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ABSTRACT

The field of materials discovery is undergoing an unprecedented transition from laboratory to

computer. Behind this transition is the new ability to accurately compute material properties, es-

pecially energetic stability, from first principles with density functional theory (DFT). However,

DFT remains computationally expensive, and DFT-based materials discovery is intractable, espe-

cially in high throughput, when the search space comprises a combinatorically explosive number

of possible compositions and structures with many degrees of freedom. In this thesis, we develop

ways to accelerate two legs of computational materials discovery: crystal structure solution and

the search for new stable compounds, and employ our methods to conduct materials discovery in

high throughput. For the first leg, crystal structure solution, we develop a novel method of rapidly

solving crystal structures from experimental diffraction data by searching for candidate prototypes

from materials databases and evaluating their DFT stabilities and diffraction pattern matches, and

then deploy this method in high throughput to solve 521 structures of compounds with existing

diffraction data. For the second leg, the search for stable compounds, we compare and improve the

workflows of previously developed search methods based on data mining and machine-learned for-

mation energy prediction, and then deploy the methods in high throughput to discover thousands of

new compounds that DFT predicts to lie on the convex hull of stability. Finally, we provide a com-

prehensive literature review of recent efforts to develop artificial intelligence for the accelerated

discovery of new materials that are stable at zero and finite temperature.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Fundamental to the field of materials science and engineering is our collective knowledge of crys-

talline materials. For centuries, tens of thousands of unique crystals have been dug up from the

Earth’s crust and their properties studied and exploited, and more recently novel materials are be-

ing conjured up in laboraties and meticulously engineered to advance exciting new technologies.

Among countless examples of this are the engineering of semiconducting inorganic compounds

with record high figure of merit for high-performance and inexpensive thermoelectric devices,

[1, 2] the discovery of electrode and solid-state electrolyte materials with targeted properties for

zero-emissions electrochemical energy storage, [3–5] and the development of design guidelines for

heteroanionic compounds that exhibit unique phenomena owing to their complex bonding chem-

istry. [6] Central to these exciting developments is our public knowledge of materials that can be

made, and their crystal structures which are the key to unlocking their properties.

As of today, tens of thousands of unique crystals have been described in the literature, and

thanks to recent advances in computational power, the complete set of materials can be obtained

online and in publicly available, searchable materials databases including the Inorganic Crystal

Structure Database (ICSD) and the Powder Diffraction File (PDF). As our many collective ef-

forts to find materials have become well integrated, we are now able to study chemical trends and

analyze properties over the entire set of known materials. For instance, databases of highly ac-

curate first-principles density functional theory calculations, such as the Open Quantum Materials
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Database (OQMD) and Materials Project (MP), have enabled an automatic calculation of phase

diagrams and various electronic properties with just crystal structures as input. [7–11]

A crucial question remains unanswered: how many materials are still out there for us to find,

and what are their crystal structures? According to the OQMD, there are 45366 unique structures

in the ICSD portion of the database (downloaded in 2011), and the rate at which new structures

are introduced has been steadily increasing in recent years. [12] By no means is this the complete

number, or is it anywhere close to the complete number of inorganic materials that could hypothet-

ically be made and used. New materials, for the most part, are still found the conventional way:

dug up from the Earth, or synthesized in a laboratory, both very slow and laborious undertakings.

There are, however, endeavors to automate the process of materials discovery. What’s stopping

us from quickly finding the other materials via automated methods? Two obstacles are holding

us back: (1) crystal structure solution from experimental diffraction patterns remains a challenge,

frustrating our ability to explore the properties of materials via first-principles study of their crystal

structures; and (2) predicting new materials that can be made in a lab is overwhelming to say the

least, given the enormity of the search space and the computational expense of simulations.

In this document, we describe novel automated methods to accelerate the process of crys-

tal structure solution and materials prediction, and execute the automated methods in a high-

throughput manner to resolve thousands of outstanding structure solution problems and discover

new materials. In the following two sections (Section 1.1.1 and 1.1.2), we give a more thorough

overview of the barriers to accelerated materials discovery and how our novel approaches seek

to overcome those barriers. Next, In Section 1.2, we present DFT and OQMD stability evalua-

tion, which are the backbone of our computational materials discovery methods. In Chapter 2, we

present our novel method of solving crystal structures by searching for and evaluating prototypes

in the OQMD database, and present the results of using the method to solve the structures of 521
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compounds from the PDF for which x-ray diffraction data exists but structure is missing. In Chap-

ter 3, we test the performance of already-developed materials discovery methods, based on data

mining and machine learning, and construct workflows to greatly improve their performance in

finding new stable compounds. In Chapter 4, we provide an overview of the tens of thousands of

newly predicted stable compounds in OQMD, a large fraction of which were obtained using the

materials discovery methods discussed in Chapter 3. In Chapter 5, we provide a comprehensive

review of how artificial intelligence is being developed by various research teams to accelerate the

prediction of stable materials, both at zero temperature and finite temperature. Finally, in Chapter

6, ...

1.1.1 Solving Structures

To date, there are numerous materials that have been discovered and synthesized, but their crys-

tal structures remain unknown. Consequently, such materials are often not included in materials

databases, especially crystal structure and DFT databases, and are therefore not considered by re-

searchers who routinely use these data sources. For example, the ICSD is a very popular source

in the materials community, but by definition does not include materials whose crystal structures

are unknown. Furthermore, knowledge of crystal structure is required in order to understand the

material’s properties, and is a required input for first principles calculations of materials properties.

So, why are we often missing crystal structure, which is such a crucial piece of information?

The answer lies in the difficulties of the experiments and interpretation of the output data. In

attempt to obtain crystal structure, the common experiment is x-ray or neutron diffraction, where

an x-ray/neutron beam is fired at a crystalline sample, and due to the high translational symmetry

of the crystal, the beam diffracts at specific angles. Each lattice plane with atoms lying on it will

diffract the beam at an angle specified by Bragg’s law. Thus, a diffractometer will detect intensity
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peaks at the relevant angles away from the incident beam; the data set is called a “diffraction pat-

tern.” This diffraction pattern must then be inverted (from reciprocal space to real space) in order

to obtain the crystal structure. At this step, there can be complications that make the diffraction

pattern hard to interpret. For one, the sample may contain impurities such that the diffraction pat-

tern cannot be mapped to a perfect crystal. In many cases, the sample may have multiple types of

crystals that must somehow be separated from the data. Another complication is “texturing,” or

preferred grain orientation of the crystal. Though not always achievable, the way to have a stan-

dardized, one-to-one mapping between diffraction pattern and crystal structure is to either have

a single crystal or a uniformly powdered crystal. If neither of these conditions is met, then the

diffraction pattern will look different from the standardized one (specifically, the relative peak

heights will be different and some peaks may appear/disappear where they shouldn’t). Another

problem arises if the crystal contains very light elements that diffract very weakly, like hydrogen,

or the crystal contains heavy elements that dwarf the signal of lighter elements. Furthermore, even

for a perfect sample, the crystal structure can still be very difficult to determine. The process of

inverting diffraction pattern to crystal structure removes the phase of diffracted waves, and so there

is not necessarily a one-to-one mapping that can be straightforwardly computed. What crystallog-

raphers do firstly is to determine the unit cell parameters and space group, by investigating which

peaks from the data are allowable based on symmetry and the distance between peaks. This step

alone can be difficult, if an expert (or even a computer) cannot identify a specific symmetry group

from the data. From here, one then determines the atomic coordinates that correspond to the peak

heights. Here, crystal structure solution algorithms are used to find a set of atomic coordinates

that matches the diffraction pattern. If the search space is too large, then the algorithm fails to find

the right solution. There can be multiple sets of atomic coordinates that correspond to the same

diffraction pattern. This also requires knowledge of the crystal’s composition, which is not always
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known in some experiments. If the diffraction pattern is recognizable from previous experiments,

one can use databases to find an isostructural material (i.e.has the same “prototype”) with the same

diffraction pattern. But even when this is possible, it may be difficult to refine the exact atomic

coordinates, particularly when the sample/data quality is too poor.

There are numerous crystal structure solution algorithms, and recent algorithms have utilized

DFT in order to obtain structures that are physically plausible. [13–16]. The First-Principles-

Assisted Structure Solution (FPASS) method, developed previously by our group, combines DFT

with R-factor (i.e.the match to diffraction pattern) in order to obtain solutions that are both phys-

ically plausible and consistent with experimental diffraction data. [17–20] While these methods

have demonstrated success at solving many problems, they are very computationally expensive

and limited to solving just a few structures at a time.

We are interested in employing a method to more rapidly solve the numerous unsolved crystal

structures so that we can expand crystal structure databases and our DFT database, OQMD. In

Chapter 2, we describe our novel method that combines DFT, XRD analysis techniques, and DFT

databases and employ the method to quickly and cheaply solve 521 previously unsolved crystal

structures from the PDF diffraction database. In this method, we search for unique structure pro-

totypes in the DFT database that satisfy the constraints known from XRD analysis: stoichiometry,

space group, and/or number of atoms per unit cell. We then construct structures from the candidate

prototypes, and evaluate their DFT stability against competing phases in the DFT database as well

as R-factor. If the best candidate is below a threshold DFT stability and R-factor, we deem the

structure to be solved.
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1.1.2 Searching for New Materials

Numerous inorganic exist naturally in the earth, and over the years these have been (and still are

being) extracted, isolated, characterized (such as by diffraction methods), and catalogued. Mean-

while, methods of material synthesis have been used for thousands of years, such as mixing and

heating precursors, and over the last century, greater scientific understanding and industrialization

have enabled the development of more sophisticated synthesis methods, such as ball milling and

solution synthesis. All of these methods are routinely used to discover new materials, but they are

laborious and time-consuming, and if the recipe and products haven’t been catalogued, it is gen-

erally not known what outcome will be (although chemical intuition can be helpful). As of today,

there are a great number of materials that could hypothetically be synthesized, but we don’t know

what they are or how to make them.

Computational modelling of materials is maturing quickly, and is now highly useful for pre-

dicting hypothetical materials that can be synthesized. With DFT, the formation energy of any

hypothetical (fully-ordered) crystal structure can be computed with high enough accuracy that sta-

bility analysis, considering any competing phases, can be done. With the recent development of

comprehensive DFT databases such as OQMD, only one DFT calculation of a hypothetical com-

pound is needed and the stability analysis using already-computed competing phases can be done

straightforwardly. With this infrastructure in place, we can proceed to evaluate the stabilities of

a large number of hypothetical compounds in high throughput and quickly determine which ones

are stable. However, the difficulty of high-throughput DFT (HT-DFT) is that there is a combi-

natorial explosion of the number of possible compounds one can make, considering all possible

crystal structures and all elements in the periodic table. In Chapter 3, we explore methods recently

developed to intelligently sample this enormous search space for the hypothetical compounds that

are most likely to be stable. As there are several methods, we test them side-by-side on a complete
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data set of DFT-calculated stabilities of all possible Heusler compounds that can be formed from

elements on the periodic table, and develop protocols to greatly improve the performance of the

state-of-the-art methods. Then, in Chapter 4, we use these methods to conduct a full-scale HT-DFT

search of hypothetical materials across the whole range of structures and prototypes that are known

to date, and discover tens of thousands of new stable compounds.

1.2 Density Functional Theory

Over the years, many physical models have been used to describe materials. Models that analytical

functions, such as Lennard-Jones potential, Coulomb potential, and embedded atom model, can

sometimes provide a fair accuracy in the description of certain classes of materials. However,

such simple models cannot capture all of the physics of a material that is required to understand

its properties (although “machine-learned” interatomic potentials have demonstrated promise in

the last decade [21]). One such property, formation energy, is of special interest in this work to

determine which candidate crystal structure is lowest in energy for a given composition. Crystal

structure candidates can differ in energy by very small amounts, e.g.tens of meV/atom, [12] which

simple models cannot resolve accurately.

The exact, or “first-principles” description of materials at the atomic level, based on the inter-

actions of its electrons and nuclei, is given by the many-body Schrödinger equation. While this

partial differential equation has an analytical solution for the simplest of cases, such as a single hy-

drogen atom, it generally can only be solved numerically, with approximations, in real many-body

systems.

To accomplish this, materials researchers today rely on density functional theory (DFT). DFT

was borne out of the Hohenberg-Kohn (H-K) theorems, which state that in a system of N electron

kinetic energies and Coulomb interaction, the external potential is a unique functional of the elec-
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tron density. [22] This leads to a reduction from 3N degrees of freedom to a much more tractable

3 spatial coordinates. Due to variational principle, the electron density that minimizes the total

energy is the ground state of the system. In addition, Kohn and Sham showed that the system can

be equivalently represented with non-interacting electron kinetic and electrostatic energy function-

als of electron density as well as an unknown exchange correlation (XC) functional. [23] The XC

functionals used today are often obtained by the local density approximation (LDA), density gra-

dient (GGA), [24] and in some cases other approximations like meta-GGA, [25] PBEsol, [26] and

hybrid functionals. [27]

All of the DFT calculations in this work were performed with the Vienna Ab-Initio Simulation

Package (VASP), [28, 29] with pseudopotentials generated using the projector augmented-wave

method [30] and PBE (GGA) exchange correlation functionals. The specific settings for the VASP

calculations were all pre-determined during the initial development of the OQMD database, [7] so

that the DFT-computed properties of >1 million materials in the database today [31] can be directly

compared. After a VASP calculation is completed, we obtain a total energy E for the compound.

From this, we compute a formation energy for the compound by subtracting the chemical potentials

of its constituent elements:

∆H = E −
elements∑

i

niµi (1.1)

where ∆H is formation energy, ni is the fraction of the constituent element in the compound, and

µi is the chemical potential. The elemental chemical potentials were pre-determined to be the total

energies of the elemental ground state structures, with an adjustment based on fitting to experi-

mental formation energy data and to STP reference states. Using these chemical potentials, the

DFT-calculated formation energies of known compounds were found to match experimental for-

mation energies with a mean absolute error (MAE) of just 91 meV/atom. [12] A negative formation

energy indicates that the compound is more energetically stable than the linear combination of its
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elemental reference states. However, the most interesting quantity for this work is the compound’s

distance to the convex hull of formation energies with respect to composition. [32] To illustrate

how this works, we show an example phase diagram of the Hf-Bi convex hull in Figure 1.1. The

convex hull marked by a dashed black line indicates the phases from the Inorganic Crystal Struc-

ture Database (ICSD) that are in stable equilibrium: Hf, Hf2Bi, HfBi2, and Bi. However, when we

solved the crystal structure of Hf8Bi9 not in the ICSD (see chapter 3), this compound turned out to

also be stable, and so a new convex hull (marked by solid green line) is constructed. The convex

hull construction is particularly important for this work, since it will tell us whether hypothetical

(not experimentally known) compounds, that are not yet in materials databases, are energetically

stable.

Figure 1.1: Hf-Bi phase diagram of formation energies with respect to composition. The convex
hull is traced by lines: dashed black for when only ICSD compounds are used, and solid green for
when a compound Hf8Bi9, not in the ICSD, is included.
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CHAPTER 2

HIGH THROUGHPUT CRYSTAL STRUCTURE SOLUTION USING PROTOTYPES

Most of this chapter is taken directly from our published paper. [33]

2.1 Background

Crystal structure is a fundamental descriptor of inorganic compounds and is necessary input for first

principles calculations. Indeed, the composition and crystal structure of a compound, comprising

of unit cell vectors and atomic coordinates, are the only inputs required for a DFT calculation of

the compound’s energetic, electronic, and magnetic properties. Thanks to knowledge of crystal

structures obtained by experiment, databases of high-throughput DFT calculations, such as the

Open Quantum Materials Database (OQMD), Materials Project, and Automatic Flow (AFLOW),

have enabled the calculation of phase diagrams, screening of materials for future applications, and

prediction of novel materials. [7–9, 34–39] However, due to challenges in extracting crystal struc-

ture from experimental diffraction data, there are many known compounds with unknown crystal

structures. For example, there are thousands of diffraction patterns in the Powder Diffraction File

(PDF) without an associated crystal structure, meaning that compounds have been synthesized,

diffraction patterns measured, and yet there is still no solved structure. [40] Identifying the struc-

ture of these materials would enable DFT calculations of their properties and open the door to a

full exploration of their potential.

There are several reasons why a complete crystal structure is not always obtained in a diffrac-

tion experiment. For instance, while the unit cell parameters, space group, formula units per unit

cell, and elemental composition can often be determined from high quality data by indexing the
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diffraction peaks, the determination of atomic coordinates, known as structure solution, is espe-

cially challenging because the process of measuring a diffraction intensity does not capture the

phase of diffracted waves, complicating the inversion from reciprocal space to real space. [41]

Another common reason is that the compound either is part of a multi-phase material, is impure or

contains elements that only weakly scatter x-rays, hindering the ability to capture relevant informa-

tion in the diffraction pattern. When attempting to solve structures, crystallographers routinely use

structure optimization algorithms, in which atomic coordinates are optimized to match the diffrac-

tion pattern, i.e.minimize the R-factor. When only R-factor is used for the objective function,

structure optimization algorithms are sometimes challenged by the existence of multiple solutions

with similar R-factors. A promising workaround is to supplement R-factor with DFT calcula-

tions in order to rule out candidates that are unphysically high in energy. [42] For example, the

First-Principles-Assisted Structure Solution (FPASS) method, which uses a genetic algorithm with

R-factor and DFT energy as a combined objective function, has been used to effectively resolve

several long-standing problems. [17–20] Other DFT-based structure optimization algorithms that

can be constrained using experimental input include USPEX, [13] CALYPSO, [14] XtalOpt, [15]

and AIRSS. [16] DFT provides a highly accurate estimate of the energetic stability of candidate

structures; however, DFT is computationally expensive to use in structure optimization algorithms

like FPASS, USPEX and others, where as many as hundreds or thousands of structures are consid-

ered over the course of optimization.

On the other hand, a simpler and cheaper way to solve structures is to search existing databases.

The OQMD contains DFT calculations of over 800,000 compounds, including experimentally ob-

served compounds from a 2011 version of the ICSD as well as many hypothetical compounds. As

we will show, structures from the ICSD portion of the OQMD can be grouped into 10,203 proto-

types, distinguished by space group, stoichiometry, and Wyckoff site occupancies. This grouping
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allows us to identify a relatively small number of symmetrically distinct prototypes as candidates

for a given unsolved structure, according to the experimentally determined stoichiometry, number

of formula units and space group. Furthermore, we find that 83% of distinct compounds in the

ICSD share a common prototype with at least one other ICSD compound, giving us confidence

that we can solve many (but not all) new structures using a “prototype searching” method. In this

prototype searching method, we search for candidate prototypes in the OQMD, select a represen-

tative structure for each prototype, decorate the structures with the experimental composition, and

evaluate them by computing R-factors and DFT energies. A related prototype searching method

has been used to predict new compounds for hydrogen storage applications; [43–46] however,

without experimental input to constrain the search, the prototype searching method is still compu-

tationally expensive. On the other hand, when used for structure solution with experimental input,

our prototype searching method usually requires evaluating up to 3 prototypes, far fewer than what

is needed for other structure solution methods, allowing us to solve structures at low cost. We note

while structure optimization algorithms like FPASS, USPEX and others can leverage experimental

input to constrain the search, as optimization algorithms they still typically require DFT calcu-

lations of many structures over the search space, including highly unphysical structures whose

atomic coordinates are consistent with the experimental space group, stoichiometry, and Wyckoff

site occupancies. On the other hand, our prototype searching method gets us straight to the an-

swer with just a few DFT calculations for prototypes that are known to exist in the ICSD. Since

the prototype searching method is inexpensive, it can be used to quickly solve numerous unsolved

compounds and expand crystal databases with a limited computational budget.

In this work, we leverage the low computational cost of the prototype searching method to

solve the structures of 521 compounds from experimental diffraction patterns in the PDF. All 521

compounds were missing from the ICSD and OQMD, and thus are newly solved, and constitute
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a 1.4% expansion of all experimentally known compounds in the OQMD. Confident that we have

identified structures that both match experimental input and are energetically stable, we open the

door to analyzing the properties of these materials and considering their use in a wide range of

future applications.

2.2 The Prototype Searching Method

In this section, we detail the prototype searching method to solve the structure of a compound

given experimental data.

2.2.1 Searching for Candidate Structures

A completely solved structure is one where we know all descriptive details; in particular, the unit

cell parameters and the coordinates of all atoms in the unit cell. For the compounds we address

in this paper, we have from experimental data the unit cell parameters, elemental composition,

space group, and number of formula units per unit cell, but we do not have the atomic coordinates,

suggesting that the diffraction peaks were successfully indexed but the structure solution step was

not completed. Our approach to solve for the atomic coordinates of the structure is to take the

stoichiometry, space group, and the number of formula units per unit cell, and search the OQMD

for prototypes with the same attributes. We define the prototype of a crystal structure as the set of

the following attributes:

• Stoichiometry, e.g.ABC3

• Space group

• Set of Wyckoff site occupancies in the unit cell
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For example, the calcite prototype (CaCO3) has ABC3 stoichiometry, R3̄c space group, six atoms

on the 6a (1/4, 0, 0) Wyckoff site, six atoms on the 6b (0, 0, 0) site, and eighteen atoms on the 18e

(x, 0, 1/4) site. Leveraging this definition allows us to classify 32 compounds within the OQMD

with these attributes as having the prototype of calcite, irrespective of the elements comprising

{A,B,C}, value of x, or unit cell parameters. This classification allows us to treat this group as

one, symmetrically unique candidate solution to an experimental structure.

Having identified a relatively small number of prototypes as possible solutions to the experi-

mental structure, we proceed to generate candidate structures by populating the prototypes with the

experimentally determined unit cell parameters and elements from the composition. We consider

all possible arrangements of elements in the structure, e.g.the two distinct ways to swap Ca and

C onto the Wyckoff sites of the calcite prototype. We must also account for the fact that a single

prototype can produce multiple structures that, while symmetrically identical, have different local

geometries. For example, the structures C23, C25, C29, and C37 (PbCl2, HgCl2, SrH2, and Co2Si

respectively) have the same stoichiometry, space group, and Wyckoff site occupancies (AB2, Pnma,

{4c,4c,4c}), but are distinct structures. In order to decide which of these structures to select as a

candidate, we compute the R-factor of all compounds with this prototype in the OQMD but with

the target composition and experimental lattice parameters substituted in. Since the calculation of

R-factor is very fast, we can quickly select the structure with the lowest R-factor as the candidate.

By the end of our procedure, we have generated a set of candidate structures, usually no more than

seven structures across three prototypes, as possible solutions for the experimental structure.

We note that we initially assume the experimental structure does not have any partially occupied

sites. In some cases, this assumption will be inevitably incorrect. We can justify the assumption if

we obtain a structure that has a satisfyingly low energy and R-factor; otherwise, we say that none

of our candidate structures are valid solutions.



34

2.2.2 Computing Match to Diffraction Pattern

We can determine which candidate structures from OQMD are valid solutions to unsolved PDF

diffraction patterns by computing how well their simulated patterns match the experimental pattern.

This computed pattern match is known as an R-factor and is routinely used by the crystallography

community. Our method to compute R-factor is implemented in the Mint (Materials Interface)

code; [47] here, we detail the method. [19]

Based on a candidate structure’s easily-determined space group and lattice parameters, we

make a list of all allowable diffraction peaks (each representing the distance between parallel lattice

planes). We then use an equation from Pecharsky and Zavalij (eq. 8.41) to compute the intensity I

of a peak located at (hkl): [41]

Ihkl = K ×mhkl × LP(θ)× Thkl × |Fhkl|2 (2.1)

where K is a fitted scale factor, mhkl is the number of lattice planes for that peak, LP(θ) is the

Lorentz-polarization factor corresponding to the angle of the peak, Thkl is the March-Dollase func-

tion [48] to describe texturing (preferred grain orientation), and Fhkl is the structure factor. The

R-factor is then computed as a sum of differences between the candidate structure (calc) and ex-

perimentally measured (obs) peak intensities:

R =

∑
peaks (Icalc − Iobs)

2∑
peaks Iobs2

(2.2)

An R-factor of zero indicates a perfect match between the two patterns. The experimental peaks

were taken from the PDF4+ software, which obtained the peak intensities by integrating over the

angle interval of the peak profile. The Mint code matches peaks between experimental and calcu-
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lated pattern by summing together all intensities within a 0.15◦ interval and pairing the intervals

between the two patterns. Finally, the R-factor is locally relaxed by optimizing the free parameters

of equation 2.2 (including atomic coordinates in the structure factor) using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm, implemented in Dlib. [49]

We show an example pattern matching in Figure 2.1 for the experimental pattern of Hf8Bi9 and

its solution. It is clear that the peaks align well with the two patterns, and the resulting R-factor of

0.21 is low.

Figure 2.1: Experimental XRD pattern and solved structure pattern of Hf8Bi9, an entry in PDF with
missing atomic coordinates. The two patterns agree very well and the resulting R-factor of 0.21 is
low.
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2.2.3 Choosing a Structure As the Solution

After computing the energy and R-factor of each candidate structure, we select the best performing

structure as the final solution. To do so, we take all candidate structures with an R-factor within

0.2 above the lowest R-factor found, and then select the lowest-energy structure among these. We

then decide whether the final solution is valid, based on the values of energy and R-factor; we

provided a detailed description of the validation procedure in the Section 2.3.4.

A schematic diagram of our prototype searching method is given in Figure 2.2 for an example

PDF entry, VI3 (PDF# 00-023-0719), that contained a diffraction pattern, space group, and unit cell

parameters, but no atomic coordinates. We obtain three candidate prototypes (FeF3-type, PdF3-

type, BiF3-type) from the OQMD, generate one structure of VI3 for each prototype, and evaluate

their DFT formation energies and R-factors. The BiI3-type structure has both the lowest formation

energy and the lowest R-factor and is thus the best-performing prototype of the three. The BiI3-

type structure also has sufficiently low energy and R-factor according to our validation criteria (see

Section 2.3.4), and so we declare it to be the solution of the VI3 measurement.

2.3 Results

2.3.1 Prevalence of Prototypes Among Known Inorganic Compounds

The OQMD contains DFT calculations of experimentally observed inorganic compounds from a

2011 version of the ICSD, excluding those with partial occupancy or very large unit cells. Using the

definition of a prototype outlined in Section 2.2.1, we build a database of all prototypes that exist

among 36807 nonduplicate, stoichiometric, and inorganic compounds in the ICSD portion of the

OQMD. An exhaustive database like this one can be compared to existing prototype databases such

as the one built from AFLOW. [50–52] The AFLOW prototype database distinguishes prototypes
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Figure 2.2: Flow chart of the prototype searching method to solve structures. The compound VI3

(PDF #: 00-023-0719) is presented here as an example. Using experimentally determined structure
attributes absent atomic coordinates, we search the OQMD for all prototypes with the space group
(R3̄), stoichiometry (AB3), and formula units per cell (6). We then evaluate each of the three
prototypes found (FeF3-type, PdF3-type, BiI3-type) using DFT and R-factor. We find that the BiI3

prototype is the most plausible solution because it has the lowest formation energy and R-factor.

in a similar manner, i.e.by space group, stoichiometry, and Wyckoff sites, but also distinguishes

prototypes with different local geometries, e.g.C23, C25, C29, and C37. A key distinction of

our prototype database is that it is exhaustive and contains many more prototypes than the 1100

prototypes in AFLOW. From 36807 nonduplicate, stoichiometric compounds, of which 7852 are

binary, 18482 are ternary, and 8076 are quaternary, we identify a total of 10203 prototypes, of

which 1617 are binary, 4120 are ternary, and 3062 are quaternary. Although this implies that

there is an average of 3.6 compounds per prototype, some prototypes are shared by hundreds of

compounds. In Figure 2.3, we plot the sorted number of compounds per prototype. There are 77

prototypes with fifty or more compounds, accounting for 27% of the total number of compounds in

the ICSD set. A table of these prototypes is given in our paper on this work. [33] Such prototype-
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sharing reflects that compounds with similar chemistries tend to arrange in the same or similar

geometries. For example, binary compounds containing a cation and an anion most commonly

have NaCl, PbCl2, CaF2, and CdI2 prototypes, while half-Heusler and related prototypes are often

observed for compounds with metals and metalloids where the sum of valence electrons equals 8

or 18. [53, 54]

Figure 2.3: Sorted numbers of compounds associated with prototypes in the 2011 version of the
ICSD, present in the OQMD. The total number of compounds in this ICSD set is 36807. The most
prevalent (rank 1) prototype is ThCr2Si2, with 657 compounds in the ICSD; and the second-most
prevalent (rank 2) prototype is ZrNiAl, with 466 compounds. Beginning at rank 10 or so, the trend
in prototype prevalence smoothly decays with a wide tail.

While most compounds share common prototypes, there are also 6394 prototypes, of which 981

are binary, 2428 are ternary, and 1928 are quaternary, that are associated with just a single com-

pound in the ICSD. These “one-hit wonders” highlight a shortcoming of the prototype searching

method for solving crystal structures: some structures, ∼17% of the ICSD, are unique and cannot

be solved by searching for already-known prototypes. We can acquire an insight about the one-hit

wonders by investigating their statistics. For instance, we note that hydrogen is disproportionately
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represented among the one-hit wonders: 37% of compounds containing H are one-hit wonders,

much higher than the average of 17%. Other elements that are disproportionately represented are

N (34%), F (31%), and Xe (56%). Nonmetals and alkali metals in general are disproportionately

represented (≳20%), while lanthanide and actinide elements rarely occur by themselves (≤10%),

except for La (15%) and U (18%). Previous studies have identified which element pairs commonly

appear together in compounds of the same prototype. [55, 56] In addition, many of the one-hit

wonders have unique stoichiometries, such as Fe107O125. We find that 941 compounds do not share

the same stoichiometry with any other compound in the ICSD. Many-component compounds tend

to be unique as well: 955 of 2156 compounds (44%) with five or more components are one-hit

wonders. One-hit wonders tend to also have larger unit cells: 29% of compounds with forty or

more atoms are one-hit wonders, compared to 16% of compounds between twenty and forty atoms

and just 6% of compounds with fewer than twenty atoms. Furthermore, most space groups are

rarely observed. We find that 159 of 230 space groups have an above average proportion of one-hit

wonders (>17%), and 11 space groups are not observed at all. On the other hand, a select few

space groups account for a much larger proportion of ICSD compounds. One such space group is

Fm3̄m, which is found in 1464 compounds, of which only 33 (2%) are one-hit wonders.

2.3.2 Description of Target Compounds from the Powder Diffraction File

As the prototype searching method is cheap, often costing only a few DFT calculations, we lever-

age this approach to perform “high-throughput” structure solution for numerous entries from the

International Centre for Diffraction Data (ICDD) database within the PDF for which the atomic

coordinates are missing but other structure details are known. We start with 80624 entries missing

atomic coordinates in the 2018 version of the PDF4+ software. We screen for entries that satisfy

the following criteria:
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• Entry is “primary” status as identified by the PDF4+ software, i.e.is not an alternative to

another similar entry.

• Diffraction experiment was performed under ambient conditions. We note that the enthalpy

of high-pressure compounds can be accounted for in DFT by supplying external pressure to

the stress tensor. Furthermore, the enthalpies of high-pressure compounds can be compared

to those of other compounds in the OQMD. [57]

• Compound is binary, ternary, or quaternary.

• Compound is inorganic and does not contain noble gases, actinides, or radioactive elements.

• Diffraction data quality is listed as “star,” “good,” or “indexed,” indicating that the diffraction

pattern represents a single-phase crystal with minimal impurities. While structures with

poorer quality diffraction patterns can still be solved, their R-Factors may be less useful.

• Space group and number of formula units per unit cell are already known.

• Reduced cell volumes are less than 3000Å3 and unit cells contain few enough atoms to be

cheaply assessed by high-throughput DFT:

– Cubic, hexagonal, trigonal, and tetragonal cells contain 80 or fewer atoms.

– Orthorhombic cells contain 40 or fewer atoms.

– Monoclinic and triclinic cells contain 20 or fewer atoms.

• The structure does not evidently contain partially occupied sites, i.e., the listed composition

contains only natural numbers and it is possible to generate a structure with a set of fully

occupied Wyckoff sites given the listed space group and number of formula units per unit

cell. We note that a PDF entry satisfying these conditions may not necessarily represent a
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fully occupied structure. We can justify the validity of our prototype structures based on

DFT energy and R-factor.

• There is no existing OQMD nor ICSD compound with the same composition and space

group.

• There is at least one prototype in the OQMD matching the known stoichiometry, space group,

and number of formula units per unit cell.

We find 603 PDF entries that satisfy the above constraints. We additionally find hundreds of

entries that satisfy all the above constraints except for the last one, i.e., there is no prototype in the

OQMD that matches the provided stoichiometry, space group, and number of atoms per unit cell.

However, it is possible that the listed space group is incorrect, and hence we attempt to solve these

by searching within the crystal system, e.g., tetragonal space groups, instead of the listed space

group.

2.3.3 Summary of Structures Obtained by Prototype Searching

For 603 PDF entries with diffraction data but no structure, we find at least one prototype in the

OQMD that matches the provided space group, stoichiometry, and number of formula units per

unit cell. In Figure 2.4a, we plot a distribution of the number of prototypes found per PDF entry.

The highest number of prototypes is only ten. In most cases (386, or 64%), only one prototype is

found. Although the number of candidate prototypes is almost always very few, each prototype can

produce multiple structures representing the possible ways to arrange elements onto the prototype’s

Wyckoff sites. Despite this, there are rarely more than a dozen structures to evaluate (see Figure

2.4b).
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Figure 2.4: Distribution of the number of a) OQMD prototypes and b) candidate structures match-
ing stoichiometry, space group, and number of formula units per unit cell of 603 PDF entries with
missing atomic coordinates.

After computing the DFT energy and R-factor of all candidate structures, we select the struc-

ture with the lowest DFT energy among all candidates within 0.2 of the lowest R-factor. We

are thus left with 603 structure candidates, each one outperforming other candidates for every at-

tempted PDF entry. For 10 of the 603 entries, we find a candidate with a different space group

within the same crystal system that outperforms all candidates with the reported space group. In

these 10 cases, the structure with the same space group fails our validation checks of energy and

R-factor (described in Section 2.3.4), while the structure with a different space group passes these
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checks; we thus opt to present the 10 structures with a different space group. In addition, we

find that for 21 of the PDF entries, while there is no prototype in the OQMD that matches the re-

ported space group, stoichiometry, and number of formula units per cell, there is a candidate with

a different space group within the same crystal system that passes our validation checks. In total,

we present 624 structures (603 + 21) in the following analysis. Of these, 521 pass our validation

checks of energy and R-factor, and we thus declare them to be solved.

2.3.4 Analysis of Structures Obtained by Prototype Searching

Figure 2.5: DFT-computed 90th percentile convex hull distance (meV/atom) of ICSD compounds
containing each element on the periodic table. The metastability of materials is chemistry depen-
dent, with carbides and nitrides standing out as being particularly high in energy. Gray shaded
elements are excluded from this analysis.

After selecting the 624 best-performing candidate structures, one for each PDF entry, we pro-

ceed to assess their validity by examining the values of energy and R-factor. As for energy, we
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are interested in the difference between the structure’s formation energy and the OQMD convex

hull at the relevant composition with this structure included. If this value is 0 meV/atom, then

our candidate structure is stable and thus highly plausible. However, metastable compounds with

nonzero convex hull distances are also common in nature. Although not all hypothetical structures

with nonzero convex hull distances can be synthesized, they should be considered as potentially

valid solutions in our structure search. Analyses of experimentally known metastable compounds

calculated by DFT have revealed that, while most metastable compounds are within 100 meV/atom

of the convex hull, the values of convex hull distance are highly dependent on chemistry. [58, 59]

In Figure 2.5, for each element, we plot the 90th percentile convex hull distance for ICSD com-

pounds containing that element. There is a stark contrast in the convex hull distances as a function

of element; carbides and nitrides are especially metastable. [60–62] We thus opt to use these values

of convex hull distance as cutoff values in determining whether the structures we obtain from the

prototype searching method are valid based on energy. Specifically, for a compound of interest,

e.g.Ba2CeSnO6 (PDF #: 00-056-0332) solved in this work, we use the highest of the four 90th

percentile convex hull distance values as the cutoff: 116 meV/atom for oxygen. Since our best-

performing candidate structure for Ba2CeSnO6 is 102 meV/atom above the convex hull, we deem

this structure valid based on energy.

In Figure 2.6a, we plot the convex hull distances of 624 compounds with structures obtained

by prototype searching in this work, along with those of ICSD compounds. If all 624 of these

compounds were correctly solved, then we would expect that their convex hull distances would

line up well with the ICSD distribution. Although the proportion of our compounds that lie on

the convex hull is high (277 compounds within 5 meV/atom of the hull), this proportion is shy

of the ICSD, where 61% of compounds are within 5 meV/atom of the convex hull. We find that

543 compounds (87%) pass our validation criterion for energy, compared to 93% of the ICSD.
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Figure 2.6: a) Distribution of convex hull distances of 624 compounds with structures obtained by
prototype searching in this work, compared to 23247 ICSD compounds that have been calculated
in the OQMD. Inset is the same distribution between 0 and 25 meV/atom; almost half of the 624
compounds lie within 5 meV/atom of the convex hull, somewhat shy of the ICSD. b) Distribu-
tion of R-factors of 624 compounds with structures obtained by prototype searching in this work,
compared to 136 randomly chosen solved compounds from the PDF. c) Convex hull distances and
R-factors of 624 compounds with structures obtained by prototype searching. Green pluses and
red dots are compounds that passed and failed validation checks, respectively. d) Discrepancies in
the best-performing candidate structure energies and R-factors with the lowest-energy and lowest-
R candidate structures. Only cases with multiple candidate structures are shown (403 of 624 PDF
compounds). The vast majority (91%) of cases lie within the shaded region; in other words, the
best-performing candidate structure usually is close to the lowest energy and lowest R-factor of all
candidate structures. Cases with low discrepancy are also more likely to pass our validation checks
(84%) than cases with high discrepancy (59%).

However, we also expect that the prototype searching method will fail to solve compounds that

are “one-hit wonders,” i.e.compounds that do not share a prototype with any other in the ICSD
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(described in Section 2.3.1). Since as many as 17% of known compounds are one-hit wonders, this

inevitable shortcoming of our approach might explain why our convex hull distances are higher

than those of ICSD compounds, on average.

R-factors of all 624 compounds are plotted in Figure 2.6b. To give context to our R-factor

values, we overlay a distribution of R-factors for 136 randomly selected already-solved ICSD

compounds with diffraction patterns stored in the PDF. With a median value of 0.25, our structures

have higher R-factors overall than the already-solved structures (median of 0.06). We argue that

this discrepancy does not suggest an issue with our prototype solutions, because many of our

solutions with R-factor greater than 0.05 are clearly the right answers by inspection. For example,

44 of our compounds evidently have the elpasolite (K2NaAlF6) prototype, since they have A2BCD6

stoichiometry, space group of Fm3̄m, and four formula units per unit cell. The only other possible

prototype is typically very high in energy. Indeed, we find that 17 of the elpasolite compounds lie

on the convex hull, despite R-factors ranging from 0.05 to 0.52. The high R-factors are not due to

any issue with our refinement code either; despite elpasolite having only one degree of freedom to

refine (the x coordinate of the 24e site), we still obtain high R-factors. We argue that the high R-

factors highlight an issue with the diffraction patterns, not with our prototype searching approach.

Because we cannot impose a strict R-factor validation criterion, we look to the relationship with

energy values to decide on a cutoff R-factor value. Stable compounds tend to have low R-factors:

51% of compounds with R-factor below 0.1 lie on the convex hull; 54% with R-factor between 0.1

and 0.2 lie on the convex hull; 50% between 0.2 and 0.3. Following these intervals, we have 41%,

36%, 36% between 0.5 and 0.6, 24% 0%, 0%, and 0% between 0.9 and 1.0. As the proportion of

stable compounds begins dropping off at 0.6, we opt to use an R-factor of 0.6 as the cutoff value

for validation. This works out to be a generous cutoff value: 580 of our compounds (93%) have

R-factor less than 0.6.
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Combining our validation checks, we declare that 520 of 624 (83%) of our compounds are

“solved” based on low convex hull distance and R-factor less than 0.6. The convex hull distances

and R-factors of all 624 compounds are plotted in Figure 2.6c. Although most of our compounds

simultaneously pass both energy and R-factor validation criteria, there are cases that pass only one

of the criteria. Compounds with high energy and low R-factor might have structures that happen

to exhibit a close match to diffraction data while being theoretically unphysical. On the other

hand, compounds with low energy and high R-factor could be polymorphs of the “true” structure

observed in experiment. It is also possible that compounds with low energy and high R-factor

are, in fact, correctly solved; indeed, we are using an atypically high cutoff for R-factor. Despite

the high R-factors, we argue that the R-factors are helpful in distinguishing structures that best

match experimental data. In Figure 2.6d, we demonstrate that even though many of our structures

have high R-factor, they are most often both the lowest-energy and lowest-R-factor candidate

out of all possible candidates. Considering 403 cases where more than one possible candidate

structure exists, we find that 366 (91%) of our best-performing candidates lie within the shaded

region, i.e.are within 20 meV/atom of the lowest-energy candidate and 0.05 of the lowest-R-factor

candidate. Compounds that pass our validation criteria are even more likely to lie within the shaded

region (93%) than failing compounds (80%). This result demonstrates that even when all candidate

structures have high R-factor, we can still use R-factor to distinguish the best structure from other

candidates; however, DFT energy is often helpful in determining which candidates are physical.

Upon inspecting our prototypes selected for the PDF compounds, we noticed that they are

quite often chemically similar to other ICSD compounds with the same prototype. For example,

the solution to Ag7SbS6 (PDF #: 00-021-1333) is the prototype of Ag7AsS6, found in ICSD. We

can quantify “chemical similarity” by taking advantage of a data mined Pettifor chemical scale

developed by Glawe and co-workers. [56] They computed a chemical similarity metric PAB for all
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pairs of elements A and B on the periodic table. To compute the chemical similarity between two

compounds, e.g.Ag7SbS6 and Ag7AsS6, we take the product

P =
∏

PAB (2.3)

of chemical similarities of the closest-matching element pairs in the two compounds, setting PAB =

1 when the elements are identical and 0 if the element pairs rarely or never occur in the ICSD. For

all of our chosen prototypes, we searched for the ICSD compound of the same prototype with the

highest chemical similarity; the results are plotted in Figure 2.7. The trends in the plots demonstrate

that compounds that pass our validation criteria are more likely to be chemically similar to ICSD

compounds than compounds that fail. The chemical similarities we find here give us an extra layer

of confidence in our solutions.

All 521 compounds solved in this work are provided in the Supplemental Material of Ref. 33

along with a complete tabular summary of all 624 attempts. In addition, all compounds can be

found in the OQMD, which can be accessed via the web at oqmd.org or directly downloaded.

As there are 36807 unique ICSD compounds already in the OQMD, we have expanded the set

of all experimentally observed compounds in the OQMD by 1.4%. The simplicity and efficiency

of the prototype searching method presented in this paper has thus enabled us to significantly

expand the set of experimentally observed compounds accessible to DFT. It will be of interest

to further study the properties of these materials. For example, as shown in Figure 2.8, 284 of

our solved compounds have nonzero bandgaps within 4 eV, making them potential candidates for

semiconductor applications. In addition to the 521 newly solved compounds, we find 33 PDF

“unsolved” compounds where there is either no matching prototype in the OQMD or no prototype

matching the reported space group that passes our validation checks, but there is solution with a
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Figure 2.7: The percentage of the prototypes chosen for each of 624 PDF compounds that pass
our validation criteria, plotted against the chemical similarities P of these compounds to ICSD
compounds of the same prototype. The chemical similarities P are binned by decades on a log
scale; P is defined in equation 2.3. The top, middle, and bottom plots focus on binary, ternary,
and quaternary compounds, respectively. The numbers of compounds that fall within each range
of chemical similarities are shown beside the data points. The trends demonstrate that compounds
that pass our validation criteria are more likely to be chemically similar to ICSD compounds than
compounds that fail.

different space group within the same crystal system that not only passes our validation checks

but also already exists in the ICSD. These 33 solutions are provided in a separate table in the

Supplemental Material of Ref. 33.
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Figure 2.8: 151 of our solutions that pass validation criteria are metals (0 eV), 284 are semicon-
ductors (0-4 eV), and 85 are insulators (≥4 eV); band gap was not determined for 1 solution.

2.3.5 Detailed Description of Selected Solutions

In this section, to demonstrate the prototype searching method at work, we discuss nine PDF

compounds that we solved. An illustration of the solved compounds is shown in Figure 2.9. All

of the nine compounds in this section pass our validation criteria of energy and R-factor and are

chemically similar to other compounds in the ICSD with the same prototype. For some of these

compounds, the paper describing the diffraction experiment stated the name of the prototype that

matches our solution but did not present atomic coordinates. Although the prototypes of these

compounds were already known, our prototype searching method enabled us to obtain atomic

coordinates for all structures and expand the OQMD.

2.3.5 Hf8Bi9

In the PDF entry for Hf8Bi9 (#: 00-051-0679), a diffraction pattern is supplied along with a space

group (P4/nmm), unit cell, and formula units (Z = 2), but atomic coordinates are missing. [63]

Because the atomic coordinates are missing, this compound did not previously exist in the ICSD
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Figure 2.9: Crystal structures of 9 of the 521 materials solved using prototypes. The compositions
of the solved materials are in bold, and the prototypes are in parentheses. Note that some of the
solutions presented here have the same prototype, specifically Ba2MoO5 and Rb2GaF5 as well as
LiFeO2, VO(OH), and CrO(OH).

nor OQMD and has thus been excluded from DFT studies. However, in the reference for this

entry, the authors presented the then-new prototype Ti8Bi9, complete with atomic coordinates, and

stated that Hf8Bi9 has the same prototype as Ti8Bi9. As Ti8Bi9 is indeed already in the OQMD, we

use the prototype searching method to complete the structure of Hf8Bi9. Specifically, our crystal

structure for Hf8Bi9 consists of the unit cell parameters provided by the PDF entry for Hf8Bi9, and

the DFT-relaxed atomic coordinates of Bi plus the atomic coordinates of Hf substituted for Ti in

the already-solved compound Ti8Bi9. We find that this structure matches the diffraction pattern

well (R-factor = 0.21, see Figure 2.1) and is on the convex hull (Figure 1.1).
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2.3.5 Ba2MoO5 and Rb2GaF5

The reference for Ba2MoO5 provided by the PDF (#: 00-025-0011) for this diffraction pattern

describes the structure as isostructural with K2VO2F3 with Pnma symmetry and 4 formula units per

unit cell but does not provide atomic coordinates. [64] The OQMD prototype Rb2CrF5 is indeed

isostructural with K2VO2F3 in that it has the same space group and Wyckoff site occupancies

(though with different stoichiometry), and, with the elements Ba, Mo and O substituted in, lies on

the Ba-Mo-O convex hull and has an R-factor of 0.16, indicating it is a highly plausible solution.

An existing ICSD compound, Ba2WO5, has the same prototype and is highly chemically similar to

Ba2MoO5 (P = 0.25). We also considered three other candidate prototypes: BaSi2O5 (convex hull

distance = +19 meV/atom, R-factor = 0.28), KPd2F5 (hull distance = +102 meV/atom, R-factor

= 0.42), and CsN2H5 (DFT failed to converge, R-factor = 0.19). Since the Rb2CrF5 prototype has

both the lowest energy and lowest R-factor out of all candidates and passes our validation criteria,

we deem it to be the solution to Ba2MoO5.

The compound Rb2GaF5 from the PDF (#: 00-032-0914) has the same story. [65] The prototype

Rb2CrF5 is the solution because it is on the convex hull and has R-factor of 0.43, lower than other

candidates. The ICSD compound Rb2FeF5, with the same prototype, is the most chemically similar

to Rb2GaF5 (P = 0.04).

2.3.5 LiFeO2 polymorph, VO(OH), and CrO(OH)

While several polymorphs of LiFeO2 are known, to our knowledge there are no reports of the

atomic coordinates of the Pnma polymorph of LiFeO2 listed in the PDF (#: 00-052-0698), and

consequently its structure was not previously in the OQMD. The reference listed in the PDF re-

ported that the goethite polymorph of LiFeO2 is rechargeable in lithium cells. [66] We find that

goethite, or FeO(OH), is the correct prototype for this polymorph of LiFeO2 when Li atoms are
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substituted for H, since the convex hull distance is only +36 meV/atom and the R-factor is 0.13.

We reject another candidate, YPd2Si (convex hull distance = +272 meV/atom, R-factor = 0.29),

because it is highly unstable.

Single crystals of VO(OH) (PDF #: 00-011-0152), found in montroseite, were examined by

x-ray crystallography in 1953 were found to be isostructural with diaspore, or AlO(OH). [67]

Diaspore and goethite are the same prototype (as is chalcostibite). An incomplete structure for

VO(OH) having only V and O positions can be found in the ICSD; [68] H positions are missing,

presumably since they cannot be detected in the x-ray pattern, and as a result, the properties of

VO(OH) have not been studied with DFT. We obtain a complete structure for VO(OH), including

H positions, by substituting V, O, and H into the sites of the diaspore structure and find it to be

nearly stable (convex hull distance = +8 meV/atom, R-factor = 0.48). We similarly apply our

prototype searching method to fill in the H coordinates of the CrO(OH) structure (PDF #: 00-025-

1497), which was previously found to resemble diaspore. [69] Our structure for CrO(OH) is close

to the convex hull (+8 meV/atom), but has poor match to diffraction pattern (R-factor = 0.62).

2.3.5 HfNiH3

We report several stable hydrides in this work, including four lanthanide hydrogen chalcogenides.

It is tricky to solve the hydrogen positions from x-ray diffraction data since hydrogen scattering

is too weak to detect in an x-ray diffraction pattern. In the case of HfNiH3 (PDF #: 00-047-

1412), the peak indices could be matched to those of space group Cmcm. The authors inferred

that the H atoms situate within the HfNi structure (space group Cmcm, 8 atoms per unit cell).

[70] Separate DFT studies of HfNiH3 utilized the assumption that H atoms occupy octahedral

and tetrahedral interstices between Hf and Ni atoms in order to estimate the positions of H. [71,

72] We find ten unique prototypes having Cmcm space group and 20 atoms per cell, but the best
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performing prototype is that of ZrNiH3 (convex hull distance = 0, R-factor = 0.45). This is indeed

a superstructure of HfNi, in which nine Hf-H bonds constitute edge-sharing polyhedra. Notably,

the other nine prototypes with much higher energy are not hydrides. The ZrNiH3 structure in the

OQMD, complete with H positions, was obtained using neutron diffraction; [73] we utilize the

solution from this past neutron diffraction study to complete the structure of HfNiH3.

2.3.5 Na2Fe2S2O

The diffraction pattern for the mixed anion compound Na2Fe2S2O was obtained through an ICDD

Grant-In-Aid (PDF #: 00-065-0329). The atomic positions are missing from the entry, but the

space group and number of formula units were reported to be I4/mmm and Z = 2, respectively. We

conclude that the Sr2CuCl2O2 prototype is a convincing solution. Since there are 3! = 6 unique

ways to arrange the elements Na, Fe and S onto the 4c, 4e and 4e Wyckoff sites of the Sr2CuCl2O2

prototype, we check each one individually and find that the best arrangement is on the convex hull

and has R-factor of 0.21. Interestingly, this arrangement has cation Na1+ occupying the anion

Cl1− site of Sr2CuCl2O2, and likewise has anion O2− occupying the cation Cu2+ site. Such an

arrangement could be a direct consequence of the balancing of oxidation states in Na2Fe2S2O.

Other arrangements are significantly higher in energy, so they are ruled out.

2.3.5 Double Perovskites

Many materials presented in this work share the same prototypes with one another. Forty-four of

the materials in this work have the elpasolite structure, or K2NaAlF6, which is an ordered double

perovskite. Elpasolite is one of two prototypes that are possible given the experimentally known

Fm3̄m space group, ABC2D6 stoichiometry, and 40 atoms per unit cell. The other possibility is

the same as elpasolite but with the D6 atoms occupying the 24d Wyckoff site rather than the 24e
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Wyckoff site; this prototype is rare in the ICSD and is typically higher in energy by 1000-2000

meV/atom. Elpasolite is the most common quaternary prototype in nature, with 179 examples

from the ICSD subset of the OQMD. All of the elpasolite-type compounds we present here are

within +114 meV/atom of the OQMD convex hull (22 are on the hull), and have R-factors be-

low 0.52 (28 had R-factors below 0.20), indicating that they were all stable or metastable and had

reasonable pattern matches. For the metastable cases, the ground state is often a distortion of dou-

ble perovskite; in the case of Sr2MnTeO6 (PDF #: 00-029-0897), the ground state is monoclinic

(P21/c) double perovskite, which is 24 meV/atom lower in energy than the elpasolite decoration.

Recently there has been interest in identifying more elpasolite compounds. It is difficult to perform

high-throughput DFT calculations of elpasolite structures using elemental substitution, since there

are millions of permutations. Faber et al.developed a machine learning model to predict the ener-

gies of elpasolite compounds, and found 90 structures on the convex hull, after considerable model

training and DFT calculations of 2133 candidates. [74] We note that one of our 44 elpasolites is in

their set of 90: Cs2KGaF6 (PDF #: 00-021-0849).

2.4 Discussion

Structure solution is a challenging roadblock to materials discovery. Thankfully, crystal structures

are rarely unique, and a successful structure solution can often be obtained by searching among a

relatively small number of prototypes as valid candidates. We apply this simple and inexpensive

strategy to solve 521 structures taken from the PDF. Utilizing the OQMD as an exhaustive database

of prototypes as well to validate the energetic stability of candidates along with R-factor, we have

identified potential solutions to these materials, and we have a high degree of confidence in our

solutions.

The prototype strategy employed in this work can be improved upon in many ways. One way
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is to tweak the definition of a prototype to distinguish different structures more effectively. In our

approach, we define the prototype of a structure as the combination of its stoichiometry, space

group, and Wyckoff site occupancies. All structures from the OQMD sharing these characteristics

are grouped into one prototype. However, within these constraints, there can be many degrees of

freedom in atomic coordinates and lattice parameters, and it is possible for two structures with the

same prototype, as defined in this paper, to in fact have very different local geometries, a problem

described at length by Trimarchi et al.[75] Our workaround is to choose the OQMD compound

whose structure, with its elements replaced by the target elements, gives the lowest R-factor, since

the calculation of R-factor is nearly instantaneous compared to DFT. A more reliable workaround

would be to devise a stricter prototype definition capable of properly distinguishing structures with

different local geometries. For instance, some definitions apply additional restrictions on unit cell

axial ratios and angles. [76] One could also quantify the difference between structures using a

distance metric, such as one devised from radial distribution functions [77] or atomic/molecular

matching algorithms [78–80] Moreover, if a given prototype has many internal degrees of freedom,

one could conceivably develop an algorithm to optimize DFT and R-factor within the search space

of that prototype.

Another way to improve the performance of the prototype searching method is to recommend

the most plausible prototypes first, prior to evaluating them with DFT. There was no need to do

so for this work, since constraining the search to the PDF-provided space group, composition, and

number of atoms per unit cell of all solved materials reduced the number of candidate prototypes

fewer than three in most cases. If, on the other hand, we could not constrain the search as much,

there would have been too many candidates to evaluate. Existing techniques for recommending

prototypes as candidates for an unsolved compound involve machine learning [81] as well as data-

mined ion substitution. [55]
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Furthermore, we suggest incorporating prototypes as initial guesses to structural optimization

algorithms as a way to improve their performance. If an existing prototype is indeed the correct

answer, as is the case for most compounds in nature, then optimization algorithms would converge

immediately without wasting computational resources.

2.5 Conclusion

In this work, we outline a novel prototype searching method and use it to solve the structures of

521 PDF diffraction patterns. For each diffraction pattern, we obtain all prototypes in the OQMD

satisfying the known stoichiometry, space group, and number of atoms per unit cell that are pro-

vided by the PDF, and select a structure based on DFT energy and R-factor. We then validate each

structure by assessing its energetic stability with respect to competing phases in the OQMD as

well as the R-factor. The 521 solved compounds, along with a table of descriptive details, can be

found in the Supplemental Material of Ref. 33, and the compounds are also available in the latest

release of OQMD. Identifying structures for these experimentally observed materials enables us to

explore their properties from first-principles and unveil their potential for a wide variety of future

applications.
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CHAPTER 3

HOW TO DISCOVER STABLE INORGANIC COMPOUNDS MORE EFFICIENTLY

Most of this chapter is taken directly from our unpublished manuscript.

3.1 Background

The design space of inorganic compounds is unfathomably large, and only a very small fraction of

compounds in the design space are energetically stable. For most of history, the gold-standard way

to discover compounds has been to either find them in the ground or to synthesize them manually.

However, these approaches are slow, and even our best efforts will fail to sufficiently sample the en-

tire design space. It is now much faster to use computational methods, especially DFT, to compute

the stabilities of candidate hypothetical compounds. DFT has had an impressive track record of

accurately computing the formation energies of a wide range of experimentally known compounds.

[12] One can then construct a convex hull of the formation energies of all competing phases [32]

to determine which of the compounds are stable; compounds that lie on the convex hull are stable,

and compounds that lie above but close to the convex hull are likely to be metastable, i.e.stable

under certain environmental conditions. [58, 59] The DFT-calculated convex hull of inorganic

compounds can now be computed with high precision due to the recent development of large DFT

databases such as the OQMD, [7] Materials Project, [8] AFLOW, [9] Joint Automated Repository

for Various Integrated Simulations (JARVIS), [10] Novel Materials Discovery (NOMAD), [82, 83]

and Open Databases Integration for Materials Design (OPTIMADE). [11] For example, OQMD

now contains DFT calculations of over one million compounds, both experimentally known com-

pounds from the Inorganic Crystal Structure Database (ICSD) and hypothetical compounds. [31]
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These developments have enabled the rapid discovery of thousands of new compounds, often with

superior properties for applications in renewable energy and other technologies. [4, 39, 62, 74,

84–96] While DFT has greatly accelerated the discovery of stable compounds, its computational

expense prevents us from studying all hypothetical compounds in design space. For this reason, we

still have vast, largely untapped regions of design space where stable compounds have not yet been

discovered. As a thought experiment, if we assume the remaining undiscovered stable compounds

share prototype with an experimentally known compound (83% of experimental compounds share

prototype with another compound), then by decorating 76 technologically relevant elements from

the periodic table into the 10203 experimental prototypes, [33] we have 5055990 possible binary

compounds, 425033800 ternary, 9463223600 quaternary, and 94683555000 quinary.

To accelerate the discovery of the remaining stable compounds, we turn to recommendation en-

gines, or methods to identify likely-stable candidate compounds prior to DFT confirmation. Over

the last few decades, many recommendation engines have been developed. Among the earliest ex-

amples are phenomenological structure maps, in which the structure prototypes of compounds are

clustered according to elemental properties; [97–99] these structure maps were limited to common

prototypes of binary alloys. Fischer et al.developed a recommendation engine, which they called

the data mining structure predictor (DMSP), that is not limited to any particular set of chemistries

or structures. [81] Their structure mapping is based on correlations between elemental composi-

tions and the corresponding prototypes that appear in known phase diagrams. For example, sup-

posing we didn’t know the structure of Ni3Pt, we could successfully predict that its prototype is that

of Cu3Au given that NiPt and NiPt3 have the same prototypes as CuAu and CuAu3, respectively.

Hautier et al.developed a recommendation engine, which we will refer to as the ion substitution

predictor (ISP), to exploit the apparent substitutability of certain ions in compounds with the same

prototype in order to discover new ionic compounds. [55] For example, supposing we didn’t know
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the structure of SnSe, we could successfully predict that its prototype is that of SnS because S2−

and Se2− play similar roles in chemical environments. Glawe et al.devised a related substitutabil-

ity concept applicable to any type of inorganic chemistry, not just ionic compounds; [56] we will

refer to this method as the element substitution predictor (ESP). Additionally, over the last decade

we have seen the development of numerous machine learning (ML) models to predict formation

energy. [100–118] In our work, we consider the version of iCGCNN (improved crystal graph con-

volutional neural network) presented in Ref. 103 due to its demonstrated low mean absolute error

(MAE) of 46.5 meV/atom in predicting formation energies of 230000 diverse compounds from

OQMD.

While many recommendation engines have been developed, little work has been done to com-

pare their performances in predicting stable compounds in a side-by-side manner. Bartel et al.[119]

compared seven formation energy ML models on the same Materials Project data sets, finding that

models with lower MAE in predictions of diverse 85014 compounds exhibited better performance

in recovering the stable compounds (i.e.convex hull distance of zero). However, when applied to

a sparse chemical space of 267 Li-Mn-TM-O compounds (TM ∈ {Ti, V, Cr, Fe, Co, Ni, Cu}), all

models except for CGCNN (crystal graph convolutional neural network) [101] failed to correctly

predict the 9 stable compounds.

In our work, we compare the performances of recommendation engines in recovering sta-

ble compounds from several chemical spaces for which OQMD has extensive DFT calculations.

Specifically, the recommendation engines we examine are DMSP, ISP, ESP, and iCGCNN, and the

chemical spaces we use are full and half Heuslers, binary AB3 prototypes, and two distortions of

ABO3 perovskite; these are detailed in Table 3.1. As part of our systematic comparisons, we ex-

plore strategies to improve the performance of the recommendation engines. For example, we find

that the ISP and ESP methods perform significantly better when we carry out an iterative feedback



61

Prototype Source
No. expt.

comps

No. expt.
stable comps

(i.e. ≤ 5 meV/atom
of convex hull)

No. hypo.
comps

No. hypo.
stable
comps

L21 Full Heusler

Ref 12

280 143 130106 1324
C1b Half Heusler 169 85 113186 258

D03 BiF3 44 19 5656 40
D019 Ni3Sn 38 28 5670 122
D022 Al3Ti 23 14 5677 40
L12 Cu3Au 296 178 5457 64

P4mm ABO3 Perovskite
Ref 87

3 1 3207 11
Pnma ABO3 Perovskite 153 64 3207 60

Table 3.1: Statistics of OQMD compounds with the prototypes of interest for this study.

loop where “newly predicted” hypothetical stable compounds are added to the set of known (ini-

tially experimental) compounds after each iteration. We also find that iCGCNN performs better

with appropriate design of the training set, particularly consisting of experimental compound DFT

energies and a representative sample of hypothetical compound DFT energies. Ultimately, with

these strategies in effect, we find that iCGCNN is the best-performing recommendation engine,

while ISP and ESP are very strong alternatives for the wide variety of chemical spaces under ex-

amination. Although we anticipate DMSP could become a strong choice when carried out in a

feedback loop, we could not do so due to computational expense. Finally, we examine the cur-

rent state of materials discovery in OQMD, which has been largely driven by the use of the above

recommendation engines. Analysis using ESP suggests that, while many of the most likely-stable

hypothetical compounds have been calculated in OQMD, there remain numerous uncalculated

likely-stable compounds across a wide range of prototypes, some more than others.
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3.2 Methods

We frame the goal of the recommendation engines, described in the following sections, as to com-

pute a likelihood quantity PHC of a hypothetical compound being stable. With likelihood quan-

tities for every hypothetical compound, we can proceed to sort the compounds by likelihood and

run DFT on the compounds with highest likelihood of stability. This process of computational

materials discovery is illustrated in Figure 3.1. Since the exact values of PHC can have a different

interpretation depending on the recommendation engine, we are instead only concerned with the

sorting of PHC for the purpose of comparing recommendation engines side-by-side.

Figure 3.1: Schematic illustrating efficient computational materials discovery workflow employed
in this section.
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3.2.1 Data Mining Structure Predictor

The Data Mining Structure Predictor (DMSP) was developed in 2006 [81] as an attempt to auto-

mate the construction of Pettifor maps [97–99] and predict the phases of all possible compositions

in all binary phase diagrams. We use the Magpie implementation of the DMSP method. [111]

The output of this method is a likelihood quantity, P (xck|X) that a phase diagram X with already-

known phases also contains an unknown phase xck. As an example, we look at the experimental

Ni-Pt phase diagram excluding Ni3Pt. The phase diagram is represented as:

X = (xE1, ..., xEC , xc1, ..., xcn) (3.1)

where there are C = 2 elements (xE1 = Ni, xE2 = Pt) and n known phases binned by composition

(x0 = fcc, x1 = fcc, x0.5 = CuAu-type, x0.25 = Cu3Au-type). The phase we wish to predict is

Ni3Pt of type xck = x0.25 = Cu3Au-type. The probability of this phase is expressed as:

P (xck|X) =
P (X + xck)

P (X)
(3.2)

Likelihood quantities P are computed based on other phase diagrams X1,X2, ...,XN in the

experimental database (ICSD compounds within 5 meV/atom of the convex hull). The likelihood

quantities are expressed as a 2-order approximation to the generalized cumulant expansion

P (X) =
1

Z

∏
i

P (xi)
∏
j<k

g(2) (xj, xk) (3.3)

where Z is a partition function to ensure normalization; P (xi) is the likelihood associated with

one variable xi, either element identity or prototype name; and g(2) (xj, xk) is the pair correlation
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between two variables xi and xj . The subscripts i, j, k range across all possible element identities

and prototypes in the experimental database, and we are looking for how frequently variables and

variable pairs occur. The terms in equation 3.3 are given by

P (xi) =
Nxi

+ 1/I

NPD + 1
(3.4)

P (xi, xj) =
Nxi,xj

+ 1/ (JK)

NPD + 1
(3.5)

g(2) (xj, xk) =
P (xi, xj)

P (xi)P (xj)
(3.6)

where NPD is the total number of phase diagrams in the experimental database; Nxi
is the number

of phase diagrams that contain xi; Nxj ,xk
is the number of phase diagrams simultaneously contain-

ing xj and xk; and I, J,K are the numbers of possible values of xi, xj , and xk, respectively. As

a pratical requirement, prototypes are binned by stoichiometry; for example, only one prototype

with stoichiometry equal or close to 0.25 can represent xck = x0.25.

3.2.2 Ion Substitution Predictor

To explain the ISP approach, [55] we use CaF2 and BaF2 as an exmaple of two ionic compounds

that share the same prototype, fluorite. Suppose for a moment that BaF2 is not experimentally

known but CaF2 is. We predict a likelihood quantity for BaF2 in the fluorite prototype based on the

(quite common) substitution of Ba2+ into the Ca2+ sites of the CaF2 structure. Given any Ca2+-

containing compound, regardless of its prototype, the likelihood that Ba2+ can be substituted into

Ca2+ is given by

P (b|a) = exp (λa,b)∑
i exp (λa,i)

(3.7)
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where a, b are the two ions (e.g. Ca2+ and Ba2+ respectively), i runs over all possible ions, and

λa,b is a weight related to the frequency that two ions appear on the same Wyckoff sites of known

isostructural compounds. Each of the possible ion pairs is associated with a corresponding weight,

and the weights are symmetric, i.e., λa,b = λb,a. Considering all ions between the two compounds,

we express the likelihood as

P (x′|x) = P (a, b, ...|e, f, ...) = P (a|e) · P (b|f) · ... (3.8)

where x′ is the hypothetical compound, x is the known compound, and a, b, ... and e, f, ... are their

respective ions. When a host ion stays the same, i.e. P (i|i), we set its likelihood to 1. We use the

set of weights Λ provided by the pymatgen module. [120] These weights were determined [55] so

as to maximize the log-likelihood L of the experimental database D (ICSD), represented as a set

of m ion pairs that are found in prototype-sharing compounds:

D =
{
(a, b)1 , ..., (a, b)m

}
(3.9)

L (D|Λ) =
m∑
t

logP (a, b|Λ)t (3.10)

There are dozens of fluorite-type compounds in the ICSD, but of those, CaF2 yields the highest

likelihood value for BaF2 because of their obvious chemical similarity. In general, to obtain a

likelihood measure for any hypothetical compound x′ like BaF2, we compute

PHC = max
x

P (x′|x) (3.11)

using all experimental fluorite compounds x in the database.
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3.2.3 Element Substitution Predictor

The ESP [56] is conceptually similar to the ISP in that it concerns the substitution of chemically

similar species between prototype-sharing compounds, but with a major difference that the ESP

considers just element identity without oxidation states as possible species. In other words, whether

Co is being substituted by Fe+2 versus Fe+3 does not affect likelihood; only ‘Fe’ matters. This

allows for the treatment of metallic compounds, which don’t obey valence charge balancing, in

addition to ionic compounds. The likelihood of a pair of elements a, b substituting for one another

is given by

P (a, b) =

√√√√ S2
a,b

(
∑

i Sa,i)
(∑

j Sj,b

) (3.12)

where Sa,b is the number of occurrences in the ICSD where prototype-sharing compounds contain

the two elements on the same Wyckoff sites, and the indices i, j run over elements from the periodic

table. The likelihood of substituting a compound with multiple elements is given by Equation 3.8,

as with the ISP method. We then use Equation 3.11 to compute the likelihood PHC of a hypothetical

compound given all experimental compounds of the same prototype. In this work, we use the

P (a, b) values provided by Ref 56, which were trained on ICSD data.

3.2.4 Crystal Graph Convolutional Neural Network

The iCGCNN [102] builds upon the original CGCNN [101]. The general framework is to model

the crystal as a graph, with node embeddings containing atomic information and edge embeddings

containing bond information. In the iCGCNN, the nodes are connected by their Voronoi neighbors,

and the bond information is encoded in the attributes of the Voronoi polyhedra such as solid angle,

area, and volume. To account for periodicity, multiple edges can exist between nodes. The crystal

graph is then fed into a graph convolution neural network, where node and edge embeddings are
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iteratively optimized via convolution functions, which are designed to capture both two- and three-

body correlations between atoms. After the convolution steps, all node and edge embeddings are

combined via a pooling layer and subsequently passed through a hidden layer neural network to

predict the target property, in our case formation energy. We use the ‘scale-invariant’ version of

iCGCNN [103] designed to predict formation energy after volumetric relaxation of the input crystal

structure (which is always unrelaxed if the compound is not yet DFT-calculated). Note that scale-

invariant version handles isotropic relaxation of the unit cell, i.e. preserving axial ratios and angles,

and does not handle relaxation of individual atoms. In this version, the crystal graph is associated

with an additional scale factor representing the smallest interatomic distance in the crystal, and

this scale factor is simultaneously optimized and predicted along with formation energy. Initially,

the unit cell is rescaled such that the scale factor becomes 1. Then, during the convolution steps,

the scale factor is iteratively updated as a function of the node embeddings, and edge embeddings

are rescaled according to the scale factor (specifically, facet areas and polyhedral volumes). The

scale-invariant iCGCNN was found to exhibit lower MAE than CGCNN and the original iCGCNN

on a diverse set of 230000 OQMD relaxed-volume formation energies using unrelaxed structures

as input.

To predict new stable compounds, we use iCGCNN to predict their formation energies, then

compute PHC as the difference between their formation energies and the current OQMD convex

hull energy at the same compositions. In contrast with DMSP, ISP, and ESP, here the most stable

compounds should have lowest PHC rather than highest. We note that to some degree, our perfor-

mance assessment of iCGCNN, relying on these predicted convex hull differences, depends on the

current state of the OQMD convex hull, which is constantly being refined over time as the database

grows.
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3.3 Results

3.3.1 Improving the Performance of ESP and ISP by Iterative Feedback Loop

Figure 3.2: Performance of ESP-based recommendation engines in recovering stable L21 full
Heusler-type compounds in OQMD. The x-axis is the index of hypothetical compounds sorted
according to the recommendation engine, and the y-axis is the cumulative number of stable hypo-
thetical compounds found upon calculating all compounds up to the sorting index. Shown here are
ESP-based engines with varying sizes of N in the iterative feedback loop. Also shown are curves
representing a random sorting of hypothetical compounds as well as perfect sorting (i.e. stable
compounds are ranked highest in the sorting).

We choose to assess performance of recommendation engines with plots like shown in Figure

3.2. The x-axis of these plots are the indices of hypothetical compounds that are DFT-calculated

in the order that the recommendation engine would suggest. For example, in the case of the full

Heusler prototype (Figure 3.2a), there are a total of 130106 hypothetical compounds to calculate.
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The y-axis is the cumulative number of hypothetical compounds that are stable up to the sorting

index of the x-axis; e.g., there are a total of 1324 stable hypothetical full Heusler compounds.

Also shown in the plots are the curves that would be obtained if the hypothetical compounds were

randomly sorted or perfectly sorted (i.e. all stable compounds lie at the top of the list). Generally, a

good-but-not-perfect recommendation engine would produce a curve that lies between the random-

sorting and perfect-sorting curves.

Here, we demonstrate that executing the ESP in an iterative feedback loop improves its perfor-

mance in discovering stable compounds. Note that the same concept of an iterative feedback loop

can apply to the ISP method, but here we demonstrate it with ESP. In this strategy, illustrated in

Figure 3.3, we first sort the hypothetical compounds by PHC computed by equation 3.11, where

initially x ∈ X consists of stable experimental compounds of the relevant prototype. Then, we

perform DFT calculations of the top N hypothetical compounds in the sorted-by-PHC list. Next,

we take the stable hypothetical compounds found among the N calculated compounds and add

them to X . We then re-compute PHC for the remaining uncalculated hypothetical compounds,

run N more DFT calculations, and repeat until all hypothetical compounds have been calculated.

The hypothesis behind this strategy is that stable compounds are clustered in the space of elemen-

tal composition, and while initial set X of experimental compounds may not contain all clusters,

adding the other clusters to X during a feedback loop iteration will speed up discovery of the

remaining stable compounds. The drawback of this strategy is that it de-parallelizes DFT calcu-

lations, which are normally performed on a high-performance computing cluster. Results for full

Heuslers are plotted in Figure 3.2. We find that for the ternary full Heuslers, N = 1000 yields su-

perior performance; not only does it remain reasonably parallel, but it discovers stable compounds

at several times higher rate than N = ∞ (no feedback loop), up to the first 10000 or so DFT

calculations.
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Figure 3.3: Schematic of the iterative feed loop to improve performance of ESP and ISP methods.

3.3.2 Improving the Performance of iCGCNN by Training Set Design

Here we explore how appropriate design of the training set can improve the performance of

iCGCNN in finding stable compounds. In particular, we consider the inclusion of ICSD, i.e. a

diverse set of 37525 experimentally known compounds calculated in OQMD, as well as a varying

number of randomly sampled hypothetical compounds into the training set (see Figure 3.4 for an

illustration of the training set). In Figure 3.5, we show the errors (MAE: mean absolute error and

ME: mean error) of the iCGCNN models trained on the various training sets. When the training

set consists of only ICSD compounds, both the MAE and ME are very high (respectively: 296

and +294 meV/atom; a positive ME indicates underestimation). The reason for these strikingly

underestimated energies is that the ICSD training set contains only synthesizable low-energy com-

pounds whereas the testing set contains mostly high-energy hypothetical Heusler compounds. We

fix this problem by adding randomly selected hypothetical Heusler compounds to the training set.

Upon adding just 0.1% (or 156) of hypothetical full Heusler compounds, the ME drops drastically

to +58 meV/atom, while the MAE drops less drastically to 110 meV/atom.
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Figure 3.4: Training set design for good performance of iCGCNN model in predicting new stable
compounds. The training sets in this work consist of experimentally known compounds taken from
the ICSD in addition to randomly selected compositions within the search space.

Of course, adding more compounds to the training set comes with significant computational

expense. To assess the cost-benefit of this strategy, we plot the performance of such models in

finding stable compounds in Figure 3.6. For models with C% of hypothetical compounds added to

the training set, the first C% of compounds along the x-axis are sorted randomly, and the number of

stable compounds is approximately C% of the total; then, the performance rapidly increases as the

remaining 1−C% of compounds are sorted by PHC according to the improved models. Obviously,

the model with C = 0.1% performs better than C = 1% for at least the first 1% of compounds, but

the 1% model overtakes 0.1% in performance within 104 sorted Heusler compounds.

When applying this strategy for a real materials search, it would not be clear which value of C

to use. Our intuition is that C = 1% is a solid choice when it’s affordable; otherwise, especially in

ternary and quarternary search spaces, using just 0.1% can be sufficient to obtain greatly improved

performance.
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Figure 3.5: Performance of iCGCNN-based recommendation engines in predicting the formation
energies of hypothetical L21 full Heusler-type compounds. The recommendation engines vary
in terms of whether they include diverse ICSD compounds and percentages of randomly-chosen
hypothetical compounds.

3.3.3 Comparing Performance of DMSP, ESP, and iCGCNN on Metallic Compounds

In Figure 3.7, we compare the performances of the ESP, iCGCNN, and DMSP in recovering hypo-

thetical stable full Heusler compounds. Based on our conclusions from the previous two sections,

we opted to use N = 1000 for ESP and C = 1% as well as ICSD compounds for iCGCNN training

set. We see that the ESP method produces dozens of stable compounds through the first ∼1000

or so DFT-evaluated compounds, at which the iCGCNN method overtakes ESP in performance.

Thus, we recommend ESP for the most immediate results when computational expense prohibits

thousands of DFT calculations, and iCGCNN when thousands or more compounds can be calcu-

lated. On the other hand, the DMSP method did not perform best in any situation we studied. This

could be because we did not explore ways to improve the performance of DMSP, as we found

DMSP to be quite expensive to execute.
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Figure 3.6: Performance of iCGCNN-based recommendation engines in recovering stable L21 full
Heusler-type compounds. The x-axis is the index of hypothetical compounds sorted according
to the recommendation engine, and the y-axis is the cumulative number of stable hypothetical
compounds found upon calculating all compounds up to the sorting index. Also shown are curves
representing a random sorting of hypothetical compounds as well as perfect sorting (i.e. stable
compounds are ranked highest in the sorting).

3.3.4 Comparing Performance of ISP and ESP on Ionic Compounds

Up until this point, we excluded ISP from the performance comparisons because it would not be

sensible to use ISP to discover the mostly metallic compounds that form in the full Heusler pro-

totype. We now assess the performance of ISP using an ionic chemical system for which OQMD

has extensive DFT data: ABO3 perovskites. Since ISP and ESP methods work similarly, with the

primary exception that ISP distinguishes oxidation states of chemical species, we seek to deter-

mine whether ISP is advantageous over ESP for the discovery of ionic compounds. The extensive
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Figure 3.7: Performance of iCGCNN-, ESP-, and DMSP-based recommendation engines in re-
covering stable full Heusler-type compounds. The x-axis is the index of hypothetical compounds
sorted according to the recommendation engine, and the y-axis is the cumulative number of sta-
ble hypothetical compounds found upon calculating all compounds up to the sorting index. Also
shown are curves representing a random sorting of hypothetical compounds as well as perfect sort-
ing (i.e. stable compounds are ranked highest in the sorting).

OQMD calculations of ABO3 compounds are introduced in Ref 86. In short, the authors first

calculated all cubic perovskite (Pm3̄m) compounds ABO3 such that A,B are 73 metals from the

periodic table (although we exclude the 6 actinides from our study). They then took all composi-

tions for which the cubic perovskite was within 500 meV/atom of the convex hull and calculated

these compositions at 3 perovskite distortions: R3̄c, P4mm, and Pnma, asserting that the remain-

ing compositions are unlikely to be stable at any distortion. We follow this assertion and treat the

remaining compositions as unstable for our study. In Figure 3.8, we plot the performance of ISP
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and ESP methods with N = 100 iterative feedback loop on the Pnma perovskite distortion. The

general finding is that both methods perform very well, with no clear advantage of one method

over the other. We do note a possible advantage of ISP in certain situations where a stable com-

pound contains an uncommon ionic species. For example, while sulfur is most often 2− oxidation

state, it can in rare occasions be 6+, as in SF6. However, in our perovskite study, we could not find

examples of ‘rare-ion-containing’ compounds that were more easily predicted by ISP than by ESP.

Figure 3.8: Performance of ISP- and ESP-based recommendation engines in recovering stable
Pnma perovskite compounds. The x-axis is the index of hypothetical compounds sorted according
to the recommendation engine, and the y-axis is the cumulative number of stable hypothetical
compounds found upon calculating all compounds up to the sorting index. Also shown are curves
representing a random sorting of hypothetical compounds as well as perfect sorting (i.e. stable
compounds are ranked highest in the sorting).
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3.4 Status of Materials Discovery in OQMD

Over the last decade, the OQMD has seen a rapid expansion to tens of thousands of hypothetical

stable compounds, which today outnumber experimental stable compounds 2-to-1. [31] A large

majority of the new stable compounds come from the execution of recommendation engines ex-

plored in this work. For instance, more than 10000 stable compounds come from the use of ESP

by other research teams [84, 121]. We have also extensively used ESP, ISP, DMSP, and iCGCNN

extensively in a number of published and unpublished search projects. With such progress made,

we can stop to ask where we currently stand in the overall quest to identify all possible stable

compounds. Here, we examine a few examples of prototypes for which many hypothetical stable

compounds (but not all) have been added to OQMD: ZrNiAl, plotted in Figure 3.9. In this plot,

the x-axis is the sorting of hypothetical compounds according to ESP method with feedback loop

(N = 1000); in this case we include all possible compositions, not just the ones that have been

calculated in OQMD as we did in the previous figures of this section. The left-hand side of the

y-axis is the number of stable hypothetical compounds up to the corresponding sorting index of

the x-axis, and the right-hand side is the number of calculated compounds up to the same sorting

index.

In the case of ZrNiAl, nearly all of the first 1000 sorted compounds have been calculated in

OQMD, indicating that recommendation engine-based searching of the ZrNiAl space has already

been attempted, and over 600 stable compounds have been found. After 1000 compounds, the

number of calculated compounds (blue curve) begins to deviate from the diagonal, representing

all compounds (dashed gray line), indicating that there is a significant number of likely-stable

hypothetical compounds that have not been calculated in OQMD yet.



77

Figure 3.9: Discovered stable hypothetical compounds of type ZrNiAl, plotted against the sorting
index according to ESP-based engine (N = 1000 for a, b, d and N = 100 for c). Also shown
are the total number of hypothetical compounds (stable and unstable) calculated up to the sorting
index, and a diagonal line representing all hypothetical compounds.

3.5 Conclusion

We have assessed the performance of automated recommendation engines in accelerating the dis-

covery of stable inorganic compounds. We find that the iCGCNN, ESP, and ISP methods all per-

form strongly in sorting out the most-likely and less likely stable hypothetical compounds that are

already calculated in OQMD. After implementing workflows to improve the recommendation en-

gines, specifically optimal design of training set for iCGCNN and iterative feedback loop for ESP

and ISP, we find that the iCGCNN broadly performs the best out of these methods. The DMSP

method performed less strongly, partly due to the high computational expense of the Magpie im-

plementation. Finally, we examined the status of recommendation engine-based materials searches
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in OQMD, finding that a diverse range of compounds predicted to be stable by ESP have already

been calculated but many more remain to be calculated.
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CHAPTER 4

HIGH THROUGHPUT DISCOVERY OF STABLE INORGANIC COMPOUNDS

Some parts of this chapter are taken directly from our published paper. [31]

4.1 Background

One of the major advantages of the OQMD is its flexibility to allow researchers to explore hy-

pothetical compounds (not previously known), which enhances our scientific understanding in

providing candidate compounds for future applications. We are continually performing this ex-

ploration via high-throughput DFT calculations on a wide variety of hypothetical compounds. We

often use “structure prototypes” as a blueprint for generating hypothetical compounds. We define

the prototype of a structure as the combination of its stoichiometry, space group, and Wyckoff site

occupancies. This blueprint is useful for two reasons. Reason #1 is that most known compounds

share common prototypes, like NaCl-, CsCl-, and Heusler-type, among many others. In fact, 83%

of all compounds in the ICSD share a prototype with another compound, and 27% of all com-

pounds share a prototype with ≥ 50 other compounds. [33] Reason #2 is that we can use prototype

to arrive at a stable or metastable crystal structure for hypothetical compounds. This is done by

taking a known compound of that prototype, substituting in elements of the hypothetical compo-

sition, and using DFT to relax unit cell parameters and atomic coordinates along the symmetry

directions.

It is natural to start with the most common prototypes as the blueprint for generating hypo-

thetical compounds. In the OQMD, we used several common prototypes to conduct “exhaustive”

high-throughput DFT of hypothetical compounds, i.e., calculate nearly all possible compounds by
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substitution of elements from the periodic table. The prototypes completed include binaries B1

(NaCl), B2 (CsCl), B3 (zincblende), Bh (WC), C15 (MgZn2), D03 (BiF3), D019 (Ni3Sn), D022

(Al3Ti), L10 (CuAu), L11 (CuPt), L12 (Cu3Au); and ternaries C1b (Half Heusler), and L21 (Full

Heusler). This has amounted to 393879 DFT calculations (54030 binary and 339849 ternary), and

has been quite fruitful: 1973 of these hypothetical compounds (396 binary and 1577 ternary) are

on the convex hull of stability and do not have an ICSD polymorph that is close in energy. On

the other hand, most of the hypothetical compounds are above the convex hull and therefore much

less likely to be synthesizable (see Figure 4.1). DFT calculations of unstable compounds are still

useful to have for boosting training sets of machine learning (ML) models as well as general un-

derstanding. However, while we can continue these exhaustive high-throughput DFT calculations

using other common prototypes, we cannot do this for all 10203 prototypes we have from ICSD.

If we wanted to do exhaustive DFT for all prototypes up to five components using 76 elements in

the periodic table (Z ≤ 83 excluding noble gases, Tc, and Pm), then we would have to do trillions

of DFT calculations.

Thankfully, algorithms based on data mining of materials databases as well as machine learn-

ing have been developed to accelerate the discovery of inorganic compounds. In Chapter 3, we

discussed these methods at length, tested them, and developed protocols to exploit them most ef-

ficiently to discovery stable inorganic compounds. Importantly, we found that the ISP and ESP

methods are highly efficient when conducted following an iterative feedback loop, where newly

found stable compounds are added to the initial pool of stable compounds (which come from ICSD)

and are subsequently used to re-computed the likelihood predictions. We used these two methods

extensively to discover well over 10,000 new stable compounds and added them to OQMD. The

ESP method has been used by other groups to discover tens of thousands of additional stable com-

pounds, [84, 121] and we have added these to OQMD as well. Furthermore, we discovered more
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than 10,000 additional compounds with a novel strategy we developed: by mixing two or more

already-known stable compounds that differ by only one element. For example, the mixed com-

pound ZnCd3S4 can hypothetically be formed by mixing Zn and Cd on their respective lattice site

in the isostructural compounds ZnS and CdS. In this chapter, we provide a summary of the growth

of OQMD and the new stable compounds that have been recently added, the majority of which

are directly attributed to the aforementioned projects. We will also detail the mixing method and

statistics of the mixed compounds we obtained from the method.

Figure 4.1: Distribution of convex hull distances of all hypothetical Full Heusler and Half Heusler
compounds in the OQMD, compared to experimentally known ICSD compounds. Less than 1%
of hypothetical Heusler compounds are stable under zero thermodynamic conditions, compared to
48% of ICSD compounds.

4.2 Overview of the Newly Discovered Compounds

The OQMD has grown tremendously since its introduction in 2013, and now consists of over

1,000,000 compounds. A growing fraction of the stable compounds in OQMD are hypothetical



82

(i.e.not experimental compounds from the ICSD). In Figure 4.2, we plot the fraction of stable

compounds in OQMD that come from the ICSD. In this plot, all ICSD compounds are assumed

to have been calculated prior to the year 2014, although many were calculated later than that.

The point is to show that the fraction of stable compounds in OQMD that come from ICSD has

been decreasing over time. Up until 2020, non-ICSD stable compounds were generated by various

members of the Wolverton group as part of their research projects, as well as from exhaustive

high-throughput DFT searches of common prototypes like NaCl, Heusler, etc. In 2020, a very

sharp drop in the ICSD fraction occurred when we added compounds from the breakthrough paper

that used the ESP method. [84]. We have also extensively used ISP and ESP to discover new

stable compounds not reported in that paper from 2020 through today; this can be seen in Figure

4.3, where there is a sharp increase in the number of stable compounds discovered OQMD that

occurred from 2020 onwards (the discovery dates from pre-2011 compounds are taken from the

ICSD referenced papers). This sharp increase serves to show just how powerful our computational

methods are in accelerating the discovery of new compounds. To obtain the new stable compounds,

we followed the iterative protocol described in Chapter 3, where we started with all experimentally

known stable compounds from ICSD to generate likely-stable hypothetical compounds.

The roughly 1,000,000 compounds in OQMD today are summarized in Figure 4.4. In Figures

4.4a and 4.4b, histograms of stabilities (i.e.convex hull distances) are plotted for all ICSD and all

OQMD compounds, respectively. Since ICSD compounds are experimentally observed, naturally

their stabilities tend toward zero, whereas hypothetical compounds (“non-ICSD” in 4.4b) generally

have higher stabilities. However, largely due to data mining and ML based methods as previously

discussed, many of the hypothetical compounds have small stabilities, e.g.below 20 meV/atom,

indicating they might be synthesizable as metastable compounds.

In Figures 4.4c and 4.4d, histograms of the number of element types (binary, ternary, etc.)



83

Figure 4.2: Percentage of all compounds on the OQMD convex hull that are sourced from the
ICSD, plotted against the date of calculation. The OQMD started with ICSD compounds (100%),
but ICSD compounds now make up just ∼30% of the OQMD convex hull. For this plot, all ICSD
compounds are assumed to have been calculated prior to 2014, although many were calculated
later than that.

Figure 4.3: Number of unique compounds on OQMD convex hull, binned by the year they were
discovered. If the compound came from ICSD, then the date of the original paper is used; other-
wise, the date that the OQMD entry was created is used.
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are plotted for all OQMD and all stable compounds, respectively. The “non-ICSD” compounds

are more biased towards ternary and quaternary (3 and 4 components) than the ICSD compounds.

This may be because much experimental effort has focused on perfecting the relatively small bi-

nary phase diagrams, whereas experimentalists have not yet had an opportunity to tap into the

whole space of compounds that are possible based on combinatorial substitution of elements into

ternary and quaternary prototypes. With the combined effort of high-throughput DFT and efficient

data-mining and ML methods, we are now able to systematically evaluate and discover new com-

pounds in the ternary, quaternary, and quinary space. Compositions greater than 5 components are

certainly possible, but little exploration has been done thus far.

In Figure 4.4e, the histogram of the number of atoms per unit cell is plotted for all stable com-

pounds. It is important to highlight that our high-throughput DFT efforts have thus far focused on

relatively small unit cells (fewer than 15 atoms) because they are computationally cheap. Much

work remains to be done in uncovering stable compounds with larger unit cells. In Figure 4.4f,

band gaps are plotted for stable compounds; the ICSD and non-ICSD distributions are quite rep-

resentative of one another, since our high-throughput DFT efforts have targeted a wide range of

prototypes across the ICSD. In Figures 4.4g and 4.4h, distributions of space groups are plotted for

ICSD and non-ICSD compounds, respectively; differences between these two distributions are due

to the fact that we have combinatorially explored some common and small-unit-cell prototypes,

such as Heusler, over other less common prototypes with larger unit cells.

The prototypes of the newly discovered compounds in OQMD are highly diverse. In Figure

4.5, we plot the distribution of the number of compositions per prototype that are stable in OQMD.

The prototypes are clustered by crystal system, and the size of a bubble (prototype) is proportional

to the number of compositions in that prototype. There are a handful of prototypes that are signif-

icantly larger than most others, since these are very common prototypes. In some cases, such as
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“Quaternary ZrNiAl,” the prototype rose to prominence by mixing compounds (see Section 4.3),

e.g.by mixing two compositions with the ZrNiAl prototype. In 4.6, we show the distribution of

prototypes in a different way, this time coloring the prototypes by the factor increase in the number

of new hypothetical compounds over ICSD compounds, and grouping together prototypes with

different stoichiometries but the same Wyckoff sites. This way, the example of ZrNiAl and qua-

ternary ZrNiAl are treated as one prototype, which happens to be the most common prototype by

far. Here, we can clearly see how many prototypes that are of interest for various applications have

grown significantly in OQMD.

4.3 Mixed Ordered Compounds

A given lattice is often stabilized by compositions that are similar to one another; for example, it

is no coincidence that ZnS and CdS both form in the zincblende structure, as Zn and Cd are both

Group-XII cations. It would then be a fair question to ask whether Zn and Cd can mix together

on the same sublattice. Often, such mixing is disordered under nonzero temperatures, and the

entire lattice changes at a phase transition temperature. However, Zn and Cd is known to mix in

an ordered way to form ZnCd3S4. In this case, the symmetry is broken from F4̄3m in ZnS and

CdS to P4̄3m in ZnCd3S4. There are also experimentally reported ordered mixtures that retain the

symmetry of their parent compounds; for example, in parent compounds Sr2Si and Ca2Si (Pnma),

Sr and Ca occupy two Wyckoff orbits, and in the mixture SrCaSi (Pnma), Sr and Ca each occupy

one of same two orbits.

We conducted a high-throughput DFT search for new ordered mixtures of known parent com-

pounds. To start with, we identified all pairs of stable compounds with the same prototype and

with compositions that differ by only one element, e.g.ZnS and CdS. To minimize computational

expense, we considered only prototypes with 12 or fewer atoms in the primitive cell. We then con-
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structed and calculated all structures in which the differing elements, in our example Zn and Cd,

are mixed and ordered on the relevant sublattice, such that the number of atoms in the primitive

cell remains 12 or fewer (no supercells were generated). In total, 88411 structures were calculated.

Since these compounds are simply ordered mixtures of the parent compounds, both in terms of

composition and crystal structure, it would be reasonable to hypothesize that mixed compounds’

properties “lie between” the corresponding parent compounds’ properties. For example, the mixed

compound’s formation energy Ef (say, ZnCd3S4) might be a composition-weighted linear com-

bination of the parent formation energies: Ef (ZnCd3S4) = (1/4)Ef (ZnS) + (3/4)Ef (CdS). To

test this hypothesis, we plot in Figure 4.7 the mixed compounds’ formation energies (4.7a), band

gaps (4.7b), and magnetic moments (4.7c) against the composition-weighted linear combination of

corresponding parent properties. The dashed black line represents the case in which the hypothesis

is true.

The formation energies (Figure 4.7a) of mixed compounds differ from the corresponding par-

ent formation energies with a MAE of 38 meV/atom. We will refer to this difference as a “mixing

energy.” The percentiles of the mixing energies, in order from 10th to 90th percentile in intervals

of 10%, are -13, -3, 0, 2, 4, 8, 15, 28, and 69 meV/atom. Thus, the majority of mixed compounds

have a positive mixing energy, indicating that DFT predicts they will decompose into the parents.

The compounds with negative mixing energy are thermodynamically favored to mix, rather than

decompose into the corresponding parent compounds. However, the negative mixing energies tend

to be small (median of -4 meV/atom); for reference, the median decomposition energy of other

stable compounds in OQMD is -23 meV/atom. Such a small mixing energy may indicate that the

compound would be disordered at room temperature, rather than ordered at zero temperature as

we’ve modeled them. Note also that the mixed compounds may not necessarily have the same

crystal lattice as the parent compounds; there may be a different crystal structure at the same com-
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position that is lower in energy than the parent lattice. Nevertheless, due to variational principle,

DFT predicts that some structure is more stable than the parent structures at a composition between

the parent compositions, which in itself is interesting and begs further investigation.

The band gaps (Figure 4.7b) of mixed compounds differ from parent band gaps to some degree.

For the following statistics, we excluded cases where the mixed or the parent compounds are

metals (band gap < 0.01 eV). The band gap differences have a MAE of 0.25 eV; the percentiles

of the band gap differences, in order from 10th to 90th percentile in intervals of 10%, are -0.60,

-0.31, -0.20, -0.13, -0.08, -0.04, -0.00, 0.05, and 0.12 eV. Thus, for the most part, the mixed

compound band gaps are smaller than, but still relatively close to, the linear sum of parent band

gaps. This has important implications for the field of “band engineering”; if a mixed compound is

possible to make, it is likely to have a band gap that lies between the parent band gaps. In many

applications, such as photovoltaics, the value of band gap is crucial for performance and much of

the engineering focuses on finding materials within the appropriate window of band gap values.

Interestingly, 1854 mixed compounds “lost” a band gap and become metals, meaning they don’t

have a band gap while the parents do; and 152 mixed compounds “gained” a band gap and become

semiconductors/insulators, meaning they have a band gap while the parents don’t. As can be seen

in the plot, a significant number of these mixed compounds differ from the parents by upwards of

2 eV or more. This finding suggests that the mixing operation can, in some cases, greatly alter the

properties of the compound.

The magnetic moments (Figure 4.7c) of mixed compounds differ from parent magnetic mo-

ments as well. For the following statistics, as we did for band gaps above, we excluded cases

where the mixed or the parent compounds are nonmagnetic (magnetic moment < 0.01 µB/atom).

The magnetic moment differences have a MAE of 0.05 µB/atom; the percentiles of the magnetic

moment differences in order from 10th to 90th percentile in intervals of 10%, are -0.07, -0.01,
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-0.01, 0.00, 0.00, 0.00, 0.01, 0.02, and 0.08 µB/atom. Thus, relatively speaking, the magnetic

moments of mixed compounds are quite close to the corresponding parent magnetic moments.

In addition, 918 of the mixed compounds “lost” magnetism, while 991 of the mixed compounds

“gained” magnetism during the mixing operation. Thus, as with the band gaps, this phenomenon

of losing or gaining magnetism is uncommon but does occur to a surprising degree. Note that in

this study we only considered the nonmagnetic (no magnetic moment) and ferromagnetic (nonzero

magnetic moment) states; we did not consider paramagnetic or antiferromagnetic states, due to

computational complexity.
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Figure 4.4: Statistical summary of current OQMD. (a) Stability (convex hull distance) of all ICSD
compounds calculated in the OQMD. (b) Stability (convex hull distance) of all ICSD and non-
ICSD compounds. (c) Number of elements types of all compounds in the OQMD. (d) Number
of elements types, (e) number of atoms and (f) band gaps of all stable compounds in the OQMD.
Space groups of (g) all stable ICSD compounds and (h) all stable non-ICSD compounds in the
OQMD.
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Figure 4.5: Distribution of all stable compounds in OQMD. Each circle indicates a distinct pro-
totype, with the size of the circle being proportional to the number of stable compounds in the
OQMD with such prototype. The prototypes are clustered according to the space group family,
and the ones with the largest number of stable compounds are labeled.
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Figure 4.7: Comparison of mixed compound formation energies (a), band gaps (b), and magnetic
moments (c) against the corresponding linear sum of parent compounds’ properties. The black
dashed line represents the case where the mixed and parent properties are equal. The mean ab-
solute errors (MAE) are reported; for band gaps and magnetic moments, we include in the MAE
calculation only cases where neither the child nor parent properties are zero.
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CHAPTER 5

ARTIFICIAL INTELLIGENCE ACCELERATES THE PREDICTION OF STABLE

MATERIALS

Most of this chapter is taken directly from our unpublished manuscript.

5.1 The Need for Artificial Intelligence to Predict Materials Stability

As the world recognizes the power of computation, so too is the field of materials synthesis under-

going a transition from laboratory to computer. Behind this transition is the increasing ability to

predict, without experimental input, whether a material will form under specified environmental

conditions. At the atomic level, compounds are predicted using their formation enthalpies, or en-

ergies of forming the compounds relative to their elemental reference states. If this energy is lower

than that of any other possible compound or linear combination of compounds within the phase

space, then this compound lies on the convex hull of stability and is therefore stable and predicted

to exist at T = 0. Otherwise, the compound is predicted to be unstable and decompose into other

phases; while a small convex hull distance (≲ 100 meV/atom [58, 59]) can provide a clue about

metastability (i.e.stability at nonzero temperature, pressure, etc.), it cannot guarantee metastability.

It is important to consider metastability because many materials must operate at high temperature,

pressure, etc., or must be synthesized at high temperature and rapidly cooled to room temperature

for real-world applications. When nonzero temperature is applied, then we add an entropy term to

predict the Gibbs free energy and then conduct the convex hull analysis using Gibbs free energies

rather than formation enthalpies. An example illustration of a convex hull analysis at finite pressure

is shown in Figure 5.1. A thorough explanation of the generalized Gibbs phase rule is provided in
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Ref. 122.

Figure 5.1: (Adapted from Ref. 57) Projection of a zero-pressure (composition-energy) convex
hull (left) to various nonzero-pressure (composition-volume-energy) convex hulls (right). The
convex hulls are marked by solid red (zero-pressure) and dotted black lines (nonzero-pressure).
The convex hull, indicating stable phases, may contain different phases at zero pressure (dark blue
spheres) versus nonzero pressures (light blue spheres). Some hypothetical phases are never stable
at any pressure (orange spheres). One can perform a similar convex hull analysis to determine
thermodynamic stability at nonzero temperature, surface/interfacial pressure, and other drivers.

For a given material, it is now possible to compute all quantities relating to thermodynamic sta-

bility with a high degree of accuracy using first-principles methods, especially DFT. [22, 23] For

example, the total energy of a crystal can be computed with errors on the order of 1 meV/atom. For-

mation energies computed by DFT match experimental values with a MAE of just 91 meV/atom,

which is within experimental error. [12] The corresponding convex hull stabilities can also be com-

puted straightforwardly, since competing phase energies, experimentally known (e.g.from ICSD)

and hypothetical, can be readily obtained from large-scale and rapidly growing DFT databases

like Materials Project (MP), [8], OQMD [7, 31] AFLOW [9], JARVIS, [10] NOMAD, [82, 83]

and OPTIMADE [11]. In first principles calculations of nonzero temperature (T > 0) materials,
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one must add configurational and vibrational contributions to the free energy, as these can sta-

bilize materials that are unstable at T = 0 and vice versa. Disorder and hence configurational

entropy can be treated by converting the random structure to a “special quasirandom structure”

(SQS) whose cluster correlation functions match those of the disordered structure; [123] or, to in-

vestigate a range of compositions, one can do a full cluster expansion study. DFT can also be used

to handle vibrational entropy by investigating phonons (or atomic vibrations), which are approx-

imated by harmonic terms to the spring force (and in some cases, anharmonic terms). [124] The

full investigation requires dozens of DFT calculations of displaced-atom structures.

Although there are well known failures of DFT due to the use of approximated exchange cor-

relation functionals, DFT remains the state-of-the-art method for highly reliable computations of

solid state properties. [125, 126] The more significant challenge inhibiting computational materi-

als discovery is the high computational cost of DFT calculations. The cost of DFT scales cubically

with the number of atoms, and crystal structures that contain dozens of atoms typically cost hun-

dreds of CPU hours each. While a large proportion of all experimentally known compounds have

been calculated, it is much more expensive to predict new compounds. The configurational space

of possible materials is infinitely large, and it is unfeasible to run DFT on all of them. The con-

figurational space can be restricted to roughly 10000 known structure prototypes [33, 127] and

around 80 technologically relevant elements, but there are still billions of possible compounds up

to 5 elements that can be made from these prototypes. Supercells and T > 0 compounds are even

more difficult, since they cost orders of magnitude more CPU hours than a single T = 0 structure.

While high throughput calculations of T > 0 properties have been conducted for some material

classes recently, [128, 129] there is no existing first principles study of the temperature effect for

most known compounds today.

The question then arises whether a cheaper surrogate model can replace DFT in predictions of
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stable materials. It is challenging to come up with a model that captures the extreme nonlinearity of

the relationship between material and stability. Machine learning (ML) is well suited for this task

because it is drastically cheaper than DFT and demonstrated to effectively learn complex relation-

ships that are not necessarily well understood by experts (and can even improve understanding).

The diversity of ML techniques, many of which have emerged as recently as the last few years,

have inspired a flurry of studies into how to effectively represent materials and model their stability.

To predict T = 0 stability, there have been numerous highly successful ML attempts that have led

to the discovery of new stable materials, thanks in no small part to the coincident rapid growth and

accessibility of DFT-computed formation energy data. ML predictions of T > 0 stability are an

even newer area of exploration, as researchers are just beginning to tackle the enormous challenges

of limited available DFT data (due to high expense) and complexity of the underlying theory.

In this Review, we cover the most recent ML advances in predicting materials stability at zero

and nonzero temperatures. Our Review is organized as follows. First, we provide an overview

of the state-of-the-art ML methods developed to predict materials stability, with much emphasis

placed on the prediction of T = 0 formation energy. Next, we explore how such ML methods

have been used to accelerate the discovery of T = 0 stable compounds (i.e.lying on the convex

hull). Finally, we envision the future of materials stability predictions, which can incorporate other

thermodynamic drivers such as pressure and surface/interfacial pressure.

5.2 Overview of Machine Learning Frameworks and the Prediction of Zero Temperature

Formation Energy

In this section, we provide an overview of the state-of-the-art ML frameworks for materials pre-

dictions, including a special emphasis on formation energy as the target property since this is one

of the most extensively calculated properties. As materials science is a highly nonlinear and mul-
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tivariate problem, a wide spectrum of machine learning frameworks have been developed to target

different aspects of the problem. One of the most crucial aspects of every ML framework is the fea-

turization used to represent the material. As always, the features must represent some attribute of

the material that correlates with the target property. For example, a simple way to obtain material

attributes is to extract any properties having to do with its composition, e.g.its constituent elements

and their relative amounts. A special advantage of this approach is that it does not require knowl-

edge of the compound’s crystal structure or physical properties, which require measurement or first

principles simulations to obtain. This kind of feature extraction has been streamlined [111, 130,

131] and, with simple regression or classification models, has been shown to predict formation

energy with errors on the order of 200 meV/atom as well as other properties. [111]

Beyond just the material’s composition, its crystal structure (relating to the arrangement of

atoms) is unquestionably relevant to its properties. In first principles calculations, the only neces-

sary inputs are the unit cell dimensions and a list of atoms and their position coordinates within

the unit cell. However, crystal structure representation for machine learning is much trickier since

it is key to engineer features with physical significance to guide learning. For example, Ward et

al.developed a set of features encoding averaged structural information, including coordination

number, heterogeneity, chemical ordering, packing efficiency, and local environment, by extract-

ing Voronoi tessellations of atoms in the unit cell. This method was found to exhibit lower errors

for all training set sizes up to 3000 entries, compared to two earlier crystal structure representa-

tions: Coulomb matrix (CM) and partial radial distribution function (PRDF). [112, 132, 133] In

another example, Seko et al.[113] developed a set of structural features emphasizing the relation-

ships between elemental properties and structure prototype, on top of PRDF, “generalized” GRDF,

bond-orientational order parameter, [134] and angular Fourier series, [135] achieving excellent for-

mation energy prediction error of 41 meV/atom on a set of 18000 compounds, although the limited
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configurational range of chemistries and prototypes in these compounds may lead to lower errors.

[136] Kajita et al.devised a 3D voxel representation encoding the electron distribution inside a

unit cell and demonstrated a MAE of ∼400 meV/atom on predictions of 680 randomly selected

oxides from ICSD. [114] Jiang et al.achieved an impressive MAE of 61 meV/atom across a wide

range of prototypes and compositions by extracting interpretable features based on topological

representation derived from persistent homology. [115]

There is clearly an abundance of features to consider, and it is generally not clear which fea-

tures relate to the target property and how. While domain knowledge can help, this requires an

expert and even experts may lack certain relevant knowledge. In addition, there can be combina-

tions of features, in the form of analytic expressions, that relate to the target property better than

features alone. Although the feature combinations must be constrained to have physical meaning,

e.g.having consistent units, there could conceivably be millions of features to choose from. Fur-

thermore, it is desirable to keep only a small number of candidate features to relate to the target

property in order to avoid overfitting. A well known ML technique to tackle the feature selection

problem is LASSO, or “least absolute shrinkage and selection operator”, where the objective func-

tion of minimization includes the l1 norm of the number of nonzero features. [137] Compressed

sensing is also helpful here, because it is necessary to reconstruct a signal from a set of observations

that is far smaller than the feature space size. Ghiringhelli et al.adapted the LASSO approach with

compressed sensing to identify physical descriptors relating to the energy differences of binary

compound crystal structures. [138] Building on this method, Ouyang et al.developed the SISSO

method, or “sure independence screening and sparsifying operator”. Designed to efficiently han-

dle enormous feature spaces (≫ 104 features), the SISSO approach first conducts a dimensionality

reduction by screening candidate features most relevant to the target property (based on inner prod-

uct between feature and property), [139] and then conducts LASSO on the smaller feature space.
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[140]

Another strategy to deal with large feature spaces in materials prediction is to circumvent the

feature engineering step and use deep learning ML techniques. A relatively recent ML advance,

deep learning has a well-documented track record of learning complex and hierarchical relation-

ships from massive amounts of data, e.g.identifying objects among millions of images, without the

need for engineered, domain-specific features. [141] In one demonstration of deep learning in ma-

terials predictions, Zhou et al.used a single-hidden-layer fully connected neural network to predict

formation energies of elpasolite (ABC2D6 double perovskite) compounds from their “Atom2Vec”

atom feature vectors. [116] Jha et al.found that their ElemNet model, a deep neural network of up

to 17 layers using elemental composition vectors as input, significantly outperformed a Random

Forest (RF) model trained on either similar elemental composition vectors or physics-informed

composition features. [117] As this model exhibited performance degradation beyond 17 layers,

Jha et al.[118] developed a novel deep regression network architecture with individual residual

learning, or IRNet, where shortcut connections are placed between every sequence (fully con-

nected layer, batch normalization, and nonlinear activation) to allow gradient propagation across

all layers and resolve the vanishing gradient problem. The authors showed that the IRNet exhib-

ited steadily decreasing MAE in formation energy predictions through 20000 training iterations

in networks of up to 48 layers, and significantly better performance compared to a stacked resid-

ual network (shortcut connections between blocks of 4 sequences) and a plain network with no

shortcut connections. Attention networks have been explored to better represent stoichiometry

in the context of corresponding properties; [109, 142] for example, doping a material with small

amounts of another element can lead to large changes in its properties in a way that traditional

representations of stoichiometry would not capture.

A significant challenge in incorporating ML methods into materials predictions is that most ML
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methods require fixed length vectors as input, whereas materials can vary widely in compositional

and structural complexity. As a result, applications of these ML methods are restricted to scenarios

in which the materials under study are described with the same number of features. For example,

materials belonging to the same structure prototype, like ABC2D6 elpasolites, can be described in

terms of the structural attributes that are the same for any elpasolite. Or, when the materials belong

to different prototypes or stoichiometries, the features must either be attributes that are common

to all materials or “summarized” attributes, e.g.average coordination number. However, materials

can exhibit complex and variable symmetries, local geometry, and hierarchy that are difficult to

simultaneously account for with fixed length feature vectors. Xie and Grossman [101] developed

an ML framework, which they called “crystal graph convolutional neural network” (CGCNN), that

can handle arbitrary sized input vectors. In the CGCNN framework, crystal structures are modeled

as crystal graphs where nodes are feature vectors of atom properties and edges encode bond infor-

mation between atom pairs. Unlike molecular graphs, [143] crystal graphs allow multiple edges

between the same node pair so that periodicity of the unit cell is fully accounted for. The convolu-

tional layers are used to convolve the atom feature vectors with their edge and node connections (up

to 12 nearest neighbors), as well as hidden layers to capture more complex structure-property rela-

tionships. The authors demonstrated the ability of CGCNN to predict formation energy and other

properties for a wide variety of materials from MP, [8] with MAEs comparable to DFT MAEs with

respect to experimental values. [12] Park and Wolverton [102] developed an “improved” version

of CGCNN, which they called “iCGCNN”, demonstrating significantly lower MAE in formation

energy predictions compared to the original CGCNN. The iCGCNN framework encodes Voronoi

neighbors rather than 12 nearest neighbors, and included Voronoi polyhedral information (such as

solid angles, areas, and volumes) as part of the edge embeddings. In addition, 3-body correlations

were included in the convolution function on top of 2-body correlations, and edge embeddings
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were optimized in addition to nodes. Pal et al.[103] further improved the iCGCNN framework

by introducing a scalar associated with the minimum interatomic distance in the crystal structure

and optimized so as to predict the relaxed volume of the crystal and simultaneously its forma-

tion energy. This way, the predicted formation energy corresponds to the relaxed crystal structure,

which is not initially known prior to a DFT calculation and can be significantly different from the

unrelaxed (initial guess) crystal structure. This problem regarding relaxed vs. unrelaxed crystal

structure was also addressed by Schmidt et al.by developing a crystal graph attention network in

which bond distances are replaced by graph distances in the edge embeddings. [85] Although

neural networks are a strong choice of ML method for crystal graph network architectures, they

are not strictly required; Chen et al.[104] developed a generalized crystal graph network archi-

tecture called MatErials Graph Network (MEGNet). An additional advantage of MEGNet is the

inclusion of global state attributes so that materials under variable thermodynamic conditions like

temperature, pressure, and entropy can be included. Banjade et al.[105] added structural motifs

(e.g. polyhedra) in addition to atomic bonds in their atom-motif dual graph network (AMDNet),

demonstrating improved performance compared to MEGNet.

While crystal graph networks have been shown to greatly outperform non-deep-learning meth-

ods like RF when data sets like DFT formation energies exceed 104 data points, their performance

is significantly weaker when data sets are smaller than 104 points. [110] Indeed, some material

properties are less available than others due to labor or computational costs, making them more

challenging to predict with ML methods. For example, vibrational entropy is highly expensive to

compute from first principles, but crucial to predicting T > 0 stability. An increasingly popular

strategy to build better ML models on small data sets is transfer learning, where model weights

trained on larger data sets are transferred to a model of smaller data set. Jha et al.[106] demon-

strated that by transferring weights from an ElemNet model trained on large DFT data sets to an
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ElemNet model on smaller DFT and experimental data sets, they achieved MAEs much lower than

when training a model on the corresponding smaller data sets from scratch. Other groups have

similarly demonstrated transfer learning on materials formation energy predictions. [104, 109]

Chen and Ong developed the AtomSets framework to extract MEGNet compositional and struc-

tural features for transfer learning, and successfully achieved strong performance on models of

small data sets of bulk moduli, band gap, phonon density of states, and formation energy. [107]

There are also recent methods to learn multiple properties simultaneously with a single ML model.

The SISSO method has been adapted for multi-task learning and demonstrated on predicting the

relative stability of binary compounds across a range of crystal prototypes with sparse or limited

data. [144] De Breuck, Hautier, and Rignanese [145] developed an architecture called “material

optimal descriptor network” (MODNet), where feature selection using Matminer features [130] is

followed by joint learning to learn multiple properties simultaneously. The authors predicted vibra-

tional entropy of crystals with MAE of just 0.009 meV/K/atom. CGCNN, SISSO, and MODNet

frameworks are illustrated in Figure 5.2 as a sample.

5.3 Application of Machine Learning to Predict Zero Temperature Stable Compounds

Although formation energy is the most frequent target property estimated by ML models, the

quantity most relevant to stability prediction is the material’s convex hull distance (“CHD”). It

is important to note that the convex hull here includes only already-DFT-calculated phases; this is

necessary for ML predictions but is in fact artificial because if the material in question is confirmed

DFT-stable, then according to thermodynamics the true convex hull must include this material and

a true CHD (not the one we predict) must be zero. As CHD is merely a subtraction of formation

energies of the material and its competing phases, ML can predict CHD with approximately the

same MAE as formation energy. [102] However, ground state compounds and their polymorphs
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Figure 5.2: Sample of recent ML frameworks for materials discovery. (a) (Adapted from Ref. 101)
CGCNN framework, where crystal structure is encoded as a graph and passed through a convolu-
tion neural network to predict a property such as formation energy. (b) (Adapted from Ref. 144)
SISSO applied to construct a structure map as a multivariate function of several intuitive material
properties. (c) (From Ref. 145) MODNet architecture for joint learning of multiple material prop-
erties, especially useful for small datasets like phonon-calculated vibrational entropy.

can differ by <10 meV/atom, which is still lower than the best ML MAE’s to date. Although

formation energies calculated by DFT have a MAE of 91 meV/atom compared to experimental

values, [12] relative stabilities calculated by DFT benefit from subtraction of errors [146, 147]

whereas ML stabilities do not. [119]

Despite this caveat of formation energy ML models, there have been numerous reports of sta-

ble compound discoveries. [39, 74, 85, 95, 101–103, 117, 148–151] Even when MAE’s are high,

the ML model can still be successful if only the compounds with very lowest predicted CHD are

selected for DFT evaluation, especially when the predicted CHD is highly negative with magni-
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tude greater than the MAE (although MAE can vary as a function of CHD [74, 132]), and if the

training sets have a good balance of ground-state and higher-energy structures. [149] For example,

Kim et al.[151] used the random forest model with composition and Voronoi structural features

to accelerate the discovery of new quaternary Heusler (QH) compounds (stoichiometry XX ′Y Z

where X , Y , Z are metal elements). Their search space was a daunting 3.2 million compounds, but

the training set was a rather healthy 96000 QH’s from a previous high-throughput DFT study [91]

in addition to 184000 ternary Heuslers (TH) and 146000 diverse non-Heusler (NH) compounds

from OQMD. An important point they made is that their model achieved much lower MAE when

the training set consisted of TH and NH compounds but very few QH’s than when the training set

consisted of only very few QH’s, but when the training set had > 104 QH’s then the MAE’s were

the same; this result suggests that already-done DFT calculations of different materials can be used

to boost training sets for ML models targeting an unexplored class of materials. With a final MAE

of 37 meV/atom, their model predicted 909 stable candidates, of which 55 were confirmed by DFT

for a success rate of 55/909 = 6% that was 30 times higher than the previous DFT study not using

ML. [91] In another success story, Schmidt et al.[85] applied their crystal graph attention network

to discover 325 stable mixed perovskites (stoichiometry ABX2Y where A, B are cations and X , Y

are anions) among 15 million candidates. Their success was aided by transfer learning, where they

found that a mixed perovskite model pretrained on 2 million non-mixed-perovskite compounds

had much lower MAE than a non-pretrained model. Noh et al.[152] introduced uncertainty quan-

tification using hyperbolic tangent function to the CGCNN framework, thus enabling individual

predicted-stable compounds to be scrutinized by the model uncertainty. Singh et al.[153] used

SISSO to identify meaningful elemental features and construct an algebraic formula for the forma-

tion energy of rare earth compounds [RE]X2 (where X is a transition metal). They then used their

formula to learn about how the alloying effects between cerium-based compounds CeX2-CeX ′
2
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can be explained by elemental properties. Bartel et al.similarly used SISSO to predict the stability

of perovskites. [154]

Predicting formation energy is not the only way to discover new materials with ML. For ex-

ample, the use of chemical rules or data mining of materials databases to map composition to pro-

totype has been around for decades and continues to be a popular approach. [62, 81, 97–99, 155]

In addition, one can take existing compounds and substitute in elements [56, 156] or ionic species

[55] that tend to play similar roles in chemical environments. Wang, Botti, and Marques [84] used

the elemental substitution method (illustrated in Figure 5.3) to discover 18479 stable compounds

out of 189981 likely candidates, an impressive number given that today’s DFT databases contain

on the order of tens of thousands of experimentally known compounds.

When the search space is very large, another question is how to sample it more efficiently for

effective model training. [157] Common search spaces in the materials context are the following:

1. Fixed composition, variable prototypes (formally defined [33]) and their corresponding struc-

ture variables (commonly called “crystal structure prediction”).

2. Fixed prototype, variable compositions, each of which having different values for the struc-

ture variables.

3. Fixed combination of elements, variable compositions (and optionally their structures, i.e.

“phase space”).

4. Variable combinations of elements, compositions, and structures.

With a well defined search space and suitable ML method, one can then pursue active learning

strategies. [158] There is much work being done in the incorporation of active learning strate-

gies into autonomous, robotic experimental synthesis. [159, 160] In the area of CSP, where ML
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models must be trained to predict unphysical structures at a fixed composition, active learning

techniques have enabled CSP to replace expensive DFT calculations with graph network [161] and

ML interatomic potential. [162] For broader search spaces, Montoya et al.developed a framework

of autonomous intelligent agents for materials discovery that can be used for not just synthesis

but also prediction of stable materials. [108] The framework, illustrated in Figure 5.4, allows

the user to set up and deploy a flexible campaign with specified objective property, constraints,

search space, choice of agent (input data, ML model, search strategy, etc.) and user feedback data

(e.g.DFT, experiment). As a demonstration, they ran a simulated campaign of stable compound

searches in the space of iron-containing binaries (Fe-X) and metal oxides (M -O) (following the

form #3 above), using various input seeds (e.g.experimental DFT calculations, randomly sam-

pled Fe-X or M -O), a neural network with/without adaptive boosting and composition/Voronoi

structure features as the ML model, and various search strategies (e.g.lower confidence bound, ϵ-

greedy, query-by-committee, Bayesian optimizers like Gaussian process). Their best performing

agent was a neural network with adaptive boosting, uncertainty estimation based on the adaptive

boosting, and a simple greedy search with lower confidence bound. They then executed searches

for various other material classes and reported 383 new compounds with CHD < 200 meV/atom.

In a later work, Ye et al.[163] used the same agent and reported 894 new compounds with CHD

< 1 meV/atom (i.e.stable).

5.4 Outlook and Potential Opportunities

In this Review, we covered the many tremendous ML advancements over the last few years in the

computational prediction of stable materials. Predicting stable T = 0 materials is becoming easier

and faster than ever, thanks to numerous ML models targeting formation energy and the rapidly

growing availability of DFT data. As a result, it is now possible to predict, with a high degree
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of confidence, which compounds are stable at T = 0 using the convex hull construction. While

predicting T > 0 stable materials is more challenging due to computational expense, emerging ML

techniques are proving remarkably successful at predicting vibrational free energy and disorder

with limited training data. As these methods mature, we envision the ability to predict, without

any experimental input, Gibbs free energy of any material using a combination of first principles

and ML methods. With accurate Gibbs free energy predictions, we can then construct a convex

hull at any temperature to indicate which compounds are stable. With this ability to predict the

stability of materials, we could proceed with “inverse” design, where a desired functionality along

with stability are targets for materials discovery algorithms without any compositional or structural

constraints. [164]

Aside from formation energy, vibrational free entropy and disorder, there are many other con-

tributions to Gibbs free energy that deserve more exploration. [122] For one, applied hydrostatic

pressure is a well-known knob for synthesis of metastable materials. When interested in just one

specific value of pressure, one can straightforwardly add this external pressure during the DFT cal-

culation, and hence construct a convex hull of formation enthalpies for all materials at this pressure.

However, there may be presently unknown phases on the convex hull, and it is also much less com-

putationally feasible to construct convex hulls over a wide range of pressures this way. When the

pressures are on the order of GPa, typical of high-pressure synthesis conditions, the pressure effect

can be approximated as linear with volume, and the dV term can be readily obtained from materials

databases already. [57] However, the computational prediction of new high-pressure phases is still

a largely unexplored concept. MLIP’s have shown promise in this direction for limited chemical

systems, like elemental boron, [165] black phosphorus, [166] and aluminum nitride. [167] In addi-

tion, the application of anisotropic pressure could lead to the formation of phases that are otherwise

not possible with hydrostatic pressure. Another highly relevant knob is interfacial/surface energy,
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[168] which could destabilize and prevent the nucleation of a phase that is otherwise predicted to

coexist with other phases (i.e.sharing tie lines) or stabilize an otherwise unstable phase (especially

in nanomaterials and thin films where the surface-area-to-volume ratio is high). Interfacial/surface

energies are difficult to accurately calculate with DFT, due to computational expense, millions of

predicted tie lines, [37] and the possibility that interfacial structure can differ from the bulk. Other

knobs that can stabilize certain phases include electromagnetic fields and chemical potential. ML

may one day allow us to predict the equations of state for any material, [169] but this ambitious

endeavor is currently hindered by a lack of data.

Lastly, we point out subtle but important differences between materials stability versus synthe-

sizability. Stability is the property that a compound has the lowest free energy out of all possible

competing compounds under a non-empty set of environmental conditions. On the other hand, syn-

thesizability refers to the ability to synthesize a material with a non-empty set of recipes. Much of

the time, synthesizable materials that have been made before are known to be stable at T = 0K in

DFT databases, or can be shown to be stable at finite temperature, pressure, etc. Similarly, unstable

materials, including “fantasy materials” with useful properties but are far above the convex hull,

[170] are likely not synthesizable. However, there can be exceptions, such as materials that have

been synthesized via non-equilibrium formation pathways [171] or materials with DFT-predicted

stability that are not accessible in laboratory synthesis, perhaps due to high nucleation barriers,

slow kinetics, or unknown recipe. Artificial intelligence may one day be of great help in predicting

these stable-but-not-synthesizable materials, as well as in predicting effective recipes for synthe-

sizable materials. [172] Some have tried to use machine learning to predict synthesizability as an

empirical property rather than first-principles stability; [173–179] while such approaches are lim-

ited by biases in reported synthesis attempts, they may prove helpful for synthetic chemists when

stability has not.
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5.5 Conclusion

We have summarized the recent and growing body of work in developing ML models to predict

the stability of materials with minimal experimental input. First, we covered the variety of ML

frameworks for the prediction of material properties. The ML frameworks vary in their crystal rep-

resentation, some based on intuitive composition and structural features and others based on whole

structure representations, and their algorithm choice, from shallow learning to deep learning. Next,

we focused on the applications of ML frameworks on predicting the stability of materials at T = 0.

Many ML models target formation energy or convex hull distance, while others can predict the ex-

istence of materials based on data mining of literature for knowledge of other existing materials.

We then covered how ML can aid the prediction of T > 0 stability parameters like disorder and

vibrational entropy. Finally, we suggested that ML could predict whether other environmental

conditions like pressure and surface/interfacial energy will stabilize new materials, and that ML

models bringing together these conditions are needed.
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Figure 5.3: From Ref. 84) Workflow to discover new stable compounds using elemental substi-
tution. Likely stable compounds are generated by substituting chemically similar elements into
already-known stable compounds from materials databases. After DFT confirms which candidate
compounds are stable, then these can be used to generate more likely stable compounds, and the
process can be reiterated.
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Figure 5.4: From Ref. 108) Framework for computational autonomy for materials discovery
(CAMD). Starting with a user-defined search campaign with objective properties, budget con-
straints, search domain with chemical and structural criteria, and input data, an autonomous agent
predicts materials with optimized properties using active learning strategies. The agent can request
data from experiment or simulations as needed to validate ML-predicted properties and reduce
model uncertainty.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Some parts of this chapter are taken from our unpublished manuscript.

6.1 Summary of Work

In this document, we present a body of work concerning the high-throughput discovery of inorganic

compounds using computational methods, especially involving DFT and DFT database (OQMD).

Following an introduction in Chapter 1, we first describe in Chapter 2 a novel method capa-

ble of rapidly (and in a high-throughput fashion) solving the crystal structures of compounds with

existing experimental diffraction data. This method makes use of the fact that most inorganic com-

pounds share common crystal structures (or “prototypes”) with other compounds. Using partial

data from diffraction analysis (stoichiometry, space group, and number of atoms per unit cell),

we search a structure database for prototypes that share these characteristics. We then decorate

the candidate prototypes with elements from the target composition, and compute DFT stability

(leveraging convex hulls from a comprehensive DFT database) as well as the match to diffraction

pattern. We then take the best-performing candidate and validate whether it is a plausible structure.

As this method is cheap, fast, and effective, we employed it to solve 521 crystal structures from

the PDF, and expanded the OQMD to these materials (a 1% expansion of experimentally known

materials), enabling them to be further studied and considered for a variety of applications.

In Chapter 3, we explore DFT-based methods to accelerate the discovery of new, not-yet-

synthesized compounds. Over the last ten years, search algorithms were previuosly developed

based on data-mined substitution of chemically similar elements into known materials [55, 56] and
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machine learning of formation energies. [102] We performed a systematic comparison of these

methods using a data set of over 100,000 already-calculated Full Heusler compounds (of which

∼1,000 are stable). We also developed ways to improve each of the search methods. For the

chemical similarity methods, we found that iteratively re-training the likelihood values of hypo-

thetical compounds after successive iterations with newly acquired stable compounds led to greatly

improved performance, as much as 1 order of magnitude in success rate in finding the stable com-

pounds. For the machine learned formation energy method, we found that building a training set

of 1% randomly sampled compounds in the search space in addition to experimental compounds

greatly reduced the mean absolute error and mean error of formation energy predictions within

the search space, and greatly improved performance by up to 1 order of magnitude. Comparing

the search methods side-by-side, we found that chemical similarity method worked better for pre-

dicting the highest-likelihood compounds, while the machine learning method worked better for

lower-likelihood compounds.

In Chapter 4, we use the above materials search methods to conduct high-throughput DFT dis-

covery of over ten thousand new stable compounds, and summarize the new stable compounds in

the OQMD. New compounds span nearly the whole range of inorganic compositions and structure

types, many of which are being explored for future applications. The number of compounds in

OQMD that come from experimental sources has reduced from 100% at the beginning to about a

third today. We also describe another method of producing stable compounds by ordered mixing

of two or more stable compounds with the same structure and one different element (for example,

0.5Ca2Si + 0.5Sr2Si = SrCaSi). Since the parent compounds are stable, the mixed compound need

only be slightly lower in energy than the linear combination of the parents in order to be stable. We

find that, out of thousands of mixed compounds produced by our method, about 20% are indeed

lower in energy. Most of the mixed compounds have formation energies, band gaps, and magnetic
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moments that are close to or in between the corresponding linear combination of the parents.

In Chapter 5, we provide a review of recent developments in artificial intelligence to accelerate

the prediction of stable materials. The computational materials community is making strides in

predicting large numbers of new stable compounds at zero temperature by leveraging recently

developed search algorithms based on data mining and machine learning. However, predicting

materials at finite temperature remains highly expensive and there is great potential for artificial

intelligence to accelerate this process. Furthermore, there are other thermodynamic factors that

can stabilize compounds, such as pressure and surface/interfacial pressure.

6.2 Limitations and Opportunities

Here, we discuss the limitations of our methods and propose future opportunities to build upon our

work.

6.2.1 Solving Structures and Discovering Materials with Unknown Prototypes

In our crystal structure solution work from Chapter 2, one of the main limitations of our work

had to do with the computational cost of DFT calculations. As a result of this limitation, we lim-

ited our structure search only to prototypes from OQMD that matched all structural characteristics

of the target compound. However, it is likely the case for some of compounds that the correct

structure does not have the same prototype as any other structure in OQMD, or that the structure

has a different space group or number of atoms per unit cell from what was reported in the PDF

database. To consider other possible prototypes in other space groups would require many more

DFT calculations and would be intractable. This limitation also comes up in Chapters 3 and 4,

where we discuss materials discovery methods and employed them in high throughput to discover

new compounds. Our search methods are limited to prototype candidates that already exist in
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materials databases, and will fail to find stable structures that have unknown prototypes. Often,

experimentalists discover new prototypes, which then become seeds for high-throughput DFT dis-

covery projects; for example, a quaternary MAX phase was recently discovered and a subsequent

high throughput study was conducted. [180–183] However, to predict a new prototype computa-

tionally would either involve some clever intuition or would involve a crystal structure prediction

algorithm. We generated new prototypes by mixing stable compounds in Section 4.3, but in this

case the lattice was preserved and only the stoichiometry changed. Crystal structure prediction us-

ing DFT is extremely computationally expensive. To make this problem more tractable, one might

use machine learning to predict formation energies using any of the ML models that have been

developed for this purpose (see Chapter 5 for an overview of ML methods). This concept has been

explored recently for crystal structure prediction. [161] However, this will require the ML model

to be highly accurate (errors in the tens of meV/atom) in order to properly sort candidate structures

by energy. This is a challenge, not just because ML models are hard to design, but also because ML

models have difficulty extrapolating to unknown structures when the training set doesn’t sample

them enough. What today’s state-of-the-art ML models may be able to do fairly well is elimi-

nate the highly unphysical candidates and present a list of possible low-energy candidates for DFT

confirmation.

6.2.2 Discovering Disordered Compounds

The application of finite temperature can induce a phase transition from a fully ordered structure

at low temperature to a disordered structure at high temperature. In addition, alloying, doping,

and/or vacancies can be created in a material with a stoichiometry that, for thermodynamic rea-

sons, would not otherwise form ordered phases. The ICSD contains on the order of 100,000

disordered compounds, or around half of the entire database. Unfortunately, structures for DFT
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simulation are necessarily fully ordered. At zero temperature, this is not a problem; materials are

fully ordered, and we don’t need to include disordered candidate structures when discovering sta-

ble compounds. On the other hand, at finite temperature, we must always consider the possibility

that the computationally-predicted structure is disordered.

Disordered structures can be modelled in first principles by performing a cluster expansion.

In this procedure, we study a continuous range of compositions between elemental components,

e.g.Ag and Au. The energy of a disordered fcc lattice containing some combination of Ag and

Au can be expressed as an expansion of ordered clusters, whose energies are computed by DFT.

Although there are an infinite number of clusters, only the smallest-degree clusters need to be

computed for sufficient convergence of the total energy. Following this, the zero-temperature en-

ergy can be obtained for any composition and then the configurational entropy contribution to free

energy can be simply added. Configurational entropy assumes perfectly random mixing, however

in reality short-range order occurs in the mixture. In principle, cluster expansion can describe the

short-range order of the system. If one is concerned with a single compound, such as one reported

in the ICSD, the standard technique is to generate an SQS, which is an ordered structure whose

cluster coefficients closely match those of the disordered structure. [123] Although the cluster

expansion and SQS methods are used frequently, to date there is no standardized procedure to

conduct them (as we do for DFT calculations, by using calculation settings in OQMD, Materials

Project, etc. that are designed to ensure efficiency and convergence). If we can streamline such

methods, then it may be feasible to conduct high throughput DFT studies of disordered materials

and even discover new disordered materials and the temperature ranges that stabilize them.

In addition, many research teams have explored the use of ML to model disordered materials.

A particular class of disordered compounds that has attracted much interest recently is high entropy

alloys and ceramics, which are many-component (5 or more component) single-phase compounds
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that are predominately stabilized by configurational entropy. [184, 185] This is a rich compo-

sitional space that may be enriched with useful properties, such as high strength and ductility.

[186, 187] A common target for ML models is to predict whether a many-component compound

will form a single-phase or a distribution of phases. [188, 189] Another strategy is to predict a

so-called “entropy forming ability” (EFA) rather than directly computing free energy; this is a

quantity that represents the energy distribution of structures with energy close to the ground state

structure, and is meant to signify the ability for a composition to disorder. [190, 191] A more direct

treatment of disorder that has been explored involves the ML prediction of force fields, using rep-

resentations and ML architectures that capture the structure and physical interactions that govern

disorder, such as many-body tensor representation (MBTR), [192] smooth overlap of atomic po-

sitions (SOAP), [135] Behler-Parrinello neural network potential (NNP), [193] Gaussian approx-

imation potential (GAP), [194] spectral neighbor analysis potential (SNAP), [195] and moment

tensor potential (MTP). [196, 197] As such ML models require problem-specific training data to

reduce extrapolation, there have been successful attempts to develop an active learning framework

with ML models. [198, 199]

6.2.3 Discovering Phonon-Stabilized Compounds

In addition to disorder, the application of temperature will cause atoms in crystals to vibrate about

their equilibrium positions. These vibrations are called phonons and they contribute to the Gibbs

free energy. Although there are materials, particularly composed of light elements like boron, [200]

where the zero-point (zero temperature) vibrations can stabilize different structures, vibrational en-

tropy generally only affects stability at finite temperature, as does disorder. Phonon contributions

can in principle be calculated from first principles, but they typically involve DFT calculations

of many displaced-atom supercell structures to compute interatomic force constants, with varying
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degrees of complexity (such as lower complexity with harmonic approximation or higher com-

plexity with quasi-harmonic approximation (QHA) or effective harmonic Hamiltonian (EHH)), or

involve ab-initio molecular dynamics and thermodynamic integration. There are numerous phonon

data with varying degrees of theoretical complexity in the literature, including high throughput

databases. [129]

In any case, the calculations can range from highly to extraordinarily expensive, depending

on the degree of accuracy one needs. To tackle this expense, research teams are replacing DFT

with ML, especially machine learned interatomic potentials, in predictions of interatomic force

constants [201] and in thermodynamic integration. [202–204] However, even with ML, obtaining

accurate vibrational entropy using these methods is very expensive and not generally employed in

high-throughput search frameworks. Much cheaper ML solutions have involved models relying on

descriptors and deep learning to directly predict vibrational or Gibbs free energy. [145, 205, 206]

Phonon calculations are generally only performed for already-synthesized materials, especially

ones that are expected to have useful properties. However, as phonon calculations leveraging DFT

or ML become more computationally feasible, we can begin to predict hypothetical materials that

can be stabilized by high temperature, and the ranges of temperature that stabilize them. The hope

is that T vs. composition phase diagrams can be implemented in DFT databases, complete with

both experimentally observed and hypothetical predicted materials.

6.2.4 Incorporating DFT Simulations into CALPHAD

CAlculation of PHAse Diagrams (CALPHAD) [207] is a term to describe methods to fit models

of Gibbs free energy based entirely on theoretical or empirical formulas consistent with thermody-

namics, and use these models to construct phase diagrams and predict stability and properties of

highly complex alloys. The kinds of alloys that are of interest in the metallurgical field often have
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numerous component elements, each with its own function, such as Cr to improve oxidation resis-

tance. For example, “superalloys,” a class of Ni- or Co-based alloys that exhibit ultrahigh strength

and temperature resistance for applications in the aerospace industry, [208] may contain varying

amounts of Co, Ni, Cr, W, Al, Ti, V, Ru, Re, and Ta. For materials with this many components,

it is practically impossible to compute phase stability from first principles or even with ML. On

the other hand, CALPHAD formalisms have been designed to handle multicomponent systems.

The compound energy formalism (CEF) [209] and extended CEF [210] enable the modelling of

multicomponent systems by utilizing DFT calculations of all binary end-member (e.g.Co+Cr) oc-

cupations on the sublattices of a phase of interest; for example, there are 25 end-members, or ways

to arrange Co and Cr on the 5 sublattices of the σ phase. As such formalisms were found to be

inadequate when only binary end-members (not ternary, etc.) are used, the effective bond energy

formalism (EBEF) was developed to improve extrapolation to multicomponent systems. [211]

Now that DFT is readily available and inexpensive, one can employ such CALPHAD formalisms

with only a small number of DFT calculations in order to effectively model phase formations in

real-world many-component alloys.
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[72] K. Ćirić, V. Koteski, D. Stojić, J. Radakovic, and V. Ivanovski, “Hfni and its hydrides –
first principles calculations,” International Journal of Hydrogen Energy, vol. 35, no. 8,
pp. 3572–3577, 2010.

[73] Peterson, S.W., Sadana, V.N., and Korst, W.L., “Neutron diffraction study of nickel zirco-
nium hydride,” J. Phys. France, vol. 25, no. 5, pp. 451–453, 1964.

https://pubs.geoscienceworld.org/msa/ammin/article-pdf/38/11-12/1242/4245700/am-1953-1242.pdf
https://pubs.geoscienceworld.org/msa/ammin/article-pdf/38/11-12/1242/4245700/am-1953-1242.pdf


127

[74] F. A. Faber, A. Lindmaa, O. A. von Lilienfeld, and R. Armiento, “Machine learning ener-
gies of 2 million elpasolite (ABC2D6) crystals,” Phys. Rev. Lett., vol. 117, p. 135 502, 13
Sep. 2016.

[75] G. Trimarchi, X. Zhang, M. J. DeVries Vermeer, J. Cantwell, K. R. Poeppelmeier, and A.
Zunger, “Emergence of a few distinct structures from a single formal structure type during
high-throughput screening for stable compounds: The case of rbcus and rbcuse,” Phys. Rev.
B, vol. 92, p. 165 103, 16 Oct. 2015.
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