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Abstract

Cluster Analysis for Correlated Multivariate Normal and Binary Data

Dingxi Qiu

Cluster Analysis deals with classifying a sample of multivariate measurements into dif-

ferent categories. In this dissertation we study the effect of the correlation structure of

the data on the performance of a clustering method. We begin with the analysis of two-

component normal mixture models and then proceed to cluster analysis of binary mixture

models. Clustering for binary data is the main focus of this dissertation.

The normal mixture model part gives a comparative study of the K-means algorithm and

the mixture model (MM) method. Analytic comparisons of the two methods are conducted

for the univariate case under both homoscedasticity and heteroscedasticity assumptions and

for the bivariate case under the homoscedasticity assumption. Simulation results are given

to compare the two methods for both univariate cases and bivariate cases under a range of

sample sizes.

The latent class analysis (LCA) is a classical approach to clustering in case of binary data.

The LCA is based on the local independence assumption. We extend the LCA model to allow

for correlations between binary variables conditional on the cluster identity. Simulation

results show significant gains in correct classification rates using the correlated Bernoulli

model over the independent Bernoulli model when there exist strong correlations between the
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binary variables conditional on the cluster identity. This method is illustrated by applying

it to two real data sets.
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Chapter 1

Introduction

1.1 Motivation

Cluster analysis is a common unsupervised learning methodology widely used in database

marketing, social sciences, data mining and bioinformatics. It seeks to classify objects of

similar kind into separate clusters so that objects in the same cluster share properties in

common. A general question faced by scientific researchers is how to classify objects into

clusters in a meaningful manner. Marketing analysts often need to classify customers into

different clusters so that different marketing strategies can be designed for each cluster.

Pharmaceutical scientists need to classify chemical compounds according to their physical

and chemical properties to assist in drug development process.

Cluster analysis encompasses a number of heuristic and model-based methods. Heuristic

methods are often called model-free methods and they classify objects into clusters based on
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distance measures. Model-based cluster analysis methods assume that data come from some

mixture of component distributions, where each component represents a different cluster.

The main objective of the model-based cluster analysis is to estimate the parameters of the

component distributions and their mixing proportions and use these estimates to classify the

observations into groups.

Model-free methods generally do not account for correlations between different measure-

ments on each object because they do not explicitly model the joint distributions of the

measurements. For example, the K-means algorithm (MacQueen 1967) aims to minimize

the sum of squared distances of the data points from the cluster centers. However, correla-

tions can easily be handled by component distributions in model-based clustering methods.

The primary goal of this dissertation is to investigate how best to utilize the information

contained in the correlations among binary measurements to improve the performance of

clustering methods.

In order to achieve our goal, we first consider normal mixture data for which the EM algo-

rithm (Dempster, Laird, and Rubin, 1977) has been proposed in the literature (McLachlan

and Krishnan, 1996), but whose classification performance has not been studied analyti-

cally. We compare its performance with the K-means algorithm and also study how the

relative performances of the EM algorithm-based mixture model method and the K-means

algorithm depend upon the correlations, sample sizes and mixing proportions. Secondly, we

consider multivariate binary data. We propose a new component distribution to handle cor-

relations between observed variables for objects within the same cluster. The classification
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performance of this newly proposed method is compared to that of the classical latent class

analysis (LCA) method that does not account for correlations in the component distribution.

1.2 Clustering Methods

1.2.1 Problem Formulation and Notation

Suppose that there are N objects on each of whom m variables are measured resulting in

observations xi = (xi1, xi2, . . . , xim)′ (1 ≤ i ≤ N). The goal of clustering is to group these

N objects into K < N clusters, Ck (1 ≤ k ≤ K), so that similar objects are grouped into

the same cluster and dissimilar ones are grouped into different clusters. Temporarily we will

assume that K is the true known number of clusters. (In practice, of course, K is not known.

The problem of determining the optimal K will be addressed later in this dissertation.) Let

Nk denote the true number of objects belonging to cluster Ck where
∑K

k=1 Nk = N . A

clustering rule (denoted by R) is a many-to-one mapping, R(xi) = Ck (1 ≤ i ≤ N, 1 ≤ k ≤

K).

1.2.2 K-means Algorithm

The K-means algorithm is one of the most popular methods for clustering multivariate

numerical data. This algorithm is nonparametric in nature as it does not assume any proba-

bility model for the data. Given a fixed number of clusters, K, it determines an assignment
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of the data vectors (observations) to the clusters so as to minimize the total of the squared

distances between the observations assigned to the same cluster and summed over all clusters.

The K-means algorithm under investigation uses the Euclidean squared distance measure:

d(xi,xi′) = ||xi − xi′ ||2 =
m∑

j=1

(xij − xi′j)
2,

which implicitly assumes homoscedastic independent measurements. The algorithm aims to

minimize the within-cluster scatter given by

K∑

k=1

∑

R(xi)=Ck

||xi − xk||2 =
1

2

K∑

k=1

∑

R(xi)=Ck

∑

R(xi′ )=Ck

||xi − xi′ ||2,

where xk = (xk1, xk2, . . . , xkm)′ is the vector of sample means of the observations assigned

to cluster Ck. Beginning with an initial assignment of observations to the clusters and

the corresponding sample cluster means xk, the K-means algorithm iterates through the

following two steps until convergence.

Step 1: Reassign each observation to the cluster whose mean xk is closest to that observa-

tion. Thus,

R(xi) = Ck ⇐⇒ k = argmin
1≤ℓ≤K

||xi − xℓ||2.

Step 2: Calculate the new cluster means xk.
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The K-means algorithm does not guarantee the global minimum of the objective func-

tion and may provide an local optimal solution. Implicit in K-algorithm is the following

convergence assumption.

Local Convergence Assumption

Any classification rule close enough to a local solution shall converge to that local solution.

The K-means algorithm does not take into account any prior knowledge about the mixing

proportions. It is a very fast algorithm, but the main limitation is its convergence reliability.

The K-means algorithm is implemented in many software packages, such as Matlab, SPSS

and SAS. Our performance evaluation of this method on the normal mixture data was based

on Matlab version 6.5 and version 7.2.

1.2.3 Mixture Model (MM) Method

A mixture model represents a sample distribution by a mixture of component distributions,

where each component distribution represents a different cluster. This method attempts to

optimize the fit between the data and the model. The mixture model approach to clustering

has experienced rapid development in the last two decades. Its popularity over model-free

algorithms is mainly due to the fact that it has a solid statistical foundation. Also, the

problems of determining the number of clusters and of choosing an appropriate clustering

method become model choice problems under mixture models (Fraley and Raftery, 2002).

Let us assume that observations from cluster Ck (1 ≤ k ≤ K) are i.i.d. with probability



19

(density or mass) function fk(x; θk). Observations are drawn from cluster k with probability

ηk, k = 1, . . . , K. Let η = (η1, η2, . . . , ηK)′ be the vector of mixing probabilities. The

probability function for the mixture becomes:

f(x;Ψ) =
K∑

k=1

ηkfk(x; θk), (1.1)

where the vector Ψ of unknown parameters consists of the mixing proportions ηk and cluster

distribution parameters θk. Under the assumption that x1, x2, . . ., xN are independent

realizations of the vector X, the log-likelihood function of the observations is given by

ln L(Ψ) =
N∑

i=1

ln
K∑

k=1

ηkfk(xi; θk). (1.2)

The maximum likelihood estimates (MLEs) of all parameters are obtained by maximizing

this log-likelihood function.

Various approaches have been proposed to model dependence structure among the vari-

ables Xj (1 ≤ j ≤ m). If the measurements are continuous, the multivariate normal com-

ponent distribution is a natural choice where the dependence between the observations is

completely modelled by the correlation matrix. If the variables are binary, the multivariate

probit (Emrich and Piedmonte, 1991) model can be used to model correlations within each

cluster. The within-cluster correlation structure between the measured variables (also called

manifest variables) can be modelled through some common relationships via some unob-
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served variables (also called latent variables) (Goodman 1974). We plan to propose a binary

component distribution that can address both positive and negative correlations between

measurements on the objects within the same cluster.

Parameter Estimation

Direct maximization (e.g., by using the Newton-Raphson algorithm) of equation (1.2) is

numerically difficult. The EM algorithm (Dempster et al., 1977) provides a more efficient

alternative. In the EM algorithm, we consider a set of latent variables zi, i = 1, 2, ..., N ,

where

zi = (zi1, zi2, . . . , ziK)′

and zik = 1 or 0, depending on whether observation i comes from cluster k. Let Zik be the

corresponding random variable (r.v.) (k = 1, . . . , K). We call (xi,zi)
′ the complete data

vector on object i, and the complete log-likelihood function is given by

ln L(Ψ) =
N∑

i=1

K∑

k=1

zik ln fk(xi; θk). (1.3)

Contrast this with the log-likelihood function given by (1.2), which is called incomplete

log-likelihood function because it assumes that the zis are unobserved.

Since the actual values of the zis are unobserved, we proceed in an iterative fashion,

replacing each zik by its expected value, called responsibility. In the expectation step, re-

sponsibilities for each category are assigned to each observation, based on the current esti-
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mate of θ = (θ1, . . . ,θK)′ and η. In the maximization step, these responsibilities are used

in the complete log-likelihood function to update the estimates of θ. According to Demp-

ster et al. (1977) and Wu (1983), maximization of complete log-likelihood function leads

to maximization of the incomplete log-likelihood function, which is the key behind the EM

algorithm.

The EM algorithm for a mixture model iterates as follows:

1. Set the initial estimates of θ̂ and η̂ of θ = (θ1, . . . ,θK)′ and η = (η1, . . . , ηK)′.

2. (Expectation Step) Estimate the expected values of the sufficient statistics for latent

variables, in our case, the responsibilities, based on the current estimates θ̂ and η̂:

ẑik = E(Zik|xi, θ̂, η̂) =
η̂kfk(xi; θ̂k)∑K
k=1 η̂kfk(xi; θ̂k)

.

3. (Maximization Step) Find the MLE of θ and η based on the complete log-likelihood

function (1.3) with Zik replaced by ẑik. The MLE of ηk is given by

η̂k =
N∑

i=1

ẑik/N (1 ≤ k ≤ K).

4. Repeat steps 2-3 until convergence.

The attractiveness of the EM algorithm is that it divides the optimization process into

two easily implementable steps. The computation of the MLE of θ in step 3 is especially
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easy when the fks belong to an exponential family. The EM algorithm becomes less at-

tractive when the complete-data MLEs do not exist in a closed form. In that case, direct

maximization of equation (1.2) has to be done numerically.

Classification Rule

The final estimates of the posterior probabilities, ẑik, are used to assign the observations to

clusters according to the maximum posterior rule:

R(xi) = Ck ⇐⇒ ẑik ≥ ẑiℓ ∀ ℓ 6= k.

As Nk → ∞ ∀ k, this rule approaches the Bayes rule for known parameters:

R(xi) = Ck ⇐⇒ ηkfk(xi; θk) ≥ ηℓfℓ(xi; θℓ) ∀ ℓ 6= k. (1.4)

1.3 Overview of Thesis

The overview of this thesis is as follows. In Chapter 2, we compare the performance of the

MM method and the K-means algorithm on data from a two-component univariate normal

mixture model. Both analytical and simulation comparisons are provided. In Chapter

3, we perform a comparative study of the performances of the K-means algorithm and

MM method on data from a two-component mixture of bivariate normal distributions as



23

correlation between the variables is varied. The common covariance matrix is assumed for

both clusters. In Chapter 4, we compare different models for multivariate binary data and

select one for our clustering purpose. This model can handle both positive and negative

correlations between binary variables and is relatively flexible. In Chapter 5, we propose

a cluster analysis method under the framework of the mixture model with the selected

multivariate Bernoulli distributions. The clustering performance is compared with that of

LCA via simulation. Finally, the newly proposed clustering method is applied to two real

data sets.
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Chapter 2

Clustering for Normal Mixture

Models: Univariate Case

2.1 Introduction

As seen in Section 1.2.3, the MM method provides a parametric approach to the clustering

problem. The EM algorithm is a natural method for obtaining the MLEs of the unknown

parameters of the mixture model. The parameters include the mixing proportions or the

prior probabilities of the clusters. Clustering is done by applying the maximum posterior

(Bayes) rule.

The K-means algorithm makes “hard” (deterministic) assignments of the observations to

the clusters, i.e., each observation is assigned to exactly one cluster. On the other hand, the

MM method computes posterior probabilities of belonging to different clusters for individual
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observations. Hastie, Tibshirani and Friedman (2000, p. 463) note that the MM method is a

“soft” version of the K-means algorithm in that if the data from each cluster is assumed to be

multivariate normal with the mean vector depending on the cluster and a common covariance

matrix σ2I, then as σ2 → 0, the MM method based on the EM algorithm converges to the

K-means algorithm. Thus, as in the K-means algorithm, asymptotically the MM method

assigns each observation to that cluster whose estimated mean is closest to the observation.

Although there is asymptotic convergence of the MM method and the K-means algorithm,

it is under very restrictive conditions of homoscedasticity, not only among the clusters, but

also among the measured variables. More crucially, it assumes independence among the

variables. These assumptions underlie the K-means algorithm, which ignores correlations

and heteroscedasticity among the variables by using the simple Euclidean distance mea-

sure. Therefore it is of interest to compare the performances of the two methods under

the practical conditions of small samples, correlated responses and heteroscedasticity. We

initiate this study by focusing on the univariate case for K = 2 under homoscedasticity and

heteroscedasticity. The bivariate normal case, which allows the study of how correlations

between measured variables affect the performances of the competing algorithms, will be dis-

cussed in the following chapter. Surprisingly, even the univariate case has not been studied

in this context to the best of our knowledge.

This chapter focuses exclusively on the univariate normal mixture model. The observa-

tions are assumed to come from a two-component normal mixture model with prespecified

mixing proportions. Both the K-means algorithm and the EM algorithm-based MM method
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are applied to simulated data to evaluate the performance of these two methods under var-

ious scenarios. In Section 2.2 we introduce two classification performance measures. In

Section 2.3 we give analytical results for comparing the two methods in the homoscedastic

case. In Section 2.4 we extend these results to the heteroscedastic case. In Section 2.5

we present simulation results on classification performances of the two methods. Finally,

Section 2.6 gives a discussion and conclusions.

2.2 Misclassification Rate

The misclassification rate (MCR), which is the proportion of misclassified observations, is

generally used as the performance measure of a classification/clustering rule. Anderson

(1958, Section 6.6) has shown that the Bayes rule minimizes the expected misclassification

rate (EMCR) defined by

EMCR =
K∑

k=1

ηkPr{R(xi) 6= Ck|i ∈ Ck} = 1 −
K∑

k=1

ηkPr{R(xi) = Ck|i ∈ Ck}. (2.1)

Therefore the EMCR of the Bayes rule provides a lower bound on the EMCR of any other

classification rule. We refer to this lower bound as the “gold standard.” The maximum

posterior rule achieves this lower bound asymptotically (as Nk → ∞ ∀ k) since the two

rules then coincide.

In the following discussion we assume that the data vectors from cluster Ck are indepen-
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dent and identically distributed (i.i.d.) with a multivariate normal (MVN) distribution with

mean vector µk and covariance matrix Σk given by

fk(x) =
1

(2π)m/2|Σk|1/2
e−

1
2
(x−µ

k
)′Σ−1

k (x−µ
k
). (2.2)

Under this assumption, the Bayes rule classifies an observation x using the following rule:

R(x) = Ck ⇐⇒ 1

2

[
(x − µk)

′Σ−1
k (x − µk) − (x − µℓ)

′Σ−1
ℓ (x − µℓ)

]
≤ ln

(
ηk|Σℓ|

1
2

ηℓ|Σk|
1
2

)

∀ ℓ 6= k. (2.3)

This rule is quadratic in x. Under homoscedasticity, Σ1 = · · · = ΣK = Σ, the rule becomes

linear:

R(x) = Ck ⇐⇒ (µk − µℓ)
′Σ−1x ≥ 1

2

[
µ′

kΣ
−1µk − µ′

ℓΣ
−1µℓ

]
− ln

(
ηk

ηℓ

)
∀ ℓ 6= k. (2.4)

An expression for the EMCR of this linear Bayes rule can be derived as follows. Denote

Ykℓ = (µk − µℓ)
′Σ−1X, where X ∼ N(µk,Σ). Then Ykℓ ∼ N (ξkℓ, τ

2
kℓ), where

ξkℓ = (µk − µℓ)
′Σ−1µk and τ 2

kℓ = (µk − µℓ)
′Σ−1(µk − µℓ).
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For notational convenience, denote

dkℓ =
1

2

[
µ′

kΣ
−1µk − µ′

ℓΣ
−1µℓ

]
− ln

(
ηk

ηℓ

)
.

Then from (2.1) we have

EMCR = 1 −
K∑

k=1

ηkPr (Ykℓ > dkℓ ∀ ℓ 6= k)

= 1 −
K∑

k=1

ηkPr

(
Zkℓ >

dkℓ − ξkℓ

τkℓ

∀ ℓ 6= k

)
, (2.5)

where the Zkℓ for ℓ 6= k are N(0, 1) r.v.’s with

Corr(Zkℓ, Zkℓ′) =
(µk − µℓ)

′Σ−1(µk − µℓ′)

τkℓτkℓ′
(ℓ 6= ℓ′ 6= k).

This multivariate normal probability can be evaluated given the values of all the parameters.

2.3 Univariate Normal Homoscedastic Mixtures with

Two Clusters

We now specialize to the univariate (m = 1) case with K = 2 clusters. Denote the cluster

distributions by N(µ1, σ
2) and N(µ2, σ

2) and assume that µ1 < µ2. Let η1 = η and η2 = 1−η

be the mixing proportions. For this simple setting both the K-means algorithm and the MM
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method are defined by single thresholds, c and d, respectively, such that an observation x

is classified to cluster C2 if x exceeds the threshold and to cluster C1 if x is less than

the threshold. The MM method based on the EM algorithm approaches the Bayes rule

asymptotically (as Nk → ∞ ∀ k). In this section we will compare asymptotic EMCRs

(which, for conveniences will be referred to simply as EMCRs) of the MM method and the

K-means algorithm.

2.3.1 EMCR of the MM Method

Asymptotically, the MM method clustering rule is equivalent to the Bayes rule (2.4):

R(x) = C2 ⇐⇒ x ≥ d = µ +
σ

δ
ln

(
η

1 − η

)
, (2.6)

where µ = (µ1 + µ2)/2 and δ = (µ2 − µ1)/σ > 0. Note that d is an increasing and skew-

symmetric function of η around η = 1/2 where d = µ, i.e., if d and d′ correspond to η and

η′ = 1 − η then d′ = (µ1 + µ2) − d. Figure 2.1 shows d as a function of η for mixtures

of N(1, 1) and N(3, 1) distributions. For comparison purposes, the threshold c of the K-

means algorithm (studied analytically in the following subsection) is also plotted in the same

figure. We see that the curves for c and d vary in opposite ways and cross at η = 1/2 where

c = d = µ.
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Figure 2.1: Asymptotic Thresholds c of the K-Means Algorithm and d of the MM Method
for Mixtures of N(1, 1) and N(3, 1) Distributions

The EMCR given by (2.5) simplifies to

EMCR = ηPrµ1,σ(X > d) + (1 − η)Prµ2,σ(X ≤ d)

= ηΦ

(
µ1 − d

σ

)
+ (1 − η)Φ

(
d − µ2

σ

)
. (2.7)

When η = 0, d = −∞ and when η = 1, d = +∞; in both cases, EMCR = 0. Additionally,

when η = 1/2, d = µ and EMCR = Φ(−δ/2). The following proposition gives a more

detailed characterization of the EMCR.

Proposition 2.1 The EMCR of the MM method is symmetric in η around 1/2 and is in-

creasing for η < 1/2 and decreasing for η > 1/2.
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Proof: Let d and d′ be the asymptotic threshold values of the MM method for the priors η

and η′ = 1− η, respectively. As noted above, d′ = (µ1 + µ2)− d. Let EMCR and EMCR′ be

the corresponding expected misclassification rates. Then

EMCR′ = η′Φ

(
µ1 − d′

σ

)
+ (1 − η′)Φ

(
d′ − µ2

σ

)

= (1 − η)Φ

(
d − µ2

σ

)
+ ηΦ

(
µ1 − d

σ

)

= EMCR.

To show that the EMCR is increasing for η < 1/2, consider the Bayes rules for the priors

η and η′ = η + ∆η where ∆η > 0 and η, η′ < 1/2. Denote by d and d′ the threshold values

for η and η′, respectively, and the corresponding expected misclassification rates by EMCR

and EMCR′. Then from (2.7) we have

EMCR′ − EMCR =

[
(η + ∆η)Φ

(
µ1 − d′

σ

)
+ (1 − η − ∆η)Φ

(
d′ − µ2

σ

)]

−
[
ηΦ

(
µ1 − d

σ

)
+ (1 − η)Φ

(
d − µ2

σ

)]

=

[
ηΦ

(
µ1 − d′

σ

)
+ (1 − η)Φ

(
d′ − µ2

σ

)]

−
[
ηΦ

(
µ1 − d

σ

)
+ (1 − η)Φ

(
d − µ2

σ

)]

+∆η

[
Φ

(
µ1 − d′

σ

)
− Φ

(
d′ − µ2

σ

)]

= T1 + ∆ηT2 (say).
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Now T1 equals the difference between the EMCR of a non-optimal rule under η (since it

uses the threshold d′) and the EMCR of the optimal Bayes rule under η. Therefore T1 ≥ 0.

Next T2 > 0 because d′ < µ when η′ < 1/2 and hence µ1 − d′ > d′ − µ2. Therefore

EMCR′ − EMCR > 0 as was to be shown. �

Figure 2.2 shows the EMCR of the MM method as a function of η for mixtures of N(1, 1)

and N(3, 1) distributions. For comparison purposes the EMCR of the K-means algorithm

(studied analytically in the following subsection) is also plotted in the same figure. We see

that the two EMCR curves vary in opposite ways with equality at η = 1/2; obviously, the

EMCR of the MM method, i.e., the Bayes rule, is lower for all other η values.
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Figure 2.2: EMCR of the K-Means Algorithm and the MM Method for Mixtures of N(1, 1)
and N(3, 1) Distributions
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2.3.2 EMCR of the K-Means Algorithm

For the K-means algorithm, the threshold c divides the data into two clusters such that the

means of the two clusters are equidistant from the threshold. Asymptotically, the cluster

means are weighted combinations of the conditional means of the data from each normal

distribution, conditional on the data falling into the appropriate cluster. To evaluate these

conditional means we use the following lemma.

Lemma 2.1 Let X ∼ N(µ, σ2). Then

α(c) = Eµ,σ(X|X ≤ c) = µ − σφ
(

c−µ
σ

)

Φ
(

c−µ
σ

) and β(c) = Eµ,σ(X|X > c) = µ +
σφ
(

µ−c
σ

)

Φ
(

µ−c
σ

) , (2.8)

where φ(·) and Φ(·) are the standard normal p.d.f. and c.d.f., respectively.

Proof: The p.d.f. of the N(µ, σ2) distribution equals
(

1
σ

)
φ
(

x−µ
σ

)
. So

α(c) =
1

Φ
(

c−µ
σ

)
∫ c

−∞
x

(
1

σ

)
φ

(
x − µ

σ

)
dx

=
1

Φ
(

c−µ
σ

)
∫ c

−∞
[µ + (x − µ)]

(
1

σ

)
φ

(
x − µ

σ

)
dx

= µ +
1

Φ
(

c−µ
σ

)
∫ c

−∞
(x − µ)

(
1

σ

)
φ

(
x − µ

σ

)
dx.

Make a change of variables y = φ
(

x−µ
σ

)
. Then (x − µ)φ

(
x−µ

σ

)
dx = −σ2dy. The expression

for α(c) in (2.8) follows by making this substitution. The expression for β(c) is derived in

the same way. �
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Let µ̃1(c) and µ̃2(c) denote the population means of the clusters formed of observations

that are less than or greater than a specified threshold c, respectively. Then

µ̃1(c) =
ηPrµ1,σ(X ≤ c)Eµ1,σ(X|X ≤ c) + (1 − η)Prµ2,σ(X ≤ c)Eµ2,σ(X|X ≤ c)

ηPrµ1,σ(X ≤ c) + (1 − η)Prµ2,σ(X ≤ c)

= α1(c)pη(c) + α2(c)[1 − pη(c)], (2.9)

where

pη(c) =
ηΦ
(

c−µ1

σ

)

ηΦ
(

c−µ1

σ

)
+ (1 − η)Φ

(
c−µ2

σ

) , (2.10)

and α1(c) and α2(c) are the values of α(c) from (2.8) when µ = µ1 and µ2, respectively.

Similarly,

µ̃2(c) = β1(c)qη(c) + β2(c)[1 − qη(c)], (2.11)

where

qη(c) =
ηΦ
(

µ1−c
σ

)

ηΦ
(

µ1−c
σ

)
+ (1 − η)Φ

(
µ2−c

σ

) , (2.12)

and β1(c) and β2(c) are the values of β(c) from (2.8) when µ = µ1 and µ2, respectively. Then

c solves the equation

fη(c) = µ̃1(c) + µ̃2(c) − 2c = 0. (2.13)

Remark 1: Note that although the K-means algorithm does not explicitly take into account

the prior η and the underlying probability model, the asymptotic threshold c used by it

depends on these quantities through the above equation. �
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To prove the existence, uniqueness and monotonicity of the solution c to the above

equation, we need the following two lemmas.

Lemma 2.2 The function f(x) = φ(x)/Φ(x) is decreasing in x ∀ x ∈ (−∞,∞).

Proof: The derivative of f(x) equals

f ′(x) =
−xφ(x)Φ(x) − φ2(x)

Φ2(x)
.

Obviously, f ′(x) < 0 for x > 0. For x < 0, put x = −y where y > 0. Then the numerator

of f ′(x) equals φ(y)[yΦ(−y)− φ(y)], which is < 0 because of the following inequality on the

Mill’s ratio (Johnson and Kotz, 1970, p.279):

y

1 + y2
< r(y) =

Φ(−y)

φ(y)
<

1

y
. (2.14)

Hence f ′(x) < 0 ∀ x ∈ (−∞,∞). �

Corollary 2.1 For µ1 < µ2, we have µ1 − α1(c) < µ2 − α2(c).

Proof: The inequality is equivalent to

φ
(

c−µ1

σ

)

Φ
(

c−µ1

σ

) <
φ
(

c−µ2

σ

)

Φ
(

c−µ2

σ

) ,

which follows by putting x = (c − µ)/σ, and noting that f(x) is decreasing in x and hence

increasing in µ. �
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Lemma 2.3 The function g(x) = x + φ(x)/Φ(x) is increasing in x ∀ x ∈ (−∞,∞).

Proof: The derivative of g(x) is

g′(x) = 1 − xφ(x)Φ(x) + φ2(x)

Φ2(x)

=
Φ2(x) − xφ(x)Φ(x) − φ2(x)

Φ2(x)
.

So we only need to prove that the numerator of this derivative, h(x) = Φ2(x)−xφ(x)Φ(x)−

φ2(x), is positive. Taking the derivative of h(x), we get

h′(x) = 2Φ(x)φ(x) − φ(x)Φ(x) + x2φ(x)Φ(x) − xφ2(x) + 2xφ2(x)

= Φ(x)φ(x) + x2φ(x)Φ(x) + xφ2(x).

So h′(x) > 0 ∀ x > 0.

For x < 0, put x = −y where y > 0. Then h′(x) = φ(y)[(1 + y2)Φ(−y) − yφ(y)]. It

follows that h′(x) > 0 ∀ x < 0 since Mills’ ratio r(y) > y/(1 + y2) from (2.14). To complete

the proof we need to show that

lim
x→−∞

h(x) = lim
x→−∞

x2Φ2(x)

[
1

x2
− φ(x)

xΦ(x)
−
(

φ(x)

xΦ(x)

)2
]
≥ 0,
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which together with the fact that h′(x) > 0 ∀ x implies that h(x) > 0 ∀ x. Again putting

x = −y, we see that the above inequality is equivalent to

lim
y→∞

[
1

y2
+

1

yr(y)
−
(

1

yr(y)

)2
]
≥ 0.

But it is well-known that limy→∞ yr(y) = 1. Hence the above limit equals 0. This completes

the proof of g′(x) > 0 ∀ x ∈ (−∞,∞). �

Corollary 2.2 The function α(c) = Eµ,σ(X|X ≤ c) is increasing in µ for all c. Hence for

µ1 < µ2, we have α1(c) < α2(c) and β1(c) < β2(c).

Proof: Write

α(c) = c − σ

[(
c − µ

σ

)
+

φ
(

c−µ
σ

)

Φ
(

c−µ
σ

)
]

.

Now put x =
(

c−µ
σ

)
. Then α(c) is decreasing in x and hence increasing in µ. The proof of

β1(c) < β2(c) is analogous. �

We are now ready to state and prove the following two propositions regarding the exis-

tence, uniqueness and monotonicity of c.

Proposition 2.2 For µ1 < µ2 and η ∈ [0, 1], there exists a solution c to the equation (2.13).

Proof: We will show that fη(µ1) > 0 and fη(µ2) < 0, where fη(·) is defined in (2.13). Then

by the continuity of fη(·) and the intermediate value theorem, the existence of the solution

to fη(c) = 0 for some c ∈ [µ1, µ2] will be established.
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Write

fη(µ1) = µ̃1(µ1) + µ̃2(µ1) − 2µ1

= [α1(µ1) − µ1]pη(µ1) + [α2(µ1) − µ1][1 − pη(µ1)]

+[β1(µ1) − µ1]qη(µ1) + [β2(µ1) − µ1][1 − qη(µ1)]

= −
σ
√

2
π
(0.5η) + σ

[
−δ + φ(−δ)

Φ(−δ)

]
(1 − η)Φ(−δ)

0.5η + (1 − η)Φ(−δ)

+
σ
√

2
π
(0.5η) + σ

[
δ + φ(δ)

Φ(δ)

]
(1 − η)Φ(δ)

0.5η + (1 − η)Φ(δ)

> −
σ
√

2
π
(0.5η) + σ

[
δ + φ(δ)

Φ(δ)

]
(1 − η)Φ(−δ)

0.5η + (1 − η)Φ(−δ)

+
σ
√

2
π
(0.5η) + σ

[
δ + φ(δ)

Φ(δ)

]
(1 − η)Φ(δ)

0.5η + (1 − η)Φ(δ)
, (2.15)

where we have used the inequality

δ +
φ(δ)

Φ(δ)
> −δ +

φ(−δ)

Φ(−δ)
,

which follows from Lemma 2.3. Now put

s =

√
2

π
, t = δ +

φ(δ)

Φ(δ)
, u = Φ(−δ) and v = Φ(δ).

Then simple algebra shows that the lower bound on fη(µ1) obtained in (2.15) is strictly > 0

iff (t − s)(v − u) > 0. This inequality holds because t = g(δ) > g(0) = s from Lemma 2.3
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and v > u. Similarly we can show that fη(µ2) < 0. This proves the existence of c ∈ [µ1, µ2]

such that fη(c) = 0. �

Proposition 2.3 The solution c to (2.13) is decreasing, skew-symmetric and one-to-one

function of η. Hence c is unique with c = µ2 for η = 0, c = µ1 for η = 1 and c = µ for

η = 1/2.

Proof: Write fη(c) as

fη(c) = α1(c)pη(c) + α2(c)[1 − pη(c)] + β1(c)qη(c) + β2(c)[1 − qη(c)] − 2c. (2.16)

Note that pη(c), qη(c) are increasing in η. Furthermore, from the corollary to Lemma 2.3 we

have α1(c) < α2(c) and β1(c) < β2(c). Since, as η increases, more weight is put on smaller

quantities, α1(c) and β1(c), and less weight on larger quantities, α2(c) and β2(c), it follows

that fη(c) decreases in η. Therefore, if c is the root of the equation (2.13), then fη′(c) < 0

for η′ > η. But in Proposition 2.2 we have shown that fη′(µ1) > 0. By the intermediate

value theorem, there exists c′ ∈ (µ1, c) such that fη′(c′) = 0, i.e., c′ < c is the root of the

equation (2.13) for η′ > η. Hence the solution c to fη(c) = 0 is decreasing in η.

To show that for any fixed η ∈ [0, 1] the solution c is unique, first note that for η = 0

and η = 1 we have unique solutions c = µ2 and c = µ1, respectively. For example, for η = 0,
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we have p0(c) = q0(c) = 0, and the equation for c is

f0(c) = µ̃1(c) + µ̃2(c) − 2c

= α2(c) + β2(c) − 2c

= 2µ2 − σφ

(
c − µ2

σ

)[
1

Φ
(

c−µ2

σ

) − 1

Φ
(

µ2−c
σ

)
]
− 2c = 0.

This last equation can be rewritten as g(δ) = g(−δ) where the function g(·) is defined in

Lemma 2.3 and δ = (µ2 − c)/σ. But, as shown in that lemma, g(·) is a strictly increasing

function and so the only solution to the above equation is δ = 0, i.e., c = µ2. Similarly,

c = µ1 is the unique solution for η = 1. Now suppose that for any other η ∈ [0, 1] there

are two distinct solutions, c1 and c2, such that fη(c1) = fη(c2) = 0. Then it must be the

case that for some c there are two distinct η1 and η2 such that fη1(c) = fη2(c) = 0, which

contradicts the just proven fact that fη(c) is a strictly decreasing function of η. Therefore

the solution c is unique for all η ∈ [0, 1]. For η = 1/2, by symmetry we obtain c = µ as the

unique solution.

Finally, we will show the skew-symmetric property of c. Consider two priors η and

η′ = 1−η, and let c and c′ be the corresponding asymptotic threshold values of the K-means

algorithm. Thus c satisfies the equation fη(c) = 0. We will show by direct substitution that

c′ = (µ1 + µ2) − c = 2µ − c satisfies the equation fη′(c′) = 0. We can readily check the
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following relations:

α1(c) = 2µ − β2(c
′), α2(c) = 2µ − β1(c

′), β1(c) = 2µ − α2(c
′), β2(c) = 2µ − α1(c

′)

and

pη(c) = 1 − qη′(c′), qη(c) = 1 − pη′(c′).

Substituting these expressions in fη(c) = 0 we get

0 = fη(c) = [2µ − β2(c
′)][1 − qη′(c′)] + [2µ − β1(c

′)]qη′(c′)

+[2µ − α2(c
′)][1 − pη′(c′)] + [2µ − α1(c

′)]pη′(c′) − 2(µ1 + µ2) + 2c′

= −α1(c
′)pη′(c′) − α2(c

′)[1 − pη′(c′)] − β1(c
′)qη′(c′) − β2(c

′)[1 − qη′(c′)] + 2c′

= −fη′(c′),

which shows that fη′(c′) = 0. �

Remark 2: The behavior of c as a function of η is opposite to that of the asymptotic

threshold d of the MM method. Figure 2.1 shows c as a function of η for mixtures of N(1, 1)

and N(3, 1) distributions. �

The EMCR of the K-means algorithm is given by expression (2.7) with d replaced by c.

Since c = µ2 for η = 0 and c = µ1 for η = 1, it follows that EMCR = 0.5 for η = 0 and

η = 1. For η = 1/2, the EMCR values of the Bayes rule and the K-means algorithm are
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equal to Φ(−δ/2) since c = d = µ. For all other η ∈ [0, 1], the EMCR of the MM method

is smaller because of the optimality property of the associated Bayes rule referred to earlier.

The following proposition shows that the EMCR of the K-means algorithm is a symmetric

function of η as is the EMCR of the MM method.

Proposition 2.4 The EMCR of the K-means algorithm is symmetric around η = 1/2 and

is decreasing in η for η < 1/2 and increasing in η for η > 1/2.

Proof: The symmetry of the EMCR of the K-means algorithm follows from the skew-

symmetry of c in the same manner as the symmetry of the EMCR of the MM method

follows from the skew-symmetry of d. Now we will show that EMCR is decreasing in η for

η < 1/2. Let EMCR and EMCR′ correspond to η and η′ < η, respectively, where η < 1/2

and η′ = η − ∆η. Then

EMCR′ = η′Φ

(
µ1 − c′

σ

)
+ (1 − η′)Φ

(
c′ − µ2

σ

)

= ηΦ

(
µ1 − c′

σ

)
+ (1 − η)Φ

(
c′ − µ2

σ

)
+ ∆η

[
Φ

(
c′ − µ2

σ

)
− Φ

(
µ1 − c′

σ

)]

> ηΦ

(
µ1 − c′

σ

)
+ (1 − η)Φ

(
c′ − µ2

σ

)

since

Φ

(
c′ − µ2

σ

)
> Φ

(
µ1 − c′

σ

)
,
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which follows from the fact that c′ > µ for η′ < 1/2. Hence, to prove that EMCR′ > EMCR,

it suffices to show that

ηΦ

(
µ1 − c′

σ

)
+ (1 − η)Φ

(
c′ − µ2

σ

)
> ηΦ

(
µ1 − c

σ

)
+ (1 − η)Φ

(
c − µ2

σ

)

⇐⇒ (1 − η)

[
Φ

(
c′ − µ2

σ

)
− Φ

(
c − µ2

σ

)]
> η

[
Φ

(
µ1 − c

σ

)
− Φ

(
µ1 − c′

σ

)]

⇐⇒ (1 − η)

∫ c′

c

φµ2,σ(x)dx > η

∫ c′

c

φµ1,σ(x)dx,

where φµ,σ(x) is the p.d.f. of the N(µ, σ2) distribution. The last step follows because µ is the

point of intersection of φµ1,σ(x) and φµ2,σ(x), and since η < 1/2 and c′, c > µ, for c ≤ x ≤ c′

we have (1 − η)φµ2,σ(x) > ηφµ1,σ(x). �

Remark 3: The monotone behavior of the EMCR of the K-means algorithm as a func-

tion of η is opposite to that of the EMCR of the MM method. Figure 2.2 shows the EMCR

of the K-means algorithm as a function of η for mixtures of N(1, 1) and N(3, 1) distributions.

It should be noted that for η close to 0 or 1, essentially we have a single cluster. The mixture

model can deal with this problem because it estimates η in a continuous manner. On the

other hand, the K-means algorithm is forced to divide the data set into two clusters even if

there are no observations from the cluster having the smaller value η or 1 − η. In practice,

the user would generally perform a test of K = 1 vs. K = 2, which would improve the

performance of the K-means algorithm. Therefore the discrepancy in the EMCR functions

of the two methods may not be as large in practice as shown in Figure 2.2, especially for
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η-values in the extreme. �

2.4 Univariate Normal Heteroscedastic Mixtures with

Two Clusters

Denote the two cluster distributions by N(µ1, σ
2
1) and N(µ2, σ

2
2) and assume that µ1 <

µ2 and σ2
1 < σ2

2 without loss of generality. In this section we carry out a comparison

between the EMCRs of the MM method and the K-means algorithm paralleling that for the

homoscedastic case.

2.4.1 EMCR of the MM Method

In this case, asymptotically, the MM method clustering rule is equivalent to the Bayes rule

(2.4):

R(x) = C1 ⇐⇒ 1

2

[(
x − µ1

σ1

)2

−
(

x − µ2

σ2

)2
]
≤ ln

(
η1σ2

η2σ1

)
. (2.17)

Consider the quadratic equation obtained by making the above inequality an equality. For

convenience, we will refer to this quadratic equation by the same equation number. If there

is no real root or a single root of this equation, then the rule (2.17) is R(x) = C2 for all x.

The quadratic equation has two distinct real roots, say d1 < d2, if its discriminant is > 0,

i.e., if
(

µ1

σ2
1

− µ2

σ2
2

)2

−
(

1

σ2
1

− 1

σ2
2

)[
µ2

1

σ2
1

− µ2
2

σ2
2

− 2 ln

(
η1σ2

η2σ1

)]
> 0.
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Denoting

k =
µ2

1

σ2
1

− µ2
2

σ2
2

−
(

1

σ2
1

− 1

σ2
2

)−1(
µ1

σ2
1

− µ2

σ2
2

)2

,

we see that the above condition is equivalent to

η > η∗ =
σ1 exp(k/2)

σ1 exp(k/2) + σ2

. (2.18)

It is easy to check that k < 0 and hence

η∗ =
σ1 exp(k/2)

σ1 exp(k/2) + σ2

<
σ1

σ1 + σ2

= η∗∗.

If η > η∗ then the rule (2.17) is R(x) = C1 if d1 ≤ x ≤ d2; otherwise R(x) = C2.

The two real roots are the points of intersection of the prior-weighted p.d.f.s, ηφµ1,σ1(x) and

(1 − η)φµ2,σ2(x). Figure 2.3 depicts this graphically where the prior-weighted p.d.f. curves

are shown by dotted lines for η ∈ (η∗, η∗∗). When η = η∗∗, we have

d1 =
µ1σ2 − µ2σ1

σ2 − σ1

and d2 =
µ1σ2 + µ2σ1

σ2 + σ1

. (2.19)

These points of intersection are shown in the same figure with the prior-weighted p.d.f.

curves for η = η∗∗ being shown by solid lines.

It is clear that as η decreases and 1 − η increases, d1 increases and d2 decreases. In
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Figure 2.3: Thresholds (d1, d2) and (d′
1, d

′
2) of the MM Method for Mixtures of N(1, 1) and

N(4, 4) Distributions for Two Priors, η = η∗∗ and η = η′ < η∗∗

particular, if η < η∗∗ then

d1 >
µ1σ2 − µ2σ1

σ2 − σ1

and d2 <
µ1σ2 + µ2σ1

σ2 + σ1

. (2.20)

When η = η∗, d1 and d2 are equal. When η decreases further, real roots d1 and d2 do not

exist since the two prior-weighted p.d.f. curves do not intersect or equivalently the quadratic

curve in (2.17) lies completely in the upper half of the coordinate plane. As η increases for

η > η∗, d1 decreases and d2 increases. When η = 1, we have d1 = −∞ and d2 = ∞ (so that

R(x) = C1 ∀ x).

Figure 2.4 shows how d1 and d2 change with η for mixtures of N(1, 1) and N(4, 4)



47

distributions. In this case η∗ and η∗∗ can be calculated to be η∗ = 0.1004, η∗∗ = 0.3333. The

K-means algorithm uses a single threshold c (studied analytically in the following subsection)

which is also plotted in the same figure for comparison purposes.
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Figure 2.4: Asymptotic Thresholds c of the K-Means Algorithm and (d1, d2) of the MM
Method for Mixtures of N(1, 1) and N(4, 4) Distributions (For η < η∗, (d1, d2) Do Not
Exist)

For η ≤ η∗, since R(x) = C2 ∀ x, the EMCR of the MM method equals η. For η > η∗,

this EMCR is given by

EMCR = ηPrµ1,σ1{(X < d1) ∪ (X > d2)} + (1 − η)Prµ2,σ2{d1 ≤ X ≤ d2}

= η

[
Φ

(
d1 − µ1

σ1

)
+ Φ

(
µ1 − d2

σ1

)]
+ (1 − η)

[
Φ

(
d2 − µ2

σ2

)
− Φ

(
d1 − µ2

σ2

)]
.

From the above we can conclude that EMCR = 0 for η = 0 and η = 1 (since d1 = −∞ and
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d2 = ∞ in that case). The following proposition gives a more detailed characterization of

the EMCR.

Proposition 2.5 The EMCR of the MM method increases in η for η < η∗∗ and reaches a

maximum at η > η∗∗ where η solves the equation

Φ

(
d1 − µ1

σ1

)
+ Φ

(
µ1 − d2

σ1

)
− Φ

(
d2 − µ2

σ2

)
+ Φ

(
d1 − µ2

σ2

)
= 0; (2.21)

here d1 and d2 are the roots of the quadratic equation (2.17) and hence depend on η.

Proof: As shown before, for η ≤ η∗, EMCR = η, which increases linearly in η ≤ η∗. For

η ∈ (η∗, η∗∗), the proof of monotonicity is similar to that of Proposition 2.1. Consider the

Bayes rules for η and η′ = η + ∆η < η∗∗ where ∆η > 0. Denote by d′
1 and d′

2 the threshold

values for η′. Then EMCR′−EMCR can be decomposed into two terms as in Proposition 2.1.

The first term is the difference in the EMCR of a non-optimal rule under η that uses the

thresholds d′
1 and d′

2, and the EMCR of the optimal rule under η that uses the thresholds

d1 and d2; hence this term is positive. The second term equals

∆η

[
Φ

(
d′

1 − µ1

σ1

)
+ Φ

(
µ1 − d′

2

σ1

)
− Φ

(
d′

2 − µ2

σ2

)
+ Φ

(
d′

1 − µ2

σ2

)]
.

This term is positive since d′
2 < (µ1σ2 + µ2σ1)(σ2 + σ1) if η, η′ < η∗∗ as seen from (2.20).

Hence

Φ

(
µ1 − d′

2

σ1

)
− Φ

(
d′

2 − µ2

σ2

)
> 0.
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Since, as noted before, d1 decreases and d2 increases with increasing η, the left-hand side

of (2.21), regarded as a function of η and denoted by g(η), is a decreasing function. It is

easy to show using the (d1, d2) values from (2.19) for η = η∗∗ that g(η∗∗) = 2Φ
(

µ1−µ2

σ2−σ1

)
> 0

and g(1) = −1. Therefore there exists η ∈ (η∗∗, 1) such that g(η) > 0 for η < η, g(η) < 0

for η > η and g(η) = 0. Now consider η and η′ = η −∆η such that η, η′ > η. The difference

between the corresponding EMCR values is then

EMCR′ − EMCR =

{
(η − ∆η)

[
Φ

(
d′

1 − µ1

σ1

)
+ Φ

(
µ1 − d′

2

σ1

)]

+ (1 − η + ∆η)

[
Φ

(
d′

2 − µ2

σ2

)
− Φ

(
d′

1 − µ2

σ2

)]}

−
{

η

[
Φ

(
d1 − µ1

σ1

)
+ Φ

(
µ1 − d2

σ1

)]

+ (1 − η)

[
Φ

(
d2 − µ2

σ2

)
− Φ

(
d1 − µ2

σ2

)]}

≥ −∆η

[
Φ

(
d′

1 − µ1

σ1

)
+ Φ

(
µ1 − d′

2

σ1

)
− Φ

(
d′

2 − µ2

σ2

)
+ Φ

(
d′

1 − µ2

σ2

)]

≥ −∆ηg(η′) ≥ 0,

since g(η′) ≤ 0. In the second to last step above, the inequality is obtained by dropping the

term

{
η

[
Φ

(
d′

1 − µ1

σ1

)
+ Φ

(
µ1 − d′

2

σ1

)]
+ (1 − η)

[
Φ

(
d′

2 − µ2

σ2

)
− Φ

(
d′

1 − µ2

σ2

)]}

−
{

η

[
Φ

(
d1 − µ1

σ1

)
+ Φ

(
µ1 − d2

σ1

)]
+ (1 − η)

[
Φ

(
d2 − µ2

σ2

)
− Φ

(
d1 − µ2

σ2

)]}
,

which is positive because it is the difference between the EMCR of a non-optimal rule that
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uses d′
1 and d′

2 under the prior η and the EMCR of the optimal Bayes rule that uses d1

and d2 under the prior η. Therefore we have shown that for η > η, the EMCR decreases.

Similarly, it can be shown that for η < η, the EMCR increases. Therefore the EMCR reaches

a maximum when η = η, which is the solution to the equation (2.21). �

Figure 2.5 shows a plot of the EMCR as a function of η for the MM method for mixtures

of N(1, 1) and N(3, 4) distributions. The point of maximum EMCR obtained by solving

equation (2.21) equals η = 0.3358, which is slightly greater than η∗∗. The EMCR of the

K-means algorithm (discussed in the following subsection) is also plotted in the same figure

for comparison purposes.
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Figure 2.5: EMCR of the K-Means Algorithm and the MM Method for Mixtures of N(1, 1)
and N(4, 4) Distributions
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2.4.2 EMCR of the K-Means Algorithm

The K-means algorithm does not distinguish between homoscedasticity and heteroscedas-

ticity, and uses a single threshold c to assign observations to two clusters. Therefore c is

determined by the same equation (2.13), where now the quantities αi(c), βi(c), pη(c) and

qη(c) depend on both µi and σi (i = 1, 2) in an obvious way.

Proposition 2.6 For µ1 < µ2 and σ1 < σ2, the solution c to (2.13) is a decreasing function

of η. Furthermore, c > µ for η = 1/2.

Proof: It is straightforward to see that the properties of the fη(·) function shown in Proposi-

tions 2.2 and 2.3 for the homoscedastic case extend to its modification for the heteroscedastic

case. In particular, fη(µ1) > 0, fη(µ2) < 0 and fη(x) is decreasing in η. From this it follows

that c is a decreasing function of η; the proof is similar to that of Proposition 2.3.

To show the second part of the proposition, we will show that f1/2(µ) > 0, so that if

f1/2(c) = 0 then c > µ. Denote ∆ = (µ2 − µ1)/2 and note that

µ − α1(µ) = ∆ +
σ1φ(∆/σ1)

Φ(∆/σ1)
, µ − α2(µ) = −∆ +

σ2φ(−∆/σ2)

Φ(−∆/σ2)
,

β1(µ) − µ = −∆ +
σ1φ(−∆/σ1)

Φ(−∆/σ1)
, β2(µ) − µ = ∆ +

σ2φ(∆/σ2)

Φ(∆/σ2)
.
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Substituting these values in the expression for f1/2(µ) and recalling that η = 1 − η get

cancelled from the numerator and denominator, we get

f1/2(µ) = − [µ − α1(µ)]Φ(∆/σ1) + [µ − α2(µ)]Φ(−∆/σ2)

Φ(∆/σ1) + Φ(−∆/σ2)

+
[β1(µ) − µ]Φ(−∆/σ1) + [β2(µ) − µ]Φ(∆/σ2)

Φ(−∆/σ1) + Φ(∆/σ2)

= −∆Φ(∆/σ1) + σ1φ(∆/σ1) − ∆Φ(−∆/σ2) + σ2φ(−∆/σ2)

Φ(∆/σ1) + Φ(−∆/σ2)

+
−∆Φ(−∆/σ1) + σ1φ(−∆/σ1) + ∆Φ(∆/σ2) + σ2φ(∆/σ2)

Φ(−∆/σ1) + Φ(∆/σ2)
.

Now, the numerators of the two terms are equal since φ(x) = φ(−x) and Φ(∆/σ1) −

Φ(−∆/σ2) = −Φ(−∆/σ1) + Φ(∆/σ2). Hence f1/2(µ) > 0 if Φ(−∆/σ1) + Φ(∆/σ2) <

Φ(∆/σ1) + Φ(−∆/σ2), which can be easily checked to be true. This completes the proof. �

Remark 4: Figure 2.4 shows a plot of c as a function of η for mixtures of N(1, 1) and

N(4, 4) distributions. From this figure we see that c and d2 are equal for some η. This value

of η can be found by solving equations (2.13) and (2.17) simultaneously under the constraint

that c = d2. The common value is found to be 2.67667 at η = 0.62095. At this value, the

EMCR values of the two methods are nearly (but not exactly) equal as seen from Figure 2.5.

The two EMCR values are 0.125291 for the MM method and 0.125377 for the K-means

algorithm. �

Proposition 2.7 For µ1 < µ2 and σ1 < σ2, the EMCR of the K-means algorithm is de-

creasing in η for η < η∗∗.
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Proof: The proof is similar to that of Proposition 2.4. Let EMCR and EMCR′ be the

expected MCR values for the K-means algorithm corresponding to the priors η < η∗∗ and

η′ = η −∆η < η. Then using the fact that c′ > µ > m = (µ1σ2 + µ2σ1)/(σ1 + σ2) and hence

Φ

(
c′ − µ2

σ2

)
> Φ

(
µ1 − c′

σ1

)
,

it follows that

EMCR′ > ηΦ

(
µ1 − c′

σ1

)
+ (1 − η)Φ

(
c′ − µ2

σ2

)
.

Then, as before, to prove that EMCR′ > EMCR it suffices to show that

(1 − η)

∫ c′

c

φµ2,σ2(x)dx > η

∫ c′

c

φµ1,σ1(x)dx.

This is true because for η < η∗∗, the point of intersection of ηφµ1,σ1(x) and (1 − η)φµ2,σ2(x)

is less than m as seen from (2.20). Since η < η∗∗ < 1/2 and c′, c > m, for c ≤ x ≤ c′ we have

(1 − η)φµ2,σ2(x) > ηφµ1,σ1(x). �

Remark 5: As Figure 2.5 shows, the EMCR of the K-means algorithm continues to decrease

past η = 0.3333 achieving a minimum at η = 0.7628 (determined numerically) and then

increases rather steeply to 0.5 for η = 1. The EMCR of the K-means algorithm is plotted

in Figure 2.5 as noted earlier. �
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2.5 Simulation Study

In this section we compare the performances of the K-means algorithm and the MM method

via simulation. The study is restricted to K = 2 clusters. The EMCR of the Bayes rule (the

“gold standard”) is used as a benchmark for comparison. (Note that because of the finite

sample sizes used in the simulation study, the MCR of the MM method will be generally

higher than that of the Bayes rule. The two converge asymptotically.) The empirical MCR

of any rule is given by the observed proportion of misclassifications.

2.5.1 Univariate Normal, Homoscedastic Mixture

A mixture of two normal distributions with µ1 = 1, µ2 = 3 and σ1 = σ2 = 1, was simulated.

Since the misclassification rates are symmetric about η = 1/2, we varied η only from 0.10 to

0.50. Also we varied the sample sizes from 50 to 50,000. Because the empirical MCR has a

larger variance when the sample size is small, we replicated small samples until their overall

total equaled 50,000, and computed the average misclassification rates. Thus, the simulation

run for N = 50, 000 was replicated once, while that for N = 50 was replicated 1000 times.

For the EM algorithm, we set the initial estimates of the cluster means equal to 0.5 and

4. The common initial estimate of the cluster variances was set equal to the overall sample

variance. Initial estimate of η was set equal to 0.50. The simulation results are shown in

Table 2.1.

The following conclusions emerge from these simulations.
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Table 2.1: Simulated Misclassification Rates of the MM Method and the K-Means Algorithm
for the Univariate Homoscedastic Case (K = 2, µ1 = 1, µ2 = 3, σ1 = σ2 = 1)

EMCR of Empirical MCR
η Bayes Rule N MM Method K-Means Algorithm

0.10 0.0701 50 0.1299 0.3255
500 0.0800 0.3415
5000 0.0698 0.3552
50000 0.0710 0.3352

0.20 0.1121 50 0.1588 0.2415
500 0.1202 0.2452
5000 0.1133 0.2327
50000 0.1144 0.2351

0.30 0.1387 50 0.1851 0.1861
500 0.1422 0.1872
5000 0.1391 0.1865
50000 0.1381 0.1869

0.40 0.1538 50 0.1984 0.1686
500 0.1601 0.1640
5000 0.1561 0.1636
50000 0.1537 0.1644

0.50 0.1587 50 0.2077 0.1626
500 0.1658 0.1622
5000 0.1581 0.1577
50000 0.1589 0.1570
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1. The MCR of the Bayes rule increases as η increases from 0.10 to 0.50 as shown in

Proposition 1.

2. The performance of the K-means algorithm is significantly worse than that of the MM

method when η is away from 0.50, but gets closer as η gets closer to 0.50.

3. The sample size has a significant effect on the MCR of the MM method. Generally,

the MCR decreases as the sample size increases because more accurate estimates are

obtained using the EM algorithm with larger samples. The MCR of the K-means

algorithm is relatively unaffected by the sample size since it does not involve estimation

of unknown parameters. When η is close to 0.5, the MCR of the MM method for small

sample sizes can be sometimes higher than that of the K-means algorithm because of

poor parameter estimates.

2.5.2 Univariate Normal, Heteroscedastic Mixtures

Mixtures of two normal distributions with µ1 = 1, σ1 = 1 and µ2 = 4, σ2 = 2, were simulated.

Because of unequal variances, the misclassification rates are not symmetric about η = 1/2.

Therefore we varied η over its entire range from 0.10 to 0.90. We also varied the sample sizes

from 50 to 50,000 as explained before.

For the EM algorithm we set the initial estimates of the cluster means equal to 0.5 and

4.5, and initial estimates of the variances equal to 2.5 and 0.5, respectively. Initial η was set

equal to 0.50. The results are shown in Table 2.2.
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Table 2.2: Simulated Misclassification Rates of the MM Method and the K-Means Algo-
rithms for the Univariate Heteroscedastic Case (K = 2, µ1 = 1, σ1 = 1, µ2 = 4, σ2 = 2)

EMCR of Empirical MCR
η1 Bayes Rule N MM Method K-Means Algorithm

0.10 0.1000 50 0.1789 0.3830
500 0.1449 0.3881
5000 0.1039 0.3891
50000 0.1003 0.3833

0.20 0.1450 50 0.2082 0.3075
500 0.1682 0.3129
5000 0.1491 0.3097
50000 0.1451 0.3075

0.30 0.1575 50 0.2288 0.2576
500 0.1778 0.2568
5000 0.1606 0.2587
50000 0.1563 0.2571

0.40 0.1561 50 0.2202 0.2105
500 0.1701 0.2115
5000 0.1584 0.2044
50000 0.1555 0.2131

0.50 0.1461 50 0.2057 0.1712
500 0.1599 0.1734
5000 0.1452 0.1705
50000 0.1462 0.1709

0.60 0.1295 50 0.1845 0.1402
500 0.1356 0.1380
5000 0.1318 0.1364
50000 0.1299 0.1362

0.70 0.1073 50 0.1513 0.1161
500 0.1139 0.1096
5000 0.1097 0.1096
50000 0.1069 0.1083

0.80 0.0795 50 0.1241 0.1180
500 0.0840 0.0893
5000 0.0799 0.0841
50000 0.0801 0.0836

0.90 0.0456 50 0.0917 0.2025
500 0.0488 0.1619
5000 0.0456 0.1472
50000 0.0450 0.1519
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1. Many of the conclusions are qualitatively similar to those obtained in the univariate,

homoscedastic case. For example, the performance of the K-means algorithm is rela-

tively unaffected by the sample size, but that of the MM method is generally affected

with higher empirical MCR values for small sample sizes that approach the EMCR

of the Bayes rule as the sample size increases. The performance of the K-means al-

gorithm gets progressively better as the mixing proportions become more balanced.

The K-means algorithm beats the MM method in terms of the empirical MCR only

when the sample size is small and η does not take extreme values (e.g., for N = 50,

η is between 0.40 and 0.80 and for N = 500, η = 0.7). However, recall the caution

expressed in Remark 3.

2. The EMCR of the Bayes rule, although not symmetric about η = 1/2, shows a similar

behavior, increasing with η up to η = 0.3358 and then decreasing. The empirical MCR

of the K-means algorithm, on the other hand, decreases until about η = 0.8 (more

accurately until η = 0.7628) and then increases.

Finally, we note that all simulation results are in agreement with the analytical results

derived in Sections 2.3 and 2.4.

2.6 Discussion and Conclusions

In this chapter we have analyzed the univariate case in thorough detail. The results show

that the MM method is preferred in many cases for clustering since it yields smaller misclas-
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sification rates. Exceptions are those cases where the prior probabilities of the two clusters

are not too different and the sample sizes are small. The EM algorithm is computationally

more intensive and requires larger sample sizes to obtain accurate estimates of parameters.
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Chapter 3

Clustering for Normal Mixture

Models: Bivariate Case

3.1 Introduction

This chapter focuses on the comparison of the performances of the K-means algorithm and

the MM method for bivariate data. The objective is to investigate the effect of correlation on

the classification performance of these methods. We assume that data come from a mixture

of two-component bivariate normal distributions. The MM method takes into account the

correlations between the continuous manifest variables for objects within the same cluster

while the K-means algorithm ignores the correlations.

We restrict our attention to the mixture models with a common covariance structure.

We compare the classification rules of the K-means algorithm and the MM method as the
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correlation becomes stronger. The classification performances of these two methods are also

compared empirically based on the MCR. Before we proceed, let us take a look at the nature

of the clustering problem.

3.2 Homoscedastic Bivariate Normal Mixture Model

Let us begin with a graphic representation of the homoscedastic bivariate normal mixture

model. In Figure 3.1, the two plotted variables Y1 and Y2 are correlated. Suppose (Y1, Y2)

Y
1

Y
2

X
1

X
2

ϑ

Figure 3.1: Simulated Data for a Mixture of Two Bivariate Normal Component Distributions

follows a bivariate (more generally, a multivariate) normal distribution with covariance ma-

trix Ω, then there exists a unitary matrix P , whose rows are orthonormal eigenvectors of

Ω, such that PΩP ′ is a diagonal matrix. In other words, even if Y1 and Y2 are correlated,
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they can always be transformed to independent random variables X1 and X2 with unequal

variances. Thus, the problem of studying the effect of correlation can be transformed to that

of the effect of the ratio σ2/σ1 where σ2
1 and σ2

2 are the variances of two independent random

variables. We define the ratio ς = σ2/σ1 as elongation which measures the deviation of the

contour line of the bivariate distribution from the ball shape. The following proposition

shows that the elongation measure ς increases as the absolute correlation |ρ| between the

original observed variables increases.

Proposition 3.1 Let (Y1, Y2) have a bivariate normal distribution with mean vector µ =

[
µ1

µ2

]
and covariance matrix Σ =

[
τ 2
1 ρτ1τ2

ρτ1τ2 τ 2
2

]
(τ1 > τ2). Let (X1, X2) be an orthogonal

one-to-one transformation of (Y1, Y2) given by

[
X1

X2

]
=

[
sin ϑ − cos ϑ

cos ϑ sin ϑ

][
Y1

Y2

]
(3.1)

where 0 < ϑ < π such that X1 and X2 are independent. Assume that Var(X1) = σ2
1 and

Var(X2) = σ2
2. Then the elongation ς = σ2/σ1 increases as the correlation between Y1 and

Y2 becomes stronger.
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Proof: Denote M =

[
sin ϑ cos ϑ

− cos ϑ sin ϑ

]
. Then

Cov

[
X1

X2

]
= MΣM ′

=

[
τ 2
1 sin2 ϑ + τ 2

2 cos2 ϑ − ρτ1τ2 sin 2ϑ (τ 2
1 − τ 2

2 ) sin ϑ cos ϑ − ρτ1τ2 cos 2ϑ

(τ 2
1 − τ 2

2 ) sin ϑ cos ϑ − ρτ1τ2 cos 2ϑ τ 2
1 cos2 ϑ + τ 2

2 sin2 ϑ + ρτ1τ2 sin 2ϑ

]
,

where ϑ solves the equation

(τ 2
1 − τ 2

2 ) sin ϑ cos ϑ − ρτ1τ2 cos 2ϑ = 0. (3.2)

The variances of X1 and X2 are

σ2
1 = τ 2

1 sin2 ϑ + τ 2
2 cos2 ϑ − ρτ1τ2 sin 2ϑ, (3.3)

and

σ2
2 = τ 2

1 cos2 ϑ + τ 2
2 sin2 ϑ + ρτ1τ2 sin 2ϑ, (3.4)

respectively. Hence, the elongation

ς =
σ2

σ1

=

√
τ 2
1 + τ 2

2 − σ2
1

σ2
1

=

√
τ 2
1 + τ 2

2

σ2
1

− 1 (3.5)
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is a decreasing function of σ1 since τ 2
1 + τ 2

2 is fixed.

If τ1 = τ2, then ϑ = π/4 from equation (3.2). It is easy to show that σ2
1 = τ 2

1 sin2 ϑ +

τ 2
2 cos2 ϑ − ρτ1τ2 sin 2ϑ = (τ 2

1 + τ 2
2 )/

√
2 − ρτ1τ2 is a decreasing function of ρ.

If τ1 6= τ2, then from (3.2)

tan 2ϑ =
2ρτ1τ2

τ 2
1 − τ 2

2

. (3.6)

Without loss of generality, let us assume ρ > 0. Then it follows that ϑ < π/4. Also, ϑ is an

increasing function of ρ. Replace ρτ1τ2 in (3.3) by (3.6), we obtain

σ2
1 = τ 2

1 sin2 ϑ + τ 2
2 cos2 ϑ − tan 2ϑ(τ 2

1 − τ 2
2 ) sin ϑ cos ϑ.

Take a partial derivative of σ2
1 with respect to ϑ:

∂σ2
1

∂ϑ
= (τ 2

1 − τ 2
2 ) sin 2ϑ − (τ 2

1 − τ 2
2 )

[
1

2

1

cos2 2ϑ
· 2 · sin 2ϑ +

1

2
tan 2ϑ cos 2ϑ · 2

]

= −(τ 2
1 − τ 2

2 )
sin 2ϑ

cos2 2ϑ

< 0.

Hence, σ1 is a decreasing function of ϑ, which increases as ρ increases. Similarly, it can be

easily shown that ϑ increases as ρ decreases for ρ < 0. Therefore, the elongation ς increases

as |ρ| increases. �

Transformation of the axes does not affect the performance of a clustering algorithm.

Without loss of generality, we assume that the variables are independent. Further, let us



65

assume that the centroid of the first cluster lies at the origin, and that of the second cluster in

the first quadrant. The contour plot is shown in Figure 3.2. We denote the two component

X
1

X
2

µ
1

µ
2

K−means
Algorithm

MM
Method

Figure 3.2: Contour Plot for the Mixture of Two Bivariate Normal Components under the
Transformed Axes and the Classification Lines of the Two Methods

cluster centers as µ1 and µ2 respectively. Under the homoscedastic assumption, the two

clusters have a common covariance structure which can be denoted by

[
σ2

1 0

0 σ2
2

]
where σ2

1

and σ2
2 (σ2 > σ1) are the variances of the component distributions along the x1 and x2 axes.

Let the mixing proportions of the two components be η and 1 − η respectively (0 < η < 1).

The K-means algorithm starts with two initial cluster centers and iterates until the

convergence condition is satisfied. Let µ̃1 and µ̃2 be the final centroids estimated by the

K-means algorithm for the two clusters, then an observation x is classified to C1 if and only
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if

||x − µ̃1||2 ≤ ||x − µ̃2||2 (3.7)

This rule simplifies to a linear function in x = (x1, x2)
′ after some simple algebra. In the

two-dimensional space, the linear function corresponds to a straight line, which we call the

classification line (See Figure 3.2). Either the centroids or the classification line uniquely

characterize the final solution of the K-means algorithm, the classification line being the

mid-perpendicular line of the two centroids.

In the EM algorithm-based MM method, an observation x is assigned to a cluster ac-

cording to the maximum posterior rule:

R(x) = C1 ⇐⇒ η̂f(x, µ̂1, Σ̂) ≥ (1 − η̂)f(x, µ̂2, Σ̂).

As Nk → ∞ for k = 1, 2, this rule approaches the Bayes rule for known parameters and

reduces to

(µ1 − µ2)
′ Σ−1x ≥ 1

2

(
µ′

1Σ
−1µ1 − µ′

2Σ
−1µ2

)
− ln

(
η1

η2

)
. (3.8)

The left hand side is a linear function of x and the right hand side is a constant. Thus, the

classification rule for the MM method is also linear.

If the slopes of the classification lines of the K-means algorithm and the MM method are

the same, the clustering problem for a mixture of two-component bivariate normal distrib-

utions simplifies to the univariate case as discussed in Chapter 1. However, our experience
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shows that the slopes of the two methods will not be equal in general. We would like to

investigate how the slope changes as ς increases. As we stated earlier, the classification

line of the MM method converges to the Bayes rule as the sample size approaches infinity

and the Bayes rule provides a gold standard for classification. Therefore, if the slope of the

classification rule of the K-means algorithm deviates from that of the MM method, then

the classification performance of the K-means algorithm shall also deviate from the optimal

solution. The following proposition characterizes the slope changes of the classification line

of the MM method.

Proposition 3.2 Consider a two-component mixture of bivariate normal distributions with

mean vectors µ1 and µ2 and a common covariance matrix Σ =

[
σ2

1 0

0 σ2
2

]
. Also let δ =

(δ1, δ2)
′ = µ2 − µ1 > 0. Then, the classification line of the MM method becomes steeper as

ς = σ2/σ1 increases while σ1 is held constant.

Proof: Let y = (µ1 − µ2)
′ Σ−1x = δ1x1/σ

2
1 + δ2x2/σ

2
2. The classification rule becomes a

straight line with slope (x2 versus x1)

−δ1σ
2
2

δ2σ2
1

. (3.9)

Since δ1 > 0, δ2 > 0, as ς increases, the slope becomes more negative and the classification

line becomes steeper. �
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For the K-means algorithm, the classification line divides data into two clusters such

that the means of the two clusters are equidistant from the classification line and projects

to the same point on the classification line. Asymptotically, the cluster means are weighted

combinations of the conditional means of the data from each bivariate normal distribution

conditional on the data following into the appropriate cluster. Because the relative locations

of the cluster mean projections on the classification line determines the changes in slopes

of the classification line in each iteration of the K-means algorithm, we need to evaluate

these conditional mean projections on the classification line as a function of ς. Suppose an

observation (x∗
1, x

∗
2) is projected onto the classification line ax1 + bx2 = c (a > 0, b > 0) as

shown on Figure 3.2, then the relative location of this projection, B, on this classification

line defined by

(ax∗
2 − bx∗

1)
a√

a2 + b2

measures the relative distance between B and A on the classification line where A is the

projection of (0, 0). Notice that the term a/
√

a2 + b2 is a scaling factor. For simplicity, we

will drop this scaling factor and use ax∗
2− bx∗

1 as the projection location measure for (x∗
1, x

∗
2).

To evaluate conditional mean projections of each component distribution we use the

following lemma.

Lemma 3.1 Let (X1, X2) have a bivariate normal distribution with mean vector µ =

[
0

0

]
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Figure 3.3: Projection Measure on the Classification Line

and covariance matrix Σ =

[
σ2

1 0

0 σ2
2

]
where σ2 > σ1. Let aX1 + bX2 = c be the candidate

classification line where a > 0 and b > 0. Then the conditional mean projection of an

observation above the classification line,

h(ς) = E(aX2 − bX1|aX1 + bX2 ≥ c), (3.10)

is an increasing function of ς = σ2/σ1 where σ1 is held constant.
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Proof:

h(ς) = E(aX2 − bX1|aX1 + bX2 ≥ c) =

∫∫
ax1+bx2≥c

(ax2 − bx1)f(x1)f(x2)dx1dx2∫∫
ax1+bx2≥c

f(x1)f(x2)dx1dx2

=

ab(σ2
2−σ2

1)√
2πc

c√
a2σ2

1+b2σ2
2

e
− c2

2(b2σ2
2+a2σ2

1)

Φ

(
− c√

b2σ2
2+a2σ2

1

) .

Let g = c√
a2σ2

1+b2σ2
2

. Then

∂h

∂σ2

=
2abσ2√

2πc

ge−g2/2

Φ(−g)
+

ab(σ2
2 − σ2

2)√
2πc

(1 − g2)e−g2/2Φ(−g) + ge−g2/2φ(−g)

Φ(−g)2

(−1

2
)

c√
a2σ2

1 + b2σ2
2

2b2σ2

a2σ2
1 + b2σ2

2

=
abσ2e

−g2/2

√
2πΦ(−g)

√
a2σ2

1 + b2σ2
2

{
2 − b2σ2

2 − b2σ2
1

a2σ2
1 + b2σ2

2

[
(1 − g2) + g

φ(−g)

Φ(−g)

]}

The sign of ∂h/∂σ2 depends on the sign of the term inside the curly brackets.

If g < 0, then (1 − g2) + gφ(−g)/Φ(−g) < 1 and 0 < (b2σ2
2 − b2σ2

1)/(a
2σ2

1 + b2σ2
2) < 1.

Hence,

2 − b2σ2
2 − b2σ2

1

a2σ2
1 + b2σ2

2

[
(1 − g2) + g

φ(−g)

Φ(−g)

]
> 1

So, ∂h/∂σ2 > 0.
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If g > 0, then from Mills’ Inequality (2.14),

Φ(−g)

φ(−g)
>

g

1 + g2

⇐⇒ (1 − g2) + g
φ(−g)

Φ(−g)
< 2

⇐⇒ 2 − b2σ2
2 − b2σ2

1

a2σ2
1 + b2σ2

2

[
(1 − g2) + g

φ(−g)

Φ(−g)

]
> 0

and again ∂h/∂σ2 > 0.

Therefore h is an increasing function of σ2, i.e., h(ς) is an increasing function of ς while

σ1 is fixed. �

Next study the behavior of the classification line as the elongation measure ς increases

while σ1 is kept constant. Under the local convergence assumption discussed in Chapter 1,

how does the slope of the classification line of the K-means algorithm change as the contour

of the component distribution changes?

Suppose the straight line in Figure 3.4a is the classification line that meets the con-

vergence criteria of the K-means algorithm corresponding the common covariance matrix

Σ =

[
σ2

1 0

0 σ2
2

]
. Consider another covariance matrix Σ′ =

[
σ2

1 0

0 σ′2
2

]
where σ′

2 > σ2.

Assume that σ′
2 and σ2 are close enough so that the classification line for the mixture with

common covariance matrix Σ can converge to that for the mixture model with common

covariance matrix Σ′ under the local convergence assumption.
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If the K-means algorithm starts with the convergent classification line for Σ, how should

the slope of the classification line change in the next step according to the K-means algo-

rithm? The change in the slopes of the classification line is determined by the conditional

mean projection of data on the current classification line. Under the new setting Σ′, Lemma

3.1 shows that the mean projection on the current classification line increases (moves left)

for the data that lie above the classification line and come from a particular component

distribution because σ2 increases to σ′
2. The cluster mean projection is a weighted sum of

X
1

X
2

a)

X
1

X
2

b)

D
1

D
2

Figure 3.4: Centroid Changes of the K-means Algorithm

the conditional mean projection of the data from the first component and the data from

the second component. The relative weight of the data from the first component increases

while the relative weight of observations from the second component decreases, hence the



73

cluster mean projection of all the data above the classification line increases (moves to the

left). Similarly, the cluster mean projection of the data below the classification line decreases

(moves toward the right). Therefore, the slope of the classification line in the next iteration

must increase (i.e., become flatter) because the classification line is determined by the two

new centroids.

A new pair of centroids has been recalculated based on the original classification line as

shown in Figure 3.4b. Suppose (D1, D2) is the set of new centroids calculated based on the

original classification line and the dotted line is the mid-perpendicular line of D1D2. Then

the centroid of all observations above the dotted line lies to the left of D1 and the centroid of

all observations below the dotted line lies to the right of D2. This forces the classification line

of the K-means algorithm to become flatter. The magnitude of changes in slopes becomes

smaller and smaller until convergence.

In summary, the slope of the classification line of the K-means algorithm changes in an

opposite way to that of the MM method as ς increases. If the classification line becomes

flatter as ς increases, then about 50% observations from the first cluster and about 50%

observations from the second cluster are combined to form a new cluster. The classification

procedure is essentially no different from a random assignment. The following section uses

simulation to evaluate the classification performance of the K-means algorithm and compare

it with that of the MM method.
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3.3 Simulation Study

In this section we compare the performance of the K-means algorithm and the MM method

via simulation. We simulated mixtures of two normal distributions with means (0, 0)′ and

(5, 6)′ and Σ =

[
σ2

1 0

0 σ2
2

]
. We kept σ1 = 2 fixed and varied the elongation measure ς from

1 to 10. The slopes of the classification line and the MCRs are recorded under each scenario.

The EMCR of the Bayes rule is used as a benchmark for comparison.

The default Kmeans function from Matlab 7.2 was used for the K-means clustering.

For the MM method, the EM algorithm was implemented with the initial settings chosen as

η1 = 0.5, η2 = 0.5, µ1 = (−1,−1)′, µ2 = (10, 10)′. In order to compare the performances

at different levels, we chose three different sample sizes: 200, 2,000 to 20,000, but kept the

mixing proportion of the first component fixed at η = 60%. We replicated the samples 10

times under each scenario and computed the averages of the MCRs and the slopes. The

simulation results are shown in Table 3.1. The MCRs of the two methods are displayed in

Figure 3.5.

The following conclusions emerge from these simulations.

1. In general, the MCR increases for both methods when the sample size is large because

as ς increases, there are more overlap of the component clusters.

2. These two methods have comparable performances when ς is close to one where the

component distributions are of or close to ball shapes. However, as the component
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Table 3.1: Simulated Data for the MM Method and the K-Means Algorithms for the Bivari-
ate Homoscedastic Case

EMCR of EM Algorithm K-means Algorithm
ς Bayes Rule N MCR slope MCR slope
1 0.0248 200 0.0245 -0.56 0.0140 -2.09

2000 0.0255 -0.84 0.0130 -1.99
20000 0.0252 -0.84 0.0127 -2.01

2 0.0705 200 0.0745 -0.32 0.0595 -1.47
2000 0.0742 -0.69 0.0603 -1.48
20000 0.0705 -0.88 0.0555 -1.51

3 0.0867 200 0.1260 -0.56 0.3055 -0.37
2000 0.1136 -0.73 0.2819 -0.39
20000 0.0861 -0.94 0.2870 -0.38

4 0.0933 200 0.0860 -0.67 0.3730 -0.15
2000 0.1262 -0.77 0.3828 -0.15
20000 0.0928 -0.96 0.3741 -0.16

5 0.0966 200 0.0910 -6.89 0.4350 -0.07
2000 0.1188 -0.66 0.4175 -0.08
20000 0.0953 -1.00 0.4095 -0.09

6 0.0984 200 0.1820 0.16 0.4235 -0.06
2000 0.1097 -0.46 0.4315 -0.06
20000 0.0934 -1.03 0.4304 -0.06

7 0.0995 200 0.3035 -0.09 0.4555 -0.03
2000 0.1061 -0.51 0.4406 -0.04
20000 0.0886 -1.42 0.4415 -0.04

8 0.1003 200 0.2650 0.90 0.4455 -0.03
2000 0.0937 -0.72 0.4460 -0.03
20000 0.0933 -1.68 0.4482 -0.03

9 0.1008 200 0.1090 -0.49 0.4660 -0.01
2000 0.0934 -0.46 0.4529 -0.02
20000 0.0998 -3.10 0.4559 -0.02

10 0.1011 200 0.2220 -1.43 0.4705 -0.01
2000 0.1018 -0.36 0.4574 -0.02
20000 0.1051 -3.12 0.4618 -0.02
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Figure 3.5: MCR of the K-means Algorithm and the MM Method for Mixtures of Two
Bivariate Normal Distributions

distributions deviate from the ball shape, the mixture model can potentially provide

a much better performance. As shown in Figure 3.5, the difference in MCR increases

dramatically after ς = 2. As the component distribution becomes more and more

elongated, the slopes of the classification rule of the K-means algorithm converges to

zero, and therefore the MCR increases toward 50%, which is the upper limit.

3. The sample size has a negative effect on the performance of the MM method. This

is not surprising because poorer estimates are obtained using the EM algorithm with

small samples. The fluctuation of the MCRs of the K-means algorithm is relatively
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small in comparison to that of the MM method because it does not involve estimation

of any parameters. The relative stable performance of the K-means algorithm can also

be observed from the steadily increasing slopes of its classification lines with the finite

sample sizes.

3.4 Summary and Conclusions

In this chapter we have analyzed the performance of two clustering methods on data from

a two-component mixture of bivariate normal component distributions with a common co-

variance structure. A high elongation measure corresponds to strong correlation between

measurements in the original variable space. The normal mixture model is the right model

for the simulated data and hence can provide a gold standard for any other clustering meth-

ods. As the component distribution becomes more and more elongated, the classification

line of the Bayes rule becomes steeper in order to take advantage of this change. The slope

of the classification line of the K-means algorithm, on the other hand, changes in the oppo-

site way. It becomes flatter as the component distributions become more elongated. As a

result, the K-means algorithm provides a much worse classification performance as it takes

no advantage of the correlation information.

It should be noted that the EM algorithm only provides a local solution to the objective

function of the MM method. If the starting estimates are not well chosen, the MM method

may also provide very poor classification performance. The slope of the classification line
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depends on the simulated data and does not always decrease as ς increases (see Figure 3.5)

because of the parameter estimation errors. Nevertheless, a clustering method that accounts

for correlations can potentially perform much better than a clustering method that does not

account for correlations, especially when the sample size is large.
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Chapter 4

Models for Multivariate Correlated

Bernoulli Distribution

4.1 Introduction

In the following two chapters we study the problem of cluster analysis for multivariate corre-

lated binary data. Much of the work in cluster analysis assumes continuous data. However,

many syndicated marketing sources have substantial numbers of binary variables. For exam-

ple, Experian’s behavior data bank has lifestyle indicators; Research resources, such as MRI,

Scarborough, Simmons, have large banks of questions indicating whether a customer has

purchased certain brands, watches certain TV shows, reads certain newspapers/magazines,

etc. In this chapter, we study and compare different models for multivariate Bernoulli dis-

tributions that can handle both positive and negative correlations between variables. We
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choose one of these models for application in the clustering problem. This clustering problem

is studied in detail in the following chapter.

4.2 Models

Let X = (X1, X2, . . . , Xm) denote a vector of correlated Bernoulli r.v.s on an object. Mar-

ginally each Xi is Bernoulli with success probability θi (denoted as Xi ∼ Ber(θi)). We assume

that 0 < θi < 1 for all i. Several models for the joint distribution of X have been proposed

in the literature, the most general of which is due to Bahadur (1961). We focus on three of

the more specialized models and choose one among them as discussed in the sequel. We also

modify the candidate model so that it can handle both positive and negative correlations.

It should be noted that, since Xi and Xj are binary, regardless of which model is adopted,

the correlation coefficient, ρij = Corr(Xi, Xj), has a limited range
[
−ρ∗

ij, +ρ∗∗
ij

]
(Prentice

1986) where

ρ∗
ij = min

[√
θiθj

(1 − θi)(1 − θj)
,

√
(1 − θi)(1 − θj)

θiθj

]
(4.1)

and

ρ∗∗
ij = min

[√
θi(1 − θj)

θj(1 − θi)
,

√
θj(1 − θi)

θi(1 − θj)

]
. (4.2)

Because of the limited range of ρij it will be useful to define the relative correlation coefficient,
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−1 ≤ rij ≤ 1, as follows:

rij =





ρij/ρ
∗
ij if ρij < 0

ρij/ρ
∗∗
ij if ρij > 0.

(4.3)

As a final point, let x = (x1, x2, . . . , xm) be a realization of the random vector X =

(X1, X2, . . . , Xm). Then x can be characterized by its pattern of 1s and 0s. We denote a

pattern by P ⊆ M = {1, 2, . . . ,m}, where xi = 1 ∀ i ∈ P and xi = 0 ∀ i 6∈ P . Furthermore,

each pattern P has a unique index p defined by

p = 1 +
m∑

i=1

2i−1xi, (4.4)

where p ranges from 1 (when all xi = 0) to 2m (when all xi = 1). Often, we will refer to p

itself as the pattern because of its one-to-one correspondence with P .

4.2.1 Binary Latent Variable (BLV) Model

Al-Osh and Lee (2001) proposed the following simple model for correlated binary data: Let

Ui ∼ Ber(αi) (1 ≤ i ≤ m) and V ∼ Ber(β), where all the r.v.s are mutually independent.

Then Yi = UiV are positively correlated Bernoulli r.v.s with parameters θi = αiβ. To allow

for negative correlations, a third independent Bernoulli r.v. Wi ∼ Ber(γi) is introduced

which gives the outcome Yi or 1 − Yi depending on whether Wi = 1 or 0; thus,

Xi = YiWi + (1 − Yi)(1 − Wi). (4.5)
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It is straightforward to show that

θi = Pr(Xi = 1) = αiβγi + (1 − αiβ)(1 − γi) = αiβ(2γi − 1) + (1 − γi),

and

ρij = Corr(Xi, Xj) =
αiαjβ(1 − β)(2γi − 1)(2γj − 1)

√
θiθj(1 − θi)(1 − θj)

. (4.6)

Note that ρij > 0 if and only if both γi and γj are < 1/2 or > 1/2. This model has a total

of 2m + 1 parameters. The joint distribution of X or equivalently that of the pattern p can

be written in a closed form; we omit the details.

4.2.2 Continuous Latent Variable (CLV) Model

Oman and Zucker (2001) proposed a model which uses a continuous latent variable and

allows for positive correlation between the binary random variables. We extend their model

to allow for negative correlations. Let Z0, Z1, . . . , Zm be i.i.d. continuous r.v.s with a common

known distribution function F (·). For convenience and without loss of generality, we will

assume that F (·) is a uniform distribution over [0, 1] (denoted as U [0, 1]). Let V1, V2, . . . , Vm

be independent Bernoulli r.v.s with parameters β1, β2, . . . , βm, respectively, and let

Ui = ViZ0 + (1 − Vi)Zi.
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The Uis are positively correlated U [0, 1] r.v.s. To allow for negative correlations, we introduce

independent Bernoulli r.v.s Wi ∼ Ber(γi) as in model (4.5). Let

Yi = UiWi + (1 − Ui)(1 − Wi) and Xi = I (Yi ≤ θi) , (4.7)

where I(·) is an indicator function. It is straightforward to see that Yi ∼ U [0, 1] and hence

Pr(Xi = 1) = θi. Furthermore,

ρij =
βiβj√

θiθj(1 − θi)(1 − θj)

[
{γiγj + (1 − γi)(1 − γj)}{min(θi, θj) − θiθj} (4.8)

+ {γi(1 − γj) + γj(1 − γi)}{(θi + θj − 1)+ − θiθj}
]
, (4.9)

where x+ denotes the positive part of x. The above expression can be simplified to

ρij =





βiβjρ
∗∗
ij

[
1 − {γi(1 − γj) + γj(1 − γi)}/ max(θi, 1 − θj)

]
if θi ≤ θj

βiβjρ
∗∗
ij

[
1 − {γi(1 − γj) + γj(1 − γi)}/ max(θj, 1 − θi)

]
if θi ≥ θj.

(4.10)

Thus the sign of ρij depends on whether the second term inside the square bracket is > 1 or

< 1.

The joint distribution of X = (X1, X2, . . . , Xm) can be obtained as follows. Consider a

pattern P with index p. Let Q = M \ P , i.e., Xi = 1 ∀ i ∈ P and Xi = 0 ∀ i ∈ Q. Also let
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A and B be subsets of P and Q. Then

f(p|θ,β,γ) = Pr{Yi ≤ θi ∀ i ∈ P ; Yi > θi ∀ i ∈ Q}

=
∑

A⊆P

∑

B⊆Q

Pr{Z0Wi + (1 − Z0)(1 − Wi) ≤ θi ∀ i ∈ A;

Z0Wi + (1 − Z0)(1 − Wi) > θi ∀ i ∈ B;

ZiWi + (1 − Zi)(1 − Wi) ≤ θi ∀ i ∈ P \ A;

ZiWi + (1 − Zi)(1 − Wi) > θi ∀ i ∈ Q \ B} ×
∏

i∈A,B

βi

∏

i∈P\A,Q\B
(1 − βi),

where θ = (θ1, . . . , θm),β = (β1, . . . , βm) and γ = (γ1, . . . , γm). Let C = {i ∈ A ∪ B :

Wi = 1} and D = {i ∈ A ∪ B : Wi = 0}. Then it is readily seen that θ∗(A,B,C) ≤ Z0 ≤

θ∗∗(A,B,C), where

θ∗(A,B,C) = max

{
0, max

i∈B∩C
θi, max

i∈A∩D
(1 − θi)

}

and

θ∗∗(A,B,C) = min

{
1, min

i∈A∩C
θi, min

i∈B∩D
(1 − θi)

}
.

Therefore the probability pertaining to Z0 is [θ∗∗(A,B,C) − θ∗(A,B,C)]+.

Next note that for i ∈ P \ A, if Wi = 1 then Zi ≤ θi and if Wi = 0 then Zi > 1 − θi;

in either case the probability pertaining to Zi is θi. Similarly, for i ∈ Q \ B, if Wi = 1 then

Zi > θi and if Wi = 0 then Zi ≤ 1 − θi; in either case the probability pertaining to Zi is
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1− θi. Putting all these pieces together, we get the final expression for the joint distribution

of X as

f(p|θ,β,γ) =
∑

A⊆P

∑

B⊆Q

∑

C⊆A∪B

[θ∗∗(A,B,C) − θ∗(A,B,C)]+



∏

i∈P\A
θi

∏

i∈Q\B
(1 − θi)




×



∏

i∈A,B

βi

∏

i∈P\A,Q\B
(1 − βi)





∏

i∈C

γi

∏

i∈(A∪B)\C
(1 − γi)


 . (4.11)

Note that if all βi = 0 then we get the independence model: f(p) =
∏

i∈P θi

∏
i∈Q(1 − θi).

4.2.3 Multivariate Probit (MVP) Model

The multivariate probit model (Emrich and Piedmonte, 1991) is another approach to handle

correlations between binary responses. The correlations between the binary variables in this

multivariate probit model are induced by the correlations between the underlying normal

random variables.

Let Y1, Y2, . . . , Ym be m ≥ 2 latent variables having a joint multivariate normal distribu-

tion with zero means, unit variances and correlation matrix {τij}. Let

Xi = I {Yi ≤ z(θi)} (1 ≤ i ≤ m), (4.12)

where z(θi) = Φ−1(θi) is the 100θi percentile of the standard normal distribution function

Φ(·). Then X1, X2, . . . , Xm have a multivariate Bernoulli distribution with success probabil-
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ities θ1, θ2, . . . , θm and correlations

ρij =
Φ2 [z(θi), z(θj)|τij] − θiθj√

θiθj(1 − θi)(1 − θj)
, (4.13)

where Φ2[·, ·|τ ] is the standard bivariate normal distribution function with correlation coef-

ficient τ . Note that ρij is a function of τij as well as of θi and θj. Furthermore,

ρij > 0 ⇐⇒ Φ2 [z(θi), z(θj)|τij] > θiθj ⇐⇒ τij > 0, (4.14)

which follows from Slepian’s (1962) inequality.

In the general form given above, the MVP model has m(m+1)/2 parameters (m θis and

(
m
2

)
τijs or equivalently ρijs). It is well-known that covariance matrices of large dimension

are difficult to estimate. The problem becomes especially acute in the clustering setting

where each cluster is assumed to have a different covariance matrix and the true cluster

memberships of the objects are unknown. Qu, Tan and Kutner (1996) proposed a simplified

version MVP model called random effects model,

P (Yj = 1|T = t) = Φ(aj + bjt),

where T ∼ N(0, 1), and aj and bj (j = 1, . . . ,m) are unknown parameters and Φ is the

cumulative distribution function (c.d.f.) of a standard normal variate. This model has 2m

unknown parameters and is equivalent to put product correlation restrictions on τijs in model
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(4.12):

τij = γiγj, (4.15)

where γi ∈ [−1, 1].

From (4.14) we see that ρij > 0 if and only if both γi, γj > 0 or < 0. This model has

only 2m parameters and it arises by representing

Yi = γiZ0 +
(
1 − γ2

i

)1/2
Zi,

where Z0, Z1, . . . , Zm are i.i.d. N(0, 1) r.v.s.

The joint distribution of X = (X1, X2, . . . , Xm) for the MVP model can be written easily

as follows. Consider a pattern P with index p. Then

f(p|θ, {τij}) = Pr {Xi = 1 ∀ i ∈ P ; Xi = 0 ∀ i 6∈ P}

= Pr{Yi ≤ z(θi) ∀ i ∈ P ; Yi > z(θi) ∀ i 6∈ P},

where the last expression is a multivariate normal probability. In case of the product corre-

lations (4.15), this multivariate normal probability can be expressed as a single integral (see

Hochberg and Tamhane 1987, p. 374):

f(p|θ,γ) =

∫ ∞

−∞

∏

i∈P

Φ

[
z(θi) − γiz0√

1 − γ2
i

]
∏

i6∈P

{
1 − Φ

[
z(θi) − γiz0√

1 − γ2
i

]}
φ(z0)dz0, (4.16)
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where Φ(·) and φ(·) are the c.d.f. and p.d.f. of the standard normal distribution, respectively.

4.3 Choice of the Model

Of the three models discussed above, the BLV model is rather limited in scope and our

computational experience shows that it gives poor fits to data sets generated by other models,

i.e., it is not robust. Furthermore, as can be seen from the expression (4.6) for the correlation

coefficient, the correlation matrix {ρij} has a block structure in which the m variables are

divided into two groups — one in which all γi > 1/2 and the other in which all γi < 1/2

(if γi = 1/2 then ρij = 0 for all j 6= i). All ρij are positive within each group and all ρij

are negative between groups. (If all γi > 1/2 or < 1/2 then all ρij are positive.) The MVP

model with product correlation also leads to the same block correlation structure in which

one group has all γi > 0 and the other group has all γi < 0 (if γi = 0 then ρij = 0 for

all j 6= i). This block correlation structure is too restrictive for many real data sets as the

following example illustrates.

Example 4.1

Suppose a company planning to launch an internet grocery shopping service is doing a

marketing survey and, as part of its questionnaire, has the following four binary response

questions:

Q. 1: Are you over 60?

Q. 2: Is your disposable income more than $75,000?
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Q. 3: Do you eat out more than three times a week on the average?

Q. 4: Do you shop on internet?

Then the responses to Q. 1 and Q. 2 are likely to be positively correlated (since older people

are likely to have higher disposable incomes). Similarly, the responses to Q. 3 and Q. 4 are

likely to be positively correlated (since younger people are more likely to eat out and also

use internet). However, correlations between the responses to Q. 1 and Q. 3, and Q. 1 and

Q. 4 are likely to be negative since older people are less likely to eat out and use internet.

On the other hand, correlations between the responses to Q. 2 and Q. 3, and Q. 2 and Q. 4

are likely to be positive since people with higher disposable incomes are more likely to eat

out and also use internet. To illustrate this point, consider the contrived data set shown in

Table 4.1 consisting of 220 respondents divided as follows: (115 Old, 105 Young), (85 High

Income, 135 Low Income), (105 Eat Out, 115 Don’t Eat Out), (107 Shop Internet, 113 Don’t

Shop Internet).

Table 4.1: Internet Grocery Shopping Survey Data

Eat Out? Shop on Old Young Row
Internet? High Income Low Income High Income Low Income Sum

Yes 20 2 15 25 62
Yes

No 15 8 5 15 43
Yes 5 10 5 25 45

No
No 15 40 5 10 70

Column Sum 55 60 30 75 220

For this data set, the estimated marginal probabilities of yes responses to the four ques-
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tions are:

θ̂1 =
115

220
, θ̂2 =

85

220
, θ̂3 =

105

220
, θ̂4 =

107

220
.

The estimated correlation matrix is

{ρ̂ij} =




1 0.1975 −0.1801 −0.3447

1 0.2697 0.0683

1 0.1990

1




.

Notice that this correlation matrix does not have the block structure.

We choose the CLV model since it does not impose such a restrictive block structure on

the correlation matrix. Also it is relatively faster to compute than the MVP model even

under the product correlation assumption.

The general form of the CLV model has 3m parameters. A model with so many para-

meters is difficult to fit, especially when a separate model must be fitted to each cluster;

see Section 5.3.2 for further discussion. So we may make one of the following simplifying

assumptions: (i) all βi ≡ β but the γi are unrestricted (CLV1 Model) or (ii) all γi ≡ γ but

the βi are unrestricted (CLV2 Model). We choose the CLV1 model since it allows a wider

range of correlations to be modelled. This is shown in the following proposition.

Proposition 4.1 Denote ρij for the CLV1 model by ρij(1) and that for the CLV2 model by

ρij(2). Then
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(i) for fixed θi, θj, the range of ρij(1) is the entire feasible range [−ρ∗
ij, ρ

∗∗
ij ], and

(ii) the range of ρij(2) is [(1/2)(ρ∗∗
ij − ρ∗

ij), ρ
∗∗
ij ], which is only half as wide as that of ρij(1),

and

(iii) if both θi, θj are either < 1/2 or > 1/2 then

min ρij(2) =
1

2
(ρ∗∗

ij − ρ∗
ij) > 0.

Hence, in this case, negative ρij is not possible under the CLV2 model.

Proof: For the CLV1 model, we assume βj ≡ β for all j. Hence (4.10) becomes

ρij(1) =





β2ρ∗∗
ij

[
1 − {γi(1 − γj) + γj(1 − γi)}/ max(θi, 1 − θj)

]
if θi ≤ θj

β2ρ∗∗
ij

[
1 − {γi(1 − γj) + γj(1 − γi)}/ max(θj, 1 − θi)

]
if θi ≥ θj.

To explore the full range of ρij(1), let β = 1. The minimum value of γi(1 − γj) + γj(1 − γi)

is 0 and the maximum value is 1. Therefore max ρij(1) attains the upper bound ρ∗∗
ij . Now

we show that min ρij(1) attains the lower bound −ρ∗
ij.

The values of ρ∗
ij and ρ∗∗

ij are different in the four regions of the (θi, θj)-space:

Region (I): θi ≤ θj, θi + θj ≤ 1 (i.e., max(θi, 1 − θj) = 1 − θj)

Region (II): θi ≤ θj, θi + θj ≥ 1 (i.e., max(θi, 1 − θj) = θi)

Region (III): θi ≥ θj, θi + θj ≥ 1 (i.e., max(θj, 1 − θi) = θj)
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Region (IV): θi ≥ θj, θi + θj ≤ 1 (i.e., max(θj, 1 − θi) = 1 − θi).

We will give the proof only for (θi, θj) in region I. The proofs for the other three regions

are similar and are hence omitted for brevity. In region I, we have

ρ∗
ij =

√
θiθj

(1 − θi)(1 − θj)
and ρ∗∗

ij =

√
θi(1 − θj)

θj(1 − θi)
. (4.17)

Therefore

min ρij(1) = ρ∗∗
ij

[
1 − 1

max(θi, 1 − θj)

]

=

√
θi(1 − θj)

θj(1 − θi)

[
1 − 1

1 − θj

]

= −
√

θiθj

(1 − θi)(1 − θj)

= −ρ∗
ij.

Thus ρij(1) attains the lower bound.

Next, for the CLV2 model, we assume γj ≡ γ for all j. Hence (4.10) becomes

ρij(2) =





βiβjρ
∗∗
ij [1 − {2γ(1 − γ)}/ max(θi, 1 − θj)] if θi ≤ θj

βiβjρ
∗∗
ij [1 − {2γ(1 − γ)}/ max(θj, 1 − θi)] if θi ≥ θj.

To explore the full range of ρij(2), let βi = βj = 1. The minimum value of γ(1− γ) is 0 and
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the maximum value is 1/4. Hence in region I we have

min ρij(2) = ρ∗∗
ij

[
1 − 1

2 max(θi, 1 − θj)

]
and max ρij(2) = ρ∗∗

ij .

Thus ρij(2) attains the upper bound. Furthermore, using the bounds (4.17), we have

min ρij(2) = ρ∗∗
ij − 1

2(1 − θj)

√
θi(1 − θj)

θj(1 − θi)

= ρ∗∗
ij − 1

2

√
θi

θj(1 − θi)(1 − θj)

= ρ∗∗
ij − 1

2
(ρ∗

ij + ρ∗∗
ij )

=
1

2
(ρ∗∗

ij − ρ∗
ij).

Therefore

min ρij(2) > 0 ⇐⇒ ρ∗∗
ij > ρ∗

ij ⇐⇒
√

θi(1 − θj)

θj(1 − θi)
>

√
θiθj

(1 − θi)(1 − θj)
⇐⇒ θj < 1/2.

A similar proof can be given for the other three regions with the following results:

Region (I): min ρij(2) > 0 ⇐⇒ θj < 1/2

Region (II): min ρij(2) > 0 ⇐⇒ θi > 1/2

Region (III): min ρij(2) > 0 ⇐⇒ θj > 1/2

Region (IV): min ρij(2) > 0 ⇐⇒ θi < 1/2.



94

Figure 4.1: Shaded Regions of the (θi, θj) Space where min ρij(2) > 0

These four subregions are shown shaded in Figure 4.1.

We see that they can be summarized simply as both θi, θj are < 1/2 or > 1/2 thus

proving the proposition. �
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Chapter 5

Clustering for Binary Mixture Models

5.1 Introduction

In the education field, Bennett and Jordan (1975) conducted a survey of 468 teachers in

which each teacher was asked 38 yes-no questions (also known as items) about the way they

handle their classes. For example, one of the questions was “Do you usually allow your

pupils to move around the classroom?” The goal in Bennett and Jordan’s analysis was to

group the teachers into clusters with similar teaching styles. To address this problem, Aitkin,

Anderson and Hinde (1981) used the latent class analysis (LCA) model, which is a mixture

model of independent Bernoulli distributions; see Everitt (1993, p. 120) and Bartholomew

and Knott (1999, p. 6). In the LCA model the binary responses are assumed to be inde-

pendent conditional on the cluster membership and the mixing probabilities represent the

prior probabilities of the clusters. The independence assumption is generally not true since
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many questions are related, e.g., in the teaching styles study another question was “Do you

usually allow your pupils to talk to one another?” The responses to the two questions for the

same teacher will be positively correlated. Correlations are induced because the responses

are observed on the same object — not because of the same class membership. Dependencies

among the responses of an object conditional on his/her cluster membership are known as

local dependencies.

Methods have been proposed in the literature to deal with local dependencies. The

LCA factor model with “direct effects” by Hagenaars (1988) is an example of this approach

which uses the log-linear model as the basic model. These log-linear model approaches are

implemented in the commercially available Latent GOLD software (Varmunt and Magidson

2004). Another approach due to Qu et al. (1996) uses a MM method with probit component

distributions. See section 4.2.3 for more details about the MVP distribution.

We propose a general LCA method. This approach involves replacing the independent

Bernoulli distributions in the standard LCA model by the multivariate Bernoulli distribution

that follows the CLV1 model introduced in Section 4.3. This parametric modelling approach

is dictated by the difficulty of the clustering problem, as explained in the Abstract. Also,

Fraley and Raftery (1998) have noted that methods using parametric families of mixture

models have shown promise in a number of practical applications. This gives us reasonable

assurance in applying a parametric approach to the present problem.

The outline of the chapter is as follows. Section 5.2 reviews the literature in this area

including the classical LCA approach and the log-linear modelling approach. In Section 5.3
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we extend the traditional LCA method to allow for correlated Bernoulli data using the CLV1

model. In Section 5.4 we present simulation results comparing our proposed method with

the traditional LCA method. In Section 5.5 we analyze two real data sets to illustrate the

application of our proposed method to practical situations. Some concluding remarks and

directions for future research are given in Section 5.6.

5.2 Review of Literature

5.2.1 Classical LCA Method

Consider N objects on each of whom m ≥ 2 binary responses are measured. Let x =

(x1, x2, . . . , xm) denote the vector of observed binary responses on an object and X =

(X1, X2, . . . , Xm) be the corresponding vector of Bernoulli r.v.s. We want to classify the

objects into K ≥ 2 clusters, C1, C2, . . . , CK , where provisionally we again fix K and as-

sume it to be known. For cluster Ck, denote the vector of Bernoulli probabilities by

θk = (θ1k, θ2k, . . . , θmk). Thus, given that an object belongs to cluster Ck, we have Pr(Xj =

1|Ck) = θjk and Pr(Xj = 0|Ck) = 1 − θjk (denoted as Xj ∼ Ber(θjk) conditional on Ck) for

j = 1, 2, . . . ,m. The independence assumption leads to

Pr(X = x|Ck) = f(x|θk) =
m∏

j=1

θ
xj

jk(1 − θjk)
1−xj . (5.1)

Let ηk = Pr(Ck) be the prior probability of a randomly chosen object belonging to cluster
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Ck, where
∑K

k=1 ηk = 1. LCA uses the mixture model for the distribution of X:

Pr(X = x) =
K∑

k=1

Pr(X = x|Ck) Pr(Ck) =
K∑

k=1

ηkf(x|θk). (5.2)

The posterior probability of an object with data vector x belonging to cluster Ck is given by

ηk(x) =
ηk

∏m
j=1 (θjk)

xj (1 − θjk)
1−xj

∑K
ℓ=1 ηℓ

∏m
j=1 (θjℓ)

xj (1 − θjℓ)1−xj

. (5.3)

The Bayes rule assigns the object to cluster Ck if ηk(x) = max1≤ℓ≤K{ηℓ(x)}.

Note that all response vectors x having the same pattern of 1s and 0s are classified the

same way where a pattern P ⊆ M = {1, 2, . . . ,m} has xj = 1 ∀ j ∈ P and xj = 0 ∀ j 6∈ P .

Let p defined in (4.4) be the index of P .

Suppose that there are N objects, indexed i = 1, 2, . . . , N , with independent response

vectors xi = (xi1, xi2, . . . , xim). The log-likelihood function for the LCA model (5.2) is given

by

ln L =
N∑

i=1

ln

[
K∑

k=1

ηk

m∏

j=1

θ
xij

jk (1 − θjk)
1−xij

]
. (5.4)

The MLEs of the θjk and ηk are given by (see Bartholomew and Knott 1999, pp. 138-139):

θ̂jk =

∑N
i=1 xij η̂k(xi)∑N

i=1 η̂k(xi)
and η̂k =

∑N
i=1 η̂k(xi)

N
, (5.5)

where η̂k(xi) is given by (5.3) with θjk and ηk replaced by their MLEs. Because of the
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interdependence between the θ̂jk, η̂k(xi) and η̂k, an iterative algorithm is needed to compute

the estimates (5.5). The EM algorithm of Dempster, et al. (1977) computes the estimates

by beginning with initial estimates of θjk and ηk, and iterating between (5.3) and (5.5).

The above calculations can be simplified by grouping xi with the same pattern index p

and denoting f(xi|θk) and ηk(xi) by f(p|θk) and ηk(p), respectively. Suppose there are np

observations with pattern p where
∑2m

p=1 np = N . Then the log-likelihood (5.4) becomes

ln L =
2m∑

p=1

np ln

[
K∑

k=1

ηkf(p|θk)

]
=

2m∑

p=1

np ln

[
K∑

k=1

ηk

∏

j∈P

θjk

∏

j 6∈P

(1 − θjk)

]
. (5.6)

Henceforth we shall refer to the above-described traditional LCA method, which assumes

local independence, simply as the LCA method. Our research focus in this chapter is on

modifying this method to take into account correlations between the responses by replacing

the independent Bernoulli distributions in the likelihood function by a joint correlated dis-

tribution. First we discuss other approaches that have been suggested in the literature for

modelling correlations.

5.2.2 Log-linear Modelling Approach

The binary variables can appear to be correlated even though they are independent condi-

tional on the cluster identity. As discussed in the last section, the classical LCA method

uses a latent variable that represents cluster identity to explain this apparent association.

Let Z1 = 0, 1 be the binary latent variable corresponding to the cluster identity C1 and C2
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respectively, and Fx1x2...xmz1 denote the expected cell frequency in the (m + 1)-way contin-

gency table involving both the manifest variables and the unobserved latent variable. Then

the frequency can be written in a product form of the parameters:

Fx1x2...xmz1 = Nηk

m∏

j=1

θ
xj

jk(1 − θjk)
1−xj (5.7)

where k = Z1 +1, η1 = η and η2 = 1−η. Goodman (1978) uses a log-linear form of the LCA

model. We derive his model from the classical model in (5.7). Take the natural logarithm

of the expected cell frequencies. Then

ln Fx1x2...xm0 = ln N + ln η +
m∑

j=1

[xj ln θj1 + (1 − xj)(1 − θj1)]

ln Fx1x2...xm1 = ln N + ln(1 − η) +
m∑

j=1

[xj ln θj2 + (1 − xj)(1 − θj2)]

Pooling the above two expressions, we obtain

ln Fx1x2...xmz1 = ln N + ln η +
m∑

j=1

ln(1 − θj1) +
m∑

j=1

xj ln
θj1

1 − θj1

+z1

[
ln

1 − η

η
+

m∑

j=1

ln
1 − θj2

1 − θj1

]
+

m∑

j=1

xjz1 ln
θj2(1 − θj1)

θj1(1 − θj2)
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Let

λ = ln N + ln η +
m∑

j=1

ln(1 − θj1)

λxj
= ln

θj1

1 − θj1

λz1 = ln
1 − η

η
+

m∑

j=1

ln
1 − θj2

1 − θj1

λxjz1 = ln
θj2(1 − θj1)

θj1(1 − θj2)

Then the logarithm of the expected frequency can be written in a linear form

ln Fx1x2...xmz1 = λ +
m∑

j=1

xjλxj
+ z1λz1 + +

m∑

j=1

xjz1λxjz1 . (5.8)

This model is simply a reparametrization of the classical LCA model. The difference between

the two clusters is modelled by the main effect of the unobserved latent variable Z1 and its

interactions with the manifest variables.

The log-linear model allows for more complex clustering and sub-clustering through mul-

tiple latent variables, i.e., the apparent associations between manifest variables can be ex-

plained by multiple latent variables. Define

ex1x2...xm
= np − Fx1x2...xm

where Fx1x2...xm
=
∑

z1
Fx1x2...xmz1 as the difference between the observed frequency and
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Figure 5.1: DFactor Examples

expected frequency. If the LCA is the correct model, then the discrepancy between the

observed cell frequency np and expected cell frequency Fx1x2...xm
should be relatively small

for the log-linear model with only one latent variable, Z1. On the other hand, if a two-way

residual analysis of the LCA with respect to the manifest variables shows that there are

significantly large unexplained residuals, then we can incorporate more latent variables to

explain the remaining associations between the manifest variables. Magidson (2003) called

this type of model the DFactor model. For example, suppose a two-way residual analysis

shows that there is a relatively strong correlation between X1 and X2 after fitting the LCA

model, then an additional latent variable called Z2 can be added to the log-linear model to

further explain local dependence. See Figure 5.1 (b).



103

In this case, the log-linear model becomes:

ln Fx1x2...xmz1z2 = λ +
m∑

j=1

xjλxj
+ z1λz1 +

m∑

j=1

xjz1λxjz1 + z2λz2 +
2∑

j=1

xjz2λxjz2 , (5.9)

where the last sum goes over j = 1 and 2 because Z2 affects only X1 and X2. Z1 and Z2 can

both be regarded as cluster labels and hence this modelling structure provides a hierarchical

clustering of objects with binary manifest variables.

In this approach, the number of additional latent variables and the number of two-way

interaction terms to include are based on the two-way residual analysis between the manifest

variables, hence it is ad-hoc in nature because different users may choose different strategies

which can result in different clustering structures. In addition, correlations draw attention

only if they are significantly high; low correlations are hard to detect. Another weakness

of this approach is that the correlation structures for different clusters must be similar and

thus do not provide enough flexibility. Qu, et al. (1996) claim that the correlation structure

among binary manifest variables in diagnostic testing methods is not handled well by using

only the pairwise effects. Therefore, we will not pursue this approach.

5.3 Extension of LCA

In this section, we propose a model-based clustering method by using the multivariate cor-

related Bernoulli distribution proposed in Chapter 4. We also formulate a feasible approach
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to estimate the parameters.

5.3.1 Mixture Model and Its Parameter Estimation

To extend LCA to correlated Bernoulli data we use the distribution given by (4.11) for

f(p|θk) in (5.6). Here that distribution depends, in addition to θk, also on βk = (β1k, . . . , βmk)

(in case of the CLV1 model βk reduces to a scalar quantity βk) and γk = (γ1k, . . . , γmk) and

hence we denote it by f(p|θk,βk,γk). Thus the log-likelihood function is given by

ln L =
2m∑

p=1

np ln

[
K∑

k=1

ηkf(p|θk,βk,γk)

]
. (5.10)

The MLEs of the component distribution do not have a closed form, and hence the traditional

EM algorithm will not be efficient for parameter estimation. Also, from (4.11) we see that

this log-likelihood function is not differentiable in θ because it involves the min and max

operations on the θjk.

We solved our maximization problem by using the nonlinear programming (NLP) method

from KNITRO-4.0 (Byrd, Nocedal and Waltz 2006) produced by Ziena Optimization, Inc.

The algorithm is described in Byrd, Hribar and Nocedal (1999). It requires only the gradient

of the objective function at each step and not the Hessian matrix. Gradients w.r.t. θjk at

points of non-differentiability were approximated by taking an average of the gradients on

both sides of those points.

No NLP algorithm can guarantee a global maximum solution for an arbitrary objective
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function such as ours. Therefore we tried many different starting values using the Latin

square design to find the best solution that yields the largest value of the log-likelihood

function which was taken to be the global maximum. This method involves choosing n

different starting values for each of n parameters whose MLEs have to be found. The n

starting combinations of the values of the n parameters are chosen by using an n × n Latin

square. Because the goal here is to cover the parameter space as uniformly as possible so as

not to miss the global maximum, and there are no statistical considerations involved such

as randomization, we used the simplest Latin square obtained by cyclically permuting the

levels of the factors in each of the n runs.

As one can see, the proposed method is quite computer intensive. Using a PC with 2.8

GHz clock speed it takes almost six hours to estimate CLV1 models for m = 7 responses and

K = 2 clusters. Problems with larger m would be computationally difficult to deal with the

present day computing resources.

5.3.2 Maximum Number of Clusters

The CLV1 model has 2m + 1 unknown parameters (m each of the θjks and γjks and one βk)

per cluster. Thus for K clusters there are (2m + 1)K unknown parameters. In addition,

there are K − 1 independent prior probabilities, ηks. Thus there are n = 2(m + 1)K − 1

unknown parameters.

The sufficient statistics in this problem are the pattern frequencies, np. There are 2m − 1
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independent nps since they are subject to the constraint
∑2m

p=1 np = N . In order for the

model to be estimable we must have

2m − 1 ≥ 2(m + 1)K − 1 ⇐⇒ K ≤ Kmax =

⌊
2m−1

m + 1

⌋
, (5.11)

where Kmax denotes the maximum number of clusters that can be fitted and ⌊x⌋ denotes the

integer part of x. The following table gives the Kmax values for selected values of m.

m 3 4 5 6 7 8 9 10

Kmax 1 1 2 4 8 14 25 46

In most applications, Kmax ≤ 4, so m ≥ 6 is sufficient for clustering purposes.

5.3.3 Determination of the Number of Clusters

Determination of the number of clusters is a special case of the model selection problem.

Many different methods have been proposed in the literature to address this problem. We

do not investigate these methods in detail here, but confine ourselves to two most popular

ones. They are Akaike’s (1973) information criterion (AIC) and Schwarz’s (1978) Bayesian

information criterion (BIC), which are defined as

AIC = 2 ln L − n ln 2 and BIC = 2 ln L − n ln N,
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where ln L is the maximized log-likelihood function (5.10) with a given number of clusters,

n = 2(m + 1)K − 1 is the total number of parameters and N is the total sample size. The

goal in using either criterion is to choose the model that maximizes it. Remember that the

number of distinct patterns is bounded above by 2m, not depending on the sample size.

The 2 ln L term is an increasing function of the sample size, but the AIC criterion does

not consider the effect of the sample size in its penalty. The best model selected by AIC

depends on the sample size(Burnham and Anderson, 1998, p. 248). In this sense, AIC is

not a consistent criterion. The BIC, on the hand, consider the effect of the sample size in

its penalty and is consistent in the sense that if the true model is among the candidates, the

probability of selecting the true model approaches 1 as the sample size increases (Keribin,

2000). Therefore, we adopted BIC in the examples analyzed in Section 5.5. Regardless of

which criterion is used, the clusters must be interpretable in the context of the problem. An

interpretable solution is preferable to an optimal solution when determining the number of

clusters.

5.4 Simulation Study

In this section we compare the performance of the proposed method with the classical LCA

method which uses the independence model. We also assess robustness of the proposed

method by generating data by a model different from the CLV1 model.
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5.4.1 Performance Measures

The main performance measure is the correct classification rate (CCR), which is the pro-

portion of observations that are classified to the correct cluster. The CCR equals 1−MCR.

For binary data there are lower and upper bounds on CCR (denoted by LCCR and UCCR,

respectively) because of the fact that any nonrandomized algorithm classifies each pattern to

exactly one cluster. So all observations with that pattern which belong to other clusters are

misclassified. One must also remember that cluster labels are arbitrarily assigned; what mat-

ters is that the observations belonging to the same cluster are classified together. Therefore

CCR must be computed by taking the maximum over all possible cluster labellings.

The following example for K = 2 motivates a general lower bound on CCR. This general

lower bound is derived in Proposition 5.1 following the example.

Example 5.2

Suppose that there are 50 observations from each of two clusters which are classified as shown

in Table 5.1. It would appear that CCR is (15 + 25)/100 = 40%. However, if we switch the

labels of classified clusters then we see that CCR is (35+25)/100 = 60%. This suggests that

for two clusters, CCR ≥ 0.5. �

Proposition 5.1 Let npk denote the true (unknown) count of observations having pattern p

that come from cluster Ck (
∑K

k=1 npk = np). Then the lower and upper bounds on CCR are

given by

LCCR =
1

K
and UCCR =

∑2m

p=1 maxk npk

N
. (5.12)
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Table 5.1: Classification of Data into Two Clusters

Classified to
Cluster 1 Cluster 2

Cluster 1 15 35 50
Belong to

Cluster 2 25 25 50

40 60

Proof: First consider the upper bound UCCR. In order to maximize the number of

observations that are correctly classified, one must assign each pattern p to that cluster

which yields the maximum number of observations having that pattern. This proves the

upper bound UCCR.

Next consider the lower bound LCCR. Consider a 2m × K table in which the patterns

are the rows and the clusters are the columns. The entries in the table are npk, which are the

number of observations having pattern p that come from cluster Ck. There are K! possible

assignments of cluster labels. Let σ = (σ(1), σ(2), . . . , σ(K)) be a permutation of the cluster

labels. Then for this permuted assignment of the cluster labels to the patterns, the CCR is

CCRσ =
1

N

2m∑

p=1

K∑

k=1

npσ(k)I
(
p ∈ Cσ(k)

)
, (5.13)

where I
(
p ∈ Cσ(k)

)
= 1 if pattern p is classified to cluster Cσ(k) and 0 otherwise. Since

a pattern p can be assigned to exactly one cluster, only one of the indicator variables,
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I
(
p ∈ Cσ(k)

)
, equals 1 for k = 1, 2, . . . , K and others equal zero.

The K! permutations can be divided into (K−1)! groups, each consisting of K permuta-

tions, such that if two permutations σ1 and σ2 belong to the same group then σ1(k) 6= σ2(k)

for k = 1, . . . , K. For example, for K = 3, the six permutations divide into two groups:

G1 = {(1, 2, 3), (2, 3, 1), (3, 1, 2)} and G2 = {(1, 3, 2), (2, 1, 3), (3, 2, 1)}. Within each group

CCRσ sum to 1. To see this first consider a numerical example for K = 3 and m = 2. Label

the four patterns, (0, 0), (1, 0), (0, 1), (1, 1) as 1, 2, 3, 4. Then
∑4

p=1

∑3
k=1 npk = N . Suppose

a clustering rule classifies pattern 1 to cluster 1, pattern 2 to cluster 2, and patterns 3 and

4 to cluster 3. Then CCR for this rule is

CCR1 =
n11 + n22 + n33 + n43

N
.

But the cluster labels can be permuted to (2, 3, 1) or (3, 1, 2) in the group G1. CCR for these

two permutations are, respectively,

CCR2 =
n12 + n23 + n31 + n41

N
and CCR3 =

n13 + n21 + n32 + n42

N
.

Hence,

CCR1 + CCR2 + CCR3 =

∑4
p=1

∑3
k=1 npk

N
= 1.
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More generally, let σ1, σ2, . . . , σK denote K permutations in one of these groups. Then

K∑

j=1

CCRσj
=

1

N

2m∑

p=1

K∑

k=1

K∑

j=1

npσj(k)
I
(
p ∈ Cσj(k)

)
.

Now for each k there is exactly one j for which I
(
p ∈ Cσj(k)

)
= 1; for all other j, I

(
p ∈ Cσj(k)

)
=

0. Denote the corresponding σj(k) = ℓ. Furthermore, for each such (j, k) combination we

have distinct value of ℓ and hence ℓ runs through 1 to K. Substituting this simplification in

the above expression we get

K∑

j=1

CCRσj
=

1

N

2m∑

p=1

K∑

ℓ=1

npℓ = 1.

Therefore there is at least one assignment, σj, of cluster labels in each group such that

CCRσj
≥ 1/K. Hence the lower bound on CCR is 1/K. �.

Because of the bounds on CCR, it is convenient to use a standardized measure, which

we call the correct classification score (CCS), defined as

CCS =
CCR − LCCR

UCCR − LCCR
. (5.14)

Note that CCS falls between 0 and 1, and large values of CCS are desirable.
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Table 5.2: Low and High Parameter Values for the CLV1 Model Used in the Simulation
Study

Parameter
Level θjk βk γ1k γ2k γ3k γ4k γ5k η1

Low 0.40 0.50 0.01 0.01 0.01 0.01 0.01 0.40
High 0.60 0.95 0.50 0.99 0.99 0.99 0.99 0.60

5.4.2 Simulation Results

We conducted a simulation study for K = 2 clusters, m = 5 responses and N = 500, 5000

and 50,000. In each case, data were generated using two models: (i) the CLV1 model and

(ii) the MVP model. Data were also generated using the independence model, which is a

special case of both these models. The data from the independence and the MVP models

were used to test robustness of the proposed method which assumes the CLV1 model.

The parameters for the CLV1 model were chosen as follows. There are a total of 23

parameters in this study (θjk and γjk for j = 1, . . . , 5, k = 1, 2; β1, β2 and η1). We chose two

levels (low and high) of each parameter as given in Table 5.2.

Twenty-four different combinations of these parameter values were obtained by using a 24-

run Plackett-Burman array shown in Table 5.3. The run with low values for all parameters

for both clusters was replaced with the independence model by setting β1, β2 and all γij

equal to 0, θ1j = 0.25, θ2j = 0.75 (1 ≤ j ≤ 5) and η1 = η2 = 0.5. The runs in Table 5.3 are

arranged according to their values for the average absolute relative correlation (shown in the
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last column), which is defined as follows:

|r| =
K∑

k=1

ηk|rk| where |rk| =
1(
m
2

)
∑

i<j

|rijk|,

with rijk being the relative correlation between responses i and j in cluster Ck. Note that

we use |r| as a single global measure of the extent of correlation in the data, but we realize

that it is not a perfect measure.

For each run (i.e., each combination of the parameter settings) we performed 20 replica-

tions. For each replication both the traditional LCA method and our method were applied.

CCR was observed from which CCS was computed for each method and for each replica-

tion. Finally, the CCS values for each method were averaged over 20 replications and their

standard deviations (s/
√

20 where s is the sample standard deviation of the 20 CCS values

obtained from 20 replications) were computed. Table 5.4 summarizes these results. The

results for N = 5000 are graphically displayed in Figure 5.2. This figure shows the plots of

the average CCS values with two standard deviation bars around the average. The plots of

the average CCS values for the traditional LCA method are marked with open circles, while

those for the proposed method are marked with open diamonds.

The following interesting results emerge from these simulations.

1. The trends in the CCS results are certainly not very smooth and the range of variation

at different parameter settings is also highly variable for both the proposed method

and the LCA method. We believe that this is because the CCS values do not depend
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Figure 5.2: Average Correct Classification Scores (CCS) Using the Proposed and the LCA Methods (Data Generated
Using the CLV1 Model; N = 5000))
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on |r| alone, but also on the differences between the correlation structures and the

θ-values of the two clusters. These differences are difficult to quantify in terms of a

few simple measures. Nevertheless, there are some general trends as elucidated below.

2. The CCS values for the LCA method show a general decreasing pattern with respect

to |r|. As |r| increases, the independence model gives a poorer fit which results in

more misclassifications. On the other hand, the average CCS values for the proposed

method increase for low values of |r| reaching a plateau for medium values of |r| and

then they decrease for low values of |r|. For all |r| > .160, the proposed method has

higher CCS values than the LCA method. This is because the proposed method utilizes

the information in the correlations and hence results in less misclassifications.

The nonmonotone behavior of the CCS of the proposed method as a function of |r| is

explained as follows. The additional information contributed by correlations, as they

increase from 0, is utilized by the proposed method thus improving its performance in

an absolute sense. As correlations get larger the net amount of information in a fixed

number of responses begins to decrease because of the responses acting as proxies for

each other, but the proposed method is still effective in capturing the correlations; so

the performance of the method reaches a plateau. Finally when the correlations get

close to 1, the high degree of dependence between the responses means that effectively

we have less number of responses than m. As a result, the CCS values decrease.

3. The standard deviations for the average CCS values for the LCA method are generally
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much smaller than those for the proposed method. The reason is that the indepen-

dence model involves fewer parameters (ten θs plus one η for a total of 11 parameters

instead of 23 parameters in the CLV1 model). As a result, the estimates of these para-

meters have smaller sampling errors and hence the CCS values have smaller standard

deviations.

4. The CCS values for the CLV1 model method increase with the sample size reaching

values close to 1 for the sample size of 50,000. The independence model method does

not exhibit such a monotone behavior with the sample size, and the CCS values appear

to fluctuate randomly around a mean value for each parameter configuration.

Simulations for the MVP model were conducted in the same manner as for the CLV1

model. The low and high parameter values for the MVP model are given in Table 5.5.

In this case there are 21 parameters. We used the first 21 columns of the 24-run Plackett-

Burman array shown in Table 5.6. The run with low values for all parameters for both clusters

was replaced with the independence model by setting γij = 0, θ1j = 0.25, θ2j = 0.75 (1 ≤ j ≤

5) and η1 = η2 = 0.5. This run is identical to the corresponding independence model run for

CLV1 data and so was not repeated. The runs in Table 5.6 are arranged according to the

|r| values, which are shown in the last column. Simulation results for the MVP model are

summarized in Table 5.7. The results for N = 5000 are graphically displayed in Figure 5.3.

The following interesting results emerge from these simulations.

1. Once again, the CCS values show nonsmooth behavior presumably for the same reasons
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Figure 5.3: Average Correct Classification Scores (CCS) Using the Proposed and the LCA Methods (Data Generated
Using the MVP Model; N = 5000))
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as explained before. However, there are some general trends that we elucidate below.

2. In contrast to the CLV1 data, in this case the CCS values for both methods show

a general decreasing pattern with respect to the average absolute correlation. The

independence model method CCS values decrease for the same reason as explained

previously. The CLV1 model method CCS values decrease because at high correlations

the discrepancies between the correlation structure induced by the MVP model and

the correlation structure that can be fitted using the CLV1 model grow resulting in

more misclassifications.

3. The CCS values for MVP data using the proposed method are uniformly lower than

those obtained for CLV1 data. The extent of decrease in CCS is a measure of lack

of robustness of the CLV1 model method when it is applied to MVP data. However,

note that the proposed method still beats the LCA method in almost all cases for

|r| > 0.384.

4. In contrast to the CLV1 data, in this case the performance of the proposed method

does not improve with the sample size. This may be because the proposed method

attempts to fit a wrong model to the data, so the fit doesn’t improve with the sample

size. For both methods the performance appears to fluctuate randomly around a mean

value for each parameter configuration.
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5.5 Examples

5.5.1 Teaching Style Data

We focus attention on the following six questions from the teaching style data.

Q. 1: Pupils not allowed to move around? (Y=1, N=0)

Q. 2: Pupils not allowed to talk? (Y=1, N=0)

Q. 3: Pupils expected to be quiet? (Y=1, N=0)

Q. 4: Explore concepts (1) or develop numerical skills (0)?

Q. 5: Emphasis on separate subject teaching? (Y=1, N=0)

Q. 6: Emphasis on integrated teaching? (Y=1, N=0)

The proposed method for the CLV1 model as well as the LCA method for independence

model were applied to these data. The BIC values for K = 1(1)4 clusters for the proposed

method are shown in Table 5.8. We see that BIC is maximized for K = 2. Hence we selected

a two-cluster model. The LCA method was applied also with two clusters to allow for simple

comparisons between the results of the two methods. The marginal probability estimates

are shown in Table 5.9. The correlation matrices estimated using the proposed method are

shown in Table 5.10.

First, we note that the estimates of the marginal probabilities and mixing probabilities

obtained by the two methods are similar, but the differences between the two clusters are
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more evident for the independence model. Further note that for Cluster 1, the estimates of

θ1, θ2, θ3 and θ5 are higher than those for Cluster 2, while the inequality is reversed for the

estimates of θ4 and θ6. We see that yes responses to Q. 1, Q. 2, Q. 3 and Q. 5 are typical of

traditional and disciplinarian teachers, while yes responses to Q. 4 and Q. 6 are typical of

modern and lenient teachers. Thus both estimation methods classify teachers into strict and

lenient clusters with about 62% in Cluster 1 and 38% in Cluster 2. Although both methods

give similar percentages in the two clusters, in fact, 101 out of a total 468 teachers (21.6%)

were differentially classified by the two methods. Thus in terms classification performance

the two methods are significantly different for this data set. Of course, there is no way to

tell which method classifies the teachers more accurately.

Inspecting the estimated correlation matrices (calculated using the parametric formula (4.10))

we see that, as expected, responses to Q. 1, Q. 2 and Q. 3 are positively correlated with

higher correlations in Cluster 1 than in Cluster 2. Surprisingly responses to Q. 1, Q. 2 and

Q. 3 are negatively correlated with the responses to Q. 5 in Cluster 1, but positively corre-

lated in Cluster 2. Finally, responses to Q. 6 are negatively correlated with the responses

to other questions except Q. 4 in both clusters. The negative correlation with the responses

to Q. 5 is especially large (−0.899) in Cluster 2 as teachers who emphasize separate subject

teaching are not likely to emphasize integrated teaching.
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5.5.2 Newspaper Reading Survey

The newspaper reading survey was conducted at the Media Management Center at North-

western University. The objective is to classify the newspaper readers into clusters and

examine how the newspaper-reading experience differs for readers in different clusters and

to identify factors within a newspaper’s control that drive those experiences. The data set

consists of 10,858 responses to a mail survey conducted. Among the many questions asked,

we will focus on seven questions that ask the reader if (s)he reads the paper on Monday,

Tuesday, . . . , Sunday, i.e., Q. i: Do you read (a particular) newspaper on day i?, where i = 1

for Monday, . . . , and i = 7 for Sunday.

The BIC values for K = 1(1)4 clusters for the proposed method are shown in Table 5.11.

We see that BIC is maximized for K = 3. However, the three-cluster solution was found to

be not as readily interpretable as the two-cluster solution (the results are not reported here

for lack of space but are available from the author). First, one of the clusters had a very low

prior probability, and it appeared to be a combination of the other two dominant clusters.

Second, the estimated correlation matrices using the CLV1 model also were not interpretable.

On the other hand, the two-cluster solution had a nice interpretation, as discussed below,

and so was adopted. The LCA method was applied also with two clusters to allow for simple

comparisons between the results of the two methods. The marginal probability estimates

are shown in Table 5.12. The correlation matrices estimated using the proposed method are

shown in Table 5.13.
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The results for the two methods are again similar in this case. Cluster 1 marginal

probabilities are low for weekdays, but spike to very high values (0.956 using the proposed

method and 0.856 using the LCA method) on Day 7 (Sunday). This pattern is consistent with

the reading behavior of non-subscribers who tend to purchase the newspaper on weekends,

especially on Sundays. On the other hand, both methods give consistently high marginal

probabilities for all seven days for cluster 2 (close to 0.9 using the proposed method and

close to 1 using the LCA method ). This pattern is consistent with the reading behavior of

subscribers. Thus the two clusters can be identified as non-subscribers and subscribers. The

percentage of non-subscribers is estimated to be 46% using the CLV1 model and 51% using

the LCA method . Although the percentages are somewhat different for the two models,

only 690 out of a total 10,858 survey respondents (6.35%) were differentially classified.

Looking at the correlation matrices in Table 5.13, we see that according to the proposed

method, the newspaper reading responses over all days of the week are highly correlated

for the subscriber group, but for the non-subscriber group, correlations are much smaller.

Especially note that the Sunday response is negatively correlated with all other weekdays.

This makes sense since non-subscribers generally don’t read the newspaper on weekdays, but

often purchase and read it on Sundays. This insight into the correlation structure of the

data for each cluster is an additional benefit of the proposed method.
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5.6 Discussion and Conclusions

In this chapter we have given a model-based method for clustering of multivariate correlated

Bernoulli responses. The mixture model approach is used where each mixture component fol-

lows a continuous latent variable (CLV) model extended from Oman and Zucker (2001). This

generalizes the traditional latent class analysis (LCA) which assumes independent Bernoulli

responses.

The MLE method is used to estimate the model parameters for all clusters and the

mixing proportions (prior probabilities). The Bayes (maximum posterior probability) rule

is employed for classifying observations to clusters. The MLE method is highly computer

intensive, and at present we are only able to handle up to m = 8 responses and a maximum

of K = 5 clusters. Hopefully, these limitations should disappear as faster processors become

available. We will also be able to fit more flexible models, e.g., the general CLV model or

the MVP model with an arbitrary correlation structure.

Increasing the number of responses, m, allows better discrimination between a fixed num-

ber of clusters or fitting more clusters to the data, although larger m also entails estimation

of more parameters. So there must be an optimal m for a given sample size N . A larger N

gives more accurate estimates of the cluster parameters assuming the CLV1 model is cor-

rect. It should be noted that computing time does not increase with N since any amount of

massive data can be summarized the terms of the sufficient statistics, np, for the 2m patterns.

The simulation results support our original conjecture that if the responses are corre-
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lated then a method designed to model those correlations would perform better than the

traditional LCA method which assumes independent responses. The simulation results for

MVP data show that even if the fitted model is not the correct one our model-based method

still performs better than the traditional LCA method although its performance degrades

somewhat.

Application of the proposed method to two real data sets indicates that the method

is practicable. The resulting clusters can be assigned meaningful labels (e.g., subscribers

and non-subscribers in the newspaper survey example). Obviously, it is impossible to tell

whether the proposed method or the LCA method gives more accurate estimates of the

cluster parameters and more correct classifications. In fact, we even don’t know the true

number of clusters. Nonetheless, it is useful to note that the two methods give fairly similar

results. However, the proposed method also gives estimates of the correlation matrices for

the two clusters, which give insight into the relationships between the response variables.

For both data sets, we were able to interpret the correlations in the setting of the problem.

Clearly, much remains to be done in this area. Faster computational methods need to be

developed to handle larger values of m. Since the number of patterns grows exponentially

with m, it would be virtually impossible to handle large values of m, say m > 15 or so.

Therefore some method of pre-screening the variables is needed in order to reduce a large

number of responses to a manageable number before the proposed method can be applied.

Finally, our method is based on the CLV1 model. It would be useful to investigate alternative

models, including the general CLV model or the general MVP model (without the product
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correlation structure condition). Also, the problem of determination of optimum number of

clusters needs further research. Finally, most real data sets involve a combination of binary

and continuous (as well as categorical and ordinal) responses. The proposed component

distribution can be combined with continuous distribution models (such as the multivariate

normal distribution) to develop clustering methods to deal with such hybrid data sets. In

conclusion, this is a fertile area for research with diverse applications to clustering and data

mining.
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Table 5.3: Plackett-Burman Design for Data Generated from the CLV1 Model

Cluster 1 Cluster 2
θ1 θ2 θ3 θ4 θ5 β γ1 γ2 γ3 γ4 γ5 θ1 θ2 θ3 θ4 θ5 β γ1 γ2 γ3 γ4 γ5 η1 |r|
− − − − − 0 0 0 0 0 0 + + + + + 0 0 0 0 0 0 + 0.000

+ + + + + − + − + + − + + − − + − + − − − − − 0.160

− + − − − − + + + + + + − + + − − + + − − + − 0.161

+ + + − + − + + − − + − − + − + − − − − + + + 0.192

− + − + + − − + + − − − + − − − − + + + + + + 0.208

+ − + − − − − + + + + − + − + + − − + + − − + 0.240

+ + − + − + + − − + + − + − + − − − − + + + − 0.375

− − + − + − − − − + + + + − + − + + − − + + + 0.375

− − + + + + + − + − + − − + + − − + − + − − + 0.412

+ − + + − − + + − − + + − − − − + + + + + − − 0.412

+ + − − + − + − − − − + + + + − + − + + − − + 0.442

− − − + + + + + − + − + − − + + − − + − + − + 0.442

− + + − − + − + − − − + + + + + − + − + + − − 0.443

+ − − + + − − + − + − − − + + + + + − + − + − 0.443

− + − + − − − − + + + + − + − + + − − + + − + 0.489

+ − + − + + − − + + − + − + − − − − + + + + − 0.490

− + + − − + + − − + − − − − − + + + + + − + + 0.579

+ − − − − + + + + + − − + + − − + + − − + − + 0.579

+ − − + − + − − − − + + + + − + − + + − − + + 0.582

− − + + − − + − + − − − + + + + + − + − + + − 0.584

+ + − − + + − − + − + − − − + + + + + − + − − 0.692

− − − − + + + + + − + + + − − + + − − + − + − 0.749

+ + + + − + − + + − − + − − + − + − − − − + + 0.864

− + + + + + − + − + + − + + − − + − + − − − − 0.867

† + denotes the high level and − denotes the low level
‡ 0 denotes zero values for βk, γjk.



131

Table 5.4: Estimated CCS Values and Their Standard Errors† for Data Generated from the

CLV1 Model

N = 500 N = 5000 N = 50000

Proposed LCA Proposed LCA Proposed LCA

|r| Method Method Method Method Method Method

.000 .420 (.146) .492 (.243) .461 (.139) .867 (.151) .525 (.251) .984 (.007)

.160 .301 (.240) .364 (.219) .525 (.271) .375 (.066) .829 (.131) .391 (.012)

.161 .365 (.262) .416 (.143) .534 (.228) .449 (.074) .688 (.329) .500 (.055)

.192 .379 (.226) .298 (.192) .522 (.304) .349 (.090) .952 (.107) .374 (.036)

.208 .402 (.229) .341 (.117) .501 (.298) .404 (.042) .940 (.100) .416 (.012)

.240 .419 (.151) .449 (.107) .503 (.284) .459 (.057) .568 (.421) .492 (.075)

.375 .498 (.302) .077 (.059) .990 (.026) .027 (.020) 1.000 (.000) .018 (.011)

.375 .662 (.276) .192 (.137) .986 (.022) .140 (.066) .999 (.002) .112 (.016)

.412 .662 (.202) .064 (.054) .958 (.069) .020 (.011) 1.000 (.000) .015 (.005)

.412 .575 (.268) .214 (.111) .916 (.181) .165 (.024) .999 (.001) .155 (.022)

.442 .866 (.167) .345 (.144) .998 (.004) .186 (.096) 1.000 (.000) .223 (.060)

.442 .615 (.212) .045 (.048) .958 (.038) .026 (.020) .995 (.010) .017 (.007)

.443 .417 (.248) .405 (.177) .903 (.220) .379 (.045) 1.000 (.000) .365 (.017)

.443 .546 (.279) .100 (.059) .929 (.084) .049 (.039) .998 (.003) .038 (.015)

.489 .510 (.290) .147 (.116) .899 (.176) .071 (.043) .814 (.189) .080 (.004)

.490 .702 (.224) .184 (.098) .978 (.090) .141 (.051) .920 (.165) .154 (.008)

.579 .586 (.303) .489 (.156) .625 (.292) .523 (.103) .759 (.299) .545 (.015)

.579 .672 (.267) .218 (.038) .939 (.068) .215 (.014) .986 (.008) .215 (.006)

.582 .825 (.246) .159 (.091) .967 (.119) .034 (.041) .881 (.214) .025 (.007)

.584 .352 (.281) .239 (.080) .537 (.425) .216 (.019) .919 (.238) .216 (.005)

.692 .462 (.318) .268 (.137) .375 (.325) .353 (.093) .724 (.333) .378 (.009)

.749 .444 (.312) .051 (.036) .764 (.197) .023 (.013) .854 (.150) .024 (.004)

.864 .433 (.239) .268 (.065) .593 (.260) .278 (.024) .564 (.271) .276 (.007)

.867 .419 (.238) .053 (.034) .384 (.354) .039 (.016) .682 (.215) .031 (.006)

† The standard errors are given in parentheses.
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Table 5.5: Low and High Parameter Values for the MVP Model Used in the Simulation
Study

Parameter
Level θjk γ11 γ12 γ13 γ14 γ15 γ21 γ22 γ23 γ24 γ25 η1

Low 0.40 0.60 −0.95 0.60 −0.95 0.60 −0.95 0.60 −0.95 0.60 −0.95 0.40
High 0.60 0.95 −0.60 0.95 −0.60 0.95 −0.60 0.95 −0.60 0.95 −0.60 0.60

Table 5.6: Plackett-Burman Design Setting for Data Generated from the MVP model

Cluster 1 Cluster 2
θ1 θ2 θ3 θ4 θ5 γ1 γ2 γ3 γ4 γ5 θ1 θ2 θ3 θ4 θ5 γ1 γ2 γ3 γ4 γ5 η1 |r|
− − − − − 0 0 0 0 0 + + + + + 0 0 0 0 0 + 0.000
+ + + + + − + − + + − + + − − + − + − − − 0.368
− − + + + + + − + − + − − + + − − + − + + 0.371
− + − + − − − − + + + + − + − + + − − + + 0.392
− + − + + − − + + − + − + − − − − + + + − 0.425
+ + + − + − + + − − + − − + − + − − − − + 0.438
− + + − − + − + − − − + + + + + − + − + − 0.458
+ − + − + + − − + + − + − + − − − − + + − 0.467
− − − − + + + + + − − + + − − + + − − + + 0.467
− + − − − − + + + + − + − + + − − + + − + 0.472
+ − + − − − − + + + + − + − + + − − + + + 0.474
+ − + + − − + + − − − + − − − − + + + + + 0.495
+ + − + − + + − − + − − + − + − − − − + + 0.502
− + + − − + + − − + + − − − − + + + + + − 0.503
+ + − − + + − − + − − − − − + + + + + − + 0.504
+ − − + + − − + − + − − − + + + + + − + − 0.504
+ − − + − + − − − − + + + + − + − + + − + 0.529
− − + − + − − − − + + + + − + − + + − − + 0.534
− − + + − − + − + − − − + + + + + − + − − 0.536
+ + − − + − + − − − + + + + + − + − + + − 0.568
+ − − − − + + + + + + − + + − − + + − − − 0.573
− − − + + + + + − + + + − − + + − − + − − 0.621
+ + + + − + − + + − + + − − + − + − − − − 0.651
− + + + + + − + − + − − + + − − + − + − + 0.844

† + denotes the high level and − denotes the low level
‡ 0 denotes zero values for γjk
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Table 5.7: Estimated CCS Values and Their Standard Errors† for Data Generated from the

MVP Model

N = 500 N = 5000 N = 50000

Proposed LCA Proposed LCA Proposed LCA

|r| Method Method Method Method Method Method

.158 .377 (.216) .804 (.098) .563 (.301) .990 (.013) .736 (.296) 1.000 (.000)

.368 .292 (.156) .379 (.165) .310 (.144) .454 (.084) .359 (.164) .486 (.016)

.371 .244 (.171) .299 (.145) .284 (.186) .325 (.091) .275 (.059) .330 (.037)

.392 .305 (.193) .175 (.093) .243 (.141) .148 (.045) .190 (.105) .145 (.012)

.425 .333 (.225) .361 (.072) .324 (.138) .371 (.030) .372 (.009) .383 (.008)

.438 .239 (.171) .402 (.097) .281 (.180) .448 (.038) .432 (.135) .451 (.011)

.458 .324 (.179) .102 (.065) .384 (.244) .045 (.031) .232 (.208) .054 (.010)

.467 .335 (.221) .437 (.081) .426 (.219) .453 (.022) .375 (.082) .461 (.011)

.467 .230 (.153) .182 (.103) .218 (.117) .182 (.046) .231 (.015) .190 (.015)

.472 .342 (.224) .200 (.125) .272 (.094) .212 (.051) .247 (.020) .215 (.020)

.474 .175 (.145) .079 (.071) .099 (.103) .035 (.028) .132 (.179) .030 (.011)

.495 .184 (.192) .159 (.077) .122 (.095) .157 (.025) .108 (.048) .153 (.006)

.503 .307 (.124) .237 (.105) .235 (.115) .244 (.027) .222 (.047) .234 (.008)

.503 .240 (.132) .221 (.091) .198 (.054) .214 (.032) .201 (.011) .218 (.010)

.504 .340 (.180) .145 (.109) .319 (.084) .109 (.043) .260 (.031) .108 (.013)

.505 .201 (.151) .139 (.103) .070 (.053) .108 (.046) .050 (.029) .114 (.012)

.529 .195 (.156) .099 (.072) .147 (.088) .082 (.032) .137 (.012) .077 (.013)

.534 .189 (.141) .171 (.075) .253 (.157) .179 (.042) .131 (.047) .178 (.014)

.536 .287 (.250) .143 (.084) .101 (.057) .160 (.026) .102 (.009) .166 (.008)

.568 .230 (.145) .107 (.067) .268 (.063) .046 (.029) .278 (.007) .027 (.011)

.573 .182 (.121) .114 (.082) .117 (.044) .079 (.037) .130 (.026) .073 (.010)

.621 .246 (.157) .195 (.114) .268 (.087) .174 (.049) .304 (.059) .170 (.013)

.651 .200 (.141) .091 (.072) .179 (.086) .070 (.039) .180 (.052) .053 (.014)

.844 .184 (.157) .112 (.068) .168 (.085) .031 (.025) .101 (.086) .035 (.013)

† The standard errors are given in parentheses.
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Table 5.8: BIC Values for Teaching Survey Data for the Proposed Method

K
1 2 3 4

−3172.67 −3136.77∗ −3155.49 −3178.0
∗ The maximum BIC value is marked with an asterisk.

Table 5.9: Estimates of the θ’s and η’s for Two Clusters Using the Proposed and the LCA
Methods for Teaching Style Data

Method Cluster θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 η̂
Proposed 1 0.846 0.770 0.675 0.342 0.846 0.277 0.62

2 0.638 0.571 0.555 0.362 0.429 0.622 0.38
LCA 1 0.858 0.764 0.711 0.285 0.967 0.098 0.61

2 0.630 0.596 0.520 0.459 0.243 0.918 0.39

Table 5.10: Estimated Correlation Matrices for Two Clusters Using the Proposed Method
for Teaching Style Data

R̂1 =




1.000 0.956 0.602 −0.090 −0.433 −0.017
1.000 0.605 −0.089 −0.620 −0.015

1.000 −0.160 −0.100 −0.099
1.000 −0.351 0.291

1.000 −0.533
1.000




R̂2 =




1.000 0.233 0.219 −0.304 0.375 −0.291
1.000 0.164 −0.179 0.138 −0.136

1.000 −0.160 0.188 −0.185
1.000 −0.123 0.007

1.000 −0.899
1.000
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Table 5.11: BIC Values for Newspaper Survey Data for the Proposed Method

K
1 2 3 4

−54822.8 −51903.3 −51673.6∗ −51677.9
∗ The maximum BIC value is marked with an asterisk.

Table 5.12: Estimates of the θs and ηs for Two Clusters Using the Proposed and the LCA
Methods for Newspaper Survey Data

Method Cluster θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂7 η̂
Proposed 1 0.147 0.067 0.215 0.132 0.249 0.289 0.956 0.46

2 0.888 0.888 0.889 0.888 0.891 0.820 0.858 0.54
LCA 1 0.117 0.045 0.175 0.110 0.239 0.259 0.856 0.51

2 0.991 0.997 0.997 0.997 0.993 0.906 0.953 0.49

Table 5.13: Estimated Correlation Matrices for Two Clusters Using the Proposed Method
for Newspaper Survey Data

R̂1 =




1.000 0.275 0.249 0.263 0.204 0.151 −0.277
1.000 0.292 0.267 0.180 0.056 −0.335

1.000 0.225 0.163 −0.029 −0.300
1.000 0.218 0.206 −0.266

1.000 0.299 −0.175
1.000 −0.038

1.000




R̂2=




1.000 0.944 0.935 0.938 0.929 0.863 0.840
1.000 0.988 0.992 0.982 0.914 0.886

1.000 0.981 0.972 0.904 0.877
1.000 0.975 0.908 0.880

1.000 0.899 0.872
1.000 0.812

1.000





