
NORTHWESTERN UNIVERSITY

Essay on Foundation Models and Reinforcement Learning

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Yufeng Zhang

EVANSTON, ILLINOIS

September 2023

2

© Copyright by Yufeng Zhang 2023

All Rights Reserved

3

ABSTRACT

Essay on Foundation Models and Reinforcement Learning

Yufeng Zhang

In this dissertation, we aim to develop a theoretical understanding of foundation models

and reinforcement learning. We delve into a comprehensive analysis of specific aspects

within these domains. The focal points of our study are as follows:

• Generative Adversarial Imitation Learning (GAIL) with Neural Net-

works: GAIL is poised to execute tasks based on expert demonstrations. By

parameterizing both the reward function and policy using neural networks, we

develop a gradient-based algorithm with alternating updates for GAIL. Through

rigorous analysis, we establish that this algorithm converges to the global optimum

at a sublinear rate.

• Temporal-Difference (TD) Learning and Q-learning with Neural Net-

works: We dissect the fundamental reason behind the empirical success of deep

TD learning and deep Q-learning: the learned feature representation. Utilizing

mean-field analysis, we scrutinize the evolution of this representation. We demon-

strate that, when implemented through an overparameterized two-layer neural

4

network, both TD learning and Q-learning algorithms are capable of globally

minimizing the mean-squared projected Bellman error at a sublinear rate.

• Attention Mechanisms and Transformers: Analyzing attention mechanisms

and transformers through the lens of exchangeability, we first establish the exis-

tence of a representation for input tokens that is sufficient and minimal. We then

ascertain that the attention mechanism with the appropriate parameters is able to

infer the latent posterior within a margin of approximation error that diminishes

as input sizes increase. Additionally, we prove that employing either supervised or

self-supervised objectives enables empirical risk minimization to learn the optimal

parameters within a generalization error that remains independent of input sizes.

• In-Context Learning (ICL): We execute an exhaustive investigation into ICL

by addressing several pertinent questions. Firstly, from a Bayesian view, we show

that the language models learn an ICL estimator by implementing Bayesian model

averaging. Subsequently, we evaluate the performance of the ICL algorithm from

an online learning standpoint and establish a regret bound decreasing with the

length of the ICL input sequence. Then, we demonstrate that during pretraining,

the total variation distance between the learned model and the underlying true

model is constrained by a generalization error decreasing with the number of

token sequences and the length of each sequence during pretraining, respectively.

Finally, by combining this two results, we show that the learned model is capable

in ICL.

5

This dissertation aspires to enrich the academic discourse on foundation models and

reinforcement learning by offering novel insights and rigorous proofs that may serve as

building blocks for future research in these rapidly evolving fields.

6

Acknowledgements

I would like to express my deepest appreciation to my advisor, Zhaoran Wang, whose

expertise, understanding, and patience, added considerably to my graduate experience. I

appreciate his vast knowledge and skills in reinforcement learning, language models, and

related areas, as well as his continuous encouragement during this challenging journey.

I would also like to express my gratitude to my committee members, Ethan Xingyuan

Fang and Chang-Han Rhee, for their insightful comments and suggestions. Their expertise

and contributions in a variety of perspectives have led me to develop a much more

comprehensive understanding of my research area.

I extend my heartfelt thanks to my colleagues and friends in the Department of Indus-

trial Engineering and Management Sciences for their friendship, intellectual discussions

and the vibrant environment they created.

I am also immensely grateful to Northwestern University for providing me with the

necessary resources and environment conducive for research. Special mention goes to the

staff and administration who facilitated all necessary processes and made sure everything

needed was taken care of.

To my mother, Junping Zhao, thank you for supporting me emotionally and financially.

Your belief in me and my abilities was a source of strength that I drew from time and

again. To my partner, Wei Wang, my deepest thanks for being an integral part of my

7

life. The moments shared with you have been the most enriching aspect of my academic

journey at Northwestern University.

Finally, I would like to express my gratitude to my collaborators, Zhuoran Yang, Qi

Cai, Yongxin Chen, Zuyue Fu, Lingxiao Wang, Boyi Liu, and Junwei Lu, who made this

research possible.

8

Table of Contents

ABSTRACT 3

Acknowledgements 6

Table of Contents 8

List of Tables 12

List of Figures 13

Chapter 1. Generative Adversarial Imitation Learning with Neural Networks: Global

Optimality and Convergence Rate 15

1.1. Introduction 15

1.2. Background 19

1.3. Algorithm 22

1.4. Main Results 28

1.5. Proof of Main Results 34

Chapter 2. Can Temporal-Difference and Q-Learning Learn Representation? A

Mean-Field Theory 40

2.1. Introduction 41

2.2. Background 45

2.3. Temporal-Difference Learning 48

9

2.4. Main Results 52

2.5. Proof of Main Results 56

2.6. Extension to Q-Learning and Policy Gradient 60

Chapter 3. An Analysis of Attention via the Lens of Exchangeability and Latent

Variable Models 67

3.1. Introduction 68

3.2. Preliminary 78

3.3. Representation, Inference, and Estimation

via Latent Variable Model 79

3.4. Attention as Latent Posterior Inference 89

3.5. Excess Risk Analysis 97

3.6. From Supervised Learning to Self-Supervised Learning 107

Chapter 4. What and How does In-Context Learning Learn? Bayesian Model

Averaging, Parameterization, and Generalization 117

4.1. Introduction 118

4.2. Related Work 120

4.3. Preliminary 122

4.4. In-Context Learning via Bayesian Model Averaging 125

4.5. Theoretical Analysis of Pretraining 130

4.6. ICL Regret under Practical Settings 136

4.7. Conclusion 139

References 140

10

Appendix A. Generative Adversarial Imitation Learning with Neural Networks:

Global Optimality and Convergence Rate 160

A.1. Neural Networks 160

A.2. Neural Temporal Difference 166

A.3. Proofs of Auxiliary Results 173

A.4. Proofs of Supporting Lemmas 181

Appendix B. Can Temporal-Difference and Q-Learning Learn Representation? A

Mean-Field Theory 194

B.1. Proofs for §2.5-2.6 194

B.2. Mean-Field Limit of Neural Networks 205

B.3. Auxiliary Lemmas 226

Appendix C. An Analysis of Attention via the Lens of Exchangeability and Latent

Variable Models 228

C.1. Conditional Mean Embedding 229

C.2. Attention Recovers Latent Posterior 232

C.3. Generalization Error Analysis 248

C.4. Optimization Error Analysis 280

C.5. Approximation Error Analysis 282

C.6. Auxiliary Proofs for Generalization 289

C.7. Auxiliary Lemmas 299

Appendix D. What and How does In-Context Learning Learn? Bayesian Model

Averaging, Parameterization, and Generalization 305

11

D.1. More Related Works 305

D.2. Proofs for Section 4.4.1 306

D.3. Appendix for Section 4.5 307

D.4. Proofs for §4.6 331

D.5. Proof of Supporting Propositions 334

D.6. Technical Lemmas 339

12

List of Tables

13

List of Figures

2.1 We illustrate the first variation formula dW2(ρt,ρ∗)2

2
= −⟨g(·; ρt), v⟩ρt ,

where v is the vector field corresponding to the geodesic that connects

ρt and ρ∗. See Lemma B.3.2 for details. 57

2.2 For any 0 ≤ t ≤ min{t∗, t∗}, (2.5.1) of Lemma 2.5.2 holds and

d
dt

W2(ρt,ρ∗)2

2
≤ 0. 59

3.1 The input sequence (the raw version without positional encodings)

becomes exchangeable with positional encodings. In practice, the

positional encoding is incorporated in an additive manner (instead of

concatenation). 81

3.2 The forward pass for the prediction of the masked token xℓ and the

target variable y. The prediction of y takes two steps: i) the inference

of the latent posterior P(z |X), and ii) the prediction of y based on

the generative distribution P(y | z) integrated with the latent posterior

P(z |X). 83

3.3 Forward pass: within one data point (X, y), we infer the latent

posterior Pθ(z |X) by (3.3.10). We predict y† by ŷ in (3.3.13).

Backward pass: across different data points in the dataset Dn, we

estimate the learnable parameter θ by (3.3.12). 88

14

3.4 The forward and backward passes in transformers. Dotted arrows

stand for forward passes (input→latent→target). Solid arrows stand

for backward passes (training). Masks (grey tokens) are only used to

illustrate the self-supervised setting (yellow box). 89

3.5 As shown in Propositions 3.4.1 and 3.4.2, the softmax attention attnSM

and the CME attention attnCME have the same limit E[V |K = q] as

L→∞. 97

3.6 The RKHS HLTV induced by the latent-to-value mapping ψ(z; msk).

The input mask msk describes the prediction task and determines the

RKHS HLTV. 103

3.7 The RKHSs HPT and HDS induced by the latent-to-value mappings

ψPT(z; mskPT) and ψDS(z; mskDS), respectively. The input masks mskPT

and mskDS describe the pretraining process and the downstream task,

respectively, and determine the RKHSs correspondingly. The ℓ∞-norm

projections ΠHPT,∞ and ΠHDS,∞ are defined in Assumption 3.6.1. 111

4.1 To form the pretraining dataset, a hidden concept z is first sampled

according to PZ, and a document is generated from the concept. Taking

the token sequence St up to position t ∈ [T] as the input, the Large

Language Models (LLM) is pretrained to maximize the next token xt+1.

During the In-Context Learning (ICL) phase, the pretrained LLM is

prompted with several examples to predict the response of the query. 124

15

CHAPTER 1

Generative Adversarial Imitation Learning with Neural

Networks: Global Optimality and Convergence Rate

Generative adversarial imitation learning (GAIL) demonstrates tremendous

success in practice, especially when combined with neural networks. Different

from reinforcement learning, GAIL learns both policy and reward function

from expert (human) demonstration. Despite its empirical success, it remains

unclear whether GAIL with neural networks converges to the globally optimal

solution. The major difficulty comes from the nonconvex-nonconcave minimax

optimization structure. To bridge the gap between practice and theory, we

analyze a gradient-based algorithm with alternating updates and establish

its sublinear convergence to the globally optimal solution. To the best of our

knowledge, our analysis establishes the global optimality and convergence rate

of GAIL with neural networks for the first time.

1.1. Introduction

The goal of imitation learning (IL) is to learn to perform a task based on expert

demonstration (Ho and Ermon, 2016). In contrast to reinforcement learning (RL), the agent

only has access to the expert trajectories but not the rewards. The most straightforward

approach of IL is behavioral cloning (BC) (Pomerleau, 1991). BC treats IL as the supervised

learning problem of predicting the actions based on the states. Despite its simplicity, BC

16

suffers from the compounding errors caused by covariate shift (Ross et al., 2011; Ross and

Bagnell, 2010). Another approach of IL is inverse reinforcement learning (IRL) (Russell,

1998; Ng and Russell, 2000; Levine and Koltun, 2012; Finn et al., 2016), which jointly

learns the reward function and the corresponding optimal policy. IRL formulates IL as a

bilevel optimization problem. Specifically, IRL solves an RL subproblem given a reward

function at the inner level and searches for the reward function which makes the expert

policy optimal at the outer level. However, IRL is computationally inefficient as it requires

fully solving an RL subproblem at each iteration of the outer level. Moreover, the desired

reward function may be nonunique. To address such issues of IRL, Ho and Ermon (2016)

propose generative adversarial imitation learning (GAIL), which searches for the optimal

policy without fully solving an RL subproblem given a reward function at each iteration.

GAIL solves IL via minimax optimization with alternating updates. In particular, GAIL

alternates between (i) minimizing the discrepancy in expected cumulative reward between

the expert policy and the learned policy and (ii) maximizing such a discrepancy over the

reward function class. Such an alternating update scheme mirrors the training of generative

adversarial networks (GANs) (Goodfellow et al., 2014; Arjovsky et al., 2017), where the

learned policy acts as the generator while the reward function acts as the discriminator.

Incorporated with neural networks, which parameterize the learned policy and the

reward function, GAIL achieves significant empirical success in challenging applications,

such as natural language processing (Yu et al., 2016), autonomous driving (Kuefler et al.,

2017), human behavior modeling (Merel et al., 2017), and robotics (Tai et al., 2018).

Despite its empirical success, GAIL with neural networks remains less understood in

theory. The major difficulty arises from the following aspects: (i) GAIL involves minimax

17

optimization, while the existing analysis of policy optimization with neural networks

(Anthony and Bartlett, 2009; Liu et al., 2019; Bhandari and Russo, 2019; Wang et al.,

2019) only focuses on a minimization or maximization problem. (ii) GAIL with neural

networks is nonconvex-nonconcave, and therefore, the existing analysis of convex-concave

optimization with alternating updates is not applicable (Nesterov, 2013). There is an

emerging body of literature (Rafique et al., 2018; Zhang et al., 2019b) that casts nonconvex-

nonconcave optimization as bilevel optimization, where the inner level is solved to a high

precision as in IRL. However, such analysis is not applicable to GAIL as it involves

alternating updates.

In this paper, we bridge the gap between practice and theory by establishing the global

optimality and convergence of GAIL with neural networks. Specifically, we parameterize

the learned policy and the reward function with two-layer neural networks and consider

solving GAIL by alternatively updating the learned policy via a step of natural policy

gradient (Kakade, 2002; Peters and Schaal, 2008) and the reward function via a step of

gradient ascent. In particular, we parameterize the state-action value function (also known

as the Q-function) with a two-layer neural network and apply a variant of the temporal

difference algorithm (Sutton and Barto, 2018) to solve the policy evaluation subproblem

in natural policy gradient. We prove that the learned policy π̄ converges to the expert

policy πE at a 1/
√
T rate in the R-distance (Chen et al., 2020a), which is defined as

DR(πE, π̄) = maxr∈R J(πE; r)− J(π̄; r). Here J(π; r) is the expected cumulative reward of

a policy π given a reward function r(s, a) and R is the reward function class. The core of

our analysis is constructing a potential function that tracks the R-distance. Such a rate

of convergence implies that the learned policy π̄ (approximately) outperforms the expert

18

policy πE given any reward function r ∈ R within a finite number of iterations T . In other

words, the learned policy π̄ is globally optimal. To the best of our knowledge, our analysis

establishes the global optimality and convergence of GAIL with neural networks for the

first time. It is worth mentioning that our analysis is straightforwardly applicable to linear

and tabular settings, which, however, are not our focus.

Related works. Our work extends an emerging body of literature on RL with neural

networks (Xu et al., 2019a; Zhang et al., 2019a; Bhandari and Russo, 2019; Liu et al., 2019;

Wang et al., 2019; Agarwal et al., 2019) to IL. This line of research analyzes the global

optimality and convergence of policy gradient for solving RL, which is a minimization or

maximization problem. In contrast, we analyze GAIL, which is a minimax optimization

problem.

Our work is also related to the analysis of apprenticeship learning (Syed et al., 2008)

and GAIL (Cai et al., 2019a; Chen et al., 2020a). Syed et al. (2008) analyze the convergence

and generalization of apprenticeship learning. They assume the state space to be finite,

and thus, do not require function approximation for the policy and the reward function.

In contrast, we assume the state space to be infinite and employ function approximation

based on neural networks. Cai et al. (2019a) study the global optimality and convergence

of GAIL in the setting of linear-quadratic regulators. In contrast, our analysis handles

general MDPs without restrictive assumptions on the transition kernel and the reward

function. Chen et al. (2020a) study the convergence and generalization of GAIL in the

setting of general MDPs. However, they only establish the convergence to a stationary

point. In contrast, we establish the global optimality of GAIL.

19

Notations. Let [n] = {1, . . . , n} for n ∈ N+ and [m : n] = {m,m + 1, . . . , n} for

m < n. Also, let N(µ,Σ) be the Gaussian distribution with mean µ and covariance Σ.

We denote by P(X) the set of all probability measures over the space X . For a function

f : X → R, a constant p ≥ 1, and a probability measure µ ∈ P(X), we denote by

∥f∥p,µ = (
∫
X |f(x)|pdµ(x))1/p the Lp(µ) norm of the function f . For any two functions

f, g : X → R, we denote by ⟨f, g⟩X =
∫
X f(x) · g(x)dx the inner product on the space X .

1.2. Background

1.2.1. Reinforcement Learning

We consider a Markov decision process (MDP) (S,A, r, P, ρ, γ). Here S ⊆ Rd1 is the

state space, A ⊆ Rd2 is the action space, which is assumed to be finite throughout this

paper, r : S × A → R is the reward function, P : S × A → P(S) is the transition

kernel, ρ ∈ P(S) is the initial state distribution, and γ ∈ (0, 1) is the discount factor.

Without loss of generality, we assume that S × A is compact and that ∥(s, a)∥2 ≤ 1 for

any (s, a) ∈ S ×A ⊆ Rd, where d = d1 + d2. An agent following a policy π : S →P(A)

interacts with the environment in the following manner. At the state st ∈ S, the agent

takes the action at ∈ A with probability π(at | st) and receives the reward rt = r(st, at).

The environment then transits into the next state st+1 with probability P (st+1 | st, at).

Given a policy π and a reward function r(s, a), we define the state-action value function

Qπ
r : S ×A → R as follows,

Qπ
r (s, a) = Eπ

[
(1− γ) ·

∞∑
t=0

γt · r(st, at)
∣∣∣∣ s0 = s, a0 = a

]
.(1.2.1)

20

Here the expectation Eπ is taken with respect to at ∼ π(· | st) and st+1 ∼ P (· | st, at).

Correspondingly, we define the state value function V π
r : S → R and the advantage

function Aπr : S ×A → R as follows,

V π
r (s) = Ea∼π(· | s)

[
Qπ
r (s, a)

]
, Aπr (s, a) = Qπ

r (s, a)− V π
r (s).

The goal of RL is to maximize the following expected cumulative reward,

J(π; r) = Es∼ρ
[
V π
r (s)

]
.(1.2.2)

The policy π induces a state visitation measure dπ ∈P(S) and a state-action visitation

measure νπ ∈P(S ×A), which take the forms of

dπ(s) = (1− γ) ·
∞∑
t=0

γt · P
(
st = s

∣∣ s0 ∼ ρ, at ∼ π(· | st)
)
, νπ(s, a) = dπ(s) · π(a | s).

(1.2.3)

It then holds that J(π; r) = E(s,a)∼νπ [r(s, a)]. Meanwhile, we assume that the policy π

induces a state stationary distribution ϱπ over S, which satisfies that

ϱπ(s) = P
(
st+1 = s

∣∣ st ∼ ρπ, at ∼ π(· | st)
)
.

We denote by ρπ(s, a) = ϱ(s) · π(a | s) the state-action stationary distribution over S ×A.

1.2.2. Generative Adversarial Imitation Learning

The goal of imitation learning (IL) is to learn a policy that outperforms the expert policy

πE based on the trajectory {(sEi , aEi)}i∈[TE] of πE. We denote by νE = νπE and dE = dπE

21

the state-action and state visitation measures induced by the expert policy, respectively,

and assume that the expert trajectory {(si, ai)}i∈[TE] is drawn from νE. To this end, we

parameterize the policy and the reward function by πθ for θ ∈ XΠ and rβ(s, a) for β ∈ XR,

respectively, and solve the following minimax optimization problem known as GAIL (Ho

and Ermon, 2016),

min
θ∈XΠ

max
β∈XR

L(θ, β), where L(θ, β) = J(πE; rβ)− J(πθ; rβ)− λ · ψ(β).(1.2.4)

Here J(π; r) is the expected cumulative reward defined in (1.2.2), ψ : XR → R+ is the

regularizer, and λ ≥ 0 is the regularization parameter. Given a reward function class R,

we define the R-distance between two policies π1 and π2 as follows,

DR(π1, π2) = max
r∈R

J(π1; r)− J(π2; r) = max
r∈R

Eνπ1
[
r(s, a)

]
− Eνπ2

[
r(s, a)

]
.(1.2.5)

When R is the class of 1-Lipschitz functions, DR(π1, π2) is the Wasserstein-1 metric

between the state-action visitation measures induced by π1 and π2. However, DR(π1, π2)

is not a metric in general. When DR(π1, π2) ≤ 0, the policy π2 outperforms the policy π1

for any reward function r ∈ R. Such a notion of R-distance is used in Chen et al. (2020a).

We denote by Rβ = {rβ(s, a) | β ∈ XR} the reward function class parameterized with β.

Hence, the optimization problem in (1.2.4) minimizes the Rβ-distance DRβ
(πE, πθ) (up to

the regularizer λ · ψ(β)), which searches for a policy π̄ that (approximately) outperforms

the expert policy given any reward function rβ ∈ Rβ.

22

1.3. Algorithm

In this section, we introduce an algorithm with alternating updates for GAIL with

neural networks, which employs natural policy gradient (NPG) to update the policy πθ

and gradient ascent to update the reward function rβ(s, a).

1.3.1. Parameterization with Neural Networks

We define a two-layer neural network with rectified linear units (ReLU) as follows,

uW,b(s, a) =
1√
m

m∑
l=1

bl · 1
{

(s, a)⊤[W]l > 0
}
· (s, a)⊤[W]l =

m∑
l=1

[
ϕW,b(s, a)

]⊤
l

[W]l.(1.3.1)

Here m ∈ N+ is the width of the neural network, b = (b1, . . . , bm)⊤ ∈ Rm and W =

([W]⊤1 , . . . , [W]⊤m)⊤ ∈ Rmd are the parameters, and ϕW,b(s, a) = ([ϕW,b(s, a)]⊤1 , . . . , [ϕW,b(s, a)]⊤m)⊤ ∈

Rmd is called the feature vector in the sequel, where

[
ϕW,b(s, a)

]
l
= m−1/2 · bl · 1

{
(s, a)⊤[W]l > 0

}
· (s, a).(1.3.2)

It then holds that uW,b(s, a) = W⊤ϕW,b(s, a). Note that the feature vector ϕW,b(s, a)

depends on the parameters W and b. We consider the following random initialization,

bl
i.i.d.∼ Unif

(
{−1, 1}

)
, [W0]l

i.i.d.∼ N(0, Id/d), ∀l ∈ [m].(1.3.3)

Throughout the training process, we keep the parameter b fixed while updating W . For

notational simplicity, we write uW,b(s, a) as uW (s, a) and ϕW,b(s, a) as ϕW (s, a) in the

sequel. We denote by Einit the expectation taken with respect to the random initialization

23

in (1.3.3). For an absolute constant B > 0, we define the parameter domain as

SB =
{
W ∈ Rmd

∣∣ ∥W −W0∥2 ≤ B
}
,(1.3.4)

which is the ball centered at W0 with the domain radius B.

In the sequel, we consider the following energy-based policy,

πθ(a | s) =
exp
(
τ · uθ(s, a)

)∑
a′∈A exp

(
τ · uθ(s, a′)

) ,(1.3.5)

where τ ≥ 0 is the inverse temperature parameter and uθ(s, a) is the energy function

parameterized by the neural network defined in (1.3.1) with W = θ. In the sequel, we

call θ the policy parameter. Meanwhile, we parameterize the reward function rβ(s, a) as

follows,

rβ(s, a) = (1− γ)−1 · uβ(s, a),(1.3.6)

where uβ(s, a) is the neural network defined in (1.3.1) with W = β and γ is the discount

factor. Here we use the scaling parameter (1− γ)−1 to ensure that for any policy π the

state-action value function Qπ
rβ

(s, a) defined in (1.2.1) is well approximated by the neural

network defined in (1.3.1). In the sequel, we call β the reward parameter and define the

reward function class as

Rβ = {rβ(s, a) | β ∈ SBβ
},

where SBβ
is the parameter domain of β defined in (1.3.4) with domain radius Bβ. To

facilitate algorithm design, we establish the following proposition, which calculates the

24

explicit expressions of the gradients ∇L(θ, β) and the Fisher information I(θ). Recall that

the Fisher information is defined as

I(θ) = E(s,a)∼νπθ

[
∇θ log πθ(s, a)∇θ log πθ(s, a)⊤

]
.(1.3.7)

Proposition 1.3.1 (Gradients and Fisher Information). We call ιθ(s, a) = τ−1·∇θ log πθ(a | s)

the temperature-adjusted score function. It holds that

ιθ(s, a) = ϕθ(s, a)− Ea′∼πθ(· | s)
[
ϕθ(s, a

′)
]
.(1.3.8)

It then holds that

I(θ) = τ 2 · E(s,a)∼νπθ

[
ιθ(s, a) ιθ(s, a)⊤

]
,(1.3.9)

∇θL(θ, β) = −τ · E(s,a)∼νπθ

[
Qπθ
rβ

(s, a) · ιθ(s, a)
]
,(1.3.10)

and

∇βL(θ, β) = (1− γ)−1 · E(s,a)∼νE

[
ϕβ(s, a)

]
− (1− γ)−1 · E(s,a)∼νπθ

[
ϕβ(s, a)

]
− λ · ∇βψ(β),

(1.3.11)

where Qπθ
rβ

(s, a) is the state-action value function defined in (1.2.1) with π = πθ and r = rβ,

νπθ is the state-action visitation measure defined in (1.2.3) with π = πθ, and I(θ) is the

Fisher information defined in (1.3.7).

Proof. See §A.3.1 for a detailed proof. □

Note that the expression of the policy gradient ∇θL(θ, β) in (1.3.10) of Proposition

1.3.1 involves the state-action value function Qπθ
rβ

(s, a). To this end, we estimate the

25

state-action value function Qπ
r (s, a) by Q̂ω(s, a), which is parameterized as follows,

Q̂ω(s, a) = uω(s, a).(1.3.12)

Here uω(s, a) is the neural network defined in (1.3.1) with W = ω. In the sequel, we call

ω the value parameter.

1.3.2. GAIL with Alternating Updates

We employ an actor-critic scheme with alternating updates of the policy and the reward

function, which is presented in Algorithm 1. Specifically, we update the policy parameter θ

via natural policy gradient and update the reward parameter β via gradient ascent in the

actor step, while we estimate the state-action value function Qπ
r (s, a) via neural temporal

difference (TD) (Cai et al., 2019c) in the critic step.

Actor Step. In the k-th actor step, we update the policy parameter θ and the reward

parameter β as follows,

θk+1 = τ−1
k+1 · (τk · θk − η · δk),(1.3.13)

βk+1 = ProjSBβ

{
βk + η · ∇̂βL(θk, βk)

}
,(1.3.14)

where

τk+1 = η + τk, δk ∈ argmin
δ∈SBθ

∥∥Î(θk)δ − τk · ∇̂θL(θk, βk)
∥∥
2
.(1.3.15)

26

Here η > 0 is the stepsize, SBθ
and SBβ

are the parameter domains of θ and β defined in

(1.3.4) with domain radii Bθ and Bβ, respectively, ProjSBβ
: Rmd → SBβ

is the projection op-

erator, τk is the inverse temperature parameter of πθk , and Î(θk), ∇̂θL(θk, βk), ∇̂βL(θk, βk)

are the estimators of I(θk),∇θL(θk, βk),∇βL(θk, βk), respectively, which are defined in

the sequel. In (1.3.13), we update the policy parameter θk along the direction δk, which

approximates the natural policy gradient I(θ)−1 · ∇θL(θ, β), and in (1.3.15) we update

the inverse temperature parameter τk to ensure that θk+1 ∈ SBθ
. Meanwhile, in (1.3.14),

we update the reward parameter β via (projected) gradient ascent. Following from (1.3.9)

and (1.3.10) of Proposition 1.3.1, we construct the estimators of I(θk) and ∇θL(θk, βk) as

follows,

Î(θk) =
τ 2k
N

N∑
i=1

ιθk(si, ai) ιθk(si, ai)
⊤,(1.3.16)

∇̂θL(θk, βk) = −τk
N

N∑
i=1

Q̂ωk
(si, ai) · ιθk(si, ai),(1.3.17)

where {(si, ai)}i∈[N] is sampled from the state-action visitation measure νπθk given θk with

the batch size N , and Q̂ωk
(s, a) is the estimator of Q

πθk
rβk

(s, a) computed in the critic step.

Meanwhile, following from (1.3.11) of Proposition 1.3.1, we construct the estimator of

∇βL(θk, βk) as follows,

∇̂βL(θ, β) =
1

N · (1− γ)

N∑
i=1

[
ϕβk(sEi , a

E
i)− ϕβk(si, ai)

]
− λ · ∇βψ(βk),(1.3.18)

where {(sEi , aEi)}i∈[N] is the expert trajectory. For notational simplicity, we write πk = πθk ,

rk(s, a) = rβk(s, a), dk = dπk and νk = νπk for the k-th step hereafter, where πθ is the

27

policy, rβ(s, a) is the reward function, and dπ, νπ are the visitation measures defined in

(1.2.3).

Critic Step. Note that the estimator ∇̂θL(θ, β) in (1.3.17) involves the estimator Q̂ωk
(s, a)

of Qπk
rk

(s, a). To this end, we parameterize Q̂ω(s, a) as in (1.3.12) and adapt neural TD

(Cai et al., 2019c), which solves the following minimization problem,

ωk = argmin
ω∈SBω

E(s,a)∼ρk
[
Q̂ω(s, a)− T πkrk

Q̂ω(s, a)
]2
.(1.3.19)

Here SBω is the parameter domain with domain radius Bω, ρk is the state-action stationary

distribution induced by πk, and T πkrk
is the Bellman operator. Note that the Bellman

operator T πr is defined as follows,

T πr Q(s, a) = (1− γ) · r(s, a) + γ · Eπ
[
Q(s′, a′)

∣∣ s, a],
where the expectation is taken with respect to s′ ∼ P (· | s, a) and a′ ∼ π(· | s′). In neural

TD, we iteratively update the value parameter ω via

δ(j) = Qω(j)(s, a)− r(s, a)− γ ·Qω(j)(s
′, a′),

ω(j + 1) = ProjSBω

{
ω(j)− α · δ(j) · ∇ωQω(j)(s, a)

}
,(1.3.20)

where δ(j) is the Bellman residual, α > 0 is the stepsize, (s, a) is sampled from the

state-action stationary distribution ρk, and s′ ∼ P (· | s, a), a′ ∼ πk(· | s′) are the subsequent

state and action. We defer the detailed discussion of neural TD to §A.2.

To approximately obtain the compatible function approximation (Sutton et al., 2000;

Wang et al., 2019), we share the random initialization among the policy πθ, the reward

28

function rβ(s, a), and the state-action value function Q̂ω(s, a). In other words, we set

θ0 = β0 = ω(0) = W0 in our algorithm, where W0 is the random initialization in (1.3.3).

The output of GAIL is the mixed policy π̄ (Altman, 1999). Specifically, the mixed policy

π̄ of π0, . . . , πT−1 is executed by randomly selecting a policy πk for k ∈ [0 : T − 1] with

equal probability before time t = 0 and exclusively following πk thereafter. It then holds

for any reward function r(s, a) that

J(π̄; r) =
1

T

T−1∑
k=0

J(πk; r).(1.3.21)

Algorithm 1 GAIL

Require: Expert trajectory {(sEi , aEi)}i∈[TE], number of iterations T , number of iterations
TTD of neural TD, stepsize η, stepsize α of neural TD, batch size N , and domain radii
Bθ, Bω, Bβ.

1: Initialization. Initialize bl ∼ Unif({−1, 1}) and [W0]l ∼ N(0, Id/d) for any l ∈ [m]
and set τ0 ← 0, θ0 ← W0, and β0 ← W0.

2: for k = 0, 1, . . . , T − 1 do
3: Update value parameter ωk via Algorithm 4 with πk, rk, W0, b, TTD, and α as the

input.

4: Sample {(si, ai)}Ni=1 from the state-action visitation measure νk, and estimate Î(θk),

∇̂θL(θk, βk), and ∇̂βL(θk, βk) via (1.3.16), (1.3.17), and (1.3.18), respectively.

5: Solve δk ← argminδ∈Sθ

∥∥Î(θk) · δ − τk · ∇̂θL(θk, βk)
∥∥
2

and set τk+1 ← τk + η.

6: Update policy parameter θ via θk+1 ← τ−1
k+1 · (τk · θk − η · δk).

7: Update reward parameter β via βk+1 ← ProjSBβ
{βk + η · ∇̂βL(θk, βk)}.

8: end for
Ensure: Mixed policy π̄ of π0, . . . , πT−1.

1.4. Main Results

In this section, we first present the assumptions for our analysis. Then, we establish

the global optimality and convergence of Algorithm 1.

29

1.4.1. Assumptions

We impose the following assumptions on the stationary distributions ϱk ∈ P(S), ρk ∈

P(S ×A) and the visitation measures dk ∈P(S), νk ∈P(S ×A).

Assumption 1.4.1. We assume that the following properties hold.

(a) Let µ be either ρk or νk. We assume for an absolute constant c > 0 that

E(s,a)∼µ

[
1
{
|W⊤(s, a)| ≤ y

}]
≤ c · y
∥W∥2

, ∀y > 0,W ̸= 0.

(b) We assume for an absolute constant Ch > 0 that

max
k∈N

{∥∥∥∥ddE
ddk

∥∥∥∥
2,dk

+

∥∥∥∥dνE
dνk

∥∥∥∥
2,νk

}
≤ Ch,

max
k∈N

{∥∥∥∥ddE
dϱk

∥∥∥∥
2,ϱk

+

∥∥∥∥dνE
dρk

∥∥∥∥
2,ρk

}
≤ Ch.

Here ddE/ddk, dνE/dνk, ddE/dϱk, and dνE/dρk are the Radon-Nikodym deriva-

tives.

Assumption 1.4.1 (a) holds when the probability density functions of ρk and νk are

uniformly upper bounded across k. Assumption 1.4.1 (b) states that the concentrability

coefficients are uniformly upper bounded across k, which is commonly used in the analysis

of RL (Szepesvári and Munos, 2005; Munos and Szepesvári, 2008; Antos et al., 2008;

Farahmand et al., 2010; Scherrer et al., 2015; Farahmand et al., 2016; Lazaric et al., 2016).

For notational simplicity, we write u0(s, a) = uW0(s, a) and ϕ0(s, a) = ϕW0(s, a), where

uW0(s, a) is the neural network defined in (1.3.1) with W = W0, ϕW0(s, a) is the feature

vector defined in (1.3.2) with W = W0, and W0 is the random initialization in (1.3.3). We

30

impose the following assumptions on the neural network u0(s, a) and the transition kernel

P .

Assumption 1.4.2. We assume that the following properties hold.

(a) Let Ū = sup(s,a)∈S×A |u0(s, a)|. We assume for absolute constants M0 > 0 and

v > 0 that

Einit[Ū
2] ≤M2

0 , P(Ū > t) ≤ exp(−v · t2), ∀t > 2M0.(1.4.1)

(b) We assume that the transition kernel P belongs to the following class,

M̃∞,BP
=

{
P (s′ | s, a) =

∫
ϑ(s, a;w)⊤φ(s′;w) dq(w)

∣∣∣∣ sup
w

∥∥∥∥∫ φ(s;w)ds

∥∥∥∥
2

≤ BP

}
.

Here BP > 0 is an absolute constant, q is the probability density function of

N(0, Id/d), and ϑ(s, a;w) is defined as ϑ(s, a;w) = 1{w⊤(s, a) > 0} · (s, a).

Assumption 1.4.2 (b) states that the MDP belongs to (a variant of) the class of linear

MDPs (Yang and Wang, 2019a,b; Jin et al., 2019; Cai et al., 2019b). However, our class

of transition kernels is infinite-dimensional, and thus, captures a rich class of MDPs.

To understand Assumption 1.4.2 (a), recall that we initialize the neural network with

[W0]l ∼ N(0, Id/d) and bl ∼ Unif({−1, 1}) for any l ∈ [m]. Thus, the neural network

u0(s, a) defined in (1.3.1) with W = W0 converges to a Gaussian process indexed by

(s, a) ∈ S × A as m goes to infinity. Following from the facts that the maximum of

a Gaussian process over a compact index set is sub-Gaussian (van de Geer and Muro,

2014) and that S ×A is compact, it is reasonable to assume that sup(s,a)∈S×A |u0(s, a)| is

sub-Gaussian, which further implies the existence of the absolute constants M0 and v in

31

(1.4.1) of Assumption 1.4.2 (a). Moreover, if we assume that m is even and initialize the

parameters W0, b as follows,
[W0]l

i.i.d.∼ N(0, Id/d), bl ∼ Unif
(
{−1, 1}

)
, ∀l = 1, . . . ,m/2,

[W0]l = [W0]l−m/2, bl = −bl−m/2, ∀l = m/2 + 1, . . . ,m,

(1.4.2)

we have that u0(s, a) = 0 for any (s, a) ∈ S × A, which allows us to set M0 = 0 and

v = +∞ in Assumption 1.4.2 (a). Also, it holds that 0 = u0(s, a) ∈ Rβ, which implies that

DRβ
(π1, π2) ≥ 0 for any π1 and π2. The proof of our results with the random initialization

in (1.4.2) is identical.

Finally, we impose the following assumption on the regularizer ψ(β) and the variances

of the estimators Î(θ), ∇̂θL(θ, β), and ∇̂βL(θ, β) defined in (1.3.16), (1.3.17), and (1.3.18),

respectively.

Assumption 1.4.3. We assume that the following properties hold.

(a) We assume for an absolute constant σ > 0 that

Ek
[∥∥∥Î(θk)W − Ek

[
Î(θk)W

]∥∥∥2
2

]
≤ τ 4k · σ2/N, ∀W ∈ SBθ

,(1.4.3)

Ek
[∥∥∥∇̂θL(θk, βk)− Ek

[
∇̂θL(θk, βk)

]∥∥∥2
2

]
≤ τ 2k · σ2/N,(1.4.4)

Ek
[∥∥∥∇̂βL(θk, βk)− Ek

[
∇̂βL(θk, βk)

]∥∥∥2
2

]
≤ σ2/N,(1.4.5)

where τk is the inverse temperature parameter in (1.3.5), N ∈ N+ is the batch

size, and SBθ
is the parameter domain of θ defined in (1.3.4) with the domain

radius Bθ. Here the expectation Ek is taken with respect to the k-th batch, which

is drawn from νk given θk.

32

(b) We assume that the regularizer ψ(β) in (1.2.4) is convex and Lψ-Lipschitz contin-

uous over the compact parameter domain SBβ
.

Assumption 1.4.3 (a) holds when Q̂ωk
(si, ai)·ιθk(si, ai), ιθk(si, ai)ιθk(si, ai)

⊤, and ϕβk(si, ai)

have uniformly upper bounded variances across i ∈ [m] and k, and the Markov chain that

generates {(si, ai)}i∈[N] mixes sufficiently fast (Zhang et al., 2019a). Similar assumptions

are also used in the analysis of policy optimization (Xu et al., 2019a,b). Also, Assumption

1.4.3 (b) holds for most commonly used regularizers (Ho and Ermon, 2016).

1.4.2. Global Optimality and Convergence

In this section, we establish the global optimality and convergence of Algorithm 1. The

following proposition adapted from Cai et al. (2019c) characterizes the global optimality

and convergence of neural TD, which is presented in Algorithm 4.

Proposition 1.4.4 (Global Optimality and Convergence of Neural TD). In Algorithm 4,

we set TTD = Ω(m), α = min{(1− γ)/8,m−1/2}, and Bω = c · (Bβ +BP · (M0 +Bβ)) for

an absolute constant c > 0. Let πk, rk be the input and ωk be the output of Algorithm 4.

Under Assumptions 1.4.1 and 1.4.2, it holds for an absolute constant Cv > 0 that

Einit

[∥∥Qωk
(s, a)−Qπk

rk
(s, a)

∥∥2
2,ρk

]
= O

(
B3
ω ·m−1/2 +B5/2

ω ·m−1/4 +B2
ω · exp(−Cv ·B2

ω)
)
.

(1.4.6)

Here the expectation Einit is taken with respect to the random initialization in (1.3.3).

Proof. See §A.2.1 for a detailed proof. □

33

The term B2
ω · exp(−Cv ·B2

ω) in (1.4.6) of Proposition 1.4.4 characterizes the hardness

of estimating the state-action value function Qπk
rk

(s, a) by the neural network defined in

(1.3.1), which arises because ∥Qπk
rk

(s, a)∥∞ is not uniformly upper bounded across k. Note

that if we employ the random initialization in (1.4.2), we have that Cv = +∞. And

consequently, such a term vanishes. We are now ready to establish the global optimality

and convergence of Algorithm 1.

Theorem 1.4.5 (Global Optimality and Convergence of GAIL). We set η = 1/
√
T and

Bω = c · (Bβ +BP · (M0 +Bβ)) for an absolute constant c > 0, and Bθ = Bω in Algorithm

1. Let π̄ be the output of Algorithm 1. Under Assumptions 1.4.1-1.4.3, it holds that

E
[
DRβ

(πE, π̄)
]
≤ (1− γ)−1 · log |A|+ 13B̄2 +M2

0 + 8√
T︸ ︷︷ ︸

(i)

+ 2λ · Lψ · B̄︸ ︷︷ ︸
(ii)

+
1

T

T−1∑
k=0

εk︸ ︷︷ ︸
(iii)

.(1.4.7)

Here B̄ = max{Bθ, Bω, Bβ}, DRβ
is the Rβ-distance defined in (1.2.5) with Rβ =

{rβ(s, a) | β ∈ SBβ
}, the expectation is taken with respect to the random initialization in

(1.3.3) and the T batches, and the error term εk satisfies that

εk = 2
√

2 · Ch · B̄ · σ ·N−1/2︸ ︷︷ ︸
(iii.a)

+ ϵQ,k︸︷︷︸
(iii.b)

+O(k · B̄3/2 ·m−1/4 + B̄5/4 ·m−1/8)︸ ︷︷ ︸
(iii.c)

,(1.4.8)

where Ch is defined in Assumption 1.4.1, Lψ and σ are defined in Assumption 1.4.3, and

ϵQ,k = O(B3
ω ·m−1/2 +B

5/2
ω ·m−1/4 +B2

ω · exp(−Cv ·B2
ω)) is the error induced by neural

TD (Algorithm 4).

Proof. See §1.5 for a detailed proof. □

34

The optimality gap in (1.4.7) of Theorem 1.4.5 is measured by the expectedRβ-distance

DRβ
(πE, π̄) between the expert policy πE and the learned policy π̄. Thus, by showing

that the optimality gap is upper bounded by O(1/
√
T), we prove that π̄ (approximately)

outperforms the expert policy πE in expectation when the number of iterations T goes

to infinity. As shown in (1.4.7) of Theorem 1.4.5, the optimality gap is upper bounded

by the sum of the three terms. Term (i) corresponds to the 1/
√
T rate of convergence

of Algorithm 1. Term (ii) corresponds to the bias induced by the regularizer λ · ψ(β) in

the objective function L(θ, β) defined in (1.2.4). Term (iii) is upper bounded by the sum

of the three terms in (1.4.8) of Theorem 1.4.5. In detail, term (iii.a) corresponds to the

error induced by the variances of Î(θ), ∇̂θL(θ, β), and ∇̂βL(θ, β) defined in (1.4.3), (1.4.4),

and (1.4.5) of Assumption 1.4.3, which vanishes as the batch size N in Algorithm 1 goes

to infinity. Term (iii.b) is the error of estimating Qπ
r (s, a) by Q̂ω(s, a) using neural TD

(Algorithm 4). As shown in Proposition 1.4.4, the estimation error ϵQ,k vanishes as m and

Bω go to infinity. Term (iii.c) corresponds to the linearization error of the neural network

defined in (1.3.1), which is characterized in Lemma A.1.2. Following from Theorem 1.4.5,

it holds for Bω = Ω((C−1
v · log T)1/2), m = Ω(B̄10 · T 6), and N = Ω(B̄2 · T · σ2) that

E
[
DRβ

(πE, π̄)
]

= O(T−1/2 + λ), which implies the 1/
√
T rate of convergence of Algorithm

1 (up to the bias induced by the regularizer).

1.5. Proof of Main Results

In this section, we present the proof of Theorem 1.4.5, which establishes the global

optimality and convergence of Algorithm 1. For notational simplicity, we write πs(a) =

π(a | s) for any policy π, state s ∈ S, and action a ∈ A. For any policies π1, π2 and

35

distribution µ over S, we denote the expected Kullback-Leibler (KL) divergence by

KLµ, which is defined as KLµ(π1 ∥ π2) = Es∼µ[KL(πs1 ∥ πs2)]. For any visitation measures

dπ ∈P(S) and νπ ∈P(S ×A), we denote by Edπ and Eνπ the expectations taken with

respect to s ∼ dπ and (s, a) ∼ νπ, respectively.

Following from the property of the mixed policy π̄ in (1.3.21), we have that

E
[
DRβ

(πE, π̄)
]

= E
[

max
β′∈SBβ

J(πE; rβ′)− J(π̄; rβ′)
]

= E
[

max
β′∈SBβ

1

T

T−1∑
k=0

J(πE; rβ′)− J(πk; rβ′)

]
.(1.5.1)

We now upper bound the optimality gap in (1.5.1) by upper bounding the following

difference of expected cumulative rewards,

J(πE; rβ′)− J(πk; rβ′) = J(πE; rk)− J(πk; rk)︸ ︷︷ ︸
(i)

+L(θk, β
′)− L(θk, βk)︸ ︷︷ ︸

(ii)

+λ ·
(
ψ(β′)− ψ(βk)

)︸ ︷︷ ︸
(iii)

,

(1.5.2)

where β′ ∈ SBβ
is chosen arbitrarily and L(θ, β) is the objective function defined in (1.2.4).

Following from Assumption 1.4.3 and the fact that βk, β
′ ∈ SBβ

, we have that

λ ·
(
ψ(β′)− ψ(βk)

)
≤ λ · Lψ · ∥β′ − βk∥2 ≤ λ · Lψ · 2Bβ,(1.5.3)

which upper bounds term (iii) of (1.5.2). It remains to upper bound terms (i) and (ii)

of (1.5.2), which hinges on the one-point convexity of J(π; r) with respect to π and the

(approximate) convexity of L(θ, β) with respect to β.

36

Upper bound of term (i) in (1.5.2). In what follows, we upper bound term (i) of

(1.5.2). We first introduce the following cost difference lemma (Kakade and Langford,

2002), which corresponds to the one-point convexity of J(π; r) with respect to π. Recall

that dE ∈P(S) is the state visitation measure induced by the expert policy πE.

Lemma 1.5.1 (Cost Difference Lemma, Lemma 6.1 in Kakade and Langford (2002)). For

any policy π and reward function r(s, a), it holds that

J(πE; r)− J(π; r) = (1− γ)−1 · EdE
[〈
Qπ
r (s, ·), πsE − πs

〉
A

]
,(1.5.4)

where γ is the discount factor.

Furthermore, we establish the following lemma, which upper bounds the right-hand

side of (1.5.4) in Lemma 1.5.1.

Lemma 1.5.2. Under Assumptions 1.4.1-1.4.3, we have that

EdE
[〈
Qπk
rk

(s, ·), πsE − πsk
〉
A

]
= η−1 ·KLdE(πE ∥ πk)− η−1 ·KLdE(πE ∥ πk+1) + ∆

(i)
k ,

where

E
[
|∆(i)

k |
]

= 2
√

2 · Ch ·B1/2
θ · σ1/2 ·N−1/4 + ϵQ,k + η · (M2

0 + 9B2
θ)

+O(η−1 · τk+1 ·B3/2
θ ·m−1/4 +B

5/4
θ ·m−1/8).(1.5.5)

Here M0 is defined in Assumption 1.4.2, σ is defined in Assumption 1.4.3, N is the batch

size in (1.3.16)-(1.3.18), and ϵQ,k = O(B3
ω ·m−1/2 +B

5/2
ω ·m−1/4 +B2

ω · exp(−Cv ·B2
ω)) for

an absolute constant Cv > 0, which depends on the absolute constant v in Assumption

1.4.2.

37

Proof. See §A.3.2 for a detailed proof. □

Combining Lemmas 1.5.1 and 1.5.2, we have that

J(πE; rk)− J(πk; rk) ≤
KLdE(πE ∥ πk)−KLdE(πE ∥ πk+1) + η ·∆(i)

k

η · (1− γ)
,(1.5.6)

which upper bounds term (i) of (1.5.2). Here ∆
(i)
k is upper bounded in (1.5.5) of Lemma

1.5.2.

Upper bound of term (ii) in (1.5.2). In what follows, we upper bound term (ii) of

(1.5.2). We first establish the following lemma, which characterizes the (approximate)

convexity of L(θ, β) with respect to β.

Lemma 1.5.3. Under Assumption 1.4.1, it holds for any β′ ∈ SBβ
that

Einit

[
L(θk, β

′)− L(θk, βk)
]

= Einit

[
∇βL(θk, βk)

⊤(β′ − βk)
]

+O(B
3/2
β ·m−1/4).

Proof. See §A.3.3 for a detailed proof. □

The term O(B
3/2
β ·m−1/4) in Lemma 1.5.3 arises from the linearization error of the

neural network, which is characterized in Lemma A.1.2. Based on Lemma 1.5.3, we

establish the following lemma, which upper bounds term (ii) of (1.5.2).

Lemma 1.5.4. Under Assumptions 1.4.1 and 1.4.3, we have that

L(θk, β
′)− L(θk, βk) ≤ η−1 · ∥βk − β′∥22 − η−1 · ∥βk+1 − β′∥22 − η−1 · ∥βk+1 − βk∥22 + ∆

(ii)
k ,

where

E
[
|∆(ii)

k |
]

= η ·
(
(2 + λ · Lψ)2 + σ2 ·N−1

)
+ 2Bβ · σ ·N−1/2 +O(B

3/2
β ·m−1/4).(1.5.7)

38

Proof. See §A.3.4 for a detailed proof. □

By Lemma 1.5.4, we have that

L(θk, β
′)− L(θk, βk) ≤ η−1 ·

(
∥βk − β′∥22 − ∥βk+1 − β′∥22 − ∥βk+1 − βk∥22

)
+ ∆

(ii)
k ,(1.5.8)

which upper bounds term (ii) of (1.5.2). Here ∆
(ii)
k is upper bounded in (1.5.7) of Lemma

1.5.4.

Plugging (1.5.3), (1.5.6), and (1.5.8) into (1.5.2), we obtain that

J(πE; rβ′)− J(πk; rβ′)

(1.5.9)

≤ KLdE(πE ∥ πk)−KLdE(πE ∥ πk+1)

η · (1− γ)
+ η−1 ·

(
∥βk − β′∥22 − ∥βk+1 − β′∥22

)
+ 2λ · Lψ ·Bβ + ∆k.

Here ∆k = ∆
(i)
k + ∆

(ii)
k , where ∆

(i)
k and ∆

(ii)
k are upper bounded in (1.5.5) and (1.5.7) of

Lemmas 1.5.2 and 1.5.4, respectively. Note that the upper bound of ∆k does not depend

on θ and β. Upon telescoping (1.5.9) with respect to k, we obtain that

J(πE; rβ′)− J(π̄; rβ′) =
1

T

T−1∑
k=0

[
J(πE; rβ′)− J(πk; rβ′)

](1.5.10)

≤ (1− γ)−1 ·KLdE(πE ∥ π0) + ∥β0 − β′∥22
η · T

+ 2λ · Lψ ·Bβ +
1

T

T−1∑
k=0

|∆k|.

Following from the fact that τ0 = 0 and the parameterization of πθ in (1.3.5), it holds that

πs0 is the uniform distribution over A for any s ∈ S. Thus, we have KLdE(πE ∥ π0) ≤ log |A|.

Meanwhile, following from the fact that β′ ∈ SBβ
, it holds that ∥β′ − β0∥2 ≤ Bβ. Finally,

39

by setting η = T−1/2, τk = k · η, and B̄ = max{Bθ, Bβ} in (1.5.10), we have that

E
[
DRβ

(πE, π̄)
]

= E
[

max
β′∈SBβ

J(πE; rβ′)− J(π̄; rβ′)
]

≤
(1− γ)−1 · log |A|+ 4B2

β

η · T
+ 2λ · Lψ ·Bβ +

E
[
maxβ′

∑T−1
k=0 |∆k|

]
T

=
(1− γ)−1 · log |A|+ 13B̄2 +M2

0 + 8√
T

+ 2λ · Lψ · B̄ +

∑T−1
k=0 εk
T

.

Here εk is upper bounded as follows,

εk = 2
√

2 · Ch · B̄ · σ ·N−1/2 + ϵQ,k +O(k · B̄3/2 ·m−1/4 + B̄5/4 ·m−1/8),

where ϵQ,k = O(B3
ω ·m−1/2 +B

5/2
ω ·m−1/4 +B2

ω · exp(−Cv ·B2
ω)) for an absolute constant

Cv > 0. Thus, we complete the proof of Theorem 1.4.5.

40

CHAPTER 2

Can Temporal-Difference and Q-Learning Learn Representation?

A Mean-Field Theory

Temporal-difference and Q-learning play a key role in deep reinforcement

learning, where they are empowered by expressive nonlinear function approxi-

mators such as neural networks. At the core of their empirical successes is the

learned feature representation, which embeds rich observations, e.g., images

and texts, into the latent space that encodes semantic structures. Meanwhile,

the evolution of such a feature representation is crucial to the convergence of

temporal-difference and Q-learning.

In particular, temporal-difference learning converges when the function

approximator is linear in a feature representation, which is fixed throughout

learning, and possibly diverges otherwise. We aim to answer the following

questions: When the function approximator is a neural network, how does the

associated feature representation evolve? If it converges, does it converge to

the optimal one?

We prove that, utilizing an overparameterized two-layer neural network,

temporal-difference and Q-learning globally minimize the mean-squared pro-

jected Bellman error at a sublinear rate. Moreover, the associated feature

representation converges to the optimal one, generalizing the previous analysis

of Cai et al. (2019c) in the neural tangent kernel regime, where the associated

41

feature representation stabilizes at the initial one. The key to our analysis is a

mean-field perspective, which connects the evolution of a finite-dimensional

parameter to its limiting counterpart over an infinite-dimensional Wasserstein

space. Our analysis generalizes to soft Q-learning, which is further connected

to policy gradient.

2.1. Introduction

Deep reinforcement learning achieves phenomenal empirical successes, especially in

challenging applications where an agent acts upon rich observations, e.g., images and texts.

Examples include video gaming (Mnih et al., 2015), visuomotor manipulation (Levine et al.,

2016), and language generation (He et al., 2015). Such empirical successes are empowered

by expressive nonlinear function approximators such as neural networks, which are used

to parameterize both policies (actors) and value functions (critics) (Konda and Tsitsiklis,

2000). In particular, the neural network learned from interacting with the environment

induces a data-dependent feature representation, which embeds rich observations into a

latent space encoding semantic structures (Hinton, 1986; Bengio, 2012; Yosinski et al.,

2014; LeCun et al., 2015). In contrast, classical reinforcement learning mostly relies on a

handcrafted feature representation that is fixed throughout learning (Sutton and Barto,

2018).

In this paper, we study temporal-difference (TD) (Sutton, 1988) and Q-learning

(Watkins and Dayan, 1992), two of the most prominent algorithms in deep reinforcement

learning, which are further connected to policy gradient (Williams, 1992) through its

equivalence to soft Q-learning (O’Donoghue et al., 2016; Schulman et al., 2017; Nachum

42

et al., 2017; Haarnoja et al., 2017). In particular, we aim to characterize how an overpa-

rameterized two-layer neural network and its induced feature representation evolve in TD

and Q-learning, especially their rate of convergence and global optimality. A fundamental

obstacle, however, is that such an evolving feature representation possibly leads to the

divergence of TD and Q-learning. For example, TD converges when the value function

approximator is linear in a feature representation, which is fixed throughout learning, and

possibly diverges otherwise (Baird, 1995; Boyan and Moore, 1995; Tsitsiklis and Van Roy,

1997).

To address such an issue of divergence, nonlinear gradient TD (Bhatnagar et al., 2009)

explicitly linearizes the value function approximator locally at each iteration, that is,

using its gradient with respect to the parameter as an evolving feature representation.

Although nonlinear gradient TD converges, it is unclear whether the attained solution is

globally optimal. On the other hand, when the value function approximator in TD is an

overparameterized multi-layer neural network, which is required to be properly scaled, such

a feature representation stabilizes at the initial one (Cai et al., 2019c), making the explicit

local linearization in nonlinear gradient TD unnecessary. Moreover, the implicit local

linearization enabled by overparameterization allows TD (and Q-learning) to converge to

the globally optimal solution. However, such a required scaling, also known as the neural

tangent kernel (NTK) regime (Jacot et al., 2018), effectively constrains the evolution of

the induced feature presentation to an infinitesimal neighborhood of the initial one, which

is not data-dependent.

Contribution. Going beyond the NTK regime, we prove that, when the value function

approximator is an overparameterized two-layer neural network, TD and Q-learning

43

globally minimize the mean-squared projected Bellman error (MSPBE) at a sublinear rate.

Moreover, in contrast to the NTK regime, the induced feature representation is able to

deviate from the initial one and subsequently evolve into the globally optimal one, which

corresponds to the global minimizer of the MSPBE. We further extend our analysis to soft

Q-learning, which is connected to policy gradient.

The key to our analysis is a mean-field perspective, which allows us to associate the

evolution of a finite-dimensional parameter with its limiting counterpart over an infinite-

dimensional Wasserstein space (Villani, 2003, 2008; Ambrosio et al., 2008; Ambrosio and

Gigli, 2013). Specifically, by exploiting the permutation invariance of the parameter, we

associate the neural network and its induced feature representation with an empirical

distribution, which, at the infinite-width limit, further corresponds to a population

distribution. The evolution of such a population distribution is characterized by a partial

differential equation (PDE) known as the continuity equation. In particular, we develop a

generalized notion of strongly monotonicity (Harker and Pang, 1990), which is tailored

to the Wasserstein space, especially the first variation formula therein (Ambrosio et al.,

2008), to characterize the evolution of such a PDE solution, which, by a discretization

argument, further quantifies the evolution of the induced feature representation.

Related Work. When the value function approximator is linear, the convergence of TD is

extensively studied in both continuous-time (Jaakkola et al., 1994; Tsitsiklis and Van Roy,

1997; Borkar and Meyn, 2000; Kushner and Yin, 2003; Borkar, 2009) and discrete-time

(Bhandari et al., 2018; Lakshminarayanan and Szepesvári, 2018; Dalal et al., 2018; Srikant

and Ying, 2019) settings. See Dann et al. (2014) for a detailed survey. Also, when the value

function approximator is linear, Melo et al. (2008); Zou et al. (2019); Chen et al. (2019b)

44

study the convergence of Q-learning. When the value function approximator is nonlinear,

TD possibly diverges (Baird, 1995; Boyan and Moore, 1995; Tsitsiklis and Van Roy, 1997).

Bhatnagar et al. (2009) propose nonlinear gradient TD, which converges but only to a

locally optimal solution. See Geist and Pietquin (2013); Bertsekas (2019) for a detailed

survey. When the value function approximator is an overparameterized multi-layer neural

network, Cai et al. (2019c) prove that TD converges to the globally optimal solution in

the NTK regime. See also the independent work of Brandfonbrener and Bruna (2019a,b);

Agazzi and Lu (2019); Sirignano and Spiliopoulos (2019), where the state space is required

to be finite. In contrast to the previous analysis in the NTK regime, our analysis allows

TD to attain a data-dependent feature representation that is globally optimal.

Meanwhile, our analysis is related to the recent breakthrough in the mean-field analysis

of stochastic gradient descent (SGD) for the supervised learning of an overparameterized

two-layer neural network (Chizat and Bach, 2018b; Mei et al., 2018, 2019; Javanmard et al.,

2019; Wei et al., 2019; Fang et al., 2019a,b; Chen et al., 2020b). See also the previous

analysis in the NTK regime (Daniely, 2017; Chizat and Bach, 2018a; Jacot et al., 2018; Li

and Liang, 2018; Allen-Zhu et al., 2018a,b; Du et al., 2018a,b; Zou et al., 2018; Arora et al.,

2019a,b; Lee et al., 2019b; Cao and Gu, 2019a; Chen et al., 2019a; Zou and Gu, 2019; Ji

and Telgarsky, 2019; Bai and Lee, 2019). Specifically, the previous mean-field analysis

casts SGD as the Wasserstein gradient flow of an energy functional, which corresponds

to the objective function in supervised learning. In contrast, TD follows the stochastic

semigradient of the MSPBE (Sutton and Barto, 2018), which is biased. As a result, there

does not exist an energy functional for casting TD as its Wasserstein gradient flow. Instead,

our analysis combines a generalized notion of strongly monotonicity (Harker and Pang,

45

1990) and the first variation formula in the Wasserstein space (Ambrosio et al., 2008),

which is of independent interest.

Notations. We denote by B(X) the Borel σ-algebra over the space X . Let P(X) be the

set of Borel probability measures over the measurable space (X ,B(X)). We denote by

[N] = {1, 2, . . . , N} for any N ∈ N+. Also, we denote by Bn(x; r) = {y ∈ Rn | ∥y−x∥ ≤ r}

the closed ball in Rn. Given a curve ρ : R → X , we denote by ρ′s = ∂tρt | t=s its

derivative with respect to the time. For a function f : X → R, we denote by Lip(f) =

supx,y∈X ,x ̸=y |f(x) − f(y)|/∥x − y∥ its Lipschitz constant. For an operator F : X → X

and a measure µ ∈P(X), we denote by F♯µ = µ ◦ F−1 the push forward of µ through F .

We denote by DKL and Dχ2 the Kullback-Leibler (KL) divergence and the χ2 divergence,

respectively.

2.2. Background

2.2.1. Policy Evaluation

We consider a Markov decision process (S,A, P, R, γ,D0), where S ⊆ Rd1 is the state space,

A ⊆ Rd2 is the action space, P : S×A →P(S) is the transition kernel, R : S×A →P(R)

is the reward distribution, γ ∈ (0, 1) is the discount factor, and D0 ∈P(S) is the initial

state distribution. An agent following a policy π : S → P(A) interacts with the

environment in the following manner. At a state st, the agent takes an action at according

to π(· | st) and receives from the environment a random reward rt following R(· | st, at).

Then, the environment transits into the next state st+1 according to P (· | st, at). We

measure the performance of a policy π via the expected cumulative reward J(π), which is

46

defined as follows,

J(π) = E
[∞∑
t=0

γt · rt
∣∣∣ s0 ∼ D0, at ∼ π(· | st), rt ∼ R(· | st, at), st+1 ∼ P (· | st, at)

]
.(2.2.1)

In policy evaluation, we are interested in the state-action value function (Q-function)

Qπ : S ×A → R, which is defined as follows,

Qπ(s, a) = E
[∞∑
t=0

γt · rt
∣∣∣ s0 = s, a0 = a, at ∼ π(· | st), rt ∼ R(· | st, at), st+1 ∼ P (· | st, at)

]
.

We learn the Q-function by minimizing the mean-squared Bellman error (MSBE), which

is defined as follows,

MSBE(Q) =
1

2
· E(s,a)∼D

[(
Q(s, a)− T πQ(s, a)

)2]
.

Here D ∈P(S ×A) is the stationary distribution induced by the policy π of interest and

T π is the corresponding Bellman operator, which is defined as follows,

T πQ(s, a) = E
[
r + γ ·Q(s′, a′)

∣∣ r ∼ R(· | s, a), s′ ∼ P (· | s, a), a′ ∼ π(· | s′)
]
.

However, T πQ may be not representable by a given function class F . Hence, we turn to

minimizing a surrogate of the MSBE over Q ∈ F , namely the mean-squared projected

Bellman error (MSPBE), which is defined as follows,

MSPBE(Q) =
1

2
· E(s,a)∼D

[(
Q(s, a)− ΠFT πQ(s, a)

)2]
,(2.2.2)

where ΠF is the projection onto F with respect to the L2(D)-norm. The global minimizer

of the MSPBE is the fixed point solution to the projected Bellman equation Q = ΠFT πQ.

47

In temporal-difference (TD) learning, corresponding to the MSPBE defined in (2.2.2),

we parameterize the Q-function with Q̂(·; θ) and update the parameter θ via stochastic

semigradient descent (Sutton and Barto, 2018),

θ′ = θ − ϵ ·
(
Q̂(s, a; θ)− r − γ · Q̂(s′, a′; θ)

)
· ∇θQ̂(s, a; θ),(2.2.3)

where ϵ > 0 is the stepsize and (s, a, r, s′, a′) ∼ D̃. Here we denote by D̃ ∈P(S ×A×R×

S × A) the distribution of (s, a, r, s′, a′), where (s, a) ∼ D, r ∼ R(· | s, a), s′ ∼ P (· | s, a),

and a′ ∼ π(· | s′).

2.2.2. Wasserstein Space

Let Θ ⊆ RD be a Polish space. We denote by P2(Θ) ⊆ P(Θ) the set of probability

measures with finite second moments. Then, the Wasserstein-2 distance between µ, ν ∈

P2(Θ) is defined as follows,

W2(µ, ν) = inf
{
E
[
∥X − Y ∥2

]1/2 ∣∣∣ law(X) = µ, law(Y) = ν
}
,(2.2.4)

where the infimum is taken over the random variables X and Y on Θ. Here we denote

by law(X) the distribution of a random variable X. We call M = (P2(Θ),W2) the

Wasserstein space, which is an infinite-dimensional manifold (Villani, 2008). In particular,

such a structure allows us to write any tangent vector at µ ∈M as ρ′0 for a corresponding

curve ρ : [0, 1]→P2(Θ) that satisfies ρ0 = µ. Here ρ′0 denotes ∂tρt | t=0. Specifically, under

certain regularity conditions, for any curve ρ : [0, 1] → P2(Θ), the continuity equation

∂tρt = − div(ρtvt) corresponds to a vector field v : [0, 1] × Θ → RD, which endows the

infinite-dimensional manifold P2(Θ) with a weak Riemannian structure in the following

48

sense (Villani, 2008). Given any tangent vectors u and ũ at µ ∈M and the corresponding

vector fields v, ṽ, which satisfy u + div(µv) = 0 and ũ + div(µṽ) = 0, respectively, we

define the inner product of u and ũ as follows,

⟨u, ũ⟩µ =

∫
⟨v, ṽ⟩ dµ,(2.2.5)

which yields a Riemannian metric. Here ⟨v, ṽ⟩ is the inner product on RD. Such a

Riemannian metric further induces a norm ∥u∥µ = ⟨u, u⟩1/2µ for any tangent vector

u ∈ TµM at any µ ∈M, which allows us to write the Wasserstein-2 distance defined in

(2.2.4) as follows,

W2(µ, ν) = inf

{(∫ 1

0

∥ρ′t∥2ρt dt

)1/2
∣∣∣∣∣ ρ : [0, 1]→M, ρ0 = µ, ρ1 = ν

}
.(2.2.6)

Here ρ′s denotes ∂tρt | t=s for any s ∈ [0, 1]. In particular, the infimum in (2.2.6) is attained

by the geodesic ρ̃ : [0, 1]→P2(Θ) connecting µ, ν ∈M. Moreover, the geodesics on M

are constant-speed, that is,

∥ρ̃′t∥ρ̃t =W2(µ, ν), ∀t ∈ [0, 1].(2.2.7)

2.3. Temporal-Difference Learning

For notational simplicity, we write Rd = Rd1×Rd2 , X = S×A ⊆ Rd, and x = (s, a) ∈ X

for any s ∈ S and a ∈ A.

49

Parameterization of Q-Function. We consider the parameter space RD and parame-

terize the Q-function with the following two-layer neural network,

Q̂(x; θ(m)) =
α

m

m∑
i=1

σ(x; θi),(2.3.1)

where θ(m) = (θ1, . . . , θm) ∈ RD×m is the parameter, m ∈ N+ is the width, α > 0 is

the scaling parameter, and σ : Rd × RD → R is the activation function. Assuming the

activation function in (2.3.1) takes the form of σ(x; θ) = b · σ̃(x;w) for θ = (w, b), we

recover the standard form of two-layer neural networks, where σ̃ is the rectified linear

unit or the sigmoid function. Such a parameterization is also used in Chizat and Bach

(2018a); Mei et al. (2019); Chen et al. (2020b). For {θi}mi=1 independently sampled from a

distribution ρ ∈P(RD), we have the following infinite-width limit of (2.3.1),

Q(x; ρ) = α ·
∫
σ(x; θ) dρ(θ).(2.3.2)

For the empirical distribution ρ̂(m) = m−1 ·
∑m

i=1 δθi corresponding to {θi}mi=1, we have

Q(x; ρ̂(m)) = Q̂(x; θ(m)).

TD Dynamics. In what follows, we consider the TD dynamics,

θi(k + 1) = θi(k)− ηϵ · α ·
(
Q̂
(
xk; θ

(m)(k)
)
− rk − γ · Q̂

(
x′k; θ

(m)(k)
))
· ∇θσ

(
xk; θi(k)

)
,

(2.3.3)

where i ∈ [m], (xk, rk, x
′
k) ∼ D̃, and ϵ > 0 is the stepsize with the scaling parameter

η > 0. Without loss of generality, we assume that (xk, rk, x
′
k) is independently sampled

from D̃, while our analysis straightforwardly generalizes to the setting of Markov sampling

50

(Bhandari et al., 2018; Zou et al., 2019; Xu et al., 2019c). For an initial distribution

ρ0 ∈ P(RD), we initialize {θi}mi=1 as θi
i.i.d.∼ ρ0 (i ∈ [m]). See Algorithm 2 for a detailed

description.

Algorithm 2 Temporal-Difference Learning with Two-Layer Neural Network for Policy
Evaluation

Initialization: θi(0)
i.i.d.∼ ρ0 (i ∈ [m]), number of iterations K = ⌊T/ϵ⌋, and policy π of

interest.
for k = 0, . . . , K − 1 do

Sample the state-action pair (s, a) from the stationary distribution D of π, receive
the reward r, and obtain the subsequent state-action pair (s′, a′).

Calculate the Bellman residual δ = Q̂(x; θ(m)(k)) − r − γ · Q̂(x′; θ(m)(k)), where
x = (s, a) and x′ = (s′, a′).
Perform the TD update θi(k + 1)← θi(k)− ηϵ · α · δ · ∇θσ(x; θi(k)) (i ∈ [m]).

end for
Ensure: {θ(m)(k)}K−1

k=0

Mean-Field Limit. Corresponding to ϵ → 0+ and m → ∞, the continuous-time and

infinite-width limit of the TD dynamics in Algorithm 2 is characterized by the following

partial differential equation (PDE) with ρ0 as the initial distribution,

∂tρt = −η · div
(
ρt · g(·; ρt)

)
.(2.3.4)

Here g(·; ρt) : RD → RD is a vector field, which is defined as follows,

g(θ; ρ) = −α · E(x,r,x′)∼D̃

[(
Q(x; ρ)− r − γ ·Q(x′; ρ)

)
· ∇θσ(x; θ)

]
.(2.3.5)

Note that (2.3.4) holds in the sense of distributions (Ambrosio et al., 2008). See Mei et al.

(2018, 2019); Araújo et al. (2019) for the existence, uniqueness, and regularity of the PDE

solution ρt in (2.3.4). In the sequel, we refer to the continuous-time and infinite-width

limit with ϵ→ 0+ and m→∞ as the mean-field limit. Let ρ̂
(m)
k = m−1 ·

∑m
i=1 δθi(k) be the

51

empirical distribution corresponding to {θi(k)}mi=1 in (2.3.3). The following proposition

proves that the PDE solution ρt in (2.3.4) well approximates the TD dynamics θ(m)(k) in

(2.3.3).

Proposition 2.3.1 (Informal Version of Proposition B.2.1). Let the initial distribution

ρ0 be the standard Gaussian distribution N(0, ID). Under certain regularity conditions,

ρ̂
(m)
⌊t/ϵ⌋ weakly converges to ρt as ϵ→ 0+ and m→∞.

The proof of Proposition 2.3.1 is based on the propagation of chaos (Sznitman, 1991;

Mei et al., 2018, 2019). In contrast to Mei et al. (2018, 2019), the PDE in (2.3.4) can not be

cast as a gradient flow, since there does not exist a corresponding energy functional. Thus,

their analysis is not directly applicable to our setting. We defer the detailed discussion on

the approximation analysis to §B.2. Proposition 2.3.1 allows us to convert the TD dynamics

over the finite-dimensional parameter space to its counterpart over the infinite-dimensional

Wasserstein space, where the infinitely wide neural network Q(·; ρ) in (2.3.2) is linear in

the distribution ρ.

Feature Representation. We are interested in the evolution of the feature representation

(
∇θσ

(
x; θ1(k)

)⊤
, . . . ,∇θσ

(
x; θm(k)

)⊤)⊤ ∈ RDm(2.3.6)

corresponding to θ(m)(k) = (θ1(k), . . . , θm(k)) ∈ RD×m. Such a feature representation is

used to analyze the TD dynamics θ(m)(k) in (2.3.3) in the NTK regime (Cai et al., 2019c),

which corresponds to setting α =
√
m in (2.3.1). Meanwhile, the nonlinear gradient TD

dynamics (Bhatnagar et al., 2009) explicitly uses such a feature representation at each

iteration to locally linearize the Q-function. Moreover, up to a rescaling, such a feature

52

representation corresponds to the kernel

K(x, x′; ρ̂
(m)
k) =

∫
∇θσ(x; θ)⊤∇θσ(x′; θ) dρ̂

(m)
k (θ),

which by Proposition 2.3.1 further induces the kernel

K(x, x′; ρt) =

∫
∇θσ(x; θ)⊤∇θσ(x′; θ) dρt(θ)(2.3.7)

at the mean-field limit with ϵ→ 0+ and m→∞. Such a correspondence allows us to use

the PDE solution ρt in (2.3.4) as a proxy for characterizing the evolution of the feature

representation in (2.3.6).

2.4. Main Results

We first introduce the assumptions for our analysis. In §2.4.1, we establish the global

optimality and convergence of the PDE solution ρt in (2.3.4). In §2.4.2, we further invoke

Proposition 2.3.1 to establish the global optimality and convergence of the TD dynamics

θ(m)(k) in (2.3.3).

Assumption 2.4.1. We assume that the state-action pair x = (s, a) satisfies ∥x∥ ≤ 1 for

any s ∈ S and a ∈ A.

Assumption 2.4.1 can be ensured by normalizing all state-action pairs. Such an

assumption is commonly used in the mean-field analysis of neural networks (Chizat and

Bach, 2018b; Mei et al., 2018, 2019; Araújo et al., 2019; Fang et al., 2019a,b; Chen et al.,

2020b). We remark that our analysis straightforwardly generalizes to the setting where

∥x∥ ≤ C for an absolute constant C > 0.

53

Assumption 2.4.2. We assume that the activation function σ in (2.3.1) satisfies

∣∣σ(x; θ)
∣∣ ≤ B0,

∥∥∇θσ(x; θ)
∥∥ ≤ B1 · ∥x∥,

∥∥∇2
θθσ(x; θ)

∥∥
F
≤ B2 · ∥x∥2(2.4.1)

for any x ∈ X . Also, we assume that the reward r satisfies |r| ≤ Br.

Assumption 2.4.2 holds for a broad range of neural networks. For example, let

θ = (w, b) ∈ RD−1 × R. The activation function

σ†(x; θ) = B0 · tanh(b) · sigmoid(w⊤x)(2.4.2)

satisfies (2.4.1) in Assumption 2.4.2. Moreover, the infinitely wide neural network in (2.3.2)

with the activation function σ† in (2.4.2) induces the following function class,

F † =

{∫
β · sigmoid(w⊤x) dµ(w, β)

∣∣∣∣µ ∈P
(
RD−1 × [−B0, B0]

)}
,

where β = B0 · tanh(b) ∈ [−B0, B0]. By the universal approximation theorem (Barron,

1993; Pinkus, 1999), F † captures a rich class of functions.

2.4.1. Global Optimality and Convergence of PDE Solution

Throughout the rest of this paper, we consider the following function class,

F =

{∫
σ0(b) · σ1(x;w) dρ(w, b)

∣∣∣∣ ρ ∈P2(RD−1 × R)

}
,(2.4.3)

54

which is induced by the infinitely wide neural network in (2.3.2) with θ = (w, b) ∈ RD−1×R

and the following activation function,

σ(x; θ) = σ0(b) · σ1(x;w).

We assume that σ0 is an odd function, that is, σ0(b) = −σ0(−b), which implies
∫
σ(x; θ) dρ0(θ) =

0. Note that the set of infinitely wide neural networks taking the forms of (2.3.2) is α · F ,

which is larger than F in (2.4.3) by the scaling parameter α > 0. Thus, α can be viewed

as the degree of “overrepresentation”. Without loss of generality, we assume that F is

complete. The following theorem characterizes the global optimality and convergence of

the PDE solution ρt in (2.3.4).

Theorem 2.4.3. There exists a unique fixed point solution to the projected Bellman

equation Q = ΠFT πQ, which takes the form of Q∗(x) =
∫
σ(x; θ) dρ̄(θ). Also, Q∗ is the

global minimizer of the MSPBE defined in (2.2.2). We assume that Dχ2(ρ̄ ∥ ρ0) <∞ and

ρ̄(θ) > 0 for any θ ∈ RD. Under Assumptions 2.4.1 and 2.4.2, it holds for η = α−2 in

(2.3.4) that

inf
t∈[0,T]

Ex∼D

[(
Q(x; ρt)−Q∗(x)

)2] ≤ Dχ2(ρ̄ ∥ ρ0)
2(1− γ) · T

+
C∗

(1− γ) · α
,(2.4.4)

where C∗ > 0 is a constant that depends on Dχ2(ρ̄ ∥ ρ0), B1, B2, and Br.

Theorem 2.4.3 proves that the optimality gap Ex∼D[(Q(x; ρt)−Q∗(x))2] decays to zero

at a sublinear rate up to the error of O(α−1), where α > 0 is the scaling parameter in

(2.3.1). Varying α leads to a tradeoff between such an error of O(α−1) and the deviation

of ρt from ρ0. Specifically, in §2.5 we prove that ρt deviates from ρ0 by the divergence

Dχ2(ρt ∥ ρ0) ≤ O(α−2). Hence, a smaller α allows ρt to move further away from ρ0,

55

inducing a feature representation that is more different from the initial one (Fang et al.,

2019a,b). See (2.3.6)-(2.3.7) for the correspondence of ρt with the feature representation

and the kernel that it induces. On the other hand, a smaller α yields a larger error of

O(α−1) in (2.4.4) of Theorem 2.4.3. In contrast, the NTK regime (Cai et al., 2019c),

which corresponds to setting α =
√
m in (2.3.1), only allows ρt to deviate from ρ0 by the

divergence Dχ2(ρt ∥ ρ0) ≤ O(m−1) = o(1). In other words, the NTK regime fails to induce

a feature representation that is significantly different from the initial one. In summary,

our analysis goes beyond the NTK regime, which allows us to characterize the evolution

of the feature representation towards the (near-)optimal one.

2.4.2. Global Optimality and Convergence of TD Dynamics

As a result of Proposition 2.3.1, we establish the following lemma, which characterizes the

error of approximating the optimality gap in Theorem 2.4.3 by that of the TD dynamics

θ(m)(k) in (2.3.3).

Lemma 2.4.4. Let B be a constant that depends on α, η, γ, B0, B1, and B2. Under

Assumptions 2.4.1 and 2.4.2, it holds for any k ≤ T/ϵ (k ∈ N) that

Ex∼D

[(
Q̂
(
x; θ(m)(k)

)
−Q∗(x)

)2]
≤ Ex∼D

[(
Q(x; ρkϵ)−Q∗(x)

)2]
+B · eBT ·

(√
m−1 · log(m/δ) +

√
ϵ ·
(
D + log(m/δ)

))
with probability at least 1− δ.

Proof. See §B.2.2 for a detailed proof. □

56

Based on Theorem 2.4.3 and Lemma 2.4.4, we establish the following corollary, which

characterizes the global optimality and convergence of the TD dynamics θ(m)(k) in (2.3.3).

Corollary 2.4.5. Under the same conditions of Theorem 2.4.3, it holds with probability

at least 1− δ that

min
k≤T/ϵ
(k∈N)

Ex∼D

[(
Q̂
(
x; θ(m)(k)

)
−Q∗(x)

)2]
≤

Dχ2(ρ̄ ∥ ρ0)
2(1− γ) · T

+
C∗

(1− γ) · α
+ ∆(ϵ,m, δ, T),

(2.4.5)

where C∗ > 0 is the constant in (2.4.4) of Theorem 2.4.3 and ∆(ϵ,m, δ, T) > 0 is an error

term such that

lim
m→∞

lim
ϵ→0+

∆(ϵ,m, δ, T) = 0.

Proof. Combining Theorem 2.4.3 and Lemma 2.4.4 implies Corollary 2.4.5. □

In (2.4.5) of Corollary 2.4.5, the error term ∆(ϵ,m, δ, T) characterizes the error of

approximating the TD dynamics θ(m)(k) in (2.3.3) using the PDE solution ρt in (2.3.4).

In particular, such an error vanishes at the mean-field limit.

2.5. Proof of Main Results

We first introduce two technical lemmas. Recall that F is defined in (2.4.3), Q(x; ρ) is

defined in (2.3.2), and g(θ; ρ) is defined in (2.3.5).

Lemma 2.5.1. There exists a unique fixed point solution to the projected Bellman

equation Q = ΠFT πQ, which takes the form of Q∗(x) =
∫
σ(x; θ) dρ̄(θ). Also, there exists

ρ∗ ∈P2(RD) that satisfies the following properties,

(i) Q(x; ρ∗) = Q∗(x) for any x ∈ X ,

57

ρt

g(·; ρt)

v ρ∗

Figure 2.1. We illustrate the first variation formula dW2(ρt,ρ∗)2

2
=

−⟨g(·; ρt), v⟩ρt , where v is the vector field corresponding to the geodesic
that connects ρt and ρ∗. See Lemma B.3.2 for details.

(ii) g(·; ρ∗) = 0 for ρ̄-a.e., and

(iii) W2(ρ
∗, ρ0) ≤ α−1 · D̄, where D̄ = Dχ2(ρ̄ ∥ ρ0)1/2.

Proof. See §B.1.1 for a detailed proof. □

Lemma 2.5.1 establishes the existence of the fixed point solution Q∗ to the projected

Bellman equation Q = ΠFT πQ. Furthermore, such a fixed point solution Q∗ can be

parameterized with the infinitely wide neural network Q(·; ρ∗) in (2.3.2). Meanwhile, the

Wasserstein-2 distance between ρ∗ and the initial distribution ρ0 is upper bounded by

O(α−1). Based on the existence of Q∗ and the property of ρ∗ in Lemma 2.5.1, we establish

the following lemma that characterizes the evolution of W2(ρt, ρ
∗), where ρt is the PDE

solution in (2.3.4).

Lemma 2.5.2. We assume that W2(ρt, ρ
∗) ≤ 2W2(ρ0, ρ

∗), Dχ2(ρ̄ ∥ ρ0) <∞, and ρ̄(θ) > 0

for any θ ∈ RD. Under Assumptions 2.4.1 and 2.4.2, it holds that

d

dt

W2(ρt, ρ
∗)2

2
≤ −(1− γ) · η · Ex∼D

[(
Q(x; ρt)−Q∗(x)

)2]
+ C∗ · α−1 · η,(2.5.1)

where C∗ > 0 is a constant depending on Dχ2(ρ̄ ∥ ρ0), B1, B2, and Br.

58

Proof. See §B.1.2 for a detailed proof. □

The proof of Lemma 2.5.2 is based on the first variation formula of the Wasserstein-2

distance (Lemma B.3.2), which is illustrated in Figure 2.1, and the strongly monotonicity

of g(·; βt) along a curve β on the Wasserstein space (Lemma B.1.1). When the right-hand

side of (2.5.1) is nonpositive, Lemma 2.5.2 characterizes the decay of W2(ρt, ρ
∗). We are

now ready to present the proof of Theorem 2.4.3.

Proof. We use a continuous counterpart of the induction argument. We define

t∗ = inf

{
τ ∈ R+

∣∣∣∣Ex∼D

[
(1− γ) ·

(
Q(x; ρτ)−Q∗(x)

)2]
< C∗ · α−1

}
.(2.5.2)

In other words, the right-hand side of (2.5.1) in Lemma 2.5.2 is nonpositive for any t ≤ t∗,

that is,

−(1− γ) · Ex∼D

[(
Q(x; ρt)−Q∗(x)

)2]
+ C∗ · α−1 ≤ 0.(2.5.3)

Also, we define

t∗ = inf
{
τ ∈ R+

∣∣W2(ρτ , ρ
∗) > 2W2(ρ0, ρ

∗)
}
.(2.5.4)

In other words, (2.5.1) of Lemma 2.5.2 holds for any t ≤ t∗. Thus, for any 0 ≤ t ≤

min{t∗, t∗}, it holds that d
dt

W2(ρt,ρ∗)2

2
≤ 0. Figure 2.2 illustrates the definition of t∗ and t∗

in (2.5.2) and (2.5.4), respectively.

We now prove that t∗ ≥ t∗ by contradiction. By the continuity of W2(ρt, ρ
∗)2 with

respect to t (Ambrosio et al., 2008), it holds that t∗ > 0, since W2(ρ0, ρ
∗) < 2W2(ρ0, ρ

∗).

For the sake of contradiction, we assume that t∗ < t∗, by (2.5.1) of Lemma 2.5.2 and

59

0 t∗ t∗

W2(ρt, ρ
∗) ≤ 2W2(ρ0, ρ

∗)

d
dt

W2(ρt,ρ∗)2

2
≤ 0 if W2(ρt, ρ

∗) ≤ 2W2(ρ0, ρ
∗)

Figure 2.2. For any 0 ≤ t ≤ min{t∗, t∗}, (2.5.1) of Lemma 2.5.2 holds and
d
dt

W2(ρt,ρ∗)2

2
≤ 0.

(2.5.3), it holds for any 0 ≤ t ≤ t∗ that

d

dt

W2(ρt, ρ
∗)2

2
≤ 0,

which implies that W2(ρt, ρ
∗) ≤ W2(ρ0, ρ

∗) for any 0 ≤ t ≤ t∗. This contradicts the

definition of t∗ in (2.5.4). Thus, it holds that t∗ ≥ t∗, which implies that (2.5.1) of Lemma

2.5.2 holds for any 0 ≤ t ≤ t∗.

If t∗ ≤ T , (2.5.3) implies Theorem 2.4.3. If t∗ > T , by (2.5.1) of Lemma 2.5.2, it holds

for any 0 ≤ t ≤ T that

d

dt

W2(ρt, ρ
∗)2

2
≤ −(1− γ) · η · Ex∼D

[(
Q(x; ρt)−Q∗(x)

)2]
+ C∗ · α−1 · η ≤ 0,

which further implies that

Ex∼D

[(
Q(x; ρt)−Q∗(x)

)2] ≤ −(1− γ)−1 · η−1 · d

dt

W2(ρt, ρ
∗)2

2
+ C∗ · (1− γ)−1 · α−1.

(2.5.5)

60

Upon telescoping (2.5.5) and setting η = α−2, we obtain that

inf
t∈[0,T]

ED

[(
Q(x; ρt)−Q∗(x)

)2]
≤ T−1 ·

∫ T

0

Ex∼D

[(
Q(x; ρt)−Q∗(x)

)2]
dt

≤ 1/2 · (1− γ)−1 · η−1 · T−1 · W2(ρ0, ρ
∗)2 + C∗ · (1− γ)−1 · α−1

≤ 1/2 · (1− γ)−1 · D̄2 · T−1 + C∗ · (1− γ)−1 · α−1,

where the last inequality follows from the fact that η = α−2 and (iii) of Lemma 2.5.1.

Thus, we complete the proof of Theorem 2.4.3. □

2.6. Extension to Q-Learning and Policy Gradient

In this section, we extend our analysis of TD to Q-learning and policy gradient. In

§2.6.1, we introduce Q-learning and its mean-field limit. In §2.6.2, we establish the global

optimality and convergence of Q-learning. In §2.6.3, we further extend our analysis to soft

Q-learning, which is equivalent to policy gradient.

2.6.1. Q-Learning

Q-learning aims to solve the following projected Bellman optimality equation,

Q = ΠFT ∗Q.(2.6.1)

Here T ∗ is the Bellman optimality operator, which is defined as follows,

T ∗Q(s, a) = E
[
r + γ ·max

a∈A
Q(s′, a)

∣∣ r ∼ R(· | s, a), s′ ∼ P (· | s, a)
]
.

61

When ΠF is the identity mapping, the fixed point solution to (2.6.1) is the Q-function

Qπ∗
of the optimal policy π∗, which maximizes the expected total reward J(π) defined in

(2.2.1) (Sutton and Barto, 2018). We consider the parameterization of the Q-function in

(2.3.1) and update the parameter θ(m) as follows,

θi(k + 1)

(2.6.2)

= θi(k)− ηϵ · α ·
(
Q̂
(
sk, ak; θ

(m)(k)
)
− rk − γ ·max

a∈A
Q̂
(
s′k, a; θ(m)(k)

))
· ∇θσ

(
sk, ak; θi(k)

)
,

where i ∈ [m], (sk, ak) is sampled from the stationary distribution DE ∈ P(S × A) of

an exploration policy πE, rk ∼ R(· | sk, ak) is the reward, and s′k ∼ P (· | sk, ak) is the

subsequent state. For notational simplicity, we denote by D̃E ∈P(S ×A× R× S) the

distribution of (sk, ak, rk, s
′
k). For an initial distribution ν0 ∈P(RD), we initialize {θi}mi=1

as θi
i.i.d.∼ ρ0 (i ∈ [m]). See Algorithm 3 for a detailed description.

Algorithm 3 Q-Learning with Two-Layer Neural Network for Policy Improvement

Initialization. θi(0)
i.i.d.∼ ν0 (i ∈ [m]), number of iterations K = ⌊T/ϵ⌋, and exploration

policy πE.
for k = 0, . . . , K − 1 do

Sample the state-action pair (s, a) from the stationary distribution DE of πE, receive
the reward r, and obtain the subsequent state s′.

Calculate the Bellman residual δ = Q̂(x; θ(m)(k)) − r − γ · Q̂(x′; θ(m)(k)), where

x = (s, a) and x′ = (s′, argmaxa∈A Q̂(s′, a; θ(m)(k))).
Perform the Q-learning update θi(k + 1)← θi(k)− ηϵ · α · δ · ∇θσ(x; θi(k)) (i ∈ [m]).

end for
Ensure: {θ(m)(k)}K−1

k=0

Mean-Field Limit. Corresponding to ϵ→ 0+ and m→∞, the mean-field limit of the

Q-learning dynamics in Algorithm 3 is characterized by the following PDE with ν0 as the

62

initial distribution,

∂tνt = −η · div
(
νt · h(·; νt)

)
.(2.6.3)

Here h(·; νt) : RD → RD is a vector field, which is defined as follows,

h(θ; ν) = −α · E(s,a,r,s′)∼D̃E

[(
Q(s, a; ν)− r − γ ·max

a∈A
Q(s′, a; ν)

)
· ∇θσ(s, a; θ)

]
.(2.6.4)

In parallel to Proposition 2.3.1, the empirical distribution ν̂
(m)
k = m−1 ·

∑m
i=1 δθi(k) weakly

converges to νkϵ as ϵ→ 0+ and m→∞.

2.6.2. Global Optimality and Convergence of Q-Learning

The max operator in the Bellman optimality operator T ∗ makes the analysis of Q-learning

more challenging than that of TD. Correspondingly, we lay out an extra regularity condition

on the exploration policy πE. Recall that the function class F is defined in (2.4.3).

Assumption 2.6.1. We assume for an absolute constant κ > 0 and any Q1, Q2 ∈ F that

E(s,a)∼DE

[(
Q1(s, a)−Q2(s, a)

)2] ≥ (γ + κ)2 · E(s,a)∼DE

[(
max
a∈A

Q1(s, a)−max
a∈A

Q2(s, a)
)2]

.

Although Assumption 2.6.1 is strong, we are not aware of any weaker regularity

condition in the literature, even in the linear setting (Melo et al., 2008; Zou et al., 2019;

Chen et al., 2019b) and the NTK regime (Cai et al., 2019c). Let the initial distribution

ν0 be the standard Gaussian distribution N(0, ID). In parallel to Theorem 2.4.3, we

establish the following theorem, which characterizes the global optimality and convergence

63

of Q-learning. Recall that we write X = S ×A and x = (s, a) ∈ X . Also, νt is the PDE

solution in (2.6.3), while θ(m)(k) is the Q-learning dynamics in (2.6.2).

Theorem 2.6.2. There exists a unique fixed point solution to the projected Bellman

optimality equation Q = ΠFT ∗Q, which takes the form of Q†(x) =
∫
σ(x; θ) dν̄(θ). We

assume that Dχ2(ν̄ ∥ ν0) < ∞ and ν̄(θ) > 0 for any θ ∈ RD. Under Assumptions 2.4.1,

2.4.2, and 2.6.1, it holds for η = α−2 that

inf
t∈[0,T]

Ex∼DE

[(
Q(x; νt)−Q†(x)

)2] ≤ (κ+ γ) ·Dχ2(ν̄ ∥ ν0)
2κ · T

+
(κ+ γ) · C∗

κ · α
,(2.6.5)

where C∗ > 0 is a constant depending on Dχ2(ν̄ ∥ ν0), B1, B2, and Br. Moreover, it holds

with probability at least 1− δ that

min
k≤T/ϵ
(k∈N)

Ex∼DE

[(
Q̂
(
x; θ(m)(k)

)
−Q†(x)

)2]

≤
(κ+ γ) ·Dχ2(ν̄ ∥ ν0)

2κ · T
+

(κ+ γ) · C∗

κ · α
+ ∆(ϵ,m, δ, T),(2.6.6)

where ∆(ϵ,m, δ, T) > 0 is an error term such that

lim
m→∞

lim
ϵ→0+

∆(ϵ,m, δ, T) = 0.

Proof. See §B.1.3 for a detailed proof. □

Theorem 2.6.2 proves that the optimality gap Ex∼DE
[(Q(x; νt) − Q†(x))2] decays to

zero at a sublinear rate up to the error of O(α−1), where α > 0 is the scaling parameter

in (2.3.1). In parallel to Theorem 2.4.3, varying α leads to a tradeoff between such an

error of O(α−1) and the deviation of νt from ν0. Moreover, based on the counterparts

64

of Proposition 2.3.1 and Lemma 2.4.4, Theorem 2.6.2 gives the global optimality and

convergence of the Q-learning dynamics θ(m)(k) in (2.6.2), which is in parallel to Corollary

2.4.5.

2.6.3. Soft Q-Learning and Policy Gradient

Theorem 2.6.2 straightforwardly generalizes to soft Q-learning, where the max operator

is replaced by the softmax operator. Specifically, we define the soft Bellman optimality

operator as follows,

TβQ(s, a) = E
[
r + γ · softmaxa∈AβQ(s′, a)

∣∣ r ∼ R(· | s, a), s′ ∼ P (· | s, a)
]
,

where the softmax operator is defined as follows,

softmaxa∈A
βQ(s, a) = β · logEa∼π̄(· | s)

[
exp
(
β−1 ·Q(s, a)

)]
.

Here π̄(· | s) is the uniform policy. Soft Q-learning aims to find the fixed point solution to

the projected soft Bellman optimality equation Q = ΠFTβQ. In parallel to the Q-learning

dynamics in (2.6.2), we consider the following soft Q-learning dynamics,

θi(k + 1)

(2.6.7)

= θi(k)− ηϵ · α ·
(
Q̂
(
sk, ak; θ

(m)(k)
)
− rk − γ · softmaxa∈AβQ̂

(
s′k, a; θ(m)(k)

))
· ∇θσ

(
sk, ak; θi(k)

)
,

65

whose mean-field limit is characterized by the following PDE,

∂tνt = −η · div
(
νt · h(·; νt)

)
.(2.6.8)

In parallel to (2.6.4), h(·; νt) : RD → RD is a vector field, which is defined as follows,

h(θ; ν) = −α · E(s,a,r,s′)∼D̃E

[(
Q(s, a; ν)− r − γ · softmaxa∈AβQ(s′, a; ν)

)
· ∇θσ(s, a; θ)

]
.

In parallel to Assumption 2.6.1, we lay out the following regularity condition.

Assumption 2.6.3. We assume for an absolute constant κ > 0 and any ν1, ν2 ∈P(RD)

that

E(s,a)∼DE

[(
Q(s, a; ν1)−Q(s, a; ν2)

)2]
≥ (γ + κ)2 · E(s,a)∼DE

[(
softmaxa∈A

βQ(s, a; ν1)− softmaxa∈A
βQ(s, a; ν2)

)2]
.

The following proposition parallels Theorem 2.6.2, which characterizes the global

optimality and convergence of soft Q-learning. Recall that νt is the PDE solution in (2.6.8)

and θ(m)(k) is the soft Q-learning dynamics in (2.6.7).

Proposition 2.6.4. There exists a unique fixed point solution to the projected soft

Bellman optimality equation Q = ΠFTβQ, which takes the form of Q‡(x) =
∫
σ(x; θ) dν(θ).

We assume that Dχ2(ν ∥ ν0) <∞ and ν(θ) > 0 for any θ ∈ RD. Under Assumptions 2.4.1,

2.4.2, and 2.6.3, it holds for η = α−2 that

inf
t∈[0,T]

Ex∼DE

[(
Q(x; νt)−Q‡(x)

)2] ≤ (κ+ γ) ·Dχ2(ν ∥ ν0)
2κ · T

+
(κ+ γ) · C∗

κ · α
,

66

where C∗ > 0 is a constant depending on Dχ2(ν ∥ ν0), B1, B2, and Br. Moreover, it holds

with probability at least 1− δ that

min
k≤T/ϵ
(k∈N)

Ex∼DE

[(
Q̂
(
x; θ(m)(k)

)
−Q‡(x)

)2]
≤

(κ+ γ) ·Dχ2(ν ∥ ν0)
2κ · T

+
(κ+ γ) · C∗

κ · α
+ ∆(ϵ,m, δ, T),

where ∆(ϵ,m, δ, T) > 0 is an error term such that

lim
m→∞

lim
ϵ→0+

∆(ϵ,m, δ, T) = 0.

Proof. Replacing the max operator by the softmax operator in the proof of Theorem

2.6.2 implies Proposition 2.6.4. □

Moreover, soft Q-learning is equivalent to a variant of policy gradient (O’Donoghue

et al., 2016; Schulman et al., 2017; Nachum et al., 2017; Haarnoja et al., 2017). Hence,

Proposition 2.6.4 also characterizes the global optimality and convergence of such a variant

of policy gradient.

67

CHAPTER 3

An Analysis of Attention via the Lens of Exchangeability and

Latent Variable Models

With the attention mechanism, transformers achieve significant empirical

successes in natural language processing and computer vision. Despite the

intuitive understanding that transformers perform relational inference (or

“inductive reasoning”) over long sequences to produce desirable representations,

we lack a rigorous theory on how the attention mechanism achieves it. In par-

ticular, several intriguing questions remain open: (a) What makes a desirable

representation? (b) How does the attention mechanism infer the desirable

representation within the forward pass? (c) How does a pretraining procedure

learn to infer the desirable representation through the backward pass?

We aim to answer the three questions via the lens of exchangeability.

Specifically, we observe that, as is the case in BERT and ViT, input tokens

are often exchangeable since they already include positional encodings. The

notion of exchangeability induces a latent variable model that is invariant to

input sizes, which enables our theoretical analysis.

- To answer (a) on representation, we establish the existence of a sufficient and

minimal representation of input tokens. In particular, such a representation

instantiates the posterior distribution of the latent variable (or “concept”)

68

given input tokens, which plays a central role in predicting output labels and

solving downstream tasks.

- To answer (b) on inference, we prove that attention with the desired pa-

rameter infers the latent posterior up to an approximation error, which is

decreasing in input sizes. In detail, we quantify how attention approximates

the conditional mean of the value given the key, which characterizes how it

performs relational inference over long sequences.

- To answer (c) on learning, we prove that both supervised and self-supervised

objectives allow empirical risk minimization to learn the desired parameter up

to a generalization error, which is independent of input sizes. Particularly, in

the self-supervised setting, we identify a condition number that is pivotal to

solving downstream tasks.

Our theoretical analysis gives a complete characterization of the attention

mechanism as a “greybox” design, which unifies the handcrafted architecture

induced by the latent variable model (“whitebox”) and the learnable parameter

estimated from data (“blackbox”) with provable approximation, generalization,

and optimization guarantees.

3.1. Introduction

Transformers are the state-of-the-art architecture for a variety of tasks in natural

language processing (Vaswani et al., 2017), computer vision (Dosovitskiy et al., 2020), and

multimodal generation (Ramesh et al., 2021). At the core of their significant empirical

successes is the attention mechanism, which is defined by a computation graph for the

forward pass. In particular, the computation graph performs a specific form of message

69

passing across input tokens (Bronstein et al., 2021). It is commonly believed that the

attention mechanism is capable of handling long sequences and performing relational

inference (or “inductive reasoning”), which appears to be the key advantage of transformers.

However, the intuitive understanding lacks a quantitative justification, which leaves many

intriguing questions open:

(a) What makes a desirable representation? Ideally, the desirable representation of input

tokens is sufficient and minimal in the sense that it preserves all relevant information

for predicting output labels or solving downstream tasks (sufficiency) while it neglects

all irreverent information (minimality). However, we lack a quantitative definition of

sufficiency and minimality, which requires a probabilistic model.

(b) How does the attention mechanism infer the desirable representation within the

forward pass? Intuitively, the attention mechanism is defined by a computation graph that

resembles kernel smoothing or kernel regression (Shawe-Taylor et al., 2004) for predicting

the value given the key. However, we lack a formal characterization of what function class

the attention mechanism parameterizes or approximates. Also, it remains unclear why

the specific form of message passing produces the desirable representation of input tokens,

that is, one with sufficiency and minimality.

(c) How does a pretraining procedure learn the desirable representation through the

backward pass? Empirically, the pretraining procedure that minimizes empirical risks for

predicting masked tokens (Devlin et al., 2018; Dosovitskiy et al., 2020; He et al., 2022)

appears to succeed in the presence of long sequences. However, we lack a theoretical

justification of whether the pretraining procedure with the masked objective attains a

desirable estimator that generalizes and why the generalization error does not appear to

70

degrade for long sequences. In particular, it remains unclear to what degree the estimated

representation facilitates solving downstream tasks.

In this paper, we answer the three questions via the lens of exchangeability. The key

observation is that, as is the case in BERT (Devlin et al., 2018) and ViT (Dosovitskiy

et al., 2020), input tokens are exchangeable since they include positional encodings. In

other words, the joint distribution of input tokens, e.g., vector embeddings of words in

a paragraph or patches in an image with positional encodings, remains the same upon

permuting their orders. Meanwhile, the attention mechanism and entrywise feedforward

neural networks preserve the notion of exchangeability throughout all transformer layers.

By the de Finetti Theorem (de Finetti, 1937), the notion of exchangeability induces a latent

variable model that is invariant to input sizes. Unlike classical Bayesian settings, where

the latent variable model is defined across many data points, ours is defined over input

tokens within one data point (in an “in-context” manner), which captures a fine-grained

structure of interactions as relational inductive biases (Battaglia et al., 2018). The latent

variable model enables our theoretical analysis, which is summarized in the following:

- To answer (a) on representation, we establish the existence of a sufficient and minimal

representation of input tokens based on the latent variable model, which is induced by

exchangeability. In particular, we leverage the latent variable model to define sufficiency

and minimality following the factorization theorem and the sufficiency principle (Fisher,

1922). Moreover, we prove that the posterior distribution of the latent variable given input

tokens is a sufficient and minimal representation, which plays a central role in predicting

output labels and solving downstream tasks. Intuitively, the latent variable instantiates

the “concept” of a paragraph or an image, which is “summarized” over words or patches.

71

In detail, the “summarization” process is formalized by the mapping from input tokens

to the posterior distribution of the latent variable, that is, inferring the “concept” in a

Bayesian manner within the forward pass.

Given the answer to (a), which defines the desirable representation as the latent posterior,

it remains unclear how to parameterize or approximate the latent posterior, which is

addressed by the answer to (b).

- To answer (b) on inference, we prove that the attention mechanism with the desired

parameter infers the latent posterior up to an approximation error, which is decreasing in

input sizes. In particular, we prove that a specific parameterization of the latent posterior

yields a variant of the attention mechanism based on kernel conditional mean embedding

(CME), namely the CME attention, which infers the conditional mean of the value given

the key. Here the value and the key (or the query) are obtained from a parameterized

transformation of input tokens, where the unknown parameter requires learning.

Although the CME attention recovers the latent posterior for any input sizes, it differs

from the commonly used softmax attention by a normalization matrix. To this end, we

prove that the CME attention and the softmax attention are equivalent at the infinite limit

of input sizes by drawing a connection to nonparametric conditional density estimation.

In other words, the softmax attention recovers the latent posterior up to an approximation

error that is decreasing in input sizes, which characterizes how it performs relational

inference over long sequences. As byproducts, we justify the necessity of multiple attention

heads in transformers and provide a causal interpretation of the inferred representation

through instrumental variables.

72

Given the answer to (b), which quantifies the approximation error for the latent posterior,

it remains unclear how to learn the desired parameter of the attention mechanism, which

is addressed by the answer to (c).

- To answer (c) on learning, we prove that both supervised and self-supervised objectives

allow empirical risk minimization to learn the desired parameter up to a generalization

error, which is independent of input sizes. In particular, through maximum likelihood

estimation, we establish the connection between the latent posterior and the masked

objective, which is defined by the empirical risk for predicting masked tokens.

Moreover, we prove that the global minimizer of the masked objective attains a generaliza-

tion error that is independent of input sizes, which justifies why transformers allow long

sequences. Our proof exploits the invariance and equivariance of the attention mechanism

and entrywise feedforward neural networks, which deviates from most existing analyses of

the generalization error. Particularly, in the self-supervised setting, e.g., as in MAE (He

et al., 2022), we identify a condition number that is pivotal to solving downstream tasks.

Intuitively, the condition number quantifies the amount of information that is transferred

from the pretraining task to a new task.

Meanwhile, in the overparameterized regime, we prove that any stationary point of the

masked objective is almost globally optimal when the attention mechanism and entrywise

feedforward neural networks have sufficient expressive power. As a result, stochastic

gradient descent finds the global minimizer of the masked objective, which generalizes as

discussed above.

73

Combining the above analysis of the approximation, generalization, and optimization

errors in the answer to (a)-(c), we provide a complete characterization of the attention

mechanism.

Contribution: In summary, our theoretical contribution is threefold:

(i) We identify a general principle for parameterizing function classes and constructing

learning objectives based on latent posterior inference, which requires a minimal assumption

of data. In contrast to classical learning paradigms, the latent variable model is defined

over input tokens within one data point, which captures relational inductive biases.

(ii) We recover the attention mechanism from a specific parameterization of latent posterior

inference based on kernel conditional mean embedding and nonparametric conditional

density estimation. In particular, we demonstrate how the attention mechanism combines

the handcrafted architecture, which is induced by latent posterior inference, and the

learnable parameter, which determines the kernel function.

(iii) We characterize the approximation, generalization, and optimization errors for estimat-

ing the learnable parameter of the attention mechanism through minimizing the masked

objective. In particular, we prove that input sizes do not degrade the approximation and

generalization errors, which justifies why transformers allow long sequences.

Discussion: Our theoretical analysis casts the attention mechanism as a “greybox”

approach to modeling, that is, it combines the handcrafted architecture, which is coined

by a probabilistic model over input tokens within one data point (“whitebox”), and the

learnable parameter, which is estimated in an end-to-end manner through empirical risk

minimization (“blackbox”). It is worth mentioning that our theoretical analysis studies

74

the class of transformers like BERT (Devlin et al., 2018) and ViT (Dosovitskiy et al., 2020)

(“encoder-only”), which does not exploit the autoregressive structure as in GPT (Brown

et al., 2020) (“decoder-only”). On the other hand, the general principle identified in (i) is

applicable to other probabilistic models like hidden Markov models or general graphical

models over trees and grids, which motivates other principled architectures beyond the

attention mechanism. We leave it as a future direction.

Related Works

Transformers and Attention. The pioneering work (Vaswani et al., 2017) proposes

transformers for the first time and highlights the key role of the attention mechanism.

Subsequently, there are a vast body of works that propose various transformer architectures

and different pretraining paradigms. See, e.g., Devlin et al. (2018); Radford et al. (2018,

2019); Dai et al. (2019); Brown et al. (2020); Dosovitskiy et al. (2020); He et al. (2022) and

the references therein. Transformers demonstrate significant empirical successes in natural

language processing (Wolf et al., 2020), computer vision (Dosovitskiy et al., 2020), protein

structure prediction (Jumper et al., 2021), and sequential decision making (Chen et al.,

2021). Our work provides a theoretical justification of transformers and the attention

mechanism, that is, how a latent variable model induced by exchangeability allows us to

derive transformer architectures and pretraining paradigms in a principled manner.

Analysis of Transformers and Attention. Our work is related to a recent line of works

that analyze transformers and the attention mechanism (Tsai et al., 2019; Vuckovic et al.,

2020; Hron et al., 2020; Yang, 2020; Yang and Littwin, 2021; Edelman et al., 2021; Wei

et al., 2021a; Xie et al., 2021; Malladi et al., 2022; Garg et al., 2022; Zhang et al., 2022b).

75

Specifically, Tsai et al. (2019) demonstrate that the attention mechanism can be viewed

as a kernel smoother over input tokens. Vuckovic et al. (2020) establish the Lipschitz

continuity of transformers via the lens of interacting particle systems. Hron et al. (2020);

Yang (2020); Yang and Littwin (2021); Malladi et al. (2022) characterize the infinite-width

limit of transformers under the framework of neural tangent kernels (Jacot et al., 2018).

Among them, Malladi et al. (2022) demonstrate that neural tangent kernels can capture the

parameter update in the fine-tuning phase. Edelman et al. (2021) prove that transformers

can represent a sparse function of input tokens and establish a sample complexity that

scales logarithmically in input sizes. Wei et al. (2021a) characterize the approximation and

generalization errors for learning a Turing machine with transformers. Xie et al. (2021)

prove that transformers can infer a latent variable (or “concept”) assuming that the data

distribution is a mixture of hidden Markov models. Garg et al. (2022) demonstrate that

transformers can learn to perform linear predictions within one data point (in an “in-

context” manner). Zhang et al. (2022b) evaluate the empirical performance of transformers

for learning equality and group operations.

Our work provides a complete characterization of the representation, inference, and

learning aspects of the attention mechanism via the lens of exchangeability and latent

variable models, which requires a minimal assumption on the data distribution (exchange-

ability). Specifically, in comparison with Tsai et al. (2019), we demonstrate that the

attention mechanism not only parameterizes nonparametric conditional density estimation

but also approximates kernel conditional mean embedding, which infers the conditional

mean of the value given the key. Moreover, we invoke the latent variable model induced by

exchangeability to justify the attention mechanism as a specific parameterization of latent

76

posterior inference. Meanwhile, we leverage the latent variable model to derive the common

choice of both supervised and self-supervised objectives, e.g., the masked objective. In

comparison with Xie et al. (2021), we do not assume that the data distribution takes

a specific form (a mixture of hidden Markov models) or the latent posterior is given a

priori by a specific parameter (no learning required). Instead, we prove that the attention

mechanism is capable of instantiating latent posterior inference up to an approximation

error and the masked objective allows us to learn to infer the latent posterior up to the

generalization and optimization errors. Also, it is worth mentioning that Xie et al. (2021)

focus on the class of transformers like GPT (Brown et al., 2020) (“decoder-only”), while

we focus on the class of transformers like BERT (Devlin et al., 2018) and ViT (Dosovitskiy

et al., 2020) (“encoder-only”). In comparison to Edelman et al. (2021), we exploit the

invariance and equivariance of transformers and establish a generalization error that is

independent of input sizes.

Generalization of Deep Neural Networks. Our work is related to the vast body of

works that analyze the generalization error of deep neural networks. See, e.g., Jiang et al.

(2019); Valle-Pérez and Louis (2020) for a comprehensive introduction. However, most of

them do not exploit invariance and equivariance. As a result, a direct application of such

results yields a vacuous bound as input sizes increase. On the other hand, Sokolic et al.

(2017); Sannai et al. (2021); Elesedy (2021); Zhu et al. (2021) establish a generalization

error that captures the improvement from invariance and equivariance, which, however, is

not applicable to the attention mechanism. Our theoretical analysis of the generalization

error follows the framework of Bartlett et al. (2017), which stems from Bartlett (1996);

Bartlett and Mendelson (2002). In addition, the concurrent work (Zhang et al., 2022a)

77

provides a PAC-Bayes analysis of the generalization error of the attention mechanism in

the context of multiagent reinforcement learning.

Optimization of Deep Neural Networks. Our work is built on the vast body of works

that analyze the optimization error of deep neural networks (Allen-Zhu et al., 2019a,c,b;

Arora et al., 2019b; Du et al., 2018b, 2019; Zhang et al., 2019c; Zou et al., 2018; Zou and

Gu, 2019; Allen-Zhu et al., 2019c; Cao and Gu, 2019b; Li and Liang, 2018; Chizat et al.,

2019; Mei et al., 2018, 2019; Rotskoff and Vanden-Eijnden, 2018; Nguyen, 2019; Sirignano

and Spiliopoulos, 2020). Most of them focus on overparameterized neural networks in the

neural tangent kernel (Jacot et al., 2018) or mean-field regime (Mei et al., 2018). Our

work analyzes the optimization error in the neural tangent kernel regime, which is similar

to Malladi et al. (2022). Meanwhile, it is worth mentioning that our theoretical analysis of

the approximation and generalization errors is not restricted to the neural tangent kernel

regime.

Invariance and Equivariance in Deep Neural Networks. Our work is related to a

recent line of works on deep neural networks with invariance or equivariance with respect

to permutations and other group operations. See, e.g., Scarselli et al. (2008); Zaheer et al.

(2017); Lee et al. (2019a); Keriven and Peyré (2019); Romero and Cordonnier (2020);

Bloem-Reddy and Teh (2020); Hutchinson et al. (2021); Satorras et al. (2021); Kossen

et al. (2021) and the references therein. Also, see Valle-Pérez and Louis (2020); Han et al.

(2022) for a detailed survey. In comparison, we exploit the latent variable model induced

by exchangeability to provide a complete characterization of the representation, inference,

and learning aspects of the attention mechanism.

78

3.2. Preliminary

Notations. We denote by [L] the index set {1, 2, . . . , L} for any L ∈ N+. For any vector

v ∈ RL, we denote by softmax(v) = (exp(vℓ)/(
∑L

ℓ′=1 exp(vℓ
′
)))ℓ∈[L] ∈ RL the softmax

function. We denote by ∥ · ∥2 the spectral norm, which becomes the ℓ2-norm when it

operates on a vector. We denote by ∥ · ∥F the Frobenius norm. For any d ∈ N+, we denote

by Sd−1 = {x ∈ Rd | ∥x∥2 = 1} the (d− 1)-dimensional unit sphere.

Reproducing Kernel Hilbert Space. Let Hx be a Hilbert space over a domain X,

which contains functions f : X → R and is equipped with the inner product ⟨·, ·⟩Hx .

We say that Hx is a reproducing kernel Hilbert space (RKHS) with the kernel function

K : X × X → R if we have the reproducing property that ⟨f,K(x, ·)⟩Hx = f(x) for any

f ∈ Hx and x ∈ X. An RKHS Hx is associated with a feature mapping ϕ : X→ ℓ2 such

that K(x, x′) = ϕ(x)⊤ϕ(x′) for any x, x′ ∈ X (Muandet et al., 2016). Here we denote by ℓ2

the space of all square-summable series.

Attention Mechanism. For an input sequence X = {xℓ}ℓ∈[L] with the input tokens

xℓ ∈ Rd, we consider the key matrix K ∈ RL×dp and the value matrix V ∈ RL×d defined as

K = (k1, . . . , kL)⊤ =
(
kθ(x

1), . . . , kθ(x
L)
)⊤ ∈ RL×dp ,

V = (v1, . . . , vL)⊤ =
(
vθ(x

1), . . . , vθ(x
L)
)⊤ ∈ RL×d.

Here kθ : Rd → Rdp and vθ : Rd → Rd map the ℓ-th input token xℓ to the key kℓ and the

value vℓ, respectively, where θ ∈ Θ is the the learnable parameter. For any query q ∈ Rdp ,

79

we define the attention mechanism as follows,

attn(q,K, V) = V ⊤norm
(
K(K, q)

)
∈ Rd,(3.2.1)

where K : Rdp × Rdp → R is a kernel function and we write K(K, q) = (K(kℓ, q))ℓ∈L ∈ RL.

Here we denote by norm : RL → RL a normalization mapping.

A common example of the attention mechanism is the softmax attention (Vaswani

et al., 2017), where the kernel function is the exponential kernel KEXP(q, k) = exp(q⊤k/γ)

with a fixed γ > 0 and the normalization mapping is the following softmax normalization,

normSM
(
K(K, q)

)
=
(
1⊤K(K, q)

)−1 · K(K, q).

The attention mechanism in (3.2.1) with the exponential kernel and the softmax nor-

malization is the softmax attention (Vaswani et al., 2017), which takes the following

form,

attnSM(q,K, V) = V ⊤normSM
(
KEXP(K, q)

)
= softmax(Kq/γ).

3.3. Representation, Inference, and Estimation

via Latent Variable Model

From Exchangeability to Latent Variable Model. We consider the input sequence

X = {xℓ}ℓ∈[L], where xℓ ∈ Rd is an input token and L ∈ N+ is the sequence length. In

natural language processing (NLP), such a sequence consists of embeddings of words in

a paragraph, while in computer vision (CV), such a sequence consists of embeddings of

patches in an image.

80

As is the case in BERT (Devlin et al., 2018) and ViT (Dosovitskiy et al., 2020), the

input sequence is exchangeable since it includes positional encodings. Specifically, we say

that a random variable sequence {xℓ}ℓ∈N+ is exchangeable if and only if it holds for any

sequence length L ∈ N+ and any index permutation π : [L]→ [L] that

P(x1, x2, . . . , xL) = P(xπ(1), xπ(2), . . . , xπ(L)).

In other words, permuting the index order within the random variable sequence does not

affect its joint distribution. The following proposition states that the exchangeability of a

random variable sequence induces a latent variable.

Proposition 3.3.1 (de Finetti Representation Theorem (de Finetti, 1937)). Let {xℓ}ℓ∈N+

be an exchangeable sequence. Then, there exists a latent variable z such that for any

sequence length L ∈ N+,

P(x1, . . . , xL) =

∫ L∏
ℓ=1

P(xℓ | z) · P(z)dz,

P(xℓ |x1, . . . , xℓ−1, xℓ+1, . . . , xL) =

∫
P(xℓ | z) · P(z |x1, . . . , xℓ−1, xℓ+1, . . . , xL)dz, ∀ℓ ∈ [L].

We remark that Proposition 3.3.1 requires an infinite-length exchangeable sequence.

Up to an approximation error, a finite-length exchangeable sequence also induces a latent

variable (Diaconis and Freedman, 1980). In what follows, we consider the former case where

the input sequence includes positional encodings and is thus exchangeable (Devlin et al.,

2018; Dosovitskiy et al., 2020). See Figure 3.1 for an illustration of the exchangeability.

81

x1 xLx2 ⋯ ⋯xℓraw input

x1 xLx2
⋯ ⋯xℓ

e1 eLe2 eℓ
exchangeable input

eℓpositional encoding eLe1 e2

Figure 3.1. The input sequence (the raw version without positional encod-
ings) becomes exchangeable with positional encodings. In practice, the
positional encoding is incorporated in an additive manner (instead of con-
catenation).

Proposition 3.3.1 guarantees the existence of a latent variable, which forms the basis

of our theoretical analysis. See Figure 3.2a for an illustration. Intuitively, the latent

variable can be viewed as the “concept” of the input sequence, which is “summarized”

over words or patches. For instance, in NLP, the latent variable instantiates the “meaning”

of a paragraph, while in CV, the latent variable instantiates the “theme” of an image. In

particular, the latent posterior P(z |X) plays a key role in solving downstream tasks (Song

et al., 2014; Xie et al., 2021), as it is a desired representation of the input sequence X. See

Figure 3.2b for an illustration. In the following lemma, we prove that the latent posterior

bz(X) = P(z = · |X) is a minimal sufficient statistic (Fisher, 1922).

Lemma 3.3.2 (Minimal Sufficiency of Latent Posterior). Let z be the latent variable

induced by the exchangeability of the input sequence X. The latent posterior bz(X) =

P(z = · |X) is a minimal sufficient statistic of the input sequence X for the latent variable

z. Meanwhile, for any target variable y that is independent of the input sequence X

conditioning on the latent variable z, we assume the invertibility of the operator T defined

82

by

(T f)(y) =

∫
P(y | z)f(z)dz.(3.3.1)

Then, the latent posterior bz(X) = P(z = · |X) is a minimal sufficient statistic of the input

sequence X for the target variable y.

Proof. See §C.2.3 for a detailed proof. □

From Latent Variable Model to Learning Objectives. In what follows, we consider

the prediction task in BERT (Devlin et al., 2018) and ViT (Dosovitskiy et al., 2020).

Let y be the target variable and X = {xℓ}ℓ∈[L] is the input sequence. In particular, in

self-supervised learning (BERT), the target variable y is a masked token of the input

sequence, while in supervised learning (ViT), y is the unknown label corresponding to the

class encoding. We remark that in ViT, the unknown label y corresponds to the masked

token in BERT, while the input class encoding corresponds to the mask in BERT. In both

cases, the concatenation {y, x1, . . . , xL} is treated as an exchangeable sequence since it

includes the positional encodings. By Proposition 3.3.1, we have

P(y |X) =

∫
P(y | z) · P(z |X)dz,(3.3.2)

where z is the latent variable induced by the exchangeability of X. See Figure 3.2 for an

illustration.

In what follows, we treat y as a target variable that satisfies (3.3.2), which specifies

that y is independent of the input sequence X conditioning on the latent variable z. By

Lemma 3.3.2, the latent posterior bz(X) is a minimal sufficient statistic of X for y. In

83

other words, the latent posterior bz(X) is a desired representation of the input sequence

X. According to (3.3.2), the prediction of the target variable y from the input sequence

X (forward pass) takes two implicit steps: i) the inference of the latent posterior P(z |X),

and ii) the prediction of y based on the generative distribution P(y | z) integrated with the

latent posterior P(z |X).

x1 xL

zmask

x2 ⋯ ⋯xℓ

(a) Prediction of a masked
token xℓ.

x1 xL

z

x2 ⋯ ⋯xℓ

y

(b) Prediction of the tar-
get variable y, which can be
viewed as a masked token.

Figure 3.2. The forward pass for the prediction of the masked token xℓ and
the target variable y. The prediction of y takes two steps: i) the inference
of the latent posterior P(z |X), and ii) the prediction of y based on the
generative distribution P(y | z) integrated with the latent posterior P(z |X).

To construct the learning objective, we consider the distribution of the target variable

y conditioning on the input sequence X and parameterize it by Pθ(y |X), where θ is the

learnable parameter. Given a dataset Dn = {(Xi, yi)}i∈[n], where Xi is the i-th input

sequence and yi is the i-th target variable, the maximum likelihood estimation (MLE)

objective takes the following form,

max
θ

Ê(X,y)∼Dn

[
logPθ(y |X)

]
(3.3.3)

= Ê(X,y)∼Dn

[
log

∫
Pθ(y | z)Pθ(z |X)dz

]
.

We define Ê(X,y)∼Dn [·] as the empirical expectation with respect to the dataset Dn.

84

3.3.1. Preliminary Finite-Dimensional Example

Latent Variable Model. We provide a finite-dimensional Gaussian-distributed example

to illustrate the latent variable model and the MLE objective. Specifically, we consider the

setting with the input sequence X = {xℓ}ℓ∈[L] and the target variable y, where xℓ ∈ Rd

and y ∈ Rd. For the input sequence X, we consider the following example of the latent

variable model in (3.3.2),

rℓ = zcℓ + ϵℓ, where cℓ = c∗(x
ℓ), rℓ = r∗(x

ℓ), ∀ℓ ∈ [L].(3.3.4)

Here z ∈ Rdr×dc is the latent variable induced by the exchangeability of the input sequence,

cℓ ∈ Rdc and rℓ ∈ Rdr are the covariate and response, respectively, which are determined

by two unknown functions c∗ : Rd → Rdc and r∗ : Rd → Rdr , and ϵℓ ∼ N(0, σ2I) is the

noise, which is independent of cℓ. In practice, the covariate cℓ instantiates the contextual

information, while the response rℓ instantiates the semantic information. We consider the

prediction of the (unknown) target variable y based on its (known) input mask msk. In the

self-supervised setting (Devlin et al., 2018), y is a masked token of the input sequence, while

msk is the positional encoding. In the supervised setting (Dosovitskiy et al., 2020), y is the

label of the input sequence, while msk is the class encoding. Specifically, corresponding

to (3.3.4), we consider the prediction model with y = rmsk, where rmsk is the response

corresponding to the covariate cmsk of the input mask such that

y = rmsk = zcmsk + ϵ, where cmsk = cm∗(msk).(3.3.5)

85

Here cm∗ : Rd → Rdc is an unknown function and ϵ ∼ N(0, σ2I) is the noise, which

is independent of cmsk. For example, (3.3.5) holds when we consider an exchangeable

sequence {x1, . . . , xL, xL+1} satisfying (3.3.4) for any ℓ ∈ [L+ 1] with the input sequence

X = {x1, . . . , xL}, cmsk = cL+1, and the target variable y = rmsk = rL+1. In the next

section, we consider an advanced infinite-dimensional example and show that cmsk, cℓ, and

rℓ correspond to the query, the key, and the value in the attention mechanism, respectively.

Note that the regression model in (3.3.4) is a conditional model. Instead of modeling

the conditional distribution of y given X as in (3.3.2), we model the conditional distribution

of y given X and msk. Recall that y = rmsk. Corresponding to (3.3.2), the generative

distribution takes the following form,

P(y | msk, z) ∝ exp
(
−
∥∥y − zcm∗(msk)

∥∥2
2

/
2σ2
)
.(3.3.6)

We take the Gaussian distribution N(0, λI) as the prior of z. By (3.3.4), the latent

posterior P(z |X) is a Gaussian distribution, which (approximately) takes the following

form,

P(z |X) ∝ exp
(
−
∥∥z − z̄(X)

∥∥2
2

/
2ι2
)
.(3.3.7)

Here the covariance of the latent posterior is approximated by ι2I and the mean z̄(X) of

the latent posterior takes the following form,

z̄(X) = E[z |X] = R⊤(CC⊤ + λI)−1C,

86

where we define C = (c1, . . . , cL)⊤ ∈ RL×dc and R = (r1, . . . , rL)⊤ ∈ RL×dr . Combining

(3.3.6) and (3.3.7), we obtain

P(y | msk, X) =

∫
P(y | msk, z) · P(z |X)dz ∝ exp

(
−
∥∥y − z̄(X)cm∗(msk)

∥∥2
2

/
2σ̃2
)
,(3.3.8)

which corresponds to (3.3.2), Here we approximate the covariance of y conditioning on

X and msk by σ̃2I, where σ̃ does not depend on X. We remark that (3.3.8) is a form of

Bayesian model averaging (Wasserman, 2000) within one data point.

Parameterization of Latent Variable Model. Recall that c∗, r∗, and cm∗ in (3.3.4) and

(3.3.5) are unknown. We parameterize them with cθ, rθ, and cmθ, where θ ∈ Θ is a learnable

parameter. With the ideal parameter θ∗ ∈ Θ, it holds for any ℓ ∈ [L] that

cθ∗(xℓ) = c∗(x
ℓ) = cℓ, rθ∗(xℓ) = r∗(x

ℓ) = rℓ, cmθ∗(msk) = cm∗(msk) = cmsk.(3.3.9)

By (3.3.7), we parameterize the latent posterior P(z |X) as follows,

Pθ(z |X) ∝ exp
(
−
∥∥z − z̄θ(X)

∥∥2
2

/
2ι2
)
,(3.3.10)

where z̄θ(X) is calculated as follows,

z̄θ(X) = rθ(X)⊤
(
cθ(X)cθ(X)⊤ + λI

)−1
cθ(X).

Here cθ(X) = (cθ(x
1), . . . , cθ(x

L))⊤ ∈ RL×dc and rθ(X) = (rθ(x
1), . . . , rθ(x

L))⊤ ∈ RL×dr .

By (3.3.6), we parameterize the generative distribution P(y | msk, z) as follows,

Pθ(y | msk, z) ∝ exp
(
−
∥∥y − zcmθ(msk)

∥∥2
2

/
2σ2
)
.

87

By (3.3.8), we define the conditional likelihood P(y | msk, X) as follows,

Pθ(y | msk, X) ∝ exp
(
−
∥∥y − z̄θ(X)cmθ(msk)

∥∥2
2

/
2σ̃2
)
.(3.3.11)

Training and Testing. In the training phase, given the dataset Dn = {(Xi, yi)}i∈[n],

we aim to maximize the MLE objective in (3.3.3). By (3.3.11), maximizing the MLE

objective is equivalent to minimizing the mean-squared error as follows,

min
θ

Ê(X,y)∼Dn

[∥∥y − z̄θ(X)cmθ(msk)
∥∥2
2

]
.(3.3.12)

Note that the learnable parameter θ is estimated across different data points in the dataset

Dn through the backward pass, while the latent variable z is inferred within one data

point (Xi, yi) through the forward pass. We remark that by learning θ, the model learns

to perform Bayesian model averaging. Suppose that we solve (3.3.12) and obtain the

estimator θ̂. In the testing phase, given an input sequence X† and an input mask msk†, we

predict the target variable y† by maximizing the posterior of y,

ŷ = argmax
y

Pθ̂(y | msk†, X†) = E[rmsk | msk†, X†] = z̄θ̂(X†)c
m

θ̂
(msk†).(3.3.13)

We remark that the learning process for the attention mechanism involves two aspects. In

the forward pass, within one data point, we infer the latent posterior P(z |X) to predict

the target variable y. In the backward pass, we estimate the learnable parameter θ across

different data points. See Figure 3.3 for an illustration.

88

ℙθ(z | X) z† y†⋯x1
† xL

†x2
†X†

ℙθ(y | z)

𝚖𝚜𝚔†

Forward Pass: Predict the target by inferring the latent

Backward Pass:
Estimate across

the dataset
θ

⋯

ℙθ(z | X) z2 y2⋯x1
2 xL

2x2
2X2

ℙθ(y | z)

𝚖𝚜𝚔2

ℙθ(z | X) z1 y1⋯x1
1 xL

1x2
1X1

ℙθ(y | z)

𝚖𝚜𝚔1

ℙθ(z | X) zn yn⋯x1
n xL

nx2
nXn

ℙθ(y | z)

𝚖𝚜𝚔n

Figure 3.3. Forward pass: within one data point (X, y), we infer the latent
posterior Pθ(z |X) by (3.3.10). We predict y† by ŷ in (3.3.13). Backward
pass: across different data points in the dataset Dn, we estimate the learnable
parameter θ by (3.3.12).

The finite-dimensional example illustrates a “greybox” approach to modeling, that

is, it combines the handcrafted architecture in (3.3.8) (“whitebox”), and the learnable

parameter in (3.3.12), which is estimated in an end-to-end manner through empirical

risk minimization (“blackbox”). As shown in Figure 3.4, the forward pass first infers the

latent variable z and then utilizes the latent variable z to predict the masked token (in the

self-supervised setting) or the unknown label (in the supervised setting). Meanwhile, the

backward pass estimatess the learnable parameter. In the following section, we extend the

finite-dimensional example to the infinite-dimensional setting, which recovers the attention

mechanism. In particular, we demonstrate that the attention mechanism infers the latent

89

posterior within a data point. Also, we show that the covariate corresponds to the query

and key and that the response corresponds to the value in the attention mechanism.

input

input-to-latent

x1

xL

z
latent-to-target

yexchangeable

supervised

self-supervised downstream

mask

Figure 3.4. The forward and backward passes in transformers. Dotted arrows
stand for forward passes (input→latent→target). Solid arrows stand for
backward passes (training). Masks (grey tokens) are only used to illustrate
the self-supervised setting (yellow box).

3.4. Attention as Latent Posterior Inference

In what follows, we demonstrate how the attention mechanism performs latent posterior

inference for the latent variable model, which is induced by the exchangeability of the

input sequence. In §3.4.1, we extend the finite-dimensional example in §3.3 to an RKHS to

induce a variant of the softmax attention, namely, the conditional mean embedding (CME)

attention. In particular, we prove that it infers the latent posterior in the forward pass. In

§3.4.2, we prove that the softmax attention has the same limit as the CME attention when

the sequence length goes to infinity, which implies that the softmax attention approximately

infers the latent posterior.

90

3.4.1. Attention as Kernel Conditional Mean Embedding

Advanced Infinite-Dimensional Example. We present an infinite-dimensional version

of the preliminary example in §3.3.1, which motivates us to study the CME attention.

Similarly to (3.3.4), we consider the following model for the input sequence X = {xℓ}ℓ∈[L]

with input token xℓ ∈ Rd,

rℓ = zϕ(cℓ) + ϵℓ, where cℓ = c∗(x
ℓ), rℓ = r∗(x

ℓ), ∀ℓ ∈ [L].(3.4.1)

Here cℓ ∈ Rdp and rℓ ∈ Rd are the covariate and the response, respectively, which are

determined by two unknown functions c∗ : Rd → Rdp and r∗ : Rd → Rd, ϕ : Rdp → Hc

is the feature mapping of the RKHS Hc, z : Hc → Rd is a linear mapping, which is

viewed as the latent variable induced by the exchangeability of the input sequence X,

and ϵℓ ∼ N(0, σ2I) is the Gaussian noise, which is independent of the covariate cℓ. Note

that ϕ(c1)⊤ϕ(c2) = K(c1, c2) for any c1, c2 ∈ Rdp , where K : Rdp × Rdp → R is the kernel

function of the RKHS Hc. A common example is the Gaussian radial basis function (RBF)

kernel KRBF(q, k) = exp(−∥q − k∥22/2γ) with γ > 0. Similarly to (3.3.5), the (unknown)

target variable y is determined by its (known) input mask msk, which satisfies

y = rmsk = zϕ(cmsk) + ϵ, where cmsk = cm∗(msk).(3.4.2)

Here we denote by cmsk and rmsk the covariate and the response corresponding to the input

msk, respectively, cm∗ : Rd → Rdp is an unknown function, and ϵ ∼ N(0, σ2I) is a Gaussian

noise, which is independent of cmsk. To simplify the presentation, we view the RKHS Hc

as a vector space Rdϕ with dϕ =∞. Correspondingly, we view the latent variable z as a

91

matrix in Rd×dϕ . We present a rigorous characterization of z in §C.2.1 based on Gaussian

process regression. Similarly to (3.3.9), we parameterize c∗, r∗, and cm∗ by cθ, rθ, and cmθ,

where θ ∈ Θ is a learnable parameter. Similarly to (3.3.13), we predict rmsk in the forward

pass via

r̂ = E[rmsk | msk, X]

= rθ(X)⊤
(
ϕ
(
cθ(X)

)
ϕ
(
cθ(X)

)⊤
+ λI

)−1

ϕ
(
cθ(X)

)
ϕ
(
cmθ(msk)

)
= rθ(X)⊤

(
K
(
cθ(X), cθ(X)

)
+ λI

)−1

K
(
cθ(X), cmθ(msk)

)
,(3.4.3)

where we define K(cθ(X), cθ(X)) = (K(cθ(x
i), cθ(x

j)))i,j∈[L] ∈ RL×L, K(cθ(X), cmθ(msk)) =

(K(cθ(x
ℓ), cmθ(msk)))ℓ∈[L] ∈ RL, ϕ(cθ(X)) = (ϕ(cθ(x

1)), . . . , ϕ(cθ(x
L)))⊤ ∈ RL×dϕ , and

rθ(X) = (rθ(x
1), . . . , rθ(x

L))⊤ ∈ RL×d. We remark that (3.4.3) recovers the empirical

version of the kernel conditional mean embedding of PR| C (Song et al., 2009), where we

denote by PR| C the conditional distribution of rℓ given cℓ (as two random variables) within

one data point, and Hr = (Rd)∗ = Rd is the dual space of Rd equipped with the Euclidean

kernel ⟨·, ·⟩.

From Latent Variable Model to Attention. Recall that the attention mechanism is

defined in (3.2.1) with q ∈ Rdp , K = (k1, . . . , kL)⊤ ∈ RL×dp , and V = (v1, . . . , vL)⊤ ∈ RL×d.

The kernel conditional mean embedding in (3.4.3) motivates us to consider the following

CME normalization,

normCME
(
K(K, q)

)
=
(
K(K,K) + λI

)−1
K(K, q),(3.4.4)

92

where we write K(K, q) = (K(kℓ, q))ℓ∈[L] ∈ RL and K(K,K) = (K(ki, kj))(i,j)∈[L]×[L] ∈ RL×L

We call the attention mechanism with the CME normalization in (3.4.4) the CME attention

and denote it by attnCME. In particular, the CME attention takes the following form,

attnCME(q,K, V) = V ⊤normCME
(
K(K, q)

)
= V ⊤(K(K,K) + λI

)−1
K(K, q) ∈ Rd.(3.4.5)

We see that the CME attention recovers (3.4.3) when

q = cmθ(msk), kℓ = cθ(x
ℓ), vℓ = rθ(x

ℓ), ∀ℓ ∈ [L].(3.4.6)

We remark that (3.4.6) establishes a connection between the latent variable model and the

attention mechanism. In other words, the covariate cmsk of the input mask msk corresponds

to the query q, the covariate cℓ of the input token xℓ corresponds to the key kℓ for ℓ ∈ [L],

and the response rℓ of the input token xℓ corresponds to the value vℓ for ℓ ∈ [L]. In the

attention mechanism, we denote by qθ : Rd → Rdp , kθ : Rd → Rdp , and vθ : Rd → Rd the

mappings from the input token to the query, the key, and the value, respectively, with the

learnable parameter θ. In particular, we have the following correspondence,

qθ = cmθ, kθ = cθ, vθ = rθ.

In an common example, we instantiate qθ, kθ, and vθ for x ∈ Rd as follows,

qθ(x) = (W q)⊤nn(x;A), kθ(x) = (W k)⊤nn(x;A), vθ(x) = (W v)⊤nn(x;A),

(3.4.7)

93

where W q,W k ∈ Rd×dp and W v ∈ Rd×d are learnable parameters. Here we denote by

nn(·;A) : Rd → Rd the feedforward neural network with the learnable parameter A and

summarize the learnable parameter as θ = (A,W q,W k,W v). Similarly to (3.3.12), the

MLE objective takes the following form,

min
θ

Ê(X,y)∼Dn

[∥∥∥y − attnCME
(
qθ(msk), kθ(X), vθ(X)

)∥∥∥2
2

]
,(3.4.8)

where we write kθ(X) = (kθ(x
1), . . . , kθ(x

L))⊤ ∈ RL×dp and vθ(X) = (vθ(x
1), . . . , vθ(x

L))⊤ ∈

RL×d.

Limit of CME Attention with L→∞. Given an input sequence X = {xℓ}ℓ∈[L], we

consider the key-value pairs {(kℓ, vℓ)}ℓ∈[L] obtained from kℓ = kθ(x
ℓ) and vℓ = vθ(x

ℓ) for

a fixed θ. For notational simplicity, we denote by K and V the random variables with

the same distribution as (kℓ, vℓ) within one data point. Recall that we define the CME

attention in (3.4.5). Also, we define the covariance operator CKK = E[K(K, ·)⊗ K(K, ·)].

In the following proposition, we prove that the CME attention approximates the kernel

conditional mean embedding of PV |K as L→∞. Note that the following proposition does

not depend on the latent variable model in (3.4.1).

Proposition 3.4.1 (CME Attention Converges to Kernel Conditional Mean Embedding).

Let K be a positive definite kernel function. We assume that {xℓ}ℓ∈[L] in the input sequence

X are independent and identically distributed (within one data point) and the value ∥vℓ∥2

is upper bounded by 1 for any ℓ ∈ [L]. It holds with probability at least 1− δ that

∥∥attnCME(q,K, V)− E[V |K = q]
∥∥
2

= O
(√

L

λ
·
(

2

λ
+

√
Γ(L−1λ)

λ

)
log

1

δ
+ λL−1

)
.

94

Here Γ(L−1λ) is the effective dimension of the covariance operator CKK, which is defined

as Γ(L−1λ) = Tr((L−1λI + CKK)−1CKK).

Proof. See §C.2.4 for a detailed proof. □

We remark that when we use the Gaussian RBF kernel KRBF in the CME attention,

it holds that Γ(L−1λ) ≤ O(L/λ) (Zhang et al., 2015). We then have
∥∥attnCME(q,K, V)−

E[V |K = q]
∥∥
2
≤ O(L · λ−3/2 · log(1/δ) + λL−1). Note that the CME attention attnCME is

a variant of the softmax attention (Vaswani et al., 2017) with a different normalization.

In the following section, we prove that the softmax attention has the same limit as the

CME attention when the sequence length L goes to infinity.

3.4.2. Softmax Attention Infers Latent Posterior

In §3.4.1, we demonstrate how the latent variable model motivates the design of the CME

attention. Recall that we consider the attention mechanism in the form of (3.2.1) with

q ∈ Rdp , K ∈ RL×dp , and V ∈ RL×d. In practice, a common normalization is defined as

follows,

normSM(K(K, q)) =
(
1⊤
LK(K, q)

)−1 · K(K, q),(3.4.9)

where 1L ∈ RL is the L-dimensional all-one vector and we recall that K(K, q) = (K(kℓ, q))ℓ∈[L] ∈

RL. We denote by attnSM the attention mechanism with the normalization in (3.4.9). When

the kernel function is the exponential kernel KEXP(q, k) = exp(k⊤q/γ) for any q, k ∈ Rdp

95

and a fixed γ > 0, the attention mechanism in (3.2.1) takes the following form,

attnSM(q,K, V) = V ⊤normSM
(
KEXP(K, q)

)
= V ⊤softmax(Kq/γ),(3.4.10)

which recovers the softmax attention in Vaswani et al. (2017). In what follows, we prove

that as the sequence length L goes to infinity, the softmax attention attnSM has the same

limit as the CME attention attnCME.

Softmax Attention Has the Same Limit as CME Attention with L→∞. We

demonstrate that the softmax attention in (3.4.10) is a conditional kernel density estimator

of PV |K. We define the conditional kernel density estimator (KDE) as follows,

P̂K
V |K(v | q) = ι ·

∑L
ℓ=1 K(kℓ, q) · K(vℓ, v)∑L

ℓ=1 K(kℓ, q)
,(3.4.11)

where ι > 0 is the normalization factor such that
∫
P̂K
V |K(v | q)dv = 1. We remark that

although the definition of the KDE in (3.4.11) involves the kernel function K(·, ·), it is not

associated with any RKHS. A common choice of the kernel function is the Gaussian RBF

kernel KRBF(q, k) = exp(−∥q − k∥22/2γ). In what follows, we normalize the query q, the

key k, and the value v so that q, k ∈ Sdp−1 and v ∈ Sd−1, where Sdp−1 and Sd−1 are the

(dp−1)-dimensional and (d−1)-dimensional unit spheres, respectively. On the unit sphere,

the exponential kernel is equivalent to the Gaussian RBF kernel. Specifically, it holds for a

given rescaling γ > 0 that KEXP(q, k) = exp(q⊤k/γ) = C ·exp(−∥q−k∥22/2γ) = C ·KRBF(q, k)

for any q, k ∈ Rdp , where C > 0 is an absolute constant. Moreover, when we use the

exponential kernel in (3.4.11), the value of ι does not depend on q. To see this, note

that
∫
Sd−1 KEXP(v

1, v)dv =
∫
Sd−1 KEXP(v

2, v)dv for any v1, v2 ∈ Sd−1 due to the symmetry.

96

The following proposition proves that the attention mechanism in (3.4.10) outputs the

conditional kernel density estimator in (3.4.11) and has the same limit as the CME

attention as L→∞.

Proposition 3.4.2 (Softmax Attention Converges to Kernel Conditional Mean Embed-

ding). Recall that the softmax attention is defined in (3.4.10). It holds for any q ∈ Sdp−1

that

attnSM(q,K, V) = C

∫
Sd−1

v · P̂K
V |K(v | q)dv,

where C > 0 is an absolute constant. Meanwhile, under the condition that P̂K
V |K(v | k)→

PV |K(v | k) uniformly for any k as L→∞, it holds for L→∞ that

attnSM(q,K, V)→ C · E[V |K = q].

Proof. See §C.2.5 for a detailed proof. □

We remark that the uniform convergence P̂K
V |K(v | k) → PV |K(v | k) holds when the

density of PK is bounded from below (De Gooijer and Zerom, 2003). As shown in

Propositions 3.4.1 and 3.4.2, the softmax attention attnSM and the CME attention attnCME

have the same limit as L→∞. Since the CME attention captures the latent posterior,

which is proved in §3.4.1, we conclude that the softmax attention also captures the latent

posterior approximately. Moreover, in terms of the limiting expectation E[V |K = q],

we highlight that it implies the necessity of using the multiple heads and connects the

attention mechanism with causal inference. See §C.2.2 for a detailed discussion.

97

!""#$%& !""#'%

([) | * = q]

Proposition 4.2Proposition 4.1

Figure 3.5. As shown in Propositions 3.4.1 and 3.4.2, the softmax attention
attnSM and the CME attention attnCME have the same limit E[V |K = q] as
L→∞.

3.5. Excess Risk Analysis

To demonstrate the theoretical benefit of incorporating latent posterior inference into

the transformer architecture, we present a compact version of excess risk analysis for

one-layer single-head softmax attention neural networks without skip connections. See

§C.3 for a detailed analysis of the complete setup of the transformer architecture.

Attention Neural Network. We specify the feedforward neural network in (3.4.7)

as nn(x;A) = ReLU(Ax)1, where ReLU(·) is the rectified linear unit (ReLU) activation

that operates elementwise. In the rest of the paper, we consider the attention neural

networks with a final aggregation layer to allow for the proper scaling of the outputs

in the supervised setting and the transfer capability to diverse downstream tasks in the

self-supervised setting, which is discussed in §3.6. We define the following function class of

attention neural networks,

Fattn =
{
aggθ0 ◦ attnSM

(
qθ(msk), kθ(X), vθ(X)

)
: θ = (θ0, A,W

q,W k,W v) ∈ Θ
}
,(3.5.1)

where aggθ0 : Rd → Rdy is the aggregation layer parameterized by θ0 and attnSM is

the softmax attention defined in (3.4.10) with the learnable parameters (A,W q,W k,W v)

1Here, for ease of presentation, we consider feedforward neural networks without bias terms.

98

defined in (3.4.7). To characterize the excess risk, we specify the parameter space as

follows, which grants Fattn a finite capacity.

Assumption 3.5.1 (Parameter Space). We assume for all θ = (θ0, A,W
q,W k,W v) ∈ Θ

that

∥W q∥2 ≤ ωq, ∥W k∥2 ≤ ωk, ∥W v∥2 ≤ ωv, ∥A∥2 ≤ αnn,

∥W q∥F ≤ Rq, ∥W k∥F ≤ Rk, ∥W v∥F ≤ Rv, ∥A∥F ≤ Rnn,

where ωq, ωk, ωv, αnn, Rq, Rk, Rv, Rnn > 0.

Excess Risk. Following (3.4.8), we consider the learning objective L((X, y), f) = ∥y −

f(X)∥22 for f ∈ Fattn, where y is the target variable. We make the following assumption

on the training dataset.

Assumption 3.5.2 (Data Distribution). We assume that the training dataset Dn =

{(Xi, yi)}i∈[n] is independently and identically drawn from the data distribution D, which

is supported on the product space XL ×Y, where

XL =
{
X ∈ RL×d : maxℓ∈[L]∥xℓ∥2 ≤ R

}
, Y =

{
y ∈ Rdy : ∥y∥2 ≤ 1/2

}
.(3.5.2)

We consider the excess risk E = E[L((X, y), f̂)]− E[L((X, y), f ∗)], where E[·] is the

population expectation over the data distribution D. Here f̂ ∈ Fattn is the attention

neural network obtained from minimizing the empirical risk Ê[L((X, y), f)] in the training

process, where Ê[·] is the empirical expectation over the training dataset Dn. Here

f ∗(X) = E[y |X] is the regression function that we aim to approximate. In other words,

f ∗ is the optimal model that minimizes the population risk E[L((X, y), f)].

99

To analyze the excess risk E , we decompose it into three terms,

E = E
[
L
(
(X, y), f̂

)]
− Ê

[
L
(
(X, y), f̂

)]
+ Ê

[
L
(
(X, y), f̃

)]
− min

f∈Fattn

E
[
L
(
(X, y), f

)]
︸ ︷︷ ︸

Egen: Generalization Error

(3.5.3)

+ min
f∈Fattn

E
[
L
(
(X, y), f

)]
− E

[
L
(
(X, y), f ∗)]︸ ︷︷ ︸

Eapprox: Approximation Error

+ Ê
[
L
(
(X, y), f̂

)]
− Ê

[
L
(
(X, y), f̃

)]
︸ ︷︷ ︸

Eopt: Optimization Error

.

where f̃ = argminf∈Fattn
Ê[L((X, y), f)] is the attention neural network that minimizes the

empirical risk over Fattn.

In §3.5.1-3.5.3, we analyze the three terms on the right-hand side of (3.5.3) in the

supervised setting. In §3.6, we extend the following analysis of the approximation error

Eapprox to the self-supervised setting.

3.5.1. Generalization Error Analysis

Recall that the softmax attention in (3.4.10) is instantiated via the exponential kernel,

which is equivalent to the Gaussian RBF kernel when q and k are on the unit sphere Sdp−1.

Also, note that vector ℓ2-norm scales with the dimension dp at the rate of
√
dp. In the rest

of the paper, we consider the Gaussian RBF kernel with inputs rescaled by 1/
√
dp, i.e.,

KRBF(q, k) = exp
(
−∥q/

√
dp − k/

√
dp∥22/2

)
= exp

(
−∥q − k∥22/2dp

)
.(3.5.4)

Under Assumption 3.5.1, we define

γ = max{αnn, ωv}, κ = max

{
Rnn

αnn
,
Rv

ωv
,

Rk +Rq

(ωq + ωk) · ωv

}
, ζ =

(ωq + ωk)2 ·Rv

ωv
.

100

Recall that Fattn is the family of attention neural networks defined in (3.5.1). Let aggθ0,j

be the j-th entry of the aggregation layer aggθ0 with j ∈ [dy]. We provide the following

characterization of the generalization error Egen.

Theorem 3.5.3 (Generalization Error). Let D = max{d, dp, dy}. Suppose that Assump-

tions 3.5.1-3.5.2 hold. We assume that aggθ0 has the output range within Y and aggθ0,j is

1-Lipschitz with respect to the ∥ · ∥F-norm for all j ∈ [dy]. Then, for any δ > 0, it holds

with probability at least 1− δ that

Egen = O

(
D2

√
n
·
[√

log(1 + γ) +
√

log(1 + ζR) +
√

log(1 + κ/ζ)
]

+

√
log(1/δ)

n

)
.

Proof. See §C.3 for a detailed proof. □

An important implication of Theorem 3.5.3 is that the generalization error for attention

neural networks does not degrade as the sequence length L goes to infinity. It is also worth

mentioning that the constants α, ω,Rnn, Rattn, and R play crucial roles in the theoretical

analysis of the generalization error and justify the architecture design of the original

transformer. In specific, we observe that (i) skip connections help reducing α, ω, Rnn, and

Rattn, and (ii) layer normalizations help reducing R when there is multilayer composition

of many attention mechanisms. See §C.3 for a more involved analysis of the generalization

error of the complete setup of the transformer architecture and the related discussion.

3.5.2. Approximation Error Analysis

In what follows, we characterize the approximation error in the supervised setting.

101

Approximation Target. We aim to approximate the regression function f ∗(X) = E[y |X]

with the attention neural network fθ ∈ Fattn, which is defined in (3.5.1). The regression

function f ∗(X) is the optimal model in the sense that it minimizes the population risk

E[L((X, y), f)]. By Lemma 3.3.2, when the input mask msk and the latent variable z are

given, the target variable y is independent of the input sequence X. Thus, the regression

function f ∗(X) can be decomposed as follows,

f ∗(X) = E[y |X] = Ez |X
[
E[y | msk, z]

]
=

∫
E[y | msk, z]︸ ︷︷ ︸

g∗(z; msk) : latent-to-target

·P(z |X)dz.(3.5.5)

Here the latent-to-target mapping g∗(z; msk) can be viewed as a decoding function, which

maps the latent variable z to the target variable y given the input mask msk. On the

other hand, the latent posterior P(z |X) encodes the input sequence X into the latent

variable z. We note that the input mask msk describes the prediction task and is fixed

throughout. For example, the input mask msk corresponds to the class encoding in the

supervised setting or the positional encoding in the self-supervised setting.

From (3.5.5), we see that approximating the regression function f ∗(X) involves cap-

turing (i) the latent posterior P(z |X) and (ii) the latent-to-target mapping g∗(z; msk).

Corresponding to (i), the latent variable z summarizes the “concept” of the input sequence

X, while corresponding to (ii), the target variable y and the input mask msk specify the

prediction task. In the following, we demonstrate the central role of the latent-to-target

mapping g∗(z; msk), which attention neural networks aim to approximate.

102

Approximation Surrogate. We define the reweighted CME attention

f †
W (X; msk) = W⊤attnCME

(
q∗(msk), k∗(X), v∗(X)

)
(3.5.6)

as a surrogate function for approximating the regression function f ∗(X) in (3.5.5). Here the

reweighting parameter W ∈ Rd×dy satisfies ∥W∥F <∞. In the sequel, we demonstrate that

the latent-to-target function contained in f †
W (X; msk) approximates the latent-to-target

mapping g∗(z; msk), which is a key component of the regression function f ∗(X). By (3.4.3)

and (3.4.5), we have

W⊤attnCME
(
q∗(msk), k∗(X), v∗(X)

)
= W⊤E[vmsk | msk, X]

= W⊤
∫

E[vmsk | msk, z]︸ ︷︷ ︸
ψ(z; msk): latent-to-value

·P(z |X)dz,(3.5.7)

where q∗(msk) and vmsk replace cm∗(msk) and rmsk in (3.4.2), respectively. Taking (3.5.7)

into (3.5.6), we obtain

f †
W (X; msk) =

∫
W⊤ψ(z; msk)︸ ︷︷ ︸
g†W (X; msk)

·P(z |X)dz = Ez |X
[
g†W (z; msk)

]
,(3.5.8)

where g†W (z; msk) is a latent-to-target function parameterized by W ∈ Rd×dy .

Following the infinite-dimensional counterpart of (3.3.7), the reweighted CME attention

captures the latent posterior P(z |X) under the latent variable model in (3.4.1), where the

latent prior is Gaussian. Comparing (3.5.5) and (3.5.8), we see that the reweighted CME

attention f †
W (X; msk) performs the latent-to-target decoding via g†W (z; msk), which plays

the same role as the latent-to-target mapping g∗(z; msk). Thus, it remains to characterize

103

the expressity of the function class

G† =
{
g†W (z; msk) = W⊤ψ(z; msk) : W ∈ Rd×dy , ∥W∥F <∞

}
(3.5.9)

in terms of approximating the latent-to-target mapping g∗(z; msk) in (3.5.5).

To characterize the function class G† defined in (3.5.9), we define the function class

G†i = {g†W,i(z; msk) = w⊤
i ψ(z; msk) : wi ∈ Rd, ∥wi∥2 <∞

}
,(3.5.10)

which is formed by the i-th entry of the latent-to-target function g†W (z; msk) ∈ G†. Here

i ∈ [dy] and W = [w1, . . . , wdy]⊤. Note that the function class G†i is the RKHS HLTV induced

by the kernel function KLTV(z, z
′; msk) = ψ(z; msk)⊤ψ(z′; msk), which is a reproducing kernel.

Here the latent-to-value (LTV) mapping ψ(z; msk) is defined in (3.5.7). See §C.5.1 for a

detailed discussion. See Figure 3.6 for a visualization of the construction of HLTV.

!"#
z

z′

ℋ&'(

ψ (z; !"#)

)[v!"# | !"#, z]

)[v !"#| !"#, z′]

Reweighted
by belief

g†
W,i(z; !"#)

ψ (z′ ; !"#)

ℙ(z | X) z yi⋯x1 xLx2X
)[yi | !"#, z] = g*i (z; !"#)

Πℋ&'(,∞

Projection

latent posterior latent-to-target

Figure 3.6. The RKHS HLTV induced by the latent-to-value mapping
ψ(z; msk). The input mask msk describes the prediction task and deter-
mines the RKHS HLTV.

104

Therefore, the reweighted CME attention f †
W (X; msk) in (3.5.5) aims to capture the

i-th entry g∗i (z; msk) of the latent-to-target mapping g∗(z; msk) within the RKHS HLTV. To

this end, we make the following assumption on the fundamental hardness of the recovery

task.

Assumption 3.5.4 (Recovery Gap). For any fixed input mask msk, let

g†W,i(·; msk) = ΠHLTV,∞
(
g∗i (·; msk)

)
= argmin

gi(·;msk)∈HLTV

∥∥g∗i (·; msk)− gi(·; msk)
∥∥
∞

be the ℓ∞-norm projection of the i-th entry g∗i (z; msk) of the latent-to-target mapping

g∗(z; msk) onto the RKHS HLTV. We assume that there exists ϵg(msk) ∈ [0,+∞) such that

dy∑
i=1

∥∥g∗i (·; msk)− g†W,i(·; msk)
∥∥2
∞ ≤ ϵ2g(msk).

Here the ℓ∞-norm is taken over the latent variable z.

Recall that the function class of attention neural networks Fattn is defined in (3.5.1).

We have the following theorem characterizing the approximation error Eapprox defined in

(3.5.3).

Theorem 3.5.5 (Approximation Error). Let {g†W,i(z; msk) = w⊤
i ψ(z; msk)}i∈[dy] be a

function class satisfying Assumption 3.5.4. We define W = [w⊤
1 , · · · , w⊤

dy
]⊤. Suppose that

there exists fθ ∈ Fattn and ϵattn ∈ [0,+∞) such that

sup
X∈XL

∥∥∥fθ(X; msk)−W⊤attnCME
(
q∗(msk), k∗(X), v∗(X)

)∥∥∥
2
≤ ϵattn,(3.5.11)

105

where XL is defined in (3.5.2). Then, we have

Eapprox ≤ 2ϵ2g(msk) + 2ϵ2attn.

Proof. See §C.5.2 for a detailed proof. □

The approximation error bound in Theorem 3.5.5 involves the recovery gap ϵg(msk)

and the surrogate approximation error ϵattn. Since the latent posterior P(z |X) is captured

by the reweighted CME attention, the recovery gap ϵg(msk) between the function class G†

in (3.5.9) and the latent-to-target mapping g∗(z; msk) in (3.5.5) plays the central role in

the approximation error bound. On the other hand, the approximation error ϵattn between

attention neural networks in Fattn and the reweighted CME attention is characterized in

Proposition 3.4.2.

3.5.3. Optimization Error Analysis

Since the learning objective of attention neural networks is nonconvex with respect to the

parameter θ, we consider the property of the stationary points. Let θ̂ = (θ̂0, Â, Ŵ
q, Ŵ k, Ŵ v)

be the stationary point of the empirical risk Ê[L((X, y), f)], that is,

〈
∇θÊ

[
L
(
(X, y), fθ̂

)]
, θ − θ̂

〉
≥ 0, ∀θ ∈ Θ,(3.5.12)

which is the learnable parameter obtained in the training process, i.e., f̂ = fθ̂. Recall

that the regression function f ∗(X) = E[y |X] is the minimizer of the population risk

E[L((X, y), f)]. We have the following proposition characterizing the optimization error

Eopt, which is defined in (3.5.3).

106

Proposition 3.5.6 (Optimization Error). Suppose that Assumption 3.5.2 holds. Then, it

holds that

Eopt ≤ 2 ·min
θ∈Θ

Ê
[∥∥fθ̂(X) +∇θfθ̂(X)⊤(θ − θ̂)− f ∗(X)

∥∥
2

]
.(3.5.13)

Proof. See §C.4 for a detailed proof. □

The right-hand side of (3.5.13) quantifies the expressity of the function class defined

by the local linearization,

{
fθ̂(X) +∇θfθ̂(X)⊤(θ − θ̂) : θ ∈ Θ

}
.

In the neural tangent kernel (NTK) regime (Yang, 2020; Yang and Littwin, 2021; Jacot

et al., 2018), it is known that,

f ∗(X) = fθ̂(X) +∇θfθ̂(X)⊤(θ − θ̂) + o(1), ∀X ∈ RL×d,

where the o(1) error captures the local linearization error in the NTK-based analysis.

As a consequence, the optimization error satisfies Eopt = o(1), that is, the stationary

point θ̂ is (approximately) global optimal. Such a result shows the theoretical benefit of

incorporating feedforward neural networks in the architecture design. While NTK-based

analysis involves a random initialization in the supervised setting, Malladi et al. (2022)

provide an NTK-based analysis for the downstream training of the transformer with a

pretrained initialization in the self-supervised setting.

107

3.6. From Supervised Learning to Self-Supervised Learning

An important aspect of the attention mechanism is that one can obtain a sequence

embedding by pretraining in a self-supervised manner, which gives rise to the transfer

capability for diverse downstream tasks.

Self-Supervised Learning. The attention mechanism enables embedding learning and

downstream prediction via the self-supervised learning (SSL) process as follows.

(PT) Pretraining process: We train an attention neural network f̂PT(X; mskPT) =

fθ̂PT(X; mskPT) ∈ FPT with the learned parameter θ̂PT to predict the masked

token xL ∈ Rd, which is denoted by yPT, from the truncated input sequence

X = {xℓ}ℓ∈[L−1] and the input mask mskPT. Here the function class of attention

neural networks for the pretraining process is defined as follows,

FPT =
{
aggPTθ ◦ attnSM

(
qθ(mskPT), kθ(X), vθ(X)

)
: θ ∈ ΘPT

}
,(3.6.1)

where aggPTθ : Rd → Rd is the aggregation layer. For the pretraining process, the

input mask mskPT is the positional encoding of the masked token xL.

(DS) Downstream task: We freeze the learned parameter θ̂PT and train another attention

neural network f̂DS(X; mskDS) = fθ̂DS(X; mskDS) ∈ FDS with the learned parameter

θ̂DS to predict another target variable yDS ∈ Rdy from the truncated input sequence

X = {xℓ}ℓ∈[L−1] and another input mask mskDS. Here the function class of attention

neural networks for the downstream task is defined as follows,

FDS =
{
aggDSθ ◦ attnSM

(
qθ̂PT(mskDS), kθ̂PT(X), vθ̂PT(X)

)
: θ ∈ ΘDS

}
,(3.6.2)

108

which means that the aggregation layer aggDS
θ̂DS

: Rd → Rdy replaces the aggregation

layer aggPT
θ̂PT

: Rd → Rd obtained in the pretraining process. For the downstream

task, the input mask mskDS is the class encoding of the target variable yDS.

With the full input sequence X replaced by the truncated input sequence X, the attention

neural network f̂DS(X; msk) obtained in the SSL process has the same decomposition of

the excess risk as that in (3.5.3). In the risk decomposition, for the SSL process, we have

the same characterization of the generalization error and the optimization error as those

in the supervised setting. When the downstream task is trained using the same set of

truncated input sequences as that in the pretraining process, our previous analysis of the

generalization error in the supervised setting is applicable to the SSL process. On the

other hand, when the downstream task is trained using an independent set of truncated

input sequences, we can modify our previous analysis to prove that the generalization

error only scales with the complexity measure (e.g., the covering number) of the function

class {aggDSθ : θ ∈ ΘDS} of aggregation layers without depending on that of the attention

mechanism, as θ̂PT is frozen. Also, the attention neural network f̂PT(X; msk) obtained

in the pretraining process has the same approximation error as that in the supervised

setting. To characterize the approximation error for the SSL process, we analyze the

approximation error for the downstream task by connecting it to the approximation error

for the pretraining process.

Approximation Error. In parallel to the supervised setting, we define the regression

function and the latent-to-target mapping for the pretraining process as follows,

f ∗
PT(X) = E[yPT |X], g∗PT(z; mskPT) = E[yPT | mskPT, z].(3.6.3)

109

Correspondingly, we defined the regression function and the latent-to-target mapping for

the downstream task as follows,

f ∗
DS(X) = E[yDS |X], g∗DS(z; mskDS) = E[yDS | mskDS, z].(3.6.4)

In parallel to the reweighted CME attention defined in (3.5.6), we defined the surrogate

functions for the pretraining process and the downstream task as follows,

f †
WPT

(X; mskPT) = W⊤
PTattnCME

(
q∗(mskPT), k∗(X), v∗(X)

)
,

f †
WDS

(X; mskDS) = W⊤
DSattnCME

(
q∗(mskDS), k∗(X), v∗(X)

)
,(3.6.5)

where WPT ∈ Rd×d and WDS ∈ Rd×dy are the reweighting parameters. We use the surrogate

function to bridge the regression function and the attention neural network, which is

illustrated in Figure 3.7. In parallel to the latent-to-value mapping ψ(z; msk) defined

in (3.5.7), we define the latent-to-value mappings for the pretraining process and the

downstream task as follows,

ψPT(z; mskPT) = E[vmskPT | mskPT, z], ψDS(z; mskDS) = E[vmskDS | mskDS, z],

where vmskPT and vmskDS replace rmsk in (3.4.2). The latent-to-value mappings induce the

kernel functions as follows,

KPT(z, z
′; mskPT) = ψPT(z; mskPT)

⊤ψPT(z
′; mskPT),

KDS(z, z
′; mskDS) = ψDS(z; mskDS)

⊤ψDS(z
′; mskDS),

110

which induce the RKHSs HPT and HDS. Corresponding to (3.5.8), we have

f †
WPT

(X; mskPT) =

∫
W⊤

PTψPT(z; mskPT)︸ ︷︷ ︸
g†WPT

(X; mskPT)

·P(z |X)dz = Ez |X
[
g†WPT

(z; mskPT)
]
,

f †
WDS

(X; mskDS) =

∫
W⊤

DSψDS(z; mskDS)︸ ︷︷ ︸
g†WDS

(X; mskDS)

·P(z |X)dz = Ez |X
[
g†WDS

(z; mskDS)
]
.(3.6.6)

Note that f †
WPT

(X; mskPT) and f †
WDS

(X; mskDS) share the same latent posterior since the

attention mechanism is frozen for the downstream task. By our previous arguments

following (3.5.8)-(3.5.10), it remains to characterize how the reweighted CME attentions

in (3.6.5) recover the latent-to-target mappings in (3.6.3)-(3.6.4) within the RKHSs HPT

and HDS. See Figure 3.7 for an illustration of the construction of the RKHSs HPT and HDS.

111

ℙ(z | X) z

y"#,i

⋯x1 xL−1x2X
&[y "#,

i|
'()

"#
, z]

= g*"#,i
(z;

'()
"#
)

latent posterior

y*+,i

&[y*+,i | '()
*+ , z] = g**+,i (z; '()

*+)

'()"#

'()*+ ℋ*+

ℋ"#

Πℋ*+,∞Projection

Πℋ"#,∞Projection

g†
W"#,i(z; '()"#)

g†
W*+,i(z; '()*+)

Downstream

Pretraining

g†
W++/,i(z; '()*+)

Πℋ*+,∞Projection

B

Figure 3.7. The RKHSs HPT and HDS induced by the latent-to-value map-
pings ψPT(z; mskPT) and ψDS(z; mskDS), respectively. The input masks mskPT
and mskDS describe the pretraining process and the downstream task, respec-
tively, and determine the RKHSs correspondingly. The ℓ∞-norm projections
ΠHPT,∞ and ΠHDS,∞ are defined in Assumption 3.6.1.

In parallel to Assumption 3.5.4, we introduce the following assumption on the funda-

mental hardness of approximating the latent-to-target mappings within the RKHSs HPT

and HDS.

Assumption 3.6.1 (SSL Recovery Gap). For any fixed input masks mskPT and mskDS, let

g†WPT,i
(·; mskPT) = ΠHPT,∞

(
g∗PT,i(·; mskPT)

)
= argmin

gi(·;mskPT)∈HPT

∥∥g∗PT,i(·; mskPT)− gi(·; mskPT)∥∥∞,
g†WDS,i

(·; mskDS) = ΠHDS,∞
(
g∗DS,i(·; mskDS)

)
= argmin

gi(·;mskDS)∈HDS

∥∥g∗DS,i(·; mskDS)− gi(·; mskDS)∥∥∞,
g†WSSL,i

(·; mskDS) = ΠHDS,∞
(
g∗PT,i(·; mskPT)

)
= argmin

gi(·;mskDS)∈HDS

∥∥g∗PT,i(·; mskPT)− gi(·; mskDS)∥∥∞

112

be the ℓ∞-norm projections of the i-th entry g∗PT,i(z; mskPT) of the latent-to-target mapping

g∗PT(z; mskPT) onto the RKHS HPT, the i-th entry g∗DS,i(z; mskDS) of the latent-to-target

mapping g∗DS(z; mskDS) onto the RKHS HDS, and the i-th entry g∗PT,i(z; mskPT) of the latent-

to-target mapping g∗PT(z; mskPT) onto the RKHS HDS, respectively. We assume the following

statements hold.

(PT) There exists ϵg(mskPT) ∈ [0,+∞) such that

d∑
i=1

∥∥g∗PT,i(·; mskPT)− g†WPT,i
(·; mskPT)

∥∥2
∞ ≤ ϵ2g(mskPT).(3.6.7)

(DS) There exists ϵg(mskDS) ∈ [0,+∞) such that

dy∑
i=1

∥∥g∗DS,i(·; mskDS)− g†WDS,i
(·; mskDS)

∥∥2
∞ ≤ ϵ2g(mskDS).(3.6.8)

(SSL) There exists ϵSSL(mskPT, mskDS) ∈ [0,+∞) such that

d∑
i=1

∥∥g∗PT,i(·; mskPT)− g†WSSL,i
(·; mskDS)

∥∥2
∞ ≤ ϵ2SSL(mskPT, mskDS).(3.6.9)

Here the ℓ∞-norms are taken over the latent variable z.

Intuitively, the feature ψPT(z; mskPT) is obtained in the pretraining process, while the

feature ψDS(z; mskDS) is desired by the downstream task. Meanwhile, (3.6.9) characterizes

the fundamental hardness of recovering the latent-to-target mapping g∗PT(z; mskPT) for the

pretraining process within the RKHS HDS. Thus, the transfer error ϵSSL(mskPT, mskDS)

captures the transfer capability of the sequence embedding obtained in the pretraining

process to the downstream task. In other words, when the pretraining process is sufficiently

related to the downstream task, the transfer error ϵSSL(mskPT, mskDS) is small, which allows

113

us to approximate the i-th entry of the latent-to-target mapping g∗PT(z; mskPT) within the

RKHS HDS up to the approximation error ϵSSL(mskPT, mskDS).

We introduce the following assumption on the condition number that characterizes the

alignment between the reweighting parameter desired by the downstream task and the

reweighting parameter obtained in the pretraining process.

Assumption 3.6.2 (SSL Condition Number). Let {g†WDS,i
(z; mskDS) = w⊤

DS,iψDS(z; mskDS)}i∈[d]

and {g†WSSL,i
(z; mskDS) = w⊤

SSL,iψDS(z; mskDS)}i∈[dy] be the function classes satisfying (3.6.8)

and (3.6.9) in Assumption 3.6.1, respectively. Also, let WDS = [wDS,1, . . . , wDS,dy]⊤ ∈ Rd×dy ,

WSSL = [wSSL,1, . . . , wSSL,d]
⊤ ∈ Rd×d, and2

B = W⊤
DS(WSSLW

⊤
SSL)

−1WSSL ∈ Rdy×d.(3.6.10)

We assume that there exists µ ∈ [0,+∞) such that ∥B∥22 ≤ µ.

The condition number µ plays a critical role in our subsequent analysis. To see

the intuition behind µ, let WDS = WSSL, which implies that B is a projection matrix

and µ = 1. Also, let the row vectors of WSSL be an orthonormal basis of Rd, which

implies that WSSLW
⊤
SSL = Idp and B = W⊤

DSWSSL. In this case, B measures the subspace

alignment between the reweighting parameter WDS desired by the downstream task and

the reweighting parameter WSSL obtained in the pretraining process. In general cases

where WSSL is nonorthonormal, we have a similar interpretation through the eigenvalue

decomposition of WSSLW
⊤
SSL.

Recall that f̂PT(X; mskPT) is the attention neural network obtained in the pretraining

process. For any U ∈ Rdy×d, we define the following quantity that characterizes the

2For ease of presentation, we assume that WSSLW
⊤
SSL ∈ Rd×d is invertible. When WSSLW

⊤
SSL is not invertible,

our subsequent analysis can be generalized using the pseudoinverse of WSSLW
⊤
SSL.

114

expressity of the function class {aggDSθ : θ ∈ ΘDS} of aggregation layers for the downstream

task,

ϵagg(U) = inf
fDS∈FDS

sup
X∈XL−1

∥∥fDS(X; mskDS)− Uf̂PT(X; mskPT)
∥∥
2

= inf
θ∈ΘDS

sup
X∈XL−1

∥∥aggDSθ ◦ attnSM(qθ̂PT(mskDS), kθ̂PT(X), vθ̂PT(X)
)

− UaggPT
θ̂PT
◦ attnSM

(
qθ̂PT(mskPT), kθ̂PT(X), vθ̂PT(X)

)∥∥
2
,(3.6.11)

where XL−1 is defined in (3.5.2). Since the attention mechanism is frozen for the downstream

task, the trainable part of the attention neural network is the aggregation layer aggDSθ .

Thus, the aggregation approximation error ϵagg(U) characterizes the expressity of the

function class {aggDSθ : θ ∈ ΘDS} of aggregation layers in terms of approximating the

composition of (i) the linear transformation UaggPT
θ̂PT

of the aggregation layer obtained in

the pretraining process and (ii) the output variation induced by switching the input mask

mskPT to another input mask mskDS in the attention mechanism, which is frozen. To see the

intuition behind ϵagg(U), let mskPT = mskDS, which implies that ϵagg(U) = 0 as long as the

function class of aggregation layers takes the form of {aggDSθ = UaggPT
θ̂PT

: θ = U ∈ Rdy×d}.

In this case, ϵagg(U) characterizes the compatibility between aggDSθ and aggPT
θ̂PT

under a

linear transformation parameterized by θ. In general cases where mskPT ̸= mskDS, ϵagg(U)

additionally characterizes the capability of aggDSθ to capture the output variation induced

by switching the input mask.

115

Recall that the function class FPT of attention neural networks for the pretraining

process is defined in (3.6.1). Let

EPTapprox = min
f∈FPT

E
[
L
(
(X, yPT), f

)]
− E

[
L
(
(X, yPT), f

∗
PT

)]
(3.6.12)

be the approximation error for the pretraining process, which is characterized in Theorem

3.5.5. Recall that the function class FDS of attention neural networks for the downstream

task is defined in (3.6.2). For the downstream task, the approximation error in (3.5.3)

takes the following form,

Eapprox = min
f∈FDS

E
[
L
(
(X, yDS), f

)]
− E

[
L
(
(X, yDS), f

∗
DS

)]
.(3.6.13)

The following theorem characterizes the approximation error Eapprox for the SSL process.

Theorem 3.6.3 (SSL Approximation Error). Under Assumptions 3.6.1 and 3.6.2, it holds

that

Eapprox = O
(
µ ·
(
EPTapprox + ϵ2SSL(mskPT, mskDS)

)
+ ϵ2g(mskDS) + ϵ2agg(B)

)
,

where EPTapprox, ϵSSL(mskPT, mskDS), ϵg(mskDS), and ϵagg(B) are defined in (3.6.12), (3.6.9),

(3.6.8), and (3.6.11), respectively, and B is defined in (3.6.10).

Proof. See §C.5.3 for a detailed proof. □

Theorem 3.6.3 demonstrates that the attention neural network enables the transfer

capability to diverse downstream tasks, where the approximation error is subsume from

that in the supervised setting with a few extra error terms. We interpret the approximation

error in Theorem 3.6.3 as follows.

116

(i) The condition number µ characterizes the the alignment between the reweighting

parameter WDS desired by the downstream task and the reweighting parameter

WSSL obtained in the pretraining process. When WDS = WSSL, we have µ = 1.

(ii) The approximation error EPTapprox for the pretraining process is characterized in

Theorem 3.5.5. Specifically, EPTapprox involves the pretraining recovery gap ϵg(mskPT)

defined in (3.6.7), which characterizes the fundamental hardness of approximating

the i-th entry g∗PT,i(z; mskPT) of the latent-to-target mapping g∗PT(z; mskPT) defined

in (3.6.3) within the RKHS HPT, and the attention approximation error ϵattn

defined in (3.5.11), which is characterized in Proposition 3.4.2.

(iii) The transfer error ϵSSL(mskPT, mskDS) captures the transfer capability of the sequence

embedding obtained in the pretraining process to the downstream task. By our

previous arguments following Assumption 3.6.1, ϵSSL(mskPT, mskDS) is small as long

as the pretraining process is sufficiently related to the downstream task.

(iv) The downstream recovery gap ϵg(mskDS) defined in (3.6.8) characterizes the fun-

damental hardness of approximating the i-th entry g∗DS,i(z; mskDS) of the latent-to-

target mapping g∗DS(z; mskDS) defined in (3.6.4) within the RKHS HDS.

(v) The aggregation approximation error ϵagg(B) measures the expressity of the

function class of aggregation layers for the downstream task. By our previous

arguments following (3.6.11), ϵagg(B) is small as long as the aggregation layer

aggDSθ for the downstream task can approximate the composition of the linear

transformation BaggPT
θ̂PT

of the aggregation layer obtained in the pretraining process

and the variation induced by switching the input mask mskPT to another input

mask mskDS.

117

CHAPTER 4

What and How does In-Context Learning Learn? Bayesian

Model Averaging, Parameterization, and Generalization

In this paper, we conduct a comprehensive study of In-Context Learning (ICL)

by addressing several open questions: (a) What type of ICL estimator is

learned within language models? (b) What are suitable performance metrics

to evaluate ICL accurately and what are the error rates? (c) How does the

transformer architecture enable ICL? To answer (a), we take a Bayesian

view and demonstrate that ICL implicitly implements the Bayesian model

averaging algorithm. This Bayesian model averaging algorithm is proven to be

approximately parameterized by the attention mechanism. For (b), we analyze

the ICL performance from an online learning perspective and establish a regret

bound O(1/T), where T is the ICL input sequence length. To address (c), in

addition to the encoded Bayesian model averaging algorithm in attention, we

show that during pertaining, the total variation distance between the learned

model and the nominal model is bounded by a sum of an approximation error

and a generalization error of Õ(1/
√
NpTp), where Np and Tp are the number

of token sequences and the length of each sequence in pretraining, respectively.

Our results provide a unified understanding of the transformer and its ICL

118

ability with bounds on ICL regret, approximation, and generalization, which

deepens our knowledge of these essential aspects of modern language models.

4.1. Introduction

With the ever-increasing sizes of model capacity and corpus, LLM have achieved

tremendous successes across a wide range of tasks, including natural language understand-

ing (Dong et al., 2019; Jiao et al., 2019), symbolic reasoning (Wei et al., 2022c; Kojima

et al., 2022), and conversations (Brown et al., 2020; Ouyang et al., 2022). Recent studies

have revealed that these LLMs possess immense potential, as their large capacity allows

for a series of emergent abilities (Wei et al., 2022b; Liu et al., 2023). One such ability is

ICL, which enables an LLM to learn from just a few examples, without tuning parameters.

Since the examples are provided in natural language, ICL offers an interpretable way for

humans to communicate with and impart knowledge to LLMs (Liu et al., 2021; Dong

et al., 2022).

Despite the immense empirical successes of ICL, its theoretical understanding remains

limited. Specifically, existing works fail to explain why LLMs the ability for ICL, how

the attention mechanism is related to the ICL ability, and how pretraining influences ICL.

Although the optimality of ICL is investigated in Xie et al. (2021) and Wies et al. (2023),

these works both make unrealistic assumptions on the pretrained models, and their results

cannot clarify the importance of the attention mechanism in ICL.

We focus on the scenario where transformers are first pretrained on a large dataset and

then prompted to perform ICL. Our goal is to analyze both the pretraining phase and

the ICL performance of the pretrained model, aiming to understand why LLMs possess

119

such a strong ability for ICL and how this ability relates to the pretraining process. This

boils down to three questions: (a) What type of ICL estimator is learned by LLMs?

(b) What are suitable performance metrics to evaluate ICL accurately and what are the

error rates? (c) How does the transformer structure enable ICL? The first and the third

questions demand distilling the ICL process from the transformer structure itself. It relies

on analytically analyzing the inference in transformers. The second question then requires

statistically analyzing the extracted ICL process. Beyond the mentioned analytic analysis,

the third question also necessitates a statistical analysis of the pretrained transformer.

To address the first question, we show that the perfectly pretrained LLMs perform

ICL in the form of Bayesian model averaging and that the attention mechanism in the

transformer parameterizes the Bayesian model averaging. For the second question, we adopt

an online learning setting and analyze the ICL regret of this extracted Bayesian model

averaging algorithm. Finally, for the third question, we apply a PAC-Bayes framework to

analyze pretraining error and build a connection between pretraining error and ICL regret.

In this paper, we first show that the perfectly pretrained LLMs performs Bayesian

model averaging over a general model in ICL in Theorem 4.4.1, which subsumes the

models in previous works. Based on this, we derive the ICL regret of the Bayesian model

averaging as O(1/T). Here T is the number of ICL examples. To build a connection

with the transformer, we show that the attention mechanism approximately parameterizes

the Bayesian model averaging as T goes to infinity in Proposition 4.4.3. In addition, we

analyze the pretraining of transformers and show that the total variation distance of the

learned model and the nominal distribution is bounded by the sum of approximation

error and generalization error in Theorem 4.5.3. The generalization error is O(1/
√
NpTp),

120

where Np and Tp are the number of token sequences and the length of each sequence in

the pretraining dataset, respectively. The approximation error decays exponentially with

the depth of the transformer. This features the first pretraining analysis of transformers in

total variation distance, which also takes the approximation error into account. In Theorem

4.6.2, we show that the ICL regret of the pretrained model is the sum of the pretraining

error and the O(1/T) regret for Bayesian model averaging with the true distribution.

Moreover, even when the input-output mappings are wrong in the example, we show that

LLMs can identify the nominal concept if the nominal concept is separated from other

concepts with respect to KL divergence, which is called the distinguishable case. The

performance guarantee for ICL in the distinguishable case is provided in Proposition 4.6.7.

4.2. Related Work

In-Context Learning. After Brown et al. (2020) showcased the in-context learning

capacity of GPT-3, there has been a notable surge in interest towards enhancing and

comprehending this particular ability (Dong et al., 2022). The in-context learning ability

has seen enhancements through the incorporation of extra training stages (Min et al.,

2021; Wei et al., 2021b; Iyer et al., 2022), carefully selecting and arranging informative

demonstrations (Liu et al., 2021; Kim et al., 2022; Rubin et al., 2021; Lu et al., 2021), giving

explicit instructions (Honovich et al., 2022; Zhou et al., 2022b; Wang et al., 2022), and

prompting a chain of thoughts (Wei et al., 2022c; Zhang et al., 2022c; Zhou et al., 2022a).

In efforts to comprehend the mechanisms of ICL ability, researchers have also conducted

extensive work. Empirically, Chan et al. (2022) demonstrated that the distributional

properties, including the long-tailedness, are important for ICL. Garg et al. (2022)

121

investigated the function class that ICL can approximate. Min et al. (2022) showed that

providing wrong mappings between the input-output pairs in examples does not degrade the

ICL. Theoretically, Akyürek et al. (2022), von Oswald et al. (2022), and Dai et al. (2022)

indicated that ICL implicitly implements the gradient descent or least-square algorithms

from the function approximation perspective. However, the first two works only showed

that transformers are able to approximate these two algorithms, which may not align with

the pretrained model. The last work ignored the softmax module, which turns out to be

important in practical implementation. Li et al. (2023) viewed ICL from the multi-task

learning perspective and derived the generalization bound. Xie et al. (2021) analyzed ICL

within the Bayesian framework, assuming the access to the nominal language distribution

and that the tokens are generated from Hiddn Markov Model (HMM)s. However, the first

assumption hides the relationship between pretraining and ICL, and the second assumption

is restrictive. Following this thread, Wies et al. (2023) relaxed the HMM assumption and

assumed access to a pretrained model that is close to the nominal distribution conditioned

on any token sequence, which is also unrealistic. Two concurrent works Wang et al. (2023),

and Jiang (2023) also provide the Bayesian analysis of ICL. Unfortunately, these Bayesian

works cannot explain the importance of the attention mechanism for ICL and clarify how

pretraining relates to ICL. In contrast, we prove that the structure of attention enables

Bayesian model averaging and related the pretraining error of transformers to the ICL

regret.

Transformers. Our work is also related to the works that theoretically analyze the

performance of transformers. For the analytic properties of transformers, Vuckovic et al.

(2020) proved that attention is Lipschitz-continuous via the view of interacting particles.

122

Noci et al. (2022) provided the theoretical justification of the rank collapse phenomenon in

transformers. Yun et al. (2019) demonstrated that transformers are universal approximators.

For the statistical properties of transformers, Malladi et al. (2022), Hron et al. (2020),

and Yang (2020) analyzed the training of transformers within the neural tangent kernel

framework. Wei et al. (2022a) presented the approximation and generalization bounds

for learning boolean circuits and Turing machines with transformers. Edelman et al.

(2021) and Li et al. (2023) derived the generalization error bound of transformers. In

our work, we analyze transformers from both the analytic and statistical sides. We show

that attention essentially implements the Bayesian model averaging algorithm in the

ICL setting. Furthermore, we derive the approximation and generalization bounds for

transformers in the pretraining phase.

4.3. Preliminary

Notation. We denote {1, · · · , N} as [N]. For a Polish space S, we denote the collection

of all the probability measures on it as ∆(S). The total variation distance between two

distributions P,Q ∈ ∆(S) is TV(P,Q) = supA⊆S |P (A)−Q(A)|. The ith entry of a vector

x is denoted as xi or [x]i. For a matrix X ∈ RT×d, we index its ith row and column as Xi,:

and X:,i respectively. The ℓp,q norm of X is defined as ∥X∥p,q = (
∑d

i=1 ∥X:,i∥qp)1/q, and the

Frobenius norm of it is defined as ∥X∥F = ∥X∥2,2.

Attention and Transformers. Attention mechanism has been the most powerful and

popular neural network module in both Computer Vision (CV) and Natural Language

Processing (NLP) communities, and it is the backbone of the LLMs (Devlin et al., 2018;

Brown et al., 2020). Assume that we have a query vector q ∈ Rdk . With T key vectors in

123

K ∈ RT×dk and T value vectors in V ∈ RT×dv , the attention mechanism maps the query

vector q to attn(q,K, V) = V ⊤softmax(Kq), where softmax normalizes a vector via the

exponential function, i.e., for x ∈ Rd, [softmax(x)]i = exp(xi)/
∑d

j=1 exp(xj) for i ∈ [d].

The output is a weighted sum of V , and the weights reflect the closeness between W

and q. For t query vectors, we stack them into Q ∈ Rt×dk . Attention maps these queries

using the function attn(Q,K, V) = softmax(QK⊤)V ∈ Rt×dv , where softmax is applied

row-wisely. In the practical design of transformers, practitioners usually use Multi-Head

Attention (MHA) instead of single attention to express sophisticated functions, which

forwards the inputs through h attention modules in parallel and outputs the sum of these

sub-modules. Here h ∈ N is a hyperparameter. Taking X ∈ RT×d as the input, MHA

outputs mha(X,W) =
∑h

i=1 attn(XWQ
i , XW

K
i , XW

V
i), where W = (WQ

i ,W
K
i ,W

V
i)hi=1 is

the parameters set of h attention modules, WQ
i ∈ Rd×dh , WK

i ∈ Rd×dh , and W V
i ∈ Rd×d

for i ∈ [h] are weight matrices for queries, keys, and values, and dh is usually set to be

d/h (Michel et al., 2019). The transformer is the concatenation of the attention modules

and the fully-connected layers, which is widely adopted in LLMs (Devlin et al., 2018;

Brown et al., 2020).

Large Language Models and In-Context Learning. Many LLMs are autoregressive,

such as GPT (Brown et al., 2020). It means that the model continuously predicts future

tokens based on its own previous values. For example, starting from a token x1 ∈ X, where

X is the alphabet of tokens, a LLM Pθ with parameter θ ∈ Θ continuously predicts the

next token according to xt+1 ∼ Pθ(· |St) based on the past St = (x1, · · · , xt) for t ∈ N.

Here, each token represents a word and the position of the word (Ke et al., 2020), and the

token sequences St for t ∈ N live in the sequences space X∗. LLMs are first pretrained on a

124

Figure 4.1. To form the pretraining dataset, a hidden concept z is first
sampled according to PZ, and a document is generated from the concept.
Taking the token sequence St up to position t ∈ [T] as the input, the LLM
is pretrained to maximize the next token xt+1. During the ICL phase, the
pretrained LLM is prompted with several examples to predict the response
of the query.

huge body of corpus, making the prediction xt+1 ∼ Pθ(· |St) accurate, and then prompted

to perform downstream tasks. During the pretraining phase, we aim to maximize the

conditional probability Pθ(x |S) over the nominal token x, which can be the tokens inside

a sentence (Devlin et al., 2018) or the next token (Brown et al., 2020).

After pretraining, LLMs are prompted to perform downstream tasks without tuning

parameters. Different from the finetuned models that learn the task explicitly (Liu et al.,

2023), LLMs can implicitly learn from the examples in the prompt, which is known as

ICL (Brown et al., 2020). Concretely, as shown in Figure fig:pipeline, pretrained LLMs

are provided with a prompt promptt = (c̃1, r1, . . . , c̃t, rt, c̃t+1) with t examples and a

query as inputs, where each pair (c̃i, ri) ∈ X∗ × X is an example of the task, and c̃t+1 is

the query. For example, the promptt with t = 2 can be “Cats are animals, pineapples

are plants, mushrooms are”. Here c̃1 ∈ X∗ is a token sequence “Cats are”, while r1 is

125

the response “animals”. The query c̃t+1 is “mushrooms are”, and the desired response

is “fungi”. The prompts are generated from a hidden concept z∗ ∈ Z, e.g., z∗ can be

the classification of biological categories, where Z is the concept space. The generation

process is c̃i ∼ P(· | c̃1, r1, · · · , c̃i−1, ri−1, z∗) and ri ∼ P(· | prompti−1, z∗) for the nominal

distribution P and i ∈ [t]. Thus, in ICL, LLMs aim to estimate the conditional distribution

P(rt+1|promptt, z∗). It is widely conjectured that the pretrained LLMs can implicitly

identify the hidden concept z∗ ∈ Z from the examples, and thus perform ICL. In the

following, we will provide theoretical justifications for this claim. We note that delimiters

are omitted in our work, and our results can be generalized to handle this case. Since LLMs

are autoregressive, the definition of the notation P(· |S) with S ∈ X∗ may be ambiguous.

Unless explicitly specified, we adopt P(· |S) to denote the distribution of the next single

token conditioned on S.

4.4. In-Context Learning via Bayesian Model Averaging

In this section, we show that LLMs perform ICL implicitly via Bayesian model averaging.

Given a sequence S = {(c̃t, rt)}Tt=1 with T examples generated from a hidden concept

z∗ ∈ Z, we use St = {(c̃i, ri)}ti=1 to represent the first t ICL examples in the sequence.

Here c̃t and rt respectively denote the ICL covariate and response. During the ICL phase,

a LLM is sequentially prompted with promptt = (St, c̃t+1) for t ∈ [T − 1], i.e., the first t

examples and the (t+1)-th covariate. The prompted LLM aims to predict the response rt+1

based on promptt = (St, c̃t+1) whose ground-truth distribution is rt+1 ∼ P(· | promptt, z∗).

We temporarily consider the setting where we have access to the nominal pretraining

distribution P(rt+1 | promptt), i.e., the pretrained model perfectly learns the distribution,

126

and we relax this condition by specifying the pretraining error in Section 4.5. For the

analysis of ICL, we take the following model to further specify rt+1 ∼ P(· | promptt, z∗) as

rt = f(c̃t, ht, ξt), ∀t ∈ [T],(4.4.1)

where the hidden variable ht ∈ H determines the relation between ct and rt, ξt ∈ Ξ for

t ∈ [T] are i.i.d. random noises, and f : X×H×Ξ→ X is a function that relates response rt

to c̃t, ht, and ξt. The hidden variables {ht}Tt=1 form a stochastic process, whose distribution

is determined by the hidden concept z∗ ∈ Z. The model in (4.4.1) essentially assumes that

the hidden concept z∗ implicitly determines the transition of the belief bt = P(rt = · | c̃t),

and it does not impose any assumption on the distribution of c̃. This model is quite

general, and it subsumes the models in previous works. When f is the emission function

in HMM and ht = h for t ∈ [T] is the values of hidden states that depend on z, model

in (4.4.1) recovers the HMM assumption in Xie et al. (2021). When ht = z for t ∈ [T]

degenerate to the hidden concept, this recovers the casual graph model in Wang et al.

(2023) and the ICL model in Jiang (2023). Under the model in (4.4.1), we show that

perfectly pretrained LLMs perform Bayesian model averaging (Wasserman, 2000).

Theorem 4.4.1 (LLMs Perform Bayesian Model Averaging). Under the model in (4.4.1),

it holds that

P(rt+1 | promptt) =

∫
P(rt+1 | c̃t+1, St, z)P(z |St)dz.(4.4.2)

We note that the right-hand side of (4.4.2) is exactly the Bayesian model averaging

algorithm that takes St and rt+1 as the training set and the test sample, respectively. Thus,

127

this theorem implies that the perfectly trained LLMs perform Bayesian model averaging

in ICL. The proof is in Appendix D.2.1.

Next, we study the performance of ICL from an online learning perspective. Recall

that LLMs are continuously prompted with St and aim to predict the (t+ 1)-th covariate

rt+1 for t ∈ [T − 1]. This can be viewed as an online learning problem. For a sequence of

density estimators {P̂(rt)}Tt=1, we take the following ICL regret as its performance metric,

regrett = t−1 sup
z

t∑
i=1

logP(ri | prompti−1, z)− t−1

t∑
i=1

log P̂(ri).(4.4.3)

This ICL regret measures the performance of the estimator P̂ compared with the best

hidden concept in hindsight. For the perfectly trained LLMs, the estimator is exactly

P̂(rt) = P(rt+1 | promptt).

Theorem 4.4.2 (ICL Regret of Perfectly Pretrained Model). Under the model in (4.4.1),

we have for any t ∈ [T] that

t−1

t∑
i=1

logP(ri | prompti−1) ≥ sup
z∈Z

(
t−1

t∑
i=1

logP(ri | z, prompti−1) + t−1 logPZ(z)
)
.

Here PZ is the prior of the hidden concept z ∈ Z. When the hidden concept space Z

is finite and the prior PZ(z) is the uniform distribution on Z, we have that regrett ≤

log |Z|/t. When the nominal concept z∗ satisfies that supz
∑t

i=1 P(ri | z, prompti−1) =∑t
i=1 P(ri | z∗, prompti−1) for any t ∈ [T], the regret is bounded as regrett ≤ log(1/PZ(z∗))/t.

This theorem state that the ICL regret of the perfectly pretrained model is the minus

logarithmic prior probability of concept divided by T . This is intuitive, since the regret is

relatively large if the concept z∗ rarely appears according to the prior distribution. The

proof of Theorem 4.4.2 is in Appendix D.2.2. Theorems 4.4.1 and 4.4.2 show that the

128

perfectly pretrained LLMs perform Bayesian model averaging in ICL and have a ICL

regret of O(1/t). In Section 4.5, we characterize the deviation between the learned model

and the underlying true model. Next, we show how transformers parameterize Bayesian

model averaging.

4.4.1. Attention Parameterizes Bayesian Model Averaging

To simplify the presentation, we consider the case where the covariate c̃t ∈ X∗ is a single

token ct ∈ X in this subsection. During the ICL phase, pretrained LLMs are prompted

with promptt = (St, ct+1) and tasked with predicting the (t + 1)-th response rt+1. We

assume the existence of two learnable mappings k : Rd → Rdk and v : Rd → Rdv , which

are parameterized by fully connected layers, and their nominal versions k∗ and v∗ satisfy

the following relation:

vt = zϕ(kt) + ϵt, ∀t ∈ [T],(4.4.4)

where vt = v∗(rt) represents the value, kt = k∗(ct) denotes the key, ϕ : Rdk → Rdϕ refers

to the feature mapping in some Reproducing Kernel Hilbert Space (RKHS), z ∈ Rdv×dϕ

corresponds to the hidden concept, and ϵt ∼ N(0, σ2I) is Gaussian noise with variance

σ2. We assume that ϵt is independent across t ∈ [T]. The mappings v and k represent

the feature extraction process in the high-dimensional space induced by transformers. In

such space, the hidden concept z represents a transformation between the value v and the

key k. Here, we simply take this as the transformation by a matrix, which can be easily

generalized by building a bijection between concepts z and complex transformations. The

pretraining of the transformer essentially learns the nominal mappings v∗ and k∗. Note

129

that (4.4.4) can be written as

rt = v−1
∗

(
zϕ
(
k∗(ct)

)
+ ϵt

)
,(4.4.5)

which is a realization of (4.4.1) with ht = z, ξt = ϵt, and f(c, h, ξ) = v−1
∗ (hϕ(k∗(c)) + ξ).

In the following, we adopt the prior of z as N(0, λI) and denote the kernel function of the

RKHS induced by ϕ as K : Rdk ×Rdk → R. The stacks of the values and keys are denoted

as Kt = (k1, . . . , kt)
⊤ ∈ Rt×dk and Vt = (v1, . . . , vt)

⊤ ∈ Rt×dv , respectively. Additionally,

we denote the query for the (t+ 1)-th token as qt+1 = kt+1 = k∗(ct+1). Consequently, the

model in (4.4.4) implies that

P(vt+1 | promptt)=

∫
P(vt+1 | z, qt+1)P(z |St)dz ∝ exp

(
−
∥∥vt+1 − z̄tϕ(qt+1)

∥∥2
Σ−1

t

/
2
)
,

(4.4.6)

where we denote by Σt the covariance of vt+1 ∼ P(· |St, qt+1), and the mean concept z̄t is

z̄t = Vt
(
ϕ(Kt)ϕ(Kt)

⊤ + λI
)−1

ϕ(Kt) = Vt
(
K(Kt, Kt) + λI

)−1
ϕ(Kt).(4.4.7)

Combining (4.4.6) and (4.4.7), we can see that z̄tϕ(qt+1) essentially measures the similarity

between the query and keys, which is quite similar to the attention mechanism defined

in Section 4.3. However, here the similarity is normalization according to (4.4.7), not

by softmax. This motivates us to define a new structure of attention and explore the

relationship between the newly defined attention and the original one. For any q ∈ Rdk ,

K ∈ Rt×dk , and V ∈ Rt×dv , we define a variant of the attention mechanism as follows,

attn†(q,K, V) = V ⊤(K(K,K) + λI
)−1

K(K, q).(4.4.8)

130

From (4.4.6), (4.4.7), and (4.4.8), it holds that the response vt+1 for (t + 1)-th query

is distributed as vt+1 ∼ N(attn†(qt+1, Kt, Vt),Σt). Recall that we define the softmax

attention (Vaswani et al., 2017) for any q ∈ Rdk , K ∈ Rt×dk , and V ∈ Rt×dv as

attn(q,K, V) = V ⊤softmax(Kq)

In the following proposition, we demonstrate that the attention in (4.4.8) converges to the

same limit as the softmax attention as the sequence length goes to infinity.

Proposition 4.4.3. We assume that the key-value pairs {(kt, vt)}Tt=1 are independent and

identically distributed, and we adopt Gaussian RBF kernel KRBF. In addition, we assume

that ∥kt∥2 = ∥vt∥ = 1. Then, it holds for an absolute constant C > 0 and any q ∈ Rdk

with ∥q∥ = 1 that

lim
T→∞

attn†(q,KT , VT) = C · lim
T→∞

attn(q,KT , VT).

The proof is in Appendix D.2.3. Combined with the conditional probability of vt+1 in

(4.4.6), this proposition shows how the attention mechanism parameterizes the Bayesian

model averaging in long token sequences (Wasserman, 2000).

4.5. Theoretical Analysis of Pretraining

4.5.1. Pretraining Algorithm

In this section, we describe the pretraining setting. We largely follow the transformer

structures in Devlin et al. (2018) and Brown et al. (2020). The whole network is a

composition of D sub-modules, and each sub-module consists of a MHA and a Feed-

Forward (FF) fully-connected layer. Here, D > 0 is the depth of the network. The whole

131

network takes X(0) = X ∈ RL×d as its input. In the t-th layer for t ∈ [D], it first takes

the output X(t−1) of the (t− 1)-th layer as the input and forward it through MHA with a

residual link and a layer normalization Πnorm(·) to output Y (t), which projects each row of

the input into the unit ℓ2-ball. Here we take dh = d in MHA, and the generalization of

our result to general cases is trivial. Then the intermediate output Y (t) is forwarded to

the FF module. It maps each row of the input Y (t) ∈ RL×d through a same single-hidden

layer neural network with dF neurons, that is ffn(Y (t), A(t)) = ReLU(Y (t)A
(t)
1)A

(t)
2 , where

A
(t)
1 ∈ Rd×dF , and A

(t)
2 ∈ RdF×d are the weight matrices. Combined with a residual link

and layer normalization, it outputs the output of layer t as X(t), that is

Y (t)=Πnorm

[
mha(X(t−1),W (t)) +γ

(t)
1 X(t−1)

]
, X(t)=Πnorm

[
ffn(Y (t),A(t)) +γ

(t)
2 Y (t)

]
.(4.5.1)

Here we allocate weights γ
(t)
1 and γ

(t)
2 to residual links only for the convenience of theoretical

analysis. In the last layer, the network outputs the probability of the next token via a

softmax module, that is Y (D+1) = softmax(I⊤LX(D)A(D+1)/(Lτ)) ∈ Rdy , where IL ∈ RL

is the vector with all ones, A(D+1) ∈ Rd×dy is the weight matrix, τ ∈ (0, 1] is the fixed

temperature parameter, and dy is the output dimension. The parameters of each layer are

denoted as θ(t) = (γ
(t)
1 , γ

(t)
2 ,W (t), A(t)) for t ∈ [D] and θ(D+1) = A(D+1), and the parameter

of the whole network is the concatenation of these parameters, i.e., θ = (θ(1), · · · , θ(D+1)).

We consider the transformers with bounded parameters. The set of parameters is

Θ =
{
θ |
∥∥A(D+1),⊤∥∥

1,2
≤ BA,max

{∣∣γ(t)1

∣∣, ∣∣γ(t)2

∣∣} ≤ 1,
∥∥A(t)

1

∥∥
F
≤ BA,1,

∥∥A(t)
2

∥∥
F
≤ BA,2,∥∥WQ,(t)

i

∥∥
F
≤ BQ,

∥∥WK,(t)
i

∥∥
F
≤ BK ,

∥∥W V,(t)
i

∥∥
F
≤ BV for all t ∈ [D], i ∈ [h]

}
,

132

where BA, BA,1, BA,2, BQ, BK , and BV are the bounds of parameter. Here we only consider

the non-trivial case where these bounds are larger than 1, otherwise the magnitude of the

output in Dth layer decades exponentially with growing depth. The probability induced

by the transformer with parameter θ is denoted as Pθ.

The pretraining dataset consists of Np independent trajectories. For the n- th trajectory

with n ∈ [Np], a hidden concept zn ∼ PZ(z) ∈ ∆(Z) is first sampled, which is the hidden

variables of the token sequence to generate, e.g., the theme, the sentiment, and the

style. Then the tokens are sequentially sampled from the Markov chain induced by zn

as xnt+1 ∼ P(· |Snt , zn) and Snt+1 = (Snt , x
n
t+1), where xnt+1 ∈ X, and Snt , S

n
t+1 ∈ X∗. Here

the Markov chain is defined with respect to the state Snt , which obviously satisfies the

Markov property since Sni for i ∈ [t − 1] are contained in Snt . The pretraining dataset

is DNp,Tp = {(Snt , xnt+1)}
Np,Tp
n,t=1 where the concepts zn is hidden from the context and thus

unobserved. Here each token sequence is divided into Tp pieces {(Snt , xnt+1)}
Tp
t=1. We

highlight that this pretraining dataset collecting process subsumes those for BERT, GPT,

and even Masked AutoEncoders (MAE) (Radford et al., 2021). For GPT, each trajectory

corresponds to a paragraph or an article in the pretraining dataset, and zn ∼ PZ(z) is

realized by the selection process of these contexts from the Internet. For BERT, we just

take Tp = 1. Then Sn1 and xn2 respectively correspond to the sampled sentence and the

masked token. For MAE, we take Tp = 1, and Sn1 and xn2 respectively correspond to the

image and the masked token.

133

To pretrain the transformer, we adopt the cross-entropy as the loss function, which is

widely used in the training of BERT and GPT. The corresponding pretraining algorithm is

θ̂ = argmin
θ∈Θ

− 1

NpTp

Np∑
n=1

Tp∑
t=1

logPθ(xnt+1 |Snt).(4.5.2)

We first analyze the population version of (4.5.2). In the training set, the conditional

distribution of xnt+1 conditioned on Snt is P(xnt+1 |Snt) =
∫
Z
P(xnt+1 |Snt , z)PZ(z |Snt)dz,

where the unobserved hidden concept is weighed via its posterior distribution. Thus,

the population risk of (4.5.2) is Et[ESt [KL(P(· |St)∥Pθ(· |Snt)) +H(P(· |St))]], where t ∼

Unif([Tp]), and H(p) = −⟨p, log p⟩ is the entropy. Thus, we expect that Pθ will converge

to P. For MAE, the network training adopts ℓ2-loss, and we defer the analysis of this case

to Appendix D.3.4.

4.5.2. Performance Guarantee for Pretraining

We first state the assumptions for the pretraining setting.

Assumption 4.5.1. There exists a constant R > 0 such that for any z ∈ Z and St ∼

P(· | z), we have ∥S⊤
t ∥2,∞ ≤ R almost surely.

This assumption states that the ℓ2-norm of the magnitude of each token in the token

sequence is upper bounded by R > 0. This assumption holds in most machine learning

settings. For BERT and GPT, each token consists of word embedding and positional

embedding. For MAE, each token consists of a patch of pixels. The ℓ2-norm of each token

is bounded in these cases.

Assumption 4.5.2. There exists a constant c0 > 0 such that for any z ∈ Z, x ∈ X and

S ∈ X∗, we have P(x |S, z) ≥ c0.

134

This assumption states that the conditional probability of x conditioned on S and z is

lower bounded. This comes from the ambiguity of language, that is, a sentence can take

lots of words as its next word. Similar regularity assumptions are also widely adopted in

ICL literature (Xie et al., 2021; Wies et al., 2023). To state our result, we respectively use

ES∼D and PD to denote the expectation and the distribution of the average distribution of

Snt in DNp,Tp , i.e., ES∼D[f(S)] =
∑Tp

t=1 ESt [f(St)]/Tp for any function f : X∗ → R.

Theorem 4.5.3. Let B̄ = τ−1RhBABA,1BA,2BQBKBV and D̄ = D2d(dF +dh +d) +d ·dy.

Under Assumptions 4.5.1 and 4.5.2, the pretrained model Pθ̂ by the algorithm in (4.5.2)

satisfies

ES∼D

[
TV

(
P(·|S),Pθ̂(·|S)

)]
=O

(
inf
θ∗∈Θ

√
ES∼DKL

(
P(·|S)∥Pθ∗(·|S)

)
+
t
1/4
mix log 1/δ

(NpTp)1/4︸ ︷︷ ︸
approximation error

+

√
tmix√
NpTp

(
D̄ log(1+NpTpB̄)+log

1

δ︸ ︷︷ ︸
generalization error

))

with probability at least 1− δ, where tmix is the mixing time of the Markov chains induced

by P, formally defined in Appendix D.3.1.

We define the right-hand side of the equation as ∆pre(Np, Tp, δ). The first and the

second terms in the bound are the approximation error. It measures the distance between

the nominal distribution P and the distributions induced by transformers with respect

to KL divergence. If the nominal model P can be represented by transformers exactly,

i.e., the realizable case, these two terms will vanish. The third term is the generalization

error, and it does not increase with the growing sequence length Tp. If we use each token

sequence once in pretraining, like BERT, this term is independent of Tp.

135

This pretraining analysis is missing in most existing theoretical works about ICL. Xie

et al. (2021), Wies et al. (2023), and Jiang (2023) all assume access to an arbitrarily

precise pretraining model. Although the generalization bound in Li et al. (2023) can

be adapted to the pretraining analysis, the risk definition therein can not capture the

approximation error in our result. Furthermore, their analysis cannot fit the maximum

likelihood algorithm in (4.5.2). Concretely, their result can only show that the convergence

rate of KL divergence is O((NpTp)−1/2) with a realizable function class. Combined with

Pinsker’s inequality, this gives the convergence rate for total variation as O((NpTp)−1/4)

even in the realizable case.

The deep neural networks are shown to be universal approximators for many function

classes (Cybenko, 1989; Hornik, 1991; Yarotsky, 2017). Thus, the approximation error

in Theorem 4.5.3 should vanish with the increasing size of the transformer. To achieve

this, we slightly change the structure of the transformer by admitting a bias term in

feed-forward modules, taking A
(t)
2 ∈ RdF×dF , and admitting dF to vary across layers. This

mildly affects the generalization error by replacing D · dF by the sum of dF of all the layers

in Theorem 4.5.3. We derive the approximation error bound when the dimension of each

word is 1, i.e., X ⊆ R. Our method can carry over the case d > 1.

Proposition 4.5.4 (Informal). Under certain smoothness conditions, if dF ≥ 16dy,

BA,1 ≥ 16Rdy, BA,2 ≥ dF BA ≥
√
dy, and BV ≥

√
d, then

inf
θ∗∈Θ

max
∥S⊤∥2,∞≤R

KL
(
P(· |S) ∥Pθ∗(· |S)

)
= O

(
dy exp

(
− C ·D1/4√

logBA,1

))
,

for some constant C > 0.

136

The formal statement and proof are deferred to Appendix D.3.3. This proposition states

that the approximation error decays exponentially with the increasing depth. Combined

with this result, Theorem 4.5.3 provides the full description of the pretraining performance.

4.6. ICL Regret under Practical Settings

4.6.1. ICL Regret with an Imperfectly Pretrained Model

In Section 4.4, we study the ICL regret with a perfect pretrained model. In what follows,

we characterize the ICL regret when the pretrained model has an error. Note that the

distribution DICL of the prompts of ICL tasks can be different from that of pretraining.

We impose the following assumption on their relation.

Assumption 4.6.1. We assume that there exists an absolute constant κ > 0 such that

for any ICL prompt, it holds that PDICL
(prompt) ≤ κ · PD(prompt).

This assumption states that the prompt distribution is covered by the pretraining

distribution. Intuitively, the pretrained model cannot precisely inference on the datapoint

that is outside the support of the pretraining distribution. For example, if the pretraining

data does not contain any mathematical symbols and numbers, it is difficult for the

pretrained model to calculate 2× 3 in ICL precisely. We then have the following theorem

characterizing the ICL regret of the pretrained model.

Theorem 4.6.2 (ICL Regret of Pretrained Model). We assume that the underlying

hidden concept z∗ maximizes
∑t

i=1 logP(ri | prompti−1, z) for any t ∈ [T] and there exists

an absolute constant β > 0 such that log(1/p0(z∗)) ≤ β. Under Assumptions 4.5.1, 4.5.2,

137

and 4.6.1, we have with probability at least 1− δ that

Eprompt∼DICL

[
T−1 ·

T∑
t=1

logP(rt | z∗, promptt−1)− T−1 ·
T∑
t=1

logPθ̂(rt | promptt−1)
]

≤ O
(
β/T + κ · b∗ ·∆pre(Np, Tp, δ)

)
.

Here we denote by ∆pre(Np, Tp, δ) the pretraining error in Theorem 4.5.3.

Theorem 4.6.2 shows that the expected ICL regret for the pretrained model is upper

bounded by the sum of two terms: (a) the ICL regret for the underlying true model and

the error and (b) the pretraining error.

4.6.2. Prompting with Wrong Input-Output Mappings

In the real-world implementations of ICL, the provided input-output examples may not

conform to the nominal distribution induced by z∗, and the outputs in examples can

be perturbed. We temporarily take concept space Z as a finite space, and our results

can be generalized with the cover number argument. We denote the prompt considered

in Section 4.4 as promptt = (St, c̃t+1), St = (c̃1, r1, · · · , c̃t, rt) ∈ X∗, and (c̃i+1, ri+1) ∼

P(· |Si, z∗) for i ∈ [t− 1]. Here, each input c̃i ∈ Xl is a l-length token sequence, and each

output ri ∈ X is a single token. The perturbed prompt is then denoted as prompt′ =

(S ′
t, c̃t+1), where S ′

t = (c̃1, r
′
1, · · · , c̃t, r′t) ∈ X∗, and r′i for i ∈ [t] is the modified output.

We denote the perturbed prompt distribution as P′. Next, we state assumptions for this

setting.

Assumption 4.6.3. Conditioned on any z ∈ Z, the input-output pairs are independent,

i.e., for any two input-output pair sequences St, St′ ∈ X∗, we have P((St, St′) | z) =

P(St | z) · P(St′ | z).

138

This assumption states that for any task z ∈ Z, the input-output pairs are independently

generated. This largely holds in realistic applications since the examples usually are

independently produced. It can be relaxed when there are more structures in the token

generation process, e.g. the hidden Markov model in Xie et al. (2021).

Assumption 4.6.4. There exists a constant c1 > 0 such that PZ(z∗) ≥ c1.

This assumption states that the prior distribution of the hidden concept z∗ is strictly

larger than 0, otherwise this concept can never be deduced.

Assumption 4.6.5. There exists a constant c2 > 0 such that for any prompt′ ∈ X∗, it

holds that P′(prompt′)/PD(prompt′) ≤ c2.

Similar to Assumption 4.6.1, this assumption states that the distribution of the

perturbed prompt is covered by the pretraining distribution. For two concepts z, z′ ∈ Z,

we define the KL divergence between the conditional distributions of input-output pair on

them as KLpair(P(· | z)∥P(· | z′)) = EX,y∼P(· | z)[log(P(X, y | z)/P(X, y | z′))]. This divergence

measures the distance between distributions of input-output pairs conditioned on different

tasks z and z′.

Assumption 4.6.6. The concept z∗ satisfies that minz ̸=z∗ KLpair(P(· | z∗) ∥P(· | z)) >

2 log 1/c0, where c0 is the constant in Assumption 4.5.2.

This distinguishability assumption requires that the divergence between z∗ and other

concepts z is large enough to infer the concept z∗ from the prompt.

Proposition 4.6.7. Under Assumptions 4.5.2, 4.6.3, 4.6.4, 4.6.5 and 4.6.6, the pretrained

model Pθ̂ in (4.5.2) predicts the outputs with the prompt containing wrong mappings as

Eprompt′∼P′

[
KL
(
P(· | c̃t+1, z∗)∥Pθ̂(· |S

′
t, c̃t+1)

)]
=O
(
c2∆pre(Np,Tp,δ)+exp

(
− t
(

min
z ̸=z∗

KLpair

(
P(· | z∗)∥P(· | z)

)
+2 logc0−

2l log1/c0√
t

log
|Z|
δ

)))

139

with probability at least 1− δ.
The first term is the pretraining error, which is related to the size of the pretraining set

and the capacity of the neural networks. The second term is the ICL error. Intuitively, this

term represents the concept identification error. If the considered task z∗ is distinguishable,

i.e., satisfying Assumption 4.6.6, this term decays to 0 exponentially in t.

4.7. Conclusion

In this paper, we investigated the theoretical foundations of ICL for the pretrained

language models. We proved that the perfectly pretrained LLMs implicitly implements

Bayesian model averaging with regret O(1/t) over a general response generation modeling,

which subsumes the models in previous works. Based on this, we showed that the

attention mechanism parameterizes the Bayesian model averaging algorithm. Analyzing the

pretraining process, we demonstrated that the total variation between the pretrained model

and the nominal distribution consists of the approximation error and the generalization

error. The combination of the ICL regret and the pretraining performance gives the full

description of ICL ability of pretrained LLMs. We mainly focus on the prompts that

comprise several examples in this work and leave the analysis of instruction-based prompts

for future works.

140

References

Agarwal, A., Kakade, S., Krishnamurthy, A. and Sun, W. (2020). Flambe: Structural com-
plexity and representation learning of low rank MDPs. Advances in Neural Information
Processing Systems, 33 20095–20107.

Agarwal, A., Kakade, S. M., Lee, J. D. and Mahajan, G. (2019). Optimality and approx-
imation with policy gradient methods in Markov decision processes. arXiv preprint
arXiv:1908.00261.

Agazzi, A. and Lu, J. (2019). Temporal-difference learning for nonlinear value function
approximation in the lazy training regime. arXiv preprint arXiv:1905.10917.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T. and Zhou, D. (2022). What learning
algorithm is in-context learning? investigations with linear models. arXiv preprint
arXiv:2211.15661.

Allen-Zhu, Z., Li, Y. and Liang, Y. (2018a). Learning and generalization in overparame-
terized neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918.

Allen-Zhu, Z., Li, Y. and Liang, Y. (2019a). Learning and generalization in overparam-
eterized neural networks, going beyond two layers. In Neural Information Processing
Systems.

Allen-Zhu, Z., Li, Y. and Song, Z. (2018b). A convergence theory for deep learning via
over-parameterization. arXiv preprint arXiv:1811.03962.

Allen-Zhu, Z., Li, Y. and Song, Z. (2019b). A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning.

Allen-Zhu, Z., Li, Y. and Song, Z. (2019c). On the convergence rate of training recurrent
neural networks. In Neural Information Processing Systems.

Altman, E. (1999). Constrained Markov decision processes, vol. 7. CRC Press.

141

Ambrosio, L. and Gigli, N. (2013). A user’s guide to optimal transport. In Modelling and
Optimisation of Flows on Networks. Springer, 1–155.

Ambrosio, L., Gigli, N. and Savaré, G. (2008). Gradient flows: In metric spaces and in
the space of probability measures. Springer.

Anthony, M. and Bartlett, P. L. (2009). Neural network learning: Theoretical foundations.
Cambridge University Press.

Anthony, M., Bartlett, P. L., Bartlett, P. L. et al. (1999). Neural network learning: Theo-
retical foundations, vol. 9. cambridge university press Cambridge.

Antos, A., Szepesvári, C. and Munos, R. (2008). Learning near-optimal policies with
Bellman-residual minimization based fitted policy iteration and a single sample path.
Machine Learning, 71 89–129.

Araújo, D., Oliveira, R. I. and Yukimura, D. (2019). A mean-field limit for certain deep
neural networks. arXiv preprint arXiv:1906.00193.

Arjovsky, M., Chintala, S. and Bottou, L. (2017). Wasserstein GAN. arXiv preprint
arXiv:1701.07875.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R. and Wang, R. (2019a). On
exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems.

Arora, S., Du, S. S., Hu, W., Li, Z. and Wang, R. (2019b). Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. arXiv
preprint arXiv:1901.08584.

Bai, Y. and Lee, J. D. (2019). Beyond linearization: On quadratic and higher-order
approximation of wide neural networks. arXiv preprint arXiv:1910.01619.

Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation.
In Machine Learning Proceedings 1995. Elsevier, 30–37.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39 930–945.

Bartlett, P. (1996). For valid generalization the size of the weights is more important than
the size of the network. Neural Information Processing Systems.

142

Bartlett, P., Helmbold, D. and Long, P. (2018a). Gradient descent with identity initializa-
tion efficiently learns positive definite linear transformations by deep residual networks.
In International Conference on Machine Learning.

Bartlett, P. L., Evans, S. N. and Long, P. M. (2018b). Representing smooth functions as
compositions of near-identity functions with implications for deep network optimization.
arXiv preprint arXiv:1804.05012.

Bartlett, P. L., Foster, D. J. and Telgarsky, M. J. (2017). Spectrally-normalized margin
bounds for neural networks. In Advances in Neural Information Processing Systems.

Bartlett, P. L. and Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R. et al. (2018).
Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261.

Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A. and
Hjelm, D. (2018). Mutual information neural estimation. In International Confer-
ence on Machine Learning. PMLR.

Bengio, Y. (2012). Deep learning of representations for unsupervised and transfer learning.
In ICML Workshop on Unsupervised and Transfer Learning.

Bertsekas, D. P. (2019). Feature-based aggregation and deep reinforcement learning: A
survey and some new implementations. IEEE/CAA Journal of Automatica Sinica, 6
1–31.

Bhandari, J. and Russo, D. (2019). Global optimality guarantees for policy gradient
methods. arXiv preprint arXiv:1906.01786.

Bhandari, J., Russo, D. and Singal, R. (2018). A finite time analysis of temporal difference
learning with linear function approximation. arXiv preprint arXiv:1806.02450.

Bhatnagar, S., Precup, D., Silver, D., Sutton, R. S., Maei, H. R. and Szepesvári, C.
(2009). Convergent temporal-difference learning with arbitrary smooth function approx-
imation. In Advances in Neural Information Processing Systems.

Bloem-Reddy, B. and Teh, Y. W. (2020). Probabilistic symmetries and invariant neural
networks. Journal of Machine Learning Research.

143

Borkar, V. S. (2009). Stochastic approximation: a dynamical systems viewpoint, vol. 48.
Springer.

Borkar, V. S. and Meyn, S. P. (2000). The ODE method for convergence of stochastic
approximation and reinforcement learning. SIAM Journal on Control and Optimization,
38 447–469.

Boyan, J. A. and Moore, A. W. (1995). Generalization in reinforcement learning: Safely
approximating the value function. In Advances in Neural Information Processing
Systems.

Brandfonbrener, D. and Bruna, J. (2019a). Geometric insights into the convergence of
nonlinear TD learning. arXiv preprint arXiv:1905.12185.

Brandfonbrener, D. and Bruna, J. (2019b). On the expected dynamics of nonlinear TD
learning. arXiv preprint arXiv:1905.12185.

Bronstein, M. M., Bruna, J., Cohen, T. and Veličković, P. (2021). Geometric deep learn-
ing: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A. et al. (2020). Language mod-
els are few-shot learners. Neural Information Processing Systems.

Cai, Q., Hong, M., Chen, Y. and Wang, Z. (2019a). On the global convergence of imitation
learning: A case for linear quadratic regulator. arXiv preprint arXiv:1901.03674.

Cai, Q., Yang, Z., Jin, C. and Wang, Z. (2019b). Provably efficient exploration in policy
optimization. arXiv preprint arXiv:1912.05830.

Cai, Q., Yang, Z., Lee, J. D. and Wang, Z. (2019c). Neural temporal-difference learning
converges to global optima. arXiv preprint arXiv:1905.10027.

Cao, Y. and Gu, Q. (2019a). Generalization bounds of stochastic gradient descent for
wide and deep neural networks. arXiv preprint arXiv:1905.13210.

Cao, Y. and Gu, Q. (2019b). Generalization bounds of stochastic gradient descent for
wide and deep neural networks. Neural Information Processing Systems.

Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares
algorithm. Foundations of Computational Mathematics.

144

Chan, S. C., Santoro, A., Lampinen, A. K., Wang, J. X., Singh, A., Richemond, P. H.,
McClelland, J. and Hill, F. (2022). Data distributional properties drive emergent few-
shot learning in transformers. arXiv preprint arXiv:2205.05055.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P.,
Srinivas, A. and Mordatch, I. (2021). Decision transformer: Reinforcement learning via
sequence modeling. Neural Information Processing Systems.

Chen, M., Wang, Y., Liu, T., Yang, Z., Li, X., Wang, Z. and Zhao, T. (2020a). On com-
putation and generalization of generative adversarial imitation learning. arXiv preprint
arXiv:2001.02792.

Chen, Z., Cao, Y., Gu, Q. and Zhang, T. (2020b). Mean-field analysis of two-layer
neural networks: Non-asymptotic rates and generalization bounds. arXiv preprint
arXiv:2002.04026.

Chen, Z., Cao, Y., Zou, D. and Gu, Q. (2019a). How much over-parameterization is
sufficient to learn deep ReLU networks? arXiv preprint arXiv:1911.12360.

Chen, Z., Zhang, S., Doan, T. T., Maguluri, S. T. and Clarke, J.-P. (2019b). Performance
of q-learning with linear function approximation: Stability and finite-time analysis.
arXiv preprint arXiv:1905.11425.

Chizat, L. and Bach, F. (2018a). A note on lazy training in supervised differentiable
programming. arXiv preprint arXiv:1812.07956.

Chizat, L. and Bach, F. (2018b). On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in Neural Information
Processing Systems.

Chizat, L., Oyallon, E. and Bach, F. (2019). On lazy training in differentiable program-
ming. Neural Information Processing Systems.

Conway, J. B. (2019). A course in functional analysis, vol. 96. Springer.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2 303–314.

Dai, D., Sun, Y., Dong, L., Hao, Y., Sui, Z. and Wei, F. (2022). Why can GPT learn
In-Context? Language models secretly perform gradient descent as meta optimizers.
arXiv preprint arXiv:2212.10559.

145

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V. and Salakhutdinov, R. (2019).
Transformer-XL: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860.

Dalal, G., Szörényi, B., Thoppe, G. and Mannor, S. (2018). Finite sample analyses for
TD(0) with function approximation. In AAAI Conference on Artificial Intelligence.

Daniely, A. (2017). SGD learns the conjugate kernel class of the network. In Advances in
Neural Information Processing Systems.

Dann, C., Neumann, G. and Peters, J. (2014). Policy evaluation with temporal differences:
A survey and comparison. The Journal of Machine Learning Research, 15 809–883.

de Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. In Annales
de l’institut Henri Poincaré.

De Gooijer, J. G. and Zerom, D. (2003). On conditional density estimation. Statistica
Neerlandica.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018). BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Diaconis, P. and Freedman, D. (1980). Finite exchangeable sequences. Annals of Proba-
bility.

Dong, L., Yang, N., Wang, W., Wei, F., Liu, X., Wang, Y., Gao, J., Zhou, M. and
Hon, H.-W. (2019). Unified language model pre-training for natural language un-
derstanding and generation. Advances in neural information processing systems, 32.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun, X., Xu, J. and Sui, Z.
(2022). A survey for in-context learning. arXiv preprint arXiv:2301.00234.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S. et al. (2020). An image is
worth 16×16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Du, S., Lee, J., Li, H., Wang, L. and Zhai, X. (2019). Gradient descent finds global minima
of deep neural networks. In International Conference on Machine Learning.

Du, S. S., Lee, J. D., Li, H., Wang, L. and Zhai, X. (2018a). Gradient descent finds global
minima of deep neural networks. arXiv preprint arXiv:1811.03804.

146

Du, S. S., Zhai, X., Poczos, B. and Singh, A. (2018b). Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054.

Duchi, J. C. (2019). Information theory and statistics. Lecture Notes for Statistics, 311
304.

Edelman, B. L., Goel, S., Kakade, S. and Zhang, C. (2021). Inductive biases and variable
creation in self-attention mechanisms. arXiv preprint arXiv:2110.10090.

Elbrächter, D., Perekrestenko, D., Grohs, P. and Bölcskei, H. (2021). Deep neural network
approximation theory. IEEE Transactions on Information Theory, 67 2581–2623.

Elesedy, B. (2021). Provably strict generalisation benefit for invariance in kernel methods.
Neural Information Processing Systems.

Fang, C., Dong, H. and Zhang, T. (2019a). Over parameterized two-level neural networks
can learn near optimal feature representations. arXiv preprint arXiv:1910.11508.

Fang, C., Gu, Y., Zhang, W. and Zhang, T. (2019b). Convex formulation of overparame-
terized deep neural networks. arXiv preprint arXiv:1911.07626.

Farahmand, A.-m., Ghavamzadeh, M., Szepesvári, C. and Mannor, S. (2016). Regularized
policy iteration with nonparametric function spaces. The Journal of Machine Learning
Research, 17 4809–4874.

Farahmand, A.-m., Szepesvári, C. and Munos, R. (2010). Error propagation for approxi-
mate policy and value iteration. In Advances in Neural Information Processing Systems.

Finn, C., Levine, S. and Abbeel, P. (2016). Guided cost learning: Deep inverse optimal
control via policy optimization. In International Conference on Machine Learning.

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philo-
sophical Transactions of the Royal Society A, 222 309–368.

Fukumizu, K. (2015). Nonparametric bayesian inference with kernel mean embedding. In
Modern Methodology and Applications in Spatial-Temporal Modeling. Springer, 1–24.

Garg, S., Tsipras, D., Liang, P. and Valiant, G. (2022). What can transformers learn
in-context? A case study of simple function classes. arXiv preprint arXiv:2208.01066.

Geist, M. and Pietquin, O. (2013). Algorithmic survey of parametric value function
approximation. IEEE Transactions on Neural Networks and Learning Systems, 24
845–867.

147

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. (2014). Generative adversarial nets. In Advances in
Neural Information Processing Systems.

Haarnoja, T., Tang, H., Abbeel, P. and Levine, S. (2017). Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning.

Han, J., Rong, Y., Xu, T. and Huang, W. (2022). Geometrically equivariant graph neural
networks: A survey. arXiv preprint arXiv:2202.07230.

Hardt, M. and Ma, T. (2016). Identity matters in deep learning. arXiv preprint
arXiv:1611.04231.

Harker, P. T. and Pang, J.-S. (1990). Finite-dimensional variational inequality and non-
linear complementarity problems: A survey of theory, algorithms and applications.
Mathematical Programming, 48 161–220.

He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L. and Ostendorf, M. (2015). Deep
reinforcement learning with a natural language action space. arXiv preprint
arXiv:1511.04636.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P. and Girshick, R. (2022). Masked autoencoders
are scalable vision learners. In Computer Vision and Pattern Recognition.

Hinton, G. (1986). Learning distributed representations of concepts. In Annual Conference
of Cognitive Science Society.

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. In Advances in
Neural Information Processing Systems.

Hofmann, T., Schölkopf, B. and Smola, A. J. (2008). Kernel methods in machine learning.
The Annals of Statistics 1171–1220.

Holte, J. M. (2009). Discrete Gronwall lemma and applications. In MAA-NCS meeting at
the University of North Dakota, vol. 24.

Honovich, O., Shaham, U., Bowman, S. R. and Levy, O. (2022). Instruction induc-
tion: From few examples to natural language task descriptions. arXiv preprint
arXiv:2205.10782.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
networks, 4 251–257.

148

Hron, J., Bahri, Y., Sohl-Dickstein, J. and Novak, R. (2020). Infinite attention: NNGP
and NTK for deep attention networks. In International Conference on Machine Learning.

Hutchinson, M. J., Le Lan, C., Zaidi, S., Dupont, E., Teh, Y. W. and Kim, H. (2021).
Lietransformer: Equivariant self-attention for Lie groups. In International Conference
on Machine Learning.

Iyer, S., Lin, X. V., Pasunuru, R., Mihaylov, T., Simig, D., Yu, P., Shuster, K., Wang, T.,
Liu, Q., Koura, P. S. et al. (2022). OPT-IML: Scaling language model instruction meta
learning through the lens of generalization. arXiv preprint arXiv:2212.12017.

Jaakkola, T., Jordan, M. I. and Singh, S. P. (1994). Convergence of stochastic iterative
dynamic programming algorithms. In Advances in Neural Information Processing
Systems.

Jacot, A., Gabriel, F. and Hongler, C. (2018). Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems.

Javanmard, A., Mondelli, M. and Montanari, A. (2019). Analysis of a two-layer neural
network via displacement convexity. arXiv preprint arXiv:1901.01375.

Ji, Z. and Telgarsky, M. (2019). Polylogarithmic width suffices for gradient descent
to achieve arbitrarily small test error with shallow ReLU networks. arXiv preprint
arXiv:1909.12292.

Jiang, H. (2023). A latent space theory for emergent abilities in large language models.
arXiv preprint arXiv:2304.09960.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D. and Bengio, S. (2019). Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F. and Liu, Q. (2019).
Tinybert: Distilling bert for natural language understanding. arXiv preprint
arXiv:1909.10351.

Jin, C., Yang, Z., Wang, Z. and Jordan, M. I. (2019). Provably efficient reinforcement
learning with linear function approximation. arXiv preprint arXiv:1907.05388.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
Tunyasuvunakool, K., Bates, R., Ž́ıdek, A., Potapenko, A. et al. (2021). Highly
accurate protein structure prediction with AlphaFold. Nature.

149

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement
learning. In International Conference on Machine Learning, vol. 2.

Kakade, S. M. (2002). A natural policy gradient. In Advances in Neural Information
Processing Systems.

Ke, G., He, D. and Liu, T.-Y. (2020). Rethinking positional encoding in language pre-
training. arXiv preprint arXiv:2006.15595.

Keriven, N. and Peyré, G. (2019). Universal invariant and equivariant graph neural
networks. Neural Information Processing Systems.

Kim, H. J., Cho, H., Kim, J., Kim, T., Yoo, K. M. and Lee, S.-g. (2022). Self-generated
in-context learning: Leveraging auto-regressive language models as a demonstration
generator. arXiv preprint arXiv:2206.08082.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y. and Iwasawa, Y. (2022). Large language
models are zero-shot reasoners. arXiv preprint arXiv:2205.11916.

Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in Neural
Information Processing Systems.

Kossen, J., Band, N., Lyle, C., Gomez, A. N., Rainforth, T. and Gal, Y. (2021). Self-
attention between datapoints: Going beyond individual input-output pairs in deep
learning. Neural Information Processing Systems.

Kuefler, A., Morton, J., Wheeler, T. and Kochenderfer, M. (2017). Imitating driver be-
havior with generative adversarial networks. In IEEE Intelligent Vehicles Symposium.
IEEE.

Kushner, H. and Yin, G. G. (2003). Stochastic approximation and recursive algorithms
and applications. Springer.

Lakshminarayanan, C. and Szepesvári, C. (2018). Linear stochastic approximation: How
far does constant step-size and iterate averaging go? In International Conference on
Artificial Intelligence and Statistics.

Lazaric, A., Ghavamzadeh, M. and Munos, R. (2016). Analysis of classification-based
policy iteration algorithms. The Journal of Machine Learning Research, 17 583–612.

LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature, 521 436–444.

150

Ledent, A., Mustafa, W., Lei, Y. and Kloft, M. (2021). Norm-based generalisation bounds
for deep multi-class convolutional neural networks. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 35.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: isoperimetry and
processes, vol. 23. Springer Science & Business Media.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S. and Teh, Y. W. (2019a). Set transformer:
A framework for attention-based permutation-invariant neural networks. In International
Conference on Machine Learning.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Sohl-Dickstein, J. and Pennington, J.
(2019b). Wide neural networks of any depth evolve as linear models under gradient
descent. arXiv preprint arXiv:1902.06720.

Levine, S., Finn, C., Darrell, T. and Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17 1334–1373.

Levine, S. and Koltun, V. (2012). Continuous inverse optimal control with locally optimal
examples. arXiv preprint arXiv:1206.4617.

Li, Y., Ildiz, M. E., Papailiopoulos, D. and Oymak, S. (2023). Transformers as algorithms:
Generalization and stability in in-context learning. arXiv preprint arXiv:2301.07067.

Li, Y. and Liang, Y. (2018). Learning overparameterized neural networks via stochastic
gradient descent on structured data. In Advances in Neural Information Processing
Systems.

Liao, R., Urtasun, R. and Zemel, R. (2020). A pac-bayesian approach to generalization
bounds for graph neural networks. arXiv preprint arXiv:2012.07690.

Lin, S. and Zhang, J. (2019). Generalization bounds for convolutional neural networks.
arXiv preprint arXiv:1910.01487.

Liu, B., Cai, Q., Yang, Z. and Wang, Z. (2019). Neural proximal/trust region policy
optimization attains globally optimal policy. arXiv preprint arXiv:1906.10306.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L. and Chen, W. (2021). What makes
good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H. and Neubig, G. (2023). Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language processing.
ACM Computing Surveys, 55 1–35.

151

Lu, Y., Bartolo, M., Moore, A., Riedel, S. and Stenetorp, P. (2021). Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786.

Malladi, S., Wettig, A., Yu, D., Chen, D. and Arora, S. (2022). A kernel-based view of
language model fine-tuning. arXiv preprint arXiv:2210.05643.

Maurer, A. (2016). A vector-contraction inequality for rademacher complexities. In
International Conference on Algorithmic Learning Theory. Springer.

Mei, S., Misiakiewicz, T. and Montanari, A. (2019). Mean-field theory of two-layers neural
networks: Dimension-free bounds and kernel limit. arXiv preprint arXiv:1902.06015.

Mei, S., Montanari, A. and Nguyen, P.-M. (2018). A mean field view of the landscape
of two-layer neural networks. Proceedings of the National Academy of Sciences, 115
E7665–E7671.

Melo, F. S., Meyn, S. P. and Ribeiro, M. I. (2008). An analysis of reinforcement learning
with function approximation. In International Conference on Machine Learning.

Merel, J., Tassa, Y., TB, D., Srinivasan, S., Lemmon, J., Wang, Z., Wayne, G. and
Heess, N. (2017). Learning human behaviors from motion capture by adversarial imita-
tion. arXiv preprint arXiv:1707.02201.

Michel, P., Levy, O. and Neubig, G. (2019). Are sixteen heads really better than one?
Advances in neural information processing systems, 32.

Min, S., Lewis, M., Zettlemoyer, L. and Hajishirzi, H. (2021). Metaicl: Learning to learn
in context. arXiv preprint arXiv:2110.15943.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H. and
Zettlemoyer, L. (2022). Rethinking the role of demonstrations: What makes
in-context learning work? arXiv preprint arXiv:2202.12837.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G. et al. (2015). Human-level
control through deep reinforcement learning. Nature, 518 529–533.

Mohri, M., Rostamizadeh, A. and Talwalkar, A. (2018). Foundations of machine learning.
MIT press.

Muandet, K., Fukumizu, K., Sriperumbudur, B. and Schölkopf, B. (2016). Kernel mean
embedding of distributions: A review and beyond. arXiv preprint arXiv:1605.09522.

152

Munos, R. and Szepesvári, C. (2008). Finite-time bounds for fitted value iteration. The
Journal of Machine Learning Research, 9 815–857.

Nachum, O., Norouzi, M., Xu, K. and Schuurmans, D. (2017). Bridging the gap between
value and policy based reinforcement learning. In Advances in Neural Information
Processing Systems.

Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course, vol. 87.
Springer Science & Business Media.

Neyshabur, B., Bhojanapalli, S., McAllester, D. and Srebro, N. (2017). A PAC-Bayesian
approach to spectrally-normalized margin bounds for neural networks. arXiv preprint
arXiv:1707.09564.

Ng, A. Y. and Russell, S. J. (2000). Algorithms for inverse reinforcement learning. In
International Conference on Machine Learning.

Nguyen, P.-M. (2019). Mean field limit of the learning dynamics of multilayer neural
networks. arXiv preprint arXiv:1902.02880.

Noci, L., Anagnostidis, S., Biggio, L., Orvieto, A., Singh, S. P. and Lucchi, A. (2022).
Signal propagation in transformers: Theoretical perspectives and the role of rank
collapse. arXiv preprint arXiv:2206.03126.

O’Donoghue, B., Munos, R., Kavukcuoglu, K. and Mnih, V. (2016). Combining policy
gradient and Q-learning. arXiv preprint arXiv:1611.01626.

Otto, F. and Villani, C. (2000). Generalization of an inequality by Talagrand and links
with the logarithmic Sobolev inequality. Journal of Functional Analysis, 173 361–400.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,
Agarwal, S., Slama, K., Ray, A. et al. (2022). Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems,
35 27730–27744.

Paulin, D. (2015). Concentration inequalities for markov chains by marton couplings and
spectral methods.

Pearl, J. (2009). Causality. Cambridge University press.

Peters, J. and Schaal, S. (2008). Natural actor-critic. Neurocomputing, 71 1180–1190.

153

Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta
Numerica, 8 143–195.

Pomerleau, D. A. (1991). Efficient training of artificial neural networks for autonomous
navigation. Neural Computation, 3 88–97.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J. et al. (2021). Learning transferable visual models
from natural language supervision. In International conference on machine learning.
PMLR.

Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I. (2018). Improving language
understanding by generative pre-training. Technical Report.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I. et al. (2019). Lan-
guage models are unsupervised multitask learners. OpenAI blog.

Rafique, H., Liu, M., Lin, Q. and Yang, T. (2018). Non-convex min-max optimization:
Provable algorithms and applications in machine learning. arXiv:1810.02060.

Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems.

Rahimi, A. and Recht, B. (2009). Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning. Advances in Neural Information Processing
Systems 1313–1320.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M. and
Sutskever, I. (2021). Zero-shot text-to-image generation. In International Conference
on Machine Learning.

Romero, D. W. and Cordonnier, J.-B. (2020). Group equivariant stand-alone self-attention
for vision. arXiv preprint arXiv:2010.00977.

Ross, S. and Bagnell, D. (2010). Efficient reductions for imitation learning. In International
Conference on Artificial Intelligence and Statistics.

Ross, S., Gordon, G. and Bagnell, D. (2011). A reduction of imitation learning and
structured prediction to no-regret online learning. In International Conference on
Artificial Intelligence and Statistics.

Rotskoff, G. and Vanden-Eijnden, E. (2018). Parameters as interacting particles: Long
time convergence and asymptotic error scaling of neural networks. Neural Information

154

Processing Systems.

Rubin, O., Herzig, J. and Berant, J. (2021). Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633.

Russell, S. (1998). Learning agents for uncertain environments. In Conference on Learning
Theory.

Sannai, A., Imaizumi, M. and Kawano, M. (2021). Improved generalization bounds of
group invariant/equivariant deep networks via quotient feature spaces. In Uncertainty
in Artificial Intelligence.

Satorras, V. G., Hoogeboom, E., Fuchs, F. B., Posner, I. and Welling, M. (2021). E(n)
equivariant normalizing flows. arXiv preprint arXiv:2105.09016.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. and Monfardini, G. (2008). The
graph neural network model. IEEE Transactions on Neural Networks.

Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B. and Geist, M. (2015). Approxi-
mate modified policy iteration and its application to the game of Tetris. The Journal
of Machine Learning Research, 16 1629–1676.

Schulman, J., Chen, X. and Abbeel, P. (2017). Equivalence between policy gradients and
soft Q-learning. arXiv preprint arXiv:1704.06440.

Schulz, E., Speekenbrink, M. and Krause, A. (2018). A tutorial on Gaussian process
regression: Modelling, exploring, and exploiting functions. Journal of Mathematical
Psychology.

Shawe-Taylor, J., Cristianini, N. et al. (2004). Kernel methods for pattern analysis. Cam-
bridge University Press.

Singh, R., Sahani, M. and Gretton, A. (2019). Kernel instrumental variable regression.
Advances in Neural Information Processing Systems.

Sirignano, J. and Spiliopoulos, K. (2019). Asymptotics of reinforcement learning with
neural networks. arXiv preprint arXiv:1911.07304.

Sirignano, J. and Spiliopoulos, K. (2020). Mean field analysis of neural networks: A law
of large numbers. SIAM Journal on Applied Mathematics, 80 725–752.

Sokolic, J., Giryes, R., Sapiro, G. and Rodrigues, M. (2017). Generalization error of
invariant classifiers. In Artificial Intelligence and Statistics.

155

Song, L., Anandkumar, A., Dai, B. and Xie, B. (2014). Nonparametric estimation of
multi-view latent variable models. In International Conference on Machine Learning.

Song, L., Huang, J., Smola, A. and Fukumizu, K. (2009). Hilbert space embeddings of
conditional distributions with applications to dynamical systems. In International
Conference on Machine Learning.

Srikant, R. and Ying, L. (2019). Finite-time error bounds for linear stochastic approxima-
tion and TD learning. arXiv preprint arXiv:1902.00923.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3 9–44.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
Press.

Sutton, R. S., McAllester, D. A., Singh, S. P. and Mansour, Y. (2000). Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems.

Syed, U., Bowling, M. and Schapire, R. E. (2008). Apprenticeship learning using linear
programming. In International Conference on Machine Learning.

Szepesvári, C. and Munos, R. (2005). Finite time bounds for sampling based fitted value
iteration. In International Conference on Machine Learning. ACM.

Sznitman, A.-S. (1991). Topics in propagation of chaos. In Ecole d’été de probabilités de
Saint-Flour XIX—1989. Springer, 165–251.

Tai, L., Zhang, J., Liu, M. and Burgard, W. (2018). Socially compliant navigation through
raw depth inputs with generative adversarial imitation learning. In IEEE International
Conference on Robotics and Automation. IEEE.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P. and Salakhutdinov, R. (2019). Trans-
former dissection: A unified understanding of transformer’s attention via the lens of
kernel. arXiv preprint arXiv:1908.11775.

Tsitsiklis, J. N. and Van Roy, B. (1997). Analysis of temporal-diffference learning with
function approximation. In Advances in Neural Information Processing Systems.

Valle-Pérez, G. and Louis, A. A. (2020). Generalization bounds for deep learning. arXiv
preprint arXiv:2012.04115.

156

van de Geer, S. and Muro, A. (2014). On higher order isotropy conditions and lower
bounds for sparse quadratic forms. Electronic Journal of Statistics, 8 3031–3061.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.
and Polosukhin, I. (2017). Attention is all you need. In Neural Information Processing
Systems.

Villani, C. (2003). Topics in optimal transportation. American Mathematical Society.

Villani, C. (2008). Optimal transport: Old and new. Springer.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A.,
Zhmoginov, A. and Vladymyrov, M. (2022). Transformers learn in-context by
gradient descent. arXiv preprint arXiv:2212.07677.

Vuckovic, J., Baratin, A. and Combes, R. T. d. (2020). A mathematical theory of atten-
tion. arXiv preprint arXiv:2007.02876.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint. Cam-
bridge University Press.

Wang, L., Cai, Q., Yang, Z. and Wang, Z. (2019). Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150.

Wang, X., Zhu, W. and Wang, W. Y. (2023). Large language models are implicitly topic
models: Explaining and finding good demonstrations for in-context learning. arXiv
preprint arXiv:2301.11916.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D. and Hajishirzi, H.
(2022). Self-instruct: Aligning language model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathe-
matical Psychology, 44 92–107.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8 279–292.

Wei, C., Chen, Y. and Ma, T. (2021a). Statistically meaningful approximation: A
case study on approximating Turing machines with transformers. arXiv preprint
arXiv:2107.13163.

157

Wei, C., Chen, Y. and Ma, T. (2022a). Statistically meaningful approximation: a case
study on approximating turing machines with transformers. Advances in Neural Infor-
mation Processing Systems, 35 12071–12083.

Wei, C., Lee, J. D., Liu, Q. and Ma, T. (2019). Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. In Advances in Neural Information
Processing Systems.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M. and
Le, Q. V. (2021b). Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D.,
Bosma, M., Zhou, D., Metzler, D. et al. (2022b). Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q. and Zhou, D. (2022c).
Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903.

Wies, N., Levine, Y. and Shashua, A. (2023). The learnability of in-context learning.
arXiv preprint arXiv:2303.07895.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8 229–256.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M. et al. (2020). Transformers: State-of-the-art natural
language processing. In Empirical Methods in Natural Language Processing.

Xie, S. M., Raghunathan, A., Liang, P. and Ma, T. (2021). An explanation of in-context
learning as implicit Bayesian inference. arXiv preprint arXiv:2111.02080.

Xu, P., Gao, F. and Gu, Q. (2019a). An improved convergence analysis of stochastic
variance-reduced policy gradient. arXiv preprint arXiv:1905.12615.

Xu, P., Gao, F. and Gu, Q. (2019b). Sample efficient policy gradient methods with
recursive variance reduction. arXiv preprint arXiv:1909.08610.

Xu, T., Zou, S. and Liang, Y. (2019c). Two time-scale off-policy TD learning: Non-
asymptotic analysis over Markovian samples. In Advances in Neural Information
Processing Systems.

158

Yang, G. (2020). Tensor programs II: Neural tangent kernel for any architecture. arXiv
preprint arXiv:2006.14548.

Yang, G. and Littwin, E. (2021). Tensor programs IIb: Architectural universality of neural
tangent kernel training dynamics. In International Conference on Machine Learning.

Yang, L. and Wang, M. (2019a). Sample-optimal parametric Q-learning using linearly
additive features. In International Conference on Machine Learning.

Yang, L. F. and Wang, M. (2019b). Reinforcement leaning in feature space: Matrix bandit,
kernels, and regret bound. arXiv preprint arXiv:1905.10389.

Yarotsky, D. (2017). Error bounds for approximations with deep relu networks. Neural
Networks, 94 103–114.

Yosinski, J., Clune, J., Bengio, Y. and Lipson, H. (2014). How transferable are features
in deep neural networks? In Advances in Neural Information Processing Systems.

Yu, L., Zhang, W., Wang, J. and Yu, Y. (2016). SeqGAN: Sequence generative adversarial
nets with policy gradient. arXiv preprint arXiv:1609.05473.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J. and Kumar, S. (2019). Are trans-
formers universal approximators of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R. and
Smola, A. J. (2017). Deep sets. Neural Information Processing Systems.

Zhang, F., Liu, B., Wang, K., Tan, V. Y., Yang, Z. and Wang, Z. (2022a). Relational
reasoning via set transformers: Provable efficiency and applications to MARL. arXiv
preprint arXiv:2209.09845.

Zhang, K., Koppel, A., Zhu, H. and Başar, T. (2019a). Global convergence of policy
gradient methods to (almost) locally optimal policies. arXiv preprint arXiv:1906.08383.

Zhang, K., Yang, Z. and Başar, T. (2019b). Policy optimization provably converges to
Nash equilibria in zero-sum linear quadratic games. arXiv preprint arXiv:1906.00729.

Zhang, X., Yu, Y., Wang, L. and Gu, Q. (2019c). Learning one-hidden-layer ReLU net-
works via gradient descent. In International Conference on Machine Learning.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gunasekar, S. and Wagner, T. (2022b).
Unveiling transformers with LEGO: A synthetic reasoning task. arXiv preprint

159

arXiv:2206.04301.

Zhang, Y., Duchi, J. and Wainwright, M. (2015). Divide and conquer kernel ridge regres-
sion: A distributed algorithm with minimax optimal rates. The Journal of Machine
Learning Research, 16 3299–3340.

Zhang, Z., Zhang, A., Li, M. and Smola, A. (2022c). Automatic chain of thought prompt-
ing in large language models. arXiv preprint arXiv:2210.03493.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D.,
Bousquet, O., Le, Q. and Chi, E. (2022a). Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H. and Ba, J. (2022b).
Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910.

Zhu, S., An, B. and Huang, F. (2021). Understanding the generalization benefit of model
invariance from a data perspective. Neural Information Processing Systems.

Zou, D., Cao, Y., Zhou, D. and Gu, Q. (2018). Stochastic gradient descent optimizes
over-parameterized deep ReLU networks. arXiv preprint arXiv:1811.08888.

Zou, D. and Gu, Q. (2019). An improved analysis of training over-parameterized deep
neural networks. In Advances in Neural Information Processing Systems.

Zou, S., Xu, T. and Liang, Y. (2019). Finite-sample analysis for sarsa and q-learning with
linear function approximation. arXiv preprint arXiv:1902.02234.

160

APPENDIX A

Generative Adversarial Imitation Learning with Neural

Networks: Global Optimality and Convergence Rate

A.1. Neural Networks

In what follows, we present the properties of the neural network defined in (1.3.1).

First, we define the following function class.

Definition A.1.1 (Function Class). For B > 0 and m ∈ N+, we define

FB,m =
{
W⊤ϕ0(s, a)

∣∣W ∈ Rmd, ∥W −W0∥2 ≤ B
}
,

where ϕ0(s, a) is the feature vector defined in (1.3.2) with W = W0.

As shown in Rahimi and Recht (2008), the feature ϕ0(s, a) induces a reproducing

kernel Hilbert space (RKHS), namely H. When m goes to infinity, FB,m approximates

a ball in H, which captures a rich class of functions (Hofmann et al., 2008; Rahimi and

Recht, 2008). Furthermore, we obtain the following lemma from Cai et al. (2019c), which

characterizes the linearization error of the neural network defined in (1.3.1).

161

Lemma A.1.2 (Linearization Error, Lemma 5.1 in Cai et al. (2019c)). Under Assump-

tion 1.4.1, it holds for any W,W1,W2 ∈ SB that,

Einit

[∥∥W⊤ϕW1(s, a)−W⊤ϕW2(s, a)
∥∥2
2,µ

]
= O(B3 ·m−1/2),

Einit

[∥∥W⊤ϕW1(s, a)−W⊤ϕW2(s, a)
∥∥
1,µ

]
= O(B3/2 ·m−1/4),

where ϕW (s, a) is the feature vector defined in (1.3.2) and µ ∈P(S ×A) is a distribution

that satisfies Assumption 1.4.1.

Proof. See §A.1.1 for a detailed proof. □

Following from Lemma A.1.2, the function class FB,m defined in Definition A.1.1 is a

first-order approximation of the class of the neural networks defined in (1.3.1). Meanwhile,

we establish the following lemma to characterize the sub-Gaussian property of the neural

network defined in (1.3.1).

Lemma A.1.3. Under Assumption 1.4.2, for any W,W ′ ∈ SB, it holds that

sup(s,a)∈S×A |W⊤ϕW ′(s, a)| is sub-Gaussian, where the randomness comes from the random

initialization W0 in the definition of SB in (1.3.4). Moreover, it holds that

Einit

[
sup

(s,a)∈S×A

∣∣W⊤ϕW ′(s, a)
∣∣2] ≤ 2M2

0 + 18B2

and that

P
(

sup
(s,a)∈S×A

∣∣W⊤ϕW ′(s, a)
∣∣ > t

)
≤ exp(−v · t2/2), ∀t > 2M0 + 6B.

Proof. See §A.1.2 for a detailed proof. □

162

A.1.1. Proof of Lemma A.1.2

Proof. We consider any W,W ′ ∈ SB. By the definition of ϕW (s, a) in (1.3.2) and the

triangle inequality, we have that

∣∣W⊤ϕW ′(s, a)−W⊤ϕ0(s, a)
∣∣

≤ 1√
m

m∑
l=1

∣∣[W]⊤l (s, a)
∣∣ · ∣∣∣1{(s, a)⊤[W ′]l > 0

}
− 1

{
(s, a)⊤[W0]l > 0

}∣∣∣.(A.1.1)

We now upper bound the right-hand side of (A.1.1). For the term |[W]⊤l (s, a)| in (A.1.1),

we have that

∣∣[W]⊤l (s, a)
∣∣ ≤ ∣∣[W0]

⊤
l (s, a)

∣∣+
∣∣∣([W]l − [W0]l

)⊤
(s, a)

∣∣∣
≤
∣∣[W0]

⊤
l (s, a)

∣∣+
∥∥[W]l − [W0]l

∥∥
2
,(A.1.2)

where the first inequality follows from the triangle inequality and the second inequality

follows from the Cauchy-Schwartz inequality and the fact that ∥(s, a)∥2 ≤ 1. To upper

bound the term |1{(s, a)⊤[W ′]l > 0} − 1{(s, a)⊤[W0]l > 0}| on the right-hand side of

(A.1.1), note that 1{(s, a)⊤[W ′]l > 0} ≠ 1{(s, a)⊤[W0]l > 0} implies that

∣∣[W0]
⊤
l (s, a)

∣∣ ≤ ∣∣[W ′]⊤l (s, a)− [W0]
⊤
l (s, a)

∣∣ ≤ ∥∥[W ′]l − [W0]l
∥∥
2
.

Thus, we have that

∣∣∣1{(s, a)⊤[W ′]l > 0
}
− 1

{
(s, a)⊤[W0]l > 0

}∣∣∣ ≤ 1
{∣∣(s, a)⊤[W0]l

∣∣ ≤ ∥∥[W ′]l − [W0]l
∥∥
2

}
.

(A.1.3)

163

Plugging (A.1.2) and (A.1.3) into (A.1.1), we have that

∣∣W⊤ϕW ′(s, a)−W⊤ϕ0(s, a)
∣∣

≤ 1√
m

m∑
l=1

1
{∣∣(s, a)⊤[W0]l

∣∣ ≤ ∥∥[W ′]l − [W0]l
∥∥
2

}
·
(∣∣(s, a)⊤[W0]l

∣∣+
∥∥[W]l − [W0]l

∥∥
2

)
≤ 1√

m

m∑
l=1

1
{∣∣(s, a)⊤[W0]l

∣∣ ≤ ∥∥[W ′]l − [W0]l
∥∥
2

}
·
(∥∥[W ′]l − [W0]l

∥∥
2

+
∥∥[W]l − [W0]l

∥∥
2

)
.

By the fact that W,W ′ ∈ SB, we obtain that

∣∣W⊤ϕW ′(s, a)−W⊤ϕ0(s, a)
∣∣2 ≤ 4B2

m

m∑
l=1

1
{∣∣(s, a)⊤[W0]l

∣∣ ≤ ∥∥[W ′]l − [W0]l
∥∥
2

}
.

By setting y = ∥[W ′]l − [W0]l∥2 in Assumption 1.4.1, we have that

∥∥W⊤ϕW ′(s, a)−W⊤ϕ0(s, a)
∥∥2
2,µ
≤ 8B2

m

m∑
l=1

c ·
∥∥[W ′]l − [W0]l

∥∥
2∥∥[W0]l

∥∥
2

.

Taking the expectation with respect to the random initialization in (1.3.3) and using the

Cauchy-Schwartz inequality, we have that

Einit

[∥∥W⊤ϕW ′(s, a)−W⊤ϕ0(s, a)
∥∥2
2,µ

]
≤ Einit

[
8cB2

m

(m∑
l=1

∥∥[W ′]l − [W0]l
∥∥2
2

)1/2
·
(m∑
l=1

1/
∥∥[W0]l

∥∥2
2

)1/2]

≤ 8cB3

m
Einit

[(m∑
l=1

1/
∥∥[W0]l

∥∥2
2

)1/2]

≤ 8cB3

√
m

(
Ew∼N(0,Id/d)

[
1/∥w∥22

])1/2
= O(B3 ·m−1/2),

164

where the second inequality follows from the fact that ∥W ′−W0∥2 ≤ B, the third inequality

follows from Jensen’s inequality, and the last inequality follows from Assumption 1.4.1 and

Lemma A.1.2. Thus, for any W,W1,W2 ∈ SB, we have that

Einit

[∥∥W⊤ϕW1(s, a)−W⊤ϕW2(s, a)
∥∥2
2,µ

]
≤ 2Einit

[∥∥W⊤ϕW1(s, a)−W⊤ϕ0(s, a)
∥∥2
2,µ

]
+ 2Einit

[∥∥W⊤ϕW2(s, a)−W⊤ϕ0(s, a)
∥∥2
2,µ

]
= O(B3 ·m−1/2).

Moreover, following from the Cauchy-Schwartz inequality, we have that ∥·∥1,µ ≤ ∥·∥2,µ.

Thus, by Jensen’s inequality, we have that

Einit

[∥∥W⊤ϕW1(s, a)−W⊤ϕW2(s, a)
∥∥
1,µ

]
≤ Einit

[∥∥W⊤ϕW1(s, a)−W⊤ϕW2(s, a)
∥∥
2,µ

]
= O(B3/2 ·m−1/4),

which completes the proof of Lemma A.1.2. □

A.1.2. Proof of Lemma A.1.3

In what follows, we present the proof of Lemma A.1.3.

165

Proof. Recall that we write uW (s, a) = W⊤ϕW (s, a) and u0(s, a) = uW0(s, a). Then,

we have

∣∣W⊤ϕW ′(s, a)
∣∣ ≤ ∣∣u0(s, a)

∣∣+
∣∣(W −W ′)⊤ϕW ′(s, a)

∣∣+
∣∣uW ′(s, a)− u0(s, a)

∣∣
≤
∣∣u0(s, a)

∣∣+ ∥W −W ′∥2 ·
∥∥ϕW ′(s, a)

∥∥
2

+
∣∣uW ′(s, a)− u0(s, a)

∣∣,(A.1.4)

where the last inequality follows from the Cauchy-Schwartz inequality. It suffices to upper

bound the three terms on the right-hand side of (A.1.4). Note that we have W,W ′ ∈ SB

and ∥ϕW ′(s, a)∥2 ≤ 1. We have that

∥W −W ′∥2 ·
∥∥ϕW ′(s, a)

∥∥
2
≤ 2B.(A.1.5)

It remains to upper bound the term |uW ′(s, a)− u0(s, a)| in (A.1.4). Note that uW (s, a) is

almost everywhere differentiable with respect to W . Also, it holds that ∇WuW (s, a) =

ϕW (s, a). Thus, following from the mean-value theorem and the Cauchy-Schwartz inequal-

ity, we have that

∣∣uW ′(s, a)− u0(s, a)
∣∣ ≤ sup

W∈SB

∥∥ϕW (s, a)
∥∥
2
· ∥W ′ −W0∥2 ≤ B,(A.1.6)

where the second inequality follows from the fact that ∥ϕW (s, a)∥2 ≤ 1 and W ′ ∈ SB.

Plugging (A.1.5) and (A.1.6) into (A.1.4), we have that

sup
(s,a)∈S×A

∣∣W⊤ϕW ′(s, a)
∣∣ ≤ sup

(s,a)∈S×A

∣∣u0(s, a)
∣∣+ 3B.

166

Following from Assumption 1.4.2, we have that sup(s,a)∈S×A |W⊤ϕW ′(s, a)| is sub-Gaussian.

Furthermore, it holds that

Einit

[
sup

(s,a)∈S×A

∣∣W⊤ϕW ′(s, a)
∣∣2] ≤ 2Einit

[
sup

(s,a)∈S×A

∣∣u0(s, a)
∣∣2]+ 18B2 ≤ 2M2

0 + 18B2

and that

P
(

sup
(s,a)∈S×A

∣∣W⊤ϕW ′(s, a)
∣∣ > t

)
≤ P

(
sup

(s,a)∈S×A

∣∣u0(s, a)
∣∣+ 3B > t

)
≤ exp

(
−v · (t− 3B)2

)
≤ exp(−v · t2/2)

for t > 2M0 + 6B. Thus, we complete the proof of Lemma A.1.3. □

A.2. Neural Temporal Difference

In this section, we introduce neural TD (Cai et al., 2019c), which computes ωk in

Algorithm 1. Specifically, neural TD solves the optimization problem in (1.3.19) via the

update in (1.3.20), which is presented in Algorithm 4.

Algorithm 4 Neural TD

Require: Policy π, reward function r, initialization W0, b, number of iterations TTD of
neural TD, and stepsize α of neural TD.

1: Initialization. Set SBω ← {W ∈ Rmd | ∥W −W0∥2 ≤ Bω} and ω(0)← W0.
2: for j = 0, . . . , TTD − 1 do
3: Sample (s, a, s′, a′), where (s, a) ∼ ρπ, s′ ∼ P (· | s, a), and a′ ∼ π(· | s′).
4: Compute the Bellman residual δ(j) = Qω(j)(s, a)− (1− γ) · r(s, a)− γ ·Qω(j)(s

′, a′).

5: Update ω via ω(j + 1)← ProjSBω

{
ω(j)− η · δ(j) · ϕω(j)(s, a)

}
.

6: end for
Ensure: Output ω̄ = T−1

∑TTD−1
t=0 ω(j).

167

A.2.1. Proof of Proposition 1.4.4

Proof. We obtain the following proposition from Cai et al. (2019c), which characterizes

the convergence of Algorithm 4.

Proposition A.2.1 (Proposition 4.7 in Cai et al. (2019c)). We set α = min{(1 −

γ)/8, T
−1/2
TD } in Algorithm 4. Let Qω̄(s, a) be the state-action value function associated

with the output ω̄. Under Assumption 1.4.1, it holds for any policy π and reward function

r(s, a) that

Einit

[∥∥Qω̄(s, a)−Qπ
r (s, a)

∥∥2
2,ρπ

]
= 2Einit

[∥∥ProjFBω,m
Qπ
r (s, a)−Qπ

r (s, a)
∥∥2
2,ρπ

]
+O(B2

ω · T
−1/2
TD +B3

ω ·m−1/2 +B5/2
ω ·m−1/4),(A.2.1)

where FBω ,m is defined in Definition A.1.1.

Recall that we denote by ϕ0(s, a) the feature vector corresponding to the random

initialization in (1.3.3). We establish the following lemma to upper bound the bias

Einit[∥ProjFBω,m
Qπ
r (s, a)−Qπ

r (s, a)∥22,ρπ] in (A.2.1) of Proposition A.2.1 when the reward

function r(s, a) belongs to the reward function class Rβ.

Lemma A.2.2. We consider any reward function rβ(s, a) ∈ Rβ and policy π. Under

Assumptions 1.4.1 and 1.4.2, it holds for Bω > Bβ + (1− γ)−1 · γ ·BP · (2M0 + 3Bβ) and

an absolute constant Cv = (2 · γ2 ·B2
P)−1 · (1− γ)2 · v that

Einit

[∥∥ProjFBω,m
Qπ
rβ

(s, a)−Qπ
rβ

(s, a)
∥∥2
2,ρπ

]
= O

(
B3
β ·m−1/2 +B2

ω ·m−1 +B2
ω · exp(−Cv ·B2

ω)
)
.

Proof. See §A.2.2 for a detailed proof. □

168

Combining Proposition A.2.1 and Lemma A.2.2, for Bω > Bβ + (1 − γ)−1 · γ · BP ·

(2M0 + 3Bβ), we have for any π that

Einit

[∥∥Qω̄(s, a)−Qπ
rβ

(s, a)
∥∥2
2,ρπ

]
= O

(
B2
ω · T

−1/2
TD +B3

ω ·m−1/2 +B5/2
ω ·m−1/4 +B2

ω · exp(−Cv ·B2
ω)
)
.

Finally, by setting TTD = Ω(m), we have that

Einit

[∥∥Qω̄(s, a)−Qπ
rβ

(s, a)
∥∥2
2,ρπ

]
= O

(
B3
ω ·m−1/2 +B5/2

ω ·m−1/4 +B2
ω · exp(−Cv ·B2

ω)
)
,

which completes the proof of Proposition 1.4.4. □

A.2.2. Proof of Lemma A.2.2

Proof. For notational simplicity, we write ϑ(s, a;w) = 1 {|w⊤(s, a)| > 0}·(s, a). Under

Assumption 1.4.2, we have that

P (s′ | s, a) =

∫
ϑ(s, a;w)⊤φ(s′;w)dq(w), where sup

w

∥∥∥∥∫ φ(s;w)ds

∥∥∥∥
2

≤ BP .(A.2.2)

Thus, since rβ = (1− γ)−1 · uβ(s, a), we have that

Qπ
rβ

(s, a) = (1− γ) · rβ(s, a) + γ ·
∫
S
P (s′ | s, a) · V π

rβ
(s′)ds′

= uβ(s, a) +

∫
S
γ · V π

rβ
(s′) ·

∫
ϑ(s, a;w)⊤φ(s′;w)dq(w)ds′

= uβ(s, a) +

∫
ϑ(s, a;w)⊤

(
γ ·
∫
S
φ(s′;w)V π

rβ
(s′)ds′

)
dq(w),

169

where the second equality follows from (A.2.2) and the last equality follows from Fubini’s

theorem. In the sequel, we define

α(w) = γ ·
∫
S
φ(s′;w)V π

rβ
(s′)ds′.(A.2.3)

Note that α(w) ∈ Rd. Then, we have that

Qπ
rβ

(s, a) = uβ(s, a) +

∫
ϑ(s, a;w)⊤α(w)dq(w).

To prove Lemma A.2.2, we first approximate Qπ
rβ

(s, a) by

Q̄(s, a) = uβ(s, a) +

∫
ϑ(s, a;w)⊤ᾱ(w)dq(w),(A.2.4)

where ᾱ(w) = α(w) · 1{∥α(w)∥2 ≤ K} for an absolute constant K > 0 specified later.

Then, it holds for any (s, a) ∈ S ×A that

∣∣Q̄(s, a)−Qπ
rβ

(s, a)
∣∣ ≤ ∫ ∣∣∣ϑ(s, a;w)⊤

(
ᾱ(w)− α(w)

)∣∣∣dq(w)

≤
∫ ∥∥ϑ(s, a;w)

∥∥
2
·
∥∥ᾱ(w)− α(w)

∥∥
2
dq(w)

≤ sup
w

∥∥ᾱ(w)− α(w)
∥∥
2
,

where the second inequality follows from the Cauchy-Schwartz inequality and the last

inequality follows from the fact that ∥ϑ(s, a;w)∥2 ≤ 1. Thus, we have that

∥∥Q̄(s, a)−Qπ
rβ

(s, a)
∥∥
2,ρπ
≤
∥∥Q̄(s, a)−Qπ

rβ
(s, a)

∥∥
∞ ≤ sup

w

∥∥ᾱ(w)− α(w)
∥∥
2
.(A.2.5)

170

We now upper bound the right-hand side of (A.2.5). To this end, we show that supw ∥α(w)∥2

is sub-Gaussian in the sequel. By the definition of α(w) in (A.2.3), we have that

sup
w

∥∥α(w)
∥∥
2

= γ ·
∥∥∥∥∫

S
φ(s′;w)V π

rβ
(s′)ds′

∥∥∥∥
2

≤ γ · sup
s′∈S

∣∣V π
rβ

(s′)
∣∣ · sup

w

∥∥∥∥∫
S
φ(s′;w)ds′

∥∥∥∥
2

≤ γ ·BP · sup
s′∈S

∣∣V π
rβ

(s′)
∣∣

≤ γ · (1− γ)−1 ·BP · sup
(s,a)∈S×A

∣∣uβ(s, a)
∣∣,(A.2.6)

where the second inequality follows from Assumption 1.4.2 and the third inequality follows

from the fact that V π
rβ

(s) = E(s′,a′)∼νπ(s)[rβ(s′, a′)]. Here we denote by νπ(s) the state-action

visitation measure starting from the state s and following the policy π. Following from

Lemma A.1.3, we have that supw ∥α(w)∥2 is sub-Gaussian. By Lemma A.1.3 and (A.2.6),

it holds for t > (1− γ)−1 · γ ·BP · (2M0 + 3Bβ) that

P
(

sup
w

∥∥α(w)
∥∥
2
> t
)
≤ P

(
γ · (1− γ)−1 ·BP · sup

(s,a)∈S×A

∣∣uβ(s, a)
∣∣ > t

)
≤ exp

(
−v · (1− γ)2 · t2

2γ2 ·B2
P

)
.(A.2.7)

Let the absolute constant K satisfy that K > (1− γ)−1 · γ ·BP · (2M0 + 3Bβ) in (A.2.7).

For notational simplicity, we write Cv = (2 · γ2 · B2
P)−1 · v · (1 − γ)2. By the fact that

∥ᾱ(w)− α(w)∥2 = ∥α(w)∥2 · 1{∥α(w)∥2 > K}, we have that

sup
w

∥∥ᾱ(w)− α(w)
∥∥
2
≤ sup

w

∥∥α(w)
∥∥
2
· 1
{

sup
w
∥α(w)∥2 > K

}
.

171

Following from (A.2.5) and (A.2.7), we have that

Einit

[∥∥Q̄(s, a)−Qπ
rβ

(s, a)
∥∥
2,ρπ

]
≤ E

[
sup
w

∥∥α(w)
∥∥
2
· 1
{

sup
w
∥α(w)∥2 > K

}]
≤
∫ K

0

t · P
(

sup
w
∥α(w)∥2 > K

)
dt+

∫ ∞

K

t · P
(

sup
w
∥α(w)∥2 > t

)
dt

= O
(
K2 · exp(−Cv ·K2)

)
.(A.2.8)

We now construct Q̂(s, a) ∈ FK,m, which approximates Q̄(s, a) defined in (A.2.4). We

define

f(s, a) =

∫
ϑ(s, a;w)⊤ᾱ(w)dq(ω).

Then, we have that Q̄(s, a) = uβ(s, a) + f(s, a). Note that f(s, a) belongs to the following

function class,

F̃K,∞ =

{∫
ϑ(s, a;w)⊤α(w)dq(ω)

∣∣∣∣ sup
w

∥∥α(w)
∥∥
2
≤ K

}
.

We now show that f(s, a) is well approximated by the following function class,

F̃K,m =

{
W⊤ϕ0(s, a) =

1√
m

m∑
l=1

[W]⊤l ϑ
(
s, a; [W]l

) ∣∣∣∣ sup
l

∥∥[W]l
∥∥
2
≤ K/

√
m

}
,

where ϕ0(s, a) is the feature vector corresponding to the random initialization. We obtain

the following lemma from Rahimi and Recht (2009), which characterizes the approximation

error of F̃K,∞ by F̃K,m.

172

Lemma A.2.3 (Lemma 1 in Rahimi and Recht (2009)). For any f(s, a) ∈ F̃K,∞, it holds

with probability at least 1− δ that

∥∥ProjF̃K,m
f(s, a)− f(s, a)

∥∥
2,µ
≤ K ·m−1/2 ·

(
1 +

√
2 log(1/δ)

)
,

where µ ∈P(S ×A).

Lemma A.2.3 implies that there exists f̂(s, a) ∈ F̃K,m such that

Einit

[∥∥f̂(s, a)− f(s, a)
∥∥2
2,ρπ

]
=

∫ ∞

0

P
(∥∥f̂(s, a)− f(s, a)

∥∥2
2,ρπ

> y
)

dy

≤
∫ ∞

0

y · exp
(
−1/2 · (√my/K − 1)2

)
= O(K2/m).(A.2.9)

By the fact that f̂(s, a) ∈ F̃K,m and the definition of FK,m in Definition A.1.1, we have

that f̂(s, a) ∈ FK,m − u0(s, a). Let

Q̂(s, a) = β⊤ϕ0(s, a) + f̂(s, a) = (β +Wf)⊤ϕ0(s, a).

We then have that Q̂(s, a) ∈ FBβ+K,m and that

Einit

[∥∥Q̄(s, a)− Q̂(s, a)
∥∥2
2,ρk

]
≤ 2Einit

[∥∥uβ(s, a)− β⊤ϕ0(s, a)
∥∥2
2,ρπ

]
+ 2Einit

[∥∥f̂(s, a)− f(s, a)
∥∥2
2,ρπ

]
= O(B3

β ·m−1/2 +K2 ·m−1),(A.2.10)

where the last inequality follows from Assumption 1.4.1, Lemma A.1.2, and (A.2.9).

173

Finally, we set Bω = K + Bβ > Bβ + (1 − γ)−1 · γ · BP · (2M0 + 3Bβ). Combining

(A.2.8) and (A.2.10), we have that

Einit

[∥∥Qπ
rβ

(s, a)− Q̂(s, a)
∥∥2
2,ρk

]
≤ 2Einit

[∥∥Q̄(s, a)− Q̂(s, a)
∥∥2
2,ρk

]
+ 2Einit

[∥∥Q̄(s, a)−Qπ
rβ

(s, a)
∥∥2
2,ρk

]
= O

(
B3
β ·m−1/2 +B2

ω ·m−1 +B2
ω · exp(−Cv ·B2

ω)
)
,

where Q̂(s, a) ∈ FBω ,m. Thus, we complete the proof of Lemma A.2.2. □

A.3. Proofs of Auxiliary Results

In what follows, we present the proofs of the lemmas in §1.3-1.5.

A.3.1. Proof of Proposition 1.3.1

Proof. By the definition of the neural network in (1.3.1), we have for any (s, a) ∈ S×A

that ∇WuW (s, a) = ϕW (s, a) almost everywhere. We first calculate ∇θL(θ, β). Following

from the policy gradient theorem (Sutton and Barto, 2018) and the definition of L(θ, β)

in (1.2.4), we have that

∇θL(θ, β) = −∇θJ(πθ; rβ)

= −Eνπθ
[
Qπθ
rβ

(s, a) · ∇θ log πθ(a | s)
]
.(A.3.1)

174

Following from the parameterization of πθ in (1.3.5) and the definition of ιθ(s, a) in (1.3.8)

of Proposition 1.3.1, we have that

∇θ log πθ(a | s) = τ · ϕθ(s, a)−
∑

a′∈A τ · exp
(
τ · θ⊤ϕθ(s, a′)

)
· ϕθ(s, a′)∑

a′∈A exp
(
τ · θ⊤ϕθ(s, a′)

)
= τ ·

(
ϕθ(s, a)− τ · Ea′∼πθ(· | s)

[
ϕθ(s, a

′)
])

= τ · ιθ(s, a).(A.3.2)

Plugging (A.3.2) into (A.3.1), we have that

∇θL(θ, β) = −τ · Eνπθ
[
Qπθ
rβ

(s, a) · ιθ(s, a)
]
.

It remains to calculate I(θ) and ∇βL(θ, β). By (A.3.2) and the definition of I(θ) in (1.3.7),

it holds that

I(θ) = Eνπθ
[
∇ log πθ(a | s)∇ log πθ(a | s)⊤

]
= τ 2 · Eνπθ

[
ιθ(s, a)ιθ(s, a)⊤

]
.

By the definition of the objective function L(θ, β) in (1.2.4), it holds that

∇βL(θ, β) = ∇βJ(πE; rβ)−∇βJ(πθ; rβ)− λ · ∇βψ(β)

= EνE
[
∇βrβ(s, a)

]
− Eνπθ

[
∇βrβ(s, a)

]
− λ · ∇βψ(β)

= (1− γ)−1 · EνE
[
ϕβ(s, a)

]
− (1− γ)−1 · Eνπθ

[
ϕβ(s, a)

]
− λ · ∇βψ(β).

Thus, we complete the proof of Proposition 1.3.1. □

175

A.3.2. Proof of Lemma 1.5.2

Proof. The proof of Lemma 1.5.2 is similar to that of Lemmas 5.4 and 5.5 in Wang

et al. (2019). By direct calculation, we have that

η · EdE
[〈
Qπk
rk

(s, ·), πsE − πsk
〉
A

]
= KLdE(πE ∥ πk)−KLdE(πE ∥ πk+1) + η ·∆(i)

k ,

where ∆
(i)
k takes the form of

∆
(i)
k = η−1 ·

{
EdE

[〈
log(πsk+1/π

s
k)− η ·Qπk

rk
(s, ·), πsE − πsk

〉
A

+
〈
log(πsk+1/π

s
k), π

s
k − πsk+1

〉
A

]
−KLdE(πsk+1 ∥ πsk)

}
= η−1 · EdE

[〈
log(πsk+1/π

s
k)− η · Q̂ωk

(s, ·), πsE − πsk
〉
A

]
︸ ︷︷ ︸

(i.a)

+ EdE
[〈
Q̂ωk

(s, ·)−Qπk
rk

(s, ·), πsE − πsk
〉
A

]
︸ ︷︷ ︸

(i.b)

+ η−1 · EdE
[〈

log(πsk+1/π
s
k), π

s
k − πsk+1

〉
A −KL(πsk+1 ∥ πsk)

]
︸ ︷︷ ︸

(i.c)

.(A.3.3)

The following lemmas upper bound ∆
(i)
k by upper bounding terms (i.a), (i.b), and (i.c)

on the right-hand side of (A.3.3), respectively. Note that the expectation Einit,dE
is taken

with respect to the random initialization in (1.3.3) and s ∼ dE.

176

Lemma A.3.1 (Upper Bound of Term (i.a) in (A.3.3)). Under Assumptions 1.4.1 and

1.4.3, we have that

Einit,dE

[∣∣∣〈log(πsk+1/π
s
k)− η · Q̂ωk

(s, ·), πsE − πsk
〉
A

∣∣∣]
= η · 2

√
2 · Ch ·B1/2

θ · σ1/2 ·N−1/4 +O(τk+1 ·B3/2
θ ·m−1/4 + η ·B5/4

θ ·m−1/8),

where Ch is defined in Assumption 1.4.1 and σ is defined in Assumption 1.4.3.

Proof. See §A.4.1 for a detailed proof. □

Lemma A.3.2 (Upper Bound of Term (i.b) in (A.3.3)). Under Assumption 1.4.1, we

have that

Einit,dE

[〈
Q̂ωk

(s, ·)−Qπk
rk

(s, ·), πsE − πsk
〉
A

]
≤ Ch · ϵQ,k,

where ϵQ,k takes the form of

ϵQ,k = Einit

[∥∥Qπk
rk

(s, a)− Q̂ωk
(s, a)

∥∥
2,ρk

]
.(A.3.4)

Proof. See §A.4.2 for a detailed proof. □

Lemma A.3.3 (Upper Bound of Term (i.c) in (A.3.3)). Under Assumptions 1.4.1 and

1.4.2, we have that

Einit,dE

[∣∣∣〈log(πsk+1/π
s
k), π

s
k − πsk+1

〉
A

∣∣∣−KL(πsk+1 ∥ πsk)
]

= η2 · (M2
0 + 9B2

θ) +O(τk+1 ·B3/2
θ ·m−1/4),

where M0 is defined in Assumption 1.4.2.

177

Proof. See §A.4.3 for a detailed proof. □

Finally, by Lemmas A.3.1-A.3.3, under Assumptions 1.4.2 and 1.4.3, we obtain from

(A.3.3) that

Einit

[
|∆(i)

k |
]

= 2
√

2Ch ·B1/2
θ · σ1/2 ·N−1/4 + Ch · ϵQ,k + η · (M2

0 + 9B2
θ)

+O(η−1 · τk+1 ·B3/2
θ ·m−1/4 +B

5/4
θ ·m−1/8).

Here M0 is defined in Assumption 1.4.2, τk+1 is the inverse temperature parameter of

πk+1 defined in (1.3.5), σ is defined in Assumption 1.4.3, and ϵQ,k is defined in (A.3.4) of

Lemma A.3.2. Following from Proposition 1.4.4, we have that

Ch · ϵQ,k = O
(
B3
ω ·m−1/2 +B5/2

ω ·m−1/4 +B2
ω · exp(−Cv ·B2

ω)
)
.

Thus, we complete the proof of Lemma 1.5.2. □

A.3.3. Proof of Lemma 1.5.3

Proof. We consider a fixed β′ ∈ SBβ
. For notational simplicity, we write r′ = rβ′(s, a),

rk = rk(s, a) and ϕβ = ϕβ(s, a). By the parameterization of rβ(s, a) in (1.3.6), we have

178

that

L(θk, β
′)− L(θk, βk) = ⟨r′ − rk, νE − νk⟩S×A + λ · ψ(βk)− λ · ψ(β′)

= (1− γ)−1 ·
(〈
ϕ⊤
βk

(β′ − βk), νE − νk
〉
S×A + ⟨ϕ⊤

β′β′ − ϕ⊤
βk
β′, νE − νk⟩S×A

)
+ λ ·

(
ψ(β)− ψ(β′)

)

≤ (β′ − βk)⊤∇βL(θk, βk) + (1− γ)−1 ·
(
∥ϕ⊤

βk
β′ − ϕ⊤

β′β′∥1,νk + ∥ϕ⊤
βk
β′ − ϕ⊤

β′β′∥1,νE
)
,

(A.3.5)

where the last inequality follows from (1.3.10) of Proposition 1.3.1. Then, we have that

Einit

[
L(θk, β

′)− L(θk, βk)
]

≤ Einit

[
(β′ − βk)⊤∇βL(θk, βk) + (1− γ)−1 ·

(
∥ϕ⊤

βk
β′ − ϕ⊤

β′β′∥1,νk

+ ∥ϕ⊤
βk
β′ − ϕ⊤

β′β′∥1,νE
)]

≤ Einit

[
(β′ − βk)⊤∇βL(θk, βk)

]
+O(B

3/2
β ·m−1/4),

where the last inequality follows from Assumption 1.4.1, Lemma A.1.2, and the fact that

β′, βk ∈ SBβ
. Thus, we complete the proof of Lemma 1.5.3. □

A.3.4. Proof of Lemma 1.5.4

Proof. By the update of βk in (1.3.14), it holds for any β′ ∈ SBβ
that

(
βk + η · ∇̂βL(θk, βk)− βk+1

)⊤
(β′ − βk+1) ≤ 0,

179

which further implies that

η · (β′ − βk)⊤∇βL(θk, βk)

≤ ∥βk − β′∥22 − ∥βk+1 − β′∥22 − ∥βk+1 − βk∥22(A.3.6)

+ η ·
(

(βk+1 − βk)⊤∇̂βL(θk, βk) + (βk − β′)⊤
(
∇̂βL(θk, βk)−∇βL(θk, βk)

))
.

Combining (A.3.5) and (A.3.6), we have that

η ·
(
L(θk, βk)− L(θk, β

′)
)
≤ ∥βk − β′∥22 − ∥βk+1 − β′∥22 − ∥βk+1 − βk∥22 + η ·∆(ii)

k ,

where ∆
(ii)
k takes the form of

∆
(ii)
k = (βk+1 − βk)⊤∇̂βL(θk, βk)︸ ︷︷ ︸

(ii.a)

+ (βk − β′)⊤
(
∇̂βL(θk, βk)−∇βL(θk, βk)

)︸ ︷︷ ︸
(ii.b)

+ (1− γ)−1 ·
(
∥ϕ⊤

βk
β′ − ϕ⊤

β′β′∥2,νk + ∥ϕ⊤
βk
β′ − ϕ⊤

β′β′∥2,νE
)︸ ︷︷ ︸

(ii.c)

(A.3.7)

We now upper bound terms (ii.a), (ii.b), and (ii.c) on the right-hand side of (A.3.7).

Following from Assumption 1.4.1 and Lemma A.1.2, we have that

Einit

[
∥ϕ⊤

βk
β′ − ϕ⊤

β′β′∥2,νk + ∥ϕ⊤
βk
β′ − ϕ⊤

β′β′∥2,νE
]

= O(B
3/2
β ·m−1/4),(A.3.8)

180

which upper bounds term (ii.c) of (A.3.7). For term (ii.b) of (A.3.7), we have that

E
[∣∣∣(βk − β′)⊤

(
∇̂βL(θk, βk)−∇βL(θk, βk)

)∣∣∣]

≤ E
[∥∥∇̂βL(θk, βk)−∇βL(θk, βk)

∥∥
2
· ∥β′ − βk∥2

]
≤ 2Bβ · E

[
∥ξ′k∥2

]
≤ 2Bβ · (σ2/N)1/2,

(A.3.9)

where we write ξ′k = ∇̂βL(θk, βk)−∇βL(θk, βk). Here the first inequality follows from the

Cauchy-Schwartz inequality, the second inequality follows from the fact that βk, β
′ ∈ SBβ

,

and the last inequality follows from Assumption 1.4.3. To upper bound term (ii.a) in

(A.3.7), we have that

E
[∣∣(βk+1 − βk)⊤∇̂βL(θk, βk)

∣∣](A.3.10)

≤ E
[∥∥∇̂βL(θk, βk)

∥∥
2
· ∥βk+1 − βk∥2

]
≤ η · E

[∥∥∇̂βL(θk, βk)
∥∥2
2

]
= 2η ·

(∥∥∇βL(θk, βk)
∥∥2
2

+ E
[
∥ξ′k∥22

])
,

where the first inequality follows from the Cauchy-Schwartz inequality and the second

inequality follows from the update of β in (1.3.14). Furthermore, we have

∥∥∇βL(θk, βk)
∥∥2
2

=
∥∥∥Eνk[ϕβk(s, a)

]
− EνE

[
ϕβk(s, a)

]
+ λ · ∇βψ(βk)

∥∥∥2
2

≤
(
Eνk
[∥∥ϕβk(s, a)

∥∥
2

]
+ Eνk

[∥∥ϕβk(s, a)
∥∥
2

]
+ λ ·

∥∥∇βψ(βk)
∥∥
2

)2

≤ (2 + λ · Lψ)2,(A.3.11)

where the first inequality follows from Jensen’s inequality and the second inequality follows

from the fact that ∥ϕW (s, a)∥2 ≤ 1 and the Lipschitz continuity of ψ(β) in Assumption

181

1.4.3. By plugging (A.3.11) into (A.3.10), we have that

E
[∣∣∇̂βL(θk, βk)

⊤
(βk − βk+1)

∣∣] ≤ η ·
(

(2 + λ · Lψ)2 + E
[
∥ξ′k∥22

])
≤ η ·

(
(2 + λ · Lψ)2 + σ2/N

)
,(A.3.12)

where the last inequality follows from Assumption 1.4.3. Finally, by plugging (A.3.8),

(A.3.9), and (A.3.12) into (A.3.7), we have that

Einit

[
|∆(ii)

k |
]

= η ·
(
(2 + λ · Lψ)2 + σ2 ·N−1

)
+ 2Bβ · σ ·N−1/2 +O(B

3/2
β ·m−1/4).

Thus, we complete the proof of Lemma 1.5.4. □

A.4. Proofs of Supporting Lemmas

In what follows, we present the proofs of the lemmas in §A.3.

A.4.1. Proof of Lemma A.3.1

Proof. It holds for any policies π, π′ that

〈
D(s), πs − (π′)s

〉
A = 0,(A.4.1)

where D(s) only depends on the state s. Thus, we have that

〈
log(πsk+1/π

s
k)− η · Q̂ωk

(s, ·), πsE − πsk
〉
A

=
〈
τk+1 · ϕθk+1

(s, ·)⊤θk+1 − τk · ϕθk(s, ·)⊤θk − η · ϕωk
(s, ·)⊤ωk, πsE − πsk

〉
A

=
〈
τk+1 · ιθk+1

(s, ·)⊤θk+1 − τk · ιθk(s, ·)⊤θk − η · ιωk
(s, ·)⊤ωk, πsE − πsk

〉
A,

182

where the first inequality follows from the parameterization of πθ and Q̂ω in (1.3.5) and

(1.3.12), respectively, and the second equality follows from the definition of the temperature-

adjusted score function ιθ(s, a) in (1.3.8) of Proposition 1.3.1. Here, with a slight abuse of

the notation, we define

ιωk
(s, a) = ϕωk

(s, a)− Ea′∼πk(· | s)
[
ϕωk

(s, a′)
]
.(A.4.2)

Then, following from (A.4.1) and the update τk+1 · θk+1 = τk · θk − η · δk in (1.3.13), we

have that

〈
log(πsk+1/π

s
k)− η · Q̂ωk

(s, ·), πsE − πsk
〉
A(A.4.3)

=
〈
τk+1 · ιθk+1

(s, ·)⊤θk+1 − τk · ιθk(s, ·)⊤θk − η · ιωk
(s, ·)⊤ωk, πsE − πsk

〉
A

= τk+1 ·
〈
ιθk+1

(s, ·)⊤θk+1 − ιθk(s, ·)⊤θk+1, π
s
E − πsk

〉
A︸ ︷︷ ︸

(i)

− η ·
〈
ιθk(s, ·)⊤δk + ιωk

(s, ·)⊤ωk, πsE − πsk
〉
A︸ ︷︷ ︸

(ii)

.

In what follows, we upper bound terms (i) and (ii) on the right-hand side of (A.4.3).

183

Upper bound of term (i) in (A.4.3). Following from (1.3.8) of Proposition 1.3.1 and

(A.4.1) we have that

∣∣∣〈ιθk+1
(s, ·)⊤θk+1 − ιθk(s, ·)⊤θk+1, π

s
E − πsk

〉
A

∣∣∣
=
∣∣∣〈ϕθk+1

(s, ·)⊤θk+1 − ϕθk(s, ·)⊤θk+1, π
s
E − πsk

〉
A

∣∣∣

≤
∥∥ϕθk+1

(s, ·)⊤θk+1 − ϕθk(s, ·)⊤θk+1

∥∥
1,πs

E
+
∥∥ϕθk+1

(s, ·)⊤θk+1 − ϕθk(s, ·)⊤θk+1

∥∥
1,πs

k

,

(A.4.4)

where the inequality follows from the triangle inequality. Following from Assumption 1.4.1

and Lemma A.1.2, we have that

Einit,dE

[∥∥ϕθk+1
(s, ·)⊤θk+1 − ϕθk(s, ·)⊤θk+1

∥∥
1,πs

E

]
= O(B

3/2
θ ·m−1/4).(A.4.5)

Furthermore, following from Assumption 1.4.1, Lemma A.1.2, and the Cauchy-Schwartz

inequality, we have that

Einit,dE

[∥∥ϕθk+1
(s, ·)⊤θk+1 − ϕθk(s, ·)⊤θk+1

∥∥
1,πs

k

]
= Einit,dk

[∥∥ϕθk+1
(s, ·)⊤θk+1 − ϕθk(s, ·)⊤θk+1

∥∥
1,πs

k

· ddE
ddk

]
≤
∥∥ϕθk+1

(s, a)⊤θk+1 − ϕθk(s, a)⊤θk+1

∥∥
2,νk
·
∥∥∥∥ddE

ddk

∥∥∥∥
2,dk

= O(B
3/2
θ ·m−1/4).(A.4.6)

Here the expectation Einit,dk is taken with respect to the random initialization in (1.3.3)

and s ∼ dk. Thus, plugging (A.4.5) and (A.4.6) into (A.4.4), we obtain for term (i) of

184

(A.4.3) that

Einit,dE

[∣∣∣〈ιθk+1
(s, ·)⊤θk+1 − ιθk(s, ·)⊤θk+1, π

s
E − πsk

〉
A

∣∣∣] = O(B
3/2
θ ·m−1/4).(A.4.7)

Upper bound of term (ii) in (A.4.3). Following from the Cauchy-Schwartz inequality,

we have that

EdE

[∣∣∣〈ιθk(s, ·)⊤δk + ιωk
(s, ·)⊤ωk, πsE

〉
A

∣∣∣] ≤ ∫
S×A

∣∣ιθk(s, a)⊤δk + ιωk
(s, a)⊤ωk

∣∣dνE(s, a)

≤
∥∥∥∥dνE

dνk

∥∥∥∥
2,νk

·
∥∥ιθk(s, a)⊤δk + ιωk

(s, a)⊤ωk
∥∥
2,νk

.(A.4.8)

Similarly, we have that

EdE

[∣∣∣〈ιθk(s, ·)⊤δk + ιωk
(s, ·)⊤ωk, πsk

〉
A

∣∣∣]
≤
∫
S×A

∣∣∣〈ιθk(s, ·)⊤δk + ιωk
(s, ·)⊤ωk, πsk

〉
A

∣∣∣dπsk(a)ddE(s)

=

∫
S×A

∣∣∣〈ιθk(s, ·)⊤δk + ιωk
(s, ·)⊤ωk, πsk

〉
A

∣∣∣ · ddE
ddk

(s)dνk(s, a)

≤
∥∥∥∥ddE

ddk

∥∥∥∥
2,dk

·
∥∥ιθk(s, a)⊤δk + ιωk

(s, a)⊤ωk
∥∥
2,νk

,(A.4.9)

185

where the last inequality follows from the Cauchy-Schwartz inequality. Combining (A.4.8)

and (A.4.9), we obtain for term (ii) of (A.4.3) that

EdE

[∣∣∣〈ιθk(s, ·)⊤δk + ιωk
(s, ·)⊤ωk, πsE − πsk

〉
A

∣∣∣]

≤

(∥∥∥∥dνE
dνk

∥∥∥∥
2,νk

+

∥∥∥∥ddE
ddk

∥∥∥∥
2,dk

)
·
∥∥ιθk(s, a)⊤δk + ιωk

(s, a)⊤ωk
∥∥
2,νk

≤ Ch ·
∥∥ιθk(s, a)⊤δk + ιωk

(s, a)⊤ωk
∥∥
2,νk

,(A.4.10)

where the last inequality follows from Assumption 1.4.1. To upper bound term (ii) of

(A.4.3), it suffices to upper bound the right-hand side of (A.4.10). For notational simplicity,

we write ιθk = ιθk(s, a), ιωk
= ιωk

(s, a), and ϕωk
= ϕωk

(s, a). By the triangle inequality, we

have that

∥δ⊤k ιθk + ω⊤
k ιωk
∥2,νk =

(
Eνk
[
(δ⊤k ιθk + ω⊤

k ιωk
) · (δ⊤k ιθk + ω⊤

k ιωk
)
])1/2

≤
∣∣∣(δk − ωk)⊤Eνk[ιθk(δ⊤k ιθk + ω⊤

k ιωk
)
]∣∣∣1/2︸ ︷︷ ︸

(ii.a)

+
∣∣∣Eνk[ω⊤

k (ιθk − ιωk
) · (δ⊤k ιθk + ω⊤

k ιωk
)
]∣∣∣1/2︸ ︷︷ ︸

(ii.b)

.

(A.4.11)

We now upper bound the two terms (ii.a) and (ii.b) on the right-hand side of (A.4.11).

For term (ii.a) of (A.4.11), following from (1.3.9) of Proposition 1.3.1, we have that

I(θk) = τ 2k · Eνk [ιθkι
⊤
θk

].(A.4.12)

186

Recall that the expectation Ek is taken with respect to the k-th batch. Following from the

definition of ∇̂θL(θk, βk) in (1.3.17), we have that

Ek
[
∇̂θL(θk, βk)

]
= −τk · Eνk [ω⊤

k ϕωk
· ιθk]

= −τk · Eνk [ω⊤
k ιωk

· ιθk]− τk · w⊤
k Ea′∼πs

k

[
ϕωk

(s, a′)
]
· Eνk [ιθk]

= −τk · Eνk [ω⊤
k ιωk

· ιθk],(A.4.13)

where the first equality follows from the fact that Q̂ωk
(s, a) = ω⊤

k ϕωk
(s, a), while the

second and third equalities follow from the definition of ιωk
(s, a) in (A.4.2). Following

from (A.4.12) and (A.4.13), we have that

∣∣∣(δk − ωk)⊤Eνk[ιθk(δ⊤k ιθk + ω⊤
k ιωk

)
]∣∣∣ = τ−2

k ·
∣∣∣∣(δk − ωk)⊤(I(θk)δk − τk · Ek

[
∇̂θL(θ, β)

])∣∣∣∣
≤ 2Bθ · τ−2

k ·
∥∥∥I(θk)δk − τk · Ek

[
∇̂θL(θ, β)

]∥∥∥
2
.(A.4.14)

Here the last inequality follows from the Cauchy-Schwartz inequality and the fact that

∥ωk − δk∥2 ≤ 2Bθ as ωk, δk ∈ SBθ
. For notational simplicity, we define the following error

terms,

ξ
(1)
k = Î(θk)δk − I(θk)δk,(A.4.15)

ξ
(2)
k = ∇̂θL(θk, βk)− Ek

[
∇̂θL(θk, βk)

]
.(A.4.16)

187

Then, we have for term (ii.a) in (A.4.11) that

Einit

[∣∣∣(δk − ωk)⊤Eνk[ιθk(δ⊤k ιθk + ω⊤
k ιωk

)
]∣∣∣1/2]

(A.4.17)

≤ (2Bθ)
1/2 · τ−1

k · Einit

[∥∥∥I(θk)δk − τk · Ek
[
∇̂θL(θ, β)

]∥∥∥1/2
2

]
≤ (2Bθ)

1/2 · τ−1
k · Einit

[(∥∥Î(θk)δk − τk · ∇̂θL(θ, β)
∥∥
2

+ ∥ξ(1)k ∥2 + τk · ∥ξ(2)k ∥2
)1/2]

≤ (2Bθ)
1/2 · τ−1

k ·
(
Einit

[∥∥Î(θk)δk − τk · ∇̂θL(θ, β)
∥∥
2

]
+ Einit

[
∥ξ(1)k ∥2 + τk · ∥ξ(2)k ∥2

])1/2

,

where the first inequality follows from (A.4.14), the second inequality follows from the

triangle inequality, and the last inequality follows from Jensen’s inequality. Similarly to

(A.4.15), we define the following error term,

ξ
(3)
k = Î(θk)ωk − I(θk)ωk.(A.4.18)

We now upper bound the right-hand side of (A.4.17). Recall the definition of δk in (1.3.15).

We have that

∥∥Î(θk)δk − τk · ∇̂θL(θk, βk)
∥∥
2
≤
∥∥Î(θk)ωk − τk · ∇̂θL(θk, βk)

∥∥
2

(A.4.19)

≤
∥∥∥I(θk)ωk − τk · Ek

[
∇̂θL(θk, βk)

]∥∥∥
2

+ ∥ξ(1)k ∥2 + τk · ∥ξ(2)k ∥2.

188

Following from (A.4.12), (A.4.13), and Jensen’s inequality, we have that

∥∥∥I(θk)ωk − τk · Ek
[
∇̂θL(θk, βk)

]∥∥∥
2

= τ 2k ·
∥∥∥Eνk[ιθk · ω⊤

k (ιθk − ιωk
)
]∥∥∥

2

≤ τ 2k · Eνk
[
∥ιθk∥2 ·

∣∣ω⊤
k (ιθk − ιωk

)
∣∣]

≤ 2τ 2k ·
∥∥ω⊤

k (ιθk − ιωk
)
∥∥
1,νk

,

where the last inequality follows from the fact that ∥ιθ∥2 ≤ 2 for any (s, a) ∈ S × A.

Following from Assumption 1.4.1 and Lemma A.1.2, we have that

Einit

[∥∥∥I(θk)ωk − τk · Ek
[
∇̂θL(θk, βk)

]∥∥∥
2

]
≤ Einit

[
2τ 2k ·

∥∥ω⊤
k (ιθk − ιωk

)
∥∥
1,νk

]
= O(τ 2k ·B

3/2
θ ·m−1/4).(A.4.20)

Plugging (A.4.19) and (A.4.20) into (A.4.17), we have that

Einit

[∣∣∣(δk − ωk)⊤Eνk[ιθk(δ⊤k ιθk + ω⊤
k ιωk

)
]∣∣∣1/2]

= (2Bθ)
1/2 · τ−1

k ·
(
O(2τ 2k ·B

3/2
θ ·m−1/4) + Einit

[
∥ξ(1)k ∥2 + 2τk · ∥ξ(2)k ∥2 + ∥ξ(3)k ∥2

])1/2
= O(τk ·B5/4

θ ·m−1/4) + (2Bθ)
1/2 · τ−1

k ·
(
Einit

[
∥ξ(1)k ∥2 + 2τk · ∥ξ(2)k ∥2 + ∥ξ(3)k ∥2

])1/2

≤ O(τk ·B5/4
θ ·m−1/4) + 2

√
2B

1/2
θ · (σ2/N)1/4,

(A.4.21)

189

where the last inequality follows from Assumption 1.4.3. We now upper bound term (ii.a)

of (A.4.11). We have that

Einit

[∣∣∣Eνk[ω⊤
k (ιθk − ιωk

) · (δ⊤k ιθk + ω⊤
k ιωk

)
]∣∣∣1/2]

≤ Einit,νk

[∣∣ω⊤
k (ιθk − ιωk

) · (δ⊤k ιθk + ω⊤
k ιωk

)
∣∣]1/2

≤ Einit

[∥∥ω⊤
k (ιθk − ιωk

)
∥∥
2,νk

]1/2
· Einit

[
∥δ⊤k ιθk + ω⊤

k ιωk
∥2,νk

]1/2
,(A.4.22)

where the expectation Einit,νk is taken with respect to the random initialization in (1.3.3)

and (s, a) ∼ νk, the first inequality follows from Jensen’s inequality, and the second

inequality follows from the Cauchy-Schwartz inequality. Following from Assumption 1.4.1

and Lemma A.1.2, we have that

Einit

[∥∥ω⊤
k (ιθk − ιωk

)
∥∥
2,νk

]
= O(B

3/2
θ ·m−1/4).(A.4.23)

To upper bound the right-hand side of (A.4.22), it remains to upper bound the term

Einit[∥δ⊤k ιθk + ω⊤
k ιωk
∥2,νk]. We have that

Einit

[
∥δ⊤k ιθk + ω⊤

k ιωk
∥2,νk

]
≤ Einit

[
∥δk∥2 · ∥ιθk∥2

]
+ Einit

[
∥ωk∥2 · ∥ιωk

∥2
]

= O(Bθ),

(A.4.24)

where the inequality follows from the Cauchy-Schwartz inequality and the equality follows

from the facts that ∥ιθk∥2 ≤ 2, ∥ιωk
∥2 ≤ 2, and δk, ωk ∈ SBθ

. Plugging (A.4.23) and

(A.4.24) into (A.4.22), we have that

Einit

[∣∣∣Eνk[ω⊤
k (ιθk − ιωk

) · (δ⊤k ιθk + ω⊤
k ιωk

)
]∣∣∣1/2] = O(B

5/4
θ ·m−1/8),(A.4.25)

190

which upper bounds term (ii.b) of (A.4.11). Plugging (A.4.21) and (A.4.25) into (A.4.11),

following from (A.4.10), we have that

Einit,dE

[∣∣∣〈ιθk(s, ·)⊤δk − ιωk
(s, ·)⊤ωk, πsE − πsk

〉
A

∣∣∣]
= η · Ch ·

(
O(B

5/4
θ ·m−1/8) + 2

√
2B

1/2
θ · (σ2/N)1/4

)
,(A.4.26)

which upper bounds term (ii) of (A.4.3).

Finally, plugging (A.4.7) and (A.4.26) into (A.4.3), we have that

Einit,dE

[∣∣∣〈log(πsk+1/π
s
k)− η · Q̂ωk

(s, ·), πsE − πsk
〉
A

∣∣∣]
= η · Ch · 2

√
2B

1/2
θ · (σ2/N)1/4 +O(τk+1 ·B3/2

θ ·m−1/4 + η ·B5/4
θ ·m−1/8),

where ξ
(1)
k , ξ

(2)
k , and ξ

(3)
k are defined in (A.4.15), (A.4.16), and (A.4.18), respectively, and

Ch is defined in Assumption 1.4.1. Thus, we complete the proof of Lemma A.3.1. □

A.4.2. Proof of Lemma A.3.2

Proof. For notational simplicity, for any (s, a) ∈ S × A, we denote by ∆Q,k(s, a) =

Q̂ωk
(s, a)−Qπk

rk
(s, a) the error of estimating Qπk

rk
(s, a) by Q̂ωk

(s, a). Then, we have that

EdE

[∣∣∣〈∆Q,k(s, ·), πsE − πsk
〉
A

∣∣∣]
≤
∫
S×A

∣∣∆Q,k(s, a)
∣∣dπsE(a)ddE(s) +

∫
S×A

∣∣∆Q,k(s, a)
∣∣dπsk(a)ddE(s)

=

∫
S×A

∣∣∆Q,k(s, a)
∣∣ · dνE

dρk
(s, a)dρk(s, a) +

∫
S×A

∣∣∆Q,k(s, a)
∣∣ · ddE

dϱk
(s)dρk(s, a)

≤ Ch · ∥∆Q,k∥2,ρk ,

191

where the last inequality follows from the Cauchy-Schwartz inequality and Assumption

1.4.1. Thus, we complete the proof of Lemma A.3.2. □

A.4.3. Proof of Lemma A.3.3

Proof. Following from (A.4.1) and the parameterization of πθ in (1.3.5), we have that

〈
log(πsk+1/π

s
k), π

s
k − πsk+1

〉
A(A.4.27)

=
〈
τk+1 · θ⊤k+1ϕθk+1

(s, ·)− τk · θ⊤k ϕθk(s, ·), πsk − πsk+1

〉
A

=
〈
(τk+1 · θk+1 − τk · θk)⊤ϕθk(s, ·), πsk − πsk+1

〉
A

+ τk+1 ·
〈
θ⊤k+1

(
ϕθk+1

(s, ·)− ϕθk(s, ·)
)
, πsk − πsk+1

〉
A
.

We now upper bound the two terms on the right-hand side of (A.4.27). For the first term

on the right-hand side of (A.4.27), recall that we define δk in (1.3.15). Thus, we have that

∣∣(τk+1 · θk+1 − τk · θk)⊤ϕθk(s, a)
∣∣ = η ·

∣∣δ⊤k ϕθk(s, a)
∣∣.(A.4.28)

Following from (A.4.28) and Hölder’s inequality, we have for any s ∈ S that

∣∣∣〈(τk+1 · θk+1 − τk · θk)⊤ϕθk(s, ·), πsk − πsk+1

〉
A

∣∣∣
≤
∥∥δ⊤k ϕθk(s, ·)

∥∥
∞ · ∥π

s
k − πsk+1∥1.

192

Then, following from Pinsker’s inequality, we have that

∣∣∣〈(τk+1 · θk+1 − τk · θk)⊤ϕθk(s, ·), πsk − πsk+1

〉
A

∣∣∣−KL(πsk+1 ∥ πsk)

≤ η ·
∥∥δ⊤k ϕθk(s, ·)

∥∥
∞ · ∥π

s
k − πsk+1∥1 − 1/2 · ∥πsk − πsk+1∥21

≤ 1/2 · η2 ·
∥∥δ⊤k ϕθk(s, ·)

∥∥2
∞.(A.4.29)

By the update of θk in (1.3.13) and the definition of δk in (1.3.15), we have that θk, δk ∈ SBθ
.

Thus, by Lemma A.1.3, we have that

Einit

[∥∥δ⊤k ϕθk(s, ·)
∥∥2
∞

]
≤ 2M0 + 18B2

θ .(A.4.30)

Plugging (A.4.30) into (A.4.29), we have that

∣∣∣〈(τk+1 · θk+1 − τk · θk)⊤ϕθk(s, ·), πsk − πsk+1

〉
A

∣∣∣−KL(πsk+1 ∥ πsk) ≤ η2 · (M2
0 + 9B2

θ).

(A.4.31)

For the second term on the right-hand side of (A.4.27), following from Assumption 1.4.1

and Lemma A.1.2, we have

Einit,dE

[∣∣∣∣〈θ⊤k+1

(
ϕθk+1

(s, ·)− ϕθk(s, ·)
)
, πsk − πsk+1

〉
A

∣∣∣∣
]

≤ Einit,dE

[∥∥∥θ⊤k+1

(
ϕθk+1

(s, ·)− ϕθk(s, ·)
)∥∥∥

1,πs
k

]
+ Einit,dE

[∥∥∥θ⊤k+1

(
ϕθk+1

(s, ·)− ϕθk(s, ·)
)∥∥∥

1,πs
k+1

]
= O(B

3/2
θ ·m−1/4).(A.4.32)

193

Finally, plugging (A.4.31) and (A.4.32) into (A.4.27), we have that

Einit,dE

[∣∣∣〈log(πsk+1/π
s
k), π

s
k − πsk+1

〉
A

∣∣∣−KL(πsk+1 ∥ πsk)
]

= η2 · (M2
0 + 9B2

θ) +O(τk+1 ·B3/2
θ ·m−1/4),

which completes the proof of Lemma A.3.3. □

194

APPENDIX B

Can Temporal-Difference and Q-Learning Learn Representation?

A Mean-Field Theory

B.1. Proofs for §2.5-2.6

For notational simplicity, we denote by ED the expectation with respect to x ∼ D and

ED̃ the expectation with respect to (x, r, x′) ∼ D̃. Also, with a slight abuse of notations,

we write θ(m) = {θi}mi=1.

B.1.1. Proof of Lemma 2.5.1

Proof. Existence and uniqueness of Q∗. To establish the existence of the fixed point

solution Q∗ to the projected Bellman equation Q = ΠFT πQ, it suffices to show that

ΠFT π : F → F is a contraction mapping. It holds for any Q1, Q2 ∈ F that

∥ΠFT πQ1 − ΠFT πQ2∥2L2(D) ≤ γ2 · ED̃

[(
Q1(x′)−Q2(x′)

)2]
= γ2 ·

∥∥Q1 −Q2
∥∥2
L2(D)

,

where the last equality follows from the fact that D is the stationary distribution. Thus,

ΠFT π : F → F is a contraction mapping. Note that F is complete. Following from the

Banach fixed point theorem (Conway, 2019), there exists a unique Q∗ ∈ F that solves

the projected Bellman equation Q = ΠFT πQ. Moreover, by the definition of F in (2.4.3),

195

there exists ρ̄ ∈P2(RD) such that

Q∗(x) =

∫
σ(x; θ) dρ̄(θ).

Proof of (i) in Lemma 2.5.1. We define

ρ∗ = ρ0 + α−1 · (ρ̄− ρ0).(B.1.1)

By the definition of Q(·; ρ) in (2.3.2) and the fact that Q(x; ρ0) = 0, we have that

Q(x; ρ∗) = Q∗(x), which completes the proof of (i) in Lemma 2.5.1.

Proof of (ii) in Lemma 2.5.1. For (ii) of Lemma 2.5.1, note thatQ(·; ρ∗) = ΠFT πQ(·; ρ∗).

Thus, we have that

〈
Q(·; ρ∗)− T πQ(·; ρ∗), f(·)−Q(·; ρ∗)

〉
D ≥ 0, ∀f ∈ F ,

which further implies that

ED̃

[(
Q(x; ρ∗)− r − γ ·Q(x′; ρ∗)

)
·
∫
σ(x; θ) d(ρ− ρ̄)(θ)

]
≥ 0, ∀ρ ∈P2(RD).(B.1.2)

Let ρ = (id + h · v)♯ρ̄ for a sufficiently small scaling parameter h ∈ R+ and any Lipschitz-

continuous mapping v : RD → RD. Then, following from (B.1.2), we have that

∫
ED̃

[(
Q(x; ρ∗)− r − γ ·Q(x′; ρ∗)

)
·
(
σ
(
x; θ + h · v(θ)

)
− σ(x; θ)

)]
dρ̄(θ) ≥ 0(B.1.3)

196

for any v : RD → RD. Dividing the both sides of (B.1.3) by h and letting h → 0+, we

have for any v : RD → RD that

0 ≤
∫

ED̃

[(
Q(x; ρ∗)− r − γ ·Q(x′; ρ∗)

)
·
〈
∇θσ(x; θ), v(θ)

〉]
dρ̄(θ)

= −α−1 ·
∫ 〈

g(θ; ρ∗), v(θ)
〉

dρ̄(θ),

where the equality follows from the definition of g in (2.3.5). Thus, we have that g(θ; ρ∗) = 0

for ρ̄-a.e., which completes the proof of (ii) in Lemma 2.5.1.

Proof of (iii) in Lemma 2.5.1. Following from the definition of ρ∗ in (B.1.1), we have

that

Dχ2(ρ∗ ∥ ρ0)

=

∫ (
ρ∗(θ)

ρ0(θ)
− 1

)2

dρ0(θ) =

∫ (
(1− α−1) · ρ0(θ) + α−1 · ρ̄(θ)

ρ0(θ)
− 1

)
dρ0(θ) = α−2 · D̄2,

where D̄ = Dχ2(ρ̄ ∥ ρ0)1/2. By Lemma B.3.3, we have that

W2(ρ
∗, ρ0) ≤ DKL(ρ∗ ∥ ρ0)1/2 ≤ Dχ2(ρ∗ ∥ ρ0)1/2 ≤ α−1 · D̄,

which completes the proof of (iii) in Lemma 2.5.1. □

B.1.2. Proof of Lemma 2.5.2

We first introduce the following lemmas. The first lemma establishes the strongly mono-

tonicity of g(·; βt) along a curve β : [0, 1]→P2(RD) on the Wasserstein space.

197

Lemma B.1.1. Let β : [0, 1]→P2(RD) be a curve such that ∂tβt = − div(βt · vt) for a

vector field v. We have that

〈
∂tg(·; βt), vt

〉
βt
≤ −(1− γ) · ED

[(
∂tQ(x; βt)

)2]
.

Furthermore, we have that

∫ 1

0

〈
∂sg(·; βs), vs

〉
βs

ds ≤ −(1− γ) · ED

[(
Q(x; β0)−Q(x; β1)

)2]
.(B.1.4)

Proof. Following from the definition of g in (2.3.5), we have that

∂tg(θ; βt) = −α · ED̃

[
∂t
(
Q(x; βt)− γ ·Q(x′; βt)

)
· ∇θσ(x; θ)

]
.

Thus, following from integration by parts and the continuity equation ∂tβt = − div(βt · vt),

we have that

〈
∂tg(·; βt), vt

〉
βt

= −
∫ 〈

α · ED̃

[
∂t
(
Q(x; βt)− γ ·Q(x′; βt)

)
· ∇θσ(x; θ)

]
, vt(θ) · βt(θ)

〉
dθ

= −
∫
α · ED̃

[
∂t
(
Q(x; βt)− γ ·Q(x′; βt)

)
· σ(x; θ)

]
· ∂tβt(θ) dθ

= −ED̃

[
∂t
(
Q(x; βt)− γ ·Q(x′; βt)

)
· ∂tQ(x; βt)

]
,(B.1.5)

198

where the last equality follows from the definition of Q in (2.3.2). Applying the Cauchy-

Schwartz inequality to (B.1.5), we have that

〈
∂tg(·; βt), vt

〉
βt

= −ED̃

[(
∂tQ(x; βt)

)2]
+ γ · ED̃

[
∂tQ(x′; βt) · ∂tQ(x; βt)

]
≤ −ED̃

[(
∂tQ(x; βt)

)2]
+ γ · ED̃

[(
∂tQ(x; βt)

)2]1/2 · ED̃

[(
∂tQ(x′; βt)

)2]1/2
= −(1− γ) · ED

[(
∂tQ(x; βt)

)2]
,(B.1.6)

where the last equality follows from the fact that the marginal distributions of D̃ with

respect to x and x′ are D, since D is the stationary distribution. Furthermore, we have

that

∫ 1

0

〈
∂sg(·; βs), vs

〉
βs

ds ≤ −(1− γ) ·
∫ 1

0

ED

[(
∂sQ(x; βs)

)2]
ds

≤ −(1− γ) · ED

[(∫ 1

0

∂sQ(x; βs) ds
)2]

= −(1− γ) · ED

[(
Q(x; β1)−Q(x; β0)

)2]
,

which completes the proof of Lemma B.1.1. □

The following lemma upper bounds the norms of Q and ∇θg.

Lemma B.1.2. Under Assumptions 2.4.1 and 2.4.2, it holds for any ρ ∈P2(RD) that

sup
x∈X

∣∣Q(x; ρ)
∣∣ ≤ α ·min

{
B1 · W2(ρ, ρ0), B0

}
,(B.1.7)

sup
θ∈RD

∥∥∇θg(θ; ρ)
∥∥
F
≤ α ·B2 ·min

{
2α ·B1 · W2(ρ, ρ0) +Br, 2α ·B0 +Br

}
.(B.1.8)

199

Proof. We introduce the Wasserstein-1 distance, which is defined as

W1(µ
1, µ2) = inf

{
E
[
∥X − Y ∥

] ∣∣∣ law(X) = µ1, law(Y) = µ2
}

for any µ1, µ2 ∈ P(RD) with finite first moments. Thus, we have that W1(µ
1, µ2) ≤

W2(µ
1, µ2). The Wasserstein-1 distance has the following dual representation (Ambrosio

et al., 2008),

W1(µ
1, µ2) = sup

{∫
f(x) d(µ1 − µ2)(x)

∣∣∣∣ continuous f : RD → R,Lip(f) ≤ 1

}
.(B.1.9)

Following from Assumptions 2.4.1 and 2.4.2, we have that ∥∇θσ(x; θ)∥ ≤ B1 for any x ∈ X

and θ ∈ RD, which implies that Lip(σ(x; ·)/B1) ≤ 1 for any x ∈ X . Note that Q(x; ρ0) = 0

for any x ∈ X . Thus, by (B.1.9) we have for any ρ ∈P2(RD) and x ∈ X that

∣∣Q(x; ρ)
∣∣ = α ·

∣∣∣∣∫ σ(x; θ) · d(ρ− ρ0)(θ)
∣∣∣∣ ≤ α ·B1 · W1(ρ, ρ0) ≤ α ·B1 · W2(ρ, ρ0).

(B.1.10)

Meanwhile, following from Assumptions 2.4.1 and 2.4.2, we have for any x ∈ X and

ρ ∈P2(RD) that

∣∣Q(x; ρ)
∣∣ = α ·

∣∣∣∣∫ σ(x; θ) dρ(θ)

∣∣∣∣ ≤ α ·B0.(B.1.11)

Combining (B.1.10) and (B.1.11), we have for any ρ ∈P2(RD) that

sup
x∈X

∣∣Q(x; ρ)
∣∣ ≤ α ·min

{
B1 · W2(ρ, ρ0), B0

}
,(B.1.12)

200

which completes the proof of (B.1.7) in Lemma B.1.2. Following from the definition of g

in (2.3.5), we have for any x ∈ X and ρ ∈P2(RD) that

∥∥∇θg(θ; ρ)
∥∥
F
≤ α · ED̃

[∣∣Q(x; ρ)− r − γ ·Q(x′; ρ)
∣∣ · ∥∥∇2

θθσ(x; θ)
∥∥
F

]
≤ α ·min

{
2α ·B1 · W2(ρ, ρ0) +Br, 2α ·B0 +Br

}
·B2.

Here the last inequality follows from (B.1.12) and the fact that ∥∇2
θθσ(x; θ)∥F ≤ B2 for

any x ∈ X and ρ ∈P2(RD), which follows from Assumptions 2.4.1 and 2.4.2. Thus, we

complete the proof of Lemma B.1.2. □

We are now ready to present the proof of Lemma 2.5.2.

Proof. Recall that ρt is the PDE solution in (2.3.4), that is,

∂tρt = −η · div
(
ρt · g(·; ρt)

)
,

where

g(θ; ρ) = −α · ED̃

[(
Q(x; ρ)− r − γ ·Q(x′; ρ)

)
· ∇θσ(x; θ)

]
.

We fix a t ∈ [0, T]. We denote by β : [0, 1]→P2(RD) the geodesic connecting ρt and ρ∗.

Specifically, β satisfies that β′
s = − div(βs · vs) for a vector field v. Following from Lemma

201

B.3.2, we have that

d

dt

W2(ρt, ρ
∗)2

2
= −η ·

〈
g(·; ρt), v0

〉
ρt

= η ·
∫ 1

0

∂s
〈
g(·; βs), vs

〉
βs

ds− η ·
〈
g(·; ρ∗), v1

〉
ρ∗

= η ·
∫ 1

0

〈
∂sg(·; βs), vs

〉
βs

ds︸ ︷︷ ︸
(i)

+η ·
∫ 1

0

∫ 〈
g(θ; βs), ∂s(vs · βs)(θ)

〉
dθ ds︸ ︷︷ ︸

(ii)

,(B.1.13)

where the last equality follows from (ii) of Lemma 2.5.1.

For term (i) of (B.1.13), following from (B.1.4) of Lemma B.1.1, we have that

∫ 1

0

〈
∂sg(·; βs), vs

〉
βs

ds ≤ −(1− γ) · ED

[(
Q(x; β0)−Q(x; β1)

)2]
= −(1− γ) · ED

[(
Q(x; ρt)−Q∗(x)

)2]
.(B.1.14)

For term (ii) of (B.1.14), we have that

∫ ∣∣∣〈g(θ; βs), ∂s(vs · βs)(θ)
〉∣∣∣ dθ =

∫ ∣∣∣〈∇θg(θ; βs), βs(θ) · vs(θ)⊗ vs(θ)
〉∣∣∣ dθ

≤ sup
θ∈RD

∥∥∇θg(θ; βs)
∥∥
F
· ∥vs∥2βs ,

where the equality follows from integration by parts and Lemma B.3.4. Since β is the

geodesic connecting ρt and ρ∗, (2.2.7) implies that ∥vs∥2βs =W2(β0, β1)
2 =W2(ρt, ρ

∗)2 for

any s ∈ [0, 1]. Applying (B.1.8) of Lemma B.1.2, we have that

∫ ∣∣∣〈g(θ; βs), ∂s(vs · βs)(θ)
〉∣∣∣ dθ ≤ α ·B2 ·

(
2α ·B1 · W2(ρt, ρ0) +Br

)
· W2(ρt, ρ

∗)2

≤ 4α ·B2 ·
(
6α ·B1 · W2(ρ0, ρ

∗) +Br

)
· W2(ρ0, ρ

∗)2,(B.1.15)

202

where the last inequality follows from the condition of Lemma 2.5.2 that W2(ρt, ρ
∗) ≤

2W2(ρ0, ρ
∗) and the fact that W2(ρt, ρ0) ≤ W2(ρt, ρ

∗) +W2(ρ0, ρ
∗). Then, applying (iii) of

Lemma 2.5.1 to (B.1.15), we have that

∫ 1

0

∫ ∣∣∣〈g(θ; βs), ∂s(vs · βs)(θ)
〉∣∣∣ dθ ds ≤ 4α−1 ·B2 · D̄2 · (6B1 · D̄ +Br)

= C∗ · α−1,(B.1.16)

where C∗ > 0 is a constant depending on D̄, B1, B2, and Br.

Finally, plugging (B.1.14) and (B.1.16) into (B.1.13), we have that

d

dt

W2(ρt, ρ
∗)2

2
≤ −(1− γ) · η · ED

[(
Q(x; ρt)−Q∗(x)

)2]
+ C∗ · α−1 · η,

which completes the proof of Lemma 2.5.2. □

B.1.3. Proof of Theorem 2.6.2

Proof. In parallel to the proof of Lemma 2.5.1 in §B.1.1, to establish the existence

and uniqueness of the fixed point solution to the projected Bellman optimality equation

Q = ΠFT ∗Q, it suffices to show that ΠFT ∗ : F → F is a contraction mapping. In

particular, it holds for any Q1, Q2 ∈ F that

∥ΠFT ∗Q1 − ΠFT ∗Q2∥2L2(DE) ≤ γ2 · ED̃E

[(
max
a∈A

Q1(s′, a)−max
a∈A

Q2(s′, a)
)2]

= γ2 · EDE

[(
max
a∈A

Q1(s, a)−max
a∈A

Q2(s, a)
)2]

≤ γ2

(γ + κ)2
· EDE

[(
Q1(s, a)−Q2(s, a)

)2]
,

203

where the equality follows from the fact that DE is the stationary distribution and the last

inequality follows from Assumption 2.6.1. Thus, ΠFT ∗ : F → F is a contraction mapping.

Following from the Banach fixed point theorem (Conway, 2019), there exists a unique

fixed point solution Q† ∈ F to the projected Bellman optimality equation Q = ΠFT ∗Q.

Moreover, in parallel to the proof of Lemma 2.5.1 in §B.1.1, there exists ν† ∈P2(RD) such

that Q(x; ν†) = Q†(x), h(x; ν†) = 0, and W2(ν
†, ν0) ≤ α−1 · D̄, where D̄ = Dχ2(ν̄ ∥ ν0)1/2.

For notational simplicity, we define QA(x) = maxa∈AQ(s, a). In parallel to (B.1.13) in

the proof of Lemma 2.5.2 in §B.1.2, we have that

d

dt

W2(νt, ν
†)2

2
= η ·

∫ 1

0

〈
∂sh(·; βs), vs

〉
βs

ds︸ ︷︷ ︸
(i)

+η ·
∫ 1

0

∫ 〈
h(θ; βs), ∂s(vs · βs)(θ)

〉
dθ ds︸ ︷︷ ︸

(ii)

,

(B.1.17)

where β : [0, 1]→P2(RD) is the geodesic connecting νt and ν† with ∂sβs = − div(βs · vs).

Upper bounding term (i) of (B.1.17). In parallel to (B.1.5) and (B.1.6) in the proof

of Lemma B.1.1, we have that

〈
∂sh(·; βs), vs

〉
βs

= −ED̃E

[
∂s
(
Q(x; βs)− γ ·QA(x′; βs)

)
· ∂sQ(x; βs)

](B.1.18)

≤ −EDE

[(
∂sQ(x; βs)

)2]
+ γ · EDE

[(
∂sQ(x; βs)

)2]1/2 · EDE

[(
∂sQ

A(x; βs)
)2]1/2

.

204

For the second term on the right-hand side of (B.1.18), we have that

EDE

[(
∂sQ

A(x; βs)
)2]

= lim
u→0

EDE

[(
u−1 ·

(
QA(x; βs+u)−QA(x; βs)

))2]
≤ (γ + κ)−2 · lim

u→0
u−2 · EDE

[(
Q(x; βs+u)−Q(x; βs)

)2]
= (γ + κ)−2 · EDE

[(
∂sQ(x; βs)

)2]
,(B.1.19)

where the inequality follows from Assumption 2.6.1 and the fact that Q(·; ν) ∈ α · F .

Plugging (B.1.19) into (B.1.18), we have that

〈
∂sh(·; βs), vs

〉
βs
≤ − κ

γ + κ
· EDE

[(
∂sQ(x; βs)

)2]
,

which further implies that

∫ 1

0

〈
∂sh(·; βs), vs

〉
βs

ds ≤ − κ

γ + κ
·
∫ 1

0

EDE

[(
∂sQ(x; βs)

)2]
ds

≤ − κ

γ + κ
· EDE

[(∫ 1

0

∂sQ(x; βs) ds
)2]

= − κ

γ + κ
· EDE

[(
Q(x; νt)−Q(x; ν†)

)2]
.(B.1.20)

Upper bounding term (ii) of (B.1.17). In parallel to the proof of Lemma B.1.2 in

§B.1.2, noting that |QA(x; ν)| ≤ supx∈X |Q(x; ν)| for any ν ∈P2(RD), we have that

∥∥∇θh(θ; νt)
∥∥
F
≤ α ·B2 ·

(
2α ·B1 · W2(νt, ν0) +Br

)
.

205

In parallel to (B.1.15) and (B.1.16), we have that

∫ 1

0

∫ ∣∣∣〈h(θ; βs), ∂s(vs · βs)(θ)
〉∣∣∣ dθ ds ≤ C∗ · α−1,(B.1.21)

where C∗ > 0 is a constant that depends on D̄, B1, B2, and Br.

Plugging (B.1.20) and (B.1.21) into (B.1.17), we have that

d

dt

W2(νt, ν
†)2

2
≤ − η · κ

γ + κ
· EDE

[(
Q(x; νt)−Q(x; ν†)

)2]
+ C∗ · η · α−1.

Thus, in parallel to the proof of Theorem 2.4.3 in §2.5, we have that

inf
t∈[0,T]

ED

[(
Q(x; νt)−Q†(x)

)2] ≤ (κ+ γ) ·Dχ2(ν̄ ∥ ν0)
2κ · T

+ C∗ · α−1 · κ+ γ

κ
,

which completes the proof of (2.6.5) in Theorem 2.6.2. Meanwhile, in parallel to the proof

of Lemma 2.4.4 in §B.2.2, we upper bound the error of approximating ν̂k by νkϵ, which

further implies (2.6.6) of Theorem 2.6.2. □

B.2. Mean-Field Limit of Neural Networks

In this section, we prove Proposition 2.3.1, whose formal version is presented as follows.

Recall that ρt is the PDE solution in (2.3.4) and ρ̂k = m−1 ·
∑m

i=1 θi(k) is the empirical

distribution of θ(m)(k) = {θi(k)}mi=1. Note that we omit the dependence of ρ̂k on m and ϵ

for notational simplicity.

Proposition B.2.1 (Formal Version of Proposition 2.3.1). Let f : RD → R be any

continuous function such that ∥f∥∞ ≤ 1 and Lip(f) ≤ 1. Under Assumptions 2.4.1 and

206

2.4.2, it holds that

sup
k≤T/ϵ
(k∈N)

∣∣∣∣∫ f(θ) dρkϵ(θ)−
∫
f(θ) dρ̂k(θ)

∣∣∣∣
≤ B · eBT ·

(√
log(m/δ)/m+

√
ϵ ·
(
D + log(m/δ)

))
with probability at least 1 − δ. Here B is a constant that depends on α, η, γ, Br, and

Bj (j ∈ {0, 1, 2}).

The proof of Proposition B.2.1 is based on Mei et al. (2018, 2019); Araújo et al. (2019),

which utilizes the propagation of chaos (Sznitman, 1991). Recall that g(·; ρ) is a vector

field defined as follows,

g(θ; ρ) = −α · ED̃

[(
Q(x; ρ)− r − γ ·Q(x′; ρ)

)
· ∇θσ(x; θ)

]
.

Correspondingly, we define the finite-width and stochastic counterparts of g(θ; ρ) as follows,

ĝ(θ; θ(m)) = −α · ED̃

[(
Q̂(x; θ(m))− r − γ · Q̂(x′; θ(m))

)
· ∇θσ(x; θ)

]
,(B.2.1)

Ĝk(θ; θ
(m)) = −α ·

(
Q̂(xk; θ

(m))− rk − γ · Q̂(x′k; θ
(m))

)
· ∇θσ(xk; θ),(B.2.2)

where (xk, rk, x
′
k) ∼ D̃. Following from Mei et al. (2019); Araújo et al. (2019), we consider

the following four dynamics.

207

• Temporal-difference (TD). We consider the following TD dynamics θ(m)(k), where

k ∈ N, with θi(0)
i.i.d.∼ ρ0 (i ∈ [m]) as its initialization,

θi(k + 1) = θi(k)− ηϵ · α ·
(
Q̂
(
xk; θ

(m)(k)
)
− rk − γ · Q̂

(
x′k; θ

(m)(k)
))
· ∇θσ

(
xk; θi(k)

)
= θi(k) + ηϵ · Ĝk

(
θi(k); θ(m)(k)

)
,(B.2.3)

where (xk, rk, x
′
k) ∼ D̃. Note that this definition is equivalent to (2.2.3).

• Expected temporal-difference (ETD). We consider the following expected TD

dynamics θ̆(m)(k), where k ∈ N, with θ̆i(0) = θi(0) (i ∈ [m]) as its initialization,

θ̆i(k + 1) = θ̆i(k)− ηϵ · α · ED̃

[(
Q̂
(
x; θ̆(m)(k)

)
− r − γ · Q̂

(
x′; θ̆(m)(k)

))
· ∇θσ

(
x; θ̆i(k)

)]
= θ̆i(k) + ηϵ · ĝ

(
θ̆i(k); θ̆(m)(k)

)
.(B.2.4)

• Continuous-time temporal-difference (CTTD). We consider the following continuous-

time TD dynamics θ̃(m)(t), where t ∈ R+, with θ̃i(0) = θi(0) (i ∈ [m]) as its initialization,

d

dt
θ̃i(t) = −η · α · ED̃

[(
Q̂
(
x; θ̃(m)(t)

)
− r − γ · Q̂

(
x′; θ̃(m)(t)

))
· ∇θσ

(
x; θ̃i(t)

)]
= η · ĝ

(
θ̃i(t); θ̃

(m)(t)
)
.(B.2.5)

• Ideal particle (IP). We consider the following ideal particle dynamics θ̄(m)(t), where

t ∈ R+, with θ̄i(0) = θi(0) (i ∈ [m]) as its initialization,

d

dt
θ̄i(t) = −η · α · ED̃

[(
Q(x; ρt)− r − γ ·Q(x′; ρt)

)
· ∇θσ

(
x; θ̄i(t)

)]
= η · g

(
θ̄i(t); ρt

)
,(B.2.6)

208

where ρt is the PDE solution in (2.3.4).

We aim to prove that ρ̂k = m−1 ·
∑m

i=1 δθi(k) weakly converges to ρkϵ. For any continuous

function f : RD → R such that ∥f∥∞ ≤ 1 and Lip(f) ≤ 1, we use the IP, CTTD, and

ETD dynamics as the interpolating dynamics,

PDE− TD︷ ︸︸ ︷∣∣∣∣∫ f(θ) dρkϵ(θ)−
∫
f(θ) dρ̂k(θ)

∣∣∣∣
≤
∣∣∣∣∫ f(θ) dρkϵ(θ)−m−1 ·

m∑
i=1

f
(
θ̄i(kϵ)

)∣∣∣∣+

∣∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(kϵ)

)
−m−1 ·

m∑
i=1

f
(
θ̃i(kϵ)

)∣∣∣∣
+

∣∣∣∣m−1 ·
m∑
i=1

f
(
θ̃i(kϵ)

)
−m−1 ·

m∑
i=1

f
(
θ̆i(k)

)∣∣∣∣
+

∣∣∣∣m−1 ·
m∑
i=1

f
(
θ̆i(k)

)
−m−1 ·

m∑
i=1

f
(
θi(k)

)∣∣∣∣
≤
∣∣∣∣∫ f(θ) dρkϵ(θ)−m−1 ·

m∑
i=1

f
(
θ̄i(kϵ)

)∣∣∣∣︸ ︷︷ ︸
PDE− IP

+
∥∥θ̄(m)(kϵ)− θ̃(m)(kϵ)

∥∥
(m)︸ ︷︷ ︸

IP− CTTD

+
∥∥θ̃(m)(kϵ)− θ̆(m)(k)

∥∥
(m)︸ ︷︷ ︸

CTTD− ETD

+
∥∥θ̆(m)(k)− θ(m)(k)

∥∥
(m)︸ ︷︷ ︸

ETD− TD

,

(B.2.7)

where the last inequality follows from the the fact that Lip(f) ≤ 1. Here the norm ∥·∥(m)

of θ(m) = {θi}mi=1 is defined as follows,

∥θ(m)∥(m) = sup
i∈[m]

∥θi∥.(B.2.8)

209

In what follows, we define B > 0 as a constant that depends on α, η, γ, Br, and

Bj (j ∈ {0, 1, 2}), whose value varies from line to line. We establish the following lemmas

to upper bound the terms on the right-hand side of (B.2.8).

Lemma B.2.2 (Upper Bound of PDE – IP). Let f be any continuous function such that

∥f∥∞ ≤ 1 and Lip(f) ≤ 1. Under Assumptions 2.4.1 and 2.4.2, it holds for any f that

sup
t∈[0,T]

∣∣∣∫ f(θ) dρt(θ)−m−1 ·
m∑
i=1

f
(
θ̄i(t)

)∣∣∣ ≤ B ·
√

log(mT/δ)/m

with probability at least 1− δ.

Proof. See §B.2.1.1 for a detailed proof. □

Lemma B.2.3 (Upper Bound of IP – CTTD). Under Assumptions 2.4.1 and 2.4.2, it

holds that

sup
t∈[0,T]

∥∥θ̄(m)(t)− θ̃(m)(t)
∥∥
(m)
≤ B · eBT ·

√
log(m/δ)/m

with probability at least 1− δ.

Proof. See §B.2.1.2 for a detailed proof. □

Lemma B.2.4 (Upper Bound of CTTD – ETD). Under Assumptions 2.4.1 and 2.4.2, it

holds that

sup
k≤T/ϵ
(k∈N)

∥∥θ̃(m)(kϵ)− θ̆(m)(k)
∥∥
(m)
≤ B · eBT · ϵ.

Proof. See §B.2.1.3 for a detailed proof. □

210

Lemma B.2.5 (Upper Bound of ETD – TD). Under Assumptions 2.4.1 and 2.4.2, it

holds that

sup
k≤T/ϵ
(k∈N)

∥∥θ̆(m)(k)− θ(m)(k)
∥∥
(m)
≤ B · eBT ·

√
ϵ ·
(
D + log(m/δ)

)

with probability at least 1− δ

Proof. See §B.2.1.4 for a detailed proof. □

We are now ready to present the proof of Proposition B.2.1.

Proof. Plugging Lemmas B.2.2-B.2.5 into (B.2.7), we have that

sup
k≤T/ϵ
(k∈N)

∣∣∣∣∫ f(θ) dρkϵ(θ)−
∫
f(θ) dρ̂k(θ)

∣∣∣∣
≤ B · eBT ·

(√
log(m/δ)/m+

√
ϵ ·
(
D + log(m/δ)

))
with probability at least 1− δ. Thus, we complete the proof of Proposition B.2.1. □

B.2.1. Proofs of Lemmas B.2.2-B.2.5

In this section, we present the proofs of Lemmas B.2.2-B.2.5, which are based on Mei et al.

(2018, 2019); Araújo et al. (2019). We include the required technical lemmas in §B.2.3.

Recall that B > 0 is a constant that depends on α, η, γ, Br, and Bj (j ∈ {0, 1, 2}), whose

value varies from line to line.

B.2.1.1. Proof of Lemma B.2.2.

Proof. For the IP dynamics in (B.2.6), it holds that θ̄i(t) ∼ ρt (i ∈ [m]) (Proposition

8.1.8 in Ambrosio et al. (2008)). Furthermore, since the randomness of θ̄i(t) comes from

211

θi(0) while θi(0) (i ∈ [m]) are independent, we have that θ̄i(t)
i.i.d.∼ ρt (i ∈ [m]). Thus, we

have that

Eρt
[
m−1 ·

m∑
i=1

f
(
θ̄i(t)

)]
=

∫
f(θ) dρt(θ).

Let θ1,(m) = {θ1, . . . , θ1i , . . . , θm} and θ2,(m) = {θ1, . . . , θ2i , . . . , θm} be two sets that only

differ in the i-th element. Then, by the condition of Lemma B.2.2 that ∥f∥∞ ≤ 1, we have

that

∣∣∣m−1 ·
m∑
j=1

f(θ1j)−m−1 ·
m∑
j=1

f(θ2j)
∣∣∣ = m−1 ·

∣∣f(θ1i)− f(θ2i)
∣∣ ≤ 2/m.

Applying McDiarmid’s inequality (Wainwright, 2019), we have for a fixed t ∈ [0, T] that

P
(∣∣∣m−1 ·

m∑
i=1

f
(
θ̄i(t)

)
−
∫
f(θ) dρt(θ)

∣∣∣ ≥ p

)
≤ exp(−mp2/4).(B.2.9)

Moreover, we have for any s, t ∈ [0, T] that

∣∣∣∣∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(t)

)
−
∫
f(θ) dρt(θ)

∣∣∣− ∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(s)

)
−
∫
f(θ) dρs(θ)

∣∣∣∣∣∣∣
≤
∣∣∣m−1 ·

m∑
i=1

f
(
θ̄i(t)

)
−m−1 ·

m∑
i=1

f
(
θ̄i(s)

)∣∣∣+
∣∣∣∫ f(θ) dρt(θ)−

∫
f(θ) dρs(θ)

∣∣∣
≤
∥∥θ̄(m)(t)− θ̄(m)(s)

∥∥
(m)

+W1(ρt, ρs)

≤
∥∥θ̄(m)(t)− θ̄(m)(s)

∥∥
(m)

+W2(ρt, ρs),

212

where the second inequality follows from the fact that Lip(f) ≤ 1 and (B.1.9). Applying

(B.2.38) and (B.2.40) of Lemma B.2.7, we have for any s, t ∈ [0, T] that

∣∣∣∣∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(t)

)
−
∫
f(θ) dρt(θ)

∣∣∣− ∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(s)

)
−
∫
f(θ) dρs(θ)

∣∣∣∣∣∣∣ ≤ B · |t− s|.

Applying the union bound to (B.2.9) for t ∈ ι · {0, 1, . . . , ⌊T/ι⌋}, we have that

P
(

sup
t∈[0,T]

∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(t)

)
−
∫
f(θ) dρt(θ)

∣∣∣ ≥ p+B · ι
)
≤ (T/ι+ 1) · exp(−mp2/4).

Setting ι = m−1/2 and p = B ·
√

log(mT/δ)/m, we have that

sup
t∈[0,T]

∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(t)

)
−
∫
f(θ) dρt(θ)

∣∣∣ ≤ B ·
√

log(mT/δ)/m

with probability at least 1− δ. Thus, we complete the proof of Lemma B.2.2. □

B.2.1.2. Proof of Lemma B.2.3.

Proof. Recall that g and ĝ are defined in (2.3.5) and (B.2.1), respectively, that is,

g(θ; ρ) = −α · ED̃

[(
Q(x; ρ)− r − γ ·Q(x′; ρ)

)
· ∇θσ(x; θ)

]
,

ĝ(θ; θ(m)) = −α · ED̃

[(
Q̂(x; θ(m))− r − γ · Q̂(x′; θ(m))

)
· ∇θσ(x; θ)

]
.

213

Following from the definition of θ̃i(t) and θ̄i(t) in (B.2.5) and (B.2.6), respectively, we have

for any i ∈ [m] and t ∈ [0, T] that

∥∥θ̄i(t)− θ̃i(t)∥∥
≤
∫ t

0

∥∥∥∥dθ̃i(s)

ds
− dθ̄i(s)

ds

∥∥∥∥ ds

= η ·
∫ t

0

∥∥∥ĝ(θ̃i(s); θ̃(m)(s)
)
− g
(
θ̄i(s); ρs

)∥∥∥ ds

≤ η ·
∫ t

0

∥∥∥ĝ(θ̃i(s); θ̃(m)(s)
)
− ĝ
(
θ̄i(s); θ̄

(m)(s)
)∥∥∥ ds

+ η ·
∫ t

0

∥∥∥ĝ(θ̄i(s); θ̄(m)(s)
)
− g
(
θ̄i(s); ρs

)∥∥∥ ds

≤ B ·
∫ t

0

∥∥θ̃(m)(s)− θ̄(m)(s)
∥∥
(m)

ds+ η ·
∫ t

0

∥∥∥ĝ(θ̄i(s); θ̄(m)(s)
)
− g
(
θ̄i(s); ρs

)∥∥∥ ds,

(B.2.10)

where the last inequality follows from (B.2.35) of Lemma B.2.6. We now upper bound the

second term on the right-hand side of (B.2.10). Following from the definition of Q̂, Q, and

ĝ in (2.3.1), (2.3.2), and (B.2.1), respectively, we have for any s ∈ [0, T] and i ∈ [m] that

∥∥∥ĝ(θ̄i(s); θ̄(m)(s)
)
− g
(
θ̄i(s); ρs

)∥∥∥ = α2 ·
∥∥∥m−1 ·

m∑
j=1

Zj
i (s)

∥∥∥,(B.2.11)

where

Zj
i (s) = ED̃

[(
σ
(
x; θ̄j(s)

)
−
∫
σ(x; θ) dρs(θ)− γ · σ

(
x′; θ̄j(s)

)
+ γ ·

∫
σ(x′; θ) dρs(θ)

)
· ∇θσ

(
x; θ̄i(s)

)]
.

214

Following from Assumptions 2.4.1 and 2.4.2, we have that ∥Zj
i (s)∥ ≤ B. When i ̸= j,

following from the fact that θ̄i(s)
i.i.d.∼ ρs (i ∈ [m]), it holds that E[Zj

i (s) | θ̄i(s)] = 0.

Following from Lemma B.2.8, we have for fixed s ∈ [0, T] and i ∈ [m] that

P
(∥∥∥m−1 ·

∑
j ̸=i

Zj
i (s)

∥∥∥ ≥ B · (m−1/2 + p)

)

= E

[
P
(∥∥∥m−1 ·

∑
j ̸=i

Zj
i (s)

∥∥∥ ≥ B · (m−1/2 + p)

∣∣∣∣ θ̄i(s))
]

≤ exp(−mp2).(B.2.12)

By (B.1.9), we have that

sup
x∈X

∣∣∣∫ σ(x; θ) dρs(θ)−
∫
σ(x; θ) dρt(θ)

∣∣∣ ≤ B · W1(ρs, ρt) ≤ B · W2(ρs, ρt) ≤ B · |s− t|,

where the last inequality follows from (B.2.40) of Lemma B.2.7. Thus, following from

Assumptions 2.4.1 and 2.4.2, Lemma B.2.7, and the fact that Lip(fg) ≤ ∥f∥∞ · Lip(g) +

∥g∥∞ · Lip(f) for any functions f and g, we have for any s, t ∈ [0, T] that

∣∣∣∣∥∥∥m−1 ·
∑
j ̸=i

Zj
i (s)

∥∥∥− ∥∥∥m−1 ·
∑
j ̸=i

Zj
i (t)
∥∥∥∣∣∣∣ ≤ B · |t− s|.

Applying the union bound to (B.2.12) for i ∈ [m] and t ∈ ι · {0, 1, . . . , ⌊T/ι⌋}, we have

that

P
(

sup
i∈[m],
s∈[0,T]

∥∥∥m−1 ·
∑
j ̸=i

Zj
i (s)

∥∥∥ ≥ B · (m−1/2 + p) +Bι

)
≤ m · (T/ι+ 1) · exp(−mp2).

215

Setting ι = m−1/2 and p = B ·
√

log(mT/δ)/m, we have that

sup
i∈[m],
s∈[0,T]

∥∥∥m−1 ·
∑
j ̸=i

Zj
i (s)

∥∥∥ ≤ B ·
√

log(mT/δ)/m(B.2.13)

with probability at least 1− δ. When i = j, it holds that ∥m−1 ·Zi
i (s)∥ ≤ B/m in (B.2.11),

which follows from Assumptions 2.4.1 and 2.4.2. Thus, plugging (B.2.13) into (B.2.11),

we have that

sup
i∈[m],
s∈[0,T]

∥∥∥ĝ(θ̄i(s); θ̄(m)(s)
)
− g
(
θ̄i(s); ρs

)∥∥∥ ≤ sup
i∈[m],
s∈[0,T]

α2 ·
(∥∥m−1 · Zi

i(s)
∥∥+

∥∥∥m−1 ·
∑
j ̸=i

Zj
i (s)

∥∥∥)

≤ B ·
√

log(mT/δ)/m(B.2.14)

with probability at least 1− δ.

Conditioning on the event in (B.2.14), we obtain from (B.2.10) that

∥∥θ̃(m)(t)− θ̄(m)(t)
∥∥
(m)
≤ B ·

∫ t

0

∥∥θ̃(m)(s)− θ̄(m)(s)
∥∥
(m)

ds+BT ·
√

log(mT/δ)/m

for any t ∈ [0, T]. Following from Gronwall’s Lemma (Holte, 2009), we have that

∥∥θ̃(m)(t)− θ̄(m)(t)
∥∥
(m)
≤ B · eBt ·BT ·

√
log(mT/δ)/m

≤ B · eBT ·
√

log(m/δ)/m, ∀t ∈ [0, T]

with probability at least 1− δ. Here the last inequality holds since we allow the value of

B to vary from line to line. Thus, we complete the proof of Lemma B.2.3 □

B.2.1.3. Proof of Lemma B.2.4.

216

Proof. By the definition of ĝ, θ̆i(t), and θ̃i(t) in (B.2.1), (B.2.4), and (B.2.5), respec-

tively, it holds that

∥∥θ̃i(kϵ)− θ̆i(k)
∥∥ ≤ η ·

∫ kϵ

0

∥∥∥ĝ(θ̃i(s); θ̃(m)(s)
)
− ĝ
(
θ̆i(⌊s/ϵ⌋); θ̆(m)(⌊s/ϵ⌋)

)∥∥∥ ds

≤ η ·
∫ kϵ

0

∥∥∥ĝ(θ̃i(s); θ̃(m)(s)
)
− ĝ
(
θ̃i(⌊s/ϵ⌋ · ϵ); θ̃(m)(⌊s/ϵ⌋ · ϵ)

)∥∥∥ ds

+ η ·
k−1∑
ℓ=0

∥∥∥ĝ(θ̃i(ℓϵ); θ̃(m)(ℓϵ)
)
− ĝ
(
θ̆i(ℓ); θ̆

(m)(ℓ)
)∥∥∥

≤ B · k · ϵ2 +B ·
k−1∑
ℓ=0

∥∥θ̃(m)(ℓϵ)− θ̆(m)(ℓ)
∥∥
(m)
,

where the last inequality follows from (B.2.35) of Lemma B.2.6 and (B.2.39) of Lemma

B.2.7. Following from the definition of ∥·∥(m) in (B.2.8), it holds for any k ≤ T/ϵ (k ∈ N)

that

∥∥θ̃(m)(kϵ)− θ̆(m)(k)
∥∥
(m)
≤ B · T · ϵ+B ·

k−1∑
ℓ=0

∥∥θ̃(m)(ℓϵ)− θ̆(m)(ℓ)
∥∥
(m)
.

Following from the discrete Gronwall’s lemma (Holte, 2009), we have that

sup
k≤T/ϵ
(k∈N)

∥∥θ̃(m)(kϵ)− θ̆(m)(k)
∥∥
(m)
≤ B2 · T · ϵ · eBT ≤ B · eBT · ϵ,

where the last inequality holds since we allow the value of B to vary from line to line.

Thus, we complete the proof of Lemma B.2.4. □

B.2.1.4. Proof of Lemma B.2.5.

Proof. Let Gk = σ(θ(m)(0), z0, . . . , zk) be the σ-algebra generated by θ(m)(0) and

zℓ = (xℓ, rℓ, x
′
ℓ) (ℓ ≤ k). Recall that ĝ and Ĝk are defined in (B.2.1) and (B.2.2), respectively.

217

We have for any i ∈ [m] and k ∈ N+ that

E
[
Ĝk

(
θi(k); θ(m)(k)

) ∣∣∣Gk−1

]
= ĝ
(
θi(k); θ(m)(k)

)
.

Recall that θ(m)(k) and θ̆(m)(k) are the TD and ETD dynamics defined in (B.2.3) and

(B.2.4), respectively. Thus, we have for any i ∈ [m] and k ∈ N+ that

∥∥θ̆i(k)− θi(k)
∥∥ = ηϵ ·

∥∥∥k−1∑
ℓ=0

Ĝℓ

(
θi(ℓ); θ

(m)(ℓ)
)
−

k−1∑
ℓ=0

ĝ
(
θ̆i(ℓ); θ̆

(m)(ℓ)
)∥∥∥

≤ ηϵ ·
∥∥∥k−1∑
ℓ=0

Xi(ℓ)
∥∥∥+ ηϵ ·

k−1∑
ℓ=0

∥∥∥ĝ(θ̆i(ℓ); θ̆(m)(ℓ)
)
− ĝ
(
θi(ℓ); θ

(m)(ℓ)
)∥∥∥

≤ ηϵ ·
∥∥Ai(k)

∥∥+Bϵ ·
k−1∑
ℓ=0

∥∥θ̆(m)(ℓ)− θ(m)(ℓ)
∥∥
(m)
,(B.2.15)

where the last inequality follows from (B.2.35) of Lemma B.2.6, and Xi(ℓ) and Ai(k) are

defined as

Xi(0) = 0,

Xi(ℓ) = Ĝℓ

(
θi(ℓ); θ

(m)(ℓ)
)
− E

[
Ĝℓ

(
θi(ℓ); θ

(m)(ℓ)
) ∣∣∣Gℓ−1

]
∀ℓ ≥ 1,

Ai(k) =
k−1∑
ℓ=0

Xi(ℓ).

Following from (B.2.32) of Lemma B.2.6, we have that ∥Xi(ℓ)∥ ≤ B. Thus, the stochastic

process {Ai(k)}k∈N+ is a martingale with ∥Ai(k) − Ai(k − 1)∥ ≤ B. Applying Lemma

B.2.9, we have that

P
(

max
k≤T/ϵ
(k∈N+)

∥∥Ai(k)
∥∥ ≥ B ·

√
T/ϵ · (

√
D + p)

)
≤ exp(−p2).(B.2.16)

218

Applying the union bound to (B.2.16) for i ∈ [m], we have that

P
(

max
i∈[m],

k≤T/ϵ (k∈N+)

∥∥Ai(k)
∥∥ ≥ B ·

√
T/ϵ · (

√
D + p)

)
≤ m · exp(−p2).

By setting p =
√

log(m/δ), we have that

∥∥Ai(k)
∥∥ ≤ B ·

√
T/ϵ ·

(√
D +

√
log(m/δ)

)
, ∀i ∈ [m], k ≤ T/ϵ (k ∈ N+)(B.2.17)

with probability at least 1− δ. By (B.2.15) and (B.2.17), we have that

∥∥θ̆(m)(k)− θ(m)(k)
∥∥
(m)

≤ B ·
√
Tϵ · (

√
D +

√
log(m/δ)) +Bϵ ·

k−1∑
ℓ=0

∥∥θ̆(m)(ℓ)− θ(m)(ℓ)
∥∥
(m)
,

for any k ≤ T/ϵ (k ∈ N) with probability at least 1− δ. Applying the discrete Gronwall’s

Lemma (Holte, 2009), we have that

∥∥θ̆(m)(k)− θ(m)(k)
∥∥
(m)
≤ B · eBT ·B ·

√
Tϵ ·

(√
D +

√
log(m/δ)

)
≤ B · eBT ·

√
ϵ ·
(
D + log(m/δ)

)
, ∀k ≤ T/ϵ (k ∈ N)

with probability at least 1− δ. Here the last inequality holds since we allow the value of

B to vary from line to line. Thus, we complete the proof of Lemma B.2.5. □

B.2.2. Proof of Lemma 2.4.4

Proof. Recall that Q̂ and Q(·; ρ) are defined in (2.3.1) and (2.3.2), respectively. For

notational simplicity, we denote the optimality gaps for θ(m) = {θi}mi=1 and ρ ∈P2(RD)

219

by

L(θ(m)) = ED

[(
Q̂(x; θ(m))−Q∗(x)

)2]
,(B.2.18)

L̄(ρ) = ED

[(
Q(x; ρ)−Q∗(x)

)2]
.(B.2.19)

Recall that θ(m)(k), θ̄(m)(kϵ), and ρt are the TD dynamics, the IP dynamics, and the PDE

solution defined in (B.2.3), (B.2.6), and (2.3.4), respectively. It holds for any k ∈ N that

∣∣∣L(θ(m)(k)
)
− L̄(ρkϵ)

∣∣∣ ≤ ∣∣∣L(θ(m)(k)
)
− L

(
θ̄(m)(kϵ)

)∣∣∣︸ ︷︷ ︸
(i)

+
∣∣∣L(θ̄(m)(kϵ)

)
− L̄(ρkϵ)

∣∣∣︸ ︷︷ ︸
(ii)

.(B.2.20)

In what follows, we upper bound the two terms on the right-hand side of (B.2.20).

Upper bounding term (i) of (B.2.20). Following from the definition of L in (B.2.18),

it holds for any k ∈ N that

∣∣∣L(θ(m)(k)
)
− L

(
θ̄(m)(kϵ)

)∣∣∣

=

∣∣∣∣∣ED

[(
Q̂
(
x; θ(m)(k)

)
+ Q̂

(
x; θ̄i(kϵ)

)
− 2Q∗(x)

)
·
(
Q̂
(
x; θ(m)(k)

)
− Q̂

(
x; θ̄i(kϵ)

))]∣∣∣∣∣.
(B.2.21)

Following from (B.2.30), (B.2.31), and (B.2.36) of Lemma B.2.6, we have for any k ∈ N

that

sup
x∈X

∣∣∣Q̂(x; θ(m)(k)
)

+ Q̂
(
x; θ̄i(kϵ)

)
− 2Q∗(x)

∣∣∣ ≤ B,(B.2.22)

sup
x∈X

∣∣∣Q̂(x; θ(m)(k)
)
− Q̂

(
x; θ̄i(kϵ)

)∣∣∣ ≤ B ·
∥∥θ(m)(k)− θ̄(m)(kϵ)

∥∥
(m)
.(B.2.23)

220

Thus, we have that

∣∣∣L(θ(m)(k)
)
− L

(
θ̄(m)(kϵ)

)∣∣∣
≤ B ·

∥∥θ(m)(k)− θ̄(m)(kϵ)
∥∥
(m)

≤ B · eBT ·
(√

log(m/δ)/m+
√
ϵ ·
(
D + log(m/δ)

))
, ∀k ≤ T/ϵ (k ∈ N)(B.2.24)

with probability at least 1− δ. Here the last inequality follows from Lemmas B.2.3-B.2.5.

Upper bounding term (ii) of (B.2.20). Let t = kϵ. It holds for any t ∈ [0, T] that

∣∣∣L(θ̄(m)(t)
)
− L̄(ρt)

∣∣∣ ≤ ∣∣∣∣L(θ̄(m)(t)
)
− Eρt

[
L
(
θ̄(m)(t)

)]∣∣∣∣+

∣∣∣∣Eρt[L(θ̄(m)(t)
)]
− L̄(ρt)

∣∣∣∣,
(B.2.25)

where the expectation is with respect to θ̄i(t)
i.i.d.∼ ρt (i ∈ [m]). For the second term on the

right-hand side of (B.2.25), following from the fact that Eρt [Q̂(x; θ̄(m)(t))] = Q(x; ρt) for

any x ∈ X , we have that

∣∣∣∣Eρt[L(θ̄(m)(t)
)]
− L̄(ρt)

∣∣∣∣ =

∣∣∣∣∫ Eρt
[
Q̂
(
x; θ̄(m)(t)

)2 −Q(x; ρt)
2
]

dD(x)

∣∣∣∣
=

∣∣∣∣∫ Varρt

[
Q̂
(
x; θ̄(m)(t)

)]
dD(x)

∣∣∣∣
≤ B/m,(B.2.26)

where the inequality follows from the fact that ∥σ∥ ≤ B in Assumption 2.4.2 and

the independence of θ̄i(t) (i ∈ [m]). Let θ1,(m) = {θ1, . . . , θ1i , . . . , θm} and θ2,(m) =

221

{θ1, . . . , θ2i , . . . , θm} be two sets that only differ in the i-th element. It holds that

∣∣L(θ1,(m))− L(θ2,(m))
∣∣ ≤ B ·m−1 · ED

[∣∣σ(x; θ1i)− σ(x; θ2i)
∣∣] ≤ B/m,

where the first inequality follows from (B.2.21) and (B.2.22) and the second inequality

follows from Assumption 2.4.2. Applying McDiarmid’s inequality (Wainwright, 2019), we

have for a fixed t ∈ [0, T] that

P

(∣∣∣∣L(θ̄(m)(t)
)
− Eρt

[
L
(
θ̄(m)(t)

)]∣∣∣∣ ≥ p

)
≤ exp(−mp2/B).(B.2.27)

It holds for any s, t ∈ [0, T] that∣∣∣∣∣
∣∣∣∣L(θ̄(m)(t)

)
− Eρt

[
L
(
θ̄(m)(t)

)]∣∣∣∣− ∣∣∣∣L(θ̄(m)(s)
)
− Eρt

[
L
(
θ̄(m)(s)

)]∣∣∣∣
∣∣∣∣∣

≤ B ·
∥∥θ̄(m)(t)− θ̄(m)(s)

∥∥
(m)
≤ B · |t− s|,

where the first inequality follows from (B.2.21), (B.2.22), and (B.2.23) and the second

inequality follows from (B.2.38) of Lemma B.2.7. Applying the union bound to (B.2.27)

for t ∈ ι · {0, 1, . . . , ⌊T/ι⌋}, we have that

P

(
sup
t∈[0,T]

∣∣∣∣L(θ̄(m)(t)
)
− Eρt

[
L
(
θ̄(m)(t)

)]∣∣∣∣ ≥ p+Bι

)
≤ (T/ι+ 1) · exp(−mp2/B),

Setting ι = m−1/2 and p = B ·
√

log(mTδ)/m, we have that

sup
t∈[0,T]

∣∣∣∣L(θ̄(m)(t)
)
− Eρt

[
L
(
θ̄(m)(t)

)]∣∣∣∣ ≤ B ·
√

log(mTδ)/m(B.2.28)

222

with probability at least 1− δ. Plugging (B.2.26) and (B.2.28) into (B.2.25), noting that

t = kϵ, we have that

∣∣∣L(θ̄(m)(kϵ)
)
− L̄(ρkϵ)

∣∣∣ ≤ B ·
√

log(mTδ)/m, ∀k ≤ T/ϵ (k ∈ N)(B.2.29)

with probability at least 1− δ.

Plugging (B.2.24) and (B.2.29) into (B.2.20), we have that

∣∣∣L(θ(m)(k)
)
− L̄(ρkϵ)

∣∣∣ ≤ B · eBT ·
(√

log(m/δ)/m+
√
ϵ ·
(
D + log(m/δ)

))
, ∀k ≤ T/ϵ (k ∈ N)

with probability at least 1− δ. Thus, we complete the proof of Lemma 2.4.4. □

B.2.3. Technical Lemmas for §B.2

In what follows, we present the technical lemmas used in §B.2. Recall that Q̂, ĝ, and

Ĝk are defined in (2.3.1), (B.2.1), and (B.2.2), respectively. Let B > 0 be a constant

depending on α, η, γ, Br, and Bj (j ∈ {0, 1, 2}), whose value varies from line to line.

223

Lemma B.2.6. Under Assumptions 2.4.1 and 2.4.2, it holds for any θ(m) = {θi}mi=1 and

θ(m) = {θi}mi=1 that

sup
x∈X

∣∣Q̂(x; θ(m))
∣∣ ≤ B,(B.2.30)

sup
x∈X

∣∣Q̂(x; θ(m))− Q̂(x; θ(m))
∣∣ ≤ B · ∥θ(m) − θ(m)∥(m),(B.2.31)

∥∥Ĝk(θi; θ
(m))

∥∥ ≤ B,(B.2.32) ∥∥Ĝk(θi; θ
(m))− Ĝk(θi; θ

(m))
∥∥ ≤ B · ∥θ(m) − θ(m)∥(m), ∀k ∈ N,(B.2.33) ∥∥ĝ(θi; θ

(m))
∥∥ ≤ B,(B.2.34) ∥∥ĝ(θi; θ

(m))− ĝ(θi; θ
(m))

∥∥ ≤ B · ∥θ(m) − θ(m)∥(m).(B.2.35)

Meanwhile, for any Q ∈ F , it holds that

sup
x∈X

∥∥Q(x)
∥∥ ≤ B.(B.2.36)

For any ρ ∈P2(RD), it holds that

∥∥g(θ; ρ)
∥∥ ≤ B.(B.2.37)

Proof. For (B.2.30) and (B.2.31) of Lemma B.2.6, following from Assumptions 2.4.1

and 2.4.2 and the definition of Q̂ in (2.3.1), we have for any x ∈ X , θ(m), and θ(m) that

∣∣Q̂(x; θ(m))
∣∣ ≤ α ·m−1

m∑
i=1

∣∣σ(x; θi)
∣∣ ≤ B,

∣∣Q̂(x; θ(m))− Q̂(x; θ(m))
∣∣ ≤ α ·m−1

m∑
i=1

∣∣σ(x; θi)− σ(x; θi)
∣∣ ≤ B · ∥θ(m) − θ(m)∥(m).

224

For (B.2.32) and (B.2.33) of Lemma B.2.6, following from the definition of Ĝk in (B.2.2),

we have for any θ(m) and θ(m) that

∥∥Ĝk(θi; θ
(m))

∥∥ = α ·
∣∣Q̂(xk; θ

(m))− rk − γ · Q̂(x′k; θ
(m))

∣∣ · ∥∥∇θσ(xk; θi)
∥∥ ≤ B,∥∥Ĝk(θi; θ

(m))− Ĝk(θi; θ
(m))

∥∥
≤ α · sup

θ(m)

∣∣Q̂(xk; θ
(m))− rk − γ · Q̂(x′k; θ

(m))
∣∣ · ∥∥∇θσ(xk; θi)−∇θσ(xk; θi)

∥∥
+ α

∣∣Q̂(xk; θ
(m))− γ · Q̂(x′k; θ

(m))− Q̂(xk; θ
(m)) + γ · Q̂(x′k; θ

(m))
∣∣ sup
θi∈RD

∥∥∇θσ(xk; θi)
∥∥

≤ B · ∥θ(m) − θ(m)∥(m).

The inequalities in (B.2.34) and (B.2.35) of Lemma B.2.6 for ĝ follow from the fact that

ĝ(θi; θ
(m)) = E(xk,rk,x

′
k)∼D̃

[
Gk(θi; θ

(m))
]
.

The inequalities in (B.2.36) and (B.2.37) follow from the definition of F and g in (2.4.3)

and (2.3.5), respectively. Thus, we complete the proof of Lemma B.2.6. □

Recall that ρt is the PDE solution in (2.3.4) and θ̃(m)(t) and θ̄(m)(t) are the CTTD

and IP dynamics defined in (B.2.5) and (B.2.6), respectively.

Lemma B.2.7. Under Assumptions 2.4.1 and 2.4.2, it holds for any s, t ∈ [0, T] that

∥∥θ̄(m)(t)− θ̄(m)(s)
∥∥
(m)
≤ B · |t− s|,(B.2.38) ∥∥θ̃(m)(t)− θ̃(m)(s)

∥∥
(m)
≤ B · |t− s|,(B.2.39)

W2(ρt, ρs) ≤ B · |t− s|.(B.2.40)

225

Proof. For (B.2.38) of Lemma B.2.7, by the definition of θ̄i(t) in (B.2.6) and (B.2.37)

of Lemma B.2.6, we have for any s, t ∈ [0, T] and i ∈ [m] that

∥∥θ̄i(t)− θ̄i(s)∥∥ = η ·
∫ t

s

∥∥∥g(θ̄i(τ); ρτ
)∥∥∥ dτ ≤ B · |t− s|.

Similarly, for (B.2.39) of Lemma B.2.7, by the definition of θ̃i(t) in (B.2.5) and (B.2.34)

of Lemma B.2.6, we have for any i ∈ [m] and s, t ∈ [0, T] that ∥θ̃i(t)− θ̃i(s)∥ ≤ B · |t− s|.

For (B.2.40) of Lemma B.2.7, following from the fact that θ̄i(t)
i.i.d.∼ ρt (i ∈ [m]) and

the definition of W2 in (2.2.4), it holds for any s, t ∈ [0, T] that

W2(ρt, ρs) ≤ E
[∥∥θ̄i(t)− θ̄i(s)∥∥2]1/2 ≤ B · |t− s|.

Thus, we complete the proof of Lemma B.2.7. □

Lemma B.2.8 (Lemma 30 in Mei et al. (2019)). Let {Xi}mi=1 be i.i.d. random variables

with ∥Xi∥ ≤ ξ and E[Xi] = 0. Then, it holds for any p > 0 that

P
(∥∥∥m−1 ·

m∑
i=1

Xi

∥∥∥ ≥ Cξ · (m−1/2 + p)

)
≤ exp(−mp2),

where C > 0 is an absolute constant.

Lemma B.2.9 (Lemma 31 in Mei et al. (2019) and Lemma A.3 in Araújo et al. (2019)).

Let Xk ∈ RD (k ∈ N) be a martingale with respect to the filtration Gk (k ≥ 0) with

X0 = 0. We assume for ξ > 0 and any λ ∈ RD that

E
[
exp
(
⟨λ,Xk −Xk−1⟩

) ∣∣∣Gk−1

]
≤ exp

(
ξ2 · ∥λ∥2/2

)
.

226

Then, it holds that

P
(

max
k≤n
(k∈N)

∥Xk∥ ≥ Cξ ·
√
n · (
√
D + p)

)
≤ exp(−p2),

where C > 0 is an absolute constant.

B.3. Auxiliary Lemmas

We use the definition of absolutely continuous curves in P2(RD) in Ambrosio et al.

(2008).

Definition B.3.1 (Absolutely Continuous Curve). Let β : [a, b]→P2(RD) be a curve.

Then, we say β is an absolutely continuous curve if there exists a square-integrable function

f : [a, b]→ R such that

W2(βs, βt) ≤
∫ t

s

f(τ) dτ

for any a ≤ s < t ≤ b.

Then, we have the following first variation formula.

Lemma B.3.2 (First Variation Formula, Theorem 8.4.7 in Ambrosio et al. (2008)). Given

ν ∈ P2(RD) and an absolutely continuous curve µ : [0, T] → P2(RD), let β : [0, 1] →

P2(RD) be the geodesic connecting µt and ν. It holds that

d

dt

W2(µt, ν)2

2
= −⟨µ′

t, β
′
0⟩µt ,

where µ′
t = ∂tµt, β

′
0 = ∂tβt | t=0, and the inner product is defined in (2.2.5).

227

Lemma B.3.3 (Talagrand’s Inequality, Corollary 2.1 in Otto and Villani (2000)). Let ν

be N(0, κ · ID). It holds for any µ ∈P2(RD) that

W2(µ, ν)2 ≤ 2DKL(µ ∥ ν)/κ.

Lemma B.3.4 (Eulerian Representation of Geodesics, Proposition 5.38 in Villani (2003)).

Let β : [0, 1]→P2(RD) be a geodesic and v be the corresponding vector field such that

∂tβt = − div(βt · vt). It holds that

∂t(βt · vt) = − div(βt · vt ⊗ vt).

228

APPENDIX C

An Analysis of Attention via the Lens of Exchangeability and

Latent Variable Models

229

C.1. Conditional Mean Embedding

We introduce the conditional mean embedding (Song et al., 2009), which embeds a

conditional distribution to an element in an RKHS. Let Hx and Hy be the two RKHSs

over the spaces X and Y with the kernels K and L, respectively. We denote by ϕ : X→ ℓ2

and φ : Y→ ℓ2 the feature mappings associated with Hx and Hy, respectively. In other

words, it holds for any x, x′ ∈ X and y, y′ ∈ Y that

ϕ(x)⊤ϕ(x′) = K(x, x′), φ(y)⊤φ(y) = L(y, y′).(C.1.1)

Let PX ,Y be the joint distribution of the two random variables X and Y taking values

in X and Y, respectively. The conditional mean embedding CME(x,PX ,Y) ∈ Hy of the

conditional distribution PY |X is defined as

CME(x,PX ,Y) = E
[
L(Y , ·)

∣∣X = x
]
.

By the reproducing property, it holds that

E
[
g(Y)

∣∣X = x
]

=
〈
g, CME(x,PX ,Y)

〉
Hy
, ∀g ∈ Hy, x ∈ X.

Correspondingly, the conditional mean embedding operator CY |X : Hx → Hy is a linear

operator such that

CY |XK(x, ·) = CME(x,PX ,Y),

230

for any x ∈ X. We define the (uncentered) covariance operator CXX : Hx → Hx and the

(uncentered) cross-covariance operator CYX : Hx → Hy as follows,

CXX = E
[
K(X , ·)⊗ K(X , ·)

]
, CYX = E

[
L(Y , ·)⊗ K(X , ·)

]
.

Here ⊗ is the tensor product. As shown in Song et al. (2009), it holds that CY |X = CYXC−1
XX .

Thus, we have that

CME(x,PX ,Y) = CYXC−1
XXK(x, ·).(C.1.2)

To derive the empirical estimation of CY |X , we consider the following regularized

least-squares problem,

min
C:Hx→Hy

Ê(C) =
L∑
ℓ=1

∥∥L(yℓ, ·)− CK(xℓ, ·)
∥∥2
Hy

+ λ · ∥C∥2HS,(C.1.3)

where {(xℓ, yℓ)}ℓ∈[L] are independently and identically sampled from PX ,Y , ∥·∥HS denotes

the Hilbert-Schmidt norm, and λ > 0 is the regularization parameter. Recall from (C.1.1)

that ϕ and φ are the feature mappings associated with the RKHSs Hx and Hy. To ease the

presentation, we view the space ℓ2 as an (infinite-dimensional) vector space and consider

the feature mappings ϕ : X → Rdϕ and φ : Y → Rdφ , where dϕ and dφ can be infinity.

We write ϕ(X) = (ϕ(x1), . . . , ϕ(xL))⊤ ∈ RL×dϕ and φ(Y) = (ϕ(y1), . . . , ϕ(yL))⊤ ∈ RL×dφ .

Also, we define the the (uncentered) empirical covariance operator ĈXX and (uncentered)

231

empirical cross-covariance operator ĈYX as follows,

ĈXX = L−1

L∑
ℓ=1

ϕ(xℓ)ϕ(xℓ)⊤ = L−1ϕ(X)⊤ϕ(X) ∈ Rdϕ×dϕ

ĈYX = L−1

L∑
ℓ=1

φ(yℓ)φ(xℓ)⊤ = L−1φ(Y)ϕ(X)⊤ ∈ Rdφ×dϕ .(C.1.4)

Then, the solution to (C.1.3) is

ĈλY |X = φ(Y)⊤ϕ(X)
(
ϕ(X)⊤ϕ(X) + λI

)−1
= ĈYX (ĈXX + L−1λI)−1 ∈ Rdφ×dϕ .

We denote by ĈMEλ(x,PX ,Y) = ĈY |Xϕ(x) ∈ Rdφ the empirical conditional mean embedding.

Note that

ϕ(X)
(
ϕ(X)⊤ϕ(X) + λI

)−1
=
(
ϕ(X)ϕ(X)⊤ + λI

)−1
ϕ(X).

Thus, it holds that

ĈMEλ(x,PX ,Y) = ĈλY |Xϕ(x)

= ĈYX (ĈXX + L−1λI)−1K(x, ·)

= φ(Y)⊤ϕ(X)
(
ϕ(X)⊤ϕ(X) + λI

)−1
ϕ(x)

= φ(Y)⊤
(
ϕ(X)ϕ(X)⊤ + λI

)−1
ϕ(X)ϕ(x)

= φ(Y)⊤(K(X,X) + λI)−1K(X, x).(C.1.5)

Here K(X,X) = ϕ(X)ϕ(X)⊤ = (K(xi, xj))i,j∈[L] ∈ RL×L is the Gram matrix and K(X, x) =

ϕ(X)ϕ(x) = (K(x1, x), . . . ,K(xL, x)) ∈ RL.

232

C.2. Attention Recovers Latent Posterior

C.2.1. Gaussian Process Regression

Gaussian Process Regression. We say that f follows a Gaussian process GP(µ,K) on

Rd if for any x1, . . . , xL, (f(x1), . . . , f(xL)) follows a Gaussian distribution with mean

(µ(x1), . . . , µ(xL)) and covariance (K(xi, xj))i,j∈[L]. Here µ(x) = E[f(x)] is the mean

function and K(x, x′) = E[(f(x) − µ(x))(f(x′) − µ(x′))] is the covariance (or kernel)

function, where f is random. We take GP(0,K) as the prior of f . Given a dataset

D = {(xℓ, yℓ)}ℓ∈[L] from the regression model yℓ = f(xℓ) + ϵℓ with ϵℓ ∼ N(0, λI), the

posterior of f is a Gaussian process with mean µD(x) and covariance KD(x, x′) (Schulz

et al., 2018) as follows,

µD(x) = K(x,X)
(
K(X,X) + λI

)−1
Y,

KD(x, x′) = K(x, x′)− K(x,X)
(
K(X,X) + λI

)−1
K(X, x′).

Here K(x,X) = (K(x, xℓ))⊤ℓ∈[L] ∈ R1×L, K(X,X) = (K(xi, xj))i,j∈[L] ∈ RL×L, K(X, x′) =

(K(xℓ, x′))ℓ∈[L] ∈ RL, and Y = (y1, . . . , yL) ∈ RL

Rigorous Characterization of Latent Variable Model. We provide a rigorous

characterization of the advanced infinite-dimensional example of the latent variable model

in §3.4.1.We consider the following model,

rℓ = f(cℓ) + ϵℓ, rmsk = f(cmsk) + ϵ.(C.2.1)

233

Here f = (f1, . . . , fd) with fi ∼ GP(0,K(·, ·)) for any i ∈ [d] and ϵℓ and ϵ are independent

Gaussian noises drawn from N(0, λI). Then, following the Gaussian process regression,

we recover (3.4.3) as the mean of the posterior of the Gaussian process.

C.2.2. Implication of Convergence with L→∞

Necessity of Multiple Heads. Based on the definition of the attention mechanism attn

in (3.2.1), we define the multihead attention as

mha(q,X;W) =
h∑
i=1

headi ∈ Rd.(C.2.2)

Here h ∈ N+ is the head number, W = {(W q
i ,W

k
i ,W

v
i)}hi=1 with W q

i ∈ Rd×dp , W k
i ∈ Rd×dp ,

and W v
i ∈ Rd×d is the learnable parameter, and

headi = attn(q,Ki, Vi) ∈ Rd, where Ki = XW k
i ∈ RL×dp , Vi = XW v

i ∈ RL×d.

In the multihead attention, we set d = dp · h, where h is the head number and dp is the

dimension of the key and the query. We remark that the multihead attention defined in

(C.2.2) is written in the summation form, which is equivalent to the concatenation form

(Vaswani et al., 2017). To see this, we consider the concatenation form of the multihead

attention,

m̃ha(q,X; W̃) =
(
(W o

1)⊤, . . . , (W o
h)⊤
)

h̃ead1

. . .

h̃eadh

 =
h∑
i=1

(W o
i)⊤h̃eadi,(C.2.3)

234

where W o ∈ Rdp×d is a learnable parameter with the i-th block W o
i and the i-th head

h̃eadi is obtained via

h̃eadi = attn(q,Ki, Ṽi) ∈ Rdp , where Ki = XW k
i ∈ RL×dp , Vi = XW̃ v

i ∈ RL×dp .

Here W̃ v
i ∈ Rd×dp . We see that the (C.2.2) and (C.2.3) are equivalent when headi =

(W o
i)⊤h̃eadi, which holds when W v

i = W̃ v
i W

o
i .

We use E[V |K = q] to demonstrate the necessity of using multiple heads in the

multihead attention. Note that the key and value are obtained by the following mappings,

kℓ = (W k)⊤xℓ, vℓ = (W v)⊤xℓ,

where xℓ ∈ Rd is the input token and W k ∈ Rd×dp , W v ∈ Rd×d are the learnable parameters.

We consider a single-head attention, where h = 1, dp = d, and W k ∈ Rd×d is invertible.

We denote by K, V , and X the random variable with the same distribution as kℓ, vℓ, and

xℓ, respectively. By Propositions 3.4.1 and 3.4.2, we have

attn(q,K, V) ≈ E[V |K = q] = E
[
(W v)⊤X

∣∣ (W k)⊤X = q
]

=
(
(W k)−1W v

)⊤
q,

which is a linear mapping and fails to capture the nonlinear interaction query q and the

input sequence X. In other words, the single-head attention becomes a linear mapping in

the limit with L→∞. In contrast, when h > 1, we have dp = d/h < d, which implies that

the matrix W k ∈ Rd×d is not invertible. Thus, using multiple heads avoid the degenerating

issue.

235

Connection to Instrumental Variable. We draw a connection from the attention

mechanism to the instrumental variable model. Instrumental variable regression estimates

the causal relationship between the input X and the output Y . Specifically, when (X ,Y) is

confouneded, an instrumental variable W is effective in identifying the causal relationship

between X and Y . Intuitively,W is an instrumental variable if it influences Y only through

X which is formalized as follows.

Assumption C.2.1 (Instrumental Variable Model). Let (X ,Y ,W) be a random variable

on the space X×Y×W with joint distribution PX ,Y,W . We assume that

(i) Y = g(X) + ϵ and E[ϵ |W = w] = 0 for any w ∈W, and

(ii) PX |W(x |w) does not remain when w varies.

Under Assumption C.2.1,W is an instrumental variable. Specifically, (i) of Assumption

C.2.1 is the exclusion restriction, where function g is the structural function of interest and

ϵ is the confounding noise. Also, (ii) of Assumption C.2.1 is the relevance condition, which

ensures thatW is informative in the sense that it depends on w in a nontrivial manner. We

remark that the instrumental variable model generalizes the standard regression model. To

see this, when X =W , the estimation of g reduces to standard regression of unconfounded

inputs and it holds that g(·) = E[Y |X = ·]. In particular, the instrumental variable model

allows that X and ϵ are confounded, i.e., X and ϵ are dependent. By Assumption C.2.1,

we have the following estimation equation

E[Y |W = w] = E
[
g(X) |W = w

]
.(C.2.4)

The right-hand side of (C.2.4) provides a two-stage method for estimating the function g.

At the first stage, we estimate the conditional mean mean embedding of PX |W . Then, at

236

the second stage, we estimate the function g via regressing Y on the empirical conditional

mean mean embedding of PX |W (Singh et al., 2019).

To ease the presentation, we consider the following mapping,

gθ ◦ attn(q,K, V) ∈ Rd,

where gθ is a function approximator with a learnable parameter θ. For example, gθ is a

linear or kernel function. By Proposition 3.4.1 and Proposition 3.4.2, it holds that

gθ ◦ attn(q,K, V) ≈ gθ
(
E[V |K = q]

)
, as L→∞.

Let the target variable be y. Then, the learning objective takes the following form,

min
θ

Ê
[∥∥y − gθ(E[V |K = q])

∥∥2
2

]
,

which corresponds to the second stage of estimating the instrumental variable model. Note

that E[V |K = q] is the conditional mean embedding of PV |K. Thus, the key K can be

viewed as the instrumental variable (Pearl, 2009), which handles the endogeneity. We

provide an alternative view on how the attention mechanism performs relational reasoning

as a causal inference procedure.

237

C.2.3. Proof of Lemma 3.3.2

Proof. First, we prove the statement that bz(X) = P(z = · |X) is a minimal sufficient

statistic of X for z. To see the sufficiency of bz(X) for z, note that

P(z |X) = P
(
z
∣∣P(z = · |X)

)
= P

(
z
∣∣ bz(X)

)
.

To see bz(X) is the minimal sufficient statistic, let U(X) be another sufficient statistic of

X for z. Then, we have

P(z |X) = P
(
z
∣∣U(X)

)
,

which implies that bz(X) is a function of U(X). Thus, bz(X) is minimal.

Second, we prove the statement that bz(X) is a minimal sufficient statistics of X for y.

To see the sufficiency of bz(X) for y, note that

P(y |X) =

∫
P(y | z) · P(z |X)dz,

which implies that P(y |X) = P(y | bz(X)) since P(y |X) only depends on X through bz(X).

Suppose that U(X) is a sufficient statistic of X for y. We have

∫
P(y | z) · P(z |X)dz = P(y |X) = P

(
y
∣∣U(X)

)
=

∫
P(y | z) · P

(
z
∣∣U(X)

)
dz.

By the definition of T in (3.3.1), we then have that

bz(X) = P(z = · |X) = T −1
(∫

P(y = · | z) · P
(
z
∣∣U(X)

)
dz
)
,

238

which implies that bz(X) is a function of U(X). Thus, bz(X) is minimal. □

C.2.4. Proof of Proposition 3.4.1

Proof. For notational simplicity, we denote by ∥·∥ the RKHS norm for elements in

an RKHS and the operator norm for operators between two RKHSs. Also, we denote

by Hk and Hv the RKHSs for the key and the value with the kernel functions K and L,

respectively. Note that we consider the Euclidean kernel L(v, v′) = v⊤v′ for the value,

which uses the identity mapping φ as the feature mapping. Recall the definition of

the empirical covariance operator and the empirical cross-covariance operator in (C.1.4).

Correspondingly, we write

ĈKK = L−1ϕ(K)⊤ϕ(K) ∈ Rdϕ×dϕ

ĈVK = L−1φ(V)⊤ϕ(K) ∈ Rdφ×dϕ ,

ĈVV = L−1φ(V)⊤φ(V) ∈ Rdφ×dφ .

Here ϕ(K) = (ϕ(k1), . . . , ϕ(kL))⊤ ∈ RL×dϕ and φ(V) = (ϕ(v1), . . . , ϕ(vL))⊤ ∈ RL×dφ By

the definition of the CME attention in (3.4.5) and the equality in (C.1.5), we have that

attnCME(q,K, V) = ĈVK(ĈKK + L−1λI)−1ϕ(q),

239

which implies that attnCME recovers the empirical conditional mean embedding. By (C.1.2),

it holds that

∥∥attn(q,K, V)− CME(q,PK,V)
∥∥

≤
∥∥ĈVK(ĈKK + L−1λI)−1ϕ(q)− CVK(CKK + L−1λI)−1ϕ(q)

∥∥︸ ︷︷ ︸
(i)

+
∥∥CVK(CKK + L−1λI)−1K(q, ·)− CVKC−1

KKK(q, ·)
∥∥︸ ︷︷ ︸

(ii)

.(C.2.5)

Upper bounding term (i) of (C.2.5). We adapt the proof from Song et al. (2009). It

suffices to upper bound ∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1∥. It holds that

∥∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1
∥∥(C.2.6)

≤
∥∥∥ĈVK((ĈKK + L−1λI)−1 − (CKK + L−1λI)−1

)∥∥∥+
∥∥(ĈVK − CVK)(CKK + L−1λI)−1

∥∥
=
∥∥ĈVK(ĈKK + L−1λI)−1(ĈKK − CKK)(CKK + L−1λI)−1

∥∥
+
∥∥(ĈVK − CVK)(CKK + L−1λI)−1

∥∥.

240

For the first term on the right-hand side of (C.2.6), we have the operator decomposition

that ĈVK = Ĉ1/2VVWĈ
1/2
KK for W such that ∥W∥ ≤ 1. Then, we have that

∥∥ĈVK(ĈKK + L−1λI)−1(ĈKK − CKK)(CKK + L−1λI)−1
∥∥

≤ ∥ĈVV∥1/2
∥∥Ĉ1/2KK(ĈKK+L−1λI)−1/2

∥∥∥∥(ĈKK+L−1λI)−1/2
∥∥∥∥(ĈKK−CKK)(CKK + L−1λI)−1

∥∥

≤ (L−1λ)−1/2 ·
∥∥(ĈKK−CKK)(CKK+L−1λI)−1

∥∥,
(C.2.7)

where the last inequality follows from

∥ĈVV∥2 = L−1

L∑
ℓ=1

∥vℓ∥22 ≤ 1, ĈKK(ĈKK + L−1λI)−1 ≤ I,

(ĈKK + L−1λI)−1 ≤ (L−1λ)−1I.

Plugging (C.2.7) into (C.2.6), we have

∥∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1
∥∥(C.2.8)

≤ (L−1λ)−1/2 ·
∥∥(ĈKK − CKK)(CKK + L−1λI)−1

∥∥+
∥∥(ĈVK − CVK)(CKK + L−1λI)−1

∥∥.
In what follows, we upper bound the second term on the right-hand side of (C.2.8) using

Lemma C.7.2. We define ξ : Rdp × Rd → Hk ⊗Hv as follows,

ξ(k, v) = φ(v)ϕ(k)⊤(CKK + L−1λI)−1.

241

Since
∥∥(CKK + L−1λI)−1

∥∥ ≤ (L−1λ)−1, we have that

∥∥ξ(k, v)
∥∥ =

∥∥(CKK + L−1λI)−1
∥∥ · ∥∥φ(v)

∥∥ · ∥∥ϕ(k)
∥∥ ≤ C · (L−1λ)−1,

where C > 0 is an absolute constant. In addition, we have that

E
[∥∥ξ(k, v)

∥∥2] = E
[∥∥ϕ(k)⊤(CKK + L−1λI)−1

∥∥2 · ∥∥φ(v)
∥∥2]

≤ E
[∥∥(CKK + L−1λI)−1ϕ(k)

∥∥2]
= E

[〈
(CKK + L−1λI)−2ϕ(k), ϕ(k)

〉]
≤ (L−1λ)−1 · E

[〈
(CKK + L−1λI)−1ϕ(k), ϕ(k)

〉]
.

Using the trace operator, we have

E
[∥∥ξ(k, v)

∥∥2] ≤ E
[
tr
(
(CKK + L−1λI)−2ϕ(k)ϕ(k)⊤

)]
= tr

(
(CKK + L−1λI)−2CKK

)
≤ (L−1λ)−1 · tr

(
(CKK + L−1λI)−1CKK

)
= (L−1λ)−1 · Γ(L−1λ).

Here Γ(L−1λ) is the effective dimension of CKK, which is defined as follows,

Γ(L−1λ) = tr
(
(CKK + L−1λI)−1CKK

)
.

242

Applying Lemma C.7.2 with B = C(L−1λ)−1 and σ2 = (L−1λ)−1 · Γ(L−1λ), we have with

probability at least 1− δ that

∥∥ĈVK(CKK + L−1λI)−1 − CVK(CKK + L−1λI)−1
∥∥ ≤ C ·

(
2

λ
+

√
Γ(L−1λ)

λ

)
log

2

δ
,(C.2.9)

where C > 0 is an absolute constant. Similarly, we have with probability at least 1− δ

that

∥∥ĈKK(CKK + L−1λI)−1 − CKK(CKK + L−1λI)−1
∥∥ ≤ C ′ ·

(
2

λ
+

√
Γ(L−1λ)

λ

)
log

2

δ
.

(C.2.10)

Here C ′ > 0 is an absolute constant. Plugging (C.2.9) and (C.2.10) into (C.2.8), we have

with probability at least 1− δ that

∥∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1
∥∥

≤ C ′′ ·
√
L

λ
·
(

2

λ
+

√
Γ(L−1λ)

λ

)
log

2

δ
.(C.2.11)

Upper bounding term (ii) of (C.2.5). We adapt the proof from Fukumizu (2015). For

any g ∈ Hk, it holds that

⟨CVKg, CVKg⟩ = E
[
L(V , V̄)g(K)g(K̄)

]
= E

[
E
[
L(V , V̄)

∣∣K, K̄]g(K)g(K̄)
]

=
〈

(CKK ⊗ CKK)E
[
L(V , V̄)

∣∣K = ·, K̄ = †
]
, g ⊗ g

〉
.

243

Similarly, we have for any q ∈ Rdp and any g ∈ Hk that

〈
CVK,E

[
L(V , ·)

∣∣K = q
]〉

=
〈
E
[
L(V , V̄)

∣∣K = q,K = †
]
, CKKg

〉
=
〈

(I ⊗ CKK)E
[
L(V , V̄)

∣∣K = ·, K̄ = †
]
,L(·, q)⊗ g

〉
.

By setting g = (CKK + L−1λI)−1K(q, ·), we have that

∥∥CVK(CKK + L−1λI)−1K(q, ·)− CVKC−1
KKK(q, ·)

∥∥2
=
〈
CVK(CKK + L−1λI)−1K(q, ·)− CVKC−1

KKK(q, ·),

CVK(CKK + L−1λI)−1K(q, ·)− CVKC−1
KKK(q, ·)

〉
=

〈(
(CKK + L−1λI)−1CKK ⊗ (CKK + L−1λI)−1CKK − I ⊗ (CKK + L−1λI)−1CKK

(CKK + L−1λI)−1CKK ⊗ I + I ⊗ I
)
E
[
L(V , V̄)

∣∣K = ·, K̄ = †
]
,K(q, ·)⊗ K(q, †)

〉
.

Note that E[L(v, v̄) | k = ·, k̄ = †] ∈ Hk ⊗ Hk is in the range of CKK ⊗ CKK. We define

C̃ ∈ Hk ×Hk such that (CKK ⊗ CKK)C̃ = E[L(v, v̄) | k = ·, k̄ = †]. Let {λi}∞i=1 and {φi}∞i=1

244

be the eigenvalues and eigenvectors of CKK, respectively. Then, we have that

∥∥CVK(CKK + L−1λI)−1K(q, ·)− CVKC−1
KKK(q, ·)

∥∥4
≤
∥∥∥∥((CKK + L−1λI)−1CKK ⊗ (CKK + L−1λI)−1CKK − I ⊗ (CKK + L−1λI)−1CKK

(CKK + L−1λI)−1CKK ⊗ I + I ⊗ I
)
E
[
L(V , V̄)

∣∣K = ·, K̄ = †
]∥∥∥∥2

=
∑
i,j

(
λ2i

λi + L−1λ

λ2j
λj + L−1λ

− λ2iλj
λi + L−1λ

−
λ2jλi

λj + L−1λ
+ λiλj

)2

· ⟨φi ⊗ φj, C̃⟩2

=
∑
i,j

(
λiλj(L

−1λ)2

(λi + L−1λ)(λj + L−1λ)

)2

· ⟨φi ⊗ φj, C̃⟩2

≤ (L−1λ)4 · ∥C̃∥2.

Thus, we have

∥∥CVK(CKK + λI)−1K(q, ·)− CVKC−1
KKK(q, ·)

∥∥
2
≤ C · λL−1,(C.2.12)

where C > 0 is an absolute constant.

Plugging (C.2.11) and (C.2.12) into (C.2.5), we have with probability at least 1 − δ

that

∥∥attn(q,K, V)− CME(q,PK,V)
∥∥ ≤ O(√L

λ
·
(

2

λ
+

√
Γ(L−1λ)

λ

)
log

1

δ
+ λL−1

)
.

Thus, we complete the proof of Proposition 3.4.1. □

245

C.2.5. Proof of Proposition 3.4.2

Proof. Under the condition that P̂K
V |K(v | q)→ P(v | q) uniformly for any q ∈ Sdp−1 as

L→∞, we have

∫
vP̂K

V |K(v | q)dv → E[V |K = q] as L→∞.

Moreover, it holds that

∫
vP̂K

V |K(v | q)dv = ι ·
∫
Sd−1

v ·
∑L

ℓ=1 K(kℓ, q) · K(vℓ, v)∑L
ℓ=1 K(kℓ, q)

dv

=
ι ·
∑L

ℓ=1 K(kℓ, q) ·
∫
Sd−1 v · K(vℓ, v)dv∑L

ℓ=1 K(kℓ, q)
,(C.2.13)

where Sd−1 is the (d− 1)-dimensional unit sphere. It suffices to calculate the integration

term
∫
Sd−1 v · K(vℓ, v)dv. To this end, we utilize the following lemma.

Lemma C.2.2. Let K(a, b) = exp(a⊤b/γ) be the exponential kernel with a fixed γ > 0.

It holds for any b ∈ Sd−1 that

∫
Sd−1

a · K(a, b)da = C1 · b,

where C1 > 0 is an absolute constant.

Proof. See §C.2.5.1 for a detailed proof. □

By Lemma C.2.2, it holds for the right-hand side of (C.2.13) that

ι · C1 ·
∑L

ℓ=1 K(kℓ, q) · vℓ∑L
ℓ=1 K(kℓ, q)

= ι · C1 · V ⊤softmax(Kq/γ) = ι · C1 · attnSM(q,K, V),

246

where the first equality follows from the definition of the softmax function and the second

equality follows from the definition of the softmax attention in (3.4.10). By setting

C = ι · C1, we complete the proof of Proposition 3.4.2. □

C.2.5.1. Proof of Lemma C.2.2.

Proof. Let a, b be two vectors in the (d− 1)-dimensional unit sphere Sd−1. We first

define the following vector,

c = (a⊤b) · b−
(
a− (a⊤b) · b

)
∈ Sd−1.(C.2.14)

By direct calculation, we have the following property of c defined in (C.2.14),

c⊤b = (a⊤b) · ∥b∥22 − a⊤b+ (a⊤b) · ∥b∥22 = a⊤b.(C.2.15)

By (C.2.14) and (C.2.15), we have that

a+ c = 2(a⊤b) · b = 2(c⊤b) · b = (a⊤b) · b+ (c⊤b) · b.(C.2.16)

We now calculate the desired integration. Note that

∫
Sd−1

a · exp(a⊤b)da = b ·
∫
Sd−1

(a⊤b) exp(a⊤b)da+

∫
Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da.

(C.2.17)

247

For the second term on the right-hand side of (C.2.17), it follows from (C.2.14) and

(C.2.15) and (C.2.16) that

∫
Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da = −

∫
Sd−1

(
c− (c⊤b) · b

)
· exp(c⊤b)da

= −
∫
Sd−1

(
c− (c⊤b) · b

)
· exp(c⊤b)dc,(C.2.18)

where the second equality follows from the fact that

dc = 2∥b∥22da− da = da.

By replacing c by a on the right-hand side of (C.2.18), we have

∫
Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da = −

∫
Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da = 0(C.2.19)

Finally, by plugging (C.2.19) into (C.2.17), we obtain that

∫
Sd−1

a · exp(a⊤b)da = b ·
∫
Sd−1

(a⊤b) exp(a⊤b)da.

Thus, by setting

C1 =

∫
Sd−1

(a⊤b) exp(a⊤b)da, ∀b ∈ Sd−1,

we complete the proof of Lemma C.2.2. Note that here C1 is an absolute constant that

does not depend on b due to the symmetry on the unit sphere. □

248

C.3. Generalization Error Analysis

In this section, we analyze the generalization error of the complete setup of the

transformer architecture, which involves multiple layers, skip connections, and multihead

attentions. We collect the notations used throughout this section as follows.

Notations. For two positive reals r and s such that 1/r + 1/s = 1, we call (r, s) a

conjugate pair. We denote by ∥ · ∥r the vector ℓr-norm when it operates on a vector.

Let M = (m1, . . . ,md2) ∈ Rd1×d2 , where mi ∈ Rd1 with i ∈ [d2]. We define the matrix

(r, s)-norm as ∥M∥r,s = (
∑d2

i=1 ∥mi∥sr)1/s. We define the (r, s)-operator norm as ∥M∥r→s =

supu∈Rd2 ∥Mu∥s/∥u∥r. We write ∥ · ∥r = ∥ · ∥r→r when the (r, r)-operator norm operates

on a matrix.

C.3.1. Complete Setup of Transformer Architecture

In what follows, we specify the complete setup of a T -layer transformer parameterized

by θ = (θ, θ(0), . . . , θ(T−1)), where the t-th layer (t = 0, . . . , T − 1) is parameterized by

θ(t) ∈ Θ(t) and the aggregation layer is parameterized by θ ∈ Θ. Here Θ(t) and Θ are the

parameter spaces for the t-th layer and the aggregation layer, respectively. We define a

two-layer feedforward neural network (FFN) with a skip connection (and no bias term) as

follows,

ffn(X;A) = ReLU(XAx)Aσ +X ∈ RL×d,(C.3.1)

which is parameterized by A = (Ax, Aσ). Here X ∈ RL×d,Ax ∈ Rd×dσ , Aσ ∈ Rdσ×d, and

ReLU(·) is the rectified linear unit (ReLU) that operates elementwise. Corresponding

249

to (3.4.10), we define the sequence-to-sequence counterpart of the softmax attention as

follows,

attnSM(Q,K, V) =
(
V ⊤normSM

(
KRBF(K, q

ℓ)
))⊤

ℓ∈[L]
∈ RL×d.(C.3.2)

Here Q = (qℓ)⊤ℓ∈[L] ∈ RL×dp , K = (kℓ)⊤ℓ∈[L] ∈ RL×dp , V ∈ RL×d, and KRBF(K, q
ℓ) =

(KRBF(q
ℓ, kℓ

′
))⊤ℓ′∈[L] ∈ RL is specified in Assumption C.3.1. Recall that h is the head number

of the multihead attention defined in (C.2.2) and d = dp · h. With a slight abuse of

notations, we define the sequence-to-sequence counterpart of the multihead attention

(MHA) as follows,

mha(X;W) =
h∑
i=1

headi =
h∑
i=1

attnSM(Qi, Ki, Vi) ∈ RL×d,(C.3.3)

which is parameterized by W = {(W q
i ,W

k
i ,W

v
i)}i∈[h]. Here Qi = XW q

i ∈ RL×dp , Ki =

XW k
i ∈ RL×dp , and Vi = XW v

i ∈ RL×d for the attention head i ∈ [h], where W q
i ,W

k
i ∈

Rd×dp and W v
i ∈ Rd×d.

With X
(0)
⋆ = X, let X

(t)
⋆ ∈ RL×d be the intermediate input of the t-th layer (t =

0, . . . , T − 1) of the transformer architecture, which is defined as follows,

X(t) = ffn(X(t)
⋆ ;A(t)), A(t) = (Ax,(t), Aσ,(t)),

X(t+1)
⋆ = mha(X(t);W (t)) +X(t), W (t) =

{
(W

q,(t)
i ,W

k,(t)
i ,W

v,(t)
i)

}
i∈[h],(C.3.4)

Here θ(t) = (A(t),W (t)) is the learnable parameter. We compute the output as follows,

ŷ = aggθ(X
(T)
⋆) ∈ Rdy ,(C.3.5)

250

where the aggregation layer aggθ : RL×d → Y is parameterized by θ. Here Y is defined in

(3.5.2). Note that aggθ combines the aggregation layer aggθ0 defined in (3.5.1) and the

input mask msk. For example, in the complete setup of ViT (Dosovitskiy et al., 2020), the

aggregation layer is the function composition aggθ(X
(T)
⋆) = aggθ0(mha(qW (msk), X

(T)
⋆ ;W))

with θ = (θ0,W), where msk corresponds to the class encoding. Here the multihead

attention mha(qW (msk), X
(T)
⋆ ;W) follows the definition in (C.2.2).

Empirical Image Class. In what follows, we formalize the function class of the trans-

former architecture and the empirical image class for each layer. We define the base

function class as

FL,(0)mha =
{
X(0)
⋆ (X)

}
,

which is the function class that only contains the identity mapping. Here we use X
(0)
⋆ (X) =

X to denote the identity mapping since X
(0)
⋆ = X. In the following, we use X

(t)
⋆ (X) and

X(t−1)(X) to denote the functions that map X to X
(t)
⋆ and X(t) for t = 1, . . . , T − 1,

respectively. We define the intermediate function classes recursively as follows,

FL,(t)ffn =
{
ffn
(
X(t)
⋆ (X);A(t)

)
: A(t) ∈ A(t), X(t)

⋆ (X) ∈ FL,(t)mha

}
,

FL,(t+1)
mha =

{
mha
(
X(t)(X);W (t)

)
+X(t) : W (t) ∈W(t), X(t)(X) ∈ FL,(t)ffn

}
,

where 0 ≤ t ≤ T − 1. Here Θ(t) = A(t) ×W(t) is the parameter space of the t-th layer of

the transformer architecture. Correspondingly, we define the function class of the T -layer

251

transformer as follows,

FL =
{
aggθ

(
X(T)
⋆ (X)

)
: θ ∈ Θ, X(T)

⋆ (X) ∈ FL,(T)mha

}
.(C.3.6)

Correspondingly, we define the empirical image classes as follows,

IDn(FL,(t)ffn) =
{(
f(Xi)

⊤)
i∈[n] ∈ Rd×nL : f ∈ FL,(t)ffn

}
,

IDn(FL,(t+1)
mha) =

{(
f(Xi)

⊤)
i∈[n] ∈ Rd×nL : f ∈ FL,(t+1)

mha

}
,

IDn(FL) =
{(
f(Xi)

)
i∈[n] ∈ Rdy×n : f ∈ FL

}
,(C.3.7)

where 0 ≤ t ≤ T − 1.

C.3.2. Generalization Error Analysis for Complete Setup

In what follows, we present a general version of Theorem 3.5.3, which allows for the

complete setup of the transformer architecture. By specializing it to the single-layer

transformer equipped with singlehead attention mechanism and no skip connection, we

obtain Theorem 3.5.3.

In parallel to (3.5.4), we make the following assumption on the Gaussian RBF kernel

KRBF(q, k), which induces the multihead attention mha(X;W) defined in (C.3.2) and (C.3.3).

Assumption C.3.1 (Gaussian RBF Kernel). Let s > 0. We assume that the multihead

attention mha(X;W) adopts the Gaussian RBF kernel KRBF(q, k) = exp(−∥q − k∥22/2σ2)

with σ = (2dp)1/s.

Note that the kernel function KRBF(q, k) in Assumption C.3.1 is a general version of the

Gaussian RBF kernel defined in (3.5.4), which corresponds to the special case where s = 2.

252

Recall that the output range Y is defined in (3.5.2). We make the following assumption

on the aggregation layer aggθ defined in (C.3.5).

Assumption C.3.2 (Aggregation Layer). We assume that the aggregation layer aggθ :

RL×d → Rdy has the output range Y. Let aggθ,j : RL×d → R be the j-th entry (j ∈ [dy])

of the aggregation function aggθ. We assume that for any θ ∈ Θ, X⋆, X̃⋆ ∈ RL×d, and

j ∈ [dy], it holds that

∣∣aggθ,j(X⋆)− aggθ,j(X̃⋆)
∣∣ ≤ ∥X⊤

⋆ − X̃⊤
⋆ ∥r,∞.

Recall that ∥ · ∥r denotes the (r, r)-operator norm when it operates on a matrix and

∥ · ∥r,s is the matrix (r, s)-norm. In parallel to Assumption 3.5.1, we make the following

assumption on the parameter space for each layer of the transformer architecture.

Assumption C.3.3 (Parameter Space). Let (r, s) be a conjugate pair. For t = 0, . . . , T−1,

we assume that the parameter space Θ(t) = A(t) ×W(t) of the t-th layer of the transformer

253

architecture satisfy

A(t) =
{

(Ax,(t), Aσ,(t)) ∈ Rd×dσ × Rdσ×d :

(C.3.8)

∥∥(Ax,(t))⊤
∥∥
r
≤ αx,(t),

∥∥(Ax,(t))⊤
∥∥
r,s
≤ Rx,(t),∥∥(Aσ,(t))⊤

∥∥
r
≤ ασ,(t),

∥∥(Aσ,(t))⊤
∥∥
r,s
≤ Rσ,(t)

}
,

W(t) =
{{

(W
q,(t)
i ,W

k,(t)
i ,W

v,(t)
i)

}
i∈[h] : (W

q,(t)
i ,W

k,(t)
i ,W

v,(t)
i) ∈ Rd×dp × Rd×dp × Rd×d,

∥∥(W
q,(t)
i)⊤

∥∥
r
≤ ω

q,(t)
i ,

∥∥(W
k,(t)
i)⊤

∥∥
r
≤ ω

k,(t)
i ,

∥∥(W
v,(t)
i)⊤

∥∥
r
≤ ω

v,(t)
i ,

(C.3.9)

∥∥(W
q,(t)
i)⊤

∥∥
r,s
≤ R

q,(t)
i ,

∥∥(W
k,(t)
i)⊤

∥∥
r,s
≤ R

k,(t)
i ,

∥∥(W
v,(t)
i)⊤

∥∥
r,s
≤ R

v,(t)
i

}
.

Also, we assume that the parameter space Θ of the aggregation layer takes the form of Θ =

{θ ∈ Rdagg : ∥θ∥r ≤ 1}. Here αx,(t), Rx,(t), ασ,(t), Rσ,(t), ω
q,(t)
i , ω

k,(t)
i , ω

v,(t)
i , R

q,(t)
i , R

k,(t)
i , R

v,(t)
i >

0 with i ∈ [h] and t = 0, . . . , T − 1.

To ease the presentation, we define the following quantities that combine the parameter

bounds across the h heads within the t-th layer of the transformer architecture,

ωv,(t) =
h∑
i=1

ω
v,(t)
i , ωqk,(t) = max

i∈[h]
{ωq,(t)

i + ω
k,(t)
i },

Rv,(t) =
h∑
i=1

R
v,(t)
i , Rqk,(t) =

h∑
i=1

(R
q,(t)
i +R

k,(t)
i),(C.3.10)

where t = 0, . . . , T − 1. Let

α̃(t) = 1 + αx,(t)ασ,(t), ω̃v,(t) = 1 + ωv,(t), γ(t) = max{α̃(t), ω̃v,(t)}.(C.3.11)

254

Also, let

κ(t) = max

{
αx,(t)Rσ,(t) + ασ,(t)Rx,(t)

α̃(t)
,
Rv,(t)

ω̃v,(t)
,

Rqk,(t)

ωqk,(t)ωv,(t)

}
, ζ(t) =

(ωqk,(t))2Rv,(t)

ω̃v,(t)
.

(C.3.12)

Recall that the generalization error Egen is defined in (3.5.3). The following theorem

characterizes the generalization error of the transformer.

Theorem C.3.4 (Generalization Error of Transformer). Let D = max{d, dσ, dp, dy}.

Suppose that Assumptions C.3.1-C.3.3 and Assumption 3.5.2 hold. Then, for any δ > 0, it

holds with probability at least 1− δ that,

Egen = O

(
D2

√
n

[
T
√

log(1 + γ) +
√
T
√

log(1 + ζR) +
√

log(1 + κ/ζ)
]√

hT +

√
log(1/δ)

n

)
,

where R is defined in (3.5.2). Here

γ = max
0≤t≤T−1

γ(t), κ = max
0≤t≤T−1

κ(t), ζ = max
0≤t≤T−1

ζ(t),(C.3.13)

where γ(t), κ(t), and ζ(t) are defined in (C.3.11)-(C.3.12).

Proof. See §C.3.4 for a detailed proof. □

Highlight. In comparison with Edelman et al. (2021), we exploit the invariance/equivariance

property of the transformer architecture in a fine grained manner. The key observation

is that, due to the invariance/equivariance property, the dimensions of the learnable pa-

rameters W (t) and A(t) are independent of the sequence length L. By such an observation,

we characterize the covering number of the function class with the covering numbers of

the parameter spaces and propagate them through the T layers. As a consequence, the

255

covering number of the function class is independent of L. In contrast, the generalization

error in Edelman et al. (2021) has a logarithmic dependency on L.

Interpretation. We interpret the generalization error in Theorem C.3.4 as follows. On

the one hand, the O(1/
√
n dependencies in O(

√
log(1/δ)/n) and O(D2/

√
n) over the

sample size n are standard in the literature. On the other hand, the O(D2h1/2T 3/2) scaling

implies that the transformer architecture requires more training data points to generalize

as the dimension D of the parameter space, the number T of layers, and the head number

h grow. Also, the generalization error in Theorem C.3.4 only scales logarithmically in γ,

κ, and ζ, which implies that the generalization error remains polynomial order as long as

γ, κ, and ζ do not scale doubly exponentially with D, h, or T .

Implication. Theorem C.3.4 demonstrates that γ, κ, ζ and R play a crucial role in the

generalization error of the transformer. Specifically, we observe that (i) skip connections

allow all layers to resemble the identity mapping (Bartlett et al., 2018b,a; Hardt and Ma,

2016), which helps reducing γ, κ and ζ, and (ii) layer normalizations helps controlling the

scaling of the intermediate inputs {X(t)
⋆ }0≤t≤T−1, which reduces the covering number of

the function class.

Simplification of Theorem C.3.4 to Theorem 3.5.3. Theorem C.3.4 characterizes the

generalization error of the complete setup of the transformer architecture, which includes

Theorem 3.5.3 as a special case. In what follows, we specialize Theorem C.3.4 to obtain

Theorem 3.5.3.

• Single-layer transformer with single-head attention: We set h = 1 and T = 1,

which implies that

256

– (C.3.10) becomes

ωv,(0) = ω
v,(0)
1 , ωqk,(0) = ω

q,(0)
1 + ω

k,(0)
1 ,

Rv,(0) = R
v,(0)
1 , Rqk,(0) = R

q,(0)
1 +R

k,(0)
1 ,

– (C.3.13) becomes

γ = γ(0), κ = κ(0), ζ = ζ(0),

which are defined in (C.3.12) but will be redefined in our subsequent simpli-

fication, and

– the generalization error in Theorem C.3.4 becomes

Egen ≤ O

(
D2

√
n
·
[√

log(1 + γ) +
√

log(1 + ζR) +
√

log(1 + κ/ζ)
]

+

√
log(1/δ)

n

)
.

• Skip connections: Since we have no skip connections, we set

α̃(0) = αx,(0)ασ,(0), ω̃v,(0) = ωv,(0),

which appear in the definitions of γ(0), κ(0), and ζ(0) in (C.3.11) and (C.3.12).

• Feedforward neural network: Since there is no linear transformation for the second

layer of nn(X;A) = ReLU(XA). Specifically, we

– set ασ,(0) = 1 and Rσ,(0) = 0,

– set dσ = d for the intermediate output, and

– set αnn = αx,(0) and Rnn = Rx,(0) in Assumption 3.5.1.

257

As a consequence, we obtain

γ = max{αnn, ωv,(0)}, κ = max

{
Rnn

αnn
,
Rv,(0)

ωv,(0)
,

Rqk,(0)

ωqk,(0)ωv,(0)

}
.

• Softmax attention: Since we have only one head, we set

– (ωq, ωk, ωv) = (ωq,(0), ωk,(0), ωv,(0)) and

– (Rq, Rk, Rv) = (Rq,(0), Rk,(0), Rv,(0)).

As a consequence, we obtain ωqk,(0) = ωq + ωk, Rqk,(0) = Rq +Rk, and

γ = max{αnn, ωv}, κ = max

{
Rnn

αnn
,
Rv

ωv
,

Rk +Rq

(ωq + ωk) · ωv

}
, ζ =

(ωq + ωk)2 ·Rv

ωv
.

• Spectral norm and Frobenius norm: We use the conjugate pair (r, s) = (2, 2),

which implies that

– ∥ · ∥r = ∥ · ∥2 is the spectral norm of matrices and ∥ · ∥r,s = ∥ · ∥2,2 = ∥ · ∥F is

the Frobenius norm, which correspond to Assumption 3.5.1, and

– the Gaussian RBF kernel KRBF(q, k) in Assumption C.3.1 is normalized by

σ = (2dp)1/s = (2dp)1/2, which corresponds to (3.5.4).

Therefore, we obtain Theorem 3.5.3.

Proof Sketch. We organize the proof of Theorem C.3.4 as follows.

(§C.3.3) We review how to analyze the generalization error through the Rademacher

complexity, which requires a covering number of the function class.

(§C.3.4) We provide a covering number of the function class and sketch the proof of

Theorem C.3.4.

258

(§C.3.5) We characterize the covering number of the function class by (i) analyzing the

covering number of each MHA and FFN and (ii) analyzing how the covering

numbers propagate through the T layers of the transformer architecture.

(§C.6) We leave the detailed proofs of the intermediate lemmas to §C.6.

C.3.3. Preliminary of Generalization

In this section, we introduce the building blocks for analyzing the generalization error of

the transformer architecture.

C.3.3.1. Rademacher Complexity. Suppose that the dataset Dn = {(Xi, yi)}ni=1 is

drawn independently and identically from the data distribution D. Recall that FL is

defined in (C.3.6). Let L((X, y), f) be a fixed learning objective. We define the function

class L ◦ FL as follows,

L ◦ FL =
{
L
(
(X, y), f

)
: f ∈ FL

}
,(C.3.14)

which contains the function compositions of the learning objective L and the transformer

function f ∈ FL. We define the empirical Rademacher complexity of the function class

L ◦ FL as follows,

RDn(L ◦ FL) = E
[

sup
f∈FL

1

n

n∑
i=1

ϵi · L
(
(Xi, yi), f

)]
,(C.3.15)

where the expectation is taken over the independent Rademacher sequence {ϵi}i∈[n]. The

following lemma characterizes the generalization error for learning with the function class

FL.

259

Lemma C.3.5 (Generalization Error via Rademacher Complexity, Mohri et al. (2018)).

Suppose that the function class L ◦FL defined in (C.3.14) has the output range [0, 1]. For

any δ > 0, with probability at least 1− δ over the independent and identical draw of the

dataset Dn = {(Xi, yi)}i∈[n] from the data distribution D, it holds for all f ∈ FL that,

∣∣∣∣E[L((X, y), f
)]
− Ê

[
L
(
(X, y), f

)]∣∣∣∣ ≤ 2RDn(L ◦ FL) + 3

√
log(2/δ)

2n
,

where Ê[·] is the empirical expectation taken over the dataset Dn and the empirical

Rademacher complexity RDn(L ◦ FL) is defined in (C.3.15).

We define the product function class as follows,

dy∏
j=1

FLj =
{(
fj(X)

)⊤
j∈[dy]

: fj ∈ FLj , j ∈ [dy]
}
,

where FLj is the function class of the j-th entry (j ∈ [dy]) of f = (f1, . . . , fdy)⊤ ∈ FL. The

following lemma characterizes the empirical Rademacher complexity RDn(L ◦ FL).

Lemma C.3.6 (Vector Contraction Inequality, Maurer (2016)). Let F be the function

class of f : RL×d → Y ⊆ Rdy and let Li : Y→ R be a 1-Lipschitz function with respect to

the vector ℓ2-norm, where i ∈ [n]. Then, we have

E
[
sup
f∈F

n∑
i=1

ϵi · Li
(
f(Xi)

)]
≤
√

2 · E
[
sup
f∈F

n∑
i=1

dy∑
j=1

ϵij · fj(Xi)

]
,

where {ϵi}i∈[n] is an independent Rademacher sequence, {ϵij}i∈[n],j∈[d] is an independent

Rademacher sequence that is doubly indexed, fj(Xi) is the j-th entry of f(Xi), and the

expectations are taken over the independent Rademacher sequences.

260

Lemma C.3.6 generalizes the Ledoux-Talagrand contraction inequality (Ledoux and

Talagrand, 1991) to the multivariate setting. Note that FL ⊆
∏dy

j=1FLj since all entries

of f ∈ FL share the same parameters. By setting Li(f(Xi)) = L((Xi, yi), f) in Lemma

C.3.6, we have

RDn(L ◦ FL) ≤
√

2 · E
[

sup
f∈FL

1

n

n∑
i=1

dy∑
j=1

ϵij · fj(Xi)

]

≤
√

2 · E
[

sup
{fj∈FL

j }j∈[dy]

1

n

n∑
i=1

dy∑
j=1

ϵij · fj(Xi)

]

≤
√

2 ·
dy∑
j=1

E
[

sup
fj∈Fj

1

n

n∑
i=1

ϵij · fj(Xi)

]

=
√

2 ·
dy∑
j=1

RDn(FLj),(C.3.16)

which implies that it remains to characterize the empirical Rademacher complexity

RDn(FLj), where j ∈ [dy].

C.3.3.2. Rademacher Complexity via Covering Number. In what follows, we

connect the Rademacher complexity RDn(FLj) to the covering number of the empirical

image class IDn(FLj), which is defined as

IDn(FLj) =
{(
fj(Xi)

)
i∈[n] ∈ R1×n : fj ∈ FLj

}
.(C.3.17)

We define the proper covering number as follows.

Definition C.3.7 (Proper Covering Number). Let N(S, ε, ∥ · ∥) be the least cardinality

of any subset T ⊆ S that covers the set S at the resolution ε with respect to the norm

261

∥ · ∥, that is,

N
(
S, ε, ∥ · ∥

)
= inf

{
card(T) : sup

S∈S
inf
T∈T
∥S − T∥ ≤ ε, T ⊆ S

}
,

where card(T) is the cardinality of the set T .

To characterize RDn(Fj), we use the following version of the Dudley entropy integral

lemma for the matrix (r,∞)-norm.

Lemma C.3.8 (Dudley Entropy Integral for ∥ · ∥r,∞-Covering, Mohri et al. (2018)). Let

FLj be a function class with the output range [0, 1/2]. Suppose that 0 ∈ FLj . Then, we

have

RDn(FLj) ≤ inf
ξ∈(0,1/2)

(
4ξ +

12√
n

∫ 1/2

ξ

√
logN

(
IDn(FLj), ε, ∥ · ∥r,∞

)
dε

)
.

Proof. See §C.6.1 for a detailed proof. □

By Lemmas C.3.5-C.3.8, we see that it remains to characterize the covering number of

the empirical image class IDn(FLj) with respect to the matrix (r,∞)-norm.

C.3.4. Proof of Theorem C.3.4

Recall that the parameter spaces A(t) and W(t) are defined in (C.3.8) and (C.3.9), respec-

tively. Also, recall that α̃(t), ω̃v,(t), ωqk,(t), and Rqk,(t) are defined in (C.3.10)-(C.3.11). For

the dataset Dn = {(Xi, yi)}i∈[n], we define

R(0) = max
i∈[n]
∥X⊤

i ∥r,∞, R(t) = R(0) ·
t−1∏
τ=0

ω̃v,(τ)α̃(τ),(C.3.18)

262

which characterize the scaling of the intermediate input X
(t)
⋆ for the t-th layer of the

transformer architecture, where t = 0, . . . , T − 1. The following lemma characterizes the

covering number of the empirical image class IDn(FLj).

Lemma C.3.9 (Covering Number of Transformer Architecture). LetD = max{d, dσ, dp, dy}.

Under Assumption C.3.3, we have for any j ∈ [dy] that

logN
(
IDn(FLj), ε, ∥ · ∥r,∞

)
≤ (4 + h)D2T · log

(
1 +

2R(T)Rtrans

ε

)
.

Here IDn(FLj) is defined in (C.3.17), R(t) is defined in (C.3.18), and

Rtrans =
T−2∑
t=0

(
R

(t)
mha

ρ̃(t)
·
T−1∏
τ=t+1

ρ̃(τ)

ω̃v,(τ)

)
+

T−1∑
t=0

(
αx,(t)Rσ,(t) + ασ,(t)Rx,(t)

α̃(t)
·
T−1∏
τ=t+1

ρ̃(τ)

ω̃v,(τ)

)
,

(C.3.19)

where αx,(t), ασ,(t), Rx,(t), and Rσ,(t) are defined in Assumption C.3.3, and

ρ̃(t) = ω̃v,(t) + (ωqk,(t))2ωv,(t) · (R(t))2, R
(t)
mha = Rv,(t) + ωqk,(t)Rqk,(t) · (R(t))2.(C.3.20)

Proof. See §C.3.5.3 for a detailed proof. □

Proof of Theorem C.3.4. For any a > 0, we have

∫ 1/2

ξ

√
log(1 + a/ε)dε ≤

∫ 1/2

ξ

[√
log(1 + a) +

√
log(1 + 1/ε)

]
dε

≤ (1/2− ξ) ·
√

log(1 + a) +

∫ 1/2

ξ

1/
√
εdε

= (1/2− ξ) ·
√

log(1 + a) +
√

2− 2
√
ξ,(C.3.21)

263

where the first inequality follows from the fact that
√
a+ b ≤

√
a +
√
b for any a, b ≥ 0

and the second inequality follows from the fact that log(1 + a) ≤ a for any a > −1. By

Lemma C.3.8, we have for any j ∈ [dy] that

RDn(FLj)

(C.3.22)

≤ inf
ξ∈(0,1/2)

(
4ξ +

12√
n

∫ 1/2

ξ

√
logN

(
IDn(FLj), ε, ∥ · ∥r,∞

)
dε

)

≤ inf
ξ∈(0,1/2)

(
4ξ +

12D
√

(4 + h)T√
n

∫ 1/2

ξ

√
log

(
1 +

2R(T)Rtrans

ε

)
dε

)

≤ 12D
√

(4 + h)T · 2
√

2 +
√

log(1 + 2R(T)Rtrans)

2
√
n

+ inf
ξ∈(0,1/2)

[(
4−

12D
√

(4 + h)T
√

log(1 + 2R(T)Rtrans)√
n

)
· ξ −

24D
√

(4 + h)T√
n

√
ξ

]
,

where the second inequality follows from Lemma C.3.9 and the last inequality follows from

(C.3.21). On the right-hand side of (C.3.22), we set ξ = 0+ to obtain for any j ∈ [dy] that

RDn(FLj) ≤ 12D
√

(4 + h)T · 2
√

2 +
√

log(1 + 2R(T)Rtrans)

2
√
n

= O

(
D
√
hT · 1 +

√
log(1 +R(T)Rtrans)√

n

)
.(C.3.23)

Recall that FL is defined in (C.3.6). Taking (C.3.23) into Lemma C.3.5, Lemma C.3.6,

and (C.3.16), we obtain with probability at least 1− δ over the independent and identical

264

draw of the dataset Dn = {(Xi, yi)}i∈[n], it holds for any f ∈ FL that

∣∣∣∣E[L((X, y), f
)]
− Ê

[
L
(
(X, y), f

)]∣∣∣∣
≤ 2
√

2 ·
dy∑
j=1

RDn(FLj) + 3

√
log(2/δ)

2n

= O

(
D2
√
hT · 1 +

√
log(1 +R(T)Rtrans)√

n
+

√
log(1/δ)

n

)
.(C.3.24)

By simplifying the first term on the right-hand side of (C.3.24) using Lemma C.7.5, we

have with probability at least 1− δ over the independent and identical draw of the dataset

Dn = {(Xi, yi)}i∈[n] that

∣∣∣∣E[L((X, y), f
)]
− Ê

[
L
(
(X, y), f

)]∣∣∣∣
(C.3.25)

= O

(
D2

√
n
·
[
T ·
√

log(1 + γ) +
√
T ·
√

log(1 + ζR(0)) +
√

log(1 + κ/ζ)
]
·
√
hT

+

√
log(1/δ)

n

)
,

= O

(
D2

√
n
·
[
T ·
√

log(1 + γ) +
√
T ·
√

log(1 + ζR) +
√

log(1 + κ/ζ)
]
·
√
hT

+

√
log(1/δ)

n

)

holds for any f ∈ FL, where the last line follows from R ≥ R(0) defined in Assumption

3.5.2. Here R(0) is defined in (C.3.18). Recall that f̃ = argminf∈FL Ê[L((X, y), f)] is the

empirical risk minimizer, where FL is the T -layer version of Fattn defined in (3.5.1). Let

265

f = argminf∈FL E[L((X, y), f)] be the population risk minimizer. We have

Ê
[
L
(
(X, y), f̃

)]
− min

f∈FL
E
[
L
(
(X, y), f

)]
= min

f∈FL
Ê
[
L
(
(X, y), f

)]
− E

[
L
(
(X, y), f

)]
= min

f∈FL
Ê
[
L
(
(X, y), f

)]
− Ê

[
L
(
(X, y), f

)]
+ Ê

[
L
(
(X, y), f

)]
− E

[
L
(
(X, y), f

)]
≤ Ê

[
L
(
(X, y), f

)]
− E

[
L
(
(X, y), f

)]
.

By the definition of the generalization error Egen in (3.5.3), we have with probability at

least 1− δ over the independent and identical draw of the dataset Dn = {(Xi, yi)}i∈[n] that

Egen = E
[
L
(
(X, y), f̂

)]
− Ê

[
L
(
(X, y), f̂

)]
+ Ê

[
L
(
(X, y), f̃

)]
− min

f∈FL
E
[
L
(
(X, y), f

)]
≤ E

[
L
(
(X, y), f̂

)]
− Ê

[
L
(
(X, y), f̂

)]
+ Ê

[
L
(
(X, y), f

)]
− E

[
L
(
(X, y), f

)]
= O

(
D2

√
n
·
[
T ·
√

log(1 + γ) +
√
T ·
√

log(1 + ζR) +
√

log(1 + κ/ζ)
]
·
√
hT

+

√
log(1/δ)

n

)
,

where the last line follows from (C.3.25). Therefore, we conclude the proof of Theorem

C.3.4. □

C.3.5. Proof of Lemma C.3.9

We organize the proof of Lemma C.3.9 as follows.

266

(§C.3.5.1) We analyze the covering numbers of the empirical image classes of MHA and

FFN, respectively, which serve as the building blocks for covering the empirical

image class of the transformer architecture.

(§C.3.5.2) We propagate the covering numbers of MHA and FFN through the T layers of

the transformer architecture.

(§C.3.5.3) We combine §C.3.5.1 and §C.3.5.2 to characterize the covering number of the

empirical image class of the transformer architecture.

C.3.5.1. Covering Numbers of FFN and MHA. In what follows, we characterize

the covering numbers of the empirical image classes of FFN and MHA. The following

lemma characterizes the covering number of a set of matrices with respect to the matrix

(r, s)-norm, which serves as the building block for analyzing the covering number of the

empirical image classes of FFN and MHA.

Lemma C.3.10 (Covering Number of Matrix Set). Let (r, s) be a conjugate pair. We

have

logN
({
M⊤ ∈ Rd2×d1 : ∥M⊤∥r,s ≤ RM

}
, ε, ∥ · ∥r,s

)
≤ d1d2 · log

(
1 +

2RM

ε

)
,

where RM , ε > 0.

Proof. See §C.6.1.1 for a detailed proof. □

Empirical Image Class of FFN. In the sequel, we characterize the covering number

of the empirical image class of FFN. In parallel to the parameter space A(t) defined in

267

(C.3.8), we define

A =
{

(Ax, Aσ) ∈ Rd×dσ × Rdσ×d :∥∥(Ax)⊤
∥∥
r
≤ αx,

∥∥(Ax)⊤
∥∥
r,s
≤ Rx,

∥∥(Aσ)⊤
∥∥
r
≤ ασ,

∥∥(Aσ)⊤
∥∥
r,s
≤ Rσ

}
,(C.3.26)

where αx, ασ, Rx, Rσ > 0, while d and dσ are positive integers. Correspondingly, we define

the function class of FFN and the empirical image class of FFN as follows,

Fffn =
{
ffn(X⋆;A) : A ∈ A

}
,

ID̃n⋆
(Fffn) =

{(
f(X̃i⋆)

⊤)
i∈[n] ∈ Rd×nL : f ∈ Fffn

}
.(C.3.27)

Here D̃n⋆ = {X̃i⋆}i∈[n] is the input set of FFN, where X̃i⋆ ∈ RL×d. In the following, we

characterize the covering number of the empirical image class ID̃n⋆
(Fffn).

Lemma C.3.11 (Covering Number of FFN). Let ε > 0. Suppose that the input set

D̃n⋆ = {X̃i⋆}i∈[n] ⊆ RL×d of FFN satisfies maxi∈[n] ∥X̃⊤
i⋆∥r,∞ ≤ R̃⋆. Then, we have

logN
(
ID̃n⋆

(Fffn), ε, ∥ · ∥r,∞
)
≤ 2ddσ · log

(
1 +

2(αxRσ + ασRx) · R̃⋆

ε

)
,

where αx, ασ, Rx, Rσ are defined in (C.3.26).

Proof. For any A = (Ax, Aσ) ∈ A, suppose that Â = (Âx, Âσ) ∈ A satisfy

∥∥(Ax)⊤ − (Âx)⊤
∥∥
r,s
≤ εx,

∥∥(Aσ)⊤ − (Âσ)⊤
∥∥
r,s
≤ εσ,(C.3.28)

268

where εx, εσ > 0. For any i ∈ [n], we have

∥∥ffn(X̃i⋆;A)⊤ − ffn(X̃i⋆; Â)⊤
∥∥
r,∞

=
∥∥∥(ReLU(X̃i⋆A

x)Aσ
)⊤

+ X̃⊤
i⋆ −

(
ReLU(X̃i⋆Â

x)Âσ
)⊤ − X̃⊤

i⋆

∥∥∥
r,∞

≤
∥∥∥((Aσ)⊤ − (Âσ)⊤

)
ReLU(X̃i⋆A

x)⊤
∥∥∥
r,∞

+
∥∥∥(Âσ)⊤

(
ReLU(X̃i⋆Â

x)− ReLU(X̃i⋆A
x)
)⊤∥∥∥

r,∞

≤
∥∥(Aσ)⊤ − (Âσ)⊤

∥∥
r,s
·
∥∥(Ax)⊤

∥∥
r
· ∥X̃⊤

i⋆∥r,∞ +
∥∥(Âσ)⊤

∥∥
r
·
∥∥(Âx − Ax)⊤

∥∥
r,s
· ∥X̃⊤

i⋆∥r,∞

≤ εσ ·
∥∥(Ax)⊤

∥∥
r
· ∥X̃⊤

i⋆∥r,∞ + εx ·
∥∥(Âσ)⊤

∥∥
r
· ∥X̃⊤

i⋆∥r,∞

≤ (εσαx + εxασ) · R̃⋆,

where the second line follows from the definition of FFN in (C.3.1), the fourth line follows

from Lemma C.7.3, the fifth line follows from (C.3.28), and the last line follows from the

definition of Fffn in (C.3.27) and the fact that maxi∈[n] ∥X̃⊤
i⋆∥r,∞ ≤ R̃⋆. Setting

εx = ε · Rx

(αxRσ + ασRx) · R̃⋆

, εσ = ε · Rσ

(αxRσ + ασRx) · R̃⋆

,(C.3.29)

we obtain ∥ffn(X̃i⋆;A)⊤ − ffn(X̃i⋆; Â)⊤∥r,∞ ≤ ε for any i ∈ [n], which implies

∥∥∥(ffn(X̃i⋆;A)⊤
)⊤
i∈[n] −

(
ffn(X̃i⋆; Â)⊤

)⊤
i∈[n]

∥∥∥
r,∞

= max
i∈[n]

∥∥ffn(X̃i⋆;A)⊤ − ffn(X̃i⋆; Â)⊤
∥∥
r,∞ ≤ ε.

269

To cover the empirical image class ID̃n⋆
(Fffn) at the resolution ε, it remains to cover the

parameter spaces of Ax and Aσ at the resolutions εx and εσ, respectively, that is,

logN
(
ID̃n⋆

(Fffn), ε, ∥ · ∥r,∞
)

≤ logN

({
(Ax)⊤ ∈ Rdσ×d :

∥∥(Ax)⊤
∥∥
r,s
≤ Rx,

∥∥(Ax)⊤
∥∥
r
≤ αx

}
, εx, ∥ · ∥r,∞

)
+ logN

({
(Aσ)⊤ ∈ Rd×dσ :

∥∥(Aσ)⊤
∥∥
r,s
≤ Rσ,

∥∥(Aσ)⊤
∥∥
r
≤ ασ

}
, εσ, ∥ · ∥r,∞

)
≤ logN

({
(Ax)⊤ ∈ Rdσ×d :

∥∥(Ax)⊤
∥∥
r,s
≤ Rx

}
, εx, ∥ · ∥r,∞

)
+ logN

({
(Aσ)⊤ ∈ Rd×dσ :

∥∥(Aσ)⊤
∥∥
r,s
≤ Rσ

}
, εσ, ∥ · ∥r,∞

)
≤ ddσ · log

(
1 +

2Rx

εx

)
+ ddσ · log

(
1 +

2Rσ

εσ

)
= 2ddσ · log

(
1 +

2(αxRσ + ασRx) · R̃⋆

ε

)
,

where the third inequality follows from Lemma C.3.10 and the equality follows from

(C.3.29). Therefore, we conclude the proof of Lemma C.3.11. □

Empirical Image Class of MHA. In the sequel, we characterize the covering number

of the empirical image class of MHA. In parallel to the parameter space W(t) defined in

(C.3.9), we define

W =
{{

(W q
i ,W

k
i ,W

v
i)
}
i∈[h] : (W q

i ,W
k
i ,W

v
i) ∈ Rd×dp × Rd×dp × Rd×d,(C.3.30) ∥∥(W q

i)⊤
∥∥
r
≤ ωq

i ,
∥∥(W k

i)⊤
∥∥
r
≤ ωk

i ,
∥∥(W v

i)⊤
∥∥
r
≤ ωv

i ,∥∥(W q
i)⊤
∥∥
r,s
≤ Rq

i ,
∥∥(W k

i)⊤
∥∥
r,s
≤ Rk

i ,
∥∥(W v

i)⊤
∥∥
r,s
≤ Rv

i

}
,

270

where ωq
i , ω

k
i , ω

v
i , R

q
i , R

k
i , R

v
i > 0. Correspondingly, we define the function class of MHA

(with a skip connection) and the empirical image class of MHA as follows,

Fmha =
{
mha(X;W) +X : W ∈W

}
,

ID̃n
(Fmha) =

{(
f(X̃i)

⊤)
i∈[n] ∈ Rd×nL : f ∈ Fmha

}
.(C.3.31)

Here D̃n = {X̃i}i∈[n] is the input set of MHA, where X̃i ∈ RL×d. Recall that h is the head

number of MHA. The following lemma characterizes the Lipschitz continuity of MHA with

respect to the parameter in W =
{

(W q
i ,W

k
i ,W

v
i)
}
i∈[h] ∈W.

Lemma C.3.12 (Parameter Lipschitz Continuity of MHA). Let (r, s) be a conjugate pair.

Suppose that X̃ ∈ RL×d satisfies ∥X̃⊤∥r,∞ ≤ R̃. Given any W = {(W q
i ,W

k
i ,W

v
i)}i∈[h] ∈W,

suppose that Ŵ = {(Ŵ q
i , Ŵ

k
i , Ŵ

v
i)}i∈[h] ∈W satisfies

∥∥(W q
i)⊤ − (Ŵ q

i)⊤
∥∥
r,s
≤ εqi ,

∥∥(W k
i)⊤ − (Ŵ k

i)⊤
∥∥
r,s
≤ εki ,

∥∥(W v
i)⊤ − (Ŵ v

i)⊤
∥∥
r,s
≤ εvi

for any i ∈ [h]. Then, we have

∥∥mha(X̃;W)⊤ − mha(X̃; Ŵ)⊤
∥∥
r,∞ ≤ R̃ ·

h∑
i=1

εvi + R̃3 ·
h∑
i=1

(ωq
i + ωk

i) · (ε
q
i + εki),

where ωq
i , ω

k
i , and ωv

i are defined in (C.3.30).

Proof. See §C.6.2.1 for a detailed proof. □

The following lemma characterizes the covering number of the empirical image class

ID̃n
(Fmha) defined in (C.3.31).

271

Lemma C.3.13 (Covering Number of MHA). Let ε > 0. Suppose that the input set

D̃n = {X̃i}i∈[n] ⊆ RL×d of MHA satisfies maxi∈[n] ∥X̃⊤
i ∥r,∞ ≤ R̃. Then, we have

logN
(
ID̃n

(Fmha), ε, ∥ · ∥r,∞
)
≤ (2 + h) · d2 · log

(
1 +

2R̃ ·Rmha(W)

ε

)
.

Here

Rmha(W) =
h∑
i=1

Rv
i + R̃2 ·

h∑
i=1

(ωq
i + ωk

i)(R
q
i +Rk

i),(C.3.32)

where ωq
i , ω

k
i , R

q
i , R

k
i , and Rv

i are defined in (C.3.30).

Proof. Throughout the following proof, we set εqi , ε
k
i , ε

v
i > 0 such that

Rq
i

εqi
=
Rk
i

εki
=
Rv
i

εvi
=
R̃ ·Rmha(W)

ε
(C.3.33)

for any i ∈ [h], where Rmha(W) is defined in (C.3.32). By Lemma C.3.12, we have for any

i ∈ [n] that

∥∥mha(X̃i;W)⊤ + X̃⊤
i − mha(X̃i; Ŵ)⊤ − X̃⊤

i

∥∥
r,∞

≤ R̃ ·
h∑
i=1

εvi + R̃3 ·
h∑
i=1

(ωq
i + ωk

i) · (ε
q
i + εki)

= R̃ ·
h∑
i=1

Rv
i · ε

R̃ ·Rmha(W)
+ R̃3 ·

h∑
i=1

(ωq
i + ωk

i) ·
(

Rq
i · ε

R̃ ·Rmha(W)
+

Rk
i · ε

R̃ ·Rmha(W)

)

= ε ·
∑h

i=1R
v
i + R̃2 ·

∑h
i=1(ω

q
i + ωk

i) · (R
q
i +Rk

i)

R̃ ·Rmha(W)
= ε,

272

where the third line follows from (C.3.33) and the last line follows from the definition of

Rmha(W) in (C.3.32). Hence, we have

∥∥∥(mha(X̃i;W)⊤ + X̃⊤
i

)⊤
i∈[n] −

(
mha(X̃i; Ŵ)⊤ + X̃⊤

i

)⊤
i∈[n]

∥∥∥
r,∞

= max
i∈[n]

∥∥mha(X̃i;W)⊤ + X̃⊤
i − mha(X̃i; Ŵ)⊤ − X̃⊤

i

∥∥
r,∞ ≤ ε.

To cover the empirical image class ID̃n
(Fmha) at the resolution ε, it remains to cover the

parameter spaces of W q
i , W k

i , and W v
i at the resolutions εqi , ε

k
i , and εvi , respectively, for

any i ∈ [n], that is,

logN
(
ID̃n

(Fmha), ε, ∥ · ∥r,∞
)

≤
h∑
i=1

(
logN

({
(W q

i)⊤ ∈ Rdp×d :
∥∥(W q

i)⊤
∥∥
r,s
≤ Rq

i ,
∥∥(W q

i)⊤
∥∥
r
≤ ωq

i

}
, εqi , ∥ · ∥r,∞

)

+ logN

({
(W k

i)⊤ ∈ Rdp×d :
∥∥(W k

i)⊤
∥∥
r,s
≤ Rk

i ,
∥∥(W k

i)⊤
∥∥
r
≤ ωk

i

}
, εki , ∥ · ∥r,∞

)
+ logN

({
(W v

i)⊤ ∈ Rd×d :
∥∥(W v

i)⊤
∥∥
r,s
≤ Rv

i ,
∥∥(W v

i)⊤
∥∥
r
≤ ωv

i

}
, εvi , ∥ · ∥r,∞

))

≤
h∑
i=1

(
logN

({
(W q

i)⊤ ∈ Rdp×d :
∥∥(W q

i)⊤
∥∥
r,s
≤ Rq

i

}
, εqi , ∥ · ∥r,∞

)

+ logN

({
(W k

i)⊤ ∈ Rdp×d :
∥∥(W k

i)⊤
∥∥
r,s
≤ Rk

i

}
, εki , ∥ · ∥r,∞

)
+ logN

({
(W v

i)⊤ ∈ Rd×d :
∥∥(W v

i)⊤
∥∥
r,s
≤ Rv

i

}
, εvi , ∥ · ∥r,∞

))

≤ ddp ·
h∑
i=1

(
log

(
1 +

2Rq
i

εqi

)
+ log

(
1 +

2Rk
i

εki

))
+ d2 ·

h∑
i=1

log

(
1 +

2Rv
i

εvi

)

= (2 + h) · d2 · log

(
1 +

2R̃Rmha(W)

ε

)
,

273

where the third inequality follows from Lemma C.3.10 and the equality follows from (C.3.33)

and the fact that d = dp · h. Therefore, we conclude the proof of Lemma C.3.13. □

C.3.5.2. Propagation of Covering Numbers. Recall that W is defined in (C.3.30).

The following lemma characterizes the Lipschitz continuity of MHA in the input X.

Lemma C.3.14 (Input Lipschitz Continuity of MHA). Let (r, s) be a conjugate pair. Sup-

pose that X ∈ RL×d and X̂ ∈ RL×d satisfy ∥X⊤∥r,∞ ≤ R̃ and ∥X̂⊤∥r,∞ ≤ R̃, respectively.

Then for any W = {(W q
i ,W

k
i ,W

v
i)}i∈[n] ∈W, we have

∥∥mha(X;W)⊤ − mha(X̂;W)⊤
∥∥
r,∞ ≤ ρ(W) · ∥X⊤ − X̂⊤∥r,∞.

Here

ρ(W) =
h∑
i=1

ωv
i + R̃2 ·

h∑
i=1

(ωq
i + ωk

i)
2ωv

i ,(C.3.34)

where ωq
i , ω

k
i , and ωv

i are defined in (C.3.30).

Proof. See §C.6.2.2 for a detailed proof. □

Recall that the empirical image classes IDn(FL,(t)ffn), IDn(FL,(t+1)
mha), and IDn(FLj) are

defined in (C.3.7) and (C.3.17). Also, recall that the parameter space Θ(t) is specified in

Assumption C.3.3. The following lemma characterizes the propagation of the covering

numbers of the empirical image classes of FFN and MHA through the T layers of the

transformer architecture.

274

Lemma C.3.15 (Propagation of Covering Number). Suppose that Assumption C.3.3

holds. For any j ∈ [dy], we have

logN
(
IDn(FLj), ε, ∥ · ∥r,∞

)
≤

T−2∑
t=0

sup
{θ(τ)∈Θ(τ)}0≤τ≤t

logN
(
IDn(FL,(t+1)

mha), ε
(t)
mha, ∥ · ∥r,∞

)
+

T−1∑
t=0

sup
{θ(τ)∈Θ(τ)}0≤τ≤t

logN
(
IDn(FL,(t)ffn), ε

(t)
ffn, ∥ · ∥r,∞

)
.

With the conventions
∏T−1

τ=T−1 · ≡ 1 and
∏T−1

τ=T · ≡ 1, the covering resolution ε is defined as

follows,

ε =
T−1∑
t=0

(
ρ̃(t)ε

(t)
ffn ·

T−1∏
τ=t+1

ρ̃(τ)α̃(τ)

)
+

T−2∑
t=0

(
ε
(t)
mha ·

T−1∏
τ=t+1

ρ̃(τ)α̃(τ)

)
,(C.3.35)

where α̃(t) and ρ̃(t) are defined in (C.3.11) and (C.3.20), respectively.

Proof. Throughout the following proof, we fix the dataset Dn = {(Xi, yi)}i∈[n] and the

parameters θ and {θ(t) = (W (t), A(t))}0≤t≤T−1. By (C.3.4) and (C.3.5), the intermediate

inputs {X(t)
i }i∈[n] and {X(t)

i⋆ }i∈[n] and the outputs {ŷi = (ŷi,j)
⊤
j∈[dy]}i∈[n] are fixed.

Perturbed Intermediate Inputs. For all t = 0, . . . , T − 1, we denote by N
(t)
ffn and

N
(t+1)
mha the covering sets of the empirical image classes IDn(FL,(t)ffn) and IDn(FL,(t+1)

mha) at the

resolutions ε
(t)
ffn and ε

(t)
mha with respect to the matrix (r,∞)-norm, respectively. Starting

from ((X
(0)
i⋆)⊤)i∈[n] = ((X̃

(0)
i⋆)⊤)i∈[n] = (X⊤

i)i∈[n], we construct the perturbed intermediate

275

inputs in a recursive manner as follows,

(
(X̃

(t)
i)⊤

)
i∈[n] ∈

{
(X̃⊤

i)i∈[n] ∈ N
(t)
ffn :

∥∥ffn(X̃
(t)
i⋆ ;A(t))⊤ − X̃⊤

i

∥∥
r,∞ ≤ ε

(t)
ffn

}
,

(C.3.36)

(
(X̃

(t+1)
i⋆)⊤

)
i∈[n] ∈

{
(X̃⊤

i⋆)i∈[n] ∈ N
(t+1)
mha :

∥∥mha(X̃
(t)
i ;W (t))⊤ + (X̃

(t)
i)⊤ − X̃⊤

i⋆

∥∥
r,∞ ≤ ε

(t)
mha

}
,(

(X̃
(T−1)
i)⊤

)
i∈[n] ∈

{
(X̃⊤

i)i∈[n] ∈ N
(T−1)
ffn :

∥∥ffn(X̃
(T−1)
i⋆ ;A(T−1))⊤ − X̃⊤

i

∥∥
r,∞ ≤ ε

(T−1)
ffn

}
,

where t = 0, . . . , T − 2. For any i ∈ [n] and any j ∈ [dy], let

X̃
(T)
i⋆ = mha(X̃

(T−1)
i ;W (T−1)) + X̃

(T−1)
i ,(C.3.37)

ỹi,j = aggθ,j(X̃
(T)
i⋆),

which implies

|ŷi,j − ỹi,j| =
∣∣aggθ,j(X(T)

i⋆)− aggθ,j(X̃
(T)
i⋆)
∣∣ ≤ ∥∥(X

(T)
i⋆)⊤ − (X̃

(T)
i⋆)⊤

∥∥
r,∞,

where the inequality follows from Assumption C.3.2. Hence, to cover the empirical image

class IDn(FLj) at the resolution ε, it remains to cover the empirical image class IDn(FL,(T)mha)

at the resolution ε.

276

Propagation of Covering Resolutions. For the recursive constructions in (C.3.36), it

holds for any i ∈ [n] that

∥∥(X
(t)
i)⊤ − (X̃

(t)
i)⊤

∥∥
r,∞

=
∥∥ffn(X

(t)
i⋆ ;A(t))⊤ − (X̃

(t)
i)⊤

∥∥
r,∞

≤
∥∥ffn(X

(t)
i⋆ ;A(t))⊤ − ffn(X̃

(t)
i⋆ ;A(t))⊤

∥∥
r,∞ +

∥∥ffn(X̃
(t)
i⋆ ;A(t))⊤ − (X̃

(t)
i)⊤

∥∥
r,∞

≤
∥∥ffn(X

(t)
i⋆ ;A(t))⊤ − ffn(X̃

(t)
i⋆ ;A(t))⊤

∥∥
r,∞ + ε

(t)
ffn,

(C.3.38)

where the first line follows from (C.3.4) and the last line follows from the definition of

X̃
(t)
i in (C.3.36). For the first term on the right-hand side of (C.3.38), it holds for all

t = 0, . . . , T − 1 and any i ∈ [n] that

∥∥ffn(X
(t)
i⋆ ;A(t))⊤ − ffn(X̃

(t)
i⋆ ;A(t))⊤

∥∥
r,∞

=
∥∥(Aσ,(t))⊤ReLU(X

(t)
i⋆ A

x,(t))⊤ + (X
(t)
i⋆)⊤ − (Aσ,(t))⊤ReLU(X̃

(t)
i⋆ A

x,(t))⊤ − (X̃
(t)
i⋆)⊤

∥∥
r,∞

≤
∥∥(Aσ,(t))⊤

∥∥
r
·
∥∥ReLU(X

(t)
i⋆ A

x,(t))⊤ − ReLU(X̃
(t)
i⋆ A

x,(t))⊤
∥∥
r,∞ +

∥∥(X
(t)
i⋆)⊤ − (X̃

(t)
i⋆)⊤

∥∥
r,∞

≤
(

1 +
∥∥(Ax,(t))⊤

∥∥
r
·
∥∥(Aσ,(t))⊤

∥∥
r

)
·
∥∥(X

(t)
i⋆)⊤ − (X̃

(t)
i⋆)⊤

∥∥
r,∞

≤ α̃(t) ·
∥∥(X

(t)
i⋆)⊤ − (X̃

(t)
i⋆)⊤

∥∥
r,∞,

(C.3.39)

where the third and fourth lines follow from Lemma C.7.3 and the last line follows from

the requirement in Assumption C.3.3 and the definition of α̃(t) in (C.3.11). Hence, it holds

277

for all t = 0, . . . , T − 2 and any i ∈ [n] that

∥∥(X
(t+1)
i⋆)⊤ − (X̃

(t+1)
i⋆)⊤

∥∥
r,∞ ≤

∥∥mha(X
(t)
i ;A(t))⊤+(X

(t)
i)⊤−mha(X̃

(t)
i ;A(t))⊤ − (X̃

(t)
i)⊤

∥∥
r,∞

+
∥∥mha(X̃

(t)
i ;A(t))⊤ + (X̃

(t)
i)⊤ − (X̃

(t+1)
i⋆)⊤

∥∥
r,∞

≤
(
ρ(W(t)) + 1

)
·
∥∥(X

(t)
i)⊤ − (X̃

(t)
i)⊤

∥∥
r,∞ + ε

(t)
mha

≤ ρ̃(t) ·
∥∥(X

(t)
i)⊤ − (X̃

(t)
i)⊤

∥∥
r,∞ + ε

(t)
mha,(C.3.40)

where the second inequality follows from Lemma C.3.14 and the definition of X̃
(t+1)
i⋆ in

(C.3.36) and the last inequality follows from Lemma C.7.4. Taking (C.3.39) into (C.3.38)

and (C.3.38) into (C.3.40), we obtain for any i ∈ [n] and t = 0, . . . , T − 2 that

∥∥(X
(t+1)
i⋆)⊤ − (X̃

(t+1)
i⋆)⊤

∥∥
r,∞ ≤ ρ̃(t)α̃(t) ·

∥∥(X
(t)
i⋆)⊤ − (X̃

(t)
i⋆)⊤∥r,∞ + ρ̃(t)ε

(t)
ffn + ε

(t)
mha.(C.3.41)

Recursively applying (C.3.41), we have

∥∥(X
(T−1)
i⋆)⊤ − (X̃

(T−1)
i⋆)⊤

∥∥
r,∞ ≤

T−2∑
t=0

[
(ρ̃(t)ε

(t)
ffn + ε

(t)
mha) ·

T−2∏
τ=t+1

ρ̃(τ)α̃(τ)

]
,

278

which implies

∥∥(X
(T)
i⋆)⊤ − (X̃

(T)
i⋆)⊤

∥∥
r,∞

=
∥∥mha(X

(T−1)
i ;W (T−1)) +X

(T−1)
i − mha(X̃

(T−1)
i ;W (T−1))− X̃(T−1)

i

∥∥
r,∞

≤ ρ̃(T−1) ·
∥∥(X

(T−1)
i)⊤ − (X̃

(T−1)
i)⊤

∥∥
r,∞

≤ ρ̃(T−1)α̃(T−1) ·
∥∥(X

(t)
i⋆)⊤ − (X̃

(t)
i⋆)⊤

∥∥
r,∞ + ρ̃(T−1)ε

(T−1)
ffn

≤
T−2∑
t=0

[
(ρ̃(t)ε

(t)
ffn + ε

(t)
mha) ·

T−1∏
τ=t+1

ρ̃(τ)α̃(τ)

]
+ ρ̃(T−1)ε

(T−1)
ffn = ε,

where the second line follows from (C.3.37), the third line follows from (C.3.40), the

fourth line follows from (C.3.38) and (C.3.39), and the last line follows from the definition

of ε in (C.3.35). To cover the empirical image class IDn(FL,(T)mha) at the resolution ε, it

suffices to cover (i) the empirical image class IDn(FL,(t+1)
mha) at the resolution ε

(t)
mha for all

t = 0, . . . , T − 2, and (ii) the empirical image class IDn(FL,(t)ffn) at the resolution ε
(t)
ffn for

all t = 0, . . . , T − 1. Therefore, we conclude the proof of Lemma C.3.15. □

C.3.5.3. Proof of Lemma C.3.9.

Proof. By Lemma C.3.15, we have

logN
(
IDn(FLj), ε, ∥ · ∥r,∞

)
≤

T−2∑
t=0

sup
{θ(τ)∈Θ(τ)}0≤τ≤t

logN
(
IDn(FL,(t+1)

mha), ε
(t)
mha, ∥ · ∥r,∞

)
+

T−1∑
t=0

sup
{θ(τ)∈Θ(τ)}0≤τ≤t

logN
(
IDn(FL,(t)ffn), ε

(t)
ffn, ∥ · ∥r,∞

)
,

279

where ε is defined in (C.3.35). In what follows, we set

ε
(t)
ffn = ε(t) · α

x,(t)Rσ,(t) + ασ,(t)Rx,(t)

ω̃v,(t)α̃(t)
, ε

(t)
mha = ε(t) · R

(t)
mha

ω̃v,(t)
.(C.3.42)

By Lemma C.7.6, the intermediate inputs {X(t)
i }i∈[n] and {X(t)

i⋆ }i∈[n] satisfy

max
i∈[n]

∥∥(X
(t)
i)⊤

∥∥
r,∞ ≤ α̃(t)R(t), max

i∈[n]

∥∥(X
(t)
i⋆)⊤

∥∥
r,∞ ≤ R(t),

where R(t) is defined in (C.3.18). By Lemma C.3.11, it holds for all t = 0, . . . , T − 1 that

logN
(
IDn(FL,(t)ffn), ε

(t)
ffn, ∥ · ∥r,∞

)

≤ 2ddσ · log

(
1 +

2(αx,(t)Rσ,(t) + ασ,(t)Rx,(t)) ·R(t)

ε
(t)
ffn

)
≤ 2D2 · log

(
1 +

2R(t+1)

ε(t)

)
,

(C.3.43)

where the second inequality follows from (C.3.42), the fact that D = max{d, dp, dσ, dy},

and the definition of R(t) in (C.3.18). By Lemmas C.3.13 and C.7.4, it holds for all

t = 0, . . . , T − 2 that

logN
(
IDn(FL,(t+1)

mha), ε
(t)
mha, ∥ · ∥r,∞

)
≤ (2 + h)d2 · log

(
1 +

2α̃(t)R(t) ·R(t)
mha

ε
(t)
mha

)
≤ (2 + h)D2 · log

(
1 +

2R(t+1)

ε(t)

)
,(C.3.44)

where the second inequality follows from (C.3.42), the fact that D = max{d, dp, dσ, dy},

and the definition of R(t) in (C.3.18). It remains to choose the resolutions {ε(t)}0≤t≤T−1

280

that satisfy (C.3.35), which is

ε =
T−2∑
t=0

(
ε(t) · R

(t)
mha

ω̃v,(t)
·
T−1∏
τ=t+1

ρ̃(τ)α̃(τ)

)

+
T−1∑
t=0

(
ε(t) · α

x,(t)Rσ,(t) + ασ,(t)Rx,(t)

α̃(t)
·
T−1∏
τ=t+1

ρ̃(τ)α̃(τ)

)
.(C.3.45)

Recall that Rtrans is defined in (C.3.19). For all t = 0, . . . , T − 1, we set

ε(t) =
ε

Rtrans ·
∏T−1

τ=t+1 ω̃
v,(τ)α̃(τ)

,(C.3.46)

which satisfies (C.3.45). Note that, by the definition of R(t) in (C.3.18), it holds that

R(t+1) ·
∏T−1

τ=t+1 ω̃
v,(τ)α̃(τ) = R(T) for all t = 0, . . . , T − 1. Combining Lemma C.3.15,

(C.3.43), (C.3.44), and the choices of {ε(t)}0≤t≤T−1 in (C.3.46), we obtain

logN
(
IDn(FLj), ε, ∥ · ∥r,∞

)
≤
[
(4 + h)T − h− 2

]
D2 · log

(
1 +

2R(T)Rtrans

ε

)
≤ (4 + h)D2T · log

(
1 +

2R(T)Rtrans

ε

)
.

Therefore, we conclude the proof of Lemma C.3.9. □

C.4. Optimization Error Analysis

Proof of Proposition 3.5.6. Let L̂(fθ) = Ê[L((X, y), fθ)]. By (3.5.12), it holds

for the stationary point θ̂ that,

0 ≤
〈
∇θL̂(fθ̂), θ − θ̂

〉
= Ê

[
∇fL

(
(X, y), fθ̂

)
∇θfθ̂(X)⊤(θ − θ̂)

]
.

281

Since the objective function L((X, y), f) = ∥y − f(X)∥22 is convex with respect to f(X),

we have

0 ≤ Ê
[
∇fL

(
(X, y), fθ∗

)⊤
(f − fθ∗)(X)

]
,(C.4.1)

where θ∗ = argminθ∈Θ L̂(fθ). By definition of the objective function L((X, y), f), we have

∥∥∥∇fL
(
(X, y), fθ̂

)∥∥∥
2

= 2
∥∥y − fθ̂(X)

∥∥
2
≤ 2∥y∥2 + 2∥fθ̂(X)

∥∥
2
≤ 2,(C.4.2)

where the last inequality follows from Assumption 3.5.2 and that the aggregation layer

aggθ0 : Rdp → Rdy outputs within Y. For any θ ∈ Θ, it holds that,

L̂(fθ̂)− L̂(fθ∗)

≤ Ê
[
∇fL

(
(X, y), fθ̂

)⊤
(fθ̂ − fθ∗)(X)

]
≤ Ê

[
∇fL

(
(X, y), fθ̂

)⊤
(fθ̂ − fθ∗)(X)

]
+ Ê

[
∇fL

(
(X, y), fθ̂

)⊤∇θfθ̂(x)⊤(θ − θ̂)
]

= Ê
[
∇fL

(
(X, y), fθ̂

)⊤(
fθ̂(X) +∇θfθ̂(X)⊤(θ − θ̂)− fθ∗(X)

)]
≤ Ê

[∥∥∥∇fL
(
(X, y), fθ̂

)∥∥∥
2
·
∥∥fθ̂(X) +∇θfθ̂(X)⊤(θ − θ̂)− fθ∗(X)

∥∥
2

]
≤ 2 ·

∥∥fθ̂(X) +∇θfθ̂(X)⊤(θ − θ̂)− fθ∗(X)
∥∥
2
,(C.4.3)

where the second line follows from (C.4.1), the fourth line follows from the Cauchy-Schwartz

inequality, and the last line follows from (C.4.2). Since (C.4.3) holds for any θ ∈ Θ, we

have

L̂(fθ̂)− L̂(fθ∗) ≤ 2 ·min
θ∈Θ

Ê
[∥∥fθ̂(X) +∇θfθ̂(X)⊤(θ − θ̂)− fθ∗(X)

∥∥
2

]
.

282

Therefore, we conclude the proof of Proposition 3.5.6. □

C.5. Approximation Error Analysis

C.5.1. Latent-to-Value RKHS

In what follows, we cast the function class G†i defined in (3.5.10) as the RKHS HLTV, which

plays a key role in our subsequent analysis of the approximation error. Recall that the

latent-to-value mapping ψ(z; msk) is defined in (3.5.7), which induces the kernel function

KLTV(z, z
′; msk) = ψ(z; msk)⊤ψ(z′; msk) and the following RKHS,

HLTV =

{
gα(z; msk) =

∫
α(z′)KLTV(z

′, z; msk)dz′ :
∥∥gα(·; msk)

∥∥
HLTV

<∞
}
,(C.5.1)

which is equipped with the inner product ⟨·, ·⟩HLTV
. By the definition of the kernel function

KLTV(·, ·; msk), we have for any gα(·; msk) ∈ HLTV that

gα(z; msk) =

∫
α(z′)KLTV(z

′, z; msk)dz′

=

(∫
α(z′)ψ(z′; msk)dz′︸ ︷︷ ︸

wα ∈ Rd

)⊤

ψ(z; msk) = w⊤
αψ(z; msk).(C.5.2)

283

Here wα corresponds to the parameter vector wi ∈ Rd in the function class G†i . On the

other hand, we have

∥∥gα(·; msk)
∥∥2
HLTV

=
〈
gα(·; msk), gα(·; msk)

〉
HLTV

=

∫
α(z′)KLTV(z

′, z; msk)α(z)dzdz′

=

(∫
α(z′)ψ(z′; msk)dz′

)⊤(∫
α(z)ψ(z; msk)dz

)
= ∥wα∥22,(C.5.3)

where the third equality follows from the definition of KLTV(·, ·; msk) and the last equality

follows from the definition of wα in (C.5.2). Combining (C.5.2), (C.5.3), and the definition

of HLTV in (C.5.1), we have

HLTV =
{
w⊤
αψ(z; msk) : wα ∈ Rd, ∥wα∥2 <∞

}
= G†i .

Thus, the function class G†i , which correspondes to the i-th entry of the function class G,

is the RKHS HLTV. Here the function class G† is defined in (3.5.9), which contains the

latent-to-target function g†W (z; msk) = W⊤ψ(z; msk) within the reweighted CME attention

f †
W (X; msk) defined in (3.5.6).

284

C.5.2. Supervised Learning

Proof of Theorem 3.5.5. Suppose fθ ∈ Fattn and ϵattn ∈ [0,+∞) satisfy (3.5.11).

By the definition of the approximation error Eapprox in (3.5.3), we have

Eapprox = min
f∈Fattn

E
[
L
(
(X, y), f

)]
− E

[
L
(
(X, y), f ∗)]

≤ E
[
L
(
(X, y), fθ

)]
− E

[
L
(
(X, y), f ∗)]

= E
[∥∥fθ(X; msk)− f ∗(X)

∥∥2
2

]
≤ 2E

[∥∥fθ(X; msk)− f †
W (X; msk)

∥∥2
2

]
+ 2E

[∥∥f †
W (X; msk)− f ∗(X)

∥∥2
2

]
≤ 2ϵ2attn + 2E

[∥∥f †
W (X; msk)− f ∗(X)

∥∥2
2

]
,(C.5.4)

where the second line follows from the fact that fθ ∈ Fattn, the third line follows from

the fact that L((X, y), f) = ∥y − f(X)∥22 and the definition of the regression function

f ∗(X) = E[y |X], and the last line follows from (3.5.11) and the definition of f †
W (X; msk)

in (3.5.6).

In what follows, we characterize the gap between the regression function f ∗(X) and

the reweighted CME attention in f †
W (X; msk), which is used as a surrogate function for

approximating f ∗(X). By (3.5.5), we have

f ∗(X) = Ez |X
[
g∗(z; msk)

]
= Ez |X

[
g†W (z; msk)

]
+ Ez |X

[
g∗(z; msk)− g†W (z; msk)

]
= f †

W (X; msk) + Ez |X
[
g∗(z; msk)− g†W (z; msk)

]
,

285

where the last line follows from (3.5.8). Hence, it holds for f †
W (X; msk) that

E
[∥∥f ∗(X)− f †

W (X; msk)
∥∥2
2

]
= E

[∥∥∥Ez |X[g∗(z; msk)− g†W (z; msk)
]∥∥∥2

2

]
.(C.5.5)

By Assumption 3.5.4, we have

∥∥∥Ez |X[g∗(z; msk)− g†W (z; msk)
]∥∥∥2

2
=

dy∑
i=1

Ez |X
[
g∗i (z; msk)− g†W,i(z; msk)

]2
≤

dy∑
i=1

∥∥g∗i (·; msk)− g†W,i(·; msk)
∥∥2
∞ ≤ ϵ2g(msk),(C.5.6)

where the ℓ∞-norm is taken over the latent variable z. Taking (C.5.6) into (C.5.5), we

obtain

E
[∥∥f ∗(X)− f †

W (X; msk)
∥∥2
2

]
≤ ϵ2g(msk).(C.5.7)

Taking (C.5.7) into (C.5.4), we obtain

Eapprox ≤ 2ϵ2attn + 2ϵ2g(msk),

which concludes the proof of Theorem 3.5.5. □

C.5.3. Self-Supervised Learning

Proof of Theorem 3.6.3. Suppose that fDS(X; mskDS) attains the infimum on the

right-hand side of (3.6.11). Recall that B = W⊤
DS(WSSLW

⊤
SSL)

−1WSSL is defined in (3.6.10).

286

We define a surrogate function as follows,

f̃PT(X; mskPT) = Bf̂PT(X; mskPT).

Here f̂PT(X; mskPT) is the attention neural network obtained from the pretraining process.

Recall that the regression function f ∗
DS(X) for the downstream task is defined in (3.6.4)

and f †
WDS

(X; mskDS) is defined in (3.6.5). For the approximation error Eapprox defined in

(3.6.13), we have

Eapprox ≤ E
[
L
(
(X, yDS), fDS

)]
− E

[
L
(
(X, yDS), f

∗
DS

)](C.5.8)

= E
[∥∥fDS(X; mskDS)− f ∗

DS(X)
∥∥2
2

]
= E

[∥∥fDS(X; mskDS)− f̃PT(X; mskPT) + f̃PT(X; mskPT)− f †
WDS

(X; mskDS)

+ f †
WDS

(X; mskDS)− f ∗
DS(X)

∥∥2
2

]
≤ 3E

[∥∥fDS(X; mskDS)− f̃PT(X; mskPT)
∥∥2
2

]
+ 3E

[∥∥f̃PT(X; mskPT)− f †
WDS

(X; mskDS)
∥∥2
2

]
+ 3E

[∥∥f †
WDS

(X; mskDS)− f ∗
DS(X)

∥∥2
2

]
≤ 3ϵ2agg(B) + 3E

[∥∥f̃WDS
(X; mskDS)− f †

WDS
(X; mskDS)

∥∥2
2

]
︸ ︷︷ ︸

(i)

+ 3E
[∥∥f †

WDS
(X; mskDS)− f ∗

DS(X)
∥∥2
2

]
︸ ︷︷ ︸

(ii)

,

287

where the second line follows from the definition of the regression function f ∗
DS(X) =

E[yDS |X] and the last line follows from (3.6.11). In what follows, we characterize terms (i)

and (ii).

Term (i). Recall that the regression function f ∗
PT(X) for the pretraining process is defined

in (3.6.3). For any truncated input sequence X, it holds that

∥∥f̃PT(X; mskPT)− f †
WDS

(X; mskDS)
∥∥2
2

=
∥∥∥Bf̂PT(z; mskPT)−W⊤

DSEz |X
[
ψDS(z; mskDS)

]∥∥∥2
2

=

∥∥∥∥B(f̂PT(X; mskPT)− f ∗
PT(X)

)
+
(
Bf ∗

PT(X)− Ez |X
[
W⊤

DSψDS(z; mskDS)
])∥∥∥∥2

2

≤ 2
∥∥∥B(f̂PT(X; mskPT)− f ∗

PT(X)
)∥∥∥2

2︸ ︷︷ ︸
(i.a)

+2

∥∥∥∥(Bf ∗
PT(X)− Ez |X

[
W⊤

DSψDS(z; mskDS)
])∥∥∥∥2

2︸ ︷︷ ︸
(i.b)

,

(C.5.9)

where the second line follows from the definition of f †
WDS

(X; mskDS) in (3.6.6). In the sequel,

we characterize terms (i.a) and (i.b). By Assumption 3.6.2, we have

(i.a) ≤ ∥B∥22 ·
∥∥f̂PT(X; mskPT)− f ∗

PT(X)
∥∥2
2
≤ µ ·

∥∥f̂PT(X; mskPT)− f ∗
PT(X)

∥∥2
2
.(C.5.10)

288

Recall that g†WSSL
(z; mskDS) is defined in Assumption 3.6.1. Since BW⊤

SSL = W⊤
DS, we have

(i.b) =
∥∥∥BEz |X

[
g∗PT(z; mskPT)−W⊤

SSLψDS(z; mskDS)
]∥∥∥2

2

≤ ∥B∥22 ·
∥∥∥Ez |X[g∗PT(z; mskPT)− g†WSSL

(z; mskDS)
]∥∥∥2

2

≤ µ ·
d∑
i=1

Ez |X
[
g∗PT,i(z; mskPT)− g†WSSL,i

(z; mskDS)
]2

≤ µ ·
d∑
i=1

∥∥g∗PT,i(·; mskPT)− g†WSSL,i
(·; mskDS)

∥∥2
∞

≤ µ · ϵ2SSL(mskPT, mskDS),(C.5.11)

where the third line follows from Assumption 3.6.2 and the last line follows from Assumption

3.6.1. Taking (C.5.10) and (C.5.11) into (C.5.9), we obtain

(i) = E
[∥∥f̃PT(X; mskPT)− f †

WDS
(X; mskDS)

∥∥2
2

]
≤ E

[
2µ ·

∥∥f̂PT(X; mskPT)− f ∗
PT(X)

∥∥2
2

+ 2µ · ϵSSL(mskPT, mskDS)
]

≤ 2µ · EPTapprox + µ · E
[
ϵ2SSL(mskPT, mskDS)

]
= 2µ ·

(
EPTapprox + ϵ2SSL(mskPT, mskDS)

)
,(C.5.12)

where the third line follows from the definition of the regression function f ∗
PT(X) = E[yPT |X]

for the pretraining process and the definition of EPTapprox in (3.6.12).

Term (ii). By the same argument for (C.5.5), we have

(ii) = E
[∥∥∥Ez |X[g∗DS(z; mskDS)− g†WDS

(z; mskDS)
]∥∥∥2

2

]
.(C.5.13)

289

By Assumption 3.6.1, we have

∥∥∥Ez |X[g∗DS(z; mskDS)− g†WDS
(z; mskDS)

]∥∥∥2
2

=

dy∑
i=1

Ez |X
[
g∗DS,i(z; mskDS)− g†WDS,i

(z; mskDS)
]2

≤
dy∑
i=1

∥∥g∗DS,i(·; mskDS)− g†WDS,i
(·; mskDS)

∥∥2
∞ ≤ ϵ2g(mskDS).(C.5.14)

Taking (C.5.14) into (C.5.13), we obtain

(ii) ≤ ϵ2g(mskDS).(C.5.15)

Taking (C.5.12) and (C.5.15) into (C.5.8), we conclude the proof of Theorem 3.6.3. □

C.6. Auxiliary Proofs for Generalization

C.6.1. Proof of Lemma C.3.8

Proof. Throughout this proof, we consider a fixed dataset Dn = {(Xi, yi)}i∈[n]. Let

εm = 2−m with m ∈ [M+2], where M is a positive integer. We denote by Nm the covering of

the empirical image class IDn(Fj) that achieves the covering numberN(IDn(Fj), εm, ∥·∥r,∞).

In other words, for any fj ∈ Fj , let f̂m[fj] = (f̂m[fj,i])
⊤
i∈[n] ∈ Nm be the nearest element of

fj(Xi) in Nm, which implies that

max
i∈[n]

∣∣fj(Xi)− f̂m[fj,i]
∣∣ ≤ εm.

290

We have

RDn(Fj) = E
[

sup
fj∈Fj

1

n

n∑
i=1

ϵi · fj(Xi)

](C.6.1)

= E
[

sup
fj∈Fj

{
1

n

n∑
i=1

ϵi ·
(
fj(Xi)− f̂M [fj,i]

)
+

1

n

M−1∑
m=1

n∑
i=1

ϵi · (f̂m[fj,i]− f̂m+1[fj,i])

− 1

n

n∑
i=1

ϵi · f̂ 1[fj,i]

}]

≤ E
[

sup
fj∈Fj

1

n

n∑
i=1

ϵi ·
(
fj(Xi)− f̂M [fj,i]

)]

+
M−1∑
m=1

E
[

sup
fj∈Fj

1

n

n∑
i=1

ϵi · (f̂m[fj,i]− f̂m+1[fj,i])

]
+ E

[
sup
fj∈Fj

1

n

n∑
i=1

ϵi · f̂ 1[fj,i]

]

≤ E
[

sup
fj∈Fj

1

n

n∑
i=1

ϵi ·
(
fj(Xi)− f̂M [fj,i]

)]
︸ ︷︷ ︸

(i)

+
M−1∑
m=1

E
[

sup
fj∈Fj

1

n

n∑
i=1

ϵi · (f̂m[fj,i]− f̂m+1[fj,i])︸ ︷︷ ︸
(ii)

]
,

where the last line follows from the choice N1 = {0} and the fact that fj(Xi) ∈ [0, 1/2] for

any i ∈ [n]. In what follows, we analyze terms (i) and (ii).

Term (i). We have

(i) ≤ E
[

1

n

n∑
i=1

|ϵi|
]
· sup
fj∈Fj

max
i∈[n]

∣∣fj(Xi)− f̂M [fj,i]
∣∣ ≤ n · εM .(C.6.2)

291

Term (ii). Let fj,Dn = (fj(Xi))i∈[n] ∈ R1×n. We have

sup
fj∈Fj

∥∥f̂m[fj]− f̂m+1[fj]
∥∥
2
≤ sup

fj∈Fj

∥∥f̂m[fj]− fj,Dn

∥∥
2

+ sup
fj∈Fj

∥∥fj,Dn − f̂m+1[fj]
∥∥
2

≤
√
n · sup

fj∈Fj

∥∥f̂m[fj]− fj,Dn

∥∥
∞ +
√
n · sup

fj∈Fj

∥∥fj,Dn − f̂m+1[fj]
∥∥
∞

≤
√
n · εm +

√
n · εm+1 = 3

√
n · εm+1.(C.6.3)

Combining (C.6.3) with the Massart’s finite class lemma (Mohri et al., 2018), we obtain

E
[

sup
fj∈Fj

n∑
i=1

ϵi ·
(
f̂m[fj,i]− f̂m+1[fj,i]

)]
≤ 3
√
n · εm+1 ·

√
2 log

(
|Nm| · |Nm+1|

)
≤ 6
√
n · εm+1 ·

√
log |Nm+1|,(C.6.4)

where the second line follows from the fact that |Nm+1| ≥ |Nm|. Taking (C.6.2) and

(C.6.4) into (C.6.1), we obtain

RDn(Fj) ≤ εM +
6√
n
·
M−1∑
m=1

εm+1 ·
√

log |Nm+1|

≤ εM +
12√
n
·
M∑
m=1

(εm − εm+1) ·
√

log |Nm|

≤ εM +
12√
n

∫ 1/2

εM+1

√
logN

(
IDn(Fj), ε, ∥ · ∥r,∞

)
dε

≤ 4ξ +
12√
n

∫ 1/2

ξ

√
logN

(
IDn(Fj), ε, ∥ · ∥r,∞

)
dε,

where the last inequality holds for any 0 < ξ < 1 and the smallest M such that ξ ≤ εM+1,

which implies that εM = 2εM+1 < 4ξ. Therefore, we conclude the proof of Lemma

C.3.8. □

292

C.6.1.1. Proof of Matrix Ball Covering Lemma C.3.10.

Proof of Lemma C.3.10. Let M⊤ = (m1, . . . ,md1) ∈ Rd2×d1 , where mj ∈ Rd1 with

j ∈ [d2]. We define the vectorization of the matrix M ∈ Rd1×d2 as vec(M) = (m⊤
j)⊤j∈[d2] ∈

Rd1d2 . We define the sectional norm for the vector vec(M) ∈ Rd1d2 as follows,

∥∥vec(M)
∥∥
r(d2),s(d1)

= ∥M⊤∥r,s,

which can be verified to be a proper norm. In Lemma C.7.1, setting

B = B∗ =
{
m ∈ Rd1d2 : ∥m∥r(d2),s(d1) ≤ 1

}
=
{
M⊤ ∈ Rd2×d1 : ∥M⊤∥r,s ≤ 1

}
,

and ∥ · ∥ = ∥ · ∥∗ = ∥ · ∥r(d2),s(d1), we obtain

logN
({
M⊤ ∈ Rd2×d1 : ∥M⊤∥r,s ≤ Rm

}
, ε, ∥ · ∥r,s

)
= logN

({
m ∈ Rd1d2 : ∥m∥r(d2),s(d1) ≤ 1

}
, ε/RM , ∥ · ∥r,s

)
≤ vol(2RM/ε · B∗ + B)

vol(B)
= d1d2 · log

(
1 +

2RM

ε

)
.

Therefore, we conclude the proof of Lemma C.3.10. □

C.6.2. Lipschitz Continuity of Multihead Attention

Lemma C.6.1 (Lipschitz Continuous Softmax). Let (r, s) be a conjugate pair. Under

Assumption C.3.1, it holds for any q, q̂ ∈ Rdp and K = (kℓ)⊤ℓ∈[L], K̂ = (k̂ℓ)⊤ℓ∈[L] ∈ RL×dp

293

that

∥∥∥normSM(KRBF(K, q)
)
− normSM

(
KRBF(K̂, q)

)∥∥∥
1
≤
(
∥q∥r + ∥K⊤∥r,∞

)
· ∥K⊤ − K̂⊤∥r,∞,

(C.6.5)

∥∥∥normSM(KRBF(K, q)
)
− normSM

(
KRBF(K, q̂)

)∥∥∥
1
≤
(
∥q∥r + ∥K⊤∥r,∞

)
· ∥q − q̂∥r.

(C.6.6)

Proof. Let P = diag(p)− pp⊤ ∈ RL×L with p = (pℓ)ℓ∈[L] = normSM
(
KRBF(K, q)

)
∈ RL.

We have

pℓ ∝ exp
{
−∥q − kℓ∥22/2σ2

}
.

We define gℓ = −∥q − kℓ∥22/2σ2 and g = (gℓ)
⊤
ℓ∈[L] ∈ RL. Let the Jacobian of p ∈ RL with

respect to kℓ ∈ Rdp be Jℓ ∈ RL×dp . We have

Jℓ =
∂p

∂kℓ
=
∂p

∂g
· ∂g
∂kℓ

= P
∂g

∂kℓ
,

where ∂g/∂kℓ = (eℓq
⊤ − Eℓ,ℓK)/σ2. Here Eℓ,ℓ′ ∈ RL×L is the unit matrix whose (ℓ, ℓ′)-th

entry is one and all other entries are zero. Note that

∥∥∥∥ L∑
ℓ=1

Jℓ∆ℓ

∥∥∥∥
1

≤
L∑
ℓ=1

∥Jℓ∆ℓ∥1 ≤
L∑
ℓ=1

∥Jℓ∥r→1 · ∥∆ℓ∥r ≤ ∥∆∥r,∞ ·
L∑
ℓ=1

∥Jℓ∥r→1,

where ∆ = (∆⊤
ℓ)ℓ∈[L]. Thus, the Lipschitz continuity constant of softmax(q,K) is bounded

by
∑L

ℓ=1 ∥Jℓ∥r→1. Let eℓ ∈ RL be the ℓ-th one-hot vector with ℓ ∈ [L]. For any ℓ ∈ [L],

294

we have

∥Jℓ∥r→1 ≤
d
1−1/r
p

σ2
·
∥∥P (eℓq

⊤ − Eℓ,ℓK)
∥∥
1

=
d
1/s
p

σ2
· pℓ ·

∥∥(eℓ − p)(q − kℓ)⊤
∥∥
1

=
d
1/s
p pℓ
σ2

· ∥eℓ − p∥s · ∥q − kℓ∥r,(C.6.7)

where the equalities follow from 1/r + 1/s = 1. Summing up (C.6.7) for all ℓ ∈ [L], we

obtain

∑
ℓ∈[L]

∥Jℓ∥r→1 ≤
d
1/s
p

σ2
·
∑
ℓ∈[L]

pℓ · ∥eℓ − p∥s · ∥q − kℓ∥r

≤ d
1/s
p

σ2
·
(
∥q∥r + ∥K⊤∥r,∞

)
·
∑
ℓ∈[L]

pℓ · ∥eℓ − p∥s.(C.6.8)

On the other hand, we have

∑
ℓ∈[L]

pℓ · ∥eℓ − p∥s =
∑
ℓ∈[L]

{
pℓ ·
[∑
ℓ′ ̸=l

psℓ′ + (1− pℓ)s
]1/s}

≤
∑
ℓ∈[L]

pℓ ·
[
2(1− pℓ)s

]1/s ≤ 21/s.(C.6.9)

Combining (C.6.8) and (C.6.9), we have for σ = (2dp)1/2s that

∑
ℓ∈[L]

∥Jℓ∥r→1 ≤
(2dp)1/s

σ2
·
(
∥q∥r + ∥K⊤∥r,∞

)
.

295

Thus, normSM
(
KRBF(K, q)

)
is (∥q∥r + ∥K⊤∥r,∞)-Lipschitz in K⊤ with respect to ∥ · ∥r,∞,

which concludes the proof of (C.6.5). Since KRBF(q, k) = KRBF(k, q), we also have (C.6.6)

by the same arguments for (C.6.5). Therefore, we conclude the proof of Lemma C.6.1. □

C.6.2.1. Proof of Lemma C.3.12.

Proof. For notational simplicity, we write

headi = attnSM(XW
q
i , XW

k
i , XW

v
i), ĥeadi = attnSM(XŴ

q
i , XŴ

k
i , XŴ

v
i).

By the definition of sequence-to-sequence multihehead attention in (C.3.3), we have

∥∥mha(X;W)⊤ − mha(X; Ŵ)⊤
∥∥
r,∞ ≤

∥∥∥∥ h∑
i=1

head⊤i −
h∑
i=1

ĥead
⊤
i

∥∥∥∥
r,∞

≤
h∑
i=1

∥∥(headi − ĥeadi)
⊤∥∥

r,∞.(C.6.10)

Also, we have

∥∥(headi − ĥeadi)
⊤∥∥

r,∞(C.6.11)

=
∥∥attnSM(XW q

i , XW
k
i , XW

v
i)⊤ − attnSM(XŴ

q
i , XŴ

k
i , XŴ

v
i)⊤
∥∥
r,∞

=

∥∥∥∥((XW v
i)⊤normSM

(
KRBF(XW

k
i , x

ℓW q
i)
))

ℓ∈[L]

−
(

(XŴ v
i)⊤normSM

(
KRBF(XŴ

k
i , x

ℓŴ q
i)
))

ℓ∈[L]

∥∥∥∥
r,∞

= max
ℓ∈[L]

∥∥∥(XW v
i)⊤normSM

(
KRBF(XW

k
i , x

ℓW q
i)
)

− (XŴ v
i)⊤normSM

(
KRBF(XŴ

k
i , x

ℓŴ q
i)
)∥∥∥

r
.

296

Note that

∥xℓW q
i ∥r +

∥∥(XW k
i)⊤
∥∥
r,∞ ≤

∥∥(XW q
i)⊤
∥∥
r,∞ +

∥∥(XW k
i)⊤
∥∥
r,∞

(C.6.12)

≤
(∥∥(W q

i)⊤
∥∥
r

+
∥∥(W k

i)⊤
∥∥
r

)
· ∥X⊤∥r,∞ ≤ (ωq

i + ωk
i) ·R.

Then for any ℓ ∈ [L], we have

∥∥∥(XW v
i)⊤normSM

(
KRBF(XW

k
i , x

ℓW q
i)
)
− (XŴ v

i)⊤normSM
(
KRBF(XŴ

k
i , x

ℓŴ q
i)
)∥∥∥

r

≤
∥∥∥normSM(KRBF(XŴ

k
i , x

ℓŴ q
i)
)⊤
X(W v

i − Ŵ v
i)
∥∥∥
r

+

∥∥∥∥(normSM(KRBF(XW
k
i , x

ℓW q
i)
)
− normSM

(
KRBF(XŴ

k
i , x

ℓŴ q
i)
))⊤

XW v
i

∥∥∥∥
r

≤
∥∥(W v

i − Ŵ v
i)⊤
∥∥
r,s
· ∥X⊤∥r,∞

+
∥∥∥normSM(KRBF(XW

k
i , x

ℓW q
i)
)
−normSM

(
KRBF(XŴ

k
i , x

ℓŴ q
i)
)∥∥∥

1

∥∥(W v
i)⊤
∥∥
r
∥X⊤∥r,∞

≤ R · εvi +
(
∥xℓW q

i ∥r +
∥∥(XW k

i)⊤
∥∥
r,∞

)
· ωv

iR
2(εqi + εki)

≤ R · εvi + (ωq
i + ωk

i)ω
v
i ·R3 · (εqi + εki),

(C.6.13)

where the third inequality follows from Lemma C.7.3, the fourth inequality follows from

Lemma C.6.1, and the last inequality follows from (C.6.12). Taking (C.6.13) into (C.6.11),

we have

∥∥(headi − ĥeadi)
⊤∥∥

r,∞ ≤ R · εvi + (ωq
i + ωk

i)ω
v
i ·R3 · (εqi + εki).(C.6.14)

297

Taking (C.6.14) into (C.6.10), we obtain

∥∥mha(X;W)⊤ − mha(X; Ŵ)⊤
∥∥
r,∞ ≤ R ·

h∑
i=1

εvi +R3 ·
h∑
i=1

(ωq
i + ωk

i) · (ε
q
i + εki).

Therefore, we conclude the proof of Lemma C.3.12. □

C.6.2.2. Proof of Lemma C.3.14.

Proof. In this proof, with a slight abuse of notations, we write

headi = attnSM(XW
q
i , XW

k
i , XW

v
i), ĥeadi = attnSM(X̂W

q
i , X̂W

k
i , X̂W

v
i).

Similar to (C.6.10), we have

∥∥mha(X;W)⊤ − mha(X̂;W)⊤
∥∥
r,∞ ≤

h∑
i=1

∥∥(headi − ĥeadi)
⊤∥∥

r,∞.

298

For any fixed ℓ ∈ [L], we have

∥∥(headi − ĥeadi)
⊤∥∥

r,∞

=

∥∥∥∥((XW v
i)⊤normSM

(
KRBF(XW

k
i , x

ℓW q
i)
)
− (X̂W v

i)⊤normSM
(
KRBF(X̂W

k
i , x̂

ℓW q
i)
))

ℓ∈[L]

∥∥∥∥
r,∞

= max
ℓ∈[L]

∥∥∥(XW v
i)⊤normSM

(
KRBF(XW

k
i , x

ℓW q
i)
)
− (X̂W v

i)⊤normSM
(
KRBF(X̂W

k
i , x̂

ℓW q
i)
)∥∥∥

r

≤ max
ℓ∈[L]

∥∥∥normSM(KRBF(XW
k
i , x

ℓW q
i)
)∥∥∥

1
·
∥∥(W v

i)⊤
∥∥
r
· ∥X⊤ − X̂⊤∥r,∞

+ max
ℓ∈[L]

∥∥∥normSM(KRBF(XW
k
i , x

ℓW q
i)
)
−normSM

(
KRBF(X̂W

k
i , x̂

ℓW q
i)
)∥∥∥

1

∥∥(W v
i)⊤
∥∥
r
∥X⊤∥r,∞

≤
∥∥(W v

i)⊤
∥∥
r
· ∥X⊤ − X̂⊤∥r,∞

+ max
ℓ∈[L]

∥∥(W v
i)⊤
∥∥
r
R2 · (ωq

i + ωk
i)
(
∥xℓW q

i ∥r +
∥∥(XW k

i)⊤
∥∥
r,∞

)

≤ ωv
i ·
[
1 +R2 · (ωq

i + ωk
i)

2
]
· ∥X⊤ − X̂⊤∥r,∞,

(C.6.15)

where the second inequality follows from Lemma C.6.1 and (C.6.12), the third inequality

follows from Lemma C.6.1, and the last inequality follows from (C.6.12). Summing up

(C.6.15), we obtain

∥∥mha(X;W)⊤ − mha(X̂;W)⊤
∥∥
r,∞ ≤

{ h∑
i=1

ωv
i ·
[
1 +R2 · (ωq

i + ωk
i)

2
]}
· ∥X⊤ − X̂⊤∥r,∞

=

[h∑
i=1

ωv
i +R2 ·

h∑
i=1

(ωq
i + ωk

i)
2ωv

i

]
· ∥X⊤ − X̂⊤∥r,∞.

Therefore, we conclude the proof of Lemma C.3.14. □

299

C.7. Auxiliary Lemmas

Lemma C.7.1 (Volume Ratios and Metric Entropy, Wainwright (2019)). Consider a pair

of norms ∥ · ∥ and ∥ · ∥∗ on Rd, and let B and B∗ be their corresponding unit balls. Then

the ε-covering number of B∗ in the ∥ · ∥-norm obeys the bounds

ε−d · vol(B∗)

vol(B)
≤ N

(
B∗, ε, ∥ · ∥

)
≤ vol(2/ε · B∗ + B)

vol(B)
.

Lemma C.7.2 (Caponnetto and De Vito (2007)). Let (Ω, ν) be a probability space and

ξ be a random variable on Ω taking value in a real separable Hilbert space H. We assume

that there exists constants B, σ > 0 such that

∥∥ξ(w)
∥∥
H ≤ B/2, a.s., E

[
∥ξ∥2H

]
≤ σ2.

Then, it holds with probability at least 1− δ that

∥∥∥∥L−1

L∑
i=1

ξ(ωi)− E[ξ]

∥∥∥∥ ≤ 2

(
B

L
+

σ√
L

)
log

2

δ
.

Lemma C.7.3. Let (r, s) be a conjugate pair. For any M ∈ Rd1×d2 , u ∈ Rd2×1, and

U ∈ Rd2×d3 , we have

∥Mu∥r ≤ ∥M∥r,∞ · ∥u∥1,

∥MU∥r,∞ ≤ ∥M∥r,s · ∥U∥r,∞,

∥MU∥r,∞ ≤ ∥M∥r · ∥U∥r,∞.

300

Proof. Let M = (mi)i∈[d2] and b = (bi)
⊤
i∈[d2]. We have

∥Mu∥r =

∥∥∥∥ d2∑
j=1

uj ·mj

∥∥∥∥
r

≤
(d2∑
j=1

|uj|
)
· max
j∈[d2]

∥mj∥r = ∥M∥r,∞ · ∥u∥1.

Also, we have

∥Mu∥r =

∥∥∥∥ d2∑
j=1

uj ·mj

∥∥∥∥
r

≤
(d2∑
j=1

|uj| · ∥mj∥r
)
≤ ∥M∥r,s · ∥u∥r.

As a consequence, with U = (ui)i∈[d3], we have

∥MU∥r,∞ = max
j∈[d3]

∥Muj∥r ≤ max
j∈[d3]

∥M∥r,s · ∥uj∥r = ∥M∥r,s · ∥U∥r,∞.

On the other hand, by the definition of the matrix operator norm, we obtain

∥MU∥r,∞ = max
j∈[d3]

∥Muj∥r ≤ max
j∈[d3]

∥M∥r · ∥uj∥r = ∥M∥r · ∥U∥r,∞.

Therefore, we conclude the proof of Lemma C.7.3. □

Lemma C.7.4 (Covering Coefficient Bounds). We have for all t = 0, . . . , T − 1 that

1 + ρ(W(t)) ≤ ω̃v,(t) + (ωqk,(t))2ωv,(t) · (R(t))2 = ρ̃(t),

Rmha(W
(t)) ≤ Rv,(t) + ωqk,(t)Rqk,(t) · (R(t))2 = R

(t)
mha,

where ρ̃(t) and R
(t)
mha are defined in (C.3.20).

301

Proof. By the definition of Rmha(W) in (C.3.32), we have

Rmha(W
(t)) =

h∑
i=1

R
v,(t)
i + (Rx,(t))2 ·

h∑
i=1

(ω
q,(t)
i + ω

k,(t)
i)(R

q,(t)
i +R

k,(t)
i)

≤ Rv,(t) + (R(t))2 ·max
i∈[h]
{ωq,(t)

i + ω
k,(t)
i } ·

h∑
i=1

(R
q,(t)
i +R

k,(t)
i)

= Rv,(t) + ωqk,(t)Rqk,(t) · (R(t))2 = R
(t)
mha.

Also, by the definition of ρ(W) in (C.3.34), we have

1 + ρ(W(t)) = 1 +
h∑
i=1

ω
v,(t)
i + (Rx,(t))2 ·

h∑
i=1

(ω
q,(t)
i + ω

k,(t)
i)2ω

v,(t)
i

≤ ω̃v,(t) + (R(t))2 ·max
i∈[h]
{ωq,(t)

i + ω
k,(t)
i }2 ·

h∑
i=1

ω
v,(t)
i

= ω̃v,(t) + (ωqk,(t))2ωv,(t) · (R(t))2 = ρ̃(t).

Therefore, we conclude the proof of Lemma C.7.4. □

Lemma C.7.5 (Simplified Covering Coefficient). It holds that

√
log(1 +R(T)Rtrans) = O

(
T
√

log(1 + γ) +
√
T
√

log(1 + ζR(0)) +
√

log(1 + κ/ζ)
)
,

where γ, ζ, and κ are defined in (C.3.13). Here R(t) and Rtrans are defined in (C.3.18) and

(C.3.19), respectively.

302

Proof. By the definitions of κ(t) and ζ(t) in (C.3.12), we have

R
(t)
mha

ρ̃(t)
=

Rv,(t) + ωqk,(t)Rqk,(t) · (R(t))2

ω̃v,(t) + (ωqk,(t))2ωv,(t) · (R(t))2
≤ max

{
Rv,(t)

ω̃v,(t)
,

Rqk,(t)

ωqk,(t)ωv,(t)

}
≤ κ(t),

ρ̃(t)

ω̃v,(t)
= 1 +

(ωqk,(t))2ωv,(t)

ω̃v,(t)
· (R(t))2 = 1 + ζ(t) · (R(t))2,

which implies

Rtrans =
T−2∑
t=0

(
R

(t)
mha

ρ̃(t)
·
T−1∏
τ=t+1

ρ̃(τ)

ω̃v,(τ)

)
+

T−1∑
t=0

(
αx,(t)Rσ,(t) + ασ,(t)Rx,(t)

α̃(t)
·
T−1∏
τ=t+1

ρ̃(τ)

ω̃v,(τ)

)

≤
T−1∑
t=0

{
(κ(t) + κ(t)) ·

T−1∏
τ=t+1

[
1 + ζ(t) · (R(t))2

]}

≤ 2κ ·
T−1∑
t=0

{ T−1∏
τ=t+1

[
1 + ζ · (R(t))2

]}
,

where the last line follows from the definition of κ and ζ in (C.3.13). By the definition of

R(t) in (C.3.18) and the definition of γ in (C.3.13), we have

R(t) = R(0) ·
t−1∏
τ=0

ω̃v,(τ)α̃(τ) ≤ R(0) · (1 + γ)2t.

303

As a consequence, we obtain

R(T)Rtrans ≤ 2κR(0) · (1 + γ)2T ·
T−1∑
t=0

T−1∏
τ=t+1

[
1 + ζR(0) · (1 + γ)4τ

]
≤ 2κR(0) · (1 + γ)2T ·

T−1∑
t=0

[
1 + ζR(0) · (1 + γ)4T

]T−t+2

= 2κ ·
[
1 + ζR(0) · (1 + γ)4T

]3 · [1 + ζR(0) · (1 + γ)4T
]T − 1

ζ · (1 + γ)2T

≤ 2κ

ζ
·
[
1 + ζR(0) · (1 + γ)4T

]T+3
.

Thus, using
√
a+ b ≤

√
a+
√
b and log(1 + ab) ≤ log(1 + a) + log(1 + b), we further obtain

√
log(1 +R(T)Rtrans) = O

(√
T 2 log(1 + γ) + T log(1 + ζR(0)) + log(1 + κ/ζ)

)
= O

(
T
√

log(1 + γ) +
√
T
√

log(1 + ζR(0)) +
√

log(1 + κ/ζ)
)
.

Therefore, we conclude the proof of Lemma C.7.5. □

Lemma C.7.6 (Inter-Layer Magnitude). Under Assumptions 3.5.2 and C.3.3, it holds

that

∥∥(X(t))⊤
∥∥
r,∞ ≤ α̃(t)R(t),

∥∥(X(t)
⋆)⊤

∥∥
r,∞ ≤ R(t),

where R(t) is defined in (C.3.18).

Proof. Setting X̂ = 0L×d in (C.6.10), we have

∥∥mha(X;W)⊤
∥∥
r,∞ ≤

h∑
i=1

∥head⊤i ∥r,∞.

304

We have for all i ∈ [h] that

∥head⊤i ∥r,∞ =

∥∥∥∥((XW v
i)⊤normSM

(
KRBF(XW

k
i , x

ℓW q
i)
))

ℓ∈[L]

∥∥∥∥
r,∞

= max
l∈[L]

∥∥∥(XW v
i)⊤normSM

(
KRBF(XW

k
i , x

ℓW q
i)
)∥∥∥

r

≤ max
l∈[L]

∥∥∥normSM(KRBF(XW
k
i , x

ℓW q
i)
)∥∥∥

1
·
∥∥(W v

i)⊤
∥∥
r
· ∥X⊤∥r,∞ ≤ ωv

i · ∥X⊤∥r,∞,

which implies that

∥∥mha(X;W)⊤ +X⊤∥∥
r,∞ ≤ ∥X

⊤∥r,∞ +

(h∑
i=1

ωv
i

)
· ∥X⊤∥r,∞ = (1 + ωv) · ∥X⊤∥r,∞.

As a consequence, we have

∥∥(X(t)
⋆)⊤

∥∥
r,∞ ≤ (1 + ωv,(t)) ·

∥∥(X(t))⊤
∥∥
r,∞ = ω̃v,(t) ·

∥∥(X(t))⊤
∥∥
r,∞.(C.7.1)

On the other hand, setting X̂
(t)
⋆ = 0L×d in (C.3.39), we have

∥∥(X(t+1))⊤
∥∥
r,∞ =

∥∥ffn(X(t)
⋆ ;A(t))⊤

∥∥
r,∞ ≤ α̃(t) ·

∥∥(X(t)
⋆)⊤

∥∥
r,∞.(C.7.2)

Recursively applying (C.7.1) and (C.7.2), we conclude the proof of Lemma C.7.6. □

305

APPENDIX D

What and How does In-Context Learning Learn? Bayesian

Model Averaging, Parameterization, and Generalization

D.1. More Related Works

Generalization. Our analysis of the pretraining is also related to the generalization

analysis of the neural networks. This topic has attracted a lot of interests for a long

time. Anthony et al. (1999) derived the uniform generalization bound for fully-connected

neural networks with the help pf VC dimension. Bartlett et al. (2017) sharpened this

generalization bound for classification problem by adopting the Dudley’s integral and

calculating of the covering number of neural network class. At the same time, Neyshabur

et al. (2017) derived a similar as Bartlett et al. (2017) from PAC-Bayes framework.

Following this line, Liao et al. (2020) , Ledent et al. (2021) and Lin and Zhang (2019)

built the generalization bound for graph neural networks and convolutional neural network.

These results respected the underlying graph structure and the translation-invariance in

the networks. Edelman et al. (2021) established the generalization bound for transformer,

but this result did not reflect the permutation-invariance, still depending on the channel

number. Our work focuses on the analysis of Maximum Likelihood Estimate (MLE) with

transformer function class, which is not covered by previous works. Our bounds are sharper

than that of Edelman et al. (2021) on the channel number dependency.

306

D.2. Proofs for Section 4.4.1

D.2.1. Proof of Theorem 4.4.1

Proof. By (4.4.1), we have that

P(rt+1 | promptt) =

∫
P(rt+1 | ct+1, ht+1)P(ht+1 |St)dht+1

=

∫
P(rt+1 | ct+1, ht+1)P(ht+1 |St, z)P(z |St)dht+1dz

=

∫
P(rt+1 | ct+1, St, z)P(z |St)dz,(D.2.1)

where the first and the last equalities results from model (4.4.2), and the second equality

results from Bayes’ theorem. □

D.2.2. Proof of Theorem 4.4.2

Proof. Note that

P(z |St) =
P(St | z)PZ(z)∫
P(St | z)PZ(z′)dz′

=

∏t
i=1 P(ri | z, St, ci)PZ(z)∫ ∏t

i=1 P(ri | z′, Si−1, ci)PZ(z′)dz′
.

Then, by Bayesian model averaging, we have the following density estimation,

P(rt+1 |St, ct+1) =

∫
P(rt+1 | z, St, ct+1)P(z |St)dz

=

∫ ∏t+1
i=1 P(ri | z, Si−1, ci)PZ(z)dz∫ ∏t
i=1 P(ri | z′, Si−1, ci)PZ(z′)dz′

.

307

Thus, it holds that

−
T∑
t=0

logP(rt+1 | ct+1, St)

= −
t∑
i=1

(
log

∫ t+1∏
i=1

P(ri | z, Si−1, ci)PZ(z)dz − log

∫ t∏
i=1

P(ri | z, Si−1, ci)PZ(z)dz

)

= − log

∫ T+1∏
i=1

P(ri | z, Si−1, ci)PZ(z)dz

= inf
q
Ez∼q

[
−

T+1∑
i=1

logP(ri | z, Si−1, ci)

]
+ Ez∼q

[
log

q(z)

PZ(z)

]
.

We consider q to be in the class of all Dirac measures. Then, we have that

− 1

T

T∑
t=1

logP(rt | ct, St−1) ≤
1

T
inf
z

(
−

T∑
t=1

logP(rt | z, St−1, ct)− logPZ(z)
)
.

Thus, the statistical convergence rate of the Bayesian posterior averaging is O(1/T). □

D.2.3. Proof of Proposition 4.4.3

Proof. The result follows from Propositions 3.4.1 and 3.4.2.

□

D.3. Appendix for Section 4.5

D.3.1. Supplemental Definitions for Markov Chains

We follow the notations in Paulin (2015). Let Ω be a Polish space. The transition kernel

for a time-homogeneous Markov chain {Xi}∞i=1 supported on Ω is a probability distribution

P(x, dy) for every x ∈ Ω. Given X1 = x1, · · · , Xt−1 = xt−1, the conditional distribution

308

of Xt equals P(xt−1, dy). A distribution π is said to be a stationary distribution of this

Markov chain if
∫
x∈Ω P(x, dy)π(dx) = π(dy). We adopt Pt(x, ·) to denote the distribution

of Xt conditioned on X1 = x. The mixing time of the chain is defined by

d(t) = sup
x∈Ω

TV
(
P t(x, ·), π

)
, tmix(ε) = min{t | d(t) ≤ ε}, tmix = tmix(1/4).

D.3.2. Proof of Theorem 4.5.3

Proof of Theorem 4.5.3. Our proof mainly involves three steps.

• Error decomposition with the PAC-Bayes framework.

• Control each term in the error decomposition.

• Conclude the proof.

Step 1: Error decomposition with the PAC-Bayes framework.

For ease of notation, we temporarily write Tp and Np as T and N , respectively. Recall

that the pretraining dataset is D = {(Snt , xnt+1)}
N,T
n,t=1, which consists of N trajectories

(essays), and each essay have T + 1 words. Given Snt , the next word is generated as xnt+1 ∼

P(· |Snt), and Snt+1 = (Snt , x
n
t+1). Here, we construct a ghost sample D̃ = {(S̃nt , x̃nt+1)}

N,T
n,t=1

as S̃nt = Snt and x̃nt+1 ∼ P(· | S̃nt) independently from D. We define function g(θ) =

L(θ,D)− logED̃[exp(L(θ, D̃)) | D], where

L(θ, D̃) = −1

4

N∑
n=1

T∑
t=1

log
P(xnt+1 |Snt)

Pθ(xnt+1 |Snt)
.

309

For distributions Q,P ∈ ∆(Θ), where P can potentially depends on D, Lemma D.6.2

shows that

EP
[
g(θ)

]
≤ KL(P∥Q) + logEQ

[
exp

(
f(θ)

)]
.

Substituting the definition of g(θ) and taking expectation with respect to the distribution

of D on the both sides of the inequality, we can derive that

ED

[
exp

{
EP
[
L(θ,D)− logED̃

[
exp

(
L(θ, D̃)

)
| D
]]
−KL(P ∥Q)

}]
≤ 1.

With Chernoff inequality, we can show that with probability at least 1− δ, the following

holds

−Eθ∼P
[

logED̃
[

exp
(
L(θ, D̃)

)
| D
]]
≤ −EP

[
L(θ,D)

]
+ KL(P ∥Q) + log

1

δ
.(D.3.1)

310

We first cope with the left-hand side of (D.3.1).

− EP
[

logED̃
[

exp
(
L(θ, D̃)

)
| D
]]

≥ −1

2
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
P(xnt+1 |Snt)

Pθ̂(xnt+1 |Snt)

) ∣∣∣∣D]

− 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x

n
t+1 |Snt)

Pθ(xnt+1 |Snt)

) ∣∣∣∣D]]

= −1

2

N∑
n=1

T∑
t=1

logExnt+1∼P(· |Sn
t)

[
exp

(
− 1

2
log

P(xnt+1 |Snt)

Pθ̂(xnt+1 |Snt)

) ∣∣∣∣D]

− 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x

n
t+1 |Snt)

Pθ(xnt+1 |Snt)

) ∣∣∣∣D]]

≥ 1

4

N∑
n=1

T∑
t=1

TV
(
P(· |Snt),Pθ̂(· |S

n
t)
)2

− 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x

n
t+1 |Snt)

Pθ(xnt+1 |Snt)

) ∣∣∣∣D]],(D.3.2)

where the first inequality results from the definition of L(θ,D) and Cauchy-Schwarz

inequality, the equality results from that the transitions of xnt+1 are independent given D,

and the last inequality results from Lemma D.6.4. The second term in the right-hand side

of (D.3.2) can be controlled if the distribution P is chosen to concentrate around θ̂. This

will be done in Step 2. Now we consider the right-hand side of (D.3.1). For any θ∗ ∈ Θ,

311

we can decompose it as

− EP
[
L(θ,D)

]
= EP

[
1

4

N∑
n=1

T∑
t=1

log
P(xnt+1 |Snt)

Pθ∗(xnt+1 |Snt)
+ log

Pθ∗(xnt+1 |Snt)

Pθ̂(xnt+1 |Snt)
+ log

Pθ̂(x
n
t+1 |Snt)

Pθ(xnt+1 |Snt)

]

≤ 1

4

N∑
n=1

T∑
t=1

log
P(xnt+1 |Snt)

Pθ∗(xnt+1 |Snt)
+

1

4

N∑
n=1

T∑
t=1

EP
[

log
Pθ̂(x

n
t+1 |Snt)

Pθ(xnt+1 |Snt)

]
,(D.3.3)

where the inequality results from the fact that θ̂ maximizes the likelihood. We will choose

θ∗ as the projection of P onto {Pθ | θ ∈ Θ}. Thus, the first term in the right-hand side

of (D.3.3) is the approximation error. The second term in the right-hand side of (D.3.3)

can be controlled in the same way as the second term in the right-hand side of (D.3.2).

Combining inequalities (D.3.1), (D.3.2), and (D.3.3), we have that

1

4

N∑
n=1

T∑
t=1

TV
(
P(· |Snt),Pθ̂(· |S

n
t)
)2

≤ 1

2
EP
[

logED̃

[
exp

(
− 1

2

N,T∑
n,t=1

log
Pθ̂(x

n
t+1 |Snt)

Pθ(xnt+1 |Snt)

) ∣∣∣∣D]]+
1

4

N,T∑
n,t=1

EP
[

log
Pθ̂(x

n
t+1 |Snt)

Pθ(xnt+1 |Snt)

]
︸ ︷︷ ︸

(I)

+
1

4

N∑
n=1

T∑
t=1

log
P(xnt+1 |Snt)

Pθ∗(xnt+1 |Snt)︸ ︷︷ ︸
(II)

+ KL(P ∥Q)︸ ︷︷ ︸
(III)

+ log
1

δ
,

(D.3.4)

where term (I) is the fluctuation error induced by θ ∼ P , term (II) is the approximation

error, and term (III) is the KL divergence between P and Q.

Step 2: Control each term in the error decomposition.

312

We first consider term (I). We need to quantify the fluctuation of Pθ when θ is changing.

Proposition D.3.1. For any input X ∈ RL×d and θ, θ̃ ∈ Θ, we have that

TV
(
Pθ(· |X),Pθ̃(· |X)

)
≤ 2

τ

∥∥A(D+1),⊤ − Ã(D+1),⊤∥∥
1,2

+
D∑
t=1

αt(βt + ιt + κt + ρt),

where

αt =
2

τ
BA(1 +BA,1 ·BA,2)

(
1 + hBV (1 + 4BQBK)

)D−t

βt = |γ(t)2 − γ̃
(t)
2 |+ (1 +BA,1 ·BA,2) ·

(
1 + (∥X⊤∥2,∞ − 1)It=1

)
· |γ(t)1 − γ̃

(t)
1 |

ιt = BA,2 · ∥A(t)
1 − Ã

(t)
1 ∥F +BA,1 · ∥A(t)

2 − Ã
(t)
2 ∥F

κt = (1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·

h∑
i=1

∥∥W V,(t)
i − W̃ V,(t)

i ∥F

ρt = 2(1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·BV

·
h∑
i=1

BK · ∥WQ,(t+1)
i − W̃Q,(t+1)

i ∥F +BQ · ∥WK,(t+1)
i − W̃K,(t+1)

i ∥F

for all t ∈ [D].

Proof of Proposition D.3.1 . See Appendix D.5.2. □

313

With the help of Proposition D.3.1, we set the distribution P as

P =
D+1∏
t=1

LP
(
θ(t)
)

(D.3.5)

LP
(
θ(D+1)

)
= Unif

(
B
(
Â(D+1), r(D+1), ∥ · ∥1,2

))
LP
(
θ(t)
)

= Unif
(
B
(
γ̂
(t)
1 , r

(t)
γ,1, | · |

))
· Unif

(
B
(
γ̂
(t)
2 , r

(t)
γ,2, | · |

))
· LP (A(t)) · LP (W (t))

LP (A(t)) = Unif
(
B
(
Â

(t)
1 , r

(t)
A,1, ∥ · ∥F

))
· Unif

(
B
(
Â

(t)
2 , r

(t)
A,2, ∥ · ∥F

))
LP (W (t)) =

h∏
i=1

Unif
(
B
(
Ŵ

Q,(t)
i , r

(t)
Q , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

K,(t)
i , r

(t)
K , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

V,(t)
i , r

(t)
V , ∥ · ∥F

))
for t ∈ [D], where Unif denotes the uniform distribution on the set, B(a, r, ∥ · ∥) =

{x | ∥x− a∥ ≤ r} denotes the ball centered in a with radius r, the radius is set as

r
(t)
γ,1 = R−1(1 +BA,1 ·BA,2)

−1α−1
t /NT, r

(t)
γ,2 = R−1α−1

t /NT

r
(t)
A,1 = R−1B−1

A,2α
−1
t /NT, r

(t)
A,2 = R−1B−1

A,1α
−1
t /NT,

r
(t)
V = R−1h−1(1 +BA,1 ·BA,2)

−1α−1
t /NT,

r
(t)
Q = R−1h−1(1 +BA,1 ·BA,2)

−1B−1
V B−1

K α−1
t /NT

r
(t)
K = R−1h−1(1 +BA,1 ·BA,2)

−1B−1
V B−1

Q α−1
t /NT, r(D+1) = τB−1

A /NT.

Under this assignment, we now bound | logPθ̂(x |S)/Pθ(x |S)| for any S ∈ RL×d and

x ∈ Rdy . We first note that

Pθ̂(x |S) ≥ by = (1 + dy exp(BA/τ))−1(D.3.6)

314

for any S and x. This results from the fact that

∥∥∥∥ 1

Lτ
I⊤LX(D)A(D+1)

∥∥∥∥
1

≤
∥∥A(D+1),⊤∥∥

1,2
≤ BA.

If TV(Pθ(· |S),Pθ̃(· |S)) = ε ≤ by/2, some basic calculations show that

by
by + ε

≤
Pθ̂(x |S)

Pθ(x |S)
≤ 1 +

2ε

by
.

Thus, we have

∣∣∣∣ log
Pθ̂(x |S)

Pθ(x |S)

∣∣∣∣ ≤ 2ε

by
= O

(1

NT

)
for P a.s.

Based on this, we conclude that

(I) = O(1).(D.3.7)

Next, we control term (III) in (D.3.4). We take Q as

Q =
D+1∏
t=1

LQ
(
θ(t)
)

(D.3.8)

LQ
(
θ(D+1)

)
= Unif

(
B
(
0, BA, ∥ · ∥1,2

))
LQ
(
θ(t)
)

= Unif
(
B
(
1/2, 1/2, | · |

))
· Unif

(
B
(
1/2, 1/2, | · |

))
· LQ(A(t)) · LQ(W (t))

LQ(A(t)) = Unif
(
B
(
0, BA,1, ∥ · ∥F

))
· Unif

(
B
(
0, BA,2, ∥ · ∥F

))
LQ(W (t)) =

h∏
i=1

Unif
(
B
(
0, BQ, ∥ · ∥F

))
· Unif

(
B
(
0, BK , ∥ · ∥F

))
· Unif

(
B
(
0, BV , ∥ · ∥F

))
.

315

Then the KL divergence between P and Q is

KL(P ∥Q)

= O
(

(D2 · d · (dF + dh + d) + d · dy) · log
(
1 +NTτ−1RhBABA,1BA,2BQBKBV

))
.

(D.3.9)

Finally, we control term (II) in (D.3.4). This term can be controlled as

1

NT

N∑
n=1

T∑
t=1

log
P(xnt+1 |Snt)

Pθ∗(xnt+1 |Snt)

=
1

NT

N∑
n=1

T∑
t=1

log
P(xnt+1 |Snt)

Pθ∗(xnt+1 |Snt)
− 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL
(
P(· |Snt) ∥Pθ∗(· |Snt)

)
+

1

NT

N∑
n=1

T∑
t=1

ESn
t
KL
(
P(· |Snt) ∥Pθ∗(· |Snt)

)
.

The first two terms in the right-hand side of the equality is the generalization error, which

can be bounded with Lemma D.6.3. With Assumption 4.5.2, we note that

∣∣∣∣ log
P(x |S)

Pθ∗(x |S)

∣∣∣∣ ≤ b∗ = log max{c−1
0 , b−1

y },(D.3.10)

so the function satisfies the condition in Lemma D.6.3 with ci = 2b∗. Using the moment

generating function bound in Lemma D.6.3 and Chernoff bound, we have that

1

NT

N∑
n=1

T∑
t=1

log
P(xnt+1 |Snt)

Pθ∗(xnt+1 |Snt)
− 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL
(
P(· |Snt) ∥Pθ∗(· |Snt)

)
≤
√
tminb∗,2

2NT
log

1

δ
(D.3.11)

with probability at least 1− δ.

316

Step 3: Conclude the proof.

Combining inequalities (D.3.4), (D.3.7), (D.3.9), and (D.3.11), we have that

1

NT

N∑
n=1

T∑
t=1

TV
(
P(· |Snt),Pθ̂(· |S

n
t)
)

≤

√√√√ 1

NT

N∑
n=1

T∑
t=1

TV
(
P(· |Snt),Pθ̂(· |Snt)

)2
= O

(
t
1/4
min

(NT)1/4
log

1

δ
+

√
D2d(dF + dh + d) + d · dy√

NT
· log

(
1 +NTB̄

)
+ inf

θ∗∈Θ

√√√√ 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL
(
P(· |Snt) ∥Pθ∗(· |Snt)

))
,

where we take θ∗ as the best approximation parameters. Finally, we will change the

left-hand side of this inequality to the expectation of it. In fact, we have that

Proposition D.3.2. Let F be the collection of functions of f : Rn → R, and we assume

that |f | ≤ b for any function f ∈ F . For a Markov chain X = (X1, ·, XN), we define

f(X) =
∑N

i=1 f(Xi)/N . The mixing time of this Markov chain is denoted as tmix(ε). Given

a distribution P0 on F , with probability at least 1− δ, we have

∣∣∣EP[EX[f(X)
]
− f(X)

]∣∣∣ ≤√ b2 · tmin

2 log 2N

[
KL(P ∥P0) + log

4

δ

]
,

for any distribution P on F simultaneously with probability at least 1− δ, where

tmin = inf
0≤ε<1

tmix(ε) ·
(

2− ε
1− ε

)2

.

Proof of Proposition D.3.2. See Appendix D.5.1. □

317

We note that Proposition D.3.2 is indeed an uniform convergence bound, since it holds

simultaneously for all P . Thus, we can set P and P0 as those in equalities (D.3.5) and

(D.3.8), then we have that

1

NT

N∑
n=1

T∑
t=1

ESn
t

[
TV

(
P(· |Snt),Pθ̂(· |S

n
t)
)]
− 1

NT

N∑
n=1

T∑
t=1

TV
(
P(· |Snt),Pθ̂(· |S

n
t)
)

= O
(√

tmin√
NT

(
D̄ log(1 +NTB̄) + log

1

δ

))
.

Thus, we have that

1

NT

N∑
n=1

T∑
t=1

ESn
t

[
TV

(
P(· |Snt),Pθ̂(· |S

n
t)
)]

= O
(

t
1/4
min

(NT)1/4
log

1

δ
+

√
tmin√
NT

(
D̄ log(1 +NTB̄) + log

1

δ

)

+ inf
θ∗∈Θ

√√√√ 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL
(
P(· |Snt) ∥Pθ∗(· |Snt)

))
.

We conclude the proof of Theorem 4.5.3.

□

D.3.3. Formal Statement and Proof of Proposition 4.5.4

Denote the alphabet of the language as X ⊆ R (d = 1), then the conditional distribution

P∗ can be viewed as a function g∗ : XL → Rdy , where L is the maximal length of a sentence,

and the output is the distribution of the next word. Since A is finite, Theorem 2 in Zaheer

318

et al. (2017) shows that there exist ρ∗ : R→ Rdy and ϕ∗ : X→ R such that

g∗(X) = ρ∗
(

1

L

L∑
i=1

ϕ∗(xi)

)
,

where X = [x1, · · · , xL]. The ith component of ρ∗ is denoted as ρ∗i for i ∈ [dy]. For a

function f defined on Ω, the L∞ norm of it is defined as ∥f∥∞ = supx∈Ω |f(x)|. The set of

the real-valued smooth functions on it is denoted as S∞(Ω,R), Then we denote the set of

the smooth functions with bounded derivatives as

SB =
{
f ∈ S∞([−B,B],R) |

∥∥f (n)(x)
∥∥ ≤ n! for all n ∈ N

}
,

where f (n) is the nth-order derivative of f .

Assumption D.3.3. There exists B > 0 such that ϕ∗, τ log ρ∗i ∈ SB for i ∈ [dy].

This assumption states that the function g∗ is smooth enough for transformers to

approximate.

Proposition D.3.4. Under Assumptions 4.5.2 and D.3.3, if dF ≥ 16dy, BA,1 ≥ 16Rdy,

BA,2 ≥ dF BA ≥
√
dy, and BV ≥

√
d, then

max
∥S⊤∥2,∞≤R

KL
(
P∗(· |S) ∥Pθ∗(· |S)

)
= O

(
dy exp

(
− D1/4√

C2B2 logBA,1

))
,

for some constant C > 0.

Proof of Proposition D.3.4. Our proof mainly involves three steps.

• Build the high-level transformer approximator for g∗.

• Build the approximators in the transformer for ϕ∗ and ρ∗i separately.

• Conclude the proof.

319

Step 1: Build the high-level transformer approximator for g∗

Without loss of generality, we assume that B > 1 in Assumption D.3.7. To approximate

ϕ∗, we ignore the attention module in the transformer by setting W
V,(t)
i = 0, γ

(t)
1 = 1,

γ
(t)
2 = 0 for all i ∈ [h]. We further set A

(t)
2 = IdF ∈ RdF×dF , which is the identity matrix.

The network structure now is

X(t+1) = Πnorm

[
ReLU(X(t)A

(t+1)
1 + b(t+1) · IL)

]
,

where b(t+1) ∈ R is the bias term. In Step 2, we will use this fully-connected network

to approximate ϕ∗. To approximate the average 1
L

∑L
i=1 ϕ

∗(xi), we take W
Q,(t)
i = 0,

W
K,(t)
i = 0, and W

V,(t)
i = Id, γ(t)1 = 0, γ

(t)
2 = 1, A

(t)
2 = 0. After this average aggregation,

we still take W
V,(t)
i = 0, γ

(t)
1 = 1, γ

(t)
2 = 0 for all i ∈ [h] and A

(t)
2 = IdF ∈ RdF×dF

to approximate ρ∗i for i ∈ [dy]. We stack the approximators for ρ∗i to approximate ρ∗,

multiplying the width of the networks by dF .

Step 2: Build the approximators in the transformer for ϕ∗ and ρ∗i separately.

In the first and the Dth layer, we take A
(1),′
1 = A

(1)
1 /R and A

(D),′
1 = A

(D)
1 ·R to normalize

and retrieve the magnitudes of inputs, where R is the range of the inputs. This will keep

the magnitudes of the intermediate outputs small. Next, we will use Lemma D.6.8 to

construct the networks. In the proof of Lemma D.6.8, the norm of the outputs of the

intermediate layers do not excess the range of the inputs, so the layer normalization in our

networks will not influence the constructed approximators. In this case, we can respectively

approximate ϕ∗ and ρ∗i with fully-connected networks Ψϕ∗ and Ψρ∗i
for i ∈ [dy] as

∥ϕ∗ −Ψϕ∗∥∞ ≤ εϕ, ∥ρ∗i −Ψρ∗i
∥∞ ≤ ερ for i ∈ [dy],

320

where the depth D(·), the width W (·), and the maximal weight B(·) of the networks

satisfy that

D′ = D(Ψϕ∗) ≤ C ·B · (log ε−1
ϕ)2 + logB, D′′ = max

i∈[dy]
D(Ψρ∗i

) ≤ C ·B · (log ε−1
ρ)2 + logB,

W (Ψϕ∗) ≤ 16, W (Ψρ∗i
) ≤ 16, B(Ψϕ∗) ≤ 1, B(Ψρ∗i

) ≤ 1

for some constant C > 0. The bounds for width and maximal weight require that dF ≥ 16dy

and BA,1 ≥
√
dF · dF ≥ 16dy. Then we have that for any X = (x1, · · · , xL)

∥∥∥∥ρ∗(1

L

L∑
i=1

ϕ∗(xi)

)
−Ψρ∗

(
1

L

L∑
i=1

Ψϕ∗(xi)

)∥∥∥∥
1

≤
∥∥∥∥ρ∗(1

L

L∑
i=1

ϕ∗(xi)

)
−Ψρ∗

(
1

L

L∑
i=1

ϕ∗(xi)

)∥∥∥∥
1

+

∥∥∥∥Ψρ∗

(
1

L

L∑
i=1

ϕ∗(xi)

)
−Ψρ∗

(
1

L

L∑
i=1

Ψϕ∗(xi)

)∥∥∥∥
1

≤ dyεϕ + dy · (BA,1)
D′′ · εϕ,

where the first inequality results from the triangle inequality, (BA,1)
D′′

in the second

inequality results from the error propagation through a depth-D′′ network. For the whole

network, we have that

D′ +D′′ ≤ D.

321

We take that D′ = D/2 + D3/4 and D′′ =
√
D/(
√
C ·B logBA,1) for the constant C in

Lemma D.6.8. Then for D > 3, we have that

∥∥∥∥ρ∗(1

L

L∑
i=1

ϕ∗(xi)

)
−Ψρ∗

(
1

L

L∑
i=1

Ψϕ∗(xi)

)∥∥∥∥
1

= O
(
dy exp

(
− D1/4√

C2B2 logBA,1

))
.

Step 3: Conclude the proof.

We denote Ψρ∗(
∑L

i=1 Ψϕ∗(xi)/L) as Pθ∗ . Then if TV(P(· |X),Pθ∗(· |X)) = ε ≤ c0/2,

some basic calculations show that

c0
c0 + ε

≤ P(x |S)

Pθ∗(x |S)
≤ 1 +

2ε

c0
.

Thus, we have

max
∥S⊤∥2,∞≤R

KL
(
P(· |S) ∥Pθ∗(· |S)

)
≤ 2ε

c0
= O

(
dy exp

(
− D1/4√

C2B2 logBA,1

))
.

□

D.3.4. Pretraining Results for ℓ2 Loss

D.3.4.1. Pretraining Algorithm with ℓ2 Loss. Training with ℓ2 loss is common in the

CV community, e.g. Radford et al. (2021). The network structure is largely similar to those

in Brown et al. (2020) and Devlin et al. (2018). Here, we modify the network structure

of the last layer. The network derives the final output as Y (D+1) = 1
L
I⊤LX(D)A(D+1),

where IL ∈ RL is the vector with all ones, A(D+1) ∈ Rd×dy . The parameters in each layer

are θ(t) = (γ
(t)
1 , γ

(t)
2 ,W (t), A(t)) for t ∈ [D], and θ(D+1) = A(D+1), and the parameters of

the whole network is θ = (θ(1), · · · , θ(D+1)). Similar to Section 4.5.1, we consider the

322

transformer with bounded weights. The set of parameters is

Θ =
{
θ |
∥∥A(D+1)

∥∥
F
≤ BA,max

{∣∣γ(t)1

∣∣, ∣∣γ(t)2

∣∣} ≤ 1,
∥∥A(t)

1

∥∥
F
≤ BA,1,

∥∥A(t)
2

∥∥
F
≤ BA,2,∥∥WQ,(t)

i

∥∥
F
≤ BQ,

∥∥WK,(t)
i

∥∥
F
≤ BK ,

∥∥W V,(t)
i

∥∥
F
≤ BV for all t ∈ [D], i ∈ [h]

}
,

where BA, BA,1, BA,2, BQ, BK , and BV are the bounds of parameter. We only consider

the non-trivial case where these bounds are larger than 1, otherwise the magnitude of the

output in Dth layer decades exponentially with growing depth. We denote the transformer

with parameter θ as fθ.

In such case, we focus on the pretraining setting in CV tasks, i.e., the pretraining

set D = {(Si, xi)}Ni=1 consists of i.i.d. pairs. The underlying distribution is denoted as

(S, x) ∼ µ ∈ ∆(X∗ × X). In such case, d = dy, i.e., the transformer directly predicts the

musked token. The training algorithm is

θ̂ = argmin
θ∈Θ

1

N

N∑
i=1

∥∥xi − fθ(Si)∥∥22(D.3.12)

From the population version of (D.3.12), it is easy to see that the function f ∗(S) = E[x |S]

achieves the minimal population error, where the conditional expectation is defined from

µ. In the following, we will quantify the error between fθ̂ and f ∗.

D.3.4.2. Performance Guarantee for Pretraining with ℓ2 Loss. We first state the

assumptions for the pretraining setting.

Assumption D.3.5. There exists a constant R > 0 such that for (S, x) ∼ µ, we have

∥S⊤∥2,∞ ≤ R and ∥x∥2 ≤ Bx almost surely.

Then the performance guarantee for the pretraining result θ̂ can be derived as following.

323

Theorem D.3.6. Let B̄ = BxRhBABA,1BA,2BQBKBV and D̄ = D2d(dF +dh +d) +d ·dy.

If Assumption D.3.5 holds, the pretrained model fθ̂ by the algorithm in (D.3.12) satisfies

ES,x
[∥∥f ∗(S)− fθ̂(S)

∥∥2
2

]
≤ 3

2
min
θ∈Θ

E
[∥∥f ∗(S)− fθ(S)

∥∥2
2

]
︸ ︷︷ ︸

approximation error

+O
(
B2
x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
︸ ︷︷ ︸

generalization error

with probability at least 1− δ.

The first term is the approximation error. It measures the proximity between the

nominal function f ∗ and the functions induced by the parameter set Θ. The second term is

the generalization error. Similar as Theorem 4.5.3, the generalization error is independent

of the token sequence length.

Since the neural networks are universal approximators, we will explicitly approximate

f ∗ from the transformer function class. Theorem 2 in Zaheer et al. (2017) shows that

there exist ρ∗ : R→ Rdy and ϕ∗ : R→ R such that

f ∗(X) = ρ∗
(

1

L

L∑
i=1

ϕ∗(xi)

)
,

where X = [x1, · · · , xL]. The ith component of ρ∗ is denoted as ρ∗i for i ∈ [dy]. For a

function f defined on Ω, the L∞ norm of it is defined as ∥f∥∞ = supx∈Ω |f(x)|. The set of

the real-valued smooth functions on it is denoted as S∞(Ω,R), Then we denote the set of

the smooth functions with bounded derivatives as

SB =
{
f ∈ S∞([−B,B],R) |

∥∥f (n)(x)
∥∥ ≤ n! for all n ∈ N

}
,

where f (n) is the nth-order derivative of f .

Assumption D.3.7. There exists B > 0 such that ϕ∗, ρ∗i ∈ SB for i ∈ [dy].

324

This assumption states that the function f ∗ is smooth enough. Then we have that

Proposition D.3.8. Under D.3.7, if dF ≥ 16dy, BA,1 ≥ 16Rdy, BA,2 ≥ dF BA ≥
√
dy,

and BV ≥
√
d, then

max
∥S⊤∥2,∞≤R

∥∥f ∗(S)− fθ∗(S)
∥∥
2

= O
(
dy exp

(
− D1/4√

C2B2 logBA,1

))

for some constant C > 0.

D.3.4.3. Proof of Theorem D.3.6.

Proof of Theorem D.3.6. For ease of notation, we respectively define the empirical

risk and the population risk as

L̂(f,D) =
1

N

N∑
i=1

∥∥xi − fθ(Si)∥∥22, L(f) = ES,x
[∥∥x− fθ(S)

∥∥2
2

]
.

The our proof mainly involves three steps.

• Error decomposition for the excess population risk.

• Control each term in the error decomposition.

• Conclude the proof.

Step 1: Error decomposition for the excess population risk. The excess

population risk for the estimate θ̂ can be decomposed to the sum of the generalization

325

error and the approximation error as

L(fθ̂)− L(f ∗)

= L(fθ̂)− L(f ∗)− 2
(
L̂(fθ̂,D)− L̂(f ∗,D)

)
+ 2
(
L̂(fθ̂,D)− L̂(fθ∗ ,D)

)
+ 2
(
L̂(fθ∗ ,D)− L̂(f ∗,D)

)
≤ L(fθ̂)− L(f ∗)− 2

(
L̂(fθ̂,D)− L̂(f ∗,D)

)︸ ︷︷ ︸
generalization error

+ 2
(
L̂(fθ∗ ,D)− L̂(f ∗,D)

)︸ ︷︷ ︸
approximation error

,(D.3.13)

where θ∗ = argminθ∈Θ L(fθ), and the inequality results from that θ̂ achieves the minimal

empirical risk.

Step 2: Control each term in the error decomposition.

We first consider the generalization error and will adapt Lemma D.6.1 to bound it.

Define the function

g(S, x, θ) =
∥∥x− fθ(S)

∥∥2
2
−
∥∥x− f ∗(S)

∥∥2
2
.

To verify the conditions in Lemma D.6.1, we notice that |g(S, x, θ)| ≤ (Bx +Bf)2 and that

E
[
g(S, x, θ)

]
= E

[∥∥x− fθ(S)
∥∥2
2
−
∥∥x− f ∗(S)

∥∥2
2

]
= E

[∥∥f ∗(S)− fθ(S)
∥∥2
2

]
E
[(
g(S, x, θ)− E

[
g(S, x, θ)

])2] ≤ E
[(
g(S, x, θ)

)2]
≤ E

[∥∥2x− f ∗(S)− fθ(S)
∥∥2
2
·
∥∥f ∗(S)− fθ(S)

∥∥2
2

]
≤ (3Bx +Bf)2 · E

[∥∥f ∗(S)− fθ(S)
∥∥2
2

]
,

326

where the second equality results from the definition of f ∗, the second inequality results

from Cauchy–Schwarz inequality, and the last inequality result from the boundedness

of x, f ∗, and fθ. Then Lemma D.6.1 shows that for a distribution Q ∈ ∆(Θ) and

0 < λ ≤ 1/(2(Bx+Bf)2), the following holds with probability at least 1− δ simultaneously

for all P ∈ ∆(Θ)

∣∣∣∣Eθ∼P[E[g(S, x, θ)
]
− 1

N

N∑
i=1

g(Si, xi, θ)

]∣∣∣∣
≤ λ(3Bx +Bf)2Eθ∼P

[
E
[
g(S, x, θ)

]]
+

1

Nλ

[
KL(P ∥Q) + log

2

δ

]
.

Taking λ = 1/(2(3Bx +Bf)2), we have

∣∣∣∣Eθ∼P[L(fθ)− L(f ∗)−
(
L̂(fθ,D)− L̂(f ∗,D)

)]∣∣∣∣
≤ 1

2
Eθ∼P

[
L(fθ)− L(f ∗)

]
+

2(3Bx +Bf)2

N

[
KL(P ∥Q) + log

2

δ

]
.

Next, we will take proper P and Q to relate this equation and the generalization error.

For this purpose, we quantify how the perturbation of network parameters influence the

output of the network.

Proposition D.3.9. For any input X ∈ RL×d and θ, θ̃ ∈ Θ, we have that

∥fθ(X)− fθ̃(X)∥2 ≤
∥∥A(D+1) − Ã(D+1)

∥∥
F

+
D∑
t=1

αt(βt + ιt + κt + ρt),

327

where

αt = BA(1 +BA,1 ·BA,2)
(
1 + hBV (1 + 4BQBK)

)D−t

βt = |γ(t)2 − γ̃
(t)
2 |+ (1 +BA,1 ·BA,2) ·

(
1 + (∥X⊤∥2,∞ − 1)It=1

)
· |γ(t)1 − γ̃

(t)
1 |

ιt = BA,2 · ∥A(t)
1 − Ã

(t)
1 ∥F +BA,1 · ∥A(t)

2 − Ã
(t)
2 ∥F

κt = (1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·

h∑
i=1

∥∥W V,(t)
i − W̃ V,(t)

i ∥F

ρt = 2(1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·BV

·
h∑
i=1

BK · ∥WQ,(t+1)
i − W̃Q,(t+1)

i ∥F +BQ · ∥WK,(t+1)
i − W̃K,(t+1)

i ∥F

for all t ∈ [D].

Proof of Proposition D.3.9 . See Appendix D.5.3. □

With the help of Proposition D.3.9, we set the distribution P as

P =
D+1∏
t=1

LP
(
θ(t)
)

(D.3.14)

LP
(
θ(D+1)

)
= Unif

(
B
(
Â(D+1), r(D+1), ∥ · ∥F

))
LP
(
θ(t)
)

= Unif
(
B
(
γ̂
(t)
1 , r

(t)
γ,1, | · |

))
· Unif

(
B
(
γ̂
(t)
2 , r

(t)
γ,2, | · |

))
· LP (A(t)) · LP (W (t))

LP (A(t)) = Unif
(
B
(
Â

(t)
1 , r

(t)
A,1, ∥ · ∥F

))
· Unif

(
B
(
Â

(t)
2 , r

(t)
A,2, ∥ · ∥F

))
LP (W (t)) =

h∏
i=1

Unif
(
B
(
Ŵ

Q,(t)
i , r

(t)
Q , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

K,(t)
i , r

(t)
K , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

V,(t)
i , r

(t)
V , ∥ · ∥F

))

328

for t ∈ [D], where Unif denotes the uniform distribution on the set, B(a, r, ∥ · ∥) =

{x | ∥x− a∥ ≤ r} denotes the ball centered in a with radius r, the radius is set as

r
(t)
γ,1 = (Bx +Bf)−1R−1(1 +BA,1 ·BA,2)

−1α−1
t /N,

r
(t)
γ,2 = (Bx +Bf)−1R−1α−1

t /N

r
(t)
A,1 = (Bx +Bf)−1R−1B−1

A,2α
−1
t /N,

r
(t)
A,2 = (Bx +Bf)−1R−1B−1

A,1α
−1
t /N,

r
(t)
V = (Bx +Bf)−1R−1h−1(1 +BA,1 ·BA,2)

−1α−1
t /N,

r(D+1) = (Bx +Bf)−1B−1
A /N,

r
(t)
K = (Bx +Bf)−1R−1h−1(1 +BA,1 ·BA,2)

−1B−1
V B−1

Q α−1
t /N,

r
(t)
Q = (Bx +Bf)−1R−1h−1(1 +BA,1 ·BA,2)

−1B−1
V B−1

K α−1
t /N.

Under this assignment, we now bound Eθ∼P [∥x− fθ(S)∥22 − ∥x− fθ̂(S)∥22] as

∣∣∣∣Eθ∼P[∥∥x− fθ(S)
∥∥2
2
−
∥∥x− fθ̂(S)

∥∥2
2

]∣∣∣∣
≤ 2(Bx +Bf)

∣∣∣∣Eθ∼P[∥∥fθ(S)− fθ̂(S)
∥∥
2

]∣∣∣∣ = O
(
Bx +Bf

N

)
,

where the inequality results from Cauchy-Schwarz inequality, and the equality results from

Proposition D.3.9. Thus, we have that

L(fθ̂)− L(f ∗)−
(
L̂(fθ̂,D)− L̂(f ∗,D)

)
≤ 1

2

(
L(fθ̂)− L(f ∗)

)
+O

(
Bx +Bf

N

)
+

2(3Bx +Bf)2

N

[
KL(P ∥Q) + log

2

δ

]
.(D.3.15)

329

To access to the value of KL(P ∥Q), we take Q as the distribution in (D.3.8) except that

LQ
(
θ(D+1)

)
= Unif

(
B
(
0, BA, ∥ · ∥F

))
.(D.3.16)

Then the KL divergence between P and Q is

KL(P ∥Q) = O
(

(D2 · d · (dF + dh + d) + d · dy) · log
(
1 +NBxRhBABA,1BA,2BQBKBV

))
.

Combining this equality with (D.3.15), we have that with probability at least 1− δ, the

generalization error can be bounded as

L(fθ̂)− L(f ∗)− 2
(
L̂(fθ̂,D)− L̂(f ∗,D)

)
= O

(
B2
x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
.(D.3.17)

Next we control the approximation error in (D.3.13).

L̂(fθ∗ ,D)− L̂(f ∗,D)

= L̂(fθ∗ ,D)− L̂(f ∗,D)− 3

2

(
L(fθ∗)− L(f ∗)

)
+

3

2

(
L(fθ∗)− L(f ∗)

)
= L̂(fθ∗ ,D)− L̂(f ∗,D)− 3

2

(
L(fθ∗)− L(f ∗)

)
+

3

2
E
[∥∥f ∗(S)− fθ∗(S)

∥∥2
2

]
,(D.3.18)

where the second equality results from the definition of f ∗. To bound the first two terms

in the right-hand side of (D.3.18), we use Lemma D.6.1 and take P and Q as (D.3.14) and

(D.3.16), replacing θ̂ by θ∗. Then we have that

L̂(fθ∗ ,D)− L̂(f ∗,D)− 3

2

(
L(fθ∗)− L(f ∗)

)
= O

(
B2
x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
.

(D.3.19)

330

Step 3: Conclude the proof.

Combining inequalities (D.3.13), (D.3.17), (D.3.18), and (D.3.19), we have that

L(fθ̂)− L(f ∗) =
3

2
E
[∥∥f ∗(S)− fθ∗(S)

∥∥2
2

]
+O

(
B2
x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
.

Thus, we conclude the proof of Theorem D.3.6.

□

D.3.4.4. Proof of Proposition D.3.8.

Proof of Proposition D.3.8. Our proof mainly involves three steps.

• Build the high-level transformer approximator for f ∗.

• Build the approximators in the transformer for ϕ∗ and ρ∗i separately.

• Conclude the proof.

The first two steps follow the procedures of the proof of Proposition D.3.4 exactly. Now

we present the final step.

Step 3: Conclude the proof.

In the final layer, we just take A(D+1) = Idy as the identity matrix. Denoting the

derived parameters as θ∗ we have that

max
∥X⊤∥2,∞≤R

∥∥∥∥ρ∗(1

L

L∑
i=1

ϕ∗(xi)

)
− fθ∗(X)

∥∥∥∥
2

= O
(
dy exp

(
− D1/4√

C2B2 logBA,1

))
.

Thus, we conclude the proof of Proposition D.3.8. □

331

D.4. Proofs for §4.6

D.4.1. Proof of Theorem 4.6.2

Proof. By Theorem 4.4.2 and the fact that log(1/p0(z∗)) ≤ β, we have that

T−1 · EDICL

[T∑
t=1

logP(rt | z∗, promptt−1)−
T∑
t=1

logP(rt | promptt−1)
]
≤ β/T.(D.4.1)

In addition, we have that

T−1 · EDICL

[T∑
t=1

logP(rt | promptt−1)−
T∑
t=1

logPθ̂(rt | promptt−1)
]

= EDICL

[
KL
(
P(· | prompt)

∥∥∥Pθ̂(· | prompt)
)]
.(D.4.2)

Similar to (D.3.10), we have that

∣∣∣log
(
P(r | prompt)/Pθ̂(r | prompt)

)∣∣∣ ≤ b∗ = log max{c−1
0 , b−1

y }.

By Lemma D.6.9, we have that

KL
(
P(· | prompt) ∥Pθ̂(· | prompt)

)
≤ (3 + b∗)/2 · TV

(
P(· | prompt),Pθ̂.(· | prompt)

)
.

(D.4.3)

By Assumption 4.6.5, we have that PDICL
(prompt) ≤ κPD(prompt). Thus, by Theorem

4.5.3, we have with probability at least 1− δ that

EDICL

[
KL
(
P(· | prompt) ∥Pθ̂(· | prompt)

)]
≤ C · b∗ · κ · ES∼D

[
TV

(
P(· |S),Pθ̂.(· |S)

)]
≤ C · b∗ · κ ·∆pre(N, T, δ).(D.4.4)

332

Combining (D.4.4), (D.4.1), and (D.4.2), we have with probability at least 1− δ that

EDICL

[
T−1 ·

T∑
t=1

logP(rt | z∗, promptt−1)− T−1 ·
T∑
t=1

logPθ̂(rt | promptt−1)
]

≤ β/T + ES∼D

[
KL
(
P(· |S) ∥Pθ̂(· |S)

)]
≤ O

(
β/T + b∗ · κ ·∆pre(N, T, δ)

)
,(D.4.5)

which completes the proof of Theorem 4.6.2. □

D.4.2. Proof of Proposition 4.6.7

Proof of Proposition 4.6.7. From Bayesian model averaging, the output distri-

bution is

P(rt+1 |S ′
t, c̃t+1)

=
∑
z∈Z

P(rt+1 | c̃t+1, z) · PZ(z |S ′
t)

= P(rt+1 | c̃t+1, z
∗) +

∑
z ̸=z∗

(
P(rt+1 | c̃t+1, z)− P(rt+1 | c̃t+1, z

∗)
)
· PZ(z |S ′

t)

= P(rt+1 | c̃t+1, z
∗)

+
∑
z ̸=z∗

(
P(rt+1 | c̃t+1, z)− P(rt+1 | c̃t+1, z

∗)
)
· PZ(z∗ |S ′

t) ·
PZ(z)P(S ′

t | z)

PZ(z∗)P(S ′
t | z∗)

,(D.4.6)

where the first equality results from Bayesian model averaging, the last equality results

from Bayes’ theorem. Next, we upperbound the ratio P(S ′
t | z)/P(S ′

t | z∗) in the right-hand

333

side of Eqn. (D.4.6). We have that

1

t
log

P(S ′
t | z)

P(S ′
t | z∗)

=
1

t

t∑
i=1

log
P
(
(c̃i, r

′
i) | z

)
P
(
(c̃i, r′i) | z∗

) ≤ −2 log c0 +
1

t

t∑
i=1

log
P
(
(c̃i, ri) | z

)
P
(
(c̃i, ri) | z∗

) ,
where the first inequality results from Assumption 4.6.3, and the second inequality results

from Assumption 4.5.2, which also implies that | logP((c̃i, ri) | z)/P((c̃i, ri) | z∗)| ≤ (1 +

l) log 1/c0. Hoeffding inequality shows that with probability at least 1− δ, we have

1

t

t∑
i=1

log
P
(
(c̃i, ri) | z

)
P
(
(c̃i, ri) | z∗

) + KLpair

(
P(· | z∗) ∥P(· | z)

)
≤ (1 + l)√

t
log

1

c0
· log

1

δ
.

Thus, we have that with probability at least 1− δ, the following holds for all z ̸= z∗

P(S ′
t | z)

P(S ′
t | z∗)

≤ exp

(
− t
(

KLpair

(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0 −

(1 + l)√
t

log
1

c0
· log

|Z|
δ

))
.

Combining this inequality with Eqn. (D.4.6), we have that

TV
(
P(· |S ′

t, c̃t+1),P(· | c̃t+1, z
∗)
)

= O
(

1

c1
exp

(
− t
(

min
z ̸=z∗

KLpair

(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0 −

(1 + l)√
t

log
1

c0
· log

|Z|
δ

)))
.

334

Let Eprompt′∼D[TV(P(· |S ′
t, c̃t+1),Pθ̂(· |S ′

t, c̃t+1))] ≤ ∆pre, where ∆pre is the bound in Theo-

rem 4.5.3. Then we have that

Eprompt′∼P′

[
KL
(
P(· | c̃t+1, z

∗)∥Pθ̂(· |S
′
t, c̃t+1)

)]
≤ O

(
Eprompt′∼P′

[
TV

(
Pθ̂(· |S

′
t, c̃t+1),P(· | c̃t+1, z

∗)
)])

= O
(
c2∆pre + exp

(
− t
(

min
z ̸=z∗

KLpair

(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0 −

(1 + l)√
t

log
1

c0
· log

|Z|
δ

)))
.

Thus, we conclude the proof of Proposition 4.6.7. □

D.5. Proof of Supporting Propositions

D.5.1. Proof of Proposition D.3.2

Proof of Proposition D.3.2. We note that f(X) satisfies the condition in Lemma D.6.3

with ci = 2b/N for i ∈ [N]. Then Lemma D.6.3 shows that

Ef∼P0

[
EX
(

exp
[
λ(f(X)− Ef(X))

])]
≤ exp

(
λ2 · b2 · tmin

2N

)
.

Take λ =
√

2N log 2/(b2tmin). The Markov inequality shows that

P

(
Ef∼P0

(
exp

[
λ(f(X)− Ef(X))

])
≥ 2

δ

)
≤ δ

335

for any 0 < δ < 1. We note that this probability inequality does not involve P . Take the

function g in Lemma D.6.2 as g(f) = λ(f(X)− Ef(X)), then it shows that

logEP0

[
exp

(
g(X)

)]
+ KL(P ∥P0) ≥ EP

[
g(X)

]
for any P simultaneously. Combining these inequalities, we have

∣∣∣EP[EX[f(X)
]
− f(X)

]∣∣∣ ≤√ b2 · tmin

2 log 2N

[
KL(P ∥P0) + log

4

δ

]
,

for any distribution P on F simultaneously with probability at least 1 − δ. Thus, we

conclude the proof of Proposition D.3.2. □

D.5.2. Proof of Proposition D.3.1

Proof of Proposition D.3.1 . We analyze the error layer by layer in the neural

network. Denote the outputs of each layer in the networks parameterized by θ and θ̃ as

X(t) and X̃(t), respectively. In the final layer, we have that

TV
(
Pθ(· |X), Pθ̃(· |X)

)
≤ 2

∥∥∥∥ 1

Lτ
I⊤LX(D)A(D+1) − 1

Lτ
I⊤LX̃(D)Ã(D+1)

∥∥∥∥
∞

≤ 2

τ

[∥∥A(D+1),⊤∥∥
1,2
·
∥∥X(D),⊤ − X̃(D),⊤∥∥

2,∞ +
∥∥A(D+1),⊤ − Ã(D+1),⊤∥∥

1,2

]
,

where the first inequality results from Lemma D.6.5, and the second inequality results from

Lemma D.6.6 and that ∥X(D),⊤∥2,∞ ≤ 1 due to the layer normalization. In the following,

336

we build the recursion relationship between ∥X(t),⊤ − X̃(t),⊤∥2,∞ for t ∈ [D].

∥X(t+1),⊤ − X̃(t+1),⊤∥2,∞

≤
∥∥ffn(Y (t+1), A(t+1))⊤ − ffn(Ỹ (t+1), Ã(t+1))⊤

∥∥
2,∞

+ |γ(t+1)
2 − γ̃(t+1)

2 |+
∥∥Y (t+1),⊤ − Ỹ (t+1),⊤∥∥

2,∞

≤ |γ(t+1)
2 − γ̃(t+1)

2 |+
∥∥Y (t+1),⊤ − Ỹ (t+1),⊤∥∥

2,∞ +BA,1 ·BA,2 · ∥Y (t+1),⊤ − Ỹ (t+1),⊤∥2,∞

+BA,2 · ∥A(t+1)
1 − Ã(t+1)

1 ∥F +BA,1 · ∥A(t+1)
2 − Ã(t+1)

2 ∥F,

(D.5.1)

where the first inequality results from the triangle inequality and that Πnorm is not expansive,

the second inequality results from the following proposition

Proposition D.5.1. For any X, X̃ ∈ RL×d, A1, Ã1 ∈ Rd×dF , and A2, Ã2 ∈ RdF×d, we

have that

∥∥ffn(X,A)⊤ − ffn(X̃, Ã)⊤
∥∥
2,∞

≤ ∥A1∥F · ∥A2∥F · ∥X⊤ − X̃⊤∥2,∞ + ∥A1 − Ã1∥F · ∥A2∥F · ∥X̃⊤∥2,∞

+ ∥Ã1∥F · ∥A2 − Ã2∥F · ∥X̃⊤∥2,∞.

Proof of Proposition D.5.1. See Appendix D.5.4. □

337

Next, we build the relationship between ∥Y (t+1),⊤ − Ỹ (t+1),⊤∥2,∞ in the right-hand side

of inequality (D.5.1) and ∥X(t),⊤ − X̃(t),⊤∥2,∞.

∥Y (t+1),⊤ − Ỹ (t+1),⊤∥2,∞

≤
∥∥mha(X(t),W (t+1))⊤ − mha(X̃(t), W̃ (t+1))⊤

∥∥
2,∞

+ |γ(t+1)
1 − γ̃(t+1)

1 |+
∥∥X(t),⊤ − X̃(t),⊤∥∥

2,∞

≤ |γ(t+1)
1 − γ̃(t+1)

1 |+
∥∥X(t),⊤ − X̃(t),⊤∥∥

2,∞

+ h ·BV

(
1 + 4BQBK

)
∥X(t),⊤ − X̃(t),⊤∥2,∞ +

h∑
i=1

∥∥W V,(t+1)
i − W̃ V,(t+1)

i ∥F

+ 2BV ·BK

h∑
i=1

∥WQ,(t+1)
i − W̃Q,(t+1)

i ∥F + 2BV ·BQ

h∑
i=1

∥WK,(t+1)
i − W̃K,(t+1)

i ∥F,

(D.5.2)

where the first inequality results from the triangle inequality, and the second inequality

results from Lemma D.6.7. Combining inequalities (D.5.1) and (D.5.2), we derive that

∥X(t+1),⊤ − X̃(t+1),⊤∥2,∞

≤ (1 +BA,1 ·BA,2)
(
1 + hBV (1 + 4BQBK)

)
∥X(t),⊤ − X̃(t),⊤∥2,∞+βt+1+ιt+1+κt+1+ρt+1.

This concludes the proof of Proposition D.3.1. □

D.5.3. Proof of Proposition D.3.9

Proof of Proposition D.3.9 . We analyze the error layer by layer in the neural

network. Denote the outputs of each layer in the networks parameterized by θ and θ̃ as

338

X(t) and X̃(t), respectively. In the final layer, we have that

∥fθ(X)− fθ̃(X)∥2

≤
∥∥Ã(D+1)

∥∥
F
·
∥∥X(D),⊤ − X̃(D),⊤∥∥

2,∞ +
∥∥A(D+1) − Ã(D+1)

∥∥
F
,

where the inequality results from Lemma D.6.6 and that ∥X(D),⊤∥2,∞ ≤ 1 due to the

layer normalization. The remaining proof just follows the procedures in the proof of

Proposition D.3.1, and we have that

∥fθ(X)− fθ̃(X)∥2

≤
∥∥A(D+1) − Ã(D+1)

∥∥
F

+
D∑
t=1

αt(βt + ιt + κt + ρt).

Thus, we conclude the proof of Proposition D.3.9. □

339

D.5.4. Proof of Proposition D.5.1

Proof of Proposition D.5.1. We have that

∥∥ffn(X,A)⊤ − ffn(X̃, Ã)⊤
∥∥
2,∞

≤ max
i∈[L]

[∥∥ReLU(Xi,:A1)A2 − ReLU(X̃i,:A1)A2

∥∥
2

+
∥∥ReLU(X̃i,:A1)A2 − ReLU(X̃i,:Ã1)Ã2

∥∥
2

]
≤ max

i∈[L]

[
∥A1∥F · ∥A2∥F · ∥Xi,: − X̃i,:∥2 +

∥∥ReLU(X̃i,:A1)A2 − ReLU(X̃i,:Ã1)A2

∥∥
2

+
∥∥ReLU(X̃i,:Ã1)A2 − ReLU(X̃i,:Ã1)Ã2

∥∥
2

]
≤ max

i∈[L]

[
∥A1∥F · ∥A2∥F · ∥Xi,: − X̃i,:∥2 + ∥A1 − Ã1∥F · ∥A2∥F · ∥X̃i,:∥2

+ ∥Ã1∥F · ∥A2 − Ã2∥F · ∥X̃i,:∥2
]
,

where the first inequality results from the triangle inequality, the second and the last

inequalities result from Lemma D.6.6 and that ReLU is not expansive. Thus, we conclude

the proof of Proposition D.5.1. □

D.6. Technical Lemmas

Lemma D.6.1 (Proposition 4.5 in Duchi (2019)). Let F be the collection of functions of

f : Rn → R. For any f ∈ F , we define

µ(f) = EX
[
f(X)

]
, σ2(f) = EX

[
(f(X)− EX [f(X)])2

]
,

where the expectation is taken with respect to a random variable X ∼ ν on (Rn,B(Rn)).

Assume that |f(X)− µ(f)| ≤ b a.s. for some constant b ∈ R for all f ∈ F . Then for any

340

0 < λ ≤ 1/(2b), given a distribution P0 on F , with probability at least 1− δ, we have

∣∣∣∣EQ[EX [f(X)]− 1

n

n∑
i=1

f(Xi)

]∣∣∣∣ ≤ λEQ
[
σ2(f)

]
+

1

nλ

[
KL(Q ∥P0) + log

2

δ

]
,

for any distribution Q on F , where Xi are i.i.d. samples of ν. If the function class F

further satisfies σ2(f) ≤ cµ(f) for some constant c ∈ R for all f ∈ F , we have

∣∣∣∣EQ[EX[f(X)
]
− 1

n

n∑
i=1

f(Xi)

]∣∣∣∣ ≤ λcEQ
[
µ(f)

]
+

1

nλ

[
KL(Q ∥P0) + log

2

δ

]
,

with probability at least 1− δ.

Lemma D.6.2 (Donsker–Varadhan representation in Belghazi et al. (2018)). Let P and

Q be distributions on a common space X . Then

KL(P ∥Q) = sup
g∈G

{
EP
[
g(X)

]
− logEQ

[
exp

(
g(X)

)]}
,

where G = {g : X → R | EQ[exp(g(X))] <∞}.

Lemma D.6.3 (Corollary 2.11 in Paulin (2015)). Let X = (X1, · · · , XN) be a Markov

chain, taking values in Λ =
∏N

i=1 Λi with mixing time tmix(ε) for ε ∈ [0, 1]. Let

tmin = inf
0≤ε<1

tmix(ε) ·
(

2− ε
1− ε

)2

.

If function f : Λ→ R is such that f(x)− f(y) ≤
∑N

i=1 ciIxi ̸=yi for every x, y ∈ Λ, then for

any λ ∈ R,

logE
(

exp
[
λ(f(X)− Ef(X))

])
≤ λ2 · ∥c∥22 · tmin

8
.

341

For any t ≥ 0, we have

P
(∣∣f(X)− Ef(X)

∣∣ ≥ t
)
≤ 2 exp

(
−2t2

∥c∥22 · tmin

)
.

Lemma D.6.4 (Lemma 25 in Agarwal et al. (2020)). For any two conditional probability

densities P (· |X), P ′(· |X) and any distribution ν ∈ ∆(X),we have

Eν
[

TV
(
P (· |X), P ′(· |X)

)2]≤−2 log

(
EX∼ν,Y∼P (· |X)

[
exp

(
− 1

2
log

P (Y |X)

P ′(Y |X)

)])
.

Lemma D.6.5 (Corollary A.7 in Edelman et al. (2021)). For any x, y ∈ Rd, we have

∥softmax(x)− softmax(y)∥1 ≤ 2∥x− y∥∞.

Lemma D.6.6 (Lemma 17 in Zhang et al. (2022a)). Given any two conjugate numbers

u, v ∈ [1,∞], i.e., 1
u

+ 1
v

= 1, and 1 ≤ p ≤ ∞, for any A ∈ Rr×c and x ∈ Rc, we have

∥Ax∥p ≤ ∥A∥p,u∥x∥v and ∥Ax∥p ≤ ∥A⊤∥u,p∥x∥v.

Lemma D.6.7 (Propositions 20 and 21 in Zhang et al. (2022a)). For anyX, X̃ ∈ RL×d, and

any WQ
i , W̃

Q
i ,W

K
i , W̃

K
i ∈ Rd×dh ,W V

i , W̃
V
i ∈ Rd×d for i ∈ [h] , if ∥X⊤∥p,∞, ∥X̃⊤∥2,∞ ≤ BX ,

∥WQ
i ∥F, ∥W̃

Q
i ∥F ≤ BQ, ∥WK

i ∥F, ∥W̃K
i ∥F ≤ BK , ∥W V

i ∥F, ∥W̃ V
i ∥F ≤ BV for i ∈ [h], then we

342

have

∥∥∥(mha(X,W)− mha(X̃, W̃)
)⊤∥∥∥

2,∞

≤ h ·BV

(
1 + 4B2

X ·BQBK

)
∥X⊤ − X̃⊤∥2,∞ +BX

h∑
i=1

∥∥W V
i − W̃ V

i ∥F

+ 2B3
X ·BV ·BK

h∑
i=1

∥WQ
i − W̃

Q
i ∥F + 2B3

X ·BV ·BQ

h∑
i=1

∥WK
i − W̃K

i ∥F.

Lemma D.6.8 (Lemma A.6 in Elbrächter et al. (2021)). For a, b ∈ R with a < b, let

S[a,b] =
{
f ∈ S∞([a, b],R) |

∥∥f (n)(x)
∥∥ ≤ n! for all n ∈ N

}
.

There exists a constant C > 0 such that for all a, b ∈ R with a < b, f ∈ S[a,b], and

ε ∈ (0, 1/2), there is a fully connect network Ψf such that

∥f −Ψf∥∞ ≤ ε,

with the depth of the network as D(Ψf) ≤ C max{2, b−a}(log ε−1)2+log(⌈max{|a|, |b|}⌉)+

log(⌈1/(b− a)⌉), the width of the network as W (Ψf) ≤ 16, and the maximal weight in the

network as B(Ψf) ≤ 1.

Lemma D.6.9. Let b = supx log(p(x)/q(x)). We have that

KL(p ∥ q) ≤ 2(3 + b) · TV(p, q).(D.6.1)

343

Proof. We let f(t) = log t and g(t) = |1/t − 1|. Then, for 0 ≤ t ≤ exp(b), we have

that

sup
0≤t≤exp(b)

f(t)

g(t)
= sup

0≤t≤exp(b)

log t

|1/t− 1|
= sup

1≤t≤exp(b)

t log t

t− 1
≤ 2(b+ 3).

Note that KL(p ∥ q) = Ep[f(p(x)/q(x))] and TV(p, q) = Ep[g(p(x)/q(x))], which concludes

the proof. □

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Generative Adversarial Imitation Learning with Neural Networks: Global Optimality and Convergence Rate
	1.1. Introduction
	1.2. Background
	1.3. Algorithm
	1.4. Main Results
	1.5. Proof of Main Results

	Chapter 2. Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
	2.1. Introduction
	2.2. Background
	2.3. Temporal-Difference Learning
	2.4. Main Results
	2.5. Proof of Main Results
	2.6. Extension to Q-Learning and Policy Gradient

	Chapter 3. An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
	3.1. Introduction
	3.2. Preliminary
	3.3. Representation, Inference, and Estimation via Latent Variable Model
	3.4. Attention as Latent Posterior Inference
	3.5. Excess Risk Analysis
	3.6. From Supervised Learning to Self-Supervised Learning

	Chapter 4. What and How does In-Context Learning Learn? Bayesian Model Averaging, Parameterization, and Generalization
	4.1. Introduction
	4.2. Related Work
	4.3. Preliminary
	4.4. In-Context Learning via Bayesian Model Averaging
	4.5. Theoretical Analysis of Pretraining
	4.6. ICL Regret under Practical Settings
	4.7. Conclusion

	References
	Appendix A. Generative Adversarial Imitation Learning with Neural Networks: Global Optimality and Convergence Rate
	A.1. Neural Networks
	A.2. Neural Temporal Difference
	A.3. Proofs of Auxiliary Results
	A.4. Proofs of Supporting Lemmas

	Appendix B. Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
	B.1. Proofs for §2.5-2.6
	B.2. Mean-Field Limit of Neural Networks
	B.3. Auxiliary Lemmas

	Appendix C. An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
	C.1. Conditional Mean Embedding
	C.2. Attention Recovers Latent Posterior
	C.3. Generalization Error Analysis
	C.4. Optimization Error Analysis
	C.5. Approximation Error Analysis
	C.6. Auxiliary Proofs for Generalization
	C.7. Auxiliary Lemmas

	Appendix D. What and How does In-Context Learning Learn? Bayesian Model Averaging, Parameterization, and Generalization
	D.1. More Related Works
	D.2. Proofs for Section 4.4.1
	D.3. Appendix for Section 4.5
	D.4. Proofs for §4.6
	D.5. Proof of Supporting Propositions
	D.6. Technical Lemmas

