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Inverse Analyses Techniques for Parameter Identification in Simulation of 

Excavation Support System 

 

 

ABSTRACT 

Two numerical procedures are described that quantitatively identify a set of constitutive 

parameters that best represents observed ground movement data associated with a deep 

excavations in urban environments. This inverse problem is solved by minimizing an 

objective (or error) function of the weighted least-squares type that contains the 

difference between observed and calculated ground displacements. The problem is solved 

with two different minimization algorithms, one based on a gradient method and other on 

a genetic algorithm. The objective function is shown to be smooth with a unique solution. 

Both methods are applied to lateral movements from synthetic and real excavations to 

illustrate various aspects of the implementation of the methods. The advantages and 

disadvantages of each method applied to excavation problems are discussed.  

 
INTRODUCTION 

This paper describes two procedures to identify selected constitutive parameters of a soil 

constitutive model by inverse analysis of performance data from excavation support 

systems. The identification method is an iterative approach to solve the inverse problem 

(Gioda and Maier 1980; Tarantola, 1987). Trial values of the unknown parameters are 

used as input values in a finite element code to simulate the associated direct problem 

until the discrepancies between measurements and numerical results are minimized. The 

problem is reduced to a parameter optimization.  

Inverse analysis techniques have been applied to geotechnical problems since the 1980s 

(e.g,. Gioda and Maier 1980 ; Cividini et al., 1981; Sakurai and Takeuchi 1983). Its use 

allows one to evaluate performance of geotechnical structures by a quantifiable 

observational method. It has been used to identify soil parameters from laboratory or in 

situ tests (Anandarajah and Agarwal 1991; Pal et al., 1996; Zentar et al., 2001; 

Samarajiva et al., 2005), and performance data from excavation support systems (Ou and 

Tang1994; Calvello and Finno 2004; Finno and Calvello 2005; Levasseur et al., 2007), 
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excavation of tunnels in rock (Sakurai and Takeuchi, 1983; Ledesma et al., 1996; Gens et 

al., 1996; Gioda and Locatelli, 1996; Lecampion et al. 2002; Lecamion and 

Cantantinescu 2005), and embankment construction on soft soils (Arai et al., 1986; Honjo 

et al., 1994; Wakita and Matsuo, 1994). Most of these previous studies of performance 

data were conducted with simple soil models that severely restricted the ability of the 

computations to accurately reflect the observed field performance data, irrespective of 

employing inverse techniques. 

     When applying inverse analysis techniques to study the behavior of a supported 

excavation, concerns exists about the proper representation of the real system as well as 

the efficiency of the inverse analysis technique and its ability to find a unique set of 

parameters for a particular problem. This paper focuses on the identification of soil 

parameters based on lateral movement data obtained close to the walls of excavation 

support systems. Results from two optimization methods are presented, a gradient-based 

method developed by Hill (1998) and applied to the excavation problem by Finno and 

Calvello (2005) and a genetic algorithm method developed by Levasseur et al. (2007). 

The methods are applied to a “synthetic” excavation so as to evaluate each method 

without the complexity of real performance data and to a well-documented case study 

(Finno and Roboski, 2005) to illustrate the some of the judgment required to apply the 

methods in the field.  In the former, the field observations are artificially generated by 

FEM analyses and an optimum set of parameter values were chosen to reproduce 

representative orders of magnitude of measured performance data.  This approach permits 

a direct comparison between the two inverse techniques without the interference of errors 

arising from simplifying the real geotechnical problem into a plane strain model, and 

field measurement errors other than those arising from instrument inaccuracies. 

 

BACKGROUND 

 

Two main types of inverse analysis have been applied to geotechnics, optimization by 

iterative algorithms such as gradient methods (Ou et al., 1994; Ledesma et al., 1996; 

Calvello and Finno 2004; Finno and Calvello 2005; Lecampion and Contantinescu 2005) 

and optimization by techniques from the field of artificial intelligence, including artificial 
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neural networks (Yamagami et al., 1997; Hashash et al., 2003, 2006) or genetic 

algorithms (Pal et al., 1996; Samarajiva et al., 2005; Levasseur et al., 2007). These 

methods are distinguishable by their physical approach. The gradient method is a local 

parameter identification of a specific constitutive law. The artificial neural network is a 

method which creates by learning phases its own constitutive law from geotechnical 

measurements. Genetic algorithms are global optimization methods which localize an 

optimum set of solutions close to the “true” value.  

     Finno and Calvello (2005) applied a gradient-based inverse analysis procedure to 

update predictions of lateral deformations observed a 12.2 m deep excavation through 

Chicago glacial clays. The field observations were obtained from inclinometer data that 

measured lateral movements of the soil behind the supporting walls on opposite sides of 

the excavation throughout construction. The constitutive responses of the soil were 

represented by the Hardening-soil (H-S) model (Schantz et al., 1999). Of the six basic H-

S input parameters, only one the reference value for the primary loading stiffness was 

optimized, while the other parameters were either kept constant or related to the updated 

value of the optimized value. Because the soil around the structure was already ‘strained’ 

due to previous construction activity at the site, the methodology could be effectively 

used to recalibrate the model of the excavation at early construction stages, such that 

good “predictions” could be made of the behavior of the soil at later stages. The final 

optimized parameters were reasonable and were within values that could have been 

reasonably selected a priori.  

     Levasseur et al. (2007) discussed the use of inverse analysis by a genetic algorithm for 

the constitutive parameter identification of an a priori known soil constitutive law from 

typical geotechnical tests and measurements. In particular, parameters of the Mohr-

Coulomb model were estimated to reproduce the horizontal displacements of a sheet pile 

wall between successive stages of excavation and also to reproduce a pressuremeter 

curve. The study showed genetic algorithms converge to a set of solutions close to the 

best one. The identified set of solutions characterized the soil properties well for a 

particular stress path. Furthermore, the evolution of the population process provided  

information about parameter sensitivity and about existing mathematical correlations 
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between parameters. However, a drawback of genetic algorithm method can be its high 

calculation cost. 

 

PROCEDURES FOR INVERSE ANALYSIS 

 

In this study, the commercial finite element program PLAXIS 8.2 was used to simulate 

the excavations in plane strain. The optimizations were carried out by coupling PLAXIS 

with a search algorithm program and minimizing an objective function of the weighted 

least-squares type. Two different search algorithms were used and compared, a gradient 

method based in the Newton’s method as published in the program UCODE (Poeter and 

Hill, 1998), and a genetic search method developed by Laboratoire 3S-R for geotechnical 

studies (Levasseur et al., 2007). 

 

Gradient method 

UCODE is a universal inverse code that can be used with any application model. It 

performs inverse modeling posed as a parameter estimation problem, by calculating 

parameter values that minimize a weighted least-squares objective function using 

nonlinear regression. Nonlinear regression is needed when simulated values are nonlinear 

with respect to parameters being estimated. The weighted least-squares objective function 

S(b) is expressed as: 

    [1] 

where b is a vector containing values of the parameters to be estimated; y is the vector of 

the observations being matched by the regression; y′(b) is the vector of the computed 

values which correspond to observations; ω is the weight matrix; and e is the vector of 

residuals. This function represents a quantitative measure of the accuracy of the 

predictions.  

In the inverse procedure, a sensitivity matrix , is computed using a forward 

difference approximation based on the changes in the computed solution due to slight 

perturbations of the estimated parameter values. Regression analysis of this non-linear 
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problem is used to find the values of the parameters that result in a best fit between the 

computed and observed values. This fitting is accomplished with the Gauss-Newton 

method modified by the addition of a damping parameter and a Marquardt parameter 

(Hill, 1998). 

The normal equations and the iterative process for the modified Gauss-Newton 

optimization method can be expressed as: 

     [2] 

    [3] 

where  is the parameter estimation number;  is the sensitivity matrix evaluated at 

parameter estimates  with elements equal to calculated using forward or 

central differences;  is the weight matrix;  is a symmetric, square matrix of 

NP by NP dimensions;  is a diagonal scaling matrix with element  equal to 

, which produces a scaled matrix with the smallest possible condition 

number (Forsythe and Strauss 1955; Hill 1998);  is a vector with the number of 

elements equal to the number of estimated parameters and it is used to update parameter 

estimates;  is an NP dimensional identity matrix;  is the Marquardt parameter 

(Marquardt 1963); and  is a damping parameter. The Marquardt parameter is used to 

improve regression performance for ill-posed problems. Initially  for each 

parameter-estimation iteration r. For iterations in which the vector  defines parameter 

changes that are unlikely to reduce the value of the objective function,  is increased 

according to  until the condition is no longer met. 

     The damping parameter, , can vary in value from 0.0 to 1.0 and modifies all values 

in the parameter change vector  by the same factor. Thus, in vector terminology, the 

direction of  is preserved.  The damping parameter is used to ensure that the absolute 

values of fractional parameter value changes are all less than a user-specified value, and 
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to damp oscillations that occur when elements in  and  define opposite directions 

(Hill, 1998).  

     Non-linear regression begins with the initially estimated parameter values and ends 

when the parameter values change less than a fractional amount between regression 

iterations (0.01 for the Synthetic case and 0.05 for the Lurie Center case). When 

analyzing the Lurie case, an additional convergence criterion was imposed; therein, when 

the sum of the squared weighted residuals changed less than a fractional amount (0.05) 

over three regression iterations, the regression was stopped, indicating that model 

calibration was not progressing.  

 

Genetic algorithm optimization method 

The Genetic algorithm is an optimization method inspired by Darwin's theory of 

evolution. It is a stochastic global search technique which does not need any derivative 

evaluation of the error function. It is recognized to be highly efficient in dealing with 

large, discrete, non linear and poorly understood optimization problems (Kang et al., 

2004; Wrobel and Miltiadou 2004). This method does not guarantee the exact 

identification of the optimum solution of a problem. However, genetic mechanisms allow 

an optimum set of solutions to localize to the optimum in a given search space (Gallagher 

and Sambridge 1994). Its basic principles have been developed by Goldberg (1989) and 

Renders (1994). The optimization program developed in Fortran language by Laboratoire 

3S-R for geotechnical studies is based on this method (Levasseur et al., 2007).  

     The genetic algorithm objective (or error) function that assesses the discrepancy 

between the N measurements, Uei, and the associated numerical results, Uni, is expressed 

as a scalar error function Ferr in the sense of the least squares method: 

                                            [4] 

1/ΔUi is the weight given to the gap between Uei and Uni. Physically, this parameter is 

linked to experimental and numerical uncertainties on point “i” and is expressed as: 
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                                                          [5] 

where the parameter  represents an absolute error of a measurement, and the parameter 

 represents a dimensionless relative error of a measurement.  Through the values given 

to  and , one can change the description of uncertainties in the model.  

     The genetic algorithm optimization method consists of four main stages, including: 

1) Defining the research space: For Np parameters to optimize, the minimization 

problem is solved in the Np-dimension space, restricted to specified values for each 

parameter p between pmin and pmax .  

2) Encoding individuals and populations: Each parameter is binary encoded with 

a given number of bytes (Nb) to form a gene. As this encoding meshes the research space 

into (2Nb)Np elements, the choice of Nb is directly linked to the expected precision of the 

parameter values. Concatenation of several genes forms an individual. Each individual 

represents one point of the research space, that is, a vector of solution parameters for a 

particular problem. A set of Ni individuals is a population. Note that the genetic algorithm 

is used on a meshed parameter research space. Consequently, the identified solutions are 

linked to the nodes of this mesh. 

3) Generating an initial population: A random set of Ni individuals, or initial 

population, is chosen within the research space. The objective function, or fitness Ferr , of 

each individual of this population is evaluated by FEM calculation.  

4) Selection, reproduction and mutation: these mechanisms begin to evolve the 

population to better-adapted individuals of the research space. 

Selection: Depending on the Ferr values (minimal cost of the scalar error 

function), only the best Ni/3 individuals are preserved for the next population. These best 

individuals are called parents. This “elitist” selection is known to be more efficient for 

unimodal function optimization (Goldberg, 1989). 

Reproduction and Crossing: The parents are randomly paired off and crossed over 

to generate new pairs of individuals (see illustration on Table 1). To improve the 

algorithm efficiency the cross point number is chosen equal to the number of sought 

parameters (Pal et al., 1996). This process is repeated until 2Ni/3 new individuals, called 

children, are created.  
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Mutation and Generation of a new population: Putting together the parent and the 

children individuals defines a new population of Ni individuals. To limit the convergence 

problems and to diversify the population, some of the individuals are randomly mutated 

(inversion of one byte on individual chain; see illustration on Table 2).  Then, the 

objective function, Ferr , of each individual of this new population is evaluated by FEM 

calculation. 

These three last steps are repeated until one of the following convergence 

conditions are satisfied: 

i) if the average value of the error function applied to the parents or its standard 

deviation becomes small enough, the data are well reproduced by one or more 

parameter sets, specifically, a value of the error function less than 10-5 and 10-2 

with standard deviations less than 10-6  and 10-3 for the Synthetic and Lurie Center 

excavation cases, respectively.  

ii) if the value of the error function applied to one individual becomes small 

compared to the others, then one solution is identified for the problem. In this 

case, all the parents quickly converged to this individual or the convergence was 

stopped by the preset maximum number of iterations. 

THIS LAST CRITERIA IS STILL NOT CLEAR TO ME. WHAT IS “SMALL” 

AND WHAT IS THE MAXIMUM NUMBER OF ITERATIONS? WE SHOULD 

BE SPECIFIC FOR CONVERGENCE CRITERIA   

When the optimization is finished, a post-treatment analysis permits one to evaluate the 

solutions. The GA provides an optimum defined as the parameter values that give the 

minimal value of the scalar error function. However, because the GA converges without a 

guarantee to identify the exact optimum, these values are not necessary the exact sought 

parameters. The GA also yields several parameter combinations with an error function 

less than a given one, an error function less than 1.15 times the optimum one, and thus it 

defines a set of solutions for a problem. The average and the standard deviation of 

parameter values of this set permit one to evaluate a range of variation for each parameter 

value, and represents an approximation of the solution set. 
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SYNTHETIC EXCAVATION 

 
The purpose of these parametric studies of a synthetic excavation is to evaluate how well 

each algorithm reproduces the “field” displacements and to assure that parameters that do 

so with each model are indeed the “field” parameters that resulted in such movements.  In 

other words, does each method converge to a “correct” solution?   It is necessary to 

evaluate the numerics behind each procedure prior to applying the methods to field 

conditions because many more uncertainties exist when applying such procedures to real 

problems. A synthetic example allows a direct comparison of the two inverse analysis 

techniques without interference of model uncertainties and errors in field measurements 

other than those due to the precision of the instrumentation.  

 
Description 

The synthetic model is a 2-dimensional plane strain representation of a typical supported 

excavation through Chicago clays. The soil profile consists of 3.5 m of granular fill on 

top of a saturated clay layer of increasing strength and stiffness with depth. The retaining 

system is a 14 m deep sheet pile wall with two levels of internal bracing.  

     Figure 1 shows the main features of this model. The excavated depth is 11 m. The 

model assumes perfect symmetry and only one-half of the excavation is represented. The 

soil response is assumed to follow that prescribed by the stress-level dependent, 

Hardening-Soil model (Schantz et al., 1999). 

 
Observations 

The “field” data were generated by finite element analysis using selected input 

parameters noted as “field” parameters. The ‘observations’ employed here were 

computed soil horizontal displacements located along a vertical line 2 m behind the wall, 

a common location for an inclinometer in practice. The accuracy of a typical inclinometer 

is ± 2.4 mm/m, and this value was used herein; the errors associated with measurements 

were related to this accuracy, and that the error is larger at the ground surface than at 

depth.  In application, this implies that the weight matrix used in the gradient objective 

function (eq.1) is diagonal. The weights were expressed as the inverse of the variance for 
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the 95% confidence interval for the accuracy of the inclinometer. In GA error function 

(eq.5) it implies that the absolute error uncertainty ε is equal to zero and the relative error 

uncertainty α is equal to 2.4 mm/m. These considerations make the error structure 

different for each method. 

     For the gradient algorithm, the weighting of the observations is defined as: 

    [6] 

where distance to the bottom of the casing for the ith observation 

 

For the genetic algorithm, the weighting of the observations is defined as: 

    [7] 

where  is the value of the ith observation. This definition of the weight makes the error 

in [7] about 4000 times smaller than the observation, and consequently no observations 

are excluded in the GA analyses. 

 
Soil model, parameters and variations 

The Hardening-Soil model is an elasto-plastic model for simulating the behavior of soils 

(Schantz et al., 1999) and accounts for both volumetric and shear hardening. For 

volumetric hardening, an elliptical yield function is used and an associative flow rule is 

assumed. For shear hardening, a yield function of hyperbolic type is applied and a non-

associative flow rule that incorporates a dilation angle is employed. Useful features of 

this model are its ability to represent the stress dependency of soil stiffness and to 

account for shear hardening, compression hardening and dilation. The model was chosen 

for this study because it resulted in good estimations of magnitude and vertical 

distribution of lateral ground movements close to the wall for the excavation at Chicago-

State subway renovation project in Chicago (Finno and Calvello, 2005). 

     Table 3 summarizes the Hardening-soil model parameters employed as “field” values 

in the analysis. Of the 9 parameters, only two in the clay layer were chosen for 

optimization. These are the reference values for primary deviatoric loading , and for 
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elastic unloading-reloading . They are the parameters that most influence the 

behavior of an excavation where movements are limited (Finno and Calvello, 2005). 

Values of the tangent stiffness for primary œdometer loading, , were also varied in 

the analysis, but were always computed as 0.7 times the  value on each iteration. The 

remaining parameters were given reasonable values according to data available for 

Chicago soils (Finno and Chung, 1992; Finno and Calvello, 2005). 

 

Results 

The synthetic model was analyzed with both optimization methods. For the gradient 

method, five different parameter sets were considered – the “field” set of parameter 

values (the one that produces a zero value of the objective function), and four different 

sets of starting parameter values ranging from ¼ to 4 times the “field” values. An added 

constraint arises because PLAXIS internally limits the values of parameter  between 

2 and 20 times . For the Genetic algorithm, two different tests were considered for 

optimization on a research space defined between ¼ and 4 times the “field” values for the 

synthetic case.  According to these limits for the research space, each parameter is 

encoded by 6 bytes for GA optimization. Then, the research space is composed of 26 

times 26 nodes, that is to say 4096 nodes. It imposes a mesh size for the research space 

equals to ±1170 kPa for  and ±3500 kPa for . For each optimization, the initial 

population is randomly defined on the research space. Because the GA converges without 

a guarantee to identify the exact optimum, a second GA optimization conducted for this 

synthetic case to confirm the solution obtained by the first one, as suggested by Gallagher 

and Sambridge (1994). 

    Table 4 presents the results obtained for all cases. For a synthetic case, the optimum is 

defined exactly. To simplify the comparison with the gradient method, the 

“mathematical” Genetic algorithm optima are considered for this synthetic case, 

corresponding to the parameter values with the minimal value of the GA error function. 

However, as the research space is meshed for GA optimization, we can notice that these 
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GA results include uncertainties on parameter values equal to ±1170 kPa for  and 

±3500 kPa for (these values correspond to the chosen research space mesh size). 

 Table 4 shows the field values were reproduced quite well with both techniques. 

As expected, the field values are identified more accurately with the gradient algorithm. 

It also shows the computational effort, expressed as total number of runs of the finite 

element code to achieve the final values: the genetic algorithm needed 208 runs for each 

case, compared to 20-35 runs needed by the gradient algorithm. In the GA approach, one 

must perform many finite element calculations at the beginning of the optimization 

process to define the error function topology in the search space. This sweep, which is 

essential for the genetic algorithm efficiency, makes this method very expensive if there 

is only a few parameters to identify. 

     Figure 2 shows a contour plot of the objective functions. To draw the contour lines, 

the objective function was computed from finite element analyses for each of 233 pairs of 

parameter values [ , ], with contours generated by kriging (Isaaks and Srivastava, 

1989) using the commercial software SURFER based on the discrete values. The 

progress of the optimization in the gradient method is indicated by the iteration number 

and symbol showing the parameter pair at that iteration. From the two starting points at 

different ends of the parameter range, the paths reach the optimum values within 8 to 10 

iterations. The contours show that the objective function is smooth with no secondary 

minima within this parameter space.  

     Figure 3 shows the progress followed by the genetic algorithm. The shape of the 

objective function contours is similar to that computed by the gradient method and also 

exhibits one local minimum. Initially, the genetic algorithm evaluates the error function 

in 96 points chosen randomly on the research space with contours again found by kriging. 

This initial number of points corresponds to around 2% of all discrete parameter 

combinations for this space. Only the best third will remain in the next iteration and will 

generate children. By the first iteration, the genetic algorithm has quickly identified the 

better-adapted part on the research space in order to find the solution. Through the 

mechanism of selection, the less probable parameter sets are eliminated from the parent 

population. At the same time, crossings and mutations are used to create new individuals 
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(not shown on this figure), in order to converge with more accuracy to the solution and to 

look for a possible other optimum on the research space. After 11 iterations, the genetic 

algorithm has reduced the search space to a very close area around the minimum after 11 

iterations and converges to a “mathematical” minimum. All individuals of the parent 

population around the minimum could be considered as solution of the problem 

     Figure 4 compares the performance of the methods by plotting the fit improvement of 

the objective functions versus the iteration number, defined as: 

 

where  is the initial value of the objective function and  is the optimized value 

of the objective function at the end of stage i.  It indicates by what percentage the 

optimized results improved compared to the initial estimate. The figure shows that the 

genetic algorithm already has an 80% improvement only in the first iteration, whereas the 

gradient algorithm achieves between 15 and 60%, depending on how far the starting point 

is from the optimum. 

     Both methods yielded satisfactory results by reasonably estimating the “exact” 

parameter values. The gradient algorithm was more precise due to tight convergence 

criteria. The genetic algorithm yielded less accurate parameters because it is a global 

optimization method based on a meshed research space. The gradient method was much 

faster in achieving convergence, needing about ten times fewer finite element iterations 

than the genetic algorithm. However, the genetic algorithm was capable of identifying a 

small region containing the optimum by the first iteration, with a fit improvement of 

80%. The synthetic case shows that if the problem is well defined with few parameters to 

optimize, a gradient method is more efficient than the genetic algorithm method. It gives 

more precise results with less calculation. The GA is more suited for simultaneous 

optimization of more parameters. 

 

APPLICATION TO LURIE RESEARCH CENTER EXCAVATION 

The two optimization techniques are applied to actual performance data that adds 

additional important constraints to the methods when dealing with field data. The purpose 

of this presentation is to evaluate if the algorithms will converge to a minimum value.  
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Further, it illustrates issues related to the resolution of this inverse problem of this 

excavation (and likely many others as well) from the actual problem into a plane strain 

numerical simulation. This challenge exists in all excavation problems since the 

construction process is inherently 3-dimensional. This excavation was represented in 2D, 

assuming the center portion of the walls were adequately idealized as plane strain 

throughout the excavation process, so as the plane strain ratio equaled 1 (Finno et al. 

2006; Ou and Chiou 1993; Ou et al. 1996) throughout construction. The field 

observations were selected such that they complied with those conditions, and were 

larger than measurement errors. With these two conditions, a meaningful estimation is 

theoretically possible.  

 

Description 

The Lurie Research Center is located in downtown Chicago, IL. Plan dimensions of the 

excavation are 80 by 68 m2. This excavation and its observed performance were 

described in detail by Finno and Roboski (2005). 

     Figure 5 summarizes the soil profile at the site. Beneath the surficial medium dense to 

dense rubble fill lies a loose to medium dense beach sand. These granular soils overlie a 

sequence of glacial clays of increasing shear strength with depth. Undrained shear 

strengths, , in the soft to stiff clays on Figure 5 are based on results of vane shear tests. 

The excavation averaged approximately 12.8 m deep and bottomed out in the medium 

stiff clay. The ground water level perched in the granular soils is related to the water level 

of the nearby Lake Michigan and it was located at approximately 0 m Chicago City 

Datum (CCD). 

     The retaining system consisted on a PZ-27 sheet pile wall on all sides. Two levels of 

tieback ground anchors were installed on the east wall due to the presence of the 

basement of an adjacent building. Three levels of tieback anchors provided lateral 

support on the other three walls. Both the first and second level ground anchors were 

founded in the beach sand at approximately the same elevations. Because these two levels 

of anchors were staggered in the direction along the sheet pile wall, the spacing between 

the ground anchors was adequate to install them such that the performance tests were 
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passed without resorting to post-grouting. This oddity in geometry affects the finite 

element model of the excavation, as will be discussed later.   

 

Field observations 

The monitoring program consisted on 8 inclinometers and 150 surface survey points, all 

put in place prior to wall installation. Figure 6 shows the instrumentation layout. Finno 

and Roboski (2005) defined seven major construction activities that could be correlated 

to performance data, as summarized on Table 5. Figure 7 shows two of the inclinometer 

responses to these major construction activities. The data were re-zeroed after wall 

installation because in the finite element model for this problem the walls are wished-in-

place and installation effects are not modeled.  

     Data from Inclinometers LR8 on the south side, and the LR6 on the west side were 

selected to form the basis of the observations because the 3-dimensional stiffening effect 

of the corners did not affect significantly the data, important because the finite element 

model for the excavation in a 2D plane strain model. Finno and Roboski (2005) showed 

that these locations remained close to a fully plane strain condition throughout 

excavation.  Inclinometers from neither the north nor east sides were not selected because 

adequate 2-D simulations could not be made due to lack of information related to the 

nearby building in the east side and the abandoned timber piles provided restraint to 

movements that could not be represented in a 2-D simulation without creating more 

uncertainty about the effective soil parameters at those locations. 

     Figure 7 shows the lateral displacements remain relatively small during the first four 

stages, when a sudden increase was observed when the excavation reaches 80 cm into the 

soft-medium clay for the installation of the third tieback level. This behaviour was 

observed in all inclinometers. Also, inclinometer LR8 recorded maximum movements in 

the order of 10 mm in the stiff clay, while the inclinometer LR6 remains almost fixed at 

that same depth (elevations –12 to –15 m). Data from the geotechnical report for the stiff 

and hard clays suggested spatial variations in soil stiffness from east to west, with the soil 

stiffer in the west side. 

     The abrupt increase in measured displacements between construction stages 4 and 5 

suggests that the soil strain levels before and after stage 5 are very different and so are the 
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soil (stiffness) parameters that could be optimized. Recalibration of the model of the 

excavation at an early construction stage would not give, in this case, good “predictions” 

of the soil behavior at later stages because the variations in small strain stiffness are not 

included in the H-S model. Therefore, it was decided that for this study that the 

optimizations would be carried out only for stage 6 to compare the two optimization 

approaches.      

 

Finite element model 

Figure 8 shows the main features of the model at the south side of the excavation.  Only 

one half of the excavation is represented because the 68 by 80 m excavation was wide 

and the support system, consisting of tiebacks, does not transfer forces from opposite 

sides, as it would occur if cross-lot bracing were used. The mesh extended – m WHAT IS 

THIS DISTANCE?  FILL IN BLANK away from the excavation, not entirely shown in 

the figure. 

     Table 6 summarizes the excavation stages as defined in the finite element model and 

their correspondence with the main construction activities. A key issue for representing 

this excavation in plane strain was the appropriate idealization of the tiebacks. The 

computed behavior of the upper soil was dominated by the way the tiebacks were 

represented, rather than by the constitutive responses of the fill and sand. This peculiarity 

arose because staggered anchors in the first two levels were represented in the plane 

strain simulation as being very close to one another without the benefit of the actual 

distance between them in the direction parallel to the wall, resulting in concentration of 

the stresses in the soil near the anchors and producing excessive lateral wall 

displacements. The field conditions were better approximated when the tiebacks were 

simulated as elastic struts oriented along the axis of the tiebacks.  

 

Parameters and variations 

The stress-strain behavior of all soil layers were modeled as Hardening soil responses. As 

shown in Table 7, the optimized soft-medium and stiff clay layer parameters were the 

reference value for the primary deviatoric loading, , in each layer. Inclinometer 
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observations were taken only in these two layers. The reference value for the unloading-

reloading elastic modulus, , and the tangent stiffness for primary œdometer loading, 

, were computed at each iteration as 3 and 0.7 times . The remaining parameters 

were defined following Finno and Calvello (2005). No settlement data were used as 

observations because the Hardening-soil model does not reproduce well the settlement 

profile behind the wall, neither in magnitude nor shape. The version the Hardening-soil 

model used in this work does not account for small-strain non-linearity and thus could not 

represent the stiffness variation over the range of strain levels that diminishes with the 

distance to the wall. 

     The research space for the application of the genetic algorithm was defined on the 

basis of the optimized parameter values from the Chicago-State case study (Finno and 

Calvello, 2005):  and : The range varied 

between 1/3 and 3 times  for the soft-medium clay, and between 1/6 and 6 times  

for the stiff clay. These ranges include parameter values based on inverse analyses of 

conventional drained triaxial compression tests conducted on tube samples extracted from 

the Chicago-State site. The research space is meshed in 64 by 64 elements that introduce 

uncertainties on the parameter estimates: ±350 kPa for  in medium clay and ±2350 

kPa for  in stiff clay. 

 

Selection of field observations 

 

The observations used in the analysis were selected from inclinometers LR6 and LR8 

readings at the end of the excavation (stage 6). They were taken below elevation –4.9 m 

CCD, within the clay layers. In practice, not all available observations could be used, but 

only those whose magnitudes were larger than their measurement errors, according to the 

definition of measurement error for the gradient method. This excluded half of the 

observations from inclinometer LR6 in the Stiff and Hard clays. Figure 9 shows the field 

data for each inclinometer; marked with open circles are those excluded from the 

analysis: those from the fill and sand layers, and those from the clay layers that were too 

small.  
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Results 

As with the Synthetic model, the Lurie Center excavation was analyzed with the two 

optimization methods. For each method, the objective and error functions are the same as 

those defined for the synthetic case. 

     Table 8 summarizes the results of the optimizations. There is little difference in the 

results generated by the two methods. Figure 9 shows the computed and observed 

displacements based on the optimized parameters for each approach. Good agreement is 

seen for both cases. The optimized parameter value for the soft-medium clay shows little 

variation from method to method and between the south and the west models (4960 to 

6020 kPa). This result indicates that the observations contain enough information for the 

parameter to be estimated accurately because the soft-medium clay layer is relatively 

deep, and contains enough observations with relatively large movements. Because of the 

lack of spatial difference in the results, the soft-medium clay is of relatively uniform 

composition across the site, as was also reflected in the site investigation data (Finno and 

Roboski, 2005). The good agreement between the computed and observed results also 

suggests that the selected cross-sections indeed responded in plane strain. 

     In contrast to the soft clay comparisons, only the LR8 readings contain enough 

information about the stiff clay for a meaningful parameter estimation. The estimated 

parameter value for the stiff clay is similar by both methods (52200 and 56250 kPa). For 

the inclinometer LR6 readings, the observations in the stiff clay are very small and of the 

same order of magnitude as the measurement error. The final estimates are similar for 

both methods (129000 and 134000 kPa) but there is some uncertainty in the estimation 

that can be appreciated in the contour plots of the objective functions on Figure 10. These 

contours were based on – finite element simulations, each made with a different pair of 

the stiffness parameters.  As can be seen, the objective functions are smooth and have a 

bounded solution in the research space considered. The shown contours are computed by 

UCODE, but those from the GA have similar shapes. The solution is better defined for 

the south side (LR8 measurements), with contour lines more concentrated around the 

optimum, as that location had more available observations and larger measured 

displacements in the Stiff clay layer than the west side. The contours of the objective 
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function for the west side show a long narrow vertical valley, indicating that variations in  

values of at near optimum values of have little impact on this solution, 

and thus are not well defined by the available observations.  

     For each method, a satisfactory optimum is obtained, with little difference between the 

optimized values. The differences in the final values computed by the two approaches are 

due to the different definition of the measurement error. Because those differences are 

small, the estimated parameter values are not very sensitive to the differences in the 

weights used in the two analyses. This result suggests that, in practice, accurate results 

can be obtained if the weighting is approximately correct. In this case the two error 

structures are similar and the error grows with the distance to the bottom of the casing 

(linearly for the gradient method, and proportionally to the observed values for the 

genetic algorithm).  

     In general, these results suggest that the problem has a unique solution in the research 

space considered. The gradient method and the genetic algorithm method reach basically 

the same parameter values.  The solution is better defined for the south side, with its 

larger measured displacements in the stiff clay, than those measured on the west side.  

 

DISCUSSION 

 

The set of field observations at the Lurie site was very complete, including 

inclinometer and settlement data at numerous locations and excavation stages, but they 

had to be carefully filtered because of model shortcomings.  In addition to being a plane 

strain model, an important limitation is the constitutive model used to represent soil 

responses.  The H-S model used herein does not take into account the variation of 

stiffness at very small strain levels, so settlement observations were not used as 

observations in any of the analyses. Also because of this same drawback, the optimized 

stiffness parameters would not be appropriate for the beginning stages of excavation 

where very small movements develop.  Thus limitations arising from instrumentation 

accuracy and constitutive models limit the use of inverse analysis when trying to use field 

observations during early stages of excavation to predict what will occur during later 

stages, unless relatively large movements develop during early stages.  This scenario 
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occurred at the Chicago-State excavation (Finno and Calvello 2005) where 10 mm of 

lateral movement developed adjacent to a secant pile wall as it was installed.   

     The gradient method can identify an accurate solution to an inverse problem if the 

problem is well defined.  Moreover, it need less calculation cost than genetic algorithm. 

Then, in this sense, gradient method is more efficient than GA method.  However, the 

inverse analysis raises fundamental questions about the existence and uniqueness of a 

solution (Tikhonov & Arsenine, 1976). Gradient optimization methods assume the 

solution of the inverse problem is unique. But, inverse problems in geotechnics field 

using in situ measurements can be “ill-posed” unless care is taken to all aspects of the 

modeling, for example, expecting too much from a constitutive model or inadequately 

accounting for situ measurement uncertainties. In these cases, there is not one exact 

solution, but rather an infinite number of approximate solutions around an optimum.  The 

aim of the parameter identification in this case should be the identification of the 

approximate solutions rather than the one with the arbitrarily-defined lowest error 

function. The GA permits the localization of an optimum set of solutions close to this 

optimum. In this sense, optimization by GA method in these cases is more relevant than 

gradient method. 

 

 
CONCLUSIONS 

 

Based on results of the inverse analyses of synthetic and the Lurie excavations by both 

gradient and genetic algorithm methods reported herein, the following conclusions can be 

drawn.  

    When both techniques were applied to a synthetic excavation, and two stiffness 

parameters from one clay layer were optimized, the results show that the problem  had a 

unique solution even when the starting parameters were ¼ to 4 times larger than the 

actual “field” values.  Both methods were accurate in the sense that the “field” 

parameters were obtained after optimization.  The gradient method used less 

computational time to find the optimal solution.  After one iteration, the GA method 
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identified a small region that contained the optimum and the computed displacements had 

a fit improvement of 80%. 

     In the analysis of the Lurie excavation, one stiffness parameter in each of two clay 

layers was optimized.  The optimization of this field case was unique in the research 

space considered. The search algorithms yielded similar results and the objective 

functions were smooth with no secondary minima.  The solution was better defined on 

the side of the excavation with larger measured displacements in the stiff clay.  When 

representing an excavation in plane strain, the simplification from 3D to 2D requires 

careful selection of observations from locations that were in fully plane strain condition 

for selected excavation stages and that are consistent with the predictive capabilities of 

the constitutive model selected to represent soil behavior.   
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