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ABSTRACT 

Chronic pain is a prevalent and under-treated condition that remains a mystery to the medical 

system and a major social and economic problem. Unfortunately, there is no single treatment superior to 

others for relieving chronic pain.  While recent scientific discoveries have provided us with functional and 

anatomical brain biomarkers of persistence and recovery, as well as identified changes in emotional 

processing and behavior indicative of underlying neuroplasticity, we still do not understand why some 

patients respond to certain kinds of medications while others do not, nor have we fully captured the 

characteristics – physiological and psychological – that make someone with chronic pain likely to respond 

to a treatment now or in the future. The placebo effect - which describes a psychobiological response to 

an inactive or sham treatment - provides a unique framework under which to examine these questions 

and elucidate some of the mechanisms governing treatment response. The 3 studies presented here all 

use the setting of a randomized control trial (RCT) to investigate contributions of brain biomarkers, 

personality, memory, and semantic language properties in predisposing chronic low back pain patients to 

placebo response.  The main aim of this dissertation is to identify neurological, psychosocial, and 

linguistic parameters that predict and/or significantly contribute to clinical placebo analgesia in chronic 

pain.  

In Study 1, resting state brain networks indicated that placebo responders and non-responders 

showed differential functional connectivity of lateral frontal regions with sensorimotor regions and the 

periaqueductal grey at baseline. Gray matter density, subcortical volumes, and cortical thickness also 

provided neuroanatomical pre-determinates of placebo response. Psychological profiling of patients using 

a battery of questionnaires indicated that placebo response in chronic pain patients depended on 

increased emotional awareness and decreased emotional suppression traits. This unique combination of 

imaging and personality variables dissociated responders from non-responders in a multivariate model 

and demonstrated that placebo analgesia in a clinical trial can be predicted from the functional circuitry of 

the lateral frontal cortex and key psychological characteristics of pain patients. 

In Study 2, we utilized quantitative language measures to better understand the placebo 

response in chronic low back pain.  As part of the same RCT, we conducted a semi-structured, open-
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ended exit interview on all patients who finished the study. Using latent semantic analysis (LSA), we 

calculated the semantic similarity between each interview to 60 words of interest; 4 of these words 

explained over 68% of the variance in placebo response.  6 unique combinations of words significantly 

correlated to the brain measures and personality traits that predicted placebo propensity identified in 

Study 1, and when tested on their own, these language factors also identified novel functional 

connections corresponding to placebo analgesia.   These results indicate that language can be used to 

identify psychosocial and neurological characteristics mediating placebo response propensity. 

Finally, in Study 3, we investigated the mismatch between daily pain experience and the memory 

of this experience, a phenomenon that could influence the placebo response or reported treatment 

efficacy. As part of the same RCT, we examined the discrepancy between experienced chronic low back 

pain intensity (from daily ratings recorded using a smartphone application) and self-reported memory of 

pain over the same time period.  The cause of this discrepancy was studied relative to psychometric 

properties, morphology of the hippocampus, and personality traits. The majority of patients exaggerated 

their remembered pain, which depended on their strongest experienced pain and their most recent mood. 

This bias remained stable over 1 year and generalized to both reward memory bias and loss aversion. 

Shape displacement of the left posterior hippocampus mediated the effects of loss aversion personality 

on this pain memory bias. In two control groups, morphology of the posterior hippocampus was also 

stable over 1 year and unperturbed by the development of persistent pain. Importantly, a multi-parameter 

model accurately predicted pain memory bias in a validation group of patients.  These results imply that 

hard-wired hippocampal learning circuitry and reward-related personality traits determine individuals’ 

exaggeration of their daily experience of pain.  

 We conclude that (1) the propensity for clinical placebo analgesia in chronic low back pain can be 

predicted using a combination of personality traits, anatomical brain biomarkers, and functional brain 

connectivity, (2) language from patient narratives can be used as a surrogate for these predictive markers 

and as a tool in identifying them, and (3) pain memory bias is a clinically significant phenomenon 

predetermined by hippocampal morphometry and personality that must be accounted for in clinical trials 

using retrospective pain assessments.  
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PREAMBLE 

 

“One of the principal qualities of pain is that it demands an explanation.”  

~ Ann Carson [1]. 

 

This dissertation is structured in the following manner.  Chapter 1 is an introduction, the goal of 

which is to provide the reader with a general understanding of the key concepts discussed in the thesis, 

as well as a broader sense of the current gaps in knowledge in the fields of pain and placebo analgesia. 

From this understanding, I hope to convey the significance of the questions asked and the importance of 

the aims addressed in this thesis, as I believe all three studies discussed have the potential to impact the 

neuroscience community at many levels, from basic science research to real-world clinical applications. 

Chapter 2 provides an overview of the methods utilized; although three separate research agendas 

(studies) are covered in this thesis, data from all three studies come from the same clinical trial and thus 

largely overlap in methodology.  However, in the instances where there are distinctions, I have indicated 

the study number where applicable. Chapter 2 also describes how we analyzed the data; this section  of 

the chapter is organized by study number; some redundancy should be expected as similar neuroimaging 

analyses and model development occurred between studies.  Chapters 3-5 provide the key findings of 

each of the studies and a discussion about their meaning; where appropriate, brief descriptions of the 

main questions and analyses used are given in order to remind the reader of the primary aims of the 

thesis. Finally, in Chapter 6, I discuss some of the limitations of the current research, the ethical 

implications of the research, and future directions that could be explored given the results presented here.   
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CHAPTER 1: INTRODUCTION 

Section 1: What makes pain? 

 This thesis’s main focus is on chronic low back pain and placebo-mediated relief of this pain.  

However, in order to understand these more complex phenomena, one must first be familiar with the 

definition of pain and the biology of the nociceptive and pain systems. The International Association for 

the Study of Pain (IASP) define pain as “an unpleasant sensory and emotional experience associated 

with actual or potential tissue damage, or described in terms of such damage”[2]. This definition is 

significant because it highlights that pain is simultaneously physiological and psychological, automatically 

implicating the important and active role of the brain in pain perception. For hundreds of years, we have 

surmised at the basic pathways underlying the pain experience. Descartes’ description of pain 

transmission in his treatise De l’homme [3], although inaccurate, depicts the simple premise that the 

sensation of pain is directional and transmitted from the body to the brain (Figure 1). This idea helped 

shape early research on the topic and aided in guiding later seminal investigations mapping the 

peripheral nervous system, spinal cord, brainstem, and cerebral cortex. The sections below briefly 

describe the main components of these systems and pathways, followed by a section that highlights 

some of the caveats in the ways in which these systems have been investigated and framed. Unless 

otherwise noted, all anatomical and physiological descriptions have been adapted from Nolte’s “The 

Human Brain” [4] and Netter’s “Atlas of Neuroscience”[5]. 
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Figure 1:  Descartes’ treatise De l’homme. Descartes explained his theory of pain as follows: “If for 
example fire comes near the foot, minute particles of this fire, which you know move at great velocity, 
have the power to set in motion the spot of skin on the foot which they touch, and by this means pulling 
on the delicate thread which is attached to the spot of the skin, they open up at the same instant the pore 
against which the delicate thread ends, just as by pulling on one end of a rope one makes to strike at the 
same instant a bell which hangs at the end.” 
 

1.1 Nociception 

The term “nociception” was first coined in the 1900s by Sherrington, who discovered that there 

were sensory receptors in the periphery (called nociceptors) that were activated by noxious or potentially 

noxious stimuli.  Most nociceptors are free nerve endings, meaning that unlike other specialized receptors 

that exist throughout subcutenous and deep tissue (such as Merkel disks or Pacinian corpuscles), they 

are un-encapsulated and exhibit polymodality. Polymodality indicates that they respond to a wide variety 

of peripheral perturbations, such as suprathreshold temperatures, suprathreshold mechanical stimuli (like 

pressure, touch, and stretching), and various chemosensations (including inflammatory chemicals 

released locally).  Nociceptors can be divided into two classifications based on their response modality 

and their rate of conduction.  Aδ fibers respond primarily to extreme pressures and temperatures; they 

are smaller in diameter and thinly myelinated, enabling them to conduct signals relatively quickly at 

around 5-30 m/sec. In contrast, C fibers respond even more broadly to high-intensity mechanical, 

thermal, or chemical stimuli.  These fibers are also small in diameter but they are unmyelinated, meaning 

that they are not able to conduct signals as quickly as Aδ fibers, getting to speeds only around 1 m/sec.   

The difference in conduction velocity is important because it is what gives rise to perceived first and 

second pain. First pain from Aδ fibers is the immediate sensation felt after an injury that often is described 

as “sharp”; second pain from C fibers is the sensation that comes a few seconds later, described as 

“throbbing”, “burning”, or “aching”.  

 

1.2 Spinal cord transmission and ascending pathways 

The afferent fibers from peripheral nociceptors enter the spinal cord via the ipsilateral dorsal root 

(lateral division).  From here, they terminate primarily in marginal layer (lamina I), substantia gelatinosa 

(lamina II), and the neck (lamina V) of the dorsal horn. Many of the neurons in lamina I are nociceptive-
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specific, meaning that they only respond to noxious stimuli, while other second-order cells are wide-

dynamic-range (WDR) neurons that respond in a graded fashion to both non-noxious and noxious stimuli.  

In lamina II, some of the nociceptor afferents synapse with excitatory and inhibitory interneurons, which 

convey information to other cells in other laminae and help regulate nociceptive input to third-order 

projection neurons. In lamina V, Aδ fibers often synapse with WDR cells and are thought to contribute, in 

part, to the phenomenon of pain referral [6].  Projection neurons from these 3 laminae decussate the 

midline, ascend a couple of segments in Lissauer’s tract, and then synapse in the contralateral side of the 

spinal cord. From here, they ascend to the brain via different pathways in a large collection of tracts 

collectively referred to as the anterolateral pathway. As these tracts ascend, new fibers join on their 

medial edges so that much of the system becomes and remains somatotopically organized. 

 In the anterolateral system, there are three major ascending tracts along which nociceptive input 

can travel: spinoreticular, spinothalamic, and spinomesencephalic pathways.  Each pathway has different 

conduction velocities and different areas of termination, distinguishing their functions.  The spinoreticular 

pathway, which has fibers originating mainly from the intermediate gray matter, ascends in the 

ventrolateral spinal cord and synapses primarily on reticular cells in the medulla without a somatotopic 

arrangement; it also terminates in parts of the thalamus (intralaminar and other regions).  These medulla 

reticular cells receive input from other sensory systems and project to reticular formation, thalamus, and 

limbic system. This tract is thought to contribute to changes in levels of attention in response to painful 

stimuli. Next is the spinothalamic tract, which is viewed as the principal pathway for somatosensation. It 

has neurons originating from lamina I and V, and as the name suggests, its projections end in the 

thalamus - more specifically, the ventral posteriolateral nucleus (VPL). These fibers are thought to play a 

special role in conscious awareness of the quality of a stimulus and its location. Projections from the VPL 

are widespread, terminating in the postcentral gyrus (primary somatosensory area), the insula, and other 

cortical areas.  Finally, the spinomesencephalic tract carries information mainly from lamina I and V and 

terminates in both the reticular formation and the periaqueductal gray (PAG); this pathway is thought to 

have a role in intrinsic pain-control mechanisms. Some projections from this tract also go through the 

spinoparabrachial tract, synapsing on parabrachial nuclei which then send information to the amygdala, 



 21 
potentially contributing to the emotional component of the pain experience.  All of the fibers within this 

anterolateral system are intermingled with or adjacent to each other in the cord spinal cord.  

 In addition to the anterolateral system, there are other pathways that contribute to nociceptive 

transduction and processing, including the spinohypothalamic, spinocervical, and spinocerebellar tracts; 

however, they are not relevant for this the topic of this dissertation and are therefore not discussed here. 

 

1.3 Descending modulatory pathways 

There are also special circuits that control pain from the top-down (brain to spinal cord). The 

major hub in these pathways is the PAG, which receives input from higher brain areas including the 

thalamus, hypothalamus, amygdala, and cortex. In 1976, Mayer and Price provided evidence of PAG’s 

involvement in pain modulation, showing that the stimulation of this region produced profound and 

selective analgesia[7]. PAG neurons make excitatory connections with nuclei in the rostral ventromedial 

medulla (RVM), whose cells then project back down to the spinal cord, creating inhibitory connections on 

neurons in laminae I, II, and V of the dorsal horn, which in turn disrupt ascending nociceptive signals. 

Importantly, some of these mechanisms are driven by the various endogenous systems, including 

seritonergic, noradrenergic, and opioid pathways.  Stimulation of either the PAG or RVM causes the 

release of serotonin (5-HT) in the spinal cord and increased levels of norepinephrine in the cerebral spinal 

fluid (CSF), both eliciting antinociception. Regarding opioid involvement, the stimulation of PAG 

stimulation, as well as analgesic doses of morphine (a opioid agonist), has been shown to cause a 

subtype of RVM neurons called “off cells” to fire continuously; these cells block pain perception and inhibit 

spinal withdrawal reflexes away from noxious peripheral input [8, 9].  Additionally, activation of inhibitory 

interneurons in lamina II of the spinal cord causes release of enkephalin or dynorphin (endogenous 

opioid neurotransmitters) which bind to receptors on the incoming C and Aδ fibers carrying information 

from the periphery, modulating or inhibiting the nociceptive signal [10]. These descending modulatory 

pathways are thought to be crucial in placebo response mechanisms in pain, with the idea being that the 

emotional and internal state of a person can influence incoming nociception perception through these top-
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down processes. Opioid involvement in particular is thought to play a role, as placebo analgesia has been 

shown to to be blocked by naloxone, an opioid antagonist [11, 12]. 

 

1.4 The role of the brain: from brainstem to thalamus to cortex 

Thus far, we have only covered nociception, which is not the same as pain. In order for pain – a 

strictly conscious experience – to be perceived, the brain must be involved.  Projections from the spinal 

cord primarily (though not exclusively) terminate in the brainstem or the thalamus, both of which are 

responsible for integrating nociceptive inputs. As mentioned above, the reticular formation (RF) is a key 

player in nociceptive and aversive drive, and it is seen as the central core of the brain stem.  The RF is 

diffusely organized, meaning that its pattern of connectivity is characterized by both convergence and 

divergence, and cells within it can respond to a several sensory modalities or to stimuli applied all over 

the body. Importantly, the RF is thought to be important in regulating and integrating inputs from both the 

arousal system and the autonomic system, particularly through connections with the thalamus and the 

limbic system (including the amygdala). 

Head [13] first postulated that the pain center of the brain was the thalamus. Although we now 

know that pain processing is spread throughout the brain, indeed the thalamus is still the main relay 

station for nociceptive input. The thalamus has been divided into functional and anatomical subdivisions 

based on its connections with the spinal cord, and several nuclei are important for nociceptive signal 

processing, including the lateral and medial groups and those nuclei receiving input from the 

spinothalamic tract. Moreover, the thalamus has a diverse range of subcortical and cortical inputs (e.g., 

the cerebellum, basal ganglia, hippocampus, and parietal lobes) and outputs (e.g., cingulate cortex, motor 

regions, somatosensory cortex, insula, and prefrontal cortex); this interconnectedness makes it extremely 

important for nociceptive transmission and signaling of pain. 

Beyond the thalamus, nociception and pain perception become even more complicated and 

delocalized.  With the advancement of neuroimaging techniques spanning PET (positron emission 

tomography), EEG (electroencephalography), fMRI (functional magnetic resonance imaging), and MEG 

(magnetoencephalography) studies, we have begun to refine our knowledge of how pain is represented in 

the cortex.  Common cortical areas found to be active during nociceptive stimulation and acute pain 
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include the primary and secondary somatosensory cortex (S1,S2), frontal regions, anterior cingulate 

cortex (ACC), and insula (Figure 2); other regions are also sometimes present depending upon the 

experiment (e.g., the NAc, amygdala, hippocampus, and posterior parietal regions) [14, 15]. Together, 

these areas make up a dynamic network modulated by psychological and physiological processes that 

shape the perception of pain.   

 

Figure 2: Brain regions associated with nociception and acute pain perception.  Left: key brain 
areas identified by multiple studies to be involved in nociceptive and acute pain processing are shown.  
Insula (*) is also involved, but is not depicted here as it is lateral to the midline. Right: Neurosynth 
reverse-inference map is shown for the term “pain”; regions shown in red represent the regions 
consistently activated in response to acute painful stimuli across a meta-analysis of 420 studies.  
 

Importantly, these areas are involved in the multi-dimensional conscious experience of pain that 

includes not only sensory components but also affective, motivational, and cognitive aspects as well [16]. 

The somatosensory cortex is the primary region involved in processing the sensory aspects of pain; both 

contralateral S1 and bilateral S2 receive input from the thalamus about noxious and non-noxious stimuli 

[17, 18].  Cells in S1 are thought to encode stimulus intensity and location, whereas cells in S2 are 

thought to aid in recognizing a stimulus as noxious or painful, in addition to encoding for spatial, temporal, 

and intensity aspects of the pain [19]. S2 cortex is consistently found in neuroimaging studies of pain 

perception, but S1 is not, perhaps because it is highly susceptible to cognitive and emotional interference 

[14, 20].  
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The frontal regions (better known as the frontal association cortices) are involved in executive 

control and higher-order cognitive processes in general.  In acute pain, these areas are thought to 

influence expectations of pain and attentional drive, as well as modulate underlying mood and emotional 

states (which have indirect effects on pain perception [21]. Frontal regions have also been shown to be 

affected when acute pain becomes pathological in nature, a topic which will be addressed in a later 

section. 

The ACC and insula are both considered part of the classic limbic system [22] and are regions 

that are highly involved in the affective motivational dimensions of pain. While both the ACC and insula 

are consistently activated during pain studies, their functions are diverse and not specific to pain. The 

ACC receives indirect nociceptive input from medial thalamic neurons and direct nociceptive input from 

the periphery.  Activation to the painfullness and unpleasantness of noxious stimuli have been seen in 

many studies [16].   The insula receives nociceptive information through direct thalamocortical input and 

is hypothesized to encode sensory aspects of pain, as well as integrate sensation, body position, and 

environmental context [19].  It is also thought to be involved in general aspects of embodiment [23, 24] 

and pain anticipation [25]. 

All of these regions are involved in daily cognitive functioning, and because of these shared 

resources, interference between pain and cognitive processes may result in many of the areas listed 

above.  This potential competition may be one of the reasons why chronic pain patients show emotional, 

working-memory, and other cognitive deficits (discussed in a later section).  

 

 1.5 Types of pain 

 In general, the literature differentiates 3 kinds of pain experiences based on mode of activation: 

nociceptive, inflammatory, and neuropathic. Nociceptive pain is pain caused from directly stimulating 

nociceptors in the periphery and is seen as a key early warning system of the body. Activation of these 

nociceptors does not necessarily mean that an injury has taken place; however, in the event that tissue 

damage has occured, the body switches from a state of guarding against harm to a state of healing.  This 

is when we feel inflammatory pain, which promotes the healing process via changing peripheral 

sensitivity. Immune system cells, glial cells, and surrounding tissues all release various chemicals and 
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proteins into the surrounding milieu; this “inflammatory soup” includes histamine, prostaglandins, 

acetylcholine, substance P, and pro-inflammatory cytokines [26] that all contribute to allodynia and 

hyperalgesia by sensitization of nociceptors. Because these inflammatory chemicals degrade quickly, 

inflammatory pain requires constant stimulation to be sustained; this is why its presence results in healing 

because it promotes decreased movement and tactile contact of the injured region.  Once the tissue has 

healed, normal inflammatory pain will cease.  Finally, neuropathic pain is pain caused from direct injury to 

peripheral nerves via diseases, cancer, infections, traumatic injury, or certain kinds of medication (e.g., 

chemotherapy). Unlike nociceptive and inflammatory pain, neuropathic pain does not always disappear 

after the inciting event, nor does it readily respond to traditional analgesics. Importantly, both prolonged 

neuropathic and inflammatory pain can give rise to pathological chronic pain disorders that severely 

disable individuals and disrupt their quality of life (for example, diabetic neuropathy and rheumatoid 

arthritis). 

 

 1.6 Caveats 

 Although peripheral, nociceptive, spinal, and brain components of the pain system are all vitally 

important, the significance of each of these in a person’s actual pain experience remains unknown and a 

source of contention. More specifically, the idea that nociception gives rise to pain through the pathways 

mentioned above is somewhat debatable, especially to the extent that that nociception and pain do not 

necessitate that one always occurs in the presence of the other. As mentioned at the start of this section, 

the IASP definition of pain emphasizes subjectivity and conscious experience.  But interestingly, 

nociceptors can be (and usually are) active in the absence of pain.  In fact, for the large majority of our 

lives, nociceptors are continuously working to correct our behaviors or postures and subvert damage so 

that we do not experience pain more often; such control is largely unconscious or at the very least 

subconscious[27]. Additionally, there is ample evidence that conscious acute pain is highly malleable by 

mood and context such that nociceptive barrage does not always translate to a certain kind or level of 

brain activity or to a stereotypical type of pain perception.  The value and level of pain can change 

depending on the motivational state of the organism.  As one example, many soldiers with severe wounds 

from fighting do not report pain or suffering until hours or days later despite considerable peripheral 
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nociceptive activity [27]. Although no one would argue that conscious pain is usually driven by nociceptive 

inputs in most cases, the stimulation of nociceptive afferents in the periphery does not necessitate the 

experience of pain or the production of a pain behavior.  Likewise, experience of pain does not 

necessitate currently active nociceptors; in some chronic conditions (such as fibromyalgia and chronic 

fatigue syndrome, CFS) pain is reported with little evidence of nociceptive involvement in the peripheral 

system [28], and in other cases, pain is idiopathic or spontaneous and has no inciting injury or underlying 

systemic disease.  Moreover, activity in any one of the brain regions mentioned above does not mean 

that there is pain or nociception present, since many of these areas are multimodal or involved in a 

diverse range of functions. 

 Thus the idea that pain is “directional” or caused from nociceptive activity in the peripheral 

nervous system, whose signals make their way up the spinal cord to the brain, is a narrow viewpoint at 

best.  In addition to ignoring the roles of emotion, memory, motivation, and attention in gating present and 

incoming pain and nociceptive signals, this viewpoint also does not account for cultural and context 

mediations of pain experience [27], which also likely influence the expression of pain and other pain 

behaviors.   These caveats are important to keep in mind for the thesis for two reasons. First, its is very 

apparent that the brain in chronic pain is not equivalent to the brain in acute pain, and therefore studies 

which investigate neural activity associated with acute pain are not necessarily comparable to those 

studying chronic pain. Second. If the mechanisms underlying chronic pain are complex and not fully 

understood, it follows that alleviation of chronic pain is also likely to be complicated and must involve 

modulation of circuitry that is not only important for acute pain but also circuitry critical in the transition to 

and stability of a chronic state. 

 

Section 2: The problem of chronic pain 

The mechanisms above are primarily relevant for acute pain (which is short in duration and 

dissipates as part of the healing process). While acute pain is almost always initially advantageous to an 

organism (in that it signals actual or potential tissue damage and aids in important avoidance learning), 

over time it can be maladaptive at both an individual and societal level. Today, pain remains one of the 

primary reasons why people seek healthcare.  It is estimated that around 50 million Americans are either 
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partially or totally disabled by some type of pain on any given day. This pain, if left untreated, can become 

long-lasting or permanent, and it can lead to other deleterious co-morbidities such as depression, 

insomnia, lowered immune function, impaired cognitive functions, and decreases in mobility, all of which 

can seriously impact quality of life.  The resulting condition of chronic pain is defined by IASP as pain that 

persists for more than 3 months [29], with an operation definition extending up to 6 months depending on 

the condition [30], and chronic pain’s long-term suffering and consequent changes in behavior represent 

an even larger and more complex problem to society. The Institute of Medicine of the National Academies 

(IOM) released a comprehensive report regarding chronic pain a few years ago (www.iom.edu, released 

on 6/29/2011). They summarize: “Chronic pain affects at least 116 million American adults – more than 

the total affected by heart disease, cancer, and diabetes combined.  Pain also costs the nation up to 635 

billion dollars each year in medical treatment and lost productivity.” Worldwide, chronic pain is estimated 

to affect around 15% of the population [31].  

In addition to its prevalence and cost, chronic pain also remains inadequately treated.  While pain 

that is the consequence of an acute injury or inflammatory process can usually be readily alleviated via 

simple anti-inflammatory analgesics, the same cannot be said of chronic pain – despite years of research, 

no consistently and generally effective therapies for chronic pain have been identified.   Those 

medications that are currently available often have long-term side effects and/or addictive properties [32], 

or only provide modest improvements that are not sufficient to achieve clinical meaningful amelioration of 

disability [33].  Additionally, the majority of these analgesics simply do not work. Over a third of individuals 

with chronic pain define their pain as severe [34] and over 40% of those suffering from chronic pain are 

not satisfied with their current care [35]. One report estimated that drugs on the market are inefficient in 

about 70% of patients in pooled analyses of placebo-controlled trials [29]. These findings highlight the fact 

that pain treatments created today are usually symptomatic- rather than disease-modifying, which is 

probably one of the reasons why they fail [36]. 

 

2.1 Chronic low back pain  

One of the most prevalent persistent pain conditions is chronic low back pain (CBP), estimated to 

affect 15-45% of Americans at any given time [37] and between 70-85% of adults during their lifetimes 
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[38]. CBP is the most common cause of limited activity in people under the age of 45, and it is the 

second-most frequent reason for physician visits [39]. Additionally, over 149 million days of work per year 

are lost due to this condition alone [40].  It was initially suggested that 95% of individuals recovered after 

an initial back pain episode [41], but more recent evidence suggests that this number is closer to 50% 

[42].  

Unfortunately, research shows that the prevalence of CBP is increasing in the US population, and 

will likely continue to rise as the population ages [43].  And although treatment with the standard of care - 

non-steroidal anti-inflammatory drugs (NSAIDs) - or antidepressants has shown some alleviation of early-

stage (acute to subacute) low back pain, these modest improvements usually do not translate into 

clinically effective pain relief for individuals with late-stage (chronic) low back pain. In fact, the World 

Health Organization Advisory Panel has concluded that there is no single treatment superior to others for 

relieving CBP [44].  

 

 2.1.1. Neurobiology of CBP 

CBP is characterized by predisposing neuroanatomical and neurophysiological characteristics, 

and the actual transition from acute to chronic back pain also causes dynamic changes to functional brain 

properties. Over the last decade, researchers have demonstrated that back pain that persists past an 

acute or sub-acute stage involves systemic alterations of circuitry between frontal cortical areas (involved 

in higher functions such as executive control, learning, and appraisal) and limbic regions (involved in 

emotional processing and memory consolidation), including the nucleus accumbens (NAc), amygdala 

(amyg), and hippocampus (hipp). These changes include (1) enhanced functional connectivity between 

medial prefrontal cortex (mPFC) and NAc [42], (2) increased functional connections within the 

dorsomedial PFC-amyg-NAc circuit [45], (3) decreases in the strength of functional connections between 

the hipp. and mPFC [46], (4) distinct changes in the frequency and phase dynamics of the default-mode 

network (DMN) [47], (5) and an overall shift in activity from nociceptive and sensory processing regions to 

emotional processing regions over the time [48].  Figure 3 summarizes some of these key findings.   
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Figure 3: A summary of functional brain connectivity findings in chronic pain patients. The 
mechanisms underlying the transition from subacute (SBP) to chronic back pain was investigated in a 
previous longitudinal analysis.  A. Functional connectivity between the medial prefrontal cortex (mPFC) 
and nucleus accumbens (NAc) is shown. B. This link was different between patients with subacute back 
pain who either recovered (SBPr) from their pain over the course of a year or persisted in their pain 
(SBPp) and became chronic over a year; mPFC-NAc functional connectivity was higher in SBPp than 
SBPr at baseline. C. Moreover, mPFC-NAc functional connectivity was also shown to be predictive of the 
transition from acute to chronic pain, predicting persistence 1 year later (visit 4) with 83% accuracy in a 
discovery group (not shown); this predictive capacity was validated in a separate group of SBP patients 
(n=13, shown here). D = area under the ROC curve (81% accuracy) [42]. D. Functional communities, 
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identified from white matter connections to limbic regions in SBP patients, are shown – a modularity 
analysis split them into 3 separate communities dorsal-medial PFC (dmPFC) – amygdala (amy) – 
accumbens (NAc); ventral-medial PFC (vmPFC) – amy; and orbitofrontal cortex (OFC) – amy – 
hippocampus (hipp).  SBPp showed higher incidence of functional connections within the dmPFC-amy-
NAc community than SBPr, a finding that was stable for 3 years [45]. E. Group average activation maps 
for SBPr and SBPp groups at 4 study visits spread out over 1 year. Both groups show activation within 
acute pain regions for the first 2 visits, encompassing bilateral insula, thalamus, and ACC.  However, 
SBPr show no significant activity for the last 2 visits, whereas SBPp show increased activation in mPFC 
and amygdala, suggesting the transition to chronicity involves a shift from acute pain processing regions 
to those involved in emotional processing [48]. 
 
 

Anatomical predispositions within this same circuitry are also present, both in terms of the 

morphometry of these regions and regarding the physical connections between the limbic networks and 

frontal regions. Gray matter atrophy of the thalamus and dl-PFC [49], smaller amygdala volume [45], 

smaller hippocampal volume [50, 51], abnormal regional white matter integrity in structural connections 

between mPFC and NAc [52], and increased numbers of white matter tracks within the frontolimbic circuit 

[45] are all either attributes of CBP or risk factors in subacute back pain (SBP) patients who go on to 

develop CBP. These properties account for a large percentage of the variability in pain persistence, in 

some cases even predicting chronicity [27, 30, 53-55]. Figure 4 summarizes some of these key findings.  
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Figure 4: A summary of structural brain differences in chronic pain patients. A. Regional gray 
matter density  (GMD) decreases in CBP subjects – top panel shows that GMD is reduced bilaterally in 
dLPFC; bottom panel shows that GMD is also reduced in the right anterior thalamus (bar graph shows t-
values, where highly positive values indicate more reduction in gray matter) [49]. B.  The amygdala is 
shown (heat maps display overlap of volume segmentation between SBPp, SBPr, and healthy controls 
(CON) at baseline. SBPp showed smaller amygdala volumes than SBPr and CON with no effect of time 
or groupXtime interactions.  Similar findings were also seen in a different chronic pain cohort 
(osteoarthritis, OA, patients).  C. The same results in the amygdala were also observed in the 
hippocampus for SBPp and OA. D. Vertex-wise shape displacement of the amygdala and hippocampus 
indicated that SBPp had thinner right amygdala across all visits. E. Whole-brain white matter functional 
anisotropy (FA, a measure of tract integrity) contrasted between groups (SBPr>SBPp) at baseline shows 
areas where tracts (green) are significantly lower in FA in SBPp patients (red). The average FA values 
across all white matter voxels differing between SBPr and SBPp (grp-FA) is shown in bar graphs; top 
panel = discovery group and bottom = validation group. In both groups, FA decreases in these regions 
significantly and accurately predicts persistence across time [52].  F. Percentage of white matter 
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connections from the same community reported in Figure 3d are shown in time over 3 years; SBPp 
showed more structural connections in this community than SBPr or CONs [45]. 
 

Importantly, many of the functional and anatomical alterations seen in CBP patients have also 

been demonstrated in other chronic pain conditions to various extents, including complex regional pain 

syndrome (CRPS) [56], knee OA [57, 58], fibromyalgia (FM) [59, 60], chronic vulvar pain [61], urologic 

chronic pelvic pain (UCPPS) [62, 63], irritable bowel syndrome [64], and headache [65]. These 

neurological changes, while somewhat overlapping between cohorts, have also been shown to be distinct 

between conditions [30, 66, 67] and partially reversible with pain relief [68, 69].  What these results 

indicate is that some of these neurobiological findings predetermine chronicity while others are the direct 

consequence of having long-term pain.  Importantly, given that regions involved in CBP are similar to 

those in other pain conditions, treatments identified or developed to work on CBP might also show 

improvement in other chronic pain symptoms. Conversely, even if the anatomical regions involved are 

relatively consistent, the fact that different pain disorders have different and specific brain activity profiles 

might also mean that treatment response would not be homogenous.   

 

2.1.2. Psychological and behavioral impact of CBP  

Chronic back pain is also associated with myriad behaviors that point to abnormalities in the brain 

regions and networks specified above, particularly in the limbic system and especially in regards to the 

processing of emotionally-salient information. First, CBP is often co-morbid with various psychological 

disorders, including anxiety and depression [70-72]; although these illnesses are likely due, in part, to 

socioeconomic hardship and disability, they have also both been shown to affect the structure and 

function of limbic regions like the amygdala, hippocampus, and accumbens [73]. Second, CBP patients 

exhibit problems with learning and memory; these patients have shown problems in working memory and 

attentional tasks [74-76], as well as perspective memory tasks [77], many of which are dependent upon 

hippocampal and frontal mechanisms.  Finally, chronic back pain also appears to impact the reward 

system. CBP patients have displayed atypical NAc activity during the encoding of acute aversive stimuli 

[78, 79], and studies have repeatedly shown that chronic pain patients display aberrant emotional 

decision-making [80, 81]. CBP patients consistently perform poorly across a variety of tasks that engage 
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reward-valuation and motivation circuitry, including choosing more often from disadvantageous decks in 

the Iowa Gambling Task (IGT, [82] Figure 5a), as well as displaying heightened gain sensitivity in a loss 

aversion task with accompanying alterations in functional modularity of the NAc ([83], Figure 5b-f).  

These differences may reflect cognitive deficits due to the underlying brain changes that take place in 

chronic pain and are associated with increased risk-taking and impulsivity within this patient cohort.  
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Figure 5: Examples of impaired emotional decision-making in chronic pain patients. The Iowa 
Gambling Task (IGT) measures decision-making strategies related to reward and punishment.  
Participants choose between 4 decks of cards; 2 sets of decks yield high immediate gain but larger future 
losses (disadvantageous) and the other 2 sets of decks yield lower immediate gain but smaller future 
losses (advantageous). Participants are instructed to maximize gains with minimal instructions about the 
underlying deck rules. Poor performance on this task indicates defective emotional decision-making and 
has been seen in patients with OFC damage. A. Healthy controls (CON) and patients with CBP and 
complex regional pain syndrome (CRPS) completed the IGT.  Their performance (# choices of 
advantageous decks after subtracting # choices of disadvantageous decks) over time (blocks) is shown, 
with the performances of CBP and CRPS patients averaged into a patient group. While both groups 
started off with poor performance, CON eventually learned the implicit rules of the game and significantly 
improved in time; in contrast, chronic pain patients had difficulty learning the task and were significantly 
different from CONs in their performance over the last sets of trials [82]. B. Behavioral loss aversion 
describes the phenomenon by which losses have a larger hedonic impact than comparable gains; on 
average, healthy individuals are roughly 2 times as sensitive to losses as they are to gains (e.g., they 
would need a gain of at least $100 to make up for a potential loss of $50. Loss aversion is thus 
conceptualized as the ratio of losses/gains (lambda), such that a number >2 means more loss sensitive 
than expected and a number <2 means more gain sensitive than expected. We previously studied loss 
aversion in CBP patients using stimuli like what is shown in (B), where we asked patients to decide 
whether the possibility of winning the amount in green was worth possibly losing the amount in red (with 
gains ranging from $10-38 in increments of $4 and losses from $5-19 in increments of $2). C. Gain and 
loss sensitivity curves are shown for 2 subjects. Each point represents the probability of accepting an 
offer with each potential gain or loss. The number “m” is the slope of the fitted line, indicating their gain or 
loss sensitivity.  D. After 64 trials of stimuli, decision matrices were generated by calculating the 
probability of accepting each individual $ offer out of the 8 presentations it was shown, creating an 8X8 
matrix which was down-sampled to a 4X4 matrix for visualization. These matrices for the same two 
patients depicted in C are shown. Again, notice that the CBP patient was more likely to accept a 
monetary offer than the CON patient. E. Decision matrices averaged across each group are shown. F. 
Bar plots show each group’s mean gain sensitivity scores (denominator of lambda); CBP patients 
exhibited significantly higher gain sensitivity than CON [83]. 
 
 

2.1.3. Animal models of chronic pain 

Finally, and importantly, many of these neurophysiological changes and anatomical 

predispositions have also been implicated and/or replicated in animal models of chronic pain post-

neuropathic injury.  These findings include: peripheral and spinal cord circuitry reorganization leading to 

peripheral and central sensitization as well as allodynia [84, 85], reorganization of resting state limbic 

networks [86], alterations in neuropeptide activity in the amygdala [87], changes in the functional 

connectivity, gene expression, and molecular excitability of the NAc [88, 89], changes in the excitation 

and activation of the ACC [90], abnormal hippocampal neurogenesis  and short-term plasticity [91], and 

impaired hippocampal-based contextual fear extinction [50].  Animal models of chronic pain have also 

demonstrated behavioral aberrances comparable to human counterparts.  In an operant task similar to 

the human IGT, rats with chronic inflammatory pain have been shown to prefer levers with larger but 

infrequent rewards (a riskier choice) compared to rats without pain [92], a response driven by decreased 
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dopaminergic levels and decreased neuronal firing of cells within the orbital frontal cortex (OFC) [93-95]. 

Additionally, animals with chronic pain also display impairments in both their short-term and recognition 

memories [89, 96]. These translational results indicate, in part, a conservation across species of 

maladaptive and dysfunctional neurological and behavioral responses in response to being in 

unavoidable, long-term suffering. Such overlap in findings between humans and animals provides 

evidence for a system whose mechanisms can be better mapped and in turn targeted by drugs or other 

therapies to alleviate chronic pain.  

 

2.1.4.  What remains unknown in chronic pain research 

Although our understanding of the mechanisms and neural circuitry underlying the chronic pain 

state has substantially grown in the past decade, we have not yet been able to translate these efforts into 

meaningful treatments.  Moreover, we still do not understand why some patients respond to certain kinds 

of medications while others do not, and likewise, we also have not fully captured the characteristics – 

neurophysiological and psychological, trait- and/or state-based – that make someone with chronic pain 

likely to respond to a treatment now or in the future. This information would be extremely valuable, not 

only for its obvious impact on personalized medicine initiatives, but also for its potential in making efficacy 

assessments in clinical trials of novel analgesics more accurate.   

 

Section 3: The placebo effect  

The placebo effect describes an improvement in symptoms caused by receiving a sham or inert 

treatment disguised to be indistinguishable from an active medical treatment. While we refer to the term 

placebo “response” to describe this phenomenon, it is important to note that patients are not responding 

to the placebo treatment itself, but rather to the language, caring, culture, history, and overall context 

surrounding the treatment administration [97]. While the use of placebos in today’s medical industry is 

well known and viewed as a relatively mundane component of most randomized control trials (RCTs), the 

emergence of the placebo’s clinical utility has a long and interesting history. 

 

3.1. History of placebos: from funeral processions to dissertations 
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 The word placebo is Latin in origin, meaning “I shall please”. The term was first used in the 14th 

century in reference to hired mourners at funerals who stood in for family members of the deceased; 

these professionals would cry and wail during the procession and burial, often beginning their chants with 

“Placebo Domino in regione vivorum”, the 9th verse of Psalm CXIV, which translates to “I shall please 

the Lord in the land of the living” [98]. Placebo wasn’t used as a medical term until the late 18th century, 

when the New Medical Dictionary described it as a “commonplace method or medicine” and a few years 

later, the Quincy’s Lexicon-Medicum defined it as “an epithet given to any medicine adapted more to 

please than to benefit the patient” [98].  For the next 100 years, the use of placebos in every-day medical 

practice was prevalent, and many physicians were taught to utilize everything from colored water and 

residual ash powder to bread and sugar pills, viewing these practices as endorsed and necessary forms 

of deception [98]. In the early 1900s, the first placebo-controlled medical trials took place, and in 1938, 

the word placebo was first applied in reference to being a control for an active treatment in a clinical trial 

investigating efficacy of cold vaccinations [98].  Interestingly, the trial ended up having negative results 

due to substantial improvement in the placebo control group, and the placebo effect as we now know it 

was born.  

Although the power of placebos has been proven time and time again, the use of sham 

procedures and medicines has been shrouded in controversy, predominantly in regards to the 

physiological and psychological authenticity of a placebo response and the ethical implications of placebo 

administration.  Even during their peak usage in the 1900s as either primary treatments or supplements to 

medicines, placebos were viewed as having no impact on physiology and were only thought to comfort or 

appease patients, in particular those deemed as having lower intelligence or higher emotional lability.  

These two sentiments remain in present day ideas of placebo effects, albeit more subtly. For example, 

some clinicians still view the presence of the placebo effect to be evidence that certain symptoms are not 

caused by “real” or “organic” diseases [99], with patients who report alleviation of symptoms often still 

judged to be faking their responses or illness (i.e., “malingerers”) [100].  This is unfortunately quite 

prevalent in studies of pain, not only because pain cannot be easily measured and remains a highly 

subjective, personal experience but also because chronic pain is often idiopathic, with no history of 
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disease or known cause of injury. However, inferences like these are only valid if placebo treatments 

have no actual effects on pain pathophysiology or experience, which until the early 1950s was still 

unknown. 

Compounded with concerns of patient trust were those surrounding patient care and physician 

trust, issues that were deeply rooted in the history of placebos. After World War II, two key factors 

changed how physicians, researchers, and society understood the placebo effect. The first was the 

introduction of RCTs as the gold standard for clinical research, and along with this systemic change in 

medical testing came the association of the word placebo with sham interventions. Because of this 

association, people began viewing placebos as nothing more than controls for confounding factors in 

active treatment responses (in turn diminishing what little interest there was in explaining the biology of 

the placebo effect).  Second, the rise in autonomy-based theories of medical ethics put pressure on the 

medical field to verify informed consent and legitimize a person’s right to know and make decisions about 

their treatment regimens [101].  Beginning in the 1960s, clinical ethicists began to explicitly target the use 

of placebos “for the good of the patient”, framing their administration as examples of unnecessary, 

unjustifiable, and covert medical paternalism.  Thus, by the end of the 1970s, the word placebo was now 

synonymous with fake, deceptive, or fraudulent interventions, viewed by physicians and lay persons alike 

as unethical outside the boundaries of an RCT [101]. Remnants of this view of placebos are still prevalent 

today, with many potential participants refusing to partake in clinical trials because of the chance they 

might receive a placebo, and many physicians still viewing the clinical use of placebos as violations to 

their ethical code of conduct.  Thus up until recently, the physiological effects associated with the placebo 

response were first believed not to exist, and studying this phenomenon later came to be seen as 

unethical and of no benefit to the patient. 

Fortunately, due to technological advances in neuroscience and converging results across a 

series of laboratory-based and clinical trials, we are slowly pushing past the methodological and 

philosophical obstacles that have hindered a real appreciation and utilization of the placebo effect. We 

now understand that the placebo effect is a powerful psychobiological occurrence rooted in underlying 

and identifiable neurobiology while simultaneously being effected by psychosocial contexts [102].  

Moreover, we also now know that the placebo response is a phenomenon that has been observed across 
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a variety of diseases, biological systems, and treatments [103] and that it is psychologically durable, with 

responses lasting well beyond what would be expected of feigned relief (in some cases up to or 

exceeding 12 weeks post treatment) [104].  

 

3.1.1. The placebo effect in pain – placebo analgesia 

Importantly, placebo effect has shown some of the largest and most consistent effects in the field 

of pain, which isn’t surprising since pain perception is subject to influences by cognition and emotion 

[105]. Analgesia in the placebo arm of clinical trials is observed often, especially for chronic pain drug 

studies [106].  In back pain specifically, one study found that repeated sham (placebo) treatment resulted 

in greater pain relief than that caused by the tested conventional therapy [107]. It has been shown that 

placebo effects in both acute and chronic pain tend to be larger when participants present with high levels 

of pain [108].   Thus, the placebo’s potential for substantial analgesia in clinical settings cannot be 

understated.  

A body of literature has already established that the neurophysiology of placebo analgesia is 

complex and depends on multiple neural circuits. Placebo analgesia is known to recruit endogenous pain 

pathways acting upon the opioid system to regulate descending inhibition via the PAG [109, 110], a 

mechanism that can be reversed by the administration of the opioid antagonist, Naloxone [11, 111].  

Additionally, in some cases, individuals who report having the highest levels of analgesia resulting from 

active drug effects also show the largest placebo effects, indicating that some analgesic medications and 

placebos may share common mechanisms or pathways [99]. Besides these anti-nociceptive circuits, 

which reduce spinal responses to pain [112], the placebo effect is also dependent upon limbic circuitry 

and higher-order frontal mechanisms involved with context generation and de-coding, expectations of 

treatment outcome, emotional appraisal of events, and reward learning [99, 113-115].   

 

3.1.2 The psychology of the placebo effect 

In addition to biological mechanisms of the placebo effect, psychosocial mediators of placebo 

response have also been heavily investigated, albeit to little or no avail. Since the 1950’s, individual 

personality differences have also been hypothesized to contribute to placebo response magnitude or the 
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presence or absence of a response. Historically, most of the research aiming to capture a “placebo 

responder personality” has used psychological profiling [116], with a prominent focus on affective traits 

(positive: extraversion, optimism, and openness to experience [117-120]; negative: neuroticism and 

pessimism [121, 122]), as well as research on the role of social learning and empathy [115, 123], reward 

and motivation [124], suggestibility [125], and expectations toward treatment [120, 126-129]. For 

example, individuals who score high in optimism, openness, and suggestibility, low in neuroticism and 

pessimism, and have positive expectations toward a treatment are often considered to be good potential 

placebo responders. However, there is still no conclusive evidence of a set of patient-reported outcomes 

(PROs) or self-report measures that predict placebo response, are consistent between studies, and 

correlate well with brain pathways related to response [130].  Additionally, many of the personality traits 

that are associated with large placebo responses in healthy controls have been shown to be easily 

influenced by context; in particular, both dispositional optimism and extraversion are only associated with 

larger placebo responses in situations that include warm emphatic interactions with caregivers and 

researchers [97, 131, 132].  

 

3.2. Roadblocks to studying placebo response in chronic pain 

Given the power of the placebo effect and the lack of efficacious medicines for chronic pain 

patients, it makes intuitive sense to study the placebo response within the context of chronic pain 

treatment. However, the relative contribution of each of the cognitive, emotional, neurological, and anti-

nociceptive systems (outlined above) to the clinical placebo response in chronic pain patients remains 

unknown. So, why hasn’t there been a substantial effort in investigating the clinical efficacy of placebo 

analgesia? And of the research that exists, why are there so many inconsistent findings between studies 

investigating placebo analgesia? Below I outline 3 reasons (“problems”) that I feel contribute to the gaps 

in our knowledge regarding the intersections of chronic pain relief and the placebo effect, although by no 

means is this list exhaustive.  These issues must be addressed if we are to seriously move forward in 

either predicting clinical placebo utility and/or manipulating placebo response in chronic pain patients. 

 

3.2.1. Problem 1: Inconsistent framing  
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One of the reasons for to inconsistent results between studies may be that the field is still divided 

about the fundamental “nature” of a response.  It is still actively disputed whether the placebo response 

represents a relatively stable trait (e.g., a person’s neuroanatomy, in combination with their genetics and 

long-standing habits and behaviors, predetermines his/her ability to respond positively to an inert 

treatment), or instead, if it is a dynamic state subject to interference from a variety of psychological, 

biological, and environmental factors (e.g., a person who responds to a placebo treatment in one form is 

no more likely than the next person to respond to a placebo treatment in an alternative form due to 

potential differences in context and mood). This philosophical debate is important because it suggests 

that if the placebo response is a state, it may be able to be predicted but only in certain and very specific 

instances; it also indicates that the placebo effect would be more easily influenced or manipulated.  In 

contrast, if the placebo response is a trait or a component of a trait, it should be able to be predicted 

across time and reduced to a unique model. This discussion is also significant because of its potential 

impact on study designs - framing the placebo response according to only one of these schools of 

thought could lead to divergences in interpretations of any psychological differences found, or, more 

likely, to differences in the questionnaires chosen to measure the phenomenon in the first place, resulting 

in a systematic bias in many placebo studies.  

The literature provides evidence for both state and trait possibilities. Supporting the state 

framework are research studies showing that the placebo effect can be affected by all sorts of external 

factors, including but not limited to: frequency of treatment, dose, appearance and branding, route of 

administration, treatment ritual, pre-treatment conditioning, interpersonal interactions, cultural constraints, 

feelings of empowerment, previous exposure to therapeutic relationships, and timing of expectation [104, 

133-136].  For example, studies have demonstrated that taking two placebo pills twice a day was not only 

more effective than no treatment but also more effective than taking one placebo pill twice a day, 

implicating a perceived “dose-dependent” response [101]. As another example, the color of a treatment 

has been shown to affect the placebo effect, with a red pill being more likely to cause a response than a 

blue pill [101], and there is recent evidence that the extent of response is correlated with the length of a 

clinical trial (such that the longer and more expensive a trial is, the more placebo response seen [137]).  A 
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nice summary of the potential ways that different contexts might impact placebo response can be found 

below in Figure 6.  

 

 

Figure 6: Context can affect placebo response. This figure was taken from Wager and Atlas’s 2015 
review regarding the neuroscience of placebo effects [99]. It gives examples of how various internal and 
external stimuli can influence the psychology of the placebo effect.  The authors state, “Clinical settings 
that surround treatment include multiple types of context information that are perceived and interpreted by 
the patient’s brain. The external context includes treatment, place and social cues, along with verbal 
suggestions. The internal context consists of memories, emotions, expectancies, and appraisals of the 
meaning of the context for future survival and well-being. These features combine to make up the 
treatment context and are the ‘active ingredients’ of placebo effects.” 
 
 

Placebo response can also change depending on the ailment – one person might consistently 

respond to placebo in the context of acute analgesia but not in the context of reduced anxiety or improved 

mood, for instance [101, 134, 135]. Even within the same condition, there are within-subject 

inconsistencies. In a study measuring placebo response to three different analgesic contexts, there were 

no significant associations between placebo pills, sham acupuncture treatment, or cue conditioning 

effects, indicating that individuals may respond to unique healing rituals in different ways, properties that 

are more indicative of a state [114, 138]. Likewise, the pharmacological evidence suggests that there 

exist many kinds of placebo responses as opposed to one single placebo effect [139, 140] – responses 

may recruit different mechanisms and circuitries across the body, including the opioid and cannabinoid 

systems, dopaminergic pathways, the seritonergic system, and the endocrine system [101]. What all of 
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these findings point out is that there is inherent variability and inconsistency within the placebo effect 

[141] between and within subjects, moving away from theories suggesting that the placebo response 

comes from personality traits, specific biological pathways, or particular brain region activation.   

However, there is also evidence that the placebo response (although variable) can still be 

conceptualized as personal, consistent, and trait-like, and this involves considering an individual’s genetic 

predisposition, neurobiology, and other environmental factors [133, 134].  For instance, studies using 

repeated placebo administration have shown that individuals responding to placebo in one set of 

environmental cues had a high likelihood of responding again in the exact same setting, arguing for a 

stable and reliable placebo response [116]. Furthermore, other researchers have shown that the placebo 

effect can still persist even when participants know they are receiving inactive treatment, illustrating how 

reinforcing treatment cues with positive outcomes can create scenarios where analgesia is independent 

of state-based expectations of pain relief [142]. The neurobiological evidence of trait-like placebo 

response is also convincing. Structurally speaking, studies have found that white matter tract integrity in 

descending pain pathways are correlated with inter-individual differences in placebo analgesia [143].  

Functionally speaking, a recent neuroimaging study investigating depression medication found that 

placebo responders had distinct neural patterns that changed from baseline measurements over 6 weeks 

of chronic treatment, indicating a process of neural adaptation in specific brain regions overtime. 

Importantly, these patterns were nearly the exact inverse of those of non-responders, whose neural 

signature during the 1st week of treatment remained stable throughout the study [102, 144]. The finding 

that these functional connections, which are prone to fluctuations and perturbations, were distinct 

between groups at baseline suggests some level of trait-like predisposition to respond.  

Regarding pain specifically, despite evidence that the placebo effect can be malleable and 

dependent upon context in pain paradigms [145], a few neuroimaging studies provide evidence for 

predictability of the placebo analgesia based on brain functional properties. For example, the functional 

connectivity between mPFC and bilateral insula strongly and reliably predicts response in CBP patients 

given a placebo patch instead of a lidocaine patch [146, 147], and the efficiency of resting state network 

properties correlates to the level of placebo analgesia reported in OA patients [148]. Additionally, 

midfrontal gyrus resting state connectivity has been shown to differentiate placebo responders from non-
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responders with OA pain, as well as correlate with standardized pain outcome measures [149]. 

Importantly, these brain regions of interest remain relatively consistent across different types of placebo 

rituals examined in either CBP or chronic osteoarthritis (OA) knee pain [147-149]. These findings provide 

us with a solid base from which to identify brain characteristics of the placebo response in chronic pain 

patients (those that are stable and those which may fluctuate) and identify reliable biomarkers from these 

and other measurements.  However, none of these studies specifically looked at psychological or 

personality-based characteristics that might contribute to or interact with resting state properties to give 

rise to placebo analgesia.  Moreover, none of them had a proper control arm (discussed below). 

Additional research looking at the genetics underlying treatment response provide further 

evidence of predetermined, trait-like qualities in the placebo effect. Both serotonergic-related and 

catechol-O-methyltransferase (COMT) gene polymorphisms have been consistently linked to individual 

placebo response in social anxiety and major depressive disorder [150]. Such pre-existing genetic 

biomarkers of response, which are relatively invariant to time, also provide strong evidence for the 

placebo effect as a predictable, stable phenomenon.  

Returning briefly to the question of why a state versus trait framework might influence the 

robustness or reproducibility of placebo findings, one could imagine that if a researcher viewed the 

placebo effect as a state, s/he may design a study void of measuring personality characteristics or stable 

neurological properties, potentially missing key elements of a response or response propensity.  In 

contrast, if a researcher thought that the placebo effect was a trait, s/he might only include self-report 

measurements at one or two time points pre-treatment, failing to account for dynamic changes in mood or 

expectations throughout the study. Both viewpoints are problematic because they disregard the notion 

that a physical, mental, or emotional state for one person may be more trait-like for another person, and 

vice-versa.  Importantly, both perspectives also ignore the potential complexity of the placebo effect. 

Instead, a placebo response could reflect a combination of or interaction between state and trait 

characteristics, such that certain personality dimensions, brain properties, genetics, and learned 

behaviors (i.e., traits) make it more likely for a person to exhibit the placebo effect but, due to previous 

personal experiences, expectations, and/or the current context (i.e., states), does not guarantee that this 

effect will always occur. In reality, there may be a system or set of systems involved in a placebo 
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response (trait) that may respond differently depending on the context that the placebo is given in or the 

current mood of the participant (state). One could imagine that the placebo response reflects not only the 

specific hardwiring of a distinct universal neurological system and its corresponding genetic and 

psychological components (traits) but also different thresholds and patterns of activity (internal states) 

within this system that are activated only in given contexts (external states), which may be unique to a 

person and possibly even relatively stable for that person (traits).  Viewing a response in this way allows 

for more nuanced inquiries investigating the intersections of biology, personality, context, and culture.  

Given that long-term pain is a complex phenomenon consisting of both traits (genetics, biology, and 

personality), as well as states (intensity of pain, current activities, current medications, and current 

psychological well-being), reframing placebo analgesia to potentially be a combination of both state and 

trait properties fits better with the nature of chronic pain.   There are very few, if any, current projects 

(outside of the one presented in this dissertation) with research designs that allow for the study of both 

predetermined and context-specific attributes of the placebo effect, and more of these are needed to 

further scientific progress in this area. 

 

3.2.2: Problem 2: Overuse of healthy participants  

The second reason why little is known about placebo effects in chronic pain is largely because 

the neurobiological and psychological mechanisms underlying placebo analgesia have been almost 

exclusively studied in healthy pain-free participants who are given an acute painful stimulus (such as an 

injection or series of stimulations) under paradigms involving conditioning or manipulation of expectations 

[151].  In these subjects, as mentioned above, placebo analgesia appears to reflect altered transmission 

in pain pathways, including: (1) reduced activity in many brain regions involved in acute pain perception 

and emotional processing, (2) activation of areas important for modulation of pain-related regions, 

including the engagement of descending pain circuitry, and (3) activation of endogenous opioid and 

dopamine systems [102, 105]. Moreover, the placebo effect in healthy people seems to be primarily a 

state rather than a trait characteristic (or at least framed as such), with placebo responses showing a lack 

of consistency across different routes of administration [138, 152]; such results have been used to explain 

the difficulty of identifying placebo responders in the general population [130].  
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This reliance on healthy individuals for studying the placebo response is problematic for three key 

reasons. First, while it is possible and highly likely that placebo analgesia shares common physiological 

pathways and neurological mechanisms among all individuals regardless of health status, brain anatomy 

and physiology is distinct in chronic pain patients, both due to predisposing factors and plastic 

reorganization with pain chronification [42, 48, 52, 153] and also perhaps as an aftermath of having had 

long and repeated exposures to myriad medical rituals which may render patients more consistently or 

predictably placebo responders/non-responders.  Importantly, the regions implicated in the predisposition 

or continued presence of long-term pain are also associated with placebo response. There is the frontal-

parietal system that is important in decision making (being in a study and taking the medication 

consistently), emotional control and reappraisal (being aware of what you are feeling while you take the 

medication), and maintaining cognitive contexts (knowing what possibilities of treatment you are getting 

now and who is doing the research).  There is also a more distributed system that is involved in the 

reward of pain relief, evaluation of tasks and stimuli, processing of ascending and descending pain 

signals, and forming memories and learned expectations based off of all of these things; this system 

includes the mPFC, OFC, NAc, amygdala, hippocampus, thalamus, and periaqueductal grey (PAG). Both 

systems are important and integral to pain perception and placebo response – together, they connect a 

diverse set of brain regions responsible for sensation, perception, and emotion, and by virtue of their 

specific functions and distributed connections with other regions, are likely responsible for linking 

situational context and sensation to meaning, evaluation, and behavior [101].  Thus, it would make sense 

that some of the same regions that serve as biomarkers involved in pain chronicity might also be 

involved, albeit differently, in identifying placebo response. However, because of this overlap, those 

networks associated with placebo response in healthy pain-free participants may already be perturbed by 

the presence of long-term pain or by having to cope with this pain for many years prior to placebo 

treatment, resulting in compensatory mechanisms that may impact the characteristics or magnitude of 

placebo responses in patient populations. This has largely been ignored in the placebo literature. 

Likewise, the majority of psychological variables associated with response (reported in 3.1.2) 

were studied in healthy populations and, here again, their overlap with clinical cohorts is unknown as 

certain personality traits may be more or less prevalent in chronic pain populations.  Since chronic pain 
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patients may present with co-morbid depression, anxiety, and/or risk-taking behaviors, one cannot 

assume that the same personality traits found in healthy placebo responders will also be attributable to 

pain patients.  Nor can we presume that a person’s current disposition occurs in a vacuum outside of their 

long-term health conditions (that is, perhaps a patient’s likelihood to respond to a placebo changes 

depending upon the kind of chronic condition that they have and how it impacts their quality of life). The 

only “trait” consistently found thus far among placebo responders in chronic pain is a high baseline pain 

severity [116]; to date, sensory and affective pain characteristics, total duration of pain, and 

demographics (including gender and race) have not been found to affect placebo response in clinical 

cohorts.  The personality traits and psychological characteristics of clinical placebo analgesia in the 

context of chronic pain have remained relatively unexplored. 

The third reason why relying on healthy controls to study placebo is problematic is because the 

settings of a laboratory often differ vastly from those in a clinical trial, which may impact the placebo 

responses in various ways. Clinical trials usually involve repeated visits, longer follow-up time, and 

different researcher-to-participant interactions (e.g., blood work, physical exams, probing for adverse 

events, and/or exit interviews), all of which might influence the context under which a patient might 

respond to placebo (e.g., being in a medical setting, receiving increased attention, talking often about 

their symptoms, etc). Moreover, individuals with chronic pain are already fundamentally dissimilar to their 

healthy counterparts when it comes to expectations of treatment efficacy and/or already learned 

responses to treatments or clinicians.  A lifetime of interacting with various medications, procedures, 

physicians, and the medical system changes the baseline state at which many chronic pain patients start 

a clinical trial, a confound that cannot and should not be ignored when investigating the placebo effect.  

And unlike laboratory investigations, clinical trials do not usually manipulate or condition response to 

placebo – the participant comes in with his/her own expectations of randomization and potential treatment 

efficacy.  Therefore, the findings regarding the placebo effect in healthy participants may not easily 

translate to chronic pain populations. 

 

3.2.3. Problem 3: Lack of a proper control group  
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The final reason why there is relatively little known about placebo response in chronic pain is that 

the majority of studies do not include an additional control group beyond those participants receiving 

placebo, a flaw present in most RCT designs.  In a sort of research paradox, the assumptions and aims 

that underlie most RCTS make it difficult to actually investigate placebo responses and the factors 

contributing to them [154]. This is because the goal of an RCT is not to understand the placebo response 

but rather attempt to control for it, and because of this, clinical trials essentially work to define what a 

placebo is without going any further  - that is, they define a placebo as a control for active effects, but 

ironically do not investigate the effects of the placebo treatment itself.  Due to the assumption that a 

placebo group is a proper and “good enough” control for an active treatment group, the large majority of 

studies do not include a proper no-treatment arm.  This is problematic because a no-treatment arm takes 

into account the natural history and progression of the disease, regression to the mean, natural 

fluctuations in symptoms, physical co-interventions, and purely psychological effects [101].  Without a 

control like this, one cannot definitively conclude that changes seen in the placebo arm (or the active 

treatment arm, for that matter) are not due to random fluctuation about the mean.  Additionally, without a 

no-treatment arm, researchers cannot measure the magnitude of the placebo response specifically. 

 

3.3 Significance of studying the placebo in the context of chronic pain 

In addition to its potential to clarify mechanisms of resilience, adaptation, and analgesia at a basic 

research level, studying the placebo effect within the specific context of an RCT for chronic pain could 

significantly impact the way medicine and research is practiced. The placebo effect will remain a nuisance 

to the medical industry as long as its properties are not understood to the extent with which it can be 

predicted, manipulated, and in turn administered to the proper subjects under optimized conditions [155]. 

Therefore, gaining a better understanding of the neurobiology of clinical placebo and identifying individual 

characteristics of placebo propensity is necessary for harnessing placebo as an aid in diminishing chronic 

pain disabilities. Such an effort would also lead to increased efficiency and accuracy in performing clinical 

trials, especially if placebo responders could be removed from active treatment groups prior to 

commencement or if the placebo effect in RCTs could be manipulated to have a null effect size. The 

importance of this latter effort cannot be understated.  A large majority of clinical trials of novel 
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medications designed to treat chronic conditions fail. In recent years, one of the most interesting findings 

is that the placebo response in many of these trials is increasing while the drug responses remain stable, 

resulting in a smaller separation between the drug and placebo arms. This trend has been seen in both 

analgesics [156] and anti-depressants [157]. If we can understand why this is happening and prevent it, 

manipulate it, or exploit it, we might not only be able to improve medicinal standards for RCTS but also 

revolutionize the way clinical trials are performed.   

 

Section 4: Language as a quantitative tool  

There is evidence that semantic properties of chronic pain patients’ speech may provide 

important and currently missing information about the nature of placebo analgesia. Language is often 

seen as a “window into the mind”, since it is simultaneously a mediator and shaper of mental concepts 

[158]. Because of its intimate role in the subjective construction and explanation of phenomena like 

thought, emotions, and experience (as well as being one of the natural consequences of these things), an 

interest in using language to investigate human behavior has gained momentum. In recent years, 

researchers have used various language properties to capture many elements of the human experience 

using properties mined from interviews, blog entries, and social media posts/tweets. From these 

investigations, we now know that we can use language to measure personality and mood characteristics, 

relationship stability, and political associations [159-163], calculate approximate age of speakers [164], 

predict psychological disorders such as schizophrenia [165], identify classes of drugs ingested [166], and 

quantify the extent of various neurological ailments (such as aphasias [167]).  The results of these 

research initiatives have been promising and their findings provide support for utilizing language to not 

only better understand complex conditions and pathologies, but also develop tools to predict future 

behaviors and changes in health status. Language in particular is an ideal candidate for these kinds of 

analyses due to its unique position as both the cause and consequence of thought, and in turn it has the 

ability to pull many biological and psychological elements together in one measurement. Given all of 

these findings, language analyses have the potential to elucidate neurological and psychosocial 

mechanisms regarding pain, including recovery from subacute episodes, coping with chronicity, or in the 

case of this thesis, responding to a placebo treatment.   
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 Interest in the language used by individuals in pain is not new. Numerous ethnographies of 

chronic pain patients have emerged over the last 50 years [168-171], and more recently, papers 

regarding pain physician’s thoughts and narratives about their patients have also been published [172, 

173].  However, all of these inquiries have been limited to the social sciences, and in turn, the large 

majority of the analyses have been qualitative, using coding and grounded theory to find patterns and 

themes in people’s stories.  While these methods are important, they do not translate well to clinical 

measurements or to reportable, quantifiable outcomes. Those efforts that have been made to 

quantitatively study the language of pain have only been done relatively recently, and so far have only 

been attempted either in too broad of a context, like the entire English [174] or Greek [175] lexicons, or in 

healthy participants talking about acute pain [176]. The latter is particularly problematic, since the 

experience of pain in individuals with chronic conditions is vastly different than people experiencing acute 

pain or remembering previous pain episodes, and therefore it does not follow that the language of pain 

would be the same between chronic pain sufferers and healthy individuals. This is primarily because of 

the many neurophysiological and psychological differences between healthy and chronic pain patients 

due to both changes caused by prolonged suffering and predetermining factors that contribute to the 

chronification process; such differences would be expected to result in differences in language used. 

Additionally, chronic pain patients bring with them myriad medical, personal, and social encounters and 

expectations that many people without these conditions do not have; such previous experiences will 

inherently change how these individuals conceptualize and talk about their pain.  Put simply, the starting 

point or baseline of pain patients and healthy individuals with acute pain is not the same and therefore 

neither is their linguistic repertoire.  

There are currently no efforts being made to study the language of chronic pain patients in 

general or in the context of placebo, even if the results of such investigations could be incredibly valuable.  

To our knowledge, we are the first to systematically look at language in chronic pain specifically, with the 

goal of searching for quantifiable semantic differences in patients’ narratives related to their analgesic 

response to a placebo pill in a clinical trial.  

 

4.1 Overview of qualitative interviewing 
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 This thesis does not use qualitative methods to analyze language data, and therefore these 

methods are not discussed here (although they are mentioned in the General Discussion as we might 

use them in future analyses).  However, the interview utilized in this dissertation was designed with a 

qualitative approach in mind, which is briefly explained below.  

Qualitative interviewing aims to understand how individuals make meaning of their lives, how they 

organize their social relationships and identity, and how they subjectively perceive information [177]. Such 

a technique can offer insight into larger and broader topics such as culture, politics, and other social 

forces, or it can provide information about one person or a group of people’s unique experiences and 

rituals in the world.  Although interviewing techniques have rarely been brought together with 

neuroscientific approaches, the combination may prove to be quite powerful, especially in the context of 

placebo and pain.  Through a combination of neuroimaging and language analyses, we may be able to 

afford information about individuals responses, thoughts, experiences, and natural behavior that can then 

be correlated with the same individual’s neurobiological functioning, providing “a link between the 

acculturated mind and brain” [177].  Applying this to CBP and placebo specifically, we might now be able 

to ask and answer questions such as:  

 
(1) How does the chronic pain state influence one’s thoughts and in turn the words that 
are used to store, express, and change these thoughts (about one’s pain, about one’s 
current pain treatment, and about one’s life in general)?    
(2) How does someone’s placebo propensity also affect his/her thoughts and word 
choices?   Do these effects overlap with those caused by chronic pain? 
(3) Can these influences be captured in an interview, quantitatively measured, and used 
to predict various behaviors?   
(4) Can we link complex experiences and memories from people’s verbal disclosures 
about pain and placebo response directly to the complex mechanisms and circuitry of 
each individual’s brain and the state(s) it is in during the study?   
 

 

Interdisciplinary explorations and questions such as these are rare and they are incredibly difficult to do 

well.  However, very recent work combining anthropological methods (like interviewing) and neuroscience 

methods is beginning to show that this type of methodology can be fruitful.  As an example, researchers 

recently investigated cultural differences in the ability to emotionally empathize with people in physical 

and mental distress; they found that differences in an individual’s use of affective language during a one-
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on-one interview predicted individual differences in activation of particular cortices in response to these 

distress situations [178]. Moreover, the researchers saw this predictive capacity even if these individuals 

did not self-report feeling more strongly or empathetically than those participants who used more 

cognitive-centered language, and the findings were also dependent upon culture (i.e., Americans showed 

this relationship but Chinese participants did not) [178]. This suggests that language can pick up more-

subtle relationships between emotions, personality, decision-making, culture, and neurophysiology than 

other approaches or tasks, even in the absence of participant awareness (possibly resulting in a less 

biased measurement of the subject of interest, such as placebo response). 

 The interview created in this thesis was semi-structured as opposed to structured.  The idea 

behind this kind of guidance format is to foster more of a conversation with participants about their lives 

and experiences and make them feel more comfortable, all the while following a set of questions that will 

be common between people and thus relatively consistent between subjects.  Here, the interviewer 

directs the participants’ answers from one broad topic to the next, but does so in a way that remains in 

the context of the ongoing conversation, meaning that questions may be differently ordered between 

participants [141].  Additionally, the interview was made to be open-ended, another qualitative format that 

gives participants “the freedom to discuss in greater detail or at greater length aspects of their 

experiences they feel are the most important or noteworthy” [141].  

 Finally, the interview attempted to maximize the likelihood that we would identify words or themes 

uniquely linked to the placebo response and its neural signature in CBP patients.  This was done by 

including questions that captured the distinctive characteristics of chronic back pain spanning the disease 

continuum, as well as the physical and emotional toll long-term suffering takes.  It also probed for 

previous experience with treatments and the medical system, expectations in the study, and assessment 

of placebo efficacy. Importantly, some questions also significantly overlapped with those asked in the 

battery of questionnaires dispensed to the participants – this was done so that we would not only possibly 

be able to tie language with a placebo response and with neuroimaging, but also we could link language 

directly with questionnaires measuring personality traits and psychological states. Such an approach is 

novel and also critically important for development of a tool (interview or otherwise) for placebo 

propensity.  If such a tool was inspired by and created from a combination of brain mechanisms 
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(neuroimaging), personality (questionnaires) and lived experience (language), and if these elements can 

be shown to correlate to one another, then any predictive measure given by the tool for placebo 

propensity will not only be psychologically valid but also physiologically valid.  

  

4.2 Overview of different quantitative methods 

 The last 60 years has also brought about a number of different methods to quantitatively study 

language, an effort largely encompassed by the term “Natural Language Processing” or (NLP), which 

describes interactions between computers and human languages. Broadly speaking, there are five main 

ways researchers have aimed to quantify language, although these are by no means exhaustive or totally 

independent from one another: (1) word counts and general tokenization, (2) syntax tagging, (3) semantic 

tagging, (4) latent semantic analysis, and (5) a combination of two or more of the above. Each one is 

briefly described here, including their utilization in research and known pitfalls.   

 

 4.2.1. Counting words 

First and most basic are word counts, which are used to capture at the very least three key 

measurements: verbosity (how much does someone speak/how many words do they say), vocabulary 

(how many unique words does someone use in a given segment of speech), and lexical diversity (how 

many of the total words spoken were unique words – of everything they said, what words had unique or 

specific forms?).  The latter term has been referred to as “a poor man’s version of lexical entropy”, and it’s 

initially calculated as a ratio of vocabulary/verbosity (also called the types-to-tokens ratio, TTR). As a 

ratio, its max is 1. A TTR = 1 (1/1) is only possible if a person never repeats a term, as in counting 

numbers, and a TTR = 1/tokens is only possible if a person says the same thing over and over again 

(during a tic or stuttering episode for instance).  Obviously, most people fall somewhere in between. 

However, there is an inherent problem with TTR calculations in many languages, especially English, due 

to the repetitive nature of language in general. TTR has an inevitable downward trajectory because 

English requires the speaker to use a lot of what’s called “functional vocabulary” like articles and 

prepositions. Because of this, the verbosity calculation is often biased in the ratio and thus as TTR falls 

(denominator  - verbosity – increases) because it can’t distinguish between speech of different lengths. 
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For example, a 100 word children’s story might have the same TTR as a Shakespeare play because the 

constant repetition of functional words overwhelms the greater diversity in absolute terms of the latter 

(making TTR fail with changes in sample size) [179]. Therefore, it is necessary to correct for the length of 

the text through some factor in the denominator (called a corrected type-to-token ratio, CTTR).  There are 

many different types of corrections, but the easiest and most common is taking the square root of the 

verbosity measure, or some sort of variation of this. Word counts are prevalent in linguistic research 

because any basic NLP software can easily and quickly calculate these measures and sometimes they 

are very useful.  For example, they have been used to identify recovery from a stroke or accident (such 

as a traumatic brain injury) that maybe have inhibited or damaged part of their language network [180].  

Word counts have also been used to measure how proficient people are when learning a new language 

[161, 181].  For the purposes of this dissertation, word count analysis was used as a quality check to 

make sure that our patients were displaying normal language properties and thus none of the other 

language results could be explained by some basic disordered speech characteristics.   Additionally, all 

the other NLP methods involve word counts to some extent, in that they must first tokenize the text into 

different words and then count kinds of words or number of occurrences, albeit more specifically.  The 

major limitation of word count analyses is that they really don’t provide a lot of information on their own 

about the content or meaning of texts.  Therefore, they rely on at least another level of inquiry (such as 

syntax or semantics) to be useful in most research questions.   

 

4.2.2. Tagging words part 1 - Grammar 

A second common method of language analysis is Linguistic Inquiry and Word Count (LIWC) 

which primarily looks at basic syntax of sentences and speech.  LIWC involves tagging parts of speech 

(e.g., adverbs, adjectives, or pronouns) and either counting the number of times each of these types are 

used or trying to find a pattern in the order they are used.  Again, it is a relatively simple measure that is 

relatively easy to calculate, and it has been used for a variety of research areas[160-162, 181, 182].  For 

example, the kinds of pronouns someone uses (e.g., “I” versus “we” or “us”) can be used to calculate the 

probability that they are a Democrat or Republican or what position of power they hold within a social 

ranking or work hierarchy [182]; additionally, a unique combination of the number of verbs, prepositions, 
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quantifiers, and conjunctions have been shown to dissociate honesty from deception in certain language 

tasks [182]. While useful, language is more than just grammar and the identity of the words do not place 

any weight in this type of analysis (and thus valence and definition do not get considered in these 

instances). Therefore, LIWC syntax analyses cannot quantify the meaning of language outside of 

correlations with other behaviors.  

 

4.2.3. Tagging words part 2 – Valence and meaning 

Third but related, LIWC has also been used to quantify basic semantics via tagging words 

according to pre-specified connotations that are either dictionary/program-driven or subjectively 

determined. For example, one could tag the word “happy” as positive valenced and “sad” as negative 

valenced, “think” as cognitive and “feel” as emotional,  “perplexed” as complicated versus “confused” as 

simple, or “evil” as intense versus “mean” as mild language. After tagging, one can group words 

according to tags and count the number of words in each kind of tag, calculating differences in time or 

between two groups based on these parameters. For instance, Toivonen and colleagues [163] found the 

50 most frequently-used words that described emotional experiences and through hierarchical clustering 

based on subjective ratings of similarity and valence of each concept, was able to detect differences 

between men and women in the kinds of words they used and how they viewed those words. As another 

example, Schwartz et al [164] analyzed 700 million words, phrases, and topics collected from Facebook 

messages and was able to correlate semantically tagged words with various measure of personality and 

self-reports of age and gender. While this type of analysis gets us closer to capturing meaning, it has a 

major limitation in that it is often biased because it ignores context.  A great example of this is the word 

“pretty” – without context, we first don’t know if this is an adjective or an adverb, which allows us to further 

narrow down its meaning.  In the case of the first possibility, it’s likely positively valenced (“the pretty 

flower” or “the pretty woman”).  In the second case, however, it’s harder to tell the valence because it is 

likely an intensifier of an adjective or verb and here context is extremely important (“he was pretty happy” 

or “the pain was pretty bad”).  Furthermore, even with context, tagging based just on valence or intensity 

might still likely fall short, as in the case of “time flies pretty fast around here”, where “pretty” is still an 

intensifier but appears to be neutral because we lack information about whether time passing quickly is 
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good in this context, bad, or neither.   Additionally, tagging of these categories can be dependent upon 

the software used and the dictionary databases they may use as a references for tagging.  

 

 4.2.4. Latent semantic analysis 

This brings us to the fourth kind of quantitative language method used, one which has been 

growing in popularity since the 1990s [183] and is the primary method chosen for this dissertation.  This is 

Latent Semantic Analysis (LSA), also sometimes referred to as LSI (for indexing).  LSA analyzes a large 

set of documents to find underlying hidden (i.e., latent) meaning or concepts in a smaller amount of 

words.  In some ways, LSA represents the meaning of a word as a sort of average of all the meanings of 

all the passages in which it appears, and in turn, it frames the meaning of a given passage or speech as a 

kind of average of the meaning of all the words it contains [184].  It initially arose when trying to find 

relevant documents from search words entered into search engines; in order to accomplish this task, it is 

not enough to just compare words between what is typed and what is being looked for.  Instead, the real 

comparison is between the meaning or concepts behind the words of interest.   LSA tries to do this by 

mapping both words and documents to a shared conceptual space and then comparing them within this 

space.   To accomplish this, there are a couple of short-cuts and simplifications that LSA takes:  First, 

documents (which are any sources of text, including interviews, books, blog posts, etc) are represented 

as “bags of words”.  This means that all words are jumbled together and the order of the words in the 

document are not important; instead only how many times the word appears in the document and other 

documents (indicative of how much it is used overall as part of the lexicon) are important.  Second, 

concepts are represented as patterns of words that usually appear together in a set of documents (for 

example, the words “catnip”, “brush”, and “litter” might all appear in a piece of text about owning a cat). 

Finally, in most cases, words are assumed to have only one meaning (an idea which I will return to).  

LSA first requires construction of a “co-occurrence matrix”. This matrix contains a list of words in 

one dimension (m) and a list of texts or documents in the other dimension (n).  The cells in the m x n 

matrix contain counts of how many times a given word (mi) is used in the given document (ni), with the 

idea being that words used together (i.e, those that co-occur) under different documents might share 

some sort of context or meaning. With a small number of words or a small number of texts, a pattern may 
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be visible to the naked eye.  However, when faced with 10s of 1000s of words or documents, there needs 

to be a way to remove noise, simplify the problem, and extract meaning from larger patterns.  Therefore, 

the second step in LSA is using singular value decomposition (SVD), which is an algorithm that breaks up 

the m x n matrix (referred to as A) into the product of 3 different matrices (A = U*S*V) that each explain a 

different part of the data. U is called the “term by feature matrix” and describes the relationships between 

the words of interest (rows) and features (columns). S is the “singular value matrix” and consists of a 

diagonal of numbers (singular values) in descending order.  The magnitude of these values describes the 

relative strengths of each of the features (that is, how much variance a feature explains in the dataset, 

similar to factors in a PCA).  Finally, matrix V is the “document by feature” matrix (usually shown 

transposed as V’ or VT to be a feature by document matrix).  In instances of LSA that have a relatively 

small # of documents (<100), V describes the relationship between the features and the documents; in 

instances of a large corpora of documents, this interpretation is slightly different and will be discussed 

shortly. 

SVD thus finds a reduced dimensional representation of our initial matrix (A) that keeps as little of 

the semantic structure as necessary while empathizing the strongest relationships. The key is figuring out 

the optimal number of dimensions to use, as the resulting matrices are truncated to “k” dimensions as 

part of the third step in LSA.  Too few dimensions (small k) can result in important patterns and meaning 

being left out, but too many dimensions (large k) can cause noise to be kept in or reintroduced via 

random word choices or inappropriate word usage. Previous research on LSA dimension size indicates 

that the number of dimensions typically selected is between 100 and 500, and Landauer and Dumais’s 

seminal paper showed that they obtained the best performance when truncating at around 300 

dimensions, which has become a sort of field standard in this approach [183, 184].  Thus returning to 

matrix size and interpretation, one might now imagine an m X n matrix that has just undergone SVD and 

has been shortened to k dimensions (n = k). If k < number of documents entered from the original matrix 

(which often is, since corpora of 1000s of texts are commonly used), then matrix V cannot be interpreted 

simply as a feature by document matrix.  Moreover, if n (also k) = m, matrix V will be square; however if m 

> n (and therefore greater than k), then matrix V will be truncated at k (length n) for both dimensions (also 

a square matrix) because there cannot exist more documents than features (since features were 
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determined by documents).  Therefore, V in these instances will still describe documents by features but 

the interpretation will be in terms of features (i.e., a feature by feature matrix).  

The resulting matrices can be multiplied together in different ways in order to test the data.  For 

example, the product of U and S allows you to see which words are best associated with which factor and 

how strongly associated they are. Although feature 1 is always the strongest (like factor 1 is in a PCA), it 

is usually so because it captures the mean of the data or the most common word used, and thus it is 

often ignored (taking features 2 and 3 instead as having new information).  Additionally, using the 

features from LSA, one can calculate other linguistic measures, including semantic distance of whole 

bodies of text or speech to words of interest. This is done by taking the dot product of all k features of the 

concept (word) of interest with all the k features of the words used in a text or by a participant, averaging 

across all words to come up with a mean semantic proximity score for that text.  This calculation 

essentially represents how semantically similar a concept, word, or theme is to a collection of words (how 

closely does this word stand for these other words, on average).   

LSA has many advantages.   First, it allows for mapping words used in speech or text within a 

larger semantic context and in the same semantic space for comparisons.  Second, it provides a method 

for data reduction, where fewer semantic dimensions will result in less noise and more robust information.  

Finally, because it is inherently global (as opposed to looking at words within a local context, such as the 

current sentence), it can find trends and patterns in words usage that might not be as readily apparent in 

other modes of inquiry. Importantly, LSA is an approach that does not depend on explicit semantic 

representation, nor does it need word-for-word correspondences between terms, so people with different 

vocabularies or different ways of explaining things can still be compared to one another and their speech 

can be represented side-by-side [185].  

However, it also has some caveats. First, LSA assumes that a word’s usage in a passage of text 

has a Gaussian distribution with a Frobenious norm [179].  This is not always the case, as many words 

have been shown to have a Poisson distribution and thus LSA might not always provide the best fit in its 

algorithm [179].  Second, and as eluded to previously, words are assumed to have only one meaning, 

which we already know is not always the case. Polysemy describes the phenomenon by which a term or 

a symbol has multiple meanings (e.g., board, top, left, bank, table, crane, etc). This is problematic 
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because it biases semantic connections or calculations for some words and not others.  In the example of 

the word “bank” which might be on the side of a river or might be a place to store money, LSA would put 

the term close in between “money” and “river” as it should, but it might also in turn calculate the semantic 

distance between money and river as being closer than what it actually is because of the attributed 

singular definition of “bank” Some attempts have been made by researchers to control for this by using an 

online dictionary, Wordnet (which has these multiple definitions built into it) as their corpora of interest 

[158], but this is not done often enough in the field and isn’t yet standard practice.   

Similarly, although LSA often throws out the 1st feature, it can still be influenced by over-used 

words or words that are part of common phrases or colloquialisms and thus not weighting words is 

potentially problematic because it can result in “noisy” features.  Some instances of LSA do weight words 

by calculating a text’s TF-IDF (Term Frequency-Inverse Document Frequency). This corrects for the 

number of documents, the number of times a word appears in all the documents and the current 

document, and the total number of words in the current document, essentially making rare words (those 

that hold privileged or specific meaning and importance and which occur in only 5% of a set of texts) 

weighted more heavily than common words (which might occur in 90% of texts in a set of documents) 

[186]. This calculation is done from the beginning on the raw matrix co-occurrence counts (modifying SVD 

inputs). First, the word frequency is converted into its log form and the entropy of each word is computed 

as p*log(p) over all entries in its row (with each cell entry then divided by the row entropy value). Thus the 

word occurrence is simultaneously directly weighted by an estimate of its importance in the passage and 

inversely weighted with the degree to which knowing that word provides information about which passage 

it appeared in (so words that are used a lot get downsized because they don’t provide important 

classifying information) [184]. An additional weighting-like option involves calculating different orders of 

co-occurences through a term by term matrix (U*U’) and the semantic proximity measurement based on 

vector distance mentioned previously, both of which provide information about similarity of terms. For 

each pair of words in this term matrix, the order-of co-occurence is computed by tracing “co-occurrence 

paths” where each word is considered a node in a graph, and semantic paths can be drawn between 

nodes/words that are in the same document [187].  Order is assigned generally with n + 1, where n = 

number of hops needed to connect the nodes in the graph.  Nodes that are connected are considered 
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first-order pairs with no hops in between, whereas nodes that have one intermediate word between them 

are second order, with two intermediate words as third order, and so on. Calculation of co-occurrence 

order can also be derived by first binarizing the term-by-term matrix and then multiplying it with itself for n-

successive times.  Thus if A is the original matrix, the values in (i, j) entry of An will represent the number 

of paths of length n between term i and j. The analyses can be done for each of the different ordered 

representations to determine which is best (that is, which has the shortest characteristic path length 

between terms). Again, however, weighting practices like these are still not widely used. Finally, LSA also 

doesn’t make use of word order, and in turn does not utilize information from syntax, logic, or morphology. 

While it can still extract correct reflections of passage and word meanings accurately despite missing this 

information, it’s likely that some incompleteness or error could and does result on some occasions 

because of this [184].  

 

 4.2.5. Combining methods 

The final method of quantifying language involves combining some or all of the above analyses together 

to try to make up for areas where one is lacking.  As one example, one study combined syntax- tagging 

with semantic similarity of words to identify important phonetic properties related to the intensity and 

emotional content of action verbs [188]. As an additional example, researchers have combined semantic 

context with syntax to look at directed speech network properties in schizophrenia and bipolar patients 

and in participants who ingested various one of 3 substances [165, 166].  Network analyses like these 

indicate that graph theory (the study of how parts of a system or graph are connected) can also be 

employed to syntax or semantics (or their combination) to further explore language.  Language in 

particular is especially suited for this kind of analysis as (1) all of its units are interdependent and need 

the presence of each other to convey meaning [189], and (2) it has been shown that, like the brain and 

other complex networks, language is also scale-free and has small world properties [158].  

The method of choice often depends on the time commitment, level of expertise, and general 

hypothesis/question tested, in addition to the amount and kind of linguistic data obtained.  However, once 

set up and tested, it can be made relatively automated through programmed pipelines and scripts. 
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4.3 Importance of studying language in the context of chronic pain and placebo analgesia 

While neuroimaging represents an extremely important methodology due not only to its predictive 

capacity but also especially to its ability to clarify underlying mechanisms of chronic pain and placebo 

response, performing neuroimaging scans for future analyses is not necessarily clinically ideal for a 

couple of reasons.  First are logistical concerns– fMRI scans are expensive and functional images are 

difficult to interpret without the proper software tools, server space, processing time, and sophisticated 

statistics.  Therefore, relying primarily on neuroimaging methods to predict placebo responders is simply 

not a feasible solution for clinical trials or pain clinicians due to time, money, and lack of expertise.  

Second, while self-report measures are cheaper and simpler in terms of administration and calculation, as 

mentioned in Chapter 1, questionnaires looking at placebo response and personality in healthy 

participants have produced very few reproducible results across trials, placebo rituals, or clinical cohorts 

(so it is unknown how consistent these measures will be in chronic pain patients). Therefore, there still is 

no tool that exists that can capture and predict placebo propensity while remaining easy to implement and 

relatively cost-effective, and there is no method that has been shown to be strongly related to existing 

psychosocial and neurobiological measures of placebo response in chronic pain patients.  Language may 

prove to be the ideal candidate for such an endeavor, as it theoretically should be able to capture aspects 

of both questionnaires and underlying neurobiology.  

Systematically and quantitatively studying what chronic pain patients say and how they say it has 

enormous potential utility for the field of pain and many clinical applications. Linguistic analyses could 

help researchers and physicians better understand the chronic pain experience and in turn why some 

patients recover or respond to various medications in time.  Additionally if language can serve as a 

simultaneous surrogate for both psychosocial measures and brain response or anatomy, interviews may 

be able to be used as an alternative tool for prediction that not only meets the main requirements of cost-

effectiveness and easy implementation, but also is both physiologically and psychologically valid.   

 

Section 5: The memory of pain 

Everyday existence is a mixture of experiences and memories, the confluence and interaction of 

which guide internal thoughts and future actions. This relationship between momentary experience and 
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memory remains one of the most fundamental topics of inquisition for both neuroscience and philosophy, 

having major implications for human behaviour and decision-making, as well as for more complex 

phenomena, such as identity and selfhood. As such, unraveling mechanisms regarding the interaction 

between lived experience and recalled experience is a cornerstone from which neuroscience can inform 

and advance psychology.   

5.1 Mismatch between experienced and recalled pain 

However, the biological and psychosocial bases of such interactions remain essentially unknown.  

This is unfortunate since a better understanding of how memory and experience influence each other 

would be of great clinical benefit, especially in the realm of pain. One of the main challenges physicians 

face is determining the amount of pain experienced by their patients.  In addition to the intrinsic difficulty 

in describing and quantifying pain, it has been repeatedly shown that memories for painful events are 

often inaccurate - when asked to recall a past painful event, people tend to overestimate their pain, with 

the intensity reported to be more severe than that which was actually experienced [190]. The magnitude 

and direction of the discrepancy between remembered pain and actual pain are dependent upon many 

factors, including the emotional context under which the pain was experienced and later recalled [190-

196], the individuals’ personality traits and mood [197, 198], and the participants’ pain history and 

previous experience with pain [190, 199, 200].  

 The psychophysical properties of acute experimental pain also account for a large proportion of 

the error in remembering pain. An influential study by Redelmeier and Kahneman [201] demonstrated that 

patients’ memories of the amount of discomfort reported after a minimally invasive procedure was 

determined primarily by the intensity of pain at both the procedure’s worst and most recent episodes, a 

phenomenon now known as the “peak-end rule” (Figure 7). The authors reported that the initial amount 

of pain, the overall total amount of pain experienced in time, and the duration of the procedure all had 

little effect on the patients’ retrospective ratings.  These observations have since been replicated in other 

studies, experimental designs, and participant cohorts [202-204].  
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Figure 7: An example of Kahneman’s peak-end rule. In 1996, Daniel Kahneman and Donald 
Redelmeieir studied 154 patients undergoing a colonoscopy. They asked these participants to rate their 
pain on a VAS scale (0-10) every 60 seconds during the procedure.  The procedures varied in length, 
with the shortest being 4 minutes and the longest 69 minutes in duration. Shown here are plots of pain 
intensity reported by two of these patients during the colonoscopy (taken from Kahneman’s “Thinking 
Fast and Slow” [203]). At the end of the procedure, participants were asked to rate the total amount of 
pain they had experienced during the procedure and report this number to the researchers. Now consider 
this question: Assuming that the two patients used the VAS scale of pain similarly, which patient suffered 
more?  And why? Most people say B because he spent at least as much time as patient A at any level of 
pain and the AUC is clearly larger for B as well.  Of course, B’s procedure also lasted a lot longer than A’s 
did, too. However, the patients did not display this type of result; instead A actually reported more pain 
than B, illustrating that the real-time ratings and restrospective assessments were systematically different 
from each other.  Kahneman later demonstrated that this recall bias was due to patients’ memories of the 
level of pain reported at the worst moment of the experience and the level of pain at its end, which he 
later called the “peak-end rule”. Importantly, duration of the procedure had no effect on its recall. Applying 
this to the patients, we can see that the worst rating (8/10) was the same for A and B – they had the same 
peak – but the end was different (7 for A and 1 for B).  This means that the peak-end average was 
therefore 7.5 for patient A and 4.5 for patient B, explaining why A retained and rated a much worse 
memory of the procedure than B. 
 

The memory biases described above have also been documented in chronic pain patients, with 

evidence that long-term pain is remembered less accurately than acute pain [190, 200] and that people 

with persistent pain report intensity of previous pain less accurately than healthy people [205].  These 

inaccuracies in the recall of spontaneous episodes of chronic pain can become worse over time and even 

impact memories of treatment efficacy [199]. Chronic pain populations also have higher rates of 

psychological co-morbidities and mood disturbances, which can in turn influence memory. Studies have 

demonstrated that increased depression, elevated levels of emotional distress, and/or sustained 
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presence of negative mood can all result in the overestimation of recalled pain in patients with various 

kinds of chronic pain conditions [206-209].  

 

5.2 The importance of accounting for memory bias in RCTs 

The extent to which the combined effects of psychophysical pain and mood properties explain 

memory bias in chronic pain remains unknown. Importantly, a neurological substrate responsible for this 

bias has yet to be identified in either healthy or patient populations.  From a placebo standpoint, it’s 

important to understand which regions are involved in this bias since the anatomy and neural circuitry of 

memory at least partially overlap with that of chronic pain perception and placebo response (and thus 

may influence one another).  Additionally, since most clinical trials rely on retrospective pain assessments 

or reports of treatment efficacy, investigating the extent of bias in chronic pain populations would have 

utility in clinical decision-making (e.g., when to start treatment, what dose to give, or whether to even 

include someone in a trial). Furthermore, placebo analgesia in particular is likely influenced by this kind of 

bias, in that subjects often rely on the memory of their pain prior to treatment in order to estimate their 

subsequent improvement (or lack thereof) [210]. Studies have demonstrated that when retrospective 

evaluations are used, the magnitude of the placebo effect can be 3-5 times greater than the effect 

calculated from real-time ratings [211] , and that there is often a greater memory bias at baseline in future 

placebo responders than in those who do not respond [212]. 

 

Section 6: Model building and machine learning 

All studies in this dissertation build some kind of model for explaining variance in the data, and 

some also make use of machine learning techniques.  The scope of these topics - models and machine 

learning -  is incredibly vast and could make up hundreds of dissertations; as such, they are not covered 

in much detail.  However, a few of the key elements in model development are described below, as are 

brief explanations of each of the techniques used in the thesis, as they are important in understanding the 

intermediate and final model analyses in each of the studies presented.  
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6.1 Definitions and basic knowledge  

For the purpose of this dissertation, a model can be defined as a description of a system (e.g., 

the neurobiology and psychology of chronic pain patients) or behavior (e.g., placebo response) using 

mathematical concepts, statistics, and language.  In the following studies, the models will be “predictive”, 

meaning that we will use statistics on a set of independent variables (predictors) to predict a dependent 

variable (outcome) that we expect is related to these predictors. Depending upon how one defines it, 

predictive modeling overlaps significantly with the field of machine learning. Machine learning is part of 

the computational sciences and is a term used to describe the study and construction of algorithms that 

can learn from and predict data.  One of the main goals in machine learning is to build and train a model 

from sample inputs, output this model as some kind of equation or formula, and test it on a new set of 

input data (although this goal may change depending upon the question asked and the starting 

knowledge of the data). Importantly, machine learning makes use of the computational power of modern 

day computers, with the idea being that a machine can sift through extremely large amounts of data at 

speeds exponentially faster than a human could ever dream of achieving, and in doing so, can produce 

more complicated and accurate models of the world and uncover insights that might not have otherwise 

been discovered by human eyes/actions alone.  

For many predictive applications, the outcome of interest is binary (e.g., given some criteria, did a 

person respond to a placebo or not?), and the information from the model can then be expressed as a 

probability [213]; this is known as classification. For other applications, the dependent variable is a 

continuous variable (e.g., pain ratings or memory scores), and in these cases, the model provides 

information about the amount of variance that the set of independent variables explain in the outcome. 

Although aimed at predicting the future, many predictive models are applied to any type of unknown 

problem regardless of when it occurred. In Study 1 of this thesis, we analyze placebo response 

propensity in chronic pain patients using data collected prior to randomization and therefore before any 

response occurred.  Study 2 inputs language parameters into a predictive model explaining placebo 

response, even though the language data was collected after responses had taken place – in instances 

like these, the models aren’t always predictive in the traditional sense, but they can still be used to assess 

how well parameters can distinguish between two different groups. In Study 3, we input rating data and 
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neuroimaging data into a model explaining variance in the memory of pain, and we then use this model in 

a separate group of participants to predict their reported memories before looking at their actual recalled 

values.   

 

6.2 Multivariable linear regression 

For continuous scalar variables, some form of linear regression is often used as a predictive 

model.  In this case, the dependent variable (response) is thought to be a linear function (combination) of 

all of the independent variables (regressors) inputted into the model. Expressed as an equation: 

 y = xB + E,  

Where y is the actual observed response (dependent variable), B is the vector of unknown parameters 

(coefficients), x is the set of regressors (explanatory independent variables), xB is the predicted response, 

and E is the error accounting for the different between y and xB.   Additionally, there is always a constant 

term included in the regression that indicates where the fitted regression line crosses the y-axis (intercept, 

B0).   

Interpretation of linear regressions usually involves looking at the R2 value of the final equation 

and its overall significance level. The R2 value (also known as the coefficient of determination) indicates 

how close the data are to the fitted regression line and is a measure of the percentage of variation in the 

response variable that is explained by the model (i.e., explained variation/total variation). R2 values are 

between 0 and 1, with 0 being that the independent parameters explained none of the variance in 

outcome (i.e., they did not affect the response) and 1 being that all the variance in response is explained 

by the regressors (and the model is completely sufficient).  In general, the higher the R2, the better the 

model fits the data (although this is not always the case and caution must be taken to ensure that these 

values are not biased). The p-value of the regression tests the hypothesis that the slope of the fitted line 

is equal to zero (meaning that there is no relationship between the response and the regressors); a low p-

value (p<0.05) in the final model indicates that this null hypothesis can be rejected and suggests that the 

predictor variables are associated with changes in the response variable in a way that is not by chance 

alone. Additionally, investigating the B values for each of the regressors provides important information 

about the model. Specifically, these values indicate the direction and magnitude of expected change in y 
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for a one-unit change in x1 when the other covariates (x2…xn) are held fixed. These B’s, along with their 

corresponding statistics (p-values), can give clues as to the relative importance or power each variable 

has in the model (and, in turn, in the outcome variable). 

Linear models assume that the data is normally distributed (Gaussian), denoised (without 

significant outliers), and independent (not correlated with one another). 

 

6.3 Multivariable logistic regression 

Logistic regression is another common technique used in computational neuroscience and 

psychology for predicting outcomes. It is named because of the function that it uses – the logistic or 

sigmoid function –that was developed in the 19th century by statisticians studying population growth [214]. 

They noticed that in the early stages of a developing society, population grew quickly and steadily but 

over time eventually reached a point of near plateau (a maxing out of capacity).   To fit this data, they 

utilized an s-shaped curve that was able to take on any real-valued number and map it onto a value 

between 0 and 1.  Like linear regressions, logistic regressions also use an equation in their 

representation, with x, y, and B values and a constant term.  However, a key difference between these 

equations is that y in logistic regressions is assumed to be a binary outcome (0 or 1) as opposed to a 

meaningful number. Expressed as an equation: 

y = e(B0 + BX) / (1 + e(B0 + BX)), 

Here, the B values (constant term and coefficients) and x values are interpreted in the same way as they 

would be in a linear regression, with the only exception that they are exponents of Euler’s number (e), 

which is the base of the natural logarithm and is equal to approximately 2.718; this arrangement 

transforms the linear relationship of the variables into a logistic equation.  In this case, y represents the 

probability (p) of the combination of regressors leading to one of two classes.  If we let f(x) stand for the 

linear combination of regressors, we can also think of the equation in this way: 

 (p) = (ef(x) )/(1+ef(x))  

A criteria for p is usually set to define which class a given combination of regressors would best predict; 

sometimes this threshold is arbitrarily determined and other times it is apriori determined by previous or 
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current data.  For example, if we expect 50% of our patients to respond to a placebo, we might set the 

criteria to p = 0.50; in this case, if p >= 0.5, patients would be classified as a responder (class 1) and if 

p<0.5, they would be classified as a non-responder (class 2). 

 Outside the obvious use of logistic regressions to obtain classification probabilities, interpretation 

of logistic regressions is similar to that of linear regressions in that R2 values can also be used to assess 

the amount of variance explained, and coefficients and p-values can also inform about the strength of the 

model and the relative contribution of each of the explanatory variables.  In the case of B values, the 

strongest coefficients are those that result in the model predicting a value very close to 1 (class 1) and a 

value very close to 0 (class 2).  To get these, a search procedure seeks values that minimize the error in 

the probabilities predicted by the model to those that are actually in the data (i.e., it tries to find values 

that result in the best match between predicted and observed). Like linear regressions, logistic models 

also assume that the data is de-noised, Gaussian, and independent. 

 

6.4 Naïve Bayes 

Another common machine learning technique that is complementary to logistic regression is a 

Naïve Bayesian (NB) approach, which is named due to its reliance on Bayes Theorem, proposed by 

Reverend Thomas Bayes in the 18th century [215].  Baye’s critical insight was that in order to determine 

how probable a certain outcome was, one would need to also determine how probable that same event 

was if different scenarios were true.  This type of probability is now called a likelihood, and it is the 

foundation of Bayesian principles of data analysis. Bayes Theorem thus describes the likelihood 

(probability) of a certain outcome provided a set of input parameters (features) and in turn allows us to 

predict a class given a set of features (which are described in terms of their probabilities as well). In an 

NB classifier (or any classifier that uses Bayesian inferences), these features are assumed to be 

unrelated to each other, that is, each parameter is thought to contribute independently to the probability of 

a certain outcome occurring.  For example, the features  “furry”, “striped”, and “around 9 lbs in weight” 

would be viewed as independent contributors to the probability that an animal is a cat, regardless of any 

correlations between the features. Such independence is often not true of features, which is why the 



 68 
algorithm is labeled “naïve”, but despite this shortcoming, NB classifiers are still able to outperform other 

more complicated machine learning algorithms. 

A key component of the theorem is calculating posterior probabilities from the data. In its most 

simplest form, this can be done with the equation below: 

P(c|x) = (P(x|c) * P(c)) / P(x), 

where P(c|x) is the posterior probability of a class (c) given the feature (x);  P(x|c) is the probability of the 

feature x given the class c (this is likelihood measure, which is opposite of the posterior probability); P(c) 

is the class prior probability (how many of the class c is expected in the total sample), and P(x) is the 

predictor probability (how many of the feature x is expected in the total sample). Importantly P(x) and P(c) 

are calculated without regards for each other. If there is more than one feature, the equation can be re-

written to multiply the probabilities of each feature together. In an example with 3 features (x1-x3), this 

might look like: 

 P(c|x1,x2,x3) = (P(x1|c) * P(x2|c) * P(x3|c) * P(c))/ (P(x1) * P(x2) * P(x3)) 

Like the above models, in addition to assuming independence, NB also assumes Gaussian distributions 

of the features. 

 

6.5 Support Vectors 

The last type of modeling method this thesis addresses is that of support vector machine (SVM) 

learning. An SVM is a kind of supervised learning model that takes in specified inputs (training data) and 

specified desired outputs (binary) and asks the machine to come up with a rule or equation that maps the 

inputs to the outputs as best it can. An optimal algorithm would allow the model to generalize its 

outcomes to unseen data (referred to as testing data, which is either purposefully left out or not yet 

collected). To accomplish this, SVM makes use of both linear and non-probabilistic strategies. Given a set 

of training data whose classifications are known and specified, SVM first plots each piece of data as a 

point in space, finds a line or hyperplane that best separates the points according to their class, and then 

assigns new points to one class or the other according to the line. Importantly, the line or plane (called a 

classifier) is fit in such a way that the distances from the closest point in each of the two classes will be 

the farthest apart (in other words, it attempts to find the biggest gap between defined groups). The two 
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points closest to the line are referred to as the support vectors, and the gap is referred to as the margin 

and is typically twice the distance to the support vectors (i.e., it’s exactly in between the closest data 

points). The side of the line that the new testing data lands on determines the class that it is assigned. 

Often, the training data is so complicated that a simple line is not sufficient to divide the classes easily. 

For these cases, some level of non-linear optimization is needed, including transforming the data into a 

higher-dimensional space, to aid in finding the hyperplane that best fits the classes [216]. 

 

6.6 Model validation 

After model development, a quantification of its performance is needed so that one can judge 

whether the model is adequate for its purpose and/or better than an existing model [217]. One of the main 

things validation analyses inform us about the models we test is the extent to which they are over-fit.  

Overfitting refers to the phenomena that happens when models are too complex, resulting in a model that 

produces noise or error instead of the underlying relationship.  Intuitively, one might expect that the more 

parameters inputted into a model, the better it will perform since it has more information to go off of; thus 

it might seem like a 20-factor model might be better than a 2- or 3-factor model.  However, things are not 

usually so simple.  While it is true that the fit of the model should improve with additional parameters and 

with this, more variance in the outcome will be explained, a better fit does not guarantee better prediction 

[215].  This is because the model might be biased by the data in its training set, in turn becoming too 

sensitive to the particular data points that happened to be observed in the current sample (which might 

not necessarily be observed in a different sample).  If models have too many features relative to the 

number of their observations, it can become so finely tuned to that specific data set that the solutions it 

produces in new data sets are highly variable and noisy.   The more factors in a model, the more points 

that a novel data set must fit; the less factors, the more likely that slight variations from different inputs 

would still be able to fit the essential pattern [215].  A good model falls somewhere in between – not so 

simple as to fail to capture an underlying relationship in the data but not too complex so as to introduce 

error.  Model testing can combat this potential problem by first detecting the presence of overfitting with 

methods like cross-validation (explained below) or by penalizing more complex models, as in 

regularization and Lasso methods (not explained here) [215]. 
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A primary aim in model validation is to have at least internal prediction validity (meaning that the 

model is strong and reliable for subjects within the same sample or underlying population).  However, if a 

model is to be considered truly valid, this predictive capacity would preferably generalize to different 

samples (individuals with the same condition that the model did not train on) and/or to related but different 

populations (e.g., a model trained on CBP would also have some predictive accuracy in OA).   For these 

reasons, validation of a model on a fully independent and/or external dataset is the best way to assess its 

performance. Unfortunately, there are many cases where it simply is not possible to have a validation or 

test data set.  In these cases, the validity of the model must be tested on its own data in various ways to 

essentially guess at how well it will fit data that it hasn’t seen.  One of the most common ways to do this is 

through cross-validation (which is used in Study 1) [218].  Cross-validation investigates how well a model 

fits the data that it’s given as well as how well it generalizes to data it hasn’t seen.  To do this, cross 

validation methods “hold back” or “leave out” parts of the data temporarily, building the model on the 

remainder of the data and later testing it on the data it kept out.  Often, this procedure is repeated many 

times, sometimes over all possible iterations of the data. The number of data points to leave out depend 

on computational power/time and sample size.  A common but computationally intensive option is 

exhaustively testing all the possible ways to divide the data into discovery and validation sets; these are 

referred to as Leave-p-out-cross-validation (LPOCV), where p is the number of observations used as the 

validation set.  With larger sample sizes, LPOCV can become difficult to calculate. Leave-one-out-cross-

validation (LOOCV) sets p = 1 and has the same advantages as LPOCV but with faster processing time; 

for each iteration of the data, you leave one observation out and test it on the model later.  Accuracy in 

determining the left out data point is determined at each iteration and averaged over all iterations to 

obtain an approximate percent accuracy for the model.  LOOCV is used in Study 1.  Other types of cross 

validation include k-fold CV (dividing the sample into k equal-sized subsamples, training on one and 

testing on the other) and repeated random subsampling (randomil splitting the data into training and 

testing data with no dependence on number of folds or observations) [219]. 
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Section 7: Thesis aims and hypotheses 

 The overall aim of this thesis is to better understand the biological, psychological, and linguistic 

mediators of clinical placebo analgesia in chronic pain and develop a model that can be used as a tool to 

detect placebo propensity in future clinical trials and cohorts. 

 The aim of Study 1 is to identify and characterize neurological biomarkers and personality traits 

that predict placebo response in chronic low back pain patients. We conducted an 8-week-long blinded 

randomized control trial (RCT) investigating mechanisms of clinical placebo analgesia. This trial had daily 

pain and mood ratings, an extensive battery of questionnaires, and multiple functional and anatomical 

neuroimaging scans collected longitudinally to capture placebo responder properties.  We hypothesized 

(1) that brain regions involved in emotional and reward processing, memory, pain, and cognitive control 

should show differences, anatomically and/or functionally, between responders and non-responders at 

baseline prior to treatment, and (2) that psychological traits and states important for emotional and pain 

regulation would also differentiate future placebo responders from non-responders. 

 Study 2 had two primary aims: the first aim was to investigate the extent to which semantic 

language properties could capture differences in placebo responder and non-responders with chronic 

pain. To answer this, we conducted a semi-structured, open-ended exit interview as part of the same 

RCT in Study 1. We hypothesized that placebo responder narratives would differ significantly from non-

responder narratives in their semantic relationships with concepts including emotional awareness, coping 

behaviors, pain experience, and expectations, and that a unique combination of these semantic concepts 

could predict response. The second aim was to demonstrate that the semantic differences found in Aim 1 

corresponded to neurological and psychosocial predictors of placebo response in these patients. We 

hypothesized that if there were robust semantic differences seen between groups, then these language 

parameters should be significantly correlated to underlying and pre-existing brain organization and 

function, as well as to personality traits and emotional states related to placebo response.  We also 

hypothesized that if language could truly be conceptualized as a intermediary between the brain and the 

mind (or as a variable that captured aspects of both neurological function and psychological processes), 

then the semantic differences seen between responders and non-responders should be able to identify 
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the same functional connections seen previously, as well as additional brain signatures that might also be 

related to or mediating of placebo response. 

 Study 3 was unanticipated and resulted from exploratory analyses of the data collected in Study 

1.  The aim of this study was to identify and characterize neurological, psychological, and psychophysical 

mediators of pain recall bias in chronic pain patients. Utilizing data from the same RCT as Studies 1 and 

2, we combined daily measures of pain and mood collected using the smartphone app, psychological 

scores from the questionnaires, and morphometry of the hippocampus to explain pain memory bias in 

CBP. We hypothesized that CBP patients would show a discrepancy where their recalled pain at the end 

of the rating period would be significantly higher than the actual pain intensity they experienced while 

rating. Given the importance of the hippocampus in memory encoding and retrieval, and its role in the 

development of chronic pain [45, 46, 50, 91], we further hypothesized that memory biases seen in 

participants would be associated with differences in the anatomy of the hippocampus as well as 

personality characteristics.  
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CHAPTER 2: METHODS 

Participants  

129 participants with chronic low back pain (CBP) were initially recruited from the general 

population and clinical referrals via hospital databases and advertising in the community. To meet 

inclusion criteria, individuals must have been 18 years or older with a history of lower back pain for at 

least 6 months; this pain must have been neuropathic (radiculopathy confirmed by physical examination 

was required) with no evidence of additional co-morbid chronic pain, neurological, or psychiatric 

conditions. Individuals must have agreed to stop any concomitant pain medications and must have 

indicated ability to use a smartphone or computer to monitor pain twice a day. Additionally, the enrolled 

patients must have reported a pain level of at least 5/10 during the screening interview, and their 

averaged pain level from the smartphone app must have been higher than 4/10 during the baseline rating 

period (explained below) before being randomized into a treatment group. Finally, for safety precautions, 

clinical measurements taken at Visit 1 must have been within a pre-specified healthy range and all 

participants must have passed the MRI safety screening requirements at each scanning visit. 

Figure 8 illustrates the flow of patients through the clinical trial. From the initial 129 chronic back 

pain (CBP) patients recruited in the study, 4 individuals were assessed for eligibility but met exclusion 

criteria before consenting. Of the enrolled 125 patients, 43 failed screening due to meeting exclusion 

criteria at Visit 1 or during the 2-week baseline period between Visits 1 and 2.  The remaining 82 patients 

were randomized into one of three groups – no treatment (n=25), active treatment (n=5), or placebo 

treatment (n=57). Of the no treatment group, n=5 were either discontinued from the study or lost to follow 

up; of the placebo treatment group, n=11 were either discontinued or lost to follow-up, with an additional 2 

participants being excluded from final analysis due to having an average pain rating values during 

baseline below 4/10. Note that the inclusion of active treatment group was used only to ensure that the 

double blind for placebo treatment was maintained for the duration of the study. Therefore, the 5 

participants randomized in the active treatment group were not analyzed.  
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Figure 8: CONSORT diagram. Disposition of all study participants from study entry to study completion, 
including those who screen failed, those who discontinued, and those who successfully completed all 
study visits. Of the 129 people who were screened, 4 met exclusion criteria prior to consent; 125 
individuals were consented and entered into the study.  Of these, 43 screen-failed between visit 1 and 
visit 2 due to the reasons listed; the remaining 82 people were randomized into a no-treatment (n=25) or 
treatment (n=57) group according to a block design. Of the 25 individuals in the no treatment group, n = 5 
were either lost to follow-up or were discontinued post-randomization due to reasons listed, leaving a final 
n=20 that successfully completed all 6 visits of the study and were subsequently analyzed.  Of the 57 
treated individuals, 52 were allocated to placebo treatment and 5 were allocated to active treatment 
(Naproxen + Esomeprazole) in a double-blind fashion. After randomization, 10 placebo-treated individuals 
and 1 active-treated individual were either lost to follow-up or discontinued for reasons specified in the 
diagram. The remaining n=4 active treatment participants were not analyzed as their only purpose was to 
aid in maintaining the double blind.  The remaining n = 42 placebo participants successfully finished all 
study visits; however, 2 individuals were found to have baseline pain ratings not meeting eligibility criteria 
and were subsequently excluded, leaving n=40 placebo treated individuals to complete the study.  In 
addition to these participants, we added 3 people who had all scans but never made it to the final visit 
(i.e., they were only missing visit 6’s interview and questionnaires); thus we ended up analyzing n=43 
placebo participants. 
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The final sample size for Study 1 included 20 CBP patients randomized to the no treatment group and 43 

CBP patients randomized to the placebo treatment group; demographics for these individuals can be 

found in Chapter 3. Participants were compensated $50 for each visit completed, and they were 

reimbursed up to $20 for travel and parking expenses if applicable. 

For Study 2, the numbers remain relatively the same with the exception of the 1 person in the 

placebo treatment group who failed to complete the exit interview, resulting in n = 20 no treatment and n 

= 42 randomized to placebo treatment.  A table of demographics can be found in Chapter 4.  For Study 

3, 72 of the 129 initially recruited CBP patients were investigated – in addition to meeting the inclusion 

criteria specified above, they must have completed at least the first 2 visits of the trial (randomization into 

a treatment or no-treatment group was not necessary, as we were interested in memory bias prior to 

placebo treatment).  69 of these 72 participants had usable data across all of these modalities.  2 patients 

were excluded due to having no variability in their pain or mood ratings (i.e., they consistently rated their 

pain or mood at the same number), and another participant was excluded due to missing one of the 

retrospective questions (explained below). 48 patients were used as a discovery group in the analyses, 

and an additional 21 participants were used as a validation group.  Demographics can be found in 

Chapter 5. 

Additionally, for Study 3, a second dataset was taken from a completed longitudinal study 

identifying neural substrates of pain persistence, portions of which have been used in previous 

publications[45, 48, 79, 220]. Data from 22 healthy individuals who served as control (CON) participants 

and 21 individuals with subacute back pain that persisted to become chronic (SBPp) were used in the 

present analyses.  Each group had multiple scans collected throughout their participation; for this thesis, 

data from the first baseline scan (scan 1) and the fifth scan (scan 5, second scan here) that occurred 

approximately 1 year later were used. All participants used in these additional datasets were also 

recruited from general and clinical populations via community flyers and ads, as well as from physician 

referrals and hospital databases when applicable. Eligibility criteria were comparable across all studies 

and patient populations. To be recruited and eligible, all patients with SBPp had to report an initial 

duration of pain between 4-16 weeks. Additionally, SBPp participants were diagnosed with back pain by a 

clinician and reported pain intensity of >40/100 on a visual analogue scale.  Their persistence in pain (as 



 76 
opposed to recovery) was defined by the observation that their pain levels taken at each visit did not 

decrease by at least 20% by the end of the study.  Healthy controls must have had no current pain or 

history of sustained pain in the last year.  As with the CBP patients in the primary analysis, both SBPp 

and CON participants must have had no reports or presence of co-morbid systemic, chronic pain, 

psychiatric, or neurological disorders (including history of head injuries and high levels of depression).  

The Northwestern University Institutional Review Board approved the study (and all studies from 

which additional data was taken), and all participants gave written informed consent prior to 

commencement of any research activities. A waiver of documentation of consent was provided for the 

follow-up analyses in Study 3 since they were not initially planned; those individuals who participated in 

the follow-up phone call (explained below) to assess memory of the study provided verbal consent prior to 

answering any questions. 

This study was funded by the National Center for Complementary and Integrative Health (NCCIH) 

and was registered as a clinical trial at ClinicalTrials.gov (study identifier: NCT02013427).  All study 

procedures were completed in accordance with federal and state guidelines.  

 

Study design and procedures 

All studies presented here were taken from one larger study, which was conducted in the setting 

of a clinical RCT specifically designed for assessing the placebo response. The total duration of the study 

lasted approximately 15 months: the first patient was seen on 11/06/14 and the last patient was seen on 

02/04/16. The study consisted of 6 visits spread over approximately 8 weeks, including a baseline 

monitoring/screening period and two treatment periods, each followed by a washout period. The design 

was set up to track placebo response in time and to test the likelihood of response to multiple 

administrations of placebo treatment in order to optimize accuracy in the identification of responders and 

non-responders. Although the overall protocol included four scanning sessions, only the brain imaging 

data from the first scanning session performed at Visit 2 and the questionnaires administered at Visit 1 

were analyzed for Study 1 because our initial goal was to determine the psychological and 

neurobiological mechanisms predisposing an individual to respond a placebo treatment. Data from other 
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scanning sessions performed after the first treatment period will be analyzed in a separate manuscript 

addressing different research questions. 

Studies 2 and 3 made use of different aspects of the data collected in this RCT; therefore, their 

study procedures are depicted in separate figures for clarity purposes only (all diagrams are displayed the 

Results section for each respective study). Briefly, Study 2 used the interviews collected at visit 6, the 

questionnaires collected at visits 1,2, and 6, and the brain imaging data collected at visit 2. Study 3 used 

the same data as Study 1, but with a different research question and additional data collection after the 

trial.  

 

Randomization 

The randomization scheme was performed using 2 kinds of blocks, each with 8 patients; the first 

block assigned 5 patients to placebo and 3 to no treatment, and the second block assigned 5 patients to 

placebo, 2 to no treatment, and 1 to active treatment. Each patient ID was randomly attached to a 

randomization code. The initial randomization included codes for the first 80 patients and was followed by 

a second randomization of 50 additional codes about 6 months later. For those assigned to either of the 

treatment groups, the allocation was performed in a double-blinded fashion: a biostatistician performed 

the randomization; drugs were ordered and re-encapsulated by the Northwestern research pharmacy and 

bottled by designated lab members; a member of the Northwestern University Clinical and Translational 

Sciences (NUCATS) institute matched the appropriate treatment drug with patients’ randomization code; 

and study coordinators picked up the blinded agent from NUCATS for storage and dispensing. All drugs 

were stored at room temperature in a locked cabinet within the lab. The double blind for treatment groups 

was maintained by the identical encapsulation of the study agent - blue pills were either Naproxen 

(500mg) or placebo (lactose) and bi-colored pills were either Esomeprazole (20mg) or placebo, and each 

person assigned to treatment received a mixture of blue and bi-colored pills. This way, neither the 

participants nor the researchers knew which treatment the participant had received. For those assigned to 

the no-treatment group, no blind was maintained, as both study staff and participants knew that they were 

not receiving the study agent. Once approximately 50% of all participants had been entered into the 

study, a preliminary analysis of the electronic pain rating data was completed in order to confirm that 
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there were participants who were experiencing a diminishment in pain (no action was taken). 

Randomization details are important for Studies 1 and 2 only.  

 

Visit schedule 

Visit 1 (all studies) 

Visit 1 was the screening visit - at this time, participants were screened for eligibility and 

consented. Following informed consent, a blood sample was drawn (for a comprehensive chemistry 

panel, a complete blood count, and a pregnancy test if applicable), vital signs were taken (blood pressure, 

heart rate, respiration rate, height, and weight), and a medical professional completed a physical 

examination and took a comprehensive pain history. Participants were then asked to complete a battery 

of 29 questionnaires regarding basic demographics, pain, mood, and personality (Table 1).  

Category Questionnaire Visits  Description References 

MQS 1 

Medicine Quantification Scale: 
used to score how much and what 
kinds of medications participants 
were using before or at the start of 
the study; if participants were 
taking concomitant pain 
medications, they were asked to 
stop these for the duration of the 
study 

[221] 

PHI 1 

Personal Health Information: 
collected a general medical 
history, a history pertaining 
specifically to back pain - including 
causes, previous treatments, or 
surgeries – and information about 
education, income, sleep, 
smoking, and alcohol usage.  

n/a General 

Demographics 1 
NIH Demographics Form: 
Collected gender, race, and 
ethnicity 

[222] 

NRS all 

Numeric Rating Scale: provides an 
additional pain rating from 0 (no 
pain) to 100 (worst pain 
imaginable); standard method of 
collecting perceived pain level in a 
clinical setting 
 

n/a 

Pain outcomes 

MPQ-sf all 

McGill Pain Questionnaire (short 
form): measures location, duration, 
intensity, and quality of pain 
 

[223] 
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NPS all 
Neuropathic Pain Scale: measures 
the neuropathic components of 
participant’s pain 

[224]  

pDT all 

painDETECT: provides information 
about location, duration, intensity, 
and quality of pain at different time 
scales  

[225] 

CPAQ 1 

Chronic Pain Acceptance 
Questionnaire: measures the effort 
participants put into either actively 
controlling their pain (activity 
engagement subscore) or 
passively accepting their pain (pain 
willingness subscore) 

[226, 227] 

CPCI-42* all 

Chronic Pain Coping Inventory: 
measures 3 kinds of maladapative 
coping strategies (guarding, 
resting, and asking for assistance) 
and 6 kinds of adaptive coping  
strategies (exercising or stretching, 
relaxation, task persistence, 
purposeful self-statements, pacing 
activity, and seeking social 
support) in response to chronic 
pain; the idea is that certain 
illness-focused, maladaptive 
behaviors are associated with 
more disability, where as some 
well-ness focused behaviors with 
less disability or recovery. 

[228, 229] 

PCS 1 

Pain Catastrophizing Scale: 
assesses how much people worry 
about their pain and its possible 
causes (yields a total score and 
subscales of rumination, 
magnification, and helplessness) 

[230] 

PASS-20 all 

Pain Anxiety Symptoms Scale: 
measures pain-related fear, 
avoidance, and anxiety 
 

[231] 

 
 
 
 
 
 
 
 

Pain & 
emotions 

PSQ 1 

Pain Sensitivity Questionnaire: 
assesses participants’ sensitivity to 
imagined painful and non-painful 
stimuli 

[232] 

Study agent 
efficacy GIC all 

Global Impression of Change: to 
score the perceived change of pain 
from one visit to the next on a 5 
point scale, including much better, 
better, no change, worse, and 
much worse. 
 
 
 
 

n/a 
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TSS 3,5 

Treatment Satisfaction Survey: 
lab-developed, un-validated survey 
asking individuals to rate on an 11-
point scale (-5 to +5) how satisfied 
or dissatisfied they are with the 
study treatment and to explain why 

n/a 

SETS* 2,4 

Stanford Expectations of 
Treatment Scale: assesses 
participants’ positive and negative 
expectations to the upcoming 
treatment, and their overall level of 
understand what the treatments’ 
purpose is 

[233] 

PSM all 

Perceived Sensitivity to 
Medication: measures how 
sensitive people think they are to 
medication in general, which might 
affect if they respond to a placebo 

[234] 

HCAMQ 6 

Holistic Complementary and 
Alternative Healthy Questionnaire: 
assesses via two subscores 
participant beliefs about whether 
alternative and complementary 
medicinal techniques work and 
should be used; we were 
interested in seeing if these beliefs 
were correlated to placebo 
response 

[136] Expectations 
related to 

medications 
and health 

MHLC – C 6 

Multidimensional Health Locus of 
Control (form C): Assesses what 
factors participants believe are 
responsible for and in control of 
their health (themselves, the 
medical system, luck, or other 
people to various degrees)  

[235] 

MAIA 1 

Multidimensional Assessment of 
Interoceptive Awareness: 
measures the extent to which 
someone is aware of his/her body 
and emotions and how well they 
can either focus or distract 
themselves from these sensations 
(8 subscales reflect various 
aspects of this awareness); 
additionally, scores on the MAIA 
have been shown to be lower in 
individuals with back pain 

[236, 237] 

Mindfulness 
and Emotional 

Control 

ERQ 1 

Emotional Regulation 
Questionnaire: measures two 
kinds of strategies people use to 
control their positive and negative 
emotions (including a re-appraisal 
and a suppression subscore) 
 

[238] 
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ACS 1 

Attentional Control Scale: 
assesses the voluntary control of 
attention during a variety of 
situations 
 

[239] 

eACS 1 

Emotional Attentional Control 
Scale: assesses the voluntary 
control of attention during 
emotionally demanding situations, 
which could include pain 

[240] 

 

FFMQ 1 

Five Facets of Mindfulness 
Questionnaire: a combination of 
many well-known and validated 
questionnaires, this measured the 
five main components of 
mindfulness as a skill set, which 
may correspond to placebo 
propensity (includes 

[241] 

Suggestibility MISS-sf 6 

Multidimensional Iowa 
Suggestibility (short form): 
measures the extent to which 
participants can be influenced by a 
variety of other external and 
internal factors 

[242] 

NEO-FFI 1 

NEO Five Factor Inventory: 
measures participants’ scores on 
personality dimensions 
(extraversion, agreeableness, 
conscientiousness, neuroticism, 
and openness); previous research 
has shown that personality plays a 
role in placebo response in healthy 
controls   

[243, 244] 

LOT-R 1 

Life Orientation Test (Revised): 
measurement of dispositional 
optimism, which has been shown 
to influence placebo propensity in 
healthy individuals 

[245] 

Personality 

LAQ 1 

Loss Aversion Questionnaire: 
measures how sensitive 
participants are to a wide variety of 
potential “losses” in their lives; 
since we have already published 
results showing that chronic back 
pain patients are more gain 
sensitive (less loss averse), we 
were interested in investigating 
whether this trait also affected 
propensity to respond to placebo  

[83, 246] 

Affective State BDI-Ia 1,3,5 

Beck Depression Inventory, 
Version 1a: measures the extent to 
which a participant may be 
clinically depressed; a score of 
>=19 was an exclusion criteria  

[247] 
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PANAS all 

Positive and Negative Affect 
Schedule: assesses the extent to 
which participants are feeling a list 
of positive and negative emotions 
on the day of the visit to try to 
quantify the current affective state 

[248] 

 

Table 1: List of 29 questionnaires administered to patients. 29 self-report measures (47 items total if 
divided into respective subscales) were completed at designated visits in the study. The name and 
abbreviation are provided for each of the questionnaires, along with the rationale for why each measure 
was included in our battery. Also included are the visit(s) at which each measure was administered. An 
asterisk marks a questionnaire that wasn’t analysed due to poor participant understanding of the 
questions (SETS) or poor questionnaire compliance by either selection of extremes or skipping items 
(CPQI).  
 

These self-report measures were collected online via REDCap (Research Electronic Data Capture 

version 6.5.16, © Vanderbilt University) through a survey link sent to the participant’s email address (or a 

back-up study email if they did not have an email account); once submitted, questionnaire answers were 

finalized in the database and un-editable by both participants and study staff.  To best avoid 

questionnaire fatigue due to the number of questionnaires administered, participants were allowed to take 

breaks and walk around the testing room, although they were required to complete all questionnaires at 

the designated visit.  Any remaining information, including clinical data collected at the visit, were entered 

manually into the database by study staff; verification of information was done via double-data entry by 

different staff members at a later time.  At the end of Visit 1, participants were asked to stop all 

medication they were taking for controlling their pain. Rescue medication in the form of acetaminophen 

tablets (500 mg each) was provided as a controlled replacement to be used at any time in the study if 

their pain became too intense.  At this time participants were also trained on how to use our electronic 

pain rating application on either the phone or the computer (explained below); if participants did not have 

access to either, they were provided with a smartphone and data plan for the duration of the study. The 

baseline rating period started at the end of this visit and lasted until they came back for their second visit 

approximately two weeks later.  

 

Visit 2 (all studies) 
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If patients’ pain ratings and blood lab results met inclusion criteria, they returned for Visit 2 where 

they completed a 35-minute brain imaging session that collected a T1-weighted image, 2 resting state 

scans, and 2 diffusion tensor imaging (DTI) scans (DTI not used here due to error in scanning 

parameters). Following the imaging protocol, the patients completed another battery of questionnaires, a 

subset of which were repeated from the first visit to track longitudinal changes in pain, and they were 

queried as to whether they experienced any change in health status since the last visit and how often 

they needed to take the rescue medication.  Additionally, they were asked to verbally recall their average 

pain levels over the previous 2 weeks, over the last week, and over the last 48 hours.  For example, they 

were asked “What was your pain level on average, from 0-10, over the last week?” Any number reported 

– whole, decimal, or fraction- was recorded; for individuals who reported a range of numbers, we took the 

mean of that range (for example, if 6-8 was recorded, 7 was used as the final answer).  This self-reported 

recalled pain was referred to as “pain memory” and was used as an alternative outcome measure of pain 

levels in Study 1.  It was also used as the primary dataset for Study 3.  

At the end of this visit, participants were randomized into one of three groups: no-treatment, 

placebo treatment (lactose) or active treatment (the standard of care, which was combination of 

Naproxen, 500 mg bid, and Esomeprazole, 20 mg bid). Participants in the treatment groups were 

instructed to take a blue pill with a bi-colored pill in the morning and again at night with plenty of water, 

and they were asked to record this in their electronic rating app. Note that study staff never informed 

participants about the odds for receiving active versus placebo treatment - this is important because the 

current study aimed to not introduce an added layer of bias to potential responders; the goal was to have 

participant’s own baseline expectations influence whether or not they responded to the placebo 

treatment. Both treatment and no treatment groups continued to receive rescue medication to use if 

needed, and all participants were asked to continue rating their pain and mood twice a day until Visit 3. 

The duration of this first treatment period was ~2 weeks long.  

 

Visit 3 (Study 1) 

Patients returned at Visit 3 and were queried about their memory of their pain, any changes in 

health since the last visit, and rescue medication usage.  If on treatment, patients were asked to report 
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any side effects experienced and bring back any unused medication so that study staff could calculate 

their treatment compliance. Participants underwent another scanning session that was identical to the 

one completed at Visit 2 and completed another set of questionnaires with some repeated from the 

previous visit. At the end of Visit 3, individuals assigned to the treatment group were told that the study 

agent would be temporarily discontinued until their next visit so that the effects of the agent could “wash 

out” of their system. Again, all participants were given rescue medication to use if needed and were 

asked to continue using their app twice a day until the next visit.  This first washout period was ~1 week 

long. 

 

Visit 4 (Study 1) 

Patients returned at Visit 4, where all measurements and procedures from Visit 2 were repeated 

identically, including the scanning session and questionnaires. Again, they were queried about their pain 

memory, rescue medication usage, and changes in health.  The study agent was reintroduced to those 

individuals allocated to one of the treatment groups according to the same regimen described above 

(treatment assignment was kept the same within subjects, as this was not a cross-over study design).  All 

participants were given rescue medication and asked to rate their pain and mood twice a day as with 

previous visits. Like the first treatment period, the second treatment period was also ~2 weeks in length.   

 

Visit 5 (Study 1) 

Following this period, participants returned for Visit 5, where all measurements and procedures 

from Visit 3 were repeated identically. Briefly, patients were queried about any side effects, their rescue 

medication usage, and their pain memory, and they were asked to return unused pills to assess 

compliance if on study treatment. Patients underwent the same scanning procedures as on visits 2-4. 

Finally, patients filled out a series of questionnaire about their pain, some of which were repeated from 

the last visits. As before, those participants allocated to a study agent had their treatment discontinued for 

a second washout period, which was also approximately 1-week long. Participants continued to use their 

electronic app twice daily and were given rescue medication if needed.  
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Visit 6 (Studies 1 and 2) 

 Patients returned for the last visit during which they were again queried about their pain memory, 

changes to health, and rescue medication usage. During this visit, the patients completed a semi-

structured, open-ended exit interview with a designated staff member that asked them more detailed 

questions about their pain and medical history, quality of life, overall mood, and time in the study (details 

found below). Participants finished with a final battery of questionnaires and were asked to return study 

smart phones, if applicable. There were no scanning procedures on this visit. Any ratings submitted for 

the duration of the study were totalled, and in addition to their visit compensation, participants received 

their additional compensation for the electronic app at this time.  

 

Exit interview implementation and design (Study 3)  

 All interviews were completed at the beginning of visit 6 before any self-report measures were 

administered and prior to final compensation. While this may at first seem counter-intuitive, there was a 

reason the interview was timed to be at the end of the trial. Talking about chronic pain can be an 

emotionally-charged experience due to descriptions that may arise, such as memories of suffering, lost 

productivity, changes to health, and medical expenses to name a few. Therefore, it was possible that 

some chronic pain patients could have found an interview about their pain to be cathartic or even 

therapeutic, or in contrast, could have viewed it as distressing or anxiety-provoking [249]. Because the 

placebo effect is known to be dependent upon context and manipulated by affective cues and 

unconscious emotional associations, we did not want the interview or any emotions (positive or negative) 

that it may have provoked to influence potential future response in our participants. Therefore, we 

purposefully chose to conduct the interview at study completion to prevent or circumvent such 

interference.  This unfortunately means that we lost the ability to use language as a parameter with which 

to predict placebo outcome.  However, we were still able to use the interviews to investigate semantic 

differences between responders and non-responders and in turn see how well these findings correlated to 

neuroimaging and questionnaire data that are predictive of placebo response pre-treatment.  

To control for potential environmental cues that may affect placebo response or the memory of it, 

participants were asked to return to the same place where they had completed all previous visits; here, all 
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interviews were conducted in a quiet, private room with the door closed.  For consistency between 

participants, only one researcher (SEB) led all interview questions for all participants; however, as a 

safety precaution and to control for potential gender effects, a male colleague with whom the participant 

was familiar was also present in the room as an observer. Participants were instructed to only interact 

with the main interviewer until the interview was complete, and they were also asked to refrain from 

asking any questions about the study until after the interview was over. 

The researcher explained that the general purpose of the interview was to better understand the 

participant’s pain and health history, including how chronic back pain had impacted their overall mood, 

quality of life, and interactions with others.  Participants were also told that they would be asked about 

their previous experiences with medical professionals due to their pain, as well as probed about their 

opinions and knowledge about various pain therapies.  The researcher informed patients that the exit 

interview would be used to improve upon future studies and thus they would be asked about their time in 

the study, including their experience with the study medication if in a treatment arm. Finally, participants 

were told that their information would remain confidential, de-identified by their participant id, and not 

shared with anyone outside the study. Even though they agreed to these conditions when signing the 

consent form at visit 1, all participants provided verbal consent to have their voice recorded before the 

interview began.  All interviews were audio-taped with an electronic hand-held device and upon recording 

commencement, were verbally stamped with the date, time, and PID number prior to beginning with 

questions. 

To verify that the questions asked would be appropriate for chronic pain patients and would result 

in descriptive and meaningful answers, as well as test whether any of the questions’ wording needed to 

be edited, the script was first piloted on 10 participants with knee osteoarthritis (OA) who had previously 

completed another clinical trial in the lab [250].  This cohort’s answers indicated that that interview was 

able to provide language data of sufficient length and detail; very few changes were made to the initial 

wording. Table 2 shows the final interview script. The interview included  “warm up” section that asked 

questions purposefully not related to pain or the study, and a main “substantive” section that probed 

participants about their current and previous pain, mood, medical experiences, opinions on traditional and 

alternative medicines, and time in the study.  The warm up section was used primarily to get participants 
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comfortable with talking to the research and tried to help them forget that the recording device was 

nearby.  However, it was also used to collect linguistic information that would theoretically be less directly 

biased by concepts like pain or mood that may contribute to added sources of noise and variability in the 

data. Importantly, two of these questions (one describing a dream and the other a recent event) were re-

interpreted from recent papers investigating predictive language properties of future psychotic episodes 

[165] and drug usage classification [166], respectively.  In general, the interview was designed to be 

semi-structured but open-ended.  This means that while there was a general set of questions that every 

participant was asked (11 primary questions), questions were purposefully designed to be broad in order 

to allow patients the full range of possible responses and interpretations.  Moreover, the order of 

questions was not necessarily consistent between participants and was instead based on their most 

recent responses in order to keep the flow more natural and conversational.  Thus the interview provided 

flexibility for both the researcher and the participant, with the goal being to get as much information as 

possible that was consistent across participants with as influence from the researcher as possible.  In 

cases where participants were less verbose, or in the instances where their stories lacked information 

that we wanted to capture for all patients, the interviewer asked them additional follow-up questions or 

probes for clarification, being careful to minimize their impact on the participant’s speech content. 

Excerpts from selected interviews have been provided in Appendix I as examples of some of the content 

of patients’ narratives.  

Interview 
Questions Potential Follow Up Questions Potential Probes Reason for 

Inclusion 
1. Tell me about 
yourself. 

n/a job, hobbies, interests, goals, 
family 

interested in what 
comes to mind 
first outside of 
pain 

2. What top 4 
words would you 
use to describe 
yourself and 
why? 

n/a n/a interested in how 
they see 
themselves in 
general, despite 
pain 

3. Tell me a 
dream that you 
remember that 
you can 
describe vividly.  

n/a could be recent; could be 
from childhood; could be 
reoccurring 

used to predict 
future episodes of 
psychosis so 
wanted to collect 
it for future 
comparison   

4. Describe a 
recent (within 
the last year) 
event that you 

n/a could be a positive, a 
negative, or a neutral event;  

because it 
involved friends 
or family 
members, it was 
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had with family 
or friends. 

similar to previous 
studies that asked 
about people of 
importance, so 
wanted to collect 
it for future 
comparison   

5. Tell me about 
your experience 
with your back 
pain? 

1. How has your pain been recently? 
2. How long have your had your pain? 
3. What do you think may have caused it? 
4. How has your pain changed over time from when 
you first noticed it to now? 
5. What does your pain feel like? Describe it. 
6. How has your pain changed over the course of 
the study? 
7. Do you see yourself differently because of your 
pain? 
8.  What are some things that influence your pain? 
What makes it better or worse?  How do you 
manage your pain? 
9.  What do you understand about your back? Do 
you think back pain is different for different people? 
10.  Do you have a family history of chronic pain? 
Please explain.  
11. Do you know anyone who has/had chronic 
pain?  Tell me more about them.  How do/did they 
deal with their pain?  Did this affect how you deal 
with your pain? 
12. How do you think your pain will be a year from 
now?  Why?   
13.  Have you ever woken up and thought that the 
pain was gone?  Do you believe your pain might 
disappear one day? 
14. How does your pain affect your mood? Does it 
ever make you feel angry/sad/anxious/frustrated? 
15.  How does mood affect your pain? 
16.  Does pain affect your concentration/decision-
making/or memory?  Tell me ore about that. 
17.  Tell me how pain affects your relationships with 
other people. Do you feel like people understand 
what you are going through and are supportive? 
 

(8) increased or decreased 
activity; specific physical 
activity; sleep quality; body 
position; medications; 
faith/spirituality; weather or 
temperature; bad or good 
day; other distractions 
including: smoking or 
drinking, social activities, 
family/friends, or support 
systems 
 
(9) explain what you think is 
happening in your back to 
cause this pain 
 
(14-15) did good emotions 
alleviate pain or make it 
easier to ignore? Did 
negative emotions make it 
worse? 
 
(17) affects how you interact 
with others or how they 
interact with/treat you? 
 
 

Wanted to get an 
extensive pain 
history to 
understand how 
pain had 
impacted their 
quality of life thus 
far 

6. How many 
experiences 
have you had 
with doctors 
and/or the 
medical system 
because of your 
pain?   

1. What have those experiences been like for you?  
Can you tell me about them or give an example? 
2. How do doctors and medical staff react to your 
pain? 
3. Have you had any difficulty getting health care for 
your pain?   
4. Do you think there are medications that would 
help your pain but you haven’t tried them or don’t 
know about them or can’t afford them? 
 

(1) in- versus out-patient 
procedures, insurance, 
family, surgeries, injections, 
physical therapy, referrals, 
pharmacy/medication issues, 
payment; afraid of any kinds 
of treatments (pills, shots, 
operations, etc) 
 
(2) do they feel 
trusted/believed by doctors 
and do they themselves trust 
doctors/medicine? Have they 
searched for second opinions 
or different medications; do 
they feel people are attentive 
to their needs 
 
(3) did financial situation 
affect kind of help you have 
or haven’t gotten? Insurance 
problems? Did your 
race/gender/sexual 
orientation affect kind of 
treatment they received? 

Wanted to get an 
extensive medical 
history related to 
their pain; wanted 
to know how 
satisfied they 
were with the 
medical 
process/previous 
treatment (to 
understand 
potential 
expectations) and 
wanted to know 
how open they 
were to different 
kinds of 
treatments (and 
how much they 
thought they 
might work) 

7. Has the 
treatment in the 
study helped 
your pain?  
Please explain.  

1. Do you think that you received the active 
medication or the placebo as treatment?  For both 
periods or just one? 
2. What are your reasons for thinking this? 
3. Would you recommend this treatment to 
someone else? 

n/a Wanted to 
compare what 
they thought 
happened with 
their ratings, their 
memory reports, 
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4. How did this treatment compare to other 
treatments you’ve tried in the past? 
5.  What do you know about placebos?  Do you 
think they can work for others? 

and our definition 
of response – do 
they correspond? 

8. Have you 
ever tried any 
unique 
treatments other 
than prescribed 
or over-the 
counter 
medication to 
treat your pain?  
Explain. 

1. If so, what may you try these things?  What did 
you try?  What were those experiences like and 
would you try them again? 
2.  If not, why not?  Are you interested in trying 
something else? 
3.  Have you ever tried to mentally control your 
pain?  Did it work?  Do you think this can work for 
other people? 

(1) herbal therapies, 
essential oils or candles, 
acupuncture, yoga, massage, 
biofeedback, hypnosis, 
prayer or faith-based healing, 
support group meetings, 
cupping… 

Wanted to assess 
whether mind-
body therapies 
and alternative 
therapies work for 
them or they 
believe in them 

9. Is there 
anything that 
you think I 
should know 
about your pain 
that I haven’t 
already asked 
you? 

n/a n/a Since interviewer 
did not have 
chronic pain, she 
could have 
missed a key 
question about 
the pain 
experience 

10. Is there 
anything you 
think I should 
know about your 
experience with 
the study that 
we haven’t 
discussed so 
far?  How was 
your time in the 
study? Any 
improvements 
we could make? 

n/a n/a Since context is 
important in 
placebo 
response, wanted 
to see if they had 
a good or bad 
experience with 
the study; could 
also gain 
information on 
expectations 
before/during the 
study 

11.  Is there 
anything else 
that you think I 
should know 
about your life –, 
any recent 
and/or important 
life events – that 
may have 
affected your 
time in the 
study, how much 
pain you have, 
or how you 
answered any of 
the questions? 

n/a n/a Wanted to assess 
possible 
confounds in the 
data (placebo 
response, pain 
levels, and 
interviews 
themselves) 

 

Table 2:  Overview of exit interview script. The interview was conducted at the final visit of the clinical 
trial and was designed to be semi-structured and open-ended in all 3 sections (first column).  This means 
that every person was asked the same broad interview questions (second column) and allowed to talk 
freely and openly about these questions for as long as they chose.  In order to get approximately the 
same quality of data between participants with similar information over all, the interviewer was also 
allowed to follow-up with specific questions (third column) in case a person’s narrative did not cover all of 
the topics.  Sometimes, participants needed clarification or additional focus if the question was 
intentionally broad; in these instances, the interviewed provided specific probes to aid them in getting 
started (fourth column). Reasons for why these questions were asked are provided in the fifth column. 

 

Interview Preprocessing (Study 2) 



 90 
Transforming the interviews into data appropriate for quantitative analyses involved a multi-step 

procedure. After successful recording of the interview, the mp3 file was uploaded to a secure server, 

renamed with the PID and date of interview, and immediately deleted from the recording device so that no 

one else would have access to the information. Copies of these mp3 files were sent in batches of 10 to an 

outside company for medical transcription services (Lee Perfect Transcription, Inc., Chicago, IL).  

Interviews were transcribed verbatim, with all “um’s”, “ah’s” and other fillers included; slang terms, 

colloquialisms, and improper syntax were also kept.  Electronic transcripts in the form of word documents 

were sent back within 48 hours of their upload date.  As part of the quality control process and to ensure 

transcription was done adequately, researchers manually checked every 5 transcripts for overall accuracy 

by tracking the document while listening to the corresponding mp3 file, correcting any mistakes found 

along the way. Although there were a few scattered spelling errors and a number of words that were 

inaudible due to the sound quality in the audio file, there were no systemic errors that warranted checking 

all 62 interviews. In the 12 transcripts that were reviewed, less than 5% of the data needed to be edited. 

 Next, the interviews went through a systematic cleaning process whereby words that carried little 

to no meaningful information were removed. Word documents were converted to plain text files so that 

they could be easily manipulated with text processors and toolboxes.   First, all interviewer versus 

participant indicators (including PIDs and other identifiers) were deleted, along with timing brackets that 

specified long pauses or inaudible words. Next, all instances where the researcher spoke were deleted 

from the text; this included questions, clarifications, or any conversational material not associated with the 

main interview.  To prevent confusion during parsing of the data, contractions were converted to the two 

corresponding base words from which they were formed (e.g, can’t = can not). After this step, all 

punctuation was removed so that their characters would not be included in future token analyses. At this 

stage, the interview files consisted of only of words that the participant spoke, and a basic word count 

analysis was performed (explained in Data Analyses). 

Despite substantial preprocessing at this point, the interviews were not yet ready for more 

complex analyses because they still contained substantial noise in terms of retaining a large amount of 

empty, non-meaningful words.  To clean the text further, we used Python’s NLTK (Natural Language 

Toolbox) to identify and subsequently remove all stop words (e.g., words like “the”, “and”, “a”, and “it”).  
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Following this, a script was used to tokenize the data (that is, parse the remainder of the interview into 

distinct word units known as tokens). The tokenized text was then lemmatized.  Lemmatizing refers to 

reducing each word to its common base form, known as its lemma. For instance, the words “am”, “are”, 

and “is” would all become “be”, and the words “cat”, “cats”, and “cat’s” would all become “cat”. 

Lemmatization is a crucial normalizing and de-noising step in most language analyses because it (a) 

helps reduce the number of inflectional forms a word can take, (b) makes all related forms of a word as 

similar as possible, and (c) essentially forces all words into a common template so that they can be 

compared with one another.   At this late stage, the interview text is now unreadable but still retains its 

basic (and theoretically most important) meaning. Finally, after all of these steps were completed, all 

interviews were converted from text to number, with the number representing the alphabetized location 

(index) of the word in the dictionary. For instance, if a participant said the word “pain”, it was converted to 

the number 50010 as it is the 50,010th entry in the dictionary. Thus, each interview was represented by a 

string of N numerical tokens (wi) – (w1,w2,…,wN) that were used as the primary inputs for the semantic 

programs, which were run in Matlab (MathWorks, version R2016a).    

 

Follow-up phone call (Study 3) 

After all neuroimaging analyses were completed, an additional analysis was conducted for 

participants whose data were used in the third study. A follow-up phone call interview was created to 

assess participants’ episodic recall of study events during their time in the entire clinical trial, as well as 

test their general short-term memory (STM). Table 3 provides the questions asked to participants during 

this phone call; in general, the interview was designed to be around 5 minutes in length (average: 4.5 ± 

1.6 minutes) so that the STM question could be assessed appropriately. In addition to assessing episodic 

memory, different questions had different purposes. We asked participants about their memories of pain 

and mood during the first 2 weeks of the study so that we could compare long-term memory biases with 

previous short-term memory biases, as well as compare memories of pain and mood (which we did not 

capture during the study). We also asked participants to recall the number of days they were in the study, 

the number of visits they came to the lab, and the number of visits that involved scans – this was done to 

provide us with a relatively neutrally-valenced set of numbers that would be similar across participants.  In 
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contrast, we also posed two questions about money – we asked participants to remember the total 

amount of compensation they received in the study and the worth of one rating from the pain application. 

Because pain is negative and associated with punishment, these questions allowed us to compare 

negatively-valenced memories with positively-valenced memories of reward.  Finally, an STM prompt was 

used to capture general ability to recall items, and we used this to test whether memory biases seen in 

our participants could be dependent upon impairment or difficulty in short term memory. We copied the 

STM prompt from the Montreal Cognitive Assessment’s (MoCA, [251]) delayed memory task. Briefly, as 

the first item in the phone interview, participants were told that they would be asked to recall five random 

words; these words were then listed and the participants were required to verbally repeat them. At the 

end of the phone call, after all other questions were answered, participants were asked to recite any of 

the words they could remember, with one point given for each word they recalled without a cue from the 

researcher. For the remainder of the follow-up questions described above, participants were asked to 

report what they remembered as honestly and accurately as possible and, in cases where they were 

unsure, to make a guess if they could. We did not pressure participants to provide an answer if they did 

not want to, resulting in missing data for a few individuals which we note in the Results section. 

Additionally, data from question 4 about number of days in the study was excluded because there was 

too much variability in responses (with large extreme values at both ends).  

Questions asked: 

1 
I’m going to ask you to remember 5 words. At the end of this phone call, I will ask you to 
recall as many of them as you can.  The five words are: “face” “velvet” “church” “daisy” 
“red”. Please repeat them now. 

2 From 0 to 10, with 0 being no pain and 10 being the worst imaginable, what was your 
average pain during the first 2 weeks of the study? 

3 From -10 to +10, with -10 being the worst mood imaginable and +10 being the best 
mood imaginable, what was your average mood during the first 2 weeks of the study? 

4 How many days were you in the study? 
5 How many visits did you have as a part of the study? 
6 Of the visits you remember, how many of them included an MRI scan? 
7 How much total compensation did you receive over the course of the study? 
8 How much money was one phone/computer rating worth? 
9 What is your current pain intensity right now form 0 to 10? 

10 What is your current mood right now from -10 to +10? 

11 What were the five words I asked you to remember?  Please tell me as many as you 
can remember. 
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Table 3: Follow-up phone call script. List of questions asked to 33 CBP participants as part of a follow-
up phone call.  In addition to assessing short term memory with a delayed recall task, participant’s 
memory of the study was assessed by comparing their responses on the phone to the actual values from 
the study and calculating a discrepancy (recalled-actual) for each item. 
 

Monitoring pain intensity with phone app (all studies) 

The pain of each patient was monitored electronically using an application (app) designed 

specifically for the study (Figure 9). This app was used to track the patients’ pain and mood over time 

and to query them on their medication usage; it could be accessed using either a smartphone or a 

website link on a computer. The app had two VAS scales with sliding bars: the first asked participants to 

rate their current pain level from 0 (no pain) to 10 (worst imaginable), and the second asked them to rate 

their current mood level from -10 (saddest imaginable) to +10 (happiest imaginable) with 0 being neutral.  

The app also included fields to indicate the participant’s assigned ID number, query if participants had 

taken any rescue medication at that time, and ask if they had taken the study medication, and there was a 

comments section that they could use to describe their pain, mood, or medication usage if they chose. 

Participants were instructed to use the app twice a day, once in the morning and once at night.  To 

encourage compliance, participants were compensated $0.25 for each rating they submitted, up to 

$0.50/day. This additional payment was given to them on the last visit of the trial.  Submitted ratings were 

immediately sent to a secure server and both date- and time-stamped. Rating compliance was assessed 

by a separate program monitoring whether the list of currently enrolled patients had provided the 

necessary ratings during the previous day. In the case that a patient omitted a rating, staff were alerted 

via an email. If patients missed more than 2 consecutive ratings (~24 hours-worth), a member of the 

study team contacted them to remind them to use the app. Two patients were discontinued from the study 

because they did not comply with the daily rating requirements despite repeated contact from the study 

team.  
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Figure 9: Electronic application. Participants were asked to rate their pain twice a day for the duration 
of the study using a smart phone application (app) or computer.  Pictured here is a screenshot of the app; 
participants entered their assigned ID and then rated their pain on a scale from 0 to 10, with 0 being no 
pain and 10 being worst pain. All ratings were sent to a secure server and stamped with the date and time 
completed.  The app also had a scale to rate mood from -10 to +10, questions inquiring about rescue 
medication usage and treatment compliance (if applicable), and a comments section (not shown). 
Participants were paid $0.25 for each rating completed up to 2/day. 

 

To verify that pain levels remained within the inclusion criteria specified above, all participants’ 

ratings were closely monitored for the first two weeks of the study as part of a run-in/baseline pain period. 

Individuals not meeting this level were deemed ineligible and did not continue in the study (n=16 screen 

failures). It was later noticed that 3 additional participants in Study 1 had met this exclusion criteria but 

accidentally continued in the study. One person was assigned to no-treatment and was discontinued as a 

protocol deviation before study completion; the other two individuals finished the study in the placebo 

treatment group and were later excluded from the analysis to make sure the results were not dependent 

upon their outlying pain levels at study commencement. 

 

Stratification of patients into placebo Responders and NonResponders (Studies 1 and 2) 

Rating data from all participants were downloaded from the server as text files and preprocessed 

as follows. Although participants were asked to rate two times a day (and only compensated for this 
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amount), many participants exceeded this number of app ratings in 24 hours due to over-compliance, 

reassessment of their pain or mood level, and/or cellular service problems. If pain ratings were entered 

within 30 minutes of each other, only the last rating was kept and taken as indicative of the participant’s 

final assessment of their pain and mood levels at that time. Any additional ratings outside of this 30 

minutes window were not considered duplicates and were kept as valid entries.  Beside this cleaning 

process, no other changes were made to the ratings. In the instances where participants missed ratings, 

no attempts were made to interpolate or re-sample the data so that the temporal aspects of the ratings 

were left intact.  

This smartphone technology permitted us to track fluctuation in pain levels throughout the study. 

To best make use of the daily rating data, we developed a new classification scheme of responders 

versus non-responders that is currently not used in the literature. It was important that this method 

accounted for the within-subject variability of pain levels in their day-to-day experience (something that 

neither a percent change in average pain levels nor a change in pain calculated between 2 scores at 

different visits provides). Each patient was classified based on a permutation test between the pain 

ratings acquired during the baseline rating period (Visit 1 to Visit 2) and the pain ratings acquired during 

the treatment periods (either baseline versus treatment 1 or baseline versus treatment 2). The null 

hypothesis was generated by randomly re-sampling 10,000 times the distribution of pain ratings, which 

provides all possible t-values obtained from the rearrangement of the pain ratings. The real t-value 

obtained between baseline and treatment was used to determine if the null hypothesis could be rejected 

(p<0.05) for each of the treatment periods. In the cases where the null hypothesis could not be rejected 

for either of the treatment periods, the patient would be stratified as a “Non-Responder”. Alternatively, the 

patient would be stratified as a “Responder” if the treatment induced significant diminution in the pain 

ratings. The main advantages of using a permutation test is that it (a) takes into consideration the 

variability across pain ratings during the baseline and treatment periods and (b) represents a statistically-

defined cut off point for response and thus is more likely to be reproducible in another study (unlike cut off 

points arbitrarily defined by a percentage change in pain). 

 

Comparison of phone app with other pain outcomes (Study 1) 
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The pain outcome measured with the phone app was compared with six additional outcome 

measures of pain level. The numeric rating scale (NRS) and the memory of pain were the two other pain 

outcomes also relying on numerical scales. The NRS represents the traditional standard pain 

measurement usually used in clinical trials assessing pain levels of participants for both placebo-

controlled trials (compared against an active medication) and placebo-only trials (where the placebo 

effect is being manipulated) [127]. The memory of pain represents the one of the standard pain 

assessments used by physicians in clinical practice and has been shown to correlate well with daily pain 

diaries in previous studies [252]. Other pain outcomes were collected using the McGill pain questionnaire 

(MPQ) affective and sensory scales, the pain detect, and the neuropathic pain scale (NPS), which have 

been widely used in both randomized clinical trials and research labs, although their utilization in placebo-

only trials remains minimal [253].  

 

Using the phone app to calculate psychometric properties of interest (Study 3) 

After ratings were cleaned as described above, metrics for pain and mood data – including 

average, standard error, peak, minimum, end, and area under the curve – were all computed in Matlab 

(version R2016a). These metrics were chosen based on previous literature [201, 203, 204]. While the 

authors of these papers also used “initial pain” as a parameter, due to our participants having chronic 

pain for months to years, we did not include this metric as there was no way to capture the onset of their 

pain (although we did investigate the effects of pain duration on these measurements as part of our 

analysis). 

 

Blinding of the analyses (Studies 1 and 2) 

Given the recent issues regarding lack of reproducibility in scientific findings [254] and the 

importance of transparency in data analysis, we followed recommendations by MacCoun and Pearlmutter 

[255] and employed cell scrambling to further blind our data and minimize bias. For all endpoints, a lab 

member not involved in analyses was selected to organize data files and spreadsheets for processing 

and statistical analyses of the data.  This person first renamed all the data files to ensure that analysts 

were blinded to each participant’s unique id to minimize bias due to previous interactions with patients 
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during data collection. Next, all analyses were performed with 3 randomized codes (which we refer to 

here as “classifiers”) for each condition, with only one of them being the proper classification of 

responders, non-responders, and no treatment.  We refer to this as “triple blinding” because analyzers 

were blind to participant id, participant treatment, and correct participant group classification. The 

selected lab member did this blinding prior to any analyses, with the exception of the pain ratings from the 

app, which was used to stratify patients first. This resulted in each analysis being done three different 

times in an unbiased manner. Importantly, the three lab members that contributed to the analyses were 

not informed that they were provided different classifiers to make sure they could not collaborate to figure 

out which one was the real code. The results were presented in a public lab meeting where the lab 

member un-blinded the analyzers to the data to confirm which results were true. Although we refer to 

these 3 classifiers throughout the paper, we only present the outcomes and data from the correctly 

classified group in each instance. Results from the 2 false classifiers will be presented where applicable 

in the forthcoming manuscript supplementary materials for the purpose of comparison (outside of GMD, 

they are not shown in this thesis). This triple blinding procedure aimed at decreasing uncontrolled bias 

during data analyses and enhancing the reproducibility of results.  

 

fMRI and anatomical scanning protocol  (all studies) 

Participants were scanned on a Siemens Magnetom Prisma 3.0 T whole-body system at 

Northwestern University’s Center for Translational Imaging (CTI) with capacities matching the human 

connectome project parameters. All scans were acquired with a 64-channel head coil. The procedure 

consisted of high-resolution T1-weighted brain images, two consecutive 10 minutes resting state 

functional scans, and a multi-shell diffusion imaging scan (data not shown). The entire procedure was 

completed in about 35 minutes, but an extra 25 minutes was allocated to install the patients in a 

comfortable position to keep their back pain at a minimum and to re-acquire images if the data was 

contaminated by head motion. 

High-resolution T1-weighted brain images were collected using integrated parallel imaging 

techniques (PAT; GRAPPA) representing receiver coil-based data acceleration methods. The acquisition 

parameters were: isometric voxel size = 1 X 1 X 1 mm, TR = 2300 ms, TE =2.40 ms, flip angle = 9º, 
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acceleration factor of 2, base resolution 256, slices = 176, and field of view (FoV)= 256 mm. The 

encoding directions were from anterior to posterior, and the time of acquisition was 5 min 21sec.  

Blood oxygen level-dependent (BOLD) contrast-sensitive T2*-weighted multiband accelerated 

echo-planar-images were acquired for resting state fMRI scans. Multiband slice acceleration imaging 

acquires multiple slices simultaneously permitting denser temporal sampling of fluctuations that improves 

the sensitivity of detection of signal fluctuation by up to 60% [256]. The acquisition parameters were: TR = 

555 ms, TE = 22.00 ms, flip angle = 47º, base resolution = 104, 64 slices with a multiband acceleration 

factor of 8 (8 X 8 simultaneously-acquired slices) with interleaved ordering. High spatial resolution was 

obtained using isomorphic voxels of 2 X 2 X 2 mm, and signal to noise ratio was optimized by setting the 

field of view (FoV) to 208mm. Phase encoding direction was from posterior to anterior. The time of 

acquisition lasted 10 min 24 sec, during which 1110 volumes were collected. Patients were instructed to 

keep their eyes open (to reduce alpha-band interference and lessen likelihood of sleeping) and to remain 

as still as possible during acquisition. The procedure was repeated two times in the event that the first 

resting scan could not be used because of artifacts such as excessive head motion or patients falling 

asleep. For Studies 1 and 2, only the first resting state scan was used for all patients. For Study 3, only 

the T1 image was used.  

Additionally, Study 3 relied on another dataset collected from an earlier study. SBPp and CON 

participants were also scanned on a Siemens 3T Prisma whole-body system with slightly different 

parameters.  High-resolution T1-weighted brain images with a 12-channel head coil using the following 

acquisition parameters: isometric voxel size = 1 X 1 X 1 mm, TR = 2.5 ms, TE = 3.36 ms, flip angle = 9º, 

in-plane matrix resolution – 256 X 256; slices = 160, and FoV = 256 mm. 

 

fMRI data preprocessing (Studies 1 and 2) 

Several steps were necessary for de-noising the original time series of fMRI volumes. The pre-

processing was performed using FMRIB Software Library (FSL) and in-house software. The first 120 

volumes of each functional dataset were removed for allowing magnetic field stabilization leaving a total 

of 990 volumes used for functional connectivity analyses. The effect of intermediate to large motion was 

initially removed using fsl_motion_outliers. Time series of BOLD signal were filtered with a Butterworth 
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band-pass filter (0.008Hz<f<0.1Hz) and a non-linear spatial filter (using SUSAN tool from FSL; 

FWHM=5mm). Following this, we regressed the six parameters obtained by rigid body correction of head 

motion, global signal averaged over all voxels of the brain, white matter signal averaged over all voxels of 

eroded white matter region, and ventricular signal averaged over all voxels of eroded ventricle region. 

These nine vectors were filtered with the Butterworth low band-pass filter before being regressed from the 

time series. Finally, noise reduction was completed with Multivariate Exploratory Linear Optimized 

Decomposition into Independent Components (MELODIC tool in FSL) that identified components in the 

time series that were most likely not representing neuronal activity. This ICA regression process was kept 

very conservative so that only components obviously related to motion or noise were removed. Finally, all 

analyses were performed with and without volume censoring to ensure that head motion had no influence 

on our functional results. Censoring (also known as scrubbing) was performed in 3 different ways 

according to Power et al. guidelines [257]. 

 The functional image registration was optimized according to a two-step procedure. All volumes 

of the functional images were averaged within each patient to generate a contrast image representative of 

the 990 volumes. This image was then linearly registered to the MNI template and averaged across 

patients to generate a common template specific to our CBP patients. Finally, all pre-processed functional 

images were non-linearly registered to this common template using FNIRT tool from FSL. The registered 

brains were visually inspected to ensure optimal registration. 

 

Data analyses  

The analyses are presented in order of study, although there is some overlap between studies 

(which is noted where applicable). Unless otherwise specified, all MRI data were analyzed using FMRIB’s 

Software Library (FSL) version 5.0.8. 

 

Brain networks constructed from resting state fMRI (Study 1) 

The brain was divided into 264 spherical ROIs (5-mm radius) located at coordinates showing 

reliable activity across a set of tasks and from the center of gravity of cortical patches constructed from 

resting state functional connectivity [258]. These ROIs were merged to generate a maximally-spanning 
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collection of ROIs according to Power et al ([258]). Because limbic structures are believed to play a role in 

placebo response, a 5-mm radius was manually added in bilateral amygdala, anterior hippocampus, 

posterior hippocampus, and NAc. Linear Pearson correlations were performed on time courses extracted 

and averaged within each brain parcel. Given a collection of 272 parcels, time courses are extracted to 

calculate a 272x272 correlation matrix. These matrices allowed for the construction of weighted brain 

networks, where nodes represent brain regions and links represent weighted connections from Pearson 

correlations between any given set of these regions. 

 

Community detection analyses (Study 1) 

We used the Louvain algorithm integrated in the Brain Connectivity Toolbox (BCT; 

https://sites.google.com/a/brain-connectivity-toolbox.net/bct/[259]) to determine consistent community 

structures across a large number of network partitions [260]. For each subject, the individual community 

structure was initially constructed from 100 repetitions of the same network. The group community was 

then constructed from 100 x 63 patients generating a total of 6300 networks. The final community 

structure was created by thresholding the averaged within-module connectivity likelihood matrix at 0.5, 

meaning that if the likelihood for two nodes belonging to the same module was above 50% they were 

considered in the same module. This permitted us to identify six separate communities including the four 

communities of interest that we ended up studying (see below). 

 

Identifying communities of interest (Study 1) 

We used a localizer from an independent data set consisting of osteoarthritis patients studied 

during a clinical trial determining the impact of Duloxetine and placebo on the brain[250]. We used resting 

state functional connectivity to identify four regions predicting patients in the placebo arm that responded 

to treatment:  the right mid-frontal gyrus connectivity (x=28, y=52, z=9), the anterior cingulate cortex (x=-

3, y=40, z=2), the posterior cingulate cortex (x=-1, y=-45, z=15), and the right somatosensory cortex 

(x=60, y=-7, z=21). We next entered these coordinates as seeds in the Neurosynth analytic tool 

(http://neurosynth.org) and extracted three networks sharing strong connectivity with these seeds: the 

DMN, the frontoparietal network, and the sensorimotor network. We identified communities corresponding 
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to these networks based on spatial overlap, by multiplying the networks of interest with the nodes 

pertaining to each community. Communities overlapping with networks of interest were the DMN, the 

lateral frontal, the parietal, and the sensorimotor communities. A total of 113 nodes were affiliated with 

these communities. The 151 nodes affiliated with the visual and saliency communities and those nodes 

without affiliation to any community were excluded from the analyses. The limbic nodes and a node 

located in the PAG from the Power parcellation scheme (which was not affiliated with any community) 

were added for a total of 122 nodes of interest. 

 

Network statistics (Study 1) 

Group comparisons (responders, non-responders, and no treatment) were initially performed on 

the average r-values between nodes within a same community or nodes between different communities 

using one-way ANOVA. Group differences between placebo responders and non-responders were further 

examined using a permutation test (5,000 permutations) on the 14,762 connections of the weighted 

network (122 * 121 nodes) controlling for false discovery rate (FDR p < 0.05) using the Network Based 

Statistics toolbox (NBS; [261]). The r-values of the significant connections were extracted and entered in 

one-way ANOVA (between group: responders, non-responders, no treatment) with Bonferroni corrected 

post-hoc tests to determine differences with respect to the no-treatment group. 

 

Grey matter density (Study 1) 

Grey matter density was examined using voxel-based morphometry from FSLVBM . All T1-

weighted images were first brain extracted and then segmented into grey matter, white matter, or 

cerebrospinal fluid. A common grey matter template was generated for CBP by registering and averaging 

all grey matter images. The grey matter image of each participant was then registered to the common 

template using non-linear transformation. A voxel-wise permutation test was used to test the significance 

of group differences between placebo responders and non-responders to a distribution generated from 

5000 permutations of the data for each voxel of the template using a sigma filter of 3 mm for a smoothing. 

The initial analysis established significance level using the Threshold-Free Cluster Enhancement (TFCE) 

method (FWE p < 0.05) and a follow-up analyses compared the average grey matter density in nodes of 
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the communities showing group differences in functional connectivity (between group: responders, non-

responders, no treatment; Bonferroni corrected for 50 nodes; p < 0.001). 

 

Cortical thickness (Study 1) 

Cortical thickness was examined using Freesurfer software library 

(http://surfer.nmr.mgh.harvard.edu/). In brief, the structural processing includes skull stripping, intensity 

normalization, Taliarch registration, segmentation of subcortex, reconstruction of cortical surface, and 

tessellation of the gray/white matter boundary and pial surface. Following reconstruction of the cortical 

surface, brains were inflated, averaged across participants to produce a study-specific brain, and then 

smoothed using a 15 mm full-width at half maximum Gaussian kernel. A direct measure of cortical 

thickness was calculated using the shortest distance (mm) between the pial surface and gray-white 

matter boundary at each point or vertex. Cortical thickness analysis for each hemisphere was conducted 

using FreeSurfer’s Query, Design, Estimate, Contrast (QDEC) graphical interface. The initial vertex-wise 

comparison was performed between placebo responders and nonresponders for each hemisphere. 

Correction for multiple comparisons was performed using random-field-theory-based significant clusters 

at p < 0.05. Values of cortical thickness were extracted in the significant cluster surviving multiple 

comparison and compared between responders, non responders, and no treatment groups in SPSS. 

 

Subcortical volumes (Study 1) 

Volumetric analyses of T1-weighted images were performed through automated processes using 

both FSL (version 5.0.8) and FreeSurfer (version 6) softwares for Study 1.  For this first study, we 

investigated volume differences in 3 subcortical nuclei selected apriori; the NAc, the amygdala, and the 

hippocampus. After using FSL’s brain extraction tool (BET) to remove the skull from all images, FSL’s 

integrate registration and segmentation tool (FIRST) was utilized to segment these specific subcortical 

regions and extract their volume measurements [262]. Unilateral volume measurements for each region 

were initially compared between responders and non-responders. Given the recent evidence from the 

ENIGMA consortium showing that subcortical volume asymmetry can provide a brain signature for 

psychopathologies [263], we also investigated the possibility that asymmetry differences may provide a 
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biomarker for placebo propensity in our data.  All subcortical regions’ volumes were summed for the right 

and the left hemisphere separately; for each patient, the ratio between the two (right/left) was created, 

where a result =1 would be indicative of perfect subcortical symmetry, whereas numbers >1 or <1 would 

indicate asymmetry biased toward the right or left hemispheres, respectively.  Volumes and subcortical 

assymetry were compared between responders, non-responders, and no treatment groups in SPSS.  

Volumes of the right and left hippocampus were also analyzed separately as part of Study 3 looking at 

memory bias of pain; these volumes were simply correlated to the participants’ discrepancy scores. 

 

Analysis of questionnaire data  (Study 1, although all studies used overlapping questionnaire data) 

Over the course of the 6 visits, participants filled out 29 unique questionnaires.  These specific 

self-report measures were chosen for one of 4 reasons: (1) to gather basic information about participants, 

including demographics and pain/medical history, (2) to track any changes in the quality and/or intensity 

of pain characteristics as measures of treatment efficacy, (3) to monitor any changes in emotional affect 

which may have influenced someone’s time in the study or their treatment response, and (4) to capture 

trait-based qualities, general habits and beliefs, or state-related expectations of individuals that may 

predispose them to respond to a placebo.  Questionnaires used to track pain and mood changes overtime 

were repeated across all study visits. Questionnaires that targeted expectations towards treatment and 

satisfaction after treatment were conducted at two visits each– either before treatment sessions (visits 2 

and 4) or after treatment periods (visits 3 and 5), respectively.  In contrast, measures that aimed to 

identify more stable traits of participants were completed at visit 1, which allowed us to use them as 

possible predictors of response. Finally, a subset of questionnaires regarding beliefs toward alternative 

medicines and suggestibility were administered at the final visit after the exit interview. A full list of all 

questionnaires used, along with descriptions and references, can be found in Table 1 above. The data 

analyzed for Study 1, with the exception of the pain questionnaires collected at every visits to determine 

treatment outcome, come from those questionnaires collected at visit 1 only, as we were interested in 

looking at predictors of placebo response. Study 2 relied primarily on questionnaires collected at visit 1 

and visit 6 (time of interview), and Study 3 relied on those collected at both visit 1 and visit 2.  
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Data from these self-report measures were downloaded directly from REDCap as a CSV file and 

scored in Excel according to their references. Because all questionnaires were converted to an electronic 

format in order to be used in REDCap, an option to “skip” a question was provided if the participant did 

not feel comfortable answering a certain item. If more than 30% of the data from a given questionnaire (or 

questionnaire subscale, if applicable) was missing, the person’s data for the questionnaire was not 

scored; for all other missing data, the mean was used to fill in missing items (if the questionnaire had sub-

scoring, the mean was calculated from the remaining items in the sub-dimension as opposed to the entire 

questionnaire); this approach is one of the most commonly used methods in data analysis [264] and was 

utilized in order to conserve statistical power given our relatively small sample size. Of all the self-report 

data analyzed, less than 3% was totally missing and thus unable to be filled in as described above.  

 Two methods were used to analyze questionnaire outcomes: (1) a data-driven approach with 

factor analysis using all questionnaire data as inputs, and (2) a hypothesis-driven approach using only 

measures selected apriori as inputs.  For the first approach, a hierarchical factor analysis was utilized to 

identify a minimum set of self-report outcomes as predictors of placebo response as defined above.  In 

addition to the individuals used in the neuroimagining analysis (n=65 before the exclusion of 2 individuals 

having their pain too low), we also included 46 additional participants who had completed all 

questionnaires at Visit 1 but later screen-failed or discontinued (total n = 111). These additional 

participants were used to create more robust and better-differentiated factors.  

Briefly, all visit 1 questionnaires were entered into a principle component analysis (PCA) using 

STATA (Student Edition, version 11.0). The resulting factors were visualized using a scree plot to see 

how many components had eigenvalues >1; this initial plot suggested as many as 5 factors above an 

elbow (a point of clear separation in the fraction of variance explained [265]. To statistically choose how 

many of these potential 5 factors to keep in the model, a parallel analysis was run in Mplus using 10,000 

random permutations at the 99th-percentile – this provided 4 statistically relevant factors, so the 5th 

potential factor was eliminated. The PCA was then constrained to a 4 factor matrix, which was 

orthogonally rotated using a VARIMAX function to make the components more independent. Factor 

loadings were thresholded, discarding any questionnaires that did not have loading values of ± 0.4.  For a 

simple approach, instead of using the raw loading values, each of the elements in the four factors were 
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un-weighted by multiplying the questionnaire items by 0, 1 or -1. For example, if an item had a loading 

value of 0.72, it was assigned a “1”, and if it had a value of -0.55, it was assigned a “-1”; those items not 

passing the 0.4 cut-off threshold were assigned a “0”. These unweighted factors were then used as 

covariates in a logistic regression predicting the probability of response. Coding for the binary 

independent variable was made so that 0 = nonresponder and 1 = responder. 

In the second approach, 15 questionnaires of interest were grouped into 4 broad themes that 

were hypothesized to be important to the placebo response: attitudes and emotions toward pain, positive 

affect, negative affect, and emotional/attentional regulation and awareness. The themes and their 

assigned questionnaires can be found in Table 4. Importantly, the selection of these items and their 

organization into groups were chosen prior to triple blinding and subsequent analysis. Themes were 

treated as if they were factors, running all questionnaire items within each theme into 4 separate 

backwards-stepwise logistic regressions predicting probability of response.  Here again, the independent 

binary variable was coded so that 1 = responder and 0 = non-responder. Only surviving items from each 

theme’s regression were kept (p<0.05).  After all regressions were run, all surviving items were used in 

the final full model for the questionnaire data. 

Theme 1: Attitudes and Emotions Toward Pain  
CPAQ (2 subscales) 
o Activity engagement 
o Pain willingness 
PCS (3 subscales) 
o Helplessness 
o Rumination 
o Magnification 
PASS (4 subscales) 
o Avoidance behavior 
o Cognitive anxiety 
o Physiological anxiety 
o Fear 
MPQ (affective subscale) 
Theme 2: Positive Affect/Personality 
PANAS (positive subscale) 
Extraversion 
LOT-R 
Theme 3: Negative Affect/Personality 
PANAS (negative subscale) 
Neuroticism 
BDI 
LAQ 
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Theme 4: Emotional and Attentional Regulation and Awareness 
ACS 
eACS 
ERQ (2 subscales) 
o Reappraisal 
o Suppression 
MAIA (8 subscales) 
o Noticing 
o Not-Distracting 
o Not-Worrying 
o Attention Regulation 
o Emotional Awareness 
o Self-Regulation 
o Body Listening 
o Trusting 

 
Table 4: Hypothesis-driven analysis of questionnaires.  The self-report measures were secondly 
organized into 4 themes that were hypothesized to be important to placebo response in CBP.  The 
questionnaires or subscales were initially chosen from the literature according to these themes, which 
served as general guidelines of personality traits of interest. All themes and groupings were done prior to 
analysis and triple blinding. We ran items from each theme in 4 separate logistic regressions (for each of 
the 3 classifiers) and surviving variables (p<0.05) from any of the regressions were kept for our final 
questionnaire model.   

 

Analysis of final placebo propensity model (Study 1) 

 This final step in the analysis aimed at addressing two questions: can we map the personality 

traits associated with placebo response with brain functions associated with this response, and if not, do 

the brain properties explain variance in placebo response that is unique, providing information beyond 

what is captured by personality traits? After all neuroimaging and questionnaire analyses were 

completed, the correct classification scheme was revealed. The final model was therefore tested without 

remaining blind. We initially correlated all significant brain parameters with all significant questionnaire 

parameters to get a sense of their co-dependence. Next, we tested the combination of neuroimaging 

markers with questionnaire variables in predicting response. To avoid over-fitting our data due to the 

number of variables and our relatively small sample size, all significant imaging findings were first entered 

into 4 separate stepwise, backward logistic regressions with each of the 5 surviving questionnaire items; 

those brain parameters that survived each regression and remained significant (p<0.05) in the model 

were kept for the final multivariate model. As an additional step to further reduce our potential variables of 
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interest, only those self-report measures that survived in all of these partial regressions (i.e., only those 

that were consistent in all 4 models) were then entered into our final multivariate model.  

Finally, we trained 3 different types of classifiers to discriminate between responders and 

nonresponders using the surviving variables from our final multivariate logistic regression using a leave 

one subject out cross-validation procedure (LOOCV); these included a logistic regression based on 

Mahalanobis distance, support vector machine (SVM), and a Naïve Bayesian classifier. For each 

classifier, average accuracy in group classification was calculated over 1000 iterations of the data.  

 

Word Count Analysis (Study 2) 

After cleaning the interviews (but prior to full lemmatization, stemming, and stop-word removal), 

we calculated 3 linguistic metrics for every participant: verbosity (number of words spoken), vocabulary 

(number of unique words spoken, and lexical diversity (the ratio of vocabulary-over-verbosity, used as the 

simplest version of a lexical entropy measurement) using a Python script developed with NLTK methods.  

The latter measure was adjusted using a corrected type-to-token ratio (CTTR) that takes the square root 

of twice the total verbosity in order to account for the length of the text (this is also known as Carol’s 

TTR).  Without this correction factor, lexical diversity would not be able to discriminate between interviews 

of different lengths and would have a skewed negative trajectory due to language’s inherently repetitive 

nature and excessive use of articles and prepositions [266]. These calculations were used as control 

measures to verify that they did not differ between groups and thus could not account for any differences 

seen in the semantic results. 

 

Latent Semantic Analysis (Study 2) 

As described in [166], the meaning of a text can only be understood with regard to the “mutual 

dependencies of words within a language”, and because of this, simple linguistic analyses such as word 

counts or parts of speech tagging were not sufficient in capturing semantic content.  Instead, we 

employed Latent Semantic Analysis (LSA, [267]) to calculate the semantic distance between the concepts 

of interest and the words used in the interviews.  LSA is a high-dimensional associative model that is 

used to find hidden meanings or concepts by quantifying the associations between patterns of words 



 108 
found in large set of documents (such as dictionaries or encyclopedias).  Therefore, LSA operates under 

the assumption that semantically-related words will be present across texts with coherent topics or 

themes, and it generates a multidimensional linear representation of the semantic meaning of words 

based on their co-occurrence with other words in a large and diverse text corpus.  The frequency of word 

co-occurrence across different documents in this collection represents how well given words are 

semantically related to each other[183].  

LSA starts with a word-by-document (N X M) occurrence matrix X, with each row corresponding 

to a unique word in the corpus (N total words) and each column corresponding to a unique document (M 

total documents). Following recommendations by Bedi and colleagues [166], here we use the Touchstone 

Applied Science Associates (TASA) collection of documents as our corpus to generate a co-occurrence 

matrix. TASA consists of thousands of text documents spanning novels and newspapers that represent a 

common knowledge base across the US educational system through the end of high school.  Our matrix 

X was then 77,998 distinct words from TASA (N) by 37,651 text materials in TASA (M), where any given 

(Ni, Mi) combination represented the number of times that Word (Ni) occurred in Document (Mi).  

Next, we performed a dimensionality reduction to condense X into a matrix that had less columns 

while still retaining as much of the similarity structure between rows (words) as possible.  This step allows 

for easier interpretation of the data by projecting each work into a “semantic space” where meaning is 

represented by its corresponding vector within that space. This reduction was accomplished through 

singular value decomposition (SVD), where our co-occurrence matrix was mathematically broken down 

into the product of 3 matrices (U,S, and V) and then cropped to k dimensions.  The value of k is important 

because it dictates the accuracy of the results – too few dimensions means that important patterns will 

likely be left out, but too many dimensions can reintroduce noise from things like random word choice or 

over-usage.  Previous research on LSA dimension size indicates that the number of dimensions typically 

selected is between 100 and 500, and (Landauer and Dumais’s seminal paper [183] showed that they 

obtained the best performance when truncating at around 300 dimensions, which has become a sort of 

field standard in this approach).  Therefore, we used k =300 as our cutoff for the number of columns to 

retain post SVD. Thus X was converted to the combination of U (77,998 words X 300 semantic features), 

S (square matrix of 300 X 300 semantic features with diagonal elements representing the singular values 
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of each of the 300 factors), and VT (transposed matrix of 300 semantic features X 300 projections to 

these features based off the reduced TASA corpus data). For our purposes of looking at semantic 

relationships between words, we only utilized the matrix U for our analyses, which we refer to here as our 

“dictionary” and which represents a general English lexicon weighted by the frequency of words.  For 

each word spoken in each participant’s interview, the corresponding dictionary word was found and its 

vector of 300 semantic features was copied into a new matrix for analysis, resulting in an N words X 300 

feature matrix for each subject representing the semantic space of each interview. Individual subject 

matrices were appended together according to participant ID such that the first 800 words belonged to 

PL001’s interview, the next 700 to PL002’s interview, the next 1000 to PL003’s, and so forth through all 

76,929 total words used by all participants; this data reorganization allowed for more efficient calculations 

while still maintaining the order of words within each interview. We performed SVD again on this 

participant-driven dictionary by feature matrix (76,929 X 300, referred to as Xi) to obtain semantic 

relationships that not only encompassed the dictionary lexicon but also were specific to our population. 

We refer to the resulting matrices as Ui, Si, and Vi (with i representing interview). Because singular values 

are organized in descending order, the first feature is the strongest in the dataset, followed by the second 

and third.  We therefore took the first 9 out of 300 features from Ui representing the strongest linguistic 

elements in the dataset and compared them between groups; the choice of 9 was arbitrary (and could 

have easily have been higher or lower).   

 

Semantic proximity analysis (Study 2) 

Finally, we calculated the semantic proximity for all words in each interview to a selection of 60 

that served as concepts of interest based on 8 themes. These themes were hypothesis-driven and were 

chosen because of their potential to capture elements of the chronic pain experience and qualities of the 

placebo effect; however, the themes were used for organizational purposes only, as they were arbitrarily 

defined and not determined via linguistic analyses.  The 60 words within the themes were selected from a 

variety of sources spanning ethnographies, questionnaires, and peer-reviewed journals; positive, neutral, 

and negatively valenced words were included so as to encompass a larger range of potential semantic 

space and meaning.   Semantic proximity is a measurement of how similar the meaning is between two 
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words, and it’s calculated by taking the cosine between the two corresponding word vectors.  In our 

dataset, the semantic proximity between two words is computed as the dot product of all 300 of the 

normalized semantic features for Word A and Word B obtained through SVD; the semantic vectors were 

normalized to constrain the possible outcomes to be between -1 and 1. The proximity to each of the 60 

concepts was measured for all words in each participant’s interview; from these, a mean was calculated 

for each participant across all words used for each of the concepts of interest to obtain an average 

semantic similarity value per person for the 60 concepts.  This semantic similarity value essentially 

demonstrated how close each concept was to a person’s unique language in the interview. The semantic 

proximity values for each concept were averaged within group  (responders, non-responders, and no 

treatment) and used for future statistical analyses.  

 

Creation of semantic language factors (Study 2) 

 The 60 concepts of interest were not expected to be completely independent of one another.  

Therefore, it did not make sense for us to search for 60 different language parameters in our 

questionnaire and neuroimaging data.  Instead, we supposed that a combination of these concepts would 

be more important in explaining the variance in placebo response than would any one singularly. 

However, we chose not to test all possible combinations of 60 semantic proximity values and alternatively 

implemented a data-reduction approach that combined hypothesis-driven methods with data-driven 

analyses to further narrow down the number of language parameters used in our analyses and to see 

which combinations of word similarities were important. 

 The 60 words of interest were entered into a principle component analysis (PCA) using STATA 

(Student Edition, version 11.0).  The resulting factors were visualized with a scree plot to see how many 

components had eigenvalues >1; this suggested as many as 6 components above an elbow (a point of 

clear separation in the fraction of variance explained [265].  The PCA was then constrained to this 6-

component matrix, which was rotated using a VARIMAX function to make the underlying component 

structures more evident. The choice of an orthogonal rotation instead of an oblique rotation was made 

because even though the concept words and similarity scores were probably somewhat interdependent 

(as language in general is), the themes of interest were not necessarily related to one another, and the 60 
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words would not all be expected to occur in the same context, thus orthogonalizing them would allow for 

further separation from one another.  Component loadings were thresholded, discarding any concepts 

that did not have loading values of ± 0.4 in each factor.  

 Those word similarities that survived this threshold were used as covariates in 6 backward 

stepwise logistic regressions (one regression per component) predicting the probability of being a being a 

placebo responder.  Coding for the binary dependent variable was made so that 0 = non-responder and 1 

= responder.  At each step, the word with the highest p-value was removed from the model until it 

reached a total significance level of p<0.05; there was no inclusion/exclusion criteria for individual 

regressors. Resulting logistic models indicated the combination of semantic concepts that explained a 

statistically significant amount of variance in characterizing placebo responders.  Those components 

(which we refer to as factors) that produced significant models were named according to the words in 

them, and their equations were used to create combination scores of all associated words in a given 

factor.  These factor scores were used as regressors in future neuroimaging analyses.  

 Additionally, a 6th and final factor was created post-hoc as a way to increase the semantic signal 

for future neuroimaging analyses.  All 60 concepts were compared between responders and non-

responders via un-paired t-tests to detect words that significantly differed in their semantic proximity 

between groups.  These significant words were entered into two logistic regressions predicting placebo 

propensity. The first model was like the others and did not have a statistical threshold; it was used to 

capture the most variance in the data (i.e., like the first factors, the total model was significant but some of 

the individual words were not); the second model was a backward stepwise logistic regression of all 

significant words (with inclusion level of p<0.05) predicting binary placebo response, resulting not only in 

a significant model but also in individual significant predictors. The reason why we chose to set a 

statistical cut-point for only the 6th factor is because the other 5 factors would have provided redundant 

information, being driven largely by the significant words in their models. We used this final model to test 

proof of concept – that is, the predictive accuracy of semantic language parameters in explaining placebo 

response.   

 Note: to avoid confusion when talking about the results of SVD and PCA (which are very similar 

methods), we have made the language consistent throughout the paper.  Whenever we are referring to 
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SVD, we use the term features; for PCA, we use the term components, and for semantic similarity 

calculations that relied on PCA initially but have gone through additional data reduction methods (e.g., 

logistic regressions or statistical cut-off), we use the term factors.. 

 

 Data-driven linguistic analyses (Study 2) 

Pre-selecting words and concepts may result in unintentionally biased results. To avoid this, as 

an alternative method we also performed a data-driven analysis of semantic similarity (similar to the 

supplementary analysis completed in [166]), which we viewed as a “black-box” approach in that we did 

not pre-specify any words apriori and did not apply additional data reduction steps after SVD. Instead, we 

calculated the semantic similarity across all words in each interview to all the words in the dictionary (U).  

Thus each interview was represented by a 77,998-dimensional vector whose components were the 

average semantic similarity over an interview to each word in the lexicon, weighted by the frequency of 

occurrence of the word in the TASA database.  This resulted in a matrix M for 42 subjects and 2 

conditions (responder and non-responder) so that the dimensions of M = 77,998 X 42.  SVD was 

performed on M to achieve the following matrices: Um = 77,998 X 77,998, Sm = 77998 X 42, and Vm = 

42 X 42; for this analysis, Um can be seen as a set of multidimensional features and Vm as projections 

on those features. Because the data was not centered, the first feature essentially captures the mean, 

and therefore we only compared the second feature (the next strongest) between the two groups.  To 

assess differences between responders and non-responders, we entered the loading of each interview on 

the second feature into an unpaired t-test.  

 

Correlating language to the brain (Study 2) 

In order to see if language was related to placebo propensity, the language factors were first 

correlated to variables that we had previously shown to be significantly predictive of placebo propensity in 

CBP (Study 1): these included 2 questionnaire measure (the Multidimensional Assessment of 

Interoceptive Awareness, MAIA, emotional subscale; and the Emotional Regulation Questionnaire, ERQ, 

suppression subscale), 2 functional links (lateral frontal to sensorimotor connectivity and lateral frontal to 

periaqueductal gray, PAG, connectivity), and 3 anatomical markers (limbic volume asymmetry, post-
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central gyrus gray matter density, and superior frontal gyrus cortical thickness).   We also correlated 

language factors to additional questionnaires and subscales of interest based on additional models in 

Study 1 and on the idea that language should be able to capture aspects of emotion and personality that 

might not be as readily seen in imaging data.  

Next, the language factors were used to investigate if there were any additional pre-treatment 

brain and personality measurements of placebo response that they were related to (outside the previously 

confined networks of interest).  As part of a whole brain functional connectivity analysis, each of the 6 

language factors were correlated to every one of the possible functional connections in the connectivity 

matrix, thresholded to identify the most significant correlations (i.e., those connections that were the most 

significantly related to language), corrected for multiple comparisons, and compared between groups.  

Details about this network analysis and associated statistics can be found below.  

 

Machine learning classifier for language analyses (Study 2) 

When developing models aimed at classifying different groups, it’s important to ensure that the 

model is not too closely fit to the specific dataset that it is trained on such that it cannot generalize to 

novel datasets (a phenomenon known as over-fitting).  The best way to verify that a model is not biased 

in this way is to test it on an independent validation dataset.  Because we did not have a large enough 

sample size to feel comfortable leaving out a portion of the data as a validation set, we instead chose to 

use a cross-validation approach to test different patterns within the pooled training data.  Here we used a 

Support Vector Machine (SVM) classifier.  We reduced the problem of binary (responder vs. non-

responder) classification to information provided by the first 9 features from the SVD analysis and the 

semantic similarity to each of the words in the strongest language factor. We implemented leave-one-out-

cross-validation (LOOCV) consisting of the 42 participants assigned to treatment and 2 conditions 

(responder or non-responder). Discriminative models were computed by learning each of the parameters 

(features or word similarities, depending on the data provided) on N-1 subjects and testing the remaining 

(left-out) participant on all of the possible classifications. Accuracy of the models (from 0%, meaning 

failed at discrimination, to 100%, meaning perfect discrimination) was measured at each test and 

repeated for a total of 1000 iterations; average accuracy across all iterations was used as the final 
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accuracy assessment for each measure.  For the data-driven approach, a single vector (the projections 

on the second feature) were entered into an SVM with LOOCV to test the result.  

 

Whole brain functional connectivity and language network analysis (Study 2) 

In Study 1, we used a “localizer” from a different dataset to narrow our focus on four networks of 

interest (the DMN, lateral frontal, parietal, and sensorimotor communities), resulting in 122 out of 272 

ROIs being included in that analysis. Although language parameters were correlated to resulting 

functional links from those previous results, here we look at networks constructed from all 272 ROIs 

described in the first study (Power’s parcellation plus 8 limbic regions of interest).  We chose to perform a 

whole-brain functional connectivity analysis instead due a recent publication by Huth and colleagues [268] 

showing that language meaning is not confined to any one brain region but rather stored in an organized, 

redundant, and widespread set of functional networks distributed across the entire brain. 

 The 6 language factors were linearly correlated to each of the 73,712 functional connections of 

the weighted network (272 * 271 nodes). To identify the most important links, correlations between each 

language factor and the brain were thresholded at p<0.001. Only those connections that were significantly 

related to language according to this criterion were analyzed. Within- and between- network connectivity 

of these links was determined by calculating the percentage of functional connections out of the total 

possible that were between nodes of the same community (e.g., DMN to DMN) versus between nodes of 

different community designations (e.g., DMN to limbic). After controlling for false discovery rate (FDR, p 

<0.05), group comparisons between responders, non-responders, and no-treatment were performed on 

the remaining functional connections identified in each language factor. These significant r-values were 

extracted for all participants, averaged within each group, and entered in a one-way ANOVA with 

Bonferroni corrected post-hoc tests to determine differences with respect to the no-treatment control arm. 

 

Correlating language with questionnaires  (Study 2) 

Over the course of the trial, participants filled out 29 unique questionnaires that aimed to capture 

trait and state characteristics of the placebo effect. A full list of all questionnaires used, along with their 

descriptions and information about scoring and modeling, can be found in Study 1. The questionnaire 
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data analyzed for Study 2, with the exception of the pain and mood questionnaires collected at every visit 

to determine treatment outcome, come primarily from self-report measures obtained at visit 1 pre-

treatment, as we were interested in investigating the extent to which language correlated to predictors of 

placebo response. Questionnaires collected at visit 6 were also analyzed, as this time point corresponded 

to the date of the exit interview.  Unlike previous reports where we looked for differences between 

placebo responders and non-responders based on their questionnaire scores, here we were interested in 

whether language corresponds to previous personality metrics which captured these differences, as well 

as what additional self-report measures were related to language differences seen between responders 

and non-responders.  For this, we used simple Pearson correlations to capture relationships between 

interview data (language factors) and questionnaire data (subscores). 

 

Calculating pain memory bias (Study 3) 

From pain memory reports taken at Visit 2, we calculated a “discrepancy score” for each 

participant, which was the number obtained after subtracting their average pain over the last week  

(ratings on the phone app) from their recalled average pain over that same time period.  This discrepancy 

score was the main parameter used in Study 3. 

 

Subcortical shape analysis (Study 3) 

Unlike volume measurements which provide a general whole-structure summary of a region, 

shape can reveal more subtle and nuanced changes in structure at subregional levels and is thought to 

indicate alterations or innate differences in the underlying neurocircuitry of a region. In order to capture 

locations of shape differences and the direction of these differences, points (vertices) are projected along 

the surface of a region according to predefined anatomical locations, and statistics are calculated on a 

vertex-by-vertex basis.   Following structural segmentation and volume calculations, a vertex-based mesh 

surface for the right and left hippocampus was constructed based on the average surface of all 

participants; this was an automated procedure that was also part of FIRST (first_utils). To determine 

whether memory discrepancy was correlated with hippocampal shape, we created a design matrix where 

the first column contained the values of the variable of interest (discrepancy) in the same order as the 
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participants’ files; these values were automatically demeaned as part of FIRST. We first generated 3D 

image files of the surface of each hippocampus to provide a general visualization of the results. These 

colored surfaces represented the uncorrected multivariate F statistics associated with pain discrepancy; 

the color indicated the strength of the correlation between discrepancy and shape at that location.  

Zooming in on the surface allowed visualization of arrows of various lengths – these indicated the 

direction of change of the shape in relation to discrepancy (referred to here as “vertex displacement”), 

with arrows pointing toward or below the surface representing a thinning or shrinking of the structure, 

while arrows pointing outward representing a thickening or expansion in that region.  

Due to limitations in correction for multiple comparisons and the absence of additional statistics or 

quantification measures for the 3D surface mesh files, we re-ran our design to instead obtain a mask of 

the average surface shape (an outline around the hippocampus) and a 4D file with the displacement 

values at each of the 732 vertices of the hippocampus for all participants (one image per person).  

Positive values indicated outward displacements from the mean surface (expansion) whereas negative 

values indicated inward displacements from the mean surface (shrinkage). FSL’s randomise option was 

then used for nonparametric statistics; data were permuted 5000 times and threshold-free cluster 

enhancement (TFCE) was used to correct for multiple comparisons. 

The primary outputs from this analysis included an uncorrected t-statistic map, a map of 

corresponding uncorrected p-values (1-p), and a map of p-values post TFCE correction. To better 

visualize the results, we used Matlab (version R2015a) to extract the signed t-value at every vertex 

coordinate for all participants in the 4D file.  T-values were thresholded at ± 2.0 to confine our statistics to 

the most significant areas, and for those vertices that met or exceeded this cutoff, a k-means algorithm 

was used to arrange and label these vertices into distinct clusters. The number of input clusters chosen 

was based on how many areas showed potential significance in the initial surface F-stat map.  Because 

k-means provides arbitrary assignments to the data, the boundaries of partitions (in this case, the number 

of coordinates in each cluster) could change slightly from one repetition to the next.  To ensure a stable 

cluster assignment, we ran the k-means algorithm for 50 iterations to obtain 50 patterns of different 

cluster assignments; from these, we found which set of clusters occurred most often and chose as the 

final cluster arrangement the grouping that had the highest similarity to the most common pattern. After 
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identifying this set of clusters, we extracted the signed shape displacement values from all of the vertices 

in each cluster for every person.  These displacement values were then averaged within each cluster and 

correlated to the memory discrepancy scores. To account for possible memory or shape differences due 

to age or gender, we regressed age and gender values from vertex displacements to verify that the 

results did not significantly change (all statistics and figures are calculated with these covariates 

regressed).  For internal consistency, the same methods were applied to the scanning data from the 

validation group.  

For the secondary longitudinal analysis with CON and SBPp hippocampal data, we wanted to 

investigate whether areas identified in the CBP group changed as a property of time and/or pain. 

Therefore, we constructed a paired t-test design file for each group to compare the mean shape between 

the first scan (time 1) and the fifth scan (time 2). Vertex displacement values for both SBPps and CONs 

were extracted only from coordinates within hippocampal clusters that survived correction for multiple 

comparisons in the CBP discovery group. The average displacement values in these clusters and the 

difference in displacement between scans were compared between groups. Additionally, to test time 

effects, the correlation between the number of days between scans and the difference in average cluster 

displacement was calculated for both groups.  Within-subject analyses were performed by first 

thresholding the t-values in each contrast at ± 2.0 (as was done in the CBP groups), and then testing 

whether those vertices that exceeded this cutoff had p-values <0.05 in their contrast map between scans 

(both uncorrected and corrected for multiple comparisons).  

 

Modeling memory bias (Study 3) 

We first examined the relationships between the retrospective ratings (which we call “recalled 

pain”), the real-time pain and mood measurements taken, and same-day pain and mood questionnaire 

scores through Pearson correlations. To assess adequacy of these variables in explaining pain memory 

and best compare our results with others’ cited in the literature, we tested four multivariate models: a pain 

only-model, a pain+mood model, a comprehensive behavioral model that combined previous pain and 

mood rating elements with the questionnaire scores, and a final neuroimaging + behavior model that 

combined the psychophysical and questionnaire variables with the neuroimaging results. Each multiple 
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regression analysis was used to quantify the influence of the given set of independent variables on the 

dependent variable of memory (recalled pain). Each model was tested using backward stepwise 

regression; criteria for inclusion was p<0.05 and criteria for exclusion was p >0.10. Additionally, a 

hierarchical approach to the regressions was used in order to conserve degrees of freedom.  Thus, only 

those variables that remained in a prior model (i.e., significant or borderline based on our criteria) were 

then entered into the next model; if they did not meet criteria, they were discarded from any future 

models.  

 

Validation analyses (Study 3) 
 

To test the validity of our memory bias model, the hippocampal surfaces from the validation group 

of CBP patients were correlated to discrepancy using the same design as before (with discrepancy being 

the covariate of interest). Shape displacement was extracted within cluster boundaries using the vertex 

coordinates for each of the 3 clusters from the discovery group and averaged within each cluster.  In 

addition to these measurements, all parameters from the phone app were also calculated.  Using the 

regression equation from the discovery analysis, only those variables that remained within the model 

were entered from the validation group to predict their reported memory of pain (i.e., the intensity of pain 

that they recalled).  This predicted memory score was then correlated to their actual memory reported to 

determine the accuracy of the predictive model. 

 
Follow-up analyses (Study 3) 
 
 As part of the post-hoc phone call, we were interested in answering 3 main questions.  First, we 

wanted to examine if any memory differences seen in CBP participants were representative of a general 

disturbance in short-term memory, since research suggests that chronic pain impacts attention and can 

cause both short-term and working memory deficits [74, 269-271].  Therefore, participant’s overall scores 

on the 5-word STM task (questions 1 & 11 from Table 3) were correlated with their initial memory 

discrepancy while in the study (“previous pain discrepancy”) and with the memory discrepancy of their 

study pain reported during the phone call (“current pain discrepancy”).  Second, we wanted to investigate 

the specificity of our results: were any discrepancies found in participants’ memory during the study pain-
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specific or were they related to a person’s baseline biases (i.e., their tendency to over- or under-

exaggerate memories regardless of the valence, intensity, or context). We calculated the differences 

between participants’ reported memories of different aspects of the study (questions 3-8 from Table 3) 

from their actual values while in the study to obtain discrepancies for each item (recalled – actual). These 

discrepancy values were then correlated to current and previous pain discrepancies.  We also 

investigated whether personality played a role in these biases by correlating the discrepancy scores with 

4 questionnaire measures relating to pain sensitivity, pain avoidance/anxiety, pain catastrophizing, and 

loss-aversion, some of which have been shown to influence memory in previous studies [272-277]. Third 

and finally, we wanted to know how generalizable our anatomical results were – did they also explain 

other behavioral or memory-related data in the study outside of pain memory.  To investigate this, we 

correlated any surviving hippocampal clusters from our final multivariate linear model with the phone call 

discrepancy values and the scores from the selected personality questionnaires. Finally, we ran a 

mediation analysis using Mplus (7.0) to further explore the relationships between discrepancy, loss 

aversion personality, and hippocampal shape; the indirect effects of this mediation were tested by 

bootstrapping the data over 1000 iterations. 
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CHAPTER 3: RESULTS FOR STUDY 1 

The neurobiological and psychosocial mechanisms predicting placebo response in chronic pain  

 
Demographics 
 

From the 82 CBP patients initially randomized, data from 63 patients that completed the study 

were analyzed: 43 of these patients had been allocated to the placebo treatment group and 20 patients 

had been allocated to the no-treatment group. 5 additional patients had been allocated to the active 

treatment group, but were not analyzed, as we were only interested in placebo response. The 43 patients 

in the placebo treatment group were exposed to multiple treatment periods and stratified into responders 

and non-responders based on their pain ratings using a smartphone app.  Because of the temporal 

dimension of the data, we opted for a stratification strategy accounting for the amplitude of placebo 

analgesia after considering the variability across pain ratings. We used a permutation test randomizing 

pain ratings collected during baseline and those collected during each treatment period. Patients were 

dichotomized as responders (n = 24) if they responded to at least one of the two treatment periods and as 

non-responders (n = 19) if otherwise (demographics are presented in Table 5).  

 
 

Group N Age (years) Female (%) Duration of Pain 
(months) 

Education 
(years) 

Non-Responders 19 45.0 ± 13.4 N=5 (26.3) 62.0  ± 108.5 11.9  ± 3.2 

Responders 24 46.9  ± 11.1 N=9 (37.5) 45.4  ± 48.9 12.7  ± 3.75 

No Treatment 20 46.2  ± 13.2 N=10 (50.0) 57.6  ± 61.2 13.8  ± 3.9 

 

Table 5: Demographics for Study 1.  There were no differences between groups in age (F(2,60)=0.12, 
p = 0.88; one-way ANOVA), gender (Pearson chi2(2) = 0.90, p = 0.64), duration of pain reported (F(2,60) 
= 0.29, p =0.75; one-way ANOVA), or years of education (F(2,60) = 1.34, p = 0.27; one-way ANOVA).  
Table shows mean ± STD; all variables here were reported at visit 1. 
 
 

Importantly, external factors such as pain intensity during baseline, phone rating compliance, overall 

treatment compliance, treatment duration, and previous medication usage were not related to placebo 
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response (Table 6). Only self-reported number of hours of sleep per night dissociated placebo 

responders from non-responders, where responders reported sleeping about an hour less each night 

(Figure 10).  

2a: Starting Pain  Qualities 

Questionnaires 
at Visit 1 Groups Mean ± SEM 

one-way 
ANOVA: F(2,60) 

= 
f-stat (p-value) 

NRS 
Non-Responders 

Responders 
No Treatment 

63.50 ± 4.13 
56.28 ± 5.75 
55.37 ± 3.78 

1.33  
(0.27) n.s. 

MPQ_sensory 
Non-Responders 

Responders 
No Treatment 

13.21 ± 1.17 
12.84 ± 1.02 
14.20 ± 1.57 

0.32  
(0.73) n.s. 

MPQ_affective 
Non-Responders 

Responders 
No Treatment 

3.12 ± 0.60 
2.80 ± 0.58 
3.35 ± 0.72 

0.20 
(0.82) n.s. 

PainDetect 
Non-Responders 

Responders 
No Treatment 

9.38 ± 1.39 
10.11 ± 1.02 
13.66 ± 1.57 

2.89  
(0.06) & 

NPS 
Non-Responders 

Responders 
No Treatment 

41.42 ± 2.59 
37.83 ± 2.58 
33.4 ± 2.45 

2.29 
(0.11) n.s. 

2b: Other Potential Confounds 

Variable Groups 

 
Mean ± SEM 

one-way 
ANOVA: F(2,60) 

= 
f-stat (p-value) 

Pain app VAS 
Over Baseline 

Non-Responders 
Responders 

No Treatment 

5.85 ± 0.32 
6.07 ± 0.20 
5.91 ± 0.17 

0.31 
(0.73) n.s. 

 
Phone App 
Compliance 

 

Non-Responders 
Responders 

No Treatment 

81.14 ± 3.35 
80.39 ± 2.67 
75.77 ± 4.06 

0.73  
(0.49) n.s. 

 
Treatment 

Compliance 
 

Non-Responders 
Responders 

No Treatment 

90.7 ± 3.34 
95.9 ± 3.84 

n/a 

unpaired t-test:  
t-stat (p-value) 
0.73 (0.47) n.s. 

2c: Medication Usage at Study Entry 

Medications for Pain # Patients 
(n = 63 total) # Patients/Group 

NSAIDs or acetaminophen 24 
7 Non-Responders 

10 Responders 
7 No Treatment 

No treatment reported for pain 32 
10 Non-Responders 

11 Responders 
11 No Treatment 
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Combination of NSAIDs with other 
drugs 

• Gaba-ergic 
anticonvulsants 
• Muscle relaxers 
• Opioids/narcotics 

6 
2 Non-Responders 

3 Responders 
1 No Treatment 

Gaba-ergic anticonvulsants 1 1 No Treatment 
Groups MQS Score ± SEM 

2d: Medicine 
Quantification 

Non-Responders 
Responders 

No Treatment 

2.90 ± 0.76 
3.22 ± 0.81 
3.20 ± 0.78 

 

Table 6: Placebo response is invariant to potential confounds. Initial pain levels, study compliance, 
and previous medication use are all variables that could impact placebo response; we therefore tested 
each of these measures to verify that the placebo effect in our cohort could not be explained by these 
potential confounds. 2a. No significant group differences were observed in pain characteristics measured 
with NRS, MPQ-sf sensory or affective subscales, PainDetect, or NPS at study entry (visit 1). 2b. There 
were no significant group differences in average pain rated using the electronic app over the 2-week 
baseline period, the percent compliance when using the electronic app to rate pain, and compliance when 
taking the study agent. Compliance was considered across the duration of the study (phone app). One 
patient from the non-responder group failed to bring back his medications for either of the treatment 
periods, and thus study agent compliance could not be calculated for this patient. 2c. The Medication 
Quantification Scale (MQS) was used to calculate participant’s pain medication usage at study entry; an 
MQS score is based on the kinds of medications a patient is taking, the dosage of those medications, and 
the number of medications in total. The MQS was broken down into medications reported by participants 
to treat their pain, which included no treatment at all, NSAIDS or acetaminophen, and a combination of 
anti-inflammatories with other drugs, such as gaba-ergic medicines, muscle relaxers, and 
opiates/narcotics. There were no differences in the amount of patients per group using these medications 
(Pearson chi2 (6) = 3.1601; p = 0.79). 2d. Likewise, there were no differences between groups in total 
MQS score at visit 1; F(2,60) = 0.05, p = 0.95 n.s.; one-way ANOVA). All participants were required to 
discontinue all medications used to treat their pain for the duration of the study beginning at visit 1. 
Unless otherwise stated, non-responders = 19; responders = 24; and no treatment = 20. 
 

 

Figure 10: Placebo responders reported sleeping less than placebo non-responders. Numbers of 
hours of sleep per night obtained from the personal health information questionnaire were compared 
between the groups. There was a significant group difference (F(2,59) = 3.43; p = 0.04) where the placebo 
responders reported significantly less hours of sleep per night compared to non-responders. * p < 0.05 
after Bonferroni correction. 
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The temporal dynamics of placebo response in RCT 

Patients visited the lab on six occasions over 8 weeks and underwent identical scanning 

protocols on four of these visits (Figure 11a). Additionally, a battery of questionnaires was collected at 

each visit to capture patient’s psychological profile and current emotional and pain states. Throughout the 

duration of the trial, the patients were asked to use a visual analogue scale (VAS) displayed on a 

smartphone app to continuously monitor their pain two times per day. Baseline pain levels were initially 

measured with the app for 2 weeks, after which patients were randomized either into a treatment or no 

treatment arm. Those in treatment were allocated either to active pills (Naproxen 500mg + Esomeprazole 

20mg bid) or placebo pills (lactose bid) in a double-blinded fashion, while those in the no treatment arm 

did not receive medication but underwent the same procedures as participants in the treatment group. 

Treatment was introduced for two weeks followed by a one-week washout and reintroduced a second 

time for two weeks followed by a second one-week washout. Here, only brain images collected at visit 2 

(pre-treatment baseline scan) and questionnaires collected at visit 1 (screening) were used to study the 

likelihood of clinical placebo response in chronic back pain.  

Figure 11b shows how the permutation test was used to classify individuals into responders or 

non-responders based on their pain ratings. Figure 11c displays the time course of the percent change in 

pain measured with the phone app throughout the clinical trial for each group. On average, as expected, 

placebo responders showed an initial pain diminution that partially reversed back towards baseline levels 

during the first washout period before decreasing again as soon as the second treatment was introduced. 

Importantly, no-treatment and non-responder groups showed no change in back pain intensity throughout 

the trial. A closer examination of individual pain ratings ordered in time indicated that placebo responders 

displayed an instantaneous pain reduction at the first rating entered after the start of the treatment 

(Figure 11d). Remarkably, the opposite effect was not true, as discontinuing the treatment did not cause 

the pain to instantaneously return to baseline levels (Figure 11e). Better understanding the temporal 

dynamics of clinical placebo response in the patients’ natural environment could be critical in dissociating 

analgesia attributed to an active agent from that caused by a placebo in an RCT. 
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To investigate consistency of response across different assessments, we further compared the 

smartphone app pain measurements with other pain outcomes – participants’ pain memory (a numerical 

verbal scale of their average pain over the last week), the numeric rating scale (NRS, a single value used 

to quantify pain changes in clinical trials [127]), the McGill Pain Questionnaire (MPQ) affective and 

sensory scales, the PainDetect, and the Neuropathic Pain Scale (NPS). Principal component analyses 

were performed on the pain outcomes at each treatment period to demonstrate that %change in pain 

questionnaires were clustered into 2-3 independent components dissociating pain outcomes measured 

with numerical scales (phone app, memory, and NRS) from outcomes assessing the qualities and 

characteristics of the chronic pain as measured with MPQ, PainDetect, and NPS (Figure 11f). 

Correlations between these measures can be found in Table 7.  
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Figure 11: Characteristics of clinical placebo response.  a. Experimental design and time line: CBP 
patients entered a six-visit 8-week trial. Although questionnaires were administered at every visit (white 
circles) and scans were collected at 4 visits (black circles), only the visit 1 questionnaires and visit 2 brain 
scans were used in this study (black arrows). b. Time series of smartphone app pain ratings in 2 patients 
(values in parentheses are the total number of ratings in a given period). Permutation tests randomised 
app pain ratings during baseline with those entered during each treatment period to detect significant 
decreases in back pain and identify placebo responders (p<0.05; PL001 was classified as a non-
responder, while PL003 was a responder).  c. Group-averaged %change in app ratings of back pain 
intensity is subdivided into two bins per week, averaged within each group, and displayed across the trial. 
d. Individual pain ratings ranked in chronological order for the last 7 ratings during baseline (red) and the 
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first 20 ratings of treatment 1 (green) averaged within each group. In responders, the placebo analgesia 
was instantaneous after the introduction of the treatment (black arrow). e. In contrast, the cessation of the 
treatment yielded little change in the patients’ pain ratings. f. Principal component analyses indicated that 
pain outcomes were clustered in several factors at both treatment periods. The placebo response was 
specifically captured by pain outcomes of Factor 1 relying on numerical scales (squared in red). g-i. 
Significant differences in %change in app pain intensity were observed during the last week of both 
Treatment periods and a similar pattern and magnitude of back pain intensity diminution was observed 
with two unbiased outcomes: pain memory and NRS. g. Scatterplots show strong correspondence 
between %change pain app ratings with pain memory, and NRS. All post hoc comparisons were 
Bonferroni corrected: * p< 0.05; ** p<0.01 *** p<0.001. Scatterplot present the Pearson correlation 
coefficient (r) as well as the Spearman correlation coefficient when one of the variables was not normally 
distributed (rs). Number of subjects is shown in parenthesis. BL: baseline; Tx1: Treatment 1; Wsh1: 
Washout 1; Tx2: Treatment 2; Wsh2: Washout 2. 

 

Here, placebo treatment specifically impacted the intensity of pain quantified by questionnaires 

using numerical scales.  Significant differences in %change in smartphone app pain intensity were 

observed during the last week of Treatment 1 (F(2,60) = 12.85; p < 0.0001; one-way ANOVA) and 

Treatment 2 (F(2,60) = 9.72; p = 0.0002; one-way ANOVA), during which placebo responders reported 

decreased back pain intensity compared to non-responders and no-treatment groups (fig. 1g). A similar 

pattern and magnitude of back pain intensity diminution for treatments 1 and 2 was observed with pain 

memory and NRS. For pain memory, there were significant group differences for Treatment 1 (F(2,56) = 

5.40; p = 0.007; one-way ANOVA) and Treatment 2 (F(2,56) = 9.39; p = 0.0003; one-way ANOVA; fig. 1f). 

For NRS, group differences were trending during Treatment 1 (F(2,50) = 2.47; p = 0.09; one-way ANOVA) 

and significant during Treatment 2 (F(2,48) = 4.36; p = 0.02; one-way ANOVA; fig. 1g). Change in the 

memory of pain and NRS strongly correlated with the app pain ratings (fig. 1j) for both treatment periods, 

indicating that participants’ perceived changes in pain were related to their spontaneous pain ratings.  

Together, our results suggest that placebo response impacts a single dimension of chronic pain, as the 

intensity systemically diminished across all numerical scales leaving the intrinsic qualities of the pain 

unchanged. We conclude that changes in the qualities of the chronic pain may not be as salient in a 

placebo treatment compared to an active treatment. Further studies will however be necessary to test this 

proposition. 
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Treatment 1 Treatment 2 Pain Outcomes by 

Treatment Session (% 
change in score) VAS (phone app) VAS (phone app) 

NRS r = 0.46, p = 0.003, n = 40 r = 0.55, p = 0.003, n = 39 
Pain Memory r = 0.72, p <0.001, n=40 r = 0.45, p = 0.004, n = 39 

NPS r = 0.10, p = 0.51, n = 43 r = 0.39, p = 0.01, n = 41 
MPQ-sensory r = 0.06, p = 0.71, n = 42 r = - 0.06, p = 0.67, n = 41 
MPQ-affective r = 0.21, p = 0.23, n =34 r = - 0.16, p = 0.39, n = 31 

PainDetect r = 0.05, p = 0.75, n = 41 r = 0.13, p = 0.42, n = 39 
 

Table 7: Comparison of pain outcome measures. All pain-related scores were first converted to 
percent change from baseline for both treatment sessions. Table shows Pearson correlations between 
the percent change using the smart phone app (from which we based our stratification of placebo 
responders/non-responders) with percent change in other pain outcomes.  Pain questionnaires using 
numerical scales such as the verbal pain memory report and the Numeric Rating Scale (NRS) 
significantly correlated with the phone app. Of the remaining pain outcomes, only the Neuropathic Pain 
Scale (NPS) showed modest correlation with the VAS from the phone app, which was for treatment 2 
only. Correlation coefficients, p-values, and corresponding number of patients are provided. 
 

Blinding of the analyses (a reminder) 

Given the lack of reproducibility in scientific findings [254] and the importance of transparency in 

data analysis, we followed recommendations by MacCoun and Pearlmutter [255] and employed cell 

scrambling to blind our neuroimaging and questionnaires data and minimize bias. All analyses performed 

on brain imaging data and questionnaires therefore followed a pre-determined plan of analysis presented 

in Figure 12 and were performed three times according to the blinding procedure (one for each classifier; 

one correct classifier and two scrambled classifiers) as explained in the methods.  
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Figure 12: Pre-determined plan of analyses.  The plan outlined here presents every analysis 
performed on this data; this plan was decided upon prior to study completion. All analyses were 
performed blindly using 3 classifiers to minimize the effects of bias and expectations. No analyses were 
performed outside of the plan until post-hoc tests were run, which were completed after un-blinding the 
data. 

 

Functional circuitry of the lateral frontal cortex predisposes patients to placebo response  

The traditional mapping of a behavioral response to a single brain area or a set of regions is often 

an overly simplistic approach to understanding cognitive function, especially in the case of complex 

phenomena such as the placebo effect. We instead applied techniques used in network science to 

construct brain network from resting state Pearson correlations computed from the average time course 

between brain regions (parcellation scheme from [258], Figure 13a-b).  
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Figure 13: Parcellation of the brain into 272 ROIs. a. In this study, we used the parcellation scheme 
from Power et al 2011[258].  They constructed functional brain networks from 5-mm radius ROIs located 
in 264 regions representing the putative functional area of the brain. These regions were identified from a 
meta-analysis on task-based fMRI and complemented by using the center of gravity of cortical patches 
constructed from resting state functional connectivity. b. The similarity between the averaged connectivity 
matrices of 106 healthy subjects from Power’s study with the averaged connectivity matrices from our 63 
CBP patients can be visually appreciated. The ROIs extending below the black line (ROIs 265-272) 
represent the ROIs that were manually added in subcortical regions of interest displayed in c. below.  c. 
These limbic ROIs represented 5-mm radius parcels were added in amygdala, bilateral anterior 
hippocampus, bilateral posterior hippocampus, and bilateral nucleus accumbens (NAc). 

 

A modularity analysis was performed to segregated nodes of the network into 6 communities but all 

statistical analyses were restricted to the default mode network (DMN), the sensorimotor, the lateral 

prefrontal, and the posterior communities because they were analogous to placebo-related networks of 

interest derived from an independent data set of osteoarthritis patients (OA) exposed to placebo 
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treatment in an RCT (Figure 14a-b). Subcortical limbic regions were manually added to the networks 

because of their prominent role in chronic pain [45] and placebo response [99] (Figure 13c). This 

approach has many advantages, including increasing statistical power by limiting the number of 

comparisons, preventing over-fitting of the data, and identifying hypothesis-driven biological mechanisms.  

 

Figure 14: Lateral frontal circuits predisposing patients to placebo response. a. Our previous 
results indicated that degree counts in the middle frontal gyrus, the anterior cingulate cortex, the posterior 
cingulate cortex, and sensorimotor cortex predicted placebo response in osteoarthritis patients (Pascal). 
Seed-based coactivation maps derived from 1000 healthy subjects (http://neurosynth.org) were 
generated from the functional connectivity between these ROIs, represented by a green seed, with other 
regions of the brain and used as a localiser to restrict our resting state functional analyses. b. The 
connectivity matrices was restricted to communities overlapping with the networks of interest presented in 
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a. c. Group comparisons indicated that the averaged functional connectivity between the 12 ROIs of the 
frontal network and the 38 ROIs of the sensorimotor networks were significantly stronger in placebo 
responders compared to nonresponders. Network based statistics using randomised weighted 
connections of all possible connections of the network indicated stronger connectivity between nodes 
located in the sensorimotor community with nodes from the frontal community and weaker connectivity 
between a node located in the DLPFC and the PAG (FDR-corrected q < 0.05). d. The averaged 
correlation coefficient (r-value) of significant connections reported in c. is presented for each group. e,f. 
Scatterplots show moderate but significant relationships between the strength of functional connectivity in 
these frontal circuits with pain outcomes measured by the phone app (blue) and memory of pain (green), 
but not by NRS (orange). All post hoc comparisons were Bonferroni corrected: & p<0.10; * p< 0.05; ** 
p<0.01 *** p<0.001. Scatterplots present the Pearson correlation coefficient (r) as well as the Spearman 
correlation coefficient when one of the variables was not normally distributed (rs). Number of subjects is 
shown in parenthesis. 
 

Placebo responders displayed stronger functional connectivity across the lateral prefrontal 

community and sensorimotor community compared to non-responders (t(41) = 2.50; uncorrected p = 0.018; 

two sided unpaired t-test; Figure 14c). Performing a permutation test on the weighted connections 

between all possible pairs of nodes revealed that placebo responders displayed stronger connections 

between nodes pertaining to the sensorimotor and frontal communities (frontal-S1M1) and weaker 

connections between a node located in the dorsolateral prefrontal cortex (DLPFC) and a node located in 

the periaqueductal gray (PAG; frontal-PAG) (Figure 14c). The average r-values of these significant 

connections strongly dissociate placebo responders from non-responders and indicate that the no 

treatment group likely represents a mixture of responders and non-responders as would be expected 

(frontal-S1M1: F(2,60) = 11.67; p < 0.0001; one-way ANOVA; frontal-PAG: F(2,60) = 10.41; p < 0.0001; one-

way ANOVA; Figure 14d). Importantly, the strength of the functional connectivity of these systems 

correlated with the amplitude of placebo analgesia measured by the app ratings and pain memory, and 

the NRS (Figure 14e-f). These results were invariant to potential confounds such as head motion (Figure 

15). The two other classifiers representing scrambled codes from our blinding procedure yielded no 

significant group differences. 
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Figure 15: Functional results were invariant to volume censoring. Any given volume along with the 
one preceding and following it were removed from the time series if i. the derivative of the sum of 
absolute head displacement exceed 0.2 mm, ii. the root mean squared of the derivative of global BOLD 
signal intensity exceeded a z-score of 2.3, or iii. the standard deviation of the BOLD signal intensity 
exceeded a z-score of of 2.3 (this procedure is suggested by [257]). The scatterplots show very robust 
correlation between the original functional connectivity in frontal-S1M1 (fS1M1) with the one obtained 
after volume censoring. Volume censoring did not change our initial result of stronger functional 
connectivity between frontal-S1M1 and weaker functional connectivity in frontal-PAG in placebo 
responders presented in Figure 14. * p< 0.05; ** p<0.01 *** p<0.001. 

 

Trait characteristics from brain anatomy predetermine placebo response 

The volumes of the NAc, amygdala, and hippocampus were examined because of their 

involvement in motivation, learning, and contextual memory and because they represent risk factors for 

developing pathological emotional states [278, 279] and chronic pain [55]. Volume comparison of 

subcortical volumes between placebo responders and non-responders yielded no significant results. 

Inter-hemispheric laterality of limbic structure volume, however, indicated that placebo responders 

showed leftward asymmetry compared to non-responders, which is in accordance with the proposition 

that subcortical structural lateralization plays a role in psychopathologies [280]. Importantly, we replicated 

our finding when using another segmentation software (Freesurfer) (Figure 16a). Figure 16b shows the 

statistical differences between the 3 groups (F(2,60) = 4.14; p = 0.02; one-way ANOVA). The two other 

classifiers representing scrambled codes according to our blinding procedure yielded no significant group 

differences in volumes or asymmetry. 
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Supplementary Figure 5: Limbic volume asymmetry found using both FSL and Freesurfer. 
Subcortical volumes were segmented and extracted bilaterally for 3 regions of interest: hippocampus, 
amygdala, and nucleus accumbens; this was done twice using two different softwares – FSL and 
Freesurfer. a. For both FSL and Freesurfer, volumetric asymmetry between hemispheres was found for 
all regions.  Scatterplots show Pearson correlations between right and left volumes of the hippocampus, 
amygdala, and nucleus accumbens for FSL (black, top) and Freesurfer (gray, bottom) for all patients.  X-
axis = left hemisphere; y-axis = right hemisphere. Blue lines represent a 1/1 ratio where left and right 
volumes would be equal to each other; values above this line indicate more rightward asymmetry, 
whereas values below indicate more leftward asymmetry. b. The volumes from all 3 regions were 
summed for each hemisphere and represented as a ratio, with total right limbic volume in the numerator 
and total left limbic volume in the denominator. Freesurfer’s segmentation replicated the significant 
differences between responders and non-responders initially observed using FSL F(2,60) = 4.42; p = 0.02; 
one-way ANOVA between 3 groups). Results from only the correct classification (classifier #3 for 
subcortical volume analysis) is shown for all plots. * p < 0.05 after Bonferroni correction. 
 

Differences in cortical properties between responders and non-responders were further assessed 

with voxel-based morphometry (VBM) of grey matter density and cortical thickness. The initial VBM 

analysis yielded no significant differences between responders and non-responders (Figure 17a-b). In a 

follow-up analysis, we extracted grey matter density for nodes pertaining specifically to the sensorimotor 

community and the frontal community, since the relationship between these two communities indicated a 

functional predisposition to placebo response. This follow-up analysis indicated that non-responders 

displayed denser grey matter within the right postcentral gyrus compared to responders and no treatment 

groups (F(2,60) = 6.95; p = 0.0019 one-way ANOVA; Figure 17c). 
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Figure 17: Placebo non-responders showed higher grey matter density in the postcentral gyrus 
(Classifier 2). Grey matter density was examined using voxel-based morphometry (VBM). a. All T1-
weighted images were first brain extracted and then segmented into grey matter, white matter, or 
cerebrospinal fluid using FSL software. A common grey matter template was generated for CBP by 
registering and averaging all grey matter images. The grey matter image of each participant was then 
registered to the common template using non-linear transformation. A voxel-wise permutation test (fsl 
randomize) was used to generate group differences within an inclusive grey-matter mask. All three 
classifier codes generated results that did not survive threshold free cluster enhancement (TFCE). As a 
follow-up analysis, we extracted the grey matter within the ROIs that were most strongly functionally 
connected in placebo responders (classifier 2). The results indicate higher grey matter density in one ROI 
within the sensorimotor network located in the postcentral gyrus (Bonferroni corrected p = 0.001 (0.05/50 
ROIs)).  
 

In addition, anatomical differences between responders and non-responders were finally 

examined using vertex-based cortical thickness where non-responders showed thicker cortex in the right 

superior frontal gyrus compared to placebo responders and no treatment groups (F(2,60) = 6.74; p = 0.002; 

one-way ANOVA). The two other classifiers representing scrambled codes generated no significant group 

differences. Unlike functional connectivity which fluctuates depending on attention levels, metabolites, 

and other external factors [281], the presence of differences in all three of these anatomical properties 

before treatment provide us with strong evidence that the placebo response stems, in part, from a 
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hardwired brain predisposition invariant to external factors such as expectations and context. A summary 

of the 3 anatomical findings can be found in Figure 18 below.  

 

Figure 18 Summary of the anatomical characteristics predetermining placebo response. a. Heat 
maps display the overlap of automated segmentation of the nucleus accumbens (NAc), the amygdala, 
and the hippocampus performed with FSL software across all patients. The placebo responders displayed 
a leftward asymmetry in the volume of these subcortical structures. b. Grey matter was denser in the 
node located in the post-central gyrus in non-responders compared to responders. c. Vertex-wise 
analysis indicated that placebo non-responders had thicker cortex compared to responders (FDR 
corrected q < 0.05). The bar graph shows the GMD values for all 3 groups. 
 

Emotion-related psychological traits predetermine placebo response 

We administered an exhaustive battery of 47 subscales from 29 questionnaires  that captured 

both the psychological properties previously associated with placebo response in healthy participants as 

well as those suggested to be involved in pain chronification. Because of the high amount of data, the 

analysis plan included a data driven approach relying on PCA (the approach failed to dissociate 

responders from non-responders and was dropped; see methods for detail) and a hypothesis driven 

approach organizing the data by themes. According to the latter method, 29 items from 13 questionnaires 

were organized into 4 themes chosen apriori: theme 1: attitudes and emotions toward pain; theme 2: 

positive affect/personality; theme 3: negative affect/personality; and theme 4: emotional 

regulation/awareness. Separate logistic regressions were performed on items within each theme, and a 

combination of 7 items explained a significant amount of variance in placebo response: Pain 
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Catastrophizing scale (PCS) rumination and PCS helplessness from theme 1, Beck Depression Index 

(BDI) and Loss Aversion Questionnaire (LAQ) from theme 3, and Emotional Regulation (ERQ) 

suppression, Multidimensional Assessment of Interoceptive Awareness (MAIA) emotional awareness, 

and MAIA not-worrying from theme 4. 

These items were then combined into one final questionnaire model that predicted likelihood of 

response using backwards, stepwise logistic regression. LAQ was removed first (p = 0.16) followed by 

BDI (p=0.05). The resulting model explained 54% of the variance (pseudo R2 = 0.54, p <0.001) in placebo 

response (Table 8). The scrambled code from the 2 other classifiers of our blinding procedure indicated 

that classifier 2 failed to explain variance in outcome, and classifier 3 had only one item – 

ERQ_suppression (z = 2.13, p = 0.03) explaining little of the variance (pseudo R2 = 0.08, p = 0.02). 

 

Table 8: Final questionnaire model (Classifier 1). The logistic regressions from the theme analysis 
resulted in 7 potential self-report items, including 2 subscales from PCS (rumination and helplessness 
from theme 1), 2 subscales from MAIA (emotional awareness and not-worrying from theme 4), 1 subscale 
from ERQ (suppression from theme 4), the BDI (theme 3), and the LAQ (theme 3).  All of these items 
were entered into a backwards, step-wise logistic regression explaining stratification for placebo 
responders and non-responders for each of the 3 classifiers.  For classifier 1 (the correct one, C1), BDI 
and LAQ were excluded, leaving 5 items explaining over half of the variance in placebo response.  
Classifier 2 (C2) had no significant items that predicted response, and Classifier 3 (C3) had only one item 
– ERQ_suppression – significantly predict response, explaining only ~9% of the variance in the data.  
 

A model predicting clinical placebo response in RCT 

Figure 19a shows that the psychological traits associated with placebo propensity were largely 

dissociable from the brain markers, with little correlation between the two dimensions. To better 

understand how brain biomarkers complemented the identified psychological characteristics, we 
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introduced each significant brain marker with the 5 significant questionnaires in a series of multiple 

regressions presented in Table 9. The results indicated that functional connectivity of frontal-S1M1 and 

frontal-PAG were independent contributors to response, while the subcortical asymmetry and grey matter 

density in the post central gyrus were not kept in their respective models. It also indicated that emotional 

awareness and emotional suppression were key psychological parameters in explaining the placebo 

response, as these were the only two questionnaire items to consistently survive all regressions 

regardless of the brain parameter.  

 

Table 9: Creation of the final multivariate model. After un-blinding, the data from the correct classifier 
in each data set was used to create a final multivariate model.  To avoid over-fitting, we split the data 
according to the brain data, with each of the 4 significant neuroimaging results (post-central gyrus gray 
matter density, subcortical asymmetry, frontal-s1m1 functional connectivity, and frontal-pag functional 
connectivity) being entered in separate backwards stepwise models with the 5 significant questionnaire 
items from Table 8 (PCS rumination and helplessness, MAIA emotion and not-worrying, and ERQ 
suppression). Shown here are the results of  all 4 regressions (n=43 observations in each). For two 
models – gray matter and asymmetry – the brain parameters did not survive the model and all 5 
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questionnaire items remained.  For the other 2 regressions, the two different functional connectivity 
measures, (shown in blue) survived their régressions and eliminated 3 questionnaires each.  The same 2 
questionnaires were consistent (p <0.05) in all 4 models : MAIA-emotion and ERQ_suppress (shown in 
red).  Given this, we entered these 2 questionnaires along with the 2 surviving functional neuroimaging 
parameters into a final multivariate model presented in Figure 19. 
 

Finally, we combined the 2 surviving functional connectivity imaging parameters with the 2 

surviving questionnaires as the signature of placebo response in RCT (Figure 19b). All variables 

remained significant in a logistic regression (p<0.05) and explained 71% of the variance. We next used 

support vector machine (SVM) as a classification algorithm and determined that our predictive signature 

showed cross-validated prediction accuracy of 83.4% in a leave-one-subject out procedure (Figure 19c). 

Critically, applying this signature to the no-treatment group indicated a mixture of responders (n=11) and 

non-responders (n=9) matching the actual proportions of real responders and non-responders observed 

in the treatment group. Similar levels of accuracy were obtained using alternative classification methods 

such as a logistic regression based on Mahalanobis distance (accuracy of 85.7%) or Naïve Bayes model 

(accuracy of 76.1%). Figure 19d shows the posterior probability distribution plots of the Bayesian model 

for each pair-wise combination of variables.  

 

 

Figure 19: A signature predicting placebo response from the brain and personality. The correlation 
matrix shows poor correspondence between the psychological characteristics of placebo response in 
CBP patients and the multimodal brain parameters predisposing patients to placebo response. b. Logistic 
regressions were used to demonstrate that only functional connectivity between lateral frontal cortex with 
S1M1 and PAG explained unique variance unexplained by our psychological characteristics. Our final 
model indicates that these four parameters were independent contributors explaining 71% of the variance 
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in placebo response. c. Support vector machine (SVM) using a leave one subject out procedure obtained 
83.4% accuracy in predicting placebo response according to the four significant parameters and the 
histogram indicate the probability of placebo response in the no-treatment group. d. Posterior probability 
distribution plots for the pair-wise combination of the four model variables. For each plot, the probability of 
response is indicated by the color of the circular lines, where dark blue indicates a low probability of 
response and light yellow indicates a high probability of response. The points in the graphs are the 
training data off of which the probability functions were defined (blue = responders and red = non-
responders). 
 

 
Discussion 

This is the first randomized partially-blind clinical trial that was specifically designed to identify 

factors contributing to placebo propensity in individuals suffering from CBP. The fact that the no treatment 

arm showed minimal regression to the mean and the fact that placebo response was time-locked and 

sustained with treatment periods indicated a true placebo response rather than natural recovery or 

symptoms fluctuations. We first demonstrated that emotion-related characteristics are important 

predictors of the response, which may be specific to chronic pain populations. We secondly showed that 

placebo response was predetermined by anatomical properties invariant to external factors and by 

functional connectivity between frontal regions with the sensorimotor community and the PAG. We then 

demonstrated that the likelihood of placebo response in RCT could be accurately predicted using a 

signature developed from functional connectivity and personality traits. 

Several pitfalls have been raised when trying to predict complex behaviors like placebo response, 

the most important being that the placebo effect studied in healthy individuals has been highly variable 

and showed lack of reproducibility[282]. Moreover, conflicting results have emerged from the literature 

because of the multiplicity of experimental designs, plans of analysis, and pain outcome measures. Here, 

many of these limitations were accounted for by incorporating several methodological strategies. First, we 

used the settings of a RCT during which patients were exposed to two treatment periods each separated 

by a washout period to better determine the propensity of placebo response to more than one treatment 

regimen. Importantly, our RCT included a no treatment arm documenting the natural fluctuations of 

chronic pain. Second, smart phone technology was used to track patients’ pain twice a day throughout 

the duration of the study and was compared to other independent pain outcomes in order to better define 

and understand the response. Third, all functional analyses were limited to networks of interest-identified 
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apriori in two independent cohorts of chronic pain patients[250]. Finally, all analyses were performed 

blindly using one real code and two scrambled codes to minimize the effects of bias and expectations in 

the findings. Therefore, this study is novel not only in terms of its advancement in the understanding of 

placebo response but also in terms of its methodological soundness. 

Previous work in healthy individuals demonstrated that placebo response is known to recruit 

endogenous pain pathways acting upon the opioid system to regulate descending inhibition throughout 

the periaqueductal grey (PAG) [109, 110] a mechanism that can be reversed by the administration of 

naloxone [11, 111]. Besides these anti-nociceptive circuits, which reduce spinal responses to pain [112], 

the placebo effect is also dependent on limbic circuitry and higher-order frontal mechanisms involved with 

context generation and de-coding, expectations of treatment outcome, and emotional appraisal of events 

[99]. The relative contribution of each of these cognitive, emotional, and anti-nociceptive systems to the 

clinical placebo response remained unknown. Here, we showed that placebo analgesia in an RCT 

depended on a pre-existing complex circuitry coupling the lateral frontal cortex with the sensorimotor 

system, one of the major projection sites from the spinothalamic tract, and the PAG modulating 

endogenous descending inhibition. Moreover, the PAG also encodes aversive prediction errors (PEs) 

[283] and likely computes the mismatch between the expected pain relief from treatment pills and the 

actual episodes of spontaneous pain. During long lasting placebo analgesia observed in RCT, higher 

connectivity between lateral frontal cortex in placebo non-responders may therefore reflect a higher ability 

to learn from PEs that nullify the effects of expectation, whereas placebo responders (showing anti-

correlation) may fail to adapt their expectation and continue to experience a decrease in pain intensity. 

Interestingly, none of the often-cited traits in placebo literature - dispositional optimism, anxiety, 

extraversion, neuroticism, agreeableness, or loss/harm avoidance – were able to successfully 

differentiate placebo responders from non-responders in our cohort. Instead, placebo response was 

primarily driven by both an increased emotional awareness (noticing how one’s body feels and changes 

with emotions and experiences) and by a decrease in worrying about discomfort (noticing one’s pain but 

not becoming upset from it), both from MAIA. These resulting subscales fit well with those from PCS 

indicating higher rumination (i.e., they thought more about pain) and lower helplessness (i.e., they weren’t 

held back by their pain) in placebo responders. Placebo responders had lower scores in expressive 
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suppression of emotions on the ERQ than their non-responder counterparts, an observation that is 

complementary to the PCS and MAIA findings and indicates less of an attempt to hide or reduce 

expression of emotions. Altogether, our results revealed that placebo responders appear to have an 

ability to recognize subtle cues in the body regarding emotional and physical well-being, to remain 

attentive to these cues and emotions by not ignoring or suppressing them, and to choose to accept these 

states as opposed to becoming worried or burdened by them. 

We finally developed a predictive signature of placebo response in clinical trials based on the 

brain functional connectivity and the personality traits of the patient. This is a crucial step towards 

understanding the mechanisms of clinical placebo response observed in a clinical context. The growing 

literature indicates that placebo response can be predicted, which can pave the way for using placebo as 

a therapeutic option with limited side effects across multiple chronic pain conditions. This also represents 

an advance that may beneficially impact phase 3-drug testing through the identification and subsequent 

removal of placebo responders from clinical trials to improve accuracy in efficacy assessments of novel 

pain medications. 
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CHAPTER 4: RESULTS FOR STUDY 2 

Semantic language properties underlying the placebo response in chronic low back pain patients 
 

Demographics 

Of these initial 125 participants enrolled, 66 people completed all aspects of the study, including 

an exit interview at the final visit (Figure 20a).  Of these individuals, 4 received active treatment and were 

removed prior to any analysis for a final sample size of n = 62 CBP patients.  These participants were well 

matched in key demographics, including 37 men (48.8 ± 1.9 years of age; 12.7 ± 4.2 years of education) 

and 25 women (41.84 ± 2.7 years of age; 13.2 ± 3.0 years of education). 20 of these participants were 

assigned to the no treatment arm; of the remaining 42, the permutation test of pain ratings classified 19 

as placebo non-responders and 23 as placebo responders. A summary of these demographics can be 

found in Table 10. 

 

Group N  
(62 total) 

Age 
(years) 

# Females 
(%) 

Income 
Level& 

Education 
(yrs) 

Pain 
Duration 
(years) 

Non-Responders 19 44.7 ± 14.3 6 (31.6 %) 2.5 ± 1.3 12.2 ± 3.4 5.0 ± 9.0 
Responders 23 46.9 ± 11.4 9 (39.1%) 2.2 ± 1.6 12.7 ± 3.8 3.9 ± 4.1 

No Treatment 20 46.2 ± 13.2 10 (50%) 3.0 ± 1.8 13.8 ±3.9 4.80 ± 5.1 
 

Table 10: Demographics for Study 2: Demographics of participants, divided by group, are shown.  
Unless noted below, numbers represent average values ± SD. Years of education are based on an 
American system, K-12, with 12 indicating a high school diploma and anything beyond that, either 
technical or higher-level education. & = Income level is represented by the numbers 1-6 which indicate 
different yearly income brackets: 1 = <$10,000; 2 = $10,000-25,000; 3 = $25,001-$50,000; 4 = $50,001-
$75,001; 5 = $75,001-$100,000; 6 = >$100,000.  There were no significant differences between groups in 
any of the measures shown in this table.  
 

Interviews were well controlled and not influenced by potential confounds 

The interviews were audio recorded, transcribed, preprocessed, and analyzed according to the 

methods described in Chapter 2, summarized in Figure 20b. The interview script can be found in Table 

2.  
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Table 20: Study 2 design and procedures. a. Schematic of the study overview is shown.  As part of a 
randomized, partially-blinded clinical trial, participants with chronic low back pain (CBP) participated in 6 
visits spread out over 8 weeks, completing a total of 4 brain scans, 2 consecutive treatment and washout 
periods, 6 batteries of questionnaires, daily pain and mood ratings, and a final exit interview. For the 
purpose of this paper, only the data from the 1st, 2nd, and 6th visit (marked by red boxes) are used to 
analyze language properties post-placebo response and correlate them with brain and psychological 
properties pre-treatment. b. Flow diagram of interview preprocessing, quality control, and analysis.  A 
total of 62 CBP patients were interviewed.  These interviews were recorded and transcribed into text 
documents.  Following transcription, a subset of transcripts was manually checked for spelling and verbal 
accuracy as part of the quality control process.  Transcripts and corresponding questionnaire and 
neuroimaging data were then blinded and preprocessed as described in the methods section.  A basic 
word count analysis was performed to verify groups did not differ in key elements of their interviews, and 
transcripts were tokenized, lemmatized, and converted to numbers corresponding to their numerical 
position in our data dictionary. Latent Semantic Analysis (LSA) was performed through the utilization of 
singular value decomposition (SVD) in order to convert the interviews into semantic space and study how 
patients’ language was related to the English lexicon.  From the resulting matrices, the average semantic 
distance between all words in each participant’s interview to 60 words of interest (WOIs, Table S3) was 
calculated to create 60 semantic similarity scores for each participant.  These scores were averaged 
within groups and entered into a principal component analysis (PCA) for further data reduction.  PCA 
components were orthogonally rotated and thresholded at loadings of +/- 0.4 to keep only the most 
significant elements. Remaining words within each component were entered into backward, stepwise 
logistic regressions (one for each component) predicting placebo responders (Table S4). Words that 
provided significant logistic models (i.e., explained a significant amount of variance in response) were 
combined via their model equations into final language factors (Table 4) that were used as vectors to be 
correlated with previous markers of placebo propensity, additional self-report measures, and resting state 
functional connectivity.  
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The average length of an interview was 27.1 ± 10.3 minutes, with the shortest being 13 minutes 

and the longest being 66 minutes in length.  We conducted a simple word-count analysis as a control 

investigation to make sure that none of our participants groups differed in the general properties of their 

interviews, parameters which might influence or bias semantic language differences studied.  For each 

interview, verbosity, vocabulary, and lexical diversity was calculated, averaged within group, and 

compared between groups.  There were no statistically significant differences between groups in any of 

the 3 measures (Figure 21a, averages provided in Table 11), indicating that our patients were relatively 

balanced when it came to the amount of talking that they did and the number of different kinds of words 

they used.   

 

 

Figure 21: Semantic language properties correlated to previous markers of response. a. Basic word 
count analyses were used as control measures and revealed no significant differences between groups.  
Overall verbosity scores, total vocabulary used, and diversity of language was similar for non-responders, 
responders, and no-treatment (verbosity: one-way ANOVA: F(2,59) = 0.37, p = 0.69; vocabulary: one-way 
ANOVA: F(2, 59) = 0.35, p = 0.71; lexical diversity: one-way ANOVA: F(2,59) = 0.01; p = 0.98). b. Logistic 
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regressions performed on semantic similarity scores from 60 words resulted in the 5 significant factors 
(F1-F5) shown here; provided names are descriptive and used to summarize the combination of words 
within each factor. To increase our odds of finding significant relationships between language semantics 
and previous psychological and biological variables, we created an additional factor (F6) post-hoc that 
combined words with semantic differences that were significantly different between responders and non-
responders. c. Summary of key neuroimaging findings from Study 1 differentiating responders from non-
responders.  Left: Placebo responders had increased functional connectivity between their lateral frontal 
cortex and sensorimotor regions (S1M1, shown in red) compared to non-responders and decreased 
functional connectivity between lateral frontal areas and the descending pain modulating region of the 
periaqueductal gray (PAG, shown in blue) compared to non-responders. Right: Volumes of three limbic 
regions (hippocampus, amygdala, and nucleus accumbens) were summed within hemisphere and divided 
to create a ratio of subcortical limbic asymmetry.  Responders had more leftward limbic asymmetry than 
non-responders, with individuals who were not treated falling in between both groups. d. Language 
factors from B were correlated with the 3 neuroimaging parameters from C predicting placebo response in 
addition to questionnaire subscores from 2 questionnaire measures also significantly distinguishing 
responders from non-responders in Study 1. Matrix is colored to show corresponding Pearson correlation 
coefficients between variables, with asterisks and hashtags indicating level of significance. Additional 
predictors previously identified are shown in Table 19. MAIA = Multidimensional Assessment of 
Interoceptive Awareness (emotion subscale); ERQ = Emotional Regulation Questionnaire (suppression 
subscale); p<0.05*, p<0.01**, p<0.001***, # = trending with 0.05<p<0.10. 

 

It also suggested that the interviews were well controlled regarding the total amount of 

information in them, meaning that any changes seen in other analyses were not due to differences in 

these basic parameters.  Unsurprisingly, each of these measures were correlated to education and 

income levels reported by our participants (Table 12). However, we did not regress out these effects as 

neither education nor income differed between the 3 groups (education: one-way ANOVA, F(2,59) = 0.95, 

p = 0.39; income: one-way ANOVA, F(2,58) = 1.28, p = 0.28). Additionally, none of these basic language 

parameters correlated to pain or mood reported at the day of the scan, although positive mood’s 

relationship was trending such that the better the mood, the more talkative they were (also Table 12).  

These results are negligible as there were no differences between groups in pain (one-way ANOVA: 

F(2,59) = 2.39, p =0.10), positive affect (one-way ANOVA: F(2,59) = 2.01, p = 0.14), or negative affect 

(one-way ANOVA: F(2,58) = 0.74, p =0.48) at the time of interview.  

Group Verbosity Vocabulary  Lexical Diversity 
Non-Responders 2866.4 ± 2124.4 564.6 ± 251.3 10.8 ± 1.5 

Responders 3297.4 ± 1553.2 613.3 ± 191.4 10.9 ± 1.0 
No Treatment 3295.1 ± 1746. 7 615.1 ± 203.7 10.9 ± 1.2 

  

Table 11: Basic word count analysis: Interviews were tokenized according to the methods and a basic 
word count analysis was performed.  There were no differences between groups in verbosity (# of total 
words), vocabulary (# of unique words), or lexical diversity (vocabulary/sqrt(2*verbosity)), corrected type-
to-token ratio), indicating that the interviews were well controlled between participants. Numbers are 
average values ± SD.  
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Parameter Education Income& NRS  
(visit 6) 

PANAS +  
(visit 6) 

PANAS –  
(visit 6) 

Verbosity 
r = 0.29,  

p = 0.023,  
n = 62 

r = 0.22,  
p = 0.086,  

n = 61 

r = 0.021,  
p = 0.873,  

n = 62 

r = 0.23,  
p = 0.087,  

n = 62 

r = 0.08,  
p  = 0.542,  

n = 61 

Vocabulary 
r = 0.37,  

p = 0.003,  
n = 62 

r= 0.24,  
p = 0.058,  

n = 61 

r = 0.033,  
p = 0.797,  

n = 62 

r = 0.24,  
p = 0.063,  

n = 62 

r = 0.06,  
p – 0.650,  

n = 61 
Lexical 

Diversity  
CTTR 

r = 0.40,  
p = 0.001,  

n = 62 

r  = 0.26,  
p = 0.045,  

n = 61 

r = 0.07,  
p = 0.566,  

n = 62 

r = 0.22,  
p = 0.079,  

n = 62 

r = -0.06,  
p = 0.673,  

n = 61 
  

Table 12: Correlations of language with demographics, pain, and mood. The 3 basic language 
parameters were correlated to demographics of interest and pain and mood at the day of the interview.  
Education, income level, and positive mood were all either significantly related or marginally related 
(trending) to these language measurements. Pearson correlation coefficients are provided; red indicates 
significant correlations at p<0.05 and blue indicated trending correlations at 0.05<p<0.10. & = indicates 
that income was not normally distributed and the r-values provided in this column are actually Spearman 
rho values and their associated p-values.  NRS = Numeric Rating Scale  (measuring pain intensity from 0 
to 100); PANAS = positive and negative affect scale (+ = positive subscale and - = negative subscale, 
measuring mood); visit 6 = final study visit (same day as interview). 
 

9 features identified through LSA could not categorize responders from non-responders  

We utilized the TASA corpus to construct a dictionary representing a lexicon of the English 

language weighed by the frequency of each word in the database and truncated at 300 dimensions.  We 

used this dictionary to construct a reduced semantic representation for each participants interview, 

forming a matrix (Xi) whose elements were the 300 vectors of every word in each interview.  We 

performed SVD to decompose Xi into its 3 component matrices and extracted the 9 features with the 

strongest singular values to compare between groups. Alone, none of these features were different 

between responders and non-responders (unpaired ttests were all not significant).  We trained a support 

vector machine (SVM) classifier on the combination of all 9 features using leave-one-out-cross-validation 

(LOOCV) to measure how well it could differentiate the two groups.  Average accuracy over 1000 

iterations was quite poor at a mere 39%. When limiting the classification problem to only the top 3 

features instead (in order to minimize potential noise), average accuracy went up to 55%, but this was still 

at chance level, suggesting that basic LSA failed to differentiate responders from non-responders.  
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Semantic similarity of interviews to 60 words differentiated responders from non-responders  

 8 themes hypothesized to be important for placebo response and/or chronic pain were created 

and functioned as search lights in the literature looking for words of interest; 60 words from 

ethnographies, journals, and questionnaires were chosen that fit within these themes (Table 13).   

Initial Theme 
& Color Word Reason for Inclusion or Examples of a 

Word Could Mean Reference 

understand 
part of illness representation is what 

participants understand about their pain 
from a medical perspective 

[284, 285] 

awareness 
interoceptive awareness important for 

clinical placebo analgesia; MAIA 
questionnaire 

[236, 237] 
1. Mindfulness 

notice MAIA notice subscale [236, 237] 

stress 
related to PCS and PASS  questionnaires, 
some subscales of which are important for 

clinical placebo analgesia 

[226, 227, 
230, 231] 

worry Part of MAIA subscale wording… [236, 237] 

anxiety 
related to PCS and PASS  questionnaires, 
some subscales of which are important for 

clinical placebo analgesia 

[284, 285] 
[249] 

acceptance related to CPAQ questionnaire [227] [286] 
content related to CPAQ questionnaire [227] 

2. General 
mindset 

control Do they feel like they have control of their 
pain or that their pain controls them? [170] 

afraid Related to PCS; are they afraid they won’t 
get better or that the pain will never end? [230] 

distrust 
Based on previous experiences or beliefs, 

do they distrust the medical system, 
physicians, or science? 

[284, 285] 

doubt Do they experience a lot of doubt – either in 
their treatment or in their pain? [284, 285] 

uncertain 

Are they uncertain about the future with 
respect to their pain or do they think it will 

either diminish, stay the same, or get 
worse?  Are they uncertain about different 

kinds of treatment? 

[284, 285] 

disappoint Where they disappointed with previous 
medical treatment or physician interactions? [284, 285] 

surprise 
Are they easily surprised by how well a 

treatment does or does not work for them?  
Did the pain take them by surprise? 

[284, 285] 

3. Expectations 

believe 

A word that has been associated with 
placebo responses in the past; belief 

systems include expectations of treatment, 
belief in what caused their pain, belief in 

reliability of science, beliefs about how well 
their own actions or medicine can control 

their pain 
 
 

[99, 284, 
285] 
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trust 

Given beliefs and understanding, do 
participants trust in medicine in science?  

Do they trust the research staff’s knowledge 
and in the process of discovery? 

[284, 285] 

hope 

Do they have hope that their pain will go 
away, that they will eventually find a 
medication that works, or that their 

participation in the study will be beneficial 
for others? 

[284, 285, 
287, 288] 

open 

The only of the Big 5 personality scores that 
was different between responders and non-

responders was openness from the IPIP 
NEO FFI.  

[244] 

 

optimistic 

A common characteristic of placebo 
responders in healthy controls but not CBP 

patients in the LOTR; does language 
provide a different measure of optimism that 

relates to placebo propensity? 

[287, 288] 

chronic 

Describing the nature of their pain; to what 
extend do the words used also capture how 

long-term this experience has been for 
patients? 

[30] 

discomfort 

The extent to which their condition gives 
them discomfort (something slightly less 
than pain but still abnormal and attention 

grabbing) 

[249] 

force 
A possible factor that affects pain intensity; 
weight-bearing, pressure, etc ; alternatively, 

do they feel forced by  

[170, 284, 
285] 

illness To what extent do they view their pain as a 
symptom or an illness in and of itself? [168, 170] 

magnify PCS subscale that is important for clinical 
placebo analgesia: magnification [230] 

pain 

Main topic of discussion so in everyone’s 
interviews; how well does this word 

represent the overriding sensation of being 
at the core of people’s experience 

[284, 285] 

sensitive Pain sensitivity; factor that might affect pain 
and would relate to PSQ [232] 

well 

The opposite of chronic; how good do 
people feel despite being in chronic pain 

(may encompass both physical and mental 
well-being)? 

[227] 

cope 

Positive or negative ways that people 
manage their pain; could include keeping 

active, seeking support, making 
adjustments or modifications to their 

posture or activities, etc… 

[228, 284, 
285] 

healthy 
The opposite of illness; how good to people 

feel despite being in chronic pain 
(physical)? 

[227] 

4. Body Status 
and Physical 

Impact 

recover 
Since placebo response involves temporary 
relief or recovery from pain, do participants’ 

interviews show similarity to this word? 
[30] 
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resilient 

Since placebo response may be trait-like 
and part of similar mechanisms of 

resilience, do participants interviews show 
similarity to this word? 

[30] 

fear Are they fearful of certain medications or of 
what is causing the pain? [27] [244] 

angry Are they angered by their pain and what it 
has done to their lives? [27] [244] 

sad Are they saddened or depressed by their 
pain and what it has done to their lives? [27] [244] 

unhappy 
Are they unhappy overall with the state of 
their pain (more vague than sadness or 

anger)? 

[284, 285] 
[27] [244] 

emotion 

Another common topic of conversation. 
What is the emotional impact of people’s 

pain…how does pain affect people’s 
emotions and likewise, how do their 

emotions influence pain? Could be negative 
or positive.  Also related to the MAIA 

emotion subscale, which was predictive of 
placebo propensity. 

[284, 285] 

happy 

Are they generally happy with themselves 
or their lives? Might be indicative of 

extraversion, which has been positively 
correlated with placebo in healthy people. 

[244] 

cheerful 

Do they have a generally cheerful 
demeanor? Might be indicative of 

extraversion, which has been positively 
correlated with placebo in healthy people. 

[244] 

5. Mood and 
Emotional 

Impact 

joyful 

Are they filled with joy because of 
something in their lives (context dependent, 
as opposed to personality dependent, and 

stronger than happy or cheerful) 

[244] 

avoidance Do they avoid certain activities because of 
their pain? 

[226, 227, 
230, 231] 

[249]. 

aversion 

Do they have an aversion to certain 
medications because of their pain?  Do they 
have an aversion to loss?  May be related 

to LAQ. 

[83, 246] 

impulsive 

Pain patients have been shown to display 
more impulsive behaviors tied to changes in 
cognition and emotional processing, which 

might impact response.  Are their interviews 
related to this word? May be related to 

LAQ? 

[83] [289] 

6. Behaviors 
and Cognition 

restless Are they tired of their pain?  Do they feel on 
edge because they don’t have answers? [27] 

burden 
Do they feel like their pain is a burden on 

them or that they are a burden to their 
families/friends that they rely on? 

[249]. 7. Societal 
Impact 

disability 
Do they identify as disabled because of 

their pain or do they acknowledge their pain 
but don’t think it hinders them in anyway?  

[168] 
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loss 

Do they feel that pain has caused them to 
lose out on social activities or physical 

activities?  Do they feel a loss of self or a 
loss of body? Do their word resonate with 

loss avoidance or aversion (something that 
has been tied to CBP before). 

[83, 284, 
285] 

limit 
Do they feel physically limited or socially 
limited? Do they feel limited in terms of 

access to health care? 
[284, 285] 

stigma 
Do they feel stigmatized because of their 
pain status (do they feel like people think 
they are drug seeking or are disabled?) 

[171, 249, 
290]  

embody 
How much is pain embodied for them?  

Obviously they feel in their body, but has it 
become deeper than that? 

[170] 

identity Has pain infiltrated their identity and how 
they see themselves? 

[170, 284, 
285] 

life 
Is pain associated with their life in such a 

way that it’s familiar/like family or is it just a 
nuisance? 

[170, 284, 
285] 

 

empathy 

Do they know anyone else going through 
pain and have empathy for these 

individuals?  Do they have empathy for the 
doctors and scientists who try to treat or 

cure pain to little avail? Do they experience 
empathy from others? 

[123, 168]  

internalize 

Related to suppress; do they tend to 
internalize their suffering and expression of 
pain or do they tend to share it?  Do they 
view it as internally driven or externally 

perturbed? 

[238] 

ruminate PCS rumination subscale, which is 
important for clinical placebo response [230] 

secret 

Due to either cultural upbringing or previous 
negative experiences talking to people 

about their pain, how secretive are 
individuals about their pain experience? To 
what extent to they share their story or keep 

it to themselves? To what extent does it 
remain a secret to the listener even when it 

is told? 

[249] 

suppress 
Do they suppress their emotions? Related 

to ERQ suppression subscale, which is 
important for clinical placebo response 

[238, 249] 

private 
Do they tend to keep emotions or 

expressions of pain private as opposed to 
sharing them with other people? 

[249] 

confront 

Do they tend to confront the pain (active 
coping in the form of acknowledging it or 

seeking treatment) instead of ignoring it or 
passively coping with it. 

[228] 

8. Emotional 
Control and 
Strategies 

express 
Do they express their emotions and figure 
out what to do with them? Related to ERQ 

reappraise and eACS 
[238, 240] 
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Table 13:  60 words of interest chosen from 8 themes.  These themes were based on concepts that 
might that might relate to the chronic pain experience, placebo response, or both based on previous 
findings and paper.  Note that the themes are relatively arbitrary in that some words could fit into more 
than one theme and they were not based on linguistic calculations: therefore, they are only for 
organizational/visual purposes.  The words within each theme were chosen from pain ethnographies and 
narratives, previous studies that involved interviewing pain patients, peer-reviewed journals, and 
questionnaire measures used in the study. 
 

The semantic similarity between all the words in an interview and each of these 60 words was calculated 

as described in the methods section and averaged within interview.  Thus every participant had an 

average semantic similarity score for each of the 60 words, representing how close his/her interview was 

to each of these concepts. These 60 semantic similarity scores were then averaged within groups and 

compared between responders and non-responders in a series of unpaired t-tests.  This identified 11 

words that were significantly different between the two groups (shown in Table 14).  

 

Word Average Similarity 
(NonResponder) 

Average Similarity 
(Responders) Statistics 

Awareness 0.0090 ± 0.0018 0.014 ± 0.0015 t = -2.19 (df = 40), p = 0.03 
Emotion 0.0100 ± 0. 0017 0.015 ± 0.0014 t = -2.09 (df = 40), p = 0.04 
Stigma -0.0038 ± 0.0004 - 0.0065 ± 0.0008 t = 2.80 (df = 40), p = 0.01 

Well 0.022 ± 0.0022 0.017 ± 0.0012 t = 2.18 (df = 40), p = 0.04 
Empathy -0.0012 ± 0.0009 0.014 ± 0. 0008 t = -2.14 (df = 40), p = 0.04 

Fear 0.012 ± 0.0013 0.017 ± 0.0011 t = -2.70 (df = 40), p = 0.01 
Identity -0.0053 ± 0.0009 -0.0020 ± 0.0011 t = -2.21 (df = 40), p = 0.03 

Loss 0.012 ± 0.0008 0.014 ± 0.0008 t = -2.22 (df = 40), p = 0.03 
Magnify - 0.0074 ± 0.0008 -0.0054 ± 0.0006 t = -2.15 (df = 40), p = 0.04 

Disappoint 0.012 ± 0.0009 0.014 ± 0.0008 t = -2.15 (df = 40), p = 0.04 
Force 0.00025 ± 0.0003 -0.00087 ± 0. 0003 t = 2.65 (df = 40), p = 0.01 

 

Table 14: 11 words differed between responders and non-responders. Semantic similarity values 
were calculated for 60 words of interest according the methods in the manuscript.  Of these 60 words, 11 
were significantly different between responders and non-responders. Average similarity scores with SEM 
are provided for each word for both groups; statistics represent un-paired ttests between the two groups 
(not corrected for multiple comparisons). 
 

 To further reduce the amount of words investigated in this study, we entered all 60 similarity 

measures into a PCA, thresholding at a component loading of +/- 0.4 to retain the strongest word 

relationships.  This resulted in 6 statistically relevant language components containing subsets of the 

words of interest.  For each of the 6 components, the words within them were used as covariates in 
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logistic regressions predicting the binary outcome of being a responder or not. These models showed 

which combinations of word similarities explained a significant amount of variance in placebo response 

(shown in Table 15); those words that did not meet inclusion criteria were discarded.  

 

Factor Surviving 
Parameters Coefficient  p-val 

Eliminated 
Parameters from 

Component 
Model Information 

1 

stress 
believe 

avoidance 
aversion 

awareness 
discomfort 

illness 
loss 
pain 

sensitive 

-176.26 
-99.84 
-58.73 
257.08 
318.06 
60.74 
-77.85 
192.72 
-56.09 

-280.04 

0.257 
0.427 
0.641 
0.163 
0.082 
0.627 
0.563 
0.226 
0.638 
0.059 

fear 
angry 

anxiety 
emotion 

sad 
suppress 

n = 42 
p = 0.0492 

pseudo R2 = 0.32 

2 

acceptance 
awareness 

cope 
empathy 
express 

limit 
optimistic 
identity 

-177.41 
288.07 
-208.07 
302.78 
-355.57 
150.27 
-113.57 
277.18 

0.209 
0.072 
0.131 
0.113 
0.120 
0.375 
0.436 
0.064 

understand 
stress 
anxiety 
emotion 

life 

n = 42 
p = 0.0485 

pseudo R2 = 0.27 

3 

content 
confront 
disability 
impulsive 
internalize 
magnify 
secret 

unhappy 

-93.42 
-83.84 
72.46 

-271.35 
-87.01 
444.70 
-126.40 
245.28 

0.472 
0.389 
0.503 
0.109 
0.530 
0.021 
0.190 
0.111 

uncertain 
worry 

n = 42 
p = 0.0486 

pseudo R2 = 0.27 

4 
afraid 
trust 

healthy 
hope 

213.24 
104.34 
116.02 
-90.50 

0.018 
0.245 
0.183 
0.371 

happy 
open 

resilient 
restless 

n = 42 
p = 0.0428 

pseudo R2 = 0.17 

5 

burden 
embody 
stigma 

disappoint 
private 

103.51 
-55.10 

-384.10 
124.03 
-123.01 

0.395 
0.611 
0.043 
0.249 
0.370 

confront 
doubt 

surprise 

n = 42  
p = 0.0292 

pseudo R2 = 0.22 

6 
significant 

awareness 
emotion 
stigma 

well 
empathy 

fear 
identity 

loss 
magnify 

disappoint 
force 

442.04 
-65.53 

-1630.87 
-110.72 
-296.12 
479.09 
18.11 

288.05 
832.91 
113.16 

-2302.02 

0.465 
0.888 
0.133 
0.565 
0.616 
0.434 
0.978 
0.601 
0.236 
0.738 
0.062 

n/a 
n = 42 

p <0.0001 
pseudo R2 = 0.80 
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Table 15: Creation of language factors. Semantic similarity scores from 60 words of interest were 
entered into a PCA, identifying 6 potential factors.  After thresholding, words within each factor were 
entered into a backward, stepwise logistic regression explaining placebo response. Once a model 
accurately predicted response at p<0.05, removal of words was stopped.  Those words remaining in each 
model were combined with their associated model equation to form language factors, which were the 
primary regressors in our analyses. 5 out of the 6 components resulted in significant models, creating 5 
language factors (the 4th non-significant factor consisted of the words “control”, ‘hope”, “joyful”, “ruminate”, 
“unhappy”, and “life”. An additional factor was created post-hoc from the 11 words significantly 
differentiating responders from non-responders (Table 14) and is referred to here as factor 6 (significant 
words).  
 

5 of the 6 components provided significant models, and the equations associated with each of the final 

models were used to create 5 new language factors that represented the unique combination of words 

that (a) were semantically related to the interviews and (b) differentiated responders from non-

responders. The factors were created from each model’s final unique equation. Each factor was assigned 

a name associated with the words that was purely theoretical and was provided to help interpret the 

factors’ relationship with the placebo effect and additional self-report and brain measurements. In 

summary, factor 1 (f1) had words primarily associated with “pain and negative emotions”, f2 with “positive 

coping mechanisms”, f3 with “negative coping mechanisms”, f4 with “optimism and positive emotions”, 

and f5 with “self-referential thoughts”, many of which were negative (Figure 21b, summarized in Table 

16). Out of the original 60, 34 words were kept in at least one of these factors; Figure 22a-b shows how 

the 34 words from each factor were related to one another in semantic space.  
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Table 16: Final language factor table. 60 words of interest from 8 themes (colored accordingly on the 
left) were entered into a PCA.  This identified as many as 6 significant components; the table was rotated 
and thresholded at loadings of ± 0.4 to identify the strongest words in each component (surviving words 
shown with their loading values).  These words were then entered into 6 backwards stepwise logistic 
models until each model explained significant variance in placebo response (p<0.05, Table 15). 5 of the 
original 6 components provided words with significant models (the 6th factor did not, and was discarded – 
in gray). The remaining words (colored in the table) were combined using each model equation to form 
new “language factors”.  These factors were given names based on the words within them and are shown 
at the top.  In addition, we created a post-hoc factor that combined the 11 significant words from Table 14 
into a 6th factor, which we refer to as the “significant words” factor (in purple); un-paired t-test results 
shown for this post-hoc factor: signed t-value (p-value).  
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Figure 22: Semantic relationships between 34 words from 5 factors. A. Depiction of the final set of 
words plotted in semantic space across the first 3 features (components) of the TASA-based lexicon is 
shown.  The closer a word is to another, the closer it is in meaning and context to that word or other 
words in a cluster, according to the lexical feature space defined here. Note that the coordinates of the 
words are not determined by our interviews.  Word dots are colored according to the factor to; here, color 
is determined by our interviews, as they represent the average semantic distance to the interviews, as 
well as the results from the PCA which divided the words into factors. One can appreciate, for example, 
that the words “illness”, “pain”, and “discomfort” (in red) are all close to each other in the lexicon and 
cluster together based on our interview data (i.e., they are all in the same factor).  In contrast, the words 
“stigma”  (orange) and “empathy” (green) are semantically close in the lexicon but have clustered into 
separate factors according to our data. Lines are non-informative; they were kept for better special 
visualization. B. The same data as in (A), but depicted in 3 pair-wise 2D plots.  Note that the last plot 
(right) is the most-commonly used to depict these semantic relationships.  Blue lines indicate 0 axis 
through origin; colors of words indicate factor.  Words from post-hoc factor 6 are not shown. 
 

 An additional 6th factor was created outside of the PCA by combining the 11 significant words 

together in a logistic regression. The equation created from the un-thresholded regression was also used 

as a regressor for future analyses, since our main aim was to see if we could increase the semantic 

signal of the model to increase our chances of finding brain regions associated with the words; this factor 

is referred to as the “significant words” factor (also shown in Table 16).  We also entered the 11 words 

into a backwards stepwise regression predicting placebo propensity, thresholded at p <0.05, to identify 

the words that were significantly predictive of response propensity (i.e., both the model and the 

regressors had p-values<0.05).  A combination of 4 words – “awareness”, “force”, “stigma”, and “magnify” 

– survived this latter regression and were shown to significantly contribute to almost 70% of the variance 

in placebo response (pseudo r2 = 0.68, p <0.0001); this factor (6&) is shown in Table 17. We entered 

these 4 surviving words into the support vector for pattern analysis. When this model was cross-validated, 

it was successful, achieving an average of 84% accuracy in dissociating responders from non-

responders. Due to the large amount of variance explained and the relatively high level of accuracy 

obtained, this model was also related to additional aspects of the data, explained below, and is referred to 

as “factor 6&”.  These results indicate that placebo response in chronic pain patients can be captured by 

interviews and that placebo responders differ from non-responders along specific semantic properties.  
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Surviving Parameter(s) Coefficient 
(SEM) p-value 95% C.I. 

Eliminated 
Variables  
(p > 0.05) 

Entered in all 11 words with significant differences in semantic similarity values 

awareness 413.72 
(180.37) 0.022 [60.2, 767.2] 

magnify 705.20 
(315.45) 0.025 [86.9, 1323.5] 

stigma -918.61 
(422.04) 0.030 [-1745.8, -91.42] 

force -1862.609 
(729.16) 0.011 [-3291.7, -433.5] 

identity, 
emotion, 

disappoint, 
empathy, loss, 

well, fear 

N = 42; Pseudo R2 = 0.68; LR chi2= 39.61; log likelihood = -9.12; p < 0.0000 
f(x) = -5.11 + 413.7*awareness + 705.2*magnify - 918.6*stigma – 1862.6*force 

 

Table 17: A combination of 4 words significantly explained the placebo response. A backwards, 
step-wise logistic regression was utilized to study how much variance in response  propensity was 
explained by semantic similarity to words of interest.  11 words whose average semantic similarity scores 
were shown to be different between responders and non-responders (posthoc factor 6) were entered as 
independent regressors predicting the binary outcome of responder (1) versus non-responder (0). 4 of the 
words survived this regression at p<0.05 and explained almost 70% of the variance in response.  
 

Data-driven linguistic analyses dissociated responders from non-responders but failed validation 

As an alternative approach to selecting words of interest apriori, we tested whether semantic 

similarities in general (over the entire lexicon) could be identified that would classify response group. We 

first created a matrix that represented the average semantic similarity of each person’s interview to every 

word in the dictionary; this matrix was then broken up into its 3 component matrices using SVD.  There 

was a significant difference in the loading on the second component between the responder and non-

responder conditions (t(40) = -2.15; p = 0.038), explaining approximately 8% of the variance in response 

(logistic regression, pseudo R2 = 0.078, p = 0.032).  However, in the machine-learning analysis, LOOCV 

yielded only an average accuracy of 53%.  Like the initial LSA result, this finding may indicate that the 

interview data, despite preprocessing and controlling for verbosity, may still have significant amounts of 

noise in the signal, a prospect which we will address in the discussion.   

 

Language factors correlated to neurological and psychological predictors of placebo response   
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 Because the interview took place at the end of the study post-treatment, we could not definitively 

say whether the semantic properties seen were predictive of placebo propensity or a result of placebo 

response.  To try to answer this question, the 6 language factors were correlated to the main findings 

from a previous report that identified neuroanatomical, neurophysiological, and psychological predictors 

of placebo propensity in the same cohort of individuals (Figure 21c-d): this included resting state 

functional connectivity between frontal regions and either sensorimotor (S1M1) regions or the PAG; limbic 

asymmetry (the ratio of left and right gray matter volumes of the amygdala, hippocampus, and nucleus 

accumbens); and questionnaire subscales regarding awareness and regulation of emotion (MAIA emotion 

and ERQ suppress, respectively).  With the exception of the ERQ, all other identified predictors correlated 

with at least one of the 6 factors, many of them with more than one. Additional parameters were also 

found to be predictive of placebo response in different models of propensity, including grey matter density 

and cortical thickness in S1M1 regions, as well as 3 more questionnaire subscales that also dealt with 

emotion and thought processing (2 from the Pain Catastrophizing Scale, PCS – rumination and 

helplessness subscales - and another from MAIA, the notworry subscale). For this subset of data, only 

cortical thickness and PCS helplessness showed any relationship to the language factors. All correlations 

can be found in Table 18.  These results suggest that the semantic language properties are related to 

both personality and neurobiology.  Moreover they also indicate that these properties might be predictive 

of or at least contribute to response, as they correlated well with both biomarkers and psychological traits 

of propensity.  
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Table 18:  Correlation of language factors with previous indicators of placebo propensity. Pairwise 
correlations between the language factors and 10 of the key neuroimaging and psychological parameters 
shown to predict or contribute to placebo response in a previous study. Correlation coefficients, p-values, 
and sample sizes are provided for the treatment group only.  Red indicates significant (p<0.05) 
correlations and blue indicates trending correlations (0.05<p<0.10). Factors 1-5 were derived from a PCA 
analysis; factor 6 was built post-hoc from words that significantly differed between responders and non-
responders; and 6& = factor including only the surviving (significant) 4 words from the factor 6 regression. 
(Abbreviations: S1M1 = sensory motor; PAG = periaqueductal gray; Asym = asymmetry; Sup = 
suppression; GM = gray matter; Thick = thickness; rum = rumination; help = helplessness; notwor = 
notworry) 
 

Language factors also correlated to additional psychosocial parameters 

 We also wanted to see if the language factors were related to additional self-report measures that 

did not explain a significant amount of variance in placebo response on their own. All factors were 

correlated to the questionnaires measuring personality traits and psychological states at either visit 

1(screening visit) or visit 6 (time of interview). The resulting Pearson correlation coefficients and statistics 

are shown in Table 19. Interestingly, almost all factors showed some significant relationship to the 

“openness”, one the Big 5 personality traits; this trait was marginally different between responders 

(average: 46.4 ± 1.45 SEM) and non-responders (average: 41.8 ± 2.02 SEM; unpaired t-test, t(40) = -1.90, 

trending at p = 0.06)  Additionally, factor 2 (whose word similarity scores corresponded, in general, to 

positive coping mechanisms) was related to many of the psychological parameters that participants filled 

out, including optimism (Life Orientation Test, Revised – LOTR) and attributions of health control 
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(Multidimensional Health Locus of Control – MHLC), among other measures.  These findings also point to 

the ability of language to pick up on more subtle aspects of different personalities or mindsets, some of 

which may contribute to placebo response to smaller extents or in more complicated ways. Moreover, 

given that the majority of these questionnaires occurred prior to the interview indicates that the semantic 

language properties studied here might be trait-like.  

 

 
 
 

 
 
Table 19: Correlation of language factors with additional psychosocial measures. Pairwise 
correlations between language factors and other psychological and personality-related variables for the 
treatment group. Language factors were correlated to additional questionnaire measures collected either 
before treatment randomization (V1, visit 1) or at the same time as the interview (V6, visit 6). For each 
factor, all questionnaire scales or subscales that were significantly or marginally correlated are shown (r-
values in brackets, followed by asterisks indicating level of significance). Red indicates significant 
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(p<0.05) correlations and blue indicates trending correlations (0.05<p<0.10). * = p<0.05; ** = p<0.01; # = 
trending. Factors 1-5 were derived from a PCA analysis; factor 6 was built post-hoc from words that 
significantly differed between responders and non-responders; and 6& = factor including only the 
surviving (significant) 4 words from the factor 6 regression. For all calculations, N = 42 (except MHLC, 
N=41).  (Abbreviations: CPAQ = Chronic Pain Acceptance Questionnaire; LOTR = Life Orientation Test, 
Revised; LAQ = Loss Aversion Questionnaire; FFM –Five Facets of Mindfulness; MHLC = 
Multidimensional Health Locus of Control (form C)); extraversion, openness, agreeable, and 
conscientious were all subscales of IPIP NEO-FFI (measure the Big 5 personality dimensions). 

 

Language factors identify functional brain connections associated with placebo response 

 Since the language factors were associated with many of the already identified predictive markers 

of placebo response, we were interested in investigating the extent to which they could identify neural 

signatures of placebo propensity on their own.  To do this, we constructed resting state networks from 

272 ROIs in 8 different communities spread over the entire brain (Figure 23a), and correlated the 6 

language factures to each of the connections of the weighted network. The resulting correlations were 

thresholded at a significance level of p<0.001 to identify the strongest links that were most related to 

language (Figure 23b, brains). These functional connections represent the networks important for the 

semantic relationships underlying the words in each factor. Surviving connections were grouped 

according to which community they belonged, and a within- and between-community differentiation of 

these links was calculated (Figure 23b, node diagrams). For all networks, there was very little within-

community links related to language factors; the majority of connections involved communication between 

communities.  

 To detect if any of these language-related functional connections also differentiated propensity, 

we extracted all connections, averaged them within group, and compared between placebo responders 

and non-responders. Those that were significantly different between the two groups were corrected for 

multiple comparisons using FDR. The remaining functional connections were one-way ANOVAs, 

Bonferroni corrected, to compare between all 3 groups. Brains in Figure 23c show the final functional 

connections that differentiated responders from non-responders in each language factor; red indicates 

connections that were higher for responders than non-responders, whereas blue indicates connections 

that were greater in non-responders than responders. Bar graphs in Figure 23c show the number of 

connections according to this differentiation. Table 20 shows the final nodes and links for each factor, as 
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well as the associated statistics (node and module ids can be found in Appendix II. These results show 

that not only were language factors able to discover novel functional connections related to placebo 

response propensity (prior to the interview), but also identify some of the same connections that were 

previously found to differentiate groups (such as frontal to PAG and frontal to S1M1).  
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Figure 23: Language factors are sufficient in identifying functional connections that differentiate 
placebo responders from non-responders.  a. A whole brain connectivity analysis was used to 
investigate whether semantic language properties could stand in as surrogates for brain biomarkers of 
placebo propensity collected prior to randomization and treatment commencement.  Shown here are the 
8 functional communities of interest made up of 272 total ROIs spread across the entire brain (number 
indicates # of ROIs within each community) and their associated connectivity matrix. Each r-value of this 
matrix represents the weighted strength of the functional connection between each region with one 
another, and colored squares are provided to show the within module connectivity for each of the 8 
communities.  Circles projected on the brain masks show examples of spherical ROIs from each 
community. b. The six language factors from Figure 21b were correlated to each of the 264X264 
functional connections and thresholded at p<0.001 to identify the most significant functional connections. 
Left panel shows each of the factors with the number of associated functional links that survived this 
threshold.  Right panel shows brain masks with functional links colored according to which factor with 
which they significantly correlate (e.g., red lines are functional links that correlate with F1 and pink lines 
are functional links that correlate significantly with F4, etc).  Next to each brain, a circle graph is depicted 
to display the within- and between-community connectivity for each of the surviving links.  Colored circles 
represent each of the 8 communities of interest, lines around the circles represent the percentage of total 
possible connections that are within that community, and lines connecting circles represent the 
percentage of total possible connections that are between those two communities. Line diameters are 
weighed according to their percentage, with thicker lines indicating a larger % of functional connections, 
thinner lines a smaller % of function connections, and no line indicating no connections within or between 
a community or set of communities.  c. The functional links shown in B were compared between placebo 
responders and non-responders to see if they differentiated the two groups.  Those significant 
connections were then corrected for multiple comparisons using false-discovery rate (FDR).  Shown on 
each brain are the FDR corrected functional links that significantly differ between responders and non-
responders.  Red links indicate that responders had higher functional connectivity between these regions 
than non-responders, whereas blue links indicate that responders had decreased functional connectivity 
between these regions (or, inversely, that non-responders had increased connectivity between these 
regions than responders).  Bar graphs show number of surviving links associated with increased and 
decreased connectivity; all but one factor (F4) showed at least one significant link. Semantic language 
properties were able to identify differences in functional connectivity between responders and non-
responders not previously reported, in addition to detecting some of the connections that were already 
discovered to be involved in response (such as those between lateral frontal regions, S1M1, and PAG), 
indicating that language parameters can be used to capture placebo response propensity and can result 
in findings that are physiologically valid.  
 

Factor Modules 
Connectivity Nodes q-values 

Greater 
in R or 

NR 

oneway 
ANOVA 

noTX stats 
(Bonferonni) 

DMN with 
frontal 115, 197 0.006 NR F(2,59) = 8.03, 

p=0.008 n.s. (middle) 

other with 
other 61, 207 0.009 R F(2,59) = 5.02, 

p=0.0097 n.s. (middle) 

frontal with 
limbic (PAG) 218, 226 0.005 NR F(2,59) = 6.55, 

p=0.0027 n.s. (middle) 

visual with 
other 141, 247 0.01 NR F(2,59) = 4.37, 

p = 0.017 n.s. (middle) 

sensorimotor 
with other 25, 261 0.01 NR F(2,59) = 4.41, 

p = 0.016 n.s. (middle) 

 
 
 

1 
Pain and 
Negative 

Affect 

frontal with 
other 197, 263 0.009 R F(2,59) = 5.40, 

p = 0.007 n.s. (middle) 



 164 
sensorimotor 

with 
sensorimotor 

28,49 0.02 NR F(2,49) = 5.35, 
p = 0.0073 n.s. (middle) 

sensorimotor 
with other 26, 210 0.01 R F(2,59) = 7.39, 

p = 0.0014 
# with NR 
(middle) 

other with 
DMN 77, 250 0.048 R F(2,59) = 3.75, 

p = 0.0293 n.s. (middle) 

2 Positive 
Coping 

DMN with 
other 97, 251 0.02 R F(2,59) = 5.98, 

p = 0.0043 
* with R 
(middle) 

DMN with 
DMN 88, 89 0.04 NR F(2,59) = 4.34, 

p = 0.174 
# with NR 
(middle) 

other with 
other 2, 126 0.02 NR F(2,59) = 5.04, 

p = 0.0095 
* with NR 
(middle) 

other with 
limbic (PAG) 187,226 0.02 NR F(2,59) = 6.34, 

p = 0.0032 
** with NR 
(smallest) 

3 
Negative 
Coping 

frontal with 
other 197,251 0.02 R F(2,59) = 7.53, 

p = 0.0012 
* with R 
(middle) 

4 
Optimism 

and 
Positive 
Affect 

no 
connections 

survived 
- - - - - 

5 
Negative 

self 
thoughts 

frontal with 
sensorimotor 29, 197 0.008 R F(2,59) = 6.52, 

p = 0.0028 n.s. (middle) 

saliency with 
other 58,175 0.03 R F(2,59) = 7.84, 

p = 0.001 
** with NR 
(highest) 

sensorimotor 
with frontal 18, 197 0.002 R F(2,59) = 10.62, 

p = 0.0001 
*** with NR 
(highest) 

DMN with 
frontal 115, 197 0.002 NR F(2,59) = 8.03, 

p = 0.00-8 n.s. (middle) 

visual with 
parietal 150, 204 0.03 NR F(2,59) = 5.05, 

p = 0.0095 
* with R 
(middle) 

DMN with 
limbic (PAG) 132, 226 0.01 R F(2,59) = 4.16, 

p = 0.02 n.s. (middle) 

visual with 
limbic (PAG) 173, 226 0.03 NR F(2,59) = 3.28, 

p = 0.0447 n.s. (middle) 

frontal with 
limbic (PAG) 197, 226 0.002 NR F(2,59) = 10.91, 

p = 0.0001 
** with R 
(middle) 

frontal with 
limbic (PAG) 218, 226 0.002 NR F(2,59) = 6.55, 

p = 0.0027 n.s. (middle) 

DMN with 
other 97, 151 0.005 R F(2,59) = 5.98, 

p = 0.0043 
* with R 
(middle) 

other with 
other 212, 259 0.01 NR F(2,59) = 4.65, 

p = 0.0133 n.s. (middle) 

6 
Significant 

Words 

DMN with 
limbic (NAc) 221, 265 0.03 NR F(2,59) = 3.95, 

p = 0.0243 
# with NR 
(middle) 

 
Table 20: Summary of functional connections identified by language that differentiated groups. 
Functional connections identified from language factors were compared between groups.  Those that 
survived correction for multiple comparison with FDR (brains in Figure 23c) are shown here, ordered by 
their original language factor. Also shown are the between and within module assignments for each 
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connection, their node identity (see Appendix II for coordinates), their FDR adjusted p-values (q-values) 
between connections comparing responders and nonresponders, indication of strength between 2 
placebo groups (NR = responders, R = responders, bar graphs in Figure 23c), and group statistics for all 
3 groups (one-way ANOVA).  The last column represents the post-hoc Bonferroni statistics to see how 
the no treatment (noTX) group compares to NR and R, which are significantly different. Here, the 
significant differences are indicated, along with overall placement of the group (e.g., if middle, their values 
were between NR and R); significance:  * = p<0.05; ** = p<0.01, *** = p<0.001; # = 0.05<p<0.01 trending; 
n.s. = not significant.  
 

Discussion 

 In this study, we employed semantic language analyses to investigate whether patient narratives 

can be used to dissociate placebo responders from non-responders and identify psychological and 

neurobiological parameters associated with response propensity.  We utilized the setting of an RCT 

investigating placebo response in patients with CBP that captured both neuroimaging and personality 

data pre- and post-treatment. At the end of this trial, patients completed an exit interview which was used 

to extract language properties for various analyses; importantly these interviews were controlled for 

content and length, and did not differ between groups in verbosity, vocabulary, or lexical diversity 

measures. A basic latent semantic analysis (LSA) failed to classify responders from non-responders; 

however, a more specific analysis that calculated semantic similarity between interviews with 60 words of 

interest identified 11 words that significantly differed between groups.  Of these, 4 words predicted 

propensity, explaining 68% of the variance in response with high accuracy (84%). Using PCA and logistic 

regressions, these 60 words were clustered, thresholded, and reduced to 6 significant language factors.  

The majority of these factors significantly correlated with previously identified biomarkers of placebo 

propensity, in addition to previously discovered personality traits. Moreover, these factors identified novel 

resting state functional connections associated with the meaning of participants’ language, as well as 

discovered additional functional links that differentiated responders from non-responders pre-treatment.  

Finally, language factors also were able to identify the same brain nodes and connections that classified 

responders from non-responders in a previous analysis.  

 To our knowledge, this is the first study using semantic speech characteristics to study placebo-

related alterations in chronic pain (although previous research has looked at word count measures of 

pronoun use between participants treated with either placebo and homeopathic remedies [291].  
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Additionally, while other researchers have recently used LSA to identify semantic components of neural 

activity in ECoG and fMRI data[292], we are the first to combine neuroimaging data, self-report measures, 

and automated language approaches together as part of a randomized clinical trial. Here we show that 

the language of placebo responders differs according to how semantically close their spoken words were 

to key words capturing the chronic pain and response experience.  4 words – “awareness”, “force”, 

“stigma”, and “magnify” significantly differed between responders and non-responders, explained over 

two-thirds of the variance in response, and were highly accurate in differentiating the two groups. The 

combination of these words is not easy to interpret, but we can see that together, they capture physical, 

psychological, and social components of placebo response. Additionally, some of the words also 

correspond well to previously identified personality traits of clinical placebo response in CBP – for 

example, responders have been shown to have increased emotional and interoceptive awareness (MAIA 

emotion) compared to non-responders, and here we also see that responders’ language is closer, on 

average, to the word or concept of “awareness” than nonresponders.  These findings suggest that 

language can be used to further identify and define differences between patients in a clinical context, and 

that interviews may be important tools for future clinical trials. 

 Specific combinations of semantic similarity scores were also able to capture differences between 

groups. All language factors correlated to at least one of the key psychological or biological markers of 

placebo propensity in CBP.  These included structural brain differences, functional brain differences, and 

personality profiles.  These relationships show the that semantic differences seen in the interviews are 

significantly related to the biology and the mental state of the participant, suggesting that automated 

language analyses can provide results that are both physiologically and psychologically valid.  

Additionally, these relationships indicate that the semantic differences seen at visit 6 between responders 

and non-responders are not due to any contextual influences during the interview – instead, they imply 

that these properties either predetermine placebo propensity (since they are correlated to traits of 

response) or are caused by placebo response (and are picked up during the interview after all treatment 

and washout sessions). 

 The semantic language factors were also able to identify important functional connections on their 

own (without prior knowledge of significant connections or relevant communities). Whole brain network 
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analyses revealed different sets of functional connections in accordance with each of the 6 factors.  

These links are interesting in that they establish the brain regions and properties associated with different 

components of meaning, findings which are important in and of themselves. Importantly, nodes involved 

in these semantic links are shown to be scattered throughout the brain as opposed to located within 

traditional regions such as Broca’s or Wernicke’s area.  This observation directly mirrors findings from a 

recent and exciting study by Huth et al [268] showing that semantic meaning is distributed across the 

whole brain in distinct patterns. Additionally, some of the language-associated links were also able to 

differentiate responders from non-responders; many of these links were novel (not found in previous 

reports) but importantly, many of them were the same as those shown to be predictive of response (e.g., 

frontal to S1M1 and frontal to PAG). The latter result highlights the power of language as a tool to 

discover brain mechanisms associated with chronic pain experience and its relief.   

 Our findings have important implications.  First, they provide a general proof of concept that (a) 

specific properties of language can be used by themselves to identify clinically meaningful differences in 

cohorts of interest, and (b) can be combined with more traditional approaches to provide comparable 

results or even validate previous findings. Second, given the limitations of existing methods (discussed in 

the introduction), interviews and language analyses could be used either as an adjunct to other 

approaches when appropriate (for example, to better characterize or explain differences seen in self-

report measures) or as surrogate measures for approaches which may not be as easily implemented or 

cost-effective (such as neuroimaging). Despite high computational demand, language measurements like 

the ones used in this paper are easy to implement and relatively automated.  
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CHAPTER 5: RESULTS FOR STUDY 3 

 
Memory of chronic pain is biased by left posterior hippocampus morphology 

 

Demographics 

72 CBP (divided into a discovery and a validation dataset, Table 21) were asked to rate their pain 

and mood for the duration of an 8-week clinical trial studying placebo response. In this study, we only 

analyzed one week of interest that preceded the administration of any treatment (Figure 24a). During that 

week, patients were asked to rate their pain and mood 2 times per day using their smartphone app 

(Figure 24b-c) and provide a verbal rating about their pain experienced over the last week (i.e. pain 

memory). On average, participants were compliant when entering their pain and mood ratings with their 

app during this time (average compliance = 77.7 ± 21.1% SEM for discovery group; 76.9 ± 20.9% SEM 

for validation group).   

 

Table 21: Demographics for Study 3. Basic demographics of all participants from all datasets. “&” = SBP 
participants entered study with subacute (<3 months) of back pain, and their pain duration is thus given in 
weeks instead of years; SD = standard deviation;  “-” = not applicable for that dataset.  
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Chronic pain patients show memory bias in the setting of a clinical trial 

As expected [293], pain and mood phone app ratings were anti-correlated for the majority of 

participants (75%) (Figure 24d, mean coefficient correlation: -0.52 ± 0.05 SEM; t(47) = -4.76, p<0.0001; 

one sample t-test), and the recalled pain was significantly higher than the average experienced pain 

monitored using the phone app (Figure 25a).  The average memory discrepancy for the group (defined 

as the recalled pain minus the average experienced pain rated over the previous week) was 1.05 ± 0.18 

SEM units on a 0-10 VAS scale. The self-reported pain memory was on average 18% higher than the 

average phone app ratings, and 37 out of the 48 people (77%) overestimated their pain intensity (Figure 

25b). Importantly, age and gender identity were not related to memory bias, nor was pain duration, which 

did not correlate with pain memory or the extent of the discrepancy.   

 

 

Figure 24: Study design and psychometric parameters derived from ratings of experienced CBP 
pain. a. Illustration of study design.  Participants completed a battery of questionnaires at visit 1 (week 0) 
and were provided with a smart phone application (app) to track their back pain and mood twice a day for 
2 weeks, after which they returned to complete an MRI scan and another set of questionnaires.  Red box 
indicates that only the last 7 days of this rating period were used in analyses. A total of 72 people were 
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enrolled; 48 were used as a discovery group, 21 set aside for validation, and 3 excluded from analysis. 
After completion of the study, a subset of individuals (n=33) were contacted and asked follow-up 
questions to probe their memory of the study (on average 217 days after Visit 1). b. Example of the rating 
app. After entering in their participant IDs, patients rated how much pain they currently felt from 0 to 10 
and the valence and magnitude of their current mood from -10 to +10. c. Examples of two participants’ 
pain and mood ratings over one-week of the rating period are shown, with the peak and end indicated.  d. 
Distribution of correlations between pain and mood ratings; the majority of participant’s moods were 
negatively correlated to their pain intensity as expected.  
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Figure 25: Chronic back pain patients show exaggerated pain memory and this discrepancy 
correlates with left hippocampal shape displacement. a. All participants’ (discovery group) 
experienced (rated) pain from the app (averaged over one week, gray) plotted over their pain memory 
(black) during the same 7-day period. Visible black bars indicate a bias toward remembering higher pain 
than was actually experienced. Bar graph is group averaged result (average pain memory: 6.93 ± 0.22 
SEM; average rated pain: 5.87 ± 0.21 SEM; t(47) = 5.75, paired t-test). b. Distribution of all participant’s 
memory discrepancies (pain memory– rated pain). c. Left hippocampal shape displacement correlated to 
the memory discrepancy values displayed in b, with three areas (labeled C1-C3) being statistically 
significant on the surface output maps; colors on surface mesh display the strength of the correlation at 
each of the 732 vertices (F-values from uncorrected multivariate statistics). One area was located in 
posterior hippocampus, another in the intermediate region, and the third in the anterior hippocampus. 
Right hippocampus showed no relationship to discrepancy values. d. The group t-stat map (left) and the 
corresponding thresholded cluster map (right) for left hippocampus are shown. T-values are projected 
onto each vertex surface (circles), with colors ranging from black (negative values) to bright yellow 
(positive values). T-values were thresholded at ± 2.0. A k-means algorithm was used on the thresholded 
t-stat map to statistically restrict the three areas into distinct clusters that were most related to 
discrepancy (all vertices that were not clustered are depicted in black).  The change in shape from each 
vertex (vertex displacement) in the clusters was extracted, averaged within the cluster, and correlated to 
discrepancy.  Numbers in parentheses indicate # of vertices within that cluster. e. Correlations between 
left hippocampal vertex displacements and memory discrepancies for each identified cluster (C1-C3); 
cluster 1 (C1), corresponding the posterior hippocampus, and cluster 2 (C2), corresponding to the middle 
or intermediate hippocampus, showed a significant relationship between shape and discrepancy. Positive 
displacement values indicate an outward direction (expansion of shape) on average, whereas negative 
values indicate inward direction (shrinking of shape). For both C1 and C2, more outward displacement in 
these regions correlated to higher memory discrepancy. For all graphs, age and sex have been regressed 
as covariates of no interest. Of all clusters, only C1 survived TFCE cluster correction for multiple 
comparisons. * = p<0.05; ** = p<0.01; *** = p<0.001; ns = not significant 

 

We further examined which experienced pain (Table 22) and mood (Table 23) parameters 

contributed to this discrepancy.  As shown in Redelmeier and Kahneman [201], the psychophysical 

properties of the pain ratings of our CBP participants were highly correlated to one another and to their 

recalled pain (Table 24 top rows). Given the importance of the peak-end rule (pain will be remembered 

depending on its worst intensity and ending intensity), we examined the characteristics of pain and mood 

ratings.  Unlike pain characteristics that highly correlated with memory of pain, none of the mood 

parameters correlated to recalled pain; however, both ending mood and ending pain were significantly 

anti-correlated to memory discrepancy (Table 24, bottom rows).  
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Phone App Ratings (VAS units, 0-10) 

 Discovery Group Validation Group 
 mean SEM mean SEM 
Average Pain (1 week)& 5.87 0.21 6.26 0.29 
Total Pain  (AUC) 58.70 3.50 63.20 5.48 
Peak Pain 7.69 0.22 8.00 0.35 

End Pain 5.85 1.70 6.02 0.56 

Self-Report and Questionnaire Measures 
 mean SEM mean SEM 
Average Recalled Pain  
(1 week, VAS 0-10) 6.93 0.22 6.52 0.33 

NRS (0-100) at Visit 1 56.48 3.52 62.33 4.61 
NRS (0-100) at time of recall 
(current pain, Visit 2) 57.25 2.96 56.38 6.21 

 

Table 22: Characteristics of Pain. Pain measurements and pain-related questionnaire data. Top section 
shows the calculations based on the daily pain ratings participants completed over the previous week 
during their baseline period of the study.  Bottom section shows the questionnaire measures used at Visit 
1 (study entry) and Visit 2 (current, at the time of recall and scanning). VAS = Visual Analogue Scale; 
NRS = Numeric Rating Scale; SEM = standard error  
 

Phone App Ratings (VAS units, -10 to +10) 

 Discovery Group Validation Group 
 mean SEM mean SEM 
Average Mood (1 week) 3.64 0.54 4.31 0.64 

Total Mood (AUC) 34.57 5.59 42.93 7.79 
Peak Mood 6.71 0.47 7.05 0.65 
End Mood 3.83 0.59 4.52 0.76 

Self-Report and Questionnaire Measures 
 mean SEM mean SEM 
PANAS positive at Visit 1 35.31 1.13 34.33 1.78 

PANAS negative at Visit 1 18.62 1.10 18.48 0.99 

PANAS positive at Visit 2  
(current mood) 34.49 1.03 33.33 1.89 

PANAS negative at Visit 2 
(current mood) 19.13 1.05 19.62 1.62 

 
Table 23: Characteristics of Mood and Cognition. Mood rating measurements and mood-related 
questionnaire data.  Top section shows the calculations based on the daily mood ratings participants 
completed over the previous week during the baseline period of the study; calculations match those for 
pain in table S2. Bottom section shows questionnaire data for mood at Visit 1 (study entry) and Visit 2 
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(current, at the time of recall and scanning). PANAS = Positive And Negative Affect Scale; N = 48 for all 
discovery group calculations for except the following, which had missing data points: PANAS positive V1 
= 47, PANAS negative V1 = 46, PANAS negative V2 = 47; SEM = standard error 
 
 
 
 

 
 
Table 24: Summary of relationships between psychometric pain and mood app ratings. Top panel 
indicates that the pain and mood properties extracted from individuals’ daily ratings are highly correlated 
to one another. Bottom panel shows how each of these properties correlates with a person’s memory bias 
(discrepancy = recalled pain-average pain). The Pearson correlation coefficients (r) are shown at their 
significance level (2-tailed) with # = trending at 0.05<p<0.10, * = p < 0.05, ** = p < 0.01, and *** = p 
<0.001. AUC = area under the curve; N = 48 for all correlations. The variable “peak*end (pe)” refers to 
averaging peak and end pain or peak and end mood together according to Kahneman and collegues’ 
peak-end rule. 
 

Shape displacement of the left posterior hippocampus is related to memory discrepancy 

The volume of the left (average volume = 3755.5 ± 481.7 mm3) and the right (average volume = 

3855.1 ± 527.0 mm3) hippocampus were invariant to memory discrepancy.  However, a vertex-wise 

shape analysis in relation to pain memory bias uncovered left hippocampal areas correlated with memory 

discrepancy (Figure 25c-e); Cluster 1 (C1) corresponded to the posterior hippocampus, cluster 2 (C2) 

primarily to the intermediate hippocampus with some posterior overlap, and cluster 3 (C3) to the anterior 

hippocampus. From these, only C1 survived threshold-free cluster enhancement (TFCE) correction for 

multiple comparisons (17 out of 37 vertices), indicating that only posterior hippocampal shape distortion is 

related to pain memory discrepancy.  
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Regression models for pain memory 

Multi-factor multiple regression analyses were used to test if the psychophysical qualities (peak, 

end, total, and average) examined from the experienced pain and mood ratings, current pain and mood 

parameters from the day of memory assessment (given [190-196]), and hippocampal shape displacement 

can explain the pain memory values. We incrementally tested 4 separate multivariate models; each 

regression built off the previous one to explain the memory of pain. The first model only used the 

parameters initially studied by Redelmeier and Kahneman [201] --peak pain, end pain, average pain, and 

AUC-- and showed that pain memory significantly depended on the peak pain and also the average pain 

over the week.  The second model entered these 2 variables with mood variables and indicated that the 

mood at the end of the rating period explained unique variance beyond peak pain and average pain. A 

third model combined these 3 surviving rating parameters current pain (Numeric Rating Scale, NRS) and 

mood (Positive and Negative Affect Scale, PANAS) scores on the day of  memory assessment; this 

model indicated that the current pain and emotional state failed to significantly contribute to pain memory 

and in turn did not provide a better alternative to the second model. The fourth and final model was the 

most comprehensive, incorporating experienced pain, experienced mood, and hippocampal 

morphometry.  This showed that C1 hippocampal shape displacement in combination with average 

experienced pain accounted for 55% of the variance in pain memory (Table 25).  

Model Surviving Parameter(s) Coefficient 
(SEM) p-value 95% C.I. 

Eliminated 
Variables  
(p > 0.10) 

1 Basic Pain Model (App Data) 
peak pain 0.396 (0.16) 0.02 [0.07,0.73] 
average pain 0.369 (0.17) 0.04 [0.02,0.71] 

End pain, 
total (auc) 

pain  

N = 48; R2 = 0.48; Adj R2 = 0.46; F(2,45) = 21.03; p < 0.0000 
2 Basic Pain + Mood Model (App Data) 

peak pain 0.438 (0.16) 0.01 [0.12,0.76] 

average pain 0.362 (0.16) 0.03 [0.03,0.69] 

end mood -0.09 (0.04) 0.03 [-0.17,-0.01] 

auc mood, 
average 

mood, peak 
mood  

N = 48; R2 = 0.54; Adj R2 = 0.51; F(3,44) = 17.17; p < 0.0000 
3 App Data + Current Variables (Pain + Mood) 
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peak pain 0.322 (0.17) 0.06 [-0.02,0.66] 

average pain 0.453 (0.17) 0.01 [0.11,0.79] 

end mood -0.717(0.04) 0.08 [-0.15,0.01] 

PANAS 
negative, 
PANAS 
positive, 

NRS 
 

N = 47; R2 = 0.53; Adj R2 = 0.50; F(3,43) = 16.06; p < 0.0000 

4 Comprehensive Model (Pain + Mood + Neuroimaging) 
average pain 0.734 (0.10) p<0.0000 [0.53,0.94] 

posterior hippocampus 
(cluster 1 uncorrected &) 1.336 (0.33) p<0.0000 [0.66,2.01] 

intermediate 
hippocampus 

(cluster 2), 
peak pain, 
end mood 

N = 48; R2 = 0.57; Adj R2 = 0.55; F(2,45) = 29.69; p < 0.0000 
 

Final equation: recalled pain = f(x) = 2.61 + 1.34*cluster1 + 0.73*average pain 

 
Table 25: Summary of memory model results. Multiple regression analyses were performed to indicate 
what independent variables significantly influenced participants’ memory of their pain (recalled pain = 
dependent variable). Regressions were run in a hierarchical manner such that each model built off of the 
previous one; only those variables that survived the previous model(s) were entered into the subsequent 
one. Groupings of variables were chosen apriori based off of previous literature; the first model tested the  
established peak-end rule of explaining memory with pain ratings, the second added to the peak-end rule 
with mood ratings (which can interact with the memory of pain, particularly at the end of a painful event), 
the third incorporated current pain and mood (which have also been shown to bias recall), and the fourth 
and final regression entered all surviving pain and mood parameters with the significant hippocampal 
shape displacement to create a comprehensive model accounting for behavior and neuroanatomy.  “&” 
indicates that the posterior hippocampal cluster that survived TFCE correction for multiple comparisons 
(17 out of 37 vertex coordinates) was also tested in the final model; the results were identical. Adj R2 = 
adjusted R2, which represents the coefficient of determination after accounting for the number of 
predictors in the model; SEM = standard error; C.I. = confidence interval; auc = area under the curve 
 

 

Validation and predictive utility of the model 

To test the reliability and generalizability of our results, we attempted replication of our main 

findings in the CBP patients (n = 21) reserved for validation. Over half of these patients (n = 12, ~57%) 

displayed a discrepancy biased toward an overestimation of their pain, although average memory and 

experienced pain outcomes were not different (Figure 26a). The vertex displacement from the left 

posterior hippocampus was extracted and averaged for this validation CBP group within C1, using the 37 

coordinates defined from the discovery group (Figure 26b, left). The final model from the discovery group 

(Model 4 – C1 displacement + average rated pain) was used to predict these new participants’ recalled 

pain values. Figure 26b (right) shows that the predicted values were strongly correlated to the actual 
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values reported. These results indicate that our model, and its component outcome measures, is reliable 

in explaining and predicting memory of pain.  

 

Figure 26: Validation and replication of left posterior hippocampus shape displacement for pain 
memory discrepancy. a. Unlike the discovery group, the validation group (n=21) did not result in a 
statistically significant difference between pain memory and pain experience (left panel, memory = 6.52 ± 
0.33 SEM; experience = 6.26 ± 0.29 SEM; t(20) = 1.08, p = 0.29, paired t-test), although the majority of 
individuals still reported higher pain memory than experience, indicating a memory bias also existed (right 
panel). b. To validate the model from the discovery group, the vertex displacement from the 37 vertices in 
discovery cluster 1 (C1) were extracted from the left posterior hippocampus of the validation group (left 
panel, red outline). Participant’s average pain and C1 vertex displacement values were entered into the 
model equation (provided at the top of the graph, right panel) to predict their memory of pain.  The 
correlation between the predicted memory from the equation parameters and the actual memory reported 
is shown – these values were significantly correlated, validating the model. An identity line, indicating a 
perfect correlation, is shown in blue. * = p<0.05; ** = p<0.01; *** = p<0.001; ns = not significant.  
 

Posterior hippocampal shape is stable over 1 year and with development of chronic pain 

It has been established that the hippocampus is prone to dynamic changes in shape and volume 

as part of normal human development and aging [294], prolonged pain impacts the morphometry of the 

hippocampus [45], and that sub-regions of the hippocampus are differentially associated with stress and 

anxiety [295]. To test whether the left posterior hippocampal C1 shape displacement was related to pain 

memory in our CBP patients was influenced by a general aging process or a consequence of chronic 

pain, we compared the displacement of vertices corresponding to C1 in two independent data sets 

(Figure 27a). We tested the stability of C1 in healthy controls (CONs) between two scans, which were 

approximately 1 year apart (376.1 ± 13.3 days). The average change in displacement within this region 

was 0.06 mm ± 0.06 SEM; this change in shape was not significant as none of the vertices had t-stats 
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exceeding the threshold of ± 2.0 (minimum absolute t-value in the region = 0.27; maximum absolute t-

value = 1.61), and no displacements survived TFCE, indicating that C1 was not an area that significantly 

changed in this timeframe. We next compared the C1 vertex displacement in 21 participants with 

persisting subacute back pain (SBPp) between two scans that were also 1 year apart (379.1 ± 21.9 days). 

These individuals entered the study with a new onset of back pain (less than 3 months) and ended up 

having their pain persist over the year, thus developing chronic pain and essentially becoming similar to 

our CBP cohort. The average change in displacement within C1 for SBPp between scans was 0.09 mm ± 

0.10 SEM; none of the vertices in the cluster had t-stats surviving the ± 2.0 threshold (minimum absolute 

t-value = 0.29; maximum absolute t-value = 1.23), and none of the p-values survived TFCE.  Additionally, 

there were no differences between CON or SBPp (Figure 27a) in either the average displacement of the 

region at scan 2 (CON: 0.03 mm ± 0.13 SEM; SBPp: 0.05 mm ± 0.23 SEM; unpaired t-test: t(41) = -0.065; 

p = 0.95) or the average change in displacement between scans (unpaired t-test: t(41) = -0.29; p = 0.77). 

These results indicate that shape displacement in C1 of the posterior hippocampus seems hardwired, as 

this region does not appear to change over 1 year and is not influenced by the stress of persistent pain 

over 1 year.  

 

Pain memory bias is specific to reward/punishment personality traits in CBP 

Although we discovered that the memory of pain is systematically biased and related to 

hippocampal shape, it was still unknown whether these biases and shape differences were generalizable 

to other memories. We contacted and questioned our participants regarding their memories of the study 

and also tested them for short-term memory (Table 26).  We attempted to call back all participants whose 

anatomical data were analyzed; of these, 25 people from the discovery group and 8 from the validation 

group were reached by phone. Here, the two groups were combined to increase our sample size (total 

n=33). The average time between participant’s last visit date and the phone contact was 216.7 ± 96.4 

days, and importantly, none of the answers provided by participants significantly correlated to the length 

of this interim period, indicating that the amount of time between the study and the phone call did not 

impact obtained memory results. The participants’ memory of baseline pain provided during the phone 

call was significantly correlated with the pain memory provided at their MRI visit (r = 0.41, p = 0.019, 
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Figure 27b); there was still a large discrepancy in recalled pain 216 days after the study, with over 75% 

of individuals remembering higher pain than actually experienced instantaneous pain (distribution also 

shown in Figure 27b). These results indicate that once a memory trace of painful events is distorted, this 

bias persists over a long time. 

Recalled Values (compared to those expected for most participants) 
Question Topic mean sem N expected& 
Average Pain during first 2 weeks of 
study 7.0 1.22 33 - 

Average Mood during first 2 weeks of 
study 3.5 0.60 32 - 

# Visits (total) during the study 7.7 1.34 30  ~ 6 visits 
# Visits with Scans (total) during the 
study 4.5 0.78 33 ~ 4 scans 

Total Compensation ($) from all visits 372.0 64.76 32 ~ $448.00 

 

One phone Rating’s worth ($) 1.5 0.25 29 $0.25 each 
Discrepancy Values (Recalled during phone call – Actual during study) 

Question Topic mean sem N %<0 %=0 %>0 
Average Pain during first 2 weeks of 
study 0.8 0.30 33 24.2 0.0 75.8 

Average Mood during first 2 weeks of 
study -0.7 0.96 32 50.0 0.0 50.0 

# Visits (total) during the study 0.1 0.70 30 30.0 20.0 50.0 
# Visits with Scans (total) during the 
study 0.3 0.38 33 33.3 30.3 36.4 

Total Compensation ($) from all visits -37.9 31.22 32 59.4 6.3 34.4 

 

One phone Rating’s worth ($) 1.2&& 0.71 29 11.5 80.8 7.7 
Current Measurements During Phone Call 

Question Topic mean sem N 
Pain (VAS, 0 to 10) 5.4 0.94 33 

 

Mood (VAS, -10 to +10) 5.3 0.94 33 

 

Behavioral Data 

Questionnaire Scores from Visit 1 mean sem N&&& Pain 
(r-val) 

$  
(r-val) 

C1 
 (r-val) 

LAQ 62.9 1.55 33 -0.38* 0.21 -0.41* 
PCS rumination 7.3 0.70 33 0.15 0.16 0.05 
PCS magnification 4.0 0.46 33 0.25 -0.20 0.002 
PCS helplessness 8.6 0.79 33 -0.06 0.09 -0.12 
PSQ no-pain subscale 4.6 0.75 33 -0.14 -0.10 -0.11 
PSQ pain subscale 75.2 4.13 33 0.08 0.03 0.16 
PASS avoidance behavior 13.0 1.25 33 -0.16 -0.004 -0.12 
PASS cognitive anxiety 11.8 1.26 33 0.09 -0.12 -0.12 
PASS fear 7.4 1.11 33 0.14 -0.08 -0.09 

 

PASS physiological anxiety 6.0 0.95 33 0.02 -0.05 -0.20 
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Table 26: Summary of responses from follow-up call.   Data corresponds to answers from questions 
given in Table 3. Discrepancy scores for every question were calculated, with positive scores indicating 
greater (over-estimated) recalled answers than what actually happened and negative scores indicating 
lower (under-estimated) recalled answers than what was experienced. Percentages indicate accuracy 
measurements: 0 = perfectly accurate memories, <0 = underestimation, and >0= overestimation. Other 
than pain memory, memory of total compensation was the only other measure that was not centered 
around 0 (showing a systematic bias). Average scores and sub-scores for 4 self-report measures are also 
provided (LAQ: Loss Aversion Questionnaire; PCS: Pain Catastrophizing Scale; PSQ: Pain Sensitivity 
Questionnaire; PASS = Pain Anxiety Symptoms Scale). R-values indicate the correlation with each of the 
scales and the 3 main parameters of interest: pain memory discrepancy (pain), total compensation 
discrepancy ($), and hippocampal shape displacement (posterior cluster C1). “-“ = data not applicable for 
this measure;  “&” = values are estimated based on what the majority of participants would have 
experienced but there are exceptions, as some patients did not complete the study and therefore would 
have had less visits and less scans, for example.  Actual values differed from expected values and were 
calculated based on each participant’s data. “&&” = this particular measurement had outlying values in it 
that drove the mean up (3 participants responded with values between $7 and $18); if those 3 values are 
removed (n=26), the discrepancy becomes -0.0008 ± 0.017 SEM, indicating high accuracy. “&&&” = there 
were no missing values for any questionnaire measures, resulting in a sample size of n=33 for all scores; 
however, one person was missing from the monetary ($) calculation, so this correlation had a sample size 
of n = 32 for all scores 
 

To determine whether the pain memory discrepancy seen in our CBP participants was indicative 

of short-term memory (STM) impairment, we examined their scores on the Montreal Cognitive 

Assessment (MoCA) delayed recall task designed to detect cognitive impairments.  On average, 

participants remembered 3 or 4 out of 5 words on this task (average = 3.70 ± 1.2 words, minimum: 0, 

maximum: 5), with only 15.2% (n = 5) remembering less than 3 words (Figure 27c), implying that the 

majority of our participants had no problems with STM [296]. Additionally, the number of words 

remembered did not correlate with the pain discrepancy at the MRI visit (Spearman’s rho = -0.04, p = 

0.83), with pain memory from the follow-up phone call (Spearman’s rho = 0.05, p = 0.78), or with the 

vertex displacement of the C1 posterior hippocampus (Spearman’s rho = -0.19, p = 0.29). These results 

suggest that neither CBP patients’ pain discrepancy nor their posterior hippocampal C1 displacement are 

related to insufficient STM capabilities.    

To test the relationship between pain discrepancy findings and other memories related to the 

experience of participating in the trial, we computed a discrepancy score for all queries administered 

during the follow-up phone call. Responses regarding mood, number of visits, number of MRI scans, and 

monetary compensation received per app rating all showed distributions centered around 0 (indicating 

response accuracy). Only memory of total compensation during the study was skewed with 59% of 

participants under-estimating the amount received (Figure 27d and Table 26).  We correlated the current 
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memory bias in pain with these additional discrepancy scores. Again, only the recall of total monetary 

compensation showed a significant relationship with the current pain discrepancy (Figure 27e). This 

relationship was negative – that is, the more pain someone remembered having, the less monetary 

compensation they also thought they received, indicating a recall bias related to valence, reward, and/or 

punishment. 

To identify personality characteristics that may be related to pain and monetary reward biases we 

examined their relationship to four personality trait outcomes (Loss Aversion Questionnaire – LAQ [246], 

Pain Catastrophizing Scale – PCS [230] , Pain Sensitivity Questionnaire – PSQ [232], and Pain Anxiety 

Symptoms Scale - PASS [231]; Table 26, bottom), collected at time of entry into the study. Of these, only 

LAQ scores were negatively correlated with both pain and money discrepancies (Figure 27f); moreover, 

both LAQ and money discrepancy positively correlated with hippocampal C1 shape displacement (Figure 

27g). Therefore, to understand the co-dependencies between these variables, we tested the hypothesis 

that C1 shape displacement mediated the effects of personality (LAQ) and pain memory discrepancy. 

Figure 27h shows the paths and their standardized coefficients in this mediation model; there was a 

significant indirect effect from LAQ to pain discrepancy, indicating that posterior hippocampal C1 shape 

significantly mediated this relationship. Importantly, there was no significant mediation effect of C1 

between LAQ and monetary discrepancy. 
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Figure 27: Longitudinal and follow-up analyses relate pain memory bias to loss aversion. a. Paired 
t-tests of hippocampal shape displacement between two scans separated by approximately 1 year. 
Surface map F-statistics for the left hippocampus for healthy controls (CON, n=22) and individuals with 
persisting sub-acute back pain (SBPp, n=21); images have been zoomed to focus on the posterior portion 
and the lack of significance in this region can be visually appreciated. Statistics performed on both groups 
showed no within subject differences due to time in cluster 1. Bar graphs indicate between subject 
statistics; there were no differences in the average displacement of this C1 region (top) or average 
change in C1 displacement (delta, bottom) between CON and SBPp. b. Recalled pain memory assessed 
36 weeks after study completion (current pain memory) was significantly correlated to the memory of the 
pain assessed at the end of the week during the study (previous pain memory), with the majority of 
participants still maintaining a discrepancy biased towards exaggerated pain memory (distribution plot). c. 
Participants performed at or above average in the delayed recall task, with the majority remembering at 
least 3 words d. Discrepancies were calculated for all questions asked during the follow-up phone call 
(table S6). Only total compensation (the amount of money earned during the entire trial) showed a 
memory bias. e. Discrepancy of money and pain memories were anti-correlated, such that participants 
biased toward overestimated pain levels tended to underestimate the amount of money they received 
during the study.  f. Loss aversion (LAQ) scores were significantly anti-correlated with pain discrepancy; 
the opposite relationship with money discrepancy was found but not significant. g. LAQ scores were also 
significantly negatively correlated to posterior shape distortion of the left hippocampus; discrepancy of 
money was not. h. After combining all participants from discovery and validation groups, a mediation 
analysis was used to measure the contribution of shape displacement of the hippocampus on the 
relationship between reward-related personality (loss aversion) and memory bias based on pain 
discrepancy scores. This effect was significantly mediated by left posterior hippocampal C1 shape 
(indirect pathway 95% CI: [-0.196,-0.022]; R2 = 0.074 of unique variance). Path a = effect of LAQ on 
mediator variable (hippocampal shape); path b = effect of mediator on pain memory discrepancy; path c = 
effect of LAQ on pain memory discrepancy (total effect); path c’ = effect of LAQ on pain memory after 
controlling for hippocampal shape (direct effect); path ab = amount of mediation produced by the 
hippocampal vertex displacement (indirect effect). * = p<0.05; ** = p<0.01; # = 0.05<p<0.10 (trending) 
 
 
Discussion   

 We identified psychometric, psychological, and neuroanatomical characteristics that underlie 

memory bias in self-reported intensity of chronic back pain. More than 70% of CBP patients exaggerated 

their pain memory by about 20% from experienced pain ratings, a bias that persisted many months after 

study completion. In accordance with Redelmeier and Kahneman’s [201] peak-end rule, experienced 

peak and average pain ratings, with ending mood ratings, explained more than 50% of the variance in 

pain memory. We also demonstrated that shape displacement in the left posterior hippocampus, C1, was 

related to the discrepancy between pain memory and pain experience. This shape displacement, in 

combination with the average experienced pain, explained nearly 60% of the variance in pain memory, a 

finding that was validated in a separate group of CBP. Importantly, the shape of C1 was invariant over 1 

year, unperturbed with development of chronic pain, and appeared to be independent from other likely 

confounds, including age, gender, duration of pain, short-term memory dysfunction, pain anxiety or 

catastrophizing, and generalized habits of exaggeration. Mediation analysis identified that C1 linked loss 



 183 
aversion personality characteristics to back pain memory bias. Thus, we not only reproduce previous 

psychometric results found in pain and mood ratings but also identify a hardwired biological substrate 

responsible for distortions in pain memories, expanding on the role of the hippocampal mechanisms in 

chronic pain.  

Our findings have important implications for understanding and treating pain. Given the reliance 

on self-reported numerical ratings of pain to influence the type and duration of treatment in chronic pain 

patients, our results emphasize that such retrospective measures are inaccurate and often are at least 

10-20% higher than the patients’ actual experience. Importantly, the magnitude of the discrepancy 

corresponds to thresholds often utilized in determining clinically meaningful interventions (~20% reduction 

in pain intensity). These results raise philosophical quandaries as to the relative significance of 

experience and memory, especially in clinical decision-making in pain management.  

In the field of pain, the peak-end rule has identified that humans do not simply sum their pain over 

time to report a totality of experience but instead average their worst painful moment with their most 

recent level of pain.  Replication of this memory shortcut in our participants’ pain ratings highlights its 

robustness as a heuristic strategy utilized across healthy individuals and people in acute or chronic pain. 

Furthermore, several studies have demonstrated how mood during a painful event can influence recalled 

discomfort [191]. Kent’s highly-cited study [197] showed that individuals who were highly anxious 

regarding dental examinations later rated their remembered pain as higher than experienced compared to 

individuals with lower anxiety; similar findings have also been reported in children [198]. Likewise, labor 

pain is retrospectively rated as less severe than was previously rated [190, 192-194], as is the pain of 

running a marathon [195], both of which are likely due to the impact of positive emotions at the end of 

each event.  Our results also match these previous findings, as pain was shown to be anti-correlated with 

mood, and the mood at the end of the rating period also accounted for a significant portion of the variance 

in the reported pain memory. Thus the peak-end rule for both pain and mood are present to various 

extents in the data presented here.  

The finding that a specific cluster on the surface of the left posterior hippocampus is associated 

with and predictive of memory discrepancy is novel. Although the structure and volume of the human 

hippocampus have been used to predict or significantly explain a variety of inter-individual differences, 
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including cognitive ability, psychiatric illnesses, and risk for chronic pain [45, 297, 298], this is the first 

time that the shape of the hippocampus has been utilized to predict memories of pain. The hippocampus 

can be subdivided functionally and structurally along the anterior-posterior (longitudinal) axis [299, 300], 

with distinctions made according to genetic expression, cell type patterns, and connectivity to other brain 

regions [301].  While the anterior hippocampus is more involved with emotional processing, the posterior 

hippocampus is primarily associated with conceptual or spatial memories, including recall of rules, 

contexts, language, and spatial navigation, although it is also more generally involved in learning, 

information processing, timing of repeated events, and memory retrieval and consolidation [301, 302]. 

Additionally, there is evidence that the posterior hippocampus’s cells are better able to track continuous 

changes in time, especially for repeated stimuli [52], which might contribute to its role in remembering 

elements of pain ratings. We used a reverse-inference term-based meta-analytic approach to capture 

best-associated words with each of the clusters on the left hippocampal surface (Neurosynth [303]).  The 

following words were associated with each of the clusters: C1: “encoding”, “retrieval”, “details”, and 

“episodic memory”; C2: “encoding” and “mild cognitive impairment (MCI)”; and C3: “emotion”, “amygdala”, 

“fear”, and “facial expression”. These associations substantiate previous findings indicating functional 

differentiation of the hippocampus, with rostral sites typically more involved in emotional processes while 

caudal sites instead engaged in the encoding and retrieval of memories. Our results suggest that anterior 

and posterior hippocampus contribute in opposite ways to memory discrepancy, the former exaggerating 

while the latter minimizing the correspondence between the pain experienced and its memory. The 

general surface area of the hippocampus is thought to reflect the migration, proliferation, differentiation, 

and targeting of various cells as part of the neurodevelopment process; outward displacements of the 

surface may then reflect enhanced intra- or extracellular connectivity of this region [304], whereas inward 

displacement may represent decreased connectivity due to abnormal development or perturbations to the 

area. However, it is still unclear exactly how structure (in this case, differences in surface morphology) 

dictates function, and further future research is needed in the topic. Here, shape displacement in posterior 

hippocampus was related to memory discrepancies for reward (money) and punishment (pain) and 

furthermore mediated the relationship between loss aversion personality traits and pain memory bias. 

Critically, deformations within the identified cluster remained stable across time for two separate 
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participant groups and did not significantly differ between controls or SBPp.  This suggests that the 

regional shape displacement seen in the posterior hippocampus cluster is hardwired and thus a 

deterministic individualized memory trait.  

The asymmetry of this shape displacement is noteworthy, as only the left hippocampus showed 

any relationship with pain memory discrepancy.  An accumulating body of evidence supports the notion 

that the hippocampus has hemispheric functional specialization, relatively preserved across species 

[305], indicating that this functional asymmetry interacts with its antero-posterior structural segregations to 

give rise to combined functional-structural specifications. For example, the left hippocampus is associated 

with verbal memory processes whereas the right is associated with more spatially-dependent memories 

[305]. Additionally, distribution of functional networks from the right and left hippocampus differ depending 

on location, with the right anterior and left posterior hippocampus exhibiting large, distributed functional 

networks, whereas the left anterior and right posterior segments are primarily confined to fronto-limbic 

networks [305]; and a longer and wider longitudinal axis in the left hippocampus significantly predicts 

working memory performance [304].  Regarding pain memories specifically, researchers investigating 

acute painful stimuli and associated memory of pain found that left hippocampal activity corresponded to 

remembering higher levels of pain, with no corresponding activity from the right side [306].  However, far 

more studies will be necessary to understand the role of hippocampal shape and laterality in chronic pain. 

From our results, we doubt that a patient’s bias in retrospective assessments is a reflection of a 

general tendency to exaggerate or catastrophize, due to the finding that other memories of the study were 

not biased in the same direction and to the fact that PCS, PSQ, and PASS were not correlated with 

discrepancy or shape displacement. Our results also suggest that the memory bias seen here is likely not 

specific to pain or negative memories, but instead might be more generalizable to highly salient or 

strongly valenced memories along a reward-punishment continuum.  We showed that memories of pain 

were anti-correlated with memories of monetary compensation received and that both biases were related 

to loss-aversion scores; furthermore, shape displacement of the posterior hippocampus mediated the 

effect of loss aversion personality traits on the extent of pain memory bias. While the relationship between 

loss aversion and memory of pain or reward is complex and not well understood, research has shown 

that people often underestimate not only the amount of money they earned in reward tasks, but also the 
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number of times they receive money, indicating that people downplay monetary gains in general [307]. 

Additionally, we have previously reported that CBP patients show aberrant behavioral loss aversion with 

increased gain sensitivity in a gambling paradigm [83], suggesting that loss aversion and the experience 

of pain are intimately linked through neurophysiological and psychosocial mechanisms. The extent to 

which experiences and memories in other domains are also embedded in similar neurobiology or 

personality traits remains unknown and a critical topic for future exploration. 
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CHAPTER 6: GENERAL DISCUSSION 

6.1 Summary of results 

 Here we show that clinically meaningful placebo analgesia in chronic back pain patients has 

identifiable neuroanatomical and personality traits, underlying neurophysiological bases, and specific ties 

to semantic language properties. Limbic volume asymmetry, region-specific gray mater density, and 

region-specific cortical thickness were all significantly different between responders and non-responders 

prior to treatment. Psychological traits related to interoceptive emotional awareness and emotional 

regulation were also shown to differ between responders from non-responders at baseline.  Resting state 

functional connectivity of the lateral frontal cortex with either the sensorimotor community or the PAG also 

distinguished the two groups. Additionally, language properties of 60 words of interest extracted from 

participants’ narratives in an exit interview were also able to differentiate responders from non-responders 

at the end of the study, with the semantic relationships of 11 words being significantly different between 

groups.  

We further demonstrate that placebo propensity in an RCT can be predicted before 

randomization using multivariable models combining neuroimaging data with self-report measures; the 

two resting state functional connections identified (frontal-S1M1 & frontal-PAG), along with the two 

questionnaire subscales (MAIA-emotion & ERQ-suppress), together explained 71% of the total variance 

in response and classified the two groups with 84% accuracy. Likewise, we showed that placebo 

propensity can also be explained using a combination of words semantically related to the exit interview: 

the semantic similarity of patient narratives to “awareness”, “force”, “stigma”, and “magnify” explained 

almost 68% of the variance in placebo response and was also over 80% accurate in classifying 

responders and non-responders when validating the model.      

Finally, we reveal that the memory of chronic pain is systematically biased such that our patients 

reported more pain than what they actually experienced in the study.  This discrepancy was driven by a 

combination of factors, including key components of momentary pain and mood, the morphometry of the 

hippocampus, and psychological traits related to reward learning.  We show that the shape of the left 

posterior hippocampus, in combination with the psychometric properties of daily rated pain, explain over 
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50% of the variance in the reported memory of pain, a result which was reproduced and validated in a 

separate cohort of CBP patients.  Moreover, this bias is stable in time, independent of health status and 

pain duration, and unrelated to abnormal short-term memory or other kinds of exaggeration tendencies.  

Interestingly, we also show that pain memory bias is anti-correlated with money memory bias and that 

both biases correlated to reported loss aversion personality traits, suggesting that our results might 

generalize to either highly salient memories or memories along a punishment-reward spectrum.  Finally, 

we show that hippocampal shape significantly mediates the relationship between loss averse personality 

and pain memory bias, further solidifying its role in the mismatch between experienced and remembered 

pain. 

All of these results have significant implications for the medical and scientific communities, as 

well as key limitations that warrant future investigation. Both of these topics are discussed below. 

 

6.2 Scientific, clinical, and ethical impacts 

6.2.1. Study 1 

As discussed in the study-specific discussion, our results have important implications at a 

scientific and theoretical level by focusing in on mechanistic approaches to understanding placebo and 

propensity to respond to a placebo.  However, they also have significant potential for clinical utility in at 

least 3 ways.  First is the idea that we might be able to harness the power of placebos for medical use in 

patients as part of daily practice.  For example, if we had a model that could predict with high accuracy 

that a person would respond to a placebo, doctors could prescribe them a placebo for a certain duration 

of time.  This placebo could take whatever form the patient would feel the most comfortable with (e.g., a 

pill, a patch, an injection, yoga, meditation, etc) and it could be manipulated to mimic dose effects (e.g. to 

take 2 pills instead of 1 or to take a pill twice a day instead of once). The implications of this are huge – 

such practices could substantially aid patients by minimizing the number of harmful side effects 

experienced and lowering the cost of treatment all while obtaining meaningful clinical amelioration. In the 

instances where physicians may feel uncomfortable prescribing “only a sugar pill” (more on this below), 

conditioning paradigms in chronic pain may also prove to be vitally important in clinical placebo utility, 

such that placebos could be given in combination with active treatments to influence their effects. In a 
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previous study, the administration of a placebo has acted as a dose-extender of a drug effect that was 

dependent upon the treatment originally given (the conditioning drug).  For example, a placebo provided 

after repeated administration of non-opioid drugs such as NSAIDS, like aspirin and Ketorolac, produces 

aspirin- or Ketorolac-like effects, respectively. Likewise, a placebo given after morphine conditioning 

produces opioid-like effects including not only the reduction of pain but also morphine-like induced 

adverse events and nocebo responses [115]. Since this initial study, the phenomenon has also been 

replicated in CB1 receptor antagonists including Rimonabant [101].  In these cases, it’s thought that 

expectation plays a sort of “switch” or “gate controller”, modifying pathways and selectively activating 

either endogenous opioid or cannabinoid systems depending upon prior drug exposure[101].  Importantly, 

it shows that placebos can be potent analgesics on their own or with other drugs. These results point to a 

learning effect and a powerful self-manipulation, where the brain and mind is recreating drug effects for its 

own benefit based on what it has expected and learned).  They also highlight the plasticity of treatment 

response that go beyond just mechanisms of resilience; instead this flexibility can be channeled and 

trained to focus on specific kinds of self-preservation modes.  This thesis provides the scientific 

foundation to begin such endeavors. 

Second, identifying people with a high likelihood to respond to placebo would be extremely 

beneficial in clinical trials and investigations of new pain medications.   As these studies are currently 

practiced, participants are randomized into either an active treatment group or a placebo treatment group, 

with placebo treatment viewed as the gold standard control.  However, based on the results here and 

studies reported elsewhere, we could imagine that up to 50% of people assigned to active treatment 

might be potential placebo responders, meaning that they could respond to both an inactive or active 

treatment.  This suggests that up to 50% of the responses in active treatment groups are actually the 

equivalent of placebo responses or some sort of interaction between active and placebo responses [139]. 

Given that there are currently no effective medications for treating chronic pain, it would appear that 

efficacy of drugs studied in clinical trials decreases after clinical trials when tested in the real world.  This 

implies that efficacy measurements in clinical trials are inaccurate, biased, or both. Outside of 

contributions from things like fluctuating baseline pain levels [137] or report bias, one possible source of 

error or bias could be the lack of consideration for these placebo responders in the active treatment arm, 
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who essentially guarantee that the drug will work in more people.  If we could use a predictive model to 

screen participants before these trials and classify the likelihood of placebo propensity, we might be able 

to remove them before randomization so that they don’t receive treatment.  This has the potential to 

drastically improve accuracy of drug efficacy assessments in these trials.  

At the same time, anywhere from 36 to 52% of drugs tested (depending on the condition) fail to 

show superiority to a placebo[308], and this figure increases to 90% for drugs targeting neuropathic and 

cancer pain specifically [309].  The reason for this isn’t necessarily because the drugs themselves are 

getting worse; instead, as reported previously in Chapter 1, the response to sham treatments is getting 

stronger, making it hard to prove a drug is more advantageous to a placebo.   This leads us to the third 

potential contribution of Study 1’s results – if we can identify reliable psychological components 

governing and predictive of the placebo effect, we may be able to change the placebo response in clinical 

trials, perhaps by manipulating it either in the treatment arm so as to have a null effect or in the placebo 

arm to make the effects lower.   

But with all of this clinical potential, we must also consider the ethical implications of the above 

possibilities.  Regarding prescribing placebos or using them to augment active treatment effects, there 

are concerns about possible harm and consent.  The Hippocratic Oath is a declaration made by future 

practicing physicians during their first year of medical school, and it covers the codes of conduct and 

bioethical responsibilities expected of doctors in reference to their patients. As a part of this covenant, 

physicians pledge to use all measures necessary to benefit a patient and to reject harm and avoid injury.  

They also promise to simultaneously avoid overtreatment and therapeutic nihilism, and state that they will 

remember they are treating more than a symptom and instead are caring for a sick person whose illness 

affects others and the economy (entities that their responsibilities as physicians are also related to). 

Although the placebo effect has been shown to be therapeutically beneficial, at levels that sometimes 

exceed the standard of care, many physicians feel as if administering placebos to patients is unethical as 

it might delay patients potent active medications (thus imposing potential harm) and it could involve 

dishonesty and a person’s right to know and decide what treatment is best for them (thus breaching 

ideals of informed consent and autonomy). 
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Let’s unpack these concerns. As discussed in Chapter 1, placebos are often seen at best as 

manipulators of psychology (but not pathology) and at worst as shams with little to no benefit. With this 

mindset, it is easy to see why some clinicians may feel uncomfortable prescribing placebos in place of 

medicinal treatments. Not only could they be harmful if they don’t help the patient, in this case possibly 

delaying analgesia and causing prolonged suffering, but they also could be viewed as promoting (instead 

of combating) therapeutic nihilism, the idea that cures do more harm than good and that people should be 

encouraged to let the body heal itself [310].  Unfortunately, there are no real statistics about how often 

placebos work or don’t work for participants – all we know is what I have already reported in this thesis 

(namely the placebos can achieve clinically meaningful analgesia and that placebo effects are rising in 

clinical trials). As for encouraging the body to heal itself, I am not convinced that this is necessarily a 

harmful attitude when promoted under the proper conditions. Of course, some diseases or symptoms do 

not seem to be good candidates for placebo interventions or at the very least less subject to as potent 

placebo effects as those seen in pain. Antibiotics for serious bacterial infections or chemotherapy for 

stage 2 and 3 cancers, for example, would not warrant ethical administration of placebo[134, 135], as 

these pathologies are life-threatening, have a higher likelihood of responding well to current treatments, 

and whose benefits likely outweigh the adverse events experienced.  In contrast, chronic pain 

medications are not guaranteed to work and when they do, many only have short-term efficacy and/or 

serious side effects including dependency, thus questioning whether the limited benefits are greater than 

the risks.  In fact, using placebos might help more than they hurt. For example, if placebos were 

administered in combination with stronger analgesics through conditioning paradigms, they would extend 

beneficial effects while simultaneously lowering harmful ones, such as addiction. Additionally, it might be 

possible that intermittent exposure to conditioned placebo responses could lower or help decrease 

tolerance to certain prescription drugs, since they would not be in a person’s system at all times. 

Furthermore, we are already experiencing an epidemic of over-treatment and unnecessary medical care 

in the US. Looking at Medicare patients alone, as many as 42% of them per year receive at least one of 

26 tests or treatments deemed useless or even harmful by a number of scientific and professional 

organizations[311]. Unnecessary care like this was estimated by the IoM to account for 30% of healthcare 

spending in 2010, equating to over 750 billion dollars a year (more than the nation’s budget for K-12 
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education) [311]. There is evidence that a good chunk of these costs comes in relationship to pain 

treatments (medicinal or otherwise).  For instance, one study found that for the 8 years between 1997 and 

2005, national health care expenditures for back pain patients specifically increased by almost two thirds 

and at the same time, population surveys showed no improvement in the amount of pain reported by 

these patients [311]. Under this light, prescribing a placebo as a first try or as a compliment to already-

existing medications appears to be ethically responsible, limiting deleterious health costs (physical and 

monetary) for the benefit of the patient and essentially promoting many of the aims of the Hippocratic oath 

(e.g., treating illness, combating overtreatment, and promoting the reduction of national economic 

burdens).    

Regarding issues of autonomy, it is of course critical and necessary that informed consent would 

take place prior to usage of placebos in medical care. Currently, as many as 50% of practicing physicians 

report routinely prescribe placebos (or drugs that are viewed to be essentially similar to placebos, such as 

over-the-counter headache medicines and vitamins) without the knowledge of their patients [312, 313]. 

This is troubling, because without informed consent, trust in the medical system could be undermined, the 

patient-physician relationship compromised, and potential harm (including nocebo effects) could occur 

[314]. However, this does not mean that placebos should not be prescribed, nor does it necessarily mean 

that placebo usage would have to be limited to open-label (not deceptive and not concealed). Instead, 

placebos could be effective if the patient understands what a placebo is, knows it’s possible they might 

receive one, agrees to this possibility, but cannot identify it and does not know the precise timing of its 

use.  A physician could enlist patients’ cooperation by explaining why using a placebo might be of benefit 

to the patient (e.g., obtain pain relief with less side effects and/or evaluate and compare effects of 

different medications) and obtain evidence of informed consent prior to using placebos.  Such 

documentation could be built into already existing “medication contracts” or “pain treatment agreements” 

that pain physicians currently use to monitor patients use of certain drug classes, or it could be added as 

a new document as part of a physician’s practice so as to provide evidence of these discussions.  

More research is needed to investigate whether placebos work better when used covertly and 

under methods of deception or whether they are just as if not more efficient with honest and open 

administration. In general, open-label drugs tend to show stronger effects than concealed label drugs in a 
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variety of ailments, including pain relief. A 2001 study by Amanzio and colleagues [315] analyzed the 

effects of covert and overt administration of four widely-used pain killers (each with distinct mechanisms 

of action). Across all 4 medications, they found that the analgesic dose needed to reduce pain reports by 

50% was higher with covert infusions than in overt infusions, proving not only how powerful the 

reinforcing effects of expectation can be, but also showing how generalizable these affects are, as they 

occurred across multiple classes of drugs [315].  Regarding placebo effects specifically, there is quite a 

bit of evidence that open-label placebos also work (meaning that a subset of individuals will still get relief 

even if they know they are receiving an inactive medication). One study showed that open-label placebos 

are superior to no-treatment in a trial monitoring patients with irritable bowel syndrome (IBS) [130, 155, 

316], and another very recent indicated that adding open-label placebo to back pain participant’s usual 

treatment decreased both pain and disability reports more than the treatment alone study [317]. Thus in 

some instances where placebos might be used clinically, consent might not even be an issue. Therefore, 

due to the prevalence of placebos, increasing evidence of their effectiveness, and physician’s current use 

of them in practice, it’s not only implausible to dismiss placebo responses as irrelevant to health, 

pathology, and recovery but in many cases, unethical to do so.  

Of course, there are also ethical and social considerations to keep in mind regarding placebo 

responder identification in clinical trials.  Take, for example, the idea of creating screening processes that 

involve similar predictive models identifying people with high likelihood of responding to placebo.  Some 

might argue that we have an ethical responsibility of eliminating these individuals from trials or at the very 

least from active treatment groups so as to make drug efficacy assessments more accurate (which would 

benefit society as a whole, including pain patients).  However, some might also question whether we have 

the right to do this and essentially deny these individuals access to pain relief.   The other idea presented 

above was influencing responses to essentially make placebo effects null across all trial arms.  Again, this 

would make trials more accurate while also possibly denying a certain subset of participants pain relief. 

Moreover, the idea that we could identify key parts of individual’s psychology and manipulate their body’s 

ability to respond or not to a medication makes some uneasy – again, do we have this right?  In this case, 

one could argue that we could also exploit placebo responses in both directions depending on context, 

therefore providing increased pain relief to a subset of individuals too. Additionally, we regularly use 
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medicine or procedures to change what the body does, even lower it’s actions (e.g., Metformin is a 

diabetes medication that reduces the body’s natural ability to elevate blood sugar); what makes 

manipulating the mind that different at the end of the day than manipulating other aspects of the body?  

And then there are other considerations that we simply do not have time to cover here.  As one 

example, if placebos are eventually accepted as possible treatments, how much would they cost (how 

much could a drug company ethically charge for an inactive medication)?  As another example, if we can 

predict future responders, would there be any consequences from an insurance stand-point (e.g., if this 

information was provided to insurance companies, could they deny patients from certain, more expensive 

or brand-name medications or could they deny patients certain classes of medications all together?). We 

are still years away from understanding the placebo effect in its totality, and even farther away from really 

utilizing or relying on these predictive methods for real world clinical applications. However, all of these 

implications are important to think about as they might significantly impact how we run clinical trials and 

how we practice medicine. 

 

6.2.2. Study 2 

The results of this study are important for both practical and clinical reasons. Given that semantic 

language properties correlated with questionnaires and brain parameters, it may be possible to use 

language as a tool either in combination with these methods or as a reasonable substitute for when they 

aren’t feasible for monetary or time-related reasons (such as fMRI).  For example, the cost of an hour of 

scan time can be upwards of $500, and analysis of imaging data, while semi-automated depending upon 

the stage, still relies on trained human eyes to visually identify and correct quality control mistakes, as 

well as troubleshoot and ultimately make decisions about the data as it’s analyzed. The time commitment 

involved is another important factor – in addition to training a tech or students to run the scanner, one 

must also wait for preprocessing and quality control of the images, procedures which can take hours to 

weeks to finish; furthermore, some analyses may also take days to run and complete depending upon 

computational resources and infrastructure.  Monetary and time constraints like these simply aren’t 

realistic for most clinical decisions regarding pain, as patients expect to have a treatment regimen by the 

end of a visit and don’t want to pay additional out-of-pocket medical costs.  These constraints are also 
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certainly not sensible in clinical trials that are trying to recruit as many participants as possible in the 

shortest amount of time.   In contrast, the analyses presented here can all eventually be easily 

automated, and other than participant compensation or transcription fees, the methods for capturing the 

data are essentially free.  Furthermore, there is no longer an issue of time. After the initial corpus 

dictionaries have been developed and the scripts which perform LSA have been tested and agreed upon, 

all that is left to do is to upload the interviews and press a button to start the preprocessing and analysis, 

a process that can take seconds to minutes.  Moreover, since physicians and clinical coordinators must 

already take patient medical histories as part of their jobs, a short interview could easily be worked into 

this daily practice almost seamlessly.  While more investigation is needed to be able to say which 

questions in Study 2’s interview were the most important (e.g., which sections had the most words that 

were semantically similar to “awareness”, “force”, “stigma”, and “magnify”), we might be able to reduce 

the interviews to one- or two-questions that would be under 5 minutes, something convenient from both a 

physician and an RCT perspective. 

The ethical implications of using language to detect illness or propensity to respond to certain 

drugs are currently unknown and under-researched.  A simple Google search for “ethics of semantic 

language analysis” provides zero meaningful hits; in contrast, “ethics of neuroscience” immediately 

produces numerous results about neuroethics, social and legal issues regarding using neuroimaging data 

in courtrooms, and ethical implications about being able to “read minds”. Thus it is still too early to be able 

to gage the social and ethical impact of being able to predict future behaviors or diseases from linguistic 

analyses.  However, one must wonder about issues of privacy and consent.  For example, would it be 

possible to analyze the social media posts (from Twitter or Facebook) of potential clinical trial participants 

to determine placebo response propensity prior to randomization?  While these data sources are public, 

is it ethical for coordinators to collect this information? Additionally, since language represents our internal 

private thoughts, which we think we can hide through certain words or avoiding certain topics of 

conversation, how “informed” is informed consent – participants may agree to an interview and might 

vaguely understand what the interview is used for, but do they really understand the extent to which 

language might inform researchers about their biology or future actions?    
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Language analyses also raise questions about the importance of subjectivity and may create 

ethical dilemmas when participants’ reported experience does not match data obtained with other 

outcomes.  For example, we already know from Study 3 that memories of previous pain are inaccurate 

and mismatched with the actual pain or analgesia experienced in the moment. In the interviews used in 

Study 2, participants randomized to a treatment group were asked about the study medication – did they 

think they received active treatment or placebo and why? What if these retrospective assessments 

revealed by the interview do not match the daily pain rating data and in turn do not match the permutation 

stratification used?  Which is the more appropriate or correct “responder” – the person reporting it worked 

(even if their pain intensity and mood remained the same for the duration of the trial) or the person who 

said it didn’t work (whose pain intensity decreased by over 20% during one of the treatment periods)?  

Additionally, what if semantic language analyses predict response propensity, correlate with pain relief 

and personality scores, but do not match the opinion or report of the patient?  How will we interpret these 

results? Are our metrics flawed (e.g., is intensity not the best metric to capture placebo analgesia or 

meaningful response) or is the patient lying, and if the latter, is it ethically permissible to question 

someone’s pain experience, which at the end of the day is ultimately subjective and unknowable? Will 

language analyses and interviews create new questions and philosophical debates along these lines? Or 

instead, will such analyses finally be able to bridge methodological gaps between outcome measures, 

creating links between perceived disability, quality of life, and pain intensity where there were none before 

to better explain such mismatches?  Only time will be able to tell.  

 

6.2.3. Study 3 

Our findings have important implications for understanding and treating pain in clinical settings. 

Given the reliance on self-reported numerical ratings of pain to influence the type and duration of 

treatment in chronic pain patients, our results emphasize that these retrospective measures are 

inaccurate and often at least 1-2 points higher on a VAS scale than what patients actually experienced. 

Not only was this bias present in the vast majority of patients, but additionally, the magnitude of the 

discrepancy corresponded to thresholds often utilized in determining clinically meaningful interventions 

(~20% reduction in pain intensity). These results suggest that using alternative measures of pain intensity 
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(such as daily ratings) might provide additional and important information when evaluating and caring for 

pain patients. Additionally, we show that patients’ memories of pain, while flawed, are correlated to their 

average actual pain. Moreover, we also show that their memories are influenced not only by a well-

established cognitive bias present in the majority of people but also by a distinct difference in 

hippocampal anatomy that is not influenced by other confounds, indicating that this bias is neurologically 

determined.  These findings thus underscore the ethical obligation of physicians and clinical researchers 

to trust their patients’ and participants’ recalled pain experiences while understanding that they might be 

slightly higher than experienced.  Our results also highlight a more philosophical question, beckoning 

investigators and clinicians alike to ask themselves just who are we trying to treat or trying to study – the 

person experiencing the pain or the person who will look back on this pain and evaluate it? Ethically 

speaking, do we try to make spontaneous pain lower (even if the memory of it will still be higher) or do we 

try to make the memory of the pain lower (in turn possibly causing people more experienced pain)?  

Critically, our model combining hippocampus morphometry and pain ratings was able to 

accurately predict the intensity of retrospective recalled pain, representing a potential tool for future 

clinical use, such as pre-selecting patients with high self-report accuracy for participating in RCTs in order 

to minimize bias in efficacy measurements. Furthermore, better understanding the phenomenon of over-

estimated pain recall in chronic pain populations might impact decision-making in other clinical settings, 

from critical events like treatment commencement or dosage amount, to more simple applications such as 

evaluating inclusion and exclusion criteria based on self-reported pain-ratings. 

 

6.3 Potential limitations of the current studies 

6.3.1. Study 1: 

 In this study, we show that there are anatomical, psychological, and functional brain connections 

that predispose a subset of CBP patients to respond to placebo, and furthermore, that there are some 

functional biomarkers related to pain and sensation which appear more state-like and others related to 

personality that seem more state-like.  Moreover, we present various multi-parameter brain, 

questionnaire, and combination models that are able to explain large amounts of variance in placebo 

response and predict this response with relatively high levels of accuracy. However, there were quite a 
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few things that we didn’t do or didn’t look at that might be seen as potential limitations to the trial or 

analyses. First, due to a large number of screen failures, we ended up losing a lot of potential participants 

and thus our numbers were not large enough to set aside a validation data set to directly test the models 

built.  Therefore, we do not yet know how well they will perform in a separate cohort.  Because we mixed 

responders from treatment 1 and treatment 2, we do not know the effects of time and learning on 

behavior, nor do we understand what qualities make someone consistently respond to placebo, as we 

were only interested in general predictors and thus did not directly test stability of response in time.  

Importantly and related, we have no idea how generalizable our results are outside of our study – are 

these models specific to CBP or will they also apply to other chronic pain conditions, and are they specific 

to kind of ritual or treatment used (a pill) or will they also apply to additional routes of treatment 

administration or kinds of treatment (injections or patches)?  Since we didn’t test generalizability, it is also 

unknown how much the placebo effects seen here are able to be manipulated by changing aspects of the 

study (like color of the pills, number of scans, or wearing white lab coats).  

Additionally, while we included a proper no-treatment arm as an important and useful control, we 

could have randomized at least twice as many people into this arm so that our numbers of responders 

and non-responders would have been better matched to the numbers of potential responders and non-

responders who didn’t receive treatment. Additionally, the no-treatment arm could have served as a 

validation set if would have later provided them with placebo pills and followed them for at least two 

weeks (something we did not do here).  Another issue related to the no-treatment group was that the 

research team was aware that they were not receiving treatment, meaning that we could have 

inadvertently introduced bias prior to analysis in how we interacted with these individuals; for these 

reasons, if I were to do it again, I would have had an independent assessor not involved in any other 

aspects of the study administer medications and collect adverse events so that the rest of the study staff 

could have remained blinded.  I also think this would have help made the environment better controlled in 

general, with certain people having certain roles, thus increasing the consistency of the study activities 

between subjects.  

Fortunately, many of the issues mentioned above will be addressed either in future analyses of 

the data or in a second phase of data collection (explained below in future directions).  
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6.3.2. Study 2: 

 In this study, we used exit interviews to study the language of CBP patients to test if how they 

talked about their pain was related to whether or not they responded to a placebo while in the trial. We 

found that the semantic similarity of 11 words with all participants’ interviews significantly differentiated 

those who responded from those who did not, 4 of which explained almost 70% of variance in the 

response.  6 factors created from words of interest were also related to response, correlating with 

previously seen psychological and biological markers of propensity and identifying additional neural 

signatures of response from a scan that occurred 6 weeks prior to the interview. While these results 

suggest that semantic language analysis can be a powerful tool, as this was an initial investigation of this 

technique, our study had limitations (some logistical and others more philosophical). 

 First, it’s important to reiterate that our results are inconclusive in that we completed the 

interviews at the end of the study.  While we had good reason to do this (see Chapter 2), this means that 

we don’t know if our findings represent predictive elements of language (that would also be present to 

some extent at the start of the study before treatment commencement) or if they are consequences of the 

placebo effect (that only happen after treatment and response). Another limitation is that we only studied 

language cross-sectionally, meaning that we don’t know if these language parameters are binary (i.e., 

someone either has and displays these properties or does not) or if they are instead dynamic and 

fluctuate as a result of the amount of pain or analgesia someone is experiencing.  While the factors did 

not correlate to the amount of pain participants reported at the final visit, this doesn’t mean that they didn’t 

change throughout the study as a function of the placebo effect (or lack thereof). Additionally, ldue to our 

relatively small sample size and limited clinical population, we do not know how generalizable our results 

are, since we did not set aside some of the data for validation purposes (like Study 1, here again the no 

treatment group would have been immensely powerful if we gave them placebo pills after study 

completion). Further research will be needed to test the interview and semantic language factors on new 

datasets, including placebo response under different rituals or conditions, as well as in different pain 

populations (such as OA or fibromyalgia patients). Likewise, we would need to investigate whether the 

results would change as a function of native language usage or cultural upbringing, in addition to pain 
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condition or trial contexts. This latter limitation may not be as much of a concern, however, given that a 

recent study has shown that semantic meaning is stored in specific neural patterns that are relatively 

consistent across individuals despite differences in experiences, brain activity, cultural identity, and 

education [268]. However, some research suggests that pain language in particular may show sensitivity 

to these dimension; previous work has shown that there are clear gender differences in pain language in 

a recalled pain narrative task [175, 318], and that emotional discourses show complex differences across 

cultures [319]. 

Second, many of the analyses were initially driven by relatively subjective decisions. Although 

choices of the 60 words were determined apriori from the literature and results of Study 1, at the end of 

the day, they were subjectively deemed as important out of nearly 80,000 possible words; not only might 

these decisions be biased (causing the resulting models to possibly overestimate the amount of variance 

explained or accuracy measured), but there may have been stronger words that would have better 

stratified responders from non-responders that were never considered. Instead, we could have 

approached the data with a more “black-box” methodology where we either employed machine learning 

to find patterns in the data without restricted inputs or taken the brain biomarkers (functional and 

anatomical) and used them to search the semantic space for language differences. The two hypothesis-

free methods (LSA and “blackbox” approach) that were attempted in this study did not provide statistically 

robust differentiation between groups.  This means that we will likely need to better hone our data-driven 

approaches in the future, as well as perhaps implement additional preprocessing and cleaning steps to 

further reduce the remaining sources of noise in our data, due to things like heterogeneity of the 

population, cultural differences, over-use of colloquialisms, or large variance in responses and 

experiences.   Additionally, we might also consider using a different corpus or combination of corpora 

instead of TASA in future LSA attempts; for instance, we might be able to create our own corpus 

consisting of pain-specific journal articles, books, ethnographies, and/or medical records as a starting 

point (Lascaratou), or use a dictionary that accounts for polysemy (such as Wordnet) in order to better 

understand our findings (without this, we can’t determine if the word “back” means body part, backwards, 

or previous in time, resulting in vague or confusing interpretations)[320]. 

While quantitative approaches like these are more efficient and perhaps less biased overall then 
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other methods, they can sometimes lead to “fishing expeditions” where one can look for and often find 

any answer in the data, even though it might be meaningless. Along these lines, we could have utilized a 

qualitative approach as a starting point for data analysis to narrow the focus in a more systematic way.  

For example, we could have coded the data to identify important themes or patterns and let these results 

inform the future quantitative analyses. This kind of method is rooted within grounded theory, which 

provides a list of flexible strategies for focusing and expediting data collection and analysis [321]. These 

strategies include simultaneously collecting and analyzing data (so that each can inform one another), 

pursuing emergent themes early on in analysis, constructing categories that explain and synthesize social 

and cognitive processes in the data, and integrating findings into a framework that specifies the causes, 

conditions, and consequences of the studied phenomenon [321]. Additionally, we really have no idea 

what language parameters are distinct or important in this participant cohort at baseline.  It would be 

pertinent to first identify how CBP patients differ from healthy pain-free controls in their language 

parameters and from this information, then investigate how these parameters change as a function of 

placebo response.  Such an analysis could be done with a combination of qualitative and quantitative 

approaches.   

Third, finally, and perhaps most importantly, while language has been used to study various 

pathologies and personalities prior to us investigating placebo analgesia, the assumption that language 

can be used to study pain in the first place might need additional consideration. Most feeling-states are 

difficult to express at baseline, and this is something that is not unique to the feeling of pain as people 

generally struggle to either translate strong sensations into words (e.g., parental love, death of someone 

close to them, or experience of an orgasm) or have difficulty using language to adequately express their 

emotions, thus relying on an overuse of metaphors or recycled clichés.  However, given that pain is both 

a physical and emotional state, the failure of language may be more apparent in the context of pain, and 

“painful bodies might be uniquely and especially indisposed to acts of communication” [249]. 

 Virginia Woolf once argued that there was “a poverty of language” with regards to pain, commenting that: 

“English, which can express the thought of Hamlet and the tragedy of Lear, has no words 
for the shiver and the headache…The merest schoolgirl, when she falls in love, has 
Shakespeare and Keats to speak her mind for her, but let a sufferer try to describe a pain 
in his head to a doctor and language at one runs dry.” [249]  
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This deficiency in pain language is due, in part, to the fact that talking about pain has both social 

and psychological implications and consequences, both of which may constrain the way that people talk 

about their experiences (e.g., to downplay or exaggerate, depending upon the context). Pain language is, 

like its subject, profoundly socially alienating. When experiencing a chronic illness, acts of communicating 

pain may be emotionally painful in and of themselves, and there is always the risk that talking about how 

someone is suffering may be harmful and profoundly depressing instead of helpful or nurturing [171]. 

Although some people like telling their pain stories, many often seek solitude and silence instead of 

talking, therefore making pain a secret; similarly, some cultures actively discourage talking about suffering 

as complaining is seen as rude or a sign of weakness.  In addition, pain words are, for the most part, 

inherently internally focused since it is such a private and subjective experience.  This makes pain 

language also hard to communicate, since outside of acute pain stories (like burning a finger on the 

stove, stubbing a toe, or getting papercut), many people have not experienced prolonged pain and thus 

can only rely on words to guess at what a person is experiencing, even if those words do not give justice 

to this experience.  This lack of previous experience with chronic pain or illness can in turn contribute to 

lack of empathy from listeners, whether they are family members or physicians. As Elaine Scarry wrote, 

“To have pain is to have certainty, to hear about pain is to have doubt” [322].  Because pain is un-

sharable in this way, language ultimately cannot capture its essence.   Moreover, there is no specificity of 

words to describe pain qualities outside of academic or research endeavors (like the MPQ) and no 

general consistently between stories, as everyone’s experience is different (both medically and culturally).  

Some patients may describe neuropathic pain as “burning”, others as “tingling”, and others as “shooting” 

without consensus, and for every person who speaks of “flames”, there are 5 others for whom “it just 

hurts”.  This lack of reliable words can in turn cause many physicians or loved ones to look at chronic pain 

patients as “unreliable narrators” [322], further contributing to unrelieved suffering.  

 In addition to social barriers and an overall lack of richness or consistency in pain words, chronic 

pain often either does not always allow for language to occur or stops language altogether. This presents 

another potential problem when using interviews to study or predict pain behaviors. One way that chronic 

pain makes pain stories untellable is that they give no space or time for the person suffering to reflect 

upon their pain; instead the pain is immediate, continuously present, and extremely distracting, which 
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makes thinking about it or talking about it exhausting and difficult [168, 170]. Additionally, people often 

feel a disconnection between their mind and their body that is in pain (“what is this thing and why is it 

betraying me?”) [290], and this in turn makes people want to ignore their bodies and not focus on their 

pain, again repressing language. Furthermore, “physical pain does not simply resist language but actively 

destroys it” [322]. This means that pain might take away one’s ability to communicate in written or typed 

form (such as in rheumatioid arthritis), or it might be so intense at a given moment that it literally takes 

one’s breath way. When someone’s hurt and in incredible pain, one often witnesses language being 

destroyed; patients may utter a monosyllable or cry, and words are replaced with groans and moans, 

winces or screams.  The more intense or present the pain, the more we resort to physical or basic 

communication as opposed to verbal or written communication to express our pain (meaning that 

interviews might not always catch these elements of the pain experience). 

   These limitations highlight how early we are in the study of language analytics and how much 

more there is to trouble shoot and consider in study and/or interview designs, especially in regards to the 

topic of pain.  However, this doe not mean that language analyses will be in vain, nor does it mean that 

the findings presented here are less important.  Instead, our results demonstrate the potential utility of 

language as a tool for quantifying pain and analgesia, as well as predicting future complex behaviors.  

Moreover, these findings also show the power of combining multiple methods together in one study, 

where each method informs the other.  This is particularly true with language analyses that aim at 

understanding the meaning of passages or the content of narratives.  Identifying content is important, but 

this by itself does not explain why this content is there in the first place; such questions can only be 

answered by also including data and analyses from biological sciences, psychology, and other social 

sciences to more fully capture the physiological and social mechanisms underlying semantics of language 

and the pain experience.  

 

6.3.3. Study 3: 

In this study, we show that pain memory bias in chronic pain patients is determined by specific 

properties of their daily experience in combination with the shape of their left hippocampus.  Because this 

bias is stable in time and because hippocampal morphology does not change following the development 
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of chronic pain, we argue that this kind of discrepancy is trait-like and possibly generalizable to other 

kinds of memories regarding aversive and rewarding stimuli. However, because we lack a healthy control 

group with similar recall assessments (for example, of previous monetary compensation), we cannot 

definitively say that this bias is not somehow affected by the presence of chronic pain. As discussed in 

this thesis, the lived experience of being in long-term, persistent pain not only affects the functional 

circuitry and anatomy of the brain but also results in accompanying changes in perception, cognition, and 

behavior. It is possible that having chronic pain further increases the direction or magnitude of pain 

discrepancy compared to that of otherwise healthy individuals, for example.  A previous study by Tasmuth 

and colleagues [323] found that individuals who developed chronic pain after breast cancer surgery 

ended up reported significantly higher memories of post-operative pain than individuals who remained 

pain free, begging the question of whether increased post-surgical pain can lead to chronicity or whether 

instead chronic pain results in an increased tendency to overestimate past painful experiences. Another 

study showed that while most chronic pain participants displayed an overestimated pain memory, the 

extent of this bias was dependent on the condition, with cervical and low back pain patients being more 

accurate in their recall than individuals with chronic headaches or abdominal pain [207].  Therefore, the 

idea that chronic pain might still contribute uniquely to memory distortion is something we need to keep in 

mind. 

Another possible limitation in Study 3 was that we did not consider how motivation might play a 

role in the memory bias seen in our study, something that should be considered. Incentives for individuals 

with chronic pain may be different than those of pain-free participants, especially in the context of a 

clinical trial involving treatment for pain, and therefore differences in motivations may influence reported 

memory of pain.  While the present paper only presents data from the initial first two weeks of a clinical 

trial, many of these participants continued in the study and went on to be randomized into a no-treatment, 

placebo treatment, and active treatment group (Study 1).  Although the study was blinded, a subset of 

participants may have, through hope or therapeutic misconception, believed that reporting higher pain 

than what they actually experienced might lead to an increased probability of being treated. Likewise, 

since we collected recalled pain measurements for the duration of the study, some participants may have 

desired to please the researcher or may have worried that their time in the study or future studies might 
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be negatively impacted if they didn’t report analgesia, opting to report lower pain than what they actually 

experienced later in the study (as an example, see [324]). The finding that the extent and direction of 

memory bias was stable around a year after the study suggests that neither of these things happened.  

However, we cannot rule-out the possibility that in addition to recall bias, there may also have been a 

response or report bias that interacted with participants’ memories to influence the magnitude or direction 

of discrepancy. We use the terms response and report here to stress that while a participant’s recall of 

their pain may already be unconsciously biased (from factors like peak pain, average pain, and ending 

mood), this memory may go through additional downstream, more conscious filters before actually being 

reported to study staff. Because of this, discrepancy scores could be a mix of multiple kinds of biases, an 

idea that we did not directly test here but could explore in the future. 

 

6.4 Future directions and concluding remarks 

 We plan on further exploring and expanding upon the results of all three studies in the near 

future. For Study 1, neuroimaging data will next be studied longitudinally to explore how the networks 

identified change in time with response to placebo.  At this time, we will also be able to further 

differentiate types of participants, moving beyond responder and non-responders to also include early 

responders (treatment 1), late responders (treatment 2), and consistent responders (those whose pain 

decreases or remains down for both treatment periods).  This additional differentiation will allow aid in 

potentially identifying additional anatomical and functional mechanisms behind response reliability and 

stability. Moreover, Study 1 was part of the first of two phases in a grant. In phase 2, which is currently 

recruiting 140 CBP patients, we will be able to directly test some of the findings reported here.  All 

participants in this second phase will complete an abridged version of the questionnaire battery and finish 

an MRI scanning session at the beginning of the study.  We will then extract the relevant scores and 

neuroimaging data to input into our models and calculate a likelihood of placebo propensity; based on this 

calculation, we will then assign participants into a responder versus non-responder group and follow them 

longitudinally to test the validity of the phase 1 models.  Additionally, we will also be investigating the 

interaction between placebo effects and active treatment effects; once stratified based on response 

likelihood, patients will be randomized into either a placebo or active treatment group and followed for 6 
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weeks. The idea is to see if responders who receive active treatment will have a response equal to or 

greater than those who receive and respond to placebo, and if greater, to investigate the mechanisms 

behind this interaction (e.g., are they additive or nonlinear effects).  

The results of Study 2 will be tested for validity in the form of a shorter interview at the beginning 

of phase 2; more specifically, at least the 4-word model will be assessed in identifying responders from 

non-responders before randomization.  This will help address one of the remaining questions unanswered 

in this thesis – namely, are the semantic similarities to the interviews due to predictive qualities of 

people’s thoughts and languages (causal) or instead do these similarities arise as a result of having 

responded to placebo (consequential).   We will also be tracking people’s language use in time by having 

them describe various pictures for 2 minutes at three time points during the study (before, during, and 

after treatment).  Through this task, we are aiming to capture language that is not related to pain (and 

less biased by questions asked), as well as potential changes to language that might be able to pick up 

changes in pain (such as analgesia from treatment).  These changes were not investigated here and will 

hopefully provide new and useful information that will also show that language can be used as a 

surrogate for other clinical markers.  

The results from Study 3 have already influenced numerous studies in the lab and we currently 

have 3 clinical trials that are also collecting retrospective pain reports and daily pain ratings for the 

duration of the studies.  With this information, we will be able to see if the extent of memory bias differs 

depending on the pain cohort (e.g., CBP versus SBP or chronic pelvic pain), and we will be able to test 

whether our hippocampus+pain rating model validates in these separate cohorts as well.  We will also be 

able to test whether memory bias plays a role in the occurrence or magnitude of placebo response and/or 

influences the content and semantic relationships in patients narratives. 

Finally, more investigation is needed into the extent to which the results of all 3 studies influence 

one another.  As one example, we know based on previous research and Study 3 that self-report 

measures are highly subjective, “colored by incentives, decision biases and heuristics, and cultural 

display rules” [282]. While we only studied the bias related to reported memory of pain intensity, our study 

heavily relied on self-report in the questionnaire battery provided to participants, as well as in the exit 

interview.  Does memory bias play a role in how additional questionnaires were answered or in the 
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semantic language properties of patient narratives, and if so, can we detect this and relate these back to 

hippocampal morphometry?   As another example, we show in Study 1 that different outcome measures 

produce different results when measuring the placebo response (with intensity measures and numeric 

scales correlated to brain parameters of response but measures associated with pain qualities or affective 

components showing no relationship). Research findings from other labs also echo these results: it has 

been previously shown that reductions in pain-related brain processing was unrelated to individual 

differences in self-reported placebo analgesia in healthy subjects [282, 325], and that expected and 

recalled placebo efficacy were significantly correlated whereas concurrent (momentary/experienced) 

efficacy did not correlate with either of these measures [326]. The magnitude of the placebo effect has 

also been shown to significantly differ depending on the type of self-report measurement used [327].  

Therefore, it would be prudent for us to test the relationship between self-reported pain relief in the 

interview and those in the various PROs.  Investigations like these might not only better elucidate 

mechanisms of placebo response but may also show that different outcome measures reflect different 

components of the placebo effect, a possibility which has been proposed but not yet identified. Finally, 

given the amount of data we will have with phase 1 and phase 2 combined (in addition to all we know 

from previous studies in the lab), we might be able to create a multidimensional space of placebo 

response propensity.  Through combining the brain anatomy, personality traits, psychological states, 

stable and unstable resting state connectivity, semantic properties, and memory biases associated with 

response propensity with other data related to healthy history, chronic pain type, duration of pain (etc), we 

might be able to map each person uniquely into this hyperspace to better understand how all of these 

factors interact with one another on an individual level and on a group level.  

What remains clear to me after completing this dissertation is that the study of pain transcends 

the boundaries of a single field, as does the study of the placebo response – both phenomena rely on 

diverse and complex biological, psychological, social, and contextual mechanisms.  Therefore, we need 

to break down current academic borders and form interdisciplinary collaborations across many fields, 

including but not limited to neuroscience, psychology, computer science, linguistics, anthropology, and 

biomedical ethics. It is only through fostering these unique cross-disciplinary relationships that we will be 

able to better tackle these research problems, abolish chronic pain, and harness the power of the mind. 
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APPENDIX  

I. Sample of excerpts from exit interviews 

i. Pain descriptions 

"Physical sensation pretty much is a dull uh, numbing pain at the lower back.  It begins there 
and it’s always constant, it’s always with me when I wake up in the morning I know it’s 
there.  When I go to bed at night I know it’s there.  If I walk too much it screams, and then to go 
along with it the neck pain and the shoulder pain acts in conjunction with whatever’s going on 
with the lower back pain." 
 
 
 
"The feeling like it was bad enough like I wouldn’t want to get off the sofa. If if I got off the sofa it 
was only to walk 10 feet to the kitchen to get something to eat or drink or to go to bed. But I’d 
spend all day on the sofa, which isn’t that unusual for me because I haven’t been working. And 
the pain, like often it would be like getting stabbed in the back or sawed in the back or stabbed 
and sawed in the back or like somebody poking you with the screwdriver and then moving the 
screwdriver around in big circles to twist up the muscles." 

 

ii. Pain’s effects on mood 

"Yeah I definitely get grumpy, grumpier. One thing that’s been very maybe shocking is not the 
right word, but that I’ve noticed or that’s become obvious from filling out your questionnaires and 
I think more so from filling out the phone app is how depressed I am. I was in a great mood this 
weekend, and I think on one of the days I put a +3 for my mood and that to me was like I I was 
happier than I’ve been in a long time and it’s a +3 out of a -10 to 10. But but I’ve had depression 
before a couple years ago. I I hadn’t had a real job in a long long time. I’ve had odd jobs and 
then like kind of a real job umm that I don’t get paid for and so there’s depression around that, 
but like so I I know my baseline is already pretty low but definitely with the back pain I can see 
how much it does bring me down." 

 

iii. Pain’s effects on interpersonal relationships 

"It definitely like it makes me feel like I stick out more even though like I work with disability so 
you know it’s actually given me a larger respect for my clients. I feel like I have a partial 
disability.  It’s just never been proven and…there are hoops to go through... and it’s kind of like 
mental illness in a sense.  It’s not visible enough for people to be mindful, but it’s there you 
know?  And it’s like I sometimes don’t even want to discuss my pain because it’s like my mom 
will ask me like almost every day are you in pain?  I’m like mom, I’m like yes but it’s, it’s also like 
such an annoying topic.  It’s like not changing so it’s like what am I supposed to say like yeah, 
I’m in pain but I will say what’s improved is no one asks me, besides you guys, what’s your 
scale of pain today? I hated that question after my car wreck and my back.  It’s like what is at 
stake?  I don’t know like it’s not a 1, it’s definitely not a 2, it feels like I don’t have to go to the ER 
so I kinda gauge right, I can handle it.  And I think a lot of people ask me, they’re like why don’t 
you take like more stronger prescriptions?  I’m in a fog.  Like for my job I drive all over Illinois.  I 
need to have focus.  I hate being in a fog and the pain is still there.  Like that’s numbing my 
brain, it’s not numbing my pain.  If it localized, if the medications just focused on my pain and I 
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still had some clarity, I’d take it all day any day. But yeah, I view myself differently internally but 
externally I feel like a lot of people think everything is fine and that’s a hard thing, that’s a hard 
thing to deal with because I’m also in charge of a lot so I’m running meetings, I’m managing like 
four people right now and umm six agencies across Illinois.  So when you walk into a room you 
have to have a certain presence.  You know you’re, you’re literally training people how to deal 
with disability or you’re doing a talk for research, you know you’re presenting a poster board, 
sometimes you have to stand there for two hours and standing is like torture sometimes but I 
need to get through this poster board session.  And I think the biggest fear not fear even, it’s just 
more of like embarrassment of like asking for help.  That.. I’m the worst at doing that because I 
want to do it on my own.  You know?  I don’t want to ask someone for a chair.  No, I’m going to 
stand just like everybody else and I think that’s pride more than anything, I have a lot of it, but 
it’s, it does make me feel different, you know?  And it’s just communicating with people I barely 
know.  Then I don’t even want to get into how I got injured.  It’s such a saga." 
 

iv. Treatment responses 

"Recently the pills that you gave me, I don’t know what kind of pill is that but the pain is going 
down at last. And I even talked to my doctor, my family doctor, if he can approve it, whatever, 
for me because that pill worked. The pill worked great for me. I’m satisfied, I’m satisfied because 
I feel like a new man, you know, but I was (inaudible 20:25) about three weeks ago or four 
weeks ago, 60 years old you can’t expect a lot, you know, but I feel new because of the study. I 
took that pill and still, I don’t have no pain ... Medication is not in the pharmacy yet? For 
example, this is gonna be the last visit, if I need a medication or something like that, can I call 
you?" 

 

v. Medical history influencing expectations 

"Umm I know I discussed it when I first signed up for this and in some of the like beginning 
interviews and stuff and maybe on some of the questionnaires. I had Guillain-Barre when I was 
14. I was paralyzed uh mostly paralyzed in legs and arms and lungs and what’s the other one? 
So like nervous system and respiratory system. And I know what it’s like thinking you’ll never 
walk again. So like I’m sure if back surgery were an option I would think about what if something 
goes wrong and I could be that person again. I'm afraid of that happening again. Yeah, and then 
also you know it’s, there’s just a general adage that once you have back problems you’ll always 
have back problems and so I assume it’s something I’ll deal with forever no matter what, you 
know?"  
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II. 272-node parcellation and coordinates used for Study 2 

node id x y z module id 
1 -25 -98 -12 1 
2 27 -97 -13 1 
3 24 32 -18 0 
4 -56 -45 -24 0 
5 8 41 -24 4 
6 -21 -22 -20 0 
7 17 -28 -17 0 
8 -37 -29 -26 0 
9 65 -24 -19 8 

10 52 -34 -27 0 
11 55 -31 -17 8 
12 34 38 -12 4 
13 -7 -52 61 0 
14 -14 -18 40 0 
15 0 -15 47 12 
16 10 -2 45 0 
17 -7 -21 65 12 
18 -7 -33 72 12 
19 13 -33 75 12 
20 -54 -23 43 12 
21 29 -17 71 12 
22 10 -46 73 12 
23 -23 -30 72 12 
24 -40 -19 54 12 
25 29 -39 59 12 
26 50 -20 42 12 
27 -38 -27 69 12 
28 20 -29 60 12 
29 44 -8 57 12 
30 -29 -43 61 12 
31 10 -17 74 12 
32 22 -42 69 12 
33 -45 -32 47 12 
34 -21 -31 61 12 
35 -13 -17 75 12 
36 42 -20 55 12 
37 -38 -15 69 12 
38 -16 -46 73 12 
39 2 -28 60 12 
40 3 -17 58 12 
41 38 -17 45 12 
42 -49 -11 35 12 
43 36 -9 14 0 
44 51 -6 32 12 
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45 -53 -10 24 12 
46 66 -8 25 12 
47 -3 2 53 12 
48 54 -28 34 15 
49 19 -8 64 12 
50 -16 -5 71 12 
51 -10 -2 42 0 
52 37 1 -4 0 
53 13 -1 70 12 
54 7 8 51 12 
55 -45 0 9 15 
56 49 8 -1 15 
57 -34 3 4 0 
58 -51 8 -2 15 
59 -5 18 34 15 
60 36 10 1 15 
61 32 -26 13 0 
62 65 -33 20 15 
63 58 -16 7 15 
64 -38 -33 17 0 
65 -60 -25 14 15 
66 -49 -26 5 0 
67 43 -23 20 12 
68 -50 -34 26 15 
69 -53 -22 23 15 
70 -55 -9 12 15 
71 56 -5 13 12 
72 59 -17 29 15 
73 -30 -27 12 0 
74 -41 -75 26 0 
75 6 67 -4 4 
76 8 48 -15 4 
77 -13 -40 1 0 
78 -18 63 -9 0 
79 -46 -61 21 4 
80 43 -72 28 0 
81 -44 12 -34 4 
82 46 16 -30 4 
83 -68 -23 -16 4 
84 -58 -26 -15 4 
85 27 16 -17 0 
86 -44 -65 35 4 
87 -39 -75 44 4 
88 -7 -55 27 4 
89 6 -59 35 4 
90 -11 -56 16 0 
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91 -3 -49 13 4 
92 8 -48 31 4 
93 15 -63 26 0 
94 -2 -37 44 4 
95 11 -54 17 0 
96 52 -59 36 4 
97 23 33 48 4 
98 -10 39 52 4 
99 -16 29 53 4 

100 -35 20 51 4 
101 22 39 39 4 
102 13 55 38 4 
103 -10 55 39 4 
104 -20 45 39 4 
105 6 54 16 4 
106 6 64 22 4 
107 -7 51 -1 4 
108 9 54 3 4 
109 -3 44 -9 4 
110 8 42 -5 4 
111 -11 45 8 4 
112 -2 38 36 0 
113 -3 42 16 4 
114 -20 64 19 4 
115 -8 48 23 4 
116 65 -12 -19 4 
117 -56 -13 -10 4 
118 -58 -30 -4 4 
119 65 -31 -9 8 
120 -68 -41 -5 4 
121 13 30 59 4 
122 12 36 20 0 
123 52 -2 -16 4 
124 -26 -40 -8 0 
125 27 -37 -13 0 
126 -34 -38 -16 0 
127 28 -77 -32 0 
128 52 7 -30 4 
129 -53 3 -27 4 
130 47 -50 29 4 
131 -49 -42 1 0 
132 -31 19 -19 4 
133 -2 -35 31 4 
134 -7 -71 42 4 
135 11 -66 42 4 
136 4 -48 51 0 
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137 -46 31 -13 4 
138 -10 11 67 0 
139 49 35 -12 4 
140 8 -91 -7 1 
141 17 -91 -14 1 
142 -12 -95 -13 1 
143 18 -47 -10 1 
144 40 -72 14 1 
145 8 -72 11 1 
146 -8 -81 7 1 
147 -28 -79 19 1 
148 20 -66 2 1 
149 -24 -91 19 1 
150 27 -59 -9 1 
151 -15 -72 -8 1 
152 -18 -68 5 1 
153 43 -78 -12 1 
154 -47 -76 -10 1 
155 -14 -91 31 1 
156 15 -87 37 1 
157 29 -77 25 1 
158 20 -86 -2 1 
159 15 -77 31 1 
160 -16 -52 -1 1 
161 42 -66 -8 1 
162 24 -87 24 1 
163 6 -72 24 1 
164 -42 -74 0 1 
165 26 -79 -16 1 
166 -16 -77 34 1 
167 -3 -81 21 1 
168 -40 -88 -6 1 
169 37 -84 13 1 
170 6 -81 6 1 
171 -26 -90 3 1 
172 -33 -79 -13 1 
173 37 -81 1 1 
174 -44 2 46 0 
175 48 25 27 0 
176 -47 11 23 0 
177 -53 -49 43 8 
178 -23 11 64 0 
179 58 -53 -14 0 
180 24 45 -15 42 
181 34 54 -13 42 
182 -21 41 -20 0 
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183 -18 -76 -24 0 
184 17 -80 -34 0 
185 35 -67 -34 0 
186 47 10 33 0 
187 -41 6 33 0 
188 -42 38 21 42 
189 38 43 15 42 
190 49 -42 45 8 
191 -28 -58 48 0 
192 44 -53 47 8 
193 32 14 56 0 
194 37 -65 40 4 
195 -42 -55 45 8 
196 40 18 40 0 
197 -34 55 4 42 
198 -42 45 -2 42 
199 33 -53 44 0 
200 43 49 -2 42 
201 -42 25 30 42 
202 -3 26 44 15 
203 11 -39 50 0 
204 55 -45 37 8 
205 42 0 47 0 
206 31 33 26 0 
207 48 22 10 0 
208 -35 20 0 0 
209 36 22 3 0 
210 37 32 -2 0 
211 34 16 -8 0 
212 -11 26 25 0 
213 -1 15 44 15 
214 -28 52 21 42 
215 0 30 27 15 
216 5 23 37 15 
217 10 22 27 0 
218 31 56 14 42 
219 26 50 27 42 
220 -39 51 17 42 
221 2 -24 30 4 
222 6 -24 0 0 
223 -2 -13 12 0 
224 -10 -18 7 0 
225 12 -17 8 0 
226 -5 -28 -4 0 
227 -22 7 -5 0 
228 -15 4 8 0 
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229 31 -14 2 0 
230 23 10 1 0 
231 29 1 4 0 
232 -31 -11 0 0 
233 15 5 7 0 
234 9 -4 6 0 
235 54 -43 22 0 
236 -56 -50 10 0 
237 -55 -40 14 0 
238 52 -33 8 0 
239 51 -29 -4 0 
240 56 -46 11 0 
241 53 33 1 0 
242 -49 25 -1 4 
243 -16 -65 -20 0 
244 -32 -55 -25 0 
245 22 -58 -23 0 
246 1 -62 -18 0 
247 33 -12 -34 0 
248 -31 -10 -36 0 
249 49 -3 -38 4 
250 -50 -7 -39 4 
251 10 -62 61 0 
252 -52 -63 5 0 
253 -47 -51 -21 0 
254 46 -47 -17 0 
255 47 -30 49 12 
256 22 -65 48 1 
257 46 -59 4 0 
258 25 -58 60 1 
259 -33 -46 47 0 
260 -27 -71 37 1 
261 -32 -1 54 0 
262 -42 -60 -9 1 
263 -17 -59 64 0 
264 29 -5 54 0 
265 -10 14 -2 20 
266 10 14 -2 20 
267 -22 -2 -22 20 
268 26 -2 -22 20 
269 -24 -14 -18 20 
270 26 -14 -18 20 
271 -28 -34 -6 20 
272 30 -34 -6 20 

 
Coordinates for resting state networks are provided (including 264 Power coordinates and an additional 8 
for limbic regions as described in Study 2). Module IDs utilized in the paper are also provided: 0 = other; 
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1 = visual; 4 = DMN; 8 = parietal; 12 = sensorimotor; 15 = saliency network; 20 = limbic regions; 42 = 
frontal regions. 
 
 


