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ABSTRACT 

Integrated Transit System Design with Autonomous Vehicle Fleet Services:   

Mathematical Formulation, Solution Approach and Large-Scale Application 

Helen Pinto 

 

Providing quality transit service to travelers is a constant challenge for transit agencies. 

The advent of fully-autonomous vehicles (AVs) and their inclusion in mobility service fleets may 

allow transit agencies to offer better service or reduce their own capital and operational costs. This 

study focuses on the problem of allocating resources between transit patterns and operating shared-

use AV mobility services (SAMSs) in a large metropolitan area. To address this question, a joint 

transit network redesign and SAMS fleet size determination problem (JTNR-SFSDP) is 

introduced, and a bi-level mathematical programming formulation and heuristic solution approach 

are presented. 

The problem definition, modeling and solution of the JTNR-SFSDP are presented to 

recommend frequencies for existing transit lines and SAMS fleet size (level of service supplied), 

allowing the complete removal of existing lines. It demonstrates robustness of the proposed model 

with a sensitivity analysis at the design level, and shares takeaways from a large-scale application.  

It also proposes an agent-based model to capture travelers’ mode choices and the system-level 

performance of the integrated transit-SAMS system in terms of travelers’ simulated wait and travel 

times, transfers, shared rides in SAMS and denied transit boardings. This part is referred to as the 
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dynamic combined mode choice and traveler assignment problem (DCMC-TAP). Results indicate 

the modeling framework can improve the travel experience of transit users in terms of average 

user waiting time as well as generalized travel costs, while under comparable operating subsidy 

constraints by reducing inefficient services and reallocating resources between transit and SAMS.  
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1 Introduction 

1.1 Motivation and problem description 

Transit is often subsidized by local and federal government because it is essential for a healthy 

and happy urban population (Vuchic 1999). It plays a crucial role in social equity by providing 

affordable mobility to those who cannot afford other modes and those who cannot drive or use 

active modes (children, elderly, disabled and people without a driver’s license). It also reduces 

congestion on the road network and associated gas emissions by allowing many riders inside a 

single vehicle. Congestion and emissions have direct impacts on stress levels and respiratory health 

of a whole population, as well as on the economy due to the wasted time on the road. 

 It is well known that transit services face disadvantages compared to car modes due to less 

comfort, privacy and security, and accessibility barriers to fixed transit stations (first/last-mile 

access problem). Transit agencies and urban planners must find ways to remain sustainable and 

competitive with the emergence of autonomous vehicle (AV) technology, and leverage the 

potential synergies from an integrated multimodal system composed of traditional fixed-route 

transit and on-demand autonomous mobility services. This will have to be done on the strategic 

and tactical planning side (transit network design and route frequency setting). However, the transit 

planning process is very complex and new planning tools will be needed to predict the supply-

demand dynamics in such an integrated system. 

Car manufacturers, ridesourcing and information technology companies are devoting 

substantial resources to the development of fully autonomous vehicles (AVs). These vehicles 
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promise to transform the dynamics of the transportation sector in aspects ranging from operating 

cost structure and traveler convenience to environmental impacts and social welfare (Fagnant, 

Kockelman, and Bansal 2015). The innovative aspect of this technology has motivated research 

seeking to quantify these impacts and recommend operational models to guide efforts for its 

successful implementation at scale.  

Similarly to how ridesourcing services (Uber, Lyft, Via, etc) have conveniently enabled 

flexible and affordable door-to-door rides at the push of a smartphone button, mobility services 

operated by AVs are expected to significantly impact the demand for transit in urban and suburban 

areas (Correia et al. 2018). They may pose competition to transit services depending on their fares, 

travel time and other attributes that reflect the user experience. Studies assessing impacts of 

ridesharing found the potential for both substituting and complementing transit on a case-by-case 

basis (Hall, Price, and Palsson 2017; Martin and Shaheen 2014). 

Beyond competing with public transportation and sometimes even replacing it, AVs can also 

play a big role in making transit options more efficient and economical. Two examples may help 

in visualizing practical solutions that AVs bring to society. The first is elimination or reduction in 

service of bus lines that are not frequently used around the urban area, especially in lower-density 

residential areas. Replacing these bus lines with judiciously designed and efficiently provided AVs 

could result in benefits in terms of cost savings for agencies and better mobility service levels for 

individuals commuting in those areas.  The second widespread potential benefit of AVs resides in 

the multimodal service that these vehicles offer to society in general, especially if planned as part 

of one seamless public service; hence, individuals now have the option of choosing between solely 
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using AVs or, alternatively, combining the use of AVs with other modalities of transportation. 

This multimodal transportation service concept will be discussed in section 2.7. 

Shared-use autonomous mobility service (SAMS) fleets may offer transit agencies a potential 

solution to the challenge of designing public transit networks to efficiently serve heterogeneous 

travelers subject to various constraints (e.g. budgetary, historical or political background, service 

policies, equity issues). In a cost-based analysis of future transport systems, Bösch et al. (2018) 

indicate that there is an opportunity for SAMSs to replace bus service in low-density areas and 

allow transit agencies to focus their resources on mass transit in dense urban areas. Agencies could 

replace inefficient transit routes/patterns operating in certain regions, and during certain times of 

the day, and reallocate those resources to operate (or subsidize) SAMSs. Given the considerable 

operational and capital cost advantages of SAMS over fixed-route transit services and driver-

operated mobility services (e.g. flex-transit, ridesourcing, and taxi service), it is conceivable that 

reallocating resources from less cost-efficient transit patterns may produce better service for 

travelers and/or reduce overall transit agency costs. 

At the time when this doctoral study started, research exploring the integration of transit and 

AVs was in its early stages and no previous studies had proposed an approach to redesign transit 

in an integrated system with AV-enabled mobility services, except for (Shen, Zhang, and Zhao 

2018), which served as the initial reference for this work. Shen et al performed a supply-side 

simulation of first-mile shared AV services integrated with Singapore’s transit system, identifying 

synergy opportunities between transit and SAMS. Similarly to Shen et al, I use an agent-based 

modeling approach that captures the system-level impacts of such integrated system of transit and 
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SAMS. However, my contributions go a step further by also providing an optimization-based 

approach to redesigning transit networks and operating (or subsidizing) SAMSs considering 

traveler behavior, the interactions between traveler agents in the system, and operational and 

budgetary constraints. The agent-based model used in this dissertation has three combined 

components: a mode choice model, a transit traveler assignment and simulation model, and a 

SAMS fleet assignment and simulation model. The mode choice model analyzes and predicts the 

choice of travel mode for all travelers’ trips (private car, SAMS, transit, walking, etc), the 

assignment predicts their path choices and the simulation evaluates their experience as they move 

through their chosen paths. 

To help achieve the Pareto-improving outcome of better service for travelers and lower costs 

for agencies, I present a modeling framework to optimize the joint design of transit networks and 

SAMS fleets. Specifically, the objective is to formulate and solve the joint transit network redesign 

and SAMS fleet size determination problem (JTNR-SFSDP) subject to user-equilibrium 

constraints at the mode and route choice levels. To illustrate the effectiveness of the modeling 

framework, I use traveler demand from Chicago’s metropolitan region along with the region’s 

existing multimodal transit network composed of urban and suburban buses, and urban and 

commuter rail.  

Features of the modeling framework presented in this dissertation include (i) formulating a bi-

level optimization framework; (ii) capturing congestion effects in the transit network; (ii) capturing 

four travel modes: walk, transit-only (bus and/or rail), SAMS-only and SAMS+Transit; (iii) 

considering spatial and temporal heterogeneity of demand in lower level, while upper-level takes 
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a fixed demand supplied by the lower-level; and (iv) measuring mode choice response from 

changes in bus service. Additionally, the concept of route patterns used in the Transit Network 

Frequency Setting problem (TNFSP) by Verbas and Mahmassani (2013) is adopted to solve the 

frequency setting problem, modified to allow the removal of certain bus patterns. Route patterns 

are subsets of ordered stops for a certain route and dispatch time.  
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1.2 Objectives 

The general goal is to develop a modeling framework to support the planning, design and 

analysis of integrated transit and shared-use AV-enabled mobility services (SAMS). 

This will be accomplished with the following specific objectives: 

(1) Propose a flexible model that captures the transportation supply and demand impacts of an 

on-demand SAMS by combining agent-based mode choice, and dynamic assignment-

simulation models; 

(2) Evaluate the potential impacts of SAMS on (a) the demand for transit and personal vehicle, 

and on (b) the transportation level of service provided to travelers; 

(3) Develop an optimization model to jointly design transit networks and SAMS fleets 

considering the user response to design decisions as well as budgetary and operational 

constraints. 

1.3 General Approach 

The framework to support the joint design of integrated SAMS and transit systems is 

formulated as a two-level problem (called upper and lower levels) where the design part determines 

transit pattern frequencies and SAMS fleet size in the upper level, and the lower level evaluates 

the supply decision from the upper level through simulation of traveler experience and mode 

choice response. This evaluation is performed using (i) a multimodal agent-based time-dependent 

assignment-simulation tool called NU-Trans, (ii) a SAMS assignment-simulation tool, and (iii) a 

multinomial logit mode choice model. The traveler assignment-simulation and mode choice steps 
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loop through an iterative process until user equilibrium state is reached in the lower level, meaning 

all travelers have chosen their best paths and modes from what is available. Another iterative 

process between upper and lower levels also reach an equilibrium point between supply and 

demand response. 

1.4 Structure of this Dissertation 

This chapter has discussed the potential impacts that autonomous vehicles are expected to have 

in passenger transportation and the importance of redesigning public transit systems so that they 

can better accommodate and leverage this emerging technology, improve the provided level of 

mobility service and continue to play their essential role in social equity. Additionally, the purpose 

of the study along with specific objectives and the general approach were presented. 

Chapter 2 provides a literature review discussing earlier studies on transit network design, 

frequency setting and assignment, as well as research on the intersection of autonomous vehicles 

and transit systems. Later the bi-level optimization model and the concept of transit patterns used 

in this dissertation are introduced. Finally, I provide a description of the transit system in the 

Chicago metropolitan region (which is used as a testbed to illustrate application of the developed 

methodology) and discussion of the characteristics that motivated the theme of this dissertation. 

Chapter 3 describes the proposed joint design of multimodal transit networks and shared 

autonomous mobility fleets model. The mathematical formulation of the problem considering 

budgetary and operational constraints as well as user equilibrium at the mode and route choice 

levels is described. A solution approach that builds upon the framework from the upcoming chapter 
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is also presented. Results from a large-scale application in Chicago’s metropolitan region illustrate 

robustness of the model. 

Chapter 4 presents the solution framework for the dynamic combined mode choice and transit 

assignment-simulation problem to capture the impacts of a fleet of shared autonomous vehicles 

(SAMS). The mathematical formulation for the fixed-point problem of finding near-optimal user 

equilibrium modal flows is presented. To solve the problem heuristically, an agent-based modeling 

framework with three components is proposed: a mode choice model, a transit assignment-

simulation model and a SAMS assignment-simulation model. Results from a large-scale 

application show that the solution approach provides a satisfactory solution that can be used to 

predict users’ response to the supply of new mobility services as well as their overall experience 

in the urban transportation system. 

Chapter 5 summarizes the presented work, discusses applications, limitations, future work and 

contributions.  
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2 Background Review 

This chapter aims to discuss the scientific foundation upon which this dissertation has been 

built. I will cover concepts taken from transit network design and frequency setting, transit 

assignment, stochastic user equilibrium and combined transportation models. The stochastic user 

equilibrium is a concept that applies to the combined mode choice and traveler assignment in the 

lower level used to evaluate the joint design of SAMS fleet size and transit route frequencies.  

An introduction to bi-level modeling will be given to better understand the solution approach 

used in the methodology. Later I discuss several previous works involving integration of emerging 

mobility services, including SAMS, and transit systems. Finally, a review of Chicago’s transit 

system and its characteristics that motivated the development of this work is provided.  

2.1 Transit Network Design and Frequency Setting Problems 

 Ceder and Wilson (1986) decompose the transit planning process in five parts: network design, 

frequency setting, timetabling, vehicle scheduling, and crew scheduling/rostering. All these 

subproblems are complex nonconvex NP-hard problems, hence very difficult to solve analytically. 

Ideally, they would be planned simultaneously but this is intractable in practice, so they are usually 

solved sequentially or as a combination of subproblems. The disadvantage of solving subproblems 

separately is that finding a global optimal solution is not guaranteed.  

Ceder and Wilson (1986) present the transit network design problem (TNDP) and the transit 

network frequency setting problem (TNFSP) as interdependent public transit service subproblems. 

The TNDP is inherently a long-term strategic planning problem, wherein the network designer 
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chooses transit lines and stops (i.e. transit routes) in a certain area. A significant volume of research 

exists on the TNDP (seminal work: Baaj and Mahmassani 1995; Ceder and Wilson 1986; Clarens 

and Hurdle 1975).  

The TNDP instances are usually large-scale with multiple objectives, where the main user cost 

objective function is nonconvex with respect to the decision variables. Due to the nonconvex, 

multiobjective and combinatorial aspects of the problem, the literature adopts simplifying 

assumptions and proposes solutions reached through heuristic procedures. Objective functions 

include optimizing customer experience (i.e. area coverage, accessibility, travel time, trip 

directness, number of transfers, demand satisfaction, wait time, closeness to shortest path, etc), 

operator costs (number of routes, total route length, fleet size, hours of operation, etc), or both 

metrics simultaneously (Ceder and Israeli 1998; Guan, Yang, and Wirasinghe 2006). The input 

data typically include origin-destination (OD) demand, supply data, route performance indicators 

and area’s topology. The output can be route changes, new routes, and operating strategies. 

Constraints to this problem involve policies based on local historical or political background. 

The TNFSP is a medium-term tactical planning problem. The objectives are similar to those 

for transit network design aiming to optimize customer experience and/or operating costs. The 

output will be service frequencies. Its input data typically include available subsidy, service 

policies, current patronage, transit route network, OD demand, available fleet size and capacity.  

Constraints to this problem include demand satisfaction (avoiding overcrowding and large 

headways), headway bounds from regulating authorities, historical route runs, and number of route 

runs (Guihaire and Hao 2008).  
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As summarized by Iliopoulou, Kepaptsoglou, and Vlahogianni (2019), the complexity of the 

TNDP and TNFSP is explained in parts by different authors: (i) there is no simple solution 

procedure short of direct comparison of various local optima (Newel 1979); (ii) the discrete nature 

of the decision variables (Baaj and Mahmassani 1991, Chakroborty 2003); (iii) nonlinearity and 

the existence of logical conditions (Chakroborty 2003); (iv) NP-hard (Baaj and Mahmassani 1991, 

Kechagiopoulos and Beligiannis 2014); (v) different criteria for evaluation of solution quality 

based on contradicting targets (due to multiple objectives); (vi) cumbersome data collection due 

to the dynamic and time-dependent demand. 

Due to TNDP convexity issues and problem size (see: Ceder and Wilson 1986), the current 

study modifies the TNFSP formulation of Verbas and Mahmassani (2015) to model the JTNR-

SFSDP – further explained in section 3.3. The tactical aspect of the TNFSP also makes it more 

suitable to our application, where the focus is to change aspects of an already existing transit 

network to adapt it to an innovative environment of SAMS. Unlike most TNFSP formulations, the 

modified TNFSP in this study allows transit frequencies to be set to near-zero, allowing the 

removal of transit lines and improving the service of other lines with higher demand. For a detailed 

review of the TNDP, see reviews by Ibarra-Rojas et al. (2015) as well as Guihaire and Hao (2008). 

Seminal work on the TNFSP includes analytical approaches that aimed to determine route 

attributes like spacing and length rather than actual routes (Newell 1971; Salzborn 1972) and 

heuristic approaches (Furth and Wilson 1981; Marguier and Ceder 1984; Schéele 1980). Early 

heuristics set the grounds for the development of metaheuristics but they could not solve large 

networks and could not provide accurate representations (Iliopoulou, Kepaptsoglou, and 
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Vlahogianni 2019). Metaheuristics came to solve hard combinatorial optimization problems. 

These are classified in two types based on whether it improves a single candidate solution (single-

solution based) or selects from a pool of candidate solutions (population-based) (Gendreau and 

Potvin 2005). The problem solved in this dissertation improves an initial single solution (before 

scenario). 

Recent research employs improved solution methods including problem decomposition, 

simulation, genetic algorithms, and optimization solvers such as KNITRO and CPLEX (Ibarra-

Rojas et al., 2015). Chapter 2.6 outlines the common bi-level mathematical programming 

modeling framework typically employed to model the TNDP and the TNFSP (e.g. Constantin and 

Florian 1995; Fan and Machemehl 2011; Gao, Sun, and Shan 2004; Yoo, Kim, and Chon 2010; 

Yu, Yang, and Yao 2010). 

In a more recent review of applications of metaheuristics for the TNDP/TNFSP, Iliopoulou, 

Kepaptsoglou, and Vlahogianni (2019) affirm that metaheuristics have been widely used to solve 

the TNDP/TNFSP since the 1990s. What makes them attractive for this purpose is the adaptability 

to different problem structures, the capability to represent complex problems efficiently and the 

computational performance. The authors identify an implementation framework containing 

common algorithmic components and different solution representations and methods across the 

literature.  
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2.2 Transit Service Patterns  

A transit service pattern refers to a subset of ordered stops along a directed transit route. An 

example is the “short-turn” pattern, described by Furth and Day as a service pattern entirely 

overlapped by a longer service pattern on the same route, where the shorter pattern is a “short-

turn” variation of the full-length pattern (Furth and Day 1985). Figure 2.1, from Verbas and 

Mahmassani (2013), depicts an example of a bus route with three different service patterns running 

on the same time interval. The dots represent bus stops served. The black dots are all the stops that 

belong to the bus route.  The red pattern is the full-length pattern, and the blue and green patterns 

are “short-turn” variations. Short-turn patterns are used in the operation of transit services to better 

address variations in demand at certain times of the day and certain points of the route.  

Given that transit service patterns run at various times of the day and can overlap other patterns, 

the transit unit of analysis used in this study is the pairing of transit service pattern and time interval 

of the day. Across this study, a “pattern” 𝑝 ∈ 𝑃 refers to the transit service pattern associated with 

a specific dispatch time interval (𝑑𝑝). This notation allows the solution algorithm to set the 

frequency of each transit service pattern at each time interval of the day (or study horizon). In this 

study, the time-intervals are 30 minutes. For example, if a transit service pattern runs from 6am to 

7am, it is represented by two patterns: one for each 30-min interval. This way, we can set the 

headway for each interval independently (ℎ1, ℎ2). The variable 𝑞 represents the frequency of each 

pattern, which is the interval length divided by the pattern’s headway (ℎ𝑝). For a traveler waiting 

at a certain stop, her perceived frequency of a bus route is the sum of the frequencies of the patterns 
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that run at her departure time and that serve the stop she is waiting at and the stop she plans to get 

off at. 

 

Figure 2.1: Illustration of transit service patterns along a transit route 

 

2.3 Transit Assignment Problem 

The formulation of the assignment of transit travelers to paths in the transit network has long 

been developed in the literature, starting with the straightforward search of a minimum cost transit 

path (Dial 1967) and later the adoption of the hyperpath concept formally defined by Nguyen and 

Pallottino (Nguyen and Pallottino 1988).  Hyperpaths enabled a complete representation of the 

complexity of travelers’ journeys by defining links for each segment of the path in the transit 

network graph: not only the transit lines but also segments of walking, transferring, waiting, etc, 

for all possible paths that connect the traveler’s origin to their destination through the 

transportation network. This concept has been widely adopted until today in transit and traffic 

assignment models and requires modifying the original network representation into a graph of 

higher complexity to include the hyperpath links (Oliker and Bekhor 2018). 
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Spiess and Florian attempted to find more realistic optimal solutions in polynomial time and 

conceptually extended the model to incorporate some nonlinear congestion effects (Spiess and 

Florian 1989). Congestion becomes explicitly addressed in the works by de Cea and Fernandez 

and Wu et al. (de Cea and Fernandez 1993; J. H. Wu, Florian, and Marcotte 1994), where the user 

wait time at the transit station is penalized according to vehicle occupancy or passenger flow in 

the transit system. Cominetti and Correa model the passenger assignment in congested networks 

including the possibility of walking between transit stations through walking links (Cominetti and 

Correa 2001). Transit congestion effects are later modeled as hard capacity constraints (Hamdouch 

and Lawphongpanich 2008) and the availability of seated versus standing space (Hamdouch et al. 

2011) in each individual vehicle, which can impede the user from boarding in a crowded vehicle. 

For Schmöcker et al., seat capacity is understood as a factor influencing the traveler route choice, 

although standing capacity is disregarded (Schmöcker et al. 2011).  

Transit congestion effects must be included in realistic1 models because they represent an 

additional burden to the traveler by either adding to the perceived travel time and/or by adding 

discomfort to the travel experience, hence affecting their route choice. Links associated with 

waiting, walking, transfers and standing time can have their inconvenience converted into 

additional perceived travel time through a multiplier, often referred as the value of waiting, 

walking, etc, typically up to 3 times the perceived travel time when passenger is seated. Because 

the final route choice depends on this perceived cost in the network, transit assignment models that 

 
1 Realism in the context of dynamic transportation assignment models refers to the need to adequately represent 

the complex human behavior and traffic dynamics, which can be further aggravated by time-dependency and 

randomness in system inputs (Peeta and Ziliaskopoulos 2001). 
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consider congestion effects require solving a user equilibrium model on the hyperpath space, often 

done iteratively.  

The behavioral foundation of the user equilibrium is that each traveler seeks to minimize their 

travel costs. Cepeda et al characterizes the equilibrium in large-scale congested transit networks 

through the formulation of an optimization problem that seeks to minimize a gap function that 

represents the user equilibrium when it reaches its minimum value (Cepeda, Cominetti, and Florian 

2006). The authors use the method of successive averages (MSA) to solve the problem. Travelers 

are assumed to make route choices based on least cost hyperpaths. 

Transit assignment models can be frequency-based or schedule-based. The frequency-based 

models use aggregated representation of transit service for strategic planning problems and they 

are more suitable to handle large-scale networks; schedule-based models are helpful in the 

operations planning, given that it is based on the trajectories of the vehicles, allowing for a 

disaggregate understanding of passenger flows (Liu and Ceder 2017). Verbas and Mahmassani 

(2015) propose a time-dependent and frequency-based least-cost hyperpath algorithm that 

considers congestion effects to be used in transit assignment-simulation. In their study, the 

experience of travelers and movement of people and vehicles is captured through a multiagent 

particle simulation, where transfers, vehicle capacity through hard and soft constraints, seating and 

standing space availability and boarding rejections are reflected in the travel cost. This framework, 

later integrated with a mode choice model (O. Verbas et al. 2016), is adapted in this dissertation 

to include a new multinomial logit mode choice model and the presence of SAMSs. 
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 Verbas et al. (2016) have shown, advancing on work by Sbayti, Lu, and Mahmassani 

(2007) and Lu, Mahmassani, and Zhou (2009), that gap-based dynamic transit assignment 

simulations are able to reach convergence much faster than the common method of successive 

averages (MSA). This is because the gap-based approach shifts travelers from their current best 

path to another path based on the cost gap between the two paths, whereas the MSA treats paths 

equally. This convergence method is applied in a dynamic traveler assignment and simulation 

framework for multimodal large-scale transit networks (including bus, rail, walking and biking), 

considering different service patterns of transit routes. This gap-based approach is used in my 

work. 

2.4 Stochastic User Equilibrium 

The stochastic user equilibrium (SUE) proposed by Daganzo and Sheffi (1977) and Fisk 

(1980) became a widely used behavior model for traveler path assignment. Sheffi (1985) defines 

the SUE as the state in which no traveler believes that their perceived travel cost can be improved 

unilaterally by changing paths. This comes from the understanding that travelers do not have full 

knowledge of the network, so they choose their best path alternative based on their perceived travel 

costs rather than the true travel cost. In addition to the variability and incompleteness of the 

available information to the user, in contrast to deterministic models, stochastic models allow users 

to choose paths according to their different preferences or perceptions of the information, 

effectively overcoming the assumption of homogeneous users in Wardrop’s equilibrium. 

Wardrop’s first principle states that, at equilibrium, the cost of all used routes is equal and not 

higher than those of unused routes.  
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Besides the assumption of heterogeneous users, SUE also includes the random effect of the 

stochastic assignment problem on a congested network (Lam et al. 1999). It reflects the variability 

of travel times along links, represented through a distribution of perceived costs (by travelers); 

various forms have been assumed for this distribution in the literature. A common form is the 

normal distribution with mean equal to the (measured) average travel cost and variance 

proportional to the mean. This yields a probabilistic equilibrated assignment.  

Gentile (2018) provides a recent discussion of SUE models, warning that “trying to match 

real flow data with a deterministic assignment model can lead to fictitious increases of demand 

and/or relevant distortions in the model, so as to generate congestion on some links while letting 

other links become comparably attractive and then used”.  

2.5 Combined Mode Choice and Assignment 

Combined models found in the transportation literature are those that propose formulations 

that aim to solve a combination of steps of the transportation planning process. The latter is 

traditionally divided in four steps: trip generation, trip distribution, modal split and assignment. 

Wong et al. (2004) provides a review of early studies proposing combined models involving mode 

choice and assignment. These early models adapt Wardrop’s first principle to the mode choice 

where the equilibrium is reached when no traveler can improve their travel cost by switching 

modes. As Verbas et al. (2016) properly summarizes, major shortcomings of these early models 

were their deterministic assignment of passenger to modes, their static (aka independent of time, 

not dynamic) nature, and the lack of behavioral realism in the transit assignment (user 

heterogeneity, incomplete information, congestion effects, overlapping links, etc). This is why my 
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work, based on Verbas et al. (2016), seeks to overcome such shortcomings by using stochastic 

assignment of passengers to modes through a multinomial logit mode choice model, and by using 

a time-dependent simulation-based assignment tool that captures congestion effects.  

Wong et al. (2004) propose an optimization model that not only combines a hierarchical 

mode choice and assignment model but also solves the trip distribution stage. Abdelghany and 

Mahmassani (2001) present a dynamic trip assignment (DTA) model for urban intermodal 

transportation networks. It captures the dynamic interactions between mode choice and traffic 

assignment and estimates the effect of this interaction on overall network performance. The model 

implements a multiobjective dynamic trip assignment procedure in which travelers choose their 

mode route based a multicriteria least cost path formulation. Their experiments illustrate the 

significance of including mode choice dimension in the DTA framework and show the importance 

of a multiobjective assignment procedure incorporated in the model. Zhou, Mahmassani, and 

Zhang (2008) perform an agent-based simulation that captures traveler choices of route, departure 

time and mode, where departure time and mode are determined through a logit model. Zhang, 

Mahmassani, and Vovsha (2011) integrated a nested logit mode choice model and a DTA model. 

In a more recent study done after the publication of my work, Kamel et al. (2019) propose 

an integrated model for travel mode, departure time and route choice for large multimodal 

transportation networks with five modes. Departure time and mode choices are modeled through 

a nested logit structure, and route assignment through a simulation-based dynamic traffic and 

transit assignment tool. The modeling framework is similar to the one used in this doctoral research 

in that it uses an iterative process to capture the effects of the supply-demand decisions over one 
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another; the main loop ends with the convergence of the estimated demand. Within each iteration 

the route assignment estimates the level of service attributes based on the demand and other fixed 

inputs on one level, whereas the nested logit model estimates the demand based on the simulated 

level of service. 

2.6 Bi-Level Modeling Framework 

 This study models the JTNR-SFSDP, described in section 3.3, as a bi-level mathematical 

program. The generic formulation of a bi-level mathematical program is presented in Eqns. (2.1)-

(2.2). 

Upper Problem: 𝐹[𝑥, 𝑦] ;  𝐺[𝑥, 𝑦] ≤ 0 (2.1) 

Lower Problem: 𝑓[𝑥, 𝑦] ;  𝑔[𝑥, 𝑦] ≤ 0 (2.2) 

F[∙]: objective function of the upper-level decision maker(s) 

x: decision vector for the upper-level decision maker(s) 

G[∙]: constraint set of the upper-level decision vector 

f[∙]: objective function of the lower-level decision makers 

y: decision vector for the lower-level decision makers 

g[∙]: Constraint set of the lower-level decision vector 

𝑦 = 𝑦(𝑥) is typically referred to as the reaction or response function.  

If a response function can be found, the variable y in the upper-level problem can be replaced 

with the relationship between 𝑦 and 𝑥 in the response function (Sun, Gao, and Wu 2008). In this 

study, an analytical relationship between the upper-level decision variables and the lower-level 
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decision variables does not exist because of the complex, non-convex, nonlinear, and discrete 

nature of the lower-level decision problem. Hence, this study employs a heuristic approach to solve 

the bi-level problem, rather than an exact analytical solution method. The conceptual framework 

of this heuristic approach is depicted in section 3.1. 

2.7 Integrating Shared AV Mobility Services and Public Transit Systems 

It has been argued that autonomous vehicles will promote sustainability and transit efficiency 

through fleet fuel economy, marginal cost pricing, raising vehicle occupancies through dynamic 

ridesharing, lower energy consumption and reduced carbon footprint (Fagnant and Kockelman 

2014). Several studies have investigated the applicability and demand of integrating transit 

services with SAMS fleets serving as first/last mile feeders.  

Although this integration may be the best option from the standpoint of optimization and traffic 

flow improvement, the demand for it may not realize as expected. SAMS may compete with transit 

rather than complement it, as they offer convenient user experience with competitive rates. This 

will depend on the target population group. Certain population groups, such as the elderly and 

disabled, may not like to transfer between modes, whereas captive transit riders, price-sensitive 

and technology-oriented population groups are expected to welcome and experience the greatest 

benefits of an integrated system. Nevertheless, with proper policy incentives and optimal designs 

that are demand-responsive, the integrated SAMS and transit service may prove to be feasible, as 

discussed in the following studies. 
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Greenblatt and Shaheen provide a review on the history and future trends of AVS and mobility 

on demand, such as ridesourcing (Greenblatt and Shaheen 2015). They argue that ridesourcing 

users are replacing taxi and bus trips. A notable portion of them have the origin or destination of 

the trip at a public transit station, which suggests ridesourcing and SAMSs as a potential transit 

feeder mode. In comparison to taxis, ridesourcing presents advantages in “hail and dispatch” wait 

time besides often having greater passenger loads due to demand pair-matching technology. 

According to Yan et al., ridesourcing services provide an effective solution to last-mile problem 

by filling service gaps of large-volume transit lines and extending the catchment area of transit 

(Yan, Levine, and Zhao 2019).  

Other recent studies explore the integration of emerging shared and on-demand mobility 

services (e.g. ridesharing, bikesharing, SAVs, etc.) within transit networks. At the operational-

level, Stiglic et al. investigate the potential benefits of integrating ridesharing and public transit 

systems using an optimization model (Stiglic et al. 2018). The authors considered several ride 

matching options, such as ridesharing only, ridesharing and dropping off passengers at transit 

stops, and a park-and-ride option (in which the driver uses the transit line after dropping off 

passengers). The optimization algorithm maximizes the number of matched riders, and minimizes 

the total increase in driving distance for all drivers. To test the benefits of the integrated service, 

the authors conducted an extensive computational study on a simulated network that has a stylized 

transit network similar to that of the Bay Area Rapid Transit. The optimized integrated service 

directed more drivers to transit and provided enhanced mobility and a sustainable system, by 

reducing the negative externalities of private automobile travel. Liang et al. model and optimize a 
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first- and last-mile electric automated taxi feeder mode to transit (Liang, Correia, and van Arem 

2016). Using a continuous approximation model, Wu et al. model the optimal design of a network 

with bikesharing stations and transit lines (L. Wu, Gu, and Fan 2018). Previous research examines 

the integration of demand-responsive and traditional fixed-route transit services (Hickman and 

Blume 2001).  

According to Meyer et al. (2017), AVs will substantially increase accessibility and compete 

with transit. Based on a simulation in Swiss municipalities, they affirm that, from a capacity 

standpoint, AV fleets will generally be able to serve the full transport demand, including car and 

transit. They continue explaining that transit will only still be required in the centers of large 

agglomerations, where highest transport demands meet limited road capacities (Meyer et al. 2017). 

Shen et al. (2018) employ an agent-based supply-side simulation model to test different bus 

network and SAV integration scenarios. The results indicate significant potential benefits of 

replacing low-utilization bus routes with SAVs. The authors define a priori the bus routes that will 

be replaced by SAMSs as well as the modal share for both transit and SAMSs (Shen, Zhang, and 

Zhao 2018).  

Yan et al. use a joint revealed and stated preferences model to evaluate response to an 

integrated system of ridesourcing services and public transit (Yan, Levine, and Zhao 2019). 

Revealed preference choices included driving, walking, transit, or biking. Stated preference 

choices presented new alternative system designs that reflected an integrated service including 

variables for number of transfers and wait times. They predict that using existing bus stops as drop-

off locations and substituting ridesourcing services for low-demand bus routes would slightly 
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boost transit use while reducing operational costs. The increase in transit use is largely due to 

reduced wait times and in-vehicle travel times. Feigon and Murphy (2016) showed that individuals 

who already use shared-ride services are more likely to use transit, as well as that shared vehicles 

have a great potential to complement public transit (Transportation Research Board and National 

Academies of Sciences 2016). 

Lu et al. analyzed social preferences and demand for autonomous vehicles and transit-oriented 

developments (TOD) based on a survey conducted in Atlanta (Z. Lu et al. 2017). The survey 

focused on future technologies that affects housing, living, and transportation decisions of 

individuals. Using sentiment and latent-class analysis, the authors found that most Atlanta 

residents prefer to live in TODs rather than in an automobile-dependent environment. They also 

found public support for future innovations in Georgia, as well as positive attitudes towards the 

prospect of improving traffic congestion with the use of AVs. From these results, the authors 

predict a future with integrated AV and transit services, but also argue that this may be the case 

because Atlanta currently needs a stronger public transportation system. Hence, they suggest that 

policy makers need to consider local conditions before the introduction of integrated services. 

Here, I would add that this does not mean that the benefits from an integrated SAMS and transit 

service would only be significantly felt in urbans areas with weak public transportation systems. 

In Chicago, where there is a much stronger transit system, there are still several accessibility gaps 

that can be filled by AVs (refer to section 2.8 for more details).  

The modeling framework presented in this study for the JTNR-SFSDP involves an integration 

of transportation supply and demand models. Chapter 4 (Pinto et al. 2018) introduces the DCMC-



34 

 

 

 

TAP modeling framework that is employed in this study to model the lower-level problem in the 

bi-level JTNR-SFSDP. Similarly, Verbas et al. (2016) and Zhang et al. (2011) introduce dynamic 

combined mode choice-transit assignment and dynamic combined mode choice-traffic assignment 

models, respectively. Verbas et al. (2015) introduce the dynamic transit assignment-simulation 

model employed in this dissertation to obtain performance metrics for the transit mode based on 

transit demand and transit route/pattern frequency inputs. Hyland and Mahmassani (2018) present 

the operational strategies and simulation model for the on-demand shared-ride SAMS (Zhang, 

Mahmassani, and Vovsha 2011; O. Verbas et al. 2016; İ. Ö. Verbas, Mahmassani, and Hyland 

2015; Hyland and Mahmassani 2018).  

2.8 Chicago’s Transit System 

This review section addresses the quality of transit services in Chicago metro region and 

indicates that there is room for improvement. This may be facilitated with the emergence of AVs 

to fill accessibility gaps and/or to allow reallocation of public resources to areas that most need 

them. As a particular example, there is an opportunity for AVs to supply targeted services that 

could fill reverse commute needs and reduce the spatial mismatch that exists between the 

unemployed labor force and their job opportunities, effectively helping develop the local economy 

as well. Focus is given to the metropolitan region of Chicago because it is also the transit network 

chosen for our case study and large-scale application of our framework. 
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2.8.1 Chicago Transit and its Accessibility 

Chicago is known for its variety and wide coverage of transit services. In the metropolitan area, 

the Regional Transportation Authority has divided responsibilities for administration and 

operation of transit in the region between the Chicago Transit Authority (CTA) and suburban 

operators. CTA is in charge of rail and bus services in the city of Chicago as well as some 

connections to suburban Cook County, whereas the suburban operators are Metra, in charge of 

commuter rail, and Pace, in charge of fixed-route bus and paratransit services. Despite its extensive 

transit network, several areas lack adequate accessibility to public transportation. 

Studies show that last-mile access barriers are most prevalent in the suburbs (low density and 

scarce transit coverage) but also correlated to socio-demographic factors like poverty, 

unemployment, perception of crime and walkability of sidewalks. In Greater Chicago, most 

residential areas with job access within 30 min are concentrated on the north side (Owen and 

Levinson 2014), and areas most affected by last-mile access problems are suburbs and certain 

south and west neighborhoods (Tilahun and Li 2015). While Chicago ranks third in total 

employment among US cities, it is fifth in job accessibility.  

2.8.2 Spatial Mismatch and Reverse Commute in Chicago 

An analysis of the transit quality of service and employment accessibility (Minocha et al. 2008) 

examined Chicago’s region by comparing supply and demand indicators of transit: transit 

availability index (TAI) and transit employment accessibility index (TEAI). The TAI was based 

on transit frequency, hours of service and coverage, and TEAI represented the potential of residents 
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in certain traffic analysis zones (TAZ) to access jobs in other TAZs in the Metropolitan area. Their 

results indicate most south Chicago neighborhoods to have high TAI and the lowest TEAI values 

from the studied areas, implying job remoteness in these areas and a mismatch between where 

residents and their potential jobs are located.  

Besides the Loop (CBD), four out of the top five largest employment centers in the region are 

located along the I-90 corridor (172,000 jobs) and in Lombard (32,000 jobs), Naperville (35,000 

jobs), and Oak Brook (33,000 jobs) (Urban and Smith, 2012), in the social and economically 

diverse collar counties.  Such spatial mismatch continually worsens with the lack of efficient transit 

within and between Chicago and these key suburban job centers (Keil and Addie 2015). 

Job availability in the suburbs (Cook and collar counties) in industries like retail and 

manufacturing as well as suburban institutions and corporate campuses, opposed to the 

disappearance of local low-wage manual labor jobs, implies the need for reverse commute (from 

the city to the suburbs) for many residents. These people would certainly benefit from investments 

on ways to improve the user experience for reverse commutes and potentially offering of direct 

transportation services to far west areas like Naperville (in DuPage County), reducing travel times 

to work that currently take more than 90 minutes (with connections at the Loop to Metra’s BNSF 

Railway).  

Early surveys by Pace of two reverse commute runs from south Chicago to job centers in 

DuPage County revealed that the services influenced the decision of over 60 percent of surveyed 

passengers to take and retain the jobs (Cervero, 1994), indicating that providing affordable direct 

transportation to areas outside the CBD is a successful way of enhancing the potential for job 
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growth. With this behavioral finding and given the current demand for labor in suburban areas 

around Chicago, this is expected to remain true nowadays. This means that such an affordable 

direct transportation can either be provided through a fixed-route service, such as the PACE 

suburban bus, or it may be a flexible on-demand service performed by SAMS. The answer to which 

of these alternatives would be more beneficial depends on the existing demand, the latent demand 

as well as the operational characteristics of the supplied service. The methodology to answer such 

question is one of the contributions of this doctoral research. 

2.9 Summary of the Background Review 

This review explained that the transit network design and frequency setting problems can be 

both formulated separately or together. The formulation used in this dissertation is a modification 

of the frequency setting problem that allows the removal of transit patterns. Hence, it is a combined 

transit design and frequency setting formulation. The use of the concept of transit patterns (subsets 

of route stops) gives flexibility to the model because it allows targeting specific stops with 

high/low demand where the level of service needs to be adjusted, instead of adjusting all stops in 

a single route equally. 

Later the traveler assignment problem is described as the process that predicts travelers’ path 

choices in the network, where each traveler chooses their respective minimum-cost hyperpath, 

considering congestion costs in the transit network. Costs considered in the assignment are 

frequency-based, time-dependent and simulation-based. Furthermore, the transit network is seen 

separately from the SAMS network. The simulation-based traveler assignment problem is solved 

by minimizing a gap-based function that represents the difference between the best estimated user 
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travel cost and the experienced user travel cost after congestion effects. A multinomial logit mode 

choice model predicts travelers’ stochastic choices between the transit and SAMS networks, or a 

combination of both. A discussion of previous works that combine mode choice and assignment 

models is given. Later the concept of stochastic user equilibrium is explained for better 

understanding of the transit assignment solution, which considers users’ heterogeneity and 

randomness. The importance of stochastic and time-dependent models is highlighted to obtain 

realistic solutions.  

The generic formulation of a bi-level mathematical program is presented to represent the joint 

design of SAMS fleet size and transit frequencies subject to the users’ mode choice and path 

assignment equilibrium. I explain that in our case there is no analytical relationship between the 

decision variables in the upper and lower levels. Recognizing this, I developed a heuristic approach 

to solve it, which is a contribution explained in Chapter 5.2. 

Previous studies integrating on-demand mobility services and transit systems are discussed. I 

highlight potential benefits that autonomous vehicles are expected to provide, especially as a 

shared service and judiciously integrated with public transit. Previous surveys also predict higher 

user acceptance of AV technology by specific population groups. A gap in this literature that is 

filled by my work is the scarcity of supply-demand interaction models applied to the design of 

transit systems with AVs. Further details of the contributions can be found in the chapter. 

Finally, as the chosen location for case study, Chicago’s transit system is shown to have 

accessibility gaps that could be potentially solved through targeted implementation of shared AV-

enabled mobility services.  
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3 Joint Design of Multimodal Transit Networks and Shared Autonomous Mobility Fleets 

This chapter presents the joint transit network redesign and SAMS fleet size determination 

problem (JTNR-SFSDP) subject to user equilibrium at the mode and route choice level.  

The mathematical formulation of the JTNR-SFSDP is based on a transit network frequency 

setting problem formulation (TNFSP), in which the set of transit service patterns is fixed. Two 

major changes to the base TNFSP formulation in the JTNR-SFSDP formulation are the inclusion 

of a SAMS fleet size decision variable as well as the removal of maximum headway (i.e. minimum 

frequency) constraints for bus services. Removing the maximum headway constraint allows transit 

patterns to be effectively removed. 

3.1  Conceptual Framework 

The general framework and heuristic solution approach to the bilevel model is depicted in Figure 

3.1 to facilitate the understanding of the mathematical model for the JTNR-SFSDP. 
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Figure 3.1: Framework to solve the joint transit network redesign and SAMS fleet size 

determination problem 
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3.2 Nomenclature 

 Sets and Indices 

𝑃 set of transit patterns; indexed by 𝑝 ∈ 𝑃 

𝑃𝑏 subset of bus transit patterns; 𝑃𝑏 ⊆ 𝑃 

𝑃𝑟 subset of rail transit patterns; 𝑃𝑟 ⊆ 𝑃 

𝑇 set of time intervals; indexed by 𝑡 ∈ 𝑇 

𝐽 set of transit vehicle types; indexed by 𝑗 ∈ 𝐽 

𝑀 set of modes, indexed by m∈M 

𝑀𝑡 set of transit modes; indexed by 𝑚 ∈ 𝑀𝑡 = {𝑏𝑢𝑠, 𝑟𝑎𝑖𝑙} 

𝑍 set of transit vehicle trips; indexed by  𝑧 ∈ 𝑍 

𝑍𝑝 subset of transit vehicle trips belonging to pattern 𝑝, 𝑍𝑝 ⊂ 𝑍 

𝑂 set of origin microanalysis zones (MAZs), indexed by 𝑜 ∈ 𝑂  

𝐷 set of destination MAZs, indexed by 𝑑 ∈ 𝐷 

𝑇𝑎 set of assignment time intervals, indexed by 𝑡𝑎 ∈ 𝑇𝑎 

𝑄 set of paths, indexed by 𝑞 ∈ 𝑄 

 

Parameters 

𝑙𝑝 trip duration of a transit vehicle on pattern 𝑝 ∈ 𝑃 

𝑑𝑝 dispatch time interval of pattern 𝑝 ∈ 𝑃; 𝑑𝑝 ∈ 𝑇 

𝜃𝑝 vehicle type used on pattern 𝑝 ∈ 𝑃 

𝐵𝑝 capacity of vehicle used on pattern 𝑝 ∈ 𝑃 

𝐹𝑝 transit fare 

𝐹𝑆𝐴𝑀𝑆 SAMS fare 

𝜏𝑝
′  trip duration of a transit vehicle on pattern 𝑝 ∈ 𝑃, bounded above by time interval length 

(𝜏𝑝
. = 𝑚𝑖𝑛(𝑙𝑝, 30) 

𝛤 operating budget/subsidy 

𝑐1 transit operating cost per hour 

𝑐2 SAMS average operating cost per vehicle in the planning horizon 

𝑤𝑜 minimum average traveler wait time for SAMS 

∆1, 𝛥2 slopes in piecewise linear function (∆2> ∆1)  

𝑎1, 𝑎2 cut-off points in the piecewise linear equation 

𝑟𝐴𝑉 average service rate of AVs in the SAMS fleet (passengers/vehicle-hour) 

𝑉𝑗
𝑜 original number of transit vehicles of type 𝑗 ∈ 𝐽 

𝑆𝑜 original number of AVs in the SAMS fleet 

𝑘𝑗 equivalent number of AVs associated with a transit vehicle of type 𝑗 ∈ 𝐽 

ℎ𝑚
−  minimum headway for transit mode  𝑚 ∈ 𝑀𝑡 

ℎ𝑚
+   maximum headway for transit mode  𝑚 ∈ 𝑀𝑡 

𝛾𝑝
𝐿 coefficient converting transit overcrowding [persons] into units of time 

𝛾𝑡
𝑅 coefficient converting SAV overcrowding [persons] into units of time 
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𝜇 coefficient that allows change in maximum vehicle resources (measured in equivalent 

number of AVs) 

 

Input from Lower-Level Problem 

𝑒𝑡
𝑆𝐴𝑀𝑆 demand for SAMS during time interval 𝑡 ∈ 𝑇 

𝑒𝑝 demand for pattern 𝑝 ∈ 𝑃 

𝑔𝑝 maximum flow on pattern 𝑝 ∈ 𝑃 

 

Upper-Level Problem Decision Variables 

ℎ𝑝 headway of pattern 𝑝 ∈ 𝑃 

𝑆 SAMS fleet size 

𝑣𝑗  number of transit vehicles of type 𝑗 ∈ 𝐽 

 

Upper-Level Problem Auxiliary Variables 

𝑢𝑡 estimated average SAMS traveler wait time during time interval 𝑡 ∈ 𝑇 

𝜌𝑡 estimated utilization rate of SAMSs during time interval 𝑡 ∈ 𝑇 

𝐿𝑝 boarding rejections due to transit vehicle crowdedness (transit rejection penalty term) 

𝑅𝑡
𝑆𝐴𝑀𝑆 boarding rejections due to congestion in SAMS system (SAMS rejection penalty term) 

 

Input from Upper-Level 

𝑅𝑜,𝑑
𝑡𝑎

  list of travelers with origin 𝑜 ∈ 𝑂, destination 𝑑 ∈ 𝐷, and departure time 𝑡𝑎 ∈ 𝑇𝑎 

 

Lower-Level Problem Decision Variables 

𝑑𝑝 dispatch time interval of pattern 𝑝 ∈ 𝑃; 𝑑𝑝 ∈ 𝑇 

𝑅𝑜,𝑑
𝑡𝑎,𝑚,𝑞 list of travelers with origin 𝑜 ∈ 𝑂, destination 𝑑 ∈ 𝐷, and departure time 𝑡𝑎 ∈ 𝑇𝑎 on 

mode 𝑚 ∈ 𝑀, assigned to path 𝑞 ∈ 𝑄 

 

Lower-Level Problem Endogenous Variables 

𝛹𝑜,𝑑
𝑡𝑎,𝑚

 probability of a traveler with origin 𝑜 ∈ 𝑂, destination 𝑑 ∈ 𝐷, and departure time 𝑡𝑎 ∈ 𝑇𝑎 

choosing mode 𝑚 ∈ 𝑀 

𝐿𝑜,𝑑
𝑡𝑎,𝑚

 least cost paths between origin 𝑜 ∈ 𝑂 and destination 𝑑 ∈ 𝐷 on mode 𝑚 ∈ 𝑀 with 

departure time 𝑡𝑎 ∈ 𝑇𝑎 
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3.3 Mathematical Formulation 

 The mathematical program for the JTNR-SFSDP is defined as follows: 

𝑚𝑖𝑛 ∑
𝑒𝑝ℎ𝑝

2
𝑝∈𝑃

+ ∑ (𝑒𝑡
𝑆𝐴𝑀𝑆+𝐿𝑝) 𝑢𝑡

𝑡∈ 𝑇  
𝑝∈𝑃|𝑑𝑝=𝑡 

+ ∑ 𝛾𝑝
𝐿𝐿𝑝

𝑝∈𝑃

+ ∑ 𝛾𝑡
𝑅 𝑅𝑡

𝑆𝐴𝑀𝑆

𝑡∈ 𝑇

 (3.1) 

𝜌𝑡 =
𝑒𝑡

𝑆𝐴𝑀𝑆

𝑟𝐴𝑉𝑆
 ∀𝑡 ∈ 𝑇 (3.2) 

𝑢𝑡 ≥ 𝑤𝑜 ∀𝑡 ∈ 𝑇 (3.3) 

𝑢𝑡 ≥ 𝑤𝑜 + ∆1(𝜌𝑡 − 𝑎1) ∀𝑡 ∈ 𝑇 (3.4) 

𝑢𝑡 ≥ 𝑤𝑜 + ∆1(𝑎2 − 𝑎1) + ∆2(𝜌𝑡 − 𝑎2) ∀𝑡 ∈ 𝑇 (3.5) 

𝑐1 ∑
𝑙𝑝

ℎ𝑝
𝑝

+ 𝑐2𝑆 − ∑(𝐹𝑝𝑒𝑝 + 𝐹𝑆𝐴𝑀𝑆𝑒𝑡
𝑆𝐴𝑀𝑆)

𝑝

≤ 𝛤  (3.6) 

∑
𝜏𝑝

′

ℎ𝑝
𝑝|𝑑𝑝=𝑡,𝜃𝑝=𝑗

≤ 𝑣𝑗 ∀ 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (3.7) 

∑ 𝑘𝑗𝑣𝑗

𝑗∈𝐽

+ 𝑆 ≤ 𝜇 (∑ 𝑘𝑗𝑉𝑗
𝑜 + 𝑆𝑜

𝑗∈𝐽

)  (3.8) 

ℎ𝑚
− ≤ ℎ𝑝 ≤ ℎ𝑚

+  ∀𝑝 ∈ 𝑃𝑖, 𝑚 ∈ 𝑀𝑡 (3.9) 

𝐿𝑝 ≥ 𝑔𝑝ℎ𝑝 − 𝐵𝑝 ∀ 𝑝 ∈ 𝑃 (3.10) 

𝑅𝑡
𝑆𝐴𝑀𝑆 ≥  𝑒𝑡

𝑆𝐴𝑀𝑆 − 𝑟𝐴𝑉𝑆  ∀ 𝑡 ∈ 𝑇 (3.11) 

{𝑒𝑡
𝑆𝐴𝑀𝑆, 𝑒𝑝, 𝑔𝑝} = 𝜑[𝐷𝐶𝑀𝐶𝑇𝐴𝑃(ℎ𝑝, 𝑆)]  (3.12) 

𝑆 ≥ 0  (3.13) 

𝑣𝑗 , 𝐿𝑝, 𝑅𝑡
𝑆𝐴𝑀𝑆 ≥ 0 ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (3.14) 

 

The objective function in Eqn. (3.1) aims to minimize the disutility of travelers, particularly 

their wait time and boarding rejections. The first term represents the cumulative wait time of 

travelers assigned to transit. Assuming random arrival from uniform distribution, the average 
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traveler wait time on pattern 𝑝 ∈ 𝑃 is 
ℎ𝑝

2
. Multiplying 

ℎ𝑝

2
 by 𝑒𝑝, the demand for pattern 𝑝 ∈ 𝑃, gives 

the cumulative wait time of travelers using pattern 𝑝 ∈ 𝑃.  

The second term in the objective function gives the cumulative wait time of SAMS travelers. 

The auxiliary decision variable 𝑢𝑡 estimates the average SAMS traveler wait time during time 

interval 𝑡 ∈ 𝑇 and it is directly related to the main SAMS decision variable – SAMS fleet size (𝑆) 

– via the SAMS fleet utilization rate (𝜌𝑡). The constraints in Eqn. (3.2)-(3.5) define the relationship 

between 𝑆 and the auxiliary decision variables (𝜌𝑡, 𝜇𝑡). Multiplying the estimated wait time 𝑢𝑡 by 

the SAMS demand gives the cumulative wait time of SAMS travelers with departure time 𝑡. Here 

it is assumed that transit travelers who are denied boarding (𝐿𝑝) will become SAMS demand 

(𝑒𝑡
𝑆𝐴𝑀𝑆 + 𝐿𝑝) in the pattern time interval (𝑑𝑝 = 𝑡).  

The third term in the objective function captures transit vehicle crowding. Eqn. (3.10) defines 

the transit overcrowding auxiliary variable (𝐿𝑝) as a linear function of the headway (ℎ𝑝) and the 

maximum flow of the pattern (𝑔𝑝). 𝐿𝑝 is the number of passengers exceeding the vehicle capacity 

𝐵𝑝 of each pattern, summed over all patterns. The parameter 𝛾𝑝 
𝐿  converts units of transit travelers 

with denied boarding into units of time. Similarly, the fourth term captures the disutility from the 

SAMS system crowding. In Eqn. (3.11), 𝑅𝑡
𝑆𝐴𝑀𝑆 reflects the number of travelers exceeding the 

capacity of the SAMS system as a function of the SAMS fleet size (S). The parameter 𝛾𝑡
𝑅 converts 

units of SAMS travelers with denied service in a 30-minute time interval into units of time. This 

objective function captures the pertinent planning-level performance metrics most impacted by the 

decision variables ( 𝑆 and ℎ𝑝 ) for a joint transit-SAMS system.  
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Eqn. (3.2) defines the SAMS fleet utilization rate (𝜌𝑡) as the ratio of the SAMS demand rate 

(𝑒𝑡
𝑆𝐴𝑀𝑆) and SAMS fleet service rate (𝑟𝐴𝑉𝑆), analogous to a queueing system model. The SAMS 

service rate is a product of the SAMS fleet size (𝑆) and the average service rate of an AV in the 

SAMS fleet (𝑟𝐴𝑉). 𝑟𝐴𝑉 is based on simulations of a shared-ride SAMS fleet. Several factors impact 

the service rate, such as trip length, total demand, and maximum detour distance for shared-ride 

pickups; the service rate in this study was calibrated to the specific shared-ride SAMSs (with a 

maximum in-vehicle traveler detour distance/time of 30%) proposed for a specific service region 

using Chicago synthetic demand and taxi data. Although there are economies of density with 

shared-ride SAMS, these are beyond the scope of a planning design-level transit-SAMS design 

model.  

Eqn. (3.3)-(3.5) define the piecewise linear relationship between 𝑢𝑡 and the estimated 𝜌𝑡 

displayed in Figure 3.2. In a queuing system, the relationship between utilization rate and average 

wait time is highly nonlinear. In this model, as utilization 𝜌𝑡 increases from 0 to 𝑎1, wait time (𝑢𝑡) 

remains flat and relatively low at the minimum average traveler wait time (𝑤𝑜), as there are always 

empty AVs to serve new requests. When 𝜌𝑡 > 𝑎1, the possibility of all AVs in the fleet being 

occupied exists and hence average wait time 𝑢𝑡 increases slightly (∆1) with 𝜌𝑡 between 𝑎1 and 𝑎2. 

Finally, when 𝜌𝑡 > 𝑎2, the average utilization rate 𝜌𝑡 approaches full utilization, at which point 

average wait time 𝑢𝑡 increases rapidly (∆2) with 𝜌𝑡. This piecewise linear relation acts to prevent 

the transit-SAMS designer from setting the SAMS fleet size parameter (𝑆) too low, such that the 

SAMS fleet cannot serve the SAMS demand (𝑒𝑡
𝑆𝐴𝑀𝑆). 
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Eqn. (3.6) represents an operating budget constraint. The first term is the transit operational 

cost of pattern 𝑝 ∈ 𝑃 with trip duration 𝑙𝑝 and frequency 
1

ℎ𝑝
, where 𝑐1 is cost per unit time and 

∑ 𝑙𝑝
1

ℎ𝑝
𝑝  is the total operating time of all patterns. The second term represents the operational cost 

of the SAMS, or the cost to subsidize its operation. The third term is the farebox revenue (including 

SAMS fares). The total operational cost of the transit lines and SAMS fleet, after subtracting 

farebox revenue, must not exceed the available operational budget (𝛤). 

 

Figure 3.2: Piecewise linear relationship between average SAMS traveler wait time (𝒖𝒕) 

and estimated SAMS fleet utilization rate (𝜌𝒕) 

Eqn. (3.7) ensures enough buses of type 𝑗 ∈ 𝐽 (𝑣𝑗) exist to complete all the necessary transit 

trips made by vehicles of type 𝑗, during time interval 𝑡 ∈ 𝑇. 𝜏𝑝
′  is the pattern operating time 

bounded from above by the time interval length (30 minutes). The bound is necessary because a 

pattern 𝑝, by definition in Chapter 2.5, is only active in a time interval 𝑡 (i.e. pattern headways 

cannot be greater than the time interval it belongs to). 
𝜏𝑝

′

ℎ𝑝
 gives the required number of transit 
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vehicles for pattern 𝑝. Summing the required fleet of all patterns with dispatch interval 𝑑𝑝 = 𝑡 and 

vehicle type 𝜃𝑝 = 𝑗, gives the minimum fleet size of transit vehicle type 𝜃𝑝 required during time 

interval 𝑑𝑝. For simplification, patterns are considered to remain with the same vehicle type; hence, 

the decision problem does not aim to find the vehicle type for pattern 𝑝, but rather to optimize 

pattern headway given the available number of transit vehicles of type  𝑗 ∈ 𝐽. 

The constraint in Eqn. (3.8) represents a capital cost budget measured in terms of AV-

equivalents.  𝑉𝑗
𝑜 is the initial number of transit vehicles of type 𝑗 ∈ 𝐽; 𝑆𝑜 is the initial SAMS fleet 

size; and 𝑘𝑗 is the AV-equivalents associated with transit vehicle type 𝑗. For example, if buses of 

type 𝑗 cost 10𝑥 and AVs cost 2𝑥, then 𝑘𝑗 would be 5. The summation of the chosen number of 

AVs (𝑆) and the chosen number of AV-equivalents (∑ 𝑘𝑗𝑣𝑗𝑗∈𝐽 ) must be no greater than the 

summation of the initial AVs (𝑆𝑜) and initial AV-equivalents (∑ 𝑘𝑗𝑉𝑗
𝑜

𝑗∈𝐽 ). This upper bound can 

be adjusted by a factor 𝜇. The purpose is to capture the capital cost budget constraint facing transit 

agencies. Purchasing AVs to operate an SAMS will limit the agency’s ability to purchase buses. 

Many transit agencies treat capital and operational cost budgets differently. Hence, both Eqn. (3.6) 

and Eqn. (3.8) are needed to properly model transit agency budgets. 

The constraint in Eqn. (3.9) represents the pattern headway policy for each transit mode 𝑚 ∈

𝑀𝑡 = {𝑏𝑢𝑠, 𝑟𝑎𝑖𝑙}, for all patterns in the pattern set of mode 𝑚, 𝑝 ∈ 𝑃𝑚. Rail transit patterns are 

required to remain and therefore have upper and lower bounds. Bus patterns can be removed; 

hence, their pattern headway is only bounded from below.  
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Eqn. (3.12) represents the user equilibrium constraint at the mode choice and route choice 

levels, as well as the relationship between the upper-level decision variables (ℎ𝑝, 𝑆) and the 

dynamic combined mode choice—traveler assignment problem (DCMC-TAP). This is the only 

constraint in (3.1)-(3.14) that refers to the lower-level problem. 

The constraints in Eqn. (3.13)-(3.14) require the SAMS fleet size, the overcrowding auxiliary 

variables (𝐿𝑝, 𝑅𝑡
𝑆𝐴𝑀𝑆) and fleet size of transit vehicle type  𝑗 ∈ 𝐽 (𝑣𝑗  ) to be nonnegative. 

3.4  Solution Approach 

3.4.1 Overview 

To solve the bi-level problem in Eqn. (3.1)-(3.14), this study employs a heuristic 

implementation of the approach outlined in Figure 3.2. The upper-level problem is the JTNR-

SFSDP, except that the lower-level decision variables (mode choice and route choice) are fixed. 

The outputs of the upper-level model are transit pattern headways and SAMS fleet size. This 

information is passed to the lower-level model, which is a dynamic combined mode choice-traveler 

assignment agent-based model. The lower-level model returns transit pattern demand and time-

dependent SAMS demand to the upper-level module.  

The solution procedure is as follows: 

Step 0: Set parameters and initialize 

Set upper-level model parameters 𝑘𝑗 , 𝑉𝑗
𝑜 , 𝑆𝑜 , 𝑟𝐴𝑉, 𝑤𝑜 , 𝑎1, 𝑎2, 𝛥1, 𝛥2, 𝑐1, 𝑐2, 𝛤, ℎ𝑚

− , ℎ𝑚
+ , 𝛾𝑝

𝐿 , 𝛾𝑡
𝑅 , 𝜇. 

Set transit network parameters: dispatch time interval 𝑑𝑝, trip length 𝑙𝑝, vehicle type 𝜃𝑝 and 

capacity 𝐵𝑝. 

Initialize SAMS fleet size 𝑆 and transit pattern headways ℎ𝑝. 

Initialize ODT-dependent modal demand 𝑅𝑜,𝑑
𝑡𝑎,𝑚

. 
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Step 1: Create a transit timetable 

Convert transit pattern headways ℎ𝑝 obtained from upper level (or initial configuration) into 

transit pattern trips 𝑍𝑝. The first trip of pattern 𝑝 is set to start at time 𝑡1,𝑝 based on the start time 

𝑡𝑜 of the pattern dispatch time interval 𝑑𝑝; 𝑡𝑒 is the end time of the dispatch time interval. For a 

trip 𝑧 ∈ 𝑍𝑝, the trip start time 𝑡𝑧,𝑝 is computed as follows: 

𝑡𝑧,𝑝 = {
𝑡𝑜 + ℎ𝑝

2
, 𝑖𝑓 𝑧 = 1 𝑡𝑧−1,𝑝 + ℎ𝑝, 𝑖𝑓 𝑡𝑧−1,𝑝 + ℎ𝑝 ≤ 𝑡𝑒 𝑡𝑧−1,𝑝 +

ℎ𝑝

2
+

ℎ𝑝′

2
,

𝑖𝑓 𝑡𝑧−1,𝑝 + ℎ𝑝 > 𝑡𝑒   ∀ 𝑧 ∈ 𝑍𝑝, 𝑝 ∈ 𝑃, 𝑝′ ∈ 𝑃: 𝑑𝑝′ = 𝑑𝑝 + 1 

Step 2: Run simulation models 

SAMS simulation: Given fleet size 𝑆 from the upper-level, and ODT demand for SAMS 

(𝑅𝑜,𝑑
𝑡𝑎,𝑚|𝑚 = 𝑆𝐴𝑀𝑆), simulate the SAMS fleet serving SAMS demand to obtain ODT-dependent 

performance metrics.  

Transit assignment-simulation: Given the transit pattern trips 𝑍𝑝 obtained in Step 1, and 

ODT demand for transit (𝑅𝑜,𝑑
𝑡𝑎,𝑚|𝑚 = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡), solve the dynamic transit traveler assignment 

problem using an iterative assignment-simulation approach to obtain the ODT-dependent 

performance of the transit system. Go to Step 3. 

Step 3: Run time-dependent mode choice model 

Using the ODT-aggregated SAMS fleet and transit network performance output from Step 2, 

update traveler mode choice probabilities 𝛹𝑜,𝑑
𝑡𝑎,𝑚

 and modal flows 𝑅𝑜,𝑑
𝑡𝑎,𝑚

. If mode choice 

probabilities converge, go to Step 4; if not, go to Step 2 with updated modal flows 𝑅𝑜,𝑑
𝑡𝑎,𝑚

.  

Step 4: Run transit-SAMS design model (A) and adjust solution to account for lower 

level response (B) 

A: Using time-dependent SAMS demand (𝑒𝑡
𝑆𝐴𝑀𝑆) and pattern-level transit demand (𝑒𝑝), 

aggregated from Step 3, employ a nonlinear programming solver designed to find local optimal 

solutions to solve the mathematical program described in Section 3.1. Let 𝑋 be the solution 

vector containing SAMS fleet size 𝑆 and pattern headways ℎ𝑝. The obtained solution for current 

iteration k (𝑋𝑘
𝑑𝑖𝑟)  is used as a recommended direction to be further evaluated. 

B: Repeat Step 2 and Step 3 to evaluate lower level response for 𝑋𝑘
𝑑𝑖𝑟. Compare lower level 

performance of solution 𝑋𝑘
𝑑𝑖𝑟 with that of previous iteration (𝑋𝑘−1, or initial configuration if 𝑘 =

1), and move from solution 𝑋𝑘−1in the direction of 𝑋𝑘
𝑑𝑖𝑟 proportionally to the improvement of 

the objective function, denoted as 𝑊. The adjusted solution 𝑋𝑘 is found in Eqn. (3.15). 

 
𝑋𝑘 = [1 +

𝑊𝑘−1 − 𝑊𝑘
𝑑𝑖𝑟

𝑊𝑘−1
∗

𝑋𝑘
𝑑𝑖𝑟 − 𝑋𝑘−1

𝑋𝑘−1
] ∗ 𝑋𝑘−1 (3.15) 
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In the computation of the adjusted solution 𝑋𝑘, the first term in the product represents the 

improvement in the objective function value, W; hence it is positive if 𝑊 decreases. The second 

term in the product is the step size relative to the previous solution. If the objective value 

decreases, the adjusted solution will be between 𝑋𝑘−1 and 𝑋𝑘
𝑑𝑖𝑟. Otherwise, the adjusted solution 

moves away from 𝑋𝑘
𝑑𝑖𝑟.  

The objective value 𝑊 is computed as the sum of cumulative transit wait time (∑ 𝑒𝑝𝑤𝑝𝑝 ), 

SAMS wait time (∑ 𝑒𝑆𝐴𝑀𝑆𝑤𝑡𝑡 ) and a penalty for travelers who could not be served (𝛾𝑒𝑢), as 

seen in Eqn. (3.16), where 𝛾 = 30𝑚𝑖𝑛, 𝑒𝑢 are unserved travelers, and 𝑤𝑝 and 𝑤𝑡 are experienced 

traveler wait times in the transit and SAMS systems (as evaluated in the lower level). 

 

𝑊 = ∑ 𝑒𝑝𝑤𝑝

𝑝

+ ∑ 𝑒𝑆𝐴𝑀𝑆𝑤𝑡

𝑡

+ 𝛾𝑒𝑢 (3.16) 

If the solution converges, then terminate. If not, then go to Step 1 with new fleet size 𝑆 and 

pattern headways ℎ𝑝. The solution converges when the upper-level decision variables (transit 

headways and SAMS fleet size) converge (i.e. no further improvement in the objective function 

is possible), and the lower level time-dependent SAMS demand (𝑒𝑡
𝑆𝐴𝑀𝑆) and pattern-level transit 

demand (𝑒𝑝) converge (i.e. the demands are internally consistent with the design variables).  

 

In Step 2, the SAMS simulator obtains the respective experience for individual travelers via 

running a simulation and dynamically operating a SAMS fleet, using assignment, routing, and 

scheduling algorithms. Simultaneously, the transit assignment-simulation model solves a 

congested multi-modal time-dependent assignment problem via iteratively (1) determining least-

cost transit hyperpaths on a time-dependent network; (2) assigning transit travelers to a transit 

hyperpath; and (3) simulating the performance of transit travelers and vehicles in a congested urban 

transit network. The simulation captures crowding on transit vehicles and at transit stops. The 

transit assignment-simulation model returns the performance of the transit network and the 

experience of individual travelers. See Verbas et al. (2015) for details of the transit assignment-

simulation solution approach with the NU-TRANS tool. 
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In Step 3, the respective performance of the SAMS and the transit network at the ODMT-level 

provide the attribute values input to the mode choice model, which assigns (or reassigns) individual 

travelers to walking, transit, SAMS or SAMS+Transit, based on the ODT performance of each 

mode. System performance is captured in terms of fare, in-vehicle travel time, wait time, walk 

time, in-vehicle standing time (when unable to find a seat), number of transit transfers, and SAMS 

probability of sharing a ride. The mode choice model then feeds this demand into the traveler 

assignment-simulation module (Step 2). This process repeats until the modal flows converge. The 

DCMC-TAP is challenging because it is a fixed-point problem with interdependencies between 

the mode choice probabilities and the transit and SAMS system performance. Hence, several 

iterations of the mode choice model may be required. See Chapter 3 and Verbas et al. (2016) for 

details of the modal assignment procedure. 

In Step 4, the upper-level transit-SAMS design module receives converged mode and route 

flows from the lower-level dynamic combined mode choice-traveler assignment-simulation model 

(i.e. Step 3 and Step 2). From the lower-level (Step 3), Step 4 also receives an evaluation measure 

of the user experiences that incorporates user wait times and crowding in transit and SAMS 

vehicles. This measure is what the upper-level objective function tries to approximate at an 

aggregate level. Given the converged mode and route flows, the non-linear programming solver 

obtains values for the upper-level decision variables – transit pattern headways and SAMS fleet 

size – that minimize cumulative traveler wait time. The values of the two upper-level decision 

variables are then fed back into the lower-level model in order to evaluate the user response to the 

new proposed transit pattern headways and SAMS fleet size. The lower-level model then evaluates 
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the user response and returns an evaluation measure of user experience. The algorithm then 

compares the new evaluation measure of user experience (based on the new proposed upper-level 

decision variables) with the previously obtained evaluation measure from Step 3. The gap between 

these two measures is used to drive the upper-level decision variables in the direction of the local 

design optima.   

The evaluation measure, 𝑊, is analogous to the upper-level objective function except that the 

attribute values, instead of being estimates, reflect the user experiences simulated in the lower 

level. Additionally, the unserved travelers accounted for in 𝑊 are only partially accounted for in 

𝑋𝑘
𝑑𝑖𝑟 because some of them are not directly associated to a travel mode and therefore do not affect 

the direction of the decision variables. In other words, while the two last terms in Eq. (3) penalize 

the rejection of travelers who were assigned to either transit or SAMS (in case of insufficient transit 

frequency or SAMS fleet), there can still be other travelers who had not been assigned to either 

mode (called unserved). This can happen if the prior decision variable configuration did not 

provide any viable mode for a certain traveler, such that the modal demand only represents a part 

of the population. Hence, the adjustment of the direction decision variables completes the solution 

approach by including the response of travelers. 

This step-by-step process repeats until the transit-SAMS design problem decision variables 

and the modal flows and traveler experience in the lower level stabilize at a local optimum, and 

are mutually consistent between the upper-level and lower-level. It is important to note that this is 

a simulation-based heuristic procedure and the solution is not guaranteed to reach global optimum. 
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In the application of this modeling framework, it is recommended to test various starting points in 

order to possibly obtain several local optimal solutions. 

3.4.2 Upper-Level Model Formulation 

 The upper-level model is displayed in Eqn. (3.1)-(3.14) with one important change. The time-

dependent SAMS demand (𝑒𝑡
𝑆𝐴𝑀𝑆), the transit pattern demand (𝑒𝑝), and the transit pattern 

maximum flow (𝑔𝑝) are fixed values (not dependent on the upper-level decisions). The values for 

these three variables are taken from the previous iteration of the lower-level model. 

3.4.3 Lower-Level Model Formulation 

 The formulation of the lower-level DCMC-TAP is introduced in Chapter 3 and originally 

proposed by Verbas et al. (2016).  This section presents the mathematical formulation of the 

DCMC-TAP. 

DCMC-TAP Formulation 

 This section presents the mathematical formulation of the time-dependent mode choice model 

in the lower-level DCMC-TAP. The equilibrium-based formulation follows the logic presented in 

Zhang et al. (2011) who formulate an integrated mode choice—traffic assignment problem.  

Equation (3.17) displays the mathematical relationship between modal probabilities 𝛹𝑜,𝑑
𝑡𝑎,𝑚

 and 

the list of travelers assigned to each mode 𝑅𝑜,𝑑
𝑡𝑎,𝑚

. 
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𝛹𝑜,𝑑
𝑡𝑎,𝑚 (|𝑅𝑜,𝑑

𝑡𝑎,𝑚′

|
𝑚′∈𝑀

) =
|𝑅𝑜,𝑑

𝑡𝑎,𝑚|

|𝑅𝑜,𝑑
𝑡𝑎

|
 ∀𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷, 𝑡𝑎 ∈ 𝑇𝑎, 𝑚 ∈ 𝑀 (3.17) 

Since the probability 𝛹𝑜,𝑑
𝑡𝑎,𝑚

 of choosing mode 𝑚 ∈ 𝑀 is itself a function of the modal flows 

of all modes |𝑅𝑜,𝑑
𝑡𝑎,𝑚′

|
𝑚′∈𝑀

, the time-dependent mode choice problem can be defined as a fixed-

point problem. The objective of this fixed-point problem is to find the optimal modal flows 

|𝑅𝑜,𝑑
𝑡𝑎,𝑚′

|
𝑚′∈𝑀

, satisfying the condition in (3.18). 

|𝑅𝑜,𝑑
𝑡𝑎,𝑚|

∗

= |𝑅𝑜,𝑑
𝑡𝑎

| × 𝛹𝑜,𝑑
𝑡𝑎,𝑚 (|𝑅𝑜,𝑑

𝑡𝑎,𝑚′

|
𝑚′∈𝑀

) ∀𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷, 𝑡𝑎 ∈ 𝑇𝑎, 𝑚 ∈ 𝑀 (3.18) 

The fixed-point problem can be re-formulated as a gap-based nonlinear program (Zhang et al., 

2011), as in Eqn. (3.19)-(3.21): 

𝐺𝐴𝑃𝑀  =
1

2
∑ ∑ ∑ ∑ (|𝑅𝑜,𝑑

𝑡𝑎,𝑚| − |𝑅𝑜,𝑑
𝑡𝑎

| × 𝛹𝑜,𝑑
𝑡𝑎,𝑚 (|𝑅𝑜,𝑑

𝑡𝑎,𝑚′

|
𝑚′∈𝑀

)) 

𝑚∈𝑀𝑡∈𝑇𝑟∈𝑅𝑞∈𝑄

 (3.19) 

 

such that: 

∑ |𝑅𝑜,𝑑
𝑡𝑎,𝑚|

𝑚∈𝑀

= |𝑅𝑜,𝑑
𝑡𝑎

|   ∀𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷, 𝑡𝑎 ∈ 𝑇𝑎 (3.20) 

|𝑅𝑜,𝑑
𝑡𝑎,𝑚| ≥ 0 ∀𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷, 𝑡𝑎 ∈ 𝑇𝑎, 𝑚 ∈ 𝑀 (3.21) 

The objective displayed in Eqn. (3.19) minimizes the discrepancy between the assigned modal 

flow |𝑅𝑜,𝑑
𝑡𝑎,𝑚| and the expected modal flow |𝑅𝑜,𝑑

𝑡𝑎
| × 𝛹𝑜,𝑑

𝑡𝑎,𝑚 (|𝑅𝑜,𝑑
𝑡𝑎,𝑚′

|
𝑚′∈𝑀

) summed over all 
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origins 𝑜 ∈ 𝑂, destinations 𝑑 ∈ 𝐷, departure time intervals 𝑡𝑎 ∈ 𝑇𝑎 and modes 𝑚 ∈ 𝑀. The 

convergence of 𝐺𝐴𝑃𝑀 to zero satisfies the fixed-point problem in Eqn. (3.18). Equation (3.20) is 

the flow conservation constraint, and Eqn. (3.21) satisfies the nonnegativity of modal flows. 

Despite the relatively simple mathematical formulation in Eqn. (3.18)-(3.21), the amount of 

information contained in it and the interdependencies between terms 𝛹𝑜,𝑑
𝑡𝑎,𝑚 (|𝑅𝑜,𝑑

𝑡𝑎,𝑚′

|
𝑚′∈𝑀

) 

and 𝑅𝑜,𝑑
𝑡𝑎,𝑚

 make the problem analytically intractable; i.e., it cannot be solved through an explicit 

analytical relation. For this reason, the problem is solved with an agent-based simulation approach. 

The next two subsections present the dynamic transit assignment simulation model and the SAMS 

fleet simulation model that feed into the mode choice model to solve the DCMC-TAP. 

Dynamic Transit Assignment-Simulation Model 

 Determining least cost ODT paths for each mode 𝐿𝑜,𝑑
𝑡𝑎,𝑚

 and path-dependent ODT modal flows 

|𝑅𝑜,𝑑
𝑡𝑎,𝑚,𝑞 | involves solving a shortest hyperpath problem and the dynamic traveler assignment 

problem (DTAP), respectively. The agent-based simulation approach used to solve this part of the 

problem is shown in Figure 3.3. As described in Verbas (2015), characteristics of the least cost 

hyperpath calculation algorithm include (i) a multimodal formulation that considers transit modes 

such as bus, rail, and commuter rail as well as walking and biking (option disabled in this study); 

(ii) it is time-dependent because it considers frequency and availability of transit service patterns 

in different time intervals; (iii) generalized cost is movement- and approach- dependent; (v) link 

and node costs are frequency-based; (vi) it enables penalization of transfers; and (vii) it accounts 

for probability of standing or being denied boarding due to overcrowding in transit vehicles. 
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𝐿𝑜,𝑑
𝑡𝑎,𝑚

 and |𝑅𝑜,𝑑
𝑡𝑎,𝑚,𝑞| also directly depend on the transit pattern headways (ℎ𝑝) and SAMS fleet 

size (𝑆) determined in the upper-level problem. Smith (1993) shows that the DTAP is not 

necessarily convex and that multiple solutions may exist. The decision variables in the lower-level 

problem – the list of ODT travelers assigned to each path 𝑅𝑜,𝑑
𝑡𝑎,𝑚,𝑞

, and the list of ODT travelers 

assigned to each mode 𝑅𝑜,𝑑
𝑡𝑎,𝑚

 – are easily converted to the upper-level input parameters – pattern-

level transit demand 𝑒𝑝 and time-dependent SAMS demand 𝑒𝑡
𝑆𝐴𝑀𝑆. Hence, the lower-level 

problem captures traveler responses to changes in the SAMS fleet size (𝑆) and transit pattern 

headways (ℎ𝑝). 
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Figure 3.3: Flowchart of transit assignment-simulation algorithm in lower level  

(Verbas et al., 2015) 

SAMS Simulation 

 This section presents the simulation model of an on-demand shared-ride SAMS fleet. This 

model is adopted from work by Hyland and Mahmassani (2018) and it has the following 

characteristics:  

● Travelers request rides dynamically via a mobile application; 
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● A request includes a pickup location and a drop-off location, both of which must be within 

a pre-defined geographical service region; 

● Travelers want to be served (i.e. picked up) immediately; 

● Travelers will always be served, assuming they are willing to wait; 

● A single AV picks up and drops off a traveler request 𝑖 but the same AV may pick up 

and/or drop off other traveler requests while traveler request 𝑖 is in the AV; 

● The AVs in the fleet are functionally homogeneous; 

● The AVs can only have two traveler requests inside at one time (similar to Lyft Line); 

● The AV fleet operator has complete control over each AV. 

The operational problem associated with an on-demand shared-ride SAMS is a stochastic 

dynamic control problem. The problem is dynamic as travelers make requests while the SAMS 

fleet is in operation, and the travelers want to be served immediately. The problem is stochastic 

because these user requests are random (drawn from a spatial-temporal demand distribution) from 

the perspective of the SAMS fleet operator. 

This study employs an optimization-based solution approach to assign idle/empty and en-route 

drop-off AVs to open user requests (meaning, they have not been assigned to an AV yet). The 

solution approach involves solving an optimization problem every 𝛥𝜏, the inter-decision time.  

 Let 𝐶𝑜 and 𝐶𝐼𝑉 denote the set of open user requests and in-vehicle user requests.  If 𝜏 is the 

current time and 𝑡𝑖
𝑟is the request time of user 𝑖 ∈ 𝐶𝑜, then user 𝑖’s elapsed wait time (𝑤𝑖) is 𝑤𝑖 =

𝜏 − 𝑡𝑖
𝑟. Similarly, let 𝑉𝐼, 𝑉𝑃, and 𝑉𝐷 be the set of idle, en-route pickup, and en-route drop-off AVs 

respectively; 𝑉 = {𝑉𝐼 , 𝑉𝑃, 𝑉𝐷}. Moreover, let 𝑉′ denote the subset of AVs that are available to be 

assigned to user requests. 𝑉′ only include idle and en-route drop-off AVs, not en-route pickup 

AVs; 𝑉′ = {𝑉𝐼 , 𝑉𝐷}. 
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All idle AVs 𝑉𝐼can be assigned to all open user requests 𝐶𝑜; however, some en-route drop-off 

AVs 𝑉𝐷 are not eligible to be assigned to any open user requests 𝐶𝑜. Let 𝑑𝑖 and 𝑑𝑖
𝑚𝑎𝑥 denote the 

cumulative detour distance of user 𝑖 and the maximum detour distance of user 𝑖, respectively. Then 

if 𝑑𝑖 ≥ 𝑑𝑖
𝑚𝑎𝑥, the en-route drop-off AV 𝑗(𝑖) ∈ 𝑉𝐷 carrying user 𝑖 ∈ 𝐶𝐼𝑉 is not allowed to be 

assigned to another user; these AVs are not considered in the assignment problem. Similarly, if 

assigning en-route drop-off AV 𝑗 ∈ 𝑉𝐷 to an open user request 𝑖 ∈ 𝐶𝑜 would increase the detour 

distance of either the in-vehicle user inside the AV 𝑑𝑖(𝑗) or the open user request 𝑑𝑖 above their 

respective maximum detour distances 𝑑𝑖(𝑗)
𝑚𝑎𝑥, 𝑑𝑖

𝑚𝑎𝑥, then the AV-user assignment is not feasible. 

Let 𝑓𝑖𝑗 equal one if there is a feasible match between en-route drop-off AV 𝑗 ∈ 𝑉𝐷 and open user 

request 𝑖 ∈ 𝐶𝑜, and zero otherwise.  

At every decision epoch, the SAMS fleet operator solves the mathematical programming 

problem defined below. The time between epochs is the inter-decision time 𝛥𝜏 = 15 𝑠. The math 

program utilizes the assignment (bi-partite matching) problem structure.  The formulation of the 

myopic AV-user shared-ride assignment problem is given in Eqns. (3.22)-(3.26): 

min
𝑥𝑖𝑗

∑ ∑ 𝑥𝑖𝑗{𝑐𝑉𝑂𝑇(𝑡𝑖𝑗
𝑡 + 𝑡𝑖𝑗

𝑑 − 𝑤𝑖) + 𝑐𝐸𝐷𝐶𝑅(𝑑𝑖𝑗) − 𝑟𝑎𝑠𝑔𝑛}

𝑗∈𝑉′𝑖∈𝐶𝑜

+ 𝑐𝑠ℎ𝑎𝑟𝑒 ∑ ∑ 𝑥𝑖𝑗

𝑗∈𝑉𝐼𝑉𝑖∈𝐶𝑜

  (3.22) 

s.t.  

∑ 𝑥𝑖𝑗

𝑖

≤ 1 

 

∀𝑗 
(3.23) 

∑ 𝑥𝑖𝑗

𝑗

≤ 1 

 

∀𝑖 (3.24) 
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𝑥𝑖𝑗(1 − 𝑓𝑖𝑗) = 0 ∀𝑖, 𝑗 ∈ 𝑉𝐷 (3.25) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 (3.26) 

 

where 𝑥𝑖𝑗 equals 1 if AV 𝑗 ∈ 𝑉′ is assigned to user 𝑖 ∈ 𝐶𝑜, and zero otherwise.  

The objective function includes penalty terms for remaining empty pickup time 𝑡𝑖𝑗
𝑡 , added user 

detour time 𝑡𝑖𝑗
𝑡 , and empty distance 𝑑𝑖𝑗 to pick up a user. The parameters 𝑐𝑉𝑂𝑇 =

$23

ℎ𝑜𝑢𝑟
; 𝑐𝐸𝐷𝐶𝑅 =

$0.50

𝑚𝑖𝑙𝑒
; and 𝑐𝑠ℎ𝑎𝑟𝑒 = $0.0 denote the value of time, empty distance cost rate, and the penalty for 

assigning an open user request to an en-route pickup AV. The objective also includes a reward for 

assigning an AV to a user (𝑟𝑎𝑠𝑔𝑛 = $10.0) and a reward that increases as a function of the elapsed 

wait time of user 𝑖. 

Eqn. (3.23) ensures that each AV 𝑗 is assigned to at most one open user request. Eqn. (3.24) 

ensures that no more than one AV is assigned to a single open user request. Eqn. (3.25) ensures 

only feasible AV-user assignments are made. Eqn. (3.26) is the integrality of the decision variable. 

Figure 3.4 displays the agent-based SAMS simulation model for the on-demand shared-ride SAMS 

that incorporates the mathematical program in Eqn. (3.22)-(3.26). The model assumes it takes 15 

seconds to drop-off a traveler and 45 seconds to pick up a traveler. The vehicles travel at 35 miles 

per hour, a relatively high speed. The model also assumes the maximum detour distance for 
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traveler 𝑖 (𝑑𝑖
𝑚𝑎𝑥) is a 30% increase in distance relative to the traveler’s shortest path distance from 

her origin to destination without sharing a ride. 

 

Figure 3.4: Flowchart of the SAMS simulation algorithm in lower level 

 

3.5 Experimental Design 

 The modelling framework is demonstrated at scale using the actual network of the Greater 

Chicago metropolitan area (USA). The application is performed in the large-scale urban network 

for the transit system, with SAMS fleet coverage tested in a suburban area. Transit data is taken 

from the General Transit Feed Specification for services provided by the Chicago Transit 

Authority and Metra (operators of urban bus and heavy rail, and commuter rail respectively).  
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The SAMS fleet coverage test area includes the city of Evanston and an 8 km (5 mi) buffer 

area that surrounds it. Evanston is a north suburb of Chicago with a population over 74000. A 

significant flux of travelers who live in Evanston commute to work in Chicago daily. Similarly, an 

influx of travelers commute to Evanston from Chicago.  Given the seamless integration of the 

transit lines in Evanston and Chicago, we model the entire Chicago transit network to have a 

realistic picture of the congestion in the transit vehicles.  

 The transit network is composed of 14259 transit stops, 64083 links and 146 transit routes. 

Moreover, the transit routes are distributed across 1081 transit service patterns (subsets of routes) 

wherein 660 are in the simulated period (morning peak). The demand data includes a list of 

approximately 630000 riders in the greater study area, from which 88000 riders are located in the 

suburban test area. Travelers listed in the demand data are expected to be transit travelers based 

on a household travel survey. Other general parameters and properties assumed for a typical 

weekday service during the morning peak period (6 to 10 a.m.) are described in Table 1. 

The simulations were performed in a compute node running the Red Hat Enterprise Linux 6 

operating system, with the following characteristics: Intel Xeon E5-2680, v4 14C 2.4 GHz, Intel® 

QPI, 2500 MHz, 28 cores and 128GB RAM. The memory requirement is approximately 50GB.  

The dynamic transit assignment and simulation portion of the lower level (step 2 in Section 

4.4.1) is solved with the NU-TRANS2 tool and parallelized using OpenMP threads. Computational 

time is approximately 10 min for every iteration in the transit assignment-simulation. Still in the 

 
2 Northwestern University dynamic transit assignment-simulation tool, described in (Ö. Verbas et al., 2016). 
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lower level, SAMS simulation time varied according to SAMS fleet size and assigned demand 

from each iteration, taking 30 minutes to 1 hour to run with Python and Gurobi optimizer.  

Table 1: Input parameters and characteristics of bi-level model 

Sets   Variable  

𝑃 |𝑃| = 2680 𝐹𝑝 U$2.25 

𝑇 |𝑇| = |𝑇𝑎| = 48 (time intervals in a day) 𝐹𝑆𝐴𝑀𝑆 Upper level: U$2.25  

𝐽 2 bus types (small and large); 15 train 
types 

 Lower level: U$2.25 (SAMS+Transit) 

𝑀 {walk, transit, SAMS, SAMS+Transit}  𝑚𝑖𝑛($4.85, $3.64 +  $0.20/𝑚𝑖𝑛𝑢𝑡𝑒 +
 $0.81/𝑚𝑖𝑙𝑒) (SAMS) 

𝑀𝑡 {bus, rail} 𝛤 U$ 311,000 (estimated based on initial 
configuration with some extra space) 

𝑍 |𝑍𝑜| = 20920 (initial transit vehicle 
trips) 

𝑐1 U$2.26/minute (bus) or U$2.40/minute (rail) 

𝑂, 𝐷 16819 MAZs (wherein 1348 are transit 
zones) 

𝑐2 U$250/day 

  𝑤𝑜 3.0 minutes 

  ∆1, 𝛥2 ∆1= 20; ∆2= 50  

Simulation characteristics  𝑎1, 𝑎2 𝑎1 = 0.50; 𝑎2 = 0.80 

 Relative weight of waiting for 
transit:  

2.0 𝑟𝐴𝑉 2 passengers/vehicle-hour 

 Relative weight of waiting for 
SAMS:  

1.0 𝑆𝑜 0 AVs 

 Relative weight of walking:  1.5 𝑘𝑗 6 AVs for a small bus; 9 AVs for a large bus 

 Relative weight of standing:  2.0 ℎ𝑚
−  2.0 minutes 

 Penalty for transfers (minutes):  5.0 ℎ𝑚
+  30.0 minutes 

 Walking speed (meters/second):  1.4 𝛾𝑝
𝐿 30.0 minutes per denied boarding 

 Simulation interval length 
(seconds):  

1.0 𝛾𝑡
𝑅 30.0 minutes per denied boarding 

 Transit assignment and least-cost 
hyperpath calculation interval 
length (minutes): 

30.0 𝜇 6.0 

 

The upper level takes up to 10 min to calculate pattern demands and the SAMS fleet size 

(direction solution, step 4A). The solution adjustment (step 4B) requires repetition of steps 2 and 
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3, which takes about 4 hours to complete 28 inner iterations and adjust the upper level solution 

based on lower level response. For every iteration of the upper level, the lower level performed 28 

inner iterations. The mode choice model and SAMS simulation are run in the first and every fourth 

inner iteration (lower level). Altogether, the computational time of a full iteration of the bi-level 

approach takes approximately 8 hours.  

The nonlinear programming solver used in the upper level transit-SAMS design model is 

KNITRO. The tool is configured to use a feature called parallel multistart, which uses 

parallelization to solve the problem simultaneously from different feasible and randomly selected 

starting points. The returned solution is the local optimum with the best objective function value. 

3.6 Experimental Results 

The output is shown for lower level and upper level iterations. The lower level output 

represents the result of simulated experiences after 28 inner iterations of the dynamic transit 

traveler assignment-simulation. The upper level results show features associated with the 

recommended design (SAMS fleet size and pattern frequencies) across 30 upper iterations. An 

additional “iteration 0” is added to some of the charts to show conditions before any changes in 

the transit design and before an SAMS fleet is added. Finally a “No SAMS” scenario is shown as 

a benchmark to scenarios with an SAMS fleet. 

The “iteration 0” is a lower level run where transit and walking are the only modes available 

for the users, and the transit system has its original network and schedule characteristics. It serves 

as a reference representing the user-equilibrium state of the unchanged system (status quo). Results 
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are presented for multiple starting points of the SAMS fleet size to address possible convergence 

issues (500, 1000 and 2000 initial SAMS fleets). The initial SAMS fleet size is used to obtain an 

initial time-dependent SAMS demand, which is leveraged by the upper level to provide design 

recommendations starting from the first upper iteration.  

Table 2: Mode Splits across Upper Iterations 

Iteration Unserved (%) Transit (%) Walk (%) SAMS (%) 
SAMS+Transit 

(%) 

Initial 
SAMS fleet 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000 

0 (base) 0.7 69.5 29.8 - - 

5 0.2 0.2 0.2 59.4 59.3 59.3 29.2 29.2 29.2 5.7 5.9 5.8 5.5 5.5 5.5 

10 0.2 0.2 0.2 59.7 59.9 59.7 29.1 29.0 29.1 5.6 5.7 5.7 5.4 5.3 5.3 

15 0.2 0.2 0.2 60.2 60.1 60.1 28.8 28.9 28.9 5.6 5.6 5.6 5.2 5.3 5.3 

20 0.2 0.2 0.2 60.3 60.4 60.1 28.8 28.7 28.8 5.4 5.4 5.7 5.2 5.2 5.2 

25 0.2 0.2 0.2 60.3 60.4 60.3 28.7 28.7 28.7 5.5 5.6 5.5 5.3 5.2 5.3 

30 0.2 0.2 0.2 60.4 60.5 60.5 28.7 28.6 28.7 5.5 5.4 5.5 5.2 5.3 5.2 

 

Table 2 presents the observed modal splits at the end of each upper level iteration for transit, 

walk, SAMS and SAMS+Transit. The transit and walk modes are part of the transit path 

assignment in the NU-TRANS tool. The walk mode share is obtained by filtering the traveler 

trajectories that only include walking links. The transit ridership is shown to decrease by 13% from 

the base case to the last iteration; SAMS and SAMS+Transit ridership increase significantly from 

zero to approximately 5% each, the number of unserved travelers decreases by 70% and, to a 

smaller extent, the walking mode decreases by 4%. Unserved travelers represent travelers that 

either do not have a feasible travel mode from the origin to the destination in the departure time of 
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interest, or travelers that were assigned to transit but were unable to reach their destination due to 

missed transfers or boarding rejections from overcrowded vehicles found in the simulation.  

The similarity of the mode shares for different initial SAMS fleet sizes shown in Table 2 

reinforces the robustness of the solution vis-a-vis different initial fleet size start points.  

 

Figure 3.5: Average generalized transit travel cost and wait time per transit/walk traveler 

for different upper level iterations (lower level output) 

 

Figure 3.5 shows that the lower level moves towards convergence of the average generalized 

transit travel cost and average wait time per traveler with 28 inner iterations; in this figure, each 

curve is an upper level iteration. Similarly, the mode choice model indicates that the travelers’ 

mode decisions converge, as they switch less and less between modes across inner iterations 

(Figure 3.6).  
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Figure 3.6: Convergence of mode choice gap for different upper level iterations (lower level 

output)  

This is also reflected in the wait times experienced by riders (Figure 3.7). There is a decreasing 

trend for the wait time in the transit mode approaching 6 minutes in the “No SAMS” case, and it 

narrows down to approximately 5 minutes for SAMS and transit users in the SAMS scenarios in 

the Evanston case area. The objective value described in Step 4 of the solution approach is depicted 

in the bottom chart of the figure (showing wait times and penalties for rejections and unserved 

travelers). The curves account for cumulative wait times and boarding rejection penalties for all 

modes. It is noticeable that the SAMS scenarios present improved (lower) objective value than the 

“No SAMS” case in Evanston.  

Figure 3.8 shows improving average transit wait times and experienced objective value for the 

general population. The “No SAMS” case however does not perform particularly different from 

the SAMS cases given that the SAMS population size is relatively small compared to the general 

population size. An additional insight taken from the lower level response is the effect on transit 

boardings, which increase with upper level decisions but boarding denials decrease (Figure 3.9). 
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Performance metrics of the upper level can be seen in Figure 3.10. The different initial SAMS 

fleet sizes do not seem to significantly affect the performance of the solution approach. The 

progress of the SAMS fleet size determination over different iterations lead to a common local 

optimal SAMS fleet size (approximately 1000 vehicles). The number of transit vehicle trips is 

shown to increase across upper level iterations in the same manner for all initial SAMS fleets. 

These vehicle trips are an immediate response to the changes in pattern frequencies. They increase 

more drastically for the “No SAMS” case given the same budget availability and they get much 

higher than initial conditions because we assume a generous initial operating budget.  
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Figure 3.7: Experienced wait times on transit and SAMS and Objective Value for Evanston 

population 
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Figure 3.8: Experienced wait times on transit and SAMS for general population 

 

Figure 3.9: Experienced transit pattern boardings and transit rejections 
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Figure 3.10: Performance metrics from the upper level 

Table 3 displays a sample transit route and its patterns. The results suggest the removal of 

pattern 144, which is a “limited-stop” (“short-turn” or not full-length) pattern. Conversely, the 

results indicate that the solution procedure decreases the headway of most of the other patterns for 

this particular route, except for patterns 151-152. The headways estimated above 30 minutes are 

interpreted as suggestions of pattern removal but are not actually removed in the simulations.  

Taken together, the traveler experience results and the results in Table 2 indicate that the 

modeling framework and solution procedure may effectively reallocate resources between transit 

pattern headways and SAMS fleet size in order to improve traveler experience. The nature of the 

solution clearly illustrates a trade-off between SAMS users and regular transit users.  While overall 

wait times decrease, not all transit users benefit, as reduced frequencies on certain lines result in 

much reduced service levels. This suggests that agencies may wish to explore the impact of 

additional design constraints in the formulation. 
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Table 3: Upper level output sample of recommended pattern headways 
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35 7 24.5 15 15.3 110.9 108.6 1.9 1.6 112 West 51 All stops 

136 8 24.5 15 14.7 110.9 113.0 1.8 1.6 112 West 51 All stops 

137 9 24.5 15 14.6 110.9 114.1 1.9 1.6 112 West 51 All stops 

138 10 24.5 15 14.4 110.9 115.2 2 1.6 112 West 51 All stops 

139 11 24.5 15 9.7 110.9 171.5 2 2.5 112 West 51 All stops 

140 12 24.5 15 7.4 110.9 224.9 2 3.3 112 West 51 All stops 

141 13 24.5 15 7.5 110.9 220.8 3 3.3 112 West 51 All stops 

142 14 24.5 15 14.5 110.9 114.6 2 1.6 112 West 51 All stops 

143 7 11 30 16.5 24.9 45.4 1.6 0.7 112 West 25 Limited 

stop 

144 14 14 30 300.0 31.7 0.0 2 0.0 112 East 24 Limited 

stop 

145 7 28 15 9.3 126.7 205.1 2 2.8 112 East 50 All stops 

146 8 28 10 6.2 190.0 308.4 1.7 4.7 112 East 50 All stops 

147 9 28 15 7.5 126.7 254.1 2 3.7 112 East 50 All stops 

148 10 28 15 9.7 126.7 195.4 0.4 2.8 112 East 50 All stops 

149 11 28 30 14.2 63.3 133.6 2 1.9 112 East 50 All stops 

150 12 28 15 9.8 126.7 194.3 0.5 2.8 112 East 50 All stops 

151 13 28 15 28.4 126.7 67.0 1 0.9 112 East 50 All stops 

152 14 28 15 28.6 126.7 66.4 1.9 0.9 112 East 50 All stops 
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3.7 Sensitivity Analysis  

Several parameters are provided as input to the bi-level solution approach in order to obtain 

results. Assumptions are made for initial operating subsidy, operating costs of transit vehicles, 

fares, initial SAMS fleet, etc. In this section, I perform an analysis to demonstrate how sensitive 

the framework is to changes in the available operating subsidy. 

3.7.1 Impact of Subsidies on Transit Performance 

Operating subsidy is a critical component for urban transit operation as the profit associated 

with this service is minimal, typically covering 33% of the total cost (Reeven and Karamychev 

2016). To increase ridership, lower average fares are needed which can only be realized with 

subsidies. Although the general belief has been that subsidies increase ridership, research shows 

that the impact of subsidies in terms of user costs, transit performance, and labor productivity is 

not always positive.  

Cervero and Pucher showed that higher operating costs per hour and lower productivity have 

been associated with higher operating subsidies (Cervero 1984; Pucher 1982). Reeven and 

Karamychev (2016) analyzed ridership data from 1991 to 2012 and found that subsidies have had 

insignificant effects on ridership. The same result was found by Malalgoda and Lim who suggest 

that policy makers should not rely on boosting transit funding to increase ridership, but rather 

consider incorporating innovative solutions in their operations, such as ride-hailing services 

(Malalgoda and Lim 2019). The above studies point to the need to study optimal allocation of 

funds in a world of transit integrated with SAMS. 
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3.7.2 Sensitivity to Operating Subsidy 

The solution approach for the joint transit network design and SAMS fleet size 

determination problem was tested using five different available operating subsidy constraints. The 

available subsidy is provided only for the simulated morning peak period (6AM to 10AM). The 

different maximum available operating subsidies and their corresponding outcomes from running 

nine upper-level iterations of the framework are presented in Table 4. The value of $311,000 

serves as reference because it was used to illustrate the large-scale application presented in the 

previous section.  

All transit network characteristics and parameters used in the model remain the same as 

those used to provide the results from the previous section, except for the multiplier in the upper 

bound of the fleet capital budget. This time a value of 1.5 times the original fleet capital budget 

was used instead of 6 from the previous section. However, it was noticed that this did not change 

the results because the operating budget is a binding constraint that does not allow full use of the 

fleet capital budget in case of multipliers higher than 2. 

Table 4: Ridership levels by mode in Evanston buffer zone by operating budget 

Budget 
(US$) SAV TRW Walk 

SAV + 
Transit Unserved 

Evanston 
Total 

220,000 470 69515 8387 9393 63 87828 

265,000 487 69494 8452 9336 59 87828 

311,000 433 69869 8416 9063 47 87828 

356,000 434 69959 8421 8963 51 87828 

401,000 500 69783 8424 9014 107 87828 
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The table shows ridership levels for each mode in Evanston and its 5-mi buffer zone. The 

possible modes are SAMS, Transit-only and SAMS + Transit. Travelers who cannot complete 

their trip with either of these available mode options are called “unserved”.  

It can be seen that with an increase in the available operating subsidy (budget), there is an 

increase in transit ridership, which supports the idea that there is an improvement in the transit 

level of service and therefore its attractiveness to riders. The number of riders who use SAMS as 

a feeder mode to transit also seem to decrease with an increased operating budget. That being said, 

all remaining modes (SAMS-only, walk, and unserved) seem unaffected by the changes in the 

operating budget. 

 

Figure 3.11: Sensitivity of fleet size and transit supply in the upper level 

Figure 3.11 shows that the point of convergence of the final SAMS fleet size depends on the 

budget. Based on the reference, it increases for higher budgets (than U$311,000) and decreases for 

lower budgets. As for the supplied transit service levels, number of supplied transit trips decrease 
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and then keep increasing, which seems to indicate that higher budgets are allocated preferably to 

improve transit levels of service rather than SAMS.  

 

Figure 3.12: Sensitivity of demand in entire Chicago network 

Figure 3.12 shows that transit ridership increases across upper iterations, while walkers and 

rejections decrease. Comparing different budgets, more budget means more transit ridership. This 

is due to the improved transit level of service. 
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Figure 3.13: Sensitivity of wait times and generalized cost in entire Chicago network 

Figure 3.13 shows that SAMS wait times are similar across different budgets. We can also 

see that, for transit wait times, they all decrease with upper iterations and higher budgets provide 

lower transit wait times. The bottom plot shows that the generalized cost (including wait times, 

rejection penalties, in-vehicle travel times and number of transfers) decreases across upper 

iterations, which shows that the framework not only improves travelers wait times but also 

improves the overall transportation experience of travelers. 
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Figure 3.14: Estimated costs, revenues and used subsidies in upper level 

Figure 3.14 shows the estimated costs, revenues and used subsidies in each of the budget 

scenarios across upper-level iterations. 
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Figure 3.15: Sensitivity of demand in Evanston buffer network 

Figure 3.15 shows that transit ridership in Evanston buffer area also increased after the joint 

design, and we see higher ridership for higher budgets levels. Number of walkers and rejections 

do not seem to vary significantly. It must also be noted that the results presented for Evanston do 

not seem as clearly delineated as the general Chicago scenarios because they would require more 

iterations to reach sharper results in such a small area compared to the overall network. Many 

changes happen across the entire Chicago network in each of these upper-level iterations. 
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3.8 Summary 

This chapter provided a methodology and modeling framework to support the joint re-design 

of multimodal transit networks and SAMS fleets to explore and plan mobility scenarios with on-

demand, shared and fully-autonomous vehicles. It introduces the joint transit network redesign and 

SAMS fleet size determination problem (JTNR-SFSDP), along with a heuristic bilevel solution 

approach demonstrated on an actual large-scale network. The development and effectiveness of 

the lower-level of this framework are described and illustrated in a stand-alone application in 

Chapter 4. 
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4 Assessing the Impact of Shared-use AV Mobility Services on Transit Demand:  A 

Combined Dynamic Mode Choice-Traveler Assignment Modeling Approach 

This is a separate application of the lower level alone from the previous chapter. This section 

introduces an integrated mode choice and dynamic traveler assignment-simulation modeling 

framework that explicitly models the dynamics of, and congestion in, the transit network and 

SAMS system. First, we present a mathematical formulation of the dynamic combined mode 

choice—traveler assignment problem (DCMC-TAP). The problem is analytically intractable 

because it is a fixed-point problem with interdependencies between the mode choice probabilities 

and the transit and SAMS system performance, including stochasticity and vehicle capacity 

constraints; therefore, we present a simulation-based, iterative heuristic solution approach. In the 

iterative modeling framework, the outer level assigns travelers to one of five modes: car, park-

and-ride, transit, SAMS, or transit with SAMS feeder. The inner level, both (1) iteratively 

determines minimum cost transit hyperpaths, assigns travelers to hyperpaths, and simulates their 

experiences, and (2) simulates a SAMS fleet providing service to travelers. Time-dependent 

network performance data is then fed to the mode choice model. This process repeats until the 

mode choice probabilities converge.  

4.1 Mathematical Formulation 

This section presents the mathematical formulation of the dynamic combined mode choice—

traveler assignment problem (DCMC-TAP). This mathematical equilibrium-based formulation 

presents a modeling framework to assess the impact of SAMSs on transit and car demand. The 
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mathematical formulation follows the logic presented in (O. Verbas et al., 2016; Zhang et al., 

2011). 

Let 𝑄, 𝑅, M, 𝑇, and 𝑃 represent the sets of origins, destinations, modes, assignment time 

intervals, and network paths respectively. These sets are indexed by origin 𝑞 ∈ 𝑄, destination 𝑟 ∈

𝑅, mode 𝑚 ∈ 𝑀, assignment time interval 𝑡 ∈ 𝑇 and path 𝑝 ∈ 𝑃. Let 𝑇𝑅 be the set of all travelers 

and 𝑇𝑅𝑞,𝑟
𝑡  be the set of travelers with origin 𝑞 ∈ 𝑄, destination 𝑟 ∈ 𝑅, and departure time interval 

𝑡 ∈ 𝑇. |𝑇𝑅𝑞,𝑟
𝑡 | represents the demand flow originating at 𝑞 ∈ 𝑄, at departure time interval 𝑡 ∈ 𝑇 

and terminating at destination 𝑟 ∈ 𝑅. Let 𝑇𝑅𝑞,𝑟
𝑡,𝑚

 be the subset of travelers with origin 𝑞 ∈ 𝑄, 

destination 𝑟 ∈ 𝑅, and departure time interval 𝑡 ∈ 𝑇 assigned to mode 𝑚 ∈ 𝑀. Similarly, let 𝑃𝑟𝑞,𝑟
𝑡,𝑚

 

be the probability of a traveler with origin 𝑞 ∈ 𝑄, destination 𝑟 ∈ 𝑅, and departure time interval 

𝑡 ∈ 𝑇 choosing mode 𝑚 ∈ 𝑀. 

Equation (4.1) displays the mathematical relationship between 𝑃𝑟𝑞,𝑟
𝑡,𝑚

 and 𝑇𝑅𝑞,𝑟
𝑡,𝑚

. 

𝑃𝑟𝑞,𝑟
𝑡,𝑚 (|𝑇𝑅𝑞,𝑟

𝑡,𝑚′

|
𝑚′∈𝑀

) =
|𝑇𝑅𝑞,𝑟

𝑡,𝑚|

|𝑇𝑅𝑞,𝑟
𝑡 |

   ∀𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀 (4.1) 

Since the probability 𝑃𝑟𝑞,𝑟
𝑡,𝑚

 of choosing mode 𝑚 ∈ 𝑀 is itself a function of the modal flows 

|𝑇𝑅𝑞,𝑟
𝑡,𝑚′|

𝑚′∈𝑀
, the dynamic mode choice problem (DMCP) can be defined as a fixed-point problem 

with the objective of finding the optimal modal flow |𝑇𝑅𝑞,𝑟
𝑡,𝑚′|

𝑚′∈𝑀

∗
 that satisfies the condition in 

Eqn. (4.2). 
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|𝑇𝑅𝑞,𝑟
𝑡,𝑚|

∗
= |𝑇𝑅𝑞,𝑟

𝑡 | × 𝑃𝑟𝑞,𝑟
𝑡,𝑚 (|𝑇𝑅𝑞,𝑟

𝑡,𝑚′

|
𝑚′∈𝑀

∗

)   ∀𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀 (4.2) 

The fixed-point DMCP can be re-formulated as a gap-based nonlinear program (Zhang et al., 

2011) in Eqn. (4.3)-(4.5): 

min
𝑇𝑅𝑞,𝑟

𝑡,𝑚
𝐺𝐴𝑃𝑀  =

1

2
∑ ∑ ∑ ∑ (|𝑇𝑅𝑞,𝑟

𝑡,𝑚| − |𝑇𝑅𝑞,𝑟
𝑡 | × 𝑃𝑟𝑞,𝑟

𝑡,𝑚)

𝑚∈𝑀𝑡∈𝑇𝑟∈𝑅𝑞∈𝑄

   (4.3) 

such that: 

∑ |𝑇𝑅𝑞,𝑟
𝑡,𝑚| = |𝑇𝑅𝑞,𝑟

𝑡 |

𝑚∈𝑀

   ∀𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (4.4) 

|𝑇𝑅𝑞,𝑟
𝑡,𝑚| ≥ 0 ∀𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀 (4.5) 

The DMCP objective displayed in Eqn. (4.3) minimizes the discrepancy between the assigned 

modal flow |𝑇𝑅𝑞,𝑟
𝑡,𝑚| and the expected modal flow |𝑇𝑅𝑞,𝑟

𝑡 | × 𝑃𝑟𝑞,𝑟
𝑡,𝑚

 summed over all origins 𝑞 ∈ 𝑄, 

destinations 𝑟 ∈ 𝑅, assignment time intervals 𝑡 ∈ 𝑇, and modes 𝑚 ∈ 𝑀. The convergence of 𝐺𝐴𝑃𝑀 

to zero satisfies the fixed-point DMCP in Eqn. (4.2). Equation (4.4) is the flow conservation 

constraint, whereas Eqn. (4.5) satisfies the non-negativity of mode flows. 

Solving the simple fixed-point DMCP formulation in Eqn. (4.3)-(4.5) requires knowledge of 

the origin-destination time-dependent (ODT) modal flows (|𝑇𝑅𝑞,𝑟
𝑡,𝑚′

|
𝑚′∈𝑀

) and subsequently the 

function 𝑃𝑟𝑞,𝑟
𝑡,𝑚 (|𝑇𝑅𝑞,𝑟

𝑡,𝑚′

|
𝑚′∈𝑀

∗

). However, the ODT modal flows are unknown. They depend on 

the route choices of travelers in the road and transit networks (dynamic traveler assignment 
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problem – DTAP). Without an explicit analytical relation, an agent-based simulation model is 

needed to obtain the solution. The proposed iterative simulation-based solution approach is 

described in the next section. 

4.2 Solution Approach 

This section details the solution approach employed to solve the DCMC-TAP. The next several 

subsections detail the individual mode choice model, dynamic transit assignment-simulation 

model, and the SAMS simulation model.  

4.2.1 Overview 

As mentioned, the DCMC-TAP is analytically intractable due to the interdependencies 

between the mode choice problem and the DTAP, as well as the underlying complexity of the 

DTAP as the problem size increases and vehicle capacity constraints are included in the problem 

formulation. To address the interdependencies, this study employs an iterative solution approach 

wherein the outer level problem is the mode choice problem, and the inner level problem is the 

DTAP. To address the complexity and intractability of the DTAP, this study employs a simulation-

based solution approach. The solution method includes a SAMS simulation model, and a dynamic 

transit assignment-simulation model.  

To report on the underlying road traffic conditions, a fixed ODT matrix is used with estimated 

travel metrics for the car mode based on previous dynamic traffic assignment (DTA) simulations. 

Explicitly integrating a dynamic road traffic assignment model in the solution procedure is out of 
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the scope of this dissertation. However, this should be considered in future work to depict the effect 

of the SAMS fleet on road congestion. 

In the iterative heuristic solution procedure, the outer-level mode choice model determines 

ODT modal shares given performance metrics for the considered modes. The performance metrics 

come directly from the SAMS simulation model, the transit assignment-simulation model, and the 

road network ODT matrix. The ODT modal shares from the outer-level mode choice model are 

informed to the two inner-level simulation models. The SAMS simulation model solves a dynamic 

stochastic pickup and delivery problem with immediate demand requests and outputs the ODT 

performance for the SAMS mode. Concurrently, the inner-level transit assignment-simulation 

model solves the DTAP and determines the ODT performance for the transit mode.  

Based on the prevailing road, transit, and SAMS performance characteristics, the mode choice 

model solves for new mode choice probabilities (𝑃𝑟𝑞,𝑟
𝑡,𝑚)

𝑘
, where 𝑘 is the iteration number. Then, 

the number of travelers assigned to mode 𝑚 at iteration 𝑘 |𝑇𝑅𝑞,𝑟
𝑡,𝑚|

𝑘
is updated according to Eqn. 

(4.6). 

|𝑇𝑅𝑞,𝑟
𝑡,𝑚|

𝑘
= |𝑇𝑅𝑞,𝑟

𝑡,𝑚|
𝑘−1

+ 𝛼𝑀
𝑘 (|𝑇𝑅𝑞,𝑟

𝑡 | × (𝑃𝑟𝑞,𝑟
𝑡,𝑚)

𝑘
− |𝑇𝑅𝑞,𝑟

𝑡,𝑚|
𝑘−1

)  

 ∀𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀 (4.6) 

where 𝛼𝑀
𝑘  is the step size and (|𝑇𝑅𝑞,𝑟

𝑡 | × (𝑃𝑟𝑞,𝑟
𝑡,𝑚)

𝑘
− |𝑇𝑅𝑞,𝑟

𝑡,𝑚|
𝑘−1

) is the descent direction.  

With the new modal flows |𝑇𝑅𝑞,𝑟
𝑡,𝑚|

𝑘
, the dynamic assignment in the transit and SAMS 

networks need to be re-equilibrated – technically the road network too but we assume this is fixed. 
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After equilibration, the network performance attributes are fed into the outer-level mode choice 

model.  

Figure 4.1 displays a flowchart of the solution approach. At the top level, travelers are assigned 

to one of five transport modes, based on the performance of the road, transit, and SAMS systems. 

System performance comes in the form of mode-specific origin-destination-departure time (ODT) 

performance metrics that include: 

● out-of-pocket cost 

● in-vehicle travel time 

● wait time 

● walk time 

● in-vehicle standing time (when unable to find a seat) 

● number of transit transfers 

● SAMS sharing probability 

The travelers assigned to transit, park-and-ride, or feeder SAMSs, are moved to the dynamic 

transit assignment-simulation tool where only the transit portion of the trips are modeled. In 

parallel, travelers that are assigned to the general SAMS or feeder SAMS modes are moved to the 

SAMS simulator, where the SAMS portion of their trips is simulated. For consistency, the speed 

of the SAMS vehicles in the simulation is set to be the same as the passenger car mode, which is 

an average from all trajectories for each ODT triplet provided by the ODT matrix. The road 

network performance, and therefore, the ODT metrics for the car mode, and road portion of the 

park-and-ride mode are fixed.  
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To obtain the transit ODT performance metrics, we iteratively calculate traveler least weighted 

generalized cost hyperpaths, assign travelers to hyperpaths, and simulate the movement of vehicles 

and travelers. This approach is similar to that presented by Verbas (Verbas et al., 2015; Ö. Verbas 

et al., 2016). Updated costs at the link and node level from the simulation are used to find updated 

least cost hyperpaths and reassign travelers to their least cost routes on the following iteration. 

This process continues until the dynamic transit assignment converges or reaches an acceptable 

number of iterations 𝑙.  

To obtain the SAMS ODT performance, we use another agent-based simulation tool to model 

a SAMS fleet operator serving travelers with a fleet of SAMSs. The updated transit and SAMS 

ODT performance metrics are fed back into the mode choice model. The mode choice model then 

recalculates mode choice probabilities and re-assigns travelers to one of the five travel modes. This 

process continues until the mode choice probabilities converge; i.e. minimal change from one 

iteration to the next, or reach a satisfactory number of iterations. 

A mode choice iteration 𝑘 is run after 𝑙 = 4 inner iterations of the dynamic transit assignment-

simulation loop. In every mode choice iteration, using a gap-based approach, a traveler is given a 

chance to switch modes if there is a decrease in the probability of choosing the same selected mode 

from one iteration to the next. In iteration 𝑘, the probability that traveler 𝑡𝑟 ∈ 𝑇𝑅, who is going 

from 𝑞 ∈ 𝑄 to 𝑟 ∈ 𝑅 at departure time interval 𝑡, will take the chance to switch from her mode 

choice 𝑛 from iteration (𝑘 − 1) to another mode is described in Eqn. (4.7).  
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(𝑆𝑃𝑟𝑜𝑏𝑡𝑟,𝑛
𝑀 )

𝑘
= 𝑚𝑎𝑥 {0,

(𝑃𝑟𝑞,𝑟
𝑡,𝑛)

𝑘−1
− (𝑃𝑟𝑞,𝑟

𝑡,𝑛)
𝑘

(𝑃𝑟𝑞,𝑟
𝑡,𝑛)

𝑘−1   } ∀ 𝑡𝑟 ∈ 𝑇𝑅, 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑀 (4.7) 

The probability that the traveler will switch from mode 𝑛 to mode 𝑚 ∈ 𝑀 in iteration 𝑘 is 

described in Eqn. (4.8). 

(𝑃𝑟𝑜𝑏𝑡𝑟,𝑛
𝑚 )

𝑘
= (𝑆𝑃𝑟𝑜𝑏𝑡𝑟,𝑛

𝑀 )
𝑘

(𝑃𝑟𝑞,𝑟
𝑡,𝑚)

𝑘
 ∀ 𝑡𝑟 ∈ 𝑇𝑅, 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑀 (4.8) 

 

(𝑃𝑟𝑞,𝑟
𝑡,𝑚)

𝑘
 is the probability of choosing 𝑚 ∈ 𝑀 computed in the multinomial logit form by the 

mode choice model based on the utility function of the modes. 

The following subsections detail the mode choice model, the dynamic transit assignment-

simulation model, and the SAMS simulation model. The following section discusses integration 

challenges.  
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Figure 4.1: Solution Approach for the dynamic combined mode choice and traveler 

assignment simulation 
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4.2.2 Mode Choice 

Mode Choice Input 

The input to the mode choice model includes (1) a list of all traveler-trips (travelers for short) 

and their respective characteristics, and (2) ODT performance metrics for all modes. Traveler 

characteristics include origin, destination, departure time and car ownership. 

Mode Choice Model 

This study employs a multinomial logit (MNL) discrete choice model. The modeling 

framework can handle more complex choice models including nested logit and cross-nested logit. 

However, reliable data was not available to estimate such models because the SAMS modes had 

not been implemented in real life yet at the time of this study.  

The mode choice model assigns travelers to one of the modes. The functional form of the utility 

function is given in Eqn. (4.9), where 𝑏 is the parameter index and 𝑚 is the mode. Wait time is the 

only modal specific coefficient in the model. The coefficient estimates listed below were obtained 

from a variety of sources in the literature including a stated-preference survey on flexible demand-

adaptive transit (Frei et al., 2017), as well as SAMSs (Krueger et al., 2016). The ASC values for 

car, park-and-ride, transit, SAMS, and transit with SAMS are 0, -1.5, -1.7, -0.5, and -1.5, 

respectively. The performance variables 𝐼𝑉𝑇𝑇𝑚, 𝑆𝑡𝑎𝑛𝑑𝑚, 𝑊𝑎𝑖𝑡𝑚, and 𝑊𝑎𝑙𝑘𝑚 should be in 

minutes. The fare variable (𝐹𝑎𝑟𝑒𝑚) should be in US dollars; the 𝑆ℎ𝑎𝑟𝑒 𝜖 [0,1] variable is the 

probability of sharing the SAMS ride with another traveler, the 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 variable counts number 

of transfers along the journey. 
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𝑉𝑚 = 𝐴𝑆𝐶𝑚 + 𝛽𝑏,𝑚𝑋𝑏,𝑚   (4.9) 

𝑉𝑚 = 𝐴𝑆𝐶𝑚 + 𝛽𝐼𝑉𝑇𝑇(𝐼𝑉𝑇𝑇𝑚 − 𝑆𝑡𝑎𝑛𝑑𝑚) + 𝛽𝑤𝑎𝑖𝑡,𝑆𝐴𝑉𝑊𝑎𝑖𝑡𝑆𝐴𝑉 +  𝛽𝑤𝑎𝑖𝑡,𝑡𝑟𝑎𝑛𝑊𝑎𝑖𝑡𝑇𝑟𝑎𝑛

+ 𝛽𝑤𝑎𝑙𝑘𝑊𝑎𝑙𝑘𝑚 + 𝛽𝑓𝑎𝑟𝑒𝐹𝑎𝑟𝑒𝑚 + 𝛽𝑆ℎ𝑎𝑟𝑒𝑆ℎ𝑎𝑟𝑒 + 𝛽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠

+ 𝛽𝑆𝑡𝑎𝑛𝑑𝑆𝑡𝑎𝑛𝑑 

𝑉𝑚 = 𝐴𝑆𝐶𝑚 + (−0.12)(𝐼𝑉𝑇𝑇𝑚 − 𝑆𝑡𝑎𝑛𝑑𝑚) + (−0.12)𝑊𝑎𝑖𝑡𝑆𝐴𝑉 +  (−0.24)𝑊𝑎𝑖𝑡𝑇𝑟𝑎𝑛

+ (−0.18)𝑊𝑎𝑙𝑘𝑚 + (−0.6)𝐹𝑎𝑟𝑒𝑚 + (−0.5)𝑆ℎ𝑎𝑟𝑒 + (−0.5)𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠

+ (−0.24)𝑆𝑡𝑎𝑛𝑑 + (−0.24)𝑆𝑡𝑎𝑛𝑑 

In multinomial logit models, the probability of a traveler with origin 𝑞 ∈ 𝑄, destination 𝑟 ∈ 𝑅, 

and departure time interval 𝑡 ∈ 𝑇 being assigned to mode 𝑚′ ∈ 𝑀 is given in Eqn. (4.10).  

𝑃𝑟𝑞,𝑟
𝑡,𝑚′

=
𝑒𝑥𝑝 (𝑉𝑚′) 

∑ 𝑒𝑥𝑝 (𝑉𝑚)𝑚  
 (4.10) 

At the mode choice level, the mode characteristics are evaluated. Road network performance 

(travel time and distance for passenger car mode and driving portion of the Park-and-Ride mode) 

is fixed. It is provided as an average for every OD and departure time interval based on previous 

DTA simulations with DYNASMART-P. Walking and transit experiences are obtained from the 

least-cost hyperpath calculation, assignment and simulation at the lower level. 

At the mode choice level, we learn each traveler’s ODT, estimate their travel characteristics for 

every one of the five potential modes, and build their mode choice set according to their personal 

or travel characteristics. The passenger car mode is feasible for those whose household own a car 

and whose estimated car travel time is no more than 24h (1440 min). The feeder SAMS and Park-
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and-Ride modes are feasible for travelers whose origin is within a 3-mile radius of a transit service 

that reaches the traveler’s destination MAZ in no more than 6 hours. However, the feeder SAMS 

is only allowed for those whose origin is in Evanston, whereas Park-and-Ride is only feasible for 

those whose household own a car and whose origin is not in Evanston. If a traveler’s origin and 

destination are both located in Evanston, she may take the general SAMS mode. Lastly, if the 

traveler’s origin is in a MAZ served by transit, and the estimated transit travel time is no more than 

6 hours, then transit is in their mode choice set. 

4.2.3 Dynamic Transit Assignment-Simulation 

A dynamic transit assignment-simulation tool applicable to large-scale multimodal networks, 

NU-TRANS (O. Verbas et al., 2016), is adapted and used to assess the experience of travelers at 

user equilibrium. The multinomial logit mode choice model described in the previous section was 

added to NU-TRANS.  NU-TRANS comprises the following features: 

● Multimodal least-weighted travel time hyperpath calculation 

● Multimodal time-dependent assignment 

● Multi-agent particle simulation 

● Mode choice model 

The least-cost hyperpath calculation and assignment use a gap-based formulation applied to a 

multimodal transit network including bus, rail and walk modes. The provided hyperpaths are time-

dependent on a frequency-based network. They capture different service patterns of a transit route 

and consider seating and vehicle capacity constraints. The multi-agent particle simulation moves 
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vehicles and travelers second-by-second, capturing the experience at the agent level, including 

transfers or missed connections, seating or standing, boardings and rejections.  

A procedure to update the traveler’s drop-off transit MAZ was added to the tool. After every 

𝑙 = 4 iterations in the lower level, the travelers’ drop-off MAZs are updated with the MAZ within 

a 3-mile radius of their origin that provides the least generalized cost by transit, based on the most 

recent hyperpath calculation. The updated drop-off MAZ becomes the origin of the transit portion 

of their trip if the Park-and-Ride or feeder SAMS modes are selected.  

NUTRANS Input 

The necessary input for NUTRANS includes (1) time-dependent agent-based trip demand 

(ODT matrix); (2) traveler characteristics (value of time and car ownership); and (3) transit 

network (i.e. routes) and schedule of transit vehicles, which are obtained from the General Transit 

Feed Specification data.  

4.2.4 SAMS Fleet Simulator 

SAMS Simulation Input 

The input to the SAMS simulation model includes (1) the SAMS fleet size, (2) the initial 

location of all SAMSs in the coverage area and (3) the origin 𝑞 ∈ 𝑄, destination 𝑟 ∈ 𝑅, and 

departure time 𝑡 ∈ 𝑇 of every traveler 𝑖 ∈ 𝑇𝑅𝑆𝐴𝑉 assigned to general SAMS or feeder SAMS. 

SAMS Simulation Model 
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The SAMS simulation model is an agent-based micro-simulation tool that models the 

movements of travelers and SAMSs, and the operational decisions of a SAMS fleet operator. This 

study assumes the SAMS fleet operator has complete control over all the SAMSs in the fleet. 

However, the fleet operator has no a priori information about the location and time of traveler 

requests. Hence, the SAMS fleet operator must dynamically assign SAMSs to traveler requests. 

The SAMS fleet operator aims to minimize traveler wait times. This study assumes that no more 

than two traveler requests can be inside a SAMS at one time.  

The underlying problem for the SAMS fleet operator involves using a fleet of SAMSs 𝑉 =

{1,2, … 𝑗, … |𝑉|} to serve travelers 𝑇𝑅𝑆𝐴𝑀𝑆 = {1,2, … 𝑖, … |𝑇𝑅𝑆𝐴𝑀𝑆|} who make immediate/on-

demand requests over the finite horizon 𝑇 = [0, |𝑇|]. The requests arrive randomly according to a 

Poisson process with a spatial-temporal demand rate that is unknown to the SAMS fleet operator. 

Each traveler’s origin (𝑞𝑖 ∈ 𝑄) and destination (𝑟𝑖 ∈ 𝑅) can be located anywhere within a pre-

defined service region. Each traveler’s request time (𝑡𝑖 ∈ 𝑇) also denotes her earliest pickup time, 

her desired pickup time, and the time the SAMS fleet operator becomes aware of the request. 

Each SAMS traveler 𝑖 ∈ 𝑇𝑅𝑆𝐴𝑀𝑆 can be in one of four mutually exclusive states:  unassigned, 

assigned, in-vehicle, or served. Unassigned travelers 𝑇𝑅𝑈
𝑆𝐴𝑀𝑆 have made a request but have not yet 

been assigned to an AV. Assigned customers 𝑇𝑅𝐴
𝑆𝐴𝑀𝑆 have been assigned to an AV but have not 

yet been picked up. In-vehicle customers 𝑇𝑅𝐼𝑉
𝑆𝐴𝑀𝑆have been picked up and are en-route to their 

destination. Finally, served customers 𝑇𝑅𝑆
𝑆𝐴𝑀𝑆have been dropped off at their destination. At every 

time instant  𝜏 > 𝑡𝑖, unassigned and assigned customers have an elapsed wait time 𝑤𝑖, wherein 

𝑤𝑖 = 𝜏 − 𝑡𝑖. Additionally, let 𝑝𝑜𝑠𝑇𝑅𝑖 denote the current position of traveler 𝑖. 
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At any point in time 𝜏 ≥ 0, each AV 𝑗 has a physical location 𝑝𝑜𝑠𝑉𝑗. AV 𝑗 ∈ 𝑉 can be in one 

of three states: idle, en-route to pick up a traveler, and en-route to drop off a traveler, respectively. 

These three states correspond to three mutually exclusive and collectively exhaustive subsets of 

AVs; idle AVs 𝑉𝐼, en-route pickup AVs 𝑉𝑃, and en-route drop-off AVs 𝑉𝐷. 

Let 𝜚𝑖𝑗 equal 1 if AV 𝑗 ∈ 𝑉𝐷 can feasibly pickup traveler 𝑖 ∈ 𝐶𝑈, and 0 otherwise. For any 𝑖 ∈

𝐶𝑈, 𝑗 ∈ 𝑉𝐷 pair, 𝜚𝑖𝑗 equals 1, if 𝑗 ∈ 𝑉𝐷 is 20% closer than all idle AV𝑠 𝑉𝐼, and the assignment does 

not cause traveler 𝑖 ∈ 𝐶𝑈, or the passenger in SAMS 𝑗 (𝑖′), to ever backtrack (i.e. move in a 

direction opposite of their destinations). Let 𝑑(𝑝𝑡1, 𝑝𝑡2) denotes the distance between points 𝑝𝑡1 

and 𝑝𝑡2, and let 0 < 𝛼 < 1 . Using the notation in Figure 4.2, the back-tracking conditions are 

formalized as follows: 

● for all 𝑖 ∈ 𝐶𝑈: 

o for all 𝑗 ∈ 𝑉𝐷: 

▪ 𝜚𝑖𝑗 = 0 

▪ If 𝑑(𝑜𝑖′ , 𝐷𝑖) < 𝑑(𝑝𝑜𝑠𝑇𝑅𝑖, 𝐷𝑖)  𝑎𝑛𝑑  𝑑(𝑝𝑜𝑠𝑇𝑅𝑖, 𝑜𝑖′) + 𝑑(𝑜𝑖′ , 𝐷𝑖) < (1 + 𝛼) ×

𝑑(𝑝𝑜𝑠𝑇𝑅𝑖, 𝐷𝑖): 

● if  𝑑(𝑜𝑖′ , 𝐷𝑖) < 𝑑(𝑜𝑖′ , 𝐷𝑖′): 

o if 𝑑(𝐷𝑖 , 𝐷𝑖′) < 𝑑(𝑜𝑖′ , 𝐷𝑖′)  𝑎𝑛𝑑  𝑑(𝑜𝑖′ , 𝐷𝑖) +  𝑑(𝐷𝑖, 𝐷𝑖′) < (1 + 𝛼)  ×

 𝑑(𝑜𝑖′ , 𝐷𝑖′) : 

▪ 𝜚𝑖𝑗 = 1 

● else:  

o if 𝑑(𝐷𝑖 , 𝐷𝑖′) < 𝑑(𝑜𝑖′ , 𝐷𝑖)  𝑎𝑛𝑑  𝑑(𝑜𝑖′ , 𝐷𝑖′) +  𝑑(𝐷𝑖, 𝐷𝑖′) < (1 + 𝛼)  ×

 𝑑(𝑜𝑖′ , 𝐷𝑖): 

▪ 𝜚𝑖𝑗 = 1 
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Figure 4.2: Diagram for determining feasible AV-traveler assignments 

The mathematical programming formulation of the AV-traveler assignment problem with 

shared rides, for the case where the number of unassigned travelers is greater than the number of 

idle AVs |𝐶𝑈| > |𝑉𝐼|) is presented in Eqn. (4.11)-(4.16). The parameter 𝛾 converts the units of 

time, to units of distance. The parameter 𝜑 denotes the penalty for assigning a traveler to an en-

route drop-off SAMS.  

min
xij

∑ ∑ (𝑑𝑖𝑗𝑥𝑖𝑗 − 𝛾𝑤𝑖𝑥𝑖𝑗)

𝑗∈𝑉𝐼∪𝑉𝐷 𝑖∈𝐶𝑈

+ ∑ ∑ (𝜑𝑥𝑖𝑗)

𝑗∈𝑉𝐷 𝑖∈𝐶𝑈

   (4.11) 

subject to: 

𝑥𝑖𝑗 − 𝜚𝑖𝑗 ≤ 0  ∀𝑖 ∈ 𝐶𝑈, ∀𝑗 ∈ 𝑉𝐷 (4.12) 
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∑ ∑ 𝑥𝑖𝑗

𝑗∈𝑉𝐼∪𝑉𝐷𝑖∈𝐶𝑈

≥ ∑ 1

𝑗∈𝑉𝐼

  ∀𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀 (4.13) 

∑ 𝑥𝑖𝑗

𝑗∈𝑉𝐼∪𝑉𝐷

≤ 1        ∀𝑖 ∈ 𝐶𝑈 (4.14) 

∑ 𝑥𝑖𝑗

𝑖∈𝐶𝑈

≤  1        ∀𝑗 ∈ 𝑉𝐼 ∪ 𝑉𝐷 (4.15) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐶𝑈, ∀𝑗 ∈ 𝑉𝐼 ∪ 𝑉𝐷 (4.16) 

The first term in the objective function in Eqn. (4.11) determines the distance between each 

assigned AV-customer pair. The second term in the objective function, rewards the SAMS fleet 

operator for assigning SAMSs to travelers that have a large elapsed wait time. The third term in 

the objective function slightly penalizes the SAMS fleet operator for assigning en-route drop-off 

AVs to travelers. 

The constraint in Eqn. (4.12) ensures that an inefficient assignment of an en-route drop-off AV 

(𝑗 ∈ 𝑉𝐷) to a traveler request does not occur. The constraint in Eqn. (4.13) requires the number of 

assigned AVs to be greater than or equal to the number of idle AVs in the system at the current 

time. The two constraints in Eqn. (4.14) and Eqn. (4.15)  require travelers to be assigned to at most 

one AV, and AVs to be assigned to at most one customer, respectively. The last constraint in Eqn. 

(4.16) ensures that the decision variable is binary. Fortunately, because the constraint matrix is 

unimodular, the LP-relaxation of the IP in Eqn. (4.11)-(4.16) returns integer solutions. Hence, this 

formulation is computationally very efficient.  
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For the case where the number of unassigned customers is less than the number of idle AVs 

(|𝐶𝑈| ≤ |𝑉𝐼|), the inequality constraint in Eqn. (4.14) becomes an equality constraint; i.e. all 

travelers must be assigned to an AV. Additionally, the constraint in Eqn. (4.13) is removed.  

SAMS Simulation Model Output 

The output of the SAMS simulation model includes average wait time, in-vehicle travel time, 

travel distance, and probability of sharing an SAMS for every ODT. This information is then 

immediately fed back into the mode choice model. There is nothing to equilibrate within the SAMS 

simulation model. However, it is important to note that the SAMS simulation model captures 

congestion in the SAMS system. Given that the SAMS fleet size is fixed, if the mode choice model 

assigns more and more travelers to either SAMS mode, traveler wait times will increase 

significantly. Hence, the next mode choice iteration will assign fewer travelers to the SAMS 

modes.  

4.3 Integration challenges and limitations  

A challenge found in the process of integrating the models lies on selecting the feeder SAMS 

and park-and-ride drop-off points. A user who has an origin in a microanalysis zone (MAZ) that 

does not have transit service may decide to request a SAMS (feeder) to connect to transit; in such 

case, she will need to pick a drop-off point that is convenient for the transfer, not necessarily the 

closest transit station, depending on the transit schedule and her destination of interest. Here the 

origin of the transit portion of the trip for park-and-ride and feeder SAMS travelers is selected 

individually based on the user’s ODT. The user’s drop-off point is set to be the MAZ served by 
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transit and within a 3-mile radius of the origin, that provides the “shortest path” to the destination 

MAZ at the traveler’s time of interest.  This “shortest path” is the least cost hyperpath obtained 

from the most recent transit assignment-simulation iteration in NU-TRANS, where the cost is the 

perceived generalized cost, including in-vehicle travel and wait times, boarding rejections and seat 

availability.  

As previously noted, the integration involves three separate programs for the dynamic transit 

assignment-simulation (NU-TRANS), the SAMS fleet simulation and the DTA simulation 

(DYNASMART-P) to provide performance metrics of the transit, SAMS and passenger car modes. 

However, the DTA output currently serves only to give a one-time fixed input of the passenger car 

performance to the framework’s main loop. Furthermore, even though buses, SAMSs and 

passenger cars share the same road network, our integration does not yet reflect the traffic 

conditions caused by their intermodal interaction in lanes with mixed use. This can be done in 

future work by assuring that the DTA simulation (i) belongs to a parallel feedback loop such that 

the road network performance gets updated with the most recent passenger car mode shares and 

(ii) includes the buses and assigned SAMSs to capture their interaction and effect on the passenger 

car performance. To improve consistency between the SAMS system and the passenger car mode 

in terms of performance in the road network, we provide the SAMS fleet simulator with a priori 

location- and time-dependent (ODT) speeds from the DTA simulation with passenger cars.  

On the transit assignment and simulation platform, walking is allowed on transit links so that 

travelers can have flexibility to take transit from a different start point or to make transfers that 

may require walking. It is therefore possible that the traveler completes the trip by only walking 
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even though her assigned mode is “transit”. This is a weakness of the framework because at the 

mode choice level the traveler is considered to be charged a transit fare despite the fact that she 

may eventually be assigned to a walking-only path.   

Origins and destinations are modeled in terms of microanalysis zones (MAZs) in NU-TRANS 

and SAMS fleet simulator. This improves the accuracy of transit access and egress modeling in 

the traveler path choices due to the fine level of spatial resolution. Trips are assumed to originate 

or end at the MAZ centroid. Since the road DTA performance is obtained from a mesoscopic 

analysis, it is provided in a traffic analysis zone (TAZ) to superzone level. Hence the traffic 

conditions do not reflect the same fine resolution. 

4.4 Application to a large-scale network 

This section describes a large-scale implementation of the integrated modeling framework 

presented in the previous section. The modeling framework was tested on the region served by the 

Chicago Transit Authority (CTA). The study area comprises 16,819 MAZs; 1348 of which are 

served by transit. The transit network represents services provided by two agencies: Chicago 

Transit Authority (buses and heavy rail operator) and Metra (suburban commuter rail operator). 

The network includes 14,259 nodes, 64,083 links and 1081 transit service patterns3. 

To examine the impact of a suburban SAMS transit feeder service (composed of feeder SAMSs 

and general SAMSs), the simulation is performed for the entire metro area for different network 

scenarios, then observing the user experience in the municipality of Evanston, north suburb of 

 
3 A service pattern is a subset of stops served from the entire stop set of a route (Verbas and Mahmassani, 2013). 
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Chicago. Evanston has four CTA bus lines, six heavy rail stations, and three commuter rail stations; 

hence, transit accessibility, especially to the urban core, is quite high. In the mode choice 

framework, only trips originating in Evanston can use the feeder SAMSs; moreover, only trips 

with an origin and destination in Evanston can use the general SAMS mode. These assumptions 

ensure that the SAMSs mostly stay in the Evanston area. 

The authors obtained a 25% sample of traveler trips generated in the Chicago metro area on a 

typical weekday. Each trip was replicated four times to represent 100% of all trips in the Chicago 

metropolitan area. For the current study, trips with destinations outside of the CTA operating 

region and trips within the same zone were removed. A total of 2,136,876 trips are simulated, of 

which 35,756 have the start point in Evanston. The demand data is synthetized based on the 2007 

Household Travel Survey conducted by the Chicago Metropolitan Agency for Planning (CMAP) 

and results from previous work with an activity-based and dynamic traffic assignment (ABM-

DTA) integration model for the Chicago metropolitan region (Halat et al., 2017; Xu et al., 2017; 

Zockaie et al., 2015). The observed fields for each traveler trip are person ID, start time, car 

availability, value of time, origin and destination in terms of MAZs, and travel mode. 

Passenger car travel characteristics (toll, time and distance) are obtained from a one-time 

DYNASMART simulation. Park-and-ride facilities are assumed to be available in all transit 

MAZs. Transit travel characteristics such as vehicle schedules and station locations are obtained 

from the General Transit Feed Specification (GTFS). Additionally, Geographic Information 

System (GIS) shapefiles obtained from the City of Chicago Data website are used to identify 

MAZs located within the area of interest.  
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Trips are observed during the morning period between 6 AM and 10 AM in three transit 

network scenarios: (1) the current transit network in the Chicago Metropolitan area, comprising 

services operated by the Chicago Transit Authority and Metra; (2) the addition of a SAMS fleet to 

the current transit network; and the replacement of the existing CTA bus service in Evanston for a 

SAMS fleet. Table 5 describes the simulation scenarios. 

Table 5: Characteristics of the scenarios 

Scenario  Description Modes Fare type 

1 Current network 

Private 

automobile, 

Transit (bus, rail 

and walking)* 

Transit: flat fee 

Private car: toll + distance-based 

Park-and-Ride: toll + distance-based + 

parking ticket 

2 
Current network + 

SAMS 

Private 

automobile, 

Transit (bus, rail 

and walking), 

general SAMS,  

feeder SAMS * 

Transit: flat fee 

Private car: toll + distance-based 

Park-and-Ride: toll + distance-based + 

parking ticket 

General SAMS: flat fee + distance-based + 

duration-based, or minimum fare 

Feeder SAMS: 1.5 x transit fare 

3 

Current network + 

SAMS, without 

buses 

Private 

automobile, 

Transit (rail and 

walking), 

general SAMS,  

feeder SAMS * 

Transit: flat fee 

Private car: toll + distance-based 

General SAMS: flat fee + distance-based + 

duration-based, or minimum fare 

Feeder SAMS: 1.5 x transit fare 

*The simulation included the Park-and-Ride mode only for the Chicago area outside Evanston so 

that it would not overlap with SAMS. 
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4.4.1 Pricing 

In this section, the fare types briefly introduced in Table 5 (user out-of-pocket costs) are 

explained in more details. The fare is one of the many parameters used by the mode choice model 

in the calculation of the travel mode’s disutility. 

The transit mode, including both bus, rail and walking, has a fixed fare ($1.40 or $2.25). We 

do not differentiate transit pricing in terms of transit service type (local bus, express bus, different 

commuter rail destination zones, etc). Transit riders are charged a fixed amount regardless of how 

many transfers or different service types existed in their trip. 

If a traveler is assigned to the general SAMS mode, a minimum fare (𝑆𝐴𝑉𝑚𝑖𝑛 = $1.70) is 

applied based on current prevailing transportation network companies’ (TNC) pricing practices. 

The SAMS fare is then estimated from time-based, mileage-based and fixed service fees as shown 

in Eqns. (4.17)-(4.18). 

𝐹𝑎𝑟𝑒𝑆𝐴𝑉 = (𝑆𝐴𝑉𝑚𝑖𝑛, 0.7 ∗ 𝑇𝑟𝑖𝑝 𝐶𝑜𝑠𝑡𝑆𝐴𝑉)    (4.17) 

𝑇𝑟𝑖𝑝 𝐶𝑜𝑠𝑡𝑆𝐴𝑉 = 𝑚𝑖𝑛𝑢𝑡𝑒 𝑟𝑎𝑡𝑒 ∗ 𝐼𝑉𝑇𝑇𝑆𝐴𝑉 + 𝑚𝑖𝑙𝑒𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 ∗ 𝐷𝑖𝑠𝑡𝑆𝐴𝑉 + 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑓𝑒𝑒 (4.18) 

The price of the general SAMS ride is a function of the in-vehicle travel time (𝐼𝑉𝑇𝑇𝑆𝐴𝑉) and 

travel distance (𝐷𝑖𝑠𝑡𝑆𝐴𝑉). Travelers in this mode are not given the option of deciding whether their 

ride will be shared. We assume all passengers are requesting a shareable service, so that they will 

be paying 70% of a full ride cost even if their ride is not matched with another passenger. The 

parameters used in this calculation are average values for the passengers’ ODT given by the SAMS 

fleet simulator. 
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The passenger car mode and driving portion of the Park-and-Ride mode have their out-of-

pocket costs estimated based on user-specific data (car ownership and value of time4) and fixed 

road network performance metrics. At a time-dependent OD level, each trip is associated with a 

toll, travel time and distance based on its value of time (DYNASMART DTA output).  The DTA 

tool detects value of time breakpoints for each ODT to assign travelers to certain paths. The toll 

associated to the trip refers to the existing tolls, if applicable, in the assigned path. The cost 

associated with the passenger car and Park-And-Ride (PNR) mode is calculated in Eqns. (4.19)-

(4.20). The park ticket is $1.00 and the mileage fee is $0.95 per mile.  

𝐶𝑜𝑠𝑡𝑃𝑁𝑅 = 𝑇𝑜𝑙𝑙𝐶𝐴𝑅 + 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑓𝑒𝑒 ∗ 𝐷𝑖𝑠𝑡𝑃𝑁𝑅 + 𝐹𝑎𝑟𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡 + 𝑃𝑎𝑟𝑘 𝑇𝑖𝑐𝑘𝑒𝑡 (4.19) 

𝐶𝑜𝑠𝑡𝐶𝐴𝑅 = 𝑇𝑜𝑙𝑙𝐶𝐴𝑅 + 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑓𝑒𝑒 ∗ 𝐷𝑖𝑠𝑡𝐶𝐴𝑅 (4.20) 

The feeder SAMS mode is set to allow a similar pricing structure to the trip cost of the general 

SAMS (𝑇𝑟𝑖𝑝 𝐶𝑜𝑠𝑡𝑆𝐴𝑉) with time and mileage-based as well as a constant fee. However, in this 

case study, we only considered a fixed fare for this mode. SAMS (feeder) riders who are dropped 

off at a transit station are charged a fixed fare equivalent to 1.5 times the prevalent transit fare, 

which covers both the SAMS and transit portions of the trip. If the traveler opts to walk to the 

destination after the SAMS drop-off at the transit station, they are still charged the same. This 

 
4 The user’s value of time was assigned by the ABM model in a previous ABM-DTA integration work (Zockaie 

et al., 2015) based on household income and assumed the same for all household members. There a continuous VOT 

distribution was estimated for each of four different user groups based on income level (0-30k, 30-60, 60-100k, 

>100k). Each traveler trip was then assigned a different value of time following the distribution of the user group it 

belongs to.  
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pricing strategy reflects a potential policy to encourage transit use and increase chances of 

matching travelers to shared rides. 

4.4.2 Replacing a Bus Fleet with a SAMS fleet 

Fleet size is probably the most important factor impacting the service quality of a SAMS feeder 

mode. Estimating how many SAMSs will be in the Evanston suburban feeder system is a hard 

task. However, to get some estimate of the SAMS fleet size, we assume that the bus purchasing 

costs can be used to purchase SAMSs, and that the operating life of a SAMS will be the same as a 

current transit bus.  

The Chicago Transit Authority operates four bus routes in the city of Evanston. Assuming 

there are six buses running in each direction during the morning peak for each route, the number 

of buses on all four routes is 48. According to Czerwinski et al., (2016), the cost of a bus is between 

$400,000 and $700,000; we assume $500,000. Future AV purchasing costs are unknown, but after 

a few years on the market they should not cost more than $100,000 for a regular-sized sedan. 

Considering $80,000 for a vehicle, the SAMS fleet size is assumed to be 300 AVs.  

4.5 Results 

This section displays the computational results for the simulation-based, iterative heuristic 

solution approach to the DCMC-TAP. The results illustrate the gap convergence, mode shares and 

traveler experience for the three scenarios described in Table 5.  
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4.5.1 GAP Convergence 

Figure 4.3 and Figure 4.4 illustrate the convergence of the integrated framework in all 

scenarios for the Evanston area.  

 

Figure 4.3: Lower level - Average transit assignment gap per traveler 

 

Figure 4.4: Upper level - Mode choice gap 
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The outer gap calculation in the mode choice level is based on the sum of differences of mode 

choice flows between outer iterations. Figure 4.4 shows that the mode choice gap has an overall 

reduction with the iterations for all scenarios.  

4.5.2 Evanston Mode Share  

The modal share obtained in the last iteration of the scenarios in Evanston can be seen in Table 

6. For a more detailed specification of the mode shares, we segment the trips with feeder SAMS 

mode in two groups based on the traveler’s final itinerary. If the traveler decided to walk after the 

SAMS drop-off, the trip mode is called “SAMS + Walk’. Otherwise, the trip mode is “SAMS + 

Transit”. 

As a representation of the current situation in Evanston (scenario 1), our simulation predicts 

69.9% (70.9%) mode share for private car, considering a transit fare of $1.40 ($2.25 for values in 

parentheses). This number reduces by 13.3% (13.0%) after the addition of SAMSs (scenario 2). 

After removing the local bus lines (scenario 3), the private car share increases slightly compared 

to scenario 2, but it is 11.2% (11.2%) lower than the base case (scenario 1). As expected, the transit 

share gets impacted, with a reduction of 6.6% (7.2) with the SAMSs (scenario 2). The removal of 

buses does not have a significant impact on the total transit share between the scenarios with 

SAMSs (scenarios 2 and 3). Another notable change is in the walking mode share, which reduces 

by 8.1 (9.8%) after the addition of SAMSs. Finally, general SAMS and feeder SAMS modes seem 

much more desirable alternatives than transit alone, even if the traveler decides to walk to their 

destination after the SAMS drop-off at a transit station.  



108 

 

 

 

According to a Chicago Metropolitan Agency for Planning analysis of the 2008 household 

travel survey data on travel to work for Cook county residents, 73% of work trips were done with 

a private car (driver or passenger), 21% were completed with transit and 5.6% by walking or 

biking. Five-year estimates based on the 2006-2010 American Community Survey of mode travel 

to work with Evanston commuters presented 64.6% of the trips with passenger car (driver or 

passenger), 22.2% with transit and 13.2% walk.  

Table 6: Mode Share in Evanston (%) 

 

Fare 1.40 2.25 

2010 American 

Community Survey 

 Scenario 1 2 3 1 2 3  

M
o
d

e 

Incomplete 

Trips 0.1 0.0 0.0 0.1 0.0 0.0 

 

Car 69.9 56.6 58.7 72.0 57.9 59.7 64.6* 

Transit 18.0 5.1 3.6 16.8 4.9 3.3 22.2* 

Walking 11.9 3.8 1.8 11.1 2.0 1.1 13.2*  

General SAMS - 22.2 24.2 - 26.4 26.5 - 

SAMS + Transit - 6.3 6.8 - 5.1 5.9 - 

SAMS + Walk - 6.1 5.0 - 3.7 3.4 - 

 Transit Total 18.0 11.4 10.4 16.8 10.0 9.2 - 

 Transit Change  -6.6 -7.6 - -7.2 -8.0 - 

* values adjusted after removing work from home responses and other minor modes 

4.5.3 Transit Traveler Experience 

The average generalized travel cost of transit riders, including those who arrive in the transit 

station by car or feeder SAMS, is shown to converge in all scenarios in Figure 4.5. Depending on 

the prevailing transit fare, the scenarios behave differently. The addition of SAMSs to the current 

scenario did not induce a meaningful change in the average generalized travel cost with the transit 
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fare as $1.40 (40 minutes for all three scenarios). However, with a $2.25 fare, this variable 

increased from 39 (scenario 1) to 46 minutes (scenarios 2 and 3).  

These results are better understood when matched with the mode shares previously shown in 

Table 6. The cost increase from after the addition of SAMSs with the higher transit fare can be 

explained by more people in the private car mode (greater loss in car mode compared to lower 

fare), as well as lower loss in walking mode.  

  

Figure 4.5: Average generalized transit travel cost per traveler 

4.6 Summary 

AVs and SAMSs promise to disrupt existing urban and suburban transportation systems, 

especially, transit systems. The impacts of SAMSs are highly uncertain; yet transportation planners 

still need to plan for SAMSs. To support transportation planners and modelers, this chapter 

presents a flexible modeling framework for dynamic transit assignment and simulation that 

explicitly incorporates a SAMS. The service is a first-mile suburban transit feeder SAMS.   
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The flexible modeling framework integrates a mode choice model with a dynamic transit 

assignment-simulation model and a SAMS fleet simulation model. The integrated model 

endogenously determines traveler mode choice as well as the performance of the transit network 

and the SAMSs at equilibrium. This study presents a mathematical formulation of the DCMC-

TAP. The problem is analytically intractable; therefore, we present a simulation-based, iterative 

heuristic solution approach. In the iterative modeling framework, the upper level assigns travelers 

to one of five modes: car, park-and-ride, transit, SAMS, or transit with SAMS feeder. The lower 

level: (1) iteratively determines minimum cost transit hyperpaths, assigns travelers to the 

hyperpaths, and simulates their experiences, and (2) simulates a SAMS fleet providing service to 

suburban travelers. Individual traveler experiences and time-dependent network performance 

skims are then fed to the mode choice model. This process repeats until the mode choice 

probabilities converge. This integrated modeling framework, which endogenously determines 

traveler mode choice and transit and SAMS system performance, provides transportation planners 

and modelers a powerful tool to test various scenarios related to SAMSs.  

To illustrate the capabilities of the integrated modeling framework, this study presents in 

application in the city of Chicago. The dynamic transit assignment-simulation tool models the 

entire Chicago Transit Authority network; moreover, the SAMS simulation tool models Evanston, 

IL, a suburb of Chicago. The model results illustrate that the iterative bi-level solution approach 

effectively solves the DCMC-TAP. Moreover, the results indicate that the integrated modeling 

framework can be used to assess transit and SAMS modal share as well as the performance of the 

transit network and the SAMS system.  
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This research makes several unique contributions to the literature. This is the first study, as far 

as the authors are aware, that explicitly integrates a SAMS simulation model with a dynamic transit 

assignment-simulation tool. Both simulation models are high-resolution and are able to capture the 

dynamics of a transit system and a SAMS system, such as the non-linear impacts of congestion. 

Second, this research develops the first integrated modeling framework that endogenously 

determines the modal shares for passenger car, park-and-ride, transit, general SAMS, and feeder 

SAMS. Moreover, these modal shares depend on and are consistent with the transit network and 

SAMS system performances. Verbas et al. present an integrated mode choice and dynamic transit 

assignment model (O. Verbas et al., 2016) but do not incorporate the SAMS modes. The integrated 

modeling approach provides reliable forecasts of transit and SAMS demand that explicitly 

consider the impacts of SAMS and transit system performance on mode choice, and the impact of 

traveler mode choices on SAMS and transit system performance.  

4.7 Future Work 

The results presented in this chapter show that the mode choice probabilities converge. 

However, more validation needs to be completed to ensure that the results are reliable. Several 

assumptions were made for parameters used in the modeling framework, hence a sensitivity 

analysis of the impacts of these parameters from the mode choice, assignment and simulation 

models should be performed.  
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5 Conclusions 

5.1 Summary 

 Fully-autonomous vehicles (AVs) and the recent emergence of shared-use AV mobility 

services (SAMSs) are likely to significantly impact passenger transportation systems and the 

behavior of travelers using these systems. This study aims to provide a methodology and modeling 

framework to support the joint re-design of multimodal transit networks and SAMS fleets to 

explore and plan for likely future AV-enabled mobility scenarios. Accordingly, this study 

introduces the joint transit network redesign and SAMS fleet size determination problem (JTNR-

SFSDP), along with a solution approach demonstrated on an actual large-scale network. 

The JTNR-SFSDP formulation introduced in this research is a bi-level mathematical program. 

The upper-level is a modified transit network frequency setting problem (TNFSP) formulation that 

incorporates SAMS fleet size as a decision variable and allows transit pattern frequencies to be set 

to near-zero, effectively allowing transit patterns to be eliminated. A nonlinear programming 

solver is employed to obtain solutions of the upper-level problem. The lower-level formulation is 

a dynamic combined mode choice—traveler assignment problem (DCMC-TAP). Because the 

lower-level problem formulation is analytically intractable, an agent-based simulation model with 

three integrated components – mode choice, transit assignment-simulation, and AV fleet 

simulation – is used to solve the DCMC-TAP. 

In the iterative heuristic solution approach, the lower-level model returns pattern-level transit 

demand and time-dependent SAMS demand to the upper-level model. Given this modal demand, 

the upper-level model solves the modified TNFSP and outputs transit pattern headways and SAMS 
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fleet size to the lower-level module. The lower-level module re-solves the DCMC-TAP and 

outputs new modal demands to the upper-level module. This iterative process repeats until the 

solution converges. 

This research presents a case study using the transit traveler demand and the multimodal transit 

network in the metropolitan area of Chicago to demonstrate the modeling framework and solution 

procedure. The results indicate that the JTNR-SFSDP modeling framework can improve the travel 

experiences of current transit users, in terms of average wait times, relative to the existing transit 

system. Importantly, the results suggest that improved traveler experience can be obtained without 

increasing the transit agency’s budget. This is possible through the reallocation of resources away 

from transit patterns currently serving few travelers toward both SAMS vehicles and transit 

patterns with high demand.  

5.2 Contributions 

5.2.1 Chapter 4: DCMC-TAP 

This study makes several unique contributions to the academic literature that also have 

significant and immediate value to transportation practitioners. First, this study integrates a SAMS 

simulation model with a dynamic transit assignment-simulation model. These simulation models 

are high-resolution microsimulation models that capture congestion and agent interactions, such 

as crowding on transit vehicles and long-wait times for SAMS, if demand exceeds supply. Second, 

the modeling framework embeds the dynamic transit assignment-simulation and SAMS simulation 

models within a mode choice model. This integrated modeling framework provides a planning and 
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forecasting tool for transportation planners. The model explicitly captures the unique attributes of 

the SAMS mode and determines SAMS performance as a function of the spatio-temporal demand 

for the mode.  

5.2.2 Chapter 3: JTNR-SFSDP 

This study presents conceptual, theoretical, and methodological contributions. First, there are 

no other studies that define, model, or solve a joint transit network redesign and mobility service 

fleet size determination problem (JTNR-SFSDP). The study models the problem using a bi-level 

mathematical programming formulation. The problem definition and modeling framework 

represent a timely contribution to the existing literature, especially with the emergence of AVs, 

rapid growth of mobility services, and their interaction with transit services.  

The second and third contributions relate to the formulation of the upper- and lower-level 

problems in the bi-level formulation, respectively. This study modifies a transit network frequency 

setting problem (TNSFP) formulation for the upper-level problem via allowing transit frequencies 

to be set to near-zero and incorporating SAMS fleet size as a decision variable. For the lower-level 

problem, this study employs a dynamic combined mode choice—traveler assignment problem 

(DCMC-TAP) formulation. This appears to be the first study to incorporate time-dependent mode 

(and route) choice in the lower-level problem of a transit network design problem. Hence, the 

modeling framework captures the modal split response to the frequency setting of transit patterns 

and operation/subsidization of SAMS fleets.  
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The fourth contribution is the use of a detailed agent-based simulation tool with three 

components (from Chapter 4) to address the lower-level problem. The three component models 

include a multinomial logit mode choice model, a transit traveler assignment-simulation model, 

and a SAMS fleet assignment-simulation model. Although data-intensive, the agent-based model 

for the lower-level provides information about individual travelers, the transit network, and the 

SAMS fleet. This information is valuable for model verification, model validation, and 

understanding the complex interactions between design decisions and travel behavior. 

Relative to the small but growing literature modeling the intersection and integration of 

SAMSs with public transit, the proposed modeling framework imposes fewer restrictions. For 

example, this study makes no a priori assumptions about efficient joint designs of transit networks 

and SAMSs; whereas existing studies define scenarios in which SAMSs (i) replace specific transit 

routes (Pinto et al. 2018; Winter et al. 2018); (ii) replace transit systems (Basu et al. 2018), (iii) 

are implemented instead of new transit lines (Mendes, Bennàssar, and Chow 2017), or (iv) act as 

a transit feeder mode (Meyer et al. 2017; Scheltes and de Almeida Correia 2017). Similarly, the 

modeling framework in the current study endogenously determines modal flows (demand) for 

SAMSs and public transit based on the performance of the two systems, rather than exogenously 

(e.g. (Shen, Zhang, and Zhao 2018)).  

5.3 Applications and Implications 

 The framework represents a powerful tool to address transit planning and design problems in 

the era of shared-use mobility and coming era of connected, automated, and shared mobility 

systems. Transit agencies can benefit from models and solution methods such as those presented 
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in this dissertation that explicitly model travelers’ responses to changes in transit networks and 

SAMS fleet sizes.  

The results section illustrates the benefits of using an agent-based modeling framework for the 

lower-level DCMC-TAP because the output provides highly-detailed information about individual 

travelers, the transit network, and the SAMS fleet. This approach provides valuable insights to 

researchers and transit agencies trying to understand traveler responses to system-wide changes to 

transit networks. Moreover, the module-based modeling framework allows modelers and transit 

agencies to employ different behavioral models for mode and route choice. 

Several policy insights can be drawn from the application of this framework and further 

assessed in future applications. The integration of SAMS with transit as a public service is expected 

to attain social and environmental benefits, and should be prioritized over the use of private AVs. 

SAMS should feed demand to high-capacity transit on reliable and high level of service routes in 

dense areas and fill accessibility gaps in low-density areas. There is great opportunity for SAMS 

to enhance accessibility to/from economically disconnected areas due to longer trips that are more 

likely to be shared.  

SAMS also offers flexibility that should be leveraged. One way to do it in the context of 

integrated SAMS and transit services is by using them to test and observe demand for potential 

new transit routes before making decisions to allocate resources to what can be a very costly fixed 

route service. With use of collected ridesourcing data from transportation network companies 

(TNC), identifying such potential new routes or services to supply and areas to target can be trivial 

based on observed (TNC) traveler behavior trends.  
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5.4 Limitations  

 The JTNR-SFSDP subject to user-equilibrium constraints at the mode and route choice levels 

presented in this study is a multi-layered complex problem. The study represents a methodological 

foundation on which to build future refinements and extensions to both formulation and solution 

procedures, to overcome existing limitations and expand the scope of applicability. The remainder 

of this section discusses these limitations and potential future research areas.  

First, using discrete agents to address the lower-level DCMC-TAP problem precludes an 

analytical expression connecting the leader’s decisions to the followers’ response. Response 

functions are typically a key component in bi-level solution approaches. As a first step, future work 

should investigate a heuristic response function that captures the lower-level mode and route 

choice response to the upper-level decision problem (setting transit pattern headways and SAMS 

fleet size) through an elastic demand function. 

Second, the modeling framework in this study does not incorporate the impacts of SAMS 

vehicles on roadway traffic. As the size of SAMS fleets increase, and individual SAMS fleets 

significantly impact congestion on roadways, modeling road networks and road network 

congestion will be important. Liang et al. (2018) present a model that combines trip network 

assignment and dynamic routing for an automated taxi fleet that explicitly considers the impact of 

congestion on the efficiency of the automated taxi service. However, the focus of this work is on 

the important elements of the JTNR-SFSDP from the perspective of a transit agency. As such, 

additional model complexity related to the road network (in an already complex modeling 

framework) would likely not provide much added value, while considerably increasing the 
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computational burden. Furthermore, the operational impact of AVs on roadway operation in mixed 

traffic (human-driven and autonomous) remains a topic of ongoing research in its own right. 

Third, the mode choice component of the modeling framework includes several parameter 

values that significantly impact the modal split of travelers, including price elasticity and wait time 

elasticity for SAMSs. While this study used parameter values from existing mode choice models 

calibrated for the study area, uncertainty remains regarding these parameters for future modes and 

conditions. Future research and transit agencies should consider conducting behavioral studies, 

possibly in a virtual reality environment, to gain greater insight into these important parameters 

and dimensions of technology adoption. 

Similarly, although the upper-level model incorporates the important transit and SAMS cost 

components, several refinements would increase realism in the modeling framework. For example, 

the model in this study considers a very simple fixed operational cost per SAMS vehicle, versus a 

per-mile or per-minute based cost. Research in the area of cost modeling for SAMS fleets would 

improve the realism of the modeling framework. 

Lastly, the JTNR-SFSDP modeling framework only allows transit routes and route patterns to 

be removed from the transit network, it does not allow new routes or route patterns to be added. 

Although this limits the true solution space for the JTNR-SFSDP, the results in this study illustrate 

that despite this limitation the existing modeling framework can substantially improve transit 

service quality under capital and operational cost constraints. Future research could allow new 

transit routes and route patterns to be added. 
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In terms of implementation of the solution approach used, there is opportunity to evaluate 

whether adding a pre-SAMS step approach will provide solutions with more high level of service 

routes, so that the addition of SAMS can be targeted to low-demand or low-density areas. This can 

be performed in two steps: (1) optimize upper-level objective function for a No-SAMS scenario 

(minimize wait time and rejection penalties assuming transit-only services) to obtain high transit 

level of service corridors; then (2) apply JTNR-SFSDP framework to the solution from step (1), 

where the transit demand is given for the high level of service corridors and SAMS will seek to 

fill accessibility gaps as well as feeding demand to transit corridors. 

Shifting to the application of the proposed framework, an interesting adaptation to be tested 

would be having autonomous shuttles (higher in-vehicle capacity) instead of limiting the SAMS 

fleet to rides that can be shared by only 2 people, which is the case in this study. This would also 

require a different SAMS routing strategy for picking up and dropping off passengers. An idea for 

this would be to consider shortest paths between zones and assuming passengers are willing to 

walk to/from a centroid/station of the zone where they are located/heading to.  

A limitation of the application performed in this study is that the SAMS coverage area is much 

smaller than the area covered by the transit network, yet the upper-level design decisions include 

transit patterns that belong in the entire Chicago metropolitan region. This implies that the 

optimization being performed in the upper-level also adjusts for inefficiencies in the existing 

transit services that have nothing to do with the implementation of SAMS. If the transit and SAMS 

coexist in the same coverage area, the solution will translate more directly to a reallocation of 

resources between the two types of services. This shortcoming is dealt with in this study by 



120 

 

 

 

providing performance metrics that are specific for the area where transit and SAMS coexist 

(Evanston). Future work would benefit from assessing SAMS services that cover the entire transit 

network area to ensure that the opportunity is broadly given to reallocate resources between the 

two modes. 
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