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ABSTRACT

Theory and Simulation of Polymer and Polyelectrolyte Self-Assembly

Sharon Loverde

Polymers and polyelectrolytes are ideal tools for the development of novel self-assembled

materials. The ability to control the length-scales of self-assembly, and thus the proper-

ties, for soft materials lies in the understanding and subsequent manipulation of competing

intermolecular interactions, such as hydrophobicity, hydrogen bonding, van der Waals, elec-

trostatics. In this thesis, computer simulation and theory describe two separate phenomena

in soft condensed matter—polymer gelation, as well as pattern formation at interfaces by

charged macromolecules.

A mean field theory of thermoreversible gelation is outlined, that incorporates a chemical

approach to intermolecular interactions. For example, gels that form due to hydrogen bond-

ing between polymer chains. Using Monte Carlo, the processes of chemical interactions, as

well as physical interactions are used to describe gelation. Physical interactions refer to hy-

drogels, or gels that are formed through hydrophobic interactions. It is found that the mean

field theory can be extended to describe physical gelation, by incorporating a concentration

dependent association constant.
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The self-assembly of oppositely charged, immiscible molecular components at interfaces

is introduced. The theoretical behavior is outlined at low temperatures, by assuming the

formation of finite, strongly segregated lamellar or hexagonal domains. At high tempera-

tures, density fluctuations are examined to determine the transition from the disordered to

microphase region.

Molecular dynamics simulations are designed to explore the phase behavior of this model

at intermediate temperatures. The formation of lamellar and hexagonal domains are char-

acterized. It is shown that the strength of the electrostatic interactions in competition

with short range interactions determines the degree of interfacial ordering between the do-

mains, and the periodicity, illustrating the transition between low and high temperatures.

In addition, it is shown that for asymmetrically charged molecular components, increased

electrostatic interactions can decrease the fluctuations in the local inter-domain structure.

Molecular dynamics results are then be used in complement to theory, to describe the pos-

sibility of phase coexistence of the previous phases with a low charge density gas phase.

It is found that the periodicity of the structure at intermediate temperatures can be well

described, by accounting for the solid phase swelling at low densities.
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CHAPTER 1

Introduction

1.1. Research motivation

The principles of self-assembly are intrinsic to the development of unique, thermodynam-

ically stable, and highly organized soft materials. Polymers and polyelectrolytes are essential

tools to the field of self assembly. Just as imaging and characterization techniques improve

down to smaller and smaller length scales, the ability to intelligently design bulk and surface

organizational properties is simultaneously improving.

The classical picture of self-assembly is based on simple packing ratios of the amphiphillic

molecules involved. By changing the shape of the molecule, such as the relative size of the

hydrophillic portion of the molecule, or head group, to the tail length, one might predict a

shift in the phase behavior of the solution. A simple surfactant can form a range of structures

from spherical micelles to bilayers to vesicles [1]. For example, sodium dodecyl sulfate (SDS),

a single chained surfactant with a large head group area, would be expected to pack in a

spherical micelle, while other single chained lipids with smaller head group areas might be

expected to pack into cylindrical micelles.

Surfactants are of widespread importance in the detergent industry and are well known

for their use as emulsifying agents, lubricants, and for the stabilization of colloids in solution.

One property of SDS is that the head group contains a charged sulfate group. When mixed

with oil and water, this can change the phase behavior of the surfactant relative to other
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nonionic surfactants [?]. However, the effect of increasing the ionic surfactant content on the

relative elastic properties of these microemulsions in hydrophobic films is still not completely

understood [?]. One unknown consists of the phase behavior of the charged surfactant at

the oil water interface. This is just one example of how a simple property at the molecular

level, in this case, the charged group on the head group of a surfactant, can influence the

bulk properties of the system.

In many cases, it is the electrostatic interactions that promote the self-assembly of the

system, such as in polyelectrolyte hydrogels. Depending on the polyelectrolyte concentration,

pH, or solvent, an interconnected polymer network can be formed. The applications of

hydrogels are diverse and range from scaffolds for tissue engineering [?] to smart materials

that act as actuators or sensors [?]. In addition to synthetic gels, polymer gels are also

found in the human body. As an example, the cytoskeleton that supports the cellular

plasma membrane is a beautifully varied mechanical network. Its properties are based on

the complexation of F-actin with other proteins [2].

Polyelectrolyte complexes, that is, complexes of cationic and anionic polyelectrolytes

have long been studied for self-organization behaviors in aqueous solutions into complex

ionic structures. Recently, complexes of polyelectrolytes with surfactants are showing more

prominence in the engineering field, especially for their potentiality as pharmaceutical drug

carriers [3] or in gene therapy [4]. The structure of oppositely charged biomolecular co-

assemblies such as DNA-proteins in nucleosomes [5] and the actin-protein complexes in the

cytoskeleton [6], are the result of the competition of short range interactions, including ex-

cluded volume, and electrostatics. Moreover, the complexation of proteins onto hydrophobic
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or hydrophillic surfaces has exhibited the possibility of surface patterning due to electro-

static interactions [7]. Understanding the surface assembly of a complex group of charged

components may lead to a greater deal of understanding concerning the stability of self-

assembled aggregates, as well as give insight into the complex behavior of lipid rafts and

their contribution towards protein sorting and cell signaling [8].

Cationic and anionic mixtures of lipids or peptide amphiphiles co-assembled into vesi-

cles [9, 10] or cylindrical micelles [11, 12, 13] are examples of co-assemblies stabilized by

hydrophobic interactions and electrostatics. The surfaces of such complexes of oppositely

charged molecules may not be homogenous if the chemically co-assembled structures have

net repulsive short range interactions among them, or if the charged surface components have

different degrees of compatibilities with water. In this thesis, an ideal model of immiscible

and oppositely charged molecular components at an interface will be developed theoretically,

and explored with molecular dynamics simulations. This model will explore the possibility

of charge heterogeneities at interfaces, with respect to temperature and concentration.

Theoretical techniques can examine the effects of simple changes in molecular architec-

ture on the resulting interfacial concentration. While the variety of theoretical techniques,

such as self consistent field theory [14] and mean field theory [15], continue to evolve and

specialize to describe the nature of the system in question, computer simulation oftentimes

provides additional insight into the problem. Simulation is the ideal tool that will bridge

the gap between macroscopic continuum theory and the experimental systems. Within the

construction of a simulation model, molecular details can be introduced at a coarse-grained

level, without losing the ability to capture the underlying physics of the problem. Computer
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simulation techniques will provide insight into the intelligent design of soft materials for a

wide range of mechanical, chemical, and biological applications.

1.2. Thesis organization

The following chapter begins with an introduction to topics in polymer and polyelec-

trolyte theory that will be utilized during the course of this thesis. It covers necessary

background information for simulation techniques, including Monte Carlo and molecular dy-

namics as applied to soft systems. Special attention will be given in an overview of current

electrostatics techniques in simulation methods.

In Chapter 3, a theoretical model of polymer association and gelation is presented. The

analytic results from this mean field theory are then compared with the results of coarse-

grained Monte Carlo simulations. Within the simulations, two underlying mechanisms for

gelation are considered–physical and chemical thermoreversible association. It is shown that,

even at a very simple level, the classical mean field models must be modified to correctly

describe the processes of physical gelation.

Next, the idea of self-assembly of oppositely charged, immiscible molecular components

at interfaces is introduced in Chapter 4. This model system is described using strong segre-

gation theory at low temperatures, as well as linear response theory at high temperatures.

Molecular dynamics simulations are designed to test this model in intermediate temperature

regimes. The complete phase diagram will be explored, in Chapters 5, 6, and 7. The forma-

tion of well-organized lamellar and hexagonal domains are characterized. It is shown that

the strength of the electrostatic interactions determines the degree of interfacial ordering
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between the domains. In addition, it is shown that for asymmetrically charged molecu-

lar components, the electrostatic interactions can even freeze the local domain structure.

Molecular dynamics results will then be used in complement to analytical theory, in order

to describe the possibility of phase coexistence of these patterned phases with a low charge

density gas phase. Many systems display phase segregation on the interface due to compet-

ing interactions. This is of particular significance because the contribution of electrostatics

to this possibility has not yet been thoroughly investigated.
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CHAPTER 2

Selected Background

In this chapter, selected background to topics in basic polymer and polyelectrolyte theory

are given that will be utilized in the course of this thesis. This is followed with a brief overview

of Monte Carlo and molecular dynamics simulations. A basis for mean field gelation theory,

presented in Chapter 3, is the Flory theory for an ideal polymer chain. This is introduced in

Section 2.1.2. In Section 2.1.2, an introduction to electrostatic interactions is given in Section

2.1.3, a general overview of nonlinear and linear Poisson Boltzmann theory is given. Next,

an outline for the Random Phase Approximation is presented in Section 2.1.3, as well as a

discussion of its applicability to soft condensed matter systems. After these selected topics in

polymer and polyelectrolyte theory, the conceptual basis behind Monte Carlo (Section 2.2.1)

and molecular dynamics algorithms (Section 2.2.2) is discussed. Common intermolecular

potentials for coarse-grained systems are given in Section 2.2.3. This is followed with a

discussion of periodic boundaries in the simulation box in Section 2.2.4. The development

of efficient methods to calculate electrostatic energy are critical to the simulation of soft

condensed matter systems. An overview of current techniques will be discussed in Section

2.2.5.

2.1. Polymer and polyelectrolyte theory

A polyelectrolyte is a polymer that contains ionizable groups. In polar solvents, such as

water, the polymer backbone dissociates from its respective counterions, which gain entropy
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Figure 2.1. Illustration of Polymethyl methacrylate (PMMA) and Sodium
polystyrene sulfonate (PSS) showing the chemical structure of the repeat unit.
The physics point of view considers a polymer as a gaussian chain, with radius
of gyration, Rg. The polymer is considered to have a uniform line charge, with
counterions in solution.

upon interaction with the polar solvent. An example of a polylectrolyte, Sodium Polystyrene

Sulfonate (PSS), is illustrated in Fig. 2.2. PSS is used as a medication to treat Hyperkalemia,

or high Potassium levels in the bloodstream. Other examples of polyelectrolytes include

biological molecules, such as DNA, RNA, or polypeptides. One common attribute of water

soluble polyelectrolytes is that they are associative. Furthermore, they have a propensity for

forming polymer gels.

2.1.1. Flory theory for a single polymer chain

The properties and structure of polymers such as uncharged Polymethyl methacrylate (PMMA)

and charged PSS are very disperse. From a chemical point of view, each bond and angle
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Figure 2.2. Distribution function between positions of monomer 0 and
monomer N for a 10 unit length chain.

must be represented to differentiate the structure, and subsequent properties, of each poly-

mer. However, simple models such as the standard Gaussian model of the polymer chain, as

well as lattice models, reproduce many universal properties of polymer chains. Additionally,

they are the easiest to investigate theoretically. If one considers a polymer chain of length

N as the pathway of a random walk of steps a, the elastic or entropic energy can be written

as

(2.1) Fent(r) =
3kBTr2

2Na2
.

kB is the Boltzmann constant, T is the temperature, and r is the distance between the

positions of monomer 0 and N . The distribution function, g(r0, rN) between the positions

of monomer 0 and N is Gaussian

(2.2) g(r0, rN) =

(
3

2πNa2

) 3
2

e−
3r2

2a2N .
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In a real polymer solution, one must take into account the polymer solvent interactions.

Also, the molecules cannot interpenetrate one another. The Flory [16] theory of a single

polymer chain is based upon a competition between the internal volume interactions of the

monomers, as well as the entropic nature of a polymer chain.

(2.3) F = Fint + Fent

The internal free energy can be expanded in terms of the virial interaction coefficients,

Fint = NkBT (vB + v2C + ...)(2.4)

B =

∫ ∞

0

1− exp(−U(r)/kBT )d3r.(2.5)

Here, B is the second virial coefficient, C is the third order virial coefficient, and v represents

the excluded volume between two monomers [?]. The virial coefficient between two monomers

i and j is proportional to 1−2χ where χ represents the net chemical incompatibility between

two monomer types,

(2.6) χkBT =
1

2
(2εij − εii − εjj).

Here, εij is the magnitude of the attraction between components i and j. In particular

solvents, for a value of χ = 1/2 at the theta temperature (θT ), the value of the second order

virial coefficient, B vanishes. In this limit, the ideal Gaussian chain is recovered. In Chapter

3, the ideal model of thermoreversible gelation is presented is based on this concept.
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2.1.2. Poisson Boltzmann and Debye Hückel theory

The behavior of a single chain must be modified for the case when it contains ionizable

groups. The electrostatic repulsion between the charged groups increases the persistence

length of the polymer chain. Scaling analysis can be extended, as in the neutral polymer

case, to incorporate the electrostatic energy of a polymer coil and determine the lengthscale

at which the polymer can essentially be treated as a rigid rod. This limit can be used as an

accurate model for polymers with a large persistence length, such as actin filaments where

the persistence length is in the range of 10− 20 µm or DNA where the persistence length is

50 nm [2].

Consider a rigid rod of line charge density λ with a surrounding counterion or salt distri-

bution in a cylindrical shell. If the configuration of the polymer is assumed to be fixed, one

can examine the counterion as well as the salt distribution in solution. Two main approaches

involve the linear and nonlinear solutions to the Poisson Boltzmann (PB) equation. The ap-

proach assumes a mean counterion density, n(r), based on the Boltzmann distribution.

(2.7) n(r) = n(R) exp(−eψ(r)/kBT )

where ψ(r) is the electrostatic surface potential, and, in a particular geometry of boundary

R, in this example a cylindrical shell, one finds the solution to the Poisson equation,

∇2ψ(r) =
d2

dr2
+

1

r

d

dr
= − 1

ε0

n(r).(2.8)

The potential is normalized so that ψ(R) = 0. Here, e is the unit of electronic charge and

ε is the dielectric permittivity of the medium. For a detailed discussion of a solution to the
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PB equation in cylindrical and other geometries, for both salt-free and salt cases, please see

Ref. [17]. The fundamental lengthscale of the electrostatic strength is the Bjerrum length,

lB, given by,

(2.9) lB =
e2

4πε0kBT
.

In water, the Bjerrum length, or lengthscale over which the electrostatic interactions is

equivalent to kBT , is approximately 7 Å. The Manning parameter, ξ,

(2.10) ξ = λlB/e

is a dimensionless quantity that measures the relative strength of the line charge density. For

values of ξ more than 1, the solution to the PB equation describes a condensed layer on the

surface of the macromolecule. This is known as Manning condensation. PB theory fails most

noticeably in the following cases–when considering multivalent counterions, at high charge

densities, and high values of the surface potential. In these cases, some corrections can be

accounted for by allowing for correlation effects within the free energy density.

Nevertheless, at physiological conditions, there is a screening effect due to the salt ions

in solution. The distribution of salt ions can be written as

(2.11) ρ(r) =
∑

i

zini(R) exp(−eziψi(r)/kBT )
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It is possible to consider a linearized version to the PB equation. In this case, the exponent

can be expanded when the surface potential is low compared with kBT , so that

(2.12) ρ(r) =

∑
i z

2
i ni(R)ψ(r)e2

ε0kBT

where κ is the Debye length of the solution defined by the concentration of ions in solution,

(2.13) κ =

(
4πlB

∑
i z

2
i ni(R)

ε0kBT

) 1
2

The spherical solution to the Poisson equation in this case gives the well known Debye Hückel

potential,

(2.14) ψ(r) = lB
exp(−κr)

r
.

With the integration of this potential, the Debye Hückel correction to the free energy is

obtained as

(2.15)
Fel

kBT
=
−κ3

12π
.

2.1.3. An introduction to the Random Phase Approximation

The Random Phase Approximation (RPA) is a linear response theory, used for polymer

solutions, for example, semi-dilute polyelectrolyte solutions [18], or polymer blends [19],

in which polymer chains are treated as Gaussian and ideal, and then a small perturbation

is added, such as electrostatics or net interaction between monomers. This is a general

technique that works well when the system is at high temperatures and fluctuations in the

system dominate. All density fluctuations are considered in an isotropic manner. To begin
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with, the free energy is expanded in terms of the density fluctuations over all space.

F =

∫
f (ρ(r)) d3r

=

∫ (
f(ρ) +

1

2

∂2f

∂ρ2

∣∣∣∣
ρ

(ρ(r)− ρ)2 +
1

3!

∂3f

∂ρ3

∣∣∣∣
ρ

(ρ(r)− ρ)3

)
d3r(2.16)

Next, the free energy is expanded in the Fourier components of the density, so that

ρk =

∫
ρ(r) exp(ikr)d3r(2.17)

ρ(r) =
1

V
ρk exp(−ikr).(2.18)

In this case, we can write the free energy up to the second order terms, which is what the

RPA limit refers to, as

(2.19) F = F (ρ) +
1

2V

∑

k

Ukρkρ−k + · · ·

where Uk is the fourier representation of the interaction energies. If the free energy is

expanded to higher order terms and solved self-consistently this is known as the Hartree

Approximation, which can be applied to dilute polylectrolyte solutions, but also works for

other polymer systems, such as block copolymer polymer melts [20, 21]. Upon substitution
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in the partition function we obtain,

Z =

∫
exp(−F (ρ + ...))

∏

k

dρk(2.20)

= Z0

∏

k>0

(
Uk + ρ−1

ρ−1

)−1

(2.21)

= Z0

∏

k>0

S(k)−1(2.22)

where S(k) is the structure factor and Z0 represents the k = 0 contributions and other

constants. In three dimensions, calculation of the free energy from the above partition

function gives the same correction to the free energy as in Eq. 2.15. This same technique

will be applied in Chapter 7 to obtain the correction to the free energy, but for charges at a

surface or an interface.

2.2. Essential simulation techniques

To understand the full thermodynamic behavior of the system, one needs the complete

partition function. However, obtaining an accurate representation of all the configurations

of the system is nearly impossible for complex polymeric and biological systems. The sim-

ulation technique used to study the phenomenon of interest should be chosen based on the

length-scales and time scales of interest—ab initio methods, atomistic simulations, or else

coarse-grained simulations. For the scientific field of self-assembly, since one is interested in

how microscopic behavior affects the bulk thermodynamic and structural quantities, larger

lengthscales–on the range of several hundred nanometers to micrometers–are necessary, so

one appropriate method consists of using coarse-grained molecular simulation, in order to
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incorporate the essential physical parameters of the model, without including all atomistic

levels of detail.

In this section, a general overview of Monte Carlo and molecular dynamics simulations

are given in Section 2.2.1 and 2.2.2. The basic principles behind Monte Carlo and molecular

dynamics simulations are discussed briefly, followed by some classic examples of intermolec-

ular pair potentials common is soft systems in Section 2.2.3. Section 2.2.4 continues with a

discussion of the calculation of the electrostatic contribution to the energy.

2.2.1. Monte Carlo method

The Monte Carlo simulation method is an efficient method to sample all the configurations,

or else the phase space, of the components in your system. Efficient Monte Carlo techniques

are based on the principle of importance sampling [22, 23, 24] meaning that the frequency

with which a configuration state is sampled is weighted by how important the state is, or

else, what the associated energy of the state is. If one is to write this mathematically, the

average value of A at some point in space rN is given by

(2.23) 〈A〉 =

∫
drN exp

(
U(rN )
kBT

)
A(rN)

∫
drN exp

(
U(rN )
kBT

)

where the partition function is

(2.24) Z =

∫
drN exp

(
U(rN)

kBT

)
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and

(2.25) P (rN) = exp

(
U(rN)

kBT

)
/Z

represents the probability density to find the system in state rN . In order to derive the classic

Metropolis algorithm, the idea of importance sampling can be combined with the principle

of detailed balance. Detailed balance implies that the probability to go from state 0 to state

n, W (0 → n) given that one is in state 0, P (0), must be equivalent to the probability to go

from state n to state 0, W (n → 0) given that one is in state n, P (n). Or else,

(2.26) W (0 → n)P (0) = W (n → 0)P (n).

From this, one can derive the acceptance probability for one Monte Carlo step.

(2.27) W (0 → n) =





exp
(
−

(
U(n)
kBT

− U(0)
kBT

))
∆U > 0

1 ∆U < 0

Thus, if the change in energy associated with the move is negative, the move is always

accepted, else, if the change in energy is positive, a random number in the range (0, 1)

is generated. If this random number is less than the above acceptance ratio, the move is

accepted.

2.2.2. Molecular dynamics simulations

Molecular dynamics simulations offer a unique way to investigate the dynamical properties of

classical systems. The microscopic state of the system is defined in terms of the positions and

the velocities of the ions. The principle calculation of molecular dynamics is the calculation of



32

the force acting on every particle, in order to best approximate Newton’s equations of motion.

Since the force is the derivative of the potential, the more complicated the intermolecular

potentials, the more time-consuming this step is. For this reason, coarse-grained potentials

are kept as simple as possible while still capturing the basic physics of the system.

The most common algorithm for generating eqilibrium dynamics of the system in a

microcanonical ensemble (NVE) involves a Taylor expansion of the positions and momentums

of a particle with respect to time, and it is referred to as the velocity Verlet algorithm. This

algorithm has the special characteristics that it is both time reversible and area preserving

in phase space [22], meaning that there is a smaller error for long term energy conservation.

The position and momentum at time t′ with a timestep δt from the initial time t can be

written as

r(t + δt) = 2r(t)− r(t− δt) + 2v(t)δt +
f

m
(δt)2

v(t) =
r(t + δt)− r(t− δt)

2δt
(2.28)

The goal of molecular dynamics simulations is to generate a simulation long enough

to ensure good statistical averages. In addition, useful molecular dynamics often involves

ensembles other than the microcanonical ensemble-for instance, NVT or else NPT ensembles.

For thermostats, there are several choices based on different approaches. The Nosé-Hoover

thermostat is based on an extended Lagrangian approach by adding an additional coordinate

to the classical equations. Another approach is to use the Langevin thermostat, which is

based on the principle that the system is coupled to an external heat bath, which keeps

it at a constant temperature. Another approach is to use dissipative particle dynamics
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(DPD) [25], that obeys both conservation of momentum, as well as incorporates the correct

hydrodynamics.

The Langevin thermostat [26] incorporates a frictional force, as well as a random force

as follows

mir̈i = −∇U(ir)− Γṙi + ξi(t)(2.29)

where ξi is a Gaussian noise source supplied by the heat bath.

〈ξi(t)〉 = 0(2.30)

〈ξi(t)ξi(t́)〉 = δijδ(t− t́)6kBTΓ(2.31)

2.2.3. Common intermolecular potentials

Some common intermolecular pair potentials for coarse-grained simulations are illustrated in

Fig. (2.3, including the square well potential (a), Lennard Jones 6− 12 potential (b), finite

extensible nonlinear elastic (FENE) potential [?] (c), Coulomb potential (d), and Debye

Hückel potential. A square well potential between two particles i and j is simply

(2.32) Uij =





∞ rij < σ

−ε σ < rij < rc

0 rij > rc

Oftentimes it is referred to as a sticky potential. Another classic potential is the Lennard

Jones potential, which is used in a variety of systems, to explore solid liquid phase diagrams

[27], as well as to represent van der Waals interactions for soft systems. The Lennard Jones
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potential is

(2.33) Uij =





4ε
(
( σ

rij
)12 − ( σ

rij
)6

)
rij < rc

0 rij > rc

In molecular dynamics simulations, it is important that this potential, in addition to being

truncated at rc = 21/6σ is also shifted, so that the intermolecular forces are always finite.

Another common intermolecular potential for soft systems is the finite extensible nonlinear

elastic, or Fene, potential. This is often used to model polymer chains, as it incorporates the

excluded volume of each polymer bead with a finite bonded lengthscale. The Fene potential

is as follows

(2.34) Uij = −0.5KR2
0 ln

(
1− rij

R0

2
)

+ 4ε

((
σ

rij

)12

−
(

σ

rij

)6
)

+ ε

For this potential, the finite length of the bond is represented by R0 while the Lennard

Jones type interaction is cut at rc = 21/6σ. The stiffness is the bond is determined by the

magnitude of K. Two more potentials of interest consist of the Coulomb potential, as well

as the Debye Hückel potential. The Coulomb potential

(2.35) Uij =
lBqiqj

rij

where the Bjerrum length,

(2.36) lB =
e2

4πεkBT
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and ε is the dielectric constant of the medium. The Debye Hückel potential is a correction

to the Coulomb potential

(2.37) Uij =
lBqiqj exp(−κr)

rij

where κ−1 represents the Debye screening length, determined by the concentration of salt in

the medium, csalt.

(2.38) κ2 = 4πz2lBcsalt.

z represents the valency of z : z salt. At physiological conditions, csalt is around 0.1M, which

corresponds to a screening length, κ−1, of 1− 2 nm.

2.2.4. Periodic boundaries

As the goal of simulation is to represent the microscopic particles to the macroscopic proper-

ties of the system, every simulation is fundamentally limited by the sheer number of particles

or atoms or molecules represented. In order to more accurately represent a bulk sample, the

boundaries of the simulation box may be treated as periodic. In this case, each simulation

box is reproduced and translated to obtain a number of neighboring boxes so that every

particle has a corresponding twenty six images for three dimensional periodic boundaries,

nine images for a two dimensional simulation. The energy is calculated by summing over

every pair within the original cell, as well as the interaction of the particle with its images.
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Figure 2.3. Common intermolecular potentials for coarse-grained simulation.
a) Square well potential. b) Lennard Jones 6-12 potential. Dashed line rep-
resents the truncated and shifted version, including only the repulsive portion
of the potential. c) Fene potential d) Repulsive 1/r Coulomb potential.

2.2.5. Efficient calculations of charged interactions

While at first glance the calculation of the electrostatic energy from the partition function

may at first seem to be fundamentally simple, since the electrostatic energy is additive and

is the pairwise sum of all the charged particles in the system. However, there are several

complications involved including the distribution of counterions in the system, the effects of

the salt in the medium, and the long-range nature of the interaction. Most polyelectrolytes

are dissolved in water, certain charged groups disassociate. In addition, the water molecules
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themselves carry a dipole moment. Both of these effects can interact and change the local

dielectric constant close to an interface.

While computational techniques accounting for these complexities exist, efficient methods

are still within their infancy. Computational methods incorporating discontinuities in the

dielectric constant exist, in which the image charge is modelled explicitly for two dielectric

media [28]. However, this method fails when the charges approach the boundary between

the two dielectrics. For ionic solutions, methods have been introduced that accounts for

the salt concentration dependence of the dielectric permittivity [29]. In addition, recent

algorithms have been investigated for both Monte Carlo [30] and molecular dynamics [31]

that incorporate electrodynamic equations on a local scale. In general, it is agreed that

incorporation of efficient algorithms into molecular dynamics is more effective than with

Monte Carlo [30], simply because the electrostatic interactions between components are

calculated simultaneously with molecular dynamics. In Monte Carlo the interactions need

to be calculated before and after every Monte Carlo step for each individual particle.

Considering a set of N particles with charges qi in a cubic simulation box of length L

and volume L3, including the periodic boundary conditions, the total electrostatic energy is

(2.39) E =
1

2

N∑
i,j=1

′∑

nεZ3

qiqj

fij + nL

The case n = 0 for i = j is not included in the sum. This is the denoted by the ′ in

the second summation. This sum is conditionally convergent [32] and is dependent on the

shape of the simulation box, as well as the electrostatic properties of the outside medium,

whether it is a vacuum, dielectric, conductor. The motivation for Ewald summation [33] lies

in the separation of the potential into real and fourier terms at a particular cutoff, allowing
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for faster convergence of this sum. This is conventionally done by considering a Gaussian

screening function of opposite charge around each point charge. The interaction of the point

charge and its screening function of opposite charge is included in the real space sum, Er,

along with a correction due to the self energy of the charges, Es. The fourier term, Ek, then

consists of a long range correction for the screening function. In addition, there is a dipole

correction term, Ed, that is dependent on the dielectric constant of the outside medium, ε.

More explicitly,

(2.40) Er =
1

2

∑
i,j

∑

mεZ3

qiqj
erfc(α|rij + mL|)

rij + mL

(2.41) Ek =
1

2L

∑

k 6=0

4π

k2
e−k2/4α2|ρ(k)|2

(2.42) Es = − α√
π

∑
i

q2
i

(2.43) Ed =
2π

(1 + 2ε)L3

(∑
i

qir
2
i

)2

The inverse length, α, determines the point at which the sum switches from real space to

fourier space, and can be used to tune the accuracy of the summation.

While splitting the sum into real and fourier parts allows for the faster convergence of the

electrostatic energy, the algorithm still scales like N3/2, where N is the number of particles

in the simulation box. Some additional techniques involve the transformation of the charge

density onto a grid so that fast fourier transformation (FFT) techniques can be used to
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calculate the k space term. The methodology is known as particle mesh Ewald (PME) [34],

which reduces the scaling to Nlog(N).

For many materials science problems, such as membranes, absorbtion onto surfaces, in-

terfaces, etc, the relevant system of interest is periodic in only two of the three dimensions.

While an analog to the three dimensional Ewald technique exists in two dimensions [35],

this method is much slower due to the decoupling of the directions parallel to the surface or

interface (x, y directions) and perpendicular (z) directions. Two alternatives to this method

are convergence techniques [36] (MM2D), and also a correction to the mesh summation dis-

cussed previously by subtracting out the periodic contribution due to the images in the third

(z) direction. This is also known as the electrostatic layer correction [37] (ELC) and will be

the technique used in later chapters to sum the electrostatic energy. In this technique, the

charged particles are confined within a central slab within the simulation box. The efficiency

can be compared to other two dimensional techniques, and it is found that ELC is more

efficient for larger systems [38].
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CHAPTER 3

Thermoreversible Polymer Gels

3.1. Introduction and background

Associative polymers possess many unique applications in the field of materials science–

cosmetics, pharmaceuticals, coatings, treatment and recovery for environmental issues. Supra-

molecular assembly and new polymer synthesis techniques have greatly increased potential

engineering capabilities [39, 40]. The possibility of synthesizing chains with end groups ca-

pable of forming thermoreversible links by means of hydrogen bonding [41, 42, 43], physical

bonding [44, 45, 46, 47], flourinated endgroups [48], or DNA-based monomers [49] has led

to the discovery of new materials with thermoreversible associating properties, which can be

useful for designing novel biological or smart materials [50].

The nature of the polymer-polymer interactions, in addition to the polymer-solvent in-

teractions, determines the polymer chain conformation, and thus the microscopic structure

of the solution. However, the resulting macroscopic behavior for associative polymers is

generally similar [19]. After a certain concentration, these molecules form an interconnected

polymer network or gel. This network coincides with an associated increase in the shear

modulus of the polymer gel. Together, this corresponding change in the microscopic order-

ing of the molecules, in addition to the following macroscopic behavioral change, is known

as the sol-gel transition [51]. A schematic phase diagram is illustrated in Fig. 3.1. The

dashed line corresponds to the sol-gel transition. Generally, polymer gels are divided into
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Figure 3.1. Schematic phase diagram for a polymer gel versus temperature
and concentration.

two types. A chemical gel, such as vulcanized rubber, is formed by polymerization of the

units, or else an epoxy resin, is formed by cross-linking an entangled melt of polyisoprene.

A physical gel, such as a triblock copolymer hydrogel, forms upon changing the nature or

concentration of the solvent or else the temperature of the system. While both chemical

and physical gels maintain a long history in the field of materials science and self-assembly,

physical gels, or self-assembled gels, are gaining momentum due to their increased propen-

sity for biological applications. While physical gel formation may be characterized by the

strength of the hydrophobic interactions and possesses a diffusion limited nature, chemical

gel formation lies in a distinct quantum mechanical probability of association. Yet, from

a theoretical standpoint, how the nature of these interactions should be distinguished in

their theoretical approach is unclear. In order to gain insight into this question, a Monte

Carlo simulation was developed to test how mean field theory describes the thermodynamic

properties, as well as the microscopic aggregation behavior, of simple polymer gels in both



42

the chemical and physical gelation regime. In this model, a polymer molecule is treated as

a phantom telechelic–only the ends of the molecule can associate and there are no excluded

volume effects. It has been suggested that, should the effects of excluded volume interactions

be small, mean field behavior should still be observed [52]. In the manner, by consistently

varying the potential of short range interaction, several fundamental questions concerning

the sol-gel transition can be addressed.

The chapter is organized as follows. To begin with, a general overview of gelation theory,

including percolation theory, classical gelation theory introduced by Flory and Stockmayer,

as well as more current approaches. Next, a mean field theoretical approach of thermore-

versible gelation that includes the possibility of loop-like structures is outlined. A model is

developed for Monte Carlo simulations that can be directly compared with analytic results,

incorporating different algorithms for chemical and physical association. In the conclusion,

limitations of this model and other current models are discussed.

3.1.1. Overview of gelation theory

A simple model that captures the basic characteristics of polymer gelation is percolation

theory as shown Fig. 3.2. Percolation theory is a lattice model where each site has a certain

probability, p, of being occupied. If two nearest neighbor sites are both occupied, they are

defined as a cluster. When the cluster spans the entire dimensions of the lattice, this is

considered the gel transition point [53]. However, percolation theory does not accurately

capture certain characteristics of gelation [54]. First of all, molecules in a gel possess a

certain degree of disorder, which cannot be captured by a lattice. Secondly, a real gel exists
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a) b)b)

Figure 3.2. a) In the percolation model, each site has a probability, p, of being
occupied. An occupied site is denoted by an x. b) When a cluster reaches
across the dimensions of the lattice, percolation has occurred.

in a solvent, which has no contribution in percolation theory. Consequently, its scaling laws

are very different from those predicted by classical theory.

Flory and Stockmayer are acknowledged as the parents of classical gelation theory [55,

56]. Classical gelation theory is considered a tree-like approximation, meaning that all

structural conformations of connected polymers are statistically included except for those

that include loops (see Fig. 3.3). The polymer chain is also ideal and thus it obeys Rouse

statistics (See equations 3.2 and 3.3). Stockmayer was the first to include the effects of loops

or rings in a simple model of classical theory, although he did not extend it to his more

complete classical theory [57]. Flory introduced the idea that gelation is determined by the

formation of an infinitely large network [58]. He statistically found the weight fraction of

gel as a function of reacted monomers, although he neglects intramolecular reactions [56].

The critical value of the fraction of reacted monomers, αc, at the gel transition temperature

as a function of molecular functionality, f , is found to be

(3.1) αc = 1/(f − 1).
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a) b)

Figure 3.3. a) An illustration of a tree-like structure within classical gelation
theory. b) An illustration of a loop-like structure that would not be included
in classical gelation theory.

Flory’s mean field approximation is often found to be closer to experimental values, even

though Stockmayer’s theory, at first, seems more general and mathematically complete [55].

This is most likely due to the unintentional inclusion of intramolecular reactions (loops)

within Flory’s expression for the free energy, which was later recognized and examined fur-

ther by Stockmayer and Semenov [55, 59]. One of the more recent models to examine the gel

transition is attributed to Tanaka [60]. Although still a mean field model, Tanaka extended

it to predict the gel transition temperature for specific concentrations and temperatures.

Directly after Tanaka, Semenov extended the classical theory to examine even more thermo-

dynamic quantities around the gel point [59]. He predicts that the sol-gel transition is not

actually a thermodynamic transition, and is quite critical of Tanaka’s earlier theory. He finds

that phase separation is found at or near the gelation regime, except in the case when strong

excluded volume interactions are included. While Semenov accepts and continues the initial

Flory approach to the gelation problem, a recent mathematically intense theory proposed

by Erukhimovich, specifically includes loops and loop-like structures in the bonding portion

of the free energy [61, 62].
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With this simplified model the structure and thermodynamics of the solution can be

analyzed and compared directly with Monte Carlo simulations. Important controversial

questions regarding the properties of multifunctional associating chains at and below the

gelation point cannot be directly addressed. However, determining the applicability or failure

of the theory in simpler situations can help to construct more accurate models for complex

systems and/or shed light into some controversial issues. For example, extensions of the

gelation Flory approach [56, 58, 55, 57] to examine thermodynamic properties lead to

contradictory conclusions concerning the order of the sol-gel transition [63, 59]. More recent

analysis specifically includes the effect of cyclical structures on resulting thermodynamic and

structural quantities [64, 61, 65] and concludes that under certain conditions the sol-gel

transition is first order [62]. Competition when specific interactions are added have been

addressed in the case of pairwise interactions [66, 67]. Additionally, mean field theory

has been expanded to include effects of differing polymer chain conformations and density

analytically [68]. It is therefore important to determine the validity of mean field in simpler

systems.

There have been multiple computer simulations examining the phase behavior [69, 70]

and dynamical properties [71] of telechelic polymers. There have been several on and off-

lattice Monte Carlo studies of these sorts of living polymers [72, 73, 74]. However, all

simulations treat the bonding potential of the polymer as a physical interaction and do

not address its chemical nature. It is generally concluded that the presence of rings does

not significantly affect the equilibrium distribution of chains, for the case of unbranched

structures [75, 76]. It has also been noted that there exist strong finite size effects on the

average chain length formed. The fraction of loops is determined by chain rigidity, as well
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as the energy of interaction. A full theoretical understanding of the fraction of loops even in

the simplest of cases, as well as effects on thermodynamic quantities, is given here.

3.1.2. Mean field theory

Assuming that the ends of the telechelic chains can only associate in pair aggregates, we

calculate the free energy of the system. We also assume that the chains possess no excluded

volume, so that the statistics of the chains is Gaussian. This assumption, as it applies to

the formation of cyclical structures relative to experimental systems, has been addressed

by Flory [77]. In addition, contributions of fluctuation correlations to the free energy are

neglected, following Lifshitz [78].

For one chain, the probability distribution function g(r0, r1) of having one telechelic end

at position r0 and the other end at r1, is given as a function of N , the length of the chain,

and a, the intermonomer distance, by

(3.2) g(r0, r1) =

(
3

2πNa2

) 3
2

e−
3r2

2a2N

In the case of linear association of n chains, the distribution function is an integral of the

product of the distribution function of the individual chains, integrated over all positions

except for the ends:

g(r0, rn) =

∫
g(r0, r1)g(r1, r2)...g(rn−1, rn)d3r1....d

3rn−1

=

(
3

2πnR2
o

) 3
2

e
− 3(r0−rn)2

2nR2
o(3.3)
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where, R2
o = Na2. To obtain the partition function we multiply g(r0, rn) by kn−1, where k is

the reaction constant of pair formation. The reaction constant is defined in terms of ε, the

energy gained upon formation of a pair, σ, the size of a pair, and its explicit expression will

be given in Section IV.

(3.4) z(r0, rn) = g(r0, rn)kn−1

Integrating z(r0, rn) over the positions of the end monomers, we get the partition function

of a line of associated chains:

Z line
n =

1

2

∫
z(r0, rn)d3r0d

3rn

=
1

2

∫ (
3

2πnR2
o

) 3
2

kn−1e
− 3(r0−rn)2

2nR2
o d3r0d

3rn

=
1

2
V kn−1(3.5)

The factor 1
2

out in front of the integral in Eq. (5) takes into account the symmetry of the

line.

For a ring of associated chains, the partition function is comparably:

Zring
n =

1

2n
k

∫
z(r0, rn)δ(r0 − rn)d3r0d

3rn

=

∫
1

2n

(
3

2πnR2
o

) 3
2

δ(r0 − rn)kne
− 3(r0−rn)2

2nR2
o d3r0d

3rn

=
1

2n
V kn(

3

2πnR2
o

)
3
2(3.6)
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where 2n is the symmetry index of a ring. We can use separate notations for the symmetry

indices and define weight indices for linear fragments (lines) and rings in order to simplify

the above expressions. We can then write the partition function for a ring and a linear chain

as Zring
n = V wnr

snr
and Z line

n = V wnl

snl
where for a ring the weight index wnr = ( 3

2πnR2
o
)kn−1

and the symmetry index snr = 2n. For a linear chain, the weight index wnl = kn−1 and the

symmetry index snl = 2.

The total partition function of the system can then be written as:

(3.7) Z =
∞∏

n=1

(Zring)Nn

Nn!

∞∏
n=1

(Z line)Qn

Qn!

where Nn represents the number of rings of size n and Qn represents the number of linear

fragments of size n.

Also, define An as the concentration of rings of size n and Bn as the concentration of

lines of size n. The free energy rewritten in terms of these parameters is:

(3.8) F = −T ln Z = −T

[ ∞∑
n=1

ln
(Zring)Nn

Nn!
+

∞∑
n=1

ln
(Z line)Qn

Qn!

]

Using Sterling’s approximation, the above expression reduces to:

(3.9)
F

TV
=

∞∑
n=1

(
An ln

Ansnr

wnre
+ Bn ln

Bnsnl

wnle

)

We add a Lagrange multiplier to ensure that the total concentration of chains, C =
∑

n(An+

Bn)n, is constant.

(3.10) F̃ =
F

TV
+ µ(

∑
n

(An + Bn)n− C)
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Minimizing with respect to An and Bn, we get

An =
wnr

snr

e−µn =
wnr

snr

zn

Bn =
wnl

snl

e−µn =
wnl

snl

zn(3.11)

where z represents the fugacity of the polymer chain. The equilibrium free energy is then:

(3.12)
F

TV
= ρ ln z −

∞∑
n=1

(An + Bn)

where ρ is represented by,

ρ =
∞∑

n=1

(
znkn−1

2
+

(zk)n

2n

(
3

2πn

) 3
2

)
n

=
1

2

z

(1− zk)2
+

1

2

(
3

2π

) 3
2
∞∑

n=1

(zk)n

n
3
2

(3.13)

At a given density and temperature we can numerically solve for z using the previous equa-

tion for ρ. Then, plugging z back into the expression for the free energy, we can numerically

evaluate the energy per chain, the heat capacity per volume, and the fraction of chains

participating in rings and lines. Finite difference derivatives are used to evaluate U , the

internal energy of the system, and Cv

V
, the heat capacity per volume, using the following

thermodynamic relations.

(3.14) U = −T

(
∂F

∂T

)

V,N

+ F
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(3.15) Cv =

(
∂U

∂T

)

V,N

We also evaluate the fraction of chains that belong to rings, f ,

(3.16) f =

∑∞
n=1 Ann

ρ
=

∑∞
n=1(

(zk)n

2n
( 3

2πn
)

3
2 ))n

ρ

3.2. Monte Carlo for ideal gels

A standard Metropolis Monte Carlo Algorithm is used with a Canonical Ensemble (con-

stant N,V,T). All described simulations are off lattice, and periodic boundary conditions are

enforced with a Verlet linked list methodology when calculating the internal energy of the

system. The reduced density is defined by ρ∗ = Nmσ3

V
= Nsσ3

2V
, where Nm represents the num-

ber of polymer molecules or chains, Ns represents the number of stickers or end monomers,

and σ is the range of interaction potential between ends, to be defined below.

In order to systematically test the accuracy of theoretical understanding of the influence of

cyclical structures on the thermodynamics of the system, a very simple model was developed.

Each polymer chain is given an entropic spring force such that the free energy of a single

chain is:

(3.17) F =
3

2

R2T

R2
o

R2
o is Na2, where N represents the number of monomers in the chain, and a is the inter-

monomer distance. A Gaussian distribution has been shown to be consistent with associating

polymer chains at sufficient densities in previous simulations [74, 73]. A simple square well
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interaction potential between the end monomers is used, of the following form.

(3.18) U =




−ε r < σ

0 r > σ

where ε and σ represent the depth and the width of the potential well with units of energy

and length respectively. Because each polymer chain is assumed to be ideal, possessing no

excluded volume, the locations of all the monomers in the chain do not need to be stored,

only the connectivity and locations of the chain ends. Also, without excluded volume effects,

phase separation will not be seen in the system. The only factors that will affect calculated

properties are the competing entropic and bonding contributions.

Results of two types of simulations will be discussed. For both types of simulations, only

the case of pairwise association is considered, so tree-like structures cannot be formed. This

allows us to test the validity of the mean field model described in Section 3.1.2. In the first

case, we simulate this theoretical model. That is, the probability p that a bond is formed if

the end-monomer distance is less than σ is determined only by the energy of the bond and

is given by:

(3.19) p =
e

ε
kBT

1 + e
ε

kBT

This is a two state model following the model for chemical reaction initially suggested to

model the transition state between gauche and trans conformations for polymer chains [79].

It also includes the effects of bond saturation, as in hydrogen bonding. In order to ensure

that detailed balance is obeyed and that the system is in true thermoreversible state of

chemical equilibrium, the important additional step in Monte Carlo to ensure equilibrium is
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to make sure the number of attempts to break a bond is equal to the number of attempts to

make a bond. In the second type of simulation, we consider the case where a bond is always

formed if it is not yet saturated. We denote this case as diffusion limited, and it corresponds

to the case of physical bonding.

Resulting thermodynamic and structural properties from both types of simulations, such

as the average energy per particle, the heat capacity per volume, and the fraction of loops,

are compared directly with theoretical results.

3.2.1. Thermoreversible chemical equilibrium

The average energy per particle, the heat capacity per volume, as well the fraction of chains

participating in loops as functions of reduced temperature T ∗ = kBT
ε

and reduced density

ρ∗ = ρσ3, are directly compared with theoretical results for the case of an equilibrium

chemical thermoreversible bonding interaction. In this case the reaction constant is given by

(3.20) k =
4πσ3

3
e

ε
kBT

The following results are presented for 1,000 polymer chains (Nm = 1000), each with

a length of 10 monomers, where a, the intermonomer distance, is defined to be σ, the

width of the potential well. Averages of thermodynamic quantities were taken every 10,000

MC cycles for a total of 1,000,000 MC cycles after a 10,000 MC cycle equilibration. This

was to ensure that structural quantities, such as the fraction of loops, sufficiently relax

between measurements. The following a snapshot from simulations, showing the existence

of a percolated cluster in the simulation box.
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Figure 3.4. Snapshots of the simulation close to the percolation regime. The
green, or lighter monomers, represent members of a percolated cluster.

Fig. 3.5 compares MC data for the average energy and heat capacity with the analytical

predictions. The average energy per particle agrees more closely with analytical results

as reduced density increases and the heat capacity per volume matches perfectly the results

from the theoretical calculations. Notice that the magnitude of the peak in the heat capacity

per volume versus temperature increases as the density increases. However, the maximum

in the heat capacity per number of molecules (that is heat capacity per volume divided by

density) increases as the density decreases.

Fig. 3.6 shows the probability distribution of the chain’s end-to-end distance. One can

clearly see the discontinuity at r = σ. This discontinuity results from the square well form

of the interaction potential between the ends of the chain. As seen from the figure, the

discontinuity goes away with increased temperature. It will also disappear with increased

density of the chains. Indeed, as the density increases, less chains participate in self loop

structures in agreement with Fig. 3 where it is shown that the weight averaged molecular
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Figure 3.5. Average energy per particle (a) and heat capacity per vol-
ume (b) as functions of reduced temperature T ∗ at reduced densities ρ∗ =
0.05, 0.15, 0.25 with the theoretical results respectively marked with dashed,
dot-dashed, and solid lines and the simulation results represented by circular
points. Standard deviation is smaller than the width of the circular point,
otherwise it is marked.

weight of the clusters increases if the density increases. This means that there will be less

deviations from the predicted Gaussian distribution of the chain’s end-to-end distance.
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Figure 3.6. The probability of the chain end-to-end distances r in units of the
width of the square potential σ at a reduced density ρ∗ = 0.05 for different
effective temperatures T ∗ = 0.1, 0.3, 1.0. For all values of r/σ > 1 the proba-
bility is Gaussian and it is independent of T ∗. Deviations from the Gaussian
distribution are observed at length scales smaller than σ when T ∗ is very low.

Next, the effects of increasing the length of the polymer chain was explored. Most notably,

at a reduced density ρ∗ = .05 and reduced temperature T ∗ = 1.0 as seen in Fig. 3.8, which

shows the largest deviation from mean field theory results for the average energy per particle,

increasing the length of polymer chain to 100 monomers from 10 monomers substantially

decreases disagreement with theoretical predictions for the average particle energy. Mean

field theory is a better description when the characteristic length of interactions is much less

than the average distance between interacting monomers [62].

The comparison between theory and simulation, however, is not so straightforward for the

case of structural quantities such as the fraction of chains that belong to loops. In Fig. 3.9,
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Figure 3.7. The weight average molecular weight of clusters as a function of
effective temperatures T ∗ for various reduced densities ρ∗ = 0.05, 0.15, 0.25.
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Figure 3.8. Percent difference in energy between theory and simulation at a
reduced density ρ∗ = 0.05 and a reduced temperature T ∗ = 1.0. As the chain
length is increased, percent difference decreases.
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Figure 3.9. Fraction of chains that belong to loops as a function of reduced
temperature T ∗ at several a reduced density of 0.15 (ρ∗ = 0.15). The theo-
retical results are marked with a solid line, while the simulation results are
represented by circular points. Standard deviation is indicated. Disagreement
is seen with theoretical results at both low and high temperatures.

the fraction of chains in loops as a function of reduced temperature at a reduced density of

0.15 for both theory and simulation is illustrated. The simulation underestimates the fraction

of loops at high temperatures, and large fluctuations are seen at lower temperatures, which

is an effect of the system size. In order to understand what is happening it is necessary to

systematically study the finite size effects of the system.

Neglecting the finite size effects, the fraction of loops at low temperatures can be found

as follows. Let us rewrite Eq. 3.13 for the total density of polymer chains in the form

(3.21) ρ = ρlinear + ρring

where

(3.22) ρlinear =
1

2k

x

(1− x)2
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(3.23) ρring =
1

R3
0

ξ(x)

with x = zk and function ξ(x) defined as

(3.24) ξ(x) =
1

2

(
3

2π

)3/2 ∞∑
n=1

xn

n3/2

For small temperatures (T → 0) associating constant is large (k → ∞) and ρring could be

explicitly found

(3.25) ρring =





ρ, ρ < ρc

ρc, ρ > ρc

where ρc = ξ(1)R−3
0 ' 0.43R−3

0 . The fraction of chains in rings or loops in the limit of small

temperature could be readily found:

(3.26) f =





1, ρ < ρc

ρc/ρ, ρ > ρc

In particular, if the chain consists of 10 monomers (R0 = 101/2σ) and the density of chains

is ρσ3 = 0.15 then the fraction of loops at low temperatures f ' 0.09, which is in reasonable

agreement with the simulation data shown in Fig. 3.9.

To address the finite size effects and the validity of the mean field theory in more detail

we also examine fluctuations in the number of the chains that belong to loops during our

simulation process. Looking at low temperatures (T ∗ = 0.1) we can see from Fig. 3.10 a), as

we increase the size of the system, keeping a constant density, the probability distribution
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of the fraction of chains in loops becomes narrower and thus fluctuations in the number of

chains that belong to loops become smaller suggesting that in the limit of a large system

they would become infinitely small.

One can also notice a sudden jump in the distribution at f = 1. This effect takes

place only in small systems at low temperatures and could be describe as follows. At low

temperatures all the stickers should be combined in pairs. As illustrated by Eq. 3.26 the

fraction of the chains that belong to loops is less than 1 if ρ > ρc. There is only one possibility

left for the chains that do not belong to loops: they have to be connected in one big linear

chain since all the stickers have to be combined in pairs in the low temperature limit. If the

ends of such a linear chain meet then the fraction f becomes 1. As shown in Fig. 3.10a) for

a system of 200 molecules and T ∗ = 0.1 such event takes place with the frequency of 20%.

We conclude here that it is possible, with large enough simulation sizes, that the average

fraction of loops shown in Fig. 3.10 would converge to the theoretical curve predicted by

mean field theory.

3.2.2. Diffusion limited case

It is easy to adapt simulation algorithms to consider the case when the attraction between

end-groups is diffusion limited. In this case, a bond is always formed between two end

groups if it is not yet saturated. The following results are presented for 1,000 polymer chains

(Nm = 1000), each with a length of 10 monomers. Averages of thermodynamic quantities

were taken every 1,000 MC cycles for a total of 100,000 MC cycles after a 1,000 MC cycle

equilibration. Temperatures below T ∗ = 0.2 are not considered due to long energy relaxation

times.



60

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Fraction of Loops

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

200 chains
400 chains
1000 chains
2000 chains

0 0.01 0.02 0.03 0.04 0.05 0.06
0

2

4

6

8

10

12

Fraction of Loops

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

200 chains
600 chains
1000 chains

a)

b)

Figure 3.10. Probability of occurrence of different fractions of chains in loops
at a reduced density ρ∗ = 0.15 and (a) a low temperature T ∗ = 0.1, and (b) a
comparably higher temperature T ∗ = 1.0.

It is of interest to determine to what extent mean field theory of thermoreversible chemical

association can be used to describe the system in the case where both intra and intermolecular

reactions are diffusion limited. In this case, we introduce an additional fitting parameter ko,

in order to vary the statistical weight of the bond.

(3.27) k = ko
4πσ3

3
e

ε
kBT
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Figure 3.11. Values of ko obtained from numeric fits to thermodynamic results
obtained from simulation at several densities. As the density is increased, the
value of ko also increases.

Thermodynamic quantities including the average energy per particle (see Fig. 3.11) and

heat capacity per volume are fit to numerical results. While fitting the data, a general trend

is observed. As the density is increased, the parameter ko needed to fit simulation data also

increases, which is consistent with the fact that the theory of thermoreversible association

cannot describe physical bonding. In the case of physical bonding, as the concentration of

chains increases the correlation function assigned to the probability of forming a contact is

a complex function not only of the interactions but also of the concentration of the systems,

and the effect of the interactions cannot be described only by the second virial coefficient in

dilute chain solutions [80].

3.3. Summary and conclusions

Various simulations of thermoreversible physical association and of non-reversible chem-

ical association exist in the literature. It is well established that results of simulations of

thermoreversible physical association cannot be described by the mean field model nor by
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percolation theory. In this chapter, two separate models of thermoreversible association are

explored with simulation, a model of chemical thermoreversible association, for which well-

defined theoretical models exist, as well as a model of physical diffusion limited association.

Resulting thermodynamic and structural quantities of the two models are then compared

with those predicted by the classical theory of thermoreversible association. We consider only

pairwise association to avoid problems associated when networks are formed. In pairwise

association only linear structures and loops can exist.

We find that thermoreversible chemical association is well described by the mean field

model. The fraction of linear and loop structures as a function of the number of associated

chains obtained in the simulation compares well with the theoretically obtained distribution.

The thermodynamic quantities are also well described by the model. Finite size scales are

important at low effective temperatures. Instead, for the diffusion limited thermoreversible

association model, the simulations are not described by theory. In thermoreversible physical

association the units react whenever they are within a given distance. In this case, the

correlation function determines the probability of interaction. It is well known that as the

concentration increases it is more difficult to describe these correlations even in system

without saturated physical bonds. In particular, a simplistic second virial approach cannot

describe these correlations. Therefore, we expect that serious corrections need to be made

in the model of thermoreversible chemical association to describe the simulation results

of thermoreversible diffusion limited association. One can use a concentration dependence

association constant, which can be fitted using the simulation results.
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These studies provide the basics for the understanding of more complex associating sys-

tems. For example, if we include specific van der Waals interactions in the chemical ther-

moreversible association model analyzed here we can describe solutions of heterogeneous

macromolecules with end units capable of forming hydrogen bonding with each other in

different solvent conditions. In certain cases phase segregation is expected to take place

in these solutions [66]. The competition of various physical interactions in the arrest of

colloidal suspension undergoing gelation has been addressed recently [81, 82, 83]. In the

present study we have stable solutions because we have only analyzed ideal chains. Including

excluded volume would simply rescale thermodynamic quantities. In bad solvent conditions

for the chain backbones, however, phase segregation is expected. Our results suggest that

systems with chemically thermoreversible associating end units in bad solvent conditions can

be described by the theories that address segregation in polydispersed solutions [84]. How-

ever, when tri-functional association is included, we expect more complex phase behavior

[85, 86, 87].
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CHAPTER 4

A Model for Charged, Incompatible Mixtures at an Interface

4.1. Introduction and background

Polymers at interfaces, in particular, charged polymers at interfaces have been gaining

much attention recently due to potential biomedical applications. For example, DNA on

the surface of cationic membranes has been shown to be an efficient method of transfection

[4]. Or else, cationic antimicrobial peptides, have shown potentiality for targeting specific

bacteria types [?, ?]. The type of interface may vary, such as solid liquid interfaces, soft liquid

interfaces in Langmuir-Blodgett films, or else fluctuating interfaces found in membranes or

bilayers. Lateral periodicity or pattern formation on the surface into separate domains

or periodic microphases, is a physical behavior that is seen with many different colloidal,

polymer-based, and biological systems. Polymer adsorption to the interface is a complex

balance of the entropy and the potential of interaction with the surface or interface. In

many cases, the forces are short range, such as van der Waals interactions with the substrate.

However, depending on the surface dielectric properties, as well as the salt concentration in

the medium, long range forces such as dipolar and charged interactions may play a significant

effect on the equilibrium surface or interface structure.

The main discussion in the next several chapters is organized around two separate motiva-

tions: periodic pattern formation on the surface, as well as the effects of salt concentration

in the surrounding solution on the surface structure. In the present chapter, a model of
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competing electrostatic and short range van der Waals interactions for molecules strongly

adsorbed to interfaces is outlined. In the first section, examples of pattern formation for

several different interfaces, such as the solid liquid interface, liquid liquid interface, and

air liquid interface, in multiple experimental systems are given. An overview of theoretical

development for competing dipolar interactions on the interface is given. Within the next

section, the formation of lamellar and hexagonal periodic domains is described theoretically

at low temperatures using strong segregation theory. The phase behavior as a function of

electrostatic strength and short range interactions is compared with scaling at high temper-

atures, in which a mean field approach is used to describe the density fluctuations. This

chapter will provide the necessary framework for Chapter 5, in which molecular dynamics

simulations will be developed, and Chapter 6, in which the effects of salt on the pattern

formation of the interface will be considered. The theoretical work presented at the end of

this chapter will also be extended in Chapter 7, in which the possibility of more complex

phases will be examined.

4.1.1. Experimental review

Some recent examples of surfactant adsorption onto solid liquid interfaces show that the re-

sultant structures on the surface of negatively charged mica and silica, as well as hydrophobic

graphite [88, 89]. The adsorption is a complex mix of surface chemistry, surfactant con-

centration in the bulk, solvent and screening effects, as well as the surfactant chain length.

For the case of a neutral substrate, graphite, simulations of nonionic surfactants have illus-

trated that the morphology of the absorbed micelle is dependent on the chain length [90].

Moreover, alkylphosphoic acid, an anionic surfactant, has been shown to form islands on
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Figure 4.1. AFM images of absorbed surfactant micelles on silica at 25C.
300nm × 300nm. Reproduced from Ducker et al [88].

mica. The evolution of these island structures are reminiscent of many classical materials

science coarsening problems. Scaling analysis has indicated that long range forces, such as

the electrostatics of the system, might be necessarily included to explain the nucleation and

growth [91].

In contrast to pattern formation at the solid liquid interface which displays specific de-

pendence on the substrate moleculer interaction, behavior at the air water interface is mainly

dependent on the intermolecular interactions. Pattern formation on the surface of Langmuir-

Blodgett films with mixed monolayer systems has been observed using epiflourescence tech-

niques [92, 93, 94]. Depending on various experimental conditions, such as the pH of

the system [93], the compression of the lipid monolayer [92], patterns including hexagonal

domains, lamellar stripes, and even more complex spirals have been observed [93]. Upon

compression, the monolayer undergoes a transition between a liquid-expanded and liquid-

condensed phase, regions of high and low charge density. The shapes of the domains are

dependent on the fraction of neutral component, the configurations of the tails, as well as
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the chirality of the molecules themselves. For example, cholesterol as a neutral component

possesses an inherent chirality due to its chemical nature.

The contribution of electrostatics to the ordering and stability of the patterns has been

considered in the regime in which the inverse screening length is much less the periodic do-

main size. In this case, for charged molecular headgroups, the contribution free energy is

essentially a dipolar contribution. In addition, in terms of the contribution due to the indi-

vidual dipole moment of the molecules, the dipolar contribution in plane has been analyzed

in terms of the shape asymmetry for one individual domain [95, 96].

Next, consider the liquid liquid interface. Mixtures of cationic and anionic amphiphilic

molecules can form thermodynamically stable structures such as micelles, membranes and

multilamellar systems. These self-assembled structures have been studied as a function of the

molar ratio of the oppositely charged molecules, their concentration in solution, and the ionic

strength of the environment [97, 98, 99, 100]. In addition, the presence of other neutral

components leads to a large variety of structures and the possibility of local organization on

the surface of membranes and monolayers. In many cases, just as in monolayer systems, this

gives rise to a phase coexistence between solid domains immersed in a liquid background.

The shape of the domains, which can be stretched or circular, depend on the composition

of the membrane and possibly the elasticity, as the screening in solution does not affect the

shape of the domains themselves [101].

Such structures are important in diverse applications, such as the design of bio-sensing

devices [102]. Moreover, they serve as model systems for the understanding of the properties

of cell membranes; formation of structured domains is known to be crucial to cell signaling

processes [8]. In addition, structure formation due to the competition between short and
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Figure 4.2. Fluorescence micrographs of a 5 mol film at pH 11 and 10 C as upon
compression of langmuir monolayer. A) indicates the start of the transition. F)
indicates the completion. The lighter regions represent a fluid mixed neutral
and charged phase and the darker regions indicate a dense charged region.
Reproduced from Heckl et al.[93]

long range interactions leads to the formation of phases with periodic structures in a large

variety of systems including not only lipid mixtures [92, 103] but also in two dimensional

uniaxial ferromagnets [104], reaction controlled phase segregating mixtures [105], and two

dimensional electron gases in MOSFET’s [106]. A summary of systems exhibiting pattern

formation due to competing interactions is shown in Table 4.1.
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System Length scale Forces Reference
Langmuir films 1− 10µm Dipolar [100-101]

Surfactant Adsorption 50nm Dipolar [88, 89]
Membranes 10− 100nm Bending elasticity, Dipolar [92, 103]

Magnetic systems 10µm Magnetic field [104]
Metal alloys 1− 10nm Elasticity [?, ?]

Semiconductors 50nm Surface stress [106]
Polymers and Polyelectrolytes 50nm Covalent bonding [107, 14]

Shrinking Gels, Gels at Interface µm Elasticity, Osmotic Stress [108, 109]
Table 4.1. A variety of physical systems which display pattern formation at
different length-scales due to dipolar, stress, elasticity, magnetic forces. Table
adapted from Suel and Andelman [110].

4.1.2. Theoretical overview

As discussed in the previous section, periodic phases due to competitive interactions on the

surface, or in the bulk, are seen in a multitude of physical systems. This diverse set of

systems, such as Langmuir films and adsorbates on metals, membranes or vesicles, charged

diblock copolymers, polyelectrolyte solutions, all display sources of competition that gives

rise to periodic patterns [110]. A plethora of questions arise, such as the dynamic and kinetic

effects such as the nucleation of the domains, the effect of disclinations on pattern formation,

as well as the correlation between microscopic ordering and the faceting of domains on the

surface [111, 112]. However, this section will focus on studies that has been to determine

the electrostatic contribution to the equilibrium shape of finite domains, considering flat or

fixed interfaces.

Considering polar molecules at the interface, Andelman [95] has shown that the free en-

ergy due to the dipolar and short range interactions close to the critical point gives a periodic

hexagonal or lamellar structures. He also notes the appearance of two phase coexistence re-

gions with a gas or solid isotropic phase. The behavior of a charged headgroups, as opposed
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to pure dipolar interactions, may depend on the ionic strength of the solution. For strong

screening in the solution, charged headgroups may give a contribution to the free energy that

looks like a dipolar contribution. For low values of screening, we can expect the formation

of Wigner crystalline structures [113]. However, the behavior of the dielectric constant close

to interfaces is quite complex and may give rise to long range effects, even in the presence

of screening. For example, Netz has shown that in the presence of an interface, the Debye

Hückel interaction is enhanced by a factor of two [114]. It is unlikely that the complete

effects of a locally varying dielectric constant close to interfaces may be fully understood for

some time. Recent work indicates that electrostatic coupling through a charged lipid bilayer

may be enhanced by these considerations [115].

Numerical simulations studying the effects of electrostatics on pattern formation due to

competing interactions show expected behaviors. The formation of charged domains on a flat

square lattice due to the competition between full Coulomb 1/r interactions and net short

range repulsion amongst oppositely charged molecules has been explored by simulation at

zero temperature [116] and also by mean field arguments at high temperatures [116, 117].

These stoichiometric mixtures develop ordered striped domains possessing a characteristic

width that depends on the strength of the competing Coulomb and short range interactions

at low temperatures. At high temperatures percolated structures develop that resemble a

spinodal decomposition pattern during phase segregation of binary systems, but growth is

restricted, as in block copolymer systems with microphase segregation [107, 14].
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Figure 4.3. Phase diagram for a competing system of lattice spins, with short
range ferromagnetic behavior with parameter L, and long range anti ferro-
magnetic behavior of parameter Q. Density is also introduced through the
parameter K. Reproduced from Loew et al [116] Striped phase coexists at
low values of Q along with a concentration of holes, represented by 0.

4.2. Development of a model for pattern formation

In this chapter, the possibility of charged patterns formed by molecules strongly adsorbed

to interfaces, either flat surfaces of biological or synthetic membranes, or else any other

neutral substrate is explored. Using analytic and simulation techniques, the competition

between electrostatics and short range van der Waals, or immiscibility, between oppositely

charged molecular components exhibits rich pase behavior. In the next two sections, analytic

models are used to describe the phase behavior of the components at both high and low

temperature regimes.

4.2.1. Scaling analysis at low temperatures

The phase behavior of the ionic mixture can be examined analytically in two separate

regimes. At higher temperatures, small density fluctuations exist around the mean density.
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Figure 4.4. Cartoon of oppositely charged (red and blue denoting positive and
negatively charged headgroups) molecules strongly absorbed to the interface.
Molecules assume hexagonal close packing into periodic microphases as illus-
trated.

At low temperatures, when the system exhibits strongly segregated domains, the system is

periodic. At low temperature values, or high values of the magnitude of short range attrac-

tion, the system exhibits well-defined periodic lamellar when the charge surface coverage of

the positive and negative molecules are equal and confined to a flat surface. The free energy

of the system is dominated by the electrostatic cohesive energy in addition to the interfacial

contribution to the free energy, which is characterized by the line tension, γ per thermal

energy kBT . Within the strong segregation regime, the entropic contribution to the free

energy is negligible.

Following the example of the free energy for a incompressible two dimensional system of

a mixture of positive and negative components [118], the results for a course grained free

energy scaling analysis of NA positively and NB negatively charged components interacting

with a three dimensional Coulombic 1/r potential can be generalized for a d dimensional

system. The free energy can be written as sum of the total electrostatic interactions and the

contribution from the line tension of each periodic segregated domain. Each charged domain

is approximated by a electroneutral unit cell which has a characteristic lattice length L,

dimensions Ld, and an associated charge density σ. The net free energy per total number of
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particles N = NA + NB, in units of kBT , can be written as

(4.1)
FNET

N
=

Fcell

Ncell

≈ ad

Ld

(
γs1L

d−1 +
lBσ2s2(L

d)2

L

)
=

(
Foa

d

Ld
o

)
F.

Here, s1 and s2 are geometrical parameters that depend on the characteristic geometry of the

underlying unit cell, ad represents the size of the particle, and Ncell represents the number

of particles per unit cell. The Bjerrum length lB is given by,

(4.2) lB =
e2

4πεεrkBT
.

Fo and Lo are system dependent parameters, defined by the minimization of the free energy

of the system with respect to the characteristic size of the system, L,

(4.3) Fo =

(
γ2d−1

(lBσ2)d−1

)1/d

and

(4.4) Lo =

(
γ

lBσ2

)1/d

.

The dimensionless free energy per unit area in terms of s1 and s2 is then described by

(4.5) F =
s1

D
+ s2D

d−1

where D = L/Lo is the ratio of the characteristic size of the unit lattice to the length of the

system. Minimizing the dimensionless free energy with respect to D gives the free energy of
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the favored periodic structure as

(4.6) F = 2
(
(d− 1)s2s

d−1
1

)1/d

where

(4.7) D =

(
s1

(d− 1)s2

)1/d

.

Depending on the area fraction of charge coverage, f , and the geometry of the unit lattice

cell, the free energy can be calculated for different sets of crystalline structures. For an ide-

ally symmetric system, consisting of equal components of positively and negatively charged

molecules with similar head group sizes, f is 1/2. The minimum free energy in this case, for

a two dimensional system, is characterized by lamellar structures.

The line tension is proportional to the immiscibility of the component molecules, χ [119].

The Flory-Huggins paramater, χ, is defined as the difference in the magnitudes of the short

range interactions between two components as χ =
(
ε12 − 1

2
(ε11 + ε22)

)
/kBT , where the εij

represents the pair interaction energy between i and j. For a lower, or two dimensional

system, Lo would be comparably larger than for a three dimensional system due not only to

the 1/d power law dependence but also to the decreased value of the Bjerrum length lB for

a surface in contact with water. For a surface in contact with an aqueous solution the mean

permittivity of the medium is much higher than in a dense three dimensional system, which

decreases the Bjerrum length lB, and thus the magnitude of Lo, significantly. For these

reasons, patterning on a surface due to the competition of electrostatic interactions with

short range interactions, is considerably more feasible than the creation of charge domains

in a bulk three dimensional system.
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Figure 4.5. Phase diagram of the minimum free energy as a function of charge
fraction, f, and temperature, T. At high temperatures the density is homo-
geneous. As temperature is decreased there is a transition temperature, Tc,
at which a periodic phase forms. For charge fractions, 1/3 < f < 2/3, the
minimum free energy phase is lamellar. Outside this region the minimum free
energy is hexagonal. Figure adapted from Solis et al [118].

Comparing length scales with experimental systems, consider a two dimensional system

of a single layer of positively and negatively charged lipids at an interface between water

and an alternate medium. The average dielectric permittivity of at the interface εi ∼ 40, in

between that of the water εwater ∼ 80 and that of the dense medium εmedium ∼ 1. This would

correspond to a Bjerrum length lB ∼ 2nm in terms of the a classical electrostatic interaction

between charged head groups of the lipids exposed to the aqueous interface. Considering

a large magnitude of the net interaction between tails of interacting lipids at the interface

(χ ∼ 15), depending on the length of the hydrophobic tail of the molecules (∼ 20 carbons)

and the charge density of the head-group (∼ .6/nm2), this could correspond to a fairly large

equilibrium domain size Lo (∼ 80nm). Domains of this size or larger have been seen for

experimental systems of competing short range and long range electrostatic interactions.
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4.2.2. Scaling analysis at high temperatures

Next, consider the opposite, high temperature regime. Since the system does not exhibit well-

defined periodic structures, the entropic contribution to the free energy cannot be ignored.

In this case, linear response theory or the Random Phase Approximation for a compressible

binary systems [120] is used to describe the behavior of the correlations as a function of

the relative strength of the short range attraction and the electrostatic interactions. The

Random Phase Approximation for a one component system was introduced in Section 2.1.3.

For a general system of N components, where i and j represent components of a different

type, the partition function can be written as [121, 122]

(4.8) Z =
1

NA!NB!

∫
exp

(
−H(r

(1)
i r

(2)
j )

kBT

)∏
i

dr
(1)
i

∏
j

dr
(2)
j

where the Hamiltonian of the system is represented by

(4.9) H(r
(1)
i r

(2)
j ) =

∑
i

∑
j

υij(r
(1)
i − r

(2)
j ).

It is assumed that the interparticle potential can be broken up into a short range and long

range electrostatic potential, υij = υSR
ij + υel

ij . The short range contribution is assumed to

be of the form of the Fourier transform of a Gaussian potential, which has been shown to

reasonably predict thermodynamic properties of binary systems [123],

(4.10) υSR
ij (r) =

εij

πa2
e−r2/a2

.
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The long range potential is represented by the Debye Hückel potential,

(4.11) υel
ij(r) =

zizjlBe−κr

r

where κ, the inverse screening length, is defined by the concentration of salt in the solution.

We assume that the density is a smooth function and can be represented by the sum of its

Fourier components

(4.12) ρi(r) =
∑

k

ρi
ke

ikr.

In this case, the partition function becomes

Z = Zo
ANAANB

NA!NB!

∫
exp

(
− 1

2A

∑

k 6=0

∑
ij

(Uij
k + ρ−1

i δij)ρ
i
kρ

j
−k

) ∏

k>0

∏
i

dρi
k

πV ρi

.(4.13)

where A represents the area of a two dimensional plane in a three dimensional volume V .

Zo includes the k zero and the self energy terms. Uij
k is the sum of the interaction energies

of the system, consisting of the short range interactions due to the excluded volume and

hydrophobic interactions, υSR
ij (k), as well as the long range electrostatic potential, υel

ij(k).

For an incompressible system of i same-sized components,

(4.14)
∑

i

ρi
k = 0.

For the case of a incompressible, neutral, symmetric system we also assume that ρ+(k) =

−ρ−(k). The electrostatic potential is the two dimensional Fourier transform of the screened
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Coulomb interaction between charge density fluctuations,

(4.15) Uel(k) =

∫
d2reik·r σz2

T lBe−κr

r
=

1

2
σz2

T

2πlB√
κ2 + k2

where σ represents the charge density of the system and zT represents the total positive

and negative charge of the components. In this case, the inverse structure factor has the

following contributions,

1

S0(k)
= Uk + ρ−1 =

1

ρ
+

1

1− ρ
− 2χ + χk2 + Uel(k).(4.16)

The structure function has a peak at the most probable wavevector, k∗. For the case

when there is no screening the location of the peak, k∗, scales with the Bjerrum length, lB and

magnitude of short range attraction, ε, as k∗ ∼ (ε/lB)
1

d+1 . The scaling of the periodic order

of the system changes at the transition temperature from −(1 + d) at higher temperatures

considering small density fluctuations to −d at lower temperatures, which is predicted using

the previously described theory of strong segregation. For a two dimensional system, which

is the subject of interest, the scaling is predicted to change from −1/3 to −1/2 as the

temperature decreases.

At high temperatures, in the nearly isotropic state, the total free energy of the system

per unit volume, in units of kBT , can be written as

∆F (φ)

AkBT
= φ ln φ + (1− φ) ln (1− φ)− χφ2 + Fele/(kBT ),(4.17)
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where A represents the two dimensional area of a plane and Fele/(kBT ) represents the one

loop corrections obtained by integrating the charge density fluctuations [121]. This contri-

bution to the free energy will be derived in Chapter 7 for charges at an interface.

4.3. Summary and conclusions

In this chapter, multiple examples of pattern formation for several different experimental

systems which display pattern formation are given. These systems include langmuir mono-

layers, membranes, magnetic systems, semiconductors, and gels. In order to understand

the phase behavior for systems displaying competing electrostatic and short range van der

Waals interactions, an ideal model is developed of immiscible, but oppositely charged parti-

cles molecular components confined to an interface. The formation of lamellar and hexagonal

periodic domains is described theoretically at low temperatures, using strong segregation the-

ory. This is compared with scaling at high temperatures, in which a mean field approach is

used to describe density fluctuations in the transition from the disordered to ordered state.

In the next chapter, these theoretical results will be compared with the results of molecular

dynamics simulations at intermediate temperatures.
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CHAPTER 5

Molecular Dynamics of Pattern Formation

5.1. Introduction

In the previous chapter, a model of competing electrostatic and short range van der Waals

interactions for molecules strongly adsorbed to interfaces was outlined. The formation of

lamellar and hexagonal periodic domains was described theoretically at low temperatures.

This was compared with scaling at high temperatures, in which a mean field approach is used

to describe the density fluctuations. In the present chapter, these theoretical results will be

compared with molecular dynamics simulations at intermediate temperatures, for both the

formation of lamellar, as well as hexagonal domains. The formation of lamellar domains will

be characterized at intermediate temperatures using molecular dynamics, including relevant

thermodynamic quantities. In addition, the electrostatic contribution to the ordering of

the interface between the domains is characterized. When considering the formation of

hexagonal domains, at finite temperatures there are deviations from both the shape and

packing within the domain structures. These quantities, as well as the effects of considering

different stoichiometric charge ratios will be discussed. It is found that changing the charge

ratio of the components allows for the freezing of the local inter domain structure, using the

Lindemann Criterion.
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5.2. Molecular dynamics of pattern formation at the interface

The model system is composed of a mixture of N+ positively and N− negatively charged

monomer units in a simulation box of size L3. The molecules are confined to a two-

dimensional plane perpendicular to the Z axis, with periodic boundary conditions in the

X and Y directions. Each monomer unit represents a charged biological or polymeric mole-

cule, that interacts attractively with a like monomer via hydrophobic forces. To begin with,

only symmetric mixtures are considered, where the charge and radius of the positively and

negatively charged monomer units are equivalent. The total system is electroneutral. We

are interested in the case where the two-dimensional layer exhibits well-defined periodic pat-

terns along the surface of the plane. Fluctuations perpendicular to the monomer plane are

restricted.

N,V,T molecular dynamics simulations were performed using Espresso, a simulation code

developed by the MPIP-Mainz group of Polymer Theory and Simulation. A stochastic or

Langevin thermostat is used, to ensure a constant temperature, along with a Verlet algo-

rithm to calculate particle velocities at each timestep. The unit of energy is ε, of length

σ, and of mass m. Temperature is then defined in terms of ε/kBT and time in units of
√

σ2m/ε. A full Coulomb potential is used for calculations of charge-charge interactions.

The ELC (Electostatic Layer Correction) method developed by Arnold et al. to sum the

electrostatic energy contribution to the free energy [37, 38]. This method is a correction

to the P3M Ewald summation technique, [124] in which the Fourier transform of the elec-

trostatic contribution to the energy is summed using a mesh formulation, as described in

Section 2.2.5. Table 5.1 summarizes the interaction potentials between the positive and

negative component monomers in this system. The potential between charges is the full
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Interactions + -
+ UC + ULJ UC + UHC

- UC + UHC UC + ULJ

Table 5.1. Interparticle potentials

Coulomb potential,

(5.1) UC =
lBTq1q2

r

where lB represents the Bjerrum length of the system.

For the present simulation results, lB’s of 0.1σ, 0.2σ and 0.5σ are considered. Considering

an average dielectric permittivity of the medium (εr ∼ 80) this corresponds to a fairly large

headgroup size (∼ 20Å). The short range interaction between like monomers is the classic

Lennard Jones potential,

ULJ = 4ε

((σ

r

)12

−
(σ

r

)6
)

r < rc(5.2)

where σ is the monomer radius, and the potential is cut at a radius rc of 2.5σ. An additional

term is also added to the potential to keep the derivative continuous at rc. UHC is the same

as ULJ , with a cutoff radius, rc, of 21/6σ, including only the repulsive part of the potential,

which represents the excluded volume of the molecule.

A fairly dense surface particle density, ρ, of 0.6 was examined, to compare with phase

behavior predicted by strong segregation theory, while remaining sufficiently far from the

two dimensional hard disc crystallization regime of approximately ρ = 0.89, as determined

by previous Monte Carlo and molecular dynamics simulation studies [125]. This allows
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sufficient diffusion for the system to equilibrate, as described in the next section.

(5.3) ρ =
(N+ + N−)πσ2

4L2

Phase behavior in comparison with theory at lower surface densities is slightly more complex

and will be discussed in Chapter 7. In this section, the majority of simulation results are

presented for a system size of 1000 charged monomers, while finite size effects are explored

by increasing the system size by a factor of 2. Approximately 106 MD steps are used to

equilibrate the system; the equilibration time grows increasingly longer at higher values of

the Bjerrum length.

To determine if ρ = 0.6 was sufficiently far from the crystallization regime, the mean

square displacement as a function of MD timestep was calculated. Using the Einstein relation

for linear diffusion, the magnitude of D the diffusion constant can be obtained.

(5.4) 4D = lim
t→∞

∂|∆r(t)|2
∂t

While diffusion is linear initially, nonlinearity starts developing at values of ε/kBT >= 4.0. In

these cases, particles are trapped within each stripe and become caged within its boundaries.

This represents the limit of the Newtonian diffusion regime. If the value of D is examined

for different values of the electrostatic strength, the initial diffusion is similar, but, for higher

values of ε, the system with the higher lB has faster diffusion on the surface. However, for

both systems, a regime of very small diffusion is approached as ε/kBT increases. For the

scope of this thesis, only regimes that display linear diffusive behavior are considered.
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Figure 5.1. Mean square displacement as a function of timestep at lB/σ = 0.5
for values of ε/kBT = 1.0− 4.0. While diffusion is linear initially, nonlinearity
starts developing at ε/kBT = 4.0

5.2.1. Formation of lamellar phase

At lower values of ε, domains of positive and negative component monomers appear in

the system. As the magnitude of ε increases, the domains begin to increase in size in an

Figure 5.2. Diffusion coefficient, D, as a function of short range interaction
ε/kBT , for two comparable values of the Bjerrum length, lB/σ = 0.2, 0.5.
With increasing ε, faster diffusion is seen for higher values of lB, but both
systems approach a regime of very small diffusion.
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Figure 5.3. Snapshots of the system at a) ε = 1.0, b)2.5, c)4.0kBT at a constant
lB of 0.2σ. Introduction of κ = 20σ d) induces macroscopic phase segregation
at an ε of 4.0kBT , lB of 0.2σ.

isotropic manner, forming a percolated structure. As the value of ε further increases, the

domains begin elongate and then to orient into well-defined lamellar, breaking the symmetry

of the system. Increasing even further, the lamellar begin to widen. Average internal energy

and heat capacity per particle are calculated at several values of Bjerrum length (lB =

0.1σ, 0.2σ, 0.5σ). At higher values of lB, electrostatics plays a more important role in the

equilibrium configuration of the system. The electrostatic repulsion between like charged

monomers increases. In order to minimize this contribution to the free energy, the stripes

become thinner.

The average internal energy (< E > /N) and heat capacity per particle (CV ) are calcu-

lated at several different values of the Bjerrum length (lB = 0.1σ, 0.2σ, 0.5σ). The average

internal energy is less negative at the higher value of lB due to the increased repulsion be-

tween like charged head groups. At lower values of lB the heat capacity displays a peak,

which corresponds to the crossover from the percolated phase to the lamellar phase. The
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magnitude of this peak increases and shifts to the left as the value of the Bjerrum length is

decreased.

Lamellar spacing is systematically characterized by the calculation of the two dimensional

structure factor, S(~k), where ~r corresponds to a vector in the x,y plane.

S(~k) =

∫
g(~r − ~r′)ei~k·~rei~k·~r′d2~r(5.5)

Figure 5.4. a) Heat capacity per particle (CV ) and b) average internal energy
(< E > /N) at several values of the Bjerrum length (lB = 0.1σ, 0.2σ, 0.5σ).
The heat capacity displays a peak, which corresponds to a crossover from
percolated, random domains to a lamellar phase. The magnitude of the peak
increases and shifts to the left as the value of the lB is decreased.
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Figure 5.5. Contour plot displaying the location of the peak, k∗, in the struc-
ture factor, S(k), for several values of short range attraction ε = 4.0 and
lB = 0.5. The peaks are located at 90 degrees and 270 degrees respectively.

S(~k) displays a peak at k∗ corresponding to the inverse lamellar spacing in the direction

perpendicular to the lamellar.

As a function of ε, the peak location corresponds to scaling predictions by strong seg-

regation theory at high values of ε (k∗ ∼ ε−1/2). At lower values, the location is consistent

with predictions by the Random Phase Approximation (k∗ ∼ ε−1/3).

The orientational order of the domains can be characterized by the interfacial orienta-

tional order parameter g2 [126].

g2 =
1

N

N∑
i=1

1

Ni

Ni∑
j=1

e2iθij(5.6)

where Ni is the number of neighbors of opposite type of monomer at an interface and θij is

the angle between two neighbors. A neighbor is defined as two particles of different type,

within range of short range attraction (rij < rc). As the magnitude of short range attraction

increases, the calculated order parameter increases, which corresponds to the ordering of the

domains by the development of orientational order at the interface. The increase in order
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of the domains, indicated by an increase in the order parameter g2, proceeds the location of

the peak in the heat capacity. Higher values of the Bjerrum length lB correspond to a higher

value of the order parameter g2 for stronger short range attraction. As the electrostatic

contribution to the segregation increases, the characteristic domain size decreases, but the

orientational order of the domains increases. At lower values of lB, this initial increase is

followed by a levelling off, or slight decrease, that corresponds to the formation of holes at

the interface. The holes disrupt the orientational order, or the hexagonal packing, of the

monomers within the segregated domains. This is equivalent to the inclusion of a ternary

component with a non-selective interaction between positive and negative components. This

topic will be discussed further in Chapter 7.

Examinations on the finite size effects of the system are explored to determine the effect

of the periodic boundary conditions on the ordering of the more strongly segregated lamellar.

Doubling the size of the system at larger values of the short range attraction (ε = 4kBT ),

quantitatively affects the ordering of the lamellar by decreasing the alignment of the domains

along the boundaries of the system and increasing the fluctuations along the interface. This

results in a characteristic decrease in the order parameter, g2 from .43 (±.02) to .37 (±.02).

This leads to the conclusion that the finite size of the system may slightly promote the

ordering of the interface between solid domains.

Molecular dynamics simulations of oppositely charged monomers, interacting with a

short range LJ potential and confined to a two dimensional plane, are examined at dif-

ferent strengths of short range attraction and long range electrostatics. The system exhibits

well-defined domains; the width and ordering of the domains are dependent on the depth

of the LJ well, ε, and the strength of the Coulomb interactions, lB. The length-scale of the
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ordering of the system can be quantitatively characterized by the two dimensional Fourier

transform of the density, S(~k), where ~k is the inverse spacing of the system. S(~k) has a

peak k∗ which scales with the line tension of the domains, γ. The underlying assumption

of strong segregation theory is that the microphase regions of charge are well defined and

periodic, with a line tension γ that is proportional to χ. Since the magnitude of the short

Figure 5.6. a) The interfacial orientational order parameter g2 at several values
of the Bjerrum length (lB = 0.1σ, 0.2σ, 0.5σ) as a function of ε. As the orien-
tational order of the domains increases, g2 increases from 0 to a finite value.

b) The location of the peak k∗ in the structure factor S(~k) as a function of ε.
The scaling of k∗ with ε changes from −1/3 to −1/2.
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range attraction ε is proportional the Flory-Huggins interaction parameter χ, k∗ should

scale with ε in the regimes where strong segregation theory holds [118]. It is shown that, at

higher values of ε, the scaling of k∗ with ε is consistent with theory. At lower values of ε, a

different scaling is found, which is consistent with that which is found using linear response

theory. Electrostatics represents a more important contribution to the characterization of

the interfacial line tension in this regime.

The degree of ordering can be examined by the calculation of the interfacial orientational

order parameter, g2. The transition from a random, percolated domain structure to well

defined lamellar is a gradual transition, that is demonstrated by the gradual increase of the

parameter g2 as a function of ε. This result is consistent with what one would exhibit with

a Kosterlitz and Thouless type transition [125], in which the two dimensional ordering the

system exhibits a continuous phase transition, that can be defined by a similar positional

order parameter. It is clear that higher strengths of electrostatic interactions leads to higher

values of interfacial order, which leads to the conclusion that the electrostatics may have a

definite role in the shape and stability of the microphases.

Examinations of the finite size effects of the system indicate that the degree of ordering

is slightly influenced by the periodicity of the simulation box, however, further examinations

were not made due to the computational intensiveness of the electrostatic energy term. De-

creasing the strength of the electrostatics in the system, by changing the charged interaction

from a straight Coulomb potential to a screened Debye Hückel interaction, the ordering of

the system disappears and the mixture phase segregates as shown in Fig. 5.3 d), which is

consistent with analytical arguments, as will be discussed in Chapter 6.
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5.2.2. Formation of hexagonal phase

The theory of shape asymmetry for finite two dimensional domains has been considered due

to the in-plane dipolar interactions [96] and charged or dipolar interactions perpendicular

to the surface for a singular domain shape [103]. For the case of a finite domain, the free

energy is the sum of the charged or dipolar interactions, as well a contribution due to the

line tension at the interface. It has been shown that the free energy can be written in terms

of the anisotropy of the domains, such as a square, an ellipse, or a torus [127]. Moreover, the

free energy can be minimized with respect to the periodic length scale of the inter domain

spacing, including the electrostatic interactions between multiple domains [118], which has

been demonstrated for the lamellar and hexagonal case. This is increasingly important as

the density of the domains on the surface is high. As shown previously, for a symmetrically

charged system, the lowest free energy state is lamellar. However, for an asymmetric ratio

of positive and negative charged groups, the lowest free energy state consists of spherical

domains arranged in a hexagonal lattice. The coexistence between lamellar and hexagonal

phases has also been considered, in addition to superdomain structures [?].

In experimental systems, such as monolayers at an air water interface or else biomem-

branes, equilibrium structures between that of lamellar and hexagonal structures are also

seen. This transition is presumed to be temperature and concentration dependent. In ad-

dition, the domains themselves are not perfectly spherical, but slightly elliptical [103]. In

terms of langmuir monolayers, the asphericity of the domains may also result from an in-plane

dipolar molecular moment [127], dependent on the specific chemistry of the lipid molecules.

In this section, the asphericity of the domains is considered for different strengths of the

electrostatics relative to the short range van der Waals interaction between the components
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Figure 5.7. Snapshots of the equilibrium domain shapes, domain distribution,
Ncl vs N , and radius of gyration, Rg vs N for a higher Bjerrum length a-d)
lB/σ = 0.5, and lower Bjerrum length e-h) lB/σ = 0.1.

by using molecular dynamics simulations. In addition, the degree of crystallinity in the local

structure is calculated using the Lindemann criterion, a parameter well known in solid state

physics for the characterization of the melting temperature of solids [128].

Electrostatics plays a significant role in the formation of the domains, as well as the

resulting equilibrium shape. In this section, the results are presented for 900 N+ positively

and 300 N3− negatively charged monomer units of charge 3-. The charge ratio is defined as

f = N+

N−
= z−

z+
= 3. To begin with, the formation of domains at two different strengths of

electrostatic interactions is presented, as shown in Fig. 5.7. The top row represents higher

values of the Bjerrum length, lB = 0.5, while the bottom row represents lower values of

the Bjerrum length, lB = 0.1. As the value of ε is increased, for a constant value of the

Bjerrum length, the negatively charged particles begin to cluster into domains as shown in

Fig. 5.7 a) and e), the first images on the left. The size of the initial domains, as well as the

distribution of domain sizes is dependent on the Bjerrum length. For stronger values of the
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Bjerrum length the negatively charged particles possess less of a tendency to cluster and are

more disperse (Fig. 5.7 a). For lower values of the Bjerrum length, there is a distribution of

randomly ordered, as well as much larger, domains as shown in Fig. 5.7 e).

In Fig. 5.7 b) and f), the images shown immediately to the right, increasing the short

range interaction ε results in the formation of finite domains. Here, in b), the domains re-

main small for high values of the Bjerrum length. For lower values of the Bjerrum length, in

f), the resulting structures are a result of the competition between the short range interac-

tions, which promotes the growth of the domains, with the electrostatics, which prefers an

elongated interface. In certain cases, these domains also display a preference for curvature

perpendicular to their axis.

Immediately to the right of these images, the cluster size distribution for these respective

images are shown. Initially, the average number of clusters Ncl per size L2 of the simulation

box is exponentially decreasing with N , the number of particles per cluster, 5.7 c) and g).

As the value of ε increases, the distribution function develops a small peak at finite size

N , corresponding to domain formation. This peak has much greater distribution, and for a

higher number of particles, for the lower value of Bjerrum length, Fig. 5.7 g). Increasing the

electrostatic strength, decreases the size of the domains.

The average radius of gyration as a function of N is plotted immediately to the right of

the previous images. The interesting thing to notice is that there is a transition at a certain

cluster size to different types of scaling behavior, upon increasing ε. Below this lengthscale,

Rg scales like N1/2 which is to be expected for spherical domains. For larger clusters above

this critical size, Rg scales linearly with N . This is to be expected for stretched, linear

domains. This critical size transition from circular to non-circular domains has been coupled
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Figure 5.8. Structure factor, S(k), for value of short range attraction (ε/kBT =
4.0) for different strengths of the electrostatics, lB/σ = a) 0.1, b) 0.2, c) 0.5.
The local ordering of the domains is not perfectly hexagonal. For higher values
of the electrostatics (lB/σ = 0.5) the ordering at larger length scales displays
a cubic, or square, structure, which may be a finite size effect.

theoretically with the line tension, charge density, and the area of the individual domain

[103]. This is consistent with these simulation results.

The ordering of the domains on the interface can be further examined by examination of

the two dimensional structure factor, S(k), as in the lamellar case. In Fig. 5.8, contour plots

of the structure factor for three different strengths of the electrostatics, lB/σ = 0.1, 0.2, 0.5,

are shown. The local ordering of the domains does not display perfect sixfold symmetry.

Notice the ring of peaks at small values of the wave vector in the left image of Fig. 5.8,

corresponding to lB/σ = 0.1. The domains themselves are not perfectly spherical, as shown

in the previous subsection, which does not allow for perfect hexagonal packing. For a larger

system size, this ring should become more diffuse. For increasing values of the electrostatics,

image in the middle and right of Fig. 5.8, the ring of peaks corresponding to the local domain

structure shifts to the outside of the image, larger values of the wave vector. The ordering

at larger length scales, smaller wave vectors, indicates cubic, or square, structure, close to
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Figure 5.9. Structure factor, S(k), for value of short range attraction (ε/kBT =
4.0) for strengths of the electrostatics, lB/σ = 0.5. The ordering at larger
length scales at an angle perpendicular to the box edges displays a cubic, or
square, structure. Increasing the total area of the box by a factor of two from
L = 66σ to L = 93.4σ show that these peaks shift relative to the box size.

the center of the image. Examination at larger system sizes will indicate this is a finite size

effect. The structure factor, S(k), for value of short range attraction (ε/kBT = 4.0) for

strengths of the electrostatics, lB/σ = 0.5 was examined. Increasing the total area of the

box by a factor of two from L = 66σ to L = 93.4σ show that these peaks shift relative to

the box size as shown in Fig. 5.9. This ordering, then, is indicated to be an artifact of the

box.

The local ordering of the domains can be further characterized using the Lindemann

criterion. Peierls and Landau argued that there is no long range order for a two dimensional

solid [129, 130, 131]. The local thermal fluctuations of the atoms induces a displacement

with respect to the equilibrium position which increases logarithmically with the system size.

For two dimensional Coulombic systems, it has been suggested that although long range

translational order cannot exist, long range orientational order can be extended infinitely far

[132]. Melting in two dimensions is synonymous with a Kosterlitz and Thouless transition
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Figure 5.10. Normalized root mean square displacement, δ(r), of the center
of masses of domains for increasing values of ε. Lindemann Criterion, δ(r),
indicates that the local structure of the domains are liquid for these values of
the parameters, lB and ε.

[133, 134], which was further extended by Halperin and Nelson, in which the local structure

melts through dislocations [135, 136]. The Lindemann criterion has been used to study

melting and condensation for two dimensional Coulombic systems [137], and, in this case,

is applied to the study of the underlying lattice structure of the domains of the solid phase.

For two dimensional systems, the melting of the structure is when the root mean square

value of the lattice fluctuations exceeds 0.1 of the lattice spacing.

The center of masses of the charged domains represent the lattice structure for the two

dimensional Wigner crystal formed by the solid phase. For perfect circular domains at low

temperatures, the center of masses of the neighboring domains should occupy equilibrium

positions in an hexagonal lattice. The fluctuations of the center of masses of the domains

about this equilibrium lattice increases with temperature, and, at a certain ratio of the

fluctuation length scale relative to the periodicity of the lattice, the structure should melt.

The root mean square displacement for the center of mass, R, of each cluster, cl, is defined
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Figure 5.11. Mean square displacement as a function of timestep at lB/σ = 0.5
for values of ε/kBT = 1.5− 4.0. While diffusion is linear initially, nonlinearity
starts developing at ε/kBT = 4.0

as

(5.7) δ(r) =
1

Ncl,i

∑

cl,i

1
Ncl,j

(∑
cl,j(Rcl,i −Rclj)

2
) 1

2

Rcl,i −Rclj

.

Upon examination of the Lindemann criterion, δ(r), the root mean square displacement of

the domain center of masses, it is found that the local fluctuations exceed the Lindemann

Criterion limit (0.1 normalized by the lattice spacing). Examining Fig. 5.10, the peak repre-

sents the first appearance of neighboring domains, followed by a minimum which indicates

the local ring structure. The increase after the minimum is due to the appearance of non-

neighboring domains. The minimum is coincident with the local fluctuations in the ordering

of the domains. Upon increasing ε, the short range attraction, the fluctuations in the local

lattice of domains is decreasing, but not enough to form a locally frozen phase. The local

domain structure is thus still liquid. This agrees with the diffusion of the particles, from the

mean square displacement, as a function of timestep.
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Figure 5.12. Snapshots of simulations for values of short range attraction
(ε/kBT = 4.0) for strength of the electrostatics, lB/sigma = 0.5, for vary-
ing charge ratios of the components. a) 2:1, b) 3:1, c) 5:1, d) 10:1.

5.2.3. Asymmetric charge ratios and the Lindemann Criterion

An interesting question to examine is to study the transition from the lamellar to hexagonal

phases by varying the charge ratio of the components, f , while still maintaining the electro-

neutrality of the system. In this section, the results are presented for zN+ positively and Nz−

negatively charged monomer units of charge z−. The charge ratio is defined as f = N+

N−
=

z−
z+

= z−. For different charge ratios of the components, the magnitude of the electrostatic

and short range contributions to the free energy are shifted, so that increasing the charge

asymmetry results in the freezing of the local crystalline order of the domains.

To characterize the shape transition, it is necessary to measure the magnitude of the

asphericity of the individual domains as a function of the charge ratio of the components.

The matrix of inertia of the domains is defined as

Tx,y =
1

NC

NCl∑
i

(ri
x − rx)(r

i
y − ry)(5.8)

where NCl represents the number of of ions in one cluster or domain and ri
x represents the

component of the position of ith ion. The eigenvalues of the matrix represent Rg2
⊥ and Rg2

‖.

Taking the ratio, R, of Rg⊥ to Rg‖, a value close to 1 signifies a more spherical domain. The

distribution for the asymmetry of the domains changes as a function of the charge ratio of
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Figure 5.13. Ratio of the asymmetry of the domains as a function of the charge
ratio of the components. The most spherical domains are present for charge
ratios, f , close to 3 : 1, while for increasingly asymmetric mixtures, there is a
gradual increase in the asymmetry of the domains.

the components, as seen in Fig. 5.13. Starting from a symmetric system, this ratio increases

so that the most spherical domains are present for charge ratios, f , of 3 : 1. However,

for increasingly asymmetric mixtures, there is a gradual increase in the asymmetry of the

domains, until the domains are simply single particles, arranged in a hexagonal lattice.

Upon examination of the Lindemann criterion for a fixed ratio of the electrostatics to

the short range interactions (lB/σ = 0.5, ε = 4.0) the root mean square fluctuations of the

domain positions relative normalized by the average radius of the inter domain distances,

the Lindemann Criterion is than 0.1 of the inter domain distance for values of f < 7. As

in the previous figure, in Fig. 5.14 the peak represents the first appearance of neighboring

domains, followed by a minimum which indicates the local ring structure. However, upon

increasing the charge ratio of the components, the peak shifts to the left. The inter domain

distance is shrinking. The minimum, corresponding to the fluctuations in the local ordering
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of the domains, decreases until it passes under the Lindemann criterion ratio for a charge

ratio between 7:1 and 10:1.

The short range order of the local hexagonal lattice is freezing as a function of increased

electrostatic interactions between the minority components. At these ratios of the elec-

trostatics, the domains mainly consist of single particles. In addition, the solid phase is

compressing, so the additional empty space is expelled expelled from the solid phase. In

examining Fig. 5.12 c) this is signified by the region of empty space that is segregated from

the solid phase. If the local structure is freezing or forming a glass, this should be signified in

the thermodynamic quantities such as the heat capacity of the system. Indeed, as a function

of the charge asymmetry of the system, the heat capacity per molecule displays a peak for

charge ratios of 5:1. This indicates the onset of the freezing of the local order of the system.

Upon examination of the diffusion of the particles, from the root mean square displacement,

for charge ratios greater than 5:1 diffusion becomes non-linear. This indicates the formation

of a glass.

Figure 5.14. Normalized root mean square displacement, δ(r), of the center of
masses of domains as the asymmetry of the system is changed.
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The long range order of the domains can be further examined using the structure factor,

S(k). As a function of increasing charge ratio of the components, there is a clear shift from

lamellar ordering to hexagonal-type ordering. In Fig. 5.17 on the left, S(k), displays two

peaks that correspond to lamellar phases at angles slightly tilted from the horizontal as seen

in snapshot in Fig. 5.17 a). With increase in the charge ratio of the components, the lamellar

peaks disappear and a ring of peaks reminiscent of hexagonal order appears. Cubic structure

is indicated at long wavelengths, which may again consist of a finite size effect.

This transition from the lamellar to the hexagonal phase is relevant to many systems.

For example, domain shape instabilities from circular domains to branched phases have

been shown to be induced upon compression of langmuir monolayers [92]. The electrostatic

contribution to the pattern formation in these systems, as it pertains to the monolayer

films, at high densities, is decidedly relevant to the melting transitions of these films. It is

Figure 5.15. Heat capacity per particle as a function of the charge ratio of the
components. Fluctuations peak for charge ratios of 5:1. This is the onset of
the formation of a Wigner crystalline phase.
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Figure 5.16. Mean square displacement as a function of timestep at lB/σ = 0.5
and ε/kBT = 4.0, for increasing charge ratios of the components. For charge
ratios > 5:1, diffusion becomes non-linear. This indicates the formation of a
glass.

Figure 5.17. Structure factor, S(k), for value of short range attraction
(ε/kBT = 4.0) for strength of the electrostatics, lB/σ = 0.5, for varying charge
ratios of the components. From left to right, a) 2:1, b) 5:1, c) 10:1. For 2:1
mixtures, two strong peaks indicate lamellar order. With increase in charge
ratio, lamellar phase is lost and ring of peaks reminiscent of hexagonal order
appears. Cubic structure is indicated at long wavelengths, which is a finite
size effect.

shown here that increasing the electrostatic contribution, or charging the charge ratio of the

components, has the effect of freezing the local domain structure.
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5.3. Summary and conclusions

In this chapter, theoretical results for lamellar and hexagonal phases were compared with

molecular dynamics simulations at intermediate temperatures. The formation of lamellar

domains was characterized, including relevant thermodynamic quantities. It is found that

the electrostatic interactions contribute greatly to the interfacial ordering. When considering

the formation of hexagonal domains, at finite temperatures, there are deviations from both

the shape and packing within the domain structures that digress from the phase behavior

described from strong segregation theory at low temperatures. A critical domain nucleus

is found at which the domains change their shape from circular to noncircular behavior.

Moreover, it is found that the charge ratio of the electrostatic components influences the

shape asymmetry, as well as the degree of local order in the inter domain structure.
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CHAPTER 6

Effects of Salt

6.1. Introduction

Surface modification by polyelectrolytes is a well-established field [?] that possesses many

applications—fabrication of nano-patterned templates for storage media, nanowires [?], or

studies of cell growth and patterning [8]. One can consider the behavior of salt and macro-

molecular behavior near charged surfaces, as well as examine how the salt affects the pattern

formation on the surface itself. The competing interactions involved are the entropy of

the salt or macromolecules, in comparison with the electrostatic interaction between the

molecules in solution with the surface electrostatic potential. In certain regimes, the elec-

trostatic interaction dominates the entropy in solution and adsorption to the underlying

substrate is found. For example, it has been shown that adsorption onto the surface by

Figure 6.1. Cartoon of the interface, a microemulsion (oil water interface) or
else the interface of a flat, crystalline membrane. In either case, there will be
counterions or salt in the medium.
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polyelectrolytes can even lead to overcompensation of the surface charge, which allows for

multilayering of adsorbed layers of opposite charges [?, ?]. If the surface itself is hetero-

geneous, the situation is quite complex. For example, when considering a heterogeneous

mixture of surfactants in a monolayer, possessing a classic binodal behavior, it is shown

that considering attractions with a polymer in solution modifies the surface phase behavior

[?]. In this chapter, two separate aspects of the phenomena of salt behavior near patterned

interfaces are examined.

Section 6.2.1 considers implicit salt in the surrounding medium, assuming a continuous

distribution of ions in solution. Next, the modified surface potential is used to examine the

pattern formation on the interface. In the low temperature limit, the behavior of the system

can be examined using strong segregation theory as introduced in Chapter 4, using a screened

Debye Hückel potential. The transition from a patterned interface to a phase segregated state

is a first order transition with respect to the inverse screening length, defined by the salt

concentration in the medium. In the high temperature limit, the transition from a disordered

phase to a phase segregated state is a continuous transition as described in Section 6.2.2.

Using molecular dynamics simulations, but using a screened Debye Hückel potential instead

of the full Coulomb potential, illustrates the melting of the periodic structure in Section

6.2.3.

The second approach discussed in Section 6.3.1 considers the distribution of multivalent

salt in the surrounding medium, while assuming a fixed, patterned substrate with lamellar

domains of opposite charges. At low temperatures, phase coexistence is found between

a phase of condensed dipoles at the interface between the lamellar domains, as well as

condensed monopoles at the center of the lamellar domains. This phase behavior is dependent
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on the surface charge density, as well as the density of salt in the medium. Molecular

dynamics shows that these results can be extended to intermediate temperatures in Section

6.3.2, and illustrates the possibility of more complex mixed surface phase behavior close to

a fixed, patterned, heterogeneously charged substrate.

6.2. Salt effects on pattern formation

6.2.1. Low temperature Debye Hückel limit

In the low temperature limit, the behavior of the system can be examined assuming the

domains are strongly segregated, but considering a screened or Debye Hückel interaction be-

tween the charged components. In this case, electrostatic repulsion between the components

can be weakened enough to allow for the full segregation of the components. The ions in

the outside medium effectively neutralize the charge on the surface. In the low tempera-

ture limit, the free energy of the solid phase displays a discontinuous jump from either the

hexagonal or lamellar phase to the macroscopically phase segregated state. The free energy

minimum with respect to cell size remains the same until the inverse screening length, κ, is

comparable to the cell size. At this point, there is a new minimum at the infinite cell size,

which corresponds to complete segregation. This is a first order transition. Full details of

these calculations are found in Solis et al [118]. The resulting phase diagram for the line

of first order transitions from periodic to macroscopic phase segregation on the surface is

plotted in Fig. 6.2.
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Figure 6.2. For an increase in the inverse screening length, κ, the system
jumps from a periodic phase to a fully segregated mixture of opposite charges.
Reproduced from Solis et al [118] .

6.2.2. High temperature limit

In the high temperature limit, using a screened or Debye Hückel potential instead of the

Coulomb potential for electrostatic interactions, linear response theory can be used to exam-

ine how the density fluctuations in the system behave. To determine how the peak wavevector

scales with increasing external screening, the behavior of the inverse structure factor can be

calculated in a regime where the scaling of the peak in the structure factor from simulation

results is still consistent with linear response theory. In chapter 4, it was found that the

inverse structure factor has the following contributions,

1

S0(k)
= Uk + ρ−1 =

1

ρ
+

1

1− ρ
− 2χ + χk2 + Uel(k).(6.1)

For a symmetric system, ρ = 1/2, so that

1

S0(k)
= 4− 2χ + χk2 +

8πlB
k2 + κ2

.(6.2)
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When ∂S(k)−1

∂k
= 0, the structure factor is a maximum, corresponding to the peak wavevector,

q∗. It is found that as the magnitude of screening by the ions of solution, κ, increases, the

value of q∗ goes continuously to zero,

(6.3) q∗ =

(
−κ2 +

(
4πlB

χ

)2/3
)1/2

before the structure factor diverges, S(k)−1 = 0, at which there is macroscopic phase seg-

regation, as shown in in Fig. 6.3. This is in agreement with analytical predictions from the

strong segregation regime, which predicts a discontinuous jump from finite sized periodic

cells to an infinite cell at a value of κ which is inversely proportional to periodic length-scale

of the system.

At higher values of short range attraction, as shown in the shaded area in Fig. 6.3

the structure factor diverges when q∗ > 0. This corresponds to a region of microphase

segregation, in which there is a preferred wavelength of density fluctuations, before the

system jumps to the fully phase segregated state. Microphase segregation is seen for many

polymer systems, including weakly charged polyelectrolytes [121] and may be applicable to

the pattern formation found on the surface of cell membrane systems [138].

6.2.3. Melting of the lamellar phase using molecular dynamics

Introduction of electrostatic screening, or including the effects of salt on the local ordering of

the system, is considered by using a screened Debye Hückel potential instead of the Coulomb

potential for electrostatic interactions,

(6.4) UDH =
lBTq1q2e

−κr

r
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Figure 6.3. The location of the peak, k∗, in the structure factor, S(k), as a
function of κ as predicted by linear response theory for several values of short
range attraction (χ = 0.1, 0.5, 2.0, 5.0, 20.0) for an intermediate strength of the
electrostatics, lB = 0.2. The shaded area indicates S(k) diverges at a finite
value of k.

where κ represents the screening length due to the surrounding three dimensional solution

of ions (see Chapter 2).

In Fig. 6.4, several snapshots are shown for increasing κ for fixed values of short range

attraction and electrostatics. Initially, the periodicity of the lamellar stripes widens slightly

as shown in Fig. 6.4 a), followed by the breaking of the periodic phase. The stripes bend to

produce a percolated structure as shown in Fig. 6.4 b). The width of the stripes continues to

widen, while the fluctuations along the interface grow to larger length-scales. This segrega-

tion continues until two stripes exist for the width of the box. Upon segregation, in the solid

phase the short range attraction dominates the electrostatic repulsion between the charged

particles Fig. 6.4 c). Near perfect hexagonal close packing exists within the domains, and

nearly all of the neutral components, or empty space, is expelled to the interface between

the domains.
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Figure 6.4. Snapshots of the system for ε = 4.0 and lB = .5, showing progres-
sive values of screening. a) κ = 0.2σ−1 b) 0.4σ−1 c) 1.0σ−1. The system melts
when 1/κ ∼ L where L is the width of the periodic domain.

Examining the peak wavevector, k∗, as a function of κ, the inverse screening length,

from analysis of the structure factor, the peak wavevector indicates a continuous melting

of the system (Fig. 6.5). For both values of the electrostatics presented (lB = 0.2, 0.5σ),

the peak wavevector decreases from the maximum, which is the solution for pure Coulombic

interactions, gradually until the system is segregated for the full width of the simulation box.

Figure 6.5. Peak wavevector, k∗, as a function of κ, the inverse screening length
for two values of the electrostatic interactions (lB = 0.2, 0.5σ).
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Figure 6.6. The location of the peak, k∗, in the structure factor, S(k), as
a function of κ from simulation results spanning a range of the screening
parameter (κ = 3 − 15σ) at an intermediate value of short range attraction
(ε = 2.0). Increasing the size of the system from L = 36 to L = 51 decreases
the average value of k∗.

At higher values of electrostatic screening (κ = 5σ−1, 10σ−1, 15σ−1), examining the be-

havior of the system with an intermediate values of short range attraction (ε = 2.0), the

system phase segregates into two macroscopically charged domains of positive and negative

ions. The peak in the structure factor indicates that the segregation length-scale is nearly

constant as a function of the screening length. This is in agreement with analytic theory

[118]. The location of the peak shifts to lower values with an increase in the characteristic

size of the simulation box.

While the nature of this transition from simulation indicates a continuous transition, there

are many factors to consider. Using a 1/r Coulomb potential, as it was shown in Chapter

5, that increasing the strength of the electrostatics in the system leads to more ordered,

elongated interfaces. At finite temperatures, when screening the electrostatics, the interface

develops fluctuations at long wavelengths compared to the size of the simulation box as shown
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in Fig. 6.4 b). Within the context of strong segregation theory, these density fluctuations can

be incorporated into the interfacial term in order to correctly describe the melting transition

at finite temperatures. In addition, as will be discussed much more thoroughly in Chapter

7, there is adsorption of the neutral component at the interface between the domains. This

has a tendency to swell the interface, and changes the gradient contribution to the free

energy. Also, as seen in the progression of images in Fig. 6.4, this factor changes as the

inverse screening length progressively increases. At low values of screening, these interfacial

modifications will need to be taken into account in order to correctly describe the system.

However, for high values of screening, the two phases of immiscible components coexist

separately from a third neutral phase.

In order for a transition to be first order, the symmetry of the system should be broken.

As was discussed in Chapter 5, this possibility of long range order on surfaces is a topic

under much debate [129, 132, 133]. The electrostatics can result in the local freezing

of the domain structure, however, this was shown to be true only for strongly asymmetric

systems. Melting in two dimensions is synonymous with a Kosterlitz and Thouless transition

[133, 134], which was further extended by Halperin and Nelson, in which the local structure

melts through dislocations, or defects in the local packing of the components [135, 136].

Defects in the lamellar ordering are seen in the melting simulations, such as the interface

where two lamellar meet as shown in Fig. 6.4 b). To systematically study the melting of this

transition, larger simulation sizes would be needed in order to incorporate all wavelengths

of the density fluctuations. This could be examined, as in two dimensional Lennard Jones

systems [?], magnetic systems [?], or charged systems [?], by studying the finite size effects.
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Due to the long range nature of the Coulomb force, the systematic study of the order of this

transition would be computationally quite extensive.

6.3. Multivalent ion condensation on patterned surfaces

6.3.1. Theory of condensation

Charged surfaces and their interactions with ionic environments are particularly interesting

due to the long-range nature of electrostatic interactions and its relative independence from

molecular structure. The break down of the mean field Poison Boltzmann approximation

to describe adsorption of ions to charged surfaces [139] has since motivated many stud-

ies concerning this phenomena. Simple models such as a single component plasma near a

neutralizing background revealed two-dimensional crystallization of adsorbed ions onto ho-

mogeneously charged surfaces [140]. That is, the electrostatic correlations between ions can

result in the formation of solid phases on a highly charged surfaces. For example, this effect

is speculated to describe colloidal crystallization into solid phases near oppositely charged

membrane surfaces [141, 142].

In this section, the potential of a fixed lamellar surface of opposite charge is calculated

analytically. From the surface potential, the energy of a condensed counterion in the center

of the stripe can be calculated, as well as the energy of a condensed pair of counterions

(a dipole) at the lamellar boundaries. The electrostatic potential near the striped surface

(Fig. 6.7 a)) is given by

Ψ(∆y, z) = eσ

∞∫

−∞

dx

λ/2∫

−λ/2

dy

∞∑
i=−∞

ψi(x, y, ∆y, z)(6.5)
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where e is the unit of electron charge, σ is the surface number charge density, λ is the width

of one lamellar domain and

ψi(x, y, ∆y, z) =
(−1)i

√
x2 + (y −∆y + iλ)2 + z2

,(6.6)

where ∆y ∈ [−λ/2, λ/2] determines the shift from the center of the stripe along the y−axis.

Using the identity [143] the electrostatic potential can be calculated exactly:

Ψ(∆y, z) =
8eσλ

π
×

∞∑

l=1

sin3 (πl/2)

l2
sin

(
πl(λ− 2∆y)

2λ

)
e−

πlz
λ .(6.7)

The magnitude of the potential decays exponentially and has sinusoidal profile with ex-

tremum in the center of the stripes. Thus, the energy of the single charge in the center of

the stripe (Fig. 6.7c)) is υc = −4πZe2σaλ/3 and the energy of the dipole at the interface

(Fig. 6.7b)) is υd = −2πZe2σa2. More details concerning the calculation of an exact phase

diagram based on these results can be found in Ref. [?].

6.3.2. Adsorbed ion phases using simulation

There have been multiple Monte Carlo and molecular dynamics simulations of flexible poly-

electrolytes close to the surface of patterned, heterogeneously charged surfaces [?, ?]. These

simulations show that charge heterogeneities on the surface can give rise to local adsorption,

and also that the polyelectrolyte configuration is sensitive to the specific patterns on the

surface.
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Figure 6.7. a) The schematic representation of the system. The basic Wigner
lattices formed by condensed b) ions forming dipoles and c) single ions.

In this section, molecular dynamics simulations test the formation of Wigner crystalline

phases described in the previous section at intermediate temperatures, using a full Coulomb

interaction between particles. By assuming that the polyelectrolytes are strongly adsorbed to

the surface of the interface due to strong interactions (hydrophobic, van der Waals) between

the counterions and the substrate, the phase diagram can be simply explored, assuming a

confined counterion layer. A perfect lamellar surface of opposite charges, with ions ordered

in cubic patterns into stripes is constructed as illustrated in Fig. 6.8. Decreasing the strength

of the surface potential is explored by simply moving a confined plane of multivalent ions of

charge Z+/− through varying distances, z, close to the constructed lamellar surface. This is

equivalent to modifying the strength of the surface potential, Ψ(∆y, z), by a factor of e−z,

as defined in Eq. 6.5.
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Figure 6.8. Snapshots from molecular simulation of a) mixed and b) singe
ion phases at T = 0.5kBT, lB = 0.1. Mutivalent ions possess a charge of
Z+/− = 10. This plane of confined counterions is moved through a distance,
z, of a) 10σ to b) 1σ from the surface.

It is found that condensed multivalent ions (Z+/− = 10) form dipoles along the interfaces,

while single ions lie in the center of the stripe. Starting from a very close distance to the

lamellar plane, z = 1σ (Fig. 6.8 b) the strong correlation between ions, is preserved even

at relatively high temperature T = 0.5kBT . Notice how thermal fluctuations do not destroy

the long range order; the ions neatly condense to form a cubic array with single monomers

adsorbing in the center of the lamellar. Increasing the distance between the two planes

further, the counterions progress through the single ion phase until there is a transition to a

mixed phase at z = 10σ (Fig. 6.8 a), where an adsorption of dipoles at the interface between

stripes occurs. In addition to dipoles at the interface, chain clusters and paired dipoles form

suggesting rather complex phase behavior previously found mostly in the bulk [144, 145].

6.4. Summary and conclusions

In this chapter, two aspects of the salt effects on the pattern formation of a charged,

patterned surface, are considered. If the counterions in solution possess a continuous dis-

tribution, one can determine the modified phase behavior for pattern formation on the

interface. Both low and high temperature approaches are outlined, after which molecular
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dynamics simulations illustrate the melting to a phase segregated state. Simulations suggest

that, when considering the screening of the Coulomb interactions, interfacial fluctuations

become more prevalent. In addition, dislocations or defects in the lamellar patterning are

seen, which is consistent with mechanisms of melting of local two dimensional order.

While considering the behavior of mutlivalent salt close to a fixed, heterogeneously

charged substrate, the phase diagram is dependent on the surface charge density. At low

surface charge densities, salt should condense first at the interface between the domains.

With a progressively increasing charge density, this phase behavior should shift, until con-

densation is mainly at the center of one locally charged region. With further increase, it is

speculated that hexagonal packing of the counterions will be observed in the center of the

domains. These results are consistent with previous simulations, but also suggest that if the

initial adsorption should in fact occur at the interface between two strongly charged domains.

Molecular dynamics shows that these results can be extended to intermediate temperatures

in Section 6.3.2, and illustrates the possibility of more complex mixed phases.
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CHAPTER 7

Phase Segregation on the Surface

7.1. Introduction

Phase separation phenomena and pattern formation at surfaces [146, 147] are both areas

of great scientific interest. Several recent studies have shown that mixtures of immiscible

oppositely charged molecules can form regular periodic nanostructures [118, 141, 142]. The

competition of short range immiscibility and long range attractions leads to the formation

of periodic structures in a multitude of systems, as discussed in the previous chapter. As

in the previous chapter, charged microphases may be formed by molecules adsorbed onto

biological membranes, and other neutral surfaces. It is well known that minority components

adsorb to interfaces [148] and, when oppositely charged components are adsorbed, ionic

domains reminiscent of biological rafts may form. However, the effects of decreasing the

total molecular charge density plays a critical role in the surface phase behavior. Neutral

components act to decrease the line tension between charged domains, and may allow for

the coexistence of a condensed, or solid phase, as well a liquid phase. Understanding the

formation of the between these two regions is critical to understanding the surface behavior

of charged mixtures, as well as their interaction with other macromolecules. For example, it

has been shown that proteins which are nonselective between a liquid condensed and liquid

expanded phase display preferential adsorption to the interface [?].
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Phase coexistence has been considered theoretically for competing short range and elec-

trostatic interactions, in certain limits. In the bulk solution, the phase behavior for oppositely

charged, incompatible polyelectrolytes has been examined using the one loop approximation.

It is shown that, for the limit of low screening, electrostatics can overcome the net incom-

patibility in order to produce microphase segregation, and even condensation, for low values

of immiscibility [149]. On the surface, for incompatible mixtures of competing dipoles, at

Figure 7.1. a) Schematic free energy at low temperatures. The isotropic free
energy has two minima, corresponding to solid and gas phases. When the dipo-
lar interactions are included, the possibility of two phase coexistence between
isotropic and striped phase appears. b) Schematic phase diagram constructed
from energy shown above. The stripe shows coexistence regions with gas and
solid phases. This phase diagram can also be extended to incorporate hexag-
onal phases. Reproduced from Andelman et al [95].
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Figure 7.2. a) Disordered and b) more ordered rafts of negatively charged
colloidal particles adsorbed to the surface of a tense vesicle, composed of a
mixture of cationic and neutral surfactants. Reproduced from Ramos et al
[141].

low temperatures, Andelman has demonstrated the possibility of phase coexistence between

a periodic, striped phase with an isotropic (liquid or gas) phase. The two phase coexistence

regions are constructed by minimizing the free energy difference between the isotropic and

stripe phases, as shown in Fig. 7.1. In this chapter, using the same general methods for

construction of a two phase region, the boundaries of the coexistence region between a pe-

riodic solid phase and isotropic gas phase will be determined. However, the electrostatic

contribution to the gas phase phase density will also be considered.

The contribution of electrostatics to phase segregation on interfaces is a general problem,

and may be applicable to a variety of experimental systems. As shown in the review in the

Chapter 4, the compression of langmuir monolayer mixtures results in the coexistence of

a liquid condensed, or gel state, with a liquid expanded state. The liquid expanded state

possesses a low charge density compared with the liquid condensed state [93]. In addi-

tion, recent experiments have shown the possibility of the aggregation of negatively charged

colloidal particles on the surface of vesicles composed of a mixture of charged and neutral

phospholipids [141, 142]. While this experimental system is much more complicated that
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the ideal system that will discussed in this chapter, the resulting solid phase of hexagonally

close packed molecules at an interface, within a low density gas phase, are overwhelmingly

similar in their structure as shown in the images reproduced from Ramos et al in Fig. 7.2. The

underlying physics behind this, and similar, systems, has been the cause of much discussion

[?].

7.2. Theoretical model of phase segregation on the surface

In this chapter, the possibility of phase segregation formed by a mixture of charged

molecular components strongly adsorbed on biological membranes, and other neutral surfaces

is explored. This includes liquid interfaces, such as emulsions when cationic and anionic

surfactants are adsorbed onto the interface. Many simplifications to the model are made

compared to experimental systems. In this model, specific interactions with the interface or

substrate with the adsorbed molecules are not considered. In addition, the fluctuations in

the shape of the interface are ignored. The phase behavior is accurate when the interface of

interest is non-fluctuating, when the bending modulus is sufficiently high so that equilibrium

fluctuations are less than kBT . The electrostatic contribution to the bending elasticity for

the case of microemulsions [?], or membranes [150, 151], is just beginning to be investigated.

The model presented here is only applicable to flat, crystalline membranes or microemulsion

with sufficiently low curvature.

The coexistence of two possible phases is considered at low temperatures. One phase

consists of a dense, patterned solid formed by the charged components. Its free energy is

analyzed by assuming the formation of microphase regions of constant particle and charge

density as first described in Section 4.2.1. The second phase consists of an isotropic gas of
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Figure 7.3. Schematic of neutral and charged components strongly adsorbed
to a liquid interface, such as an emulsion or the surface of a bilayer. The
charged components segregate into a periodic solid phase with line tension γ
within a homogeneous background.

charged particles; its free energy can be calculated using linear response theory by means

of the one loop approximation or Random Phase Approximation (RPA) [120, 152] at the

interface as first described in Section 2.1.3 and Section 4.2.2.

7.2.1. Free energy of the solid phase

Within strong segregation theory, as first described in Section 4.2.1, the equilibrium phase

is determined by the charge ratio of the molecular components. The solid phase possesses

elongated domains with a lamellar periodicity, for mixtures of equally charged molecular

components. For asymmetrically charged molecular components, the solid phase possesses

circular domains with a hexagonal periodicity. The average absolute value of the charge

density in the solid phase is ψ = f+ψ+ + f−|ψ−| where f+/− represents the area fraction of

the components and ψ+/− is their respective charge density. The free energy of the solid

microphase, per area A with periodicity L, has the form

Fm

AkBT
= γ

s1

L
+ lBψ2s2L.(7.1)
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The Bjerrum length is lB = e2

4πεkBT
, kB is the Boltzmann constant, T is the temperature,

ε is the dielectric permittivity of the medium, and the line tension between microdomains

is γ. The coefficients s1 and s2 are dimensionless quantities that depend on specific shape

of the microdomains. s1 is the ratio of the microdomain interface length within a unit cell

to the size of the cell. s2 is the integral of the dimensionless Coulombic potential over the

whole space, averaged over a unit cell. These values are calculated following Ref [118].

Minimizing the free energy with respect to the size L, there exists an optimal characteristic

length Lmin = (s1/s2)
1/2L0, with L0 = (γ/(lBψ2))1/2. Evaluation of the free energy density

at that point results on a value of 2(s1s2)
1/2 f0

L0

2
, where f0 = (γlBψ2)1/2 [118, 153].

The complete free energy of the solid phase also includes the cohesive energy that arises

from segregation of the charged molecules from the neutral component. The cohesive energy

consists of the sum of the short range attractive contacts (of magnitude ε) per component

in the solid phase. At low temperatures, a constant density given by the hexagonal close

packing packing of spherical molecules of radius σ can be assumed. This corresponds to

a constant density ρsolid = 1√
3σ2 . The effective cohesive energy per unit area can then be

written in terms of ε, which corresponds to the net interaction between components, with 6

contacts between neighbors. The line tension is, from geometrical packing arguments,
√

6ε
σ

.

Inclusion of the cohesive energy, leads to a total free energy for the solid phase as:

(7.2)
Fs(ρsolid)

A
= −3ερsolid + 2(s1s2)

1/2f0/L
2
0.
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7.2.2. Free energy of the gas phase

The free energy of the gas phase is calculated using the Random Phase Approximation [120]

as a function of the relative strength of the short range attraction, ε, and the electrostatic

interactions, lB. The method involves an expansion of the free energy of the system in terms

of density fluctuations, neglecting all terms of larger than second order. For a general system

of interacting i, j charged monomers, the partition function is written as

Z = Zo
V N

N !

∫
exp

(
−

∑

k 6=0

∑
ij

Aij
k ρi

kρ
j
−k

2V

) ∏

k>0

∏
i

dρi
k

πV ρi

.(7.3)

where Aij
k = Uij

k +ρ−1
i δij. Here, ρi represents the density of the ith component and ρk is the

Fourier transform of the component densities. Zo includes the k = 0 and self energy terms.

Uij
k is the sum of the interaction energies, consisting of the short range interactions due to

the excluded volume and hydrophobic interaction, as well as the long range contributions

due to the electrostatic energy. The electrostatic contribution to the internal energy matrix

uses the two dimensional Fourier transform of the screened Coulomb interaction, Eij
el =

2πzizjlB(k2 + κ2
out)

−1/2. κout is the screening length defined by the concentration of ions in

the surrounding solution.

The free energy is then

F =
∑
ij

Ni(Nj − δij)

2V
U ij

o +
∑

i

Ni ln
ρi

e
(7.4)

+
∑

k>o

[
ln

det|U ij
k + ρ−1

i δij|
det|ρ−1

i δij|
−

∑
i

ρiU
ii
k

]
.
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where U ij
0 includes only the short range excluded volume of the components, as the electro-

static contribution vanishes due to charge neutrality. The second term is a standard entropic

term. The third term is the electrostatic contribution due to density fluctuations, calculated

by integrating over the possible values of k from 0 to 2π/a, where a is the molecular size.

The interaction matrix, U ij
k , is

U =




U11 U21

U21 U22


(7.5)

=




1
ρ1

+ ν11 +
2πz2

1 lB√
k2+κ2 ν12 + 2πz1z2lB√

k2+κ2

ν12 + 2πz1z2lB√
k2+κ2

1
ρ2

+ ν22 +
2πz2

2 lB√
k2+κ2


 .

In the present case, the electrostatic energy Eel
ij >> νij, where νij consists of the short

range, or the effective excluded volume of the monomers. In this case, the short range

contribution due to density fluctuations is negligible and Uij consists of only the electrostatic

contribution due to the fluctuations. This term is designated Fele. The resulting expression

corresponds to the Debye Hückel correction to the free energy [120] as introduced in Section

2.1.2, but in the two dimensional limit.

The free energy can be broken up into parts. The first portion includes the k = 0 short

range and electrostatic terms and the entropic contribution to the free energy, F0. The

second portion, Fele, includes X, the electrostatic correction to the energy due to the density
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fluctuations, as well as Y , the self energy contribution. This can be written as

F = F0 + Fele(7.6)

F =
N1(N1 − 1)U11

0

2V
+

2N1N2U
12
0

2V
+

N2(N2 − 1)U22
0

2V

+N1 ln
ρ1

e
+ N2 ln

ρ2

e
+

∑

k>0

(
X
1

ρ1ρ2

− Y

)

First, consider the k = 0 terms,

F0 =
N1(N1 − 1)U11

0

2V
+

2N1N2U
12
0

2V
+

N2(N2 − 1)U22
0

2V
+ N1 ln

ρ1

e
+ N2 ln

ρ2

e
(7.7)

The free energy per unit volume is then

F0

V
=

N1

2V

(
N1 − 1

V

)
U11

0,SR +
N1

V

N2

V
U12

0,SR +
N2

2V

(
N2 − 1

V

)
U22

0,SR(7.8)

+U0,ele +
N1

V
ln

ρ1

e
+

N2

V
ln

ρ2

e

The k = 0 electrostatic term vanishes due to charge neutrality,

U0,ele =

∫ (
z2
1qlBρ2

1

2V
+ 22

2q
2lBρ2

2 +
ρ1z1z2q

2

r

)
d3r(7.9)

=

∫
1

2

(z1ρ1 + z2ρ2)
2

r
d3r = 0.
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For a large system, the number of particles, N− > ∞, so that 7.8, the free energy per unit

volume, becomes

F0

V
=

ρ2
1

2
U11

0,SR + ρ1ρ2U
12
0,SR +

ρ2
2

2
U22

0,SR(7.10)

+U0,ele + ρ1 ln
ρ1

e
+ ρ2 ln

ρ2

e

The short range energy can be expanded for low densities using the virial theorem, as de-

scribed in Section 2.1.1 of the background chapter. Including only the two body interaction

terms,

(7.11) U ij
0,SR

∼= υij = −
∫

exp(−U ij
0,SR − 1)d2r.

Next, consider the k > 0 terms. Evaluating Fele due to the first portion, X, of the

electrostatic free energy terms,

Fele,X =
∑

k>0

ln

[
ρ1ρ2

((
1

ρ1

+ ν11 +
2πz2

1lB√
k2 + κ2

)(
1

ρ2

+ ν22 +
2πz2

1lB√
k2 + κ2

)
(7.12)

−
(

ν12 +
2πz1z2lB√

k2 + κ2

)2
)]

After some algebraic manipulation, this simplifies to

(7.13) Fele,X =
1

(2π)2

∫
2πkdk ln

(
1 +

κ2
in√

k2 + κ2
out

)

κin is defined as the screening due to the ions in the plane,

(7.14) κ2
in = 2πlB(ρ1z

2
1 + ρ2z

2
2).
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To begin with, consider the limit of no screening due to ions in the surrounding solution

(κout → 0) to match of strong segregation theory. It has been shown that the presence of salt

does not change the periodicity significantly [118] in strong segregation theory up to when

the screening length is of the order of the domain size when the periodic phase decomposes

into two macroscopically segregated phases of charges.

The electrostatic contribution is found to be, for the limit of no external screening due

to the surrounding ions in solution,

Fel

kBT
=

1

4π

[
2π2 ln(1 +

aκ2
in

2π
)

a2
+

πκ2
in

a
(7.15)

−1

2
κ4

in ln(1 +
2π

aκ2
in

)

]
.

Including the external screening of the ions in the surrounding solution, the electrostatic

contribution is a function of κout. After some rearrangement, it is found to be,

Fel

kBT
=

1

4π


ln


 κ2

in + κout

κ2
in +

√
4π2

a2 + κ2
out


 κ4

in(7.16)

−κ2
inκout + κ2

out ln

(
κout

κ2
in + κout

)
+ κ2

in

√
4π2

a2
+ κ2

out

+

(
4π2

a2
+ κ2

out

)
ln


κ2

in +
√

4π2

a2 + κ2
out√

4π2

a2 + κ2
out







First, consider the limit of no screening due to ions in the surrounding solution (κout → 0).

The above equations simplify when considering the charge neutrality constraint, z+ρ+ =

z−ρ−. The total free energy per unit area for the gas phase, for no external screening (using
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Fele from 7.15), in terms of ρ where ρ = ρ+ + ρ−, is then

Fgas

AkBT
=

ρ

α
ln

[ ρ

αe

]
+

ρ

β
ln

[
ρ

βe

]
(7.17)

+
υ11

2

( ρ

α

)2

+
υ22

2

(
ρ

β

)2

+ υ12
ρ2

αβ
+

Fel

kBT

where α = 1 − z+

z−
and β = 1 − z−

z+
. The virial terms are υij = − ∫

e−Uij/kBT − 1 where Uij

is a hard core potential from 0 < r < σ and a classic 6-12 Lennard Jones potential from

σ < r < 2.5σ.

7.2.3. Construction of the two phase coexistence boundaries

To determine the phase coexistence of the solid, patterned phase and the dilute gas, one can

use the common tangent rule [154] The total free energy per area is the sum of the area

Figure 7.4. The chemical potentials and partial pressures of the solid and gas
phase are equivalent. The density of the solid phase is fixed.
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fraction in each phase,

Ftotal

V
(ρ) = x

Fgas

V
(ρgas) + (1− x)

Fsolid

V
(ρsolid)

ρ = xρgas + (1− x)ρsolid(7.18)

Ftotal(ρ) = xFgas

(
ρ− (1− x)ρsolid

x

)
+ (1− x)Fsolid(ρsolid)

where x represents the area fraction of the gas phase. The chemical potentials and of the

gas and solid phase are equivalent in coexistence,

µgas = µsolid(7.19)

∂F

∂ρ

∣∣∣∣
ρgas

=
∂F

∂ρ

∣∣∣∣
ρsolid

as well as the partial pressures,

Pgas = Psolid(7.20)

Fgas

V
− ρgas

∂(Fgas

V
)

∂ρ

∣∣∣∣∣
ρgas

=
Fsolid

V
− ρsolid

∂(Fsolid

V
)

∂ρ

∣∣∣∣∣
ρsolid

For a fixed solid phase density, the condition of equivalent pressures and chemical potentials

is equivalent to the condition of a minimimum free energy, ∂F/∂x = 0.

Since the density of the solid phase is assumed fixed, the equation

(7.21)
Fsolid(ρsolid)

A
=

Fgas

A
+ (ρsolid − ρgas)

∂Fgas

∂ρ

∣∣∣∣
ρsolid

can be solved for the gas phase density at equilibrium, ρgas.
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Figure 7.5. Free energy for ε = 2.0, lB = 0.5. The repulsive electrostatic free
energy is balanced by an attractive Van der Waals component. The total free
energy displays a stable gas phase density, which is in coexistence with a solid
periodic phase. The dashed gray line represents the theoretical free energy of
the solid phase, which has been simplified by a assuming a fixed solid phase
density.

The fixed density of the solid phase is an assumption that can be corrected for by allowing

for adsorption of the neutral components at the interfaces between domains in the solid phase,

as will be discussed later in this chapter.

Fig. 7.6 shows the boundary of the coexistence region for low values of the gas phase

density. The figure refers to the case of equal charge density z+/z− = 1. The phase diagram

shape depends of course on the relative strengths of the Coulomb interaction (through the

charge density) and on cohesive/immiscibility parameter ε. With increasing strength of the

electrostatics, lB/σ, the transition to a periodic microphase occurs at lower temperatures,

while increasing values of the net interaction, ε/T , requires higher temperatures. At higher

surface densities, nonlinear corrections including short range correlations and ion association

are necessary [155, 152].
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Figure 7.6. Phase diagram of the mixture. Location of solid-gas coexistence
curves in ρ − T plane is shown for several different values of the Bjerrum
length, lB/σ. Increasing the Bjerrum length requires higher values of short
range interactions, ε/T , for phase coexistence. The solid phase has constant
density ρsolid. The figure refers to the case of equal charge density z+/z− = 1,
which forms a lamellar microphase.

For the coexistence of hexagonal solid domains with a gas phase, the free energy of the

solid and gas phase slightly shift positions, so that the corresponding boundaries to the coex-

istence region are wider. This is because the free energy of the solid phase is correspondingly

lower for asymmetric charge ratios. In Fig. 7.7 the boundaries for the asymmetric 3:1 case

and symmetric 1:1 case are compared for different strengths of electrostatic interactions.

However, this is not what is seen with molecular dynamics. The reasons for this discrepancy

between theoretical results and simulations will be discussed later in this chapter.

And finally, consider the effect of external screening due to the salt in the outside solution,

κout, for the symmetric system. The boundaries for this coexistence region are plotted in

Fig. 7.8. In comparison with the coexistence of a lamellar phase with no external screening

as shown in Fig. 7.6, the corresponding boundaries to the coexistence region are wider, so the
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Figure 7.7. Phase diagram of asymmetric 3:1 and symmetric 1:1 mixtures
for two different Bjerrum lengths. Increasing the asymmetry of the mixture
requires lower values of short range interactions, ε/T , for phase coexistence.
The solid phase has constant density ρsolid.

external screening of the outside solution close to an interface actually favors the formation

of multiple faces on the surface. This is an interesting result, which means that screening in

the external solution will favor the creation of an interface between the solid and gas phases.

7.3. Molecular dynamics of phase coexistence

Coarse grained simulations have indicated liquid order disordered phases when consid-

ering the dipolar nature of the molecule [156], or else phase coexistence for mixed lipid

bilayer systems (and subsequent effects on membrane curvature) [?, 157]. For constricted

area interfaces, such as langmuir monolayers, evidence of a liquid vapor type coexistence has

also been seen in simulations [158]. In this case, the competition between the electrostatics

and short range van der Waals are both essential components to the model. Van der Waals
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Figure 7.8. Phase diagram of for a symmetric 1:1 mixture for increasing values
of κ, inverse screening length. Increasing κ requires lower values of short range
interactions, ε/T , for phase coexistence. The solid phase has constant density
ρsolid.

interactions are described by the classic 6-12 Lennard Jones potential

ULJ = 4ε

((σ

r

)12

−
(σ

r

)6

+ C

)
r < rc(7.22)

where the potential is cut at a radius rc = 2.5σ and unshifted (C = 0) for similarly charged

molecules and the potential is shifted (C = 1
4
) and cut at rc = 2

1
6 σ (allowing only for

the repulsive part of the potential) for oppositely charged molecules, where σ is an effective

molecular radius. The depth of the potential well, ε, entails a net immiscibility of magnitude

ε between oppositely charged species. We consider a neutral and nonselective homogenous

background and choose to model only the charged components. In this manner, multiple

simulations of the phase behavior can be run that exactly incorporate the electrostatics.

The model systems used are composed, in the symmetric case, of a mix of N+ = 1000

positively charged and N− = 1000 negatively charged units in a simulation box of size D3,
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with D = 66σ. In the asymmetric case, the number of particles used were N+ = 900 and

N3− = 300 particles. The molecules are confined to a plane perpendicular to the Z axis, with

periodic boundary conditions in the X and Y directions. Constant N,V,T simulations were

performed using the Espresso simulation package [159, 160]. Regions of the phase diagram

at surface densities of ρ = (N++N−)πσ2

4D2 = 0.36 are explored. The potential between charges

is a full Coulomb potential, UC = lBTq1q2

r
, calculated using the ELC method [37], which is

a two dimensional correction to the P3M Ewald summation technique [124]. A Langevin

thermostat is used to ensure constant temperature.

Late-time snapshots (after 105 MD timesteps, with τ = .0125) are shown in Fig. 7.10.

7.3.1. Phase coexistence and scaling

At small values of ε or low Bjerrum lengths (high temperature), positive and negative do-

mains develop on the surface and, as the temperature decreases, the domains increase in

size. In all the simulations, the individual molecular components exhibit a hexagonally

close-packed structure (as was assumed in the analytical approach), with density fluctua-

tions dependent on the temperature. For asymmetric charge ratios, at ρ = 0.10, z+

z−
= 1/3,

in Fig. 7.10 a) note the formation of a hexagonally patterned ’island’. For larger densities,

as in Fig. 7.10 b) the solid phase occupies a larger fraction of the space, but exhibits more

clearly the ordering.

As shown in Fig. 7.10 c-d), for symmetric charge ratios, z+

z−
= 1 the preferred microstruc-

ture is lamellar. At the values of the parameters used, we observe as well the phase separation

between solid patterned and neutral regions. The magnitude of ε increases from snapshot c

to d, clearly modifies the fluctuations of both types of interfaces: between charged regions,
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Figure 7.9. Simulation snapshots for systems with charge ratios, a-b) z+/z− =
1/3 and c-f) z+/z− = 1. Frames a-b illustrate hexagonal order for different
densities ρa = 0.10, ρb = 0.36. Frames c-d show the effect of increased immis-
cibility εc = 3.4kBT , εd = 3.7kBT , for a fixed Bjerrum length, lB/σ = 0.5.
Frames e-f show the transition from a homogeneous microphase to a phase
segregated state for εe = 2.6kBT , εf = 2.8kBT for lB/σ = 0.1.

and between the solid and neutral phases. At higher values (Fig. 7.10 d) the interfaces are

much sharper and exhibit smaller shape fluctuations. A note and an interesting feature of the

solid-gas interface: the orientation of the lamella is perpendicular to the interface. While the

charged domains have symmetric interactions with the neutral region, the alignment must

be a result of minimization of the local electrostatic energy. To some extent, this feature

also appears in the asymmetric case, Fig. 7.10 a-b), where charged domains appear at the

interface with the neutral domain.
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Figure 7.10. Heat capacity and average energy per particle for Bjerrum
lengths (lB/σ = 0.1, 0.2, 0.5) as a function of ε. Peak in heat capacity cor-
responds with phase segregation of the mixture into periodic solid phase and
low charge density gas phase.

Fig. 7.10 e-f) show the transition from a solid to a solid-gas coexistence phase for sym-

metric charge ratios, but for weaker electrostatic interactions. At low values of the cohesive

energy ε the system shows the lamellar patterning but has large voids between the charged

domains. An effective neutral component is attracted to the interfaces where it can reduce

the effective line tension between domains. On further increase in the cohesive parameter,

the coexistence region is reached, and the neutral regions segregate to form their own phase,

as shown in Fig. 7.10 f). The lower values of the Bjerrum length in these cases produce

larger lamellar sizes, compared with those of Fig. 7.10 c-d).

Upon examination of the phase behavior as in Fig. 7.10 f), one will notice that vacancy or

minority components adsorb at the interface to decrease the interfacial energy [161, 162]).

To compare the behavior observed in the simulations to theoretical results, this effect must be

corrected for in the line tension. The density of the solid phase is calculated from simulations

as shown in Fig. 7.11. With increasing short range attraction, ε, the density continuously
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Figure 7.11. Surface density of the solid phase for a range of Bjerrum lengths,
lB/σ = 0.025 − 1, that correspond with values of interparticle attraction, ε,
after phase segregation has occurred in the system.

increases, but does not reach the value determined by the hexagonal close packing, if the

distance between the particles is at the minimum in the interparticle potential. This factor

needs to be accounted for.

At last, the assumption of a solid phase density fixed by the molecular radius, is aban-

doned. One can consider a line tension, γ, that scales with the particle density, proportional

to the charge density, as ψ1/2. Thus, the periodic length scale of the domains scales with the

charge density as L = (γ/(lBψ2))1/2 ∼ (ε/(lBψ3/2))1/2. This rescaling factors in the effect of

vacancy adsorption at the interface at intermediate temperatures.

To study the scaling of the domain size in the symmetric case, the peak in the structure

factor S(~k) = 〈ρkρ−k〉, is examined and compared with the behavior predicted by theory.

The structure factor is the two dimensional Fourier transform of the correlation function

of the charged components. S(~k) displays a peak at values k∗ corresponding to the inverse

lamellar spacing in the direction perpendicular to the lamellas. The peak wavevector, for
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the late stages of a number of simulations within the phase segregated state, over a wide

range of lB/σ ∼ .01 − 1., must scale as k∗ ∼ (ε/(lBψ3/2))−1/2. Indeed, in the simulations,

the position of the peak wavevector can be fit through a line of slope −.47 + / − .02 when

plotted against the group ε/(lBψ3/2), as shown in Fig. 7.12.

7.4. Summary and conclusions

This chapter combines analytic techniques, both the Random Phase Approximation and

strong segregation theory, to demonstratedthe clear possibility of coexistence of structured

ionic domains with a low charge density homogeneous phase. In additon, molecular dynamics

simulations show that, with a simple rescaling of the line tension, γ, with charge density ψ1/2,

low temperature results can be extrapolated to intermediate temperature regimes. The

competition between electrostatic and van der Waals interactions at the interface provides

a guideline to generate well-controlled, self-assembled surface patterns. Phase segregation
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Figure 7.12. The location of the peak k∗ in the structure factor S(~k) as
a function of ε/(lBψ3/2). The linear fit shows agreement with the scaling
predicted by strong segregation theory of power −0.5.
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phenomena on surfaces and interfaces exhibits rich behavior. Ionic domains may be crucial

to increase reaction rates among adsorbed biomolecules at liquid interfaces, a useful tool in

biotechnology [163, 8] and important in some models of the origin of life [164].
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CHAPTER 8

Summary and Extension of Work to More Complex Systems

8.1. Summary

During the course of this thesis, two topics concerning the self-assembly of polymers and

polyelectrolytes are investigated. Polymer gels and polyelectrolyte self assembly on surfaces

are both areas of research that display great promise for applications in the materials science

community. As these areas of research continue to evolve and specialize, a greater degree of

understanding concerning the self-organizational behaviors of polymers and polyelectrolytes

will be necessary. In this thesis, computer simulation techniques are used in complement

with theory to better understand their self-assembly behavior.

In an initial study, mean field theory and Monte Carlo techniques are used to gain insight

into a classical theory of thermoreversible gelation. Two separate models of association are

explored with Monte Carlo, a model of chemical association, for which well-defined theoret-

ical models exist, as well as a model of physical association. Resulting thermodynamic and

structural quantities of the two simulation models are then compared with those predicted

by a mean field model of thermoreversible association. It is found that chemical association

is well described by the mean field model, while, for the diffusion limited association model,

the simulations results are not described well by theory.
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In the following chapters, a model of competing electrostatic and short range van der

Waals interactions for molecules strongly adsorbed to interfaces is explored. At low tem-

peratures, the resulting phase diagram is shown in Fig. 8.1. For symmetric mixtures of

immiscible, oppositely charged molecular components, strongly adsorbed to an interface, the

minimum free energy corresponds to lamellar domains of oppositely charged components.

For asymmetric mixtures, the minimum free energy consists of hexagonal domains. At high

temperatures, by studying the transition from the ordered to the disordered state, different

scaling is found for the size of the domains with respect to the strength of the electrostatics,

and degree of immiscibility between the components.

Molecular dynamics simulations show that the periodic phases are stable at interme-

diate temperatures, and demonstrate that the electrostatics promotes interfacial ordering.

Studying the formation of hexagonal domains, it is shown that at finite temperatures, the

domains do not form in an isotropic manner. While at shorter length scales, the domains

grow isotropically, the shape of the domains with larger areas grow in a linear manner. Upon

examination of the structure factor, S(k), the peak due to the local domain structure appears

at shorter wavelengths, while at longer wavelengths there are some indications of finite size

effects on the ordering of the domains. The fluctuations of the local inter domain structure

are analyzed, using the Lindemann Criterion, and it is found that the local lattice structure

is still liquid. However, upon changing the charge ratio of the molecular components, it is

found that the fluctuations in the in the local domain structure decreases.

Next, the salt effects on pattern formation of a charged, patterned surface, as well as

the effect of the charged surface on the concentration of multivalent salt in the medium, are

examined. Both low and high temperature approaches are outlined, after which molecular
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Figure 8.1. Phase diagram of the minimum free energy as a function of charge
fraction, f, and temperature, T. At high temperatures the density is homo-
geneous. As temperature is decreased there is a transition temperature, Tc,
at which a periodic phase forms. For charge fractions, 1/3 < f < 2/3, the
minimum free energy phase is lamellar. Outside this region the minimum free
energy is hexagonal. Figure adapted from Solis et al.

dynamics simulations illustrate the melting to a phase segregated state. Simulations show

that, when screening the Coulomb interactions, interfacial fluctuations become more preva-

lent. In addition, dislocations in the lamellar patterning are seen, which is consistent with

mechanisms of melting predicated for systems displaying two dimensional order, known as

the Kosterlitz Thouless Halperin Nelson and Young (KTHNY) transition. When considering

the behavior of multivalent salt close to a fixed, heterogeneously charged substrate, one can

consider the formation of a Wigner crystalline type phase, with adsorption at the center of

the charged domains, as well as the interface between charged domains. Molecular dynamics

show that these results can be extended to intermediate temperatures in Section 6.3.2, and

illustrate the possibility of more complex mixed phases of salt near heterogeneous, patterned

surfaces.

To investigate the phase behavior at low charge surface densities, both the Random

Phase Approximation and strong segregation theory, are utilized. The boundaries of the two



145

phase coexistence region are constructed using the common tangent rule, for coexistence of

a low charge density gas phase with a periodic, solid phase. The possibility of phase coexis-

tence is explored with molecular dynamics simulations. It is indicated that, at intermediate

temperatures, the neutral components, or vacancies, act to modify the interfacial region.

In addition, molecular dynamics simulations show that, with a simple rescaling of the line

tension with charge density, low temperature results can be extrapolated to intermediate

temperature regimes.

The competition between electrostatic and van der Waals interactions at the interface

provides a guideline to generate well-controlled, self-assembled surface patterns. These pat-

terns, or microphases, can exist within a low density charged phase. The contribution of

electrostatics to this possibility has been examined and determined to significantly affect

the degree of interfacial ordering and the local structure of the domains. When examining

the interactions of asymmetrically charged mixtures on the surface, such as a mixed group

of polyelectolytes, functionalized colloids, proteins, or surfactants, the electrostatic interac-

tions, in addition to the immiscibility, may give rise to new length scales of self-assembly on

the surface.

8.2. Extension of work to more complex systems

There are a multitude of directions to go with this work. One simple direction would

be to consider the contribution to electrostatics for immiscible, charged mixtures for asym-

metrically shaped or sized mixtures of polyelectrolytes. This would be directly applicable to

the phase behavior of functionalized charged polystyrene spheres that have been found to

form hexagonal phases on the surface of charged synthetic vesicles [141]. In these systems,
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there are many degrees of freedom, including the degrees of freedom of the counterions, the

polystyrene spheres, as well as the lipid diffusion and phase behavior on the surface of the

vesicle [?]. While it would be interesting to see if the calculations in this work could be

extending for these types of systems, in particular the possibility of phase coexistence, it is

also necessary to understand the contribution of bending elasticity to these systems.

Extension of this work to incorporate the bending elasticity of an interface of membrane,

would incorporate another contribution of the free energy of the interface. The elastic

contribution to the free energy for a fluctuating, liquid membrane is well known to be [165, ?],

(8.1) Felastic =

∫
d2r

(
σ +

1

2
κb(J − 2c0)

2 + κgK

)
,

where J = 1/R1 + 1/R2, K = 1/(R1R2), R1 and R2 are the radiuses of curvature. κb and κg

are the bending modulus and the saddle splay modulus, σ is the surface tension, and c0 is

the spontaneous curvature of the membrane. If the different molecular components display

an affinity for different curvature regions, the local concentration will be coupled with the

curvature. M. Seul and D. Andelman have considered what effects this will have on phase

behavior in the weak segregation limit for a general system of competing interactions, and

the resulting distortions this may have on the interface [110].

The phase behavior presented in this thesis is accurate when the interface of interest

is non-fluctuating, when the bending modulus is sufficiently high so that equilibrium fluc-

tuations are less than kBT . When considering fluctuations, especially when incorporating

electrostatic interactions, the situation gets more complex. For fluid membranes, the flexi-

bility depends on the the specific interactions of the lipids, such as tail length, tilting, and
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composition [166]. For mixed cationic and anionic lipids, pure Coulombic interactions are

found to decrease the bending and Gaussian rigidity of membranes [150].

However, before tackling the behavior of cationic and anionic mixed membrane systems, it

is necessary first to investigate the effects of electrostatics on bending elasticity with a single

charged lipid composition. Mean field theory, without electrostatic correlations, indicates

an increase in the bending rigidity [151]. Calculations considering electrostatic correlations

of multivalent counterions on the surface of the membrane itself indicate that the formation

of a Wigner crystalline phase on the surface can decrease the bending rigidity [167]. For

multilayer membranes, the system is a complex mix of counterion effects, layer elasticity and

flexibility, and electrostatic interactions [168]. Furthermore, it is indicated that the bending

modulus is also dependent on lamellar spacing, with different scaling for different limits of

the surface charge density [169]. These mutlilayer complexes would be extremely interesting

to study, and have been gaining much attention recently.

Polyelectrolyte complexes, such as the complexation of oppositely charged polyelectrolyes

as well as surfactants, have numerous biomedical and materials applications [3]. In partic-

ular, cationic lipid and DNA supramolecular assemblies have gained much attention in the

polymer and materials science community [4, 170]. Recently, several additional highly

charged biological macromolecules, such as F-actin [171] and the M13 virus, as well as

molecularly engineered polypepties [172] have been shown to form similar complexes. The

stability of these complexes close to the isolectric point has been considered theoretically

[173, 174]. Moreover, the elastic properties of the underlying membrane have also been

considered within mean field theory [175].
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However, one key ingredient to the successful understanding of these systems, consists

of accurate representation of the dielectric behavior of the medium close to the membrane

surface. Several new methods [30, 31] exist that incorporate this possibility into Monte

Carlo and molecular dynamics simulations, and it is of utmost importance to integrate these

new techniques into the present simulations of polyelectrolyte self assembly.
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