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Abstract

Three Essays in Applied Microeconomics

Samuel Norris

I study three topics in applied microeconomics. My first chapter concerns the effect of daily

school start times on academic achievement in Florida. Exploiting the sharp discontinuity in

school start time relative to sunrise, I track children who move between schools on either side

of the time zone boundary in Florida. Consistent with children’s sleep schedules becoming later

after entering puberty, I find that the benefits of later start times are concentrated among girls

older than 12, and boys older than 10. I conclude that reordering start times so that elemen-

tary students started first, then middle school students followed by high school students would

increase math achievement for high schoolers by 0.064 standard deviations and reading scores

by 0.044 standard deviations without negatively impacting younger students or affecting the

overall distribution of start times in each district.

My second chapter studies how to measure the quality of categorization workers — judges,

doctors, patent and benefits examiners — who’s job is to decide whether a case fits a given crite-

ria. I call examiners who can perfectly rank cases according to their colleagues’ understanding

of the standard consistent, and show that in institutional settings where different examiners
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study the same case consistency is identified. This chapter has implications for the fundamental

fairness of the justice system, by estimating the extent to which defendants sentences depend

on the identity of the judge who makes the decision. It is also relevant for understanding poten-

tial biases in examiner-assignment instrumental variables research designs, which have become

increasingly popular in economics over the past several years. I show that my method can

quantify the extent to which the monotonicity assumption is violated, and the implications for

estimating treatment effects. Using a sample of Canadian refugee judges, I find evidence of

widespread differences in judges in how they rank claimants. Judges with the same overall

approval rate disagree on the correct decision about 13% of the time, roughly halfway between

being perfectly consistent, and flipping coins to make decisions. I find little evidence that this

will induce very much bias in treatment effect estimates using examiner assignment designs,

but find that marginal treatment effect estimates may be very biased.

Finally, my third chapter studies the effect of incarceration on the children of the incarcer-

ated. Previous, correlational research has shown that the children of incarcerated individuals

are very often incarcerated themselves. This may reflect either selection — the children of the

incarcerated are coming from a disadvantaged background in many ways that are observable

and unobservable to the researcher — or treatment — parental incarceration actually affects

child outcomes — but pre-existing observational designs were unable to separate these two

explanations. I study a natural experiment in Ohio, where the county courts randomly assign

cases to judges. Judges differ in their propensity to incarcerate defendants, and I use this varia-

tion as an instrumental variable for incarceration. I find that parental incarceration reduces the

likelihood of the child committing crimes or being incarcerated as an adult, with the reductions

concentrated among children who’s parent is a first time-defendant and accused of relatively
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minor crimes. I find similar effects for sibling incarceration, and conclude that incarceration of

a family member increases the salience of punishment for children, reducing future criminality.
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CHAPTER 1

Rise and Shine: The Effect of School Start Times on Academic

Performance from Childhood through Puberty

1.1. Introduction

American teenagers are chronically sleep-deprived (Eaton et al., 2010). As children enter

puberty, physiological changes delay the onset of sleep and make it more difficult to wake

up early in the morning. By the end of middle school there is a large disconnect between

physiological sleep patterns and school schedules: Hansen et al. (2005) find that students lose

as much as 120 minutes of sleep per night after they start school in September, compared to the

summer months when they can better control their own sleep schedules.

Sleep matters for learning and cognition. Important memory formation and consolidation

processes occur overnight, as the brain replays patterns of brain activity exhibited during learn-

ing (Fogel and Smith, 2011; Maquet et al., 2000). Restricting sleep also reduces alertness and

attention levels (Lufi et al., 2011; Sadeh et al., 2003), which likely affects students’ ability to

learn or take tests the next day. In light of these findings, the American Academy of Pediatrics

recommends that adolescents wake up no earlier than 8:00 a.m. (2014). As of 2011, the median

start time for American high schools was 8:00 a.m., suggesting that current policy may have

cognitive costs for students.

Relatively little research has directly examined the effect of K-12 start times on academic

performance. We study this question with a novel identification strategy that takes advantage
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of the biological effect of light on sleep patterns. Sleep timing is partially regulated by sunlight

exposure; holding hours of darkness constant, more sunlight in the morning (and less at night)

naturally moves bedtimes earlier and increases alertness in the morning (Crowley et al., 2007).

Sunlight before school — as opposed to clock start times — is therefore the correct measure

of policy when comparing between schools.1 We expect that students exposed to more sunlight

will improve their academic performance, and that this effect will be stronger for pubertal chil-

dren because of their delayed sleep schedules (Carskadon et al., 1997). Our empirical strategy

leverages the discontinuous change in sunrise times at a time zone border, combined with the

fact that school start times do not fully adjust for this difference. Using a rich administrative

dataset of all public school students in Florida between 2000 and 2013, we track children as

they move across the Central-Eastern time zone boundary. Treating time zone as an instrument

for sunlight before school, we identify the effect of start time relative to sunrise on academic

performance conditional on student fixed effects and school characteristics.

We observe children moving across the time zone boundary at all ages between eight and

fifteen, which allows us to estimate the age-specific effect of school start times over a range

of developmental stages. An additional hour of sunlight before school has almost no effect on

math scores for pre-pubescent children, but a large and abrupt effect appears for girls at age

11 and boys at age 13. This pattern corresponds exactly to the gender-specific median age of

an important pubertal transition (Campbell et al., 2012), which we take as evidence that the

causal pathway is linked to the physiological changes that occur during puberty. Specifically, a

one-hour delay in relative start times increases standardized math scores by 0.081 standard de-

viations for adolescents, but only 0.009 SDs for pre-pubertal children. In reading, an extra hour

1For any given school, clock start time is colinear with sunlight before school.
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of sunlight before school increases scores by 0.057 SDs for adolescents and 0.061 SDs younger

children. The difference between groups is not statistically significant in reading, though the

adolescent estimate is more precise and can be tested as different from zero. As children move

over the time zone boundary, the change in scores occurs within a year of the change in sunlight

exposure and persists over time.

Later relative start times do not increase learning time for adolescents, as measured by

absences. Absences are reduced by 0.869 percentage points for younger children. Differences

in how absence is measured across school types (elementary, middle and high schools) may be

part of the reason behind the differences in outcomes we find here. We do not observe tardiness

that does not result in an absence and therefore cannot rule it out as a causal channel, but our

results are consistent with improved alertness and learning capacity as a result of later start

times for adolescents.

We build on the current literature in two other ways. First, we provide evidence on whether

improved achievement in high-morning-sunlight areas is a result of better learning throughout

the year, or merely improvements in testing performance. Using variation in test timing over

the sample years, we show that testing effects are unlikely to account for the math results. They

may make up a portion of the gains from later start times in reading.

Second, we address a potentially important educational policy. Although moving start times

later for all students would increase academic performance at a relatively low monetary cost

(Jacob and Rockoff, 2011), interference with transportation and parental work schedules is a

major concern for many districts. An alternative policy is to keep the same distribution of

start times, but to adjust the opening order for schools in a way that is consistent with the

physiological evidence: elementary schools, middle schools, and finally high schools. We show

that most districts in the Florida panhandle do not follow this optimal pattern, but that the policy
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would increase math and reading scores by 0.06 and 0.04 SDs for high school students, with

little negative effect for younger students. Although there may be other costs — in particular,

young children might have to wait for the school bus in the dark — our paper is the first to

quantify the academic benefits of this policy.

1.2. Background

1.2.1. Previous research

There have been several recent studies investigating the effect of daily start times on academic

achievement, though none have examined the role that pubertal changes play in the effects.

Wahlstrom et al. (1998) find that delaying school start times in Minneapolis public schools

from 7:15 to 8:40 improved student sleep by 39 minutes and significantly decreased tardiness

rates. Their measure of academic performance was teacher-assigned grades, where they found a

positive but statistically significant effect.2 A later paper by Hinrichs (2011) exploiting the same

policy change finds no effect on ACT scores. Another approach is from Edwards (2012), who

uses changes to busing schedules as a source of potentially exogeneous variation in start times.

He finds evidence that delayed start times increase achievement for middle school students.

The effect seems to be smaller for elementary students, but he notes that this may be a result of

start times being much later for younger children in his sample. The results are not available

by gender, which makes inference on the importance of puberty difficult. Finally, Carrell et al.

(2011) study freshmen cadets at the United States Air Force Academy who were randomly

assigned different school schedules, and who belonged to cohorts with different first-period

start times. Using this random variation, they find that having a start time of 7:00 a.m. (versus

2Teacher-assigned grades may understate the effect of school-level interventions if teachers curve assigned grades
within a given class and year.
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no class in first period) decreases achievement by about 0.15 SDs in that class, and by about

0.10 SDs in subsequent classes.

1.2.2. Sunlight, sleep, and puberty

The role of sunlight in determining sleep schedules is well known. Sleep patterns are partially

controlled by the circadian rhythm, which synchronizes to a 24-hour cycle using the daily vari-

ation in light and darkness (Crowley et al., 2007). In the morning, light on the outside of the

eyelids suppresses production of the hormone melatonin and stimulates brain processes to in-

crease alertness; darkness at night increases melatonin levels and feelings of tiredness (Arendt,

2000).

One of the most drastic and well-documented changes during adolescence is to the timing

of sleep. As children move through puberty, nocturnal melatonin secretion is delayed several

hours relative to adults and younger children (Carskadon et al., 1997, 2004). The result is

that adolescent sleep patterns become more owl-like, with later bedtimes and wake times, even

holding the level of darkness fixed (Carskadon et al., 1993, 2004; Crowley et al., 2007). Schools

in the United States tend to begin early to accommodate after-school activities and parental

work schedules, preventing adolescents from waking at their preferred later times and leading

to an increasing disconnect between weekday and weekend sleep schedules during the school

year (Jenni and Carskadon, 2012; Laberge et al., 2001). The result is low wakefulness and

attention levels on school days (Lufi et al., 2011). More directly, sleep levels have large effects

on cognitive performance (Sadeh et al., 2003; Walker and Stickgold, 2006).

Although boys and girls undergo similar sleep-related changes during adolescence, the age

profile of puberty varies significantly by gender. Marshall and Tanner (1970) show that pubic
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hair development begins 1.5 years earlier for girls than for boys; there is a similar gap for

attainment of other developmental thresholds. This variation in age at entry into successive

pubertal stages generates an important testable prediction: if physiological changes are driving

the increasing importance of school start times during high school, then the size of the start time

effect will co-vary with the gender-specific entry into puberty. In contrast, other changes that

might make start times more relevant to achievement — e.g., the transition to a block schedule,

middle-school social pressures, or changes to after-school activities — likely affect both genders

at the same age.

1.3. Identification strategy

Our goal is to estimate the causal effect of school start times on academic achievement and

behavioral outcomes. One approach would be to regress outcomes on start times, but because

start times are chosen by the policy-maker, this approach would generate upwards-biased coef-

ficients if better-managed schools tend to also start later in the day.3

Instead, our identification strategy exploits the relationship between sunlight and sleep,

along with variation in sunrise time between locations. The intuition is that sleep patterns are

linked partially to sunrise and sunset times, rather than clock time. This means that in terms of

student sleep and alertness, the policy-relevant measure of school start time is start time relative

to sunrise. For a given school, this is an unnecessary distinction: the choice of when to start

classes according to the clock is equivalent to deciding when to start classes relative to sunrise.

Between schools in different locations, however, a given clock start time corresponds to differ-

ent relative start times. This contrast is particularly stark at a time zone boundary. Suppose that

3Better schools may also start earlier; for example, they may start earlier to accommodate after-school activi-
ties. This fundamental uncertainty about the direction of the bias from OLS underlines the importance of good
instruments in this context.
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there are two schools close together but on opposite sides of the boundary, where the sun rises

at 6:00 a.m. in Central Time (CT) and 7:00 a.m. in Eastern Time (ET). If both schools begin

classes at 8:00 a.m. local time, students attending the school in CT will have one more hour

of sunlight before the morning bell.4 To translate this insight into credible estimates, we track

academic achievement as students move between schools on different sides of the time zone

boundary. As students move from CT to ET, they are exposed to less sunlight before school,

which we expect will decrease academic achievement. Conversely, a student moving from ET

to CT gains sunlight before school and should see their test scores increase.

Formally, we use the time zone as an instrument for the amount of sunlight before school,

which we refer to as the relative start time. We then regress academic and behavioral outcomes

on instrumented relative start time to estimate the causal effect of relative start times.

The exclusion restriction in this setting is that time zone is uncorrelated with other school

and student characteristics that might also affect achievement. This assumption might not be

realistic in certain contexts. If, for example, we regressed achievement on instrumented time

zone for the entire state of Florida, our identifying assumption would be that the only difference

between schools in CT and ET relevant to student achievement is variation in relative sunrise

times. Even conditional on a robust set of controls, this assumption is unlikely to hold. Instead,

we include a set of student fixed effects and identify the coefficients of interest using only

within-student variation. This means that variation in our instrument comes only from students

who move between time zones.

4Children in CT will also have one less hour of sunlight after school. It is possible that this has an effect on aca-
demic outcomes, for example if less sunlight after school decreased sports participation and led to more homework
time. As a policy matter, moving school start times later will always increase sunlight before school at the expense
of sunlight after school; because we are interested in the effect of school start times as a policy we consider this a
feature of our approach.
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We relate outcomes to start times using the following functional form:

(1.1) yit = δ1hoursit +δ2hoursit×1[puberty]+Xitβ + γi + εit

where yit is the outcome of interest, hoursit is the number of hours between sunrise and

school start, Xit is a vector of controls and γi is an individual fixed effect. The first stage instru-

ments for relative start time with an indicator for time zone timezoneit :

(1.2) hoursit = α11timezoneit +α12timezoneit×1[puberty]+Xitθ1 +η1i +u1it

(1.3) hoursit×1[puberty] = α21timezoneit +α22timezoneit×1[puberty]+Xitθ2 +η2i +u2it

where ηi are individual fixed effects. The vector Xit typically includes longitude, which

directly affects sunrise times, as well as school-level demographic controls to proxy for school

quality.

Crucially, we allow the effect of start time to vary by pubertal status. Based on the biological

evidence discussed in Section 1.2.2, we expect that students’ natural sleep patterns will become

more out-of-sync with their school schedule as they enter puberty. We therefore expect that

δ1 in Equation 1.1 will be positive because later start times likely increase performance for

children of all ages, and that δ2 will be positive to reflect the greater benefits of later start times

for adolescents.
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One potential concern with this strategy is that the vast majority of cross-boundary moves

are over a great distance. Long-distance moves may be inherently disruptive and therefore have

an independent effect on academic outcomes. We address this concern by including in our

sample students who move schools, but not across the time zone boundary. These students

identify a set of dummies for 1, 2, and 3+ years after the move, disentangling the effect of

moving from the effect of moving across a time zone boundary.

1.4. Data

1.4.1. Academic outcomes

Our data come from Florida Department of Education (FDOE) administrative records for the

fifteen school years from 1998-1999 through 2012-2013 (henceforth, 1999 through 2013). We

exclude alternative schools, adult education centers, and virtual academies that may have non-

standard start times. Our primary outcome of interest is individual-level scores on the annual

Florida Comprehensive Assessment Test (FCAT) in math and reading; this test is considered

‘high stakes’ for students and schools. Students took the FCAT in math in grades 5 and 8 in

years 1999 through 2000, grades 3 to 10 in 2001 through 2010, and grades 3 to 8 in 2011

through 2013. They took the FCAT in reading in grades grades 4 and 8 in 1999 through 2000

and grades 3 through 10 in 2001 through 2013. Scores are standardized by year and grade at the

state level for each test, with a mean of zero and a standard deviation of one. In addition to the

FCAT, the data include individual-level characteristics such as race, ethnicity, gender, free- or

reduced-price lunch (FRL) eligibility, and absentee rates. We use student birthdays to calculate

age at the start of the school year in September.5

5The FDOE uses September 1 as the kindergarten admission cutoff.
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The longitudinally-linked data allow us to follow students over time, as long as they remain

within the Florida public school system. About 90% of students are matched year-to-year by

social security number; the remainder are matched by name and birthday. This matching process

is conducted by the FDOE and appears to contain a small number of errors caused by multiple

students with similar names or birthdays. To account for this, we exclude students who move

backwards more than two grades, fail and then skip a grade, have a change in birthday, are older

than 15, or change gender from year-to-year. In total, these deletions amount to about 7% of the

original dataset. We lose few students in the longitudinal analysis; among students who took the

third grade FCAT before 2009, we observe 93% taking an FCAT the following year and over

80% taking an FCAT five years later.

We restrict the sample in two main ways to address possible threats to identification. First,

we focus on the area near the time zone boundary. This reduces the likelihood that there are

different economic trends on either side of the boundary, which could mean that moves in

one direction were disproportionately induced by job loss. Parental job loss is often a stressor

for children and may itself have a negative impact on academic achievement; this could bias

our results in either direction. The area near the time zone boundary is known as the Florida

panhandle, and is generally seen as distinct from the rest of the state.6

Second, we limit the sample to students who make a substantial move, which we define

as consecutive appearances at schools further than 25 miles apart. This restriction is largely

targeted at the within-time zone movers; we want to ensure that these students are subjected to

something comparable to the disruptive, long-distance cross-time zone moves. The exact choice

6The panhandle includes the following 19 counties: Bay, Calhoun, Escambia, Franklin, Gadsden, Gulf, Holmes,
Jackson, Jefferson, Lafayette, Leon, Liberty, Madison, Okaloosa, Santa Rosa, Taylor, Wakulla, Walton, and Wash-
ington. The time zone boundary approximately bisects the area.
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of 25 miles as the cutoff is admittedly arbitrary; in the Online Appendix, we show that the main

results are similar when using 15, 20, or 30 miles as the cutoff, or defining a move as a change

in school district.

Table 4.1 displays summary statistics for third-graders in the panhandle. Note that this is a

subset of our main estimation sample; we do not require that we observe a student in third grade

to include them in our main analysis. However, because we intend to show that test scores are

directly affected by time zone through the start time channel, observed differences in test scores

for older children are not informative about baseline characteristics. The third grade summary

statistics in Table 4.1 are therefore as close to baseline summary statistics as is possible with

our data, although there may already be some effect of differing relative start times.

Panel A presents school-level outcomes for all students in the panhandle (Column 1); for

those who move more than 25 miles (Column 2); and for those who move more than 25 miles

between time zones, disaggregated by direction of move (Columns 3 and 4). Column 5 tests

the difference between Columns 3 and 4. Movers come from nearly identical schools as non-

movers on all dimensions. Comparing within cross-boundary movers, CT-ET movers come

from fairly similar schools as ET-CT movers across most measures; two differences stand out

as large and statistically significant. First, the schools in ET have a much larger percentage of

black students. This occurs because most black students in our sample are from Tallahassee and

its surrounding suburbs in ET. Second, the district-level third grade reading score of the cross-

time zone movers’ schools is 0.08 SDs higher in CT than in ET. This would be problematic for

identification if it implied that underlying peer quality improves when students move from ET

to CT. However, this pattern may actually be a result of later relative start times in CT, because

these students have already been treated with four years of later relative start times in grades
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K-3. In contrast, peer covariates like FRL, which are less affected by sunlight levels, are more

similar between time zones. As a precautionary measure, we control for some characteristics of

the peer populations with demographic share controls in our main specifications. In the Online

Appendix, we show that our results are robust to the inclusion of controls for peer mean test

scores.

Panel B presents individual-level characteristics. The movers are quite similar to the overall

panhandle population, which bodes well for external validity. Movers are 11 percentage points

more likely to be FRL relative to the non-movers, but equally likely to be black. Their test

scores are slightly lower than the non-movers (0.09 and 0.08 SDs lower in math and reading,

respectively), possibly reflecting stress from the upcoming move or slightly higher poverty rates

among movers.

The characteristics of cross-time zone movers who begin in CT and those who begin in

ET are well-balanced in terms of demographic characteristics, although the third grade math

score is an insignificant 0.06 SDs lower for the CT-ET movers. The CT-ET movers also have 1

percentage point lower absentee rates than ET-CT movers.

Overall, Table 4.1 tells us that the two different types of cross-time zone movers are similar

but not identical in terms of third grade characteristics and those of the schools they attend.

Equality of baseline outcomes is not strictly required for our identification strategy; we make

only the difference-in-differences assumption that the unobserved changes in average achieve-

ment had the students moved at a different time (or moved but not been exposed to a different

relative start time) be the same for both types of mover. There are two main ways that this could

be violated: if the ET-CT movers are on a different trend than the CT-ET movers, or if there are

different changes in school quality over the move for different mover types.
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The patterns of achievement in the years before the move provide evidence on the similarity

of the underlying trend for each of the mover groups. Figure 4.1 displays pre-move trends for

four types of movers — two within a time zone (CT-CT and ET-ET) and two across (CT-ET

and ET-CT) — estimated from a regression of test scores on the number of years until move

interacted with mover type. We include a vector of controls7 and a fixed effect for the period

preceding a move for each student. The year before the move is the excluded category. The

Figure shows that the trend for each mover group is similar: in both math and reading, the

test scores for each group are statistically indistinguishable from each other during the pre-

move period. Time until move is also not a very strong predictor of academic achievement;

for all but two of the group-time combinations, we cannot reject that there is no difference in

achievement between that year and the year immediately preceding the move. This suggests

that the groups are on similar underlying trajectories, and that variation in post-move outcomes

can be attributed to changes in sunlight before school, rather than differential trends.

One slightly surprising finding is that math scores trend upwards for all groups in the years

before the move. Long-distance moves are often a result of parental divorce or job loss, which

may occur several years before the move actually takes place. Because both of these events

can increase stress levels for children, it might be expected that in the absence of controls, test

scores would decline leading up to a move. In the Online Appendix we confirm this intuition;

in a version of the same Figure without controls we show that both math and reading scores

7We include all controls from our baseline regressions, which we discuss more in Section 3.5. They include
age-gender dummies, longitude, and school-level demographic means (male, FRL, black, Asian, and Hispanic).
The longitude and demographic coefficients are identified from small deviations in school location and school
demographics in the years before the move, but have no substantive effect on the coefficients of interest. We
include them for comparability with our main regressions.
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unconditionally decline in the years before a move. Although we prefer the version with con-

trols to maintain comparability with our main results, the substantive conclusion in both cases

remains the same: there are no large differential trends that would threaten our identification

strategy.

Another violation of our exclusion restriction would arise if school or neighborhood char-

acteristics changed dramatically over the move. In Appendix Table A4, we present evidence

that changes in these characteristics are unlikely to drive our results. Taking the year before

and after each move, we regress school characteristics on a set of student-move dummies and

a dummy for each of the four types of move. Relative to the schools they started in, CT-ET

movers move to schools with 4.5 percentage points fewer FRL students, 14.0 percentage points

more black students, and a median zip code income $5,700 higher (ET-CT movers see approx-

imately the opposite changes). In the absence of any other intervention, this might actually

raise achievement for CT-ET movers given the strong relationship between average income and

school quality, when in fact we see the opposite.

1.4.2. Imputing puberty

We do not directly observe the onset of puberty, and instead use data from the National Health

and Nutrition Examination Survey (NHANES) to impute developmental stage by age and gen-

der. NHANES is a nationally representative sample of US children ages 8 to 19, and includes

information on Tanner Stage, a 1-5 scale of pubertal development based on pubic hair. We use

the median age of entry into Tanner Stage 3 as our cutoff for adolescence, as changes in sleep
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patterns occur after the acceleration of pubertal development during Tanner Stage 3 (Campbell

et al., 2012).8

Figure A3 in the Online Appendix displays the cumulative share of children who have

reached Tanner Stage 3 by gender and age; the median age of entry occurs at 11 for girls and

13 for boys. We use these ages as the start of puberty in our analysis.

1.4.3. School start times

We define school start time as the start of the first class where learning takes place; this excludes

homeroom and breakfast. Data were mostly available on school websites, and we followed up

by phone with all remaining schools.

We did not collect information on historical school start times, which change with some

regularity according to the school principals we spoke with while conducting the survey.9 Given

the identification strategy, our estimates will be consistent if there has been no change in the

average start time for each time zone over the study period.10 We believe that this condition

is likely met: although there has been some recent discussion of school start time policy in

the popular press, most of our data is from before this conversation reached the mainstream.

Furthermore, the debate has never touched on whether early start times are more onerous for

students with a later sunrise time.

8A second version of the Tanner Stage uses genital and breast development to demarcate stages. We use the pubic
hair definition because the scale is more closely associated with pubertal changes in sleep patterns (Campbell
et al., 2012), although using the alternate definition does not substantively change our main results. Using pubic
hair Tanner Stage 2 or 4 changes the precision but not the direction of our results. Full results are available in the
Online Appendix.
9This means that any attempt to estimate Equation 1.1 by OLS would result in attenuated coefficients due to
measurement error on the right hand side.
10Under a more restrictive linear relationship between achievement and start times, we require only that there has
been no change in the difference in start times between the two time zones.
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School start times range from 7:00 a.m. to 9:30 a.m. local time. The average start time

is 8:10 a.m., and the median is 8:00, which is similar to the national average (NCES, 2012).

There is some heterogeneity with age: the median elementary school student starts school at

7:55, the median middle schooler at 8:25, and the median high schooler at 7:50. Nationwide, it

is common to have high schools start earlier than the other schools in the district, so these broad

patterns are not surprising.

We use NCES school location data to calculate sunrise times for each school. Combining

these with our school start time data, we average the difference over the school year before

the testing date to construct a measure of relative start time, measured as the number of hours

between sunrise and school start times.

1.5. Results

1.5.1. First stage

Our first stage is predicated on the idea that although school start times may differ across the

time zone boundary, they do not do so enough to erase the one-hour difference in sunrise times.

Figure 4.3 plots the hours of sunlight before school, or relative start time, in the years before and

after a move for each of the four groups of movers. We estimate each point from a regression

of relative start times on time relative to move for each group as well as an individual-move

fixed effect and controls for longitude and school demographics. The year before the move is

normalized to be zero; we adjust the level of the coefficients with the group mean of relative

start times for one year before the move.11 There are three important takeaways. First, students

in Central Time have more sunlight before school than those in Eastern Time, as expected.

11A version of this graph with unconditional means for each group-time bin shows similar patterns.
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Second, the cross-time zone movers neatly switch places as they move across the time zone

boundary: the cross-time zone movers are now ‘treated’ with the start time of the other time

zone. This shift allows us to identify the effects of start time relative to sunrise using only

within-student variation. Third, the lines generally overlap within time zones, indicating that

those who switch time zones are likely not selecting into schools in a way that affects sunlight

before school.

More formally, Panel A of Table 4.2 presents the first stage regression of relative start times

on time zone.12 The first row displays the main effect for all students, and the second row

displays the interaction effect for pubescent students. The third row is the p-value from a test for

the combined significance of the effect for pubescents. Each specification includes individual

and age-gender fixed effects. Column 1 has no additional controls. Column 2 adds longitude.13

Columns 3 and 4 add demographic means at the district and school level, respectively. These

demographic means include the percentage of students who are male, FRL, black, Hispanic,

and Asian. Columns 5 through 7 are identical to Columns 2 through 4, but with the addition of

indicator variables for 1, 2, and 3+ years after the move to account for potential disruption.14

All specifications yield similar estimates. We prefer Column 7 because it includes controls

that address both disruption and potential changes in peer characteristics over the move. Across

the columns, younger children in ET have about 25 fewer minutes of sunlight before school than

12The Online Appendix includes robustness checks using additional controls including urbanicity, log income,
school size, student/teacher ratio, and other levels of demographic aggregation. The results are similar to Table 4.2.
13We also consider adding latitude as a control. However, our study area has a relatively small north-south dimen-
sion — from the top to the bottom of the panhandle, the difference in average sunrise time over the school year is
less than a minute. When we include latitude as a control, the main results are very similar but slightly smaller in
magnitude. These robustness checks can be found in the Online Appendix.
14We consider specifications that control for the time until the move. This has almost no effect on the other
coefficients in both the first and second stage, but we do not pursue this avenue to avoid controlling for information
that the students may not have themselves.
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children in CT, while those who have gone through puberty have about a 41 minute difference.

The difference is less than 60 minutes for each age group, which is what we would expect

if schools opened at the same clock time on either side of the time zone boundary. We take

this as evidence that policymakers faced with later sunrise times may shift start times later to

compensate, and that they may differentially shift elementary start times to prevent younger

students from waiting for the bus in the dark.15 The F-statistics for the first stage range from

825 to 2004, with an F-statistic of 1105 for our preferred model.

1.5.2. Effect of start times on academic achievement

Panels B and C of Table 4.2 contain estimates for the effect of relative start times on math

and reading test scores. Each specification includes individual fixed effects and age-gender

dummies,16 and the columns add additional controls in the same order as Panel A.

In Panel B, the estimated effect of relative start times on math scores is similar after we add

a control for longitude in Column 2. In all subsequent specifications, moving start times one

hour later increases math scores for prepubescents by 0.009-0.020 SDs; none of the coefficients

are close to statistically significant. For adolescents, later start times increase math scores by

0.077-0.084 SDs. Across specifications, both the adolescent level and the difference between

adolescent and prepubescent scores is significantly different from zero at the 1% level.17

15When we look at results by age, the difference in sunlight before school is 22-23 minutes for elementary school
students (typically ages 8-10 in our data), 28-30 minutes for middle school students (ages 11-13), and 47-59
minutes for high school students (ages 14-15).
16Test scores are normalized at the year-grade level, so if we included the entire state population the age-gender
dummies would reflect only the age-varying gender gap. Because our sample is restricted to movers in the Florida
panhandle, there may be additional age-varying differences relative to non-panhandle and non-mover students that
the age-gender fixed effects pick up. They are particularly important to include because they function as a set of
saturated dummy variables for puberty, which we interact with start time as a explanatory variable of interest.
17The difference in effect size by pubertal stage is striking, and corresponds with increasing sensitivity to start
times during puberty. In Online Appendix Table A6 we estimate a version of Table 4.2 without the interaction.
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Panel C repeats the exercise for reading. The results are again consistent across the columns;

in our preferred specification moving start times one hour later increases reading scores by

0.061 SDs for prepubescent students and by 0.057 SDs for adolescents. The overall effect for

adolescents is statistically significant at the 1% or 5% level for all specifications, while for pre-

pubescents it is either significant at the 5% or 10% level depending on the level of aggregation

for the demographic controls. There is no statistical difference between pubertal and prepuber-

tal effects. For adolescents, the effect size is larger in math than in reading across specifications,

corroborating previous research on middle schoolers (Edwards, 2012; Ng et al., 2009).

1.5.3. Mechanisms

There are (at least) two reasons why school start times might affect academic achievement.

First, later start times relative to sunrise may make it easier to get to school on time, reducing

absences and increasing time spent on instruction. Alternatively, more sunlight before school

may improve cognitive function by increasing sleep levels and alertness.

Panel D of Table 4.2 explores the relationship between start times and absences. Conditional

on school or district level demographic controls, there is no statistically significant relationship

between start times and absence rates for adolescents, although there is an estimated 0.9% de-

crease in absences for the younger students in the preferred specification. For all ages, later

relative start times decrease absences, although the relationship is weaker for adolescents than

for prepubescents, which is difficult to reconcile with the larger effects of start times on achieve-

ment we observe in math and reading. Comparing between age groups is somewhat fraught;

because record-keeping is not standardized across schools, an elementary-aged child might be

The average effect of start times on achievement is close to the average of the adolescent and pre-pubertal measures;
the reading estimates are statistically significant but the math estimates are only sometimes statistically significant.



33

marked absent for the entire day when she is late in the morning, but a high schooler who is

similarly late could be marked absent only for the first class but not as absent in the larger track-

ing system. However, that caveat addresses only differences between the age groups; in light

of the moderate and imprecisely estimated effects on absences for all age groups we think it is

unlikely that reductions in absences are a major causal channel through which later relative start

times translate into improved test scores.18

The evidence is somewhat stronger in favor of sleep and alertness as the causal channel.

Our data do not contain information on sleep, so we use the Child Development Supplement

(CDS) of the Panel Study of Income Dynamics (PSID) to estimate the effect of the time zone

boundary on sleep. The CDS collected time use diaries for students in 1997, 2002, and 2007,

along with geographic and demographic information. We regress hours of sleep on a dummy

variable for residence in ET for children within 400 miles of the CT-ET boundary.19

Table A7 in the Online Appendix shows that prepubescent children in ET get 6 minutes less

sleep per night during the week than children in CT.20 The difference in sleep is reversed on the

weekend as they attempt to correct the sleep deficit; students in ET sleep 4 minutes more. After

the onset of puberty, both gaps widen: children in ET get 17 minutes less sleep per night during

the week, and compensate with 13 minutes more sleep per night on the weekend.

These findings indicate that children in ET are more sleep-deprived than children in CT,

and that this gap increases in adolescence. If school start times in our Florida sample are

18We do not have data on tardiness, which could also be affected by start times.
19The publicly-available CDS does not geocode individuals at a sub-state level, so we exclude all observations
from states with multiple time zones — including Florida. See the Online Appendix for more information on
sample construction.
20All estimates reported here include demographic controls; see Column 2. We conservatively cluster by state. The
difference in sleep between children in ET and CT is statistically different for adolescents but not for prepubescent
children.
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representative of start times elsewhere, this suggests a passthrough from relative school start

times to sleep of 40-50%, which is comparable to the 46% found by Wahlstrom et al. (1998).

Thus, moving from ET to CT increases both sleep and test scores (and increases them more for

adolescents), suggesting that levels of sleep and alertness in the morning are important causal

channels through which later school start times increase achievement. There may be other

changes in time use — descriptive research indicates that later start times decrease time spent

on extracurricular activities, as well as reduce leisure time for girls and computer use for boys

(Groen and Pabilonia, 2015; Wahlstrom et al., 1998) — but it is difficult to reconcile the patterns

of achievement by developmental status with an explanation not revolving around the transition

to puberty. More importantly, from the perspective of a policymaker the distinction is moot:

whether the causal channel is before-school time or after-school time, changing the school start

time will affect both channels.

1.5.4. Heterogeneity by age and gender

Rather than allowing the effect of relative start times to vary by pubertal status as in Equa-

tion 1.1, it is possible to estimate each age-gender-start time interaction term separately. If the

increasing importance of start times for math performance is a function of puberty, the effect

sizes should grow in importance as a larger share of the gender enters puberty. This is precisely

what we see.

Figure 4.4 presents coefficients from a version of Equation 1.1 estimated separately by gen-

der, with start time fully interacted with age. Because ages range from 8 to 15, this amounts to

estimating
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(1.4) yit =
15

∑
a=8

δahit×1[age=a]+Xitβ + γi + εit

where hit1[age=a] is instrumented by time zone interacted with age, and Xit is the baseline

vector of controls. Starting in the upper left corner of Figure 4.4, there is a sharp spike in the

effect of school start times on math scores at age 11 for girls, precisely when the median girl

enters Tanner Stage 3. The effect of later school start times is statistically significantly different

from zero for girls 11-13, but not for girls 10 or younger. For boys, in the upper right corner, the

effect of start times on math scores is statistically indistinguishable from zero at the 10% level

for ages 8 to 12, then jumps from 0.049 to 0.096 at 13 as the median boy enters Tanner Stage

3. The effect of start times is significantly different from zero at the 1% level for ages 14 and

15. This is evidence that the increasing importance of start times with age is driven by pubertal

entrance, rather than other academic or behavioral changes.

The effect of start times on math scores is noticeably (though insignificantly) smaller for

girls after age 13. One possible explanation is that certain stages of puberty are particularly

important for sleep (Campbell et al., 2012), and girls have moved beyond this developmental

stage by age 14. For example, Crowley et al. (2007) speculate that older adolescents may be less

responsive to light than younger adolescents. However, there is no firm physiological evidence

on sleep patterns or light sensitivity at a granular gender-age level, so resolution of this issue

will have to wait for data which extends further into adolescence, especially for boys. There is

persuasive evidence from Carrell et al. (2011) that start times have a large effect on achievement

for college freshmen cohorts that include both boys and girls, so we think it is unlikely that the

true effect is zero for 14 and 15 year old girls.
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In reading, as one might expect from Table 4.2, there is no sharp change in the relationship

between start time and achievement at the gender-specific puberty thresholds.

1.5.5. Heterogeneity by subgroup

Educational interventions often have a larger effect on disadvantaged students or students at-

tending low-resource schools (see, e.g. Krueger and Whitmore (2002)). In this case, however,

there are more similarities than differences in effect sizes across racial, economic, and gender

groups. The standard errors are large, but the results suggest that changes to start times will

benefit all students, rather than certain demographic groups.

In Table 4.3, we apply our baseline regression of test scores and absence rates on start

times for each of six demographic subgroups: whites and minorities;21 FRL and non-FRL; and

male and female. In math, the effect sizes are similar between white and minority students in

Columns 1 and 2. For pubescents, a one-hour delay in relative start times increases math scores

by 0.093 SDs for white students and 0.081 SDs for minority students. In reading, the effect

sizes are 0.040 and 0.132, respectively, though this difference is not significant. None of the

estimated effects for absences are statistically significant.

Columns 3 and 4 contrast FRL and non-FRL students. The effect size for math scores is

significantly larger for the non-FRL adolescents at 0.147 SDs per hour, compared to 0.048 SD

for FRL adolescents. There are no statistically significant differences for reading scores or

absence rates.

21We count all non-white students as minorities. These results are not substantively affected by not counting
Asians as minorities, or delineating the categories as black and non-black. In the latter case, however, the standard
errors for the black sample are large.
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Finally, Columns 5 and 6 indicate that the effect of relative start times on achievement and

absences is similar for boys and girls. The difference is never statistically significant, and the

effect sizes for both groups are similar to the overall estimates of Table 4.2.

1.5.6. Persistence of start times

To this point, we have not distinguished between a transitory and permanent effect of start times

on academic achievement. This distinction could be important. If changing school start times

from one year to another has an effect for (say) only one year while the student adjusts her sleep

schedule, our estimates (which are essentially the average of achievement before and after the

move) would overstate the long-term effect by averaging a positive effect in the first year with

a zero effect in all other years. This would mean that our estimates would not correctly predict

the long-term change in achievement as a result of changes in start time policy. We explore this

possibility in Table 4.4, where we estimate a version of our baseline regression with relative

start time by pubertal status interacted with dummies for 1, 2 and 3+ years since move. Note

that the pubescent effect is the total estimate for adolescents, rather than an interaction.

The results indicate that the short-term and long-term effects are quite similar; for pre-

pubescent children the long-term math and reading coefficient is an insignificant 0.005-.011

SDs smaller. For adolescents, the math effect is 0.020 SDs lower in the long run; the difference

is significant at the 1% level. The reading effect is 0.010 SDs higher in the long run; the dif-

ference between the short and long run is not statistically significant. In the long run, the effect

is larger for adolescents than younger students in both subjects, although the difference is not

statistically significant in reading. In both the short and long run, the adolescent effects differ

from zero. We conclude that changes to start times improve math and reading achievement
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within a year of the change in sunlight exposure for adolescents, and the effects largely persist

over time.

1.5.7. Learning versus testing

The positive effect of later relative start times on test scores has two potential causes: improved

learning in the year leading up to the test, or better testing performance caused by increased

alertness on the day of the test. Our approach so far has been to estimate the combined effect of

learning and testing. Fully disentangling the two effects would require separate instruments for

start times during the year and on the day of the test, which are unavailable in our data.

The data allow us to answer a related but less definitive question: does the relationship

between sunlight and achievement vary with the amount of baseline test-day sunlight, holding

sunlight during the school year constant? If so, this implies that changes to test-day relative

start times matter for achievement. Estimates of the marginal effect of later relative start times

at different levels of test-day sunlight can be combined with a mild assumption of diminishing

returns to sleep to generate a lower bound on the size of the test-day start time effect.

This strategy is possible in our context because our data contain variation in test-day relative

start time that is separate from the cross-time zone variation in start times. During the study

period, testing dates moved from late February to mid-April. This changed levels of sunlight

on the day of the test, but had only a small effect on average sunlight levels during the school

year when learning occurred. Using these policy changes, we find that the lower bound on the

test-day effect is relatively high for reading, but low for math. We interpret this as evidence in

favor of potential testing effects in reading, but not as a definitive rejection of testing effects in

math.
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During the study period, the FDOE pushed the testing period later in two discrete steps.

The first change was particularly useful for this research, because it moved the testing period

from before to after the start of Daylight Saving Time. DST begins with a time change on

the second Sunday of March in most of the United States.22 Clocks “spring forward,” moving

sunrise one hour later and reducing the amount of sunlight before school. Figure 4.6 charts

sunlight before school for 2000-2007, 2008-2009, and 2011-2013, corresponding to the three

test-day policy eras.23 In 2000-2007, testing took place just before the change to DST, meaning

that there was a relatively large amount of sunlight before school; in ET, the average was 1

hour 20 minutes on the first day of testing. For 2008 and 2009, the test was moved two weeks

later to directly after DST; the average amount of sunlight before school on the morning of the

test in ET dropped to 28 minutes. In 2011, the test was moved one month later, increasing

sunlight before school on the testing day to an average of 1 hour 9 minutes for 2011-2013.24

Throughout the study period, the average sunlight before school in the school year leading up

to the test barely changed, at 61, 56, and 59 minutes, respectively. Based on these differences,

we group together 2000-2007 and 2011-2013 into a “late test time” treatment, and 2008-2009

into an “early test time” treatment.25 As the testing date was moved back, preparation time

increased for all students; however, because the early test time treatment occurred in the middle

of the period (when the testing date was closest to the DST transition) the average preparation

22There have been changes in DST dates in the recent past; before 2007 DST started on the first Sunday of April.
This change is not relevant for this research, because testing occurred before DST began in all years before the
switch in DST dates.
23Specifically, the Figure shows 2007, 2008, and 2011, but all are archetypes of their eras.
24We exclude 2010 from analysis in this section because DST occurred during the testing period in this year,
meaning that we cannot assign the test to either pre- or post-DST. We also exclude 1999 because testing occurred
one month earlier, in the first week of February, where the sunrise time is between the early and late period.
25The main difference between 2000-2007 and 2011-2013 is that the average relative start time in the year preced-
ing the test was slightly earlier in 2011-2013 because the extra month of class time was almost entirely after the
DST transition. Excluding 2011-2013 from the regressions does not change our conclusions.
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time is only five days longer for the late test time treatment group. Furthermore, neither of

the changes in testing date correspond to any major changes in testing procedure or curriculum

we could find, suggesting that any differences in performance between the policy eras can be

attributed to test-day sunlight.

It is tempting to estimate the effect of earlier relative start times on the day of the test

by regressing test scores on a dummy variable for the testing era. However, test scores are

standardized by the mean statewide score in each grade-year, so direct comparisons between

years are not possible. We instead test whether the effect of full-year relative start times on

achievement changes depending on test-day sunlight. We estimate a second stage of:

yit = φ1hoursit1[child∩ late test time]it +φ2hoursit1[child∩ early test time]it+

λ1hoursit1[puberty∩ late test time]it +λ2hoursit1[puberty∩ early test time]it+

Xitβ + γi + εit

(1.5)

where Xit includes, in addition to the usual controls, dummies for the policy eras and their

interaction with puberty.

Because sunlight before school during the year leading up to the test is nearly identical be-

tween eras, the difference in coefficients for a given age group represents the change in the effect

of one extra hour of test-day morning sunlight on test scores between two different margins: 1

hour 17 minutes from sunrise (the average in the late testing years) and 28 minutes from sun-

rise (the average in the early testing years). If the coefficients are the same, that implies either

that the effect of test-day sunlight is identical at the two margins, or that the effect of test-day
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sunlight is zero.26 If they are different, that implies there is some effect of testing day sunlight

on at least one of the margins. A smaller coefficient in the late-testing years is consistent with

diminishing marginal returns to test-day sunlight.27 Analogously to the main specification of

Equation 1.1, we expect that λ > φ > 0, since later start times should improve performance

more for adolescents than for younger students.

Table 4.5 presents our findings for math and reading. Unlike the main table, the coeffi-

cients estimate the full effect for adolescents, rather than the difference between adolescents

and younger children. We begin by verifying in Columns 1 and 3 that excluding 1999 and 2010

does not substantively affect our baseline results.

Columns 2 and 4 estimate Equation 1.5, allowing for a differential effect of start times on

achievement as a function of baseline test-day start times. In Column 2, the math results are

unchanged from our main specification: moving relative start times one hour later increases

achievement at a similar rate in the two eras for adolescents (0.096 SDs per hour in the early

versus 0.095 SDs in the late era), and the difference in estimates is statistically insignificant.

Because we argue there should be diminishing marginal returns to more sunlight before school,

we take the similarity in estimates between different test-day sunlight eras as evidence against

test-day effects in math.28 For children, the results are slightly more suggestive of testing effects,

26The latter implication is technically a subset of the former, but the conceptual difference is important.
27Formally, this can be seen by modeling outcomes y as an additive function of full-year and test-day sunlight,
y= fyear(t1)+ ftest(t2). We estimate βearly = f ′year(56m)+ f ′test(1h 17m) and βlate = f ′year(56m)+ f ′test(28m), where
f ′ is the first derivative. Then, βearly−βlate ≈ f ′test(1h 17m)− f ′test(28m), so a positive difference is evidence for
diminishing marginal returns. Any non-zero difference implies that the function relating performance and testing
has a non-zero effect at (at least) one of the margins.
28Technically, the similarity between the early- and late-test time coefficients cannot be read as a failure to reject
testing as an important input into math achievement. It is instead a rejection of a nonlinear relationship between
achievement and test-day sunlight — it is consistent with an effect of test-day start times only if the relationship
between achievement and start times is linear in the region between 28 minutes and 1 hour 17 minutes of sunlight
before school.
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with larger effects for more sunlight on the test days with less sunlight before school (at 0.071

SDs per hour) than on the test days with more sunlight before school (at 0.022 SDs per hour).

However, neither estimate statistically differs from zero, nor do they differ from each other.

In reading, the results are more strongly suggestive of testing effects. For younger children,

one extra hour of morning sunlight increases test scores by 0.096 SDs in years with less sunlight

before school (early years), while the effect is statistically insignificant and only 0.049 SDs

in years with more sunlight before school (late years). For adolescents, the effect during the

relatively earlier testing era is 0.104 SDs per hour of sunlight, compared to 0.045 SDs in the

late era. The difference in estimates is statistically significant for adolescents, suggesting that

test-day sunlight may be important for reading achievement. Under the assumption that changes

to test-day relative start times do not change the effect of start times during the school year, and

that there are decreasing marginal returns to later test-day start times, this indicates that the

test-day effect is bounded at a minimum of 0.059 SDs per hour for adolescents (calculated

as 0.104-0.045) and 0.047 for prepubescents (0.096-0.049) in the early start time years. This

bounded effect implies that testing is a more important causal channel than learning for reading

achievement.

There is, however, one important reason why the result in reading should be taken with

some caution. In both of the early-testing years, the testing period began almost immediately

after the switch to DST; one day after in 2008 and two days after in 2009. Because clocks move

forward during the spring DST transition, students can lose up to an hour of sleep, depending

on how much they adjust their sleep times. There is strong evidence that the DST transition

negatively affects sleep levels and alertness: Smith (2016) finds an increase in the number

of fatal car accidents in the six days following DST. We therefore interpret the difference in
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coefficients between the early- and late-baseline years as the difference in the gains from an

hour of sunlight on test-day with a baseline of 1 hour 17 minutes sunlight before school and

the gains from an hour of sunlight on test-day with a baseline of 28 minutes of sunlight before

school and up to an hour of sleep deprivation. We have no information on the testing date for

each student, so we cannot further stratify the start time effect as a function of number of days

since the DST transition. However, since the testing period was longer than one week in both

2008 and 2009, the test was likely taken a few days after the DST transition and perhaps as long

as two weeks after, when transition-induced sleep loss has lessened. We therefore think that the

safest interpretation is for moderate test-day effects in reading, of the same order as the full-year

learning effects. At the very least, this result tells us that under an assumption of diminishing

marginal returns to test-day sunlight, there are some situations (potentially including more sleep

deprivation than is normal for this age group) where test-day sunlight has a large effect on

academic achievement in reading. There is much more to be done to separately identify the

effects of whole-year and test-day sunlight, but we leave this for future research.

1.5.8. Placebo time zone changes

The identification strategy in this paper leverages the discontinuity in sunrise times at the time

zone boundary to estimate the effect of relative start times on academic performance. In a

reduced form sense, we track students as they move east (west) over the time zone boundary in

the Florida panhandle and find that scores decline (increase), as predicted by the earlier (later)

relative start times.

Alternatively, perhaps moves to the east are score-decreasing for some reason unrelated to

start times: schools are lower quality, or parents moving east get worse jobs and lower pay,
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which decrease investment in educational inputs. Our baseline specification includes controls

for longitude and school demographics, which together control for any variation in underly-

ing school or family characteristics that is linearly correlated with the demographic controls or

varies linearly from east to west over the panhandle. If there are nonlinearities in this relation-

ship, however, our method could misattribute variation in unobserved non-start time inputs to

variation in start times, biasing our estimates.

In this section, we estimate placebo regressions that attempt to rule out a non-start time

explanation. We generate placebo boundaries in ten mile increments from the true boundary;

Figure 4.8 displays the estimated effect of moving over each placebo boundary, conditioning on

true time zone, the regular vector of controls, and student fixed effects. We present estimates

using cross-time zone movers, as well as restricting to only within-time zone movers. In Sec-

tion A.1.8 of the Online Appendix, we demonstrate that schools very close to the time zone

boundary adopt start times similar to their cross-boundary counterparts; this means that there is

a treatment effect of moving to or from the region directly adjacent to the boundary, even when

the move is within time zone. We therefore exclude a 25 mile area around the true boundary (a

version of the placebo test without this exclusion is available in the Online Appendix).29

Figure 4.8 displays the estimated coefficients for moving over placebo boundaries, placed

in 10 mile increments from the true time zone boundary. In math, the placebo coefficients for

the adolescent interaction are always smaller than the true coefficient, and usually significantly

so. The true level coefficient is approximately zero, and the placebo coefficients bounce around

29Excluding this region is not necessary in the main specification, as the IV estimate accounts for treatment bleed
across time zones. However, our results are substantively the same even excluding this donut; we estimate that
moving start times one hour later would improve math scores by 0.065 SDs for adolescents, and would have little
effect on prepubescent math scores or reading scores for either age group. The number of students also decreases,
resulting in larger standard errors on these estimates.
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that estimate, although we can sometimes reject they are zero. In reading, for both the within-

and all-mover specifications, the placebo coefficients are almost always smaller than the true

coefficients (and very imprecisely estimated when they are not). The true time zone-puberty

interaction coefficient is approximately the same size as the placebos, although it is imprecise

enough that we cannot differentiate it from zero in our main sample.

In summary, we estimate regressions of outcomes on placebo time zones, and find little

evidence of changes in outcomes over the placebo boundaries, suggesting that the gains in

achievement from westward moves are a function of crossing over the true time zone boundary

and being exposed to later relative start times, rather than improvements in some other input.

1.5.9. Other effects of cross-time zone moves

A final threat to our identification strategy is the possibility that moving between time zones

has a direct effect on family income or other characteristics. If these changes have an indepen-

dent effect on academic performance, the exclusion restriction would be violated. Gibson and

Shrader (2015) show that a one-hour delay in sunrise time reduces wages by between 0.5 and

4.5%. Given Dahl and Lochner’s (2012) estimate of a 0.06 SD decrease in test scores per $1,000

decrease in EITC income, this could explain much of the test score effect. We do not observe

parental income, and so cannot directly control for this possibility. However, there are three

reasons to expect that a measure of income is not an important missing variable in our analysis.

First, jobs are a primary reason for moving long distances and are chosen by the parents; wages

are an important factor in job choice. It is therefore unlikely that movers are immediately treated

with the average difference in wages given the change in sunrise times over the move. In fact,

Gibson and Shrader (2015) argue that housing prices adjust to eliminate the incentive to move,
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and document that housing is indeed more expensive in early-sunrise cities. Disposable income

would then be flat over the move, eliminating any effect on academic achievement. Second, in

our sample zip-level income is higher in low-sunlight ET than in high-sunlight CT, which is the

opposite of what is predicted by Gibson and Shrader (2015).30 As we demonstrate in the Online

Appendix, our results are unchanged by controls for zip-level income. Third, and most impor-

tantly, even if disposable income did increase as families moved over the time zone boundary,

we would expect that children of all ages would benefit from the move. Instead, we observe

larger increases in standardized test scores for pubertal children — and almost no increase for

pre-pubertal children in math — suggesting that changes in sunlight before school are the most

important causal factor.

1.6. Benefits of rearranging start times

Academic research and popular coverage of the potentially negative effects of early start

times dates back at least as far as the late 1990s (Douglas, 1999; Wahlstrom et al., 1998). The

evidence from the medical and physiological literature has grown so compelling that the Amer-

ican Academy of Pediatrics now recommends that middle and high schools delay start times

to allow students to wake up no earlier than 8:00 am (2014). Despite the growing consensus,

schools continue to open early; the median high school opens at 8:00 a.m. (NCES, 2012).

School districts, particularly those in large urban areas, often open different types of schools

at different times. This structure is convenient for parents dropping off children at different

schools, because it guarantees that a child in middle school will not need to be dropped off

at the same time as a child in high school. It also allows school districts to use the same

30This does not seem to be a function of education, since literacy is actually marginally lower in ET (Authors’
calculations from the NCES 2003 National Assessment of Adult Literacy).
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buses more intensively, saving on transportation costs. However, of the 19 school districts in

the Florida panhandle, only 4 currently order their start times in the ‘efficient’ way. Inflexible

parental schedules often preclude moving start times later for all students, since parents must be

able to drop off their last child in time to get to work. In this section, we consider the academic

effects of an alternative start time policy that better fits the physiological evidence but does not

alter the overall distribution of start times: changing the opening order for different types of

schools to elementary schools, middle schools, and finally high schools.

We operationalize this simple counterfactual by taking the average start time for each school

type in each district, then assigning the earliest average start time to elementary schools, the next

start time to middle schools, and the latest time to high schools. We adjust the mean start time

for each district so that it is the same in the counterfactual as in the real world.31 We take the

difference in relative start times for the counterfactual and real worlds for each school type and

apply the coefficients from Table 4.3, weighting by the number of children in each district-

school type. On average, this moves elementary start times 22 minutes earlier, middle schools

13 minutes earlier, and high schools 44 minutes later.

Figure 4.10 displays the effect on test scores, separated by gender and race. The counter-

factual policy has been constructed so that if start times have an identical effect on children of

all ages, the average increase in test scores will be zero. However, because the gains from later

start times are smaller for younger children than for older children, our procedure has the effect

of raising average academic achievement. In both math and reading, the effect is slightly (and

31A clarifying example: if a district has 800 students in grade 9-12 schools with a start time of 7:00, 800 students
in grades 6-8 schools with a start time of 7:30, and 1200 students in K-5 schools with a start time of 8:00, the mean
district start time is 7:34. We would then set counterfactual start times to 7:08 in elementary school, 7:38 in middle
school, and 8:08 in high school, with an average start time of 7:34. The procedure keeps the counterfactual mean
start time the same as the status quo, and maintains the half hour spread in start times between school types.
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usually insignificantly) negative for all groups of students in elementary and middle school. On

average, elementary- and middle-school math and reading scores decline by 0.01 SDs. For high

school students, the gains are large and statistically significant: in math, the proposed policy

would increase minority student achievement in high school by 0.06 SDs in math and 0.08 SDs

in reading. For white students, we expect that math scores would increase by 0.06 SDs and

reading scores by 0.02 SDs. By gender, male high school students benefit slightly but insignifi-

cantly more compared to females. Using the coefficients from Table 4.2, the average effect is a

0.064 SD gain in math and a 0.044 SD gain in reading.

Furthermore, the high school results are good estimates for the overall change in achieve-

ment for each student by the end of high school. In Section 1.5.6 we show that increases in

academic achievement occur immediately after the move and persist for years. That implies

that back-loading the later start times will increase achievement as of the conclusion of high

school by approximately the same amount as the single-year effect. Alternatively, taking the

long-term estimates of Table 4.4 as given, the counterfactual would increase end-of-high school

math scores by 0.05 SDs and reading scores by 0.037 SDs.32

One drawback of re-ordering start times would be that the youngest children may have to

wait for the bus or walk to school in the dark. In December, the average sunrise would be only

53 minutes before school starts, with 12% of elementary school students having less than half

an hour between sunrise and school start in the darkest month. This would likely mean that

a substantial number of very young students might need to travel to school in the dark, which

presents a significant drawback to this proposal. Moving all school start times later, rather than

re-ordering schools, would not have this problem.

32This math score is calculated by multiplying the long-term coefficent of 0.087− 0.020 = 0.067 by the average
change in high school relative start times, 44 minutes.
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In summary, we demonstrate that adjusting school start times so that high school students

have the latest start time would significantly increase achievement for older children at a very

low academic cost for younger children. Even when start times are reordered such that the

average start time across the district remains the same, there are non-trivial gains in average

academic performance that would benefit students in all demographic groups. These gains

must be weighed against the costs of having younger children traveling to school in the dark.

1.7. Conclusion

We investigate the effect of daily school start times on academic performance. Adolescents

in particular struggle with early start times; the onset of puberty shifts the sleep schedule back

several hours, making any given start time more onerous for high schoolers than for students

in other age groups. Our empirical strategy tracks academic performance in the same student

before and after a cross-time zone move, which we use as an instrument for the amount of

sunlight before school. Because the circadian rhythm is tied to variation in sunlight levels, this

is a good approximation of a policy change in start times. Using a long individual panel from

the state of Florida, we find that moving start times one hour later relative to sunrise would

increase adolescent scores by 0.081 SDs in math and 0.057 SDs in reading. The increase in test

scores can be observed immediately after the move, and persists for as long as we can measure

it. Taking advantage of the fact that girls enter puberty two years earlier than boys, we document

that the effect of relative start times on math performance spikes precisely at the gender-specific

age of median entrance into an important pubertal stage. Previous research, which has mostly

focused on a smaller age range of the population, has been unable to fully explore changes in

the effect of start times over the pubertal transition.
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These effects are cost-effective compared to other proposals to improve educational achieve-

ment, such as smaller classrooms or higher-skilled teachers. Specifically, reducing class size in

elementary schools from 22 to 15 increases scores by 0.15-0.20 standard deviations (Schanzen-

bach, 2006), and a 1 standard deviation improvement in teacher quality increase scores by ap-

proximately 0.10 standard deviations (Chetty et al., 2014). Changes to school schedules would

likely be much cheaper. Jacob and Rockoff (2011) suggest that the cost of moving start times

one hour later is less than $150 per student per year and potentially as low as free. In contrast,

reducing class sizes by a third costs approximately $6,200 per student per year.33 The cost of

such a large improvement in teacher quality is more difficult to evaluate, since the supply side

of the teacher market is poorly understood. However, it is likely very large, if only because it

would likely require hiring hundreds of thousands of new teachers.34

We simulate the effect of adjusting start times by school type to match students’ develop-

mental patterns while maintaining the same mean district start time. We estimate that this would

increase math scores for high school students by 0.064 SDs and reading scores by 0.044 SDs,

while having small and mostly statistically insignificant effects on scores for younger children.

Alternatively, moving start times later across the board would increase achievement for all ages

and demographics. In either case, adjustments on the start times margin seem to be significantly

cheaper than adjustments to classroom size or teacher composition, suggesting that there may

be large unrealized gains in this area.

33These figures are from Schanzenbach (2006), inflated from 2002 to 2011 prices via the CPI.
34If teacher quality were distributed normally, then replacing the bottom half of teachers with average teachers
would raise the average SD of teacher quality by only 0.4, and therefore test scores by 0.04 SD. According to the
NCES, there were 3.7 million teachers in the United States in 2012. It is hard to imagine that finding 1.85 million
new average-quality teachers could be done without significantly increasing wages.
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There is one important caveat to our findings. Changes in school start times can increase

achievement through either better learning in the year leading up to the test, or improved testing

performance. We exploit a policy change in the testing date relative to Daylight Saving Time

to learn whether test-day start times are important for achievement (but not by how much). We

find suggestive evidence in favor of testing effects in reading, but not math. Our method is

unable to precisely quantify the relative importance of testing and learning, but show that the

magnitude is approximately the same for reading. We leave this as an important direction for

future work.

Despite growing medical and physiological evidence that current school start times are too

early for optimal adolescent cognitive functioning, there has been little policy response to move

start times later. We add to this debate with direct evidence that more sunlight before school

— or a later relative start time — increases academic achievement for children of all ages. The

increase in scores is much larger for adolescents, implying that even when parental schedules

preclude later start times for all children, districts can improve academic performance by adjust-

ing the order in which school types open to correspond with students’ changing sleep schedules.

Specifically, high school students should begin school later in the day to compensate for puber-

tal changes that shift their circadian rhythm later, while elementary students should begin school

the earliest. Despite the low costs of adopting this policy, the gains are quite large.
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CHAPTER 2

Judicial Errors: Evidence from Refugee Appeals

2.1. Introduction

The justice system is a major institution in all developed countries. In the US alone, there

are approximately 7 million felons and ex-felons under court supervision (Glaze and Parks,

2011), and 47 million new non-traffic cases filed in state courts each year (Bureau of Justice

Statistics, 2006). Other quasi-judicial institutions, such as the system of Social Security Dis-

ability Insurance examiners who decide SSDI eligibility, routinely make decisions worth tens

of thousands of dollars (Maestas et al., 2012).

The efficiency and fairness of the courts has far-reaching consequences. Beyond the literally

life-altering effects of decisions on criminal defendants, Porta et al. (1998) argue that inefficient

civil courts increase transaction costs and reduce aggregate investment. However, evidence on

the overall fairness of the courts remains limited. In specific situations, there is compelling

evidence that judicial decisions are affected by non-relevant factors like upcoming elections

(Canes-Wrone et al., 2014), inter-communal violence (Shayo and Zussman, 2010), television

news about unrelated crime (Philippe and Ouss, 2016), the previous decision (Chen et al., 2016),

the timing of the hearing relative to lunch (Danziger et al., 2011) and the winner of last night’s

football game (Eren and Mocan, 2016). All of these findings suggest that some cases would

receive a different outcome if their case had been heard on a different day or even at a different

time. However, aggregating all these different ways a court can be unfair (and others yet to be
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uncovered) is unlikely to be feasible. In this paper, I take a different approach and introduce a

new method to measure overall unfairness in judicial decision-making, as well as the reliability

of individual judges.

I begin with a simple definition: a court is fair if decisions are made according to the facts of

the case and the universal application of the law — or equivalently, if all decisions are made ac-

cording to the same standard. Judges can differ from this ideal in two ways. First, judges could

differ in terms of aggregate leniency, and in fact in all courts that I am aware of there is substan-

tial cross-judge variation in propensity to incarcerate randomly-assigned defendants (Abrams

et al., 2012; Aizer and Doyle, 2013; Bhuller et al., 2016; Mueller-Smith, 2014). Second, judges

with the same overall incarceration rate could choose to incarcerate different individuals, and

judges might make different decisions today than they would yesterday. This latter form of

unfairness, which I refer to as inconsistency, is implied by the examples from the previous para-

graph. The tools I develop in this paper allow me to separately identify judge-specific leniency

from a measure of overall consistency that encompasses all the above examples, as well as any

other decisions where a judge violates his own standards. Together, these estimates facilitate

evaluations of the efficiency of the judicial system (are guilty defendants likely to be incarcer-

ated?), and allow the researcher to measure the quality of individual judges and the success of

reforms. I show that the presence of inconsistency implies violations of the montonicity as-

sumption in examiner-assignment IV designs, and my results shed light on potential biases in

this increasingly-common identification strategy (Dahl et al., 2013; Mueller-Smith, 2014).

My conception of consistency is a simple generalization of the usual index model of judi-

cial decision-making, where judges perfectly observe the strength of each claimants case and
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approve them if it is larger than some judge-specific threshold.1 In my model, judges observe

case quality with error; the size of the distribution of this error is inconsistency. Judicial behav-

ior is thus summarized by a judge-specific threshold and a judge-specific error distribution. In

many environments this is not identifiable: if we observe only judge-specific approval rates, a

judge who perfectly selected all claimants meeting the legal standard would be indistinguishable

from a judge who approved the same share of claimants but flipped coins to do so.

Identification relies on two distinct institutional characteristics. The first is random assign-

ment of judges to cases, which is common in many court systems and ensures that underlying

case characteristics are uncorrelated with judge characteristics. The second is that the decision

is made by two judges acting independently but using similar criteria. This latter condition can

be met by identical standards for each judge, but in my setting and in many others is satisfied by

the requirement that claimants be recognized as having an arguable case by one judge (in legal

parlance, granted leave) before being given a full hearing in front of another. I use the second-

stage decision to check the accuracy of the first-stage decision — if there are two first-round

judges who approve the same number of first-round claimants, the more consistent judge will

have a higher share of her claimants approved by the second-round judge.2 In my context, con-

sistency maps directly into judge quality: judges are specifically told that they should approve

first-round claimants who can make a strong case in the second case.

A similar comparison allows identification of second-round consistency: approval rates for

consistent second-round judges — who can easily distinguish between high and low quality

1Equivalently, judges convict a defendant if his guiltiness is higher than some judge-specific threshold. I use
the language of approval rather than conviction to concord with my empirical application, though the concept is
identical.
2This also implies that the two first round judges would approve different individuals in the first round. I discuss the
relationship between inconsistency in this sense and calculating the amount of disagreement between two judges
in subsubsection 2.2.3.3.
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cases — increase more than for inconsistent judges when the severity of the first-round judge

(and corresponding case quality of the approved) increases. I show that the rest of the model,

including the distribution of unobserved case strength, can also be identified using regressors

that affect judge leniency but not errors. I build a structural model combining the two sources of

identification that identifies leniency and consistency for each judge, as well as the distribution

of underlying case quality. The model is nonparametrically identified, and can be tractably

estimated via maximum likelihood under parametric restrictions.

This paper is related to two different literatures. First, the idea behind my identification

strategy — that observing multiple decision-makers on the same case is informative about the

accuracy of decisions — appears in other contexts. In a reduced-form sense, Frakes and Wasser-

man (2014) use patent decisions from non-US patent offices to generate an independent measure

of patent quality, then examine how the quality of granted patents for US examiners changes as

they are given less time to make a decision. Another set of papers grapples with selection-type

models where outcomes are observed only conditional on treatment or some other agent deci-

sion. Analogously to how second-stage outcomes in my setting are observed only if the case is

approved by the first-stage judge, Chandra and Staiger (2011) develop a model where hospitals

both vary in their ability to treat heart attack patients, and choose which ones to treat. They

identify hospital-level treatment effects using a structural model that interprets patient survival

measures through a lens of treatment selection. Abaluck et al. (2016) study how doctors choose

which patients to send for imaging tests for pulmonary embolism. Since the test reveals whether

the patient actually has the disease, high test yield rates (conditional on share of patients sent for

a test) are an indication of good allocation of tests across patients. Similarly, Anwar and Fang

(2006) develop a hit rate test that compares the proportion of black and white drivers who are
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found to be transporting drugs after a vehicle search to test for racial bias in the search decision

among police officers. Closer to my context, Alesina and Ferrara (2011) use appeals in capital

sentencing to test for racial bias under the assumption that higher courts are less racially biased

than lower ones. I expand on this work by showing how the consistency of both the first- and

second- round decision-maker can be identified, even when the researcher does not have access

to objective measures of the truth. The model is applicable to any situation where two poten-

tially fallible decision-makers are independently making a similar decision. It can be used to

understand which decision-makers are most consistent, and what factors increase consistency.

Second, I contribute to the literature on judicial decision-making. Previous research has

documented large variation in conviction rates across judges under random assignment of cases

(Aizer and Doyle, 2013; Bhuller et al., 2016; Rehaag, 2007), which implies some level of unfair-

ness in that there are cases where different judges would disagree on the correct decision. Fis-

chman (2013) shows that the share of cases a pair of judges would disagree on can be bounded

using Fréchet inequalities when the researcher does not observe the two judges making de-

cisions on the same cases. Another strand of research looks at multi-judge panels, although

strategic interactions and consensus norms among judges make modelling much more difficult

than in my context (Epstein et al., 2013; Fischman, 2008). Finally, a directly relevant paper

is Partridge and Eldridge (1974), who provide 50 district court judges with identical cases and

compare the judges’ hypothetical sentences. Their results are interesting and anticipate my own

findings. They show that there is a high degree of disparity in the sentences given for the same

hypothetical case, and that this disparity is not primarily caused by individual judges being con-

sistently lenient or consistently harsh. As they put it, “if there are indeed hanging judges and

lenient ones — and it would appear that there are a few — their contribution to the disparity
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problem is minor compared to the contribution made by judges who cannot be so character-

ized.” In terms of my model, this means that there were high levels of inconsistency among

these judges.

I apply my model to judicial review of refugee decisions at the Federal Court (FC) of

Canada. The FC is the only point of appeal for claimants who have been rejected for refugee

status by administrative decision-makers at the Immigration and Refugee Board (IRB), and is

seen as a crucial backstop that ensures the fairness of the overall refugee system.3 The stakes

are high. As noted in Rehaag (2012), “if errors in first-instance refugee determinations at the

[IRB] are not caught and corrected through judicial review, refugees may be deported to coun-

tries where they face persecution, torture or death.” The judges are experts in dealing with

refugee cases; about 70% of their caseload is refugee appeals. Nonetheless, I find low levels of

consistency between judges, corresponding to a meaningful impact on decisions and outcomes.

If judges were perfectly consistent, cross-judge variation in leniency would mean that judges

would disagree on the correct decision for 8% of cases. With the addition of inconsistency, the

disagreement rate jumps to 23%, implying that inconsistency is a larger contributor to unfair-

ness than cross-judge variation in standards.4 Furthermore, inconsistency seems to be caused

by idiosyncratic observational errors, rather than permanent cross-judge differences in racial or

gender bias, judging ideologies, or statutory interpretation.

The lack of consistency can also be understood as a failure of first-round judges to pick

the claimants that are most likely to be successful at a full hearing in the second round. If all

3In legal terminology, judicial review has a different meaning than the more-familiar ‘appeal;’ it refers specifically
to the judicial oversight of an administrative decision. For ease of language I will use the term appeal rather than
judicial review throughout this paper.
4An alternative way of looking at this is that among judges with the same approval rate, they disagree on the correct
decision 13% of the time.
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claimants were given a full hearing, my results suggest that 19.4% of IRB denials of refugee

status would be overturned, rather than the 6% that is ultimately successful under the current

system.5 This difference amounts to approximately 7,700 families over my study period.

I survey refugee lawyers about judge quality, and validate the model by showing that sur-

vey responses are correlated with my measures of consistency and leniency. Model-estimated

consistency improves dramatically during the first year of experience, and continues to improve

at a slower rate for at least ten years. Judges during the first five years of experience are less

consistent during periods of high workload, but experienced judges are unaffected by workload.

In 1988 a law was passed to make it more difficult for the government to appoint unqualified

judges. The reform, which gave a committee of legal experts veto power over candidates, had

the intended effect of reducing the number of newly-appointed judges with ties to the party in

power (Hausegger et al., 2010; Russell and Ziegel, 1991). I find that it dramatically improved

judge consistency, implying that reforms to judicial selection processes can have meaningful

effects on judicial outcomes and fairness.

In a final section, I show how my model can be used to construct counterfactual judge

assignment regimes that minimize workload while approving the same number of claimants

and maintaining the case quality of the approved. I find that the Federal Court could reduce

refugee workload by approximately 18% while approving similarly-qualified claimants, saving

at least $4.4 million in judge salaries alone over my study period.6

5Theoretical work predicts this finding to some degree. Sah and Stiglitz (1986) compare a centralized decision-
making process comparable to the Federal Court’s with more decentralized processes and show that centralization
leads to greater sensitivity to low-quality decision makers.
6Alternatively, judge assignments could be reshuffled to maximize the number of successful claims while holding
workloads constant and maintaining the case quality of the approved. The problem is approximately symmetric,
so the same judicial resources could be used to increase the number of approvals by 19%.
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The paper proceeds in five parts. In Section 2.2 I present the model and discuss identifica-

tion. Section 3.3 contains a discussion of the institutional background and data, and Section 3.5

the results. Section 3.6 concludes.

2.2. Model and identification

I discuss the institutional setting in detail in Section 3.3. To fix ideas before presenting the

model, the Federal Court hears appeals from claimants who have been denied refugee status by

the government. Enormous variation in approval rates for government decision-makers suggests

that there is a long tail of claimants who would have been approved had they been assigned

an alternative decision-maker, and should be successful on appeal. Decisions at the Federal

Court are made in a two-stage process, where the criteria for a first-round decision is whether

a claimant would have an arguable case in the second round. In this sense, the criteria are the

similar in both rounds. The second round proceeds only if there is a first-round approval, and

includes a hearing where lawyers for both sides argue about the case but do not introduce new

evidence. Judges are quasi-randomly assigned in both rounds.

2.2.1. Model

The court receives a flow of applicants for refugee status. Strength of case for each applicant

i can be represented by a scalar, ri ∼ Fr. To be approved as a refugee, a claimant must be

approved by two consecutive judges. If she is denied by the first judge, her case is not seen by

the second judge. Formally, in stages s = 1,2, judges j = 1...J approve the claimant if

(2.1) ri > εi js(Xi js,Wi js) = γ js +Xi jsβs + ε̃i js(Wi js)
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where ε̃i js ∼ G js and ∃xi js ∈ Xi js s.t. xi js /∈Wi js. Judge leniency is captured by γ js; high

levels of γ js mean that fewer claimants are approved. This threshold can be adjusted by Xi js.7

Judge consistency is defined by the distribution of ε̃ js(Wi js). For perfectly consistent judges,

ε̃ js(Wi js) = 0. Then, the decision problem is non-stochastic for a given value of ri: P[ri >

ε js(Xi js,Wi js)] = P[U > Fr(γ js +Xi jsβs)] = 1−Fr(γ js +Xi jsβs), and so any two judges with the

same overall approval rate would either both approve or both reject any claimant with given

quality r̃i (this is the standard model of judicial decision-making). Judges become less con-

sistent as the distribution of ε̃ js(Wi js) widens. Across judges, more consistent judges are more

likely to approve claimants with a strong case (high ri).

I operationalize consistency by comparing judges with the same approval rate. In the first

round, the approval rate is

(2.2) P[ri > ε j1(Xi js,Wi js)] =
∫

G j1(ri− γ j1−Xi j1β1) frdr

Judge A is comparable to judge B when P[ri > εA1] = P[ri > εB1]. Then, he is more consis-

tent than judge B if there exists a point of single-crossing v such that:

(1) GA1(v− γA1) = GB1(v− γB1)

(2) ∀ w > v,GA1(w−γA1)≥GB1(v−γB1), with a strict equality for some w with fr(w) 6= 0

(3) ∀ w < v,GA1(w−γA1)≤GB1(v−γB1), with a strict equality for some w with fr(w) 6= 0

In words, this definition is straightforward: a consistent judge is more likely to approve

high-quality claimants, and less likely to approve low-quality claimants. I assume that for any

7It is mathematically equivalent if Xi js shifts the distribution of ri without otherwise affecting the distribution and
the same Xi js is included in each round, but conceptually difficult to imagine what Xi js might do this.
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pair of comparable judges, one is more consistent than the other (this can be thought of as a

single-crossing property for the error CDFs G js). My definition is similar to the concept of

screening in Sah and Stiglitz (1986), where they define A as more discriminating than B when

∂GA1(v− γA1)/∂v > ∂GB1(v− γB1)/∂v. In my model, the more consistent judge is (weakly)

more discriminating at the point of single-crossing.

Leniency and consistency are related to the fairness of the court in a simple way. A perfectly

fair court would have all judges use the same threshold γ js, and be perfectly consistent in their

decisions (e.g. ε̃ js = 0). Thus, any individual would be always approved by the court, or always

rejected. Cross-judge variation in γ js increases unfairness by increasing the variation in individ-

ual’s outcomes generated by judge assignment. Similarly, inconsistency induces randomness in

the outcome for each individual; unfairness is monotonically increasing in inconsistency.

The joint probability of approval in the first and second rounds (where in the second round

the claimant faces a potentially different judge k) is

(2.3) P[ri > ε j1(Xi j1)∩ ri > εk2(Xik2)] =
∫

G j1(ri−Xi j1β1− γ j1)Gk2(ri−Xik2β2− γk2) frdr

2.2.2. Identification

The model — parameters βs, judge-round thresholds γ js, judge-round error distributions G js

and the case strength distribution Fr — is identified from two different sources of variation:

the random assignment of cases to judges of varying severity, and regressors that shift judge

thresholds. I consider each in turn.

2.2.2.1. Judge-assignment identification. Take two judges with the same first-round approval

rate, A and B. Then, a higher share of the more consistent judge’s claimants will be ultimately
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approved by a common second-round judge, C. Suppose that judge A is more consistent. Then,

abstracting away from covariates Xi j1 and substituting G̃ js(r) = G js(r− γ) for clarity, this can

be seen by noting that:

(P[r > εC2|r > εA1]−P[r > εC2|r > εB1])P[r > εB1](2.4)

=P[r > εA1∩ r > εC2]−P[r > εB1∩ r > εC2]

=
∫ [

G̃A1(r)− G̃B1(r)
]

G̃C2(r) frdr

=
∫ z

−∞

[
G̃A1(r)− G̃B1(r)

]
G̃C2(r) frdr+

∫
∞

z

[
G̃A1(r)− G̃B1(r)

]
G̃C2(r) frdr

>
∫ z

−∞

[
G̃A1(r)− G̃B1(r)

]
G̃C2(z) frdr+

∫
∞

z

[
G̃A1(r)− G̃B1(r)

]
G̃C2(z) frdr

= G̃C2(z)
∫ [

G̃A1(r)− G̃B1(r)
]

frdr = 0

where z is the point of single-crossing of G̃A1 and G̃B1. In the first line, I scale the difference

in second-round conditional approval probabilities by the common probability of first-round

approval to reduce the number of terms to carry around.

Key to this result is the monotonicity of G̃C2(·); since the second-round judge is more likely

to approve high-r claimants than low-r claimants, his decisions are informative about which

first-round judge has chosen higher-quality first-round claimants. The last equality comes from

the comparability of judges A and B, underlining that this is a local result: it tells us which

judges are more consistent, but compares only judges with similar approval rates.

Identification of second-round consistency follows a slightly different route, because we do

not have a third round to use as a check. Instead, I attain comparability from a non-limiting
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judge. Suppose we are trying to determine which second-round judge, A or B, is more con-

sistent. I assume that there is a known first-round judge D that approves nearly anyone, and

a known first-round comparison judge C. Formally, I require that G̃C1(·)/G̃D1(·) is monoton-

ically increasing wherever G̃A2(·) 6= G̃B2(·). This is trivially satisfied when GD1(·) = 1 (judge

D literally approves everyone), and can be satisfied when judge D is fairly consistent and has a

very low threshold γ relative to judge C.

Define judge A and B as second-round comparable if they have the same second-round ap-

proval rate conditional on first-round approval by judge D;∫
G̃D1(r)G̃A2(r) frdr =

∫
G̃D1(r)G̃B2(r) frdr. Then, if judge A’s second-round approval rate in-

creases more than judge B’s for decisions conditional on judge C’s first-round approval (vs.

judge D’s), judge A is more consistent than judge B. This can be seen by the following deriva-

tion,

(P[r > εA2|r > εC1]−P[r > εB2|r > εC1])P[r > εC1]

(2.5)

=P[r > εC1∩ r > εA2]−P[r > εC1∩ r > εB2]

=
∫

G̃C1(r)
[
G̃A2(r)− G̃B2(r)

]
frdr

=
∫ z

−∞

G̃C1(r)

G̃D1(r)
G̃D1(r)

[
G̃A2(r)− G̃B2(r)

]
frdr+

∫
∞

z

G̃C1(r)

G̃D1(r)
G̃D1(r)

[
G̃A2(r)− G̃B2(r)

]
frdr

>
∫ z

−∞

G̃C1(z)

G̃D1(z)
G̃D1(r)

[
G̃A2(r)− G̃B2(r)

]
frdr+

∫
∞

z

G̃C1(z)

G̃D1(z)
G̃D1(r)

[
G̃A2(r)− G̃B2(r)

]
frdr

=0
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where monotonicity of G̃C1(·)/G̃D1(·) takes the place of monotonicity of second-round ap-

proval in the identification of first-round consistency.

2.2.2.2. Regressors and identification. The between-judge comparisons that I discuss in the

previous section are local; they measure relative consistency for judges with similar approval

rates. To compare judges who approve different shares of claimants and to identify the scale

of judge errors ε̃i js without resorting to functional form assumptions, additional large-support

continuous regressors are required. These regressors affect judge thresholds γ js but do not oth-

erwise affect errors. In a nonparametric sense, they are used as special regressors to identify

the distribution of the composite error (ie, ε̃i js− ri) for each round. I then assume that at least

one component of βs is the same between rounds, tying down the relative size of the composite

errors and identifying the distribution of ri separately from ε̃i js. In a parametric model, instru-

ments are not strictly necessary (the model is mechanically identified), but provide a source of

identification beyond functional form and judge randomization. A full proof of identification is

in Chen et al. (2000); which I reframe in terms of my model in Appendix Section A.2.1.

2.2.3. Interpretation

2.2.3.1. Ideological versus observational errors. The innovation of this model is to sepa-

rately identify judge thresholds γ js, the distribution of unobserved case strength ri and the case-

judge-stage error ε̃i js. The model guarantees that individuals with the same scalar quality factor

ri have the same overall approval probability, and that judge errors ε̃i js are uncorrelated with

both case strength ri and ε̃i js′ for the other stage s′. A useful way to think of ri is as a measure

of average quality, where the average is taken across judges.
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In the first round, ε̃i j1 can be decomposed into two conceptually distinct components: per-

manent differences in how a judge interprets the law relative to other judges, and pure observa-

tional errors. Formally,

(2.6) ε̃i j1 = ui j + ei j1

The first component, ui j, represents permanent disagreements, or inter-rater reliability. As I

discuss in Section 3.3, refugee appeals at the Federal Court are assessed along both substantive

(is this person really a refugee?) and procedural (did the government properly make its initial

decision?) lines. In other words, one judge might always reject a claimant who has a strong

procedural case and a weak substantive one, while a different judge who weighs substantive

considerations more heavily might always approve him. Inter-rater differences might also arise

from differential bias along racial or gender lines — if judge A approved only women and judge

B only men, they would disagree on the decision for each case even if the pool of claimants was

50% each gender. ui j is therefore a measure of how a judge’s weighting of different facets of a

case differs from the consensus.

Conversely, ei j1 is an observational error, or failure to understand the merits of the case. It

is a measure of test-retest consistency. If a judge was repeatedly given the same case i (without

memory of her previous decisions), she would observe them as having quality distributed as

ri−ui j− ei j1, with ri−ui j fixed and variation coming only from ei j1.

A natural question concerns the relative size of ri, ui j and ei j1. My model identifies the

relative variance of ri versus the composite error ui j + ei j1, but does not directly estimate the

size of ui j versus ei j1. However, the strength of the additional predictive power of judge identity
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has strong implications for the relative size of the errors. Suppose that the composite error was

mostly inter-rater differences. Then, one would expect that some pairs of judges would both

value the same type of cases (for example, cases that were particularly strong on the procedural

merits, or involved an Asian claimant). By definition, the probability of approval in the second

round for a claimant with quality ri and judges j and k (and suppressing extra regressors) is

Pjk = P[Approval by j|Approval by k in 1st] =
P[ri > γ j2 +ui j + ei j2∩ ri > γk1 +uik + eik1]

P[ri > γk1 +uik + eik1]

If two judges have a similar judging ideology, then they will both be predisposed to treat the

same case either more or less positively than would be predicted by the factor refugee quality ri,

their γ’s and their σ ’s. More formally, index Pjk by the correlation in ideological errors ui j and

uik, ρ jk (the model as estimated implicitly assumes ρ = 0). It is simple to show that Pjk(ρ jk) is

increasing in ρ jk. A reduced-form test for whether there are important judge-pair agreements in

ideology is to regress

(2.7) 1[Approval by j|Approval by k] = βPjk(0)+ν jk +ui jk

where Pjk(0) is calculated from the model.8 Under the null of no correlations in errors

between judge pairs, the judge-pair fixed effects ν jk should be jointly insignificant. This is a

joint test of all the reasons pairs of judges could disproportionately agree or disagree but failure

to reject suggests that inter-rater differences are not large. This is turn suggests that test-retest

8Note that the model assumes ε̃i j1 ⊥ ε̃ik2. This assumption might at first glance be odds with allowing judge-pair
correlations. The important distinction is that the model assumes ε̃i j1 ⊥ ε̃ik2 without conditioning on the identity
of the judges — it imposes that the judge errors are uncorrelated conditional on the index threshold.
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errors ε̌i js are larger than inter-rater differences ε̄i j. I implement this test in Section 2.4.6, and

fail to reject the null of no judge-pair effects.

2.2.3.2. 1st versus 2nd round errors. The decomposition of errors into inter-rater and test-

retest components is complicated in the second stage by the possibility that the judges gain

additional information about the case in the second-round hearing. As I discuss in Section 2.3.2,

there is a full hearing in the second round (in the first they just review documents), and judges

may learn things about the case that color their views of its strength. This is conceptually

distinct from both observational errors ei j2 and inter-rater disagreements ui j in that this new

information could reflect information about the true merits of the case. In the second round the

error can be decomposed

(2.8) ε̃i j2 = ui j + ei j2 +Ii j2

where Ii j2 is an information shock. This shock should be thought of as realized information

that if explained (e.g., written down in an opinion) would shift the cross-judge consensus on case

strength. The subscript j reflects that some judges may be better at finding this information, and

thus have a wider distribution of Ii j2. The interpretation of the other components is analogous

to the first round: ui j is a judge-level bias term that reflects judge-level tendencies to accept

certain arguments or types of cases, and ei j2 is observational error.

The potential presence of the information shock Ii j2 complicates interpretations of the size

of the distribution of ε̃i j1, because not all of the variation is attributable to judge errors —

some may reflect new information. A wide distribution of ε̃i j2 could in fact reflect a particularly
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perceptive judge, so the relationship between judge quality and second-round consistency could

go in either direction. For this reason, I focus most of my discussion on ε̃i j1.

2.2.3.3. Interpreting the magnitude of inconsistency. The most straightforward reduced form

measure of judicial inconsistency is the share of claimants that judges disagree on. This com-

parison is particularly sharp between judges who approve the same share of claimants, because

perfect consistency for both judges in this situation means they would not disagree on any cases.

Suppressing covariates so that εi js = γ js + ε̃i js, for judges j and k in the first round, this can be

calculated as

(2.9)
∫ ∫ ∫ {

1[ri > εi j1]1[ri < εik1]+1[ri < εi j1]1[ri > εik1]
}

fr dεi j1 dεik1 dr

The model identifies the distributions of ε̃i j1 and ε̃ik1, but does not identify their joint dis-

tribution. In plain language, it is possible that a particular claimant would be highly likely to

be approved by all first-round judges, even though he is unlikely to be approved in the second

round (e.g., low case strength ri but a high draw of the first round observational error ei j1 for all

judges).

As I will show in Section 2.4.6, inconsistency seems to be driven mostly by observational

errors rather than ideology. I interpret this to mean that ε̃i j1 is likely to be uncorrelated across

judges in the same round. In that case, Equation 2.9 can be used to calculate the disagreement

rate under the assumption that ε̃i j1 ⊥ ε̃ik1. I refer to this as uncorrelated disagreement.

Alternatively, I bound the size of the disagreement and find the minimum level of disagree-

ment for any joint distribution of ε̃i j1 and ε̃ik1. For each ri, a pair of judges disagrees with at

least probability |G j1(ri− γ j1)−Gk1(ri− γk1)|. Total disagreement can then be bounded by
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integrating over the distribution of case strength ri. By construction, bounded disagreement is a

conservative measure of disagreement, but will be larger than zero whenever judges vary in the

distribution of their observational error.

2.3. Institutional Background and Data

This section describes the refugee adjudication system as it existed during the study period.

Initial refugee decisions in Canada are made by an independent administrative body known as

the Immigration and Refugee Board (IRB). The IRB is not itself amenable to analysis because

the data is mostly unavailable and the procedures to assign adjudicators to cases are opaque (and

non-random). My entire analysis therefore concerns the Federal Court, which hears appeals of

IRB decisions and fits the institutional criteria necessary for identification. However, I begin by

describing the IRB in enough detail to contextualize the distribution of initially denied claimants

who appeal to the Federal Court. I describe the Federal Court and the procedure the government

uses to select justices for the Court, then introduce the data and discuss estimation.

2.3.1. Immigration and Refugee Board

Initial screening of inland refugee claims is conducted by the Members of the IRB, who are

tasked with evaluating whether the claimant meets the statutory definition of a refugee: “a

person who, by reason of a well-founded fear of persecution for reasons of race, religion, na-

tionality, membership in a particular social group or political opinion, is outside each of their

countries of nationality and is unable or, by reason of fear, unwilling to avail themselves of the

protection of each of those countries.” Claims are non-randomly assigned to Members with

expertise relevant to the type of case; this expertise is usually in terms of either the country of
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origin of the claimant or the stated reason for the claim. The Members are political appointees

rather than long-term, professional bureaucrats.

The IRB approves about 50% of claims, but between-Member variation in approval rates

is large. Between 2006 and 2010, the 10th percentile Member approved 15.8% while the 90th

percentile Member approved 82.1%. One rejected all of the 169 claims given to him over a

three year period, although this was unusual enough to attract media attention (Keung, 2011).

Although the non-random assignment of cases to IRB Members means that this difference could

reflect cross-Member variation in strength of case rather than variation in Member severity, the

scope of the variation seems at odds with the possible extent of specialization (Rehaag, 2007).

The 10th-90th percentile difference is also much larger than the same measure for judges at the

Federal Court (7-24%), the Circuit Court of Cook County (roughly 31-39%, Loeffler (2013))

or Norwegian district courts (34-54%, Bhuller et al. (2016)). This is of particular importance

because it suggests that some claimants who reasonably meet the refugee standard may be

initially denied status.

Claimants who have been rejected for refugee status may apply to the Federal Court for

judicial review. Approximately 65% of denied claimants file an appeal, which allows most

claimants to stay in Canada until the Federal Court makes its final decision.9

IRB procedures for making refugee determinations were broadly consistent from 1995 until

December 15, 2012, when an administrative appeal division partially supplanted the review

work of the Federal Court (Grant and Rehaag, 2015). The only major policy change in this

period concerned the composition of the IRB panel that made the decision. For refugee claims

9 The IRB occasionally rules a refugee application was “without merit.” In that case, removal can occur before
judicial review at the FC.
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submitted before June 28, 2002, standard procedure was for the case to be heard by a two-

Member panel. If either member recommended approval, refugee status would be granted.

Upon consent of the claimant, the case could be heard by a single Member, and by 2002 this

practice was common (Dauvergne, 2003). However, the claimant often knew which Member

would be making the decision if they agreed to a single-Member panel. Ostensibly they would

be less likely to let the decision on their refugee status be made by a Member with a low approval

rate, meaning that they had some ability to pick who would decide their refugee status. After

the implementation of the Immigration and Refugee Protection Act (IRPA) in 2002, all cases

were heard by a single Member. This is important because it suggests that the distribution of

case strenth for the rejected claimants who appeal to the Federal Court changed after IRPA

came into affect; more high-quality claimants may have been rejected, skewing the distribution

further to the right. To allow for this possibility, I allow for the distribution of case strength ri

to vary before and after IRPA. More details are in Section 2.3.5.

2.3.2. Federal Court responsibilities and protocol

The Federal Court is a national court with jurisdiction over certain issues related to the federal

government. The 33 judges of the court hear cases related to intellectual property, maritime law,

and aboriginal law, but about 70% of their caseload is devoted to appeals of IRB decisions.

The first round of the process is the leave stage, where a single quasi-randomly assigned

judge is tasked with deciding whether a claimant has an “arguable case” to make in a full

second-round hearing. In my model, the distribution of case quality ri is identified because it

is (imperfectly) observed by both judges. The arguable-case standard is therefore important

because it maps the ultimate standard from the second stage into the first stage.
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The first-round judge makes her decision after reviewing written records from the IRB de-

cision and briefs written by the lawyers for the claimant (arguing for a second-round hearing)

and the government (arguing against). If they decide against judicial review, the claim is re-

jected and the claimant is usually deported.10 If the petition for leave is approved, the case

goes to a full judicial review (JR) hearing. The judge for the second-round hearing is also

quasi-randomly assigned, so usually the second-round judge is someone different. Regardless

of the first-stage outcome, the first-round judge does not provide a written explanation for her

decision. This may be one reason to expect that second-round decisions will frequently be in-

consistent with the first-round approval. It could also contribute to inter-rater inconsistency for

first-round judges, since the dearth of written precedent makes it difficult for judges to learn

about how their colleagues have ruled on similar cases. Finally, it might lead to a wider spread

in standards (in my model, thresholds γ j).

The full hearing corresponds to the second stage of my model. During the hearing, the

justice questions the lawyers about the contents of their submissions and the IRB records, but

very rarely reviews new evidence or calls witnesses. The name of the first-round judge is not

immediately available. It is not difficult for the second-round judge to access this information

if he wants, but my conversations with judges indicate that they rarely do. To reflect this, I

model the second-round decision maker as explicitly ignoring the identity of the first-round

judge — the first-round judge affects the second-round decision only through her choice of

which claimants to approve, not as a signal to the second-round judge.

10There are two legal options for claimants who have been denied leave but do not want to accept the decision,
though neither is very common. Beginning the process for either does not forestall removal from Canada. For
more details, see Rehaag (2012).



73

In both rounds, judges are not tasked with determining whether the IRB Member made the

right decision. Under Canadian law, judges must show deference to administrative decisions.

This means that instead of determining whether the “correct” ruling was made, the judge must

simply decide whether the government’s initial decision was “reasonable” (Rehaag, 2012).11

The Federal Court reviews IRB decisions on both substantive and procedural grounds, al-

though the reasonableness standard means that the bar for overturning the decision is high. A

substantive ground on which a judge might reverse an IRB decision would be if the Member

had ignored credible evidence that a claimant had been tortured. In contrast, procedural rea-

sonableness requires that the Member collect adequate testimony from the claimant. A judge

would be expected to rule in favor of the claimant if there were large procedural violations,

even when they believe that the claimant does not actually qualify for refugee status. However,

the precise extent to which judges are supposed to weigh substantive and procedural factors is

unclear, and it is natural to expect that different judges would differentially consider different

aspects of the case. The extent to which this is true is one of the main factors that determines

the size of inter-rater inconsistency.

If a claimant is successful in the judicial review stage, their case is usually returned to the

IRB to be analyzed anew by a different Member. Occasionally the judge will grant refugee sta-

tus to the claimant without a return to the IRB, but I will ignore this distinction in the empirical

analysis.

11The Supreme Court defines an unreasonable decision as one where “there is no line of analysis within the
given reasons that could reasonably lead the tribunal from the evidence before it to the conclusion at which it
arrived.” One concrete way that this standard affects the proceeding is how it limits the sort of evidence that can
be introduced. Evidence concerning the actual merits of the case — for example, a death-threat letter implying the
claimant truly is in danger in his own country — would not be considered, while evidence about how the decision
was made — an affadavit claiming that the IRB Member had made a racially prejudiced statement during the
hearing — would typically be accepted.
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Judge assignment works similarly in both stages. For the first stage, judges are assigned

to cases using a pre-set schedule; in each office the judges rotate through “leave duty.” When

enough cases have accrued the court gives the leave duty judge all the outstanding files (usually

on Monday), and they are responsible for disposing of all of them. There is no review of

the cases before they are given to the judge, and the leave duty schedule is not public. Previous

research claims that this assignment is as good as random (Rehaag, 2007); in Section 3.5 I show

that judge leniency is uncorrelated with case or claimant characteristics predictive of success.

In the second stage the assignment process is similar; cases are divided between judges who are

available for refugee work without review of the contents. A computer program slots hearings

into the available times in the judges schedules. Occasionally the same judge will be assigned to

a case for both stages by chance. This is potentially important because it implies that between-

round errors may be correlated when the same judge is making the decision. Interestingly, this

could arise either from inter-rater differences (if a particular claimant has a strong substantive

case but a weak procedural one, she would be more likely to succeed in both rounds if she was

assigned a judge who heavily weighted substantive aspects) or test-retest errors (a judge might

remember the claimant from making the decision in the first round, and so could make the same

observational error). I explicitly allow for this by estimating an additional parameter for the

correlation between judge errors ε̃i js in the two rounds whenever the same judge is making the

decision in both rounds; more discussion is in Section 2.3.5.
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2.3.3. Reform to selection of Federal Court justices

Federal Court justices are appointed by the Minister of Justice. Appointments are until the

mandatory retirement age of 75.12 For most of Canadian history the Minister has had nearly

unfettered discretion over appointments and has used this power to reward “active supporters of

the party in power” (McKelvey, 1985). The only check on the government was a committee of

the Canadian Bar Association that offered non-binding advice on the suitability of candidates.

A major reform in 1988 reduced the discretion of the government in making appointments.

The reform created province-level judical advisory councils (JACs) to pre-screen applicants be-

fore they could go to the Minister for possible selection. The committees were made up of one

member of the provincial Law Society, one member of the provincial branch of the bar associa-

tion, one representative of the provincial chief justice, one representative of the provincial attor-

ney general, and three representatives of the Minister of Justice. The JACs rated each candidate

as “highly recommended,” “recommended,” or “not recommended,” and the government could

pick judges only from the pool of recommended and highly recommended candidates. The

standards concorded well with a lay understanding of what makes a good judge: “‘professional

competence and experience’ (such as proficiency in the law, awareness of racial and gender

issues); ‘personal characteristics’ (ethical standards, fairness, tolerance); and ‘potential imped-

iments to appointment’ (drug or alcohol dependency, health, financial difficulties)” (Hausegger

et al., 2010). Crucially, the direct representatives of the Minister were a minority on the com-

mittee, making it difficult to push through wholly unqualified candidates.13 The standards had

12Judges can be removed for misconduct. Sometimes a judge continues to work past the age 75 by having the
court classify him as a supernumerary justice. This reclassification has no effect on the work he does.
13They often share the same name, but provincial political parties in Canada are legally, operationally and usually
ideologically independent from the national parties, making coordination on judicial appointments difficult.
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bite; only about 40% of candidates were recommended or highly recommended. Although the

government could ask a JAC to reconsider a candidate’s rating, the reform seems to have re-

duced the level of patronage. Russell and Ziegel (1991) report that before 1988 at least 47% of

appointed judges had some involvement with the ruling Conservative party.14 Their data comes

from reports by surveyed respondents in the legal progression, and so estimates are likely biased

down. Though data on post-reform connections to the ruling party are not exactly comparable,

Hausegger et al. (2010) search through administrative records and find that after the reform only

30% of newly-appointed judges had donated to the party in power in the five years before their

appointment. This is consistent with the new system reducing the number of unqualified party

supporters being appointed to the bench, and suggests that the overall consistency of the courts

may have improved as a result. I will test this hypothesis in Section 2.4.9, and find evidence

that consistency did improve after the reform.

2.3.4. Data

My main data come from Federal Court case reports available on their website.15 I parsed the

data and verified it against a smaller subset professionally transcribed by Rehaag (2012). I use

all cases since 1995 that were filed at the IRB before the implementation of the Immigration

and Refugee Protection Act (IRPA) on June 28, 2012 (as discussed in Section 2.3.1, IRPA

created a Refugee Appeal Division within the IRB, substantially changing the number and type

of refugee appeals at the Federal Court). I also require that the appeal at the Federal Court was

filed before the end of 2012 to ensure that there was enough time for all cases to be disposed of.

14The authors distinguish between minor and major involvement. Minor involvement included “minor con-
stituency work, financial contributions, and close personal or professional associations with party leaders;” major
involvement running for office, serving as a party official, or active participation in campaigns.
15http://cas-cdc-www02.cas-satj.gc.ca/IndexingQueries/infp_queries_e.php

http://cas-cdc-www02.cas-satj.gc.ca/IndexingQueries/infp_queries_e.php
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The dataset has information on the date the case was filed, the Federal Court office that received

the application, the name of the leave and judicial review judge, and the ultimate outcome.

The office is an important covariate because it strongly predicts outcomes at the court. This

is partially because office is correlated with country of origin for claimants, but more because

provinces differ in the level of free legal aid provided to claimants. I exclude offices with fewer

than 200 cases, leaving Calgary, Montreal, Ottawa, Toronto, and Vancouver.

Using the first name of the claimant, I infer gender using British Columbia and Social Secu-

rity Administration birth records that contain both first name and gender. To collect information

on the country of origin of the claimant, I link the court records to the subset of available IRB

case files.16 These data contain the name of the IRB Member who made the initial determi-

nation, and in some cases the country of origin and gender of the claimant. I also use the

commercial service Onomap to predict country of origin for each claimant, which I collapse to

continent dummies.

For each judge, I collected information on the date and party of appointment. Appendix

Table A8 contains summary statistics for the judges. 25% are female, and their dates of ap-

pointment range from 1982 to 2010. Since the Liberals held power for most of this time period,

72% of judges are Liberal appointees.17 The average judge has 6.5 years of experience with a

maximum of 28.

16Case files since 2006 are available at http://ccrweb.ca/en/2016-refugee-claim-data.
17The two main political parties in Canada are much closer ideologically than the major parties in the United
States, as are the judges they appoint. There is less dissent within the legal community about the correct approach
to statutory interpretation, although the Conservative party is generally more skeptical of refugee claims than the
Liberal party.

http://ccrweb.ca/en/2016-refugee-claim-data
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I exclude cases that were not perfected18 or were unopposed by the government. I include

only judges who decided cases in both the first and second round to improve comparability

between the estimates of first- and second-round judge behavior.

2.3.5. Estimation

Fully nonparametric identification as outlined in Section 2.2.2 requires special regressors with

large support conditional on judge assignment. This is a very high bar, and one that is not met

by my empirical application. Instead, I parameterize the distributions of case strength ri and

judge errors ε̃i j1 and ε̃i j2, generating tractable analytic expressions for approval probabilities

and allowing rapid estimation of the entire model by maximum likelihood. I begin by assuming

that ε̃i js is mean-zero and normally distributed with standard deviation σ js to be estimated as

the measure of judge inconsistency. Larger σ js corresponds to more inconsistency, ie a wider

distribution of judge errors ε̃i js. I additionally allow regressors Wi js to affect errors, so

(2.10) ε̃i js(Wi js)∼N (0,σ js(Wi js)
2), σ js(Wi js) = eσ̃ js+Wi jsψs

As discussed in Section 2.3.2, the distribution of unobserved case strength for claimants

at the Federal Court is likely right-skewed, since it is the distribution of individuals who were

denied refugee status by government decision-makers. A relatively small number of high-case

strength refugees are likely not initially granted status by the government. To reflect this intu-

ition I therefore assume that the distribution is single-tailed; ri is exponential-Pareto distributed

18That is, those cases where all the paperwork was not filed on time and the appeal was automatically rejected.
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(I show the distribution of ri relative to the estimated parameters in Figure 4.16). I allow flex-

ibility in the distribution of ri across two dimensions. First, cases filed at different offices vary

considerably in strength. This is partially because office is correlated with country of origin,

but more closely related to varying levels of legal aid funding. Second, the government made

changes to the decision process for initial refugee applications in 2002 (see Section 2.3.1 for

more details). Combining these, I fix the distribution of ri to have a scale and shape parameter of

1 for the largest office (Toronto) before 2002, and then separately estimate the scale and shape

parameters for each office before and after 2002. In practice, I find almost no difference in the

distribution of case quality between these time periods, suggesting that the institutional changes

had little affect on which claimants were approved. However, the between-office variation is

considerable.

In Appendix Section A.2.2, I show that the probability of first-round approval with exponential-

Pareto location parameter is xm and scale parameter α is

(2.11) P(r > ε̃ j1(Xi j1,Wi j1)) = Φ

[
ln(xm)− γ j1−Xi j1β1

σ j1(Wi j1)

]
+

eα(ln(xm)−γ j1−Xi j1β1)+
α2σ j1(Wi j1)

2

2

[
1−Φ

(
ln(xm)− γ j1−Xi j1β1

σ j1(Wi j1)
+ασ j1(Wi j1)

)]

which can be calculated without resorting to computationally expensive numerical integra-

tion. Joint probabilities for first and second round approval are similar in spirit but more com-

plicated. Since occasionally the same judge is assigned to the first- and second-round decision,

I allow ε̃i j1 and ε̃ik2 to be correlated (with the correlation estimated as an additional parameter)

whenever j = k. The full derivation and presentation is available in Appendix Section A.2.2.
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Full identification requires regressors Xi js that shift judge thresholds γ js but do not affect

judge errors ε̃ js. One ramification of this is that Xi js must contain variables not in Wi js, so that

there is variation in Xi js conditional on Wi js.

One possible candidate for Xi js is the order in which decisions are made. Chen et al. (2016)

show that US refugee judges are less likely to approve claimants when their previous case was

granted asylum (this sort of negative correlation in decision-making also appears for baseball

umpires and loan officers). In other contexts this might be a good choice; I unfortunately do not

observe the decision order.

I instead use the timing of the decisions during the week, and of the second-round hearing

during the day, as regressors. Danziger et al. (2011) argue that when decision-makers make

many decisions in a row, they become fatigued and are more likely to pick the default option.

They study parole decisions in Israel and find that rejections become more likely just before

lunch and revert to baseline levels immediately after the break. I follow them and use a dummy

for the noon hearing (in the second round only) as a regressor.19

Second, I exploit the fact that judges make decisions on refugee cases only irregularly (non-

refugee cases occupy much of their time). In the first stage, they are given a tranche of case files

at the start of the week and work on them until they have made all the decisions. One might

expect that judges would become more fatigued as the week goes on. Ideally, I would define a

decision as having been made late if it was made on Tuesday or later, after the first full day of

decisions. However, judges may endogeneously change the order in which they make decisions

as a function of case characteristics (concretely, they may delay the difficult decisions), which

19There are two main reasons why one would expect denial to be the default option. First, most appeals are
rejected. Second, because Canadian law requires judges show deference to governmental decision-makers, judges
tend to see overruling IRB decisions as the exception rather than the rule.
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would violate the exclusion restriction. I therefore include a dummy for the last submission

before the judge’s decision happening on Wednesday or later as a regressor — empirically, this

predicts the leave decision is likely to be made Tuesday or later. Similarly, for second-round

cases the scheduling is done by court staff without knowledge of the case characteristics. I

define the end-of-week regressor in the second round as the case being heard on Wednesday or

later (Monday hearings are rare, so Wednesday is usually the second day of hearings). I assume

that the effect of a late-week hearing is the same in both the first and second round.

Identification using regressors leans on the assumption that variation in Xi js does not affect

errors. One might reasonably wonder whether this is true for the timing regressors. I address

this issue in two ways. First, I estimate versions of the model where the excluded components

of Xi js are added in turn to Wi js — I allow the regressors to directly affect the size of incon-

sistency. Since there are two regressors in the second round (dummies for the end of the week

and a lunchtime hearing), I can then test whether σ j2(Wi j2) varies with the regressors. In Sec-

tion 2.4.5, I conduct these tests and find that the effect of the regressors on the error distribution

is small and statistically insignificant.

Second, I estimate the model without relying on regressors. This version of the model

leans more heavily on functional form assumptions to compare consistency for judges with

different approval rates, but is a valuable robustness check. In Appendix Section A.2.7, I present

estimates for this model and show that all the results are qualitatively similar.

Estimation throughout is by maximum likelihood. Sandwich standard errors are clustered

at the first-round judge level.
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2.4. Results

2.4.1. Randomization tests

In Table 4.6 I explore whether the cases are assigned quasi-randomly to judges. One implication

of quasi-random assignment is that judge characteristics should be unrelated to case characteris-

tics. To test this, for each round I regress claimant characteristics on judge-level mean approval

rates in that round, controlling for office X pre-2002 fixed effects to account for office and

time variation. I also regress the characteristics on judge fixed effects and report the F-stat and

p-value for the joint test of the judge fixed effects.

The predictive power of judge assignment is low for the subsample of IRB-linked case files

where I observe claimant characteristics. The coefficients from the regression of covariates on

judge-level approval rates are all insignificant. Similarly to other examiner-effect contexts with

random or quasi-random assignment, the F-statistics are small (about 1) but the test is sensitive

enough to reject slightly more than half the time (Mueller-Smith, 2014).

Columns 1-4 are relatively straightforward outcomes: gender and region of origin. Column

5 is the mean approval rate of the IRB Member that denied the claimants’ initial application

refugee status. Because it is not obvious how to weigh the different columns, I predict round-

specific approval using claimant gender and region of origin. Then, I use this predicted value

as the regressor in Column 6. In this omnibus test, the coefficient on judge approval is small

and insignificant. Finally, in Column 7 I regress the 1st-round judges mean approval rate on

2nd-round judge’s. The 2nd-round judges approval rate does not predict the 1st-round judge’s,

suggesting that assignment between rounds is quasi-random.
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Claimant demographics come from the IRB case files, which are only available for about

85% of cases. In Appendix Table A9, I display similar regressions for the entire sample, sub-

stituting gender and continent of origin imputed from claimant name as dependent regressors.

Judge leniency has some predictive power for imputed continent of origin, but not in a way that

is correlated with predicted approval.

2.4.2. Reduced form judge behavior

Federal Court judges are obliged to show deference to the government’s initial determination of

refugee status. Perhaps because of this, approval rates in the first round are low, at only 14%.

There is a large amount of cross-judge heterogeneity: the histogram in Panel A of Figure 4.12

shows that four judges approved less than 5% of cases, while one judge approved 70% (after

this judge, the next highest rate is 28%).

In the second stage the approval rate is much higher, at 44%. Similarly to the first round,

there is a large amount of dispersion in approval rates, from 13% to 87%. The dramatic im-

provement in the success rate in the second round suggests that first-round judges are effective

to some degree in terms of choosing claimants who can, in the language of the Court, make an

“arguable case” in the second round. In terms of the structural model, this implies that variation

in refugee quality ri is substantial and (at least partially) commonly observed by judges. More

evidence in favor of a latent factor ri can be seen in Panel C of Figure 4.12, which shows that

there is a high correlation (0.56) between the first- and second-round approval rates for the same

judge.

To the extent that there is a common case strength factor observed by judges, claimants

approved in the first round by strict judges should fare better in the second round than those
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approved by lenient judges. Table 4.7 conducts this analysis, regressing second-round approval

on the exclusive mean approval rate for the first-round judge. Moving across the columns, I

include no other controls, the mean approval rate of the second-round judge, and second-round

judge FEs. The results are similar; having been approved by a 10 percentage point more lenient

first-round judge gives you a 2.6-3.2 percentage point lower chance of being approved in the

second round. The straightforward interpretation is that individuals who were approved by a

more lenient judge in the first stage have, on average, a weaker case in the eyes of the second-

round judges. This again suggests that there is a refugee quality factor ri that is commonly

observed by the judges up to some observational error.

A more structural way to demonstrate the existence of a commonly-observed quality factor

is to estimate the marginal treatment effect (MTE) of first-round approval on ultimate approval,

instrumenting for first-round approval with judge assignment. I include this graph in Appendix

Section A.2.4, where I confirm that individuals marginally approved by more lenient judges in

the first round are less likely to be approved in the second round.20 The relationship is relatively

weak and foreshadows the structural result that first-round judges have trouble selecting the

claimants that will be successful in the second round; over the main mass of first-round approval

rates the MTE declines from about 0.45 to 0.30.

Figure 4.12 demonstrates that there is substantial variation in judge propensity to approve

refugee claims — in the language of the model, that there is variation in γ js. For evidence on

variation in σ js, judges’ ability to pick the highest-quality claimants, I turn to Figure 4.14. One

source of identifying variation in the structural model comes from how often a first-stage judge’s

approved claimants are approved by a different judge in the next round. First-round judges with

20The assumptions of MTE are violated when judges make errors, because individuals are no longer marginal with
respect to any set of instruments. However, the graph can still be interpreted as an interesting descriptive exercise.
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more ultimately successful claimants, the model implies, are better at picking high-ri cases.

Figure 4.14 displays reduced form evidence on the size of the variation in this ability. For each

first-round judge, I take the mean approval rate of her approved claimants in the second round.

Panel A displays the histogram: a 10th percentile judge has 37% of his claimants ultimately

approved; a 90th percentile judge 56%. Although it stands to reason that claimants approved by

lenient judges in the first round would have a lower second-round success rate, the histogram

changes little when I residualize out first-round approval rates and second-round judge approval

rates (Panel B). In Panel C, I similarly calculate the second-round approval rates for claimants

approved by each judge and plot them against the judges’ first-round approval rates, residualiz-

ing out the second-round judge approval rate and shrinking the estimates toward the grand mean

via Empirical Bayes to account for small cell sizes. The regression coefficient is negative and

significant, but there is a large degree of cross-judge dispersion in second-round approval for

each first-round approval average — the subsequent approval rate for judges approving about

15% of first-round applicants ranges from 38 to 48%. In other words, there is a lot of varia-

tion in the ability of judges to pick claimants who will be approved in the second round, even

holding constant the share of claimants they approve.

2.4.3. Structural results

My baseline model includes as regressors Xi js a dummy for a late-week decision and a dummy

for whether the second-round hearing was heard at lunch. Thresholds γ js vary by judge and

round, and inconsistency σ js varies by judge-round but not by any covariates (ie, Wi js is empty).

Case strength ri is distributed as an exponential-Pareto, with different parameters in each office
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of case origination and before and after 2002, when there were changes to how the govern-

ment made initial refugee determinations. I discuss these modeling decisions in detail in Sec-

tion 2.3.5.

Figure 4.16 plots the distribution of judge-round thresholds γ js and inconsistency σ js. The

red dotted lines are the raw coefficients. Because of estimation error the distribution of the raw

coefficients is slightly too wide; in blue I plot the distribution of the underlying coefficients

after deconvolving out the measurement error using the method of Delaigle et al. (2008). The

coefficients are precisely estimated, so for most of the estimates this does not make a difference.

For comparison I plot the distribution of case quality ri in black.

In Panel A, the distribution of γ j1 is large relative to the distribution of refugee strength

ri, plotted in black. In Panel C, the distribution of second-round thresholds γ j2 is narrower

and slightly smaller on average.21 I interpret this as reflecting the larger amount of precedent

available to judges in the second round relative to the first round. In the first round, no decisions

are written up, making it difficult for judges to learn about the decisions other judges have made

in similar situations. Conversely, nearly all second-round decisions are published as precedent.

The correlation between round-specific γ js’s is relatively high (0.46).

Panel B of Figure 4.16 shows the round-specific distributions of σ js. The standard deviation

of the first-round judge errors for the median judge is 1.08, which is large relative to the standard

deviation of 1 for underlying case quality ri. To contextualize the size of the inconsistency, I

match pairs of first-round judges with approval rates within one percentage point. Using the two

methods of quantifying disagreement I discuss in subsubsection 2.2.3.3, I bound average dis-

agreement at 3.6% of all cases. Using the more realistic assumption that cross-judge errors are

21The distribution of second-round γ j2 does not second-order stochastically dominate the distribution of γ j1, but
the standard deviation is smaller (0.39 vs. 0.74).
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uncorrelated, I calculate that the average pair of judges with the same first-round approval rate

disagrees on 13.2% of all cases. This is remarkably close to the estimated disagreement rate of

14.6% for first- and second-round judges if second-round judges saw all cases rather than only

approved ones (for this comparison, the cross-judge errors are uncorrelated by construction).

How big is a disagreement rate of 13.2%? For all pairs of judges, the average disagreement

rate is 23.1%, suggesting that inconsistency for similarly-severe judges is a larger contributor

to how the justice system delivers different verdicts for the same claimant than cross-judge

variation in severity. Alternatively, if all judges were perfectly consistent, cross-judge variation

in approval rates alone implies that the average pair of judges disagrees on 8% of cases.

The distribution of σ j1 in Panel B is wide — some judges are much more consistent than

others. A natural question is how changing the composition of judges would affect the overall

disagreement rate. To answer this question, I simulate making the least-consistent half of judges

as consistent as the median judge, adjusting thresholds γ j1 to keep each judges approval rate the

same. I then re-estimate the disagreement rates, and find that bounded disagreement falls from

3.6 to 2.3%, and uncorrelated disagreement from 13.2 to 8% of all cases.22 Policies that replaced

the least consistent judges with average replacements would therefore have an important effect

on the overall consistency of the justice system.

Estimates of the level of disagreement are affected by the overall approval rate — if two

judges approve 1% each, they can disagree on at most 2% of the total cases. This is particularly

relevant in this setting, where the first-round approval rate is only 14%. An alternative measure-

ment of disagreement is to match pairs of judges with the same overall approval rate, then for

each judge’s approved cases calculate the share that would not be approved by the other judge.

22Because I adjust the thresholds γ j1 to keep approval rates the same, these changes reflect only changes in the
pair-specific disagreement rates, not changing pair composition.
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I conduct this exercise, and estimate that this measure of disagreement is bounded at 15.2%.

Uncorrelated disagreement is a shocking 57.6%.

The presence of inconsistency has important implications for examiner-assignment research

designs. This identification strategy uses random or quasi-random assignment of decision-

makers to cases to generate random variation in a treatment, then studies the effect of treat-

ment on outcomes. Prominent examples of the treatments studied include incarceration, patent

receipt, and being placed in foster care (Bhuller et al., 2016; Gaulé, 2015; Doyle, 2008). The

montonicity assumption in this context requires that all individuals are weakly more likely to

be approved by a high-approval judge, and less likely to be approved by a low-approval judge

(individuals for whom this does not hold are defiers in the Angrist et al. (1996) sense). The

presence of inconsistency implies violations of monotonicity. In Appendix Section A.2.6 I ex-

amine the effect of inconsistency on IV and MTE estimates. Although this may be a setting

where inconsistency is larger than other examiner-assignment contexts (suggesting large biases

from inconsistency), the results are relatively reassuring. In a regression of second-round ap-

proval on first-round approval instrumented with judge assignment, even this relatively high

level of inconsistency biases IV estimates by only 5%. More worryingly, inconsistency causes

the estimated MTE to be considerably flatter than the true MTE.

In Panel D of Figure 4.16, the size of the distribution of second-round errors σ2 is harder to

interpret. Recall from subsubsection 2.2.3.2 that the second-round error may contain an infor-

mational component Ii j2. If this is the case, then a larger σ j2 may reflect better information-

gathering abilities in the second-round hearing. Some suggestive evidence that information-

gathering is an important part of second-round errors is in Appendix Figure A8, a scatter of
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judge-specific first- and second-round σ js. The correlation is small and slightly negative (-

0.043). It is reasonable to assume that the non-information components of first- and second-

round errors are positively correlated, given that all the other measurable aspects of judge be-

havior (thresholds γ j, overall approval rates) are correlated across rounds. This suggests there

is a non-trivial information shock in the second round. The size of this shock is negatively

correlated with the magnitude of first-round inconsistency — consistent first-round judges are

also better at uncovering relevant information in the second-round hearing.23,24 I take this as a

further reason to focus on first-round consistency for the remainder of the paper.

Another interesting finding from Figure 4.16 is that most judge’s estimated σ j2 is smaller

than the σ j1 (though there is a long tail of large σ j1). Why is this so striking? By construction,

the information shock is orthogonal to other errors. This means that the distribution of judge

errors ui j + ei j2 — which is necessarily smaller than ε̃i j2 = ui j + ei j2 +Ii j2 after netting out

informational shocks Ii j2 — is smaller in the second round than in the first. This likely reflects

that second-round judges take more time to make the decision, think more deeply, and usually

write out a full decision explaining their reasoning.

First-round judges do a poor job of predicting which claimants will be successful in the

second round; for most claimants the probability of second-round approval is higher than their

probability of first-round approval.. Figure 4.18 shows how this works. For each ri I calculate

the first-round approval probability and the second-round approval probability conditional on

first-round approval. I then plot them against each other. The figure shows that the median

23Decomposing the first and second round residuals, we know that corr(var(ui j + ei j1),var(ui j + ei j2) +
var(Ii j2)) ≈ 0, so if var(ui j + ei j1) and var(ui j + ei j2) are positively correlated that implies var(ui j + ei j1) and
var(Ii j2) are negatively correlated.
24Another (less believable but empirically indistinguishable) interpretation is that the informational-gathering com-
ponent in the second round is small, but that the correlation in consistency across rounds is low.
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claimant has a 6% chance of first-round approval, but conditional on approval has a 12% chance

of approval in the second round. This does not reflect selection, which is accounted for by

conditioning on r. Instead, it shows that second-round decisions are unpredictable from the

perspective of the first round, and even claimants with a relatively low quality factor ri are

sometimes approved in the second round. Furthermore, no one has a very high chance of

approval: the 95th percentile claimant has only a 62% chance of first-round approval and a 66%

chance of second-round approval — a 41% chance of overall success at the Federal Court. The

first-round approval rate is 14%; if the highest-ri 14% was selected in the first round the overall

approval rate would only climb to 8.5% (14% × 0.58) from its current value of 6%.

Integrating over the entire distribution of r, I find that on average 19.4% of claimants would

be approved in a second-round hearing if they were approved in the first round. This is in con-

trast to the 6% of claimants who are approved under the current system. Although it may be

surprising that the number of refugee appeals granted by the Federal Court would triple under

this alternative decision-making process, the result is foreshadowed by the scatter plot of first-

round approval rates by judge against the approval rates for that judges’ approved claimants in

the second round found in Figure 4.14. The most lenient judge approved 66.7% of claimants

in the first round after partialling out the office and date of origin, and of those 27.4% were ap-

proved in the second round (partialling out the second-round judge, office and timing), bounding

the overall approval rate in the absence of a first round at 18.3% (0.667× 0.274). In terms of

the policy implication, an important caveat is that judges might change their second-round be-

havior in unpredictable ways if all cases were automatically approved in the first round — one

first-order effect would be that each judge would have 7 times more second-round cases to hear,

which is likely not possible. This finding should therefore be interpreted more as a description
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of how well first-round judges can select the claimants that will be successful in the second

round than a prediction of what would happen under a one-round system.

2.4.4. Relationship between structural parameters and reduced form statistics

In this section, I show how reduced-form moments translate into the structural parameters. In

the model, the principal determinant of approval rates is judge thresholds γ . In Panel A of

Figure 4.19, I vary the γ j1’s from their estimated values by adding a common shifter to each

γ j1. As they change, the estimated approval rate moves away from the observed value of 14%.

Reassuringly, the change is monotonic and steep.

Recall from subsubsection 2.2.2.1 that a main source of identification of the overall size

of first-round judge inconsistency σ j1 is whether the approved claimants are subsequently ap-

proved in the second round. In Panel B, I adjust σ j1 away from its estimated values by multi-

plying each coefficient by a common factor. As inconsistency increases (σ j1 gets smaller), this

dramatically reduces the second-round approval rate.

Panels C and D hew closer to the judge-randomization intuition of subsubsection 2.2.2.1.

Comparing two judges with the same first-round approval rate, the more consistent judge will

have the higher approval rate in the second round for her approved claimants. In Panel C,

I match judges with first-round approval rates within 1 percentage point of each other, then

plot the difference in second-round approval rates against the difference in estimated σ j1. As

expected, judges with a higher second-round approval rate than their matched colleague have a

lower estimated σ j1, or in terms of the model are more consistent.

For second-round judges, identification relies on matching pairs of second-round judges

with similar approval rates conditional on first-round approval by a very lenient first-round
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judge. Equation 2.5 shows that second-round approval rates conditional on first-round approval

by a different, less lenient judge will be higher for the more consistent second-round judge.

Panel D of Figure 4.19 shows how the estimated model reflects this logic. Fortunately, my data

contain one judge who approves 70% of first-round claimants, while the next-most-lenient judge

approves only 28%. I match second-round judges by approval rates conditional on first-round

approval by the outlier judge, taking all pairs with approval rates within 5 percentage points. In

Panel D I display a binned scatter plot of the within-pair difference in estimated second-round

inconsistency σ j2 and the difference in second-round approval rates conditional on first-round

approval by all other judges. In line with the identification intuition of Equation 2.5, the larger

the difference in approval rates, the larger the difference in estimated σ j2. Higher approval rates

under the comparison judges correspond to higher consistency (lower σ j2).

2.4.5. Decision timing as regressors

Identification requires that the case timing regressors affect judge thresholds γ js but are not

correlated with judge errors ε̃i js or case strength ri. I explore whether the regressors are un-

correlated with case strength in Table 4.8. Because case strength is unobserved, I predict first-

and second-round approval from country of origin and gender of the claimant, then test whether

this omnibus measure of ri can be predicted by the regressors. The coefficients in Columns 1

and 2 are small and insignificant, suggesting that the timing of the cases is uncorrelated with

case strength. In Columns 3 and 4, I show that the timing of the decision has a significant

effect on both first-and second-round approval. This is important because it suggests that Xi js

sizably affects judge thresholds γ js, and that the regressors make a substantive contribution to

identification.
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Another fear is that decision timing affects approval through changing judicial errors ε̃i js

rather than case strength ri or judge thresholds γ js. If this were true, one possible implication

is that the regressors would affect the distribution of errors. I test this directly in Appendix

Table A10, where I include in turn the two decision timing regressors in Wi js. In a nonparametric

sense, the model is identified by an excluded regressor in each round that affects thresholds

but not errors; since the noon-hearing regressor affects errors only in the second round these

should be interpreted as tests on second-round identification. In line with the relevance tests

in Table 4.8, both regressors have strong and statistically significant effects on γ js. However,

neither has a statistically significant affect on σ j2 — the log-log end-of-week coefficient is only

0.04 (SE=0.06) and the noon-hearing coefficient a very imprecisely estimated 0.37 (SE=1.29).

As an additional robustness check, in Appendix Section A.2.7 I estimate the model without

regressors and find that all the main results are qualitatively unchanged, albeit slightly less

precise. Because this version of the model is identified only using judge randomization and

functional form, the fact that the results are similar suggests that the effect of Xi js on judicial

errors is small.

2.4.6. Ideology versus observational errors

In subsubsection 2.2.3.1, I discussed how judicial inconsistency can be decomposed into off-

consensus ideological differences (inter-rater inconsistency) and pure observational errors (test-

retest inconsistency). In this section, I provide some evidence on which factor is more impor-

tant.

The Federal Court occasionally assigns the same judge to both the first- and second-round

decision. I model this by allowing the observational errors ε̃i js to be correlated between rounds
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whenever the judge is the same in both rounds. The correlation is estimated to be positive and

quite large, at 0.32 (SE=0.04). In a reduced-form sense, this reflects second-round justices dis-

proportionately approving claimants that they approved in the first round, above and beyond

what would be expected by their overall first- and second-round approval rates. One could

interpret such a high correlation as resulting from either inter-rater inconsistency (a judge dis-

proportionately values the strengths of the claimants case) or a common misreading of the facts

of the case in both rounds, which I refer to as test-retest inconsistency. However, the size of the

correlation implies that at least one of these factors is large. In subsubsection 2.2.3.1 I describe

a test of the relative size of these errors. If the correlation is caused by ideological inter-rater

inconsistency, it is likely that pairs of judges share the same weighting of different aspects of

cases. Then, in a regression of second-round approval on model-predicted likelihood of ap-

proval and judge-pair fixed effects, the fixed effects should add meaningful predictive power.

One interpretation of this regression is as an overidentification test — the model is estimated

under the assumption of no correlation between errors for different pairs of judges.

I implement the test in Table 4.9. The left two columns take order into account when con-

structing the judge pairs (ie, judge A then judge B is different from judge B then judge A), while

the rightmost two columns ignore ordering. All specifications drop cases where the same judge

made both the first- and second-round decisions.

Across columns, the coefficient on model estimates of approval probabilities is very close

to one. However, in all specifications the F-stat for the joint test of judge-pair fixed effects is

about 1, corresponding to p-values in the range of 0.30-0.60.25 In other words, the judge-pair

effects do not predict second-round approval beyond the model estimates. This suggests that

25I report asymptotic p-values. Since the F-test can over-reject when the judge-pair cells are small, I also follow
Abrams et al. (2012) and bootstrap the distribution of the null. In this case, however, the results are similar.
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there is in fact no correlation between errors ε̃i js for judge pairs, and that ideological errors are

small relative to observational errors. As a descriptive analysis, I calculate the Empirical Bayes

judge-pair means.26 This confirms the F-stat result: the standard deviation of the judge-pair

means is only 0.004 relative to a mean approval rate of 0.44.

The results in this section are a joint test of both the strength of the judge pair ideology

correlations and the variance of the ideological errors; both must be large to generate ν jk’s with

detectable predictive power. It is unlikely, however, that the variance of the ideological errors

uik is high but all the correlations are low, because that would require that uik is a very high-

dimensional object. Refugee cases are fairly simple compare to other types of law: judges may

differentially weight substantive and procedural aspects, as well as different types of refugee

claims, but the complexity of the space is limited by the fact that the first-round decisions are

made after reviewing the documentation from the original IRB decision, not holding full hear-

ings. In other words, it is unlikely there are enough aspects of the cases that each judge could

consistently weigh a different one of them more highly than all the other judges. I therefore take

this as evidence that the judge errors ε̃i js are mostly composed of idiosyncratic observational

errors, rather than differential weighting of different aspects of case strength.27,28

26The Empirical Bayes means are the judge-pair residuals, shrunk towards the grand mean to account for measure-
ment error.
27In the Appendix, I show results for the same test using the model that is identified without the use of regressors.
I find almost identical results, alleviating the concern that the types of errors implied by the end-of-week and
noon-time regressors are more likely to be idiosyncratic rather than ideological errors.
28Another concern might be that the judge-pair test is low-powered because there are too many judge-pair cells.
An alternative test that is similar in spirit but lower-dimensional is to use fixed effects defined by interactions of
judge characteristics. Instead of testing whether knowing the exact identity of both judges has additional predictive,
this test asks whether knowing the characteristics of the judges has additional predictive power. I implement this
test for the gender, political party of appointment (Liberal or Conservative), and the native language of the judge
(French or English, though most are bilingual), and find similar results to the judge-pair test — F-stats of about 1
and p-values in the 0.30-0.60 range.
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2.4.7. Judicial inconsistency, experience and workload

Judging is difficult. Particularly in this environment, where there are no published first-round

decisions that allow judges to learn before they start work, an important question for under-

standing the efficacy of the court is how quickly judges learn from experience. If judges learn

slowly, that suggests that judicial churn is costly and should be avoided.

Table 4.10 presents models where I allow experience to enter the judge threshold γs (ie, in

Xi js) and the variance of the error, σ js (ie, in Wi js). I parameterize experience with an indicator

for more than one year of experience and with indicators for more than 1, 5, and 10 years of

experience. Column 1 shows that first-round log inconsistency σ j1 shrinks dramatically after

the first year (0.77 log points), followed by smaller but still substantial decreases of 0.29 log

points after five years and 0.54 log points after ten years. To put these numbers into context, I

estimate that if all judges had less than one year of experience, pairs of judges with the same

approval rate would disagree on 74% of approved cases when judge errors are uncorrelated.

After one year of experience for all judges that declines to 54%; after a total of 5 years, 45%;

and after 10 years 30%.29,30 The pattern is similar when disagreement is measured as a share of

all cases: judges with the same first-round approval rate disagree on 22% with no experience,

then 17, 14, and 10% after 1, 5, and 10 years of experience.

This pattern of front-loaded gains to experience is similar to that observed in teachers, who

see the most dramatic gains after the first year (Rivkin et al., 2005). In contrast to teachers, I see

29In each counterfactual I adjust the thresholds γ j1 to keep overall approval rates the same. This means that the
same judges are matched to each other in all counterfactuals.
30Interestingly, the decline in bounded disagreement is not monotone. For 0, 1, 5, and 10 years of experience for
all judges, disagreement shares for approved cases are bounded at 9.2, 10.3, 9.6, and 7.5%.
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further gains even after 10 years of experience, perhaps reflecting the more complicated nature

of judging.

A potential implication of these high returns to experience is that more cases should be

given to experienced judges. This will be true to the extent that judges improve as a function

of years on the job, rather than directly from the number of cases they have made decisions

on. The latter scenario is perhaps more likely at the Federal Court than elsewhere. Recall

from Section 2.3.2 that first-round decisions are not written up as precedent. What’s more, the

second-round decision is not made for months (the median wait is 89 days), perhaps making

it difficult for first-round judges to follow up on which specific cases have been approved in

the second round. The only ways that judges can learn how their colleagues make decisions

in the first round are indirect: inferring them from the types of cases they observe themselves

in the second round, and discussing cases with colleagues. Both of these factors suggest that

years of experience will be more relevant than number of cases see. Fortunately, we can take

this distinction to the data. In Column 2 of Table 4.10, I allow years of experience and career

number of cases to affect inconsistency. Analogously to experience, I implement the control

for number of career cases with dummies, setting the thresholds at the 95th percentile of the

number of cases seen for judges with fewer than 1, 6, and 11 years of experience. Interestingly,

the results are nearly the same: inconsistency declines by 0.69, 0.24, and 0.44 log points after

1, 5, and 10 years of experience, respectively. In contrast, the effect of number of cases on

inconsistency is small and statistically insignificant, at effects (in log points) of 0.16 (SE=0.53),

0.066 (0.11), and 0.18 (0.67) after the career number-of-case thresholds corresponding to 1, 5,

and 10 years of experience. This suggests that the Federal Court could indeed improve overall

consistency by shifting some cases from inexperienced to experienced judges.



98

Another factor that may affect judicial consistency is workload. Higher caseloads may

reduce the amount of time judges can spend on cases, or make them work longer hours. Chen

et al. (2016) show that refugee judges in the US make more gambler’s fallacy errors — judges

being less likely to approve a claimant when they approved their last claimant — when caseloads

are high, so one might expect to observe the same phenomenon here. To test this, I calculate

monthly log workload as the number of leave cases a judge is assigned in a given month. Judges

are also responsible for non-refugee cases, so this is an imperfect measure of workload. The

model accounts for judge-specific consistency in σ js, guaranteeing these estimates do not reflect

time-invariant selection of more- or less-consistent judges into refugee work.31 However, to the

extent that judges with higher refugee caseloads may have lower non-refugee caseloads, these

estimates are likely biased towards zero.

Column 3 shows that a 10% higher workload reduces consistency by about 2%. In Column

4, I show the workload effect is unchanged by the addition of experience controls. In Column

5 I interact workload with indicators for more or less than 5 years experience, and find that the

effect comes entirely from judges with less than 5 years of experience (the p-value of a test of

equality is 0.11). In other words, more experienced judges are better able to maintain decision

quality as workload increases.

2.4.8. Judge inconsistency and expert opinion

The judge inconsistency parameters are related to readily-observable reduced form moments in

the data, as well as with experience and workload in largely predictable ways. In this section,

I explore whether they are also related to lawyer perceptions of judge ability. Higher degrees

31This is not a big fear. The Court claims they do not assign judges to cases or case types as a function of
performance, fearing that this would result in challenges to the assignment procedure.
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of correlation between model-based measures and expert opinion serve as a validation of the

model, and suggest that it could be used as a diagnostic tool.

To measure expert opinion, I conducted an email survey of refugee lawyers who have ap-

peared in refugee hearings at the Federal Court. I asked respondents to rate the judges with

whom they had personal experience along dimensions analogous to the parameters of the model:

how lenient is the judge to claimants (corresponding to judge threshold γ js), and how consistent

and predictable is the judge (I reverse this scale so it corresponds to judge inconsistency σ js).

More details about the survey, including the question text and comparison of the respondents to

the lawyer population, are in Appendix Section A.2.5.

Each response is on a five-point likert scale, which I normalize by the mean and standard

deviation. Table 4.11 describes the relationship between model coefficients and the survey

results. I model the relationship as

(2.12) Ĉ j` = β0 +β1Favorability j`+β2Inconsistency j`+η`+u j`

where ` indexes lawyers and Ĉ j = {γ̂1, γ̂2, σ̂1}. I use model estimates that account for ex-

perience (which is highly predictive of behavior), and for each judge-respondent pair use the

coefficient combinations reflecting experience at the time of their modal interaction. To account

for estimation error in the model coefficients I use Hanushek’s (1974) efficient estimator.32 In

Panel A, the dependent variable is the first-round γ̂1. As expected, higher lawyer-reported fa-

vorability is associated with a lower threshold. The correlation is large but imprecise in the first

32Hanushek’s two-step method exploits knowledge of the standard error of the dependent variable C j (ie, the model
coefficients) to construct observation-level estimates of the variance of the residual u j. The second step reweights
observations by the inverse standard deviation of the residual.
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round; in the right-most preferred specification one SD higher favorability corresponds to a 0.19

lower γ1, which is about 0.21 SD of the cross-judge distribution of γ1. Panel B displays the rela-

tionship between γ2 and the survey measures. The relationship is stronger than with γ1; adding

one SD of predicted favorability decreases γ2 by 0.42, or 0.42 SDs of the judge distribution.

This may be because second-round judge behavior is more salient than first-round behavior for

lawyers, since they appear in front of the judge only in the second round.

Finally, Panel C shows the relationship between surveyed judge characteristics and σ1. Sur-

vey inconsistency is positively related with the model estimate of inconsistency σ1; across spec-

ifications one extra SD of inconsistency translates to between 0.16 to 0.22 higher σ1, or about

0.1 SD of the cross-judge distribution. For comparability to Panels A and B, Panel C includes

the same set of controls, but in Appendix Table A13 I show results slightly more in line with

the identification intuition of subsubsection 2.2.2.1. I control for first-round approval rates, thus

comparing σ1 for judges with the same approval rate.33 The results are reassuringly similar. In

the right-most preferred specification, one additional SD of surveyed inconsistency corresponds

to 0.13 higher σ1. Across specifications, the model and the judge survey select the same judges

as being more consistent, suggesting that the structural model is picking up true variation in

judge ability to assess case strength and use common standards.34

33Analogously to how I define σ1, I control for the judge approval rate for the level of experience when he had
his median interaction with the judge. To maximize reach I surveyed lawyers who had appeared in front of judges
for appeals of deportation and consular decisions involving refugees; this means I drop some observations with no
inland refugee cases during that time period. The results are nearly identical if I control for whole-career judge
approval rate.
34Because second-round σ2 should not be interpreted as reflecting judge inconsistency, I do not include it in the
table. However, consistent with it being partially correlated with true judge consistency, I find that σ j2 is positively
but insignificantly correlated with surveyed inconsistency.
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2.4.9. Judge selection reform and judge consistency

In 1988, the government enacted an important reform to how it selects judges. The goal of the

reform was to make it harder for the party in power to appoint unqualified party supporters. As

I detail in Section 2.3.3, the limited evidence available suggests that the policy change reduced

the number of new judges with ties to the ruling party. In this section, I provide evidence that

the reform was also successful in reducing judge inconsistency σ j1.

Table 4.12 presents a regression of σ̂ j1 on a dummy for whether the judge was appointed

before the reform. I weight the regressions to account for estimation error in the dependent

variable (Hanushek, 1974), and in my preferred specifications control for judge gender and

party of appointment. Because the reform took place seven years before the start of my sample,

the pre-reform judges are mechanically more experienced. More experienced judges are more

consistent (have lower σ j1), so this likely works against finding that the reform improved judge

consistency.35

I show results for a baseline model that does not control for experience, and controlling

for experience with categorical variables for more than 1, 5 and 10 years of experience (for

approximate comparability, I adjust all coefficients to the median experience of 6 years). The

first three columns show that average consistency improved by 0.34 after the reform, a 26%

reduction (the estimate is just shy of statistical significance, with a p-value of 0.12. This does

not appear to be related to the change in party that occurred just after the reform — Column

3 shows that party has no affect on large of statistically significant effect on consistency. In

35Alternatively, if high-consistency judges are more likely to be promoted to a higher court, then pre-reform
consistent judges might not be observed in my data. This would mechanically make the pre-reform judges look
less consistent. Although about 20% of the justices are promoted in seven or fewer years, there is not a strong or
statistically significant correlation between promotion and estimated inconsistency — judges who are eventually
promoted have a log σ j1 0.15 lower (standard error 0.207) than non-promoted judges.
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Columns 4-6, the the effect is larger once the model properly accounts for differing experience

among pre- and post-reform judges, with σ j1 dropping by 1.75 points (relative to a pre-reform

mean of 2.2) for judges appointed after the reform.36

Both of these affects are large. The estimates from my preferred right-most model imply a

pre-reform uncorrelated disagreement rate of 18.3% for pairs of judges with the same approval

rate (recall the baseline estimate is 13.2%). If all judges were appointed post-reform, that drops

to 6.6%.37 The strength of the effect speaks to the size of the reform, which materially restricted

the minister’s options. Government data shows that the Judicial Advisory Councils approve

only 40% of applicants; ostensibly some of the rejected candidates would otherwise have been

appointed. Interestingly the effect is not driven by changes in judge leniency. In Appendix

Table A14, I show that judges appointed after the reform approved a similar share of first-round

claimants (an insignificant 5 percentage points more). More directly, in Appendix Table A15

I control for judge approval rates and find almost identical results, with an average σ j1 1.72

smaller for judges appointed after the reform (SE=0.65).

The table also shows that there is no significant or substantial difference in judicial consis-

tency between the two parties. Given the relative similarity in judicial philosophies between

liberal and conservative judges in Canada, this finding is not particularly surprising. The Fed-

eral Court is a prestigious appointment, and so governments are unlikely to be constrained by

supply limitations. Male judges are slightly (and marginally statistically significantly) more

36In Table A16, I estimate an identical table using second-round inconsistency σ2 as the dependent variable.
Because σ2 may partially reflect skill at gathering information in hearings, the predicted effect is ambiguous. In
all but one specification, I find statistically insignificant results. This suggests either that post-reform judges made
fewer errors only in the first round (which is implausible), or that information acquisition is an important part of
second-round errors.
37To calculate these numbers I scale each σ j1 by a common factor so that the mean approval matches the before and
after mean. This maintains a comparable amount of cross-judge variation in σ j1, which is an important contributor
to inconsistency.
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consistent than female judges, though this difference is dwarfed by both the gains to experience

and the post-reform effect.

2.4.10. Optimal judge allocation

The Court assigns cases to judges taking into account only their availability, not their behavior

in previous cases. In this section, I show how the Court could optimize judge allocation to

minimize caseload while maintaining the same standards.38

Second-round decisions are much more costly to the court than first-round decisions. In-

stead of reading documents from the IRB’s initial determination, a second-round decision en-

tails a full hearing in front of the opposing lawyers, time to prepare for the hearing and time to

write the decision — about ten times as long as a first-round decision. The Court could min-

imize workload while approving the same number of total claimants by reducing the number

of first-round acceptances and approving all second-round claimants. To some extent, they are

already pursuing this strategy — as I discuss in Appendix Section A.2.4, the marginal claimants

for most first-round judges have a relatively high chance of second-round approval (30-45%).

However, it is unclear from the reduced form evidence what further reducing first-round

approvals (and thus costly second-round decisions) would do to the distribution of case quality

for approved claimants. A natural requirement is that any acceptable counterfactual judge as-

signment mechanism approves at least the same number of claimants, and that the distribution

of posterior case strength ri of the approved first-order stochastically dominates the baseline

distribution. I also require that no judge works more than she currently does.

38Alternatively, I could maximize acceptance rates while maintaining the same standards and keeping workload
no higher than in baseline. This problem is almost symmetric, and for given model estimates the potential cost
savings holding acceptance fixed are always close to the percentage increase in refugees holding costs fixed.
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Under this problem, there are three ways to minimize caseload. First, judges should be

reallocated to rounds where they make more consistent decisions. Second, first-round judges

should be made more strict to improve the posterior case quality of claimants approved in the

first round and decrease the number of second-round decisions. Third, second-round judges

should approve a higher share of cases so that the overall approval remains the same given

lower first-round approval rates.

In Figure 4.21, I conduct exactly this maximization. I find that overall workload would be

reduced by 17.5% (or 28,000 hours), amounting to savings of approximately $4.4 million in

judge salaries alone over the study period. This counterfactual poicy would also save staff time

and allow claimants to receive their ultimate decision faster. The figure demonstrates the second

two kinds of savings, but not the first. To summarize how the re-assignment procedure works,

I present histograms of the baseline judge coefficients by round as well as histograms that have

been reweighted to reflect the distribution of coefficients after optimization. The average first-

round threshold γ j1 for optimally-assigned judges is higher (Panel A), meaning that fewer cases

will be approved in the first round but case strength conditional on first-round approval will be

higher. Conversely, judges in the second round are much more lenient, as evinced by the lower

thresholds γ j2 (Panel C). However, in Panel B and D the change in the overall distribution of

consistency is much less dramatic — only the most inconsistent judge-rounds are eliminated. I

interpret this to mean that judge thresholds γ js are a stronger driver of who is selected, but that

knowledge of judge-specific consistency has an important role to play in allowing the researcher

to discipline the selection process.

The problem as I’ve described it takes the posterior distribution of ri as the relevant measure

of quality. Implicitly, this assumes that the second-round error is all judge error. As I discuss
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in subsubsection 2.2.3.1, it may also reflect additional information gained in the second-round

hearing. In that case, the relevant measure of quality is ri +Ii j2. I do not directly estimate the

distribution of of the information shock Ii j2, so cannot perfectly condition on the posterior (I

estimate the distribution of inconsistency plus information shock, ui j + ei j2 +Ii j2). However,

under the assumption that the second-round error is all information, I can minimize workload so

that the posterior of ri+Ii2 first-order stochastically dominates the baseline distribution. Under

this specification, the allocation of judges is highly correlated with the baseline optimization

(0.58), and workload is reduced by 16% rather than 17.5%. It also satisfies the constraints of

the baseline allocation, so a cautious planner could implement the second design and enjoy most

of the gains of judge reallocation.

2.5. Conclusion

Much research has focused on non-relevant factors that affect judge behavior: the decision

in the previous case (Chen et al., 2016), the outcome of a college football game (Eren and

Mocan, 2016), or the timing of the hearing relative to lunch (Danziger et al., 2011). The ex-

istence of these phenomena suggests that the same defendant could be convicted by one judge

and acquitted by another, even when both judges have the same overall incarceration rate. This

behavior, which I call inconsistency, violates the fundamental ideal of fairness in the judicial

system: that all cases should be decided according to the same standards. To some extent we

already know that courts are unfair — cross-judge variation in incarceration rates implies that

different judges would make a different decision for the same individual — but we have no

evidence on the relative importance of inconsistency versus cross-judge variation in leniency

in generating unfairness, and no methods to estimate the prevalence of inconsistency. In this
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paper, I show how inconsistency can be identified at the judge level by exploiting multi-stage

decision processes and using the judges to check the quality of each others decisions.

I begin with a simple model where judges approve all candidates with a case strength larger

than a judge-specific threshold. Judges observe case strength with some error, which generates

inconsistencies across judges in which claimants they approve, even for judges who approve

the same share of cases. I show that this model is nonparametrically identified in two-stage

judicial processes by a combination of cross-judge comparisons (for example, more consistent

first-stage judges are more likely to have their approved claimants approved in turn by the

second round judge) and regressors that shift judge thresholds without affecting errors. Under

parametric assumptions it can be tractably estimated.

I implement the model using data on judicial review of initially-denied refugee claims at

the Federal Court of Canada. Although the justices of the Federal Court are experts in refugee

cases, I uncover relatively high levels of inconsistency. For first-round judges who approve

the same share of cases (on average, 14%), I estimate they disagree on 13.2% of cases, and

bound disagreement to at least 3.6% of cases. Even more strikingly, inconsistency contributes

more to unfairness than cross-judge variation in leniency. If all judges were perfectly consistent

they would disagree on 8% of cases, but with the addition of inconsistency the disagreement rate

jumps to 23%. Overidentification tests suggest that most disagreement arises from idiosyncratic

observational errors, rather than permanent differences between judges in which aspects of cases

they think are most relevant.

Cross-judge variation in inconsistency is large. I validate the measured variation against

a survey that solicited estimates of judicial characteristics from refugee lawyers who had ap-

peared in front of the judges. Judicial consistency improves dramatically after the first year, and
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continues to improve (albeit at a slower rate) for at least the first ten years of experience. Inex-

perienced judges — but not experienced ones — are more consistent when they have a smaller

workload. A reform in the late 1980s designed to stop the government from appointing unquali-

fied party supporters dramatically improved judicial consistency, suggesting that well-designed

judge selection processes can indeed improve court outcomes. Because my model generates

measures of the posterior distribution case quality of approved claimants, I construct a counter-

factual allocation of judges to cases that first-order improves on the posterior distribution while

reducing judge workload. I estimate that the optimal policy would reduce judge hours by 18%,

saving at least $4.4 million over the study period.

It is unclear whether the overall level of inconsistency I uncover here would be found in

other courts. By construction the Federal Court’s caseload is difficult, consisting of initially-

denied refugee claimants who appeal the decision, and the lack of precedent likely increases

inconsistency. That said, the improvements in consistency over time, and with respect to work-

load and the judge selection mechanisms are much more likely to transfer to other contexts.

In the Appendix, I show that this level of inconsistency implies relatively large levels of bias

in MTE estimates using judge-assignment instruments, but not for linear IV estimates. Future

work should determine whether the results hold in criminal courts and other decision-making

institutions such as the Social Security Administration, and once the econometrician can con-

dition on type of case and other covariates. If the level of inconsistency at the Federal Court is

also present in other contexts, it would introduce bias into estimates of the effect of incarcer-

ation (Aizer and Doyle, 2013; Mueller-Smith, 2014), SSDI receipt (Maestas et al., 2012), and

patent receipt (Gaulé, 2015) recovered from examiner-assignment IV designs.
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My research has strong implications for the assessment of the Federal Court. Under current

policy, 14% of all claimants proceed to the second stage and 6% of the total are eventually

successful in having the Court return their case to the government for redetermination. I find

that first-round judges reject many claimants who might be successful in the second stage —

if first-stage approval became automatic, 19.4% of all claimants would be granted redetermina-

tion. Over the 17 years from 1995 that comprise my study period, that difference amounts to

approximately 7,700 families.
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CHAPTER 3

The Effects of Parental and Sibling Incarceration: Evidence from Ohio

3.1. Introduction

The United States has the highest rate of incarceration in the developed world, directly

affecting millions of prisoners annually. Even more individuals are indirectly impacted by the

criminal justice system, as friends, co-workers and family members of the incarcerated. The

impact is particularly large for children in marginalized groups – around 25% of black children

and 30% of children of non-college educated parents experience the incarceration of a parent

by the age of 14 (?). Given the large number of people affected by these spillovers, the indirect

effects of incarceration could potentially be even larger than the direct effects.

While the impacts of sibling and parental incarceration are theoretically ambiguous, the pre-

vailing wisdom has been that it will have negative repercussions (?). Advocates and academics

alike argue that the trauma associated with familial incarceration, combined with the removal of

social and economic support, will cause children to engage in a number of harmful behaviors,

such as disengagement from school and crime. On the other hand, there are several plausible

mechanisms through which the indirect effect of incarceration could be positive. Parents who

are incarcerated may be lower quality caregivers than their replacements, or in cases of abuse,

commit crimes that directly and adversely affect their children. Similarly, siblings may com-

mit crimes together or a sibling who engages in criminal activities may influence the others

to emulate this behavior. More generally, the intrafamily effects of incarceration are likely to
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vary depending on the relationship between the family members, and the net indirect effect of

incarceration is unclear.

Despite the importance of this topic, empirical evidence on the relationship between incar-

ceration of family members and child outcomes in the United States has been largely correla-

tional (?). The key empirical challenge is that the children of incarcerated parents come from

systematically more disadvantaged home environments than the children of non-incarcerated

parents. To the extent that unobserved dimensions of home environment are correlated with

parental incarceration, observational studies are biased towards finding a negative effect of

parental incarceration. Perhaps because of these methodological issues, most studies find nega-

tive effects in the short-run on outcomes such as antisocial behavior (?), drug use (?), academic

achievement (?), and criminality (?). A few studies use panel data to estimate the effect of

parental incarceration on child academic achievement in a diff-in-diff framework and suggest

minimal (?) or even positive effects (??) of parental incarceration.

The lack of causal evidence is largely due to the stringent data requirements. To generate

non-correlational estimates, it is necessary to have criminal justice data with a source of ex-

ogenous variation in incarceration, data that links family members, and outcome data for the

family members. This data must span a period of twenty to thirty years in order to measure

adult outcomes for a sufficiently large sample of family members. This paper overcomes these

challenges and provides the first causal estimates of the spillover effects from incarceration on

family members in the United States. We collect and merge adminstrative data sets from 14

separate government departments for the three largest counties in Ohio, containing a population

of approximately 3.4 million people: Cuyahoga County, which contains the city of Cleveland,

Hamilton County, which contains the city of Cincinnati, and Franklin County, which contains
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the city of Columbus.1 We reconstruct families by linking defendants to their children using

birth certificates, and to siblings by matching through their common parents.

In Ohio, cases are randomly assigned to judges who differ in their propensity to incarcer-

ate defendants. We leverage random assignment as a powerful source of exogenous variation

in incarceration probability. In our sample, a lenient judge at the 10th percentile of strictness

incarcerates only 23% of defendants, whereas a judge at the 90th percentile of strictness incar-

cerates 52%. For each defendant, we instrument for incarceration with their judge’s average

propensity to incarcerate other defendants, following a strategy used in a number of recent pa-

pers (?????). This instrument is strong and uncorrelated with the characteristics of cases or

defendants assigned to the judge.

We generate causal estimates of three treatment effects: (1) the direct effect of incarceration

on defendants, in order to contextualize the ways family members are affected; (2) the effect

of parental incarceration on children; and (3) the effect of incarceration of siblings. For defen-

dants, incarceration leads to large short-run decreases in criminal activity during the time spent

behind bars, but after release, prisoners commit crimes at a higher rate than non-incarcerated

defendants. After five years, the cumulative number of new crimes committed by the two groups

is similar.

Given that we do not find rehabilitative effects on those who are incarcerated, the literature

would suggest that parental incarceration will harm children by separating them from their pri-

mary caregivers. Instead, we find that the impact is largely positive. Incarceration of a parent

1Analysis of some of the data is still in progress and will be included in a May 2018 draft of the paper. In addition
to more outcomes from Ohio, that draft will include data from a fourth location: Allegheny County, Pennsylvania,
which contains the city of Pittsburgh. The Allegheny county data is particularly rich, and includes outcomes
such as mental health, substance abuse, and child welfare services involvement. Data usage agreements are also
in progress for use of unemployment insurance data to measure employment outcomes of formerly incarcerated
individuals and their family members.
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reduces the child’s probability of being incarcerated as an adult by 3.1 percentage points (37 per-

cent of the mean adult incarceration rate) and as a juvenile by 2.9 percentage points (63 percent

of the mean juvenile incarceration rate). The effects are even larger when focusing on children

of incarcerated mothers, who are 7.2 percentage points less likely to be incarcerated as adults

and 6.4 percentage points less likely to be incarcerated as juveniles.2 Results are qualitatively

similar across male and female children, though are generally larger for male children.

We examine several other policy-relevant outcomes — teenage pregnancy and child educa-

tional attainment — for potential negative effects of parental incarceration. With a high degree

of precision, we can rule out increases in becoming a parent as a teenager for both boys and girls,

including among those with the largest reductions in criminal activity, children with incarcer-

ated mothers. We similarly do not detect any effects on school attendance or child standardized

test scores in reading or math, though the estimates are less precise. Given the lack of negative

results and large reductions in criminal justice system involvement, it appears that incarceration

of parents actually improves child outcomes.

Spillover effects are similar for siblings, where the incarceration of a sibling with a shared

mother leads to a 7.3 percentage point decrease in the probability of a child being incarcerated

as an adult. Incarceration of a sibling may have a positive effect if siblings are likely to engage

in criminal activities together (?). More generally, a sibling engaged in criminal activity may

influence other children in their family towards criminal activity, an effect that their removal

will attenuate.

2The point estimates are even larger when looking at the outcome of whether the child appeared in court as an adult
or juvenile. However, we prefer to focus on the outcome of incarceration since this suggests that the individual
actually committed the offense for which they were charged.
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From a policy perspective, it is helpful to understand how different subpopulations react to

the incarceration of family members. It may be that effects are worse among poorer or more

vulnerable children, as found in ? in Sweden. Using geocoded address data for the children,

we find the opposite, where the lower the socioeconomic status of the neighborhood of the

child (at the census block group level), the larger the reduction in future criminal justice system

involvement as the result of the incarceration of a family member. Effects are particularly large

in the case of siblings, where for children in the poorest quartile, the incarceration of a sibling

with a shared mother reduces own probability of incarceration by 21.7 percentage points.

There are a number of mechanisms that could plausibly explain our results. First, one might

imagine that parents are rehabilitated by their experience of incarceration, but that is inconsis-

tent with the increased levels of criminality we observe post-release. Another explanation is that

children are “scared straight” by the experience of seeing a family member being incarcerated.

That would be consistent with the reduction in future criminal justice system involvement, and

lack of change on other margins of risk behavior, such as teen pregnancy. Finally, many parents

on the margin of incarceration may be of a lower quality, and so the child may be better being

removed into other, possibly more stable home environments (e.g. with grandparents).

The effect of familial incarceration may vary along dimensions that can be manipulated by

policymakers, such as sentence length. For each charge we observe in the data (e.g., assault),

we calculate the average sentence length conditional on incarceration, and measure how the

effects of incarceration vary based this measure of potential length of sentence. The positive

effects of incarceration are largest among children whose parents have shorter expected sen-

tences, while for children whose parents have expected sentences of more than a year, there

is no effect of parental incarceration on child crime outcomes. This is suggestive evidence of
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a “scared straight” effect that is triggered even for short sentence lengths. If the results were

caused by placing children with higher quality care-givers, one would expect that longer sen-

tences would lead to even larger positive effects, rather than smaller ones. This test is not

entirely satisfactory, since children of parents with longer sentences may also tend to be sys-

tematically disadvantaged in other ways, and so the relevant heterogeneity may be along that

dimension. Future drafts of the paper will provide stricter tests of the mechanisms at work, in-

cluding estimating heterogenous effects along estimated parent quality and using child welfare

data to determine the caregivers of children after their parents are incarcerated.

The first literature to which this paper contributes is the study of the indirect effect of in-

carceration on child outcomes. Outside of economics, this has been an active area of research

for decades, but all research has used correlational research designs such as multivariate re-

gression (?????) or matching to construct plausible “control” groups of children whose family

members were not incarcerated (?????). These strategies do not control for unobserved hetero-

geneity in home environment that is related correlated with incarceration, and are unlikely to

generate reliable estimates. There has been a recent flurry of interest among economists on the

effects of parental incarceration, taking advantage of large administrative datasets and focusing

on the incarceration of fathers. ? compares children during as well as before and after parental

incarceration and concludes that incarceration improves academic achievement and reduces be-

havioral issues. Two other recent papers use administrative data from Scandinavia and follow

a similar empirical strategy as our paper, exploiting random assignment of judges to cases to

generate exogenous variation in the probability of incarceration (??). These papers find highly

negative and null effects of incarceration on child outcomes, respectively.
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In contrast to previous work, this is the first paper to provide quasi-experimental results from

the US context, as opposed to Scandinavian countries (??). Estimates from the United States

have broader policy relevance since there are currently over 2 million incarcerated individuals

in US jails and prisons, as opposed to only 6,000 in Sweden and 4,000 in Norway (?). In Ohio

alone, there are currently 70,000 individuals in either jail or prison despite having a population

only slightly larger than that of Sweden (?). Scandinavian justice systems are significantly

more rehabilitative than those in the United States, and so estimates from those contexts may be

hard to apply to the US. For example, spending on inmates in Swedish and Norwegian prisons

averages over $120,000 per year, versus $30,000 in US prisons. ? find that Norwegian prisons

have an economically rehabilitative effect on those incarcerated, as opposed to ?, who shows

that incarceration in the US has sharply negative economic effects.

Second, the size of our data allows us to broaden the scope of the study. As a result of

high incarceration rates in the United States and the long time frame of our data, we observe

approximately one million unique defendants. This allows us to study the effect of incarcerated

siblings, as well as generate precise estimates of effects of familial incarceration for various

policy-relevant groups, such as socio-economic status. To date, little attention has been paid to

the incarceration of siblings despite the police relevance of this phenomenon. A representative

survey of US inmates found that 19% had a father who was ever incarcerated, 6.4% had a mother

who had been incarcerated, but a massive 34.4% had a brother who had been incarcerated

(?). Furthermore, given the likely heterogenous effects of incarceration of family members,

understanding how the effects may vary is vital.

Third, our findings are in sharp contrast to nearly all previous work. For example, ?, who

find large negative effects of incarceration in Sweden, speculate that the negative consequences
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of parental incarceration for children must be even larger in the United States given the punitive

nature of the American justice system. Our estimates have important implications for estimat-

ing the costs of incarceration and considering the likely effect of sentencing reform. We find

that short sentences can actually have positive effects on family members of incarcerated indi-

viduals. From the perspective of family members of the incarcerated, a shift towards shorter

sentences may be a more beneficial path for sentencing reform than reducing the frequency of

incarceration.

The second literature we contribute to is on the determinants of youth criminal and delin-

quent behavior. Previous work has found many significant determinants of these activities, such

as peer influences (????), assignment to foster care (??), prior stints of juvenile incarceration

(?), and education (??). We add to this literature by showing another channel through which the

justice system indirectly affects criminal behavior.

Finally, we contribute to the large literature on the effect of family on children’s economic

outcomes. This includes an enormous literature on how parents affect their children (???),

shocks to parents (???), shocks to siblings (?), and order of birth (??). Given that children are

being separated from their parents as a result of incarceration, our results stand in contrast with

those of ? and ? on foster care. Those papers find removal from immediate family has large neg-

ative effects on adult outcomes, while we find that incarceration shocks positively affect family

members. Parents who are incarcerated may be worse caregivers than those whose children

are removed by foster care or familial support may be greater for children post incarceration

incidents (e.g. placement with grandparents).

Section 3.2 provides a more detailed discussion of the theoretical spillover effects of in-

carceration, as well as background on the courts systems in Ohio. Section 3.3 describes our
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data, Section 3.4 describes the empirical strategy, and Section 3.5 shows the results. Section 3.6

concludes.

3.2. Background

The US incarceration rate is five to ten times higher than in most other industrialized democ-

racies (?). This is a relatively new phenomenon; the state and federal prison population rose

from about 200,000 in the early 1970s to 1.5 million in 2009, with an additional 700,000 held

daily in local jails (?). Much of this has been attributed to longer sentencing and mandatory

minimum sentencing, which grew in popularity in the 1980s (?). As a result, more households

than ever experience the incarceration of a family member, and for longer periods of time. Poor

communities and African-Americans have been disproportionately affected by these changes,

with African Americans are incarcerated at more than five times the rate of whites (?).

Higher rates of incarceration may have lowered crime through incapacitating those who are

likely to commit crimes or deterring would-be offenders, but may also lead to more crimes

being committed by the released prisoners, who gain crime-specific human capital while in

prison. The largest, most rigorous study in the US context concludes that incarceration increases

overall crime rates (?). However, focusing solely on current crime rates ignores the potential

spillovers on peers or future generations. Between 1980 and and 2000, the number of children

with an incarcerated father rose from 350,000 to 2.1 million, around 3% of all US children (?).

There is an extensive and growing literature in sociology and criminology that examines the

collateral consequences of the incarceration of family members. The vast majority of this work

has focused on the effects of incarceration of parents, since their incarceration is likely to be

particularly impactful for a child. ? lay out three theoretical channels through which the effects
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may be harmful: strain, socialization and stigma. The strain of the loss of an economic provider

may lead to damage in the short and long run. Incarceration reduces household income, which

may extend after the prison spell has ended, due to lower human capital and social stigma.

? finds that each additional year in which an adult is incarcerated reduces employment after

release by 3.6 percentage points. The effects are even larger for those with stable earnings prior

to incaceration. This loss in income may have negative effects on education and other human

capital investments — in a recent study on the effects of cash grants for poor to middle-income

families, a $1,000 increase in 1995 family income increased math and reading tests scores by

0.04 SD (?).

The loss of a source of social support (socialization) may impede child development. A long

line of research in psychology on attachment and social bonding theory points to separation as

damaging to children (??). A detailed, small-scale study of the effects of maternal incarceration

confirms that initial separation with the mother generates widespread negative emotions (?).

Other research suggests that the reduction in parenting inputs may extend past the duration of

incaceration: a study by ? suggests that incarceration is associated with marital dissolution and

? find the incarceration of a partner harms the mental health of a child’s other caregivers. The

stigma to the child of having an incarcerated family member may lead to social isolation that

catalyzes criminal activity on the part of the child. Incarceration of family members may also

lead children to follow in their footsteps of criminality.

Conversely, incarcerated people may be lower-quality caregivers than their replacements.

In this case, incarceration could increase certain dimensions of caregiving inputs and improve

long-term outcomes. Family members who are offenders may sap economic and social re-

sources and prove a disruptive rather than supportive influence, inhibiting the development of
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pro-social attitudes in a child (e.g. ?). In some cases, such as for those accused of physical or

sexual abuse, the crime committed has a direct negative effect on children. Children’s expo-

sure to the incarceration of a family member may also cause them to become “scared straight”,

i.e. perceive the expected punishment for criminality to be higherand decrease their level of

subsequent criminal activity (?). If family members (and particularly siblings) are committing

crimes together, then the incarceration of one member may reduce the criminal involvement of

the other members.

On net, empirical research has typically found that the long-term effects of the American

system of incarceration are negative, although other studies have found positive effects in less

punitive Scandinavian systems (??). Parental incarceration has been shown to have negative

effects on outcomes such as the child’s criminal justice system involvement (??), mental health

and learning disabilities (???), academic achievement (?), substance abuse (?), and physical

health and obesity for female children (?). Others have found no effect of parental incarceration

on behavioral issues (?), substance abuse (?) or test scores (?). In most of the quantitative

studies, the results are from regressions across a population of children where some have in-

carcerated parents and others do not. This shows whether there is a correlation between the

incarceration of the parent and outcomes for the child. In the highest quality studies, control

variables are included in order to attempt to account for pre-existing differences between chil-

dren with incarcerated parents and those that are not incarcerated. For example, children with

parents who are incarcerated will tend to have lower family income even prior to incarceration.

Thus the study might control for pre-existing family income, although it is impossible to control

for all confounding factors (?).
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Recent work has challenged the paradigm of conceptualizing incarceration of family mem-

bers as a net “good” or “bad”. For example, ? argues that in some cases, it will remove a

harmful influence, while in others, it takes away a valuable form of social support. Other recent

studies have found that whether the effect of incarceration is positive or negative depends on

factors such as the child’s environment, the nature of the relationship between the prisoner and

child, and the gender of the parent (???). In some cases, the incarceration of a parent may have

no effect on a child, such as if the ties between the child and parent are weak (e.g. an absentee

father). In others, such as the removal of a primary caregiver (especially mother), the effect

may be quite negative. Aside from providing more credible causal estimates, one of the key

open questions in the literature is identifying the dimensions of heterogeneity that mitigate or

exacerbate the collateral consequences of incarceration.

3.2.1. The Criminal Justice System in Cuyahoga, Franklin, and Hamilton Counties

This study investigates incarceration in the context of the three largest counties in Ohio: Franklin

County (population of 1.3 million), Cuyahoga County (population of 1.2 million), and Hamilton

County (population of .8 million). These counties each contain a sizeable urban core surrounded

by outlying suburbs, and have similar median household incomes of around $41,000 per year.

The counties are also demographically similar, with populations that are approximately 70%

white and 25% black.

Ohio is a particularly relevant state in which to study the intrafamily spillovers of incar-

ceration, since it is has one of the highest rates of parental incarceration in the US. One in

ten Ohio children have a parent who has been incarcerated; only two others states have higher

rates (Kentucky and Indiana) (?). These counties are also broadly representative of crime and
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incarceration policy in the United States. Among the 84 US cities with populations of at least

250,000, Cincinnati ranks 10th, Cleveland 18th, and Columbus 37th in standardized violent

crime rates as measured in the FBI Uniform Crime Reporting Statistics (2014).3

In each county, the justice system is divided into Municipal and Common Pleas Courts.

Municipal courts are responsible for misdemeanor criminal and traffic cases, and each county

has 20,000-30,000 municipal cases per year. The most common types of offenses that come

before Municipal Courts are misdemeanor drug possession (13.3% of cases), misdemeanor theft

(8.5% of cases) and disorderly conduct (7.5% of cases). As a function of the less serious nature

of these crimes, incarceration is relatively rare, and only 14.9% of defendants are immediately

sentenced to incarceration.

Felony cases are decided in the Common Pleas courts.4 Each county handles between 5,000

to 15,000 cases per year, of which 26% are serious drug offenses such as trafficking or posses-

sion of cocaine or heroin, and 18% are made up of felony theft, burglary and robbery. In 34.4%

of cases, the defendant is sentenced to incarceration, and in 36.4% sentenced to some sort of

alternative to incarceration, such as probation.

In both Municipal and Common Pleas courts, a single judge is responsible for managing all

aspects of the case, including negotiations over plea agreements and sentencing. This judge is

assigned as soon as possible after arraignment, and by Ohio law, assignment must be random.

This rule was put in place to avoid judge-shopping, in which individuals manipulate the assign-

ment system to receive a judge who might be more favorable to their case. The rule specifically

mandates true random assignment and specifies a list of acceptable and random system, such as

3Standardized violent crime measures include murder and non-negligent manslaughter. Among all violent crimes,
the rankings are similar: Cleveland (9th), Cincinnati (26th), and Columbus (55th).
4The Common Pleas courts are also responsible for domestic relations, juvenile and probate courts, but these
records are not relevant for this paper.
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a drawing balls from a bingo cage.5 Assignment is currently carried out by a computer system,

which we will later validate as random by showing that the characteristics of cases are unrelated

to the judge to which they are assigned.

Both Municipal and Common Pleas judges are elected on a non-partisan ballot for six-

year terms. All candidates must be attorneys with at least six years of legal experience, and

elections are typically quite competitive. Restricting our sample to judge who hear at least 100

cases between 1990 to 2017, we observe 212 unique Common Pleas and 107 unique municipal

judges. This works out to approximately 1,009 cases per year for municipal judges and 388

cases for common pleas judges, reflecting the more complex nature of common pleas cases.

Over the sample period, the average municipal court judge in our sample hears 9,396 cases,

while the average common pleas judge oversees 3,735 cases.

3.3. Data

We combine administrative data from a variety of sources. In Ohio, adult court cases are

a matter of public record, and all court records are available on the websites of the respective

County Clerks of the Court. For each county, we scraped all Common Pleas Cases between 1990

and 2017, a total of 765,000 records. The current draft includes the municipal data for Franklin

and Hamilton Counties over the same time period (1.14 million records), and future drafts will

also include data for Cuyahoga county. This is the full sample of cases, and so includes cases

that were dismissed or in which the defendant was determined to be not guilty.6 The case records

contain the full docket history of all transactions that occurred on the case, including the filing

5Aside from capital cases, which are omitted from our analysis, it prohibits the use of any quasi-random systems
that could be manipulated, such as assigning cases by rotation to judges (i.e. judge 1 gets the first case, judge 2
gets the second case, and so on).
6The only cases that are not present are those in which defendants have filed for expungement. These have been
removed from all databases, but are less than 1% of cases.
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of charges, assignment of judge, and sentencing. They also include defendant characteristics

such as name, date of birth, gender, race and home address.

In order to match defendants to their family members, we use birth certificate records from

all births in Ohio between 1970 and 2017 (approximately 5 million records). The birth certifi-

cates contain the full name and date of birth of the child, as well as the name and additional

information on both the mother and father. The mother data is available for virtually all births;

information about the father is missing on 12% of records.7 The data includes residential ad-

dress at birth, which we match to 2011-2016 American Community Survey information at the

census block group level, generating information about the socioeconomic status of the neigh-

borhood. This provides a measure of how family involvement in the criminal justice system

may interact with the socioeconomics status of study individuals and their communities. Fur-

thermore, the work of ? and others show that neighborhood of residence is itself an important

outcome given that neighborhood characteristics are influential for child outcomes.

The court records contain the full name and date of birth of the defendants, so we begin

by using this information to match defendants to the parents in the birth records, allowing for

inexact matches on name. With the parent-child connection in hand, we match the children for-

ward 1) to court records to measure criminality; 2) to birth records to measure teen pregnancy;

3) to school records to measure academic achievement, and 4) to voter records to measure civic

engagement and Ohio residency. Similarly for siblings, we match defendants to their own birth

record, then find all other children with the same parents. Since siblings may not share the same

set of parents, we differentiate between full and half siblings, and whether the common parent

is the mother or father. We describe the matching process in detail in the Online Appendix.

7This missing data is not terribly problematic since fathers who are missing on the birth certificate are those least
likely to be involved in their childrens lives.
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The schools data as well as data on juvenile courts were only available in Cuyahoga County,

and we signed data sharing agreements with the Cleveland Metroplitan School District and the

Cuyahoga County Juvenile Courts. The schools data contain student test scores, attendance,

grade completion, and graduation for all students between 2010-2017. The juvenile courts data

contain all cases between 1995 and 2017, allowing us to measure whether a child was involved

with the juvenile justice system and the seriousness of their offense.

The voter records represent the universe of Ohio voters between 2000 and 2017. While

voter registration and actually voting in elections are a key measure of civic engagement and,

hence, important in their own right, we primarily use these data to test whether the study sample

has stayed in Ohio and their within-state migration patterns by geocoding the addresses.

We have additionally collected data from Allegheny County, Pennsylvania, which contains

the city of Pittsburgh. This is the second most populous county in the state of Pennsylvania

(population of 1.1 million), only slightly smaller than the county of Philadelphia (population of

1.3 million). We have merged data from eight unique administrative data sets8. We follow the

same empirical strategy as in the three Ohio counties, using birth certificates to match parents

and children and taking advantage of the random assignment of cases to judges for variation in

likelihood of incarceration. Analysis on this data set is in progress and will be included in the

next draft of the paper. Pending completion of data usage agreements, future drafts will also

include data on employment and earnings for incarcerated parents and their children.

8These are: 1) Birth certificates for all births between 1975 and 2017 in Allegheny County; 2) Court records for all
cases between 1977 and 2017; 3) Juvenile court records between 2007 and 2017; 4) School records from Pittsburgh
Public Schools between 2004 and 2017, including attendance, grades, test scores, and disciplinary incidents; 5)
Records of all child welfare cases handled by the Allegheny County Department of Human Services between 2002
and 2017, including allegations of abuse against parents and removal; 6) Probation and parole records between
2008-2017; 7) Allegheny County Jail records between 2002-2017; and 8) Department of Human Services records
of substance abuse and mental health issues
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3.3.1. Descriptive Statistics

Table 4.13 displays the characteristics of cases that come before the Common Pleas courts in

each county. Although the counties are all predominantely white, a majority of defendants in

each county are black. At the time that charges are filed, half of defendants are below the age

of 30, with 25% below the age of 23 and 25% above the age of 40. Defendants are dispropor-

tionately male (77% of cases). In all of the counties, property crimes and drug crimes are the

most common types of offenses. Although 48% of cases feature first-time defendants, many

defendants have multiple previous offenses. Incarceration rates also vary greatly between the

counties, with higher rates in Hamilton and lower rates in Cuyahoga. Conditional on being

incarcerated, the average sentence lengths are fairly similar across the counties, though those in

Hamilton are slightly longer.

Using address information on the court records, we find that the average defendant comes

from a neighborhood in which 39.6% of households are below the poverty line and 31% of

households are beneficiaries of the Supplemental Nutrition Assistance Program. To visualize

the extent to which incarceration disproportionately affects poor households, we calculate the

fraction of residents below the poverty line in each census block group in Ohio and rank them

from poorest to wealthiest. Figure 4.23 displays a histogram of the distribution. If defendants

were randomly drawn from the population, the distribution would be uniform, but unsurpris-

ingly incarcerated individuals are strongly concentrated in poorer neighborhoods. Half come

from the poorest 16.9% of neighborhoods. 9

9This figure is similar when looking at the total number of defendants, where half of defendants come from the
poorest 19.4% of neighborhoods
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After matching the court records to birth certificate data on parents, Table 4.14 compares

the sample of defendants who are parents to those that are not. Most of the differences between

the populations are small and not economically meaningful. Parents are two years younger, and

accused of slightly less serious crimes as measured by the mean sentence for the charges that

have been filed against them.

3.4. Empirical Strategy

Our goal is to estimate the effect of parental and sibling incarceration on a range of child

outcomes. A naive approach would be to regress child outcomes on whether their parent were

incarcerated. This strategy is unlikely to generate causal estimates because incarceratoin is not

randomly assigned. A child whose parent has been incarcerated for 5 years for aggravated

assault is likely to differ in many observable and unobservable ways from a child whose parent

has been charged and acquitted of marijuana possession. We instead instrument for whether the

parent is incarcerated with the identity of the judge. As discussed in Section 3.2, Ohio state law

mandates that judges are randomly assigned to cases. If this is indeed true, and if judges differ

in their propensity to incarcerate, then judge identity is a valid instrument for incarceration. A

standard IV regression model for this problem takes the following form:

(3.1) yi jct = Xi jcβ +φ Ii jct + γct + εi jct

(3.2) Ii jct = Xi jcα +λ z(i) j +µct + ei jct
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for individual i who has been assigned to judge j of county c in year t, where yi jct is the outcome

of interest, Xi jc is a vector of controls, γct is a county-year fixed effect, Ii jct is the endogenous

decision to incarcerate the defendant, and z(i) j, is an instrument for that decision. To be a valid

instrument, z(i) j must be related to the endogenous variable of interest Ii jct , but unrelated to

confounding factors εi jct .

As is common in the judge-effects literature (e.g., ?), we instrument for incarceration with

information about how the judge has treated other defendants. Specifically, we take the mean

incarceration rate for all other cases, after residualizing out observable case characteristics to

increase precision. Averaging over all other cases removes the mechanical correlation between

own outcome and judge-average outcome for judges with few cases.

(3.3) z(i) j =
∑

N j
k=11[k 6= i](Ik j−Xi jcπ̂−uct)

N j−1

Note that since parents are only a fraction of the overall sample, we calculate this leave-out

mean over the entire sample of defendants rather than the sample of parents. This increases

precision of the instrument and reduces possible finite sample bias, since there are more cases

on which to estimate the leave-out mean for each judge.

3.4.1. First Stage

Figure 4.24 presents a histogram of the instrument. The value of the judge instrument varies

from approximately−0.12 to 0.18, and for each 0.1 increase in the instrument, the likelihood of

incarceration increases by approximately 9 percentage points. The coefficient of the instrument

on defendant incarceration is less than 1 due to measurement error - we observe a finite number
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of cases per judge, so the first stage is biased towards zero. The first column of Table 4.15

presents the linear first stage of Equation 3.2. Robust standard errors are clustered at the judge

level. As suggested by Figure 4.24, the instrument is strong, with an F-statistic of about 2000.

Instrumental variable regressions identify the local average treatment effect (LATE), the av-

erage treatment effect of “compliers” (?). In this case, that is the sample of children whose

parents are incarcerated on the basis of being assigned to a stricter judge. It is not possible to

identify specific individuals in the data who are compliers; however, it is possible to describe

some of their observable characteristics by re-estimating the first stage relationship across mul-

tiple subsamples (?). If the instrument has a stronger (weaker) relationship with incarceration

in a particular subsample, this implies that compliers are more (less) heavily concentrated in

that group. If the instrument Z is binary, endogeneous treatment is I, and binary covariate is X ,

then (?):

(3.4)
P[X = 1|complier]

P[X = 1]
=

P[I|Z = 1,X = 1]−P[I|Z = 0,X = 1]
P[I|Z = 1]−P[I|Z = 0]

In other words, the ratio of the complier share of the demographic group to the overall share

of the demographic group is equal to the relative first stages of the demographic group and the

overall population. The same intuition holds with our continuous instrument. For the remaining

columns of Table 4.15, we estimate the first stage by subgroup and calculate the ratio of the first

stages. For most subgroups, this ratio is indistinguishable from 1, suggesting that this subgroup

makes up an equal share of the complier population as the overall population. One notable

exception is individuals accused of low-severity crimes (we divide charges into tercile of mean

sentence conditional on incarceration), who are less likely to be compliers, and individuals who



129

are accused of medium-severity crimes, who are more likely to be compliers. The coefficient

for parents is almost identical to the full-sample estimate, suggesting that parents are no more

or less likely to be compliers than the general population. An additional benefit of running these

tests is that finding a positive relationship between the instrument and the endogenous regressor

across various subsamples of the data provides support for the monotonicity assumption.

3.4.2. Judge Assignment and Instrument Validity

Leave-out judge mean strictness must satisfy the exclusion restriction to be a valid instrument.

The main concern in this context is that cases might be assigned to judges non-randomly, such

as if one judge were known to be particularly strict, and well-informed defendants were able

to manipulate the justice system to avoid being assigned to them. In that case, the leave-out

mean for the judge would be a combination of their underlying strictness and the fact that the

cases being assigned to them were for systematically less well-informed defendants. Estimates

of the effect of judge strictness (and through it, incarceration) will be biased. For example, if

less well-informed defendants tend to be poorer, it will appear that the stricter judge is causing

them to be poor, when in fact poorer defendants are simply more likely to be assigned to a strict

judge.

As described earlier, this concern is mitigated in Ohio since state law mandates that judges

be assigned randomly to cases. Because of random assignment, the characteristics of defendants

assigned to a judge should be uncorrelated with the underlying strictness of that judge. However,

there are a few exceptions that must first be taken into account. Capital cases are non-randomly

assigned due to their greater sensitivity and requirement of resources. There are also specialty

courts that focus on certain types of cases, such as those in which the defendant is a military



130

veteran. These specialty courts typically only have one judge who oversees all cases falling

under the court’s jurisdiction. Most importantly, if a defendant has an active case in front of a

judge, or if they have been previously sentenced and are on probation, new cases are assigned

to the original judge. We drop all of these non-randomly assigned cases from our sample.

Cases are also sometimes transferred between judges. This occurs most often upon the re-

tirement of a judge, after which most of their cases are transferred to their replacement. New

judges by definition have lower levels of experience and may systematically differ in their sen-

tencing tendencies. To be conservative, we consider the judge assigned to a case to be the

original judge who was assigned to the case, at the time of random assignment. This weakens

the strength of the instrument, since the first judge is no longer the sentencing judge on the case,

but appropriately matches our empirical strategy to the source of randomization.

One implication of randomization is that defendant characteristics should be uncorrelated

with judge severity. We test this implication in Table 4.16. Columns (1-3) show that the types

of the cases assigned to the judge are unrelated to the judge’s strictness. Stricter judges are

no more or less likely to be assigned particular types of cases, such as drug cases (column

1). Column (2) takes the most serious charge in a case and calculates the leave-out average

sentence for that type of charge in the court, in order to measure to seriousness of the case.

Since there is a long right tail of sentence lengths, column (3) takes the log of the leave-out

average sentence. Neither is related to judge strictness. Columns (4-6) show that the judge

strictness is also unrelated to either the gender, race, or age of the defendants assigned to them.

The seventh and eighth columns use American Community Survey data on the neighborhood

from which the defendants come to proxy for their level of income. Neither the neighborhood

median income nor percentage of neighborhood members who receive SNAP are related to the
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strictness of the judge. All of the evidence points to the randomization process having been

properly adhered to, and thus that the judge assignment is exogenous.

3.5. Results

3.5.1. Direct Effects of Incarceration

In order to understand the indirect effects of incarceration, it is first necessary to understand

the direct effects. In theory, time spent in a pentitentiary could strengthen fear of punishment,

teach positive skills such as literacy or job skills, or help individuals break addiction to drugs.

? find exactly this effect in Norwegian prisons, but this system has a substantially greater focus

on rehabilitation than in the United States. A few studies in the United States have also found

that incarceration can reduce future criminality (?), but the majority of high-quality studies

find that time spent in prison increases future criminal behavior (????) through channels such

as building criminal capital and networks (?). ? shows that incarceration also substantially

worsens economic outcomes for the incarcerated individual over the long-run.

Figure 4.25 shows how incarceration affects future criminal behavior in our sample. Panel

A plots the coefficients from a regression of incarceration on the judge instrument for each of

the 30 quarters following judge assignment. Note that incarceration peaks in the second quarter,

reflecting the time it takes for cases to wind their way through court. Panel B displays coef-

ficients from a similal quarter-by-quarter regression of cumulative number of new charges on

judge instrument. Corresponding with the period of incarceration, there is a short-run dip in

additional criminal charges from the incapacitation of incarcerated defendants. After approx-

imately 7 quarters, the trend reverses and reverts to zero or possibly additional charges. This

suggests a period of initial incapacitation of incarcerated individuals, reducing crime, but after
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they are released, they converge to the level of crimes committed by those who were not incar-

cerated. This is consistent with a criminogenic effect of prison, and implies that incarceration

only delays criminal activity into the future for these defendants.

3.5.2. Spillovers of incarceration on children

The vast majority of papers in the literature suggest that parental incarceration is harmful to

children. One of the two causally-identified studies to date, ? finds that even in rehabilitative,

Scandinavian style prisons, children experience a great deal of harm from having an incarcer-

ated parent. The second, ?, does not find effects that are significantly different from zero, but

suffers from large standard errors. Both papers state that in the United States, where the system

of justice is more punitive, the effects of parental incarceration are likely to be more negative

than Nordic counties. Indeed, a non-causal, cross-sectional regression finds that children with

incarcerated parents are signficantly more likely to be charged with a crime and are more likely

to be incarcerated as adults (??).

Table 4.17, showing the causal effect of parental incarceration, finds the opposite. Panels A

and B test whether having an incarcerated parent makes a child more or less likely to appear in

court or be incarcerated as an adult. For both outcomes, the effects are marginally statistically

significant in the full sample, but strongly significant when broken down by gender of the in-

carcerated parent. Children with an incarcerated mother are 10.8 percentage points less likely

to be charged with a crime as an adult, and 7.2 percentage points less likely to be incarcerated.

The effects appear stronger for male than female children, although the differences between the

genders are not statistically significant.
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The effect of having an incarcerated father is weaker, but more consistent with conventional

wisdom. Girls with an incarcerated father are 6.1 percentage points more likely to appear in

court as an adult and 3 percentage points more likely to be incarcerated themselves. The weaker

relationship between paternal incarceration and child outcomes is consistent with fathers being

less likely to be involved in the lives of their children. In future drafts of the paper, we will take

parent addresses from court records to check if they are coresident with their children, based on

the child’s address in school records. It may be that the relationships are stronger for parents,

and fathers in particular, who live with their children.

Panel C does not find any statistically significant relationship between parental incarceration

and whether the child becomes a parent as a teenager. This is determined by whether the child

appears as a parent on birth certificates prior to their 18th birthday. The standard errors in the

main specification are fairly small, and exclude effects of policy relevant sizes.

Why does having an incarcerated parent reduce a child’s future involvement with the crim-

inal justice system? It may depend on the nature of the incarceration episode. Short stints of

incarceration could “scare the child straight” by making incarceration a more salient result of

crime. On the other hand, longer stretches of incarceration may lead to such large reductions

in parental inputs that the overall effect is negative. As a test of this theory, we calculate the

expected sentence length conditional on incarceration for each charge (truncating at age 18 for

each child), and test whether the effect of incarceration differs along this dimension. Table 4.18

tests this by linearly interacting potential exposure to parental incarceration with incarceration

(parametric versions of this chart are available in the Online Appendix. See ??, ??, and ??).

Broadly, Table 4.18 shows that short stints of incareration, below the 50th percentile of

exposure, reduce a child’s likelihood of future criminal justice system involvement. The effect



134

sizes are sizeable, and concentrated more among male children than female children. However,

exposure to longer sentences reverses the effect. Among children whose parents are incarcerated

with sentence lengths averaging above the 90th percentile of length, children are more likely

to become teen parents. The effect of teen pregnancy is concentrated among girls, and nearly

doubles the probability of teen pregnancy for the most exposed female children.

A potential issue with this approach is that the exposure measure combines the likely ab-

sence of the parent from the child’s life with other factors, such as the degree of criminal

involvement of the parent; parents with higher exposure to incarceration will have commit-

ted more serious crimes. If the effect of parental incarceration is different for these parents,

then the estimates will reflect both the longer sentence and the different incarceration effect.

Nonetheless, the estimates are easily interpretable as causal effects for specific subgroups of

the population. They can be interpreted as saying that while parental incarceration is positive

for most children, the subgroup with parents who have committed more serious crimes may be

harmed by it.

One concern with these outcomes is that adult crime measures occur well after the incident

of parental incarceration; on average, children in our sample are nine years old when their parent

is in court. It may be that incarceration has negative effects in the short-run that either disappear

or reverse over a longer time frame. For example, children with incarcerated parents may shift

involvement in criminal activity forward in time to commit crimes as a juvenile rather than as an

adult. Using juvenile court records in Cuyahoga County, Table 4.19 and Table 4.20 instrument

for parental incarceration with judge assignment to test whether having an incarcerated parent

is related to appearing in juvenile court or being incarcerated as a juvenile offender. The pat-

terns are even stronger than in the adult court results: having an incarcerated parent decreases



135

the overall risk of the child appearing in juvenile court or being incarcerated as a juvenile. The

effects are large, at between 32-63% of the mean rate of juvenile court appearance and incar-

ceration in the sample. The point estimates are fairly similar across male and female children,

as well as between the children of incarcerated mother and fathers, although the standard errors

in the subsamples are larger.

As with adult court appearances, the effects are heterogeneous depending on the expected

exposure of the child to the parent’s incarceration (Table 4.20). For children who are exposed

to the shortest stints of parental incarceration, the effects are negative and highly economically

significant, decreasing the likelihood of the child being incarcerated or appearing in court by

over 76% of the sample mean. For children who are exposed to longer periods of parental

incarceration, the sign reverses and we can no longer reject a null effect. Nonetheless, this is

consistent with the idea that while short terms of parental incarceration can actually be beneficial

for a child, longer stretches do not have such an effect.

Juvenile offenders typically are close to adulthood, and so it may be that the negative effects

are concentrated at even earlier ages. If that were the case, we would expect spillovers onto

school performance in childhood. Table 4.21 takes a decade of data from Cleveland Metropol-

itan School District and again instruments for parental incarceration. Although the estimates

are noisier, we find no relationship between parental incarceration and child test scores on stan-

dardized tests of math and reading or the number of child absences from school.

Children in poor communities may be more vulnerable to shocks such as a losing a parent as

they may be lacking in other economic supports. At the same time, parents are on the margin of

incarceration may be lower quality caregivers, and the incarceration of a parent could provide

an opportunity for the child to shift to a more stable home environment. Table 4.22 breaks
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the sample into quartiles based on the level of poverty in the neighborhood in which the child

was born.10 The decrease in criminal justice system involvement for children of incarcerated

parents is entirely concentrated among children born in below median wealth neighborhoods,

with the strongest effects among those in the bottom quartile. In a future draft of the paper,

we will use data from the Department of Human Services to track child removal from their

parents, observing whether child was placed with other family members or other foster care

arrangement post-parental incarceration. This will help determine the mechanism at work, such

as if the positive effects of parental incarceration are indeed related to being placed in a more

stable home environment.

One potential concern is that our findings could be driven by differential migration response

to parental incarceration. If this migration was outside of Ohio or to counties in Ohio for which

we do not measure, it would limit our ability to observe outcomes, potentially biasing estimates.

Section A.3.1 addresses this concern using address data from voter records. For individuals

who are registered to vote, we can exactly observe whether they have migrated and how far.

Children with incarcerated parents are no less likely to be registered to vote in Ohio or have

moved outside of these three counties. Those from the poorest birth neighborhoods, where the

effects are concentrated, are in fact more likely to be registered in Ohio. Taking the geocoded

birth and voter records addresses, we check whether incarceration causes individuals to move

further away as adults. If anything, they actually live slightly closer to their birth addresses

than those whose parents were not incarcerated, suggesting that out-migration is unlikely to be

driving our results.

10We take the residential address of the mother from the child’s birth certificate and match that to a census block
group. Based on American Community Survey data, census block groups are sorted into quartiles by percentage
of households with income levels below the poverty line.
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3.5.3. Spillovers of Incarceration on Siblings

Although many studies have investigated the spillover effect of parental incarceration, only a

handful of correlational studies have looked at the incarceration of siblings (??). Compared

to parental incarceration, the role of a sibling is less important for caregiving, may free up

household resources for other siblings, and may remove a bad influence. On the other hand,

of course, sibling incarceration will usually cause an emotional strain or remove a positive

influence, making the overall effect till ambiguous.

Table 4.23 displays the causal effect of incarceration for siblings. We separate out the effect

by relationship: only the same mother, only the same father, same mother, same father, same

parents, and all. Broadly, having a sibling who is incarcerated as a result of assignment to

a harsher judge reduces an individual’s likelihood of criminal justice system involvement and

incarceration by around 5 percentage points. These effects are concentrated among children

who share the same mother (column (1)), who are presumably more likely to live together and

interact regularly. This may also reflect that seeing a sibling’s experience in the criminal justice

system leads to individuals being “scared straight”. More generally, the effects of having an

incarcerated sibling are likely to be heterogeneous: in some cases, the social dislocation of

having an incarcerated sibling may shift an individual into more criminal activities, while in

other cases, it reduces criminal involvement. The second effect clearly dominates the first in this

case. Interestingly, siblings who share both parents are not affected by parental incarceration.

This is in line with our earlier finding that the benefits of parental incarceration are concentrated

among individuals in the bottom quartile of neighborhoods, for whom the rates of single parent

families is higher.
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Table 4.24 confirms that sibling incarceration leads to the largest reductions in future crim-

inality for those from the poorest stratum. Across the lowest two neighborhood wealth birth

quartiles of our sample, incarceration leads to significant, negative reductions in being charged

and being incarcerated in the future. For those coming from the two highest neighborhood

wealth birth quartiles, we find more mixed evidence on whether sibling incarceration reduces

incarceration, with some coefficients turning positive. The measured impacts are concentrated

somewhat across siblings sharing mothers, although less so than in the main results. As sibling

incarceration is unlikely to affect the overall family structure as the children, it appears that

the positive effects of sibling incarceration are likely to be driven by the combined effect of

having a disruptive sibling within either family or neighborhood environments that make these

influences especially salient.

3.6. Conclusion

In this paper, we generate the first causal estimates of the effects of parental incarceration in

the United States and of sibling incarceration in any setting. In contrast to most of the literature

we find that parental incarceration leads to decreases in future criminal involvement of children

both as juveniles and adults. We find no evidence of effects on academic achievement, and no

average effects on teen pregnancy. The positive effects are concentrated among children from

poorer neighborhoods, as well as in cases with shorter sentence lengths. As sentence lengths

increase, the effects drop to zero. Given the positive extensive margin effects, this suggests

that incarceration for short lengths of time is not harmful, but that long spells behind bars are.

Indeed, we find that for longer sentences, parental incarceration results in sizeable increases in

teen pregnancy.
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Given that these results run contrary to most of the existing literature, what mechanisms

are behind these results? First, it may be that parental quality is heterogenous and low quality

parents are worse than the outside option induced by incarceration (e.g. care by grandparents).

This interpretation is bolstered by the fact that our effects are concentrated almost exclusively

among defendants living in poor neighborhoods.

Another plausible channel is that children are “scared straight” by the experience of having

an incarcerated parent and the increased salience of punishment. Exposure to incarceration may

directly cause children to be less likely to commit crime in the future to avoid the criminal justice

system. Such a mechanism is consistent with the largest decreases being for short sentences,

where the salience of punishment is increased but the reduction in household and parental inputs

is relatively small.

Future drafts of the paper will incorporate new data and new results to parse these mecha-

nisms. For example, we provide suggestive evidence that longer sentences are more harmful to

children, but in the future, we will test that directly using variation in sentence length induced

by judge assignment. We will also predict parent quality at baseline and see how the effects

of incarceration are heterogenous depending on both observable and unobservable measures of

parental quality. Future drafts will also include results on additional outcomes such as employ-

ment and wages, mental health, substance abuse, and more child educational outcomes, as well

as additional results on siblings. These will be helpful in coming to a fuller picture of the costs

and benefits of incarceration.
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CHAPTER 4

Tables and Figures
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Figure 4.1. Pre-move trends in academic outcomes, by mover type
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Displays the pre-move achievement trends for the four years leading up to a
move of 25 miles or more. Results reported separately for four groups of movers:
within CT, within ET, ET to CT, and CT to ET. Coefficients recovered from a
regression of test scores on time-until-move dummies, a vector of controls (age-
gender dummies, longitude, and school population shares for FRL, male, black,
Asian, and Hispanic), and a fixed effect for the period before the move. Standard
errors are clustered at the individual level, and included as bars representing 95%
confidence intervals.
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Figure 4.3. Hours of sunlight before school over move, by mover type
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Displays the hours of sunlight before school for four groups: within CT, within
ET, ET to CT, and CT to ET. Estimates are from a regression of relative school
start time on time relative to move for each mover group, a vector of controls
(age-gender dummies, longitude, and school population shares for FRL, male,
black, Asian, and Hispanic), and a student-move fixed effect. The year before
the move is normalized to be zero; we adjust the level of the coefficients with
the group mean of relative start times for one year before the move. Standard
errors are clustered at the individual level, and included as bars representing 95%
confidence intervals.
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Figure 4.4. Effect of school start times on academic achievement, by age, gen-
der, and subject
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Each subfigure displays the age-gender specific effect of start times on academic achievement. Coeffi-
cients are from a regression of scale scores on school start time interacted with age, a vector of controls
(age-gender dummies, longitude, and school population shares for FRL, male, black, Asian and His-
panic), and an individual fixed effect. Start time-age interactions are instrumented with time zone-age
interactions. Sample is listed in the column headers, dependent variable is noted on the horizontal axis.
Standard errors are clustered at the individual level, and included as bars representing 95% confidence
intervals.
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Figure 4.6. Hours of sunlight before 8:20 a.m. start time, by year with testing periods
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Amount of sunlight before school and testing dates for a hypothetical school for each of
the three testing regimes. School location and opening time chosen to match the average
test-day relative start time in ET in 2008. Grey areas represent testing periods. The figures
display sunlight for 2007, 2008, and 2011, respectively, but all are archetypes of their era.
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Figure 4.8. Effect of placebo time zones on academic achievement
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Dependent variable as noted in panel heading. Test scores measured in SDs normalized at the grade-
year level for the entire state. Thin horizontal lines represent baseline coefficient estimates. We generate
placebo time zones in ten mile increments from the true time zone boundary. Then, placebo coefficients
are calculated from individual regressions of the outcome on the true time zone interacted with puberty,
and the placebo time zone interacted with puberty. All specifications include age-gender dummies,
longitude controls, school demographic means (FRL, male, black, Asian, and Hispanic) and individual
fixed effects. Standard errors clustered at the individual level. We display results including and exclud-
ing cross-time zone movers. Sample excludes a 25 mile donut around the time zone boundary due to
treatment bleed across the boundary.
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Figure 4.10. Counterfactual change in test scores, reordered start times
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Estimated test score gains under a counterfactual policy where start times are adjusted to be later for older
children. Adjustment is conducted by taking the average start time for each school type in each district
(elementary, middle, and high), and swapping them between school types so that elementary schools open
first, then middle schools, then high schools. We then adjust the level of all school times so that the mean
counterfactual district start time is the same as the true mean start time. This results in bell times 22 minutes
earlier for elementary schools, 13 minutes earlier for middle schools, and 44 minutes later for high schools.
Gains are then calculated by multiplying the changes in start time for each child with the relevant coefficients
from Table 4.3. Bars represent 95% confidence intervals.
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Figure 4.12. Approval rates by judge
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Panel A and B contain histograms of approval
rates by judge for the first and second round,
respectively. Both are weighted by the num-
ber of observations per judge. Panel C contains
the scatter plot of judge-level first- and second-
round approval rates. The correlation is 0.57,
and 0.40 without the outlier.
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Figure 4.14. Second-round approval by first-round judge
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(b) Second-round approval, judge approval rates residualized out
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(c) Second-round approval versus first-round approval
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Regression coefficient is −.28 (.042).

Panel A contains a histogram of second-round approval rates for the cases approved by the first-round judge.
Higher approval rates suggest that the first-round judge did a better job of selecting claimants with a high probabil-
ity of success in the second round. Panel B residualizes out first- and second-round judge approval rates. Panel C
shows second round approval rates for the claimants approved by each first round judge plotted against the judge’s
first-round approval rates, with second-round judge approval rates residualized out and means shrunk towards the
grand mean via Empirical Bayes to account for measurement error.
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Figure 4.16. Distribution of judge coefficients
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This figure presents coefficient estimates for the decision model 1[ri > γ js + Xi jsβs + ε̃i js], ε̃i js ∼
N (0,σ2

js). All models include controls for time/date of decision in βs, and allow the parameters of the
Pareto distribution of ri to vary flexibly by office of origination as well as after 2002 relative to before
2002, when there were legislative changes that may have impacted the distribution of case quality. Each
panel contains the density of the raw and shrunken estimates of the judge-round specific thresholds γ1
and γ2, and inconsistency σ1 and σ2. Black line is density of case quality r. Shrunken estimates
recovered via deconvolution of estimates accounting for coefficient-specific standard errors, clustered
at the level of the first round judge (Delaigle and Meister, 2008).
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Figure 4.18. Model estimates of first- versus second-round approval
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Figure plots first-round approval probability against second-round approval
probability conditional on first-round approval for each value of case strength
ri. Secondary graph displays cumulative density of first-round approval. Black
dotted comparison line marks out 45◦.
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Figure 4.19. Identification intuition

(a) 1st-round approval vs. threshold γ1
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(b) 2nd-round approval vs. 1st-round error σ1
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(c) Diff in 1st-round error σ1 vs. diff in
2nd-round approval, 1st round judge pairs
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(d) Diff in 2nd-round error σ2 vs. diff in
2nd-round approval, 2nd round judge pairs
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Panel A contains model estimates of the first-round approval probability as a function of deviation of thresh-
old γ1. Panel B contains model estimates of second-round approval as a function of mean first-round error
relative to the estimated value — higher errors make second-round approval less likely. In Panel C, I match
pairs of judges with similar first-round approval rates (within 1 percentage point), then display difference in
model-estimated judge errors σ̂1. In Panel D, I match pairs of second-round judges with similar approval rates
conditional on first-round approval by a high-approving (non-limiting) first-round judge. I then compare the
difference in second-round observational error σ2 as a function of within-pair differences in second-round
approval rates conditional on first-round approval by all other judges. See subsubsection 2.2.2.1 for more
details.
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Figure 4.21. Optimal allocation of judges

(a) Threshold γ1, first round (b) Observational error σ1, first round

(c) Threshold γ2, second round (d) Observational error σ2, second round

I minimize judge workload requiring that a) no judge works more than she does in the baseline, b) at
least as many claimants are approved, and c) the posterior distribution of case strength ri for approved
claimants under the counterfactual first-order stochastically dominates the baseline distribution. Each
panel contains a histogram of the baseline distribution of coefficients, as well as the distribution after
maximization. The overall reduction in workload is 17.5%.
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Figure 4.23. Neighborhood poverty status of defendants
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Figure 4.24. First stage of incarceration on judge instrument
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Displays histogram of instrument. Instrument is constructed from leave-
out means of judge decisions, residualizing out defendant characteristics
and offense. Line is generated by nonparametric regression of incarcera-
tion on judge instrument. Robust standard errors are clustered at the judge
level.
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Figure 4.25. Effect of judge assignment on own incarceration and future crime
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Panel A displays coefficients from a quarter-by-quarter regression of present in-
carceration (on any charge) on the leave-out measure of judge severity. Time is
measured since judge assignment. Panel B displays coefficients from a quarter-
by-quarter regression of the cumulative number of new charges since judge as-
signment on leave-out judge severity. Standard errors are clustered at the judge
level, and included as dotted lines representing 95% confidence intervals.
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Table 4.1. Sample characteristics, Florida panhandle movers

Panhandle Movers CT-ET ET-CT Difference
(1) (2) (3) (4) (3)-(4)

Panel A: School characteristics
FRL (fraction) 0.54 0.55 0.56 0.56 0.000

[0.27] [0.24] [0.21] [0.30] (0.038)
Male (fraction) 0.51 0.51 0.51 0.51 0.003

[0.02] [0.02] [0.03] [0.03] (0.004)
Black (fraction) 0.25 0.26 0.20 0.37 -0.168∗∗∗

[0.27] [0.28] [0.22] [0.47] (0.057)
Hispanic (fraction) 0.04 0.03 0.03 0.03 -0.008

[0.04] [0.04] [0.02] [0.07] (0.008)
Asian (fraction) 0.02 0.02 0.01 0.01 0.004

[0.02] [0.02] [0.02] [0.02] (0.003)
District Grade 3 math scores (SD) 0.11 0.11 0.12 0.08 0.039

[0.22] [0.25] [0.21] [0.34] (0.043)
District Grade 3 reading scores (SD) 0.15 0.15 0.17 0.09 0.084∗∗

[0.22] [0.23] [0.17] [0.34] (0.041)
District Grade 3 absentee rates 4.54 4.48 4.39 4.74 -0.358

[0.77] [1.13] [1.70] [1.40] (0.227)
1999 median income by zip, logged 10.67 10.64 10.59 10.62 -0.036

[0.27] [0.26] [0.26] [0.36] (0.051)
Student/teacher ratio 15.43 15.72 15.40 15.80 -0.400

[1.20] [1.40] [2.15] [1.71] (0.273)
Charter school (fraction) 0.02 0.01 0.01 0.02 -0.015

[0.12] [0.07] [0.05] [0.14] (0.017)
Urban (fraction) 0.27 0.24 0.18 0.27 -0.086

[0.48] [0.47] [0.49] [0.63] (0.084)
Panel B: Individual characteristics

FRL (=1) 0.55 0.66 0.67 0.69 -0.017
[0.50] [0.47] [0.47] [0.46] (0.025)

Male (=1) 0.52 0.51 0.51 0.52 -0.003
[0.50] [0.50] [0.50] [0.50] (0.026)

Black (=1) 0.26 0.26 0.25 0.26 -0.008
[0.44] [0.44] [0.44] [0.44] (0.023)

Hispanic (=1) 0.04 0.04 0.02 0.03 -0.008
[0.19] [0.20] [0.15] [0.18] (0.009)

Asian (=1) 0.02 0.01 0.01 0.01 0.002
[0.13] [0.11] [0.10] [0.09] (0.005)

Math score (SD) 0.11 0.02 -0.06 0.00 -0.064
[0.96] [0.92] [0.88] [0.88] (0.047)

Reading score (SD) 0.15 0.07 0.00 0.00 0.003
[0.97] [0.93] [0.90] [0.93] (0.048)

Absentee rate 4.52 5.60 5.44 6.46 -1.026∗∗∗

[4.44] [5.18] [5.16] [5.60] (0.325)

Observations 186,278 13,788 713 726
Sample is all third graders in the panhandle. Categorical variables are reported as 0-1. Absentee
rate is reported as the percentage (0-100) of days missed in the school year to ease interpretation.
Standard deviations in square brackets. Standard errors in parentheses and clustered at the school
level in Panel A, unclustered in Panel B. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.2. Academic and behavioral outcomes on start time, with student fixed effects

(1) (2) (3) (4) (5) (6) (7)

Panel A: First stage, relative start time (hours)

CT (=1) 0.471∗∗∗ 0.345∗∗∗ 0.424∗∗∗ 0.415∗∗∗ 0.346∗∗∗ 0.424∗∗∗ 0.415∗∗∗

(0.016) (0.021) (0.020) (0.020) (0.021) (0.020) (0.020)

CT X Puberty 0.264∗∗∗ 0.265∗∗∗ 0.306∗∗∗ 0.265∗∗∗ 0.265∗∗∗ 0.306∗∗∗ 0.265∗∗∗

(0.012) (0.012) (0.011) (0.011) (0.012) (0.011) (0.011)

P(CT+CT X puberty=0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: IV estimates, math test scores (SDs) on relative start time

Start time - sunrise (h) -0.063∗∗ 0.014 0.020 0.010 0.012 0.020 0.009
(0.026) (0.041) (0.036) (0.035) (0.041) (0.036) (0.035)

Start time X puberty 0.099∗∗∗ 0.074∗∗∗ 0.058∗∗∗ 0.074∗∗∗ 0.073∗∗∗ 0.057∗∗∗ 0.073∗∗∗

(0.018) (0.020) (0.021) (0.019) (0.020) (0.021) (0.019)

P(Start+Start X puberty=0) 0.042 0.002 0.001 0.001 0.002 0.001 0.001
Cragg-Donald F-stat 1101.18 404.14 588.90 541.51 405.14 588.76 542.01

Panel C: IV estimates, reading test scores (SDs) on relative start times

Start time - sunrise (h) 0.064∗∗ 0.088∗∗ 0.081∗∗ 0.061∗ 0.087∗∗ 0.081∗∗ 0.061∗

(0.027) (0.041) (0.037) (0.036) (0.041) (0.037) (0.036)

Start time X puberty -0.005 -0.014 -0.023 -0.005 -0.013 -0.023 -0.004
(0.018) (0.021) (0.022) (0.020) (0.021) (0.022) (0.020)

P(Start+Start X puberty=0) 0.000 0.004 0.008 0.014 0.004 0.008 0.014
Cragg-Donald F-stat 1230.00 485.69 637.13 618.88 486.65 637.22 619.26

Panel D: IV estimates, absence rate (%) on relative start times

Start time - sunrise (h) -0.937∗∗∗ -1.885∗∗∗ -0.696 -0.856∗ -1.860∗∗∗ -0.718 -0.869∗

(0.361) (0.594) (0.476) (0.487) (0.590) (0.474) (0.485)

Start time X puberty 0.481∗∗ 0.846∗∗∗ 0.365 0.443∗ 0.857∗∗∗ 0.395 0.469∗

(0.245) (0.295) (0.286) (0.268) (0.294) (0.285) (0.268)

P(Start+Start X puberty=0) 0.062 0.008 0.264 0.206 0.010 0.274 0.219
Cragg-Donald F-stat 689.75 273.69 425.19 383.57 274.18 425.38 383.62

Longitude No Yes Yes Yes Yes Yes Yes

District quality No No Yes No No Yes No

School quality No No No Yes No No Yes

Time since move No No No No Yes Yes Yes
Dependent variable as noted in panel heading. Test scores measured in SDs normalized at the grade-year
level for the entire state. Absentee rate is the fraction of days the child missed school. Start time and
its interaction with puberty are instrumented by time zone. Sample is all children who moved. All spec-
ifications include age-gender dummies and individual fixed effects. Sample size is fixed within panels:
34,018 students and 115,778 student-years in Panel A, 24,768 students and 99,835 student-years in Panel
B, 25,191 students and 104,791 student-years in Panel C, and 15,906 students and 66,263 student-years
in Panel D. Standard errors in parentheses and clustered at the individual level. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 4.3. Academic and behavioral outcomes on start time, by group with stu-
dent fixed effects

White Non-white Non-FRL FRL Male Female

(1) (2) (3) (4) (5) (6)

Panel A: Math test scores (SDs)

Start time - sunrise (h) 0.021 -0.017 0.045 -0.015 0.027 -0.008
(0.039) (0.095) (0.055) (0.046) (0.050) (0.050)

Start time X puberty 0.072∗∗∗ 0.098∗∗ 0.102∗∗∗ 0.063∗∗ 0.076∗∗∗ 0.072∗∗∗

(0.022) (0.046) (0.032) (0.025) (0.027) (0.028)

P(Start+Start X puberty=0) 0.000 0.182 0.000 0.137 0.003 0.069
Cragg-Donald F-stat 459.66 84.63 177.22 373.97 263.79 277.79
Number of students 17013 7755 10052 14716 12380 12388
Observations 70535 29300 40140 59695 49436 50399

Panel B: Reading test scores (SDs)

Start time - sunrise (h) 0.034 0.135 0.072 0.056 0.055 0.072
(0.040) (0.092) (0.056) (0.047) (0.051) (0.050)

Start time X puberty 0.006 -0.003 -0.028 0.006 0.006 -0.018
(0.024) (0.046) (0.035) (0.025) (0.028) (0.029)

P(Start+Start X puberty=0) 0.113 0.018 0.215 0.037 0.060 0.101
Cragg-Donald F-stat 516.36 100.07 221.60 407.29 289.00 333.87
Number of students 17264 7927 10284 14907 12560 12631
Observations 73872 30919 42458 62333 51752 53039

Panel C: Absence rate (%)

Start time - sunrise (h) -0.357 -2.012 -1.094 -0.619 -0.564 -1.277∗

(0.531) (1.312) (0.737) (0.625) (0.622) (0.752)

Start time X puberty -0.193 1.723∗∗∗ 0.298 0.533 0.201 0.794∗∗

(0.324) (0.622) (0.411) (0.343) (0.379) (0.377)

P(Start+Start X puberty=0) 0.123 0.720 0.089 0.840 0.379 0.346
Cragg-Donald F-stat 320.62 58.76 116.36 270.00 193.18 190.14
Number of students 10613 5293 6383 9523 8019 7887
Observations 45654 20609 26483 39780 32994 33269
Dependent variable as noted in panel heading. Test scores measured in SDs normalized at the
grade-year level for the entire state. Absentee rate is the percent of days the child missed school.
Start time and its interaction with puberty are instrumented by time zone. Sample is all chil-
dren who moved more than 25 miles. All specifications include age-gender dummies, longitude
controls, school demographic means (FRL, male, black, Asian, and Hispanic) and individual
fixed effects. Standard errors in parentheses and clustered at the individual level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.4. Persistence in effects of relative start time on student outcomes, with
student fixed effects

Math score (in SD) Reading score (in SD)

(1) (2) (3) (4)

Start time - sunrise (h) (prepubescent) 0.009 0.007 0.061∗ 0.052
(0.035) (0.036) (0.036) (0.036)

Start X moved two years ago (pre) 0.002 0.011
(0.009) (0.009)

Start X moved 3+ years ago (pre) -0.011 -0.005
(0.012) (0.012)

Start time - sunrise (h) (pubescent) 0.082∗∗∗ 0.087∗∗∗ 0.057∗∗ 0.048∗∗

(0.025) (0.026) (0.023) (0.024)

Start X moved two years ago (pub) -0.016∗∗∗ -0.004
(0.006) (0.006)

Start X moved 3+ years ago (pub) -0.020∗∗∗ 0.010
(0.007) (0.007)

P[Start (pre) = Start (pub)] 0.000 0.000 0.826 0.861
P[Start (pre) = Start (pub), long run] 0.000 0.577
Cragg-Donald F-stat 542.01 107.47 619.26 124.19
Number of students 24,768 24,768 25,191 25,191
Observations 99,835 99,835 104,791 104,791
Dependent variable as noted in panel heading. Test scores measured in SDs normalized
at the grade-year level for the entire state. Start time and its interaction with puberty are
instrumented by time zone and the interaction of time zone and puberty. Sample is all
children who moved more than 25 miles. All specifications include age-gender dummies,
longitude controls, school demographic means (FRL, male, black, Asian, and Hispanic) and
individual fixed effects. Standard errors in parentheses and clustered at the individual level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.5. Academic outcomes, for testing before and after DST

Math (SD) Reading (SD)

(1) (2) (3) (4)

Start time - sunrise (h) (prepubescent) 0.030 0.056
(0.038) (0.038)

Start time - sunrise (h) (pubescent) 0.096∗∗∗ 0.060∗∗

(0.027) (0.024)

Start time X prepubescent, late test time 0.022 0.049
(0.039) (0.039)

Start time X prepubescent, early test time 0.071 0.096∗∗

(0.046) (0.047)

Start time X adolescent, late test time 0.095∗∗∗ 0.045∗

(0.030) (0.026)

Start time X adolescent, early test time 0.096∗∗∗ 0.104∗∗∗

(0.025) (0.026)

Era X puberty controls No Yes No Yes

P[Early = late test (Prepub)] 0.165 0.192
P[Early = late test (Adol)] 0.967 0.001
Cragg-Donald F-stat 468.563 229.684 542.050 269.539
Number of students 23,618 23,618 24,152 24,152
Observations 89,707 89,707 94,515 94,515
Dependent variable as noted in panel heading. Test scores measured in SDs normalized
at the grade-year level for the entire state. Start time and its interactions are instrumented
by time zone and the interaction of time zone and interactions. Sample is all children
who moved more than 25 miles. All specifications include age-gender dummies, longitude
controls, school demographic means (FRL, male, black, Asian, and Hispanic), time since
move dummies, and individual fixed effects. Sample includes years 2000-2013 excluding
2010, when testing took place over the DST time change. Standard errors in parentheses
and clustered at the individual level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



161

Table 4.6. Randomization

Male Africa Asia South IRB mean Predicted 1st-round
America approval approval mean approval

(1) (2) (3) (4) (5) (6) (7)

Panel A: First round judges

First-round approval rate 0.011 -0.031 -0.089 -0.006 0.010 -0.002
(0.021) (0.030) (0.071) (0.023) (0.014) (0.002)

F-stat 0.88 2.82 9.54 2.47 4.23 2.99
Prob 0.73 0.00 0.00 0.00 0.00 0.00
Observations 50,435 50,435 50,435 50,435 50,435 50,435

Panel B: Second round judges

Second-round approval rate -0.048 -0.012 0.000 0.032 -0.005 0.002 -0.024
(0.030) (0.037) (0.042) (0.042) (0.019) (0.002) (0.018)

F-stat 1.01 1.53 1.71 1.22 1.54 2.11 3.07
Prob 0.45 0.01 0.00 0.12 0.00 0.00 0.00
Observations 7,143 7,143 7,143 7,143 7,143 7,143 7,143
All regressions include office X pre-2002 fixed effects to account for cross-office differences in case strength and
changes in government policy in 2002. Standard errors clustered at the judge level in parentheses. IRB mean
approval is the approval rate of the IRB Member who initially denied refugee status to the claimant. Predicted
approval comes from a regression of approval on gender, continent of origin and IRB Member approval rate. Judge
approval rates on right side partial out office X pre/post-2002. F-stats come from separate regression of outcome on
judge fixed effects. Standard errors clustered at the judge level in parentheses. ∗ p< 0.10, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table 4.7. Second-round approval on mean approval rate of first-round judge

(1) (2) (3)

Mean first round approval, exclusive -0.264∗∗∗ -0.312∗∗∗ -0.324∗∗∗

(0.0521) (0.0423) (0.0437)

Mean second round approval, exclusive 0.958∗∗∗

(0.0239)

Second-round judge FE No No Yes
Observations 8,446 8,446 8,446
Standard errors clustered by second-round judge. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 4.8. Placebo tests and relevance for regressors, with judge fixed effects

Predicted approval Actual approval

(1) (2) (3) (4)

Panel A: First round

End of week 0.000 0.000 -0.008∗∗∗ -0.007∗∗∗

(0.000) (0.000) (0.002) (0.002)

Observations 58604 58604 58604 58604

Panel B: Second round

End of week 0.001 0.001 -0.022∗ -0.022∗

(0.001) (0.001) (0.012) (0.012)

Noon hearing -0.001 -0.001 -0.078∗∗∗ -0.075∗∗∗

(0.001) (0.001) (0.022) (0.023)

Controls No Yes No Yes

Observations 8,446 8,446 8,446 8,446
Predicted approval from regression of approval in each round on
ethnicity and gender. Controls include year filed and office. All
specifications include judge fixed effects. End of week regres-
sor in first panel is dummy for final pre-decision filing taking
place on Thursday, Friday, Saturday or Sunday (which predicts
the decision will be made after Monday). Standard errors clus-
tered at the judge level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.



164

Table 4.9. Second-round outcome on model approval probability and judge-pair FEs

Judge-pair round FEs Judge-pair FEs

(1) (2) (3) (4)

Model approval probability 0.945∗∗∗ 0.938∗∗∗ 0.967∗∗∗ 0.962∗∗∗

(0.146) (0.169) (0.0463) (0.0470)

Model controls No Yes No Yes

Mean approval 0.44 0.44 0.44 0.44
F-stat for judge pairs 1.01 1.02 0.99 0.99
P-value 0.350 0.344 0.619 0.615
Bootstrap p-value 0.694 0.693 0.810 0.809
SD of judge-pair EB means 0.004 0.004 0.004 0.004
Observations 8,196 8,196 8,196 8,196
Regresses second-round approval on model-predicted likelihood of approval
and judge-pair fixed effects. Left two columns construct judge-pair FEs ac-
counting for order of assignment; right two columns ignore this distinction.
Model controls include office of origination, pre-post 2002, and an end-of-
week and noon hearing dummy for the second-round hearing. Standard errors
clustered at the judge level in parentheses. ∗ p< 0.10, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table 4.10. First-round judge consistency by experience and workload

(1) (2) (3) (4) (5)

Coefficients ψ affecting judge inconsistency σ1
Experience > 1 year −0.774∗∗∗ −0.688∗∗∗ −0.337∗∗∗ −0.460∗∗∗

( 0.096) ( 0.255) ( 0.119) ( 0.144)
Experience > 5 years −0.290∗∗∗ −0.237∗∗∗ 0.047 −0.053

( 0.046) ( 0.079) ( 0.080) ( 0.383)
Experience > 10 years −0.536∗∗∗ −0.443∗∗ −0.476∗∗∗ −0.509∗∗∗

( 0.175) ( 0.205) ( 0.100) ( 0.113)
Log monthly caseload 0.197∗∗∗ 0.239∗∗∗

( 0.009) ( 0.023)
Log caseload (≤ 5 yrs exp) 0.179∗∗∗

( 0.040)
Log caseload (> 5 yrs exp) 0.062

( 0.100)

Second-round experience control Yes Yes No Yes Yes
Career number of cases No Yes No No No
Reports coefficients for decision model 1[ri > γ js + Xi jsβs + ε̃i js(Wi js)], ε̃i js(Wi js) ∼
N (0,σ js(Wi js)

2), σ js(Wi js) = exp(σ̃ js +Wi jsψs). All models include controls for time/date of
decision in β , and allow the parameters of the Pareto distribution of ri to vary flexibly by office of
origination as well as after 2002 relative to before 2002, when there were legislative changes that
may have impacted the distribution of case quality. Standard errors clustered at the level of the first
stage judge. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.11. Model coefficients on survey responses

(1) (2) (3) (4) (5) (6)

Panel A: Threshold γ1 (mean=2.26, SD=.87)

Favorability, SD -0.144 -0.237∗∗∗ -0.055 -0.186∗

(0.104) (0.086) (0.114) (0.102)

Inconsistency, SD 0.316∗∗∗ 0.212∗∗∗ 0.304∗∗∗ 0.134∗

(0.046) (0.055) (0.052) (0.071)

Respondent FE No Yes No Yes No Yes
Observations 182 182 182 182 182 182

Panel B: Threshold γ2 (mean=2.19, SD=.99)

Favorability, SD -0.280∗∗ -0.402∗∗∗ -0.264∗∗∗ -0.420∗∗∗

(0.107) (0.080) (0.097) (0.090)

Inconsistency, SD 0.121 0.104 0.058 -0.053
(0.078) (0.093) (0.069) (0.079)

Respondent FE No Yes No Yes No Yes
Observations 182 182 182 182 182 182

Panel C: Inconsistency σ1 (mean=1.89, SD=2.17)

Favorability, SD 0.082 0.020 0.152∗∗∗ 0.092
(0.060) (0.099) (0.044) (0.094)

Inconsistency, SD 0.184∗∗∗ 0.163∗∗∗ 0.224∗∗∗ 0.194∗∗∗

(0.047) (0.056) (0.049) (0.061)

Respondent FE No Yes No Yes No Yes
Observations 182 182 182 182 182 182
Reports linear regressions of model coefficients on survey responses, estimated with
Hanushek (1974) correction for estimated dependent variable. Decision model is
1[ri > γ js+Xi jsβs+ ε̃i js(Wi js)], ε̃i js(Wi js)∼N (0,σ js(Wi js)

2), σ js(Wi js) = exp(σ̃ js+
Wi jsψs). All models include controls for time/date of decision in β , and allow the pa-
rameters of the Pareto distribution of ri to vary flexibly by office of origination as well
as after 2002 relative to before 2002, when there were legislative changes that may
have impacted the distribution of case quality. I adjust for judge experience in βs and
ψs. Model standard errors clustered at the level of the first stage judge, linear standard
errors at the judge level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.12. Inconsistency before and after judge selection reform

Baseline Experience control in σ1

(1) (2) (3) (4) (5) (6)

After reform (=1) -0.215 -0.332 -0.340 -1.740∗∗∗ -1.785∗∗∗ -1.752∗∗∗

(0.151) (0.207) (0.214) (0.594) (0.629) (0.647)

Liberal appointee (=1) -0.0133 -0.108
(0.106) (0.109)

Male judge (=1) -0.0873 -0.210∗

(0.101) (0.122)

Year appointed No Yes Yes No Yes Yes

Pre-reform mean 1.29 1.29 1.29 2.20 2.20 2.20
N judges 53 53 53 53 53 53
Estimated with Hanushek (1974) correction for estimated dependent variable. De-
pendent variable is consistency σ j1, which is estimated from decision model 1[ri >

Xi jsβs +γ js + ε̃i js(Wi js)], ε̃i js(Wi js)∼N (0,σ js(Wi js)
2), σ js(Wi js) = exp(σ̃ js +Wi jsψs).

In the right-hand panel, βs and ψs include dummies for more than 1, 5, and 10 years
of experience. Robust standard errors in parentheses and clustered at the judge level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.13. Defendant, judge, and court characteristics, by county (Common Pleas)

Cuyahoga Franklin Hamilton

Black 0.69 0.50 0.63
[0.48] [0.51] [0.50]

Male 0.82 0.79 0.82
[0.37] [0.40] [0.38]

Age 32.73 32.36 29.86
[10.89] [10.66] [10.91]

Neighborhood Median Income 33,276.64 37,972.48 34,827.29
[19,801.40] [21,054.95] [21,970.50]

Perc of Neighborhood Below Poverty Line 0.33 0.32 0.34
[0.20] [0.20] [0.22]

Violent crime 0.12 0.10 0.08
[0.33] [0.30] [0.28]

Property crime 0.31 0.43 0.34
[0.48] [0.53] [0.50]

Drug crime 0.38 0.26 0.32
[0.51] [0.48] [0.49]

First Time Offender 0.53 0.39 0.46
[0.49] [0.49] [0.50]

Sentenced to incarceration (=1) 0.31 0.43 0.48
[0.46] [0.50] [0.50]

Sentence length (in days) 246.11 316.83 348.38
[895.42] [1,077.74] [1,144.52]

Sentence if incarcerated (in days) 790.28 783.19 896.49
[1,488.80] [1,566.58] [1,687.65]

Observations 233,299 110,820 103,418
Sample is all defendants in Cuyahoga, Hamilton and Franklin counties common pleas courts. Stan-
dard deviations in square brackets and standard errors in parentheses.
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Table 4.14. Defendant, judge, and court characteristics by parental status (Mu-
nicipal and Common Pleas)

Parent Non-parent Difference

Black 0.54 0.55 -0.02∗∗∗

[0.49] [0.47] (0.001)
Male 0.68 0.81 -0.13∗∗∗

[0.45] [0.37] (0.001)
Age 31.12 32.48 -1.66∗∗∗

[9.14] [10.82] (0.022)
Neighborhood Median Income 36,993.16 36,670.14 199.65∗∗∗

[21546.38] [21,388.21] (53.646)
Perc of Neighborhood Below Poverty Line 0.32 0.32 -0.01∗∗∗

[0.20] [0.20] (0.000)
Assigned public defender (=1) 0.32 0.31 -0.00

[0.46] [0.44] (0.001)
Violent crime 0.16 0.15 0.01∗∗∗

[0.36] [0.34] (0.001)
Property crime 0.25 0.26 -0.01∗∗∗

[0.43] [0.42] (0.001)
Drug crime 0.22 0.24 -0.02∗∗∗

[0.41] [0.42] (0.001)
Number of previous charges 2.19 2.32 -0.20∗∗∗

[4.05] [4.76] (0.010)
Number of previous Common Pleas charges 0.37 0.42 -0.07∗∗∗

[1.06] [1.23] (0.003)
Number of previous Municipal charges 1.68 1.74 -0.14∗∗∗

[3.70] [4.60] (0.010)
Sentenced to incarceration (=1) 0.26 0.30 -0.04∗∗∗

[0.43] [0.43] (0.001)
Sentence length (in days) 116.68 158.77 -28.20∗∗∗

[593.09] [717.43] (1.347)
Sentence if incarcerated (in days) 216.44 246.08 -11.89∗∗∗

[456.51] [520.05] (0.859)

Observations 305,416 669,679
Sample is all defendants in Cuyahoga, Hamilton, and Franklin counties courts. Includes controls for
county. Note that this includes both common pleas and municipal court defendants, so values differ
from those in table 1, which is solely common pleas. Standard deviations in square brackets and
standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.15. First stage for group versus overall, leave-out mean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

All Parent Mother Father Black Drugs
Age
≤ 30

Age
≥ 30

Severity
tercile 1

Severity
tercile 2

Severity
tercile 3

Leave-out mean 0.888∗∗∗ 0.877∗∗∗ 0.810∗∗∗ 0.902∗∗∗ 0.915∗∗∗ 1.021∗∗∗ 0.888∗∗∗ 0.888∗∗∗ 0.712∗∗∗ 1.010∗∗∗ 0.870∗∗∗

(0.0243) (0.0282) (0.0470) (0.0310) (0.0299) (0.0665) (0.0306) (0.0272) (0.0390) (0.0367) (0.0303)

Observations 975,446 305,188 97,629 207,559 534,107 129,339 484,484 490,962 327,593 316,783 315,631
Ratio relative to overall 0.988 0.913 1.016 1.030 1.150 1.000 1.000 0.802 1.138 0.980

(.042) (.059) (.045) (.044) (.081) (.044) (.041) (.049) (.052) (.043)
Dependent variable in header. Controls include year-court fixed effects. Standard errors in parentheses and clustered
at the crime level. Ratio standard erorrs calculated via the delta method. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.16. Placebo tests for judge severity

(1) (2) (3) (4) (5) (6) (7) (8)
Drugs Charge sen. Log sen. Male Black Age SNAP Perc Median Income

Incarceration leave-out mean -0.00652 -0.891 -0.0168 0.00807 0.0121 -0.179 0.00530 -442.6
(0.0109) (3.425) (0.0344) (0.00917) (0.0105) (0.241) (0.00352) (420.3)

Dependent mean 0.24 76.53 2.59 0.77 0.55 32.05 0.31 36773.38
Observations 961782 960020 948239 966087 973623 975447 805291 775737
Dependent variable in header. Controls include year-court fixed effects. Standard errors in parentheses and
clustered at the judge level at the crime level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.17. Effect of incarceration on child outcomes

All Boys Girls All Boys Girls

(1) (2) (3) (4) (5) (6)

Panel A: In court

Parent incarcerated (=1) -0.028 -0.047 -0.001
(0.021) (0.045) (0.028)

Mother incarcerated (=1) -0.108∗∗∗ -0.124∗∗ -0.086∗

(0.034) (0.059) (0.049)

Father incarcerated (=1) 0.029 0.006 0.061∗∗

(0.021) (0.043) (0.028)

Dependent mean 0.241 0.297 0.175 0.241 0.297 0.175
Observations 158315 85650 72665 158315 85650 72665

Panel B: Incarcerated

Parent incarcerated (=1) -0.031∗ -0.058∗ 0.008
(0.017) (0.033) (0.012)

Mother incarcerated (=1) -0.072∗∗∗ -0.109∗∗ -0.023
(0.028) (0.050) (0.021)

Father incarcerated (=1) -0.002 -0.024 0.030∗∗

(0.014) (0.027) (0.015)

Dependent mean 0.083 0.126 0.032 0.083 0.126 0.032
Observations 158276 85637 72639 158276 85637 72639

Panel C: Pregnant before 18

Parent incarcerated (=1) 0.008 -0.001 0.019
(0.012) (0.008) (0.022)

Mother incarcerated (=1) 0.004 -0.001 0.009
(0.020) (0.014) (0.036)

Father incarcerated (=1) 0.011 -0.001 0.027
(0.011) (0.008) (0.021)

Dependent mean 0.043 0.013 0.078 0.043 0.013 0.078
Observations 133908 70575 63333 133908 70575 63333
Incarceration instrumented by judge leave-out incarceration rate. All specifications include
year X court fixed effects, and indicators for previous court appearances and incarcerations.
Standard errors clustered at the judge level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.18. Effect of incarceration on child outcomes

In court (=1) Incarcerated (=1) Teen pregnancy (=1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: All parents
All Boys Girls All Boys Girls All Boys Girls

Parent incarcerated (=1) -0.067∗∗∗ -0.093 -0.033 -0.049∗∗ -0.108∗∗∗ 0.030∗ -0.011 -0.003 -0.023
(0.024) (0.060) (0.038) (0.019) (0.040) (0.015) (0.017) (0.010) (0.033)

Incarcerated X exposure 0.066∗∗ 0.080∗ 0.051 0.031∗ 0.086∗∗ -0.040∗ 0.038∗∗ 0.006 0.076∗

(0.029) (0.048) (0.033) (0.017) (0.038) (0.021) (0.018) (0.010) (0.040)

10th percentile -.063∗∗∗ -.089 -.03 -.048∗∗ -.104∗∗∗ .028∗ -.009 -.002 -.019
(.024) (.058) (.037) (.019) (.039) (.015) (.016) (.01) (.032)

50th percentile -.053∗∗ -.076 -.022 -.042∗∗ -.089∗∗ .021∗ -.003 -.001 -.007
(.021) (.053) (.033) (.018) (.036) (.013) (.014) (.009) (.027)

90th percentile .006 -.006 .023 -.015 -.014 -.014 .03∗∗ .004 .061∗∗

(.026) (.043) (.028) (.018) (.035) (.016) (.013) (.009) (.028)
Dependent mean 0.241 0.297 0.175 0.241 0.126 0.032 0.043 0.013 0.078
Observations 155497 84117 71380 155460 84104 71356 131528 69312 62216

Panel B: By gender of parent

Mother incarcerated (=1) -0.177∗∗∗ -0.207∗∗∗ -0.146∗∗ -0.098∗∗∗ -0.156∗∗∗ -0.022 -0.024 -0.007 -0.048
(0.041) (0.070) (0.071) (0.032) (0.060) (0.028) (0.029) (0.017) (0.057)

Mother incarcerated X exposure 0.095∗ 0.069 0.152∗ 0.055 0.099∗∗ -0.022 0.043∗ -0.005 0.111∗

(0.052) (0.057) (0.080) (0.034) (0.048) (0.027) (0.025) (0.017) (0.063)

Father incarcerated (=1) 0.015 -0.015 0.045 -0.011 -0.068∗ 0.066∗∗∗ -0.003 -0.001 -0.010
(0.028) (0.060) (0.041) (0.017) (0.036) (0.019) (0.016) (0.010) (0.033)

Father incarcerated X exposure 0.037 0.079 -0.003 0.009 0.065 -0.049∗∗ 0.034∗ 0.012 0.063
(0.035) (0.065) (0.042) (0.019) (0.045) (0.024) (0.019) (0.010) (0.040)

10th percentile, mothers -.172∗∗∗ -.203∗∗∗ -.138∗∗ -.095∗∗∗ -.151∗∗∗ -.024 -.022 -.007 -.042
(.04) (.069) (.069) (.031) (.058) (.027) (.028) (.017) (.056)

50th percentile, mothers -.16∗∗∗ -.195∗∗∗ -.119∗ -.088∗∗∗ -.139∗∗ -.026 -.017 -.008 -.029
(.039) (.067) (.064) (.03) (.056) (.026) (.027) (.016) (.055)

90th percentile, mothers -.084 -.14∗∗ .002 -.044 -.06 -.044 .018 -.012 .06
(.052) (.068) (.066) (.036) (.054) (.027) (.028) (.017) (.069)

10th percentile, fathers .017 -.011 .045 -.011 -.064∗ .063∗∗∗ -.002 0 -.007
(.027) (.058) (.04) (.017) (.035) (.019) (.016) (.01) (.033)

50th percentile, fathers .023 .003 .045 -.009 -.053 .055∗∗∗ .004 .002 .004
(.027) (.054) (.038) (.017) (.033) (.017) (.015) (.009) (.032)

90th percentile, fathers .074 .111 .041 .003 .035 -.012 .05∗ .018 .089
(.056) (.09) (.062) (.032) (.067) (.035) (.029) (.015) (.064)

Dependent mean 0.241 0.297 0.175 0.083 0.126 0.032 0.043 0.013 0.078
Observations 155497 84117 71380 155460 84104 71356 131528 69312 62216
Incarceration instrumented by judge leave-out incarceration rate. All specifications include year X court fixed effects,
and indicators for previous court appearances and incarcerations. Standard errors clustered at the judge level. ∗ p <
0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.19. Effect of incarceration on juvenile criminal justice involvement

All Boys Girls All Boys Girls

(1) (2) (3) (4) (5) (6)

Panel A: Appeared in court as a juvenile

Parent incarcerated (=1) -0.063∗∗∗ -0.042 -0.074∗∗

(0.022) (0.039) (0.035)

Mother incarcerated (=1) -0.071 -0.042 -0.094
(0.060) (0.098) (0.067)

Father incarcerated (=1) -0.057∗∗ -0.042 -0.062
(0.029) (0.035) (0.040)

Dependent mean 0.194 0.253 0.124 0.194 0.253 0.124
Observations 41733 22467 19266 41733 22467 19266

Panel B: Incarcerated as a Juvenile

Parent incarcerated (=1) -0.029∗∗ -0.037 -0.015
(0.013) (0.023) (0.014)

Mother incarcerated (=1) -0.064∗∗ -0.087∗ -0.034
(0.025) (0.045) (0.026)

Father incarcerated (=1) -0.012 -0.013 -0.004
(0.018) (0.028) (0.019)

Dependent mean 0.046 0.067 0.021 0.046 0.067 0.021
Observations 41733 22467 19266 41733 22467 19266
Incarceration instrumented by judge leave-out incarceration rate. All specifications include
year X court fixed effects. Standard errors clustered at the judge level. ∗ p < 0.10, ∗∗ p <
0.05, ∗∗∗ p < 0.01.
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Table 4.20. Effect of incarceration on child juvenile court outcomes

In court (=1) Incarcerated (=1)

(1) (2) (3) (4) (5) (6)

Panel A: All parents
All Boys Girls All Boys Girls

Parent incarcerated (=1) -0.157∗∗∗ -0.081 -0.205∗∗∗ -0.090∗∗ -0.110∗ -0.057∗∗

(0.044) (0.068) (0.054) (0.037) (0.060) (0.028)

Incarcerated X exposure 0.181∗∗ 0.074 0.253∗∗∗ 0.115∗∗ 0.138 0.082
(0.078) (0.117) (0.092) (0.058) (0.092) (0.052)

10th percentile -.148∗∗∗ -.077 -.192∗∗∗ -.084∗∗ -.103∗ -.053∗∗

(.041) (.063) (.05) (.034) (.056) (.026)
50th percentile -.119∗∗∗ -.065 -.151∗∗∗ -.065∗∗∗ -.08∗ -.04∗∗

(.03) (.049) (.041) (.025) (.042) (.019)
90th percentile .04 -.001 .072 .036 .041 .032

(.051) (.082) (.07) (.032) (.05) (.034)
Dependent mean 0.196 0.256 0.126 0.047 0.068 0.022
Observations 41848 22540 19308 41848 22540 19308

Panel B: By gender of parent

Mother incarcerated (=1) -0.137∗ -0.079 -0.190∗ -0.140∗∗∗ -0.182∗ -0.079∗

(0.080) (0.126) (0.098) (0.052) (0.094) (0.041)

Mother incarcerated X exposure 0.136 0.081 0.195 0.139∗ 0.168 0.089
(0.145) (0.197) (0.153) (0.083) (0.141) (0.084)

Father incarcerated (=1) -0.178∗∗∗ -0.093 -0.218∗∗∗ -0.062 -0.071 -0.046
(0.055) (0.075) (0.069) (0.045) (0.068) (0.038)

Father incarcerated X exposure 0.222∗∗ 0.091 0.294∗∗ 0.099 0.116 0.078
(0.108) (0.141) (0.147) (0.078) (0.117) (0.078)

10th percentile, mothers -.131∗ -.075 -.181∗ -.133∗∗∗ -.174∗∗ -.074∗∗

(.075) (.12) (.093) (.049) (.088) (.038)
50th percentile, mothers -.114∗ -.065 -.157∗ -.116∗∗∗ -.153∗∗ -.063∗∗

(.066) (.108) (.081) (.04) (.073) (.031)
90th percentile, mothers -.006 -.001 -.001 -.005 -.019 .008

(.106) (.147) (.102) (.044) (.068) (.055)
10th percentile, fathers -.166∗∗∗ -.088 -.202∗∗∗ -.056 -.065 -.042

(.05) (.068) (.063) (.041) (.062) (.034)
50th percentile, fathers -.128∗∗∗ -.072 -.151∗∗∗ -.039 -.045 -.028

(.036) (.049) (.045) (.03) (.045) (.023)
90th percentile, fathers .174 .052 .248 .094 .113 .078

(.127) (.161) (.179) (.085) (.127) (.092)
Dependent mean 0.196 0.256 0.126 0.047 0.068 0.022
Observations 41848 22540 19308 41848 22540 19308
Incarceration instrumented by judge leave-out incarceration rate. All specifications include year
X court fixed effects. Standard errors clustered at the judge level. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 4.21. School test scores and absenteeism on parental incarceration

Year FE Student FE

(1) (2) (3) (4) (5) (6) (7) (8)
Math Read PCA Absent Math Read PCA Absent

Parent incarcerated 0.134 -0.113 -0.0530 0.388
(0.286) (0.176) (0.200) (4.208)

Incarceration X post -0.117 0.224 0.134 0.690 -0.275 -0.102 -0.198 -0.488
(0.314) (0.202) (0.242) (4.670) (0.281) (0.194) (0.219) (4.508)

Observations 60579 60385 60165 129080 56348 56041 53939 125445
Sample in header. Test scores and first principle component of math and reading test scores mea-
sured in standard deviations. Absences measured in days. Controls in include student race and age.
Instruments include judge leave-out incarceration rate and interaction with post-assignment. Stan-
dard errors in parentheses and clustered at the judge level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.22. Effect of incarceration on child outcomes

In court (=1) Incarcerated (=1) Teen pregnancy (=1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

By birth neighborhood SES quartiles
All Boys Girls All Boys Girls All Boys Girls

Incarcerated X Birth SES (Q1) -0.133∗∗∗ -0.193∗∗∗ -0.063 -0.058∗∗∗ -0.102∗∗ -0.004 0.005 0.002 0.011
(0.036) (0.069) (0.040) (0.022) (0.044) (0.016) (0.018) (0.013) (0.031)

Incarcerated X Birth SES (Q2) -0.065∗ -0.077 -0.064∗ -0.054∗∗ -0.090∗ -0.019 -0.010 -0.008 -0.008
(0.037) (0.075) (0.038) (0.027) (0.052) (0.019) (0.017) (0.014) (0.033)

Incarcerated X Birth SES (Q3) 0.041 0.037 0.027 0.003 -0.016 0.013 -0.005 -0.023 0.023
(0.042) (0.074) (0.045) (0.027) (0.051) (0.018) (0.016) (0.014) (0.029)

Incarcerated X Birth SES (Q4) 0.032 -0.032 0.114∗∗ -0.016 -0.052 0.028 -0.008 -0.014 -0.002
(0.039) (0.069) (0.050) (0.026) (0.048) (0.019) (0.020) (0.016) (0.039)

Dependent mean 0.241 0.297 0.175 0.241 0.126 0.032 0.043 0.013 0.078
Observations 121212 65974 55238 121178 65962 55216 103651 55126 48525
Incarceration instrumented by judge leave-out incarceration rate. All specifications include year X court
fixed effects, and indicators for previous court appearances, incarcerations, and socioeconomic status of
birth address. Standard errors clustered at the judge level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.23. Effect of incarceration on sibling outcomes

Just
mother

Just
father Mother Father Both All

(1) (2) (3) (4) (5) (6)

Panel A: In court

Sibling incarcerated (=1) -0.072∗∗ -0.047 -0.049 0.004 0.050 -0.050∗

(0.034) (0.080) (0.032) (0.045) (0.075) (0.028)

Observations 64819 14792 83313 33286 18494 98105

Panel B: Incarcerated

Sibling incarcerated (=1) -0.073∗∗∗ -0.008 -0.057∗∗∗ 0.005 0.010 -0.048∗∗∗

(0.023) (0.037) (0.019) (0.030) (0.048) (0.017)

Observations 64801 14788 83295 33282 18494 98083
All specifications include year X court fixed effects, and indicators for previous court ap-
pearances and incarcerations. Standard errors clustered at the judge level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4.24. Effect of incarceration on sibling outcomes

Just
mother

Just
father Mother Father Both All

(1) (2) (3) (4) (5) (6)

Panel A: In court

Incarcerated X Birth SES (Q1) -0.241∗∗∗ -0.204∗ -0.217∗∗∗ -0.128 -0.112 -0.241∗∗∗

(0.065) (0.109) (0.063) (0.086) (0.124) (0.065)

Incarcerated X Birth SES (Q2) -0.166∗∗∗ -0.049 -0.171∗∗∗ -0.103 -0.204∗∗ -0.166∗∗∗

(0.060) (0.079) (0.057) (0.064) (0.102) (0.060)

Incarcerated X Birth SES (Q3) 0.119∗ 0.028 0.118∗∗ 0.082 0.116 0.119∗

(0.068) (0.128) (0.059) (0.075) (0.100) (0.068)

Incarcerated X Birth SES (Q4) 0.054 0.027 0.086 0.113 0.189∗ 0.054
(0.055) (0.131) (0.054) (0.083) (0.113) (0.055)

Dependent mean 0.243 0.146 0.238 0.189 0.223 0.225
Observations 38205 8978 48781 19553 10567 38205

Panel B: Incarcerated

Incarcerated X Birth SES (Q1) -0.130∗∗∗ 0.006 -0.121∗∗∗ -0.024 -0.085 -0.130∗∗∗

(0.043) (0.055) (0.038) (0.050) (0.083) (0.043)

Incarcerated X Birth SES (Q2) -0.105∗∗ 0.009 -0.108∗∗ -0.041 -0.124 -0.105∗∗

(0.045) (0.050) (0.042) (0.052) (0.086) (0.045)

Incarcerated X Birth SES (Q3) -0.049 0.058 -0.048 0.026 -0.013 -0.049
(0.040) (0.063) (0.034) (0.056) (0.083) (0.040)

Incarcerated X Birth SES (Q4) -0.076∗∗ 0.004 -0.053 0.018 0.013 -0.076∗∗

(0.038) (0.058) (0.037) (0.052) (0.082) (0.038)

Dependent mean 0.089 0.041 0.086 0.061 0.076 0.079
Observations 38199 8977 48775 19552 10567 38199
Incarceration isntrumented by judge leave-out incarceration rate. All specifications include year X
court fixed effects, and indicators for previous court appearances and incarcerations. Standard errors
clustered at the judge level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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APPENDIX A

A.1. Online Appendix for Rise and Shine: The Effect of School Start Times on Academic

Performance from Childhood through Puberty

A.1.1. Robustness checks for mover definition

Our identifying variation comes from students who move between schools in different time

zones in the Florida panhandle. Most of these moves are quite long-distance; the median move

is 83 miles. The disruption inherent in such a move may have an independent effect on achieve-

ment, which is important to control for in our context. To help identify the effect of moving,

as well as the effect of other school-level covariates, we include in our sample students who

move within a time zone. This requires defining what constitutes a move by setting a threshold

distance between the schools the student attended. Otherwise, graduating from middle school

to high school would constitute a move. A high threshold has the advantage of making the

move more likely to match a cross-time zone move in terms of disruptiveness; a low threshold

increases sample size and precision.

We settled on a threshold of 25 miles, but our results are robust to other threshold choices.

Table A1 presents estimates for 15, 20, 25, and 30 mile thresholds for math and reading out-

comes. We also consider defining a move as any move between different school districts, al-

though this will include students who move less disruptive distances, such as when families

move to a nearby suburb that happens to be in a different district. Across all definitions, the
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results are broadly consistent. In math, the effect for prepubescent children ranges from 0.009

to 0.037 SDs; the effect for adolescents ranges from 0.067 to 0.084 SDs. In reading, the range is

0.034 to 0.061 for younger children and 0.044 to 0.057 for adolescents. The effects statistically

differ from zero for adolescents for both math and reading across all distances.

A.1.2. Specification robustness checks

We include two sets of control variable robustness checks. First, in Table A2, we consider

different levels of aggregation for the demographic share controls (FRL, male, black, Asian,

and Hispanic). Instead of aggregating at the school-year level, as we do in our main results,

we consider district-year, district third graders-year,1 school-year, and school-grade-year. All

specifications include age-gender dummies and an individual fixed effect. For each level of

aggregation, we present one specification with no other controls, one that adds urban dummies

and log income controls, and a final model that includes school size and student/teacher ratio.

Comparing across the rows of Table A2, the results are largely unchanged. In Panel A, all

specifications show an effect size in math of 0.003-0.037 SDs for prepubescents, and 0.062-

0.096 for adolescents. The effect is statistically significant at the the 1% level or better for

adolescents but null for younger students. In reading, the estimates are also similar across

specifications: 0.046-0.087 SDs for prepubescents, and 0.044-0.074 SDs for adolescents. The

prepubescent effect is occasionally significant at the 5% level; the adolescent effect has a p-

value of about 1%.

For absences, the inclusion of demographics (but not the level of aggregation) makes a

substantive difference in the results. Comparing Columns 1-3 with Columns 4-15, the inclusion

1District third graders-year is the demographic means for the third graders in the given district-year.
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of demographic controls (at any level of aggregation) reduces the size of the suspension effect

from about 1.5 percentage points and significant at the 1% level to about 0.8 percentage points

and significant at the 10% level for prepubescents. The adolescent effects are generally null

once we control for demographics. Since there may be significant between-school differences

in policies for counting absences (and these may be correlated with school demographics), we

think that the results with demographic controls are more trustworthy. It is therefore reassuring

that they are the same regardless of the level of demographic aggregation.

Table A3 contains sur second control robustness check. Columns 1 and 3 restate our base-

line results for math and reading. Columns 2 and 5 include controls for latitude; average sunrise

times over the school year vary by about a minute over the north-south range of the panhandle2

and this could conceivably have some affect on sleep (in contrast, the east-west variation in

sunrise times from longitude is nearly 20 minutes, excluding the time zone change). The addi-

tion of latitude has a moderately sized but statistically insignificant effect on the prepubescent

coefficients. The change in the adolescent coefficients is smaller.

In Columns 3 and 6 of Table A3 we test whether the inclusion of third grade district test

scores as control variables affects the results. Third grade test scores are appealing as a sum-

mary measure of district quality, but may be endogeneous if start times affect performance for

children in kindergarten to third grade. For this reason we do not include them in our main

specification, but it is reassuring that they have little effect on the results.

2The average disguises some larger differences over the year; but it is never larger than three minutes.
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A.1.3. Changes in school characteristics over the move

A potential threat to our identification strategy is changes in school and peer characteristics as

students move between time zones. If students moving from CT to ET move to significantly

worse schools, while ET-CT movers moved to better schools, it would not be surprising that

student achievement declined upon entering ET and rose upon exiting. Because, on average,

there is less sunlight before school in ET than in CT, this could generate a spurious positive

relationship between relative school start times and academic achievement.

We consider this question directly in Table A4. We take the years directly before and after

each move, and term these pairs of years a moving episode.3 We then regress school- and zip-

level characteristics on moving episode fixed effects and move indicators for the four different

types of movers: Eastern-Eastern, Central-Central, Eastern-Central, and Central-Eastern. Each

coefficient is a measure of the change in characteristics over the move. As outcomes, we con-

sider the five school-level demographic share controls included in our preferred specification

(percent FRL, male, black, Asian, and Hispanic), as well as school student/teacher ratio and

zipcode-level median income as a measure of school and community resources.

The first two rows of Table A4 show that peer quality changed slightly over the move for

within-time zone movers. ET-ET movers had 4.5 percentage points fewer FRL classmates; CT-

CT movers had 1.7 percentage points fewer. School quality as measured by the student/teacher

ratio increased slightly for both groups. Median income rose by $1,000 for within-ET movers

and fell by $430 for within-CT movers. These differences are statistically significant, but none

are particularly large or striking.

3Since occasionally a student will move in consecutive years, a small number of observations are repeated.



192

The cross-time zone movers tell a slightly different story. Eastward movers generally ended

up in a richer area — 4.5 percentage points fewer FRL classmates and $5,700 higher median in-

come — and had 14.0 percentage points more black classmates and 0.5 percentage points more

Hispanic classmates. School quality as measured by the student/teacher ratio was unchanged.

ET-CT movers saw approximately the opposite changes in medium income and percent of black

students. The economic and peer changes may work in opposite directions in this case, making

it unclear in which direction the overall bias goes. However, neither the inclusion of demo-

graphic controls (in Table 4.2) or income controls (in Table A2) substantively changes our

results, suggesting that changes in peer characteristics have only a moderate effect on outcomes

over the move, and do not significantly affect our results.

A.1.4. Performance trend before move

In Section 1.4.1, we show that test score trends are similar for all groups of movers in the

years before the move. However, math scores trend up, which is somewhat surprising since the

disruption of the upcoming move would be expected to reduce scores. Figure A1 show results

from a regression of scale scores on time-until-move dummies and a fixed effect for the period

until the move. This is identical to the regression displayed in Figure 4.1, but without controls.

The Figure confirms that unconditionally, test scores trend down in both math and reading

before a move. This is largely a result of removing the age-gender fixed effects, which soak

up any time trend. Comparing across different groups of movers, the trends are slightly further

apart than in the version with controls, but are still generally statistically indistinguishable.
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A.1.5. Robustness checks for puberty definition

One of our main interests in this paper is how the effect of relative school start times varies with

pubertal status. This requires a working definition of puberty, and there are several defensible

alternatives. Pubertal development is typically measured with the Tanner Scale. There are two

versions; one that uses levels of pubic hair to define the stages and another that uses breast and

genital development. We rely on the pubic hair version of the Scale, which Campbell et al.

(2012) indicate is more closely associated with pubertal changes in sleep patterns. They also

note that changes in sleep patterns begin during Stage 3, so we use the age of median attainment

(by gender) of Stage 3 as the definition of puberty.

Table A5 shows our main results with three alternative definitions of puberty: pubic hair

Stage 2, pubic hair Stage 4, and breast/genital Stage 3. These changes typically shift the age

of puberty by at most a year, and not necessarily for both genders. The results are largely un-

changed, although slightly attenuated in some specifications. Because this definition of puberty

is a worse fit for the underlying biological processes, this is unsurprising.

A.1.6. Estimates without interactions

Table A6 displays a version of our baseline model without an interaction between relative start

time and pubertal status. Allowing for heterogeneity by pubertal status is important, but for

completeness we have included this specification.

Across the rows, the change in sunlight is about 30 minutes over the time zone border. For

both math and reading, the effect of moving start times one hour later is about the average of the

child and adolescent effects from Table 4.2. In math, the estimated effect is 0.043 SD per hour

by the final column, and the estimates are only occasionally statistically significant. In reading,
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the effect is 0.059 SD per hour by the final column, and the effect sizes are all significant to at

least the 5% level in all estimates. The attendance results vary, with a decrease of 0.7 percentage

points in absence per hour of sunlight by the final column.

A.1.7. PSID data definitions

In this paper, we demonstrate that students treated with later relative start times have higher

academic achievement. However, we do not directly observe sleep levels in the academic out-

comes dataset. To more concretely link changes in start times to changes in sleep, we use the

Child Development Supplement of the Panel Study of Income Dynamics (PSID) to estimate the

effect of the time zone boundary on sleep. The survey collected time use diaries for students

on a weekend day and a weekday in the years 1997, 2002, and 2007. We include all states with

a single time zone,4 and all children who were 6-19 during the survey and within 400 miles of

the ET-CT time zone boundary. Our aim is descriptive, so we regress daily hours of sleep on a

fully interacted set of dummies for puberty, CT, and whether the night was a weekend. In our

preferred specification, we also include controls for gender, black/non-black, and FRL status.

We expect that children in CT will have more sleep on weekdays when they face earlier relative

start times, and those in ET will compensate with more sleep on weekends.

Table A7 contains the results. As discussed in Section 1.5.3, children in CT get 6 minutes

more sleep per night during the week than children in ET; during puberty they get 17 minutes

more. On the weekend, children in ET compensate for low levels of sleep during the week by

sleeping 10 minutes more per night in the years before puberty and 19 minutes more while in

puberty. We conservatively cluster at the state level. The coefficient for the difference in sleep

4The CDS does not geocode individuals at a sub-state level in the publicly available version, which precludes
analysis using observations in states with multiple time zones — including Florida.
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between adolescents in CT and ET is significant at the 10% level; most others are not. Including

student fixed effects suggests a slightly larger difference between the time zones: the decrease in

sleep during puberty is 15 minutes smaller for adolescents in CT than in ET. This set of results

corresponds to a pass-through rate of about 40-50% from school start times to sleep if Florida

panhandle school start times are representative of the rest of the US near the ET-CT time zone

boundary. This number is close to the 46% pass-through reported by Wahlstrom (1998).

A.1.8. Treatment bleed for schools near the time zone boundary

In the placebo analysis, we study how test scores change when students move east-west or

west-east but not across the true time zone boundary. Ideally, we would examine within-time

zone moves to and from the region directly adjacent to the boundary, to help test whether there

are unobservable changes in the school or community environment that occur nearby, but not

exactly at, the time zone boundary.

This approach will be problematic if there is an effect of being near the time zone boundary

on school start times —- then, moving from directly beside the boundary in CT to a city fifty

miles west could increase relative start times, directly increasing test scores. Figure A4 dis-

plays a nonparametric regression of relative start times on distance to the time zone boundary,

estimated separately for each time zone. In the region directly adjacent to the boundary, start

times veer towards the other time zone’s norm, particularly for adolescents. We interpret this

as the synchronization of start times across time zones, which allows parents to help their chil-

dren prepare for school before going to work, whether or not they are commuting across time

zones. This also means that start times are later for students moving west either from the region

directly beside the boundary in CT, or to the region directly beside the boundary in ET.
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In the main placebo results, we account for the treatment bleed across time zones by taking

out a 25 mile “donut” around the time zone boundary. However, in the interest of completeness

we include the unexcised version in Figure A5. The difference with Figure 4.8 is most stark

in the puberty-time zone coefficient for math, where there is a consistent effect above the size

of the true coefficient. Comparing between figures, removing the donut around the time zone

boundary reduces the size of all placebo coefficients. The placebo effect is coming largely from

individuals moving between the area close to the true time zone boundary and the rest of the

study area, not individuals moving between areas far from the time zone boundary.
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A.2. Appendix for Judicial Errors: Evidence from Refugee Appeals

A.2.1. Details on the use of regressors for identification

With a small change of notation, the main model of Section 2.2 can be recast as a single-

spell duration model (?), where the “duration” is the amount of time until a judge rejects the

applicant’s case (duration is capped at 2). Equation 2.1 from the main text sets out the problem

as identifying the parameters of the choice model where approval in each stage s occurs if

(A.1) ri > εi js(Xi js,Wi js) = γ js +Xi jsβs + ε̃i js(Wi js)

We want to identify G js,W , the distributions of the errors ε̃i js(Wi js), the distribution of ri, Fr,

as well as the coefficients γ js and βs. Nonparametric identification requires:

(1) ri and ε̃i js(Wi js) are independent and have a median of zero. The variance of ri is

known and finite, and the variances of ε̃i js(Wi js) are finite.

(2) Xi j1β1|γ j,Wi j1 is continuous with large support.

(3) Xik2β2|Xik1β1,γ j,γk,Wi j1,Wi j2 is continuous with large support.

(4) At least one component of β1 is assumed equal to the same component in β2.

The first two conditions are familiar from the standard literature on nonparametric binary

choice models. In the second condition, note that identification requires variation in Xi js condi-

tional on regressors Wi js that affect the distribution of errors. The third condition guarantees that

there is variation in the regressors conditional on the first-round regressors and judge identity.

Rewriting Equation A.1, in each stage an individual is approved if
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(A.2) 1[−Xi jsβs− γ js > ε̃i js(Wi js)− ri] = H js,W (−Xi jsβs− γ js)

where H js,W is the distribution of ηks = ε̃i js(Wi js)− ri, the composite error of the refugee-

level equality variable ri and the case-judge idiosyncratic error ε̃i js(Wi js). As in Manski (1975),

the assumption of median-zero errors allows nonparametric identification of β1 and Hk1 up to

scale. However, the identity of judge j and the regressors Wi js enter the distribution H js,W , and

thus neither Wi js or the judge effect γ j can be used for identification. Instead, Xi j1 traces out the

distribution of H js,W , which is why Assumption 2 calls for large support conditional on judge

assignment and Wi js.

In the second round, the second and third conditions imply that

lim
Xi j1β1→−∞

1[−Xik2β2− γk2 > ε̃ik2(Wik2)− ri|−Xi j1β1− γ j1 > ε̃i j1(Wi j2)− ri]

=Hk2,W (−Xi j2β2− γ j2)

so β2 and Hk2 are similarly identified to scale. By Assumption 4, this scale is the same.

Then, as in ?, the variances of ε̃i j1 and ε̃i j2 are identified relative to ri from the variance of

the first and second round residuals and their covariance. Finally, the result of ? recovers the

distributions G j1,W , G j2,W , and Fr.
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A.2.2. Estimation details

For notational simplicity, I collapse all coefficients and regressors into the distribution of the

observational error εs, which I denote with mean µs and standard deviation σs. I first explain

the derivation of first-round approval probabilities, then the second-round probabilities.

A.2.3. First round approval

P(r− ε1 > 0) =
∫

∞

0
P(r > ε̃1)dF(ε̃1)

=
∫ xm

0
P(r > ε̃1)dF(ε̃1)+

∫
∞

xm

P(r > ε̃1)dF(ε̃1)

(A.3)

The first term in Equation A.3 can be shown to be equal to Φ[ ln(xm)−µ1
σ1

]. Then,

∫
∞

xm

P(r > ε̃1)dF(ε̃1) =
∫

∞

xm

xα
m

ε̃α
1

φ

(
ln(ε̃1)−µ1

σ1

)
1

σ1ε̃1
dε̃1

= xα
m

∫
∞

ln(xm)−µ1
σ1

e−α(σ1y+µ1)φ(y)dy

= xα
me−αµ1

∫
∞

ln(xm)−µ1
σ1

e−ασ1y− y2
2 dy

= xα
me−αµ1+

α2σ2
1

2

∫
∞

ln(xm)−µ1
σ1

e−
1
2 (y+ασ1)

2
dy

= xα
me−αµ1+

α2σ2
1

2

∫
∞

ln(xm)−µ1
σ1

+ασ1

e−
1
2 y2

dy

= xα
me−αµ1+

α2σ2
1

2

[
1−Φ

(
ln(xm)−µ1

σ1
+ασ1

)]

(A.4)
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where the second equality follows from substituting y = ln(xm)−µ1
σ1

and ε̃
−α

1 = e−αln(ε̃1).

The fourth equality follows from completing the square; −1
2(y

2 +2ασ1y) =−1
2(y

2 +2ασ1y+

α2σ2
1 )+

α2σ2
1

2 =−1
2(y+ασ1)

2 +
α2σ2

1
2 .

A.2.3.1. Approval in both rounds. In the model I estimate, occasionally the same judge is

assigned to make the first and second round decision for a defendant. I model this by allowing

between-round errors to be correlated whenever it is the same judge and estimate the correlation

as an additional parameter. Below, I present the full derivations for the no-correlation case

(which is more intuitive), then explain how the model works with correlations.

The likelihood of approval in the first round is

P(r > ε2∩ r > ε1) =
∫

∞

0

∫
∞

0
P(r > ε̃2|r > ε̃1)P(r > ε̃1)dF(ε̃1)dF(ε̃2)(A.5)

The terms inside the integrals can be rewritten

(A.6) P(r > ε̃1) = 1[ε̃1 < xm]+1[ε̃1 ≥ xm]
xα

m
ε̃α

1

and

P(r > ε̃2|r > ε̃1) =1[ε̃1 < xm]

[
1[ε̃2 < xm]+1[ε̃2 ≥ xm]

xα
m

ε̃α
2

]
+

1[ε̃1 ≥ xm]

[
1[ε̃2 < ε̃1]+1[ε̃2 ≥ ε̃1]

ε̃α
1

ε̃α
2

](A.7)

Substituting into Equation A.5 and expanding the integrals,
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P(r > ε2∩ r > ε1) =
∫

∞

0

∫ xm

0
1[ε̃2 < xm]+1[ε̃2 ≥ xm]

xα
m

ε̃α
2

dF(ε̃1)dF(ε̃2)

+
∫

∞

0

∫
∞

xm

xα
m

ε̃α
1

[
1[ε̃2 < ε̃1]+1[ε̃2 ≥ ε̃1]

ε̃α
1

ε̃α
2

]
dF(ε̃1)dF(ε̃2)

Further separate the integrals into four components:

(A.8)
∫ xm

0

∫ xm

0
dF(ε̃1)dF(ε̃2)

(A.9)
∫

∞

xm

∫ xm

0

xα
m

ε̃α
2

dF(ε̃1)dF(ε̃2)

(A.10)
∫

∞

xm

∫
ε̃1

0

xα
m

ε̃α
1

dF(ε̃2)dF(ε̃1)

(A.11)
∫

∞

xm

∫
∞

ε̃1

xα
m

ε̃α
2

dF(ε̃2)dF(ε̃1)

These four equations (A.8-A.11) are all simple to evaluate because the distribution of a

Pareto-distributed random variable conditional on being larger than a given threshold is itself

Pareto. I solve them in turn:
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∫ xm

0

∫ xm

0
dF(ε̃1)dF(ε̃2) = Φ

(
xm−µ1

σ1

)
Φ

(
xm−µ2

σ2

)

∫
∞

xm

∫ xm

0

xα
m

ε̃α
2

dF(ε̃1)dF(ε̃2) = xα
mΦ

(
xm−µ1

σ1

)∫
∞

xm

e−αlnε̃2dF(ε̃2)

= xα
mΦ

(
xm−µ1

σ1

)
e−αµ2+

α2σ2
2

2

[
1−Φ

(
ln(xm)−µ2

σ2
+ασ2

)]

The last two make use of the additional fact that

∫
∞

z
φ(x)Φ(

x−b
a

)dx = P[Y <
X−b

a
,X > z]

= P[aY −X <−b,−X <−z]

= BvN(
−b√
a2 +1

,−z,
1√

a2 +1
)

where BvN is the CDF of the standard bivariate normal. This is important because bivariate

normals can be cheaply evaluated using Gauss-Legendre quadrature.
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∫
∞

xm

∫
ε̃1

0

xα
m

ε̃α
1

dF(ε̃2)dF(ε̃1) =
∫

∞

xm

xα
m

ε̃α
1

Φ

(
ln(ε̃1)−µ2

σ2

)
dF(ε̃1)

= xα
m

∫
∞

xm

e−αln(ε̃1)Φ

(
ln(ε̃1)−µ2

σ2

)
φ

(
ln(ε̃1)−µ1

σ1

)
1

σ1ε̃1
dε̃1

= xα
me−αµ1

∫
∞

ln(xm)−µ1
σ1

e−ασ1y
Φ

(
σ1y+µ1−µ2

σ2

)
φ (y)dy

= xα
me−αµ1+

α2σ2
1

2

∫
∞

ln(xm)−µ1
σ1

+ασ1

Φ

(
σ1y−ασ2

1 +µ1−µ2

σ2

)
φ (y)dy

= xα
me−αµ1+

α2σ2
1

2

∫
∞

ln(xm)−µ1
σ1

+ασ1

Φ

(
y−ασ1 +(µ1−µ2)/σ1

σ2/σ2

)
φ (y)dy

= xα
me−αµ1+

α2σ2
1

2 BvN(
(µ1−µ2)/σ1−ασ1√

σ2
2/σ2

1 +1
,− ln(xm)−µ1

σ1
−ασ1,

1√
σ2

2/σ2
1 +1

,)

∫
∞

xm

∫
∞

ε̃1

xα
m

ε̃α
2

dF1dF2 =
∫

∞

xm

xα
me−αµ2+

α2σ2
2

2

[
1−Φ

(
ln(ε̃1)−µ2

σ2
+ασ1

)]
dF(ε̃1)

= B̃{
[

1−Φ

(
ln(xm)−µ1

σ1

)]
−
∫

∞

ln(xm)−µ1
σ1

Φ

(
y+(µ1−µ2 +ασ2

2 )/σ1

σ2/σ1

)
φ(y)dy}

= B̃{
[

1−Φ

(
ln(xm)−µ1

σ1

)]
−BvN(

(µ1−µ2 +ασ2
2 )/σ1√

σ2
2/σ2

1 +1
,− ln(xm)−µ1

σ1
,

1√
σ2

2/σ2
1 +1

)}
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where B̃ = xα
me−αµ2+

α2σ2
2

2 .

A.2.3.2. Approval in both rounds with error correlation. In this section I describe how the

probabilities can be modified to allow for correlation between rounds. This is used when the

same judge sees the case in both rounds. I describe the version for Equation A.11 in detail; the

same method works for all the joint first- and second-round probabilities.

∫
∞

xm

∫
∞

ε̃1

xα
m

ε̃α
2

dF2dF1

=
∫

∞

xm

∫
∞

ε̃1

xα
m

2πσ1σ2
√

1−ρ2ε1ε2
e
−αln(ε2)− 1

2(1−ρ2)

(
(

ln(ε1)−µ1
σ1

)2−2ρ(
ln(ε1)−µ1

σ1
)(

ln(ε2)−µ2
σ2

)+(
ln(ε2)−µ2

σ2
)2
)

dε2dε1

=xα
me−αµ2

∫
∞

ln(xm)−µ1
σ1

∫
∞

σ1y+µ1−µ2
σ2

1

2π
√

1−ρ2
e

−1
2(1−p2)

(2ασ2(1−p2)x+y2−2ρyx+x2)
dxdy

Complete the square in the exponentiated part, then substitute into the above equation. This

allows you to take the integral with respect to x, leaving

xα
me−αµ2+

α2σ2
2

2

∫
∞

ln(xm)−µ1
σ1

(
1−Φ(

σ1y+µ1−µ2
σ2

− (ρy−ασ2(1−ρ2))√
1−ρ2

)

)
1√
2π

e−
1
2 (y+ασ2ρ)2

dy

Rearrange the term in the normal:

σ1y+µ1−µ2
σ2

− (ρy−ασ2(1−ρ2))√
1−ρ2

=
y+(µ1−µ2 +ασ2

2 (1−ρ2))/(σ1−ρσ2)

σ2
√

1−ρ2/(σ1−ρσ2)
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Substitute back in, then change of variables the constant term in the normal. This puts the

expression in a form where the probability can be expressed as a bivariate normal, and hence

cheaply evaluated.

= xα
me−αµ2+

α2σ2
2

2

∫
∞

ln(xm)−µ1
σ1

+ασ2ρ

(
1−Φ(

y−ασ2ρ +(µ1−µ2 +ασ2
2 (1−ρ2))/(σ1−ρσ2)

σ2
√

1−ρ2/(σ1−ρσ2)
)

)

φ(y)dy

= B̃
{[

1−Φ

(
ln(xm)−µ1

σ1
+ασ2ρ

)]
−BvN(

−b√
a2 +1

,− ln(xm)−µ1

σ1
−ασ2ρ,

1√
a2 +1

)

}

B̃ = xα
me−αµ2+

α2σ2
2

2

b = ασ2ρ− (µ1−µ2 +ασ
2
2 (1−ρ

2))/(σ1−ρσ2)

a = σ2

√
1−ρ2/(σ1−ρσ2)



206

A.2.4. MTE of first-round approval on second-round approval

A natural question to ask is how likely individuals approved in the first round are to be ultimately

successful in the second round. The Federal Court’s own standard is that individuals should be

granted leave in the first round if they can make an “arguable case” in the second round. A

simple way to quantify this is to estimate the MTE of first-round approval on second-round

approval. In the notation of ?, this is

(A.12) ∆
MT E(uD) = E[Y1−Y0|UD = ud]

where Y is second-round approval. In this context Y0 is mechanically equal to zero (you

cannot be approved in the second round if you aren’t approved in the first). Treatment (or

first-round approval) is determined by

(A.13) D∗ = P(Z)≥UD

where UD is normalized to be unit uniform and P(Z) is the probability of treatment given

assignment to the instrument Z. I use the first-round judge assignment as the instrument Z. As

seen in Figure A7, the support of the instrument ranges from 0.03 to 0.28, with a large gap

before a point mass at 0.70. I estimate the MTE using all observations, and using only the main

mass. Nonetheless, the results are only identified by functional form for points larger than 0.3,

and should be treated with caution.
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As Figure A7 shows, there is not very much variation in MTE over the range of first-round

judges; from the 3rd to the 28th percentile of the distribution of refugee quality, the approval

probability drops from 46% to 35%, though this result is somewhat sensitive to the outlier

judge. In other words, most judges’ marginal rejections would have at least a one-third chance

of approval in the second round.
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A.2.5. Survey questions

As I discuss in Section 2.4.8, I fielded a survey of lawyers who had appeared in front of the

Federal Court justices in my sample. The goal of the survey was to generate expert measures of

the same parameters that are identified by my structural model.

From the court records, I located the names of 931 lawyers who had appeared in front of

one of the judges in my sample. I was able to find online contact information for 551 of them.5

In April 2017, I contacted the lawyers and requested that they fill out an online survey on their

experience with Federal Court judges. After one reminder email, 64 lawyers responded for an

overall response rate of 14%.6 Table A11 compares responders to non-responders and lawyers

for whom I couldn’t find contact information. The main differences are that responders are

more successful, with a first-round approval rate of 27% versus 19% for non-responders (the

contacted sample is mostly lawyers for the claimants; government lawyers were included in the

sample but their names are recorded much less frequently in the court documents). Respondents

are slightly younger, with their first recorded case coming about one year later.

Each survey asked three questions on up to four judges, personalized to reflect the justices

they had actually appeared in front of (there was also an option to fill out a non-personalized,

anonymous survey on my academic website if they were concerned about privacy). The ques-

tions were:

5The main source of contact information was www.canadianlawlist.com, where I found 370 emails. Another
140 were on lawyers’ own websites. The rest of the contact information was in the form of online form submissions
on lawyer-directory websites like www.lawyer.com, although the response rate from these forms was almost zero.
6This response rate compares favorably to telephone political polls, where response rates are below 10% (?).
However, it is significantly lower than the 20% response rate for an email poll conducted by ? surveying UC
Berkeley staff about job satisfaction. The difference in response rates is likely due to declining survey rates over
time (Card et. al surveyed in 2008), a pecuniary incentive, and that they had the advantage of being able to present
themselves as in-group members (other University of California employees).

www.canadianlawlist.com
www.lawyer.com
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(1) On a scale from 1 to 5, how would you rate the listed judges in terms of favourable-

ness towards claimants? Do they rule for the claimant more or less often than other

judges? Given the facts of the case, are they more likely to either grant leave or rule

for the claimant during judicial review?

Each question concerns one judge only, and your answer should reflect your holis-

tic understanding of the judge’s behavior across both leave and judicial review stages,

not the outcome of a specific case or what you feel the decisions ought to be.

(2) On a scale from 1 to 5, how would you rate the listed judges in terms of consistency?

Are their decisions predictable compared to other judges with similar grant rates? Do

they decide cases on similar grounds as other justices? Can you predict what grounds

the case will be decided on?

Each question concerns one judge only, and your answer should reflect your holis-

tic understanding of the judge’s behavior across both leave and judicial review stages,

not the outcome of a specific case or what you feel the decisions ought to be. This can

include information you’ve heard from colleagues.

(3) On a scale from 1 to 5, how would you rate the listed judge in terms of accuracy? Do

they make the right legal decisions?

Each question concerns one judge only, and should be answered relative to other

judges. Your answer should reflect your holistic understanding of the judge’s behav-

ior across both leave and judicial review stages, not only the specific cases you have

been involved with. Unlike the previous questions, it can reflect your personal opinion

on how cases should be decided.
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I expected that the first question would be related to the judge-specific threshold γ , and

the second question with the variance of the observational error σ j. By design, the second

question encompasses the two distinct aspects of σ j detailed in Section 2.2.3.1. First, asking

about predictability concerns test-retest reliability — will the judge understand the merits of the

case? On the other hand, asking whether the judge decides cases on similar grounds as other

judges is trying to unearth information about how judges consistently value different aspects

of the case (inter-rater reliability), such as the relative weight they place on procedural versus

substantive merits.

Each response was on a five-point likert scale (I reverse the ordering of the consistency

response so it is analogous to the estimated inconsistency coefficients). I normalize responses

by the mean and standard deviation, but it is worth noting that the likert responses were centered

at 3 (“average”) for both consistency and accuracy. For favorability, the median lawyer response

was a 4 (“slightly more favourable to claimants than average”).

The main results are in Table 4.11, where I include only the first two questions. I discuss

these in Section 2.4.8. The final question of the survey, which asked about how accurate the

judge is, I did not discuss in the main text. This question does not have as clear an interpretation

as the other two. There is no direct mapping of accuracy into the model, since accuracy implies

a normative judgement about the correct outcome of the case. Reported accuracy is correlated

positively with favorability and negatively with inconsistency, but more strongly with the former

(ρ = 0.7 versus −0.46). Anecdotally, many of the lawyers that I corresponded with about the

survey were involved in refugee-rights non-profits, so it is likely that they believe the claimants

should win more cases than they currently do. Table A12 adds accuracy to the regression of

model coefficients on survey responses; with no other regressors higher accuracy predicts lower
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second-stage thresholds γ j2, but this disappears when favorability and inconsistency are added.

The relationship between favorability and γ2, and inconsistency and σ1 is almost unchanged.
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A.2.6. Ramifications for judge-assignment IVs

Exploiting random judge assignment is an increasingly popular identification strategy (Aizer

and Doyle, 2013; Dahl et al., 2013). The monotonicity condition in this context is simple: it

requires that for any two judges, any individual convicted by the more lenient judge must also

be convicted by the less lenient judge.7 Mueller-Smith (2014) discusses how this can be vi-

olated when the researcher does not separately estimate judge severity by type of crime. If

a judge is harsh for (say) drug crimes but lenient for violent crimes, on average they would

be considered a medium-severity judge. But exposure to this judge versus one that uniformly

sentences defendants for an average sentence would be a negative shock for a drug-crime de-

fendant and a positive shock for a violent-crime defendant, generating defiers. Mueller-Smith

shows how this problem can be circumvented when the econometrician has access to a rich set

of covariates. The strategy is to use a LASSO first stage to select the instruments (in his case,

judge and prosecutor effects interacted with defendant characteristics and crime type) with the

best predictive power, ensuring that inconsistency associated with the observables is not con-

tributing to violations of monotonicity. Other researchers have approximated this approach with

simple interactions between judge assignment and crime type (?). Bhuller et al. (2016) show

that their judge-assignment instrument (judge-mean incarceration rate on all cases) also pre-

dicts incarceration for subsets of the sample defined by defendant and charge characteristics.

In most situations, these methods are likely to assuage first-order concerns about monotonicity

violations.

7? shows that even under violations of monotonicity it may be possible to identify a less-interpretable LATE for a
subset of compliers.
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As I show in the main text, in my context there are high levels of inconsistency (and corre-

sponding violations of monotonicity). This is not necessarily an indictment of previous research

that relies on examiner-assignment instruments. As I discuss above, it is possible to partially

test for monotonicity and construct instruments that are robust against most sorts of violations.

Furthermore, Federal Court refugee appeals are very different than criminal courts or the SSDI

system, and it is possible that these decisions are more susceptible to inconsistency for two rea-

sons. First, appeal cases are almost by definition more marginal. About 60% of initially-rejected

claimants appeal to the Federal Court, meaning that the cases on the docket are relatively diffi-

cult. Second, as I discuss in Section 2.3.2, there is no written precedent for first stage decisions.

This makes it hard for judges to learn how other judges have acted in a similar situation. I show

suggestive evidence in the main text that this manifests itself in a wider cross-judge distribution

of first-round thresholds γ j1 (relative to the second round); it is likely that it also results in lower

consistency.

With the above caveats, it is worthwhile to examine how inconsistency affects estimates

of the marginal treatment effect arising from my data. The presence of inconsistency breaks

the relationship between the approval rate of the judge and the identity of the judge’s mar-

ginal claimants — there is instead a distribution of marginal claimants. Estimates of the mar-

ginal treatment effect under inconsistency thus average together individuals with different case

strengths (?). I quantify the implications of inconsistency in two ways. First, I use my empiri-

cal setting to directly calculate how the estimated MTE of first-round approval on second-round

approval changes with consistency. This approach is close to the data, and demonstrates that

MTE estimates under inconsistency may be flatter than the underlying MTE. Second, I use the
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method of ? to calculate the estimated bias under different theoretical MTEs that might be

encountered in other contexts.

A.2.6.1. MTE bias estimated from data. There is not a single way to quantify the effect of in-

consistency on the estimated MTE. There are many potential non-degenerate joint distributions

of first-round judge errors ε̃i j1that do not generate violations of monotonicity — for example,

if all judges had the same error ε̃i j1 for each claimant. This is important because although

the estimated parameters guarantee violations of monotonicity (recall from Section 2.4.3 that I

bound the share of cases judge pairs disagree on above zero), different assumptions on the cross-

judge joint distribution of ε̃i j1 allow for different counterfactuals that satisfy the monotonicity

assumption. For simplicity I choose the most straightforward alternative: judges are perfectly

consistent (σ j1 = 0 for all judges), guaranteeing montonicity is satisfied. I adjust thresholds γ j1

to keep the approval rate the same for all judges, then calculate the MTE under both the baseline

coefficients and the counterfactual. Figure A9 shows that as consistency declines, the estimated

MTE becomes shallower. This reflects how inconsistency generates a distribution of marginal

claimants for each judge, each with a different treatment effect. Averaging over the distribution

of marginal claimants for each judge reduces the cross-judge variation in the estimated MTE.

Interestingly, the simulated IV coefficient of second-stage approval on first-stage approval

instrumented by judge-mean approval barely changes, from 0.251 to 0.265. This suggests that

inconsistency in judge-assignment designs may more strongly affect the MTE than the IV esti-

mate.

A.2.6.2. MTE bias for hypothetical MTEs. A second method to quantify the effect of incon-

sistency on estimated MTE comes from ?. His approach is to take a second-order expansion of

the MTE estimate around a baseline of perfect consistency, then study how estimates change. I
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use the judge-specific estimates from the first round for the selection stage, and then estimate

the bias under three different MTEs. I follow Klein and use the same functional form for the

MTE as in his empirical example,

m(v) = 5+1.5∗ (1− v)ρ

where I pick ρ = {0.5,1,1.5}. I assume that the true MTE is with respect to the refugee

factor; v = 1−Fr(ri). Panel A of Figure A10 plot these MTEs.

Heuristically, judicial errors bias the MTE estimate by replacing a point estimate with an

estimate of the local average MTE. Klein shows that this error can be approximated by

(A.14)
1
2

σ
2
p

∂ 2m(p)
∂ p2 +

1
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∂σ2
p

∂ p
∂m(p)

∂ p

where m(p) is the marginal treatment effect with respect to the instrument-induced partic-

ipation probability p and σ2
p represents stochastic variation in whether an individual will be

induced into treatment by a particular value of the instrument. It is similar to my measure of

inconsistency, σ js. MTE bias results from both curvature of the MTE interacted with the size of

inconsistency, and cross-judge changes in inconsistency interacted with the slope of the MTE.

Panels B-D of Figure A10 plot estimates of the MTE bias at each point in the support of the

instrument. As expected, the bias is worse in areas of the MTE with higher curvature, and worse

for more-steeply sloped MTEs. The IV biases are 10, 19, and 26% for ρ of 0.5, 1, and 1.5. In

this context, bias results more from the slope of the MTE (the second term in Equation A.14)

than from curvature (first term).
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Interestingly, and in contrast to the application-specific method in subsubsection A.2.6.1,

the Klein method predicts negative bias over the support of the instrument. The cause of this

difference is subtle. In subsubsection A.2.6.1, I kept overall approval rates the same while

adjusting consistency σ j1. Klein does not make this restriction, and so the results of Figure A10

partially reflect the addition of a large number of treated individuals. Because the distribution

of underlying case strength ri is right-tailed, the additional marginally treated claimants have

disproportionately weak cases. This biases the estimated MTE downwards at all points.

The overall message of this section is one of cautious optimism. My context may be a worst-

case scenario for monotonicity: the cases are relatively difficult, there are no case type controls

to interact with judge effects, and the lack of precedent likely contributes to inconsistency.

Despite this, worst-case estimates of the bias in LATE estimates are only about 25%. With

lower levels of inconsistency or a relatively flat MTE, the size of the IV bias is likely to be

small.
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A.2.7. Model parameters without additional regressors

The baseline model uses dummies for a late-week decision and whether the second-round hear-

ing was made over lunch to aid in identification. In this section I present estimates from a model

identified without regressors, as well as the main results. Identification now leans more strongly

on functional form, though judge randomization still identifies relative consistency for judges

with similar approval rates. Figure A12 presents the coefficients. The raw coefficients are simi-

lar to the baseline model but less precisely estimated. This reassuringly suggests that the results

are driven mainly by the judge randomization (and to some degree the functional forms), but

that the use of regressors additionally improves precision.

In Section 2.4.6 I present evidence that judicial inconsistency is due more to idiosyncratic

observational errors than permanent ideological differences between judges in statutory inter-

pretation. One fear with this approach is that errors arising from a late-week and noon-time

decisions may be precisely idiosyncratic errors rather than ideological ones. In other words, the

choice of regressors is determining the result. Table A17 tests the additional explanatory power

of judge identity analogously to Table 4.9, but uses the no-regressor model probabilities. The

results are comparable to the baseline specification: the model predicts second-stage approval

well, but conditional on the model probabilities there is little additional predictive power from

knowing the exact judge pairs. The distribution of the EB means of the judge pairs is very sim-

ilar — in my preferred, rightmost specification, the standard deviation of the judge pair effects

is 0.003 in the both models — and the F-test similarly does not reject that the judge pair effects

are jointly zero.

In Table A18, I test the effect of experience and workload on inconsistency. Similarly to

Table 4.10, I find that judges become dramatically more consistent after one year of experience,
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but continue to make gains through at least the first ten years on the job. Higher caseloads

decrease consistency (Columns 3 and 4), though only for judges with fewer than 6 years of

experience (Column 5).

Table A19 contains estimates of the effect of judicial selection reform on judge consistency.

As I describe in Section 2.3.3, changes to the laws governing judicial selections made it much

more difficult for governments to grant judgeships to unqualified party supporters after 1988. In

Section 2.4.9 I show that this reduced baseline estimates of consistency by approximately 75%.

In the model estimated without regressors, the results are large but not quite so dramatic — in

the baseline specification inconsistency declines by 0.7 from a pre-reform mean of 1.7.

Finally, Table A20 mirrors the results of the baseline model: estimates of judge thresholds

γ js are negatively correlated with survey measures of judge favorability to claimants, and model-

estimated inconsistency σ j1 is negatively correlated with surveyed consistency. Again, this

suggests that the correlation between model and survey results are not driven by the use of

regressors in identification.
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A.3. Appendix for The Effects of Parental and Sibling Incarceration: Evidence from Ohio

A.3.1. Using voter registry data to understand migration

Insofar as the goal of this paper is to provide the causal effects of intrafamily spillovers of in-

carceration, we are concerned about non-random migration out of study locations as a function

of incarceration. If individuals with incarcerated parents are more likely to move out of state

than those who parents were not incarcerated, then our positive results could be spurious: those

children might be getting arrested and incarcerated at similar or even higher rates, but if it hap-

pened out of state, it would not be observed in our data. To understand whether migration out of

our sample is a problem, we employ voter registry data to answer two questions. First, does the

study sample migrate to other areas of Ohio outside of our study sample? In the case of crime

and education outcomes, we are limited to viewing the three largest counties in Ohio: Cuya-

hoga, Franklin, and Hamilton. That concern is absent for teen pregnancy or fertility effects as

our data spans the entire state. Second, does the study population migrate out of the state?

Voter registration data is a useful way to test both of these concerns since the registry con-

tains adult address information, so we can track children with incarcerated parents as adults. We

observe the address of anyone who was ever registered to vote in Ohio between June 2000 and

November 2016, approximately 11.4 million unique individuals. The inclusion of an individual

in the registry provides evidence that the person is living in Ohio. Comparing an individual’s

birth address to their voter registry address shows us whether the individual has moved to other

parts of the state. Unlike other states that preclude some ex-convicts from voting, Ohio only re-

stricts convicted felons from voting or being part of the voter registry during their time in prison

(Ohio state code 2961.01). Anyone granted parole, judicial release, or a conditional pardon or
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is released under a non-jail community control sanction or a post-release control sanction is eli-

gible to be a voter, and hence can register as a voter. Therefore, in Ohio, the voter registry is one

of the best places to find current address, and hence, will be our measure of adult address. We

link voter registry data to our birth certificate data using name and date of birth. We construct

distance between birth addresses and voter registration address in kilometers using flight path

distance.

Looking first at whether incarceration induces migration out of state, ?? provides evidence

to the contrary. Incarceration leads to an insignificant positive effect on being registered as a

voter in Ohio in the full sample. The effects for boys is larger than girls by about 2.5 percentage

points, but both are insignificant and positive. Overall, we see a large share of our study popu-

lation, 69%, are registered as voters, and hence clearly observable as living within the state. A

large share of the non-registered are likely to be residing in Ohio, but are simply not registered

voters. In future iterations of this paper, we will match our study sample to the neighboring

states to provide further evidence on migration.

Looking to columns (4-6), we see that the incarceration of a parent leads to a significant

increase of 11 percentage points in voter registration for the quartile of our study sample born

in the poorest neighborhoods. The majority of this effect is coming from boys with incarcerated

parents. This is the exact opposite of the effect we observe for their criminal behavior, where

the crime reductions are largest for boys coming from the lowest socioeconomic status neigh-

borhoods. Taken together, this is compelling evidence that the reductions in crime associated

with parental incarceration are not driven by differential out-migration from the state. Instead,

if children with incarcerated are more likely to remain in state, this suggests that our estimates
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may even be downward biased. It may also be that having an incarcerated parent acts to mo-

bilize the young to vote for new policies, but the opposite directions of the crime and voting

registry effects make it implausible that out-of-state migration could be driving our positive

results.

?? and ?? show that parental incarceration also does not lead to out-migration within state.

Restricting the analysis sample to those who were observed in the voter registry data, ?? shows

that parental incarceration leads to no statistically or economically significant effects on the dis-

tance between a child’s birth address and voter registry address. For boys with female parents,

who had the largest negative impacts on their likelihood of being in court or incarcerated be-

cause of parental incarceration, we find an insignificant reduction in lifetime migration distance

of about 10% relative to the dependent variable mean.

?? uses county of residence in the voting data to see whether children of incarcerated parents

are more likely to move away from Cuyahoga, Franklin, and Hamilton counties. Among those

children in our data who had incarcerated parents and are registered to vote in Ohio, around

75% live in one of these three counties. Migration rates for this population are generally low,

with around 80% living in their county of birth.8 Having an incarcerated parent does not affect

either the probability that a child moves from their birth county or that they are no longer a

resident of the counties for which we observe outcomes. Therefore, out-migration from the

geographic study window is unlikely to generate the negative impacts on the criminal outcomes

measured here.

The proceeding results demonstrate that out-migration is unlikely to be driving the reduc-

tions in contact with the criminal justice system seen in our main results. However, the increase

8If anything, this is probably an overestimate of migration rates for children in our sample since those individuals
who register to vote are likely to be more affluent and geographically mobile.
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in voter registration for those coming from the poorest neighborhoods is interesting in its own

right and could result from three forces. First, it could represent a reduction in migration for

children with incarcerated parents as a result of various sentencing restrictions like parole re-

quirements to stay within city limits given by the judge or due to other decisions within the

family. Second, it could result from children being incarcerated during the sample period and

thus lacking a voting address. Since children of non-incarcerated parents are more likely to be

incarcerated, this could explain some of the effect. Third, it could mark an increase in activism

on the part of children with incarcerated parents. We don’t take a stand on any of these forces,

and as is usually true, the answer is likely that they are all at play. Incorporating data from

neighboring states will be helpful in further establishing that differential outmigration is not

biasing the results.
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A.3.2. Incarceration effects on family size

To further characterize the impacts of incarceration on defendants and to understand how incar-

ceration potentially affects within family resource allocation, we analyze the impacts of incar-

ceration on defendants’ future fertility outcomes. For defendants, incarceration could affect the

likelihood of having children through “incapacitation effects,” as they are much less likely to

have children while physically incarcerated, and through their ability or desire to have children

after release. In particular, formerly incarcerated individuals may find it more difficult to find

a mate with whom to have children or may separate from pre-existing partners due to stigma

and other negative impacts of incarceration, such as employment loss. Even when incarceration

does not make it more difficult to find a partner, earnings losses may make it harder to raise

a children, thereby reducing the likelihood for an individual to choose to have more children.

For their children at the time of incarceration, changes to family fertility potentially affect the

social or economic support received by the other family members. These impacts would likely

be relatively small. Although there is a large literature in economics on trade-offs between

child quantity and quality, increasing family size does not seem to reduce important observable

outcomes such as child educational attainment in developed countries (?).

?? analyzes the cumulative number of children born to a defendant in each quarter after

being charged. Incarceration leads to sustained, albeit small, negative effects on family size.

The figure shows coefficients from a quarter-by-quarter regression of the cumulative number

of new children since judge assignment on the leave-out judge severity. Ten quarters after

incarceration, the incarcerated have an average of 0.015 fewer children than those who were

not incarcerated. This number grows to .023 fewer children after 20 quarters. With reduced

family sizes, it is possible for incarcerated parents to reallocate their parenting resources towards
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their pre-existing children away from the counterfactual children they would have had. This is

unlikely to be a major driver of the results we see. The typical defendant has on average 0.61

children, hence these impacts are miniscule in proportion. The results still do have implications

for the incarcerated population as a whole, who may have preferred to have more children.

The lack of either ability or desire could either be co-moving or driving some of the increased

criminogenic impacts observed in the literature and in Figure 4.25.



225

A.4. Appendix Tables and Figures
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Figure A1. Pre-move trends in academic outcomes, by mover type without ad-
ditional controls
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Displays the pre-move achievement trends for the four years leading
up to a move of 25 miles. Results reported separately for four groups
of movers: within CT, within ET, ET to CT, and CT to ET. Coeffi-
cients recovered from a regression of test scores on time-until-move
dummies and a fixed effect for the period before the move. Stan-
dard errors are clustered at the individual level, and included as bars
representing 95% confidence intervals.



227

Figure A3. Tanner stage 3 proportions by age and sex
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Displays proportion of children who had entered the Tanner Stage for pubic hair
development at a given age for males and females. Horizontal line represents
median child entering the stage.
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Figure A4. Relative start time near the time zone boundary
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Displays a nonparametric regression of relative start time (start time minus sunrise) on
distance to the time zone boundary, estimated separately for each time zone. Scatter points
are ten mile bin averages.
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Figure A5. Effect of placebo time zones on academic achievement, no sample
exclusion near true time zone boundary
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Dependent variable as noted in panel heading. Test scores measured in SDs normalized at the grade-
year level for the entire state. Thin horizontal lines represent baseline coefficient estimates. We generate
placebo time zones in ten mile increments from the true time zone boundary. Then, placebo coefficients
are calculated from individual regressions of the outcome on the true time zone interacted with puberty,
and the placebo time zone interacted with puberty. All specifications include age-gender dummies,
longitude controls, school demographic means (FRL, male, black, Asian, and Hispanic) and individ-
ual fixed effects. Standard errors clustered at the individual level. We display results including and
excluding cross-time zone movers.
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Figure A7. MTE of second-round approval on first-round approval judge
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on second-round approval (implicitly, no one who is re-
jected in the first round is approved in the second round).
Estimation is from regressing a second-round approval on a
second-order polynomial in the judge-level first-round ap-
proval means, then taking the analytic derivative. First-
round approval is instrumented by judge assignment. The
distribution of judge-mean approval rates is displayed as a
histogram. The dashed line is the MTE estimated without
the outlier point.
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Figure A8. Scatter plot of first- and second-round consistency σ js
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Figure A9. Estimated MTE at baseline and under consistency
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Figure demonstrates how inconsistency affects estimate of MTE. I plot the base-
line MTE in solid blue, then use model estimates to construct an estimate of
the MTE if all judges were perfectly consistent (ie, σ j1 = 0) but had the same
average approval rate.
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Figure A10. Bias for different MTEs
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(d) Bias, ρ = 1.5
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Panel A plots the marginal treatment effects m(v) = 5+1.5∗ (1− v)ρ for ρ = {0.5,1,1.5}. Panels B,
C and D plot bias over the support of the main mass of the instrument for each MTE.
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Figure A12. Distribution of judge coefficients, model identified without regressors
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Figure displays coefficients for decision model 1[ri > γ js+ ε̃i js], ε̃i js∼N (0,σ2
js). All models allow the

parameters of the Pareto distribution of ri to vary flexibly by office of origination as well as after 2002
relative to before 2002, when there were legislative changes that may have impacted the distribution of
case quality. Each panel contains the density of the raw and shrunken estimates of the judge thresholds
γ1 and γ2, and judge inconsistency σ1 and σ2. Black line is density of case quality ri. Shrunken
estimates recovered via deconvolution of estimates accounting for coefficient-specific standard errors
(Delaigle and Meister, 2008).
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Table A1. Academic outcomes on school start time for varying mover definitions, with student fixed effects

Math (SDs) Reading (SDs)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
dist 15 mi 20 mi 25 mi 30 mi dist 15 mi 20 mi 25 mi 30 mi

Start time - sunrise (h) 0.037 0.029 0.014 0.009 0.009 0.037 0.034 0.026 0.061∗ 0.053
(0.034) (0.033) (0.031) (0.035) (0.037) (0.036) (0.034) (0.032) (0.036) (0.038)

Start time X puberty 0.036∗∗ 0.038∗∗ 0.070∗∗∗ 0.073∗∗∗ 0.060∗∗∗ 0.007 0.011 0.018 -0.004 -0.008
(0.018) (0.017) (0.018) (0.019) (0.022) (0.019) (0.018) (0.018) (0.020) (0.023)

P(Start+Start X puberty=0) 0.001 0.002 0.000 0.001 0.004 0.029 0.025 0.033 0.014 0.049
Cragg-Donald F-stat 610.14 611.40 677.49 542.01 542.98 684.27 701.42 766.47 619.26 612.31
Number of students 33712 35744 28969 24768 21557 34144 36197 29393 25191 21957
Observations 143921 153462 120233 99835 84165 150800 160997 126110 104791 88408
Dependent variable as noted in panel heading. Test scores measured in SDs normalized at the grade-year
level for the entire state. Start time and its interaction with puberty are instrumented by time zone and the
interaction of time zone and puberty. All specifications include age-gender dummies, longitude controls,
school demographic means (FRL, male, black, Asian, and Hispanic), and individual fixed effects. Standard
errors in parentheses and clustered at the individual level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A2. Academic and behavioral outcomes on start time, with student fixed effects

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Panel A: Math Test Scores (SDs)

Start time - sunrise (h) 0.012 0.011 0.009 0.020 0.028 0.028 0.031 0.036 0.037 0.009 0.014 0.014 0.003 0.012 0.012
(0.041) (0.035) (0.035) (0.036) (0.037) (0.036) (0.035) (0.036) (0.036) (0.035) (0.034) (0.034) (0.036) (0.034) (0.034)

Start time X puberty 0.073∗∗∗ 0.051∗∗∗ 0.054∗∗∗ 0.057∗∗∗ 0.037∗ 0.039∗ 0.065∗∗∗ 0.041∗∗ 0.043∗∗ 0.073∗∗∗ 0.050∗∗∗ 0.053∗∗∗ 0.076∗∗∗ 0.050∗∗∗ 0.053∗∗∗

(0.020) (0.019) (0.019) (0.021) (0.021) (0.021) (0.020) (0.020) (0.020) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

P(Start+Start X puberty=0) 0.002 0.005 0.005 0.001 0.003 0.002 0.000 0.001 0.000 0.001 0.003 0.002 0.001 0.004 0.003
Cragg-Donald F-stat 405.14 593.76 604.37 588.76 593.74 606.81 580.48 599.33 612.93 542.01 640.62 655.01 534.48 638.53 655.08
Number of students 24768 23516 23516 24768 23516 23516 24545 23294 23294 24768 23516 23516 24765 23514 23514
Observations 99835 91853 91853 99835 91853 91853 98751 90852 90852 99835 91853 91853 99823 91846 91846

Panel B: Reading Test Scores (SDs)

Start time - sunrise (h) 0.087∗∗ 0.061∗ 0.061∗ 0.081∗∗ 0.075∗∗ 0.074∗∗ 0.071∗∗ 0.065∗ 0.065∗ 0.061∗ 0.049 0.048 0.051 0.046 0.046
(0.041) (0.035) (0.035) (0.037) (0.037) (0.036) (0.035) (0.036) (0.035) (0.036) (0.034) (0.034) (0.036) (0.034) (0.034)

Start time X puberty -0.013 -0.009 -0.008 -0.023 -0.022 -0.022 -0.011 -0.013 -0.013 -0.004 -0.003 -0.003 0.000 -0.002 -0.002
(0.021) (0.020) (0.020) (0.022) (0.021) (0.021) (0.021) (0.020) (0.020) (0.020) (0.019) (0.019) (0.020) (0.019) (0.019)

P(Start+Start X puberty=0) 0.004 0.015 0.015 0.008 0.014 0.014 0.008 0.015 0.014 0.014 0.027 0.027 0.025 0.030 0.030
Cragg-Donald F-stat 486.65 679.86 687.26 637.22 648.26 671.04 656.76 675.89 697.05 619.26 729.44 746.01 616.60 725.65 742.75
Number of students 25191 24048 24048 25191 24048 24048 24963 23823 23823 25191 24048 24048 25189 24045 24045
Observations 104791 96788 96788 104791 96788 96788 103547 95641 95641 104791 96788 96788 104776 96776 96776

Panel C: Absence Rates

Start time - sunrise (h) -1.860∗∗∗ -1.463∗∗∗ -1.431∗∗∗ -0.718 -0.709 -0.695 -0.848∗ -0.789∗ -0.772∗ -0.869∗ -0.874∗ -0.859∗ -0.965∗∗ -0.904∗ -0.880∗

(0.590) (0.505) (0.502) (0.474) (0.483) (0.479) (0.460) (0.471) (0.467) (0.485) (0.467) (0.464) (0.492) (0.470) (0.466)

Start time X puberty 0.857∗∗∗ 0.677∗∗ 0.637∗∗ 0.395 0.330 0.304 0.439 0.353 0.320 0.469∗ 0.384 0.365 0.491∗ 0.396 0.367
(0.294) (0.278) (0.275) (0.285) (0.286) (0.283) (0.274) (0.278) (0.275) (0.268) (0.268) (0.265) (0.269) (0.270) (0.266)

P(Start+Start X puberty=0) 0.010 0.012 0.011 0.274 0.182 0.166 0.156 0.117 0.103 0.219 0.091 0.087 0.151 0.081 0.077
Cragg-Donald F-stat 274.18 413.70 416.25 425.38 431.70 439.86 453.02 458.47 467.24 383.62 451.74 458.44 373.38 447.12 454.86
Number of students 15906 15130 15130 15906 15130 15130 15906 15130 15130 15906 15130 15130 15903 15128 15128
Observations 66263 61128 61128 66263 61128 61128 66263 61128 61128 66263 61128 61128 66252 61122 61122

Urban and log income No Yes Yes No Yes Yes No Yes Yes No Yes Yes No Yes Yes

Size and S/T ratio No No Yes No No Yes No No Yes No No Yes No No Yes

District controls No No No Yes Yes Yes No No No No No No No No No

District grade 3 controls No No No No No No Yes Yes Yes No No No No No No

School controls No No No No No No No No No Yes Yes Yes No No No

School-grade controls No No No No No No No No No No No No Yes Yes Yes
Dependent variable as noted in panel heading. Test scores measured in SDs normalized at the grade-year level for the entire state. Absentee rate is the
fraction of days the child missed school. Start time and its interaction with puberty are instrumented by time zone. Sample is all children who moved more
than 25 miles. All specifications include age-gender dummies, longitude, and individual fixed effects. Standard errors in parentheses and clustered at the
individual level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3. Outcomes on school start time, with latitude and school test grade scores

Math Reading

(1) (2) (3) (4) (5) (6)

Start time - sunrise (h) 0.009 -0.035 0.015 0.061∗ 0.035 0.051
(0.035) (0.033) (0.037) (0.036) (0.034) (0.037)

Start time X puberty 0.073∗∗∗ 0.085∗∗∗ 0.073∗∗∗ -0.004 0.004 -0.001
(0.019) (0.019) (0.020) (0.020) (0.020) (0.020)

Latitude controls No Yes No No Yes No

Third grade district scores No No Yes No No Yes

P(Start+Start X puberty=0) 0.001 0.029 0.001 0.014 0.069 0.035
Cragg-Donald F-stat 542.01 631.95 508.46 619.26 715.55 589.27
Number of students 24768 24768 24288 25191 25191 24730
Observations 99835 99835 97483 104791 104791 102276
Dependent variable as noted in panel heading. Test scores measured in SDs normalized
at the grade-year level for the entire state. Start time and its interaction with puberty are
instrumented by time zone and the interaction of time zone and puberty. Sample is all
children who moved more than 25 miles. All specifications include age-gender dummies,
longitude controls, school demographic means (FRL, male, black, Asian, and Hispanic),
and individual fixed effects. Standard errors in parentheses and clustered at the individual
level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A4. Florida school and peer characteristics on move

% FRL % male % black % Hispanic % Asian S/T Med income
(1) (2) (3) (4) (5) (6) (7)

Move, ET-ET -4.494∗∗∗ -0.452∗∗∗ 0.186 -0.100 0.263∗∗∗ 0.258∗∗∗ 1010.277∗

(0.726) (0.118) (0.801) (0.224) (0.059) (0.081) (601.359)

Move, CT-CT -1.681∗∗∗ -0.316∗∗∗ -0.582∗∗ 0.110∗∗∗ -0.011 0.190∗∗∗ -429.606∗∗∗

(0.280) (0.054) (0.227) (0.037) (0.025) (0.038) (162.849)

Move, ET-CT 0.115 -0.009 -15.350∗∗∗ 0.025 0.426∗∗∗ 0.124 -4778.338∗∗∗

(0.923) (0.162) (1.015) (0.183) (0.084) (0.103) (731.901)

Move, CT-ET -4.513∗∗∗ -0.557∗∗∗ 13.965∗∗∗ 0.495∗∗∗ 0.023 0.113 5729.001∗∗∗

(0.939) (0.163) (1.010) (0.166) (0.088) (0.101) (752.117)

P(ET-CT=CT-ET) 0.002 0.029 0.000 0.105 0.003 0.944 0.000
Observations 31763 31763 31763 31763 31763 31763 27747
Dependent variable as noted in panel heading. Regression is of school/zip summary stat on move, with
student X moving event FE. Standard errors in parentheses and clustered at the individual level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A5. Alternative definitions of puberty

Math (SDs) Reading (SDs)

(1) (2) (3) (4) (5) (6) (7) (8)
Preferred Stage 2 Stage 4 BG Preferred Stage 2 Stage 4 BG

Start time - sunrise (h) 0.009 0.011 0.032 0.025 0.061∗ 0.057 0.056 0.058
(0.035) (0.036) (0.035) (0.035) (0.036) (0.036) (0.036) (0.036)

Start time X puberty 0.073∗∗∗ 0.064∗∗∗ 0.029 0.040∗∗ -0.004 0.003 0.006 0.002
(0.019) (0.019) (0.020) (0.019) (0.020) (0.020) (0.021) (0.020)

P(Start+Start X puberty=0) 0.001 0.003 0.005 0.008 0.014 0.012 0.002 0.010
Cragg-Donald F-stat 542.01 566.32 444.15 542.35 619.26 655.35 487.58 615.52
Number of students 24768 24768 24768 24768 25191 25191 25191 25191
Observations 99835 99835 99835 99835 104791 104791 104791 104791
Dependent variable as noted in panel heading. Test scores measured in SDs normalized at the grade-year level
for the entire state. Absentee rate is the fraction of days the child missed school. Start time and its interaction
with puberty are instrumented by time zone and the interaction of time zone and puberty. Sample is all children
who moved more than 25 miles. All specifications include age-gender dummies, longitude controls, school
demographic means (FRL, male, black, Asian, and Hispanic) and individual fixed effects. Standard errors in
parentheses and clustered at the individual level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A6. Academic and behavioral outcomes on start time, with student fixed effects

(1) (2) (3) (4) (5) (6) (7)

Panel A: First stage, relative start time (hours)

CT (=1) 0.598∗∗∗ 0.475∗∗∗ 0.585∗∗∗ 0.547∗∗∗ 0.475∗∗∗ 0.584∗∗∗ 0.547∗∗∗

(0.015) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020)

Observations 115778 115778 115778 115778 115778 115778 115778

Panel B: IV estimates, math test scores (SDs) on relative start time

Start time - sunrise (h) -0.005 0.047 0.048∗ 0.044 0.045 0.048∗ 0.043
(0.019) (0.034) (0.028) (0.029) (0.034) (0.028) (0.029)

Cragg-Donald F-stat 2254.173 744.796 1120.532 1002.330 746.364 1120.434 1003.020

Panel C: IV estimates, reading test scores (SDs) on relative start times

Start time - sunrise (h) 0.061∗∗∗ 0.081∗∗ 0.069∗∗ 0.059∗∗ 0.080∗∗ 0.069∗∗ 0.059∗∗

(0.019) (0.032) (0.028) (0.028) (0.032) (0.028) (0.028)

Cragg-Donald F-stat 2587.05 911.72 1209.23 1151.57 913.31 1209.80 1152.03

Panel D: IV estimates, absence rate (%) on relative start times

Start time - sunrise (h) -0.664∗∗ -1.539∗∗∗ -0.549 -0.670∗ -1.510∗∗∗ -0.559 -0.672∗

(0.275) (0.501) (0.391) (0.407) (0.499) (0.389) (0.405)

Longitude No Yes Yes Yes Yes Yes Yes

District quality No No Yes No No Yes No

School quality No No No Yes No No Yes

Time since move No No No No Yes Yes Yes

Cragg-Donald F-stat 1394.52 475.67 721.91 669.77 476.44 722.82 669.98
Dependent variable as noted in panel heading. Test scores measured in SDs normalized at the grade-year
level for the entire state. Absentee rate is the fraction of days the child missed school. Relative start time
instrumented by time zone. Sample is all children who moved more than 25 miles. All specifications include
age-gender dummies and individual fixed effects. Sample size is fixed within panels: 34018 students and
115778 student-years in Panel A, 24768 students and 99835 student-years in Panel b, 25191 students and
104791 student-years in Panel C, and 15906 students and 66263 student-years in Panel D. Standard errors
in parentheses and clustered at the individual level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A7. Hours of sleep by time zone

(1) (2) (3)

Central 0.081 0.103
(0.088) (0.131)

Puberty -0.451∗∗∗ -0.804∗∗∗ -0.676∗∗∗

(0.055) (0.122) (0.134)
Weekend 1.421∗∗∗ 1.192∗∗∗ 1.229∗∗∗

(0.102) (0.158) (0.158)
Central X weekend -0.107 -0.166 -0.102

(0.156) (0.194) (0.188)
Central X puberty 0.218 0.183 0.257

(0.139) (0.185) (0.195)
Weekend X puberty 0.384∗∗∗ 0.616∗∗∗ 0.586∗∗∗

(0.087) (0.161) (0.150)
Central X wkend X puberty -0.215 -0.149 -0.229

(0.168) (0.239) (0.224)

P(Central + Central X weekend = 0) 0.830 0.566
P(Central + Central X puberty = 0) 0.074 0.085
Demographic controls No Yes No
Student fixed effects No No Yes
Observations 6,084 3,737 6,084
Dependent variable is hours of sleep per night. Sample is all children 6-19 in
the Child Development Supplement of the Panel Study of Income Dynamics
within 400 miles of the ET-CT time zone boundary in a state with a single time
zone. Demographic controls in Column 2 include gender, race, and FRL status.
Standard errors in parentheses and clustered at the state level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A8. Judge summary statistics

Mean SD Min Max

Male judge (=1) 0.75 0.44 0.00 1.00
Liberal appointee (=1) 0.72 0.45 0.00 1.00
Experience (years) 6.51 5.63 0.00 28.00
Workload -0.07 0.80 -3.45 1.53
Male (=1) 0.63 0.43 0.00 1.00
African (=1) 0.19 0.39 0.00 1.00
Asia (=1) 0.10 0.31 0.00 1.00
South American (=1) 0.35 0.48 0.00 1.00
Calgary (=1) 0.02 0.14 0.00 1.00
Montreal (=1) 0.42 0.49 0.00 1.00
Ottawa (=1) 0.02 0.13 0.00 1.00
Vancouver (=1) 0.03 0.18 0.00 1.00

Observations 58,604
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Table A9. Randomization using name-imputed continent of origin

Male Africa Asia South Predicted 1st-round
America approval mean approval

(1) (2) (3) (4) (5) (6)

Panel A: First round judges

First-round approval rate -0.002 -0.068∗∗∗ -0.011 0.098 -0.002
(0.020) (0.023) (0.040) (0.071) (0.002)

F-stat 0.87 2.90 3.04 6.65 3.51
Prob 0.75 0.00 0.00 0.00 0.00
Observations 58,604 58,604 58,604 58,604 58,604

Panel B: Second round judges

Second-round approval rate -0.042 0.032 -0.022 0.027 0.002 -0.027
(0.033) (0.039) (0.042) (0.041) (0.003) (0.018)

F-stat 1.07 1.83 1.19 1.61 1.54 4.02
Prob 0.33 0.00 0.15 0.00 0.01 0.00
Observations 8,446 8,446 8,446 8,446 8,446 8,446
All regressions include office X pre-2002 fixed effects to account for cross-office differences in case
strength and changes in government policy in 2002. Standard errors clustered at the judge level in
parentheses. Gender and continent of origin predicted from claimant name. IRB mean approval is
the approval rate of the IRB Member who initially denied refugee status to the claimant. Predicted
approval comes from a regression of approval on gender, continent of origin and IRB Member approval
rate. Judge approval rates on right side partial out office X pre/post-2002. F-stats come from separate
regression of outcome on judge fixed effects. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A10. Testing effect of regressors on distribution of judge errors

(1) (2) (3)

Coefficients β affecting judge threshold γ1
End-of-week decision 0.057∗∗∗ 0.087∗∗∗ 0.051∗∗

(0.004) (0.029) (0.021)
Hearing schedule over lunch 0.411∗∗∗ 0.381∗∗ 0.510∗∗∗

(0.077) (0.193) (0.165)
Coefficients ψ affecting judge inconsistency σ1

End-of-week decision 0.040
(0.058)

Hearing schedule over lunch 0.371
(1.287)

SD of γ1 0.836 0.833 0.840
SD of σ1 0.485 0.467 0.475
Reports coefficients for choice model 1[ri > γ js + Xi jsβs +

ε̃i js(Wi js)], ε̃i js(Wi js) ∼ N (0,σ js(Wi js)
2), σ js(Wi js) =

exp(σ̃ js +Wi jsψs). All models include controls for time/date
of decision in β , and allow the parameters of the Pareto
distribution of ri to vary flexibly by office of origination as
well as after 2002 relative to before 2002, when there were
legislative changes that may have impacted the distribution of
case quality. Standard errors clustered at the level of the first
stage judge. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A11. Lawyer characteristics, survey respondents vs lawyer population

Respondents NR/NC Difference

Success rate (first round) 0.27 0.19 0.078∗∗∗

[0.22] [0.21] (0.027)
Success rate (second round) 0.13 0.08 0.049∗∗∗

[0.16] [0.15] (0.019)
First case (year) 2002.55 2001.37 1.179∗

[5.36] [5.39] (0.698)
Number of cases (total) 141.77 101.62 40.149

[225.93] [221.69] (28.752)
Male (=1) 0.67 0.60 0.067

[0.47] [0.48] (0.067)

Observations 64 867
Sample is all lawyers who appeared before the Federal Court.
NR/NC = no response or no contact information. Standard deviations
in square brackets and standard errors in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.



246

Table A12. Model coefficients on survey responses including accuracy response

(1) (2) (3) (4)

Panel A: Threshold γ1 (mean=2.49, SD=1.05)

Accuracy, SD -0.130 -0.136∗ 0.111 0.128
(0.096) (0.076) (0.172) (0.112)

Favorability, SD -0.221 -0.315∗

(0.260) (0.184)

Inconsistency, SD 0.153∗ 0.075
(0.087) (0.069)

Respondent FE No Yes No Yes
Observations 174 174 174 174

Panel B: Threshold γ2 (mean=2.16, SD=1.46)

Accuracy, SD -0.195∗∗∗ -0.308∗∗∗ -0.016 -0.167
(0.059) (0.079) (0.078) (0.104)

Favorability, SD -0.225∗∗∗ -0.309∗∗∗

(0.083) (0.107)

Inconsistency, SD 0.039 -0.133∗

(0.055) (0.072)

Respondent FE No Yes No Yes
Observations 174 174 174 174

Panel C: Consistency σ1 (mean=2.06, SD=2.15)

Accuracy, SD 0.029 0.092 0.011 0.149
(0.073) (0.083) (0.099) (0.113)

Favorability, SD 0.123 0.052
(0.124) (0.111)

Inconsistency, SD 0.126∗ 0.168∗∗

(0.067) (0.078)

Respondent FE No Yes No Yes
Observations 174 174 174 174
Reports linear regressions of model coefficients on sur-
vey responses, estimated with Hanushek (1974) cor-
rection for estimated dependent variable. Decision
model is 1[ri > γ js + Xi jsβs + ε̃i js(Wi js)], ε̃i js(Wi js) ∼
N (0,σ js(Wi js)

2), σ js(Wi js) = exp(σ̃ js +Wi jsψs). All models
include controls for time/date of decision in βs, and allow the
parameters of the Pareto distribution of ri to vary flexibly by
office of origination as well as after 2002 relative to before
2002, when there were legislative changes that may have
impacted the distribution of case quality. I adjust for judge
experience in βs and ψs. Model standard errors clustered at the
level of the first stage judge, linear standard errors at the judge
level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A13. Inconsistency σ1 on survey responses with approval controls

(1) (2) (3) (4) (5) (6)

Favorability, SD 0.0408 -0.108 0.125∗∗ -0.0430
(0.0694) (0.105) (0.0539) (0.0981)

Inconsistency, SD 0.166∗∗∗ 0.151∗∗ 0.210∗∗∗ 0.131∗∗∗

(0.0563) (0.0583) (0.0505) (0.0437)

Approval rate control Yes Yes Yes Yes Yes Yes

Observations 136 136 136 136 136 136
Estimated with Hanushek (1974) correction for estimated dependent variable. All mod-
els include respondent fixed effects and a control for the judge-experience level ap-
proval rate. Standard errors clustered at the judge level in parentheses. ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table A14. Approval rate for judges before and after reform

Approval rate Approval, year residualized

(1) (2) (3) (4) (5) (6)

After 1988 reform (=1) 0.0199 0.0490 0.0485 0.0204 0.0656 0.0656
(0.0272) (0.0546) (0.0559) (0.0260) (0.0541) (0.0555)

Liberal appointee (=1) -0.00621 0.000522
(0.0211) (0.0213)

Year appointed No Yes Yes No Yes Yes

N judges 53 53 53 53 53 53
Robust standard errors in parentheses and clustered at the judge level. ∗ p < 0.10, ∗∗ p <
0.05, ∗∗∗ p < 0.01.
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Table A15. Inconsistency before and after reform, control for approval rate

Baseline Experience control in σ1

(1) (2) (3) (4) (5) (6)

After 1988 reform (=1) -0.211 -0.362 -0.379 -1.706∗∗∗ -1.772∗∗∗ -1.717∗∗

(0.139) (0.251) (0.260) (0.566) (0.627) (0.647)

Liberal appointee (=1) -0.0429 -0.143
(0.104) (0.119)

Male judge (=1) -0.201∗ -0.216∗

(0.113) (0.128)

Year appointed No Yes Yes No Yes Yes

Pre-reform mean 1.26 1.26 1.26 2.20 2.20 2.20
N judges 53 53 53 53 53 53
Estimated with Hanushek (1974) correction for estimated dependent variable and
control for judge approval rate. Dependent variable is consistency σ j1, which
is estimated from decision model 1[ri > Xi jsβs + γ js + ε̃i js(Wi js)], ε̃i js(Wi js) ∼
N (0,σ js(Wi js)

2), σ js(Wi js) = exp(σ̃ js +Wi jsψs). In the right-hand panel, βs and ψs
include dummies for more than 1, 5, and 10 years of experience. Robust standard errors
in parentheses and clustered at the judge level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A16. Second-round inconsistency for judges before and after reform

Baseline Experience control in σ2

(1) (2) (3) (4) (5) (6)

After reform (=1) -0.0448 0.425 0.297 -1.432∗∗∗ -0.994 -0.450
(0.290) (0.377) (0.391) (0.311) (0.816) (0.842)

Liberal appointee (=1) 0.0973 -0.651
(0.175) (0.397)

Male judge (=1) -0.453∗∗ -0.817∗∗

(0.198) (0.358)

Year appointed No Yes Yes No Yes Yes

Pre-reform mean 0.96 0.96 0.96 3.31 3.31 3.31
N judges 53 53 53 53 53 53
Estimated with Hanushek (1974) correction for estimated dependent variable. De-
pendent variable is consistency σ j2, which is estimated from decision model 1[ri >

Xi jsβs + γ js + ε̃i js(Wi js)], ε̃i js(Wi js) ∼ N (0,σ js(Wi js)
2), σ js(Wi js) = exp(σ̃ js +

Wi jsψs). In the right-hand panel, βs and ψs include dummies for more than 1, 5,
and 10 years of experience. Robust standard errors in parentheses and clustered at the
judge level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A17. Second-round outcome on model approval probability and judge-pair FEs

Judge-pair round FEs Judge-pair FEs

(1) (2) (3) (4)

Model approval probability 0.949∗∗∗ 0.947∗∗∗ 0.976∗∗∗ 0.975∗∗∗

(0.166) (0.166) (0.0478) (0.0478)

Model controls No Yes No Yes

Mean approval 0.44 0.44 0.44 0.44
F-stat for judge pairs 1.02 1.02 0.98 0.99
P-value 0.318 0.314 0.641 0.610
Bootstrap p-value 0.674 0.657 0.834 0.804
SD of judge-pair EB means 0.006 0.006 0.004 0.003
Observations 8,196 8,196 8,196 8,196
Regresses second-round approval on model-predicted likelihood of approval
and judge-pair fixed effects. In contrast to Table 4.9, model is estimated without
using regressors for identification. Left two columns construct judge-pair FEs
accounting for order of assignment; right two columns ignore this distinction.
Model controls include office of origination, pre-post 2002, and an end-of-
week and noon hearing dummy for the second-round hearing. Standard errors
clustered at the judge level in parentheses. ∗ p< 0.10, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table A18. First-round judge consistency by experience and workload

(1) (2) (3) (4) (5)

Coefficients ψ affecting judge inconsistency σ1
Experience > 1 year −0.797∗∗ −0.600∗∗∗ −0.557∗∗ −0.462∗∗

( 0.365) ( 0.212) ( 0.267) ( 0.203)
Experience > 5 years −0.351∗∗∗ −0.345∗ −0.049 −0.054

( 0.104) ( 0.199) ( 0.561) ( 0.380)
Experience > 10 years −0.530 −0.452∗∗∗ −0.447∗∗∗ −0.501∗∗∗

( 0.524) ( 0.101) ( 0.170) ( 0.012)
Log caseload 0.204∗∗∗ 0.139∗∗∗

( 0.020) ( 0.038)
Log caseload (≤ 5 yrs exp) 0.179∗∗∗

( 0.025)
Log caseload (> 5 yrs exp) 0.056

( 0.146)
SD of γ1 0.817 0.715 1.417 1.122 1.044
SD of σ1 1.562 1.486 0.537 0.991 1.084

Second-round experience control Yes Yes No Yes Yes
Career number of cases No Yes No No No
Reports coefficients for decision model 1[ri > γ js + Xi jsβs + ε̃i js(Wi js)], ε̃i js ∼
N (0,σ2

js), σ js(Wi js) = eσ̃ js . In contrast to the baseline model, the reported models do
not use timing regressors for identification. All models include controls for time/date of decision
in β , and allow the parameters of the Pareto distribution of ri to vary flexibly by office of
origination as well as after 2002 relative to before 2002, when there were legislative changes that
may have impacted the distribution of case quality. Standard errors clustered at the level of the
first stage judge. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



253

Table A19. Inconsistency before and after judge selection reform

Baseline Experience control in σ1

(1) (2) (3) (4) (5) (6)

After reform (=1) -0.154 -0.703∗∗ -0.820∗∗∗ -1.096∗∗∗ -0.745∗∗ -0.698∗

(0.150) (0.287) (0.283) (0.307) (0.339) (0.376)

Liberal appointee (=1) 0.0549 -0.0788
(0.135) (0.0797)

Male judge (=1) -0.409∗∗ 0.00181
(0.168) (0.119)

Year appointed No Yes Yes No Yes Yes

Pre-reform mean 1.49 1.49 1.49 1.71 1.71 1.71
N judges 53 53 53 53 53 53
Estimated with Hanushek (1974) correction for estimated dependent variable. De-
pendent variable is consistency σ j1, which is estimated from decision model 1[ri >

γ js +Xi jsβs + ε̃i js(Wi js)], ε̃i js(Wi js)∼N (0,σ js(Wi js)
2), σ js(Wi js) = exp(σ̃ js +Wi jsψs).

In contrast to the baseline model, the reported models do not use timing regressors for
identification. In the right-hand panel, βs and ψs include dummies for more than 1, 5,
and 10 years of experience. Robust standard errors in parentheses and clustered at the
judge level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A20. Model coefficients on survey responses

(1) (2) (3) (4) (5) (6)

Panel A: γ1 (mean=2.65, SD=1.11)

Favorability, SD -0.314 -0.328∗∗ -0.267 -0.321∗

(0.265) (0.163) (0.260) (0.181)

Consistency, SD -0.247∗∗ -0.135∗∗ -0.180∗∗∗ -0.022
(0.100) (0.060) (0.057) (0.083)

Respondent FE No Yes No Yes No Yes
Observations 182 182 182 182 182 182

Panel B: γ2 (mean=2.24, SD=1.22)

Favorability, SD -0.315∗∗∗ -0.435∗∗∗ -0.329∗∗∗ -0.487∗∗∗

(0.117) (0.151) (0.118) (0.156)

Consistency, SD -0.046 -0.071 0.045 0.123∗

(0.068) (0.087) (0.064) (0.073)

Respondent FE No Yes No Yes No Yes
Observations 182 182 182 182 182 182

Panel C: σ1 (mean=2.28, SD=2.19)

Favorability, SD 0.130 0.065 0.187∗∗ 0.138
(0.083) (0.105) (0.077) (0.105)

Consistency, SD -0.110 -0.126∗∗ -0.167∗∗ -0.185∗∗∗

(0.070) (0.059) (0.065) (0.063)

Respondent FE No Yes No Yes No Yes
Observations 182 182 182 182 182 182
Reports linear regressions of model coefficients on survey responses, estimated with
Hanushek (1974) correction for estimated dependent variable. Decision model is 1[ri >
γ js + ε̃i js], ε̃i js(Wi js)∼N (0,σ js(Wi js)

2), σ js(Wi js) = exp(σ̃ js +Wi jsψs). In contrast to
the baseline model, the reported model does not use timing regressors for identification.
The parameters of the Pareto distribution of ri vary flexibly by office of origination as
well as after 2002 relative to before 2002, when there were legislative changes that may
have impacted the distribution of case quality. I adjust for judge experience in βs and
ψs. Model standard errors clustered at the level of the first stage judge, linear standard
errors at the judge level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.


	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Rise and Shine: The Effect of School Start Times on Academic Performance from Childhood through Puberty
	1.1. Introduction
	1.2. Background
	1.3. Identification strategy
	1.4. Data
	1.5. Results
	1.6. Benefits of rearranging start times
	1.7. Conclusion

	Chapter 2. Judicial Errors: Evidence from Refugee Appeals
	2.1. Introduction
	2.2. Model and identification
	2.3. Institutional Background and Data
	2.4. Results
	2.5. Conclusion

	Chapter 3. The Effects of Parental and Sibling Incarceration: Evidence from Ohio
	3.1. Introduction
	3.2. Background
	3.3. Data
	3.4. Empirical Strategy
	3.5. Results
	3.6. Conclusion

	Chapter 4. Tables and Figures
	Bibliography
	Appendix A. 
	A.1. Online Appendix for Rise and Shine: The Effect of School Start Times on Academic Performance from Childhood through Puberty
	A.2. Appendix for Judicial Errors: Evidence from Refugee Appeals
	A.3. Appendix for The Effects of Parental and Sibling Incarceration: Evidence from Ohio
	A.4. Appendix Tables and Figures


