval (Figure 2.1, second row). To prevent participants from being biased toward choosing the

AM-sound-present intervals as the flicker intervals irrespective of the actual perception of flicker,

we included AM-catch trials that were equal in number to the AM-in-phase and AM-out-of-phase

trials combined. On an AM-catch trial, an AM sound, either the one that would be in-phase with

flicker (Figure 2.1, top row) or the one that would be 180° phase-shifted from flicker (Figure 2.1,

second row), was presented during the no-flicker interval, whereas an unmodulated control sound

was presented during the flicker interval (Figure 2.1, third row). Finally, on an unmodulated trial,
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an unmodulated control sound was presented during both the flicker and no-flicker intervals (Figure

2.1, bottom row); this served as the baseline control condition. The four sound conditions were

randomly intermixed across trials. Thus, the presence or absence of an AM sound was independent

of whether a given interval contained flicker or no-flicker. Participants were informed of this fact

and were instructed to ignore the sounds.

Each visual stimulus began with an LED turning on and ended with the LED turning off.

During a no-flicker interval, the LED remained on for the entire duration of 1.5 s. During a flicker

interval, the LED luminance was initially raised to the maximum value (as during a no-flicker

interval) and then was alternated between the maximum and a lower value at a specified rate (3

Hz or 12 Hz; also 6 Hz for the five psychophysically trained observers). The maximum LED

luminance, Lmax, was 57.6 cd/m2, while the lower luminance, Llow, was varied to determine flicker

detection thresholds. The steady LED luminance, Lsteady, for the no-flicker interval was scaled

with the lower flicker luminance so that on each trial the flicker and no-flicker intervals appeared

approximately equal in overall brightness, using the following function determined in a pilot study:

Lsteady = L0 +(Lmax −L0)/Lmax ∗Llow, where L0 is the no-flicker luminance that appeared to be

equal in overall brightness to the highest-amplitude flicker (between Lmax and LED off) at rapid

flicker rates (12, 24, and 36 Hz); note that it is difficult to perceptually compare the time-averaged

brightness between flickered and steady stimuli when flicker rates are low.

Using an adaptive staircase procedure, QUEST, updated by Prins and Kingdom (2009), we

varied Llow (while keeping the upper flicker luminance at Lmax) to determine the depth of contrast

modulation, (Lmax −Llow)/Lmax that yielded 75% accuracy in flicker detection. An experimental

session consisted of 20 intermixed staircases, including 2 flicker rates (3 Hz and 12 Hz; 30

intermixed staircases including 3 Hz, 6 Hz, and 12 Hz for the five psychophysically trained

observers), 2 retinal eccentricities (fovea and 56° periphery randomly on the left or right side),

and 5 sound conditions (AM-in-phase trials, AM-180°-phase-shifted trials, AM-catch trials with

the sound starting with the on phase and off phase, and unmodulated-sound trials). Each staircase
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Fig. 2.1 The four sound conditions used in Experiments 1 and 2. (a) In the AM-in-phase condition,
an amplitude-modulated sound in-phase with visual flicker was presented during the flicker intervals
and an unmodulated sound was presented during the no-flicker intervals. (b) In the AM phase-
shifted condition, the amplitude-modulated sound presented during the flicker intervals was either
180° (Experiment 1) or 90° (Experiment 2) phase-shifted relative to visual flicker. (c) In the
AM-catch condition, an unmodulated sound was presented during the flicker intervals and an
amplitude-modulated sound was presented during the no-flicker intervals. This condition was
presented twice as frequently as the others so that visual flicker was presented with an amplitude-
modulated sound with equal probability. (d) In the unmodulated-sound (control) condition, an
unmodulated sound was presented during both the flicker and no-flicker intervals. All these sound
conditions were presented at 3 Hz and 12 Hz in the fovea and periphery, randomly intermixed
across trials.
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included 25 trials for a total of 500 trials (750 trials for the five psychophysically trained observers).

As noted above, four of the seven undergraduate participants underwent two sessions.

2.3.2 Analysis

In order to evaluate how sounds influenced the visual processing of flicker, it is desirable to use

a measure that linearly reflected the underlying visual sensory activation. In particular, it is well

known that neural contrast response functions tend to be logarithmically (rather than linearly)

related to image contrast at both single-cell and neural-population levels (e.g., Albrecht and

Hamilton, 1982; Campbell and Kulikowski, 1972). It is thus likely that any sound-induced changes

in flicker detection thresholds (measured as changes in just-visible contrast-modulation depth)

may not linearly reflect the sound-induced changes in the underlying visual sensory activation.

Signal-to-noise ratio provides an appropriate measure because it is reasonable to assume that the

impact of a change in sensory activation upon downstream neural processing depends on the change

relative to the magnitude of the relevant noise. We thus normalized our flicker detection thresholds

to the scale of the estimated noise magnitude.

In our experiments, flicker detection thresholds substantially varied depending on visual ec-

centricity, flicker rate, and sound conditions. Thus, the relationship between noise magnitude and

threshold level can be estimated by examining the standard deviation as a function of the mean

threshold. If flicker detection thresholds linearly reflected the signal-to-noise ratio of the underlying

visual sensory response to flicker, the standard deviation should be constant across different mean

threshold values. On the contrary, as shown in the left panels in Figure 2.2, the standard deviation

systematically increased as a function of the mean threshold in all three experiments. This indicates

that visual sensory response to flicker (relative to the relevant noise) was compressively related to

our measure of flicker-detection threshold. We thus normalized each threshold value by scaling it to

the standard deviation as follows. We first quantified the relationship between the standard deviation
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Fig. 2.2 Normalizing flicker-detection thresholds to reflect the underlying signal-to-noise ratios.
As seen in the left panels, larger mean thresholds are associated with larger standard deviations
(i.e., larger noise magnitudes) in the current data, indicating that the underlying signal-to-noise
ration, a desired measure of visual sensory activation, scales compressively with thresholds.
We thus normalized the threshold values by scaling them to the integral of the reciprocal of
the standard deviation as a function of the mean threshold, sd(x), captured by the linear fits
show in in the left panels, so that a unit change in the normalized threshold value represented a
change in the underlying visual sensory response to flicker by the relevant noise magnitude. The
normalization curves are shown in the middle panels, demonstrating log-like compressive scaling.
The effectiveness of the normalization can be seen in the right panels, where all mean threshold
values of the normalized data are associated with the standard deviation of approximately unity.
All analyses were performed on the normalized threshold values.
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and mean threshold for each experiment via linear fit (as no particular non-linear relationships

are evident as seen in the left panels in Figure 2.2). Each fitted line provided sd(x), the standard

deviation as a function of threshold (x). We then normalized each threshold value, Xi (for each

condition from each participant), by scaling it to the integral of the reciprocal of x, that is,

Xi,norm =
∫ x=Xi

x=xmin

dx
sd(x)

(2.1)

where xmin is the minimum threshold obtained in the specific experiment. This scaling

normalizes flicker detection thresholds to noise levels such that a unit change in normalized

threshold represents a change in sensory response to flicker by the magnitude of the relevant noise.

As seen in the middle panels in Figure 2.2, the normalization curves (i.e., normalized thresholds as

a function of raw thresholds) show log-like compressive scaling. If the scaling were performed

with the complete knowledge of sd(x), the standard deviation of the normalized thresholds would

be unity regardless of the threshold level. As shown in the right panels in Figure 2.2, the actual

normalization has yielded reasonably good results with most standard deviation values clustered

around unity, successfully scaling the threshold values to the relevant noise. All analyses below

were performed on the normalized threshold values.

2.3.3 Results

The normalized thresholds for the detection of foveal and peripheral flicker are shown in (Figures

2.3a and 2.3b), respectively. As expected, flicker detection thresholds were overall lower in the

fovea than in the periphery (F(1,11) = 200.94, p < .0001). Importantly, the significant interaction

between sound condition and retinal eccentricity (F(3,33) = 6.95, pGG < .007, pHF < .004) indicates

that auditory effects on visual flicker detection were different between fovea and periphery.

In the fovea (Figure 2.3a), although there was a significant main effect of flicker rate (F(1,11) =

7.05, p < .03), suggesting overall greater sensitivity to 12 Hz than 3Hz flicker, there was no
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significant main effect of sound condition (F(3,33) = .045, p> .98). Although there was a significant

interaction between sound condition and flicker rate (F(3,33) = 3.67, p < .03), none of the AM

sound conditions (AM-in-phase, AM-180°-phase-shifted, or AM-catch) significantly deviated from

the unmodulated-sound (control) condition for the detection of either 3 Hz or 12 Hz flicker (t’s

< 1.44).

In the periphery, there was also a significant main effect of flicker rate (F(1,11) = 8.62, p <

.02), suggesting overall greater sensitivity to 12 Hz than 3 Hz flicker. Unlike in the fovea, the

main effect of sound condition (F(3,33) = 9.15, p < .0002) and its interaction with flicker rate

(F(3,33) = 7.84, p < .0005) were both significant, indicating that sounds substantially influenced

flicker detection in a rate dependent manner in the periphery.

It is apparent from Figure 2.3b that the sound conditions little influenced the detection of 3 Hz

flicker; none of the AM sound conditions significantly changed 3 Hz flicker detection thresholds

relative to the unmodulated-sound control condition (t’s < 0.71). In contrast, for the detection of

12 Hz flicker, the AM sound conditions had substantial impact. Both the in-phase AM sounds

(t(11) = 4.69, p < .0007) and 180°-phase-shifted AM sounds (t(11) = 3.49, p < .006) significantly

lowered 12 Hz flicker detection thresholds relative to the unmodulated (control) sounds, with no

significant difference (t(11) = .83, p > .42) between the in-phase and 180°-phase-shifted conditions.

Thus, AM sounds presented during the flicker intervals selectively facilitated the detection of the

faster (12 Hz) flicker, whether the crossmodal phase was aligned or 180° shifted. This indifference

to a 180° phase-shift is consistent with the interpretation that the crossmodal effect is mediated by

the frequency-doubling populations of auditory and visual neurons (see the Introduction).

Finally, presenting AM sounds during the no-flicker intervals (AM-catch condition) significantly

elevated thresholds for the detection of 12 Hz flicker relative to the unmodulated-sound (control)

condition (t(11) = 4.15, p < .002). This result is consistent with the interpretation that 12Hz (but

not 3 Hz) AM sounds induced illusory flicker during the no-flicker intervals that competed with

the actual flicker presented during the flicker intervals.
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Fig. 2.3 Results of Experiment 1. Flicker detection thresholds (contrast modulation yielding
75% accuracy) normalized to reflect the signal-to-noise ratio (see Figure 2.2), are plotted for the
detection of 3 Hz and 12 Hz flicker in the fovea (a) and periphery (b), under four sound conditions:
AM-in-phase (in-phase AM sound presented during flicker intervals), AM 180°-phase-shifted
(180°-phase-shifted AM sound presented during flicker intervals), AM-catch (AM sound presented
during no-flicker intervals), and Unmodulated (steady sound presented during both flicker and
no-flicker intervals). The upper limit of AV synchrony perception is based on Fujisaki & Nishida,
2007. The error bars represent ±1 SEM adjusted for within-participant comparisons (Morey, 2008)
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There is a concern that all these effects might reflect participants having had a general bias to

choose the intervals during which AM sounds were presented as the flickered intervals over the

intervals during which unmodulated sounds were presented. This response bias interpretation seems

untenable for the following reasons. First, participants had no reason to choose the AM-sound

intervals as flicker intervals because unmodulated sounds were presented in both intervals on the

control trials and AM sounds were presented during the flicker and no-flicker intervals with equal

probability across the remaining trials. Participants were also instructed to ignore the sounds to

focus on visual flicker detection. Second, the AM-catch condition had no effect in the fovea whether

3 Hz or 12 Hz; nor did it influence the detection of 3 Hz flicker in the periphery; it selectively

elevated thresholds for the detection of 12 Hz flicker in the periphery. We could think of no reason

why participants would exercise response bias selectively in this specific case especially as the

foveal and peripheral locations as well as 3 Hz and 12 Hz modulations were randomly intermixed

across trials. It might be reasonable to speculate that participants might rely on response bias in

difficult conditions; however, flicker detection thresholds were actually lower for 12 Hz flicker than

for 3 Hz flicker in the unmodulated-sound control condition in both fovea and periphery (Fig 2.3).

Nevertheless, we addressed the response bias concern in the following experiments.

Overall, the results suggest that AM sounds selectively influence the detection of fast (12 Hz)

peripheral flicker well above the limit of perceptual judgments of auditory-visual synchronization,

but do not influence the detection of foveal flicker (fast or slow) or slow (3 Hz) peripheral flicker

within the limit of perceptual judgments of auditory-visual synchronization. The threshold-lowering

effect of the AM-in-phase condition is consistent with the interpretation that auditory amplitude-

modulation signals augment visual flicker signals, whereas the threshold-elevating effect of the

AM-catch condition is consistent with the interpretation that auditory amplitude-modulation signals

induce illusory visual flicker, with both crossmodal effects selectively influencing the processing of

fast (e.g., 12 Hz) flicker in the periphery. The insensitivity of the threshold-lowering effect to a

180° auditory-visual phase-shift suggests that the underlying crossmodal interactions are primarily
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mediated by the frequency-doubling populations of auditory and visual neurons. Nevertheless,

the results do not completely rule out the alternative interpretation that participants somehow

selectively committed response bias only when fast flicker was presented in the periphery.

2.4 Experiment 2

One goal of this experiment was to replicate the finding from Experiment 1 that AM sounds

influenced flicker detection selectively for a fast rate of 12 Hz (not 3 Hz) in the periphery (not

fovea). A second goal was to investigate the potential involvement of the frequency-doubling

populations of auditory and visual neurons suggested by the results that the threshold-lowering

effect of AM sounds for the detection of 12 Hz flicker in the periphery was relatively insensitive to

a 180° crossmodal phase-shift. A 90° phase-shift between an AM sound and visual flicker should

abolish the crossmodal effect because responses of the auditory and visual frequency-doubling

neurons would be out of phase. To test this prediction, we replaced the AM-180°-phase-shifted

condition with the AM-90°-phase-shifted condition. Note that a demonstration of 90° phase

sensitivity would also provide direct evidence against the response bias account discussed above.

2.4.1 Method

Participants

Twenty-seven Northwestern University undergraduate students gave informed consent to participate

for partial course credit. They had normal or corrected- to-normal vision and normal hearing, and

were tested individually in a dimly lit room.
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Stimuli and Procedures

The stimuli and procedures were the same as in Experiment 1, except that all participants were

tested in only one session and the AM-180°-phase-shifted condition was replaced with the AM-

90°-phase-shifted condition (Figure 2.3b).

2.4.2 Results

As in Experiment 1, flicker detection thresholds were overall lower in the fovea than in the periphery

(F(1,26) = 147.29, p < .0001), and the AM sounds selectively influenced flicker detection in the

periphery, supported by the significant interaction between sound condition and retinal eccentricity

(F(3,78) = 7.46, p < .0002).

In the fovea (Figure 2.4a), there was a main effect of flicker rate (F(1,26) = 15.07, p < .0007),

suggesting overall greater sensitivity to 12 Hz than 3 Hz flicker, but there were no significant

effects of sound condition either as a main effect (F(3,78) = 1.57, p > .20) or as its interaction with

flicker rate (F(3,78) = 1.61, p > .19).

In the periphery (Figure 2.4b), there was also a main effect of flicker rate (F(1,26) = 7.40, p <

.02), suggesting overall greater sensitivity to 12 Hz than 3 Hz flicker. Importantly, the main effect

of sound condition (F(3,78) = 13.01, pGG < .0001, pHF < .0001) and its interaction with flicker

rate (F(3,78) = 3.47, p < .03) were both significant, indicating that sounds substantially influenced

flicker detection in a rate dependent manner in the periphery. As in Experiment 1, the AM sounds

selectively influenced the detection of 12 Hz flicker. None of the AM-sound conditions were

significantly different from the unmodulated-sound control condition for the detection of 3Hz flicker

(t’s < 1.55). For the detection of 12Hz flicker, the AM-in-phase condition significantly lowered

(t(26) = 3.54, p < .002) and the AM-catch condition significantly elevated (t(26) = 3.11, p < .005)

thresholds as in Experiment 1. The critical AM-90°-phase-shifted condition did not significantly

lower 12 Hz flicker-detection threshold relative to the unmodulated control (t(26) = 1.44, p > .16)
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Fig. 2.4 Results of Experiment 2. Flicker detection thresholds (contrast modulation yielding 75%
accuracy) normalized to reflect the signal-to-noise ratio, are plotted for the detection of 3 Hz and 12
Hz flicker in the fovea (a) and periphery (b), under four sound conditions: AM-in-phase (in-phase
AM sound presented during flicker intervals), AM 90°-phase-shifted (90°-phase-shifted AM sound
presented during flicker intervals), AM-catch (AM sound presented during no-flicker intervals),
and Unmodulated (steady sound presented during both flicker and no-flicker intervals). The upper
limit of AV synchrony perception is based on Fujisaki & Nishida, 2007. The error bars represent
±1 SEM adjusted for within-participant comparisons (Morey, 2008)
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while the AM-in-phase condition significantly lowered 12 Hz flicker-detection threshold relative to

the AM-90°-phase-shifted condition (t(26) = 2.22, p< .04), indicative of 90° phase sensitivity of the

crossmodal effect. Overall we replicated Experiment 1 in that AM sounds selectively influenced the

detection of fast (12 Hz, not 3 Hz) flicker in the periphery, with AM sounds presented in-phase with

visual flicker during the flicker intervals lowering detection thresholds (relative to the unmodulated

control sound) while the same AM sounds presented during the no-flicker intervals elevating

detection thresholds. Crucially, 90° phase-shifting of AM sounds eliminated the facilitative effect,

consistent with the mediation by the frequency-doubling populations of auditory and visual neurons.

The 90° phase sensitivity has also provided direct evidence against the possibility that the facilitative

effect of an in-phase AM sound might be explained by response bias.

2.5 Experiment 3

In Experiments 1 and 2, we presented AM sounds either during the flicker intervals or during

the no-flicker intervals. We used this design because we hypothesized that an AM sound might

augment visual flicker signals when it is synchronized with flicker, but it might also induce illusory

visual flicker when a steady visual stimulus is viewed. The results from Experiments 1 and 2

are consistent with the possibility that for the processing of fast (12 Hz) flicker in the periphery,

AM sounds augment visual flicker signals as well as induce illusory visual flicker. The 90° phase

sensitivity of the threshold-lowering effect demonstrated in Experiment 2 ruled out a response-bias

interpretation at least for the crossmodal augmentation effect. The goal of this experiment was to

replicate the crucial 90° phase sensitivity, to further rule out a response-bias interpretation, and to

evaluate the relative strength of the crossmodal flicker augmentation effect and the illusory flicker

induction effect.

We presented an identical AM sound during both the flicker and no-flicker intervals on a given

trial, so that response bias could not play a role. In the AM-in-phase condition, an amplitude-
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Fig. 2.5 Sound Conditions used in Experiment 3. In this experiment, any amplitude-modulated
sound was presented during both the flicker and no-flicker intervals (a) In the AM-in-phase
condition, an amplitude-modulated sound in-phase with visual flicker was presented during the
flicker intervals and the same amplitude-modulated sound was also presented during the no-flicker
intervals. (b) In the AM-90°-phase-shifted condition, an amplitude-modulated sound 90° phase-
shifted relative to visual flicker was presented during the flicker intervals and the same amplitude-
modulated sound was also presented during the no-flicker intervals. (c) In the unmodulated-sound
(control) condition, an unmodulated sound was presented during both the flicker and no-flicker
intervals. All these sound conditions were presented at 3 Hz and 12 Hz in the fovea and periphery,
randomly intermixed across trials.

modulated sound in-phase with visual flicker was presented during the flicker intervals (as in

Experiments 1 and 2), and the same amplitude-modulated sound was also presented during the

no-flicker intervals (Figure 2.5a). In the AM-90°-phase-sifted condition, an amplitude-modulated

sound 90° phase-shifted relative to visual flicker was presented during the flicker intervals, and the

same amplitude-modulated sound was presented during the no-flicker intervals (Figure 2.5b). The

unmodulated-sound control condition was the same as in Experiments 1 and 2, where an identical

unmodulated sound was presented during both the flicker and no-flicker intervals (Figure 2.5c).

In the AM-in-phase condition, an AM sound presented during the flicker intervals would

augment the synchronized flicker signals whereas the same AM sound presented during the no-

flicker intervals might induce illusory flicker that would compete with the flicker signals presented

during the flicker intervals. Thus, only if the flicker augmentation effect during the flicker intervals

was reliably larger than any flicker induction effect during the no-flicker intervals, the AM-in-phase
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condition would lower flicker detection thresholds relative to the unmodulated-sound control

condition. In the AM-90°-phase-shifted condition, a phase-misaligned AM sound presented during

the flicker intervals would not substantially augment the flicker signals whereas the same AM sound

presented during the no-flicker intervals might induce illusory flicker. If the induced illusory flicker

during the no-flicker trials was reliably larger than any small flicker augmentation effect produced

by a 90°-phase-shifted AM sound during the flicker intervals, the AM-90°-phase-shifted condition

would elevate flicker detection thresholds relative to the unmodulated-sound control condition.

Thus, a reliable threshold reduction in the AM-in-phase condition would provide evidence for the

augmentation of flicker signal by a synchronized AM sound over and above any effect of illusory

flicker induction by an AM sound, whereas a reliable threshold elevation in the AM-90°-phase-

shifted condition would provide evidence for the induction of illusory flicker by an AM sound over

and above any small augmentation of flicker signals by a phase-misaligned AM sound.

2.5.1 Method

Participants

Seventeen Northwestern University undergraduate students gave informed consent to participate

for partial course credit. They had normal or corrected- to-normal vision and normal hearing, and

were tested individually in a dimly lit room.

Stimuli and Procedures

The stimuli and procedures were the same as in Experiment 2, except that an identical amplitude-

modulated sound was presented during both the flicker and no-flicker intervals in the AM-in-phase

and AM-90°-phase-shifted conditions (Figure 5), and the AM-catch condition was removed.
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2.5.2 Results

Consistent with the results from Experiments 1 and 2, flicker detection thresholds were overall

lower in the fovea than in the periphery (F(1,16) = 254.00, p < .0001). Partially due to the fact that

the AM-in-phase condition was virtually identical to the unmodulated-sound control condition

in the fovea (Figure 2.6a) and the AM-90°-phase-shifted condition was virtually identical to the

unmodulated-sound control condition in both the periphery (Figure 2.6b), the interaction between

sound condition and retinal eccentricity was not statistically significant (F(2,32) = 5.48, p < .07).

Nevertheless, the results have provided clear evidence regarding the hypotheses we considered.

In the fovea, there were no significant main effects of sound condition or retinal eccentricity,

or any interaction between them (F’s < 2.87) (Figure 2.6a). Interestingly, the threshold for

detecting 3 Hz flicker was significantly lower in the AM-90°-phase-shifted condition relative to both

the unmodulated-sound control condition (t(16) = 2.80, p < .02) and the AM-in-phase condition

(t(16) = 3.15, p < .007). A similar trend is seen in Figure 2.4a (left side) from Experiment 2. We

do not have an reasonable explanation as to why, specifically for the detection of 3 Hz flicker in the

fovea, a 90°-phase-shifted AM sound would be beneficial while a synchronized AM sound would

have no effect. For the detection of 12 Hz flicker in the fovea, AM sounds produced no significant

effects whether they were in-phase or 90°-phase-shifted relative to flicker (t’s < 0.39). Overall, the

three experiments have consistently demonstrated that AM sounds make minor to little impact on

flicker detection in the fovea.

In the periphery, AM sounds selectively influenced the detection of 12 Hz flicker as indicated

by the significant interaction between sound condition and flicker rate (F(2,32) = 5.03, p < .02).

Neither types of AM sounds influenced the detection of 3 Hz flicker relative to the unmodulated

control sound (t’s < 0.89; Figure 2.6b, left side). In contrast, the in-phase AM sound significantly

lowered the detection threshold for 12 Hz flicker relative to both the unmodulated control sound

(t(16) = 3.98, p < .002) and the 90°-phase-shifted AM sound (t(16) = 2.98, p < .009) (Figure 2.6b,
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Fig. 2.6 Results of Experiment 3. Flicker detection thresholds (contrast modulation yielding 75%
accuracy) normalized to reflect the signal-to-noise ratio, are plotted for the detection of 3 Hz
and 12 Hz flicker in the fovea (a) and periphery (b), under three sound conditions: AM-in-phase
(in-phase AM sound presented during flicker intervals and the same AM sound presented during
no-flicker intervals), AM 90°-phase-shifted (90°-phase-shifted AM sound presented during flicker
intervals and the same AM sound presented during no-flicker intervals), and Unmodulated (steady
sound presented during both flicker and no-flicker intervals). The upper limit of AV synchrony
perception is based on Fujisaki & Nishida, 2007. The error bars represent ±1 SEM adjusted for
within-participant comparisons (Morey, 2008)
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right side), while the 90°-phase-shifted AM sound produced little effect relative to the unmodulated

control sound (t(16) = 0.57, p > .57). We have thus replicated the results from Experiment 2 that

AM sounds selectively facilitate the detection of 12 Hz (not 3 Hz) flicker in the periphery with 90°

phase sensitivity.

Because AM sounds were presented during both the flicker and no-flicker intervals in this

experiment, the result has conclusively demonstrated that an in-phase AM sound augments 12

Hz visual flicker signals in the periphery over and above any illusory flicker that might have been

induced during the no-flicker intervals. However, the result did not provide conclusive evidence

regarding the induction of illusory flicker. Because the threshold for the detection of 12 Hz flicker

was not elevated in the 90°-phase-shifted condition relative to the unmodulated-sound control

condition, it is unclear whether the detrimental effect of illusory flicker induction during the

no-flicker intervals was offset by a small augmentation of flicker signals by the 90°-phase-shifted

AM sound during the flicker intervals, or there was no reliable induction of illusory flicker.

2.6 Discussion

While previous auditory-visual research primarily focused on single crossmodal events in isolation,

we investigated how dynamic auditory and visual stimuli interacted. We asked several specific

questions. Do amplitude-modulated (AM) sounds improve visual flicker sensitivity, generate

illusory visual flicker, or both? Do any of these dynamic crossmodal interactions differ between

the fovea and periphery? How do dynamic auditory-visual interactions depend on modulation

rate, crossmodal temporal phase, and the ability to perceptually judge auditory-visual temporal

alignment?

All three experiments consistently demonstrated that AM sounds selectively influenced flicker

detection in the periphery. This result is consistent with the inverse-effectiveness principle of

crossmodal interactions (e.g., Stein and Stanford, 2008) because photopic vision is generally
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less precise in the periphery relative to the fovea (see Strasburger et al. (2011), for a review).

The peripheral specificity of these results may also suggest that dynamic crossmodal interactions

are mediated by neural connections from auditory cortex that primarily target the peripheral

representations within visual cortex, as has been demonstrated in non-human mammals (e.g.,

Cappe and Barone, 2005; Clavagnier et al., 2004; Falchier et al., 2002; Hall and Lomber, 2008;

Rockland and Ojima, 2003).

AM sounds improved peripheral detection of 12Hz but not 3Hz flicker across all three experi-

ments. Thus, AM sounds improved flicker detection selectively for rates well above the temporal

limit of consciously tracking auditory-visual synchrony ( 4 Hz; Fujisaki and Nishida (2005)). This

suggests that there are at least two separate mechanisms through which AM sounds influence

visual flicker perception, slow crossmodal-binding mechanisms that support conscious tracking of

auditory-visual synchrony, and fast mechanisms that facilitate the detection of subtle flicker. When

multiple items are flickering at similar rates but in different phases from one another, none of them

would stand out. However, when an AM sound (e.g., auditory pulses) is presented in synchrony

with one of the flickering items, that item would stand out and attract attention (e.g., Van der Burg

et al. (2008)). This synchrony-based crossmodal attention capture is limited to low flicker rates

(1-2 Hz), and is absent when flicker rates are higher than the temporal limit ( 4 Hz) of consciously

tracking auditory-visual synchrony (Fujisaki et al., 2006; Fujisaki and Nishida, 2005; Keetels

and Vroomen, 2012). These results suggest that the relatively slow (< 4 Hz) crossmodal-binding

mechanisms mediate conscious tracking of auditory-visual synchrony and synchrony-based cross-

modal attention capture. In contrast, we have demonstrated that AM sounds selectively increase

peripheral sensitivity to 12 Hz (but not 3 Hz) flicker. At 12 Hz, the 90° phase sensitivity of this

effect demonstrated in Experiments 2 and 3 (Figures 2.4b and 2.6b) corresponds to crossmodal

temporal precision of 20 ms, suggesting that AM sounds facilitate the detection of dynamic visual

signals through fast auditory input to visual cortex, potentially through direct neural connections

from auditory cortex to the peripheral representations of visual cortex (see above). The fact that
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this fast dynamic interaction does not enable conscious tracking of auditory-visual synchrony is

consistent with the fact that neural processing within primary visual cortex does not necessarily

generate awareness (e.g., Blake and Fox, 1974; Blake et al., 2006; Leopold and Logothetis, 1999;

Sweeny et al., 2011).

The characteristics of auditory-visual phase dependency provided an additional insight into

underlying neural interactions. Both auditory and visual cortices include subpopulations of neurons

that primarily respond to either stimulus onsets or offsets—the frequency-following neurons—and

those that respond to both stimulus onsets and offsets—the frequency-doubling neurons (e.g.,

Benucci et al., 2007; Hubel and Wiesel, 1968; Kim et al., 2011; Qin et al., 2007; Recanzone, 2003).

The fact that the in-phase AM sounds and 180°-phase-shifted AM sounds both equivalently facili-

tated flicker detection (Experiment 1), but the 90°-phase-shifted AM sounds did not (Experiments 2

and 3), suggests that the dynamic crossmodal interactions are mediated by the input from auditory

cortical frequency-doubling neurons to visual cortical frequency-doubling neurons (or involving

frequency-doubling neurons in at least one modality) because frequency-doubling responses would

have been in-phase whether AM sounds were in- with or 180° phase-shifted from visual flicker but

out-of-phase when AM sounds were 90° phase-shifted from visual flicker; frequency-following

responses would have been out-of-phase when AM sounds were 180° phase-shifted from visual

flicker.

Turning to the question of whether AM sounds induced illusory flicker on static visual stimuli,

12 Hz AM sounds presented during the no-flicker intervals in the AM-catch condition (Experiments

1 and 2) elevated flicker detection thresholds, but 3 Hz AM sounds did not. A plausible interpretation

is that AM sounds crossmodally induced illusory flicker when the modulation rate was sufficiently

fast (e.g., 12 Hz). Nevertheless, we cannot conclusively rule out an alternative interpretation

that the threshold elevation effects in the AM-catch condition obtained in Experiments 1 and 2

were due to a response bias (to choose AM-sound present intervals as flicker intervals), though it

seems unlikely that response bias somehow occurred only when 12 Hz (but not 3 Hz) flicker was
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presented in the periphery (not fovea) despite the fact that all trial types were randomly intermixed,

AM sounds were presented during the flicker and no-flicker intervals with equal probability, and

participants were instructed to ignore sounds. Unfortunately, although Experiment 3 that excluded

response bias by design provided strong evidence for 90° phase-sensitive crossmodal augmentation

of visual flicker signals, it did not provide positive evidence for the induction of illusory flicker.

Finally, the current results may have relevance to a phenomenon known as the sound-induced

flash illusion (SIFI) in which a single visual flash appears to be two flashes when it is accompanied

by a rapid succession of two auditory pulses (Shams et al., 2000, 2001). Consistent with the

current result, the SIFI was shown to be minimal when the stimulus onset asynchrony between the

sequential auditory clicks was longer than 100 ms, that is, when the rate of the auditory clicks was

slower than 10Hz (Apthorp et al., 2013). Does the SIFI occur as a result of auditory-induced visual

flicker? This possibility was suggested by Wilson (1987). Alternatively, the SIFI may be driven

by auditory influences on the perceived number of visual flashes owing to the greater temporal

resolution of auditory processing (Apthorp et al., 2013). Consistent with the latter possibility, SIFIs

have been reliability demonstrated with high-contrast stimuli (e.g., Apthorp et al., 2013; Kumpik

et al., 2014), whereas our results suggest that a 12 Hz AM sound would have induced (if any)

rather weak visual flicker equivalent to only 13% contrast modulation (the threshold elevation in

the AM-catch condition averaged across Experiments 1 and 2). Further, although a contribution

of sound-induced visual flicker to the SIFI would predict stronger SIFIs for lower-contrast visual

stimuli, SIFIs have been shown to be equivalent (or even stronger) for higher-contrast visual stimuli

(Kaposvári et al., 2014). In addition, although we obtained no evidence of flicker induction in the

fovea, reliable SIFIs have been demonstrated in the fovea (Kaposvári et al., 2014), though SIFIs

tend to be stronger in the periphery (Kumpik et al., 2014). Thus, the mechanisms through which

fast (e.g., 12 Hz) AM sounds facilitate flicker detection or might induce illusory flicker seem to be

different than the mechanisms through which dynamic auditory stimuli influence the perceived
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number of flashes or rate of visual flicker (e.g., Gebhard and Mowbray, 1959; Recanzone, 2003;

Shams et al., 2000, 2002; Shipley, 1964; Wada et al., 2003).

In summary, we have demonstrated that AM sounds facilitate visual flicker detection selectively

in the periphery (but not in the fovea) for rates well above (but not below) the temporal limit of

synchrony-based auditory-visual binding and conscious tracking of auditory-visual synchrony,

with sensitivity to a 90° phase-shift (but no sensitivity to a 180° phase-shift). This pattern of

results combined with prior results suggest that AM sounds influence the perception of visual

dynamics through three distinct mechanisms: (1) slow crossmodal-binding mechanisms that

mediate conscious tracking of crossmodal synchrony and synchrony-based crossmodal attention

capture (e.g., Fujisaki et al., 2006; Fujisaki and Nishida, 2005; Keetels and Vroomen, 2012;

Van der Burg et al., 2008), (2) crossmodal temporal-integration mechanisms that influence the

perceived number and rate of visual flashes by strongly weighting the more reliable auditory

temporal processing (e.g., Apthorp et al., 2013; Gebhard and Mowbray, 1959; Kaposvári et al.,

2014; Kumpik et al., 2014; Recanzone, 2003; Shams et al., 2000, 2002; Shipley, 1964; Wada et al.,

2003), and (3) fast sensory mechanisms, likely mediated by direct neural connections from auditory

cortex targeting the peripherally tuned frequency-doubling neurons in visual cortex, boosting visual

cortical responses to subtle flicker in a phase-specific manner (the current results).
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Chapter 3

Silent lip reading generates speech signals

in auditory cortex

3.1 Introduction

Speech perception is inherently multisensory with sounds and facial movements both providing

relevant information. One way in which visual speech movements facilitate auditory speech

processing (Sumby, 1954) is by providing a temporal cue; for example, rapidly processed visual

motion signals may reset the phase of the ongoing oscillatory auditory cortical activity (Kayser

et al., 2008) to be optimal for processing upcoming speech signals (Schroeder et al., 2008). An

intriguing possibility is that visual processing of speech movements may also convey linguistic

information to auditory cortex. There is some fMRI evidence suggesting that speech- and object-

relevant visual information is conveyed to auditory cortex (Calvert et al., 1997; Hall et al., 2005;

Meyer et al., 2010; Pekkola et al., 2005). Whereas these prior studies focused on spatial patterns

of fMRI BOLD activity, we focused on the dynamics of electrophysiological activity. Because

visual speech movements and vocalization are intrinsically dynamic and temporally correlated, we

hypothesized that viewing silent speech movements may generate phoneme-specific dynamic neural
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activity in auditory cortex. To monitor auditory cortical activity with millisecond resolution, we

recorded electrocorticographic activity from depth electrodes implanted within primary/secondary

auditory cortex in epilepsy patients. Patients were presented with one of four representative

auditory phonemes (ba, da, ta, or tha) or silent videos showing mouth movements articulating those

phonemes. Using an ensemble of deep convolutional neural networks to decode temporal patterns

of neural activity, we demonstrate that viewing speech movements generates dynamic activity in

auditory cortex similar to that generated while listening to the articulated phonemes. These results

highlight a remarkably content-specific exchange of dynamic sensory information at early stages

of the cortical processing hierarchy.

3.2 Experiment 4

3.2.1 Method

Patients

Two patients (One female and one male) with epilepsy (36 and 32 years of age, respectively)

participated in this study during invasive work-up for medically intractable seizures. They partic-

ipated during stable periods between seizures, either before or after seizures had been recorded

and characterized using ECoG monitoring from chronically implanted depth electrodes (5 mm

center-to-center spacing, 2 mm diameter). Electrodes were placed according to the clinical needs

of the patients. Written consent was obtained from each patient according to the direction of the

institutional review board at the University of Chicago.

MRI and CT Acquisition and Processing

A preoperative T1-weighted MRI and a postoperative CT scan were acquired for each patient to aid

in localization of electrodes. Cortical reconstruction and volumetric segmentation of each patient’s
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MRI was performed with the Freesurfer image analysis suite, which is documented and available

for download online (http://surfer.nmr.mgh.harvard.edu/; Dale et al., 1999; Fischl et al., 1999).

Postoperative CT scans were registered to the T1-weighted MRI through SPM and electrodes were

localized along the Freesurfer cortical surface using customized open-source software developed in

our laboratories (available for download online https://github.com/towle-lab/electrode-registration-

app/).

Behavioral Task

Patients were seated in a hospital bed or nearby chair. Stimuli were delivered using a laptop

computer (using PsychToolbox; Brainard, 1997; Pelli, 1997) and a pair of free-field speakers. On

each trial, patients were presented with one of four phonemes [ba, da, ta, tha] (an auditory trial), or

a silent video showing the mouth portion of a face articulating one of the phonemes (a visual trial).

Each stimulus lasted 1000 ms. They were also presented with audiovisual stimuli (a phoneme

and video played concurrently) on some of the trials, but those trials were not relevant to the

aim of the current study. Videos used in phoneme and viseme trials were recorded by a trained

actor and included 10 instances of each phoneme for a total of 40 movies. Each movie (the audio

portion for an auditory trial and the video portion for a visual trials) was presented twice in each

of the phoneme and viseme conditions, totaling 80 trials per condition (10 video or audio clips

x 4 phonemes x 2 repetitions); all conditions were randomly intermixed across trials. Each trial

was advanced only after patients reported aloud which phoneme was spoken or articulated (via lip

movements).

ECoG Analysis

Electrocorticographic (ECoG) signals were recorded at a sampling rate of 1024 Hz. Data from

electrodes near regions previously or subsequently surgically resected were removed from analyses,

as were excessively noisy electrodes (with overall amplitude variability exceeding three standard

http://surfer.nmr.mgh.harvard.edu/
https://github.com/towle-lab/electrode-registration-app/
https://github.com/towle-lab/electrode-registration-app/
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(B) (D)
Patient 2

L R

L R

Fig. 3.1 Electrodes were selected based on both anatomical and functional criteria. (A, B) Anatom-
ical location in left superior temporal sulcus and (C, D) the dependence of response amplitudes
upon auditory frequency confirm the localization of the selected electrodes in early auditory cortex
for both patients. High gamma power was normalized to baseline period. Shaded region represents
95% confidence interval.
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Fig. 3.2 (A) Illustrations of an auditory trial and a visual trial. Participants viewed a fixation
screen during an auditory trial. A visual trial began with a static face, followed by a movie of
lip movements. (B, C) Average high gamma activity (reflective of synaptic activity and spike
rates) from the auditory cortical electrodes in response to phonemes (red curves) and visemes (blue
curves) for patient 1 (B) and patient 2 (C). High gamma power was normalized to 500 ms baseline
period. Shaded region represents 95% confidence interval.
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deviations). ECoG signals were common average referenced, and 500ms epochs were extracted

beginning at each phoneme or viseme onset (marked on ECoG recordings with a voltage isolated

TTL trigger). Raw ECoG data was used for classification. Electrodes within primary auditory

cortex were selected for analyses based on their anatomical location as well as the strength of

auditory evoked potentials (see figure 3.1).

Classification of electrocorticographic activity was conducted using an ensemble of deep

convolutional neural networks (CNNs). CNNs are non-linear networks comprising multiple layers

designed to extract high-dimensional features from multivariate time series (LeCun et al., 2015).

We utilized an ensemble method as they have been shown to often outperform single models

(Dietterich, 2000). Eight CNNs were included in the ensemble, each constructed with a different

architecture based on the VGG network (Simonyan and Zisserman, 2014) with 2-3 convolutional

layers before max pooling. All convolutional layers performed 1-dimensional convolutions with

parametric rectified linear unit activation (He et al., 2015b). Each model had a different number of

filters, filter length, and depth to promote diversity in the ensemble. We utilized dropout between

layers to reduce overfitting (Srivastava et al., 2014). All models were built and trained using Keras

(Chollet, 2015), running on the Theano framework.

Classification accuracy was determined by performing 30 Monte Carlo iterations of randomly

partitioning the phoneme or viseme epochs of ECoG data into training (80%, of which 20% were

used for validation), and test sets (20%). Within each randomly partitioned iteration, each of the

eight CNNs was trained using the Adam optimization algorithm (Kingma and Ba, 2015) with a

learning rate of 0.001 for a maximum of 50 epochs or until loss, as calculated via cross entropy

(Golik et al., 2013) on the separate validation set, reached a minimum. To increase the amount of

available data for training, new samples were generated for each phoneme or viseme within the

training set using a convolutional variational autoencoder 3.4. The autoencoder was trained to learn

the latent parameters of the underlying probability distribution. We then selected random samples

from this latent normal distribution and used a generative model to map this distribution to the
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Fig. 3.3 High-dimensional non-linear features are derived from the input time-series without
requiring specification of pre-defined features. (A) Input to the network was a half-second raw
ECoG signal from auditory cortex in response to a phoneme or viseme trial. (B) The output of
a hidden unit (represented above by a circle) in the initial convolutional layer was computed as
the dot product between a learnable filter and a time-segment of the input signal. The learnable
filter was slid across the input signal to produce an activation map (represented above by a single
rectangular layer). A set of activation maps is derived (displayed as multiple rectangular layers
stacked along the depth dimension), each of which represents a distinct time invariant temporal
feature. (C) The next convolutional layer receives input from the previous convolutional layer. (D)
In max pooling layers, data were subsampled, allowing deeper layers of the network access to
information spanning longer time periods. (E) Dropout regularization was utilized between max
pooling and deeper convolutional layers to minimize overfitting during training. (G) The output
from the last convolutional layer was flattened and input to a densely connected layer. (H) At the
final classification layer, a four unit densely connected layer with softmax activation corresponding
to the phoneme or viseme (ba, da, ta, or tha) output the predicted label of the input signal.
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original input space. We generated 2000 new phoneme or viseme epochs for classification training

because classification accuracy on the test set (always entirely consisting of the actual data epochs)

plateaued near this value. Each trained CNN then predicted the identities of the phonemes or

visemes on the separate and unseen test set. Ensemble predictions were determined via hard-voting,

a technique by which the predicted identity of the phoneme or viseme is determined by selecting

the majority vote across all eight model predictions. The ensemble’s accuracy for each randomly

partitioned iteration was calculated as the proportion of the phonemes or visemes in the test set that

were correctly identified. The 30 randomly partitioned iterations generated 30 accuracy values for

each condition with the variability reflecting the reliability of the ensemble model. To evaluate the

statistical significance of decoding, we performed an additional 30 randomly partitioned iterations

on label-shuffled data (i.e., the phoneme or viseme labels were randomly shuffled across epochs)

for each condition to perform t-tests (2-tailed at al pha = 0.05) with iteration as the random effect.

We chose 30 iterations because an error distribution of the mean has been shown to approach

normality for sample sizes of 30 or larger.

3.2.2 Results and Discussion

Several studies have demonstrated that viewing speech movements modulates auditory cortical

response during auditory speech perception (Besle et al., 2009, 2008, 2004; Hall et al., 2005; Nath

and Beauchamp, 2012). It has also been demonstrated that viewing silent speech movements

alone can crossmodally activate auditory cortex (Calvert et al., 1997; Hall et al., 2005; Pekkola

et al., 2005). For example, fMRI BOLD activation in auditory cortex was significantly greater

in response to vocalization-related facial movements than to nonlinguistic facial movements

(Calvert et al., 1997) or to moving circles (Pekkola et al., 2005), with the amount of auditory

cortical activation from speech movements correlated with speech reading performance (Hall

et al., 2005). These fMRI results suggest that visual processing of speech movements conveys
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Input Output

Generative decoder

Fig. 3.4 A convolutional variational autoencoder was used to generate novel synthetic trials to
increase the number of training samples. The autoencoder is trained to learn the joint distribution
of over the input data and a set of latent variables representing the normal probability distribution.
By sampling from this distribution following training, the generative decoder can be used to create
synthetic trials.

speech-related information to auditory cortex. However, these results did not elucidate the content

of visual speech-movement information conveyed to auditory cortex. Because speech signals are

intrinsically dynamic, phonemic information coded in early auditory processing is likely to be

contained in the dynamics of neural activity. Prior fMRI studies (Calvert et al., 1997; Hall et al.,

2005; Pekkola et al., 2005) did not have sufficient temporal resolution to reveal such temporal

coding. To elucidate the dynamic content of auditory cortical activity crossmodally evoked by

visual speech movements, we recorded electrocorticographic (ECoG) activity from macroscopic

depth electrodes implanted within left primary/secondary auditory cortices in two epilepsy patients.

Auditory cortical electrodes were identified based on their anatomical locations as well as the

strength of auditory evoked potentials. The selected electrodes exhibited clear frequency selectivity

(Fig. 3.1), confirming their locations in early auditory cortex (Moerel et al., 2014).

The patients heard four representative auditory phonemes (ba, da, ta, and tha) or saw silent

videos of speech movements articulating these phonemes, visemes. Average stimulus-evoked high-
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gamma power shows that phonemes strongly activated auditory cortex while visemes generated little

overall activation (Fig. 3.2). However, hidden in these average evoked responses is information

about individual phonemes and visemes that may be represented in the complex temporal patterns

of evoked activity. Specifically, although visemes do not strongly evoke auditory neural activity,

they may still reliably modulate the temporal pattern of auditory neural activity in a viseme-specific

manner.

To determine the degree to which the dynamics of auditory cortical response to phonemes

and visemes contain phoneme-specific information, we attempted to classify heard phonemes

or seen visemes based on the temporal patterns of auditory neural activity using an ensemble

of deep convolutional neural networks (CNNs; see Methods). CNNs have recently been shown

to achieve remarkable success on many challenging tasks involving classification of complex,

multidimensional datasets, including image (e.g., face) recognition and natural language processing

(LeCun et al., 2015). An advantage of CNNs over other pattern-classification algorithms is that

CNNs allow the decoding of information directly from raw data without having to pre-define

specific features to be fed to a pattern classifier. As such, CNNs can be used as an effective tool for

determining whether specific information is contained in complex signals. CNNs are comprised of

multiple convolutional layers with each layer deriving multiple time-invariant dynamic features (or

location-invariant spatial features in other applications) from the input signal (Fig. 3.3).

We trained an ensemble of CNNs to classify the four phonemes or visemes on a trial-by-trial

basis for a subset (80%) of the ECoG data. Additional training samples were generated using a

convolutional variational autoencoder trained on multiple trials of the same phoneme (see methods

for additional information). The ensemble’s classification accuracy was evaluated by testing its

performance on the remaining ECoG data (20%; see methods). Because each independent trial

could be labeled as one of four possible phonemes or visemes (ba, da, ta, and tha), the a priori

chance-level for classification would be 25%. However, because actual chance-level classification

accuracy depends on sample size (Combrisson and Jerbi, 2015), we used a label-shuffling procedure
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to generate null distributions to determine statistically significant levels of classification. Successful

classification would indicate that temporal patterns of auditory cortical activity contain reliable

information about the identity of the four phonemes or visemes.

Fig. 3.5 Accuracy for classifying phonemes and visemes based on 0-500ms post-stimulus activity
from the auditory cortical electrodes for patient 1 (A) and patient 2 (B). Dashed lines indicate
classification accuracies for the corresponding label-shuffled data. The error bars represent ±1
standard error of the mean with Monte Carlo iteration as the random effect (see methods for
details).

We successfully classified phoneme evoked activity well above the null distribution (Fig. 4),

yielding classification accuracy of 57.3% (t(58) = 55.60, p < 0.001, against the label-shuffled

accuracy of 25.5%) for patient 1 and 44.8% (t(58) = 25.97, p < 0.001, against the label-shuffled



52

accuracy of 26.8%) for patient 2. For visemes, the CNN ensemble yielded classification accuracy

of 29.8% patient 1 (t(58) = 6.69, p < 0.001, against the label-shuffled accuracy of 26.5%) and

accuracy of 30.3% (t(58) = 10.31, p < 0.001, against the label-shuffled accuracy of 23.3%) for

patient 2. Classification accuracy was significantly greater for phonemes than for visemes (patient

1, t(58) = 49.46, p < 0.001; patient 2, t(58) = 21.81, p < 0.001), indicating that dynamic auditory

cortical activity more reliably conveys auditory than visual information.

Interestingly, our results demonstrate a consistent pattern of crossmodal asymmetry. Despite

significant, but near chance decoding of viseme evoked auditory cortical activity in one patient,

our initial evidence suggests visemes may generate noisy signals in auditory cortex that diffusely

contains phoneme-specific information. To better understand this possibility, we asked whether the

dynamic auditory cortical activity evoked by visual speech movements is similar to that evoked by

the corresponding phonemes. If yes, a CNN ensemble trained to identify viseme-specific dynamic

auditory cortical activity should also be able to identify the corresponding phoneme-specific activity.

This was indeed the case, with mean classification accuracy of 51.8% (t(58) = 48.45, p < 0.001,

against the label-shuffled accuracy of 21.4%) for patient 1 and 36.3% (t(58) = 17.26, p < 0.001,

against the label-shuffled accuracy of 23.0%) for patient 2. Importantly, the CNN ensemble trained

to classify visemes classified phonemes with greater accuracy than visemes themselves (patient

1, t(58) = 34.87, p < 0.001; patient 2, t(58) = 7.55, p < 0.001). In contrast, as demonstrated above,

the viseme-trained CNN ensemble was barely able to classify new examples of viseme-evoked

activity, and a phoneme-trained CNN ensemble was unable to classify viseme-evoked activity. If

visemes generate a noisy representation of phoneme-evoked activity in auditory cortex, a classifier

trained with visemes would learn the overlapping consistent activation pattern corresponding to

phoneme-specific dynamic activity, but the classification accuracy for visemes would be relatively

low due to the low consistency and SNR provided by viseme-evoked activity. However, a classifier

trained on viseme-evoked activity should perform well on decoding phoneme-evoked activity due

to the consistent overlapping feature space. Thus, our result is consistent with the idea that visemes
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and phonemes evoke similar phoneme-specific dynamic activity in auditory cortex, except that

viseme-evoked activity reflects a noisy representation low in SNR.

A number of recent studies have suggested that multisensory convergence is widespread

throughout the cortex so that crossmodal signals can modulate or even drive responses in primary

sensory areas of the brain (Shams et al., 2005; Watkins et al., 2007, 2006). While much research

has focused on crossmodal modulations of the strength and/or reliability of sensory signals, some

studies have demonstrated crossmodal exchanges of content-related information in early cortical

processing. In particular, fMRI studies have shown that visual speech movements generate BOLD

activity in auditory cortex (Meyer et al., 2010; Pekkola et al., 2005) with the amount of activation

correlated with speech reading performance (Hall et al., 2005), suggesting that visual processing of

speech movements convey speech-related information to auditory cortex. Another fMRI study has

demonstrated that silent videos of sound-implying objects can be classified based on the spatial

pattern of BOLD activity in auditory cortex, suggesting that visual processing of objects conveys

object-related information to auditory cortex (Meyer et al., 2010). However, no prior study has

answered the question of whether visual signals can activate auditory cortex in a content-specific

manner, generating object- or speech-specific neural activity similar to that evoked by auditory

stimuli.

In natural speech perception, visual speech movements and auditory phonemes provide dy-

namic signals that are temporally correlated, implying the relevance of temporal coding. Thus,

whereas prior investigations of crossmodal sensory activation focused on spatial patterns of BOLD

activity using fMRI, we focused on dynamic patterns of electrophysiological activity using ECoG.

Using ensembles of CNNs to decode the content of temporal patterns of neural activity, we have

demonstrated that viewing visual speech movements generate dynamic auditory cortical activity

that is virtually equivalent (albeit lower in signal-to-noise ratio) to that evoked by hearing the corre-

sponding phonemes. The fact that our results are based on the initial 500 ms of stimulus-evoked

electrophysiological activity suggests that visual speech movements are concurrently translated
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into phoneme-specific dynamic neural activity in auditory cortex. It is as if one hears speech

while lip reading. Whereas prior research suggested that visual processing of facial movements

facilitates speech perception by providing temporal cues (Kayser et al., 2008; Schroeder et al.,

2008), our results suggest that it can also facilitate speech perception by dynamically augmenting

auditory speech signals. The current results add a new insight to the growing body of literature

on crossmodal interactions in early sensory processing by demonstrating that those interactions

include exchanges of content-specific information.
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Chapter 4

Recurrent convolutional neural networks

for electrophysiologic signal decoding

4.1 Introduction

Neuronal activity in the brain gives rise to extracellular electric and magnetic activity which can be

recorded from electrodes with high temporal resolution. Electric potentials and magnetic fields can

be recorded in humans and animals both non-invasively from the scalp (electroencephalography

[EEG], magnetoencephalography [MEG]) and invasively via subdural electrodes on the surface

of the cortex (electrocorticography [ECoG]) or electrodes implanted within the brain (local field

potentials [LFP]) (Buzsáki et al., 2012). These recordings can be utilized to provide information

about neural interactions and computation, and therefore have been widely utilized by both

clinicians and researchers.

Analysis of electrophysiological data is encumbered by properties of the signal including the

dynamic non-stationary nature of brain activity as well as the relatively poor signal-to-noise ratio

of non-invasive recordings. As such, common analysis techniques such as event related potentials

(ERPs) or time-frequency analysis rely upon averaging across multiple trials and many subjects.
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However, by averaging ERPs over trials and subjects, reliable brain dynamics can be masked

(Gaspar et al., 2011; Stewart et al., 2014).

Multivariate machine learning algorithms allow detection of consistent patterns of neural

activity on a trial-by-trial basis (Stewart et al., 2014). These algorithms have been utilized for a

variety of purposes including automated sleep scoring (Gao et al., 2016; Längkvist et al., 2012;

Sunagawa et al., 2013), epilepsy diagnosis (Alkan et al., 2005; Mirowski et al., 2009, 2008), brain-

computer interface technologies (Lotte et al., 2007), as well as for basic research (Müller et al.,

2008; Valenzi et al., 2014; Wang et al., 2014). Conventional approaches to electrophysiological

classification involve the use of supervised learning algorithms such as support vector machines

(Crisler et al., 2008; Mirowski et al., 2008), decision trees (Brankačk et al., 2010; Gao et al., 2016;

Mossbridge et al., 2013), naïve bayes (Gao et al., 2016; Rytkönen et al., 2011), and neural networks

(Alkan et al., 2005; Baldwin and Penaranda, 2012; Subasi and Erçelebi, 2005). Such approaches,

however, often require labor-intensive preprocessing and extraction of expertly-selected features

which widely vary across studies.

Here, we describe a technique for classifying electrophysiological data end to end on raw signals

without requiring feature extraction, using an ensemble of recurrent convolutional neural networks.

We demonstrate accuracy exceeding conventional machine learning methods. A python-based

open-source toolbox for performing these analyses is provided.

4.2 Methods

4.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) have recently been shown to achieve remarkable success

on a variety of challenging tasks involving complex, multidimensional datasets, including image

recognition, facial recognition, and natural language processing (LeCun et al., 2015). They are
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similar to standard multi-layer perceptron (MLP) networks in that they are comprised of multiple

stacked layers. However, in a CNN, each convolutional layer is comprised of multiple kernels (or

filters), each of which computes the dot product between its kernel (or filter) and the input, rather

than performing the complete matrix multiplication required in a fully connected MLP. Parameters

are shared within each kernel, allowing the kernels to extract location- or time-invariant spatial or

temporal features from an input signal. Importantly, each filter learns to extract features during

training, thereby allowing CNNs to decode information directly from raw data without having to

pre-define specific features to be fed to a pattern classifier (LeCun et al., 2015).

4.2.2 Recurrent Convolutional Neural Networks

In a standard CNN, connectivity is comprised of only feed-forward inter-layer connections. As a

result, layers at early stages of the network cannot access higher order contextual features of the

input data. At deeper layers, following subsampling via maxpooling or strided convolution, hidden

units have large enough spatial or temporal receptive field sizes to access higher order features with

a larger spatial or temporal scale, yet the feed-forward architecture does not permit this information

to be utilized by earlier layers.

An alternative architecture proposed by Liang and Hu (2015), the recurrent convolutional neural

network (RCNN), introduces recurrent intra-layer connectivity to a standard CNN. The RCNN is

comprised of multiple stacked recurrent convolutional layers (RCLs)(Fig. 4.1), each of which is

a subnetwork comprised of both feed-forward and recurrent connectivity (Fig. 4.2). The RCL

structure, which provides inputs from earlier layers to later layers within the subnetwork, resembles

the standard RNN computation (see Fig. 4.2) and can be reformulated as a recurrent structure

highly similar to a conventional RNN (Liao and Poggio, 2016). The RCNN therefore represents a

system with multiple sequentially connected recurrent sub-systems. The intra-layer connectivity

within each RCL allows the subnetwork to evolve over time and provides multiple paths from
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Fig. 4.1 Simplified architecture of a sample Recurrent Convolutional Neural Network (RCNN).
High-dimensional non-linear features are derived from input raw amplitude electrophysiologic
signals. Recurrent intra-layer connectivity allows time evolving activity over static inputs that is
modulated by local contextual information

input to output, allowing deep networks with a reduced number of hyperparameters that remain

less prone to vanishing gradients than standard CNNs. Several state of the art convolutional neural

networks based on similar architectures (e.g., residual networks, fractal networks) have recently

been shown to achieve remarkable success on image recognition tasks, taking first place in the

2015 ImageNet Large Scale Visual Recognition Challenge (He et al., 2015a; Szegedy et al., 2016).

We provide a set of Python functions to easily build and use RCNN networks for electrophysio-

logic signal decoding. Our implementation of the RCNN architecture follows that of Liang and Hu

(2015), with an initial convolutional layer followed by stacks of RCLs before max pooling. A final

dense layer with softmax activation is used for classification. Hyperparameters can be modified in

the model initialization as demonstrated in several examples in the accompanying code. For all of

the following examples, we utilize He weight initialization throughout the network, with weights

sampled from a Gaussian distribution with rectified linear unit scaling factors (He et al., 2015b).

We utilized the Adam optimization algorithm (Kingma and Ba, 2015) with a learning rate of 0.001,

and light L2 regularization of 0.0025.
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Fig. 4.2 Connectivity within a recurrent convoltional layer (RCL) is comprised of both feedforward
and recurrent connectivity. Input from earlier layers is provided directly to later layers by means of
skip connections (feedforward connections to later timepoints).

4.2.3 RCNN Ensembles

In an ensemble classifier, several instances of a single model or multiple models each classify the

target data and the consensus between models is determined for final classification. Ensembling is

commonly used with weak learners such as decision trees, and has been shown to substantially

improve generalizability and robustness over single models (Breiman, 1998, 2001; Geurts et al.,

2006). More recently, ensembles of strong learning models such as deep neural networks have also

been shown to provide similar improvements in accuracy (Deng and Platt, 2014), and are therefore

becoming increasingly popular.

Multiple methods for combining predictions are used by researchers to improve predictive

models. In the accompanying code, we provide utilities for ensemble decision making including

hard-voting, averaging, and stacking of meta-models. In a hard-voting ensemble, each model

predicts the class of the target data, and the majority vote is selected as the final predicted class.

In an averaging ensemble (or ‘soft-voting’ ensemble), each model predicts the probability that
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a target sample belongs to a particular class. The probabilities are then averaged across models,

and the maximum class probability is selected as the final predicted class. A stacked ensemble

consists of two stages. First level models (in this case, multiple RCNN models) predict classes (or

class probabilities) for target data. These first level predictions are then used as features for second

level meta-models, from which the majority predicted class is selected as the final prediction of the

stacked model. We provide examples of each type of model ensemble in the accompanying code.

4.3 Experiment 5: Automatic Sleep Scoring in Mice

4.3.1 Methods

Detailed methods for collecting EEG/EMG recordings were previously reported by Gao et al.

(2016). In summary, mice were implanted with EEG and EMG electrodes for sleep recording.

Recordings were divided into 10 second epochs with a sampling rate of 1000 Hz (downsampled to

200 Hz) with each 24h recording consisting of 8640 epochs.

Sleep data were scored by Gao et al. (2016). In their original experiment, each recording was

scored by two human experts: the primary scorer was used to train the classifiers and compare

computer-human agreement, while the secondary scorer was used to compare human-human

agreement.Using PAL 8200 Sleep Score software (Pinnacle Technologies, Lawrence, KS), the

scorer viewed each 10 second epoch and labeled it as either Wake, rapid eye movement sleep

(REM), or non-rapid eye movement sleep (NREM), or excluded it from analysis if the signal

contained a major artifact.

In the present experiment, classification of the EEG/EMG activity was conducted using an

ensemble of deep recurrent convolutional neural networks (RCNNs). Three RCNN models were

included in the ensemble, each with a different number of RCLs and filters. We performed sample-

wise normalization of data between 0 and 1. Classification accuracy was determined by performing
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5 Monte Carlo iterations of randomly partitioning EEG/EMG data into training (80%, of which

20% were used for validation), and test sets (20%). For evaluation of classifier accuracy, epochs

are considered as errors if in disagreement with human classification (based on the primary scorer).

Each model was trained for a maximum of 200 epochs, or until loss, as calculated via cross entropy

on the separate validation set, reached a minimum.

Additional models included for comparison include random forest, naïve bayes, and support

vector machine. We also included two standard non-recurrent convolutional neural network

architectures. The first, a small network comprised of 3 convolutional layers each with a 3-sample

wide kernel, with max pooling following each convolutional layer (Conv-small), and a larger

network following the VGG architecture (Simonyan and Zisserman, 2014) with 5 consecutive

convolutional blocks comprised of 2 stacked convolutional layers followed by max pooling (Conv-

large). We used paired t-tests on accuracy values of 5 folds for statistical comparisons. We used

one sample t-tests for comparisons to the original study presented in Gao et al. (2016).

Ensemble predictions were determined via soft-voting (in the accompanying code, we provide

examples of multiple ensemble techniques). The ensemble’s accuracy for each randomly partitioned

iteration was calculated as the proportion of the trials in the test set that were correctly identified.

The five randomly partitioned iterations generated five accuracy values for each condition with the

variability reflecting the reliability of the ensemble model.

4.3.2 Results

As described by Gao et al. (2016), a second human scorer disagreed with the original scorer with

an average error rate of 0.046. Therefore, we define human accuracy on this sleep classification

task is 95.4%.

In the following comparisons, we utilize raw un-preprocessed amplitude data (normalized

between 0 and 1). Standard classification algorithms, including several included in the original
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Fig. 4.3 Mean accuracy of classifiers as well as human accuracy as measured via consistency with
a second scorer. Convolutional neural network models outperform standard models. Ensembled
RCNN models achieve extremely high accuracy rates (99.7%), significantly outperforming all
other models, as well as humans on this task.

study, performed poorly on this raw data. Among single classifiers, random forest was the most

accurate, achieving accuracy of 60.2% (SD = .01). SVM performed slightly worse, with accuracy

of 56.1% (SD = .0002). Naïve bayes was the least accurate classifier, achieving 39.1% accuracy

(SD = .01).

A simple convolutional neural network (Conv-small) significantly outperformed all standard

classification algorithms on raw data (t(4) = 33.81, p < .0001 compared to the highest performing

standard algorithm, random forest), achieving accuracy of 88.6% (SD = .02). Increasing the

capacity of the convolutional neural network and implementing a more standard architecture

(Conv-large) led to a significant increase in performance (t(4 = 14.04, p = .0001), achieving 98.1%

accuracy (SD = .01), which is significantly greater than human accuracy (t(4) = 5.51, p = .005).
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A single recurrent convolutional neural network significantly outperformed Conv-large (t(4) =

3.44, p = .026), achieving accuracy of 99.4% (SD = .003), which is also significantly greater than

human accuracy (t(4) = 29.9, p < .0001). An ensemble of three recurrent convolutional networks,

each with a different number of RCLs and filters, achieved accuracy of 99.7% (SD = .0009),

significantly outperforming the single RCNN model (t(4) = 3.78, p = .02). Consistent with Gao

et al. (2016), REM trials were the most difficult to accurately decode, with the RCNN ensemble

incorrectly classifying REM trials as Wake trials on 3% of trials.

Table 4.1 Experiment 5: RCNN Ensemble Classification Metrics

Condition Precision Recall f1 Score Support

Wake 1.0 1.0 1.0 4803
NREM 1.0 1.0 1.0 3385
REM 0.99 0.97 0.98 432

Avg / Total 1.0 1.0 1.0 8620

Table 4.2 Experiment 5: RCNN Ensemble Confusion Matrix

Predicted Label
Wake NREM REM

Tr
ue

L
ab

el Wake 4796 1 6

NREM 3 3382 0

REM 13 0 419

4.4 Discussion

These results demonstrate a remarkable effectiveness of using recurrent convolutional neural

networks for classifying electrophysiologic data end-to-end using raw amplitude signals. The
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recurrent connectivity implemented in these models may perform particularly well due to the

time-varying nature of such signals. We demonstrate improved accuracy in automatic sleep scoring

compared to state-of-the-art techniques Gao et al. (2016), while reducing the difficulty and potential

bias inherent in feature preprocessing. By combining the predictions of multiple well-performing

models, we achieve near-zero error rates on automated sleep scoring, significantly outperforming

human accuracy as measured via inter-rater consistency.

In the present study, we trained subject-specific models, which would require the building of an

initial training set for each subject. Future research to explore the effectiveness of subject-general

models may provide a more broadly useful tool for automated sleep scoring. Additionally, models

are trained in an offline fashion and training is highly time consuming, limiting their potential

usefulness for brain-machine interfaces.

While the applicability of these models to human sleep staging has not yet been evaluated,

they have proven highly capable of classifying human electrocorticographic data (see chapter 3).

Additional experiments to classify human EEG and MEG will provide a critical validation of these

techniques.

In conclusion, recurrent convolutional neural networks are a highly effective method for

classifying electrophysiologic signals in an end-to-end fashion. These techniques for trial-by-trial

decoding of electrophysiologic data are critical for variety of purposes including automated sleep

scoring (Gao et al., 2016; Längkvist et al., 2012; Sunagawa et al., 2013), epilepsy diagnosis (Alkan

et al., 2005; Mirowski et al., 2009, 2008), as well as for understanding fundamental questions about

neural processing (Müller et al., 2008; Valenzi et al., 2014; Wang et al., 2014).

The code used for these experiments is available at https://github.com/jacobzweig/RCNN_

Toolbox

https://github.com/jacobzweig/RCNN_Toolbox
https://github.com/jacobzweig/RCNN_Toolbox
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Chapter 5

Conclusion

Across two experiments I demonstrate early multisensory interactions with converging evidence

pointing towards potential reliance upon direct neural pathways between auditory and visual corti-

cies. In Chapter 2, I investigated early multisensory interactions and the potential neural populations

that are targeted via auditory influences on visual flicker detection. By psychophysically investi-

gating the effects of amplitude modulated sounds on flicker sensitivity, I demonstrated evidence

for rapid (operating beyond the temporal limit of consciously tracking auditory-visual synchrony)

phase-specific auditory influences on early dynamic visual processing. The spatiotemporal charac-

teristics of the behavioral results combined with the relevant knowledge from neuroanatomy and

neurophysiology suggest that the underlying interactions are mediated by direct neural connections

from auditory cortex that target the peripherally-tuned frequency-doubling neurons in visual cortex.

In Chapter 3, I extended my investigation of early multisensory integration processes by explor-

ing how visual processing of speech includes rapid and highly specific exchanges of information.

While previous evidence from neuroimaging studies in humans suggested that multisensory interac-

tions during speech might occur at the level of primary sensory cortex, the poor temporal resolution

of fMRI had limited our understanding of the content of visually driven activity in auditory cortex

during speech processing. Using deep convolutional neural networks applied to data from direct
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neural recordings in human surgical patients, I demonstrated that silent lip reading activates primary

auditory cortex in a manner similar to auditory speech. These results add new insight into the

growing body of literature on crossmodal interactions in early sensory processing by demonstrating

that those interactions include exchanges of highly detailed content-specific information.

Finally, in Chapter 4 I demonstrated a novel technique for probing these types of questions

using end-to-end decoding of electrophysiologic signals. Using this technique provides state-

of-the-art accuracy while simplifying the decoding pipeline by removing the need for extensive

feature preprocessing steps. I show successful automated sleep classification in mice that exceeds

human accuracy. Additionally, I provided an open-source toolbox with documentation and several

examples of advanced decoding and model-ensembling techniques with simple abstraction.

The combined set of studies shed light on the early and highly-specific nature of multisensory

interactions, a dramatic departure from the traditional view of the sensory processing hierarchy.

The multivariate decoding techniques demonstrated in these studies will continue to advance our

understanding of the dynamic relationship between neural processes and perception.
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