
NORTHWESTERN UNIVERSITY

Towards Understanding and Reducing Exploitability of Linux Kernel Bugs

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Zhenpeng Lin

EVANSTON, ILLINOIS

September 2023

2

© Copyright by Zhenpeng Lin 2023

All Rights Reserved

3

ABSTRACT

Towards Understanding and Reducing Exploitability of Linux Kernel Bugs

Zhenpeng Lin

The Operating System (OS) kernel is a key component of modern computing infrastructure,

yet it is prone to numerous vulnerabilities, many of which cause memory corruptions that can

be exploited by attackers to perform malicious activities. While various techniques have been

introduced to secure the Linux kernel, it still constantly gets compromised.

CVE-2021-3715 is a kernel bug in the Linux system, which persisted for over six years and was

initially fixed without significant attention due to its perceived low severity, leading to it remaining

unaddressed in distro kernels for another year until further discoveries revealed its potential for

use-after-free memory corruption and exploitation. In 2005, Microsoft introduced Data Execution

Prevention (DEP) in Windows XP SP2 to prevent code execution on user memory by marking it

as non-executable, but this approach was soon thwarted by Return Oriented Programming (ROP),

a technique that allowed attackers to execute code by utilizing code gadgets within the execution

region.

The above incidents underline the fact that a lack of understanding of kernel exploitability

could compromise security. Therefore, I propose to conduct research on understanding kernel

exploitability and then reduce exploitability. Kernel exploitation is a process of programming a

”weird machine”. Analyzing exploitability, which is finding a transition path from the entry point

to the exploitation goal in the machine, is naturally challenging as the weird machine remains

largely unknown. To address the challenge, I propose analyzing vulnerability capability and ex-

ploitation composability. In this dissertation, I develop techniques that combine static and dynamic

analysis to explore kernel vulnerability capability, and introduce innovative exploitation techniques

4

capable of bypassing all existing defenses. With this understanding of exploitability, I then propose

a mitigation strategy designed to prevent memory corruption, delivering effective protection with

minimal overhead.

In the future, I aim to continuously investigate the composability of kernel exploitation. Due

to its complexity, which precludes deduction through any general formal algorithm, I will progres-

sively analyze this composability, piecing together its intricate portrait. Additionally, the current

mitigation strategy in this dissertation operates within userspace. Its adaptation to the kernel space

presents a unique set of challenges. My intention is to extend the solution into the kernel space,

optimizing overhead through a combination of systematic methodologies and quantitative evalua-

tions.

5

ACKNOWLEDGEMENTS

This journey of pursuing my Ph.D. has been an enriching and enlightening one, offering me

not only academic insights but also life lessons. Honestly, pursuing a Ph.D. is not an easy task.

I’ve felt struggled, confused, and frustrated. I even questioned myself – ”Is it right for me to do

security research?”. I thought about quitting, but it was the help and encouragement from others

that made me here. Writing this acknowledgment provides me with an opportunity to express my

heartfelt gratitude to those who have been integral in making this journey possible.

First and all, I would like to thank my advisor, Dr. Xinyu Xing. Although we work remotely

most of the time, his guidance, patience, and intellectual insights are never absent. His energy

and passion inspired me, not only in research, but also in life. ”We should think about how to

make the cake bigger, rather than how to get a bigger slice of it”, I still remember this advice

he gave me at a discussion. Simple words, but very deep in its meaning. ”make the cake bigger”

refers to increasing the total volume of the resource through increasing production, innovating, and

optimizing resource allocation. ”cutting a larger piece of cake” relates more to obtaining a larger

share of the existing resources. The words reveal the importance of inclusiveness and cooperation.

His constant support and constructive criticism have pushed me to dig deeper and reach further in

my quest for knowledge.

I would also like to express my gratitude to my advisor, Dr. Guojun Peng, and mentor Dr.

Lei Zhao, who provided guidance during my time at Wuhan University. Their encouragement

and support sparked the idea of pursuing a Ph.D. in the United States; and my mentors at ASU,

including Dr. Adam Doupé, Dr. Yan Shoshitaishvili, Dr. Fish Wang, and Dr. Tiffany Bao, whose

advice was instrumental in enlightening me on doing academic research; and mentor Dr. Kang

Li at Certik, who is always supportive and helpful; and mentor Brad Spengler at grsecurity, who

6

enlightened me on designing secure protection for the Linux kernel.

To my collaborator at Pennsylvania State University, Northwestern University, Arizona State

University, University of Minnesota, Certik, Baidu Research, and IBM, including Yueqi Chen,

Dongliang Mu, Yuhang Wu, Dang K Le, Zheng Yu, Ziyi Guo, Yankai Jiang, Nick Wanninger,

Simone Campanoni, Peter Dinda, Kyle Zeng, Kangjie Lu, Zhaofeng Chen, Dan Williams, Zhong-

shu Gu, and Hani Jamjoom, thank you for being a part of my academic journey. Our discussions,

brainstorming sessions, and friendly debates have played a significant role in shaping my perspec-

tive and refining my ideas. Each one of you has contributed to making this journey a fulfilling

experience, and for that, I am extremely grateful. Especially for Dr. Yueqi Chen, who worked

closest with me at the lab. I personally learned a lot from his critical thinking. We are colleagues,

roommates, and close friends, we spent the toughest time together during the pandemic, and we

talked a lot about philosophy, which is not related to our research but benefits my career on how to

be a good researcher.

Special thanks to Dr. Xiaoting Li, whose persistence and diligence are an inspiration to me.

As someone who has wrestled with procrastination, I’ve learned a lot from you about the art of

time management and the attitude of doing research, which led me toward the path of consistent

diligence and rigorous attention to detail. Beyond this, your unwavering support and love have been

my pillar of strength. Thank you for taking care of me and supporting me when times were tough.

Your encouragement has been a constant motivation that propelled me toward this milestone.

To my mother, my father, and my sister, you have taught me the value of hard work and deter-

mination, and you have been my greatest supporters every step of the way. The lessons you have

imparted and your constant encouragement have shaped me as a person and as a researcher.

To my friends, Wenbo Guo, Xian Wu, Qi Qin, Wenshu Mai, Jianpeng Li, Yuze Lu, He Song,

and so many others, thank you for the countless conversations, the shared laughter, and the un-

7

wavering belief in my ability. You have reminded me that there is a life beyond the confines of

this dissertation, and for that, I am profoundly grateful. Your friendship has indeed brightened my

experience, and I am lucky to have each of you in my life.

Lastly, I would like to extend my gratitude to the members of the dissertation committee, Dr.

Xinyu Xing, Dr. Peter Dinda, Dr. Xiao Wang, Dr. Adam Doupé, and Dr. Kang Li. I appreciate

your invaluable insights, critical analyses, and thoughtful feedback that significantly improved the

quality of my work. Your expertise and dedication to upholding the highest standards of academic

scholarship are deeply appreciated.

To everyone mentioned and many others who have been part of this journey, this accomplish-

ment is as much yours as it is mine. I am grateful beyond words. Thank you for your role in this

academic endeavor and the moments we have shared together during this journey.

8

THESIS COMMITTEE

Xinyu Xing
Northwestern University
Committee Chair

Peter Dinda
Northwestern University
Committee Member

Xiao Wang
Northwestern University
Committee Member

Adam Doupé
Arizona State University
Committee Member

Kang Li
Certik
Committee Member

9

TABLE OF CONTENTS

Acknowledgments . 4

List of Figures . 14

List of Tables . 16

Chapter 1: Introduction . 19

Chapter 2: GREBE: Unveiling Exploitation Potential for Linux Kernel Bugs 23

2.1 Introduction . 23

2.2 Motivating Example . 25

2.3 Design Rationale & Overview . 28

2.4 Technical Details . 30

2.4.1 Analysis of Reports and Taint Source Identification 31

2.4.2 Taint Propagation and Identification of Sink 34

2.4.3 Ranking of Kernel Structures . 35

2.4.4 Object-Driven Kernel Fuzzing . 39

2.5 Implementation . 43

10

2.6 Evaluation . 46

2.6.1 Experiment Setup & Design . 46

2.6.2 Experiment Results . 48

2.6.3 Security Implication . 52

2.7 Related Work . 55

2.8 Conclusion . 58

Chapter 3: DirtyCred: Escalating Privilege in Linux Kernel 59

3.1 Introduction . 59

3.2 Background & Threat Model . 62

3.2.1 Credentials in Linux kernel . 62

3.2.2 Linux Kernel Heap Memory Management 63

3.2.3 Threat Model . 64

3.3 Technical Overview & Challenges . 65

3.3.1 Overview . 65

3.3.2 Technical Challenges . 67

3.4 Pivoting Vulnerability Capability . 69

3.4.1 Pivoting OOB & UAF Write . 69

3.4.2 Pivoting Double Free . 71

3.5 Time Window Expansion . 73

3.5.1 Exploiting Userfaultfd & FUSE . 73

11

3.5.2 Alternative Exploitation of Userfaultfd & FUSE in Later Kernel Versions . 76

3.5.3 Taking Advantage of Lock Mechanism in Filesystem 77

3.6 Allocating Privileged Credential . 78

3.6.1 Initiating Allocation from Userspace . 78

3.6.2 Initiating Allocation from Kernel Space 79

3.7 Evaluation . 80

3.7.1 Experiment Design . 81

3.7.2 Experimental Result . 82

3.8 Countermeasure Against DirtyCred Attack . 86

3.9 Discussion and Future Work . 90

3.9.1 Escaping Containers . 90

3.9.2 Android Rooting . 91

3.9.3 Cross Version / Architecture Exploitation 92

3.9.4 Alternative Approaches for Capability Pivoting 92

3.9.5 Exploitation Stability . 93

3.9.6 TOCTOU . 93

3.10 Related Work . 94

3.11 Conclusion . 96

Chapter 4: CAMP: Compiler and Allocator-based Heap Memory Protection 98

4.1 Introduction . 98

12

4.2 Background . 100

4.2.1 Corruption and Protection of Heap Memory 100

4.2.2 Heap Memory Allocators . 102

4.3 Assumptions & Threat Model . 103

4.4 CAMP . 103

4.4.1 An Toy Vulnerable Program . 104

4.4.2 CAMP’s Protection Mechanism . 104

4.4.3 Design Overview . 105

4.4.4 Instrumentation by the Compiler . 106

4.4.5 Runtime Support . 107

4.4.6 Compilation Optimization . 110

4.5 Implementation Details . 115

4.5.1 CAMP Compiler . 116

4.5.2 CAMP Memory Allocator . 117

4.6 Evaluation . 118

4.6.1 Security Evaluation . 120

4.6.2 Performance Evaluation . 123

4.7 Discussion . 130

4.8 Related Work . 131

4.9 Conclusion . 133

13

Chapter 5: Conclusion and Future Work . 134

5.1 Conclusion . 134

5.2 Future research . 135

References . 152

Appendix A: Appendix . 153

A.1 Additional Details of GREBE’s Evaluation . 153

A.1.1 Detail of User Study . 153

A.1.2 Procedure of Error Triaging . 154

A.1.3 Detail of Distance Measurement & Hypothesis Validation 157

A.2 Identifying Credential Object . 158

A.2.1 Design . 160

A.2.2 Implementation . 161

A.3 CAMP’s Performance on SPEC CPU2006 . 162

14

LIST OF FIGURES

2.1 The workflow of GREBE is as follows. (a) Utilizing a kernel error trace extracted
from a crash report, GREBE carries out a backward taint analysis and identifies all
the kernel objects associated with the crash or panic. (b) GREBE then refines this
list based on the rarity of the objects, pinpointing those that are critical to the kernel
error. (c) Leveraging the objects filtered in the preceding step, GREBE modifies the
kernel and designates the (de)allocation and dereference points of these critical ob-
jects as anchor sites. (d) GREBE then customizes Syzkaller to utilize the feedback
from the reachability of these anchor sites to choose seeds. In addition, GREBE
incorporates a specialized mechanism to alter seeds, thus allowing GREBE to vary
the methods of triggering the same kernel bug. 29

2.2 An illustrative example showcasing a dominator tree, highlighting two distinct ap-
proaches to logging kernel errors. Line 7 represents a logging statement respon-
sible for recording kernel errors, while line 15 acts as a wrapper for the logging
statement at line 16. The variable ”conv” in line 1 is the identified taint source
according to our proposed approach. It’s important to note that for the sake of sim-
plicity, we have placed the two error logging functions in separate branches that
share the same conditional jump block. However, it should be acknowledged that
in real-world scenarios, error logging does not typically occur in this manner. . . . 32

3.1 The overview of exploiting CVE-2021-4154, the write operation to the opened file
starts between step 1 and step 2 and finishes after step 3. 65

3.2 The memory layout before and after converting a heap overflow capability into the
ability to deallocate a credential object. 68

3.3 The step-by-step example demonstrating converting a double-free capability into
the ability to deallocate a credential object. 70

15

4.1 The design overview of CAMP. 106

4.2 Evaluation result of CAMP breakdown on SPEC CPU2017. From left to right, the
bars show the normalized time of tcmalloc replacement, CAMP, CAMP with each
optimization disabled, and CAMP without optimization. 124

A.1 Sampled questions from the exploitability survey form [191] 155

16

LIST OF TABLES

2.1 The example code snippets extracted from the PoC programs in two different kernel
bug reports – 7022420 [18] and 692a8c2 [19]. 41

2.2 The performance of Syzkaller, Syzkaller variant, GREBE and GREBE without mu-
tation optimization under some sampled kernel bugs. The “SYZ ID” column is the
case ID. The “Critical Structures Identified” means the structures that are identified
by the static analysis tools then are utilized by GREBE. The “Initial Error Behav-
ior” column indicates the error behavior manifested in the corresponding bug re-
port. The “Discovered New Error Behaviors” column is the error behaviors newly
discovered. Note that, for each case, we sample only some of its newly identified
error behaviors for illustration purposes. For more complete performance informa-
tion across all 60 selected kernel bugs, the readers could find at [33]. In the “Time”
column, T1 represents the number of hours Syzkaller took, T2 is for Syzkaller’s
variant, T3 is for GREBEwithout optimization, and T4 stands for GREBE. The dash
“-” means the corresponding error behavior is not discovered by the corresponding
tool. 49

2.3 The summary of exploitation potential improvement. In the column of ”Exploitabil-
ity Change”, LL means the original error behavior is less likely to be exploitable.
The letter L means the newly discovered error behaviors are likely to be exploitable.
The number in the parenthesis represents the amount of newly identified error be-
haviors tied to probably exploitable. The star ⋆ denotes the bugs for which we
have developed exploits based on the newly discovered error behaviors and their
provided primitives. 52

2.4 The summary of the types of error behaviors in bug reports and their corresponding
exploitation potential. 53

17

3.1 Exploitable objects identified in the Linux kernel. Note that the symbol ⋆ indicates
an object tied to “file” credential whereas the symbol † represents an object associ-
ated with “cred” object. The column “Memory Cache” specifies the caches storing
kernel objects. The column “Structure” represents the exploitable objects’ types.
The column “Offset” describes where the credential object’s reference is located in
the exploitable object. 83

3.2 Exploitability demonstrated on real-world vulnerabilities. Note that some CVEs
provide both use-after-free and double-free capabilities. Here, we categorize such
vulnerabilities into double-free and mark them with a ⋆ symbol. Note that the sym-
bol † indicates the vulnerabilities that could corrupt only data in virtual memory
area. 84

3.3 The performance evaluation results of the proposed defense on two different bench-
marks – Phoronix and LMBench. 88

4.1 Security evaluation of CAMP on Juliet Test Suite. 118

4.2 The security evaluation results of CAMP and related tools on real-world vulnerabil-
ities. ✔ represents that the corresponding tool successfully detected the memory
corruption in the vulnerability. ✖ indicates the tool failed to detect the memory
corruption that happened. ”/” represents the tool does not support protecting the
corresponding type of vulnerability. ”Run Well” means the application runs well
without causing any memory corruption with the PoC input. ”Run Fail” represents
that the tool failed to run due to compatibility issues. ”Build Fail” means the tool
failed to compile the targeted application to enforce protection. 119

4.3 The relative time and memory overhead of CAMP, ASAN --, ASAN, ESAN, and
Memcheck on SPEC CPU2017. ”-” indicates the tool failed to run the correspond-
ing benchmark. 123

4.4 The relative time and memory overhead of CAMP, LowFat, Delta Pointer, Dan-
gNull, FreeGuard, MarkUs, and FFmalloc on SPEC CPU2006 and SPEC CPU2017. 124

4.5 Time Overhead on mimalloc-bench. Native represents using the default allocator
– ptmalloc, CAMP means using its customized seglist allocator based on tcmalloc. 126

18

4.6 CAMP and ASAN’s output and latency evaluation results on Nginx. In the Latency
column, the ”Average” represents the average latency of the requested connection,
the others show the latency distribution. 128

4.7 CAMP’s performance evaluation results on the Chromium browser. In the Bench-
mark column, kraken, sunspider and Lite Brite are three browser benchmarks,
whereas the following are websites used to measure the loading time of the browser. 129

A.1 This table shows false negative analysis results. The ”SYZ ID” is the case ID,
with the second column showing the basic block count between the crash and root
cause site. A following ⋆ indicates the sites are from different syscalls; otherwise,
the same. The third and fourth columns indicate new behaviors found manually
and via GREBE, respectively. A ”-” signifies no behavior found. 159

A.2 Time overhead of CAMP, ASAN--, ASAN, ESAN, Softbound+CETS, MemCheck
on the SPEC CPU2006. ”-” means the case where the tool failed to run the bench-
mark. 163

A.3 Memory overhead of CAMP, ASAN--, ASAN, ESAN, Softbound+CETS, Mem-
Check on the SPEC CPU2006. ”-” means the case where the tool failed to run the
benchmark. 164

19

CHAPTER 1

INTRODUCTION

The Operating System (OS) kernel forms the critical backbone of contemporary computing infras-

tructure. However, despite substantial efforts to secure it, OS kernels inevitably contain vulnera-

bilities, often leading to memory corruption and then exploitation. Exploiting these vulnerabilities

allows attackers to engage in malicious activities. Given the high privilege level at which OS ker-

nels operate, a successful breach can allow attackers access to sensitive data or even full control

over the system. Thus, OS kernels have consistently remained attractive targets for attackers.

To improve kernel security, it is essential to have a comprehensive understanding of kernel

exploitability. CVE-2021-3715 [1] is an exploitable kernel bug that had persisted in the Linux

kernel for over six years. This bug was originally reported by Syzkaller [2] and fixed by the Linux

community [3]. Due to the low severity of the error behavior shown (a warning message), the bug

was inconspicuously fixed, without notification for downstream vendors and attention concerning

exploitation. As a result, it remained unfixed in the distro kernels (such as Centos) for an additional

year. Subsequent discovery [4] showed that this bug could indeed result in a use-after-free memory

corruption that would immediately lead to exploitation. The bug was then fixed in the distro’s

kernel. This incident showcases the importance and complexity of identifying the capability of

kernel vulnerability, which is one of the clues to understanding kernel exploitability.

In 2005, Microsoft implemented Data Execution Prevention (DEP) [5] in Windows XP SP 2,

purporting that it could prevent code execution on user memory. DEP operates by marking memory

as non-executable, thereby preventing shellcode execution. However, this technique was quickly

undermined by Return Oriented Programming (ROP) shacham2007geometr, wherein attackers

20

could utilize code gadgets within the execution region to assemble desired shellcodes for execution.

This instance illuminates the crucial aspect of analyzing the composability [6], [7] of the weird

machine [6], [8]. DEP seemed to be a perfect solution to shellcode execution until people found

ROP attacks. Without analyzing and knowing the composability of the weird machine, a mitigation

measure may be swiftly circumvented using a novel exploitation pathway.

The above incidents suggest that analyzing vulnerability capability and exploitation compos-

ability is the key to understanding kernel exploitability. Kernel exploitation is a process of pro-

gramming a weird machine. Analyzing exploitability, which is finding a transition path from the

entry point to the exploitation goal, is naturally challenging as the weird machine remains largely

unknown. To address this challenge, I proposed to analyze the capability of kernel vulnerabil-

ities and analyze the composability of kernel exploitation. Analyzing vulnerability capability

indeed is to find the entry point of the weird machine, whereas analyzing exploitation composabil-

ity is finding the weird states that could be chained toward the exploitation goal in the machine.

However, composability does not conform to a single, universally applicable definition. Its com-

plexity and variability under diverse conditions and for different targets preclude a one-size-fits-all

approach to its analysis and study. Therefore, I propose to examine the composability of kernel

exploitation progressively to assemble the whole picture of it. With this understanding of ex-

ploitability, I then propose an effective countermeasure to reduce the exploitability of kernel

vulnerability, thereby enhancing overall kernel security. The rest of this dissertation is organized

as follows.

Chapter 1 presents GREBE, a novel kernel fuzzing methodology designed to unearth the poten-

tial range of error behaviors that a kernel bug may manifest. Our approach deviates from traditional

kernel fuzzing methods, which primarily focus on kernel code coverage. Instead, we place greater

emphasis on the erroneous code fragments. We pioneer an object-driven kernel fuzzing technique

21

that delves into various contexts and paths to provoke the reported bug, thereby causing it to exhibit

a range of error behaviors. With the unveiling of these newfound errors, security researchers are

equipped with the tools necessary to infer a bug’s potential for exploitation more effectively. To

quantify the performance, efficiency, and impact of the proposed methodology, we applied GREBE

to 60 real-world Linux kernel bugs. On average, GREBE was able to elicit more than two addi-

tional error behaviors for each kernel bug. Furthermore, GREBE revealed increased exploitability

potential in 26 of the kernel bugs.

Chapter 1 appeared in the Procceedings of 43rd IEEE Symposium on Security and Privacy (S&P

2022) [9]

Chapter 2 presents DirtyCred, a novel exploitation technique that takes a new exploitation

transition path to the attackers’ goal. More specifically, given a Linux kernel vulnerability, Dirty-

Cred swaps unprivileged and privileged kernel credentials, thereby enhancing the vulnerability to

a DirtyPipe-equivalent level of exploitability. This enhanced exploitability could empower a ma-

licious actor with the ability to escalate privileges or even escape a container environment. The

assessment of this exploitation technique on 24 real-world kernel vulnerabilities within a fully-

protected Linux system reveals that DirtyCred successfully exhibited exploitability on 16 of these

vulnerabilities. This outcome reveals the serious security implications of DirtyCred. Upon as-

sessing exploitability, we also propose a new kernel defense mechanism. The proposed method

isolates kernel credential objects into distinct, non-overlapping memory regions according to their

individual privilege levels. experimental results indicate that this defense strategy imposes only a

negligible overhead.

Chapter 2 appeared in the Proceedings of 29th ACM SIGSAC Conference on Computer and Com-

munications Security (CCS 2022) [10]

Chapter 3 presents CAMP, a novel protection scheme designed for preventing heap memory

22

corruption by using a combination of a compiler and a customized memory allocator. The compiler

embeds boundary-checking and escape-tracking instructions within the target program, while the

allocator manages memory ranges, coordinates with the instrumentation, and nullifies dangling

pointers. Thanks to its innovative error detection scheme, CAMP can employ various compiler

optimization strategies. These strategies eliminate redundant instrumentation, thus reducing run-

time overhead without compromising security guarantees. The performance evaluation of CAMP,

compared to existing tools using both real-world applications and SPEC CPU benchmarks, demon-

strates its superior ability to protect heap memory with lower runtime overhead.

Chapter 3 is conditionally accepted to the Proceedings of 32nd USENIX Security Symposium

(USENIX Security 2023)

Chapter 4 concludes the dissertation and discusses future research directions.

23

CHAPTER 2

GREBE: UNVEILING EXPLOITATION POTENTIAL FOR LINUX KERNEL BUGS

2.1 Introduction

Linux is utilized today across a broad spectrum of computing systems. To bolster its security,

kernel fuzzing techniques and assorted debugging/sanitization features have been implemented by

researchers and analysts. These tools aid security researchers and kernel developers in locating

bugs within the Linux kernel. However, it remains a difficult task to discern if the conditions

of a bug equate to a security vulnerability. For instance, whether bugs displaying warning error

behaviors would lead to kernel exploitation. Previous research thus suggests that the presented

error behaviors of bugs are crucial in prioritizing exploit development efforts.

In a practical scenario, when current fuzzing tools detect a kernel bug, the displayed error be-

havior might just be one of its many possible error behaviors. Other potential error behaviors may

significantly differ from the initially exposed one. For example, as we will detail in Section 2.2,

triggering a kernel bug following various paths or execution contexts can cause it to demonstrate

not only a less likely to exploit General Protection Fault (GPF) error behavior but also a highly

likely to exploit Use-After-Free (UAF) error behavior. Therefore, relying solely on a single mani-

fested error behavior to infer a bug’s potential exploitability could be misleading.

To tackle this issue, a natural response might be to use a kernel bug report as an input, analyze

the root cause of the bug, and deduce all potential consequences that the bug could lead to (e.g.,

out-of-bound access, null pointer dereference, memory leak, etc.). However, diagnosing the root

cause is often time-consuming and labor-intensive. Therefore, we suggest a more practical strategy

24

is to reveal as many post-triggered error behaviors of a specific kernel bug as possible without

conducting root cause analysis. From the exposed error behaviors, security analysts can more

accurately infer its potential exploitability.

To implement the above idea, we can utilize kernel fuzzing techniques. But existing kernel

fuzzing methods mainly aim to maximize code coverage (for instance, Syzkaller [11], KAFL [12]

and Trinity [13]). Applying these methods to our task leads to inefficiency and ineffectiveness

since they are not specifically designed or optimized to find various paths or contexts relevant to

the same buggy code fragment. Hence, we propose a new kernel fuzzing method that focuses on

the defective code areas and diversifies the kernel execution paths and contexts towards the target

buggy code fragment.

From a technical standpoint, our suggested kernel fuzzing method could be seen as a directed

fuzzing approach. It initially takes a kernel bug report as an input and extracts the kernel struc-

tures/objects linked with the reported kernel error. Following that, the fuzzing method performs

fuzzing tests and uses the hits to the identified kernel structures/objects as feedback to the fuzzer.

As these identified kernel structures/objects are crucial to trigger the reported bug successfully,

guiding fuzzing using them can concentrate the scope of the kernel fuzzer on the paths and contexts

related to the reported bug, thus identifying the other error behaviors of the bug. We have embod-

ied this approach in a kernel-object-driven fuzzing tool called GREBE, an acronym for ”fuzzinG

foR multiplE Behavior Exploration”.

Applying GREBE to explore error behaviors for 60 kernel bug reports demonstrated over 2

distinct error behaviors per bug report on average. In our experiment, we also noticed that the

newly identified error behaviors for many kernel bugs (26 out of 60) typically exhibited a higher

exploitation potential than those in the original bug report. Furthermore, we uncovered 6 kernel

bugs that initially seemed unexploitable could be transformed into exploitable ones through the

25

newly identified paths and contexts. These bugs had previously shown no exploitability. We have

communicated these findings to some kernel vendors who haven’t yet applied the available patches

in their products, prompting immediate adoption of the patches.

To the best of our understanding, this is the first work that uncovers multiple error behaviors

of a bug for exploitability exploration. Demonstrating multiple error behaviors could potentially

hasten the rectification and eradication of highly exploitable bugs from the kernel. Besides, it could

assist security analysts in transforming an unexploitable primitive into an exploitable one. Lastly,

exposing a bug with multiple error behaviors could also potentially facilitate the bug’s root cause

diagnosis [14].

To summarize, this paper makes the following contributions:

• We’ve developed a novel technical methodology that leverages specifically chosen kernel objects

to guide kernel fuzzing, thereby unveiling a bug’s multiple error behaviors.

• Based on our design, we’ve enhanced Syzkaller, implemented GREBE, and shown its effective-

ness in identifying multiple error behaviors for 60 unique real-world Linux kernel bugs.

• We’ve demonstrated that for a kernel bug exhibiting a low probability of exploitation, our pro-

posed technique can discover its other error behaviors that indicate a significantly higher ex-

ploitability.

2.2 Motivating Example

A kernel error report suggests the potential exploitability of the related bug. As previously stated,

the error manifested depends on how the bug is activated. Therefore, using a single bug report

(displaying one error behavior) might lead to an underestimation of the exploitability of that bug.

In Listing 1, we provide a specific example to clarify this point.

26

1 static void tun_attach(struct tun_struct *tun, ...)
2 {
3 if (tun->flags & IFF_NAPI) {
4 // initialize a timer
5 hrtimer_init(&napi->timer, CLOCK_MONOTONIC,
6 HRTIMER_MODE_REL_PINNED);
7 // link current napi to the device's napi list
8 list_add(&napi->dev_list, &dev->napi_list);
9 }

10 }
11
12 static void tun_detach(struct tun_file *tfile, ...)
13 {
14 struct tun_struct *tun = rtnl_dereference(tfile->tun);
15 if (tun->flags & IFF_NAPI) {
16 // GPF happens if timer is uninitialized
17 hrtimer_cancel(&tfile->napi->timer);
18 // remove the current napi from the list
19 netif_napi_del(&tfile->napi);
20 }
21 destroy(tfile); // free napi
22 }
23
24 void free_netdev(struct net_device *dev) {
25 list_for_each_entry_safe(p, n,
26 &dev->napi_list, dev_list)
27 netif_napi_del(p); // use-after-free
28 }

Listing 1: The Linux kernel code snippet contains a bug. When activated with varied sequences
of system calls and arguments, the bug exhibits two distinct error behaviors - a general protection
fault error and a use-after-free error.

In the list provided, the function tun_attach configures the network interface. The argument

tun points to a global variable used by all open tun files. As shown in line 3, if IFF_NAPI is set

in tun->flags, the kernel initiates a timer and attaches the associated napi to the network device’s

napi_list. Another function, tun_detach, seen in line 12, cleans up the data contained in tun_file

and closes the file. If IFF_NAPI is set, the kernel will cancel the timer and remove the napi from

the device’s napi_list. The function free_netdev will, as shown in line 24, navigate through the

napi_list to eliminate napi from the list.

27

The kernel bug emerges from a possible inconsistency between the flag tun->flags in tun_attach

↪→ and tun_detach. For instance, the kernel bug report [15] created by Syzkaller exemplifies this.

The proof-of-concept (PoC) program attached to the report demonstrates a system call invoking

tun_attach with IFF_NAPI not set. Consequently, the kernel neither starts the timer nor adds the

related napi to the list. After this setup, the PoC program uses the system call ioctl to set IFF_NAPI

↪→ in tun->flags before calling tun_detach, leading to inconsistent flags between tun_attach and

tun_detach. Then, in line 17, the kernel tries to stop the timer, dereferencing a pointer enclosed in

the timer object in tun_detach. However, as stated earlier, the timer is not initiated in tun_attach

↪→ , causing a general protection fault. This fault signifies an attempt to access storage that isn’t

allocated for use. Therefore, many security analysts may infer from this single observation that the

bug is likely unexploitable.

On closer inspection of this bug, however, we realize that by adjusting the PoC program,

thereby altering how the shared variable is assigned an inconsistent value, we can trigger a use-

after-free error in the kernel. More specifically, we can set tun->flags with IFF_NAPI before invoking

the function tun_attach. Following this, after tun_attach is executed, it can add the associated

tun_file to the device list napi_list. After this setup, we can then call ioctl to clear tun_flags and

then invoke tun_detach. As shown in Listing 1, the function tun_detach does not remove the cor-

responding napi from the list in lines 18 to 19, but frees it in line 21. Therefore, when the device

list is traversed, the KASAN-instrumented kernel will throw a use-after-free error. Compared to

the error in report [15], instead of accessing an invalid kernel memory address causing a general

protection fault, this unpermitted access is tied to a valid kernel memory address and ultimately

corrupts the kernel memory. Thus, based on this use-after-free error, many analysts might consider

the bug likely exploitable.

28

2.3 Design Rationale & Overview

Considering a kernel bug report that showcases a specific error behavior, the natural inclination to

discover other potential error behaviors is to apply the concept of directed fuzzing. This approach

explores paths leading to an area of interest within the program. The expectation is that, via some

of the newly detected paths to the problematic code segment, the bug detailed in the report could

be reactivated, revealing new error behaviors. However, this method is often ineffective.

Firstly, to employ directed fuzzing in unveiling multiple error behaviors, it is necessary to

identify the problematic code segment (i.e., the root cause of the error). This must then be treated

as the point of interest and supplied to the directed fuzzer. The difficulty lies in correctly and

automatically pinpointing the root cause of the kernel bug. Mistakenly identifying a non-root-

cause site as the area of interest for the fuzzer could result in failure to trigger the bug, not to

mention the inability to discover multiple error behaviors.

Secondly, being able to identify the root cause of the kernel bug and repeatedly reaching the

buggy code with a directed fuzzer does not guarantee that the kernel will manifest multiple error

behaviors. Aside from traversing different paths to the problematic code, the exhibition of error

behaviors is also contingent upon the context post bug triggering. As an example, to trigger the bug

and demonstrate different errors, not only does a particular path to the buggy code snippet need to

be followed, but a separate kernel thread also needs to alter a global variable, thus diversifying the

required contexts.

Existing kernel fuzzing techniques are better equipped to address these two challenges com-

pared to the limitations of directed fuzzing. Kernel fuzzers like Syzkaller do not require the input

of a bug’s root cause. They simply vary the sequences of system calls and their arguments, testing

kernel code via different paths comprehensively. Furthermore, it introduces new system calls to

29

Crash report:

general protection fault: 0000 [#1] SMP

KASAN

RIP: 0010:hrtimer_active+0x211/0x410

kernel/time/hrtimer.c:1142

…

crash site

obj_A, obj_B

obj_C

obj_A

obj_B

obj_C

(b) Object Filtering(a) Backward Taint Analysis

Popularity

Ranking

Structure

Graph

Construction

obj_A

obj_B

(c) Kernel Instrumentation

Dedicated

Mutation

Seed

Generation

Seed

Selection
Syzkaller

PoC:

mmap(…)
r0=syz_open_dev$tun(…)
ioctl$TUNSETIFF(r0,…)

…

(d) Customized Fuzzing

Figure 2.1: The workflow of GREBE is as follows. (a) Utilizing a kernel error trace extracted from
a crash report, GREBE carries out a backward taint analysis and identifies all the kernel objects
associated with the crash or panic. (b) GREBE then refines this list based on the rarity of the
objects, pinpointing those that are critical to the kernel error. (c) Leveraging the objects filtered in
the preceding step, GREBE modifies the kernel and designates the (de)allocation and dereference
points of these critical objects as anchor sites. (d) GREBE then customizes Syzkaller to utilize
the feedback from the reachability of these anchor sites to choose seeds. In addition, GREBE
incorporates a specialized mechanism to alter seeds, thus allowing GREBE to vary the methods of
triggering the same kernel bug.

vary execution contexts. These characteristics help fill the gaps left by directed fuzzing. However,

as we will demonstrate in Section 2.6, this method faces substantial efficiency issues and poor

effectiveness.

The design principle behind current kernel fuzzing techniques is to optimize kernel code cov-

erage, avoiding the execution of already explored code paths. However, to activate the same bug

and explore other potential error behaviors, the fuzzer must execute the same problematic code

snippets repeatedly and expect the kernel to encounter the same buggy site in a different context.

As we will reveal in Section 2.6, the code-coverage-based kernel fuzzing method (like Syzkaller)

offers little assistance in identifying multiple error behaviors of a single kernel bug.

In this work, we address this issue by enhancing an existing kernel fuzzing approach with

kernel-object guidance. Our observations of numerous kernel bugs reveal that the root cause of

a kernel bug often arises from two practices: inappropriate usage of a kernel object, leading to a

kernel error, or an incorrect value in computation with a kernel object, causing a critical kernel

operation and forcing the kernel to demonstrate an error. Guided by the objects related to the error

30

specified in the bug report, we can divert the kernel fuzzer from paths and contexts irrelevant to the

bug, substantially improving its efficiency.

To implement the concept outlined above, we design a multi-step procedure that merges static

analysis and kernel fuzzing techniques. As is depicted in Figure 4.1, We begin by inputting a kernel

bug report, running the enclosed PoC program, and identifying those kernel structures involved in

the kernel errors. The objects within these types hint at potential objects under inappropriate usage

or involved in computation with incorrect values. As such, we further examine the kernel source

code and pinpoint the statements that operate the objects of these types, which we deem critical

to the successful triggering of the kernel bug. Consequently, we instrument these statements to

collect the feedback of object coverage during kernel fuzzing and adjust the corresponding PoC

program. Our kernel fuzzing mechanism inputs the original PoC program attached to the bug report

and uses a novel mutation and seed generation method to vary the PoC, improving the efficiency

and effectiveness of exploring a bug’s multiple error behaviors. In the following section, we will

discuss these techniques in greater detail.

2.4 Technical Details

In this section, we delve into the specifics of our object-oriented kernel fuzzing strategy. Firstly,

we explain the process of dissecting a kernel bug report and pinpointing vital structures (i.e., those

involved in the corresponding kernel error). Secondly, we explore how to sift through kernel

structures in order to further enhance kernel fuzzing efficiency while exploring error behavior.

Lastly, we discuss the application of these identified structures in the design of our object-oriented

kernel fuzzing mechanism.

In this work, we apply backward taint analysis to pinpoint critical kernel structures (i.e., those

involved in the error detailed in the provided bug report). This section describes our method for

31

1 // in drivers/vhost/vhost.c
2 void vhost_dev_cleanup(struct vhost_dev *dev)
3 {
4 WARN_ON(!list_empty(&dev->work_list));
5 if (dev->worker) {
6 kthread_stop(dev->worker);
7 dev->worker = NULL;
8 dev->kcov_handle = 0;
9 }

10 }
11 // in include/asm-genric/bug.h
12 #define WARN_ON(condition)

({ \↪→

13 int __ret_warn_on = !!(condition); \
14 if

(unlikely(__ret_warn_on)) \↪→

15 __WARN(); \
16 unlikely(__ret_warn_on); \
17 })

Listing 2: A piece of Linux kernel code that contains a bug. When the bug is activated through var-
ious system call sequences and parameters, it manifests in two distinct error behaviors - a general
protection fault error and a use-after-free error.

identifying the source and sink and how we subsequently perform backward taint analysis.

2.4.1 Analysis of Reports and Taint Source Identification

The Linux kernel incorporates a range of debugging functionalities implemented in various ways

(such as BUG, WARN, and KASAN). However, most follow a common pattern of enforcing checks during

kernel execution and verifying whether pre-set conditions are met. If these conditions are not

satisfied, the kernel enters an error state, logging essential information for debugging. Depending

on the logged information, the kernel may either induce a panic or terminate the current process.

Consider the case presented in Listing 2 as an example. Here, the function vhost_dev_cleanup()

cleans up the worker attached to the vhost_dev device. In line 4, the kernel checks the work_list

↪→ . If the WARN_ON macro decides that the list is empty, the kernel proceeds with the cleanup task

32

label1:

…

tmp = icmp (conv, 0)

….

label2:

…

label3:

…

define bug(…)

…

1 // comparison

2 tmp = icmp (conv, 0)

3 // conditional jump

4 br (tmp, label1, label2)

5

6 label1:

7 call @printk(...) // log

8

9 label2:

10 br (label3) // direct jump

11

12 label3:

13 call @bug(...) // call

14

15 define bug(..)

16 call @printk(...) // log

Figure 2.2: An illustrative example showcasing a dominator tree, highlighting two distinct ap-
proaches to logging kernel errors. Line 7 represents a logging statement responsible for recording
kernel errors, while line 15 acts as a wrapper for the logging statement at line 16. The variable
”conv” in line 1 is the identified taint source according to our proposed approach. It’s important
to note that for the sake of simplicity, we have placed the two error logging functions in separate
branches that share the same conditional jump block. However, it should be acknowledged that in
real-world scenarios, error logging does not typically occur in this manner.

at line 5. If not, the kernel will execute the code in WARN_ON macro and log the error. In this

instance, an error is reported only if the pre-defined condition ”!list_empty(&dev->work_list)” is true

at runtime. Therefore, the variable dev->work_list in the condition implies a cause of the bug and

should serve as the starting point of our analysis (i.e., the taint source of our backward analysis).

In this example, the kernel developers have explicitly formulated the pre-defined condition as an

expression and passed it to the macro WARN_ON for error handling. However, some other debugging

features are instrumented by a compiler or completed by hardware, rather than being explicitly

coded by kernel developers. For these features, the condition is implicitly formulated and cannot

be identified from the kernel source code. We outline below how we handle different debugging

features and their error logging mechanisms to identify the taint source.

Explicit Checking. As seen in the example above, kernel developers often formulate checks ex-

33

1 // source code
2 walk->offset = sg->offset;
3
4 // pseudo binary code after instrumentation
5 kasan_check_read(&sg->offset, sizeof(var));
6 tmp = LOAD(&sg->offset, sizeof(var)); // first access
7 kasan_check_write(&walk->offset, sizeof(var));
8 STORE(tmp, &walk->offset); // second access

Listing 3: The code snippet that performs implicit checking.

plicitly as expressions and pass them to standard debugging features like WARN_ON and BUG_ON. These

macros contain a patterned code block with a condition statement and a logging statement, which

gets executed if the condition is met. Apart from this standardized error logging approach, devel-

opers can also create their own macros encapsulating a logging statement in a helper function (see

line 15 and 16 in Figure 2.2).

To pinpoint the condition triggering the execution of the logging statement, and hence iden-

tify the taint source, we first trace back along the dominator tree until we find a dominator basic

block, the last statement of which is a conditional jump (for instance, given the wrapped logging

statement in line 16 in Figure 2.2, line 4 links to the dominator basic block). Secondly, we treat

the corresponding comparison as the condition that triggers the execution of the error logging (for

example, line 2 in Figure 2.2). Lastly, we extract the relevant variable from the condition as our

taint source (such as conv in Figure 2.2).

Implicit Checking. Implicit checking refers to checks that are not part of the kernel source code

but instead are instrumented by a compiler or completed by hardware. The Kernel Address San-

itizer (KASAN) exemplifies compiler-instrumented implicit checking. In KASAN, the compiler

instruments each memory access allowing the kernel to verify the legality of the access. KASAN

uses shadow memory to track memory status, and if the instrumented kernel touches a freed mem-

34

ory region, it generates a bug report indicating the instruction that triggers a use-after-free error. In

the case of implicit checking done by interrupts (like general protection faults detected by MMU),

the interrupt handling routine is responsible for logging the relevant instruction.

From bug reports generated by these debugging mechanisms, we can readily identify the in-

struction that performs the invalid memory access. Our next step is to identify the variable as-

sociated with that invalid memory access. However, the binary instruction included in the report

doesn’t contain type information. To address this issue, we use debugging information to map bi-

nary instructions to their corresponding statements in the source code. If the mapped source code

is a simple statement with only one load or store, we directly conclude that this statement causes

the illegal memory access and treat the operand variable as a taint source. However, if the identi-

fied instruction links to a compound statement involving multiple memory loads and stores (e.g.,

walk->offset = sg->offset as shown in Listing 3), we perform additional analysis. Specifically, we

first examine the bug report to pinpoint the exact instruction that captures the kernel error. Then,

we treat the memory access associated with the error-catching instruction as our taint source. To

illustrate, consider the case shown in Listing 3. The bug report shows that the error is captured by

the statement kasan_check_read(&sg->offset, sizeof(var)), which associates with sg->offset. Hence,

we treat sg->offset in line 2 as the taint source.

2.4.2 Taint Propagation and Identification of Sink

Remember that the objective of backward taint analysis is to unearth crucial structures, that is, the

structures implicated in the error detailed in the provided bug report. To achieve this, we extract

the call trace from the bug report once again. Using this trace, we then construct its control flow

graph and retroactively propagate the taint source on this graph.

Throughout the backward propagation, we employ a particular strategy for variable tainting. If

35

the tainted variable is a component of a nested structure or a union variable, we extend the taint to

its parent structure variable and deem this parent structure as critical. This is because the nested

structure or union variable forms part of the parent structure variable in memory. If a field of the

nested structure or union variable holds an invalid value, it’s likely a consequence of misuse of its

parent structure variable.

When backward taint propagation encounters a loop, we also propagate the taint to the loop

counter if the taint source was updated within the loop. An example of this is seen in some out-

of-bound access errors where the loop counter is compromised, unexpectedly increased, and even-

tually utilized as an offset to access an invalid memory region. By extending the taint to the loop

variable, we can include the corrupted variable, which may help us identify additional structure

variables related to the corruption.

In this work, we conclude our backward taint process when one of the following conditions

is met. Firstly, we end our taint analysis if the backward propagation reaches the definition of a

tainted variable. Secondly, we terminate our taint propagation if it extends to the entry of a system

call, an interrupt handler, or the function that initiates the scheduler of a work queue. This is

because these points signify where the kernel debugging features begin to track kernel execution

for subsequent debugging. It’s worth noting that, while carrying out backward taint propagation,

we also extend propagation to aliases of the tainted variable. In this work, we consider the structural

types of all taint variables as potential critical structures to guide our kernel fuzzing.

2.4.3 Ranking of Kernel Structures

By interpreting a kernel bug report and conducting the aforementioned backward taint analysis, we

can recognize all the kernel structures associated with the error detailed in the report. Nevertheless,

as we will discuss later, employing the identified structures to guide kernel fuzzing and uncover

36

1 // definition of struct sk_buff
2 struct sk_buff {
3 union {
4 struct rb_node rbnode;
5 };
6 ...
7 struct skb_ext *extensions;
8 };

Listing 4: The code snippet indicating structure definition.

1 static inline void *__skb_push(struct sk_buff *skb, ...)
2 {
3 return skb->data;
4 }
5
6 int ip6_fraglist_init(...)
7 {
8 struct frag_hdr *fh;
9 // type casting from void* to struct frag_hdr*

10 fh = __skb_push(skb, sizeof(struct frag_hdr));
11 }

Listing 5: The code snippet indicating type casting.

other error behaviors of the bug, we may still encounter reduced efficiency and potentially subpar

effectiveness. As a result, prior to using these structures and their related objects to steer our kernel

fuzzing, we need to further narrow down the kernel structures for guiding kernel fuzzing.

Selection of Kernel Structure. To uphold the code quality, Linux kernel developers utilize a

variety of design patterns [16]. These patterns offer a recommended practice and structure for

managing data in an universally recognized manner. For instance, consider the double-linked list.

The struct list_head structure can be incorporated anywhere in a data structure, and the list_head

↪→ from numerous instances of that structure can be connected together. As a consequence, the

kernel objects can be controlled by standard interfaces, such as container_of which retrieves access

to the parent for a given child structure, and list_add/del which carries out list operations. The

37

struct list_head is extensively used in the entire kernel codebase. If we include such prevalent

structures and the corresponding objects for guiding kernel fuzzing, the kernel fuzzer would in-

evitably traverse a large code space, diverting the fuzzer from its focus on the error-causing code

referred to in the report. Therefore, to maintain the kernel fuzzer’s efficiency in investigating a

bug’s multiple behaviors, we need to exclude these structures from our kernel fuzzing guidance.

In addition to the structures previously mentioned, Linux kernel developers also construct nu-

merous other structures related to abstract interfaces. These interfaces are paired with implemen-

tation layers to support a multitude of devices and features. For instance, the kernel creates a

struct socket for all networking services requested from userspace, regardless of the specified pro-

tocol. Such structures are also widespread, appearing in many kernel code locations across various

kernel modules. As a result, similar to struct list_head, they too should be omitted from the sub-

sequent kernel fuzzing.

The aforementioned structures are simply examples of common structures. To identify and

exclude them for exploring multiple error behaviors, we design a systematic approach to rank

the kernel structures based on their ubiquity. Broadly speaking, this method constructs a graph

depicting the reference relationship between kernel structures. Each node in the graph symbolizes

a kernel structure, and the directed edges between nodes indicate reference relationships. On the

graph, we apply PageRank [17], which assigns a weight to each structure. In this work, we regard

a structure with a higher weight as more common than others and exclude them while performing

kernel fuzzing to investigate other error behaviors.

Construction of Structure Graph. To build the structure graph mentioned earlier, we initially

analyze all the structures defined in the kernel source code. For a given structure, we examine

all its field members. If the field is a pointer to another structure, we connect the given structure

to the referenced structure. If the field is a nested structure or union, we expand them repeatedly

38

until we detect a self-referenced structure, or there are no more nested structures/unions in the

definition. We connect the given structure directly to the structure in the final layer of expansion,

ignoring the union in the middle to minimize graph size. For example, in Listing 4, extensions

↪→ is a pointer referencing struct skb_ext. We link struct sk_buff to struct skb_ext in our graph.

However, it should be noted that struct rb_node is a self-referenced structure in an anonymous

union. Following the above method, we skip the anonymous union and only link struct sk_buff

directly to struct rb_node without additional expansion.

Besides analyzing the structure definition in kernel source code, we also construct the structure

graph considering type casting. Since the kernel supports polymorphism, which employs a single

interface to represent different devices and features, one abstract data type can be cast to a more

specific type. For example, consider the function ip6_fraglist_init in Listing 5. In this function,

skb->data is cast from void* to struct frag_hdr*, which is further used in the IPV6 networking stack.

The void* is an abstract data type, whereas the destination structural type struct frag_hdr* is more

specialized. As a result, we add one more edge to our structure graph, linking struct skb_buff to

struct frag_hdr.

Intuition suggests that the structures with more references are likely to be more common. They

are more likely to be abstract data types. In addition, the structures referenced by popular structures

can also be common since they may also be used in numerous program sites in the kernel. For these

structures, they are too prevalent to enhance our kernel fuzzer’s efficiency in better examining the

error behavior of a kernel bug. To identify these kernel structures, we use the PageRank algorithm

on the graph to rank their ubiquity. In this work, we only use those kernel structures and objects

with lower ranks to guide our fuzzing process. In Section 2.5, we discuss how we select the page-

rank score threshold to differentiate popular structures from less popular ones.

Technical Discussion. The process of eliminating popular kernel structures narrows the scope of

39

our kernel fuzzer, but intuition suggests it may also inadvertently limit our kernel fuzzer’s ability

to uncover other error behaviors associated with a specific kernel bug. On the one hand, if the

popular structures that have been removed are the primary cause of the kernel bug, our fuzzer may

not be able to access them, thus missing the chance to trigger the relevant bug. On the other hand,

if the root causes of most kernel bugs are indeed popular structures, our proposed methodology

might offer only limited assistance in identifying multiple error behaviors of a bug.

However, in this work, we posit that the aforementioned concerns are unlikely to arise in prac-

tice. First, based on our review of hundreds of real-world kernel bugs, we observed that most

kernel bugs are primarily linked to less popular structures. As such, the elimination of popular

structures does not impede the fuzzer’s capacity to trigger the targeted bug. Second, even if the

discarded popular structures are associated with the root cause of our target kernel bug, directing

the fuzzer’s focus towards less popular structures can still enable us to interact with some objects

in the popular structural types. This is because less popular structures often comprise popular ones

(e.g., the uncommon structure struct napi_struct contains the widely used structure struct hrtimer

as shown in Listing 1). Concentrating on these less popular structures still offers opportunities to

interact with popular structures, albeit through fewer instances of these structures. In Section 2.6,

we present several instances where the root causes of the relevant bugs are tied to those removed

popular kernel structures. We illustrate that our fuzzing methodology can still trigger the bugs of

interest and investigate their other error behaviors, even in these cases.

2.4.4 Object-Driven Kernel Fuzzing

Having identified the key structures, we now elaborate on how we employ these structures to

enhance kernel fuzzing and thereby explore multiple error behaviors for a single kernel bug.

Instrumentation. Traditional kernel fuzzing techniques implement tracing functions to monitor

40

executed basic blocks. In our approach, we preserve this capability and introduce an additional

instrumentation component. This component, designed as a compiler plugin, examines each state-

ment in the basic blocks and pinpoints those that involve the allocation, de-allocation, and usage

of crucial objects (i.e., objects of the key structures type). Specifically, the instrumentation com-

ponent incorporates a new tracing function that substitutes the highest 16 bits of the recorded basic

block address with a unique identifier, distinguishing these basic blocks from others. With this

enhanced instrumentation, we can easily locate which basic block associated with the key objects

is under operation by the corresponding fuzzing program by observing the top 16 bits of addresses

in the code coverage feedback.

Seed Selection. Thanks to the enhanced instrumentation, we can readily ascertain if a fuzzing pro-

gram interacts with a key object during its execution. When we identify new key object coverage,

we can include the associated fuzzing program in the corpus of our seed fuzzing programs. In our

methodology, we incorporate the mutated seed program or the newly created seed program into the

seed corpus if either of the following two conditions is met. Firstly, the program reaches an unseen

basic block that involves key object operations. Secondly, at least one system call in the program

extends the code coverage and the same system call has demonstrated key object operation in pre-

vious fuzzing. We include the second condition because it enables kernel fuzzing to amass kernel

states, thereby enhancing the likelihood for future mutations to interact with unseen basic blocks

that involve key objects.

Seed Generation & Mutation. In our methodology, we initiate the seed corpus with the Proof of

Concept (PoC) program included in the bug report we are examining. Each time we generate a new

seed fuzzing program, we construct the program using only the system calls already present in the

seed corpus. This approach contrasts significantly with seed fuzzing program generation methods

utilized in contemporary fuzzing techniques (e.g., Syzkaller), which produce a seed fuzzing pro-

41

1 r0 = openat(..., '/dev/dsp1\x00');
2 ioctl(r0, ...);
3 write(r0, ...);
4 read(r0, ...);

(a) 7022420

1 // initial PoC: max = -1
2 bpf$MAP_CREATE(..., 0xffffffffffffffff);
3 // exit triggers GFP
4 exit(0);

(b) 692a8c2

Table 2.1: The example code snippets extracted from the PoC programs in two different kernel bug
reports – 7022420 [18] and 692a8c2 [19].

gram by employing the system calls enclosed in the corpus and introducing new system calls. Our

design change is informed by the need to trigger key object access under different contexts or along

different execution paths to explore multiple error behaviors of a kernel bug. Although arbitrarily

incorporating new system calls into the new seed fuzzing program could expand the code coverage

that the program can explore, it inevitably diverts the fuzzing program away from the key objects.

Intuition suggests that using the aforementioned seed generation technique alone is unlikely

to explore a sufficient number of contexts and paths related to the key objects. Consequently, we

adopt the mutation mechanism used in existing kernel fuzzing techniques (i.e., Syzkaller). This

mutation mechanism introduces new system calls relevant to the system calls already present in the

seed corpus into the seed fuzzing program. We anticipate that the fuzzing program can continue

to engage with the key object while diversifying the execution contexts or the paths leading to the

object.

Mutation Enhancement. Syzkaller, when performing a fuzzing program mutation, employs pre-

set templates to guide the synthesis of new fuzzing programs. Each template specifies the depen-

dency and argument format of related system calls. For instance, Syzkaller’s template dictates that

the system call read requires a resource (i.e., a file descriptor) as one of its arguments, which the

system calls openat or socket can generate. Following this template, Syzkaller can mutate a fuzzing

program by appending the system call read or socket to the system call openat. Template-guided

42

mutation guarantees the legitimacy of the seed program, thus preventing early kernel rejection of

the fuzzing program.

As stated earlier, our mutation method adapts the approach used in Syzkaller. As we demon-

strate in Section 2.6, although this strategy is useful for avoiding the creation of invalid kernel

fuzzing programs, it can still be inefficient and occasionally ineffective in guiding our kernel fuzzer

to expose multiple behaviors for a single kernel bug. The reasons for this are twofold.

Firstly, Syzkaller, when conducting a fuzzing program mutation, tries to introduce various

system calls relevant to the seed program and randomly alter system calls’ arguments. However, we

note that both the resource and the arguments that system calls manipulate are vital for successfully

triggering a target kernel bug. Mutation without considering these factors would inevitably lead to

low effectiveness in exploring multiple error behaviors.

For instance, take the case displayed in Table 2.1a. The table presents a code snippet illustrating

a PoC program that triggers a kernel bug [18]. Using this PoC as a seed program and performing

mutation, Syzkaller inserts the system call socket, which is irrelevant to the bug. This modification

inevitably involves a resource that cannot trigger the bug and directs the fuzzer into a vast code

space. Consider the case shown in Table 2.1b as another example. Similar to the previous example,

the table presents a portion of a PoC program triggering a different kernel bug [19]. In the mutation

stage, Syzkaller alters the variable @max=0xffffffffffffffff because the template indicates that the

legitimate value range for this variable is [INT_MIN, INT_MAX]. However, for this specific kernel

bug, which triggers an integer overflow in the kernel, the bug triggering condition is @max=-1 or in

other words @max=0xffffffffffffffff. As a result, this argument’s random mutation is unproductive,

significantly affecting the triggering of the bug in different contexts.

To address these issues, we enhance our fuzzing approach by optimizing its mutation mecha-

nism. Specifically, we categorize system call specification templates based on the resource type

43

that the corresponding system calls rely on (e.g., classifying system calls related to the network

socket and device file separately). Within each category, we further divide the enclosed system

calls into two subgroups: one for resource creation and the other for their utilization. With this

categorization, our fuzzing component can either replace system calls with ones in the same cat-

egory or insert system calls that associate with the resource illustrated in the seed program when

mutating a seed program.

In addition to categorizing templates based on resources, our mutation mechanism also pre-

serves the values for the arguments seen in the original PoC program if the types of these argu-

ments do not fall into four categories—constant, pointer referencing a memory region, checksum,

and resource (e.g., a file descriptor for an opened file or an established socket). For arguments

of the constant type, they usually indicate the protocol under fuzzing testing (e.g., AF_INET and

AF_INET6 in the system call socket() indicating the establishment of the IPv4 and IPv6 socket, re-

spectively). In the fuzzing test, we need to modify these arguments to switch protocols and thus

change the contexts under which the bug can be triggered again with different error behaviors. For

arguments of pointer types and belonging to resources, when the kernel fuzzing alters the context

or path towards the buggy kernel code, the original PoC program’s addresses might become illegal.

Maintaining these addresses could lead to early termination of the fuzzing program. Regarding the

checksum, if the value of the calculation source changes in the mutation process, the checksum

should be updated accordingly. Keeping the same checksum value could also result in the fuzzing

program’s early termination during the data validation phase.

2.5 Implementation

Leveraging the LLVM infrastructure and the kernel fuzzing tool Syzkaller, we have realized our

concept as a tool – GREBE. In the following sections, we’ll shed light on some key aspects of our

44

implementation. The source code for GREBE can be accessed at [20].

Identifying Critical Structures. Our tool receives LLVM IR and a single bug report as input.

To generate the bitcode files, we apply the approach used in previous studies [21], [22]. Specifi-

cally, we modify the LLVM compiler to dump bitcodes before initiating any compiler optimization

passes. This step helps us prevent compiler optimization from impacting the precision of our anal-

ysis. Remember that we extract the call trace from the bug report. This call trace indicates the

functions that were invoked but not yet returned when the kernel encountered errors. In this ex-

tracted call trace, the function that was last called might be the one instrumented by the compiler.

However, it does not indicate the buggy function contributing to the error. Therefore, we overlook

these functions in the call trace and commence our analysis from the statement that initiates the

debugging feature.

GREBE utilizes backward taint analysis to identify critical structures, extracting the type infor-

mation of structures using three instructions. The first instruction is BitCast, where the types before

and after casting are specified. GREBE records the types derived from this instruction as critical

structures. The second instruction is Getelementor, which contains a pointer referencing a kernel

object and the corresponding type information of the object. Analyzing this instruction allows us

to swiftly identify critical structures. The third instruction is CallInst. We deduce the type informa-

tion from the prototype of the callee and record the structural type as critical structures. As stated

previously, we consider system calls’ entries, interrupt handlers, and workqueue processings as our

taint sink. For this work, we manually annotate all these sinks based on their naming patterns.

Ranking Critical Structures. As outlined in Section 2.4.3, when creating the structure graph for

ranking critical structures, we factor in typecasting. In our implementation, if the cast variable is

the return value of a callee function, we inspect the callee from the return statement and then link

the destination type with the structure field. For instance, consider the case exhibited in Listing 5.

45

The cast variable skb->data is the return value of the callee function __skb_push. By analyzing the

callee function, we connect struct frag_hdr with struct sk_buff.

Remember that we also rank structures based on their page-rank scores, using a page-rank score

threshold to exclude the popular ones. In this work, we determine this threshold using a standard

univariate outlier detection method [23]. This technique calculates the mean and standard deviation

of the page rank scores and then computes the Z-score for each structure. We use 3.5 more standard

deviations as the threshold according to the outlier detection method. Since most kernel structures

are less popular, possessing a significantly low z-score, this threshold can effectively differentiate

popular kernel structures from others.

Kernel Fuzzing. As detailed in Section 2.4.4, we equip the kernel to gather the usage of critical

objects in real-time. Given that Clang support has been introduced recently and might not support

all Linux kernel versions, we perform instrumentation using a GCC plugin instead of a Clang

pass. While performing a fuzzing program mutation, we adhere to the design of MoonShine-

enhanced [24] Syzkaller, randomly mutating 33% of system calls and replacing them with others

we have manually grouped.

In implementing the optimization mechanism that reuses arguments from the original PoC, for

each system call in the PoC program, we initially find its specification in Syzkaller and analyze the

definition of its structural arguments (i.e., StructType and UnionType). Then, we recursively inspect

the structural arguments until no more new definitions can be discovered. Within each structural

definition, we disregard ConstType, VmaType, ResourceType, and CsumType as they represent constant,

pointer, resource description, and checksum, respectively. As discussed in Section 2.4.4, they are

not likely to aid in exploring new paths to the buggy code.

46

2.6 Evaluation

In this section, we first quantify GREBE’s effectiveness and efficiency and compare it with a code-

coverage-based fuzzing method. Then, we demonstrate and discuss how well GREBE could unveil

exploitation potential for real-world Linux kernel bugs.

2.6.1 Experiment Setup & Design

Syzbot is a bug reporting platform that well archives the kernel bugs identified by Syzkaller. To

evaluate our tool – GREBE, we select kernel bugs and their reports from the platform as our test

cases. While selecting these bugs, we follow two different strategies.

Our first strategy is a purely random selection process that follows two criteria. First, the bug

report has to attach a PoC program so that we can reproduce the error specified in the report. Sec-

ond, the reported kernel error cannot associate with Kernel Memory Sanitizer (KMSAN) because

KMSAN is still under development and has not yet been merged into the Linux kernel mainline.

By following these two criteria, we construct a test corpus containing 50 Linux kernel bugs.

Our second bug selection strategy is a process dedicated to different kernel versions. To be

specific, we select bugs from 5 different Linux kernel versions (5.6 5.10)1. From each kernel

version, we choose two recently-reported reproducible kernel bugs as our test cases. In this way,

we construct another test corpus with 10 Linux kernel bugs. Combining with the kernel bugs in

the first corpus, we obtain a dataset with 60 unique kernel bugs. To the best of our knowledge, our

dataset is the largest used in the exploitability research.

For each bug in our dataset, we built the corresponding kernel in four QEMU virtual machines

(VMs) by following the description of their bug reports. For the first two VMs, we ran our tool –

GREBE and Syzkaller. For the remaining two VMs, we ran GREBE without enabling its mutation
1At the time of our experiment, 5.10 is the latest long-term support Linux kernel version.

47

optimization and Syzkaller with our mutation optimization (i.e., Syzkaller’s variant). With this

setup, we can evaluate GREBE’s effectiveness and efficiency in different settings. Besides, we can

compare it with the code-coverage-based kernel fuzzing method and its variant (i.e., Syzkaller with

our mutation optimization). It should be noted that we use Syzkaller as our baseline approach for

evaluation because it is one of open-sourced, code-coverage-based kernel fuzzing tools but mostly

because it can test nearly all kinds of kernel components2. It should also be noted that we extend

Syzkaller with our proposed mutation optimization for the following reason. GREBE is an exten-

sion of Syzkaller. It combines both the object-driven component and mutation optimization. With

our mutation optimization integrated into Syzkaller alone, we could examine whether mutation

optimization could become a sole driving force to enable multiple error behavior exploration.

Given a kernel bug of our selection, its report, and a kernel fuzzing tool under our evaluation,

we include the PoC program enclosed in the report into the initial seed set and deploy our VMs on

bare-metal AWS servers. Each of the servers has two-socket Intel(R) Xeon(R) Platinum 8275CL

CPU @ 3.00GHz (48 cores in total) and 192 GB RAM, running Ubuntu 18.04 LTS. For each VM,

we configured it with two virtual CPU cores and 2GB RAM. While performing kernel fuzzing, we

set each of the fuzzers to run for 7 days. To utilize the computation resource of the AWS server

efficiently, we assign only 30 VMs for each server. In total, it takes us two months to gather the

experiment results shown in this paper.

After 7 days of fuzz testing against various versions of the Linux kernels by using four different

fuzzers, we formed a 6-member team under the guidance of an IRB approval (STUDY00008566).

Among the 6 members, 2 are experienced security analysts regularly developing kernel exploits

in the security industry. The other 4 members are academic researchers actively contributing to

2The State-of-the-art kernel fuzzing tools – HFL [25], SemFuzz [26] have not yet been publicly released. DI-
FUZE [27], KRACE [28], and Razzer [29] etc. are designed for fuzzing specific bug types or kernel modules. Previ-
ous research [25] shows Syzkaller has better performance than KAFL [12] and Trinity [13] in terms of code coverage.
Therefore, we choose MoonShine-enhanced Syzkaller as our baseline.

48

the Linux community and frequently invited to give talks at the Linux Security Submit or other

Linux-related conferences. In our evaluation, we asked this professional team to collect the fuzzing

results (i.e., reports) from all VMs, group the reports based on their title uniqueness, and eventually

preserve only the kernel reports truly tied to the 60 bugs of our selection. Note that a kernel fuzzer

might trigger other kernel bugs and thus demonstrate errors. Since there have not yet been highly

accurate crash triaging tools, the professional team inspects each of the kernel errors manually and

preserves only the errors associated with our selected bugs. The procedure of manually triaging

the kernel errors is described in Appendix A.1.2.

In addition to the manual effort above, we also asked our kernel professional team to thoroughly

and manually inspect whether there are any other missing paths or contexts that could trigger the

kernel bugs and thus exhibit different error behaviors. In this way, we can evaluate GREBE’s

false negatives or, in other words, understand how complete GREBE could expose a bug’s multiple

error behaviors. It should be noted that the Linux kernel’s codebase is huge and sophisticated.

Given a kernel bug, it usually requires extensive manual efforts and significant expertise, spending

hundreds of hours to perform through manual analysis for exploring all the possible errors. As a

result, we evaluate the false negatives of GREBE by sampling 30% of the selected kernel bugs (18

out of 60 selected bugs).

2.6.2 Experiment Results

Effectiveness. Table 2.2 shows the sampled experiment results3. First, we can observe that our tool

– GREBE– could demonstrate a significant advantage in finding a bug’s multiple error behaviors.

In comparison with Syzkaller and Syzkaller variant, which discover a total of 9 additional error

behaviors for only 6 and 7 test cases within 7 days, GREBE identifies 132 new error behaviors for

3It should be noted that, due to the space limit, we place the complete experiment results at [33].

49

SYZ ID Critical Structures Identified Initial Error Behavior Discovered New Error Behaviors
Time (in hours)

T1 T2 T3 T4

bdeea91[30]
aead instance, crypto aead, ,

WARNING: refcount bug in crypto mod get
WARNING: refcount bug in crypto destroy tfm 6.69 2.62 0.06 1.25

crypto spawn, pcrypt instance ctx
crypto aead spawn, crypto type KASAN: use-after-free Read in crypto alg extsize - - - 83.69

5d3cce3[15] napi struct, tun file general protection fault in hrtimer active
KASAN: use-after-free Read in free netdev - - 155.76 30.30

KASAN: use-after-free Read in netif napi add - - 77.41 9.08

521a764[31] ax25 address, nr sock WARNING: refcount bug in nr insert socket

KASAN: use-after-free Read in release sock - - 0.03 4.39
KASAN: use-after-free Read in nr release - - - 20.00

KASAN: use-after-free Read in nr insert socket - - - 0.06
KASAN: use-after-free Write in nr insert socket - - - 126.82
KASAN: use-after-free Read in lock sock nested - - - 18.20

229e0b7[32] delayed uprobe general protection fault in delayed uprobe remove

KASAN: use-after-free Read in delayed uprobe remove - - 3.83 6.66
KASAN: use-after-free Read in uprobe mmap - - 12.69 4.10

general protection fault in uprobe mmap - - - 89.49
KASAN: use-after-free Read in update ref ctr - - - 157.46

Table 2.2: The performance of Syzkaller, Syzkaller variant, GREBE and GREBE without mutation
optimization under some sampled kernel bugs. The “SYZ ID” column is the case ID. The “Critical
Structures Identified” means the structures that are identified by the static analysis tools then are
utilized by GREBE. The “Initial Error Behavior” column indicates the error behavior manifested
in the corresponding bug report. The “Discovered New Error Behaviors” column is the error be-
haviors newly discovered. Note that, for each case, we sample only some of its newly identified
error behaviors for illustration purposes. For more complete performance information across all 60
selected kernel bugs, the readers could find at [33]. In the “Time” column, T1 represents the num-
ber of hours Syzkaller took, T2 is for Syzkaller’s variant, T3 is for GREBE without optimization,
and T4 stands for GREBE. The dash “-” means the corresponding error behavior is not discovered
by the corresponding tool.

38 out of 60 test cases. These kernel error behaviors have not been seen in the bug reports that

we gathered from Syzbot. Second, we can observe the mutation optimization greatly improves

GREBE’s utility. In 7 days of our experiment, GREBE without mutation optimization pinpoints 58

new error behaviors for 27 cases. This result significantly outperforms that of Syzkaller. However,

without mutation optimization, GREBE experiences more than 50% of a downgrade in terms of the

newly identified error behaviors (132 vs. 58) and about 30% of decrease in terms of the cases it

could handle (38 vs. 27). Third, we discover that, while generally performing worse than GREBE,

GREBE without enabling mutation optimization sometimes demonstrates better performance. For

the test cases – #8eceaff, #3b7409f, and #d5222b3, GREBE without mutation optimization tracks down

50

4 additional error behaviors. We argue this does not imply the ineffectiveness of our mutation

optimization method. Our manual inspection indicates the missing error behaviors primarily result

from the nature of these bugs. Even if our mutation mechanism successfully constructs correct

inputs to trigger the bug, making the bug manifest a different error behavior also relies upon a

specific thread interleaving that mutation-optimization-disabled solution luckily discovers.

False Negatives. As is mentioned above, we also randomly selected 30% of test cases, performed

manual analysis, and examined how complete GREBE could identify the error behaviors of a given

kernel bug. In our experiment, the test cases used for our false negative study are listed in Table A.1

in Appendix. Our manual inspection shows that GREBE misses one error behavior for the cases

#d1baeb1, #85fd017 and #695527b, and two error behaviors for the case #d5222b3. To understand the

reasons behind these missing error behaviors, we first measure the number of basic blocks between

the root cause of a kernel bug and its error panic site. We hypothesize that the false negative might

relate to the distance between the root cause and the error site. However, as is shown in Table A.1,

we did not find clear correlation between the distance and the effectiveness of GREBE. For more

detail about the measurement and hypothesis validation, readers could refer to Appendix A.1.3.

With the rejected hypothesis in hand, we further took a look at false-negative cases closely,

exploring the conditions of triggering the missing error behaviors. We found that, in addition to

finding different paths and contexts by using GREBE, the exhibition of the missing behaviors also

requires the manipulation of thread interleaving. For case like #85fd017, the manifestation of error

behaviors depends on the layout of memory. The undiscovered error behavior occurs only if the

memory in the overflowed region is unmapped. We do not attribute this to the incompetency of

GREBE. Rather, we will leave the manipulation of thread interleaving and memory layout as part

of our future research.

Impact of popular kernel structure removal. Recall that in Section 2.4.3, we rank the identified

51

critical structures based on their popularity and avoid using popular structures to guide our kernel

fuzzing. Intuition suggests this might influence the effectiveness of our kernel fuzzing on finding

a bug’s multiple error behaviors. However, from the 60 kernel bugs of our selection, we observe

there are only 3 out of 60 test cases (5%) the root cause of which ties to popular structures (sk_buff

↪→ for #d1baeb1, nlattr for #b36d7e4 and #27ae1ae). Even for these cases, GREBE still demonstrates

its utility in finding the bugs’ multiple error behaviors. These observations well align with our

aforementioned arguments – ❶ the kernel bug generally roots in the inappropriate usage of less

popular kernel structures, and ❷ focusing on less popular structures can still allow our fuzzer to

reach out to popular structures because of the strong dependence between them. In Table 2.2, we

list some kernel object types that GREBE uses for fuzzing guidance. For more complete kernel

object types identified for each kernel bug, readers could find them at [33].

Efficiency. Table 2.2 and the table at [33] show the time that each fuzzer spent on finding a new ker-

nel error behavior. First, we observe that both Syzkaller and its variant have comparable efficiency

(21546 hours vs 21528 hours). However, GREBE without mutation optimization spends less time

than Syzkaller on identifying the new error behavior (15011 vs. 21546 hours)4. After applying the

mutation optimization, GREBE further reduces the time spent on new error behavior identification

(5445 vs. 15011 hours). This discovery indicates mutation optimization alone provides minimum

benefits to the improvement of fuzzing efficiency whereas object-driven component alone or the

combination of both brings significant improvement in fuzzing efficiency.

Second, we observe that GREBE succeeds in disclosing 79 new error behaviors for 32 test cases

within 24 hours. Take the case #5d3cce3 in Table 2.2 as an example. GREBE found the use-after-

free read error in netif_napi_add in 9 hours. On the contrary, GREBE without mutation optimization

4Since the new error behaviors discovered by Syzkaller and its variant is too few compared with the other fuzzers,
we conservatively use 7 days (7×24=168 hours) to represent the non-discovered error behaviors when computing the
time.

52

SYZ ID Exploitability Change SYZ ID Exploitability Change
d1baeb1 [34] LL → L (2) ⋆ de28cb0 [35] LL → L (5)
8eceaff [36] LL → L (2) ⋆ f56bbe6 [37] LL → L (1)
bb7fa48 [38] LL → L (1) f0ec9a3 [39] LL → L (1)
d767177 [40] LL → L (2) 5d3cce3 [15] LL → L (2) ⋆
460cc94 [41] LL → L (1) 692a8c2 [19] LL → L (12) ⋆
0df4c1a [42] LL → L (3) 4cf5ee7 [43] LL → L (2)
229e0b7 [32] LL → L (3) 502c872 [44] LL → L (1)
163388d [45] LL → L (1) b36d7e4 [46] LL → L (1)
bdeea91 [30] LL → L (1) 1fd1d44 [47] LL → L (1)
b9b37a7 [48] LL → L (4) 695527b [49] LL → L (1)
0d93140 [50] LL → L (1) 85fd017 [51] LL → L (4) ⋆
b0e30ab [52] LL → L (1) 6a03985 [53] LL → L (3) ⋆
d5222b3 [54] LL → L (1) 575a090 [55] LL → L (1)
3a6c997 [56] L → L (10) 27ae1ae [57] L → L (1)
cbb2898 [58] L → L (1) 4bf11aa [59] L → L (1)
e4be308 [60] L → L (11) 7022420 [18] L → L (1)
3b7409f [61] L → L (1) ddaf58b [62] L → L (2)

Table 2.3: The summary of exploitation potential improvement. In the column of ”Exploitability
Change”, LL means the original error behavior is less likely to be exploitable. The letter L means
the newly discovered error behaviors are likely to be exploitable. The number in the parenthesis
represents the amount of newly identified error behaviors tied to probably exploitable. The star
⋆ denotes the bugs for which we have developed exploits based on the newly discovered error
behaviors and their provided primitives.

spent more than 3 days. The original Syzkaller and its variant performed even worse, failing to find

this error behavior within the 7-day time window. This result empirically shows that the design

of object-driven fuzzing and mutation optimization in GREBE, to a large extent, can save the time

and resources for the discovery of new error behaviors.

2.6.3 Security Implication

Exploitation Potential Exploration. Recall that we design GREBE to explore a kernel bug’s

multiple error behaviors. With the multiple manifested behaviors in hand, we expect some newly

53

Exploitation Potential Kernel Bug Errors
Likely to exploit KASAN (e.g., use-after-free, out-of-bound access, double-free)

Less likely to exploit BUG, GPF, NULL ptr dereference, panic, WARN, wrappers (e.g., pr err)

Table 2.4: The summary of the types of error behaviors in bug reports and their corresponding
exploitation potential.

exposed error behaviors to indicate a higher exploitation potential for a kernel bug (e.g., finding an

out-of-bound write error behavior for a kernel bug that originally manifests less-likely-to-exploit

error behavior – null pointer dereference). As a result, we further evaluate GREBE’s capability

in exploitation potential exploration. To do this, we first recruited 20+ security researchers and

conducted a user study (detailed in Appendix A.1.1) under the approved IRB (STUDY00008566).

From the user-study results, we obtain the relationship between a manifested error behavior and

the exploitation potential. As is depicted in Table 2.4, each error behavior is categorized into either

“likely to exploit” or “less likely to exploit”. Using this error-behavior-to-exploitability mapping

obtained from security researchers, we then compare our newly identified error behaviors with

those specified in their original bug reports.

In our dataset, we have 60 Linux kernel bugs. For 44 bugs, their reports gathered from Syzbot

demonstrate error behaviors associated with less-likely-to-exploit. For the other 16 kernel bugs,

their reports expose errors tied to likely-to-exploit. As we can observe from Table 2.3, for 26

bugs (about 60% of 44 less-likely-to-exploit bugs), GREBE could find at least one likely-to-exploit

error behavior. From that newly identified error behavior, one could imply a higher exploitation

potential. This observation indicates that GREBE can help security researchers better infer kernel

bugs’ exploitation potential.

Among the rest 16 kernel bugs originally tied to likely-to-exploit, there are 8 bugs (50%). By

using GREBE, one can identify their other likely-to-exploit error behaviors. We argue, this does

54

not mean that GREBE has no utility for these kernel bugs. Taking a closer look at the three cases

#e4be308, #3b7409f, and #ddaf58b. Their original reports all indicate that the bug provides an ability to

perform a write to an unauthorized memory region. However, the newly discovered error behaviors

enable the adversaries to perform unauthorized read/write at different memory regions. Take the

case #3619dec5 for example. Its new error behavior can write data to the kmalloc-64 from 56th to

60th bytes, whereas its error behavior shown in the report corrupts the first eight bytes of kmalloc

↪→ -64. This enlarged memory access potentially diversifies the way to perform exploitation and

bypass mitigation.

For the kernel bugs of our selection that do not show exploitation potential improvement (i.e.,

26 bugs = 60-26-8), we argue that this does not dilute the contribution of GREBE. First, based

on the aforementioned small-scale evaluation on the false negatives of GREBE, it is very likely

that all the possible error behaviors of these bugs are exposed. In this situation, there are fewer

chances for a security researcher to find unknown error behaviors indicating a higher exploitation

potential. Second, although the exploitation potential remains unchanged, GREBE manages to find

many other error behaviors (e.g., #1fd1d44 in the table at [33]). These additional error behaviors

and the corresponding fuzzing programs can potentially facilitate the root cause diagnosis, as is

demonstrated in [14].

Real-world Impact. For all the 44 kernel bugs (the original reports of which implies less-likely-to-

exploit), we performed an exhaustive search and found no work demonstrating their exploitability

in the past. As described above, using GREBE, we can turn 26 of them from less-likely-to-exploit

to likely-to-exploit. For these 26 kernel bugs, we further explore their exploitability manually. We

surprisingly discovered that 6 out of the 26 bugs (illustrated by a star sign in Table 2.3) could be

turned into fully exploitable kernel vulnerabilities. Take the case #6a03985 as an example. Its error

behavior initially reported by Syzkaller is a WARNING implying less-likely-to-exploit. Using GREBE,

55

we identified a use-after-free error behavior for this bug. Starting from this newly discovered error

behavior and the primitive the error behavior provides, we successfully demonstrated the bug’s

exploitability, including leaking sensitive data (e.g., encryption key and hashed password), bypass-

ing KASLR, and redirecting the kernel execution for privilege escalation. We have responsibly

disclosed the bug details and our working exploits with the corresponding vendors, resulting their

rapid fix adoption. RedHat assigned one of the exploitable bugs with CVE-2021-3715 for keeping

track. To facilitate the future study, we release our exploits at [20].

2.7 Related Work

This section summarizes the works most relevant to ours.

Kernel Fuzzing. Syzkaller [11] and Trinity [13] are two popular code-coverage-based kernel

fuzzers. While doing fuzzing, they use templates to specify the dependency between system calls

and the expected value range of system calls’ arguments. However, with only explicit dependencies

between system calls, it is not enough to produce a high-quality fuzzing program because the OS

kernel is a massive system with a complicated internal state transition. IMF [63] optimizes kernel

fuzzing by tracking the system calls and analyzing them coordinately with type information to infer

the kernel system’s internal states. This approach, unfortunately, has the limitation of extracting

internal dependencies inside the kernel. As such, taking a step ahead, Moonshine [24] leverages

light-weight static analysis to detect internal dependencies across different system calls from sys-

tem call traces of real-world programs. Recently, HFL [25] introduces hybrid fuzzing to the kernel,

performing point-to analysis, and symbolic checking to figure out precise constraints between sys-

tem state variables. To support closed-source kernel, instead of relying on the kernel interface to

collect code coverage, kAFL [12] proposes a fuzzing framework that employs a hardware-assisted

code coverage measurement. Although the kernel fuzzers above demonstrate effectiveness in find-

56

ing kernel bugs, like Syzkaller, their design inevitably fails multiple error behavior exploration

simply because they rely on code coverage to guide kernel fuzzing tasks, making our task ineffi-

cient. In this work, GREBE introduces a new design that utilizes critical kernel objects to improve

effectiveness and efficiency for multiple error behavior exploration.

Apart from kernel fuzzers aiming to find various types of bugs in the entire system, there are

works focusing on specific kernel modules or bug types. DIFUZE [27] uses static analysis to

effectively fuzz device drivers in the Android kernel. Periscope [64] fuzzes a device driver not

via system call interfaces but mutating input space over I/O bus. Razzer [29] combines static and

dynamic testing to reach program sites where race condition bugs may exist. KRACE [28] further

customizes to find race condition bugs in the file system. While they demonstrate their utility in

hunting bugs in specific kernel modules, it is difficult to generalize these techniques to explore

kernel bugs’ error behaviors.

SemFuzz [26] is the only work that aims to trigger a known kernel bug through kernel fuzzing

to the best of our knowledge. However, this technique is not designed to diversify the paths and

contexts for triggering the bug but simply to enable bug reproduction. Therefore, it is not suitable

for the problem we address.

Exploitability Assessment. Automating exploit development can also facilitate exploitability as-

sessment. For user space programs, Brumley et al. [65], [66] used preconditioned symbolic execu-

tion to generate exploits for stack overflow and format string vulnerabilities. Bao et al. [67] recently

proposed shellcode layout remediation and path kneading approaches to transplant existing shell-

code. The Shellphish team developed PovFuzzer and Rex to turn a crash to an exploit [68]–[70].

Heelan et al. focus on heap buffer overflow vulnerabilities in user space programs. In [71], they use

regression test to learn how to automate heap layout manipulation so that one could corrupt the sen-

sitive pointers. In [72], they further improve their proposed approach by using a genetic algorithm

57

to replace the random search algorithm for exploiting heap overflow vulnerabilities in language

interpreters. Sharing the similar goals with the works [71], [72], Revery [73] also explores ex-

ploitable memory layouts for vulnerabilities in userspace programs. It utilizes fuzz testing along

with a program synthesis method to guide the construction of a working exploit. Insu et al. [74]

discovers new exploitation primitives in the heap allocator. They provide heap operations and at-

tack capabilities as actions, driving the heap allocator to execute until primitives such as arbitrary

write or overlapped chunks are identified. Unlike the works summarized above, GREBE focuses

on a bug’s exploitability assessment in the kernel space which is naturally more sophisticated than

userland programs. Besides, our work is not designed for constructing exploitable memory layout

or synthesizing working exploits. Rather, it focuses on exploring all the possible error behaviors

for a single kernel bug.

Regarding the kernel space, existing exploitability assessment works are mainly in three di-

rections. The first direction is to obtain exploitable primitives. Xu et al. [75] exploit use-after-

free vulnerabilities using two memory collision mechanisms to perform heap spray in the kernel.

SLAKE [76] facilitates the exploitation of slab-based vulnerabilities by first building a database

of kernel objects and then systematically manipulating slab layout using the kernel objects in the

database. Lu et al. [77] exploits use-before-initialization vulnerabilities using deterministic stack

spraying and reliable exhaustive memory spraying. As a follow-up work, Cho et al. [78] further

propose to use BPF functionality in the kernel for stack spraying. The second direction is to bypass

mitigations in the kernel. For example, ret2dir [79] takes advantage of physical memory which is

mapped to kernel space for payload injection. KEPLER [80] leverages communication channels

between kernel space and user space (e.g., copy_from/to_user) to leak stack canary and inject ROP

payload to kernel stack. ELOISE [22] bypasses KASLR and heap cookie protector using a special

but pervasive type of structure. The third direction is to explore the capability of vulnerabilties,

58

which is most related to our work. In this direction, FUZE [81] explores new use sites for use-

after-free vulnerabilities using under-context fuzzing and identifies exploitable primitives implied

by the new use sites using symbolic execution. KOOBE [82] extracts capabilities of a slab-out-of-

bound access vulnerability manifested in the PoC program and uncover hidden capabilities using

capability-guided fuzzing. The techniques developed in both works are customized to the char-

acteristics of a specific vulnerability type and are difficult to generalized to others. Besides, they

require to manually diagnose root cause of the bug while GREBE does not. Moreover, they cannot

explore possible error behaviors for a single bug, which is the main contribution of GREBE.

2.8 Conclusion

We design and develop an object-driven kernel fuzzing method. Using our proposed technique,

security analysts could explore various contexts and paths toward a target kernel bug and exhibit the

bug’s many error behaviors. The newly identified error behaviors might have higher exploitation

potential than the one shown in the original report. It indicates the bug’s exploitability escalation.

As such, we safely conclude, given a kernel bug, the object-driven kernel fuzzing method could

help security analysts better understand and infer exploitability for a given kernel bug.

59

CHAPTER 3

DIRTYCRED: ESCALATING PRIVILEGE IN LINUX KERNEL

3.1 Introduction

Linux, owing to its wide application in mobile devices, cloud infrastructure, and web servers, has

become a prime target for hackers. To safeguard Linux, kernel developers and security profes-

sionals implement a range of kernel protection and exploit mitigation measures (e.g., KASLR [83]

and CFI [84]), making kernel exploitation more difficult than ever. However, to execute a success-

ful exploit, the contemporary attacker needs to pinpoint potent kernel vulnerabilities capable of

bypassing corresponding protection and mitigation mechanisms.

A recent vulnerability, CVE-2022-0847 [85], and its exploitation approach, have drawn sub-

stantial attention from the cybersecurity community. Due to its severity and potential impact, it’s

been dubbed DirtyPipe [86]. Unlike typical kernel vulnerabilities, DirtyPipe can achieve privilege

escalation without disabling commonly used kernel protections and mitigations. This trait makes

existing Linux defenses ineffective, posing a significant threat to Linux-kernel-driven systems,

including Android devices.

While DirtyPipe is potent, its exploitability relies heavily on the vulnerability’s ability to mis-

use the Linux kernel pipe mechanism for arbitrary file data injection. For other Linux kernel

vulnerabilities, such a capacity is rare. Consequently, the Linux community and device manufac-

turers like Google have rapidly released patches to fix the kernel bug, thus eliminating the memory

corruption. However, without such memory corruption, exploiting a fully-protected Linux ker-

nel remains challenging. Other kernel vulnerabilities find it difficult to produce the same level of

60

security impact as DirtyPipe.

In this work, we introduce a novel, general exploitation method through which even typical

kernel vulnerabilities could achieve the same exploitation goal as DirtyPipe. Our exploitation

method, named DirtyCred, doesn’t depend on the pipeline mechanism of Linux or the nature of

the CVE-2022-0847 vulnerability. Instead, it utilizes a heap memory corruption vulnerability to

substitute a low privileged kernel credential object with a high privileged one. This action leads

the Linux kernel to mistakenly allow an unprivileged user to operate on high privileged files or

processes.

Implementing DirtyCred presents three key technical challenges. Firstly, it needs to pivot a

vulnerability’s capability to facilitate a credential object swap, as different vulnerabilities offer

varying abilities for memory corruption. Secondly, DirtyCred must strictly control the time win-

dow for object swap, as the viable time window is brief. Without a practical mechanism to prolong

this window, the exploitation would be unstable. Lastly, DirtyCred needs an efficient method to

enable an unprivileged user to actively allocate privileged credentials, as failing to achieve this

would render the credential object swap ineffective.

To overcome these technical challenges, we introduce a series of vulnerability pivoting schemes,

utilize three different kernel features to extend the necessary time window, and employ vari-

ous kernel mechanisms to spawn high privileged threads, thus actively allocating privileged ob-

jects. We evaluate DirtyCred’s exploitability using 24 real-world kernel vulnerabilities and sur-

prisingly discovered that DirtyCred could demonstrate privilege escalation on 16 vulnerabilities.

We shared our newly proposed exploitation method with Google Vulnerability Rewards Program

(kCTF VRP [87]) and received their acknowledgment with $20,000 bounty reward. Compared

to existing kernel exploitation techniques, DirtyCred offers unique characteristics. It is a general

exploitation approach that allows privilege escalation for any heap-based vulnerabilities. It sig-

61

nificantly reduces the burden of exploit migration, can bypass many powerful kernel protections

and exploit mitigation mechanisms, and can result in more severe security problems, like rooting

Android and escaping a container.

With robust exploitability demonstration and lack of effective defenses, DirtyCred could soon

become a significant threat to Linux. Consequently, we have proposed a new Linux kernel defense

mechanism that hosts high and low privileged credentials in separate memory regions, introducing

negligible overhead.

In summary, our research makes the following contributions:

• We introduce DirtyCred, a novel exploitation method that can bypass common kernel protections

and execute privilege escalation in Linux systems.

• We showcase the strong exploitability of DirtyCred on a variety of real-world Linux kernel

vulnerabilities.

• We analyze the limitations of existing kernel defenses and propose a new defense mechanism,

demonstrating its minimal performance overhead.

The structure of this paper is as follows: Section 3.2 introduces the necessary background

and discusses the threat model. Section 3.3 presents an overview of DirtyCred and the technical

challenges it faces. Section 3.4, 3.5, and 3.6 detail various techniques to tackle these challenges.

Section 3.7 evaluates the effectiveness of DirtyCred on real-world Linux kernel vulnerabilities.

Section 3.8 presents a new defense mechanism and evaluates its performance. Section 3.10 dis-

cusses related work, followed by Section 3.9, which discusses related issues and future work. The

paper concludes in Section 3.11.

62

3.2 Background & Threat Model

This section provides an overview of the critical technical background needed to comprehend our

proposed exploitation methodology. Additionally, we discuss our threat model and underlying

assumptions.

3.2.1 Credentials in Linux kernel

As described in [88], credentials are a set of properties within the kernel that house privilege

information. These properties enable the Linux kernel to assess user access rights. The kernel

represents credentials through specific objects laden with privilege data. As far as we understand,

these objects comprise of ”cred”, ”file”, and ”inode”. However, for the exploitation methods in this

paper, we exclusively rely on ”cred” and ”file” objects. We disregard the ”inode” object because

it is only allocated upon the creation of a new file on the filesystem, offering inadequate flexibility

for memory manipulation - a critical operation for successful exploitation. We provide essential

background information for ”cred”, ”file”, and ”inode” objects in the succeeding subsections.

Every Linux task maintains a pointer referring to a ’cred’ object. The ’cred’ object houses

the UID field, denoting the task privilege. For instance, GLOBAL_ROOT_UID signifies that the task

possesses root privilege. When a task seeks to access a resource (for example, a file), the kernel

reviews the UID in the task’s ’cred’ object to determine whether to grant access. Apart from UID,

the ’cred’ object also carries capability information, outlining the task’s specific privileges. An

example being, CAP_NET_BIND_SERVICE suggests that the task can bind a socket to an internet domain’s

privileged port. For each task, their credentials are adjustable. In modifying the task credentials,

the kernel adheres to the copy-and-replace rule - it copies the credentials first, then modifies the

copy, and finally replaces the cred pointer in the task with the newly amended copy. In Linux, a

63

task may only modify its own credentials.

In the Linux kernel, every file possesses its owner’s UID and GID, access permissions for other

users, and capabilities. For executable files, they also maintain SUID/SGID flags indicating special

permission that permits other users to execute with the owner’s privileges. In the kernel’s imple-

mentation, each file is tied to an ’inode’ object linked to the credentials. When a task attempts to

open a file, the kernel initiates the function inode_permision, inspecting the inode and the associated

permission prior to granting file access. Once a file is opened, the kernel detaches the credentials

from the ’inode’ object and connects them to the ’file’ object. Alongside holding the credentials,

the ’file’ object also contains the file’s read/write permissions. Through the ’file’ object, the kernel

can index the cred object to evaluate the privilege. Furthermore, it can verify read/write permission

to ensure a task does not write data to a file opened in read-only mode.

3.2.2 Linux Kernel Heap Memory Management

The Linux kernel has designed memory allocators specifically to handle small memory alloca-

tions. This design choice serves to enhance performance and mitigate fragmentation. Although

the Linux kernel incorporates three distinct memory allocators, they all conform to a similar over-

arching design. Namely, they utilize caches to store memory of identical size. For each cache, the

kernel assigns memory pages and partitions the memory into numerous same-sized segments, with

each segment acting as a memory slot that hosts an object. When a memory page for a cache is

exhausted, the kernel assigns new pages to the cache. If a cache ceases to use a memory page, that

is, all the objects on the memory page have been freed, the kernel repurposes the memory page

accordingly. The Linux kernel primarily consists of two kinds of caches, as outlined briefly below.

Generic Caches. The Linux kernel maintains several general-purpose caches to allocate memory

of varying sizes. When memory is allocated from the general-purpose caches, the kernel initially

64

rounds up the requested size and locates the cache that fits the size request. Subsequently, it

allocates a memory slot from the corresponding cache. In the Linux kernel, if an allocation request

doesn’t specify the cache type it should be allocated from, the allocation defaults to the general-

purpose caches. Allocations that are categorized under the same general-purpose cache may share

the same memory address as they may be housed on the same memory page.

Dedicated Caches. For performance and security reasons, the Linux kernel establishes specialized

caches. As certain objects are frequently used in the kernel, providing caches specifically for these

objects can cut down the time required for their allocation, thereby enhancing system performance.

Allocations that fall into specialized caches do not share the same memory page with general

allocations. Hence, objects allocated in the general-purpose cache are not positioned adjacent to

objects in specialized caches. This can be perceived as cache-level isolation, which alleviates the

overflow risk from objects in general-purpose caches.

3.2.3 Threat Model

Our threat model assumes an unprivileged user with local access to the Linux system, with an

intent to exploit a heap memory corruption vulnerability in the kernel, thus elevating his/her priv-

ilege level. Furthermore, we operate on the assumption that Linux activates all available exploit

mitigation and kernel protection mechanisms provided in the mainstream kernel (version 5.15).

These mechanisms encompass KASLR, SMAP, SMEP, CFI [83], [89]–[91], KPTI [92], and oth-

ers. These mitigations and protections ensure the randomization of kernel addresses, the inability

of the kernel to directly access user-space memory during execution, and guaranteed control-flow

integrity. Importantly, we do not assume the existence of a hardware side channel that could aid

kernel exploitation.

65

/tmp/x

source

fs_context

filp_cache

fs_context

filp_cache /etc/passwd

fs_context

filp_cache

Step 1: allocate a writable

file object.

hacker:x:0:0:root:/:/

bin/sh

root:x:0:0:root:/root:/
bin/bash
daemon:x:1:1:daemon:/
usr/sbin:/usr/sbin/
nologin
…

Content of /etc/passwd:

After attack
Step 2: free the file object

through the vulnerability.

Step 3: allocate privileged file

object to reclaim the freed slot.

Write “hacker:x:0:0:root:/:/bin/sh” to the opened file

Timeline

sourcesource

Open file /tmp/x

kmalloc-192 kmalloc-192 kmalloc-192

/tmp/x /etc/passwdfile object for
/tmp/x

fs_context
object

freed
object

file object for
/etc/passwd

Figure 3.1: The overview of exploiting CVE-2021-4154, the write operation to the opened file
starts between step 1 and step 2 and finishes after step 3.

3.3 Technical Overview & Challenges

This section initially offers a broad overview of DirtyCred by exemplifying its application in a

real-world scenario. Following this, we delve into the technical obstacles that need to be addressed

by DirtyCred.

3.3.1 Overview

We utilize an actual Linux kernel vulnerability, specifically CVE-2021-4154 [93], to demonstrate

DirtyCred’s operation on a high-level basis. This vulnerability, CVE-2021-4154, arises from a

type confusion error where the fs_context object’s source field inaccurately references a file object.

In the Linux kernel, a reference count mechanism maintains a file object’s lifecycle. When the

reference count drops to zero, indicating the file object is no longer in use, it is automatically

freed. However, activating the vulnerability leads to the file object being erroneously freed while

it remains in use.

As illustrated in Figure 3.1, DirtyCred initiates by opening a writable file ”tmp/x”, which al-

66

locates a writable file object in the kernel. Upon triggering the vulnerability, the source pointer

will reference the file object in the related cache. Then, DirtyCred attempts to write content to the

open file ”tmp/x”. The Linux kernel, before performing the actual content write, checks for write

permission and confirms the position’s writability. Once these checks pass, DirtyCred pauses the

actual file writing process and moves to the second stage. Here, DirtyCred triggers the fs_context

object’s free site to deallocate the file object, leaving the file object’s memory spot free.

Next, in the third stage, DirtyCred opens a read-only file ”/etc/passwd”, prompting the kernel

to allocate the file object for ”/etc/passwd”. As shown in Figure 3.1, the freshly allocated file

object claims the now available spot. After this setup, DirtyCred resumes its write operation, and

the kernel proceeds with the actual content writing. Given that the file object has been swapped,

the held content is redirected to the read-only file ”/etc/passwd”. Assuming the content written to

”/etc/password” is ”hacker:x:0:0:root:/:/bin/sh”, a malicious actor could use this method to inject

a privileged account and achieve privilege escalation.

The example above merely serves as a demonstration of how DirtyCred employs file objects for

exploitation. As discussed in Section 3.2, ”cred” objects are also classified as credential objects, in

addition to ”file” objects. In a manner similar to the above-described file swap, a malicious actor

could exploit a parallel strategy to swap cred objects, thus achieving privilege escalation. Owing

to space constraints, we don’t expand on this topic. For those interested in cred object exploitation,

we recommend our published exploitation demonstration at [94].

Based on the real-world example given, it’s clear that DirtyCred doesn’t change the control

flow but leverages the innate kernel memory management to manipulate objects in memory. Con-

sequently, many prevalent defense mechanisms that prevent control flow tampering do not inter-

fere with DirtyCred’s exploitation. While certain recent research endeavors have enabled kernel

defense by re-architecting memory management (e.g., AUTOSLAB [95]), these too fail to block

67

DirtyCred. As we will discuss in Section 3.8, the recently proposed memory management method-

ologies still operate at a coarse-granularity, making them inadequate to thwart our memory manip-

ulation.

3.3.2 Technical Challenges

Despite the illustration of how DirtyCred performs exploitation leading to privilege escalation,

several technical details require further clarification and numerous challenges await resolution.

• As previously discussed, DirtyCred requires the capability to perform an invalid-free operation

to deallocate a low-privilege object (e.g., a writable file object) and reallocate a high-privilege

object (e.g., a read-only file object). However, in reality, a kernel vulnerability may not always

grant us this ability. For instance, a vulnerability may provide only the capacity for out-of-bound

overwriting rather than an invalid-free directly against a credential object. Therefore, DirtyCred

needs matching strategies to pivot the capabilities of vulnerabilities with varied capabilities. We

delve into how to pivot capabilities for different types of kernel vulnerabilities in Section 3.4.

• As narrated in the example, DirtyCred needs to pause the actual file writing process after the

permission check and before the file object swap. However, this proves challenging. In the Linux

kernel, the permission check and actual content writing occur sequentially in rapid succession.

Without a feasible strategy to precisely control the timing of the file object swap, the exploitation

process would inevitably be unstable. In Section 3.5, we present a range of effective mechanisms

that ensure the file object swap occurs within the intended timeframe.

• As discussed, one of the most critical steps in DirtyCred’s process is to replace low-privilege

credentials with high-privilege ones. This is done by allocating high-privilege objects that seize

the freed memory spot. However, it’s challenging for a low-privilege user to allocate high-

68

ptr

0xf…c20000

…

0xf…c20000

…

ptr

0xf…c21f00
0xf…c21f00

0xf…c20000

Credential
object

Victim
object

Vulnerable
object

(a) Memory layout before the overflow. (b) Memory layout after the overflow.

overflow

Figure 3.2: The memory layout before and after converting a heap overflow capability into the
ability to deallocate a credential object.

privilege credentials. Although waiting for activities from privileged users might potentially

solve this issue, such a passive strategy significantly impacts the stability of the exploitation.

Firstly, DirtyCred lacks information on when the desired memory spot will be reclaimed, imped-

ing continuous exploitation. Secondly, DirtyCred does not control the newly allocated objects,

and therefore it’s possible that the object taking over the desired memory slot does not possess

the required privilege level. We introduce a userspace mechanism and a kernel space scheme to

tackle this issue in Section 3.6.

69

3.4 Pivoting Vulnerability Capability

As the example in Figure 3.1 demonstrates, the kernel vulnerability denoted as CVE-2021-4154

endows DirtyCred with the means to improperly dispose of the file object. Nonetheless, in real-

world scenarios, a vulnerability may not always offer such capacity. For instance, a double-free

(DF) or use-after-free (UAF) capacity may not be directly related to a credential object. Some

vulnerabilities, such as out-of-bound (OOB) access, lack the invalid free capacity. Therefore,

DirtyCred requires the adaptation of a vulnerability’s capacity. We elucidate below how DirtyCred

is engineered to adapt capability.

3.4.1 Pivoting OOB & UAF Write

Given an OOB vulnerability or a UAF vulnerability with data overwriting capacity in a cache,

DirtyCred first identifies an object (i.e., the victim object) that shares the same cache and contains

a pointer referring to a credential object. It then leverages heap manipulation techniques [96], [97]

to allocate the object in the memory region prone to overwriting. As depicted in Figure 3.2 (a),

to pivot an OOB vulnerability, the victim object is strategically placed right after the vulnerable

object. Using the overwriting capacity, DirtyCred modifies the enclosed pointer within the object.

More specifically, DirtyCred applies the overwriting capacity to zero the last two bytes of the

pointer referring to the credential object (see Figure 3.2 (b)).

Bear in mind that a cache is composed of contiguous pages. In the Linux kernel, the address of

a memory page always conforms to a format where the last byte is zero. When allocating objects

in a new cache, the object starts from the beginning of the memory page. As a consequence,

the earlier zero-byte overwrite forces the pointer to reference the start of a memory page. For

instance, as shown in Figure 3.2 (b), after nullifying the last two bytes of the pointer referring to

70

(f) Reclaim the memory page with credential
object.

ptr 1’ ptr 1’ ptr 2’

ptr 1’ ptr 2’

ptr 1’ptr 1’

ptr 1’ ptr 2’

(a) Allocate a vulnerable object. (b) Free the vulnerable object through ptr 1.

(c) Reclaim the freed slot with another
vulnerable object.

(d) Free the vulnerable object through ptr 2.

(e) Destroy the memory cache.

(g) Trigger the free through ptr 2’. (h) Reclaim the freed slot with a credential
object.

Allocated
object

Vulnerable
object

Freed
memory

Credential
object

Credential
object being

attacked

ptr 1 ptr 2 ptr 2

ptr 2’ ptr 2

Figure 3.3: The step-by-step example demonstrating converting a double-free capability into the
ability to deallocate a credential object.

a credential object, the pointer refers to the beginning of a memory page where another credential

object resides.

As shown in Figure 3.2 (b), following the pointer manipulation, DirtyCred obtains an additional

reference to the first object on the memory page. We assert that this additional object reference

denotes a successful capability pivot. The rationale is that the kernel can free the object normally,

leaving the pointer in the victim object as a dangling pointer. Then, following a procedure akin to

the one described in Section 3.3, DirtyCred can execute a heap spray, occupy the freed spot with a

high-privilege credential object, and thus accomplish privilege escalation.

71

1 struct iovec
2 {
3 void __user *iov_base; /* BSD uses caddr_t (1003.1g requires void *) */
4 __kernel_size_t iov_len; /* Must be size_t (1003.1g) */
5 };
6
7 ssize_t vfs_writev(...)
8 {
9 // permission checks

10 if (!(file->f_mode & FMODE_WRITE))
11 return -EBADF;
12 if (!(file->f_mode & FMODE_CAN_WRITE))
13 return -EINVAL;
14
15 ...
16 // import iovec to kernel, where kernel would be paused
17 // using userfaultfd & FUSE
18 res = import_iovec(type, uvector, nr_segs,
19 ARRAY_SIZE(iovstack), &iov, &iter);
20 ...
21 // do file writev
22 }

Listing 6: The code snippet of vfs writev function in kernel before 4.13.

3.4.2 Pivoting Double Free

Within the Linux kernel, general caches (e.g., kmalloc-96) and specific caches (e.g., cred_jar) are

separated. There’s no overlap in the objects these caches contain. However, the Linux kernel

includes a recycling mechanism, which when destroying a memory cache, recycles the associated

unused memory pages and then allocates the recycled pages to the caches in need of more space.

This feature allows cross-cache memory manipulation, offering DirtyCred the means to pivot the

capability for double-free vulnerabilities.

Figure 3.3 outlines the process of how DirtyCred converts a double-free capability into the

capability required for a privileged object swap. Initially, DirtyCred allocates a large number

of objects in the cache where the vulnerability is found. Among these new objects, one is the

72

vulnerable object. DirtyCred can invalidate the vulnerable object by deallocating it twice using

two distinct pointers. Due to the high volume of allocations, DirtyCred ensures that a cache is

filled with newly allocated objects post the extensive object allocation (see Figure 3.3 (a)).

Following the mass allocation, DirtyCred uses the first pointer to improperly deallocate the

vulnerable object, leaving the second pointer intact (see Figure 3.3 (b)). It then reallocates the

vulnerable object, occupying the freed memory spot. As seen in Figure 3.3 (c), after reallocation,

there are three pointers pointing to the vulnerable object. One is the pointer left by the first vulner-

able object. The remaining two are linked to the double-free capability against the newly allocated

vulnerable object.

DirtyCred further deallocates the newly allocated vulnerable object using one of the three point-

ers, leaving a free memory spot referenced by two dangling pointers (see Figure 3.3 (d)). As previ-

ously noted, the Linux kernel recycles the memory page and allocates it to another cache if a cache

holds no allocated objects. Therefore, after deallocating the vulnerable object, DirtyCred further

deallocates the other objects in the cache, thus freeing the cache (see Figure 3.3 (e)).

On the recycled memory page, the kernel establishes a new cache to store credential objects.

The new cache divides the page memory into slots. As illustrated in Figure 3.3 (f), if the size of the

vulnerable object differs from that of the credential object, the credential object’s address won’t

align with that of the vulnerable object. This misalignment causes the remaining two pointers to

reference the middle of the credential object. In this memory state, DirtyCred cannot follow the

exploitation procedure described in Section 3.3, since successful exploitation requires the ability

to deallocate a credential object.

To address this issue, DirtyCred uses one of the leftover pointers to improperly deallocate the

central credential object. As shown in Figure 3.3 (g), following this deallocation, the kernel creates

a free memory spot of the same size as a credential object. Therefore, when DirtyCred allocates a

73

new credential object, the kernel fills that free spot with the new object. As seen in Figure 3.3 (h),

after the free spot is occupied, the final remaining pointer references the newly allocated credential

object. This indicates a successful capability pivot. The reasoning is that DirtyCred could use the

remaining pointer to improperly deallocate the credential object and then perform an object swap

to escalate privileges.

3.5 Time Window Expansion

Recall that before executing a file write operation, the Linux kernel must verify file permission. For

DirtyCred to perform a file object swap, it must occur between the permission check and the actual

file writing. However, this window of opportunity is too brief to perform a successful exploit, as

the swapping process involves triggering the vulnerability and manipulating the heap layout, which

could take several seconds. DirtyCred addresses this issue by using various techniques to extend

this window, ensuring it lasts longer than the swapping process. In this section, we explain these

techniques and discuss how they aid in facilitating the exploit.

3.5.1 Exploiting Userfaultfd & FUSE

Userfaultfd [98] and FUSE [99] are two essential features of the Linux kernel. The Userfaultfd fea-

ture allows userspace to manage page faults. When a page fault is triggered on the memory regis-

tered with Userfaultfd, the registered page fault handler will be notified and take over the page fault

handling. Unlike Userfaultfd, FUSE provides a userspace filesystem framework, allowing users to

implement a userspace filesystem. Users can register their handler for this implemented userspace

filesystem to dictate how to respond to file operation requests. Both Userfaultfd and FUSE can

be leveraged to pause Linux kernel execution for a user-defined duration. With Userfaultfd, an

attacker can register a page fault handler for a memory page. When the kernel tries to access that

74

memory and triggers a page fault, the registered handler is invoked, enabling the attacker to pause

kernel execution. With FUSE, an attacker could allocate memory from the userspace filesystem.

When the kernel accesses this memory, it invokes the predefined file access handler and thereby

pauses kernel execution.

DirtyCred uses these features to pause kernel execution after completing the file permission

check. In the following, we use Userfaultfd as an example to explain how DirtyCred achieves

this kernel pause and extends the exploitation window. The procedure for pausing the kernel with

FUSE is similar. Readers can refer to the exploit sample we developed [94] for more details.

When executing a file write, DirtyCred uses the writev system call, which is the implementation

of vectored I/O. Unlike the write system call, writev uses the iovec structure to transfer data from

userspace to kernel space. List 6 from lines 1 to 5 defines the iovec structure. It includes a userspace

address and a size field that specifies the quantity of data to be transferred. In the Linux kernel

space, to copy the data enclosed in iovec, the kernel must first import the iovec to the kernel space.

Therefore, before Linux kernel version v4.13, as depicted in List 6, the implementation of writev

↪→ first verifies the file object, ensuring the current file is open and writable. Once the check is

successful, it imports the iovec from userspace and writes user data to the appropriate file. In this

implementation, the import of iovec falls between the permission check and data write. DirtyCred

can utilize the aforementioned Userfaultfd feature to pause kernel execution immediately after the

permission check, securing enough time to swap the file object. To our knowledge, this technique

was first employed by Jann Horn’s exploit for CVE-2016-4557 [100], but it is no longer applicable

after kernel v4.13.

75

1 ssize_t vfs_writev(...)
2 {
3 ...
4 // import iovec to kernel, where kernel would be paused
5 // using userfaultfd
6 res = import_iovec(type, uvector, nr_segs,
7 ARRAY_SIZE(iovstack), &iov, &iter);
8 ...
9 // permission checks

10 if (!(file->f_mode & FMODE_WRITE))
11 return -EBADF;
12 if (!(file->f_mode & FMODE_CAN_WRITE))
13 return -EINVAL;
14 ...
15 // do file writev
16 }

Listing 7: The code snippet of vfs writev function in kernel after 4.13.

1 ssize_t generic_perform_write(struct file *file,
2 struct iov_iter *i, loff_t pos)
3 {
4 /*
5 * Bring in the user page that we will copy from _first_.
6 * Otherwise there's a nasty deadlock on copying from the
7 * same page as we're writing to, without it being marked
8 * up-to-date.
9 */

10 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
11 status = -EFAULT;
12 break;
13 }
14 ...
15 // call the write operation of the file system
16 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
17 &page, &fsdata);
18 ...
19 }

Listing 8: The code snippet of generic perform write function in the Linux kernel.

76

3.5.2 Alternative Exploitation of Userfaultfd & FUSE in Later Kernel Versions

From Linux kernel version v4.13 onwards, the kernel implementation was modified. The import

of the iovec structure was moved to occur before the permission check (see List 7). In this updated

implementation, DirtyCred could still utilize the Userfaultfd feature to pause kernel execution at

the point of iovec import. However, it no longer allows DirtyCred to extend the time window

between the permission check and the actual file write. To overcome this challenge, DirtyCred

takes advantage of the design of the Linux filesystem.

In Linux, the filesystem design adheres to a strict hierarchy where the high-level interface is

universally used for file write operations, while the low-level interface differs between filesys-

tems. During a file write, the kernel first invokes the high-level interface. As shown in List 8,

generic_perform_write is a high-level interface for file write operations. As seen in lines 15 to 17,

generic_perform_write triggers the write operation of the filesystem and writes data to the file. To en-

sure performance and compatibility, the kernel triggers a page fault for the userspace data enclosed

in the iovec just before the write operation. Consequently, by using the Userfaultfd feature in line

10, DirtyCred can pause kernel execution before actual file writing, thus securing a sufficient time

window for privileged file object swap.

We argue that exploiting the filesystem’s design to pause kernel execution at the page fault

is harder to mitigate than pausing at the iovec import site. First, as mentioned in the Linux code

comment, eliminating page fault in iovec could potentially lead to deadlock issues (see List 8).

Some filesystems will unavoidably face issues if the page isn’t pre-faulted. Second, while moving

the page fault to occur prior to the permission check could theoretically resolve the issue, this

straightforward defensive measure sacrifices kernel performance and is also susceptible to potential

evasion. For instance, DirtyCred could remove the page immediately after triggering the initial

page fault. This action would inevitably cause the kernel to trigger the page fault once more,

77

1 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
2 struct iov_iter *from)
3 {
4 ssize_t ret;
5 struct inode *inode = file_inode(iocb->ki_filp);
6 inode_lock(inode);
7 ...
8 ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
9 ...

10 inode_unlock(inode);
11 return ret;
12 }

Listing 9: The code snippet of ext4 filesystem in the Linux kernel.

thereby pausing kernel execution immediately after the permission check.

3.5.3 Taking Advantage of Lock Mechanism in Filesystem

In order to prevent the corruption of a file’s content, a filesystem doesn’t permit two processes to

write to a file concurrently. Linux’s filesystem enforces this rule via a locking mechanism. To

illustrate, List 9 demonstrates a simplified code segment that performs a write operation in the

ext4 filesystem. As can be seen, the filesystem first tries to acquire the inode lock in Line 6.

If another file operation is currently interacting with the inode (i.e., the lock is held by others),

the filesystem will wait until the lock is released. After gaining the lock, the filesystem invokes

generic_perform_write to write the data to the file. Upon completing the write operation, the filesys-

tem releases the lock and exits the function.

While the aforementioned lock mechanism can ensure the accuracy of the write operation, it

inadvertently provides DirtyCred with an opportunity to extend the time window, thus making an

object swap feasible. Specifically, DirtyCred could initiate two processes – process A and process

B – to write data to the same file concurrently. Assuming process A holds the lock and is writing

a large amount of data, process B would be obliged to wait for an extended period until the lock

78

is released in Line 10. Since process B has already passed the file permission check prior to the

invocation of generic_perform_write, the time spent waiting for the lock gives DirtyCred an ample

time window to execute the file object swap without interference from the permission check. From

our observations, the wait time could stretch up to several tens of seconds when writing a 4GB file

to a hard disk drive. Within this time window, triggering the vulnerability and performing memory

manipulation can be carried out without causing any stability issues in the exploitation.

3.6 Allocating Privileged Credential

As outlined in Section 3.3.2, DirtyCred cannot rely on passive observance of privileged users’

actions in hopes of their activities leading to the allocation of a privileged object in the desired

freed spot, which would thereby enable privilege escalation. Consequently, DirtyCred must take

proactive measures to instigate the allocation of a privileged object within the kernel space. This

section delves into how DirtyCred, operating as a minimally privileged user, initiates privileged

object allocation.

3.6.1 Initiating Allocation from Userspace

In the Linux kernel, ”cred” objects signify the privilege levels of their associated kernel tasks.

The root user possesses a privileged cred object, symbolizing the apex of privilege. Therefore,

if DirtyCred can actively stimulate a root user’s activities, the kernel may allocate the privileged

cred objects as required. In Linux, when a binary holds SUID permission, its execution occurs as

though it’s executed by the owner, irrespective of who actually initiates the execution. Leveraging

this attribute, a low-privileged user can instigate a root process when they execute a binary owned

by a root user that also carries the SUID permission.

Historically, attackers have primarily focused on exploiting a vulnerability within a privileged

79

binary, thereby achieving privilege escalation. In this work, however, DirtyCred does not depend

on vulnerabilities within privileged binaries. Instead, it misuses the above-mentioned feature to

spawn SUID-set binaries owned by root users, triggering the allocation of a privileged cred object

to fill the free memory slot. In Linux, there are numerous binaries that fit this profile, including

executables such as su, ping, sudo, mount, pkexec, and others.

As noted earlier, aside from cred objects, DirtyCred can also swap file objects to escalate privi-

leges. Contrary to cred objects, the allocation of file objects is relatively straightforward. Remem-

ber, DirtyCred substitutes a write-permitted file’s object with a read-only file’s object during file

object swapping. To allocate file objects that specify read-only permissions, DirtyCred can open

multiple target files with read-only permissions. This will result in the kernel allocating numerous

corresponding file objects in the related kernel memory.

3.6.2 Initiating Allocation from Kernel Space

The previously described method highlights a strategy for allocating privileged objects from userspace.

However, DirtyCred can also instigate the allocation of privileged objects from within the kernel

space. When the Linux kernel initializes a new kernel thread, it clones its currently running pro-

cess. Simultaneously, it assigns a duplicated cred object to the kernel heap. In the Linux kernel,

the majority of kernel threads possess a privileged cred object, meaning the copied cred object also

holds high privilege. Leveraging this ability to generate privileged kernel threads, DirtyCred can

actively allocate privileged cred objects.

As far as we are aware, there exist two primary methods for allocating highly privileged cre-

dential objects. The first approach involves interacting with the kernel code snippets, provoking

the kernel to internally generate a privileged thread. For instance, creating workers for a kernel

workqueue can be employed to spawn kernel threads. The Linux kernel’s work queue is designed

80

to manage deferred functions. A work queue is paired with several work pools, each of which

contains workers. A worker is the fundamental execution unit that runs the tasks committed to the

workqueue. The number of workers within each work pool is, at most, equivalent to the number of

CPUs. Initially, the kernel creates only a single worker for each work pool. However, when more

workers are needed, or in other words, when more tasks are committed to the work queue, the ker-

nel dynamically generates additional workers. Each worker is a kernel thread, and by modulating

the tasks committed to the kernel work queue, one can manipulate the spawning of kernel threads

as required.

Apart from the method described above, the second approach to spawning kernel threads in-

volves invoking the usermode helper. The usermode helper is a mechanism enabling the kernel

to generate a user-mode process. One of the most straightforward applications of the usermode

helper is the loading of kernel modules into the kernel space. During this process, the kernel in-

vokes the usermode-helper API, which subsequently executes the userspace program – modprobe,

in a high privilege mode, thereby creating high privileged credential objects in the kernel. A func-

tion of modprobe is to search through the standard installed module directories to find the required

drivers. While conducting this search, the kernel must maintain its execution. To prevent modprobe

from blocking kernel execution, when invoking a usermode-helper API, the kernel simultaneously

spawns a new kernel thread.

3.7 Evaluation

In this section, we design two experiments to evaluate the exploitability of DirtyCred on real-world

kernel vulnerabilities.

81

3.7.1 Experiment Design

As previously highlighted, DirtyCred leverages vulnerable objects (i.e., those housing credential

objects) to perform memory manipulation, which is primarily used for vulnerabilities like out-

of-bound access and use-after-free. This manipulation is a crucial step in enabling DirtyCred to

achieve privilege escalation. During the memory manipulation process, DirtyCred assigns the vul-

nerable object to the cache where the vulnerability is situated. Given that different vulnerabilities

exhibit memory corruption capability in varying caches, DirtyCred’s success relies heavily on its

ability to identify vulnerable objects that can be successfully accommodated within the respective

cache. Bearing this in mind, our initial step involves identifying the distinct vulnerable objects

applicable to each cache.

One might naturally assume that pinpointing these objects involves manually combing through

the Linux kernel code, identifying vulnerable objects, and determining the input that could trigger

the corresponding allocation. However, the size and complexity of the Linux kernel code space

render manual code examination unfeasible. To address this challenge, we propose an automated

method to detect vulnerable objects and determine the corresponding input necessary to instigate

their allocation. For our assessment, we applied this automated method to the most recent stable

kernel (i.e., version 5.16.15 at the time this paper was written). We only consider an object as

a vulnerable object if the automated method can find an object containing the credential object

and can demonstrate an input to allocate that object on the kernel heap. We provide a detailed

explanation of the design and implementation of our automated method in Appendix A.2.

Alongside the identification of exploitable kernel objects, our experiment also investigates

DirtyCred’s exploitability against real-world vulnerabilities. Remember that DirtyCred requires

pivoting a vulnerability’s capability if the vulnerability doesn’t offer DirtyCred the facility to di-

rectly swap credential objects. As discussed in Section 3.4.1, when performing vulnerability piv-

82

oting, DirtyCred might need to overwrite certain critical data within the vulnerable object. For

varying vulnerabilities, their overwriting capabilities could differ substantially, subsequently influ-

encing the success of privilege escalation. Consequently, we assess DirtyCred’s effectiveness by

exploiting numerous real-world vulnerabilities and examining how well it can execute exploitation

against these vulnerabilities.

We conduct the exploitation assuming a Linux kernel equipped with cutting-edge exploit miti-

gation techniques. Hence, we need to select vulnerabilities identified in recently developed kernels.

In our evaluation, we only considered Linux kernel CVEs reported after 2019. During our CVE

selection process, we eliminated those vulnerabilities that do not corrupt data on the kernel heap,

as well as those vulnerabilities for which we couldn’t reproduce the corresponding kernel panic.

Additionally, we discounted those vulnerabilities requiring the installation of specific hardware

to trigger. Following these CVE selection criteria, we compiled a dataset comprising 24 unique

CVEs. These CVEs’ IDs and the corresponding vulnerability types are listed in Table 3.2. As can

be seen, our selected test cases encapsulate nearly all types of vulnerabilities on the kernel heap.

3.7.2 Experimental Result

Exploitable Objects. Table 3.1 presents the vulnerable objects we identified in each kernel cache.

It is evident from the data that the vulnerable objects encompass almost all the general caches,

except for kmalloc-8, which is infrequently utilized in the Linux kernel. For most memory caches,

there are several vulnerable objects that could potentially be advantageous for DirtyCred’s privilege

escalation. The offset of the field referencing a credential object is also shown in each vulnerable

object in Table 3.1. Notably, the offsets differ across various vulnerable objects. This suggests that

DirtyCred has a better probability of identifying an appropriate object that matches a vulnerability’s

capability, thus ensuring successful exploitation. For instance, if a vulnerability shows the ability

83
Memory Cache Structure Offset

kmalloc-16 vdpa map file 0 ⋆

kmalloc-32

binder task work cb 16 ⋆
binder txn fd fixup 16 ⋆

coda file info 8 ⋆
shm file data 16 ⋆

kmalloc-64
fuse fs context 8 ⋆

ovl dir file 24⋆ 32⋆
bpf event entry 8 ⋆

kmalloc-96

gntdev dmabuf priv 80 ⋆
nfs access entry 40 †
request key auth 32 †

watch 64 †
bpf perf link 64 ⋆

kmalloc-128
async 32 †

nfs delegation 16 †

kmalloc-192

fs context 88 †
sync file 0 ⋆
vmci ctx 144 †

coda vm ops 8 ⋆
nfs open context 80 †

nfs unlinkdata 144 †
nfs renamedata 152 †

nfs4 layoutreturn 144 †
ovl fs 112 †

kmalloc-256

usb dev state 152 †
autofs sb info 8 ⋆
shmid kernel 128 ⋆

bsd acct struct 144 ⋆

kmalloc-512

linux binprm 48 ⋆, 64 ⋆
loop device 96 ⋆

dma buf 8 ⋆
nvmet ns 24 ⋆

ksmbd file 0 ⋆
rpc clnt 440 ⋆

nfs4 state owner 56 †
nfs4 ff layout mirror 96 †, 104 †

p9 trans fd 0 ⋆, 8 ⋆

kmalloc-1k

sock 600 †
binder proc 80 †

kfd process device 256 ⋆
send ctx 0 ⋆
nlm host 520 †

nfs4 layoutcommit data 472 †

kmalloc-2k
vsock sock 864 †
io ring ctx 408 †

kmalloc-4k vduse iova domain 3824 ⋆

vm area cachep vm area struct 160 ⋆

ashmem area cache ashmem area 288 ⋆

client slab nfs4 client 736 †
nfsd file slab nfsd file 48 ⋆, 56†
kioctx cachep kioctx 512 ⋆

Table 3.1: Exploitable objects identified in the Linux kernel. Note that the symbol ⋆ indicates an
object tied to “file” credential whereas the symbol † represents an object associated with “cred”
object. The column “Memory Cache” specifies the caches storing kernel objects. The column
“Structure” represents the exploitable objects’ types. The column “Offset” describes where the
credential object’s reference is located in the exploitable object.

84

CVE-ID Observed Capability DirtyCred
CVE-2022-27666 OOB ✔

CVE-2022-25636 Double Free ⋆ ✔

CVE-2022-24122 UAF ✗

CVE-2022-0995 OOB ✔

CVE-2022-0185 OOB ✔

CVE-2021-22600 Double Free ✔

CVE-2021-4154 UAF ✔

CVE-2021-43267 OOB ✔

CVE-2021-41073 Double Free ⋆ ✔

CVE-2021-34866 OOB † ✗

CVE-2021-33909 OOB † ✗

CVE-2021-42008 OOB ✔

CVE-2021-3492 Double Free ✔

CVE-2021-27365 OOB ✔

CVE-2021-26708 Double Free ⋆ ✔

CVE-2021-23134 Double Free ⋆ ✔

CVE-2021-22555 Double Free ✔

CVE-2021-3490 OOB † ✗

CVE-2020-14386 OOB ✔

CVE-2020-16119 Double Free ⋆ ✔

CVE-2020-27194 OOB † ✗

CVE-2020-8835 OOB † ✗

CVE-2019-2215 UAF ✗

CVE-2019-1566 UAF ✗

Table 3.2: Exploitability demonstrated on real-world vulnerabilities. Note that some CVEs pro-
vide both use-after-free and double-free capabilities. Here, we categorize such vulnerabilities into
double-free and mark them with a ⋆ symbol. Note that the symbol † indicates the vulnerabilities
that could corrupt only data in virtual memory area.

to overwrite 8 bytes to a neighboring object at its 8th byte offset, a vulnerable object with critical

data at the 8th byte would greatly simplify DirtyCred’s privilege escalation process.

Additionally, Table 3.1 reveals five objects within five general caches. These enclose the ref-

erence to the credential object at the start of the objects. This suggests that even if attackers only

achieve a minimal memory corruption capability (e.g., overwriting two initial bytes of a victim

object with zeros), they can still utilize the identified vulnerable object to initiate a DirtyCred at-

tack. It’s important to note that Table 3.1 also differentiates between vulnerable objects referencing

cred and file with distinct symbols. As we will discuss in Section 3.9, a cred object could provide

85

enhanced support for escaping containers. Therefore, having a sufficient number of vulnerable

objects linked to cred objects indicates a greater potential for Docker escape.

Exploitability. Table 3.2 illustrates the vulnerability of DirtyCred to various attacks. As can be

seen, DirtyCred successfully circumvents kernel defense mechanisms and escalates privileges in

16 out of 24 vulnerabilities, when the underlying Linux kernel activates all the exploit mitigation

mechanisms discussed in Section 3.2.3. This finding suggests that DirtyCred can serve as a potent

and versatile exploitation method for kernel vulnerability exploitation tasks. Of the 16 successful

test cases, eight involve out-of-bound or use-after-free vulnerabilities, while the remaining eight

involve double-free. DirtyCred succeeds in all double-free test cases, as a double-free capability

can always be pivoted to improperly freeing a credential object.

Unsuccessful cases primarily stem from out-of-bound (OOB) and use-after-free (UAF) vul-

nerabilities. For OOB vulnerabilities, the failed cases exhibited memory corruption in the virtual

memory area. To utilize DirtyCred, we need to identify kernel objects containing credential data.

Such objects are usually allocated within the kmalloc’ed memory region rather than virtual mem-

ory, resulting in DirtyCred’s inability to find the necessary objects for successful exploitation. We

mark these cases with a † symbol in Table 3.2. However, as we will discuss in Section 3.9.3,

the inability to exploit these cases does not imply that DirtyCred cannot exploit vulnerabilities

on virtual memory. The memory corruption capabilities on virtual memory could still be pivoted

to capabilities useful for DirtyCred, given suitable vulnerable objects or other capability pivoting

techniques.

For the UAF failure case CVE-2022-24122, the vulnerability does not demonstrate an over-

write capability through the dangling pointer, instead, it only exhibits an over-reading ability. As

discussed in Section 3.4, DirtyCred relies on either an invalid write capability or an invalid free

capability. The over-reading capability of CVE-2022-24122 hampers DirtyCred from performing

86

a successful capability pivoting, resulting in a failed attack. For CVE-2019-2215 and CVE-2019-

1566, these vulnerabilities demonstrate an overwriting capability. However, the overwriting does

not occur in the critical field of exploitable objects. Without this capability, DirtyCred is unable

to manipulate the necessary fields in the kernel objects to free a credential object, leading to an

unsuccessful attack.

3.8 Countermeasure Against DirtyCred Attack

Given the exploitability demonstrated in the previous section, it’s clear that DirtyCred represents

a serious threat to existing Linux systems. Although the method of misusing the lock mechanism

could be mitigated by reengineering the filesystem, this wouldn’t be enough to fully block Dirty-

Cred, as it can also be launched via another route—swapping credential objects. Thus, an effective

countermeasure would be to prevent the swapping of credentials with differing privilege levels.

Looking at this issue from one angle, userspace heap defenses are inadequate for DirtyCred.

The kernel requires memory allocation, freeing, and access to be as fast as possible to avoid slowing

down userspace programs and the entire system. This makes the memory allocator in the kernel

far simpler than that in userspace (e.g., ptmalloc), rendering userspace heap defenses unsuitable

for kernel space.

From another perspective, even though the Linux kernel has introduced many defense mech-

anisms (e.g., CFI, SMEP, SMAP, and KASLR), none of them are effective against DirtyCred for

several reasons. Firstly, DirtyCred doesn’t breach any control-flow integrity, rendering efforts to

protect kernel control flow pointless. Secondly, DirtyCred isn’t reliant on a single exploitation

component. As shown in Section 3.7, valuable objects for exploitation are found in almost all gen-

eral caches, making it virtually impossible to defend against DirtyCred by eliminating exploitable

objects. Thirdly, DirtyCred achieves its goal by placing a legitimate credential object in an ille-

87

gitimate memory location rather than altering the content of a credential object. This exploita-

tion practice means that existing credential integrity protection techniques (e.g., Samsung Knox’s

Real-time Kernel Protection) are unlikely to be effective. Finally, DirtyCred escalates privileges

by swapping high and low privileged credential objects, rendering many kernel object isolation

schemes (e.g., AUTOSLAB and xMP) ineffective, as they separate critical kernel objects into their

own memory regions based on the object type rather than their privilege level.

In light of these challenges, we propose that an effective defensive measure against DirtyCred

would be to isolate high and low privileged objects in a manner that prevents them from sharing

the same memory space. This would prevent DirtyCred from overlapping objects with different

privileges to escalate privileges.

To achieve this, a simple approach would be to create two distinct caches, one for high privi-

leged object storage and another for low privileged objects. Since caches are naturally isolated, this

design could ensure that objects with differing privileges don’t overlap. However, as discussed in

Section 3.4.2, when a memory cache is destroyed, Linux’s buddy allocator recycles the underlying

memory page, meaning that DirtyCred could still launch its attack by exploiting this memory-page

recycling feature.

Design. Considering the analysis provided above, we propose a practical defensive measure that

establishes a cache for high privileged objects within the virtual memory region, while leaving

low privileged objects in the standard memory area (i.e., the direct-mapped memory region). The

virtual memory region pertains to dynamically allocated, virtually contiguous memory within the

kernel. This region spans the memory area defined by VMALLOC_START to VMALLOC_END. As it’s separate

from the direct-mapped memory region, the areas assigned to high and low privileged objects

won’t overlap, even after the caches are destroyed and the underlying memory pages are recycled.

Implementation. We have executed our proposed defense against DirtyCred on Linux kernel

88

Benchmark Vanilla Hardened Overhead
Phoronix

Apache (Reqs/s) 28603.29 29216.48 -2.14%
Sys-RAM (MB/s) 10320.08 10181.91 1.34%

Sys-CPU (Events/s) 4778.41 4776.69 0.04%
FFmpeg(s) 7.456 7.499 0.58%

OpenSSL (Byte/s) 1149941360 1150926390 -0.09%
OpenSSL (Sign/s) 997.2 993.2 0.40%
PHPBench (Score) 571583 571037 0.09%

PyBench (ms) 1303 1311 0.61%
GIMP (s) 12.357 12.347 -0.08%

PostMark (TPS) 5034 5034 0%

LMBench
Context Switch (ms) 2.60 2.57 -1.15%

UDP (ms) 9.2 9.26 0.65%
TCP (ms) 12.75 12.73 -0.16%

10k File Create (ms) 13.8 14.79 7.17%
10k File Delete (ms) 6.35 6.62 4.25%

Mmap (ms) 80.23 81.91 2.09%
Pipe (MB/s) 4125.3 4028.9 2.34%

AF Unix (MB/s) 8423.5 8396.7 0.32%
TCP (MB/s) 6767.4 6693.3 1.09%

File Reread (MB/s) 8380.43 8380.65 0%
Mmap Reread (MB/s) 15.7K 15.69K 0.06%

Mem Read (MB/s) 10.9K 10.9K 0%
Mem Write (MB/s) 10.76K 10.77K -0.09%

Table 3.3: The performance evaluation results of the proposed defense on two different benchmarks
– Phoronix and LMBench.

v5.16.15. In this implementation, we manually adjusted how cred objects and file objects are

allocated in the kernel. If the allocation pertains to privileged entities, we allocate them using

virtual memory. Specifically, when allocating cred objects, we assess the privilege based on the UID

of the object. If the UID matches GLOBAL_ROOT_UID, indicating that the allocation is for privileged cred

objects, we employ vmalloc as the allocator to allocate virtual memory for the object. Regarding

file objects, we examine the file’s mode. If the file is opened with write permissions, we allocate

the file object using vmalloc accordingly. Our implementation is available at [94].

Technical Discussion Our suggested defense safeguards the Linux kernel by enforcing memory

isolation for credential objects. As mentioned above, our implementation establishes the privilege

level at the time of object allocation. However, this privilege could be modified by changing the

89

UID during runtime (e.g., transitioning a low privileged credential object to a high privileged one

via a ’setuid’ syscall). When this happens, our proposed defense may face security challenges as

we only carry out object isolation at the time of allocation.

To tackle this issue, we adjusted the way kernel credential objects are altered in our imple-

mentation. Specifically, if the kernel changes a credential object’s UID to GLOBAL_ROOT_UID, we will

copy the high privileged credential object to the ’vmalloc’ region instead of modifying the original

one. Nevertheless, we anticipate potential issues if future kernel development doesn’t adhere to

the same pattern. Therefore, we plan to explore alternative solutions as part of our future work.

Performance Evaluation. To assess the performance of our defensive approach, we performed

two benchmarks on both the standard Linux kernel and our defense-embedded kernel on a bare-

metal machine (equipped with an Intel 4-Core CPU, 16GB RAM, and 1000GB HHD). Our bench-

marks include a micro-benchmark from LMbench v3.0 [101] and a macro-benchmark from Phoronix

Test Suite [102]. LMbench measures syscall and system I/O latency and bandwidth, whereas the

Phoronix Test Suite gauges the performance of real-world applications on both Linux kernels. For

LMbench, we conducted the benchmark 10 times to minimize randomness and took the average as

the observed performance. For the Phoronix Test Suite, we executed the test in batch mode, which

runs the test 50 times and produces average values.

Table 3.3 presents our evaluation outcomes. Firstly, we note that our proposed method gener-

ally incurs minimal performance overhead, suggesting that our defense is lightweight. Secondly,

we observe some moderate performance decline for the test cases – ”10k File Create” and ”10k File

Delete” – in LMBench. As shown in Table 3.3, our proposed defense introduces an overhead of

over 4%. The performance decrease is due to file objects being allocated to the virtual memory re-

gion via vmalloc, rather than the standard memory region via kmalloc. Compared to kmalloc, vmalloc

is somewhat slower as virtual memory must remap the buffer space into a virtually contiguous

90

range, whereas kmalloc doesn’t require remapping.

It’s worth noting that file deletion results in a smaller performance reduction than file creation

(4.25% vs. 7.17%). The disparity arises because the freeing of file objects is handled by RCU,

which operates asynchronously to the file deletion process. While the moderate overhead might

concern some production systems, it significantly enhances kernel protection against DirtyCred.

In this work, our primary goal is to raise awareness within the Linux community rather than to de-

velop a secure, efficient defense solution. We reserve the exploration of alternate defense solutions

for future research. Lastly, it should be mentioned that some cases showed a slight performance

improvement after introducing defense to the Linux kernel. This is primarily due to experimental

noise, although we endeavored to reduce noise as much as possible by running the benchmark

multiple times and disabling CPU boost on the bare-metal machine.

3.9 Discussion and Future Work

In this section, we address some other issues not yet discussed and outline potential directions for

future research.

3.9.1 Escaping Containers

DirtyCred can potentially enable both passive and active container escapes in addition to facilitat-

ing privilege escalation on Linux. As previously explained, DirtyCred exploits vulnerabilities by

swapping either file or credential objects. By utilizing file objects, DirtyCred can overwrite a file

with high-level privileges. However, no file within a container allows the privilege to switch the

namespace. Recent research [103] has shown a potential solution to this challenge. An attacker

could passively wait for the runC process and execute root commands on the host by overwriting

this process. Inspired by this approach, DirtyCred could use the file object swapping mechanism

91

to overwrite the runC process and successfully escape the container.

On the other hand, using credential objects to enable container escape eliminates the need for

passive waiting. DirtyCred could trigger a Linux kernel vulnerability, swap credential objects, and

thereby escalate the attacker’s privilege to SYS_ADMIN. With the SYS_ADMIN privilege, the attacker could

employ a previously proposed docker escape method [104], which involves mounting a cgroup and

using the notify_no_release mechanism to execute root commands on the host system. To showcase

DirtyCred’s potential for container escape, we provide a working exploit at [94]. Reviewers can

download this exploit for more details on docker escape.

3.9.2 Android Rooting

Beyond container escape, DirtyCred also holds the potential for Android rooting. The Android

kernel, based on the generic Linux kernel, is notoriously more challenging to exploit due to its

stricter access controls and newly deployed defenses [84]. Nevertheless, DirtyCred can root An-

droid using either of the two attack pathways discussed in this paper. It can directly swap task

credentials, providing attackers with privileged task credentials and thus root privilege. Alterna-

tively, DirtyCred could initially use its file manipulation capability to overwrite a shared system

library, allowing for privilege escalation from a restricted sandbox. Then, it could overwrite kernel

modules with malicious code to achieve arbitrary read/write and ultimately disable SELinux on

Android. We demonstrated DirtyCred’s capacity to root Android using zero-day vulnerabilities.

At the time of writing this paper, we reported these vulnerabilities to Google, who acknowledged

our findings.

92

3.9.3 Cross Version / Architecture Exploitation

Crafting an exploit with the guidance of DirtyCred can yield an exploit code that works across

various kernel versions or architectures without any modification. This compatibility arises be-

cause DirtyCred doesn’t need to handle Kernel Address Space Layout Randomization (KASLR),

unlike other exploitation methods that require a leak of the kernel base address to bypass KASLR.

As such, the exploitation code doesn’t include any data specific to kernel versions or underlying

architectures. Furthermore, many prior kernel exploitation methods (e.g., KEPLER [105]) heavily

depend on Return-oriented Programming (ROP) for privilege escalation. Migrating these exploits

to a different architecture necessitates modifying the ROP chain to maintain exploitability. As

discussed throughout this paper, DirtyCred doesn’t use any architecture-specific data. Therefore,

once an exploit code is developed for a vulnerability, it should work on other vulnerable kernels,

regardless of their versions or underlying architectures.

3.9.4 Alternative Approaches for Capability Pivoting

In Section 3.4, we presented several techniques for pivoting a memory corruption capability to

a capability useful for DirtyCred. During our evaluation, we discovered that vulnerabilities oc-

curring in virtual memory are more challenging to exploit with DirtyCred. This difficulty arises

from the limited number of exploitable objects in virtual memory, which restricts the pivoting of

capabilities from the original memory corruption to those useful for DirtyCred. However, this

does not imply that vulnerabilities in virtual memory cannot be exploited with DirtyCred. For in-

stance, CVE-2021-34866 exhibits an out-of-bound capability that demonstrates memory overwrite

on vmalloc’ed memory. Although our pivoting approach cannot utilize this capability to deallo-

cate a credential object, a recent writeup [106] illustrates a sophisticated method that converts this

overwrite capability on vmalloc into an arbitrary read and write, enabling a double-free capability.

93

As discussed and demonstrated in Section 3.4.2, leveraging a double-free capability significantly

increases the likelihood of successful privilege escalation by DirtyCred. Apart from capability

pivoting, recent research [20] has introduced an approach to explore different capabilities of a

vulnerability. We argue that these methods complement the DirtyCred attack, as demonstrated in

Section 3.3.1, where DirtyCred can still be launched without pivoting capabilities. We leave the

exploration of other pivoting methods for future research.

3.9.5 Exploitation Stability

Similar to other kernel exploitation methods, DirtyCred’s exploitation stability can be influenced

by two critical factors. First, when pivoting vulnerability capabilities, DirtyCred manipulates the

memory layout to take control of the target memory location. The exploitation stability may vary

if the memory layout manipulation is affected by system activities. Second, the stability of ex-

ploitation is also impacted by the way the kernel vulnerability is triggered. To enhance exploitation

stability, recent work [107] has proposed a series of methods to stabilize kernel exploitation. In our

research, our goal is to assess the exploitability of DirtyCred in real-world scenarios. We conclude

that DirtyCred can successfully exploit a vulnerability as long as it demonstrates exploitability.

In the future, we plan to explore the utilization of existing exploitation stabilization techniques to

improve the success rate of DirtyCred’s exploitation.

3.9.6 TOCTOU

As discussed earlier, DirtyCred swaps credential objects within a critical time window. It is reason-

able to consider that existing TOCTOU defense mechanisms may hinder our proposed exploitation

method. A recent research article [108] categorizes TOCTOU defense into source code detection,

postmortem detection, system call interposition, intra/inter-process memory consistency, transac-

94

tional system calls, and sandbox filesystem. Source code detection analyzes the source code of

the target program, which cannot be applied to defend against our exploitation since DirtyCred

does not exhibit any identifiable source code patterns. Postmortem detection detects TOCTOU

vulnerabilities after the attack has been executed, which does not impact our exploitation since we

employ unexpected free operations that are not visible during the analysis process. System call

interposition monitors the system call sequence to detect attacks, but our exploitation method does

not employ a malicious system call sequence, making system call interposition ineffective against

DirtyCred. Intra/inter-process memory consistency protects shared variables in multiple threads

by recording operations on the variables, but our exploitation involves unexpected operations that

cannot be recorded. Transactional system calls and sandbox filesystem focus on the race condition

between file read and write, which is not required by our method.

3.10 Related Work

This research presents a novel method for kernel exploitation and proposes a corresponding defense

mechanism to mitigate the associated threat. Therefore, the most relevant existing works are in the

areas of kernel exploitation and kernel exploitation mitigation. In the following, we summarize the

works in these two domains and highlight the distinctions from our proposed techniques.

Kernel Exploitation. Over time, kernel exploitation techniques have evolved alongside the de-

velopment of kernel defenses. Before the introduction of Supervisor Mode Execution Prevention

(SMEP) [90], the ret2usr technique [109] exploited the Linux kernel by pivoting kernel execution

to the userland. However, with the widespread deployment of SMEP in Linux, this technique be-

came ineffective since SMEP prevents kernel execution in userspace. Subsequently, Supervisor

Mode Access Prevention (SMAP) [89] was proposed to further enhance the separation between

the kernel and userspace by blocking direct userspace access. To bypass the protections enforced

95

by SMEP/SMAP, researchers introduced new exploitation methods. For example, the ret2dir tech-

nique [110] by Kemerlis et al. mirrored userspace data within the kernel address space, while

KEPLER [105] by Wu et al. utilized a specific kernel code gadget to enable a long ROP chain by

transforming the PC control through stack overflow.

To counter Return-Oriented Programming (ROP) attacks against the Linux kernel, KASLR

(Kernel Address Space Layout Randomization) was introduced to increase the difficulty of ex-

ploitation by randomizing the kernel memory address layout. However, security experts devised

practical methods [111]–[114] to circumvent KASLR. For instance, elastic objects in the kernel

were utilized, as demonstrated by ELOISE [114], which disclosed sensitive kernel information by

overwriting the length field of elastic objects. Additionally, Gruss et al. proposed a hardware

side-channel attack leveraging pre-fetch instructions to bypass KASLR. Recent advancements

even exploited vulnerabilities in processors, such as Meltdown [115] and Spectre [116], to by-

pass KASLR’s protection on Linux. Furthermore, researchers proposed techniques to randomize

the heap memory layout in the Linux kernel [117], [118], making heap layout manipulation more

challenging for adversaries. However, Xu et al. introduced a memory collision technique [97]

that utilized the memory reuse mechanism to exploit kernel use-after-free vulnerabilities without

being hindered by heap randomization. In contrast to the aforementioned exploitation techniques,

our work focuses on end-to-end exploitation without the need to bypass widely deployed kernel

defenses. Unlike specific kernel protections or exploit mitigations, our method is more general

and consequential. As discussed in Section 3.9, DirtyCred can even facilitate the ability to escape

containers and root Android devices.

Kernel Defense. In addition to the kernel defenses introduced together with the existing exploita-

tion methods, there are various other kernel protection and exploit mitigation mechanisms pro-

posed by academia and industry, which have received significant attention from the security com-

96

munity. Here, we provide a brief overview of some recently proposed or widely adopted defenses.

To counter side-channel attacks against the Linux kernel, Gruss et al. proposed KAISER [119],

a strict kernel and userspace isolation mechanism that ensures hardware does not hold any informa-

tion about kernel addresses while running in user mode. To improve KASLR, Function Granular

Kernel Address Space Layout Randomization (FGKASLR) [120] was introduced, randomizing

the layout down to the code function level, thereby increasing the difficulty of code-reuse attacks.

In the realm of control-flow hijacking prevention, researchers proposed various defense mecha-

nisms to enforce control-flow integrity in the Linux kernel [91], [121]–[123]. For example, Yoo et

al. implemented an in-kernel control-flow integrity protection using ARM’s Pointer Authentica-

tion [123].

Moreover, several defense techniques have focused on protecting critical kernel data [124]–

[128]. AUTOSLAB [95] and xMP [129] are examples of such kernel defenses. AUTOSLAB

isolates different types of objects into different memory caches, reducing the objects available for

kernel heap memory manipulation. On the other hand, xMP employs virtualization techniques to

isolate sensitive data, preventing unauthorized tampering.

In terms of defense philosophy, our defense mechanism differs from works that safeguard

kernel control-flow integrity. While it shares similarities with defenses that isolate critical kernel

data, our defense is distinct from them in technical implementation. Rather than isolating objects

based on their types or sensitivity, our defense performs memory isolation based on the privilege of

kernel objects. As a result, it is more effective in defending against the threat posed by DirtyCred.

3.11 Conclusion

The Linux kernel incorporates various protection mechanisms and exploit mitigation techniques,

making successful kernel exploitation challenging. To bypass these defenses, attackers must lever-

97

age a vulnerability with strong capabilities to circumvent protection and mitigation measures. In

this work, we introduce a novel exploitation method called DirtyCred. DirtyCred enables ex-

ploitation and defense circumvention without relying on a specific kernel vulnerability. Through

DirtyCred, we demonstrate that an attacker can utilize almost any heap-based kernel vulnerability

to swap credential objects. This credential swap confuses the Linux kernel, leading it to treat a

highly privileged file or task as if it were in a lower privileged mode. Consequently, an unprivi-

leged user can escalate their privileges for malicious purposes. Based on our findings, we conclude

that DirtyCred undermines the existing defense architecture of Linux, and if immediate action is

not taken by the security community, Linux-driven systems will be at risk, potentially causing sig-

nificant harm to their users. In light of this conclusion, we propose a defense mechanism in the

form of privilege-object isolation. As part of our research, we have implemented a Linux kernel

prototype that incorporates this defense mechanism. Our experiments demonstrate that it effec-

tively enhances the security of Linux at a minimal to moderate cost. With this new discovery, we

further emphasize the necessity of isolating memory based on object privilege to defend against

the threat of DirtyCred. We have shared some of our research findings with software and hardware

vendors that may be affected by DirtyCred. We are actively collaborating with them to ensure they

understand and can mitigate this threat.

98

CHAPTER 4

CAMP: COMPILER AND ALLOCATOR-BASED HEAP MEMORY PROTECTION

4.1 Introduction

The heap, a region of computer memory dynamically allocated during runtime, is extensively

utilized for dynamic memory allocation and the housing of variable-sized data structures. Given

its frequent usage and intricate nature, the heap is especially susceptible to spatial and temporal

memory errors.

Numerous heap protection methodologies have been deployed over the years, aiming to bolster

the security of the heap. These include advancements in heap management algorithms [130] and

the incorporation of layout randomization techniques [131], [132]. While these developments

have bolstered the heap’s security, the ongoing discovery and progression of new vulnerabilities

and exploitation techniques [10], [71], [133]–[135] signify that heap exploitation is still a pertinent

issue.

We propose that a key solution to efficiently combat heap exploitation is to detect and pre-

vent heap memory corruption. Previous research endeavours such as Memcheck [136] and Ad-

dress Sanitizer [137] targeted comprehensive protection, whereas others mitigated use-after-free

errors [130], [138]–[143] or detected out-of-bound access [144]–[146] for partial protection. How-

ever, these solutions either introduced significant runtime overheads, like the 26x overhead intro-

duced by MemCheck [136] in Valgrind, or provided restricted protection, such as FFmalloc [142]

which only safeguards against certain use-after-free vulnerabilities.

In this work, we present CAMP (Compiler and Allocator-based Heap Memory Protection), an

99

innovative heap sanitizer for the detection of spatial and temporal heap errors. Unlike other stud-

ies [145]–[152] which require hardware support, CAMP is purely software-based, comprised of a

compiler and a seglist allocator. The compiler instruments the target program to verify the pointer

boundary and establish point-to relation at runtime. The custom memory allocator monitors mem-

ory ranges for each allocation, supporting the instrumented instructions, and neutralizing dangling

pointers when a memory object is released. This work showcases an innovative amalgamation of

a compiler and seglist allocator to achieve comprehensive heap protection with minimal runtime

overhead.

The uniqueness of CAMP stems from its error detection scheme which affords significant opti-

mization potential. Specifically, CAMP manages metadata within the allocator, enabling its runtime

to present a significantly lower complexity of O(1) for each pointer invalidation as opposed to ex-

isting defense solutions [138] with a complexity of O(logN). Moreover, CAMP integrates three

compiler optimizations that reduce runtime overhead by limiting the number of instrumentations,

without compromising security. As we will detail in Section 4.4, these optimizations involve the

elimination of unnecessary (and/or redundant) instrumentations and the consolidation of runtime

boundary checks. As will be shown in Section 4.6, optimization plays a critical role in curtailing

the runtime overhead.

This paper offers the following contributions:

• We introduce a novel approach, CAMP, which employs a customized allocator and a compiler

to safeguard against heap memory corruption. Additionally, we propose optimization strategies

aimed at reducing the performance overhead introduced by the instrumentation.

• We implement CAMP by customizing a segregated list allocator – tcmalloc and building our

instrumentation optimization mechanism on top of the LLVM 12.0 compiler framework. Upon

100

the acceptance of this paper, we intend to make CAMP accessible to the community by open-

sourcing it at [153].

• We carry out an exhaustive evaluation of CAMP using the real-world application Nginx, as well

as the SPEC CPU 2006 and 2017 benchmarks, from both security and runtime overhead per-

spectives. This evaluation compares CAMP’s performance with other defense solutions offering

comparable levels of heap protection.

The remainder of the paper is structured as follows. Section 4.2 provides a background on

memory corruption on the heap as well as heap allocators. Section 4.3 outlines the assumptions

of our research and the threat model. Section 4.4 discusses the details of the proposed techniques.

Section 4.5 outlines our implementation details. Section 4.6 evaluates the security and runtime

overhead of our proposed techniques. Section 4.7 delves into a discussion of some related issues,

followed by the related work in Section 4.8. We conclude the work in Section 4.9.

4.2 Background

This section will explore the context and characteristics of various heap allocators. We will also

familiarize ourselves with two categories of heap memory corruption errors - out-of-bound and

use-after-free.

4.2.1 Corruption and Protection of Heap Memory

Heap memory corruption primarily takes two forms: overflow and use-after-free. We will delve

into the specifics of these two types of corruption and outline the methods employed for their

protection.

101

Heap Overflow. Every heap object has its designated memory space. A heap overflow situation

arises when the usage of a heap object surpasses its allocated memory capacity. The conventional

method of detecting heap overflow involves setting aside some memory as heap cookies or red

zones. A heap overflow can be detected if the magic value in the designated area is modified [154].

This approach, however, is not foolproof and can be circumvented. For instance, attackers can

undermine the detection process by leaking the heap cookie [155] or overflowing the memory

while keeping the red zone untouched [156]. Another tactic involves validating pointers to ensure

there’s no out-of-bound access [145], [146], [157]. While effective, this approach often leads to

notable overhead [144].

Heap Use-After-Free. The issue of use-after-free arises when the memory space of a heap object

is released, leaving behind references to the object, also known as dangling pointers. The program

should avoid deferring to these dangling pointers to prevent a use-after-free situation. Several

techniques have been suggested to detect use-after-free scenarios. ASAN [137], for instance, uses

shadow memory to log memory status and inserts instruments into every memory access. By

checking the shadow memory, access to a freed object can be detected instantly. Despite ASAN’s

method only resulting in reasonable overhead, its security assurance is relatively weak as attackers

can alter the shadow status by reallocating the freed object. More effective strategies include never

reusing freed memory [142] or postponing the freeing of memory [158], which prevents attackers

from tampering with freed objects. Additionally, nullifying all existing references once an object

is freed [138], [139], [159] can effectively thwart use-after-free scenarios.

102

4.2.2 Heap Memory Allocators

Heap memory allocators are essential for the dynamic management of ”global” memory. The

effectiveness of a memory allocator is determined by its speed of memory allocation/deallocation

and the minimal waste it produces. As such, various memory allocation algorithms have been

developed. Here, we discuss the three most commonly used types of memory allocators.

The first type is the sequential-fit allocator. This allocator typically uses a freelist linking all

the freed memory objects. Upon a request for memory allocation, the allocator scans through the

freelist until it identifies a freed object with sufficient memory space. If the freed memory object

is larger than required, the allocator divides the memory and reinserts the surplus back into the

freelist. Sequential-fit allocators often merge neighboring freed objects to prevent fragmentation.

The second type is the Segregated List allocator (seglist allocator), which utilizes an array of

freelists, each containing freed objects of the same size. During memory allocation, the seglist al-

locator locates the freelist of the requested size to find an appropriately sized object. Deallocating

an object requires identifying its size to determine the freelist it belongs to. While the seglist al-

locator requires finding the corresponding freelist during allocation and deallocation, it eliminates

the need for splitting and merging memory, unlike the sequential-fit allocator.

The third type of allocator, the buddy system allocator, functions similarly to the seglist allo-

cator by maintaining different freelists for varying sizes of memory objects. However, a unique

feature is that if the freelist of the requested allocation size is empty, the allocator will partition a

larger object to meet the allocation requirement. Also, deallocating an object allows it to recombine

the remaining portion back into a larger object.

103
1 void main() {
2 char *buf = malloc(16);
3 buf[32] = 'x';
4 free(buf);
5 buf[0] = 'y';
6 }

Listing 10: A toy vulnerable example.

1 void main() {
2 char *buf = malloc(16);
3 __escape(&buf, buf);
4 __check_range(buf, &buf[32], sizeof(char));
5 buf[32] = 'x';
6 // free buf, which neutralizes the dangling pointer stored in &buf
7 free(buf);
8 __check_range(buf, &buf[1], sizeof(char));
9 buf[0] = 'y';

10 }

Listing 11: The toy program with CAMP’s protection.

4.3 Assumptions & Threat Model

CAMP is primarily centered around the detection of heap errors, encompassing both spatial and

temporal heap errors. We operate under the assumption that the target program, coded in a low-

level language and compiled by CAMP, harbors at least one heap-based memory vulnerability.

Given that our endeavor is concentrated on securing userspace applications, the defense of lower-

level kernel security falls outside our purview. In our envisioned threat landscape, we consider

an attacker who is aware of CAMP’s deployment, has access to the heap vulnerability, and aims to

exploit this flaw for privilege escalation.

4.4 CAMP

In this section, we first illustrate CAMP’s protective mechanism with an example of a vulnerable

program and then delve into the specifics of its design.

104

4.4.1 An Toy Vulnerable Program

List 10 demonstrates a sample program that harbors two heap memory corruption vulnerabilities.

The program, in particular, allocates 16 bytes of memory (line 2), then accesses the memory object

at index 32, which trespasses the memory range boundary (line 3), thereby leading to a heap

memory overflow. It should be noted that this heap overflow remains undetected by ASAN due

to the red zone being overlooked by the overflow. In line 4, the memory object is deallocated,

rendering the pointer buf a dangling pointer. Subsequently, the dereferencing of this dangling

pointer (line 5) results in a use-after-free memory corruption.

4.4.2 CAMP’s Protection Mechanism

In essence, CAMP fortifies the program by instrumenting it to detect memory corruption and deter

exploitation. List 11 demonstrates the fortified version of the toy program. Following this, we

detail how CAMP secures the vulnerable toy program.

Pointer Validation. CAMP identifies heap overflow by affirming the result pointers from pointer

arithmetic, ensuring that no out-of-bound pointers are generated. This is achieved by incorporating

a check instruction at the point of the pointer arithmetic to prompt the runtime and verify that the

result pointer lies within the base pointer’s range. As demonstrated in List 11, pointers &buf[32]

and &buf[0] are derived from the buffer buf in lines 5 and 9, respectively. CAMP autonomously in-

tegrates check instructions in lines 4 and 8 to validate these pointers. Should the runtime detection

ascertain that &buf[32] is an out-of-bound pointer, CAMP will terminate the execution to preclude

exploitation. It’s worth noting that this query necessitates that CAMP continuously maintains a

record of each memory allocation and its corresponding memory range, which is noted during

runtime for each heap allocation (line 2).

105

Neutralization of Dangling Pointers. CAMP deters use-after-free by neutralizing dangling point-

ers. During runtime, CAMP constructs the point-to relation by instrumenting the program. When

a memory object is freed, CAMP can refer to the established point-to relation and identify the dan-

gling pointers to the freed memory. By neutralizing these dangling pointers, access to use-after-free

is effectively rendered impossible. Copying pointers (i.e., pointer escapes [160]) is tracked to con-

struct the point-to relation. For instance, the program copies the heap pointer to the variable buf

(line 2 of List 11), which qualifies as a pointer escape, and CAMP incorporates an escape tracking

instruction after that (line 3). This escape tracking instruction inputs the address of the variable and

the pointer, noting which address holds a reference to the memory allocation. Following this, the

program frees the memory (line 7). Inside the free, CAMP identifies the existing dangling pointers

to the freed memory and neutralizes them as non-congenial. Consequently, the variable buf no

longer references the freed memory, and the program crashes when it is dereferenced (line 9).

4.4.3 Design Overview

Figure 4.1 depicts the principal components of CAMP, which includes a compiler and a memory

allocator. The CAMP compiler, constructed on the basis of LLVM, processes the source code to

produce binaries associated with the CAMP allocator. During the compilation stage, the compiler

initially transforms the source code into LLVM IR before incorporating range checking and es-

cape tracking instruction, this defends against heap memory corruption. Post this, the compiler

enforces several unique compiler optimizations to minimize the protective overhead, all while en-

suring security isn’t compromised. When in operation, the CAMP allocator addresses heap memory

allocation and deallocation requests. Furthermore, it provides support for the instrumented instruc-

tions. In particular, it keeps track of the memory range for each allocation, enabling the allocator

to validate pointer bound information for every range checking query. It also manages the escape

106

Binary

Neutralizing
Dangling Pointer

Binary

Tracking Memory
Size

Checking
Memory Range

Building
Point-to Relation

Escape
Cache

CAMP Compiler

m
a
llo

c

c
h

e
c
k

e
s
c
a
p

e

fr
e
e

CAMP Allocator

LLVM IR

Object File

Range

checks

Escape

tracking

 Optimi-
 zation

Removing

In-bound

Removing

Redundant

Inlining

libc calls

Instrument-
ation

Linking

Source code (C/C++)

COMPLIE TIME RUN TIME

Figure 4.1: The design overview of CAMP.

tracking instruction to construct the point-to relationship. Thus, whenever a memory object is re-

leased, it is capable of neutralizing the corresponding dangling pointers, blocking the UAF access

from such pointers.

4.4.4 Instrumentation by the Compiler

Range Checking Instrumentation. Given that our program model doesn’t permit casting inte-

gers to pointers, all initial pointers come from explicit memory allocation (like malloc), or from

addressing global or stack variables. [144] These pointers are then utilized through pointer arith-

metic to generate new pointers, which are used to access memory. The function of CAMP’s range

checking is to confirm that all pointers following arithmetic remain within bounds, thereby avert-

107

ing heap overflow. As shown in List 10, the range checking considers three arguments, namely

the base pointer src, the result pointer dst of the arithmetic, and the type size size of dst. The

run-time will verify that the memory ranging from dst to dst + size falls within src’s memory

range.

It’s worth noting that CAMP exclusively protects heap memory, so validating non-heap memory

pointers is unnecessary. To avoid needless validation, CAMP carries out dataflow and alias analysis

on the LLVM IR to ascertain the point-to relationship of pointers. If a pointer is confirmed not to

point to the heap at compile time, CAMP won’t conduct range checking for it.

Escape Tracking Instrumentation. The escape tracking insertion allows CAMP to construct the

point-to relationship of memory objects in real-time. We adopt a similar approach as presented in

CARAT [160], [161] and DangNull [138] to introduce tracking after pointer escapes (i.e., copy-

ing pointers). As illustrated in Section 4.4.2, the tracking considers the copied pointer and its

stored address as arguments. Unlike CARAT and DangNull, which instrument all potential pointer

escapes, CAMP omits pointer escapes if the pointer is determined not to reference the heap dur-

ing compilation. Given that CAMP’s aim is to prevent heap memory errors, bypassing non-heap

point-to relations doesn’t risk security but contributes to better CAMP performance.

4.4.5 Runtime Support

CAMP’s runtime offers foundational support for its instrumentation. The execution speed of the in-

serted instruction is vital to CAMP’s overall performance. Suppose a program allocates m memory

segments, and CAMP maintains a record of the allocated memory in a linked list. In the worst-case

scenario, a single range checking operation could result in O(m) time complexity, which could

impose insurmountable runtime overhead. Similarly, a naive design that records n pointer escapes

108

in a linked list could introduce O(n) time complexity when releasing an object. Next, we’ll discuss

how our design works in harmony with the allocator to provide fast runtime support.

Seglist Allocator. As stated in Section 4.2, a Seglist Allocator uses different free lists for varying

sizes of memory objects. To free a memory object, the allocator must locate the free list of its

size and insert the object into it. To ensure quick allocation and deallocation, the time complex-

ity of finding the free list is designed to be constant. For instance, tcmalloc [162], a Segregated

List Allocator developed by Google, employs span as the basic memory management unit. Each

span handles a size class of memory objects across several continuous memory pages. The spans

are kept in a page table where the page serves as the key. Whenever a memory object is allo-

cated or deallocated, tcmalloc can locate its span, and then retrieve the freelist with constant time

complexity.

The CAMP allocator uses the design of the Segregated List Allocator to provide quick runtime

support. For each span, CAMP records the size of memory objects as one of the metadata. As the

seglist allocator divides the memory page equally into objects, given a heap pointer denoted as ptr,

we can first calculate the object’s index with:

idx = (ptr − page base)/size

Here, idx is the object index to the span, page base signifies the starting address of the page

in the span, and size refers to the size of the object. With this information, the lower boundary

of the memory range can be identified as page base + idx ∗ size and the upper boundary as

page base+ (idx+ 1) ∗ size. This direct approach results in constant time complexity for pointer

validation.

Maintaining Point-to Relation. CAMP varies from DangNull [138] and CARAT [160], [161]

in how it encodes the point-to relationship. While DangNull and CARAT utilize a red-black tree

109

1 struct obj {
2 int a;
3 int b;
4 };
5 struct obj* bar() {
6 // type-casting from void* to obj*
7 struct obj *o = malloc(sizeof(struct obj));
8 __check_range(o, o, sizeof(struct obj));
9 ...

10 }
11 int foo(struct obj *ptr) {
12 __check_range(ptr, &ptr->a, sizeof(ptr->a));
13 ptr->a = 1;
14 __check_range(ptr, &ptr->b, sizeof(ptr->b));
15 ptr->b = 2;
16 }

Listing 12: An example of optimizing structure field access checks.

structure, optimizing the time complexity of locating a relation to O(logN), CAMP integrates the

point-to information into the seglist allocator, optimizing cost to constant time complexity. Specif-

ically, CAMP’s seglist allocator maintains an escape table for each span, which is a map of object

indices to their escape lists. The escape lists are linked-list structures that chain corresponding

escapes to their assigned objects. When an escape tracking call is made, CAMP calculates the

memory object’s index in the span, retrieves its escape list from the table, and inserts a record into

the list. When a memory object is freed, CAMP’s allocator checks its escape list and neutralizes all

the existing dangling pointers to the memory object.

To further enhance the overall performance of CAMP, we devise a cache mechanism for main-

taining the point-to relationship. New point-to relations are temporarily stored in the cache until it

becomes full, at which point the records are transferred to the allocator in a batch, while omitting

any duplicates. This cache design enhances runtime speed and reduces memory overhead, espe-

cially in situations where the program operates repeatedly in the same block and creates similar

point-to relations.

110

Input: A function F ;
Output: A set of pointer to be validated S ;
Initialize: NewPointerSet = getNewPointerSet{F} ;
In = Out = changeSet = dict() ;
foreach ptr ∈ NewPointerSet do

if pointerMapbase[base(ptr)] == NULL then
pointerMapbase[base(ptr)] = set() ;

end
pointerMap[base(ptr)].add(ptr) ;

end
In = pointerMap ;
changeSet = In−Out ;
while changeSet ̸= ∅ do

foreach key, val ∈ In do
if ∃ p, p’ ∈ val and RedundantPair(p, p’) then

val.remove(p′) ;
val.p.offset = MAX(p.offset, p′.offset) ;
Out[key] = val ;
break;

end
else

Out[key] = val ;
end

end
changeSet = In−Out ;
In = Out ;

end
foreach key, val ∈ Out do

S.add(val) ;
end

Algorithm 1: Removing Redundant Validation

4.4.6 Compilation Optimization

CAMP is distinct in that it permits considerable optimization possibilities during the compilation

phase. This attribute can considerably enhance performance while maintaining security. Here, we

elucidate three optimization algorithms conceived specifically for CAMP.

Type Information-aided Optimization of Range Checks. A rudimentary strategy to prevent

out-of-bound access is to implement range checks for each pointer arithmetic operation, ensuring

111

pointers do not trespass memory boundaries. Take for instance, the function foo in List 12. Here,

the variable ptr on lines 13 and 15 undergoes two pointer arithmetics, and to maintain security,

CAMP needs to insert range checks for the result pointers (lines 12 and 14). An enhanced strategy

involves eliminating validation if the compiler identifies the pointer as in-bound, thereby elevating

performance. However, compilers usually lack data concerning a pointer’s memory range, which

makes it difficult to ascertain which pointers are in bounds.

To implement the aforementioned enhancement, we use type information during the compila-

tion process to discern the memory range of a pointer. This process involves validating not only

pointer arithmetic but also type-casting operations to ascertain that the memory space pointed to

by a typed pointer is sufficient for its respective type.

As an illustration, refer to the code in List 12, where function bar allocates a new object obj

(line 7). The return type of malloc is void*, not struct obj*, leading the compiler to introduce a

type-casting instruction. Following this, CAMP inserts a range check to confirm the memory space

can hold the obj structure (line 8). With this type-casting validation, the compiler can confidently

deduce that the memory space of a typed pointer is at least its type size. Consequently, the compiler

can assert that pointers referring to the structure field are within bounds. As a result, CAMP can

omit the range checks on lines 12 and 14. Moreover, the compiler can ensure the memory for

pointer o (line 6) is at least the size of its type, allowing the range check on line 7 to be optimized

and removed.

This optimization strategy is made viable due to CAMP’s distinctive approach to security checks,

which removes the risk of accessing a dangling pointer such as ptr in function foo. This allows

for robust optimization of range checks for field pointers, without the fear of triggering a use-

after-free vulnerability. As we will demonstrate in Section 4.6, the above-mentioned optimization

technique greatly enhances CAMP’s runtime performance, particularly for programs containing

112
1 struct obj {
2 char *mem;
3 };
4 void foo(struct obj *ptr, bool flag) {
5 __check_range(ptr->mem, &ptr->mem[0x100], 1);
6 ptr->mem[0x100] = 'x';
7 if (flag) {
8 ptr->mem[0x30] = 'y';
9 ptr->mem[0x1] = 'y';

10 }
11 ptr->mem[0x1] = 'z';
12 ptr->mem++;
13 }

Listing 13: Example codes of applying eliminating redundant optimization.

type-associated pointers. It’s important to note that we do not employ the above optimization for

pointers lacking type information (e.g., void*, char *) or when their type sizes cannot be deter-

mined during compilation (e.g., elastic objects [135]).

This optimization is feasible due to CAMP’s innovative design of security checks. The security

design guarantees the absence of dangling pointers at runtime, and each typed pointer possesses

sufficient memory for its structure type. Therefore, CAMP can aggressively optimize range checks

for its field pointers without the worry of invoking a use-after-free or out-of-bound. ASAN’s

design cannot make this assurance; hence optimizing access to a dangling pointer could lead to a

use-after-free.

Eliminating Redundant Instructions. In the context of this work, a superfluous instruction per-

tains to a range check that validates already validated pointers or an escape tracking that constructs

a point-to relation already noted. The opportunity for optimization here lies in eliminating these

unnecessary instructions to enhance performance.

Common sense suggests that if two range checks are validating the same result pointers from

pointer arithmetic, one can be done away with. As an example, in List 13, the pointer &ptr->mem[1]

on lines 9 and 11 are aliases. Hence, we could simply exclude the validation for &ptr->mem[1] on

113

line 9. Furthermore, CAMP’s security design allows for the merging of multiple pointer validations

into a single validation. Initially, CAMP is required to validate the result pointers &ptr->mem[0x100]

(line 6), &ptr->mem[0x30] (line 8), and &ptr->mem[0x1] (line 11) individually. However, if the pointer &

↪→ ptr->mem[0x100] is within bounds, the other two pointers are inevitably within bounds as well.

Consequently, we could do away with their validations and shift the validation of &ptr->mem[0x100]

to line 5, as displayed in List 13. Formally, given two result pointers ptr1 and ptr2 from the same

base pointer ptr, their validation can be consolidated if the following function returns True.

function REDUNDANTPAIR(ptr1, ptr2)

if ptr1.offset ¿= ptr2.offset then

if dominate(ptr1, ptr2) or

post-dominate(ptr1, ptr2) then

return True

return False

end function

The offset in the first condition symbolizes the maximum access offset from the base pointer.

Hence, this condition mandates that offset should be within the range of [ptr, ptr1]. The second

condition ensures validation redundancy, where the two validations will be performed together.

We utilize Algorithm 1 to eliminate redundant pointer validation. The algorithm takes a function

F as input and outputs a set of pointers to be validated S. Initially, all the result pointers are

gathered (line 3) and sorted into a map based on their base pointers (lines 5 to 8). The map’s

key is the base pointer, and the value is the set of result pointers. Then, we apply the fixed-

point algorithm [163] for optimization. In each iteration, we traverse through the map’s elements

(line 12). If we identify two pointers that meet the redundancy condition (line 13), we remove

the latter one (line 14) and update the remaining one’s offset with their maximum value (line

114

15). Subsequently, we update the iteration output (line 16) and exit the loop to commence the

next iteration. Note that if no redundancy pair is discovered, the output will be the same as the

iteration input (line 19). When there is no redundancy pair left, this signifies that the fixed point

has been reached. Then, we collect the remaining pointers from the out to S (lines 22 to 23).

List 13 demonstrates CAMP’s instrumentation after implementing this optimization, where only

the validation on line 5 is retained, but the security guarantee remains intact. Note that applying

this optimization to redzone-based protection could easily result in false negatives, as the out-

of-bound access may be removed, and the subsequent access may bypass the redzone, thereby

escaping detection.

In line 12 of List 13, the pointer ptr->mem is self-updated. This statement involves three oper-

ations when broken down. First, the program retrieves the pointer stored at the address &ptr->mem.

Then, it generates a new pointer based on the retrieved pointer, inserting a range check in this pro-

cess. This check ensures that the newly created pointer refers to the same memory object as the old

one. The new pointer is then copied into the address &ptr->mem, after which CAMP inserts an escape

tracking for the pointer copying. A key observation is that the address &ptr->mem should have been

initialized earlier, meaning such a point-to relation should have been recorded. Because the mem-

ory object of the new pointer doesn’t change, recording the same point-to relation is redundant.

Thus, we can optimize this escape tracking for performance without compromising precision. Our

optimization strategy is to identify those escape pairs involved in self-updating.

Consolidating Runtime Calls. Ideally, for the same memory pointer (including aliases), the

validation can be optimized into a single range check using the aforementioned method. However,

if the pointer arithmetic is dynamic, i.e., the result of pointer arithmetic can’t be determined at

the compilation time, CAMP has to instrument separate range checks for them. List 14 depicts

115

1 void foo(char *ptr, int i, int j) {
2 unsigned int start, end;
3 __get_range(ptr, &start, &end);
4 assert(&ptr[i]>=start && &ptr[i]+1<end);
5 ptr[i] = 'x';
6 assert(&ptr[j]>=start && &ptr[j]+1<end);
7 ptr[j] = 'y';
8 }

Listing 14: Example codes of applying merging runtime calls optimization.

such an example. Lines 5 and 7 access the same array ptr lacking type information. Furthermore,

the access is dynamic, based on runtime values i and j, making the optimization of removing

redundancy inapplicable. Consequently, CAMP must instrument lines 5 and 7 separately. Each

time a range check is executed, CAMP must switch its context into the library, query the memory

range, and validate the pointer. This process is time-intensive. An optimization strategy is to merge

the range checks as they share the same base pointer. This could minimize the frequent context

switching and save time on querying the memory range.

To implement this, we first follow the same method as in Algorithm 1 to construct a pointer

map, where pointer arithmetic with the same base pointer is grouped together. Then, for each

group, we traverse the function’s CFG and find their nearest dominator instruction. Here, a range

query is inserted to initialize the memory chunk’s range variables. Subsequently, the original range

check is replaced with an assertion to ensure the boundary. List 14 also presents the result after

applying this strategy. Line 3 queries the memory range of ptr and initializes the memory ranges

into variables start and end. After this, validation for &ptr[i] and &ptr[j] is accomplished through

two assertions on lines 4 and 6.

4.5 Implementation Details

This section presents the specifics of our implementation for CAMP’s compiler and its allocator.

116

4.5.1 CAMP Compiler

The CAMP compiler, built on the LLVM 12.0.0 compiler framework, integrates instrumentation

and optimization as an LLVM pass loadable via clang.

To arm CAMP with a defense mechanism against heap overflow, all pointer arithmetic instruc-

tions and type-casting instructions are instrumented. For pointer arithmetic, the compiler scans

all bitcode, collecting the getelementptr instruction from LLVM IR - the sole pointer arithmetic

instruction since CAMP prohibits integers casting to pointers. As discussed in Section 4.4.4, CAMP

inserts a range checking instruction for each pointer arithmetic, taking three input arguments - the

base pointer, the result pointer, and the size of the result pointer’s type. In our implementation, the

base pointer is the pointer operand of the getelementptr instruction, with the result pointer being the

GEP’s outcome value, and the third argument being the size of the result type. These arguments

constitute a CALL instruction, inserted following the getelementptr instruction. To determine if the

source operand references the heap, it is backtracked through LLVM’s SSA to identify its source.

If the source is found to be a stack or global variable, it is concluded that it does not refer to the

heap, thus skipping such getelementptr instructions.

In addition to instrumenting getelementptr instruction, the bitcast instruction, which denotes

type-casting in LLVM, is also instrumented. For each type-casting instruction, CAMP inserts a

checking instruction with two input arguments - the result pointer and its type size. We employ the

pointer operand as the result pointer and the size of the result pointer’s type to guarantee sufficient

memory for the object.

We employ CARAT’s [160], [161] method for tracking escapes. Namely, CAMP compiler in-

struments store instructions if the type of its value operand is a pointer. The pointer and value

operand are extracted from the store instruction and used to build an escape tracking CALL in-

struction, inserted before the store instruction. The aforementioned method is followed to deter-

117

mine if the escape is on heap memory. If the value from the store on the stack or global region is

concluded, the instrumentation is skipped. Note that when implementing the redundancy removal

optimization, loops are treated as a special case. We utilized LLVM’s LoopInfo pass to identify the

boundary of variables accessed within the loop, moving check instructions outside the loop.

4.5.2 CAMP Memory Allocator

The allocator is implemented as a shared library, replacing the default memory allocator and based

on tcmalloc [162]. In what follows, we outline our significant modifications to support CAMP’s

runtime checks.

Tcmalloc is a segregated list allocator that upholds a page table, mapping the page address

to its span. Note that a span can manage several continuous memory pages for larger memory

objects. The original tcmalloc records only the first and last page in the page map. To ensure any

heap pointer can locate its span, we document every memory page used by tcmalloc in the page

map. Each span holds two metadata pieces to support CAMP’s runtime checks. One represents the

object size used for memory range checks, and the other is a reference to the escape pointer array

containing chained escapes to the objects it maintains.

Tcmalloc preserves a page table, the size class map, mapping each page address to its size class.

For every page, we compress its span’s start address and its size class into an 8 bytes unit and map

it to the size class map. Specifically, the lower 16 bits store the size class, and the remaining bits

store the page address. With this design, each range checking by CAMP can retrieve the required

data in constant time, rapidly validating the pointers. If a span isn’t recorded in the size map1,

CAMP reverts to the original routine to retrieve the span and then retrieve the required address and

size for pointer validation. It’s worth noting that in certain cases, a typical program might use

1In tcmalloc, large objects have their unique spans, thus aren’t recorded in the size map.

118

CWE (number) Good Test
(Selected/Total/Passed)

Bad Test
(Selected/Total/Passed)

Buffer Overflow(122) 3870/3870/3870 2308/3870/2308
Double Free(415) 820/820/820 820/820/820

Use After Free(416) 394/394/394 288/288/288
Invalid Free(761) 288/288/288 288/288/288

Table 4.1: Security evaluation of CAMP on Juliet Test Suite.

out-of-bound pointers as memory boundaries. Such coding style is incompatible with CAMP’s

protection design. To address this, we reserve one-byte memory at each memory allocation’s end

so that the out-of-bound pointer used as memory boundary will still be in-bound.

For each pointer escape, CAMP generates a record allocated by tcmalloc’s metadata allocator.

The record, containing the pointer’s location, is stored in the span of the referenced object. Escape

records for the same object are linked. When a memory object is freed, CAMP traverses its escape

lists, checking if the pointer in the recorded location still references the object, and CAMP will

neutralize the pointer. Along this process, all the records related to the object are freed. The cache

mechanism implemented in CAMP is a temporal escape array. Each time a new escape track is

invoked, CAMP scans the array to find if there is a matching record. If not, the new record is

appended to the array. When the array is full, all the records are committed to the span, and the

array is cleared. Note that the records in the cache are also examined at free to ensure all dangling

pointers are neutralized.

4.6 Evaluation

This section primarily assesses CAMP’s proficiency in identifying heap overflow and the utilization

of memory after it has been freed, utilizing a standard vulnerability benchmark and several real-

world vulnerabilities. Subsequently, we delve into the detailed protective measures offered by

119

CVE/Issue ID Application Bug Type CAMP ASAN -- Memcheck DangNull MarkUs Delta Pointer

CVE-2015-3205 libmimedir Use-After-Free ✔ ✔ ✔ ✔ ✔ /
CVE-2015-2787 PHP 5.6.5 Use-After-Free ✔ ✔ ✔ ✖ ✖ /
CVE-2015-6835 PHP 5.4.44 Use-After-Free ✔ ✔ ✔ ✔ ✖ /
CVE-2016-5773 PHP 7.0.7 Use-After-Free ✔ ✔ ✔ ✔ ✖ /
Issue-3515 [164] mruby Use-After-Free ✔ ✔ ✔ Build Fail ✖ /
CVE-2020-6838 mruby Use-After-Free ✔ ✔ ✔ Build Fail ✖ /
CVE-2021-44964 Lua Use-After-Free ✔ ✔ ✔ Build Fail ✔ /
CVE-2020-21688 FFmpeg Use-After-Free ✔ ✔ ✔ ✖ ✔ /
CVE-2021-33468 yasm Use-After-Free ✔ ✔ ✔ ✔ ✔ /
CVE-2020-24978 nasm Use-After-Free ✔ ✔ ✔ ✖ ✔ /
Issue-1325664 [165] Chome Use-After-Free ✔ ✔ ✔ Build Fail ✖ /
CVE-2022-43286 Nginx Use-After-Free ✔ ✔ ✔ ✖ ✔ /
CVE-2019-16165 cflow Use-After-Free ✔ ✔ ✔ ✖ ✔ /
CVE-2021-4187 vim Use-After-Free ✔ ✔ ✔ ✖ ✔ /
CVE-2022-0891 libtiff Heap Overflow ✔ ✔ ✔ / / ✔

CVE-2022-0924 libtiff Heap Overflow ✔ ✔ ✔ / / ✔

CVE-2020-19131 libtiff Heap Overflow ✔ ✔ ✔ / / ✔

CVE-2020-19144 libtiff Heap Overflow ✔ ✔ ✔ / / ✔

CVE-2021-4214 libpng Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2021-3156 sudo Heap Overflow Run Well ✔ ✔ / / Build Fail
CVE-2018-20330 libjpeg-turbo Heap Overflow ✔ ✔ ✔ / / ✔

CVE-2020-21595 libde265 Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2020-21598 libde265 Heap Overflow ✔ ✔ ✔ / / Build Fail
Issue-5551 [166] mruby Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2022-0080 mruby Heap Overflow Run Well ✔ ✔ / / Build Fail
CVE-2019-9021 PHP Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2022-31627 PHP Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2021-32281 gravity Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2020-15888 Lua Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2021-26259 htmldoc Heap Overflow ✔ ✖ ✔ / / Build Fail
CVE-2022-28966 Wasm3 Heap Overflow ✔ ✔ ✔ / / Build Fail

Table 4.2: The security evaluation results of CAMP and related tools on real-world vulnerabilities.
✔ represents that the corresponding tool successfully detected the memory corruption in the vul-
nerability. ✖ indicates the tool failed to detect the memory corruption that happened. ”/” represents
the tool does not support protecting the corresponding type of vulnerability. ”Run Well” means
the application runs well without causing any memory corruption with the PoC input. ”Run Fail”
represents that the tool failed to run due to compatibility issues. ”Build Fail” means the tool failed
to compile the targeted application to enforce protection.

120

CAMP using two case studies on real-world vulnerabilities. Following this, we discuss the security

capabilities of CAMP in comparison to other existing works. Ultimately, we demonstrate CAMP’s

performance and memory overhead using SPEC CPU benchmarks and real-world applications,

showcasing its superiority over the most recent research tools. The tests were carried out on a bare-

metal machine equipped with an Ubuntu 22.04 system, a 12th Gen Intel i7-12700 CPU running at

4.9 GHz, 32GB of RAM, and 1T of SSD storage.

4.6.1 Security Evaluation

Juliet Test Suite. To assess the protective measures offered by CAMP, we carried out experiments

using the Juliet Test Suite, following the pattern set by recent works [141], [152]. The Juliet

Test Suite comprises various test programs for different types of vulnerabilities, with each having

both good and bad tests. The proof-of-concept (PoC) in the bad tests triggers the corresponding

vulnerability, whereas the PoC in the good tests does not.

Considering CAMP’s primary focus is to prevent heap memory corruption, we only included

heap-related vulnerability types from the Juliet Test Suite. An important note is that CAMP’s over-

flow prevention mechanism relies on the size of the memory object. Hence, heap overflows that

do not exceed the memory boundary are deemed harmless as they don’t corrupt other memory

objects. Following this logic, we employed a customized ASAN2 to exclude the bad tests wherein

the overflow is contained within the memory object.

When it comes to CAMP’s use-after-free protection, it neutralizes dangling pointers, and rather

than reporting an error, the dereference of a dangling pointer leads to the program’s termination

without any report. To evaluate the test cases in the use-after-free category, we employed a gdb

2A customized ASAN that rounds up each allocation and includes a large red zone to prevent overflows from
impacting adjacent objects and escaping detection. When evaluating tests for overflow, if ASAN does not report any
issues, it indicates that the overflow occurs within an object. In such cases, the test can be safely removed from the
test suite.

121

script to confirm that the termination of the program was due to the dereference of neutralized

dangling pointers.

Table 4.1 displays the results of the selected tests, showing the chosen vulnerability type, the

number of selected tests, the total number of tests, and the number of tests passed. A few of

the tests, originally classified as Heap-Based Buffer Overflow, do not contain heap overflow, such

as cases Heap_Based_Buffer_Overflow__c_src_char_cat_*. These tests trigger a buffer overflow when

copying data from the heap to the stack, resulting in a stack overflow instead of a heap overflow.

These cases were excluded from the selected test cases using the customized ASAN. CAMP passed

all selected tests without generating any false positives or negatives.

Real-world Applications. Aside from the Juliet Test Suite, we also evaluated CAMP’s secu-

rity using a set of real-world vulnerabilities. We incorporated all real-world vulnerabilities used

in [142]. Additionally, we collected other types of vulnerabilities from the CVE database [167]–

[169]. Table 4.2 lists the selected vulnerabilities. Our dataset comprises 14 use-after-free and 18

heap overflow vulnerabilities across 19 applications, including language interpreters, commonly

used libraries, browsers, web servers, and commonly used UNIX tools. The aim was to evaluate

CAMP’s effectiveness in preventing various heap memory corruption vulnerabilities and its scala-

bility over a variety of real-world applications. For comparison, we also evaluated related tools,

including ASAN/ASAN-- [170], Memcheck [136], DangNull [138], MarkUs [140], and Delta

Pointer [171] for their effectiveness in detecting and preventing heap errors.

Table 4.2 presents the security evaluation results on real-world applications. CAMP successfully

detected and prevented all use-after-free vulnerabilities. In the case of heap overflow vulnerabili-

ties, CAMP was able to detect 16 out of 18 and report them. The other two ran smoothly without

causing any reports or crashes. However, upon manual investigation using a debugger, we found

122

that the overflow had occurred, but the memory boundaries were not exceeded due to CAMP’s

seglist allocator’s rounded-up memory allocation. As a result, the overflow is mitigated, and no

memory corruption occurred. We argue that these two cases do not count as false negatives of

CAMP as the exploitation is prevented.

For tools providing a comparable level of heap protection, Memcheck was able to detect all the

heap errors in the dataset. ASAN-- reported all the heap errors except CVE-2021-26259 [172]. The

reason behind this is that ASAN uses a red zone to detect heap overflow vulnerabilities. However,

if a non-linear heap overflow occurs and skips the red zone, ASAN’s detection will be defeated.

The CVE-2021-26259 showcases this scenario. Unlike ASAN, CAMP was able to detect this case

successfully as it detects heap overflow based on the memory boundary, making it impossible for

non-linear heap overflows to bypass its protection. We argue that CAMP’s protection is stronger

and more robust than those two tools. As discussed in prior work [152], ASAN and Memcheck’s

use-after-free protection could be defeated if the attacker fills up the quarantined memory and

re-occupies the freed memory that the dangling pointer refers to, as such, the access from the

dangling pointer will not be detected, thus enabling a possible exploitation against use-after-free

vulnerabilities. However, CAMP tracks all the pointers referencing heap memory and prevents use-

after-free vulnerabilities by neutralizing the dangling pointer, which fundamentally mitigates the

vulnerability.

For tools offering partial heap protection, DangNull and Delta Pointer showed limited compat-

ibility support. 4 out of 14 use-after-free cases were not able to be built with DangNull. Among

the 10 use-after-free cases that could be successfully compiled, only 4 of them were detected.

The others just crashed with the PoC input as if there is no protection. Note that DangNull has

a similar use-after-free protection scheme as CAMP, but it fails to detect 6 cases that CAMP could

detect (e.g., CVE-2022-43286 [173], CVE-2019-16165 [174], and CVE-2021-4187 [175]). This

123

Benchmark Time and Memory Overhead
CAMP ASAN−− ASAN ESAN Memcheck

600.perlbench s 237.95% / 2241.12% 76.95% / 366.92% 143.59% / 358.20% 644.00% / 4.15% 3496.46% / 138.97%
602.gcc s 78.56% / 135.52% 83.61% / 63.42% 99.47% / 62.77% - 2888.13% / 30.42%
605.mcf s 14.62% / 31.55% 24.45% / 3.61% 27.88% / 3.61% 109.33% / -4.24% 601.05% / 22.68%
623.xalancbmk s 138.94% / 1220.66% 107.86% / 428.07% 109.41% / 433.51% 81.67% / 8.60% 4962.60% / 98.81%
625.x264 s 75.07% / 12.68% 62.26% / 13.52% 75.92% / 13.26% 90.94% / -3.55% 2070.57% / 56.96%
631.deepsjeng s 1.58% / 0.00% 44.23% / -0.23% 64.08% / -0.23% 18.85% / -0.25% 3251.34% / 25.34%
641.leela s 3.02% / 514.19% 13.97% / 2832.83% 17.33% / 2833.72% 6.65% / -17.52% 4163.69% / 262.82%
657.xz s 7.79% / 0.00% 17.45% / 2.98% 13.40% / 2.98% 14.61% / -0.70% 718.87% / 24.45%
619.lbm s 1.34% / 0.01% 37.32% / 5.94% 29.38% / 5.94% 34.14% / -0.36% 2907.53% / 25.98%
638.imagick s 45.47% / 0.07% 17.23% / 4.46% 28.56% / 4.47% 21.70% / -2.00% 4452.66% / 22.93%
644.nab s 62.55% / 26.13% 35.18% / 67.52% 35.14% / 66.63% 1988.66% / -1.34% 3722.35% / 31.80%

Geomean 21.27% / 127.47% 38.27% / 104.72% 44.78% / 104.35% 65.31% / -1.94% 2546.88% / 56.49%

Table 4.3: The relative time and memory overhead of CAMP, ASAN --, ASAN, ESAN, and Mem-
check on SPEC CPU2017. ”-” indicates the tool failed to run the corresponding benchmark.

is because DangNull only tracks the point-to relation from heap to structured object on the heap.

If the use-after-free is caused by dangling pointers on the stack/global memory, or the use-after-

free object has no type information, DangNull will miss the detection, thus making exploitation

possible. Delta Pointer showed even worse compatibility support, which could only compile 5 out

of 17 cases, but all the out-of-bound in compatible cases were detected. MarksUs showed better

compatibility support but failed to detect 6 out of 14 use-after-free vulnerabilities.

We argue that CAMP provides a much more comprehensive heap error detection capability when

compared to similar tools. Our evaluation demonstrates that CAMP outperforms the combination

of partial heap protection tools (such as Delta Pointer + DangNull/MarkUS) as well as ASAN--,

which exhibits false negatives in the case of non-linear overflow.

4.6.2 Performance Evaluation

In this section, we will evaluate CAMP’s performance using two SPEC CPU benchmarks. We’ll also

evaluate how each of CAMP’s design components contributes to its overall effectiveness, including

124

Benchmark Metric CAMP LowFat Delta Pointer DangNull FreeGuard MarkUs FFMalloc

SPEC CPU2006
Time 54.92% 160.62% 37.39% 39.99% 10.40% 15.84% 9.50%
Mem 237.67% 38.60% 0.01% 158.52% 70.89% 2.96% 27.57%

SPEC CPU2017
Time 21.27% 96.96% - 28.61% 8.23% 11.90% 10.94%
Mem 127.47% 54.35% - 314.13% 29.23% 32.35% 62.00%

Table 4.4: The relative time and memory overhead of CAMP, LowFat, Delta Pointer, DangNull,
FreeGuard, MarkUs, and FFmalloc on SPEC CPU2006 and SPEC CPU2017.

perlbench gcc mcf xalancbmk x264 deepsjeng leela xz lbm imagick nab
0

1

2

3

4

5

6

7

No
rm

al
ize

d
Ti

m
e

tcmalloc
camp
redundant-opt
struct-opt
merge-opt
no-opt

Figure 4.2: Evaluation result of CAMP breakdown on SPEC CPU2017. From left to right, the
bars show the normalized time of tcmalloc replacement, CAMP, CAMP with each optimization
disabled, and CAMP without optimization.

compiler optimization and the customized allocator. Finally, we’ll gauge CAMP’s performance in

two real-world applications.

SPEC CPU Benchmark. We evaluated the performance of CAMP in comparison with other re-

lated tools3 like ASAN [137], ASAN --[170], ESAN [176], Softbound+CETS [144], and Mem-

check [136]. The SPEC CPU benchmark suite was used to measure the performance overhead.

All programs in the suite were compiled with default configurations and used reference input. To

prevent termination, all tools were configured to ignore detected errors.

3These tools were designed to provide protection against both out-of-bound and use-after-free errors.

125

To ensure a fair comparison, only the heap error detectors of ASAN -- and ASAN were

enabled. Unfortunately, ASAN and Memcheck could not compile and run the omnetpp and

dealII programs and were excluded from the evaluation. Softbound+CETS showed limited

support, failing to compile all programs in SPEC CPU2017 and supporting only 7 programs in

SPEC CPU2006, so we only compared it in SPEC CPU2006. We excluded PACMem [152] from

our evaluation as it needs specialized hardware (ARM PA) to detect heap memory errors. To avoid

the performance gain from CAMP’s customized allocator, we used tcmalloc as the default allocator

for the baseline. It should be noted that the benchmark was run 10 times and we reported the

average result to minimize randomness.

The evaluation results are presented in Table 4.3 for the SPEC CPU2017 benchmark suite.

Each row represents a specific application benchmark, with the benchmark name listed first and

subsequent columns showing the relative time and memory measured compared to a baseline. In

accordance with the most recent works [141], [152], we utilized the geometric mean value to

represent the average overhead of each tool. CAMP demonstrated the best runtime speed compared

to other tools, with an average overhead of 21.27%, while ASAN --, ASAN, and ESAN had

overhead rates of 38.27%, 44.78%, and 65.31%, respectively. Memcheck had the worst runtime

performance, introducing a 2546.88% overhead compared to the baseline. In terms of memory

overhead, CAMP had a higher rate of 127.47% compared to roughly 104% for ASAN and ASAN --

↪→ . ESAN had the best memory overhead performance, with -1.94%. CAMP still outperforms all

other tools in terms of runtime speed in the SPEC CPU2006 benchmark. Specifically, it introduces

an overhead of 54.92%, while ASAN --, ASAN, ESAN, SoftBound+CETS, and Memcheck have

overheads of 56.77%, 67.02%, 123.08%, 319.75%, and 1990.02%, respectively.

In comparison with other tools offering partial memory protection, including LowFat [146],

Delta Pointer [171], DangNull [138], FreeGuard [130], MarkUs [140], and FFMalloc [142], CAMP

126

Benchmark Time (s) Overhead
Native CAMP

cfrac 2.91 3.82 31.27%
espresso 3.62 3.62 0.00%
barnes 1.35 1.34 -0.74%
redis 2.66 2.68 0.75%
leanN 25.35 26.18 3.27%
alloc-test1 2.99 3.06 2.34%
alloc-testN 2.91 3.42 17.53%
sh6benchN 2.41 2.39 -0.83%
sh8benchN 5.79 8.3 43.35%
xmalloc-testN 2.664 2.306 -13.44%
cache-scratchN 0.43 0.44 2.33%

Geomean - - 9.79%

Table 4.5: Time Overhead on mimalloc-bench. Native represents using the default allocator –
ptmalloc, CAMP means using its customized seglist allocator based on tcmalloc.

demonstrates superior performance on the SPEC CPU Benchmarks (results in Table 4.4). In sum-

mary, CAMP provides the most comprehensive heap protection among the compared tools. It can

detect both spatial and temporal heap errors, unlike tools that offer only partial heap protection.

Even when compared to the combined overhead of Delta Pointer (for OOB protection) and FF-

Malloc (for UAF protection), CAMP performs comparably (54.92% vs. 46.89%) while providing

superior error detection capabilities and less restrictive memory constraints.

Components Evaluation. CAMP is composed of several elements, such as compiler optimization

and a seglist allocator, each playing a part in the overall performance. We carried out evaluations

on distinct CAMP configurations to establish the influence of each component.

We examined the effect of CAMP’s tailor-made allocator by running an evaluation with mimalloc-

bench to juxtapose different allocator performances. The results, displayed in Table 4.5, include

the ”Native” column, which showcases the performance of the system’s default allocator (ptmal-

127

loc), and the ”CAMP ” column, indicating the performance with CAMP’s custom allocator. Both

allocators demonstrated varying behavior across different tests. For instance, in the cfrac test, the

Native allocator outperformed CAMP by 31.27

In order to determine the efficacy of compiler optimization, we individually disabled each

optimization within various CAMP configurations, which we label as struct-opt, redundant-opt, merge

↪→ -opt, and no-opt in Figure 4.2. To comprehend the role of the allocator cache design, we assessed

the performance of CAMP with the allocator cache disabled. Lastly, to gauge the impact of the

seglist allocator, we compared these results to a baseline that used tcmalloc. These configurations

and the results they produced on SPEC CPU2017 are illustrated in Figure 4.2.

Our analysis reaffirms that the seglist allocator contributes minimally to the overall perfor-

mance. The baseline using tcmalloc demonstrates a similar runtime speed to the default ptmalloc,

with a nominal average speed improvement of just 2.26%. We then inspected the role of the al-

locator cache design in CAMP. During this evaluation, three programs (perlbench, gcc, xalancbmk)

encountered memory depletion and were unable to finish the test, thus they were omitted from

Figure 4.2. The remaining programs showed an average overhead of 40.34%, nearly twice the

overhead when the cache is enabled (20.94%). Our investigations showed that these three pro-

grams created numerous repeated point-to relationships, causing high memory usage for metadata

management. Notably, all these programs house a language interpreter that forms ASTs during

input parsing, resulting in connections for which CAMP has to maintain point-to records. This

showcases the utility of the cache design, which allows repeated point-to relations to be stored,

thereby reducing both time and memory overhead.

We also discovered that the proposed compiler optimization considerably diminished the per-

formance overhead. CAMP without compiler optimization bore an overhead of 204.09%, whereas

the standard CAMP bore an overhead of 20.94%. Among the evaluated programs, imagick benefitted

128

System Output Latency (µs)
(req/s) Average 50% 75% 90% 99%

Native 150,368 643.23 625 635 649 910
CAMP 108,322 880 850 870 910 1070
ASAN 97,095 970 900 930 1040 1910

Table 4.6: CAMP and ASAN’s output and latency evaluation results on Nginx. In the Latency
column, the ”Average” represents the average latency of the requested connection, the others show
the latency distribution.

most from optimization, with its overhead reduced from 368.18% to 48.47%. Upon disassembling

each optimization, we discovered that structure optimization exerted the most significant impact.

Disabling this optimization increased the overhead from 20.94% to 113.39%. Similarly, deactivat-

ing redundant optimization and structure optimization led to respective overheads of 64.20%, and

95.73%.

Nginx. To evaluate the performance of CAMP on a large-scale, real-world application, we con-

ducted experiments on Nginx v1.22.1 using the wrk v4.2.0 benchmarking tool. For these experi-

ments, we configured the tool with 8 threads, 100 connections, and a test duration of 60 seconds.

To ensure consistency, we repeated the test 30 times and recorded the average results. The findings

are presented in Table 4.6. On average, CAMP introduces a 27.96% overhead on Nginx’s request

output, In terms of latency, CAMP adds 36.81% more time. The results reflex CAMP’s efficiency on

real-world applications with mild overhead. As a comparison, ASAN incurs a 35.43% overhead

on request output and has a latency overhead of 50.80%.

Chromium. Apart from Nginx, we conducted an evaluation of CAMP’s performance on Chromium.

Our assessment employed three widely-used browser benchmarks: Kraken, SunSpider, and Lite

Brite. Additionally, we measured the loading time of various websites, as this parameter directly

129

Benchmark Time (ms) Overhead
Native CAMP

kraken 1069 1722 61.09%
sunspider 521 813 56.05%
Lite Brite 2930 5520 88.40%

Geomean - - 67.14%

google.com 1101 1427 29.61%
facebook.com 831 1199 44.28%
amazon.com 2298 3120 35.77%
openai.com 1444 1791 24.03%
twitter.com 1479 1708 15.48%
gmail.com 1691 2032 20.17%

youtube.com 2143 2628 22.63%
wikipedia.org 984 1535 56.00%

Geomean - - 28.59%

Table 4.7: CAMP’s performance evaluation results on the Chromium browser. In the Benchmark
column, kraken, sunspider and Lite Brite are three browser benchmarks, whereas the following are
websites used to measure the loading time of the browser.

impacts the user’s browsing experience. To track the loading time, we applied a browser extension

and recorded the mean loading time for the top 8 websites according to the Top Websites Rank-

ing [177]. We performed each benchmark test 30 times to average out potential inconsistencies

or anomalies. The outcomes of the evaluation are documented in Table 4.7, where the average

overhead of CAMP is denoted by the geometric mean.

Our observation indicates that CAMP incurs a 67.14% overhead on the three browser bench-

marks. However, the webpage loading time only escalated by an average of 28.59%. It’s essential

to realize that these benchmarks target specific browser elements, which may not wholly repre-

sent the total performance. In contrast, webpage loading involves the execution of the JavaScript

engine, DOM processing, and other factors that more accurately mirror real-world browsing. As

such, we maintain that the 28.59% overhead induced by CAMP is relatively minor in this scenario.

130

4.7 Discussion

In this section, we discuss some other issues we have not yet discussed.

Potential False Positives and Negatives. As CAMP uses a pointer-based protection approach, it

has some shared vulnerabilities with previous studies [144]–[146]. Here, we discuss the scenarios

that could lead to these situations. Firstly, in C/C++, out-of-bound pointers can be utilized as

memory boundaries, these pointers don’t function for memory access, but for memory boundary

checks. As such pointers are out-of-bounds, CAMP can produce false positives. To alleviate this,

we reserve additional memory space for each allocation so that these boundary pointers remain

within the bounds, as mentioned in Section 4.5. Altering the memory layout this way effectively

counteracts the problem, hence no false positives were observed in our evaluation. We view this

more as a compatibility concern, best resolved at the source code level. This not only eliminates

the likelihood of false positives but also bolsters the security of the code.

Secondly, it should be highlighted that in C/C++, integers may be employed for pointer arith-

metic instead of actual pointers. This constitutes a problem for CAMP as it can lead to undetected

out-of-bounds pointer accesses. To tackle this, we impose a compiler policy that restricts the con-

version of integers to pointers. By preventing such conversions, the creation of out-of-bounds

pointers can be avoided. If developers need to execute such casts, they could denote their intention

explicitly using compiler attributes to locally disable the policy.

In-bound Overflow Prevention. CAMP’s overflow detection design is rooted in memory bound-

aries, implying it only recognizes overflows that breach the boundaries as violations. Thus, CAMP’s

design shares a similar vulnerability with previous works [144], [145], [178], as it doesn’t guard

against in-bound heap overflows. However, we discovered that, with an appropriate implementa-

131

tion, CAMP could diminish some in-bound overflow. Specifically, if pointer arithmetic is executed

on an array of a structure, we can use the array size to validate the pointer and ensure that the result

pointer remains within the structure’s array. This mitigates in-bound overflow with type informa-

tion. However, we don’t claim this as a capability of CAMP to prevent in-bound overflow. This is

because type information isn’t always accessible, and the array might be dynamic, leaving CAMP

without a method to validate it and ensure no overflow is inside the structure. Therefore, we regard

the prevention of in-bound overflows as a future avenue for research.

4.8 Related Work

Safe Allocator. In the battle against heap memory corruption attacks [10], [71], [133]–[135],

numerous safe heap allocators [141], [142], [179]–[182] have been suggested. For instance, FF-

malloc [142] introduces fast-forward allocation for one-time memory allocation, thereby eliminat-

ing use-after-free access. DieHarder [132] uses heap address space randomization to thwart heap

exploitation. Oscar [179] uses shadow memory for each heap object to preclude temporal memory

errors, hence access via dangling pointers is detected. Markus [140] adopts a strategy that quar-

antines freed memory, removing any remaining dangling pointers. DangZero [141] conceives an

allocator design capable of directly interfacing with the kernel page table, paving the way for an

alias-based Use-After-Free (UAF) detection mechanism, thereby precluding virtual memory reuse.

FreeGuard [130] enhances performance with a freelist and optimizes the shadow memory scheme.

Unlike these works, CAMP’s protection isn’t entirely dependent on allocators.

Pointer Invalidation. Various works [138], [143], [144], [171], [178], [183], [184] detect mem-

ory errors via pointer invalidation. For example, CETS [143] uses a lock-and-key identifier-based

system to track distinct metadata for each pointer to detect dangling pointers. Undangle [183] em-

132

ploys dynamic taint tracking to pinpoint and eradicate unsafe dangling pointers. DangNull [138]

uses runtime point-to relation and nullifies pointers when objects are freed. For spatial safety, Red-

fat [184] combines redzone and low-fat pointers to identify buffer overflow. Delta Pointer [171]

introduces a new pointer tag, ensuring that any overflow pointer becomes invalid, thereby pre-

venting the error. Softbound [144] uses shadow memory to monitor the bounds of each allocated

memory block and impose access control, with runtime checks added for efficient overflow detec-

tion. Unlike these works, CAMP integrates with the compiler and the allocator to optimize pointer

invalidation and deliver swift runtime support, offering comprehensive heap protection.

Memory Sanitizer. While most memory sanitizers offer complete heap error detection instead

of partial heap protection, ASan [137] uses shadow memory and redzone to detect temporal and

spatial memory errors. To minimize its overhead, ASan -- [170] and SANRAZOR [185] suggest

several compiler optimizations to lessen instrumented checks on memory access while maintaining

the same security level. FuZZan [186] presents new metadata structures to cut down the memory

management overhead for sanitizers. CUP [187] proposes a hybrid metadata scheme supporting

all program data, including globals, heap, and stack. EffectiveSan [176] displays a dynamic type

system for detecting memory errors, though it has some limitations on detecting temporal errors.

Memcheck [136], a part of Valgrind [188], detects full memory errors but operates on binary code

instead of source code. Unlike these methods, CAMP distinguishes itself by its protection scheme,

thereby providing superior speed.

Hardware-assisted Protection. Numerous works [145]–[152] leverage hardware for enforcing

memory safety. For instance, Low-Fat [146] enriches the pointer representation with base and

bounds information so that runtime or hardware can prevent spatial safety violations. In-Fat [145]

enhances the hardware-assisted tagged-pointer scheme, using three complementary object meta-

133

data schemes to reduce the required pointer tag bits. Some works, like PtAuth [147], AOS [149],

and PACMem [152], utilize the Pointer Authentication Code (PAC) feature of ARM to detect

memory errors. HeapCheck [148] uses unused pointer bits in 64-bit systems to hold an index of

a bounds table, aiding the detection of out-of-bounds and use-after-free errors. By storing the

bounds information in an 8 KB on-chip SRAM cache, HeapCheck introduces minimal overhead.

BOGO [151] uses Intel MPX to ensure spatial and temporal memory safety. CHEx86 [189] in-

troduces an innovative process architecture aimed at preventing memory errors by instrumenting

the code at the microcode level. Unlike these methods, CAMP doesn’t require additional hardware

support.

4.9 Conclusion

Thwarting memory corruption in the heap is a challenging endeavor. Current methodologies to

tackle heap memory corruption either offer restricted protection or incur substantial runtime over-

head, which hampers their deployment in real-world products. CAMP, through the use of metic-

ulously constructed code instrumentation and a bespoke allocator, furnishes a comprehensive de-

fense against heap memory corruption. Although the instrumentation adds some runtime overhead,

our findings show that this overhead can be drastically cut back through a sequence of optimiza-

tion strategies that eliminate or consolidate unneeded instrumentations. An appraisal of CAMP,

conducted using a large-scale real-world application and SPEC CPU Benchmarks, underscores the

significant reduction in performance impact. The minimal overhead coupled with CAMP’s capacity

to proficiently detect and avert heap memory corruption, underscores its potential as an efficacious

solution for protecting programs against heap memory corruption.

134

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation presents three critical steps I have done toward understanding and reducing ex-

ploitability in the Linux kernel to improve security.

To analyze the capability of kernel vulnerability, we propose an object-driven kernel fuzzing

method which allows security analysts to explore various contexts and paths toward a kernel bug,

revealing many potential error behaviors. Through this method, we can escalate the bug’s ex-

ploitability, providing a deeper understanding of kernel vulnerabilities. Our current focus is on

Linux kernel bugs; however, future directions include extending this method to other kernels such

as XNU, FreeBSD. Although our design is not specifically for Linux, intensive engineering ef-

forts will be necessary for these expansions due to varying support for debugging features and the

predominant design of existing fuzzing tools for Linux.

We introduce a novel exploitation method called DirtyCred, compositing a critical piece of

kernel exploitation. DirtyCred facilitates exploitation and defense circumvention irrespective of a

specific kernel vulnerability. DirtyCred confuses the Linux kernel by swapping credential objects,

which allows an unprivileged user to escalate their privileges. This finding exposes a significant

weakness in the existing defense architecture of Linux, warranting urgent action. To mitigate this

threat, we propose a defense mechanism called privilege-object isolation and have implemented

a Linux kernel prototype that integrates this defense. The prototype shows promising results in

terms of enhanced security at a minimal to moderate cost.

135

To reduce the exploitability of memory corruption vulnerability, we propose a comprehensive

defense method called CAMP. Despite initial runtime overhead, we discovered that through a series

of optimization strategies, this overhead can be significantly reduced. Performance testing, using

real-world applications and SPEC CPU Benchmarks, validated our solution’s efficacy, demonstrat-

ing CAMP’s potential as an effective solution to protect programs against heap memory corruption.

These advancements provide valuable contributions to kernel security, offering more robust

defenses against vulnerabilities and novel exploitation methods. Moreover, they pave the way for

future research and development in other OS kernels.

5.2 Future research

One of the future directions I plan to explore is extending CAMP from userspace to kernel space.

As we have demonstrated in this dissertation, CAMP’s security design effectively prevents heap

memory corruption and introduces only a reasonable overhead. I envision that applying the same

protection scheme in kernel space would also be effective, although several unique challenges

arise when the context is switched to the kernel. Additionally, there is room for more compiler

optimization to further reduce the overhead. For instance, one could design an optimization that

considers data flow across functions, thereby reducing additional checks.

Another direction I intend to pursue is the analysis of kernel exploitation composability. Owing

to its complexity, it is challenging to apply a general formal algorithm that can fundamentally solve

this problem. Therefore, a more practical approach is to progressively investigate composability,

enabling the construction of a comprehensive understanding of exploitation.

136

REFERENCES

[1] R. Hat, Cve-2021-3715, https://access.redhat.com/security/cve/cve-
2021-3715, 2021.

[2] Syzbot, Warning: Odebug bug in route4change, https://syzkaller.appspot.
com/bug?id=1bba967ec4596833317399ba8d6f7d655bd655e8, 2020.

[3] Cve-2021-3715 patch, https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=ef299cc, 2021.

[4] Z. Lin, Y. Chen, X. Xing, and K. Li, Your trash kernel bug, my precious 0day, https:
//zplin.me/talks/BHEU21_trash_kernel_bug.pdf, 2021.

[5] Microsoft, A detailed description of the data execution prevention (dep) feature in windows
xp service pack 2, windows xp tablet pc edition 2005, and windows server 2003, https:
//www.betaarchive.com/wiki/index.php/Microsoft_KB_Archive/
875352, 2005.

[6] S. Bratus, “What hacker research taught me,” Rss, 2009.

[7] S. Bratus, J. Bangert, A. Gabrovsky, A. Shubina, D. Bilar, and M. E. Locasto, “Compo-
sition patterns of hacking,” in Proceedings of the 1st International Workshop on Cyber
Patterns, 2012, pp. 80–85.

[8] T. Dullien, “Weird machines, exploitability, and provable unexploitability,” IEEE Transac-
tions on Emerging Topics in Computing, vol. 8, no. 2, pp. 391–403, 2017.

[9] Z. Lin, Y. Chen, Y. Wu, et al., “Grebe: Unveiling exploitation potential for linux kernel
bugs,” in 2022 IEEE Symposium on Security and Privacy (SP), IEEE, 2022, pp. 2078–
2095.

[10] Z. Lin, Y. Wu, and X. Xing, “Dirtycred: Escalating privilege in linux kernel,” in Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 1963–1976.

[11] D. Vyukov, Syzkaller, https://github.com/google/syzkaller, 2020.

https://access.redhat.com/security/cve/cve-2021-3715
https://access.redhat.com/security/cve/cve-2021-3715
https://syzkaller.appspot.com/bug?id=1bba967ec4596833317399ba8d6f7d655bd655e8
https://syzkaller.appspot.com/bug?id=1bba967ec4596833317399ba8d6f7d655bd655e8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ef299cc
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ef299cc
https://zplin.me/talks/BHEU21_trash_kernel_bug.pdf
https://zplin.me/talks/BHEU21_trash_kernel_bug.pdf
https://www.betaarchive.com/wiki/index.php/Microsoft_KB_Archive/875352
https://www.betaarchive.com/wiki/index.php/Microsoft_KB_Archive/875352
https://www.betaarchive.com/wiki/index.php/Microsoft_KB_Archive/875352
https://github.com/google/syzkaller

137

[12] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kAFL: Hardware-
assisted feedback fuzzing for os kernels,” in Proceedings of the 28th USENIX Security
Symposium (USENIX Security), 2019.

[13] D. Jones, Trinity, https://github.com/kernelslacker/trinity, 2020.

[14] T. Blazytko, M. Schlögel, C. Aschermann, et al., “AURORA: Statistical crash analysis for
automated root cause explanation,” in Proceeding of the 28th USENIX Security Symposium
(USENIX Security), 2020.

[15] syzbot, General protection fault in hrtimer active, https://syzkaller.appspot.
com/bug?id=5d3cce34cc09f722e859ae2037801f5b0d67c5c9, 2017.

[16] Linux kernel design patterns - part 2, https://lwn.net/Articles/336255/,
2009.

[17] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” 1998.

[18] syzbot, KASAN: Slab-out-of-bounds Read, https://syzkaller.appspot.com/
bug?id=7022420cc54310220ebad2da89e499bdb1f0f5e8, 2019.

[19] syzbot, BUG: Unable to handle kernel paging request, https://syzkaller.appspot.
com/bug?id=692a8c2104416b219c0036b0a566eb88f73b1dd5, 2018.

[20] Z. Lin, Grebe’s source code, https://github.com/Markakd/GREBE, 2021.

[21] K. Lu and H. Hu, “Where Does It Go? Refining indirect-call targets with multi-layer type
analysis,” in Proceedings of the 26th ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), 2019.

[22] Y. Chen, Z. Lin, and X. Xing, “A systematic study of elastic objects in kernel exploitation,”
in Proceedings of the 27th ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2020.

[23] I. Ben-Gal, “Outlier detection,” in Data mining and knowledge discovery handbook, Springer,
2005, pp. 131–146.

[24] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing os fuzzer seed selection with
trace distillation,” in Proceedings of the 27th USENIX Security Symposium (USENIX Se-
curity), 2018.

https://github.com/kernelslacker/trinity
https://syzkaller.appspot.com/bug?id=5d3cce34cc09f722e859ae2037801f5b0d67c5c9
https://syzkaller.appspot.com/bug?id=5d3cce34cc09f722e859ae2037801f5b0d67c5c9
https://lwn.net/Articles/336255/
https://syzkaller.appspot.com/bug?id=7022420cc54310220ebad2da89e499bdb1f0f5e8
https://syzkaller.appspot.com/bug?id=7022420cc54310220ebad2da89e499bdb1f0f5e8
https://syzkaller.appspot.com/bug?id=692a8c2104416b219c0036b0a566eb88f73b1dd5
https://syzkaller.appspot.com/bug?id=692a8c2104416b219c0036b0a566eb88f73b1dd5
https://github.com/Markakd/GREBE

138

[25] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “HFL: Hybrid fuzzing on
the linux kernel,” in Proceedings of the 2020 Network and Distributed System Security
Symposium (NDSS), 2020.

[26] W. You, P. Zong, K. Chen, et al., “SemFuzz: Semantics-based automatic generation of
proof-of-concept exploits,” in Proceedings of the 24th ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2017.

[27] J. Corina, A. Machiry, C. Salls, et al., “DIFUZE: Interface aware fuzzing for kernel drivers,”
in Proceedings of the 24th ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[28] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “KRace: Data race fuzzing for kernel file sys-
tems,” in Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), 2020.

[29] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer: Finding kernel race bugs
through fuzzing,” in Proceedings of the 40th IEEE Symposium on Security and Privacy
(S&P), 2019.

[30] syzbot, WARNING: Refcount bug in crypto mod get, https://syzkaller.appspot.
com/bug?id=bdeea91ae259b3a42aa8ed8d8c91afd871eb5d80, 2020.

[31] syzbot, WARNING: Refcount bug in nr insert socket, https://syzkaller.appspot.
com/bug?id=521a764b3fc8145496efa50600dfe2a67e49b90b, 2019.

[32] syzbot, General protection fault in delayed uprobe remove, https://syzkaller.
appspot.com/bug?id=229e0b718232b004dfddaeac61d8d66990ed247a,
2019.

[33] Full performance results of syzkaller, syzkaller variant, grebe without mutation optimiza-
tion and grebe, https://tinyurl.com/x9ky26ms, 2021.

[34] syzbot, BUG: Unable to handle kernel paging request, https://syzkaller.appspot.
com/bug?id=d1baeb189d38d5ba53517876c89b20d4e6857bc6, 2017.

[35] syzbot, BUG: Corrupted list in neigh create, https://syzkaller.appspot.
com/bug?id=de28cb0e686acfa1c9dbad1e11cbb0ac9b05caf2, 2019.

[36] syzbot, Warning: Refcount bug, https://syzkaller.appspot.com/bug?id=
8eceaff64a35a9f02c1315bbf12b7f262a0b4f08, 2020.

https://syzkaller.appspot.com/bug?id=bdeea91ae259b3a42aa8ed8d8c91afd871eb5d80
https://syzkaller.appspot.com/bug?id=bdeea91ae259b3a42aa8ed8d8c91afd871eb5d80
https://syzkaller.appspot.com/bug?id=521a764b3fc8145496efa50600dfe2a67e49b90b
https://syzkaller.appspot.com/bug?id=521a764b3fc8145496efa50600dfe2a67e49b90b
https://syzkaller.appspot.com/bug?id=229e0b718232b004dfddaeac61d8d66990ed247a
https://syzkaller.appspot.com/bug?id=229e0b718232b004dfddaeac61d8d66990ed247a
https://tinyurl.com/x9ky26ms
https://syzkaller.appspot.com/bug?id=d1baeb189d38d5ba53517876c89b20d4e6857bc6
https://syzkaller.appspot.com/bug?id=d1baeb189d38d5ba53517876c89b20d4e6857bc6
https://syzkaller.appspot.com/bug?id=de28cb0e686acfa1c9dbad1e11cbb0ac9b05caf2
https://syzkaller.appspot.com/bug?id=de28cb0e686acfa1c9dbad1e11cbb0ac9b05caf2
https://syzkaller.appspot.com/bug?id=8eceaff64a35a9f02c1315bbf12b7f262a0b4f08
https://syzkaller.appspot.com/bug?id=8eceaff64a35a9f02c1315bbf12b7f262a0b4f08

139

[37] syzbot, General protection fault in qrtr endpoint post, https://syzkaller.appspot.
com/bug?id=f56bbe6668873ee245986bbd23312b895fa5a50a, 2020.

[38] syzbot, WARNING in get pi state, https://syzkaller.appspot.com/bug?id=
bb7fa48ebde0db8e3fc683a47bb69ab1dca895bc, 2017.

[39] syzbot, BUG: Corrupted list in kobject add internal, https://syzkaller.appspot.
com/bug?id=f0ec9a394925aafbdf13d0a7e6af4cff860f0ed6, 2020.

[40] syzbot, KASAN: General protection fault in crypto chacha20 crypt, https://syzkaller.
appspot.com/bug?id=d767177245c54af614d5241159cce56995eef0db,
2018.

[41] syzbot, WARNING: ODEBUG bug in io sqe files unregister, https://syzkaller.
appspot.com/bug?id=460cc948740aa1e715156c0edf5d5d397401d557,
2020.

[42] syzbot, WARNING in vhost dev cleanup, https://syzkaller.appspot.com/
bug?id=0df4c1a9c14776f5fd163180e3580ad88b32649a, 2018.

[43] syzbot, General protection fault in vb2 mmap, https://syzkaller.appspot.
com/bug?id=4cf5ee79b52a4797c5bd40a58bd6ab243d40de48, 2019.

[44] syzbot, General protection fault in strlen, https://syzkaller.appspot.com/
bug?id=502c872feb9bbb5ad6494c349c7faa87a9f1777b, 2018.

[45] syzbot, WARNING in dma buf vunmap, https://syzkaller.appspot.com/
bug?id=163388d1fb80146cd3ba22a11a5a1995c3eaaafe, 2019.

[46] syzbot, BUG: Unable to handle kernel paging request, https://syzkaller.appspot.
com/bug?id=b36d7e444fe532685b683ae7980f4e3a184f0ad8, 2020.

[47] syzbot, General protection fault in scatterwalk copychunks, https://syzkaller.
appspot.com/bug?id=1fd1d44caf96ca464e1c1f19299d1f3e7558f6e5,
2018.

[48] syzbot, BUG: Corrupted list in mousedev release, https://syzkaller.appspot.
com/bug?id=b9b37a7aaeb4a4e2357b2dfdd1f689e3ffa66282, 2020.

https://syzkaller.appspot.com/bug?id=f56bbe6668873ee245986bbd23312b895fa5a50a
https://syzkaller.appspot.com/bug?id=f56bbe6668873ee245986bbd23312b895fa5a50a
https://syzkaller.appspot.com/bug?id=bb7fa48ebde0db8e3fc683a47bb69ab1dca895bc
https://syzkaller.appspot.com/bug?id=bb7fa48ebde0db8e3fc683a47bb69ab1dca895bc
https://syzkaller.appspot.com/bug?id=f0ec9a394925aafbdf13d0a7e6af4cff860f0ed6
https://syzkaller.appspot.com/bug?id=f0ec9a394925aafbdf13d0a7e6af4cff860f0ed6
https://syzkaller.appspot.com/bug?id=d767177245c54af614d5241159cce56995eef0db
https://syzkaller.appspot.com/bug?id=d767177245c54af614d5241159cce56995eef0db
https://syzkaller.appspot.com/bug?id=460cc948740aa1e715156c0edf5d5d397401d557
https://syzkaller.appspot.com/bug?id=460cc948740aa1e715156c0edf5d5d397401d557
https://syzkaller.appspot.com/bug?id=0df4c1a9c14776f5fd163180e3580ad88b32649a
https://syzkaller.appspot.com/bug?id=0df4c1a9c14776f5fd163180e3580ad88b32649a
https://syzkaller.appspot.com/bug?id=4cf5ee79b52a4797c5bd40a58bd6ab243d40de48
https://syzkaller.appspot.com/bug?id=4cf5ee79b52a4797c5bd40a58bd6ab243d40de48
https://syzkaller.appspot.com/bug?id=502c872feb9bbb5ad6494c349c7faa87a9f1777b
https://syzkaller.appspot.com/bug?id=502c872feb9bbb5ad6494c349c7faa87a9f1777b
https://syzkaller.appspot.com/bug?id=163388d1fb80146cd3ba22a11a5a1995c3eaaafe
https://syzkaller.appspot.com/bug?id=163388d1fb80146cd3ba22a11a5a1995c3eaaafe
https://syzkaller.appspot.com/bug?id=b36d7e444fe532685b683ae7980f4e3a184f0ad8
https://syzkaller.appspot.com/bug?id=b36d7e444fe532685b683ae7980f4e3a184f0ad8
https://syzkaller.appspot.com/bug?id=1fd1d44caf96ca464e1c1f19299d1f3e7558f6e5
https://syzkaller.appspot.com/bug?id=1fd1d44caf96ca464e1c1f19299d1f3e7558f6e5
https://syzkaller.appspot.com/bug?id=b9b37a7aaeb4a4e2357b2dfdd1f689e3ffa66282
https://syzkaller.appspot.com/bug?id=b9b37a7aaeb4a4e2357b2dfdd1f689e3ffa66282

140

[49] syzbot, General protection fault in bpf tcp close, https://syzkaller.appspot.
com/bug?id=695527bd03b09f741819baddcd231c16fe014a48, 2018.

[50] syzbot, General protection fault in hci event packet, https://syzkaller.appspot.
com/bug?id=0d93140da5a82305a66a136af99b088b75177b99, 2020.

[51] syzbot, BUG: Unable to handle kernel paging request, https://syzkaller.appspot.
com/bug?id=85fd017144b9b1d6761870ff71852d15e4cdd44e, 2020.

[52] syzbot, General protection fault in kernel accept, https://syzkaller.appspot.
com/bug?id=b0e30ab5186d097b8e3e23e8ca971fbf1cf54659, 2019.

[53] syzbot, WARNING: Odebug bug in tcf queue work, https://syzkaller.appspot.
com/bug?id=6a039858238a38cbc7f372607fc5d49f4469cf2c, 2020.

[54] syzbot, WARNING: Bad unlock balance in ucma event handler, https://syzkaller.
appspot.com/bug?id=d5222b3e1659e0aea19df562c79f216515740daa,
2020.

[55] syzbot, General protection fault in syscall return slowpath, https://syzkaller.
appspot.com/bug?id=575a090948f98f28593563c9d9d9b343eb39bbb4,
2020.

[56] syzbot, KASAN: Slab-out-of-bounds read in bitmap ip add, https://syzkaller.
appspot.com/bug?id=3a6c9972ff471c4dbc3f45e83dd5fa2f18cb82a4,
2020.

[57] syzbot, KASAN: Use-after-free read in ip6 dst destroy, https://syzkaller.appspot.
com/bug?id=27ae1ae5c54e09f8c86dd9428df048e7886be6dc, 2020.

[58] syzbot, KASAN: Use-after-free read in sctp auth free, https://syzkaller.appspot.
com/bug?id=cbb289816e728f56a4e2c1b854a3163402fe2f88, 2020.

[59] syzbot, KASAN: Slab-out-of-bounds read, https://syzkaller.appspot.com/
bug?id=4bf11aa05c4ca51ce0df86e500fce486552dc8d2, 2020.

[60] syzbot, KASAN: Slab-out-of-bounds write in sha512 final, https://syzkaller.
appspot.com/bug?id=e4be30826c1b7777d69a9e3e20bc7b708ee8f82c,
2018.

https://syzkaller.appspot.com/bug?id=695527bd03b09f741819baddcd231c16fe014a48
https://syzkaller.appspot.com/bug?id=695527bd03b09f741819baddcd231c16fe014a48
https://syzkaller.appspot.com/bug?id=0d93140da5a82305a66a136af99b088b75177b99
https://syzkaller.appspot.com/bug?id=0d93140da5a82305a66a136af99b088b75177b99
https://syzkaller.appspot.com/bug?id=85fd017144b9b1d6761870ff71852d15e4cdd44e
https://syzkaller.appspot.com/bug?id=85fd017144b9b1d6761870ff71852d15e4cdd44e
https://syzkaller.appspot.com/bug?id=b0e30ab5186d097b8e3e23e8ca971fbf1cf54659
https://syzkaller.appspot.com/bug?id=b0e30ab5186d097b8e3e23e8ca971fbf1cf54659
https://syzkaller.appspot.com/bug?id=6a039858238a38cbc7f372607fc5d49f4469cf2c
https://syzkaller.appspot.com/bug?id=6a039858238a38cbc7f372607fc5d49f4469cf2c
https://syzkaller.appspot.com/bug?id=d5222b3e1659e0aea19df562c79f216515740daa
https://syzkaller.appspot.com/bug?id=d5222b3e1659e0aea19df562c79f216515740daa
https://syzkaller.appspot.com/bug?id=575a090948f98f28593563c9d9d9b343eb39bbb4
https://syzkaller.appspot.com/bug?id=575a090948f98f28593563c9d9d9b343eb39bbb4
https://syzkaller.appspot.com/bug?id=3a6c9972ff471c4dbc3f45e83dd5fa2f18cb82a4
https://syzkaller.appspot.com/bug?id=3a6c9972ff471c4dbc3f45e83dd5fa2f18cb82a4
https://syzkaller.appspot.com/bug?id=27ae1ae5c54e09f8c86dd9428df048e7886be6dc
https://syzkaller.appspot.com/bug?id=27ae1ae5c54e09f8c86dd9428df048e7886be6dc
https://syzkaller.appspot.com/bug?id=cbb289816e728f56a4e2c1b854a3163402fe2f88
https://syzkaller.appspot.com/bug?id=cbb289816e728f56a4e2c1b854a3163402fe2f88
https://syzkaller.appspot.com/bug?id=4bf11aa05c4ca51ce0df86e500fce486552dc8d2
https://syzkaller.appspot.com/bug?id=4bf11aa05c4ca51ce0df86e500fce486552dc8d2
https://syzkaller.appspot.com/bug?id=e4be30826c1b7777d69a9e3e20bc7b708ee8f82c
https://syzkaller.appspot.com/bug?id=e4be30826c1b7777d69a9e3e20bc7b708ee8f82c

141

[61] syzbot, KASAN: Use-after-free read in cma bind port, https://syzkaller.appspot.
com/bug?id=3b7409f639067d927b8ad1b11a5e08bae27061af, 2018.

[62] syzbot, KASAN: Use-after-free read in tipc nl node, https://syzkaller.appspot.
com/bug?id=ddaf58be21bc0aacece5a53ab1ae5db7e89f5bb0, 2019.

[63] H. Han and S. K. Cha, “IMF: Inferred model-based fuzzer,” in Proceedings of the 24th
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2017.

[64] D. Song, F. Hetzelt, D. Das, et al., “PeriScope: An effective probing and fuzzing framework
for the hardware-os boundary,” in Proceedings of the 2019 Network and Distributed System
Security Symposium (NDSS), 2019.

[65] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG: Automatic exploit gener-
ation,” in Proceedings of the 2016 Network and Distributed System Security Symposium
(NDSS), 2011.

[66] D. Brumley, P. Poosankam, D. X. Song, and J. Zheng, “Automatic patch-based exploit
generation is possible: Techniques and implications,” in Proceedings of the 29th IEEE
Symposium on Security and Privacy (S&P), 2008.

[67] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your exploit is mine: Automatic
shellcode transplant for remote exploits,” in Proceedings of the 38th IEEE Symposium on
Security and Privacy (S&P), 2017.

[68] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice - automatic
detection of authentication bypass vulnerabilities in binary firmware,” in Proceedings of
the 2015 Network and Distributed System Security Symposium (NDSS), 2015.

[69] Y. Shoshitaishvili, R. Wang, C. Salls, et al., “SoK:(state of) the art of war: Offensive tech-
niques in binary analysis,” in Proceedings of the 37th IEEE Symposium on Security and
Privacy (S&P), 2016.

[70] N. Stephens, J. Grosen, C. Salls, et al., “Driller: Augmenting fuzzing through selective
symbolic execution,” in Proceedings of the Network and Distributed System Security Sym-
posium (NDSS), 2016.

[71] S. Heelan, T. Melham, and D. Kroening, “Automatic heap layout manipulation for ex-
ploitation,” in Proceedings of the 27th USENIX Security Symposium (USENIX Security),
2018.

https://syzkaller.appspot.com/bug?id=3b7409f639067d927b8ad1b11a5e08bae27061af
https://syzkaller.appspot.com/bug?id=3b7409f639067d927b8ad1b11a5e08bae27061af
https://syzkaller.appspot.com/bug?id=ddaf58be21bc0aacece5a53ab1ae5db7e89f5bb0
https://syzkaller.appspot.com/bug?id=ddaf58be21bc0aacece5a53ab1ae5db7e89f5bb0

142

[72] S. Heelan, T. Melham, and D. Kroening, “Gollum: Modular and greybox exploit generation
for heap overflows in interpreters,” in Proceedings of the 26th ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2019.

[73] Y. Wang, C. Zhang, X. Xiang, et al., “Revery: From proof-of-concept to exploitable,” in
Proceedings of the 25nd ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2018.

[74] I. Yun, D. Kapil, and T. Kim, “Automatic techniques to systematically discover new heap
exploitation primitives,” in Proceedings of the 29th USENIX Security Symposium (USENIX
Security), 2020.

[75] W. Xu, J. Li, J. Shu, et al., “From Collision To Exploitation: Unleashing use-after-free
vulnerabilities in linux kernel,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2015.

[76] Y. Chen and X. Xing, “SLAKE: Facilitating slab manipulation for exploiting vulnerabili-
ties in the linux kernel,” in Proceedings of the 26th ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2019.

[77] K. Lu, M.-T. Walter, D. Pfaff, and S. Nürnberger and Wenke Lee and Michael Backes, “Un-
leashing use-before-initialization vulnerabilities in the linux kernel using targeted stack
spraying,” in Proceedings of the 2017 Network and Distributed System Security Sympo-
sium (NDSS), 2017.

[78] H. Cho, J. Park, J. Kang, et al., “Exploiting uses of uninitialized stack variables in linux
kernels to leak kernel pointers,” in 14th USENIX Workshop on Offensive Technologies
(WOOT), 2020.

[79] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “Ret2dir: Rethinking kernel isola-
tion,” in Proceedings of the 23rd USENIX Security Symposium (USENIX Security), 2014.

[80] W. Wu, Y. Chen, X. Xing, and W. Zou, “KEPLER: Facilitating control-flow hijacking
primitive evaluation for linux kernel vulnerabilities,” in Proceedings of the 28th USENIX
Security Symposium (USENIX Security), 2019.

[81] W. Wu, Y. Chen, J. Xu, X. Xing, W. Zou, and X. Gong, “FUZE: Towards facilitating exploit
generation for kernel use-after-free vulnerabilities,” in Proceedings of the 27th USENIX
Security Symposium (USENIX Security), 2018.

143

[82] W. Chen, X. Zou, G. Li, and Z. Qian, “KOOBE: Towards facilitating exploit generation of
kernel out-of-bounds write vulnerabilities,” in Proceedings of the 29th USENIX Security
Symposium (USENIX Security), 2020.

[83] J. Edge, Kernel address space layout randomization, 2013.

[84] google, Kernel control flow integrity, 2022.

[85] T. M. Corporation, Cve-2022-0847, 2022.

[86] M. Kellermann, The dirty pipe vulnerability, 2022.

[87] Google, Roses are red, violets are blue, giving leets more sweets. all of 2022! 2022.

[88] D. Howells, Credentials in linux, 2022.

[89] J. Corbet, Supervisor mode access prevention, 2012.

[90] M. Jurczyk, Smep: What is it, and how to beat it on windows, 2011.

[91] J. Edge, Control-flow integrity for the kernel, 2020.

[92] J. Corbet, The current state of kernel page-table isolation, 2017.

[93] T. M. Corporation, Cve-2021-4154, 2021.

[94] Anonymous, Dirtycred exploit, 2022.

[95] Z. Lin, How autoslab changes the memory unsafety game, 2021.

[96] Y. Chen and X. Xing, “Slake: Facilitating slab manipulation for exploiting vulnerabilities
in the linux kernel,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2019.

[97] W. Xu, J. Li, J. Shu, et al., “From collision to exploitation: Unleashing use-after-free vul-
nerabilities in linux kernel,” in Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, 2015.

[98] Linux, Userfaultfd’s introduction in the linux kernel user’s and administrator’s guide,
2022.

144

[99] Linux, Fuse’s introduction in the linux kernel user’s and administrator’s guide, 2022.

[100] J. Horn, Linux: Uaf via double-fdput, 2022.

[101] L. McVoy and C. Staelin, Lmbench - tools for performance analysis, 2022.

[102] P. Media, Open-source, automated benchmarking, 2022.

[103] Datadog, Using the dirty pipe vulnerability to break out from containers, 2022.

[104] A. Chapman, Privileged container escape control groups release agent, 2020.

[105] W. Wu, Y. Chen, X. Xing, and W. Zou, “{Kepler}: Facilitating control-flow hijacking prim-
itive evaluation for linux kernel vulnerabilities,” in Proceedings of the 28th USENIX Con-
ference on Security Symposium, 2019.

[106] HexRabbit, Cve-2021-34866 writeup, 2021.

[107] K. Zeng, Y. Chen, H. Cho, et al., “Playing for K(H)eaps: Understanding and improving
linux kernel exploit reliability,” in Proceedings of the 31st USENIX Conference on Security
Symposium, 2022.

[108] R. Raducu, R. J. Rodrıguez, and P. Álvarez, “Defense and attack techniques against file-
based TOCTOU vulnerabilities: A systematic review,” IEEE Access, vol. 10, pp. 21 742–
21 758, 2022.

[109] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “{Kguard}: Lightweight kernel pro-
tection against {return-to-user} attacks,” in Proceedings of the 21st USENIX Conference
on Security Symposium, 2012.

[110] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “Ret2dir: Rethinking kernel iso-
lation,” in Proceedings of the 23rd USENIX Conference on Security Symposium, 2014.

[111] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks against kernel
space aslr,” in Proceedings of the 2013 IEEE Symposium on Security and Privacy, 2013.

[112] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch side-channel attacks:
Bypassing smap and kernel aslr,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016.

145

[113] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over aslr: Attacking branch
predictors to bypass aslr,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture, 2016.

[114] Y. Chen, Z. Lin, and X. Xing, “A systematic study of elastic objects in kernel exploitation,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020.

[115] M. Lipp, M. Schwarz, D. Gruss, et al., “Meltdown: Reading kernel memory from user
space,” in Proceedings of the 27th USENIX Conference on Security Symposium, 2018.

[116] P. Kocher, J. Horn, A. Fogh, et al., “Spectre attacks: Exploiting speculative execution,” in
Proceedings of the 2019 IEEE Symposium on Security and Privacy, 2019.

[117] T. Garnier, Mm: Slab freelist randomization, 2016.

[118] D. Williams, Randomize free memory, 2018.

[119] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard, “Kaslr is dead:
Long live kaslr,” in International Symposium on Engineering Secure Software and Systems,
2017, pp. 161–176.

[120] K. C. Accardi, Function granular kaslr, 2020.

[121] J. Criswell, N. Dautenhahn, and V. Adve, “Kcofi: Complete control-flow integrity for com-
modity operating system kernels,” in Proceedings of the 2014 IEEE Symposium on Security
and Privacy, 2014.

[122] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow integrity for kernel
software,” in Proceedings of the 2016 IEEE European Symposium on Security and Privacy,
2016.

[123] S. Yoo, J. Park, S. Kim, Y. Kim, and T. Kim, “In-kernel control-flow integrity on commod-
ity oses using arm pointer authentication,” arXiv preprint arXiv:2112.07213, 2021.

[124] D. McKee, Y. Giannaris, C. O. Perez, et al., “Preventing kernel hacks with hakc,” in Pro-
ceedings 2022 Network and Distributed System Security Symposium.

146

[125] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing kernel security in-
variants with data flow integrity.,” in Proceedings 2016 Network and Distributed System
Security Symposium, 2016.

[126] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Pt-rand: Practical mitigation of data-
only attacks against page tables.,” in Proceedings of the 2017 Network and Distributed
Systems Security Symposium, 2017.

[127] Q. Chen, A. M. Azab, G. Ganesh, and P. Ning, “Privwatcher: Non-bypassable monitoring
and protection of process credentials from memory corruption attacks,” in Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications Security, 2017.

[128] K. Huang, Y. Huang, M. Payer, et al., “The taming of the stack: Isolating stack data from
memory errors,” in Proceedings of the 2022 Network and Distributed Systems Security
Symposium, 2022.

[129] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Polychronakis, “Xmp:
Selective memory protection for kernel and user space,” in Proceedings of the 2020 IEEE
Symposium on Security and Privacy, 2020.

[130] S. Silvestro, H. Liu, C. Crosser, Z. Lin, and T. Liu, “Freeguard: A faster secure heap allo-
cator,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2017.

[131] Z. Lin, R. D. Riley, and D. Xu, “Polymorphing software by randomizing data structure
layout,” in Detection of Intrusions and Malware, and Vulnerability Assessment: 6th Inter-
national Conference, DIMVA, Springer, 2009.

[132] G. Novark and E. D. Berger, “Dieharder: Securing the heap,” in Proceedings of the 17th
ACM conference on Computer and communications security, 2010.

[133] Y. Wang, C. Zhang, Z. Zhao, B. Zhang, X. Gong, and W. Zou, “{Maze}: Towards auto-
mated heap feng shui,” in 30th USENIX Security Symposium (USENIX Security 21), 2021,
pp. 1647–1664.

[134] I. Yun, D. Kapil, and T. Kim, “Automatic techniques to systematically discover new heap
exploitation primitives,” in 29th USENIX Security Symposium (USENIX Security 20), 2020,
pp. 1111–1128.

147

[135] Y. Chen, Z. Lin, and X. Xing, “A systematic study of elastic objects in kernel exploitation,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020.

[136] N. N. Julian Seward, Memcheck: a memory error detector, https://valgrind.org/
docs/manual/mc-manual.html.

[137] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A fast ad-
dress sanity checker,” in Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, 2012.

[138] B. Lee, C. Song, Y. Jang, et al., “Preventing use-after-free with dangling pointers nullifi-
cation.,” in NDSS, 2015.

[139] E. Van Der Kouwe, V. Nigade, and C. Giuffrida, “Dangsan: Scalable use-after-free detec-
tion,” in Proceedings of the Twelfth European Conference on Computer Systems, 2017.

[140] S. Ainsworth and T. M. Jones, “Markus: Drop-in use-after-free prevention for low-level
languages,” 2020.

[141] F. Gorter, K. Koning, H. Bos, and C. Giuffrida, “Dangzero: Efficient use-after-free detec-
tion via direct page table access,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022.

[142] Preventing Use-After-Free Attacks with Fast Forward Allocation. 2021.

[143] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Cets: Compiler enforced tem-
poral safety for c,” in Proceedings of the 2010 international symposium on Memory man-
agement, 2010.

[144] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly compatible
and complete spatial memory safety for c,” in Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2009.

[145] S. Xu, W. Huang, and D. Lie, “In-fat pointer: Hardware-assisted tagged-pointer spatial
memory safety defense with subobject granularity protection,” in Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, 2021.

https://valgrind.org/docs/manual/mc-manual.html
https://valgrind.org/docs/manual/mc-manual.html

148

[146] G. J. Duck and R. H. Yap, “Heap bounds protection with low fat pointers,” in Proceedings
of the 25th International Conference on Compiler Construction, 2016.

[147] R. M. Farkhani, M. Ahmadi, and L. Lu, “{Ptauth}: Temporal memory safety via robust
points-to authentication,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 1037–1054.

[148] G. Saileshwar, R. Boivie, T. Chen, B. Segal, and A. Buyuktosunoglu, “Heapcheck: Low-
cost hardware support for memory safety,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 19, no. 1, pp. 1–24, 2022.

[149] Y. Kim, J. Lee, and H. Kim, “Hardware-based always-on heap memory safety,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), IEEE,
2020, pp. 1153–1166.

[150] J. Woodruff, R. N. Watson, D. Chisnall, et al., “The cheri capability model: Revisiting risc
in an age of risk,” ACM SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 457–
468, 2014.

[151] T. Zhang, D. Lee, and C. Jung, “Bogo: Buy spatial memory safety, get temporal memory
safety (almost) free,” in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, 2019, pp. 631–
644.

[152] Y. Li, W. Tan, Z. Lv, et al., “Pacmem: Enforcing spatial and temporal memory safety
via arm pointer authentication,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022.

[153] anonymous, The source code of CAMP, https://anonymous.4open.science/
r/CAMP-EE27.

[154] J. M. Mark Dowd and J. Schuh, Magic Value: Potential Mitigations for Heap Overflow,
https://cwe.mitre.org/data/definitions/122.html.

[155] Heap Cookies for memory protection, https://fuzzysecurity.com/tutorials/
mr_me/3.html.

[156] M. Phillips, Design of Redzone in Address Sanitizer, https://github.com/google/
sanitizers/wiki/AddressSanitizerAlgorithm.

https://anonymous.4open.science/r/CAMP-EE27
https://anonymous.4open.science/r/CAMP-EE27
https://cwe.mitre.org/data/definitions/122.html
https://fuzzysecurity.com/tutorials/mr_me/3.html
https://fuzzysecurity.com/tutorials/mr_me/3.html
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm

149

[157] J. M. Mark Dowd and J. Schuh, Protect Out-Of-Bound by Validating Pointer, https:
//cwe.mitre.org/data/definitions/823.html.

[158] T. Yamauchi and Y. Ikegami, “Heaprevolver: Delaying and randomizing timing of release
of freed memory area to prevent use-after-free attacks,” in Network and System Security:
10th International Conference, NSS 2016, Taipei, Taiwan, September 28-30, 2016, Pro-
ceedings 10, Springer, 2016.

[159] O. Corporation, Nullify references after reclaiming memory, https://docs.oracle.
com/cd/E19159-01/819-3681/abebi/index.html, 2010.

[160] B. Suchy, S. Campanoni, N. Hardavellas, and P. Dinda, “Carat: A case for virtual memory
through compiler-and runtime-based address translation,” in Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2020.

[161] B. Suchy, S. Ghosh, D. Kersnar, et al., “Carat cake: Replacing paging via compiler/kernel
cooperation,” in Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2022.

[162] G. Inc., Design of TCMalloc from Google, https://google.github.io/tcmalloc/
overview.html.

[163] V. Berinde and F. Takens, Iterative approximation of fixed points. Springer, 2007, vol. 1912.

[164] C. Smith, Heap use-after-free in mruby, https://github.com/mruby/mruby/
issues/3515.

[165] Issue 1325664: Security: pdfium use-after-free in v8, https://bugs.chromium.
org/p/chromium/issues/detail?id=1325664.

[166] Heap-based Buffer Overflow in mruby, https://huntr.dev/bounties/4458e0b9-
0ad3-4036-a032-1b3c4705b889/.

[167] CVE details: The ultimate security vulnerability datasource,
https://www.cvedetails.com/.

[168] CVE program, https://cve.mitre.org/.

[169] VulnDB: The most comprehensive vulnerability database and timely source of intelligence
available, https://vuldb.com/.

https://cwe.mitre.org/data/definitions/823.html
https://cwe.mitre.org/data/definitions/823.html
https://docs.oracle.com/cd/E19159-01/819-3681/abebi/index.html
https://docs.oracle.com/cd/E19159-01/819-3681/abebi/index.html
https://google.github.io/tcmalloc/overview.html
https://google.github.io/tcmalloc/overview.html
https://github.com/mruby/mruby/issues/3515
https://github.com/mruby/mruby/issues/3515
https://bugs.chromium.org/p/chromium/issues/detail?id=1325664
https://bugs.chromium.org/p/chromium/issues/detail?id=1325664
https://huntr.dev/bounties/4458e0b9-0ad3-4036-a032-1b3c4705b889/
https://huntr.dev/bounties/4458e0b9-0ad3-4036-a032-1b3c4705b889/
https://www.cvedetails.com/
https://cve.mitre.org/
https://vuldb.com/

150

[170] Y. Zhang, C. Pang, G. Portokalidis, N. Triandopoulos, and J. Xu, “Debloating address
sanitizer,” in 31st USENIX Security Symposium (USENIX Security 22), 2022.

[171] T. Kroes, K. Koning, E. van der Kouwe, H. Bos, and C. Giuffrida, “Delta pointers: Buffer
overflow checks without the checks,” in Proceedings of the Thirteenth EuroSys Conference,
2018, pp. 1–14.

[172] CVE-2021-26259: A flaw was found in htmldoc in v1.9.12. Heap buffer overflow, https:
//nvd.nist.gov/vuln/detail/CVE-2021-26259.

[173] CVE-2022-43286: Nginx NJS v0.7.2 was discovered to contain a heap-use-after-free bug,
https://nvd.nist.gov/vuln/detail/CVE-2022-43286.

[174] CVE-2019-16165: GNU cflow through 1.6 has a use-after-free in the reference function in
parser.c, https://nvd.nist.gov/vuln/detail/CVE-2019-16165.

[175] CVE-2021-4187: vim is vulnerable to Use After Free, https://nvd.nist.gov/
vuln/detail/CVE-2021-4187,

[176] G. J. Duck and R. H. Yap, “Effectivesan: Type and memory error detection using dynam-
ically typed c/c++,” in Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2018, pp. 181–195.

[177] Top Websites Ranking, https://www.similarweb.com/top-websites/.

[178] H. Liu, R. Tian, B. Ren, and T. Liu, “Prober: Practically defending overflows with page
protection,” in Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, 2020.

[179] T. H. Dang, P. Maniatis, and D. Wagner, “Oscar: A practical {page-permissions-based}
scheme for thwarting dangling pointers,” in 26th USENIX security symposium (USENIX
security 17), 2017, pp. 815–832.

[180] Microsoft, Daan Leijen. 2020. Mimalloc, https://github.com/microsoft/
mimalloc.

[181] B. Liu, P. Olivier, and B. Ravindran, “Slimguard: A secure and memory-efficient heap
allocator,” in Proceedings of the 20th International Middleware Conference, 2019.

https://nvd.nist.gov/vuln/detail/CVE-2021-26259
https://nvd.nist.gov/vuln/detail/CVE-2021-26259
https://nvd.nist.gov/vuln/detail/CVE-2022-43286
https://nvd.nist.gov/vuln/detail/CVE-2019-16165
https://nvd.nist.gov/vuln/detail/CVE-2021-4187
https://nvd.nist.gov/vuln/detail/CVE-2021-4187
https://www.similarweb.com/top-websites/
https://github.com/microsoft/mimalloc
https://github.com/microsoft/mimalloc

151

[182] D. V. Kostya Serebryany, Scudo Hardened Allocator, https://llvm.org/docs/
ScudoHardenedAllocator.html.

[183] J. Caballero, G. Grieco, M. Marron, and A. Nappa, “Undangle: Early detection of dan-
gling pointers in use-after-free and double-free vulnerabilities,” in Proceedings of the 2012
International Symposium on Software Testing and Analysis, 2012.

[184] G. J. Duck, Y. Zhang, and R. H. Yap, “Hardening binaries against more memory errors,”
in Proceedings of the Seventeenth European Conference on Computer Systems, 2022,
pp. 117–131.

[185] J. Zhang, S. Wang, M. Rigger, P. He, and Z. Su, “Sanrazor: Reducing redundant sanitizer
checks in c/c++ programs.,” in OSDI, 2021.

[186] Y. Jeon, W. Han, N. Burow, and M. Payer, “{Fuzzan}: Efficient sanitizer metadata design
for fuzzing,” in 2020 USENIX Annual Technical Conference (USENIX ATC 20), 2020,
pp. 249–263.

[187] N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cup: Comprehensive user-space protec-
tion for c/c++,” in Proceedings of the 2018 on Asia Conference on Computer and Commu-
nications Security, 2018, pp. 381–392.

[188] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic binary
instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007.

[189] R. Sharifi and A. Venkat, “Chex86: Context-sensitive enforcement of memory safety via
microcode-enabled capabilities,” in 2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), IEEE, 2020, pp. 762–775.

[190] ooo, DC29 final scoreboard, https://scoreboard.ooo/scores.html, 2021.

[191] Anonymous, Behavior representing exploitability,
https://forms.gle/vdPiASeYycqEzEi29, 2021.

[192] syzbot, KASAN: Global-out-of-bounds read in fbcon resize, https://syzkaller.
appspot.com/bug?id=ebcbbb6576958a496500fee9cf7aa83ea00b5920,
2020.

[193] syzbot, Kernel BUG at security/keys/keyring.c:line! https://syzkaller.appspot.
com/bug?id=f7649aa07ffca82dc93dc5cebc00c665849f5138, 2019.

https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://scoreboard.ooo/scores.html
https://forms.gle/vdPiASeYycqEzEi29
https://syzkaller.appspot.com/bug?id=ebcbbb6576958a496500fee9cf7aa83ea00b5920
https://syzkaller.appspot.com/bug?id=ebcbbb6576958a496500fee9cf7aa83ea00b5920
https://syzkaller.appspot.com/bug?id=f7649aa07ffca82dc93dc5cebc00c665849f5138
https://syzkaller.appspot.com/bug?id=f7649aa07ffca82dc93dc5cebc00c665849f5138

152

[194] syzbot, WARNING in snd info get line, https://syzkaller.appspot.com/
bug?id=27ea7ae6337aef698924e3eac5aa2b925374ca4c, 2020.

[195] syzbot, KASAN: Use-after-free read, https://syzkaller.appspot.com/bug?
id=b7f48618d1139d02d0faba8e5932c51eec329b65, 2020.

[196] syzbot, WARNING: Refcount bug in qdisc put (2), https://syzkaller.appspot.
com/bug?id=badc9136121e634336bcdb31592a4b70b064e421, 2020.

[197] syzbot, KASAN: Use-after-free read in do madvise, https://syzkaller.appspot.
com/bug?id=33913c931f51814eeb2ecdbe03af91d1d6d73520, 2020.

[198] syzbot, Warning in snd usbmidi submit urb/usb submit urb, https://syzkaller.
appspot.com/bug?id=28741ff1906f93db2a398bc40e082da51828ec5b,
2020.

[199] Linux, File management in the linux kernel, 2022.

https://syzkaller.appspot.com/bug?id=27ea7ae6337aef698924e3eac5aa2b925374ca4c
https://syzkaller.appspot.com/bug?id=27ea7ae6337aef698924e3eac5aa2b925374ca4c
https://syzkaller.appspot.com/bug?id=b7f48618d1139d02d0faba8e5932c51eec329b65
https://syzkaller.appspot.com/bug?id=b7f48618d1139d02d0faba8e5932c51eec329b65
https://syzkaller.appspot.com/bug?id=badc9136121e634336bcdb31592a4b70b064e421
https://syzkaller.appspot.com/bug?id=badc9136121e634336bcdb31592a4b70b064e421
https://syzkaller.appspot.com/bug?id=33913c931f51814eeb2ecdbe03af91d1d6d73520
https://syzkaller.appspot.com/bug?id=33913c931f51814eeb2ecdbe03af91d1d6d73520
https://syzkaller.appspot.com/bug?id=28741ff1906f93db2a398bc40e082da51828ec5b
https://syzkaller.appspot.com/bug?id=28741ff1906f93db2a398bc40e082da51828ec5b

153

APPENDIX A

APPENDIX

A.1 Additional Details of GREBE’s Evaluation

A.1.1 Detail of User Study

To find the relationship between a kernel bug’s error behavior and its exploitation potential, we de-

signed a survey (i.e. Figure A.1) and conducted a user study with IRB approval. In our survey, we

first asked the subjects’ backgrounds, including their occupations and expertise levels. Following

the background inquiry, we investigated whether the participants agree that, in most scenarios, the

kernel error behaviors like double free, use-after-free, and out-of-bound access imply higher ex-

ploitation potential than the kernel error behaviors such as BUG, GPF, WARN, and NULL pointer

dereference. We drew comparison between different error behaviors in the survey and provided

examples to help the participants understand the context. For each comparison pair, the participant

is required to briefly explain the reason if he/she disagrees with our classification.

We started our recruitment from CTF players in top-tier teams [190]. The invited players were

encouraged to distribute our survey to knowledgeable experts further. We offer a $10 gift card

for each participant to motivate the completion of our survey. In total, we managed to recruit

21 security experts participating in our survey. Among these human subjects, 12 of them claim

themselves as CTF players or exploit practitioners. 14 are researchers in academia. 2 are members

of blue team in an enterprise. Note that one participant can have multiple roles. Besides, 10

participants have experience in crafting Linux kernel exploits, 4 reading write-ups or exploits,

and 7 debugging kernel and developing patches. As the subjects participating in the survey have

154

diverse backgrounds, we deem that the survey results reflect the viewpoint of most security experts

regarding how to assess the exploitability of bugs according to their error behaviors.

Our survey showed that 18 out of 21 participants agree that, for all comparison pairs, error

behaviors like double-free, use-after-free, and out-of-bound access imply higher exploitation po-

tential. For the comparison between double-free and BUG/GPF, use-after-free and BUG/GPF,

out-of-bound access, and BUG/GPF/WARN/NULL ptr deref, there are 1/2, 2/3, and 3/2/1/1 par-

ticipants who disagree with our classification, respectively. They explained that, in the situation

where the attacker can control the corruption range, errors like GPF/BUG/WARN could imply

higher exploitation potential. In our user study, we further contacted those participants for fur-

ther clarification. In the follow-up interview, they conceded that though they have encountered

some particular cases, they agree that our classification works in most situations. As such, we

carefully conclude that there is a shared sense among security analysts. That is, compared with

error behaviors like GPF/WARN/BUG/NULL ptr deref, kernel error behaviors such as double free,

use-after-free, and out-of-bound imply higher exploitation potential.

A.1.2 Procedure of Error Triaging

When exploring multiple error behaviors for a target bug, GREBE may hit other bugs, demonstrat-

ing error behaviors that do not result from the target bug. To ensure the newly identified error

behaviors are truly tied to the bug of our interest, error triaging is needed. As we mentioned ear-

lier, there has not yet been accurate error triaging methods. We, therefore, seek the help of kernel

professionals.

In this work, our professional team performed error triaging by following the procedure below.

Given a bug of our interest, the team first finds the bug’s patch and applies it to the corresponding

kernel image. Then, for each newly identified error behavior, the team executes the PoC program

155

1. Which of the following roles do you identify yourself as (multiple choices)?
a. CTF player/exploit practitioner
b. Academia researcher
c. Security analyst in enterprise blue team
d. Official in government agency

2. How’s your experience in Linux kernel exploitation
a. I’ve debugged kernel or developed kernel patches but done nothing about exploitation
b. I’ve read some writeups
c. I’ve written some exploits for CTF challenges or real-world vulnerabilities

3. What’s the easiest way to get in touch with you? We ask this question for gift card sending
and potential follow-up question. We promise to keep privacy and won’t identify you via
the contact.

4. Do you agree that, without going into details, double free behavior implies higher
exploitability than BUG in most cases?
a. Yes
b. No
c. I don’t know

Figure A.1: Sampled questions from the exploitability survey form [191]

156

tied to that newly discovered error behavior. If the patch fails to block the demonstration of the

error (i.e., the patched kernel still crashes), the team excludes that error behavior with the con-

clusion that it is not associated with the target bug. Otherwise, the team will put their effort into

inspecting the execution of the PoC program. In the inspection phase, the team will manually ex-

amine the bug patch and extract the condition of the bug triggering. With this triggering condition

in hand, the team further examines the execution of the PoC program. If the execution aligns with

the triggering condition, the team safely concludes the newly discovered error is tied to the bug

of our interest. To minimize the possible human mistake, we asked the team to form a unanimous

agreement before we associate that new error behavior to the bug of our interest.

It should be noted that, like Syzkaller, when GREBE triggers a bug and demonstrates an error

behavior, it may not generate a PoC program allowing the team to follow the procedure above. In

this situation, the team will take a close look at the call stack of the kernel panic. Following the

call stack, the team will manually track the kernel execution reversely and infer if the panic results

from the same root cause. In this manual analysis phase, the team utilizes several heuristics to

align an error with the bug. First, the team will confirm the functions in the call stack are relevant

to the functions where the patch is applied. Second, the team will ensure the panic site is related to

the variables that the patch influences.

As we can see, the rationale of the triaging procedure above is as follows. We assume that the

patch could successfully block the triggering of the bug and thus prevent it from exhibiting the

corresponding errors. If the patched kernel image still demonstrates errors, the manifested error is

not likely to associate with the bug of our interest. However, it should be noted that the procedure

above might mistakenly exclude some error behaviors tied to the bug of our interest simply because

the patch might not be correct, and we falsely rule out the corresponding error behaviors. As a

result, we emphasize that the error behaviors we identified could mean only the lower bound of

157

the total number of all possible error behaviors. However, as we showed in Section 2.6, the lower

bound still provides good utility, helping a security researcher explore multiple error behaviors for

a given kernel bug.

A.1.3 Detail of Distance Measurement & Hypothesis Validation

Section 2.6.2 hypothesizes that the distance (number of basic blocks) between a bug’s root cause

and the corresponding error site may correlate with the false negatives of GREBE. Here, we detail

how we measure the distance and present our hypothesis testing result.

It is challenging to measure the distance between the root cause and the error site for a given

bug. The Linux kernel is a multi-process system. The system call that triggers the root cause could

be different from the one that brings about the error. As a result, we address this issue as follows.

First, we identify all the lines of the kernel code that the patch changes. Second, we examine which

of these lines is executed first when replaying the PoC program. In this work, we treat that line as

our root cause site. If the patch site and the error site share the same system call, we simply count

the basic blocks in between. For the kernel bug, the root cause of which and the error site reside

in different system calls, we combine the basic blocks of both system calls. More specifically, we

take the total number of basic blocks that the error-site-related system call has executed. Then,

we add this number to the number of basic blocks that the root-cause-related system calls have

executed (right after the root cause is triggered and before the error occurs).

In Table A.1 (“N of BB” column), we show the distance measure for the error manifested in

the bug’s original report. We mark the distance measure with a star sign if that bug’s root cause

and error site do not share the same system call. As we can observe from the table, there is no clear

relation between the distance and the false positive. GREBE demonstrates false positives regardless

of whether the distance is long or short enough. In addition, the false-negative occurrence does

158

1 struct key *request_key_auth_new(...)
2 {
3 struct request_key_auth *rka;
4
5 ...
6
7 /* allocate a auth record */
8 rka = kzalloc(sizeof(*rka), GFP_KERNEL);
9

10 ...
11 rka->cred = get_cred(irka->cred);
12 ...
13 }
14
15 static void free_request_key_auth(struct request_key_auth *rka)
16 {
17 ...
18 if (rka->cred)
19 put_cred(rka->cred);
20 ...
21 kfree(rka);
22 }

Listing 15: The allocation and deallocation sites for the object in the type of “struct re-
quest key auth”.

not depend upon whether root cause and error site share (or not share) the same system call. With

these observations, we safely reject our hypothesis.

A.2 Identifying Credential Object

As is mentioned in Section 3.7.1, we designed and implemented an automated tool to facilitate

the identification of those exploitable objects (i.e., the objects enclosing a reference to credential

objects). Here, we discuss how we design this automated tool step-by-step and then describe our

implementation in detail.

159

Table A.1: This table shows false negative analysis results. The ”SYZ ID” is the case ID, with the
second column showing the basic block count between the crash and root cause site. A following
⋆ indicates the sites are from different syscalls; otherwise, the same. The third and fourth columns
indicate new behaviors found manually and via GREBE, respectively. A ”-” signifies no behavior
found.

SYZ ID N of BB New Behaviors Discovered Manually New Behaviors Discovered by GREBE
1fd1d44[47] 5128 ⋆ general protection fault in skcipher walk done general protection fault in skcipher walk done

695527b[49] 2313 ⋆

KASAN: use-after-free Write in bpf tcp close KASAN: use-after-free Write in bpf tcp close
BUG: unable to handle kernel paging request in qlist free all BUG: unable to handle kernel paging request in qlist free all

WARNING: ODEBUG bug in sock hash free -
ebcbbb6[192] 1 - -
f7649aa[193] 38 - -

6a03985[53] 2

general protection fault in hfsc unbind tcf general protection fault in hfsc unbind tcf
WARNING: refcount bug in tcf action put WARNING: refcount bug in tcf action put
KASAN: use-after-free Read in route4 get KASAN: use-after-free Read in route4 get
WARNING: refcount bug in route4 destroy WARNING: refcount bug in route4 destroy

KASAN: null-ptr-deref Read in route4 destroy KASAN: null-ptr-deref Read in route4 destroy
KASAN: use-after-free Read in route4 destroy KASAN: use-after-free Read in route4 destroy

27ea7ae[194] 1 - -

d5222b3[54] 652 ⋆

WARNING: bad unlock balance in ucma destroy id WARNING: bad unlock balance in ucma destroy id
general protection fault in rdma listen general protection fault in rdma listen

KASAN: use-after-free Read in addr handler -
KASAN: use-after-free Read in cma cancel operation -

KASAN: use-after-free Read in rdma listen KASAN: use-after-free Read in rdma listen
BUG: corrupted list in rdma listen BUG: corrupted list in rdma listen

de28cb0[35] 2

BUG: corrupted list in neigh mark dead BUG: corrupted list in neigh mark dead
KASAN: use-after-free Read in neigh mark dead KASAN: use-after-free Read in neigh mark dead

KASAN: slab-out-of-bounds Read in neigh mark dead KASAN: slab-out-of-bounds Read in neigh mark dead
KASAN: use-after-free Read in neigh create KASAN: use-after-free Read in neigh create

KASAN: slab-out-of-bounds Read in neigh create KASAN: slab-out-of-bounds Read in neigh create
KASAN: use-after-free Read in neigh change state KASAN: use-after-free Read in neigh change state

f56bbe6[37] 2 KASAN: slab-out-of-bounds Read in qrtr endpoint post KASAN: slab-out-of-bounds Read in qrtr endpoint post
b7f4861[195] 1 - -

e4be308[60] 857 ⋆

KASAN: slab-out-of-bounds Write in tgr192 final KASAN: slab-out-of-bounds Write in tgr192 final
KASAN: slab-out-of-bounds Write in tgr160 final KASAN: slab-out-of-bounds Write in tgr160 final

KASAN: slab-out-of-bounds Write in crypto sha3 final KASAN: slab-out-of-bounds Write in crypto sha3 final
KASAN: slab-out-of-bounds Write in rmd320 final KASAN: slab-out-of-bounds Write in rmd320 final
KASAN: slab-out-of-bounds Write in wp384 final KASAN: slab-out-of-bounds Write in wp384 final
KASAN: slab-out-of-bounds Write in sha512 finup KASAN: slab-out-of-bounds Write in sha512 finup
KASAN: slab-out-of-bounds Write in sha1 finup KASAN: slab-out-of-bounds Write in sha1 finup
KASAN: slab-out-of-bounds Write in sha1 final KASAN: slab-out-of-bounds Write in sha1 final

KASAN: slab-out-of-bounds Write in sha256 final KASAN: slab-out-of-bounds Write in sha256 final
KASAN: slab-out-of-bounds Write in rmd160 final KASAN: slab-out-of-bounds Write in rmd160 final
KASAN: slab-out-of-bounds Write in sha256 finup KASAN: slab-out-of-bounds Write in sha256 finup

d1baeb1[34] 1043 ⋆

general protection fault in skb release data general protection fault in skb release data
general protection fault in skb clone -

KASAN: wild-memory-access Read in skb copy ubufs KASAN: wild-memory-access Read in skb copy ubufs
KASAN: slab-out-of-bounds Write in pskb expand head KASAN: slab-out-of-bounds Write in pskb expand head

7022420[18] 64 KASAN: slab-out-of-bounds Write in default read copy kernel KASAN: slab-out-of-bounds Write in default read copy kernel

0df4c1a[42] 553
KASAN: use-after-free Read in remove wait queue KASAN: use-after-free Read in remove wait queue

KASAN: use-after-free Read in corrupted KASAN: use-after-free Read in corrupted
KASAN: use-after-free Read in eventfd release KASAN: use-after-free Read in eventfd release

badc913[196] 1510 ⋆ - -
33913c9[197] 1 KASAN: use-after-free Read in do madvise KASAN: use-after-free Read in do madvise
28741ff[198] 2 WARNING in snd usbmidi submit urb/usb submit urb WARNING in snd usbmidi submit urb/usb submit urb

0df4c1a[42] 6

BUG: unable to handle kernel paging request BUG: unable to handle kernel paging request
in pcpu freelist populate in pcpu freelist populate

BUG: unable to handle kernel paging request in htab map alloc BUG: unable to handle kernel paging request in htab map alloc
BUG: unable to handle kernel paging request in bpf lru populate BUG: unable to handle kernel paging request in bpf lru populate
KASAN: vmalloc-out-of-bounds Write in pcpu freelist populate KASAN: vmalloc-out-of-bounds Write in pcpu freelist populate

KASAN: vmalloc-out-of-bounds Write in bpf lru populate KASAN: vmalloc-out-of-bounds Write in bpf lru populate
KASAN: vmalloc-out-of-bounds Write in htab map alloc KASAN: vmalloc-out-of-bounds Write in htab map alloc
KASAN: vmalloc-out-of-bounds Read in htab free elems KASAN: vmalloc-out-of-bounds Read in htab free elems

BUG: unable to handle kernel paging request in htab free elems -

160

A.2.1 Design

Step 1: analyzing structure definition. Recall that an exploitable object should include a pointer

referencing a credential object. Therefore, the first step in identifying an exploitable object is to

analyze the definition of kernel data structures. This analysis could bound our consecutive analysis

in a scope, avoiding unnecessary analysis of irrelevant data structures in the following steps.

Given a data structure, we go through each field based on the definition. If a field is a nested

structure or union type, we also extract its fields and examine them accordingly. In this work,

we follow this procedure recursively until all the structure fields are thoroughly analyzed. Along

with this analysis, we also examine the type information of pointers. If a field pointer references

a credential structure type (e.g., file or cred), we record the field’s offset in the enclosed structure

and mark the structure type as a candidate.

Step 2: identifying allocation sites. As is described in the main text, DirtyCred performs privilege

escalation by exploiting heap-based memory corruption vulnerabilities. Therefore, we need to

ensure that the objects in the identified structure type can be allocated on the kernel heap. To do it,

we first pinpoint each code site that allocates an object on the kernel heap (see the object allocation

example code snippet in List 15). Second, we examine the return value of the heap (de)allocation

function. Following the data flow of the allocated object, we extract the object’s type information

and check if it matches the structure candidates identified in the first step. We record the allocation

site for the corresponding object if a match exists.

Step 3: pinpointing free sites. Recall that DirtyCred needs to deallocate credential objects. As

a result, we also need to guarantee that when deallocating an exploitable object candidate, the

kernel could also free the corresponding credential object along the way. In the Linux kernel,

credential objects have their unique properties. Their deallocation is carried out through dedicated,

161

standard kernel API functions [88], [199]. In this work, we summarize these deallocation functions

manually and then use these functions as the starting point to perform our analysis. Specifically, for

each code site where the credential-object deallocation function is invoked, we taint corresponding

arguments and then perform a backward data-flow analysis. Our backward analysis terminates

until it identifies a site where the credential object is initialized. We examine the initialization site

and extract the type information of the initialized object. If the object type matches our structure

candidate, we record the deallocation site and conclude that the object candidate has the potential

to facilitate DirtyCred’s privilege escalation.

Step 4: tracking down reachable objects. Note that the objects identified above may not be

the ones under the user’s control. For example, the objects might be capable of allocation only

at the booting phase of the Linux. In this sense, DirtyCred cannot use these objects for memory

manipulation and thus pivot a vulnerability’s capability. Therefore, the last step is to examine

whether the candidate objects can be allocated and freed through user-permitted system calls. To

do it, we leverage a kernel fuzzer to explore the reachability of candidate objects’ (de)allocation

sites. Given a candidate object identified in the first three steps, if the fuzzer could trigger its

allocation and deallocation sites using permitted system calls, we mark it as a valuable object for

DirtyCred. For those that kernel fuzzer cannot reach out to the (de)allocation sites, we rely on our

manual effort to analyze their reachability.

A.2.2 Implementation

To enable the first three analysis steps, we implemented a static analysis tool on top of LLVM.

The analysis tool takes as input the kernel bitcode. To prevent the bitcode from being optimized,

which might lose type information and make the data flow complex, we used a customized clang

to generate bitcode before any code optimization is invoked. The tool contains 3,382 lines of C++

162

code in total. Our implementation is available at [94].

To complete the last step of the analysis, we utilized the state-of-the-art kernel fuzzer – Syzkaller [11].

To enable Syzkaller to report (de)allocation sites’ reachability, we inserted a panic function at each

site where a candidate object is (de)allocated. Once the Syzkaller generates an input that reaches

the site, the kernel will experience panic, informing Syzkaller that the site has been reached. Ben-

efited from the advance of kernel fuzzing, Syzkaller will also output a minimized input reachable

to the corresponding (de)allocation sites if it triggers the corresponding panic functions. It should

be noted that Syzkaller relies on syscall templates to generate the input and thus dynamically test

the kernel. For some kernel modules, the templates have not yet been supported by Syzkaller. In

this situation, we confirm the existence of (de)allocation manually.

A.3 CAMP’s Performance on SPEC CPU2006

163

Benchmarks Time
CAMP ASAN−− ASAN ESAN Softbound+CETS MEMCHECK

400.perlbench 300.23% 256.68% 285.49% 629.16% - 3407.29%
401.bzip2 48.90% 43.98% 48.22% 114.70% 354.91% 912.38%
403.gcc 67.86% 175.04% 173.97% 600.95% - 1877.21%
429.mcf 27.25% 24.06% 34.85% 158.27% 634.40% 303.66%
433.milc 9.04% 38.82% 48.64% 50.76% 239.02% 1194.67%
445.gobmk 28.14% 36.86% 38.84% 52.46% 356.30% 2418.05%
456.hmmer 119.45% 90.07% 89.83% 270.44% 477.35% 1647.21%
458.sjeng 10.26% 40.23% 48.64% 13.35% 264.45% 2329.69%
462.libquantum 18.74% 14.75% 20.11% 197.61% - 553.84%
464.h264ref 126.17% 89.88% 125.67% 326.47% - 2689.47%
470.lbm 7.39% 25.82% 28.41% 51.63% 141.17% 5236.58%
482.sphinx3 114.08% 44.70% 52.97% 199.55% - 4207.37%
444.namd 90.43% 75.60% 82.01% 57.64% - 4076.65%
450.soplex 64.42% 42.82% 44.45% 128.66% - 1518.52%
453.povray 113.95% 105.89% 150.95% 266.29% - 5385.34%
473.astar 112.80% 30.62% 37.97% 80.75% - 1085.92%
483.xalancbmk 297.90% 166.85% 203.05% 48.80% - 5158.20%

Geomean 54.92% 56.77% 67.02% 123.08% 319.75% 1990.02%

Table A.2: Time overhead of CAMP, ASAN--, ASAN, ESAN, Softbound+CETS, MemCheck on
the SPEC CPU2006. ”-” means the case where the tool failed to run the benchmark.

164

Benchmarks Memory
CAMP ASAN−− ASAN ESAN Softbound+CETS MEMCHECK

400.perlbench 1522.09% 339.64% 285.49% 1.90% - 163.14%
401.bzip2 0.05% 2.75% 48.22% -0.98% 127.90% 33.59%
403.gcc 109.95% 187.98% 173.97% -6.78% - 44.12%
429.mcf 51.66% 12.02% 34.85% -0.56% 396.77% 2.29%
433.milc 379.00% 36.77% 48.64% -1.58% 89.01% 10.50%
445.gobmk 143.05% 612.69% 38.84% -9.29% 638.64% 230.80%
456.hmmer 4.32% 1061.04% 89.83% -39.34% -12.09% 197.22%
458.sjeng -0.10% -1.69% 48.64% -3.26% 1.18% 44.82%
462.libquantum -0.41% 185.86% 20.11% -21.56% - 48.34%
464.h264ref 18.82% 330.51% 125.67% -19.84% - 120.71%
470.lbm -0.01% 11.47% 28.41% -1.41% -1.55% 34.39%
482.sphinx3 4093.04% 650.28% 52.97% -4.03% - 240.28%
444.namd 3.63% 9.93% 82.01% -8.45% - 101.86%
450.soplex 12.65% 44.26% 44.45% -20.79% - 21.20%
453.povray 7101.36% 2020.28% 150.95% -12.61% - 1188.33%
473.astar 1840.76% 176.09% 37.97% 5.29% - 50.27%
483.xalancbmk 1800.53% 187.89% 203.05% 14.54% - 77.51%

Geomean 237.67% 181.81% 180.94% -8.45% 102.25% 97.14%

Table A.3: Memory overhead of CAMP, ASAN--, ASAN, ESAN, Softbound+CETS, MemCheck
on the SPEC CPU2006. ”-” means the case where the tool failed to run the benchmark.

	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	GREBE: Unveiling Exploitation Potential for Linux Kernel Bugs
	Introduction
	Motivating Example
	Design Rationale & Overview
	Technical Details
	Analysis of Reports and Taint Source Identification
	Taint Propagation and Identification of Sink
	Ranking of Kernel Structures
	Object-Driven Kernel Fuzzing

	Implementation
	Evaluation
	Experiment Setup & Design
	Experiment Results
	Security Implication

	Related Work
	Conclusion

	DirtyCred: Escalating Privilege in Linux Kernel
	Introduction
	Background & Threat Model
	Credentials in Linux kernel
	Linux Kernel Heap Memory Management
	Threat Model

	Technical Overview & Challenges
	Overview
	Technical Challenges

	Pivoting Vulnerability Capability
	Pivoting OOB & UAF Write
	Pivoting Double Free

	Time Window Expansion
	Exploiting Userfaultfd & FUSE
	Alternative Exploitation of Userfaultfd & FUSE in Later Kernel Versions
	Taking Advantage of Lock Mechanism in Filesystem

	Allocating Privileged Credential
	Initiating Allocation from Userspace
	Initiating Allocation from Kernel Space

	Evaluation
	Experiment Design
	Experimental Result

	Countermeasure Against DirtyCred Attack
	Discussion and Future Work
	Escaping Containers
	Android Rooting
	Cross Version / Architecture Exploitation
	Alternative Approaches for Capability Pivoting
	Exploitation Stability
	TOCTOU

	Related Work
	Conclusion

	CAMP: Compiler and Allocator-based Heap Memory Protection
	Introduction
	Background
	Corruption and Protection of Heap Memory
	Heap Memory Allocators

	Assumptions & Threat Model
	CAMP
	An Toy Vulnerable Program
	CAMP's Protection Mechanism
	Design Overview
	Instrumentation by the Compiler
	Runtime Support
	Compilation Optimization

	Implementation Details
	CAMP Compiler
	CAMP Memory Allocator

	Evaluation
	Security Evaluation
	Performance Evaluation

	Discussion
	Related Work
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future research

	References
	Appendix
	Additional Details of GREBE's Evaluation
	Detail of User Study
	Procedure of Error Triaging
	Detail of Distance Measurement & Hypothesis Validation

	Identifying Credential Object
	Design
	Implementation

	CAMP's Performance on SPEC CPU2006

