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ABSTRACT

Essay on Foundation Models and Reinforcement Learning

Yufeng Zhang

In this dissertation, we aim to develop a theoretical understanding of foundation models
and reinforcement learning. We delve into a comprehensive analysis of specific aspects

within these domains. The focal points of our study are as follows:

e Generative Adversarial Imitation Learning (GAIL) with Neural Net-
works: GAIL is poised to execute tasks based on expert demonstrations. By
parameterizing both the reward function and policy using neural networks, we
develop a gradient-based algorithm with alternating updates for GAIL. Through
rigorous analysis, we establish that this algorithm converges to the global optimum
at a sublinear rate.

e Temporal-Difference (TD) Learning and Q-learning with Neural Net-
works: We dissect the fundamental reason behind the empirical success of deep
TD learning and deep Q-learning: the learned feature representation. Utilizing
mean-field analysis, we scrutinize the evolution of this representation. We demon-

strate that, when implemented through an overparameterized two-layer neural



network, both TD learning and Q-learning algorithms are capable of globally
minimizing the mean-squared projected Bellman error at a sublinear rate.

Attention Mechanisms and Transformers: Analyzing attention mechanisms
and transformers through the lens of exchangeability, we first establish the exis-
tence of a representation for input tokens that is sufficient and minimal. We then
ascertain that the attention mechanism with the appropriate parameters is able to
infer the latent posterior within a margin of approximation error that diminishes
as input sizes increase. Additionally, we prove that employing either supervised or
self-supervised objectives enables empirical risk minimization to learn the optimal
parameters within a generalization error that remains independent of input sizes.
In-Context Learning (ICL): We execute an exhaustive investigation into ICL
by addressing several pertinent questions. Firstly, from a Bayesian view, we show
that the language models learn an ICL estimator by implementing Bayesian model
averaging. Subsequently, we evaluate the performance of the ICL algorithm from
an online learning standpoint and establish a regret bound decreasing with the
length of the ICL input sequence. Then, we demonstrate that during pretraining,
the total variation distance between the learned model and the underlying true
model is constrained by a generalization error decreasing with the number of
token sequences and the length of each sequence during pretraining, respectively.

Finally, by combining this two results, we show that the learned model is capable

in ICL.



This dissertation aspires to enrich the academic discourse on foundation models and
reinforcement learning by offering novel insights and rigorous proofs that may serve as

building blocks for future research in these rapidly evolving fields.



Acknowledgements

I would like to express my deepest appreciation to my advisor, Zhaoran Wang, whose
expertise, understanding, and patience, added considerably to my graduate experience. I
appreciate his vast knowledge and skills in reinforcement learning, language models, and
related areas, as well as his continuous encouragement during this challenging journey.

I would also like to express my gratitude to my committee members, Ethan Xingyuan
Fang and Chang-Han Rhee, for their insightful comments and suggestions. Their expertise
and contributions in a variety of perspectives have led me to develop a much more
comprehensive understanding of my research area.

I extend my heartfelt thanks to my colleagues and friends in the Department of Indus-
trial Engineering and Management Sciences for their friendship, intellectual discussions
and the vibrant environment they created.

I am also immensely grateful to Northwestern University for providing me with the
necessary resources and environment conducive for research. Special mention goes to the
staff and administration who facilitated all necessary processes and made sure everything
needed was taken care of.

To my mother, Junping Zhao, thank you for supporting me emotionally and financially.
Your belief in me and my abilities was a source of strength that I drew from time and

again. To my partner, Wei Wang, my deepest thanks for being an integral part of my



life. The moments shared with you have been the most enriching aspect of my academic
journey at Northwestern University.

Finally, I would like to express my gratitude to my collaborators, Zhuoran Yang, Qi
Cai, Yongxin Chen, Zuyue Fu, Lingxiao Wang, Boyi Liu, and Junwei Lu, who made this

research possible.



Table of Contents

ABSTRACT] 3
[Acknowledgements| 6
[Lable of Contents| 8
[List of Tabled 12
[List of Figures| 13
[Chapter 1. Generative Adversarial Imitation Learning with Neural Networks: Global |
| Optimality and Convergence Rate] 15
(L.1. Introductionl 15
[1.2. Background| 19
[1.3.  Algorithm) 22
(.4, Main Results| 28
(1.5, Proof of Main Results| 34
[Chapter 2. Can Temporal-Difference and Q-Learning Learn Representation? A |
| Mean-Field Theory] 40
2.1. Introductionl 41
[2.2. Background| 45
[2.3. Temporal-Diftference Learning 48




(2.4.  Main Results| 52
(2.5. Proof of Main Results| 56
[2.6.  Extension to Q-Learning and Policy Gradient| 60

[Chapter 3. An Analysis of Attention via the Lens of Exchangeability and Latent |

[ Variable Modeldl 67
(3.1.  Introductionl 68
[3.2.  Preliminary| 78

[3.3.  Representation, Inference, and Estimation |

L via Latent Variable Modell 79
(3.4, Attention as Latent Posterior Inferencel 89
[3.5.  Excess Risk Analysis| 97
[3.6.  From Supervised Learning to Selt-Supervised Learning] 107

[Chapter 4. What and How does In-Context Learning Learn? Bayesian Model |

| Averaging, Parameterization, and Generalization| 117
4.1, Introductionl 118
4.2, Related Work] 120
[4.3.  Preliminary| 122
[4.4.  In-Context Learning via Bayesian Model Averaging 125
[4.5. Theoretical Analysis of Pretraining] 130
[4.6. ICL Regret under Practical Settings| 136
[4. 7. Conclusionl 139

[References 140



10

[Appendix A. Generative Adversarial Imitation Learning with Neural Networks: |

| Global Optimality and Convergence Rate| 160
[A.1.  Neural Networks 160
[A.2. Neural Temporal Difference| 166
[A.3. Proots of Auxiliary Results| 173
[A.4. Proots of Supporting Lemmas| 181

[Appendix B. Can Temporal-Difference and Q-Learning Learn Representation? A |

| Mean-Field Theory| 194
[B.1.  Proofs for §2.5{2.6] 194
B.2. Mean-Field Limit of Neural Networks| 205
[B.3.  Auxiliary Lemmas| 226

[Appendix C. An Analysis of Attention via the Lens of Exchangeability and Latent |

| Variable Models 228
[C.1. Conditional Mean Embedding] 229
(C.2, Attention Recovers Latent Posterior] 232
[C.3.  Generalization Error Analysis| 248
(C.4.  Optimization Error Analysis| 280
(C.5.  Approximation Error Analysis| 282
(C.6.  Auxiliary Proofs for Generalization| 289
(C.7.  Auxiliary Lemmas| 299

[Appendix D.  What and How does In-Context Learning Learn? Bayesian Model |

| Averaging, Parameterization, and Generalization| 305




D.1. More Related Works|

D2 Prooks Tor Section BTl

[D.3. Appendix for Section 4.5

[D.4.  Proofs for §4.6|

[D.5.  Proot of Supporting Propositions|

[D.6. Technical Lemmas

11

305
306
307
331
334
339



List of Tables

12



13

List of Figures

2.1

We illustrate the first variation formula w = —(9(:; Pt), V) py

where v 1s the vector field corresponding to the geodesic that connects

py and p*. See Lemma |B.3.2] for details.| o7

R2

For any 0 < ¢ < min{#*,¢,}, (2.5.1) of Lemma [2.5.2 holds and

dW( 7*)2
4 2P2t,0 <0. 59

B

The input sequence (the raw version without positional encodings)

becomes exchangeable with positional encodings. In practice, the

positional encoding is incorporated in an additive manner (instead of

concatenation). | 81

The forward pass for the prediction of the masked token z° and the

target variable y. The prediction of y takes two steps: i) the inference

of the latent posterior P(z | X), and ii) the prediction of y based on

the generative distribution P(y | z) integrated with the latent posterior

P(z ] X)] 83

Forward pass: within one data point (X,y), we infer the latent

posterior Py(z | X) by (3.3.10). We predict y; by v in (3.3.13).

Backward pass: across different data points in the dataset D,,, we

estimate the learnable parameter 6 by (3.3.12]). | 88




14

B4

The forward and backward passes in transformers. Dotted arrows

stand for forward passes (input—latent—target). Solid arrows stand

for backward passes (training). Masks (grey tokens) are only used to

illustrate the self-supervised setting (yellow box). |

As shown in Propositions|3.4.1] and [3.4.2] the softmax attention attngy

and the CME attention attngge have the same limit E[V | K = ¢| as

L — oo |

The RKHS H;1y induced by the latent-to-value mapping v(z; msk).

The input mask msk describes the prediction task and determines the

RKHS Hiy. |

103

The RKHSs Hpr and Hps induced by the latent-to-value mappings

Ypr(2z; mskpr) and Ypg(z; mskpg), respectively. The input masks mskpy

and mskpg describe the pretraining process and the downstream task,

respectively, and determine the RKHSs correspondingly. The /..-norm

projections Il ~ and Il  are defined in Assumption [3.6.1] |

111

To form the pretraining dataset, a hidden concept z is first sampled

according to [P3, and a document is generated from the concept. Taking

the token sequence S; up to position ¢ € [T] as the input, the Large

Language Models (LLM) is pretrained to maximize the next token x;, .

During the In-Context Learning (ICL) phase, the pretrained LLM is

prompted with several examples to predict the response of the query.| 124




15

CHAPTER 1

Generative Adversarial Imitation Learning with Neural

Networks: Global Optimality and Convergence Rate

Generative adversarial imitation learning (GAIL) demonstrates tremendous
success in practice, especially when combined with neural networks. Different
from reinforcement learning, GAIL learns both policy and reward function
from expert (human) demonstration. Despite its empirical success, it remains
unclear whether GAIL with neural networks converges to the globally optimal
solution. The major difficulty comes from the nonconvex-nonconcave minimax
optimization structure. To bridge the gap between practice and theory, we
analyze a gradient-based algorithm with alternating updates and establish
its sublinear convergence to the globally optimal solution. To the best of our
knowledge, our analysis establishes the global optimality and convergence rate

of GAIL with neural networks for the first time.

1.1. Introduction

The goal of imitation learning (IL) is to learn to perform a task based on expert
demonstration (Ho and Ermon, 2016). In contrast to reinforcement learning (RL), the agent
only has access to the expert trajectories but not the rewards. The most straightforward
approach of IL is behavioral cloning (BC) (Pomerleau, 1991)). BC treats IL as the supervised

learning problem of predicting the actions based on the states. Despite its simplicity, BC
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suffers from the compounding errors caused by covariate shift (Ross et al., [2011; Ross and
Bagnell, 2010)). Another approach of IL is inverse reinforcement learning (IRL) (Russell,
1998; Ng and Russell, [2000; Levine and Koltun, 2012; Finn et al., 2016|), which jointly
learns the reward function and the corresponding optimal policy. IRL formulates IL as a
bilevel optimization problem. Specifically, IRL solves an RL subproblem given a reward
function at the inner level and searches for the reward function which makes the expert
policy optimal at the outer level. However, IRL is computationally inefficient as it requires
fully solving an RL subproblem at each iteration of the outer level. Moreover, the desired
reward function may be nonunique. To address such issues of IRL, Ho and Ermon (2016)
propose generative adversarial imitation learning (GAIL), which searches for the optimal
policy without fully solving an RL subproblem given a reward function at each iteration.
GAIL solves IL via minimax optimization with alternating updates. In particular, GAIL
alternates between (i) minimizing the discrepancy in expected cumulative reward between
the expert policy and the learned policy and (ii) maximizing such a discrepancy over the
reward function class. Such an alternating update scheme mirrors the training of generative
adversarial networks (GANs) (Goodfellow et al., 2014} |Arjovsky et al. 2017), where the
learned policy acts as the generator while the reward function acts as the discriminator.

Incorporated with neural networks, which parameterize the learned policy and the
reward function, GAIL achieves significant empirical success in challenging applications,
such as natural language processing (Yu et al., [2016]), autonomous driving (Kuefler et al.|
2017)), human behavior modeling (Merel et al., |2017), and robotics (Tai et all 2018)).
Despite its empirical success, GAIL with neural networks remains less understood in

theory. The major difficulty arises from the following aspects: (i) GAIL involves minimax
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optimization, while the existing analysis of policy optimization with neural networks
(Anthony and Bartlett, 2009; |Liu et al., |2019; Bhandari and Russo, 2019; [Wang et al.
2019) only focuses on a minimization or maximization problem. (ii) GAIL with neural
networks is nonconvex-nonconcave, and therefore, the existing analysis of convex-concave
optimization with alternating updates is not applicable (Nesterov, 2013). There is an
emerging body of literature (Rafique et al.,|2018} |Zhang et al., 2019b)) that casts nonconvex-
nonconcave optimization as bilevel optimization, where the inner level is solved to a high
precision as in IRL. However, such analysis is not applicable to GAIL as it involves
alternating updates.

In this paper, we bridge the gap between practice and theory by establishing the global
optimality and convergence of GAIL with neural networks. Specifically, we parameterize
the learned policy and the reward function with two-layer neural networks and consider
solving GAIL by alternatively updating the learned policy via a step of natural policy
gradient (Kakade| 2002; |Peters and Schaal, 2008) and the reward function via a step of
gradient ascent. In particular, we parameterize the state-action value function (also known
as the Q-function) with a two-layer neural network and apply a variant of the temporal
difference algorithm (Sutton and Barto, [2018) to solve the policy evaluation subproblem
in natural policy gradient. We prove that the learned policy 7 converges to the expert
policy 7 at a 1/\/T rate in the R-distance (Chen et al.,; 2020a), which is defined as
Dg(7g, T) = max,er J(mg; 1) — J(7; 7). Here J(m;7) is the expected cumulative reward of
a policy 7 given a reward function r(s,a) and R is the reward function class. The core of
our analysis is constructing a potential function that tracks the R-distance. Such a rate

of convergence implies that the learned policy 7 (approximately) outperforms the expert
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policy g given any reward function » € R within a finite number of iterations T'. In other
words, the learned policy 7 is globally optimal. To the best of our knowledge, our analysis
establishes the global optimality and convergence of GAIL with neural networks for the
first time. It is worth mentioning that our analysis is straightforwardly applicable to linear

and tabular settings, which, however, are not our focus.

Related works. Our work extends an emerging body of literature on RL with neural
networks (Xu et al., [2019a; Zhang et al., [2019a; Bhandari and Russo, [2019; [Liu et al., 2019;
Wang et al., 2019; |Agarwal et al., |2019) to IL. This line of research analyzes the global
optimality and convergence of policy gradient for solving RL, which is a minimization or
maximization problem. In contrast, we analyze GAIL, which is a minimax optimization
problem.

Our work is also related to the analysis of apprenticeship learning (Syed et al., 2008)
and GAIL (Cai et al.,2019a; (Chen et al.| 2020a). Syed et al. (2008) analyze the convergence
and generalization of apprenticeship learning. They assume the state space to be finite,
and thus, do not require function approximation for the policy and the reward function.
In contrast, we assume the state space to be infinite and employ function approximation
based on neural networks. (Cai et al. (2019a)) study the global optimality and convergence
of GAIL in the setting of linear-quadratic regulators. In contrast, our analysis handles
general MDPs without restrictive assumptions on the transition kernel and the reward
function. |Chen et al.| (2020a) study the convergence and generalization of GAIL in the
setting of general MDPs. However, they only establish the convergence to a stationary

point. In contrast, we establish the global optimality of GAIL.
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Notations. Let [n] = {1,...,n} for n € Ny and [m : n] = {m,m+ 1,...,n} for
m < n. Also, let N(u,>) be the Gaussian distribution with mean p and covariance .
We denote by &(X) the set of all probability measures over the space X'. For a function
f: X — R, aconstant p > 1, and a probability measure p € Z(X'), we denote by
1 fllpe = (f | f(@)[Pdp(z))"/P the L,(x) norm of the function f. For any two functions

fr9: X = R, we denote by (f,g)x = [, f X x)dx the inner product on the space X.

1.2. Background

1.2.1. Reinforcement Learning

We consider a Markov decision process (MDP) (S, A,r, P,p,v). Here S C R% is the
state space, A C R% is the action space, which is assumed to be finite throughout this
paper,  : § X A — R is the reward function, P : § x A — Z(S) is the transition
kernel, p € Z(S) is the initial state distribution, and v € (0,1) is the discount factor.
Without loss of generality, we assume that S x A is compact and that ||(s,a)|]s < 1 for
any (s,a) € S x A C R? where d = d; + dy. An agent following a policy 7 : S — Z(A)
interacts with the environment in the following manner. At the state s; € S, the agent
takes the action a; € A with probability 7(a;|s;) and receives the reward r; = r(sq, ay).
The environment then transits into the next state s;y; with probability P(s;y1 | s¢, at).

Given a policy 7 and a reward function 7(s,a), we define the state-action value function

Qr : S x A— R as follows,

(1.2.1) Qr (s,a) = [ Z’y (s, ay)

50—8,(10—a:|.
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Here the expectation E; is taken with respect to a; ~ m(-|s;) and syp1 ~ P(-] s¢, ap).
Correspondingly, we define the state value function V™ : § — R and the advantage

function AT : § x A — R as follows,

V7 (5) = Eannt 1 [Q0(5, )], AZ(s, ) = QF(s,a) = V().
The goal of RL is to maximize the following expected cumulative reward,
(1.2.2) J(m;r) =Eoy [V (s)].

The policy 7 induces a state visitation measure d, € Z(S) and a state-action visitation

measure v, € Z(S x A), which take the forms of

(1.2.3)

d.(s)=(1—-7)- th P(sy=5]s0~p,a~7(-]s1)), va(s,a) =dx(s) 7(a]s).

=0
It then holds that J(m;7) = E(sa)~, [r(s,a)]. Meanwhile, we assume that the policy 7

induces a state stationary distribution g, over S, which satisfies that
0n(5) = P(se11 = 5|5 ~ pryar ~ (- | 51)).

We denote by pr(s,a) = o(s) - m(a|s) the state-action stationary distribution over S x A.

1.2.2. Generative Adversarial Imitation Learning

The goal of imitation learning (IL) is to learn a policy that outperforms the expert policy

g based on the trajectory {(s;’, a;’) }ieiry) of me. We denote by vg = vy, and dg = dqy,
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the state-action and state visitation measures induced by the expert policy, respectively,
and assume that the expert trajectory {(s;, a;)}iciry) is drawn from vg. To this end, we
parameterize the policy and the reward function by m, for € Ay and r5(s, a) for § € Xk,
respectively, and solve the following minimax optimization problem known as GAIL (Ho
and Ermon, 2016)),

(1.2.4) min max L(6, ), where L(6,3) = J(mg;rs) — J(mo;75) — X - (5).

0eX BEXR

Here J(m;r) is the expected cumulative reward defined in (1.2.2), ¢ : X — Ry is the
regularizer, and A > 0 is the regularization parameter. Given a reward function class R,
we define the R-distance between two policies m; and 7y as follows,

(1.2.5) Dg(m,ma) = max J(m;r) — J(mo; 1) = max K, [r(s,a)] —E,,_[r(s,a)].

reR

When R is the class of 1-Lipschitz functions, Dg (7, 7o) is the Wasserstein-1 metric
between the state-action visitation measures induced by m; and my. However, Dg (7, m3)
is not a metric in general. When Dg (7, m2) < 0, the policy 7o outperforms the policy m
for any reward function r € R. Such a notion of R-distance is used in (Chen et al.| (2020a).
We denote by Rg = {rs(s,a) |8 € Xr} the reward function class parameterized with £.
Hence, the optimization problem in ([1.2.4)) minimizes the Rs-distance D, (7g, m9) (up to
the regularizer A - ¢(3)), which searches for a policy 7 that (approximately) outperforms

the expert policy given any reward function rz € Rpg.



22

1.3. Algorithm

In this section, we introduce an algorithm with alternating updates for GAIL with
neural networks, which employs natural policy gradient (NPG) to update the policy

and gradient ascent to update the reward function rs(s, a).

1.3.1. Parameterization with Neural Networks

We define a two-layer neural network with rectified linear units (ReLU) as follows,

(1.3.1) uwy(s,a) Zbl ]l{ s,a) [W], > 0} (s,a)" Z dwa(s, a wW1;.
=1

Here m € N, is the width of the neural network, b = (by,...,b,)" € R™ and W =
(W1, ..., [W]I)T € R™? are the parameters, and dwp(s,a) = ([owa(s, a)lf,..., [Owa(s, a)ll)" e

m

R™ is called the feature vector in the sequel, where
(1.3.2) [dws(s,a)], = m~Y2 .y 1{(s,a)" W], > 0} - (s,a

It then holds that uw(s,a) = W' ¢w,(s,a). Note that the feature vector ¢y,(s,a)

depends on the parameters W and b. We consider the following random initialization,
(1.3.3) b R Unif({=1,1}),  [Wol, "= N(0, I/d), Vi € [m].

Throughout the training process, we keep the parameter b fixed while updating W. For
notational simplicity, we write uw,(s,a) as uw(s,a) and ¢w,(s,a) as ¢w(s,a) in the

sequel. We denote by E;,;; the expectation taken with respect to the random initialization
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in (1.3.3)). For an absolute constant B > 0, we define the parameter domain as
(1.3.4) Sp={W eR™||W —W|. < B},
which is the ball centered at Wy with the domain radius B.

In the sequel, we consider the following energy-based policy,

exp(7 - ug(s, a))

(1.3.5) my(als) = Y owen eXp(T : Ue(sa@'))’

where 7 > 0 is the inverse temperature parameter and wg(s,a) is the energy function
parameterized by the neural network defined in (1.3.1) with W = 6. In the sequel, we
call 6 the policy parameter. Meanwhile, we parameterize the reward function 74(s,a) as

follows,

(1.3.6) ra(s,a) = (1= 7)™ - us(s, a),

where ug(s, a) is the neural network defined in with W = 8 and 7 is the discount
factor. Here we use the scaling parameter (1 —v)~! to ensure that for any policy 7 the
state-action value function Qfﬂ(s, a) defined in is well approximated by the neural
network defined in . In the sequel, we call S the reward parameter and define the

reward function class as

Rﬁ - {TB(S,G,) |ﬁ € SB[—}}7

where Sp, is the parameter domain of 3 defined in (1.3.4) with domain radius Bg. To

facilitate algorithm design, we establish the following proposition, which calculates the
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explicit expressions of the gradients VL(6, ) and the Fisher information Z(6). Recall that

the Fisher information is defined as
(1.3.7) Z(0) = E(s.a)r, [Vologmo(s,a)Velogma(s,a)'].

Proposition 1.3.1 (Gradients and Fisher Information). We call t4(s,a) = 77!-Vglog mg(a | s)

the temperature-adjusted score function. It holds that

(1.3.8) to(s,a) = ¢o(s,a) = Eqrmy(. ) [P0(s,d)].

It then holds that

(1.3.9) Z(0) =7 E(saymrn, [to(s,a) ta(s,a) 7],
(1.3.10) VoL(0, ) = =7 - Es aymun, [Q (5, 0) - 19(s, )],
and

(1.3.11)

V5L(9, ﬁ) = (1 - 7)_1 . E(s,a)NyE [¢ﬁ(sa a)} - (1 - 7)_1 : E(s,a)Nuwe [¢5(87 CL)] - A Vﬁw(ﬁ),

where Q7(s, a) is the state-action value function defined in (1.2.1)) with m = mp and r = rg,

v, 1s the state-action visitation measure defined in (1.2.3) with 7 = 7y, and Z(6) is the

Fisher information defined in (|1.3.7)).
Proof. See for a detailed proof. O

Note that the expression of the policy gradient VyL(0, 5) in ((1.3.10) of Proposition

involves the state-action value function @Q7(s,a). To this end, we estimate the
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state-action value function Q7 (s, a) by @\w(s, a), which is parameterized as follows,

~

(1.3.12) Qu(s,a) = uy(s,a).

Here u,(s,a) is the neural network defined in ([1.3.1)) with W = w. In the sequel, we call

w the value parameter.

1.3.2. GAIL with Alternating Updates

We employ an actor-critic scheme with alternating updates of the policy and the reward
function, which is presented in Algorithm [I} Specifically, we update the policy parameter 6
via natural policy gradient and update the reward parameter § via gradient ascent in the
actor step, while we estimate the state-action value function Q7 (s, a) via neural temporal

difference (TD) (Cai et al., [2019¢)) in the critic step.

Actor Step. In the k-th actor step, we update the policy parameter # and the reward

parameter (3 as follows,

(1.3.13) Opy1 = T;;rll (T O — M - On),

(1.3.14) Brt1 = Pl"OstB {Bk +n- §BL(91€7 ﬁk)};

where

(1.3.15) Tegr =N+ Th, Ok € argmian(@k)é — Ty - §9L(9k, 5k)||2-

56539
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Here 1 > 0 is the stepsize, Sp, and Sp, are the parameter domains of ¢ and 3 defined in
(1.3.4) with domain radii By and Bg, respectively, Proj Spy " R™ — S B, 1s the projection op-
erator, 7y, is the inverse temperature parameter of 7y, , and f(@k), @gL(@k, Br), @gL(@k, Br)
are the estimators of Z(0y), VoL (6, Bk), VL (0, Br), respectively, which are defined in
the sequel. In , we update the policy parameter 6, along the direction d;, which
approximates the natural policy gradient Z(6)~! - VyL(0, 3), and in ((1.3.15) we update
the inverse temperature parameter 7, to ensure that 054, € Sp,. Meanwhile, in ([1.3.14]),
we update the reward parameter 5 via (projected) gradient ascent. Following from
and of Proposition we construct the estimators of Z(6y) and VyL(0y, 5k) as

follows,
2 N

(1.3.16) N’“Z CHBITRCR OIS
Tk N

(1.3.17) oL(0k, Br) = NZ@ (sir i) - o, (50, i),

where {(s;, a;) }ie[n) is sampled from the state-action visitation measure vy, given ) with
the batch size N, and @wk(s, a) is the estimator of Q:g’; (s,a) computed in the critic step.
Meanwhile, following from ([1.3.11]) of Proposition [1.3.1] we construct the estimator of

Vs L(0k, Br) as follows,

N
(1'3'18> $5L(67 B) Z ¢5k i 0; ) — Op, (827 al)} — A Vﬁw(ﬁwv

=1

where {(s? aE)}ie[N] is the expert trajectory. For notational simplicity, we write m, = 7y, ,

Z » "

ri(s,a) = rg (s,a), di = d,, and vy = v, for the k-th step hereafter, where 7y is the
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policy, 75(s, a) is the reward function, and d,, v, are the visitation measures defined in
(T.2.3).

Critic Step. Note that the estimator @9[,(9, £) in ([1.3.17)) involves the estimator @wk (s,a)
of Q*(s,a). To this end, we parameterize @w(s, a) as in and adapt neural TD

(Cai et al., [2019c), which solves the following minimization problem,

: - e A 2
(1.3.19) wy = argmin E(, o), [Qu(s, @) — T Qu(s,a)] .

wGSBw

Here Sp, is the parameter domain with domain radius B,,, py is the state-action stationary
distribution induced by m, and 7% is the Bellman operator. Note that the Bellman

operator 7" is defined as follows,

T7Q(s,a) = (1—7) - r(s,a) + 7 E-[Q(s,d) | 5,a],

where the expectation is taken with respect to s’ ~ P(-|s,a) and @’ ~ 7(-|s’). In neural

TD, we iteratively update the value parameter w via

() = Qui(s,a) = (s,a) =7+ Quy (s, d),

(1.3.20) w(j +1) = Projg, {w(j) —a-d(j) - VuQui(s, )},

where §(j) is the Bellman residual, a > 0 is the stepsize, (s,a) is sampled from the
state-action stationary distribution py, and ' ~ P(-|s,a),a’ ~ m(-| ') are the subsequent
state and action. We defer the detailed discussion of neural TD to

To approximately obtain the compatible function approximation (Sutton et al., [2000;

Wang et al., [2019), we share the random initialization among the policy 7y, the reward
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function r4(s, a), and the state-action value function @w(s, a). In other words, we set
0o = Po = w(0) = Wy in our algorithm, where W} is the random initialization in ({1.3.3)).
The output of GAIL is the mixed policy 7 (Altman| [1999). Specifically, the mixed policy
7 of mg, ..., mp_1 is executed by randomly selecting a policy 7 for k € [0 : T — 1] with
equal probability before time ¢t = 0 and exclusively following 7, thereafter. It then holds
for any reward function r(s, a) that

1T

(1.3.21) T J (s
k:O

._\

Algorithm 1 GAIL

Require: Expert trajectory {(sF, a! )}iE[TE]a number of iterations T, number of iterations
Trp of neural TD, stepsize 7, stepsize a of neural TD, batch size N, and domain radii
BG) Bwa Bﬁ-

1: Initialization. Initialize b, ~ Unif({—1,1}) and [W;]; ~ N(0, I;/d) for any [ € [m)]
and set Ty < O, ‘90 < Wo, and BO < Wo.
2: for k=0,1,...,T—1do
3:  Update value parameter wy, via Algorithm [4 with =, v, Wy, b, Trp, and « as the
input.
4: Sample {(si, az)}N from the state-action visitation measure u;€7 and estimate Z(6)),
oL (0, Br), and VBL(Hk, B) via (1.3.16), (1.3.17), and ( , respectively.
5: Solve O  argmingcg, HI (Or) -0 — T - Vg (O, Br) ||2 and set Tht1 < Tk + 1.
6:  Update policy parameter 6 via 05,1 < TkH (T - O — 1 - O.).
7. Update reward parameter § via i1 < ProjSBB {Br+1n- ﬁgL(Qk, Br)}-

8: end for
Ensure: Mixed policy 7 of 7o, ..., 7 1.

1.4. Main Results

In this section, we first present the assumptions for our analysis. Then, we establish

the global optimality and convergence of Algorithm
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1.4.1. Assumptions

We impose the following assumptions on the stationary distributions g, € L(S), px €
P (S x A) and the visitation measures d, € Z(S), v, € Z(S x A).

Assumption 1.4.1. We assume that the following properties hold.

(a) Let p be either py or v,. We assume for an absolute constant ¢ > 0 that

Cu
E(s,a)np [ﬂ{\WT(S,a)I < y}} < HWZ\/!z’ Yy >0, #0.

(b) We assume for an absolute constant C, > 0 that

dd d
max{ || — + el < Ch,
keN dd, 2.dx duy, 2.0k

keN | || dok |4, dprlly,, | — '

Here ddg/ddy, dvg/dvy, ddg/dog, and dvg/dpy are the Radon-Nikodym deriva-

tives.

Assumption [1.4.1](a) holds when the probability density functions of p; and vy, are
uniformly upper bounded across k. Assumption M(b) states that the concentrability

coefficients are uniformly upper bounded across k, which is commonly used in the analysis

of RL (Szepesvéri and Munos, [2005; [Munos and Szepesvari, [2008; |Antos et al., 2008;

Farahmand et al., |2010; |Scherrer et al., 2015; [Farahmand et al., 2016; Lazaric et al., |2016)).

For notational simplicity, we write ug(s, a) = uw,(s,a) and ¢o(s,a) = ow,(s,a), where
uw, (s, a) is the neural network defined in ((1.3.1)) with W = Wy, ¢w, (s, a) is the feature

vector defined in (1.3.2) with W = W}, and W}, is the random initialization in (1.3.3)). We
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impose the following assumptions on the neural network ug(s,a) and the transition kernel
P.

Assumption 1.4.2. We assume that the following properties hold.

(a) Let U = SUD(s5,0)esx.4 |U0(8; @)|. We assume for absolute constants My > 0 and

v > 0 that
(1.4.1) Eiwi[U%) < MZ, PU >t) <exp(—v-t?), Vt>2M,.
(b) We assume that the transition kernel P belongs to the following class,

[ etsiwps E Bp}.

Here Bp > 0 is an absolute constant, ¢ is the probability density function of

Ry = { P |30) = [ 0(s.00) (') dafw

sup
w

N(0,1,/d), and (s, a; w) is defined as (s, a;w) = 1L{w'(s,a) > 0} - (s, a).

Assumption [I.4.2](b) states that the MDP belongs to (a variant of) the class of linear
MDPs (Yang and Wang, [2019a,b; [Jin et al., [2019; |Cai et al., [2019b). However, our class
of transition kernels is infinite-dimensional, and thus, captures a rich class of MDPs.
To understand Assumption m(a), recall that we initialize the neural network with
[Wol; ~ N(0,1;/d) and b, ~ Unif({—1,1}) for any [ € [m]. Thus, the neural network
uo(s,a) defined in ([1.3.1) with W = Wj converges to a Gaussian process indexed by
(s,a) € § x A as m goes to infinity. Following from the facts that the maximum of
a Gaussian process over a compact index set is sub-Gaussian (van de Geer and Muro),
2014) and that S x A is compact, it is reasonable to assume that sup, ,)esx.a [Uo(s, a)| is

sub-Gaussian, which further implies the existence of the absolute constants M, and v in
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(1.4.1) of Assumption [I.4.2(a). Moreover, if we assume that m is even and initialize the

parameters Wy, b as follows,

| Wol " N(0, Iy/d), b ~ Unif({—1,1}), VI=1,...,m/2,
(1.4.2

[WO]l — [WO]lfm/Qa bl = _blfm/Za Vi = m/2 + 17 cee, M,
we have that ug(s,a) = 0 for any (s,a) € S x A, which allows us to set My = 0 and
v = +00 in Assumption m(a) Also, it holds that 0 = ug(s,a) € Rg, which implies that
Dr, (71, m2) > 0 for any m and 7. The proof of our results with the random initialization

in (1.4.2)) is identical.

Finally, we impose the following assumption on the regularizer ¢)(f) and the variances

of the estimators f(e), @9[1(9, B), and 65[1(9,5) defined in (1.3.16]), (1.3.17)), and (1.3.18)),

respectively.

Assumption 1.4.3. We assume that the following properties hold.

(a) We assume for an absolute constant ¢ > 0 that

(1.4.3) E.| 260w — B, [Z6)W] Hj <7i-0*/N, YW € Sg,
(1.4.4) E, ﬁgL(Qk, Bkz) — K W@L(Qk, Bk)] Hz:| < 7',3 . UQ/N,
(1.4.5) By |||V L(Ok, Br) — Ex [VaL(0, Br)] Hj < o2/N,

where 73 is the inverse temperature parameter in (1.3.5), N € N, is the batch
size, and Sp, is the parameter domain of 6 defined in (1.3.4) with the domain
radius By. Here the expectation [E, is taken with respect to the k-th batch, which

is drawn from vy, given 6.



32

(b) We assume that the regularizer ¢(3) in ([1.2.4) is convex and Ly-Lipschitz contin-

uous over the compact parameter domain Spg, .

AssumptiOHM(a) holds when @wk (s, a:)-te, (5, ai), Lo, (i, ai)te, (si,a;) ", and g, (i, ;)
have uniformly upper bounded variances across i € [m| and k, and the Markov chain that
generates {(s;, a;) }icpy) mixes sufficiently fast (Zhang et al., 2019a)). Similar assumptions
are also used in the analysis of policy optimization (Xu et al., 2019a,b)). Also, Assumption

1.4.3|(b) holds for most commonly used regularizers (Ho and Ermon, 2016).

1.4.2. Global Optimality and Convergence

In this section, we establish the global optimality and convergence of Algorithm [T The
following proposition adapted from |Cai et al. (2019c) characterizes the global optimality
and convergence of neural TD, which is presented in Algorithm

Proposition 1.4.4 (Global Optimality and Convergence of Neural TD). In Algorithm ,
we set Trp = Q(m), @ = min{(1 —v)/8, m~/2}, and B,, = c¢- (Bs + Bp - (My + Bg)) for

an absolute constant ¢ > 0. Let 7, 7, be the input and wy be the output of Algorithm

Under Assumptions [1.4.1] and [1.4.2] it holds for an absolute constant C, > 0 that

(1.4.6)

Einit [Hka(s, a) — Qrk(s, a)H;pJ = (’)(Bi cm~Y2 4 B2 VA L B2 exp(—C, - BZ))

Here the expectation Ei,;; is taken with respect to the random initialization in (|1.3.3)).

Proof. See for a detailed proof. O
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The term B2 - exp(—C, - B%) in of Proposition characterizes the hardness
of estimating the state-action value function Q7*(s,a) by the neural network defined in
(1.3.1), which arises because ||Q7* (s, a)||o is not uniformly upper bounded across k. Note
that if we employ the random initialization in , we have that C, = +o00. And
consequently, such a term vanishes. We are now ready to establish the global optimality
and convergence of Algorithm [I}

Theorem 1.4.5 (Global Optimality and Convergence of GAIL). We set n = 1/+/T and
B, =c-(Bs+ Bp - (My+ Bg)) for an absolute constant ¢ > 0, and By = B,, in Algorithm

Let 7 be the output of Algorithm [I Under Assumptions [[.4.IH1.4.3] it holds that

T-1

_ (1—7)"" log|A|l +13B*+ MZ +8 _ 1
1.4.7) E[Dg, (7, 7)] < +2X\ Ly B+ =) &.
(147) E[Dr,(re, 7] < - e v B e

(1) (i)
Here B = max{By, B, Bs}, Dg, is the Rg-distance defined in (1.2.5) with R =

{ra(s,a)| B € Sp,}, the expectation is taken with respect to the random initialization in

(1.3.3) and the T" batches, and the error term ¢, satisfies that

(148) Ek = 2\/5 Ch . B-O’- N_1/2+ GQ,k —f-O(k’ 33/2 -m_1/4—|—35/4 -m_l/s),
h g ~~

J/

-~

(iii.a) (iii.b) (iii.c)
where Cj, is defined in Assumption [I.4.1} Ly and o are defined in Assumption [I.4.3] and
cor = O(B% -m~12 4 BY? m 14 4 B? . exp(—C, - B%)) is the error induced by neural

TD (Algorithm 4.

Proof. See for a detailed proof. O
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The optimality gap in ([1.4.7)) of Theorem is measured by the expected R g-distance
Dr, (g, ) between the expert policy 7 and the learned policy 7. Thus, by showing
that the optimality gap is upper bounded by O(1/v/T), we prove that 7 (approximately)
outperforms the expert policy 7 in expectation when the number of iterations T' goes
to infinity. As shown in of Theorem , the optimality gap is upper bounded
by the sum of the three terms. Term (i) corresponds to the 1/v/T rate of convergence
of Algorithm . Term (ii) corresponds to the bias induced by the regularizer \ - ¥ (8) in
the objective function L(#, 3) defined in ((1.2.4]). Term (iii) is upper bounded by the sum
of the three terms in of Theorem [I.4.5] In detail, term (iii.a) corresponds to the
error induced by the variances of f(@), @gL(H, B), and ﬁgL(H, B) defined in , ,
and of Assumption , which vanishes as the batch size N in Algorithm (1| goes
to infinity. Term (iii.b) is the error of estimating Q7 (s, a) by @w(s, a) using neural TD
(Algorithm . As shown in Proposition , the estimation error €g ) vanishes as m and
B, go to infinity. Term (iii.c) corresponds to the linearization error of the neural network
defined in ([1.3.1)), which is characterized in Lemma . Following from Theorem m,
it holds for B, = Q((C;! - logT)/?), m = Q(BY - T%), and N = Q(B?- T - 0?) that
E[Dg, (75, )] = O(T~Y? + X), which implies the 1/v/T rate of convergence of Algorithm

(up to the bias induced by the regularizer).

1.5. Proof of Main Results

In this section, we present the proof of Theorem [1.4.5] which establishes the global
optimality and convergence of Algorithm . For notational simplicity, we write 7°(a) =

m(a|s) for any policy 7, state s € S, and action a € A. For any policies 7, w5 and
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distribution p over S, we denote the expected Kullback-Leibler (KL) divergence by
KL*, which is defined as KL* (7 || m3) = Eso,[KL(7{ || 75)]. For any visitation measures
d, € Z(S) and v, € (S x A), we denote by E;_and E,_ the expectations taken with
respect to s ~ d, and (s, a) ~ v, respectively.

Following from the property of the mixed policy 7 in (|1.3.21]), we have that

E[]D)RB(WE,ﬁ)} = ]E[ max J(mg; g ) — J(ﬁ;m/)]
BESn,

(1.5.1) [max —ZJ 7TE77',8’ - (Wk;Tgl) .

5’6536

We now upper bound the optimality gap in (1.5.1) by upper bounding the following

difference of expected cumulative rewards,

(1.5.2)

J(mg;rp) — (7 re) = i](ﬂ'E;T'k> — J(Wk;rk2+g<0kaﬁ/) - L(@k,ﬁkl—i-)\‘ (w(ﬁl) - Qﬂ(ﬂk))j

v~ g ~~

0 (i (i)

where 8" € Sp, is chosen arbitrarily and L(6, ) is the objective function defined in (1.2.4).

Following from Assumption and the fact that g, 8’ € Sp,, we have that

(1.5.3) A ((B) = (Br) <A Ly || = Bella < A+ Ly - 2Bg,

which upper bounds term (iii) of (1.5.2)). It remains to upper bound terms (i) and (ii)
of (1.5.2), which hinges on the one-point convexity of J(m;r) with respect to = and the

(approximate) convexity of L(6, 3) with respect to 5.
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Upper bound of term (i) in (1.5.2). In what follows, we upper bound term (i) of
. We first introduce the following cost difference lemma (Kakade and Langford,
2002), which corresponds to the one-point convexity of J(m;r) with respect to 7. Recall
that dg € Z(S) is the state visitation measure induced by the expert policy 7.

Lemma 1.5.1 (Cost Difference Lemma, Lemma 6.1 in Kakade and Langford (2002))). For

any policy 7 and reward function r(s, a), it holds that

(1.5.4) J(rg;r) — J(mr) = (1 —7)"" - Eap, [<Qf(s, ), TR — 7TS>A}’

where v is the discount factor.

Furthermore, we establish the following lemma, which upper bounds the right-hand

side of (1.5.4) in Lemma [1.5.1}

Lemma 1.5.2. Under Assumptions [1.4.1H1.4.3, we have that
B [(Q7(5,), 7 — 700 0| = 7 - KL% | me) = ™" KL (g | ) + A,
where

E[IAY]] =2v2-Ch- B/? - o' NVt eqp + - (M + 9B7)

(155) O T B B )

Here My is defined in Assumption [[.4.2] o is defined in Assumption [I.4.3} N is the batch

size in (1.3.16)-(.3.18), and e = O(B3 - m~Y/2 + BY* . m~Y* + B2 . exp(—C, - B2)) for

an absolute constant C), > 0, which depends on the absolute constant v in Assumption

.42
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Proof. See for a detailed proof. O

Combining Lemmas [1.5.1} and [1.5.2] we have that

KL (1 || i) — KLB (s || ) + 77 - AP
n-(1—7) ’

(1.5.6) J (i) — J(mry) <

which upper bounds term (i) of (1.5.2)). Here A,(;) is upper bounded in ([1.5.5) of Lemma
I52

Upper bound of term (ii) in (1.5.2). In what follows, we upper bound term (ii) of
(1.5.2). We first establish the following lemma, which characterizes the (approximate)
convexity of L(6, 3) with respect to f.

Lemma 1.5.3. Under Assumption [1.4.1} it holds for any 3 € Sp, that
Binit [L(0k, B) = L(Ok, Be)] = Einit [V L0k, B) T (5" = Br)] + O(BY? - m~1/1).

Proof. See for a detailed proof. O

The term O(Bg/ >.m~Y%) in Lemma [1.5.3| arises from the linearization error of the

neural network, which is characterized in Lemma Based on Lemma [1.5.3 we

establish the following lemma, which upper bounds term (ii) of ((1.5.2)).

Lemma 1.5.4. Under Assumptions [1.4.1| and [1.4.3] we have that

L0k, B') = LBk, B) <0 1B = B2 =07 1Bhes — B2 =07 1B — Bell2 + ALY,

where

(157) E[AM] =n-(@+A-Ly)?+0* N')+2Bs-0- N2+ OBY* - m™ /).
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Proof. See for a detailed proof. O

By Lemma [1.5.4] we have that

(1.5.8) L(Ok,B") — L6k, Bc) <"+ (118 = B3 — 1Bk — BN13 = |Brs1 — Brll3) + AR,
which upper bounds term (ii) of - Here A( is upper bounded in of Lemma
5.4

Plugging ((1.5.3] - and (| into - we obtain that

(1.5.9)

J(me;re) — J(me; )

_ KL (mp || i) — KL (g || 7a0)

_]_. _ /2_ - 7112 .L B A
N n-(1—7) (Hﬁk B3 — [ Be+a B||2)+2)\ v+ B+ Ay

Here Aj = A,(ci) + A,(Cii), where AS) and A( D are upper bounded in and ( of

Lemmas [1.5.2] and [1.5.4], respectively. Note that the upper bound of A, does not depend

on # and . Upon telescoping (|1.5.9)) with respect to k, we obtain that

(1.5.10)
=
J(mwiry) = J(Tirg) = 7 [J(me;rer) — (T )]
k=0
— )1 KL%E - —
< (1—7) (WEI\lWO)+|’@0 A5 +2\-Ly-Bs+ — ka
UM k 0

Following from the fact that 7o = 0 and the parameterization of 7y in , it holds that
78 is the uniform distribution over A for any s € S. Thus, we have KLE (rg || 79) < log |Al.

Meanwhile, following from the fact that 5" € Sg,, it holds that ||3" — Byl|2 < Bg. Finally,
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by setting n = T~V2, 7, = k-, and B = max{By, Bg} in (1.5.10]), we have that

E[DRB(TFE,ﬁ'ﬂ = ]E[ max J(mg;r) — J(ﬁ';rﬁ/)}

B'€SB,
< 2\- Ly - B =
> n-T + v gt T
1—9)7t1 1382 + M D i
:( v) og |A| +13B* + 0—1—8_’_2)\.[%‘3_’_ k=0 €k
VT =T

Here ¢4, is upper bounded as follows,
er=2V2-C,-B-o- N2 fegu+0Ok-B? - m™V4 4 B4 =18y,

where eg = O(B% - m~12 4 BY? . m~14 4 B2 . exp(—C, - B2)) for an absolute constant

C, > 0. Thus, we complete the proof of Theorem [1.4.5]
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CHAPTER 2

Can Temporal-Difference and Q-Learning Learn Representation?

A Mean-Field Theory

Temporal-difference and Q-learning play a key role in deep reinforcement
learning, where they are empowered by expressive nonlinear function approxi-
mators such as neural networks. At the core of their empirical successes is the
learned feature representation, which embeds rich observations, e.g., images
and texts, into the latent space that encodes semantic structures. Meanwhile,
the evolution of such a feature representation is crucial to the convergence of

temporal-difference and Q-learning.

In particular, temporal-difference learning converges when the function
approximator is linear in a feature representation, which is fixed throughout
learning, and possibly diverges otherwise. We aim to answer the following
questions: When the function approximator is a neural network, how does the
associated feature representation evolve? If it converges, does it converge to

the optimal one?

We prove that, utilizing an overparameterized two-layer neural network,
temporal-difference and Q-learning globally minimize the mean-squared pro-
jected Bellman error at a sublinear rate. Moreover, the associated feature
representation converges to the optimal one, generalizing the previous analysis

of (Cai et al. (2019¢) in the neural tangent kernel regime, where the associated
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feature representation stabilizes at the initial one. The key to our analysis is a
mean-field perspective, which connects the evolution of a finite-dimensional
parameter to its limiting counterpart over an infinite-dimensional Wasserstein
space. Our analysis generalizes to soft Q-learning, which is further connected

to policy gradient.

2.1. Introduction

Deep reinforcement learning achieves phenomenal empirical successes, especially in

challenging applications where an agent acts upon rich observations, e.g., images and texts.

Examples include video gaming (Mnih et al., 2015)), visuomotor manipulation (Levine et al.,

2016), and language generation (He et al., 2015). Such empirical successes are empowered

by expressive nonlinear function approximators such as neural networks, which are used

to parameterize both policies (actors) and value functions (critics) (Konda and Tsitsiklis,

2000). In particular, the neural network learned from interacting with the environment

induces a data-dependent feature representation, which embeds rich observations into a

latent space encoding semantic structures (Hinton, 1986 Bengio, [2012; Yosinski et al.|

2014; |LeCun et all 2015). In contrast, classical reinforcement learning mostly relies on a

handcrafted feature representation that is fixed throughout learning (Sutton and Bartol

2018).
In this paper, we study temporal-difference (TD) (Sutton, |1988) and Q-learning

(Watkins and Dayan, [1992)), two of the most prominent algorithms in deep reinforcement

learning, which are further connected to policy gradient (Williams| [1992)) through its

equivalence to soft Q-learning (O’Donoghue et al., [2016; Schulman et al., |2017; Nachum|
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et al., [2017; [Haarnoja et al., 2017). In particular, we aim to characterize how an overpa-
rameterized two-layer neural network and its induced feature representation evolve in TD
and Q-learning, especially their rate of convergence and global optimality. A fundamental
obstacle, however, is that such an evolving feature representation possibly leads to the
divergence of TD and Q-learning. For example, TD converges when the value function
approximator is linear in a feature representation, which is fixed throughout learning, and
possibly diverges otherwise (Baird, |1995; Boyan and Moore, 1995; [Tsitsiklis and Van Royl,
1997)).

To address such an issue of divergence, nonlinear gradient TD (Bhatnagar et al., 2009)
explicitly linearizes the value function approximator locally at each iteration, that is,
using its gradient with respect to the parameter as an evolving feature representation.
Although nonlinear gradient TD converges, it is unclear whether the attained solution is
globally optimal. On the other hand, when the value function approximator in TD is an
overparameterized multi-layer neural network, which is required to be properly scaled, such
a feature representation stabilizes at the initial one (Cai et al., |2019¢), making the explicit
local linearization in nonlinear gradient TD unnecessary. Moreover, the implicit local
linearization enabled by overparameterization allows TD (and Q-learning) to converge to
the globally optimal solution. However, such a required scaling, also known as the neural
tangent kernel (NTK) regime (Jacot et al., 2018), effectively constrains the evolution of
the induced feature presentation to an infinitesimal neighborhood of the initial one, which

is not data-dependent.

Contribution. Going beyond the NTK regime, we prove that, when the value function

approximator is an overparameterized two-layer neural network, TD and Q-learning
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globally minimize the mean-squared projected Bellman error (MSPBE) at a sublinear rate.
Moreover, in contrast to the NTK regime, the induced feature representation is able to
deviate from the initial one and subsequently evolve into the globally optimal one, which
corresponds to the global minimizer of the MSPBE. We further extend our analysis to soft
Q-learning, which is connected to policy gradient.

The key to our analysis is a mean-field perspective, which allows us to associate the

evolution of a finite-dimensional parameter with its limiting counterpart over an infinite-

dimensional Wasserstein space (Villani, 2003, 2008; Ambrosio et al., 2008; |Ambrosio and|

. Specifically, by exploiting the permutation invariance of the parameter, we
associate the neural network and its induced feature representation with an empirical
distribution, which, at the infinite-width limit, further corresponds to a population
distribution. The evolution of such a population distribution is characterized by a partial

differential equation (PDE) known as the continuity equation. In particular, we develop a

generalized notion of strongly monotonicity (Harker and Pang, [1990)), which is tailored

to the Wasserstein space, especially the first variation formula therein (Ambrosio et al.,

2008), to characterize the evolution of such a PDE solution, which, by a discretization

argument, further quantifies the evolution of the induced feature representation.

Related Work. When the value function approximator is linear, the convergence of TD is

extensively studied in both continuous-time (Jaakkola et al. [1994; Tsitsiklis and Van Roy},

11997; |Borkar and Meyn|, 2000; |Kushner and Yin, 2003} Borkar, 2009) and discrete-time

(Bhandari et al., 2018; Lakshminarayanan and Szepesvéri, 2018; Dalal et al., 2018; Srikant|

and Ying, |2019)) settings. See Dann et al.| (2014) for a detailed survey. Also, when the value

function approximator is linear, Melo et al.| (2008); |Zou et al. (2019); (Chen et al.| (2019b))
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study the convergence of Q-learning. When the value function approximator is nonlinear,

TD possibly diverges (Baird, |1995; Boyan and Moore, |1995; Tsitsiklis and Van Royl, |1997)).

Bhatnagar et al.| (2009) propose nonlinear gradient TD, which converges but only to a

locally optimal solution. See |Geist and Pietquin! (2013); Bertsekas (2019)) for a detailed

survey. When the value function approximator is an overparameterized multi-layer neural

network, [Cai et al.| (2019¢) prove that TD converges to the globally optimal solution in

the NTK regime. See also the independent work of Brandfonbrener and Brunal (2019alb);

'Agazzi and Lu| (2019); Sirignano and Spiliopoulos| (2019)), where the state space is required

to be finite. In contrast to the previous analysis in the NTK regime, our analysis allows
TD to attain a data-dependent feature representation that is globally optimal.
Meanwhile, our analysis is related to the recent breakthrough in the mean-field analysis

of stochastic gradient descent (SGD) for the supervised learning of an overparameterized

two-layer neural network (Chizat and Bach, 2018b; Mei et al., [2018| 2019; |Javanmard et al.|

2019; [Wei et all 2019} [Fang et all, 2019alb} [Chen et all, 2020b). See also the previous

analysis in the NTK regime (Daniely|, 2017, (Chizat and Bach| 2018a} Jacot et al., [2018;

land Liang), [2018; [Allen-Zhu et al., [2018alb; Du et al.| 2018alb} [Zou et al, [2018; [Arora et al.,

2019alb; [Lee et al 2019Db; [Cao and Gul 20194} [Chen et al., [20194); [Zou and Gul, 2019}

and Telgarskyl 2019; Bai and Lee| 2019). Specifically, the previous mean-field analysis

casts SGD as the Wasserstein gradient flow of an energy functional, which corresponds

to the objective function in supervised learning. In contrast, TD follows the stochastic

semigradient of the MSPBE (Sutton and Barto| |2018)), which is biased. As a result, there

does not exist an energy functional for casting TD as its Wasserstein gradient flow. Instead,

our analysis combines a generalized notion of strongly monotonicity (Harker and Pang,
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1990) and the first variation formula in the Wasserstein space (Ambrosio et al., 2008]),

which is of independent interest.

Notations. We denote by #(X') the Borel o-algebra over the space X'. Let Z(X') be the
set of Borel probability measures over the measurable space (X, Z(X)). We denote by
[N] ={1,2,...,N} for any N € N;. Also, we denote by B"(z;r) = {y € R"| |ly—z| <r}
the closed ball in R™. Given a curve p : R — X, we denote by p. = Ops|1=s its
derivative with respect to the time. For a function f : X — R, we denote by Lip(f) =
SUD, yex 2y |[(2) — f(y)|/llz — yl| its Lipschitz constant. For an operator F' : X — X
and a measure u € P(X), we denote by Fyu = pro F~* the push forward of y through F'.
We denote by Dgp, and D, the Kullback-Leibler (KL) divergence and the x* divergence,

respectively.

2.2. Background

2.2.1. Policy Evaluation

We consider a Markov decision process (S, A, P, R, vy, D), where S C R% is the state space,
A C R®% is the action space, P : Sx A — Z(8S) is the transition kernel, R : Sx A — Z(R)
is the reward distribution, v € (0, 1) is the discount factor, and Dy € Z(S) is the initial
state distribution. An agent following a policy 7 : § — Z(A) interacts with the
environment in the following manner. At a state s;, the agent takes an action a; according
to m(-|s:) and receives from the environment a random reward r; following R(- | s¢, ar).
Then, the environment transits into the next state s;y1 according to P(-|s;, a;). We

measure the performance of a policy 7 via the expected cumulative reward J(7), which is
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defined as follows,

5o ~ Dy, a; ~ 7T(' | St)ﬂ"t ~ R(‘ | St7at)7 St41 P(' | Stﬂt) .

(22.1) J(x)=E [Z A,

In policy evaluation, we are interested in the state-action value function (Q-function)

Q™ : S x A — R, which is defined as follows,

Sp = S,Q9 = Q, Gt ~ ﬂ-( | St)7,rt ~ R( ’ St, at>7st+1 ~ P( ‘ Staat)] .

Q"(s,0) =E[> 4"+ my
t=0

We learn the Q-function by minimizing the mean-squared Bellman error (MSBE), which

is defined as follows,

MSBE(Q) =5 E(s,a)ND [(Q(S’ (1) - TWQ(S’ a))2] :

DN | —

Here D € Z(S x A) is the stationary distribution induced by the policy 7 of interest and

TT™ is the corresponding Bellman operator, which is defined as follows,
T"Q(s,a) =E[r+v-Q(s',d) |r ~ R(-|s,a),s' ~ P(-|s,a),d" ~7(-|5)].

However, 7™() may be not representable by a given function class F. Hence, we turn to
minimizing a surrogate of the MSBE over () € F, namely the mean-squared projected

Bellman error (MSPBE), which is defined as follows,

(2.2.2) MSPBE(Q) = - - E(oan | (Q(s.0) ~ TIFT"Q(s,))”].

N | —

where II£ is the projection onto F with respect to the L£o(D)-norm. The global minimizer

of the MSPBE is the fixed point solution to the projected Bellman equation @ = 177 Q.
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In temporal-difference (TD) learning, corresponding to the MSPBE defined in ([2.2.2)),
we parameterize the Q-function with CA)(, 0) and update the parameter 6 via stochastic

semigradient descent (Sutton and Bartol 2018)),
(2.2.3) 0=60—c¢c- (@(s, a;0)—r—~-Qs,a; 9)) - VoQ(s, a;0),

where € > 0 is the stepsize and (s, a,r,s',a’) ~ D. Here we denote by De P(Sx AxRx
S x A) the distribution of (s,a,r,s',da’), where (s,a) ~ D, r ~ R(-|s,a), s' ~ P(-|s,a),

and o ~ 7(-]s).

2.2.2. Wasserstein Space

Let © C RP be a Polish space. We denote by 92,(©) C Z2(O) the set of probability
measures with finite second moments. Then, the Wasserstein-2 distance between u,v €

P5(0) is defined as follows,

1/2

(2.2.4) Wa(p, v) = inf{E[HX — Y] ‘ law(X) = 1, law(Y) = y},

where the infimum is taken over the random variables X and Y on ©. Here we denote
by law(X) the distribution of a random variable X. We call M = (£2(0),W,) the
Wasserstein space, which is an infinite-dimensional manifold (Villani, 2008). In particular,
such a structure allows us to write any tangent vector at u € M as p[ for a corresponding
curve p : [0, 1] — P(0O) that satisfies py = p. Here pjy denotes 0;p; | 1—o. Specifically, under
certain regularity conditions, for any curve p : [0,1] — Z5(0), the continuity equation
Oips = — div(psv;) corresponds to a vector field v : [0,1] x © — RP which endows the

infinite-dimensional manifold 2%,(©) with a weak Riemannian structure in the following
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sense (Villani, 2008)). Given any tangent vectors u and u at u € M and the corresponding
vector fields v, v, which satisfy u + div(pv) = 0 and u + div(pv) = 0, respectively, we

define the inner product of u and u as follows,

(2.2.5) (w7 = [ .5 dn

which yields a Riemannian metric. Here (v,?) is the inner product on R”. Such a
Riemannian metric further induces a norm |ju||, = <u,u>,1/ ? for any tangent vector

u € T,M at any u € M, which allows us to write the Wasserstein-2 distance defined in

(2.2.4)) as follows,

1 1/2
(2.2.6) Wy (p,v) = inf{ (/ 104112, dt)
0

Here p!. denotes 0p; | 1= for any s € [0, 1]. In particular, the infimum in (2.2.6)) is attained

p:[O,l]—>M,p0:,u,p1:V}.

by the geodesic p : [0, 1] — P5(©) connecting u, v € M. Moreover, the geodesics on M

are constant-speed, that is,
(2:27) 175 = Wal,v), ¥t € [0,1].

2.3. Temporal-Difference Learning

For notational simplicity, we write R = R xR% X = Sx A CR? and z = (s,a) € X

for any s € S and a € A.
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Parameterization of Q-Function. We consider the parameter space R” and parame-
terize the Q-function with the following two-layer neural network,

m

2.3.1 O(z;0m) = = 0,
(2:31) Qi) = 13 ot
where (™ = (0y,...,0,,) € RP*™ is the parameter, m € N, is the width, a > 0 is

the scaling parameter, and ¢ : R x RP? — R is the activation function. Assuming the
activation function in takes the form of o(z;0) = b- o(z;w) for 6 = (w,b), we
recover the standard form of two-layer neural networks, where ¢ is the rectified linear
unit or the sigmoid function. Such a parameterization is also used in |Chizat and Bach
(2018a); Mei et al.| (2019); Chen et al.| (2020b)). For {6}, independently sampled from a

distribution p € Z(RP), we have the following infinite-width limit of ([2.3.1)),

(2.3.2) @%m=& /d%@®w)

For the empirical distribution p(™ = m=!. 3" &, corresponding to {6;}™,, we have
Q(; 7)) = Qa; ™).

TD Dynamics. In what follows, we consider the TD dynamics,

(2.3.3)

Oi(k +1) =0;(k) —ne - - (@(9% 0 (k) — i — - Qx4 H(m)(k))) - Voo (zx;0:(F)),

where @ € [m], (xg, g, z)) ~ D, and ¢ > 0 is the stepsize with the scaling parameter
n > 0. Without loss of generality, we assume that (zy,ry, 2}) is independently sampled

from 25, while our analysis straightforwardly generalizes to the setting of Markov sampling
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(Bhandari et al., 2018; [Zou et al., 2019; Xu et al., [2019¢). For an initial distribution
po € Z(RP), we initialize {0}, as 6; g (1 € [m]). See Algorithm [2| for a detailed

description.

Algorithm 2 Temporal-Difference Learning with Two-Layer Neural Network for Policy
Evaluation

Initialization: 6;(0) ESN (i € [m]), number of iterations K = |T'/¢|, and policy 7 of

interest.

for k=0,..., K —1do
Sample the state-action pair (s, a) from the stationary distribution D of 7, receive
the reward r, and obtain the subsequent state-action pair (s',a’).
Calculate the Bellman residual o = @(x, 0 (k) —r — 7 - @\(a:’;Q(m)(k)), where
r = (s,a) and o’ = (5, d’).
Perform the TD update 60;(k + 1) < 6;(k) —ne-a -0 - Vyo(x;0;(k)) (i € [m]).

end for

Ensure: {0 (k)} !

Mean-Field Limit. Corresponding to € — 0% and m — oo, the continuous-time and
infinite-width limit of the TD dynamics in Algorithm [2|is characterized by the following

partial differential equation (PDE) with py as the initial distribution,

(2.3.4) Ope = —n - div(p - (- pr)).

Here g(-; p;) : RP — RP is a vector field, which is defined as follows,

(235)  g(0:0) = ~a By, 5] (Qaip) = 7 =7 Qs ) - Voo lw;0)].

Note that (2.3.4]) holds in the sense of distributions (Ambrosio et al., 2008). See Mei et al.
(2018, 2019); Araujo et al.| (2019) for the existence, uniqueness, and regularity of the PDE
solution p; in (2.3.4). In the sequel, we refer to the continuous-time and infinite-width

limit with € — 0% and m — oo as the mean-field limit. Let foﬁm) =m~'- )", 0o, be the
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empirical distribution corresponding to {6;(k)}7, in (2.3.3). The following proposition
proves that the PDE solution p; in (2.3.4)) well approximates the TD dynamics 6™ (k) in
(12.3.3)).

Proposition 2.3.1 (Informal Version of Proposition . Let the initial distribution
po be the standard Gaussian distribution N (0, Ip). Under certain regularity conditions,
,’oﬁ'})e | weakly converges to p; as € — 0 and m — oo.

The proof of Proposition is based on the propagation of chaos (Sznitman, (1991}
Mei et al.; 2018} 2019)). In contrast to|Mei et al.| (2018, 2019), the PDE in can not be
cast as a gradient flow, since there does not exist a corresponding energy functional. Thus,
their analysis is not directly applicable to our setting. We defer the detailed discussion on
the approximation analysis to §B.2] Proposition[2.3.1]allows us to convert the TD dynamics
over the finite-dimensional parameter space to its counterpart over the infinite-dimensional
Wasserstein space, where the infinitely wide neural network Q(+; p) in is linear in

the distribution p.

Feature Representation. We are interested in the evolution of the feature representation
T T T Dm
(2.3.6) (V@O’(ZL‘; 01(k)) ..., Voo (z;0m(k)) > €eR

corresponding to 8™ (k) = (01(k),...,0,(k)) € RP*™. Such a feature representation is
used to analyze the TD dynamics 8™ (k) in in the NTK regime (Cai et al., 2019},
which corresponds to setting a = /m in . Meanwhile, the nonlinear gradient TD
dynamics (Bhatnagar et al., [2009) explicitly uses such a feature representation at each

iteration to locally linearize the Q-function. Moreover, up to a rescaling, such a feature
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representation corresponds to the kernel

K(z,z'; ,?)ém)) = /V@O’(ZE; ) Vo (z'; ) dﬁkm)(@),
which by Proposition further induces the kernel
(2.3.7) K(z,2"; ps) = /Vga(x;H)TVQJ(a:’;Q) dp:(0)

at the mean-field limit with e — 0™ and m — oo. Such a correspondence allows us to use

the PDE solution p; in (2.3.4) as a proxy for characterizing the evolution of the feature

representation in (2.3.6)).

2.4. Main Results

We first introduce the assumptions for our analysis. In we establish the global
optimality and convergence of the PDE solution p; in . In , we further invoke
Proposition to establish the global optimality and convergence of the TD dynamics
0™ (k) in (2.3.3).

Assumption 2.4.1. We assume that the state-action pair x = (s, a) satisfies ||z| < 1 for
any s € S and a € A.

Assumption [2.4.1] can be ensured by normalizing all state-action pairs. Such an
assumption is commonly used in the mean-field analysis of neural networks (Chizat and
Bach|, 2018b} [Mei et al., 2018, 2019; |Aratjo et al., 2019; Fang et al., 2019alb; |Chen et al.,
2020b)). We remark that our analysis straightforwardly generalizes to the setting where

||| < C for an absolute constant C' > 0.
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Assumption 2.4.2. We assume that the activation function o in ([2.3.1]) satisfies
(2.4.1) lo(z;0)] < By, ||Veo(2;0)|| < By - ||zl || Veeo(x; Q)HF < By ||z

for any x € X. Also, we assume that the reward r satisfies || < B,.
Assumption holds for a broad range of neural networks. For example, let

0 = (w,b) € RP~! x R. The activation function
(2.4.2) ol (x;60) = By - tanh(b) - sigmoid(w ' z)

satisfies (2.4.1]) in Assumption Moreover, the infinitely wide neural network in (2.3.2))
with the activation function o' in (2.4.2)) induces the following function class,

Fi= {/5 -sigmoid(w ' z) du(w, B) | p € P (RP' x [—Bo,Bo])},

where 8 = By - tanh(b) € [—By, Bo]. By the universal approximation theorem (Barron,

1993; |Pinkus, (1999), F f captures a rich class of functions.

2.4.1. Global Optimality and Convergence of PDE Solution

Throughout the rest of this paper, we consider the following function class,

(2.4.3) F = {/Uo(b) o (z;w) dp(w, b) | p € Py(RP™! x R)},
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which is induced by the infinitely wide neural network in ([2.3.2)) with § = (w,b) € RP~! xR

and the following activation function,
o(x;0) = ao(b) - o1(z; w).

We assume that og is an odd function, that is, o(b) = —oo(—b), which implies [ o(x;0) dpo(f) =
0. Note that the set of infinitely wide neural networks taking the forms of is a- F,
which is larger than F in by the scaling parameter a > 0. Thus, o can be viewed

as the degree of “overrepresentation”. Without loss of generality, we assume that F is
complete. The following theorem characterizes the global optimality and convergence of
the PDE solution p; in ([2.3.4)).

Theorem 2.4.3. There exists a unique fixed point solution to the projected Bellman
equation @ = IIx7"Q, which takes the form of Q*(z) = [ o(x;0)dp(6). Also, Q* is the

global minimizer of the MSPBE defined in (2.2.2)). We assume that D,2(p|| py) < oo and

p(0) > 0 for any 6 € RP. Under Assumptions [2.4.1| and [2.4.2} it holds for = a~2 in
(2.3.4) that

(2.4.4) inf E%D[(Q(x;m) —Q*@;))Q] <

te[0,7)

where C, > 0 is a constant that depends on D,2(p|| po), B1, B2, and B,.

Theorem proves that the optimality gap E,p[(Q(z; ps) — Q*(x))?] decays to zero
at a sublinear rate up to the error of O(a™'), where a > 0 is the scaling parameter in
([2-3.1). Varying a leads to a tradeoff between such an error of O(a™") and the deviation
of p; from py. Specifically, in we prove that p; deviates from py by the divergence

Dy2(p |l po) < O(a?). Hence, a smaller « allows p; to move further away from po,
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inducing a feature representation that is more different from the initial one (Fang et al.,
2019ajb)). See (2.3.6 - for the correspondence of p; with the feature representation
and the kernel that it induces. On the other hand, a smaller « yields a larger error of
O(a™!) in of Theorem . In contrast, the NTK regime (Cai et al., [2019¢),
which corresponds to setting a = \/m in , only allows p; to deviate from pg by the
divergence D,z2(p; || po) < O(m™1) = o(1). In other words, the NTK regime fails to induce
a feature representation that is significantly different from the initial one. In summary,
our analysis goes beyond the NTK regime, which allows us to characterize the evolution

of the feature representation towards the (near-)optimal one.

2.4.2. Global Optimality and Convergence of TD Dynamics

As a result of Proposition [2.3.1, we establish the following lemma, which characterizes the
error of approximating the optimality gap in Theorem by that of the TD dynamics

60" (k) in 233).

Lemma 2.4.4. Let B be a constant that depends on «, n, v, By, By, and Bs. Under

Assumptions [2.4.1) and [2.4.2] it holds for any k¥ < T'/e (k € N) that

oo | (Qai6™ (1) - ')

<E,.p [(Q(x; Pre) — Q*(m))Q} +B.e5T. (\/m—1 -log(m/d) + \/e . (D + 10g(m/5))>

with probability at least 1 — 9.

Proof. See for a detailed proof. O
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Based on Theorem [2.4.3] and Lemma [2.4.4] we establish the following corollary, which
characterizes the global optimality and convergence of the TD dynamics 6™ (k) in (2.3.3).
Corollary 2.4.5. Under the same conditions of Theorem [2.4.3] it holds with probability

at least 1 — 4 that

(2.4.5)
. ~ N 2 DX2 0| pPo C.
ﬁgﬁamﬂQ@wm<»—@@0]szuﬁﬂ?;+u_7»a+A@m@T»
(keN)

where C, > 0 is the constant in (2.4.4)) of Theorem and A(e,m,6,T) > 0 is an error

term such that

lim lim A(e,m,6,7) = 0.

m—o0 e—0t

Proof. Combining Theorem [2.4.3| and Lemma [2.4.4] implies Corollary 0

In (2.4.5) of Corollary [2.4.5 the error term A(e, m,0,T) characterizes the error of
approximating the TD dynamics 07 (k) in ([2.3.3) using the PDE solution p, in (2.3.4).

In particular, such an error vanishes at the mean-field limit.

2.5. Proof of Main Results

We first introduce two technical lemmas. Recall that F is defined in , Qx; p) is

defined in (2.3.2)), and g(0; p) is defined in ([2.3.5)).

Lemma 2.5.1. There exists a unique fixed point solution to the projected Bellman
equation @ = IIx7™Q, which takes the form of Q*(z) = [ o(x;60)dp(d). Also, there exists

p* € P(RP) that satisfies the following properties,

(i) Qa: p") = Q*(x) for any @ € X.
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Figure 2.1. We illustrate the first variation formula w =

—(g(; pt),v),, where v is the vector field corresponding to the geodesic
that connects p; and p*. See Lemma for details.
(i) g(-;p*) =0 for p-a.e., and

(iii) Wa(p*, po) < @'+ D, where D = D,2(p || po)*/?.
Proof. See for a detailed proof. O

Lemma [2.5.1] establishes the existence of the fixed point solution @* to the projected
Bellman equation Q = II1#77(Q. Furthermore, such a fixed point solution QQ* can be
parameterized with the infinitely wide neural network Q(+; p*) in (2.3.2). Meanwhile, the
Wasserstein-2 distance between p* and the initial distribution p, is upper bounded by
O(a™!). Based on the existence of Q* and the property of p* in Lemma , we establish
the following lemma that characterizes the evolution of Wh(py, p*), where p; is the PDE
solution in ([2.3.4)).

Lemma 2.5.2. We assume that Wh(p¢, p*) < 2Wa(po, p*), Dy2(p || po) < 00, and p(8) > 0

for any 6 € RP. Under Assumptions [2.4.1{and [2.4.2} it holds that

d Wa(p, p*)?

2.5.1
(25.1) dt 2

<-(1=7)1 Eeep [(Q(m; pr) — Q*(x))Q} +C-at,

where C, > 0 is a constant depending on D,2(p || po), B1, B2, and B,.
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Proof. See for a detailed proof. O

The proof of Lemma is based on the first variation formula of the Wasserstein-2
distance (Lemma , which is illustrated in Figure and the strongly monotonicity
of g(+; B;) along a curve B on the Wasserstein space (Lemma . When the right-hand
side of is nonpositive, Lemma characterizes the decay of Wu(py, p*). We are

now ready to present the proof of Theorem [2.4.3

Proof. We use a continuous counterpart of the induction argument. We define

(2.5.2) = inf{T eR,

Esop [(1 ) - (Qa; pr) — Q*(l‘)ﬂ <C,- a‘l}.

In other words, the right-hand side of (2.5.1)) in Lemma is nonpositive for any ¢ < t*,

that is,

(2.5.3) “(1=7) Epn [(Q(m; 0e) — Q*(x))ﬂ L al <.
Also, we define

(2.5.4) t. =inf{7 € Ry [ Wa(pr, p*) > 2Wa(po, p*) }.

In other words, (2.5.1)) of Lemma holds for any ¢ < t,. Thus, for any 0 < ¢ <

min{t*, ¢, }, it holds that %w < 0. Figure illustrates the definition of t* and ¢,

in (2.5.2)) and (2.5.4)), respectively.
We now prove that t, > t* by contradiction. By the continuity of Wh(ps, p*)? with
respect to t (Ambrosio et al., 2008), it holds that ¢, > 0, since Wh(po, p*) < 2Wha(po, p*).

For the sake of contradiction, we assume that t, < t*, by (2.5.1) of Lemma and
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B
|

|

0 t*
N

2 . . .
A Weloer )l < 0 3f Wy (pr, p*) < 2Wa(po, p*)

Figure 2.2. For any 0 <t < min{t*, .}, (2.5.1) of Lemma holds and

d Wa(pe,ps)®
a2 =0

(2.5.3)), it holds for any 0 <t < t, that

%Wz(pzt,p*)Q <0,
which implies that Wy (py, p*) < Wha(po, p*) for any 0 < ¢t < ¢,. This contradicts the
definition of ¢, in (2.5.4]). Thus, it holds that ¢, > ¢*, which implies that of Lemma
holds for any 0 <t < t*.
If t* < T, (2.5.3) implies Theorem Ift*>1T, by of Lemma , it holds

for any 0 <t < T that

AWPPY < (1) - B (@i 0~ @' (@)] + €07y <0,

which further implies that

(2.5.5)
Eenp [(Q(fﬁ; pt) — Q*(fc)ﬂ <—(1—7)tgt. A Walpi,p7)*

. —_ _1~ _1
T 5 +C-(1—7)" -a .
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Upon telescoping (2.5.5) and setting n = a~2, we obtain that

: L e 2
tel[f&fT] ED[(Q(%PJ Q (ff)) }
T 2
<77 / EzND[(Q(w;pt) - Q" (x)) }dt
0
<1/2-(A=y) T Walpe, p7)* + Cus (1=9) " -a!
<1/2-(1—9) D> T '+C,-(1—7) - a,
where the last inequality follows from the fact that n = a2 and (iii) of Lemma [2.5.1]

Thus, we complete the proof of Theorem [2.4.3] O

2.6. Extension to Q-Learning and Policy Gradient

In this section, we extend our analysis of TD to Q-learning and policy gradient. In
§2.6.1] we introduce Q-learning and its mean-field limit. In §2.6.2] we establish the global
optimality and convergence of Q-learning. In §2.6.3] we further extend our analysis to soft

Q-learning, which is equivalent to policy gradient.

2.6.1. Q-Learning

Q-learning aims to solve the following projected Bellman optimality equation,

(2.6.1) Q=1T7Q.
Here T* is the Bellman optimality operator, which is defined as follows,

T Q(s,a) = E[T—F’}/'I;lgi(Q(sl,QHT ~ R(-]s,a),s ~ P(~\3,a)].
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When IIf is the identity mapping, the fixed point solution to (2.6.1) is the Q-function
Q™ of the optimal policy 7*, which maximizes the expected total reward J(7) defined in
(2.2.1)) (Sutton and Barto|, 2018)). We consider the parameterization of the Q-function in

(2:3.1)) and update the parameter #0™ as follows,

(2.6.2)

—0,(k) —ne - a - <@(sk, ax; 0 (k) =y, — 7 - ICILIEE%Q\(S;C,Q; 9<m>(k))) Vo0 (s, ar; 0;(k)),

where i € [m], (sk,ar) is sampled from the stationary distribution Dg € (S x A) of
an exploration policy mg, rp ~ R(-| Sk, ax) is the reward, and s), ~ P(-|sg,ax) is the
subsequent state. For notational simplicity, we denote by Dp € P (S x AXxRxS) the
distribution of (s, ag, 7%, s},). For an initial distribution vy € 2(R”), we initialize {6;},

as 0; = po (i € [m]). See Algorithm |3 for a detailed description.

Algorithm 3 Q-Learning with Two-Layer Neural Network for Policy Improvement

Initialization. 6;(0) R (i € [m]), number of iterations K = |T/e|, and exploration
policy 7g.
for k=0,..., K —1do
Sample the state-action pair (s,a) from the stationary distribution Dg of g, receive
the reward r, and obtain the subsequent state s'. R
Calculate the Bellman residual § = Q(z; 0™ (k) — r — v - Q(2';00™ (k)), where
r=(s,a) and 2’ = (¢, argmaxaeAQ(s a; 0 )(k))).
Perform the Q-learning update 6;(k + 1) <— 0;(k) —ne- - 6 - Voo (z;0,(k)) (i € [m]).
end for
Ensure: {00 (k)}!

Mean-Field Limit. Corresponding to € — 07 and m — oo, the mean-field limit of the

Q-learning dynamics in Algorithm [3]is characterized by the following PDE with v as the
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initial distribution,
(2.6.3) vy = —n - div(ut - h(+; Vt)).
Here h(-; 1) : RP — RP is a vector field, which is defined as follows,

(2.6.4) h(O;v)=—a- E s .~ P [(Q(s, ayv)—r—-y- max Q(s',a;v)) - Voo (s, a; 0)]

In parallel to Proposition the empirical distribution ﬁ,gm) =m0 Og, ) weakly

converges to v as € — 07 and m — oo.

2.6.2. Global Optimality and Convergence of Q-Learning

The max operator in the Bellman optimality operator 7" makes the analysis of Q-learning
more challenging than that of TD. Correspondingly, we lay out an extra regularity condition
on the exploration policy 7g. Recall that the function class F is defined in (2.4.3)).

Assumption 2.6.1. We assume for an absolute constant x > 0 and any Q!, Q* € F that

E(s,0)~Dp [(Ql(& a) — Q*(s, a))2] > (v +£)* - Egsa)pg [(Télgi( Q' (s,a) — max Q2(5>2))2}

Although Assumption [2.6.1] is strong, we are not aware of any weaker regularity
condition in the literature, even in the linear setting (Melo et al., [2008; |Zou et al., |2019;
Chen et al., [2019b) and the NTK regime (Cai et al., 2019¢)). Let the initial distribution

1o be the standard Gaussian distribution N(0,Ip). In parallel to Theorem [2.4.3] we

establish the following theorem, which characterizes the global optimality and convergence
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of Q-learning. Recall that we write X =S x A and = = (s,a) € X. Also, v; is the PDE
solution in (2.6.3)), while 8™ (k) is the Q-learning dynamics in (2.6.2)).

Theorem 2.6.2. There exists a unique fixed point solution to the projected Bellman
optimality equation @ = IIz7*Q, which takes the form of Q'(z) = [ o(x;0)dv(d). We

assume that D,2(v || 1) < oo and () > 0 for any 6 € RP. Under Assumptions m

12.4.2, and [2.6.1] it holds for n = a2 that

(k+7) Dy (v |w) | (k+7)-C.
+ )
25 - T K-

(2.6.5) inf ExNDE[(Q(m; ) —QT(x)ﬂ <

te[0,7T

where C, > 0 is a constant depending on D,2(7 || 1), B1, Bs, and B,. Moreover, it holds

with probability at least 1 — 9 that

~ 2
o0
(keN)
() Dy lln)  (s+9) - C.
.0. <
(2.6.6) < 5T + — + A(e,m,0,T),
where A(e,m,d,T") > 0 is an error term such that
lim lim A(e,m,d,T) = 0.
m—00 e—071
Proof. See for a detailed proof. O

Theorem W proves that the optimality gap E,py [(Q(z;v:) — Q'(z))?] decays to
zero at a sublinear rate up to the error of O(a™'), where o > 0 is the scaling parameter
in (2.3.1). In parallel to Theorem [2.4.3 varying « leads to a tradeoff between such an

error of O(a~!) and the deviation of v; from 9. Moreover, based on the counterparts
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of Proposition and Lemma [2.4.4] Theorem [2.6.2] gives the global optimality and
convergence of the Q-learning dynamics 8™ (k) in (2.6.2)), which is in parallel to Corollary

2.4.0l

2.6.3. Soft Q-Learning and Policy Gradient

Theorem straightforwardly generalizes to soft Q-learning, where the max operator
is replaced by the softmax operator. Specifically, we define the soft Bellman optimality

operator as follows,
T5Q(s,a) = E[r + 7 - softmaxe4’Q(s', a) |7~ R(-|s,a),s ~ P(-]s,a)],
where the softmax operator is defined as follows,

softmax,e 4’ Q(s,a) = - log Egn(.|s) [exp(ﬁ’1 . Q(s,g))].

Here 7(-| s) is the uniform policy. Soft Q-learning aims to find the fixed point solution to
the projected soft Bellman optimality equation ) = IIz73(). In parallel to the Q-learning

dynamics in (2.6.2)), we consider the following soft Q-learning dynamics,

(2.6.7)
;(k+1)

=0;(k) —ne-a- <C§(sk, ay; Q(W)(k:)) —rp— - softmaxgeAﬁ@(s;c,g; Q(m)(k))> . Vga(sk, ay; Qi(k:)),
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whose mean-field limit is characterized by the following PDE,

(2.6.8) Oy = —n - div(vy - h(-;14)).

In parallel to (2.6.4), h(-; 1) : R” — RP is a vector field, which is defined as follows,
h(0;v) = —a - E (s .5~ By [(Q(s, a;v) —r — 7 - softmaxee 4" Q(s, a;v)) - Voo (s, a; 9)]

In parallel to Assumption [2.6.1] we lay out the following regularity condition.
Assumption 2.6.3. We assume for an absolute constant x > 0 and any v, 1% € Z(RP)

that

E(s,a)N’DE [(Q(S, a; Vl) - Q(37 a; VQ))2:|

> (v + /{)2 Es,0)~pp [(softmaxgeAﬂQ(s, a; Vl) - softmaxQeAﬁQ(s, a; VQ))Q] )

The following proposition parallels Theorem [2.6.2] which characterizes the global
optimality and convergence of soft Q-learning. Recall that v; is the PDE solution in ([2.6.8))
and 6™ (k) is the soft Q-learning dynamics in (2.6.7)).

Proposition 2.6.4. There exists a unique fixed point solution to the projected soft
Bellman optimality equation Q = I1z73Q, which takes the form of Q*(z) = [ o(x;0) du(6).

We assume that D,2(v || 1) < oo and v(#) > 0 for any § € RP. Under Assumptions [2.4.1}

12.4.2) and [2.6.3] it holds for n = a2 that

(5 +7) Doslellwn) | (s +9)-C.
2k - T k-a

inf E,py [(Q(m, V) — Qi(x))Q] <

t€[0,T]
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where C, > 0 is a constant depending on D,2(v || 1), By, Be, and B,. Moreover, it holds

with probability at least 1 — ¢ that

(x-+9)  Delzlw) | (5+7)-C.
25T K-«

~ 2
in Eovpg [(Q(x;e(m)(k‘)) - Qi(x)) ] <
(keN)

+ A(e,m,0,T),

where A(e,m,d,T") > 0 is an error term such that

lim lim A(e,m,d,T) = 0.

m—00 e—0F

Proof. Replacing the max operator by the softmax operator in the proof of Theorem
[2.6.2] implies Proposition [2.6.4] O

Moreover, soft Q-learning is equivalent to a variant of policy gradient ((O’Donoghue
et al., [2016; [Schulman et al., 2017; Nachum et al., [2017; |[Haarnoja et al., |2017). Hence,

Proposition [2.6.4] also characterizes the global optimality and convergence of such a variant

of policy gradient.



CHAPTER 3

Latent Variable Models

With the attention mechanism, transformers achieve significant empirical
successes in natural language processing and computer vision. Despite the
intuitive understanding that transformers perform relational inference (or
“Inductive reasoning”) over long sequences to produce desirable representations,
we lack a rigorous theory on how the attention mechanism achieves it. In par-
ticular, several intriguing questions remain open: (a) What makes a desirable
representation? (b) How does the attention mechanism infer the desirable
representation within the forward pass? (c) How does a pretraining procedure

learn to infer the desirable representation through the backward pass?

We aim to answer the three questions via the lens of exchangeability.
Specifically, we observe that, as is the case in BERT and ViT, input tokens
are often exchangeable since they already include positional encodings. The
notion of exchangeability induces a latent variable model that is invariant to
input sizes, which enables our theoretical analysis.

- To answer (a) on representation, we establish the existence of a sufficient and
minimal representation of input tokens. In particular, such a representation

instantiates the posterior distribution of the latent variable (or “concept”)
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given input tokens, which plays a central role in predicting output labels and
solving downstream tasks.

- To answer (b) on inference, we prove that attention with the desired pa-
rameter infers the latent posterior up to an approximation error, which is
decreasing in input sizes. In detail, we quantify how attention approximates
the conditional mean of the value given the key, which characterizes how it
performs relational inference over long sequences.

- To answer (c) on learning, we prove that both supervised and self-supervised
objectives allow empirical risk minimization to learn the desired parameter up
to a generalization error, which is independent of input sizes. Particularly, in
the self-supervised setting, we identify a condition number that is pivotal to
solving downstream tasks.

Our theoretical analysis gives a complete characterization of the attention
mechanism as a “greybox” design, which unifies the handcrafted architecture
induced by the latent variable model (“whitebox”) and the learnable parameter
estimated from data (“blackbox”) with provable approximation, generalization,

and optimization guarantees.

3.1. Introduction

Transformers are the state-of-the-art architecture for a variety of tasks in natural
language processing (Vaswani et al. 2017), computer vision (Dosovitskiy et al., |2020]), and
multimodal generation (Ramesh et al.| 2021)). At the core of their significant empirical
successes is the attention mechanism, which is defined by a computation graph for the

forward pass. In particular, the computation graph performs a specific form of message
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passing across input tokens (Bronstein et al., [2021)). It is commonly believed that the
attention mechanism is capable of handling long sequences and performing relational
inference (or “inductive reasoning” ), which appears to be the key advantage of transformers.
However, the intuitive understanding lacks a quantitative justification, which leaves many
intriguing questions open:

(a) What makes a desirable representation? Ideally, the desirable representation of input
tokens is sufficient and minimal in the sense that it preserves all relevant information
for predicting output labels or solving downstream tasks (sufficiency) while it neglects
all irreverent information (minimality). However, we lack a quantitative definition of

sufficiency and minimality, which requires a probabilistic model.

(b) How does the attention mechanism infer the desirable representation within the
forward pass? Intuitively, the attention mechanism is defined by a computation graph that
resembles kernel smoothing or kernel regression (Shawe-Taylor et al., 2004) for predicting
the value given the key. However, we lack a formal characterization of what function class
the attention mechanism parameterizes or approximates. Also, it remains unclear why
the specific form of message passing produces the desirable representation of input tokens,
that is, one with sufficiency and minimality.

(c) How does a pretraining procedure learn the desirable representation through the
backward pass? Empirically, the pretraining procedure that minimizes empirical risks for
predicting masked tokens (Devlin et al., 2018; |Dosovitskiy et al., 2020; He et al., [2022)
appears to succeed in the presence of long sequences. However, we lack a theoretical
justification of whether the pretraining procedure with the masked objective attains a

desirable estimator that generalizes and why the generalization error does not appear to
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degrade for long sequences. In particular, it remains unclear to what degree the estimated

representation facilitates solving downstream tasks.

In this paper, we answer the three questions via the lens of exchangeability. The key
observation is that, as is the case in BERT (Devlin et al., 2018) and ViT (Dosovitskiy’
et al., 2020)), input tokens are exchangeable since they include positional encodings. In
other words, the joint distribution of input tokens, e.g., vector embeddings of words in
a paragraph or patches in an image with positional encodings, remains the same upon
permuting their orders. Meanwhile, the attention mechanism and entrywise feedforward
neural networks preserve the notion of exchangeability throughout all transformer layers.
By the de Finetti Theorem (de Finetti, |[1937)), the notion of exchangeability induces a latent
variable model that is invariant to input sizes. Unlike classical Bayesian settings, where
the latent variable model is defined across many data points, ours is defined over input
tokens within one data point (in an “in-context” manner), which captures a fine-grained
structure of interactions as relational inductive biases (Battaglia et al., 2018). The latent

variable model enables our theoretical analysis, which is summarized in the following:

- To answer (a) on representation, we establish the existence of a sufficient and minimal
representation of input tokens based on the latent variable model, which is induced by
exchangeability. In particular, we leverage the latent variable model to define sufficiency
and minimality following the factorization theorem and the sufficiency principle (Fisher,
1922). Moreover, we prove that the posterior distribution of the latent variable given input
tokens is a sufficient and minimal representation, which plays a central role in predicting
output labels and solving downstream tasks. Intuitively, the latent variable instantiates

the “concept” of a paragraph or an image, which is “summarized” over words or patches.
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In detail, the “summarization” process is formalized by the mapping from input tokens
to the posterior distribution of the latent variable, that is, inferring the “concept” in a
Bayesian manner within the forward pass.

Given the answer to (a), which defines the desirable representation as the latent posterior,
it remains unclear how to parameterize or approximate the latent posterior, which is

addressed by the answer to (b).

- To answer (b) on inference, we prove that the attention mechanism with the desired
parameter infers the latent posterior up to an approximation error, which is decreasing in
input sizes. In particular, we prove that a specific parameterization of the latent posterior
yields a variant of the attention mechanism based on kernel conditional mean embedding
(CME), namely the CME attention, which infers the conditional mean of the value given
the key. Here the value and the key (or the query) are obtained from a parameterized
transformation of input tokens, where the unknown parameter requires learning.

Although the CME attention recovers the latent posterior for any input sizes, it differs
from the commonly used softmax attention by a normalization matrix. To this end, we
prove that the CME attention and the softmax attention are equivalent at the infinite limit
of input sizes by drawing a connection to nonparametric conditional density estimation.
In other words, the softmax attention recovers the latent posterior up to an approximation
error that is decreasing in input sizes, which characterizes how it performs relational
inference over long sequences. As byproducts, we justify the necessity of multiple attention
heads in transformers and provide a causal interpretation of the inferred representation

through instrumental variables.
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Given the answer to (b), which quantifies the approximation error for the latent posterior,
it remains unclear how to learn the desired parameter of the attention mechanism, which

is addressed by the answer to (c).

- To answer (c) on learning, we prove that both supervised and self-supervised objectives
allow empirical risk minimization to learn the desired parameter up to a generalization
error, which is independent of input sizes. In particular, through maximum likelihood
estimation, we establish the connection between the latent posterior and the masked
objective, which is defined by the empirical risk for predicting masked tokens.

Moreover, we prove that the global minimizer of the masked objective attains a generaliza-
tion error that is independent of input sizes, which justifies why transformers allow long
sequences. Our proof exploits the invariance and equivariance of the attention mechanism
and entrywise feedforward neural networks, which deviates from most existing analyses of
the generalization error. Particularly, in the self-supervised setting, e.g., as in MAE (He
et al., [2022)), we identify a condition number that is pivotal to solving downstream tasks.
Intuitively, the condition number quantifies the amount of information that is transferred
from the pretraining task to a new task.

Meanwhile, in the overparameterized regime, we prove that any stationary point of the
masked objective is almost globally optimal when the attention mechanism and entrywise
feedforward neural networks have sufficient expressive power. As a result, stochastic
gradient descent finds the global minimizer of the masked objective, which generalizes as

discussed above.
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Combining the above analysis of the approximation, generalization, and optimization
errors in the answer to (a)-(c), we provide a complete characterization of the attention

mechanism.

Contribution: In summary, our theoretical contribution is threefold:

(i) We identify a general principle for parameterizing function classes and constructing
learning objectives based on latent posterior inference, which requires a minimal assumption
of data. In contrast to classical learning paradigms, the latent variable model is defined

over input tokens within one data point, which captures relational inductive biases.

(ii) We recover the attention mechanism from a specific parameterization of latent posterior
inference based on kernel conditional mean embedding and nonparametric conditional
density estimation. In particular, we demonstrate how the attention mechanism combines
the handcrafted architecture, which is induced by latent posterior inference, and the

learnable parameter, which determines the kernel function.

(iii) We characterize the approximation, generalization, and optimization errors for estimat-
ing the learnable parameter of the attention mechanism through minimizing the masked
objective. In particular, we prove that input sizes do not degrade the approximation and
generalization errors, which justifies why transformers allow long sequences.

)

Discussion: Our theoretical analysis casts the attention mechanism as a “greybox’
approach to modeling, that is, it combines the handcrafted architecture, which is coined
by a probabilistic model over input tokens within one data point (“whitebox”), and the
learnable parameter, which is estimated in an end-to-end manner through empirical risk

minimization (“blackbox”). It is worth mentioning that our theoretical analysis studies
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the class of transformers like BERT (Devlin et al., [2018) and ViT (Dosovitskiy et al., [2020))

(“encoder-only”), which does not exploit the autoregressive structure as in GPT
(“decoder-only”). On the other hand, the general principle identified in (i) is
applicable to other probabilistic models like hidden Markov models or general graphical
models over trees and grids, which motivates other principled architectures beyond the

attention mechanism. We leave it as a future direction.

Related Works

Transformers and Attention. The pioneering work (Vaswani et al., 2017)) proposes

transformers for the first time and highlights the key role of the attention mechanism.

Subsequently, there are a vast body of works that propose various transformer architectures

and different pretraining paradigms. See, e.g., Devlin et al.| (2018); Radford et al.| (2018|

2019)); Dai et al. (2019); Brown et al.| (2020); |[Dosovitskiy et al.| (2020); [He et al.| (2022)) and

the references therein. Transformers demonstrate significant empirical successes in natural

language processing (Wolf et al.l [2020), computer vision (Dosovitskiy et al., 2020)), protein

structure prediction (Jumper et al., 2021), and sequential decision making (Chen et al.

2021]). Our work provides a theoretical justification of transformers and the attention
mechanism, that is, how a latent variable model induced by exchangeability allows us to

derive transformer architectures and pretraining paradigms in a principled manner.

Analysis of Transformers and Attention. Our work is related to a recent line of works

that analyze transformers and the attention mechanism (Tsai et al., 2019; Vuckovic et al.|

2020; [Hron et al, [2020} [Yang], 2020; [Yang and Littwin| 2021; [Edelman et al.| 2021} [Wei
et all [2021a; Xie et al., [2021} [Malladi et al., 2022; Garg et al., 2022; Zhang et al., 2022b)).
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Specifically, Tsai et al.| (2019)) demonstrate that the attention mechanism can be viewed
as a kernel smoother over input tokens. Vuckovic et al. (2020]) establish the Lipschitz
continuity of transformers via the lens of interacting particle systems. Hron et al.| (2020);
Yang (2020); [Yang and Littwin (2021); Malladi et al.| (2022) characterize the infinite-width
limit of transformers under the framework of neural tangent kernels (Jacot et al., 2018).
Among them, Malladi et al.| (2022) demonstrate that neural tangent kernels can capture the
parameter update in the fine-tuning phase. |[Edelman et al. (2021)) prove that transformers
can represent a sparse function of input tokens and establish a sample complexity that
scales logarithmically in input sizes. |Wei et al.| (2021a)) characterize the approximation and
generalization errors for learning a Turing machine with transformers. Xie et al.| (2021)
prove that transformers can infer a latent variable (or “concept”) assuming that the data
distribution is a mixture of hidden Markov models. Garg et al.| (2022)) demonstrate that
transformers can learn to perform linear predictions within one data point (in an “in-
context” manner). Zhang et al. (2022b) evaluate the empirical performance of transformers
for learning equality and group operations.

Our work provides a complete characterization of the representation, inference, and
learning aspects of the attention mechanism via the lens of exchangeability and latent
variable models, which requires a minimal assumption on the data distribution (exchange-
ability). Specifically, in comparison with Tsai et al. (2019), we demonstrate that the
attention mechanism not only parameterizes nonparametric conditional density estimation
but also approximates kernel conditional mean embedding, which infers the conditional
mean of the value given the key. Moreover, we invoke the latent variable model induced by

exchangeability to justify the attention mechanism as a specific parameterization of latent
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posterior inference. Meanwhile, we leverage the latent variable model to derive the common
choice of both supervised and self-supervised objectives, e.g., the masked objective. In
comparison with [Xie et al. (2021), we do not assume that the data distribution takes
a specific form (a mixture of hidden Markov models) or the latent posterior is given a
priori by a specific parameter (no learning required). Instead, we prove that the attention
mechanism is capable of instantiating latent posterior inference up to an approximation
error and the masked objective allows us to learn to infer the latent posterior up to the
generalization and optimization errors. Also, it is worth mentioning that Xie et al.| (2021)
focus on the class of transformers like GPT (Brown et al., [2020)) (“decoder-only”), while
we focus on the class of transformers like BERT (Devlin et al., 2018) and ViT (Dosovitskiy!
et al., 2020) (“encoder-only”). In comparison to Edelman et al.| (2021]), we exploit the
invariance and equivariance of transformers and establish a generalization error that is

independent of input sizes.

Generalization of Deep Neural Networks. Our work is related to the vast body of
works that analyze the generalization error of deep neural networks. See, e.g., Jiang et al.
(2019); |Valle-Pérez and Louis| (2020) for a comprehensive introduction. However, most of
them do not exploit invariance and equivariance. As a result, a direct application of such
results yields a vacuous bound as input sizes increase. On the other hand, [Sokolic et al.
(2017)); Sannai et al. (2021); [Elesedy (2021); |Zhu et al.| (2021)) establish a generalization
error that captures the improvement from invariance and equivariance, which, however, is
not applicable to the attention mechanism. Our theoretical analysis of the generalization
error follows the framework of Bartlett et al.| (2017), which stems from [Bartlett| (1996);

Bartlett and Mendelson| (2002). In addition, the concurrent work (Zhang et al., [2022a)
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provides a PAC-Bayes analysis of the generalization error of the attention mechanism in

the context of multiagent reinforcement learning.

Optimization of Deep Neural Networks. Our work is built on the vast body of works

that analyze the optimization error of deep neural networks (Allen-Zhu et al. 2019alic[b}

\Arora et al| 2019b; |Du et al.l 2018b}, 2019; Zhang et al.l 2019¢} Zou et al 2018; Zou and|

\Gul, [2019; [Allen-Zhu et all, 2019¢; [Cao and Gul [2019b}; [Li and Liang), 2018}, |Chizat et al.|

2019; Mei et al.l 2018, [2019; Rotskoff and Vanden-Eijnden| 2018} [Nguyen| [2019; |Sirignano|

land Spiliopoulos|, 2020). Most of them focus on overparameterized neural networks in the

neural tangent kernel (Jacot et al., 2018) or mean-field regime (Mei et al., 2018). Our

work analyzes the optimization error in the neural tangent kernel regime, which is similar

to Malladi et al|(2022). Meanwhile, it is worth mentioning that our theoretical analysis of

the approximation and generalization errors is not restricted to the neural tangent kernel

regime.

Invariance and Equivariance in Deep Neural Networks. Our work is related to a

recent line of works on deep neural networks with invariance or equivariance with respect

to permutations and other group operations. See, e.g., [Scarselli et al. (2008); Zaheer et al.|

(2017); Lee et al.| (2019a); Keriven and Peyré (2019)); Romero and Cordonnier] (2020);

Bloem-Reddy and Teh| (2020); Hutchinson et al. (2021); |Satorras et al. (2021)); Kossen|

(2021)) and the references therein. Also, see [Valle-Pérez and Louis| (2020); Han et al.|

(2022)) for a detailed survey. In comparison, we exploit the latent variable model induced
by exchangeability to provide a complete characterization of the representation, inference,

and learning aspects of the attention mechanism.
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3.2. Preliminary

Notations. We denote by [L] the index set {1,2,..., L} for any L € N,. For any vector
v € RY, we denote by softmax(v) = (exp(v')/(3h_, exp(v”)))ici) € R* the softmax
function. We denote by || - || the spectral norm, which becomes the fs-norm when it
operates on a vector. We denote by || - ||r the Frobenius norm. For any d € N, we denote
by S41 = {z € R?|||z]|s = 1} the (d — 1)-dimensional unit sphere.

Reproducing Kernel Hilbert Space. Let H, be a Hilbert space over a domain X,
which contains functions f : X — R and is equipped with the inner product (-, )3, .
We say that H, is a reproducing kernel Hilbert space (RKHS) with the kernel function
R: X x X — R if we have the reproducing property that (f, 8(z, )y, = f(z) for any
f€eH,and xr € X. An RKHS H, is associated with a feature mapping ¢ : X — ¢ such
that R(z,2') = ¢(z) " ¢(2') for any x, 2’ € X (Muandet et al.| 2016). Here we denote by £;

the space of all square-summable series.

Attention Mechanism. For an input sequence X = {xf}gem with the input tokens

2t € RY, we consider the key matrix K € R“*% and the value matrix V' € R*? defined as

K=K kT = (ko(xY), ... ko(2")) " € REX®,

V=" ...,0")" = (ve(z),... ,Ug(xL))T € REx4,

Here kg : R — R% and vy : R? — R? map the ¢-th input token z¢ to the key k* and the

value v*, respectively, where # € © is the the learnable parameter. For any query g € R%,
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we define the attention mechanism as follows,
(3.2.1) attn(g, K,V) = V'norm(R(K, q)) € RY,

where £ : R% x R% — R is a kernel function and we write £(K, q) = (R(k*, q))eer € RL.
Here we denote by norm : RY — R’ a normalization mapping.

A common example of the attention mechanism is the softmax attention (Vaswani
et al., 2017)), where the kernel function is the exponential kernel fgxp(q, k) = exp(q"k/7)

with a fixed v > 0 and the normalization mapping is the following softmax normalization,
normsy (R(K, ¢)) = (1TR(K,q)) " - R(K,q).

The attention mechanism in (3.2.1) with the exponential kernel and the softmax nor-
malization is the softmax attention (Vaswani et al., [2017), which takes the following

form,
attngu(q, K, V) =V 'normgy(Rexe (K, q)) = softmax(Kq/v).

3.3. Representation, Inference, and Estimation

via Latent Variable Model

From Exchangeability to Latent Variable Model. We consider the input sequence
X = {x‘]}gem, where ¢ € R? is an input token and L € N, is the sequence length. In
natural language processing (NLP), such a sequence consists of embeddings of words in
a paragraph, while in computer vision (CV), such a sequence consists of embeddings of

patches in an image.
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As is the case in BERT (Devlin et al., |2018) and ViT (Dosovitskiy et al., 2020), the
input sequence is exchangeable since it includes positional encodings. Specifically, we say
that a random variable sequence {z‘}scn, is exchangeable if and only if it holds for any

sequence length L € N and any index permutation 7 : [L] — [L] that

In other words, permuting the index order within the random variable sequence does not
affect its joint distribution. The following proposition states that the exchangeability of a
random variable sequence induces a latent variable.

Proposition 3.3.1 (de Finetti Representation Theorem (de Finetti, 1937)). Let {z‘}sen,
be an exchangeable sequence. Then, there exists a latent variable z such that for any

sequence length L € N |

We remark that Proposition requires an infinite-length exchangeable sequence.
Up to an approximation error, a finite-length exchangeable sequence also induces a latent
variable (Diaconis and Freedman, [1980)). In what follows, we consider the former case where
the input sequence includes positional encodings and is thus exchangeable (Devlin et al.

2018; Dosovitskiy et al., 2020)). See Figure for an illustration of the exchangeability.
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Figure 3.1. The input sequence (the raw version without positional encod-
ings) becomes exchangeable with positional encodings. In practice, the
positional encoding is incorporated in an additive manner (instead of con-
catenation).
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Proposition [3.3.1| guarantees the existence of a latent variable, which forms the basis
of our theoretical analysis. See Figure for an illustration. Intuitively, the latent
variable can be viewed as the “concept” of the input sequence, which is “summarized”
over words or patches. For instance, in NLP, the latent variable instantiates the “meaning”
of a paragraph, while in CV, the latent variable instantiates the “theme” of an image. In

particular, the latent posterior P(z | X) plays a key role in solving downstream tasks (Song

et al., 2014} Xie et al., [2021)), as it is a desired representation of the input sequence X. See

Figure for an illustration. In the following lemma, we prove that the latent posterior
b.(X) =P(z =-| X) is a minimal sufficient statistic (Fisher} [1922).

Lemma 3.3.2 (Minimal Sufficiency of Latent Posterior). Let z be the latent variable
induced by the exchangeability of the input sequence X. The latent posterior b,(X) =
P(z = -| X) is a minimal sufficient statistic of the input sequence X for the latent variable
z. Meanwhile, for any target variable y that is independent of the input sequence X

conditioning on the latent variable z, we assume the invertibility of the operator 7 defined



82
by

(3.3.1) (THy) = / Ply| 2)f(z)dz.

Then, the latent posterior b,(X) = P(z = -| X) is a minimal sufficient statistic of the input

sequence X for the target variable y.
Proof. See for a detailed proof. O

From Latent Variable Model to Learning Objectives. In what follows, we consider
the prediction task in BERT (Devlin et al., 2018) and ViT (Dosovitskiy et al., 2020).
Let y be the target variable and X = {x‘},c(;; is the input sequence. In particular, in
self-supervised learning (BERT), the target variable y is a masked token of the input
sequence, while in supervised learning (ViT), y is the unknown label corresponding to the
class encoding. We remark that in ViT, the unknown label y corresponds to the masked
token in BERT, while the input class encoding corresponds to the mask in BERT. In both
cases, the concatenation {y,z!,..., 21} is treated as an exchangeable sequence since it

includes the positional encodings. By Proposition |3.3.1, we have

(332) Ply|X) = [ Ply]2) PG| X

where z is the latent variable induced by the exchangeability of X. See Figure for an
illustration.

In what follows, we treat y as a target variable that satisfies , which specifies
that y is independent of the input sequence X conditioning on the latent variable z. By

Lemma [3.3.2, the latent posterior b,(X) is a minimal sufficient statistic of X for y. In
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other words, the latent posterior b,(X) is a desired representation of the input sequence
X. According to , the prediction of the target variable y from the input sequence
X (forward pass) takes two implicit steps: i) the inference of the latent posterior P(z | X),
and ii) the prediction of y based on the generative distribution P(y | z) integrated with the

latent posterior P(z | X).

B mask
a) Prediction of a masked Prediction of the tar-
token zt. get variable y, which can be

viewed as a masked token.

Figure 3.2. The forward pass for the prediction of the masked token ¢ and
the target variable y. The prediction of y takes two steps: i) the inference
of the latent posterior P(z| X)), and ii) the prediction of y based on the
generative distribution P(y | z) integrated with the latent posterior P(z | X).

To construct the learning objective, we consider the distribution of the target variable
y conditioning on the input sequence X and parameterize it by Py(y | X), where 6 is the
learnable parameter. Given a dataset D, = {(Xi,4;)}icn), where X; is the i-th input
sequence and y; is the i-th target variable, the maximum likelihood estimation (MLE)

objective takes the following form,

(3.3.3) max Ex,)~p, [log Pa(y | X))]

— Bixyon, {log / Po(y | 2)Po(z | X)dz

We define IE( X,y)~D, | - | as the empirical expectation with respect to the dataset D,.
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3.3.1. Preliminary Finite-Dimensional Example

Latent Variable Model. We provide a finite-dimensional Gaussian-distributed example
to illustrate the latent variable model and the MLE objective. Specifically, we consider the
setting with the input sequence X = {z‘}sc(;) and the target variable y, where z* € R?
and y € R%. For the input sequence X, we consider the following example of the latent

variable model in ([3.3.2)),

(3.3.4) rt = 2c® + €, where ¢ = c,(z%), r*=r.(2%), Vle[L].

Here z € R%*% is the latent variable induced by the exchangeability of the input sequence,
¢’ € R% and r* € R% are the covariate and response, respectively, which are determined
by two unknown functions ¢, : R — R% and r, : R? — R% and € ~ N(0,0%I) is the
noise, which is independent of ¢‘. In practice, the covariate ¢’ instantiates the contextual
information, while the response r* instantiates the semantic information. We consider the
prediction of the (unknown) target variable y based on its (known) input mask msk. In the
self-supervised setting (Devlin et al., 2018), y is a masked token of the input sequence, while
msk is the positional encoding. In the supervised setting (Dosovitskiy et al., 2020), y is the
label of the input sequence, while msk is the class encoding. Specifically, corresponding
to , we consider the prediction model with y = 7%, where r™* is the response

corresponding to the covariate ¢®* of the input mask such that

(3.3.5) y =" = 2™ + e, where ™* = ®(msk).
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Here ¢® : R? — R% is an unknown function and ¢ ~ N(0,0%I) is the noise, which
is independent of ¢™¥. For example, holds when we consider an exchangeable
sequence {z!,... ol 211} satisfying for any ¢ € [L + 1] with the input sequence
X = {at, ... 2L}, ™% = LTl and the target variable y = r™* = rL*1 In the next
section, we consider an advanced infinite-dimensional example and show that ¢™¥, ¢/, and
r* correspond to the query, the key, and the value in the attention mechanism, respectively.

Note that the regression model in is a conditional model. Instead of modeling
the conditional distribution of y given X as in (3.3.2)), we model the conditional distribution

of y given X and msk. Recall that y = r™*. Corresponding to (3.3.2)), the generative

distribution takes the following form,
(3.3.6) P(y | msk, z) o exp(—Hy - zc’j}(msk)”i/202>.

We take the Gaussian distribution N(0,A/) as the prior of z. By (3.3.4]), the latent
posterior P(z | X) is a Gaussian distribution, which (approximately) takes the following

form,
(3.3.7) P(2| X) x exp(—“z — ()|’ /23).

Here the covariance of the latent posterior is approximated by (21 and the mean z(X) of

the latent posterior takes the following form,

Z(X)=E[z| X] =R (CCT + XI)'C,
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where we define C' = (c!,...,cl)" € REX% and R = (r!,...,r%)"T € R4, Combining

(3.3.6) and (3.3.7)), we obtain

(3.3.8) P(y|msk, X) = /P(y |msk, z) - P(z ]| X)dz exp(—Hy - 2(X)cfj(msk)H§/252>,

which corresponds to (3.3.2), Here we approximate the covariance of y conditioning on
X and msk by 021, where ¢ does not depend on X. We remark that (3.3.8) is a form of

Bayesian model averaging (Wasserman, |2000) within one data point.

Parameterization of Latent Variable Model. Recall that c,, r,, and ¢* in (3.3.4)) and
(3.3.5)) are unknown. We parameterize them with ¢y, 79, and ¢§, where 6 € O is a learnable

parameter. With the ideal parameter 8* € ©, it holds for any ¢ € [L] that

(3.3.9) o (2" = cu(ah) =, rge(2h) = (zh) =1, B (msk) = P(msk) = ™.
By (3.3.7), we parameterize the latent posterior P(z| X) as follows,

(3.3.10) Py(z| X) ocexp(—”z—ég(X)HZ/%Q),

where Zy(X) is calculated as follows,

Here cg(X) = (co(zh), ..., co(z))" € REX% and rg(X) = (re(xt), ..., re(2l))T € REXd,

By (3.3.6)), we parameterize the generative distribution P(y |msk, z) as follows,

Py (y | msk, 2) o exp(—Hy - zc'(;‘(msk)”;/ZJQ).
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By (3.3.8]), we define the conditional likelihood P(y | msk, X) as follows,

(3.3.11) Py(y | msk, X) exp(—Hy - Zg(X)crg(msk)Hi/Q?fQ).

Training and Testing. In the training phase, given the dataset D, = {(X, ¥i) }icpn)
we aim to maximize the MLE objective in (3.3.3). By (3.3.11)), maximizing the MLE

objective is equivalent to minimizing the mean-squared error as follows,
- _ n 2
(3.3.12) min E(xy)~D, [Hy - ZQ(X)Cg(mSk>H2i| :

Note that the learnable parameter 6 is estimated across different data points in the dataset
D,, through the backward pass, while the latent variable z is inferred within one data
point (X;,y;) through the forward pass. We remark that by learning 6, the model learns
to perform Bayesian model averaging. Suppose that we solve and obtain the
estimator 6. In the testing phase, given an input sequence X; and an input mask msk;, we
predict the target variable y; by maximizing the posterior of y,

(3.3.13) y = argmax Pj(y | msky;, X;) = E[r™* |msky, X;] = Z5(X;)5(msk;).
y

We remark that the learning process for the attention mechanism involves two aspects. In
the forward pass, within one data point, we infer the latent posterior P(z | X) to predict
the target variable y. In the backward pass, we estimate the learnable parameter 6 across

different data points. See Figure [3.3] for an illustration.
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Figure 3.3. Forward pass: within one data point (X y), we infer the latent

posterior Py(z | X) by (3.3.10). We predict y; by ¥ in (3.3.13). Backward
pass: across different data points in the dataset D,,, we estimate the learnable

parameter 6 by (13.3.12)).

The finite-dimensional example illustrates a “greybox” approach to modeling, that
is, it combines the handcrafted architecture in (“whitebox”), and the learnable
parameter in (3.3.12)), which is estimated in an end-to-end manner through empirical
risk minimization (“blackbox”). As shown in Figure [3.4] the forward pass first infers the
latent variable z and then utilizes the latent variable z to predict the masked token (in the
self-supervised setting) or the unknown label (in the supervised setting). Meanwhile, the
backward pass estimatess the learnable parameter. In the following section, we extend the
finite-dimensional example to the infinite-dimensional setting, which recovers the attention

mechanism. In particular, we demonstrate that the attention mechanism infers the latent
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posterior within a data point. Also, we show that the covariate corresponds to the query

and key and that the response corresponds to the value in the attention mechanism.

. supervised
M mas '
[1
exchangeable . ....- ....................... > VA R R R R T R R PP PP >
. input-to-latent latent-to-target
LJ
input
downstream

self-supervised

Figure 3.4. The forward and backward passes in transformers. Dotted arrows
stand for forward passes (input—latent—target). Solid arrows stand for
backward passes (training). Masks (grey tokens) are only used to illustrate
the self-supervised setting (yellow box).

3.4. Attention as Latent Posterior Inference

In what follows, we demonstrate how the attention mechanism performs latent posterior
inference for the latent variable model, which is induced by the exchangeability of the
input sequence. In we extend the finite-dimensional example in to an RKHS to
induce a variant of the softmax attention, namely, the conditional mean embedding (CME)
attention. In particular, we prove that it infers the latent posterior in the forward pass. In
§3.4.2 we prove that the softmax attention has the same limit as the CME attention when
the sequence length goes to infinity, which implies that the softmax attention approximately

infers the latent posterior.
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3.4.1. Attention as Kernel Conditional Mean Embedding

Advanced Infinite-Dimensional Example. We present an infinite-dimensional version
of the preliminary example in §3.3.1, which motivates us to study the CME attention.
Similarly to (3.3.4]), we consider the following model for the input sequence X = {z} ¢e(r]

with input token z¢ € R,
(3.4.1) rt = zo(ch) + €, where ¢ =c,(2%), rf=r.(2"), V€[]

Here ¢! € R% and r* € R? are the covariate and the response, respectively, which are
determined by two unknown functions ¢, : R — R% and r, : R? — RY, ¢ : R%" — H,
is the feature mapping of the RKHS H,, z : H. — R? is a linear mapping, which is
viewed as the latent variable induced by the exchangeability of the input sequence X,
and € ~ N(0,0%I) is the Gaussian noise, which is independent of the covariate c*. Note
that ¢(ct)To(c?) = R(ch, ?) for any ¢t c? € R, where & : R%» x R® — R is the kernel
function of the RKHS H.. A common example is the Gaussian radial basis function (RBF)
kernel Rrer(q, k) = exp(—|l¢ — k||3/2v) with v > 0. Similarly to (3.3.5)), the (unknown)

target variable y is determined by its (known) input mask msk, which satisfies
(3.4.2) y = 1" = 20(c™*) + ¢, where ¥ = ®(msk).

Here we denote by ¢®* and r™¥ the covariate and the response corresponding to the input
msk, respectively, ¢® : R? — R% is an unknown function, and € ~ N(0,0%I) is a Gaussian
noise, which is independent of ¢®*. To simplify the presentation, we view the RKHS H,

as a vector space R% with d, = oco. Correspondingly, we view the latent variable z as a
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matrix in R%%. We present a rigorous characterization of z in §C.2.1| based on Gaussian
process regression. Similarly to (3.3.9)), we parameterize c,, 7., and ¢} by ¢y, 19, and cf,

where 6 € O is a learnable parameter. Similarly to (3.3.13)), we predict ¥ in the forward

pass via
7 = E[r"* | msk, X]
= rg(X)T <¢(CQ(X))¢(CQ(X))T + )\I) _1¢(c9(X))¢(cl;(msk))
(3.4.3) — rg(X)T <ﬁ(ca(X), co(X)) + M) " &(co(X), i(msk)),

where we define R(cyo(X), co(X)) = (R(co(z"), co(27)))i jerr) € RFE, R(cp(X), (msk)) =
(R(co(2?), ch(msk)))eeiz) € R, d(ca(X)) = (d(co(a)), ... dco(z)))" € RE*%, and
ro(X) = (ro(xt),...,re(xt))T € REXY We remark that recovers the empirical
version of the kernel conditional mean embedding of Pz |¢ (Song et al., 2009), where we
denote by Pr |¢ the conditional distribution of rt given ¢! (as two random variables) within
one data point, and H, = (R?)* = R? is the dual space of R? equipped with the Euclidean
kernel (-, ).

From Latent Variable Model to Attention. Recall that the attention mechanism is
defined in withg € R% K = (k',... kI)T e R>% and V = (v},... 0F)T € REX4
The kernel conditional mean embedding in (|3.4.3)) motivates us to consider the following

CME normalization,

(3.4.4) norma (R(K, q)) = (R(K, K) + \I) " &(K, q),
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where we write ﬁ(K, q) = (ﬁ(ke, q))ge[L] € RY and ﬁ(K, K) = (ﬁ(kz, kj))(i,j)e[L]x[L] € RixL
We call the attention mechanism with the CME normalization in (3.4.4)) the CME attention

and denote it by attnge. In particular, the CME attention takes the following form,
(3.4.5) attnae(q, K,V) =V 'normeg(R(K,q)) = V' (R(K, K) + )\I)flﬁ(K, q) € R
We see that the CME attention recovers when

(3.4.6) q = cp(msk), k' = co(xh), vt = re(zh), Ve e [L].

We remark that establishes a connection between the latent variable model and the
attention mechanism. In other words, the covariate ¢* of the input mask msk corresponds
to the query ¢, the covariate ¢’ of the input token x‘ corresponds to the key k* for ¢ € [L],
and the response r* of the input token x¢ corresponds to the value v* for £ € [L]. In the
attention mechanism, we denote by gy : R — R%, ky : R? — R% and v, : R? — RY the
mappings from the input token to the query, the key, and the value, respectively, with the

learnable parameter 6. In particular, we have the following correspondence,
Q9 = Cp, ke = co, Vg = Ty.

In an common example, we instantiate gy, kg, and vy for x € R? as follows,

(3.4.7)

alz) = (W) Tna(a; A),  ko(e) = (W) Tan(es 4),  vele) = (W) Tan(as A),
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where W9, Wk € R%% and WY € R¥? are learnable parameters. Here we denote by
nn(; A) : R4 — RY the feedforward neural network with the learnable parameter A and

summarize the learnable parameter as § = (A, W9, WX W"). Similarly to (3.3.12), the

2
)
2

where we write ko(X) = (ko(z1), ..., ko(xl))T € REX% and vg(X) = (vp(xt), ..., ve(2l))T €

MLE objective takes the following form,

(3.4.8) m@in IE(XW)NDH {Hy — attnes (s (msk), ko(X), vp(X))

RLxd

Limit of CME Attention with L — oo. Given an input sequence X = {z‘},c(r), we
consider the key-value pairs {(k*, v%)}se(r) obtained from k* = ko(z*) and v* = vg(") for
a fixed #. For notational simplicity, we denote by K and V the random variables with
the same distribution as (k‘,v%) within one data point. Recall that we define the CME
attention in ([3.4.5). Also, we define the covariance operator Cix = E[R(K, ) ® R(K, -)].
In the following proposition, we prove that the CME attention approximates the kernel
conditional mean embedding of Py |x as L — oco. Note that the following proposition does
not depend on the latent variable model in (3.4.1)).

Proposition 3.4.1 (CME Attention Converges to Kernel Conditional Mean Embedding).
Let R be a positive definite kernel function. We assume that {xf}gem in the input sequence
X are independent and identically distributed (within one data point) and the value ||v||

is upper bounded by 1 for any ¢ € [L]. It holds with probability at least 1 — ¢ that

L (2 (LA 1
|attnae(q, K, V) —E[V|K = 4|, = (9(\/; (X + %) log 5+ )\L‘l).
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Here T'(L™')) is the effective dimension of the covariance operator Cyx, which is defined

as F(Lil)\) = Tl"((Lil)\I + C}C]C)flc;gc).

Proof. See for a detailed proof. O

We remark that when we use the Gaussian RBF kernel fggr in the CME attention,
it holds that I'(L™'A) < O(L/)) (Zhang et al., 2015). We then have ||attne(q, K, V) —
EV|K =q]||, < O(L-A"%?log(1/6) + AL™"). Note that the CME attention attneyg is
a variant of the softmax attention (Vaswani et al., |2017) with a different normalization.
In the following section, we prove that the softmax attention has the same limit as the

CME attention when the sequence length L goes to infinity.

3.4.2. Softmax Attention Infers Latent Posterior

In §3.4.1 we demonstrate how the latent variable model motivates the design of the CME
attention. Recall that we consider the attention mechanism in the form of (3.2.1)) with
g€ R¥% K c R and V € REX?, In practice, a common normalization is defined as

follows,
(3.4.9) normgy(R(K, q)) = (1L R(K,q)) " - &(K, q),

where 1;, € R” is the L-dimensional all-one vector and we recall that £(K, ¢) = (R(k%, q))ee(r) €
RE. We denote by attngy the attention mechanism with the normalization in (3.4.9). When

the kernel function is the exponential kernel Rgxp(q, k) = exp(k'q/~) for any ¢, k € R%
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and a fixed v > 0, the attention mechanism in (3.2.1)) takes the following form,
(3.4.10) attng(q, K, V) =V normgy(Rexe (K, q)) = V' softmax(Kq/v),

which recovers the softmax attention in [Vaswani et al.| (2017). In what follows, we prove
that as the sequence length L goes to infinity, the softmax attention attngy has the same

limit as the CME attention attneg.

Softmax Attention Has the Same Limit as CME Attention with L — co. We
demonstrate that the softmax attention in is a conditional kernel density estimator
of Py k. We define the conditional kernel density estimator (KDE) as follows,

ZéLzl ﬁ(kz> q) ) ﬁ(ve7 U)

DR — -
(3.4.11) PYc(vla) = S Rk )

Y

where ¢ > 0 is the normalization factor such that [ @ﬁ‘ (v]|q)dv = 1. We remark that
although the definition of the KDE in (3.4.11)) involves the kernel function K(-,-), it is not
associated with any RKHS. A common choice of the kernel function is the Gaussian RBF
kernel fger(q, k) = exp(—||q¢ — k||3/27). In what follows, we normalize the query g, the
key k, and the value v so that ¢,k € S~ and v € S !, where S%~! and S are the
(d, —1)-dimensional and (d — 1)-dimensional unit spheres, respectively. On the unit sphere,
the exponential kernel is equivalent to the Gaussian RBF kernel. Specifically, it holds for a
given rescaling v > 0 that Rgxp(q, k) = exp(q'k/7) = C-exp(—||q—k||2/27) = C- Rrer(q, k)
for any ¢,k € R%, where C' > 0 is an absolute constant. Moreover, when we use the
exponential kernel in , the value of ¢+ does not depend on ¢. To see this, note

that [, 1 Rexe(v!, v)dv = [ou 1 Rexp(v?,v)dv for any v*,0v* € S*! due to the symmetry.
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The following proposition proves that the attention mechanism in outputs the
conditional kernel density estimator in (3.4.11) and has the same limit as the CME
attention as L — oo.

Proposition 3.4.2 (Softmax Attention Converges to Kernel Conditional Mean Embed-
ding). Recall that the softmax attention is defined in . It holds for any g € S% !
that

attngy(q, K, V) = C’/ v - @ﬁm(v | q)dv,

gd—1

where C' > 0 is an absolute constant. Meanwhile, under the condition that @& (v k) —

Py k(v | k) uniformly for any k as L — oo, it holds for L — oo that
attngu(q, K, V) = C-E[V|K = ¢].

Proof. See for a detailed proof. O

We remark that the uniform convergence @5” (V| k) = Py|x(v|k) holds when the

density of Px is bounded from below (De Gooijer and Zerom| 2003|). As shown in

Propositions [3.4.1} and [3.4.2] the softmax attention attngy and the CME attention attngyg

have the same limit as L — oo. Since the CME attention captures the latent posterior,
which is proved in §3.4.1} we conclude that the softmax attention also captures the latent
posterior approximately. Moreover, in terms of the limiting expectation E[V|K = ¢,
we highlight that it implies the necessity of using the multiple heads and connects the

attention mechanism with causal inference. See for a detailed discussion.
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Figure 3.5. As shown in Propositions [3.4.1) and [3.4.2] the softmax attention
attngy and the CME attention attneye have the same limit E[V | K = ¢ as
L — .

3.5. Excess Risk Analysis

To demonstrate the theoretical benefit of incorporating latent posterior inference into
the transformer architecture, we present a compact version of excess risk analysis for
one-layer single-head softmax attention neural networks without skip connections. See
for a detailed analysis of the complete setup of the transformer architecture.
Attention Neural Network. We specify the feedforward neural network in (3.4.7))
as nn(z; A) = ReLU(Az )| where ReLU(:) is the rectified linear unit (ReLU) activation
that operates elementwise. In the rest of the paper, we consider the attention neural
networks with a final aggregation layer to allow for the proper scaling of the outputs
in the supervised setting and the transfer capability to diverse downstream tasks in the
self-supervised setting, which is discussed in We define the following function class of

attention neural networks,
(3.5.1) Fapen = {aggeo o attnSM(qg(msk), kg(X),vg(X)) 10 = (0, A, WL WE W) € @},

where agg, : R? — R% is the aggregation layer parameterized by 6, and attngy is

the softmax attention defined in (3.4.10]) with the learnable parameters (A, W9, Wk W")

Here, for ease of presentation, we consider feedforward neural networks without bias terms.
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defined in (3.4.7). To characterize the excess risk, we specify the parameter space as
follows, which grants F,.s, a finite capacity.
Assumption 3.5.1 (Parameter Space). We assume for all 6§ = (6y, A, W9, Wk W) € ©

that

WAz < wt, V4]l < W, W2 < w¥, [A]l2 < o™,

[Wilr < RY, [W¥[[r < R, [W¥]|r < RY, |Allr < R™,

where w9, w*, WY, o™, RY, RX, RV, R™ > (.

Excess Risk. Following (3.4.8), we consider the learning objective L((X,y), f) = |ly —
f(X)|3 for f € Faren, where y is the target variable. We make the following assumption
on the training dataset.

Assumption 3.5.2 (Data Distribution). We assume that the training dataset D, =
{(Xi, i) }ien) is independently and identically drawn from the data distribution D, which

is supported on the product space X x 9), where
(35.2)  X'={X e R :maxy|2'). <R}, Y={yeR¥: |yl <1/2}.

We consider the excess risk € = E[L((X,y), f)] — E[L((X,y), f*)], where E[-] is the
population expectation over the data distribution D. Here fA € Faren 18 the attention
neural network obtained from minimizing the empirical risk IE[E((X ,Y), f)] in the training
process, where IEAE[] is the empirical expectation over the training dataset D,,. Here
f*(X) = Ely| X] is the regression function that we aim to approximate. In other words,

f* is the optimal model that minimizes the population risk E[L((X,y), f)].
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To analyze the excess risk £, we decompose it into three terms,

(3.5.3)
€ :E[L((X,y),ﬂ] —IE[,C((X,y),m +I@[£(<X,y),f)] — min E[ﬁ((X,y)af)]

fefattn

N J/

TV
Egen: Generalization Error

+ min E[ﬁ((X,y),f)} —E[c((X,y),f*)} +E[£((X,y),m —E[ﬁ((x,y),f)l.

fej'—attn
&

S/

Eapprox: Approximation Error Eopt: Optimization Error

where f = argmin FEFavtn E[ﬁ((X ,Y), )] is the attention neural network that minimizes the

empirical risk over Faiin.

In §3.5.143.5.3 we analyze the three terms on the right-hand side of (3.5.3) in the

supervised setting. In §3.6] we extend the following analysis of the approximation error

Eapprox to the self-supervised setting.

3.5.1. Generalization Error Analysis

Recall that the softmax attention in (3.4.10|) is instantiated via the exponential kernel,
which is equivalent to the Gaussian RBF kernel when ¢ and % are on the unit sphere S%»~1.
Also, note that vector fo-norm scales with the dimension d, at the rate of /d,. In the rest

of the paper, we consider the Gaussian RBF kernel with inputs rescaled by 1/4/d,, i.e.,

(3.5.4) e (a0, k) = exp(=lla/v/dp — k/\/dy|[3/2) = exp(=llg — k[|3/2d,).

Under Assumption we define

max{a™ o} o R™ RY RX + R4 ¢ (wd+ w2 RY
= max{a™, w = max - = .
’y ) b b wv ) (wq —"_ wk) . wV ]

[0 wV
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Recall that F,i¢n is the family of attention neural networks defined in . Let aggy, i
be the j-th entry of the aggregation layer agg, with j € [dy]. We provide the following
characterization of the generalization error Egep,.

Theorem 3.5.3 (Generalization Error). Let D = max{d, d,,d,}. Suppose that Assump-
tions hold. We assume that agg, has the output range within ) and agg,, ; is
1-Lipschitz with respect to the || - [[p-norm for all j € [dy]. Then, for any ¢ > 0, it holds

with probability at least 1 — J that

D log(1/6

Eron = O( 2= . [\/log L+ 7) + /log (1 + CR) + v/log(1 + 1)) + 1/ 28U/,
Vi n

Proof. See for a detailed proof. ]

An important implication of Theorem [3.5.3|is that the generalization error for attention
neural networks does not degrade as the sequence length L goes to infinity. It is also worth
mentioning that the constants «, w,R™, R**** and R play crucial roles in the theoretical
analysis of the generalization error and justify the architecture design of the original
transformer. In specific, we observe that (i) skip connections help reducing o, w, R™, and
R*** and (ii) layer normalizations help reducing R when there is multilayer composition
of many attention mechanisms. See for a more involved analysis of the generalization

error of the complete setup of the transformer architecture and the related discussion.

3.5.2. Approximation Error Analysis

In what follows, we characterize the approximation error in the supervised setting.
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Approximation Target. We aim to approximate the regression function f*(X) = E[y | X|
with the attention neural network fy € Faen, which is defined in (3.5.1)). The regression
function f*(X) is the optimal model in the sense that it minimizes the population risk
E[L((X,y), f)]. By Lemma[3.3.2] when the input mask msk and the latent variable z are
given, the target variable y is independent of the input sequence X. Thus, the regression

function f*(X) can be decomposed as follows,

f1(X) =E[y| X] = E.| x [E[y | msk, ]]

(35.5) _ / Efy | msk, 2] P(2] X)dz.
_
g"(z;msk) : latent-to-target
Here the latent-to-target mapping ¢g*(z;msk) can be viewed as a decoding function, which
maps the latent variable z to the target variable y given the input mask msk. On the
other hand, the latent posterior P(z | X) encodes the input sequence X into the latent
variable z. We note that the input mask msk describes the prediction task and is fixed
throughout. For example, the input mask msk corresponds to the class encoding in the
supervised setting or the positional encoding in the self-supervised setting.

From (3.5.5)), we see that approximating the regression function f*(X) involves cap-
turing (i) the latent posterior P(z | X) and (ii) the latent-to-target mapping ¢*(z;msk).
Corresponding to (i), the latent variable z summarizes the “concept” of the input sequence
X, while corresponding to (ii), the target variable y and the input mask msk specify the
prediction task. In the following, we demonstrate the central role of the latent-to-target

mapping ¢*(z;msk), which attention neural networks aim to approximate.
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Approximation Surrogate. We define the reweighted CME attention
(3.5.6) fi (X msk) = W attng (¢ (msk), k. (X), v.(X))

as a surrogate function for approximating the regression function f*(X) in (3.5.5). Here the
reweighting parameter W € R¥% satisfies ||W||r < co. In the sequel, we demonstrate that

the latent-to-target function contained in f;V(X ;msk) approximates the latent-to-target

mapping ¢*(z;msk), which is a key component of the regression function f*(X). By (3.4.3)

and ((3.4.5)), we have

W attnes (. (msk), ki (X), v.(X)) = WE[v"* | msk, X]

(3.5.7) =w' / E[v"* | msk, 2] P(z| X)dz,
—_——
¥ (z;msk): latent-to-value
where ¢,(msk) and v™* replace ®(msk) and r™* in (3.4.2)), respectively. Taking ([3.5.7)
into (3.5.6)), we obtain

(3.5.8) fi (X msk) = /WT¢(z;msk) P(z| X)dz =E.|x [g;,(z;msk)},

9y (X msk)

where ¢l (z;msk) is a latent-to-target function parameterized by W e R4,

Following the infinite-dimensional counterpart of , the reweighted CME attention
captures the latent posterior P(z | X') under the latent variable model in , where the
latent prior is Gaussian. Comparing and , we see that the reweighted CME
attention fVTV(X ;msk) performs the latent-to-target decoding via giv(z;msk), which plays

the same role as the latent-to-target mapping ¢*(z;msk). Thus, it remains to characterize
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the expressity of the function class
(3.5.9) Gl = {gIT,V(z;msk) =W (z;msk) : W € R™Y ||W||p < oo}

in terms of approximating the latent-to-target mapping ¢*(z;msk) in (3.5.5)).

To characterize the function class G defined in (3.5.9)), we define the function class
(3.5.10) Gl = {gly;(z:msk) = w] ¥(z;msk) : w; € RY, [lw;|; < 00},

which is formed by the i-th entry of the latent-to-target function gIT,V(Z; msk) € G'. Here
i € ldy] and W = [wy, ... ,wdy]T. Note that the function class gj is the RKHS H;1y induced
by the kernel function f1y(2, 2/;msk) = ¥ (z;msk) " (2; msk), which is a reproducing kernel.

Here the latent-to-value (LTV) mapping v (z;msk) is defined in (3.5.7). See §C.5.1] for a

detailed discussion. See Figure for a visualization of the construction of Hyry.

Reweighted

I?y belief
k4 gy, (z;msk)
W, A
2 gy : Projection
g, H
1‘:37 H%Lw,oo

X {. . .\ Pi|X) Ely; | msk, 2] = g*(zi msk)
, z '.
‘ latent posterior latent-to-target

Figure 3.6. The RKHS H;ry induced by the latent-to-value mapping
Y (z;msk). The input mask msk describes the prediction task and deter-
mines the RKHS H;y.
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Therefore, the reweighted CME attention fVTV(X ;msk) in aims to capture the
i-th entry gf(z;msk) of the latent-to-target mapping ¢*(z;msk) within the RKHS H;1y. To
this end, we make the following assumption on the fundamental hardness of the recovery
task.

Assumption 3.5.4 (Recovery Gap). For any fixed input mask msk, let

gy (imsk) = Ty o0 (g7 (msk)) = argmin ||g; (-;msk) — g;(-;msk)||
9 (-msk)EHry

be the (. -norm projection of the i-th entry ¢;(z;msk) of the latent-to-target mapping

g*(z;msk) onto the RKHS H;ry. We assume that there exists €,(msk) € [0, +00) such that

dy
> |lgi (s msk) — gy, (msk) || < € (msk).
=1

Here the /,.-norm is taken over the latent variable z.

Recall that the function class of attention neural networks F,en is defined in .
We have the following theorem characterizing the approximation error E,pprox defined in
(13.5.3).

Theorem 3.5.5 (Approximation Error). Let {g‘TW(z; msk) = w; ¥(z;msk)}iciq,) be a
function class satisfying Assumption W We define W = [w], - - ,w}y]T. Suppose that
there exists fp € Fartn and €apen € [0, +00) such that

(3.5.11) sup
Xexl

fO(Xa IIlSk) - WTattnCME (Q* (mSk)a ki* (X), V4 (X)) H2 S €attn,
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where X% is defined in (3.5.2)). Then, we have
Eapprox < 263 (msk) + 262,
Proof. See for a detailed proof. O

The approximation error bound in Theorem m involves the recovery gap €,(msk)
and the surrogate approximation error €,44,. Since the latent posterior P(z | X) is captured
by the reweighted CME attention, the recovery gap ¢,(msk) between the function class G
in and the latent-to-target mapping ¢*(z;msk) in plays the central role in
the approximation error bound. On the other hand, the approximation error €,.., between

attention neural networks in F,tn and the reweighted CME attention is characterized in

Proposition [3.4.2

3.5.3. Optimization Error Analysis

Since the learning objective of attention neural networks is nonconvex with respect to the
parameter 6, we consider the property of the stationary points. Let h= (50, g, Wq, /V[7k, WV)

be the stationary point of the empirical risk IE[ﬁ((X, y), f)], that is,
(3.5.12) <v91@[£((x, y>,f§)},e . §> >0, Vheo,

which is the learnable parameter obtained in the training process, i.e., ]? = f;. Recall
that the regression function f*(X) = E[y| X] is the minimizer of the population risk
E[L((X,y), f)]. We have the following proposition characterizing the optimization error

Eopt, Which is defined in (3.5.3)).
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Proposition 3.5.6 (Optimization Error). Suppose that Assumption holds. Then, it

holds that
(3.5.13) &mSZgg@NMXHWMMXWW—Q—fWHM]
Proof. See §C.4 for a detailed proof. O

The right-hand side of (3.5.13)) quantifies the expressity of the function class defined

by the local linearization,
{3(X) + Vo f3(X)T(0 - 0) : 0 € ©}.

In the neural tangent kernel (NTK) regime (Yang, 2020; [Yang and Littwin, |2021}; |Jacot

et al., |2018)), it is known that,
F1(X) = f3(X) + Vo f3(X) (0= 0) +0(1), VX € R,

where the o(1) error captures the local linearization error in the NTK-based analysis.
As a consequence, the optimization error satisfies £,y = o(1), that is, the stationary
point 0 is (approximately) global optimal. Such a result shows the theoretical benefit of
incorporating feedforward neural networks in the architecture design. While NTK-based
analysis involves a random initialization in the supervised setting, Malladi et al.| (2022)
provide an NTK-based analysis for the downstream training of the transformer with a

pretrained initialization in the self-supervised setting.
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3.6. From Supervised Learning to Self-Supervised Learning

An important aspect of the attention mechanism is that one can obtain a sequence
embedding by pretraining in a self-supervised manner, which gives rise to the transfer

capability for diverse downstream tasks.

Self-Supervised Learning. The attention mechanism enables embedding learning and

downstream prediction via the self-supervised learning (SSL) process as follows.

(PT) Pretraining process: We train an attention neural network pr()_( ;mskpy) =
ngT()_( ;mskpr) € JFpr with the learned parameter §pT to predict the masked

L ¢ R?, which is denoted by %pr, from the truncated input sequence

token z
X = {l’é}ge[L_l] and the input mask mskpr. Here the function class of attention

neural networks for the pretraining process is defined as follows,

(3.6.1) Fpr = {agggT o attnSM(qg(mska), k;g()_(),vg()_()) RS @pT},

where aggh’ : R? — R is the aggregation layer. For the pretraining process, the
input mask mskpr is the positional encoding of the masked token z”.

(DS) Downstream task: We freeze the learned parameter ng and train another attention
neural network ]/‘"\Ds()_( ;mskpg) = Jos (X;mskpg) € Fps with the learned parameter
§Ds to predict another target variable yps € R% from the truncated input sequence

X = {:L‘e }eeiz—1) and another input mask mskps. Here the function class of attention

neural networks for the downstream task is defined as follows,

(3.6.2) Jos = {agggs o attngy (g, (mskps), kg, (X),v5, (X)) : 0 € @Ds},
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which means that the aggregation layer agggs : RY — R% replaces the aggregation
layer agggT : R? — R? obtained in the pretraining process. For the downstream
PT

task, the input mask mskpg is the class encoding of the target variable ypg.

With the full input sequence X replaced by the truncated input sequence X, the attention
neural network J/C]\)S (X;msk) obtained in the SSL process has the same decomposition of
the excess risk as that in . In the risk decomposition, for the SSL process, we have
the same characterization of the generalization error and the optimization error as those
in the supervised setting. When the downstream task is trained using the same set of
truncated input sequences as that in the pretraining process, our previous analysis of the
generalization error in the supervised setting is applicable to the SSL process. On the
other hand, when the downstream task is trained using an independent set of truncated
input sequences, we can modify our previous analysis to prove that the generalization
error only scales with the complexity measure (e.g., the covering number) of the function
class {aggh® : 6 € Ops} of aggregation layers without depending on that of the attention
mechanism, as fpr is frozen. Also, the attention neural network ﬁT()_( ;msk) obtained
in the pretraining process has the same approximation error as that in the supervised
setting. To characterize the approximation error for the SSL process, we analyze the
approximation error for the downstream task by connecting it to the approximation error

for the pretraining process.

Approximation Error. In parallel to the supervised setting, we define the regression

function and the latent-to-target mapping for the pretraining process as follows,

(3.6.3) Jor(X) = Elyer | X], gpr(z;mskpr) = E[ypr | mskpr, 2].
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Correspondingly, we defined the regression function and the latent-to-target mapping for

the downstream task as follows,
(3.6.4) fos(X) = Elyps | X], 9ps(7; mskos) = E[yps | mskps, 2].

In parallel to the reweighted CME attention defined in ([3.5.6)), we defined the surrogate

functions for the pretraining process and the downstream task as follows,

fJVPT ()_(; mskpr) = WPTrattnCME (q* (mskpr), ki (X)), vi(

<l

).

(3.6.5) fJVDS (X; mskps) = Wysattnow (¢.(mskps), ki (X), v.(X)),

where Wpy € R¥4 and Wy € R¥% are the reweighting parameters. We use the surrogate
function to bridge the regression function and the attention neural network, which is
illustrated in Figure [3.7, In parallel to the latent-to-value mapping ¢ (z;msk) defined
in , we define the latent-to-value mappings for the pretraining process and the

downstream task as follows,
Ypr(2; mskpr) = E[v™*" | mskpr, 2], ps(2;mskps) = E[v™** | mskpg, 2],

where v™¥1 and v™¥s replace r™* in (3.4.2]). The latent-to-value mappings induce the

kernel functions as follows,

ﬁ1>T(Za 2/5 mSkPT) = @ZJPT(Z;mSkPT)T%DPT(Z/;mSkPT)a

Ros(z, 2’y mskps) = ps(2; mSkDS)T¢Ds(Z,§ mskps),
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which induce the RKHSs Hpr and Hps. Corresponding to (3.5.8)), we have

fJVPT ()_(;mska) = /W;¢pT(2;mskaZ-P(z | )_()dz = Ezﬁ( [gI,VPT(z;mska)],

gIthT ()_(; mskpr)

(3.6.6) f;rVDs (X;mskps) = /W];st(z;msszz-P(z | X)dz = E, % [QIT;VDS(Z;mSsz)]-

gItVDS (X ; mskpg)

Note that fJVPT (X;mskpr) and fJVDS (X;mskps) share the same latent posterior since the
attention mechanism is frozen for the downstream task. By our previous arguments
following (3.5.8)-(3.5.10)), it remains to characterize how the reweighted CME attentions
in (3.6.5) recover the latent-to-target mappings in — within the RKHSs Hpr

and Hps. See Figure [3.7] for an illustration of the construction of the RKHSs Hpr and Hps.
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Pretraining

7 Projection Iz,

\,“ Ag‘LPT’i(z; NSkPT)

= P(z| X)
Xﬁ. . - latent ;osterior <

T 5
%4 ans,i(Z’ ESKDS)

Projection ITg _

Downstream

Figure 3.7. The RKHSs Hpr and Hps induced by the latent-to-value map-
pings ¥pr(z; mskpr) and vpg(z; mskps), respectively. The input masks mskpr
and mskpg describe the pretraining process and the downstream task, respec-
tively, and determine the RKHSs correspondingly. The ¢,.-norm projections
3450 00 and Tl oo are defined in Assumption [3.6.1]

In parallel to Assumption [3.5.4) we introduce the following assumption on the funda-
mental hardness of approximating the latent-to-target mappings within the RKHSs Hpr
and Hns.

Assumption 3.6.1 (SSL Recovery Gap). For any fixed input masks mskpr and mskpg, let

giva,i('QmSkPT) = Tpgpr,00 (G (;mSker)) = argmin || gpy (-3 msker) — gi(~;mska)||oo,
gi(-;mskpr) EHpr

givps,i(ﬁmSkDS) = Tpp,00 (QSs,i('3mSkDS)) = argmin Hggs,z‘(';mSkDS) - g,-(-;mskns)Hoo,
9i(-;mskps ) € Hps

Iy (- mSkos) = Tagg oo (gop (- msker)) = argmin || gpy (- msker) — gi(-; mskps) |
gi(-smskps) € Hps
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be the {o-norm projections of the i-th entry gi; ;(2;mskpr) of the latent-to-target mapping
gpr(z;mskpr) onto the RKHS Hpr, the i-th entry gjs;(2;mskps) of the latent-to-target
mapping gps(2; mskps) onto the RKHS Hpg, and the i-th entry ggr;(2; msker) of the latent-
to-target mapping gpr(2; mskpr) onto the RKHS Hpg, respectively. We assume the following

statements hold.
(PT) There exists €,(mskpr) € [0, +00) such that
d
" 2
(3.6.7) > NGz msker) — giy,, (- msker) || < €2 (mskor).
i=1
(DS) There exists €,(mskps) € [0, +00) such that

dy
(3.6.8) ZHg;;s’i(-;mssz) — g‘T/VDSVZ-(-;mssz)HZo < eg(mssz).
i=1

(SSL) There exists eggr(mskpr, mskpg) € [0, +00) such that

d

(3.6.9) >

i=1

. 2
gPT’i(-;mska) - givssm(-;mskDS)HO0 < E§SL(mska,mssz).

Here the ¢.-norms are taken over the latent variable z.

Intuitively, the feature ¥pr(z; mskpr) is obtained in the pretraining process, while the
feature ipg(2z; mskpg) is desired by the downstream task. Meanwhile, characterizes
the fundamental hardness of recovering the latent-to-target mapping gp(z; mskpr) for the
pretraining process within the RKHS Hps. Thus, the transfer error egg(mskpr, mskpg)
captures the transfer capability of the sequence embedding obtained in the pretraining
process to the downstream task. In other words, when the pretraining process is sufficiently

related to the downstream task, the transfer error egs.(mskpr, mskps) is small, which allows
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us to approximate the i-th entry of the latent-to-target mapping gs;(2; mskpr) within the
RKHS Hps up to the approximation error egg (mskpr, mskpg).

We introduce the following assumption on the condition number that characterizes the
alignment between the reweighting parameter desired by the downstream task and the
reweighting parameter obtained in the pretraining process.

Assumption 3.6.2 (SSL Condition Number). Let {gi%s’i(z; mskps) = wWpg ;¢bs (3 mSkps) }ic(g
and {QIT/VSSL,i(Z?mSkDS) = wsTSLJ-@DDs(Z; mskps) }ic[q,] De the function classes satisfying
and in Assumption , respectively. Also, let Wps = [wps 1, - - - ,st,dy]T € R¥xdy

West. = [WssL 1, - - - >wSSL,d]T € Réxd, andﬂ
(3.6.10) B = Wys(Was. Wesy )™ WegL € R,

We assume that there exists p € [0, +00) such that | B||3 < u.

The condition number p plays a critical role in our subsequent analysis. To see
the intuition behind pu, let Wps = Wser, which implies that B is a projection matrix
and = 1. Also, let the row vectors of Wsg be an orthonormal basis of R?, which
implies that WSSLWSTSL = Iq, and B = WDTSWSSL. In this case, B measures the subspace
alignment between the reweighting parameter Wyg desired by the downstream task and
the reweighting parameter Wsg obtained in the pretraining process. In general cases
where Wsgp is nonorthonormal, we have a similar interpretation through the eigenvalue
decomposition of Wgg W, -

Recall that pr()_( ;mskpr) is the attention neural network obtained in the pretraining

process. For any U € R%*?4 we define the following quantity that characterizes the

2For ease of presentation, we assume that WSSLWS—EL € R4*4 ig invertible. When WSSLWSZL is not invertible,
our subsequent analysis can be generalized using the pseudoinverse of Wgs; W .
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expressity of the function class {aggp® : 0 € Ops} of aggregation layers for the downstream

task,
€agg(U) = inf  sup ||st()_(;mssz) — U]?pT()_(;mska)H2
fos€Fs g exL—1
— inf sup [agel o attne(qy, (mskos). by (%), vp, (X))
0€Ops Xexl-1
(3.6.11) — UagggT o attngy (quT(mska), kg, (X), vng()_())‘ iy

where X*~1 is defined in . Since the attention mechanism is frozen for the downstream
task, the trainable part of the attention neural network is the aggregation layer aggh®.
Thus, the aggregation approximation error €,z (U) characterizes the expressity of the
function class {aggp® : 0 € Ops} of aggregation layers in terms of approximating the
composition of (i) the linear transformation U aggggT of the aggregation layer obtained in
the pretraining process and (ii) the output variation induced by switching the input mask
mskpr to another input mask mskpg in the attention mechanism, which is frozen. To see the
intuition behind €,4,(U), let mskpr = mskps, which implies that €,5,(U) = 0 as long as the
function class of aggregation layers takes the form of {aggh® = U agg;g:T 10 =U € Rb*d},
In this case, €ag(U) characterizes the compatibility between aggp® and agg;;:T under a
linear transformation parameterized by . In general cases where mskpr # mskpg, eagg(U )
additionally characterizes the capability of aggp® to capture the output variation induced

by switching the input mask.
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Recall that the function class Fpr of attention neural networks for the pretraining

process is defined in (3.6.1]). Let

(36.12) 0t = min E[L((K.yen). £)] = E[L((F.gor). )]

be the approximation error for the pretraining process, which is characterized in Theorem
3.5.5] Recall that the function class Fps of attention neural networks for the downstream
task is defined in (3.6.2). For the downstream task, the approximation error in (3.5.3))

takes the following form,

(36.13) Euppre = min B[L((X, y0s). f) | = B[L((X, 1oe). S5 |

The following theorem characterizes the approximation error E,pprox for the SSL process.

Theorem 3.6.3 (SSL Approximation Error). Under Assumptions[3.6.1]and |3.6.2} it holds

that

Eapprox = O(u . (Ea‘fgpmx + €24, (mskpr, mssz)) + ez(mssz) + eigg(B)>,

where EFT €sst.(mskpr, mskps), €,(mskps), and €,q.(B) are defined in (3.6.12), (3.6.9),

approx’

(3.6.8), and (3.6.11)), respectively, and B is defined in ((3.6.10)).

Proof. See for a detailed proof. O

Theorem [3.6.3] demonstrates that the attention neural network enables the transfer
capability to diverse downstream tasks, where the approximation error is subsume from
that in the supervised setting with a few extra error terms. We interpret the approximation

error in Theorem [B.6.3] as follows.
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(i) The condition number p characterizes the the alignment between the reweighting
parameter Wpg desired by the downstream task and the reweighting parameter
Wsgr obtained in the pretraining process. When Wpg = Wagr, we have u = 1.

(ii) The approximation error &7 for the pretraining process is characterized in
Theorem . Specifically, £, involves the pretraining recovery gap €,(mskpr)
defined in , which characterizes the fundamental hardness of approximating
the i-th entry ggr;(z;mskpr) of the latent-to-target mapping ggr(2;mskpr) defined
in (3.6.3) within the RKHS Hpr, and the attention approximation error €,in
defined in , which is characterized in Proposition m

(iii) The transfer error esg (mskpr, mskpg) captures the transfer capability of the sequence
embedding obtained in the pretraining process to the downstream task. By our
previous arguments following Assumption , €sst(mskpr, mskpg) is small as long
as the pretraining process is sufficiently related to the downstream task.

(iv) The downstream recovery gap €,(mskpg) defined in (3.6.8)) characterizes the fun-
damental hardness of approximating the i-th entry ggs ;(2;mskps) of the latent-to-
target mapping gps(z; mskpg) defined in (3.6.4]) within the RKHS Hps.

(v) The aggregation approximation error e, (B) measures the expressity of the
function class of aggregation layers for the downstream task. By our previous
arguments following , €agg(B) is small as long as the aggregation layer
aggh® for the downstream task can approximate the composition of the linear
transformation B aggggT of the aggregation layer obtained in the pretraining process
and the variation induced by switching the input mask mskpr to another input

mask mskps.
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CHAPTER 4

What and How does In-Context Learning Learn? Bayesian

Model Averaging, Parameterization, and Generalization

In this paper, we conduct a comprehensive study of In-Context Learning (ICL)
by addressing several open questions: (a) What type of ICL estimator is
learned within language models? (b) What are suitable performance metrics
to evaluate ICL accurately and what are the error rates? (c¢) How does the
transformer architecture enable ICL? To answer (a), we take a Bayesian
view and demonstrate that ICL implicitly implements the Bayesian model
averaging algorithm. This Bayesian model averaging algorithm is proven to be
approximately parameterized by the attention mechanism. For (b), we analyze
the ICL performance from an online learning perspective and establish a regret
bound O(1/T'), where T is the ICL input sequence length. To address (c), in
addition to the encoded Bayesian model averaging algorithm in attention, we
show that during pertaining, the total variation distance between the learned
model and the nominal model is bounded by a sum of an approximation error
and a generalization error of O(1/ \/NpTp,), where Ny, and T}, are the number
of token sequences and the length of each sequence in pretraining, respectively.

Our results provide a unified understanding of the transformer and its ICL
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ability with bounds on ICL regret, approximation, and generalization, which

deepens our knowledge of these essential aspects of modern language models.

4.1. Introduction

With the ever-increasing sizes of model capacity and corpus, LLM have achieved
tremendous successes across a wide range of tasks, including natural language understand-
ing (Dong et al., [2019; |Jiao et al 2019), symbolic reasoning (Wei et al.| 2022c; Kojima
et al., 2022)), and conversations (Brown et al. 2020; (Ouyang et al., |2022). Recent studies
have revealed that these LLMs possess immense potential, as their large capacity allows
for a series of emergent abilities (Wei et al.| 2022b; |Liu et al., [2023). One such ability is
ICL, which enables an LLM to learn from just a few examples, without tuning parameters.
Since the examples are provided in natural language, ICL offers an interpretable way for
humans to communicate with and impart knowledge to LLMs (Liu et al., 2021} |Dong
et al., 2022).

Despite the immense empirical successes of ICL, its theoretical understanding remains
limited. Specifically, existing works fail to explain why LLMs the ability for ICL, how
the attention mechanism is related to the ICL ability, and how pretraining influences ICL.
Although the optimality of ICL is investigated in Xie et al.| (2021)) and Wies et al.| (2023),
these works both make unrealistic assumptions on the pretrained models, and their results
cannot clarify the importance of the attention mechanism in ICL.

We focus on the scenario where transformers are first pretrained on a large dataset and
then prompted to perform ICL. Our goal is to analyze both the pretraining phase and

the ICL performance of the pretrained model, aiming to understand why LLMs possess
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such a strong ability for ICL and how this ability relates to the pretraining process. This
boils down to three questions: (a) What type of ICL estimator is learned by LLMs?
(b) What are suitable performance metrics to evaluate ICL accurately and what are the
error rates? (c¢) How does the transformer structure enable ICL? The first and the third
questions demand distilling the ICL process from the transformer structure itself. It relies
on analytically analyzing the inference in transformers. The second question then requires
statistically analyzing the extracted ICL process. Beyond the mentioned analytic analysis,
the third question also necessitates a statistical analysis of the pretrained transformer.
To address the first question, we show that the perfectly pretrained LLMs perform
ICL in the form of Bayesian model averaging and that the attention mechanism in the
transformer parameterizes the Bayesian model averaging. For the second question, we adopt
an online learning setting and analyze the ICL regret of this extracted Bayesian model
averaging algorithm. Finally, for the third question, we apply a PAC-Bayes framework to
analyze pretraining error and build a connection between pretraining error and ICL regret.
In this paper, we first show that the perfectly pretrained LLMs performs Bayesian
model averaging over a general model in ICL in Theorem [4.4.1 which subsumes the
models in previous works. Based on this, we derive the ICL regret of the Bayesian model
averaging as O(1/T). Here T is the number of ICL examples. To build a connection
with the transformer, we show that the attention mechanism approximately parameterizes
the Bayesian model averaging as T goes to infinity in Proposition [£.4.3] In addition, we
analyze the pretraining of transformers and show that the total variation distance of the
learned model and the nominal distribution is bounded by the sum of approximation

error and generalization error in Theorem m The generalization error is O(1/1/N,1}),
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where N, and T}, are the number of token sequences and the length of each sequence in
the pretraining dataset, respectively. The approximation error decays exponentially with
the depth of the transformer. This features the first pretraining analysis of transformers in
total variation distance, which also takes the approximation error into account. In Theorem
4.6.2| we show that the ICL regret of the pretrained model is the sum of the pretraining
error and the O(1/T) regret for Bayesian model averaging with the true distribution.
Moreover, even when the input-output mappings are wrong in the example, we show that
LLMs can identify the nominal concept if the nominal concept is separated from other
concepts with respect to KL divergence, which is called the distinguishable case. The

performance guarantee for ICL in the distinguishable case is provided in Proposition

4.2. Related Work

In-Context Learning. After Brown et al. (2020)) showcased the in-context learning
capacity of GPT-3, there has been a notable surge in interest towards enhancing and
comprehending this particular ability (Dong et al., 2022). The in-context learning ability
has seen enhancements through the incorporation of extra training stages (Min et al.|
2021; Wei et al., 2021b} Iyer et al., 2022), carefully selecting and arranging informative
demonstrations (Liu et al.| 2021; Kim et al.,[2022; Rubin et al., 2021} Lu et al.; 2021)), giving
explicit instructions (Honovich et al., 2022; Zhou et al.l 2022b; Wang et al.| 2022)), and
prompting a chain of thoughts (Wei et al., [2022¢; |Zhang et al., [2022c; [Zhou et al. 2022a).
In efforts to comprehend the mechanisms of ICL ability, researchers have also conducted
extensive work. Empirically, Chan et al| (2022)) demonstrated that the distributional

properties, including the long-tailedness, are important for ICL. |Garg et al.| (2022)
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investigated the function class that ICL can approximate. Min et al.| (2022)) showed that
providing wrong mappings between the input-output pairs in examples does not degrade the
ICL. Theoretically, Akytirek et al. (2022), von Oswald et al.| (2022)), and |Dai et al.| (2022)
indicated that ICL implicitly implements the gradient descent or least-square algorithms
from the function approximation perspective. However, the first two works only showed
that transformers are able to approximate these two algorithms, which may not align with
the pretrained model. The last work ignored the softmax module, which turns out to be
important in practical implementation. |Li et al.| (2023)) viewed ICL from the multi-task
learning perspective and derived the generalization bound. [Xie et al.| (2021)) analyzed ICL
within the Bayesian framework, assuming the access to the nominal language distribution
and that the tokens are generated from Hiddn Markov Model (HMM)s. However, the first
assumption hides the relationship between pretraining and ICL, and the second assumption
is restrictive. Following this thread, [Wies et al. (2023) relaxed the HMM assumption and
assumed access to a pretrained model that is close to the nominal distribution conditioned
on any token sequence, which is also unrealistic. Two concurrent works [Wang et al.| (2023)),
and Jiang (2023)) also provide the Bayesian analysis of ICL. Unfortunately, these Bayesian
works cannot explain the importance of the attention mechanism for ICL and clarify how
pretraining relates to ICL. In contrast, we prove that the structure of attention enables
Bayesian model averaging and related the pretraining error of transformers to the ICL
regret.

Transformers. Our work is also related to the works that theoretically analyze the
performance of transformers. For the analytic properties of transformers, Vuckovic et al.

(2020) proved that attention is Lipschitz-continuous via the view of interacting particles.
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Noci et al.|(2022) provided the theoretical justification of the rank collapse phenomenon in
transformers. [Yun et al.| (2019) demonstrated that transformers are universal approximators.
For the statistical properties of transformers, Malladi et al.| (2022), Hron et al.| (2020)),
and Yang (2020) analyzed the training of transformers within the neural tangent kernel
framework. Wei et al.| (2022a)) presented the approximation and generalization bounds
for learning boolean circuits and Turing machines with transformers. [Edelman et al.
(2021) and |Li et al. (2023)) derived the generalization error bound of transformers. In
our work, we analyze transformers from both the analytic and statistical sides. We show
that attention essentially implements the Bayesian model averaging algorithm in the
ICL setting. Furthermore, we derive the approximation and generalization bounds for

transformers in the pretraining phase.

4.3. Preliminary

Notation. We denote {1,---, N} as [IN]. For a Polish space S, we denote the collection
of all the probability measures on it as A(S). The total variation distance between two
distributions P, @ € A(S) is TV(P, Q) = sup scs |P(A) — Q(A)|. The i** entry of a vector
z is denoted as x; or [z];. For a matrix X € RT*?, we index its i*" row and column as X;..

and X.; respectively. The £,, norm of X is defined as || X||,, = (320, | X

1
9)1/4, and the

Frobenius norm of it is defined as || X ||p = || X||2.2-

Attention and Transformers. Attention mechanism has been the most powerful and
popular neural network module in both Computer Vision (CV) and Natural Language
Processing (NLP) communities, and it is the backbone of the LLMs (Devlin et al., [2018;

Brown et al., 2020). Assume that we have a query vector ¢ € R%. With T key vectors in
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K € R™d and T value vectors in V € RT*4 the attention mechanism maps the query
vector q to attn(q, K, V) = V softmax(K¢q), where softmax normalizes a vector via the
exponential function, i.e., for z € R% [softmax(z)]; = exp(z;)/ Z?Zl exp(z;) for i € [d].
The output is a weighted sum of V', and the weights reflect the closeness between W
and ¢. For t query vectors, we stack them into Q € R™% . Attention maps these queries
using the function attn(Q, K, V) = softmax(QK ")V € R4 where softmax is applied
row-wisely. In the practical design of transformers, practitioners usually use Multi-Head
Attention (MHA) instead of single attention to express sophisticated functions, which
forwards the inputs through h attention modules in parallel and outputs the sum of these
sub-modules. Here h € N is a hyperparameter. Taking X € R7*? as the input, MHA
outputs mha(X, W) = Y1 attn(XWS, XWX, XWY), where W = (W2, WX WY)h_ is
the parameters set of & attention modules, W2 € R WK ¢ R™ and WY e R**
for i € [h]| are weight matrices for queries, keys, and values, and d}, is usually set to be
d/h (Michel et al.l 2019). The transformer is the concatenation of the attention modules

and the fully-connected layers, which is widely adopted in LLMs (Devlin et al., [2018;

Brown et al., |2020).

Large Language Models and In-Context Learning. Many LLMs are autoregressive,
such as GPT (Brown et al., [2020). It means that the model continuously predicts future
tokens based on its own previous values. For example, starting from a token z; € X, where
X is the alphabet of tokens, a LLM Py with parameter § € © continuously predicts the
next token according to x¢y1 ~ Py(-|S;) based on the past S; = (xq,--- ,x;) for t € N.
Here, each token represents a word and the position of the word (Ke et al., 2020), and the

token sequences S; for ¢t € N live in the sequences space X*. LLMs are first pretrained on a
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autoregressive prediction

R

A rose is either a woody perennial flowering
— plant of the genus Rosa, in the family Rosaceae , or
the flower it bears.

Concepts

Pretraining Phase: L
e.g. descriptions of plants

z~P5 € A(3) Tp1 ~ P(-[ S, 2)
prompt
Pretrained
LLM
Concepts : :
ICL Phase: e.g. biological categories (LD ENMIEL R, LIRS IR, N fungi

e mushrooms are
classification

ARSI Tppr ~ P(-[ S, 27)

Figure 4.1. To form the pretraining dataset, a hidden concept z is first
sampled according to P35, and a document is generated from the concept.
Taking the token sequence S; up to position ¢ € [T] as the input, the LLM
is pretrained to maximize the next token z;,;. During the ICL phase, the
pretrained LLM is prompted with several examples to predict the response
of the query.

huge body of corpus, making the prediction x;,1 ~ Py(-|S;) accurate, and then prompted
to perform downstream tasks. During the pretraining phase, we aim to maximize the
conditional probability Py(x | S) over the nominal token z, which can be the tokens inside
a sentence (Devlin et al., 2018) or the next token (Brown et al., 2020).

After pretraining, LLMs are prompted to perform downstream tasks without tuning
parameters. Different from the finetuned models that learn the task explicitly (Liu et al.|
2023), LLMs can implicitly learn from the examples in the prompt, which is known as
ICL (Brown et al., [2020). Concretely, as shown in Figure fig:pipeline, pretrained LLMs
are provided with a prompt prompt, = (¢1,71,...,C, T, Cer1) With ¢ examples and a
query as inputs, where each pair (¢;,r;) € X* x X is an example of the task, and ¢ is
the query. For example, the prompt, with ¢ = 2 can be “Cats are animals, pineapples

are plants, mushrooms are”. Here ¢; € X* is a token sequence “Cats are”, while ry is
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the response “animals”. The query ¢, is “mushrooms are”, and the desired response
is “fungi”. The prompts are generated from a hidden concept z, € 3, e.g., z, can be
the classification of biological categories, where 3 is the concept space. The generation
process is ¢; ~ P(-|¢y,71, -+, Ci—1,7i—1, 2+) and r; ~ P(- | prompt, ,, z.) for the nominal
distribution PP and i € [¢]. Thus, in ICL, LLMs aim to estimate the conditional distribution
P(ry11|prompt,, z.). It is widely conjectured that the pretrained LLMs can implicitly
identify the hidden concept z, € 3 from the examples, and thus perform ICL. In the
following, we will provide theoretical justifications for this claim. We note that delimiters
are omitted in our work, and our results can be generalized to handle this case. Since LLMs
are autoregressive, the definition of the notation P(- | S) with S € X* may be ambiguous.
Unless explicitly specified, we adopt P(-|S) to denote the distribution of the next single

token conditioned on S.

4.4. In-Context Learning via Bayesian Model Averaging

In this section, we show that LLMs perform ICL implicitly via Bayesian model averaging.
Given a sequence S = {(¢;, )}, with T examples generated from a hidden concept
ze € 3, we use S; = {(¢;,r;)}_, to represent the first ¢ ICL examples in the sequence.
Here ¢; and r; respectively denote the ICL covariate and response. During the ICL phase,
a LLM is sequentially prompted with prompt, = (S, ¢;41) for t € [T' — 1], i.e., the first ¢
examples and the (¢+1)-th covariate. The prompted LLM aims to predict the response ;1
based on prompt, = (S, ¢;41) whose ground-truth distribution is r; ~ P(- | prompt,, z,).
We temporarily consider the setting where we have access to the nominal pretraining

distribution P(r;;, | prompt,), i.e., the pretrained model perfectly learns the distribution,
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and we relax this condition by specifying the pretraining error in Section 4.5, For the

analysis of ICL, we take the following model to further specify 7,1 ~ P(- | prompt,, z,) as
(4.4.1) re = f(C, hi, &), V€ [T],

where the hidden variable h; € H determines the relation between ¢; and r;, & € = for
t € [T] arei.i.d. random noises, and f : X x H x = — X is a function that relates response r;
to ¢, by, and &. The hidden variables {h;}L_; form a stochastic process, whose distribution
is determined by the hidden concept z, € 3. The model in (4.4.1)) essentially assumes that
the hidden concept z, implicitly determines the transition of the belief b, = P(r, = - | &),
and it does not impose any assumption on the distribution of ¢. This model is quite
general, and it subsumes the models in previous works. When f is the emission function
in HMM and h; = h for t € [T] is the values of hidden states that depend on z, model
in recovers the HMM assumption in Xie et al. (2021). When h; = z for t € [T]
degenerate to the hidden concept, this recovers the casual graph model in Wang et al.
(2023) and the ICL model in Jiang (2023)). Under the model in (4.4.1), we show that
perfectly pretrained LLMs perform Bayesian model averaging (Wasserman, 2000).

Theorem 4.4.1 (LLMs Perform Bayesian Model Averaging). Under the model in (4.4.1)),

it holds that

(4.4.2) P(r,1 | prompt,) — / P(rer | Goen, o, 2)P(2 | S,)d.
We note that the right-hand side of (4.4.2)) is exactly the Bayesian model averaging

algorithm that takes S; and r;, 1 as the training set and the test sample, respectively. Thus,
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this theorem implies that the perfectly trained LLMs perform Bayesian model averaging
in ICL. The proof is in Appendix [D.2.1]

Next, we study the performance of ICL from an online learning perspective. Recall
that LLMs are continuously prompted with S; and aim to predict the (¢ + 1)-th covariate
ri41 for t € [T — 1]. This can be viewed as an online learning problem. For a sequence of

density estimators {P(r,)}L,, we take the following ICL regret as its performance metric,

t ¢
(4.4.3) regret, =t ' supz log P(r; | prompt, ,,2) —t " Z log I/EB(TZ)
* i=1

i=1
This ICL regret measures the performance of the estimator P compared with the best
hidden concept in hindsight. For the perfectly trained LLMs, the estimator is exactly
P(ry) = P(r41 | prompt,).
Theorem 4.4.2 (ICL Regret of Perfectly Pretrained Model). Under the model in (4.4.1)),
we have for any ¢t € [T that
t t
t Z log P(r; | prompt, ;) > sup (t’l Z log P(r; | 2, prompt, ;) +t ' log IP’Z(z)).
i=1 #€2 i=1
Here Pz is the prior of the hidden concept z € Z. When the hidden concept space 3
is finite and the prior Pz(z) is the uniform distribution on 3, we have that regret, <
log |3|/t. When the nominal concept z, satisfies that sup, Y. P(r; |z, prompt, ;) =
S P(r; | 2., prompt;_,) for any ¢ € [T, the regret is bounded as regret, < log(1/Pz(z.))/t.
This theorem state that the ICL regret of the perfectly pretrained model is the minus
logarithmic prior probability of concept divided by 7'. This is intuitive, since the regret is

relatively large if the concept z, rarely appears according to the prior distribution. The

proof of Theorem is in Appendix [D.2.2] Theorems [4.4.1] and [4.4.2] show that the
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perfectly pretrained LLMs perform Bayesian model averaging in ICL and have a ICL
regret of O(1/t). In Section 4.5, we characterize the deviation between the learned model
and the underlying true model. Next, we show how transformers parameterize Bayesian

model averaging.

4.4.1. Attention Parameterizes Bayesian Model Averaging

To simplify the presentation, we consider the case where the covariate ¢; € X* is a single
token ¢; € X in this subsection. During the ICL phase, pretrained LLMs are prompted
with prompt, = (S;, ct41) and tasked with predicting the (¢ + 1)-th response r, ;. We
assume the existence of two learnable mappings k : R? — R% and v : R? — R%_ which
are parameterized by fully connected layers, and their nominal versions k, and v, satisfy

the following relation:

(4.4.4) v = z¢(ke) + €, YVt e |[T],

where v; = v,(r;) represents the value, k; = k.(c;) denotes the key, ¢ : R% — R% refers
to the feature mapping in some Reproducing Kernel Hilbert Space (RKHS), z € Rd*d
corresponds to the hidden concept, and ¢, ~ N(0,0%I) is Gaussian noise with variance
o?. We assume that ¢ is independent across t € [T]. The mappings v and k represent
the feature extraction process in the high-dimensional space induced by transformers. In
such space, the hidden concept z represents a transformation between the value v and the
key k. Here, we simply take this as the transformation by a matrix, which can be easily
generalized by building a bijection between concepts z and complex transformations. The

pretraining of the transformer essentially learns the nominal mappings v, and k,. Note
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that (4.4.4]) can be written as
(4.4.5) Ty =v, " (qu(k*(ct)) + 6t>,

which is a realization of with hy = 2, & = ¢, and f(c, h, &) = v (hd(ki(c)) + ).
In the following, we adopt the prior of z as N (0, AI) and denote the kernel function of the
RKHS induced by ¢ as & : R% x R% — R. The stacks of the values and keys are denoted
as Ky = (ky,..., k)" € R™% and V; = (vy,...,v;) " € R™% respectively. Additionally,
we denote the query for the (¢ + 1)-th token as ¢+1 = ki1 = ki(ce1). Consequently, the

model in (4.4.4)) implies that

(4.4.6)

P(ve41 | prompt,) _/]P(Utﬂ |2, qe1)P(2 ] Sp)dz o eXP(—HUtH - 5t¢(¢]t+1)H22;1/2>7

where we denote by X, the covariance of v;11 ~ P(- | S, ¢i41), and the mean concept Z; is

1

(4.4.7) z = Vi(o(K) (KT + M) T o(K,) = Vi(R(K;, K,) + M) ™ 6 (K;).

Combining (4.4.6)) and (4.4.7)), we can see that Z;¢(g:+1) essentially measures the similarity

between the query and keys, which is quite similar to the attention mechanism defined
in Section . However, here the similarity is normalization according to (4.4.7]), not
by softmax. This motivates us to define a new structure of attention and explore the
relationship between the newly defined attention and the original one. For any ¢ € R%

K € R™% and V € R”*% we define a variant of the attention mechanism as follows,

(4.4.8) attni(q, K, V) = V' (R(K, K) + M) &(K, ).
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From (4.4.6)), , and (4.4.8)), it holds that the response v;1 for (¢ + 1)-th query

is distributed as vi4; ~ N(attng(gi1, K, Vi), 2:). Recall that we define the softmax

attention (Vaswani et al., 2017) for any ¢ € R%*, K € R™%_ and V € R™>*% as
attn(q, K,V) = V' softmax(Kq)

In the following proposition, we demonstrate that the attention in converges to the
same limit as the softmax attention as the sequence length goes to infinity.

Proposition 4.4.3. We assume that the key-value pairs {(k;, v;)}._, are independent and
identically distributed, and we adopt Gaussian RBF kernel Kggr. In addition, we assume
that ||k¢||2 = ||v¢|| = 1. Then, it holds for an absolute constant C' > 0 and any ¢ € R%

with ||g|| = 1 that

lim attn;(¢, Kr,Vr) = C - lim attn(q, K7, Vr).
T—o0 T—o0

The proof is in Appendix [D.2.3] Combined with the conditional probability of vy in
(4.4.6)), this proposition shows how the attention mechanism parameterizes the Bayesian

model averaging in long token sequences (Wasserman), 2000).

4.5. Theoretical Analysis of Pretraining

4.5.1. Pretraining Algorithm

In this section, we describe the pretraining setting. We largely follow the transformer
structures in [Devlin et al.| (2018) and Brown et al. (2020). The whole network is a
composition of D sub-modules, and each sub-module consists of a MHA and a Feed-

Forward (FF) fully-connected layer. Here, D > 0 is the depth of the network. The whole
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network takes X© = X € RI*? as its input. In the t-th layer for ¢ € [D], it first takes
the output X *=1 of the (¢ — 1)-th layer as the input and forward it through MHA with a
residual link and a layer normalization II,q,(+) to output Y® | which projects each row of
the input into the unit ¢>-ball. Here we take d, = d in MHA, and the generalization of
our result to general cases is trivial. Then the intermediate output Y is forwarded to
the FF module. It maps each row of the input Y € RL%? through a same single-hidden
layer neural network with dy neurons, that is ££n(Y®, A®) = ReLU(Y® A AP where
Al e RIxdr and A € R%7 ¥4 are the weight matrices. Combined with a residual link

and layer normalization, it outputs the output of layer ¢t as X® that is

(4.5.1) Y O=T10 [mha(X W O) 440 X ED] X O], [880(Y O AD) 4480y O],

Here we allocate weights %t) and vét) to residual links only for the convenience of theoretical

analysis. In the last layer, the network outputs the probability of the next token via a
softmax module, that is Y(P+Y) = softmax(I] X AP+ /(L7)) € R%, where I, € R*
is the vector with all ones, AP+ € R¥>% js the weight matrix, 7 € (0, 1] is the fixed
temperature parameter, and d, is the output dimension. The parameters of each layer are
denoted as 00 = (4 A WO A®) for ¢ € [D] and 6P+) = AP+ and the parameter
of the whole network is the concatenation of these parameters, i.e., § = (1), ...  §(P+D),

We consider the transformers with bounded parameters. The set of parameters is

A, < Ban AL, < B

W) <1,

0 = {6] 4”7, < Bamax {247,

WO < Bo, W], < Bi, |[W"||,. < By forall t € [D],i € [h]},
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where By, Bai1, Baga, Bg, Bi, and By are the bounds of parameter. Here we only consider
the non-trivial case where these bounds are larger than 1, otherwise the magnitude of the
output in D' layer decades exponentially with growing depth. The probability induced
by the transformer with parameter ¢ is denoted as Py.

The pretraining dataset consists of IV, independent trajectories. For the n- th trajectory
with n € [N}], a hidden concept 2" ~ Pz(z) € A(3) is first sampled, which is the hidden
variables of the token sequence to generate, e.g., the theme, the sentiment, and the
style. Then the tokens are sequentially sampled from the Markov chain induced by z"
as ay, ~ P(-|S;,2") and S}, = (S, x},,), where z7,, € X, and S}", S}, € X*. Here
the Markov chain is defined with respect to the state Sj', which obviously satisfies the
Markov property since SP* for ¢ € [t — 1] are contained in S}*. The pretraining dataset
is Dy, 1, = {(SF, xi41) g‘;g{’ where the concepts 2" is hidden from the context and thus
unobserved. Here each token sequence is divided into T, pieces {(S},xz},,) P We
highlight that this pretraining dataset collecting process subsumes those for BERT, GPT,
and even Masked AutoEncoders (MAE) (Radford et al 2021)). For GPT, each trajectory
corresponds to a paragraph or an article in the pretraining dataset, and 2" ~ Pz(z) is
realized by the selection process of these contexts from the Internet. For BERT, we just
take T, = 1. Then ST and z7j respectively correspond to the sampled sentence and the
masked token. For MAE, we take T}, = 1, and ST and x4 respectively correspond to the

image and the masked token.
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To pretrain the transformer, we adopt the cross-entropy as the loss function, which is
widely used in the training of BERT and GPT. The corresponding pretraining algorithm is
NP Tp

~ 1
4.5.2 6 = argmin — log Py(x}, 4 | S}).
( ) o N,T, ; ; o( t+1 | S5¢)

We first analyze the population version of . In the training set, the conditional
distribution of 7, conditioned on Sy is P(xy,|Sy) = [JP(af, ]S}, 2)Pz(2]S])dz,
where the unobserved hidden concept is weighed via its posterior distribution. Thus,
the population risk of is E[Eg, [KL(P(- | Sp)||Po(- | S5)) + H(P(- | St))]], where ¢ ~
Unif([7}]), and H(p) = —(p,logp) is the entropy. Thus, we expect that Py will converge

to P. For MAE, the network training adopts />-loss, and we defer the analysis of this case

to Appendix [D.3.4]

4.5.2. Performance Guarantee for Pretraining

We first state the assumptions for the pretraining setting.
Assumption 4.5.1. There exists a constant R > 0 such that for any z € 3 and S; ~

P(-|2), we have ||, ||2.00 < R almost surely.

This assumption states that the /,-norm of the magnitude of each token in the token
sequence is upper bounded by R > 0. This assumption holds in most machine learning
settings. For BERT and GPT, each token consists of word embedding and positional
embedding. For MAE, each token consists of a patch of pixels. The f5-norm of each token

is bounded in these cases.
Assumption 4.5.2. There exists a constant ¢q > 0 such that for any z € 3, z € X and

S € X*, we have P(z| S, z) > ¢.
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This assumption states that the conditional probability of x conditioned on S and z is
lower bounded. This comes from the ambiguity of language, that is, a sentence can take
lots of words as its next word. Similar regularity assumptions are also widely adopted in
ICL literature (Xie et al., [2021; |Wies et al., 2023). To state our result, we respectively use
Es.p and Pp to denote the expectation and the distribution of the average distribution of
Sy in Dy, 1., i.e., Egop[f(9)] = » Es,[£(S))]/T, for any function f : X* — R.

Theorem 4.5.3. Let B = T 'RhBABa1Ba2BgBk By and D = D?d(dp +dj, +d) +d-d,.

Under Assumptions 4.5.1] and 4.5.2} the pretrained model IP; by the algorithm in (4.5.2)

satisfies

Esp| TV (P(|9), Ps(] 9))]

i tl/'41 1/o tinix
:O(giréf@\/ESNDKL(P('|S)||]P’9*(~|S))+ mix 108 1/ vV

+
V (NPTP)IMJ V NPTP

. Vv . v
approximation error generalization error

_ _ 1
<D log(1+N,T,,B) —i—logg))

S

with probability at least 1 — 9, where ¢, is the mixing time of the Markov chains induced
by P, formally defined in Appendix

We define the right-hand side of the equation as Ae(Np, T}, 0). The first and the
second terms in the bound are the approximation error. It measures the distance between
the nominal distribution P and the distributions induced by transformers with respect
to KL divergence. If the nominal model P can be represented by transformers exactly,
i.e., the realizable case, these two terms will vanish. The third term is the generalization
error, and it does not increase with the growing sequence length 7;,. If we use each token

sequence once in pretraining, like BERT, this term is independent of T5,.
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This pretraining analysis is missing in most existing theoretical works about ICL. Xie
et al.| (2021), [Wies et al. (2023)), and |Jiang (2023)) all assume access to an arbitrarily
precise pretraining model. Although the generalization bound in [Li et al. (2023]) can
be adapted to the pretraining analysis, the risk definition therein can not capture the
approximation error in our result. Furthermore, their analysis cannot fit the maximum
likelihood algorithm in . Concretely, their result can only show that the convergence
rate of KL divergence is O((N,T,)~'/?) with a realizable function class. Combined with
Pinsker’s inequality, this gives the convergence rate for total variation as O((N,T},) /%)
even in the realizable case.

The deep neural networks are shown to be universal approximators for many function
classes (Cybenkol, [1989; Hornik, 1991} [Yarotsky, |2017)). Thus, the approximation error
in Theorem should vanish with the increasing size of the transformer. To achieve
this, we slightly change the structure of the transformer by admitting a bias term in
feed-forward modules, taking Agt) € R¥*dr and admitting dr to vary across layers. This
mildly affects the generalization error by replacing D - dr by the sum of dp of all the layers
in Theorem We derive the approximation error bound when the dimension of each
word is 1, i.e., X C R. Our method can carry over the case d > 1.

Proposition 4.5.4 (Informal). Under certain smoothness conditions, if dp > 16d,,
Bay > 16Rd,, Bay > dp Ba > \/d,, and By > /d, then

inf  max KL(P(-]|S) || Pe-(-]9)) = 0<dy exp (— C—W»

07€O [1ST|l2,0<R \/lOg BA71

for some constant C' > 0.
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The formal statement and proof are deferred to Appendix This proposition states
that the approximation error decays exponentially with the increasing depth. Combined

with this result, Theorem [4.5.3 provides the full description of the pretraining performance.

4.6. ICL Regret under Practical Settings

4.6.1. ICL Regret with an Imperfectly Pretrained Model

In Section we study the ICL regret with a perfect pretrained model. In what follows,
we characterize the ICL regret when the pretrained model has an error. Note that the
distribution Di¢p of the prompts of ICL tasks can be different from that of pretraining.

We impose the following assumption on their relation.
Assumption 4.6.1. We assume that there exists an absolute constant x > 0 such that

for any ICL prompt, it holds that Pp,, (prompt) < x - Pp(prompt).

This assumption states that the prompt distribution is covered by the pretraining
distribution. Intuitively, the pretrained model cannot precisely inference on the datapoint
that is outside the support of the pretraining distribution. For example, if the pretraining
data does not contain any mathematical symbols and numbers, it is difficult for the
pretrained model to calculate 2 x 3 in ICL precisely. We then have the following theorem

characterizing the ICL regret of the pretrained model.
Theorem 4.6.2 (ICL Regret of Pretrained Model). We assume that the underlying

hidden concept z, maximizes > ._, log P(r; | prompt, ,z) for any ¢ € [T] and there exists

an absolute constant 3 > 0 such that log(1/po(2.)) < . Under Assumptions 4.5.2]
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and we have with probability at least 1 — § that

T T
EpromptDi [T—l : Z log P(r; | 2*, prompt, ) — T *- Z log P5(r | promptt_l)]

t=1 t=1

< O(B/T + R0 Apre(vaTpvé))'

Here we denote by Ape(Ny, Ty, 6) the pretraining error in Theorem [4.5.3]
Theorem shows that the expected ICL regret for the pretrained model is upper

bounded by the sum of two terms: (a) the ICL regret for the underlying true model and

the error and (b) the pretraining error.

4.6.2. Prompting with Wrong Input-Output Mappings

In the real-world implementations of ICL, the provided input-output examples may not
conform to the nominal distribution induced by z,, and the outputs in examples can
be perturbed. We temporarily take concept space 3 as a finite space, and our results
can be generalized with the cover number argument. We denote the prompt considered
in Section as prompt, = (St,Crr1), St = (C1,71,-++ ,G,y1re) € X, and (Cip1, 7ip1) ~
P(-]S;, z.) for i € [t — 1]. Here, each input ¢; € X' is a l-length token sequence, and each
output r; € X is a single token. The perturbed prompt is then denoted as prompt’ =
(S}, ¢t+1), where S} = (¢1,7), -+, ¢, 1) € X*, and 7} for i € [t] is the modified output.
We denote the perturbed prompt distribution as P’. Next, we state assumptions for this

setting.

Assumption 4.6.3. Conditioned on any z € 3, the input-output pairs are independent,
i.e., for any two input-output pair sequences S;, Sy € X*, we have P((S;,Sy)|z) =

P(S;|2) - P(Sy | 2).
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This assumption states that for any task z € 3, the input-output pairs are independently
generated. This largely holds in realistic applications since the examples usually are
independently produced. It can be relaxed when there are more structures in the token

generation process, e.g. the hidden Markov model in Xie et al.| (2021)).

Assumption 4.6.4. There exists a constant ¢; > 0 such that Pz(z,) > ¢;.
This assumption states that the prior distribution of the hidden concept z, is strictly

larger than 0, otherwise this concept can never be deduced.

Assumption 4.6.5. There exists a constant co > 0 such that for any prompt’ € X*, it

holds that P'(prompt’)/Pp(prompt’) < c,.
Similar to Assumption [4.6.1] this assumption states that the distribution of the

perturbed prompt is covered by the pretraining distribution. For two concepts z, 2/ € 3,
we define the KL divergence between the conditional distributions of input-output pair on
them as KLy (P(- | 2)||P(- | 2)) = Ex yop( |2 [log(P(X, y | 2)/P(X, y | 2'))]. This divergence
measures the distance between distributions of input-output pairs conditioned on different

tasks z and 2’

Assumption 4.6.6. The concept z, satisfies that min, ., KLy (P(-|2) | P(-|2)) >

2log 1/cy, where ¢ is the constant in Assumption m
This distinguishability assumption requires that the divergence between z, and other

concepts z is large enough to infer the concept z, from the prompt.

Proposition 4.6.7. Under Assumptions [£.5.2] [£.6.3], [4.6.4] [4.6.5] and [4.6.6] the pretrained

model P; in (4.5.2) predicts the outputs with the prompt containing wrong mappings as

Epronper--2 |[KL(P(: | Gus1, ) [P5(- | 51, s1)) |

:O(CQApre(Np,Tp,(S)—i—eXp(— t(rr;léinKLpair (IP’( | ) [|IP(- | z)) +2 logco—Mjgl/co log %)))
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with probability at least 1 — 9.

The first term is the pretraining error, which is related to the size of the pretraining set
and the capacity of the neural networks. The second term is the ICL error. Intuitively, this
term represents the concept identification error. If the considered task z, is distinguishable,

i.e., satisfying Assumption [4.6.6] this term decays to 0 exponentially in ¢.

4.7. Conclusion

In this paper, we investigated the theoretical foundations of ICL for the pretrained
language models. We proved that the perfectly pretrained LLMs implicitly implements
Bayesian model averaging with regret O(1/t) over a general response generation modeling,
which subsumes the models in previous works. Based on this, we showed that the
attention mechanism parameterizes the Bayesian model averaging algorithm. Analyzing the
pretraining process, we demonstrated that the total variation between the pretrained model
and the nominal distribution consists of the approximation error and the generalization
error. The combination of the ICL regret and the pretraining performance gives the full
description of ICL ability of pretrained LLMs. We mainly focus on the prompts that
comprise several examples in this work and leave the analysis of instruction-based prompts

for future works.
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APPENDIX A

Generative Adversarial Imitation Learning with Neural
Networks: Global Optimality and Convergence Rate

A.1. Neural Networks

In what follows, we present the properties of the neural network defined in (|1.3.1)).
First, we define the following function class.

Definition A.1.1 (Function Class). For B > 0 and m € N, we define
Fom = {W ¢o(s,a) | W e R™, ||W — Wy < B},

where ¢ (s, a) is the feature vector defined in with W = W,,.

As shown in Rahimi and Recht| (2008)), the feature ¢y(s,a) induces a reproducing
kernel Hilbert space (RKHS), namely 1. When m goes to infinity, Fgz,, approximates
a ball in H, which captures a rich class of functions (Hofmann et al 2008; Rahimi and
Recht), 2008). Furthermore, we obtain the following lemma from (Cai et al.| (2019¢|), which

characterizes the linearization error of the neural network defined in (|1.3.1)).
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Lemma A.1.2 (Linearization Error, Lemma 5.1 in |Cai et al.| (2019¢])). Under Assump-

tion [[.4.1] it holds for any W, Wy, W5 € Sp that,

Eue | [[1V 6, (5.0) = W ws s, )2, ] = OB - m 7).

Eue |77 6w (5, 0) = W 6w, (5, )|, | = O(BY2 - m~1),

where ¢y (s, a) is the feature vector defined in (1.3.2) and p € Z(S x A) is a distribution

that satisfies Assumption |1.4.1]
Proof. See for a detailed proof. O

Following from Lemma [A.T.2] the function class Fp , defined in Definition is a
first-order approximation of the class of the neural networks defined in ([1.3.1)). Meanwhile,

we establish the following lemma to characterize the sub-Gaussian property of the neural

network defined in ([1.3.1)).
Lemma A.1.3. Under Assumption for any W, W' € Sg, it holds that

SUD (s a)esxa | W dwr (s, a)| is sub-Gaussian, where the randomness comes from the random

initialization Wy in the definition of Sp in ((1.3.4]). Moreover, it holds that

Einit|: sup |WT¢W/(s,a)\2} < 2M¢ + 18B?
(s,0)ESXA

and that

]P’( sup !W ow (s, a)} >t) <exp(—v-t?/2), Vt>2M,+6B.
(s,a)eSxA

Proof. See for a detailed proof. O
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A.1.1. Proof of Lemma [A.1.2

Proof. We consider any W, W’ € Sg. By the definition of ¢y (s,a) in and the

triangle inequality, we have that
|WT¢W/(S, CL) - WT(bo(S, CL)|

(A.1.1) < \/% g\[W]f(s,a)( . ‘]l{(s,a)T[W/]l >0} —1{(s,a)" [Wo]; > 0}‘.

We now upper bound the right-hand side of (A.1.1]). For the term |[W]] (s,a)| in (A.1.1)),

we have that

HW]ZT(S,CL)‘ HWO s,a ‘ + ‘(W]l — [WO]Z)T(S,CL)‘

(A1.2) < |Wal/ (s, a)| + || W] — Wi,

where the first inequality follows from the triangle inequality and the second inequality
follows from the Cauchy-Schwartz inequality and the fact that ||(s,a)|l2 < 1. To upper
bound the term | 1{(s,a)"[W’]; > 0} — 1{(s,a)"[Wo]; > 0}| on the right-hand side of

(A.1.1), note that 1{(s,a)" [W']; > 0} # 1{(s,a)"[Wo]; > 0} implies that
Wl (s, @) < [[W']; (s,0) — (W[ (s, a)| < |[[W']: = (Wl

Thus, we have that

(A.1.3)

‘]1{(3,&)T[W’]l >0} — 1{(s,a)T W) > o}] < 1{\(s,a)T[Wo],\ < || - [W0]1H2}.
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Plugging (A.1.2)) and (A.1.3)) into (A.1.1]), we have that

Wi (s,a) = W (s, a)

< <= > 1] ) Vo] < 07 = 6k, } - (6020 IWob + 10~ 0340, )

W b (s,0) = Wan(s, )] < == S 2] |(s.a) WL | < |07} — (Wl }.

By setting y = [|[[W']; — [Wo]i]|2 in Assumption |1.4.1 we have that

8B <~ ¢~ — (W]
0o (5.0) - Wt < 2205 [ v’vo . =
=1 2

Taking the expectation with respect to the random initialization in and using the

Cauchy-Schwartz inequality, we have that

Einit [HWT¢W’(S7 a) — W (s, G)H;J

ko {8(;52 é:u[wa - [Wo]llli)l/2 : (g: 1/H[W0]lH;>1/2}
< 8(:;3 Einit [(i 1/“ [WO]I H§> 1/2}
< 8\;%3 <]Ew~N(0,Id/d) [1/[|wll3] > v

— O(B®-m™?),
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where the second inequality follows from the fact that |W' —Wj||s < B, the third inequality
follows from Jensen’s inequality, and the last inequality follows from Assumption and

Lemma [A.1.2] Thus, for any W, W1, W5 € Sg, we have that

Einit[HWT¢W1(Saa) W b, (s, a HQM]
ngm[wam(s,@ W o(s, a)[; }HEM[wa%(s,a) W o(s.a)|; ]

= O(B® - m~1?),

Moreover, following from the Cauchy-Schwartz inequality, we have that ||[|1, < ||||2,.-

Thus, by Jensen’s inequality, we have that

IEinit [HWT(bW1 (8,61) W ¢VV2 5, a Hlu]
< Einit [HWTngI(s, a) = W' b (s, a)Hz,u]

— 0(33/2 . 7n—1/4)7

which completes the proof of Lemma [A.T.2] O

A.1.2. Proof of Lemma [A.1.3

In what follows, we present the proof of Lemma [A.1.3]
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Proof. Recall that we write uy (s, a) = W' ow(s,a) and ug(s, a) = uw,(s,a). Then,

we have

‘WngbW/(s,a)‘ < ‘uo(s,a)‘ + ‘(W — W’)ngﬁwz(s,a)‘ + |uwf(s,a) — ug(s, a)|
(A.1.4) < Jug(s, a)| + [|[W — W'z - ||¢W/(s,a)H2 + |uw (s, a) — uo(s, a)|,
where the last inequality follows from the Cauchy-Schwartz inequality. It suffices to upper

bound the three terms on the right-hand side of (A.1.4]). Note that we have W, W' € Sg

and [|¢w(s,a)|l2 < 1. We have that
(A.1.5) W =Wl - ||pw(s,a)||, < 2B.

[t remains to upper bound the term |upw(s,a) — ug(s,a)| in (A.1.4]). Note that uy (s,a) is
almost everywhere differentiable with respect to W. Also, it holds that Vi uw (s,a) =
éw (s, a). Thus, following from the mean-value theorem and the Cauchy-Schwartz inequal-

ity, we have that
(A.1.6) ‘uwl(s, a) — uo(s,a)‘ < Wiug H¢W(s,a)H2 W= Wlle < B,
€58

where the second inequality follows from the fact that ||¢w(s,a)|ls < 1 and W’ € Sp.

Plugging (A.1.5) and (A.1.6]) into (A.1.4]), we have that

sup  |W o (s,a)| < sup |uo(s,a)| + 3B.
(s,a)eSxA (s,a)ESXA
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Following from Assumption [1.4.2, we have that sup(, ,csx4 |W ' ¢wr (s, a)| is sub-Gaussian.

Furthermore, it holds that
T 2 2 2 2 2
Einit[ sup |W ¢Wr(s,a)‘ } < 2Einit|: sup !uo(s,a)‘ } +18B* < 2My + 18B
(s,a)eSxA (s,a)eSxA

and that

IP’( sup |WT¢WI(5,a)‘>t>§]P’( sup |u0(s,a)‘—|—SB>t)

(s,a)eSxA (s,a)eSxA
<exp(—v- (t —3B)*) < exp(—v-t*/2)
for t > 2My + 6B. Thus, we complete the proof of Lemma [A.1.3] O

A.2. Neural Temporal Difference

In this section, we introduce neural TD (Cai et al., 2019¢)), which computes wy in
Algorithm . Specifically, neural TD solves the optimization problem in (1.3.19) via the

update in (|1.3.20]), which is presented in Algorithm .

Algorithm 4 Neural TD

Require: Policy 7, reward function r, initialization Wy, b, number of iterations Trp of
neural TD, and stepsize o of neural TD.

1: Initialization. Set Sp, <+ {W € R™ |||W — Wylls < B} and w(0) + W,.

2: for j=0,...,Trp—1do

3:  Sample (s,a,s’,da’), where (s,a) ~ pw, s’ NP( |s,a), and o' ~ 7(-|5').

4:  Compute the Bellman re51dual i) = (s, a)—(1—=7)-r(s,a) =7 Qui (s, a).
5. Update w via w(j + 1) < Projg,, {w 0(j) - duij (s, a)}.

6: end for

Ensure: Output & = ZTTD Lw().
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A.2.1. Proof of Proposition [1.4.4

Proof. We obtain the following proposition from Cai et al.| (2019c), which characterizes
the convergence of Algorithm [4]
Proposition A.2.1 (Proposition 4.7 in (Cai et al| (2019¢)). We set @ = min{(1 —
v)/8, TT_S/ *} in Algorithm . Let Qs (s, a) be the state-action value function associated
with the output w. Under Assumption [1.4.1] it holds for any policy 7 and reward function

r(s,a) that

B |[|Qa(s.0) = Qi (5.a)[,, | = 2Eae|[Proiz, , Q(s.0) = Q(s, )], |

where Fp, , is defined in Definition [A.1.1]

Recall that we denote by ¢g(s,a) the feature vector corresponding to the random
initialization in (1.3.3). We establish the following lemma to upper bound the bias
Eii[[|[Projz,  QF(s,a) —Qr(s, a)ll3,.] in of Proposition when the reward
function (s, a) belongs to the reward function class Rg.

Lemma A.2.2. We consider any reward function rs(s,a) € Rs and policy w. Under

Assumptions [1.4.1{ and [1.4.2} it holds for B, > Bz + (1 —~)~' -~ Bp - (2My + 3Bs) and

an absolute constant C,, = (2-+?- B%)™! - (1 —v)? - v that
Einit [HProjwa’m " (s,a) — :B(s, a)H;p } = O(Bg cm™ Y24 B2 7 4 B2 exp(—C, - ij))

Proof. See for a detailed proof. O
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Combining Proposition and Lemma |A.2.2] for B, > Bs+ (1 —~v)"'-~v-Bp-

(2My + 3Bg), we have for any 7 that

Einit[”@fﬂ(saa) - :5(87a>H§,p-,ri|

— O(B2-Tpy* + B2 -m™ 2+ BY? .~ V* 4 B? . exp(=C, - BY)).
Finally, by setting Trp = Q(m), we have that
Einit [HQ@(s,a) — :B(s,a)”;p ] =O(B2 - m 2+ BY?.m " 4 B2 . exp(—C, - B2)),

which completes the proof of Proposition [1.4.4] O

A.2.2. Proof of Lemma [A.2.2]

Proof. For notational simplicity, we write J(s, a; w) = 1 {Jw' (s,a)| > 0}-(s,a). Under

Assumption [1.4.2] we have that

(A2.2) P(s'|s,a)= /0(s,a;w)Tgp(8';w)dq(w), where sup < Bp.

2

[t

-1

Thus, since 75 = (1 — )" - ug(s, a), we have that

T (5.0) = (1—7) - ra(5,0) +7 - /S P(s'| 5,0) - V(')

— (s, + [ 7 VEE)- [ o) (5w da(w)as

—ustsa)+ [ Ol (- [ ol )dgt),
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where the second equality follows from (A.2.2)) and the last equality follows from Fubini’s

theorem. In the sequel, we define
(A.2.3) a(w) = - /‘Sw(s’;w)w’;(sl)ds'.
Note that a(w) € R%. Then, we have that
ry(8,a) = ug(s, a) /ﬁsaw (w)dg(w).
To prove Lemma we first approximate Q’fﬁ(s, a) by

(A.2.4) O(s,a) = us(s, ) /79 5, a:w)Ta(w)dg(w),

where a(w) = a(w) - 1{||a(w)|ls < K} for an absolute constant K > 0 specified later.

Then, it holds for any (s,a) € S x A that

’Q(s a) — (s,a) /‘19 s,a;w) " (a(w) — (w))‘dq(w)
< /Hﬁ(s,a;w)”2 . Hd(w) - a(w)Hqu(w)
w)l,,

where the second inequality follows from the Cauchy-Schwartz inequality and the last

inequality follows from the fact that ||¥(s, a;w)||s < 1. Thus, we have that

(A25)  [QUs,0) = Q55,0 < Q@) = @7, (5|, < supllaw) = aw)],



170

We now upper bound the right-hand side of (A.2.5)). To this end, we show that sup,, ||a(w)]|2

is sub-Gaussian in the sequel. By the definition of a(w) in , we have that

sup||a(w)||, = H/ s'sw)V,7 (s')ds'
w 2
<7 - sup|Vi(s')| - sup /w(S’;w)dS’
s'eS w S 2
<~v-Bp- SUP| s')|
s'eS
(A.2.6) <y-(1=7)"-Bp- sup |us(s,a)l,

(s,a)eSxA

where the second inequality follows from Assumption and the third inequality follows
from the fact that V7 (s) = E(s 0w (s)[r5(s’, @')]. Here we denote by vx(s) the state-action

visitation measure starting from the state s and following the policy 7. Following from

Lemma |A.1.3| we have that sup,, ||a(w)]|2 is sub-Gaussian. By Lemma |A.1.3] and (A.2.6)),

it holds for ¢t > (1 — )~ -~ Bp - (2My + 3Bj;) that

]P’(supHa(w)H2 > t) < IP)(”y (=)' Bp- sup J|ug(s,a)| > t)
w (s,a)eSxA

ve(1—9)%-#
2. < — .
(A.2.7) < exp( 277 B,

Let the absolute constant K satisfy that K > (1 —~)™' -~ - Bp - (2M, + 3Bg) in (A.2.7).
For notational simplicity, we write C, = (2-~+*- B%)™! - v - (1 — v)?. By the fact that

[a(w) — a(w)l]2 = [e(w)l]2 - T{[e(w) [z > K}, we have that

supl[a(w) — a(w)|], < supla(w)], - 1{supla(w)], > & |.
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Following from (|A.2.5) and (A.2.7)), we have that

Einit“l@(saa)_ ?B(S7G)H2,pw]

< & [supaw)], - 1{suplatuls > &}

o0

K
§/ t-IP(supHoz(w)Hg > K)dt—f—/
0 w K

(A.2.8) = O(K*-exp(—C, - K?)).

t- P(sup”oz(w)”g > t> dt

We now construct @(s,a) € Fx.m, which approximates Q(s,a) defined in (A.2.4). We

define

f(s,a) = /ﬁ(s,a;w)To_z(w)dq(w).

Then, we have that Q(s,a) = ug(s,a) + f(s,a). Note that f(s,a) belongs to the following

function class,

Frone = { [ 905,00 atw)date)

supHa(w)H2 < K}.

We now show that f(s,a) is well approximated by the following function class,

m

From = {W%@, @) = —— S W0 (s, a; (W)

m

sopl| V1, < /v .

where ¢g(s,a) is the feature vector corresponding to the random initialization. We obtain
the following lemma from Rahimi and Recht| (2009), which characterizes the approximation

error of JEK@O by JEKm
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Lemma A.2.3 (Lemma 1 in Rahimi and Recht| (2009)). For any f(s,a) € Fi oo, it holds

with probability at least 1 — 9 that

HProij’mf(s,a) - f(s,a)Hm <K-m™/%. (1+ /2log(1/0)),

where € Z(S x A).
Lemma implies that there exists _]?(S, a) € F K,m such that

~

o 5.0 = fs. 2, | = [T B(1Fs0) = sl > w)ay
(A.2.9) < /Oooy cexp(—1/2- (yVmy/K —1)?) = O(K?/m).

By the fact that f(s,a) € ]f-:Kvm and the definition of Fk ,, in Definition A.1.1] we have

-~

that f(s,a) € Frm —uo(s,a). Let
Q(s,a) = BT ¢o(s,a) + f(s,a) = (B+Ws) (s, a).
We then have that @(5, a) € Fpy+km and that

B [[Q(s,0) - (s, )},
< 2K |:Hu,3(87 CL) - 6T¢0(37 a)H;pJ + 2B |:H]/C\(S’ a) B f(S’ a)H;p“]

(A.2.10) = OB} - m P+ K*-m™),

where the last inequality follows from Assumption [1.4.1) Lemma [A.1.2} and (A.2.9)).
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Finally, we set B, = K + Bg > Bg+ (1 — )" -~ - Bp - (2My + 3B;). Combining
(A.2.8) and (A.2.10)), we have that

Einit [”Q:B(Sv a) = Q(s, a)H;,pJ
< 2Einis [HQ(3> a) — @(57 a)H;pk] + 2Einit [HQ(S’ a)— :ﬂ<8’ a)Hz,pJ

= O(Bg -m V24 B2 .m™ 4 B2 - exp(—C, - BY)),

where @(5, a) € Fp,m- Thus, we complete the proof of Lemma . O

A.3. Proofs of Auxiliary Results

In what follows, we present the proofs of the lemmas in §1.3H1.5|

A.3.1. Proof of Proposition [1.3.1

Proof. By the definition of the neural network in (1.3.1)), we have for any (s,a) € Sx.A
that Vipuw (s, a) = ¢w (s, a) almost everywhere. We first calculate VyL(0, 5). Following

from the policy gradient theorem (Sutton and Barto| 2018) and the definition of L(6, f)

in (1.2.4), we have that

VQL(G, ﬂ) = —Ve](ﬂ'e; TB)

(A.3.1) =-E,, I ro(s,a) - Velogmo(a| s)].
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Following from the parameterization of 7y in (|1.3.5)) and the definition of ¢4(s,a) in (1.3.8))
of Proposition [1.3.1], we have that

_ Za’GAT ) eXp(T ) 6T¢9(87 a/)) ' ¢9(8, CL/)
VologTolals) =7 uls,a) = S weaexp(T- 0T dg(s,a'))

=T (%(s, a) =T - Bammy (| 5) [0(5, a’)D =17 t(s,0).

(A.3.2)

Plugging (A.3.2)) into (A.3.1)), we have that

VoL(0,5) = —T- E,., [Qfg(s, a) - (s, a)].

It remains to calculate Z(6) and VzL(6, 5). By (A.3.2) and the definition of Z(#) in (1.3.7)),
it holds that

ZO) = E,,, [V log mg(a|s)V1ogmg(a | S)T]

=72 E,,, [to(s,a)ig(s,a)"].
By the definition of the objective function L(#,3) in ((1.2.4), it holds that
VsL(0,8) = Vg J(me;15) = Vi (mo;75) — A Vgih(B)
=E, [Vgrg(s, a)} -E,, [Vgrg(s, a)] — - Vs(5)

= (1 =) By [0s(s,0)] — (1 =) 7" - Bu, [B5(s,0)] = A- Vib(B).

Thus, we complete the proof of Proposition [1.3.1]



175

A.3.2. Proof of Lemma [1.5.2

Proof. The proof of Lemma is similar to that of Lemmas 5.4 and 5.5 in Wang

et al.| (2019). By direct calculation, we have that

1By [(QFF (5. )yt = 78) | = KL (s | ) — KL || i) - A,

where A,(;) takes the form of

AP =t {E log(mi 1 /) =0+ QE(s, ), m — i)
 log(rtn 1) 78— )] — KL (a0
=0 Eqy [<log(7r,§+1/7r;§) =1 Qu(8,°), TR — 7T18s>,4}
(i.a)

+ B [(Qui(5,) = Q5,1 w3 = ).

) ih)

(A.3.3) 7 B | (108w /7). 7 = i) 4 — KL )]

(. /

(i.c)

The following lemmas upper bound AS) by upper bounding terms (i.a), (i.b), and (i.c)
on the right-hand side of (A.3.3)), respectively. Note that the expectation Eiy 4y, is taken

with respect to the random initialization in (1.3.3)) and s ~ dg.
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Lemma A.3.1 (Upper Bound of Term (i.a) in (A.3.3)). Under Assumptions and
[1.4.3] we have that

Bun | o8t/ - Q5. ) =)

where (', is defined in Assumption [1.4.1] and o is defined in Assumption [1.4.3]
Proof. See for a detailed proof. O

Lemma A.3.2 (Upper Bound of Term (i.b) in (A.3.3)). Under Assumption [1.4.1] we

have that

Biniag [ (@ (5,) = QT (5,0, w5 = 73) ] < G- e,

where €g  takes the form of

(A34) €Q,k = Einit |:H :: (S, (l) — ka (S, (l) H2,Pki| .
Proof. See for a detailed proof. O

Lemma A.3.3 (Upper Bound of Term (i.c) in (A.3.3)). Under Assumptions and

1.4.2| we have that

Einit, dgg [ <10g(7fi+1/7ri), T, — WZ+1>A’ — KL(m4 | 72)]

=2 (M2 +9B2) + O(11 - By -m~4),

where M, is defined in Assumption [1.4.2]
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Proof. See for a detailed proof. O

Finally, by Lemmas A.3.3] under Assumptions [1.4.2| and [1.4.3] we obtain from
(A.3.3) that

Einit UAS)H = 2V2C), - B;m oV NV L O egi - (ME 4 9B2)

+ O(nfl Tt - 33/2 cm~ VA 4 83/4 . mfl/S)_

Here M, is defined in Assumption [1.4.2] 75, is the inverse temperature parameter of
Ti+1 defined in (1.3.5)), o is defined in Assumption [1.4.3] and e is defined in (A.3.4)) of

Lemma [A.3.2] Following from Proposition [I.4.4] we have that
Ch-eqp=O(B? - m Y2 4 BY?.m Y4 4 B2 . exp(—C, - B2)).

w

Thus, we complete the proof of Lemma [1.5.2] O

A.3.3. Proof of Lemma [1.5.3

Proof. We consider a fixed 3 € Sp,. For notational simplicity, we write ' = 74(s, a),

e = 16(8,a) and ¢s = ¢s(s,a). By the parameterization of rg(s,a) in (1.3.6]), we have
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that

L0k, B') — L(Ok, Bx) = (r' — ri, v — Uk)sxa + A - 0(B) — A - (8)

= (1= ({8308 = B vm — ) g, + (055 — 01,808 — i)

+ A (L(8) — ()

(A.3.5)
< (B = Be) " VaL(Ok, Br) + (1 =)' (1058 — 058 1w + 105,8" — 058 1.0g)

where the last inequality follows from (|1.3.10)) of Proposition m Then, we have that

Einie [L(Ok, ) — L(Ok, Br)]
< B[ (8 = B) V5L (0 B) + (1 =) (1638 = 058 1.4
+ 163,8' = 858 )]

< Einie[(B' — Br) "V L(0k, Bi)] + 0(32/2 LAY,

where the last inequality follows from Assumption [I.4.1) Lemma[A.1.2] and the fact that

3, Bx € Sp,. Thus, we complete the proof of Lemma m O

A.3.4. Proof of Lemma [1.5.4]

Proof. By the update of §; in (1.3.14)), it holds for any 8’ € Sp, that

(B +1- VaL(0k, Br) — Birr) (8 = Beyr) <0,



179

which further implies that

n- (8" = Be) " VaL(Ok, Br)
(A3.6) <18k = Bl = 1Brsr = B'lI5 = [1Bra — Brll3
+n- ((5k+1 — B) "V s L(Ok, Br) + (B — 5/)T(§ﬁ[x(9k, Br) — Vg L(0y, 5k)))

Combining (A.3.5) and - we have that

0+ (LOk: Br) = L0k B)) < 118 = 813 = 18rsr = B115 = [1Ben = Bills + - A7,

where A,(;i) takes the form of

= (B = B1) Vo L0, i) + (Be = 5 (VoL (Bh, i) = VsL(6r, Br))

(11 a) (Hvb)
(A3.7) + (1= (164,8" = 058 llow + 105,8" — 658 o)
(ii.c)

We now upper bound terms (ii.a), (ii.b), and (ii.c) on the right-hand side of (A.3.7).

Following from Assumption [[.4.1] and Lemma we have that

(A38)  Euwa[l05,8 = 058 o, +105,5 — 058 loug] = O(B5” - m~11,
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which upper bounds term (ii.c) of (A.3.7]). For term (ii.b) of (A.3.7]), we have that

E U(gk — B (Vs L(Ok, B) — V5L {0k, Br)) ”
(A.3.9)

<E||VsL(6s, B) = VoL B, 18 = Bella] < 2B E[lIghla] < 2B - (03/N)2,

where we write &, = @5[/(9;6, Br) — VL(0, Br). Here the first inequality follows from the
Cauchy-Schwartz inequality, the second inequality follows from the fact that g, 8" € Sp,,
and the last inequality follows from Assumption m To upper bound term (ii.a) in

(A.3.7), we have that

(A.3.10) E[|(B1 — B VL0 60|
< E[H@,BL(QIC,&)HQ N B — 5k||2] <n- E[Hﬁﬁl’(ekaﬂk)uﬂ

= 2 (| VL6, 82 + E[IEL]).

where the first inequality follows from the Cauchy-Schwartz inequality and the second

inequality follows from the update of g in (|1.3.14]). Furthermore, we have

V560 80 = |

2
2

EVk: |:¢,8k(87 a)] - EVE |:¢,8k(87 a)] +A- Vﬁ¢(&f)“

< (Bl to. 0] + B [l 0] #3190, )

(A.3.11) < (24X Ly)?,

where the first inequality follows from Jensen’s inequality and the second inequality follows

from the fact that ||¢w (s, a)|2 < 1 and the Lipschitz continuity of (/) in Assumption
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1.4.31 By plugging (A.3.11)) into (A.3.10)), we have that

E[|V5L(0k 80 (B = B <n- (242 L) +E[I&I3])

(A.3.12) <n-((24X-Ly)*+0*/N),

where the last inequality follows from Assumption m Finally, by plugging (A.3.8),
(A.3.9), and (A.3.12) into (A.3.7)), we have that

Euie[IAP]] =0+ (2+A-Ly)* +0” - N7') +2Bs-0 - N2+ O(BY* - m™%).
Thus, we complete the proof of Lemma [1.5.4] ]

A.4. Proofs of Supporting Lemmas

In what follows, we present the proofs of the lemmas in §A.3]

A.4.1. Proof of Lemma [A.3.1]

Proof. It holds for any policies 7, 7" that
(A.4.1) (D(s),m* — ()") , =0,
where D(s) only depends on the state s. Thus, we have that

<10g(772+1/7TZ) -n- @\Wk (S’ ')7 Tr]SE} - 7r1i>A
= <Tk+1 : ¢9k+1(8, ')T9k+1 — Tk - ¢0k(57 ')Tek - n- ¢wk(37 ')kaa WE - 7T1§>A

= <Tk+1 ) Lng(S, ')TekJrl — Tk " Lo, (Sa ')Tek =1y, (57 ')kaa WE - WZ>A7
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where the first inequality follows from the parameterization of 1y and Q,, in (1.3.5) and
(1.3.12)), respectively, and the second equality follows from the definition of the temperature-
adjusted score function ¢4(s, a) in (1.3.8)) of Proposition [I.3.1] Here, with a slight abuse of

the notation, we define
(A.4.2) by (8, @) = G, (5,0) — Egrromy ()5 [ Gy (5, @')] -

Then, following from (A.4.1)) and the update 711 - Opy1 = 75 - O — 1 - O in (1.3.13)), we
have that

(A43) <10g(772+1/7r15€) - ka (37 ')7 WE) - W2>A
= <Tk+1 : Lek+1($> ')T9k+1 — T - Lg, (5, ')T9k =1 Ly (5, ')ka, T — 7T15c>A

= Tk+1 - <L0k+1 (87 ')Tek-f-l — Loy (87 ')Tek-f—l: Tr]SE) - 7r1i>A

(i)
— - (0, (5,) O + L, (5,) T, T — TR, -

(i)

In what follows, we upper bound terms (i) and (ii) on the right-hand side of (A.4.3)).
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Upper bound of term (i) in (A.4.3)). Following from ((1.3.8]) of Proposition and
(A.4.1) we have that

(100 (52 O = 20, (5, ) O, i — )
= (B () B = 0, (5, Busn, i = )
(A.4.4)

||¢9k+1 8k+1 - ¢9k( 9k+1H1 5 + H¢9k+1 ) O+1 — ¢9k( )Tek‘*‘lHl,wfc’

where the inequality follows from the triangle inequality. Following from Assumption

and Lemma [A.T.2] we have that
(A4.5) Eini [qugkﬂ(s, )T sr — oo, (5, .)TQMHWJ _ OB 1,

Furthermore, following from Assumption [I.4.1] Lemma and the Cauchy-Schwartz

inequality, we have that

]ElnltdE|:H¢9k+1( ) Ori1 — Ba, (s, )T9k+1HMZ}

dd
= Eunica, [Ilaﬁem(s, ) Orir = o, (5.) G|, - ddﬂ
dd
< (|60 (5,@) TOrir = 00, (5,0) "Opa |, - Hﬁ
2,dk

(A.4.6) = O(BY?.m~/Y),

Here the expectation Eiy 4, is taken with respect to the random initialization in (|1.3.3])

and s ~ di. Thus, plugging (A.4.5) and ( into (A.4.4), we obtain for term (i) of
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(A.4.3) that
(A-4.7) Binit,ar, |:‘<L9k+1(87 ) 01 — 1o, (s, ) T Opgr, T — 7T,‘2>A‘:| = 0(33/2 -mT),

Upper bound of term (ii) in (A.4.3)). Following from the Cauchy-Schwartz inequality,

we have that

Eap U<L9k(s, N + Loy (S, )T w, WE>A” < /s .\ |L9k(S, a)T(Sk + g, (s, a)ka‘duE(s, a)

d_l/k ' Hbek (s, a)Ték + Ly, (5, a)kaHZVk'

(A.4.8) < ‘

2,y

Similarly, we have that

B |05, 70+ (600 T )

(10,(5,") Ok + Loy (5, 7) Twi, 7rz>A‘d7TZ(a)ddE(S)

ddg

1. (s)dvg(s, a)

(10,5, 01+ (5. o), |-

(A49) : Hbgk (87 CL)T(;]? + by, (57 a)kaH2,l/k7
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where the last inequality follows from the Cauchy-Schwartz inequality. Combining (A.4.8|)

and (A.4.9)), we obtain for term (ii) of (A.4.3)) that

]EdE|: <L9k (Sk—Fka( )ka,ﬂ'é —7Tz>A‘:|

i

(A.4.10) < G- [|ea,(s,0) 0 + 1w (5,0) "wi),, .

ddg
ddj,

dI/E

o ) ‘Lgk s,a)’ Ok + Lu, (s, ) w’f”wk

2,vg H 2.dy,

where the last inequality follows from Assumption To upper bound term (ii) of
(A.4.3)), it suffices to upper bound the right-hand side of (A.4.10]). For notational simplicity,
we write tp, = g, (S,a), Ly, = tw,(S,a), and ¢, = ¢,, (s,a). By the triangle inequality, we

have that

1/2
||5k Loy, + wl;rbwk ||2,Vk - (EVk [(6l—crb9k + wl—crbwk) ' (&jbek + wljbwk)})

(A.4.11)
T T T 1/2 T T T 1/2
< (5k - wk) ]EVk [L9k (5k Loy, +wy, kaﬂ ‘ + ]EVk [wk ([’ek - ka) ’ (5k Loy + Wy, ka,)]

N J/ N J/

-~

) (Gi.b)
We now upper bound the two terms (ii.a) and (ii.b) on the right-hand side of (A.4.11)).
For term (ii.a) of (A.4.11)), following from of Proposition [1.3.1], we have that

(A.4.12) Z(0x) = 74 - B [to,La,)-
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Recall that the expectation E; is taken with respect to the k-th batch. Following from the

definition of %9[/(0]{;, Bi) in ([1.3.17)), we have that

Ex [69[/(9167 ﬁk)} =~ Tk ]EVk [w,;r(bwk ' LGk]
= -7 E,, [wl—crLUJk ) LQk] - Tk wl;rEa'NWZ [¢Wk(87 a/)} By, [Lﬁ’k]
(A.4.13) = —7 - By, [wy tu, - ta,],

where the first equality follows from the fact that @wk (5,a) = w) ¢, (s,a), while the

second and third equalities follow from the definition of ¢,, (s,a) in (A.4.2). Following
from (A.4.12) and (A.4.13)), we have that

’<5k - Wk)TEz/k [LGk (5I<:TL9k + wl—crbwk)} ) = Tk_2 ’

(05 = )" (Z(00)3 — - B[V L(6,5)]) ‘

(A.4.14) < 2By 72 Hz(ek)(sk — 7 Ex [V L(0, B)]

2

Here the last inequality follows from the Cauchy-Schwartz inequality and the fact that
|lwi — dkll2 < 2By as wy, 0, € Sp,. For notational simplicity, we define the following error

terms,

(A.4.15) e = Z(01)0k — T(61)0r,

(A.4.16) &2 = VoL, Br) — Ex [ﬁeL(ek, Be)].
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Then, we have for term (ii.a) in (A.4.11)) that

1/2}

’I(@k)ék — Tk Ek [69[1(97 B)}

(A.4.17)

(5k - wk)TEl/k |:[’9k (5kTL9k + w,;rbwk)}

IEinit |:

1/2
y

~ ~ 1/2
< (2B)2 - 17 B {(HI(Qk)(Sk — 7 VoL(0, 8)||, + 1€ + 7 - H&,ﬁ”Hz) }

< (2B)V? -1t B [

R R 1/2
< (2By)"” -7t (E 12608 = 7~ VoL, A, | + Euns [ 12 + 7 ||s,<f>||21> |

where the first inequality follows from (A.4.14)), the second inequality follows from the

triangle inequality, and the last inequality follows from Jensen’s inequality. Similarly to

(A.4.15)), we define the following error term,
(A418) 61(63) = f(@k)wk - I(Qk)wk
We now upper bound the right-hand side of (A.4.17]). Recall the definition of d in ((1.3.15]).

We have that

(A.4.19)
Hf(‘gk)ék — Ty - ﬁeL(Qmﬁk)m < Hf(gk)wk — 7 - VoL(0, 8o,

< [z = - B [ToLOk. 8] ||, + 16670+ 7 2o
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Following from (A.4.12), (A.4.13)), and Jensen’s inequality, we have that

HI(Qk)wk — 71 - B [V L(6y, Br)] H2 =7 - ‘

EVk [Lek ’ wl—cr@@k - ka)} HQ

<rT

Bl )

B [leallz - o o, = 1)

2 T
< 27 - Hwk (0, — ka)”l,l,k,

where the last inequality follows from the fact that ||¢glls < 2 for any (s,a) € S x A.

Following from Assumption [[.4.1] and Lemma we have that

Einit { ‘I(Qk)wk — Ti - Eg [ﬁoL(ekz, Br)) HQ] < Einit [2713 jwp (to, — ka)HLuk]
(A.4.20) = O(r2-BY* -m~VY).

Plugging (A.4.19) and (A.4.20)) into (A.4.17)), we have that

IEinit {

1/2
(51@ - wk)TEVk [Lek (5;L€k + wl—cerk)} ‘ :|

1/2
= 2Bt (0@ By m ) 4 B[l + 27 - 1671 + 11 2] )

1/2
= O(re- Byt - m™ %)+ @2B)Y2 7 (Bu 167112 + 270 167 12 + 168711 )
(A.4.21)

<O(r - BY -m™YY) +2v2B)* - (6?/N)V4,
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where the last inequality follows from Assumption [1.4.3, We now upper bound term (ii.a)

of (A.4.11). We have that
1/2}

1/2
S ]Einit,llk [‘W;—(Lek - ka) . (6I—<;FL9]€ + w;ka)‘]

Einit |: ]EVk [wl;r(b‘gk - ka) ’ (6l;rbt9k + wkTLWk>i|

1/2
<A422) < Einit |:le;|—(L9k — ka) H27yk] . Einit [Hé;—wk + w];rbwk ||27yk:| 1/27

where the expectation Eiy,, is taken with respect to the random initialization in ((1.3.3])
and (s,a) ~ v, the first inequality follows from Jensen’s inequality, and the second

inequality follows from the Cauchy-Schwartz inequality. Following from Assumption [1.4.1

and Lemma[A.T.2] we have that
(A.4.23) Einit [Hw;—(bek — ka)||27yk] _ O(BY? 1),

To upper bound the right-hand side of ({A.4.22)), it remains to upper bound the term

Einic[ |07 to, + Wy twy |l2.,]- We have that

(A.4.24)

Einit [ 107 to, + wp twn 2] < Einie [[10kl2 - 10 ]12] + Einie [[|will2 - [[wy l2] = O(Ba),

where the inequality follows from the Cauchy-Schwartz inequality and the equality follows

from the facts that [jug, |l2 < 2, [Ju, ]2 < 2, and 0, w, € Sp,. Plugging (A.4.23) and
(A.4.24)) into ([A.4.22)), we have that

(A.4.25) Einit [

1/2
EVk [W;(Lgk - ka) : (5;—[’9k + w];rbwk)} ‘ :| = O(Bg)/4 . m_l/S),



190

which upper bounds term (ii.b) of (A.4.11)). Plugging (A.4.21)) and (A.4.25) into (A.4.11)),

following from ({A.4.10)), we have that

Eil’lit,dE |:

{10, (s, N6k = 1wy (5,) Twp, T — 7r,§>A”

(A.4.26) — - Ch- (O(BY*-m~ V%) +2v2B} - (6% /N)Y),

which upper bounds term (ii) of (A.4.3).

Finally, plugging (A.4.7) and (A.4.26|) into (A.4.3)), we have that

Einit,dg U@Og(ﬂiﬂ/ﬁ) =0 Qu,(s,°), T — Wli>,4”

=1~ Cu-2V2B,* - (o IN)V* 4 Ol - B -~ - B - m7109),

where é,il), f,(f), and 5,23) are defined in (A.4.15)), (A.4.16]), and (A.4.18)), respectively, and

C), is defined in Assumption [I.4.1] Thus, we complete the proof of Lemma [A.3.1] d

A.4.2. Proof of Lemma [A.3.2

Proof. For notational simplicity, for any (s,a) € S x A, we denote by Agx(s,a) =

Q\wk(s, a) — Q*(s,a) the error of estimating Q7*(s,a) by @wk(s, a). Then, we have that

N
S/S A{AQ,k(s,a)‘dWE(a)ddE(s)+/S A‘AQ:k<S’a)|d7rli(a>ddE(S>
dvg ddy
= [ sl Esadnisa s [ Basts 0l GGG

< Ch - [[Aqikll2.o0»
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where the last inequality follows from the Cauchy-Schwartz inequality and Assumption

[1.4.1] Thus, we complete the proof of Lemma[A.3.2] O

A.4.3. Proof of Lemma [A.3.3

Proof. Following from (A.4.1)) and the parameterization of 7y in (1.3.5]), we have that

(A.4.27) (log (i1 /73), T = Thia) 4
= <Tk+1 : 9;+1¢9k+1 (57 ) — Tk elj(b% (57 ')7 Trli - 7TIS€+1>,4
= <(Tk+1 O — Th ek)T%k(& ), T — 7T1i+1>,4

+ Tk+1 ° <91;F+1 (¢9k+1 (Sa ) - ¢9k (Sa '))777-1?: - ﬂ-lf:—&—1>A‘

We now upper bound the two terms on the right-hand side of (A.4.27)). For the first term
on the right-hand side of (A.4.27)), recall that we define d;, in (1.3.15). Thus, we have that

(A.4.28) | (Tt - 01 — 7 - O) " 0, (5, 0)| = - |6} b, (5, 0)|.
Following from ({A.4.28]) and Hélder’s inequality, we have for any s € S that

’<(Tk+1 Ok — Tk - Ok) ' Pa, (s, ), 7 — WZ+1>A‘

< |64 do, (s, )| . - Nl — miga s
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Then, following from Pinsker’s inequality, we have that

‘<(Tk+1 O — Tr - O) T e, (5,0), T — WZ+1>A‘ — KL(my 4 [ 77)

<0 |0 do. (s, )| oo 7k = TRl = 1/2 - llm — Il

2

oo’

(A.4.2) <1/2-7°-]|6) do,(s,-)]|

By the update of 0, in (1.3.13]) and the definition of d; in (1.3.15)), we have that 0y, d, € Sp,.
Thus, by Lemma [A.1.3] we have that

(A.4.30) B (|07 0, (5. )12, < 2Mo + 1855,

Plugging (|A.4.30]) into (A.4.29), we have that

(A.4.31)

(it B = 72 60) 60, 5,78 = i) 4| = KL 1) < o - (5 + 9B3),

For the second term on the right-hand side of (A.4.27)), following from Assumption m
and Lemma [A.T.2] we have

<9];r+1 (¢0k+1 (57 ) - ¢9k (57 '))77"2 - WZ+1>

1,7r,§j|
1=7r1§+1:|

Einit,a
init,dp, A

< Euitdg {H@Ll (P, (5,) — Pa, (s, ))‘

+ Einit,dE {H@;—H (¢0k+1 (5,) — ¢9k<37 )) ‘

(A.4.32) = O(BY? -m~/Y).
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Finally, plugging (A.4.31)) and (A.4.32)) into (A.4.27)), we have that

Einit,dE U<10g(7ﬁi+1/72)a T, — 77?2+1>,4’ - KL(”ZH | 7%)

= n* - (M3 +9B3) + O(rieyr - By* - m~14),

which completes the proof of Lemma [A.3.3] O
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APPENDIX B

Can Temporal-Difference and Q-Learning Learn Representation?

A Mean-Field Theory

B.1. Proofs for §2.5H2.6

For notational simplicity, we denote by Ep the expectation with respect to x ~ D and

Ez the expectation with respect to (x,7,2") ~ D. Also, with a slight abuse of notations,

we write 0™ = {6} .

B.1.1. Proof of Lemma 2.5.1]

Proof. Existence and uniqueness of ()*. To establish the existence of the fixed point
solution Q* to the projected Bellman equation Q = II=7™Q, it suffices to show that

17" : F — F is a contraction mapping. It holds for any Q', Q? € F that

TR — T Q| 2,0y <7 - Ep [(Ql(fv,) - QQ(xl))Q]

=@ - QQ“Z(D)?

where the last equality follows from the fact that D is the stationary distribution. Thus,
I[I7T™ : F — F is a contraction mapping. Note that F is complete. Following from the
Banach fixed point theorem (Conway, |2019)), there exists a unique Q* € F that solves

the projected Bellman equation Q = II=77(Q. Moreover, by the definition of F in ([2.4.3),
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there exists p € P5(RP) such that
Q@) = [ olai6)dp(o)
Proof of (i) in Lemma [2.5.1] We define

(B.1.1) pr=po+a (5= po).

By the definition of Q(+;p) in (2.3.2) and the fact that Q(x;py) = 0, we have that

Q(z; p*) = Q*(x), which completes the proof of (i) in Lemma

Proof of (ii) in Lemma(2.5.1] For (ii) of Lemmal2.5.1] note that Q(+; p*) = IIzT"Q(-; p*).

Thus, we have that
(QG5p") =TTQ(50"), f() =Q(5p%))p, 20, VfEF,

which further implies that

B.12) Ep[(Qleip) 1=+ Q' i) - [ o0}l p)0)] 20, ¥pe ZuRD)

Let p = (id 4+ h - v)yp for a sufficiently small scaling parameter h € R, and any Lipschitz-

continuous mapping v : R”? — RP. Then, following from (B.1.2)), we have that

(B.1.3) /]E@ [(Q(m, p*)—r—7-Q';p)) - (a(x; 0+ h-v(d) — o 8))} dp(9) >0
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for any v : RP? — RP”. Dividing the both sides of (B.1.3) by & and letting h — 0%, we
have for any v : R? — RP that
0< [ B5[(Qip) ~ 7=+ Q') - (Voolsi0),v(0))] do(6)

=l / (9(6; 57),v(0)) A2 0),

where the equality follows from the definition of ¢ in ([2.3.5)). Thus, we have that g(6; p*) =0

for p-a.e., which completes the proof of (ii) in Lemma

Proof of (iii) in Lemma Following from the definition of p* in (B.1.1)), we have

that
Dy (p" || po)
-/ (;EZ; - 1)2 (o) = [ ((1 —a). ,?0<€99>)+ a1 p(6) 1) N

where D = D,2(p || po)'/*. By Lemma we have that
Wa(p*, po) < Dxw(p™ || po)'/* < Dy (p* | po)'/* < ' - D,

which completes the proof of (iii) in Lemma [2.5.1] O

B.1.2. Proof of Lemma [2.5.2]

We first introduce the following lemmas. The first lemma establishes the strongly mono-

tonicity of g(+; ;) along a curve 3 : [0,1] — P (RP”) on the Wasserstein space.
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Lemma B.1.1. Let §8:[0,1] — £ (RP) be a curve such that 9;3; = — div(f; - v;) for a

vector field v. We have that

(09 Be), ), < =(1 =) 'ED[(&Q(SE;@))Q]

Furthermore, we have that

(B.1.4) /O (0:9(+5 B),vs) . ds < —(1=7) - Ep [(Q(x;ﬁo) - Q(m;ﬁl))Q]

Proof. Following from the definition of g in (2.3.5]), we have that
0ug(0; ) = —a - Ep |0,(Q(x; B) — 7 Q'3 ) - Voo(w:0)]

Thus, following from integration by parts and the continuity equation 9,5, = — div(5; - vy),

we have that

<at9('; Br), Ut>/5t == /<CY ‘Ex [@(Q(ﬂ?; Bi) = - Qs Bt)) - Voo (x; 9)} ,0i(0) - Bt(9)> do
= —/Oé ‘Egn [at(Q(x; Bi) — - Qs @f)) ~o(; 9)} -0, () Ao

(B.15) = —Ep|0/(Q(: f) — - Q' 8)) - Q03 ).
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where the last equality follows from the definition of @ in (2.3.2)). Applying the Cauchy-

Schwartz inequality to (B.1.5)), we have that

<8tg('; /8t>7vt>6t =-Ej5 [(&Q(lﬁ; 51&))2] +7-Ep [atQ(xl§ Be) - 0,Q(; ﬁt)}

< —E5[(0Q(:8))"] +7- B[00 )] - Bs[ (00" )]

1/2

(B.1.6) =—(1—-7)-Ep [(&Q(m; ﬁt))2]>

where the last equality follows from the fact that the marginal distributions of D with

respect to x and 2’ are D, since D is the stationary distribution. Furthermore, we have

that
1 1 )
85 3 Ps)y Us ds < —(1- ' K as 3 Ps d
[ (a0, a5 <~ =9)- [ Eo[(0.00: )] as
S _(1_7) ED|:</O asQ<x;ﬁs) dS)Q}
= —(1=7) B |(Q&; 1) — Q(a: ).
which completes the proof of Lemma [B.1.1] O

The following lemma upper bounds the norms of () and Vyg.

Lemma B.1.2. Under Assumptions [2.4.1{ and [2.4.2] it holds for any p € Z25(RP) that

(B.1.7) sg}e{@(m, p)| < a-min{B; - Wa(p, po), Bo},

(B.1.8) sup ||Vgg(0;p)||F < - By -min{2a - By - Wh(p, po) + By, 2a - By + B, }.
OcRDP
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Proof. We introduce the Wasserstein-1 distance, which is defined as

Wi (p', p?) = inf{E[llX - Y]

law(X) = pt, law(Y) = uQ}

for any p',p? € Z(RP) with finite first moments. Thus, we have that Wy (u!, u?) <
Wy (!, p?). The Wasserstein-1 distance has the following dual representation (Ambrosio

et al., 2008),

(B.1.9) Wi (u*, 1) = sup{/f(:v) d(p* — p?)(x) | continuous f : R” — R, Lip(f) < 1}.

Following from Assumptions [2.4.1]and [2.4.2) we have that ||Veo(z;0)|| < By for any © € X

and 0 € RP | which implies that Lip(o(z;-)/B;) < 1 for any = € X. Note that Q(z; py) = 0

for any € X. Thus, by (B.1.9) we have for any p € Z2(RP) and = € X that

(B.1.10)

1Q(z;0)] = a-

/0(93;9) ~d(p— Po)(e)‘ < a- By Wilp,po) < a- By - Wa(p, o).

Meanwhile, following from Assumptions [2.4.1] and 2.4.2] we have for any x € X and

p € P5(RP) that

(B.1.11) 1Q(z;p)| = a - /O’(I; 0) dp(@)‘ < - By.
Combining (B.1.10) and (B.1.11)), we have for any p € 95(RP) that

(B.1.12) SUE‘Q(%P)‘ < a-min{B; - Ws(p, po), Bo},
S
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which completes the proof of (B.1.7) in Lemma [B.1.2] Following from the definition of g
in (2.3.5), we have for any x € X and p € Z,(RP) that

[V09(0: p)ll; < @ Es | Qi p) = 7 =7 - Q('5p)] - [ Vg )]

< a-min{2a - By - Wa(p, po) + By, 200+ By + B, } - Bs.

Here the last inequality follows from (B.1.12)) and the fact that |Viyo(z;60)||r < Bs for

any x € X and p € P»(RP), which follows from Assumptions [2.4.1/and [2.4.2, Thus, we

complete the proof of Lemma [B.1.2] O

We are now ready to present the proof of Lemma [2.5.2]

Proof. Recall that p; is the PDE solution in , that is,
Oipr = =1~ diV(Pt “9(; Pt));
where
9(0;p) = —a-Ep [(Q(w; p) —r —7-Q';p)) - Veol(; 9)]‘

We fix a t € [0,7]. We denote by 3 :[0,1] = P (RP) the geodesic connecting p; and p*.

Specifically, 3 satisfies that 5, = — div(fs - vs) for a vector field v. Following from Lemma
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[B.3.2] we have that

d Walpr, p*)* ,
a2 b)),

=n- /0 0s(9(s Bs), vs) 5 ds — 1+ (g(5 p), 1) .

(B.1.13) 0 [ (DB, dssn- [ [(ol6:6.0.0. 30)) a0as

where the last equality follows from (ii) of Lemma [2.5.1}
For term (i) of (B.1.13)), following from (B.1.4) of Lemma [B.1.1} we have that

/01<859(.; Ba),vs)y ds < —(1=7) - Ep [(Q(x; fo) — Ol 61))2]

(B.1.14) = —(1-7)En[(Q(z; ) - @"(2))*].
For term (ii) of (B.1.14), we have that

/‘(9(9;&),85(@3'ﬁs)(9)>‘d9 - /‘(Veg(ﬁsﬁs),ﬁs(e)-vs(e) ®vs(6)>‘ 6

< sup || Vog(6; 8.) ||y - llvsll2,.
0cRD

where the equality follows from integration by parts and Lemma [B.3.4l Since § is the
geodesic connecting p; and p*, (2.2.7) implies that ||vs|3, = Wa(Bo, B1)* = Wa(pr, p*)? for
any s € [0,1]. Applying (B.1.8)) of Lemma [B.1.2] we have that

/)<g<9;65)785(vs : /33)(9»‘ dd < a-By- (20& - By - WQ(,Oupo) + Br) : WQ(ptap*)Q

(B.1.15) S 4oy - BQ . (60_/ . Bl : Wg(po, p*) + BT) . Wg(p(),p*)Z,
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where the last inequality follows from the condition of Lemma that Wh(py, p*) <

2Ws(po, p*) and the fact that Wh(p, po) < Wa(pr, p*) + Wa(po, p*). Then, applying (iii) of

Lemma [2.5.1] to (B.1.15), we have that

//] (v - B5)(0 >‘d9ds<4a .By-D?.(6B,-D+ B,)

(B.1.16) =C,-al,

where C, > 0 is a constant depending on D, By, B,, and B,.
Finally, plugging (B.1.14) and (B.1.16)) into (B.1.13]), we have that

£W2(pt7 p*)2

pTA— < —(1—7)-n-ED[(Q(ﬂf;pt)—Q*(x))Q} +Ciah o,

which completes the proof of Lemma [2.5.2] U

B.1.3. Proof of Theorem [2.6.2

Proof. In parallel to the proof of Lemma [2.5.1in §B.1.1], to establish the existence

and uniqueness of the fixed point solution to the projected Bellman optimality equation
Q = IIT7T*Q, it suffices to show that II=7* : F — F is a contraction mapping. In

particular, it holds for any Q', Q? € F that

* 1 *21(2 2 1 2 2
IFT"Q" — T Q2 o) < 7* - Es, [ (max Q'(s',0) — max Q(s',))’]

RN (T
2

< —— Ep, | (Q'(s:0) — Q*(s,0))"].
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where the equality follows from the fact that Dg is the stationary distribution and the last
inequality follows from Assumption [2. Thus, IIz7* : F — F is a contraction mapping.
Following from the Banach fixed point theorem (Conway, 2019)), there exists a unique

fixed point solution QT € F to the projected Bellman optimality equation Q = I1+7*Q.

Moreover, in parallel to the proof of Lemma[2.5.1)in §B.1.1], there exists T € 2, (RP) such

that Q(z; ") = Qf(z), h(z;vT) =0, and Wa(vf, 1) < a7t D, where D = D,2(7 || 1)/

For notational simplicity, we define Q*(x) = max,c4 Q(s, a). In parallel to (B.1.13) in

the proof of Lemma 2.5.2]in §B.1.2] we have that

(B.1.17)
vy, vT)? !
%w:n/o <ash'(';ﬁs US dS‘H? / /<h 55 Us Bs)( )>d9d8
i) (11)

where 3 : [0,1] — P5(RP) is the geodesic connecting v; and v! with 9,8, = — div(B, - vs).

4

—~
—

Upper bounding term (i) of ( m In parallel to and (| - in the proof
of Lemma we have that

(B.1.18)
<85h('; 65)’ U3>ﬁs = _EﬁE [as (Q(xa Bs) -7 QA(:B/; Bs)) ’ 88Q<x; Bs)]

1/2

< ~Ep, [(0,0(:8))°] + 7 Eny [0 8)7] - Eny [(0.04 (@3 8))°]
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For the second term on the right-hand side of (B.1.18)), we have that

Epg [(0:Q4(2:,))°] = lim o [(ul (@@ Bis) - QA (a: &)))2]
< (y+R)7 - limu? Ep, [(Q(:c; Bavu) — Qa3 ﬁs))Q]
(B.1.19) =(v+ k)% Epy [(8SQ(93;BS))2],

where the inequality follows from Assumption and the fact that Q(-;v) € o - F.

Plugging (B.1.19)) into (B.1.18]), we have that

K

<ash<';ﬁs)7vs>5s < _’Y e

Eny [ (0.Q(w:8,))7).

which further implies that

/;(&h(-;ﬁs),vs}ﬂs ds < ——" /OlEDE [(35Q(x;ﬁs))2] ds

Y+ kK .
< - Eog {(/0 a@(m@)dsﬂ
(B.1.20) = i -~ -Ep, [(Q(z; V) — Qla; VT))Q].

Upper bounding term (ii) of (B.1.17). In parallel to the proof of Lemma in
4B.1.2] noting that |Q4(z; )| < sup,cy |Q(z; V)] for any v € P5(RP), we have that

HVgh(Q; Vt)HF <a-By- (201 - By - Wh (v, o) + Br)-
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In parallel to (B.1.15)) and (B.1.16|), we have that
1
(B.1.21) | [[we .00 8000 0as < €. a7,
0

where C, > 0 is a constant that depends on D, By, B,, and B,.

Plugging (B.1.20) and (B.1.21)) into (B.1.17]), we have that

de(l/t,uT)2< n-K
dt 2 R Ay

Epy [(Q(xa V) — Q(; VT))2] +C,-n-at

Thus, in parallel to the proof of Theorem [2.4.3]in §2.5| we have that

(c47) De@llm) (4 rtr

inf ED[(Q(SU; Vi) — QT(ﬂf))Q} < 2% - T Kk

te[0,7)

which completes the proof of (2.6.5)) in Theorem [2.6.2, Meanwhile, in parallel to the proof

of Lemma [2.4.4] in §B.2.2| we upper bound the error of approximating 7 by v, which

further implies (2.6.6) of Theorem [2.6.2] O

B.2. Mean-Field Limit of Neural Networks

In this section, we prove Proposition [2.3.1] whose formal version is presented as follows.
Recall that p; is the PDE solution in and pp =m~'- 3" 6;(k) is the empirical
distribution of ™) (k) = {#;(k)}",. Note that we omit the dependence of p on m and e
for notational simplicity.

Proposition B.2.1 (Formal Version of Proposition . Let f : RP” — R be any

continuous function such that ||f]|o < 1 and Lip(f) < 1. Under Assumptions and
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it holds that
s | [ 10) a0 - [ 16)370)
k<T/e
(keN)

< BT (Vg B} m -+ e (D + log(m/9)))

with probability at least 1 — . Here B is a constant that depends on «, 7, v, B,, and

B, (j € {0,1,2}).

The proof of Proposition is based on Mei et al.| (2018} 2019); |Aratjo et al. (2019),

which utilizes the propagation of chaos (Sznitman| [1991)). Recall that g(-; p) is a vector

field defined as follows,
9(0:p) = —a - Ep [(Q(fc; p) =1 —7-Qa";p)) - Vool 9)]-
Correspondingly, we define the finite-width and stochastic counterparts of g(0; p) as follows,

(B.2.1) 9(6;6") = —a-Ej [(@(ﬂc; 00m) — 1 — - Qa';0"™)) - Vyor(a; 9)} ,

(B22)  Gu(B;6") = —a- (Qak; 0) — 1 — 7 Qa1 6™)) - Voo (13 6),

where (zy, r, ) ~ D. Following from Mei et al. (2019); |Aratjo et al| (2019), we consider

the following four dynamics.
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e Temporal-difference (TD). We consider the following TD dynamics 0™ (k), where

k € N, with 6;(0) S (1 € [m]) as its initialization,

0ilk + 1) = 0u(k) = e - (Q s 07 () = i =7+ Qo 0™ (K)) ) - T (s (k)

(B.23) = 6i(k) + e Gu(0:(k); 0 (k)),

where (24,75, ) ~ D. Note that this definition is equivalent to (2.2.3).
e Expected temporal-difference (ETD). We consider the following expected TD

dynamics 6™ (k), where k € N, with 6;(0) = 6,(0) (i € [m]) as its initialization,

Oi(k +1) = 6;(k) —ne - a - Es {(@(m, é(m)(k)) —r—- @(m'; é(m)(k))> - Voo (z; éz(kz))]

v

(B.2.4) = 0;(k) +ne - G(0;(k); 0™ (k).
e Continuous-time temporal-difference (CTTD). We consider the following continuous-
time TD dynamics 8™ (t), where t € R, with 6;(0) = 6;(0) (i € [m]) as its initialization,

4
dt

(B.2.5) = - g(0:(£); 0 (2)).

6i0) = =+ g (Q (1) =1 =7 Q5T (1)) - Voo (wifie)

e Ideal particle (IP). We consider the following ideal particle dynamics 6(m) (), where

t € Ry, with 6;(0) = 0,(0) (i € [m]) as its initialization,

%@(t) =—n-a-Ep [(Q(fc; pe) =7 =7 Qa's pr)) - Voo (; 91-@))]

(B.2.6) =1 g(0:(t); pr),
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where p; is the PDE solution in (2.3.4)).

We aim to prove that py, = m~! Z?; 59i(;€) weakly converges to pi.. For any continuous
function f : RP — R such that ||f]|s < 1 and Lip(f) < 1, we use the IP, CTTD, and

ETD dynamics as the interpolating dynamics,
PDE —TD

‘ [ 1®dni0)- [ 10) dﬁkw)\

< \ [ 1) dpu) ~m - Zf(@(ke))\ + ]m‘l D S (Oke) =7t f(6i(ko))

i=1

. gf@;we» . gfm(k”’

[ 10 dn0) =Y 1@k
N — . IP — CTTD
PDE — IP

+ |67 (ke) — 6 (ke) || o

(B.2.7)
[0 ~ 8@+ [0706) 6D,
CTTD — ETD ETD — TD

where the last inequality follows from the the fact that Lip(f) < 1. Here the norm ||-||(m)

of ™ = {6;}, is defined as follows,

(B.28) 60 [y = sup 6]

i€[m]
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In what follows, we define B > 0 as a constant that depends on «a, 7, v, B,, and
B; (5 € {0,1,2}), whose value varies from line to line. We establish the following lemmas
to upper bound the terms on the right-hand side of (B.2.8)).

Lemma B.2.2 (Upper Bound of PDE - IP). Let f be any continuous function such that

Il fllo <1 and Lip(f) < 1. Under Assumptions [2.4.1] and [2.4.2] it holds for any f that

sup )/f ) dp(6 Zf(éi(t))‘SB-\/m

te[0,7)

with probability at least 1 — 9.

Proof. See §B.2.1.1] for a detailed proof. 0

Lemma B.2.3 (Upper Bound of IP — CTTD). Under Assumptions [2.4.1] and [2.4.2] it

holds that

sup ||€_(m)(t) - g(m)(t)H(m) < B-ePT . \/log(m/d)/m

te[0,7]

with probability at least 1 — 9.

Proof. See §B.2.1.2|for a detailed proof. O

Lemma B.2.4 (Upper Bound of CTTD — ETD). Under Assumptions [2.4.1| and [2.4.2] it

holds that

< B.-ePT . ¢

sup H@ (ke) — gl )H(m) <

k<T/e
(keN)

Proof. See §B.2.1.3| for a detailed proof. U
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Lemma B.2.5 (Upper Bound of ETD — TD). Under Assumptions [2.4.1] and [2.4.2} it

holds that

sup [| 00 (k) — 0 (k)] < BT \/E. (D + log(m/5))
k<T/e
(keN)

with probability at least 1 — 9
Proof. See §B.2.1.4] for a detailed proof. 0
We are now ready to present the proof of Proposition [B.2.1]

Proof. Plugging Lemmas [B.2.2{B.2.5|into (B.2.7]), we have that

sup
k<T/e
(keN)

< B-¢eBT. ( log(m/d)/m + \/6' (D —|—10g(m/5)))

[r@dno - [ o) dﬁkw)\

with probability at least 1 — §. Thus, we complete the proof of Proposition [B.2.1] O

B.2.1. Proofs of Lemmas [B.2.2HB.2.5|

In this section, we present the proofs of Lemmas [B.2.2}[B.2.5 which are based on [Mei et al.

(2018} 2019); |Aratjo et al.| (2019). We include the required technical lemmas in §B.2.3

Recall that B > 0 is a constant that depends on «, 1, v, B,, and B; (j € {0,1,2}), whose
value varies from line to line.

B.2.1.1. Proof of Lemma [B.2.2.

Proof. For the IP dynamics in ([B.2.6)), it holds that 6;(t) ~ p; (i € [m]) (Proposition

8.1.8 in |Ambrosio et al| (2008))). Furthermore, since the randomness of ;(t) comes from
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0;(0) while 6;(0) (i € [m]) are independent, we have that 0;(t) (i€ [m]). Thus, we

have that

E,, [mil : é / f(0)dp(0

Let 0107 = {0, ..., 0,n} and 6™ = {0, ... 6% ... 0,,} be two sets that only

’L""’

differ in the i-th element. Then, by the condition of Lemma that || f|le < 1, we have

that

= m - |£(8) — £(62)] < 2/m.

3O —m Y A6

Applying McDiarmid’s inequality (Wainwrightl, 2010), we have for a fixed ¢ € [0, T] that
m29)  (|m f;f(ém) - [ 10300 2 ) < exo(-mi ).
Moreover, we have for any s,¢ € [0, T] that
“m—l-Zfé = [ 1®)dp(®)] Zfé )= [ 10d0.0)
< \mif 00) =3 00| +| [ 501000~ [ 560)00.0

< |0 (t) = 07 ()| ) + Wrlpr ps)

< Hé(m)(t) _ é(m)(s)H(m) + Wg(pt, ps),
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where the second inequality follows from the fact that Lip(f) <1 and (B.1.9). Applying
(B.2.38)) and (B.2.40) of Lemma we have for any s,t € [0,7] that

- if(%) - [ 1®)dp(0)] if(%)) - [rorane) <5-p-

Applying the union bound to (B.2.9) for t € ¢- {0,1,...,|T/¢]}, we have that

< sup ’m Zf — /f(@) dpt(ﬁ)‘ >p+B- L) < (T/t+1)-exp(—mp?/4).

t[0,T]

Setting = m~Y/2 and p = B - \/log(mT/§)/m, we have that

sup [ Z £(00) = [ 16)dp(6)| < B logmT/5)/m
te|0,T
with probability at least 1 — §. Thus, we complete the proof of Lemma [B.2.2] O

B.2.1.2. Proof of Lemma B.2.3l

Proof. Recall that g and g are defined in and -, respectively, that is,

9(0;p) = —a-Ep [(Q(:r; p) =1 —=-Q(z'sp)) - Voo (z; 9)]7

30,007 = —a - Eg [(@(;c; 0 —r — - Qs 0™)) - Vyor(a; 9)} .
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Following from the definition of 6;(¢) and ;(t) in (B.2.5) and (B.2.6), respectively, we have

for any i € [m] and ¢ € [0, T] that

16:(£) — 6:(1)]|

- /t dfi(s)  dbi(s)

ds ds
— 7 / 3(8:(5):0 () — g(Bi(5); ps)

t
Sn-/A
0

ds

ds

(B.2.10)

gB-/O Hé’<m><s>_e<m>(s)u(m)ds+n-/o

G(0:(5); 07 (s)) — g(6i(s); ps)

ds,

where the last inequality follows from (B.2.35)) of Lemma [B.2.6, We now upper bound the

second term on the right-hand side of (B.2.10)). Following from the definition of @, @, and
g in (2.3.1)), (2.3.2)), and (B.2.1]), respectively, we have for any s € [0,7] and i € [m] that

(B2.11) [3(0:(5):0(5)) = 9(B:(5): )

?

=a’- Hm’l : i 77 (s)

where



214

Following from Assumptions [2.4.1| and [2.4.2, we have that || Z7(s)|| < B. When i # 7,

iid

following from the fact that 6;(s) "= ps (i € [m]), it holds that E[Z7(s)]|68;(s)] = 0.

Following from Lemma [B.2.8| we have for fixed s € [0,7] and i € [m] that
(o Sz = -0 e)
P(Hm—l - Zzg'(s)‘ > B
JFi

(B.2.12) < exp(—mp?).

(2 4p) 0}@))]

By (B.1.9), we have that

[ o000~ [ o@:0)a0®)] < B Wilpop) < B Walpop) < B -1 1

sup
reX

where the last inequality follows from (B.2.40) of Lemma m Thus, following from

Assumptions [2.4.1] and [2.4.2] Lemma and the fact that Lip(fg) < ||f|le - Lip(g) +

llg9]loo - Lip(f) for any functions f and g, we have for any s,t € [0, 7] that

‘Hm—l.ZZZj(S) _1'ZZg(t)H'§B'|t—S|.
i7 i#i

Applying the union bound to (B.2.12)) for i € [m] and t € - {0,1,...,|T/c|}, we have
that
P s [t S 200 2 Bk + B0 ) < () expl-m).

€
s,ze [(7)717]“] 7
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Setting ¢ = m~/2 and p = B - \/log(mT/§)/m, we have that

(B.2.13) sup Hm_l : ZZZ(S)H < B - /log(mT/é)/m
ichml, i#i

s€[0,7
with probability at least 1 —§. When ¢ = 7, it holds that [[m™!- Z!(s)|| < B/m in (B.2.11)),

which follows from Assumptions [2.4.1} and [2.4.2, Thus, plugging (B.2.13]) into (B.2.11)),

we have that

1€[m], i€[m],
s€[0,T] s€[0,T]

sup [[§(0(5):0° () g (B(s):r)|| < sup o (Hm‘l-zf(s)H+Hm_1'ZZZ<s>
J#
(B.2.14) < B VT

with probability at least 1 — 9.

Conditioning on the event in (B.2.14)), we obtain from (B.2.10|) that
t
H9<m>(t) - é(m)(t)”(m) <B- / ||9(m)(3) - é(m)(s)”(m) ds + BT - \/log(mT/d)/m
0
for any ¢ € [0,T]. Following from Gronwall’s Lemma (Holte, 2009)), we have that

6 (1) = 0 (@)]] ) < B- €+ BT - \/log(mT/6)/m

< B-ePT - \/log(m/d)/m, Vt € (0,7

with probability at least 1 — d. Here the last inequality holds since we allow the value of

B to vary from line to line. Thus, we complete the proof of Lemma O

B.2.1.3. Proof of Lemma [B.2.4l
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Proof. By the definition of g, éz( t), and 9 ) in (B-2.1)), (B.2.4), and ( , Tespec-

tively, it holds that

G(O:(5):0 (5)) = G0 L5/e)); 0™ (| 5/e))) | s

ke . ~ ~
<n. /0 §(0:():0()) = GO s/e] - 0" (Ls/e] - ) | ds
k—
+1 ZHg(ez(&)ﬁ(m)(&)) — (éz(g)yé(m)(ﬁ))H
=0
<B-k-é+B- ZHQ (Le) — 6™ (¢ )”(m)’
=0

where the last inequality follows from (B.2.35)) of Lemma and (B.2.39)) of Lemma
B.2.7. Following from the definition of |||/ in (B.2.8)), it holds for any k¥ < T'/e (k € N)
that
167 (ke) — H(m)(k)H(m) <B-T-¢+B- ;He(m)(&) — 9<m>(£)H(m)
-0
Following from the discrete Gronwall’s lemma (Holte, 2009)), we have that
Sup”@ (ke) — g H < B> T-e¢- BT <B.ePT ¢

k<T/e
(keN)

where the last inequality holds since we allow the value of B to vary from line to line.

Thus, we complete the proof of Lemma |B.2.4] [l

B.2.1.4. Proof of Lemma [B.2.5l

Proof. Let G, = o(0"™)(0),2,...,2) be the o-algebra generated by 6™ (0) and

2z = (zg, 7, 2) (€ < k). Recall that g and G, are defined in B.2.1) and (B.2.2)), respectively.
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We have for any i € [m]| and k € N that

Recall that 0 (k) and 6™ (k) are the TD and ETD dynamics defined in (B.2.3) and

(B.2.4)), respectively. Thus, we have for any i € [m| and k € N, that

k—

)~ 0.6 = e [ 3= Gt 08|

=0

)_I

o~

(

< e Hzx )|+ ne- ZHgé 167 (0) ~ (0.0 0™ ()|
(B.2.15) < ne- || Ai(k)|| + Be - iHé(’"’(ﬁ) 0™ O],

where the last inequality follows from (B.2.35)) of Lemma [B.2.6, and X;(¢) and A;(k) are
defined as

Xi(0) = Gy(0:(0); 0 (0)) — ]E[Gg (0,(0); 0 (0)) ‘ ge_l} Ve 1,

Following from (B.2.32)) of Lemma [B.2.6], we have that || X;(¢)|| < B. Thus, the stochastic
process {A;(k)}ren, is a martingale with [|A;(k) — A;(k — 1)|] < B. Applying Lemma
B.2.9] we have that

(B.2.16) P( max (k)| = B /T]e- (VD +p)) < exp(—p?).

k<T/e
(kENy)
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Applying the union bound to (B.2.16|) for i € [m], we have that

IP( max HAz(k)H >B-\/T/e: (@%—p)) < m - exp(—p?).
kgTz/f[T(’z]’eNJr)

By setting p = /log(m/d), we have that

(B.2.17)  ||Ai(k)|| < B-/T/e- (VD + \/log(m/é)), Vi€ [m],k<T/e (keNy)

with probability at least 1 — 0. By (B.2.15) and (B.2.17)), we have that

v

Hg(m)(k) _ g(m)(k)”(m)

< B-VTe- (VD + \/log(m/8)) + Be- 3 [[§) (0) - 0 (O] gy

for any k < T'/e (k € N) with probability at least 1 — 0. Applying the discrete Gronwall’s

Lemma (Holte, 2009), we have that

16 (k) = 0 (k)| < B - " B-VTe- (VD + /log(m/9))

< B. BT, \/E. (D +log(m/d)), Vk<T/e (keN)
with probability at least 1 — d. Here the last inequality holds since we allow the value of

B to vary from line to line. Thus, we complete the proof of Lemma O

B.2.2. Proof of Lemma [2.4.4

Proof. Recall that Q and Q(-; p) are defined in ([2.3.1) and (2.3.2)), respectively. For

notational simplicity, we denote the optimality gaps for 0™ = {§;}™, and p € F,(RP)
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by
(B.2.18) L(O™) = Ep [(@@;mm) B Q*(@)z],
(B.2.19) L(p) = Ep [(Q(m;p) B Q*(x))Q]

Recall that 8™ (k), 7™ (ke), and p, are the TD dynamics, the IP dynamics, and the PDE
solution defined in (B.2.3)), (B.2.6)), and (2.3.4)), respectively. It holds for any k& € N that

< |L(6) (k) — L@ (ko)) | +| L0 (ke)) = L(pn)|.

~ ~~

(i) (i)

In what follows, we upper bound the two terms on the right-hand side of (B.2.20)).

(B.2.20) ‘L(@W(k)) — L(pxe)

Upper bounding term (i) of (B.2.20). Following from the definition of L in (B.2.18)),

it holds for any k£ € N that

(0 (k) = L(0" (ke)),

(B.2.21)

Ep [(@(x;e<m><k>) +Q(a:0:(ke) —2Q"(@)) - (Q(a: 6 (k) - Qe @-(ke)))] |

Following from (B.2.30)), (B.2.31)), and (B.2.36) of Lemma [B.2.6, we have for any k € N

that

(B.2.22) sup @(az‘, Q(m)(k)) + @(x;&i(ke)) - 2@*(:1;)) < B,

zeX

(B.2.23) sup

reX

Q (50 (k)) — @(x;@(/%))‘ < B- [0 (k) — 0" (ke)| -
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Thus, we have that

L (k) = L6 (ko))

< B[00 (k) = 6" (ke) | .,

(B224) < B-e" - (Viog(m/8)/m + Ve (D+ log(m/8)) ), Vk <Tfe (k €N)
with probability at least 1 — d. Here the last inequality follows from Lemmas [B.2.3{B.2.5]
Upper bounding term (ii) of (B.2.20]). Let ¢t = ke. It holds for any ¢ € [0, 7] that

(B.2.25)

L0 @) ~ Li)

< L) - 2, L0 0)]| +

E, [L(67(1)] = Ler)|

where the expectation is with respect to 0;(t) ), (¢ € [m]). For the second term on the

right-hand side of (B.2.25), following from the fact that E,, [Q(z: 0™ (1))] = Q(z: py) for

any r € X, we have that

E,, |10 (1)] - L(p0)

- | [Ea[@@am 0) - @i ] apio

— ’/Varpt @(x, é(m)(t))} dD(x)
(B.2.26) < B/m,

where the inequality follows from the fact that ||o|] < B in Assumption and

the independence of 6;(t) (i € [m]). Let %™ = {@,, ....0} ...,0,} and 6>(™ =

M A
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{01,...,60% ...,0,,} be two sets that only differ in the i-th element. It holds that
|L(0%™) — L(*™)| < B-m~' - Ep Ua(x; o1y — a(x;ef)}] < B/m,

where the first inequality follows from (B.2.21)) and (B.2.22) and the second inequality
follows from Assumption Applying McDiarmid’s inequality (Wainwright| 2019), we

have for a fixed ¢ € [0, 7] that

(B.227) P(P&mma»—J&{LwW%wﬂ\2p>sgmm—meBy

It holds for any s,t € [0, 7] that

‘L(ew) (1) B, [L(0™(0)] ‘ - ’L(G(m)(s)) ~E, [L(@"(5)] H

where the first inequality follows from (B.2.21)), (B.2.22), and (B.2.23) and the second

inequality follows from (B.2.38]) of Lemma . Applying the union bound to (B.2.27)

fort €1-{0,1,...,|T/t]}, we have that

Pl sup
te(0,7)

Setting t = m~Y/2 and p = B - \/log(mTd)/m, we have that

L(O™(t)) — E, [L(é(m)(t))} ‘ >p+ BL) <(T/v+1) - exp(—mp*/B),

(B.2.28) sup
t€[0,T]

L) - B, [2(0™0)]| < B ViostmTo)/m
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with probability at least 1 — 0. Plugging (B.2.26]) and (B.2.28)) into (B.2.25)), noting that

t = ke, we have that

< B -y/log(mTé)/m, Vk<T]/e(keN)

(B.2.29) ‘L(é“”’(ke)) — L(pre)

with probability at least 1 — 9.

Plugging (B.2.24) and (B.2.29) into (B.2.20]), we have that

L0 (k) = Lipro)

< BT (/log(m/0)/m + Ve (D+ log(m/8))), Vk < T/e (k €N)

with probability at least 1 — d. Thus, we complete the proof of Lemma [2.4.4] O

B.2.3. Technical Lemmas for

In what follows, we present the technical lemmas used in . Recall that @, g, and

Gy are defined in (2.3.1), (B.2.1), and (B.2.2), respectively. Let B > 0 be a constant

depending on «, 1, v, B,, and B; (j € {0,1,2}), whose value varies from line to line.
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Lemma B.2.6. Under Assumptions [2.4.1| and [2.4.2] it holds for any 8™ = {#;}:", and

Q(m) = {6,}i~, that

(B.2.30) 21612@(73; 9| < B,

(B.2.31) 2161)13@(96;9(”)) — Q30" < B0 — 0" 1y,

(B.2.32) |G (655 67)|| < B,

(B.2.33) G030 = Gr(8: 0™ || < B [0 = 07|y, WE EN,
(B.2.34) 19(05; 0| < B,

(B.2.35) [3(60::0) — G(0,:07)|| < B - 07 — 8| .

Meanwhile, for any () € F, it holds that
(B.2.36) suEHQ(:L')” < B.
TE

For any p € Z5(RP), it holds that

(B.2.37) |9(6; p)|| < B.

Proof. For (B.2.30) and (B.2.31)) of Lemma following from Assumptions
and and the definition of Q in [2.31), we have for any z € X, '™ and 0™ that

Q6| < e Y ol 0)] < B,
=1

Q(a:0") = Qa; 0™ < ™Y | (i 6;) — o 8,)] < B+ 00 = 0|y

i=1
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For (B.2.32)) and (B.2.33) of Lemma following from the definition of G, in (B.2.2),

we have for any 6™ and 8" that
”@k(@i;e(m))H - ar ‘@(mk;e(m)) Tk =7 @(552§9(m)>‘ |[Voo (a6 < B,

|G (0:50) = Gr(::.0™) |

<a- SPI?}Q\(xk; 0™ — i — - Q(ak; 0™)| - | Voo (wr: 0:) — Voo (zi:0,)||
om

+ Oé}@(xk;e(m)) — 7 Qa0 — Qs 0™) + - Q(a); Q(W))’ sup || Voo (z; 60;)|
0

;ERD

< B- [0 = 07| ).
The inequalities in (B.2.34]) and (B.2.35)) of Lemma for g follow from the fact that
G(0:0™) =B, )5 [Gr(0: 0]

The inequalities in (B.2.36)) and (B.2.37)) follow from the definition of F and ¢ in (2.4.3))
and ([2.3.5)), respectively. Thus, we complete the proof of Lemma [B.2.6{ O

Recall that p, is the PDE solution in (2.3.4) and 80(¢) and 8™ () are the CTTD

and IP dynamics defined in (B.2.5)) and (B.2.6]), respectively.
Lemma B.2.7. Under Assumptions [2.4.1] and [2.4.2] it holds for any s,¢ € [0, 7] that

(B.2.38) 160 () — §<m>(s)H(m) < B-|t—s|,
(B.2.39) 67 () = 6 (5)]| ) < B - |t = ],

(B.2.40) Wa(pe, ps) < B+ [t — s].
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Proof. For (B.2.38) of Lemma [B.2.7, by the definition of 6;(¢) in (B.2.6) and (B.2.37)
of Lemma we have for any s,t € [0,7] and ¢ € [m] that

|60y~ 8.5l =n- [ [ol:7)0.)

‘dT§B~|t—s|.

Similarly, for (B.2.39) of Lemma [B.2.7] by the definition of 6;(¢) in (B.2.5) and (B.2.34)
of Lemma [B.2.6, we have for any i € [m] and s,¢ € [0, T] that [|6;(¢) — 6;(s)|| < B - |t — s].

For (B.2.40) of Lemma [B.2.7] following from the fact that ;(t) " (i € [m]) and

the definition of W in (12.2.4)), it holds for any s,¢ € [0, T] that
_ _ 71/2
Walpe ps) < E[||6) = )] < B-Je 5]

Thus, we complete the proof of Lemma [B.2.7] O

Lemma B.2.8 (Lemma 30 in Mei et al. (2019)). Let {X;}™, be i.i.d. random variables

with ||X;|| < & and E[X;] = 0. Then, it holds for any p > 0 that

> C¢- (m™Y? —l—p)) < exp(—mp?),

P(|m*- Y X;
(H 2
i=1

where C' > 0 is an absolute constant.

Lemma B.2.9 (Lemma 31 in |Mei et al.| (2019) and Lemma A.3 in [Aratjo et al. (2019)).

Let X;, € RP (k € N) be a martingale with respect to the filtration G, (k > 0) with

Xo = 0. We assume for ¢ > 0 and any \ € R? that

E[exp((A X = Xi1)) | Goa] < exp(€- IAI17/2).
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Then, it holds that
P(I,gnglleH >C¢Vn- (\/5+p)> < exp(—p°),

(k€N)

where C' > 0 is an absolute constant.

B.3. Auxiliary Lemmas

We use the definition of absolutely continuous curves in &y(R”) in |Ambrosio et al.
(2008).
Definition B.3.1 (Absolutely Continuous Curve). Let 3 : [a,b] — Z5(R”) be a curve.

Then, we say [ is an absolutely continuous curve if there exists a square-integrable function

f : [a,b] = R such that

Wa(Bs, Br) < /tf(T) dr

for any a < s <t <b.

Then, we have the following first variation formula.
Lemma B.3.2 (First Variation Formula, Theorem 8.4.7 in /Ambrosio et al. (2008))). Given
v € P5(RP) and an absolutely continuous curve p : [0,T] — P(RP), let 8 : [0,1] —

P5(RP) be the geodesic connecting j; and v. It holds that

d WQ(M 7V)2 ! ol
&Tt = _<Nta60>m;

where py = Oy, By = 054 | 1=0, and the inner product is defined in ([2.2.5)).
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Lemma B.3.3 (Talagrand’s Inequality, Corollary 2.1 in |Otto and Villani (2000)). Let v

be N(0,x - Ip). It holds for any pu € £25(RP) that

Wa(p, v)?* < 2Dxer (|| v) /5.

Lemma B.3.4 (Eulerian Representation of Geodesics, Proposition 5.38 in |Villani| (2003)).
Let 8:]0,1] = P,(RP) be a geodesic and v be the corresponding vector field such that

8,55,5 = — le(Bt . /Ut). It holds that

(B - vy) = — div(By - v @ vy).
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APPENDIX C

An Analysis of Attention via the Lens of Exchangeability and

Latent Variable Models
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C.1. Conditional Mean Embedding

We introduce the conditional mean embedding (Song et al.l 2009), which embeds a
conditional distribution to an element in an RKHS. Let H, and H, be the two RKHSs
over the spaces X and %) with the kernels K and £, respectively. We denote by ¢ : X — (5
and ¢ : Y — ly the feature mappings associated with H, and H,, respectively. In other

words, it holds for any z, 2’ € X and v,y € 9 that

(C.1.1) o(z) o(a) = Rz, o),  o(y) ely) = £y, y).

Let Py y be the joint distribution of the two random variables X and ) taking values
in X and 9, respectively. The conditional mean embedding CME(z,Px y) € H, of the

conditional distribution Py x is defined as
CME(z,Pxy) =E[L(Y,) | X = z].
By the reproducing property, it holds that
E[g()/) | X = x} = <g,CME(m,IP’X7y)>Hy, Vg e Hyx € X.

Correspondingly, the conditional mean embedding operator Cy|x : H, — H, is a linear

operator such that

Cy|)(ﬁ(l’, ) = CME(ZE, PX,)/)»
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for any = € X. We define the (uncentered) covariance operator Cyy : H, — H, and the

(uncentered) cross-covariance operator Cyy : H, — H, as follows,
Cxx =E[R(X, )@ R(X,")], Cyxr=E[L£(Y,)®@K(X,")].

Here ® is the tensor product. As shown in Song et al.| (2009), it holds that Cy|x = CyxCrh-

Thus, we have that
(012) CME(ZB, P)@y) = nyc/;g(ﬁ($, )

To derive the empirical estimation of Cy|x, we consider the following regularized

least-squares problem,

L
e 4 AN(E 2

(C.1.3) o min, E(C) = ;IIS@ 1) = CREE ), + A+ lIC]s,

where {(z*,y")}ser) are independently and identically sampled from Py, ||-|lus denotes

the Hilbert-Schmidt norm, and A > 0 is the regularization parameter. Recall from
that ¢ and ¢ are the feature mappings associated with the RKHSs H, and H,. To ease the
presentation, we view the space {5 as an (infinite-dimensional) vector space and consider
the feature mappings ¢ : X — R% and ¢ : 9 — R%, where d,; and d, can be infinity.
We write ¢(X) = (¢p(zh),...,0(z))T € REX% and (YY) = (¢(yh), ..., o(y"))T € REXde,

Also, we define the the (uncentered) empirical covariance operator Cyx and (uncentered)
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empirical cross-covariance operator CAyX as follows,
R L
Cox = L7 ) o(a)p(a")T = L7'o(X)Tg(X) € R
=1
R L
(C.1.4) Cyx = L7 ) oy (@) = L7'p(Y)p(X)T € R,
=1

Then, the solution to (C.1.3)) is

1

Cix = 2(V) ¢(X)((X) " d(X) + AT) " = Cyx(Coa + LTINT) ™ € R%*,

We denote by CME,(z, Py y) = é\y| x¢(x) € R% the empirical conditional mean embedding.

Note that
O(X) ((X) (X)) +AT) = (3(X)o(X) " +AI) " p(X).
Thus, it holds that

CME, («, Py y) = C3) 1 6()

= é\yx(é\)()( + L_l)\I)_lﬁ(iL', )

1

= (V) ¢(X)(¢(X) " 6(X) + \T)  o(x)

1

= oY) (6(X)g(X)" + M) ¢(X)o(x)

(C.1.5) = oY) (R(X, X) + A\)'&(X, 7).

Here R(X, X) = ¢(X)p(X)" = (R(a",27)); jer) € RV is the Gram matrix and 8(X, z) =
d(X)gp(z) = (R(x', z),..., R(z* z)) € RE,
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C.2. Attention Recovers Latent Posterior

C.2.1. Gaussian Process Regression

Gaussian Process Regression. We say that f follows a Gaussian process GP(j, £) on
R? if for any zt,..., 2%, (f(a!),..., f(z*)) follows a Gaussian distribution with mean
(p(zh), ..., p(z")) and covariance (R(z%,27)); jeqr). Here p(z) = E[f(z)] is the mean
function and R(z,z") = E[(f(x) — pu(z))(f(2") — p(z’))] is the covariance (or kernel)
function, where f is random. We take GP(0,R) as the prior of f. Given a dataset
D = {(z*,y") }seq) from the regression model y* = f(z') + € with € ~ N(0,I), the
posterior of f is a Gaussian process with mean up(x) and covariance Kp(z, ") (Schulz

et al., 2018) as follows,

1

pp(z) = Rz, X) (R(X, X) + ) Y,
fp(z,2') = Rz, 2') — Kz, X) (KX, X) + AI) T &(X, ).
Here 8(z, X) = (&(z,2%))cy € RV, R(X, X) = (R(2',27))i e € RM, R(X, ') =

(R(z%, 2))eer) € RF, and Y = (', ..., y") e RE

Rigorous Characterization of Latent Variable Model. We provide a rigorous
characterization of the advanced infinite-dimensional example of the latent variable model

in §3.4.1lWe consider the following model,

(C.2.1) rt = f(c") + €, " = f(™F) + e
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Here f = (f1,..., fs) with f; ~ GP(0, (-, -)) for any i € [d] and €’ and ¢ are independent
Gaussian noises drawn from N (0, AI). Then, following the Gaussian process regression,

we recover (3.4.3)) as the mean of the posterior of the Gaussian process.

C.2.2. Implication of Convergence with L — oo

Necessity of Multiple Heads. Based on the definition of the attention mechanism attn

in (3.2.1]), we define the multihead attention as
(C.2.2) mha(q, X; W) = Zheadi € R4

Here h € N, is the head number, W = {(W, WE W¥)}r_ | with Wi € R¥>% Wk ¢ Rxd,

7

and WY € R?*? is the learnable parameter, and
head; = attn(q, K;,V;) € RY, where K; = XWf e RE% v, = XY € RE*?,

In the multihead attention, we set d = d,, - h, where h is the head number and d,, is the
dimension of the key and the query. We remark that the multihead attention defined in
is written in the summation form, which is equivalent to the concatenation form
(Vaswani et al., 2017). To see this, we consider the concatenation form of the multihead

attention,

head;

(C23)  mbag, X; W) = (W9)T,....(W9)") S (W7) "head,,

=1

head,,
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where W° € R®*? is a learnable parameter with the i-th block W° and the i-th head

(2

E(e\é?li is obtained via

P

head; = attn(q, K;, V;) € R%,  where K;=XWKeRM® V= XW) € RLx%,

Here Wiv € R¥*d. We see that the (C.2.2) and (C.2.3)) are equivalent when head;, =
(We)Thead;, which holds when WY = W¥We.
We use E[V|K = ¢] to demonstrate the necessity of using multiple heads in the

multihead attention. Note that the key and value are obtained by the following mappings,
ké _ (Wk)Tl,E’ U@ _ (WV)T.TE,

where ¢ € R? is the input token and W € R¥>*% ¥V € R¥9 are the learnable parameters.
We consider a single-head attention, where h = 1, d, = d, and W* € R¥? is invertible.

We denote by K, V, and X the random variable with the same distribution as k¢, v*, and

xt, respectively. By Propositions [3.4.1| and [3.4.2, we have

attn(q, K,V)  E[V|K = ¢] = E[(W") X | (W) X = ¢] = (W) 'W¥) g,

which is a linear mapping and fails to capture the nonlinear interaction query ¢ and the
input sequence X. In other words, the single-head attention becomes a linear mapping in
the limit with L — oco. In contrast, when h > 1, we have d, = d/h < d, which implies that
the matrix W* € R?*? is not invertible. Thus, using multiple heads avoid the degenerating

issue.
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Connection to Instrumental Variable. We draw a connection from the attention
mechanism to the instrumental variable model. Instrumental variable regression estimates
the causal relationship between the input X and the output ). Specifically, when (X,})) is
confouneded, an instrumental variable W is effective in identifying the causal relationship
between A and Y. Intuitively, VV is an instrumental variable if it influences )’ only through
X which is formalized as follows.
Assumption C.2.1 (Instrumental Variable Model). Let (X, Y, W) be a random variable
on the space X x ) x 20 with joint distribution Px y,y. We assume that

(i) Y = g(X)+ e and E[e | W = w] = 0 for any w € 20, and

(ii) Pxw(x|w) does not remain when w varies.

Under Assumption , W is an instrumental variable. Specifically, (i) of Assumption
is the exclusion restriction, where function ¢ is the structural function of interest and
e is the confounding noise. Also, (ii) of Assumption is the relevance condition, which
ensures that WV is informative in the sense that it depends on w in a nontrivial manner. We
remark that the instrumental variable model generalizes the standard regression model. To
see this, when X = W, the estimation of g reduces to standard regression of unconfounded
inputs and it holds that ¢g(-) = E[Y | X = -]. In particular, the instrumental variable model
allows that X and e are confounded, i.e., X and € are dependent. By Assumption

we have the following estimation equation
(C.2.4) EY|W =w] =E[g(X)|W = w].

The right-hand side of (C.2.4) provides a two-stage method for estimating the function g.

At the first stage, we estimate the conditional mean mean embedding of Py |yy. Then, at
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the second stage, we estimate the function g via regressing ) on the empirical conditional
mean mean embedding of Py |y (Singh et al., [2019).

To ease the presentation, we consider the following mapping,
go o attn(q, K, V) € RY,

where gy is a function approximator with a learnable parameter 6. For example, gy is a

linear or kernel function. By Proposition and Proposition [3.4.2] it holds that
gooattn(q, K, V) = go(E[V|K = q)), as L — 0.
Let the target variable be y. Then, the learning objective takes the following form,

m@inE[Hy —g(E[V[K = Q])Hi],

which corresponds to the second stage of estimating the instrumental variable model. Note
that E[V | KC = ¢] is the conditional mean embedding of Py . Thus, the key K can be
viewed as the instrumental variable (Pearl, [2009)), which handles the endogeneity. We
provide an alternative view on how the attention mechanism performs relational reasoning

as a causal inference procedure.
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C.2.3. Proof of Lemma [3.3.2]

Proof. First, we prove the statement that b,(X) = P(z = -| X) is a minimal sufficient

statistic of X for z. To see the sufficiency of b,(X) for z, note that

P(:| X) = B(z | B(= = -| X)) = P2 | b.(X).

To see b,(X) is the minimal sufficient statistic, let U(X) be another sufficient statistic of

X for z. Then, we have
P(z]| X) =P(z|U(X

which implies that b,(X) is a function of U(X). Thus, b,(X) is minimal.
Second, we prove the statement that b,(X) is a minimal sufficient statistics of X for y.

To see the sufficiency of b,(X) for y, note that

Ply|X) = [ Ply]2)-B(:| Xz

which implies that P(y | X) = P(y | b.(X)) since P(y | X) only depends on X through b,(X).

Suppose that U(X) is a sufficient statistic of X for y. We have
Bl B )4z = By | %) = Py | U(0) = [ Bly]2) B | U00)d
By the definition of 7 in (3.3.1]), we then have that

b(X) =Pz =] X) = T_1</]P’(y =-|2)-P(z] U(X))dz),
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which implies that b,(X) is a function of U(X). Thus, b,(X) is minimal. O

C.2.4. Proof of Proposition (3.4.1

Proof. For notational simplicity, we denote by ||-|| the RKHS norm for elements in
an RKHS and the operator norm for operators between two RKHSs. Also, we denote
by H; and H, the RKHSs for the key and the value with the kernel functions £ and £,
respectively. Note that we consider the Euclidean kernel £(v,v') = v'v’ for the value,
which uses the identity mapping ¢ as the feature mapping. Recall the definition of

the empirical covariance operator and the empirical cross-covariance operator in (C.1.4)).

Correspondingly, we write

Cioxe = L ¢(K)T(K) € R%*do
Cox = L 'p(V) T o(K) € RY*%,

Coy = L o(V) (V) € Rbexde,

Here 9(K) = (6(K").....,o(k"))T € RE and o(V) = (9(v1),...., ¢(v*))T € RE By

the definition of the CME attention in (3.4.5) and the equality in (C.1.5)), we have that

attnew(q, K, V) = é\VIC(CAICIC + L7'A\T) " 9(q),
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which implies that attneg recovers the empirical conditional mean embedding. By (C.1.2),

it holds that

[attn(q, K, V) — CME(q, Pry)|

< \”é\WC(é\ICIC + LA o(q) — Cy(Crx + LIAT) ' 9(q) |
(i)
(C.2.5) + [|Cuic(Crx + LTAT) T A(g, ) — CocCiox R(a, )| -

(i1)

Upper bounding term (i) of (C.2.5). We adapt the proof from |Song et al.| (2009). It

suffices to upper bound ||Cyic(Cicx + L™AT) ™! — Cyic(Ciexe + LAZ) 7. Tt holds that

(C.2.6)

HCAWC(CAICIC + L7'AL) ™ = Cyc(Crexc + LIAT) 7|

< Hc},c((c},c + LN = (G + LIAT) )

’ + ||(é\wc — Cyx)(Cexc + Lil)\I)ilH
= ||é\wc(é\)gg + Lil)\I)il(é\/gg — CICIC)(CICIC + Lil)\I)*lH

+[[(Cox = Cor)(Cioxc + L7AT) .
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For the first term on the right-hand side of ((C.2.6)), we have the operator decomposition

that Cyc = 51/2WC for W such that |[W|| < 1. Then, we have that

[Coxc (Cixc + L™IN) ™ (Crxc — Ciex) (Ciexe + LAT) 7|
< ”CWHWHCU2 Crox+L AT 2 11¢ Crex+L AT “21I¢ (Crex—Crex) (Cxxc + L7INT) )|

(C.2.7)
< (L7h)7V2. ||(5K/C—CICIC)(C/C/C+L_1>\I)_1

where the last inequality follows from
L
[Coll? = L7 W3 < 1, Crxc(Crox + LT'AT) ™ < T,
=1
(Crx + L7AT) L < (LN 7IZ.

Plugging (C into (C.2.6)), we have

(C.2.8)

1Cok(Crox + L™AT) ™ — Cyxc (Croxe + LAT) 7|

< (L_l)\)_l/2 . H(é\)gc — C)Clc)(c;c;c + L_l)\I)_1|| + H(é\wc — CVIC)(CICIC + L_1>\I)_1H.

In what follows, we upper bound the second term on the right-hand side of (C.2.8)) using

Lemma We define ¢ : R% x R? — H;, @ H, as follows,

E(k,v) = p(v)p(k) T (Coxc + L7'AL) ™
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Since ||(Cxx + L7*AZ) 7| < (L7'A)7, we have that
[€(k, 0)|| = |Coexc + LTIAD) | - [[(@)]| - [Jo(R)|| < € - (L7N) 7,
where C' > 0 is an absolute constant. In addition, we have that

E[[l¢tk,0)*] = E[[lotk) (e + LX) * - |l (o)

<E[|[(Cox + L7 AT) o (k)]

~E :<(c,<,C + LIAT) 2 g(k), d)(k)ﬂ

< (LN E[((Co + L7AD) 1 0(k), 6(k).
Using the trace operator, we have

E[[letk w)|f’] < E[tr((Cox + LAT) 20 (k)o(k)T)]
— tI‘((C;C;C + L_l/\I)_2C}cjc)
< (L7 tr((Crox + LML) " Cxx)

= (LN TN,
Here T'(L7!\) is the effective dimension of Cix, which is defined as follows,

F(Lil)\) = tl"((c;gg + Lil)\I>7lcjgc).
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Applying Lemma with B=C(L7'A\)™! and 0? = (L7'X\)~! - T(L7')\), we have with

probability at least 1 — ¢ that

~ 2 (LA 2
(0.2.9) HC]}]C(C}C[C + Lil)\I)fl — Cv;c(clgc + Lil)\l)*lH <C- (X + ( \ )) log g,

where C' > 0 is an absolute constant. Similarly, we have with probability at least 1 — ¢

that

(C.2.10)

~ 2 (L1 2
HCICIC(CICIC + L_l/\I)_l — CICIC(CICIC + L_l)\I)_lH < - (X + ( N )\)> log g

Here C’ > 0 is an absolute constant. Plugging ((C.2.9) and ((C.2.10) into (C.2.8]), we have
with probability at least 1 — § that

Hé\VIC(é\ICIC + L_l)\I)_l — Cyrc(Crx + L_l/\I)_lH

L (2 [T\, 2
2. <2 (24— ) log 2.
(C.2.11) <C /\ <)\+ 3 >log5

Upper bounding term (ii) of (C.2.5). We adapt the proof from Fukumizu (2015)). For

any g € Hy, it holds that

(Cvkg,Cykyg) =E [£(V7 9)9(’@9(’6)}

E[£(V,V) | K,K]g(K)g(K)|

E
< (Cxx @ Cex)E[L(V, V) | K = 'J€:ﬂ79®g>~
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Similarly, we have for any ¢ € R% and any g € H;, that

<CV,¢,E[£(V, gk = q}> — <E[£(v,f/) 1K =q,K= ﬂ,C;c;cg>

By setting g = (Cixc + L7'AZ) 7' A(q, -), we have that

HCVIC(CICIC + L_l/\I)_lﬁ(q, ) - CWCC,E,ICR(Q, )H2
= (Cox(Cxx + LML) ' R(q, ) — CoxCiexcR(g, ),
Cyx(Cr + LML) ' R(q, ) — CoxCireRlq, -))

N <((CKK + L7'A\L) 'Crexe @ (Cxee + LT'AL) 'Crox — T @ (Cixe + LAT) ' Crexc

(Crx + LN ek ® T+ T ® I)E[S(V, V)| =K =1],8(q,-) @ &g, T)>-

Note that E[£(v,9) |k = -,k = 1] € Hj ® Hy is in the range of Cxx ® Cxx. We define

C € Hy, x Hy such that (Cxx ® Crxc)C = E[€(v,0) | k = - k = 1]. Let {\;}22, and {@;}2,
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be the eigenvalues and eigenvectors of Cxx, respectively. Then, we have that

[Cvx (Crxe + LTAT) ' R(g, ) — CoxCro-R(g, )|

= H <(CKK + L7'AL) " 'Creie @ (Cxe + LT'AL) 'Crox — T @ (Ciexe + LAL) ' Crexc

2

(Cox + LN e @ T+ T ® I)E[S(V, V)| K=K =1]

. X VY
Z A +L NN+ LI N+ LI N+ L1

o (L 1)\)2 2 .
Z( Ai —i—L I\ ()\j_{_Ll)\)) {0 ® ¢;,C)

< (L7 -IC].

2
+ >\i/\j) {pi ® ;,C)?

Thus, we have
(C.2.12) |Cvxc(Cixc + AZ) ' R(q, ) — CoxCipR(q, )|, < C - AL7Y,

where C' > 0 is an absolute constant.

Plugging (C.2.11]) and (C.2.12)) into (C.2.5]), we have with probability at least 1 —
that

L [2 (L1
|attn(q, K, V) — CME(q, Pxy)|| < (’)(\/; (X + Q) log% +>\L—1>.

Thus, we complete the proof of Proposition [3.4.1} O
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C.2.5. Proof of Proposition [3.4.2]

Proof. Under the condition that f@& «(v]q) = P(v|q) uniformly for any ¢ € S~ as

L — oo, we have
/v@ﬁ,c(ﬂq)dv—HE[VUC:q] as L — oo.

Moreover, it holds that

. L 4 X l
st ZZ:I ﬁ(l{;57 q)

(C.2.13) _ b S R Q) founv ﬁ(v‘g,v)dv’

iy R(K, q)

where S9! is the (d — 1)-dimensional unit sphere. It suffices to calculate the integration
term [, , v - R(v", v)dv. To this end, we utilize the following lemma.
Lemma C.2.2. Let £(a,b) = exp(a'b/v) be the exponential kernel with a fixed v > 0.

It holds for any b € S! that
/ a-R(a,b)da = Cy - b,
Sd-1

where C; > 0 is an absolute constant.

Proof. See §C.2.5.1] for a detailed proof. OJ

By Lemma |C.2.2] it holds for the right-hand side of (C.2.13) that

L ¢ ¢
ko q) -
L O - Zﬁ:}Jﬁ( ) v v+ Cy -V softmax(Kq/v) = ¢ C; - attngu(q, K, V),
2 :ezl ﬁ(kf? q)
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where the first equality follows from the definition of the softmax function and the second
equality follows from the definition of the softmax attention in (3.4.10). By setting

C =1 - (1, we complete the proof of Proposition [3.4.2 O

C.2.5.1. Proof of Lemma [C.2.2]

Proof. Let a,b be two vectors in the (d — 1)-dimensional unit sphere S4~1. We first

define the following vector,

(C.2.14) c=(a'b)-b—(a—(a'b)-b) € S“L

By direct calculation, we have the following property of ¢ defined in ((C.2.14)),
(C.2.15) c'b=(a"b)-|[b)|2—a b+ (a"D)- |03 =ab.

By and , we have that

(C.2.16) a+c=2(a"b)-b=2(c'b)-b=(a'b)-b+(c'b)-b.

We now calculate the desired integration. Note that

(C.2.17)

/Sd—l a-exp(a b)da=10- /Sd_l(a b) exp(a' b)da —I—/ (a—(a'b)-b) -exp(a'b)da.

Sd—1
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For the second term on the right-hand side of (C.2.17)), it follows from (C.2.14) and

(C.2.15) and (C.2.16)) that

/Sdl (a—(a"b)-b) -exp(a’b)da = —/ (c—(c"b) - b) - exp(c'b)da

§d—1

(C.2.18) = —/ (c—(c"b) - b) - exp(cb)dc,
Sd—1
where the second equality follows from the fact that
de = 2||b||3da — da = da.

By replacing ¢ by a on the right-hand side of (C.2.18)), we have

(C.2.19) /Sd_l (a—(a"b)-b) -exp(a’b)da = —/ (a—(a"b)-b)-exp(a'b)da =0

gd—1

Finally, by plugging (C.2.19)) into (C.2.17]), we obtain that
/ a-exp(a'b)da =b- / (a"b) exp(a’b)da.
gd-1 gd-1
Thus, by setting

Cy = / (a"b)exp(a'b)da, Vbe ST,
§d—1

we complete the proof of Lemma[C.2.2] Note that here C; is an absolute constant that

does not depend on b due to the symmetry on the unit sphere.

O
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C.3. Generalization Error Analysis

In this section, we analyze the generalization error of the complete setup of the
transformer architecture, which involves multiple layers, skip connections, and multihead

attentions. We collect the notations used throughout this section as follows.

Notations. For two positive reals r and s such that 1/r +1/s = 1, we call (r,s) a
conjugate pair. We denote by || - ||, the vector ¢,-norm when it operates on a vector.
Let M = (my,...,mg,) € R"*% where m; € R% with i € [dy]. We define the matrix
(r, 5)-norm as || M|],.s = (3%, |lm]|2)/*. We define the (r, s)-operator norm as || M||,_,s =
SUPyerdz ||Mulls/||wl|,. We write || - ||, = || - ||r—» when the (r,r)-operator norm operates

on a matrix.

C.3.1. Complete Setup of Transformer Architecture

In what follows, we specify the complete setup of a T-layer transformer parameterized
by 0 = (0,09, ... 07-Y), where the t-th layer (t = 0,...,T — 1) is parameterized by
6®) € O and the aggregation layer is parameterized by 6 € ©. Here ©®) and © are the
parameter spaces for the t-th layer and the aggregation layer, respectively. We define a
two-layer feedforward neural network (FFN) with a skip connection (and no bias term) as

follows,
(C.3.1) ffn(X; A) = ReLU(X A¥)A” + X € RF*?,

which is parameterized by A = (A%, A%). Here X € RE*? Ax ¢ R¥*de A7 ¢ R%>d and

ReLU(-) is the rectified linear unit (ReLU) that operates elementwise. Corresponding



249

to (3.4.10]), we define the sequence-to-sequence counterpart of the softmax attention as

follows,

.
(C.3.2) attng(Q, K, V) = (VTnormSM(ﬁRBF(K, q"))) e RLx4,

Le[L]

Here @ = (qz);E[L] € Rixbe K = (k/'e)eTe[L} € Rixe VvV e REX and Rger(K, ¢°) =

(Raer(q’, k”))zém € R” is specified in Assumption |C.3.1} Recall that h is the head number

of the multihead attention defined in (C.2.2) and d = d, - h. With a slight abuse of
notations, we define the sequence-to-sequence counterpart of the multihead attention

(MHA) as follows,
h h

(C.3.3) mha(X; W) = Zheadi = Z attngy(Q;, K;, V;) € RE*4
i=1 i=1

which is parameterized by W = {(W;', Wr, W) }icpy. Here Q; = XW € RF*% K, =
XWk € RE*4% and V; = XW) € RE* for the attention head i € [h], where W, Wk €
R4%do and I/VZ-V c Rdxd .

With X*(O) = X, let Xit) € REX4 be the intermediate input of the t-th layer (t =

0,...,7 — 1) of the transformer architecture, which is defined as follows,
XO = £rn(X®; AY), AW = (450 A7),
) k7 v7
(C3.4) XD = mha(XO; W) 4+ x©O, WO = {0 WO WOy

Here 01 = (A® W ®) is the learnable parameter. We compute the output as follows,

(C.3.5) 7 = ageg(X(") € RY,
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where the aggregation layer agg; : RE*¢ — 9) is parameterized by 6. Here ) is defined in

(3.5.2). Note that agg; combines the aggregation layer agg, defined in (3.5.1) and the

input mask msk. For example, in the complete setup of ViT (Dosovitskiy et al., [2020), the
aggregation layer is the function composition a?gé(X,ET) ) = agg,, (mha(qw (msk), X,ET); W)
with @ = (6y, W), where msk corresponds to the class encoding. Here the multihead

attention mha(qy (msk), x9. W) follows the definition in (C.2.2)).

Empirical Image Class. In what follows, we formalize the function class of the trans-
former architecture and the empirical image class for each layer. We define the base

function class as

Farl? = {xO(x)},

which is the function class that only contains the identity mapping. Here we use x (X) =

X to denote the identity mapping since X9 = X In the following, we use X*(t)(X ) and
X®1(X) to denote the functions that map X to XY and X® fort = 1,...,T — 1

Y

respectively. We define the intermediate function classes recursively as follows,

mha

]:fo}(lt) = {ffn(X*(t)(X);A(t)) CAD e g XO(X) e J,—_-L,(t)}’

Jifﬁit“) _ {mha(X(t)(X); W(t)) +XO WO e X (X) e ;foﬁt)})

where 0 <t < T — 1. Here ©® = A® x 95® is the parameter space of the t-th layer of

the transformer architecture. Correspondingly, we define the function class of the T-layer
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transformer as follows,
(C.3.6) FL = {a@;@ (XM(X)):0€0,XD(X) e Fnﬁ;@}.
Correspondingly, we define the empirical image classes as follows,

3o, (Fe) = { (F(XD)T) gy € RZE 2 f € Fi

Ip, (FadtD) = {( JX)T),y ERTME: [ € fnﬁﬁ“)},
(C.3.7) Ip, (FF) = {(f(Xi))ie[n] e RW¥": f ¢ ]-"L},

where 0 <¢ <T — 1.

C.3.2. Generalization Error Analysis for Complete Setup

In what follows, we present a general version of Theorem [3.5.3, which allows for the
complete setup of the transformer architecture. By specializing it to the single-layer
transformer equipped with singlehead attention mechanism and no skip connection, we
obtain Theorem [3.5.3l

In parallel to (3.5.4), we make the following assumption on the Gaussian RBF kernel

Rrer(q, k), which induces the multihead attention mha(X; W) defined in ((C.3.2)) and (C.3.3).

Assumption C.3.1 (Gaussian RBF Kernel). Let s > 0. We assume that the multihead
attention mha(X; W) adopts the Gaussian RBF kernel fggr(q, k) = exp(—||q — k||3/20?)
with o = (2d,)/.

Note that the kernel function Rggr(q, k) in Assumption is a general version of the

Gaussian RBF kernel defined in (3.5.4]), which corresponds to the special case where s = 2.
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Recall that the output range 2) is defined in . We make the following assumption
on the aggregation layer aggy defined in ((C.3.5)).

Assumption C.3.2 (Aggregation Layer). We assume that the aggregation layer aggy :
RF*? — R% has the output range ). Let aggs ; : R**? — R be the j-th entry (j € [dy])
of the aggregation function aggy;. We assume that for any 8 € ©, X,, X, € RE* and

J € [dy], it holds that
85, (X 885, (X.)| < IX, — X/ lneo

Recall that || - ||, denotes the (r,r)-operator norm when it operates on a matrix and
| - |Ir,s is the matrix (r, s)-norm. In parallel to Assumption [3.5.1) we make the following
assumption on the parameter space for each layer of the transformer architecture.
Assumption C.3.3 (Parameter Space). Let (7, s) be a conjugate pair. Fort =0,...,7—1,

we assume that the parameter space ©®) = A® x 9 of the t-th layer of the transformer
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architecture satisfy

(C.3.8)
Qb — {(AX,(t)7AU,(t)> € Réxdo 5 Rzxd

H(Ax,(t))THT < Oéx’(t)7

(AX,(t))T” < RX,(t)’
Jiar oy, < a0, a0y, < 10},

w(t) _ {{(m%(t), Wik’(t), M/ivy(t))}ie[h] . (Wi%(t)? mk7(t), Wi"v(t)) e Rdxdp « Rdxdp % Rdxd7

(C.3.9)

[WENT] < W@ WEN T <wf® )T < wl®,

7

H(Wiq,(t))T” . < R?’(t),|

r, i rs — rs — ¢

WO, < BT, < REO

Also, we assume that the parameter space © of the aggregation layer takes the form of © =
{6 € R - |||, < 1}. Here o®®, M qo® Ro® 40 @ vl pa) phkd) pud)
0 withi € [h]and t =0,...,7 — 1.

To ease the presentation, we define the following quantities that combine the parameter

bounds across the h heads within the ¢-th layer of the transformer architecture,

h
wV,(t) — Zw’z/7(t)7 qu,(t) — max{wlq:(t) + w,ﬁ(’(t)},
1=1

i€[h]
h h
(C.3.10) RV® = Z RV, Rak,(t) — Z( RO 4 RSO,
i=1 i=1

where t =0,..., 7 — 1. Let

(€311)  a¥=1+a"0a”0 G5O =140"0 4O =max{a®, T},
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Also, let
(C.3.12)
0 < SO ORO O RO | @R
&(t) ’ @v,(t) ) qu,(t)wv,(t) ) av,(t)

Recall that the generalization error &g, is defined in (3.5.3). The following theorem
characterizes the generalization error of the transformer.

Theorem C.3.4 (Generalization Error of Transformer). Let D = max{d,d,,d,,d,}.
Suppose that Assumptions and Assumption hold. Then, for any ¢ > 0, it

holds with probability at least 1 — ¢ that,

Egen = O(f;—; [T\/log(l +7) + VT+/log(1 + CR) + 1/log(1 + “/Q] VAT + log(1/5)>’

n

where R is defined in (3.5.2)). Here

3.1 = (®) — (t) _ (t)
(C.3.13) Y= max 7Y, k= dax &, ¢ Ogrglgajzglé :

where v, @ and ¢® are defined in (C.3.11))-(C.3.12).

Proof. See for a detailed proof. O

Highlight. In comparison with [Edelman et al.|(2021]), we exploit the invariance/equivariance
property of the transformer architecture in a fine grained manner. The key observation
is that, due to the invariance/equivariance property, the dimensions of the learnable pa-
rameters W® and A® are independent of the sequence length L. By such an observation,
we characterize the covering number of the function class with the covering numbers of

the parameter spaces and propagate them through the T layers. As a consequence, the
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covering number of the function class is independent of L. In contrast, the generalization

error in |[Edelman et al.| (2021) has a logarithmic dependency on L.

Interpretation. We interpret the generalization error in Theorem as follows. On
the one hand, the O(1/y/n dependencies in O(y/log(1/d)/n) and O(D?//n) over the
sample size n are standard in the literature. On the other hand, the O(D?h'/2T3/2) scaling
implies that the transformer architecture requires more training data points to generalize
as the dimension D of the parameter space, the number T of layers, and the head number
h grow. Also, the generalization error in Theorem only scales logarithmically in 7,
k, and ¢, which implies that the generalization error remains polynomial order as long as

v, Kk, and ¢ do not scale doubly exponentially with D, h, or T

Implication. Theorem demonstrates that v, x, ( and R play a crucial role in the
generalization error of the transformer. Specifically, we observe that (i) skip connections
allow all layers to resemble the identity mapping (Bartlett et al., 2018b.a; [Hardt and Ma,
2016)), which helps reducing v, k and (, and (ii) layer normalizations helps controlling the
scaling of the intermediate inputs {Xit)}ogtST_l, which reduces the covering number of

the function class.

Simplification of Theorem to Theorem [3.5.3] Theorem characterizes the
generalization error of the complete setup of the transformer architecture, which includes
Theorem [3.5.3| as a special case. In what follows, we specialize Theorem to obtain

Theorem B.5.3|

e Single-layer transformer with single-head attention: We set h = 1 and T = 1,

which implies that
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— (/C.3.10)) becomes

wv7(0) — WI/,(O), qu7(0) — W?7(0) + wll{v(o)’
Rv-(0) — RX’(O), Rak(0) _ R?’(O) + le’(o),

— (/C.3.13)) becomes

’7:7(0)7 "i:’i( ) CZC(O)7

which are defined in ((C.3.12]) but will be redefined in our subsequent simpli-
fication, and

— the generalization error in Theorem becomes

2

Egen < O(% . [\/log(l +79)+ \/log(l +(R) + /log(1 + /{/C)} +

o))

e Skip connections: Since we have no skip connections, we set

GO Z g2 a0 w0 Z 0

which appear in the definitions of v, x® and ¢ in (C.3.11]) and (C.3.12).

e Feedforward neural network: Since there is no linear transformation for the second
layer of nn(X; A) = ReLU(X A). Specifically, we
— set ”(® =1 and R =0,
— set d, = d for the intermediate output, and

— set o™ = a®(® and ™ = R*©) in Assumption [3.5.1]
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As a consequence, we obtain

i’ ov(0) 7 5ak,(0)yv.(0)

R Rv,((]) qu,(O)
v = max{a™, w"®}, K= maX{ }
e Softmax attention: Since we have only one head, we set
— (w9, Wk, w¥) = (WO RO y¥(0) and
— (Rq7 Rk7RV) — (R%(O)’Rkv(o)’RVv(O)).

As a consequence, we obtain @30 = 9 4 Wk RO = R4 RX and

am v (Wl + wk) - wY wY

Y = max{a™, o*, K:maX{Rnn R*  R:4 Rd } ‘= (wq+wk)2-RV‘
e Spectral norm and Frobenius norm: We use the conjugate pair (r,s) = (2,2),
which implies that
— |l |l- = || - ]2 is the spectral norm of matrices and || - ||;s = || - [22 = || - |r is
the Frobenius norm, which correspond to Assumption [3.5.1], and
— the Gaussian RBF kernel Rggr(q, k) in Assumption is normalized by

o = (2d,)'/* = (2d,)'/?, which corresponds to (3.5.4).

Therefore, we obtain Theorem [3.5.3|

Proof Sketch. We organize the proof of Theorem as follows.

(§C.3.3) We review how to analyze the generalization error through the Rademacher
complexity, which requires a covering number of the function class.
(§C.3.4)) We provide a covering number of the function class and sketch the proof of

Theorem [C.3.4]
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(§C.3.5) We characterize the covering number of the function class by (i) analyzing the
covering number of each MHA and FFN and (ii) analyzing how the covering
numbers propagate through the T layers of the transformer architecture.

(§C.6) We leave the detailed proofs of the intermediate lemmas to §C.6|

C.3.3. Preliminary of Generalization

In this section, we introduce the building blocks for analyzing the generalization error of
the transformer architecture.

C.3.3.1. Rademacher Complexity. Suppose that the dataset D,, = {(X;,v;)}1, is
drawn independently and identically from the data distribution D. Recall that F* is
defined in (C.3.6). Let £((X,y), f) be a fixed learning objective. We define the function

class £ o F¥ as follows,
(C.3.14) LoFL= {c((x, y).f): fe ]—"L},

which contains the function compositions of the learning objective £ and the transformer
function f € F*. We define the empirical Rademacher complexity of the function class
L o F¥ as follows,

(C.3.15) Rop, (Lo F") = [sup—zez L((Xi,y:): f) ]

n
feFL i1

where the expectation is taken over the independent Rademacher sequence {¢; };cn. The
following lemma characterizes the generalization error for learning with the function class

Fr.
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Lemma C.3.5 (Generalization Error via Rademacher Complexity, Mohri et al.| (2018))).
Suppose that the function class £ o F& defined in ((C.3.14)) has the output range [0, 1]. For
any 6 > 0, with probability at least 1 — § over the independent and identical draw of the

dataset D,, = {(Xj, ¥i) }ic[n) from the data distribution D, it holds for all f € FL that,

'E[ﬁ((X,?/),f)] —I/EE[E((X,y)J)H <9Rp (Lo FL)+3 w’

where I/Ef[] is the empirical expectation taken over the dataset D, and the empirical
Rademacher complexity Rp, (£ o F*) is defined in ((C.3.15)).

We define the product function class as follows,
dy
T .
17 = {(500) jqy  fi € Frd €[]},
j=1

where F[ is the function class of the j-th entry (j € [dy]) of f = (f1,..., fa,)" € F". The
following lemma characterizes the empirical Rademacher complexity Rp, (£ o FF).
Lemma C.3.6 (Vector Contraction Inequality, Maurer| (2016)). Let F be the function
class of f: RI*4 — 9 C R% and let £; : 2) — R be a 1-Lipschitz function with respect to
the vector fo-norm, where i € [n]. Then, we have

E {sup i € - Lz‘(f(Xi)):| <V2-E [SUP i dzy €ij - fj(Xz')] :

= S

where {¢€;}icn) is an independent Rademacher sequence, {€;;}icin] jejq is an independent
Rademacher sequence that is doubly indexed, f;(X;) is the j-th entry of f(X;), and the

expectations are taken over the independent Rademacher sequences.
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Lemma generalizes the Ledoux-Talagrand contraction inequality (Ledoux and
Talagrand, [1991)) to the multivariate setting. Note that F* C H?Ll ij since all entries

of f € F¥ share the same parameters. By setting £;(f(X;)) = L((X;, i), f) in Lemma
we have

Rp (ﬁo]:)<\/_'E—Suplzzy:€ij'fj(Xi)}

n
feFt i =

n dy
<V2-E sup %ZZEU : fj(Xi):|

L{fi€F ey ' i=1 j=1

<V2- ZE[SUP li@j : fj(Xz‘)}

o1 LherR T
dy

(C.3.16) =V2-) Rp (F)),
o

which implies that it remains to characterize the empirical Rademacher complexity
Rop, (F}), where j € [dy].

C.3.3.2. Rademacher Complexity via Covering Number. In what follows, we
connect the Rademacher complexity Rp, (.7-"]’3) to the covering number of the empirical

image class Jp, (F}), which is defined as

(C.3.17) 30, (F) = { (fi(X0) 1y € RV fy € F .

We define the proper covering number as follows.
Definition C.3.7 (Proper Covering Number). Let N(S,e, | -||) be the least cardinality

of any subset 7 C S that covers the set S at the resolution ¢ with respect to the norm
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| - ||, that is,
) =i T« sup i _ T <e T C
N(S, & || ||) mf{card( ) Sglégil"rel”ff IS =T <e,TC S},

where card(7T) is the cardinality of the set T .

To characterize Rp, (F;), we use the following version of the Dudley entropy integral
lemma for the matrix (r, oo)-norm.
Lemma C.3.8 (Dudley Entropy Integral for || - ||, ~-Covering, Mohri et al.| (2018)). Let

]—"jL be a function class with the output range [0,1/2]. Suppose that 0 € ]-"jL . Then, we

have
1/2
L f 4+ — log N(J L . de ).
R (1) < nt (a6 22 [l N (B, (7). )t
Proof. See for a detailed proof. O

By Lemmas we see that it remains to characterize the covering number of

the empirical image class Jp, () with respect to the matrix (r, c0)-norm.

C.3.4. Proof of Theorem

Recall that the parameter spaces A" and 20® are defined in (C.3.8)) and (C.3.9), respec-

tively. Also, recall that a®, &“®) ©I® and R¥® are defined in (C.3.10)-(C.3.11). For

the dataset D,, = {(X;, ¥:) }icjn), we define

(C.3.18) RO =max | X,  RY =RO-J]a*0a"

i€[n]
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which characterize the scaling of the intermediate input XY for the t-th layer of the
transformer architecture, where t = 0,...,T — 1. The following lemma characterizes the
covering number of the empirical image class Jp, (F}).

Lemma C.3.9 (Covering Number of Transformer Architecture). Let D = max{d,d,,d,,d,}.

Under Assumption [C.3.3] we have for any j € [dy] that

2R Ry pans
log N (3p, (F/). &, || - lroo) < (4+ h)DT - log(l + —t)

£

Here Jp, (F) is defined in (C.3.17)), R® is defined in ((C.3.18), and

(C.3.19)
T2 () T-1 ~(7_) T-1 o, (t) Rx T-1 )
Rtrans = Z (%’E‘;a ’ H oY (‘r)) < a_'(_t)Oé H %)’
=0 \ P r=t+1 t=0 r=t+1
where o®®) % R*® and R%® are defined in Assumption and
(€.3.20) 7O =30 4 (@2 ® (RO RY — Rv® 4 gak® gak®) . (R®)2
Proof. See §C.3.5.3| for a detailed proof. U

Proor oF THEOREM [C.3.4l. For any a > 0, we have

1/2 1/2
/5 Viog(l+a/e)de < /g [V1og(1 +a) + y/log(1 + 1/¢)]de
1/2
<(1/2-¢)- log(1+a)+/ 1/+/ede
3
(C.3.21) = (1/2 =€) - Vog(1 + a) + V2 — 2/¢,



263

where the first inequality follows from the fact that va + b < \/a + v/b for any a,b > 0
and the second inequality follows from the fact that log(1 + a) < a for any a > —1. By
Lemma [C.3.8] we have for any j € [d,] that

(C.3.22)
an(}“f)
< it L
_ge(lg,lf/z (4 + / \/logN Jpn f ), &, | - ||Too)d5>
12D+\/(4+h 1/2
< inf <4£ ﬁ / \/log 142 R“‘“’“)da>

£€(0,1/2)

)
< 12D+\/(4+ h)T - 2\/§+ Viog(1 + 2R™ Rerans)

2v/n
. 12D /A + )T \/log(1 + 2R Rezans) \ ,  24D\/(d+ )T
o) {(4 NG ) $ NG \/5]

where the second inequality follows from Lemma and the last inequality follows from

(C.3.21)). On the right-hand side of (C.3.22), we set £ = 0" to obtain for any j € [d,] that
y

2v/2 + y/log(1 + 2RM) Ry e
2\/n

(C.3.23) =0 <D\/ﬁ- Lt \/log(ljﬁR(T)R“ms))

Rop, (F) < 12D/ (4 + h)T -

Recall that FT is defined in (C.3.6). Taking ((C.3.23) into Lemma |C.3.5, Lemma

and ((C.3.16)), we obtain with probability at least 1 — ¢ over the independent and identical
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draw of the dataset D, = {(X;, y;) }iejn, it holds for any f € F* that

‘E[ﬁ((x, 9). )] _E[c((x,y),f)]’

dy
<223 R, () + 3y 22
(C.3.24) — O(sz/ﬁ. 1+ \/log(l\jﬁR(T)Rtrans) . log(;/é))‘

By simplifying the first term on the right-hand side of (C.3.24]) using Lemma |C.7.5 we

have with probability at least 1 — ¢ over the independent and identical draw of the dataset

D, = {(Xi,4i) }igpn) that

(C.3.25)

‘E[ﬁ((X, y))f)} _E[c((x,y),f)]‘

= 0(3—; : [T- Viog(1+7) + VT - y/log(1 + CRO) + \/log(1 + /@'/C)] VAT

10g(1/5)>
= 0(3—; : [T- Viog(1+7) + VT - /log(1 + ¢R) + \/log(1 + H/C)} VAT
10g(1/5)>

holds for any f € F, where the last line follows from R > R(® defined in Assumption

3.5.2] Here R© is defined in (C.3.18). Recall that f = argmin ;e zo E[L((X,y), f)] is the

empirical risk minimizer, where F' is the T-layer version of Fa, defined in (3.5.1). Let
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[ =argmin ;. E[L((X,y), f)] be the population risk minimizer. We have

B£((X.9), )] - min B[£((X.9). 9]

feFl
= frg]irriﬁ[ﬁ((X, y),f)] - E[ﬁ((X, y),f)]
— min E[£((X.). )] - B[£((X.).7)] + E[£(X.0). 7)) - B[£((X.). 7))

<E[£((x.0).0)| —E[(x.0.5)]

By the definition of the generalization error &, in (3.5.3)), we have with probability at

least 1 — ¢ over the independent and identical draw of the dataset D, = {(Xj, ;) }icpn that

feFrt

Egon = E[c((x,y),ﬂ] —IE[L((X, y),m +IAE[£((X,y),f)] — min IE[E((X, y),f)}

L((X.0), )] ~E[((xXw). D] +E[£((X0).7)| - E[£((X,9),7)]
0(3—; : [T. VIog(L+ ) + VT - /log(1 + CR) + /log(1 + R/Q} VIT
M),

IN

E

n

where the last line follows from ((C.3.25|). Therefore, we conclude the proof of Theorem

C.3.4 U

C.3.5. Proof of Lemma

We organize the proof of Lemma as follows.
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( We analyze the covering numbers of the empirical image classes of MHA and
FFN, respectively, which serve as the building blocks for covering the empirical
image class of the transformer architecture.

( We propagate the covering numbers of MHA and FFN through the T layers of
the transformer architecture.

(§C.3.5.3) We combine §C.3.5.1| and §C.3.5.2| to characterize the covering number of the

empirical image class of the transformer architecture.

C.3.5.1. Covering Numbers of FFN and MHA. In what follows, we characterize
the covering numbers of the empirical image classes of FFN and MHA. The following
lemma characterizes the covering number of a set of matrices with respect to the matrix
(r, s)-norm, which serves as the building block for analyzing the covering number of the
empirical image classes of FFN and MHA.

Lemma C.3.10 (Covering Number of Matrix Set). Let (r,s) be a conjugate pair. We

have
T doxd T 2Ry
log N ({MT € R ¢ | M7, < Rubie. |- ) < didy - log( 14+ =21 ).

where Ry, e > 0.
Proof. See §C.6.1.1| for a detailed proof. 0

Empirical Image Class of FFN. In the sequel, we characterize the covering number

of the empirical image class of FFN. In parallel to the parameter space A defined in
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(C.3.8]), we define

9 — {(AX’AU) € RI*do o Rdoxd .

(C.3.26) (AT <o ||(A) 7], . < RY,

rs —

(A)l, <o,

(4", < B},

r.s —

where o*, a?, R*, R > 0, while d and d,, are positive integers. Correspondingly, we define

the function class of FFN and the empirical image class of FFN as follows,
./T"ffn = {ffn(X*,A) A€ Ql},
(C.3.27) 3, (Feen) = {(f(f(}- ) )iepy ERM - f € fﬁn}.
Here D,, = {)Ei*}ie[n} is the input set of FFN, where X;, € RE%4. In the following, we
characterize the covering number of the empirical image class jﬁn* (Fttn)-

Lemma C.3.11 (Covering Number of FFN). Let ¢ > 0. Suppose that the input set

D,, = {)?i*}ie[n] C RE*4 of FEN satisfies MaX;e|n] H)?;Hroo <R, Then, we have

2(a*R° 7 Rx) . E*
log N(jﬁn*(fffn>7€a |- “T,OO) < 2dd, - log(l + - +Ea ) )’

where o, o, R*, R are defined in ({C.3.26)).

Proof. For any A = (A*, A%) € 2, suppose that A = (A%, A7) € U satisfy

(C.3.28) (AT — (AT <&, [(A)T — (A)T|| <&

s T
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where €%, > 0. For any i € [n], we have

|££n( Ko A)T — £50(X0s AT

7,00

= H (ReLU(X;,A¥)A%) " + X[ — (ReLU(X,, A A7) " — X,|

7,00

n H( A7) (ReLU(X,, A¥) — ReLU(X;, A%)) |

7,00

< AT = (AT AT X oo + (AT, - 1A = AT X o

T,s

< AT, XL oo+ & [JCAD T, 1K o

< (7 4+ £%a°) - R,,

where the second line follows from the definition of FFN in ((C.3.1]), the fourth line follows
from Lemma |C.7.3] the fifth line follows from (C.3.28)), and the last line follows from the

definition of Fie, in (C.3.27) and the fact that max;cp, H)?ZIHTOO <R, Setting

R* R°
(C.3.29) f=c- —, e =¢- —,
(0*R° + a”R¥) - R, (0*R° + a”R¥) - R,

we obtain [|f£n(Xi; A)T — ££n(X,; 121\)T||7n7Oo < ¢ for any i € [n], which implies

—l— JE—
i€[n]

H (ffn()?i*; A)T) (ffn()?l-*; A\)T);[n] = max”ffn()?i*; AT — ffn()?i*; A\)TH <e.

7,00 i€[n] o0
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To cover the empirical image class jﬁn* (Ftsn) at the resolution e, it remains to cover the

parameter spaces of A* and A at the resolutions £ and €7, respectively, that is,

log N(jﬁ (fffn)u g, H : HT@O)

n*

< tog ¥ ({4 € R ()T, < B )T, <@ hoet L )
o ({14 R )], < )], <) )
< 1ogN({<AX>T e R[], < Rl ”wo)
o ¥ ({4 € R[4, < B b2

X

2 2R°
dea-log(l—i— §)+dd0-log(1—l— ff)

2(a*R° + a” R) - é*)
E )

= 2dd, - log(l +
where the third inequality follows from Lemma and the equality follows from

(C.3.29). Therefore, we conclude the proof of Lemma |C.3.11 0

Empirical Image Class of MHA. In the sequel, we characterize the covering number

of the empirical image class of MHA. In parallel to the parameter space 20) defined in

(C.3.9)), we define

(C.3.30) N = {{(Vviq7 Wika I/Viv)}ie[h] . (Wiq’ VVz-k, VVZV) c Rdxdp % Rdxdp X Rdxd7

I [, = wi

W], < wis [0V, < wi

Jw T, < RENWOT],,, < B[OV, < RY}.
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where wi, w¥, wy, R}, R, RY > 0. Correspondingly, we define the function class of MHA

[ 7 7

(with a skip connection) and the empirical image class of MHA as follows,

Fana = {mha(X; W)+ X : W € 2},

(C.3.31) s, (Fana) = {(f(Xi)T)ie[n] e RO . f ¢ tha}.

Here D,, = {)N(i}ie[n] is the input set of MHA, where X; € RE¥4. Recall that h is the head
number of MHA. The following lemma characterizes the Lipschitz continuity of MHA with
respect to the parameter in W = {(W;, Wf, VVZ»V)}Z.E[h] € W.

Lemma C.3.12 (Parameter Lipschitz Continuity of MHA). Let (7, s) be a conjugate pair.
Suppose that X € RE*4 satisfies || X |00 < R. Given any W = {(W2, Wk, W) e € 20,

7

suppose that W = {(W3, Wk, /W-V)}ie[h] € 27 satisfies

7

[T = (WO <ed, [[WHT =W <k |w)T = W) <&

rs — ) rs — ) v rs — 1

for any ¢ € [h]. Then, we have
_ o _h o
[mha(X; W) — mha(X; W)THTOO <R- Zé}’ + R Z(w? + wr) - (63 + €5),

i=1 =1

where wil, wk, and wy are defined in ((C.3.30)).
Proof. See §C.6.2.1] for a detailed proof. O

The following lemma characterizes the covering number of the empirical image class

ﬁf,n(]:mha) defined in ((C.3.31]).
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Lemma C.3.13 (Covering Number of MHA). Let ¢ > 0. Suppose that the input set

571 = {)?i}ie[n} C REX4 of MHA satisfies MaX;e|p] ||)A(/ZT||TOo <R. Then, we have

logN(jﬁ (Fﬂﬂla)757 H ’ Hr,oo) < (2 + h) . d2 . lOg

n

(1420 o))

£

Here

h h
(C.3.32) Runa (W) =Y Ry + R Y (w + wi) (R + RY),
=1

i=1

where wil, wk, R}, RY and RY are defined in (C.3.30).

Proof. Throughout the following proof, we set &}, eX, ¥ > 0 such that

(C.3.33) ke AL A

for any ¢ € [h], where Ryp.(20) is defined in ((C.3.32). By Lemma |C.3.12 we have for any

i € [n] that

[mha(X; W)™ + X — mha(X; W)™ — Xz‘THrm

h h
§§~Z€Z+§3-Z(w?+wf)'(8?4—5?)
i=1 i=1
IO v, UL a, k
:R A/RZ—{_:—I—R?)Z(W?"—W%()(N R@ S +~RZ 19 )
i R- Rmha(w) i=1 R- R'mha<m) R- Rmha(m)

1
SR+ R (W wk) - (R + RY)

é : Rmha<w)

Y
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where the third line follows from ((C.3.33) and the last line follows from the definition of
Runa(20) in (C.3.32). Hence, we have

H(mha()?i;W) —i—XT) - (mha()?i;/W) —i—XT)

i€[n] i€[n]

= maXHmha X;: W)T + )NQT — mha()N(z'; W\)T - )N(zTHToo <e¢

i€[n]

To cover the empirical image class Jz (Funa) at the resolution €, it remains to cover the
parameter spaces of W', WX and WY at the resolutions €}, X, and &, respectively, for

any ¢ € [n], that is,

10gN<35n (Fana), & | - IIr,oo>

h
Z(logN( e R (WAT]| < B[V, < @i el - ||m)

logN(

+logN(

(v e movess JavhyTI,, < B VST, < el foebi - e
(v e v, < ROV, < @bl ) )
éi(logfv( R T, < B e
logN({ Te RV (WY, < Rip. e Hm)

{o

+logN( e R ||(w)T HTSSRV}, el Il ||roo)>

h q k v

gddp-Z(log( 2§i)+log< 2§i))+d2 Zlog(1+ R)
i=1 ‘ A

(2 3

:(2+h)~d2-10g(1+w),
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where the third inequality follows from LemmalC.3.10/and the equality follows from (/C.3.33))

and the fact that d = d, - h. Therefore, we conclude the proof of Lemma O

C.3.5.2. Propagation of Covering Numbers. Recall that 20 is defined in ((C.3.30)).
The following lemma characterizes the Lipschitz continuity of MHA in the input X.

Lemma C.3.14 (Input Lipschitz Continuity of MHA). Let (7, s) be a conjugate pair. Sup-
pose that X € RE4 and X € RE*? satisfy || X 7|0 < R and || X [|;.00 < R, respectively.

Then for any W = {(W, WF, W) }ien € 20, we have

Hmha(X; I/V)T — mha()?; W)THTOO < p(20) - HXT - )A(THrW.
Here
h A
(C.3.34) pD) = wi + R (Wi wf)uy,
i=1 i=1
where wil, wk, and wy are defined in ((C.3.30)).

Proof. See §C.6.2.2| for a detailed proof. 0

Recall that the empirical image classes Jp, (Fel?), Jp, (FxtY), and Jp, (F}) are
defined in and . Also, recall that the parameter space ©® is specified in
Assumption [C.3.3] The following lemma characterizes the propagation of the covering
numbers of the empirical image classes of FFN and MHA through the T layers of the

transformer architecture.
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Lemma C.3.15 (Propagation of Covering Number). Suppose that Assumption

holds. For any j € [dy], we have

T—2
log N (Ip, (FF).ell - llnee) <3 sup log N (Ip, (Fas ™), el I+ llroc)

mha » “mha>
t—0 1007€0M}oc <t

T-1

~ L,
+ Z sup log N("’Dn(fffr(lt)) 8§fn7 -l 00)
=0 {0e0M}oc <y

With the conventions [ _T .- =1and H _T = 1, the covering resolution ¢ is defined as

follows,

T-1 T-1 T-2 T-1
(C.3.35) (“‘0 o [T a )+ (eta- II #a (T)),
t=0 t=0

T=t+1 T=t+1

where @ and p*) are defined in (C.3.11)) and (C.3.20]), respectively.

Proof. Throughout the following proof, we fix the dataset D,, = {(Xj, ¥;) }ic[n) and the

parameters 6 and {§®) = (W® AO)}oocr_. By (C.3.4) and (C.3.5), the intermediate

inputs {Xi(t)}ie[n} and {X( )}Ze and the outputs {y; = (?/J\i,j);e[dy]}ie[n} are fixed.

Perturbed Intermediate Inputs. For all t = 0,...,7 — 1, we denote by ‘ﬁftfn and

‘ﬁ(tH the covering sets of the empirical image classes Jp, (Ffo’Ist)) and Jp,, (f,fl;f“)) at the

(t)

resolutions e;4, and e) with respect to the matrix (r, 0o)-norm, respectively. Starting

mha

from ((X-(O))T)ie[n] = (()N(-(O))T)ie[n] = (X,")ie[n), we construct the perturbed intermediate

(23 (23 7



275

inputs in a recursive manner as follows,

(C.3.36)

((Xz(t))T)zE[n] = {()’E:)ZE[TL] € sjtg?lf)n : Hff zj))A ) ‘)/ZZTH,,«? < é‘gf)n}7
(X)) ey € {(XDicm € MG+ [lmna(X0; W) T4 (X7 = X[, <=}
(XN gy € { XD iepr € e s [Jeen(XT 40D = X7 <<l V,

where t =0,...,7 — 2. For any i € [n] and any j € [dy], let

(C.3.37) X(T) — mha(X(T 1)’W(T71)) +)~(i(T71)7
Uiy = 3885 (X)),
which implies

Gi5 — Tl = |5EEa;(X1) — 38Ry (X)) < (X)) = (X)), o

where the inequality follows from Assumption [C.3.2] Hence, to cover the empirical image
class Jp, (/) at the resolution e, it remains to cover the empirical image class Jp,, (.FmL}{EET))

at the resolution e.
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Propagation of Covering Resolutions. For the recursive constructions in ((C.3.36)), it

holds for any i € [n] that

= [[££n(X 5 AT — (XI)T[

)

< [[g£a(X P AD)T — ££a(XL; AD)T|| 4 [|e£n(X D AD)T — (XI)T|

1% ) 1% ) 7,00

(C.3.38)

< ||gtn(X; ANT —£ea(XP; AT el

% ) 7,00

where the first line follows from ((C.3.4) and the last line follows from the definition of
)Z'Z-(t) in (C.3.36]). For the first term on the right-hand side of (C.3.38)), it holds for all

t=0,...,7—1and any i € [n] that

1% )

J£n(X(0: A0)T — £2a(R0540)7)|

= [|(A7®) TReLU(X Y AXO)T 4 (X)) — (A7) TReLU(X Y AX )T —()?.(”)THMO

< [|(A7O)T| - ||ReLU(X AT — ReLU(X P AXO)T|| 4 [[(X)T — (X))
< (1 T o)) - T = XD
(C.3.39)

<a® - (xIH)T —(XI)T

r,00’

where the third and fourth lines follow from Lemma and the last line follows from

the requirement in Assumption and the definition of a® in (C.3.11]). Hence, it holds
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forallt=0,...,7 —2 and any i € [n] that

[T — (X L < ||mha<X£”; AOYT (X T —mha(X{P; AT — (XN,

Tk

+ ||Jmha(X] DL AT 4 (XINT — (X(tﬂ))T”r,oo

< (pr®) +1) - [(X)T = (X + el
(C.3.40) <P (XN = (XN, + el

where the second inequality follows from Lemma |C.3.14] and the definition of XffJFl) in

(C.3.36) and the last inequality follows from Lemma |C.7.4. Taking ((C.3.39)) into (C.3.38)
and ((C.3.38)) into ((C.3.40)), we obtain for any i € [n] and t =0,...,T — 2 that

(C3.41) [|(XE)T = (XL, o <080 (X = (XD) oo + 5ein + el

(23 (23

Recursively applying (C.3.41]), we have

T-2

T—2
T— v (T— T) (T
(X TD)T - (RT-0yT [*t 040 T pa >],
t=0 T=t+1
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which implies

(XN = XD,

Tk

— [lmha(X TV WD) 4 X T pa(XTD w0y — X

= [ B POl |

hS)

7,00

IN
=L

ix €ffn

T-1)F(T-1) H(X(t)>T . ()}(t))T”mO + ,B(T—l) (T-1)

IN
S

—92 T-1
(Ol + el TT #7a0] 47700 =,

t T=t+1

Il
=)

where the second line follows from ((C.3.37)), the third line follows from ((C.3.40]), the
fourth line follows from ((C.3.38)) and ((C.3.39)), and the last line follows from the definition
of ¢ in (C.3.35). To cover the empirical image class Jp_ (F,ﬁf)) at the resolution e, it

suffices to cover (i) the empirical image class Jp, (]-"nﬁl’itﬂ)) at the resolution 5,&51)3 for all
L,(t)

t=0,...,7 —2, and (ii) the empirical image class Jp, (F¢sn ') at the resolution 5§?n for

allt=0,...,T — 1. Therefore, we conclude the proof of Lemma |C.3.15] 0

C.3.5.3. Proof of Lemma [C.3.9]

Proof. By Lemma we have

T—2
log N (Ip, (FF).ell o) <> sup log N (Ip, (Fas ™), el I+ llroc)
t—0 {0Me0M}oc oy

T-1

~ L,
+3° s log N(Ip, (Fi) e |- o)
t—0 {0Me€0M}ocr <y
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where ¢ is defined in ((C.3.35)). In what follows, we set

a* R0 4 o) R () e — 0 e

) _ (.
(C.3.42) €¢fn = € AORT0 ) mha oV

By Lemma 7 the intermediate inputs {Xl-(t)}z-e[n] and {Xi(f)}ie[n] satisfy
max[| (1)1, o, < @VRY, max]| (X)), < RO,
en ’ i€n )

where R® is defined in (C.3.18)). By Lemma |C.3.11] it holds for all t = 0,...,7 — 1 that

~e L?
log N<JDn (‘Fffr(lt))7 Ei(ftf)rﬂ || : ||’V‘,OO)

(C.3.43)
9B Rt 1 oo B . RO R(t+1)
§2dd0-log(1+ (a - ) >§2D2-1og<1+T),
€tfn €

where the second inequality follows from (C.3.42)), the fact that D = max{d, d,, d,, d},

and the definition of R® in (C.3.18). By Lemmas |C.3.13| and |C.7.4] it holds for all

t=0,...,T —2 that

log N (3, (F5), 60 - [loe)

» “mha?’

oa® p® . pW 2R+
(C.3.44) §(2+h)d2-10g(1+ L R"‘h‘“‘) §(2+h)D2-10g(1+—5(t> )
E_:mha

where the second inequality follows from (C.3.42)), the fact that D = max{d, d,, d,, d},

and the definition of R® in (C.3.18). It remains to choose the resolutions {e®}oc;cr
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that satisfy (C.3.35)), which is

-1 () gos(t) 1 o) o) T2
a +a”R A ~(r
(C.3.45) + (5(t) : =5 . | | 7l ))_

Recall that Ripans is defined in (C.3.19|). For all t =0,...,T — 1, we set

(C.3.46) £® = c

Rirans - sz:_tl-s-l ovmar)’

which satisfies (C.3.45). Note that, by the definition of R® in (C.3.18), it holds that
RO+ . HZ;}H oMal”) = RM for all t = 0,...,7 — 1. Combining Lemma [C.3.15
(C.3.43), (C.3.44), and the choices of {e®}o<icr_; in (C.3.46), we obtain

2R Ry yons
log N (30, (FE)., | - ) < [(4+ B)T — b — 2] D? 1og<1 " —)

2R
< (4+ h)D*T -log (1 + %)

Therefore, we conclude the proof of Lemma O

C.4. Optimization Error Analysis

PROOF OF PROPOSITION B.5.6l Let L(fy) = IAE[[,((X, v), fo)]. By (3.5.12)), it holds

for the stationary point /Q\that,

0 < (VoL(f;),0 - 0) = E[vfc((x, V), £5)Vofs(X) (0 — 5)].
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Since the objective function £((X,y), f) = ||y — f(X)||3 is convex with respect to f(X),

we have

(C41) 0 <E[V,L((X.p). for) " (F = fa) ().

where 6% = argmin, o L(f5). By definition of the objective function £((X,y), f), we have
(C42) |vec(xXom). 53)|, = 2lly = 5O, < 2Mylle +2155(X)]), < 2

where the last inequality follows from Assumption and that the aggregation layer

aggy, : R — R% outputs within ). For any 6 € ©, it holds that,

L(f3) = L(fo")

<E|V,L((X.9), f5) (5= far) (X)]

<E[V,L((X0). £5)  (fs = fo) (0] + B[ V,L((X. ). £5) "Vasfsla) (0 = 0)]
= B[V,L((X.0). ) (F5(X) + Vo fsl X)T(0 = 6) — fo- <X>)}

< B [9,2(00. 5, 15500 + VossX) 0 - B~ i (O

(CA3) < 2-||f5(X) + Vofz(X)T (0 = 8) — for (X))

where the second line follows from ((C.4.1)), the fourth line follows from the Cauchy-Schwartz
inequality, and the last line follows from (C.4.2)). Since ((C.4.3) holds for any 6 € ©, we

have

L(f) = Lfo) < 2-min ||| f5(X) + VafsX)T (0= 0) = fir (X)], .
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Therefore, we conclude the proof of Proposition [3.5.6] OJ

C.5. Approximation Error Analysis

C.5.1. Latent-to-Value RKHS

In what follows, we cast the function class QZ.T defined in ([3.5.10|) as the RKHS Hy1y, which
plays a key role in our subsequent analysis of the approximation error. Recall that the
latent-to-value mapping ¢ (z; msk) is defined in (3.5.7)), which induces the kernel function

RArrv(z, 2/;msk) = 1(z;msk) "¢(2';msk) and the following RKHS,

(C.5.1) Hiy = {ga(z;msk) = /a(z')ﬁLTv(z’,z;msk)dz’ : Hga(-;mSk)”Hm < oo},

which is equipped with the inner product (-, -)3,,,. By the definition of the kernel function

Rrrv(+, -;msk), we have for any ¢,(-;msk) € Hpy that

ga(z;msk) = /a(z’)ﬁmv(z’,z;msk)dz’

(C.5.2) = (/a(z')w(z';msk)dz') Y(z;msk) = w, (z; msk).

w, € RY
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Here w, corresponds to the parameter vector w; € R? in the function class QZT . On the

other hand, we have

190 (-:msB)|[5, = (ga(-smsk), ga(smsk)),,

= /a(z’)ﬁuv(z’,z;msk)a(z)dzdz’
(€53 -(/ a(z/>w<z/;msk>dz')T( [ atersteimaz ) = .

where the third equality follows from the definition of Rr1y(-, -;msk) and the last equality

follows from the definition of w,, in (C.5.2)). Combining (C.5.2)), (C.5.3), and the definition
of Hyry in (C.5.1)), we have

Hiry = {wlw(z;msk) we € RY, [Jwg |2 < oo} = Gl.

Thus, the function class Q;r , which correspondes to the i-th entry of the function class G,
is the RKHS Hyry. Here the function class G' is defined in (3.5.9)), which contains the

latent-to-target function gfy,(z;msk) = W ¢ (2;msk) within the reweighted CME attention

f(X;msk) defined in (3.5.6)).
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C.5.2. Supervised Learning

PROOF OF THEOREM [B.5.5]. Suppose fp € Fartn and €apen € [0, +00) satisfy (3.5.11)).

By the definition of the approximation error E,pprox i (3.5.3)), we have

Eupmox = min E|L((X,9), )| ~E[£((X.). )]

fEFattn

< E[ﬁ(()(,y),fe)] —E[ﬁ((X, y%f*)]

—E[”ng msk) H }
< Z]E[Hfg(X;msk) — f;EV(X;msk)H ] —|—2E[||fw (X;msk) H }
(C.5.4) < 262 + 2B || fl (X;ms) — (03],

where the second line follows from the fact that fy € Faien, the third line follows from
the fact that £((X,y), f) = |ly — f(X)]|3 and the definition of the regression function

f*(X) = E[y| X], and the last line follows from (8.5.11)) and the definition of f;;, (X;msk)
in (35.0).
In what follows, we characterize the gap between the regression function f*(X) and

the reweighted CME attention in ng(X ;msk), which is used as a surrogate function for

approximating f*(X). By - we have

f(X) = E.|x[g" (2 msk)]
=E.|x [gIT,V(z;msk)} +E.|x[g*(z;msk) — g&,(z;msk)}

= fJV(X;msk) +E. x [g*(z;msk) — g&,(z;msk)],
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where the last line follows from (3.5.8). Hence, it holds for f;,(X;msk) that

(C.5.5) E[\

fA(X) - fJV(X;msk)”;] = EU E. x|g*(z;msk) — gf,v(z;msk)} Hj :

By Assumption [3.5.4] we have
d)’

(C.5.6) <>

=1

2 dy
= ZEZ|X [g;"(z;msk) — g;ﬂw(z;msk)}2
i=1

E.| x [g*(z; msk) — g‘T,V(z; msk)}

g7 (-;msk) — g;ﬂv,i(-;msk)”zo < ef](msk),

where the /,.-norm is taken over the latent variable z. Taking ((C.5.6) into (C.5.5), we

obtain

(C.5.7) E[\

P10 = Fl(Ximsi) 3] < e2(ms).

Taking (C.5.7)) into (C.5.4), we obtain

2 2
gapprox < 2€attn + 2€g(IIlSk)7

which concludes the proof of Theorem [3.5.5] O

C.5.3. Self-Supervised Learning

PROOF OF THEOREM [3.6.3. Suppose that fps(X;mskps) attains the infimum on the

right-hand side of (3.6.11)). Recall that B = Wy5(Wsst Wag, ) " Wsr is defined in (3.6.10)).
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We define a surrogate function as follows,
pr(X7 mSka) = pr'r()_(7 mSka).

Here J/”;T()_( ;mskpr) is the attention neural network obtained from the pretraining process.
Recall that the regression function fi5(X) for the downstream task is defined in ([3.6.4))

and ngDs (X ;mskps) is defined in (3.6.5). For the approximation error Eapprox defined in

(13.6.13]), we have

(C.5.8)

5approx <E :‘C(()_(ayDS)a st)} - E[ﬁ((A)_(,st)a fﬁks)}

:E:HfDS()_(;mSsz — fos(X H }

= E[||fos (X mkos) — Fon(X; mskor) + for (X mskor) — fl, (X mkos)
+ [l (Ximskos) — fos(X)][; }

< 3E [H Fos (X mskog) — for(X: mskPT)||j] +3E [”pr()_(;mska) — fhe (X mssz)Hj]
+ 38| fle (¥ mskos) — SO

< 3¢ agg(B) + 3E[HfWDS X: ;mskps) — fJVDS(X;mskDS)||§]

J/

(i
+ BE[”fJVDS()_(;mSsz) - fgs()_QHﬂ’

-~

(i)

~—
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where the second line follows from the definition of the regression function f(X) =
E[yps | X] and the last line follows from (3.6.11)). In what follows, we characterize terms (i)

and (ii).

Term (i). Recall that the regression function fa(X) for the pretraining process is defined

in (3.6.3). For any truncated input sequence X, it holds that

| For (X mskor) — i, (X mskos)| |-

—~ 2
= HBfPT(Z;mSkPT) - WDTSEZ\X WDS(Z;IHSKDS)] H2

2

= HB(};T(}_{;mSkPT) - f;T()_()) + (Bf;"r()_() - ]EZ|X [W1>TS¢DS(Z§mSsz)]>

2

(C.5.9)
< Ql‘B(ﬁT()_(;mska) — for(X)) HZ+2 H (Bf;T()_() —E, [WDTSwDS(z;mskDS)D 27
) (ih)

where the second line follows from the definition of f‘];VDS (X;mskpg) in (3.6.6)). In the sequel,

we characterize terms (i.a) and (i.b). By Assumption [3.6.2] we have

(C.5.10)  (ia) < ||B)3 - || fer(X;msker) — far(X)||s < - || For (X msker) — for(X) )5
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Recall that gEVSSL(z; mskps) is defined in Assumption . Since BWgy, = Wy, we have

2
(i.b) = HBEZ\)? [g5r(2; msker) — W, tps(2; mskps)] H2

2
< ||B||g ) ‘ Ezp? [g;T(Z;mSkPT> - QI/VSSL(%HISsz)} H2

d
* 2
<Y B, x[gei(zimsker) — gl (25 msks)]

i=1
d
« 2
< e Y ||ghn (- msker) — gly, (-5 mskos) ||
i=1
(C.5.11) < - €2, (mskpr, mskpg),

where the third line follows from Assumption[3.6.2|and the last line follows from Assumption

3.6.1] Taking (C.5.10) and (C.5.11)) into (C.5.9)), we obtain

(i) = EM};T()_(;mska) — f;VDS()_(;mSkDS)Hﬂ
S E|:2ILL . HﬁT(y’ mSka> — f;T(XP)HZ + 2/,[/ . ESSL(mSka7mSsz>
approx

<2p-E ot u-E [egSL(mska, mskDS)}

(C.5.12) =24+ (EX ox + €55y (mSkpr, mskag))

approx

where the third line follows from the definition of the regression function fi(X) = E[ypr | X]

for the pretraining process and the definition of EFT  in (3.6.12]).

approx

Term (ii). By the same argument for ((C.5.5]), we have

(C.5.13) (i) =E U E, % [g3s(z; mskpg) — gIT/VDS(Z;mSkDS)] Hj :
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By Assumption [3.6.1] we have

|

2
Ez\)? [g;s('z;mSkDS) - ggszS(z;mSsz)} )

dy
* 2
- Z Bz [gns,z'<z3 mskps) — g%ps,i(z; mskps )|
=1
dy
* 2
(C.5.14) < D[l 95 (5 mskns) = gy, (5 mskos) |2, < € (mskss).
i=1

Taking (C.5.14]) into (C.5.13)), we obtain

(C.5.15) (i) < €. (mskps).

Taking (C.5.12)) and (C.5.15)) into (C.5.8), we conclude the proof of Theorem 3.6.3, [

C.6. Auxiliary Proofs for Generalization

C.6.1. Proof of Lemma

Proof. Throughout this proof, we consider a fixed dataset D,, = {(X;,¥;) }icjn)- Let
Em = 27" with m € [M+2], where M is a positive integer. We denote by 91, the covering of
the empirical image class Jp, (F;) that achieves the covering number N (JIp, (F;), €m, ||||r.00)-
In other words, for any f; € F;, let fm[ fil = (fm[ fj,,-])iTe[n] € M, be the nearest element of
f;(X;) in N,,,, which implies that

max| f;(X;) — F[f5]] < em.

i€[n]
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We have
(C.6.1)
1 n
Rp,(F;) =E fjlelgj - ;6 - Jj (Xz)}
n o 1 M-1 n
. + . - m m+1
_E ffgj{nz;ez (506 = PY153) + 5 e (Pl = P05
1 n
- ﬁ £ € fl[fjﬂ]}:|
<E{Sup = e - (f;(X0) —fM[f],])}
fieF; i=1
M-—1 1 n . n
P2 PIEP R R P R RR

where the last line follows from the choice 91; = {0} and the fact that f;(X;) € [0,1/2] for

any ¢ € [n]. In what follows, we analyze terms (i) and (ii).

Term (i). We have

fj E]:j 1€ [n]

(C.6.2) (i) < ]E{% Z |el|] - sup max‘fj(Xi) — ]/CM[fMH <n-epy.
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Term (li) Let fj,Dn = (fj (Xz))ze[n] € Rlxn' We have
sup ||fm[fy] - ferl[fj]HQ < sup Hfm[fj] - fj,Dn”Q + sup Hfj,Dn - fm+1[fj]||2
fieF; fieF; i€F;
<+/n- sup HfAm[f]] - fj,DnHoo +v/n - sup Hfj,Dn — ]?mﬂ[fj]“oo
fje}'j ijJ:j

(C.6.3) <V Em AN ey = 3V eyt

Combining (C.6.3) with the Massart’s finite class lemma (Mohri et al., [2018]), we obtain

E{Sup Zei : (fm[f”] — Am“[fj,i])l <3V Emat - \/2 log (1] + [Mnt1])

fieFi 4

(C.6.4) <6V - Empr - V00g | Mi1l,

where the second line follows from the fact that |M,, 1] > [M,,]. Taking (C.6.2) and
(C.6.4) into (C.6.1)), we obtain

n

M-—1
6
Ro, (Fj) <em+ N E Em+1 -V 10g [Mpg|
m=1

M
12
<em+ % : Z(é‘m — Emt1) - V10g [Ny

m=1

<tz [ \florNOnFE)el - lc)ie

EM+1

12 1/2 ~
<dc+ ﬁ/g V105 N (3, (). . | - o) e,

where the last inequality holds for any 0 < £ < 1 and the smallest M such that & < eppyq,
which implies that ey, = 2ep,11 < 4€. Therefore, we conclude the proof of Lemma

C.3.8] U
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C.6.1.1. Proof of Matrix Ball Covering Lemma

PROOF OF LEMMA [C3.T0L Let M = (my,...,mq,) € R2*4 where m; € R with

j € [do]. We define the vectorization of the matrix M € R4*% as vec(M) = (ij)jTe[dQ] €

R%42 We define the sectional norm for the vector vec(M) € R4 as follows,

Hvec = ||MT||TS,

H (d2),s(d1)

which can be verified to be a proper norm. In Lemma |[C.7.1] setting
B=B,={meR" : ||m| s <1} ={M" € R=*" . |MT|,, <1},
and [| - | = || l« = I - ll+(d2).s(a1), We obtain

1ogN({MT € R M|, < R™}.e || - ||r,s)

= 10gN<{m € RN ¢ ||mllyay) s(ar) < 1},6/RY, || - ||r,s>

1(2 ‘B, +B
SVO(RM/S + ) dldg log 14 RM
vol(B)
Therefore, we conclude the proof of Lemma |[C.3.10] 0

C.6.2. Lipschitz Continuity of Multihead Attention

Lemma C.6.1 (Lipschitz Continuous Softmax). Let (r,s) be a conjugate pair. Under

Assumption [C.3.1] it holds for any ¢,7 € R% and K = (ké)Ze[LPI? = (EE)ZE[L] € RLxdp
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that

(C.6.5)

| mormsn (Rase (1. 4)) — normeu(Ruae (K. 0)) | < (lalle + 1 o) - 1K = KT

(C.6.6)

HHOI’mSM(ﬁnBF(K7 Q)) - normSM(ﬁRBF(Ka Z]\))Hl < (HQHT + HKTHT,OO) ) Hq - EI\HT

Proof. Let P = diag(p) —pp' € R¥*L with p = (pr)eejr) = normsy (frer (K, q)) € RE.

We have

pe o exp{—|lq — k“||5/20°}.

We define g, = —|l¢ — k*[13/20” and g = (g¢) () € R". Let the Jacobian of p € R with

respect to k¢ € R% be J, € REX% We have

_Op Op Og dg

Y=ok = a9 o~ Uane

where 9g/0k = (eyq" — Ey0K)/0o* Here Eyp € RE*L is the unit matrix whose (¢, ¢')-th

entry is one and all other entries are zero. Note that

L L L
<D MeAly < Y 1 ellion - 1A < Ao - D 1 el
(=1 (=1 (=1

L
Z JoA,
/=1

1

where A = (A )seqr). Thus, the Lipschitz continuity constant of softmax(q, K) is bounded

by Sor i I Jellrs1. Let e, € R be the ¢-th one-hot vector with ¢ € [L]. For any ¢ € [L],



294

we have
dlfl/r
| Jellrms1 < : HP(eeC]T - Ez,zK)”l
dy'* oy
= —5 v |[(ee=p)a = K|,
dl/spg
(C.6.7) = =~ llee =plls - lla = ¥ll-,

where the equalities follow from 1/r 4+ 1/s = 1. Summing up (C.6.7)) for all ¢ € [L], we

obtain
dl/s
Sl < 2 pellee = wls - la = Kl
Le[L] Le(L]
dl/s
(C63) < (gl + 1 o) - 3 b llee = pls

Le(L)

On the other hand, we have

St~ S (S|}

te(L) te[L] v£l
(C.6.9) <N e 20— )T <24
Le[L]

Combining (C and , we have for o = (2d,)'/?* that

1/s
ZHJeHHK ) (lal + 1T ).
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Thus, normgy(Reer(K, q)) is ([|gll» + || K ||00)-Lipschitz in K" with respect to || - ||r.cc,
which concludes the proof of (C.6.5)). Since Regr(q, k) = Rrer(k, ¢q), we also have (C.6.6)

by the same arguments for (C.6.5). Therefore, we conclude the proof of Lemma O
C.6.2.1. Proof of Lemma [C.3.12l

Proof. For notational simplicity, we write
head; = attng(XW, XWE XWY), head; = attng(XW3, XWE XWY).
By the definition of sequence-to-sequence multihehead attention in ((C.3.3)), we have

Hmha(X; W) — mha(X; /W)T”mo <

h h
—T
Z headiT — Z head,
i=1 i=1

7,00

h
(C.6.10) <> ||(head; — head))" |,

=1

Also, we have

(C6.11)  ||(head; — head,)T|| _

= |lattna (X WS, XWX XW¥)T — attng XW, XWE XWH)T||

7,00

= H ((XVViV)TnormSM (RRBF(XWik, :L’ZW;q))>

Le[L]

- ((XW\Z-V)THOI'IHSM (Rrer (X/Wik, xeﬁ/\iq» )

Le[L)

7,00

= Il}]?i}](H (XVViV)TnOI'mSM (RR.BF (XWik, .TZWiq))
€

r

— (XW\iV)TnOI‘mSM (Rner (Xwika SCZ/Wiq))
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Note that

(C.6.12)

[ Wil + | X[, o < AW, o + XWE ]

7,00 7,00

< (1T A+ NOVOTIL) 1K oo < () - B
Then for any ¢ € [L], we have

H (va>Tn0rmSM (RRBF(XVV,}(, I’ewiq)) — (XW\Z'V)THOI'IHSM (ﬁRBF(X/W\ik, Jie/m?iq))

r

< ’ normsy (ﬁRBF(XWZ-k, xe/ﬂzq))TX(W/iv - ﬁ/\;’)

T

+ ‘ <normsM (ﬁRBF (XWl-k, fL’gVViq)) — NOTIMgy (ﬁRBF (X/Mzk, JIZ/I/IZQ))) Tva

T

< [lovy =T

X oo

r,s | ‘
+ HnOI‘mSM (ﬁRBF(XWZ-k, .I’Kmq)) —NOoTXrmgy (ﬁRBF(X/Wik, .CCE/I/IZq)) H1 H (WiV)T HTHXT ||r,oo

< Reey+ (Ja Wl + [(XWAT]), ) - wf R + &)

T

(C.6.13)

<R-&) + (Wl +wdwy - R (5?+5?),

where the third inequality follows from Lemma [C.7.3] the fourth inequality follows from

Lemma |C.6.1} and the last inequality follows from (C.6.12). Taking ((C.6.13)) into (C.6.11)),

we have

(C.6.14) | (head; — h/eZii)THmo <R-ef + (W +whw) - R? - (e84 £5).
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Taking ((C.6.14]) into (C.6.10)), we obtain

h h
|mha(X; W)" — mha(X; /W)THT’OO <R Zsz’ + R Z(w? + wk) - (67 + €5).

i=1 i=1

Therefore, we conclude the proof of Lemma |C.3.12] [l

C.6.2.2. Proof of Lemma [C.3.14l

Proof. In this proof, with a slight abuse of notations, we write
head; = attngy(XW, XWX XWY), head; = attngg (X W3, XWE XWY).

Similar to (C.6.10)), we have

h
a0 17— mba(K:W)T]| < )| (head, — Beady)|

i=1

7,00
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For any fixed ¢ € [L], we have

| heas, — Bead)|,

= H ((XWiV)TnormSM (ﬁRBF (XWik, .’L‘ZVV,L'q)) — ()?WiV)TnormSM (ﬁRBF ()?Wik, I/L'\ZVV,LQ)) ) ZE[L}

7,00

= maXH (XWiV)TnormSM (RRBF(XW;‘, erViq)) — ()A(WiV)TnormSM (RRBF()A(W;‘, /x\eﬂfiq))

Le(L) r
< | omen (e (XWE W) 1OV, - 1XT = KT e
+ Iené[)f](‘ normsy (Rer (XTWE, 20W9)) —normsy (Res (XWE, ZW)) H1 V)T IX T oo
S

< VL 1XT = X Tl

+ma]| (W) 82 (it ) (W2, + 0w T )

(C.6.15)

<wl 4R (WO X = Xl oo,

where the second inequality follows from Lemma and ((C.6.12), the third inequality

follows from Lemma |C.6.1], and the last inequality follows from (C.6.12)). Summing up
(C.6.15), we obtain

h

Hmha(X; W) — mha()A(; W)THWO < {Zw;’ . [1 + R? - (! +w§‘)2]} . ||XT — )?THT,Oo
=1
h h R
o) IEEE YRR NS e
=1 =1

Therefore, we conclude the proof of Lemma [C.3.14] O
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C.7. Auxiliary Lemmas

Lemma C.7.1 (Volume Ratios and Metric Entropy, Wainwright| (2019))). Consider a pair

of norms || - || and || - || on R¢, and let B and B, be their corresponding unit balls. Then
the e-covering number of B, in the || - ||-norm obeys the bounds
1(B, 1(2/c-B, +B
s‘d-MSN(E*,s,H-H) - vol(2/e - B, + B)

vol(B) vol(B)

Lemma C.7.2 (Caponnetto and De Vito (2007))). Let (€2,v) be a probability space and
¢ be a random variable on €2 taking value in a real separable Hilbert space H. We assume

that there exists constants B, o > 0 such that

[€(w)]|,, < B/2, as., E[|€]] < o>

Then, it holds with probability at least 1 — § that

Hréawo —E[S]H < 2(% ; %) log >

Lemma C.7.3. Let (r,s) be a conjugate pair. For any M € R¥1*42 ¢ ¢ R4¥*1 and

U € R%%% e have

[ Mull, < [|Mllrco - [|ull1,
||MU||T,<><> < ||M||rs ’ ”UH'r,om

MU |00 < |M][r - [[U]lr,00-



Proof. Let M = (m;)ic(4,) and b= (b; )Ze[d We have

[ Mulf, =

da

E Uj - mj
j=1

Also, we have

[ Mul], =

do
< (Z - Hmjm) < Ml -l
T

j=1

do
E g m;
j=1

As a consequence, with U = (u;)ic[4,], We have
[MU 700 = max || Mu; |, < max [[Ml|s - [[ujllr = [M]]rs - [U]]r.c0-
Jj€lds] Jj€lds]
On the other hand, by the definition of the matrix operator norm, we obtain
MU |00 = max [ M, < max [MI]r - gl = M- U] 00-

Therefore, we conclude the proof of Lemma

Lemma C.7.4 (Covering Coefficient Bounds). We have for all t =0,...,7 — 1 that

14 p(®) < VO 4 (@eO)2ZO . (RD)2 = 51

Runa (D) < RYO) 4 () gas®) . (RO)2 = (il)a’

where 5® and R are defined in (C.3.20).

(Zw) i [yl = M e el
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Proof. By the definition of Ry, (20) in (C.3.32)), we have
h h
Rmha(gm(t)) _ Z R;ﬂ(t) + (Rx,(t))z . Z(w?:(t) + w?’(t))(R?’(t) + R?’(t))

i=1 =1

< Rv(® 4 (R(t))Q max{w ()‘i‘wi{’(t)} . Z(R?y(t) _i_R?v(t))

i€[h]

— er(t) + qu’(t)quv(t) . (R(t)>2 — Rl(uil) .

Also, by the definition of p(20) in (C.3.34)), we have

>

14 p(20 _1+ZWV» )2 Z q(t)+ k(t)z v(t)

=1
h

< &Vv(t) + R(t) . max (A} +wk7(t) 2 A wY?(t)
<30 (ROF el + 0P 3

_ &v,(t) + (qu7(t))2wv7(t) . (R(t))2 = p,\(t)

Therefore, we conclude the proof of Lemma

Lemma C.7.5 (Simplified Covering Coefficient). It holds that

V108(1+ RO Ripna) = O(T\/log(l + ) + VT /log(1 + CR®) + \/log(1 + Fv/g)),

where v, ¢, and x are defined in (C.3.13)). Here R®) and Riyans are defined in (C.3.18)) and

(C.3.19), respectively.
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Proof. By the definitions of x® and ¢ in (C.3.12)), we have

(t) Vv(t) _qu(t) qk?(t) . (t) 2 V?(t) qu(t)
Ty | JZH O T D B < w0,
p(t) wV»(t) + (qu:(t))2wvy(t) . (R(t))2 wv,(t) qu:(t)wvv(t)
(qur(t))Zwvv(t)

wV,(t) &Vv(t)

. (R(t))2 =14+ C(t) . (R(t))27

r _Tf Rr;)a' ii_[l ~(1) +T 1 x(t)Ra(t)+a (t) px(t) Tl_[—l 5
trans T — o) v+ (7) a®) @V (T)

s;l{ TL[_;[H( (“)2]}
<2 Tz{ﬁﬂlu (R“)]}

where the last line follows from the definition of x and ¢ in (C.3.13)). By the definition of
R® in (C.3.18) and the definition of v in (C.3.13)), we have

R = H a™ < RO . (14 y)%,
=0
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As a consequence, we obtain

~

-1 T—-

IT [L+¢RO- (1 +9)"]

+1

,_.

R(T)Rtrans < 2k RO . (1+ V)ZT .

JIM

T=

~

~1
S QHR(O) X (1 +’7)2T . [1 + CR(O) . (1 + 7)4T}T—t+2
t

Il
=)

1+ CRO - (149" —1

=25 [14+CRO - (149" | C-(1+7)2T

< ZTR . [1 + CR(O) . (1 +7)4T]T+3‘

Thus, using va + b < v/a+ /b and log(1 +ab) < log(1 + a) +log(1+b), we further obtain

V108(1+ RO Ripans) = (\/T2log (14 ) + Tlog(1 + CRO )—|—10g(1+/<:/§)>

— O(T\/log(l ) + VT /log(1 + CR®) + /log(1 + n/g))

Therefore, we conclude the proof of Lemma O

Lemma C.7.6 (Inter-Layer Magnitude). Under Assumptions [3.5.2 and [C.3.3] it holds

that
H(X(t))—rHroo S &(t)R(t)’ H(X*(f)) Hr,oo S R
where R® is defined in (C.3.18).

Proof. Setting X = 0£*? in (C.6.10)), we have

[mha(X; W) < Z |head, ||,.s0-



304

We have for all ¢ € [h] that

||head;r||,n,c,o = H ((XWiV)TnormSM (ﬁRBF(XWik, :EKVVZ-Q))>

Le(L)

7,00

= En%_j(H (XW) "normgy (RRBF(XWZ-I{, xZI/Viq))
€

r

< max
le[L]

mormg (S (X7 /W) | |V, -1 e < 71X

. E
which implies that

lmha(X: W) 4 XT| < X + (

r,00 —

h
wiv) X Mo = (140" - X oo
=1

(2

As a consequence, we have

(C.7.1) [XI)T], o € (L +w"@) - [(XO)T

r,oo T

= G0 | (X

7,00 7,00

On the other hand, setting X = gbxd ip (1C.3.39)), we have

(C.7.2) [(XAENT, = [[EEn(X; AT <a® - [j(x ()|

7,00

Recursively applying (C.7.1)) and (C.7.2)), we conclude the proof of Lemma O
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APPENDIX D

What and How does In-Context Learning Learn? Bayesian

Model Averaging, Parameterization, and Generalization

D.1. More Related Works

Generalization. Our analysis of the pretraining is also related to the generalization
analysis of the neural networks. This topic has attracted a lot of interests for a long
time. |Anthony et al.| (1999)) derived the uniform generalization bound for fully-connected
neural networks with the help pf VC dimension. Bartlett et al| (2017)) sharpened this
generalization bound for classification problem by adopting the Dudley’s integral and
calculating of the covering number of neural network class. At the same time, Neyshabur
et al.| (2017) derived a similar as Bartlett et al. (2017) from PAC-Bayes framework.
Following this line, |Liao et al.| (2020) , Ledent et al. (2021)) and Lin and Zhang| (2019)
built the generalization bound for graph neural networks and convolutional neural network.
These results respected the underlying graph structure and the translation-invariance in
the networks. Edelman et al.| (2021) established the generalization bound for transformer,
but this result did not reflect the permutation-invariance, still depending on the channel
number. Our work focuses on the analysis of Maximum Likelihood Estimate (MLE) with
transformer function class, which is not covered by previous works. Our bounds are sharper

than that of Edelman et al. (2021) on the channel number dependency.
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D.2. Proofs for Section [4.4.1]

D.2.1. Proof of Theorem [4.4.1]

Proof. By (4.4.1)), we have that

P(r¢11 | prompt,) = /P(Ttﬂ | etr1, her)P(hegr | Sp)dhe g
= /P(Ttﬂ ‘ Ct+1, ht+1)P(ht+1 | St, Z)P(Z | St)dhtJrle

(D.2.1) = /]P’(rtﬂ | cii1, St 2)P(2 ] Sp)dz,

where the first and the last equalities results from model (4.4.2]), and the second equality

results from Bayes’ theorem. O

D.2.2. Proof of Theorem [4.4.2]

Proof. Note that

P(z] S,) = P(S:| 2)Pz(2) _ Hle P(r; | z, Sy, ¢;)Pz(2)
t JB(Se | 2)Pz(2)d2 / szl P(r;| 2, Si_1, ci)Pz(2)d2"

Then, by Bayesian model averaging, we have the following density estimation,

P(Tt+1 | St7 Ct-i—l) = /P(Tt+1 | z, Sta Ct+1)P(Z | St)dZ

_ ST P(ri| 2,81, ¢)Pz(2)dz
J H§:1 P(ri |2/, Sic1, ¢i)Pz(2')d2’
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Thus, it holds that

T
— Y logP(resi | ciy1, 5)

=0
t t+1 t

= —Z(log/H]P’(riV, Si—1,¢)Pz(2)dz — 108;/1_[19)(7%‘|Z>Si—170i)]P’z(z)dz)
=1 =1 =1

T+1

= —108;/ HP(H|Z,S¢—1,C¢)PZ<2)dZ
=1

T+1
_, _ 125 e a(z).
= 1I(']1f E.q [ ; logP(r; | 2, Si_1, cl)] +E,. {bg Pg(Z):| :

We consider ¢ to be in the class of all Dirac measures. Then, we have that

T T
1 1.
~7 Z log P(ry | ¢ty Si—1) < T 1rzlf<— Z log P(r | 2, St—1, ¢) — log Pg(Z)).
t=1 t=1

Thus, the statistical convergence rate of the Bayesian posterior averaging is O(1/7). O

D.2.3. Proof of Proposition [4.4.3]

Proof. The result follows from Propositions |3.4.1| and [3.4.2]

D.3. Appendix for Section 4.5

D.3.1. Supplemental Definitions for Markov Chains

We follow the notations in |Paulin| (2015). Let Q be a Polish space. The transition kernel
for a time-homogeneous Markov chain {X;}3°, supported on {2 is a probability distribution

P(z,dy) for every z € Q. Given X; = x1,--+, X;_1 = x;_1, the conditional distribution
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of X; equals P(x;_1,dy). A distribution 7 is said to be a stationary distribution of this
Markov chain if [ ., P(x,dy)r(dz) = n(dy). We adopt P*(z,-) to denote the distribution
of X; conditioned on X; = x. The mizing time of the chain is defined by

d(t) =sup TV (Pt($, '),7T>, tmix(€) = min{t | d(t) < e},  tmix = tmix(1/4).

€

D.3.2. Proof of Theorem [4.5.3

ProoF OF THEOREM [4.5.3 Our proof mainly involves three steps.

e Error decomposition with the PAC-Bayes framework.
e Control each term in the error decomposition.

e Conclude the proof.

Step 1: Error decomposition with the PAC-Bayes framework.

For ease of notation, we temporarily write 7}, and IV, as T" and NN, respectively. Recall
that the pretraining dataset is D = {(Sf,x?+1)}nN7;T:1, which consists of N trajectories
(essays), and each essay have T'+ 1 words. Given S}, the next word is generated as 7, ; ~
P(-|S}), and S7', = (S7, 2}, ). Here, we construct a ghost sample D = {(Sr, Ty ) 2{%11

as SP = S7 and TP~ P(-| S*) independently from D. We define function g(6) =

L(8, D) — log Exlexp(L(6, D)) | D], where

N T

~ 1 P($?+1|SZI)

n=1 t=1
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For distributions @, P € A(O), where P can potentially depends on D, Lemma

shows that

Ep[9(6)] < KL(P[Q) + logEq|exp (£(6))].

Substituting the definition of g(f) and taking expectation with respect to the distribution

of D on the both sides of the inequality, we can derive that

Ep{exp {EP [L(Q,D) —log B[ exp (L(6, D)) |D}] — KL(P|| Q)}} <1

With Chernoff inequality, we can show that with probability at least 1 — ¢, the following

holds

(D.3.1) —ngp[log]Eﬁ[eXp (L(6,D)) |DH < —Ep[L(6,D)] + KL(P| Q) +1og%.
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We first cope with the left-hand side of (D.3.1]).

—Ep [logEﬁ [exp (L(6, 75)) | D]]

2——log]E [exp<—— 9””1’5))'1)}

] t—1 It+1|8n)
1 1 (2, | ST)
——Eng[log]E [exp(—— Jog LI T2 - ) 'D”
2 22:1 95t+1|5t)
1
= _§ZZIOgE%+1NP( | S7) exp

n=1 t=1

_—ngp[log]E [exp(—% 1 xtHlSn)) 'D”
1 t=1 xt-}—llst)

n=

VR
|
DO |

'@E

@ﬁ

e s

Eto

\/\_/

N——
v

—_

IV
-
Mz
M=
}%
=
wn
=
§

(D.3.2) - —EQNP {ng [exp ( - %Z log Z: : gn;) 'D”,

n=1 t=1

where the first inequality results from the definition of L(6,D) and Cauchy-Schwarz
inequality, the equality results from that the transitions of 2}, ; are independent given D,
and the last inequality results from Lemma The second term in the right-hand side
of can be controlled if the distribution P is chosen to concentrate around #. This

will be done in Step 2. Now we consider the right-hand side of (D.3.1)). For any 6* € ©,
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we can decompose it as

where the inequality results from the fact that f maximizes the likelihood. We will choose
0* as the projection of P onto {Py |60 € ©}. Thus, the first term in the right-hand side
of (D.3.3)) is the approximation error. The second term in the right-hand side of (D.3.3))

can be controlled in the same way as the second term in the right-hand side of (D.3.2)).

Combining inequalities (D.3.1)), (D.3.2)), and (D.3.3)), we have that

LSV (RIS By 1)’

n=1 t=1
N, T N, T
1 P5 (xt 1’5’ ) IS PA(x?+1|Sf)
< ;Ep|logEs [exp(—— log - L2 DI + - Y Ep|log = —tr
e 2 By, 15D 12 B 85, T

-~

)

N
1 | S7) 1
+ - E E 1og tH +KL(P|| Q) + log =,

4 n=1 t=1 ]P)G* T | S7) Aaﬁ)"_z 0

where term (I) is the fluctuation error induced by 6 ~ P, term (II) is the approximation
error, and term (III) is the KL divergence between P and Q.

Step 2: Control each term in the error decomposition.
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We first consider term (I). We need to quantify the fluctuation of Py when 6 is changing.

Proposition D.3.1. For any input X € R4 and 6,6 € ©, we have that
TV (Po(- | X), Ps(- | X))

2 . D
< ;HA(D—H),T _ A(D+1),THL2 4 Z Oét(ﬂt N+ R+ pt),
t=1

where

2 —
oy = ;BA<1 +Ba- BAQ)(l + hBV(l + 4BQBK))D t

B =1 = A+ (14 Bag - Bas) - (14 (|X o0 — Dliet) - |17 =717

tt=Bas- HAgt) _ th)HF + Buy - HAS) . Zg)HF
h —~

ki = (14 Bay - Bag)- (1 + (X 200 = 1)]It:1) : Z HWZ-V’(t) — Wiv’(t)HF
i=1

pr =2(14+ Baj - Bap) - (1 + (HXTHZ,OO - 1)Ht=1) - By

(2

h
. Z By - HWZ‘Q’(HI) B WZ-Q’(HI)HF + BQ ) ”WiK,(t—H) _ WK,(t—i—l)“F
=1

for all t € [D].

ProoF oF PropoOSITION [D.3.1] . See Appendix [D.5.2] O
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With the help of Proposition [D.3.1], we set the distribution P as
D+1

(D.3.5) P=1]Lr(e")

t=1

Lp(60+Y) = Unif(B(APD, r P, | |1,))
£p(00) = Unif(BE, 70| -1) ) - Unif (BES, 13, 1)) - Lp(AY) - £p(W)

£0(A®) = Unif(B(AY, r 11 lr) ) - Unif(B(AL 0 - ) )

h
:HUnif<IB3(/M7iQ7(”,Tg),|I : ||F)> Umf(]B%( 2 [ ))
i=1
Unif (B, - 1))
for t € [D], where Unif denotes the uniform distribution on the set, B(a,r, || - ||) =

{z |||z — al| < r} denotes the ball centered in a with radius r, the radius is set as

Tgt)l = R (14 Bay - Bag) 'a; ' /NT, rit)g =R 'a;'/NT
TS,)l =R 1BAZO% '/NT, 7”1(;,)2—]% 1BA1Oét '/NT,

rg) =R 'W'(1+ Bay-Bas) 'a;'/NT,
8 = R0 (14 Bay - Bas) ' By' Bgla; ' /NT

r%) = R'h N1+ Bay - Bap) 'By'By'a; ' /NT, rP*Y = 7B /NT.

Under this assignment, we now bound |logPs(z | S)/Py(z|S)| for any S € RE* and

x € R% . We first note that

(D.3.6) Ps(z|8S) > b, = (1 +dyexp(Ba/7))""



for any S and x. This results from the fact that

1
1T x (D) g(D+1)
H Ltk

< HA(DH)’THM < Ba.
. :

If TV(Py(-|S5),P4(-|S5)) = e < by/2, some basic calculations show that

b _ Pyz]S)
b, +c — Py(z|S)

<142
by

Thus, we have

Ps(x|S) 2 1
log " 21 < 2 = O(— for P a.s.
Ong(:ﬂS)‘ =5, ~Olgg) forPas
Based on this, we conclude that
(D.3.7) (I) =0(1).

Next, we control term (III) in (D.3.4). We take @) as

D+1

(D38) Q=[] £o(0")

EQ (9(D+1)) — Unlf(B(O, BA7 H ' ”172)>

Lo(0W) = Unif(IB%(l/z, 1/2,]- y)) -Unif(IB%(l/Q, 1/2,]- y)) Lo(ADY . Lo(W®)

£q(A®) = Unif(B(0, Bay, || lIr) ) - Unif (B(0, Bas. | - IIr) )

314

Lo(W®) = ]i[Unif<B(0’BQ’ |- ||F)> -Unif<IB(O, B, || - ||F>> -Umf(IB%(O,Bv, I ||F)>‘
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Then the KL divergence between P and @ is

KL(P | @)

(D.3.9)

- 0((02 cd-(dp+dy+d)+d-dy)-log (1+ NTfthBABA,lBA,ZBQBKBV)).

Finally, we control term (IT) in (D.3.4). This term can be controlled as

1 S, Pap,|SH 1 . :
:_NTzzlogIPQ @ 158 ZZES"KL [ SE) 1 Pe- (-] ST))
-1 Lt

n—l t=1
1 K2
+ 57 20 O EspKL(P(- | 57) || Po- (-] 7).

The first two terms in the right-hand side of the equality is the generalization error, which

can be bounded with Lemma [D.6.3] With Assumption [4.5.2] we note that

P(z|S) * —1 -1
(D.3.10) ‘logm‘ < b* =logmax{c, , b, },

so the function satisfies the condition in Lemma with ¢; = 2b*. Using the moment

generating function bound in Lemma and Chernoff bound, we have that

LSS g TS LSS KL (B 57 B 50)
NT og P,- (xt+1 | Sn sn 0+ |
n=1 t=1 n=1 t=1
tminb*’2 1
D.3.11 < log —
(D-3.11) =V onT %5

with probability at least 1 — 9.
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Step 3: Conclude the proof.

Combining inequalities (D.3.4)), (D.3.7), (D.3.9), and (D.3.11)), we have that

1/4 2
Y, 1 /D¥(dp +dy+d)+d-d _
min 1o, 1 VDHdr +dh - d) + Y log (1+ NTB)

< \l % STS T TV (R(|Sp). Py | S1))°
@

(V)78 T VNT

N

. 1 d
it | 577 2 S EKL(PC 17 a1 51) )

n=1 t=1

where we take 6* as the best approximation parameters. Finally, we will change the
left-hand side of this inequality to the expectation of it. In fact, we have that
Proposition D.3.2. Let F be the collection of functions of f : R" — R, and we assume
that |f| < b for any function f € F. For a Markov chain X = (X3,-, Xy), we define
f(X) =3V, f(X,;)/N. The mixing time of this Markov chain is denoted as tyix(). Given
a distribution Py on F, with probability at least 1 — §, we have

b2 ' tmin
2log 2N

‘EP[EX[J[(XH _f(X)” <

4
{KL(P | Po) + log 5} ,

for any distribution P on F simultaneously with probability at least 1 — §, where

9 _ 2\2
tmin = inf tnic(e) - ( 6) )

0<e<1 1—¢

PrOOF OF PROPOSITION [D.3.2] See Appendix O
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We note that Proposition is indeed an uniform convergence bound, since it holds

simultaneously for all P. Thus, we can set P and Py as those in equalities (D.3.5)) and

(D.3.8]), then we have that

! ZZESn[Tv (150 B 15)] - 5 L ZTV (150, Ps(- | S7)
o Vinin
-o( Yz

<D log(1 + NTB) + log %))

Thus, we have that

1
B [TV (P17 B 50)]
n=1 t=1
¢ 1 Voo (= _ 1
= O((NT)1/4 logg + m(Dlog(l + NTB) +10g5>

+ inf | < ZZEsnKL 157 || Pa- (- |S?>))-

n=1 t=1

We conclude the proof of Theorem [4.5.3

D.3.3. Formal Statement and Proof of Proposition 4.5.4

Denote the alphabet of the language as X C R (d = 1), then the conditional distribution
P* can be viewed as a function ¢* : ¥¥ — R%_ where L is the maximal length of a sentence,

and the output is the distribution of the next word. Since A is finite, Theorem 2 in [Zaheer
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et al.| (2017) shows that there exist p* : R — R% and ¢* : X — R such that

7= (12 we),

where X = [z, ,2r]. The i*" component of p* is denoted as p} for i € [d,]. For a
function f defined on €2, the L> norm of it is defined as || f||cc = sup,eq |f(x)|. The set of
the real-valued smooth functions on it is denoted as S*(€2,R), Then we denote the set of

the smooth functions with bounded derivatives as
Sp = {f € 8*([-B, B],R) ||| £ (x)|| < n! for all n € N},

where f( is the n'"-order derivative of f.
Assumption D.3.3. There exists B > 0 such that ¢*, 7log p; € Sp for i € [d,].

This assumption states that the function ¢g* is smooth enough for transformers to
approximate.

Proposition D.3.4. Under Assumptions [£.5.2| and [D.3.3] if dp > 16d,, Ba, > 16Rd,,

Bas > dp Ba > \/d,, and By > /d, then

D1/4
KL(P*(- | ) | Po (-1 S)) = O d -
A (B(-1.9) [ Po- (-] 5)) (yexp( C?B?logBA,1>)’

for some constant C' > 0.

ProOF OF PrROPOSITION [D.3.4l Our proof mainly involves three steps.

e Build the high-level transformer approximator for g*.
e Build the approximators in the transformer for ¢* and p; separately.

e Conclude the proof.
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Step 1: Build the high-level transformer approximator for g*

Without loss of generality, we assume that B > 1 in Assumption [D.3.7] To approximate
¢*, we ignore the attention module in the transformer by setting Wiv’(t) =0, %t) =1,
AP =0 for all i € [h]. We further set AW = Iy, € Rér*dr which is the identity matrix.

The network structure now is

X(t+1)

orm [RELU(X DAY 4 pt+D) )],

where b(*1) € R is the bias term. In Step 2, we will use this fully-connected network
to approximate ¢*. To approximate the average %Zle ¢*(x;), we take we® — o

(2 )

WZ-K(t) =0, and Wiv’(t) = I, 'ygt) =0, 'yét) =1, Ag) = 0. After this average aggregation,

we still take W) = 0, 4" =1, 4§ = 0 for all i € [n] and A = I, € Rirxdr

to approximate p} for i € [d,]. We stack the approximators for pf to approximate p*,
multiplying the width of the networks by dp.

Step 2: Build the approximators in the transformer for ¢* and p; separately.

In the first and the D' layer, we take Agl)’/ = Agl)/R and AgD)’/ = A§D> - R to normalize
and retrieve the magnitudes of inputs, where R is the range of the inputs. This will keep
the magnitudes of the intermediate outputs small. Next, we will use Lemma to
construct the networks. In the proof of Lemma [D.6.8, the norm of the outputs of the
intermediate layers do not excess the range of the inputs, so the layer normalization in our

networks will not influence the constructed approximators. In this case, we can respectively

approximate ¢* and p; with fully-connected networks Wy- and W, for i € [d,] as

[¢" — Wy

00 S €¢, Hp;k - \ijf

~ < g, for i € [d,],
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where the depth D(-), the width W (-), and the maximal weight B(-) of the networks

satisfy that

D'=D(U4)<C-B-(loge,')’ +logB, D" = m[%D(\pr;) <C-B-(loge,")* +log B,
1€ |dy

W(P4) <16, W(T,) <16, B(Wu) <1, B(T,)<1

for some constant C' > 0. The bounds for width and maximal weight require that dp > 16d,,

and Ba1 > /dp - dp > 16d,. Then we have that for any X = (21, -+ ,2p)

7 (1 iaﬁ*(zi)) (7 i vr(o) |
5 (%i?b(m)) v, (%Ei;w)) 1
W, (% XL; o (xi)> _ (% XL: W, (xi))

S dyéd) + dy . (BAJ)D” *Eg,

1

where the first inequality results from the triangle inequality, (BA,l)D” in the second
inequality results from the error propagation through a depth-D” network. For the whole

network, we have that

D'+ D" <D.
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We take that D' = D/2 4+ D¥* and D" = v/D/(~/C - Blog Ba,) for the constant C' in
Lemma [D.6.8] Then for D > 3, we have that

‘ o (% Z:; ¢*(xi)) — U, (% Z:; Uy (a:i))

D1/4
:O(dyexp(— ))
1 \/CQB2 lOg BAJ
Step 3: Conclude the proof.
We denote W, (325, Wy (2;)/L) as Pp-. Then if TV(P(-| X),Pp-(-| X)) = ¢ < ¢/2,

some basic calculations show that

Co P(z|S) 2e
< <14+ —.
Co"‘éf_P@*(J?’S)_ Co
Thus, we have
2 D4
max_ KL(B(-|9)[|By- (| 9)) sfzc(dyexp(‘ ))
ST ll2,00<R Co C2?B?log Ba

D.3.4. Pretraining Results for ¢, Loss

D.3.4.1. Pretraining Algorithm with /; Loss. Training with /5 loss is common in the
CV community, e.g. Radford et al.| (2021)). The network structure is largely similar to those
in Brown et al. (2020) and |Devlin et al.| (2018)). Here, we modify the network structure
of the last layer. The network derives the final output as V(P = 1] X (P) 4P+
where I, € R” is the vector with all ones, AP+ € R®% _ The parameters in each layer
are ) = (’yy),fyét), W® A®) for t € [D], and §P+) = AP+ and the parameters of

the whole network is § = (1), ... 0P+ Similar to Section we consider the
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transformer with bounded weights. The set of parameters is

6 = {01[|4P*|, < Ba,max {|3{"], |4°[} < 1|4Vl < Ban, |4V < Bas,

WO, < Bo [[W/ O, < Bic, W, < By for all ¢ € [D.i € ]},

where By, Ba1, Bas, Bg, Bk, and By are the bounds of parameter. We only consider
the non-trivial case where these bounds are larger than 1, otherwise the magnitude of the
output in D' layer decades exponentially with growing depth. We denote the transformer
with parameter 0 as fy.

In such case, we focus on the pretraining setting in CV tasks, i.e., the pretraining
set D = {(S%, 2%)}Y, consists of i.i.d. pairs. The underlying distribution is denoted as
(S,z) ~ p e A(X* x X). In such case, d = d,, i.e., the transformer directly predicts the

musked token. The training algorithm is

| N
D.3.12 f = argmin — x' — fo(S"
(D3.12) guiny 2 [« = £l

From the population version of (D.3.12), it is easy to see that the function f*(S) = E[z | 9]
achieves the minimal population error, where the conditional expectation is defined from
. In the following, we will quantify the error between f; and f*.

D.3.4.2. Performance Guarantee for Pretraining with ¢, Loss. We first state the
assumptions for the pretraining setting.

Assumption D.3.5. There exists a constant R > 0 such that for (S,z) ~ pu, we have
15T |l2,00 < R and ||z[]2 < B, almost surely.

Then the performance guarantee for the pretraining result 9 can be derived as following.
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Theorem D.3.6. Let B = B,RhBoBa1B42sBoBxBy and D = D2d(dp +dy, +d)+d - d,.

If Assumption holds, the pretrained model f; by the algorithm in (D.3.12) satisfies

. 3 B} 2
Esa ||l/°(5) = f3(9)]3] < ~m mE|[£(5) - fo(S)|l; ] +0( 2| Dlog(1 + NB) +log -
approxnnatlon error generaliz;?ion error g

with probability at least 1 — 9.

The first term is the approximation error. It measures the proximity between the
nominal function f* and the functions induced by the parameter set ©. The second term is
the generalization error. Similar as Theorem the generalization error is independent
of the token sequence length.

Since the neural networks are universal approximators, we will explicitly approximate
f* from the transformer function class. Theorem 2 in [Zaheer et al. (2017)) shows that
there exist p* : R — R% and ¢* : R — R such that

1 L
frX) =p (Z Zqﬁ*(xi)),
where X = [zy,--,2r]. The i component of p* is denoted as p; for i € [d,]. For a
function f defined on €2, the L> norm of it is defined as || f|lcc = sup,eq |f(2)|. The set of
the real-valued smooth functions on it is denoted as S*(€2,R), Then we denote the set of

the smooth functions with bounded derivatives as
Sp = {f € S*([-B,B,R)| ||f(”)(x)H <n!foralln e N},

where f™ is the n'-order derivative of f.

Assumption D.3.7. There exists B > 0 such that ¢*, p; € Sp for i € [d,].
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This assumption states that the function f* is smooth enough. Then we have that
Proposition D.3.8. Under|D.3.7, if dp > 16d,, Ba1 > 16Rd,, Baz > dr Ba > \/d,,

and By > V/d, then

D1/4
“(9) = fo-(9)]|, = 0O d -
“STrﬁzéng\\f( ) = fo- (S]], (yeXp( \/m))

for some constant C > 0.

D.3.4.3. Proof of Theorem [D.3.6l

Proor oF THEOREM [D.3.6l For ease of notation, we respectively define the empirical

risk and the population risk as

L(f.D) = %Z o = foSHl5, £ = s |l = fa(S)IIy)-

The our proof mainly involves three steps.
e Error decomposition for the excess population risk.

e Control each term in the error decomposition.

e Conclude the proof.

Step 1: Error decomposition for the excess population risk. The excess

population risk for the estimate f can be decomposed to the sum of the generalization
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error and the approximation error as

L(f;) — L(f)
= L(f;) — L(f*) = 2(L(f5. D) — L(f*, D)) + 2(L(f3 D) — L(fs, D))
2(L(fo-, D) — L(f*, D))

(D3.13) < L(fs) — £(J") = 2(L(f3 D) ~ L. D)) +2(L(fe-, D) = L(", D)),

-_ —
generalization error approximation error

where 6* = argming.gq £(fy), and the inequality results from that 9 achieves the minimal
empirical risk.

Step 2: Control each term in the error decomposition.

We first consider the generalization error and will adapt Lemma to bound it.

Define the function
2 .l an |2
9(8,2,0) = ||z = fo(S)|; = |l = F*(S)][;-
To verify the conditions in Lemma we notice that |g(S, x,0)| < (B, + By)? and that

Elg(S.2.0)] =E[||e ~ (S = [} = 7*(S)][3

=E[|£5) - ()]}

E[(g(S, z,0) —E[g(S, z, 9)})2} <E

(9(5,2,0))’]
<[22~ 7*(8) = S| [1£(S) ~ Fo()]

< (3B, + By E|[[£(9) = fu(9)][3).
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where the second equality results from the definition of f*, the second inequality results
from Cauchy—-Schwarz inequality, and the last inequality result from the boundedness
of z, f*, and fy. Then Lemma shows that for a distribution @@ € A(©) and
0 < XA <1/(2(B.+ By)?), the following holds with probability at least 1 — ¢ simultaneously

for all P € A(O)

Egp {E [9(S,%,0)] — % Z g(St, 0)] ‘

< A3B; + By)’Egp [E [9(S,z, H)H + % [KL(P | Q) + log§ :

Taking A = 1/(2(3B, + By)?), we have

Eoop |L(fs) = L) = (E(f0.D) = (7", D)) \
1

2(3B, + By)?

< SBor[£(f0) = £(57)] + T2

[KL(P | Q)+ log§ )

Next, we will take proper P and () to relate this equation and the generalization error.
For this purpose, we quantify how the perturbation of network parameters influence the
output of the network.

Proposition D.3.9. For any input X € R¥*? and 0, g O, we have that

D
|fo(X) — ( Mz < HA D+1) (DH)HF+Z@t(ﬂt+bt+/€t+,0t)a

t=1
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where

D—t

oy = Ba(1+ Bay - Bap)(1+ hBy(1 +4BgBkg))
B =" =3 + (14 Bag - Bas) - (14 (|X o0 — Dlimt) - 117 =717

te=Bas - [|AY — AV||p + Bay - [|AY — AV ||k
h o~
ke = (1+ Bag - Bag) - (L4 (X 2o — DLicr) - 3 IW0 = WO

pr =2(14 Baj - Bay) - (1 + (HXTH2,oo - 1)Ht=1) - By

Z B ‘WQ t+1 /W/Q,(t+1) || HW t+1) WK,(t+1) HF
for all t € [D].
ProOF OF PROPOSITION [D.3.9] . See Appendix [D.5.3] O

With the help of Proposition [D.3.9] we set the distribution P as

D+1

(D.3.14) P =[] £r(0"
£P(9(D+1)) — Unif(B(A\(DH), T(D+1)7 | - ||F)>

£p(00) = Unif(BE, 70 1-1)) - Unif (BES, 13, 1)) - £p(AD) - £p(W )

Lp(A®) :Unif(IBi(ﬁgt),Tg,)pH : HF)) Umf(B( 2 ,TA27H e )>
h
= T Unit(BW2O O || - [Ig) ) - Unif (B O || - |Is)
g ( Q ) ( " )

- Unif(B(W O, |- )
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for ¢t € [D], where Unif denotes the uniform distribution on the set, B(a,r, || - ||) =

{z |||z — al| < r} denotes the ball centered in a with radius r, the radius is set as

) = (By+ By)'"R™ (1 + Bay - Bag) oy /N,
) = (Bo+By) 'Ry !N
iy = (Bo+ By) 'R B ha /N,
rty = (Bx + By) 'R Byl N,
r) = (By 4+ Bf) "R™'h" (14 Bay - Bas) o '/N,
rP*) = (B, + By)"'B;'/N,
) = (B, + By) "RTh™ (1 + Bay - Bap) ' By'Bglas !N,

rS) = (By+ Bf) '"R7'hN (14 Bay - Bag) ' By B'ag ' /N.

Under this assignment, we now bound Egp[||z — fo(5)|13 — ||z — f5(S)]|3] as

Eour |le = fo(S) 3~ Il = 15(S)]1]

< 2(B, + By)|Egp [er(S) - fg(s)Hz}

_ (Bt By
-o(=5%)

where the inequality results from Cauchy-Schwarz inequality, and the equality results from

Proposition [D.3.9) Thus, we have that

L(f7) — L(f*) — (L(f3, D) — L(f*, D))

B, + B 23B, + By)? 9
~ f>+ ( ¥ ) KL(P | Q) +1log =|.

D.3.1 <
(D315) < -

() — £(F) + 0(

N | —
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To access to the value of KL(P || @), we take @ as the distribution in except that
(D.3.16) Lo (0P = Unif(IB%(O, Ba,| - ||F)).

Then the KL divergence between P and @ is

KL(P || Q) = O((D2 cd-(dp+dy+d)+d-d,)-log (1+ NBmRhBABA,lBA,gBQBKBV)).

Combining this equality with (D.3.15)), we have that with probability at least 1 — 9, the

generalization error can be bounded as

(D.3.17) L(f;) — L(f*) — 2(L(f;, D) — L(f*, D)) = O <%§ [D log(1 4+ NB) + log %} )

Next we control the approximation error in (D.3.13]).

L(fs, D) — L(f*, D)

= L(fs-, D) — L(f*, D)——( (for) = L() + 5 (L(for) = L(7))

W N W

(D3.18) = E(fo, D)~ £(£",D) ~ 5 (L(fo) — L)) + B[]

~ I (3)3].

where the second equality results from the definition of f*. To bound the first two terms

in the right-hand side of (D.3.18)), we use Lemma and take P and @ as (D.3.14)) and
(D.3.16), replacing gby 0*. Then we have that

(D.3.19)

£l D) = £(*,D) = 3 (£04r) = £(7°)) = O 5 | Drou(1-+ 8B) #1052 ).
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Step 3: Conclude the proof.

Combining inequalities (D.3.13)), (D.3.17)), (D.3.18)), and (D.3.19)), we have that

L0y~ £(%) = 2K

SE|I1F7(8) = f6*<s>ug] + O(%22 [D log(1 4+ NB) + log 2])

J

Thus, we conclude the proof of Theorem [D.3.6]

D.3.4.4. Proof of Proposition [D.3.8|

ProoF oF PROPOSITION [D.3.8] Our proof mainly involves three steps.

e Build the high-level transformer approximator for f*.
e Build the approximators in the transformer for ¢* and p; separately.

e Conclude the proof.

The first two steps follow the procedures of the proof of Proposition exactly. Now
we present the final step.
Step 3: Conclude the proof.

D+1)

In the final layer, we just take A¢ = I4, as the identity matrix. Denoting the

derived parameters as 6* we have that

max
[XTll2,00<R

D1/4
—(’)(%exp(— ))
2 \/CZBQ log BA71

Thus, we conclude the proof of Proposition O
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D.4. Proofs for

D.4.1. Proof of Theorem [4.6.2]
Proof. By Theorem and the fact that log(1/po(2.)) < 3, we have that

T T
(D.41) T '-Ep, [Z log P(r; | 2*, prompt, ;) — Z log P(ry | prompttfl)} < B/T.
t=1 t=1

In addition, we have that

T

T
T Ep,, [Z log P(r; | prompt, ;) — Z log P5(r, |promptt,1)]

t=1 t=1

(D.4.2) =Ep,q [KL (P(- | prompt) H Py(- | prompt))} :
Similar to (D.3.10)), we have that
‘log(}P’(r | prompt) /P5(r | prompt))‘ < b* = logmax{c, *, by_l}.

By Lemma [D.6.9] we have that
(D.4.3)

KL(P(- | prompt) || P;(- | prompt)) < (3 +b*)/2- TV (P( | prompt), P;.(- | prompt)).

By Assumption 4.6.5, we have that Pp,, (prompt) < kPp(prompt). Thus, by Theorem

[4.5.3] we have with probability at least 1 — ¢ that

Ep,., [KL (IP( | prompt) || P5(- | prompt))}

(D.4.4) <C b k-Egop [Tv (P(-| S), P (| S))] <C b k- Ape(N, T, 5).
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Combining (D.4.4)), (D.4.1)), and (D.4.2)), we have with probability at least 1 — ¢ that

T T
Epre, [T‘l - logP(ry| 2%, prompt, ;) —T~"- ) logPy(r; | prompt, ;)

t=1 t=1

< B/T +Esn [KL(P(: | 5) | B5(-| 5))

(D.4.5) <O(B/T +b" - k- Ape(N, T, 6)),

which completes the proof of Theorem |4.6.2 0

D.4.2. Proof of Proposition [4.6.

PROOF OF PROPOSITION [4.6.7. From Bayesian model averaging, the output distri-

bution is

P(Ttﬂ ’ 527 5t+1)

= ZP(THl |1, 2) - Pz(2] S})

zZ€3J
= P(riy1 |G, 27) + Z (P(res1 | Gg1, 2) — P(rega | G, 27)) - Pz(2]5))
zFEz*
= P<Tt+1 |a+1; Z*)
~ ~ . . Pz(2)P(S} | 2
(D.4.6) + Z (IP’(THI | Cii1,2) — P(regq | Gy, 2 )) Pz(2*|S}) - P Z(i*iIP’ESE : zz)’

zF#z*
where the first equality results from Bayesian model averaging, the last equality results

from Bayes’ theorem. Next, we upperbound the ratio P(S; | z)/P(S; | z*) in the right-hand
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side of Eqn. (D.4.6). We have that

1. P(S]2) 1 P((c,77) | 2) P((ci,r:) | 2)
“log —ot1Z) 2 B S e A B ALY R
£ 198 Bg] 2 t;bg P((@. 1) | =) —2logeo + 3 ;logp((@,nnz)

where the first inequality results from Assumption [4.6.3] and the second inequality results
from Assumption 4.5.2] which also implies that |log P((¢;,7;) | 2)/P((¢;, i) | 2%)] < (1 +

[)1log 1/cy. Hoeffding inequality shows that with probability at least 1 — §, we have

(1+0), 1 1

log — - log —.

_Zlog PUCIIND) | L (B 1) B 2) <

cz,n)IZ)

Thus, we have that with probability at least 1 — ¢, the following holds for all z # z*

P(S;]2) \ (1+0, 1 |3]
W < exp (—t(KLpair(IP’(- | 2%) HIP’(|z)) + 2logcy — Tlogc—o . logT)).

Combining this inequality with Eqn. (D.4.6)), we have that

TV (P( | Sz;gt-i-l)a IP)( |a+17 Z*))

_ (iexp (— t(mmKpr( (12) 1 B(-| 2))

P

a+0, 1 3
+ 2log ¢y 7 logc0 log 5 .
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Let Epronpt/~n[ TV (P(- | S}, Ce41), Pg(- | S, €41))] < Apre, where Ay, is the bound in Theo-
rem [£.5.3l Then we have that
Egeonpe~pr [ KL(P(: | Guy1, =) [B5(- | 57, Gin) |
S O<Eprompt’~IP” [TV (]P)g( | Sga E/H»l); ]P)( |gt+17 Z*)):|>
=0 (CQApre + exp ( — t(rr;éir*l KLpair (]P’( | 2*) || P(- | z))

1+, 1 3
+ 2log ¢ 7 log o log 5 .

Thus, we conclude the proof of Proposition 4.6.7] 0

D.5. Proof of Supporting Propositions

D.5.1. Proof of Proposition

PrROOF OF PROPOSITION [D.3.2] We note that f(X) satisfies the condition in Lemma

with ¢; = 2b/N for i € [N]. Then Lemma shows that

B [Ex (0 00 — 700 )] < exp (g0 ),

Take A = /2N log 2/ (bt yin). The Markov inequality shows that

P<Epr0(exp IA(f(X) — Ef(X))]) > %) <
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for any 0 < 6 < 1. We note that this probability inequality does not involve P. Take the

function ¢ in Lemma [D.6.2] as g(f) = A(f(X) — Ef(X)), then it shows that
log Ep, | exp (9(X)) | + KL(P | ) = Ep[g(X)]

for any P simultaneously. Combining these inequalities, we have

bQ : Zfrnin

Er[Bx [F00] = 70) | < 315

4
KL(P] R+ og .

for any distribution P on F simultaneously with probability at least 1 — §. Thus, we

conclude the proof of Proposition O

D.5.2. Proof of Proposition

ProoF oF PROPOSITION [D.3.1] . We analyze the error layer by layer in the neural
network. Denote the outputs of each layer in the networks parameterized by 6 and 0 as

X® and X®, respectively. In the final layer, we have that

TV (Py(- | X), Py(- 1 X))

< 2‘ L x@ g0 _ LT 50) fio4)
Lt Lt

o0

2 ~ ~
< Z[[[APDTY| - XPT = KO, [JAPDT - AT,

where the first inequality results from Lemma[D.6.5 and the second inequality results from

Lemma and that || XP)T||5 . <1 due to the layer normalization. In the following,
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we build the recursion relationship between || X®:T — X®:T||, _ for ¢ € [D].

”X(t+1),T . )Z'(t—&-l),‘l'

|2,oo
< ||ffn(Y(t+1) A(t—i—l))T B ffn(lN/(tH) A’(t+1))TH2
J— ) Y ,00
s =AY 4 YT v e
< ‘,yétﬂ) _ %t+1)| + Hy(t+1),T _ ?(tﬂ),THZ’OO + Bay - Bas- Hy(t+1),T _ 57(”1)’THz,oo

(D.5.1)

+ Bag - AU — A g+ Bay - AT — AT,

where the first inequality results from the triangle inequality and that II,,..., is not expansive,
the second inequality results from the following proposition
Proposition D.5.1. For any X,)Z' € RExd, Al,gl € R¥4r and Ag,gg € RIFxd we
have that
[££0(X, A)" — ££n(X, A) ||,
< [ Aulle - [[Aolle - [1XT = X Tlg.00 + |41 = Aullr - | Azle - [| X fla,00

ALl - | A2 = Agllr - 1X T [|2.00-

PRrRoOOF OF PRoOPOSITION [D.5.7] See Appendix O
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Next, we build the relationship between ||Y +)-T — Y(+D.T|l, in the right-hand side

of inequality and | XOT — XOT||, .
||Y(t+1),T _ ?(tﬂ)’THz,oo
< Hmha(X(t), WEHNT _ pha(X®, W(Hl))THZOO
+ I =R+ X OT - XOT,

< |7§t+1) . %t+1)| + HX(t),T . jz(t)7TH2,oo

h
+ h - Bv(l + 4BQBK) ||X(t),T o X(t)7T||27oo + Z ||I/Vviv7(t+1) o WV,(t-‘rl)HF

%
i=1

(D.5.2)

h h
$2By - By Y0 WD Wy 9By - By 3 WY - ),

(2
i=1 i=1

where the first inequality results from the triangle inequality, and the second inequality

results from Lemma |[D.6.7, Combining inequalities (D.5.1)) and (D.5.2]), we derive that

HX(t+1),T i jZ-(t+1),TH200

< (14 By, - BA,2)(1 + hBy (1 + 4BQBK)) ||X(t)’T - X(t)’TH2,oo+ﬁt+1+bt+1+/<t+1+0t+1-

This concludes the proof of Proposition [D.3.1] 0

D.5.3. Proof of Proposition

PrROOF OF PROPOSITION [D.3.9]. We analyze the error layer by layer in the neural

network. Denote the outputs of each layer in the networks parameterized by 6 and 0 as
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X® and X®, respectively. In the final layer, we have that

1/6(X) = f3(X)]2

< AP XOT = ROTY AP - GO,
— ,00

where the inequality results from Lemma and that [|[X®P) T, < 1 due to the
layer normalization. The remaining proof just follows the procedures in the proof of

Proposition [D.3.1], and we have that

1fo(X) = f5(X)]2

D
< ||A(D+1) — Z(D+1)}|F + Zat(ﬁt + 1y + Ky + pr).
t=1

Thus, we conclude the proof of Proposition O
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D.5.4. Proof of Proposition

PROOF OF PROPOSITION [D.5.1]. We have that

len(x, A)T — ££(X, AT,

S max [“RGLU(XZ,Al)AQ — ReLU()N(Z-,;Al)AgH2
1€[L]

+ ||ReLU(X;, A1) As — ReLU()Nfi,ﬁl)Z2||2]
< max [HAlHF N Al - ([ X — Xinlla + |[ReLU(X:. A1) Ay — ReLU(X;. A1) Ay,

+ ||ReLU(X;, A;) As — ReLU()N(L:Zl)XQHJ
< e [||A1||F NAslle - 1X5: — Xidllo + 1A — Ayl - || Azl - 1 X2

+ | A g - [| A2 — Aglp - ||)~(i,:||2]7

where the first inequality results from the triangle inequality, the second and the last

inequalities result from Lemma and that ReLU is not expansive. Thus, we conclude

the proof of Proposition [D.5.1] O

D.6. Technical Lemmas

Lemma D.6.1 (Proposition 4.5 in Duchi (2019))). Let F be the collection of functions of

f:R™ = R. For any f € F, we define

u(f) =Ex[f(X)], o*(f) =Ex[(/(X) - Ex[f(X)])*],

where the expectation is taken with respect to a random variable X ~ v on (R", B(R")).

Assume that |f(X) — u(f)] < b a.s. for some constant b € R for all f € F. Then for any
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0 < A <1/(2b), given a distribution Py on F, with probability at least 1 — §, we have

0] - 37000 < ol + 1 kL@ ) + 1085,

for any distribution ) on F, where X; are i.i.d. samples of v. If the function class F

further satisfies 02(f) < cu(f) for some constant ¢ € R for all f € F, we have

Eo[Ex LF00] = 3 500]| < At + 5 [KL(@1 P + 1085

with probability at least 1 — 9.
Lemma D.6.2 (Donsker—Varadhan representation in Belghazi et al. (2018))). Let P and
@ be distributions on a common space X'. Then

KLP Q) = sup { B [o(X)] - og Eqexp (s(x)] .

geg

where G = {g: X = R | Eglexp(g(X))] < oo}.
Lemma D.6.3 (Corollary 2.11 in [Paulin (2015)). Let X = (Xi, -+, Xx) be a Markov

chain, taking values in A =[]\, A; with mixing time t(¢) for € € [0,1]. Let

9 _ 2
tmin = inf tmix(s) . ( 5) .

0<e<1 1—¢

If function f : A — R is such that f(z) — f(y) < 32N, ¢l 2y, for every z,y € A, then for
any A € R,

A% Jlell3 - tmin

log E(exp [M(X) — Ef(X))] ) < =
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For any t > 0, we have

P(|£(X) = Ef(X)| 2 t) < 2ex0 (i)

||C||% * tmin

Lemma D.6.4 (Lemma 25 in |Agarwal et al| (2020)). For any two conditional probability

densities P(-| X), P'(-| X) and any distribution v € A(X'),we have

B, [TV (P(1X).P/(-| X))*] <210 (EXW,YNP<.|X> [exp (—% log %)} )

Lemma D.6.5 (Corollary A.7 in Edelman et al.|(2021) ). For any z,y € R? we have

||softmax(x) — softmax(y)||1 < 2||z — ¥lco-

Lemma D.6.6 (Lemma 17 in [Zhang et al.| (2022a) ). Given any two conjugate numbers

u,v € [1,00], i.e., %—F % =1,and 1 < p < oo, for any A € R"™*¢ and x € R, we have
|Az[l, < [Allpullzll, and  [[Az]l, < AT upll]..

Lemma D.6.7 (Propositions 20 and 21 in [Zhang et al | (2022a))). For any X, X € RE%4, and
any W2, W2, WE WE e R WY WY € R fori € [h],if | X T||poo, | X [l2.00 < Bx,

IWEle, [WEle < Ba, WX |le, [WXle < B, [WY |, WY |le < By for i € [h], then we
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have

H (mha(X, W) — mha(X W))T"

2,00
h
< h-By(1+44B% - BoBg)| X" = X [laoe + Bx >_ [WY = WY e

=1

h h
+2B% - By - B » _[|[W® = W2||p +2B% - By - Bo > _[W/ = W/ |s.

i=1 =1

Lemma D.6.8 (Lemma A.6 in [Elbréchter et al. (2021))). For a,b € R with a < b, let
S = {1 € S([@, . R) |||/ (@)]| < n! for all n € N}.

There exists a constant C' > 0 such that for all a,b € R with a < b, f € Sy, and

€ (0,1/2), there is a fully connect network W; such that

1f = Vsl <,

with the depth of the network as D(¥;) < C'max{2,b—a}(loge™')*+log([max{]al, |b|}])+
log([1/(b—a)]), the width of the network as W (¥ ;) < 16, and the maximal weight in the
network as B(U) < 1.

Lemma D.6.9. Let b = sup, log(p(z)/q(z)). We have that

(D.6.1) KL(p[q) <2(3+0)-TV(p,q).



343

Proof. We let f(t) = logt and g(t) = |1/t — 1|. Then, for 0 < ¢ < exp(b), we have

that

-

(t) logt tlogt
sup = sup ——— = —
o<t<exp(®) () o<i<exp) 11/t =1 1<t<expe) t — 1

< 2(b+3).

~—

Note that KL(p || ¢) = E,[f(p(x)/q(x))] and TV (p,q) = E,[g(p(z)/q(z))], which concludes

the proof. O
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