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Abstract 

 
Investigation of Muscle Synergies as a Control Paradigm for Myoelectric Devices 

 
Abidemi Bolu Ajiboye 

 

A need exists to increase the functionality of myoelectric prostheses without increasing the 

mental requirement of operation.  Implantable myoelectric sensors have made it possible to 

record multiple muscle activities with high fidelity.  Given this high dimensionality of inputs, what 

is the best way of implementing control?  Muscle synergies have been proposed for 

coordinating the many degrees-of-freedom (DOF) of the neuromotor system.  This work aimed 

to investigate synergies as a viable control paradigm for multi-DOF myoelectric devices with 

regard to the properties of robustness, scalability, and volitional activation. 

First, this work investigated if muscle synergies formed a predictive basis set for muscle 

coordination patterns associated with a variety of hand postures.  Subjects mimed hand 

postures of the American Sign Language alphabet while electromyographic (EMG) activity was 

recorded from hand muscles.  Non-negative matrix factorization (NMF) showed that a small 

number of hand postures could establish a robust set of synergies for predicting the EMG 

patterns of a variety of hand postures. 

Second, this work investigated the scaling of muscle synergies in hand grasping at sub-

maximal force levels.  Subjects performed a force-tracking task using different grasps while 

EMG was recorded.  Statistical and NMF analyses showed that the primary synergies of 

grasping retained their structures and scaled linearly with grasp force. 

Third, this work investigated, through a virtual target reaching task, the volitional control of 

multiple DOFs using muscle synergies versus single-muscle inputs.  It was hypothesized that 
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users could more intuitively achieve independent and simultaneous control of myoelectric inputs 

using muscle synergies over single-muscle activations.  The results showed that while users 

were able to independently and simultaneously modulate synergy activations, this control 

paradigm was statistically no better than one based upon single-muscle inputs. 

From these investigations, it is concluded that while muscle synergies exhibit useful 

properties for control such as robustness, generalizability, and scaling, their practical benefit in a 

volitional control task is not significantly greater than a single-muscle control paradigm.  Results 

from these investigations also suggest that the method of control implemented by the 

neuromotor system is not bound by muscle synergies, but rather by a combination of both 

synergy and single-muscle activations. 
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1 Introduction 

1.1 General Framework 
 

This manuscript describes the author‟s investigations of the use of neuromuscular synergies 

as a potential paradigm for the control of multi-degree-of-freedom (DOF) myoelectric devices.  

Neuromuscular synergies have been proposed as groups of muscles whose activity levels are 

neurally coupled and form the basis vectors of complex muscle coordination patterns.  

Specifically, this work aimed to discover if neuromuscular synergies form a predictive framework 

for the variety of electromyographic (EMG) patterns observed during the formation of a wide 

range of hand postures.  Secondly, this work aimed to discover if the EMG patterns and 

synergies underlying multi-digit hand grasping are linearly scaled variants of single 

characteristic vectors, relative to grasping force level.  Finally, this work aimed to investigate the 

advantages of a neuromuscular synergy based paradigm for real-time control of multi-DOF 

myoelectric devices.  Such a paradigm may be more successful and intuitive for controlling 

myoelectric devices than the currently implemented single-muscle-based paradigm because it 

potentially takes advantage of knowledge of the pre-existing neurally coded muscle groupings. 

1.2 Motivation 
 

As a primary motivation, there is a growing need to add functionality to current commercially 

available myoelectric prostheses without increasing the mental burden placed on the user.  As 

the number of controllable functions / degrees-of-freedom (DOFs) is increased, the issue of 

control becomes very significant.  This is true particularly in light of the goals of minimizing the 
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mental burden placed on the user and maximizing the intuitive nature of the control.  The 

current standard paradigm of control in myoelectric systems is to perform a one-to-one mapping 

(single-input-single-output, or SISO) of each myoelectric input site to each controlled function / 

DOF.  For example, in standard two-site myoelectric prostheses, the electromyographic (EMG) 

activity from the wrist flexors and extensors are mapped to the closing and opening of the hand, 

respectively.  With the current development of implantable myoelectric sensors, it is now 

possible to faithfully record focal signals from multiple muscles with high fidelity.  Thus the 

possibilities of controlling a multi-DOF device are potentially increased.  Extrapolating this one-

to-one mapping control paradigm to a device with multiple controllable DOFs would then require 

a single myoelectric input site to be tied to each controlled function.  With a large number of 

functions, this would likely place a significant mental burden on the user and make overall 

control less natural and intuitive. 

Current research into control paradigms for myoelectric prostheses has recently focused 

efforts on investigating pattern recognition algorithms which map individual functions and DOFs 

to the composite EMG activity pattern observed from all myoelectric input sites.  Indeed, some 

of the author‟s previous research efforts are within this school of thought (Ajiboye, 2003, Ajiboye 

& Weir, 2005).  The majority of these algorithms focus on extracting multiple parameters from a 

minimal set of myoelectric input sites and/or characterizing the multiple EMG patterns 

associated with each controlled function.  Such paradigms are advantageous over SISO control 

methodologies because they minimize the number of required input electrodes and do not 

require the user to possess conscious individuated control over each myoelectric site.  This is a 

step in the direction of increasing the possibility of intuitive and natural control.  However, these 

control paradigms are limited in that all recognizable EMG patterns must be programmed a 

priori.  The addition of new hand postures would require the associated EMG patterns to be 
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hard-coded into the control system.  Thus users would be required to remember as many EMG 

patterns as there are DOFs to be controlled.  This problem would become more pronounced as 

the number of patterns grows. 

The question must be asked of what constitutes natural control of the hand.  More specifically, 

what is the natural way that the intact neuromotor system coordinates the many muscular DOFs 

to produce the observed postural patterns of the hand?  Studies in anatomy, cortical recordings, 

and other fields have confirmed that the neuromotor system does not exclusively, or possibly 

even primarily, operate based on a SISO paradigm.  Because there are more muscles than 

controlled joints of the hand, this control problem has been termed “ill-posed”.  This is the 

mathematical equivalent of a system of equations with more variables than equations – there 

exists an infinite number of solutions unless more constraints are added to the system.  Studies 

of muscle activities during arm reaching, postural standing and perturbations, locomotion, and 

various reflexes have theorized an additional constraint, namely that muscles are partially 

grouped together in such a way to constrain their mutual levels of activation.  Hence, control 

becomes modular and is dimensionally reduced.  More complex muscle activation patterns are 

built on these bases of muscle groupings.  It is generally agreed that these muscle groupings, 

termed synergies, are a real phenomenon on some level.  What are generally not agreed upon 

are the compositions and mechanisms of these muscle synergies.  It is beyond the scope of this 

document to attempt to answer this debate fully.  This research, however, aims to better 

understand how knowledge of these natural groupings of muscles can be advantageous in a 

control paradigm for multifunctional myoelectric prostheses, and specifically how well the 

muscle synergy model can serve as an EMG recognition algorithm for multiple hand grasp 

postures.  The idea of using muscle synergies as a myoelectric control paradigm has been 

moderately visited in the past, although in slightly different forms (Finley, Wirta & Cody, 1968, 
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Taylor & Finley, 1971).  The common thread between previous research and this current work is 

that a control paradigm based upon normal subconscious patterns of synergistic muscle activity 

would result in prosthesis functions that both appear and are perceived as natural, with little 

necessary conscious attention from users. 

As a secondary motivation, there is a need to better understand the properties of muscle 

synergies with regard to motor coordination.  Namely, if muscle synergies are in fact basic 

building blocks of more complex muscle patterns, then they should exhibit certain properties.  

Three of these properties are low lability, scalability, and spatial coherence (Lee, 1984).  

Low lability means that the basis set of muscle synergies is robust and generalizable to 

different environmental and task conditions.  Scalability means that the individual muscle 

activation elements within a synergy should retain the same relative proportion levels with 

increased activation of the synergy i.e. the structure remains invariant.  Spatial coherence 

means that each synergy is driven as a unit, based on an “all-or-none” philosophy.  This work 

investigates these three properties of muscle synergies within the framework of myoelectric 

control.  With regard to low lability, this work examines whether a small set of muscle synergies 

describing a small set of hand postures is robust and generalizable enough to predict the EMG 

patterns associated with a wide variety of completely new hand postures.  With regard to 

scalability, this work examines if the muscle coordination patterns and muscle synergies 

associated with static hand grasp patterns are structurally invariant to grasp force level.  Finally, 

with regard to spatial coherence, this work examines if muscle synergies can be volitionally 

activated independently and simultaneously as individual units for myoelectric control (i.e. 

voluntary spatial coherence). 

To these ends, the specific aims of the research are as follows. 
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1.3 Specific Aims and Hypotheses 
 

1.3.1 Aim 1.  Muscle Synergies as a Predictive Framework for EMG 
Patterns of Static Hand Postures 

 

Many investigations have shown muscle synergies to be a viable means of reducing the 

dimensionality of the muscle coordination problem in motor control.  This has been done by 

demonstrating that a small number of synergies can describe a large percentage of the EMG 

pattern variability exhibited both within a task and across several tasks.  The success of muscle 

synergies in previous investigations is important, yet inconclusive in that it is not clear if the 

results reveal information about the control paradigm of the neuromotor system, or only 

describe characteristics of the observed data.  A more powerful assessment of muscle 

synergies would be to investigate their predictive power with regard to new tasks.  Thus, this 

work investigates whether muscle synergies form a robust lower dimensional predictive 

framework for the EMG patterns of new hand grasp postures.  More specifically, this work will 

answer the following questions. 

 How many synergies are needed to complete this lower dimensional predictive 

framework, and how robust are these synergies? 

 How many hand postures are needed to define the muscle synergy set of this 

framework?  

 What is the predictive power of the established framework? 

Research participants are instructed to shape the hand into 33 hand grasp postures comprising 

the static letters and numbers of the American Sign Language (ASL) alphabet while EMG 

activity is recorded from intrinsic and extrinsic hand muscles.  Synergies are determined using a 

subset of these postures and used to predict the EMG patterns from the unused hand postures. 
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Working Hypothesis: A reduced set of muscle synergies describing a small set of hand 

postures can predict the EMG patterns from a wide variety of new hand postures with 

comparable accuracy. 

Alternative Hypothesis: The EMG patterns of new hand postures cannot be accurately 

predicted using the framework defined by the generative hand posture set.  The number of 

synergies needed to predict new  hand postures exponentially grows with an increase in the size 

of the predicted set. 

Implications: Successful prediction of the EMG patterns of new hand postures would suggest 

that the neuromotor control system possibly uses a system of finite muscle synergies to 

coordinate the many muscular DOFs associated with control of the hand.  Rejection of the 

working hypothesis, and acceptance of the alternative hypothesis, would suggest that the 

neuromotor system does not organize and combine synergistic groups as described by the 

muscle synergy model.  Alternatively, each grasp posture may require its own set of synergies 

for construction, and the total number of synergies may be more than the number of muscles.  

From the perspective of myoelectric control, acceptance of the working hypothesis would offer 

the possibility that new untrained movements and positions of the terminal hand device could be 

constructed through independently and simultaneously controlling combinations of these basis 

muscle synergies.  In contrast, acceptance pf the alternative hypothesis would suggest that a 

control paradigm based upon muscle synergies is not suitable for multifunctional myoelectric 

control. 
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1.3.2 Aim 2.  Muscle Synergies Exhibit Scalability with Increasing Grasp 
Force 

 

Redundancy in the neuromotor system potentially allows for multiple modalities of muscle 

coordination to produce sub-maximal multi-digit hand grasp forces.  Hence, the relative 

proportions of muscle activations could potentially change with different conditions of grasping 

force level.  There are differing views in the literature concerning the paradigm that the 

neuromotor system uses for muscle coordination to accomplish control of forces in these multi-

digit hand grasps.  This investigation examines whether the muscle coordination patterns (CPs) 

used to produce grasps of sub-maximal forces are force-invariant linear scalings of 

characteristic EMG pattern vectors.   The investigation also examines if a simple linear scaling 

of the associated basis sets of muscle synergies can account for the muscle activities of 

grasping at varying force levels, or if different synergies are employed at different force levels.  

Research participants are instructed to perform a force tracking task in which they use power 

and precision hand grasp patterns to produce the specified force level while EMG activity is 

recorded from intrinsic and extrinsic hand muscles.  The structure and magnitudes of the 

observed EMG patterns are compared across force levels, as well as the underlying synergy 

structures. 

Working Hypothesis: The muscle coordination patterns (CP) used to produce the same multi-

digit grasp at varying isometric grasp force levels are statistically linearly scaled versions of a 

single characteristic vector.  Furthermore, the activation levels of the underlying muscle 

synergies scale linearly with grasp force. 
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Alternative Hypothesis:  Statistically different muscle coordination strategies are used to 

produce the same multi-joint grasp pattern at varying isometric force levels.  The activation 

levels of the underlying synergy structure do not linearly scale with grasp force. 

Implications: Acceptance of the null hypothesis would imply that the EMG patterns associated 

with different force levels of grasping are structurally the same and differ only by linear scaling.  

Furthermore, the scaling of a set of muscle synergies is sufficient for describing grasping at sub-

maximal force levels.  Rejection of the null hypothesis would suggest that the different force 

requirements of grasping cause a change in the muscle coordination strategy implemented by 

the neuromotor system, and hence the aggregate EMG patterns are not simply the result of 

linearly scaling a fixed set of muscle synergies.  From the perspective of myoelectric control, 

acceptance of the null hypothesis of EMG pattern scalability would imply that muscle synergies 

could be implemented within a proportional control paradigm, where the scaled activation levels 

could be used as modulators of functional speed. 

 

1.3.3 Aim 3.  Independent and Simultaneous Volitional Control of Muscle 
Synergies 

 

This investigation aims to address the issue of spatial coherence of muscle synergies.  This 

study examines if muscle synergies can be volitionally activated independently and 

simultaneously for the purposes of multi-DOF myoelectric control, and specifically with 

comparison to a single-muscle activation control scheme.  Research participants perform a 

virtual reaching task in a four degree-of-freedom coordinate field, where the positive and 

negative axes represent the activation levels of four decoupled subject-specific muscle 

synergies or individual muscles.  Participants are instructed to navigate as quickly as possible to 



25 

 

targets within this coordinate field using the instructed synergies or muscles, while attempting to 

minimize the activities of the undesired synergies and muscles.  Subjects perform the same 

tasks with the addition of a mental load to assess the intuitiveness of each paradigm.  

Movement error, movement path, and average null space activity are the metrics employed to 

assess the participants‟ successes in navigating the synergy and non-synergy fields. 

Working Hypothesis: Research participants will be able to demonstrate volitional independent 

and simultaneous control of muscle synergies.  This will be evidenced by higher levels of 

movement accuracy, path linearity, and less null space activity of the synergy field paradigm 

than in the non-synergy (i.e. individuated muscle) field paradigm.  Furthermore, control using 

the synergy-based paradigm will be more intuitive than the non-synergy based paradigm due to 

the natural grouping of muscles by the neuromotor system. 

Alternative Hypothesis: Research participants will not be able to volitionally control muscle 

synergies independently and/or simultaneously for targeting in a four-dimensional environment.  

The levels of path linearity, effect of mental loading, and null space activity in the synergy field 

will be statistically indistinguishable from the non-synergy field. 

Implications: The ability of research participants to successfully learn to navigate to targets in 

the synergy field with would suggest that muscle synergies could ultimately be used as a 

paradigm for myoelectric control.  Specifically, each muscle synergy group could be tied to a 

controlled DOF, and the user would be able to proportionally manipulate that particular DOF 

independently and/or simultaneously with other DOFs.  The inability to navigate the four 

dimensional field using synergies would ultimately suggest that users cannot volitionally control 

these groups, and therefore cannot use them within a control paradigm for multi-DOF 

myoelectric devices.  Furthermore, the comparative success of a synergy-based control 
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paradigm relative to a single-muscle control paradigm would suggest which paradigm is more 

likely used by the neuromotor system in the muscle coordination of volitional hand movements. 

1.4 Manuscript Organization 
 

Chapter 2 (General Background) gives a brief history of the different methodologies of 

control proposed for myoelectric devices.  Also described is background on current literature in 

the area of motor control that gives philosophical and physiological evidence for the central 

motor system implementing a synergy-based control for muscle coordination. 

Chapter 3 (The Muscle Synergy Model and Parameter Estimation) conceptually and 

mathematically describes the muscle synergy model.  Current literature is presented on how the 

model parameters are estimated, including a discussion on the inherent assumptions of each 

estimation technique.  Finally, a simulation study of the estimation of the muscle synergy 

component model parameters, using non-negative matrix factorization (NMF), under varying 

conditions of noise and over- and underestimation, is presented. 

Chapter 4 (Muscle Synergies as a Predictive Framework for EMG Patterns of Static 

Hand Postures) describes work investigating whether the muscle synergies associated with a 

small set of hand postures can predict the EMG patterns associated with a wide variety of new 

hand postures.  Much of the current literature has used muscle synergies as a descriptive 

framework, but few have addressed the issue of predictability and generalizability.  This work 

addresses the first aim, namely the robustness and generalizability of muscle synergies for 

constructing new hand postures.   

Chapter 5 (Muscle Synergies Exhibit Scalability with Increasing Grasp Force) describes 

work investigating the relationship between muscle coordination strategies and grasp force 

during multi-joint hand grasping.  While some investigations have addressed the issue of global 
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pattern scaling with respect to precision grasp force, none to the investigator‟s knowledge have 

investigated how muscle synergies alter with respect to changes in grasp force of the whole 

hand.  This work addresses the second aim, namely the scalability of muscle synergies. 

Chapter 6 (Independent and Simultaneous Volitional Control of Muscle Synergies) 

describes work investigating if muscle synergies can be volitionally controlled simultaneously 

and independently for the purposes of myoelectric control.  The results of subjects‟ abilities to 

reach targets in a four-dimensional synergy field, compared to a non-synergy field, are 

presented. This work addresses the third aim, namely volitional spatial coherence of muscle 

synergies. 

Chapter 7 (Conclusions) summarizes the findings described in the overall manuscript, and 

gives direction towards investigations to further augment the findings of this work.
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2 General Background 

2.1 Introduction 

Current commercially available trans-radial myoelectric prostheses are typically controlled by 

a two-site single-input-single-output (SISO) paradigm for operating a single degree-of-freedom 

(DOF).  The activity of one agonist-antagonist muscle pair, such as the finger flexors (flexor 

digitorum superficialis) and extensors (extensor digitorum communis) is tied to the control of one 

motion, such as hand closing and opening.  As the number of operable DOFs and functions 

increases, this SISO control paradigm potentially becomes a limiting factor of control.  Extensive 

research in both the fields of myoelectric control and neuromotor control have aimed to improve 

upon SISO control algorithms by better understanding how multiple-muscle coordination is 

achieved by the neuromotor system, and by developing myoelectric pattern recognition and 

control algorithms that take advantage of patterns of muscle coordination.  This chapter 

presents a review of literature in the fields of myoelectric and neuromotor control concerning the 

issue of multiple-muscle coordination.  

2.2 Brief History of Pattern Recognition Paradigms for 

Multifunctional EMG Control 

The first myoelectric prosthesis was developed by Reinhold Reiter in the 1940s (Reiter, 

1948), although popular use in the clinical and commercial environments did not occur until the 

1970s.  Because the myoelectric signal is a physiologically relevant parameter whose amplitude 

is monotonically related to the strength of muscle contraction, it can be used as a stable control 

input for prosthetic control.  Most current commercially available myoelectric prostheses 
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implement two-site control and are single DOF in nature, as shown in Figure 2.1.  These two 

sites are tied to the activities of agonist-antagonist pairs of muscles, and the muscle with the 

greater activity is usually that which determines the actuated function of the prosthesis.  While 

two-site control has proven successful, this control paradigm is potentially limited when 

extended to prostheses with multiple controllable functions and DOFs, due to the difficulty of 

controlling multiple muscles independently of each other.  Several different control paradigms, 

based upon extraction of signal parameters to recognize global myoelectric patterns, have been 

proposed to address this problem of control of multifunctional prostheses. 
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Figure 2.1. Schematic of standard two-site myoelectric prosthesis control. 

Efferent signal from the central nervous system cause muscle contractions, which result 

in electrical activity as a byproduct.  This electrical activity (EMG) can be detecting using 

surface or indwelling electrodes.  Standard two-site myoelectric control differentially 

records EMG from agonist-antagonist pairs and then finds the signal envelope using non-

linear techniques such as rectification of root-mean-square.  A decision is made on which 

function the user is attempting to control, and the appropriate motors are driven.  In 

standard two-site control, the decision logic block can be differential, in which the 

difference in activity drives the appropriate motor, all-or-none in which the most active 

muscle fully drives the appropriate motor, or a range of other possible decision 

paradigms. 

 

 One paradigm proposed for use in multifunctional myoelectric control has been to model each 

set of EMG signals associated with specific movements, using their autoregressive-moving-

average (ARMA) coefficients (Box & Jenkins, 1970).  The underlying hypothesis for these 

methods was that a repeatable reduced set of parameters (as compared to an infinite set of 
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possibilities for the signal patterns) characterizing a linear model of the signals would form a 

database where at least one parameter would be different for each desired motion.  This 

method has been used to distinguish between the muscle coordination patterns associated with 

resting, loaded flexion of the elbow, and whole hand grasping (Graupe & Cline, 1975).  

However, the investigators admitted that the proposed paradigm of control would not lend itself 

to multifunctional simultaneous control.  Any system trying to accomplish such would need 

knowledge of all possible combinations of motions and the associated ARMA coefficients to be 

effective.  In addition, the proposed system was limited in the number of controllable functions it 

would be able to recognize.  Other investigators have extended the work of Graupe & Cline, 

using more advanced ARMA based and spectral estimation models for discrimination of wrist 

movements (Doerschuk, Gustafson & Willsky, 1983) and the different articulations of the thumb 

(Farry, Walker & Baraniuk, 1996).  While successful in their own rights, all suffer from the same 

deficiency in that all combination of degrees-of-freedom would have to first be parameterized to 

achieve full simultaneous control.  The same would have to be done for any new movements to 

be recognized. 

 Other investigators have posited that multifunctional myoelectric control is best achieved by 

extracting large amounts of information from a small set of input signals.  In a seminal paper, 

researchers at the University of New Brunswick suggested that extracting time domain features 

such as mean absolute value, mean absolute value slope, number of zero crossings, number of 

slope sign changes, and waveform length from the repeatable first deterministic 300 ms of a 

pair of EMG signals to operate four distinct classes of movement (Hudgins, Parker & Scott, 

1993).  Using a standard feed forward multilayer artificial neural network (ANN) for training 

through back propagation, the investigators were able to distinguish between four classes at a 

rate of 91.2 ± 5.6% for normal-limbed subjects and 85.5 ± 9.8% for amputee subjects.  The 
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benefit of this system was that more functions could be controlled using a small number of 

myoelectric input sites.  However, the work did not address the feasibility of extension of this 

method to simultaneous control of multifunctional prostheses.  Still, other investigators have 

built upon this work, using these same features (Englehart & Hudgins, 2003), along with 

“majority voting” schemes, and wavelets as templates for the different muscle coordination 

patterns associated with movement, to produce continuous classification systems (Englehart, 

Hudgins & Parker, 2001).  The main effort of these proposed paradigms has been to reduce the 

error rates of classification, rather than to explore control of simultaneous or novel movements. 

Another class of paradigms that has been proposed for solving the multifunction control 

problem is a set of “soft-computing” based schemes such as fuzzy logic, various ANNs (Gallant, 

Morin & Peppard, 1998), and genetic algorithms (Farry, et al., 1997).  Actually, many of these 

soft-algorithms in conjunction used the feature sets employed by Hudgins et al.  Fuzzy logic and 

fuzzy data clustering based systems which attempt to understand features of muscle 

coordination in terms of linguistic variables have met varying degrees of success (Chan, et al., 

2000, Hussein & Granat, 2002, Karlik, Tokhi & Alci, 2003, Micera, Sabatini, Dario & Rossi, 

1999).  In fact, much of the current investigator‟s previous research was in the use of fuzzy logic 

systems for recognizing the muscle coordination patterns associated with movements of the 

wrist and fingers (Ajiboye, 2003, Ajiboye & Weir, 2005).  This research reported classification of 

individual muscle coordination patterns between 94 – 99% for both static and dynamic 

movements.   Again though, the use of such a system in the control of simultaneous and/or 

novel movements would require a large database of pre-programmed movement combinations. 

More recent proposed algorithms for multifunctional myoelectric control have focused on 

decomposing time domain features of the muscle coordination patterns associated with different 

limb movements into unique sets of recognizable components.  Of particular interest are some 
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of the efforts based upon Gaussian Mixture Models (GMMs) because they mathematically bear 

some similarity to the muscle synergy work described in this manuscript.  Given a set of N 

discriminable movements, a set of GMMs {λ1… λN} are constructed from the extracted features 

of the time series of the EMG patterns.  The probability density function (PDF) 𝑝 𝑥  𝜆𝑛  of a D-

dimensional set of features 𝑥  for a specific movement can be represented by the linear weighted 

sum of M Gaussian density functions 𝑝𝑖
𝑛 𝑥  , as given in equation 2.1. 
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Given a set of muscle coordination patterns for training, parameters for the set of GMMs can be 

estimated by expectation-maximization algorithms (Akaho & Kappen, 2000).  Given a novel data 

stream and associated extracted time domain features 𝑥 , the mixture model λn which best 

models the new data vector is determined to be that of the most probable movement.  Gaussian 

mixture models have shown success rates of up to 96% for distinguishing between six distinct 

classes of upper-limb movements, using either auto-regressive and/or time domain feature sets 
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for 𝑥  (Chan & Englehart, 2003, Huang, Englehart, Hudgins & Chan, 2005).  While the GMM as 

implemented by these investigators still suffers from the limitation of having to develop a set of 

parameters for every conceivable set of simultaneous and/or novel movement, it does point in 

the promising direction of viewing complex movements as built upon simpler sub-movements, 

which can be used as a basis for recognizing these more complex movements. 

All the efforts described briefly above have the underlying goal of trying to reduce the error 

rates of classification while increasing the number of movements to be classified.  None of the 

proposed paradigms, however, address the issue of simultaneous control of multiple functions / 

DOF or of novel movements.  The Gaussian mixture model approach does offer some promise 

because it regards the features of complex movements to be combinations of those of simpler 

movements, i.e. movement primitives.  This hierarchical approach of using movement primitives 

for multifunctional myoelectric control has been previously suggested in literature, although not 

fully investigated.  Engineers have reported success of control of the Utah/MIT Dextrous Hand 

(UMDH) using a programming language called HPL (Hand Programming Language) that 

describes hand manipulation tasks through functional motor primitives (Speeter, 1990).  Control 

of hand tasks was successfully achieved through the concatenation and linear combination of 

these motor primitives.  Although explicitly a robotic application, the success of the Utah/MIT 

Dextrous Hand in using motor primitives to control hand manipulation does suggest promise for 

myoelectric applications.  Consequently, a better understanding of the control paradigms by 

which the central and peripheral nervous systems (CNS / PNS) perform muscle coordination 

through movement primitives may give insight into designing better prosthesis control 

algorithms.   

Motor primitives can be thought of as bases functions or fundamental building blocks of 

movement that give a hierarchical structure to a particular system.  This idea is quite evident 
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when one examines the structure of language.  In linguistics, if sentences are thought of as 

signals to be transmitted, then words can be thought of as the primitives of language, with 

letters of the alphabet being units of individuated control.  All communication is hierarchically 

built upon these language primitives.  In the same way, biological systems may be organized in 

similar fashion, with the relationship between movement primitives and larger movements 

paralleling the relationship between letters and words and sentences.  In the next section, 

literature in the area of motor control is reviewed that speaks to idea that muscle coordination 

for complex movements is based upon the combination of motor primitives. 

2.3 Neuromotor Coordination of Movement through Primitives 

Two major viewpoints have been held that attempt to explain how the central nervous system 

(CNS) controls and coordinates the many degrees-of-freedom of the neuromuscular system.  

The first viewpoint is based upon individuated motions and stresses the uncoupled control of 

individual joints and muscles to generate the necessary kinetics and kinematics of movement 

(Soechting & Lacquaniti, 1989).  This viewpoint is largely based upon early work that involved 

cortical stimulation of the primary motor cortex (M1) area that seemed to indicate a point-to-

point somatotopic mapping of hand control.  This viewpoint is best illustrated by the homunculus 

(Penfield & Boldrey, 1937, Penfield & Rasmussen, 1950) and simiusculus (Woolsey, Erickson & 

Gilson, 1979, Woolsey, et al., 1952) diagrams, which have been considered to be textbook 

standards and are both seemingly characterized by a strict somatotopic organization of motor 

control.  Researchers have recently argued against his viewpoint, stating that it does not 

account for the current body of evidence from neuro-stimulation experiments (Lemon, 1988, 

Schieber, 1990).  The second viewpoint postulates that because of the inherent redundancies in 

the neuromuscular system, motor control is an “ill-posed” problem.  As a result the neuromotor 
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system coordinates the many degree-of-freedom through the use of fundamental control 

primitives of movement to produce more complex movements (Bernstein, 1967, Bernstein, 

1971, Sherrington, 1906). These fundamental control primitives would serve to both constrain 

the neuromotor system so that the problem of coordination would thus be well-defined, and 

serve to potentially increase the efficiency of control.  In the following sections, the experimental 

evidence for and against movement primitives is reviewed from the areas of cortical stimulation, 

investigations into the coordination of joint kinematics and kinetics, and investigations of 

coordination of muscle patterns. 

2.3.1 Motor Coordination Investigations involving Cortical Mapping 

For years, the homunculus and simiusculus have been the textbook standard in the field of 

neuroscience in terms of their suggested mappings of the M1 motor cortex.  These diagrams 

were the result of early cortical stimulations to the M1 area, and upon initial inspection, seemed 

to indicate a strict point-to-point somatotopic (discrete organization) mapping of the hand 

(Figure 2.2).  It was thought that specific areas of the brain represented control of specific parts 

of the hand, and that these areas were both non-overlapping and organized to represent the 

anatomical medial to lateral progression of the controlled digits.  The strictest homunculus 

diagram even suggested that the mediolateral ribbon of M1 served to divide control of the thumb 

and index finger from the middle, ring, and pinky fingers (Schieber, 2001).  These diagrams 

initially led some researchers to believe a viewpoint of hand coordination that is based upon 

individuated control of joints and muscles.  A more in-depth analysis of both Penfield & 

Boldrey‟s and Woolsey et. al‟s work shows that a strict point-to-point somatotopic map is not 

consistent with their independent results.  For example, Figure 2.2(A) shows that control of the 

thumb and little finger, represented by Roman numerals I and V respectively, can be elicited 
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from both the medial and lateral sections of the cortex.  Figure 2.2(B) shows even more 

explicitly the overlapping regions of the motor cortex that control various limbs and muscles.  

Woolsey‟s results in particular show that a single stimulation point could produce movement in 

several fingers of the hand.  Hence, it seems that the hand is not somatotopically organized in 

the primary motor cortex area. 
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Figure 2.2. Results of neuro-stimulation experiments of (Penfield & Boldrey, 1937). 

A) Roman numerals represent stimulation sites that elicited finger movements.  Thumb 

through little finger are represented I – V, respectively.  Black dots are stimulation sites 

that elicited movement from all digits.  It can be observed that there are medial and 

lateral representations for both the thumb and little finger, in addition to several sites that 

controlled multiple fingers.  The theory of a strict somatotopic (i.e. discrete organization) 

ordering of motor control is not consistent with these results.  B) The outlines show the 

total areas where movements of fingers, entire hand, and proximal arm were elicited 

through neuro-stimulation.  Observed is that there are not discrete areas.  Instead, major 

overlap of areas is the prevailing trend, and suggests an alternative method to motor 

control, such as synergistic or pattern based, rather than individuated joint or muscle 

based control (Schieber, 2001). 

 

It has been suggested that there are at least six major constraints on a strict somatotopic 

organization of the primary motor cortex (Schieber, 2001).  First, an individual muscle seems to 

be controlled by convergent outputs to its spinal motoneuron pool from large territories of the 

M1 cortex.  Second, the outputs of single neurons in the M1 cortex diverge to innervate 

motoneuron pools of multiple muscles.  Third, horizontal interneuronal connections prevent 
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motor cortex sites from acting completely independent of each other.  Fourth, a distributed 

activation pattern is observed when movement occurs at even one joint, and hence, the 

activation is not organized in anatomical order.  Fifth, trauma induced or temporary inhibitor 

induced partial inactivation of the M1 area generally results in weakness of the overall hand 

instead of individual digits.  Sixth, the observed plasticity of the cortical area during initial 

learning or rehabilitation learning implies that regions are not discretely hard coded to control 

specific joints or muscles.  These physiological constraints seem to indicate that there is a limit 

to the potential somatotopic organization of hand control.  Hence, the evidence seems to 

suggest a distributed organization of hand function.  More recent investigations have been 

performed to demonstrate evidence to this end.  Specifically, technological advancements in 

cortical stimulation, where more focal intracortical microstimulations in the M1 have been 

performed, have enabled more in-depth and accurate studies (Gould, Cusick, Pons & Kaas, 

1986, Sato & Tanji, 1989) than those of Penfield & Boldrey and Woolsey et. al.  The results 

have been consistent with an organizational map of limb control that shows evidence of 

significant overlap and little evidence of a strict somatotopic organization of M1. 

Technological advances in neural recording techniques have also aided in understanding 

cortical organization.  Studies have investigated individuated flexion and extension of the fingers 

and wrist in two rhesus monkeys while recording from individual M1 neurons.  The authors 

reported that many neurons were related to multiple individuated movements, stressing the 

divergence constraint on somatotopic organization.  Furthermore, reconstruction of the neuronal 

spatial distribution of the M1 hand area showed that active neurons for each individuated 

movement was over a large portion of the cortical area (Schieber & Hibbard, 1993).  This 

stressed the convergence constraint on somatotopic organization.  Also observed was that the 

spatial activation groups significantly overlapped between the thumb and medial and lateral 
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digits.  A more recent study (Poliakov & Schieber, 1999) reported similar results.  Specifically, 

the authors were investigating whether or not there was evidence for neuronal clustering during 

individuated finger movements of three rhesus monkeys, and whether or not these clusters 

were related to activation of specific muscle groups, movement involving specific joints, or other 

features of the movement.  Using a cluster analysis technique, the authors reported that they 

observed little evidence that neurons clustered into functional subgroups based upon concrete 

or abstract features of movement.  Hence, they concluded that control of individuated finger 

movements was more likely accomplished through the activation of a diverse population of 

neurons dispersed throughout the M1 area.  Other researchers have performed similar studies 

of neuronal clustering and have found some evidence that the activity of neurons cluster into 

functional discrete groups, and that the activity of each group was correlated to the activity of a 

distinct group of muscles (i.e. muscle synergies), rather than individual muscles (Holdefer & 

Miller, 2002). 

Investigations into motor cortex impairment induced either through an injury or a neural 

inhibitor have also been used to examine organization of individuated finger control in the M1 

area.  Schieber examined records of several stroke patients who exhibited impaired movements 

of fingers.  He reported that of the nine patients whose impairments were restricted to hand 

function, five exhibited uniform impairment of all five digits, three exhibited more severe 

impairment in the thumb and index as compared to the middle, ring, and pinky fingers, and one 

had more severe impairment in the ring and pinky fingers as compared to the thumb and index 

fingers.  None of the cases exhibited impairment of one and only one digit, nor did any of the 

cases exhibit impairment of the second, third, and fourth digits as compared to the thumb and 

fifth digits (Schieber, 1999).  This led the investigator to conclude that there may be evidence of 

a broad somatotopic organization (thumb and index finger control vs. middle, ring, and pinky 
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finger control) that is overlaid onto the distributed activation of neurons during individuated 

finger movements.  Similarly, another study examined long term loss of individuated finger 

motions in subjects with pure motor hemiparesis, where again the affected area was primarily 

limited to the motor cortex.  Specifically of interest was whether or not damage to the cortex 

area equally affected the ability of the digits to move independently.  The investigators reported 

that the middle, ring, and pinky fingers as a group seemed to exhibit impaired individuation more 

than the thumb or index fingers, with the index exhibiting slightly more impaired individuation 

than the thumb (Lang & Schieber, 2003).  Inhibitor induced impairment of the motor cortex have 

also produced similar results.  Researchers have discovered that an injection of gamma-

aminobutyric acidA (GABAA) -agonist muscimol, a neural inhibitor, into precise and select areas 

of the M1 cortex area resulted in the significantly reduced ability of monkeys to perform 

independent finger movements and whole hand grasping motions (Brochier, Boudreau, Pare & 

Smith, 1999).  Other researchers have as well found that intracortical injection of a neural 

inhibitor produced distributed inactivation and weakness in overall hand control instead of 

specific joints.  They suggest that if the motor cortex were somatotopically organized as is 

generally accepted, then precisely placed inhibitor injections would produce weakness and 

inactivity in individual joints and fingers.  Rather, since they found that each finger could be 

affected by inhibitor injection at several points in the motor cortex, hand control must be 

distributed within the M1 area (Schieber & Poliakov, 1998). 

In summary, there seems to be a significant amount of evidence to suggest that the primary 

motor cortex is not characterized by a strict point-to-point somatotopic organization.  In addition, 

the mapping is not spatially organized i.e. control of medial and lateral body parts is not 

necessarily regulated to medial and lateral parts of the M1 area, respectively.  Furthermore, this 

lack of organization suggests that strictly controlling individual joints and/or muscles 
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independently is not the strategy of choice by the motor cortex.  Rather, control of these 

parameters seems to be overlapping and dispersed throughout the M1 area.  Of their own 

simiusculus diagram, Woolsey et. al stated, 

 

“It must be emphasized…that this diagram is an inadequate 

representation of the localization pattern, since in a line drawing one 

cannot indicate the successive overlap which is so characteristic a 

feature of cortical representation…” (Woolsey et al., 1952). 

 

and Penfield and Rasmussen, commenting on their homunculus diagram, stated, 

 

“A figurine of this sort cannot give an accurate indication of the specific 

joints in which movement takes place, for in most cases movement 

appears at more than one joint simultaneously….  It is a cartoon of 

representation in which scientific accuracy is impossible” (Penfield & 

Rasmussen, 1950). 

 

This wealth of evidence has thus led many investigators to conclude that the peripheral and 

central constraints of the neuromotor system suggest a pattern based means of coordination for 

the many degrees-of-freedom of the hand, potentially for the purposes of simplifying control 

(Schieber & Santello, 2004). 
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2.3.2 Motor Coordination Investigations involving Joint Kinetics and 

Kinematics 

2.3.2.1 Evidence from Spinalized Frog Experiments 

Researchers have investigated motor coordination by examination of the kinetics and 

kinematics that result from the various muscle coordination patterns of movement.  In a series of 

experiments, several researchers have examined the role of the spinal motor system in the 

construction of complex movements in the frog both through experimental and modeling studies 

(Loeb, et al., 2000).  (Bizzi, Mussa-Ivaldi & Giszter, 1991) and (Giszter, Mussa-Ivaldi & Bizzi, 

1993) investigated the organization of the spinal circuitry in frogs whose spinal cord had been 

disconnected from the brain stem.  The frog‟s ankle was locked in various positions as individual 

sections of the spinal cord were subjected to micro-stimulation.  Isometric forces at the ankle 

were recorded at these different positions to construct a force field (Figure 2.3).  These force 

fields were characterized by an equilibrium point to which all of the forces converged.  This point 

is where there would be zero recorded forces in both force vector components, and it would be 

the final ankle position were the leg free to move.  Of interest is that the authors reported that 

despite varying several parameters of micro-stimulation, there were only a small number of 

these convergent force fields (CFFs), presumably resulting from the small number of basis 

muscle synergies.  Some of their preliminary studies showed that these CFFs could be 

combined to produce the CFFs resulting from simultaneous micro-stimulation of two sites.  They 

concluded that these CFFs could be viewed as fundamental movement primitives that the CNS 

uses to construct complex motor behaviors.  (Mussa-Ivaldi, Giszter & Bizzi, 1994) showed that 

linear vector summation could be applied to these movement primitives to explain the CFFs 

observed during simultaneous micro-stimulation of two sites, with the predicted and actual 
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results having a high coefficient of similarity.  The authors expressed surprise that a linear 

combination could be applied to explain the complex nonlinearities that characterize neuronal 

and kinematic activity. 

 

 

Figure 2.3. CFFs in spinalized frogs (Bizzi, D'Avella, Saltiel & Tresch, 2002). 

Isometric forces were measured at the ankle while the spinal cord was micro-stimulated.  

The result is a force field, where all forces converge to an equilibrium point.  This point is 

where there are no recorded forces at the ankle and would be the ankle position were the 

frog leg free to move.  It was reported that only a small number of these CFFs were 

observed despite varying various parameters of stimulation.  The authors conclude that 

these CFFs may be viewed as a primitive of motor control.  Further investigations 

revealed that the CFFs induced by single micro-stimulation points can be vectorially 

combined to produce CFFs resulting from simultaneous micro-stimulation of two 

independent points (Mussa-Ivaldi et al., 1994). 

 

Other investigators extended this analysis to supraspinal systems, hypothesizing that the 

supraspinal systems also generate motor outputs based upon these convergent force field 

motor primitives, and that these CFFs can also be linearly combined to produce more complex 

motor behaviors (d'Avella & Bizzi, 1998).  Force field data were collected while stimulation was 

applied to the vestibular afferents of frogs and principal component analysis (PCA) was used to 

investigate whether or not the dimensionality of the resultant CFFs could be reduced.  The 
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authors reported that the dimensionality could be reduced to a small number of movement 

primitives to explain the variety of observed force field patterns, and that this reduction 

suggested that the supraspinal systems may activate and linearly combine the same movement 

primitives that were observed during direct spinal stimulation.  Other researchers examined 

force field primitives in frogs performing voluntary limb behaviors.  These investigators showed 

that force fields observed during the wiping reflex of the frog could be explained by a force field 

summation paradigm.  Furthermore, they showed that when an obstacle was introduced to 

obstruct this wiping reflex, the frog demonstrated a correction response whose force field was 

superimposed over the original force field.  Hence, the correction response did not alter the 

integrity of the original response, but was rather summed with it.  Hence, real limb behaviors 

and even on-line corrections could be explained by linear interactions between these force field 

movement primitives (Kargo & Giszter, 2000). 

In summary, evidence suggests that both the circuitry of the spinal and supraspinal systems 

seem to construct complex motor behaviors through the use of movement primitives.  These 

researchers have shown that these movement primitives could be represented as convergent 

force fields, which presumably are the force vectors resulting from the muscle synergy primitives 

interacting with the limb mechanics.  Furthermore, these CFFs can be combined using vector 

summation to explain the observed force fields of more complex behaviors.  These results are 

consistent with the notion that the biological system prefers to construct new and more complex 

skills on top of previously learned and simpler skills (Mussa-Ivaldi & Solla, 2004).  Much of this 

work is also reviewed in greater detail elsewhere (Bizzi, Tresch, Saltiel & d'Avella, 2000, Tresch, 

Saltiel, d'Avella & Bizzi, 2002). 
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2.3.2.2 Evidence from Experiments in Hand Kinematics 

In addition to the neural circuitry constraints that are implicit in the proposed CFF models, 

other researchers have hypothesized that there exist parallel biomechanical constraints.  With 

regard to the control of hand functions, the many biomechanical degrees-of-freedom allow for 

performing of both gross grasping functions and more highly complex movements.  Many of 

these more sophisticated movements are characterized by great articulation of the digit joints 

and a seemingly high level of individuated finger movements.  However, research has shown 

that digit movement is not strictly individuated, even when an attempt is made to move just one 

instructed digit.  This observation has been quantified in rhesus monkeys through introducing 

the individuation and stationarity indices (Schieber, 1991).  The individuation index is a 

normalized measure of the degree that other digits moved during the movement of a particular 

instructed digit, and the stationarity index is a normalized measure of the degree that a specific 

digit remained unmoved during the movement of a particular instructed digit.  Schieber found 

that wrist movement was highly individuated from digit movements in both flexion and 

extension.   Of the digits, the thumb and index fingers proved to be the most individuated in both 

flexion and extension, while the middle, ring, and little fingers showed the least amount of 

individuation.  Generally, flexion was more individuated than extension in all digits.  The 

stationarity analysis showed the thumb and wrist to exhibit the least movement when they were 

not instructed, while the second through fifth digits exhibited comparable levels of stationarity.  

High values of both individuation and stationarity for the thumb, index finger, and wrist 

suggested that they were more individually controlled as compared to the middle, ring, and little 

fingers.  However, no digit had perfect individuation or stationarity indices, indicating that control 

of no digit was completely isolated from all others.  These results are consistent with much of 
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the results from analysis of cortex impairments (Lang & Schieber, 2003, Schieber, 1999).  Other 

investigators have confirmed these results in human subjects, and in addition, showed that the 

digits of the dominant and non-dominant hands had comparable levels of individuation and 

stationarity, with the exception of the thumb (Hager-Ross & Schieber, 2000).  The thumb 

showed greater independence on the dominant hand.  The lack of complete independent control 

of digits is even seen during exercises where it would be imagined that perfect independence 

would be required, such as during typing (Soechting & Flanders, 1997). This overall lack of digit 

independence has led many researchers to investigate the possibility that postural synergies in 

the form of joint co-variations, while naturally having some origin in the anatomical structure, 

may also have some origin in the neural circuitry. 

Investigators have examined the existence of postural synergies in the static hand postures 

that characterized fifty-seven different objects (Santello, Flanders & Soechting, 1998).  Subjects 

were instructed to mime hand shapes that would be used to grasp these objects, while fifteen 

joint angles were recorded.  These objects ranged in the hand shapes and sizes they typically 

bring to mind for adequate grasping, and the authors, using a discriminant analysis technique 

(Johnson & Wichern, 1992, Santello & Soechting, 1998), verified that the elicited hand shapes 

were in fact different.  A cursory analysis showed that not all joint angles were independent, but 

some seemed to linearly co-vary.  This was verified using a statistical technique known as 

principal component analysis (PCA), which serves to reduce the dimensionality of the number of 

controlled variables in the system (Glaser & Ruchkin, 1976).  The authors found that the first 

three principal components (PCs) explained 90% of the data variance, with the first two 

explaining 84%.  This led them to conclude that the fifteen degree-of-freedom system could be 

approximated by control of two or three degrees-of-freedom (i.e. PCs), where each PC (i.e. 

postural synergy) was a description of a pattern of joint co-variation (Figure 2.4).  The first PC 
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seemed to control flexion of all metacarpal phalangeal (MCP) joints, some flexion of all proximal 

interphalangeal (PIP) joints, adduction of all MCP joints, and thumb external rotation and 

adduction.  The second PC seemed to control extension of all MCP joints and flexion of all PIP 

joints, and similar thumb control as the first PC.  Overall hand positions were then approximated 

as a weighted combination of these two synergies.  Other researchers have performed similar 

analyses on data from subjects signing twenty-six letters of the American Sign Language (ASL) 

alphabet.  This was of interest because signing generally requires more individuated finger 

movement than grasping.  It was found that the dimensionality of the hand could be reduced to 

four effective postural principle components that explained 80% of the data variability.  

Furthermore, using these four PCs, they could accurately classify all twenty-six signed letters at 

a rate of 86.6% (Jerde, Soechting & Flanders, 2003).  Other researchers also found that four 

PCs could explain >80% of data variance during signing of the ASL alphabet, and that four PCs 

explained >90% of data variance during grasping of real objects (Weiss & Flanders, 2004).  

They did not comment, however, on the similarities between the four PCs used for spelling 

versus grasping. 
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Figure 2.4. PCs of Static Hand Postures (Santello et al., 1998). 

A study of prehensile patterns used in grasping 57 everyday objects revealed that >80% 

of the variance observed between all grasp patterns could be explained by the first two 

principal components (PC1 and PC2).  These PCs represent deviations from the average 

hand posture, and are characterized by flexion/extension or abduction/adduction of the 

mcp, pip, and thumb joints. 

 

Researchers have investigated whether or not dynamic hand postures can be explained by 

simpler kinematic movement primitives.  It has been established that the shape of the hand 

during flight is distinctly affected by the shape and size of the intended object to be grasped, 

and that the hand gradually molds in-flight to the object‟s contour (Santello & Soechting, 1998).  

Researchers have examined whether or not this temporal gradual shaping could be explained 

by a set of kinematic movement primitives i.e. postural synergies (Mason, Gomez & Ebner, 

2001).  Joint kinematics were recorded while subjects reached-to-grasp sixteen objects that 

varied in size and concavity.  Using a singular value decomposition (SVD) analysis (Hendler & 

Shrager, 1994), the authors were able to reduce the kinematic data into a linear combination of 

orthogonal postural synergies which they termed eigenpostures.  These eigenpostures were 
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constant but their weights were modulated in time.  The investigators found that the first three 

PCs (eigenpostures) explained 99.5% of the variance, with the first PC accounting for 97.3%.  

This first eigenposture was characterized by a generally open grasp with all the joints slightly 

flexed, and proved to be very similar for all subjects, regardless of the subject‟s hand size or the 

size of the grasped shape.  The major result of this work was that eigenpostures (i.e. postural 

synergies) were invariant to object concavity and size, and could be used to describe the entire 

reach-to-grasp motion.  This result was verified in a similar study of monkey grasps (Mason, 

Theverapperuma, Hendrix & Ebner, 2004).  However, the major shortcoming of this work is that 

while the objects did vary in concavity and size, they by and large all required the same power 

grasp hand pattern.  It is therefore no surprise that many of the eigenpostures were similar for 

the different objects and subjects.  (Santello, Flanders & Soechting, 2002) addressed this issue 

by using objects that required hand shapes that visually differed in more than just size.  

Furthermore, they allowed their kinematic primitives to vary with time, as opposed to forcing 

them to be static and allowing the weighting coefficients to be time modulated.  Santello et al. 

found that despite varying the shape and size of the objects and varying the conditions of the 

reach-to-grasp (from memory versus sight), two time varying synergies could explain >75% of 

the observed data variance.  Finally, postural synergies have been used to describe joint 

coordination pattern involved not just in grasping, but also in dynamic object manipulations.  

Subjects were instructed to perform various object manipulation tasks such as turning the page 

of a book, crumpling a sheet of paper, manipulating Chinese balls, and fishing through a set of 

keys.  Joint angles were recorded using a Cyberglove, and PCA was used to assess the 

covariance structure of the joint angles.  The results of this investigation demonstrated the joint 

covariances could also be explained by a set of dimensionally reduced synergies, although the 

dimension for hand manipulation was more than twice that reported for hand grasping by 
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Santello et al. (Todorov & Ghahramani, 2004, Todorov & Jordan, 2002).  These authors 

suggested that the extracted synergies showed a high level of task specificity, rather than being 

global enough for general hand posture construction. 

The referenced investigators have concluded that the overall body of work in this area 

provides evidence for several ideas.  First, that the CNS does simplify the control of complex 

motions, and specifically hand control, through the use of simpler movement primitives – in this 

case, eigenpostures.  Second, that the CNS does not control individual joints, but rather controls 

several joints, as evidenced by the fact that eigenpostures did not affect individual joints.  

Finally, they suggested that the dynamic acts of reach-to-grasp and object manipulation, and 

not just static hand grasp patterns, could be described by these postural movement primitives. 

2.3.3 Motor Coordination Investigations involving Muscle Synergies 

Muscle synergies have been proposed as a way of explaining how the CNS coordinates the 

many neuromuscular degrees-of-freedom involved in any movement (Bernstein, 1971).  

Specifically, it was a way of reducing the number of variables required to be controlled (Loeb et 

al., 2000).  Lending credibility to this idea are some investigations which have shown evidence 

that muscle patterns and synergies are potentially encoded in the activity of neurons in the M1 

motor cortex (Holdefer & Miller, 2002, Kakei, Hoffman & Strick, 1999).  However, some studies 

have presented evidence against a synergy paradigm for muscle coordination.  Presented here 

is evidence from studies on both sides of the muscle coordination debate. 

2.3.3.1 Evidences for a Muscle Synergy Paradigm 

A series of studies have examined the use of muscle synergies by the frog CNS in 

constructing the complex motor responses of the hind limb to a cutaneous stimulus.  These 
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studies defined a muscle synergy to be a group of muscles in which the activation levels of all 

muscles were specified together, although not necessarily to the same activation level.  Hence, 

there would exist predetermined patterns of co-activation, as specified by the CNS.  The 

investigators hypothesized that an individual muscle could belong to several synergistic groups, 

and that its total activation level would be a weighted linear sum of the activation levels specified 

for each synergy.  Furthermore, they proposed that any observed pattern of electromyographic 

(EMG) activity could be explained by a linear combination of this finite set of synergy groups, as 

described by equation 2.3. 
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obs is the jth muscle‟s observed EMG pattern, mj

pre is the jth predicted EMG pattern, cij is the 

weighting coefficient of the ith muscle synergy in the jth EMG response, N is the number of 

muscle synergy groups, and wi is the activation pattern of the ith muscle synergy.  The authors 

applied a cutaneous scratch as a stimulus to fourteen different points on the frog hind limb and 

recorded the EMG responses.  Using computational analysis, they established four muscle 

synergies that could describe all recorded muscle patterns of the frog hind limb.  They found 

that a linear combination of the derived synergies and associated weights were able to explain a 

large amount of the variance observed in the muscle activation patterns.  Furthermore, they 

observed that these synergies were quite similar across each frog, although the precise 

weighting differed from frog to frog (Tresch, Saltiel & Bizzi, 1999).  They concluded that their 

work provided further evidence that the central nervous system constructs complex motor 

behaviors using combinations of muscle synergies instead of attempting to independently 

control individual muscles. 
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Figure 2.5. Muscle synergies in the EMG response of the frog leg (Tresch et al., 1999). 

A) Five EMG responses evoked during cutaneous stimulation of the frog hind limb.  B) 

Averaged observed responses.  C) Computational analysis resulting in four muscle 

synergies and associated weights.  Each synergy is a group of muscles with preset 

relative activation levels.  These synergies are combined using a weighted linear sum.  

D) The predicted EMG responses based upon the determined muscle synergies were 

very similar to the observed responses (average r
2
 = 0.90 ± 0.03). 

 

Other investigators extended Tresch et. al‟s hypothesis to propose that the activation of the 

muscle synergies were not only modulated in amplitude, but also in time, such that the new 

system could be expressed by equation 2.4. 
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weighting coefficient of the ith muscle synergy in the jth EMG response, N is the number of 
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muscle synergy groups, wi is the activation pattern of the ith muscle synergy, and ti is the time 

delay of synergy onset (d'Avella, Saltiel & Bizzi, 2003).  Furthermore, the combination of the 

independently amplitude modulated and time shifted synergies could represent all generated 

patterns of myoelectric activity during frog kicking.  In this case, a synergy was defined as a 

group of muscles and their corresponding activation time courses.  In examining the kicking 

behavior in frogs, the three resulting synergies and associated activation time courses and 

amplitude modulations explained roughly sixty-five percent of the variance present in the data.  

They reported that randomly generated time-varying synergies explained roughly nineteen 

percent of the data variance, thereby suggesting that significant information is contained in the 

synergies they observed.  This study was extended to show that many of these time modulated 

synergies were shared by several activities of the frog hind limb (jumping, swimming, and 

walking), although there appeared to be some others that were activity specific.  The total 

number of synergy groups that could explain all behaviors was still small (d'Avella & Bizzi, 

2005).  Furthermore, these muscle synergies have been shown to be largely robust to afferent 

stimuli, only changing their levels of activation but not their inherent structures (Cheung, 

d'Avella, Tresch & Bizzi, 2005). 

One argument against global muscle synergies has been that they could potentially be highly 

dependent on the analyzed tasks and thus have no independent existence (Buchanan, Almdale, 

Lewis & Rymer, 1986).  To fully establish global muscle synergies, all possible tasks of the 

neuromotor system would have to be included within the synergy analysis. To address this 

problem of task dependency, a set of investigators attempted to evoke muscle synergies directly 

using stimulation of the frog spinal cord.  They believed that any resultant muscle synergies 

were hard-coded in the spinal circuitry.  These researchers reported that their approach resulted 

in seven synergies that, when linearly combined, could explain ninety-one percent of the 
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variance observed in the EMG patterns (Saltiel, et al., 2001).  The investigators concluded that 

this work presented more evidence that the intact CNS combines simple discrete elements to 

generate complex motor behaviors, thereby reducing the controlled number of degrees-of-

freedom. 

Finally, muscle synergies have been shown to be able to describe other tasks of the 

neuromotor system such as automatic responses to postural perturbations in cats and in 

humans (Ting & Macpherson, 2005, Torres-Oviedo, Macpherson & Ting, 2006), voluntary shifts 

of center-of-pressure during standing (Krishnamoorthy, Latash, Scholz & Zatsiorsky, 2003), and 

the control of fast-reaching arm movements (d'Avella, Portone, Fernandez & Lacquaniti, 2006).  

One study of particular interest investigated the role of muscle synergies in coordinating 

muscles of the hand during object grasping and performing a sign language task (Weiss & 

Flanders, 2004).  These investigators showed that their six dimensional hand posture control 

problem could be described by a three dimensional set of muscle synergies at 80% explained 

variance, and a four dimensional set at 90% explained variance.  While the reduction in control 

dimensionality is not very impressive, especially given that only six muscles were originally 

considered, the results still do suggest that a muscle synergy paradigm could account for 

coordination of muscle activities during hand tasks.  A more central shortcoming of this study, 

and perhaps of several of the studies in the muscle synergy literature, is that the extracted 

muscle synergies have only been shown to describe many of the observed muscle patterns.  

Hence, it is a possibility that the synergies are specific to the observed tasks, and a different set 

of synergies could have been extracted if a different set of tasks were observed.  A more glaring 

possibility is that the success of the descriptive synergy paradigm may be a result of fitting the 

model to the data.  Both of these possibilities leave open the possibility that the extracted 
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muscle synergies are not robust and generalizable, and hence suggest the need for a more 

complete approach of discerning the role of muscle synergies in control applications.  

2.3.3.2 Evidences against a Muscle Synergy Paradigm 

Some studies have suggested that the concept of muscle synergies is not physiologically 

based, or at best it is an artifact of the biomechanical constraints of the neuromotor system.  

The majority of these studies came to this conclusion due to a lack of finding consistent spatial 

and/or temporal relationships between any two muscles given a wide variety of tasks and/or 

conditions.  Many of these studies assumed a synergy model that required a restrictive coupling 

of the activities of any two muscles, rather than the synergy models described above, where the 

activity of any given muscle could be simultaneously affected by multiple synergies (Ting & 

Macpherson, 2005). 

Buchanan and colleagues performed a study in which three normal human subjects were 

required to exert isometric torques about the elbow in several different directions and at various 

magnitudes.  EMG activities were recorded from the biceps brachii, brachialis, and 

brachioradialis.  First, these researchers reported that no muscle acted in isolation for any given 

direction of applied force.  Second the three-dimensional EMG pattern remained constant and 

by and large scaled linearly with increasing torque magnitude, suggesting that there existed a 

stereotypical pattern of muscle activation for each direction.  However, when comparing spatial 

patterns of activity between different directions of applied torque, there was little evidence of 

consistent patterns of co-activation between any two muscles.  Rather, the directional 

dependency of the co-activation patterns suggested that any observed synergies were specific 

to the task biomechanical requirements, rather than existing independently as constructs of the 

neuromotor system (Buchanan et al., 1986). 
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Another study by Soechting and Lacquanti seemed to suggest similar results.  In their study, 

the correlations of four to six elbow and shoulder muscles were analyzed both during responses 

to force perturbations in various directions, and during various volitional arm movements 

(drawing a circle, star, figure eight, etc…).  A cross-correlation analysis revealed to what extent 

the activities of the recorded muscles were temporally coupled.  The results of this study 

indicated that there was no consistent temporal coupling of any two muscles across the multiple 

tasks and parameters.  The authors concluded that the strictest definition of a muscle synergy 

(i.e. that investigated by Buchanan) was incongruent with their results.  They did consider the 

possibility that the activity of a given muscle could be simultaneously affected by multiple 

synergies, but suggested through a PCA analysis of their data that there would not be a 

significant decrease in the dimensionality of the control problem to warrant a synergy construct.  

The investigators finally concluded that a synergy paradigm is not necessary to reduce the 

control dimensionality of upper-arm movements in the muscle domain, but may do so with 

respect to limb kinematics (Soechting & Lacquaniti, 1989). 

A study by Maier and colleagues investigated the spatial and temporal coupling of hand 

muscles during a fingertip endpoint force production task.  Subjects matched a specified force 

with the index fingertip while EMGs were recorded from up to fifteen muscles controlling the 

thumb and fingers.  Spatial and temporal correlation analyses produced similar results to that of 

Buchanan and Soechting, namely that there were very few instances of the activities of any two 

muscles being strictly coupled in either the spatial or time domain across the examined force 

levels.  However, because the authors did find some coupling, they concluded that the muscles 

for hand control were not fully independent of each other.  However, they were also not 

governed by a fixed coupling control paradigm (Maier & Hepp-Reymond, 1995b). 
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The aforementioned studies in this section have all concluded that the strictest definition of a 

muscle synergy, namely two or more muscles whose relative spatial or temporal activities are 

fixed, is incongruent with the data from their experiments.  While this may be true, it is the 

current author‟s belief that this strictest definition of a muscle synergy is too limiting.  Based 

upon other work described above, it is suggested that the model of Tresch et al. and colleagues 

may offer more insight and usefulness for coordination of muscles. 

2.4 Muscle Synergies as Testable Hypotheses 

One of the main criticisms against the muscle synergy concept is that it has seldom been 

formalized and tested against a falsifiable hypothesis, and when it has, the results have been 

mixed at best.  Much of the above work that presents evidence for the muscle synergy model 

goes about showing the existence of synergies through a descriptive mechanism i.e. the 

synergies describe some large percentage of data from which they were observed.  The 

underlying thread for these presented works can be summarized by the neuromotor synergy 

hypothesis, which states that “low-level, neurally based patterns significantly constrain 

intentional actions” (Lee, 1984).  To thoroughly test this hypothesis though, a prescriptive 

framework must be established by muscle synergies.  Lee (1984) formalized several testable 

properties of a prescriptive framework of neuromotor synergies (i.e. muscle synergies). The first 

is that synergies should be robust and reliable (i.e. exhibit low lability), regardless of changing 

input parameters and task requirements.  Second, muscles within a synergy should maintain the 

same relative activation levels with scaling of the synergy.  Third, synergies should be spatially 

coherent, meaning that they should be activated in an all-or-none fashion.  Several of the 

discussed investigations have investigated the scaling property, and indirectly the spatial 

coherence property.  The property of low lability has not been properly addressed by the 
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descriptive frameworks reported in the literature, particularly for hand control.  These three 

properties, and specifically their implications with regard to myoelectric control, form the 

framework for the investigations presented in the remaining of this manuscript. 

2.5 Conclusion 

In summary, a wealth of literature has provided evidence that a dimensionally reduced set of 

motor primitives in the form of muscle synergies can form a descriptive framework for a wide 

variety of motor tasks, such as locomotion, postural stability, and hand grasping.  Not many of 

these studies though address issues necessary for muscle synergies to form a prescriptive 

framework.  Doing so would add more credibility to the neuromotor synergy hypothesis as a 

framework of motor control.  This prescriptive framework is also of importance to myoelectric 

control.  The current research state-of-the-art control paradigms are EMG pattern recognition 

paradigms that require a priori programming of the individually and simultaneously controlled 

postures and degrees-of-freedom.  A myoelectric control scheme based upon a prescriptive 

muscle synergy paradigm would potentially allow for controlling of new hand postures and 

positions and simultaneous degrees-of-freedom.  In the remainder of this manuscript, the author 

describes his investigations towards this end. 



60 

 

3 The Muscle Synergy Model and Parameter Estimation 

3.1 Introduction 

The control of movement by the central nervous system (CNS) has been termed an ill-posed 

problem because of the biomechanical and neuromuscular redundancies in the anatomical 

structure (Bernstein, 1967).  There is seemingly an infinite number of solutions and variable 

configurations of the degrees-of-freedom that could accomplish any desired movement goal.  

This problem of redundancy is particularly illustrated in the control of the human hand, which 

has over twenty-seven bones and over thirty extrinsic and intrinsic multi-joint muscles (Gray, 

1973) to control twenty-two anatomical degrees-of-freedom (DOFs).  This is the mathematical 

equivalent of a system of equations that has more variables than constraints.  For this system to 

be uniquely solvable, more constraints must be introduced.  Likewise, for the hand to be fully 

controllable by the neuromotor system, more constraints must be added.  There is a long held 

view that the motor control system imposes these constraints in the form of neuromotor 

synergies (Sherrington, 1906).  Furthermore, by actualizing control in the space defined by the 

smaller number of synergies instead of the much greater number of individual DOFs, the CNS 

potentially reduces the complexity of the motor control problem.  These synergies serve as 

fundamental building blocks of movement, and are manifested in muscle activation, joint kinetics 

and kinematics, reflex activation, and other domains of control.  There is yet to be a consensus 

concerning in which domain these synergies are directly operative.  In this chapter and in the 

remainder of this document, the discussion of neuromotor synergies is limited to the domain of 

coordination of muscle activation, and will henceforth be referred to as muscle synergies. 
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Several methods, some of which include non-negative matrix factorization (NMF), 

independent component analysis (ICA), and principal component analysis (PCA), have been 

proposed to assess the number and composition of the muscle synergies related to a motor 

task.  This manuscript focuses primarily on the use of NMF for assessing muscle synergies.  In 

the remainder of this chapter, the muscle synergy model (MSM) will be described, along with 

several algorithms and their underlying assumptions for determining the unknown parameters of 

the model.  Also described are computer simulations designed to test the efficacy of the model 

under varying conditions of noise and over- and underestimation of the number of muscle 

synergies. 

3.2 The Muscle Synergy Model 

3.2.1 General Description 

Consider a closed environment that contains n signal sources hi(t) (i = 1..n) and m receivers 

vj(t) (j = 1..m) at some distances wij from the sources.  Assuming no nonlinear interaction terms, 

each receiver records a signal that is some linear weighted combination of the source signals, 

with the weightings determined by the distance between each receiver and source.  The 

recorded signals can be expressed as a system of equations as shown in equation 3.1 and 

written in shorthand as shown in equation 3.2, which leads to the matrix expression shown in 

equation 3.3. 
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 (3.3) 

The data matrix V is of size m x o, where m is the number of receivers and o is the number of 

data observations.  The data observations can be temporal (hence v(t)), or they can be spatially 

independent observations, in which case t is the observation index.  The distance matrix W is of 

size m x n, where n is the number of signal sources, and wij represents the weight of signal 

source i on receiver j.  The source matrix H is of size n x o, and serves as the input to the 

system.  Like V, these inputs can be temporal in nature or spatially independent observations.  

All that is observable about the system are the signals recorded by the receivers.  In other 

words, only the parameters of V are known; W and H are unknown.  The number of receivers m 

is not necessarily equal to the number of sources n, as illustrated by the following example. 

 Consider a scenario in which two individuals are having a conversation.  The listener serves 

as the receiver and the speaker serves as a signal source.  In addition to the speaker, there are 

other speakers in the room who also serve as signal sources.  The listener picks up signals from 

all sources, and the resultant heard signal is some weighted combination of the signals from 

each of the sources.  This scenario is known as the classic “Cocktail Party Problem” (Cherry, 

1953, Haykin & Chen, 2005).  In this situation, even though the received signal is an aggregate 

of signals from several different sources, the auditory system is able to reconstruct the original 

source signals, and specifically the signal from the desired speaker, with high fidelity (Cherry, 

1953).  With several listeners in the room, each listener then acts of one of the m receivers, and 

the problem is exactly that as described by equations 3.1 – 3.3. 
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The muscle synergy model proposes that coordination of muscle activation operates in much 

the same way as the “Cocktail Party Problem”.  In this case, the muscles are the receivers, with 

the recorded electromyographic (EMG) signals represented in the data matrix V.  The source 

signals H are the neural inputs to the motor system.  The matrix W represents the activation 

level of each muscle as determined by each signal source.  Together, the relative activation 

level of all muscles as specified by a single source is termed a muscle synergy (i.e. each 

column in matrix W).  Hence, the total activation level of each muscle is determined by summing 

the products of each pair of each specified activation level in each synergy and the input from 

each source (equation 3.2).  Figure 3.1 illustrates a nodal representation of the muscle synergy 

model.  As with the receivers in the “Cocktail Party Problem”, only the signals at the muscles are 

observable.  Both the neural inputs and the muscle synergies are unknown to the outside 

environment (i.e. the electromyographer).  Estimating these parameters is the subject of the 

remainder of this chapter. 
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Figure 3.1. Nodal Representation of Muscle Synergy Model 

Neural input sources (H) send command signals which act as multipliers to each muscle 

synergy (W), which are then summed to produce the observed EMG activities (V). 

 

3.2.2 Estimating the Unknown Parameters 

 Because both the neural inputs and the muscle synergies of the model are not directly 

observable, estimation of these parameters has commonly been termed blind source separation 

(BSS) (Jutten & Herault, 1991, Muller, Vigario, Meinecke & Ziehe, 2004).  The terminology 

cannot be strictly applied to the muscle synergy model because the classical BSS problem 

makes some assumptions (specifically statistical source independence) that are not necessarily 

held by the synergy model.  Several methods have been proposed to address the problem of 
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discerning the synergies W and the source signals H.  Three of these approaches and their 

underlying assumptions are briefly described.  

3.2.2.1 Principal Component Analysis 

Principal component analysis (PCA) (Hyvarinen, Karhunen & Oja, 2001) is a statistical 

analysis method for data reduction that is typically used in applications such as image 

compression and computer-based facial recognition (Smith, 2002).  Given an m x o (m 

variables, o observations) data matrix V of independent observations, PCA aims to discern the 

underlying n common factors (variables) of the data set, where n < m.  If the m variables contain 

redundant information and are correlated, the data can be expressed in the reduced n-

dimensional factor space instead of the original m-dimensional variable space, thereby 

accomplishing feature extraction and dimensionality reduction.  The data representation in the 

m-dimensional space is a weighted linear combination of the data representation in the n-

dimensional space. 

As with the muscle synergy model, a PCA analysis only assumes knowledge of the data 

matrix V and hence the m-dimensional space – the analysis is blind to the n-dimensional space.  

PCA determines the n-dimensional space by assuming that the n factors are uncorrelated and 

hence not redundant (i.e. orthogonal).  Given two variables X and Y, their covariance CX,Y is 

defined by equation 3.4.  A positive covariance means generally that as X increases, Y 

increases and vice versa.  A negative covariance means generally that as X increases, Y 

decreases and vice versa.  A covariance of zero means that the two variables are uncorrelated.  

Given m variables, a symmetrical covariance matrix is then defined by equation 3.5.  The 

covariance values that make up the diagonal of the matrix are the variances of each respective 

variable. 
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The n-dimensional factor space is determined by the eigenvectors of the covariance matrix C of 

the zero-mean data.  In reality, because C is m x m, there are actually m eigenvectors, and 

associated with each eigenvector is an eigenvalue that determines how much of the data 

variance is explained by that corresponding eigenvector.  So while all m eigenvectors are 

needed to explain 100% of the data variance, a high percentage of the data may be able to be 

explained by n eigenvectors, with the unexplained variance potentially resulting from noise.  

Thus with PCA, both dimensionality reduction and factor separation is achieved. 

One property of the set of eigenvectors is that they are orthogonal.  Hence, applying PCA to 

the muscle synergy model would make the assumption that the muscle synergies are 

orthonormal (i.e. orthogonal and unit length) vectors and hence uncorrelated.  This is illustrated 

by the following example.  Consider the artificial two-dimensional data set of the activity from 

two muscles M1 and M2 as given by Table 3.1.  The data is zeroed with respect to each variable 

and the covariance matrix C and associated eigenvectors (columns of W) and eigenvalues (λ) 

are given in equation 3.6. 
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Table 3.1. PCA Sample Data Set 

 

M1 7.3 3.2 8.5 1.2 5.4 8.4 3.8 8.2 4.7 5.7 9.3 4.4 1.7 7.4 4.2 2.7 5.2 

M2 3.3 1.8 4.0 0.7 2.0 3.6 2.4 4.6 2.7 3.5 4.1 2.3 0.8 3.2 1.8 1.9 2.7 
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Even though there are two eigenvectors (i.e. principal components, or PCs), the data can very 

nearly be approximated by using only the second eigenvector (PC1), since it explains roughly 

98% (7.26 of 7.39) of the data variance, while the first eigenvector (PC2) explains only 2% (0.13 

of 7.39) of the data variance.  Hence the data observed by the two “receivers” (variables M1 and 

M2) is thus almost completely explained by one “source” (factor PC1).  Plotting the data and the 

principal component vectors (Figure 3.2) shows that PC1 indeed explains the majority of the 

data variance.  In this trivial two-dimensional example, PC1 is the vector that points in the 

direction of the best-fit line (i.e. direction that explains the most amount of variance), and PC2 is 

the vector that points in the direction of the best-fit line once PC1 has been removed (i.e. 

direction that explains the second most amount of variance). 

As previously mentioned, the principal components found by PCA are restricted to being 

orthonormal and hence uncorrelated.  There does not seem to be a physiological basis for why 

a restriction of orthonormality must be imposed on the muscle synergies.  If this restriction is 

imposed however, it is of benefit to go a step further and add the restriction of statistical 

independence, which is different and much stronger than non-correlation.  While PCA cannot 

address the issue of statistical independence, independent component analysis (ICA) does so. 

 



68 

 

 

Figure 3.2. PCA Sample Data Set and Principal Component (PC) Vectors 

While two principal components (PCs) are needed to explain 100% of the data variance, 

the first (PC1) explains roughly 98% of the data variance.  Hence, the data can be 

represented solely by PC1 with little loss of information.  Hence, PC1 is the predominant 

underlying factor, or “source” that determines the activity recorded from muscles M1 and 

M2.  Because PC1 and PC2 are orthogonal, they form a new coordinate space in which 

the data can be represented, by way of coordinate transformation. 

3.2.2.2 Independent Component Analysis 

Independent component analysis, or ICA (Comon, 1994, Hyvarinen et al., 2001, Hyvarinen & 

Oja, 2000) is the classic method of solving the blind source problem.  It is similar to PCA in that 

it attempts to express the original data set in another reduced coordinate space by means of a 

transformation matrix.  It differs from PCA in that the independent components are statistically 

independent, which is a stronger criterion than PCA‟s non-correlation criterion.  Hence, ICA first 

assumes statistical independence.  Generally speaking, a set of variables are statistically 

independent if knowledge about the value of one variable gives no information about the value 
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of the others.  Strictly speaking, a set of variables are statistically independent if and only if the 

joint probability density function can be expressed as a simple product of the individual 

probability density functions (Hyvarinen et al., 2001).  This is mathematically expressed by 

equation 3.7. 

 )()...()(),...,,( 2121 nn ypypypyyyp   (3.7) 

Secondly, ICA assumes that at most one of the independent components (ICs) has a 

Gaussian distribution.  The reason for this is illustrated in Figure 3.3.  Take for example two 

independent uniformly distributed sources h1 and h2.  Their joint distribution is illustrated in 

Figure 3.3(i), and the joint distribution of the mixed signals v1 and v2 is illustrated in Figure 

3.3(ii), where v1 and v2 are the results of applying an orthogonal mixing matrix W to the sources 

h1 and h2 (i.e. V = WH).  The joint distribution of h1 and h2 shows that they are indeed 

uncorrelated and independent, because knowledge of the value of one variable gives no 

knowledge of the the value of the other.  The joint distribution of v1 and v2 shows that they are 

uncorrelated but dependent, because the value of one variable limits but does not fully explain 

the value of the other (e.g. at the extremes).  Conversely, take two independent Gaussian 

distributed sources h1 and h2.  Their joint distribution is illustrated in Figure 3.3(iii), and the joint 

distribution of the mixed signals v1 and v2 is illustrated in Figure 3.3(iv), where v1 and v2 are the 

results of applying the same orthogonal mixing matrix W to the sources h1 and h2 (i.e. V = WH).  

The joint distribution of h1 and h2 shows that they are indeed uncorrelated and independent, 

while the joint distribution of v1 and v2 shows that they are also uncorrelated and independent.  

Hence, ICA cannot distinguish between the original independent components and an orthogonal 

transformation of them because they have the same joint distribution (Hyvarinen & Oja, 2000). 
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Thirdly, ICA assumes that the number of mixed signals is the same as the number of 

independent signals (i.e. W is a square matrix).  Hence, ICA does not perform dimensionality 

reduction.  In the event that it is necessary, dimensionality reduction can first be performed by 

methods such as PCA, followed by an ICA analysis.  This is commonly referred to as ICAPCA 

(Tresch, Cheung & d'Avella, 2006). 

While it seems logical and physiologically appropriate to impose independence as a 

restriction on the neural input sources modulating the activation of each synergy, it does not 

seem physiologically appropriate to restrict the distribution of the neural inputs to be non-

Gaussian.  In the event that several neural inputs were Gaussian, ICA would fail to identify 

them.  While ICA is limited in this fashion, non-negative matrix factorization (NMF) is not 

because it only imposes a restriction of positivity on both the neural inputs and muscle 

synergies. 
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Figure 3.3. Joint Distributions of ICs and Orthogonal Mixtures 

ICA can only estimate a pair of Gaussian independent sources up to an orthogonal 

transformation.  This is because the joint distribution for a pair of Gaussian sources is the 

same as when an orthogonal transformation is applied.  Hence, ICA only allows at most 

one of the independent sources to be Gaussian.  (i) The joint distribution for a pair of 

uniformly distributed independent sources.  (ii) The joint distribution of an orthogonal 

transformation of the uniform sources.  (iii) The joint distribution for a pair of Gaussian 

distributed independent sources.  (iv) The joint distribution of an orthogonal 

transformation of the Gaussian sources. 

3.2.2.3 Non-negative Matrix Factorization 

Non-negative matrix factorization (NMF) is similar to the aforementioned PCA and ICA 

techniques in that it tries to express recordable data as a weighted linear summation of a set of 

basis vectors.  NMF differs, however, in its philosophy and interpretation of these basis vectors.  

Each basis vector in both PCA and ICA is a holistic representation of the data, typically 
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constituting some level of variance accounted for that is not reproduced by the other basis 

vectors.  Because these vectors can be additive or subtractive, their physical representations 

are not always intuitive.  In NMF each basis vector is a parts-based representation of the data, 

corresponding to discernable physical components of the data, in contrast to the holistic 

eigenvector bases of PCA and ICA (Lee & Seung, 1999).  For example, in the realm of facial 

recognition, a PCA or ICA analysis would reveal basis vectors, with each being an additive or 

subtractive holistic representation of the face, and referred to as an “eigenface”, whereas the 

basis vectors of an NMF analysis would correspond to the variants of a specific part of the face, 

such as a mouth or nose (Lee & Seung, 1999, Turk & Pentland, 1991). 

The goal of NMF is, given a data matrix V, to find positive valued matrices W and H, such that 

V = WH.  W and H are initialized to random estimates, and a cost function is defined to 

determine the efficacy of these estimates.  The goal of NMF is to then optimize the cost function 

with respect to these estimates.  Several cost functions have been proposed in literature, 

including the Euclidean distance norm (Equation 3.8).  A gradient search algorithm can be used 

to determine W and H (Tresch et al., 1999), although it is potentially slow.  The iterative update 

rules expressed in equation 3.9 have been shown to monotonically minimize the Euclidean 

distance cost function, and appropriately converge W and H (Lee & Seung, 2001). 
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As mentioned earlier, NMF differs from PCA and ICA in that the basis vectors determined by 

NMF are positive parts of the whole, rather than holistic non-intuitive elements.  Equally as 

important, NMF does not make any restrictions on the statistical distributions of the basis 

vectors, unlike ICA.  Furthermore, dimensionality reduction is equally accomplished with NMF 

as with PCA.  As a result, we move forward in the remainder of this document using NMF to 

estimate the parameters of the muscle synergy model.  

3.3 Estimating Muscle Synergies: NMF Simulation Analysis 

3.3.1 Objective 

NMF has been used extensively in the literature to analyze EMG data for the purpose of 

determining basis vectors (i.e. muscle synergies) to adequately represent underlying structure 

present in the observed data.  Studies such as the analysis of frog hind limb reflex responses 

(Tresch et al., 1999), investigations of natural motor behaviors in lower level vertebrate (d'Avella 

& Bizzi, 2005, d'Avella et al., 2003) and the role of sensory feedback (Cheung et al., 2005), and 

the analysis of automatic neuromotor responses to postural perturbations (Ting & Macpherson, 

2005, Torres-Oviedo et al., 2006), have all assumed that the muscle synergies discerned by 

NMF are inherent and physiologically appropriate to the data, rather than simply a result of 

matrix manipulation and data fitting.  It is this assumption that is addressed by the simulations 

described in the remainder of this section.  To this end, these simulations specifically aim to 

investigate 
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• how the robustness of NMF in estimating both the synergies and sources is affected by 

varying the dimensionality of the basis vector space, 

• how well a set of random synergies can be used to explain a data matrix constructed by 

a set of known synergies, 

• how the estimates are affected by additive noise to the system, 

• how well a random data matrix, not generated by a synergy paradigm, can be explained 

by a set of synergies and sources, and 

• how the determined synergies and sources are affected by over- and underestimation of 

the number of basis vectors. 

Recent literature has extensively examined the performance of NMF, along with other 

algorithms, in varying scenarios of noise level and distribution (Gaussian versus signal-

dependent), source signal distribution, and source signal correlation (Cheung & Tresch, 2005, 

Tresch et al., 2006).  The simulations described here do not reproduce the work described in 

recent literature, but rather seek to augment it to increase the breadth of knowledge concerning 

the behavior of NMF, and to establish confidence in the algorithm for future analysis of 

experimental data. 

3.3.2 Methods 

For all simulations, data sets were generated consistent with V = WH + η, where V is the m x 

o EMG data matrix, W is the m x n synergy matrix, H is the n x o input source matrix, and η is a 

noise component.  A known set of n synergies, each of dimension m x 1 and of exponential 

distribution with a mean of 1, were randomly generated along with a set of n signal sources, 

each of dimension 1 x o (o = 200 observations) and also of exponential distribution with a mean 

of 1.  Exponential distributions were chosen because it is generally consistent with the observed 
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distributions of experimental data (Tresch et al., 2006).  Before construction of the data matrix 

V, each synergy in W was normalized to be a unit vector. 

3.3.2.1 Effect of Varying the Number of Basis Vectors 

The robustness of NMF was investigated with respect to varying the number of synergies n 

used to construct the data matrix V = WH.  n was allowed to range from 1 to m, the number of 

muscles in the system (m = 11).  For each n, a random V matrix was constructed from random 

W and H matrices.  V was then corrupted with varying amounts of noise η, as is later described.  

Starting with new random estimates of W and H (henceforth referred to as West and Hest), the 

update rules in equation 3.9 and the cost function in equation 3.8 were used to determine final 

estimates of the original W and H matrices.  Convergence of the NMF algorithm was determined 

to be when the absolute change in the cost function was less than a tolerance ε = 0.0001 for 

more than twenty (20) consecutive iterations.  The maximum number of iterations allowed was 

20000.  Twenty (20) trials were performed for each n.  Reported is the efficacy of the NMF 

algorithm to determine the original synergy and source matrices under the varying condition of 

total number of original basis vectors. 

3.3.2.2 Effect of Random Synergies 

To assess the risk of the NMF algorithm returning random synergy and source matrices while 

still explaining a large portion of the data variance, simulations with random synergies were run 

on the data matrices generated in 3.3.2.3.  Specifically, random synergy and source matrices 

Wrandom and Hrandom were generated, and Hrandom was updated in accordance to equation 3.9 

while Wrandom was not updated.  Parameters of convergence were the same as described in 
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3.3.2.1.  This resulted in estimated data matrices Vest_random = WrandomHest_random, which were 

compared to the original data matrices V. 

3.3.2.3 Effect of Additive Noise 

The simulations described in sections 3.3.2.1 and 3.3.2.2 were performed under varying 

conditions of noise, subject to Vnoisy = WH + η, where η is the noise component.  Specifically, η 

was a Gaussian distributed zero mean white noise signal, with the standard deviation allowed to 

discretely range between 0 and 100% of the standard deviation of the data matrix V.  The 

overall noise power of the corrupted signals is reported, and was calculated as 1-r2, where r2 is 

the fraction of the variance of the corrupted data set Vnoisy explained by the unadulterated data 

matrix V (Cheung & Tresch, 2005).  Reported is the efficacy of the NMF algorithm to determine 

the original synergy and source matrices under the varying condition of noise magnitude. 

3.3.2.4 NMF Behavior on Non-Synergy-based Random Data Matrices 

A legitimate question to ask is whether NMF finds inherent structure in data or whether NMF 

creates artificial structure where none is present.   To answer this, m x o (m = 11, o = 200) data 

matrices were randomly generated without using a synergy construction paradigm.  The 

uncorrelated data values were selected from an exponential distribution.  NMF was used to 

estimate synergy and source matrices that would best explain the data, and the propensity of 

NMF to create structure where none existed, at varying levels of noise corruption, was assessed 

by comparing the original random data matrices V to the estimated data matrix Vest. 

3.3.2.5 Effect of Over- and Underestimating the Number of Basis Vectors 

Finally, the effects of over- and underestimating the total number of synergies were 

investigated.  The previously described simulations were carried out knowing the correct 
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number of synergies to estimate for the data matrix V.  However, this luxury is not afforded 

when analyzing experimental data – the correct number of basis vectors is not known.  To 

examine the effects of over- and underestimation, random data matrices were constructed from 

a set of n known synergies and sources, corrupted with Gaussian noise of magnitude 25%, and 

NMF was used to estimate the original synergies, allowing the total number of synergies in each 

estimate to range between 1 and m (m = 11), the number of muscles in each synergy.  The 

similarity of the original to estimated synergies and sources, along with the variance explained 

by the estimates, is reported. 

3.3.3 Results 

For each trial, similarities were assessed between the original synergies and sources and the 

estimated synergies and sources.  The normalized dot product (NDP), shown in equation 3.10, 

was used to compare West to W, while the r2 metric was used to compare Hest to H and Vest to V, 

where Vest = WestHest.  r
2 is the fraction of the variance of the original data set V explained by the 

estimated data matrix Vest. 
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Original and estimated synergies were linked using a best-match algorithm in which the NDP 

was calculated for all combination original/estimate pairs.  The pair with the highest NDP was 

deemed a match, and the process repeated until all estimated synergies were matched with an 

original synergy.  The estimated and original sources were matched in accordance with the 

matching of the estimated and original synergies. 
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3.3.3.1 Effect of Varying the Number of Basis Vectors 

Figure 3.4 (Estimate Plot: square symbol) shows the results of the NMF analysis on 

uncorrupted synergy-based data matrices V.  Reported for each number of synergies are the 

mean and one standard deviation of the similarities (NDP) between the original and estimated 

synergies (i), the mean and one standard deviation of the similarities (r2) between the original 

and estimated sources (ii), and the mean and one standard deviation of the similarities (r2) 

between the original and estimated data matrices (iii).  There is a statistically significant 

monotonic decrease (p < 0.01) for the average similarity of the synergies as the total number of 

basis vectors is increased, along with an increase in the standard deviation of the similarities (i).  

Analysis of the source estimates also shows a statistically significant monotonic decrease (p < 

0.01), and an even greater concavity in the curve of source number versus r2 similarity (ii).  

Generally, it seems that NMF does a better job of estimating the synergy matrices W than the 

source matrices H (note the difference in the scale of the two graphs).  Even with the 

discrepancies between the estimated and original synergy and source matrices, 100% of the 

data variance can still be explained given a high number of synergies.  Actually, at all synergy 

levels, 100% of the data variance can be explained (iii).  This is naturally because the original 

data set was left uncorrupted prior to analysis, and hence this particular simulation scenario 

represents the trivial case.  For comparison, the same set of graphs are displayed for a 25% 

noise corruption level in Figure 3.5, and an example of a set of six original synergies and 

sources and their corresponding estimates are illustrated in Figure 3.6.  While the same 

monotonic trend exists in the comparisons of synergies and sources, the variance explained by 

the estimated data set compared to the original clean and corrupted data sets have opposite 

monotonic trends as the number of synergies is increased.  The greater the number of 
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synergies in the original construction, the less variance of the clean data set is 

explained, while the more variance in the corrupted data set is explained.  The effect of 

additive noise on the estimation results are more thoroughly reported in 3.3.3.3. 

3.3.3.2 Effect of Random Synergies 

To determine if the NMF algorithm could find a corresponding source matrix for any synergy 

set and explain 100% of the data variance in V, West was held constant while Hest was updated.  

Figure 3.4 (Random Plot: triangle symbol) shows the results of the NMF analysis.  There 

appears to be a general increasing trend in the average similarity of the random synergies to the 

original synergies with an increase in the number of synergies.  In contrast, there appears to be 

a general decreasing trend in the average similarity of the estimated pseudo-random sources to 

the original sources with an increase in the number of synergies.  A two-sampled t-test revealed 

that for an uncorrupted data matrix V, the similarities of the resultant synergies and sources 

from the NMF analysis (square symbol) to the original synergies and sources were statistically 

significantly greater than the similarity of the random synergies and pseudo-random sources 

(triangle symbol) (p < 0.05) at all number of synergies, except when the number of original 

synergies was one.  The variances explained by the NMF estimates were also statistically 

significantly greater than that explained by the pseudo-random estimates at all number of 

synergies (p < 0.05).  These results suggest that the synergies and sources found by NMF 

represent structure inherent to the data, rather than being meaningless constructs and a 

simple result of statistical fitting of the data.  The effect of additive noise on these 

significance results is reported in 3.3.3.3. 
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         (i)                                                    (ii)                                                   (iii) 

Figure 3.4. Effects of varying the number of basis vectors and of using random basis vectors. 

The efficacy of NMF was investigated as the number of synergies used to construct the 

original data matrix was systematically increased.  The similarity of the estimated 

synergies, the estimated sources, and the overall explained variance of the estimates are 

reported (square symbol).  As the number of synergies increased, the average similarity 

of the estimates to the original synergies monotonically decreased (i), as did the average 

similarity of the estimates to the original sources (p < 0.01) (ii).  Despite the discrepancy 

in the estimates at the higher number of synergies, 100% of the data variance was still 

explained by the estimates (iii).  This however is a result of the fact that the original data 

was left uncorrupted, hence representing the trivial case.  The effect of noise corruption 

on the estimates and variance explained is reported in 3.3.3.3.  The ability to use pseudo-

random synergies and sources to explain the data was also investigated (triangle 

symbol).  The estimate similarities were statistically significantly greater than that of the 

pseudo-random synergies and sources (p < 0.05), suggesting that the results of the NMF 

analysis do not construct meaningless synergies and sources, but rather the deciphered 

synergies and sources represent structure inherent to the data. 
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         (i)                                                    (ii)                                                   (iii) 

Figure 3.5. Efficacy of NMF at 25% noise corruption. 

The results of applying NMF to data corrupted at a noise level of 25% are similar to that 

of uncorrupted data.  There is still a monotonically decreasing trend for the similarities of 

both the estimated synergies and sources with increasing number of basis vectors.  Of 

note is that as the number of basis vectors is increased, there is an increase in variance 

explained of the corrupted data, but a decrease in the variance explained of the 

uncorrupted data. 
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Figure 3.6. Original and estimated synergies and sources at 25% noise corruption. 

Illustrated are the original and estimated synergies and sources from an NMF analysis of 

data originally constructed with six basis vectors and corrupted by 25% Gaussian noise.  

NMF was able to discern several of the synergies (left column) with high fidelity, primarily 

the first four, and to a lesser extent the last two.  NMF was less successful in discerning 

the original sources (right column).  Original and estimated synergies and sources were 

matched using a best-match algorithm described in the text.  Similarity values (NDP and 

r
2
) for each matched pair are displayed vertically oriented on the y-axis.  r

2
 of Vest relative 

to uncorrupted V was 96.93%. 

 

3.3.3.3 Effect of Additive Noise 

The two previous sections primarily reported the ability of NMF to decipher the original 

synergies and sources of an uncorrupted EMG data matrix V.  Clearly this represents the trivial 
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case because real biological data suffers from noise corruption of internal and external origins.  

It is more interesting and informative to investigate the ability of NMF to decipher the original 

synergies and sources of a corrupted EMG data matrix V.  Figure 3.7 reports the effect of noise 

on the similarities of the estimated synergies and sources to the original synergies and sources, 

and Figure 3.8 reports the effect of noise on the variance explained in the corrupted and 

uncorrupted data sets by the estimates.  As expected, increasing the amount of noise corruption 

of the original data matrix was detrimental to estimating the original synergies and sources at all 

number of synergies, as evidenced by the slope of the curves getting more and more negative 

with increasing noise.  The same decreasing monotonic trend was exhibited at all levels of 

noise, where increasing the number of synergies used to construct the data decreased the 

overall similarity of the estimated to the original synergies and sources.  Interestingly, as the 

number of synergies increased, the variance of the corrupted data explained by the NMF 

estimates monotonically increased to 100%, regardless of the noise level and the discrepancies 

in the synergies and sources.  In contrast, the variance explained of the original clean data 

monotonically decreased for increasing noise level and synergy number.  These results 

suggest that while NMF is capable of finding synergies that explain 100% of the data 

variance regardless of noise level, it is not of benefit to do so because there comes a 

point when it is the noise that is being explained, rather than the underlying uncorrupted 

data.  A 100% explanation of the data variance may be more indicative of noise fitting, 

particularly in higher dimensional data sets.  In such a case, the deciphered synergies 

and sources can very well be significantly dissimilar to the authentic synergies and 

sources. 
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(i) 

(ii) 

Figure 3.7. Effect of noise on NMF estimation of original synergies (i) and sources (ii). 

For each noise level, an increase in the number of basis vectors negatively affected the 

ability of NMF to correctly identify the original synergy and source matrices.  An increase 

in the noise magnitude used to corrupt the data was increasingly detrimental to NMF‟s 

ability to discern the original synergy and source matrices. 
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           (i)                                                                                (i) 

Figure 3.8. Effect of noise on NMF estimation of noisy (i) and uncorrupted (ii) data variances. 

The effect of noise on the total noisy (i) and uncorrupted (ii) data variance explained by 

the NMF estimates is plotted versus number of synergies.  For all noise levels, increasing 

the number of synergies increased the variance explained of the noisy data set, but 

decreased the variance explained of the uncorrupted data set.  Interestingly, at all noise 

levels, 100% of the variance of the noisy data was explained using the maximum number 

of synergies, whereas this explained the least amount of variance of the uncorrupted 

data.  This observation suggests that in low dimension-space data sets, NMF is able to 

tease out the structure in data, even at high levels of noise corruption.  However, higher 

dimension-space data sets seem to be more negatively affected by noise. 

 

3.3.3.4 NMF Behavior on Non-Synergy-based Random Data Matrices 

Figure 3.9 reports the behavior of NMF on data matrices that were not constructed using a 

synergy-based paradigm.  Varying amounts of noise were added to these matrices and NMF 
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was used to assess if any lower dimensional structure could be created.  The figure shows the 

amount of variance of the original uncorrupted data sets that was explained by the data set as 

estimated by the resultant NMF basis vectors and corresponding inputs.  It is of note that even 

in the uncorrupted data sets (0% noise), the dimensionality of the data sets could not be 

reduced below the original eleven (11) degrees-of-freedom without significantly affecting the 

variance explained.  This suggests that in a data set without inherent lower-dimensional 

structure, NMF will not artificially create this lower dimensional structure.  Rather, all 

degrees-of-freedom will be needed to adequately describe the data, in effect meaning that 

lower-dimensional basis vectors were not present in the data. 
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Figure 3.9. NMF behavior on data matrices not constructed using a synergy paradigm. 

On data matrices not constructed from a synergy-based paradigm, there is little to no 

reduction of the control space dimensionality.  Almost the full dimensionality of the 

muscle space is necessary to explain the majority of the data variance.  This suggests 

that NMF parts-based approach will not artificially create synergy basis vectors where 

none exist in the data.  Rather, the reduced dimensionality space of the NMF estimates 

synergies represents actual structure of the data. 

 

3.3.3.5 Effect of Over- and Underestimated the Number of Basis Vectors 

As previously mentioned, the above simulations, while informative, have an inherent 

advantage in that the number of basis vectors for estimation is known a priori to the analysis.  

This however is not the case when analyzing experimental data, which then creates the 

possibility of over- or underestimating the number of basis vectors.  The effects of under- and 
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overestimating the number of basis vectors are reported in Figure 3.10 – Figure 3.12 and Figure 

3.13 – Figure 3.15, respectively. 

In Figure 3.10 – Figure 3.12, each group of bars represents the results of NMF 

underestimations of data matrices constructed from the specified number of original synergies.  

For example, in Figure 3.10, the sixth group of bars (labeled „6‟ on the x-axis), represents the 

resultant explained variances of the NMF analyses assuming one, two, three, four, five, and six 

basis vectors, as specified by the legend.  As expected, Figure 3.10 shows that for each group 

of estimations, the explained variance of the original data set monotonically increased as the 

actual number of basis vectors used to construct the data matrix was approached.  The 

similarities of the underestimated synergies to the original synergies are reported in Figure 3.11.  

The k estimated synergies were matched to the best k of n (k < n) original synergies, and the 

average similarities of the estimates to the originals were computed on those k synergies.  

Likewise, the similarities of the k estimated sources were directly matched to k of n original 

sources, and the average similarities are reported in Figure 3.12.  A cursory analysis of the 

synergy similarities revealed that for a lower number of original synergies, the average similarity 

generally increased as the number of estimated synergies increased.  With a higher number of 

original synergies, this monotonic trend was instead parabolic, with the correct estimate of the 

number of synergies actually producing a lower average similarity than some incorrect 

estimates.  A cursory analysis of the source similarities showed that for a low number of 

sources, the trend is monotonically increasing with an increase of the number of estimated 

sources in each group, but is parabolic for larger number of sources.  A one-way analysis of 

variance (ANOVA) with a subsequent multiple pairs test revealed to what extent the observed 

differences in explained variance, synergy similarity, and source similarity between 

underestimates and actual estimates were statistically significant.  Statistical significance within 
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each group is determined by the 95% confidence intervals (CI) for the differences between 

explained variance, synergy similarity, and source similarity for each pair of estimated versus 

actual number of synergies.  The intervals that do not include zero are considered to represent 

statistically significant differences while those that include zero represent statistically 

insignificant differences.  For example, the 95% CI of the estimated variance difference of 

estimating 4 synergies when there are actually 5 synergies is (-4.17%, 1.50%).  Because this 

interval includes zero, there is no statistically significant difference between the explained 

variances when estimating 4 versus 5 synergies when the actual number of synergies is 5.  

However, the 95% CI of the estimated variance difference of estimating 3 synergies when there 

are actually 5 synergies is (-6.76%, -1.09%).  Because this interval does not include zero, there 

is a statistically significant difference between the explained variances when estimating 3 versus 

5 synergies when the actual number of synergies is 5.  Table 3.2 reports, for each actual 

number of synergies, which estimated synergies produced a statistically significant detriment to 

the explained variance, synergy similarity, and source similarity.  Particularly for a lower number 

of synergies, the average explained variance and source similarity were less robust to 

underestimation, sometimes being significantly affected by underestimation of even one or two 

basis vectors.  The average synergy similarity however, was more robust to the problem of 

underestimation, sometimes even not being significantly affected by underestimation of even 

two or three basis vectors. 
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Figure 3.10. Explained variance underestimation results. 

Data matrices were constructed from randomly generated exponential synergy / source 

matrix pairs, using k = 1..11 original synergies (x-axis).  For each data matrix, NMF was 

used to underestimate the data matrix using i = 1..k synergies.  As the number of 

estimated synergies approached the actual number of synergies in the system, the 

variance explained by the NMF estimates steadily increased, although at higher level 

synergies, there was a slight decrease.  One-way ANOVA revealed that for a larger 

number of synergies, the explained variance was robust to adverse effects of 

underestimations of even up to four synergies, while for a smaller number of synergies, 

the explained variance was only robust for one or two underestimations. 
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Figure 3.11. Synergy similarity underestimation results. 

For each set of underestimations, the k estimated synergies were best-matched to the n 

original synergies (see text for details).  The average similarity of the matched synergies 

is reported as the normalized dot product (NDP).  A one-way ANOVA revealed that the 

similarity of the estimated to the original synergies was generally robust to negative 

effects of underestimation.  With a higher number of original synergies, the average 

similarity was lower because, while several of the synergies were well matched, others 

were poorly estimated, decreasing the overall average similarity and increasing the 

standard deviations. 
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Figure 3.12. Source similarity underestimation results. 

Sources were matched according to the results of best-matching the synergies.  Similar 

to the effects of underestimation on the synergies, average source similarity was more 

robust at higher a higher number of original synergies than at a lower number of original 

synergies.  At the lower number of synergies, dissimilarities do seem to be a direct result 

of underestimation, whereas with a higher number of synergies, dissimilarities seem to be 

more so a result of simply having a large number of basis vectors. 
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Table 3.2. One way ANOVA of underestimate simulation results. 

 

# of Actual 
Synergies 

Underestimates Showing 
Statistically Significant 
Decrease in Explained 

Variance (p<0.05) 

Underestimates 
Showing Statistically 

Significant Decrease in 
Synergy Similarity 

(p<0.05) 

Underestimates 
Showing Statistically 

Significant Decrease in 
Source Similarity 

(p<0.05) 

2 1 1 1 
3 1, 2 1, 2 1, 2 
4 1, 2 1, 2 1, 2, 3 
5 1, 2, 3 1, 2 1, 2, 3, 4 
6 1, 2, 3 1 1, 2, 3, 4 
7 1, 2, 3 – 1, 2, 3 
8 1, 2, 3, 4 – 1, 2, 3 
9 1, 2, 3, 4 – 1, 2, 3 
10 1, 2, 3, 4, 5 – 1, 2, 3 
11 1, 2, 3, 4 – 1, 2 

 

 

 

In Figure 3.13 – Figure 3.15, each group of bars represents the results of NMF 

overestimations of data matrices constructed from the specified number of original synergies.  

Overestimation did not have a large effect on the variance of the original data set explained by 

the NMF estimates; all overestimations still explained roughly between 95% and 100% of the 

data variance.  The similarity of the estimated synergies to the original synergies did not seem 

to be largely affected as well by overestimation of one or to synergies, although greater 

overestimations did significantly affect the estimated synergy structures.  The similarity of the 

sources was greatly affected by overestimating the total number of synergies by three or more.  

A one-way ANOVA with a subsequent multiple pairs test helped to quantify to what extent the 

differences were statistically significant.  The statistically different pairs are reported in Table 

3.3.  This analysis revealed that there seemed to be a statistically significant detriment of 

explained variance with any overestimation of a one-synergy system.  A closer analysis 

revealed that the upper and lower bounds of the 95% CI of the differences were on the order of 
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one thousandth of a percent.  The ANOVA also revealed that the differences found in the 

similarity of synergies had 95% CI upper and lower bounds on the order of 0.02 (not percent – 

this is a unit normalized dimensionless metric).  In contrast, the 95% CI upper and lower bounds 

for the source similarity differences ranged from on the order of 0.1 to 0.5 (not percent – this is a 

unit normalized dimensionless metric). 

In summary, the under- and overestimation simulations revealed that underestimation 

is problematic in terms of explaining the variance of the full data set, whereas this is not 

an issue in overestimation.  Neither under- nor overestimations of a small magnitude 

significantly negatively impaired NMF in discerning the underlying basis vectors.  Both 

under- and overestimation were equally detrimental to determining the underlying 

sources.  So while NMF is robust in determining basis vectors, its behavior in regard to 

discerning their respective time modulated weights is more erratic in the presence of 

significant over- and underestimation. 
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Figure 3.13. Explained variance overestimation results. 

Data matrices were constructed from randomly generated exponential synergy / source 

matrix pairs, using k = 1..11 original synergies (x-axis).  For each data matrix, NMF was 

used to overestimate the data matrix using i = k..11 synergies.  As the number of 

estimated synergies diverges from the actual number of synergies in the system, the 

variance explained by the NMF estimates systematically decreases, with minimal 

variance.  A one-way ANOVA revealed that for a given number of original synergies, any 

overestimation produced a statistically significant detriment to the variance explained by 

the estimates, although the actual differences between adjacent overestimates were 

relatively small. 
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Figure 3.14. Synergy similarity overestimation results. 

Overestimation resulted in a steady decrease in the average similarity of the estimated to 

original synergies.  A one-way ANOVA showed that statistically significant difference 

existed as a result of overestimation of two or more synergies for any value of original 

number of synergies. 
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Figure 3.15. Source similarity overestimation results. 

Sources were less affected by small overestimation than the synergies.  According to the 

ANOVA analysis, the average source similarity was not statistically significantly affected 

by overestimations of up to about three synergies. 
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Table 3.3. One way ANOVA of overestimate simulation results. 

 

# of 
Actual 

Synergies 

Overestimates Showing 
Statistically Significant 
Decrease in Explained 

Variance (p<0.05) 

Overestimates Showing 
Statistically Significant 
Decrease in Synergy 

Similarity (p<0.05) 

Overestimates Showing 
Statistically Significant 
Decrease in Source 
Similarity (p<0.05) 

1 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 3, 4, 5, 6, 7, 8, 9, 10, 11 5, 6, 7, 8, 9, 10, 11 
2 3, 4, 5, 6, 7, 8, 9, 10, 11 4, 5, 6, 7, 8, 9, 10, 11 5, 6, 7, 8, 9, 10, 11 
3 4, 5, 6, 7, 8, 9, 10, 11 5, 6, 7, 8, 9, 10, 11 7, 8, 9, 10, 11 
4 5, 6, 7, 8, 9, 10, 11 6, 7, 8, 9, 10, 11 8, 9, 10, 11 
5 6, 7, 8, 9, 10, 11 6, 7, 8, 9, 10, 11 7, 8, 9, 10, 11 
6 7, 8, 9, 10, 11 8, 9, 10, 11 8, 10, 11 
7 8, 9, 10, 11 10, 11 11 
8 9, 10, 11 10, 11 – 
9 10, 11 10, 11 10, 11 
10 11 – – 

 

 

 

3.3.4 Discussion 

The described simulations have investigated the efficacy of non-negative matrix factorization 

(NMF) in determining the underlying parts of a data matrix of the form V = WH + η, where V (m 

x o) is the EMG data matrix, W (m x n) are the time-invariant muscle synergies (basis vectors), 

H (n x o) are the time modulated neural inputs (weighting coefficients), and η is a noise 

component.  In the simulation investigating the effect of the original number of basis vectors on 

the estimations, increasing the number of basis vectors had an adverse effect on both the 

synergy and source estimations, but not on the variance of the original data set that was 

explained by the estimates.  A question arises as to how NMF could perform poorly on the 

source estimates and yet still perfectly explain the data set, particularly with a large number of 

basis vectors.  One can imagine a simple case in which V consists of m = 11 muscles, is 

constructed from n = 11 synergies, and is then estimated assuming 11 synergies.  In such a 
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situation, assuming zero noise corruption, the data could easily be explained by having each 

synergy / source pair be correlated to the activity of one and only one muscle.  Hence, each 

synergy would be a unit vector directed along each respective axis in the muscle space, and 

each source would be the activity modulation of each respective muscle.  As a result, there 

would be no reduction of system dimensionality, and in effect, no synergies.  While this scenario 

is unlikely, it is mathematically possible.  This hypothetical scenario, however, raises the 

question as to whether or not the synergies found by NMF are unique.  Because NMF 

essentially functions by an iterative search algorithm (Lee & Seung, 2001), it is possible that the 

algorithm could end up in a local minimum instead of the global minimum, thereby potentially 

producing slight variations in the discerned synergies and sources.  However, it has been 

reported in the literature that NMF produces consistent results when the data matrix consists of 

at least 50 – 100 responses (Tresch et al., 1999).  Hence, the slight variations are negligible 

assuming enough data observations.  Furthermore, when working with experimental data, 

NMF is repeatedly performed on the same data set under the same estimation conditions 

(number of basis vectors, criteria of convergence, etc…), and the estimate pair that produces 

the largest explained variance is deemed to be the global minimum (d'Avella et al., 2003). 

Two simulation investigations addressed the fundamental question of whether or not the 

parts-based method of analysis is finding structure inherent to data or rather mathematically 

creating artificial structure.  Directly speaking, are muscle synergies actually present in EMG 

data or are they the result of clever, albeit useful, matrix manipulations?  First, fixed random 

synergies (W) and the corresponding estimated sources (Hest) were used to try to explain data 

constructed from known synergies and sources.    The fact that a source matrix could not be 

found for any synergy matrix to adequately explain the data suggests that the synergy / 

source matrix pairs are specific to the data set and not simply an artificial construct.  
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Furthermore, finding synergy / source matrix pairs in experimental data would then lead 

to the conclusion that these matrix pairs have physiological origin and meaning, rather 

than being just an abstract mathematical concept.  This statement is bolstered by the fact 

that when random data matrices were generated without using a synergy paradigm, the data 

matrix could not be reduced to a lower dimensional basis vector space i.e. the same number of 

dimensions were needed to construct the synergy space as was the muscle space.  Thus a 

data matrix constructed by synergies cannot be explained by any arbitrary synergy set, 

and NMF will not create lower dimensional synergies for a data matrix that has none. 

One continual question in any parts-based analysis is how to determine the appropriate 

number of basis vectors.  The current practice is to determine this number empirically, 

performing the estimations assuming one, two, three, and up to m synergies, where m is the 

original dimensionality of the problem.  Plotted against m is the variance (r2) explained by the 

estimates, and a knee of the curve is determined, such that the addition of more synergies does 

not add significant information to the estimates.  Rather the additions may simply explain 

corruption in the data (d'Avella et al., 2003, Ting & Macpherson, 2005, Tresch et al., 1999).  

Other studies have addressed this question in greater detail (Tresch et al., 2006).  The 

contributions of these simulations, and specifically the analyses of over- and underestimation, 

have been to quantify to what extent synergies are preserved by NMF in the presence of 

improper estimation of the number of basis vectors.  The finding that synergies are generally 

similar, even if over- and underestimation occurs by two synergies, is consistent with what has 

been reported in literature (Tresch et al., 2006).  The importance of correctly estimating the 

number of synergies / sources, however, is underlined by the results showing the significant 

detriment over- and underestimation have on estimating the structure of the sources, and, with 

specific regard to underestimation, the overall data matrix. 
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Overall, the described simulations, in addition to the results of current literature, have shown 

NMF to be a useful tool in discerning actual structure in data matrices, and to be a suitable tool 

for analyzing experimental data.  The limits of NMF, specifically with regard to source 

estimation, and its behavior in the presence of noise, are thus noted and are taken into 

consideration in the analyses of the experimental data of the experiments described in this 

manuscript.
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4 Muscle Synergies as a Predictive Framework for EMG 

Patterns of Static Hand Postures 

4.1 Introduction 

The issue of muscle coordination is central to the control of multifunctional myoelectric 

prostheses.  Much of the current research in the control of multifunctional myoelectric trans-

radial prostheses has been focused on recognition of global muscle coordination patterns 

associated with specific movements.  Many of these techniques have involved extracting time 

and frequency domain feature sets from the EMG signals (Hudgins et al., 1993), and using 

artificial neural networks (Gallant et al., 1998), fuzzy logic systems (Ajiboye & Weir, 2005, Chan 

et al., 2000), linear discriminant analyzers, Gaussian mixture models (Chan & Englehart, 2003, 

Huang et al., 2005), and the like to differentiate these parameter patterns one from another.  

While these approaches have achieved varying amounts of success, they are all dependent on 

a priori knowledge of the global muscle coordination patterns associated with specific 

movements.  Hence new movements have to be pre-programmed before they can be 

recognized and controlled.  A more versatile paradigm of control would be one in which a larger 

set of complex movements and muscle coordination patterns could be constructed from a lower 

dimensional set of basis coordination patterns.  The work described in this chapter is part of a 

larger effort investigating the use of muscle synergies as a potential control paradigm of 

myoelectric trans-radial prostheses. 

The central nervous system‟s (CNS) coordination of the many neuromuscular degrees-of-

freedom (DOFs) associated with performing a task has been termed an ill-posed problem 
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because of the biomechanical and neuromuscular redundancies in the anatomical structure 

(Bernstein, 1967).  It has been suggested in the literature that the CNS coordinates musculature 

to build complex motor patterns based upon an arguably finite set of fundamental control 

modules.  These control modules, when combined sequentially or in parallel, produce the wide 

range of observable patterns of movement (Mussa-Ivaldi & Solla, 2004).  Indeed, this idea is not 

new and has been postulated since the turn of the twentieth century (Bernstein, 1967, 

Bernstein, 1971, Sherrington, 1906) – only the nomenclature and proposed physiological 

manifestations have changed.  Most recently, and directly applicable to myoelectric control, is 

the idea of fundamental muscle coordination patterns, termed muscle synergies (Bernstein, 

1971, Tresch et al., 1999).  Muscle synergies (i.e. groups of muscles whose activation levels are 

together specified) are an attractive idea because empirical evidence suggests that muscle 

patterns are potentially encoded in the activity of neurons in the M1 motor cortex (Holdefer & 

Miller, 2002, Kakei et al., 1999).  Furthermore, muscle synergies have been shown to form the 

bases of complex muscle coordination patterns involved in activities such as kicking, swimming, 

and jumping of frogs (Bizzi et al., 2002, Cheung et al., 2005, d'Avella & Bizzi, 2005, d'Avella et 

al., 2003, Saltiel et al., 2001, Tresch et al., 1999, Tresch et al., 2002), postural standing and 

muscle responses to postural perturbations (Ting & Macpherson, 2005, Torres-Oviedo et al., 

2006), and human arm movements (d'Avella et al., 2006, Soechting & Lacquaniti, 1989). 

Specifically regarding hand control, several studies have presented evidence that postural 

activity associated with a wide variety of hand postures could be described by a kinematic 

synergy framework.  Studies in typing (Soechting & Flanders, 1997), hand shaping for tool use 

(Santello et al., 1998), dynamic posture formation (Mason et al., 2001, Mason et al., 2004), and 

miming of the American Sign Language (ASL) alphabet (Jerde et al., 2003) have reported that 

the high dimensional kinematics of the hand can be described by a lower dimensional set of 
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basis postures, which are combined to produce the more complex joint positions.  To the 

author‟s knowledge only one major study to date has examined similar synergistic-based 

dimensionality reduction paradigms with regard to the EMG activities associated with hand 

postures.  This particular study aimed to describe the hand postures associated with the ASL 

alphabet and with grasping of everyday objects with a low-dimensional set of muscle synergies, 

and to align these muscle synergies with postural synergies of the hand (Weiss & Flanders, 

2004).  The investigators reported that the six-dimensional EMG patterns associated with the 

hand postures for grasping everyday objects could be described at a rate of 80-90% by a three 

or four dimensional set of muscle synergies. 

One shortcoming of many of the studies reported in the muscle synergy literature is that 

though a basis set of synergies describe the observed data sets, there is little compelling 

evidence to suggest that the extracted muscle synergies have real physiological significance 

and hence are more than just a description of the observed data.  Plainly speaking, these 

results have shown that muscle synergies form a descriptive framework for the EMG patterns 

observed during a set of tasks, but they do not explore if these synergies can form a predictive 

framework for a brand new set of tasks.  Demonstrating a predictive framework is a more 

powerful assertion, and would more strongly suggest that muscle synergies are a reasonable 

control paradigm both for motor control by the CNS, and for myoelectric control.  The 

investigation of whether or not muscle synergies form a predictive framework for a wide variety 

of hand postures would suggest that the synergies are robust and generalizable.  Robustness 

and generalizability have been articulated by other investigators as necessary testable 

hypotheses for validation of the muscle synergy concept.  Hence the aim of this work is to 

investigate if muscle synergies form a robust lower dimensional framework for the 
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prediction of the EMG patterns of new static hand postures.  Specifically, the following 

questions will be answered.  

 How many synergies are needed to complete this lower dimensional predictive 

framework, and how robust are these synergies? 

 How many hand postures are needed to define the muscle synergy set of this 

framework? 

 What is the predictive power of the established framework? 

Working Hypothesis: A reduced set of muscle synergies describing a small set of static hand 

postures can predict the EMG patterns from a wide variety of new static hand postures with 

comparable accuracy. 

Alternative Hypothesis:  The EMG patterns of new hand postures cannot be accurately 

predicted using the framework defined by the generative hand posture set.  The number of 

synergies needed to predict new hand postures exponentially grows with an increase in the size 

of the predicted set. 

4.2 Methods 

4.2.1 Subject Information 

Seven healthy research subjects (one woman, six men, age 29.1 ± 11.0 yrs), all of which 

were self-described right-hand dominant, participated in this study.  No subject had known 

history of any neuromuscular disorders.  Subjects were obtained from a diverse population at 

the Rehabilitation Institute of Chicago and Northwestern University, and efforts were made to be 

consistent with the demographics of the Chicago area.  All subjects gave informed consent to 

the procedures as approved by the Northwestern University Office for the Protection of 
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Research Subjects (NUOPRS) Institutional Review Board.  Subjects are referred to by their 

Subject ID number (SID1–7). 

4.2.2 Electromyography 

4.2.2.1 Hardware for EMG Data Collection 

All EMG data was recorded using a Noraxon (Phoenix, AZ) Telemyo 2400R System™.  The 

sixteen channel system includes a wireless transmitter-receiver system with an adjustable 

internal gain up to 2000 (transmitter: 2, receiver: 1000), a bandwidth of 20 – 1000 Hz, and an 

internal sampling rate of 3000 Hz.  The analog signal from the receiver was then fed through a 

12-bit A/D board, and digitally sampled at 3000 Hz.  The data was recorded and visualized 

using an in-house custom built virtual instrument interface in National Instruments (Austin, TX) 

LabVIEW Developer‟s Environment ver 7.2.  Raw EMG was saved in a standard ASCII file for 

further processing. 

4.2.2.2 Selection of Recorded Muscles 

Given that both intrinsic and extrinsic muscles participate in the control of the hand, it would 

be ideal to record from all involved muscles to best characterize muscle activity during the 

various hand postures.  However, the muscular characterization of hand posture was limited to 

eight extrinsic and five intrinsic hand muscles / muscle groups.  The chosen extrinsic muscles 

were flexor digitorum superficialis (FDS), flexor digitorum profundus (FDP), extensor indicis 

propius (EIP), extensor digitorum communis (EDC), extensor digiti minimi (EDM), extensor 

pollicis longus (EPL), flexor pollicis longus (FPL), and abductor pollicis longus (APL).  The 

chosen intrinsic muscles were abductor pollicis brevis (APB), flexor pollicis brevis (FPB), 

opponens pollicis (OP), abductor digit minimi (ADM), flexor digit minimi (FDM), and first dorsal 



107 

 

interosseus (FDI).  Table 4.1 lists these muscles and their biomechanical functions, and shows 

their anatomical locations.  The activity of the extrinsic muscles and that of FDI were recorded 

using intramuscular electrodes, while the activities of the remaining muscles were recorded 

using standard bipolar Ag/AgCl surface electrodes.  The choice of selected muscles and 

selected recording methods were for two reasons.  First, subject comfort was of great 

importance, as was minimizing subject pain caused by the large number of needle sticks 

required by the protocol (a minimum of nine fine-wire placements).  Second it has not been 

quantitatively shown how the placement of surface and, more so, fine-wire needles affect hand 

shape and grasping.  However, it seems reasonable to assume that there is an effect, and the 

effect would possibly be greater if needle electrodes were placed in the intrinsic muscles as 

compared to the extrinsic muscles.  Thus, intramuscular recording was limited to the extrinsic 

hand muscles.  Since the hand is a small space and the intrinsic muscles are small, there 

existed a risk of cross-talk information by using surface electrodes in lieu of intramuscular fine-

wire electrodes.  In light of the high probability of cross-talk between neighboring muscles, 

abductor pollicis brevis (APB), flexor pollicis brevis (FPB), and opponens pollicis (OP) 

were considered to be one muscle group (TE – thenar eminence) for the purposes of 

these investigations, and were recorded as such.  Likewise, abductor digit minimi (ADM) 

and flexor digit minimi (FDM) were considered to be one muscle group (HTE – 

hypothenar eminence) and were recorded as such. 
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Table 4.1. Recorded Intrinsic and Extrinsic Muscles of the Hand 

 Muscle Function 
E

X
T

R
IN

S
IC

S
 

flexor digitorum 
superficialis (FDS) 

flexes 2nd phalanx of fingers (at PIPs); 
continued contraction flexes 1st phalanxes (at 
MCPs) and wrist 

flexor digitorum profundus 
(FDP) 

flexes terminal phalanx (at DIP); continued 
contraction flexes other phalanxes and wrist 

extensor indicis propius 
(EIP) 

extension of index finger (independent of other 
fingers) 

extensor digitorum 
communis (EDC) 

finger extension; abduction of index, ring, and 
little fingers, and to a lesser extent, the wrist 

extensor digit minimi 
(EDM) 

extension of little finger 

extensor pollicis longus 
(EPL) 

extension of 2nd phalanx of thumb (at IP) 

flexor pollicis longus (FPL) flexes 2nd phalanx of thumb (at IP); continued  
contraction flexes 1st thumb phalanx 

abductor pollicis longus 
(APL) 

thumb abduction; extension of 1st thumb 
phalanx (at MCP); wrist abduction 

IN
T

R
IN

S
IC

S
 

flexor pollicis brevis (FPB) flexes and adducts the thumb 

abductor pollicis brevis 
(APB) 

abducts the thumb to form right angle with palm 

opponens pollicis (OP) flexes the thumb metacarpal bone 

first dorsal interosseus 
(FDI) 

abducts the index finger from the midline of the 
hand 

flexor digiti minimi (FDM) flexes the little finger 

abductor digit minimi 
(ADM) 

abducts the little finger and flexes the proximal 
phalanx 
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Figure 4.1. Electromyography protocol. 

EMG signals were recorded from eleven extrinsic and intrinsic muscles.  Intramuscular 

(fine-wire) EMGs were recorded from FDP, FDS, EDC, EDM, EIP, EPL, APL, FPL, and 

FDI.  Surface EMGs were recorded from TE (consisting of the intrinsic thumb muscles) 

and HTE (consisting of the intrinsic pinky finger muscles).  Needle electrode placements 

were verified using low current electrical stimulation. 

4.2.2.3 Surface and Fine-Wire Electrode Placements 

All muscles in the subjects‟ dominant arms were initially located by palpation while subjects 

performed selected hand test maneuvers designed to primarily contract the muscle of interest.  

These test maneuvers were referenced from standard clinical electromyography (Perotto & 

Delagi, 2005) and anatomy (Gray, 1973) texts.  After marking the insertion sites with a non-

indelible marker, a standard disposable thirty-seven gauge monopolar tungsten probing needle 

was used to refine insertion locations and to determine the appropriate insertion depth.  Visual 

and audio feedback of the firing of motor units was sometimes used to aid in location of the 

muscle sites.  Bipolar fine-wire electrodes (inter-electrode distance on the order of 2 mm) were 
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then inserted mid-muscle belly using Basmajian‟s single needle technique (Basmajian & Stecko, 

1962), and in accordance with the electromyography text. Electrode placements were verified 

by observing the expected kinematic responses to low current electrical stimulation.  Standard 

surface electrodes were placed over the thenar (TE) and hypothenar (HTE) intrinsic hand 

muscle groups. 

4.2.3 Tasks and Data Collection 

Subjects were seated upright in a comfortable chair with the dominant arm and wrist 

supported.  Wrist movement was not restricted.  Subjects were instructed to shape their 

dominant hand into each of thirty-three static letters and numbers of the American Sign 

Language (ASL) set (Figure 4.2).  Dynamic letters „J‟ and „Z‟ were omitted, along with the 

number „0‟, which was visually the same as the letter „O‟.  During the electromyography phase 

of the study (prior to data collection), subjects familiarized themselves with the hand positions of 

the ASL set so that they would be consistent in performing the hand postures during the data 

collection phase.  Published literature has suggested that this learning phase gives ample time 

for subjects to learn to produce consistent hand postures congruent with that of fluent ASL 

spellers (Jerde et al., 2003, Weiss & Flanders, 2004). 

 



111 

 

 

Figure 4.2. Mimed letters and numbers of the American Sign Language (ASL) set. 

Subjects shaped their hand into each of thirty-three static letters and numbers of the ASL 

set.  Static letters were only used in the experiment protocol.  Hence, the letters „J‟ and 

„Z‟ were omitted from the study.  Also. The number „0‟ was omitted because it was 

visually the same as the letter „O‟.  Letters were presented to subjects in randomized 

order. 

 

Initiated by an audio cue, subjects were shown on a computer screen the letter and hand 

position to replicate.  Subjects had eight seconds to create and hold the specified hand posture.  

Subjects typically took one to two seconds to create the posture, and then held it for the 

remaining six to seven seconds.  At the end of the eight second period, the visual aid was 

cleared and an audio cue instructed the subjects to return to the rest position.  The next letter 

was presented after a two second rest period.  This rest period served to washout any potential 

effects the previous hand posture may have on the motor strategy used to produce the next 

hand posture. Subjects were instructed to only apply as much force necessary to maintain the 

hand in the given posture, and specifically were instructed to not co-contract their muscles 

beyond this required level.  Hence, the hand position and force level of posture was self-
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selected by each subject.  The investigator monitored subjects‟ performances for consistency of 

hand positions with the visual aid.  The presentation order of the ASL set was completely 

randomized so as to remove any effects that order could potentially have on the muscle 

coordination patterns used to produce the hand postures.  Each subject completed seven trials 

of miming the full ASL set, with a five minute break given in between each trial to minimize the 

possibility of fatigue.  EMG activities were recorded from the eleven aforementioned muscles 

during the entire phase of ASL miming.  Time, ASL letter, and EMG voltages were saved to an 

ASCII file for later processing. 

4.2.4 Data Analysis 

4.2.4.1 Pre-processing 

All EMG signals were filtered using a sixth-order Butterworth bandpass with [low, high] cutoff 

frequencies of [30, 600] Hz, and a second-order Butterworth notch filter with [low, high] cutoff 

frequencies of [59.5, 60.5] Hz.  To only capture the static phase of each mimed ASL posture, 

only the portions of EMGs from t = 2.5 sec to t = 5 sec per posture were used for the remaining 

analyses (Figure 4.3).  The root-mean-square (RMS) values of the resulting signals were 

computed over this range of static miming.  This RMS value was used as the representative 

EMG activity for each muscle.  The RMS values were normalized relative to the resting and 

maximum activities of the respective muscles observed during maximal voluntary contraction 

(MVC) tests, such that all resultant muscle activities ranged between zero and one.  Each 

miming of posture was represented as an eleven-dimensional vector in normalized muscle 

space, with each dimension corresponding to one of the recorded muscles.  Hence each full trial 

of a set of mimed postures was represented as a data matrix Vi {i = 1..7} of dimension 11 x 33 
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(muscles x number of postures).  The full data matrix V of recorded activity for each subject was 

thus of dimension 11 x 231. 

 

 

Figure 4.3. Sample of recorded EMG signals during miming of ASL postures. 

Subjects formed and held the instructed postures for 8 seconds, but only the steady state 

portion from t = 2.5 sec to t = 5 sec was analyzed.  The thirty-three postures were 

presented in random order within each trial, with a total of seven trials.  Recorded EMGs 

were bandpass and notch filtered, and the normalized RMS was calculated as the 

representation of muscle activity during the analyzed time frame. 
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4.2.4.2 EMG Pattern Separability and Repeatability – Discriminant Analysis 

A discriminant analysis (Santello et al., 1998, Santello & Soechting, 1998) was first performed 

to assess how distinct the EMG patterns associated with each posture were from one another, 

and consequently, how repeatable they were between trials.  This analysis represents the data 

in multidimensional muscle space and finds linear discriminant functions that serve to maximize 

the ratio of the inter-group to intra-group variances, for the purposes of maximally separating the 

data (Balakrishnama & Ganapathiraju).  In this work, discriminant analysis was implemented in 

two stages: first using all data points, and then second using a leave-one-out cross-validation 

method.  It is this second implementation that tests the validity of the discriminant groups by 

assessing the accuracy of classifying each posture in the proper group.  Reported for each 

subject are the classification accuracies using stage one (complete implementation) and stage 

two (cross-validation implementation). 

4.2.4.3 Descriptive Synergy Analysis 

Non-negative matrix factorization (NMF) was used to determine a set of dimensionally 

reduced basis vectors that could describe the full thirty-three letter, 7 trial EMG data matrix V of 

dimension 11 x 231.  The descriptive NMF algorithm is described in detail in section 3.2.2.3 and 

illustrated in Figure 4.4 (left hand side).  Briefly, estimates of the synergy (West) and source 

(Hest) matrices are determined by beginning with random estimates and then updating the 

estimates using equation 3.9.  Updating continues until an optimality criterion, in this case the 

Euclidean distance norm (equation 3.8) of the difference between the recorded data matrix (V) 

versus the estimated data matrix (West x Hest), is constant within a specified ε = 1e-5 for s = 20 

consecutive iterations. 
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Given a specified number of synergies n to estimate, the full data matrix (V) was randomly 

split into generation (Vgen) and cross-validation (Vval) sets such that five trials of each posture 

were in the generation set and two were in the cross-validation set. Synergy (Wn,gen) and source 

(Hn,gen) estimates were derived from the generation data set.  Wn,gen was then applied to the 

validation data set to generate Hn,val, where the update rules of equation 3.9 were applied to 

Hn,val but not Wn,gen.  To assess how much information was actually contained in the calculated 

synergies represented by Wn,gen, the cross-validation data (Vval) was also analyzed using a 

randomly generated exponentially distributed synergy matrix Wn,rnd.  Wn,rnd was also not 

updated while the corresponding Hn,rnd was updated according to equation 3.9.  For each set of 

{V, Wgen, Hgen} matrices, the overall accuracy of the estimates was quantified by the variance 

explained of the original data set V by the synergy and source estimates.  The metric of 

explained variance chosen is the standard coefficient of determination r2, which ranges from 0 

(i.e. 0% explained variance) to 1 (i.e. 100% explained variance).  For a given number of 

synergies n, the descriptive synergy analysis was run 50 times, and the trial that returned the 

greatest variance explained of Vval was the selected trial. 

With experimental data, the correct number of synergies is unknown.  Hence, the descriptive 

synergy analysis described above was performed with the estimated number of synergies n 

allowed to range from 1 to 13, resulting in an explained variance (EV) curve that related 

explained variance to number of estimated synergies.  The correct number of synergies was 

determined to be the knee of this curve i.e. the point at which estimating additional synergies did 

not significantly explain more of the data variance.  Specifically, this was determined to be the 

smallest n such that a linear fit of the EV curve, from n to 13, had a residual mean square error 

less than 5e-5.  Reported for each subject are the number of estimated synergies and the 

variance explained by the synergy set. 
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Figure 4.4. Flow chart of descriptive (left) and predictive (right) synergy analyses. 

The non-negative matrix factorization (NMF) model was used to estimate the synergies of 

the EMG patterns associated with ASL miming in both a descriptive and a predictive 

framework.  In the descriptive framework, all postures were used to estimate synergies, 

and the synergies were cross-validated.  In the predictive framework, the data was split 

into postures that served as predictors vs those that were predicted.  Synergies were 

estimated using the predictors, and the resultant estimates were used to predict the EMG 

patterns of the predicted postures.  The ratio of predictor vs predicted postures was 

systematically varied from 32:1 to 1:32, in an effort to deduce how many postures were 

necessary to form the full predictive framework. 

 

4.2.4.4 Predictive Synergy Analysis 

The descriptive synergy analysis serves to investigate if a dimensionally reduced set of basis 

synergies can describe the entire set of observed EMG patterns in miming of the ASL postures.  
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This analysis is consistent with what has been presented in much of the motor control literature.  

While necessary and informative, the results of the descriptive synergy analysis may be in part 

due to a simple fitting of the observed data.  An analysis investigating the prediction of the EMG 

patterns of new hand postures would be more powerful in discerning the validity of muscle 

synergies as a viable paradigm for EMG pattern recognition and myoelectric control.  To this 

end, a predictive synergy analysis (Figure 4.4, right hand side) was performed. 

Initially NMF analysis was used to determine the basis set of muscle synergies that could 

describe the EMG patterns of k = 32 predictor postures.  Given 33 total postures and k predictor 

postures, there are  
33
𝑘
  different combinations of sets of predictor postures.  Descriptive NMF 

analysis was applied to these predictor sets, which proceeded as described in section 4.2.4.3, 

resulting in Wpre,k and Hpre,k, and a corresponding explained variance of VEpre,k  The resultant n 

synergies of Wpre,k were then used to predict the EMG patterns of the set of predicted postures.  

Specifically, NMF was applied to the EMG patterns of the predicted ASL posture set, with only 

Hnew,k updated according to the described NMF rules, while Wpre,k was held constant.  The actual 

EMG data matrix of the predicted postures was then compared to the predicted EMG data 

matrix Vnew,k = Wpre,k x  Hnew,k, resulting in a variance explained value VEnew,k (i.e. r2) that was 

the measure of the predictive success of the synergy framework defined by Wpre,k. 

The above methodology was performed for k = 32 predictor postures down to k = 1 predictor 

posture.  The number of combinations of predictor versus predicted postures exponentially 

increases from k = 32..16 predictor postures, and then exponentially decreases from k = 16..1 

predictor posture.  The actual number of possible combinations C is given by equation 4.1. 
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Given the time necessary to process NMF on both the predictor and predicted EMG sets, it was 

unfeasible to run all combinations.  Hence out of all possible combinations of k predictors, 

twenty were randomly selected as representative sets.  The set which explained the most 

variance of the predicted EMG postures was chosen as the representative set.  Reported for 

each representative set are the numbers of synergies necessary to form the predictive 

framework, the variance explained of the predicted EMG postures, and the variance explained 

of the predicted EMG postures by a set of random synergies.  Also reported is the minimum 

number of synergies, and hence predictor postures, necessary to form an adequate predictive 

framework for all thirty-three of the ASL postures.  This minimum number of synergies was 

determined as that corresponding to the minimum number of postures which could explain 

greater than 90% of the variance in the predicted EMG posture set.   

The robustness of the estimated predictive synergies was investigated, both within 

combination sets of the same number of predictor posture, and across combination sets of 

differing numbers of postures.  Given a number of predictor postures k, 20 of  
33
𝑘
  were chosen 

for analysis.  Hence the choice of postures could determine the structure of the estimated 

synergies.  Furthermore, increasing k could potentially alter the structure of the estimated 

synergies.  To assess the robustness of synergies between different predictor sets, the 

estimated synergy sets were ordered using a best-matching algorithm.  The degree of matching 

between any two synergies was quantified using the normalized dot product, given in equation 

4.2.  Synergies were linked using a best-match algorithm in which the NDP was calculated for 

all pairs between two sets of estimates.  The pair with the highest NDP was deemed a match, 

and the process repeated until all synergies were linked that were matched above random 

chance. 
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Finally the robustness of synergies across the subject population was examined.  Each 

subject‟s predictive synergy framework could be composed of exclusively subject specific 

synergies.   Alternatively, there could be one synergy framework with high predictive power for 

all subjects.  Still, each subject‟s predictive framework could be composed of both general 

population and subject-specific synergies.  To assess this, the best-match algorithm was used 

to align synergies across the subject population. 

4.3 Results 

4.3.1 EMG Pattern Separability and Repeatability – Discriminant Analysis 

Discriminant analysis revealed that the EMG patterns associated with the thirty-three mimed 

ASL letters and numbers were discernable and repeatable across several trials.  The average 

discriminance percentages (i.e. classification accuracies) for the complete and cross-validation 

data sets were 81.8 ± 3.6% and 64.7 ± 5.3%, respectively.  Discriminance matrices (actual 

postures vs. predicted postures) for a representative subject are shown in Figure 4.5, and the 

discriminance percentages for all subjects are shown in Figure 4.6.  Discriminance was greater 

than chance (1/33), and many of the incorrect classifications were between posturally and 

visually similar letters, such as between the number „2‟ and letters „U‟ and „V‟, and between the 

number „6‟ and the letter „W‟ (see Figure 4.2). 
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Figure 4.5. Representative discriminance matrix for miming of ASL letters and numbers. 

The discriminance matrices (top) show that the EMG patterns for the thirty-three mimed 

ASL letters were distinct and repeatable across several trials.  The two discriminance 

matrices show the discernability of the EMG patterns for a representative subject.  The 

actual mimed letter is the column axis, and the predicted classification is the row axis.  

Perfect discriminance would be represented by a solid black diagonal surrounded by all 

white boxes.  The majority of the inability to discriminate the mimed postures showed up 

when trying to discriminate an „M‟ from an „N‟, a „2‟ from a „U‟ or „V‟, and a „6‟ from a „W‟.  

Visually these letters (bottom) are quite similar (see Figure 4.2), and so the discriminant 

inability is not surprising.  Overall though, the discrimination levels for both the complete 

and cross-validation data sets are significantly greater than chance (1/33). 
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Figure 4.6. Complete and cross-validated discriminance percentages for all subjects. 

The EMG patterns associated with the ASL letters were discernable and repeatable 

across the subject population. 

 

4.3.2 Descriptive Synergy Analysis 

Figure 4.7 shows an explained variance curve derived from NMF analysis of the EMG 

patterns recorded during miming of the ASL postures for a representative subject.  For this 

subject, the set of EMG patterns associated with the full set of mimed ASL letters could be 

described by 8 synergies, a reduction in dimensionality from the original 11-dimensional muscle 

set.  These sets of 8 synergies accounted for on average 97.4 ± 0.0% of the variance in Vgen 

and 97.0 ± 0.0% of the variance in Vval.  In contrast, the random synergy sets only accounted for 
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44.3 ± 15.4% of the variance in Vval, suggesting that the synergies estimated from the Vgen data 

set contained significant information about the EMG patterns in Vval, and hence the high 

explained variance was not completely the result of data fitting.  These high levels of explained 

variance were found across the entire subject population.  The average number of synergies 

necessary to describe the full ASL posture set across the subject population was 8.3 ± 1.3.  

Figure 4.8 reports the average explained variance for Vgen, Vval, and the random synergy sets 

for each subject, and shows that for a representative subject, the original EMG patterns were 

faithfully recreated by the descriptive NMF model. 
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Figure 4.7.  Explained variance curve derived from descriptive NMF analysis. 

Synergies were estimated from n = 1..13 using non-negative matrix factorization (NMF).  

NMF was applied to the generation data set, and the estimated synergies were validated 

using a cross-validation data set.  To assess how much information was contained in the 

estimated synergies, the cross-validation set was estimated using random synergies as 

well.  The variance explained by the estimates relative to the investigated data set was 

calculated for all estimates.  Clearly, there is significant information contained in the 

original synergy estimates, as seen by the fact that the random synergy curve (circle) is 

significantly less at all estimated synergies.  The cross-validation curve (triangle) is on 

par with the generation curve (square), suggesting that the calculated muscle synergies 

are robust across multiple trials of posture miming.  The correct number of synergies 

(highlighted in gray) was determined to be that point in the cross-validation curve in which 

the addition of more synergies did not significantly increase the amount of explained 

variance, based upon the mean-square-error of a linear fit. 
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Figure 4.8.  Variance explained by synergy estimates (all subjects). 

The variance explained using the cross-validation data was on par with that from the 

generation data.  Using random synergies to explain the cross-validation data resulted in 

significantly lower r
2
 values, suggesting that the extracted synergies contained significant 

information.  For each subject, the number of extracted synergies is shown in 

parentheses. 
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Figure 4.9. Recorded EMG patterns vs those estimated by the descriptive NMF model. 

The synergies and sources estimated by the descriptive NMF model were able to 

faithfully recreate the EMG patterns experimentally observed during miming of the static 

ASL letters and numbers. 

 

4.3.3 Predictive Synergy Analysis 

Figure 4.10 shows a subset of the explained variance curves resulting from the predictive 

NMF analysis for one characteristic subject.  As with the rest of the subject population, as the 

number of predictor postures increased from 1 to 32, the predictive power of the synergy 

framework increased i.e. the explained variance of the new predicted ASL postures increased.  

The number of synergies needed to define this predictive framework increased as well.  

However, a threshold was reached, where increasing the number of predictor postures did not 
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increase the number of synergies needed to define this predictive framework, nor did it 

significantly increase the variance explained of the new predicted hand postures.  This is 

illustrated in Figure 4.11, which shows data from one representative subject.  As the number of 

postures to be predicted increased from 1 to 20, and hence number of original predictor 

postures decreased from 32 to 13, the overall predictive power of the estimated synergies 

remained relatively constant and above 90%, and the number of estimated synergies held 

constant at 8.  However, the predictive power began to significantly diminish with greater 

increase in the number of predicted postures, and consequently a decrease in the number of 

original predictor postures and the number of estimated synergies.  The knee, chosen as the 

smallest number of original postures that still established a predictive synergy framework 

greater than 90%, was 13 postures, corresponding to 8 synergies.  Figure 4.12 shows similar 

plots for the remaining subjects.  For the entire subject population, the average minimum 

number of original postures necessary to establish a 90% predictive synergy framework was 

10.9 ± 1.7, corresponding to 7.9 ± 1.7 synergies.  This compares to the 8.3 ± 1.3 synergies 

found across the subject population from the descriptive NMF analysis of all 33 ASL postures. 
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Figure 4.10. Explained variance (EV) curves from the predictive synergy analysis. 

Synergies were estimated and validated („□‟ and „∙‟ curves) using the generative 

(predictor) ASL postures.  The EMG patterns of new ASL postures were predicted using 

both the estimated synergies („o‟ curve) and randomly generated synergies („∆‟ curve).  

The knee was determined based upon the validation curves, and is highlighted in gray.  

As the number of postures used to define the predictive synergy framework increased, 

naturally the number of synergies needed increased, as well as the explained variance of 

the predicted set.  However, there was no significant increase in predicted EV past a 

threshold of 13 generative postures (8 synergies) for this particular subject. 
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Figure 4.11. Composite results for predictive NMF analysis for one subject. 

Each line curve represents a separate phase of the predictive NMF analysis performed 

on one characteristic subject.  The line curves illustrate the variance of the EMG data 

sets of the predictor („●‟ curve, left y-axis, top x-axis) and predicted („♦‟ and „▲‟ curves, 

left y-axis, bottom x-axis) ASL postures explained by the estimated synergies, and the 

corresponding number of estimated synergies („■‟ plot, right y-axis).  The plots are 

aligned such that the n synergies used to estimate k generative postures were the same 

used to predict 33-k predicted postures.  Generally, above a threshold of a certain 

number of generative (i.e. predictor) postures, the predictive power of the estimated 

synergies did not significantly increase.  A knee was chosen such that the estimated 

synergies had a predictive power of at least 90%.  The knee for this subject was 13 

generative postures, corresponding to 8 synergies.  For comparison, the predictive 

posture of 8 random synergies was approximately 40%. 
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Figure 4.12. Composite results for predictive NMF analysis for remaining subject population. 

The average number of postures needed to establish a predictive synergy framework of 

90% across the subject population was 10.9 ± 1.7, corresponding to 7.9 ± 1.7 synergies.  

The knees for each subject (minimum 90% predictive power) are highlighted in gray. 
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The robustness of the synergies found at the knee for each plot in Figure 4.11 and Figure 

4.12 was examined both across combinations involving the same number of generative (i.e. 

predictor) postures, and across combinations involving varying numbers of predictor postures.  

Figure 4.13 shows the robustness of one subject‟s estimated predictive synergies across the 20 

different randomly selected predictor sets.  Robustness was quantified by the normalized dot 

product (NDP).  The figure shows that the majority of synergies exhibited low lability across the 

different combinations of predictor posture sets.  Average NDP for the estimated synergies 

across the different combination sets ranged from S = 0.85 to 0.99, compared to an expected 

value of S = 0.14 ± 0.11 for random synergies.  Similar plots for the remaining six subjects are 

shown in Figure 4.14.  Overall, within each subject, estimated synergies were generally robust 

to different predictor combinations. 

 



131 

 

 

Figure 4.13. Synergy robustness across 20 random combinations of predictor postures. 

The estimated synergies for one subject (bar plots, left column), and their robustness 

(right color plots).  Robustness (i.e. similarity) was assessed across the 20 different 

randomly selected combinations of predictor postures, and quantified using the 

normalized dot product (NDP), which ranged from 0 (no similarity – dark blue) to 1 

(perfect similarity – dark red).  The majority of synergies were highly robust despite the 

different combinations of selected predictor postures, as evidenced by the majority of the 

blocks on the right representing NDPs close to 1.  Actual robustness values for each 

synergy are shown on the far left as an S value.  All robustness values were significantly 

greater than expected by random chance (S” = 0.14 ± 0.11). 
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Figure 4.14. Synergy robustness plots for remaining subject population. 

 

The effect of the number of predictor postures on the robustness of the estimated synergies 

was as also quantified using the normalized dot product (NDP).  The synergies estimated at the 

knees (gray-shade) of the plots in Figure 4.11 and Figure 4.12 were compared to the synergies 

estimated at all other points.  Figure 4.15 shows for one characteristic subject the robustness of 
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the estimated predictive synergies, relative to increasing the number of postures used to define 

the predictive framework.  Again, the estimated synergies by and large proved highly robust to 

increasing the number of postures used to generate the synergies of the predictive framework.  

Adding additional postures did not change the structure of existing synergies.  Rather the 

same synergy structures were maintained, or new synergies were added to the framework.  

Figure 4.16 shows similar plots for the remainder of the subject population.  Again demonstrated 

is the robustness of the synergy structures in the midst of increasing the number of predictor 

postures. 
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Figure 4.15. Synergy robustness across increasing number of predictor postures (1 subject). 

Increasing the number of postures used to estimate the synergies of the predictive 

framework by and large did not alter the structure of the existing synergies.  Rather, the 

synergies proved robust to adding additional postures, or the addition of new postures 

simply added new synergies to the existing predictive framework. An „X‟ means that the 

synergy did not match another synergy in that compared set above random chance. 
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Figure 4.16. Synergy robustness across increasing number of predictor postures. 

 

Finally, the similarity of the synergy structures across the subject population was examined. 

The estimated synergies for each subject were aligned using the described best-match 

algorithm, based upon the normalized dot product, to determine if subjects exhibited the same 

predictive synergy framework, if each subject had a separate synergy framework, or some 
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combination of the two.  The threshold for similarity was two standard deviations above the 

similarity of randomly exponentially distributed synergies.  These synergies are shown in Figure 

4.17 – Figure 4.19.  Many synergies (W1, W3, W4, W5, W6, W7, W9, and W11) were general 

enough to exist across the majority of the subject population, while many others only showed up 

in individual subjects.  Examining the structure of these synergies shows that the general 

population synergies were sparser than the subject-specific synergies, and were usually 

dominated by one muscle, with some subject-dependent minor residual activity from peripheral 

muscles.  Synergy W1 primarily governs the activity of FDI, synergy W3 primarily governs the 

activity of FDS, synergy W4 primarily governs the activity of EDM and to a lesser extent EIP, 

synergy W5 primarily governs the activity of APL, synergy W6 primarily governs the activity of 

EIP, synergy W7 primarily governs the activity of the intrinsic TE group and to a lesser extent the 

intrinsic HTE group, synergy W9 primarily governs the activity of EPL, and synergy W11 primarily 

governs the activity of EDC balanced with the activities of TE and HTE intrinsic groups.  While 

these non-subject-specific synergies were not exhibited by all subjects, some of the observed 

subject-specific synergies were slight variants of these population synergies.  The structures of 

the non-subject-specific synergies are summarized in Table 4.2.  It should be noted that several 

individuals did exhibit subject-specific synergies that represented balanced activation of two or 

more muscles, such as W12 and W13 of SID3. 
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Figure 4.17. Estimated synergies for each subject (I). 

The estimated synergies defining the predictive framework for each subject are shown in 

each of the seven columns.  The synergies were aligned to determine which synergies 

were shared across the population versus which were subject-specific.  Many synergies, 

such as W1, W3, W4, W5, W6, W7, and W9 and W11 (Figure 4.18) were exhibited across 

the predictive frameworks of several subjects, while others such as W15 – W23 (Figure 

4.18, Figure 4.19), seemed to be specific to the coordination patterns of individual 

subjects. 
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Figure 4.18. Estimated synergies for each subject (II). 
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Figure 4.19. Estimated synergies for each subject (III). 

 

Table 4.2. Structures of synergies global to the subject population. 

 

Synergy # Subjects Primary Muscle Components 

W1 4 FDI 
W3 4 FDS 
W4 5 EDM (and EIP to a lesser extent) 
W5 4 APL 
W6 4 EIP 
W7 5 TE (and HTE to a lesser extent) 
W9 5 EPL 
W11 4 EDC (and TE and HTE to a lesser extent) 
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4.4 Discussion 

This work has investigated the power of a muscle synergy framework in predicting the EMG 

patterns of new static hand postures.  To the author‟s knowledge, only one major study (Weiss 

& Flanders, 2004) has examined the concept of muscle synergies as a dimensionality reduction 

paradigm for the production of a wide variety of hand postures.  Their investigation showed that 

a six-dimensional coordinate muscle space could be reduced to a three to four dimensional 

coordinate muscle synergy space, while describing 80-90% of the variance observed in the 

EMG data associated with grasping and ASL spelling.  While informative, this study failed to 

make a compelling case that the new framework established by their extracted synergies was 

useful within a physiological control paradigm.  The efficacy of this framework in predicting new 

hand postures, which speaks to their robustness and generalizability, is a testable and 

necessary hypothesis given the accepted definition of muscle synergies (Lee, 1984). However, 

it was not explored in their work.  In short, the work of Weiss & Flanders established that muscle 

synergies can form a descriptive framework for a wide variety of known hand postures.  The 

results of the current work described in this manuscript demonstrate that muscle synergies are 

robust and generalizable enough to predict the EMG patterns of new hand postures. 

4.4.1 Predictive Power of Muscle Synergies 

The nature of muscle synergies, as the concept has been presented in literature, is that they 

serve to reduce the dimensionality of the problem of muscle coordination.  Hence the muscle 

coordination patterns associated with a wide variety of intentional tasks could be solely 

composed of these motor primitives.  On one extreme, the neuromotor system could use a 

small set of synergies to construct all possible intentional tasks.  On the other extreme, every 
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possible intentional task could have its own set of governing synergies for muscle coordination.  

Given this second extreme, however, the dimensionality of control would exponentially increase 

with the addition of new tasks, contradicting one of the main advantages of the synergy concept.  

Hence, it seems more likely that, should synergies be a viable means of coordination, a small 

set of synergies would be able to account both for existing and new tasks.  Therefore, predictive 

power is a necessary property of muscle synergies. 

The results of this study show that 90% predictive power of new static hand tasks could be 

achieved with an average of as few as 11 static hand postures and 8 muscle synergies.  80% 

predictive power required on average 7 muscle synergies, reduced from 11 original dimensions.  

This is in contrast to the Weiss study that required 4 muscle synergies for 80% descriptive 

power, reduced from 6 original dimensions.  Of interest is that for all subjects, the predictive 

power of the muscle synergy framework reached an asymptote past the critical number of 

postures.  The addition of new postures to the generative (predictor) set did not increase the 

overall predictive power of the framework.  This, along with the fact that the predictive power 

with respect to the new hand tasks was comparable to that of the original hand tasks, suggests 

that each static hand task does not require its own set of synergies.  Rather, a limited set can 

account for these new postures.  Furthermore, as shown in Figure 4.11 and Figure 4.12, the 

number of synergies did not significantly increase past this critical number.  Hence, the 

extracted synergies were not posture specific, but rather contained information pertinent to the 

construction of the EMG activity of these new hand postures.  Had this not been true, the 

predictive power of the extracted synergies would have been on par with those of random 

synergies, also shown in Figure 4.11 and Figure 4.12.  This conclusion is in agreement with that 

of other researchers, who have shown that task-independent muscle synergies can be elicited 

from stimulating various sites within the frog spinal cord (Saltiel et al., 2001).  
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4.4.2 Structure of Muscle Synergies 

The synergies extracted from the mimed hand postures show that, within any given subject, a 

muscle can belong simultaneously to multiple synergies.  This is consistent with the muscle 

synergy model, and what has been observed in other muscle coordination studies of standing, 

locomotion, and grasping (d'Avella et al., 2003, Ting & Macpherson, 2005, Tresch et al., 1999, 

Weiss & Flanders, 2004).  Of interest is that the majority of synergies that were found to be 

shared amongst the subject population were very sparse in nature.  Each of the non-subject-

specific synergies (8 out of 23) seemed to primarily control the activity of an individual muscle.  

It seems thus that these synergies (actually not synergies but individuated muscles) may form a 

basic low-level paradigm of individuated muscle control that is common to the general 

population.  Higher-level paradigms of control involving synergies that co-activate multiple 

muscles may then be more subject-specific, depending on the neuromuscular architecture of 

each individual.  This possible hierarchy of control is in congruence with what has been 

proposed based upon cortical mapping studies, namely that there may be a level of somatotopic 

individuated control of the degrees-of-freedom of the hand superimposed over the distributed 

activation of neurons that coordinate multiple DOF (Schieber, 1999).  What is clear is that both 

types (individuated control vs synergy based control) exist and are utilized within an individual 

subject for predicting the EMG patterns of a wide variety of hand postures.  This may explain 

why other studies have reported what seems to be flexibility in the synergistic activities of two or 

more muscles (Macpherson, 1991, Maier & Hepp-Reymond, 1995b).  Depending on the task, 

low-level individuated control may be more pronounced than high level coordinated synergy 

control, and vice-versa. 
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4.4.3 Robustness of Muscle Synergies 

By using varying combinations of the possible  
33
𝑘
  sets of k predictor postures to estimate 

the predictive synergy framework, the robustness of the synergies to varying hand posture 

requirements was examined.  The majority of estimated synergies were remarkably stable 

despite different postures being included in the predictor set.  This suggests that the estimated 

synergies were by and large not highly dependent on which postures are used to estimate them, 

giving more credence to their task-independence.  There were two subjects, however, who each 

seemed to exhibit a single unstable synergy, in that the appearances of the synergies were 

dependent on which postures were included in the predictor set (Figure 4.14).  This seems to 

suggest that there are some synergies that were posture dependent, whereas the majority of 

synergies seem to be shared by a large number of the hand postures.  The estimated synergies 

also showed robustness to the addition of postures to the predictor set.  Adding new postures to 

the predictor set could have maintained the current synergy framework, augmented the current 

synergy framework by simply adding new synergies (increasing the dimensionality), or entirely 

altered the structure of some of the synergies in the current framework.  The fact that the 

synergy framework of subjects was not significantly altered in structure with the addition of new 

postures, as evidenced by the high similarity values in Figure 4.15 and Figure 4.16, further 

suggests that they are task independent, and not highly labile in the presence of new task 

demands.  

4.4.4 What is the “Correct” Number of Synergies? 

One of the major unresolved issues in dimensionality reduction problems is determining the 

appropriate number of underlying uncorrelated dimensions.  A wide variety of methods have 
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been employed in the literature, including that used in this investigation (mean square error of a 

linear fit), and thresholding at an arbitrarily decided value.  The methodology of deciding the 

“correct” number of synergies has the potential of affecting the structures of the estimated 

synergies and hence the results of these investigations.  Take for example the subject whose 

explained variance curve is shown in Figure 4.7.  Using the linear fit method, eight synergies 

were found to define the reduced dimensional space.  However, using a threshold of 90%, as is 

sometimes used in other investigations, the dimensionality of the synergy space becomes 6D.  

Using an 80% threshold, as was used in the Weiss and Flanders‟s study, the dimensionality is 

reduced to 3D or 4D.  Figure 4.20 shows how the number and structures of the synergies 

change depending upon the chosen method for estimation of the underlying dimensionality.  

While many of the synergies retain their structure, several disappear or become less sparse 

with a decrease in the cutoff threshold.  Thus, by decreasing the threshold, the synergy sets 

resemble groups of muscle activation more than individuated muscle control.  However, there is 

no real justification for choosing an arbitrary cutoff of 80% or even 90%.  It seems that the linear 

fit approach is a more systematic method of deciding the number of synergies because it 

determines the point at which more synergies do not significantly add to the explained variance.  

Thus, even though the synergies estimated using this method are more sparse and resemble 

control of individuated muscles, this is arguably a better representation of the control scheme 

implemented by the motor system. 
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Figure 4.20.  Structure of synergies wrt method of determining control space dimension. 

The number of synergies and the structure of the synergies were partially dependent on 

the mehod used to estimate the “correct” number of synergies. 
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4.4.5 Implications for Myoelectric Control 

As stated in the introduction, one of the primary motivations for investigating muscle 

synergies as a paradigm of myoelectric control is that it would negate the need of programming 

the EMG patterns of all possible hand postures into the control architecture.  Rather, using a 

known and finite basis set of controllable muscle coordination patterns, more complex EMG 

patterns and hence movements could be controlled.  What this investigation has done is show 

that the EMG patterns of new hand postures can be composed from a basic set of muscle 

synergies.  The activation of each of these synergies could potentially be tied to the control of a 

particular degree of freedom, and the individual could then control the prosthesis by volitionally 

activating individual synergies.  The issue of whether individuals can volitionally and accurately 

control individual synergies is addressed in a subsequent chapter.  However, first showing that 

new untrained hand postures could be constructed from a static set of finite synergies is 

necessary for the implementation of a synergy-based control paradigm. 

4.5 Conclusion 

Muscle synergies have been proposed as a means of control of the motor system to 

coordinate the many neuromuscular degrees-of-freedom.  While many studies have shown that 

muscle synergies can form a descriptive framework for a large number of tasks, this study has 

shown that, using a small number of hand postures, synergies can form a predictive and robust 

framework for a wide variety of hand postures.  Furthermore, the synergy structures remain 

relatively constant with the addition of new hand postures.  The sparseness of some of the 

synergies common to the subject population suggests that the neuromotor system may use a 
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dualistic approach for control, rather than exclusively synergies or individual muscles, 

depending on the task requirements.  

Muscle synergies have potential for use in myoelectric control because these simple building 

blocks of muscle coordination could be used to build more complex muscle coordination 

patterns and hence more complex movements.  This investigation has shown that the EMG 

patterns of new complex hand postures can be accurately produced from a small finite set of 

static robust muscle synergies.  Future work stemming from this investigation includes 

demonstrating that individuals can accurately control these synergies for myoelectric control.  

This issue is explored in a subsequent chapter of this manuscript. 
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5 Muscle Synergies Exhibit Scalability with Increasing 

Grasp Force 

5.1 Introduction 

Understanding how the central nervous system (CNS) coordinates the many degrees-of-

freedom (DOFs) associated with performing a task has been a long-standing problem in the 

area of motor control.  This issue of coordination has been termed “ill-posed” because of the 

biomechanical and neuromuscular redundancies in the anatomical structure (Bernstein, 1967).  

Nowhere is this redundancy better epitomized than in the control of the human wrist and hand.  

The wrist and hand form a complex and versatile system of twenty-seven bones and over thirty 

extrinsic and intrinsic multi-joint muscles (Gray, 1973), having twenty-two DOFs (Soechting & 

Flanders, 1997).  Much of this versatility can be seen in the hand‟s dexterity.  Dexterity has 

been defined as “…the essence of purposeful motor behavior … [entailing] all the ingredients of 

goal- and object-oriented actions, particularly manipulations that have been practiced and 

acquired” (Wiesendanger, 1999).  This goal and object-oriented action can be seen in the many 

grasp patterns that the hand forms.  Napier classified all static hand grasps into two general 

categories: “precision” and “power” (Napier, 1956).  Precision grasps are characterized by 

object contact primarily using the fingertips, and power grasps are characterized by object 

contact primarily using the palm (Johansson & Cole, 1992).  The means by which the CNS 

coordinates the hand musculature to solve the neuromuscular redundancy problem in producing 

these static multi-joint precision and power hand grasps at sub-maximal force levels is the focus 

of the present chapter. 
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Neuromechanical computer models of the hand and empirical evidence have indicated that 

maximal force levels of precision grasping are produced by a unique and subject-independent 

pattern of muscle activation, suggesting that the redundancy of control disappears due to the 

mechanical requirements of maximal precision grasping (Valero-Cuevas, Zajac & Burgar, 1998).  

Because of the muscular redundancy associated with finger control (i.e. fingers have more 

muscles than DOFs to be controlled), however, sub-maximal fingertip forces could potentially be 

produced by multiple muscle coordination strategies (Valero-Cuevas, 2000).  Prior research has 

proposed potentially conflicting paradigms describing the coordination of intrinsic and extrinsic 

hand musculature to achieve sub-maximal force levels of grasping.  Chao proposed that finger 

muscles are divided into functional classes (primary, secondary, and tertiary muscle groups), 

whose activation levels depend on the amount of load applied to the fingers (Chao, 1989).  

Studies of the contribution of finger muscles to isometric precision grasp force have also 

suggested functional groups of hand musculature (Maier & Hepp-Reymond, 1995a).  Other 

investigations have proposed that a flexible paradigm of task-specific muscle groupings (i.e. 

muscle synergies) may govern the coordination of muscles in precision grasping (Macpherson, 

1991, Maier & Hepp-Reymond, 1995b).  In contrast, three to four muscle synergies (a group of 

muscles whose relative activation levels are neurally coupled) have been reported to describe 

the patterns of muscle activity associated with the hand postures required to interact with a 

large number of everyday objects at user-determined force levels (Weiss & Flanders, 2004).  

Finally, other researchers have proposed a simpler governing control paradigm for sub-maximal 

force precision grasping, and have suggested that the patterns of muscle coordination are a 

simple scaling of that observed at maximal force grasping (Valero-Cuevas, 2000, Valero-

Cuevas, 2005). 
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Several studies have suggested that the EMG patterns associated with a wide variety of 

automatic and volitional control tasks of the neuromotor system can be decomposed into a 

dimensionally reduced set of muscle synergies (d'Avella et al., 2006, Ting & Macpherson, 2005, 

Tresch et al., 1999).  However, not all properties of the muscle synergy groups are clear or 

intuitive.  One necessary behavior of muscle synergies in accordance with the neuromotor 

synergy hypothesis is that they exhibit the property of scaling.  Scaling implies that as the 

activation level of a given synergy is increased, the structure of the synergy remains intact (i.e. 

muscles retain their relative levels of activation) (Lee, 1984).  Furthermore, scaling implies that 

the set of synergies employed to perform a task stays constant, while the synergy activation 

levels scale with the increase in the force requirements of the task.  Thus, this investigation 

aims to explore the scaling of muscle synergies in static power and precision hand grasp tasks 

of sub-maximal isometric force levels.  Specifically, it was hypothesized that the coordination 

patterns (CP) used to produce the same multi-digit grasp at varying isometric force levels are 

statistically linearly scaled versions of a single characteristic vector.  The alternative hypothesis 

is that statistically different muscle coordination strategies are used to produce the same multi-

joint grasp pattern at varying isometric force levels.  This hypothesis has been examined in end-

point precision grasping as previously described, but not extensively in multi-digit whole hand 

grasping.  The investigator extends this hypothesis to suggest that the muscle synergies 

underlying the decomposition of these coordination patterns linearly scale with increasing grasp 

force.  Within this hypothesis, the following three questions are examined. 

 How well is the magnitude of the CP vector linearly correlated with the grasp force level 

over the investigated force range? 

 Is the direction of the CP vector, and correspondingly the muscle coordination strategy, 

invariant to isometric force level for a given grasp? 
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 Finally, how well are the activation levels of the muscle synergies associated with hand 

grasping correlated to grasp force?  Alternatively, is the correlation poor and/or 

piecewise, suggesting that different synergies are better suited for different force levels 

of grasping? 

5.2 Methods 

5.2.1 Subject Information 

Thirteen research subjects (four women, nine men, age 28.6 ± 8.0 yrs), twelve of which were 

self-described right-hand dominant versus one self-described as left-hand dominant, 

participated in this study.  No subject had known history of any neuromuscular disorders.  All 

subjects gave informed consent to the procedures as approved by the Northwestern University 

Office for the Protection of Research Subjects (NUOPRS) Institutional Review Board.  Subjects 

are referred to by their Subject ID number (SID1–13).  

5.2.2 Maximal Voluntary Grasp Strength 

The maximal voluntary grasp (MVG) strengths of cylindrical, lateral, palmar, and tip grasping 

(Figure 5.2) were tested for each subject.  Maximal power (cylindrical) grasping strengths were 

recorded using a standard Sammon‟s Preston (Bolingbrook, IL) clinical hand dynamometer, 

instrumented with a Honeywell (Acton, MA) Mediamate pressure transducer.  Maximal precision 

grasping strengths were recorded using an in-house fabricated pinch gauge instrumented using 

a standard fifty-pound load cell from Load Cell Central (Monroeton, PA).  MVGs were recorded 

both pre and post insertion of the percutaneous (fine-wire) electrodes used for muscle activity 

recording.  While some literature has reported that fine-wire electrodes do not affect maximal 
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grasp strength (Burgar et al. 1997; Valero-Cuevas 2000), it has been the author‟s personal 

experience that, due to the large number of percutaneous electrodes used in the current study, 

MVGs could potentially be affected.  The maximal grasp strengths pre and post fine-wire 

insertion are reported for all grasp types.  In addition, subjects were instructed to perform 

maximal voluntary movements of finger extension, adduction, and abduction, and general 

maximal excursion of hand movements.  MVG forces recorded post fine-wire insertion were 

used as reference points during the remainder of the protocol and data analyses, and the 

associated maximal electromyographic (EMG) activities were used in the analyses to normalize 

the recorded muscle activities during the experimental tasks. 
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Figure 5.1. Instrumented gauges for grasp force measurements. 

(Left) Power grasp forces were measured using an instrumented clinical hand 

dynamometer.  (Right) Precision grasp forces were measured using an in-house 

fabricated pinch gauge. 

5.2.3 Electromyography 

Electromyography recordings were performed as described in section 4.2.2 

(Electromyography) of this manuscript.  Briefly, EMG signals were recorded using bipolar 

intramuscular wires from an eleven-muscle set consisting of FDS, FDP, EIP, EDC, EDM, EPL, 

FPL, APL, FDI, and the thenar (TE) and hypothenar (HTE) eminences, as shown and described 

in Figure 4.1 and Table 4.1.  Signals were recorded at 3000 Hz using a Noraxon (Phoenix, AZ) 

Telemyo 2400R system, and processed through a 20 – 1000 Hz analog bandpass filter with a 

gain of 2000.  The data were recorded and visualized using an in-house custom built virtual 
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instrument interface in National Instruments (Austin, TX) LabVIEW Developer‟s Environment ver 

7.2.  Raw EMG was saved in a standard ASCII file for further processing. 

5.2.4 Tasks and Data Collection 

Study participants were seated comfortably in an upright chair with the dominant arm and 

wrist supported, and were instructed to perform a force-tracking task using each of four hand 

postures: cylindrical, lateral, palmar, and tip (Figure 5.2A-D).  Each subject randomly 

determined the order of the performed grasps.  The force-tracking task consisted of tracking a 

force curve composed of randomly ordered force plateaus, ranging between 5% and 50% MVG 

at 5% step intervals (Figure 5.2E).  The plateau was three seconds in duration, with a two-

second rest period between consecutive plateaus.  This rest period served to washout any 

potential effects the presentation order of force may have had on the coordination strategies 

chosen by the motor system.  An on-screen trace line that corresponded to the current grasp 

force level was used for visual feedback.  Data from the middle two seconds of constant force 

activity were chosen for further analysis (gray sections of Figure 5.2E).  Subjects performed 

fifteen trials of each of the ten force levels for a total of 150 randomly ordered trials per grasp.  

Each grasping task took approximately thirteen minutes to complete.  Subjects were allowed as 

much time as desired to rest between grasping tasks to prevent muscle fatigue, and typically 

took between five and ten minutes. 
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Figure 5.2. Hand postures and force-tracking task. 

Subjects shaped their dominant hand into each of four hand postures: A) Cylindrical B) 

Lateral C) Palmar D) Tip.  E) Using each posture, subjects performed a force-tracking 

task in which they were visually guided to range the grasp strength between 5% and 50% 

of their maximum voluntary grasp (MVG) strength at 5% intervals, with the order fully 

randomized.  Illustrated is a typical trace of five out of 150 tracking attempts for a given 

posture.  The force-tracking curve (black dotted line) consisted of 60% duty cycle trials of 

length 5 seconds.  Cylindrical grasp force was measured using an instrumented hand 

dynamometer, and lateral, palmar, and tip grasp forces were measured using an 

instrument pinch gauge.  Only the middle two seconds of steady state force production 

(gray regions) were further analyzed. 

5.2.5 Data Analysis 

Before further analysis, all recorded EMGs were first bandpass (30 Hz – 600 Hz) and notch 

filtered (59.5 Hz – 60.5 Hz).  The root-mean-square (RMS) values of the resulting signals were 

computed over the middle two seconds of constant force grasping.  This RMS value was used 

as the representative EMG activity for each muscle.  This value was normalized relative to the 

resting and maximum activities of the particular muscle observed in all trials of all experimental 
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tasks, such that the resultant muscle activities ranged between zero and one.  Each trial of 

constant force was represented as an eleven-dimensional vector in normalized muscle space, 

with each dimension corresponding to one of the investigated muscles.  Each data matrix of 

recorded activity (VCYL, VLAT, VPAL, and VTIP) therefore was of dimension 11 x 150 (muscles x 

observations).  There were a few instances when subjects did not adequately maintain the 

proper amount of grasp force, and these multivariate outliers were removed from further 

analysis using the Mahalanobis distance metric (Filzmoser, 2004, Rousseeuw & Vanzomeren, 

1990a, Rousseeuw & Vanzomeren, 1990b). 

5.2.5.1 Effect of Fine-Wire Electrodes on Maximal Voluntary Grasp (MVG) Strength 

For each grasp type, a pair-wise t-test was performed to determine if there was a statistical 

difference in the pre- versus post- fine-wire maximal voluntary grasp strengths across the 

subject population.  A pair-wise t-test was also performed with pooled data from all grasp types 

to determine whether insertion of fine-wire electrodes significantly affected general hand grasp 

strength.  Statistical significance was assessed at the [α, β] = [0.05, 0.85] significance level.  

Analyses were performed using SPSS, Inc.‟s (Chicago, IL) SPSS version 15.0 statistical 

software package. 

5.2.5.2 Correlation of CP Vector Magnitude to Grasp Force 

The relationship between grasp force (GF) and muscle coordination pattern magnitudes was 

first quantified to determine if the two were linearly proportional.  For each grasp, the magnitude 

of the coordination pattern vectors was calculated for all trials of each desired grasp force level j 

using the Euclidean norm, given in equation 5.1.  A linear regression was performed per grasp 

type per subject on grasp force versus coordination pattern (CP) magnitude (equation 5.2), 
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returning a Pearson coefficient (r) to characterize the degree of linear correlation between the 

two.  The population averaged Pearson correlation coefficient is reported for this analysis. 
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5.2.5.3 Variance of CP Vector Direction wrt Grasp Force 

To systematically assess whether grasp force had a significant effect on the direction of the 

coordination pattern vector for the subject population, a repeated measure multivariate analysis 

of variance (RM-MANOVA) was performed on the full thirteen-subject data set, with each 

subject‟s response per force level represented by an optimal trial.  The optimal trial at each 

force level was determined to be that in which the subject‟s average grasp force minimally 

deviated from the targeted grasp force level.  The trial for each force level was represented as a 

unit normalized eleven-dimensional vector of muscle activity, so that the CP vector magnitude 

would not affect the results of the statistical test.  Hence the only differences in the vector would 

be attributable to direction, which would signify different coordination patterns.  Conceptually 

similar to a repeated measures analysis of variance (RM-ANOVA), the RM-MANOVA analysis 

served to test if the systematic variance observed in the CP vector directions due to the effect of 

grasp force was significantly greater than the unsystematic variance due to expected 

differences in the subject population.  In other words, this analysis tested if the differences 

observed in the CP vector directions relative to grasp force level were due to chance.  The null 

hypothesis that grasp force had no effect on the coordination pattern vector, and hence the 

observed differences were due to random chance, was tested at the [α, β] = [0.05, 0.85] 
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significance level.  If the RM-MANOVA test returned a statistically significant p-value, eleven 

univariate repeated measure analysis of variance (URM-ANOVA) tests were performed.  These 

tests served to determine if the normalized activity of each individual muscle statistically differed 

between the investigated force levels, thereby determining the cause(s) of the differences in 

vector directions, and hence the root of the differences in muscle coordination patterns. 

5.2.5.4 Activations of Muscle Synergies wrt to Grasp Force 

An analysis of the relationship between grasp force and the activation levels of the underlying 

synergies composing the EMG patterns of grasping was performed on seven of the thirteen 

subjects.  To perform this synergy analysis, the span of investigated hand postures was 

increased by including EMG data associated with miming of 33 letters and numbers of the ASL 

posture set.  This EMG data was the same data acquired from the seven subjects in the 

previous study investigating the predictive power of muscle synergies, described in Chapter 4: 

Muscle Synergies as a Predictive Framework for EMG Patterns of Static Hand Postures.  

Briefly, subjects performed seven trials of miming each of the 33 ASL postures (Figure 4.2), 

presented in randomized order.  Subjects mimed each posture for eight seconds, with two 

seconds in between each posture.  All eleven EMG signals were filtered using a sixth-order 

Butterworth bandpass filtered [30, 600] Hz, and notch [59.5, 60.5] Hz.  RMS values were 

calculated on the static portion of the posture mimes (t = 2.5 sec to t = 5 sec), which were then 

normalized relative to the resting and maximum activities of the respective muscles observed 

during maximal voluntary contraction (MVC) tests. The full data matrix VASL of recorded activity 

for each subject was thus of dimension 11 x 231.  Thus the full data matrix V = [VASL VCYL VLAT 

VPAL VTIP] of both the posture miming and force-tracking tasks was 11 x 831. 



159 

 

Non-negative matrix factorization (NMF) (Lee & Seung, 1999, Lee & Seung, 2001) was used 

to calculate the underlying synergies of the EMG patterns associated with the postures and 

grasp force levels of the force-tracking task.  The data matrix V was separated into a synergy 

generation matrix Vgen and a cross-validation matrix Vcv.  Vcv (11 x 180) consisted of 30% of the 

trials from the force-tracking task of each posture, while Vgen (11 x 651) consisted of the 

remaining force-tracking trials and the data from the ASL posture miming task.  Synergy and 

source matrices Wgen and Hgen, respectively, were calculated of Vgen, using the objective 

function and multiplicative update rules of equations 3.8 – 3.9.  The synergies Wgen were 

validated on Vcv by estimating Hcv while holding constant Wgen.  The validity of each estimation 

was quantified by the amount of variance explained (VE) in the original data matrices Vgen and 

Vcv by the estimated matrices Vest,gen = Wgen x Hgen, and a cross-validation matrix Vest,cv = Wgen x 

Hcv, respectively.  n synergies were estimated, with n ranging from one to thriteen, and the 

appropriate number of synergies n was determined to be the knee of the VE vs n curve.  The 

knee was defined to be that point in which adding more synergies did not significantly increase 

the amount of variance explained by the muscle synergy model.  Statistically, this was the 

smallest n such that a linear fit of the VE curve, from n to 13, had a residual mean square error 

less than 5e-5.  The determined matrix of synergy activation coefficients H were plotted versus 

the grasp force for each grasp type to determine the linear relationship between the two.  

Reported for each determined synergy is the correlation coefficient of its activation level with 

grasp force, along with the amount of variance explained by the synergy. 
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5.3 Results1 

5.3.1 Effect of Fine-Wire Electrodes on Maximal Voluntary Grasp (MVG) 

Strength 

Paired t-test analyses comparing MVG strength pre and post fine-wire insertion revealed that 

insertion of the fine-wire electrodes had a statistically significant effect (p < 0.05) across the 

subject population.  Average MVG values [pre-insertion, post-insertion] in Newtons (mean ± SD) 

for cylindrical were [517.1 ± 95.7, 407.8 ± 113.4], and for lateral were [103.8 ± 18.6, 74.7 ± 

13.6].  Significance of the fine-wire effect was observed (p < 0.05) for both the cylindrical and 

lateral grasps.  Specific p-values for each grasp are reported in Table 5.1. 

 

Table 5.1. Effect of Fine-Wire Electrodes on MVG Strength: Paired T-test Analysis 

 

Grasp 
Pre minus Post MVG 

Mean ± SD  (N) 
t df P 

Cylindrical 109.4 ± 87.0 4.4 11 0.001 
Lateral 29.1 ± 17.7 5.7 11 < 0.001 

 

                                                
1
 The results for the cylindrical and lateral grasp patterns are reported in this section, while the results for 

the palmar and tip grasps are reported in Appendix A.  The reason for this is extraneous movements of 

the hand not contributing to the grasp force were generally more restricted in the cylindrical and lateral 

grasp patterns.  In the palmar and tip grasp patterns, non-involved digits were not restricted in the study, 

thereby negating the isometric nature of the force-tracking task and potentially introducing confounding 

variables into their results.  In hindsight, these extraneous digits should have been restricted for 

unconfounding and interpretable results.  Nevertheless the results for these two grasps (palmar and tip) 

are reported in Appendix A, but not compared to the results of the isometric force tracking tasks using the 

cylindrical and lateral grasps.  
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5.3.2 Correlation of CP Vector Magnitude to Grasp Force 

The linear regression of grasp force versus coordination pattern (CP) vector magnitude 

resulted in average (mean ± SD) Pearson correlation coefficient (r) values for the cylindrical and 

lateral grasps of 0.94 ± 0.04 and 0.91 ± 0.08 respectively.  The correlation coefficient is the 

equivalent of the standardized coefficient β1 in equation 5.2.  The corresponding adjusted r2 

values, quantifying how much of the observed variance in grasp force was explained by the CP 

vector magnitude, were 0.89 ± 0.07 and 0.83 ± 0.13, respectively.  Both correlation values were 

statistically significantly different from zero (p < 0.05).  Hence as expected, grasp force was 

significantly linearly correlated with the magnitude of the muscle coordination pattern vector 

associated with both the cylindrical and lateral multi-joint grasps. 

5.3.3 Variance of CP Vector Direction wrt Grasp Force 

The working hypotheses tested were that for each of the hand postures, the force vectors 

representing each muscle coordination pattern were scaled versions of a single characteristic 

vector and hence did not statistically differ with respect to direction i.e. the vectors lay in a one-

dimensional subspace.  The Wilks‟s Lambda (Λ) and p-values of significance are reported for 

each grasp.  The Λ statistic is a multivariate version of the standard F-statistic and is 

formulaically transformed such that it has an approximate F-distribution with the appropriate 

degrees-of-freedom, resulting in a standard p-value (Bock, 1975, Bray & Maxwell, 1985).  For 

the cylindrical grasp, the RM-MANOVA analysis resulted in Λ = 0.342 and p = 0.142.  Hence, 

the vector representations of the coordination patterns at different force levels of the cylindrical 

grasp were not statistically different with respect to direction across the subject population.  
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Analysis of the lateral grasp resulted in Λ = 0.143 and p < 0.001.  Hence, for this precision 

grasp, the vector representations of the muscle coordination patterns at the varying force levels 

were statistically different with respect to direction, thereby implying that across the subject 

population, statistically different muscle coordination strategies were used with respect to 

precision lateral grasp force level.  The RM-MANOVA was followed up with a univariate 

repeated measure ANOVA (URM-ANOVA) for each muscle to determine which muscle(s) 

caused the significant differences observed in the directions of the muscle coordination vectors 

of lateral grasping.  This analysis reported the activities of TE (p = 0.003) and FPL (p = 0.012) to 

be significantly different between the force levels of lateral grasping, and that of EDC (p = 

0.064) was borderline significant. 

5.3.4 Activations of Muscle Synergies wrt to Grasp Force 

The activation levels for each estimated synergy relative to cylindrical and lateral grasp forces 

are plotted in Figure 5.3 for a representative subject.  Shown with each plot is the amount of 

variance explained by the particular synergy-activation level combination for the cylindrical and 

lateral grasps.  A linear regression revealed the extent to which the activation levels of the 

synergies were correlated with grasp force, along with p-values assessing the significance of 

the regression slope. 
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Figure 5.3.  Synergy structures and activation levels for a representative subject. 

Bar plots in column one show the structure of the synergies extracted from the ASL 

posture miming and force-tracking tasks.  Scatter plots in columns two and three show 

the activation level of each synergy relative to cylindrical and lateral grasping forces, 

respectively.  The amount of explained variance (EV) of each synergy-activation level 

combination is shown on each graph as a percentage.  A linear regression of activation 

level versus grasp force revealed the significance of the relationship between the two.  

Associated correlation (r) and significance (p) values are shown to the left of each plot.  

In the cylindrical grasp, the first three to four synergies (i.e. most variance explained) 

were typically highly correlated, while only the first two synergies were highly correlated 

with lateral grasp force.  As the amount of variance explained by successive synergies 

decreased, the correlation between activation level and grasp force generally decreased. 
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For this representative subject, the top three to four synergies were moderately to highly 

significantly correlated with cylindrical grasp force, while the top two synergies were moderately 

to highly significantly correlated with lateral grasp force.  The level of correlation seemed to 

decrease with a decrease in the amount of variance explained by the synergy.  Note that the 

most important synergies (i.e. those that explained the most variance) were not necessarily the 

same for the two grasp types.  For example, the activation level of synergy W1 was highly 

correlated (r = 0.95, EV = 65.4%) with cylindrical grasp force, while it was very weakly 

correlated with lateral grasp force (r = 0.25, EV = 0.9%).  In contrast, the activation level of 

synergy W2 was highly correlated with lateral grasp force (r = 0.95, EV = 77.1%), while it was 

much less correlated with cylindrical grasp force (r = 0.63, EV = 4.2%).  Figure 5.4 reports the 

average variance explained across the subject population for the first four synergies of each 

subject.  Figure 5.5 shows the population averaged correlations between these ordered 

synergies with cylindrical and lateral grasp forces.  Again, across the subject population, the 

correlation of each synergy‟s activation with grasp force seemed to decrease with decreasing 

importance of the synergy to the task (i.e. decreased explained variance). 
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Figure 5.4.  Population averaged explained variances of synergies for ASL and force-tracking. 
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Figure 5.5.  Population averaged correlations of synergy activations to exerted grasp force. 

Shown are the correlation values for the activation levels of synergies W1 to W4, and the 

remaining synegries.  Synergies are numbered in order of most explained variance of the 

force-tracking task using each grasp type.  As the percentage of variance explained 

decreases (Figure 5.4), the correlation of activation level also decreases.  Nevertheless, 

the activation levels of the first three to four synergies are moderately to highly correlated 

with cylindrical grasp force, while the first the activation levels of the first two synergies 

are moderately to highly correlated with lateral grasp force. 

 

Functionally, the synergies that exhibited the most consistent scaling of activation level with 

grasp force consist of the muscles that one would expect to be relevant to the specified task.  

For example, the data of the representative subject illustrated in Figure 5.3 shows that for the 

cylindrical grasp, the two most dominant and scalable synergies were ones that primarily 

controlled activation of the finger flexors (FDS and FDP), and one that primarily controlled index 

finger abduction (FDI).  The two most dominant and scalable synergies for the lateral grasp 
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were ones that primarily controlled intrinsic thumb flexion and abduction adduction (TE), and 

one that primarily controlled index finger abduction (FDI).  Similar dominant synergies were 

found in other subjects, with some subjects additionally exhibiting dominant and highly scalable 

synergies involving the extrinsic thumb flexor (FPL) and extensor (EPL) for one or both of the 

cylindrical and lateral grasps. 

 

5.4 Discussion 

5.4.1 Main Findings 

This investigation has sought to understand the relationship between muscle coordination 

patterns, the activation levels of the underlying muscle synergies, and sub-maximal levels of 

grasping force in multi-joint precision and power hand grasp patterns.  Much of the current 

literature has reported somewhat differing views on the paradigms of control of sub-maximal 

muscle coordination, particularly concerning control of endpoint index finger forces.  This study 

has expanded the investigation from control of forces of a single endpoint to include whole hand 

grasp force control in multi-joint grasp patterns.  This study is additionally unique because it has 

examined these muscle coordination patterns incrementally over a wide range of grasp forces.  

Finally, it has examined these patterns within the context of a muscle synergy paradigm, and 

specifically sought to understand how the activation of muscle synergies are affected by overall 

hand grasp force.  Perhaps one limitation of the current investigation, and of all investigations 

that use fine-wire electrodes to record EMG activity, is that due to the large number of 

percutaneous electrodes, the manner in which the research subjects performed the specified 

hand tasks may have been adversely affected.  It was clear that the full set of inserted 
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electrodes affected the maximal voluntary grasp (MVG) force for the hand patterns, though no 

subject reported any significant pain while performing the experimental tasks.  Hence, it was 

assumed that the recorded muscle coordination patterns were indicative of that which the 

subjects would normally use in whole hand grasping. 

The main findings of this investigation are that first, the muscle coordination patterns 

associated with isometric cylindrical hand grasping at sub-maximal force levels were statistically 

a simple result of linearly scaling a single coordination pattern, while this was not the case for 

lateral precision grasping.  The magnitudes of the coordination patterns did seem to linearly 

scale with an increase in exerted force using either grasp.  Furthermore, the extracted muscle 

synergies that serve as the basis vectors (i.e. primitives) for these EMG patterns generally 

scaled with increasing grasp force.  Specifically, the top three to four synergies exhibited linear 

scaling of activation levels with increasing cylindrical grasp force, while only the first two 

seemed to exhibit linear scaling of activation levels with increasing lateral grasp force.  The 

degree of correlation of activation level to grasp force level was directly related to the amount of 

variance explained by the synergy. 

5.4.2 Scaling of Activation Coefficients 

The observed muscle coordination patterns (CP) were represented as vectors in EMG space, 

possessing both magnitude and direction.  The magnitudes of these vectors were indicative of 

the overall grasp force levels.  It is well established that muscle activity cannot be considered 

linear over the entire contraction range due to changes in muscle properties resulting from 

changes in sarcomere length (Basmajian & De Luca, 1985, Valero-Cuevas, 2000, Zajac, 1989).  

However, the tasks specified in this investigation only required subjects to produce isometric 

force contractions, where the muscle lengths would be at most insignificantly changing, and 
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linear relationships could be expected between force and individual muscle activities (Lawrence 

& Deluca, 1983, Maier & Hepp-Reymond, 1995a).  Thus, even given the possibility that the 

relative lengths between muscle belly and accompanying tendon could slightly vary in the 

isometric task, it was reasonable to expect that the relationship between grasp force and the CP 

vector magnitude would be linear. 

What was not necessarily clear to expect was that the activation levels of the underlying 

muscle synergies would linearly scale with grasp force.  At least three scenarios could have 

occurred.  The first is that all synergies underlying the EMG patterns of a grasp could simply 

linearly scale with an increase in the exerted grasp force.  This would result in a force invariant 

EMG pattern, whose overall magnitude would also scale tightly with grasp force.  Such a result 

would be in congruence with what has been reported in some end-point force production tasks 

(Valero-Cuevas, 2000, Valero-Cuevas, 2005).  A second scenario would be that the dominant 

synergies would scale linearly with grasp force, while the lower-order synergies would maintain 

a constant level of activation, or be more variable in activation.  This would suggest that 

subjects actively modulate these important synergies for the given hand grasp task, and that the 

observed variability would be due to these lower-order unmodulated synergies.  The well 

modulated synergies could be considered to comprise a controlled manifold, while the variable 

synergies could be considered to comprise an uncontrolled manifold (Latash, Scholz, Danion & 

Schoner, 2001, Latash, Scholz & Schoner, 2002, Shim, Latash & Zatsiorsky, 2003, Zatsiorsky & 

Latash, 2004).  A third scenario would be that due to the potentially different biomechanical 

requirements of producing a multi-joint grasp at higher force levels, such as joint stabilization, 

the activation level of synergies could scale in a non-linear manner.  They could also scale in a 

piecewise manner, where different and/or more synergies are recruited at higher force levels, 

due to an increase in the recruitment of different motor unit pools.  This could potentially result 



170 

 

in what some other researchers have suggested to be flexibility in the muscle synergy 

paradigm, lack of fixed muscle synergies for varying task requirements, and/or load-dependent 

muscle groupings (Buchanan et al., 1986, Chao, 1989, Macpherson, 1991, Maier & Hepp-

Reymond, 1995b, Soechting & Lacquaniti, 1989).  The muscle synergies underlying the 

cylindrical force-tracking task generally followed scenario one.  The activation levels of the 

dominant synergies scaled well with increasing grasp force.  This reinforced the results of the 

RM-MANOVA test, which showed that the overall EMG coordination pattern for cylindrical 

grasping was invariant to force level.  Any variability seen in the data was due to random 

chance, that is likely attributable to the remaining synergies that explained less than two percent 

of the variance in the data.  The activation levels of only the top two synergies underlying lateral 

grasping at varying force levels scaled well with force (scenario two).  This could thus explain 

why there was a statistically significant difference in the overall EMG coordination patterns, as 

determined by the RM-MANOVA test.  The non-scaling synergies explain greater than 10% of 

the data variance, and hence could account for significant variations in the coordination pattern 

vector direction.  

5.4.3 Implications for Myoelectric Control 

Scalability of inputs in myoelectric control paradigms is important because it allows for 

implementation of proportional control.  The speed of the motors of the controlled device is 

directionally proportional to the magnitude of the input signal.  The fact that the primary 

synergies in a power grasp have been shown to scale with increasing grasp force (and hence 

force of muscle contraction) suggest that the synergy paradigm could be used to implement 

proportional control for power grasping.  However, this is less promising in the precision 
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grasping case because only the first two synergies scale well with increasing force of muscle 

contraction. 

5.5 Conclusion 

As stated in the introduction, scaling of muscle synergies is a necessary property of the 

neuromotor synergy hypothesis (Lee, 1984).  The muscles within a synergy should maintain the 

same relative activation levels, and the synergies involved within a task should remain 

consistent with an increase in the task force requirements.  The results of this investigation 

show that the dominant synergies involved in cylindrical and lateral force-tracking tasks do 

linearly scale with grasp force.  This scaling thus possibly allows for implementation of 

proportional control of myoelectric devices. 
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6 Independent and Simultaneous Volitional Control of 

Muscle Synergies 

6.1 Introduction 

Myoelectric control is a standard of practice for the actuation of electrically powered devices 

such as upper-limb prostheses and teleoperated robotic arms.  The success of myoelectrically 

controlled devices is largely dependent both on the efficacy of the elicited myoelectric input 

signals and the paradigm employed for discerning, from the acquired EMG patterns, the desired 

controlled degree-of-freedom (DOF) and/or function.  With regard to signal efficacy, significant 

work has been done in the development of implantable myoelectric sensors (IMES) which serve 

to increase the number of myoelectric input control sites and decrease signal compromise via 

cross-talk (Weir, 2003, Weir, Kuiken & Ajiboye, 2004a, Weir, Kuiken & Ajiboye, 2004b).  With 

regard to the discerning paradigm for control, current commercially available myoelectric 

prosthetic devices typically employ a single-input-single-output (SISO) algorithm, where the 

activities of a pair of agonist myoelectric inputs are tied to the control of a single degree-of-

freedom. Such a paradigm is in theory functionally limited when the number of controlled DOF 

becomes large.  As a result, much research has gone into developing pattern recognition based 

systems, which rely on extracting and recognizing consistent spatial and time domain features 

from global EMG patterns.  Several of these methods include the use of basic time domain 

features, autoregressive coefficients, linear discriminant analyzers, and Gaussian mixture 

models, used in conjunction with fuzzy logic and artificial neural network architectures (Ajiboye 

& Weir, 2005, Englehart et al., 2001, Huang et al., 2005, Hudgins et al., 1993).  Many of these 
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methods, though, have not been shown to be successful in a scenario where the user has to 

simultaneously control two or more degrees-of-freedom.  With regard to simultaneous control of 

myoelectric devices, at least two criteria have been suggested as qualitative measures of 

success.  First, independent control should still exist within the context of simultaneous control 

i.e. it should be possible to control any function without interfering with the control of other 

functions.  Second, the simultaneous and coordinated control of independent degrees-of-

freedom should be subconscious and exert a low mental burden on the user (Childress, 1992). 

The study described in this chapter investigates the use of muscle synergies as a viable 

means of simultaneous myoelectric control of multiple degrees-of-freedom.  Muscle coordination 

for the control of movement has been termed an “ill-posed” problem due to the redundancies of 

the neuromotor system (Bernstein, 1967).  One way that the neuromotor system potentially 

solves this redundancy is by specifying the activities of muscles through functional groups, 

termed muscle synergies.  Several studies have suggested that the central nervous system 

uses lower level primitives of muscle coordination (i.e. muscle synergies) to produce more 

complex automatic and natural motor behaviors, such as arm reaching, standing, and varying 

methods of locomotion (d'Avella et al., 2006, d'Avella et al., 2003, Torres-Oviedo et al., 2006).  

Other researchers have shown that a wide variety of hand postures can be described by a 

paradigm based upon muscle synergies (Weiss & Flanders, 2004).  Furthermore the 

investigations described in previous chapters of this manuscript have shown that the muscle 

synergy paradigm is robust in that it allows for prediction of the EMG activity patterns of new 

postures, and generally scales with increasing activity of force.  What is not clear is if users can 

volitionally activate groups of synergies for the purposes of independent and simultaneous 

control of multiple degrees-of-freedom.  Furthermore, the benefit of a synergy based control 

paradigm versus a SISO based control paradigm is unclear.  Hence, the goal of this 
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investigation is to characterize, through a virtual target reaching task, the volitional independent 

and simultaneous control of multiple degrees-of-freedom using muscle synergies versus single-

muscle inputs.  Specifically, it is hypothesized that, due to the underlying neural and 

biomechanical coupling of muscles into synergy-based groups, users would better and more 

intuitively achieve independent control of myoelectric inputs using a control paradigm based 

upon muscle synergies over one based upon single-muscle control.  Success of control is 

quantified by the final end point error, the activation levels of the undesired synergies, the error 

of path linearity in reaching the virtual target, and the minimization of the activity within the null 

space of control (i.e. redundant information).  Furthermore, it is hypothesized that subjects are 

able to simultaneously modulate pairs of muscle synergies more successfully than pairs of 

single muscles to perform the virtual reach task.  The alternative hypothesis is therefore that a 

synergy-based control paradigm would prove more difficult for successful completion of the 

virtual reach task than a single-muscle based control paradigm. 

6.2 Methods 

6.2.1 Subject Information 

Five healthy research subjects (three men, two women, age 27.6 ± 4.3 yrs), all of which were 

self-described right-hand dominant, participated in this study.  No subject had known history of 

any neuromuscular disorders.  Subjects were obtained from a diverse population at the 

Rehabilitation Institute of Chicago and Northwestern University, and efforts were made to be 

consistent with the demographics of the Chicago area.  All subjects gave informed consent to 

the procedures as approved by the Northwestern University Office for the Protection of 
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Research Subjects (NUOPRS) Institutional Review Board.  Subjects are referred to by their 

Subject ID number (SID1–5). 

6.2.2 Electromyography 

Electromyography recordings were performed as described in section 4.2.2 

(Electromyography) of this manuscript.  Briefly, EMG signals were recorded using bipolar 

intramuscular wires from FDS, FDP, EIP, EDC, EDM, EPL, FPL, APL, FDI, and the thenar (TE) 

and hypothenar (HTE) eminences, as shown and described in Figure 4.1 and Table 4.1.  

Signals were recorded at 3000 Hz, and processed through a 20 – 1000 Hz analog bandpass 

filter with a gain of 2000.  The data was recorded and visualized using an in-house custom built 

virtual instrument interface in National Instruments (Austin, TX) LabVIEW Developer‟s 

Environment ver 7.2.  Raw EMG was saved in a standard ASCII file for further processing.   

6.2.3 Tasks and Data Collection 

6.2.3.1 Posture Miming 

To first define the axes of the control field in which to navigate, subjects first performed five 

trials of miming letters and numbers of the ASL alphabet, as described in section 4.2.3.  Briefly, 

subjects were seated upright in a comfortable chair with their dominant arms and wrists 

supported.  They were instructed to shape their dominant hand into each of thirty-three static 

letters and numbers of the American Sign Language (ASL) set (Figure 4.2).  Dynamic letters „J‟ 

and „Z‟ were omitted, along with the number „0‟, which was visually the same as the letter „O‟.  

Subjects were guided by a visual cue to shape their hand into one of the thirty-three ASL hand 

postures.  These static postures were held for eight seconds.  At the end of the eight second 

period, the visual aid was cleared and an audio cue instructed the subjects to return to the rest 
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position.  The next letter was presented after a two second rest period.  EMG activities were 

recorded from the eleven aforementioned muscles during the entire phase of ASL miming. 

6.2.3.2 Generation of Synergies and Axes of Control Field 

Muscle synergies were generated from the patterns of EMG associated with miming of the 

static ASL letters.  Each set of EMG signals were [30, 600] Hz bandpass and [59.5, 60.5] Hz 

notch filtered.  The RMS of each signal was calculated from the static hold portion of miming 

(2.5 sec < t < 5 sec), and normalized to the respective EMG values of resting and maximum 

voluntary contraction.  The full 11 x 165 data matrix V of recorded activity was then subjected to 

non-negative matrix factorization (NMF) analysis using equation 6.1 and as described in section 

4.2.4.3. 
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 (6.1) 

All five trials per mimed posture were used in the synergy generation data set.  n = 4 

synergies were estimated from the generation data.  The synergies were ranked W1-4 in order of 

variance explained (W1 explained the most variance and W4 explained the least variance) of the 

original generation data set by the estimated data set Vest,i = Wi x Hi, where Wi and Hi are the ith 

column and row of W and H, respectively.  These synergies WBSP,1-4 defined the axes of the 

Best Synergy Paradigm (BSP) for myoelectric control of the virtual reaching task.  Additionally, 

the generation data matrix was estimated by n = 11 singular synergies, where each synergy 

exclusively represented the activation of an individual muscle.  Hence W was fixed to be an 11 x 
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11 identity matrix of singular synergies, and the corresponding matrix of activation coefficients H 

was estimated using the objective function and update rules shown in equations 3.8 and 3.9.  

These singular synergies were then ranked W1-11 in order of variance explained of the original 

generation data set.  The top four singular synergies WSMP,1-4 defined the axes of the Singular 

Muscle Paradigm (SMP) for myoelectric control of the virtual reaching task. 

6.2.3.3 Target-Reaching Task 

A four degree-of-freedom position-based control field (Figure 6.1) was created as a virtual 

instrument in National Instruments (Austin, TX) LabVIEW Developer‟s Environment ver 7.2.  

The field consisted of four axes, each of which represented the activation coefficient of one of 

the four synergies of WBSP or muscles of WSMP.  The targets on each axis were located such that 

the subject would be able to comfortably reach the end of each axis without significant exertion 

that would induce fatigue.  Specifically, the target was centered at h = 1.0 which corresponded 

to 40% MVC.  The goal of the task was, given an m x 4 synergy matrix W1-4 (i.e. WBSP or WSMP) 

which represents a control paradigm, to reach the targets on each axis in this field by controlling 

each of four bars, with minimal activity on the non-desired bars (off-axes).  The bar lengths were 

the time-varying coefficients H1-4 = [h1 h2 h3 h4]
T of the corresponding synergies W1-4.  Solving 

for H1-4, and hence the bar lengths at a specific point in time t results in equation 6.2, where W1-

4
+ is the Penrose pseudo-inverse matrix of the control paradigm synergy matrix W1-4 (Mosier, 

Scheidt, Acosta & Mussa-Ivaldi, 2005).  The Penrose pseudo-inverse is used rather than the 

standard matrix inverse because the standard matrix inverse requires a square matrix, and W1-4 

is of dimension m x 4, where m is the number of recorded muscles.  The EMG data vector V 

was obtained by online processing of the EMG patterns recorded during the virtual reach task.  

EMG signals were recorded at 1000 Hz from the same eleven-muscle set as during the ASL 
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posture miming phase.  The signals were [30 – 500 Hz] bandpass filtered online, and the real-

time moving average RMS of the resulting signals were calculated.  RMS was calculated on 300 

samples at a time (300 ms worth of EMG) for all signals, and the resultant RMS signals formed 

the data vector V.  The [h1 h2 h3 h4] bar lengths were calculated from this vector V and the 

appropriate synergy matrix W, and displayed on the screen.  The moving average RMS window 

overlapped 270 samples (270 ms worth of data) between consecutive bar length updates.  

Hence the bar lengths were recalculated and updated at a rate of 30 Hz. 
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Figure 6.1.  Four degree-of-freedom field for virtual target reaching task. 

Subjects performed a task in which they were required to reach each of four targets along 

the axes of a control field.  The control field axes were defined by either a Singular 

Muscle Paradigm (SMP) or Best Synergy Paradigm (BSP) (see text for details).  Subjects 

were required to activate the instructed synergy, whose activation coefficient was 

represented by the appropriate bar length, while minimizing all off-axis activation 

coefficients. Subjects were presented in a random sequence fifteen trials each of targets 

one through four.  Beginning from the home target, subjects were instructed to move to 

the center of the given target as quickly and accurately as possible, and maintain the final 

position for 125 ms.  A target was considered reached if the subject was within an error of 

12.5%.  Subjects performed the same reaching task using both paradigms with the 

addition of a mental loading exercise.  Finally subjects performed the same reaching task 

using both paradigms, but with the goal of simultaneously activating two axes to reach 

two targets at a time, while keeping the off-axes quiet. 

 

Subjects were seated comfortably in an upright chair with their dominant arm and wrist 

supported.  Hand movement, however, was not restricted.  Subjects began the task by first 
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exploring the targetless four-dimensional space that was defined by the current control 

paradigm.  In this exploration phase, subjects were merely asked to practice and demonstrate 

that they could reach the extremes of the defined axes.  Subjects were allowed to explore the 

field until they could demonstrate confident control of each axis in the field.  Naturally, this 

resulted in subjects overlearning the control task.  Overlearning was desired because ultimately 

the question of interest is one of controllability and not about the process of learning 

controllability.  Furthermore, if subjects were not allowed to overlearn the control task, they 

could be at different points on the learning curve during the different paradigms, thereby not 

allowing for a fair comparison of performance between paradigms. After the exploration phase, 

subjects performed fifteen trials of reaching per virtual target.  Subjects began each reach at 

rest, with all bars consequently at length zero.  When the subject had maintained the rest 

position for 125 ms, a target would light up, and a simultaneous audio cue initiated the 

movement.  Subjects were instructed to move along the proper axis towards the target, while 

keeping all other axes inactive.  No time limit was placed on the movement, and the bar length 

was visible throughout the reach (i.e. subjects had visual feedback of the bar lengths).  A 

successful reach was defined as the subject maintaining the bar of interest for 125 ms within an 

error of 12.5% of the specified target‟s center.  An audio cue signaled the end of a successful 

reach, upon which subjects were then required to return to rest by relaxing their musculature.  

The next reach proceeded from the rest once the subject had relaxed for 125 ms.  The order of 

the targets was completely randomized within a session.  Ample time was given between 

sessions and paradigms to reduce the potential effect of fatigue.  Target position, bar lengths, 

and the RMS EMG values were saved for further analysis. 

6.2.3.3.1 Effect of Control Paradigm on Virtual Reaching Success 
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To determine what effect the methodology of control had on task success, all subjects 

performed the virtual reaching task using both the single-muscle (SMP) and best-synergy (BSP) 

paradigms.  Subjects were not informed which paradigm they would be using a priori.  The SMP 

paradigm defined the field axes such that a single axis was controlled by singular muscle 

activation, with the activation of the four most important muscles controlling the four axes (i.e. 

the four muscles which singularly explained the most variance).  The BSP paradigm defined the 

field axes such that the four estimated muscle synergy groups controlled each of the four axes.  

Subjects were given a single target at a time to reach in the target field, and the task proceeded 

as described above.  There were fifteen reaches attempted at each target, for a total of sixty 

reaches within each paradigm.  The order in which each subject performed the two paradigms 

was randomly determined. 

6.2.3.3.2 Effect of Mental Loading on Virtual Reaching Success 

To systematically assess which control paradigm was perceived as most natural and least 

mentally burdensome, all subjects performed a second set of virtual reaches using both the 

SMP and BSP paradigms as described above, but with the additional requirement of reverse 

counting.  Subjects were instructed to count backwards from 1000 by 3 during the first control 

paradigm, and count backwards from 1000 by 4 during the second control paradigm.  It was not 

important that subjects perform the actual counting accurately, although subjects were not told 

this.  The point was to give them another mentally taxing task that would potentially interfere 

with their performance of the virtual reaching task.  The control paradigm which was least 

affected by the addition of another mental task would be that which was the least mentally 

burdensome.  Subjects again performed fifteen reaches per target for a total of sixty reaches 

within each paradigm.  The paradigm presentation order was again randomly determined by 
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each subject, such that each paradigm was combined with either mental task over the entire 

investigated population. 

6.2.3.3.3 Virtual Reaching Success during Simultaneous Control of Synergies 

Finally the ability of subjects to simultaneously reach two targets using each of the SMP and 

BSP control paradigms was investigated.  Using the same setup for the single-target reaches, 

two targets were simultaneously presented, and subjects had to activate the appropriate two 

axes to reach the targets.  Success of the reach trial was determined only when the subject 

simultaneously held both specified activation levels within the target boxes for 125 ms.  

Situations where one target was reached but not the other did not complete the trial.  Situations 

where both targets were reached but one of the targets was not maintained for the full 125 ms 

did not count as a completed trial.  Subjects continued until both targets were reached and 

maintained for the specified time.  Fifteen virtual reach trials of each of the six combination pairs 

were performed for a total of 90 reaches per paradigm.  Again, the order of the paradigms was 

randomized from subject to subject.  No mental load exercise was included in this portion of the 

study. 

6.2.4 Data Analysis 

The described task can be thought of as reaching a virtual target in four-dimensional 

Euclidean space.  The success of subjects using each control paradigm to do so was quantified 

by examining the final endpoint error of the virtual reaches, the average activation of all 

undesired synergies during the full reach phase, the two-dimensional path errors from linearity, 

the amount of null space activity (i.e. unused information), and the effect of mental loading on 

each of these measures. 
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6.2.4.1 End Point Error (EPE) 

At any time t the bar lengths can be represented as a four-element vector h(t) = [h1(t) h2(t) 

h3(t) h4(t)].  The final endpoint error for each reach was defined as the Euclidean distance 

between the desired target (also represented as a four-element vector e.g. [1 0 0 0]) and [h1 h2 

h3 h4] at the completion of the reach.  The final endpoint error is a direct practical measure of 

how well subjects were able to minimize the off-axes activities while maintaining the final 

position at the specified target(s). 

6.2.4.2 Uncontrolled Synergies Error (USE) 

In addition to the final endpoint error, the activation of the uncontrolled synergies throughout 

the entire target reach was determined as the uncontrolled synergies error.  At any time t, the 

activation of the uncontrolled synergies h’(t) could be represented as a k element vector, where 

k is the number of uncontrolled synergies.  The error of the uncontrolled synergies axes was 

thus defined as the root-mean-square of the h’(t) time series, as given in equation 6.3.  This 

error measure gives temporal information of how well subjects minimized undesired synergy / 

single-muscle activity during the full reaching phase. 
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6.2.4.3 Path Linearity Error (PLE) 

The two-dimensional deviation from a straight lined path was quantified for each subject as a 

measure of how well subjects simultaneously activated two synergies.  Given any path to two 

simultaneous axial targets (represented in Figure 6.2 by a single target not located on either 

synergy axis), the average deviation from linearity (ε) was defined as the root-mean-square 
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(RMS) of the perpendicular distances of all points along that path from the straight line path 

(equations 6.4 – 6.6). 

 

 

Figure 6.2. Calculation of linearity error for a given path. 

Average deviation from the straight line between rest and a given target (representing 

simultaneous activation of two synergies) was determined by finding the RMS of the 

perpendicular distances (εi) between each point [hi, hj] and the straight line between A 

and B.  The straight line represents ideal simultaneous activation of the two specified 

synergies Wi and Wj (whose activation coefficients are Hi and Hj). 
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6.2.4.4 Null Space Activities 

Given that subjects used an eleven-dimensional system to control a cursor in a four-

dimensional field, the system is by definition redundant.  Hence, subjects may have used 

extraneous muscle activity in the seven-dimensional null space while performing the virtual 

reaches in the four-dimensional task space.  To assess how much redundant activity in the null 

space was used, the projections of the data vectors v into the task space (vT) and null space 

(vN) were calculated, where v = vT + vN by vector addition.  The calculations of these vectors are 

given in equations 6.7 – 6.8 (Mosier et al., 2005), where I11 is the 11 x 11 identity matrix. 

 vWWv ijijT  
 (6.7) 

   vWWIv ijijN  

11  (6.8) 

The average magnitude of the null space vectors vN as a percentage of the magnitude of the 

data vector v across the entire interval of virtual reaching is determined for each control 

paradigm.  This value serves as a quantitative measure of the efficiency rating of each control 

paradigm.  The algorithm which has less null space activity is deemed more efficient. 

6.2.4.5 Statistical Analyses 

A three-factor repeated measure analysis of variance (RM-ANOVA) was used to 

systematically assess the effects that the control paradigm (SMP vs BSP), the target position, 

and mental loading had on each of the above described error calculations during virtual 

reaching to a single target in the synergy field (i.e. individuated control).  The control paradigm 
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is a factor because the chosen paradigm could affect the ability of the subjects to reach the 

desired target.  The target position (specifying which synergies to activate) is a potential factor 

because not all DOF and DOF combinations may be activated with the same success.  Mental 

loading is a factor because the additional mental task could affect subjects‟ abilities to 

successfully perform the task.  The null hypothesis was simply that subjects were more 

successful at the virtual reaching task using the BSP paradigm for individuated control as would 

be evidenced by the statistically significantly lower error measures.  A two-factor RM-ANOVA 

was used to systematically assess the effects of the control paradigm and target position on 

each of the error calculations during virtual reaching to simultaneously presented targets (i.e. 

simultaneous control).  The working hypothesis was that subjects were more successful at the 

virtual reaching task using the BSP paradigm for simultaneous control as would be evidenced 

by the statistically significantly lower error measures. 

6.3 Results 

6.3.1 Individuated Muscles and Estimated Synergies for Control 

Figure 6.3 shows for a representative subject the individuated muscle set and synergy set of 

the SMP and BSP paradigms, respectively.  The individual muscles and synergies chosen for 

each paradigm were subject specific, and the SMP and BSP paradigms were significantly 

distinct within a subject.  While there were some instances of sparse synergies (i.e. primarily 

dominated by an individual muscle) which resembled individuated muscle control, many 

synergies consisted of a balance between two or more muscle activations.  Hence the BSP and 

SMP paradigms were actually different control methodologies.  Many of the estimated synergies 

were comprised of patterns of the muscles that were estimated for individual control (e.g. BSP 
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W1 is comprised of SMP W1 and W2 in Figure 6.3).  This allowed for direct comparison of 

whether or not control was better accomplished using the muscles as individual control inputs or 

using them as coordinated synergy groups.  The individual muscles and synergies in the SMP 

and BSP control methods were on average comparable with regard to amount of variance 

explained of the original ASL EMG data set, as shown in Figure 6.4. 
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Figure 6.3.  Individuated muscles and estimated synergies for a representative subject. 

Synergies were estimated from the ASL EMG data set using non-negative matrix 

factorization, and composed the Best Synergy Paradigm (BSP, right column).  The four 

synergies were distinct for each subject, but on average explained between 80 – 90% of 

the ASL EMG data.  The four muscles which explained the most variance in the ASL 

EMG data were also determined and comprised the set of the Single Muscle Paradigm 

(SMP, left column).  For each subject, the paradigms were distinct i.e. consisted of 

significantly different muscle groups, though some extracted synergies were sparser than 

others.  Given a paradigm, the activation of each of the four muscle groups formed the 

axes of the space to be controlled (Figure 6.1). 
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Figure 6.4. Variance explained by SMP and BSP control methods. 

The population averages of the variances explained of the original ASL EMG data set 

were generally comparable between ordered synergies of the SMP and BSP control 

methods, with the exception of W1. 

6.3.2 Independent Control of a Single DOF 

Figure 6.5 shows for a representative subject the paths of activation during single DOF 

control in the four-dimensional space using both the SMP and BSP paradigms, and with and 

without the addition of a mental loading exercise.  In some instances and for certain DOF, 

subjects seemed to perform the task more successfully using synergy control over single-

muscle control, while for other DOFs subjects seemed to prefer single muscle control over 

control of synergies.   
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Figure 6.5. Average paths of single target activation for a representative subject. 

Subjects attempted to reach a target in the workspace by activating the specified synergy 

(Wi) in each plot to a level of Hi = 1.0 ± 0.125, while minimizing all other synergy 

activations. Subjects performed these virtual target reaches using both the Single Muscle 

Paradigm (SMP, top 8 plots) and Best Synergy Paradigm (BSP, bottom 8 plots), and with 

(right 8 plots) and without (left 8 plots) the addition of a mental loading exercise.  Trials 

were normalized in time and the average activation levels of all four synergies for each 

target are plotted.  For this particular subject, there were clear instances when the SMP 

paradigm performed better (i.e. less undesired activity) than the BSP paradigm, such as 

when reaching the target specified exclusively by synergy W4.  However, reaching of 

some other targets, such as that of W1, was better achieved using the BSP over the SMP 

paradigm.  The addition of a mental loading exercise did not seem to significantly affect 

the path plots of either the SMP or BSP paradigms.   

 

The end point error (EPE) measure quantified the ability of subjects to successfully keep the 

desired DOF at the specified final level of activity (i.e. at 100% reach) while inactivating all other 

DOFs.  Figure 6.6 (A) shows the EPE measures for all subjects across all targets using single-

muscle and best-synergy paradigms.  On average, there were no consistent differences 

between the end-point errors of the synergy and single muscle paradigms.  In addition, the large 
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standard deviations show that subjects were quite variable in their end point activation levels.  A 

three-factor ANOVA verified that there were no statistically significant differences in final EPEs 

of the single-muscle and synergy paradigms (p = 0.348), showing that subjects were equally 

successful controlling synergies and individual muscles to perform the task.  Also, the target 

specification was not a significant factor in determining the ability of the subjects to successfully 

maintain the instructed synergy.  In other words, the amount of variance explained by the 

synergy did not have an effect on relative controllability at the end point over the investigated 

population (p = 0.398).  Finally, neither the mental loading nor the interaction between control 

paradigm and mental loading proved to be significant factors, implying that the mental loading 

task similarly affected errors associated with either paradigm. This implies that both the SMP 

and BSP paradigms seemed to require the same mental attention to perform the target reaching 

task.  

The uncontrolled synergies error (USE) quantified the temporal ability of subjects to 

successfully inactivate the undesired DOFs while modulating the activity of the desired DOF.  

The ensemble averages for all subjects are reported in Figure 6.6 (B).  There was no general 

trend with regard to subjects being more successful with one paradigm over the other.  

Quantitatively, a three-factor ANOVA revealed that the BSP control method did not prove to be 

more advantageous than the SMP control method over the time course of the reach (p = 0.643).  

Again, neither mental loading nor the interaction between mental loading and the chosen 

paradigm proved to be significant. 

Finally, the amount of activity in the seven-dimensional null space allowed for a rating of each 

control paradigm‟s efficiency.  In the SMP paradigm, the seven-dimensional null space consists 

of the activity from the seven muscles which were not specified for control, and as a result, a 

low efficiency rating would be expected.  The null space for the BSP paradigm is more abstract 
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since all muscles are included in the four synergy controllers.  As a result of all muscles being 

included, it would be expected that the null space activity of the BSP control method, and hence 

the inefficiency rating, would be less than that of the SMP paradigm.  Figure 6.6 (C) reports this 

inefficiency rating for each subject as a ratio of the average length of the null space EMG vector 

to the length of the complete 11-dimensional EMG vector.  The BSP control method algorithm 

consistently proved to be more efficient for all subjects with respect to single DOF activation 

(three-way ANOVA p = 0.023). 
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Figure 6.6.  Error and inefficiency measures for all subjects during individual DOF control. 

Error measures of the final synergy end point activations (A) and uncontrolled temporal 

synergy activations (B) revealed that subjects showed no difference in maintaining the 

final activation level of the desired input while minimizing the activation of the undesired 

inputs using the synergy paradigm over the single muscle paradigm.  In addition, the 

large deviation bars show that subjects were quite variable in their abilities.  Also, no 

general trend and no statistical significance existed between the two paradigms 

according to the USE error measure.  (C) Redundant and extraneous activity within the 

null space of control contributed to the inefficiency of each paradigm.  The SMP control 

method consistently proved less efficient then the BSP control method. 
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6.3.3 Simultaneous Control of Two DOFs 

Figure 6.7 shows the average paths of activation during reaching of two targets in the control 

space (i.e. simultaneous and coordinated activation of two degrees-of-freedom) using both the 

SMP and BSP control methods.  Subjects were able to perform the simultaneous control task, 

albeit anecdotally with more difficulty than the single control task.  In general subjects attempted 

to simultaneously activate two degrees-of-freedom rather than activating them sequentially.  As 

with the single degree-of-freedom activation task, subjects did not seem to successfully perform 

particularly better with one paradigm over the other.  The above mentioned error measures 

quantified this success, and the results of the statistical tests discerning the effects of paradigm 

and target are described next. 
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Figure 6.7. Average paths of simultaneous DOF activation for a representative subject. 

In general subjects opted to simultaneously activate two degrees-of-freedom rather than 

sequentially activating individual degrees-of-freedom to perform the task.  Subjects did 

not seem to preferentially perform better with either the single muscle paradigm (top 6 

plots) or best synergy paradigm (bottom 6 plots), as evidenced by the non-significant 

differences in error measures from the ANOVA tests. 
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Figure 6.8 reports the average error measures for each subject across all targets in the 

simultaneous activation task.  Subjects generally had lower end point errors using the synergy 

paradigm over the single-muscle paradigm.  However, while four of five subjects showed this 

general trend, the large standard error bars factored into the two-way ANOVA returning 

statistical non-significance for the effect of paradigm on the EPE measure (p = 0.095).  The 

effect of target, and the interaction between target and paradigm, also were found to be 

statistically insignificant, implying that the the different target combinations, which were 

composed of synergies explaining different amounts of variance, did not significantly affect 

subjects‟ abilities to perform the task. 

Unlike the EPE measure, there was no general trend in the temporal ability of subjects to 

simultaneously activate two degrees-of-freedom more successfully with either paradigm (Figure 

6.8 B).  Subjects seemed to be able to successfully adapt to either control paradigm without a 

change in error.  The two-factor ANOVA verifies that subjects were equally successful using 

either paradigm (p = 0.144).  Thus, it appears that, given either single muscle or synergistic 

groups of muscles as the control inputs, subjects had the same success in keeping the 

undesired DOF inactive. 

The path linear error (PLE) quantified the simultaneous nature of control, and is in effect a 

measure of linear correlation.  An error of zero would suggest that given the two instructed 

DOFs, subjects preferentially and perfectly coupled them to obtain the targets in the control 

space.  The greater the deviation from zero, the less simultaneous and hence the more 

sequential the control.  Perfect sequential control without target overshooting or path retracing 

would have a PLE value of 0.4082 (see Figure 6.9).  Instances where subjects had PLE values 

greater than 0.4082 meant that the subjects overshot the target during the virtual reach.  
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Subjects seemed to perform simultaneous activation in similar manners, and hence had similar 

PLE values, using either paradigm (two-factor ANOVA, p = 0.234). 

Finally, the analysis of the amount of null space activity showed that, as with the task of 

independent control, the synergy based paradigm proved to be more efficient across the subject 

population i.e. it had statistically less activity in the null space than the single-muscle paradigm 

(two-way ANOVA, p = 0.005).  Again, this was to be expected due to the fact that the activities 

of more muscles are taken into consideration in the synergy based paradigm. 

 

 



198 

 

 

Figure 6.8.  Error and inefficiency measures for all subjects during simultaneous DOFs control. 

(A) The EPE measure revealed that as a trend, subjects generally had fewer end point 

errors with the synergy-based control paradigm than with the single-muscle control 

paradigm.  However, these differences were not found to be statistically significant.  

Significant difference in the SMP and BSP paradigms were neither found with the (B) 

USE nor the (C) PLE error measures (see text for details).  (D) As with the independent 

control task, the BSP paradigm did prove to be more efficient (i.e. less null space activity) 

than the SMP paradigm. 
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Figure 6.9.  PLE calculations for perfect simultaneous control and perfect sequential control. 

 

6.4 Discussion 

The ability of subjects to both independently and simultaneously control multiple degrees-of-

freedom for myoelectric control is a potentially limiting factor in the development and use of 

multifunction myoelectric devices.  It is unclear whether users have the cognitive and 

physiological ability to perform simultaneous control of an external device with repeated 

success.  Naturally, the choice of control algorithm potentially has an effect on users‟ abilities to 

perform simultaneous control.  It is clear that humans everyday successfully coordinate many 

neuromuscular degrees-of-freedom to perform the most complex of tasks with relative physical 
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and cognitive ease.  The need to address the inherent redundancy in the neuromotor system 

has led many researchers to posit and suggest evidence that redundancy is addressed through 

the grouping of muscles into synergistic groups.  This model of muscle coordination is 

articulated in the neuromotor synergy hypothesis, which states that “low-level, neurally based 

patterns significantly constrain intentional actions” (Lee, 1984).  This synergistic model of 

muscle coordination is potentially advantageous over the single-muscle control paradigm that is 

currently implemented in the control of myoelectric devices, if in fact synergies do serve as 

fundamental building blocks of muscle coordination, and they are volitionally controllable. 

The synergies extracted for each subject that served as the control inputs for the task were 

representative of a wide variety of muscle patterns and combinations that were elicited from 

miming of the ASL set.  It cannot be definitively stated that the synergies extracted during the 

experimental protocol are the four synergies used for all coordination of hand muscles.  One 

reason for this is that it is unclear, even in the large body of motor control literature, how to 

determine the absolute correct number of synergies to describe a set of tasks.  Several methods 

have been suggested, such as hard thresholds of 80 – 90% explained variance, or finding the 

point of diminishing returns, where adding more synergies does not significantly add to the 

explained variance.  Another reason why the synergies extracted in this study cannot be seen 

as definitive is that it has not been shown in the motor control literature that the decomposition 

algorithms used for synergy extraction result in unique and global solutions.  Rather, because 

they are based on search optimization, it is possible that the returned solution, and hence the 

extracted synergies, may not be the absolute best descriptors of the given data.  Nevertheless, 

the four synergies extracted per subject explained between 80 – 90% of the variance of the 

EMG data set and thus were good representations of the muscle coordination patterns involved 

in the ASL posture miming task. 
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Users were able to complete the independent control and simultaneous control tasks using 

both the single-muscle and synergy based paradigms.  The chosen error measures were 

designed to give a practical assessment of how well the users accomplished the task goals of 

independently activating individual muscles and synergy groups, and achieving true 

simultaneous control.  Although subjects were instructed to minimize the activities of the 

undesired degrees-of-freedom, the potential existed that, should subjects have been unable to 

decouple any two degrees of freedom, the EPE and USE errors could have been larger for 

either the BSP or SMP paradigm.  The fact that there was no difference in subjects‟ errors using 

either paradigm in both the independent and simultaneous control problems suggests that it was 

just as easy to modulate individual muscle activations while inhibiting others, as it was to 

modulate specific synergy groups while inhibiting others.  If synergistic muscle groups were the 

only means of muscle coordination, as posited by the neuromotor synergy hypothesis, then it 

would have been expected that subjects would have performed better with the BSP paradigm 

i.e. had smaller errors.  Likewise, if singular muscle activation were the only means of muscle 

coordination, it would have been expected that subjects would have performed better with the 

SMP paradigm.  The lack of significant difference between the two paradigms possibly suggests 

that neither synergies alone nor single muscles alone, at least from the perspective of volitional 

control, function as the building blocks of muscle coordination.  As a result, it seems that either 

paradigm would be equally adequate for myoelectric control of multiple independent DOFs. 

The use of mental loading exercises is a well documented practice to discern the relative 

cognitive requirements of a set of tasks.  It has been used extensively to assess the cognitive 

requirements of balance control and locomotion in able-bodied subjects, and those who have 

experienced lower limb amputation or neurological motor disorders (Dault, Geurts, Mulder & 

Duysens, 2001, Geurts & Mulder, 1994, Geurts, Mulder, Nienhuis & Rijken, 1991, Heller, Datta 
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& Howitt, 2000).  These researchers argue that a task that is unnatural and not well automated 

requires a significant amount of attention and cognitive resources.  This is not an issue if the 

amount of available cognitive resources exceeds that required by the task.  However, if another 

unnatural and un-automated task with a fixed cognitive demand is simultaneously performed, 

the performance of the original task will degrade.  The degree of degradation gives insight into 

the cognitive requirement of the original task (Heller et al., 2000).  The result of the current 

virtual reaching study, namely that mental loading seemed to have the same degradation effect 

on a single-muscle based paradigm as it did on a synergy-based paradigm (i.e. the interaction 

term between mental loading and paradigm was statistically insignificant) suggests that both 

paradigms required similar levels of cognitive attention (i.e. were similarly intuitive, or similarly 

difficult).  There does exist the possibility that the required mental loading task was too well 

automated and hence too easy.  However, supervision of each subject, and anecdotal evidence 

from each subject suggested this to not be the case.  Hence from the standpoint of a natural 

control paradigm, it seems that there is not much of a difference between independent control of 

synergies versus independent control of single muscles. 

Ultimately, it was the use of the SMP and BSP paradigms in simultaneous volitional control of 

two DOFs that was the focus of this study.  The path linear error (PLE) measure allowed for 

quantification of the degree of simultaneity, ranging from 0 (perfect simultaneity) to infinity.  The 

result of insignificant differences between the PLE measures of both paradigms suggests that 

subjects performed simultaneous control in similar manners.  One paradigm was not more 

conducive to sequential or simultaneous control than the other.  One possible reason for this 

observation is that it is unclear whether subjects subconsciously think in terms of individual 

muscles or muscle synergies to shape the hand.  Rather, it is clear that subjects consciously 

thought of the task in terms of the kinematic hand postures that would result in the appropriate 
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EMG patterns to complete the reaching task.  While some hand postures may have been easier 

to form and maintain than others, the hand postures were not formed sequentially using either 

paradigm. Hence it makes sense that the associated EMG activations also were not sequential 

using either paradigm.  Hence the BSP paradigm was no better, but no worse in realizing 

simultaneous control than the SMP paradigm. 

The main difference observed between the SMP and BSP paradigms was in the amount of 

EMG activity located in their respective null spaces.  The null space is practically the extraneous 

EMG activity that does not contribute to completion of the task.  Hence it‟s use as an inefficiency 

metric is warranted.  It was expected that the BSP paradigm would have statistically significantly 

higher efficiency ratings than the SMP paradigm, mainly because it takes into account the 

activity of not just more muscles, but more muscles that were relevant to hand manipulation.  

The SMP method only took into account four individual muscles.  Given that more than four 

muscles are clearly used for hand control, the activities of those unobserved muscles comprise 

the null space and hence add to the inefficiency rating.  From the perspective of completing the 

experimental tasks of this study, this difference though, was not of major importance because it 

did not manifest itself in the error measures of success.  Had the task been more difficult, such 

as controlling six or eight muscle degrees-of-freedom, the differences between the two 

paradigms during independent control could have been realized in the error measures. 

6.5 Conclusion 

This investigation has sought to compare the benefits of using a muscle synergy based 

paradigm for independent and simultaneous control of multiple degrees-of-freedom over a 

single-muscle based paradigm.  It was hypothesized that the muscle synergy model would offer 

a more successful method of achieving multi-DOF myoelectric control due to the posited 
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existence of muscle groups whose activation levels may be specified together.  The error 

measures used in this study quantified the success of volitional modulation of these synergies in 

both independent and simultaneous control tasks.  The result that there were no differences in 

these error measures suggests that muscle synergies are not necessarily more beneficial than a 

single-muscle paradigm for myoelectric control.  Furthermore, because users seem to have 

equal ability in modulating the activation levels of muscle synergies and single muscles, it 

suggests that neither synergies nor individual muscles serve as the sole building blocks of 

muscle coordination. 
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7 Conclusions 

This dissertation has described investigations into the use of neuromuscular synergies as a 

potential paradigm of control for multifunctional myoelectric trans-radial prostheses.  This work 

was motivated by the desire to increase the functionality of current myoelectric devices without 

increasing the mental demand placed on the user.  With the advent of implantable myoelectric 

sensors, it is now possible to record from a wide variety of muscles for control.  However it is not 

clear the best way to coordinate the newly acquirable control signals.  Evidence from anatomical 

studies, cortical mapping and recording studies, and kinetic and kinematic studies of movement 

in lower-level vertebrae have all suggested that the neuromotor system organizes coordination 

of muscles into functional groups termed synergies.  It was hypothesized that a muscle synergy 

based control paradigm for myoelectric control would result in advantageous control by users 

and a reduced mental burden.  A better understanding of properties of muscle synergies was 

needed in conjunction with the practical motivations for control.  Thus within this hypothesis, the 

specific aims of this research were as follows. 

 Assess the predictive power of a muscle synergy paradigm in new and untrained for 

hand postures. 

 Determine if the EMG patterns and underlying muscle synergies associated with sub-

maximal multi-joint hand grasping are linearly scaled variants of a single characteristic 

coordination pattern. 

 Assess the success of subjects to modulate activations of muscle synergies in a multi-

degree-of-freedom control task, contrasted to their success of modulation of indiviudal 

muscle activations. 
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These aims, the experimental protocols, and the investigation conclusions are briefly 

reviewed next. 

7.1 Review of Investigations 

7.1.1 Muscle Synergies as a Predictive Framework for EMG Patterns of 
Static Hand Postures 

Muscle synergies have been shown to form an adequate descriptive framework for the EMG 

patterns observed in the neuromotor system‟s control of a wide variety of automatic response 

and volitional movements.  However it had not been shown that they could form a robust and 

generalizable predictive framework for a wide variety of movements.  Robustness and 

generalizability has been stated as a necessary property of muscle synergies.  Such a 

framework would add credibility to the use of muscle synergies as physiological building blocks 

of muscle coordination, and would potentially allow them to be used for controlling a highly 

articulated terminal device without the need to train for all desired states of the device.  It was 

hypothesized that a small number of muscle synergies associated with a small number of hand 

postures would be robust in predicting the EMG activity of new hand postures. 

Subjects mimed static numbers and letters of the American Sign Language set while EMGs 

were recorded from extrinsic and intrinsic muscles of the hand.  Non-negative matrix 

factorization (NMF) was used to discern the synergies associated with k postures, and these 

synergies were then used to predict the EMG patterns of 33 – k hand postures.  k was 

incrementally increased from 1 to 32, and the predictive power of each synergy set was 

quantified by the explained variance.  It was found that as few as 11 hand postures, accounting 

for as few as 8 synergies could predict the EMG patterns associated with the full 33 posture set 

predict with up to 90% accuracy.  Furthermore, the estimated synergies were very robust to 
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differing sets of predictor postures, and even to the addition or removal of postures from the 

predictor set.  Examining the structure of the observed synergies revealed that while several 

consisted of balanced activity from multiple muscles, many (particularly those generalizable 

across the subject population) also were sparse and resembled control of individual muscles. 

The main conclusion from this investigation is that a small number of muscle synergies 

can serve as a predictive basis set for a wide variety of hand postures, due to their 

demonstrated robustness and generalizability.  Thus they have the potential for use in 

multifunctional myoelectric control as the building blocks of any set of observed muscle 

coordination patterns for determining the state of a terminal device.  Also, the predictive nature 

of this synergy framework and the small dimensions of this framework suggests that the 

estimated synergies were not task specific, but rather generalizable enough for a wide variety of 

tasks.  Finally, the observed sparse structure of many, but not all of these synergies suggests 

that muscle coordination by the neuromotor system consists of control of both individual 

muscles and muscle groups, rather than being exclusive to either. 

7.1.2 Muscle Synergies Exhibit Scalability with Increasing Grasp Force 

This study investigated how the structures of the muscle coordination patterns (CPs) and 

underlying synergies associated with power and precision grasping were related to grasp force 

level.  There has been little consensus in the literature as to the method by which the 

neuromotor system handles muscle coordination at different force levels, and even less 

knowledge about the scalability behavior of muscle synergies with respect to grasp force.  

Scalability of muscle synergies could potentially allow them to be used in a proportional control 

scheme in control of myoelectric devices.  It was hypothesized that the CPs and the underlying 
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synergy structures of muscle coordination during hand grasping at sub-maximal force levels 

were statistically linearly scaled versions of characteristic vectors. 

Subjects performed a force-tracking task using precision and power grasps from 0 – 50% 

maximum voluntary grasp strength while EMG was recorded from extrinsic and intrinsic muscles 

of the hand.  A correlation analysis between grasp force and overall CP magnitude revealed that 

the CP vector magnitude was strongly linearly related to grasp force in all grasps.  An analysis 

of the CP vector direction revealed that the direction was invariant to grasp force in the power 

grasp but not in the precision grasps.  An analysis of the underlying muscle synergies 

associated with each grasp revealed that on average the top three to four synergies scaled well 

with force in the power grasp while the top two scaled well with force in the precision grasps.  

The degree of correlation was well related to the amounts of variance accounted for by each 

synergy.  In neither case were the synergies activated in a piecewise manner relative to grasp 

force level. 

The main conclusion from this investigation is that the primary muscle synergies involved 

with hand grasping scale well with increased grasp force, rather than being piecewise and 

structurally dependent on the force requirement.  This scalability behavior thereby allows for 

implementation of a proportional control scheme in myoelectric control, whereby the activation 

level of a synergy would determine the velocities of the prosthesis motors. 

7.1.3 Independent and Simultaneous Volitional Control of Muscle 
Synergies 

This study investigated the use of muscle synergies as a myoelectric control paradigm in a 

real-time control task.  While the potential for muscle synergies to be used in a control paradigm 

has been shown in the previous studies as a result of their predictive power and scalability, it 

was not known whether subjects could volitionally modulate them independently and 
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simultaneously in a real-time control task.  The advantages a synergy paradigm could present 

towards providing an intuitive means of control, over the control of individual muscles, was also 

unclear.  It was hypothesized that users would be able to better modulate the activations of 

desired synergies over individuated muscles in independent and simultaneous control tasks, 

and that the synergy control paradigm would require less mental effort, due to the natural 

groupings of muscle within the neuromotor system. 

Subjects were given targets in a four-degree-freedom field whose axes were defined by either 

activation of muscle synergies or activation of individuated muscles.  In the independent control 

experiment, subjects attempted to reach the target using only the instructed synergy / muscle.  

Subjects also attempted to perform the reaching task with the addition of a mental loading 

exercise.  In the simulatenous control condition, subjects attempted to reach two targets using 

the instructed pairs of synergies / muscles.  The results showed that subjects were able to 

modulate their synergy activation coefficients independently and simultaneously.  However 

there were no differences found in the success measures when subjects used synergy control 

versus individual muscle control.  Also, the mental burden task did not seem to differentiate the 

successes of the two paradigms. 

The main conclusion from this investigation is that while subjects can independently and 

simultaneously modulate synergy activations for control, they do it no better and no worse than 

modulating the activations of individual muscles.  The fact that subjects can do both equally 

well, even in the presence of a mental loading exercise, suggests that both paradigms seem to 

be appropriated for control by the neuromotor system.  With regard to myoelectric control, it 

seems that a synergy based paradigm does not offer significant advantages for simultaneous 

control, at least in a four degree-of-freedom problem. 
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7.2 General Conclusions 

The overall goal of these three studies was to investigate the possibility of muscle synergies 

for independent and simultaneous DOF control of a multifunctional myoelectric device.  Though 

it has been shown that synergies are robust and scalable and subjects can adequately use 

them for control in a multi-DOF task, the overall benefit of muscle synergies for control is 

tempered by the fact that they seem to do no better than single muscle control in this particular 

application.  Admittedly this result was undesired from the perspective of myoelectric control.  

However, through this work, it has become evident that muscle synergies as posited in the 

motor control literature and articulated by the neuromotor synergy hypothesis do not 

significantly constrain volitional movements.  The fact that both synergies and single muscles 

were found to be part of the predictive framework of hand posture EMG patterns, and both were 

equally successful for multi-DOF control leads to the conclusion that both are used by the 

neuromotor system for control of the hand. 

Finally, while control of muscle synergies may have not proven beneficial for multifunctional 

myoelectric control the concept of motor primitives may still be applicable.  Since individuals can 

independently and simultaneously control multiple muscles and synergies, one possibility of 

control is that the activation levels of these inputs could potentially be used for synergistic 

control of prosthetic motors.  This paradigm of control would be in the vein of the postural 

synergy primitives that have been suggested in the literature.  Thus each myoelectric input 

could synergistically drive a group of motors to form the hand into various functional states. 
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Appendix A: Muscle Synergy Scalability in Palmar and Tip 

Hand Grasps 

The results of the investigation of muscle synergy activation relative to sub-maximal grasp 

forces in the palmar and tip hand grasps are reported in this section.  The results for these hand 

postures are reported separate from the cylindrical and lateral grasps (reported in Chapter 5: 

Muscle Synergies Exhibit Scalability with Increasing Grasp Force) because unlike the cylindrical 

and lateral grasps, the palmar and tip grasp force-tracking tasks allowed for potentially 

significant extraneous movements of the uninvolved digits.  In retrospect, these digits should 

have been casted in place during the experimental protocol.  Not doing so has the potential of 

confounding the results of the study because the forces produced would be far from isometric, 

and the changing positions of the uninvolved digits could affect the activity of the involved digits.  

Nevertheless, the results for the palmar and tip grasps are presented here as a continuation of 

Chapter 5 for the sake of completeness. 

Results 

Effect of Fine-Wire Electrodes on Maximal Voluntary Grasp (MVG) Strength 

Average MVG values [pre-insertion, post-insertion] in Newtons (mean ± SD) for palmar were 

[104.1 ± 28.1, 87.0 ± 17.1], and for tip were [60.7 ± 18.9, 44.6 ± 10.1].  Significance of the fine-

wire effect was observed (p < 0.05) for both the palmar (p = 0.077) and tip (p = 0.008) grasps. 
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Correlation of CP Vector Magnitude to Grasp Force 

The linear regression of grasp force versus coordination pattern (CP) vector magnitude 

resulted in average (mean ± SD) Pearson correlation coefficient (r) values for the cylindrical and 

lateral grasps of 0.91 ± 0.05 and 0.74 ± 0.15 respectively.  The corresponding adjusted r2 values 

were 0.82 ± 0.08 and 0.57 ± 0.22, respectively.  Both correlation values were found to be 

statistically significantly different from zero (p < 0.05).  Hence as expected, grasp force was 

significantly linearly correlated with the magnitude of the muscle coordination pattern vector 

associated with both grasps, although to a lesser extent in the tip grasp. 

Variance of CP Vector Direction wrt Grasp Force 

The null hypotheses tested were that for each of the hand postures, the force vectors 

representing each muscle coordination pattern were scaled versions of a single characteristic 

vector and hence did not statistically differ with respect to direction i.e. the vectors lay in a one-

dimensional subspace.  The Wilks‟s Lambda (Λ) and p-values of significance are reported for 

each grasp.  Analysis of the palmar grasp resulted in Λ = 0.284 and p = 0.011.  Analysis of the 

tip grasp resulted in Λ = 0.283 and p = 0.011.  Hence, for both precision grasps, the vector 

representations of the muscle coordination patterns at the varying force levels were statistically 

different with respect to direction, thereby implying that across the subject population, 

statistically different muscle coordination strategies were used with respect to precision grasp 

force level. 

The RM-MANOVA was followed up with a univariate repeated measure ANOVA (URM-

ANOVA) for each muscle to determine which muscle(s) caused the significant differences 

observed in the directions of the muscle coordination vectors of palmar and tip grasping.  For 

the palmar grasp, the activity of FPL (p = 0.001) was significantly different between the grasp 
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force levels, and that of EPL (p = 0.051) was borderline significant.  For the tip grasp, only the 

activity of FPL (p = 0.011) was statistically different between grasp force levels. 

Activations of Muscle Synergies wrt to Grasp Force 

The activation levels for each estimated synergy relative to palmar and tip grasp forces are 

plotted in Figure A.1 for a representative subject.  Shown with each plot is the amount of 

variance explained by the particular synergy-activation level combination for the palmar and tip 

grasps.  A linear regression revealed the extent to which the activation levels of the synergies 

were correlated with grasp force, along with p-values assessing the significance of the 

regression slope. 

 



224 

 

 

Figure A.1.  Synergy structures and activation levels for a representative subject. 

Bar plots in column one show the structure of the synergies extracted from the ASL 

posture miming and force-tracking tasks.  Scatter plots in columns two and three show 

the activation level of each synergy relative to palmar and tip grasping forces, 

respectively.  The amount of explained variance (EV) of each synergy-activation level 

combination is shown on each graph.  A linear regression of activation level versus grasp 

force revealed the significance of the relationship between the two.  Associated 

correlation (r) and significance (p) values are shown to the left of each plot.  In the palmar 

grasp, the first three synergies (i.e. most variance explained) were typically highly 

correlated, while only the first four synergies were highly correlated with tip grasp force.  

As the amount of variance explained by successive synergies decreased, the correlation 

between activation level and grasp force generally decreased as well. 
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For this representative subject, the top three synergies were moderately to highly significantly 

correlated with palmar grasp force, while the top four synergies were moderately to highly 

significantly correlated with lateral grasp force.  Figure A.2 reports the average variance 

explained across the subject population for the first four synergies of each subject.  Figure A.3 

shows the population averaged correlations between these ordered synergies with palmar and 

tip grasp forces.  Across the subject population, the correlation of each synergy‟s activation with 

grasp force seemed to decrease with decreasing importance of the synergy to the task (i.e. 

decreased explained variance). 
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Figure A.2.  Population averaged explained variances of synergies for ASL and force-tracking. 
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Figure A.3.  Correlation of synergy activation to exerted grasp force. 

Shown are the correlation values for the activation levels of synergies W1 to W4, and the 

remaining synergies.  Synergies are numbered in order of most explained variance of the 

force-tracking task using palmar and tip grasp types.  As the percentage of variance 

explained decreases (Figure A.2), the correlation of activation level also generally 

decreases.  On average, the activation levels of the first two synergies are moderately to 

highly correlated with grasp force in both the palmar and tip grasps, although moreso in 

the palmar grasp. 

 

Discussion 

The synergies whose activation levels were best correlated with force in each grasp consisted 

of muscles that would be expected to be relevant to the specified grasp type.  For example, for 

the representative subject‟s synergies illustrated in Figure A.2, the synergies whose activation 
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levels were most correlated with palmar grasp force consisted of the intrinsic thumb muscle 

(TE), the index finger abductor (FDI), and the finger extensors (EDC).  The tip grasp included 

these synergies, in addition to one that primarily controlled for thumb extension (EPL), possibly 

for stabilization.  As with the palmar grasp pattern, the two most important synergies scaled 

fairly well with grasp force, while the remainder did not.  For the tip grasp, even the first two 

synergies were only moderately correlated with grasp force.  This lack of high correlation in the 

synergy space is consistent with the results of the statistical tests in the muscle space, namely 

that the vector direction of the coordination pattern seemed to change with changes in the 

required grasp force. 
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Prostheses”.  Rehabilitation Engineering & Assistive Technology Society of North America 
(RESNA) 26th International Conference – Technology and Disability: Research, Design, 
Practice, and Policy.  Atlanta, GA, June 19-23, 2003. 
 
 
FELLOWSHIPS AND HONORS 
 
National Institute of Health (NIH) 2005 – 2008 
National Research Service Award (NRSA) Pre-Doctoral Fellowship (F31): 1F31HD49319 
 
Northwestern University 2002 – 2005 
Graduate Research Assistant Tuition Scholarship 
 
Northwestern University 2001 – 2002 
Walter P. Murphy Fellowship for Graduate Research 
 
Duke University 1999 – 2000 
Helga and Erya W. Kehaya Scholarship 
 
 
TEACHING EXPERIENCE 
 
Teaching Fellow, Northwestern University EXCEL / MEOP Summer Program (July 2003 – July 
2007).  Independently created and instructed four-week summer courses for engineering 
students taking Integral Calculus; Selected as Most Outstanding Teaching Fellow in 2004 
(Evanston, IL) 
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Teaching Assistant, Biomedical Signals and Imaging (January 2001 – March 2001), 
Northwestern University Department of Biomedical Engineering (Evanston, IL) 
 
Grader, Analysis and Simulation of Biological Systems (April 2001 – June 2001, April 2002 – 
June 2002), Northwestern University Department of Biomedical Engineering (Evanston, IL)  
 
 
MEMBERSHIPS 
 
Society for Neuroscience 2006 – Present 
Neural Control of Movement Society 2005 – Present 
 
 
WORK EXPERIENCE 
 
Procter and Gamble, Hunt Valley, MD 
Managed team of vendors and technicians to develop mechanical device for a manufacturing 
line in operation.  Ultimately designed and integrated device myself.  Managed separate team of 
technicians in streamlining manufacturing processes to immediately increase business 
production.  Analyzed and critiqued design specifications, and developed plan to integrate new 
HVAC (Heating Ventilation Air Conditioning) system.  Internship, May 1999 – August 1999. 
 
International Business Machines (IBM), Research Triangle Park, NC 
Developed application to increase Internet security using Secure Sockets Layer (SSL) Protocol 
v.2 and v.3. Included learning and developing several algorithms for server and client-side 
certificate authentication in both Internet Explorer 4.x and Netscape Communicator 4.x.  
Performed defect fixes on SSL Protocol v.2 and v.3.  Languages used include C, C++, Java, 
JavaScript, and HTML.  Internship, May 1998 – November 1998.  
 
Analyzed and critiqued C++ code to remedy defects in new release of Personal 
Communications 4.2™ by IBM, an emulator for personal computers.  Internship, Summer 1997. 
 
Duke University Trinity Computing, Durham, NC 
Performed software and hardware support and maintenance for various departments of Duke 
University.  Installed hardware and software, initialized network PC‟s for personal and network 
usage, and oversaw associated troubleshooting.  Work Study, October 1997 – April 1998. 
 
Duke University Medical Center, Durham, NC 
Analyzed patient DNA for blood clotting protein.  Involved processes such as gel 
electrophoresis, polymerase chain reactions, and DNA purification.  Comprehensive Cancer 
Research Center Program, Summer 1996 – January 1997. 
 
Cisco Systems, Inc., Research Triangle Park, NC 
Learned network protocols (i.e. TCP/IP) and routers; developed networks and web sites.   
Internship, September 1995 - May 1996. 
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North Carolina State University Food Science Dept., Raleigh, NC 
Developed procedure to remove phospholipid proteins from dairy products for the lactose 
intolerant public.  Minority Research Apprenticeship Program, Summer 1995. 
 
 


