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Abstract

A Study of the Equivariant Gromov-Witten Theory of the Projective Line and Eynard-Orantin

Recursion

Michael Couch

Using Eynard-Orantin topological recursion, we prove here a result concerning the equivariant

Gromov-Witten invariants for the projective line equipped with the standard action of the 2-torus.

Our result is that the genus g, n point Gromov-Witten potential with arbitrary primary insertions

may be written as a sum over certain genus 0, 2 point Gromov-Witten potentials.



4

Acknowledgements

Thanks to my family, who supported me from across an ocean; to my friends from whom I

learned so much about myself in my time away; to my advisor, for his constant positive outlook

throughout the course of my study and in particular for his assistance in proofreading this work;

and to my partner, who believed in me in the most difficult moments.



5

Table of Contents

Abstract 3

Acknowledgements 4

Chapter 1. Introduction 7

1.1. Motivations 7

1.2. Gromov-Witten Theory 8

1.3. Eynard-Orantin Theory 8

1.4. The Results of this Work 10

1.5. Organization 11

Chapter 2. Eynard-Orantin Topological Recursion 12

2.1. Eynard-Orantin Recursion 13

2.2. Correlation Functions and Eynard-Orantin Recursion 14

2.3. Example: The Airy Curve and Intersection Theory on the Moduli Space of Curves. 15

2.4. Other examples 17

Chapter 3. Equivariant Gromov-Witten Theory of the Projective Line. 18

3.1. Moduli Spaces of Stable Maps and Non-equivariant Gromov-Witten Invariants of the

Projective Line 18

3.2. Equivariant Gromov Witten Invariants of the Projective Line 19

Chapter 4. The Spectral Curve for the Equivariant Gromov-Witten Theory of the Projective

Line 22



6

4.1. The Spectral Curve Data 22

4.2. Idempotents in the Equivariant Cohomology 23

4.3. Computing the Gromov-Witten Invariants from the Correlation Functions 27

4.4. Computation of the S operator 39

4.5. The Finite Approximation to the Spectral Curve 42

Appendix A. The Equivariant Cohomology of the Projective Line 47

A.1. Equivariant Cohomology 47

A.2. The Equivariant Cohomology of a Point 48

A.3. Equivariant Line Bundles on the Projective Line 49

A.4. The Equivariant cohomology of the Projective Line 50

Appendix. References 51



7

CHAPTER 1

Introduction

1.1. Motivations

It was recently discovered [15] that the equivariant Gromov-Witten theory [18] of P1 equipped

with the standard action of T = (C×)2 was equivalent to spectral curve data in the sense of Eynard

and Orantin [6, 8]. Motivated by [4], in [15] it was shown that through a particular change of co-

ordinates, the genus g, n-point Gromov-Witten potential with arbitrary primary insertions could be

identified with the genus g, n-point correlation function arising from the data of a spectral curve Σ

and two analytic functions defined on it.

Eynard-Orantin theory has been linked to many counting problems in enumerative geometry

(see [13] for a review). Given a counting problem, however, there is no general recipe for construct-

ing the spectral curve data (although there has been progress on this front – see [4] for instance). It

appears to be a case of mirror symmetry: given a counting problem A, computation of the spectral

curve B amounts to finding the mirror dual of A. Moreover, it is conjectured [3] that the spectral

curve data is a Laplace transform of the counting problem:

Conjecture 1.1 (The Laplace transform conjecture [3]). Given the solutions to the counting

problem for the unstable cases (g, n) = (0, 1) and (0, 2) on the A-model side, their Laplace trans-

forms determine the spectral curve and the recursion kernel of the Eynard-Orantin formalism on

the mirror B-model side.

A hope is that our study of one proven instance of the above might shed new light on the role

of Eynard-Orantin theory in mirror symmetry.
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1.2. Gromov-Witten Theory

Let Mg,n(P1, d) denote the moduli space of stable maps f of degree d from a curve Σ with

marked points (x1, . . . , xn) to P1. Let evj :Mg,n(P1, d)→ P1 denote the evaluation map obtained

by applying f to the jth marked point. Suppose that T acts on P1 as (θ1, θ2) · [z1; z2] = [θ1z1; θ2z2].

This induces an action of T onMg,n(P1, d), and so we have induced maps on equivariant coho-

mology

ev∗j : H∗T (P1,Q)→ H∗T (Mg,n(P1, d),Q).

For j = 1, . . . , n, letψj denote the first equivariant Chern class of the line bundleLi onMg,n(P1, d)

whose fibre over a point (Σ, (x1, . . . , xn), f) is given by T ∗xjΣ.

Given 2g − 2 + n > 0 and classes α1, . . . , αn ∈ H∗T (P1,Q), define the generating function

〈〈
α1

1− z1ψ1

, · · · , αn
1− znψn

〉〉
g,n

=
∑
d,l≥0

a1...an≥0

Qd

l!
〈τa1(α1) . . . τan(αn) τ0(t) . . . τ0(t)︸ ︷︷ ︸

l times

〉g,n+l,d

n∏
i=1

zaii

where t = t0e+ t1H and

〈τa1(α1) . . . τan(αn)〉g,n =

∫
[Mg,n(P1,d)]

vir

∏
1≤j≤n

ψ
aj
j ev∗j(αj) ∈ Q[s1, s2]

with
[
Mg,n(P1, d)

]vir
the virtual fundamental cycle, and Q[s1, s2] = H∗T ({∗},Q). In Chapter 3

we give a definition of this generating function in the case (g, n) = (0, 2)

1.3. Eynard-Orantin Theory

Consider the Eynard-Orantin spectral curve Σ in C2 identified as the locus of points

x = t0 + Y +
Q et1

Y
+ s1 log(Y ) + s2 log

(
Q et1

Y

)
y = log(Y )
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This is a cover Σ → C× under (x, y) 7→ Y . Let Y = P1, P2 denote the two branch points of the

map x → Y . These branch points are of order two, and so in a neighbourhood of a branch point

Pi we have a unique involution Y 7→ Ŷ defined by x(Y ) = x(Ŷ ) with Y 6= Ŷ and Ŷ → Pi as

Y → Pi.

Given indices K = (i1, . . . , ik), write YK = (Yi1 , . . . , Yik).

Let

B(Y, Y ′) =
dY dY ′

(Y − Y ′)2

be a bilinear form defined on Σ × Σ. For integers g, n, n > 0, the correlation functions ωg,n are

n-linear differential forms on Σ×n defined recursively as follows:

ωg,n(Y1, . . . , YN) = 0 g < 0

ω0,1(Y ) = 0

ω0,2(Y1, Y2) = B(Y1, Y2)

and, for K = (1, . . . , n)

ωg,n+1(Y, YK) =
∑
i=1,2

Res
Y→Pi

∫ Ŷ
ξ=Y

B(Y, ξ)(
y(Y )− y(Ŷ )

)
dx(Y )

Wg,n(Y, Ŷ , YK)

where

Wg,n(Y, Ŷ , YK) = ωg−1,n+2(Y, Ŷ , YK) +
∑

g1+g2=g
J
∐
J ′=K

ωg1,|J |+1(Y, YJ)ωg2,|J ′|+1(Ŷ , YJ ′).
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1.4. The Results of this Work

One of the main results in [15] is as follows. Given integers g, nwith n > 0 and 2g−2+n > 0,

we have

〈〈
z1κ(L1, z1)

1− z1ψ1

, · · · , znκ(Ln, zn)

1− znψn

〉〉
g,n

=

∫
γ(L1)

· · ·
∫
γ(Ln)

exp

(
n∑
i=1

zix(Yi)

)
ωg,n(1.1)

where κ(L, z) is a certain expression in the equivariant Chern classes of the equivariant line bundle

L and the equivariant tangent bundle of P1, and γ(Li) is a certain contour on Σ.

The main result of this thesis is a consequence of aforementioned theorem in [15]: given

integers g, n, n > 0, 2g − 2 + n > 0, and the unit e and hyperplane class H = cT1 (O(1))

in H∗T (P1,Q) we may write
〈〈

α1

1− z1ψ1

, · · · , αn
1− znψn

〉〉
g,n

as a finite sum of terms involving

genus zero, two point generating functions, of the form

n∏
j=1

〈〈
βij ,

αj
1− zjψj

〉〉
0,2

where βij is either e or H , with coefficients in Q
[
s, e−t1 , (s2 + 4 et1)

± 1
2 , z1, . . . , zn

]
. The proof

amounts to an analysis of (1.1).

First, we observe that the generating functions κ(L) generate H∗T (P1,Q). Second, we show

that we can find an n-linear differential Ωg,n such that for any choice of line bundles L1, . . . ,Ln,

∫
γ(L1)

· · ·
∫
γ(Ln)

exp

(
n∑
i=1

zix(Yi)

)
ωg,n =

∫
γ(L1)

· · ·
∫
γ(Ln)

exp

(
n∑
i=1

zix(Yi)

)
Ωg,n(1.2)

but where the evaluation of the right hand side of (1.2) is straightforward.

Last, we show that the form of Ωg,n implies the main result holds.
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1.5. Organization

The organization of this thesis is as follows. In chapter 2 we review Eynard-Orantin recursion,

and note some of the earlier results in the theory. In chapter 3, we give a brief overview of the

relevant elements of Gromov-Witten. In chapter 4 we recall the details of [15] that we need. We

pause to study the non-standard nature of the spectral curve data Σ, before presenting our main

result, and proving it.
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CHAPTER 2

Eynard-Orantin Topological Recursion

In this chapter we explain the Eynard-Orantin data and define the correlation functions ωg,n

associated to this data. The correlation functions are recursively defined in a manner similar to

the way in which a genus g Riemann surface with n marked points may degenerate. Eynard and

Orantin refer to this as topological recursion, while other authors pay homage to its inventors.

The recursion was originally discovered as a Ward identity in the context of matrix models [5],

of which Witten’s model [26] is a special case. The low temperature expansion of such a matrix

model could be expressed as a sum over weighted ribbon graphs. Eynard observed that in the one-

matrix model, the one and two loop insertion expectation values — corresponding to the genus 0,

1 point and genus 0, 2 point contributions to the sum over ribbon graphs, could be used to define

a hyperelliptic curve. Moreover, the algebraic geometry of this hyperelliptic curve alone could be

used to recursively determine the entire statistical theory of the model, that is, the contributions the

ribbon graphs for all g, n to the partition function of the one-matrix model in question.

The recursion is somewhat similar to a Feynmann diagram expansion1. Studying the recursion,

Eynard and Orantin discovered [8] that the recursion was entirely geometric in origin, and, with

some mild limitations, could be seen to arise from any Riemann surface with two meromorphic

functions x and y defined on it. While established for compact Riemann surfaces, Eynard-Orantin

recursion can be made to work for many cases in which the Riemann is not compact.
1However, it is not a Feynmann diagram expansion as there are non-local constraints on graphs
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2.1. Eynard-Orantin Recursion

Definition 2.1 (Eynard-Orantin spectral curve data). The data for Eynard-Orantin recursion

is a compact genus g Riemann surface Σ known as the spectral curve, equipped with two mero-

morphic functions x, and y and assume that the surface comes equipped with a marking, that is, a

basis of 1-cycles {A}1≤i≤g and {B}1≤i≤g so that

Ai · Aj = Bi ·Bj = 0 Ai ·Bj = δij.

We require that all ramification of the map (x, y) 7→ x are simple, .

About a branch point a of the map (x, y) 7→ x, with q ∈ Σ sufficiently near a we define a

conjugation q → q̂ as follows. We have y(q) ∼ y(a) + A
√
x(q)− x(a) as q → a. Define q̂ to be

the point such that

x(q) = x(q̂)

y(q̂) ∼ y(a)− A
√
x(q)− x(a)

The data of the A cycles determines the so-called fundamental normalized differential of the

second kind [16], sometimes known as the Bergmann kernel. This is the unique meromorphic

section B(p, q) of T ∗Σ ⊗ T ∗Σ → Σ × Σ that is symmetric, analytic away from the diagonal

Σ 7→ Σ× Σ, and for p, q nearby points on Σ with z a local coordinate on Σ near p, q

B(p, q) ∼p→q
dz(p)dz(q)

(z(p)− z(q))2
+ b(z(p), z(q))∮

p∈Ai
B(p, q) = 0

where b(z(p), z(q)) is analytic.
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In the case we are interested in, g = 0, Σ = P1, with coordinate z, we have

B(z(p), z(q)) =
dz(p)dz(q)

(z(p)− z(q))2
.

which is uniquely defined since g = 0.

2.2. Correlation Functions and Eynard-Orantin Recursion

The correlation functions are our main objects of study. In practice, they arise as generating

functions for counting problems in enumerative geometry.

Definition 2.2 (Correlation functions). Suppose we have Eynard-Orantin spectral curve data

(Σ, x, y). The correlation functions ωg,k are sections of (T ∗Σ)⊗k → Σk, defined by the following

recursion.

Denote by a the set of branch points of the map (x, y) 7→ x. For g, n ∈ Z with n > 0, define

ωg,k(p1, . . . , pk) = 0 g < 0

ω0,1(p) = 0

ω0,2(p1, p2) = B(p1, p2)

and, for K = {1, . . . , k}

ωg,k+1(p, pK) =
∑
a

Res
q→a

∫ q̂
ξ=q

B(p, ξ)

(y(q)− y(q̂)) dx(q))
Wg,n(q, q̂, pK)(2.1)

where

Wg,n(q, q̂, pK) = ωg−1,k+2(q, q̂, pK) +
∑

g1+g2=g
J
∐
J ′=K

ωg1,|J |+1(q, pJ)ωg2,|J ′|+1(q̂, pJ ′).
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This recursion is effective: all ωh,m appearing in non-zero terms on the right hand side of (2.1)

have 2h− 2 +m < 2g − 2 + k. We note that there is a graphical representation of the correlation

functions and the recursion. We refer the reader to [8] for details.

One important result we need regarding the correlation functions is the following

Theorem 2.3 (Theorem 4.6:[8]). ωg,n(p1, . . . , pn) is symmetric in its arguments.

We not that the proof is a computation using only local properties of the curve about the branch

points. It can be found in [8].

2.3. Example: The Airy Curve and Intersection Theory on the Moduli Space of Curves.

In [20], it was proved that a certain generating function of intersection numbers on the moduli

space of curves could be expressed as a matrix integral. Given the origins of Eynard-Orantin

theory, we should expect to be able to find a spectral curve that yields these intersection numbers.

Indeed this is true [8], and turned out to be the prototypical example of the theory.

Consider the plane curve

x =
1

2
y2

known as the Airy curve in the theory, on account of its relationship to Kontsevich’s matrix model.

The underlying surface is a copy of P1. The function y is a suitable co-ordinate, but for clarity of

exposition, we introduce a new co-ordinate, z, such that

x =
1

2
z2

y = z

We have

B(z, z′) =
dzdz′

(z − z′)2
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dx = 0 exactly when z = 0, so there is only one branch point. Conjugation is given by ẑ = −z, so

the Eynard-Orantin recursion is

ωg,k+1(z0, . . . , zk) = Res
z→0

dz0

(z2 − z2
0)zdz

Wg,n(z,−z, zK).

For example

ω0,3 =
dz1

z2
1z

2
2z

2
3

ω0,4 =
3dz1dz2dz3

z2
1z

2
2z

2
3z

2
4

(
1

z2
1

+
1

z2
2

+
1

z2
3

+
1

z2
4

)
ω1,1 =

dz1

8z4
1

ω1,2 =
dz1dz2

8z2
1z

2
2

(
5

z4
1

+
3

z2
1z

2
2

+
5

z4
2

)
ω2,1 =

105dz1

128z10
1

The result is that ωg,k+1(z0, . . . , zk) is a generating function for the intersection theory of certain

canonical classes defined on the Deligne-Mumford compactification of the moduli spaceMg,n of

genus g Riemann surfaces with n marked points and 2g − 2 + n > 0.

Consider the line bundle Li → M̄g,n where the fibre over a (Σ, x1, . . . , xn) is T ∗xiΣ. Then let

ψi = c1(Li) be the first Chern class of this line bundle. Then we can consider

〈τa1 . . . τan〉g,n =

∫
[Mg,n]vir

ψa11 . . . ψann

which is zero if
∑

j ij 6= 3g − 3 + n.
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One can show that

ωg,n(z1, . . . , zn) =
∑

a1,...,an≥0

〈τa1 . . . τan〉g,n
n∏
i=1

(2ai + 1)!!dzi

z2ai+2
i

2.4. Other examples

Examples in enumerative geometry are abundant. The following are known to arise from the

Eynard-Orantin framework. Among other problems, we have Eynard-Orantin data for, (or at least

convincing evidence),

• Stationary Gromov-Witten invariants of P1[4, 22]

• Hurwitz numbers [9].

• Gromov-Witten invariants of toric Calabi-Yau 3-folds [12].

• Gromov-Witten invariants of toric Calabi-Yau orbifolds [14]

• Weil-Petersson volumes [7]

• The ELSV formula [10, 11]

• Semi-simple cohomological field theories

The last example is worth expanding upon further. In [4] it was shown that the one could do

away with the global spectral curve and replace it with a local spectral curve, namely, local power

series data for y and B about n “branch points”. The function x is assumed to be of a standard

form near these points. Using this, it was shown that through a complicated change of variables,

the data of the partition function of a semi-simple cohomological field theory, could be identified

with the correlation functions arising from a local spectral curve.
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CHAPTER 3

Equivariant Gromov-Witten Theory of the Projective Line.

3.1. Moduli Spaces of Stable Maps and Non-equivariant Gromov-Witten Invariants of the

Projective Line

We first recall the definition of Kontsevich’s moduli space of stable mapsMg,n(P1, d) (see [21]

and [2]).

A stable map consists of a triple (Σ, (x1, . . . , xn), f), where Σ is a complex curve with only

double singular points, n ≥ 0 ordered, non-singular, distinct points (x1, . . . , xn) called the marked

points, and a map f : Σ → P1, such that f does not have any infinitesimal automorphisms,

although we allow stable maps with a finite number of automorphisms. Define a special point to

be either a marked point or singular point. A map is not stable if either: f is constant on a genus

0 irreducible component of Σ with strictly fewer than 3 special points or; if f is constant and Σ is

a torus with no special points. The points ofMg,n(P1, d) consist of those those stable maps such

that Σ is of arithmetic genus g with n marked points, and f : Σ→ P1 is of degree d.

We have the evaluation maps

evj :Mg,n(P1, d)→ P1

evj : (Σ, (x1, . . . , xn), f) = f(xj)

In non-equivariant Gromov-Witten theory relevant classes are defined as follows: given a class

α ∈ H∗(P1,Q), we have the primary classes

ev∗j(α) ∈ H∗(Mg,n(P1, d),Q).
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For j = 1, . . . , n let Li denote the line bundle onMg,n(P1, d) with fibre at (Σ, (x1, . . . , xn), f)

defined as the cotangent line T ∗xjΣ. Define ψj = c1(Lj) ∈ H∗(Mg,n(P1, d),Q). given an integer

aj > 0 the descendent classes are the classes ψaji ev∗j(α).

The Gromov-Witten invariants for P1 are the intersection numbers

∫
[Mg,n(P1,d)]

vir

∏
1≤j≤n

ψ
aj
j ev∗j(αj)

Here
[
Mg,n(P1, d)

]vir ∈ H∗(Mg,n(P1, d),Q) is a homology class known as the virtual fundamen-

tal class, and is of the expected dimension, 2g+ 2d− 2 +n. Its construction is non-trivial [18,21].

Assuming the classes αj are of pure degree, the above integral is non-zero only if

2g + 2d− 2 + n =
n∑
j=1

(deg(αj) + aj) .

3.2. Equivariant Gromov Witten Invariants of the Projective Line

In equivariant Gromov-Witten theory [18], we must modify our definitions slightly. Con-

sider P1 equipped with the action of T = (C×)2, coming from the usual action of (C×)2 on C2,

(t1, t2) · (z1, z2) = (t1z1, t2z2). In the equivariant theory we replace H∗(P1,Q) with H∗T (P1,Q),

and so must modify our definitions of the primary classes and virtual fundamental cycle.

The action of T on P1 induces an action onMg,n(P1, d). This action is equivariant with respect

to the evaluation and forgetful maps. Let ET denote the classifying bundle for T , and let BT be

its classifying space. Then we have the diagram

ET ×T Mg,n(P1, d)

π

��

evj
// ET ×T P1

BT
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The evaluation map evj now gives map

ev∗j : HT
∗ (P1,Q) = HT

∗ (ET ×T P1,Q)→ H(ET ×T Mg,n(P1, d),Q),

while the ψ-classes may be defined as before.

Given 2g − 2 + 2d+ n > 0 so thatMg,n(P1, d) is non-empty, classes α1, . . . αn ∈ H∗T (P1,Q)

and integers a1, . . . , an ≥ 0 we define the equivariant Gromov-Witten invariants

〈τa1(α1) · · · τan(αn)〉g,n,d =

∫
[Mg,n(P1,d)]

vir

∏
1≤j≤n

ψ
aj
j ev∗j(αj)

by integration along the fibres of π. These invariants take values in

H∗(BT,Q) = H∗T ({∗},Q) = Q[s1, s2]

Using equivariant localization, [23], Okounkov and Pandharipande were able to find a Fock

space expression for these invariants, and proved a conjecture in [17] that these invariants may

be arranged in a certain generating function that satisfies the full 2-Toda integrable hierachy from

[24].

For 2g − 2 + n + m > 0, introduce the following generating functions of Gromov-Witten

invariants

(3.1)
〈〈

α1

1− z1ψ1

, · · · , αn
1− znψn

, αn+1, . . . αn+m

〉〉
g,n+m

=
∑
d,l≥0

a1...an≥0

Qd

l!
〈τa1(α1) . . . τan(αn)τ0(αn+1) . . . τ0(αn+m) τ0(t) . . . τ0(t)︸ ︷︷ ︸

l times

〉g,n+m+l,d

n∏
i=1

zaii .

Here t = t0e+ t1H where H is the negative of the equivariant first Chern class of the tautological

bundle on P1 as in Section A.4. Q keeps track of degree and is the generator of the Novikov ring

for P1.
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It is known that if n+m ≥ 3

∑
a1,...,an≥0

〈τa1(α1) . . . τan(αn)τ0(αn+1) . . . τ0(αn+m)〉0,n+m,0

n∏
i=1

zaii

= (z1 + · · ·+ zn)n+m−3

∫
P1

α1 . . . αn+m

Using this as a definition when m + n < 3, we can extend (3.1) to the unstable geometries. In

particular, for (g, n,m, d) = (0, 2, 0, 0), we set

〈〈
α1

1− z1ψ1

,
α2

1− z2ψ2

〉〉
0,2

=
∑

l,a1,a2≥0
d>0

Qd

l!
〈τa1(α1)τa2(α2) τ0(t) . . . τ0(t)︸ ︷︷ ︸

l times

〉0,n+l,dz
a1
1 z

a2
2 +

1

z1 + z2

∫
P1

α1 ∪ α2

In particular, setting z1 = 0, we have

〈〈
α1,

α2

1− ψ2z2

〉〉
0,2

=
∑
l,a≥0
d>0

Qd

l!
〈τ0(α1)τa(α2) τ0(t) . . . τ0(t)︸ ︷︷ ︸

l times

〉0,n+l,dz
a
2 +

1

z2

∫
P1

α1 ∪ α2(3.2)
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CHAPTER 4

The Spectral Curve for the Equivariant Gromov-Witten Theory of the

Projective Line

4.1. The Spectral Curve Data

According to [15], the spectral curve data (Σ, x, y) for the equivariant Gromov-Witten theory

of P1 is as follows

x(Y ) = t0 + Y +
Q et1

Y
+ s1 log(Y ) + s2 log

(
Q et1

Y

)
, y(Y ) = log(Y ).(4.1)

This defines a Z-cover (x, y) 7→ Y of C×. The fundamental normalized differential form of the

second kind [16] is taken to be

B(Y, Y ′) =
dY ⊗ dY ′

(Y − Y ′)2
, Y, Y ′ ∈ C×.

Note that this is not as expected. The function y is a single valued global co-ordinate on Σ, so we

might expect to take B(y, y′) = dydy′

(y−y′)2 . We will return to this in Section 4.5.

Let πi : Σn → Σ be projection onto the ith factor. For g ≥ 0, n > 0, define forms

ωg,n ∈ Γ (⊗ni=1π
∗
i (T

∗Σ)) on Σn as usual: ω0,1(Y ) = 0, ω0,2(Y, Y ′) = B(Y, Y ′), and

(4.2) ωg,n+1(Y1, . . . , Yn+1) =
2∑

α=1

Res
Y→Pα

∫ Ŷ
ξ=Y

B(ξ, Yn+1)(
y(Y )− y(Ŷ )

)
dx(Y )

Wg,n(Y1, . . . , Yn, Y, Ŷ ).
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where

Wg,n+1(Y1, . . . , Yn, Y, Ŷ ) = ωg−1,n+2(Y1, . . . , Yn, Y, Ŷ ) +
∑

g1+g2=g
J
∐
K={1,...n}

ωg1,|J |+1(YJ , Y )ωg2,|K|+1(YK , Ŷ ).

The branch points we take are not the branch points of the map

x : Σ→ C

(x, y)→ x

but rather the branch points of the map (x, Y ) → x. In Section 4.5 we discuss this discrepancy.

There are two such branch points, namely P1 and P2. While y appears in (4.2), ωg,n is independent

of choice of branch of y.

These branch points are of order two. Recall that we define Ŷ as the co-ordinate of the point on

Σ near Pα satisfying x(Ŷ ) = x(Y ) with Ŷ 6= Y . By definition, these branch points occur where

dx(Y ) = 0.

4.2. Idempotents in the Equivariant Cohomology

Let T be the two-dimensional torus (C×)2. We recall in Appendix A that the equivariant co-

homology H∗T ({∗},Q) of a point is the polynomial ring Q[s1, s2], where s1, s2 ∈ H2
T ({∗},Q) are

Chern classes of certain equivariant line bundles on BT . The equivariant cohomology H∗T (P1,Q)

of P1 is the ring Q[s1, s2, H]/(H − s1)(H − s2) where H is the equivariant Chern class of the

tautological bundle. We denote by e the unit in H∗T (P1,Q).

If we invert the element s1 − s2, we may decompose the identity element e ∈ H0
T (P1,Q) into

a pair of idempotent elements

φ1 =
1

s1 − s2

cT1 (O(p1)) =
H − s2

s1 − s2

φ2 = − 1

s1 − s2

cT1 (O(p2)) =
H − s1

s2 − s1

(4.3)
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which lie in the ring

H∗T (P1,Q)[(s1 − s2)−1] =
Q[s1, s2, H, (s1 − s2)−1]

(H − s1)(H − s2)
.

These classes generate H∗T (P1,Q)[(s1− s2)−1] as an H∗T ({∗},Q)[(s1− s2)−1]-algebra and satisfy

φ1 + φ2 = e φiφj = δijφi.(4.4)

We will denote s1 − s2 by s.

The κ-class, which plays an important role in the main formula of the paper [15], is based on

the Γ̂-class of Iritani [19]. Given a T -equivariant line bundle L on P1, let κ(L, z) be defined by the

formula

(4.5) κ(L, z) = (−z)c
T
1 (TP1)z−1Γ

(
1− cT1 (TP1)z

)
exp

(
−2π
√
−1cT1 (L)z

)
.

Here, Γ is the gamma-function, whose Taylor expansion has the formula

Γ(1− t) = exp

(
γt+

∞∑
k=2

ζ(k)

k
tk

)
.

The derivative Γ′(1) = −γ is the Euler-Mascheroni constant.

Let L = O(l1p1 + l2p2). In order to understand the formula for κ(L, z) better, we multiply

by e = φ1 + φ2 and use the formulas cT1 (L)φ1 = l1sφ1 and cT1 (L)φ2 = −l2sφ2. In particular,

cT1 (TP1)φ1 = sφ1 and cT1 (TP1)φ2 = −sφ2. We see that

κ(L, z) = (−z)sz−1Γ (1− sz) exp
(
−2πl1

√
−1sz

)
φ1

+ (−z)−sz−1Γ (1 + sz) exp
(
2πl2
√
−1sz

)
φ2



25

This lies in the free H∗T (P1,C)((z))-module M̂ = H∗T (P1,C)((z))[(−z)−sz, (−z)sz] which has

commutative product

(−z)−sz(−z)sz = e.

The module M̂ is introduced to handle a feature of the formula proved in [15], which we now

recall.

Theorem 4.1 ([15, Theorems 2 and 3.8]). Suppose n > 0 and 2g−2+n > 0, and letL1, . . . ,Ln

be equivariant line bundles on P1. Let z1, . . . , zn, s be positive real parameters such that s is not

an integral multiple of zi for any 1 ≤ i ≤ n. Associate to a line bundle L = O(l1p1 + l2p2) the

path γ(L) pictured in Figure 1. Then

(4.6)
∫
y1∈γ(L1)

· · ·
∫
yn∈γ(Ln)

exp (z1x(ey1) + · · ·+ znx(eyn))ωg,n(y1, . . . , yn)

= (−1)g−1

〈〈
z1κ(L1, z1)

1− z1ψ1

, . . . ,
znκ(Ln, zn)

1− znψn

〉〉
g,n

and

(4.7)
∫
y1∈γ(L1)

exp (z1x(ey1)) dy1 =

〈〈
e,
z1κ(L1, z1)

1− z1ψ1

〉〉
0,2

where we have used the extended definition (3.2).

The contour γ(L) is a path on the cover Σ on which integrand is single-valued. These two

equations should be understood as an equality in M̂ ⊗ · · · ⊗ M̂ and M̂ respectively.

The proof follows the general strategy of [4, Theorem 4.1] to find spectral curve data associated

to a conformal Frobenius manifold. While the equivariant cohomology of P1 is not a conformal

Frobenius manifold, the proof still works.
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Figure 1. For a line bundle L = O(l1p1 + l2p2), γ(L) is as pictured.

We do some preliminary processing. First note that without loss of generality, we can set

Q = 1. The Q dependence can be recovered by the shift t1 → t1 +logQ. We compute the location

of the branch points. We have

dx(Y ) =

(
1− et1

Y 2
+
s

Y

)
dY

and so there are two branch points of (x, Y ) 7→ Y , namely Y = P1 and, P2. Thus

dx(Y )

dY
=

(Y − P1)(Y − P2)

Y 2
.

The spectral curve is analytic rather than algebraic. This does not present a problem. If we

assume s, t1 ∈ C×, there are no essential singularities in x or y near the branch points P1, P2. So,

for each g, n, ωg,n depends only on a finite number of terms of the series expansions of each of x,

y, and Y near the branch points. We may compute ωg,n as usual. As examples, we find

ω0,3(Y1, Y2, Y3) = − P 3
1 dY1dY2dY3

(P1 − P2) (Y1 − P1) 2 (Y2 − P1) 2 (P1 − Y3) 2

− P 3
2 dY1dY2dY3

(P2 − P1) (Y1 − P2) 2 (Y2 − P2) 2 (P2 − Y3) 2
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ω1,1(Y1) =
dY1

72 (P1 − P2) 3

×
(
−9 (P1 − P2) 2P 3

1

(P1 − Y1) 4
+

6 (P1 − P2) (P1 − 2P2)P 2
1

(P1 − Y1) 3

+
(−5P 2

1 + 23P2P1 − 32P 2
2 )P1

(P1 − Y1) 2
+

6 (P1 − P2) (2P1 − P2)P 2
2

(Y1 − P2) 3

+
P2 (32P 2

1 − 23P2P1 + 5P 2
2 )

(P2 − Y1) 2
+

9 (P1 − P2) 2P 3
2

(P2 − Y1) 4

)

4.3. Computing the Gromov-Witten Invariants from the Correlation Functions

For i = 1, 2, define

Sie(z) =

〈〈
e,

φi
1− zψ

〉〉
0,2

which, by the definition (4.3) of φi lie in Q[s1, s2, s
−1][[t0, t1]]((z)). Let (, ) be the Poincaré pairing

on H∗T (P1,Q)[s−1]((z)). Then Sie(z) are components of the S-operator, which satisfies

(α1, S(α2)) =

〈〈
α1,

α2

1− zψ

〉〉
0,2

for any classes α1, α2 ∈ H∗T (P1,Q).

The components

SiH(z) =

〈〈
H,

φi
1− zψ

〉〉
0,2

will make an appearance later.

Recall our definition of the κ classes (4.5) We compute
〈〈
e, φα

1−zψ

〉〉
0,2

via linear algebra. For

line bundles L1 = O(l1p1 + l2p2) and L2 = O(l′1p1 + l′2p2), we define a matrix C(l1, l2, l
′
1, l
′
2, z, s)

such that κ(L1, z)

κ(L2, z)

 = C(l1, l2, l
′
1, l
′
2, z, s)

φ1

φ2
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Lemma 4.2. Assume l1 + l2 − l′1 − l′2 6= 0. Then detC(l1, l2, l
′
1, l
′
2, z, s) = 0 only when

z ∈ 1
l1+l2−l′1−l′2

s−1Z \ (s−1Z). Singularities at nonzero z ∈ s−1Z are removable, and there is a

simple pole at z = 0.

This shows that if l1 + l2 − l′1 − l′2 6= 0, then away from z ∈ 1
l1+l2−l′1−l′2

s−1Z \ (s−1Z), the

equivariant Chern classes of O(l1p1 + l2p2) and O(l′1p1 + l′2p2) generate H∗T (P1,Q).

PROOF.

(4.8) det

(−z)sz−1Γ (1− sz) e−2πl1
√
−1sz (−z)−1−szΓ (1 + sz) e2πl2

√
−1sz

(−z)sz−1Γ (1− sz) e−2πl′1
√
−1sz (−z)−1−szΓ (1 + sz) e2πl′2

√
−1sz


= z−2Γ (1− sz) Γ (1 + sz)

(
e2π(l′2−l1)

√
−1sz − e2π(l2−l′1)

√
−1sz

)
=

πs

z sin (πsz)

(
e2π(l′2−l1)

√
−1sz − e2π(l2−l′1)

√
−1sz

)
The first factor has simple poles when 0 6= z ∈ s−1Z, and a double pole at z = 0. The second

factor has simple zeros when (l1 + l2− l′1− l′2)z ∈ s−1Z. Therefore, singularities at finite, nonzero

z ∈ s−1Z are removable and the determinant is zero exactly when 1
z
∈ 1

l1+l2−l′1−l′2
s−1Z \ (s−1Z),

and has a simple pole at z = 0. �

This suggests that if we take l1 + l2 − l′1 − l′2 = ±1, we can find suitable chains γ1, γ2, in

M̂ ⊗Z C∗(P1) such that

∫
y∈γ1

exp (zx(ey)) dy =

〈〈
e,

φ1

1− zψ

〉〉
0,2

= S1
e (z)∫

y∈γ2
exp (zx(ey)) dy =

〈〈
e,

φ2

1− zψ

〉〉
0,2

= S2
e (z).

See Section 4.4.
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Our main result is that given arbitrary classes α1, . . . , αn ∈ H∗T (P1,Q),

〈〈
α1

1− z1ψ1

, . . . ,
αn

1− znψn

〉〉
g,n

may be expressed in terms of the functions S1
e , S1

H , S2
e , S2

H .

For convenience, define a coefficient ring

A = Q
[
P1, P2, (P1 − P2)−1, P−1

1 , P−1
2

]
= Q

[
s, e−t1 ,

(
s2 + 4 et1

)± 1
2

]
.

Proposition 4.3. For n > 0, 2g − 2 + n > 0, there are polynomials T ~α,~βg,n (z1, . . . , zn) with

coefficients in A such that

〈〈
φi1

1− z1ψ1

, . . . ,
φin

1− znψn

〉〉
g,n

=
∑

β1,...βn∈{e,H}

T
~i,~β
g,n

n∏
j=1

S
ij
βj

(zj)(4.9)

The first observation we make is that the left hand side of (4.9) is equal to

〈〈
φi1

1− z1ψ1

, . . . ,
φin

1− znψn

〉〉
g,n

=

∫
y1∈γi1

· · ·
∫
yn∈γin

e
∑
i zix(Yi) ωg,n

The main idea is to find a differential form Ωg,n such that for all line bundles O(l1p1 + l2p2)

∫
γ(L)

e
∑
i zix(Yi) (Ωg,n − ωg,n) = 0

but where

∫
γ(L)

e
∑
i zix(Yi) Ωg,n

may be readily evaluated. The result is that (4.6) may be reduced to a product of integrals of the

form (4.7). Finding Ωg,n amounts to a finite procedure of alternately integrating by parts, and

separating the result at each step into a sum of two parts: a desired term, and a term requiring
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further processing. The surprise is that (4.2) and the form of (4.6) together ensure that an Ωg,n may

be found in R[Y −1
1 , . . . , Y −1

n ] for some suitable ring of coefficients R not depending on the Yi. In

fact, no power greater than Ωg,n turns out to be symmetric, and no power greater than Y −2
i arises

for i = 1, . . . , n.

The proof is organized as follows. We have a series of lemmas. First we define a suitable

alternative local coordinate to Y so that we may keep track of coefficients of the rational functions

we obtain and show that A is correctly defined. Then we establish that ωg,n is a rational n-linear

form and finite at infinity, and that it has no residue at branch points Yi = Pα, and is thus the

differential of a rational function. Next we show that this is the base case in an induction process

that terminates with a form Ωg,n suitable to prove the proposition.

In the discussion that follows, x and y always refer to the given functions (4.1) on the spectral

curve, while Y, Yi are the coordinates of points on C×. We always assume that for i = 1, . . . n,

Yi 6= P1, P2, and z, zi, et1 , s > 0, and that P1, P2, (P1 − P2), s 6= 0. First, we derive a convenient

coordinate in which we may deal with Y and Ŷ .

Lemma 4.4. For α = 1, 2 there is a coordinate ξα defined in a neighbourhood of Pα and a

power series fα(ξα) =
∑∞

i=1 cα,iξ
2i
α with cα,i ∈ A such that

Y = Pα + ξα + fα(ξα)

Ŷ = Pα − ξα + fα(ξα)

PROOF. We compute ξ = ξ1, f(ξ) = f1(ξ) and ck = c1,k First

x(Y )− x(P1) = x(P1 + ξ + f(ξ))− x(P1)

= −P2

∞∑
i=2

(−1)i

P i
1

(ξ + f(ξ))i + (P1 + P2)
∞∑
i=2

(−1)i

iP i
1

(ξ + f(ξ))i
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=
∞∑
i=2

(−1)i

P i
1

(
P1 + (1− i)P2

i

)
(ξ + f(ξ))i

In a similar way

x(Ŷ )− x(P1) =
∞∑
i=2

(−1)i

P i
1

(
P1 + (1− i)P2

i

)
(−ξ + f(ξ))i

So

0 = x(Y )− x(Ŷ )

=
∞∑
i=2

(−1)i

P i
1

(
P1 + (1− i)P2

i

)(
(ξ + f(ξ))i − (−ξ + f(ξ))i

)
=
∞∑
i=2

(−1)i

P i
1

(
P1 + (1− i)P2

i

) i∑
j=0

(
i

j

)
(1− (−1)i−j)ξi−jf(ξ))j

=
∞∑
i=2

(−1)i

P i
1

(
P1 + (1− i)P2

i

) i∑
j=0

(
i

j

)
(1− (−1)i−j)ξi−j

(
∞∑
k=2

ckξ
2k

)j

Collecting like powers of ξ, we find the first time cm appears is in the ξ2m+1, term, where k = m,

j = 1, i = 2. Thus, the above may be written

0 =
∞∑
m=2

ξ2m+1

(
2
P1 − P2

P 2
1

cm + hm(c1, . . . , cm−1)

)

where hm is a polynomial with coefficients in Q[P1, P2, P
−1
1 ]. Thus hm(c1, . . . , cm−1) ∈ A and so

cm ∈ A too. The same argument applies for ξ2 mutatis mutandis. �

Note that by definition of Ŷ ,

(4.10)
(

log(Y )− log(Ŷ )
)−1

=
P1 + P2

Ŷ + P1P2

Ŷ
− Y − P1P2

Y

=
(P1 + P2)

(Ŷ − Y )
(

1 + P1P2

Y Ŷ

)
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We set

ω(Y ) =
(
y(Y )− y(Ŷ )

)
dx(Y ).

Using the definition of Ŷ , we have

1

ω(Y )
=

(P1 + P2)Y 2

(Ŷ − Y )(Y − P1)(Y − P2)
(

1 + P1P2

Y Ŷ

)
dY

Lastly ∫ Ŷ

ξ=Y

B(ξ, Yn) =
dYn

Y − Yn
− dYn

Ŷ − Yn

So the recursion can be written

ωg,n(Y1, . . . , Yn) =
∑
α

Res
Y→Pα

(
dYn

Y − Yn
− dYn

Ŷ − Yn

)
Wg,n(Y, Ŷ )

ω(Y )

Lemma 4.5. Let 2g − 2 + n > 0, n > 0 ωg,n(Y1, . . . , Yn) may be written

ωg,n(Y1, . . . , Yn) =
pg,n(Y1, . . . , Yn)dY1 . . . dYn∏n
i=1(Yi − P1)kg,n(Yi − P2)kg,n

for some p ∈ A [Y1, . . . , Yn] symmetric in the Yi and kg,n ∈ Z≥0. It is finite at infinity.

This is just [8, Theorem 4.2] for our non-algebraic curve. The proof is the same—when Yn

is away from the branch points, the residue may be computed as a finite integral of an analytic

function, and so there can be no pole. We establish the result in our setting to ensure that there is

no logarithmic dependence on Y at the branch points of Y , and thus show that ωg,n is rational.

We will perform an induction on 2g − 2 + n to establish the lemma. The result isn’t true for

the base case ω0,2(Y1, Y2) = dY1dY2
(Y1−Y2)2

, but this form possesses properties that are sufficient to allow

it to serve as one in the inductive step.
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PROOF. Note that the Yn dependence comes about as a residue

ωg,n(Y1, . . . , Yn) =
∑
i=1,2

Res
Y→Pi

(
dYn

Y − Yn
− dYn

Ŷ − Yn

)
Wg,n(Y, Ŷ )

ω(Y )

We focus on the residue Y = P1. As usual, to obtain this a residue, we compute a Laurent

expansion of the integrand in terms of ξ1 about zero and then take the coefficient of ξ−1
1 .

• First consider the factor

dYn
Y − Yn

− dYn

Ŷ − Yn

This has a power series expansion in ξ1 about ξ1 = 0 with coefficients lying in the ring

Q[(P1−Yn)−1, c1,k] ⊂ A[(P1−Yn)−1] with k = 2, 3, 4, . . . . Its constant term is zero. The

coefficient of each term in this series has a pole at Yn = P1 of order at least two. Because

of this it must be finite at Yn =∞, and this property passes to ωg,n(Y1, . . . , Yn).

• The factor 1
ω(Y )

, has a double pole at ξ1 = 0 and the coefficients of its Laurent series lie

in A.

• Last, we have the factor Wg,n(Y, Ŷ ). By induction, this has a Laurent series expansion in

ξα with coefficients in A[Yi, (Pα − Yi)−1] where i = 1, . . . , n− 1.

Suppose that the pole at Y = Pα has order m Therefore, after the residues at both P1 and P2, we

can say

2∑
α=1

m+1∑
i=2

dYn
(Yn − Pα)i

ri,α(Y1, . . . , Yn−1)dY1 . . . dYn−1

with ri,α ∈ A[Yj, (Yj − Pβ)−1] with j = 1, . . . n − 1, and β = 1, 2. Since ωg,n(Y1, . . . , Yn) is

symmetric (Theorem 2.3) in the Yi, we obtain the result. �

The following lemma establishes a base case for an induction step in the proof of the main

result.
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Lemma 4.6. For 1 ≤ k ≤ n, α = 1, 2,

Res
Yk→Pα

ezkx(Yk) ωg,n(Y1, . . . , Yn) = 0

PROOF. As ωg,n is symmetric in its arguments, it suffices to check this for k = n only. For

the residue at P1, we have

Res
Yn→P1

eznx(Yn) ωg,n(Y1, . . . , Yn) = Res
Yn→P1

2∑
β=1

Res
Y→Pβ

eznx(Yn)

(
1

Y − Yn
− 1

Ŷ − Yn

)
Wg,n(Y, Ŷ )

ω(Y )

= Res
Yn→P1

Res
Y→P1

eznx(Yn)

(
1

Y − Yn
− 1

Ŷ − Yn

)
Wg,n(Y, Ŷ )

ω(Y )

= Res
Y→P1

Res
Yn→P1,Y,Ŷ

eznx(Yn)

(
1

Y − Yn
− 1

Ŷ − Yn

)
Wg,n(Y, Ŷ )

ω(Y )

= Res
Y→P1

0 +

(
eznx(Y ) Wg,n(Y, Ŷ )

ω(Y )

)
−

(
eznx(Ŷ ) Wg,n(Y, Ŷ )

ω(Y )

)

= Res
Y→P1

0 = 0.

A symmetrical argument applies to the residue Yn → P2. We note that the above result works

for any B(Y, Y ′) = dY dY ′

(Y−Y ′)2 + analytic and arbitrary meromorphic function x with simple branch

points away from x =∞. �

The following two lemmas show that we can perform an iterative process to find Ωg,n. The first

step in this process is to integrate by parts to find an intermediate rational function, and the second

is write this intermediate function as a sum of two terms, one of the target form, and the second on

which we reapply this process.
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Lemma 4.7. Suppose λ(Y )dY is rational and finite at infinity with poles only at Y = P1 and

Y = P2. If ResY→Pα ezx(Y ) λ(Y )dY = 0, then there exists a rational function η(Y ) that is zero at

Y =∞ satisfying dη = λ(Y )dY . Moreover

Res
Y→Pα

ezx(Y ) η(Y )dx(Y ) = 0

PROOF. Since λ(Y )dY is rational, it may be anti-differentiated. This does not introduce any

logarithmic terms. To see this, note that in taking the limit z → 0 in ResY→Pα ezx(Y ) λ(Y )dY = 0,

we observe that λ(Y )dY has no non-zero residues. Thus η(Y ) is rational. A constant of integration

may be chosen so that limY→∞ η(Y ) = 0. The rest is just integration by parts.

Res
Y→Pα

ezx(Y ) λ(Y )dY = Res
Y→Pα

ezx(Y ) dη(Y ) = − Res
Y→Pα

z ezx(Y ) η(Y )dx(Y ) �

We note that this holds for also holds for arbitrary rational x.

Lemma 4.8. If λ(Y )dY is a rational 1-form with coefficients in a ring F that includes z,P−1
1 ,

P−1
2 , with poles only at P1 and P2, and is finite at Y =∞, and satisfying

Res
Y→Pα

ezx(Y ) λ(Y )dY = 0

for α = 1, 2; then there exists a rational form λ̃(Y, z)dY = g1(z)dY
Y

+ g2(z)dY
Y 2 such that

ezx(Y ) λ(Y )dY − ezx(Y ) λ̃(Y )dY = d
(
ezx(Y ) σ(Y )

)
for some rational σ(Y ).

PROOF. We perform an induction on the sum of orders of poles of λ(Y )dY . For the base

cases, note that if the λ(Y )dY is regular Y , then λ(Y )dY = 0. The case where λ(Y )dY has one
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simple pole at one or both Y = P1 and Y = P2 is excluded as ResY→Pα ezx(Y ) λ(Y )dY = 0. This

is seen by taking the limit z → 0.

For the inductive step, we integrate by parts. We assume that sum of the orders of all poles of

the denominator of λ(Y )dY is at least two. Consider the function η(Y ) as per Lemma 4.7.

ezx(Y ) λ(Y )dY = ezx(Y ) dη(Y )

= −z ezx(Y ) η(Y )dx(Y ) + d
(
ezx(Y ) η(Y )

)
= − ezx(Y ) z

(Y − P1)(Y − P2)

Y 2
η(Y )dY + d

(
ezx(Y ) η(Y )

)
The order of poles at Y = P1 and Y = P2 is two less in −z (Y−P1)(Y−P2)

Y 2 η(Y )dY than λ(Y )dY .

Perform a partial fraction decomposition to write

−z (Y − P1)(Y − P2)

Y 2
η(Y ) =

(
g1(z)

Y
+
g2(z)

Y 2
+ λ̃(Y )

)
dY

where λ̃(Y ) is regular at Y = 0. It is easy to see that we only require P−1
1 , P−1

2 be in F to perform

the partial fraction decomposition.

λ̃(Y ) must necessarily have poles only at Y = P1 and P2, and must be finite at Y = ∞. Now

z ezx(Y ) (Y−P1)(Y−P2)
Y 2 η(Y )dY and − e

x(Y )
z λ̃(Y )dY differ by a form analytic at Y = Pα, and so

ResY→Pα e
x(Y )
z λ̃(Y )dY = 0 too.

Thus the induction step is complete. �

We note that for λ(Y ) = 1
(Y−P1)k(Y−P2)k

, which arises in practice, we have a recursive formula

for g1(z), g2(z), and λ̃(Y ).

We now prove the main proposition.
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PROOF. Recall that in Theorem 4.1, the integration path γ(L) in the Y variable consists of

(−∞,−1], some number of circles around the point Y = 0 at radius 1, and the segment [−1, 0).

So, for any rational function σ(Y ), we have
∫
γ(L)

d
(
ezx(Y ) σ(Y )

)
= 0.

For a line bundle L, set γ′(L) = exp(γ(L)). We are interested in evaluating

∫
Y1∈γ′(L1)

· · ·
∫
Yn∈γ′(Ln)

exp (z1x(Y1) + · · ·+ znx(Yn))ωg,n.

Apply Lemma 4.8 to ωg,n, iteratively in each variable Y1, . . . , Yn. The process we have de-

scribed (that eliminates poles at P1, P2 and generates double poles at Yi = 0) is linear, and so can

indeed be applied to each variable Yi in turn. On each path of integration, exp(x(Yi) decreases

exponentially as Yi → ∞, so we do not need to keep track of the exact terms. So there exists a

form

Ωg,n(Y1, . . . , Yn, z1, . . . , zn) =

∏
i dYi∏
i Y

2
i

f(Y1, . . . , Yn, z1, . . . , zn)

with f ∈ A[z1, . . . , zn, Y1, . . . , Yn] that is affine in each Yi when considered as a function of each

variable Yi independently. Ωg,n has the property that for equivariant line bundles L1, . . . ,Ln

∫
Y1∈γ′(L1)

· · ·
∫
Yn∈γ′(Ln)

exp (z1x(Y1) + · · ·+ znx(Yn))ωg,n

=

∫
Y1∈γ′(L1)

· · ·
∫
Yn∈γ′(Ln)

exp (z1x(Y1) + · · ·+ znx(Yn)) Ωg,n.

The right hand side of the above is readily evaluated. As we have said, f(Y1, . . . , Yn, z1, . . . , zn) is

at most linear in each of the Yi. Because of this, we only need to know how to evaluate the integrals

∫
Y ∈γ′(L)

exp (zx(Y ))
dY

Y
and

∫
Y ∈γ′(L)

exp (zx(Y ))
dY

Y 2
.

The former we have already know from (4.7) because dy = d log Y = dY/Y , while the latter can

be obtained by differentiating the former with respect to a parameter in x.
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We have

∫
y∈γ(L)

exp (zx(Y ))
dY

Y 2
=

(
1

z

∂

∂q
− s2

q

)∫
y∈γ(L)

exp (zx(Y ))
dY

Y

=

(
1

z

∂

∂q
− s2

q

)〈〈
e,
zκ(L, z)
1− zψ

〉〉
0,2

Now γi does not depend on q, and so we also have

∫
γi

exp (zx(Y ))
dY

Y 2
=

(
1

z

∂

∂q
− s2

q

)〈〈
e,

φi
1− zψ

〉〉
0,2

.

In fact, by [15, sec. 2.5] and in turn [18], we have

1

z

∂

∂q

〈〈
e,

φi
1− zψ

〉〉
0,2

=
1

q

〈〈
H,

φi
1− zψ

〉〉
0,2

=
1

q
SiH ,

thus ∫
γi

exp (zx(Y ))
dY

Y 2
=

1

q
SiH −

s2

q
Sie.

And so we have proved the result �

The result here extends to a broader class of spectral curves than that studied here. Given

correlation functions ωg,n satisfying Eynard-Orantin recursion for a rational x, we can make a

statement about the integral

∫
xi∈γ1

· · ·
∫
xn∈γn

e
∑
i zixi ωg,n(4.11)

for contours γi on which ezixi agrees at its end-points. The form of Ωg,n changes, but the statement

will be that (4.11)will be be reduced to integrals

(4.12)
∫
γ

ezx(Y )(Y −Q)−kdY

for Q a pole of dx of degree m and 0 < k < m.
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To relate this to a counting problem, however, one needs results similar to Theorem 4.1, (4.6).

Some method of identifying quantities of the form (4.12) with generating functions related to the

counting problem would also be desirable.

We finish the section by listing some Ωg,n obtained from this process.

Ω0,3 =
z1z2z3dY1dY2dY3

Y1Y2Y3

(
−q − s2 + qs

(
1

Y1

+
1

Y2

+
1

Y3

)
− q2

(
1

Y1Y2

+
1

Y1Y3

+
1

Y2Y3

))

Ω1,1 =
z1dY1

Y1

(
− qs

3(4q+s2)
− qz1

12

Y1

− 5 (12q + s2)

72 (4q + s2)
+
sz1

24

)

4.4. Computation of the S operator

The determinant computed earlier suggests that we take line bundles L = O(l1p1 + l2p2) and

L′ = O(l′1p1 + l′2p2) with l1 + l2 − l′1 − l′2 = 1. Actually, if we set l2 = l′2, and l1 = l′1 + 1, our

expression for S1
e (z) simplifies.

To this end, set L1 = O (l1p1 + l2p2) and L2 = O ((l1 + 1)p1 + l2p2). Then we have

So, taking advantage of (4.8)

φ1 =
z sin (πsz)

πs

(−z)−1−szΓ (1 + sz) e2l2π
√
−1sz(

e2(l2−l1)π
√
−1sz − e2(l2−l1−1)π

√
−1sz

) (κ (L1, z)− κ (L2, z))

=
1

2π
√
−1s

(−z)−1−szΓ (1 + sz) e(2l1+1)π
√
−1sz (zκ (L1, z)− zκ (L2, z))

If we define the contour γ1,l1,l2 = γ (O(l1p1 + l2p2))− γ (O((l1 + 1)p1 + l2p2)), then

S1
e (z) =

〈〈
e,

φ1

1− zψ

〉〉
0,2

= − 1

2π
√
−1s

(−z)−1−szΓ (1 + sz) e(2l1+1)π
√
−1sz

∫
γ1,l1,l2

ezx(ey) dy

Note that γ1,l1,l2 is the contour as pictured in figure 2.
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Figure 2. The contour γ1,l1,l2 is as pictured. It is independent of l2.

We follow along the calculation given in [15].

∫
γ1,l1,l2

ezx(ey) dy = ezt0+zt1(s1+s2)/2

∫
γ1,l1,l2

ez(2 exp(t1/2) cosh(y)+sy) dy

= ezt0+zt1(s1+s2)/2

∫ 0

−∞
ez(−2 exp(t1/2) cosh(y)+s(y−(2l1+1)π

√
−1)) dy

+ ezt0+zt1(s1+s2)/2

∫ −π√−1

π
√
−1

ez(2 exp(t1/2) cosh(y)+s(y−(2l1+2)π
√
−1)) dy

+ ezt0+zt1(s1+s2)/2

∫ −∞
0

ez(−2 exp(t1/2) cosh(y)+s(y−(2l1+3)π
√
−1)) dy

= ezt0+zt1(s1+s2)/2−sz(2l1+2)π
√
−1

2π
√
−1

(
sin (szπ)

π

∫ ∞
0

e−2z exp(t1/2) cosh(y)−szy dy − 1

π

∫ π

0

e2z exp(t1/2) cos(u) cos (szu) du

)
= −2π

√
−1 ezt0+zt1(s1+s2)/2−sz(2l1+2)π

√
−1 Isz (2z exp(t1/2))

The integral representation for the modified Bessel function Iβ(ζ) is given in [25, p.181], and is

valid for Re (2z exp(t1/2)) > 0. The series for the modified Bessel function about z = 0 has

monodromy, but we find

S1
e (z) =

〈〈
e,

φ1

1− zψ

〉〉
0,2

=
1

s
z−1−szΓ (1 + sz) ezt0+zt1(s1+s2)/2 Isz (2z exp(t1/2))
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=
1

s
z−1−sz ezt0+zt1(s1+s2)/2

∞∑
m=0

1

m! (1 + sz)(m)
(z exp(t1/2))2m+sz

=
1

s
ezt0+s1zt1

∞∑
m=0

(et1)
m
z2m−1

m! (1 + sz)(m)

where (1 + ζ)(m) =
∏m

j=1(m+ ζ).

In an analogous way, we can compute S2
e (z). SetL3 = O(l1p1+(l2+1)p2),L4 = O(l1p1+l2p2).

We find

φ2 =

√
−1

2πs
zszΓ (1− sz) e−(2l2+2)π

√
−1sz (−κ (L3, z) + κ (L4, z))

Figure 3. The contour γ2,l1,l2 . This contour is independent of l1.

So if we define the contour γ2,l1,l2 = γ (O(l1p1 + l2p2))−γ (O(l1p1 + (l2 + 1)p2)) as pictured

in figure 3, we can perform a similar calculation as before, we find

S2
e (z) =

〈〈
e,

φ2

1− zψ

〉〉
0,2

=

√
−1

2πs
zszΓ (1− sz) e−(2l2+2)π

√
−1sz

∫
γ2,l1,l2

ezx(ey)z dy

= −1

s
zszΓ (1− sz) ezt0+zt1(s1+s2)/2 I−sz (2z exp(t1/2))
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= −1

s
zsz ezt0+zt1(s1+s2)/2

∞∑
m=0

1

m! (1− sz)(m)

(
z
√

et1
)2m−sz

= −1

s
ezt0+zs2t1

∞∑
m=0

(et1)
m
z2m+1

m! (1− sz)(m)
.

4.5. The Finite Approximation to the Spectral Curve

We return to the question of B(Y, Y ′) raised earlier about the covering Σ → C×. There are

infinitely many branch points over P1 and P2 coming from the branches of y = log(Y ). From the

point of view of [4], we should not worry. We can define the spectral curve as a local spectral curve

as mentioned in Section 2.4 and be done with it. However, Theorem 4.1 is non-local in nature, and

so we are tempted to pursue this puzzle further.

Actually, we can view B(Y, Y ′) as the push-forward of the bilinear form dydy′

(y−y′)2 on Σ. The

difficulty lies is the fact that the fibres of our covering map contain Z-many points, and we are left

with a silly scalar factor of
∑

i∈Z 1. Motivated by the following lemma, we will approximate the

infinite cover of C× by a finite one.

Lemma 4.9. Let Z = p(z) = zN , Z ′ = p(z′) = z′N . Then the push-forward of the bilinear

form dzdz′

(z−z′)2 under p (twice) is

p∗p∗
dzdz′

(z − z′)2
= N

dZdZ ′

(Z − Z ′)2
.

PROOF. If z0 is some fixed pre-image of Z, we have

p∗p∗
dzdz′

(z − z′)2
= p∗

dz′dZz0

NZ

N∑
k=1

e2π
√
−1k/N

(z0 e2π
√
−1k/N −z′)2

= p∗
dz′dZNz′N−1

(Z − z′N)2

=
N∑
k′=1

dZdZ ′

(Z − Z ′)2
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= N
dZdZ ′

(Z − Z ′)2

Here we have used the result

N∑
k=1

e2π
√
−1k/N

(e2π
√
−1k/N −λ)2

=
d

dλ

N∑
k=1

e2π
√
−1k/N

(e2π
√
−1k/N −λ)

=
d

dλ

N

1− λN

= − N2λN−1

(1− λN)2
�

Our goal is to show that we can define a curve ΣN and correlation functions ωNg,k as per Eynard

and Orantin (with a slight modification), so that limN→∞ ω
N
g,k = ωg,n, with ωg,n the correlation

functions for the curve Σ.

Define a curve ΣN ⊂ C3 as the locus

x = N
(
t0 + s2t1 + Y + et1 Y −1 + s log(Y )

)
, y = Y

1
N .(4.13)

Now y is no longer a global coordinate. As a fix, we take log(Y ) = NLog (y), where Log is

a branch of the logarithm with cut avoiding the 2N branch points of the map x : ΣN → C×. The

parameter x is restricted accordingly. Notice that, where Y
1
N = exp

(
1
N

Log(Y )
)
,

lim
N→∞

NY
1
N −N = Log(Y )

This suggests that we should have taken y = NY
1
N −N . This is possible, but unnecessary. It may

be absorbed into x as the factor N as we have done.

Let ξi = y ◦ πi : Σm
N → C, Zi = Y ◦ πi : Σm

N → C be the y and Y coordinates of the ith factor

respectively. Consider the following quantities defined on ΣN as follows:
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ωN0,1(ξ1) = 0

BN(y, y′) =
dydy

(y − y′)2

ωN0,2(ξ1, ξ2) =
N2ξN−1

1 ξN−1
2 dξ1dξ2

(ξN1 − ξN2 )
2 =

dZ1dZ2

(Z1 − Z2)

ωNg,k+1(ξ1, . . . , ξk+1) =
∑

p∈ΣN ,dx(p)=0

Res
y→p

∫ ŷ
ξ=y

BN(ξk+1, ξ)

(y − ŷ)dx
WN
g,n+1(y, ŷ, ξK)(4.14)

WN
g,n+1(y, ŷ, ξK) =

ωNg−1,k+2(y, ŷ, ξK) +
∑

g1+g2=g
J
∐
J ′=K

ωNg1,|J |+1(y, ξJ)ωNg2,J ′(ŷ, ξJ)


We have made the expected choice for BN(y, y′), but for ωN0,2(ξ1, ξ2) we have taken the push-

forward of BN to {Y ∈ C} and scaled it by N−1. Now dx = 0 at Y = P1, P2 as before, and we

have 2N branch points satisfying either yN = P1 or yN = P2.

Proposition 4.10. If 2g − 2 + k > 0, as N →∞, in terms of Zi = Y (ξi), we have

ωNg,k(ξ1, . . . , ξk) = ωg,k(Z1, . . . , Zk) +O

(
1

N

)
.

The proof of this is the goal of the rest of this section.

Lemma 4.11. The correlation functions ωNg,k(ξ1, . . . , ξk) are single-valued in the coordinate

Zj = ξNj , j = 1, . . . k. Moreover, the recursion as in (4.14) reduced to a sum of residues at exactly

the two principal roots: p1 = P
1
N

1 and p2 = P
1
N

2 . We have

(4.15) ωNg,k+1(Z1, . . . , Zk+1) =
2∑
i=1

Res
y→pi

1

(y − ŷ)dx

∫ Ŷ

ζ=Y

dζdZk+1

(ζ − Zk+1)2
WN
g,n+1(y, ŷ, ξK).

Had we taken ωN0,2(ξ1, ξ2) = BN(ξ, ξ′), this lemma would not be true. This is what motivated

our choice for ωN0,2.
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PROOF. The proof is by induction on 2g − 2 + k. It is true in the base case, ω0,2. For the

induction step, we need to show ωg,k+1(ξ1, . . . , ξk+1) may be written in terms of Zk+1 and dZk+1.

Now by induction, the factor WN
g,k+1 is invariant under the transformation p→ e2π

√
−1/N p. So we

only need to check that for i = 1, 2, the quantity

∑
p∈ΣN ,y(p)N=Pi

Res
y→p

∫ ŷ
ξ=y

BN(ξk+1, ξ)

(y − ŷ)dx

is single valued in Zk+1.

Consider ŷ near a branch point p. Then

x

((
e2π
√
−1/N ŷ

)N)
= t0 + s2t1 + ŷN +

q

ŷN
+ s log(ŷN)

= t0 + s2t1 + yN +
q

yN
+ s log(yN)

= x

((
e2π
√
−1/N y

)N)
.

So if we have y, ŷ near y = p, we have e2π
√
−1/N y, e2π

√
−1/N ŷ near e2π

√
−1/N p. Let p1 be the

principal root of P
1
N

1 and ŷ is the conjugation of y near this point,

∑
p∈ΣN ,y(p)N=P1

Res
y→p

1

(y − ŷ)dx

∫ ŷ

ξ=y

BN(ξk+1, ξ)

=
N∑
k=1

Res
y→e2π

√
−1k/N p1

1

(y − ŷ)dx

∫ e2π
√
−1k/N ŷ

ξ=e2π
√
−1k/N y

dξk+1dξ

(ξ2
k+1 − ξ2)

= Res
y→p1

1

(y − ŷ)dx

∫ ŷ

ξ′=y

N∑
k=1

e−2π
√
−1k/N dξk+1dξ

′

(ξk+1 − e−2π
√
−1k/N ξ′)2

= Res
y→p1

1

(y − ŷ)dx

∫ Ŷ

ζ=Y

NξN−1
k+1 dξk+1dζ

(ζ − ξNk+1)2

= Res
y→p1

1

(y − ŷ)dx

∫ Ŷ

ζ=Y

dζdZk+1

(ζ − Zk+1)2
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which is what we need to show1. �

Observe that the explicit dependence of the correlation functions on x and y lies entirely on the

factor 1
(y−ŷ)dx

in the recursion formula.

Lemma 4.12. For i = 1, 2, let y = Y
1
N denote the primary branch near Y = Pi. In the limit

N →∞,

(y − ŷ)dx =
1

N

(
log(Y )− log(Ŷ )

)
dx+O

(
1

N

)
.

PROOF. For i = 1, 2, let y = Y
1
N denote the primary branch near Y = Pi. Then

1

N
(Ny −Nŷ)dx =

1

N

(
N elog(Y )/N −N elog(Ŷ )/N

)
dx

=
1

N

(
log(Y )− log(Ŷ )

)
dx+O

(
1

N

)
�

PROOF. (Proof of Proposition 4.10) The proof is by induction on 2g − 2 + k. For the base

case ω0,2 it holds by definition.

By Lemma 4.11, we see that (4.14) reduces to the sum of residues at the two principal roots p1

and p2, as in (4.15). However, the explicit dependence on the branch of y is in the factor

1

(y − ŷ) dx
=

N(
log(Y )− log(Ŷ )

)
dx

+O

(
1

N

)
. �

The factor of N in the denominator is cancelled by the factor of N in (4.13). So

ωNg,n − ωg,n = O

(
1

N

)
.

1We note that the above calculation proceeds exactly as above in the case of the infinite cover Σ → C× with
B(y, y′) = dydy′

(y−y′)2 . The argument fails, however, because we cannot show that WN
g,k+1 is invariant of the choice

of branch of y.
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APPENDIX A

The Equivariant Cohomology of the Projective Line

Let O(1) be the dual of the tautological bundle on P1, equipped with the natural action of the

torus T , and let H = cT1 (O(1)) be its equivariant first Chern class. In this appendix, we show that

the equivariant cohomology of P1 is gven by

H∗T (P1,Q) =
Q[H, s1, s2]

(H − s1)(H − s2)

where H∗T ({∗},Q) = Q[s1, s2]. The multiplicative identity in H∗T (P1,Q) is denoted by e.

A.1. Equivariant Cohomology

Given a manifold X with smooth G action, the naı̈ve definition of equivariant cohomology is

to compute the cohomology of X/G. When the action of G is free, this gives the correct result,

but for non-free G actions this gives a poorly behaved cohomology theory. The idea of equivariant

cohomology is to replace X with a homotopy-equivalent space X̃ that carries a free G action, and

then compute the cohomology of X̃/G.

Let EG be the total space of a weakly contractible principal rightG-bundle with baseBG; EG

is referred to as the classifying bundle for G. The resolution X̃ may be taken to be EG×X .

Given spaces Y and X with right and left actions by a topological group G, denote by Y ×GX

the quotient of Y × X by the equivalence relation (y · g, x) ∼ (y, g · x), where x ∈ X , y ∈ Y ,

g ∈ G.
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Given a group G and a topological space X on which G acts continuously on the left, and a

coefficient ring R, the equivariant cohomology H∗G(X,R) is defined to be the ordinary (singular)

cohomology ring H∗(EG×G X,R) = H∗(X̃/G,R).

The classifying bundle EG is usually constructed as an inductive limit limm→∞EGm of finite

dimensional approximations EGm. Standard theorems [1] state that for a given G, i, and X , for

all m sufficiently large,

H i(EG×G X) = H i(EGm ×G X).

There are also equivariant analogues of the Chern classes. Given an equivariant vector bundle

V over a G-space X , we can define a vector bundle V = EG×G V over EG×GX . By definition,

the equivariant total Chern class cG(V ) ∈ H2∗
G (X) of V is the total Chern class c(V) of V.

In this thesis, we are interested in the case G = T = (C∗)2, and X = P1, with action

(θ1, θ2) · [z1, z2] = [θ1z1, θ2z2]. We take

ET = lim
m→∞

ETm = lim
m→∞

(
Cm \ {0}

)2
.

Note that BT is may be identified as ∪∞m=1BTm, where BTm = Pm−1. Denote the pullbacks

of the tautological line bundles O(−1) in the first and second factors of BT by L1 and L2.

A.2. The Equivariant Cohomology of a Point

First we compute the equivariant cohomology of a point. In general, EG ×G {∗} = BG, so

we need to compute H∗(BTm,Q). Let L∗1 and L∗2 be the duals of the tautological line bundles L1

and L2. It can be shown that the first Chern classes s1 = c1(L∗1) and s2 = c1(L∗2) generate the co-

homology of BTm with relations in degree 2m+ 2. In the limit m→∞, these relations disappear,

and so H∗(BT,Q) = Q[s1, s2]. In fact, si, i = 1, 2, is none other than the equivariant Chern class
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cT1 (L∗i ) for the line bundle L∗i over a point with T action given by the character λi(θ1, θ2) = θ−1
i .

Together, λ1 and λ2 generate the lattice Hom(T,C∗).

A.3. Equivariant Line Bundles on the Projective Line

Consider the open cover of P1 by two open sets U1 and U2, which are the complement respec-

tively of the fixed points p2 = [0; 1] and p1 = [1; 0] of the torus action. Thus, Ui is a neighborhood

of pi. An equivariant line bundle L on P1 is determined by equivariant line bundles L|Ui on U1 and

U2, and an equivariant isomorphism between the line bundles
(
L|U1

)
|U1∩U2 and

(
L|U1

)
|U1∩U2 on U1

and U2. The restrictions are in turn determined by characters λm1
1 λm2

2 and λn1
1 λ

n2
2 of T , which rep-

resent the stalks of these line bundles at p1 and p2 respectively. In order for the restrictions of these

line bundles to U1 ∩ U2 to be isomorphic, it is necessary and sufficient that m1 + m2 = n1 + n2,

so that the restrictions of the characters to the diagonal S1 = {λ1 = λ2} ⊂ T are equal. The

underlying non-equivariant line bundle of the resulting equivariant line bundle is O(m1 − n1).

The tautological bundle O(−1) equipped with the natural T -action has m1 = n2 = −1 and

m2 = n1 = 0. Denote by H the equivariant Chern class cT1 (O(1)) = −cT1 (O(−1)).

Define O(l1p1 + l2p2) to be the line bundle with m1 = −m2 = l1 and n1 = −n2 = −l2. As a

non-equivariant bundle it is isomorphic to O(l1 + l2). For any equivariant line bundle L, there are

unique l1, l2, k ∈ Z such that L = O(l1p1 + l2p2)⊗O(k). We have

cT1 (O(l1p1 + l2p2)) = (l1 + l2)H − l2s1 − l1s2.

Lemma A.1. The tangent bundle TP1, with the T -action induced by the action of T on P1, is

isomorphic to O(p1 + p2).

In particular, cT1 (TP1) = 2H − s1 − s2.
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A.4. The Equivariant cohomology of the Projective Line

We may compute the equivariant cohomology

H∗T (P1,Q) = H∗(ET ×T P1,Q).

by identifying the space ET ×T P1 with the projective bundle P(L1 ⊕ L2) associated to the plane

bundle L1 ⊕ L2.

By definition, H = cT1 (O(1)) is the first non-equivariant Chern class of the line bundle

ET ×T O(1) = O(1)P(L1⊕L2) → P(L1 ⊕ L2).

This is a cohomology class of P(L1 ⊕ L2) whose restriction to each fiber of the projection map

P(L1 ⊕ L2)→ BT is the hyperplane class of that fiber. By the Leray-Hirsch theorem, the classes

1 and H generate H∗(ET ×T P1,Q) as an H∗(BT,Q)-module.

Denote the unit of H∗T (P1,Q) by e. It remains to compute the relations satisfied by H . To this

end, consider the plane bundle S = (L1 ⊕ L2)⊗O(1)P(L1⊕L2). Now

c(S) = c(L1 ⊗O(1)P(L1⊕L2))c(L2 ⊗O(1)P(L1⊕L2))

= (e− s1 +H)(e− s2 +H).

This shoes that c1(S) = 2H − s1 − s2 and c2(S) = (H − s1)(H − s2). But S contains the trivial

bundle as a sub-bundle and so c2(S) = 0. Thus

H∗T (P1,Q) =
Q[s1, s2, H]

(H − s1)(H − s2)
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