
NORTHWESTERN UNIVERSITY

Topics in Classification with Deep Learning

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Statistics

By

Yiming Xu

EVANSTON, ILLINOIS

December 2020

2

c© Copyright by Yiming Xu 2020

All Rights Reserved

3

ABSTRACT

Topics in Classification with Deep Learning

Yiming Xu

The task of classification has been increasingly attracting attention from researchers

in recent years. The objective is to assign labels given attributes of samples. The clas-

sification task is practical in real-world applications and is widely explored in fields such

as computer vision, natural language processing and information retrieval. The recent

advances of deep learning techniques provide many efficient solutions to the classifica-

tion task. This dissertation includes four chapters: 1) k-Nearest Neighbors by Means of

Sequence to Sequence Deep Neural Networks and Memory Networks, 2) Automatic On-

tology Learning from Domain-Specific Short Unstructured Text Data, 3) Concept Drift

and Covariate Shift Detection Ensemble with Lagged Labels and 4) Open Set Domain

Adaptation by Extreme Value Theory.

In the first chapter, we mimic the k-Nearest Neighbors method by two families of deep

networks. k-Nearest Neighbors is one of the most fundamental but effective classification

models. We propose two families of models built on a sequence to sequence model and

a memory network model to mimic the k-Nearest Neighbors model, which generate a

4

sequence of labels, a sequence of out-of-sample feature vectors and a final label for classi-

fication, and thus they could also function as oversamplers. We also propose ‘out-of-core’

versions of our models which assume that only a small portion of data can be loaded into

memory.

In the second chapter, we provide an efficient and effective way to automatic ontology

learning. Ontology learning is a critical task in industry, which deals with identifying

and extracting concepts reported in text such that these concepts can be used in different

tasks, e.g. information retrieval. The problem of ontology learning is non-trivial due to

several reasons with a limited amount of prior research work that automatically learns

a domain specific ontology from data. We propose a two-stage classification system to

automatically learn an ontology from unstructured text. In the proposed model, the first-

stage classifier classifies candidate concepts into relevant and irrelevant concepts and then

the second-stage classifier assigns specific classes to the relevant concepts. The proposed

system is deployed as a prototype in General Motors and its performance is validated by

using complaint and repair verbatim data collected from different data sources.

In the third chapter, we propose a drift detection ensemble to detect concept drifts

and covariate shifts and automatically select the retraining data. In model serving, having

one fixed model during the entire often lift-long inference process is usually detrimental to

model performance, as data distribution evolves over time, resulting in lack of reliability

of the model trained on historical data. It is important to detect changes and retrain

the model in time. The existing methods generally have three weaknesses: 1) using

only classification error rate as signal, 2) assuming ground truth labels are immediately

available after features from samples are received and 3) unable to decide what data to

5

use to retrain the model when change occurs. We address the first problem by utilizing

six different signals to capture a wide range of characteristics of data, and we address

the second problem by allowing lag of labels, where labels of corresponding features are

received after a lag in time. For the third problem, our proposed method can automatically

decide what data used to retrain to use on the signals.

In the fourth chapter, we solve the problem of open set domain adaptation by utilizing

extreme value theory. Common domain adaptation techniques assume that the source

domain and the target domain share an identical label space, which is not practical since

when target samples are unlabeled we have no knowledge on whether two domains share

the same label space. When the assumption is not satisfied, such methods fail to perform

well because the additional unknown classes are also matched with the source domain

during adaptation. In this chapter, we tackle the open set domain adaptation problem

which assumes the source and the target label spaces only partially overlap, and the task

becomes when the unknown classes exist, how to detect the target unknown classes and

avoid aligning them with the source domain. We propose to 1) utilize an instance-level

reweighting strategy for domain adaptation where the weights indicate the likelihood of

a sample belonging to known classes and 2) model the tail of entropy distribution with

Extreme Value Theory for unknown classes detection.

6

Acknowledgements

First of all, I would like to sincerely thank my primary advisor Professor Diego Klab-

jan. The completion of my dissertation would not have been possible without his nurtur-

ing. He is one of the smartest and most experienced person I know in the deep learning

field, and he is also very humorous and meetings with him are never boring - I always

enjoy his dry jokes. His immense knowledge, insight, encouragement and sense of humour

have guided me through my PhD journey. I will forever be thankful for his support and

guidance.

Apart from Professor Diego Klabjan, I would like to also express my gratitude to my

other advisor Professor Wenxin Jiang. He has provided me with his invaluable knowledge

and insight in the statistics field. The discussions and his advice are instrumental in my

research.

I am also pleased to say thank you to Professor Hongmei Jiang, who is also my PhD

thesis committee member. Her constructive comments mean a lot to me.

I would also like to especially thank Dr. Lin Chen, Prof. Jiebo Luo and Dr. Dnyanesh

Rajpathak, who are outside Northwestern University but have helped and guided me

immensely in the field of machine learning and deep learning. Their guidance is hard to

forget.

7

Lastly, I am grateful to my parents and friends for their endless support and love.

Their support and encouragement have been unconditional through these years. You are

always there for me, supporting me spiritually throughout my life.

8

Table of Contents

ABSTRACT 3

Acknowledgements 6

Table of Contents 8

List of Tables 10

List of Figures 12

Chapter 1. k-Nearest Neighbors by Means of Sequence to Sequence Deep Neural

Networks and Memory Networks 13

1.1. Introduction 13

1.2. Background and Literature Review 16

1.3. kNN models 19

1.4. Computational Experiments 26

1.5. Conclusion 33

Chapter 2. Automatic Ontology Learning from Domain-Specific Short Unstructured

Text Data 35

2.1. Introduction 35

2.2. Background and Related Works 39

2.3. Problem Statement and Approach 42

9

2.4. Model Specifications 44

2.5. Computational Study 51

2.6. Conclusion 60

Chapter 3. Concept Drift and Covariate Shift Detection Ensemble with Lagged

Labels 61

3.1. Introduction 61

3.2. Related Work 64

3.3. Problem Formulation 66

3.4. Concept Drift Detection Ensemble and Model Retraining 68

3.5. Experimental Results 75

3.6. Conclusions 85

Chapter 4. Open Set Domain Adaptation by Extreme Value Theory 86

4.1. Introduction 86

4.2. Related Work 89

4.3. Methodology 91

4.4. Experimental Results 94

4.5. Conclusion 101

References 102

10

List of Tables

1.1 F-1 score comparison of full models. 28

1.2 F-1 score of out-of-core model with R=50. 31

1.3 Full model and out-of-core (OOC) model comparison on SensIT. 31

1.4 Oversampling: F-1 score comparison. 33

1.5 Oversampling techniques comparison. 33

2.1 The result summary of abbreviation disambiguation algorithm. Nraw

denotes the number of raw verbatims, Nc denotes the number of

abbreviations corrected and Ncorrect denotes the number of correct

abbreviation corrections. 53

2.2 The evaluation of relevant concepts and irrelevant concepts classification

algorithm. 54

2.3 The evaluation of relevant concept type classification algorithm. 55

2.4 Examples of classification results, where ‘None’ denotes irrelevant

concepts. 57

2.5 The reconstruction of existing seed ontology from the AR data. 58

3.1 Results on simulated structured datasets. 77

3.2 Results on real-world structured datasets. 77

11

3.3 Results on unstructured datasets with sudden drifts. 80

3.4 Results on unstructured datasets with gradual drifts. 81

3.5 Ablation study - increasingly adding components. ‘AVG’ denotes the

average MA across all datasets. 82

3.6 Ablation study - MA drop without each component. 82

3.7 Results on unstructured datasets with different levels of lag of labels. 83

3.8 Results on unstructured datasets with fixed lag of labels. 84

4.1 Accuracy (in %) on Digits dataset (best in bold). Note that ‘AVG’

denotes the average across all datasets. 96

4.2 OS (in %) on Digits dataset without specific parts of our model. Note

that ‘AVG’ denotes the average across all datasets. 97

4.3 Performance of our method on Digits dataset with different percentage

of source data. 98

4.4 Model performance on varying loss function weights on Digits dataset. 99

4.5 Accuracy (in %) on Office-31 dataset (best in bold). Note that ‘AVG’

denotes the average across all datasets. ‘/’ denotes the number is

unavailable because the cited paper does not include such experiment

and there are no codes publicly available. 100

4.6 Accuracy (in %) on VisDA-2017 (best in bold). ‘UNK’ denotes the

additional unknown class. 101

12

List of Figures

1.1 Visualization of oversampling methods. 31

2.1 The domain model is designed by the domain experts. The classifier

is trained to extract the technical concepts and they are classified into

their specific classes to populate the domain model. 43

2.2 The overall methodology and flow of the two-stage classification model. 45

2.3 (1) Obtain all possible polysemy centroids of a collocate: for a

collocate T , we cluster context vectors and save the cluster centroids

C1(T), ..., Cp(T). (2) Create polysemy centroid feature of a collocate: for

a new collocate T ′, letm = argmin{d(V (T ′), C1(T ′)), ..., d(V (T ′), Cp′(T
′))}

denote the index of the closest centroid, where d is the Euclidean

distance. Vector Cm(T ′) is our polysemy feature for T ′. 50

2.4 Change of F1-score when dropping each feature. 56

3.1 Overall approach. For each batch of incoming data, we calculate six

descriptive statistics of time series, then utilize drift detection module

for each of them to monitor drift and decide what data used to retrain. 68

3.2 Unstructured datasets with various types of drifts. 79

13

CHAPTER 1

k-Nearest Neighbors by Means of Sequence to Sequence Deep

Neural Networks and Memory Networks

1.1. Introduction

Recently, neural networks have been attracting a lot of attention among researchers in

both academia and industry, due to their astounding performance in fields such as natural

language processing and image recognition. Interpretability of these models, however, has

always been an issue since it is difficult to understand the performance of neural networks.

The well-known manifold hypothesis states that real-world high dimensional data (such

as images) form lower-dimensional manifolds embedded in the high-dimensional space [1],

but these manifolds are tangled together and are difficult to separate. The classification

process is then equivalent to stretching, squishing and separating the tangled manifolds

apart. However, these operations pose a challenge: it is quite implausible that only affine

transformations followed by pointwise nonlinear activations are sufficient to project or

embed data into representative manifolds that are easily separable by class.

Therefore, instead of asking neural networks to separate the manifolds by a hyperplane

or a surface, it is more reasonable to require points of the same manifold to be closer

than points of other manifolds [2]. Namely, the distance between manifolds of different

classes should be large and the distance between manifolds of the same class should be

small. This distance property is behind the concept of k-Nearest Neighbor (kNN) [3].

14

Consequently, letting neural networks mimic kNN would combine the notion of manifolds

with the desired distance property.

We explore kNN through two deep neural network models: sequence to sequence deep

neural networks [4] and memory networks [5] [6]. A family of our models are based on

a sequence to sequence network. The new sequence to sequence model has the input

sequence of length 1 corresponding to a sample, and then it decodes it to predict two

sequences of output, which are the classes of closest samples and neighboring samples not

necessarily in the training data, where we call the latter as out-of-sample feature vectors.

We also propose a family of models built on a memory network, which has a memory

that can be read and written to and is composed of a subset of training samples, with

the goal of using it for predicting both classes of close samples and out-of-sample feature

vectors. With the help of attention over memory vectors, our new memory network model

generates the predicted label sequence and out-of-sample feature vectors. Both families of

models use loss functions that mimic kNN. Computational experiments show that the new

sequence to sequence kNN model consistently outperforms benchmarks (kNN [3], random

forest [7], XGBoost [8], lightGBM [9], a feed-forward neural network and a vanilla memory

network) on structured datasets. The performance on some commonly used image and

text datasets is comparable to many state-of-the-art deep models. We postulate that this

is due to the fact that we are forcing the model to ‘work harder’ than necessary (producing

out-of-sample feature vectors).

Different from general classification models, our models predict not only labels, but

also out-of-sample feature vectors. Usually a classification model only predicts labels, but

as in the case of kNN, it is desirable to learn or predict the feature vectors of neighbors

15

as well. Intuitively, if a deep neural network predicts both labels and feature vectors,

it is forced to learn and capture representative information of input, and thus it should

perform better in classification. Moreover, our models also function as synthetic oversam-

plers: we add the out-of-sample feature vectors and their labels (synthetic samples) to the

training set. Experiments show that our sequence to sequence kNN model outperforms

Synthetic Minority Over-sampling Technique (SMOTE) [10] and Adaptive Synthetic sam-

pling (ADASYN) [11] most of the times on imbalanced datasets.

Usually we allow models to perform kNN searching on the entire dataset, which we

call the full versions of models, but kNN is computationally expensive on large datasets.

We design an algorithm to resolve this and we test our models under such an ‘out-of-core’

setting: only a batch of data can be loaded into memory, i.e. kNN searching in the entire

dataset is not allowed. For each such random batch, we compute the K closest samples

with respect to the given training sample. We repeat this R times and find the closest

K samples among these KR samples. These closest K samples provide the approximate

label sequence and feature vector sequence to the training sample based on the kNN

algorithm. Computational experiments show that sequence to sequence kNN models and

memory network kNN models significantly outperform the kNN benchmark under the

out-of-core setting.

Our main contributions are as follows. First, we develop two types of deep neural

network models which mimic the kNN structure. Second, our models are able to predict

both labels of closest samples and out-of-sample feature vectors at the same time: they are

both classification models and oversamplers. Third, we establish the out-of-core version

of models in the situation where not all data can be read into computer memory or kNN

16

cannot be run on the entire dataset. The full version of the sequence to sequence kNN

models and the out-of-core version of both sequence to sequence kNN models and memory

network kNN models outperform the benchmarks, which we postulate is because learning

neighboring samples enables the model to capture representative features.

1.2. Background and Literature Review

There are several works trying to mimic kNN or applying kNN within different models.

[12] introduced the boundary forest algorithm which can be used for nearest neighbor

retrieval. Based on the boundary forest model, in [13], a boundary deep learning tree

model with differentiable loss function was presented to learn an efficient representation

for kNN. The main differences between this work and our work are in the base models

used (boundary tree vs standard kNN), in the main objectives (representation learning vs

classification and oversampling) and in the loss functions (KL divergence vs KL divergence

components reflecting the kNN strategy and L2 norm). [14] introduced a text classification

model which utilized nearest neighbors of input text as the external memory to predict

the class of input text. Our memory network kNN models differ from this model in 1)

the external memory: our memory network kNN models simply feed a random batch

of samples into the external memory without the requirement of nearest neighbors and

thus they save computational time and 2) they considered only a classification setting,

while our models generate not only labels but also out-of-sample feature vectors. Most

importantly, the loss functions are different: in [14] the authors used KL divergence as

the loss function while we use a specially designed KL divergence and L2 norm to force

our models to mimic kNN.

17

The sequence to sequence model, one of our base models, has recently become the

leading framework in natural language processing [4] [15]. In [15] an RNN encoder-

decoder architecture was used to deal with statistical machine translation problems. In [4]

the authors proposed a general end-to-end sequence to sequence framework. The major

difference between our work and these studies is that the loss function in our work forces

the model to learn from neighboring samples, and our models are more than just classifiers

- they also create out-of-sample feature vectors that improve accuracy or can be used as

oversamplers.

There are also a plethora of studies utilizing external memory in neural networks.

[5] proposed the memory network model to predict the correct answer of a query by

means of ranking the importance of sentences in the external memory. [6] introduced a

continuous version of a memory network with a recurrent attention mechanism over an

external memory, which outperformed the previous discrete memory network architecture

in question answering.

In summary, the main differences between our work and previous studies are as follows.

First, our models predict both labels of nearest samples and out-of-sample feature vectors

rather than simply labels. Thus, they are more than classifiers: the predicted label

sequences and feature vector sequences can be treated as synthetic oversamples to handle

imbalanced class problems. Second, our work emphasizes on the out-of-core setting. All

of the prior works related to kNN and deep learning assume that kNN can be run on the

entire dataset and thus cannot be used on large datasets. Third, our loss functions are

designed to mimic kNN, so that our models are forced to learn neighboring samples to

capture the representative information.

18

1.2.1. Sequence to Sequence model

A family of our models are built on sequence to sequence models. A sequence to sequence

(Seq2seq) model is an encoder-decoder model. The encoder encodes the input sequence

to an internal representation called the ‘context vector’ which is used by the decoder to

generate the output sequence. Usually, each cell in the Seq2seq model is a Long Short-

Term Memory (LSTM) cell [16] or a Gated Recurrent Unit (GRU) cell [15].

Given input sequence x1, ..., xT , in order to predict output Y P
1 , ..., Y

P
K (where the

superscript P denotes ‘predicted’), the Seq2seq model estimates conditional probability

P (Y P
1 , ..., Y

P
t |x1, ..., xT) for 1 ≤ t ≤ K. At each time step t, the encoder updates the

hidden state het , which can also include the cell state, by het = f eh(xt, h
e
t−1), where 1 ≤ t ≤

T . The decoder updates the hidden state hdt by hdt = fdh(Y P
t−1, h

d
t−1, h

e
T), where 1 ≤ t ≤ K.

The decoder generates output yt by

(1.1) yt = g(Y P
t−1, h

d
t , h

e
T),

and Y P
t = q(yt) with q usually being softmax function.

The model calculates the conditional probability of output Y P
1 , ..., Y

P
K by

Pr(Y P
1 , ..., Y

P
K |x1, ..., xT) =

∏K
t=1 Pr(Y P

t |Y P
1 , ..., Y

P
t−1).

1.2.2. End to End Memory Networks

The other family of our models are built on an end-to-end memory network (MemN2N).

This model takes x1, ..., xn as the external memory, a ‘query’ x, a ground truth Y GT

and predicts an answer Y P . It first embeds memory vectors x1, ..., xn and query x into

19

continuous space. They are then processed through multiple layers to generate the output

label Y P .

MemN2N has K layers. In the tth layer, where 1 ≤ t ≤ K, the external mem-

ory is converted into embedded memory vectors mt
1, ...,m

t
n by an embedding matrix

At. The query x is also embedded as ut by an embedding matrix Bt. The attention

scores between embedded query ut and memory vectors (mt
i)i=1,2,...,n are calculated by

pt = softmax((ut)Tmt
1, (u

t)Tmt
2, ..., (u

t)Tmt
n).

Each xi is also embedded to an output representation cti by another embedding matrix

Ct. The output vector from the external memory is defined as ot =
n∑
i=1

ptic
t
i. By a linear

mapping H, the input to the next layer is calculated by ut+1 = Hut + ot.

In the last layer, by another embedding matrix W , MemN2N generates a label for the

query x by Y P = softmax(W (HuK + oK)).

1.3. kNN models

Our sequence to sequence kNN models are built on a Seq2seq model, and our memory

network kNN models are built on a MemN2N model. Let K denote the number of

neighbors of interest.

1.3.1. Vector to Label Sequence (V2LS) Model

Given an input feature vector x, a ground truth label Y GT (a single class corresponding to

x) and a sequence of labels Y T
1 , Y

T
2 , ..., Y

T
K corresponding to the labels of the 1st, 2nd, ..., Kth

nearest sample to x in the entire training set, V2LS predicts a label Y P and Y P
1 , Y

P
2 , ..., Y

P
K ,

20

the predicted labels of the 1st, 2nd, ..., Kth nearest samples. Since Y T
1 , Y

T
2 , ..., Y

T
K are ob-

tained by using kNN upfront, the real input is only x and Y GT . When kNN does not

misclassify, Y GT corresponds to majority voting of Y T
1 , Y

T
2 , ..., Y

T
K .

The key concept of our model is to have x as the input sequence (of length 1) and the

output sequence Y P
1 , Y

P
2 , ..., Y

P
K to correspond to Y T

1 , Y
T

2 , ..., Y
T
K . The loss function also

captures Y GT and Y T
1 , Y

T
2 , ..., Y

T
K .

In the V2LS model, by a softmax operation with temperature after a linear mapping

(Wy, by), the label of the tth nearest sample to x is predicted by Y P
t = softmax((Wyyt +

by)/τ), where yt is as in (1) for t = 1, 2, ..., K and τ is the temperature of softmax.

By taking the average of predicted label distributions, the label of x is predicted by

Y P =
K∑
t=1

Y P
t /K. Note that if Y P

t corresponds to a Dirac distribution for each t, then

Y P matches majority voting. Temperature τ controls the “peakedness” of Y P
t . Values

of τ below 1 push Y P
t towards a Dirac distribution, which is desired in order to mimic

kNN [17] [18].

We design the loss function as L1 = E{
K∑
t=1

DKL(Y T
t ||Y P

t)/K + αDKL(Y GT ||Y P)},

where the first term captures the label at the neighbor level, the second term for the actual

ground truth and α is a hyperparameter to balance the two terms. The expectation is

taken over all training samples, and DKL denotes the Kullback-Leibler divergence. Due

to the fact that the first term is the sum of KL divergence between predicted labels of

nearest neighbors and target labels of nearest neighbors, it forces the model to learn

information about the neighborhood. The second term considers the actual ground truth

label: a classification model should minimize the KL divergence between the predicted

label (average ofK distributions) and the ground truth label. By combining the two terms,

21

the model is forced to not only learn the classes of the final label but also the labels of

nearest neighbors. We let the tth decoder cell predict the tth nearest sample because the

preceding decoder cells preserve closeness to the original input. In the subsequent cells,

the information gets passed through more decoder cells and thus it is expected to deviate

more from the input, which is why we let the tth cell predict the tth nearest neighbor.

In inference, given an input x, V2LS predicts Y P and Y P
1 , Y

P
2 , ..., Y

P
K , but only Y P is

the actual output; it is used to measure the classification performance. Note that it is pos-

sible that argmaxY P is different from the majority voted class among argmaxY P
1 , argmaxY

P
2 , ...,

argmaxY P
K when kNN misclassifies.

1.3.2. Vector to Vector Sequence (V2VS) Model

We use the same structure as the V2LS model except that in this model, the inputs are

a feature vector x and a sequence of feature vectors XT
1 , X

T
2 , ..., X

T
K corresponding to the

1st, 2nd, ..., Kth nearest sample to x among the entire training set (calculated upfront using

kNN). V2VS predicts XP
1 , X

P
2 , ..., X

P
K which denote the predicted out-of-sample feature

vectors of the 1st, 2nd, ..., Kth nearest sample. Since XT
1 , X

T
2 , ..., X

T
K are obtained using

kNN, this is an unsupervised model.

The output of the tth decoder cell yt is processed by a linear layer (Wx1, bx1), a ReLU

operation and another linear layer (Wx2, bx2) to predict the out-of-sample feature vector

XP
t = Wx2max{Wx1yt + bx1, 0} + bx2, t = 1, 2, ..., K. Numerical experiments show that

ReLU works best compared with tanh and other activation functions.

The loss function is defined to be the sum of L2 norms: L2 = E{
K∑
t=1

||XP
t −XT

t ||2}.

Since the predicted out-of-sample feature vectors should be close to the input vector,

22

learning nearest vectors forces the model to learn a sequence of approximations to some-

thing very close to the identity function. However, this is not trivial. First it does not

learn an exact identity function, since the output is a sequence of nearest neighbors to

input, i.e. it does not simply copy the input K times. Second, by limiting the number of

hidden units of the neural network, the model is forced to capture the most representative

and condensed information of input. A large amount of studies have shown this to be

beneficial to classification problems [19] [20] [21].

In inference, we predict the label of x by finding the labels of out-of-sample feature

vectors XP
t and then perform majority voting among these K labels. The most voted

label is regarded as the prediction of the current sample.

1.3.3. Vector to Vector Sequence and Label Sequence (V2VSLS) Model

In previous models, V2LS learns to predict labels of nearest neighbors and V2VS learns

to predict feature vectors of nearest neighbors. Combining V2LS and V2VS together,

this model predicts both XP
t and Y P

t . Given an input feature vector x, a ground truth

label Y GT , a sequence of nearest labels Y T
1 , Y

T
2 , ..., Y

T
K and a sequence of nearest feature

vectors XT
1 , X

T
2 , ..., X

T
K , V2VSLS predicts a label Y P , a label sequence Y P

1 , Y
P

2 , ..., Y
P
K and

an out-of-sample feature vector sequence XP
1 , X

P
2 , ..., X

P
K . Since the two target sequences

are obtained by kNN, the model still only needs x and Y GT as input.

The loss function is a weighted sum of the two loss functions in V2LS and V2VS:

L = L1 + λL2, where λ is a hyperparameter to account for the scale of the L2 norm and

the KL divergence.

23

The L2 norm part enables the model to learn neighboring vectors. As discussed in

the V2VS model, this is beneficial to classification since it drives the model to capture

representative information of input and nearest neighbors. The KL part of the loss

function focuses on predicting labels of nearest neighbors. As discussed in the V2LS

model, the two terms in the KL loss force the model to learn both neighboring labels and

the ground truth label. Combining the two parts, the V2VSLS model is able to predict

nearest labels and out-of-sample feature vectors, as well as one final label for classification.

The model is structured in this way because the Kth decoder cell output corresponds to

the Kth nearest neighbor, so that the model is forced to better mimic kNN.

1.3.4. Memory Network - kNN (MNkNN) Model

The MNkNN model is built on the MemN2N model, which has K layers stacked together.

After these layers, the MemN2N model generates a prediction. In order to mimic kNN,

our MNkNN model has K layers as well but it generates one label after each layer, i.e.

after the tth layer, it predicts the label of the tth nearest sample. Similar to the Seq2seq

kNN models, the tth layer predicts the tth nearest sample because the preceding layers

preserve closeness to the input. Therefore, we let the preceding layers predict the closest

nearest neighbors to mimic kNN.

This model takes a feature vector x, its ground truth label Y GT , a random subset

x1, x2, ..., xn from the training set (to be stored in the external memory) and Y T
1 , Y

T
2 , ..., Y

T
K

denoting the labels of the 1st, 2nd, ..., Kth nearest samples to x among the entire training

set (calculated upfront using kNN). It predicts a label Y P and a sequence of K labels of

closest samples Y P
1 , Y

P
2 , ..., Y

P
K .

24

After the tth layer, by a softmax operation with temperature after a linear mapping

(Wy, by), the model predicts the label of tth nearest sample by Y P
t = softmax((Wy(Hu

t+

ot) + by)/τ) where t = 1, 2, ..., K. The final label of x is calculated by Y P =
K∑
t=1

Y P
t /K.

The loss function of MNkNN is: L1 = E{
K∑
t=1

KL(Y T
t ||Y P

t)/K + αKL(Y GT ||Y P)}

which is the same as in V2LS. The first term accounts for learning neighboring information,

and the second term forces the model to provide the best single candidate class.

In inference, the model takes a query x and random samples x1, x2, ..., xn from the

training set, and generates the predicted label Y P as well as a sequence of nearest labels

Y P
1 , Y

P
2 , ..., Y

P
K .

1.3.5. Memory Network - kNN with Vector Sequence (MNkNN VEC) Model

This model is built on MNkNN, but it predicts out-of-sample feature vectors XP
t as well.

MNkNN VEC takes a query feature vector x, its corresponding ground truth label Y GT ,

a random subset x1, x2, ..., xn from the training dataset (to be stored in the external

memory), Y T
1 , Y

T
2 , ..., Y

T
K and XT

1 , X
T
2 , ..., X

T
K denoting labels and feature vectors of the

1st, 2nd, ..., Kth nearest samples to x among the entire training set (calculated both upfront

using kNN). MNkNN VEC predicts a label Y P , a sequence of labels Y P
1 , Y

P
2 , ..., Y

P
K and

a sequence of out-of-sample feature vectors XP
1 , X

P
2 , ..., X

P
K .

By a linear mapping T , a ReLU operation and another linear mapping (Wx, bx), the

feature vectors are then calculated by XP
t = Wxmax{T (Hut + ot), 0}+ bx.

Same as the V2VSLS model, combining the L2 norm and the KL divergence together,

the loss function is defined as L = L1 + λE{
K∑
t=1

||XP
t −XT

t ||2}.

25

1.3.6. Out-of-Core Models

In the models exhibited so far, we assume that kNN can be run on the entire dataset

exactly to compute the K nearest feature vectors and corresponding labels to an input

sample. However, there are two problems with this assumption. First, this can be very

computationally expensive if the dataset size is large. Second, the training dataset might

be too big to fit in memory. When either of these two challenges is present, an out-of-

core model assuming it is infeasible to run a ‘full’ kNN on the entire dataset has to be

invoked. The out-of-core models avoid running kNN on the entire dataset, and thus save

computational time and resources.

Let B be the maximum number of samples that can be stored in memory, where

B > K. For a training sample x, we sample a subset S from the training set (including

x) where |S| = B, then we run kNN on S to obtain the K nearest feature vectors

and corresponding labels to x, which are denoted as Y T (S) = {Y T
1 , Y

T
2 , ..., Y

T
K } and

XT (S) = {XT
1 , X

T
2 , ..., X

T
K} for x in the training process. The previously introduced loss

functions L and L depend on x, Y GT , XT (S), Y T (S) and the model parameters Θ, and

thus our out-of-core models are to solve

min
Θ

Ex ES{L̃(x, Y GT , XT (S), Y T (S),Θ)}

where L̃ is either L or L.

Sampling a set of size B and then finding the nearest K samples only once are insuf-

ficient on imbalanced datasets, due to the low selection probability for minor classes. To

resolve this, we iteratively take R random batches: each time a random batch is taken, we

26

update the closest samples XT (S) by the K closest samples among the current batch and

the K previous closest samples. These resulting nearest feature vectors and corresponding

labels are used in the loss function. Note that we allow the previously selected samples to

be selected in later sampling iterations. The entire algorithm is exhibited in Algorithm 1.

ALGORITHM 1: Out-of-core framework
for epoch = 1,...,T do

for training sample x do
Let XT = ∅;
for r = 1 to R do

Randomly draw B samples from training set;
U = nearest K samples to x among the B samples;

Let XT be the nearest K samples to x among U ∪XT ;
end
Update parameters by a gradient iteration:

ΘR= ΘR − α∇L̃(x, Y GT , XT , Y T ,ΘR);
end

end

1.4. Computational Experiments

In this section, we evaluate our models on 9 classification datasets: Network Intrusion

(NI) [22], Forest Covertype (COV) [23], SensIT [24], Credit Card Default (CCD) [25],

MNIST [26], CIFAR-10 [27], News20 [28], IMDb [29] and Reuters [30], which are all

publicly available. Among the 9 datasets, the first 4 are structured and the remaining are

unstructured.

For each dataset we experiment with 5 different seeds and all reported numbers are

averages taken over 5 random seeds. We discuss the performance of the models in two

aspects: classification and oversampling.

27

1.4.1. Classification

Experimental Setup As comparisons against memory network kNN models and se-

quence to sequence kNN models, we use kNN with Euclidean metric and several currently

best classification models random forest (RF), extreme gradient boosting (XGB), light-

GBM (LGBM), a 4-layer feed-forward neural network (FFN) trained using the Adam op-

timization algorithm (which has been calibrated) with dropout and batch normalization

and MemN2N (since MNkNN and MNkNN VEC are built on MemN2N) as benchmarks.

Value K = 5 is used in all models because it yields the best performance with low standard

deviation among K = 1, 2, ..., 20. Increasing K beyond K = 5 is somewhat detrimental

to the F-1 scores while significantly increasing the training time.

In the sequence to sequence kNN models, LSTM cells are used. In the memory network

kNN models, the size of the external memory is 64 since we observe that models with

memory vectors of size 64 generally provide the best F-1 scores with acceptable running

time. Both sequence to sequence kNN models and memory network kNN models are

trained using the Adam optimization algorithm with initial learning rate set to be 0.01.

We also find that τ = 0.85, λ = 0.12 and α = 9.5 provide overall the best F-1 scores.

We first experiment on structured datasets not requiring special embeddings, i.e. NI,

COV, SensIT and CCD. We only consider 3 classes in NI and COV datasets due to

significant class imbalance.

Overall Results of Full Model on Structured Data We first discuss the full mod-

els that can handle all of the training data, i.e. kNN can be run on the entire dataset.

Table 1.1 shows that in the full model case, V2VSLS consistently outperforms the best

classification models on all four datasets. t-tests show that it significantly outperforms

28

benchmarks at the 5% level on all four datasets. For our kNN models, V2LS significantly

outperforms V2VS, because V2VS tries to reconstruct the feature level information, which

does not utilize the label information. Moreover, it can also be seen that predicting not

only labels but feature vectors as well is reasonable, since V2VSLS consistently out-

performs V2LS and MNkNN VEC consistently outperforms MNkNN. Models predicting

feature vectors outperform models not predicting feature vectors on all datasets. These

memory based models exhibit subpar performance, which is expected since they only

consider 64 training samples at once (despite using exact labels).

Table 1.1. F-1 score comparison of full models.

NI COV SensIT CCD MNIST CIFAR-10 News20 IMDb Reuters
kNN 90.54 91.15 82.56 63.81 98.91 93.12 62.14 86.25 72.34
RF 90.44 93.76 82.70 66.94 98.87 92.69 58.55 87.41 73.70

XGB 87.53 91.98 82.56 66.95 99.12 91.55 69.81 88.51 74.24
LGBM 90.23 89.85 83.29 65.68 99.57 92.18 70.59 88.60 74.98
SVM 89.28 90.59 83.15 66.01 98.86 92.95 71.84 87.75 73.97
FFN 88.53 91.83 83.67 65.37 99.51 94.41 72.93 88.33 74.83

MemN2N 79.36 77.98 75.17 61.83 96.20 90.13 54.20 81.01 69.87

LambdaRank 45.58 59.81 41.03 38.91 70.18 62.59 49.71 65.97 41.69
kNN-AN 64.18 69.64 54.29 52.18 89.59 81.72 55.01 67.80 59.81

V2LS 91.28 93.94 84.93 68.38 99.51 94.18 72.39 87.71 75.77
V2VS 86.18 90.39 74.84 64.23 98.17 92.98 70.11 86.27 72.10

V2VSLS 92.07 94.97 86.24 69.87 99.70 94.86 72.68 89.83 76.11
MNkNN 83.83 80.12 79.58 67.26 94.38 89.10 62.33 84.18 69.28

MNkNN VEC 84.59 83.94 83.41 68.82 97.29 93.02 71.54 87.85 74.17

Set-based model 91.25 94.10 85.51 68.77 99.51 93.39 70.88 88.19 74.91
Swapped V2VSLS 91.79 94.56 85.99 69.42 99.43 94.01 72.17 89.51 75.70

Overall Results of Full Model on Unstructured Data To provide insights of

how our model performs on unstructured data, we further evaluate on the image and text

datasets: MNIST, CIFAR-10, News20, IMDb and Reuters. The embeddings are fed into

classifiers.

29

We compare V2VSLS with some of the most popular classification models in Table 1.1.

On News20, 7-layer FFN performs slightly better than V2VSLS, but V2VSLS consistently

outperforms other classification models on all other datasets. There is a slight gap attrib-

uted to the single stage employed by pure deep learning models v.s. our experiment that

has two stages (embedding construction, kNN). Nevertheless, the performance of V2VSLS

on these unstructured datasets still outperforms many currently popular models.

Comparison with a Set-Based Model and Swapped Order V2VSLS We evalu-

ate the necessity of modeling nearest neighbors as a sequence, instead of as a set. First, we

compare the set-based model with the V2VSLS model. Note that compared to V2VSLS,

the set-based neural network model also predicts K labels, K nearest neighbors and a

final label for classification, but it does not model the K labels and nearest neighbors as

a sequence. The only difference is that the set-based model’s outputs are orderless. As

shown in Table 1.1, the set-based model which removes the order of nearest neighbors

suffers from a consistent performance drop across datasets. The set-based model still

outperforms most of the existing popular classification methods, however, which again

validates that predicting nearest neighbors is beneficial for classification.

Following the orderless nearest neighbors experiment, we arbitrarily swap the first and

the third nearest neighbor of the order in the training data. Intuitively, if the performance

drops after swapping the nearest neighbors in the training data, utilizing the order infor-

mation of nearest neighbors is crucial. The results are shown in Table 1.1. V2VSLS with

swapped order performs worse than V2VSLS with original order, but it still outperforms

the set-based model consistently, which validates that keeping the order of the nearest

neighbors is necessary.

30

Comparison with other Related Benchmark Models We first compare V2VSLS

with the popular ranking-based model LambdaRank [31] with lightGBM as the classifier.

LambdaRank ranks the feature vectors in the training set for a given query by similarity.

In inference, for a provided feature vector query, LambdaRank ranks the feature vectors

in the training set and obtains the nearest K = 5 samples. Finally, the label of the query

is obtained by majority voting among the corresponding labels of those nearest samples in

the training set. The results are provided in Table 1.1. The performance improvement of

approximately 40% is observed in the experiment, which shows the significant superiority

of V2VSLS over the conventional ranking-based method.

To compare our work with another similar work which utilizes the nearest neighbors

to make predictions, we implemented the kNN-Augmented Networks from [14]. The

comparison is shown in Table 1.1. In the implementation of kNN-Augmented Networks,

we have fine-tuned the hyper-parameters: K = 5, I = 8, learning rate=0.001 and the

Adam optimizer. There is a substantial gap between our models and the kNN-Augmented

Networks, that we were unable to close despite a significant effort to fine tune the hyper-

parameters.

Overall Results of Out-of-Core Model Next, we validate our models in the out-

of-core scenario which avoids running kNN on the entire dataset for saving computational

resources. In the out-of-core versions of our models, R is set to be 50, since we observe

that increasing 50 only has a slight impact on F-1 scores. However, this substantially

increases the running time.

31

Table 1.2. F-1 score of out-of-
core model with R=50.

NI COV SensIT CCD

kNN 73.87 63.87 61.40 59.41

V2LS 90.63 90.29 82.47 67.51

V2VS 81.92 71.29 69.12 61.36

V2VSLS 91.27 92.89 83.38 69.21

MNkNN 81.89 78.58 78.80 66.16

MNkNN VEC 83.19 81.72 82.32 68.15

Figure 1.1. Visualization of oversampling
methods.

Table 1.2 shows the results of our models under the out-of-core assumption when

R = 50 and B = 64. Both V2VLSL and MNkNN VEC significantly outperform the kNN

benchmark based on t-tests at the 5% significance level. The kNN benchmark provides a

low score since we restrict the batch size (or memory size) to be 64, and it turns out that

kNN is substantially affected by the randomness of batches. Our models are robust under

the out-of-core setting, because the weight of the ground truth label in the loss function

is relatively high so that even if the input nearest sequences are noisy, they still can focus

on learning the ground truth label and making reasonable predictions.

Table 1.3. Full model and out-of-core (OOC) model comparison on SensIT.

kNN V2LS V2VS V2VSLS MNkNN MNkNN VEC
Full F-1 82.56 84.93 74.84 86.24 79.58 83.41

OOC F-1 61.40 82.47 69.12 83.38 78.80 82.32
Full time (s) 312 443+635 857+1358 1391+1802 443+692 1391+1081

OOC time (s) 193 287+619 488+1316 741+1846 287+703 741+1055

Full Model and Out-of-Core Model Comparison Table 1.3 shows a comparison

between the full and out-of-core models with R = 50, B = 64 on the SensIT dataset. The

running time of our models are broken down to two parts: the first part is the time to

32

obtain sequences of K nearest feature vectors and labels and the second part is the model

training time. Under the out-of-core setting, overall the kNN sequence preprocessing time

is saved by approximately 40% while the models perform only slightly worse.

1.4.2. Oversampling

Experimental Setup When class distributions are highly imbalanced, many classifica-

tion models have low accuracy or F-1 score on the minority class. A simple but effective

way to handle this problem is to oversample the minority class. Since V2VSLS and

MNkNN VEC are able to predict out-of-sample feature vectors, we also regard our mod-

els as oversamplers and we compare them with two widely used oversampling techniques:

SMOTE and ADASYN. We only test V2VSLS since it scales better than MNkNN VEC

and the prediction performance is comparable. In our experiments, we evaluate our model

on four imbalanced datasets. We first fully train the model, and then for each sample

from the training set, V2VSLS predicts K = 5 out-of-sample feature vectors which are

regarded as synthetic samples. We add them to the training set if they are in a minority

class until the classes are balanced or there are no minority training data left for creating

synthetic samples. In our oversampling experiments, we use λ = 1.3 and α = 3.

Overall Results on Oversampling Table 1.4 shows the F-1 scores of FFN, extreme

gradient boosting and random forest classification models, with different oversampling

techniques, namely, original training set without oversampling, SMOTE, ADASYN and

V2VSLS. V2VSLS performs the best among all combinations of classification models

and oversampling techniques, as shown in Table 1.5. Although most of the time models

on datasets with three oversampling techniques outperform models on datasets without

33

Table 1.4. Oversampling: F-1 score comparison.

NI COV SensIT CCD
FFN-original 89.64 91.83 83.67 65.37
FFN-SMOTE 89.99 91.18 83.43 66.32

FFN-ADASYN 90.38 90.67 83.72 66.51
FFN-V2VSLS 90.89 92.05 83.94 66.82
XGB-original 87.53 91.98 82.56 66.95
XGB-SMOTE 87.79 91.86 82.87 66.56

XGB-ADASYN 88.39 92.56 83.42 66.20
XGB-V2VSLS 87.62 92.43 82.46 66.96

RF-original 90.44 93.76 82.70 66.94
RF-SMOTE 89.97 93.88 83.01 66.13

RF-ADASYN 89.39 93.83 83.34 67.14
RF-V2VSLS 90.79 94.36 82.75 68.08

oversampling, the classification performance still largely depends on the classification

model used and which dataset is considered.

Table 1.5. Oversampling techniques comparison.

NI COV SensIT CCD
Best model FFN+V2VSLS RF+V2VSLS FFN+V2VSLS RF+V2VSLS

Best F-1 90.89 94.36 83.92 68.08
Better than best SMOTE 0.51% 0.61% 2.28% 1%

Better than best ADASYN 0.6% 0.56% 0.26% 1.4%

Synthetic Samples Visualization Figure 1.1 shows a t-SNE [32] visualization of

the original set and the oversampled set, using SensIT dataset, projected onto 2-D space.

Although SMOTE and ADASYN overall perform well, their class boundaries are not as

clean as those obtained by V2VSLS.

1.5. Conclusion

In summary, we find that it is beneficial to have models learn not only labels but

also feature vectors. In our work, we develop two types of deep neural network models

34

mimicking kNN which are able to predict both the labels of closest samples and out-of-

sample feature vectors at the same time. In experiments, our proposed models outperform

the benchmark methods in both classification and oversampling tasks.

35

CHAPTER 2

Automatic Ontology Learning from Domain-Specific Short

Unstructured Text Data

2.1. Introduction

Over 90% of organizational memory is captured in the form of unstructured as well

as structured text. The unstructured text takes different forms in different industries,

e.g. body of email messages, warranty repair verbatim, patient medical records, fault

diagnosis reports, speech-to-text snippets, call center data, design and manufacturing

data and social media data. Given the ubiquitous nature of unstructured text it provides

a rich source of information to derive valuable business knowledge. For example, in an

automotive (which is used as our running example) or aerospace industry in the event

of fault or failure, repair documents (commonly referred to as verbatim) are captured

[33]. These repair verbatims provide a valuable source of information to gain an insight

into the nature of fault, symptoms observed along with fault, and corrective actions

taken to fix the problem after systematic root cause investigation [34]. It is important

to extract the knowledge from such verbatims to understand different ways by which

the parts, components, modules and systems fail during their usage and under different

operating conditions. Such knowledge can be used to improve the product quality and

more importantly to ensure an avoidance of similar faults in the future. However, efficient

and timely extraction, acquisition and formalization of knowledge from unstructured text

36

poses several challenges: 1. the overwhelming volume of unstructured text makes it

difficult to manually extract relevant concepts embedded in the text, 2. the use of lean

language and vocabulary results into an inconsistent semantics, e.g. ‘vehicle’ vs ‘car,’ or

‘failing to work’ vs. ‘inoperative,’ and finally, and 3. different types of noise are observed,

e.g. misspellings, run-on words, additional white spaces and abbreviations.

An ontology [35] provides an explicit specification of concepts and resources associ-

ated with domain under consideration. A typical ontology (or a taxonomy) may consist

of concepts and their attributes commonly observed in a domain, relations between the

concepts, a hierarchical representation of concepts and concept instances representing

ground-level objects. For example, the concept ‘vehicle’ can be used to formalize a loco-

motive object and vehicle instances, such as ‘Chevrolet Equinox.’ An ontological frame-

work and the concept instances can be used to share the knowledge among different agents

in a machine-readable format (e.g. RDF/S 1) and in an unambiguous fashion. Hence,

ontologies constitute a powerful way to formalize the domain knowledge to support dif-

ferent application, e.g. natural language processing [36] [37], information retrieval [38],

information filtering [39], among others.

Given the overwhelming scale of data in the real world and an ever-changing competi-

tive technology landscape, it is impractical to construct an ontology manually that scales

at an industry level. To overcome this limitation, we propose an approach whereby an

ontology is constructed by training a two-stage machine learning classification algorithm.

The classifier to extract and classify key concepts from text consists of two stages: 1. in

the first stage, a classifier is trained to classify the multi-gram concepts in a verbatim

1https://www.w3.org/TR/rdf-schema/

37

into relevant concepts and irrelevant concepts and 2. in the second stage, the relevant

concepts are further classified into their specific classes. It is important to note that a

concept can be a relevant in one verbatim, e.g. ‘check engine light is on,’ but irrelevant

in another verbatim, e.g. ‘vehicle is on the driveway.’ Our input text corpus consists of

short verbatims and the goal is to identify additional new concepts and classify them into

their most appropriate classes. In the first-stage, our classifier takes as the input labelled

training data consisting of n-grams generated from each verbatim and the label related

to each n-gram, where n ranges from 1 to 4. The labelling process is performed manually

and also by using an existing incomplete domain ontology. More specifically, if a concept

is already covered in a domain ontology then its existing class is used as a label for a

n-gram; otherwise a human reader provides a label. In our classification model, we use

both linguistic features (e.g. part of speech (POS)), positional features (e.g. start and end

index in verbatim, length of verbatim), and word embedding features (word2vec [40]).

The problem of polysemy poses a significant challenge since they occur frequently in short

text. In our approach, we introduce a new feature that handles the problem of polysemy

as follows: Given a 1-gram, we cluster their embedding vectors with the number of clus-

ters equal to the number of polysemy of a 1-gram based on WordNet [41] and then for an

occurrence of a 1-gram, we use centroid of the closest cluster as a representative feature.

For higher n-grams, e.g. 4-gram we observe limited positive samples in the training data

and we perform two rounds of active learning to boost the number of positive samples.

Our two-stage classification model is deployed as a proof-of-concept in General Motors

and the experiments have shown it to be an effective approach to discover new concepts

of high quality.

38

Through our work, we claim the following key contributions. 1. In real-world industry,

data comes from disparate sources and therefore, the relevant concepts are heterogeneous

both in terms of the lean language (e.g. ‘unintended acceleration’ and ‘lurch forward’)

and distributions. We successfully identify collaborative, common set of features to train

a machine learning classification model that classifies heterogeneous concepts with high

accuracy. 2. The problem of polysemy, e.g. ‘car on driveway’ v.s. ‘check engine light is

on’ is ubiquitous in our data. A new type of feature named polysemy centroid feature

(discussed in section 2.4.3) is introduced, which handles the problem of polysemy in our

data. 3. Abbreviations are common in real-world data and their disambiguation is impor-

tant for the correct interpretation of data. We successfully disambiguate abbreviations

and to the best of knowledge ours is the first proposal to disambiguate domain-specific

abbreviations by combining a statistical and a machine learning model. 4. The proposed

model is a practical system that is deployed as a tool in General Motors for an in-time

augmentation of domain specific ontology. The system is scalable in nature and handles

the industrial scale repair verbatim data.

The rest of the chapter is organized as follows. In the next section, we provide a review

of the relevant literature. In Section 2.3, the problem description and an overview of our

approach are discussed. In Section 2.4, we discuss data preprocessing algorithms that

are used to clean the data and then discuss the process of feature engineering to identify

key features that are used to train the classifiers. In Section 2.5, we discuss in detail the

experiments and evaluation of our classification models. In Section 2.6, we conclude the

chapter by reiterating the main contributions.

39

2.2. Background and Related Works

A plethora of works have been done in ontology learning [42]. There were three major

approaches: statistical methods (e.g. weirdness, TF-IDF), machine learning methods

(e.g. bagging, Näıve Bayes, HMM, SVM), and linguistic approaches (e.g. POS patterns,

parsing, WordNet, discourage analysis).

[43] built an ontology learning system by collecting evidence from heterogeneous

sources in a statistical approach. The candidate concepts were extracted and organized

in the ‘is-a’ relations by using chi-squared co-occurrence significance score. In compari-

son with [43], we use a structured machine learning approach, which can be applied on

unseen datasets. In [43], all evidence was integrated into a large semantic network and

the spreading activation method was used to find most important candidate concepts.

The candidate concepts are then manually evaluated before adding to an ontology. In

comparison with this, in our approach the latent features, e.g. context features, poly-

semy features from the data are identified to train a machine learning classifier. Hence,

it exploits richer data characteristics compared to [43]. Finally, ours is a probability

based classifier and it can be applied to any new data to extract and classify important

concepts effectively. The only manual intervention involved in our approach is to assign

labels to the n-grams included in the training data. Finally, the model proposed by [43]

is deterministic in nature and it does not consider the notion of context. Hence, it is very

difficult to imagine how such model can be generalized to extract concepts specified in

different context in the new data.

[44] makes use of the cosine similarity, TF-IDF, a C-value statistic, and POS to extract

the candidate concepts to construct an ontology. This work was done in a statistical and

40

linguistic approach. The key difference between our work and the one proposed in [44], is

ours is a principled machine learning model. It makes our system scalable to extract and

classify multi-gram terms from industrial scale new data without manual intervention.

The linguistic features, e.g. POS exploits syntactic information for better understanding

text.

[45] constructs a hierarchical ontology by employing support vector machine (SVM).

The SVM model heavily relies on the part-of-speech (POS) as the primary feature to

determine classification hyperplane boundary. In comparison to [45], in our approach

the POS is used as one of the features, but we also consider additional features, such

as the context, polysemy, and word embedding to establish the context of a unigram or

multi-gram concepts. Moreover, we also perform two rounds of active learning to further

boost the classifier performance. As word embedding features are not considered by [45]

it is difficult to envisage how the context associated with each concept was considered

during their extraction.

[46] evaluates the effectiveness of word2vec features in ontology construction. The

statistic based on 1-gram and 2-gram counts was used to extract the candidate concepts.

However, the actual ontology was then constructed manually. In our work, we not only

train a word2vec model to develop word embedding based context features, but other

critical features, such as POS, polysemy features, etc. are also used to train a robust

probabilistic machine learning model. The word embedding features included in our

approach dominate statistical features and, therefore, other statistical features are not

used in our approach.

41

[47] constructs an ontology by using the ‘weirdness’ statistic. The collocation analysis

was performed along with domain expert verification process to construct a final ontol-

ogy. There are two key differences between our approach and the one proposed by [47].

Firstly, in our approach the labelled training data along with different features as well as

stop words are used to train a classification model, while in their approach the notions

of ‘weirdness’ and ‘peakedness’ statistics are used to extract the candidate concepts. Sec-

ondly, in their work, there was a heavy reliance on domain experts to verify and curate

newly constructed ontology. With our approach, no such manual intervention is needed

during concept extraction stage or classification stage. Hence, our system can be deployed

as a standalone tool to learn an ontology from an unseen data.

In our work, we also propose a new approach to disambiguate abbreviations. There

are several related works. [48] extract features, such as concept unique identifiers and

then built a classification model. [49] identify context based features to train a classifier,

but they assumed an ambiguous phrase only with one correct expansion in the same

article. [50] propose a word embedding based approach to select the expansion from all

possible expansions with largest embedding similarity. There are two major differences

between our approach and these works. First, we propose a new model that seamlessly

combines the statistical approach (TF-IDF) with machine learning model (Näıve Bayes

classifier). That is, we measure the importance of each concept in terms of TF-IDF and

then estimate the posterior probability of each possible expansion. Alternate approaches

either only apply machine learning model or simply calculate statistical similarity between

abbreviation and possible expansions. Second, in these works a strong assumption is made

that each abbreviation only has a single expansion in the same article and therefore the

42

features are conditionally independent. No such assumption is made in our approach and

therefore it is more robust.

2.3. Problem Statement and Approach

In industry, data comes from several disparate sources and it can be useful in providing

valuable information. However, given the overwhelming size of real-world data, manual

ontology creation is impractical. Moreover, there are limited systems reported in literature

that can be readily tuned to construct an ontology from the data related to different

domains. In this work, we primarily focus on unstructured short verbatim text (commonly

collected in automotive, aerospace, and other heavy equipment manufacturing industries).

This is a typical verbatim collected in automotive industry: ”Customer states the en-

gine control light is illuminated on the dashboard. The dealer identified internal short to

the fuel pump module relay and the fault code P0230 is read from the CAN bus. The fuel

pump control module is replaced and reprogrammed. All the fault codes are cleared.” As

shown in Figure 2.1, the domain model (classes and relations among them) of a specific

domain, e.g. automotive, is designed by the domain experts, which have the common

understanding of a domain. Our algorithm is trained by using a training dataset from a

specific domain. In the first stage, the objective is to extract and classify all the relevant

technical concepts reported in each verbatim, such as ‘engine control light’, ‘fuel pump

module relay’, ‘is illuminated’, ‘internal short’, ‘fuel pump control module’, and ‘replaced

and reprogrammed’. In the second stage, the relevant concepts are further classified into

their specific classes. For instance, part: (engine control light, fuel pump module re-

lay, fuel pump control module), symptom: (is illuminated, internal short), and action:

43

(replaced and reprogrammed). The classified technical concepts populates the domain

model, which can be used within different applications, such as natural language process-

ing, information retrieval, fault detection and root cause investigation, among others.

Figure 2.1. The domain model is designed by the domain experts. The
classifier is trained to extract the technical concepts and they are classified
into their specific classes to populate the domain model.

The classification process in our approach starts by constructing a corpus of millions

of verbatims. Since a corpus usually contains different types of noise, these noises are

cleaned by using a text cleaning pipeline. It consists of misspelling correction, run-on

words correction, removal of additional white spaces, and abbreviation disambiguation.

From each verbatim, all the stop words are deleted due to their non-descriptive nature

and because they do not add any value to classifier training by using the domain specific

vocabulary. Next, each verbatim is converted into n-grams (n = 1, 2, 3, 4) and these

n-grams constitute the training data. For each n-gram, labels are assigned to indicate

44

whether it is a relevant technical or irrelevant non-technical concept and also a specific

class (e.g. part, symptom, action in case of automotive domain) is assigned to each

relevant technical concept. The labelling task is performed by using an existing seed

ontology and also by using human reviewers. The process of generating the training

dataset is discussed in further in Section 2.4.2.

As we discuss in Section 2.4.3, we identify several unique features related to each

n-grams, such as POS, polysemy, word2vec, etc. The labeled n-grams and their corre-

sponding features are used to train our classification model. The relevant concepts and

their features are then fed to the second stage classification model, which is trained to

assign specific classes to them. In our domain, the number of positive samples decrease

as the size of n-gram grows. Hence, the training data consists of a limited number of

4-grams. To overcome this problem, two rounds of active learning are performed to boost

the number of training samples of 4-grams in the training data. Active learning also helps

to improve the overall performance of our model. In the inference stage (i.e. when ap-

plied on the new data), the model takes raw verbatims and preprocesses by using our data

cleaning pipeline and then it extracts all candidate concepts without stop words and noise

words. Finally, these candidate concepts are fed as input to our two-stage classification

system. Figure 2.2 shows the overall process of our two-stage classification system.

2.4. Model Specifications

As discussed in the previous section, our data consists of different types of noise and

it is important to clean the raw data before it can be used for feature engineering and

then to train our classifiers. Below, we discuss each data cleaning steps in further details.

45

Figure 2.2. The overall methodology and flow of the two-stage classification
model.

2.4.1. Data preprocessing

In particular, four different data cleaning algorithms are used to clean the data: mis-

spelling correction, run-on words correction, removal of additional white spaces, and ab-

breviation disambiguation.

1. Misspellings correction. We consider all possible corrections of a misspelled

1-gram each with Levenshtein distance of 1. If there is only one correction, we replace

the misspelled 1-gram by the correction. Otherwise, for each candidate correction we

define its semantic similarity score to be the product of its logarithm of frequency and

the word2vec similarity between the misspelled 1-gram and its correction. The misspelled

1-gram is replaced by the correction with the maximum similarity score.

2. Run-on words correction. We split run-on words into a 2-gram by inserting

a white space between each pair of neighboring characters. For a specific split, if both

the left 1-gram and the right 1-gram are correct we retain such split as the correct one.

46

If there are multiple possible splits with correct 1-grams, then for each correct split its

semantic similarity score is defined to be the maximum of word2vec similarities between

the run-on 1-gram and the two 1-grams. The split with maximum similarity score is

replaced as the correct split.

3. Removal of additional white spaces. We also observe several cases in the data

where there are additional white spaces inserted in a 1-gram, e.g. ‘actu ator.’ We try to

remove the additional white spaces to see whether it turns the two incorrect 1-grams into

a correct 1-gram and if it does, then we employ this correction.

4. Abbreviation disambiguation. The use of abbreviations, e.g. ‘TPS is shorted’

is ubiquitous in a corpus and it is critical to disambiguate their meaning to correctly pop-

ulate our domain model. Typically, an abbreviation is a concept that can be mapped to

more than one possible expansion (or full form), for example, ‘TPS’ could stand for ‘Tank

Pressure Sensor,’ ‘Tire Pressure Sensor’ or ‘Throttle Position Sensor.’ The abbreviations

mentioned in our data are identified by using the domain specific dictionary, which con-

sists of commonly observed abbreviations and their possible full forms. For an identified

abbreviation with a single full form, we replace that specific abbreviation with its full

form. Otherwise we employ the following model.

Suppose an abbreviation abbr (e.g. TPS) hasN possible full forms, namely, {ff1, ff2, ..., ffN},

where N > 1. For ‘TPS’ we have three possible full forms: ‘Tank Pressure Sensor,’ ‘Tire

Pressure Sensor’ or ‘Throttle Position Sensor.’ We first collect the 1-gram concepts, which

co-occur with abbr from the entire corpus. The context concepts co-occurring with abbr

are denoted as Cabbr and the set of all co-occurring concepts related to each possible ex-

pansion, say ffn, 1 ≤ n ≤ N are denoted as Cn. To prevent meaningless expansions and

47

to compare the posterior probabilities of ffi and ffj, we only focus on the intersection

of these sets: V = ∩Nn=1Cn ∩ Cabbr. Having identified the relevant intersecting context

concepts, we measure the importance of each concept that is a member of intersection in

terms of its TF-IDF score.

Let vu ∈ R|V | be the TF-IDF vector of collocate u = abbr or full form u = ffi. Given

that ffn is associated with abbr, the probability of co-occurring concepts given ffn is

then estimated as P (abbr|ffn) =
∏|V |

i=1(
vffn,i

|V |∑
j=1

vffn,j

)vabbr,i .

This formula computes a probability and if abbr and ffn are truly interchangeable

then they have the same underlying distribution probability of their co-occurring con-

cepts. Furthermore, we estimate the prior probability P (ffn) of ffn from its document

frequency. Therefore, by the Bayes theorem, P (ffn|abbr) ∝ P (abbr|ffn) · P (ffn). We

then replace abbreviation abbr by the full form with the largest posterior probability.

2.4.2. Preparation of training set

The process of classifying the data starts by labeling the raw n-grams generated from

the cleaned data to construct the training set. Given the scale of real-world data, it is

impossible to manually label each raw sample. To overcome this problem, we make use of

the seed (incomplete) ontology and tag all such n-grams that are already covered in the

seed ontology with the label. For instance, if a specific n-gram, e.g. ‘engine control light’

is already covered in the existing seed ontology then it is assigned the label of relevant

technical concept and then a specific class of a n-gram is borrowed from the seed ontology,

e.g. the technical concept ‘engine control light’ is assigned a specific class ‘part.’ For the

purpose of avoiding repetitions and keeping concepts as complete as possible, only the

48

longest concepts are marked as a true concept. That is, in a specific verbatim a concept

‘engine control module’ is marked as the relevant concept, then its sub-grams, such as

‘engine,’ ‘control,’ ‘module,’ ‘engine control,’ ‘control module’ are labelled as irrelevant

concepts in that specific verbatim. Since the seed ontology is incomplete it is difficult to

imagine that it covers all the n-grams included in the training dataset. The n-grams that

are not covered in the seed ontology are labelled by domain experts. Please note that

we impose a specific frequency threshold (tuned empirically) and the n-grams with their

frequency above the threshold are used for manual labelling.

In inference, given a verbatim, we collect all possible n-grams without stop words and

noise words in them and they are passed to the two-stage classification system.

2.4.3. Feature engineering

In our model, different types of features, such as discrete linguistic features, word2vec

features, polysemy centroid features, and the context based features are identified.

1. Discrete linguistic features. From the data the following linguistic features are

identified: 1) the POS tags related to each n-gram is used which is assigned by employing

Stanford parts of speech tagger [51], 2) the POS tags of the three nearest left side 1-grams

of the n-gram, 3) the POS tags of the three nearest right side 1-grams of the n-gram, 4)

the POS tag of the nearest concept on the left side of the n-gram, 5) the POS tag of the

nearest concept on the right side of the n-gram.

2. Word2vec features. We also consider the continuous word2vec vector associated

with each n-gram as one of the features to improve the model performance. We train a

Skip-Gram model with respect to frequent 1-grams. When the word2vec embedding is

49

not available, we consider it as a zero vector. For a n-gram, the associated feature vector

is the average word2vec embedding of all its 1-grams.

3. Context features. We consider the ‘context’ word2vec feature of each n-gram.

For a n-gram T , we take the 3 left 1-grams and 3 right 1-grams of T in the verbatim and

then obtain the word2vec embeddings of 6 1-grams. The context feature is constructed

by the concatenation of the average of the 3 embeddings on the left and the average of

the 3 embeddings on the right. If a specific n-gram is towards the beginning or an end of

a verbatim and then naturally less than 3 embeddings get constructed, but in such cases

all the empty n-grams are not considered while constructing the average embedding. If

none of the context terms are available (in our domain it is possible that only one n-gram

makes a complete sentence), we set an average embedding to be the zero vector.

4. Polysemy centroid features. In our data, the n-grams appearing in different

verbatim may have different semantic meanings as their context changes. Given the num-

ber of meanings of a specific n-gram extracted from WordNet, we cluster all the context

features of such n-gram into a specific number of clusters. We take a viewpoint that the

cluster centroid of each cluster essentially provides a representative feature (indicative of

different meanings) of a n-gram. In this way, we distinguish between different semantic

meanings of the same n-gram based on its context. Specifically, we consider the polysemy

of a 1-grams and the following two steps as shown in Figure 2.3 are employed: 1. For each

n-gram T , we randomly sample 1,000 verbatims in which T is mentioned and calculate

the context feature vector V (T) for T in each selected verbatim. Then, we use WordNet

to obtain the number p polysemies of T . Further, the k-Means clustering algorithm is

used to cluster these 1,000 V (T) vectors, with the number of clusters set to p. 2. Having

50

generated polysemy centroids for a n-gram T ′, we find the context vector from its verba-

tim. The feature vector of T ′ corresponds to the closest centroid among those obtained

in step 1 for T ′ with respect to the context features of T ′.

Figure 2.3. (1) Obtain all possible polysemy centroids of a collocate: for
a collocate T , we cluster context vectors and save the cluster centroids
C1(T), ..., Cp(T). (2) Create polysemy centroid feature of a collocate: for a
new collocate T ′, let m = argmin{d(V (T ′), C1(T ′)), ..., d(V (T ′), Cp′(T

′))}
denote the index of the closest centroid, where d is the Euclidean distance.
Vector Cm(T ′) is our polysemy feature for T ′.

5. Features based on the incomplete ontology. We also find that a seed ontology

plays a significant role in classification. For a n-gram, we split it into 1-grams and add a

feature vector of the same length as the n-gram, with each element being set to be 1 if

such 1-gram exists in the seed ontology, otherwise 0.

2.4.4. Classification

In our work, we train a random forest model as our classification model, but we have

also experimented with support vector machine, gradient boosted trees, and Näıve Bayes

models. The model selection experiments showed that the random forest model outper-

formed all other models. As a part of model training process, we fine-tune the following

important hyperparameters of random forest: the number of trees in the forest is 10, no

maximum depth of a tree, the minimum number of samples required to split an internal

node is 2.

51

To further boost model performance, we have also introduced two rounds of active

learning. For this, eight different classifiers are trained by feeding randomly sampled

data. All the samples with four positive and four negative votes are collected. We then

pass all such samples that the classifiers fail to classify consistently into their correct

classes to human reviewers for manual labelling. All the samples generated from the two

rounds of active learning are added to the training data.

We also analyze feature importance by using the backward elimination process. Within

the backward elimination process, our model initially starts with all features and then

randomly drops one feature at a time, and we train a new model by using the remaining

features. This is done for all features. Then we remove the feature that yields the largest

improvement to the F1-score when removed. This process is repeated iteratively until

removing any feature does not improve the F1-score. The final set of features kept are

Word2vec, Polysemy, POS, Context and Existing Ontology, which are the most important

features in our model. The features dropped are left POS, right POS, left three POSes,

right three POSes.

2.5. Computational Study

In this section, we provide experimental results to validate our model. While our model

can be applied to any domain, in our work, we validate our ontology learning system

on a subset of an automotive repair (AR) verbatim corpus collected from an automotive

original equipment manufacturer, the vehicle ownership questionnaire (VOQ) complaint

verbatim collected from National Highway Traffic Safety Administration2, and Survey

data. The AR data contains more than 15 million verbatims, each of which on average

2https://www.nhtsa.gov/

52

contains 19 1-grams. Here is a typical AR verbatim: c/s service airbag light on. pulled

codes P0100 & ..solder 8 terminals on both front seats as per special policy 300b.clear

codes test ok. The classification models are trained on AR. To study the generality of

our model, we also test on VOQ, which contains more than 300,000 verbatims. The

VOQ verbatims are significantly different from AR primarily because the VOQ verbatim

are reported directly by customers, and thus they are more verbose and less technical

in nature in comparison with AR. A sample from VOQ reads: heard a pop. all of the

sudden the car started rolling forward... Finally, the Survey data is generated from the

telephone conversation between customer and service representative. It also consists of

different faults as the ones reported in AR, but they are longer with more description.

Our existing seed ontology consists of about 9,000 n-grams associated with three different

classes, labeled as Part, Symptom, and Action herein.

The classification system is implemented in Python 2.7 and Apache Spark 1.6 and ran

on a 32-core Hadoop cluster. The extracted ontology is added to the central database

where it can be accessed by different business divisions, e.g. service, quality, engineering,

manufacturing. Below we discuss the evaluation of the abbreviation disambiguation as

well as both the stages of our classification model.

2.5.1. Evaluation of abbreviation disambiguation

To evaluate the performance of the abbreviation disambiguation algorithm, we generate

three separate test datasets from the AR data source. On average, 5% of AR verbatims

contain an abbreviation and each abbreviation has more than 2 expansions. Table 2.1

53

summarizes the results of the abbreviation disambiguation algorithm experiment. All the

results are manually evaluated by domain experts.

Table 2.1. The result summary of abbreviation disambiguation algorithm.
Nraw denotes the number of raw verbatims, Nc denotes the number of abbre-
viations corrected and Ncorrect denotes the number of correct abbreviation
corrections.

Data Nraw Nc Ncorrect Accuracy
AR 1 10,000 204 154 0.75
AR 2 30,000 374 278 0.74
AR 3 45,000 407 312 0.77

As it can be seen in Table 2.1, the performance of the algorithm is stable, i.e. ac-

curacy does not vary across the three test datasets. On average, 75% of our corrections

are correct, which shows our algorithm is able to capture correct expansions of abbrevia-

tions. Note that there might be abbreviations that are not captured by our algorithm if

abbreviations are not in the abbreviation list.

2.5.2. Performance of classifiers

One of the bottlenecks of supervised machine learning approach is to assemble a large

volume of manually labeled data. Recall that the training data is from the AR data.

Since the entire AR data is large, our training set is sampled from AR in the following

way: for each n-gram (n = 1, 2, 3, 4), we randomly sample 50,000 relevant and irrelevant

concepts, which we regard as the training set for the n-gram model. Among 100,000

training samples, only 2,000 n-grams are manually labeled and 2,000 are generated by

active learning. For evaluation, we generate three different test datasets.

The datasets are first preprocessed using the data preprocessing pipeline and the

cleaned data are used in inference. The first test dataset consists of 3,000 randomly

54

selected repair verbatim from the AR data. The model classified n-grams into relevant

and irrelevant concepts and then classified the relevant concepts into their specific classes

of either Part, Symptom, or Action. We then randomly selected 1,500 classified n-grams

for their evaluation by domain experts to calculate precision, recall and F1-score. The

second test dataset consists of 23,000 VOQ verbatims and from the classified n-grams

we randomly selected 1,500 n-grams for their evaluation by domain experts. The third

test dataset consists of 46,000 verbatims and from the classified n-grams we randomly

selected 1,000 n-grams for their evaluation by domain experts. The randomly drawn

samples used in evaluation are reviewed in the context of actual verbatim in which they

are reported. Moreover, in the AR test set among those n-grams classified as the relevant

concepts, slightly less than 30% of concepts are newly discovered by our algorithm, which

are not previously covered in the seed ontology. This is a useful finding because newly

discovered concepts provide additional coverage to detect new faults/failures for improved

decision making. Please also note that the proposed system is not evaluated against other

algorithms that are presented in the related work, because the systems reported in the

literature are end-to-end solutions and to make a fair comparison all the components used

by these systems are necessary. The precision, recall, and F1-score for the test datasets

based on the domain expert results are given in Table 2.2.

Table 2.2. The evaluation of relevant concepts and irrelevant concepts clas-
sification algorithm.

Dataset Precision Recall F1-score
AR 0.81 0.90 0.85
VOQ 0.89 0.47 0.62
Survey 0.80 0.79 0.79

55

As we can observe in Table 2.2, the classification F1-score on the AR dataset of

relevant and irrelevant concepts is relatively high since the test and training sets are from

the similar distribution, in which case the ontology learning system performs very well.

In VOQ, since the test data is not from a similar distribution, i.e. the VOQ verbatims are

more verbose, the performance on VOQ data is much worse than that on AR. The Survey

data is conditionally sampled from AR, and therefore is also from a similar distribution

as training, which results in good classification performance. Moreover, on AR, the F1-

score for each n-gram is 0.88, 0.81, 0.83, 0.86 for n = 1, 2, 3, 4, respectively. The F1-score

for 1-gram is better primarily because we have a polysemy centroid feature to capture

polysemy meanings of 1-grams, which very likely have different polysemies. For higher

grams, the performance is also good, and we presume this is because longer concepts are

more easily captured by the algorithm while shorter concepts can be easily confused with

irrelevant n-grams.

Table 2.3. The evaluation of relevant concept type classification algorithm.

Dataset Precision Recall F1-score
AR 0.82 0.82 0.82
VOQ 0.84 0.65 0.73
Survey 0.82 0.80 0.81

We follow the same approach to evaluate the performance of the second stage classifier

which takes as the input the relevant concepts classified by the first stage classifier and

assigns specific classes, i.e. Part, Symptom, or Action. The test set sizes are 800, 1,500,

900 for AR, VOQ and Survey respectively. Note that the ‘concepts’ passed to the second

stage classifier could be incorrectly classified by the first stage classifier, i.e. some inputs

could be irrelevant concepts. Each irrelevant concept input to the second stage classifier

56

is counted as falsely predicted regardless of the type predicted by the classifier. Despite

of this, as it can be seen from Table 2.3, the second stage classification model shows good

precision rate, but the recall rate is comparatively lower, due to the false negative rate,

i.e. the classifier misses out on assigning types to long phrases. It is important to note

that although the VOQ dataset is generated from a completely different data source, the

second stage classifier shows a very good performance.

Figure 2.4. Change of F1-score when dropping each feature.

Next, we calculate feature importance by recording how much F1-score drops when

we remove each feature. The higher the value, the more important the feature. As it can

be seen in Figure 2.4, the features that contribute most to the F1-score are Word2Vec,

Context, Polysemy and POS, which is consistent with our observation in backward elim-

ination algorithm. The two most important features are Polysemy (4.3%) and Word2vec

(3.8%), which shows the significance of applying word embeddings to the problem of

ontology learning.

Table 2.4 shows typical examples of the correctly and incorrectly classified relevant and

irrelevant concepts. There are some critical reasons that are identified which contribute to

57

Table 2.4. Examples of classification results, where ‘None’ denotes irrele-
vant concepts.

Collocate Predicted True Type
RECOVER Action Action
NO POWER PUSHED None None
HIGH MOUNT BRAKE BULB Part Part
PARK LAMP None Part
ROUGH IDLE RIGHT SIDE Part None
ENGINE CUTS OFF None Symptom

the misclassification. First, the POS tags associated with each concept considered during

the training stage is one of the crucial features and it turns out that POS tags assigned by

the Stanford’s POS tagger are inconsistent in our data. For example, in ‘PARK LAMP,’

the POS tagger tags it as ‘VBN NNP,’ while it should be tagged as ‘NNP NNP’ since

’PARK’ here is not a verb. Second, there is variance in stop and noise words in real-

world data. While standard English stop words and noise words allow us to reduce the

non-descriptive concepts in the data, we need a more comprehensive stop and noise word

customized dictionary specific to automotive domain. Moreover, such a dictionary needs

to be a living document that requires timely augmentation to ensure as complete coverage

to such words as possible. For example, ‘OFF,’ which is usually regarded as a stop word

in English should not be in our customized stop words list as it appears in concepts like

‘ENGINE CUTS OFF.’ Third, concepts that are combinations of two different class types

contribute to misclassification. In our data, concepts such as ‘ENGINE CUTS OFF’

consist of two classes fused together, i.e. ‘ENGINE’ is class Part, while ‘CUTS OFF’ is

class Symptom. To handle such cases, we need to have more representatives within the

training dataset.

58

We also perform another experiment in order to assess the effectiveness of our model

in re-discovering the relevant concepts that are already included in the existing seed

ontology. For this experiment, we randomly removed the relevant concepts related to the

three classes, referred to as class Part, class Symptom, and class Action in the existing seed

ontology. Specifically, we removed 250 class Part concepts, 127 class Symptom concepts,

and 23 class Action concepts. Since the concepts in the seed ontology are acquired from

the AR data, 12,000 AR verbatim are used in this experiment. The test dataset of 12,000

verbatim is cleaned and the trained classification model is applied. The model extracted

and classified the relevant and irrelevant concepts and then the relevant concepts are

classified into Part, Symptom or Action. Table 2.5 shows the results of this experiment

in terms of precision, recall, and F1-score.

Table 2.5. The reconstruction of existing seed ontology from the AR data.

Technical class Precision Recall F1-score
Part 0.89 0.83 0.85
Symptom 0.86 0.79 0.82
Action 0.90 0.86 0.88

As it can be seen from Table 2.5, our classification model has shown promising F1-

score and identified the key relevant concepts that were randomly removed from the

seed ontology. The closer analysis of the results revealed that our model suffered par-

ticularly in classifying 4-grams concepts. There are two reasons behind this: 1. In

some cases, the correction of 4-gram concepts by the data cleaning pipeline showed

limited accuracy. For example, a 4-gram concept ‘P S STEERING RACK’ was con-

verted into ‘Power Steering Steering Rack’ (as the first two 1-grams ‘P’ and ‘S’ are

59

converted into ‘Power’ and ‘Steering’). Then classifier marked such concept as a mem-

ber of class Part, but a domain expert considers it to be an irrelevant concept. 2.

As discussed earlier, the Stanford POS tagger assigns inconsistent tags to the class

Symptom concepts in our domain. Further investigation revealed that the Stanford

POS tagger assigns a POS tag to a term by estimating a tag sequence probability, i.e.

p(t1. . . tn|w1. . . wn) =
∏n

i=1 p(ti|t1. . . ti−1, w1. . . wn) ≈
∏n

i=1 p(ti|hi).

In our domain, this notion of maximum likelihood showed weaknesses primarily due to

the sparse context words associated with higher n-grams. Since the context words around

4-grams change based on verbatim in which they appear the same concept gets different

POS tags. For example, the concept ‘air pressure compressor sensor’ in one verbatim gets

the POS tag of ‘NNP NN NN NN,’ while in another verbatim it is tagged as ‘NN NN

NN NN.’ The POS is one of the important features in our classification model, which

ends up impacting the classification accuracy. Therefore, it is important to note that our

model shows good F1-score given the complex nature of real-world data, both in terms of

identifying new concepts as well as in reconstructing existing concepts.

The ontology learning system discussed in this work is deployed in General Motors.

The proposed model is run once every two months in order to extract and classify new

concepts, which are reported in the AR data. The newly extracted concepts are added to

the existing ontology to improve in-time coverage. This new ontology provides a semantic

backbone to the ‘fault detection tool,’ which is used to build the fault signatures from

different data sources to identify key areas of improvement.

60

2.6. Conclusion

We propose an effective and efficient two-stage classification system for automatically

learning an ontology from unstructured text. The proposed framework initially cleans

noisy data by correcting different types of noise observed in verbatims. The corrected

text is used to train our two-stage classifier. In the first stage, the classification algorithm

automatically classifies n-grams into relevant concepts and irrelevant concepts. Next, the

relevant concepts are classified to their specific classes. In our approach, different types of

features are used and we not only use surface features, e.g. POS, but also identify latent

features, such as word embeddings and polysemy features associated with n-grams. In

particular, the introduction of novel polysemy controid feature helps in correctly classi-

fying n-grams. As shown in the evaluation, the combination of surface features together

with latent features provides necessary discrimination to correctly classify collocates. The

evaluation of our system using real-world test data shows its ability to extract and clas-

sify n-grams with high F1-score. The proposed model has been successfully deployed as

a proof of concept in General Motors for an in-time augmentation of a domain ontology.

61

CHAPTER 3

Concept Drift and Covariate Shift Detection Ensemble with

Lagged Labels

3.1. Introduction

In most challenging real-world supervised machine learning tasks in model serving

such as sentiment analysis of Twitter users and weather forecasting, data evolve and

change over time, causing the machine learning models built on historical data to become

increasingly unreliable. One reason is usually that the classification or regression models

assume stationarity, i.e. the training and test data should be independent and identically

distributed [52,53]. This assumption is often violated, leading to limited generalization

ability. The changes of the relationship between features and labels are referred to as a

concept drift, while the changes of features only are referred to as covariate shift. When

either one occurs, the model performance deteriorates. In order to handle the concept

drift or the covariate shift, the easiest way is to retrain the model as soon as a batch

of new labeled data comes. This is impractical as 1) continuous retraining is extremely

computationally time-consuming and 2) it is a waste of effort when the data distribution

does not change. A better strategy is to require the model serving system to continuously

diagnose signals such as the classification error and feature reconstruction error, and to

automatically adapt to changes in data over time. For example, when the classification

62

error rate increases significantly, the system is supposed to detect the signal and retrain

the model.

We consider the model serving process where we continuously receive new batches of

data (a batch can as well be a single sample corresponding to streaming) for inference.

The data comes without labels which can either arrive immediately after the batch or at

any time in the future. Before a new batch arrives, the system needs to make a decision

to retrain the model or not and it needs to select a subset of samples to use in retraining

if triggered.

There exist several works on drift detection [54–59] that mainly focus on concept

drift with classification performance as the signal for detection. However, this may be

problematic. On the one hand, having only one signal may greatly increase the likelihood

of false detection or missed detection. On the other hand, drift detection relying on

classification performance requires in-time online labeling and is impractical in real-world

applications, as in-time online labeling is time-consuming, costly and requires a large

amount of human intervention [53,60,61].

We address the first problem by including six different signals, capturing different

characteristics of data changes such as a lagged classification error rate and model un-

certainty. They function as an ensemble and use a tailored majority voting strategy for

drift detection, and thus reduce the reliance on one specific signal and the model is less

sensitive to anomaly data.

Although unavoidable, in order to reduce the reliance on in-time online labeling, we

address the second problem by introducing the lag of labels setting. In this setting,

the system receives the labels of input data after certain time periods to allow time for

63

labeling, instead of receiving labels immediately after a batch as in previous works. In

order to detect drift effectively and not waiting till labels are available, our proposed

method utilizes a lagged classification error rate for concept drift and other signals for

covariate shift, which monitor feature distribution changes as an early indicator of drift.

This lag of labels scenario is prevalent in real-world applications due to domain expert

labeling efforts.

Moreover, most of the existing drift detection algorithms do not have mechanisms to

determine what data to use for model retraining when drift is reported, which poses a

challenge when applied to real-world applications, because not only do we care about

effective and timely drift detection, but the model performance in serving is important as

well. Our proposed method automatically determines the data that are used for retraining

by collecting samples that are in the warning zone, which can be easily deployed into model

serving without human efforts to determine retraining data.

In our work, we propose Concept Drift and Covariate Shift Detection Ensemble (CD-

CSDE), a drift detection ensemble algorithm in the lag of labels setting, where the system

receives the labels of input features after a time period due to labeling costs. The ensem-

ble system is composed of six drift detection modules, capturing different characterstics

of streaming data such as misclassification rate and feature reconstruction error. The

proposed system is also able to decide when to retrain the model and automatically se-

lect the data to be used for retraining. We evaluate CDCSDE on both structured and

unstructured datasets, and on simulated and real-world datasets. The results show that

the proposed method consistently outperforms all the benchmark drift detection models

by a large margin.

64

Our contributions are summarized as follows.

• We propose a novel and effective method for drift detection in the lag of labels

setting.

• The proposed method can detect both concept drift and covariate shift; it can

determine when to retrain and what data to use to retrain automatically, by

utilizing an ensemble of six different drift detectors.

• CDCSDE is suitable for both structured and unstructured data.

• We conduct extensive experiments on popular drift detection benchmark datasets.

The results show the proposed method consistently outperforms all other meth-

ods by a large margin.

The rest of the chapter is organized as follows. In the next section, we provide a

review of the relevant literature. In Section 3.3, we provide the problem description while

in Section 3.4 we discuss the proposed approach in detail. In Section 3.5, we show the

experimental study results. We conclude the chapter by reiterating the main contributions

In Section 3.6.

3.2. Related Work

There are several works utilizing statistical control to monitor and detect drift in

data streaming. A Cumulative Sum control chart [56] (CUSUM) is a sequential analysis

technique, which is typically used for monitoring change detection. The system reports an

alarm as soon as the cumulative sum of incoming data exceeds a user-specified threshold

value. The Page Hinkley [56] (PH) test, a variant of CUSUM, is also a sequential analysis

technique often used for change detection in the average of a Gaussian signal. Similar to

65

CUSUM, the PH test alarms a user a change in the distribution when the test statistic

of incoming data is greater than a user-specified threshold. The exponentially weighted

moving average [58] (EWMA) method monitors the mis-classification rate of a classifier

for change detection. It calculates the recent error rate by down-weighting the previous

data progressively and reports a drift when the EWMA estimator exceeds an adaptive

threshold value. Slightly different from the previous approaches, Adaptive Windowing

[57] (ADWIN) is an adaptive sliding window algorithm for drift detection, which keeps

updated statistics from a window of a variable size. The algorithm takes the binary

prediction results for incoming data as input, and decides the size of the window by

cutting the statistics window at different points and it analyzes the average of statistics

over these sub-windows. Whenever the absolute value of the difference between the two

averages from two sub-windows exceeds a threshold, the algorithm concludes that the

corresponding expected values are different and reports a drift. The Drift Detection

Method [54] (DDM) is the most widely used concept drift detection method based on the

assumption that the model error rate would decrease as the number of analyzed samples

increases, provided that the data distribution is stationary. Same as ADWIN, DDM uses

a binomial distribution to describe the model performance. DDM then calculates the

sum of the overall classification error and its standard deviation. The most significant

difference between DDM and the previous works is that when the sum of the two statistics

exceeds a threshold, either drift is detected or the algorithm warns that drift may occur

soon. The data that DDM flags as a warning can be potentially used for future retraining.

66

There are four major differences between our proposed algorithm and the existing

works. First, most of the existing works utilize a user-specified threshold for drift de-

tection, and thus the performance of the drift detector largely depends on the choice of

the threshold with the model performance being extremely sensitive to it. Our proposed

algorithm does not require such threshold. Second, most of the existing works focus on

an ideal supervised setting, i.e. they assume the labels are always available as soon as the

input features are received, which does not capture many real-world applications due to

labeling costs. Our proposed algorithm assumes the lag of labels setting, which can report

a drift as an early indicator even though the labels are not yet available. Third, these

works utilize only a single statistic, e.g. the classification error rate, to monitor changes

in data, which suffers from the existence of outliers, while our work utilizes an ensemble

of six drift detectors that can capture different characteristics of incoming data. Fourth,

the previous works only alarm the user about changes in data, omitting deciding the data

to be used for retraining. In our work, we progressively select the retraining data based

on the calculated warning zone.

3.3. Problem Formulation

A data stream is a data set where observations have time stamps, which induces either

a total or a partial order between observations [62]. In our work, we assume classification

as the only task, although our proposed method can easily generalize to the unsupervised

setting where no labels are available.

Suppose the joint distribution p(X, Y) generates random variables X and Y , where X

denotes the features for classification and Y denotes the corresponding labels. We further

67

denote pt(X, Y) as the joint distribution at time t. Following the conventional definition,

concept drift occurs when

Pn(X, Y) 6= Pm(X, Y)

for time n and m, i.e., the joint distribution changes from time n to time m (n < m),

which often results in model performance degradation, as the model trained to fit one

distribution no longer works for the other one.

Similarly, covariate shift occurs when

Pn(X) 6= Pm(X)

for times n and m, i.e. the feature distribution has changed. Detection of covariate shift

is also of great importance, as on the one hand, it can be used as an early indicator

of concept drift, especially when labels are not available or cannot be obtained in-time.

On the other hand, most parametric models output probability distributions, which are

useful information to learn the model confidence about such predictions. If the model is

no longer confident about the predictions, it is desirable to alarm and retrain the model.

In real-world applications, a data stream is usually generated by different joint dis-

tributions, as characteristics of incoming data may change over time. If a concept drift

or covariate shift occurs, the classification performance is often affected, thus there arises

the need of drift detection and subsequent model retraining.

In a data stream in our work, we assume that labels Yn can only be obtained after a

time period l, i.e. at time n features Xn are available, while the corresponding labels Yn

68

are available at time n+ l. This is a more difficult but practical scenario as opposed to the

setting where labels Yn are available as soon as Xn arrives. In real-world scenarios, the

labels may arrive at any time, and thus l may be a random variable following a statistical

distribution.

Due to the aforementioned reasons, one cannot have a fixed model during the entire

process of model serving, as incoming data distribution might have changed and causes

performance degradation. The main tasks are: 1) how to monitor model performance, 2)

how to decide if data distribution has changed and 3) what data to use to retrain if change

is detected. The ultimate goal is to maximize the progressive accuracy of the provided

classifier across all incoming data by addressing the three tasks.

3.4. Concept Drift Detection Ensemble and Model Retraining

In this section, we exhibit our approach to solve the drift detection and model retrain-

ing problems.

Figure 3.1. Overall approach. For each batch of incoming data, we calculate
six descriptive statistics of time series, then utilize drift detection module
for each of them to monitor drift and decide what data used to retrain.

69

We assume the label lag is l. (Xtr, Ytr) are used to train the current classification

model clf . We denote an incoming batch as Bn = (Xn, Yn), where Yn are labels for

feature set Xn−l. Sets Y1, Y2, ..., Yl are assumed to be empty.

Figure 3.1 shows the general approach of our system, which contains six different drift

detection modules which capture different characteristics of data: EWMA of delayed

kpi, model uncertainty, Hellinger distance, auto-encoder reconstruction error, SPN fitting

loss and gradient changes, which are further explained in the following subsections. The

combination of the six modules is able to detect both concept drifts and covariate shifts.

Based on the tailored majority voting strategy among six modules, when the system

decides to retrain the model, it utilizes proper batches selected by the system to retrain

the model, after which the entire monitoring process is repeated.

3.4.1. Descriptive statistics calculation

We construct six time series which are fed to drift detection modules. At each time step

six different scores are calculated, which are either based on only the current batch or

based on the current batch as well as the previous batches. The six scores are then added

to the six time series for drift detection. We provide details on how we calculate the scores

in the following subsections.

EWMA of a delayed classification indicator: Let kpi(Y,X) be the most im-

portant key performance indicator of clf , e.g. error rate or 1 − f1score. We calculate

the exponentially weighted moving average of delayed classification error rate as follows.

Assume we trace back k batches to calculate the moving average, i.e. at time n, we use

the kpi of batches n− k + 1, n− k + 2,..., n. As the labels are delayed by l based on our

70

assumption. If the weight decay for weighted moving average is w such that
l∑

i=1

wi = 1,

then the score is calculated as

(3.1) q1
n =

n∑
i=n−k+1

kpi(Yi, clf(Xi−l)) · wn−i+1.

The main difference between (1) and the prior works is that the score defined in (1)

avoids using the labels of current batch due to label delay, and it uses the delayed kpi

for drift detection, while the prior works utilizing EWMA assume l = 0, i.e. they are

not designed to handle lag of labels situation and they use a different statistical control

method. Despite of this, it generalizes in a straightforward manner to the setting where

features and labels arrive simultaneously (l = 0). Moreover, utilizing EWMA instead of

focusing on a single batch is beneficial to the stability of the system, as it is more robust

against potential outliers. Intuitively, when EWMA increases significantly, the model

suffers from performance degradation and the drift has likely occurred.

Model uncertainty: It is also helpful to understand how confident the model is re-

garding predictions. In the second score, we first predict every sample in the current batch

Xn to obtain the predicted probability distributions. For each of these distributions, we

construct the histogram of the largest probability and the histogram of the second largest

probability, and fit each histogram using a Gaussian distribution to obtain probability

density functions N1, N2. The model uncertainty score is obtained by

71

(3.2) q2
n =

∫ ∞
−∞

min(N1, N2).

When the overlapping area increases, the mean and variance of the two Gaussians are

close to each other, indicating that the largest probability and the second largest proba-

bility from predictions are very similar and thus the model is more uncertain regarding

the predictions. A significant increase of q2 is a signal for drift, since when the model

predictions are uncertain, the likelihood of a change in distribution is high. On the other

hand, when the model is uncertain regarding a distribution, even if the predictions are

correct (i.e. q1 does not vary much), it is still detrimental to the overall process of model

serving, as a small fluctuation of the distribution may move the model decision boundary

and makes the model vulnerable to future outliers.

Hellinger distance: In statistics and measure theory, the Hellinger distance is often

used to quantify similarity between two distributions, and is also widely used in tasks

such as anomaly detection and classification. We utilize Hellinger distance to construct

the distance between two datasets. Having discretized the features, we define the Hellinger

distance between the training set and the current batch as

(3.3) q3
n =

1

|F |

∑
f∈F

√√√√√∑
z∈f

(

√
|Xtr,f=z|
|Xtr|

−

√
|Xn,f=z|
|Xn|

)2,

where F denotes the set of all features. By averaging over all features, we calculate the

distance between two datasets or batches. If the distance between the training dataset

72

(i.e. the dataset that the model is fitted on) and the current batch is large, the existing

model no longer fits the current distribution and needs to be retrained. Note that if the

input data is unstructured such as image data, we calculate the Hellinger distance based

on encoded feature vectors from an auto-encoder, instead of the raw features themselves.

Auto-encoder reconstruction error:

Auto-encoders are widely used in tasks such as dimension reduction and embedding

learning. In our work, we employ an auto-encoder to measure how different the two

datasets or batches are. We first train an auto-encoder using training features Xtr and

obtain the training reconstruction MSE loss Ltr = MSE(Xtr, AE(Xtr)). For the current

batch Xn, we calculate the test reconstruction loss Ln = MSE(Xn, AE(Xn)). The auto-

encoder reconstruction score is defined as

(3.4) q4
n = tanh(

Lte
Ltr

).

This score allows us to measure divergence by how large the test reconstruction error

is compared to the training error. The increase of q4 indicates that the auto-encoder is

unable to fully reconstruct the incoming data and thus the covariate shift has occurred.

Sum-Product Networks:

The Sum-Product Network (SPN) is a deep probabilistic model widely used as black

box density estimators by comparing the likelihoods on tasks such as image completion

and image classification [63]. Similar as q4, we use an SPN to monitor if the incoming dis-

tribution has changed or not, compared to the training data. After training an SPN using

73

training data Xtr, for batch Xn, we obtain the log of negative log-likelihood log(−lln).

The SPN module score is defined as

(3.5) q5
n = log(−lln).

As vanilla SPNs not take unstructured data as input, in such cases, we feed the embedded

features from the encoder of the auto-encoder to SPN. The higher the score is, the less

likely Xn is generated by the same distribution as Xtr.

Gradient changes:

The changes of gradients can also be used to tackle the drift detection task, i.e. the

larger the gradient changes, the more likely the data has changed. Instead of using

the conventional gradients, we utilize natural gradients instead, which show promising

performance in areas such as robotics and control. As natural gradients are rescaled by

the Fisher information matrix, they are more stable and often used to solve issues such

as catastrophic forgetting.

Let the optimal parameters from the training data (Xtr, Ytr) be θ∗. We evaluate the

natural gradients at time n using batch (Xn−l, Yn) as∇NLoss = ∇Loss(Xn−l, Yn, θ
∗)·F−1,

where Loss is the conventional loss function (cross-entropy in classification) and F is the

Fisher information matrix, approximated by using Kronecker factorization [64]. The

gradients change score is obtained by

(3.6) q6
n =

(∇NLoss)
T (∇NLoss)

dim(∇NLoss)
.

74

As gradient changes, the score should increase which is a signal for potential drifts.

3.4.2. Drift detection

Each descriptive statistic defined in the previous subsection generates a time series over

time. The remaining problem is how to detect drift based on these time series. We

describe next for the current batch Xn, the resulting algorithm to report drift, warning

or safe signals, which utilizes an ensemble of six independent drift detection modules to

monitor drift.

Similar to [54], to detect drift of a time series {qn}n=1,2,..., denote the progressive

average by pi =
i∑

n=1

qn/i and standard deviation by si = std(p1, p2, ..., pi) . We also denote

the minimum values at time i by pimin and simin such that pimin + simin = min
1≤n≤i

(pn + sn).

Note that different from [54], at each time step we receive a batch instead of a single

observation, thus our time series is not generated by Bernoulli distributions. To monitor

drift, we apply the following rules:

If pi + si > pimin + 2 · simin, the system is in the warning zone;

If pi + si > pimin + 3 · simin, we report drift and retrain the model using batches in the

warning zone;

If pi + si < pimin + 2 · simin, the system exits the warning zone and is safe from drift.

There are two assumptions for this statistical control module. First, the values in the

time series decrease when the data distribution is stationary, and thus the system should

either exit the warning zone or stay in safe zone. Second, a significant increase in the

time series indicates the existence of a drift.

75

With a simple drift detection module, we would be able to detect drift and decide

what data to use to retrain based on a single time series. Having six different time

series, our method CDCSDE works as an ensemble. To detect a drift event, we employ a

tailored majority voting rule as follows: if the drift detection module on q1 reports drift,

then the system reports drift and retrains all models (classifier, auto-encoder and SPN),

as maximizing the classification accuracy is the ultimate goal; otherwise, if most of the

remaining modules (i.e. not less than 3 modules) report a drift, CDCSDE will report drift

and retrains all models.

If drift is reported, the data used to retrain is determined by CDCSDE as well. Suppose

the latest warning zone (if a module exits the warning zone, then the previous warning

zone is not included in future retraining) for each module is Wi, i = 1, 2, ..., 6. The union

of these warning batches
6⋃
i=1

Wi is used to retrain all models.

3.5. Experimental Results

In this section, we report experiments on both simulated and real-world datasets to

evaluate the proposed method. The simulated datasets have ground truth about drift.

For simulated datasets, 5 different metrics are used: the mean accuracy value over all

batches (MA), mean time between false alarms (MTFA), mean time to detection (MTD),

missed detection rate (MDR), total number of drifts detected (TD). A good drift detection

method should have high MA and MTFA (or no MTFA due to no false alarms) as well

as low MTD and MDR. Low TD is also beneficial since it reduces retraining time and

computational costs. Among these metrics, MA is the most important as in real-world

model serving the overall model performance is what we care most about. In real-world

76

datasets only MA and TD are available as we do not have the knowledge on when drift

‘indeed’ occurs. We conduct experiments on both structured data and unstructured data

to validate the effectiveness of CDCSDE.

In the following experiments, the lag of labels is assumed to follow the exponential

distribution and thus the time between events is a Poisson process, i.e., a process where

events occur continuously and independently at a constant rate. We employ scale = 4

and the sampled value is rounded down to a integer. We also study the sensitivity with

respect to the lag of labels and we construct an ablation study.

3.5.1. Structured data stream

We first perform experiments on structured data which consist of the following widely

used datasets.

1. Sea [65]: simulated data with abrupt drift, 50,000 samples, 3 features and 2 classes.

There are 3 drifts in total, each occuring after 12,500 samples. 2. Sine2: simulated data

with abrupt drift, 100,000 samples, 2 features and 2 classes. There are 9 drifts in total,

each occurs after 10,000 samples. 3. Elec [66]: real-world data, 45,312 samples, 8 features

and 2 classes, which are recorded every half an hour for two years from the Australian

New South Wales Electricity Market. 4. Weather [67]: real-world data, 18,159 samples,

8 features and 2 classes, which record weather measurements from over 7,000 weather

stations worldwide to provide a wide scope of weather trends. 5. Temp [68]: real-world

data, 4,137 samples, 24 features and 2 classes, which are collected from a monitor system

mounted in houses.

77

Across all datasets, we utilize a 2-layer auto-encoder with shape ‘Input-6 neurons-

Input’ and one-layer feed-forward network with shape ‘6-Output’ as the classifier which

takes the embedded features from the auto-encoder as input. Also taking the embedded

features as input, the SPN consists of 4 layers, i.e. normal, product, sum, product. We

optimize our models with the Adam optimizer with the 0.001 initial learning rate. The

batch size is set as 64.

Table 3.1. Results on simulated structured datasets.

Sea Sine2
Method MA MTFA MTD MDR TD MA MTFA MTD MDR TD AVG
PH 69.50 - 43.5 33.3 3 69.78 38.0 22.3 33.3 8 69.64
ADWIN 77.59 9.5 18.0 0 14 78.39 15.9 40.0 33.3 16 77.99
EWMA 75.73 15.5 22.0 0 7 47.92 31.5 25.0 44.4 11 61.83
DDM 85.32 - 42.5 33.3 2 77.38 - 9.3 55.6 5 81.35
CDCSDE 88.08 - 17.7 0 3 83.69 - 10.4 22.2 8 85.89

Table 3.2. Results on real-world structured datasets.

Elec Weather Temp
Method MA TD MA TD MA TD AVG
PH 57.51 6 56.18 2 67.00 6 60.23
ADWIN 58.38 2 67.70 1 78.45 2 68.18
EWMA 59.61 8 32.29 1 74.39 3 55.46
DDM 58.63 1 67.70 1 66.25 1 64.19
CDCSDE 67.71 5 74.97 2 82.80 2 75.16

From Table 3.1 where ‘-’ denotes not available, i.e. no false alarms or only one false

alarm, ‘AVG’ denotes the average MA across all datasets, and the numbers in bold denote

the best across all methods if applicable, we observe that among all evaluation metrics,

CDCSDE consistently outperforms the benchmarks, especially in the most important

metric MA, as it effectively detects drift and decides what data to use to retrain. Our

relative improvements on average accuracy are 23.33%, 10.13%, 38.91%, 5.58% for PH,

78

ADWIN, EWMA and DDM, respectively. Regarding MTFA, CDCSDE predicts no false

detection in Sea and only one false detection in Sine2, while other benchmarks do not

exhibit a stable performance, resulting in more false alarms and high MTFA. Our method

also achieves the best performance in MTD due to the timely alarm of drift, with 17.7 on

Sea and 10.4 on Sine2, while other benchmarks generally being less sensitive to the drifts.

Lastly, among all methods, CDCSDE achieves the smallest MDR and reasonable TD.

We also conduct experiments on Elec, Weather and Temp datasets to provide better

insights on how our method performs on real datasets. The results are provided in Table

3.2 where ‘-’ denotes not available, i.e. no false alarms or only one false alarm, ‘AVG’

denotes the average MA across all datasets, and the numbers in bold denote the best

across all methods if applicable. Note that we do not have measures such as MTFA,

MTD, etc. as they are real-world datasets without the ground truth information regarding

drifts. From Table 3.2, CDCSDE consistently achieves the best performance in MA

for all benchmarks, which again validates the effectiveness of CDCSDE. Our relative

improvements on average accuracy are 24.79%, 10.24%, 35.52%, 17.09% for PH, ADWIN,

EWMA and DDM, respectively. The TD of our method is also reasonable, while some

other benchmarks either report too many drifts or do not report drift at all.

3.5.2. Unstructured data stream

In order to evaluate our method on unstructured data which is more ubiquitous in real-

world applications, we conduct experiments utilizing conventional image classification

datasets MNIST and USPS [69]. They contain the same 10 digits as labels (i.e. 0-9), but

their distributions differ. The two datasets are widely used in domain adaptation tasks

79

due to a moderate domain gap. In our work, we employ them to create 5 different data

streams to validate CDCSDE.

Figure 3.2. Unstructured datasets with various types of drifts.

Across all scenarios, we use MNIST as the ‘base’ dataset, i.e. any incoming batches

contain MNIST 0-9. USPS is used as the ‘drift’ dataset, i.e. samples from USPS are

added to the data stream in a specific way to introduce drifts. The batch size is set as 64

and the total number of samples is 60,000 (the size of the MNIST training set), and thus

the number of batches is 60, 000/64 = 938. The details of each dataset are provided as

follows, see also Figure 3.2.

1. Sudden drift: A fixed number of samples of one digit from USPS are introduced

after each 100 batches. Therefore, there are 9 sudden drifts in total. 2. Sudden and

gradual drift: Samples of one digit from USPS are gradually introduced after each 100

batches. There are 9 sudden drifts in total. 3. Gradual drift - increase: USPS 0-9

digits are gradually and increasingly introduced. 4. Gradual drift - plateau: USPS

80

0-9 digits are gradually introduced. After the 500th batch , the rate of adding USPS 0-9

digits is kept unchanged. 5. Gradual drift - decrease: USPS 0-9 digits are gradually

introduced. After the 500th batch , USPS 0-9 digits are gradually removed at the same

rate of introducing.

Table 3.3. Results on unstructured datasets with sudden drifts.

Sudden Sudden and gradual
Method MA MTFA MTD MDR TD MA MTFA MTD MDR TD AVG
PH 71.59 - 52.0 77.8 2 73.48 - 43.0 88.9 2 72.53
ADWIN 85.49 29.3 23.4 22.2 19 84.17 29.4 31.9 44.4 24 84.83
EWMA 90.92 53.9 29.4 33.3 11 92.01 49.2 26.1 33.3 19 90.47
DDM 87.00 - 25.5 77.8 2 85.51 - 35.5 77.8 2 86.26
CDCSDE 97.41 252.5 26.3 11.1 10 97.89 178.3 18.3 11.1 11 97.65

Across all datasets, we utilize a 2-layer CNN with output shape 500 as the encoder

and an one-layer feed-forward network with shape ‘500-10’ as classifier which takes the

embedded features from the encoder as input. Also taking the embedded features as

input, the SPN consists of 4 layers, i.e. normal, product, sum, product. We optimize our

models by using the Adam optimizer with 0.001 initial learning rate. The batch size is

64.

We first experiment on the sudden drift, and sudden and gradual drift scenarios.

From Table 3.3, we observe that when sudden drift occurs, the conventional benchmarks

generally suffer from high MDR (MDR of PH and DDM are as high as 88.9% and 77.8%)

due to the lack of ability for detecting changes in feature distributions, as they only take

classification error rate as input. CDCSDE achieves 11.1% MDR, i.e. only 1 drift missed,

which shows the ability of the proposed method for detecting both covariate shifts and

concept drifts. CDCSDE’s TD are 10 and 11 for two scenarios which is reasonable for a

total of 9 drifts, while other benchmarks either report too many drifts (24 for ADWIN)

81

or too few drifts (2 for PH and DDM). Similarly, the MTFA metric of CDCSDE is much

higher than the benchmarks when their TD is reasonable (as otherwise there will be no

false alarms at all), indicating that the proposed method is much less likely to make

false alarms. As a comparison, ADWIN reports a false alarm every 29.3 time steps on

average. The MTD metric of the proposed method is 26.3 for the sudden dataset and

18.3 for the sudden and gradual dataset which is the lowest among all benchmarks, which

again shows the ability of detecting drifts as low MTD indicates the method can respond

to the changes in data distributions in time. Most importantly, the MA of CDCSDE

consistently outperforms other benchmarks by a large margin due to the accurate and

timely detection of drifts. Our relative improvements on average accuracy are 34.63%,

15.11%, 7.94%, 13.20% for PH, ADWIN, EWMA and DDM, respectively.

Table 3.4. Results on unstructured datasets with gradual drifts.

Gradual increase Gradual plateau Gradual decrease
Method MA TD MA TD MA TD AVG
PH 85.63 3 81.28 2 81.12 4 82.68
ADWIN 89.45 13 91.65 9 87.17 7 89.42
EWMA 91.11 11 88.32 9 92.68 10 90.70
DDM 92.31 2 94.15 3 93.68 3 93.38
CDCSDE 97.99 3 97.76 4 97.50 3 97.75

We then conduct experiments only with gradual drifts to observe model performance

if there are no sudden drifts in the data stream, the results shown in Table 3.4. From

Table 3.4 we observe a relatively low TD for CDCSDE and the MA greatly exceeds

the benchmarks across all three datasets, which shows the robustness of the proposed

method for gradual drift as well. Our relative improvements on average accuracy are

18.23%,9.31%, 7.72%, 4.68% for PH, ADWIN, EWMA and DDM, respectively.

82

Ablation study In order to establish how important each component of CDCSDE

is, we conduct an ablation study on three unstructured datasets: sudden, sudden and

gradual, gradual decrease. The mean accuracies are shown in Table 3.5 and Table 3.6.

Table 3.5. Ablation study - increasingly adding components. ‘AVG’ denotes
the average MA across all datasets.

Sudden Sudden and gradual Gradual decrease AVG
EWMA error rate 94.38 95.68 92.18 94.08

+ uncertainty 95.19 95.88 93.91 94.79
+ Hellinger 95.59 95.70 94.24 95.18
+ AE error 96.10 96.30 95.31 95.90

+ SPN likelihood 97.25 97.10 96.24 96.86
+ gradient norm 97.41 97.89 97.50 97.60

We first add each component at one time to observe performance changes reported

in Table 3.5. The largest gains are from the SPN and gradient norm modules, which

empirically shows that monitoring changes in feature distribution is beneficial to model

performance.

Table 3.6. Ablation study - MA drop without each component.

Sudden Sudden and gradual Gradual decrease AVG
w/o EWMA error rate 2.61 3.59 2.33 2.84

w/o uncertainty 0.11 0.37 0.30 0.26
w/o Hellinger 0.21 0.28 0.17 0.22
w/o AE error 0.60 0.88 0.91 0.80

w/o SPN likelihood 1.38 1.60 1.10 1.36
w/o gradient norm 1.01 1.25 1.07 1.11

We then experiment removing each component to observe the accuracy drop in Table

3.6, which shows similar patterns as Table 3.5. The model without SPN suffers from the

second largest performance drop, which again validates that modeling feature distribution

as an early indicator of drift is important. It is not surprising that CDCSDE without

83

EWMA’s error rate suffers from the largest performance degradation, as it utilizes both

labels and features to calculate accuracy of predictions and a good accuracy in model

serving is what we are ultimately interested in.

Varying the level of lag of labels We also experiment how the model performs

on different levels of lag of labels. In addition to l ∼ exp(scale = 4) as in previous

experiments, we conduct experiments on small lag l ∼ exp(2) and large lag l ∼ exp(10).

The results are shown in Table 3.7.

Table 3.7. Results on unstructured datasets with different levels of lag of labels.

Sudden Sudden and gradual
Method MA MTFA MTD MDR TD MA MTFA MTD MDR TD AVG

l ∼ exp(2)
PH 73.94 - 45.5 77.8 3 73.01 - 39.0 77.8 3 73.48
ADWIN 87.74 25.5 22.0 33.3 17 90.01 29.2 21.2 33.3 16 88.38
EWMA 92.01 59.0 19.1 33.3 12 90.19 29.9 26.8 44.4 14 90.60
DDM 87.64 39.0 32.0 88.9 3 87.10 - 30.0 77.8 2 86.26
CDCSDE 97.57 287.0 24.0 11.1 10 97.71 151.0 21.5 11.1 10 97.65

l ∼ exp(4)
PH 71.59 - 52.0 77.8 2 73.48 - 43.0 88.9 2 72.53
ADWIN 88.10 31.6 25.1 33.3 19 84.41 28.4 29.5 55.6 14 86.26
EWMA 93.11 65.5 28.5 33.3 8 90.82 45.0 20.2 33.3 11 91.97
DDM 87.00 - 25.5 77.8 2 85.51 - 35.0 77.8 2 86.26
CDCSDE 97.21 252.5 26.3 11.1 10 97.49 178.3 18.3 11.1 11 97.35

l ∼ exp(10)
PH 69.70 34.0 41.0 88.9 3 71.40 56.0 51.0 77.8 4 70.55
ADWIN 87.45 29.8 32.0 33.3 22 86.30 27.0 33.5 44.4 17 86.88
EWMA 86.98 55.3 39.5 44.4 10 89.33 58.2 28.3 44.4 13 88.16
DDM 84.57 33.5 45.5 77.8 4 82.05 40.0 36.0 77.8 4 83.31
CDCSDE 96.01 191.0 28.6 22.2 11 95.41 117.0 24.9 11.1 11 95.71

From Table 3.7, we observe that in general models perform better for smaller lag

of labels, which is as expected because when the labels arrive sooner, such up-to-date

information can be immediately taken into account. When the labeling costs are high,

i.e. it takes more time for labels to arrive, the system can only use delayed labels to detect

84

drifts. Comparing among all methods, CDCSDE still shows stable performance across all

metrics, consistently outperforming benchmarks by a considerable margin for all levels of

lag of labels.

Fixed lag of labels Instead of using a stochastic lag of labels as in the previous

experiments, we further experiment on employing a fixed lag of labels of l = 2, 4 and 10.

The results are shown in Table 3.8.

Table 3.8. Results on unstructured datasets with fixed lag of labels.

Sudden Sudden and gradual
Method MA MTFA MTD MDR TD MA MTFA MTD MDR TD AVG

l = 2
PH 72.40 18.5 41.5 77.8 4 75.41 - 31.0 77.8 3 73.91
ADWIN 91.21 53.5 23.5 33.3 17 88.10 28.9 30.1 33.3 14 89.66
EWMA 90.01 41.0 32.3 44.4 12 90.83 35.2 23.6 44.4 10 90.42
DDM 89.02 54.5 28.5 77.8 4 87.45 38.5 29.0 88.9 3 88.24
CDCSDE 97.73 - 25.1 22.2 8 97.49 - 20.9 11.1 9 97.61

l = 4
PH 71.04 - 55.5 77.8 3 73.01 - 50.0 77.8 3 72.03
ADWIN 87.39 36.0 33.8 33.3 14 88.50 31.5 44.6 44.4 13 87.95
EWMA 89.59 35.5 39.3 44.4 12 88.19 40.0 27.5 44.4 13 88.89
DDM 86.24 39.0 32.0 88.9 3 84.20 - 30.0 77.8 2 86.26
CDCSDE 97.27 225.0 30.1 11.1 10 97.51 151.0 22.5 11.1 10 97.39

l = 10
PH 70.01 21.5 51.0 77.8 4 71.21 41.0 71.5 77.8 5 70.61
ADWIN 84.10 25.8 33.0 55.6 18 83.51 35.8 55.5 44.4 19 83.81
EWMA 85.19 49.0 41.0 55.6 8 83.91 48.8 28.3 44.4 23 84.55
DDM 83.87 41.0 50.3 66.7 5 81.29 51.3 36.5 77.8 5 82.58
CDCSDE 96.51 170.0 34.1 22.2 9 95.80 108.5 29.7 33.3 8 96.16

Compared with Table 3.3, we observe similar patterns in Table 3.8. The benchmarks

generally are either too sensitive to drifts or unable to detect drifts. CDCSDE still shows

robust performance across all metrics, consistently outperforming benchmarks by a con-

siderable margin even in the fixed lag of labels scenario.

85

3.6. Conclusions

In this chapter, we present a novel and effective drift detection method in the practical

lag of labels setting, which is able to detect both concept drift and covariate shift and

automatically decide what data to use to retrain, with the help of the ensemble of different

drift detectors. Extensive experiments on structured and unstructured data for different

type of drifts have shown that our method consistently outperforms the state-of-the-art

drift detection methods by a large margin.

86

CHAPTER 4

Open Set Domain Adaptation by Extreme Value Theory

4.1. Introduction

Recently, deep learning techniques have drawn a large amount of attention from peo-

ple in both academia and industry, due to their astounding performance in fields such

as computer vision and natural language processing [15, 70–78]. However, one major

disadvantage of deep learning is that neural networks generally require a large amount

of training data to converge. When the training data are insufficient, the model perfor-

mance is usually adversely affected. Sometimes even if the training data are sufficient, the

domain gap, i.e. the difference between data distributions, between the source domain

(the data we train model on) and the target domain (the desired target task) may still

contribute to the low generalizability. This is because in conventional machine learning

tasks, we usually assume training data distribution is the same as the testing data dis-

tribution. However, in real-world situation, testing data are uncontrollable, and thus the

difference between the source domain and the target domain could be huge, which results

in the overfitting problem, i.e. the model does not generalize well to the testing set.

In order to reduce the domain gap and better utilize the source domain knowledge,

domain adaptation techniques have been proposed to resolve the issue. Domain adapta-

tion assumes that the source domain has sufficient amount of labeled data to train a good

model, while the desired target domain has insufficient amount of data to train the model.

87

Note that in most domain adaptation tasks, the target domain does not have labeled data

at all, which is also known as unsupervised domain adaptation. Domain adaptation meth-

ods leverage the knowledge from the source domain with sufficient labeled data to learn

a model that works well in the target domain with insufficient or no labeled data. Typi-

cally, domain adaptation methods reduce the domain gap by diminishing the divergence

between the label-rich source and the label-scarce target domain [79–90]. A significant

drawback of most of the existing works is that they assume the source label space and

the target label space are identical, i.e. the target classes are assumed to have appeared

during training process and training classes do not contain classes that are not in the

target domain. This is also known as closed set domain adaptation (CSDA), which is

impractical in real-world scenarios since it is never guaranteed that the target domain

classes are the same as the source domain classes. Brutally aligning the source and the

target domain when their label spaces are different is extremely detrimental to model’s

generalizability, which is also known as the negative transfer phenomenon, because the

CSDA methods will try to align the additional unknown classes as well during adaptation.

To handle the domain adaptation tasks without assuming identical label spaces, open

set domain adaptation (OSDA) methods were proposed to first detect the irrelevant or

unknown samples and then avoid adaptation on the unknown samples and perform domain

adaptation only on the known classes [91–94], which can be achieved by forcing the

model to learn a clear boundary between known classes and unknown classes and a clear

boundary within the known classes. After adaptation, the model is applied to the target

samples: either a target sample is classified as one class in the known classes, or rejected as

the unknown classes. However, all of the conventional OSDA methods employ a rejection

88

threshold hyperparameter, where if a score or statistic for a sample is higher than, for

example, 0.3, then the sample will be rejected as an unknown class and discarded during

adaptation, and thus the model’s sensitivity is largely affected by this rejection threshold.

In our work, we handle the existing issues in OSDA by 1) utilizing an entropy-based

instance-level reweighting strategy and 2) extreme value theory (EVT) which has proven

to be useful in many classification tasks due to its ability to model extreme values [95–99].

We propose to use entropy of probability distribution of a sample to measure the likelihood

it belongs to unknown classes. That is, the higher the entropy is, the more likely the

sample belongs to the unknown classes, because the model is more uncertain regarding the

prediction. We utilize the entropy values to construct an instance-level weight for domain

adaptation, instead of setting a hard threshold. In this way, every sample is taken into

account during adaptation process, and the sample with higher entropy will be focused

less to avoid the negative transfer problem. In inference, we model the tail probability of

entropy distribution by fitting a generalized extreme value (GEV) distribution, and we

use the cumulative distribution function (CDF) score to indicate if a sample belongs to

unknown or known classes. Experimental results on three conventional domain adaptation

datasets show outperformance over both CSDA and OSDA benchmarks.

Through our work, we claim the following key contributions. First, we model the tail

of entropy distributions with EVT to detect and reject unknown classes. Second, the

entropy-based instance-level weighting strategy avoids setting a hard threshold manually

and thus is more robust and stable. Third, we have done extensive experiments on three

conventional datasets in domain adaptation, which show that our model outperforms

benchmarks by a significant margin.

89

The rest of the chapter is organized as follows. In Section 4.2, we discuss the related

literature and methods. In Section 4.3, we explain our method in details on how to solve

the OSDA problem. In Section 4.4, we conduct experiments to validate the effectiveness

of the proposed method. In Section 4.5, we conclude the chapter by reiterating the main

contributions.

4.2. Related Work

Existing works on CSDA typically try to diminish the domain gap by minimizing a

statistical divergence between two domains for adaptation or by an adversarial approach.

MCD [90] utilized two task-specific classifiers to detect the target domain samples which

are far from the source domain by maximizing the two classifiers’ inconsistency regarding

predictions. Based on the mean teacher model [100] that was originally proposed for semi-

supervised learning tasks, the self-ensemble network [89] was proposed to calculate the

exponentially moving average of the student model weights and it assigned the weights

to the teacher model to reduce the domain gap. There are also a plethora of works

on adversarial learning to reduce domain gap. DANN [88] reduced the domain gap

by introducing a domain discriminator during training process to discriminate between

domains, and the domain discriminator is optimized by a specially designed gradient

reversal layer. ADDA [85] incorporated adversarial training to reduce domain gap by

a discriminator to distinguish across domains. The soft labeling method [79] utilized a

soft cross-entropy loss function to optimize for the domain invariance and thus aligning

the source and target domain. WDGRL [86] was proposed to minimize the Wasserstein

distance across domains adversarially for learning domain invariance. CADA [101] aligned

90

the joint distribution for labels and features across two domain by exploring classifier

predictions for adversarial domain adaptation. The proposed method differs from the

prior works in that the proposed method focuses on the practical OSDA setting while

the prior works assume an identical label space across domains, and thus they cannot

recognize the unknown classes samples and the unknown classes will be included during

domain adaptation. While our method is able to detect the unknown classes by an

instance-level weight based on entropy to avoid negative transfer.

There were also several existing works on OSDA to address the issue of unknown

classes. STA [102] was proposed to develop a coarse-to-fine progressive separation method

for unknown and known classes. OSBP [92] forced the generator to either match target

samples with source known classes or ignore them in adaptation as unknown samples by

adversarial training. Based on the work of SE [89] in CSDA, KASE [93] modified the

adaptation loss and then aligned the target domain with the source domain to address

the unknown classes. By factorization and joint separation, D-FRODA [94] represented

the source and target classes with a shared embedding space for domain adaptation.

ATI [91] was also proposed to detect the target samples that potentially belong to the

known classes by learning a mapping from the source domain to the target domain. We

see the difference between the proposed work and the prior works as the existing works

usually utilized a hard threshold to recognize and reject the unknown samples, and thus

the model accuracy largely depends on how the threshold is set. While the proposed

method utilizes entropy to indicate the likelihood of unknown classes and construct a soft

instance-level weight, and we further fit an EVT model on tail of entropy distribution

to detect unknown classes. Therefore, by avoiding manual thresholding and introducing

91

EVT to detect unknown classes, the proposed method is more robust and suitable in the

OSDA setting, which is also validated in experimental results.

4.3. Methodology

In this section, K denotes the number of known classes, xs denotes a source sample,

xt denotes a target sample, ys denotes a source label, Xs denotes the source samples

distribution, X t denotes the target samples distribution, Ds denotes the source domain,

Dt denotes target domain, g denotes the feature extractor, clf denotes the K-way classifier

to classify samples into one of the K known classes and clfd denotes the binary domain

classifier to classify samples into source or target domain.

4.3.1. Entropy Weighted Domain Adversarial Training

In our work, we train the model in an adversarial manner by a domain classifier clfd to

distinguish samples from source domain and target domain, where clfd outputs a proba-

bility indicating the likelihood of belonging to the target domain. The domain classifier

clfd is optimized based on a binary cross-entropy loss. We train the feature extractor g to

maximize the domain classification loss and the domain classifier to minimize the domain

classification loss.

Domain classification loss is calculated by

Ld = Exs∼XsCE(clfd(g(xs)),0) + Ext∼Xtw(xt) · CE(clfd(g(xt)),1)

where

w(xt) =
1

Z
exp

(
−

K∑
c=1

pc(x
t) log pc(x

t)

)
.

92

Please note that pc(x
t) denotes predicted probability for a target sample xt for the c-

th class, Z is a normalizing constant such that
∑
w (xt) = 1 and 0 and 1 are vectors

containing all 0’s and 1’s for domain labels.

The feature extractor g is trained to maximize Ld so that the embedding from both

domains are similar and the domain classifier clfd is trained to minimize Ld for a good

classification performance. This is to make the feature extractor fool the domain classifier

and the domain classifier learns how to perform better from the feature extractor in an

adversarial manner.

4.3.2. Entropy Maximization for Source Unknown Classes

In this chapter, we assume that the entropy of classifier predictions is high if the sample is

from unknown classes and vice versa, because the classifier clf is optimized to minimize the

cross-entropy loss on source known classes. Therefore, the known classes predictions are

close to one-hot vectors with low entropy. Based on this assumption, the unknown classes

detection task can be tackled if we are able to separate the known classes and unknown

classes by their entropy values. In order to force the classifier to predict unknown classes

with high entropy, we penalize the model if the prediction is different from the uniform

distribution for a source unknown sample, because we want to force the unknown classes

predictions as uncertain as possible. The loss function is calculated as

Le = −Exs∼Xs
U
Ent(p(xs)).

93

where Xs
U denotes the source known samples distribution. By maximizing the source

unknown entropy and minimizing the source known entropy, we can further separate the

known and unknown classes with a clear boundary based on their entropy values.

4.3.3. Domain Adversarial Optimization

Denote θg as the parameters of the feature extractor g, θc as the parameters of the classifier

clf and θd as the parameters of the domain classifier clfd. The objective function to

minimize is calculated as

L = −λdLd + λeLe + λcLc

where Lc = E(xs,ys)∼DsCE(clf(xs), ys) is the conventional cross-entropy classification loss

on source known classes and λd, λe, λc are weights for loss functions.

To force the domain classifier to minimize the adversarial loss and the feature extractor

to maximize the adversarial loss, we seek the saddle point θ̂g, θ̂c, θ̂d of L satisfying the

conditions as follows:

θ̂g, θ̂c = arg min
θg ,θc

L(θg, θc, θ̂d)

θ̂d = arg max
θd

L(θ̂g, θ̂c, θd).(4.1)

On this saddle point, θd minimize the domain classification loss Ld, θ
c minimize the

conventional classification loss Lc, θ
g maximize the domain classification loss (thus the

feature divergence is minimized across two domains) and θg minimize the classification

loss Lc (thus the features are discriminative).

94

4.3.4. Target Samples Classification

We propose to fit an GEV using the tail of entropy distribution of source samples. The

probability density function for GEV is calculated as

PDF (x; loc, scale, conc) = t(x; loc, scale, conc)1+conc · exp(−t(x; loc, scale, conc))/scale

where

t(x; loc, scale, conc) = (1 + conc · (x− loc)/scale))−1/conc

and the CDF is calculated as

GEV (x; loc, scale, conc) = exp(−t(x; loc, scale, conc)),

where loc, scale, conc are parameters associated with the distribution.

After fitting GEV using source samples’ entropy values, for target samples, we esti-

mate the CDF of GEV on entropy distribution, and assign each target sample a score in

inference. If the CDF (i.e. probability) is higher than 0.5, then the sample is classified as

a unknown sample; otherwise it is fed into the known-class classifier clf to predict into

one of the K known classes.

4.4. Experimental Results

We evaluate our method by three conventional benchmark datasets in domain adap-

tation: Digits, Office-31 [103], VisDA [104]. In the experiments, the source domain

samples are labeled and the target domain samples are not labeled, and the task is to

either classify target samples into one of the known classes or reject as unknown. We use

95

the conventional OSDA metrics OS and OS* for performance measure, which denote the

mean accuracy for all K + 1 classes (all known classes and the additional unknown class)

and the mean accuracy for the K known classes, respectively. The hyperparameters are

set as λd = 0.5, λe = 1, λc = 1.

4.4.1. Digits Experiments

In the Digits experiments, we follow the conventions in OSDA to use USPS [69], SVHN

[105] and MNIST to conduct evaluations, and we perform domain adaptation from SVHN

to MNIST, USPS to MNIST and MNIST to USPS. Note that the USPS to MNIST and

the MNIST to USPS tasks are easier than the SVHN to MNIST task, since MNIST and

USPS both contain 2-dimensional black-and-white images and are hand-written digits,

while SVHN contains 3-dimensional RGB images for real-world house numbers collected

in Google Street View images. Therefore, the domain gap between SVHN to MNIST is

significantly larger than the other two experiments. For consistency, we use digits 0, 1,

2, 3 as known classes, 4, 5, 6 as source unknown classes and 7, 8, 9 as target unknown

classes, following the conventional protocols. The same CNN model is used across all

methods for fair comparison.

Table 4.1 shows the overall performance comparison, where the model trained on

source only performs the worst, which is as expected because it does not align the two

domains at all. The CSDA benchmarks DAN and DANN perform slightly better than

training only on source data, because they reduce domain misalignment, but they do

not reject unknown classes in domain adaptation. The OSDA methods OSBP, STA

and KASE outperform the CSDA methods but only improve by a small margin (1.6%,

96

Table 4.1. Accuracy (in %) on Digits dataset (best in bold). Note that
‘AVG’ denotes the average across all datasets.

Method S-M U-M M-U AVG
OS OS* OS OS* OS OS* OS OS*

Source only 58.5 63.5 82.3 83.9 82.0 84.1 74.2 77.2
DAN [87] 66.2 67.0 86.9 88.0 89.1 90.5 80.7 81.8
DANN [88] 66.8 67.4 89.2 88.9 88.9 89.9 81.6 82.0
OSBP [92] 62.2 63.9 94.8 94.3 92.7 93.2 83.2 83.8
STA [102] 65.2 65.9 94.7 94.5 93.3 94.1 84.4 84.8
KASE [93] 67.2 68.1 94.7 95.1 93.6 94.5 85.2 85.9
Ours 87.9 89.2 95.4 96.3 95.2 96.5 92.8 94.0

2.8%, 3.6%, respectively), from which we can observe the difficulty in the OSDA scenario.

While our method achieves 92.8% OS accuracy, outperforming the previous state-of-the-

art OSDA method by 9.6%, 8.4% and 7.6% respectively. Our method also outperforms

the CSDA benchmarks by 12.1% and 11.2%. In the most difficult task S-M, our method

is able to achieve a more than 20% improvement on both OS and OS* accuracy, which

again validates the effectiveness of the proposed method in the OSDA scenario. We also

experiment on 5 different random seeds and the standard deviations for average OS and

OS* are 0.49 and 0.37, indicating the performance is robust and stable. We can also

observe that comparing the OS and OS* metrics, OS* is always higher than OS for the

same method, meaning the unknown class accuracy is lower than the overall accuracy on

known classes only. This points to the future research direction in the OSDA area that

the unknown classes should be addressed more on their detection and separation. Our

relative OS improvements regarding benchmarks are 25.1%, 15.0%, 13.7%, 11.5%, 10.0%,

8.92%.

Ablation study

97

In order to have a better understanding on what component in our model contributes

most to the performance, we conduct ablation studies by removing components from our

model. The ablation study is performed in Table 4.2. Note that in the second experiment

(i.e. w/o EVT) we replace EVT by a binary classifier to classify target samples into

known/unknown classes and this classifier is trained using source known and unknown

samples.

Table 4.2. OS (in %) on Digits dataset without specific parts of our model.
Note that ‘AVG’ denotes the average across all datasets.

Method S-M U-M M-U AVG
OS OS* OS OS* OS OS* OS OS*

Ours w/o reweighting 71.5 73.9 89.4 92.0 87.4 88.7 82.8 84.9
Ours w/o EVT 83.2 84.7 84.9 86.8 88.5 90.1 85.5 87.2
Ours 87.9 89.2 95.4 96.3 95.2 96.5 92.8 94.0

From Table 4.2 we observe that removing soft reweighting strategy contributes most to

the accuracy drop, i.e. the average OS drops by 10.0% without entropy-based reweighting.

Removing EVT component is also detrimental to the performance, where the average OS

drops by 7.3% without EVT. Including both reweighting and EVT in our model achieves

the new state-of-the-art performance in OSDA.

Experiments with less source data

In domain adaptation tasks, usually we assume the source domain contains sufficient

amount of labeled data. In order to see how our method performs with less source data,

we experiment on limiting the source data to 10%, 25% and 50%. From Table 4.3, both

the OS and OS* accuracy increase when we have more source data. The model trained

with 10% data achieves comparable performance with the benchmarks, and the model

trained with 25% source data already outperforms the previous state-of-the-art OSDA

98

Table 4.3. Performance of our method on Digits dataset with different per-
centage of source data.

Method S-M U-M M-U AVG
OS OS* OS OS* OS OS* OS OS*

Source only 58.5 63.5 82.3 83.9 82.0 84.1 74.2 77.2
STA [102] 65.2 65.9 94.7 94.5 93.3 94.1 84.4 84.8
KASE [93] 67.2 68.1 94.7 95.1 93.6 94.5 85.2 85.9
10% data 73.2 74.6 90.1 91.3 87.5 89.8 83.6 85.2
25% data 79.1 80.9 92.3 93.1 92.0 92.5 87.8 88.8
50% data 85.1 86.3 93.9 95.8 94.6 95.8 91.2 92.6
All data 87.9 89.2 95.4 96.3 95.2 96.5 92.8 94.0

method. This validates that our method shows robust performance even when less source

data are presented.

Sensitivity on hyperparameters

We also experiment on varying the loss function weights hyperparameters to observe

their sensitivity. The results are shown in Table 4.4, where in general, the hyperparame-

ter for source classification loss λc is less sensitive in that varying its value results in the

least accuracy changes, which we postulate is because the source knowledge can already

be learned well for a small weight. The hyperparameters for domain discriminator loss

λd and unknown entropy maximization loss λe are more sensitive to the changes where

either increasing or decreasing the values will result in an accuracy drop. The combina-

tion λd = 0.5, λe = 1.0, λc = 1.0 which provides the best accuracy is used as the final

hyperparameters across all datasets.

99

Table 4.4. Model performance on varying loss function weights on Digits dataset.

Hyperparameters S-M U-M M-U AVG
OS OS* OS OS* OS OS* OS OS*

λd = 0.25, λe = 1.0, λc = 1.0 86.1 87.3 95.3 95.9 93.7 94.2 91.7 92.5
λd = 1.0, λe = 1.0, λc = 1.0 84.4 87.0 94.1 94.8 90.5 92.2 89.7 91.3
λd = 0.5, λe = 0.5, λc = 1.0 81.4 83.0 91.1 92.9 91.9 93.1 88.1 89.7
λd = 0.5, λe = 2.0, λc = 1.0 83.8 85.7 92.6 94.6 93.7 95.1 90.0 91.8
λd = 0.5, λe = 1.0, λc = 0.5 86.8 88.3 94.8 95.9 94.7 95.6 92.1 93.3
λd = 0.5, λe = 1.0, λc = 2.0 85.7 87.4 93.2 95.0 94.5 95.5 91.1 92.6
λd = 0.5, λe = 1.0, λc = 1.0 87.9 89.2 95.4 96.3 95.2 96.5 92.8 94.0

4.4.2. Office-31 Experiments

We also experiment on the Office-31 dataset which is another frequently used domain

adaptation dataset containing three domains: Amazon, DSLR and Webcam. The follow-

ing 6 domain adaptation tasks are created: Amazon to DSLR, DSLR to Amazon, Amazon

to Webcam, Webcam to Amazon, DSLR to Webcam and Webcam to DSLR. Each domain

contains 31 classes, and the images are either collected directly from www.amazon.com or

they are office environment images taken with different lighting etc. using a webcam or a

digital single-lens reflex (DSLR) camera. Therefore, the domain gap between DSLR and

Webcam is slightly smaller. Following the same experimental setup as in previous works,

we set the 10 common classes with the Office-Caltech dataset [81] as the known classes,

and the first 10 remaining classes in alphabetical order are set as the unknown classes for

source domain and the last 11 classes are set as the unknown classes for target domain.

We use the same CNN model AlexNet [70] as in previous works across all methods for

fair comparison. The experimental results are presented in Table 4.5.

100

Table 4.5. Accuracy (in %) on Office-31 dataset (best in bold). Note that
‘AVG’ denotes the average across all datasets. ‘/’ denotes the number is
unavailable because the cited paper does not include such experiment and
there are no codes publicly available.

Method A-D A-W D-A D-W W-A W-D AVG
OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

Source only 68.5 71.8 59.6 63.2 54.8 58.1 88.2 90.5 49.8 53.2 92.6 92.9 68.9 71.6
DAN [87] 78.7 79.5 73.4 74.2 59.6 62.1 87.8 88.6 62.2 64.5 96.5 96.8 76.3 77.6
DANN [88] 79.7 80.5 77.2 79.3 55.2 56.1 90.7 91.3 65.7 67.0 97.9 98.3 78.0 78.8
ATI [91] 79.8 79.2 77.6 76.5 71.3 70.0 93.5 93.2 76.7 76.5 98.3 99.2 82.9 82.4
OSBP [92] 74.7 76.4 72.6 73.1 61.7 63.3 93.3 94.8 79.8 82.5 95.7 96.5 79.6 81.1
D-FRODA [94] 87.4 / 78.1 / 73.6 / 94.4 / 77.1 / 98.5 / 84.9 /
KASE [93] 86.6 88.1 80.1 80.5 78.6 79.8 95.4 95.9 82.2 83.4 98.9 98.8 87.0 87.8
Ours 86.7 89.9 81.3 85.4 81.3 83.7 96.4 96.8 82.9 84.8 99.1 99.5 88.4 89.8

From Table 4.5, the CSDA methods generally have accuracy below 80% since they are

unable to address the additional unknown classes during adaptation. The OSDA methods

outperform the CSDA methods in this experiment with a large margin, where the previous

state-of-the-art method KASE achieves 87.0% OS accuracy and 87.8% OS* accuracy,

significantly outperforming other methods. While our method shows 88.4% OS accuracy

and 89.8% OS* accuracy, consistently beating the previous state-of-the-art method in all

domain adaptation experiments for both known and unknown classes. Our relative OS

improvements regarding benchmarks are 28.3%, 15.9%, 13.3%, 6.63%, 11.1%, 4.1% and

1.6%.

4.4.3. VisDA Experiments

The VisDA dataset [104] is a conventional but more difficult task in domain adaptation.

The source domain contains synthetic images and the target domain contains real-world

images. For fair comparison, we follow the conventions to set “bicycle,” “bus,” “car,”

“motorcycle,” “train,” “truck” as 6 known categories. In alphabetical order, the first 3

101

remaining categories “aeroplane,” “horse,” “knife” are set as source unknown categories

and the last 3 remaining categories “person,” “plant,” “skateboard” are set as target

unknown categories.

Table 4.6. Accuracy (in %) on VisDA-2017 (best in bold). ‘UNK’ denotes
the additional unknown class.

Method bicycle bus car motorcycle train truck UNK OS OS*
Source only 42.9 65.9 58.9 80.5 80.2 8.7 10.1 49.6 56.2
DANN [88] 46.1 69.0 56.2 84.4 82.8 18.2 52.0 58.4 59.5
OSBP [92] 51.3 70.7 37.3 87.8 77.3 23.8 88.1 62.3 58.0
Ours 56.0 71.2 59.1 88.4 83.0 25.0 88.3 67.3 63.8

From Table 4.6, the previous state-of-the-art methods DANN and OSBP consistently

outperform the model trained only on source data, while our method is able to achieve

OS accuracy gains of 17.7%, 8.9%, 5.0% and OS* accuracy gains of 7.6%, 4.3%, 5.8%

comparing with the benchmarks, from which the effectiveness of the proposed method

is validated again even in this difficult task. Our relative OS improvements regarding

benchmarks are 35.7%, 15.2% and 8.0%.

4.5. Conclusion

In our work, we propose an open set domain adaptation method which models the

tail of entropy distributions using EVT and utilizes an instance-level reweighting strategy

to detect and reject unknown samples. Experiments show that our method achieves the

new state-of-the-art performance by beating the existing benchmarks by a large margin

for three conventional domain adaptation datasets.

102

References

[1] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, “On the local behavior

of spaces of natural images,” International Journal of Computer Vision, 2008.

[2] C. Olah, “Neural networks, manifolds, and topology,” 2014. [Online]. Available:

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

[3] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” Institute of

Electrical and Electronics Engineers Transactions on Information Theory, 1967.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” Annual Conference on Neural Information Processing Systems, 2014.

[5] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” International Conference

on Learning Representations, 2015.

[6] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “Weakly supervised memory

networks,” Annual Conference on Neural Information Processing Systems, 2015.

[7] L. Breiman, “Random forests,” Machine Learning, 2001.

[8] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

103

[9] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. M. Liu,

“Lightgbm: A highly efficient gradient boosting decision tree,” Conference on Neu-

ral Information Processing Systems, 2017.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Syn-

thetic minority over-sampling technique,” Journal of Artificial Intelligence Research,

2002.

[11] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling

approach for imbalanced learning,” International Joint Conference on Neural Net-

works, 2008.

[12] C. Mathy, N. Derbinsky, J. Bento, J. Rosenthal, and J. S. Yedidia, “The boundary

forest algorithm for online supervised and unsupervised learning,” Association for

the Advancement of Artificial Intelligence Conference, 2015.

[13] D. Zoran, B. Lakshminarayanan, and C. Blundell, “Learning deep nearest neighbor

representations using differentiable boundary trees,” arXiv Repository, 2017.

[Online]. Available: http://arxiv.org/abs/1702.08833

[14] Z. Wang, W. Hamza, and L. Song, “k-nearest neighbor augmented neural

networks for text classification,” arXiv Repository, 2017. [Online]. Available:

http://arxiv.org/abs/1708.07863

[15] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio,

“Learning phrase representations using RNN encoder-decoder for statistical machine

http://arxiv.org/abs/1702.08833
http://arxiv.org/abs/1708.07863

104

translation,” Conference on Empirical Methods in Natural Language Processing,

2014.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

1997.

[17] A. Karpathy, “The unreasonable effectiveness of recurrent neural networks,” 2015.

[Online]. Available: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

[18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”

Annual Conference on Neural Information Processing Systems, 2015.

[19] D. Erhan, Y. Bengio, A. C. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio,

“Why does unsupervised pre-training help deep learning?” Journal of Machine

Learning Research, 2010.

[20] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. antoine Manzagol, “Stacked

denoising autoencoders: learning useful representations in a deep network with a

local denoising criterion,” Journal of Machine Learning Research, 2010.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

Conference on Computer Vision and Pattern Recognition, 2016.

[22] S. Hettich and S. D. Bay, “Network intrusion,” The UCI KDD Archive, 1999.

[Online]. Available: http://kdd.ics.uci.edu

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://kdd.ics.uci.edu

105

[23] J. A. Blackard and D. J. Dean, “Forest covertype,” UCI Machine Learning

Repository, 1998. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/

covertype

[24] M. F. Duarte and Y. H. Hu, “Vehicle classification in distributed sensor networks,”

Journal of Parallel and Distributed Computing, 2004.

[25] I.-C. Yeh and C. hui Lien, “The comparisons of data mining techniques for the

predictive accuracy of probability of default of credit card clients.” Expert Systems

with Applications, 2009.

[26] Y. LeCun and C. Cortes, “MNIST handwritten digit database.” [Online]. Available:

http://yann.lecun.com/exdb/mnist/

[27] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for advanced

research).” [Online]. Available: http://www.cs.toronto.edu/∼kriz/cifar.html

[28] K. Lang, “Newsweeder: Learning to filter netnews,” Proceedings of the Twelfth

International Conference on Machine Learning, 1995.

[29] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning

word vectors for sentiment analysis,” Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies, 2011.

[30] F. Chollet, “Reuters newswire topics classification,” 2015. [Online]. Available:

https://keras.io/datasets

https://archive.ics.uci.edu/ml/datasets/covertype
https://archive.ics.uci.edu/ml/datasets/covertype
http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
https://keras.io/datasets

106

[31] C. J. C. Burges, R. Ragno, and Q. V. Le, “Learning to rank with nonsmooth cost

functions,” Conference on Neural Information Processing Systems, 2006.

[32] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of

Machine Learning Research, 2008.

[33] D. G. Rajpathak, R. Chougule, and P. Bandyopadhyay, “A domain-specific deci-

sion support system for knowledge discovery using association and text mining,”

Knowledge and Information Systems, 2011.

[34] D. G. Rajpathak, “An ontology based text mining system for knowledge discovery

from the diagnosis data in the automotive domain,” Computers in Industry, 2013.

[35] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowl-

edge Acquisition, 1993.

[36] P. Cimiano, A. Hotho, and S. Staab, “Learning concept hierarchies from text corpora

using formal concept analysis,” Journal of Artificial Intelligence Research, 2005.

[37] M. Girardi and B. Ibrahim, “Using English to retrieve software,” Journal of Systems

and Software, 1995.

[38] S. E. Middleton, N. R. Shadbolt, and D. C. De Roure, “Ontological user profiling

in recommender systems,” ACM Transactions on Information Systems, 2004.

[39] P. Shoval, V. Maidel, and B. Shapira, “An ontology-content-based filtering method,”

International Journal of Theories and Applications, 2008.

107

[40] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” arXiv Repository, 2013. [Online]. Available:

http://arxiv.org/abs/1301.3781

[41] G. A. Miller, “Wordnet: A lexical database for English,” Communications of the

ACM, 1995.

[42] J. Lehmann and J. Völker, “Perspectives on ontology learning,” Studies on the

Semantic Web, 2014.

[43] G. Wohlgenannt, “Leveraging and balancing heterogeneous sources of evidence in

ontology learning,” The Semantic Web. Latest Advances and New Domains, 2015.

[44] K. Doing-Harris, Y. Livnat, and S. Meystre, “Automated concept and relationship

extraction for the semi-automated ontology management (seam) system,” Journal

of Biomedical Semantics, 2015.

[45] M. A. Yosef, S. Bauer, J. Hoffart, M. Spaniol, and G. Weikum, “Hyena: Hierarchical

type classification for entity names,” 24th International Conference on Computa-

tional Linguistics, 2012.

[46] I. Pembeci, “Using word embeddings for ontology enrichment,” International Jour-

nal of Intelligent Systems and Applications in Engineering, 2016.

[47] K. Ahmad and L. Gillam, “Automatic ontology extraction from unstructured texts,”

On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,

2005.

http://arxiv.org/abs/1301.3781

108

[48] M. Stevenson, Y. Guo, A. Al Amri, and R. Gaizauskas, “Disambiguation of biomed-

ical abbreviations,” Proceedings of the Workshop on Current Trends in Biomedical

Natural Language Processing, 2009.

[49] Y. HaCohen-Kerner, A. Kass, and A. Peretz, “Combined one sense disambiguation

of abbreviations,” Proceedings of the 46th Annual Meeting of the Association for

Computational Linguistics on Human Language Technologies: Short Papers, 2008.

[50] C. Li, L. Ji, and J. Yan, “Acronym disambiguation using word embedding,” Asso-

ciation for the Advancement of Artificial Intelligence Conference, 2015.

[51] A. Ratnaparkhi, “A maximum entropy model for part-of-speech tagging,” Empirical

Methods in Natural Language Processing, 1996.

[52] I. Žliobaité, “Change with delayed labeling: When is it detectable?” IEEE Inter-

national Conference on Data Mining Workshops, 2010.

[53] T. Sethi and M. Kantardzic, “On the reliable detection of concept drift from stream-

ing unlabeled data,” Expert Systems with Applications, 2017.

[54] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift detection,”

Advances in Artificial Intelligence – SBIA, 2004.

[55] M. B.-G. Jose, J. D. Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà, and R. Morales-

bueno, “Early drift detection method,” Fourth international workshop on knowledge

discovery from data streams, 2006.

109

[56] E. S. Page, “Continuous Inspection Schemes,” Biometrika, 1954.

[57] A. Bifet and R. Gavaldà, “Learning from time-changing data with adaptive win-

dowing,” Proceedings of the 7th SIAM International Conference on Data Mining,

2007.

[58] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand, “Exponentially weighted

moving average charts for detecting concept drift,” Pattern Recognition Letters,

2012.

[59] P. Gonçalves Jr, S. Santos, R. Barros, and D. Vieira, “A comparative study on

concept drift detectors,” Expert Systems with Applications, 2014.

[60] E. Lughofer, E. Weigl, W. Heidl, C. Eitzinger, and T. Radauer, “Recognizing input

space and target concept drifts in data streams with scarcely labeled and unlabelled

instances,” Information Sciences, 2016.

[61] G. Krempl, I. Žliobaite, D. Brzeziundefinedski, E. Hüllermeier, M. Last, V. Lemaire,

T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, and J. Stefanowski, “Open challenges

for data stream mining research,” SIGKDD Explorations Newsletter, 2014.

[62] G. I. Webb, L. K. Lee, B. Goethals, and F. Petitjean, “Analyzing concept drift and

shift from sample data,” Data Mining and Knowledge Discovery, 2018.

[63] A. Vergari, N. D. Mauro, and F. Esposito, “Visualizing and understanding sum-

product networks,” Machine Learning, 2018.

110

[64] J. Martens and R. Grosse, “Optimizing neural networks with kronecker-factored

approximate curvature,” International Conference on Machine Learning, 2015.

[65] N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for large-scale clas-

sification,” ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2001.

[66] M. Harries and N. S. Wales, “Splice-2 comparative evaluation: Electricity pricing,”

University of New South Wales, School of Computer Science and Engineering tech-

nical report, 1999.

[67] G. Ditzler and R. Polikar, “Incremental learning of concept drift from streaming

imbalanced data,” IEEE Transactions on Knowledge and Data Engineering, 2013.

[68] F. Zamora-Mart́ınez, P. Romeu Guallart, P. Botella-Rocamora, and J. Pardo Al-

biach, “On-line learning of indoor temperature forecasting models towards energy

efficiency,” Energy and Buildings, 2014.

[69] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, 1998.

[70] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Conference on Neural Information Processing Sys-

tems, 2012.

111

[71] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv Repository, 2014. [Online]. Available:

https://arxiv.org/abs/1409.1556

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[73] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transfor-

mations for deep neural networks,” Conference on Computer Vision and Pattern

Recognition, 2017.

[74] Y. Zhang, J. Hare, and A. Prügel-Bennett, “Learning to count objects in natural im-

ages for visual question answering,” International Conference on Machine Learning,

2018.

[75] A. Singh, V. Natarajan, M. Shah, Y. Jiang, X. Chen, D. Batra, D. Parikh, and

M. Rohrbach, “Towards VQA models that can read,” Conference on Computer

Vision and Pattern Recognition, 2019.

[76] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang,

“Bottom-up and top-down attention for image captioning and visual question an-

swering,” Conference on Computer Vision and Pattern Recognition, 2017.

[77] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2015.

https://arxiv.org/abs/1409.1556

112

[78] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and K. He, “Detectron,” 2018.

[Online]. Available: https://github.com/facebookresearch/detectron

[79] J. Hoffman, E. Tzeng, T. Darrell, and K. Saenko, “Simultaneous deep transfer across

domains and tasks,” International Conference on Computer Vision, 2015.

[80] P. Koniusz, Y. Tas, and F. Porikli, “Domain adaptation by mixture of alignments

of second- or higher-order scatter tensors,” Conference on Computer Vision and

Pattern Recognition, 2017.

[81] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for unsuper-

vised domain adaptation,” Conference on Computer Vision and Pattern Recogni-

tion, 2012.

[82] Y. Guo and M. Xiao, “Cross language text classification via subspace co-regularized

multi-view learning,” International Conference on Machine Learning, 2012.

[83] T. Yao, Y. Pan, C.-W. Ngo, H. Li, and T. Mei, “Semi-supervised domain adaptation

with subspace learning for visual recognition,” Conference on Computer Vision and

Pattern Recognition, 2015.

[84] F. Qi, X. Yang, and C. Xu, “A unified framework for multimodal domain adapta-

tion,” ACM Multimedia, 2018.

[85] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative do-

main adaptation,” Conference on Computer Vision and Pattern Recognition, 2017.

https://github.com/facebookresearch/detectron

113

[86] J. Shen, Y. Qu, W. Zhang, and Y. Yu, “Wasserstein distance guided representa-

tion learning for domain adaptation,” Association for the Advancement of Artificial

Intelligence Conference, 2017.

[87] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Unsupervised domain adaptation

with residual transfer networks,” Conference on Neural Information Processing Sys-

tems, 2016.

[88] Y. Ganin and V. S. Lempitsky, “Unsupervised domain adaptation by backpropaga-

tion,” International Conference on Machine Learning, 2015.

[89] G. French, M. Mackiewicz, and M. H. Fisher, “Self-ensembling for visual domain

adaptation,” International Conference on Learning Representations, 2017.

[90] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum classifier discrepancy

for unsupervised domain adaptation,” Conference on Computer Vision and Pattern

Recognition, 2018.

[91] P. P. Busto and J. Gall, “Open set domain adaptation,” International Conference

on Computer Vision, 2017.

[92] K. Saito, S. Yamamoto, Y. Ushiku, and T. Harada, “Open set domain adaptation

by backpropagation,” European Conference on Computer Vision, 2018.

[93] Q. Lian, W. Li, L. Chen, and L. Duan, “Known-class aware self-ensemble

for open set domain adaptation,” arXiv Repository, 2019. [Online]. Available:

https://arxiv.org/abs/1905.01068

https://arxiv.org/abs/1905.01068

114

[94] M. Baktash, M. Faraki, T. Drummond, and M. Salzmann, “Learning factorized rep-

resentations for open-set domain adaptation,” International Conference on Learning

Representations, 2019.

[95] C. Geng, S.-J. Huang, and S. Chen, “Recent advances in open set recognition: A

survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[96] P. Oza and V. Patel, “C2ae: Class conditioned auto-encoder for open-set recogni-

tion,” Conference on Computer Vision and Pattern Recognition, 2019.

[97] S. Dang, Z. Cao, Z. Cui, Y. Pi, and N. Liu, “Open set incremental learning for auto-

matic target recognition,” IEEE Transactions on Geoscience and Remote Sensing,

2019.

[98] H. Zhang and V. M. Patel, “Sparse representation-based open set recognition,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

[99] A. Bendale and T. Boult, “Towards open set deep networks,” Conference on Com-

puter Vision and Pattern Recognition, 2016.

[100] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-

averaged consistency targets improve semi-supervised deep learning results,” In-

ternational Conference on Learning Representations, 2017.

[101] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adversarial domain

adaptation,” Conference on Neural Information Processing Systems, 2018.

115

[102] H. Liu, Z. Cao, M. Long, J. Wang, and Q. Yang, “Separate to adapt: Open set

domain adaptation via progressive separation,” Conference on Computer Vision

and Pattern Recognition, 2019.

[103] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to

new domains,” European Conference on Computer Vision, 2010.

[104] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and K. Saenko, “Visda:

The visual domain adaptation challenge,” arXiv Repository, 2017. [Online].

Available: https://arxiv.org/abs/1710.06924

[105] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading dig-

its in natural images with unsupervised feature learning,” Conference on Neural

Information Processing Systems, 2011.

https://arxiv.org/abs/1710.06924

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. k-Nearest Neighbors by Means of Sequence to Sequence Deep Neural Networks and Memory Networks
	1.1. Introduction
	1.2. Background and Literature Review
	1.3. kNN models
	1.4. Computational Experiments
	1.5. Conclusion

	Chapter 2. Automatic Ontology Learning from Domain-Specific Short Unstructured Text Data
	2.1. Introduction
	2.2. Background and Related Works
	2.3. Problem Statement and Approach
	2.4. Model Specifications
	2.5. Computational Study
	2.6. Conclusion

	Chapter 3. Concept Drift and Covariate Shift Detection Ensemble with Lagged Labels
	3.1. Introduction
	3.2. Related Work
	3.3. Problem Formulation
	3.4. Concept Drift Detection Ensemble and Model Retraining
	3.5. Experimental Results
	3.6. Conclusions

	Chapter 4. Open Set Domain Adaptation by Extreme Value Theory
	4.1. Introduction
	4.2. Related Work
	4.3. Methodology
	4.4. Experimental Results
	4.5. Conclusion

	References

