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Abstract 

 Efficient and sustainable utilization of global resources represents a grand but achievable 

challenge. By leveraging biology, we can transform abundant, but recalcitrant resources like lignin 

to products ranging from fuel to medicine to polymers. Efforts to do so are expansive, but 

challenges remain, due in no small part to the difficulty in breaking down lignin and in efficiently 

utilizing the diverse and variable degradation products. However, nature has evolved organisms 

capable of diverse and efficient catabolism of numerous lignin-derived substrates. One such 

organism is Acinetobacter baylyi ADP1. As a non-model organism, ADP1 represents both a 

promising platform for biological transformation and a significant challenge in engineering due to 

the relative lack of information regarding engineering and scale-up compared to model organisms 

like E. coli and S. cerevisiae. However, recent developments for ADP1-specific tools alongside 

engineering towards synthesis of industrially relevant products has demonstrated the suitability 

of ADP1 as a powerful platform for lignin upgrading.  

In this dissertation, I describe efforts to engineer and develop growth strategies for ADP1. 

The work comprises two research projects comprised of one paper each, and suggestions for 

future work. First, I discuss to my first major project, where I engineer ADP1 to synthesize 

mevalonate through expression of the heterologous mevalonate pathway. I improve mevalonate 

production titers by evaluating production from various lignin-derived substrates, eliminating a 

native, resource-competitive pathway, and implementing fed-batch cultivation. Next, I discuss 

growth and scale-up strategies specifically for Acinetobacter baylyi ADP1. I identify nutrient 

limitation as the primary mode of growth limitation in minimal medium and nitrogen as the most 

limiting nutrient, I implement a targeted nutrient feeding strategy to increase cell density, and I 

explore strategies to scale ADP1 growth the lab-scale bioreactors while providing adequate 

aeration. I then pivot to experimental validation of a computational modeling tool for predicting the 

identity of unknown metabolites in an ADP1 metabolomics data set. Here I develop LCMS 
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methodology for analysis of high priority metabolites and knock out genes predicted to be involved 

in the synthesis of identified metabolites. These data confirm both the accuracy of the metabolite 

prediction tool and the metabolic pathways involved in the synthesis of predicted metabolites.  

Finally, I outline future project directions, specifically (i) enhancing oxygen transfer, (ii) 

overcoming dilution effects by cell recycle, (iii) utilization of complex and industrially relevant 

feedstocks, (iv) leveraging bioreactors to achieve finer process control and study consortia 

dynamics for ADP1, and (v) metabolic engineering towards enhanced cyanophycin production. 
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1. Introduction 

1.1 Motivation 

Efficiently and sustainably utilizing resources to meet societal needs is an essential 

engineering goal. Historically, many of these needs have been met through petrochemical means, 

but due to a multitude of obvious and complex reasons—climate change, geopolitical 

considerations, and difficulty in synthesizing chemicals using traditional methods—we have had 

to adapt to a rapidly shifting environment 1–3. Luckily, there is an abundant, biomass-derived 

carbon source on Earth that represents an enormous, renewable reservoir suitable as a substitute 

for petroleum in various and fuel production processes 4. This comes in the form of lignin, but 

utilization of lignin comes with its own set of challenges. 

The obstacles inherent to lignin processing have lent themselves to the common saying 

among lignin researchers of “you can make anything from lignin except for money.” Lignin is a 

complex, phenylpropanoid heteropolymer with a structure that is unique to its source, be it 

grasses, hardwoods, or other forms of plant biomass 5,6. Due to the variability in both composition 

and bonding structure, processing lignin is challenging 7. It is generated on the scale of 50 million 

tons per year as a by-product in lignocellulosic processing industries primarily in the form of 

biomass pulp 8, but the vast majority of it is burned as solid fuel in biorefinement processes 6,9. 

Depolymerization can be accomplished by a variety of means including pyrolysis and alkaline 

pretreatment, which generates a mixture of organic molecules like p-hydroxybenzoic acid, ferulic 

acid, p-coumaric acid, acetate, and can also include sugars like glucose depending on of 

lignocellulosic feedstock 10,11. The inherent compositional heterogeneity of lignin-derived product 

streams further contributes to the difficulty of utilizing processed lignin. Separation or purification 

of specific compounds in the product stream is generally infeasible due to high processing costs, 
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thus the nature of lignin demands downstream processes capable of transforming diverse and 

non-constant feedstocks into value-added products.  

That being said, biological upgrading of lignin already occurs in soil biomes on a global scale 

and provides advantages over traditional chemical processing 12. Over billions of years, evolution 

has created organisms capable not only of lignin depolymerization, but also of funneling the 

diverse set of resulting compounds through native metabolic pathways to produce biomass and 

bio-derived products 13. Lignin degradation typically proceeds through the activity of laccases, 

oxidases, and peroxidases secreted by white rot fungi and some microbes 14. Degradation 

products, including low molecular weight lignin polymers, organic acids, sugars, and alcohols are 

then assimilated into biomass by the breadth of soil microbes and other fungi present in the soil 

biome 15. Due to this natural glut of lignin-degrading and assimilating organisms, a variety of tools 

exist to utilize lignin; the primary challenge lies in accessing these tools. Approaching this 

challenge through the lens of synthetic biology opens avenues for lignin upgrading that up until 

recently remained largely unexplored. 

The field of synthetic biology leverages the distinct advantages of biological systems to 

achieve goals either not possible or extremely challenging through traditional chemical synthesis 

16. Biology possesses the ability to catalyze chemical reactions at ambient pressure and 

temperature, fitness and efficiency in utilizing diverse substrates due to billions of years of 

evolution, and the enormous range of transformations possible through native and promiscuous 

enzymatic activity.  By engineering microbial metabolism, we can redirect flux of chemical inputs 

towards desired product outputs while taking advantage of the resourceful nature of biology. Due 

to the vast expanse of metabolic networks, the natively possible and engineerable transformations 

are virtually limitless.  

The current focus on engineering of primarily model organisms limits biologically feasible 

transformations. Synthetic biology has largely focused on engineering well-characterized model 
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organisms due to the abundance of tools available for engineering. Though these organisms can 

and have been utilized to produce a multitude of industrially and medically important molecules, 

nonetheless there are biologically imposed limitations that engineering cannot easily overcome 

17. For example, catabolism of lignin-related substrates is particularly challenging for organisms 

not natively evolved to utilize the aromatic and organic acids that derive from lignin waste streams. 

Though engineering efforts have attempted to bridge this gap in native metabolism, a separate 

approach that shows great promise seeks to engineer the metabolism of non-model organisms 

that natively possess the pathways and physiology to utilize lignin-derived substrates 5,18–22.   

Many aromatic-degrading microorganisms, including Acinetobacter baylyi ADP1 possess 

enzymatic pathways to transform a broad range of lignin-derived substrates to biomass 23–26. 

ADP1 is particularly well suited to metabolic engineering purposes due to its genetic pliability and 

the recent development of engineering tools 27–31. It also possesses a native proclivity towards 

accumulation of acetyl-CoA-derived products, natively wax esters, and engineering efforts have 

leveraged this extensively 32–37. Metabolic engineering has primarily focused on enhancing native 

wax ester production, but synthesis of heterologous products represents a largely unexplored 

realm. Furthermore, efforts to reach high culture densities and scale cultivation beyond tens of 

milliliters are limited, despite ADP1’s suitability as an industrial workhorse 33,36. As an obligate 

aerobe and as an organism capable of upgrading moderately toxic substrates, strategies should 

address the following challenges: 

• Determining biomass yields for essential nutrients to optimize supplementation of 

limiting nutrients. 

• Feeding strategies to maximize assimilation of carbon substrates while minimizing 

substrate-based inhibition 
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• Improving oxygen transfer to reduce growth times for high density culture without 

requiring costly oxygen supplementation 

Development of scale-up strategies addressing these challenges is essential to facilitating future 

industrial applications of ADP1. 

1.2 Outline 

The work in this dissertation is comprised of two original research papers. First, I discuss 

my work engineering ADP1 for the heterologous production of mevalonate from lignin-derived 

substrates. Next, I discuss strategies to scale up and improve growth of ADP1 using targeted 

nutrient supplementation and cultivation strategies.  Finally, I outline potential areas for future 

exploration. 

Specifically, Chapter 2 presents my work to engineer expression of the heterologous 

mevalonate pathway in ADP1 and to improve strain productivity with metabolic engineering and 

cultivation strategies. I present work in which I evaluated ADP1’s ability to convert various lignin-

derived substrates to mevalonate. I identified specific substrate conditions, namely the use of 

glucose as a co-substrate with aromatic acids, to improve strain growth and mevalonate 

production. I eliminated flux of carbon towards wax esters by knocking out a non-essential gene 

that directs acetyl-CoA away from mevalonate production. I also demonstrate a fed-batch feeding 

strategy to highlight the utility of ADP1 as a biotransformation tool to convert p-hydroxybenzoic 

acid, a lignin-derived aromatic acid, to mevalonate. This strategy achieved a gram-per-liter titer 

and improved mevalonate titer 7-fold over the initial strain. Though work remains to reach 

industrially viable productivity, this study represented a crucial step towards heterologous product 

synthesis in ADP1 and also served as further evidence of ADP1’s particular capability for directing 

high flux of acetyl-CoA towards product formation. The promise as well as the obstacles identified 
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herein, namely genetic instability and lower culture density, serve as motivation for future research 

into ADP1 as a production platform.  

Chapter 3 describes my work developing methods for scale-up of ADP1 growth to 1-L 

bioreactors. First, I explore modes of growth limitation in ADP1 and identify nutrient limitation as 

the primary factor limiting culture density in minimal medium. I further identify the most limiting 

nutrient as nitrogen and introduce a feeding strategy to increase culture density based off of 

targeted feeding of ammonium chloride alongside dilute feeding of other essential nutrients. Next, 

I leverage the finer control over process variables available in bioreactor cultivation to develop 

strategies for improving ADP1 culture density and increasing the growth rate. Specifically, I 

implement cascade aeration to improve oxygen transfer while sparging solely air. I also utilize 

online signals for dissolved oxygen and carbon dioxide exhaust concentration to continuously 

feed the carbon substrate, p-hydroxybenzoate, at a growth-dependent rate. During bioreactor 

cultivation, I identified a secondary growth limiting factor, which became apparent during 

cultivation with increasing feed concentrations. Initial exploration of strategies to mitigate this 

obstacle indicate that feeding of dilute M9 salts may hold promise for restoring growth in stagnated 

ADP1 cultures. 

In chapter 4, I describe a collaborative project between myself and Dr. Jon Strutz. Here, 

we developed a computational workflow to determine the likelihood of candidate compounds in 

the context of a specific organism and environment. This workflow was applied to an ADP1 

metabolomics data set containing unidentified peaks. Five high-confidence candidate molecules 

were identified, of which two were chosen for experimental validation. I engineered ADP1 mutant 

strains deficient in genes associated to the two top candidate metabolites and cultured these 

mutants alongside wild type ADP1. Analysis of these samples will be conducted via LCMS using 

a method adapted from Stuani et al 38.  
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 We end with Chapter 5, where I make recommendations for future work, namely (1) 

improving oxygen uptake through expression of heterologous hemoglobin, (2) additional feeding 

and cultivation strategies for increasing culture density and volumetric productivity, and (3) 

strategies for utilizing continuous cultivation to explore ADP1’s nutrient sequestration capabilities 

in mono- and co-culture. 

Supplemental information for Chapters 2-4 can be found in Appendices A-C.   
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2. Engineering Acinetobacter baylyi ADP1 for mevalonate production from lignin-derived 

aromatic compounds 

Author’s Note: This manuscript has been published 39. 

Utilization of lignin, an abundant renewable resource, is limited by its heterogenous 

composition and complex structure. Biological valorization of lignin provides advantages over 

traditional chemical processing as it occurs at ambient temperature and pressure and does not 

use harsh chemicals. Furthermore, the ability to biologically funnel heterogenous substrates to 

products eliminates the need for costly downstream processing and separation of feedstocks. 

However, lack of relevant metabolic networks and low tolerance to degradation products of lignin 

limits the application of traditional engineered model organisms. To circumvent this obstacle, we 

employed Acinetobacter baylyi ADP1, which natively catabolizes lignin-derived aromatic 

substrates through the β-ketoadipate pathway, to produce mevalonate from lignin-derived 

compounds. We enabled expression of the mevalonate pathway in ADP1 and validated activity 

in the presence of multiple lignin-derived aromatic substrates. Furthermore, by knocking out wax 

ester synthesis and utilizing fed-batch cultivation, we improved mevalonate titers 7.5-fold to 1014 

mg/L (6.8 mM). This work establishes a foundation and provides groundwork for future efforts to 

engineer improved production of mevalonate and derivatives from lignin-derived aromatics using 

ADP1. 

2.1 Introduction 

Lignin is the second most abundant biomass-derived carbon source on Earth and represents 

a renewable reservoir of energy-dense substrate to perform green chemistry 10. Annual worldwide 

production is approximately fifty-million tons, and this production is projected to increase 

significantly as it is a byproduct of biofuel production technology 40. Due to the variability in both 

composition and bonding structure of lignin, processing is challenging 41,42. Furthermore, 
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utilization of processed lignin is difficult due to the inherent compositional heterogeneity of lignin 

degradation products. Currently, most lignin is treated either as a waste stream or is burned as a 

solid fuel in biorefinement processes 42. However, biological upgrading of lignin provides 

advantages over traditional chemical processing or combustion  by enabling conversion of diverse 

lignin-derived substrates to high value products 41.  

Aromatics-degrading microorganisms can catabolize the broad range of substrates found in 

processed lignin 12. The substrate funneling characteristic of microbial lignin-derived aromatics 

metabolism allows for the utilization of diverse lignin-derived compounds without prior separation. 

Several microorganisms, including Rhodococcus and Pseudomonas species, can synthesize a 

range of products like triacylglycerols (TAGs) and polyhydroxyalkanoate (PHA) from lignin 

derivatives 41,43. Acinetobacter baylyi ADP1 represents a promising candidate for biological 

valorization of lignin-derived compounds 44. In addition to its versatile metabolism, it possesses 

natural competence and native homologous recombination machinery that enable rapid and 

targeted genomic manipulations (Barbe et al., 2004; Elliott & Neidle, 2011). Emerging tools for 

ADP1 have further broadened the feasible scope of engineering and enabled rapid iteration 

through design-build-test-learn cycles 46,47.  

Leveraging the advantageous characteristics of ADP1, we engineered a strain capable of 

expressing the mevalonate pathway during growth on lignin-related aromatic substrates. 

Mevalonate is a small molecule with applications in cosmetics and as a monomer precursor to 

some classes of polyesters 48. It is also a precursor to terpenoids that have applications in 

industries ranging from biofuels production to flavorings and fragrances 49–51. The dedicated 

pathway for mevalonate synthesis requires three acetyl-CoA and two NADPH molecules, which 

at high flux can strain native metabolism. Thus, expression of this pathway in ADP1 provides an 

opportunity to study the impact of acetyl-CoA and NADPH siphoning in ADP1 as well as to identify 

potential obstacles to be overcome towards utilization of ADP1 as a production host. We show 
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mevalonate pathway activity in the presence of various lignin-derived aromatic compounds and 

improved productivity by eliminating the resource competitive wax ester pathway. In addition, we 

conducted fed-batch cultures to evaluate productivity over time. This work demonstrates ADP1 

as a host for biological valorization of lignin-derived substrates to mevalonate and adds to the 

body of previous efforts 52–55 to synthesize industrially important products using ADP1’s potential 

as an metabolic engineering host and indicates targets for future engineering. 

2.2 Materials and Methods 

2.2.1 Strains and media 

All strains and plasmids used in this study may be found in Appendix A Tables A.2 – A.3. 

In this study wild type (WT) ADP1 was obtained from the Ellen Neidle lab (U. Georgia) and used 

for cloning 30,56. The mevalonate plasmid was constructed using the pBWB162 (Addgene 

#140634) 46 vector and the pJBEI-6410 (Addgene #47049) 57 mevalonate pathway. The plasmid 

pBWB290 was used to perform genomic knock-out via SacB/KanR. Genomic DNA used to amplify 

genome homology for the genomic knock-out was isolated using a Wizard Genomic DNA 

Purification kit (Promega). 

Initial precultures for mevalonate production were grown in LB Broth (Fisher Scientific). 

M9 minimal medium (1L) was prepared in sterile filtered water with 2 mM MgSO4 (heptahydrate, 

Sigma Aldrich), 0.1 mM CaCl2 (dihydrate, Sigma Aldrich), 0.18% (w/v) (10 mM) glucose solution 

(unless otherwise noted) (monohydrate, Acros Organics), and M9 Minimal Salts (BD Difco) 

(47.8 mM disodium phosphate, 22.0 mM monopotassium phosphate, 18.7 mM ammonium 

chloride, 8.6 mM sodium chloride). Aromatic carbon sources were supplied at 20 mM, 10 mM, 5 

mM, or 2 mM as noted from 0.5M protocatechuate (PCA) (pH 7, adjusted with 10 N NaOH) (Sigma 

Aldrich), 0.5M p-hydroxybenzoate (POB) (pH 7, adjusted with 10 N NaOH) (Sigma Aldrich), 0.25 

M ferulate (pH 7, adjusted with 10 N NaOH) (Sigma Aldrich), 0.5 M benzoate  (pH 7, adjusted 
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with 10 N sodium hydroxide) (Sigma Aldrich), or 0.5 M anthranilate (pH 7, adjusted with 10 N 

NaOH) (Sigma Aldrich). Kanamycin was used at a working concentration of 25 mg/L for ADP1 

cultures requiring antibiotic for plasmid maintenance. 

2.2.1.1 General Cloning 

All primers used in this study may be found in Appendix A Table A.1. Plasmids were 

purified using a GeneJet Plasmid Miniprep kit (Thermo Scientific). All PCRs were performed with 

DNA oligomer primers (10 µM) (IDT DNA) and 2X PrimeSTAR Max DNA polymerase (Takura 

Bio). PCR products were purified from agarose gel using a GeneJet Gel Extraction kit (Thermo 

Scientific). Plasmid assembly was performed via Gibson assembly using 2X Gibson Assembly 

Master Mix (NEB) 58. 

2.2.1.2 Construction of Plasmids 

The mevalonate pathway was cloned into pBWB162, which is derived from the broad host 

range vector pBAV1k and is capable of E. coli and ADP1 replication 59. The upper mevalonate 

pathway (AtoB, ERG1, and HMG1) was amplified from the pJBEI-6410 (Addgene #47049) 57 

plasmid using primers ECA01/02 (Table A.1). The vector backbone containing an ADP1-

compatible origin, kanamycin resistance marker, lacI, lacO,  and the IPTG-inducible ptrc promoter 

region was amplified from pBWB162 (Addgene #140634) 46 using primers ECA03/04. Gibson 

assembly was used to piece together the mevalonate pathway insert with the pBWB162 backbone 

to create pMev-LacI-trc (pECA03). This plasmid was sequenced then transformed into WT ADP1, 

as previously described 46 to generate strain ADP1 pMev-LacI-trc (ECA10). 

To enable strong expression of levansucrase, sacB was placed under control of the ptrc 

promoter on the pBWB162 vector. The vector pBWB162 was amplified using primers 

BWB645/646, and sacB was amplified using primers BWB647/648. The gel-extracted DNA 

fragments were assembled using Gibson assembly to generate pBWB290.  
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2.2.1.3 Construction of acr1 knock-out strains ADP1 Δacr1 (ECA14) and ADP1 Δacr1 pMev-

LacI-trc (ECA15) 

This knock-out was performed using SacB/KanR counterselection adapted from Metzgar 

et al. 60. Genome homology of at least 500 bp flanking acr1 was amplified from ADP1 genomic 

DNA using primers ECA05/06 (forward homology) and ECA09/10 (back homology). The 

SacB/KanR cassette, containing SacB downstream of the ptrc promoter and KanR, was amplified 

from pBWB290 using primers ECA07/08. The parts were assembled into the trc-SacB/KanR 

selection cassette using overlap extension PCR 61 with primers ECA05/10. The trc-SacB/KanR 

selection cassette was gel extracted and transformed into WT ADP1 to create ADP1Δacr1::trc-

SacB/KanR. Transformants were plated on kanamycin LB agar plates and incubated at 30°C 

overnight. The next day, 32 transformant colonies were patched onto kanamycin LB agar plates 

and sucrose LB agar plates to confirm sucrose sensitivity. These plates were incubated at 

ambient (~22°C) temperature for 24 – 48 hours 62, and colonies that displayed kanamycin 

resistance and sucrose sensitivity were selected from the kanamycin LB agar plate. These 

colonies were clonally purified by streaking again on kanamycin LB agar and on sucrose LB agar 

and growing for 24 – 48 hours at ambient temperature. Clonally pure colonies were validated for 

integration of the SacB/Kan cassette at the acr1 locus using colony PCR and primers ECA15/16.  

To delete trc-SacB/KanR from the ADP1 genome, a counterselection cassette was 

constructed. First, the forward and back homologies flanking acr1 on the ADP1 genome were 

amplified from the ADP1 genome using primers ECA11/12 (forward homology) and ECA13/14 

(back homology). Then the acr1 counterselection cassette comprising the forward and back 

homologies was created using overlap extension PCR with primers ECA11/14. ADP1 Δacr1::trc-

SacB/KanR was transformed with the acr1 counterselection cassette, and transformants were 

incubated for 24 – 48 hours at ambient temperature. Subsequent colonies were screened for loss 

of the SacB/KanR cassette by patching onto sucrose LB agar and kanamycin LB agar plates and 
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incubating for 24 – 48 hours at ambient temperature. Colonies that grew without inhibition on 

sucrose LB agar and did not grow on kanamycin LB agar were clonally purified by patching onto 

kanamycin LB agar and sucrose LB agar again and incubating overnight at ambient temperature. 

Colonies that grew only on sucrose LB agar were screened for loss of the original acr1 gene via 

colony PCR with primers ECA15/16. Colonies with apparent deletion were sequence validated to 

generate ADP1 Δacr1 (ECA14). pMev-LacI-trc (pECA03) was transformed into ADP1 Δacr1 

(ECA14) to generate ADP1 Δacr1 pMev-LacI-trc (ECA15). 

2.2.2 Culture Conditions 

2.2.2.1 General Culture Conditions 

All ADP1 mevalonate production cultures were grown at 30°C and 250 rpm with 25 mg/L 

kanamycin for plasmid maintenance in 125 mL unbaffled Erlenmeyer flasks unless otherwise 

noted. Precultures were started by inoculating 5 mL LB medium from glycerol stocks and grown 

for 12 – 16 hours. Cells were then transferred to 25 mL M9 minimal medium supplemented with 

aromatic acids and glucose as carbon sources and grown for an additional 12 – 16 hours prior to 

inoculation into cultures. To inoculate M9 minimal medium cultures, a sample of preculture was 

centrifuged at 4000 x g and 4°C for 10 minutes. Spent supernatant was removed, cell pellets were 

resuspended in M9 minimal medium to an optical density of 5 and inoculated into 25 mL M9 

minimal medium at a 1:100 dilution. Following growth to OD 0.6, the expression of the mevalonate 

pathway was induced with 1 mM IPTG. 

2.2.2.2 Varied Aromatic Growth Rate Culture Conditions 

For growth rate measurements of ADP1 in varied aromatic media, optical density was 

measured using a Synergy H1 microplate reader (BioTek) and Flat Bottom Clear Non-sterile 96-

well plates (Fisherbrand). Precultures were grown initially in 5 mL LB overnight, then diluted 1:100 

into 5 mL of M9 minimal medium containing 10 mM (0.18% w/v) glucose and either POB at 20 
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mM, or ferulate, benzoate, or anthranilate at 5 mM and allowed to grow for an additional 16 hours 

in 5 mL precultures. Precultures were then centrifuged as described above to pellet cells and 

resuspended at an OD of 0.05 in fresh medium and pipetted into wells. Each well contained 300 

µL of culture. Blank wells containing sterile media were placed alongside culture wells to control 

for contamination as well as measure blank absorbance. Unmeasured wells were filled with water 

to minimize evaporation. The plate reader was held at 30°C and 250 rpm shaking for 14 hours 

with absorbance readings every 15 minutes. 

2.2.2.3 Fed-Batch Culture Conditions  

All fed-batch cultures were precultured in LB then M9 medium and inoculated at an OD of 

0.05 as described above. All strains and conditions started with M9 minimal medium initially 

containing 20 mM POB and 10 mM glucose. After 24 hours of growth, 20 mM POB was added to 

the POB-fed culture, 20 mM glucose was added to the glucose-fed culture, and sterile water was 

added to the non-fed culture to control for dilution. An equal volume was added to each culture to 

prevent dilution affects from influencing observed trends. Every 24 hours cultures were sampled 

and analyzed for mevalonate concentration and substrate concentration before carbon addition. 

After 168 hours of growth, final samples were collected, and cell pellets were analyzed for 

truncation of the mevalonate pathway via colony PCR.  

2.2.3 Analytical Methods 

2.2.3.1 Sampling 

All optical density readings were taken using a Synergy H1 microplate reader (BioTek) 

and Flat Bottom Clear Non-sterile 96-well plates (Fisherbrand). 300 µL of total volume was 

pipetted into each well with appropriate dilution by fresh M9 medium.  

For fed-batch cultures, every 24 hours, prior to addition of the desired carbon source, 250 µL 

samples were collected. These samples were centrifuged immediately at maximum speed 
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(17,000 x g) and 4°C for 10 minutes. Culture supernatant was transferred to clean tubes and 

stored at 4°C until analysis by HPLC or GC-MS (below). The mevalonate pathway cassette from 

the final timepoint cell pellet was amplified by colony PCR (cPCR) using primers ECA17/18 to 

screen for large pathway deletions. The cPCR amplified mevalonate pathway DNA was purified 

via gel extraction and sequenced to identify mutations. 

2.2.3.2 High Pressure Liquid Chromatography (HPLC) Sample Analysis 

After centrifugation, 80 µL of supernatant sample was stored at 4°C until analysis. 

Samples were run on an Agilent 1200 Series HPLC equipped with a BioRad HPX-87H 

chromatography column, an Agilent G1315C Diode Array Detector (DAD), and an Agilent G1362A 

Refractive Index Detector (RID). The mobile phase was 10% (v/v) acetonitrile, 90% (v/v) 5 mM 

sulfuric acid (Thermo). The column was equilibrated for 1 hour at a flow rate of 0.600 mL/min and 

a column temperature of 60°C. The following method was used to run samples. The injection 

volume was 5.00 µL. Run time was 30 minutes with post-time of 1 minute. The autosampler was 

maintained at a temperature of 4°C and the RID at a temperature of 35°C. The DAD signal at 194 

nm was used to quantify aromatic acids and gluconate, and the RID signal was used to quantify 

glucose. Standards were run for each aromatic acid, for gluconate, (Sigma-Aldrich) and for 

glucose to determine retention times and to generate standard curves. 

2.2.3.3 Gas Chromatography Mass Spectrometry (GCMS) Sample Analysis 

Samples were extracted into ethyl acetate for GCMS analysis using a method adapted 

Dueber et al. 63. For each extraction, 20 µL of culture supernatant was placed into a 1.2 mL 

Eppendorf tube. To this, an extraction standard of 2 µL of 10 g/L β-carophyllene in ethyl acetate 

was added. To catalyze the lactonization of mevalonate to mevalonolactone, 10 µL of 0.5 N 

hydrochloric acid was added. The sample was vortexed briefly prior to the addition of 190 µL of 

ethyl acetate. The sample was then sealed and shaken at 1400 rpm for 5 minutes, then 

centrifuged at maximum speed (17,000 x g)  at 4°C for 5 minutes. The organic (lower density) 
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fraction was analyzed immediately after extraction. The following method was used to analyze 

samples using an Agilent 7890 GC equipped with an Agilent HP-5ms Ultra Inert column (30 m x 

250 µm x 0.25 µm) and an Agilent 7000 MS. The injection volume was 1 µL. Helium was used as 

the carrier gas. The front inlet was run on splitless mode at a temperature of 150°C and a pressure 

of 12.5 psi with a total flow rate of 54 mL/min and a septum purge flow of 3 mL/min. The MSD 

transfer line was held at 290°C. The oven was set to an initial temperature of 60°C with a ramp 

rate of 15°C/min to 200°C with a hold time of 1 minute. Post-run was held at 300°C for 5 minutes.  

Standards of 100 mg/L β-caryophyllene were run alongside samples to normalize for 

variability in extraction. Mevalonolactone concentration was calculated from a standard curve of 

mevalonolactone in ethyl acetate. Yields were calculated from the mevalonate titer and substrate 

consumption as calculated from measured initial and final substrate concentrations. Carbon yields 

were calculated based upon the carbon atoms present in mevalonate and the respective 

substrates. For mixed substrate cultivations, c-mmol/c-mol yields were calculated based on the 

carbon yield for the combined substrates. 

2.3 Results and Discussion 

2.3.1 Mevalonate pathway is functionally expressed in ADP1, but not genetically stable in 

protocatechuate-only medium 

Initial validation of pathway functionality was performed by culturing ADP1 pMev-LacI-trc 

(ECA10) in minimal M9 medium under three conditions. One condition was supplied with 10 mM 

(1.54 g/L) PCA, a metabolic intermediate in the catabolism of lignin-derived aromatic compounds, 

as the sole carbon source. A second condition was supplied with 2 mM (0.31 g/L) PCA and 0.2% 

(w/v) (11.1 mM) glucose. The last condition was supplied with 10 mM (1.54 g/L) PCA and 0.2% 

(w/v) (11.1 mM) glucose. Mevalonate and cell density was measured after 24 hours of cultivation 

in all conditions [Fig. 1B]. These data indicate that the mevalonate pathway can be expressed 
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functionally in ADP1, and based on the PCA-only condition, can produce mevalonate  solely from 

an aromatic, lignin-related carbon source (p < 0.01 relative to no mevalonate control). Notably, 

cultures containing PCA as the sole carbon source accumulated very little mevalonate and grew 

to a lower OD in comparison to cultures supplemented with glucose. pMev-LacI-trc (pECA03) 

plasmids were isolated at 24 hours and sequenced for each culture. Sequencing revealed partial 

deletions of the mevalonate pathway present in PCA-only cultures [Fig. 1C]. These deletions 

occurred at various loci and impacted multiple genes in the mevalonate pathway. PCA is known 

as a poor substrate due to its tendency to chelate iron, which may have caused significant cellular 

stress 64. Glucose appears to obviate this stress and stabilize the plasmid. 
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Figure 2-1 ADP1 produces mevalonate, but plasmid instability reduces production in PCA-only 
condition.  

ADP1 was cultured in batch mode for 24 hours with expression of the mevalonate pathway. (A) 
The mevalonate pathway comprising atoB, ERG13, and HMG1, catalyzes the conversion of three 
molecules of acetyl-CoA into mevalonate. (B) Mevalonate was detected in all conditions, including 
in medium containing solely 10 mM PCA (p = 0.01, t-test, 2-tailed). The primary vertical axis 
shows mevalonate production. The secondary vertical axis shows OD600. Data is mean and error 
bars represent S.E.M. (n = 2). (C) Plasmid instability in the 10 mM PCA condition occurred for 
glucose-free medium. The top band represents the full pathway, with the second, third, and fourth 
bands being distinct mutants found in the 10 mM PCA-only condition cultures. 
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2.3.2 Mevalonate production is affected by the aromatic acid species present. 

After observing the sensitivity of mevalonate titers to carbon source, we examined growth 

and mevalonate production and yield of ECA10 in the presence of various lignin-derived aromatic 

acids 12. Aromatic acid substrates were chosen to represent both branches of the β-ketoadipate 

pathway, funneling either to PCA (POB and ferulate) or catechol (benzoate and anthranilate) 12. 

To reduce growth-inhibition effects, ferulate, benzoate, and anthranilate were supplied at 5 mM 

concentration, while POB was supplied at 20 mM concentration 65 [Fig. A.2]. All culture medium 

also contained 0.18% (w/v) (10 mM) glucose as a supplemental carbon source to ensure plasmid 

stability. At 48 hours, cultures were analyzed for mevalonate production and mevalonate carbon 

yield, as c-mmoles of mevalonate per c-mole of mixed substrate (for both aromatic acid and 

glucose), to account for the abundance of POB relative to other carbon sources [Fig. 2A, B]. 

Ferulate/glucose cultures resulted in the lowest average titer and yield (13.3 ± 1.3 mg/L and 4.9 

± 0.5 c-mmol MVA/c-mol mixed substrates, respectively), which may be due to lower tolerance of 

ferulate by ADP1 relative to other lignin-derived aromatic acids 54. Analysis of carbon utilization 

revealed a statistically significant increase in carbon yield for POB cultures over ferulate, 

benzoate, and anthranilate. Cultures grown with POB/glucose had 4.6-fold higher titer (163.1 ± 

11.6 mg/L) and a 2.2-fold higher yield (33.0 ± 2.4 c-mmol MVA/c-mol mixed substrates) relative 

to the next best performing culture, benzoate/glucose (35.5 ± 2.6 mg/L and 15.1 ± 1.1 c-mmol 

MVA/c-mol mixed substrates). Due to its higher mevalonate titer, yield, and low toxicity, 

POB/glucose was chosen as the carbon source mixture for future cultivations. 
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Figure 2-2 Aromatic substrates affect growth, titer, and yield.   

As PCA only condition resulted in low titers and mutations, we screened four aromatics to 
determine which was best tolerated.  Glucose was included to repress mutations found in 
aromatic only experiments. (A) Mevalonate titers (left axis) and optical density (right axis) after 48 
h. (B) Carbon-molar yield of mevalonate on substrate.  Both glucose and aromatic carbon were 
included as substrate.  Data reflect mean, and error bars are S.E.M. (n = 4). 
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2.3.3 Mevalonate is efficiently produced from p-hydroxybenzoate as sole carbon source. 

To evaluate the performance of cultures on solely aromatic versus aromatic and glucose 

medium, we conducted batch cultivation of ECA10 with M9 minimal medium containing solely 20 

mM POB, solely 10 mM glucose, or a mixture of 20 mM POB and 10 mM glucose as carbon 

sources [Fig. A.1]. Mixed carbon substrates led to the highest titers and are more representative 

of the native growth conditions of ADP1 41. No mutations to the mevalonate plasmid were 

observed for any conditions. These findings were consistent under identical conditions with 

ADP1Δacr1 pMev-LacI-trc (ECA15), which lacks wax ester synthesis, thus supporting the benefit 

of supplying both sugar and aromatic substrates. Accordingly, glucose was included as a 

secondary carbon source in subsequent experiments. 

2.3.4 Eliminating wax ester synthesis and culturing in fed-batch enables higher production 

of mevalonate from aromatic carbon 

Next, we studied the impact of competition for acetyl-CoA on mevalonate production. The 

wax ester pathway competes for acetyl-CoA through fatty acid synthesis and is known to be highly 

active in ADP1 under carbon-rich and nutrient-limited, particularly nitrogen-limited, conditions 66.  

Fed-batch cultivation was utilized to enable conditions that were carbon-rich and nutrient-limited. 

ADP1Δacr1 pMev-LacI-trc (ECA15) was evaluated alongside ECA10 for long-term mevalonate 

production in 168 hour fed-batch cultivations [Fig. 3A]. Three conditions were evaluated for 

mevalonate production -- one with bolus addition of POB, one with glucose, and a non-fed culture 

with no additional carbon subsequently added. ECA15 exhibited a significant 7.5-fold increase in 

mevalonate production relative to ECA10 in the POB fed-batch. For the wax ester knock-out strain 

expressing the mevalonate pathway, cultures reached a titer of 1014 ± 379 mg/L (6.8 mM ± 2.6 

mM) with a yield of 41.4 ± 17.6 c-mmol/c-mol of all substrate consumed at 168 hrs. Glucose fed-

batch also compared favorably in ECA15 relative to ECA10, although to a lesser extent than POB.  
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Cultures not supplied with additional non-carbon nutrients exhibited slow or insignificant growth 

after initial growth [Fig. A.3].  

 

Figure 2-3 Mevalonate production is improved by wax ester knock-out and fed-batch cultivation.  

A. baylyi ADP1 pMev-LacI-trc (ECA10) and the wax ester knock-out, ADP1Δacr1 pMev-LacI-trc 
(ECA15) were cultivated in fed-batch.  Cultures initially contained 20 mM POB and 10 mM glucose. 
Cultures were fed every 24 hours one bolus of 20 mM substrate, either p-hydroxybenzoate (POB) 
or glucose, or not fed, as indicated. (A) Mevalonate titers after 168 h of POB fed-batch.  (B) 
Mevalonate titers over culture time for in ADP1Δacr1 pMev-LacI-trc (ECA15) with POB feeding.  
Data reflect mean and error bars represent S.E.M. (n = 6 for ADP1 pMev-LacI-trc POB, glucose, 
not fed, and for ADP1Δacr1 pMev-LacI-trc POB, and n = 2 for ADP1Δacr1 pMev-LacI-trc glucose 
and not fed). 
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A time-course analysis of mevalonate concentration revealed that mevalonate production 

continued via POB catabolism even after the initial glucose was depleted [Fig. 3B, Fig. A.4 A and 

D]. No other C6 compound was detected by HPLC. These data indicate that mevalonate was 

being produced directly from lignin-derived carbon sources over an extended timeframe. Active 

synthesis of mevalonate after early stationary phase and improved mevalonate synthesis in the 

wax ester knockout strain  supports the hypothesis that the wax ester pathway competes with the 

mevalonate pathway for acetyl-CoA flux under carbon-rich, nutrient depleted conditions 66,67. 

Amplification of the mevalonate pathway in the 168-hour cell pellets revealed truncation of the 

mevalonate pathway for four of twelve POB-fed cultures and for six of eight glucose-fed cultures 

[Table A.4, Fig. A.5]. This is consistent with the large spread in mevalonate titers late in the POB 

culture [Fig. 3B]. Glucose-fed cultures exhibited significant accumulation of glucose-derived 

gluconate that contributed to decreased pH [Table A.5] and may have reduced cell viability as 

well as led to mutations to the mevalonate pathway, both of which may have reduced or eliminated 

mevalonate production [Fig. A.4 B and E, Fig. A.5]. Therefore, we postulate that mutations are 

likely driven by poor cell fitness due to non-optimal pH, high substrate accumulation, or pathway 

expression-based burden [Fig. A.4 B and E, Fig. A.5]. Taken together, these data indicate that 

mevalonate production was significantly improved by eliminating the wax ester pathway, and that 

implementing fed-batch cultivation led to continued production of mevalonate from POB after 

glucose was depleted, although long-term stability remains a challenge. 

2.4 Conclusions 

By utilizing the diverse metabolism and genetic maleability of Acinetobacter baylyi ADP1, we 

engineered a strain capable of producing mevalonate at titers up to 1014 mg/L (6.8 mM) from 

mixed glucose and lignin-derived aromatic carbon sources. The strain showed functional 

expression of a heterologous pathway in the presence of multiple lignin-derived aromatic 
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compounds, and production capability was significantly improved by a genetic knock-out targeting 

wax ester synthesis. However, genetic instability that gradually eliminates mevalonate production 

poses an obstacle to industrial applications of this strain.  In the future, our work will address the 

long-term stability of the mevalonate pathway. Chromosomal integration may enable expression 

while limiting plasmid-based metabolic burden, but it is unlikely to completely alleviate pathway 

burden. Based on our data, culture medium containing a mixture of aromatic and sugar-based 

carbon sources may reduce mutational frequency, indicating promise for future lignin-based 

medium optimization.  In all, this work lays a foundation for lignin-based metabolic engineering to 

produce mevalonate pathway products in ADP1 and provides a case study for exploring the 

impact of the expression of a burdensome heterologous pathway on native ADP1 metabolism.  
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3. Targeted nutrient supplementation and enhanced aeration improve scale-up and growth 

for Acinetobacter baylyi ADP1 

Author’s Note: This manuscript is currently in preparation. 

 Industrialization of non-model organisms like Acinetobacter baylyi ADP1 towards 

establishment of sustainable biological lignin valorization processes requires investment into 

scale up strategies. ADP1 research efforts have primarily focused on engineering over process 

scale up strategies, therefore development of such strategies represents an untapped well of 

potential advances. Here, we demonstrate that ADP1’s growth is limited primarily by nutrient 

limitation in minimal medium, and that nitrogen is the most limiting nutrient. Evaluation of growth 

on spent medium reveals that growth limitation due to small molecule inhibition is not likely. We 

scale ADP1 from shake flask to bench-scale bioreactors and implement targeted nutrient feeding 

to achieve 3.9-fold increased cell density as well as prolonging cell growth and viability. Lastly, 

we postulate that feeding of dilute M9 salts supplemented with additional nitrogen is sufficient to 

sustain growth from solely aromatic acid substrates and increase culture density of ADP1. 

3.1 Introduction 

Biology’s ability to leverage the renewable reservoir of lignocellulosic carbon bypasses 

current bottlenecks in lignin processing 5,12,68. Untapped potential exists in endogenous metabolic 

pathways commonly found in non-model organisms. The non-model organism Acinetobacter 

baylyi ADP1’s wealth of biotransformation capability 28,69,70 is a promising tool for upgrading of 

lignocellulosic substrates, but effective utilization demands the development of industrialization 

strategies. Efficiently attaining high cellular densities has not been a primary focus of ADP1 

product synthesis and engineering studies, thus exploring this area has the potential to yield 

significant and universal gains in production titers. Here we develop strategies for high cell density 
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ADP1 cultivation to demonstrate its potential as an alternative industrial chassis to traditional 

chemical processing. 

ADP1’s genetic tractability and native capacity for funneling a broad range of renewable 

lignin-derived substrates to central metabolism make it an ideal candidate for metabolic 

transformations of lignin waste streams 28,30,60,69,71. It possesses high tolerance for lignin-derived 

substrates, which inhibit growth of model organisms such as E. coli and S. cerevisiae 21,72,73. This 

trait particularly lends itself to biological upgrading of lignocellulosic waste streams and capitalizes 

on substrate-based inhibition of potential bacterial contaminants 74. Recent developments in 

ADP1-specific toolsets have further enabled metabolic engineering efforts towards synthesizing 

products from cheap and renewable feedstocks 75,76. However, process scale-up, which is a major 

hurdle in industrialization, remains largely unexplored for ADP1.  

Efforts to improve product synthesis in ADP1, especially in the upgrading of 

lignocellulosic-derived substrates, have primarily focused on metabolic engineering and product 

synthesis over scale-up strategies 32,39,77. ADP1’s native proclivity for transforming a broad array 

of sugar and aromatic substrates to acetyl-CoA is especially promising for synthesis of products 

derived from TCA cycle intermediates 32,33,67,77,78. ADP1 has been engineered for improved 

production of triacylglycerol 53 and wax esters 32,77,79, and for the heterologous production of 1-

alkenes 80 and mevalonate 39. While these efforts demonstrate ADP1’s utility, they forego 

granularity in scale-up strategy for the sake of metabolic engineering.  

Process scale-up strategies typically focus on improving oxygen and mass transfer, fine-

tuning substrate and nutrient supplementation, and avoiding  accumulation of inhibitory 

compounds 81–84. These considerations are critical in high density growth. Oxygen and substrate 

gradients can slow growth, and depletion of nutrients or accumulation of inhibitory metabolites 

can reduce cell viability 83,85. The impact of nutrient feeding strategies and industrial stressors 
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such as oxygen limitation and agitation-related shear is largely unexplored in ADP1. Nutrient 

requirements are particularly of interest due to the preference of ADP1 for low nitrogen-to-carbon 

ratios during synthesis of acetyl-CoA derived products such as wax esters 77.  

Currently, the maximum culture density seen in ADP1 is OD 12 in shake flask cultivation 

33,77 and OD 5.3 in bioreactor cultivation 67. To grow to high density, ADP1 is typically cultured in 

media containing complex nutrients like casein amino acids and yeast extract alongside high 

amounts of non-aromatic substrates 33,77. For bioreactor cultivation, pure oxygen supplementation 

has been used to maintain high growth rates 67,77, though improved oxygenation through agitation 

cascade has been demonstrated at lower optical densities 33.  

Here we present a scale-up strategy for ADP1 to rapidly reach high culture density in 

minimal medium with lignin-derived substrates and targeted nutrient feeding. We explore factors 

limiting growth of ADP1 on M9 minimal media and find that the primary growth limitation arises 

from nutrient depletion. We identify nitrogen as the primary limiting nutrient and address depletion 

with targeted nutrient supplementation. Lastly, we implement cascade agitation to overcome 

oxygen demands without the need for costly supplementation of pure oxygen even at high culture 

densities, which is crucial to reducing process costs on an industrial scale. With these strategies, 

ADP1 reached a density of 15.88 in 23 hours of cultivation with a feed comprised of a lignin-

derived aromatic carbon source and ammonium chloride. These findings will serve as a 

foundation for future work with ADP1 towards ultimately demonstrating this strains utility as a 

powerful industrial biotransformation tool.  

3.2 Materials and Methods 

3.2.1 Cultivation Methodology 

Strain and Media 
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Wild type A. baylyi ADP1 was used for cell culture studies. M9 medium contained 2 mM 

magnesium sulfate, 0.1 mM calcium chloride, and M9 Minimal Salts (BD Difco) (47.8 mM disodium 

phosphate, 22.0 mM monopotassium phosphate, 18.7 mM ammonium chloride, 8.6 mM sodium 

chloride). Modified bioreactor M9 medium contained 2 mM magnesium sulfate, 0.1 mM calcium 

chloride, 30 μM iron III chloride, 15.7 mM disodium phosphate, 12.5 mM monopotassium 

phosphate, and 18.7 mM ammonium chloride. Where noted, trace metals solution was provided 

(2 mg/L ZnSO4·7H2O; 5 mg/L FeSO4·7H2O; 0.2 mg/L Na2MoO4·2H2O; 0.2 mg/L CuSO4·5H2O; 0.4 

mg/L CoCl2·6H2O; and 1 mg/L MnCl2·2H2O) 33,74. Carbon sources, unless otherwise listed, were 

10 mM glucose and 20 mM p-hydroxybenzoate (POB) due to ADP1’s tolerance for POB and 

improved growth on mixed glucose-POB medium 39. 

Precultures 

Precultures were initially cultivated in LB medium by inoculating 5 mL of LB in a 14 mL Falcon 

tube with a single colony and grown overnight at 30°C and 250 rpm at 45 °. They were then diluted 

1:100 into the relevant minimal medium and grown for an additional 12-18 hours. To inoculate 

cultures, precultures were pelleted at 6800 x g and 4°C and resuspended to an OD of 5 with fresh 

minimal medium. Cultures were inoculated to an initial OD of 0.05 and grown at 30°C and 250 

rpm unless otherwise noted.  

Resuspension Cultures 

Resuspension cultures were grown in baffled 250 mL shake flasks with 25 mL of M9 minimal 

medium supplemented with 20 mM POB and 10 mM glucose. Every 24 hours, the entire culture 

was centrifuged at 6800 x g and 4°C for 10 minutes to pellet cells. For high density cultures (OD 

greater than 6), cultures were centrifuged for 20 minutes to fully pellet cells. The cell pellets were 

resuspended by gently pipetting in 25 mL of fresh medium and placed into new 250 mL baffled 

flasks to minimize the risk of contamination and carry-over of inhibitory compounds. The spent 

supernatant was collected for timepoints 24, 72, and 120 hours to evaluate the presence of 
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inhibitory compounds in spent medium. Samples were centrifuged at maximum speed and 4°C, 

filtered using a 0.2 mm cellulose acetate filter, and then stored at -20°C until analysis. 

Spent Medium Inhibition 

The spent supernatant collected from the resuspension cultures at 24, 72, and 120 hours was 

split into 3 treatment groups per timepoint. To the first group, 20 mM POB, 10 mM glucose, 2 mM 

MgSO4, 0.1 mM CaCl2, and 18.7 mM NH4Cl were added to replenish spent nutrients. Buffering 

salts and sodium chloride were excluded as they were assumed to not be limiting to ADP1 growth. 

To the second group, 1X M9 salts were added alongside 20 mM POB, 10 mM glucose, 2 mM 

MgSO4, and 0.1 mM CaCl2. To the third group, no nutrients were added. Wild type ADP1 was 

inoculated into (i) spent medium with added nutrients and POB/glucose, (ii) spent medium with 

1X M9 and POB/glucose, (iii) spent medium, and (iv) fresh M9 minimal medium. Cultures were 

conducted in 5 mL of medium in culture tubes and grown for 48 hours. 

Nutrient Elimination 

Nutrient elimination cultures were grown in 125 mL unbaffled flasks with 25 mL of medium. 

Culture treatments for each timepoint are in Table 1. The initial growth for all culture conditions 

occurred in M9 minimal medium with 20 mM POB and 10 mM glucose. At 24 hours, cultures were 

supplemented with a nutrient bolus containing 23.9 mM disodium phosphate, 11.0 mM 

monopotassium phosphate, 9.3 mM ammonium chloride, 4.3 mM sodium chloride, 1 mM 

magnesium sulfate, and 0.05 mM calcium chloride with a single eliminated nutrient per condition. 

The positive control was supplemented with a bolus containing all nutrients. The negative control 

was given a bolus of sterile water. All cultures were fed a bolus of carbon substrates (20 mM POB 

and 10 mM glucose) at 24, 48 and 96 hours to avoid carbon limitation. Every 24 hours, cultures 

were pH adjusted to pH 7 using 10M hydrochloric acid. At 96 hours, cultures were supplemented 

with a bolus containing only the eliminated nutrient. Cultures were monitored during 24 to 96 

hours for reduced growth phenotype and during 96 to 144 hours for recovered growth phenotype. 
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Bioreactor Cultivation 

1L bioreactor (Sartorius BioStat Q+) cultivations were conducted with 0.5 L of M9 medium, 1 

VVM or 3 VVM sparging with air, temperature automatically controlled to 30°C and agitation rate 

either set to 250 rpm (initial baseline and 0.25M POB nutrient fed cultivations) or set to 200 – 

1200 rpm (improved oxygen cultures) to maintain dO2 at or above 20%. Culture pH was 

automatically controlled to 7 with the addition of 2M sodium hydroxide or 2M hydrochloric acid. 

To control foaming, 1:100 dilution of antifoam B was added as necessary. For baseline 

cultivations, 0.25M POB was drip-fed to maintain a concentration near zero. For nutrient-fed 

cultures, 0.25M, 0.5M, or 0.72M POB was drip-fed. The feed rate was adjusted based on online 

signals for dissolved oxygen and exhaust gas carbon dioxide as well as offline HPLC analysis to 

confirm POB concentration was maintained at < 10 mM throughout cultivation. For the nutrient 

fed conditions with bolus nutrient feeding, a nutrient feed containing (15.7 mM disodium 

phosphate, 12.5 mM monopotassium phosphate, 186.9 mM ammonium chloride) was fed at a 

dilution of 1:100 and a micronutrient feed containing (100 mM magnesium sulfate and 5 mM 

calcium chloride) was fed at a dilution of 1:100 every 24 - 48 hours. For nutrient fed conditions 

with combined nitrogen and POB feed, the feed contained 200 mM ammonium chloride and 

0.72M POB and was supplemented at a rate sufficient to maintain POB concentration in the 

medium < 10 mM throughout cultivation. 

3.2.2 Analytical Methodology 

Substrate consumption was tracked via HPLC (Agilent 1200 series) equipped with a RID and 

a DAD. Samples were run on a BioRad Aminex 87H column with a mobile phase composed of 

90% 5 mM sulfuric acid and 10% acetonitrile at a flow rate of 0.6 mL/min. The column chamber 

was held at 60°C. The following signals were used for each tracked compound: RID – glucose; 

DAD 194 nm – gluconate; DAD 206 nm – acetate, p-hydroxybenzoate, and protocatechuate. 
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Nitrogen consumption was evaluated by measuring ammonium levels in culture supernatant using 

the Sigma Aldrich MAK310 Ammonia Assay kit. pH, dO2, exhaust carbon dioxide, temperature, 

and agitation rate were monitored online. 

3.3 Results 

3.3.1 The primary growth limitation mode of ADP1 in minimal medium is nutrient limitation 

We evaluated ADP1 growth with serial resuspension in fresh medium to evaluate if, at higher 

cell density, any non-medium related (e.g. cell-density-dependent) effects were present and 

impacted growth. Growth in ADP1 is likely limited by (i) nutrient limitation, (ii) presence of a toxic 

by-product, or (iii) a non-toxic by-product or quorum sensing molecule [Fig. 3-1A]. The growth of 

ADP1 was observed over 24-hour growth-resuspension cycles. During each cycle, whole cultures 

were centrifuged to pellet cells then resuspended in fresh medium and allowed to grow for 24 

hours [Fig. 3-1B]. Serially resuspending ADP1 cultures in fresh medium enabled prolonged 

growth with a general linear trend in cell density and consistent increases in cell density per growth 

cycle [Fig. 3-1C]. Analysis of substrate assimilation via HPLC indicated that carbon sources were 

fully consumed during each 24-hour growth cycle. Variability in culture density and in cell density 

change per cycle increased for later timepoints, and the overall change in cell density per cycle 

was diminished for the final 96-to-120-hour cycle. Growth during these cycles resembled nutrient-

limited growth, but results were not conclusive particularly at higher culture densities, for which 

the change in cell density per 24-hour cycle was reduced.  
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Figure 3-1 Serial resuspension of ADP1 whole culture cell pellets results in consistent and linear 
gains in biomass for each resuspension-growth cycle.  

(A) ADP1 biomass gains for each serial whole cell pellet resuspension-growth cycle. (A) 
Theoretical data for resuspension-growth cycles for (i) nutrient limited growth, (ii) growth inhibition 
by a toxic by-product, or (iii) growth inhibition by a non-toxic by-product or density-dependent 
quorum sensing mechanism. (B) Time-course culture density (OD600) for ADP1 WT cultures 
undergoing resuspension in fresh medium every 24 hours. (C) Change in cell density over each 
24-hour resuspension-growth cycle. N = 4 biological replicates. Error bars are S.E.M. 

3.3.2 ADP1 spent medium does not contain growth-inhibitory compounds 

To evaluate if spent medium from the serially resuspended cultures contained any growth-

inhibitory compounds, we collected the spent medium supernatant at 24, 72, and 120h after 

pelleting cells, added back essential nutrients, and inoculated fresh ADP1 cultures into the spent 

medium. When grown in spent medium with added nutrients and carbon, ADP1 reached a cellular 

density similar to that reached in the fresh medium condition at 24 hours [Fig. 3-2B]. We 
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hypothesized that if non-medium-dependent inhibitory effects were present and impacted growth, 

the effect could be more pronounced with higher culture density at later timepoints if the inhibition 

was strictly density-dependent. However, there was no discernable relationship between the 

timepoint of spent supernatant and the cell density. Growth of ADP1 on spent medium with no 

additional nutrients was minimal likely due to the lack of remaining carbon in the spent medium 

[Fig. 3-2A]. A statistically significant decrease in cell density between 24 and 48h occurred for the 

nutrient supplemented spent medium conditions, but not for the fresh medium condition. The pH 

was measured at 48 hours using pH paper and found to be between 7 and 8 for spent medium 

conditions and approximately 7 for the fresh medium condition. [Suppl. Table B-1]. To evaluate 

the impact of improved buffering capacity on growth in spent medium, 1X M9 salts were added to 

the spent medium alongside nutrients and carbon (2 mM magnesium sulfate, 0.1 mM calcium 

chloride, 20 mM POB, and 10 mM glucose). Cultures grown in spent medium with added nutrients, 

carbon, and M9 salts were found to reach a density similar to that of cultures in fresh medium and 

in spent medium with added nutrients at 24 hours [Fig. 3-2C]. The density of cultures in spent 

medium with added M9 salts was similar to that of cultures in fresh medium at 48 hours, indicating 

the inclusion of carbon, nutrients, and buffering salts can support and maintain growth for ADP1 

in spent medium. 
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Figure 3-2 Cell density of ADP1 grown on spent medium collected from serially resuspended 
cultures at 24, 72, and 120 hours. 
Spent media samples were either (A) used as is, (B) supplemented with nutrients and carbon (20 
mM POB and 10 mM glucose), or (C) supplemented with M9 salts and carbon. Fresh M9 medium 
contained 20 mM POB and 10 mM glucose. N = 4 biological replicates. Error bars are S.E.M. 

 

3.3.3 Nitrogen availability limits ADP1 growth in carbon-rich M9 minimal medium 

To identify the limiting nutrient(s), ADP1 was grown in medium for which a single nutrient was 

excluded per condition. The initial 24 hours of growth was conducted in identical M9 medium for 
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ammonium chloride deficient condition reached a similar OD to the positive control by 120 hours, 

indicating full growth recovery. The monopotassium phosphate deficient condition experienced a 

decrease in cell density upon addition of potassium phosphate at 96 hours and remained at a 

reduced cell density relative to the positive control for the duration of the cultivation [Fig. 3-3B]. 

All other culture conditions grew similarly to the positive control.  

 

Figure 3-3 Growth and treatment conditions for nutrient elimination cultures.  

Cell growth, shown by OD600, was tracked over 120 hours. Growth from 0 - 24 hours occurred 
in identical media for all conditions. Growth from 24 – 96 hours occurred in media supplemented 
with additional amounts of all nutrients except for one eliminated nutrient per condition. Growth 
from 96 – 144 hours occurred in media supplemented with the eliminated nutrient from each 
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condition. (A) Condition with excluded ammonium chloride. (B) Conditions with excluded buffering 
salts and micronutrients. N = 4 biological replicates. Error bars are S.E.M. 

 
3.3.4 Bioreactors with improved aeration and nutrient feeding increases ADP1 culture 

density and growth rate 

To investigate the impact of improved process control, ADP1 was cultured in 1L bioreactors 

at a working volume of 0.5L. The first 24 hours of cultivation were conducted in batch mode to 

utilize initial carbon before switching to fed-batch mode with feeding of 0.25M POB. In modified 

bioreactor M9 minimal medium with continual substrate drip-feed comprised of solely POB, ADP1 

reaches OD 4.1 ± 0.3 at 72 hours [Fig. 3-4A]. Nitrogen is depleted by 48 hours, and carbon 

assimilation continues through 96 hours, at which point POB began accumulating [Fig. 3-4A-B].  
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Figure 3-4 ADP1 WT growth and substrate assimilation in bioreactor cultures fed with solely 
0.25M POB without supplementation of additional nutrients.  

(A) Growth as shown by OD600 and nitrogen depletion as shown by ammonium concentration in 
non-nutrient fed bioreactor cultures. (B) Substrate concentrations for POB and glucose. N = 3 
biological replicates. Error bars are S.E.M. 

To evaluate the impact of supplying additional nutrients, particularly nitrogen in the form of 

ammonium chloride, ADP1 was cultured with supplementation of nutrients as well as POB. When 

cultures were provided with additional nutrients, including nitrogen, magnesium, calcium, and 

potassium, as a bolus alongside drip-fed POB, growth is prolonged and overall cell density is 

increased to 11.3 ± 1.6 by 360h of cultivation [Fig. 3-5A]. Ammonium chloride was supplemented 

at a higher concentration than other nutrients to avoid nitrogen limitation without overfeeding other 
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nutrients. The concentration of POB feed was also increased from 0.25M to 0.5M to reduce the 

dilution rate. POB was assimilated steadily and maintained at a concentration below 10 mM 

throughout cultivation [Fig. 3-5B]. However, in a low agitation setting (250 rpm), oxygen becomes 

limiting and slows growth such that cell density increases at a linear rate of 0.04 ± 0.00 OD/h.  

The linear growth is due to limited oxygen availability resulting from low   mass transfer of oxygen, 

which is not dependent on cell density.  

 

Figure 3-5 ADP1 WT growth and substrate assimilation in bioreactor cultures fed with 0.5M POB 
with supplementation of additional nutrients.  

(A) Growth as shown by OD600 and nitrogen concentration as shown by ammonium 
concentration in nutrient fed bioreactor cultures. (B) Substrate concentrations for POB and total 
amount POB. N = 2 biological replicates. Error bars are S.E.M. 

0

50

100

150

200

250

0

5

10

15

20

25

0 48 96 144 192 240 288 336

Fe
ed

 A
dd

ed
 (m

m
ol

 P
O

B)

PO
B 

Co
nc

en
tra

tio
n 

(m
M

)

Time (h)

POB Concentration
POB Added

A

B

0

10

20

30

40

50

60

0

2

4

6

8

10

12

14

0 48 96 144 192 240 288 336

Am
m

on
iu

m
 C

on
ce

nt
ra

tio
n 

(m
M

)

Ce
ll D

en
sit

y 
(O

D)

Time (h)

OD
Ammonium



 50 
To address poor oxygenation, we implemented cascade agitation from 250 – 1200 rpm to 

maintain a dissolved oxygen concentration of 20% and increased the flow of sparged air from 1 

VVM to 3 VVM. Carbon (0.5M POB) was fed at a rate that did not reduce oxygen below 20%.  

Using this strategy, ADP1 grew 13-fold faster at a linear rate with carbon limitation of 0.53 ± 0.02 

OD/h, and cultures reached a cellular density of OD 6.8 ± 0.5 by 34 hours, or within 10 hours of 

beginning the fed-batch phase [Fig 3-6A]. Ammonium chloride and other nutrients were added as 

boli as previously described at 24 h to avoid nutrient limitation. To evaluate the impact of 

increasing agitation rate on ADP1 cell viability, ADP1 cells were plated after being subjected to 

600, 800, 1000, and 1200 rpm agitation rates for 20 minutes prior to culture sampling. Colony 

forming unit counts for each condition did not differ significantly [Suppl. Fig. B-1]. However, at 

1200 rpm, the rate of foam formation increased significantly, so moving forward a maximum 

agitation rate of 1000 rpm was used.  
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Figure 3-6 ADP1 WT growth and substrate assimilation in bioreactor cultures fed with 0.5M POB 
with supplementation of additional nutrients and cascade agitation to maintain dO2 at 20%.  
(A) Growth as shown by OD600 and nitrogen concentration as shown by ammonium 
concentration in nutrient fed bioreactor cultures. (B) Substrate concentrations for POB and total 
amount POB. N = 2 biological replicates. Error bars are S.E.M. 
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agitation rate of 1000 rpm, the culture OD increased linearly by 0.88 ± 0.06 OD/h, representing a 

further 1.6-fold increase in ADP1 growth from the nitrogen bolus-feeding strategy. Throughout 

cultivation, POB was maintained below 10 mM with steady consumption of POB through 23 hours 

[Fig. 3-7B]. Ammonium was consumed at a rate faster than it was fed, necessitating the 

supplementation of additional ammonium chloride via bolus at 8.4 and 18.6h [Fig. 3-7C], thus 

indicating the concentration of ammonium chloride in the drip-fed solution should be increased. 

Based on these data, the yields of ADP1 cell biomass from nitrogen was recalculated and found 

to be 4.6 mM nitrogen/OD. This yield coefficient is also consistent with the initial baseline data 

from non-nutrient fed ADP1, for which the yield was 4.7 mM nitrogen/OD. By implementing co-

feeding of ammonium chloride and POB alongside maintaining dO2 at or above 20% with higher 

agitation rates, we grew ADP1 to OD 15.8 +/- 0.4 within 23 hours, which is the maximum reported 

culture density for ADP1 in any growth format. 
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Figure 3-7 ADP1 WT growth and substrate consumption in bioreactor cultures fed with 0.72M 
POB with supplementation of additional nutrients and agitation between 250 – 1000 rpm to 
maintain dO2 at 20%. 

(A) Growth as shown by OD600. (B) Substrate concentrations for POB and total amount POB. 
(C) Nitrogen concentration and nitrogen addition as shown by ammonium concentration and 
ammonium addition in nutrient fed bioreactor cultures. N = 2 biological replicates. Error bars are 
S.E.M. 
 
3.4 Discussion and Conclusions 

In this study, we present strategies to address critical needs in scale up of ADP1 by (i) 

evaluating ADP1 for the presence of growth inhibition due to nutrient limitation or small molecule 

inhibition, (ii) identifying nutritional requirements for high density cell growth, and (iii) developing 

strategies for nutrient feeding and aeration to support rapid growth and high cell densities in 

bench-scale bioreactors without costly oxygen supplementation or specialized media.  

Our findings indicate that ADP1 growth is limited primarily by nutrient depletion, and that 

nitrogen is the most limiting nutrient in M9 minimal medium. We hypothesized that different modes 

of growth inhibition would result in characteristic growth traits [Fig. 3-1A]: density-dependent 

inhibition could result in gradually lower density gains per cycle; decreasing cell density could 

indicate cytotoxic effects; nutrient limitation would result in consistent density gains each cycle. 

The observed growth characteristics most closely resemble the nutrient limited growth mode, with 

cell density increasing by a similar amount each cycle and no consistent reductions in density 

during each cycle. Though quorum sensing mechanisms have been documented in Acinetobacter 

species 86–88, they do not appear to impact growth under these conditions. Furthermore, growth 

inhibition by accumulation of inhibitory small molecules was not observed for the tested 

conditions. Variability in culture density and variability in density gains per resuspension-growth 

cycle increased with increasing cell density. This was potentially due to increasing difficulty in 

pelleting cultures, resulting in longer centrifugation times and poorer recovery of cells from culture 
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broth. However, due to the lower overall growth at higher cell densities, further evaluation was 

required to determine if inhibitory compounds effect cell growth.  

By growing ADP1 in spent medium with additional nutrients, we ruled out the presence of 

density-dependent small-molecule based inhibition. Growth in spent medium with added nutrients 

and buffering salts was similar to growth in fresh medium, while growth in spent medium without 

added nutrients was minimal, supporting the hypothesis that the primary cause of growth limitation 

in spent medium was nutrient depletion. Furthermore, buffering capacity appeared to be a factor 

in growth for spent medium cultures [Suppl. Table B-1], and inclusion of 1X M9 buffering salts in 

spent medium maintained culture density from 24 – 48 hours, while cultures with solely additional 

micronutrients (magnesium sulfate and calcium chloride) and nitrogen (ammonium chloride) 

experienced reduced culture density in the same timeframe. All cultures assimilated carbon in 

similar amounts. Thus, it is likely that the spent supernatant did not contain any notable growth 

inhibitors, and that inclusion of nutrients and buffering salts found in M9 salts may be beneficial 

for sustaining ADP1 growth. 

 We next identified the primary limiting nutrient as nitrogen. Identification of the growth-

limiting nutrient(s) is vital to enable targeted nutrient supplementation, thus avoiding unnecessary 

costs and reducing osmotic stress associated with accumulation of non-limiting nutrients. During 

growth on nutrient-restricted medium, a reduced culture density was observed by 72 hours for the 

ammonium chloride-deficient condition as well as the negative control compared to all other 

nutrient-restricted conditions and the non-restricted positive control. At 96 hours, the cultures were 

provided with a bolus of solely the eliminated nutrient. We postulated that if the supplemented 

nutrient is the sole factor limiting growth, supplementation of it would enable growth recovery. The 

ammonium chloride condition recovered fully with the addition of ammonium chloride, supporting 

our hypothesis that nitrogen had been depleted and thus limited ADP1’s culture density. At the 



 55 
observed cell densities, no other nutrients appeared to be limiting, though with higher culture 

densities, supplementation of additional nutrients may be required to sustain metabolic activity.  

 We demonstrated that targeted nutrient supplementation increases culture densities in 

bioreactor cultivation. Initially, we conducted bioreactor growth in a fed-batch mode with a feed 

comprised of solely pH-adjusted POB to determine the cell yield on initial nutrients before 

cultivating ADP1 with feeding of POB and dilute nutrients. With nutrient feeding, the growth phase 

was prolonged from 72 hours to 360 hours with steady linear growth. Culture density was also 

increased 2.8-fold from OD 4.1 to 11.3, which supports our hypothesis that the targeted nutrient 

strategy is sufficient to maintain non-limiting nutrient levels.  

 By increasing the rate of sparging from 1 VVM to 3 VVM and by implementing cascade 

agitation from 250 – 1200 RPM, we increased the linear growth rate of ADP1 significantly without 

the use of pure oxygen or costly media supplements. Inadequate oxygen transfer limits the growth 

rate of ADP1 in both shake flask and bioreactor cultivation. Industrial processes demand temporal 

efficiency alongside economical resource allocation. Therefore, increasing the growth rate by 

altering process parameters, namely sparging rate and agitation rate, is critical to establishing 

ADP1 as an attractive industrial chassis. The aeration strategies in this study allowed ADP1 to 

reach OD 6.8 in 34 hours compared to OD 11.3 in 360h hours with low sparging and agitation. 

The fastest observed linear growth was at a rate of 0.53 OD/h, relative to the growth at low 

oxygenation of 0.04 OD/h representing a 13-fold increase in linear growth rate. Though it requires 

higher gas flow rates and increased power usage for agitation, this strategy avoids the demand 

for pure oxygen supplementation, which drastically reduces process costs compared to processes 

with supplemental pure oxygen. Furthermore, we showed that agitation rates can be increased 

up to 1200 rpm without impacting cell viability [Suppl. Fig. B-1], which has not been previously 

explored when applying cascade agitation to ADP1 33. These findings demonstrate the advantage 

of ADP1’s cellular robustness when applied to industrial processes. 
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 Lastly, we combined the feeding of ammonium chloride and POB to further improve growth 

and to establish stable carbon and nitrogen concentrations in the medium. Streamlining of nutrient 

and carbon supplementation is desirable for industrialization as it enables process automation. 

Nitrogen availability plays a key role in directing carbon flux in ADP1, particularly for acetyl-CoA 

derived products89, thus maintaining and tuning nitrogen availability is crucial to improving product 

yields. Furthermore, coupling carbon to nitrogen feeding enables tuning nitrogen supplementation 

to ADP1’s carbon consumption, upon which it directly depends. Here, the nitrogen to carbon ratio 

in feed was determined based on biomass yields on each nutrient during ADP1 growth on POB 

as the sole carbon source. By introducing a constant drip feed of POB and ammonium chloride 

at 0.72M and 0.2M, respectively, in tandem with previous strategies for improved aeration we 

achieved an OD of 15.8 by 23 hours of growth with a maximum linear growth rate of 0.88 OD/h. 

This is the highest culture density for ADP1 reported to date in any growth format.  

Further improvements may be achievable by introducing a constant drip feed of other 

essential nutrients, as, for these cultivations, bolus feeding of other M9 nutrients including 

potassium phosphate, sodium phosphate, iron, magnesium chloride, and calcium chloride were 

included to ensure no other nutrients became limiting. Future directions should explore ADP1 cell 

yields on each of these nutrients to establish bounds for automated feeding. Lastly, the use of 

POB as a substrate offers the advantage of being a simple single-compound carbon source, but 

its applications for industrial processes are limited by both solubility of POB, which is 0.72M, and 

by the purity of available lignin-derived waste streams. Future work should evaluate cell yields 

not only on a singular carbon source, but on mixed feedstocks more closely resembling actual 

lignocellulosic waste like mock APL90. 

 Here we describe a scale up strategy to grow rapidly ADP1 to high density in inexpensive 

minimal medium on lignin-derived aromatic carbon. We first evaluated ADP1 for density- and/or 

non-medium-dependent growth inhibition and found that ADP1’s growth patterns support the 
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hypothesis that ADP1 growth in M9 minimal medium is nutrient limited. This hypothesis was 

further supported by the lack of growth inhibition for ADP1 grown in spent medium with 

supplemented nutrients and buffering salts. We next identified nitrogen as the most limiting 

nutrient in M9 medium. Moving to bench-scale 1L bioreactors, we evaluated the impact of various 

culture parameters including agitation, sparging rate, and nutrient supplementation on ADP1 

growth. By increasing the sparging rate of air and adjusting the agitation rate between 250 and 

1000 rpm, we enabled maintenance of dO2 at or above 20% without the use of costly oxygen 

supplementation. Further, by introducing co-feeding of nitrogen alongside the aromatic carbon 

source, POB, we attained a culture density of 15.8 and a linear growth rate of 0.88 OD/h, 

representing a 3.9-fold and a 22-fold improvement in final OD and linear growth rate, respectively.  

This work represents a crucial step towards scale up and industrialization of ADP1. ADP1 

represents a wellspring of potential for upgrading lignocellulosic feedstocks to value added 

products. However, as an obligate aerobe and a non-model organism, scale-up is a significant 

obstacle to establishing ADP1 as an industrial chassis strain. By demonstrating simple and 

generalizable methods to increase culture density and implement strategic nutrient feeding, this 

study will enable future efforts to bring industrialization efforts to fruition.  
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4. A model-guided metabolomics workflow improves metabolic annotations in 

Acinetobacter baylyi sp. ADP1 

Author’s Note: This work is currently in preparation for publication. Dr. Jon Strutz will be the 1st 

author and performed all computational work. I will be the 2nd author and performed the final 

experimental validation, which is currently in progress.  

4.1 Introduction 

Much of microbial metabolism is currently unknown, also termed “underground metabolism” 

91. Unearthing this underground metabolism could lead to new, exciting opportunities for 

bioproduction processes including identification of novel biomarkers 92, production of novel 

compounds 93, and engineering of newly discovered pathways and associated enzymes 94. Thus, 

the process of cataloguing the metabolites in a given organism, metabolite annotation, is of critical 

importance 95. However, metabolite annotation is challenging, as novel metabolites will not 

typically be present in metabolomics databases (e.g. MassBank), and the space of all possible 

chemical structures is vast 96,97.  

In order to reduce this space of possible structures, untargeted metabolomics techniques are 

often used. Usually, a chromatography step is first used to separate compounds in a biological 

sample on the basis of charge, polarity, and other interactions. Then the mass-to-charge ratio, or 

m/z, is typically measured by mass spectrometry. Sometimes, compounds then go through a 

round of fragmentation where the spectra of a compound’s fragments are measured, resulting in 

MS2 spectra. The raw metabolomics data is processed, resulting in a final set of peaks, each with 

a measured m/z, retention time, and sometimes MS2 spectra. Metabolite annotation is the 

process of annotating each of these peaks with chemical identities. 

An accurate m/z value often reveals the likely molecular formula but not the structure. Thus, 

retention time and MS2 are used to aid in structural identification. While studies measuring liquid 
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chromatography retention times for known compounds are numerous, retention times are heavily 

influenced by chromatographic conditions and the column used so are difficult to compare across 

studies (although recent work has helped correct for these factors) 98–102. Moreover, 

chromatographic and spectral databases do not typically contain retention times or spectra for 

novel metabolites. Additionally, because biological databases such as KEGG and MetaCyc 

contain only known biological compounds, more generalized chemical databases such as 

PubChem are often used when searching via m/z alone 103–105. However, most PubChem 

molecules have low natural product (NP) likeness scores, indicating non-biological origin, making 

it unsuitable as a database of biological candidate structures 106,107. 

To address this problem, Metabolic In silico Network Expansions (MINEs) were developed in 

2015 and have recently been improved 108. MINEs contain candidate structures that are predicted 

by applying common biochemical transformations to all known metabolites. Thus, while not every 

predicted compound will exist within metabolism, each one is derived using rules based on known 

biochemistry, making MINEs a more suitable database for annotating unknown peaks in 

metabolomics datasets, as shown in 108. Other techniques such as Biotransformer and RetroRules 

can predict novel products as well, although Biotransformer is better suited for more targeted 

applications (e.g. prediction of xenobiotics) and while RetroRules is quite comprehensive, an even 

more comprehensive ruleset was recently developed for MINE 109–111. Finally, Menikarachchi et 

al. created the IIMDB database of predicted enzyme products, but it primarily focuses on 

predicting unknown features of human metabolism so may not be suitable for metabolomics 

datasets from bacterial samples 112. The MINE databases are accessible via a web app, and each 

MINE compound is linked with MS2 spectra, predicted in silico with CFM-ID 4.0, allowing for MS2 

based searches as well as searches by m/z alone 113. 

While MINE 2.0 utilized a more comprehensive set of reaction rules than MINE 1.0 during 

MINE construction, there were often still too many candidates for a given peak. While use of MS2 
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spectra was reported to significantly reduce this issue, MS2 spectra are not always measured for 

every peak in a dataset or may be of low quality 114–116. In this work, we took an organism- and 

dataset-specific approach to develop a pipeline to generate a more targeted and credible set of 

candidate compounds for a dataset without the use of MS2 spectra (Figure 4.1). 

 

Figure 4-1 An organism- and context-specific machine learning approach for metabolite 
annotation 

Compounds are first predicted from those that exist in a given organism using a ruleset derived 
from that organism’s genes and reactions. This predicted compound set is filtered to those that 
map to peaks (based on m/z) in a metabolomics dataset for that organism. A machine learning 
classifier is used to reduce the size of the candidate set and is trained on features calculated for 
candidates associated with known (experimentally validated) peaks from the dataset. Calculated 
features include non-metabolomics quantities such as features derived from metabolic modeling 
and reaction feasibility prediction. This trained classifier is then used to predict the most likely 
candidates for unknown peaks in the dataset. These high-confidence candidates are then targets 
for further investigation and testing experimentally using a more targeted metabolomics approach 
(e.g. with a reference standard, if available). 
 

We first curated a set of organism-specific reaction rules relevant to Acinetobacter baylyi 

sp. ADP1 (hereafter simply referred to as ADP1), a highly engineerable soil microbe with aromatic 

degradation pathways and thus potential as a platform strain for lignin valorization 29,68,117. While 

organism-specific reaction rule generation based on the organism’s reactome has been reported 

elsewhere, we took a more comprehensive approach by considering both the ADP1 reaction 

network and the ADP1 genome 118.  We then applied this set of ADP1-specific reaction rules to 

known metabolites within ADP1 to create a MINE database containing candidate compounds for 

a literature metabolomics dataset for ADP1 38. We combined this database of predicted reactions 
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with the ADP1 genome-scale model (GEM) to create an Extended Metabolic Model (EMM), as 

done in Hassanpour et al. 118. However, we were interested not only in using the EMM as our 

candidate set of structures (as done in Hassanpour et al.) but also testing whether the EMM could 

be used itself to predict features of each candidate (such as maximum theoretical yield) that may 

be useful for metabolite annotation. Thus, after designing and calculating these features (and 

others), we fed them into a random forest classifier which was trained to filter out unlikely 

candidates and was validated against experimentally validated peaks in the ADP1 dataset. This 

work highlights the importance of non-metabolomics features for metabolite annotation, such as 

features generated by metabolic modeling. Finally, after applying the trained classifier to unknown 

peaks in the ADP1 dataset, we filtered the predicted set of 4,697 candidates down to just 96 high-

confidence candidates. We are currently attempting to experimentally validate some of these 

candidates against reference standards via LC-MS/MS. 

4.2 Materials and Methods 

4.2.1 Acinetobacter baylyi sp. ADP1 Metabolic Model Preprocessing 

The genome-scale metabolic model (GEM) for Acinetobacter baylyi sp. ADP1, titled 

“iAbaylyiv4”, was downloaded from the BioModels database and cleaned up to comply with 

current (L3V1) SBML standards (see Appendix C.1 for details) 119,120. 

4.2.2 Acinetobacter baylyi sp. ADP1 Metabolomics Dataset 

The untargeted metabolomics dataset used in this work was taken from a previously 

published study where ADP1 was grown on quinate and succinate 38. This dataset contained 448 

validated peaks, 102 of which had been experimentally identified. While MS2 data was used to 

aid identification in the original work, the MS2 data was not stored online with the publication. 

Upon our request of the MS2 spectra, the authors provided the raw metabolomics data. MS2 

spectra were obtained in the original study by processing this raw data using XCMS Online 38,121. 
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Attempts were made to reproduce this workflow using XCMS Online (as well as other tools such 

as MZmine), but we were not able to reproduce the reported MS1 peak list, let alone obtain MS2 

spectra for all reported MS2 peaks 121,122. Because of these issues, for this work we used only the 

MS1 data provided with the original publication.  

4.2.3 Organism-Specific Reaction Rule Generation 

A combined reaction- and gene-based approach was used to filter down a comprehensive 

set of reaction rules down to just those that are most relevant for Acinetobacter baylyi sp. ADP1. 

Recently, JN1224min, a comprehensive biochemical reaction ruleset derived from reactions in 

MetaCyc was published 104,110. This ruleset was used to generate a larger but more specific (less 

promiscuous) ruleset by creating new rules for each rule in JN1224min where each new rule 

requires specific spectator atoms (atoms not participating in any bond changes but thought to be 

required for the reaction to occur). This resulted in a set of 7,387 rules with high specificity. This 

high specificity allowed us to better determine which rules are most relevant for Acinetobacter 

baylyi sp. ADP1. First, every rule was compared against every “mappable” reaction in the ADP1 

GEM. “unmappable” reactions were defined as those that were (1) transport reactions, (2) 

comprised of cofactors only, (3) composite reactions with 8 or more total substrates and products, 

or (4) reactions with substrates/products not able to be annotated with SMILES strings (common 

for larger molecules such as ACP complexes, tRNAs, etc.). If the bond changes, spectator atoms, 

and cofactors of a rule matched those of any “mappable” reaction from the ADP1 GEM, that rule 

was considered to be “reaction-mapped”. RDKit, a python library, was used to carry out these 

comparisons 123. 

In addition to this set of “reaction-mapped” rules, a set of “gene-mapped” rules was 

generated. First, a FASTA file was generated for each rule, containing the enzyme amino acid 

sequences associated with that rule. Of the 7,387 rules, 2,776 contained no associated enzyme 
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sequences and were not included as candidates for “gene-mapping”. Specifically, MUSCLE was 

used to perform a multiple sequence alignment on the amino acid sequences of each rule 124. 

Then, hmmbuild was used to build a HMMER profile for each rule, and hmmsearch was used to 

query that rule’s profile against the 3,307 enzyme-coding genes in ADP1 to search for homology 

125. For each reaction rule, this produced a table of hits with E-values (expectation values) less 

than 10-1 (the default threshold). All of these tables were merged into a single, large table locally 

using a custom python script, where each row contained the rule name, the name of the ADP1 

gene hit by that rule, as well as the E-value, score, and description of the gene. Multiple genes 

could be hit by the same rule (and multiple rules could hit the same gene). Rules with an E-value 

less than 10-35 for at least one hit were kept in the final “gene-mapped” set. See Appendix C.2, 

Figure C.1, and Figure C.2 for details on how this E-value threshold was chosen. 

Finally, an additional set of 96 spontaneous reaction rules (which are organism-

independent as they are derived from spontaneous biological reactions that do not require 

enzymes) were added to this set of ADP1-specific rules to create the final ruleset 126. 

4.2.4 Metabolic In silico Network Expansion (MINE) 

Pickaxe, our in-house reaction prediction software, was used to predict reactions by 

applying the final ADP1-specific ruleset to all compounds in the ADP1 GEM that contained 

SMILES strings. This created a Metabolic In silico Network Expansion (MINE) specific to ADP1. 

This MINE expansion was generated by running Pickaxe for 1 generation on 12 threads on a local 

machine (Windows Surfacebook 2, Intel i7-8650U CPU, 1.90 GHz, 16 GB RAM). The Pickaxe 

metabolomics filter was used after the expansion to filter the predicted compound set to only those 

that match at least one peak m/z in the ADP1 MS1 peak list. All precursor ion/adduct combinations 

were considered for each predicted compound, using the adducts reported in the publication 

associated with this dataset ([M+H]+, [M+NH4]+, [M+Na]+, [M+K]+ for positive ionization mode 
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and [M-H]- for negative ionization mode) 38. An m/z tolerance of 2 mDa was used, roughly equal 

to the tolerance used in the original publication (10 ppm) given a theoretical mass of 200 Da 38. 

4.2.5 ADP1 Extended Metabolic Model (EMM) Construction 

The set of metabolomics-filtered predicted compounds and their associated predicted 

reactions were added to the ADP1 GEM to create an extended metabolic model (EMM) 127. 

Because Pickaxe does not consider the compartment of substrate metabolites during reaction 

prediction, only predicted reactions with substrates from the same compartment in the model were 

added (products were assumed to be in the same compartment as reactants). Boundary reactions 

allowing all predicted compounds to leave but not enter the system were also added to facilitate 

calculations like maximum theoretical yield of a candidate. In all, the model contained 8,301 

metabolites and 11,000 reactions, 316 of which were gapfilling reactions (new reactions 

containing known ADP1 compounds as both substrate and product). 

4.2.6 Feature Generation 

In order to train a machine learning classifier to distinguish true metabolite annotations 

from false metabolite annotations for each peak, each compound-peak pair needed to be 

featurized. Three sets of features were designed and calculated for each candidate: features 

based on (1) metabolic modeling, (2) predicted reaction feasibility, and (3) metabolomics and 

other properties (Figure C.3). Metabolic modeling-based features were calculated using the ADP1 

EMM. Modeling features include maximum theoretical yield (MTY) of a candidate compound, the 

number of experimentally validated compounds involved in flux-carrying reactions in the flux 

distribution predicted when calculating MTY, and the distance between the candidate and feed 

compounds in the metabolic network. Feasibility-based features were calculated using deepRFC, 

a tool to predict the feasibility of biochemical reactions 128. The number of feasible reactions 

producing a candidate compound, the fraction of all reactions producing a candidate compound 
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that were classified as feasible, and whether any reactions producing a candidate were classified 

as feasible were all included as feasibility-based features. Metabolomics features include those 

based on predicted retention time as well as differences in peak intensity in the two feed 

conditions used in the metabolomics experiment for the ADP1 dataset. Other features include the 

number of unique precursor compounds for a candidate as well as molecular properties such as 

aromaticity. A full description of all calculated features can be found in Table C.1. 

Some features were not able to be calculated for every compound-peak pair. In these 

cases, a value was either set to a default value (e.g., 0, 1) or sampled (with a preset random 

seed) from the other values calculated for that feature across all compound-peak pairs. This 

choice depended on the feature (see Appendix C.3 for justification of various imputation methods) 

129. The primary cause of inability to calculate feature values was when calculating metabolic 

model-based features for large secondary metabolites not connected to quinate or succinate in 

the metabolic model which affected roughly 20% of candidate-peak pairs (e.g., we could not 

calculate the metabolic network distance from quinate to a candidate derived from one of these 

secondary metabolites). All other incomplete feature columns had less than 5% candidate-peak 

pairs that had to be sampled or set to default values (Appendix C.3). Features were iteratively 

added, changed, and removed during model training and validation to improve classifier 

performance – the features described in this work are the final set of features used. 

4.2.7 Random Forest Classifier – Training and Validation 

The python library, sklearn, was used to train a random forest classifier on a dataset of 

known and predicted candidate compounds for 75 known peaks in the ADP1 dataset (not all 102 

known peaks were associated with compounds that were in the model) 130. This dataset consisted 

of 75 positives (experimentally validated compound-peak pairs) and 2,640 negatives (predicted 

compounds that happened to match an m/z within this set of known peaks). Because these 
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classes were unbalanced, during the bootstrapping step of tree generation, these two classes 

were weighted such that positives and negatives were equally likely to be sampled. 

Model performance was quantified by the F-score, the harmonic mean of recall and 

precision, for out-of-bag samples. Out-of-bag samples were used as the validation set rather than 

holding out a separate validation set due to the low number of positive examples in the dataset 

(n=75) 131. Similarly, there was no held-out final test set as it would likely not be sufficiently 

representative of the full set of positive examples. We decided that potentially biasing final 

performance metrics by not having a separate held-out (likely not sufficiently representative) test 

set was worth it as it allowed us to use all of the (very limited) dataset for model training. 

Class threshold tuning and feature reduction were both used to improve model 

performance and interpretability 132,133. The model was initially trained on all features with 200 

trees, class balancing, and at one of 10 random states. The 10 different random states were used 

to account for potential variation in performance from bootstrapping. This resulted in 10 initial 

models with similar performance. To investigate the effects of feature reduction, each model was 

then retrained on the top n features only, where n was 2, 5, 8, 10, 15, or 26 (all features). The top 

features were determined by ranking features by their calculated Gini importance from the initially 

trained models. In addition, a PR (precision-recall) curve was generated for each n (for each of 

the 10 models) by varying the classification threshold from 0 to 1. These PR curves were used to 

determine the lowest number of features (i.e., the simplest model) that could be used while 

maintaining model performance. This was done while simultaneously choosing the best threshold 

for classification at each n. To quantify this, the best F-score for every PR curve (for each n) was 

calculated. The best performing set of 10 models (at 10 different random states) were found to be 

those retrained on the top 10 features with a threshold of 0.30. A final model was then trained at 

a different (arbitrary) random state (42) on the top 10 features with this threshold. This model’s 
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out-of-bag results were used to calculate the final recall, precision, and F-score metrics as well 

as Gini feature importances for each of the 10 features. 

4.2.8 Random Forest Classifier – Prediction on Unknowns 

The optimized random forest classifier was then used to predict the class probabilities for 

all peak-compound pairs for unknown peaks in the ADP1 metabolomics dataset (those without 

an experimentally identified compound). Those with a probability above 0.30 were considered 

“hits”. Only this small set of positively labeled compounds was considered for final analysis. 

4.2.9 Analysis of High-Confidence Hits 

In order to prioritize which hits to test experimentally, a literature and database search was 

performed for each hit. Specifically, any associated literature (e.g., studies annotated on the 

compound’s PubChem page) was investigated. In addition, we looked at the predicted reactions 

producing each predicted compound – in particular, we searched for similar known reactions in 

databases like MetaCyc, KEGG, and BRENDA by looking at the EC (Enzyme Commission) 

numbers and genes associated with each reaction rule 104,134,135. We also made use of homology-

search tools like BLAST to check for homologous enzymes (e.g., those that might catalyze one 

of these similar known reactions) in the ADP1 genome 136. The Protein Data Bank (PDB) was 

used as well to check for enzyme-ligand interactions 137. Based on this research, hits with 

significant literature support, often from multiple sources, were prioritized for experimental 

validation. 

4.2.10 Experimental Validation of High-Confidence Hits 

4.2.10.1 Cloning Methodology 

All primers and plasmids used in this study may be found in Appendix C Tables C-2 – C-

3. Genomic homology regions were amplified from the ADP1 genome via colony PCR, with the 

DNA template being a colony of wild type ADP1 suspended in 50 µL of nuclease free water. All 
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PCRs were conducted with PrimeSTAR Max Master Mix (2X) (Takara Bio). PCR products were 

run via electrophoresis on a 1% agarose gel at 90V for 25 minutes and extracted using the 

GeneJet Gel Extraction kit (Thermo Scientific) to purify DNA.  

Knock-outs were performed using genome homology-flanked selection cassettes, as 

described in Biggs et al. 29. Genome homology upstream and downstream of the gene targeted 

for knock-out were amplified from the ADP1 genome alongside a selection marker (either 

kanamycin or chloramphenicol resistance). The parts for each selection cassette were purified 

via gel extraction and stitched together using overlap PCR. The selection cassettes were purified 

via gel extraction and transformed into ADP1 with a minimum of 1000 ng of DNA 29. Transformants 

were screened via colony PCR, and potential hits were sequence verified. 

ACIAD1826 (pauA), a pimeloyl-CoA synthetase is associated with synthesis of 3-

hydroxyadipic acid. The knock-out cassette for ACIAD1826 was comprised of 500 basepairs of 

ADP1 genome homology upstream of ACIAD1826, amplified with primers ECA158/159, a 

kanamycin resistance gene from pBWB162, amplified with primers ECA160/161, and 500 

basepairs of ADP1 genome homology downstream of ACIAD1826, amplified with primers 

ECA162/163.  

ACIAD0381, a putative flavoprotein monooxygenase, is associated with synthesis of 3-

hydroxyanthranillic acid. The knock-out cassette for ACIAD0381 was comprised of 500 basepairs 

of ADP1 genome homology upstream of ACIAD0381, amplified with primers ECA146/147, a 

kanamycin resistance gene from pBWB162, amplified with primers ECA148/149, and 500 

basepairs of ADP1 genome homology downstream of ACIAD0381, amplified with primers 

ECA150/151. 

ACIAD0984, a putative hydroxylase involved in salicylate metabolism, is associated with 

synthesis of 3-hydroxyanthranillic acid. The knock-out cassette for ACIAD0984 was comprised of 

500 basepairs of ADP1 genome homology upstream of ACIAD0984, amplified with primers 
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ECA152/153, a kanamycin resistance gene from pECA19, amplified with primers ECA154/155, 

and 500 basepairs of ADP1 genome homology downstream of ACIAD0984, amplified with primers 

ECA156/157. 

ACIAD3540, a putative flavoprotein monooxygenase acting on aromatic compound, is 

associated with synthesis of 3-hydroxyanthranillic acid. The knock-out cassette for ACIAD3540 

was comprised of 500 basepairs of ADP1 genome homology upstream of ACIAD3540, amplified 

with primers ECA188/189, a kanamycin resistance gene from pBWB162, amplified with primers 

ECA190/191, and 500 basepairs of ADP1 genome homology downstream of ACIAD3540, 

amplified with primers ECA192/193. 

4.2.10.2 Cultivation Methodology 

Wild type A. baylyi ADP1 was used for cell culture studies. Precultures were initially 

cultivated in LB medium by inoculating 5 mL of LB in a 14 mL Falcon tube with a single colony 

and grown overnight at 30°C and 250 rpm at 45° rotation. They were then diluted 1:100 into the 

relevant minimal medium and grown for an addition 12-18 hours. To inoculate cultures, 

precultures were pelleted at 6800 x g and 4°C and resuspended to an OD of 5 with fresh minimal 

medium. Cultures were inoculated to an initial OD of 0.05 and grown at 30°C and 250 rpm unless 

otherwise noted.  

Cultivation medium was Medium for Acinetobacter (MA) [31 mM Na2HPO4, 25mM 

KH2PO4, 18mM NH4Cl, 41 µM nitrilotriacetic acid, 2 mM MgSO4, 0.45 mM CaCl2, 3 µM FeCl3, 

1 µM MnCl2, 1 µM ZnCl2, 0.3 µM (CrCl3, H3BO3, CoCl2, CuCl2, NiCl2, Na2MoO2, Na2SeO3)] 

supplemented with 25 mM quinate. Precultures were grown in 5 mL MA medium in 14 mL falcon 

tubes at 30°C and 250 rpm for 24 hours prior to harvesting. 

4.2.10.3 Metabolome Extraction and Analytical Methodology 



 70 
Optical density measurements were taken via Synergy H1 microplate reader (BioTek) and 

Flat Bottom Clear Non-sterile 96-well plates (Fisherbrand). Cultures were diluted to reach an 

absorbance reading between 0.2 – 0.7 using sterile medium for accurate measurement of OD600. 

Metabolome preparation was adapted from Stuani et al. 38. Cultures were inoculated in 25 mL MA 

medium at OD 0.05 and grown to OD 0.2 at 30°C and 250 rpm. Cells were then captured on a 

filter (cellulose acetate, 25 mm, 0.45 µm), placed cell-side-up onto minimal medium agarose, and 

grown at 30°C to OD 0.8 (approximately 5 hours). Cell metabolism was quenched by placing the 

filter cell-side-down into a 15 mL falcon tube containing 5 mL of -30°C 80% LCMS-grade 

acetonitrile 20% LCMS-grade methanol and incubated for 15 minutes at -30°C. Quenching liquid 

was freeze-thawed 6 times in liquid nitrogen and 65°C water, then centrifuged in a vacuum 

centrifuge to evaporate liquid. Dry samples were suspended in 500 µL purified water, centrifuged 

at 2000 x g at 4°C for 10 minutes to pellet cell debris. Supernatant was transferred to a microtube 

and vacuum centrifuged to evaporate liquid, then dry samples were stored at -20°C until 

resuspension and analysis. 

Dry samples were resuspended in 100% LCMS-grade acetonitrile at various dilutions to 

determine the appropriate dilution ratio (volumes ranged from 1 mL to 250 µL). A 500 µL 

resuspension volume was used for final cultivations. Samples were stored at 4°C after 

resuspension and analyzed within 24 hours. Samples were analyzed on an Agilent 1200 series 

LC Bruker AmaZon-X Ion Mass Trap MS. Liquid chromatography was conducted using a method 

adapted from Stuani et al. 38  with mobile phase A being comprised or 90% LCMS-grade water 

and 10% 10 mM ammonium formate, pH adjusted to 10 with ammonium hydroxide. Mobile phase 

B was comprised of 90% LCMS-grade acetonitrile and 10% LCMS-grade water with 100 mM 

ammonium formate, pH adjusted to 10 with ammonium hydroxide. An Agilent HILIC-Z column 
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was used for chromatographic separations. Standards of 3-hydroxyanthranilic acid and 3-

hydroxyadipic acid were used for calibration and identification standards. 

Diluted samples were injected on a 1290 Infinity II UHPLC System (Agilent Technologies 

Inc., Santa Clara, California, USA) onto a Poroshell 120 HILIC-Z column (2.7 μm, 100 × 2.1 mm) 

(Agilent Technologies Inc., Santa Clara, California, USA) for hydrophilic interaction 

chromatography separation (HILIC) which was maintained at 30 °C with a constant flow rate at 

0.400 ml/min, using a gradient of mobile phase A (water, 10 mM ammonium acetate) and mobile 

phase B (90% acetonitrile, 10 mM ammonium acetate). The gradient program was as follows: 0 

– 1 min, 80 %B; 1 – 3 min, 80 – 68 %B; 3 – 4 mins, 68 – 40 %B; 4 - 7 min, hold 40 %B; 7 – 7.10 

min, 80 %B; 7.10 - 12 min, hold 80 %B. “MS-Only”, negative and positive ion mode acquisition 

was conducted on the submitted samples on an Agilent 6545 quadrupole time-of-flight mass 

spectrometer equipped with a JetStream ionization source. The source conditions were as 

follows: Gas Temperature, 300 °C; Drying Gas flow, 12 L/ min; Nebulizer, 45 psi; Sheath Gas 

Temperature, 350 °C; Sheath Gas Flow, 11 L/ min; VCap, 3000 V; Fragmentor, 100 V; Skimmer, 

65 V; and Oct 1 RF, 750 V. The acquisition rate in MS-Only mode was 3 spectra/second, utilizing 

m/z 121.050873 and m/z 922.009798 as reference masses. 

4.3 Results 

4.3.1 Organism-specific expansion generates a more targeted candidate set for metabolite 

annotation 

In order to predict a targeted set of candidate structures that are not only biologically 

relevant but also relevant specifically to ADP1, we used a ruleset derived from the ADP1 

metabolic network and genome to generate a total of 1,710 ADP1-specifc reaction rules (Figure 

4.2a) 104,110,135. We found that the reaction-mapped and gene-mapped rulesets had significant 

overlap (252 of 323 reaction-mapped rules). This result gave us confidence that rules that were 

Commented [EA1]: LCMS method 
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gene-mapped but not reaction-mapped may also be relevant for ADP1. These two sets of rules 

were combined with an additional set of 96 spontaneous reaction rules (which are organism-

independent as they do not require enzymes), totaling 1,710 reaction rules in the final set. 

Applying these ADP1-specific rules to a set of 522 starting compounds from ADP1 to 

create a MINE resulted in 200,283 predicted compounds. Filtering this set of compounds to only 

those that matched at least one peak in the metabolomics dataset resulted in 6,102 unique 

candidate compounds (Figure 4.2b). There were 3,264 candidates for known peaks and 4,697 for 

unknown peaks for a total of 7,961 candidate-peak pairs (many compounds matched multiple 

peaks). 97 of 102 known peaks and 201 of 346 unknown peaks in the dataset had at least one 

predicted candidate compound. To evaluate the efficacy of organism-specific reaction rules (and 

starting compounds) at reducing the candidate set, we also looked at how many candidates we 

would have predicted using other sets of starting compounds (specifically, compounds in KEGG) 

and rules (a comprehensive ruleset derived from MetaCyc). Using our organism-specific 

approach resulted in a 34-fold decrease in the number of candidate compounds compared to 

using these KEGG starting compounds and MetaCyc-based reaction rules (Figure 4.2b). 
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Figure 4-2 Organism-specific expansion generates a more targeted candidate set for metabolite 
annotation in Acinetobacter baylyi sp. ADP1 

(a) A comprehensive ruleset is filtered down to just those rules that are most relevant for ADP1 
(comprised of reaction-based, gene-based, and spontaneous rule subsets). The number of rules 
in each subset is shown in this Venn diagram. The final ruleset contains 1,710 rules. (b) This 
ruleset is then applied to compounds in ADP1 to predict novel reactions in ADP1. The total 
number of predicted compounds as well as the number of these that matched at least one peak 
in an ADP1 dataset (candidates) are plotted 38. Expansions starting from either 522 ADP1 
compounds or 12,688 KEGG compounds (using either the ADP1-specific ruleset or a ruleset 
derived from all of MetaCyc) are plotted as well to show the reduction in candidate set size by 
taking an organism-specific approach. (c) Many candidates in the ADP1-specific MINE are 
predicted via only a single reaction rule while others are predicted to be made via multiple (up to 
28) predicted routes. More reactions are predicted by gene-based rules than other types (inset). 
(d) The ADP1 MINE contains a more targeted candidate set than the KEGG MINE (KEGG source 
with MetaCyc rules) or the PubChem database. 

While most candidate compounds in the ADP1-specific MINE were only predicted to be 

produced via a single reaction rule, many were predicted via multiple routes (Figure 4.2c). Overall, 
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most candidate-producing reactions tended to be predicted via gene-mapped rules (Figure 4.2c, 

inset), with 34% of candidate compounds predicted using solely gene-mapped rules. However, 

reaction-based rules were utilized more often on an individual basis, with each reaction-mapped 

rule predicting an average of 15.9 candidate compounds (versus 5.5 for gene-mapped rules and 

11.5 for rules that were both reaction- and gene-mapped). Although spontaneous rules were also 

present in the ruleset, they were rarely used (average of 1.3 candidates predicted per 

spontaneous rule). 

Finally, we found that our targeted approach generated far fewer candidates per peak than 

less organism-specific approaches (Figure 4.2d). In particular, our most organism-specific 

approach (ADP1 MINE) resulted in an average of 13 candidates per peak. On the other hand, 

using PubChem resulted in an average of 459 candidates per peak. Additionally, many of the 

candidates predicted by PubChem are not biologically relevant. This has been quantified in 

previous work where it was found that the natural product scores of PubChem compounds are 

significantly lower than those of KEGG compounds, indicating non-biological origin 106,138. Using 

more intermediate approaches like the KEGG MINE contains more biologically relevant 

compounds and performs better than PubChem, as reported elsewhere 106, but still suggests 164 

candidates per peak, too many for annotation to be practical for many peaks in the dataset. While 

similar reductions in candidate space through the use of organism-specific, model-based 

approaches to reaction prediction have been reported elsewhere, the use of gene-mapped rules 

in this work significantly increases the number of unknown peaks (from 161 to 201) that are able 

to be covered 118. While it should be noted that the ADP1 MINE did not generate any candidates 

for roughly a quarter of the peaks in the dataset, having a more practical number of candidates 

for those peaks that do have candidates is more desirable than having too many candidates for 

the vast majority of peaks as is the case for the KEGG MINE.  
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4.3.2 Machine learning workflow generates more targeted and credible candidate set for 

metabolite annotation  

In order to further reduce the candidate set of the ADP1 MINE, a machine learning 

approach was used. A random forest classifier was trained on the candidates associated with 75 

known peaks from the ADP1 metabolomics dataset. Each known peak’s candidate set included 

both predicted compounds as well as that peak’s experimentally validated compound (we ensured 

that this compound was able to be predicted from known precursors using the ADP1-specific 

ruleset). 

Classifier performance was quantified by classifying out-of-bag samples, a form of cross-

validation unique to the random forest algorithm. In order to optimize the classifier, feature 

reduction and threshold tuning were performed. Using the top 10 (of 26) features with a 

classification threshold of 0.30 maximized performance (F = 0.51) on out-of-bag samples across 

a range of 10 random seeds (Figure C.4). The top 10 features included features from all three 

feature sets (Figure C.5). 

Figure 4.3a shows the confusion matrix for the out-of-bag validation of the final model. We 

found that the model filters out 96% of candidates (correctly) as true negatives (n=2,608) while 

retaining 48% of the experimentally validated compounds (n=36 of 75). Before applying the 

model, experimentally validated compounds made up less than 3% of the candidate set while 

after applying the model this proportion increased to 53%. Thus, this approach results in a more 

targeted, credible candidate set. 
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Figure 4-3 Machine learning workflow generates a more targeted and credible set of candidate 
structures 

(a) The classifier, trained on all three feature sets, effectively filters out many true negatives while 
maintaining acceptable recall and precision. The confusion matrix displays the results of the 
random forest classifier on out-of-bag samples after feature reduction and classification threshold 
tuning. (b) Many false positives, while annotated as negatives in the dataset, actually do exist in 
ADP1 (but just were not measured or annotated with a peak in this specific ADP1 dataset) as well 
as in other databases like KEGG and PubChem. Negatives predicted as hits (false positives) are 
more likely to exist in these databases than negatives as a whole. (c) Incorporation of non-
metabolomics features improves classifier performance. Performance (quantified by recall, 
precision, and F-score) was calculated from classification of out-of-bag samples after retraining 
the classifier on various combinations of feature sets, indicated along the x-axis (training included 
a feature reduction and threshold tuning optimization step). 
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There were also 32 predicted candidates that were classified as hits even though they 

were not experimentally validated for any of the known peaks in the dataset. We hypothesized 

that some of these false positives may actually exist in ADP1 but just happen to match one of the 

known peaks based on m/z. To test this, we calculated the percent of false positives that exist in 

ADP1 (specifically, whether it is in the genome-scale model) as well as the percent of all negatives 

(both false positives and true negatives) in ADP1. We found that while just 1.6% of all negatives 

were present in the ADP1 GEM, 38% of false positives were present (Figure 4.3b). This implies 

that although the model may predict a candidate compound that did not actually produce a given 

peak, that compound may still be present. It is also possible that multiple compounds (with the 

same m/z and retention times) produced a single peak, although this seems less likely. Analogous 

results were found when searching for false positives in larger non-organism-specific databases 

such as KEGG and PubChem (Figure 4.3b). 

To gain insight into how the model was labelling candidates, we looked at the importances 

of the 10 features used by the final model (Figure C.5). Non-metabolomics features were found 

to be more important for prediction than metabolomics-based features. For example, the number 

of “feasible” (predicted via DeepRFC) reactions producing a candidate was found to be the most 

important feature 128. Similarly, the total number of unique precursors for a predicted candidate 

was also important, albeit less so. Other metabolic network- and model-based features were also 

used in the final model. For example, the distance in the metabolic network between succinate 

(one of the feed compounds in the metabolomics experiment) and the candidate compound was 

the second most important feature overall. The metabolic distance from quinate (another feed 

compound) was important as well. Other model-based features were also useful for prediction: 

for example, the number of experimentally validated compounds that were predicted to have flux 

through them by the model (when optimizing for production of the candidate). 



 78 
Because each peak was experimentally measured under one of two feed conditions 

(succinate or quinate), we also calculated features that capture any potential correlation between 

a candidate’s distance from one of the feed compounds and the fold change (across feed 

compounds) for that peak. Thus, these features combined information from both the metabolic 

model and metabolomics dataset. Three of the ten top features fit into this category. Finally, one 

metabolomics feature was found to be important – the deviation between predicted and measured 

retention time for each candidate and peak, respectively (for details on retention time prediction, 

see Appendix C.5, Figure C.6, and Figure C.7) 139. 

We also retrained (and reoptimized) the model on all possible combinations of the three 

feature sets to test their impact on model performance (Figure 4.3c). The highest F-score was 

obtained when using either all three feature sets or all but the feasibility-based features. However, 

slightly higher precision was obtained (at the expense of recall) when using all three feature sets. 

Importantly, while the model trained on all but the feasibility-based features performed well, the 

two other pairwise combinations of feature sets performed significantly worse. 

We found that the metabolic model-based features made the largest impact on model-

performance. Even when training the classifier on only the metabolic model-based features, an 

F-score of 0.36 was achieved, much higher than when training on only the metabolomics-based 

features (F = 0.20) or only the feasibility-based features (F = 0.26). That said, the model trained 

only on feasibility-based features did surprisingly well (F = 0.26) considering that there were only 

three calculated features in this set. Overall, these results show that information derived from 

sources other than the metabolomics dataset such as metabolic modeling and reaction feasibility 

prediction can be used to improve metabolite annotation workflows.  
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4.3.3 High-confidence predictions of metabolic features in Acinetobacter baylyi sp. ADP1 

After training the classifier on known peaks, it was used to label candidate compounds 

that had been predicted for unknown peaks in the ADP1 metabolomics dataset. Of the 4,697 

candidates for unknown peaks, 96 were classified as hits, thus further reducing our candidate set 

size by 98% (Figure 4.4a). Each compound in this small, high-confidence set was then 

investigated in detail. We looked at the predicted reactions, which reaction rules were used, 

homology between ADP1 enzymes and enzymes associated with each rule, as well as literature 

and vendor data. This process was time- and labor-intensive, and it would not have been practical 

for all 4,697 candidates, demonstrating the importance of developing and using tools able to filter 

out unlikely candidates. 

This vetting process allowed us to narrow down this set of 96 candidates to the 5 that we 

found most compelling, warranting further investigation (Figure 4.4b). This set includes three 

compounds known to biology (but not ADP1): glutarate semialdehyde, 3-hydroxyanthranilate, and 

2-ethylmalate; as well as two compounds unknown to biology (but present in PubChem): 3-

hydroxyadipate and 4-hydroxy-2,5-dioxopentanoate. Information about each of these five 

candidate-peak pairs, evidence from the literature, hypotheses for candidate generation, as well 

as potentially relevant ADP1 genes are detailed below and also summarized in Table 4.1. 
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Figure 4-4 Classifier significantly reduces size of candidate set for unknown peaks, resulting in a 
small set of 96 high-confidence candidates, 5 of which were chosen for further investigation 

(a) After predicting candidate compounds (n=3,801 across 202 peaks) for unknown peaks in the 
ADP1 metabolomics dataset, the classifier further reduced this set to a smaller set of the most 
likely candidates (n=96 across 49 peaks). (b) Of the 96 hits, 5 compounds were selected for 
further investigation. The predicted compounds highlighted in green are known to exist in other 
organisms but not in ADP1. Compounds highlighted in grey were not present in MetaCyc or KEGG 
but were present in PubChem. Compounds shown are (1) glutarate semialdehyde, (2) 3-
hydroxyanthranilate, (3) 3-hydroxyadipate, (4) 2-ethylmalate, and (5) 4-hydroxy-2,5-
dioxopentanoate. See Table 4.1 for more details on each compound. 
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Table 4.1 Of the 96 compounds classified as hits, 5 were selected for further investigation based on potential promiscuous interactions, 
homologous ADP1 enzymes, and other literature data 
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4.3.3.1 Glutarate semialdehyde 

The smallest of the five compounds, glutarate semialdehyde (compound 1 in Figure 4.4b), 

was predicted to be made from either proline, glutaryl-CoA, or glutarate. We found that the 

predicted reaction from glutarate was in fact a known reaction present in the lysine degradation 

pathway of E. coli, which is not known to exist in ADP1 140. Glutarate semialdehyde is a known 

intermediate of this pathway and is produced from 5-aminopentanoate and 2-oxoglutarate (via 

glutarate dehydrogenase) and subsequently converted into glutarate (via 5-aminopentanoate 

aminotransferase) in E. coli 140. We also noticed that the same lysine degradation pathway exists 

in Pseudomonas putida, a soil microbe closely related to ADP1 28,141,142. While ADP1 itself 

contains an annotated glutarate dehydrogenase (ACIAD0131), there is no annotated 5-

aminopentanoate aminotransferase in ADP1, so we used BLAST to search for homologs of the 

P. putida 5-aminopentanoate aminotransferase (davT) in the ADP1 genome, resulting in two 

significant hits. One of these hits coded for 4-aminobutyrate aminotransferase, which is involved 

in valine degradation and catalyzes the same reaction as 5-aminopentanoate aminotransferase 

but with one fewer carbon atom in the carbon chain of the substrate containing the amino group. 

Thus, we hypothesized that the ADP1 4-aminobutyrate aminotransferase may be acting 

promiscuously on 5-aminopentanoate to produce glutarate semialdehyde. In addition, the 

unknown peak for this candidate (m/z = 115.0405 Da) had 88 times greater intensity when ADP1 

was grown on succinate instead of quinate 38. This is consistent with this hypothesis, as glutarate 

semialdehyde is only two steps from succinate in the lysine degradation pathway 140,143. 

4.3.3.2 3-hydroxyanthranilate 

The second of the five selected compounds, 3-hydroxyanthranilate (compound 2 in Figure 

4.4b), is a known biological compound as well, often involved in the kynurenine pathway which 

degrades kynurenine, a product of tryptophan degradation, and is not known to be in ADP1 144,145. 
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We first noticed that one of the predicted reactions was also a reaction reported to occur in this 

pathway via 3-hydroxyanthranilate dioxygenase which exists in many eukaryotic species 

including yeast as part of the kynurenine pathway 146. Some bacteria species are reported to use 

a kynurenine pathway without a step involving 3-hydroxyanthranilate, suggesting that this enzyme 

is not widely found in bacteria; the only bacterial species reported to contain this enzyme is 

Geobacillus thermodenitrificans 144,147. This reaction converts anthranilate into 3-

hydroxyanthranilate via anthranilate hydroxylase (GTNG_3160). We used BLAST to search for 

ADP1 genes homologous to GTNG_3160 but obtained no hits. 

However, we also noticed that the known kynurenine pathway in bacteria involves a 

reaction similar to that of 3-hydroxyanthranilate dioxygenase. Kynurenine-3-monooxygenase 

(KMO) converts kynurenine to 3-hydroxykynurenine, and so we hypothesized that if ADP1 had a 

KMO enzyme, it could promiscuously act on anthranilate to produce 3-hydroxyanthranilate. While 

it is unknown if ADP1 exhibits a kynurenine pathway, other Acinetobacter species have been 

reported to grow on kynurenic acid as a sole carbon source 148. Additionally, KMO has been 

identified in a Pseudomonas strain, so we used BLAST to search for homologous KMO enzymes 

in ADP1, obtaining three hits 149. However, because these hits have relatively high E-values 

(Table 4.1), they are unlikely to be KMO enzymes, although they may still catalyze KMO-like 

activity on anthranilate, especially as two of the three hits are not well annotated. Finally, this peak 

was only observed in the quinate feed condition in the metabolomics dataset. Quinate can be 

converted by ADP1 to chorismate which is subsequently converted to anthranilate as part of the 

tryptophan biosynthesis pathway 38,150. 

4.3.3.3 3-hydroxyadipate and 2-ethylmalate 

The next two compounds were both candidates for the same peak (m/z = 161.0460). They 

are isomers, differing only by the position of an ethyl group, so they likely have similar retention 
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times. While normally only one candidate is annotated per peak, due to these similarities, we 

thought that both warranted further investigation. 

The first compound, 3-hydroxyadipate (compound 3 in Figure 4.4b), was predicted via two 

routes. The first route was a reduction of the carbonyl in beta-ketoadipate (a product of ADP1 

aromatic degradation) to a hydroxy group. However, we did not find any dehydrogenases that 

acted on a similar substrate, so if this is occurring, it would likely be via an unannotated 

dehydrogenase enzyme. The second predicted route was the hydrolysis of 3-hydroxyadipyl-CoA. 

This route was at first puzzling, as while 3-hydroxyadipyl-CoA is known to exist in ADP1, only one 

reaction involving this compound was annotated in BioCyc, producing trans-2,3-dehydroadipyl-

CoA, and this product was not annotated as participating in any further reactions. Because we 

noticed that E. coli converts 3-oxoadipyl-CoA (an intermediate in ADP1 aromatic metabolism) into 

3-hydroxyadipyl-CoA via 3-hydroxyadipyl-CoA dehydrogenase, we used BLAST to search for 

homologs in ADP1 151. We found two highly significant hits, both annotated as 3-hydroxyacyl-CoA 

dehydrogenases, which are involved in fatty acid oxidation. If one of these hits converts 3-

oxoadipyl-CoA into 3-hydroxyadipyl-CoA in ADP1, then would imply that 3-hydroxyadipyl-CoA is 

present during growth on aromatics such as quinate. We then noticed that many enzymes perform 

similar reactions as the predicted second step, where Coenzyme A is replaced with a hydroxy 

group. We found that pimeloyl-CoA synthetase, which exists in ADP1, had the most similar 

substrate (pimelate), so we hypothesized that it may be acting promiscuously on a 3-

hydroxyadipyl-CoA that is potentially present in ADP1. However, there are likely other 

unannotated CoA synthetases in ADP1 as well. 

The second candidate compound for this peak was 2-ethylmalate (compound 4 in Figure 

4.4b). The predicted reaction was previously reported in S. cerevisiae but no enzyme was 

annotated 152. However, we noticed that a very similar reaction is known to occur in ADP1 via 2-

isopropylmalate synthase (LeuA), an enzyme involved in branched chain amino acid biosynthesis 
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153. Because 2-isopropylmalate only differs from 2-ethylmalate by a single methyl group and 

because there is no known enzyme acting on 2-ethylmalate, we hypothesized that it could be 

produced via promiscuous activity of the native 2-isopropylmalate synthase in ADP1. 

4.3.3.4 4-hydroxy-2,5-dioxopentanoate 

The last of the five selected candidates was 4-hydroxy-2,5-dioxopentanoate (compound 

5 in Figure 4.4b). While not a known biological compound, we noticed that it existed in the Protein 

Data Bank (PDB ID: 4OE7) as a ligand for YagE, an E. coli gene that is putatively annotated as 

an aldolase involved in glucose metabolism via the Entner-Doudoroff (ED) pathway154. YagE 

natively ligates glycoaldehyde and pyruvate together to form 2-dehydro-3-deoxyarabinonate154. 

The analogous reaction producing 4-hydroxy-2,5-dioxopentanoate would require glyoxal and 

pyruvate which were also found to bind to YagE. Because the ED pathway, glyoxal, and pyruvate 

all exist in ADP1, we searched for YagE homologs via BLAST, hypothesizing that there may be 

a YagE-like enzyme in ADP1 catalyzing this transformation20. This resulted in two significant hits, 

dihydrodipicolinate synthase and a probable 5-dehydro-4-deoxyglucarate dehydratase. While the 

annotated reactions for both of these enzymes are not very similar to that of YagE, they may be 

misannotated (or be highly promiscuous) as a BLAST search of the ADP1 dihydrodipicolinate 

synthase against the UniProt database resulted in a significant hit (E = 10-172) against an enzyme 

annotated as 4-hydroxy-2-oxoglutarate aldolase in Lipotes vexillifer which acts on glyoxylate and 

pyruvate, very similar to the YagE reaction. Therefore, either (1) these enzymes are misannotated 

(in ADP1 or in other organisms), (2) YagE-like activity simply does not exist in ADP1, or (3) there 

is some promiscuous activity of one of these enzymes, which has been reported for related 

enzymes such as 2-keto-3-deoxygluconate aldolase 155. 
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4.3.4 Experimental Validation of Predicted Metabolites 

Standards of 3-hydroxyanthranilic acid and 3-hydroxyadipic acid were analyzed via LC-

QTOF and detected at retention times of 1.73 and 4.14 minutes, respectively. The primary ions 

detected for each analyte were 152.0356 and 153.0380 for 3-hydroxyanthranilic acid and 

161.0457 and 162.0489 for 3-hydroxyadipic acid. Analysis of the ADP1 wild type culture extracts 

revealed the presence of 3-hydroxyadipic acid at an average concentration of 82.6 µg/L in the 

extract sample. 3-hydroxyadipic acid was also detected in the ADP1DACIAD1826 extracts at an 

average concentration of 58.12 µg/L. 3-Hydroxyanthranilic acid was not detected in the wild type 

or knock-out cultures.  

4.4 Discussion and Conclusions 

This workflow addressed the need for more intelligent candidate set selection and filtering, 

especially when searching for novel metabolites. By taking an organism- and context-specific 

approach, candidates were predicted and filtered while maintaining consistency with both the 

organism’s genome-scale metabolic model and the unique features of the metabolomics dataset. 

While previous work had reported on the prediction of biochemical reactions for candidate set 

engineering, we (1) considered both the reactome and genome of a specific organism during rule 

selection, (2) utilized an extended metabolic model (EMM) to help filter out unlikely candidates, 

and (3) did not use MS2 spectra during candidate ranking 106,112,118. 

By starting with a comprehensive set of enzymatic reaction rules, each associated with 

specific enzymes, we were able to select for both rules that mapped to a reaction in the ADP1 

metabolic model as well as rules whose enzymes looked homologous to ADP1 genes. By 

mapping to both reactions and genes, we obtained a set of known but unknown chemistries 

existing in ADP1, allowing for the prediction of both promiscuous reactions as well as more 

chemically novel reactions. This is especially important because one limitation of metabolic 
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models is that they can be incomplete, especially compared to an organism’s genome which tends 

to be near 100% complete, even for non-model organisms. We validated this gene-based method 

by demonstrating significant overlap between the reaction-mapped and gene-mapped rule sets. 

Overall, this combined approach resulted in a more targeted candidate set for ADP1 than using 

less-organism specific approaches like MINE. 

After generating a candidate set using reaction rules specific to ADP1, we further filtered 

it down by utilizing non-metabolomics information about each candidate. This was especially 

important in this case as MS2 spectra were not available for ranking candidates for each peak. 

Metabolic modeling-based features turned out to be highly important for candidate classification. 

The metabolic model used was the ADP1 EMM that we built, containing all predicted reactions, 

including gapfilling reactions. Specifically, we found that the distance between a candidate and 

feed compound in the metabolic model as well as the number of known compounds predicted to 

carry flux were all good predictors for peak annotation. Because metabolic networks are vast, it 

is not surprising that candidates closer to feed compounds in metabolic network space were found 

to be more likely. The number of known compounds predicted to carry flux being important is also 

consistent with evidence that pathways known to be active based on the metabolomics dataset 

are most likely to produce other compounds that were measured 156. We also found that the 

number of unique precursors for a candidate was an important feature, highlighting the idea that 

candidates that are predicted to be highly interconnected with known metabolism (which is highly 

interconnected itself) are more likely 157,158. Integration of EMM-based metabolic modeling with 

network-based metabolite identification workflows such as GNPS and mummichog could be an 

area ripe for future development 156,159. Predicted reaction feasibility via deepRFC was also found 

to be important for classification 128. We expect that feasibility prediction tools such as deepRFC 

will only continue to improve in the future, improving their utility in these types of applications. 

Finally, we found that our retention time predictor was useful as well, even though the predictions 
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were not high-resolution, demonstrating that even low quality retention time predictions can still 

be used to filter out unlikely candidates. 

Another important contribution of this work was the fact that MS2 spectra were not 

required. While highly useful for ranking compounds, as shown by others, MS2 is often not 

measured for many peaks or even entire datasets, especially when ultra-high-resolution MS1 

techniques are used 113–116. Thus, this workflow can be used as an initial filter to design more 

targeted metabolomics experiments which could include MS2 for compound identification. 

Additionally, if a dataset does contain MS2 spectra, the similarity between the measured spectra 

for a peak and the predicted spectra for a candidate could simply be added as a feature in this 

classification workflow, with the learner deciding based on the data how much emphasis to put 

on MS2 spectra versus other non-metabolomics features. 

One of the most significant results of this work is that the classifier correctly filtered out 

96% of negative candidates for known peaks while retaining 48% of known compounds. Applying 

this classifier to unknown peaks reduced that candidate set by 98%, greatly reducing the number 

of compounds to a much more manageable size for further investigation and potential 

experimental validation. In addition, the classifier could be tuned to further reduce the candidate 

set size, sacrificing recall to obtain better precision, by increasing the stringency of the 

classification threshold for labeling a candidate as a hit.  

This work demonstrates that cheminformatics tools combined with metabolic modeling 

and organismal context can be used to generate more targeted and credible candidate sets for 

metabolite annotation. Our organism-specific approach resulted in a 34-fold reduction in 

candidate set size compared to using a fully generalized approach and a 3-fold reduction 

compared to using organism-specific starting compounds with a generalized ruleset. The 

validated random forest classifier combined information calculated from metabolic modeling, 

predicted reaction feasibility, and the metabolomics dataset to further reduce this candidate space 
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by 98% to only the most likely candidates, illustrating that non-metabolomics data can be useful 

for metabolite annotation. We also experimentally validated 1 compound, 3-hydroxyadipic acid, 

providing further evidence that this method effectively supports experimental metabolite 

identification efforts and can aid in improving our knowledge of metabolism. 
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5. Recommendations for future work 

Though the research described in this thesis represents essential progress towards 

establishment of ADP1 as a industrial chassis organism for lignin upgrading, critical needs should 

be addressed in future work. In particular:  

1. Enhancing oxygen transfer to maintain high ADP1 growth rates while avoiding oxygen 

starvation 

2. Overcoming dilution effects resulting from lowly solubility lignin-derived substrates with low 

toxicity thresholds 

3. Utilization of more complex and realistic substrate streams to reflect industrially relevant 

feedstocks 

4. Leveraging the finer process control available in bioreactor cultivation to explore nitrogen 

fixation and iron sequestration in co-culture 

5. Metabolic engineering towards enhanced storage capacity of cyanophycin peptide granules 

5.1 Enhancing oxygen transfer to maintain high ADP1 growth rates while avoiding 

oxygen starvation 

Oxygen transfer can be improved by mechanical and metabolic engineering means. 

Mechanical methods offer a relatively low risk strategy to improve oxygen transfer using strategies 

that are ubiquitous in current industrial production platforms 160–162. The currently available 

bioreactors in Tyo lab use a ring sparger, which is easily maintained and inexpensive but produces 

large bubbles results in reduced oxygen transfer surface area. We partially account for this by 

impeller placement directly above the sparging ring to immediately disperse bubbles and reduce 

their size. Increasing agitation rates also further disrupts surface tension of bubbles, resulting in 

increased oxygen transfer rates. However, future strategies could make use of sparging stones, 

which extrude smaller bubbles via pores and increase oxygen transfer surface area. Furthermore, 
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my data indicate that shear forces from the current axial flow impellers have a negligible impact 

on cell viability at agitation rates of 600 – 1200 rpm. ADP1 cells have been demonstrated to 

possess thick exopolysaccharide capsules, which could contribute to their physical robustness 

163. Determining allowable agitation rates and shear forces for ADP1 in bioreactor cultivation will 

be vital to future efforts for scale up and commercialization. 

Metabolic engineering can also be leveraged to improve oxygen transfer. Specifically, the 

expression of hemoglobin can improve oxygen uptake. Heterologous expression of bacterial 

hemoglobin has proven effective at improving growth and productivity in multiple organisms 

including the obligate aerobic yeast, Yarrowia lipolytica. Expression of hemoglobin from 

Vitreoscilla (VHb), an obligate aerobe native to poorly oxygenated environments, has been 

explored for its growth enhancing properties across several organisms 164–169.  

Though the mechanisms of VHb have yet to be fully elucidated, its expression has been 

demonstrated to improve oxygen diffusion in host cells, resulting in improved growth and 

production of native and heterologous proteins. When expressed in E. coli, VHb confers improved 

growth rate and overall biomass yields under oxygen limitation 166 and improves synthesis of 

poly(b-hydroxybutyrate) 168. Expression of VHb in Yarrowia lipolytica improves growth and 

synthesis of erythritol 164,165. A primary challenge identified in this thesis is that of supplying 

adequate oxygen to support rapid growth of ADP1 while minimizing the implementation of 

expensive oxygenation strategies. In ADP1, expression of VHb holds the potential to generate a 

superior industrial chassis strain with reduced oxygenation requirements and improved 

production traits.  

Notably, this adaptation also holds the potential to unlock higher throughput methodology for 

tracking online growth of ADP1. Characterization efforts for ADP1’s aromatic acid tolerance, iron 

sequestration, and nitrogen assimilation in Tyo lab have required higher throughput methodology 

than is available in shake flask or culture tube growth. However, due to the poor oxygen transfer 
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in plate-based cultivations, growth rate-based plate assays have been unreliable due to growth 

rate being limited primarily by oxygen transfer even at very low densities. Growth rate based 

assays have therefore primarily been conducted either for only low density cells or using more 

labor-intensive and lower throughput culture conditions. Engineered ADP1 cells expressing VHb 

could be leveraged to study growth dynamics for a wide array of conditions with higher throughput 

plate assays. 

5.2 Overcoming dilution effects resulting from lowly solubility lignin-derived substrates 

with low toxicity thresholds 

A major hurdle in the upgrading of lignocellulosic feedstocks is the low solubility of many 

aromatic acid components found in lignin-derived waste streams 68,170. Heterogeneous waste 

streams typically contain lowly soluble aromatic acids, which, when used as a primary carbon 

source, require either economically infeasible processing steps to concentrate feed streams or 

strategies to prevent dilution from impacting cell growth. High dilution rates during cultivation 

results in significant loss of biomass in bioreactor effluent, which is resource inefficient and 

prohibitively expensive. One potential solution to this challenge is the use of cell recyclers, which 

separate cells from effluent and recycle them to the stirred tank. For ADP1, the use of cell 

recyclers has not been explored in scaled-up processes but represents a promising solution to 

this obstacle.  

In Tyo lab, several approaches to prevent the continuous production and discard of viable 

cells may be applied either with current instrumentation or with further investment. Rudimentary 

strategies for cell recycle involve intermittently separating cells from effluent manually through the 

use of a centrifuge or some similar cell-sedimentation or filtration device. Previously, this 

technique has been used to increase volumetric productivity of Gluconobacter oxydans in the 
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synthesis of xylonic acid 171. Though this methodology represents an accessible strategy for cell 

recycle, it is labor intensive and infeasible at larger scale without automation. 

Alternatively, in-line filtration improves product yields as well as eliminating the need for 

manual manipulation of bioreactor effluent. An automated and integrated cell recycle loop enables 

continuous cell recycling with removal of spent medium and is a more realistic strategy for large 

scale process engineering. Hua et al. applied ultrafiltration in tandem with a peristaltic pump to 

recycle cells back into CSTR while removing filtrate 172. Cross filtration using hollow fibers has 

also proven an effective method for cell recycle in Yarrowia lipolytica towards improving 

production of internal lipid products 173, which is particularly of interest in the case of ADP1 due to 

its highly efficient and native production of wax esters, which form inclusion bodies in cells 32,33,53. 

Cell recycle strategies would also enable implementation of continuous phase cultivation, which 

is a complimentary approach to FBA, a common hypothesis generation tool for metabolic 

engineering. This also unlocks the ability to more quickly iterate through Design-Build-Test-

Cycles, a critical need for leveraging ADP1’s unique suitability as an industrial chassis strain. 

Lastly, removal of filtrate would reduce osmotic stress resulting from continual addition of salt-

containing nutrient and carbon feeds, potentially improving long term cell viability and productivity. 

5.3 Utilization of more complex and realistic substrate streams to reflect industrially 

relevant feedstocks 

A tangential approach to reducing dilution can leverage ADP1’s native catabolic potential for 

utilizing diverse feedstocks to convert heterogeneous waste streams with higher carbon 

concentrations to biomass and products. Currently, research has explored ADP1’s capability to 

upgrade a broad range of lignin-derived aromatic acids, glucose, and acetate among other 

organic molecules 5,23,117,170. 
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Future efforts could focus on implementing more realistic feedstocks for production strains that 

have been previously developed in Tyo lab (mevalonate, vanillin glucoside, methyl anthranilate) 

or could utilize ADP1’s diverse metabolism to implement feeding strategies tuned to specific 

products.  

Carbon sources that are metabolically close to the TCA cycle could be converted to acetyl-

CoA derived products like wax esters with a relatively low enzymatic burden. Pure acetic acid is 

one such feedstock and has been utilized as a carbon source for Y. lipolytica with optimization of 

feeding based on measurable process parameters (oxygen uptake rate, carbon dioxide 

production, and pH) that could be easily applied to ADP1 173. Sodium acetate is also efficiently 

utilized by ADP1 as either a sole carbon source or as a major component of mixed carbon sources 

and is significantly more soluble than many aromatic acids 20,33,34,36.  

Previous engineering has also improved growth of ADP1 on glycolytic substrates and 

could be applied to enable more efficient upgrading of mixed sugar and aromatic feedstocks 174. 

ADP1 glucose catabolism proceeds via the pentose phosphate pathway or the Entner-Doudoroff 

pathway, which generates pyruvate and glyceraldehyde-3-phosphate (G3P). In some microbes 

such as E. coli, G3P is converted to phosphoenolpyruvate (PEP) and then pyruvate by the 

enzyme pyruvate kinase. ADP1 lacks pyruvate kinase, which increases the enzymatic burden of 

transforming G3P to pyruvate 175. Natively, this results in significant flux of glycolytic substrates 

towards biosynthetic functions, such as production of exopolysaccharide synthase 163,176. 

Kannisto et al. expressed pykF (E. coli) in ADP1 to enable direct conversion of PEP to pyruvate. 

This simple engineering step improved growth on glucose and gluconate, both of which can be 

present in lignocellulose-derived feedstocks, at times even as the primary component 68,170,174. 

Efficient utilization of inexpensive, mixed aromatic and sugar feedstocks can significantly reduce 

process costs, which is a vital step in industrialization of ADP1. 
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5.4 Leveraging the finer process control available in bioreactor cultivation to explore 

nitrogen fixation and iron sequestration in co-culture 

The development of growth strategies for ADP1-based nitrogen sequestration in non-sterile 

environments would greatly benefit from exploring consortium behavior in bioreactors. A current 

emphasis area in Tyo lab is ADP1’s nitrogen sequestration capabilities for the denitrification of 

non-sterile waste streams. By converting nitrogen to the storage polymer, cyanophycin (CPG), 

ADP1 efficiently denitrifies waste streams, which is a major challenge in wastewater treatment 

177–180. Iron sequestration in ADP1 consortia is also a current focus in Tyo lab, with a particular 

focus on artificial consortia dynamics using ADP1 and E. coli. Initial work, both with nitrogen 

fixation and iron sequestration, has primarily been conducted in shake flask and plate-based 

growth environments, which is ideal for medium- to high-throughput screening. However, these 

cultivation settings are limited by both control of process variables and by informational richness 

based on available online signals.  

The available online measurements and control of key process variables—especially oxygen 

transfer and pH—in bioreactor cultivation will be essential to achieve long-term research goals of 

understanding consortia dynamics and developing methods to leverage ADP1’s nutrient 

sequestration abilities. Chemostat cultivation, which is typical of wastewater treatment strategies 

181–183, can be implemented at lab scale using rudimentary equipment. For example, the sampling 

port of our current bioreactor system can be run through a peristaltic pump, thus enabling 

continuous removal of culture broth at the dilution rate. Implementing continuous cultivation also 

enables steady state metabolic flux measurements for use in flux balance analysis, which in turn 

can elucidate metabolic engineering steps for strain improvement towards specific goals such as 

enhancing ADP1’s capability for CPG-based nitrogen fixation.  
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5.5 Metabolic engineering towards enhanced storage capacity of cyanophycin peptide 

granules (CPG) 

Lastly, a recent development in enhancing ADP1’s wax ester production—the use of 

morphologically engineered cells to increase ADP1’s cell volume—may also hold promise for 

production of CPG, another intracellular product. Due to the nature of intracellular product 

synthesis and storage, production capacity is limited by cell morphology. Recently, Luo et al. 

leveraged CRISPR interference to reshape ADP1 cells, increasing their volume and thus wax 

ester and other internal product storage capacity 79. Increased cell size reduces the carbon cost 

of denitrification by improving the CPG production yield per cell. It also reduces downstream 

processing costs by reducing the cost of cell separation 184. Thus, the application of this strategy 

to CPG synthesis has the potential to enhance production of CPG and reduce overall process 

costs. 
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A. Appendix A. Chapter 2 Supplementary Information 

 

Figure A-1 Mevalonate is produced from a solely aromatic acid carbon source.  

ADP1 pMev-LacI-trc (ECA10) and ADP1Δacr1 pMev-LacI-trc (ECA15) were cultivated in batch 
mode for 48 hours with either 10 mM glucose, or 20 mM POB, or 10 mM glucose and 20 mM 
POB as carbon sources. Data reflect mean and error bars are S.E.M. (n = 4). 
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Figure A-2 ADP1 pMev-LacI-trc (ECA10) grows more quickly and to a higher OD in POB 
medium.  

Growth of ADP1 pMev-LacI-trc (ECA10) was measured in a 96-well plate in medium containing 
10 mM glucose with supplementation of (A) high (20 mM) or (B) low (5 mM) concentrations of 
POB, benzoate, anthranilate, and ferulate. Data reflect mean and error bars are S.E.M. (n = 4). 
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Figure A-3 Fed-batch cultures exhibit slowed growth after initial exponential phase. 

OD600 was measured every 24 hours for fed-batch cultures of ADP1 pMev-LacI-trc and 
ADP1Δacr1 pMev-LacI-trc. Values are mean and error bars are S.E.M. (n = 6 for ADP1 pMev-
LacI-trc POB, glucose, not fed, and for ADP1Δacr1 pMev-LacI-trc POB, and n = 2 for 
ADP1Δacr1 pMev-LacI-trc glucose and not fed). 
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Figure A-4 Initial carbon sources are consumed by 48 hours. 

Substrate concentrations (glucose and POB) and substrate-derived metabolite concentration 
(gluconate) were measured for fed-batch cultures. POB, glucose, and gluconate concentrations 
are plotted for ADP1 pMev-LacI-trc (A) + POB, (B) + glucose, and (C) not fed, and for 
ADP1Δacr1 pMev-LacI-trc (D) + POB, (E) + glucose, and (F) not fed. The vertical axis is 
substrate concentration, the horizontal axis is time in hours. Values are mean and error bars are 
S.E.M. (n = 6 for ADP1 pMev-LacI-trc POB, glucose, not fed, and for ADP1Δacr1 pMev-LacI-trc 
POB, and n = 2 for ADP1Δacr1 pMev-LacI-trc glucose and not fed). 
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Figure A-5 Mutations to the mevalonate pathway primarily impact glucose-fed cultures.  

Mevalonate pathway retention was assessed at 168 hours for fed-batch cultures.  DNA gels 
show mutations to replicates with either no amplification of the pathway or amplification of a 
truncated pathway. POB fed cultures exhibited mutations for 4 of 12 cultures. Glucose fed 
cultures exhibited mutations for 6 of 8 cultures. Not fed cultures exhibited mutations for 1 of 8 
cultures. 
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Table A.1 Primers used for the construction of strains in this study. 
 

 
 
 
 
 

Primer Primer Sequence Binds to Methods Section 
ECA01 GGAATTGTGAGCGGATAACAATTTCAGAATTCAAAAGATCTTAGG  pJBEI-6410 Construction of plasmids 
ECA02 TGACACTAGGTCTAGGGCGGGATAAAACGAAAGGCCCAGTCTTT  pJBEI-6410 Construction of plasmids 
ECA03 ACTGGGCCTTTCGTTTTATCCCGCCCTAGACCTAGTGTC  pBWB162 Construction of plasmids 
ECA04 CCTCCTAAGATCTTTTGAATTCTGAAATTGTTATCCGCTCACAAT  pBWB162 Construction of plasmids 
ECA05 GCAAAAGTATGTCAAAGGAAAACCC  ADP1 Genome acr1 Knock Out 
ECA06 AAAATCGTTTCTGAGACGTTTGTATTTGGATTGAAGACGGTTAAAGG  ADP1 Genome acr1 Knock Out 
ECA07 ACCGTCTTCAATCCAAATACAAACGTCTCAGAAACGATTTTGAG  pBWB290 acr1 Knock Out 
ECA08 GGTCGTAACCATAAAAAAGCCAAAGGTTCTTGATGCTGAAACG  pBWB290 acr1 Knock Out 
ECA09 TTCAGCATCAAGAACCTTTGGCTTTTTTATGGTTACGACCATCAGCC  ADP1 Genome acr1 Knock Out 
ECA10 GGGTGACGGCAGATGAAGG  ADP1 Genome acr1 Knock Out 
ECA11 TACTTTTGGCGTGCAAGATGGTCG  ADP1 Genome acr1 Knock Out 
ECA12 AAAAGCCTCTCGGTATGAGAGGATTGAAGACGGTTAAAGGGAAAT  ADP1 Genome acr1 Knock Out 
ECA13 CCCTTTAACCGTCTTCAATCCTCTCATACCGAGAGGCTTTTTTATGG  ADP1 Genome acr1 Knock Out 
ECA14 AACAGAAATGCTGTTTGATGTGGGC  ADP1 Genome acr1 Knock Out 
ECA15 GAAACGATTGCCAAGATTGCCC  ADP1 Genome acr1 Knock Out 
ECA16 GCTCACCGACCTTCTCATCG ADP1 Genome acr1 Knock Out 
ECA17 TACGCAAACCGCCTCTCC  pECA03 Culturing 
ECA18 CCGCTATATAACACTTGATGAAAGCC  pECA04 Culturing 
BWB645 AATTAACAGTTAACAAATAATAATACTAGTAGCGGCCGCT pBWB162 Construction of plasmids 
BWB646 GCAAACTTTTTGATGTTCATCTAGTATTTCTCCTCTTTCTCTAGT pBWB162 Construction of plasmids 
BWB647 AGAAAGAGGAGAAATACTAGATGAACATCAAAAAGTTTGCAA sacB Construction of plasmids 
BWB648 AGCGGCCGCTACTAGTATTATTATTTGTTAACTGTTAATTGTCCTTG sacB Construction of plasmids 
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Table A.2 Bacterial strains used in this study. 
Strain Name Source Description 

Acinetobacter baylyi ADP1 Elliott & Neidle, 2011 Wild type A. baylyi ADP1 
Escherichia coli DH5α ThermoFisher Wild type E. coli DH5α 
ADP1 pMev-LacI-trc (ECA10) This study Wild type ADP1 harboring pECA03 
ADP1Δacr1 (ECA14) This study Wax ester knockout strain, ADP1Δacr1 

ADP1Δacr1 pMev-LacI-trc 
(ECA15) This study Wax ester knockout strain harboring pECA03, pECA03 

(ADP1Δacr1) 

 
Table A.3 Plasmids used in this study. 

Plasmid Name Source Description 
pJBEI-6410 Zhang, Nielsen, & Liu, 2017 Plasmid containing mevalonate pathway genes 

pBWB162 Biggs et al., 2020 mCherry expressed under ptrc on the broad host-range 
vector, pBAV1k 

pBWB290 This study Constitutive Kan marker and SacB expressed under ptrc 
on pBAV1k vector 

pMev-LacI-trc (pECA03) This study Mevalonate pathway genes, atoB, ERG13, and HMG1, 
expressed under ptrc on pBAV1k vector 

 
Table A.4 Mutations in Fed-Batch Culture 

Strain Feed Replicates with Mutations [No.] Total Replicates [No.] 
ADP1 pMev-LacI-trc POB 2 6 

ADP1 pMev-LacI-trc Glucose 4 6 

ADP1 pMev-LacI-trc Not Fed 1 6 

ADP1Δacr1 pMev-LacI-trc POB 2 6 

ADP1Δacr1 pMev-LacI-trc Glucose 2 2 

ADP1Δacr1 pMev-LacI-trc Not Fed 0 2 
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Table A.5 168 Hour pH of Fed-Batch Cultures 
Strain Feed 168 Hour pH Standard Error (n = 2) 

ADP1 pMev-LacI-trc POB 7.18 0.14 

ADP1 pMev-LacI-trc Glucose 4.27 0.13 

ADP1 pMev-LacI-trc Not Fed 7.51 0.01 

ADP1Δacr1 pMev-LacI-trc POB 9.37 0.04 

ADP1Δacr1 pMev-LacI-trc Glucose 4.31 0.02 

ADP1Δacr1 pMev-LacI-trc Not Fed 7.45 0.00 
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B. Appendix B. Chapter 3 Supplementary Information 

 

 
 
Figure B-1 ADP1 WT cell viability as colony forming units per mL (CFU/mL) at varied agitation 
rates from 600 – 1200 rpm in bioreactor cultures. N = 4 technical replicates. Error bars are S.E.M.  
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Table B-1 pH of initial media and endpoint samples from spent medium cultures estimated using 
pH paper.  

  

1.1 ADP1 Spent Medium + nutrients 24 7 7
1.2 ADP1 Spent Medium + nutrients 24 7 7
1.3 ADP1 Spent Medium + nutrients 24 7 7
1.4 ADP1 Spent Medium + nutrients 24 7 7
2.1 ADP1 Spent Medium + nutrients 72 7 7 - 8
2.2 ADP1 Spent Medium + nutrients 72 7 7 - 8
2.3 ADP1 Spent Medium + nutrients 72 7 7 - 8
2.4 ADP1 Spent Medium + nutrients 72 7 7 - 8
3.1 ADP1 Spent Medium + nutrients 120 7 7 - 8
3.2 ADP1 Spent Medium + nutrients 120 7 7 - 8
3.3 ADP1 Spent Medium + nutrients 120 7 7 - 8
3.4 ADP1 Spent Medium + nutrients 120 7 7 - 8
4.1 ADP1 Spent Medium 24 7 7 - 8
4.2 ADP1 Spent Medium 24 7 7 - 8
4.3 ADP1 Spent Medium 24 7 7 - 8
4.4 ADP1 Spent Medium 24 7 7 - 8
5.1 ADP1 Spent Medium 72 7 7 - 8
5.2 ADP1 Spent Medium 72 7 7 - 8
5.3 ADP1 Spent Medium 72 7 7 - 8
5.4 ADP1 Spent Medium 72 7 7 - 8
6.1 ADP1 Spent Medium 120 7 7 - 8
6.2 ADP1 Spent Medium 120 7 7 - 8
6.3 ADP1 Spent Medium 120 7 7 - 8
6.4 ADP1 Spent Medium 120 7 7 - 8
7.1 ADP1 Fresh Medium -- 7 7
7.2 ADP1 Fresh Medium -- 7 7
7.3 ADP1 Fresh Medium -- 7 7
7.4 ADP1 Fresh Medium -- 7 7 - 8
8.1 ADP1 Spent Medium + 1X M9 24 7 7 - 8
8.2 ADP1 Spent Medium + 1X M9 24 7 7 - 8
8.3 ADP1 Spent Medium + 1X M9 24 7 7 - 8
8.4 ADP1 Spent Medium + 1X M9 24 7 7 - 8
9.1 ADP1 Spent Medium + 1X M9 72 7 7 - 8
9.2 ADP1 Spent Medium + 1X M9 72 7 7 - 8
9.3 ADP1 Spent Medium + 1X M9 72 7 7 - 8
9.4 ADP1 Spent Medium + 1X M9 72 7 7 - 8
10.1 ADP1 Spent Medium + 1X M9 120 7 7 - 8
10.2 ADP1 Spent Medium + 1X M9 120 7 7 - 8
10.3 ADP1 Spent Medium + 1X M9 120 7 7 - 8
10.4 ADP1 Spent Medium + 1X M9 120 7 7 - 8

pH

Culture Number Culture Name Spent Media 
Timepoint (h) Medium 48 hr
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C. Appendix C. Chapter 4 Supplementary Information 

C.1 Acinetobacter baylyi sp. ADP1 metabolic model preprocessing 

The genome-scale metabolic model (GEM) for Acinetobacter baylyi sp. ADP1, titled “iAbaylyiv4”, 

was downloaded from the BioModels database 119,120. Because the SBML format of this model 

was the older L2V1 format and most tools and packages now require the L3V1 format, the model 

was converted to this newer format using the Systems Biology Format Converter (SBFC) 185. 

Default flux bound constraints were then added using a custom python script 

(add_flux_bounds.py). Next, because many special characters were represented within model 

IDs as text (e.g. “[C]” was written as “_LBRACKET_C_RBRACKET_”), these IDs were cleaned 

up. Gene-Protein Rules (GPRs), which were previously stored in the “notes” section of the model 

for legacy purposes, were transferred to the GPR field of each reaction. Finally, each model 

metabolite was annotated with its ModelSEED ID, if available 186. This updated and cleaner 

version of the iAbaylyiv4 model is provided in SBML format in the supplemental data. 

C.2 Reaction rule filter – additional details 

A custom python script, map_rules.py, was used to map rules to reactions by considering the 

cofactors involved as well as the bonds formed and broken (as well as any spectator atoms 

required for the rule). Because the reaction rules are written in the SMARTS chemical reaction 

language, we used the python package, RDKit, to determine whether a reaction could act on a 

given substrate during reaction-based mapping 123. 

For gene-mapped rules, in order to determine an appropriate E-value cutoff for which rules to 

keep (as the default of 10-1 is far too lenient), we investigated the overlap of gene-mapped and 

reaction-mapped rules. Hits for overlapping rules (those both “gene-mapped” and “reaction-

mapped”) tended to be more significant (have a lower E-value) than those for nonoverlapping 

rules, validating the use of overlap as a metric of performance (Figure C.1). 



118 
 

 

 

Figure C-1 Hits from overlapping (gene- and reaction-mapped) rules (red) are more significant 
(have lower E-values) than those that are only gene- or only reaction-mapped (blue).  

Here, gene-mapped rules are those with E < 10-1 (1 on x-axis). 

 

We wanted to choose an E-value that maximizes this overlap while avoiding having too many 

gene-based rules that are not also reaction-mapped. We used the following equation to calculate 

an appropriate loss, 𝐿, as a function of E-value, 𝐸: 

                                       																	𝐿(𝐸) = 𝑛!(𝐸) − 𝛼 ∗ 𝑛!,#(𝐸)                            (C.1) 

where 𝑛!(𝐸) is the number of gene-mapped rules sharing homology with at least one ADP1 gene 

at a specified E-value. 𝑛!,#(𝐸) is the same but for rules that are both gene-mapped and reaction-

mapped, representing the overlap between gene- and reaction-mapped rules at a given E-value. 

𝛼 is a scaling factor to account for the large difference in the number of gene-mapped reactions 

(up to 3,145 at E=10-1) and reaction-mapped reactions that are also gene-mapped (up to 323 at 

E=10-1). Specifically, 𝛼 is the ratio of the maximum number of gene-mapped rules and overlapping 

rules (which occurs at an E-value threshold of 10-1): 

                                                																	𝛼 = $!(&'()"#)
$!,%(&'()"#)

                                    (C.2) 
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These equations were used to find the E-value at which the loss is minimized (after plotting 𝐿(𝐸) 

against 𝐸 for 0 ≤ − log() 𝐸 ≤ 300) (Figure C.2). This optimal E-value was determined to be 10-35, 

so only rules with at least one hit with 𝐸 ≤	10+,-	 were considered to be “gene-mapped”. These 

“gene-mapped” rules were combined with the “reaction-mapped” rules to create the set of ADP1-

specific rules. 

 

Figure C-2: E-value threshold is optimized to maximize overlap between gene-mapped and 
reaction-mapped rules (see Equations (1) and (2) in main text). 

(a) As E-value threshold is made more stringent (x-axis is -log(E)), the total number of gene-
based rules remaining (blue) decreases. The number of gene-based rules that also cover 
reactions (orange) also decreases, but with a different shape. (b) Using equations (1) and (2), the 
overlap between gene-based and reaction-based rules was used as a metric to find the optimal 
value (E = 10-35) for gene-mapping. 

C.3 Feature generation – additional details 

Figure C.3 shows a summary of calculated features. Table C.1 lists all 26 features and their 

descriptions. See main text for an overview of how features were generated. 

All features were calculated using a custom python script, feature_set.py. When calculating 

fquin_dist_from_feed and fsucc_dist_from_feed cofactors were excluded when finding shortest 
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paths through the network. Feed rate was set to 20 mmol/gDCW/hr for either quinate or succinate 

when calculating maximum theoretical yield using the ADP1 genome-scale model. 

Because not all features were able to be calculated for every candidate (e.g. deepRFC did not 

accept the SMILES for some candidates), a value for that feature was either assigned or sampled 

from that feature column. Specifically, log_fold_change was assigned 1; overall_peaks_frac, 

peaks_frac_ratio, quinate_peaks_frac, and succinate_peaks_frac were assigned 0; and 

fquin_dist_from_feed, fsucc_dist_from_feed, dff_fc_diff, dff_fc_prod, dist_from_feed_log_ratio, 

feasible, feasible_frac, rt_dev_diff, and rt_dev_pct were sampled from that respective feature 

column. All sampling was done with a preset seed of 42. 

Most features which could not be calculated were due to divide by zero errors (e.g. 

peaks_frac_ratio). The only other major issue was orphan reactions in the metabolic model which 

occasionally prevented finding any path in the metabolic network from a feed metabolite to a 

candidate compound to calculate fquin_dist_from_feed and fsucc_dist_from_feed. This occurred 

for roughly 20% of candidate-peak pairs, primarily for candidates produced from large secondary 

metabolites which are not connected to quinate or succinate in the metabolic model. All other 

features requiring some sampling (e.g., rt_dev_diff) had less than 5% candidate-peak pairs that 

had to be sampled.  



121 
 

 

 

Figure C-3 The ADP1 metabolic model, DeepRFC, as well as other data sources and tools 
were used to calculate features of each candidate to be used in machine learning classification 

Calculated features were categorized into 3 separate sets. (a) 13 features were calculated by 
utilizing the APD1 extended metabolic model, including the distance between a candidate and 
the feed metabolite in the metabolic network, the predicted maximum theoretical yield of a 
candidate, and the number of experimentally validated (from the metabolomics dataset) 
compounds predicted to hold flux 119. (b) deepRFC was used to classify predicted reactions as 
feasible or infeasible 128. Because many candidates are the product of more than one predicted 
reaction, the number of feasible reactions as well as fraction of all predicted reactions that were 
classified as feasible were used as features. (c) Features calculated from metabolomics data 
(e.g., from retention time, peak intensities) were also used. In addition, some other features that 
don’t fit in the first two categories (e.g., aromaticity, number of unique precursors) were added to 
this category. 
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Table C.1 Description of all 26 features used in the final model 

# Category Name Description 

1 Metabolic 
Modeling fquin_dist_from_feed Shortest distance in # reactions separating candidate and quinate 

(feed) in metabolic model 

2 Metabolic 
Modeling fsucc_dist_from_feed Shortest distance in # reactions separating candidate and 

succinate (feed) in metabolic model 

3 Metabolic 
Modeling 

dist_from_feed_log_r
atio 

 log10(fquin_dist_from_feed / fsucc_dist_from_feed). How close a 
candidate is to quinate vs succinate in the metabolic network. 

4 Metabolic 
Modeling dff_fc_diff 

dist_from_feed_log_ratio - log_fold_change. High if close to 
quinate in network and candidate peak is more abundant in 
quinate feeding condition, low if close to succinate in network and 
candidate peak is more abundant in succinate feeding condition. 

5 Metabolic 
Modeling dff_fc_prod 

dist_from_feed_log_ratio * log_fold_change. Low if close to given 
feed (quinate or succinate) AND candidate peak is more abundant 
with that feed. 

6 Metabolic 
Modeling g0_fquin_mty Predicted maximum theoretical yield (mty) of candidate with no 

growth requirement (g0) with quinate feed 

7 Metabolic 
Modeling g0_fsucc_mty Predicted maximum theoretical yield (mty) of candidate with no 

growth requirement (g0) with succinate feed 

8 Metabolic 
Modeling g0_fquin_mty_mass g0_fquin_mty / (candidate mass). MTY when fed quinate on a 

mass rather than molar basis. 

9 Metabolic 
Modeling g0_fsucc_mty_mass g0_fsucc_mty / (candidate mass) . MTY when fed succinate on a 

mass rather than molar basis. 

1
0 

Metabolic 
Modeling 

g0_fquin_n_knowns_
w_flux 

# of experimentally validated (known) compounds involved in flux-
carrying reactions in the flux distribution from the g0_fquin_mty 
calculation 

1
1 

Metabolic 
Modeling 

g0_fsucc_n_knowns_
w_flux 

# of experimentally validated (known) compounds involved in flux-
carrying reactions in the flux distribution from the g0_fsucc_mty 
calculation 

1
2 

Metabolic 
Modeling 

g0_fquin_norm_n_kn
owns_w_flux 

g0_fquin_n_knowns_w_flux / (# all metabolites involved in flux-
carrying reactions during g0_fquin_mty calculation), i.e. the 
fraction of flux-carrying metabolites from MTY calculation that are 
experimentally validated. 

1
3 

Metabolic 
Modeling 

g0_fsucc_norm_n_kn
owns_w_flux 

g0_fquin_n_knowns_w_flux / (# all metabolites involved in flux-
carrying reactions during g0_fsucc_mty_calculation), i.e. the 
fraction of flux-carrying metabolites from MTY calculation that are 
experimentally validated. 
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1
4 

Predicted 
Feasibility feasible Whether a candidate has any predicted reactions predicted to be 

feasible via DeepRFC 

1
5 

Predicted 
Feasibility feasible_frac Fraction of all predicted reactions producing candidate predicted 

to be feasible via DeepRFC 

1
6 

Predicted 
Feasibility feasible_n # predicted reactions producing candidate predicted to be feasible 

via DeepRFC 

1
7 

Metabolomic
s & Others rt_dev_diff Difference between predicted and experimental retention time 

values. See Appendix B.5 for retention time prediction methods. 

1
8 

Metabolomic
s & Others rt_dev_pct 

Percent difference between predicted and experimental retention 
time values. See Appendix C.5 for retention time prediction 
methods. 

1
9 

Metabolomic
s & Others log_fold_change 

Log fold change in peak intensity for quinate vs succinate feed 
conditions (values taken straight from the metabolomics dataset). 
Min and max set to -5 and 5 (due to 0, inf values). 

2
0 

Metabolomic
s & Others overall_peaks_frac 

Proportion of all samples in which the peak for this peak-candidate 
pair was detected (values taken straight from the metabolomics 
dataset). 

2
1 

Metabolomic
s & Others quinate_peaks_frac 

Proportion of quinate-fed samples in which the peak for this peak-
candidate pair was detected (values taken straight from the 
metabolomics dataset). 

2
2 

Metabolomic
s & Others succinate_peaks_frac 

Proportion of succinate-fed samples in which the peak for this 
peak-candidate pair was detected (values taken straight from the 
metabolomics dataset). 

2
3 

Metabolomic
s & Others peaks_frac_log_ratio 

 log10(quinate_peaks_frac / succinate_peaks_frac). High if 
candidate peak detected more often when fed quinate, low if 
candidate peak detected more often when fed succinate. 

2
4 

Metabolomic
s & Others n_known_precursors 

# experimentally verified (known) precursor compounds for 
candidate. Metabolism is highly interconnected, so novel 
compounds are likely made via multiple reactions as well. 

2
5 

Metabolomic
s & Others n_unique_precursors 

# unique precursor compounds for candidate. Metabolism is highly 
interconnected, so novel compounds are likely made via multiple 
reactions as well. 

2
6 

Metabolomic
s & Others aromatic 

Whether a candidate contains any aromatic rings. May be useful 
because quinate is a fed aromatic compound while succinate is 
not. 
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C.4 Classifier optimization and feature importances 

 

Figure C-4 Feature reduction down to the top 10 features at a threshold of 0.30 maximized 
classifier performance on out-of-bag samples 

(a) Precision-Recall (PR) curves after selecting the top n features for n = 2, 5, 8, 10, 15, and 26 
(all features) across 10 random states. PR curves are generated by varying classifier threshold 
from 0 to 1. (b) The best F-score from the associated PR curve in (a) at the optimal threshold for 
that curve. This shows that performance is maximized with 10 features and doesn’t significantly 
decrease until less than 5 features are used. (c) PR curve for n = 10 where metrics are plotted 
individually for each threshold tested and each random state used (equivalent to red line in (a) 
but now with threshold highlighted as shown by colorbar). Optimal performance was at threshold 
= 0.30, designated by the black arrow (F = 0.50). 



125 
 

 

 

Figure C-5 The top 10 features used in the final classifier include features from all three feature 
sets and can be divided into 5 sub-categories (differentiated by color) 

Predicted reaction feasibility-based features (red) were found to be most important. Modeling-
based features (orange and blue) were also found to be highly important. Metabolomics and 
other features (grey and green) were useful, albeit less so than the other two feature sets. 

C.5 Retention time prediction 

In order to maximize the input of the metabolomics dataset in our classification workflow, we 

wanted to use not only the m/z data, but also the retention times associated with each peak. 

However, we do not know the retention times of predicted candidates, as it is not a straightforward 

calculation (unlike calculation of exact mass to compare m/z). Predicting retention time from 
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chemical structure is notoriously difficult, as it depends not only on the chemical structure but also 

the column and chromatographic conditions used. To control for these confounding variables, we 

built a QSAR (quantitative structure-activity relationship) model from the 105 experimentally 

validated compounds in the ADP1 metabolomics dataset used (where all compounds were 

processed in the same chromatography step). These 105 compounds’ retention times are plotted 

in Figure B.6 (blue). Retention times for unknown peaks are also plotted (red) and are similarly 

distributed. 

 

Figure C-6 Retention times of known peaks have a similar distribution to that of unknown peaks 
in the ADP1 metabolomics dataset 

Retention times are graphed separately for known peaks (blue, n=105) and unknown peaks 
(red, n=346). 

We used scikit-learn to build a random forest regressor to predict retention time from structure, 

trained on these 105 compounds 130. We featurized each structure by using mordred, a python 

library that calculates 1,613 2D and 213 3D features for a given compound (e.g. number of acid 
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sites) 139. We then performed a feature reduction step (reducing down to the top 50 features) and 

assessed performance based on out-of-bag prediction. We were able to achieve an R2 of 0.64 on 

out-of-bag samples with a mean error of 2.0 minutes (Figure C.7). 

 

Figure C-7 A mean error of 2.0 minutes is attained by training a random forest regressor to 
predict compound retention time from structure 

(left) Prediction of retention time on out of bag samples. (right) Histogram of error for each out-
of-bag sample, with individual samples shown below. 

We judged that these predictions were not high-resolution enough to be used as a binary filter to 

filter out candidates (95% of out-of-bag predictions were within 5.2 min which we considered too 

much deviation from the measured value). However, we still wanted to try and use these predicted 

values if possible. Thus, we included retention time predictions when calculating features for each 

candidate (rt_dev_diff and rt_dev_pct). This allowed us to (1) let the learner tell us if these 

retention time predictions were at all useful for classification of compounds for known peaks and 

(2) if useful, utilize these predictions to help classify candidates for unknown peaks. 
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Table C.2 Primers used in cloning of knock-out cassettes for experimental validation 

Primer Name Sequence Knock-out Binds To 

ECA158 tcgatgggcattcatattcaaccc ACIAD1826 ADP1 
Genome 

ECA159 tttttattggtgagaatccagataatttcctatgttgctgaaacgattgattg ACIAD1826 ADP1 
Genome 

ECA160 cagcaacataggaaattatctggattctcaccaataaaaaacgccc ACIAD1826 pBWB162 

ECA161 atgagtttcacatttatgaaaaattctatcataattgtggtttcaaaatcggc ACIAD1826 pBWB162 

ECA162 ccacaattatgatagaatttttcataaatgtgaaactcatgtgcaactcacg ACIAD1826 ADP1 
Genome 

ECA163 cctcaaccacgcaatcaaatgc ACIAD1826 ADP1 
Genome 

ECA146 acaatctcccaaccttgcgg ACIAD0381 ADP1 
Genome 

ECA147 tttttattggtgagaatccagatcaagatatcgctgaagtcgatgaac ACIAD0381 ADP1 
Genome 

ECA148 acttcagcgatatcttgatctggattctcaccaataaaaaacgccc ACIAD0381 pBWB162 

ECA149 aatggatcatgaggtgaagcggacgtcaaattctatcataattgtggtttcaaaatcg ACIAD0381 pBWB162 

ECA150 ttatgatagaatttgacgtccgcttcacctcatgatccattatttaacg ACIAD0381 ADP1 
Genome 

ECA151 gtcgtactgttggaccgatgg ACIAD0381 ADP1 
Genome 

ECA152 atgcgactgtgattggtcagc ACIAD0984 ADP1 
Genome 

ECA153 cgttttttattggtgagaataaggcaagtcaatctttttttgattgagc ACIAD0984 ADP1 
Genome 

ECA154 aaaaaagattgacttgccttattctcaccaataaaaaacgcccgg ACIAD0984 pECA19 

ECA155 tttacttaaacggcatggttattctatcataattgtggtttcaaaatcggc ACIAD0984 pECA19 

ECA156 aaccacaattatgatagaataaccatgccgtttaagtaaaaaactaaagattaagc ACIAD0984 ADP1 
Genome 

ECA157 ggagaggtagataaccgtcatttaagtgg ACIAD0984 ADP1 
Genome 

ECA188 gcattcttttgcttatggcccc ACIAD3540 ADP1 
Genome 

ECA189 tttttattggtgagaatccatagttgattaaaaaaatcaaggtcaatccag ACIAD3540 ADP1 
Genome 

ECA190 ttgatttttttaatcaactatggattctcaccaataaaaaacgcc ACIAD3540 pBWB162 

ECA191 aattaattataaaattgtaggacgtcaaattctatcataattgtggtttc ACIAD3540 pBWB162 
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ECA192 ttatgatagaatttgacgtcctacaattttataattaattaagctaaatccatgccac ACIAD3540 ADP1 
Genome 

ECA193 tggtatcgatatctacagctttaatcttgc ACIAD3540 ADP1 
Genome 

Table C.3 Plasmids used in cloning of knock-out cassettes for experimental validation 

Plasmid Name Source 

pBWB162 (pBAV1k-LacI-trc-mCherry) Bryskin et al. 187 

pECA19 (pBAV1k-LacI-trc-mCherry (CmR)) This study 
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