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ABSTRACT

Deep learning is a new area of machine learning research that allows deep neural

networks composed of multiple processing layers to learn representations of data with

multiple levels of abstraction. Deep learning has helped in achieving the objective of

pushing machine learning closer to one of its original goals of artificial intelligence. It

has become state-of-the-art machine learning technique in the fields of computer vision,

speech recognition and text processing. Although it has enjoyed great success in the

fields of computer science, its application in scientific fields has been very limited. This

is mainly due to the scarcity of and complex nature of scientific datasets since they are

collected from expensive and time-consuming scientific experiments and computations.

This thesis explores how to design and build novel deep neural network architectures

that can handle the challenges associated with such datasets and automatically learn

the underlying science behind those scientific phenomena using deep learning, for the

advancement of the overall process of scientific knowledge discovery.
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AdaBoost, Ridge, RBFSVM, DecisionTree, ExtraTrees, Bagging and

Random Forest. Out of them, Random Forest performed the best with

and without using physical attributes. Here, we show the results from

our deep learning model and the best conventional ML model- Random

Forest, in our study for both types of model inputs (with and without

physical attributes), along with the type of input used, mean absolute

error (MAE) on the test set, training time on the training set, and

prediction time on the entire test set (25,662 entries). All the models

are trained and tested using a ten-fold cross validation. All timings are

on a single (logical) CPU core of an NVIDIA DIGITS DevBox with



10

a Core i7-5930K 6 Core 3.5GHz desktop processor with 64GB DDR4

RAM and 4 TITAN X GPUs with 12GB of memory per GPU, except

the deep learning models. 48

3.3 Subset of Potential Stable Compounds Predicted using ElemNet. Out

of the 450M predictions, we determined the number of systems where
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literature search revealed that they have already been synthesized
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single (FC: fully connected layer, BN: batch normalization, Re: ReLU

activation function) sequence in the case of IRNet and multiple such

sequences in the case of SRNet. Each such stack is followed by a

shortcut connection. 77

4.2 Performance of deeper residual networks for the design problem. Test

errors are MAE in eV/atom. Increased depth of residual network
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trained on OQMD-SC-ICSD, predicts formation enthalpy (stability)
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3.1 Comparison of deep learning approach with conventional ML approach

for prediction of materials properties. The conventional ML approach

for predictive modeling of materials properties involve representing

the material composition in the model input format, manual feature

engineering and selection by incorporating the required domain

knowledge and human intuition by computing the important chemical

and physical attributes of the constituent elements, and applying ML

techniques to construct the predictive models. Our deep learning based

predictive approach directly learns to predict properties of materials

such as the formation enthalpy from their elemental compositions with

better accuracy and speed than conventional ML approaches. 38

3.2 Performance of deep learning models of different depths in model

architecture. The models are trained and tested on the lowest DFT-

computed formation enthalpy of 256, 622 compounds. Here, we present

the impact of depth of architecture for one sample split from our ten-fold

cross validation. (a) shows the mean absolute error (MAE) on the test

dataset of 25, 662 compounds with unique compositions at different

epochs for one split from the cross validation. The DNN models keep
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learning new features from the training dataset with the increase in the

number of layers up to 17 layers, after which they begin to slowly overfit

to the training data. (b) shows the MAE for different depths of deep

learning model architectures and also illustrates mean absolute error

of the best performing conventional ML model trained using physical

attributes computed on the same training and test sets. The deep

learning model start outperforming the best performing conventional

ML model with an architecture depth of 10 layers, achieving the best

performance at 17 layers, we refer to the best performing DNN model

as ElemNet. The detailed architecture for ElemNet is available in the

Method section. 46

3.3 Impact of training dataset size on the prediction accuracy of ElemNet

(DNN model) using elemental compositions only and the best

conventional ML model, Random Forest, with either raw elemental

compositions (RF-Comp) and physical attributes (RF-Phys). The

training and test sets are created during the ten-fold cross validation

from the OQMD; different random subsets of the training set with sizes

ranging from 464 to 230, 960 are created using a logarithmic spacing for

this analysis. Training dataset size has more impact on ElemNet (deep

learning model) compared to Random Forest models, but ElemNet

performs better than Random Forest for all size greater than 4k. 50

3.4 Error analysis of the predictions using ElemNet of a test set containing

25,662 compounds from our ten-fold cross validation. The left side
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(CDF) of the prediction errors for ElemNet and Random Forest (the

best performing conventional ML model) with elemental fractions

(RF-Comp) and physical attributes(RF-Phys). Our error analysis

demonstrates that the deep learning performs very well, achieving an

MAE of 0.050± 0.000 eV/atom; predicting with an absolute error of less
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3.5 Predicted phase diagrams from the hold-out test. These charts show

the convex hulls predicted for the (a) Ti-O binary and (b) Na-Mn-O

from ML models that were trained without any data from each system
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using physical features (RF-Phys) and a deep learning model (ElemNet).

Each vertex on the convex hull corresponds to the composition of a

stable compound. The black lines on each chart show the OQMD convex

hull. We find that the deep learning model has the fewest predictions

outside the regions where compounds are known to form, for both the

Ti-O and Na-Mn-O phase diagrams. 55

3.6 Visualization of the activations of different materials in ElemNet. Each

frame shows a 2D projection (using PCA) of the activations of different

materials in several layers of ElemNet, which shows which materials

have similar representations. The upper row shows the activations of
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4.1 Three types of 17-layer networks. Each “layer” is a fully connected

neural network layer with size as described in Table 4.1; all but the last

are followed by batch normalization and ReLU. A plain network simply

connects the output of each layer to the input of the next. A stacked

residual network (SRNet) places a shortcut connection after groups of

layers called stacks. An individual residual network (IRNet) places a

shortcut connection after every layer. 76

4.2 Test error curve for various plain networks for the design problem. Batch

normalization before activation function (FC+BN+ReLU) improves

performance significantly. 83

4.3 Test error curve for deeper plain networks for the design problem.

Performance degrades with network depth, even in the presence of batch

normalization. 84

4.4 Impact on residual learning for the design problem. Both residual

networks outperform the plain network, and the individual network
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4.5 Cumulative distribution function (CDF) of the prediction errors for the

design problem. Deep learning (IRNet) performs significantly better

than the traditional ML approach, Random Forest, achieving a 90th
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Forest. 88

5.1 DFT-computation error analysis of different DFT-computed datasets

against the experimental observations. We compared the experimental

formation energies of 463 materials against their corresponding

formation energies from OQMD (a), Materials Project (b) and JARVIS

(c) datasets available in Matminer [1]. The MAE in OQMD, Materials

Project and JARVIS for formation energies against experimental
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respectively. (d) The 50th percentile and 90th percentile MAE for

OQMD, Materials Project and JARVIS are 0.057 eV/atom and 0.201

eV/atom, 0.055 eV/atom and 0.171 eV/atom, and 0.068 eV/atom and

0.190 eV/atom, respectively. 98

5.2 Proposed approach of deep transfer learning. First, a deep neural

network architecture (ElemNet) is trained from scratch, by initializing
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the input data representation and capture the essential chemistry from

the big source training data. Since this model is trained from scratch
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neural network architecture (ElemNet) on other smaller target dataset,

such as experimental dataset, using transfer learning. Here, the model

parameters are initialized using the values from OQMD-SC, and then

fine-tuned using the corresponding target dataset. 100

5.3 Impact of training data size on performance of models trained from

scratch and using transfer learning (mean and s.d.). The models are

trained on the experimental dataset and the results are aggregated

from a ten-fold cross-validation. For each cross validation, first we

split the complete dataset randomly into training and test (validation)

set in the ratio of 9 : 1. Next, we fixed the test (validation) set and

changed the size of the training set from 10% to 100%. OQMD-SC

represents the model trained from scratch on OQMD dataset, EXP-SC

represents the prediction error of the model trained from scratch, and

EXP-TL represents the prediction error using transfer learning from the

OQMD-SC model. 109

5.4 Prediction error analysis of OQMD-SC model using a test set containing

34, 145 samples from a 9:1 random split of OQMD. OQMD-SC model

is trained from scratch (with random weight initialization from a
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CHAPTER 1

Introduction

Deep learning is a new area of machine learning research that has helped in achieving

the objective of pushing it closer to one of its original goals of artificial intelligence [2].

Deep learning allows deep neural network (DNN) models composed of multiple processing

layers (deep neural network architecture) to learn representations of data with multiple

levels of abstraction [3]. Deep learning has gained significant attention in the field of

computer science with breakthrough results in computer vision, speech recognition and

text processing [4, 5, 6, 7]. Although the basic algorithmic approach in deep learning

remains the same, such progress has been possible mainly due to availability of large

datasets and increase in computational power for training. Due to their flexible DNN

architecture with large parameter set, deep learning models can automatically capture the

high level non-linear mappings between input features and output values through multi-

layered feature abstraction. They are now the state-of-the-art models in both supervised

and unsupervised object detection and recognition tasks [4, 5, 6, 7]. Although it has

enjoyed great success in the fields of computer science, its application in scientific fields

has been limited. This thesis study how to design and develop deep learning models for

the advancement of knowledge discovery from scientific datasets for accelerating scientific

design and discovery.

Many of the technical advances we see today from cellphones, laptops, supercomput-

ers to supersonic airplanes and interstellar rockets, all are the results of advancements



25

of scientific knowledge discovery. Most of the scientific problems we face today are due

to the limitation of current scientific knowledge discovery which in turn impacts the ad-

vancements in scientific discovery such as new materials design. One of the main branch

of scientific discovery is materials science and engineering, which focuses on how to design

new materials as well as optimize the properties of existing engineering materials; such

optimizations include increasing efficiency by reducing the material utilization and cost,

and improving safety. Materials design is systematically carried out using the so called

materials paradigm, which is the study of the inter-relationship between processing, struc-

ture, property, and performance of a material system [8, 9]. This paradigm is used to

advance the understanding in a variety of research fields such as nanotechnology, bioma-

terials and metallurgy. Materials characterization, a collection of experimental techniques

to determine structure and chemistry across multiple length and time scales, lies at the

heart of the materials paradigm and is routinely used to study these inter-relationships.

A few important techniques include optical and electron microscopy [10], x-ray diffrac-

tion [11] and spectroscopy [12]. The interpretation of such large scale multi-modal data

requires development of accurate physics-based predictive machine learning models for

direct comparison with experiments.

Significant advancement has been made in assisting the process of scientific discovery

using machine learning (ML) techniques [13, 14, 15, 16]. Some machine learning (ML)

approaches used are clustering [14], linear regression [17], polynomial regression [17], de-

cision trees [18], support vector regression (SVR) [15], kernel ridge regression (KRR) [16]

and support vector machines (SVM) [18, 17]. Most current ML approaches require incor-

poration of domain knowledge in some form in the model inputs. They have shallow model
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architectures that limits their learning capability. Most applications of neural networks

in scientific domains have been limited to models with small number of processing layers

with limited learning and prediction capabilities [19, 20, 21, 22, 23, 24]. Deep learn-

ing [3] can offer an alternative route for accelerating the creation of models by overcoming

these challenges in building predictive models for scientific datasets.

Although deep learning has enjoyed great success in the fields of computer science,

its application in scientific fields has been very limited. Since scientific datasets are

collected from expensive and time-consuming scientific experiments and computations,

they are many challenges associated with them due to the scarcity and complex nature.

Some these challenges includes complexity due to presence of background noise in exper-

iments, heterogeneity in data due to use of multiple instruments with different output

formats for same experiment, and heterogeneity due to presence of multiple data types

in input. Developing machine learning models to handle these challenges requires novel

DNN architectures that can automatically learn the underlying science behind the sci-

entific phenomena using artificial intelligence (deep learning). It includes learning from

heterogeneous inputs collected from different instruments, predicting multiple outputs

using a single deep neural network architecture, optimizing for domain specific loss func-

tions and incorporation of domain knowledge and human intuition in the model inputs

to develop accurate physics-based predictive models. This thesis presents different deep

learning methodologies to overcome the challenges associated in building predictive ma-

chine learning models by leveraging deep learning. In particular, this thesis presents the

design, implementation and evaluations of DNN models that can automatically handle
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different challenges associated with scientific datasets and learn the underlying scientific

phenomena for the advancement of scientific knowledge discovery.

1.1. Challenges

There are many challenges in building a data-driven machine learning based predictive

modeling for the advancement of scientific knowledge discovery. Scientists generally rely

on experiments and simulations to understand scientific phenomena, which has lead to

collection of datasets over time that can used for building data-driven prediction models

using machine learning techniques. The scientific datasets are complex and high dimen-

sional, and using them to build predictive models for accelerating scientific discovery

involves careful consideration and understanding of the nature of scientific phenomena

governing the experiments and data collection in collaboration with domain scientists.

Here, I present some of the challenges involved in the process of developing deep learning

methodologies for scientific knowledge discovery.

1.1.1. Limited Availability

Scientific datasets are either collected from experiments or simulation. While experiments

are expensive and time consuming, simulation datasets are much more simpler and still

time consuming even on the modern era supercomputers. Hence, the size of scientific

datasets are small compared to typical datasets used for deep learning. For instance, the

in field of materials science and engineering, the size of experimental datasets are in the

range of 102 to 103, while the size of computational datasets are in the range of 104 to
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105. This has discouraged many scientist from applying deep learning methodologies to

build predictive models for their domains.

1.1.2. Feature Engineering for the Incorporation of Domain Knowledge in

Model Inputs

The current methodologies for predictive modeling based on machine learning involves

incorporation of domain knowledge and human intuition in the model inputs by feature

engineering [14, 13]. While this approach may have helped in improving robustness of

models, there is no clear consensus on which attributes are important and how much

domain knowledge is sufficient for a given prediction problem.

1.1.3. Presence of Irregular Background Noise and Heterogeneity in Nature

Experimental datasets are collected from scientific instruments such as Linear Accelerators

and Electron Diffractometers under different experimental settings and environments.

Use of different instruments and different experimental settings result in heterogeneous

samples. While experimental settings can be controlled by scientists, there are several

environmental factors during experiment which impacts the instrument and hence, the

experimental observations, that are beyond scientist’s control. This leads to irregular

background noise in the collected samples that are hard to process manually or using

existing techniques. Also, the datasets are themselves composed of multiple types such as

image, composition, experimental parameters, these lead to another type of heterogeneity

in the model inputs for predictive modeling.
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1.1.4. Optimizing for Domain-specific Loss Function

In computer science fields like computer vision and natural language processing, there

are simple and well-defined loss functions that are used for optimization during training

a deep neural network or machine learning model. However, in scientific fields such as

chemistry, physics and materials science, the loss function one wants to optimize for can

be really complicated and non differential. Developing predictive modeling for such tasks

involves optimizing for loss functions that incorporate the domain specific loss function

which can be more complicated than the deep neural network architecture itself.

1.2. Problem Statement

The problem statement for this thesis proposal is “How to develop data-driven

machine learning based predictive models using deep neural network archi-

tectures that can automatically handle different challenges associated with

scientific datasets and learn the underlying scientific phenomena by leverag-

ing artificial intelligence (deep learning) for the advancement of the overall

process of scientific knowledge discovery.”

1.3. Thesis Organization

In this thesis, I present how to develop data-driven machine learning based predictive

models for advancing the overall process of scientific knowledge discovery. This thesis

builds by first discussing about background and related works on deep learning, deep

neural networks and machine learning for scientific discovery in Chapter 2. Next, the

thesis presents different methodologies for designing deep neural network architectures
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for handling the complexity and challenges associated with scientific datasets in building

predictive models for scientific applications.

Chapter 3 presents the methodology for designing a deep neural network that can

directly learn the chemistry of materials from their raw elemental fractions without any

need for feature engineering for the incorporation of domain knowledge in the model

inputs. Chapter 4 presents a general deep neural network architecture framework for

building predictive models for vector inputs that can be composed attributes derived

from materials crystal structure and/or composition using domain knowledge. Chapter 5

builds on Chapter 3 by leveraging together computational and experimental datasets to

build more robust predictive models with high accuracy such that prediction accuracy is

comparable to that of computational datasets and more closer to the true experimental

observations.

Chapter 6 presents methodology for designing a convolutional neural network that

can optimize for a hybrid loss function of mean absolute error and a domain specific loss

function- “disorientation” to accurately predict crystal orientations from electron back-

scatter diffraction patterns. In Chapter 7, we present a methodology for designing a

convolutional neural network that can directly predict the phases of material alloy sample

from its raw 2D X-ray diffraction by automatically handling the background noise using

specially designed peak area detection network and slope filters for background removal.

Finally, the thesis concludes by discussing future directions in developing deep learning

based methodologies for scientific knowledge discovery in Chapter 8.
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CHAPTER 2

Background

2.1. Deep Learning

Deep learning is a new area of machine learning field of learning representations of

data. Deep learning allows deep neural network (DNN) models composed of multiple

processing layers (deep neural network architecture) to learn representations of data with

multiple levels of abstraction [3]. They are exceptionally effective in learning patterns and

helped in achieving the objective of pushing it closer to one of its original goals of artificial

intelligence [2]. Deep learning models learns to understand the information present in big

training datasets and learns to respond in useful ways. Deep learning has gained significant

attention in the field of computer science with breakthrough results in computer vision,

speech recognition and text processing [4, 5, 6, 7]. Although the basic algorithmic

approach in deep learning remains the same, such progress has been possible mainly due

to availability of large datasets and increase in computational power for training. Due

to their flexible DNN architecture with large parameter set, deep learning models can

automatically capture the high level non-linear mappings between input features and

output values through multi-layered feature abstraction.

2.2. Deep Neural Networks

Deep neural networks (DNN) are model architectures inspired by human brain; they

are composed of multiple processing layers that learn the representations present in the
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input data with multiple levels of abstraction. The input data is fed into the first layer;

the deep neural network learns information present in the input of a layer by mapping it to

higher-level more abstract features; the final layer predicts the output. Depending on the

type of input, the DNN can be composed of several types of layers such as convolutional

layers and max pooling, recurrent neural networks, and fully connected layers. The DNN

architecture search involves exploring large search space with models of different depths

and individual layer breadths. Here are some of the terminologies used in deep learning:

• Feedforward Neural Networks These are networks composed of neuron layers

that are fully connected with each other; each neuron in one layer is fully con-

nected to each neuron in another. These networks are generally used for vector

inputs. Fully connected layers are used at the end of all types of deep neural

networks to make the classification or regression outputs.

• Convolutional Networks Convolutional neural networks are class of feedfor-

ward neural networks that have become state-of-the-art method for learning from

input images. Convolutional neural networks are class of feedforward neural net-

works that composed of convolutional layers, generally followed by pooling layers.

The hierarchy of convolutional layers work in similar was as our visual cortex; the

first few layers captures the edges, the next few layers captures the shapes and

the final layers capture the face or objects. The convolution operation involved

are computationally very expensive; each output features is a convolution of the

feature vector on a local region in the input. They are very effective for image

inputs and are the state-of-the-art models in computer vision.
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• Dropout Dropout is a concept of randomly dropping some features present in

the layer input; generally a fraction of the inputs are made zero. This serves two

purposes. First, the dropout helps the model from overfitting [25]. Overfitting

is the problem of model learning the training data very well but performing very

poorly on the test data. Second, the dropout makes the model as powerful as

an ensemble of similar smaller models; the smaller models can be thought of as

being formed by dropping the neurons, and hence, their connections, from the

original network by making them zeros.

• Pooling Pooling is a technique of reducing the number of features to reduce the

amount of computations involved in next layers. Pooling are generally used in

all convolutional neural networks, they are inspired by human brain. Generally,

two kinds of pooling are used- max-pooling and average-pooling. As the name

suggest, max pooling involves taking the max out of a region of features while

average pooling takes the average of all the features in a region.

• Learning rate Learning rate determines the rate of adjusting the model param-

eters using the gradients during back propagation. During stochastic gradient

descent, the gradients are multiplied by the learning rate before applying them

to the model parameters. Higher values of learning rates results in high oscilla-

tions while lower values of learning rates can result in longer training times.

2.3. Stochastic Gradient Descent

Stochastic gradient descent is the optimization algorithm to train deep learning mod-

els [26]. It is different from the batch gradient descent in the sense that batch gradient
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descent involves going through whole training dataset before performing back propagation

while stochastic gradient descent chooses a random sample of training data during each

pass to optimize the model parameters using back propagation. It is consists of two parts:

forward pass and back propagation. During forward pass, the model computes the output

for the given input data. During back propagation, first the model computes the loss of

the predicted outputs with respect to the true outputs. Next, the gradients of the loss are

computed with respect to each model parameters and the parameters are updated using

them.

2.4. Machine learning for scientific discovery

There have been many initiatives to computationally assist scientific discovery using

machine learning techniques [13, 14, 15, 16, 17, 18]. Most works involve developing

prediction system for properties of either organic and inorganic materials for materials

search and design. Ward et al. [14] used random forest (RF) and clustering for discover-

ing new photo-voltaic materials and metallic glass alloys. Agrawal et al. [17] used linear,

polynomial and support vector machine (SVM) regression for the prediction of fatigue

strength of steels from their composition and processing parameters. Liu et al. [18] used

decision trees and SVMs for reducing the search space using feature selection for micro-

structure optimization. Xue et al. [15] used support vector regression (SVR) to infer the

thermal hysteresis of NiTi-based shape memory alloys to accelerate search for materials

with low thermal hysteresis properties. Kernel ridge regression (KRR) is used by Xue et

al. [15] to transform the input fingerprint of a material into a higher dimensional space
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to establish linear relation between the transformed fingerprint and the property of in-

terest. Meredig, Agrawal et.al [13] used a combination of rotation forest based ensemble

approach [27] and heuristic based modeling, using around 15,000 DFT calculations on var-

ious materials in the Inorganic Crystal Structure Database (ICSD), to predict formation

energy of compounds. They obtained a mean absolute error (MAE) of 0.16 eV/atom and

0.12 eV/atom using their machine learning and heuristic models respectively. Agrawal et

al. [28] used the same model, but trained on around 100,000 DFT computed formation

energy values, and obtained an MAE of 0.1343 eV/atom. Their model was limited to bi-

nary and ternary compounds. Recently, Ward et al. [28] presented similar approach based

on machine learning approach trained on 228,676 compounds from OQMD. They used

145 descriptive attributes as inputs to include domain knowledge, obtaining an MAE of

0.0882 eV/atom for formation energy prediction. All these current data-driven approaches

depend on inclusion of domain knowledge in inputs or heuristic modeling.

2.5. Deep learning for scientific discovery

Recently, advancements in deep learning have opened up a new era of technical ad-

vancements in computer science. Deep neural networks (DNN) have achieved state-of-the-

art results in computer vision [4, 29, 30], speech recognition [31] and text processing [32].

Neural networks have also been used in the field of material science [20, 21, 22, 23, 24].

In the Harvard Energy Clean Project, Pyzer et al. [20] used a multi-layered perceptron

(MLP) of just 3 layers for predicting power conversion efficiency of organic photo-voltaic

materials. Pyzer et al. [21] used a bayesian approach to calibration of quantum chem-

ical calculations to experiment, implemented as a Gaussian process with a prior based
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upon relevant experimental observations. Montavon et al. [22] trained a 4 layered MLP

on a database of around 7,000 organic compounds to predict multiple electronic ground-

state and excited-state properties. Some other application of neural networks to materials

science works on spectroscopy classification and structural identification [23] and charac-

terizing constitutive relationship for alloys [24]. Most of the networks used in such works

have relatively shallow networks and used small dataset size.
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CHAPTER 3

ElemNet: Deep Learning the Chemistry of Materials From

Only Elemental Composition

3.1. Introduction

Materials scientists, condensed matter physicists and solid-state chemists rely on data

generated by experiments and simulation-based models to discover new materials and

understand their characteristics. For the major part of the history of materials science,

experimental observations have been the primary means to know the various chemical and

physical properties of materials [33, 34, 35, 36, 37, 38]. Nevertheless, experimentation

of all possible combinations of material composition and crystal structures is not feasible

as that would be very expensive and time-consuming, and the composition space is prac-

tically infinite. Computational methods, such as Density Functional Theory (DFT) [39],

offer a less expensive means to predict many material properties and processes on the

atomic level [40]. DFT calculations have offered opportunities for large-scale data collec-

tion such as the Open Quantum Materials Database (OQMD) [41, 42], the Automatic

Flow of Materials Discovery Library (AFLOWLIB) [43], the Materials Project [44], and

the Novel Materials Discovery (NoMaD) [45] ; they contain DFT computed properties

of ∼ 104 − 106 of experimentally-observed and hypothetical materials. In the past few

decades, such materials datasets have led to the new data-driven paradigm of materials

informatics [9, 46, 47, 48, 49, 50]. The availability of such large data resources has
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spurred the interest of researchers in applying advanced data-driven based machine learn-

ing (ML) techniques for accelerated discovery and design of new materials with select

engineering properties [51, 52, 17, 13, 53, 54, 55, 18, 15, 56, 57, 58, 14, 59, 60, 61,

62, 50, 63, 64, 65].

Conventional Machine Learning Approaches

Deep Learning Approach (ElemNet)

Feature engineering 
and selection by 

incorporating domain 
knowledge

(Physical Attributes)

Machine Learning
(Random Forest, SVM, 

Kernel Regression)

Predictive 
Model… … … …
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Materials 
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Materials Datasets
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Figure 3.1. Comparison of deep learning approach with conventional ML
approach for prediction of materials properties. The conventional ML ap-
proach for predictive modeling of materials properties involve representing
the material composition in the model input format, manual feature en-
gineering and selection by incorporating the required domain knowledge
and human intuition by computing the important chemical and physical
attributes of the constituent elements, and applying ML techniques to con-
struct the predictive models. Our deep learning based predictive approach
directly learns to predict properties of materials such as the formation en-
thalpy from their elemental compositions with better accuracy and speed
than conventional ML approaches.

Conventionally, constructing an effective ML model requires first developing a suitable

representation for the input data. As has been discussed in several recent works, the

best representations are those that encode knowledge about the physics of the underlying
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problem. To that end, there have been many distinct approaches for encoding information

regarding the composition[13, 14] or crystal structure[63, 66, 60, 67] of a material. For

instance, Ward et al. developed a set of attributes based on the composition of a material

that can be useful for problems including predicting formation enthalpies of crystalline

materials and glass-forming ability of metal alloys. [14] Ghiringhelli et al. [68] analyzed the

tendency for materials to form different crystal structures using thousands of descriptors.

Developing ML models based on intuitive representations is evidently successful given

the large number and growing rate of ML models constructed over the past several years

using this approach [50, 49, 69]. However, the prediction accuracy for these problems is

limited by our ability to feature engineer the materials representation to incorporate all the

domain knowledge required to make correct predictions. Given that one of the major use

cases of ML is for problems where the physics driving behavior is yet to be understood,[50]

this limit could be a significant impediment to the use of ML. A better approach would

be to construct a system that can automatically learn the optimal representation.

Deep learning [3] offers an alternative route for accelerating the creation of predic-

tive models by reducing the need for designing physically-relevant features. It makes

use of deep neural network (DNN) models composed of multiple processing layers (net-

work architecture) to learn representations of data with multiple levels of abstraction [3].

DNN models can learn from input representations such as numerical encoding of texts,

color pixels of images, etc., without any need to first compute application-specific descrip-

tors [70, 71, 72] thereby eliminating the manual step of feature engineering and repre-

sentation required in conventional ML. Due to this powerful advantage, deep learning has

gained significant attention in the field of computer science with breakthrough results in
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computer vision [4, 73], speech recognition [74, 75] and text processing [76]. Although

deep learning models have enjoyed great success in the above applications, implementa-

tion of deep learning systems in materials science is in its early stages - mainly due to

scarcity of big training datasets. Nevertheless, they have already shown some promise

in materials science. Convolutional Neural Networks (CNN) have been used for building

models from microstructural data and improving characterization methods,[77, 78, 79]

and deep neural networks have been shown to be useful for predicting properties of crystal

structures and molecules [80, 81, 82].

Our goal in this work is to leverage the power and elegance of deep learning to directly

learn the properties of materials from their elemental compositions, eliminating the limita-

tions of current ML approaches that require manual feature engineering. We design a deep

neural network model that we refer to as ElemNet, which takes only the elemental compo-

sitions as inputs and leverages artificial intelligence to automatically capture the essential

chemistry to predict materials properties. Here, we evaluate the effectiveness of this ap-

proach by revisiting a commonly-studied challenge in materials informatics: predicting

whether a crystal structure will be stable given its composition. [13, 14, 83, 84, 85]

We adopt the approach of Meredig et al. [13] and Ward et al. [14], and train ElemNet

on the DFT-computed formation enthalpies (the energy of forming a compound from its

constituent elements) of 275, 759 compounds with unique elemental compositions from

the OQMD. As demonstrated by Meredig et al., the formation energy predicted using

this model can be compared to the formation energies of existing compounds in order

to identify compositions where there is likely a yet-undiscovered compounds. In contrast

to these previous papers which relied on physics-informed features to train a model, we
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approach this material prediction problem without using any domain knowledge about

materials stability and rely purely on representation learning.

We find that ElemNet is able to automatically learn the chemical interactions and

similarities between different elements which allows it to even predict the phase diagrams

of chemical systems absent from the training dataset more accurately than conventional

ML models based on physical attributes leveraging domain knowledge. We compared the

performance of our deep learning model to a recent conventional ML approach that used

engineered features [14] on the OQMD; using a ten-fold cross validation, we find that

ElemNet outperforms the conventional ML models both in terms of speed and accuracy

for all training data size exceeding 4000 compounds. As deep learning frameworks sup-

port execution on Graphics Processing Units (GPUs), ElemNet can make predictions at

two orders of magnitude faster than the physical attributes based ML models running

on CPUs. The improved accuracy and higher speed of the model can allow us to per-

form combinatorial screening for new material candidates. As a case study, we perform a

combinatorial screening in a huge composition space of around half a billion compounds,

and find that our model successfully identifies compounds not in our training set. We be-

lieve ElemNet opens a new direction for more robust and faster identification of promising

materials and thus, can play a crucial role in accelerating the materials discovery process.

3.2. Methods

3.2.1. Data Cleaning

The data is composed of fixed size vectors containing raw elemental compositions in

the compound as input and formation enthalpy in eV/atom as output labels. The input
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vector has non-zero values for all the elements present in the compound and zero values for

others. As most compounds are composed of fewer than five elements, the input vector

is very sparse. The composition ratio is normalized so that the elements of the input

vector sum to one. Two stages of data cleaning are performed to remove single element

compounds and outliers. First, all single-element materials are removed as their formation

energy is zero, by definition. Next, data entries with formation energy values outside of

±5σ (σ is the standard deviation in the training data) are removed. Such outliers are

discarded to prevent calculation errors undetected by strict value bounds. Further, the

elements (attributes) that do not appear in the cleaned dataset are removed from the

input attribute set. Out of 118 elements in the periodic table, 86 elements are present in

our dataset. Our dataset contains 256,622 compounds after cleaning, out of which there

are 16,339 binary compounds, 208,824 ternary compounds, and 31,459 compounds with

between 4 and 7 constituent elements. The dataset (after cleaning) is randomly split

into training and test sets using a ten-fold cross validation; each training set and test set

contain 230, 960 compounds and 25, 662 compounds with unique compositions and their

minimum formation enthalpies.

3.2.2. Model Architecture Search

Our deep learning model is based on a deep neural network (DNN) composed of multiple

consecutive layers of neurons. To find the best model for the formation enthalpy predic-

tion, we carry out an extensive search for the best DNN model architecture as well as in

the hyper-parameters space. We performed a systematic search through a large neural

network architecture space, starting from a two-layered architecture and incrementally
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Table 3.1. ElemNet Architecture. Considering the Input as the 0th layer,
types and positions of different types of fully connected and dropouts are
shown below. Dropout layers are used to prevent overfitting and they are
not counted as a separate layer. We used ReLU as the activation function.

Layer Types No. of units Activation Layer Positions
Fully-connected Layer 1024 ReLU First to 4th
Drop-out (0.8) 1024 After 4th
Fully-connected Layer 512 ReLU 5th to 7th
Drop-out (0.9) 512 After 7th
Fully-connected Layer 256 ReLU 8th to 10th
Drop-out (0.7) 256 After 10th
Fully-connected Layer 128 ReLU 11th to 13th
Drop-out (0.8) 128 After 13th
Fully-connected Layer 64 ReLU 14th to 15th
Fully-connected Layer 32 ReLU 16th
Fully-connected Layer 1 Linear 17th

increasing the depth to improve the learning capacity of our model until a saturation

point is reached. We explored with different combinations of the number of neurons units

per layer. A dropout [86] layer was added whenever the number of neurons between con-

secutive layers changed to avoid overfitting [87]. The test error started oscillating within

small limits beyond 17-layered architecture. The architecture search was continued up

to 24 layers DNN model where the test error remained same as the 17 layered network.

We believe that the deep learning model already learned the necessary features it could

find in the training dataset at this point, as increasing the depth did not improve the

model performance any further. We also experimented with different types of activation

functions, and ReLU (rectified linear unit) [88] was observed to perform the best.
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3.2.3. Model Hyperparameter Search

We performed an extensive search to tune the model hyperparameters as recommended

by Bengio et.al [89]. We started with a small range of values for each hyperparameter

based on our intuition, rather than performing a grid search that would have been in-

feasible due to time and computational resource constraints. The hyperparameter search

space comprised of different candidate values of momentum [90], learning rate [91], opti-

mization algorithms, dropouts [86] and other hyperparameters. Learning rate was one of

the most important DNN hyperparameters. Learning rates values from 0.1 to 1e−6 were

tried, decreasing by a factor of 10. Dropouts [86] are known to have a great impact on

decreasing the overfitting [87] of the model to training set [25]. A search for dropout

values ranging from 0.5 to 0.9 (dropout value denotes the inputs retained, such as 0.7

means 30% input values are dropped and rest 70% are used) was carried for each of the

four dropout layers used in our DNN models. Increasing dropout helped in improving

prediction accuracy as it decreased overfitting the of model to the training dataset. For

momentum, we experimented with values in the [0.9, 0.95, 0.99]; momentum value of 0.9

performed the best. Stochastic gradient descent (SGD) performed best among all opti-

mization algorithms in our study. Similarly, we experimented with a range of values for

other hyperparameters.
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3.2.4. Machine Learning Parameter Search

We performed a thorough grid search for parameters of all ML models used in this study.

For instance, we experimented Random Forest regression with a number of different com-

binations of estimators in [50, 100, 150, 200], minimum samples splittings in [5, 10, 15, 20],

maximum features in [0.25, 0.33] and maximum depths in [10, 25].

3.2.5. Experimental Settings and Tools Used

The deep learning models are implemented using Python 2.7, Theano [92] and Tensor-

Flow [93] framework. For other ML models, implementations available in Scikit-learn [94]

are used. All the models were trained and tested using NVIDIA DIGITS DevBox.

3.3. Experimental Results

3.3.1. Dataset

We used the OQMD [42, 95] for training and testing our proposed deep learning model.

OQMD is an extensive high-throughput DFT database, consisting of DFT computed crys-

tallographic parameters and formation enthalpies of experimentally observed compounds

taken from the Inorganic Crystal Structure Database (ICSD) [96] and hypothetical struc-

tures created by decorating prototype structures from the ICSD with different composi-

tions. OQMD is continually growing and, at the time of writing, contains 506,115 com-

pounds at 275,778 unique compositions. We train our predictive models on the lowest

formation enthalpy at each composition becauses they represent the most stable com-

pounds, which causes our model to predict the energy of the ground-state structure given

composition.
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Figure 3.2. Performance of deep learning models of different depths in
model architecture. The models are trained and tested on the lowest DFT-
computed formation enthalpy of 256, 622 compounds. Here, we present the
impact of depth of architecture for one sample split from our ten-fold cross
validation. (a) shows the mean absolute error (MAE) on the test dataset
of 25, 662 compounds with unique compositions at different epochs for one
split from the cross validation. The DNN models keep learning new features
from the training dataset with the increase in the number of layers up to
17 layers, after which they begin to slowly overfit to the training data. (b)
shows the MAE for different depths of deep learning model architectures
and also illustrates mean absolute error of the best performing conventional
ML model trained using physical attributes computed on the same train-
ing and test sets. The deep learning model start outperforming the best
performing conventional ML model with an architecture depth of 10 layers,
achieving the best performance at 17 layers, we refer to the best performing
DNN model as ElemNet. The detailed architecture for ElemNet is available
in the Method section.

3.3.2. Design

We perform an extensive search for deep neural network (DNN) architectures and hyper-

parameters (details in Method section). Figure 3.2 illustrates the improvement in DNN

learning capacity with the increase in the number of layers for different training epochs.

From the test error plot, it is obvious that the learning capacity of DNN models improves
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with the increase in the depth of the network. The errors observed on training and test

sets decrease rapidly up to 17 layers. After a certain depth, the improvement in learn-

ing of features by the DNN models starts plateauing. This plateauing effect can be a

result of the features reaching the maximal extent of learning possible via our models.

Figure 3.2(b) illustrates the overall comparison of the test errors of DNN models with

different architecture depths. The best predictive model is a 17-layered DNN architecture

(excluding four dropout layers) with tuned hyperparameters; we refer to this model as

ElemNet. The model with 17 layers has the best accuracy of 0.050± 0.0007 eV/atom in

10-fold cross-validation, which is only 9% of the mean absolute deviation in the set (0.550

eV/atom). The detailed architecture of ElemNet is provided in the Method section. The

results illustrate that deep neural networks can effectively learn the optimal feature rep-

resentation from materials composition without any need for manual feature engineering

using domain knowledge.

3.3.3. Deep Learning vs Physical-attributes-based Conventional ML Approach
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Our next step is to compare ElemNet against the current ML approach: conventional

ML models that rely on the computation of physical attributes. We chose to compare

ElemNet against the general-purpose approach of Ward et al., which uses 145 physical

attributes that fall into four different categories - stoichiometric attributes, elemental

property statistics, electronic structure attributes and ionic compound attributes.[14] As

shown in Table 3.2 and Figure 5.6b, the models created using conventional ML are better

with the physical attributes than with only the element fractions using the same training

and test sets. We also find that deep learning surpasses all the conventional ML models –

whether with physical attributes or not – in accuracy by at least 30%. This improvement

in accuracy is quite fascinating as it is achieved without encoding any domain knowledge

into the inputs of the function – a finding that shows carefully-developed features are not

critical for success in ML if sufficient training data is available. While adding more domain

knowledge is certainly expected to improve a ML model, for some problems, it may not

be straightforward or even feasible to come up with appropriate physical attributes due

to lack of understanding of the underlying phenomena. It is thus quite encouraging to

find that this step of incorporating domain knowledge might not always be necessary to

achieve excellent performance.

3.3.4. Impact of Training Data Size

Deep learning models have enjoyed great success in many applications, and typically

these were applications where the training data is relatively abundant [3]. The perceived

need for large datasets has discouraged many researchers in the scientific community

having access to only small datasets from leveraging deep learning. To understand what
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Figure 3.3. Impact of training dataset size on the prediction accuracy of
ElemNet (DNN model) using elemental compositions only and the best
conventional ML model, Random Forest, with either raw elemental com-
positions (RF-Comp) and physical attributes (RF-Phys). The training and
test sets are created during the ten-fold cross validation from the OQMD;
different random subsets of the training set with sizes ranging from 464 to
230, 960 are created using a logarithmic spacing for this analysis. Training
dataset size has more impact on ElemNet (deep learning model) compared
to Random Forest models, but ElemNet performs better than Random For-
est for all size greater than 4k.

the necessary dataset size is for deep learning to be effective for our application, we

compared the effect of training dataset size on the accuracy of deep learning model and our

best performing conventional ML model- Random Forest, with either the raw elemental

compositions or the physical attributes as model inputs. We used different random subsets

of the training dataset from the ten-fold cross validation with sizes ranging from 464 to

230,960 using a logarithmic spacing; the test set always contains 25,662 compounds. We

used the same ten-fold training and test datasets for both ElemNet and Random Forest
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models (both with and without physical attributes) to ensure a fair comparison between

the various approaches.

As illustrated in Figure 3.3, our deep learning model achieves better accuracy than the

best conventional ML approach based on physical attributes (manual feature engineering

by incorporating domain knowledge) with only 2% of our training set. In general, ElemNet

exhibits higher impact of training dataset size compared to the Random Forest models.

The error curve has a steeper reduction in test error with the increase in training dataset

size in the DNN model compared to Random Forest models. However, the important

observation is that deep learning performs better than the Random Forest models even

when the training dataset size is in ∼ 103− 104. It surpasses the accuracy of the Random

Forest model with raw elemental compositions as input even at a training dataset size of

550, and the Random Forest model with physical attributes for all training dataset sizes

exceeding 3500. Our results demonstrate that deep learning models can not only benefit

more with an increase in dataset size compared to traditional ML models, but also deep

learning can outperform them even at relatively smaller dataset size of around 4k samples.

What the small training set requirement implies is that deep learning models such as

ElemNet may be useful for building more accurate predictive models than conventional

ML based models for many materials science datasets that are much smaller than the

OQMD.

3.3.5. Prediction Time Analysis

ElemNet predicts the formation enthalpy with better accuracy and speed. Table 3.2 shows

the time taken by different predictive models to train on the training set and predict the
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formation enthalpy for the entire test set. All deep learning models are trained using

GPUs and both the prediction time of deep learning using a single (logical) core of CPU

as well as a GPU core are reported in Table 3.2. The prediction time of deep learning

model is lower than the time required by the best conventional ML approach - Random

Forest. Since deep neural networks mainly involve matrix multiplications, they are highly

parallelizable compared to conventional ML methods such as Random Forest; hence, deep

learning frameworks supports execution on GPUs. While running on GPUs, ElemNet can

predict with two orders of magnitude faster than the current conventional ML models in

practice. Our results illustrates that the proposed deep learning approach can predict

with better accuracy as well as speed. It can, therefore, play a crucial role in accelerating

the exploration of new composition spaces for materials discovery.

3.3.6. Assessing Accuracy of Model

Our deep learning model achieves strong performance across a broad range of materials.

As shown in Figure 5.6b, ElemNet predicts the formation enthalpy of compounds in

one of our test sets with a mean absolute error (MAE) of 0.055 eV/atom; predicting

the formation enthalpy of 90% of compounds in our test set with an error of less than

0.120 eV/atom. To better understand how our model could be best used, we studied

for which kinds of materials it performs the least accurately. The materials where our

model has the largest errors typically have large, positive formation enthalpies (see the

outliers in Figure 5.6a), which suggests our model performs the worst at trying to predict

the formation enthalpy of highly unstable compounds. Only 59% of our test set has a

positive formation enthalpy yet 67% of the entries with the largest errors (99% percentile
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(a) Prediction vs DFT (b) CDF of Prediction Errors

Figure 3.4. Error analysis of the predictions using ElemNet of a test set con-
taining 25,662 compounds from our ten-fold cross validation. The left side
shows that the predicted values are very close to the DFT-computed val-
ues. The right side illustrates the cumulative distribution function (CDF) of
the prediction errors for ElemNet and Random Forest (the best performing
conventional ML model) with elemental fractions (RF-Comp) and physi-
cal attributes(RF-Phys). Our error analysis demonstrates that the deep
learning performs very well, achieving an MAE of 0.050 ± 0.000 eV/atom;
predicting with an absolute error of less than 0.120 eV/atom for 90% of the
compounds in our test set (right).

of absolute error) have positive formation enthalpies. These unstable compounds are

arguably the least physically important part of the dataset, and therefore the inability of

ElemNet to accurate predict these energies is not a significant drawback.

We also studied how ElemNet performs on different chemical classes of materials. The

25 entries with the highest errors include intermetallics (e.g., Cr2Ni3), metal/nonmetal

compounds (e.g., Ho2C, Sm3AlN), and compounds with only non-metallic elements (e.g.,

BCl), so there does not seem to be a systematic problem with modeling a particular
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material class. To further understand if certain chemistries have larger errors, we first

grouped entries in the test set by whether they contained certain elements and then

computed the Spearman rank correlation coefficient for each group. The elements that

exhibit the lowest correlation coefficients are Pu (0.66), Np (0.86), C (0.87), and N (0.87).

The Pu and Np compounds are likely to have the lowest performance because they have

the fewest number of training points among metallic elements. C and N both appear

much less frequently in our training set than any metallic element because they are not

included in the combinatorial searches for intermetallics, whose results constitute the bulk

of the OQMD. Among these elements which appear less often in the OQMD (Br, C, Cl,

F, H, I, N, P, S, Se, Xe), C and N have the highest number of compounds with positive

formation enthalpies in the test set. Consequently, we conclude the poor performance on

C- and N-containing compounds is also a result of the poor performance of the model on

unstable material and not because of a systematic issue with modeling certain elements.

The types of compounds where ElemNet performs best also line up with our expec-

tations. The elements with the highest correlation coefficients are lanthanides and alkali

metal compounds. Lanthanides display a strong degree of chemical similarity (e.g., all

form trivalent cations), and so we would expect the properties of lanthanide compounds

to be relatively easy to predict if our model can recognize the similarity between these el-

ements. Additionally, alkali metals are most often observed in single oxidation state (1+),

which makes their chemistry somewhat simpler than most transition metals. In terms of

the nonmetals, our model has the best performance on Se-, F-, and Cl-containing com-

pounds, which have the highest fraction of compounds with negative formation enthalpies.

In general, we find that ElemNet has strong predictive performance across many classes
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Figure 3.5. Predicted phase diagrams from the hold-out test. These charts
show the convex hulls predicted for the (a) Ti-O binary and (b) Na-Mn-O
from ML models that were trained without any data from each system in
their training set. We compare the performance of a Random Forest model
trained using only element fractions (RF-Comp), RF trained using physical
features (RF-Phys) and a deep learning model (ElemNet). Each vertex on
the convex hull corresponds to the composition of a stable compound. The
black lines on each chart show the OQMD convex hull. We find that the
deep learning model has the fewest predictions outside the regions where
compounds are known to form, for both the Ti-O and Na-Mn-O phase
diagrams.

of materials and is most accurate for stable compounds that contain elements with fewer

possible oxidation states.
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3.3.7. Learning Interaction between Elements

Due to the absence of domain knowledge in materials representation for ElemNet, one

potential issue that might arise is that it may have difficulty generalizing trends learned

from one materials system to systems not included in the training set. When presented

with an entry from a system that was not included in a training set, the inputs to ElemNet

would be in a previously-unobserved portion of feature space. In contrast, models that

rely on physical features suffer from this problem less. For example, consider a case where

a training set contains no entries with both Ti and O together, and a ML model is tasked

with predicting the formation enthalpy of TiO2. A model trained on the features from

Ward et al. [14] would be provided with useful information such as “TiO2 is charge-

balanced given the known oxidation states of Ti and O”, and that “Ti2O3 has a similar

difference in electronegativities to Al2O3”. Without these physical features as guidance,

the prediction task for ElemNet could potentially be more difficult.

To further test the predictive accuracy of ElemNet with respect to the above-described

concern, we designed a holdout test where we withheld all training examples from several

systems. We first analyzed the training set to determine that Ti-O is the binary chemical

system with largest number of compositions in the training set and, similarly, that Na-Mn-

O and Na-Fe-O are the two most common ternary chemical systems. Next, we created two

separate training sets and test sets for two different holdout tests. For the first test, we

withheld all entries that contain both Ti and O to use as a test set (561 entries) and used

all other entries as a training set. For the second test, we withheld all entries from the Na-

Fe-Mn-O quaternary phase diagram (i.e., any compound that contains exclusively Na, Mn,

Fe, and O) - total of 96 entries. Each of these training/test splits provides a unique way for
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evaluating whether a ML model can accurately assess previously-unobserved combinations

of elements.

We found that ElemNet outperformed both Random-Forest-based models (with and

without physical features) in both of these cross-validation tests. The RF model without

physical features achieves an MAE of 0.323 eV/atom on the Ti-O holdout test, and a

MAE of 0.405 eV/atom on the Na-Fe-Mn-O holdout test. The performance of this model

is quite poor when considering that the mean absolute deviation of the test sets are 0.478

and 0.792 eV/atom for the Ti-O and Na-Fe-Mn-O tests, respectively. The RF model using

physical attributes is significantly better with MAE of 0.198 and 0.179 eV/atom for each

test, which again illustrates the importance of physical features for conventional machine

learning models. We found that ElemNet achieves markedly better performance on both

tests (MAE of 0.138 and 0.122 eV/atom), demonstrating that ElemNet can infer the

properties of unobserved chemical systems better than existing machine learning models.

ElemNet having quantitatively better accuracy on the test sets is promising, but it

still does not effectively capture whether this network is better at discovering stable

compounds. To test the discovering potential of each model, we emulated searching for

stable compounds by using each model to evaluate a large number of candidate materials

from each of the systems held out from the training set. These systems are composed

of commonly-occurring elements, for these tests we assume that they are well studied

and that there are no yet-undiscovered compounds that are not included in the OQMD.

Figure 3.5 illustrates the formation enthalpies and convex hull predicted by each of the

ML models, compared to the known DFT result. We find that ElemNet reproduces

the Ti-O and Na-Mn-O phase diagrams the most accurately. All three models correctly
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identify that there should be a stable compound near TiO2, and all miss the Ti-rich

stable compounds (e.g., Ti2O). This happens because the Ti-rich stable compounds have

the Magneli phases which is specific to Ti-O system which are absent from training set;

hence, they can not learn the specific behavior of Ti-rich compounds [97, 98]. However,

both Random Forest models predict spurious minima near pure O, while ElemNet makes

no spurious predictions. ElemNet also has the fewest number of spurious predictions in

the Na-Mn-O system, where it captures that ternary compounds are only known to form

in the region bounded by Na2O, MnO2, and MnO. In contrast, the two RF-based models

predict many stable compounds in Na- and O-rich regions where no compounds are known

to exist. Consequently, we conclude that our deep learning model achieves not only better

accuracy on these holdout tests but it can also predict the locations of unknown, stable

phases with much higher fidelity than current best ML based predictive techniques.

3.3.8. Chemistry Insights

ElemNet is evidently able to learn a useful representation of materials, given its strong

prediction scores in the ten-fold cross validation and the hold-out tests. To understand

how this network is performing so well, we studied the representation learned by the

network. In deep neural networks, the inputs (known as activations) to each successive

hidden layer become less related to the input data and more strongly related to the output.

In our case, the activations for each layer are incrementally better representations of

compositions for predicting formation enthalpy. We interrogated these representations by

providing specific inputs to the network and measuring the activations of the network for
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Figure 3.6. Visualization of the activations of different materials in Elem-
Net. Each frame shows a 2D projection (using PCA) of the activations of
different materials in several layers of ElemNet, which shows which mate-
rials have similar representations. The upper row shows the activations of
different elements, where each point is a different element and is colored by
the group number. The second row shows the activations of AB compounds
formed of group I and II metals combined with S (group VI) or Cl (group
VII). We note that elements from the same group in the periodic table, such
as alkali metals, are clustered together in the early layers of the network,
and that later layers reflect properties related to combinations of elements
(e.g., charge balance).

several hidden layers. We can then understand the behavior of the network by comparing

how the activations change for different materials.
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Specifically, we studied the activations of different main group elements and AB com-

pounds that contain S or Cl paired with an Group I or Group II metal. Figure 3.6 shows

the activations for each subset for the 1st, 2nd, and 8th layers of the network. As the

hidden layers are composed of a large number of activations, we only considered the first

two principal components of activations for this analysis. By projecting the activations

down to a two-dimensional representation, we can view which compositions have similar

representations and, with our knowledge of materials science, infer what kind of features

the network is learning.

The 1st layer of the network exhibits clustering between elements based on their

group number. The alkali and alkali earth metals, in particular, are easily identifiable

and well-separated from the elements of other groups. Several groups of elements are also

well-ordered by their period. The alkali metals group is ordered H, Li, Na, K, Rb, Cs from

left to right and the halogens are ordered in a descending period. Elements groups are also

separated where appropriate. Bi is clustered near Pb and Tl but not other chalcogens,

which makes sense given that is the only metal in its group. B is also separated from

the cluster containing Al, Ga, and In, which reflects that B is a metalloid unlike the

other metallic elements in Group 13. Given the remarkably-clear periodic trends, it is

worth emphasizing that no information about groups and periods of the periodic table

was provided to ElemNet ; all of these similarities are learned from the data.

The clustering of elements becomes less clear in later hidden layers in the network.

Groups of elements are still clearly visible in Layer 2, although the ordering by period is

less evident. By Layer 8, periodic trends are nearly unrecognizable in the activations of
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each element. One possible explanation is that each layer of the network is gradually learn-

ing more complex features in a way similar to networks built for image classification.[4, 3]

The early layers of the network are learning features based directly on the input values

(i.e., presence of certain types of elements). Later layers in the network are learning more

complex features of the compositions that have more to do with the interactions between

elements than the types of elements present, which would explain why the similarity of

elements becomes less visible in the activations.

To test our hypothesis that later layers in the model network capture features related

to interactions between elements, we measured the activations AB compounds composed

of alkali and alkaline earth metals combined with S or Cl. In the first layer, the compounds

are clustered by similar groups and the distances between clusters are related to chemical

similarity. The I-VII compounds (e.g., LiCl) are clustered together and closer to II-VII

(for example, MgCl), which contain one element from the same group, than they are to

II-VI compounds, which have no groups in common with I-VII compounds. Grouping

based on similarity of element groups becomes less apparent in the second layer. I-VII

compounds are now closer to II-VI compounds than any other group. We hypothesize

that this change in the grouping is a result of both I-VII and II-VI compounds being

charged balanced, which means they should have more negative formation enthalpies.

The activations of the 8th layer show some of the I-VI and II-VI compounds together,

though there are more violations of the rule (for example, BaS is far from CaS). The

grouping based on charge balance is imperfect (Be-containing compounds from a separate

cluster from the other group II compounds), but it is clear that the later layers are more

related to interactions between elements than the presence of single elements. Overall,
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the activations for both single elements and binary compounds demonstrate the power

of deep learning networks to learn essential domain knowledge without specially-designed

inputs.

3.3.9. Combinatorial Screening for New Materials Candidates

As our deep learning model can make robust and fast predictions, it can be used to perform

combinatorial screening in huge composition space for discovery of new materials. As a

case study, we conducted a combinatorial screening using our model in a huge composition

space of around half a billion compounds to study if it can identify stable compounds which

are not present in our training set. We first generate a list of about 450M hypothetical

compounds of the form AwBxCyDz where the elements (A-D) can be any of the 86 elements

in the OQMD besides He, Ne and Ar, and w-z are positive integers where w+x+y+z ≤ 10.

The order of the elements are not fixed based on electronegativity. The compositions are

unique in the sense that the ratio of constituent elements, i.e., we take AB and A2B2

as one composition AB since they have same composition ratio. Since we are taking

the combination, there is no duplicate counting. We then evaluate the ∆Hf of these

compositions using ElemNet. As ElemNet is two orders of magnitude faster than the

current best ML based predictive models [13, 14], it allows extremely fast scanning for

the discovery of new materials compared to the models in practice – we scan the entire

composition space of 450M within few days of GPU time.

We identified compositions where it could be possible to form a new compound by

identifying the compositions where ElemNet predicted a formation enthalpy much lower

than the OQMD convex hull. Specifically, we computed the difference between the ∆Hf
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predicted by ElemNet at each composition to the ∆Hf of the OQMD convex hull at

that composition. Considering that 95% of the predictions on our test set had an error

less than 0.2 eV/atom, we removed all predictions where this difference is smaller than

0.2 eV/atom to identify the predictions most likely to be correct. In total, we found

232 binary, 14,366 ternary, and 353,352 quaternary chemical systems out of the 4.3M

compositions where the ElemNet ∆Hf is below the current OQMD hull by at least 0.2

eV/atom. The list of these binary and ternary compositions is available in its entirety

in the Supplementary material (we could not upload the quaternary compositions due to

space limit for Supplementary material) of [99].

Our first step for validating these predictions was to determine whether any compo-

sitions correspond to known compounds from the Inorganic Crystal Structure Database

(ICSD) that are absent from the OQMD. These “missing” ICSD compounds are reason-

able guesses for stable compounds, as many ICSD compounds are stable. We assembled a

list of ICSD compounds not in the OQMD by first identifying all 92,756 unique composi-

tions of compounds in the ICSD and then the 63,823 that are farther than 1% (measured

using the L2 distance) of an entry in our training set. If we restrict the prediction to

be within 1% of the ICSD composition, the 4.3M predicted compositions includes 29

ICSD binary compounds not in the OQMD, 179 ternary compounds, and 80 quaternary

compounds. If we decrease the tolerance to 10%, our model identifies 108 of the missing

ICSD binary compounds, 1, 121 ternaries, and 1, 087 quaternaries. The number of ICSD

compounds we find with our ElemNet model is small compared to the number of ICSD

compounds not in the OQMD, but this is not unexpected. For one, we apply a large

threshold for the hull distance (0.2 eV/atom), such that the compounds we find must be



64

very stable compared to compounds already in the OQMD. Finding some predictions from

ElemNet that match up to ICSD entries shows ElemNet is at least identifying compounds

that are reasonable to assume to be stable.

To further characterize the predictions of ElemNet, we analyzed the how the predic-

tions are distributed across composition space. Over 20% of the systems predicted to

contain new stable compounds include lanthanides or actinides, which is unsurprising

given that compounds of these elements have not been studied as extensively as other el-

ements. We, therefore, exclude actinide and lanthanide compounds from further analysis,

and identify predictions from systems with more commonly occurring elements for further

study, as shown in Table 3.3. The predictions for compounds that include Li, K, or Na

are particularly illustrative. We note that our model predicts KF6, NaF8, OF9 and SeF9

to be stable, which is unlikely given the known oxidation states and suggests ElemNet

underestimates the enthalpy of F-containing compounds, especially at high F-fractions.

The predictions for the ternary compounds are interesting as they reflect realistic oxi-

dation states of each element despite the model having no information about oxidation

states in the input. Additionally, KY2F7 and NaY2F7 are reasonable predictions given

that they have already been synthesized experimentally [100]. NaY2F7 is indeed stable in

the OQMD and KY2F7 is only unstable by 50 meV/atom. The prediction of quaternary

fluorides with Na and Cs are also reasonable, given their similar stoichiometries to many

known Elpasolite phases[101]. Overall, the predictions for Li-, K-, or Na-containing com-

pounds illustrates that ElemNet is making reasonable predictions. The few numbers of

predictions of new 3d metals oxides are in agreement with our expectations, given how

extensively these materials have been studied. The only new binary oxide we predicted
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is Cu2O, which is a known compound and appears in this list because ElemNet overesti-

mates its formation enthalpy. We also predict Zn2Cu3O3 to be stable, which is unlikely

because ZnO-CuO is known to be phase separate.[102] These two unlikely predictions

suggest that the formation enthalpies of Cu oxides may be generally overestimated by the

models, which could be an effect of Cu2O being in the test set for ElemNet rather than the

training set. The quaternary prediction, TiZnCrO5, is potentially interesting given that

it is charged balanced and that there are already several known ABCO5 oxides[103, 104].

Overall, these few subsets of compounds once again show that ElemNet is making rea-

sonable predictions for new materials – an outstanding feat given how little knowledge of

materials science was used to create it.
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3.4. Discussion

Conventional predictive ML modeling approaches require manual feature engineering

of materials representation to incorporate domain knowledge in the model inputs. How-

ever, there is no consensus among researchers on how many and which physical attributes

to include into the model inputs, such that they incorporate all the important domain

knowledge required to make accurate predictions. Here, we demonstrated that the need to

engineer features for materials can be bypassed by leveraging a deep learning approach.

A deep learning model can learn the optimal materials representation required for the

prediction task by automatically capturing the chemical interactions between different el-

ements from the training dataset using artificial intelligence, without any need for manual

feature engineering, domain knowledge or human intuition; which can allow it to make

better prediction for chemical systems absent in the training set than the conventional

ML models.

The general belief in scientific community is that deep learning techniques require big

training datasets [3] to perform well; however, we demonstrate that ElemNet can per-

form better than conventional ML models by leveraging only 2% of the OQMD dataset

for training, which shows that deep learning can be used to build predictive models on

relatively smaller materials and scientific datasets such as of size 4k. Our results provide

a stimulus for researchers to use DNN based approaches for building predictive models

on their datasets. Since the proposed deep learning approach yielded the highest accu-

racy to date, it provides a new direction for more robust and fast predictions to identify

composition regions containing materials with strong-negative formation enthalpies for

discovery. We scanned around 450 million candidate compositions for novel ternary and
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quaternary compounds, and predicted that new stable compounds could be found in

about 368k different chemical systems. The entire list is made available in the Supple-

mentary Material of [99] to facilitate further research and analysis for accelerating the

process of new materials design and discovery. We have added ElemNet to our existing

online formation enthalpy calculator [28, 13] publicly available at http://info.eecs.

northwestern.edu/FEpredictor so that researchers can publicly access and evaluate its

predictions. The model is also available at https://github.com/dipendra009/ElemNet

with the trained weights and sample code to demonstrate how to load and use the model

for making predictions and performing combinatorial screening for new materials discov-

ery. We plan to keep refining the model by training on larger datasets as they become

available in future which will help in further improvement in the prediction results.

http://info.eecs.northwestern.edu/FEpredictor
http://info.eecs.northwestern.edu/FEpredictor
https://github.com/dipendra009/ElemNet
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CHAPTER 4

IRNet: A General Purpose Deep Residual Regression

Framework for Materials Discovery

4.1. Introduction

Materials discovery plays an important role in many domains of science and engineer-

ing [105, 106]. The slow pace of development and deployment of new/improved materials

is a major bottleneck in the innovation cycles of emerging technologies [107]. Collection

of large scale datasets through experiments and first-principle computations such as high

throughput density functional theory (DFT) calculations [108, 109, 42] and the emer-

gence of integrated data collections and registries [110, 111] have spurred the interest of

materials scientists in applying machine learning (ML) models to understand materials

and predict their properties [15, 16, 14, 56, 50, 18, 63, 20, 22], leading to the novel

paradigm of materials informatics [9, 47, 112, 50]. Such interests have been supported

by government initiatives such as the Materials Genome Initiative (MGI) [113].

Predictive modeling tasks in materials science are generally regression problems where

we need to predict materials properties from an input vector composed of numerical

features derived from their composition and/or crystal structures by incorporating domain

knowledge [15, 16, 14, 56, 50, 63, 99]. Since the model input contains vector of

independent features, the neural network models used for such tasks are composed of

fully connected layers. Vanishing gradient and performance degradation issues that arise
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when using deeper architectures have caused the neural network architectures used for

such prediction modeling to be limited in their depth [22, 20, 114, 99, 115]. For

instance, Montavon et al. [22] trained a four-layer network on a database of around

7000 organic compounds to predict multiple electronic ground-state and excited-state

properties. In the Harvard Energy Clean Project, Pyzer-Knapp et al. [20] used a three-

layer network for predicting power conversion efficiency of organic photo-voltaic materials.

Zhou et al. [115] used a fully connected network with single hidden layer to predict

formation energy from high-dimensional vectors learned using Atom2Vec. ElemNet [99]

used a 17-layered architecture to learn formation energy from elemental composition, but

experienced performance degradation beyond that depth. Hence, domain scientists have

mainly used traditional ML techniques such as Random Forest, Kernel Ridge Regression,

Lasso, and Support Vector Machines for materials prediction tasks [68, 67, 13, 14].

Recently, several projects have used domain knowledge-based model engineering within

a deep learning context for predictive modeling in materials science [81, 116, 117]. Deep

learning was used for directly predicting the crystal orientations of polycrystalline materi-

als from their electron back-scatter diffraction patterns [116]. SchNet [81] used continuous

filter convolutional layers to model quantum interactions in molecules for the total energy

and interatomic forces that follows fundamental quantum chemical principles. Boomsma

and Frellsen [118] introduced the idea of spherical convolution in the context of molecular

modelling, by considering structural environments within proteins. Smiles2Vec [117] and

CheMixNet [114] have applied deep learning methods to learn molecular properties from

the molecular structures of organic materials.
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Our goal here is to design a general purpose deep regression network for predicting

the properties of inorganic materials from their compositions and/or crystal structures,

without using any domain knowledge-based model engineering. We introduce the idea of

residual learning to deep regression networks composed of fully connected layers. In a

fully connected network, the number of parameters is directly proportional to the prod-

uct of the number of inputs and the number of output units. Several works have dealt

with the performance degradation issue due to vanishing or exploding gradients for other

types of data mining problems [119, 120, 121]. Srivastava et al. [119] introduced an

LSTM-inspired adaptive gating mechanism that allowed information to flow across lay-

ers without attenuation; the gating mechanism required more model parameters. They

designed highway networks composed of up to 100 layers that could be optimized. A

highway network [119] uses gated connections, which double the number of parameters

in a fully connected network. In a DenseNet [121], all previous inputs are combined be-

fore being fed into the current layer. For a fully connected network, this approach results

in a tremendous increase in the number of model parameters, a particular problem when

working with limited GPU memory. He et al. [120] introduced the idea of residual learn-

ing, in which a stack of layers learns the residual mapping between the output and input;

they built deep CNN models composed of 152 layers for image classification problem.

Since the input is added to the residual output, the number of required parameters for

residual learning was lower than that in Srivastava et al. [119]. This technique has been

used in several CNN and LSTM architectures, with shortcut connections being placed

after a stack of multiple CNN or LSTM layers to build deeper networks for better perfor-

mance [73, 122, 123]. For a fully connected network, an elegant approach is to use the
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residual mapping approach used in ResNet [120]. However, although residual learning has

been widely used in classification networks, no previous work leverages residual learning

for building deep regression networks composed of fully connected layers for numerical

vector inputs.

In this work, we study and propose design principles for building deep residual regres-

sion networks composed of fully connected layers for data mining problems with numerical

vectors as inputs. We introduce a novel deep regression network architecture with indi-

vidual residual learning (IRNet), in which shortcut connections are placed after each layer

such that each layer learns only the residual mapping between its output and input vec-

tors. We compare IRNet against two baseline deep regression networks: and a stacked

residual network (SRNet) with shortcut connections after stack of multiple layers. We

focus on the design problem of learning the formation enthalpy of inorganic materials

from an input vector composed of 126 features representing their crystal structure, and

another 145 composition-based physical attributes from the OQMD-SC dataset. OQMD-

SC contains 435, 582 materials with their composition and crystal structure from the Open

Quantum Materials Database (OQMD) [42].

Our proposed 48-layered IRNet achieves significantly better performance than does

the best state-of-the-art ML approach, Random Forest: a mean absolute error (MAE)

of 0.038 eV/atom compared to 0.072 eV/atom on the OQMD-SC dataset. IRNet also

performed significantly better than both the plain network and SRNet. The use of in-

dividual residual learning (IRNet) led to faster convergence compared to the existing

approach of residual learning in SRNet, while maintaining the same number of param-

eters. We also evaluated IRNet performance for learning materials properties with 145
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composition-based physical attributes in two other datasets: OQMD-C (341, 443 data

points) and MP-C (83, 989) [109]. IRNet significantly outperformed the plain network

and the traditional ML approach on the new prediction tasks; the deeper models perform-

ing better in case of larger dataset (OQMD-C). We performed a combinatorial search for

materials discovery using the proposed models. The models were trained on 3.2111× 104

entries in OQMD-SC-ICSD dataset. The evaluation was performed by searching for sta-

ble materials with specific crystal structures. The proposed model provided significantly

more accurate predictions compared to the traditional ML approach (Random Forest).

4.2. Background

4.2.1. Property Prediction

The prediction of chemical properties from material crystal structure and composition is

strongly related to the discovery of new materials. One important material property is

formation enthalpy: the change in energy when one mole of a substance in the standard

state (1 atm of pressure and 298.15 K) is formed from its pure elements under the same

conditions [124]. In other words, it is the energy released when forming a material

(chemical compound) from the constituent elements. By knowing the formation enthalpy,

one can know whether the material is stable and thus feasible to experimentally synthesize

in laboratory. The more negative the formation enthalpy, the more stable the compound.

Materials properties also contain various other properties [42, 109].
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4.2.2. Materials Representation

Most ML approaches require manual feature engineering and a representation that incor-

porates domain knowledge into model inputs. They thus take composition-based physical

attributes and/or crystal structure as the input. Recently, Ward et al. [14] presented a

ML framework for formation energy prediction that used an input vector with 145 fea-

tures computed from composition; stoichiometric attributes, elemental property statistics,

electronic structure attributes, and ionic compound attributes. We leverage this approach

to compute the 145 physical attributes used in our datasets.

The crystal structure of a material is defined by the shape of the unit cell and asso-

ciated atom positions, which together define the repeat pattern of the atomic structures

that form the material. It is possible to represent the unit cell shape and atom positions

as a vector of 3+3N features (where N is the number of atoms), but this representation is

not suitable for ML. The atomic coordinates are not unique—rotating or translating the

coordinate system does not change the material—and they do not readily reflect impor-

tant features of the material (e.g., bond lengths). Many crystal structure representations,

such as “bag of bonds” [125] and histograms of bond distances [66], have been developed

to address this problem. We use the representation developed by Ward et al. [59], which

uses 126 features derived from the Voronoi tessellation of a material. The Voronoi tessel-

lation of a crystal structure provides a clear description of the local environment of each

atom, which is used to compute features such as the difference in elemental properties

(e.g., molar mass) between an atom and its neighbor [59].
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4.3. Design

We next describe how we build deep residual regression models, composed of multiple

fully connected layers, for data mining problems with numerical vectors as inputs. We

first introduce a plain network without any residual learning. Next, we build a stacked

residual network by introducing shortcut connections for residual learning after each of

a number of stacks, each composed of one or more layers with the same configuration.

Finally, we introduce our novel individual residual learning approach, in which shortcut

connections are used after every layer. We use the plain network and stacked networks

later as baseline models for comparison against the individual residual network.
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Input
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FC512-BN-ReLU

FC256-BN-ReLU

FC256-BN-ReLU

FC256-BN-ReLU

FC128-BN-ReLU

FC128-BN-ReLU

FC128-BN-ReLU

FC64-BN-ReLU

FC64-BN-ReLU

FC32-BN-ReLU

FC1

Output

Individual Residual 
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Figure 4.1. Three types of 17-layer networks. Each “layer” is a fully con-
nected neural network layer with size as described in Table 4.1; all but the
last are followed by batch normalization and ReLU. A plain network sim-
ply connects the output of each layer to the input of the next. A stacked
residual network (SRNet) places a shortcut connection after groups of lay-
ers called stacks. An individual residual network (IRNet) places a shortcut
connection after every layer.
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4.3.1. Plain Network

The model architecture is formed by putting together a series of stacks, each composed

of one or more sequences of three basic components with the same configuration. Since

the input is a numerical vector, the model uses a fully connected layer as the initial layer

in each sequence. Next, to reduce the internal covariance drift for proper gradient flow

during back propagation for faster convergence, a batch normalization layer is placed after

the fully connected layer [126]. Finally, ReLU [88] is used as the activation function after

the batch normalization.

The simplest instantiation of this architecture adds no shortcut connections and thus

learns simply the approximate mapping from input to output. We refer to this network

as a plain network.

4.3.2. Stacked Residual Learning

Deep neural networks suffer from the vanishing or exploding gradient problem [127, 128],

which hampers convergence, and also from the degradation problem: as network depth

increases, accuracy becomes saturated and then degrades rapidly. One approach to dealing

with these issues is to use shortcut connections for residual learning [120, 121, 119].

Here, we introduce the idea of residual learning to deep regression networks composed

of fully connected layers. In a fully connected network the number of parameters is directly

proportional to the product of the number of inputs and the number of output units. The

gated connection approach from the highway network and the use of all previous inputs

from DenseNet [121] would result in a huge increase in model parameters that would
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not fit in GPU memory. Hence, for a fully connected deep neural network, the residual

learning from He et al. [120] is the most elegant approach.

We use stacks of consecutive layers with the same configuration, with the first stack

composed of four sequence of layers and the final stack of two sequences. Instead of directly

fitting the underlying mapping, the stacked layers explicitly learn the residual mapping.

If the underlying mapping is denoted by H(~x), the stacked layers fit the residual mapping

of F (~x) = H(~x)− ~x. If the input and output of a stack have the same dimensions, they

can be added by using a shortcut connection for residual learning. If the output of a layer,

F (~x), has a different dimension than the input ~x, we perform a linear projection Ws to

match the dimensions before adding:

(4.1) ~y = F (~x) +Ws~x,

where ~x and F (~x) are the input and output to the stack of layers, respectively. Ws acts

as a dimension reduction agent. We refer to such a network with shortcut connections

across each stack as a stacked residual network (SRNet).

4.3.3. Individual Residual Learning

He et al. [120] introduced the idea of using shortcut connections after a stack composed

of multiple convolutional layers. The latest Inception-ResNet [73] architecture for image

classification follows a similar approach, with shortcut connections used between stack of

Inception-ResNet blocks, where each block is composed of multiple convolutional layers

followed by 1× 1 convolutional filters for dimension matching. In our case, the stacks are

composed of up to four sequences, with each sequence containing a fully connected layer,
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a batch normalization, and ReLU. Our stacks are comparably more complex and highly

non linear when compared to those used in CNN models for image classification. Also,

learning the residual regression mapping from input to output vector is comparatively

harder than the residual learning for classification task; the activations and gradients can

vanish within the stacks.

To solve this issue, we introduce a novel technique of individual residual learning for

sequences containing a fully connected layer with batch normalization and non linear

activation. We place a shortcut connection after every sequence, so that each sequence

needs only to learn the residual mapping between its input and output. This innovation

has the effect of making the regression learning task easy. As each “stack” now comprises

a single sequence, shortcut connections across each sequence provide a smooth flow of

gradients between layers. We refer to such a deep regression network with individual

residual learning capability as an individual residual network (IRNet).

The detailed architectures for networks with different depths are illustrated in Fig-

ure 4.1 and Table 4.1. There are several deep network design techniques based on advanced

branching techniques such as Inception [30, 73] and ResNext [129], but here our goal is

to design a general purpose deep regression network framework rather than optimizing

for a specific prediction task. We will explore branching techniques in future work.

4.4. Experimental Results

We now present a detailed analysis of the design and evaluation of our deep regression

networks with residual learning. We proceed in three stages. First, we present our evalu-

ation of the proposed deep regression model (IRNet) for the design problem and compare
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its performance with the plain network, SRNet, and traditional ML approaches when

applied to the OQMD-SC dataset. Next, we evaluate the proposed model architecture

by learning materials properties from physical attributes for compounds in the OQMD-C

and MP-C datasets. Finally, we perform a combinatorial search for materials discovery

by training on the OQMD-SC-ICSD dataset. Before presenting our evaluation, we discuss

the experimental settings and datasets that we use in this work.

Experimental Settings. We implement the deep learning models with Python and

TensorFlow [93]. We performed extensive architecture search and hyperparameter tuning

for all deep learning and other ML models used in this study. For deep learning models, we

experimented with different activation functions: sigmoid, tanh, and ReLU, both for the

intermediate layers and for the final regression layer. We explored learning rates in [1e-

1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6]; StochasticGradientDescent, MomentumOptimizer, Adam,

and RMSProp optimizers; and mini-batch sizes in [32, 64, 128]. Since we are dealing with

regression output, we experimented with mean squared error and mean absolute error

as the loss functions. We found the best hyperparameters to be are Adam [130] as the

optimizer with a mini batch size of 64, learning rate of 0.0001, mean absolute error as

loss function, and ReLU as activation function, with the final regression layer having no

activation function. Rather than training the model for a specific number of epochs, we

used early stopping with a patience of 200, meaning that we stopped training when the

performance did not improve in 200 epochs. For traditional ML models, we used Scikit-

learn [94] implementations and employed mean absolute error (MAE) as loss function

and error metric.
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Datasets. We used four datasets to evaluate our models: OQMD-SC, OQMD-C, MP-

C, and OQMD-SC-ICSD. OQMD-SC is composed of 4.355 82× 105 unique compounds

(unique combination of composition and crystal structure) with their DFT-computed

formation enthalpy from the Open Quantum Database (OQMD) [42]; this is used for the

design problem. It is composed of 271 attributes: 125 derived to represent crystal structure

using Voronoi tesselations and another 145 physical attributes derived from composition

using domain knowledge, as in Ward et al. [14]. OQMD-C is composed of 3.414 43× 105

compounds with the materials properties from OQMD as of May 2018. MP-C is composed

of 8.3989× 104 inorganic compounds from the Materials Project database [109] with a set

of materials properties as of September 2018. OQMD-C and MP-C contain composition

only (no structure information); we compute 145 physical attributes from the composition

using Ward et al.’s methods [14]. OQMD-SC-ICSD is composed of entries from the

Inorganic Crystal Structure Database (ICSD) [96] present in OQMD-SC. The datasets

are randomly split into training and test sets in the ratio of 9:1.

4.4.1. Design Problem

First, we analyze the impact of different design choices by evaluating the proposed mod-

els on the design problem. The design problem involves learning to predict formation

enthalpy from input vector composed of 126 attributes to represent crystal structure and

145 physical attributes in OQMD-SC dataset. An extensive architecture search and hy-

perparameter tuning is performed to search for the best deep regression model for the

design problem.
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Figure 4.2. Test error curve for various plain networks for the design prob-
lem. Batch normalization before activation function (FC+BN+ReLU) im-
proves performance significantly.

4.4.1.1. Basic Components. We experimented with different patterns of use of our

basic components—fully connected layer, batch normalization, activation function, and

dropout—within the plain network. Use of batch normalization resulted in significant

reduction in errors, as seen in Figure 4.2. Batch normalization can be used either before

(FC+BN+ReLU) or after the activation function (FC+ReLU+BN). For our regression

problem, using batch normalization before ReLU (FC+BN+ReLU) worked better; the

original work also used it before the activation function for image classification prob-

lem [126]. Since ReLU truncates all negative activations to zero, applying batch nor-

malization on ReLU outputs leads to changes in the activation distribution; since the
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Figure 4.3. Test error curve for deeper plain networks for the design prob-
lem. Performance degrades with network depth, even in the presence of
batch normalization.

regression output is dependent on all activations, batch normalization after ReLU leads

to higher oscillations and poor convergence.

We also experimented with using dropouts after the first four stacks for better gener-

alization; however, dropouts resulted in slight degradation in the performance. The best

plain network architecture for our design problem is composed of 17 sequences containing

a fully connected layer, a batch normalization and a ReLU; we refer to this as the 17-layer

plain network. as shown in Figure 4.1.

4.4.1.2. Residual Learning. Figure 4.3 shows how performance can degrade with in-

creased depth for plain networks. This happens mainly because of the vanishing gradient

problem. To solve this issue, we introduced residual learning to create SRNet and IRNet,
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Figure 4.4. Impact on residual learning for the design problem. Both resid-
ual networks outperform the plain network, and the individual network
outperforms the stacked network for all depths of network. We observe
similar trends even in the case of training error curves for all types of net-
works of all depths; the IRNet converges faster than the SRNet and Plain
Network for all depths.

as discussed earlier. We see in Table 4.2 and Figure 4.4 that the introduction of short-

cut connections to enable residual learning significantly improved model performance,

presumably by helping with the smooth flow of gradients from output to input. We

compared the individual residual learning in IRNet with the existing approach of use of

shortcut connections after stacks of multiple layers in SRNet. The stacks are formed by

putting the consecutive layers with equal number of output units in a stack.

We observe a significant benefit from the novel approach of using shortcut connections

for individual residual learning in IRNet; the mean absolute error significantly decreased

compared to SRNet as seen in Figure 4.4 and Table 4.2. Both the training and test error

curves in the case of IRNet exhibits better convergence than both SRNet and plain network

during the training.We conjecture that learning the residual between the output and the

input vector of the sequence is better compared to learning the more complex residual

mapping in the case of stacked residual network in SRNet. Also, if the identity mapping

using shortcut connections are optimal, the residuals would be pushed to zero and hence,

better suited for batch normalization to learn our regression output. This illustrates the
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Table 4.2. Performance of deeper residual networks for the design problem.
Test errors are MAE in eV/atom. Increased depth of residual network ar-
chitectures leads to improved performance for both stacked and individual
residual networks. The individual residual network (IRNet) clearly outper-
forms the stacked residual network (SRNet), achieving significantly lower
MAE.

Model Type Plain Network SRNet IRNet
17-layer 0.0653 0.0551 0.0411
24-layer 0.0719 0.0546 0.0403
48-layer 0.1085 0.0471 0.0382

advantage of using individual residual learning for deep regression networks composed of

fully connected layers for vector inputs.

4.4.1.3. Deeper Architectures. Next, we experimented with deeper architectures com-

posed of 24 and 48 sequences of layers for all types of deep regression networks: plain

network, SRNet, and IRNet. From Figure 4.3, we can clearly observe the performance

degradation issue in plain networks that do not leverage any shortcut connections for

residual network. Figure 4.4 illustrates the trend in error curves. Although both types of

residual networks exhibit reduced test error with increased depth, the rate of reduction

for IRNet is significantly better than that for SRNet. To prevent overfitting of such deep

models with large numbers of parameters to the training dataset, we used early stopping

with a patience of 200. Table 4.2 shows the final MAE for all types of networks with

different depths. Our results illustrates the efficiency of using individual residual learning

with deeper architectures.

4.4.1.4. Comparison with Other ML Approaches. Next, we compared the perfor-

mance of the proposed deep learning model with traditional ML models: see Table 4.3.

We performed an extensive hyperparameter search to find the best hyperparameters for

all ML models. For instance, for Random Forest model, we used a minimum sample split
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Table 4.3. Performance of Traditional ML Approaches for the design prob-
lem. We performed extensive grid search for hyperparameter tuning for all
the listed ML models. Test errors are MAE in eV/atom.

ML Approach Test
Error

AdaBoost 0.479
ElasticNet 0.384
LinearRegression 0.261
Ridge 0.261
SVR 0.243
KNeighbors 0.154
DecisionTree 0.104
Bagging 0.078
RandomForest 0.072

from [5, 10, 15, 20], number of estimators from [100,150,200], maximum features from

[0.25, 0.33] and maximum depth from [10,25]. Similarly, extensive grid search for opti-

mization of hyperparameters for other ML models are used. Among all of the traditional

ML approaches considered, Random Forest achieved the best MAE of 0.072 eV/atom. By

comparison, the 48-layer IRNet achieved an MAE of 0.038 eV/atom, significantly outper-

forming Random Forest for the design problem. Figure 4.5 illustrates the comparison of

the prediction errors for the test set. Deep learning provides a more accurate and robust

prediction model than does the state-of-the-art ML approach, Random Forest, predict-

ing the formation enthalpy of 90% of the compounds in the test set with half the error

of Random Forest. These results demonstrate that deep learning in general, and IRNet

in particular, can help construct a robust model for predicting formation enthalpy from

materials crystal structure and composition.
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Figure 4.5. Cumulative distribution function (CDF) of the prediction er-
rors for the design problem. Deep learning (IRNet) performs significantly
better than the traditional ML approach, Random Forest, achieving a 90th
percentile MAE of 0.081 eV/atom vs. 0.158 eV/atom for Random Forest.

4.4.1.5. Summary of design insights. We draw the following lessons from our ex-

periments with building deep regression networks for learning regression output from

numerical vector inputs.

(1) Batch Normalization Batch normalization works better in deep regression net-

works if used before ReLU. Otherwise, ReLU truncates all negative values to zero,

which makes learning the regression output hard. Dropout with batch normal-

ization slightly worsens performance.

(2) Residual Learning Residual learning in deep regression always performs better

compared to directly learning to fit the underlying mapping from input vector to

the regression output.
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(3) Individual Residual Learning Putting a shortcut connection after each se-

quence of layers (IRNet) works significantly better than the conventional way of

putting the shortcut connection after each stack of multiple layers (SRNet).

The presented architecture can be applied to other data mining problems with vector

inputs in scientific domains; they can provide more robust and accurate predictive mod-

eling than the existing ones based on traditional ML approach. The same architecture

can be also applied to classification problem by adding a softmax activation at the last

layer and using cross entropy as the loss function.

4.4.2. Other Datasets

We evaluated the proposed deep regression architecture on learning materials properties

present in two other datasets, OQMD-C and MP-C. OQMD-C is composed of 3.414 43× 105

samples while MP-C has 8.3989× 104 samples; they contain the materials properties with

their composition. For comparison, we used the 17-layered plain network and ten other

traditional ML approaches. We did not perform hyperparameter tuning and architecture

search for deep learning models for these tasks, to illustrate the general purpose use of the

proposed deep regression model. The deep regression networks designed for the design

problem were trained on an input vector containing 145 physical attributes derived from

composition; they were trained from scratch using random weights initialization. For

the traditional ML models, we performed an extensive grid search for hyperparameter

optimization as in the previous case for the design problem.

We can observe three things from the results in Table 4.4. First, the deep learning

network almost always outperforms the traditional ML approaches. Second, the proposed
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network with individual residual learning performs better than the plain network in all

cases. Third, deeper networks worked better in case of OQMD-C while they did not help in

case of MP-C, suggesting that deeper networks work better when the dataset size is larger

(OQMD-C vs MP-C). This agrees with the fact that deep neural networks perform better

with big data. The results demonstrate that although the proposed model was originally

designed for a different design problem, they almost always outperform the plain network

and the traditional ML approaches used by domain scientists. We also experimented

with SRNet from design problem for these prediction problems, SRNet performed better

than the plain network but worse than the IRNet, similar to the results for the design

problem. This illustrate that IRNet can serve as a general purpose deep learning model

for different predictive modeling tasks where we need to learn the regression output from

an input vector composed of materials composition and/or crystal structures.
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Table 4.5. Performance from combinatorial search. Our 17-layer IRNet,
when trained on OQMD-SC-ICSD, predicts formation enthalpy (stability)
more accurately than Random Forest for all three types of crystal structures
considered.

Crystal Random Forest 17-layers IRNet
Structure MAE (eV/atom) MAE (eV/atom)
B2 0.5114 0.4780
L10 0.4793 0.4419
Perovskite 0.6166 0.3693

4.4.3. Application for Materials Discovery

Since the proposed model achieved a significant reduction in prediction error for forma-

tion enthalpy compared to state-of-the-art approach, it can be applied for high throughput

materials discovery. To test the ability of the proposed method to identify new materials,

we emulated a common approach in computational materials science, namely combinato-

rial search . A combinatorial search involves first enumerating all possible combinations

of different elements on a specific crystal structure prototype, and then evaluating the

stability of each resultant structure with DFT to find which are stable. We performed

a combinatorial search using the evaluation settings based on the combinatorial search

analysis from [59]. OQMD-SC-ICSD, used as a training set by Ward et al. [59], comprises

3.2111× 104 entries in OQMD-SC that correspond to known, experimentally-synthesized

materials in ICSD [96]. The proposed IRNet is trained using the OQMD-SC-ICSD dataset

and evaluated by predicting the formation enthalpy (stability) of materials with crystal

structures from three different, commonly occurring crystal structure types: B2, L10, and

orthorhombically-distorted perovskite. These three structure types were chosen to sample

structures with different kinds of bonding environments and that are stable with different

types of chemistry (e.g., metals vs. oxides).
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We show in Table 4.5 the deep learning model’s prediction error for each type of crystal

structures. To compare the performance of our deep learning model, we also trained a

Random Forest model (the best traditional ML approach from previous analysis) on

OQMD-SC-ICSD, with extensive hyperparameter search. Our results demonstrate that

our models perform better on the evaluation candidates than does the Random Forest

model. Although we do not repeat the entire combinatorial search workflow here with

the proposed models, more accurate predictions on the discoveries from Ward et al. [59]

suggest that the proposed IRNet model can improve the quality and robustness of the

combinatorial search workflow. Despite a small training data size, the IRNet model

provides a more robust method for performing combinatorial search for high-throughput

materials discovery.

4.5. Conclusion and Future Work

In this work, we studied and proposed the design principles for building deep regres-

sion networks composed of fully connected layers for data mining problems with numerical

vector input. We introduced the use of residual learning in deep regression network; we

proposed a deep regression network (IRNet) that leveraged individual residual learning in

each layer. The proposed IRNet outperformed the plain network (without residual learn-

ing) and traditional machine learning approaches in learning different materials proper-

ties from different size of datasets and input vector. For the design problem of predicting

formation enthalpy from crystal structures and composition, the proposed IRNet sig-

nificantly reduced the MAE from 0.072 eV/atom to 0.038 eV/atom. We were able to

converge the deep regression networks with up to 48 layers, performance increasing with
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greater depth. Since IRNet kept improving performance with increased depth, we plan

to explore deeper IRNet architectures to study their impact on model performance and

convergence, and to apply the resulting networks to data mining problems from other

scientific domains. It will also be interesting to see how this model performs on exper-

imental datasets using transfer learning from larger simulation datasets. The proposed

deep learning model and design insights gained from this work can be used in build-

ing predictive models for other applications with vector inputs. The code repository is

available at https://github.com/dipendra009/IRNet; we also plan to make the models

described in this work available via DLHub [131].

https://github.com/dipendra009/IRNet
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CHAPTER 5

Enhancing Materials Property Prediction by Leveraging

Computational and Experimental Data using Deep Transfer

Learning

5.1. Introduction

Experimental observations have been the primary means to learn and understand

various chemical and physical properties of materials [33, 34, 35, 36, 37, 38]. Nev-

ertheless, since experiments are expensive and time-consuming, materials scientists have

been relying on computational methods such as Density Functional Theory (DFT) [39]

to compute materials properties and model processes at the atomic level to help guide

experiments [40]. DFT has enabled the creation of high-throughput atomistic calcula-

tion frameworks for accurately computing (predicting) the electronic-scale properties of a

crystalline solid using first principles, which can be expensive to measure experimentally.

Over the years, such DFT-computations have led to a number of large datasets like the

Open Quantum Materials Database (OQMD) [41, 42], the Automatic Flow of Materials

Discovery Library (AFLOWLIB) [43], the Materials Project [44, 132, 133], Joint Au-

tomated Repository for Various Integrated Simulations (JARVIS) [134, 135, 136, 137],

and the Novel Materials Discovery (NoMaD) [45]. They contain DFT-computed prop-

erties of ∼ 104 − 106 materials which are either experimentally-observed [138] or hypo-

thetical materials. The availability of such large DFT-computed datasets has spurred
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the interest of materials scientists to apply advanced data-driven machine learning (ML)

techniques to accelerate the discovery/design of new materials with select engineering

properties [51, 52, 17, 13, 53, 54, 55, 15, 56, 57, 58, 14, 59, 60, 61, 116, 62, 50,

63, 64, 65, 99, 139, 140, 141]. Such predictive models enable reducing the size of the

search space for material candidates and help in prioritizing which DFT simulations and,

possibly, experiments, to perform. Training data sizes can have significant impact on the

quality of prediction performance in machine learning, and particularly in deep learn-

ing [3]. This has also been proven specifically for the case of the prediction of material

properties [59, 99]. Since experimental data are limited in materials science, ML models

are mostly trained using DFT-computational datasets [14, 59, 99, 13, 80, 81, 82].

Some recent works compare the DFT-computed formation energies with experimental

observations [42, 142, 143]. For instance, Kirklin et al. compared the DFT-computed

formation energy with experimental measurements of 1, 670 materials and found that the

mean absolute error (MAE) to vary from 0.096 to 0.136 eV/atom for OQMD [42]. Jain

et al. [143] reports the MAE of the Materials Project as 0.172 eV/atom, while in Kirklin

et al. [42], the MAE of the Materials Project is reported as 0.133 eV/atom. We also

performed an analysis to compare the experimental formation energies of 463 materials

against their corresponding formation energies from OQMD, the Materials Project and

JARVIS datasets available in Matminer (an open-source materials data mining toolkit) [1].

A scatter plot of the comparison of different DFT-computed datasets against the experi-

mental observations is illustrated in Figure 5.1. We find the MAEs in OQMD, Materials

Project and JARVIS are 0.083 eV/atom, 0.078 eV/atom and 0.095 eV/atom respectively,
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against experimental formation energies. In this paper, we will refer to this as the “dis-

crepancy” between DFT computation and experiments, in order to distinguish it from the

“error” of the ML-based predictive models built on top of DFT/experimental datasets. As

DFT calculations are performed at 0 K and experimental formation energies are typically

measured at room temperature, the two formation energies could be different [42, 142].

However, such a difference is very small except for the materials that undergo phase trans-

formation between 0 K and 300 K; these elements include Ce, Na, Li, Ti and Sn [144].

DFT databases, such as OQMD and the Materials Project, reduce this systematic error

by chemical potential fitting procedures for the constituent elements having phase trans-

formations between 0 K and 300 K [42]. For instance, Kim et al. [142] performed a

comparison between the experimental and the DFT-computed formation energy of such

compounds containing constituent elements having phase transformation at low temper-

ature, and reported an average discrepancy of about 0.1 eV/atom in both the Materials

Project and OQMD; the average uncertainty of the experimental standard formation en-

ergy was one order of magnitude lower. Unlike OQMD and Materials Project, JARVIS

does not apply any empirical corrections on formation energies to match experiments.

As a consequence, such models trained on DFT-computed datasets automatically inherit

the underlying discrepancies between the DFT-computations and the experimental ob-

servations, in addition to the prediction error with respect to DFT-computations used

for training. The discrepancy between DFT-computation and experiments serves as the

lower bound of the prediction errors that can be achieved by the ML models with re-

spect to experiments. Due to this issue, potential material candidates identified by such
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Figure 5.1. DFT-computation error analysis of different DFT-computed
datasets against the experimental observations. We compared the experi-
mental formation energies of 463 materials against their corresponding for-
mation energies from OQMD (a), Materials Project (b) and JARVIS (c)
datasets available in Matminer [1]. The MAE in OQMD, Materials Project
and JARVIS for formation energies against experimental observations are
0.083 eV/atom, 0.078 eV/atom and 0.095 eV/atom respectively. (d) The
50th percentile and 90th percentile MAE for OQMD, Materials Project and
JARVIS are 0.057 eV/atom and 0.201 eV/atom, 0.055 eV/atom and 0.171
eV/atom, and 0.068 eV/atom and 0.190 eV/atom, respectively.

ML screening could be incorrect and disagree with intuition from domain knowledge and

experiments [13, 99, 14].

In this work, we demonstrate that it is possible to predict material properties closer

to the true experimental observations using deep learning models that can leverage the
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existing large DFT-computational datasets together with available experimental observa-

tions and other smaller DFT-computed datasets. Deep learning [3] enables us to perform

transfer learning from large datasets to smaller datasets between similar domains. The

transfer learning approach works by first training a deep neural network (DNN) model

on the source domain with a large dataset and then, fine-tuning the trained model pa-

rameters by training on the target domain with a relatively smaller dataset as shown in

Figure 5.2 [145, 146]. Since the model is first trained on a large dataset, it identifies a rich

set of features from the input data representation, and this simplifies the task of learning

features present in the smaller dataset, on which the model is subsequently fine-tuned.

Specifically, here we evaluate the effectiveness of the proposed approach by revisiting a

commonly-studied challenge in materials informatics: predicting whether a crystal struc-

ture will be stable (formation energy) given its composition [13, 14, 83, 84, 85]. We

leverage the recent deep neural network architecture- ElemNet [99]; ElemNet enables us

to perform transfer learning from OQMD (a large dataset containing DFT-computed ma-

terials properties for ∼ 341K materials) to two other DFT-databases (JARVIS and the

Materials Project) and an experimental dataset containing 1,963 samples from the SGTE

Solid SUBstance (SSUB) database. Our results demonstrate a significant benefit from the

use of deep transfer learning; in particular, the proposed approach enables us to achieve

an MAE of 0.06 eV/atom against an experimental dataset containing 1, 963 observations,

which is significantly better than the mean absolute discrepancy of around 0.1 eV/atom of

the DFT-computational datasets compared against experiments, and MAE of around 0.15

eV/atom of the predictive models trained from scratch (without using transfer learning)

on either experimental dataset or DFT-computed datasets.
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Figure 5.2. Proposed approach of deep transfer learning. First, a deep neu-
ral network architecture (ElemNet) is trained from scratch, by initializing
model parameters randomly from a uniform distribution, on a big DFT-
computed source dataset (OQMD). This allows the model to learn the in-
put data representation and capture the essential chemistry from the big
source training data. Since this model is trained from scratch on OQMD,
we refer to this as OQMD-SC model. Next, we train a deep neural network
architecture (ElemNet) on other smaller target dataset, such as experi-
mental dataset, using transfer learning. Here, the model parameters are
initialized using the values from OQMD-SC, and then fine-tuned using the
corresponding target dataset.

5.2. Methods

5.2.1. Data Cleaning

The input data is composed of fixed size vectors containing raw elemental compositions

as the input and formation enthalpy in eV/atom as the output labels. The input vector is

composed of non-zero values for all the elements present in the compound and zero values

for others; the composition fractions are normalized to one. We perform two stages of
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data cleaning to remove single elements and outliers. The single elements are removed

since their formation energy is zero. The samples with formation energy outside of ±5σ

(σ is the standard deviation in the training set) are removed. Further, the elements not

appearing in the training datasets after cleaning are removed from the input attribute set.

Out of 118 elements in the periodic table, our dataset contains the following 86 elements-

[H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni,

Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn,

Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf,

Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Ac, Th, Pa, U, Np, and Pu].

5.2.2. Experimental Settings and Tools Used

We have used the ElemNet [99] model architecture shown in Table 5.1 implemented

using Python and TensorFlow [93] framework. ElemNet is a 17-layered fully connected

deep neural network architecture that is designed to predict the formation energy from

elemental fractions without any manual feature engineering [99]. The input for ElemNet

is composed of a set of 86 elements in our dataset, from Hydrogen to Plutonium except

for Helium, Neon, Argon, Polonium, Astatine, Radon, Francium and Radium. These

86 elements form the materials in most of the current DFT-computed datasets such as

OQMD, JARVIS, and the Materials Project. ElemNet model is trained on each dataset

with/without using transfer learning using ten-fold cross-validation except when training

from scratch on OQMD; in the case of OQMD, ElemNet model is trained using a 9:1

random split into train and test(validation) sets, this is referred as OQMD-SC. OQMD-

SC model is used for transfer learning in this work. We train for 1000 epochs with a
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Table 5.1. ElemNet model architecture used for training different models.

Layer Types No. of units Activation Layer Positions
Fully-connected Layer 1024 ReLU First to 4th
Drop-out (0.8) 1024 After 4th
Fully-connected Layer 512 ReLU 5th to 7th
Drop-out (0.9) 512 After 7th
Fully-connected Layer 256 ReLU 8th to 10th
Drop-out (0.7) 256 After 10th
Fully-connected Layer 128 ReLU 11th to 13th
Drop-out (0.8) 128 After 13th
Fully-connected Layer 64 ReLU 14th to 15th
Fully-connected Layer 32 ReLU 16th
Fully-connected Layer 1 Linear 17th

learning rate of 0.0001 and mini batch size of 32 using Adam [130] optimizer. A patience

of 200 minibatch iterations is used to avoid overfitting to the training dataset; if there is

no improvement in validation error for 200 minibatch iterations, the training is stopped.

Dropout [86] layers are leveraged to prevent overfitting and they are not counted as

a separate layer. We used ReLU [88] as the activation function. We have used the

Matplotlib library in Python to plot the figures used in this manuscript. All the models

are trained and tested using Titan X GPUs on NVIDIA DIGITS DevBox. The training

curves of the ElemNet models trained from scratch and using transfer learning on the

experimental dataset are available in Supplementary Figure 3 of [147].

5.3. Experimental Results

5.3.1. Datasets

We use three datasets of DFT-computed properties: OQMD, the Materials Project and

JARVIS, and one experimental dataset. Among other properties, these databases re-

port the composition of material compounds along with their lowest formation energy in
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eV/atom, hence identifying their most stable structure. OQMD contains composition and

formation energies for ∼ 341K material compounds that can be either stable or unsta-

ble. We selected 11, 050 stable materials from JARVIS and 23, 641 stable materials from

Materials Project. Note that the total number of materials in JARVIS and Materials

Project is on the order of 30, 000 and 70, 000, respectively. However, for the present work,

only materials present on the convex hull (energy above convex hull=0) were selected. In

the case of material compounds with multiple crystal structures, the minimum formation

energy for the given material composition is used since it represents the most stable crys-

tal structure. For the experimental dataset, we use the experimental formation energy

from the SGTE Solid SUBstance (SSUB) database; they are collected by international

scientists [148] and contain a single value of the experimental formation enthalpy which

should represent the average of formation enthalpy observed during multiple experiments,

and do not contain error bars. It is curated and used by Kirklin et al. in their study of

assessing the accuracy of DFT formation energies in OQMD [42]. It is composed of 1, 963

formation energies at 298.15 K, and contains many oxides, nitrides, hydrides, halides, and

some intermetallics, all being stable compounds.

5.3.2. Training from Scratch

First, we discuss our results when training ElemNet model architecture on each dataset

from scratch. While training from scratch, the model parameters are initialized randomly

from a uniform distribution. Since the model parameters are initialized randomly, all the

features are learned from the input training data. The input vector contains the elemental

fractions normalized to one, and the regression output gives the formation energy. The
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models learn to capture the required chemistry from the input training data. We report

the results of a ten-fold cross-validation (except OQMD) performed on the four datasets

in Table 6.1 (for OQMD, we used a 9:1 random split into train and test (validation) sets

for this analysis, and the same model is used ten times to get the predictions on the test

set since the model predictions changes for same input due to use of Dropout [86]). We

also report performance of our models on a separate holdout test set using two different

training:test set splits in Table 5.3. For holdout test, we split the datasets into training

and test sets in the ratio of 9:1 and 8:2 and train ElemNet model architecture on the

training sets using a ten-fold cross-validation, and report the performance of the best

model from the ten-fold cross-validation on the holdout test set. Our results demonstrate

that the size of training dataset has a significant impact on the model performance,

which is in agreement with similar analyses from past studies [99, 59]. Despite the

smaller training dataset size, the ElemNet model trained using the Materials Project has

slightly better performance compared to the models trained using OQMD. This may be

attributed to the inherent formation energy data in Materials Project for which several

empirical fittings were applied. The impact of training dataset is most evident in the case

of the experimental dataset, where the training data for each fold of the ten-fold cross

validation contains only ∼ 1, 767 observations and each test set contains ∼ 196 samples.

The higher error in the case of the experimental dataset is due to its limited size and

clearly illustrates the impact of the training data size on the performance of predictive

models.



105

Table 5.2. Performance of the ElemNet models from ten-fold cross-
validation in MAE (eV/atom).

Dataset Size Scratch [SC] OQMD-SC Transfer Learning [TL]
OQMD 341, 000 0.0417± 0.0000 − −
JARVIS 11, 050 0.0546± 0.0019 0.0821± 0.0000 0.0311± 0.0012
Materials Project 23, 641 0.0326± 0.0009 0.1084± 0.0000 0.0248± 0.0006
Experimental 1, 963 0.1299± 0.0136 0.1354± 0.0000 0.0642± 0.0061

Table 5.3. Holdout test set performance of the ElemNet models in MAE (eV/atom).

Dataset Size Train:Test Split Ratio Scratch [SC] Transfer Learning [TL]
OQMD 341, 000 8 : 2 0.0471 −
OQMD 341, 000 9 : 1 0.0437 −
JARVIS 11, 050 8 : 2 0.0593 0.0324
JARVIS 11, 050 9 : 1 0.0568 0.0312
Materials Project 23, 641 8 : 2 0.0347 0.0251
Materials Project 23, 641 9 : 1 0.0327 0.0247
Experimental 1, 963 8 : 2 0.1388 0.0660
Experimental 1, 963 9 : 1 0.1460 0.0608

5.3.3. Prediction using OQMD-SC model

Since OQMD is the largest dataset used for training our models, we evaluated the Elem-

Net model trained on OQMD from scratch for making predictions on different datasets.

We refer to this as the OQMD-SC. As shown in Table 6.1, we observe that although the

OQMD-SC model has a low prediction error with an MAE of 0.0417 eV/atom against

OQMD, it exhibits significantly higher error when evaluated against other datasets, re-

gardless of whether they are DFT-computed or experimental. Although JARVIS, the

Materials Project and OQMD are all DFT-computed datasets, they differ in their un-

derlying approach for DFT-computations. Note that the OQMD-SC model is trained

using only OQMD, our goal in this evaluation is to illustrate the underlying difference

in different DFT datasets and the discrepancy between OQMD and the experimental ob-

servations. When the OQMD-SC model is evaluated against JARVIS and the Materials
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Project, which are different from the training dataset OQMD, the underlying difference in

DFT-computations between OQMD and the test datasets becomes obvious. This problem

is exacerbated when the OQMD-SC model is evaluated on the experimental observations.

Since the DFT-computations for the formation energy in the QOMD have a significant dis-

crepancy (an MAE of around 0.1 eV/atom) against experimental observations, this adds

up with the prediction error of the OQMD-SC model against the OQMD dataset itself. If

we compare the prediction errors using the OQMD-SC model on different datasets against

the error of the models trained from scratch on them, we find that prediction errors are in

the same order of magnitude. The evaluation error for the Materials Project dataset using

OQMD-SC model is three times greater compared to the ElemNet model trained from

scratch using the Materials Project. Since the empirical shifts applied in the Materials

Project are not performed for OQMD, the OQMD-SC model can not learn about them

and performs poorly when evaluated on the Materials Project dataset (which is different

from the training dataset - OQMD). Especially in the case of the experimental dataset,

where the training sets in the ten-fold cross-validation contains only around 1770 composi-

tions, the prediction error of the OQMD-SC model is very close to the model trained from

scratch using the experimental dataset. Such observations suggest the research question

of whether using an existing model trained on large DFT-computed datasets is better

than using a prediction model trained from scratch on relatively smaller datasets such as

ones from experimental observations containing ∼ 1000s samples.
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5.3.4. Impact of Transfer Learning

Since the prediction error of both the model trained from scratch on the experimen-

tal dataset and the OQMD-SC model (which is trained from scratch on largest DFT-

comptued dataset- OQMD) against the experimental observations is poor, we decided to

leverage the concept of deep transfer learning as it enables to transfer the feature rep-

resentations learned for a particular predictive modeling task from a big source dataset

to other smaller target datasets in similar domains. For the task of transfer learning, we

chose the OQMD-SC model which is trained from scratch on OQMD using a 9:1 random

split for training and the test (validation) sets. We chose the OQMD-SC model due to

two reasons. First, OQMD-SC model is trained on OQMD, which is the largest dataset

in our study- containing around 341K samples. Second, the OQMD-SC model learns the

required physical and chemical interactions and similarities between different elements

better than other models trained from scratch, which is again due to the large dataset

used for training (more on this later). The use of transfer learning helps us in leveraging

these chemical and physical interactions and similarities between elements learned by the

OQMD-SC model in training models for the other relatively smaller datasets. Unlike in

the case of training from scratch, where the model parameters are initialized randomly,

here the model parameters are initialized using the ones from the OQMD-SC model. Next,

they are fine-tuned during the new training process, to learn the data representation from

the smaller target dataset.

We find that the prediction error significantly drops after using transfer learning from

OQMD-SC model. As seen in Table 6.1 and Table 5.3, the prediction error for the

experimental data model almost halves. Interestingly, the error of the model trained



108

using transfer learning from OQMD-SC model on JARVIS and the Materials Project

achieves even smaller error than that of the prediction error of the OQMD-SC model

itself against the OQMD dataset. Since the JARVIS and Materials Project datasets are

larger than the experimental dataset, we observe better performance for JARVIS and

Materials Project. The use of transfer learning is very effective in the case of the models

trained using experimental observations. We find that the use of transfer learning from

the OQMD-SC model moves the predictions closer to the true experimental observations.

The prediction error of the model trained on the experimental dataset using transfer

learning from OQMD-SC model is also comparable to the prediction error of the OQMD-

SC model itself against the OQMD dataset. We expect the benefit of using deep transfer

learning to improve with the increase in the availability of experimental observations for

fine-tuning (as discussed next). We believe that an MAE of 0.06 eV/atom by a prediction

model against experimental observations is a remarkable feat since this is comparable to

and slightly better than the existing discrepancy of DFT computations themselves against

experimental observations [42].

5.3.5. Impact of Training Data Size on Transfer Learning

The success of deep learning in many applications is mostly attributed to the availabil-

ity of large training datasets, which has discouraged many researchers in the scientific

community having access to only small datasets from leveraging deep learning in their

research. In our previous work [99], we demonstrated how deep learning can be used

even with small datasets (in the order of 1000s) to build more robust predictive models

than the ones using traditional machine learning approaches like Random Forest. Here,
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Figure 5.3. Impact of training data size on performance of models trained
from scratch and using transfer learning (mean and s.d.). The models are
trained on the experimental dataset and the results are aggregated from
a ten-fold cross-validation. For each cross validation, first we split the
complete dataset randomly into training and test (validation) set in the ratio
of 9 : 1. Next, we fixed the test (validation) set and changed the size of the
training set from 10% to 100%. OQMD-SC represents the model trained
from scratch on OQMD dataset, EXP-SC represents the prediction error
of the model trained from scratch, and EXP-TL represents the prediction
error using transfer learning from the OQMD-SC model.

we demonstrate how transfer learning can be leveraged even if the target dataset is very

small (in the order of 100s). We demonstrate this for the experimental dataset by fixing
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the test (validation) set and changing the size of the training dataset from 10% to 100%

with an increment of 10%, for each fold in the ten-fold cross-validation. We trained the

ElemNet model from scratch - EXP-SC, and also using transfer learning from OQMD-SC

model - EXP-TL, on training data with varying size, as illustrated in Figure 5.3. For

EXP-SC, we observe a large impact of the training dataset size as the MAE decreased

from 0.474 eV/atom to 0.124 eV/atom as the training data size increased from 10% to

100%. However, the impact of training dataset size is significantly lower in the case of

transfer learning in the case of EXP-TL; the MAE changes gradually from 0.108 eV/atom

to 0.064 eV/atom, as the training data size changes from 10% to 100%. This illustrates

that the proposed approach of deep transfer learning can be leveraged even in the case

of significantly smaller datasets having around 100s of samples for fine-tuning provided

there exists a bigger source dataset for transfer learning.

5.3.6. Prediction Error Analysis

Next, we analyzed the distribution of prediction error of all ElemNet models: the model

trained from scratch (denoted by EXP-SC, JAR-SC, MP-SC), and the model trained

using transfer learning from OQMD-SC model (denoted by EXP-TL, JAR-TL, MP-TL).

Figure 5.6 illustrates the scatter plot and CDF of the ElemNet models trained from scratch

and using transfer learning on different datasets; they contain the test predictions gathered

using ten-fold cross validation in different cases. We find that the use of transfer learning

leads to significant improvement in the prediction of formation energy; the predicted

values move closer to the DFT-computed or the experimental values. The benefit of the

use of transfer learning is most significant in the case of experimental data; the predicted
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formation energies are mostly concentrated along the diagonal (hence, closer to the values

from actual experimental observations). A glimpse of the CDF of the model trained using

experimental data shows the same benefit in terms of percentiles; both the 50th and 90th

percentiles of prediction error reduced by almost half. We observe a similar trend in

case of JARVIS and Materials Project; although the distributions look similar, there is

a clear reduction in prediction error as predicted values become more concentrated along

the diagonal of the scatter plot in both cases. The third row in Figure 5.6 illustrates the

scatter plot and cumulative distribution function (CDF) of the OQMD-SC model against

a test set containing 34, 145 materials from the OQMD. Although the scatter plot appears

to have a widespread in the prediction error, most of the predictions are very close to the

diagonal. This is evident from the CDF plot, which illustrates that the 50th percentile

error is around 0.015 eV/atom and the 90th percentile error is around 0.08 eV/atom.

Hence, the OQMD-SC model predicts the formation energy of most of the compounds

with high precision when compared against OQMD itself. However, OQMD-SC model has

significantly worse error distribution when compared against other three datasets - broader

spread in the scattter plot and lower slopes for the CDF curves (Supplementary Figure 1

of [147]), which illustrates that although the OQMD-SC model is trained on the big DFT-

computed OQMD dataset, it does not always make robust predictions against datasets

computed/collected using other techniques. A thorough analysis of the input elements

present in the set of compounds having more than 98th percentile error is available in the

Supplementary Discussion of [147].
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Figure 5.4. Prediction error analysis of OQMD-SC model using a test set
containing 34, 145 samples from a 9:1 random split of OQMD. OQMD-SC
model is trained from scratch (with random weight initialization from a
uniform distribution) using a 9:1 random split of training and test set from
the OQMD. Since the dataset is large, the model is able to automatically
capture the essential chemical and physical interactions between different
elements; hence, providing robust predictions while compared against
OQMD.

5.3.7. Performance on Experimental Data

Next, we analyze the performance of the prediction models trained on different DFT-

computed datasets (both trained from scratch and with transfer learning from the OQMD-

SC model), by evaluating their performance on the experimental observations containing

1, 963 samples. The performance of different models on the experimental dataset is shown

in Table 5.4. For models trained on experimental data, we report the performance on

test (validation) sets from the ten-fold cross-validation. For JARVIS and the Materials

Project, we report the mean and standard deviation of the predictions using ten different

models from the ten-fold cross-validation. For OQMD, we use one OQMD-SC model ten
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Figure 5.5. Prediction error analysis using OQMD-SC model on the other
three datasets. The OQMD-SC model is trained from scratch (with random
weight initialization from a uniform distribution) using a 9:1 random split
of training and test set from the OQMD. Although OQMD-SC model has
low prediction error against the test set from OQMD, the prediction error
is high if we compare against other datasets. This is because of the differ-
ence in the DFT-computations used in JARIVS and Materials Project, and
OQMD. Since DFT-computations from the OQMD has an error of around
0.1 eV/atom against experimental observations, this error is inherent in the
OQMD-SC model leading to higher prediction errors.

times since use of Dropout [86] results in different predictions for same input. As we can

observe from these results, the performance of all the models trained on DFT-computed

datasets is significantly worse compared to their performance against unseen test sets from

the dataset on which they are trained (Table 6.1). There is a minor impact of the use of
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Figure 5.6. Prediction error analysis on the test (validation) sets from the
ten-fold cross validation (except for OQMD-SC). For OQMD-SC, ElemNet
model is trained from scratch using a 9:1 random split of training and
test (validation) set from the OQMD. For other datasets, we aggregate
the prediction errors on the test (validation) sets from the ten-fold cross-
validation for each model. The four rows represent the four datasets- (a-c)
JARVIS (JAR), (d-f) Materials Project (MP), (g-i) OQMD and (j-l) the
experimental observations (EXP); first (a, d, g and j) and second (b, e, h
and k) columns of each row show the predictions using the model trained on
the particular dataset from scratch (SC) and using transfer learning (TL),
respectively, the third column (c, f, i and l) shows the respective CDF of the
prediction errors using models trained from scratch (SC) and using transfer
learning (TL), trained on the particular dataset.
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Figure 5.7. Prediction error analysis for the ElemNet architecture trained
using OQMD and evaluated on the experimental data containing 1, 963
observations. When training from scratch, the weights are initialized ran-
domly from a normal distribution; for transfer learning, the model is first
trained on the OQMD dataset and then fine-tuned using the corresponding
dataset.

transfer learning for the models trained on the JARVIS and Materials Project dataset.

Among all the models trained using DFT-computed datasets, the OQMD-SC model has

the lowest discrepancy which is comparable to the prediction error of model trained on

experimental dataset from scratch. The performance of OQMD-SC model re-emphasizes

the impact of training data size which enables the model to automatically capture the

physical and chemical interactions from the input data representation that is essential

for making correct predictions. The error in predictions using different models are at

least double than that of the model trained on the experimental dataset using transfer

learning from the OQMD-SC model. Our observations demonstrate the need to leverage

DFT-computed datasets with experimental datasets to build robust prediction models

which can make predictions closer to true experimental observations, thereby questioning
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and providing an alternative to the current practice of using predictive models built using

DFT-computed datasets alone.

Table 5.4. Performance of ElemNet models on the experimental data in
MAE (eV/atom).

Training Dataset Test Dataset Scratch [SC] Transfer Learning [TL]
OQMD Experimental 0.1354± 0.0000 −
JARVIS Experimental 0.1911± 0.0042 0.1487± 0.0027
Materials Project Experimental 0.1619± 0.0020 0.1613± 0.0016
Experimental Experimental 0.1299± 0.0136 0.0642± 0.0061

Figure 5.8 illustrates the scatter plot of the predicted values against the true experi-

mental values and CDF of the corresponding errors. If we look at the prediction results

using the OQMD-SC model in Figure 5.8, the predictions are less concentrated on the

diagonal of the scatter plot; the 50th percentile error is 0.1 eV/atom and the 90th per-

centile error is 0.28 eV/atom. This is significantly worse than the test error of OQMD-SC

model on OQMD itself (MAE of 0.04 eV/atom in Table 6.1) and the discrepancy of the

DFT-computations for OQMD against experimental values (0.1 eV/atom [42]). This

illustrates the high deviation of the OQMD-SC model in the predicted values against

the true experimental observations. The improvement due to transfer learning in the

prediction error distribution is negligible for the models trained using JARVIS and Ma-

terials Project datasets. This again illustrates the inefficacy of using a model trained

using DFT-computed datasets alone, since they will have high prediction error against

experimental observations due to the inherent discrepancy of the DFT-computation itself

against experimental observations.
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Figure 5.8. Prediction error analysis on the experimental dataset contain-
ing 1, 963 observations using different models. For the models trained using
experimental dataset, the predictions on the test sets are aggregated from
validation sets using ten-fold cross-validation. For the models trained using
JARVIS and Materials Project, since we have ten models from the ten-fold
cross-validation during training, we take the mean of their prediction for
each data point in the experimental dataset. For OQMD-SC, we make ten
predictions on each point in the experimental dataset and take the mean.
The four rows represent the four datasets- (a-c) JARVIS (JAR), (d-f) Ma-
terials Project (MP), (g-i) OQMD and (j-l) the experimental observations
(EXP); first (a, d, g and j) and second (b, e, h and k) columns of each
row show the predictions using the model trained on the particular dataset
from scratch (SC) and using transfer learning (TL), respectively, the third
column (c, f, i and l) shows the respective CDF of the prediction errors
using models trained from scratch (SC) and using transfer learning (TL),
trained on the particular dataset.
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5.3.8. Activation Analysis

Next, to understand the impact of transfer learning on the performance of models trained

using different datasets, we analyzed the activations from different layers of ElemNet

architecture to visualize the physical and chemical interactions and similarities captured

by the model. We performed two kinds of analysis for two different classification tasks

using two different datasets. The first analysis involved taking the activations from each

layer of different models and apply principal component analysis (PCA) for dimensionality

reduction; since the number of activations varies from 1024 in the first hidden layer to

32 in the penultimate layer, we use PCA to get first two principal components and scale

them in the range of [0,1] for ease of visualization using a scatter plot. The second analysis

involved taking the activations from each hidden layer without applying PCA and training

a Logistic Regression for classification using a random split of training and test set in the

ratio of 9:1. We analyze the activations to see how well they can be used to perform

three classification tasks- magnetic vs non-magnetic (1 vs 0) from JARVIS, insulator vs

metallic (1 vs 0) from JARVIS, and insulator vs metallic (1 vs 0) from Materials Project.

Figure 5.9 demonstrates the scatter plot and ROC (Receiver Operating Character-

istics) curves of the Logistic Regression model trained using activations from the first

hidden layer of the ElemNet model trained from scratch and using transfer learning on

different datasets. Logistic Regression is a statistical model based on using a logistic func-

tion to model the binary dependent variable for binary classification problems [149, 150].

A ROC curve is generated by plotting the true positive rate (TPR) against the false pos-

itive rate (FPR) at a varying threshold, and the area under the curve (AUC) of a ROC

curve represents the performance measurement for the binary classification problem [151]
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Higher the AUC of a ROC, better is the model at distinguishing between the binary

classes. The distinction of magnetic vs non-magnetic materials is evident from the vi-

sualization using the scatter plot of the first two PCA components of the activations of

the same hidden layer in Figure 5.9. In the case of the OQMD-SC model, we find that

the distinction between the two classes is more distinguished which agrees with the fact

that the ElemNet model trained on OQMD dataset captures the physical and chemical

interactions between different elements automatically [99]. From the scatter plot of the

first two components of the PCA analysis, we find that other than the OQMD-SC model,

other models trained from scratch hardly capture the distinction between magnetic and

non magnetic class (1 vs 0) from the training dataset due to their relatively small size used

for training (first row of Figure 5.9). When using transfer learning, we find that this abil-

ity to distinguish between magnetic and non-magnetic is passed to the fine-tuned models,

thereby enhancing the prediction performance of the models trained using transfer learn-

ing from the ElemNet-QOMD model. Although there is no clear boundary between the

magnetic vs non-magnetic materials in the scatter plot, the magnetic materials are con-

centrated towards the lower part of the scatter plot for the models trained using transfer

learning.

This enhancement in the ability to distinguish between magnetic and non-magnetic

materials becomes more evident if we look at the ROC curve of the Logistic Regression

model trained using the actual activations from the same layer. As shown in Figure 5.9,

the Logistic Regression models trained using activations from the model trained using

transfer learning from OQMD-SC model exhibit a significant difference in the AUC of the

ROC curve - 0.97 compared to that of around 0.93 using the activations from the model
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trained from scratch (except the OQMD-SC model). We observe a similar impact on the

classification task to distinguish magnetic and non-magnetic materials for activations up

to the first six layers. Further, we observed similar results for insulator vs metallic class for

different datasets, and the analysis for JARVIS dataset is available in the Supplementary

Figure 2 of [147]. We also performed this task on activations of different layers for the

dataset from the Materials Project, and observed similar results. An interesting observa-

tion is that although the activation plots of all the different models trained from scratch

look distinct, they look almost similar after the use of transfer learning from the OQMD-

SC model. This illustrates that the knowledge of chemical and physical interactions and

similarities between different elements transferred from the OQMD-SC model dominates

even after the models are fine-tuned using the target datasets; this is because data repre-

sentation learned from OQMD is very rich compared to the limited representation present

in the relatively smaller training datasets from JARVIS, the Materials Project and the

experimental observations.

5.4. Discussion

In this work, we demonstrated the benefit of leveraging both DFT-computations and

experimental observations to build more robust prediction models whose predictions are

closer to the experimental observations compared to the predictive models built using

only DFT-computed datasets. Since we already illustrated how ElemNet can automati-

cally capture the underlying chemistry from only elemental fractions using artificial intel-

ligence (deep learning) and perform better than the traditional machine learning approach

in our previous work [99], here we focused on using the deep neural network architecture
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Figure 5.9. Analysis of the activations from the first hidden layer of the
ElemNet architecture for the magnetic vs non-magnetic class (1 and 0) from
JARVIS dataset. The four columns represent the models trained using four
different datasets- (a, e and i) JARVIS (JAR), (b, f and j) Materials Project
(MP), (c, g and k) OQMD and (d, h and l) the experimental observations
(EXP); the first (a-d) and second (e-h) rows represent the models trained
from scratch (SC) and using transfer learning (TL), while the third row
(i-l) represents the ROC curves from the Logistic Regression model trained
using all activations from the same hidden layer (the corresponding AUC
values are shown in brackets) on the respective datasets. The scatter plots
demonstrate the first two principal components of the activations using
principal component analysis (PCA) technique.

of ElemNet for deep transfer learning of the chemistry learned from large datasets to

smaller datasets using DFT or experimental observations; the comparison of ElemNet
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against traditional machine learning approaches for all datasets is available in the Sup-

plementary Table 1 of [147]. Our analysis of the prediction models based on different

DFT-computed and experimental datasets illuminates the fundamental problem of build-

ing prediction models using DFT-computed datasets. Prediction models built using only

the DFT-computed values exhibit high prediction errors against the experimental values;

this results from the inherent discrepancy of DFT-computations against the experimental

observations themselves, in addition to the error of the model against the DFT-computed

values used for its training. We expect the proposed approach to perform better with the

increasing availability of DFT-computations (for source dataset) as well as an increase in

the experimental observations for fine-tuning.

We have shown the application of deep transfer learning in predicting formation en-

ergy of materials (and hence, the stability of materials) such that they are closer to

experimental observations, which in turn, can be used for performing more robust combi-

natorial screening for hypothetical materials candidates for new materials discovery and

design [13, 99]. Formation energy is an extremely important material property since

it is required to predict compound stability, generate phase diagrams, calculate reac-

tion enthalpies and voltages, and determine many other important properties. Note that

while formation energy is so ubiquitous, DFT calculations allow prediction of many other

properties (such as band gap energy, volume, energy above the convex hull, elasticity,

magnetization moment), which are very expensive to measure experimentally. The pre-

sented approach can be leveraged for predicting many other such materials properties

where we have large computational datasets (such as using DFT), but small ground truth

(experimental observations), a scenario which is very common in materials science; some
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examples being predicting bandgap energies of certain classes of crystals [152, 14, 153],

thermal conductivity, thermal expansion coefficients, Seebeck coefficient of thermal com-

pounds [154, 155], mechanical properties of metal alloys [152, 116], magnetic properties

of materials [53], and so on, for various types of applications in materials design. DFT

databases are in the order of 104, however, the computationally hypothetical materials

are in the order of 1010, that is where machine learning models can be extremely valuable

for the pre-screening process [13, 99]. As long as the source dataset for transfer learning

contains a diverse range of chemistry and the target dataset contains compounds hav-

ing similar chemistry (a subset of elements or features present in the source dataset for

transfer learning), we expect the proposed method to work well. The presented approach

can also be leveraged for building more robust predictive systems for other scientific do-

mains where the amount of experimental observations and ground truth is not sufficient

to train a machine learning model on its own, but there exists a large set of computa-

tional/simulation dataset from the same domain for transfer learning.
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CHAPTER 6

Extracting Grain Orientation from EBSD Patterns of

Polycrystalline Materials using Convolutional Neural Networks

6.1. Introduction

Engineering materials are usually crystalline, most often in polycrystalline form. They

consist of multiple “grains” having different crystallographic orientations. While the mi-

croscopic properties of these grains are anisotropic due to their crystalline nature, the

macroscopic properties of the whole crystal depend on the material’s texture - the rela-

tive fractions of each of these grain orientations. Texture also provides information about

the thermo-mechanical processing history of materials and can be used to reconstruct the

conditions leading to the micro-structure, for example, in geological rocks. Thus, texture

is paramount in understanding the processing-structure-property relationships.

Since its development in the early 1990s, automated Electron Backscatter Diffrac-

tion (EBSD) has become the primary tool to determine the crystal orientation of crys-

talline materials across a wide variety of material classes ([156]). The technique provides

quantitative information about the grain size, grain boundary character, grain orienta-

tion, texture and phase identity of the sample by measuring the angular distribution of

backscattered electrons using a combination of a scintillator screen and a charge coupled

device (CCD) camera. The schematic of the EBSD setup is shown in Figure 6.1. The

sample sits at a tilt of σ (typically 70◦) with the camera tilted at angle θc (typically
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0◦ − 10◦). Electrons travel down from the pole piece and interacts with the specimen at

point O. The backscattered yield is measured as a function of direction by the scintilla-

tor. A physics-based model can be used to predict the backscattered yield based on the

pole piece

scintillator

O

θ

σ

P

sample

RD

ND

L

D

Y

Z

Figure 6.1. Schematic of the EBSD geometry.

principles of quantum mechanics. Assuming the microscope is parametrized by M, the

geometry of the setup is denoted by G, and the crystal under investigation is parametrized

by C, the forward model is given by

(6.1) F ≡ F (M,G, C) .
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Further details of this model can be found in ([157]). An example experimental EBSD

pattern of Iron with its corresponding physics-based simulation is shown in Figure 6.2(a)-

(b) respectively.

(a) (b)

Figure 6.2. EBSD pattern from Iron (a) Experimental and (b) Simulation.

There are two major techniques to indexing EBSD patterns, each with its advantages

and drawbacks. These include the commercially available Hough-transform based ap-

proach ([158]) and the newly developed Dictionary Indexing method ([159, 160, 161,

162]). The commercially available solution to the indexing problem uses a feature de-

tection algorithm ([163]). A Hough transform of the diffraction is performed to identify

linear features (Kikuchi bands). The angles between the extracted linear features are

compared to a pre-computed look up table to determine the crystal orientation. This

method has been very successful in indexing EBSD patterns and has led to significant
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advances in materials characterization. However, the performance of this method quickly

deteriorates in the presence of noise ([160, 164]).

In essence, dictionary based indexing is a nearest neighbor search approach in which

the output angles correspond to the orientation angles of the closest EBSD pattern present

in dictionary. The distance function used is a dot product as follows:

(6.2) d( ~x1, ~x2) = 1− ~x1 · ~x2
| ~x1|| ~x2|

,

where ~x is a vector representing the pixels in the EBSD patterns. The dot product

between the pixel intensities in the test sample and each sample in the simulation-based

dictionary set is computed and the nearest training sample is used to make the prediction.

This method has been shown to be very robust to noise in the diffraction pattern and

outperforms the line feature based Hough transform method ([164]) for a wide variety of

crystal classes. However, this approach is computationally very expensive, which limits

the technique to be an off-line method, and a real time solution to the indexing problem

is currently not possible using this approach.

In the present paper, we present a deep learning ([3]) based model, trained using a sim-

ulated diffraction dataset, to predict the crystal orientations for experimental EBSD pat-

terns, such that they have a minimum “disorientation” with respect to their ground truth.

Deep learning leverages deep neural networks composed of multiple processing layers to

automatically learn the representations of data with multiple levels of abstraction ([3]).

They have achieved great success in the field of computer science with state-of-the-art re-

sults in computer vision ([4, 73]), speech recognition ([74, 75]) and text processing ([76]),
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and are increasingly being used in the relatively nascent field of materials informatics ([9])

for deciphering processing-structure-property relationships.

Convolutional Neural Network (CNN) is a type of artificial neural network which

is composed of convolution layers ([165]) in addition to fully connected layers. Since

they require minimal preprocessing, they have gained significant attention in fields like

computer vision ([4, 73]), recommender system ([166]) and natural language process-

ing ([167]). Recently, CNNs have been applied for building models from microstructural

data and improving characterization methods, ([77, 78, 79]) and they have been shown

to be useful for predicting properties of crystal structures and molecules ([80, 81]), de-

tecting cracks in materials/infrastructure images ([168]), and so on. [169] used CNNs

for the classification of X-ray diffraction (XRD) patterns in terms of crystal system, ex-

tinction group and space group using a large dataset of 150, 000 XRD patterns, without

any manual feature engineering. [170] developed CNNs to automatically analyze position

averaged convergent beam electron diffraction patterns to extract pattern size, center, ro-

tation, specimen thickness, and specimen tilt, without any need for pretreating the data.

[171] applied CNNs to learn crystal orientations from simulated EBSD patterns; they

built three separate CNN models to individually predict the three Euler angles, but did

not take into account the mean disorientation between the predicted and true crystal ori-

entations. Moreoever, their models were not tested on experimental data. In this study,

our goal is to learn to predict the crystal orientation of experimental EBSD patterns such

that they have minimum disorientation with the ground truth.

Building a predictive model for the indexing of EBSD patterns poses two significant

challenges. First, we need to minimize the disorientation between the predicted and the
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ground truth crystal orientations; this requires optimizing for the mean disorientation

error which is metric for a highly non-linear orientation space. Furthermore, this cost

function is computationally intensive, making it difficult to manually compute and im-

plement its derivatives with respect to the orientation angles. Therefore, we designed a

differentiable approximation to the mean disorientation; it is implemented using Tensor-

Flow ([93]) and optimized using stochastic gradient descent ([26]). The training of the

deep learning model was optimized to take advantage of the parallelization available in

Graphics Processing Unit (GPU) to process a complete mini-batch.

The second challenge is that the crystal orientation is represented using three Euler

angles which requires learning all three angles simultaneously using a single model, which

is different from multi-labeling problems that require predicting different objects present

in the input image ([172, 173, 174]). Most state-of-the-art deep learning architectures

are limited to predicting a single output ([4, 73, 120]); existing work on multi-output

learning using neural networks has been limited to shallow feed-forward networks with a

single regression layer having multiple outputs ([175, 176, 177]).

We design and implement a novel branched deep convolutional neural network (CNN)

optimized for learning multiple outputs; we refer to this model as OMNet. The training

and test sets are composed of EBSD patterns of polycrystalline Nickel. The simulation

dataset used for training the models is composed of 374, 852 EBSD patterns. The models

are evaluated using a set of 1, 000 EBSD patterns from real experiments. The OMNet

model outperforms the current dictionary based indexing by 16%, resulting in a mean

disorientation of 0.548◦ compared to 0.652◦ for the dictionary approach.
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6.2. Background

6.2.1. Crystal Orientation and Disorientation

The orientation of a crystal is represented by a passive 3D rotation, g, which maps the

specimen’s right-handed Cartesian coordinate frame, es ≡ (es
1, e

s
2, e

s
3) onto a right-handed

Cartesian coordinate system attached to the crystal, ec ≡ (ec
1, e

c
2, e

c
3), such that ec

i = gije
s
j ;

in this representation, the orientation g corresponds to a 3× 3 special orthogonal matrix,

i.e., an element of SO(3). There are numerous other representations for orientations,

such as the unit quaternion, Rodrigues-Frank vectors, axis-angle pair and cubochoric

vector; each with its own distinct properties and advantages. Furthermore, all crystals

have certain symmetries associated with them, which leads to degeneracies such that all

crystal orientations are not unique. For any crystal, let Oc represent the set of symmetry

operators including the identity operation, with cardinality #Oc = N . All orientations in

the set Ocg are equivalent for this crystal symmetry and represent identical orientations.

In the absence of crystal symmetry, the distance metric between two orientations g1

and g2 is represented by D(g1,g2), and is referred to as the misorientation. This metric

represents the angle of rotation about some axis to go from one crystal orientation to the

other. In this case, the space has simple analytical expressions for the metric tensor as

well as smooth and continuous geodesics. The distance metric is given by (assuming g is

in matrix notation)

(6.3) D(g1,g2) = arccos
((

tr
[
g−11 g2

]
− 1
)
/2
)
.
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However, in the presence of crystal symmetry, the rotation space becomes degenerate and

such an expression is no longer valid. In the presence of crystal symmetry given by the set

Oc, the distance metric referred to as disorientation is given by the following expression

(assuming g and Oc are both in matrix notation):

D(g1,g2) =(6.4)

min
i,j∈[1,N ]

arccos
((

tr
[(
Oi

cg1

)−1 (Oj
cg2

)]
− 1
)
/2
)
,

arccos
((

tr
[(
Oi

cg2

)−1 (Oj
cg1

)]
− 1
)
/2
).

This expression gives the minimum angle of rotation, i.e., the disorientation, about some

axis between any two symmetrically equivalent variants of the two orientations g1 and g2.

Since its development in the early 1990s, automated Electron Backscatter Diffraction

(EBSD) has become the primary tool to determine the crystal orientation of crystalline

materials across a wide variety of material classes [156]. The technique provides quantita-

tive information about the grain size, grain boundary character, grain orientation, texture

and phase identity of the sample by measuring the angular distribution of backscattered

electrons using a combination of scintillator screen and a charge coupled device (CCD)

camera. The schematic of the EBSD setup is shown in 6.1. The sample sits at a tilt of

σ (typically 70◦) with the camera tilted at angle θc (typically 0◦ − 10◦). A parallel beam

of electron travels from the pole piece and interacts with the sample at point O. The

backscattered yield is measured by the scintillator. The physics-based model predicts the
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backscattered yield based on the principles of quantum mechanics. Assuming the micro-

scope is parametrized by M, the geometry of the setup is denoted by G and the crystal

under investigation is parametrized by C, the forward model is given by

(6.5) F ≡ F (M,G, C) .

Further details of the model can be found in [157]. An example experimental EBSD

pattern from Iron with its corresponding physics-based simulation is shown in Fig. 6.2(a)-

(b) respectively.

6.3. Design

The ideal data driven approach for building a predictive model would be to train a

machine learning model on the EBSD patterns from experiments. However, experiments

are generally expensive and yield a relatively small number of diffraction patterns; in our

case, we have selected 1000 “experimental” diffraction patterns. Instead, we leverage the

ability to simulate realistic EBSD patterns for training, such that the model can predict

the crystal orientations for the experimental EBSD patterns with minimum disorientation

with respect to the true orientations.

The training and test datasets are composed of EBSD patterns of polycrystalline

Nickel. The training dataset contains two simulated EBSD pattern dictionaries, one

generated with a cubochoric sampling of N = 100 samples along the cubic semi axis,

the other with N = 50 (see [178] for details). The first dataset has 333, 227 patterns,

and the second has 41, 625 patterns. Combining them, a total of 374, 852 patterns were

used as the training set without any data augmentation. As the pattern pixel values
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range from [0, 255], they were rescaled to the range of [0, 1]. The performance of the

models was evaluated by indexing 1, 000 simulated patterns with known orientations.

The disorientation between the predicted and known Euler angles provides the efficacy of

the approach. It is important to note that the microscope and diffraction geometry for

the training and test set were identical. There exist two main challenges associated with

developing such a predictive model. We discuss these challenges along with how we tackle

them below.

6.3.1. Optimizing the Mean Disorientation Error

This problem requires optimizing the mean disorientation error between the predicted and

the true crystal orientations. This is a challenging task for two reasons: first, the disori-

entation is the distance metric of a non-euclidean manifold. In the absence of symmetries

in orientation, this metric is easily computed using analytical expressions. However, the

presence of crystal symmetries introduces degeneracies in the space resulting in disconti-

nuities in the gradient of the disorientation metric with respect to the input orientations.

This renders the disorientation function inappropriate for optimization using stochastic

gradient descent for any deep learning model.

Second, the original disorientation algorithm is computationally intensive; for 432

cubic rotational symmetry, it takes one pair of predicted and true Euler angles and com-

putes their 24×24 symmetrically equivalent orientations to find the disorientation (Equa-

tion 6.4). It would be extremely cumbersome to manually compute and implement its

derivatives with respect to the input Euler angles. Hence, it is infeasible to train any

predictive model using the disorientation function in feasible time.
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The disorientation is computed using Equation 6.4. It consists of 1, 152 evaluations,

each step computing the symmetrically equivalent orientation pairs, followed by 2 com-

putations to determine the required angle of rotation between them. The disorientation

computation contains the arccos(x) function which is undefined for values outside its do-

main of [−1, 1]. We approximated it by putting an upper bound of 1 to the magnitude of

all the values passed to the arccos(x) function.

We implemented a differentiable approximation of the mean disorientation by building

a computational tensor graph using TensorFlow ([93]). We leveraged its auto-differentiation

support for computing the gradients of the mean disorientation error with respect to the

Euler angles. The mean disorientation error was optimized by training a deep learning

model using the stochastic gradient descent algorithm [26]. When the minibatch size

was 64, the sequential algorithm involved 64 × 1, 152 = 73, 728 computations for the

misorientation between the symmetrically equivalent predicted and ground truth crystal

orientations. It was very costly both in terms of processing time and memory transfer; it

took around 24 hours to train our model for one epoch using a TitanX GPU with 12GB

memory. This made it impractical to train a deep learning model using the sequential

implementation in feasible time. We optimized it to process one mini-batch so that it

could leverage the parallelization available in GPUs.

The models are evaluated using the mean disorientation error and mean symmetrically

equivalent orientation absolute error (MSEAE). The MSEAE is computed by considering

the periodicity of orientation angles as follows:

(6.6) mseae1(~ys, ~̂ys) =
1

n

n∑
i=1

3∑
j=1

| ~ysj − ~̂ysj|,
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(6.7) mseae2(~ys, ~̂ys) = mseae1(~ys, ~̂ys) mod (2π),

(6.8) MSEAE(~ys, ~̂ys) =


mseae2(~ys, ~̂ys), if mseae2(~ys, ~̂ys) ≤ π

= 2π −mseae2(~ys, ~̂ys), else

where ~ys and ~̂ys are Euler angle triplets of the symmetrically equivalent true and predicted

orientations with minimum disorientation.

6.3.2. CNN Architectures for Learning Multiple outputs

Optimizing for the mean disorientation requires learning the crystal orientation angles

using a single model such that they can be used to optimize the mean disorientation error.

The conventional approach to learning multiple outputs would be to train individual

models for learning each output. Since the three Euler angles are correlated with the

crystal orientation, we have to learn all the three orientation angles simultaneously using

a single model such that they can be leveraged for optimizing for mean disorientation.

Existing multi-output learning using neural networks has been limited to shallow feed-

forward networks having a regression layer with multiple outputs ([175, 176, 177]).

We explored several design approaches for learning multiple outputs. Figure 6.3

demonstrates a novel CNN model architecture – a branched model with individual and

independent model components for each output. The first four model components are

composed of multiple convolution layers and max pooling. Convolution layers capture

the locally correlated features present in the input EBSD patterns; they learn the high

level abstract features from the inputs. As the three outputs require similar learning
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Figure 6.3. OMNet: CNN architectures for learning multiple outputs.

capability, the branched model is composed of three classifier branches containing equal

numbers of layers and parameters.

Each branch leverages around 2 million parameters independent of each other which

can be optimized to learn the individual outputs. As the outputs are correlated with each

other, they all share the same convolution outputs and the first fully connected component.

The convolutional layers are the computationally expensive components; they extract

high level features from the inputs that are required for learning all outputs. Sharing

the convolutional layers keeps the computational cost comparable to the model having a

single regression layer with multiple outputs. The branching technique is currently used

in the inception model architectures but for a different reason [179]. The point where

the model starts branching can have a significant impact on the model performance. For

the training, we explored branching at different layers but it was limited by the available
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GPU memory. Since the model architecture is designed to optimize for learning multiple

outputs, we refer to this architecture as OMNet.

All models were implemented using Python and TensorFlow [93]. They are trained

using Titan X GPUs with 12GB memory. An extensive search was carried out to tune the

hyperparameters, such as learning rate, optimization algorithm, momentum and learning

rate decay. We used a batch size of 64 and trained using Adam [130] for 100 epochs

with a patience of 10. We searched through several CNN model architectures and loss

functions – conventional loss functions, followed by mean disorientation error, and finally

their hybrids.

6.4. Experimental Results
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Figure 6.4. Loss and mean disorientation error using different loss functions.
(a) shows the training loss and mean disorientation error (MDE) on training
set and test set for MDE as the loss function. (b) shows the loss and MDE
for the hybrid loss function of the sum of mean absolute error (MAE) and
MDE.
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We optimized using the mean disorientation error as the loss function as shown in

Figure 6.4(a). Since our goal was to optimize for mean disorientation error, we expected

the algorithm to result in an improved mean disorientation error on both sets. However,

the mean disorientation error alone as the loss function did not perform well; it achieved a

mean disorientation error of 1.224◦ on the test set (experimental EBSD patterns). We ob-

served a lot of oscillations in the training loss curve compared to while using conventional

loss functions. This may be due to the mean disorientation error being computed using

the symmetrically equivalent orientations rather than the actual outputs (Equation 6.4).

Optimizing for the mean disorientation error increased the model training time by around

30%-40%.

Since optimizing for mean disorientation did not perform well, we designed and exper-

imented with several hybrid loss functions, combining the mean disorientation with the

conventional loss functions such as mean absolute error (MAE) and mean squared error

(MSE). We assigned different weights to the constituent losses, even some conditional

loss functions that optimized for the Euler angles first, followed by optimizing for the

mean disorientation or a hybrid loss. The best loss function was the sum of the MAE

and the mean disorientation error, as shown in Figure 6.4(b) and Table 6.1. The mean

disorientation error decreased steadily with time although the total loss became almost

constant. The mean disorientation error on the training set is computed using only the

current mini-batch; hence, the mean disorientation error curve for training set has oscil-

lations. The model achieved a mean disorientation error of 0.548◦ on the experimental

EBSD patterns, about 16% better than using dictionary based indexing.
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6.5. Conclusion

It is one of the goals of EBSD analysis to obtain grain orientations that are as accurate

as possible. Having the ability to determine grain orientations to within a fraction of

a degree makes it possible to perform quantitative comparisons between experimental

data sets and predictive micro-structure models, in particular for cases in which the

material contains large amounts of plastic deformation. Current commercially available

EBSD indexing solutions do not perform well when the material is heavily deformed. The

recent dictionary indexing approach performs significantly better but suffers from a high

computational cost which makes the approach unfeasible as a real-time indexing solution.

The deep learning approach described in this work has the potential to impact the field

of materials science by providing an indexing approach that is both rapid and accurate,

once the training process has been completed.

If deep learning based indexing in real time becomes possible, then this would have a

significant impact on the field of materials characterization by providing a faster and more

accurate indexing approach than is currently available commercially. While this work

establishes the efficacy of neural networks in learning orientations from EBSD patterns

for pristine simulated patterns, the characteristics of such a network in the presence of

noise still need to be established. The current model was trained with orientations as

the only variable and assuming that the microscope geometry is precisely known; this is

seldom the case for real experiments. New strategies leveraging techniques in incremental

learning might prove to be useful for training the model for different detector geometry

parameters. Finally, the current model can also be extended to other electron diffraction

modalities such as the Scanning Electron Microscope (SEM) based Electron Channeling
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Patterns (ECP) and Transmission Kikuchi Diffraction (TKD) modality as well as the

Transmission Electron Microscope (TEM) based Precession Electron Diffraction (PED)

patterns.
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CHAPTER 7

Peak Area Detection Network for Directly Learning Phase

Regions from Raw X-ray Diffraction Patterns

7.1. Introduction

In materials science and crystallography, X-ray diffraction (XRD) is a widely used

experimental technique to probe materials at the atomic level. XRD analysis is used by

scientists and engineers to understand atomic-scale crystal structures and predict their

properties [180, 181, 182, 183, 184]. XRD patterns not only provide the geometrical

information about the crystal structure, they are also used to determine the possible flaws

in materials [185]. High throughput experimental techniques developed over the last few

decades have accelerated the exploration of material properties. Combinatorial methods

allow experimentalists to synthesize hundreds or thousands of materials at a time, with

each sample varying by synthesis and processing parameters [186]. Composition spreads

are one example, where a wafer is generated containing hundreds of samples, each varying

in composition. Once such a wafer is generated, the properties of each sample can be

rapidly measured using scanning microscopy techniques [187]. As a result, over the

course of hours, XRD data can be collected for hundreds or thousands of materials.

Currently, human experts analyze the XRD patterns using domain knowledge such

as peak shape and location; they are correlated with the sample composition and known

phases to identify the phases in the measured sample. The current approach for the
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analysis of XRD patterns is a multi-stage process composed of multiple computationally

intensive steps. The first step is to convert the raw 2D XRD pattern to an intensity-2θ

(1D) pattern by mapping the raw XRD image to the χ vs 2θ space and then integrating the

intensity peaks along the 2θ axis [188]. XRD patterns are often noisy due to a collection

of issues including background radiation, detector noise, and low count of incident X-

rays. In addition, other background issues may be introduced by the sample-detector

configuration, resulting in a significantly varying measurement background from sample

to sample [189]. The presence of a highly irregular background makes the peak searching

procedure complicated. Hence, the background signal is removed from the 1D patterns by

fitting background curve [190, 191, 192]. This is followed by indexing the peaks against

an existing database of reference peaks and correlating with the sample composition to

identify the phases in the measured sample using available software which often requires

verification by a domain expert.

Over the last decade, machine learning has been used to accelerate the process of

indexing using 1D XRD patterns [193, 194, 195]. Clustering has been used to sort

samples into groups of materials that share the same constituent phases - thus reducing

the number of samples required to index for unique phases [196, 197]. When plotted

against the synthesis and processing parameters used to generate the samples, these clus-

ters describe geometric ”phase regions“ - regions of the generative space where materials

are expected to share the same constituent phases. Additionally, once a subset of sam-

ples has been sorted into phase regions, classification has been used to extrapolate these

phase region labels to the rest of the samples [195]. Recently, Park et al. [169] used

a convolutional neural network (CNN) to classify 1D XRD patterns into space group,
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extinction-group and crystal-system classification. They used 150 000 powder XRD pat-

terns calculated from the structure solutions of entries in the Inorganic Crystal Structure

Database (ICSD) using Density Functional Theory (DFT).

Time is a limiting factor when collecting and analyzing X-ray diffraction data. For

typical laboratory systems, low beam intensity means measuring each sample can take tens

of minutes to hours. Additionally, when performing X-ray diffraction at the beamline,

measurements only take tens of seconds, but the total time is often limited to hours

or days. Accelerating the computational time required in data analysis can impact the

measurement experiment since it directly impacts the decisions. Hence, our goal is to

build a predictive model for eliminating the current computationally intensive process of

multi-stage XRD analysis process. We focus on this issue by directly learning the phase

regions from the raw (2D) XRD patterns through classification using deep learning to

make the overall process automatic and faster.

In this paper, we introduce a Peak Area Detection Network (PADNet) to directly

learn to predict the phase regions from the raw XRD patterns without any need for

preprocessing or background noise removal. PADNet is a specially designed CNN that

contains large symmetrical convolutional filters with filter size of 50 × 50 in the first

layer. These filters are initialized using either 1 or -1 across different symmetries and they

compute the difference in intensity counts across different symmetries which enable them

to capture the peak areas and automatically remove the background noise. To evaluate

the proposed approach, we experiment using two sets of XRD patterns from the Stanford

Linear Accelerator Center (SLAC) [187] and the National Institute of Standards and
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Technology (NIST) [198]; each of them contains 177 XRD patterns from a Sn-Ti-Zn-

O thin-film, composition-spread, combinatorial library sample with eight phase regions

as the labels. The XRD patterns from SLAC contain significant irregular background

which varies by sample, while the ones from NIST contain comparably low background

which, as a function of 2θ, does not significantly vary from sample to sample. To our

knowledge there does not exist any algorithm for removing background noise for the raw

2D XRD image; hence, we also explore some novel background removal techniques based

on minimum and mean convolutional filters.

We evaluate the performance of PADNet using 10-fold cross validation. PADNet

achieves an overall classification accuracy of 84% for the multi-class labeling task, with the

SLAC model performing slightly better than the NIST model. Our results demonstrates

that PADNet can successfully predict the phase regions from the raw 2D XRD patterns

independent of presence of background noise. We also compared our approach against

the recent approach of phase region classification using 1D XRD patterns from Bunn et

al. [195]; PADNet significantly outperformed the AdaBoost classifier for both datasets.

7.2. Background

X-ray diffraction is an atomic scale probing technique for determining the crystal

structure of materials [181, 182, 183, 184]. The crystal structure causes the beam of

incident X-rays to diffract into many specific directions; a 3D image representing the den-

sity of electrons in the crystal can be constructed by measuring the angles and intensities

of the diffracted intensity patterns. An X-ray diffraction image is a plot of the intensity of

X-rays scattered at different angles by a materials sample, as measured by a 2D detector,
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with each pixel measuring the number of incident X-rays. The atomic-scale structures of

materials can be determined using the XRD technique [180].

The XRD pattern from a material composed of periodic atomic structures is composed

of multiple sharp spots known as Bragg diffraction peaks; the positions and intensities

of these peaks determine the phase of the materials - the specific chemistry and atomic

arrangement. For instance, quartz, cristobalite and glass are all different phases of SiO2;

they are chemically identical but the atoms are arranged differently, the XRD pattern

is distinct for each phase. A phase map represents the physical conditions at which

thermodynamically distinct phases occur and coexist. The constituent phases in the phase

map represent the different crystal lattice structures for varying material composition.

Scott [188] provides more details about X-ray powder diffraction.

7.2.1. Motivation

Our current work is motivated by the success of CNNs for image classification [4, 73].

In our previous work, we have shown the efficiency of deep neural networks in learning

crystal orientations directly from electron diffraction patterns [116]. Recently, Park et al.

applied CNN for classification of crystal structure using 1D XRD patterns. Since deep

neural networks are supposed to require large training datasets and the experimentally

measured XRD patterns are limited, they used 150,000 1D XRD patterns calculated from

the structure solutions of every entry from the Inorganic Crystal Structure Database [96].

However, our previous work has shown that deep neural networks can be leveraged even

with relatively smaller datasets and perform better than traditional machine learning

techniques [99].
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Directly using the raw 2D XRD patterns is also beneficial from the perspective of

information content. The conversion from 2D raw patterns to 1D intensity-2θ patterns

results in loss of important information due to their limited representation. The peak

characteristics such as peak height, peak width, presence of secondary peaks (peak dou-

blets), are very critical to correctly understand the materials structure. For instance, the

peak broadening can be used to quantify the average crystalline size of nanoparticles,

lines on the 2D raw pattern represent polycrystalline structure, and points on the 2D raw

pattern represent very well ordered crystalline structure. Such fine grained differentiation

is very critical to understand the true structure of materials. However, these facts are

ignored because during the conversion to 1D, such information is lost.

7.3. Design

7.3.1. Challenges

The primary challenge of XRD data analysis is the presence of background noise which

can be highly irregular such as in the case of SLAC as shown in Figure 7.1. During the

experiment, several factors can impact the XRD pattern captured, some of which are

beyond human control. It depends on multiple effects: machine setup, air around the

wafer, etc. The presence of background makes it difficult to detect the intensity peaks

which are important for obtaining the crystal information. For beamline, the resulting

background is not a simple bias to subtract. Hence, background removal is a primary

concern for XRD pattern analysis.

Although several techniques exist for removing background in the 1D XRD sam-

ples [190, 191, 192], and parsed 2D XRD patterns [199], to our knowledge, there exists
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(a) 1D XRD Pattern from SLAC with back-
ground

(b) 1D XRD Pattern from SLAC after back-
ground removal

(c) 1D XRD Pattern from NIST with background (d) 1D XRD Pattern from NIST after back-
ground removal

Figure 7.1. 1D XRD Patterns from SLAC and NIST. The XRD patterns
from SLAC contains highly irregular noise while the noise in the case of
XRD patterns from NIST is a constant function of 2θ.

no technique for removal of background noise from the raw XRD patterns coming directly

from the experiments. The raw 2D XRD patterns are convoluted rather than being a 2D

rectangle; the background removal methods for parsed 2D XRD patterns do not work for

the raw XRD patterns. For example, we implemented the Cache-efficient 2D Bruckner
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Figure 7.2. Distribution of class labels for the two XRD datasets. XRD
Patterns are collected for the same composition space of Sn-Ti-Zn-O from
both NIST and SLAC; hence, they refer to same samples.

Filter from Baur et al. [200] which is designed for parsed 2D XRD patterns, but does not

work for the case of raw 2D XRD patterns.

Another challenge associated with this task is the limited dataset size. Our dataset

contains only 177 XRD samples (and we have eight classes to learn). Since deep neural

networks are supposed to require large training datasets and the experimentally measured

XRD patterns are limited, Parker et al. [169] used 150,000 1D XRD patterns calculated

from the structure solutions of every entry from the Inorganic Crystal Structure Data-

base [96]. However, here our goal is to directly learn from the raw 2D XRD images coming

from experiments.

7.3.2. Datasets

We leverage the XRD patterns collected at SLAC [187] and NIST. SLAC has a high

throughput system for XRD experiments [187]; it outputs a single XRD pattern for a

specific range of 2θ; the configuration used gives a 2θ range of 5.365 to 58.566 for our

experiments. The NIST system was used to collect two diffraction frames centered at the

2θ values of 25 and 45, the range for the two frames were [10, 40] and [30, 60]. XRD
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patterns from SLAC contain more features due to the high energy of the beam, we are

able to resolve XRD with greater signal to noise ratio at greatly reduced exposure times;

however, the instrument is less available.

Each dataset is composed of 177 XRD patterns for the material alloy system with dif-

ferent compositions of Tin, Titanium, and Zinc (Oxygen is also present but not controlled)

from experiments. Each XRD pattern is of size 2048× 2048 containing the intensity val-

ues; hence, they are not like regular images with three channels (red, green, blue) used

for image classification such as in ImageNet [4]. In addition to the XRD patterns, the

composition information for each sample is also available in the dataset. The samples

were labeled by converting to 1D, clustered, then followed by human expert validation.

There are eight phase region classes, some represent pure constituent phases while others

represent mixed phases. As shown in Figure 7.2, the distribution of the dataset is not

balanced. The largest class has 37 samples while the smallest class has only 7 samples.

We used random split during our ten-fold cross validation; for each training set from the

random split, the smallest class was present in all of the training set during ten-fold cross

validation. One option could be to remove the class with data count below a certain

threshold, but our dataset is already limited and some of the phase regions are mixed

(combination) of other phase regions (classes); hence, learning one phase region can help

in predicting the other phase region. Therefore, we decided not to drop any phase region

class from our dataset.
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(a) PADNet for XRD patterns from SLAC (b) PADNet for XRD patterns from NIST

Figure 7.3. PADNet model architectures for the XRD patterns from SLAC
and NIST. Since both datasets refer to the same composition space of Sn-
Ti-Zn-O and have same samples, we constrained both models to have same
number of model parameters and same architecture. PADNet for NIST
is composed of two convolutional graphs to handle the two XRD patterns
compared to the PADNet for SLAC having one convolutional graph since
SLAC outputs one XRD image.

(a) Slope Fil-
ters

2D Convolution
4 filter size: 50x50

stride: 1
padding: same

Max. 
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XRD  
Image SoftmaxNormalization

4 Filters:
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1 vertical filter

(b) Peak Area Detection Component

Figure 7.4. Peak Area Detection Component with Slope Filters: This com-
ponent contains slope filters which help in peak detection by measuring
the difference in slope across different symmetries. The slope filters has
two regions: blue representing -1 and red representing 1. Since they are
symmetric, they can effectively detect the high slope areas containing peaks.
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Figure 7.5. Convolutional Graph: The component of the CNN network for
the raw 2D XRD pattern in the input.
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7.3.3. Peak Area Detection Network

PADNet is a deep convolutional neural network for directly learning the phase regions from

the 2D raw XRD patterns. PADNet is composed of three components: a convolutional

graph with a peak area detection component for each input XRD pattern, a dense network

for vector composition in the input and a final classifier network containing dense layers

for classification. The PADNet architecture for the XRD patterns from both datasets are

shown in Figure 7.3.

The first layer of the convolutional graph is composed of four large convolutional filters

with filter size f = 50. These filters are initialized in a special symmetrical manner as

follows:

(7.1) F1i,j =


−1, if i < j

1, otherwise

(7.2) F2i,j =


−1, if i+ j > f

1, otherwise

(7.3) V Fi,j =


−1, if i < f/2

1, otherwise
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(7.4) HFi,j =


−1, if j < f/2

1, otherwise

F1 and F2 are two diagonal filters symmetric about the diagonals. HF is a filter

symmetric about the horizontal and V F is symmetric about the vertical. These filters

are illustrated visually in Figure 7.4. Due to their symmetries with opposite signs on the

two sides, these filters F measure the difference in intensity counts and the background

is automatically implicitly subtracted at each point in Equation 7.5, where I is the input

XRD pattern and we refer to these filters as slope filters.

Ii,j =
∑

(Ii+x,j+y) · Fx,y for− f/2 ≤ x, y ≤ f/2(7.5)

The symmetry with opposite sign also means that the value computed on opposite

symmetries around the peak will have opposite signs. We are interested in the peak area.

Hence, we take their absolute values as follows:

(7.6) Ii,j = |Ii,j|

The value of slope measured at the actual peak should be zero since the intensity

counts across a peak should be symmetric. Hence, to detect the area around a peak

including the peak itself, we apply a maximum filter with a filter size f = 50 as follows:
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Ii,j = max(Ii+x,j+y) for − f/2 ≤ x, y ≤ f/2(7.7)

Next, we normalize the outputs from each filter using batch normalization to make

the mean zero and variance 1 for proper learning in the next convolutional layers. After

the batch normalization, we apply a softmax activation function so that the network puts

more emphasis on the points with high slopes and hence, high intensity counts. The

softmax function is defined as follows:

(7.8) softmax(Ii,j) =
eIi,j∑
eIi,j

Figure 7.4 illustrates the specially designed network component for the peak area de-

tection. The output from the peak area detection component is fed into the next convolu-

tional layer of the convolution graph component. Figure 7.5 illustrates the convolutional

graph of the CNN network used for the two datasets. Since NIST samples contain two

XRD patterns, the NIST model contains two convolutional graphs for each input pattern,

but with half number of filters compared to SLAC model. In this way, both SLAC and

NIST models have equal number of trainable parameters, and we can fairly compare their

performance with each other using our domain intuition.

The dense network for composition input is composed of two fully connected layers

with 256 outputs in each layer. The output from the convolutional graph is concatenated

with output from the dense network for composition input and fed into a final classification
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network that learns to predict the crystal phase label. The final classification network is

composed of two layers with 256 outputs in the penultimate and 8 outputs in the last

layer. ReLU [88] is used as the activation function. Batch normalization [126] is used

after each layer for the faster convergence. Since there are eight phase labels, the last fully

connected layer in the classification network has softmax activation with eight outputs.

7.3.4. 2D Background Removal from Raw XRD Pattern

One of the domain constraints before performing any analysis is how to remove the back-

ground from the XRD patterns so that the peaks can be easily detected. Hence, we ex-

plored some of the commonly used techniques used for background removal and smoothing

for background removal from the raw 2D XRD patterns. The raw 2D XRD patterns are

either in GFRM or TIF format, we will refer them as I. These XRD patterns contain

intensity values for different values of χ vs 2θ and have a size of 2048× 2048. Generally,

resizing is done to reduce the computation required; but, we do not perform any resizing

as that can lead to information loss.

First, we apply a minimum 2D filter of size f × f to the raw input image I as follows:

MFi,j = min(Ii+x,j+y) for − f/2 ≤ x, y ≤ f/2(7.9)

MF represents the background obtained by fitting a minimum filter. This can be

subtracted from the raw pattern I to obtain the pattern with background removal IM .

After applying the minimum filter, we found that the output pattern IM contains

some edges and corners. Next, following the smoothing techniques for 1D XRD patterns
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such as in [190], we apply a convolutional filter of size f × f to smooth the background

as follows:

CSi,j =
∑

(IMi+x,j+y · Fx,y)

for − f/2 ≤ x, y ≤ f/2

(7.10)

where F is a constant mean filter containing the same value at each position that sum

up to one. Since the XRD pattern is large in size 2048× 2048, fitting a polynomial using

least square can be very expensive without scaling down the size which will impact the

quality leading to loss of information. Hence, we applied the convolution mean filter. The

smooth background CS can be subtracted from the image I to obtain the XRD pattern

without background: IC. We will used both IM and IC as the input XRD pattern

evaluate our model performance.

Time Complexity: The time complexity for the background removal for 2D raw

XRD patterns is O(h ·w · f 2) where h is the height and w is the width of the input XRD

pattern I and f is the filter size.

7.4. Experimental Results

7.4.1. Experimental Settings

We have used Python and the TensorFlow [93] deep learning framework to implement the

deep neural network models. For machine learning algorithms, we used their implementa-

tions from Scikit-learn [94]. The models were trained using NVIDIA Titan X GPUs. We

learn to predict the phase label for understanding the crystal structure. As the dataset
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is small, we performed a ten-fold cross-validation and aggregated the results. Generally

each fold had 160 and 18 samples in the training and test set respectively. The data split-

ting used for cross-validation is the same across all experiments. We experimented with

different types of preprocessing such as normalizing and image whitening, but none of

them worked well. Hence, we do not use any kind of preprocessing or feature engineering

other than the background removal as stated. We performed a detailed hyperparameter

search and architecture search for the PADNet model for both cases, but limited the two

PADNet models for both datasets to same architectures for a fair comparison between the

two sources since both datasets are for the same composition space. Since the dataset is

limited, we used early stopping with patience of 30 and also used L2 regularization with

regularization coefficient of 0.0001 to avoid overfitting. For training our models, we used a

learning rate of 0.001 and Adam as the optimizer. Since we are dealing with a multi-class

classification problem, we used the softmax cross entropy as the loss function and the

evaluation metric is prediction accuracy which represents the total number of samples

correctly classified by the model across all class in the dataset. The evaluation is carried

out by training and testing the models on the raw XRD pattern I and the XRD patterns

after removing background using the two methods: MF and CS. The results represent

the mean and the standard deviation of the prediction accuracy from the ten-fold cross

validation.

7.4.2. Background Removal from 2D Raw XRD Patterns

Figure 7.6 presents the results from background removal using the two techniques. In the

case of SLAC, the background is very high and varies within a sample. The background
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removal using minimum filter method demonstrates that the background obtained using

this technique contain some edges and patches. The mean convolution filter removes them

by smoothening using the mean of a window of size f × f where we used f = 200. There

exist a trade-off between the size of filter and loss of peaks. If the filter size is small,

it leads to loss of peaks. If the filter size is large, the background signal is still present

in the output. Also, large value for filter size makes it computationally expensive since

the computations required are directly proportional to the square of filter size f . The

convolutional operation to compute CS background with f = 200 took around 7 minutes

for each image on a single core of a 2.3 GHz CPU. We implemented the convolution mean

filter operation using TensorFlow [93] to run on Tesla Titan X GPU, this reduced the

operation time by 7×. We experimented with several values of f , f = 200 worked best

for our experimentation here.

7.4.3. Performance using PADNet

Figure 7.7 illustrates the efficiency of using the PADNet for learning phase regions from

raw 2D XRD patterns. For a thorough evaluation, we trained different models on the

original raw 2D XRD images with and without background removal using the two methods

MF and CS; hence, there are three types of training datasets: I, I−MF and I−CS. To

evaluate the efficiency of PADNet trained on different input types, we evaluate them using

the three types of inputs for each model: I, I−MF and I−CS. Next, the peak detection

component in the convolutional graph of each model can be either held constant or trained

using backpropagation so that the network can learn the slope filter parameters itself.

Therefore, Figure 7.7 demonstrates the performance of models using different possible
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combinations of type of training data, type of test data and the configuration of slope

filters.

For SLAC, we observe a consistent performance across all input types used during

evaluation for both types of configuration of slope filters and for all types of training

data. The predictions made for input raw XRD pattern is completely independent of

background removal which illustrates that the model can be directly used to predict the

phase region labels from the raw input XRD pattern measured from experiment. The

performance of the model slightly improves if the background is removed from the data.

We observe similar performance for NIST model; the performance is almost consistent for

all types of test XRD patterns when the peak area detection component is held constant.

If the peak area detection component is allowed to be trained, the performance is slightly

lower for raw XRD patterns if the model is trained using XRD patterns with background

removed.

The results illustrates that PADNet can be used for directly making prediction of phase

region labels from the raw XRD patterns without any need for background removal. The

performance is specially interesting in the case of highly irregular background present in

the case of SLAC (Figure 7.1) where the performance is completely independent of the

background removal process.

7.4.4. Comparison with Current Approach

We compared the performance of PADNet against the current approach of phase region

classification using 1D XRD patterns. For dataset from NIST, since there are two XRD

patterns for different range of 2θ, we combined them. Next, we subtracted the background
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from the 1D XRD patterns for both datasets using the envelope function in MATLAB as

shown in Figure 7.1. Finally, we applied traditional machine learning approaches to both

datasets.

We followed the recent approach of training an AdaBoost classifier from Bunn et

al. [195]. We performed an elaborate grid search for hyperparameter tuning of AdaBoost.

For AdaBoost classifier, we used Decision Tree Classifiers with varying depth from 2 to 10

as the estimator. For learning rate, we used the values in [1, 0.1, 0.001] and for number

of estimators, we used [5, 10]. For SLAC, we obtained (34.78 ± 14.04)% accuracy and

for NIST we obtained (83.80± 14.50)% accuracy using a 10-fold cross validation. While

using composition, we achieved an accuracy of (70.80 ± 15.80)% on XRD patterns from

SLAC and an accuracy of (84.03± 22.33)% on XRD patterns from NIST.

We also analyzed the performance of other types of classifiers such as Logistic Re-

gression, Naive Bayes, DecisionTree Classifier and SGD Classifier on the two datasets

with and without composition information. We performed extensive grid search for hy-

perparameter tuning for all of them. In general, the use of composition results into slight

improvement of performance. All these models had slightly worse performance compared

to AdaBoost on the two datasets, performing significantly poorly on dataset from SLAC

compared to the dataset from NIST. One reason behind this might be that, for SLAC,

the 1D XRD input contains only 931 intensity values compared to XRD patterns from

NIST having 2501 intensity values. The more information present in the input, the better

the models perform on the dataset. Another conjecture is that these models perform bad

on SLAC because of high noise present in the raw XRD pattern which can lead to loss of

information while converting them to 1D.
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Our PADNet performs significantly better than the current approach of indexing using

1D XRD patterns on SLAC and slightly better than AdaBoost and other classifier on

1D XRD patterns from NIST. PADNet also exhibits lower deviation in the performance

which shows that it can make more robust predictions. The current approach analysis of

1D XRD patterns is a computationally intensive process which involves multiple steps-

converting to 1D by integrating along 2θ axis, background removal and comparison to

reference database or applying a machine learning based predictive model. PADNet can

provide a fast approach as the prediction takes less than one second (on a Tesla Titan X

GPU) for directly predicting phase region from 2D XRD pattern.

7.5. Conclusion

We designed a peak area detection network for predicting phase regions directly from

raw 2D XRD patterns from real experiments. The classification results using the peak

area detection network demonstrated their invariance to the presence of background in

the input XRD pattern during evaluation. This illustrates that PADNet can be directly

used to predict the phase regions from the raw 2D XRD patterns without any background

removal almost without any impact in prediction performance. This is the first application

of deep learning on the raw 2D XRD patterns from real experiments. Since deep learning

works better with big training data, our approach should provide better performance

if applied on larger datasets. It will hopefully pave the way for future works tapping

the potential of deep learning for this and related problems. We hope this will foster the

adoption of deep learning techniques for rapid and automated analysis of X-ray diffraction

images, and more broadly in the field of materials science and imaging. There exists
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significant potential for future research to understand the efficacy of the proposed methods

such as automating the filter size selection, evaluating these on other XRD patterns, and

incorporating them in a real time system for XRD analysis.
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(a) SLAC

(b) NIST

Figure 7.6. Background and processed XRD images: I is the original XRD
pattern on the left of (a) and (b). The top row of subfigures represent
the background (MF, CS) and the bottom row of subfigures shows the
XRD patterns after background removal using the two techniques (I-MF
and I-CS). We used a filter size of 200 for both the minimum filter and
the convolutional mean filter for both cases. For SLAC, the raw XRD
pattern is similar to the background images using the two techniques; this
illustrates that SLAC image contains high background noise. For NIST, the
pattern after background removal look similar to the raw pattern since the
background is very small. This concurs with the domain expertise, thereby
suggesting that the proposed background detection module is working as
expected.
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(d) NIST, Trained

Figure 7.7. Performance of PADNet using a ten-fold cross validation (mean
and standard deviation). The uniform performance across all test pattern
types exhibits the efficacy of PADNet for phase region classification directly
from raw 2D XRD pattern.
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CHAPTER 8

Conclusion and Future Works

8.1. Conclusion

This dissertation has presented several methodologies for designing deep neural net-

work architectures that can handle different challenges associated with building machine

learning based predictive models using scientific datasets. All the works involved develop-

ing state-of-the-art predictive models for different scientific applications for the advance-

ment of scientific knowledge discovery.

Chapter 3 presented direct application of deep learning to learn chemistry from large

computational materials dataset to build state-of-the-art predictive model for materials

property prediction. In Chapter 4, a deep residual regression framework is presented

for vector inputs which can be applied to different scientific applications and also mod-

ified and used for classification tasks. Chapter 5 demonstrated how we can leverage

deep transfer learning on limited experimental observations from pretrained model on

large computational datasets for building robust and highly accurate predictive models

for scientific applications. Chapter 6 presents methodology for building a multi-output

regression deep convolutional network that can optimize for domain specific loss function.

Chapter 7 presents how we can design a deep residual network that can automatically

handle background noise in X-ray diffraction patterns using deep learning such that the

prediction is independent of presence of background noise.
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8.2. Future Works

8.2.1. Activations as Materials Representations for Predictive Modeling

In Chapter 5, Logistic Regression was used for metallic vs insulator and magnetic vs non-

magnetic classification by using activations from ElemNet as the model inputs and the

results demonstrated superior performance compared to using raw elemental composition

as the model inputs. Hence, leveraging materials representation learned by ElemNet for

property predictions would an interesting future direction to explore.

8.2.2. IRNet for Classification

Chapter 4 presented a deep residual regression framework for materials property pre-

diction. An important future direction would be to modify the IRNet architecture for

classification by adding as many outputs at output layer as the number of classes and

using Softmax function as the activation. With this simple modification, IRNet can be

used for classification tasks in scientific applications where the input is a vector.

8.2.3. Predicting Crystal Structure from Composition

Since properties of materials depends on their crystal structure, knowing the crystal struc-

ture is critical for accurately predicting materials properties; DFT computations need

materials crystal structure as the input to compute their properties. An important future

line of work would be to learn to predict crystal structure given composition. This can

be addressed as a multi-labeling problem since a compound can exist in multiple crystal

structure given the same composition.
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8.2.4. Multi-Property Prediction

All the works in Chapter 3, 4 and 5 involved designing deep neural network architectures

for single property prediction. The presented architectures can be modified to predict

multiple property at the same time; the advantage of this approach would be lower training

and prediction time and memory consumption. This can be good future direction to

follow.

8.2.5. ElemNet for Classification

Chapter 3 presented how to directly learn to predict materials property from elemental

composition and developed the state-of-the-art model for materials property given compo-

sition type of tasks. The ElemNet architecture can be modified for classification tasks by

using a Softmax activation at the output layer; this will have many scientific applications

such as classification of magnetic vs non-magnetic, metallic vs insulator.

8.2.6. Transfer Learning on Experimental EBSD

In Chapter 6, a deep convolutional neural network was designed and trained on simulation

datasets. Simulation datasets are large in size and does not contain any noise; however,

experimental datasets are smaller in size and contain real-world noise coming from dif-

ferent environmental and experimental settings during experiments. Chapter 5 presented

how one can leverage together computational and experimental datasets together to build

more robust predictive models. Similar approach of transfer learning from simulation

EBSD patterns to experimental EBSD patterns can be leveraged together to build more

accurate predictive models that be used with experimental EBSD patterns.
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8.2.7. Peak Area Detection Network on Larger XRD Datasets

In Chapter 7, PADNet was presented with its peak area detection component; the model

was trained and tested using an unbalanced limited dataset of 177 samples. The PADNet

for both SLAC and NIST datasets could predict the phase regions from the original 2D

XRD pattern independent of the removal of background noise. The background noise in

SLAC is highly irregular while the background noise in the case of NIST was small and

almost regular for all XRD samples for the given system. The background noise pattern

would be different for other alloy systems. Also, we know that deep neural networks

perform better with increase in training data size. Therefore, it would be interesting in

the future to train and evaluate the effectiveness of PADNet for other materials systems,

collected using other type of diffractometers. As more labelled data becomes available,

exploring PADNet would be interesting since it can directly predict the phase region labels

without any need for background removal and preprocessing to 1D patterns.
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