
NORTHWESTERN UNIVERSITY

Readily Available Learning Experiences in Production Code

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Joshua James Hibschman

EVANSTON, ILLINOIS

September 2017

2

c○ Copyright by Joshua James Hibschman 2017

All Rights Reserved

3

ABSTRACT

Readily Available Learning Experiences in Production Code

Joshua James Hibschman

Online platforms for learning to code such as Coursera, CodeCademy, and CodeSchool

attract millions of learners and significantly expand the pool of self-starting developers,

yet critical gaps in knowledge and experience remain between inexperienced learners and

professionals. With vast amounts of professionally-authored source code made readily

available by the client-server architecture of the web, design patterns and implementation

decisions found in source code can be used to provide on-demand learning experiences for

users seeking to advance their skills in professional web development. Specifically, this

thesis focuses on creating Readily Available Learning Experiences (RALE) for inexperi-

enced learners who wish to become professional contributors but lack the means necessary

to advance beyond their gaps in knowledge. The central claims of RALE are (1) surfacing

hidden design patterns, code constructs, and relationships (both direct and indirect) from

professional websites, (2) minimizing learning barriers while supporting personalized ex-

ploration of unfamiliar website code, (3) scaffolding mixed-initiative sensemaking to help

users walk through unfamiliar complexities, and (4) scaling the conversion of examples into

4

learning resources without additional authorship or maintenance. Specifically, I propose

to transform the entire domain of professional websites into opportunities for authentic

learning. Professional websites offer rich details missing from training examples, providing

real-world content and opportunities to think in the modes of the discipline. They embed

programming concepts and implementation techniques that are used by professionals and

are continually updated as new solutions arise. However, despite the abundant availability

of web client source code, professional website source is complex and difficult for learners

to understand. This thesis contributes three technical contributions to support RALE on

the open web: (1) an API Harness for surfacing relevant code that modifies the DOM, (2)

a Wisat architecture and Sleight-of-Hand technique to enable source instrumentation on

production websites, and (3) a Serialized Deanonymization technique to expose hidden

asynchronous links between logical JavaScript components. With these techniques for

transforming websites into learning experiences, aspiring web developers have immediate

opportunities to gain authentic practice in professional web development beyond what

authored learning materials currently provide.

5

Acknowledgements

Thank you to my advisor Haoqi Zhang for his coaching and mentoring during my jour-

ney through Ph.D. research and graduate life. Through our many whiteboarding sessions,

hacked-together prototypes, scrappy paper-drafts, and “stupid” ideas, I am grateful for

Haoqi’s patient and consistent emphasis on conducting meaningful and impactful research

over chasing publication counts. I am especially grateful that during our time working

together, Haoqi prioritized quality of life and mental well-being. It has been especially

great to see Haoqi treat all of his students this way, promoting community and quality of

life in our hybrid graduate/undergraduate research environment.

Thank you to my committee for their valuable guidance and feedback through the final

phase of my Ph.D. Thank you Darren Gergle for teaching me research methods and how

to conduct user studies properly, for inspiring my research direction, and for being a good

friend of Delta Lab. Thank you Rob Miller for your sound feedback and guidance through

the formation of this thesis and for inspiring a great deal of this work in online learning.

Thank you Eleanor O’Rourke for your well-timed guidance and feedback, especially in

applying aspects of the Learning Sciences in CS.

Thank you to my fellow Northwestern researchers for your support and friendship

through my Ph.D. Yongsung Kim, thank you for being the best labmate one could ask

for, see Figure A.1. To Mike Greenberg, Emily Harburg, Daniel Rees Lewis, Julie Hui,

and Leesha Maliakal thank you for your wonderful friendship and cheering me onto the

6

finish. Thank you Uri Klarman, David Demeter, and Marlon Twyman for the walks,

coffee runs, lunches, and impromptu lab visits, which helped me through the low points

in my research and grad life. Thank you Sarah Lim for your outstanding continuation

of my research and Kevin Chen, Ryan Madden, Henry Spindell, Kapil Garg for your

friendship and inspiring undergraduate and master’s work. Thank you John Otto and

Shawn O’Bannion for your guidance on finishing a Ph.D.

Thank you to my prior mentors and teachers who have inspired me to think scientifi-

cally and have given me the tools to contribute to the field Computer Science. Taylor Uni-

versity professors Tom Nurkkala, Jon Geisler, Stefan Brandle, and Art White thank you

for your inspiring undergraduate lectures and projects in the fundamentals of Computer

Science. DePaul University professors Corin Pitcher, Massimo DiPierro, Chris Hield,

Steve Jost thank you for your mentorship through advanced masters topics in Computer

Science. Thank you Will Brennan, Jim Buswell, and Jimmy Bremner for being notewor-

thy examples of mentors and managers and thank you for believing in my potential as a

software engineer — giving me opportunities to grow as a professional contributor. Thank

you Caryn Ellison for inspiring such a strong vision of scientific research in my life from

a young age.

Spencer Mead and Caleb Durenberger, thank you for providing an opportunity to

mentor you through difficult topics in Computer Science and for being the primary inspi-

rations for this thesis.

Tom Lieber and Andy Ko, thank you for your foundational works on Theseus and

Learning Barriers, of which this thesis is heavily based upon.

7

Thank you Jeff Nichols for hosting me as a researcher at Google, advancing my skills

as an industry researcher, and making me feel like a valued member of your team.

“Us” especially wants to thank Dr. Rick Marks for your timely counsel, support, and

mentorship. We’ve never been better.

Most of all, thank you to my family. To my parents Jim and Robin Hibschman, thank

you for my first computer at age 10, for teaching me to dream, and for your incredible

support during this process. Thank you to my parents in-law Ralph and JoAnn Wilson for

your friendship, guidance, and consistent encouragement during my Ph.D. Thank you to

my beautiful children Lucy and Milo for bringing such indescribable joy to me every single

day and for giving Daddy so much time on the computer. Thank you to my beautiful

wife Kelley for being my advocate, number one supporter, incredible mother to our kids,

and consistent believer that I could finish my Ph.D.

8

Table of Contents

ABSTRACT 3

Acknowledgements 5

Table of Contents 8

List of Figures 11

Chapter 1. Introduction 22

1.1. Readily Available Learning Experiences 24

1.2. Contributions: Three Systems Toward RALE 27

1.3. Thesis Overview 36

Chapter 2. Related Work 38

2.1. Surfacing Information from Code 38

2.2. Minimizing Learning Barriers 42

2.3. Scaffolding Mixed-Initiative Sensemaking 45

2.4. Scaling Learning Resources 47

Chapter 3. Unravel: Rapid Web Application Reverse Engineering 50

3.1. Motivation and Contributions 51

3.2. Unravel 53

3.3. Organizing and Tracing Relevant Source Code 60

9

3.4. Implementation 61

3.5. Unravel User Study 67

3.6. Study Results 72

3.7. Limitations 76

3.8. Conclusion 77

Chapter 4. Telescope: Fine-Tuned Discovery of Web Feature Source Code 79

4.1. Motivation and Contributions 80

4.2. Telescope 84

4.3. Implementation 92

4.4. Case Study 97

4.5. Exploratory User Study 106

4.6. Limitations 110

4.7. Conclusion 112

Chapter 5. Isopleth: Mixed-Initiative Sensemaking in Web Application Code 115

5.1. Motivations and Contribution 116

5.2. Isopleth 119

5.3. Techniques for Discovering Hidden Links and Surfacing Facets 128

5.4. Implementation 133

5.5. Case Study 135

5.6. Isopleth User Study Design 142

5.7. Isopleth User Study Results 145

5.8. Technical Limitations 154

10

5.9. Conclusion 155

Chapter 6. Discussion 160

6.1. Applications of Unravel, Telescope, and Isopleth 160

6.2. RALE: Design Claims and Evidence 165

6.3. Broader Applications of RALE 175

Chapter 7. Conclusion 179

7.1. Summary of Contributions 179

7.2. Future Directions 181

References 183

Appendix A. Supplemental Figures 191

11

List of Figures

1.1 The Unravel recording interface consists of the HTML Changes

pane (top), the JS Library Detection pane (middle), and the

JavaScript Function Calls pane (bottom). Unravel has two controls

for recording/stopping and resetting change detection (top). The

HTML Changes pane shows the total count, CSS Path, CSS

Selector, and HTML Attribute Changes for each element change.

The JS Library Detection pane shows libraries detected. The

JavaScript Function Calls pane shows the total count, stack frames,

and DOM API call for each JavaScript call-stack recorded. 28

1.2 The Telescope interface is being used to discover how this HTML5

connect-the-dot game’s timer works. The interface is paused to

freeze the current view. The detail level is set at minimum, and

the JavaScript call time is constrained between the 17th and 45th

second of execution. The left Telescope panel (middle) shows a

filtered HTML view, where an active element is highlighted and

query markers denote that JavaScript queried those lines during the

chosen time window. The right Telescope panel shows the website’s

JavaScript, filtered by time and detail. With the current settings,

12

only the most relevant JavaScript is displayed: active non-library

JavaScript which queried the DOM in the constrained time frame.

A curved line is drawn to connect the JavaScript line to its DOM

query. 30

1.3 A learner is using Isopleth to understand JavaScript code

constructs related to moving and scrolling their mouse on National

Geographic’s New New York Skyline article. Isopleth opened

in a new window after the user activated it on the website; it

continuously updates with JavaScript activity. Facet filters (top)

are used to filter display based on facet, or code constructs defined

by their inputs and outputs. Source frame views (middle) display

specific function invocation states in the runtime with their inputs

and outputs, parent and child calls, asynchronous declaration

context, asynchronous binding, and asynchronous effect if present.

The condensed call graph (bottom) displays a collated, filtered,

labeled, and color-coded JavaScript runtime call graph (See

Figure 5.2). Users can apply or and not operators on the filters

by left and right clicking, respectively. To support mixed-initiative

sensemaking, users can add custom filters (See Figure 5.3), modify

source frame and graph node labels, and add commentary in source

code — the system reacts by integrating learner input into its

views. Pictured here, a user has added a custom “Hover Effect”,

13

altered source code, and updated node labels to make sense of

smaller call trees. 34

3.1 The Unravel recording interface consists of the HTML Changes

pane (top), the JS Library Detection pane (middle), and the

JavaScript Function Calls pane (bottom). Unravel has two controls

for recording/stopping and resetting change detection (top). The

HTML Changes pane shows the total count, CSS Path, CSS

Selector, and HTML Attribute Changes for each element change.

The JS Library Detection pane shows libraries detected. The

JavaScript Function Calls pane shows the total count, stack frames,

and DOM API call for each JavaScript call-stack recorded. 54

3.2 Within the Unravel HTML Changes pane, users can opt into

hiding changes from SVG elements (top left). Users can constrain

Unravel’s observation scope by selecting an HTML element to

observe (top right). 56

3.3 The Unravel JavaScript Function Calls pane has captured a

call-stack that was executed 22 times. A stack frame with a method

called _setActiveSection on object o.extend initiated the call-stack

(top), which arrived at a document query for elements with class

“audio-a” (shown in Figure 3.1 bottom right). 58

3.4 The Unravel JS Library Detection pane requests detection for

libraries when Unravel starts and as users select re-detect (right).

14

Re-detection is an affordance provided for libraries added after the

initial page load. In this figure, jQuery, Backbone, and LoDash

were detected. 59

3.5 An API harness is placed on the document API. Unravel captures

and serializes call-stacks and arguments made to the API. Normal

interaction with the API resumes after the details of a method call

are broadcast. 62

3.6 Participants reverse engineered 2 UI features from a set of 5. The

top table lists each website with its corresponding feature and

trigger under inspection. The screen-shots are of Tumblr, iPad,

Flickr, Amazon, and Kickstarter (mid left to bottom right). 66

3.7 Results of the user study are compared in total times to milestones.

Boxes indicate interquartile range. Means are shown as dotted

lines and medians are solid lines. The box whiskers indicate range

including outliers. There is a significant difference in each of total

times for M1, M2, M3. 71

3.8 Results of the users study are compared in split times between

milestones. There is a statistically significant difference between M1

and M1 with Unravel. However, there was no significant difference

for the M2 or M3 split times. This means that Unravel was most

effective for decreasing the time to first key source. 73

15

4.1 The Telescope interface is being used to discover how this HTML5

connect-the-dot game’s timer works. The interface is paused to

freeze the current view. The detail level is set at minimum, and

the JavaScript call time is constrained between the 17th and 45th

second of execution. The left Telescope panel (middle) shows a

filtered HTML view, where an active element is highlighted and

query markers denote that JavaScript queried those lines during the

chosen time window. The right Telescope panel shows the website’s

JavaScript, filtered by time and detail. With the current settings,

only the most relevant JavaScript is displayed: active non-library

JavaScript which queried the DOM in the constrained time frame.

A curved line is drawn to connect the JavaScript line to its DOM

query. 83

4.2 Clicking a Telescope HTML query marker from the Mac Pro

website (left) shows lines to four JavaScript functions. In this view,

a line leads to function resizeFluidAreas, which resizes elements

on scroll. 88

4.3 Clicking Telescope’s code markers for the New York Times “Snow

Fall” website highlights related DOM elements in the website. The

DOM element’s source is included in the highlight, connecting

context to Telescope’s HTML view. 89

4.4 The Wisat architecture supports Telescope’s ability to remotely

process website interaction traces. A website receives its initial

16

source swap via the Chrome extension. The website fetches

instrumented scripts from the Fondue API (top), and the

Chrome extension negotiates a two-way handshake via the Trace

Bridge to connect it with its Telescope session (bottom). Upon

successful connection, JavaScript traces and source data propagate

continuously over the trace bridge. 93

4.5 The Sleight-of-Hand technique pictured above is a 7-step process

for instrumenting a website’s source code via browser extension

(black squares) and external instrumentation server (blue, middle

right). After website load (1), the extension deploys an agent (2).

The agent sends the sources for instrumentation via AJAX (3),

which are returned (4), passed to the agent (5), and swapped for

the originals, deleting references (6). The browser makes requests

for the newly instrumented sources (7). 95

4.6 Results from our case study show the amounts of code Telescope

reduces, using time and detail filters to draw distinction between

on-load setup code and interaction code. Each website’s complexity

class is provided (Small, Medium, High). The JS total lines of code

(LOC), calculated after normalized unminification, are listed per

each website (left) and categorized by all active JS LOC and the

default DOM-modifying JS LOC with library code removed. In

blue (middle, right) the LOC in Telescope’s default view for on-load

and interaction show the amount of reduction Telescope performs

17

for the user while maintaining relevance. HTML LOC queried are

listed, showing the small portion of DOM elements involved in

each UI interaction. Interactions include a map-drag (XKCD), a

scroll animation (Tumblr), a dot-drag (DotToDot), scroll-driven

video sizing (NYT), a load-and-scroll-driven float (iPhone), a

scroll-driven product show (Mac Pro), and a date-picker render and

select (Southwest). 98

4.7 Telescope is being used to discover XKCD’s map-drag

implementation. A JavaScript call marker has been clicked

next to the Map function, resulting in HTML line highlights and a

DOM element highlight in the website. 100

4.8 We evaluated Telescope’s performance and source discovery on

Apple’s Mac Pro product demo website. While performance lagged

during UI animation, Telescope accurately captured and reduced

the source code view to show how the scroll-driven effect works.

Above, an HTML line marker has been selected in the Telescope

interface that draws lines to linked functions and highlights the

DOM component. 103

4.9 We observed Telescope’s use while discovering a map-drag

interaction on XKCD (left), a dot-connect interaction on

Play-Dot-To.com (middle), and a scroll animation on Tumblr

(right). 105

18

5.1 A learner is using Isopleth to understand JavaScript code

constructs related to moving and scrolling their mouse on National

Geographic’s New New York Skyline article. Isopleth opened

in a new window after the user activated it on the website; it

continuously updates with JavaScript activity. Facet filters (top)

are used to filter display based on facet, or code constructs defined

by their inputs and outputs. Source frame views (middle) display

specific function invocation states in the runtime with their inputs

and outputs, parent and child calls, asynchronous declaration

context, asynchronous binding, and asynchronous effect if present.

The condensed call graph (bottom) displays a collated, filtered,

labeled, and color-coded JavaScript runtime call graph (See

Figure 5.2). Users can apply or and not operators on the filters

by left and right clicking, respectively. To support mixed-initiative

sensemaking, users can add custom filters (See Figure 5.3), modify

code in the source frame views and graph node labels, and add

commentary in source code — the system reacts by integrating

learner input into its views. Pictured here, a user has added a

custom “Hover Effect”, altered source code, and updated node

labels to make sense of smaller call trees. 120

5.2 A cluster of related collated function invocations (with their

invoke-counts), manually organized here for display. Nodes are

colored green for top level calls, yellow for currently-selected, purple

19

for DOM facets, white for AJAX, blue for Setup. Edges in the

graph are color-coded yellow for a call, orange for asynchronous

declaration, and purple for asynchronous bind location (via

Serialized Deanonymization). In this toy-example of a lazy-

loaded image, we bound a click handler on #test4. On clicking

#test4, the handler made an AJAX JSON request and bound

jsonResponsHandler as the callback. The jsonResponsHandler

queried the DOM for #appendShipHere and added the image. 122

5.3 A learner is creating a custom facet filter. Facets are functional

input-output schemas, and in this facet creator view, user input

is structured in terms of testing arguments and return values to

identify function invocation nodes containing the argument or

return value. Users assign a node color for display in the condensed

graph, where the last filter applied colors the node. The learner is

defining a skyline hover facet, visible in Figure 5.1. 125

5.4 Functions existing inside known libraries are colored grey, currently-

selected nodes are colored yellow, green nodes have initiated DOM

changes, and purple lines denote an asynchronous relationship.

After removing library code filtering from the condensed call graph,

this figure shows how Serialized Deanonymization allows for a

DOM-modifying facet to be bubbled up out of a library call. Only

the green node is present outside of jQuery. 128

20

5.5 The Serialized Deanonymization technique pictured above is a

7-step process for tracing an anonymous JavaScript function’s path

from creation to invocation. (1) Website JavaScript is extracted

and (2) sent to an instrumentation server. (3) UUID’s are injected

into all function bodies. (4) The source is injected into the page

and (5) re-rendered, sending trace activity continuously to a db.

(6) Isopleth queries traces for call graph calculation and (7) mines

arguments and return values for function serials to discover how

functions were passed and bound. 130

5.6 After removing library code filters, we demonstrate how facets are

bubbled out of library code. The green node is the only node in

the graph not present in a library. AJAX facets were detected at

a low-level in the library (yellow node), but the jQuery library

API only surfaces a getJSON wrapper-method. During call graph

calculation, if we detect an facet in a library, we bubble the facet up

to the first occurrence of non-library code to help learners identify

the facet roles of library API calls (i.e. getJSON actually delegates

to the XHR AJAX API). 132

5.7 We studied Isopleth’s ability to support sensemaking and elicit

design patterns across 12 websites selected from a diversity

of industries based on Alexa popularity rankings, the Webby

awards, and personal interest. From top left to bottom right:

Tesla, The Pudding’s “Making it Big”, BBC America, 500px,

21

Stripe, ArsTechnica, Zillow, Starbucks, HashTagsUnplugged’s

“#PlutoFlyBy” article, National Geographic’s “New New York

Skyline” article, Histography.io, and DarkSky.net. 134

5.8 The condensed call graph representation of BBC America’s lazy-

image-loading strategy. By following SD asynchronous bindings,

and completing small sensemaking tasks of examining source frames

and updating labels, we elicit the design pattern of appending

images only when the user scrolls below the fold. 136

5.9 A source frame view found while learning about Zillow’s recent

search results feature in its autocomplete. The construct for loading

previous searches is on the left and the captured return value is on

the right. We were surprised to find recent searches stored in the

browser’s local store rather than the user’s profile, or synced with

the server. 137

5.10 The most complex UI we tested was histography.io, and Isopleth

performed well in collating thousands of loop calls. On hover,

different history events in time bubble up with randomly decaying

dots. 138

A.1 “Compiling”, XKCD, by Randall Munroe. xkcd.com/303 191

22

CHAPTER 1

Introduction

With vast amounts of professionally-authored website source code made readily avail-

able by the client-server architecture of the web, implementation details and design choices

found in source code can be used to provide on-demand learning experiences for users seek-

ing to advance their skills in professional web development. This thesis introduces methods

for (1) surfacing hidden design patterns, code constructs, and relationships (both direct

and indirect) from professional websites, (2) minimizing learning barriers while supporting

personalized exploration of unfamiliar website code, (3) scaffolding mixed-initiative sense-

making to help users walk through unfamiliar complexities, and (4) scaling the conversion

of examples into learning resources without additional authorship or maintenance.

Specifically, this thesis focuses on creating learning experiences for inexperienced web

developers who wish to become professional contributors but lack the means necessary

to advance beyond their gaps in knowledge. Many of these users can setup, read, and

write basic JavaScript web applications but lack the conceptual knowledge of design pat-

terns used in professional web solutions. Online platforms for learning to code such as

Codecademy, Khan Academy, and CodeSchool attract millions of learners and signifi-

cantly expand the pool of self-starting developers, yet these platforms primarily teach

syntax or provide practice on constrained tutorial examples. Further, these platforms

lack the authenticity required to support the progression from writing functional code

23

to writing professional-quality software. As a result, significant gaps in knowledge and

experience remain between inexperienced developers and professional developers.

This thesis proposes to address conceptual knowledge gaps for inexperienced web de-

velopers by transforming the entire domain of professional websites into opportunities for

authentic learning. Professional websites offer rich details missing from training examples,

providing real-world content and opportunities to think in the modes of the discipline.

They embed programming concepts and implementation techniques that are used by

professionals and are continually updated as new solutions arise. However, despite the

abundant availability of front-end code, professional examples are complex and difficult

for learners to understand.

Deriving learning material from websites presents design and technical challenges due

to the magnitude and complexity of the underlying source code. A simple UI interaction

may require only ten lines of JavaScript, but modern web production engineering practices

make use of libraries and build processes that can push front-end lines of code into the

tens of thousands [6, 64, 70]. Bindings between HTML and JavaScript support an

interaction, but it is difficult to determine how such bindings are constructed. A simple

calendar widget, for example, could be created entirely in JavaScript and appended to the

DOM with listeners, or it could be built in HTML and CSS with inline calls to JavaScript

hooks. Embedding the widget amidst all its library or utility code in a minification

build process blurs the location and scope of code most relevant to enabling the widget’s

functionality.

JavaScript functions are often executed asynchronously, and visualizations of execution

order provide little information about the conceptual structure of web programs. One

24

could understand the structure by walking through the entire execution path as they

might when debugging, but this can contain thousands of steps for professional examples.

Surfacing relevant information, such as the most-called functions, is a reasonable approach

for identifying important functional components, but it can hide lower-level functions that

become necessary bridges for understanding how components work together to produce a

feature.

With prior systems [48, 59, 14, 25, 5], it is difficult to (1) differentiate relevance

amidst JavaScript sources for a given interaction, (2) control the scope of JavaScript

being analyzed, (3) identify the interplay between JavaScript and HTML that causes

a visual change, (4) trim away inactive code and library code that get in the way of

learning, (5) elicit code constructs and relationships with JavaScript sources, and (6)

support a user’s sensemaking process through complex JavaScript artifacts. Our work on

RALE overcomes these challenges to give users opportunities to learn authentically from

professional websites.

1.1. Readily Available Learning Experiences

A RALE is defined as a learning scaffold created for a professional website that en-

gages with a learner to support authentic practice with constructs and techniques used to

compose the product. The purpose of RALE is to enable inexperienced learners to gain

insights from professional products to bridge knowledge gaps in their journey of becoming

a professional contributor. To advance this purpose, we argue that a RALE should:

(1) Surface hidden design patterns, code constructs, and relationships (both direct

and indirect) from professional websites.

25

(2) Minimize learning barriers while supporting personalized exploration of unfamil-

iar website code.

(3) Scaffold mixed-initiative sensemaking to help users walk through unfamiliar com-

plexities in the surfaced resources.

(4) Scale the conversion of examples into learning resources without additional au-

thorship or maintenance.

Surfacing patterns, constructs, and relationships from professional websites (claim

1) helps inexperienced developers to overcome gaps in knowledge, shortcuts inefficient

learning routes such as incomplete tutorials, and provides users with opportunities to learn

authentically — in a personally meaningful way using multiple modes of the discipline (i.e.

web application programming). Prior systems to RALE are able to surface information

about a runtime but require the user to infer relationships and patterns for themselves.

Without scaffolds in place, learning barriers often inhibit users from gaining meaningful

insights from any information surfaced [45].

RALE calls for minimizing the effects of additional learning barriers that can be cre-

ated by surfacing hidden details from software while still supporting in-depth exploration

(claim 2). While there is a large body of work on the theme of extracting concepts from

code, few address the risk that surfacing patterns, constructs, and relationships could

overwhelm a user and present them with additional learning barriers. The studies pre-

sented later in this thesis reveal that learners are easily overwhelmed by overly detailed

stack traces, verbose variable states, and complex nested program flows. However, there

are times when learners seek these higher levels of detail. Thus, RALE supports personal

in-depth exploration in its second claim.

26

RALE calls for techniques and affordances to scaffold learners in sensemaking, pro-

viding them with cues to engage in multiple modes of the web programming discipline

such as architecture or implementation (claim 3). Further, by facilitating sensemaking

as a mixed-initiative system, learners can work with the system toward their goal [37]

to analyze, modify, and iterate on conceptual models of programming constructs. While

prior tools [22, 8, 9] effectively support opportunistic sensemaking by leveraging con-

text and online resources to provide relevant programming scaffolds, they are designed

to support expert developers; they do not provide affordances to build on beginners’

understandings [51] or help beginners reason about the structure of code [61].

With the first 3 claims in mind, a RALE must apply these claims while scaling con-

tinuously across its application domain without burdens of authorship or maintenance

(claim 4). Tutorials and Q&A require authorship, or the manual creation of learning ma-

terials, and often leave learning gaps or fail to provide an adequate case library for each

learner’s goals. The underlying technologies enabling RALE should not require expert

authoring for surfacing the underlying information from a runtime. With millions of ac-

tive learners looking to the web for online learning and the fast pace of innovation in web

programming, teachers and content authors meet only a small portion of the increasing

demand for learning materials. The primary goal of this thesis is to transform inspiring

professionally-produced websites into opportunities for learning without dependencies on

authoring to bridge gaps in becoming a professional contributor.

27

1.2. Contributions: Three Systems Toward RALE

This thesis contributes three systems toward the goal of creating Readily Available

Learning Experiences (RALE) for professional websites. Each system was developed se-

quentially in an effort to get closer to an overall goal of proving RALE on the open web.

This section introduces the systems and their contributions toward RALE.

1.2.1. Unravel: Tracing, Organizing, and Identifying Relevant Runtime Code

Unravel is an extension of the Chrome Developer Tools for quickly tracing and visualizing

HTML changes, JavaScript method calls, and JavaScript libraries. Unravel aids the re-

verse engineering of websites by providing comprehensive yet targeted views of JavaScript

invocations, HTML changes, and included libraries (see Figure 1.1). Unravel enhances

Google Chrome’s existing developer toolkit by linking all HTML and JavaScript compo-

nents to their corresponding inspection panes for quick examination. Unravel works on

all websites without interfering with existing functionality. For example, a developer can

navigate to a landing page, record a parallax effect, and watch Unravel identify which lines

of JavaScript were executed, which DOM elements were modified, and which attributes

were modified per each element. Toward RALE, Unravel was the first system to surface

code constructs in terms of relevance for a given website feature (founding claim 1) while

lowering informational learning barriers (founding claim 2) and scaling to work across its

domain without the need for external dependencies (founding claim 4).

The main conceptual contribution of Unravel is the idea of tracing, identifying, and

organizing the most relevant functions and DOM elements manipulated to support reverse

engineering and understanding interactions on complex professional websites. Unravel

28

Figure 1.1. The Unravel recording interface consists of the HTML Changes
pane (top), the JS Library Detection pane (middle), and the JavaScript
Function Calls pane (bottom). Unravel has two controls for record-
ing/stopping and resetting change detection (top). The HTML Changes
pane shows the total count, CSS Path, CSS Selector, and HTML Attribute
Changes for each element change. The JS Library Detection pane shows li-
braries detected. The JavaScript Function Calls pane shows the total count,
stack frames, and DOM API call for each JavaScript call-stack recorded.

aggregates changes monitored from within a website and provides affordances to reduce,

scope, and sort observations. Sources most frequently called become obvious choices for

the user to examine. Complex UI features can invoke an enormous number of method

calls and HTML changes. Navigating unstructured lists of change events for inspection is

counterproductive. Unravel aggregates similar JavaScript call-stacks and HTML changes,

increasing counts with each occurrence. While users frequently repeat an interaction to see

29

its effect, Unravel’s change panels are continually sorted by highest counts first, bubbling

the most changed element or most called trace to the top.

Unravel is supported technically by a novel observation agent that deploys an API

harness for observing and recording UI interactions from within a website. The API har-

ness is an approach for monitoring an application’s interaction with an API through a

removable recording adapter placed between the application and the API. Unravel’s ob-

servation agent publishes HTML changes and uses the API harness to monitor calls to the

document API. While previous work was able to record and replay events, these solutions

depended on access to a remote debugging API. Unravel’s observation architecture only

depends on native JavaScript and HTML, widening its application domain to other UI

inspection toolkits.

Unravel was evaluated with 13 web developers on 5 large-scale websites. The results

included a 53% decrease in time to discovering the first key source behind a UI feature

and a 32% decrease in time to understanding how to fully recreate a feature. In summary,

Unravel can be applied to help developers find entry points into complex code quickly

with lowered barriers of entry.

1.2.2. Telescope: Low-Barrier Learning Materials from Runtime Code

Telescope is a platform that supports the discovery of website feature implementation

by allowing the user to fine-tune a composite view of responsible JavaScript and explore

visual links between JavaScript, HTML, and rendered UI components (see Figure 1.2).

Telescope helps users generate low-barrier learning materials — less than two hundred

lines of code — from tens of thousands of lines of complex website code. For example, a

30

curious user could discover how an interactive map component achieves its dragging effect

in JavaScript and HTML by setting Telescope’s JavaScript detail level to minimum (DOM-

modifiers only) and time constraints before and after the click-and-drag. By clicking call

and query markers in the interface, visual lines connect JavaScript methods to queried

DOM elements, and corresponding DOM components are highlighted in the website.

Figure 1.2. The Telescope interface is being used to discover how this
HTML5 connect-the-dot game’s timer works. The interface is paused to
freeze the current view. The detail level is set at minimum, and the
JavaScript call time is constrained between the 17th and 45th second of
execution. The left Telescope panel (middle) shows a filtered HTML view,
where an active element is highlighted and query markers denote that
JavaScript queried those lines during the chosen time window. The right
Telescope panel shows the website’s JavaScript, filtered by time and detail.
With the current settings, only the most relevant JavaScript is displayed:
active non-library JavaScript which queried the DOM in the constrained
time frame. A curved line is drawn to connect the JavaScript line to its
DOM query.

31

Telescope surfaced hidden links beyond Unravel with its two-way visuals between

HTML and JavaScript (extending claim 1). Telescope demonstrated the necessity of

lowering additional information barriers while allowing for personalized exploration (ex-

tending claim 2). Further, Telescope provided a foundational architecture for scaling the

conversion of examples into learning resources without additional authorship or mainte-

nance (broadening claim 4).

The conceptual contribution of Telescope is the idea of helping users understand com-

plex website code by generating low-barrier learning materials. Telescope introduces three

design principles to support this idea:

(1) Single Composite View: As a user interacts with a website, Telescope brings to-

gether relevant JavaScript for an interaction into a single, composite JavaScript

view to resolve the challenges in finding all code relevant to a behavior in unfa-

miliar code [29]. Users can easily hide sources they deem irrelevant or alter the

display order of script sources relative to their dependency load order.

(2) Detail and Time Controls: The user can scope relevant Javascript by call time and

control the amount of detail they wish to see, ranging from showing non-library

DOM-modifying code only to showing all JavaScript present in the website. These

controls address a critical need discovered through our human-centered design

process, when we found users struggling to understand the code for an interaction

when there is either too little or too much JavaScript to analyze.

(3) Visual Links: Visual links connect active JavaScript to lines of HTML and website

DOM components to expose end-to-end functionality.

32

The technical contributions supporting Telescope enable its ability to examine website

UI interactions across the open web in real time. They include: (a) the Wisat architec-

ture, which supports source code tracing and instrumentation as well as shared Telescope

sessions on public websites and (b) the Sleight-of-Hand method (SoH), which swaps a

website’s client-side implementation during runtime with its instrumented counterpart.

The SoH method transitions websites from a non-traceable state to a fully instrumented

state, supporting live interaction traces as a user interacts with their website. The Wisat

architecture then transmits runtime traces used to decide which JavaScript is displayed in

Telescope’s composite view and provides the linking data necessary for drawing connec-

tions between JavaScript, HTML, and website components. The third system, Isopleth,

extends this architecture to enable mixed initiative sensemaking across the open web.

In a case study across seven popular websites, Telescope helped identify less than 150

lines of front-end code out of tens of thousands that accurately described the desired

interaction in six of the sites. In an exploratory user study, users discovered difficult

unfamiliar programming concepts by leveraging Telescope’s ability to reduce code while

varying its detail display to provide deeper understanding when needed. In summary,

Telescope can be applied to produce low-barrier learning materials for users to discover

an accurate glimpse of how a website feature works, with support for them to explore

much further.

1.2.3. Isopleth: Mixed-Initiative Sensemaking in Unfamiliar Code

Isopleth is a web-based platform that enables a mixed-initiative sensemaking process

by combining system and user-generated facets and source code alterations to support

33

learners as they make sense of complex JavaScript features in professional websites (see

Figure 1.3). Isopleth automatically identifies programming facets, or code constructs that

are defined by their inputs and outputs, then exposes functional relationships and hidden

asynchronous relationships in its call graph. In contrast to existing systems, our goal is

to help users identify meaningful entry points into complex code and then interactively

explore, label, and filter facets to produce their own understanding of its functionality. Iso-

pleth supports mixed-initiative interaction by integrating newly created facets and labels

into recalculated views. For example, a user could explore how autocomplete works by (1)

selecting the “Keyboard” facet, (2) creating a new facet filter for the text of their autocom-

plete query, and (3) following asynchronous links between keyboard-related invocations

and query-related invocations. Toward RALE, Isopleth surfaces hidden relationships and

facets in the code (extending claim 1), minimizes additional coordination, design, and use

learning barriers (extending claim 2), and is the first system to scaffold mixed-initiative

sensemaking (founding claim 3).

34

Figure 1.3. A learner is using Isopleth to understand JavaScript code con-
structs related to moving and scrolling their mouse on National Geo-
graphic’s New New York Skyline article. Isopleth opened in a new win-
dow after the user activated it on the website; it continuously updates with
JavaScript activity. Facet filters (top) are used to filter display based on
facet, or code constructs defined by their inputs and outputs. Source frame
views (middle) display specific function invocation states in the runtime
with their inputs and outputs, parent and child calls, asynchronous decla-
ration context, asynchronous binding, and asynchronous effect if present.
The condensed call graph (bottom) displays a collated, filtered, labeled, and
color-coded JavaScript runtime call graph (See Figure 5.2). Users can apply
or and not operators on the filters by left and right clicking, respectively.
To support mixed-initiative sensemaking, users can add custom filters (See
Figure 5.3), modify source frame and graph node labels, and add commen-
tary in source code — the system reacts by integrating learner input into
its views. Pictured here, a user has added a custom “Hover Effect”, altered
source code, and updated node labels to make sense of smaller call trees.

35

The conceptual contribution of Isopleth is the idea of scaffolding sensemaking of com-

plex professional code by surfacing hidden relationships between code constructs and pro-

viding a mixed-initiative process to interactively explore, label, and identify system com-

ponents and how they relate. Distinct from function call filters, code detail levels, or web

feature-location, Isopleth leverages automated techniques to surface facets, code construct

defined by inputs and outputs, and expose hidden asynchronous relationships among func-

tion invocations. Users can engage in sensemaking by editing code, rearranging invoca-

tions, and composing their own invocation labels. As users explore connections between

facets and code constructs, they can define new facet filters for the system to respond with

newly surfaced facets and hidden relationships. By modifying and contributing filters to

the system, users participate in a mixed-initiative flow, where the user and the system

work together to support the user’s goal.

The technical contribution of Isopleth is a Serialized Deanonymization (SD) technique

that places unique identifiers in all functions in a web application’s JavaScript source

to trace how functions are bound, passed, returned, and invoked asynchronously. This

technique provides the ability to take users beyond a UI feature’s binding to show them

how the feature’s bindings was created. Related toolkits [48, 28] are limited to linking

a function invocation to its declaration context, and therefore cannot expose where the

function was bound, passed, or set as a callback. For example, imagine a web application

that creates an anonymous function at line 13 of a source file and binds it as a click

handler at line 93. When a user clicks, existing tools would point to line 13 and neglect

line 93, thereby making it difficult for the learner to see how the function was used. SD

provides missing links such as these by adding them to the call graph. This allows us

36

to see a complete picture of code activity between declaration and invocation, and thus

surfaces crucial information for understanding how web features are implemented.

In a case study across 12 popular websites with rich user experiences, Isopleth sup-

ported sensemaking and the discovery of 20 different design patterns. It also surfaced

common and distinct implementation approaches used across the 12 websites. In a user

study with 14 participants, Isopleth was evaluated to analyze its ability in scaffolding

sensemaking and informing conceptual models. Users with basic working knowledge of

website programming were able to discover and explain design patterns they found in un-

familiar complex professional website code. Most users described either a newly formed or

richly extended mental models of a website feature’s architecture. In summary, Isopleth

was the first system to enable mixed initiative sensemaking for users seeking a deeper

understanding of web feature implementation techniques.

1.2.4. Thesis Statement

Readily Available Learning Experiences on the open web surface hidden design patterns,

code constructs, and relationships in professional websites to provide opportunities for in-

experienced web developers to overcome learning barriers in unfamiliar professional web-

site code, engage in structured sensemaking with complex artifacts, and bridge essential

gaps in knowledge of developing professionally designed systems.

1.3. Thesis Overview

∙ Chapter 2 establishes related work and presents how the contributions of this

thesis both address and advance current research.

37

∙ Chapter 3 presents Unravel, the first system toward RALE, which aids the re-

verse engineering of websites by providing comprehensive yet targeted views of

JavaScript invocations, HTML changes, and included libraries.

∙ Chapter 4 presents Telescope, the second system toward RALE, which supports

the discovery of website feature implementation by allowing users to fine-tune

a composite view of responsible JavaScript and explore visual links between

JavaScript, HTML, and rendered UI components.

∙ Chapter 5 presents Isopleth, the third system toward RALE, which enables a

mixed-initiative sensemaking process by combining system and user-generated

content to support learners as they make sense of complex JavaScript features in

professional websites.

∙ Chapter 6 discusses use cases for each system, reviews the design claims and

evidence for RALE, and looks into how applications of RALE could be created

for other domains.

∙ Finally, Chapter 7 reviews the contributions of this thesis and proposes future

research for furthering the RALE vision.

38

CHAPTER 2

Related Work

This thesis extends and contributes to four main bodies of work around the central

claims of RALE: (1) Surface hidden design patterns, code constructs, and relationships

(both direct and indirect) from professional websites. (2) Minimize learning barriers

while supporting personalized exploration of unfamiliar website code. (3) Scaffold mixed-

initiative sensemaking to help users walk through unfamiliar complexities in the surfaced

resources. (4) Scale the conversion of examples into learning resources without additional

authorship or maintenance. We detail below the related work around each of these claims

and what is necessary beyond prior work, so as to situate the contributions of this thesis.

2.1. Surfacing Information from Code

RALE addresses a class of users who are both frustrated by their knowledge gaps

in web development and limited by their ability to analyze complex professional code.

Surfacing patterns, constructs, and relationships from professional websites helps users

overcome gaps in knowledge, shortcuts inefficient forms of web foraging such as tutorials

and Q&A, and provides them with opportunities to learn authentically — in a personally

meaningful way using multiple modes of the discipline (i.e. web application programming).

This section details prior works in surfacing information from source code.

39

2.1.1. Theseus, FireCrystal, and Scry

Systems including Theseus [48], FireCrystal [59], and Scry [14] provide techniques and

affordances to surface JavaScript, HTML, and CSS feature source code. This thesis both

addresses limitations and extends contributions from these works.

Theseus instruments and visualizes runtime information about JavaScript execution in

a live editing environment [48]. Theseus was designed to address a programmer’s miscon-

ceptions by drawing attention to similarities and differences between the programmer’s

idea of what code does and what it actually does. Theseus contributes an underlying

framework called Fondue to instrument JavaScript sources for tracing, of which the Tele-

scope (see Chapter 4) and Isopleth (see Chapter 5) directly extend. While Theseus helps

developers address misconceptions and visualize execution, it lacks affordances to help

users address additional learning barriers such as differentiating relevance in JavaScript,

drawing links to interaction with the DOM, or exposing hidden relational links between

facets in JavaScript. This thesis contributes these additional affordances while extending

Theseus’ Fondue instrumentation techniques to support RALE on the open web.

FireCrystal allows users to record an interaction with a website and to replay the

interaction with highlighting over sources that are active at each point in time [59]. This

allows users to find specific JavaScript that ran during different frames of a UI recording.

However, rich UI features can involve thousands of lines of JavaScript across multiple

call frames, and FireCrystal’s interface requires users to replay through interactions to

discover relevant sources via linear search, which becomes tedious and time-consuming at

professional scale (i.e. thousands of lines of code). Like Theseus, FireCrystal’s design goal

of visualizing execution through replay is limited to highlighting active JavaScript while

40

additional barriers in unfamiliar code inhibit ongoing discovery. However, FireCrystal’s

contribution is a foundational component of the RALE vision.

Scry exposes program state and provides a timeline visualization for users to explore

how state changes in response to JavaScript calls [14]. This allows users to find specific

JavaScript, HTML, and CSS involved in changing the DOM at a specific point or frame

in time. However, Scry adopts sequential workflows that require back-and-forth naviga-

tion from the interface to individual JavaScript files and limits its observation scope to

JavaScript that interacted with the DOM. Further, Scry only provides one-way links from

a DOM change to the JavaScript that operated on it. Supporting opportunistic discovery

in RALE, this thesis contributes design characteristics such as two-way DOM-JavaScript

inspection (see Chapter 4) and extensible facet filters (see Chapter 5) to view JavaScript

in more ways than its relative proximity to querying the DOM.

2.1.2. Visual Tools and Web Inspectors

Prior tools in source code visualization were mainly designed to help experienced de-

velopers surface debugging information and enable inspection to solve problems in their

applications efficiently. This thesis extends and applies techniques from these works to

help inexperienced developers discover design patterns and constructs supporting web UI

features. Gliimpse provides animated transitions between the rendered UI and its source;

Telescope (Chapter 4) extends this idea to link JavaScript to its queried elements in a

browser’s web page. Mimic and Theseus log analytics and invocation counts from record-

ings of UI interactions; Unravel (Chapter 3) and Telescope extend this idea to help users

differentiate which lines of code were more active than others. Telescope and Isopleth

41

(Chapter 5) surface calls to library and REST API’s, building from ideas in RESTful

service extraction [72]. Beyond this body of work, this thesis contributes filterable views

of function invocations, compositing relevant JavaScript and HTML together with visual

links, and visualizing the JavaScript call graph with invocations, relations, and labels.

Web developer tools included in major browsers help experienced developers build

and debug their applications but can be overwhelming for learners trying to gain insight

into professional development patterns. Chrome Developer Tools (CDT), Firebug, and

Safari Web Inspector provide rich suites of tools for debugging, inspecting, and live-editing

methods. DOM breakpoints trigger direct navigation to responsible JavaScript methods

when elements in the DOM are dynamically changed [5, 41, 38], which provides an entry

point into searching for the logic responsible for updating the DOM. While these inspectors

offer robust debugging workflows, the primary limitation of these tools emerges as a barrier

to learning, where too much source code obscures how constructs of the language are

used to achieve an effect. Complex websites often have thousands of lines of JavaScript

bundled in minified form for optimized transfer. Beyond overwhelming amounts of code,

these inspectors are designed to support debugging workflows instead of opportunistic

discovery. Using the tools to gain professional experience involves tediously following

long call chains and reverse engineering complex asynchronous event-binding networks.

The event-driven asynchronous nature of JavaScript obscures how logical components are

related to react to the UI from the user’s point of view. This thesis both augments and

extends the CDT environment to transform websites into learning materials.

42

2.1.3. Surfacing Call Graphs

Computing a well-defined call graph of a program’s internal constructs, relationships, and

function invocations helps construct accurate and comprehensive learning materials in

RALE. Prior tools use forms of instrumentation to help inform developers how software

works but typically use either static analysis or limited runtime analysis to determine

program flow, leaving complex asynchronous operations unobserved. The contributions

in Chapter 4, Telescope, rely on Fondue’s [48] ability to surface an accurate call graph.

Telescope traverses the call graph to calculate which sources to display in its composite

view (e.g. library code, invoked-JavaScript, and DOM-querying JavaScript).

The call graph contributions in Chapter 5, Isopleth, support advanced calculations

used in its scaffolded sensemaking affordances. Isopleth sits in a unique space, focus-

ing on dynamic asynchronous call-graph navigation for comprehension. Its call graph

calculation is inspired by Lencevicius et al’s work on query-based debugging [47], but

instead of requiring users to query traces, Isopleth’s facets provide low-effort ways to re-

shape the graph while providing a simple abstraction for defining new facets. WhyLine’s

tracing techniques [44] are similar to Isopleth’s serialized deanonymization technique, but

Whyline cannot capture the important asynchronous connections often present in web ap-

plications. Isopleth uses the ID’s from each method to backtrace complex asynchronous

relationships, then provides affordances to visualize the complex relational links.

2.2. Minimizing Learning Barriers

Programmers often experience barriers in learning new programming concepts, and a

primary claim of RALE is to minimize information barriers while supporting personalized

43

exploration of professional website code. Specifically, the three systems in this thesis

help users overcome three of Ko et al’s Six Learning Barriers: Design, Coordination, and

Information [45].

The Design barrier involves the inherent cognitive difficulties of solving a program-

ming problem, the Coordination barrier involves determining how to combine constructs

or technologies to achieve an outcome, and the Information barrier involves knowing

where to look for clues about a program’s internal behavior. In Chapter 3, Unravel

contributes a technique to overcome the Information barrier by filtering and promoting

relevant JavaScript and HTML to inspect. In Chapter 4, Telescope provides a way to

overcome the JavaScript/HTML coordination barrier by visually linking JavaScript and

HTML if they are logically connected. In Chapter 5, Isopleth helps users overcome the de-

sign barrier by providing mixed-initiative scaffolds to help make sense of complex feature

implementations.

Further, this thesis explores strategies, interfaces, and methods for developers to

quickly and easily overcome barriers caused by the unfamiliarity of code. This includes

mental barriers that Gross and Kelleher describe such as memory failure, method in-

terpretation, and lack of temporal reasoning [29]. Developers trying to overcome these

barriers currently turn to web foraging for speed and ease in finding help [9] but can

become frustrated with outdated or incomplete results. Following Gross and Kelleher’s

guidance on designing systems to identify functionality in unfamiliar code, we designed

Telescope to “connect code to observable output” and “provide interactions to fully nav-

igate code” (see Chapter 4). The event-based, asynchronous, and often overly-complex

44

nature of JavaScript implementations [2] increases these barriers, further discouraging

those trying to learn from JavaScript source.

2.2.1. Visual Techniques to Overcome Barriers

Visual learning techniques help users to easily see the dynamic effects of their code to un-

derstand the properties of a program’s external behavior relative to its internal constructs.

For example, Gliimpse [20] provides animated real-time visuals that transition between

markup languages and their rendered output. Users can see their code transform into its

visual rendering as they modify it. PyTutor [32] provides users with a simple Python

interface while showing them a visual display of internal program state and operations

as they modify code in the interface. Bret Victor’s “Learnable Programming” [73] allows

users to interact with a running program, modify its underlying code, and see the effects of

modifications as they are made. Most modern web browsers provide affordances for users

to find responsible source code through visual breakpoints in the DOM [5], JavaScript

beautifiers [25], and HTML change highlights [26]. This thesis addresses remaining dif-

ficulties in forming accurate mental models of design patterns and techniques used to

create professional web code, such as breaking down complex function relationships, vi-

sualizing JavaScript operations on the DOM, or minimizing the overwhelming effects of

large volumes of code.

2.2.2. Interactive Techniques to Overcome Barriers

Existing tools contribute design techniques to highlight, filter, and curate parts of code

responsible for an effect. Theseus [48] provides “hit-counts” and detailed call stack logs

45

for lines of JavaScript in an extended Brackets IDE. FireCrystal [59] records UI interac-

tions and plays them back in a view coupled with a JavaScript inspector that highlights

active lines per each frame in time. Scry [14] extends the Safari browser to record UI

interactions, then provides a timeline view where users can view DOM state changes

and the JavaScript/CSS trace involved in each change. Clematis [2] visualizes episodes

of cause-effect JavaScript events and their effect on DOM state through an expandable

timeline view. Tutorons [33] automatically generates context-relevant, on-demand micro-

explanations of code in an editor. Gidget [46] interactively coaches players learn program-

ming by working with a bot named Gidget to debug problematic code. WebCrystal [16]

gives users a way to quickly access HTML and CSS information from a webpage by se-

lecting questions regarding how a selected element is designed. Whyline [43] allows users

to ask questions about a runtime then visualizes answers in terms of runtime events di-

rectly relevant to a programmer’s question. Dinah [30] supports beginners in selected

code causing graphical output through statement replay and temporal navigation.

2.3. Scaffolding Mixed-Initiative Sensemaking

The third primary claim of RALE is that it should scaffold mixed-initiative sensemak-

ing to help users walk through unfamiliar complexities in the surfaced resources. This

calls for techniques and affordances to support learners during their sensemaking process

while providing them with cues to engage in multiple modes of the web programming

discipline such as architecture, implementation, and refactoring.

46

2.3.1. Sensemaking and Learning Scaffolds

In order to build new understanding from a programming example, a learner must first

make sense of the code structure and functionality. In the learning sciences, sensemaking

refers to the process of understanding a new example or artifact by generating repre-

sentations that explain what is known or understood [75, 62]. While experts leverage

templates and formal representations of programming constructs to make sense of and

solve problems, these patterns are not apparent to beginners [1, 76, 52, 56, 17, 18, 19].

Furthermore, learning from complex examples requires understanding not only the indi-

vidual components, but also how they coordinate to solve a problem [45]. This requires

both conceptual knowledge and expert strategies for constructing an understanding of a

problem by examining evidence, testing hypotheses, and reflecting on findings [79, 78].

The learning sciences provide guidelines for scaffolds in RALE (supports and affor-

dances) that can help beginners bridge this knowledge gap to make sense of complex

examples. This literature suggests that tools designed to support sensemaking should

build on learners’ intuitive understanding by using representations and language that

connect to their knowledge [51, 62]. Tools should also be organized around the semantics

of the discipline [62] and provide opportunities for learners to reason about the struc-

ture of code, and not just how it works [61]. Finally, tools should provide opportunities

for learners to inspect professional code in different ways [62]. Providing multiple ways

to visualize the code helps learners build dense, interconnected conceptual representa-

tions [10, 65, 3]. In Chapter 5, these learning goals are implemented in Isopleth to

enable RALE for professional websites.

47

2.3.2. Program Comprehension

The design of RALE extends a rich body of research in computer program comprehension

by contributing new interaction techniques to code comprehension. Specifically, this body

of work examines how programmers support cognitive tasks such as thinking and reasoning

about the structure of code [71, 12, 69, 74, 68, 60]. Several comprehension theories

classify how programmers understand new code, such as (1) top-down from domain to

source code [12], (2) bottom-up from statements to abstractions [68], (3) beacons from

familiar code with plan decomposition in unfamiliar code [69], and (4) bottom-up through

control-flow abstraction from microstructrues to macrostructures to form a situational

model [60]. Most similar to Pennington’s theory [60], detailed in Chapter 5, Isopleth

allows users to navigate and filter pre-labeled microstructures and follow control-flow

through relational links in a graph. Isopleth’s sensemaking affordances aid the formation

of Pennington’s macrostructures by breaking down complex website logic into consumable

pieces and allowing users to explore and modify these pieces in a personally meaningful

way. Similar to Soloway’s theory [69], Telescope aids program comprehension by providing

learners with visual line connectors between modified DOM elements and active JavaScript

functions (see Chapter 4). Telescope’s visual line affordances draw a learner’s attention

to certain code constructs in HTML and JavaScript, acting like Soloway’s beacons for

discovery.

2.4. Scaling Learning Resources

With millions of active learners looking to the web for online learning and the fast

pace of innovation in web programming, teachers and content authors meet only a small

48

portion of the ever-expanding demand for learning materials. The primary goal of RALE

is to transform inspiring professionally-produced websites into opportunities for learning

with no dependencies on authoring. This section details related work around RALE’s

fourth claim to scale the conversion of examples into learning resources without additional

authorship or maintenance.

2.4.1. Technical Dependencies

Chapter 3 and Chapter 4 introduce the API Harness and Wisat architecture to capture

JavaScript functionality on the open web, but unlike related methods they require few

dependencies or user installation to scale. The Mozilla Remote Debugging Protocol [57]

allows developers to access the JavaScript event loop and observe execution, but the

Mozilla RDP does not store a full history of function invocations, which is necessary for

call graph calculation in Telescope and Isopleth. Lieber et al’s Fondue instruments all

functions in the JavaScript source to monitor execution, but requires users to override their

system settings to allow a proxy server to intercept website sources [48]. While Unravel

is limited in its abilities to surface runtime information (i.e. DOM-modifying JavaScript

only), a core design characteristic of Unravel is to be lightweight and immediately usable

on public websites. Similar to Unravel, Maras et al’s source extraction technique and Burg

et al’s Scry offer limited views of JavaScript based on static analysis of dependencies and

DOM-querying JavaScript, respectively [55, 14]. Alternatively, the Wisat architecture

surfaces complete runtime information about all JavaScript functions via one-click user

activation to provide accurate scaffolds and fully comprehensive views into source code

(used in Chapters 4 and 5).

49

2.4.2. Extending Web Foraging

One set of tools has been designed to support professional developers as they make sense

of complex code using resources provided continuously via the web. Brandt et al explored

how programmers leverage online resources to support the development process, oppor-

tunistically transitioning between web foraging, learning, and writing code [9]. They

built on this work to develop Blueprint, a web search interface integrated into a devel-

opment environment to support searching for relevant code examples efficiently [8]. Fast

and Bernstein designed Meta, a Python language extension that allows programmers

to share and compare their implementation approaches and provides recommendations

for improvements based on crowd data [22]. These approaches effectively support op-

portunistic sensemaking by leveraging context and online resources to provide relevant

programming scaffolds. However, they are designed to support expert developers; they

do not provide affordances to build on beginners’ understandings [51] or help beginners

reason about the structure of code [61].

50

CHAPTER 3

Unravel: Rapid Web Application Reverse Engineering

This chapter presents the first application in RALE, the Unravel system, which pro-

vides techniques in overcoming challenges in finding relevant HTML and JavaScript code

for a UI feature in a complex professional website. This chapter has adapted, updated,

and rewritten content from a paper at User Interfaces Systems and Technology 2015 [34].

The source code for Unravel is openly available 1. All uses of “we”, “our”, and “us” in this

chapter refer to coauthors of the aforementioned paper.

Professional websites with complex UI features provide real world examples for de-

velopers to learn from. Yet despite the availability of source code, it is still difficult to

understand how these features are implemented. Existing tools such as the Chrome De-

veloper Tools and Firebug offer debugging and inspection, but reverse engineering is still

a time consuming task. We thus present Unravel, an extension of the Chrome Devel-

oper Tools for quickly tracking and visualizing HTML changes, JavaScript method calls,

and JavaScript libraries. Unravel injects an observation agent into websites to monitor

DOM interactions in real-time without functional interference or external dependencies.

To manage potentially large observations of events, the Unravel UI provides affordances

to reduce, sort, and scope observations. Testing Unravel with 13 web developers on 5

large-scale websites, we found a 53% decrease in time to discovering the first key source

1Unravel Github https://github.com/NUDelta/Unravel

https://github.com/NUDelta/Unravel

51

behind a UI feature and a 32% decrease in time to understanding how to fully recreate a

feature.

3.1. Motivation and Contributions

Developers can learn from professional websites, but the barriers to understanding un-

familiar code [45] hinder the potential for authentic learning [66]. Without documenta-

tion for UI features of complex websites, one must search for curated examples or attempt

to reverse engineer the website to discover how a feature works. Examples may not be

available for unique features or may only provide partial solutions. Professional websites

combine many web technologies to present unified interfaces that are not straightforward

to disassemble. Reverse engineering UI components such as a photo carousel, search auto-

complete, or table filter is difficult, because it involves cyclical HTML inspections to follow

element changes and find-all queries in JavaScript files for references to DOM elements.

JavaScript often execute asynchronously out of order, making it difficult to identify which

lines of JavaScript to start examining [2].

Current approaches including record & replay in the DOM and JavaScript tracing

have inspired this chapter (e.g. [5, 11, 13, 20, 59]) as they showed that recording and

tracing changes in-context gives developers a better understanding of what’s happening

in the source code [13, 30]. With some context clues about where to begin looking,

junior developers are more likely to overcome barriers that would otherwise prevent them

from beginning a first attempt at reverse engineering [45]. But beyond source exposition,

existing tools lack affordances to show the most relevant lines of source code. Complex

features may consist of hundreds or thousands of recorded function invocations; without

52

additional affordances, the inefficient process of searching, inspecting, and debugging to

gain understanding is tedious and time-consuming.

Unravel aids the reverse engineering of websites by providing comprehensive yet tar-

geted views of JavaScript invocations, HTML changes, and included libraries (see Fig-

ure 3.1). Unravel enhances Chrome’s existing developer toolkit by linking all HTML and

JavaScript components to their corresponding inspection panes for quick examination.

Unravel works on all websites without interfering with existing functionality. For exam-

ple, a developer can navigate to a landing page, record a parallax effect, and watch Unravel

identify which lines of JavaScript were executed, which DOM elements were modified, and

which attributes were modified per each element.

The main conceptual contribution of Unravel work is the idea of tracing, identifying,

and organizing the most relevant functions and DOM elements manipulated to support

reverse engineering and understanding interactions on complex professional websites. Un-

ravel aggregates changes monitored from within a website and provides affordances to

reduce, scope, and sort observations. As users repeat their desired interaction, call counts

related to their feature bubble up, turning relevant sources into obvious choices for the

user to examine. Complex UI features can invoke an enormous number of method calls

and HTML changes. Navigating unstructured lists of change events for inspection is

counterproductive. Unravel aggregates similar JavaScript call-stacks and HTML changes,

increasing counts with each occurrence. Unravel’s change panels are continually sorted by

highest counts first, bubbling the most changed element or most called trace to the top.

Affordances are provided to constrain observation scope to specific DOM sub-trees and

53

throttle large sets of function invocations generated in loops, such as scaling an image on

each pixel scrolled.

The fundamental technical contribution of Unravel is an observation agent that de-

ploys an API harness for observing and recording UI interactions from within a website.

The API harness is an approach for monitoring an application’s interaction with an API

through a removable recording adapter placed between the application and the API. Un-

ravel’s observation agent publishes HTML changes and uses the API harness to monitor

calls to the document API. While previous work was able to record and replay events,

these solutions depended on access to a remote debugging API. Unravel’s observation ar-

chitecture only depends on native JavaScript and HTML, widening its application domain

to other UI inspection toolkits.

In the rest of this chapter, we introduce Unravel and its main components for tracking

HTML changes, tracing JavaScript method calls, and identifying libraries. We detail

the observation agent and techniques for organizing and presenting trace information;

evaluate the benefits of reverse engineering with Unravel; and conclude with a discussion

of design principles, limitations of our approach, and a brief look at the next chapter.

3.2. Unravel

Unravel is a Chrome Developer Tools extension that provides affordances for discover-

ing and navigating relevant UI source code through three main activities: recording source

code activity triggered by a user’s interaction with a web page, refining the scope of source

code under observation, and linking lines of source code to corresponding inspection and

debugging panes for further analysis (see Figure 3.1).

54

Figure 3.1. The Unravel recording interface consists of the HTML Changes
pane (top), the JS Library Detection pane (middle), and the JavaScript
Function Calls pane (bottom). Unravel has two controls for record-
ing/stopping and resetting change detection (top). The HTML Changes
pane shows the total count, CSS Path, CSS Selector, and HTML Attribute
Changes for each element change. The JS Library Detection pane shows li-
braries detected. The JavaScript Function Calls pane shows the total count,
stack frames, and DOM API call for each JavaScript call-stack recorded.

3.2.1. Unravel Feature Design

To inform the design of Unravel, we conducted a small exploratory study that observed the

existing approaches for reverse engineering web pages. The study consisted of two senior

and two junior developers for 20 minutes each, who were asked to reconstruct an animated

feature from Tumblr on their own page. We observed participants repeating the animation

frequently while inspecting the HTML to see changes. We watched participants slowly

55

scan through numerous JavaScript files to discover source code causing the animation.

One participant said, “I just want to know how they achieved the effect, but it’s not

entirely clear from the web inspector.”

Unravel’s features were designed to help address frustrations and inefficiencies ex-

pressed by the test participants. The Unravel HTML Changes feature was designed to

record and present modifications to lessen repeat behavior (see Figure 3.2). The JS Func-

tion Calls feature was designed to capture JavaScript traces with links to executed line

numbers in JavaScript files, making it easier to skim active source code (see Figure 3.3).

While no inefficiencies were observed related to JavaScript libraries, we noticed many non-

native functions appearing in JavaScript traces. We decided to add library detection to

inform the user about the presence of frameworks, polyfills, shims, or syntactic sugar (see

Figure 3.4). Unravel’s three views are presented as one inspection interface to highlight

relevant source code supporting a feature.

3.2.2. Tracking HTML & CSS Changes

Without Unravel, current methods for detecting changes in HTML elements involve set-

ting DOM breakpoints or watching for changes in element inspectors. Stepping through

hundreds of attribute changes and looking through a DOM tree becomes time consuming.

Unravel aims to streamline searches by providing a list of changes instead.

The Unravel extension begins to track HTML changes that occur in the website as

a user starts a new recording. With each user interaction in the website, changes are

streamed into the Unravel console under the HTML Changes section (see Figure 3.2). A

DOM element’s attribute and sub-tree modifications are then viewable in list form with

56

Figure 3.2. Within the Unravel HTML Changes pane, users can opt into
hiding changes from SVG elements (top left). Users can constrain Unravel’s
observation scope by selecting an HTML element to observe (top right).

direct links to structural and CSS inspection in the CDT elements pane (see Figure 3.1).

While Unravel does not capture preloaded CSS or CSS pseudo-classes like :hover, it

monitors CSS class and style changes in HTML attributes such as changing opacity,

toggling a class, or modifying WebKit attributes.

3.2.2.1. An Unravel HTML Change Record. Each record in the HTML Changes

in the Unravel tool contains:

∙ Change Count: how many changes were recorded for the HTML element

∙ CSS Path: a unique CSS selector based on the element’s DOM tree location that

links to the corresponding node in the CDT Elements Pane

∙ CSS Selector: a CSS selector based on common query patterns including id, class,

and name

57

∙ HTML Attribute Changes: a list of changes to the element’s attributes ordered

oldest first

An example user Alice wishes to discover how a modal window is hidden after clicking

an × icon. She clicks record in Unravel and watches for changes while clicking the ×.

Alice stops the recording and looks at the changes listed in the HTML Changes Pane

of Unravel. She notices that the list is presorted by highest count of changes first. The

first record shows a div with CSS selector div#modal. She clicks on the record to see

what it is referencing in the actual website and elements panel. Chrome highlights the

element in the panel and in the website. Alice confirms it is her element and examines the

attribute changes, listed as class="modal-front" followed by class="modal-hidden".

Alice learns that removing class modal-front and adding class modal-hidden caused the

desired effect.

3.2.3. Tracing JavaScript Method Calls

The bottom panel of Unravel lists JavaScript call-stacks captured while recording (see

Figure 3.3). Unravel listens for calls to window.document and reports JavaScript traces

involved in querying and manipulating the DOM. Every stack frame of each call-stack is

linked to its corresponding file and line number in the CDT JavaScript inspector.

Each record in the Unravel JavaScript Changes pane contains:

∙ Call Count: how many times a call-stack was invoked

∙ Stack Frame(s): the call-stack leading to a document query

∙ DOM API Call: which document API method was invoked

58

Figure 3.3. The Unravel JavaScript Function Calls pane has captured a
call-stack that was executed 22 times. A stack frame with a method called
_setActiveSection on object o.extend initiated the call-stack (top), which
arrived at a document query for elements with class “audio-a” (shown in
Figure 3.1 bottom right).

An example user Carol wishes to better understand how a web application’s card-flip

effect reveals new data when scrolling down in the interface. Carol initiates a new record-

ing session in Unravel and begins to see stack frames captured in the JavaScript changes

pane. Carol stops the recording and notices a call-stack was captured. Carol clicks the

first frame in the call-stack and is linked to the CDT JavaScript inspector for index1.js

at line 16526:95. She immediately notices a function _setActiveSection that contains

logic to change the translate3d style attribute of a div element. With the first clue,

59

Figure 3.4. The Unravel JS Library Detection pane requests detection for
libraries when Unravel starts and as users select re-detect (right). Re-
detection is an affordance provided for libraries added after the initial page
load. In this figure, jQuery, Backbone, and LoDash were detected.

Carol returns to Unravel to search for how data is loaded. Carol skims the methods

and arguments of additional stack frames and finds a method called fetchCard. She

clicks the stack frame and discovers an XHR request contained a callback that triggered

_setActiveSection.

3.2.4. Identifying JavaScript Libraries Used

As a precursor to examining source, a list of libraries active in a website prepares the user

to understand source in context with the libraries. This may help them to reproduce code

for their own use without the frustration of missing libraries. Further, this provides users

with clues to how features are implemented using the libraries.

Unravel detects JavaScript Libraries immediately upon launch and lists the libraries

with their corresponding versions (see Figure 3.4). An option to re-detect libraries is

provided for websites that use a lazy-loading strategy for installing libraries into the

application scope.

An example user Bob wishes to discover how a stock-ticker web application easily

reformats numbers in many variations. He opens Unravel and finds many sources using

60

a numeral() function. If Bob tried to invoke numeral in his own application, he would

discover that it is not included in native JavaScript. Using Unravel’s library detection,

Bob sees that Numeral.js version 1.5.3 is present in the stock-ticker web application. Bob

includes the numeral library in his application and is now able to use the same numeral

conversion methods as the stock-ticker application.

3.3. Organizing and Tracing Relevant Source Code

3.3.1. Organizing Large Volumes of Trace Information

Complex UI features can generate large volumes of HTML changes and JavaScript traces.

Navigating through long lists of changes and traces fails to resolve the Information Learn-

ing Barrier [45], because the program’s internal behavior may remain unclear despite a

wealth of information. This section discusses four strategies Unravel provides to counter

information overload: DOM Tree Scoping, CSS Path Aggregation, SVG Hiding, and Call-

Stack Aggregation.

3.3.1.1. DOM Tree Scoping. Without affordances to reduce observation events, simul-

taneous UI effects can cause confusion. As a user records an interaction, other dynamic

behaviors in the application could highlight source code not relevant to the user’s inter-

ests. After selecting an HTML element to observe, users can opt for Unravel to scope

future recordings to a single element and its subtree (see Figure 3.2). With the focus

option selected, changes outside the scope of selection will be ignored.

3.3.1.2. CSS Paths and Selectors. HTML changes are recorded and reduced in real-

time to the unique DOM tree path of an element. Continuous changes to one element’s

61

attributes are rolled up under a single record in Unravel’s HTML change pane (see Fig-

ure 3.2). Elements with the most changes bubble to the top. While DOM tree paths can

be queried, they can become quite long and difficult to read. Unravel provides simpler

selectors by combining the elements tag, id, class, and name if present (see top middle of

Figure 3.1).

3.3.1.3. Throttling Repeat Calls. During a preliminary study with an Unravel pro-

totype, we discovered that users were being shown too many irrelevant HTML changes

for pages that made use of animations. The users weren’t interested in the animation

logic itself, but rather DOM elements and interactions surrounding the animation. In

the HTML Changes pane, users can select an option to hide superfluous animations (e.g.

SVG transitions) (see Figure 3.2).

3.3.1.4. Call-Stack Aggregation. Similar to the HTML Changes feature, JavaScript

traces are recorded and reduced by unique call-stack. Continuous calls through the same

set of methods are logged by increasing the call-stack count. During our pilot study, we

observed users repeating interactions and leveraged this usage pattern to surface relevance

in code. As users repeat actions, DOM elements that were changed and functions that

were invoked bubble up a sorted list. Users then can sort lists by highest count first with

stack frames ordered top-down. All of Unravel’s columns are sortable, allowing users to

quickly navigate through different perspectives of their recordings.

3.4. Implementation

In building Unravel, we sought to improve upon architecture from related systems to

provide a scalable and portable implementation. Systems like FireCrystal and that of

62

Figure 3.5. An API harness is placed on the document API. Unravel cap-
tures and serializes call-stacks and arguments made to the API. Normal
interaction with the API resumes after the details of a method call are
broadcast.

Maras et al depended on the Firefox Debugging API to query for sources involved behind

UI feature [54, 59]. Both the scalability and portability of this strategy are limited to the

constraints of the Firefox Debugging API. Theseus proposed a global method-wrapping

policy for monitoring JavaScript traces that depended on a third-party server to alter

sources [48]. We strived to build Unravel without any dependencies on external servers

or environmental APIs so that it could scale to handling larger UI changes and share a

reusable architecture for implementations in other UI toolkits.

63

3.4.0.1. API Harness. We introduce an API harness as a novel method for monitoring

all interactions with an API by placing a removable recording adapter on top of the

API. Unravel’s agent applies the API harness to monitor call-stacks and arguments to

window.document when the user begins a recording and removes it when the user stops

a recording. By monitoring the document API, we can see the execution route and

arguments of functions asking to query and change the DOM (see Figure 3.5). Data from

the harness is sorted and reduced prior to appearing in the Unravel’s JavaScript Function

Calls view. Technical details are discussed in the next section.

3.4.1. API Harness

The API harness is a removable device installed during runtime that captures JavaScript

method traces and arguments (see Figure 3.5). The harness implementation is straightfor-

ward: for each method in the API, save a reference to the original method and temporarily

replace it with a new method that implements the following:

(1) Capture the call-stack invoking an API method.

(2) Capture arguments passed to the API method.

(3) Serialize the captures for transport.

(4) Propagate the capture to subscribers.

(5) Call the original API method with the incoming arguments.

Captures are broadcast from the harness without modification as method calls are

made to the API, giving subscribers flexibility in processing the data. Unravel’s API

harness call-stack captures implement the JavaScript Error interface. As each method

call is made to the document API, an error object containing a snapshot of the call-stack

64

is thrown and caught. This snapshot captures comprehensive execution traces from event

handlers down to document queries. Unravel reduces and sorts its captures to simplify

inspection for the user (discussed earlier). When a recording is finished, the API harness

is removed by restoring the original methods to their respective endpoints in the API.

Alternative approaches to implementing an API harness either require external depen-

dencies or aren’t designed to monitor program execution. The Mozilla Remote Debugging

Protocol [57] allows developers to access JavaScript threads and observe their execution

but it is only available to extensions of Firefox. Lieber et al’s Fondue wraps all func-

tions in the JavaScript source to monitor execution, but exists as a separate proxy server

that modifies a web page’s JavaScript as it passes through [48]. Eagan et al’s Scotty en-

ables modification to non-extensible components during runtime, but it does not monitor

interactions with those components [21].

Engineering trade-offs limit the capabilities of the API harness but give portability to

its implementation. The harness must be able to modify public methods of the original

API, it must be able to store references to the original method implementations, and

it must be able to access callers and arguments. For example, an API harness would

not be able to monitor an API reference that was closured in a private variable, because

the harness requires public access to API methods. Despite these limitations, the API

harness inspects program activity from within a program and operates without external

dependencies. With minimal performance overhead, the API harness scales with API

demand without causing interference.

65

3.4.2. HTML Observer and Library Detection

Unravel’s HTML observation implements the JavaScript MutationObserver interface.

When the observation scope is changed in the Unravel UI, new MutationObservers are

created to monitor the corresponding subsections of the DOM tree. As the observers

notice events, they are propagated to Unravel’s sorting and reduction implementation.

When each observation is received, its element’s CSS path is calculated by determining

the DOM tree location relative to parent and sibling nodes.

The JavaScript libraries are detected by a simple interface detection strategy: for

each known library, the Unravel agent tries to invoke published interface methods from

the library. We began with Hidayat’s try-catch detection strategy [36], but extended

it as we discovered libraries with identical identifiers and overlapping interface methods

such as Underscore.js and lodash.js, both of whom have array methods like _.reduce().

If the test is successful, the agent detects the library version and returns the name and

version number. There are many JavaScript libraries available, yet there is no published

standard for declaring the library name and version from within the library. To detect all

JavaScript libraries and display information about them is beyond the scope of Unravel,

so we tested Unravel with support for the top 20 JavaScript libraries [7].

66

Website UI Feature Trigger
Tumblr Card Flip View Change Scroll, Click
Apple iPad iPad Cover Change Click
Flickr Effect Sync to Video Scroll, Click
Amazon Product Carousel Interval, Click
Kickstarter Photo Carousel Interval, Click

Figure 3.6. Participants reverse engineered 2 UI features from a set of 5.
The top table lists each website with its corresponding feature and trigger
under inspection. The screen-shots are of Tumblr, iPad, Flickr, Amazon,
and Kickstarter (mid left to bottom right).

67

3.5. Unravel User Study

3.5.1. Method

Our study aims to answer the following research questions:

RQ1 How does a user’s strategy for reverse engineering a web application UI feature

differ with and without Unravel?

RQ2 How does Unravel affect the amount of time it takes a user to reverse engineer

a web application UI feature?

RQ3 Which features in Unravel are the most effective while reverse engineering a web

application UI feature?

RQ4 How do junior developers’ use of Unravel and reverse engineering strategies differ

from senior developers?

The target users of our study are junior web developers with less than one year of

professional experience and senior web developers with greater than five years of profes-

sional experience. The study is a within-subjects design, where each user was asked to

reverse engineer a UI feature in each of two websites from a pool of five, one website with

CDT and one with CDT + Unravel (see Figure 3.6). CDT as the control requires no

training or installation, and our initial study showed that both junior and senior develop-

ers could discover key sources using just CDT. 13 web developers, 6 junior and 7 senior,

participated in study sessions lasting 45 minutes. Time was limited to 15 minutes each

for each reverse engineering task with a 15-minute follow-up discussion. Each participant

was compensated $20. The assignment of websites to participants was randomized, and

the order of using Unravel first was reversed for half of the participants.

68

We chose UI features from five popular professional websites: Tumblr, Apple, Flickr,

Amazon, and Kickstarter. While widely used, each contains a clever implementation.

When scrolling down on Tumblr’s homepage, a card flip effect peels away each page

view. Selecting different iPad covers on Apple’s product page fades through user choices

without changing the iPad image. Flickr’s mobile demo synchronizes changes on its

virtual phone screen with background fades. Amazon animates its product carousel with

easing transitions based on user selection. Kickstarter flips through its banner carousel

with fades during pre-programmed intervals. Though not obvious, functionality in these

features consists of changing CSS classes, modifying HTML positioning attributes, and

loading media in subtle ways.

We taught users about the tool, verified their background, and recorded their tests to

ensure result accuracy. Before starting the test, participants were asked to watch a two-

minute demo to help them become familiar with how to use Unravel. While participants

were recruited by the experience on their CV, they were asked to confirm their amount

of professional engineering experience before starting the experiment. Each participant

provided a screen recording with audio and click history for the entire experiment.

We tracked three key milestones for reverse engineering. The milestones correspond to

events happening at certain times, but participants were encouraged to proceed at their

own pace throughout the tests.

M1. Time to finding the first key source.

M2. Time to finding the second key source.

M3. Time to fully understanding how to recreate a feature.

69

These milestones were tracked via each participant’s screen recording to assess under-

standing. A key source is defined as a high-level code snippet that provides critical-path

functionality for a behavior such as a click handler that adjusts the opacity of a div. Some

participants had enough experience to describe a solution without reverse engineering, but

they were required to find sources to support their claims. Prior to performing the study,

the test set of five UI features were fully reverse engineered to identify significant meth-

ods, line numbers, classes and variable names in JavaScript, CSS, and HTML. For each

solution, two key sources were identified that users must find for each UI feature in order

to fully defend how the behavior is functioning. Timestamps for M1 and M2 were logged

if a user displayed a key source in view for three or more seconds. M3 was logged when

a participant gave notice of complete understanding.

Study pre-tests revealed inconsistency between web applications caused by source

minification and obfuscation. Some users knew of the Chrome Dev Tools “Pretty Print”

feature that reformats JavaScript source to be readable, while others were confused by

large undecipherable blobs of JavaScript. To remedy source minification, we cloned ver-

sions of the popular web applications, manually unminified their sources, and hosted them

on a private mirror. Subsequent tests showed that mirroring unminified versions resolved

the testing inconsistency.

Participants were given a short follow-up discussion to assess how using Unravel al-

tered their strategy and understanding of web application engineering. Questions about

specific features of Unravel were included to assess their qualitative value and provide

opportunities for feedback on feature usability. Survey results were compiled into four

categories: useful features, improvements, learning, and strategies.

70

Data recordings from each participant were analyzed for statistics on 25 distinct user

activities in CDT and Unravel and the time signatures of the major milestones. User ac-

tivities include actions with similar complexity to switching an inspector pane, inspecting

an event handler, or setting a breakpoint. Paired t-tests for with-Unravel vs without-

Unravel were performed across all the coded data in the screen recordings to check for

significant differences. Distributions were analyzed on an aggregate to determine average

milestone times and activity counts.

71

Figure 3.7. Results of the user study are compared in total times to mile-
stones. Boxes indicate interquartile range. Means are shown as dotted lines
and medians are solid lines. The box whiskers indicate range including out-
liers. There is a significant difference in each of total times for M1, M2,
M3.

72

3.6. Study Results

3.6.1. How did Unravel affect task completion times?

Unravel significantly decreased time to all three milestones (see Figure 3.7). Develop-

ers achieved milestone I, finding their first key source responsible for the UI interaction

roughly twice as fast with Unravel (53.4% time decrease, 𝑡(13) = 4.2, 𝑝 = 0.0012, 𝜇1 =

184𝑠, 𝜇2 = 344𝑠) where 𝜇1 is CDT + Unravel. Developers achieved milestone II, find-

ing their second key source 39.8% faster with Unravel (𝑡(13) = 4.533, 𝑝 = 0.0007, 𝜇1 =

291𝑠, 𝜇2 = 484𝑠). Developers achieved milestone III, reaching full understanding 32.1%

faster with Unravel (𝑡(13) = 3.81, 𝑝 = 0.0025, 𝜇1 = 386𝑠, 𝜇2 = 569𝑠).

No significant difference was found in the split times between M1, M2, and M3 (see Fig-

ure 3.8). Developers had no significant difference between M1 and M2 (𝑡(13) = −0.24, 𝑝 =

0.81, 𝜇1 = 131, 𝜇2 = 140𝑠) where 𝜇1 is CDT + Unravel. Developers had no significant

difference between M2 and M3 (𝑡(13) = 0.33, 𝑝 = 0.75, 𝜇1 = 95𝑠, 𝜇2 = 86𝑠).

73

Figure 3.8. Results of the users study are compared in split times between
milestones. There is a statistically significant difference between M1 and
M1 with Unravel. However, there was no significant difference for the M2 or
M3 split times. This means that Unravel was most effective for decreasing
the time to first key source.

74

Differences in milestone times with and without Unravel are explained by variations

in user interactions. Developers noted difficulty in finding a starting point during tests

without Unravel, which increased their time to M1. Without significant differences in M2-

M1 and M3-M2, some participants may have altered their strategy to depend on existing

developer tools to find related sources. Total times to M2 and M3 show that no major

inefficiencies affected overall time savings by using Unravel.

3.6.2. How did Unravel affect reverse engineering strategy?

Unravel significantly altered the reverse engineering strategy developers used when com-

pleting their tasks. Developers browsed an average of 2 JavaScript source files with Un-

ravel compared to 10 without Unravel (𝑡(13) = 2.84, 𝑝 = 0.015). Developers searched

for text in sources an average of 1 time with Unravel compared to an average of 9

times without Unravel (𝑡(13) = 5.6, 𝑝 = 0.0001). Developers focused on an element

for inspection an average of 1 time with Unravel compared to 10 times without Unravel

(𝑡(13) = 4.67, 𝑝 = 0.0005). Developers recreated the UI interactions an average of 5 times

with Unravel compared to 11 times without Unravel (𝑡(13) = 3.45, 𝑝 = 0.0048).

3.6.3. How do junior developers compare to senior developers?

Six junior developers reached M1 without Unravel faster than seven senior developers

and had no significant difference in other areas (𝑡(13) = 2.24, 𝑝 = 0.05, 𝜇1 − 𝜇2 = 141𝑠),

where 𝜇1 is for senior developers. Differences with less statistical significance include:

senior developers set more breakpoints (𝑡(13) = 1.99, 𝑝 = 0.09, 𝜇1 − 𝜇2 = 4), senior

developers were more likely to inspect network (𝑡(13) = 2.29, 𝑝 = 0.06, 𝜇1 = 1, 𝜇2 = 0),

75

senior developers inspected more elements (𝑡(13) = 1.8, 𝑝 = 0.11, 𝜇1 −𝜇2 = 6), and senior

developers inspected more event handlers (𝑡(13) = 1.84, 𝑝 = 0.11, 𝜇1 − 𝜇2 = 3). While

senior developers used different CDT interface controls to reverse engineer, they desired a

broader understanding of the UI feature in the context of the website. A senior developer

stated, “I had an idea of how the feature worked before I started, so I wanted to see how

the feature was situated in the application first.”

3.6.4. Which features of Unravel were the most effective?

In the follow-up discussion, all 13 participants were interviewed for their opinion on

Unravel’s features, Unravel’s weaknesses, reverse engineering strategies, and concepts

learned. 10 out of 13 developers stated the JavaScript method traces were most help-

ful for them to understand a solution. The remaining 3 out of 13 developers stated the

HTML changes pane was most helpful. 5 out of 13 developers found the library detection

pane useful, while the other 8 stated it did not provide any help. 4 out of 13 participants

noted that Unravel could be improved by integrating library detection into the JavaScript

stack-traces to highlight the difference between library vs non-library source. 7 out of 13

participants stated a new programming concept they learned while reverse engineering

with Unravel, such as using class-toggling to animate objects off screen or using scroll-to

thresholds to activate events on a page. 5 out of 13 participants found constraining the

scope of observation useful.

76

3.7. Limitations

Unravel only provides recordings of client-side traces and execution. Server-side source

code typically isn’t made available for external inspections, but there is an effort to study

how to expose API endpoint and behaviors from front-end source [54]. Further, profes-

sional websites typically use source-code minification techniques to decrease the size of

their files an average of 20% [70]. For our user tests, sources were manually unminified

for participants. This feature can be added to Unravel with the use of JavaScript libraries

like js-beautify [49], where sources would be parsed and reloaded in unminified form.

Our study did not attempt to identify UI features for which Unravel is not able to

provide meaningful information. Unravel only observes JavaScript and HTML pertaining

to changes in the DOM. Other JavaScript activity such as data-management, storage,

and retrieval would not be visible in Unravel unless a DOM-query was involved in the

same call stack (e.g. Unravel would surface functions appending data to the page from an

AJAX response, but not the prior AJAX request). In our preliminary study, we discovered

shortcomings from SVG transitions where elements had hundreds of positioning attribute

changes each second. This flood of changes carries a risk of burying relevant sources.

Pseudo-elements and CSS pseudo-classes are outside Unravel’s scope of observation but

can be easily discovered with existing inspection tools.

In-memory state storage techniques are outside the observation scope of Unravel.

Unravel’s API harness will not be able to monitor communication with privately closured

references to an API. If a web application is designed to preload DOM API queries into

memory on page load, Unravel will not capture the query in its API harness if it was not

77

actively recording at page load. A potential workaround is to detect these behaviors and

inject the API harness and observation agents prior to page load.

3.8. Conclusion

Having demonstrated the effectiveness of Unravel for helping web developers reverse

engineer professional websites quickly, we revisit techniques that contribute to Unravel’s

effectiveness.

3.8.1. Organizing and Presenting Large Volumes of Traces

Compared to the performance and interfaces of other source-tracking systems, Unravel is

distinguished by its abilities to reduce, scope, and filter large amounts of source detection

information in a way that highlights relevant data for the user. A participant stated,

“Unravel was way easier to locate specifically where and when in the files the code was

executed.” We observed through the study that participants found relevant sources by

looking at the top items in the HTML JS tracking panels in Unravel. A different partic-

ipant stated, “Without a doubt I prefer Unravel over sifting through element changes in

the Chrome Inspector.”

3.8.2. Tracing UI Features to Relevant Sources

Advancing related work [59, 54, 16, 11, 13, 30, 72], Unravel introduces a reusable

architecture that is both portable and scalable. Unravel serves as a recorder and reducer

of meaningful information, with detailed inspection delegated externally. The imple-

mentation for this chapter was in CDT, but a participant asked, “Could we have this

for Node.js?” While there isn’t a DOM to observe, Unravel’s JavaScript source tracing

78

and library detection would work in Node.js. For example, an API harness placed on

the HTTP API could capture meaningful traces supporting a GET or POST request.

The API harness and application agent allow Unravel’s architecture to be reused in any

JavaScript environment. The scalable nature of Unravel’s architecture allows it to accom-

modate long recordings of complex features. A participant stated, “I don’t even need to

inspect, I just hit record and it goes. That by itself is great.”

3.8.3. Toward Fine-Tuned Discovery in Web Applications

This chapter provides a contribution towards helping users quickly identify relevant HTML

and JavaScript supporting a web feature, however the user discovery interaction involves

back-and-forth navigation and only provides one-way inspection pointers into front end

code. Unravel quickly helped users identify responsible source code, but its study reveals

that Unravel had no noticeable effect in decreasing the amount of time to reaching un-

derstanding of the source code (M2 and M3). Returning to the goal of creating Readily

Available Learning Experiences from production websites, the next chapter introduces

the Telescope system to overcome Unravel’s limitations and expand upon its contribu-

tion. Telescope provides users with composite views of low-barrier learning materials

with support for two-way source discovery between the website feature and its relevant

source code.

79

CHAPTER 4

Telescope: Fine-Tuned Discovery of Web Feature Source Code

This chapter presents the second application towards RALE, Telescope, which is an

interactive platform for discovering how JavaScript and HTML work together to support

a web feature interaction. This chapter contributes a technique to overcome limitations in

Unravel’s back-and-forth inspection style through dynamic links and interactive time and

detail filtering. This chapter has adapted, updated, and rewritten content from a paper

at User Interfaces Systems and Technology 2016 [35]. The source code for Telescope is

openly available 1. All uses of “we”, “our”, and “us” in this chapter refer to coauthors of

the aforementioned paper.

Professional websites contain rich interactive features that developers can learn from,

yet understanding their implementation remains a challenge due to the nature of unfa-

miliar code. Existing tools provide affordances to analyze source code, but feature-rich

websites reveal tens of thousands of lines of code and can easily overwhelm the user. We

thus present Telescope, a platform for discovering how JavaScript and HTML support a

website interaction. Telescope helps users understand unfamiliar website code through

a composite view they control by adjusting JavaScript detail, scoping the runtime time-

line, and triggering relational links between JS, HTML, and website components. To

support these affordances on the open web, Telescope instruments the JavaScript in a

website without request intercepts using a novel sleight-of-hand technique, then watches

1Telescope Github https://github.com/NUDelta/Telescope

https://github.com/NUDelta/Telescope

80

for traces emitted from the website. In a case study across seven popular websites, Tele-

scope helped identify less than 150 lines of front-end code out of tens of thousands that

accurately described the desired interaction in six of the sites. In an exploratory user

study, we observed users identifying difficult programming concepts by developing strate-

gies to analyze relatively small amounts of unfamiliar website source code with Telescope.

4.1. Motivation and Contributions

4.1.1. Deriving Authentic Learning Material

Telescope aims to support authentic learning [66] by generating low-barrier learning ma-

terials to understand code from professional websites of personal interest. Professional

websites offer rich details missing from training examples, content that relates to the real

world, and opportunities to think in the models of the discipline. However, despite the

abundant availability of front-end code, website source code is difficult to read and can

contain superfluous details that distract from learning core concepts.

Deriving learning material from websites presents design and technical challenges due

to the magnitude and complexity of the underlying source code. A simple UI interaction

may require only ten lines of JavaScript, but modern web applications can have tens of

thousands of lines of code [6, 64, 70]. Bindings between HTML and JavaScript support

an interaction, but it is difficult to determine how such bindings are constructed. A simple

calendar widget, for example, could be created entirely in JavaScript and appended to the

DOM with listeners, or it could be built in HTML and CSS with inline calls to JavaScript

hooks. Embedding the widget amidst all its library or utility code in a minification

build process blurs the location and scope of code most relevant to enabling the widget’s

81

functionality. With prior tools [48, 59, 34, 14, 2, 25, 5], it is difficult to (1) capture the

entire scope of JavaScript used, (2) identify the interplay between JavaScript and HTML,

and (3) trim away inactive code and library code that get in the way of learning.

4.1.2. Introducing Telescope

We thus introduce Telescope, a platform that supports the discovery of website feature im-

plementation by allowing the user to fine-tune a composite view of responsible JavaScript

and explore visual links between JavaScript, HTML, and rendered UI components (see

Figure 4.1). Telescope helps users generate low-barrier learning materials — less than

two hundred lines of code — from tens of thousands of lines of complex website code.

For example, a curious user could discover how an interactive map component achieves

its dragging effect in JavaScript and HTML by setting Telescope’s JavaScript detail level

to minimum (dom-modifiers only) and time constraints before and after the click-and-

drag. By clicking call and query markers in the interface, visual lines connect JavaScript

methods to queried DOM elements, and corresponding DOM components are highlighted

in the website. Telescope introduces three design principles to support the creation of

learning materials from websites:

(1) Single Composite View: As a user interacts with a website, Telescope brings to-

gether relevant JavaScript for an interaction into a single, composite JavaScript

view to resolve the challenges in finding all code relevant to a behavior in unfa-

miliar code [29]. Users can easily hide sources they deem irrelevant or alter the

display order of script sources relative to their dependency load order.

82

(2) Detail and Time Controls: The user can scope relevant Javascript by call time

and control the amount of detail they wish to see, ranging from showing DOM-

modifying code excluding libraries to only showing all JavaScript present in the

website. These controls address a critical need discovered through our human-

centered design process, when we found users struggling to understand the code

for an interaction when there is either too little or too much JavaScript to analyze.

(3) Visual Links: Visual links connect active JavaScript to lines of HTML and website

DOM components to expose end-to-end functionality.

The technical contributions of Telescope support its design principles and enable using

Telescope to examine website UI interactions across the open web in real time. Specifically,

we introduce (a) the Wisat architecture, which supports source code tracing and instru-

mentation on public websites, and (b) the Sleight-of-Hand method (SoH), which swaps

a website’s client-side implementation during runtime with its instrumented counterpart.

The SoH method transitions websites from a non-traceable state to a fully instrumented

state, supporting live interaction traces as a user interacts with their website. The Wisat

architecture then transmits runtime traces used to decide which JavaScript is displayed in

Telescope’s composite view and provides the linking data necessary for drawing connec-

tions between JavaScript, HTML, and website components. In the rest of this chapter,

we introduce Telescope and its main components for tuning UI discovery and linking

JavaScript and HTML source code. We examine Telescope’s performance and study its

effectiveness through a case study using Telescope on seven professional websites and an

exploratory study with five users. We conclude with a discussion of design principles,

limitations of our approach, and a brief look at the next chapter on Isopleth.

83

Figure 4.1. The Telescope interface is being used to discover how this
HTML5 connect-the-dot game’s timer works. The interface is paused to
freeze the current view. The detail level is set at minimum, and the
JavaScript call time is constrained between the 17th and 45th second of
execution. The left Telescope panel (middle) shows a filtered HTML view,
where an active element is highlighted and query markers denote that
JavaScript queried those lines during the chosen time window. The right
Telescope panel shows the website’s JavaScript, filtered by time and detail.
With the current settings, only the most relevant JavaScript is displayed:
active non-library JavaScript which queried the DOM in the constrained
time frame. A curved line is drawn to connect the JavaScript line to its
DOM query.

84

4.2. Telescope

Telescope is a web-based platform for producing learning material to implement a UI

interaction. By using the Wisat architecture discussed later, Telescope receives JavaScript

runtime traces and DOM state changes from a website’s UI during use. The user views all

JavaScript for a website in a single composite view, condensed by time constraints, filtered

by detail level, and ordered by last-loaded script file first. User-activated visual links

connect JavaScript, HTML, and rendered components in the browser (See Figure 4.1).

4.2.1. Receiving JavaScript, HTML, and Trace Activity

A user launches Telescope by initiating website instrumentation from a browser extension.

Once connected, Telescope begins receiving traces and its interface updates in real time

to reflect the latest DOM state and an accumulation of JavaScript traces. Queried DOM

elements are marked with a Query gutter marker. Active JavaScript functions are marked

with a Call Count gutter marker, a technique we adopted from Theseus [48]. Telescope

continuously analyzes call graphs to determine which JavaScript calls were involved in

querying the DOM. If an active function is identified as being involved in a DOM query, it

is marked with a green call marker instead of a colorless marker to highlight its significance.

Depending on the detail setting, a user will see a certain subset of JavaScript in view with

the corresponding call counts for that subset. As a user continues their interactions with

the observed website, their function invocation counts will increase.

85

4.2.2. Tuning Telescope: Order, Detail, and Time

A core design goal in Telescope is to avoid overwhelming the user with large amounts of

trace information by presenting the most relevant JavaScript together in a single composite

view. Most of the websites tested in our case study, such as The New York Times “Snow

Fall” article, have tens of thousands of lines of unminified JavaScript and hundreds of lines

of HTML. Even a simple photo-slideshow change effect could have thousands of function

invocations if embedded in MVC logic from a large JavaScript framework like Angular or

React.

The controls in the header of the Telescope interface allow the user to fine-tune the

source code activity during a UI interaction (See Figure 4.1). From left to right, the

user has the ability to (1) pause/resume activity, and to reset the interface to a cleared

activity state; (2) flip the JavaScript presentation order; (3) adjust the detail of JavaScript

sources displayed; and (4) constrain the time of active JavaScript sources. We discuss each

of these affordances below.

4.2.2.1. 1. Pause/Resume and Reset Traces. The Telescope UI updates continu-

ously as the website’s UI state changes to show live updates to source code execution.

Users can see active JavaScript populate in view, as well as increasing call/query counts

next to JavaScript/HTML lines. To freeze the capture state and ignore ongoing function-

ality, a Telescope user can pause the interface at its current DOM state and JavaScript

trace collection. Users can browse and interact with other UI controls during this frozen

state, but no new data will be displayed. Upon resuming, Telescope updates to the latest

state of the website. Resetting Telescope empties its collection of JavaScript traces and

synchronizes its HTML view with the latest DOM state.

86

4.2.2.2. 2. JavaScript Order. Early pilot studies revealed that relevant source is

often found in scripts at the end of a website’s load order. The interpreted nature of

JavaScript combined with the disorganized nature of website script-loading leads web

developers to load scripts with more dependencies last and fewer dependencies first [4].

As a consequence of this dependency pattern, our earlier prototypes often placed the most

important high-level JavaScript hidden at the bottom, leaving relevant code out of view.

Based on this observation, Telescope by default inverts the load order to display last-

loaded scripts first as a heuristic. The composite JavaScript panel in Telescope displays

scripts sorted as a whole, so the inner contents of scripts will remain in their original

form. The JavaScript order control allows a user to invert the presentation order, e.g. to

support cases where our heuristic may not apply.

4.2.2.3. 3. JavaScript Detail. Early pilot studies also revealed that simply showing

users all active JavaScript code provided little value. To support discovery, our test users

requested variable control over the detail visible. With Telescope’s JS Detail slider, a user

can control the amount of JavaScript visible. By default, Telescope slides detail to the

left extreme (L1), which shows how higher-level JS achieves an effect using library APIs

without showing library code. Low-level DOM API calls are often wrapped by libraries

and would be hidden at this level, e.g. a jQuery call $(div) is displayed instead of the

DOM API call. Sliding detail to the other extreme will reveal all of the JavaScript for a

website. The detail levels include:

L1 (default): DOM API callers and parent callers, excluding library code. For exam-

ple, call stacks to document.getElementById would be surfaced as well as calls to library

API’s wrapping document.getElementById. In this detail level, a jQuery library call like

87

$(“#fooId”) would appear and be marked with a green hit marker, but the internal calls

within jQuery would not appear.

L2: Active JavaScript, excluding library code. This includes any JavaScript that

ran in addition to the above level without showing library code. For example, functions

updating objects in memory or storing cookies would appear here.

L3: Active JavaScript. In this level, all of the JavaScript that run during a user’s

interaction with the page will appear here. In other words, only dormant code is hidden.

L4: All JavaScript excluding library code. This level will show all JavaScript in a

website (both active and inactive) while hiding library code. In other words, this level

shows users what code was written specific to the website while hiding third party library

code.

L5: All JavaScript. This level will surface all of the JavaScript for the page to show

users the most comprehensive view of libraries and professional code working together.

4.2.2.4. 4. JavaScript Call Time. Telescope users can use timeline constraints to

set a start time and end time to see which functions were executed during the specified

interval. While JavaScript can execute asynchronously at arbitrary times, users can still

slide the time constraints as a way to omit code outside a time interval, such as initial

setup code or continuous interval functions. Dragging markers on the timeline reshapes

the scope of time in percentage of width dragged. Constraining the timeline in this way

helps users who wish to inspect multiple interactions they made with the website by

constraining the inspection view to different points in time.

88

Figure 4.2. Clicking a Telescope HTML query marker from the Mac Pro
website (left) shows lines to four JavaScript functions. In this view, a line
leads to function resizeFluidAreas, which resizes elements on scroll.

4.2.3. Linking HTML, JS, and the Rendered DOM

Telescope provides bidirectional visual links between the HTML, JavaScript, and website

DOM to provide end-to-end connections from source code to its UI output. Inspired by

Gliimpse — which creates in-place visual transitions from code to UI and vice versa [20]

— these links help form conceptual models of how JavaScript and HTML work together.

But unlike Gliimpse, Telescope shows both the source code state and rendered UI si-

multaneously. Users can visualize how high level functions change many elements (see

Case Study: Mac Pro) or how a single element event can trigger many function handlers

(see Case Study: Dot-to-Dot). During Telescope sessions, Query markers appear in the

HTML pane, and Call markers appear in the JavaScript pane. Clicking an HTML query

marker draws lines to JavaScript functions which query the HTML line (see Figure 4.2).

Clicking a green call marker (signifies DOM-query) draws lines to HTML nodes which

were queried by the JavaScript line.

89

Figure 4.3. Clicking Telescope’s code markers for the New York Times
“Snow Fall” website highlights related DOM elements in the website. The
DOM element’s source is included in the highlight, connecting context to
Telescope’s HTML view.

Exploring HTML-JS links in either direction invokes a response in the website, where

the rendered DOM nodes are highlighted in the foreground (See Figure 4.3). If multiple

DOM nodes are involved in a query, a walkthrough is constructed in the rendered website

that highlights each involved element in sequence. Conversely, if elements were deleted,

the user is notified that the element is no longer in the DOM.

In early pilot studies, traces from library, tracking, and ad-content scripts caused con-

fusion in understanding UI feature implementation. Telescope now hides many libraries

and irrelevant scripts and provides affordances for users to hide other scripts they deem

90

irrelevant. By default, library scripts such as jQuery and Angular are hidden, as are popu-

lar advertisement and usage-tracking scripts such as DoubleClick and ScoreCardResearch.

Users can then hide or show scripts selectively in two ways. Through the JavaScript drop-

down view at the top of the JavaScript panel, users can see a complete list of the sources

in view and selectively toggle their visibility. Alternatively, users can slide the detail slider

to the far right to bring all sources into view (more library and ads) or far left to show only

sources relevant to DOM manipulation (less library and ads, see Figure 4.1 top right).

4.2.4. Design Process and Design Insights

In the process of designing Telescope, we iterated through three software prototypes.

Prototype 1 provided the ability to record an interaction and extract a subset of HTML,

CSS, and JS into a web sandbox with visual output that can be shared with other users

to explore on the web (e.g. for use in a group). Prototype 2 dropped sandboxed output

and added affordances to selectively hide inactive code and sources. Clicking JS gutter

markers exposed a function’s callstack. Prototype 3 gained the Wisat architecture for

continuous distributed tracing. After prototype 3, we trimmed features users didn’t value

and added controls for order, time, detail, and interactive links.

With each prototype we conducted a small pilot study to better understand how to

help users overcome learning barriers tied to unfamiliar code. Each study recruited a

convenience sample of three junior developers who used the prototype for 30 minutes

each and were paid $20. In this process we discovered four primary design insights:

∙ Users need variable amounts of JavaScript to understand different pro-

gramming concepts. Each prototype provided affordances to selectively trim

91

down the JavaScript, but users were unsure what to trim and found it difficult

to remember what they had trimmed from view. Users expressed desires to see

both high-level code and low-level utility code at different times to establish a

basic understanding of how the program works before looking into its details.

We implemented the JS Detail control to adjust the composite JavaScript view

to different detail levels such as more minimal for DOM-modifying code or more

verbose for deeper discovery involving AJAX and MVC logic.

∙ Users have varied processes for playing and inspecting. Observed in

all three studies, some users like to repeat their interaction several times before

using Telescope, whereas others will create an interaction and jump to Telescope

before it completes. Prototypes 1 and 2 had a static extraction technique that

frustrated users who liked to alternate between playing and inspecting. Telescope

now continuously updates both its HTML and composite JavaScript as user plays

with a website, while also giving the ability to pause and constrain their historical

runtime timeline.

∙ Users benefit from visual links connecting code to observable output.

Similar to Gross et al’s recommendations to connect code to observable output, we

found that linking the JS and HTML contexts to observable output helped users

understand JavaScript’s relationship with HTML [29]. By the third prototype,

our users were still having trouble understanding how the JavaScript and HTML

related even though active-code highlights were provided in both panes. We

added support to draw visual lines from either direction between HTML and

92

JavaScript. Upon drawing these lines, the DOM element is highlighted in the

website to complete the connection between the code and its output.

∙ Metadata and redundant filters overwhelm the user. Throughout proto-

type iteration, we kept accumulating features which began distracting users from

efficiently using Telescope. To promote simplicity, we cut away features that were

distracting or provided little use to achieving the goal of promoting understand-

ing. Features cut included call-stack inspection, the CSS pane, a DOM preview

pane, code-hiding toggles, and other extraneous features.

4.3. Implementation

Telescope’s implementation goals include deployability across the open web, full-scope

JavaScript instrumentation, and multi-user session support. Unravel [34] and Scry [14]

provide JavaScript traces on public websites but limit their inspection scope to DOM-

querying JavaScript. Theseus [48] provides full instrumentation but requires a debugging

proxy for setup on public websites. To support future empirical field research and promote

user adoption, we seek implementations that are easy for users to install with minimal

setup. Existing architectures from related systems are designed to only support single-user

sessions.

In the rest of this section, we describe the Wisat architecture and Sleight-of-Hand

methodology that together enable Telescope to bring source instrumentation and JavaScript

trace analysis to public websites with minimal user setup. Building upon related systems,

Telescope brings Fondue’s source instrumentation to the open web, augments Theseus’

93

Figure 4.4. The Wisat architecture supports Telescope’s ability to remotely
process website interaction traces. A website receives its initial source swap
via the Chrome extension. The website fetches instrumented scripts from
the Fondue API (top), and the Chrome extension negotiates a two-way
handshake via the Trace Bridge to connect it with its Telescope session
(bottom). Upon successful connection, JavaScript traces and source data
propagate continuously over the trace bridge.

active code markers with interactive links, and uses JSBin’s collaborative online editor en-

vironment as a foundation [48, 67]. Telescope consists of a component-based architecture

where new technologies can be swapped in or integrated later on.

4.3.1. Wisat Architecture

The Wisat (Web interface swap and trace) architecture supports Telescope’s JavaScript

instrumentation, trace propagation, source transmission, remote control, and sleight-of-

hand source swapping. After a website is instrumented via the browser extension, Fondue

94

API, and source cache (see Sleight-of-Hand Method), the browser extension negotiates

a two-way handshake between the website and Telescope interface via the trace bridge.

Once connected, traces, sources, and remote commands can flow freely between the two,

populating Telescope’s code views and enabling remote DOM component highlighting

(see Figure 4.4). Designed for web scalability, this architecture separates functional com-

ponents so that each may be distributed across multiple load-balanced instances. The

components of this architecture are defined as:

∙ Telescope UI: A website for receiving source trace activity from an instrumented

website, fine-tuning source findings, and sharing with others.

∙ Fondue API: REST web service for JavaScript & HTML instrumentation and

deobfuscation with caching, served over HTTPS to comply with mixed-content

policies.

∙ Trace Bridge: WebSocket server for live cross-origin-compliant transmission of

JavaScript traces, DOM changes, and commands between the website and Tele-

scope interface.

∙ Chrome Extension: Agent injected into website to deploy the Sleight-of-Hand

source swap, broker handshake with Telescope interface, and broadcast source

activity.

95

Figure 4.5. The Sleight-of-Hand technique pictured above is a 7-step pro-
cess for instrumenting a website’s source code via browser extension (black
squares) and external instrumentation server (blue, middle right). After
website load (1), the extension deploys an agent (2). The agent sends the
sources for instrumentation via AJAX (3), which are returned (4), passed
to the agent (5), and swapped for the originals, deleting references (6). The
browser makes requests for the newly instrumented sources (7).

4.3.2. Sleight-of-Hand Method

The Sleight-of-Hand Method (SoH) expands upon techniques from Fondue [48] to bring

source instrumentation to public websites. Current methods for JavaScript source trac-

ing either trace only DOM-querying JavaScript [34, 14, 13] or require a man-in-the-

middle debugging proxy [48]. Neither of these approaches fits with our goal to fully trace

JavaScript execution and make setup simple. The SoH method — deployed from a one-

click-install browser extension — implements full JavaScript traceability by swapping the

96

scripts of a website with their instrumented versions. The SoH process is outlined below

(see Figure 4.5):

(1) Load a website and initiate SoH.

(2) Deploy a JavaScript agent into the website from a browser extension with bidi-

rectional communication.

(3) Agent transmits the OuterHTML property of the root DOM element to the

instrumentation API via extension, circumventing cross-origin policy.

(4) Instrumentation API returns the HTML with inline scripts instrumented and

<script> tags with altered “src” attributes pointing to an instrumentation API

URL.

(5) Browser extension passes the response to the agent.

(6) Agent clears the DOM and JavaScript state to ready the page for an artificial

load process (without refreshing). It does so by overwriting the existing DOM

with an empty root, iterating through non-native window object attributes while

deleting them, and calling clearInterval on global interval indices 1 to 999.

(7) Agent inserts instrumented pieces of the DOM in a strict order to control script

loading to simulate the script load order of the original site.

SoH leverages vulnerabilities enabled by browser extensions, circumventing source

alteration protection by overwriting original sources [15]. An SoH is deployed from a

browser extension with liberal permissions to modify the page and communicate with

third party servers. It does so regardless of logged-in state or HTTPS encryption.

The SoH method works for many websites, but synchronized HTML/JavaScript work-

flows and Content Security Policies (CSP) can cause problems. For example, if a user

97

kept scrolling for more news to load in a Facebook news feed, the in-memory JavaScript

would reflect news list additions and the HTML would reflect the same. If the SoH was

initiated after scrolling for more news, the news list HTML would be correct, but the

in-memory JavaScript would not have the news list additions. The result would be an

odd-UI experience where interactions hit sync-error handling, such as moving the user

back to the top of their news feed. Further, any scripts lazy-loaded after the SoH starts

and before SoH ends would cause more UI oddities or potentially break the process. If

breakpoints were injected into the page during the SoH process, it would simply pause

the process. Implementing a whitelist CSP successfully blocks the SoH method, because

it asks the browser to enforce a strict list of source domains [77]. However in Chapter 5,

a workaround is provided to remove CSP headers from obstructing the SoH process.

4.4. Case Study

To better understand Telescope’s capabilities and performance, we used it to identify

relevant lines of code, key interaction methods, and implementation patterns across UI

features on seven popular websites. This study aims to address the following research

question:

RQ1 To what extent can Telescope reduce and scope lines of code for understanding

complex feature implementations?

We chose websites with interesting and complex UI features that are not straightfor-

ward to understand, that have over ten thousand lines of code. Interactions of interest

include a map-drag (XKCD), a scroll animation (Tumblr), a dot-drag (DotToDot), scroll-

driven video sizing (NYT), a load-and-scroll-driven float (iPhone), a scroll-driven product

98

Figure 4.6. Results from our case study show the amounts of code Telescope
reduces, using time and detail filters to draw distinction between on-load
setup code and interaction code. Each website’s complexity class is pro-
vided (Small, Medium, High). The JS total lines of code (LOC), calculated
after normalized unminification, are listed per each website (left) and cate-
gorized by all active JS LOC and the default DOM-modifying JS LOC with
library code removed. In blue (middle, right) the LOC in Telescope’s default
view for on-load and interaction show the amount of reduction Telescope
performs for the user while maintaining relevance. HTML LOC queried
are listed, showing the small portion of DOM elements involved in each UI
interaction. Interactions include a map-drag (XKCD), a scroll animation
(Tumblr), a dot-drag (DotToDot), scroll-driven video sizing (NYT), a load-
and-scroll-driven float (iPhone), a scroll-driven product show (Mac Pro),
and a date-picker render and select (Southwest).

show (Mac Pro), and a date-picker render and select (Southwest). We classified websites

as light (L), medium (M), or heavy (H) in proportion to their UI complexity and aver-

age number of function invocations. For each example, we tracked the minimum usage

necessary to discover UI features on the website, while comparing against Unravel as a

control.

4.4.1. Fine-Tuning Lines of Code

Telescope supported discovery on the seven websites with minimal tuning regardless of

source code size (see Figure 4.6). We measured the lines of code visible in Telescope

99

during on-load and interaction, normalizing JavaScript and HTML with unminifying pre-

processors. Telescope identified each site’s large on-load setup processes (521 to 5,534,

mean 3,507 LOC), allowing us to easily scope timeline constraints beyond the setup code

to yield each interaction’s code (49 to 934, mean 205 LOC). Besides the Mac Pro ex-

ample, running Telescope on all other websites with the default detail setting

yielded 150 lines or less of code that sufficiently explained how the interaction

was created in each site. With 1 to 68 (mean 21) LOC of HTML queried during

interactions, the HTML query markers offer a simple starting point for exploration.

100

Figure 4.7. Telescope is being used to discover XKCD’s map-drag imple-
mentation. A JavaScript call marker has been clicked next to the Map
function, resulting in HTML line highlights and a DOM element highlight
in the website.

101

4.4.2. Low Complexity Example: XKCD 1110

XKCD’s interactive comic #1110 website presents a simple test scenario for Telescope

with its relatively small codebase and direct UI interaction (see Figure 4.7). Telescope

revealed a composite 49-line draggable map implementation (excluding library code). We

quickly discovered functions map, update, and drag with Telescope’s default settings. We

examined the startup code and moved the timeline past startup to see the interaction.

The map-drag effect is achieved by events bound on mousedown that track mouse position

relative to a center start position. The map is a grid of image tiles with names representing

their position, where images ±1 away from the centered tile are loaded and set to visible,

while others are hidden.

Using Unravel on the same interaction, we were able to easily find the same functions

behind XKCD’s map load, however we needed to look through 420 lines of JavaScript to

find how relevant calls in separate files fit together. Unravel showed changes to the DOM

caused by dragging the map, but it was difficult to determine the scope of JavaScript

operating on the map. Setting DOM breakpoints through Chrome Developer Tools, we

were able to step through function calls responsible for modifying the map.

4.4.3. Moderate Complexity Example: Dot-to-Dot

In analyzing the design award-winning Dot-to-Dot game, Telescope helped us to under-

stand how the game connects the dots (see Figure 4.1). We sought to understand the

code behind connecting a dot to another: dots appear, a line is drawn, and audio plays

a dot sound. We didn’t need to look far to find a dot class in the setup code, which was

referenced later in the JS time 23s to 42s. The JavaScript code was heavily minified, but

102

Telescope expanded it in a way we could infer how functions operated even without their

names. Function c activates a game round, function y starts the timer interval, function

o draws a line invoking RaphaelJS, and function v handles dot clicks and dot animation.

Sliding JS detail towards the middle we found a pop.mp3 xhr request, where the response

is stored in a variable and played via SFX.pop().

In this scenario, Unravel provided hundreds of JavaScript inspection points and DOM

changes. We inspected the top two most-called functions and quickly found the game’s

timer and dot-insertion logic by clicking through Unravel’s inspection points. Using

Chrome’s search feature was more convenient than manually looking through the remain-

ing Unravel results, so we ran find-all queries for RaphaelJS calls and set breakpoints to

determine how game rounds began. Separating the game’s setup code from runtime code

was difficult with Unravel, because all of the JavaScript functions accumulate in one list

that is only sortable by call count or function name.

4.4.4. High Website Complexity Example: “Snow Fall”

The Pulitzer Prize winning New York Times article “Snow Fall” stretched Telescope’s

technical ability with 41,526 lines of JavaScript and 1,458 lines of HTML along with a

high volume of recurring background JavaScript execution. In this test, we sought to dis-

cover how the Steven’s Pass flyover interaction was activated. We scanned through 300

lines of irrelevant ad and tracking code before finding the right Telescope settings. We set

the JS Call Time to 41s to 73s and set the JS Detail to the middle, where we found rele-

vant functions videoBG.setFullscreen, checkArticleProgress, and percentTillNext

related to an HTML5 video player (see Figure 4.3). The latter two run on every scroll

103

Figure 4.8. We evaluated Telescope’s performance and source discovery on
Apple’s Mac Pro product demo website. While performance lagged during
UI animation, Telescope accurately captured and reduced the source code
view to show how the scroll-driven effect works. Above, an HTML line
marker has been selected in the Telescope interface that draws lines to
linked functions and highlights the DOM component.

event and the former is activated when the article progress reaches the “Tunnel Creek”

narrative. We found related HTML elements div.nytmm_video_player.

In comparison, Unravel quickly revealed results pointing to functions responsible for

setting full screen and initiating video playback, but like in the previous case, the magni-

tude of function traces occluded the search for other meaningful functionality. We were

unable to quickly find the remaining functional pieces for checking the article progress

and activating new sections.

104

4.4.5. High Complexity Example #2: Mac Pro

The interactive product page, which disassembles an Apple Mac Pro on user scroll, tested

Telescope’s performance limitations but revealed insight into the website’s design (see Fig-

ure 4.8). The initial product-rising animation was captured in Telescope, logging 30k+

function invocations. We scrolled down to activate the Mac Pro’s disassembly animation

and tuned Telescope’s JavaScript time to exclude on-load code and any code after our

interaction. We disregarded 400 lines of code before finding the appropriate settings.

We found an MVC architecture with event-driven-design, where a sectionController

and a clipController listens for events relative to a timeline with functions like

pauseTimeline, getVideoHeight, resizeFluidAreas, and resizeCanvas. While the

clever video playback and container resizing became more evident, we found misleading

code that queries and resizes canvas elements when there are none.

Similar to the previous two cases, Unravel found hundreds of changes and traces, with

the topmost being calls to trigger, enable, and update sections via an onWheel handler.

Discovering components of the MVC architecture through Unravel was extremely difficult

in this case. In sorting by JavaScript invocation count and DOM query count, Unravel

highlighted portions of the MVC most active in DOM modification. This resulted in

pointers to view logic, but model/controller logic was difficult to surface.

4.4.6. Runtime Performance

Telescope performed without significant delay on four sites but experienced intermittent

UI blocks on three dynamic sites with hundreds of UI transformations per second. While

Telescope is primarily a retroactive inspector, it continuously receives trace information

105

Figure 4.9. We observed Telescope’s use while discovering a map-drag in-
teraction on XKCD (left), a dot-connect interaction on Play-Dot-To.com
(middle), and a scroll animation on Tumblr (right).

from websites. With each new trace, Telescope recalculates hit counts and surfaces DOM-

querying calls out of library call stacks. This computation happens in Telescope JavaScript

UI, thus slowing down its UI updates. With a relatively small codebase and heavy JS

use for SVG modification, the Dot game caused UI blocking in Telescope for 2-3 seconds

during some SVG transformations and line renderings. We noticed UI blocking for 3-4

second intervals for “Snow Fall” as well as some UI delay as all of the startup code traces

were transmitted. The Mac Pro website incurred the most significant UI performance

delays for up to 20 seconds while traces were being processed. In the future, Telescope’s

performance can be optimized by collating and garbage-collecting repeat invocations (see

Chapter 5).

106

4.5. Exploratory User Study

Having demonstrated Telescope’s capabilities, we evaluate Telescope’s use to answer

the following research questions:

RQ2 What web programming design patterns are users able to elicit using Telescope?

RQ3 What usage strategies do users employ while discovering a web interaction with

Telescope?

4.5.1. Method

We conducted an exploratory study with five student software developers at Northwestern

University to understand how they can use Telescope to learn from professional websites.

Three of the developers stated they had at least 3 months of professional web development

experience through internships. The other 2 stated they knew enough to create website

and setup simple JavaScript interactions with libraries like jQuery or Bootstrap. Each

user was interviewed about their technical experience and trained to use Telescope for 5

minutes on toy examples. They were then asked to explore 1–3 websites on their own in the

time remaining. Sessions lasted 45 minutes each, and each participant was compensated

$20. Each participant provided a screen recording with audio for the entire test.

We chose three websites and interactions from the seven in the case study (see Fig-

ure 4.9) that had fun or clever dynamic UI’s whose implementation involved at least two

functional UI transformations. For each website we observed how users reacted to aspects

of code we identified as highly relevant to the UI interaction through prior review. We

prompted users to think aloud during their interaction and periodically asked them open

ended questions such as, “What can you tell me about the way the feature is constructed?”,

107

“What coding lessons or decisions can you identify?”, and “How does Telescope help in

understanding this feature’s source?”

4.5.2. Results

In our exploratory study, Telescope helped junior developers quickly identify coding de-

sign techniques and programming concepts in the unfamiliar code underlying professional

websites, while also inspiring additional discovery. This section addresses our research

questions with results from user observations and think-alouds during user testing.

4.5.2.1. RQ2: Web Design Patterns Recognized. All five users identified front-end

web design patterns including lazy media loading, mouse position tracking, class-toggled

effects, library usage, and animation. A user said, “Seeing what this is helps me know

how to approach this problem design-wise (code design).” Four users found an example

of lazy-loading and mouse position tracking in XKCD’s map viewport by moving the JS

timeline constraints past the startup code activity and watching the JavaScript call counts

while repeating the map-drag interaction. Two users discovered class-toggled effects by

watching the HTML view change during Tumblr’s scroll effect, then clicking the HTML

query markers to see what JavaScript queried the section element; however, these users

did not look into the CSS properties related to the effect. All users identified instances of

library usage in the Dot game’s RaphaelJS line-drawing or each site’s jQuery references.

Two users found how to construct simple animation through Tumblr’s use of jQuery

animate.

Seeing in-context front-end architectural patterns working together helped users learn

from examples. Users identified patterns for interactive UI including event-driven design,

108

function closures, and state maintenance. Before using Telescope on the XKCD map,

a user said, “I know how to make event handlers, queries, and I know the syntax of

JavaScript, but I’m missing the how of making them work together for a feature like

this draggable map.” Telescope enabled this user to find multiple patterns in XKCD’s

comic. Users intuitively found the nature of function closures in JavaScript in scenarios

like XKCD’s update function callback, which contains a map variable declared outside the

function scope but is referenced without declaration inside the function scope. Users found

alternate implementations of state maintenance: storing active state in HTML attributes

on Tumblr, or storing the game state in an in-memory JavaScript object via references to

this in Dot-To-Dot’s Dot object.

4.5.2.2. RQ3: Telescope Strategies. We discovered a mix of strategies for interact-

ing with Telescope that our users employed while learning from a UI with Telescope:

constrain-expand, copy-paste, watch-and-wait, and step-constrain-step.

The constrain-expand strategy helped users focus on relevant code and other users

curious about library code, external dependencies, or background code. One user said,

“The detail control is crazy, because it lets me see just what modified the DOM or I can

bring in background code too.” Constrain-expand was typically used after the user gained

a significant understanding of the interaction and wanted to validate their assumptions

of hidden variable references or function declarations.

The copy-paste strategy emerged when users either tried to play with a portion of code

themselves or wanted to see the external media referenced by JavaScript and HTML. The

XKCD and Dot-to-Dot websites load external images and audio, which are referenced in

Telescope’s HTML view. Users copied links to the media to view them as whole files

109

outside the interface. Users copied portions of JavaScript code to an external IDE to see

which variables were declared in scope and which ones were not.

We also observed users adopting two other strategies that were less successful in our

test. With watch-and-wait, users watch the Telescope interface update without adjusting

any controls. This made it difficult for users in our test to find interaction code amidst

setup code, but could be effective when used on websites with little setup code. Another

strategy is step-constrain-step, where users narrow the timeline min and max to examine

one second of execution at a time. This made it difficult to see calls from high order func-

tions which span multiple seconds, but it was effective in reducing noise from background

functions.

Users were able to quickly and easily locate relevant source code for complex inter-

actions. Averaging less than four control toggle changes to find code pertinent to their

interaction, users excelled in parsing through fine-tuned views of JavaScript. Three of the

users continued exploration past their goal to discover additional coding concepts. One

user said, “Once I found that Raphael was being used, I wanted to dig deeper to see how

it was configured to make a line wobble.”

Developers with less JavaScript experience chose Telescope’s HTML pane as a refer-

ence point, whereas developers with more experience spent time carefully gaining insights

from JavaScript implementation decisions. Telescope’s line drawing features helped less

experienced developers explore JavaScript from an HTML reference point they felt famil-

iar with. A user said, “This would become my starting point over forums/tutorials — I

might even use it on a tutorial’s solution instead of reading the tutorial’s example code."

110

Telescope’s detail expansion feature helped developers with more experience learn archi-

tectural decisions about the code. Less experienced developers focused on understanding

how to recreate the effects in the default, least detailed view.

4.6. Limitations

4.6.1. Instrumentation Scope and Applicability

While Telescope currently supports UI discovery on many popular websites, some limita-

tions prevent it from working on all websites. Scripts that are loaded via lazy-loaders can

escape Telescope’s instrumentation if they are not present on the page when the Sleight-

of-Hand method takes place. Lazy script loaders use URLs in strings to append to scripts

to the DOM asynchronously. Telescope will capture and rewrite sources at the time of

its invocation, but scripts loaded later are beyond the rewrite scope. However, Telescope

does capture calls to load the scripts. Lazy intercepts can be added to Telescope in the

future through request blocking and source redirection.

Telescope only instruments and monitors the top-level website frame. Subsequent or

nested iFrames were omitted in this project, as iFrames are typically used to embed exter-

nal content. Future versions of Telescope can recursively traverse the DOM to instrument

and listen to traces from iFrames.

While calls to their API’s are captured in Telescope, the rendering logic underlying

HTML5 Canvas, OpenGl, Flash, Silverlight, and Java Applets are not visible to Tele-

scope. Instrumenting these technologies through website source rewriting is currently not

possible.

111

4.6.2. Performance

Unlike Unravel, Scry, and FireCrystal, Telescope depends on third party servers and

lengthy instrumentation processes for large files. The performance overhead required for

source instrumentation is considerable on modern hardware and exceeds the capabilities

of web browsers. A rich UI might contain fifty thousand lines of code, which can require

up to three minutes to instrument. While instrumented files are cached to speed up

repeat-loads, future versions of Telescope could optimize the instrumentation process for

larger script transformations by indexing and caching common file subsets like modules

and libraries.

Telescope was unable to capture UI interactions on several test sites due to memory

limits and website implementation techniques. Telescope sessions for the Netflix and Spo-

tify web players exceeded the browser’s memory limitations, resulting in truncated trace

data. Amazon’s use of iFrames, Airbnb’s content security policy, and Forecast.io’s app

cache script loading prevented Telescope from collecting meaningful trace data. Telescope

successfully displays interactions from Google web products, but we found their minifica-

tion techniques especially difficult to read due to the minification of HTML attributes in

addition to JavaScript. In future work, memory problems can be overcome by disabling

source tracing and logging for portions of a website until needed, CSP’s can be filtered out

by debugging proxies, and given enough interest, a crowd of experts could help identify

minified HTML attributes.

112

4.6.3. Code Explanations

Telescope instruments and examines only client-side code and does not curate or explain

the code. Further, Telescope does not process or interpret CSS. Existing tools like The-

seus and Scry help users discover how server-side code is executed and client side CSS

transformations alter the DOM rendering [48, 14]. Future versions of Telescope could

incorporate technologies like Tutorons in order to explain the code in the context of active

traces [33].

4.7. Conclusion

Having demonstrated the effectiveness of Telescope for helping web developers dis-

cover implementations underlying UI interactions, we revisit techniques that contribute

to Telescope’s effectiveness.

4.7.1. Design Principles for Understanding Unfamiliar Code

The design of the Telescope platform evolved from three prototypes, each shaped by user

feedback. Initially we aimed to deliver a code-extracting tool for delivering all code behind

an interaction to the users, but providing code by itself was of little value. A participant

said, “I can finally see everything that happened, but I don’t know what it means.” Each

subsequent iteration incorporated techniques to present JavaScript and HTML to the user

in a way the didn’t overwhelm them, which shaped Telescope’s three design principles: (1)

Bring together relevant JavaScript for an interaction into a single composite JavaScript

view. (2) Give the user control over the amount of JavaScript detail they wish to see for

any given time frame. (3) Provide affordances to visually link functionality end-to-end,

113

connecting active JavaScript to queried HTML and components in the rendered website.

Evaluating the current prototype showed success in helping junior developers understand

UI’s. All users were able to identify UI engineering concepts in unfamiliar code, and seeing

architectural patterns in-context helped users identify how programming techniques can

be used to construct a system.

4.7.2. Enabling UI Discovery

Advancing related work [48, 59, 34, 14, 2, 5, 25, 26], Telescope’s live tracing and source

view constraints helped users identify and understand code supporting an interaction. As

a user interacts with a website’s UI, Telescope receives trace information and processes it

into HTML and JavaScript views for the user. The display of these views are controlled

by JavaScript load order, detail, and time constraints. Default settings show the user a

focused view of JavaScript responsible for modifying the DOM. Clicking code markers

draws lines connecting JavaScript to HTML, helping the user see how JavaScript manip-

ulates the DOM for a desired outcome. Evaluating the UI discovery in our case study,

we found that the source code needed to understand a complex UI behavior is often 150

lines or less.

4.7.3. Toward Sensemaking Scaffolds

This chapters provides a contribution in creating interactive learning materials from pro-

fessional websites for users wishing to become professional contributors in web develop-

ment. But in creating the low-barrier learning materials, relationships between logical

components in the code are either hidden or lost during source filtering. Using telescope,

114

learners were able to find and recognize design patterns and developed strategies in find-

ing new patterns with Telescope, but were not provided with scaffolds to make sense of

components or relationships in the code. The next chapter introduces Isopleth and de-

scribes a new contribution for scaffolding users into a sensemaking process where they

opportunistically compose understand of complex JavaScript artifacts and their relation-

ships.

115

CHAPTER 5

Isopleth: Mixed-Initiative Sensemaking in Web Application Code

This chapter presents the third application towards RALE, Isopleth, which is a web-

based platform that enables a mixed-initiative sensemaking process by combining system

and user-generated content to support learners as they make sense of complex JavaScript

features in professional websites. This chapter contributes a technique to overcome Un-

ravel and Telescope’s limitations in making sense of complex JavaScript artifacts whose

relational structures are hidden or obfuscated. The source code for Isopleth is openly

available 1. All uses of “we”, “our”, and “us” in this chapter refer to coauthors of the

aforementioned paper.

Unravel (Chapter 3), Telescope (Chapter 4) and prior approaches including Scry [14]

and Theseus [48] reduce the complexity of professional code by surfacing relevant in-

formation and provide methods for walking through code in execution order. But in

doing so, they lose the structure of how code constructs work together to implement a

feature. Since JavaScript functions are often executed asynchronously, visualizations of

execution order like those provided in Scry provide little information about the concep-

tual structure of web programs. One could understand the structure by walking through

the entire execution path as they might when debugging, but this can contain thousands

of steps for professional examples. Surfacing relevant information (e.g. top-level invoca-

tions, functions with high call counts) is a reasonable approach for identifying important

1Isopleth Github https://github.com/NUDelta/Isopleth

https://github.com/NUDelta/Isopleth

116

functional components, but hides lower-level functions that are the necessary bridges for

understanding how components work together to produce a feature. In order to bridge the

knowledge gap for inexperienced developers, scaffolds must provide rich representations

of the underlying code structure [61] and support multiple ways of visualizing code to

help learners develop expert models [10, 65, 3].

Isopleth is a platform that enables learners to explore complex JavaScript features in

professional websites through a mixed-initiative sensemaking process. Isopleth supports

learners by (1) automatically identifying common JavaScript facets, or code constructs

defined by their inputs and outputs, (2) automatically finding functional and event-driven

relationships between facets to visualize in a graph interface, and (3) providing affordances

for users to create their own facets, labels, and code comments. To expose event-driven

relationships, we introduce a Serialized Deanonymization technique that determines how

functions are passed through other functions to bind asynchronous behavior. In a case

study across 12 popular websites with interesting user experiences, Isopleth supported

the discovery and sensemaking of 20 different design patterns, and identified common and

distinct implementation approaches used across these websites.

5.1. Motivations and Contribution

Beyond Unravel and Telescope (Chapters 3 and 4), additional challenges remain in

helping inexperienced developers make sense of complex JavaScript relationships, design

patterns, and code constructs. Unravel supports identifying features in the source code of

professional websites, and CDT allows users to inspect features with a profiler [27]. Tele-

scope can extract web features into reduced examples that remove complexity. However,

117

beginners lack the conceptual knowledge required to make sense of the undocumented

code and JavaScript call graphs provided by these tools. Learning to implement web

features is particularly challenging because they are composed of many small components

working together, and each tool provides a limited view of how these components work

together. Existing tools are not designed to extract programming concepts for learners

or highlight how solutions are structured to support the development of expert models of

programming constructs and strategies.

To address these challenges, Isopleth is a web-based platform that enables a mixed-

initiative sensemaking process by combining system and user-generated facets and source

code alterations to support learners as they make sense of complex JavaScript features

in professional websites. In the learning sciences, sensemaking refers to the process of

understanding a new example or artifact by generating representations that explain what

is known or understood [75, 62]. This includes providing conceptual organizers, em-

bedding expert guidance, giving multiple representations that can be inspected to reveal

underlying data, providing malleable representations of the data, and restricting complex-

ity by setting boundaries [62]. Mixed-initiative in this case refers to systems and users

collaborating efficiently to achieve the user’s goals [37]. Isopleth automatically identifies

programming facets, or code constructs that are defined by their inputs and outputs. Iso-

pleth exposes functional relationships and hidden asynchronous relationships in its call

graph. In contrast to existing systems, our goal is to help users identify meaningful entry

points into complex code and then interactively explore, label, and filter facets to produce

their own understanding of its functionality. Isopleth supports mixed-initiative interac-

tion by integrating newly created facets and labels into recalculated views. For example,

118

a user could explore how autocomplete works by (1) selecting the “Keyboard” facet (2)

creating a new facet filter for the text of their autocomplete query, and (3) following

asynchronous links between keyboard-related invocations and query-related invocations.

The conceptual contribution of Isopleth is the idea of scaffolding sensemaking of com-

plex professional code by surfacing hidden relationships between code constructs and pro-

viding a mixed-initiative process to interactively explore, label, and identify system com-

ponents and how they relate. Distinct from function call count filters, code detail levels,

or web feature-location, Isopleth leverages automated techniques to surface facets (code

construct defined by inputs and outputs) and expose hidden asynchronous relationships

among function invocations. Users can engage in sensemaking by editing code, rearrang-

ing invocations, and composing their own invocation labels. As users explore connections

between facets and code constructs, they can define new facets in a mixed-initiative for

the system to respond with newly surfaced facets and hidden relationships.

The technical contribution of Isopleth is a Serialized Deanonymization (SD) technique

that places unique identifiers in all functions in a web application’s JavaScript source

to trace how functions are bound, passed, returned, and invoked asynchronously. This

technique gives Isopleth the ability to take users beyond a UI feature’s binding to show

them how the feature’s bindings was created. Related toolkits [48, 28] are limited to

linking to a function invocation to its declaration context, and therefore cannot expose

where the function was bound, passed, or set as a callback. For example, imagine a web

application that creates an anonymous function at line 13 of a source file, and binds it as

a click handler at line 93. When a user clicks, existing tools would point to line 13 and

neglect line 93, thereby making it difficult for the learner to see how the function was used.

119

SD provides missing links such as these by adding them to the call graph; this allows us

to see a complete picture of code activity between declaration and invocation, and thus

surfaces crucial information for understanding how web features are implemented.

In the rest of this chapter, we introduce Isopleth and its affordances for supporting

sensemaking through source code frame views, facet-filtered call graph, and extensible

filters. We detail the serialized deanonymization technique; evaluate the extent Isopleth

identifies and relates facets in professional websites through an in-depth case study; and

conclude with a discussion of design principles and limitations of our approach. Isopleth

takes an important first step towards the development of Readily Available Learning Expe-

riences (RALE), a conceptual approach for transforming all professional web applications

into opportunities for authentic learning.

5.2. Isopleth

Isopleth is a web-based platform that enables a mixed-initiative sensemaking process

to scaffold learners as they make sense of complex JavaScript artifacts in professional

websites. At Isopleth’s heart is the JavaScript call graph that results from the user’s

interaction with a feature on a professional website. In this graph, nodes represent collated

function invocations, and edges represent parent-child calls or asynchronous bindings.

Isopleth provides a variety of views into this call graph to support sensemaking, enabled

by facets. Facets define filters on functions with particular arguments or return values

to identify conceptually related functions. The Isopleth interface, shown in Figure 5.1,

supports three central activities: exploring program flow, exploring programming facets,

and generating custom facets and labels.

120

Figure 5.1. A learner is using Isopleth to understand JavaScript code con-
structs related to moving and scrolling their mouse on National Geo-
graphic’s New New York Skyline article. Isopleth opened in a new win-
dow after the user activated it on the website; it continuously updates with
JavaScript activity. Facet filters (top) are used to filter display based on
facet, or code constructs defined by their inputs and outputs. Source frame
views (middle) display specific function invocation states in the runtime
with their inputs and outputs, parent and child calls, asynchronous decla-
ration context, asynchronous binding, and asynchronous effect if present.
The condensed call graph (bottom) displays a collated, filtered, labeled, and
color-coded JavaScript runtime call graph (See Figure 5.2). Users can apply
or and not operators on the filters by left and right clicking, respectively.
To support mixed-initiative sensemaking, users can add custom filters (See
Figure 5.3), modify code in the source frame views and graph node labels,
and add commentary in source code — the system reacts by integrating
learner input into its views. Pictured here, a user has added a custom
“Hover Effect”, altered source code, and updated node labels to make sense
of smaller call trees.

121

5.2.1. Exploring Program Flow

Isopleth’s condensed call graph view and detailed source frame views, shown in the bot-

tom and middle panels of the interface in Figure 5.1, provide affordances to help users

explore and make sense of complex relationships in JavaScript program flow. Program

flow is particularly challenging for learners to understand because JavaScript functions

can execute asynchronously and often appear in a different runtime order than their initial

source order [2, 48]. Further, JavaScript’s functional nature means that functions can

be passed by reference in arguments, return values, and closures. No previous system is

able to draw connections that outline a JavaScript function’s journey from declaration to

binding during runtime, but this information is crucial for making sense of the concep-

tual design of web applications. Isopleth provides the first interface for exploring these

conceptual relationships.

In Isopleth’s condensed call graph, shown in detail in Figure 5.2, Isopleth orders call

trees by time and draws colorful edges between nodes to denote their relationships. Call

trees are ordered from left to right by root-level invocation over time, and nodes in the call

trees can be rearranged by dragging them. Users can zoom and pan the call graph, and

can also control the level of detail of the view using a flyout control panel (not pictured),

showing and hiding library nodes, unidentified facet nodes, repeat nodes, or heat-maps

of nodes. Clicking relationship edges highlights both nodes touching an edge. Repeat

invocations are collated by unique call chain into their first occurrence in a tree. Yellow

edges represent parent-child (or caller-callee) relationships. Orange edges represent asyn-

chronous parent-child (or declaration context, invocation) relationships. Finally, purple

122

Figure 5.2. A cluster of related collated function invocations (with their
invoke-counts), manually organized here for display. Nodes are colored
green for top level calls, yellow for currently-selected, purple for DOM
facets, white for AJAX, blue for Setup. Edges in the graph are color-
coded yellow for a call, orange for asynchronous declaration, and purple
for asynchronous bind location (via Serialized Deanonymization). In this
toy-example of a lazy-loaded image, we bound a click handler on #test4.
On clicking #test4, the handler made an AJAX JSON request and bound
jsonResponsHandler as the callback. The jsonResponsHandler queried
the DOM for #appendShipHere and added the image.

edges represent asynchronous binding sites, denoting how functions are passed through

call chains to produce an asynchronous effect.

When the learner clicks on a node in the condensed call graph, Isopleth displays

the function body in the source frame view. The interface also displays navigational

buttons on the perimeter of the source frame views, which provide snapshots of related

functions, arguments, and return values. Users can access a function’s parent caller, child

123

calls, asynchronous declaration context, asynchronous binding locations, as well as other

functions the frame binds as effects. These affordances allow users to quickly access more

information about each node in the call graph to make sense of their functionality and

relationships.

As an example scenario, consider learner Cindy who wants to understand the end-to-

end logic involved in the infini-scroll feature of a blog website, where photos are continually

added to the bottom of a blog after scrolling to the end of the page. Using Isopleth, Cindy

activates the mouse and DOM-query facets, and the call graph is filtered by invocations

with those facets, displaying 20 remaining nodes. Cindy sees nodes on the right side

of the graph with DOM facets showing how JavaScript queried and appended some ele-

ments. Following purple lines to nodes on the left (an asynchronous link to an invocation

earlier in time), Cindy discovers the exact function that binds DOM modification as an

asynchronous response to mouse scrolling.

5.2.2. Exploring Programming Facets

While the condensed call graph is designed to support exploration and expose relation-

ships, the full call graph is very large, and therefore still challenging to understand. Facets

provide a method for filtering the condensed call graph to expose conceptual relationships

between JavaScript functions. Isopleth includes a set of predefined facet filters that are

shown by default including Mouse, Keyboard, Setup, AJAX, and DOM. These facet fil-

ters are predefined tests for arguments or return values in function invocations, such as

EventTarget arguments for Mouse, onload arguments for Setup, or XHR objects in return

values for AJAX. Facets detected in library code are bubbled up their invocation chain, as

124

DOM and AJAX are often abstracted. See the facets at the top of the Isopleth interface

in Figure 5.1.

When an facet filter is selected, the condensed call graph at the bottom of the interface

is filtered to display a subgraph that includes functions related to the selected facet, along

with their parent and child relationships. These default facets allow learners to view all

functions related to mouse and keyboard events, all setup code and AJAX calls, and

all functions that modify the DOM. Filters can also be joined by by left-clicking for

an or operator and right-clicking for a not operator, which recalculates the display of

color-coded nodes appearing the call graph. Through these affordances, facets highlight

conceptual relationships between functions that are not apparent in tools that visualize

execution order exclusively.

125

Figure 5.3. A learner is creating a custom facet filter. Facets are functional
input-output schemas, and in this facet creator view, user input is struc-
tured in terms of testing arguments and return values to identify function
invocation nodes containing the argument or return value. Users assign a
node color for display in the condensed graph, where the last filter applied
colors the node. The learner is defining a skyline hover facet, visible in
Figure 5.1.

126

As an example scenario, consider a learner Alice who wants to quickly discover which

code constructs are used to react to her keyboard strokes on a search bar, and see if any

code is reused when she clicks the search button. Using the facet filters, Alice left-clicks the

mouse and keyboard facet filters to activate an or condition and right-clicks the DOM

filter to activate a not condition on DOM-querying nodes. Results in the condensed

call graph show Alice keyup and click handlers in top level nodes. In examining the

nodes, Alice quickly sees two different programming constructs that support her feature

of interest.

5.2.3. Creating Custom Facets and Labels

Dynamic interactions with websites are comprised of either user inputs or scheduled inputs

with corresponding changes to the DOM as outputs. The set of possible inputs and

outputs is unbounded thus infeasible to automatically identify all that might be relevant

to a learner’s sensemaking process. As a result, learners need the flexibility to filter on

inputs and outputs not represented by pre-defined facets to see patterns that arise in

specific use cases. For example, a learner may type the text “dog” into an autocomplete

field, and want to trace how the string “dog” is passed from an input to an AJAX request

and finally into a result list. To address this challenge, we use a mixed-initiative approach,

allowing learners to define their own custom facets to query the call graph regarding

context-specific functionality.

A learner adds a custom facet filter by clicking the + in the facet filter bar, which opens

a dialog as shown in Figure 5.3. This dialog embeds an expert guidance technique to help

the learner prime their mental model about the role(s) of a function based on its inputs and

127

outputs before looking at the function body. This helps learners to overcome the initial

information barrier of not knowing the purpose of a code body. After defining a custom

filter, the condensed call graph is recalculated to include the new filter in combination

with existing filters to produce node labels and coloring in the displayed graph.

Isopleth also provides affordances to support learners’ self-explanations during the

sensemaking process as they work to understand individual functions and relationships.

Isopleth’s graph node labels and source frame view are editable and update referentially.

When examining the source frames for nodes in an facet graph, learners can add their

own labels for each node, add comments to the code, name anonymous functions, and

even refactor code. Learner-inputted changes appear whenever the source is referenced

by other nodes, propagating through the graph to help support understanding. The Iso-

pleth interface provides edit cues, such as placeholder boxes and blinking code cursors, as

affordances that invite learners to participate in compositional sensemaking tasks. These

mixed-initiative interactions are designed to help bridge from learners’ understandings.

As an example scenario, consider learner Mark who wants to understand how the game

timer causes a game-over action in an HTML Tetris game. He first defines a custom facet

for timer events. He then finds the final timer event on the right of the call graph and

notices 15 nodes underneath. He doesn’t easily recognize functionality in the top level

node, so he clicks a few other nodes in the tree to find familiar code. Mark finds a node

three nodes down and works through the source, adding comments about a Model state

being updated and labels the node “Game State Update.” He explores two other related

nodes and identifies a link between the game state and the timer methods. This helps

128

Figure 5.4. Functions existing inside known libraries are colored grey,
currently-selected nodes are colored yellow, green nodes have initiated DOM
changes, and purple lines denote an asynchronous relationship. After re-
moving library code filtering from the condensed call graph, this figure
shows how Serialized Deanonymization allows for a DOM-modifying facet
to be bubbled up out of a library call. Only the green node is present
outside of jQuery.

him understand the higher-order design pattern of separating concerns, such as game view

updates and game timing.

5.3. Techniques for Discovering Hidden Links and Surfacing Facets

Without Isopleth, current methods for detecting facets, or code constructs defined by

their inputs and outputs, in JavaScript are limited in scope to identifying DOM invoca-

tions [34, 14, 35] or manual inspecting inputs and outputs through debuggers [5, 25, 26].

Further, JavaScript function names, function bodies, and variable names are an unreli-

able means of determining facets, because programmers struggle to create well-named

variables [24] and minifiers swap variable names with short system-generated names [6,

64, 70].

129

Javascript’s functional nature and library ecosystem make it difficult to draw direct

links between cause and effect relationships and identify facets, which is a key component

of Isopleth — helping users see relationships between code constructs of interest. Current

tools identify the declaration scope of the function and calling scope of the function [48,

28], but the function’s journey from creation to invocation is missing.

Facets don’t surface themselves: By supporting opportunistic learning, we hide and

collate certain parts of the call graph to highlight entry points for the learner, but learners

needs to see facets detected from hidden portions of the tree to continue their sensemaking

process. For example, AJAX facets are often hidden in library wrappers around the JS

XHR API, but learners need to know calls to $.ajax are AJAX facets. In detecting facets,

Isopleth is designed to bubble facets up call-chains or down through descendants to surface

them out of libraries for the user (See Figure 5.4).

5.3.1. Serialized Deanonymization

The goal of Serialized Deanonymization (SD) is to trace the lifecycle of anonymous func-

tions, especially those that are used in the popular event-binding callback style, such as

object.on(“some event”, anonymousCallback). But JavaScript allows for functions to be

declared, passed, invoked, and manipulated during runtime in synchronous or asynchro-

nous fashion. Tracking the lifecycle of a function from creation to invocation is especially

difficult, because a function could be created and passed by reference through a complex

library event system before being bound to a UI event.

130

Figure 5.5. The Serialized Deanonymization technique pictured above is a
7-step process for tracing an anonymous JavaScript function’s path from
creation to invocation. (1) Website JavaScript is extracted and (2) sent to
an instrumentation server. (3) UUID’s are injected into all function bodies.
(4) The source is injected into the page and (5) re-rendered, sending trace
activity continuously to a db. (6) Isopleth queries traces for call graph
calculation and (7) mines arguments and return values for function serials
to discover how functions were passed and bound.

Our strategy is to add unique ID’s to each function at instrumentation time, then

record all instances of the function that appear in serialized arguments and return val-

ues at run time (i.e. from the Function.toString prototype, which provides the string

representation of the function — including our injected ID).

We detail SD in the steps below (See Figure 5.5):

131

(1) Initiate public website instrumentation using the Sleight of Hand (SoH) technique

(Chapter 4) to instrument a website’s source code.

(2) Extract the source for instrumentation via website-instrument-swap-and-trace

(Wisat) architecture (Chapter 4).

(3) While applying Fondue tracer code [48] to the JavaScript source, for each function

body in the JavaScript abstract syntax tree:

(a) Prepend a unique ID as a terminated string expression to the function body.

(4) Reinsert the source via Wisat architecture and complete the SoH technique, ren-

dering the instrumented source.

(5) Collect function trace activity, including logs of our newly added serials if present

in arguments or return values.

(6) Load trace activity for call graph calculation

(7) Make purple SD graph edges (See Figure 5.2) by backtracing function invocations

through the logs of arguments and return values from other function traces.

5.3.2. Facet Tree Decoration and Node Collation

JavaScript libraries typically wrap API concepts deep within legacy-support constructs [40]

that are important to facet inspection, such as XHR formation and MouseEvent binding.

Thus it is challenging to surface facets without showing library internals for opportunistic

learning (See Figure 5.6).

In order to support exploring a call graph based on identified facets (such as DOM,

Setup, AJAX), we must reliably determine a function’s facet. Function names and func-

tion bodies are often unreliable or misleading determinants of facets because they either

132

Figure 5.6. After removing library code filters, we demonstrate how facets
are bubbled out of library code. The green node is the only node in the
graph not present in a library. AJAX facets were detected at a low-level
in the library (yellow node), but the jQuery library API only surfaces a
getJSON wrapper-method. During call graph calculation, if we detect an
facet in a library, we bubble the facet up to the first occurrence of non-
library code to help learners identify the facet roles of library API calls (i.e.
getJSON actually delegates to the XHR AJAX API).

lack appropriate names (from minification) or they reference other functions. With the

current tools [48, 14, 59], we see source code, individual variable states, and active lines

at certain points of time, but this tells us less about what specific function chains and

code constructs are doing. To identify facets, we must look at a function’s inputs and

outputs as well as its source code (such as detecting an XHR response in an argument as

an AJAX facet).

When Isopleth detects an facet in a return value or argument, it traverses the call graph

to label nodes in a call-chain. But Isopleth hides library code by default, which introduces

an unforeseen facet decoration challenge. For argument values, it begins the search at the

node with the argument, and if the node is library code, it traverses descendents until

finding non-library root nodes to mark with the facet. Similarly with return value facet

133

identification, if Isopleth detects the return value within library code, it bubbles the facet

up the tree until finding non-library code to label with the facet.

5.4. Implementation

Activating Isopleth and source instrumentation for a website follows the same workflow

as Telescope (Chapter 4). A user navigates to a website in a browser (i.e. currently

supported in Google Chrome), activates source instrumentation via a browser extension,

and explores Isopleth at a newly launched URL. Isopleth then communicates with the

instrumented website to gather traces and generate a call-graph using Fondue with the

added SD technique.

In order to provide Isopleth users with RALE on the open web, Isopleth uses the

Wisat architecture (Chapter 4) to instrument websites and extends Fondue [48] for adding

unique identifiers in its Serialized Deanonymization technique. Unlike static graph anal-

ysis techniques [31, 23, 39], Isopleth determines a runtime call graph based on invoked

nodes, which provides users with reliable opportunistic learning. We extended the Wisat

architecture to block CSP headers via Chrome network intercept requests to streamline

source instrumentation on more public websites.

To support opportunistic learning, we added graph collation to avoid repeat call trees

in the call graph. Traversing through the graph, nodes are collated based on identical

source, identical parent source, and identical children source. Referential links are ap-

pended to the remaining singleton. In some feature-rich applications, we employed the

same parent-node-child technique as a throttling mechanism in Fondue to free up the UI

to update as needed.

134

Figure 5.7. We studied Isopleth’s ability to support sensemaking and elicit
design patterns across 12 websites selected from a diversity of industries
based on Alexa popularity rankings, the Webby awards, and personal in-
terest. From top left to bottom right: Tesla, The Pudding’s “Making it
Big”, BBC America, 500px, Stripe, ArsTechnica, Zillow, Starbucks, Hash-
TagsUnplugged’s “#PlutoFlyBy” article, National Geographic’s “New New
York Skyline” article, Histography.io, and DarkSky.net.

We wrote custom serializers for non-serializable JavaScript types such as Events, Dom

Elements, and Abstract types like Object and Array for display in Isopleth’s source frame

views as inputs and outputs.

135

5.5. Case Study

To better understand Isopleth’s capabilities in making sense of concepts in a web-

site, we used it to surface programming patterns and implementation techniques across

12 websites that were selected from a diversity of industries based on Alexa popularity

rankings, the Webby awards, and personal interest (See Figure 5.7). As this study was

conducted with expert users, the goal was to assess Isopleth’s capabilities across sites of

varying complexity rather than its effect on learners. This study aims to address the

following research questions:

RQ1 How does Isopleth support the process of making sense of complex code artifacts?

RQ2 What programming patterns/concepts can users surface through Isopleth across

professional examples sharing similar and different features?

5.5.1. Supporting Sensemaking

In evaluating how Isopleth supports sensemaking, we tested its use in terms of the formal

components of scaffolding sensemaking such as providing conceptual organizers, embed-

ding expert guidance, giving multiple representations that can be inspected to reveal un-

derlying data, providing malleable representations of the data, and restricting complexity

by setting boundaries [62].

5.5.1.1. Conceptual Organization and Guidance. For websites that coordinated

multiple components to achieve an effect, such as BBC America’s header-open and image-

load, Isopleth helped us organize related concepts with its labeled call graph, relational

links, and facet filters. In activating Isopleth for a load-on-scroll feature on the BBC

136

Figure 5.8. The condensed call graph representation of BBC America’s lazy-
image-loading strategy. By following SD asynchronous bindings, and com-
pleting small sensemaking tasks of examining source frames and updating
labels, we elicit the design pattern of appending images only when the user
scrolls below the fold.

America website, we observed how Isopleth organized and guided our conceptual forma-

tion of its design. With an initial view of the call graph organized by time and facets,

we looked to the DOM-modifying and Mouse facets first. We scrolled a few times to

load more images and looked to the right, most recent portion of the graph. We found a

lazybeforeunveil event directly linked to AJAX-faceted nodes underneath it. Curious

how the AJAX activity worked together with mouse scrolling, we followed purple lines

from AJAX to nodes in a different call tree, then yellow lines to see where the AJAX

response callback was created. Some functions were anonymous, so we renamed nodes

according to their inputs, outputs, and function bodies, like lazyLoadImage (See Fig-

ure 5.8). In this case, Isopleth’s facets provided an organized space for us to explore.

Isopleth’s links and source frames embedded expert guidance. Without this organization

and guidance we would have had to spend extra time looking for distinctions between

separate call trees.

137

Figure 5.9. A source frame view found while learning about Zillow’s recent
search results feature in its autocomplete. The construct for loading pre-
vious searches is on the left and the captured return value is on the right.
We were surprised to find recent searches stored in the browser’s local store
rather than the user’s profile, or synced with the server.

5.5.1.2. Multiple Representations and Inspection. For websites with distinctly

complex feature implementations, such as Zillow’s search query local store, Isopleth helped

us walk through complexity by decomposing features into call trees, collating them to-

gether, and providing us with multiple ways to see code constructs and relations in its

source frame view. In the AJAX autocomplete on Zillow’s logged-in homepage, we studied

how Zillow supports populating the user’s previous home searches into its autocomplete

search bar. Initially seeing keyboard and AJAX facets, our first assumption was that Zil-

low saved recent searches on a user’s profile or session, but neither was true after looking

at the underlying return values in the AJAX invocation source frames. Using a different

representation of the data, we ignored the DOM, AJAX, and Setup facets to focus closely

on calls directly related to key events. We found a branch invoked from a keyup handler

that checks for and uses the browser’s localStorage if available. Otherwise, the feature

138

Figure 5.10. The most complex UI we tested was histography.io, and Iso-
pleth performed well in collating thousands of loop calls. On hover, different
history events in time bubble up with randomly decaying dots.

is simply ignored (See Figure 5.9). Without simple affordances to reshape the display of

data, we would be left with the more daunting task of manually stepping through large

sets of invocations.

5.5.1.3. Complex Task Boundaries and Malleable Representation. For websites

with overwhelming amounts of function activity or distinctly complex features, Isopleth

helped us narrow in on the activity we wanted to see and it helped us organize our under-

standing of logic as we worked through understanding the feature. In our most complex

test website Histography.io, we found ourselves relying heavily on boundaries provided

by Isopleth’s graph and the ability to edit labels and code. With such a lively interface,

we focused on discovering how the hover-based interactions worked. (See Figure 5.10).

Using Isopleth’s setup facet and mouse facet, we created an initial filtering of the call

139

graph, but many poorly named function nodes remained. As a basic search, we quickly

scanned nodes depth-first to discover the boundaries of functionality in each call tree

remaining in the graph. Upon finding numeric calculations in invocations with a mouse

facet, we created a new facet to detect numeric types in return values. This new numeric

facet reshaped the graph into a much smaller search space when coupled with the mouse

facet. A few unknown nodes remained, so we began to directly manipulate the source

representations by changing labels, variable names, and adding comments while working

our way up the tree (i.e. bottom-up composition). By studying and labelling each of

the smaller pieces, we discovered how the year values were updated upon hovering over

certain elements. We saw how dots were scaled relative to cursor location and randomized

via decay values between 0 and 1. Isopleth helped us iteratively scope down our search

space and compose meaning from decomposed code constructs.

5.5.2. Surfacing Design Patterns

With Isopleth we were able to find (1) common patterns across similar features, (2) com-

mon patterns across different features, and (3) different patterns across common features.

The principal design characteristics of Isopleth are to promote opportunistic learning,

support sensemaking processes, and allow users to understand patterns and strategies

across software components.

5.5.2.1. Common Patterns across Similar Features. Isopleth’s relational links,

facet filtering, and argument inspection helped us discover consistent design patterns

across similar features. Starbucks, ArsTechnica, Zillow, and 500px showed a content

swapping technique based on logged-in state when examining Isopleth relations among

140

Dom Query facets and with Setup facets. After filtering Isopleth on the DOM Query

facet, we inspected the arguments in Isopleth’s source frame views that showed ArsTech-

nica, DarkSky, NatGeo, and Stripe add and remove a class “hidden” to DOM elements

to toggle their visibility. We found 500px and PlutoFlyBy’s animated scrolling technique

when simply looking into the latest occurring invocation with a Mouse facet.

5.5.2.2. Common Patterns across Different Features. Isopleth’s sensemaking pro-

cess, argument, and return value inspection helped us elicit consistent design patterns

across websites with different features. Tesla’s car picker and BBC’s landing page each

listen for a UI event that triggers an AJAX call, which loads JSON containing image

URL’s, which are appended to a template and rendered to the DOM. This lazy-load pat-

tern emerged through an iterative sensemaking process between DOM, AJAX, and Mouse

facets for both pages. 500px, MakingItBig, and NatGeo’s scroll-based CSS transform an-

imations were surfaced by using Isopleth’s Mouse facets, then inspecting arguments and

return values in source frame views. We identified loops operating on values modifying

CSS translate3d positions to achieve a smooth GPU-enabled transition.

5.5.2.3. Different Patterns across Common Features. We also used Isopleth to

discover contrasting implementations for the same feature. Different patterns may be

equally valid, but often the pattern highlighted the needs of the application domain,

such as a socially integrated login on the BBC America site compared to a simple form-

post login on Stripe. DarkSky, BBC, and Zillow’s autocomplete search techniques were

surfaced through Isopleth’s Keyboard, AJAX, and DOM facet filters, and each of their

implementations fits their domain. DarkSky’s autocomplete searches local storage for

previous searches and builds a URL query otherwise, fitting the site’s simple design.

141

BBC issues AJAX calls and populates templated results, fitting the site’s reactive design.

Zillow’s search populates a result list, but builds a URL redirect to their map interface,

fitting their real estate shopping design. Each website’s login technique varied, and while

Isopleth helped reveal insights, some sites did not use JavaScript to support user login.

500px, Stripe, Tesla, Starbucks, and ArsTechnica simply redirected login actions without

JavaScript. Isopleth revealed BBC’s use of the social Janrain platform for an AJAX

social login through its DOM and AJAX filters, however on successful AJAX login, BBC

oddly refreshes their page. Isopleth’s DOM, Keyboard, and AJAX facets along with a

customized facet filter for login arguments showed that Zillow uses a refreshless login

strategy via secure AJAX post and view update.

5.5.2.4. Surfacing Architectural Decisions. Using unfiltered views in Isopleth, we

surfaced unexpected lower-level characteristics of websites such as identifying their JSON

API, or revealing large amounts of dormant code from framework-bloat or analytics pack-

ages. 8 of the 12 websites have mouse-tracking analytic packages, which we noticed

through high call counts in collated superfluous invocations related to mouse events. 3

of the sites use large frameworks including Angular, YUI, and React, with thousands of

invocations in Isopleth’s unfiltered call graph views during simple UI changes. Isopleth

revealed excessive polling activity in un-collating its call graph, where 4 websites contain

library code that polls window.location every 20ms for hash changes. Finally, by show-

ing library code and filtering for AJAX facets, Isopleth streamlines the ability to surface

how applications structure their interaction with a remote API.

142

5.6. Isopleth User Study Design

5.6.1. Method

In evaluating Isopleth, we aim to understand four main research questions:

∙ RQ1 How does using Isopleth affect a user’s prior conceptual model of a complex

JavaScript artifact?

∙ RQ2 Which features in Isopleth are most effective in supporting its sensemaking

process?

∙ RQ3 Which features in Isopleth are most effective in scaffolding opportunities

to learn coding design patterns from the complex websites?

∙ RQ4 How do junior developers’ Isopleth sensemaking strategies differ from senior

developers?

The participants of the Isopleth study were ten junior web developers with less than

one year of professional experience and four senior web developers with greater than five

years of professional experience. The study is a between-subjects design, where each user

was asked to use Isopleth to make sense of the source code underlying a UI interaction

of their choice from a pool of four websites. In the study results we detail the following

findings:

(1) Isopleth altered the conceptual models of users in three different classifications:

prior model verification, prior model nullification, and prior model augmentation.

(2) The features most supportive of sensemaking include the ability to change labels,

rearrange the call graph, and modify code; these features implement properties

of theoretical sensemaking such as retrospect or enactment.

143

(3) The features most supportive of scaffolding sensemaking in web programming are

the facet filters, the simultaneous display of call graph and source frames, and

the relational links in Isopleth’s call graph; these features implement properties

of theoretical scaffolding such as providing malleable representations or providing

navigation.

(4) There was a distinct difference in usage patterns and sensemaking strategies

when comparing junior and senior developers. Junior developers found the most

relevant Isopleth affordances to be the ability of renaming and rearranging nodes

in the condensed call-graph and viewing relational links among nodes, depending

less on adding custom facets or following asynchronous lines. Senior developers

used Isopleth to search for and verify their prior assumptions, spending more

time tuning the interface through adding facets and filtering the graph view.

5.6.2. Study Design

We chose UI features from four popular websites present in the case studies from Isopleth

and Telescope (Chapter 4): National Geographic NY Skyline Article, Histography.io,

BBC, and XKCD’s big map. While widely used, each contains a simple surface-level con-

cept but clever underlying implementation. When clicking the header on BBC America’s

landing page, it expands and reveals images not present before. In the National Geo-

graphic NY Skyline article, scrolling horizontally causes a zoom effect on the skyline, and

hovering over new buildings yields information about them. On hover in the Histogra-

phy.io site, little dots follow the cursor in a decay pattern and dates change for which year

the user is navigating over. XKCD’s big map strings images together to form a draggable

144

map, with an extremely large comic to explore through a normal browser-sized viewport.

As an added depth to our test, each website has a seemingly obvious conceptual imple-

mentation, but in looking deeper through the implementation a more clever and scalable

design pattern exists.

As a prerequisite 15-minute task, we taught users how to use Isopleth, and verified

their background through a series of basic web development questions such as, “What

is one way you can hide a DOM element?” Before the test, participants were asked to

observe and interact with a toy example to demonstrate advanced features in Isopleth

such as exploring asynchronous bindings or creating custom facet filters. Participants

were recruited based on experience they described in their CV. Each participant agreed

to a screen recording with audio and click history for their entire task.

We elicited each user’s prior understanding of their test concept through a 5-minute

diagramming activity. Users were given a feature to explore on their own for less than a

minute, then asked to describe in their own words how they thought it worked. We then

asked them to draw a basic diagram of how the code works in response to the user and

update some visible effect on the webpage.

Users were then asked to use Isopleth to make sense of a website’s feature interaction.

We gave users the task to use Isopleth to accurately describe how the source code achieves

the interaction, with a time limit of 25 minutes. In our test-tasks for designing this user

study, we found that most users completed the task in under 20 minutes. The stop

condition of the task was when a user had reached a complete self-assurance that they

understood how the interaction worked. Users were free to take notes on paper or in a

text editor during the exercise and ask clarifying questions about how to use Isopleth.

145

Upon completing their exercise, users were asked to describe their findings in a struc-

tured manner for 10 minutes. We asked the users to (1) write pseudocode statements

describing program flow from start to finish of the interaction, (2) diagram their new

understanding of the interaction, (3) describe any differences in their prior understanding

of the interaction to their current understanding, (4) describe verbally which features of

Isopleth were most effective in their task, (5) describe any programming concepts or de-

sign patterns they previously didn’t know, and (6) describe any features or functionality

they wished Isopleth had.

5.7. Isopleth User Study Results

5.7.1. How does Isopleth affect conceptual models?

The central aim of Isopleth is to help users make sense of complex code in professional

websites, and in analyzing Isopleth’s effects on user cognitive models we classify our find-

ings in three distinct patterns: prior model verification, prior model nullification, and

prior model augmentation. We define prior model verification as a process of validating a

conceptual model or its components through scaffolding, prior model nullification as re-

jecting an invalid model or components of an invalid model, and prior model augmentation

as templating a model and implementing component coordination through scaffolding.

5.7.1.1. Prior Model Verification. Five of the fourteen users (four senior, one junior)

had a primary behavior of verifying their prior conceptual models through Isopleth and

added minor details to their understanding of the test web interaction. Before using Iso-

pleth, the users described an accurate program flow and coordination of logic on their test

146

website: BBC, XKCD, or National Geographic. The users employed a distinct strategy

of searching, filtering, and quick scans through the call graph for familiar logic.

Despite having a valid prior conceptual model, the users in this group were still ex-

cited to use Isopleth to validate their assumptions about implementations from other

professional developers. At the start of the exercise, one user stated “I’ve done a map-tile

implementation before, but I still want to see how they [XKCD] did it.” In using the

tool, the user looked for cues in the condensed call graph from different parts of their

conceptual map, such as where images are appended and removed from the map. Users

in this group wanted to fill in the minor details they could find only by looking at the site’s

implementation and used facet filters to search for specifics. “I wonder how long the tiles

remain on the page after they’re loaded,” a user said in regards to XKCD. Other minor

details from the test include class names, low-level implementation decisions, framework

usage, and background tasks like state synchronization frequency.

5.7.1.2. Prior Model Nullification. Four junior developers had a primary behavior

of rejecting their prior conceptual models while using Isopleth and adapted a completely

new conceptual model. In the first steps of the study task, the users provided a vague con-

ceptual model, which consistently described an ambiguous coordination of mouse events

and UI updates. One user said, "I think there are a bunch of ajax somethings to get im-

ages" in regards to the BBC header’s image loading. Another user said, “this [conceptual

map diagram] is how I would construct a quick and dirty version [of an image moving on

XKCD], but I don’t think it’s how they’re doing it.” When asked for clarification, the

same user stated, “I know how to move an image but not how they’re moving the image.”

147

Users in this classification employed a distinct strategy of slow and careful source

code reading with a low reliance on searching or filtering. They started towards the

rightmost portion of the condensed call graph and worked backward in time, to the left,

to understand nodes in the graph. Through iterative sensemaking (discussed later), the

users nullified their prior models with the following findings: (1) BBC adds a lazy-load

class to images and sets them to visible, letting a library do the rest. (2) XKCD does

move images, but it breaks a big image into tiles and moves the pieces. (3) XKCD listens

for mouse actions on its view and tracks the mouse position, updating image locations

in synchrony with the mouse. In each of these occurrences, the users overcame specific

knowledge gaps with Isopleth: (1) How to coordinate AJAX with image loading. (2)

Whether their prior experience in moving images is applicable to this map-drag scenario.

(3) How to coordinate mouse actions with moving images in a view.

5.7.1.3. Prior Model Augmentation. The remaining five junior users augmented

their prior mental models by first describing a rudimentary guess at the architecture

of their test website, then using Isopleth to discover how the professional website’s con-

structs implemented their mental model. For the Histography.io task, a user described

their prior conceptual model, “there’s obviously a hover binding tracking the mouse loca-

tion, rendering the line and the dots — but that could be done in HTML or CSS.” On

National Geographic, a user said, “These could be SVGs or images, either way they’re

getting resized on scroll.” In using Isopleth, these prior models greatly affected their usage

strategy: instead of working through nodes in the call graph, the users sought specific

functionality through facet filtering, call graph searches, and relational link exploration.

148

With a confidence about how the implementation might work, the users sought to find

evidence to complete their conceptual map of the interaction.

5.7.2. Which features of Isopleth support sensemaking?

The ability to improve a learner’s conceptual model of a professional website through

sensemaking is the core design claim of Isopleth; this section examines how users per-

formed in the study. Weick describes seven properties that support sensemaking, six

of which will be examined here: Retrospect, Enactment, Plausibility, Ongoing, and Ex-

tracted Cues. The Identity and Social properties are not yet applicable to Isopleth [75].

5.7.2.1. Retrospect. The retrospect property of sensemaking falls under the sensing

in sensemaking, and users heavily relied on this property through Isopleth’s mutable

affordances. Weick defines the retrospect property as attention to specific meanings that

arose in the past. Eight of fourteen users modified source code in Isopleth and ten users

modified node labels. When asked about the purpose of modifying the labels and code,

the users considered it a retrospective task for either marking a node as understood, or

making note of meaning for review in composition. During the scenario, a user would read

the source code for a node and update its label; a user stated, “now that one’s done, I just

have three others in this tree I need to look at before I know what’s going on.” In order to

discover the full scope of logic in BBC’s header reveal, a junior developer updated node

labels to “done” while working through the example. In moving forward, they glanced back

at their nodes and relational links to make sense of the order and relationship between

showing image content and logging a click analytic event. Another user mentioned the

benefit of Isopleth’s graphical layout from left to right in time-ordering: “I really like that

149

it [Isopleth] is timeline based so I can retrace what happened and know some locations to

look back on.”

5.7.2.2. Enactment and Plausibility. Isopleth supports the enactment and plausibil-

ity properties of sensemaking, or as Weick describes them, the making in sensemaking [75].

Enactment is a process of acting and in doing so, creating materials that become con-

straints and opportunities. Through activity logging, we found that seven of the users

engaged in filtering, two of the users created custom filters, all users rearranged nodes, ten

users modified the node labels, eight users modified source code, and six users modified

the same node labels and source code two or more times. By acting on these affordances,

the users created new views containing additional opportunities to act until they made

sense of the interaction.

Weick describes the plausibility property as motivating sensemaking through plausi-

bility rather than accuracy. A user found that BBC pads extra pixels on the header,

but didn’t realize it was for a logged-in state. They said, “I would not have thought to

sequentially change heights when expanding, but now I know there’s a benefit there...

maybe for some other widget.” In the context of plausibility, the user wasn’t concerned

with accurately exposing every piece of logic, but they noticed relational lines in Isopleth’s

call graph that iteratively changed element heights and considered it plausible that the

state of other components could be affecting the pixel display of the header. Another

user said, “I’m not sure why it’s built this way, but at least I can fallback to this sort

of understanding when I build in the future.” In this case the user couldn’t accurately

portray the website author’s design decisions, but they realized the plausibility of using

the technique as a valid technique for their own application.

150

5.7.2.3. Ongoing and Extracted Cues. One of Isopleth’s usage traits is its iterative

process, which is a direct implementation of Weick’s sensemaking properties: ongoing

and extracted cues [75]. The ongoing property states that users shape and react to the

environments they face. In rearranging nodes intermittently throughout the tasks, all

users desired to shape a view of the graph that was more meaningful to them. With six of

the users labelling and relabelling nodes multiple times, these users treated the labelling

process as an ongoing process to elicit meaning from a coordinated group of nodes in the

call graph. A user on National Geographic said, “I know I’ve seen this before, but I’m

actually not sure where the skyline nodes are getting their ids.” The user previously found

a node that builds a selector from a string with an ID, but they hadn’t found where the

ID was located. As an ongoing process, the user incrementally added to their working

knowledge of the system until no unknowns remained. They later found that the ID’s

were stored as properties on DOM elements.

The extracted cues property states that cues from the context are used to help users

decide on what information is relevant and acceptable. The starting state of Isopleth

shows users a cumulative summation of JavaScript execution over time, and users often

treated the right portion of the graph as an entry cue to start at what happened last.

Users worked backward through relational links between code constructs to find other

constructs meaningful to them. Other users relied on filtering and color coding for cues.

A user stated, “At the beginning, there were a lot of nodes, then I applied filters and with

the node-coloring it became a lot easier to see where to begin.” In this case, the filtered

results and node colors acted as cues to engage with the user in a more familiar setting.

Another user stated, “in general I just looked around [the condensed call graph view] for

151

functions or classes that looked familiar and dove in from there.” Here, the user explained

a very common search and amongst all the users — a user would briefly look through a

few nodes and scan for syntax patterns familiar to them. Upon finding a familiar pattern,

they acted upon the cue to understand logic and relationships.

5.7.3. Which features of Isopleth support scaffolding?

Quintonna defines several strategies to scaffold sensemaking in software, and in this section

we evaluate Isopleth on a select group of these strategies: visual conceptual organizers,

descriptions of complex concepts, providing representations of the underlying data, en-

abling learners to inspect multiple views, giving learners malleable representations, and

facilitating navigation among tools and activities [62].

5.7.3.1. Conceptual Organizers and Descriptions. Isopleth implements a visual

concept organizer in its condensed call graph view and linked source frames. Descriptions

of complex concepts appear as node facet labels. All users understood the hierarchical

organization of the condensed call view and heavily relied on its structure in their search

and sensemaking processes. A user made a specific remark in regards to the layout, “I

think the way it [the call graph view] is laid out helps you see what happened at a high

level — then you can drill down as much as you want.” The default facet labels are

limited to five predefined facets, but most users relied on the “Mouse” and “Setup” facet

labels to scaffold their searches. Many of the test effects were tied to mouse related events

such as a click on the BBC header to make it open and show images, and users found the

implementation they were looking for through the mouse facet nodes and related nodes.

152

5.7.3.2. Multiple Views and Representations of the Data. Isopleth provides mul-

tiple views of source and represents the data in different ways such as facets in terms of

inputs and outputs, and most users performed well with these scaffolds. Seven developers

used the facet filters to constrain the view of nodes in the condensed call graph, such as

Mouse compared to Setup. In doing so, they could more clearly identify a set of nodes to

explore from. After renaming some nodes, they could see their changes in multiple views

including the node labels and source frame views. Seeing relational links both in the call

graph and side-by-side source frame views helped four junior developers determine the

relationship between two nodes. A user exploring XKCD’s map class and drag effect said,

“I hated jumping back and forth between editors [source frame views], then I clicked a link

[call graph edge] and both editors appeared together so I could tell how each variable was

declared.” Representing the same relational data in two different ways helped this user

determine the link, and the user’s intuitive nature to see more detail in an edge helped

them determine the relationship between two views.

5.7.3.3. Malleable Representations and Navigation. Isopleth’s signature design

characteristic is its mutable interface, where the representation of the data can be changed

— helping the user to navigate more easily in terms of their historic interpretation of the

data. Ten junior developers modified the labels and eight developers modified source

code. All developers rearranged nodes in the call graph to either move nodes away that

they didn’t care about, or group nodes together in terms of their meaning. Users moved

nodes to more clearly see the scope of their relational links or to see the aggregate of

how far the node relationships stretched across the call graph. A senior developer said,

“I had fun wiggling the nodes around to see how big the web of their connection was.

153

I just avoided highly tangled messes at first and moved things around until something

looked familiar enough to explore.” Ten developers leveraged the malleable nature of the

interface for navigation; in updating the node labels, four of the users considered their

updated labels as nodes which were completed and needed no further examination. All

users intuitively navigated the relational links of the call graph, realizing that nodes were

visually connected, while four junior developers found an advantage in navigating the

source frame links for input, output, binding, and effect. During a task a user stated, “I

don’t know where this is getting called [a function], but I’ll have a quick look around [the

source frame buttons] to see if I can find anything.” The proximity of the parent caller

button in Isopleth’s source frame view to the function source allowed the user to quickly

navigate to the function’s caller to determine its relationship without losing context of

the original function.

5.7.4. How do junior developers’ Isopleth sensemaking strategies differ from

senior developers?

There was a distinct difference in user strategies between junior and senior developers,

where junior developers engaged in more node label updates and source code comments,

while senior developers visited many nodes quickly in a breadth-first-search style. The

ten junior developers regularly modified node labels, while none of the senior developers

modified labels. One senior developer added some comments to code. The junior develop-

ers regularly traversed through call trees to compose meaning, whereas senior developers

rapidly iterated through nodes to verify their assumptions in identifying where function-

ality was occurring and how it was wired together. A senior developer exploring XKCD

154

with Isopleth said, “I liked how the code was broken down, like how the mouse bindings

were set up and destroyed... I didn’t really need to change anything... I just followed

the lines and it seemed to work out.” In this situation the senior developer had a valid

prior understanding of how to implement draggable maps and traversed the call trees to

validate their assumptions. One junior developer added a customized facet, while the rest

spent most of their time composing call trees while occasionally filtering different facet

functions. One senior developer added several custom facets to draw distinction between

logic handling scroll coordinates and logic interpreting mouse hover locations.

5.8. Technical Limitations

Isopleth’s Serialized Deanonymization technique does not capture the path of functions

passed via closured variable reference, string key reference, global object reference, or dom

element invocation reference (e.g. onclick=“MyFunction();”). Function invocations and

asynchronous declaration context are still traced, but Isopleth’s purple lines will not draw

connections for functions passed this way. There is an existing effort underway which

adds the tracking of variable state to Fondue’s instrumentation technique, thus providing

the means to overcome this limitation.

Isopleth extends Fondue [48] for source instrumentation and employing the Serialized

Deanonymization technique; and the Wisat architecture (Chapter 4) to bring Isopleth to

public websites. Thus it inherits limitations of these approaches: it only tracks source

activity from top level website frames, scripts loaded dynamically during a UI interaction

will not be instrumented, functions invoked from string via eval are not traced. Other

155

browser rendering techniques are not captured including Canvas, OpenGL, FLash, etc;

however, JavaScript calls to these API’s are captured.

Isopleth does not involve HTML or CSS in its mixed initiative learning, and modern

advances in these languages have increased their abilities in creating performant UI in-

teractions. An existing effort is underway to provide inexperienced developers support in

learning dynamic effects in CSS [50]. Isopleth does, however, trace all interactions with

these languages from JavaScript, such as manipulating the DOM, adding classes, and

manipulating CSS property values (e.g. translate3d).

5.9. Conclusion

Having evaluated Isopleth’s ability to support the sensemaking process of complex

code artifacts and identifying patterns surfaced with Isopleth, we revisit techniques that

contribute to Isopleth’s effectiveness.

5.9.1. Enabling Sensemaking through Mixed Initiative Scaffolds

A defining characteristic of Isopleth is its mixed-initiative sensemaking process between

the user and system, where each acts as an agent toward a common goal [37] of under-

standing design patterns and constructs in professional website code. At Isopleth’s heart

is the JavaScript call graph that results from the user’s interaction with a feature on a

professional website. In this graph, nodes represent collated function invocations, and

edges represent parent-child calls or asynchronous bindings. Isopleth provides a variety

of views into this call graph to support sensemaking, enabled by facets. Facets define

156

filters on functions with particular arguments or return values to identify conceptually re-

lated functions. With an unbounded number of programming facets and design patterns,

it is infeasible to design a fully automated system to learn programming patterns from

professional JavaScript. Thus our goal was to create a system that leverages interaction

between a user and the system to provide scaffolds for making sense of design patterns in

professional JavaScript.

We evaluated Isopleth on 12 test sites in a case study to discover how useful Isopleth

could be in making sense of professional website code. For websites that coordinated

multiple components to achieve an effect, such as BBC America’s header-open and image-

load, Isopleth helped us organize related concepts with its labeled call graph, relational

links, and facet filters. Applying filters and following links had a similar feel to following an

expert’s guidance through unfamiliar code. For websites with distinctly complex feature

implementations, such as Zillow’s search query local store, Isopleth helped us walk through

complexity by decomposing features into call trees, collating them together, and providing

us with multiple ways to see code constructs and relations in its source frame view. For

websites with overwhelming amounts of function activity and complex features, Isopleth

helped us narrow in on the activity we wanted to see, and it helped us organize our

understanding of logic as we worked through understanding the feature. We were able

to scope the call graph by dragging only nodes we cared about into their own view. We

created labels that made sense to us in working through a large feature. We created

custom facets to both eliminate functionality from view and scope down functionality

in view. Each of these affordances streamlined our sensemaking process in the midst of

complexity in unfamiliar code.

157

In our case study, we were also able to identify reusable design characteristics across

websites and features. Isopleth’s relational links, facet filtering, and argument inspection

helped us discover consistent design patterns across similar features such as login-based

content swapping on Starbucks, ArsTechnica, Zillow, and 500px. Isopleth’s sensemaking

process, argument, and return value inspection helped us elicit consistent design patterns

across websites with different features such as content lazy-loading in the Tesla car picker

website and BBC America landing page. We also used Isopleth to discover contrasting

implementations for the same feature. Different patterns may be equally valid, but often

the pattern highlighted the needs of the application domain, such as a socially integrated

login on the BBC compared to a simple form-post login on Stripe. DarkSky, BBC, and

Zillow’s autocomplete search techniques varied based on their respective use cases.

5.9.2. Informing User Mental Models

Isopleth’s primary user class is inexperienced developers who would otherwise struggle

with eliciting professional design patterns due to gaps in conceptual knowledge about

professional web programming. Determining functional program flow and relating code

constructs from source in JavaScript is nontrivial, because functions can execute asyn-

chronously and often appear in a different runtime order than their initial source or-

der [2, 48]. Our aim in designing Isopleth is to embed expert conceptual models in UI

affordances to help learners transition from their current mental model to an accurate

professionally-shaped mental model. Further, in developing these models, similarities

and differences between design patterns across multiple websites broaden the learner’s

conceptual understanding.

158

We evaluated Isopleth on ten junior web developers with less than one year of pro-

fessional experience and four senior web developers with greater than five years of pro-

fessional experience. While we observed and classified changes to mental models in all of

the users, we attributed the change in models to features most supportive of scaffolding

sensemaking: facet filters, the simultaneous display of call graph and source frames, and

the relational links in Isopleth’s call graph. There was a distinct difference in usage pat-

terns and sensemaking strategies when comparing junior and senior developers. Junior

developers often renamed and rearranged nodes in Isopleth’s call-graph while viewing re-

lational links. Senior developers primarily used Isopleth to search for and verify their prior

assumptions, tuning the interface to minimize the work of their search through custom

facets and filtering.

While some users lacked knowledge of JavaScript API’s or only used a subset of Iso-

pleth’s affordances, users managed to derive meaning and fill in gaps in their knowledge

from contextual clues in Isopleth. Many users didn’t follow asynchronous relational lines

to discover links; seeing that a node in the graph had asynchronous connections helped

them view the function in an asynchronous context rather than defaulting to a synchro-

nous context. By using other clues in the interface such as seeing the Setup facet label or

navigating to a function through asynchronous buttons in the source frame views, users

had less incentive to manually follow purple asynchronous lines between nodes. In identi-

fying nodes in the call graph around and connected to a node calling a third-party API,

such as $.getJSON or YUI.one, users derived the meaning of the third-party API call

from examining the inputs and outputs of the invocation in Isopleth’s source frame view.

Only senior developers added custom facets to Isopleth. We observed junior developers

159

devoting more of their time understanding existing facets and relationships, with little

time left to custom facets. Senior developers skimmed for familiar functionality and fo-

cused on tuning the interface to decrease the breadth of their search with custom facets.

This helped senior developers to more efficiently see distinctions from their initial mental

model.

5.9.3. Enabling RALE

Isopleth is the first system to prove the techniques of RALE as a concept, and its user

study shows corrective and constructive effects in conceptual model formation, distinct

user sensemaking patterns compared to other systems, and deeper user understanding of

the subject matter (i.e. design patterns in professional websites) than was observed in

Telescope or Unravel. Isopleth scaffolds sensemaking for users by providing them low-

effort entry points into exploring how a web application works while still allowing them to

explore code constructs in a fully comprehensive way. Isopleth facilitates mixed-initiative

sensemaking by allowing users to create their own custom facets and code refactoring,

while incorporating their additions into the recalculation of views and entry points into

exploration.

160

CHAPTER 6

Discussion

6.1. Applications of Unravel, Telescope, and Isopleth

The three RALE tools detailed in this dissertation were created sequentially (Unravel,

Telescope, then Isopleth) and extend off of each previous tool, yet they have distinct

differences in use and applications for their target users class: those who can setup,

read, and write basic JavaScript web applications but lack the conceptual knowledge of

design patterns used in professional web solutions. Unravel works as a lightweight browser

extension, and its user study showed the benefits of applying it as a tool to discover entry

points into complex code. Telescope is built on a more complex architecture, but showed

promise in its exploratory study for generating small examples (e.g. snippets or fiddles) of

dynamic web features and the interplay between JavaScript and HTML. Isopleth extends

Telescope’s architecture, but shows relationships in the code and gives users scaffolds

to make sense of complexities they encounter. Different from prior work and existing

inspection tools, Unravel, Telescope, and Isopleth are specifically designed to help users

understand unfamiliar professional web application code by overcoming learning barriers

and scaffolding sensemaking.

161

6.1.1. Unravel Applications

When curious about an interesting feature on a website, Unravel helps experts navi-

gate quickly to code likely supporting the feature, and it helps beginners overcome the

information barrier of where to begin inspection. Tools created prior to this disserta-

tion [5, 41, 38, 48, 25, 26, 13, 30] are certainly capable of exposing feature function-

ality but were designed to debug applications under development rather than delve into

completely unfamiliar code. For web features with tens of thousands of function invoca-

tions, it quickly becomes unclear — even to experts — how the application works due

to overwhelming amounts of debugging information. Prior tools for exploring unfamiliar

code make contributions to record and diff program state but still are subject to over-

whelming users with too much runtime information when recording thousands of function

invocations or DOM changes [59, 14, 13, 2]. Unravel uses excessive runtime counts to its

advantage by bubbling relevance based on counts and reducing output by unique DOM

element and unique call stack. Users look to Unravel to provide sortable filtered lists of

DOM changes and function invocations; they can use the lists as an index linking into

specific locations in the well-featured Chrome Developer Toolkit.

An example scenario is for a developer who has a vague idea of how to achieve a

card-swipe transition effect but wants to check comparable websites to quickly consider

and compare other professional strategies. The developer launches Unravel and looks for

specific function invocations calling API’s like animation, iterating over CSS properties,

or invoking frameworks. The developer sees which techniques are being supported by

other companies in production. After finding and inspecting a website with a cleaner and

162

more maintainable pattern, the developer decides to follow their pattern of adding and

removing CSS-animate classes via JavaScript.

But beyond finding quick entry points into the application’s code, further exploration

is inhibited by information barriers in having to navigate large amounts of code. Telescope

can be applied to produce low-barrier learning materials from large amounts of code.

6.1.2. Telescope Applications

When interested in discovering all of the JavaScript and HTML necessary to recreate a

web feature in an efficient way, Telescope is able to display relevant source code at variable

levels of detail in its composite view. Telescope overcomes Unravel’s main limitations of

JavaScript observation scope (DOM only) and shallow exploration (simple pointers into

the code) by extracting all the code from a website and displaying it in a composite view

for the user, condensing JavaScript based on a configurable detail level. Unravel displays

HTML and JavaScript function invocation counts in different pains with links to Chrome

Developer Tools, while Telescope can display all of the JavaScript and HTML for a website

with visual links between the two languages. Telescope enables users to vary the level of

detail of JavaScript displayed between: DOM-querying, invoked, library, and all. This

helps users see different patterns in JavaScript such as in-memory data management in

an MVC architecture. Similar to a fiddle or code snippet, Telescope’s output can be used

as a starting point to recreate or feature or learn new design patterns in a professional

website. While Unravel provides pointers into the browser’s web inspector, Telescope

pulls out relevant views of JavaScript for the user.

163

An example scenario involves a developer who wants to recreate a draggable map

interface they found on their website, but they aren’t aware of any techniques to create

this implementation. Briefly searching the web, all of the techniques they find are either

overly cumbersome (such as deploying a map-creator SDK) or too dependent on a third-

party (such as Google Maps). Knowing they simply want to create a similar solution

to what they see, they activate Telescope in the website and identify a simple 60-line

starting set of how to construct a draggable-map component in JavaScript. After looking

through the code toward the beginning of the timeline, they want to see how code later

in the timeline modifies the initial draggable-map component. They move the timeline

and increase the detail level to see a set of active event-bindings and listeners. With a

set of starting code, users wishing to gain more insight into professional web application

development can discover techniques while using parts of the code to craft their own

custom solution.

6.1.3. Isopleth Applications

When interested in learning new professional web development techniques more compre-

hensively, Isopleth provides opportunistic views to learners and scaffolds basic sensemak-

ing through mixed initiative affordances. Somewhat like a worksheet that adapts to its

student, users can work through findings in Isopleth and add their own custom facets and

names; Isopleth reshapes its views in response. Isopleth captures JavaScript invocations

by extending Telescope’s architecture, but instead of displaying variable detail levels of

relevant JavaScript, Isopleth displays reduced and filtered views of a JavaScript call graph

based on facets (i.e. code constructs defined by their inputs and outputs). Users can see

164

how functions were called, how functions relate to other functions, which hidden asynchro-

nous links exist between functions, and how calls are classified via their facet labels. With

these unique views fully decomposing an unfamiliar JavaScript web application, users can

study small pieces and relationships in an effort to build an accurate mental model of how

a web feature was created. Isopleth is the first of the three tools in this thesis to offer

learning scaffolds, which helps inexperienced developers make sense of complex code.

An example scenario is for a frustrated self-starting web developer who is eager to

understand how click-and-drag bindings work in JavaScript but is overwhelmed even by

Telescope’s simplified output, as it lacks program flow and asynchronous relationships.

Telescope condenses website code into learning materials, but in doing so loses structures

and dependencies in the code necessary to form a deeper understanding. The developer

doesn’t understand how a function could be run before it is declared; that should not be

possible. The developer launches Isopleth and starts examining nodes in the call graph,

broken down into small pieces with relational asynchronous links. The developer notices

that the function is actually declared in the first tree in the call graph, as it is labeled

with a setup facet. The developer follows an asynchronous relationship line to the right

side of the call graph where a drag function invocation has occurred. It is labeled with a

mouse facet. After studying the functions and following relationships in their trees, the

developer sees how the function was bound to click-drag events at setup and invoked later

on. By using Isopleth, the developer has corrected an inaccurate mental model of the

application.

165

6.1.4. Future Toolkit

In the future, it is conceivable to imagine a single tool that encompasses all of the func-

tionality of Unravel, Telescope, and Isopleth without reliance on third party technology.

By integrating Isopleth’s instrumentation in a browser’s JavaScript precompile step, all

of the information needed to bubble relevance, vary detail, filter libraries, or deanonymize

anonymous asynchronous calls would be available to a live inspector. No third party

server architecture would be needed. Note: the intended goal of the existing architecture

is to be agnostic of browser implementation, but the proposed implementation here would

require a customized integration per browser.

6.2. RALE: Design Claims and Evidence

This thesis has contributed three systems toward the goal of creating Readily Available

Learning Experiences for professional websites. This section details the primary design

claims of Readily Available Learning Experiences and reviews evidence of their necessity.

In brief, a RALE should:

∙ Surface hidden design patterns, code constructs, and relationships (both direct

and indirect) from professional websites.

∙ Minimize learning barriers while supporting personalized exploration of unfamil-

iar website code.

∙ Scaffold mixed-initiative sensemaking to help users walk through unfamiliar com-

plexities in the surfaced resources.

∙ Scale the conversion of examples into learning resources without additional au-

thorship or maintenance.

166

6.2.1. Surfacing Hidden Patterns, Constructs, and Relationships

RALE addresses a class of users who are frustrated by their knowledge gaps in web de-

velopment and thus limited in their ability to interpret complex professional code. After

completing web tutorials, a beginner might attempt a new project but realize they lack

sufficient knowledge to complete their project goals. Inspired by existing professional

examples, a beginner might inspect the professional website, but in doing so find that

it is unclear where to find and how to interpret design patterns, code constructs, and

programmatic relationships. Surfacing patterns, constructs, and relationships from pro-

fessional websites helps users overcome gaps in knowledge, shortcuts inefficient forms of

web foraging such as searching the web for relatable tutorials and Q&A posts, and pro-

vides them with opportunities to learn authentically — in a personally meaningful way

using multiple modes of the discipline (i.e. web application programming).

Design patterns in this context are defined as reusable techniques or sets of techniques

which can be applied in multiple situations to solve similar problems. While many design

patterns are well known and have names (e.g. Model-View-Controller, Bootstrapping,

Lazy-Loading), naming a pattern is less a concern in RALE than helping a learner build

an accurate reusable mental model of a design pattern. A popular unstandardized de-

sign pattern in web development involves toggling a CSS class on a DOM element via

JavaScript to achieve a show/hide or animation. Test users found this simple yet effective

pattern on Tumblr, BBC, Amazon, and Kickstarter using Unravel, Telescope, and Iso-

pleth. While none of the tools actually observe CSS, they were successful in identifying

the patterns that operate on CSS by surfacing constructs that operate on DOM elements.

167

Surfacing relevant code constructs and relationships between them informs users about

the coordination among components to achieve an effect. Identifying relevance in the con-

structs provides users with entry cues as to which constructs or relationships should be

examined first. Code constructs in this case are functions, sets of procedures, or DOM

structures. Relationships are direct or indirect dependencies or operations between code

constructs. Together, code constructs and their relationships are the subjects of study in

a RALE, which inform higher level design patterns. While Unravel lacks relational infor-

mation, its construct ordering of function invocations and DOM element changes helps

users quickly identify entry points into learning from complex applications. Telescope col-

lects active code constructs together in a composite view, shows invocation counts, and

relationally links HTML to JavaScript constructs. Telescope’s exploratory study high-

lighted the advantages of surfacing a composite view of constructs and their relationships

to help the user determine the scope of a feature’s implementation and its interplay be-

tween constructs. Isopleth fully decomposes constructs of a web application feature in its

call graph and visualizes direct and indirect relational links in JavaScript. With Isopleth

users can easily determine the hierarchy and dependencies of constructs as well as links

between setup, runtime, and specific facets.

6.2.2. Minimizing Learning Barriers

There are many tools that enable developers to inspect and step through every line of code

responsible for a feature [59, 14, 2, 25, 5], yet developers still are overwhelmed in learning

from professional websites due to the size and complexity of modern web applications [6,

64, 70]. While these tools are fully featured and support deep inspection into the runtime

168

of a web application, they were designed to serve purposes of inspection and debugging

and thus streamline goals toward program maintenance and implementation. But the

comprehensive nature of these tools can introduce additional barriers to a learner when

trying to understand complex concepts. In Ko et al’s work on six learning barriers, they

identified barriers such as the Information Barrier where users had helpful information

available to them but didn’t know to look for it or read it, or the coordination barrier

where users were confused with how multiple components worked together to achieve an

outcome [45]. Presenting users with detailed stack traces, variable states, and nested

program flows could easily introduce additional barriers to a learner. Thus it is a primary

goal of RALE to minimize the effects of additional learning barriers created by surfacing

hidden details from software.

Most notable in Telescope’s user studies and Unravel’s controlled study, users greatly

benefitted from being shown informational views tuned specific to their goals to help over-

come learning barriers. In the early prototypes of Telescope, users were given detailed

call stacks and verbose amounts of active JavaScript and function hit counts. While some

of the test users appreciated being able to visualize the inner workings of a complex web

application, they described confusion in trying to understand the overly verbose output.

In three user-centered design iterations, the output of Telescope was reshaped to show

JavaScript activity most relevant to visual changes in a web application first, linked to ac-

tive HTML (i.e. the composition of the rendered website view), with the option to expand

detail. These changes diminished the effects of information and coordination barriers, be-

cause users were not required to sift through large sets of function invocations or to make

169

manual connections between HTML and JavaScript. Telescope’s exploratory study re-

vealed that most users appreciated the default views with more limited information to

gain an introductory understanding of unfamiliar website code. Unravel’s user study find-

ings highlight the importance of filtering and aggregating large volumes of information to

streamline the search for entry points into website runtime activity.

In addition to shaping default informational views to minimize learning barriers, users

with different gaps in knowledge are subject to different learning barriers and need flexi-

bility in the display of data. Unravel’s user study showed a strong decrease in efficiency

beyond surfacing the first relevant code construct; Unravel only allows for the filtering and

sorting of aggregated information rather than expanding upon levels of detail like in Tele-

scope or shaping information display with rich labels, or facets, in Isopleth. Telescope’s

final design incorporated user feedback from Unravel and earlier Telescope prototypes

that users need to see different levels of detail at different times. In using Telescope

with expanded detail beyond just DOM-querying JavaScript, users found richer design

patterns such as lazy-loading or view-routing. Isopleth provides users with an interactive

call graph and facets to simplify the display of information; when users add new facets to

Isopleth, its views are further enriched with their customization. During Isopleth’s user

study, participants commonly began their searches at the rightmost portion of its graph

for simplicity, but expanded their search backwards in time in Isopleth’s call graph to

construct mental models about the program’s constructs and relationships. Therefore,

it is important to not only surface information in RALE but to allow for personalized

exploration of the data surfaced.

170

6.2.3. Scaffolding Mixed-Initiative Sensemaking

RALE builds upon a rich body of work in automated tutoring [16, 33, 46, 43, 30],

program visualization [73, 20, 32, 11], and web application exploration [59, 13, 14]

by setting sensemaking and learning scaffold goals based on strongly grounded literature

in the learning sciences [51, 61, 62, 75, 1, 76, 52, 56, 17, 18, 19]. Prior tools such

as FireCrystal, Scry, and WhyLine expose hidden aspects of program behavior and even

allow the user to query parts of their interface as scaffolds for sensemaking, but they are

not designed to support a learner’s progression from writing functional code to writing

professional-quality software. Specifically, they surface constructs but not design patterns

from professional code; they do not decompose complexity into explorable pieces, and they

do not allow users to customize or extend the interface. As a result, they lack authenticity

and do not provide opportunities for learners to think in the modes of the discipline [62].

RALE furthers the goal of these tools by calling for techniques and affordances to sup-

port learners during their sensemaking process and provide them with cues to engage in

multiple modes of the web programming discipline such as architecture, implementation,

and refactoring.

While many of the prior tools lack evaluations, results from evaluating Unravel and

Telescope emphasized the necessity of mixed-initiative sensemaking in designing RALE.

Most tools in this body of work, with the exception of Isopleth and Bret Victor’s Learn-

able Programming [73], fall into either categories of read-only interfaces which tell users

about hidden activities [2, 59, 14, 48] in the program runtime or read-and-query inter-

faces which allow users to query for certain informational views revealing details about

hidden program activity [16, 43, 47, 44]. In Bret Victor’s programming environment,

171

affordances are provided to directly visualize the effects of a user’s design decisions in

code while they are attempting to modify or build a project. Ideally a RALE should

scaffold sensemaking by allowing users to not only observe information about a program’s

runtime, but to modify and personalize that information as a mixed-initiative with the

system — each contribution between the user and system provides gains for the user [37]

towards the goal of learning new professional programming concepts.

Isopleth is the first system to prove the techniques of RALE as a concept, and its

study shows strong effects in conceptual model formation, distinct user sensemaking pat-

terns compared to other systems, and deeper user understanding of the subject matter

(i.e. design patterns in professional websites) than was observed in Telescope or Unravel.

Isopleth scaffolds sensemaking for users by providing them low-effort entry points into

exploring how a web application works while still allowing them to explore code con-

structs in a fully comprehensive way. Isopleth facilitates mixed-initiative sensemaking by

allowing users to create their own custom facets and code refactoring, while incorporat-

ing their additions into the recalculation of views and entry points into exploration. In

using Isopleth effectively, users were encouraged to modify Isopleth’s source code views,

facets, and graph nodes for their personalized goals. This allowed them to work slowly

through understanding parts of the program in a bottom-up code comprehension strategy.

While some of Isopleth’s study participants described new mental model formation of ob-

served professional website behaviors, others enriched their existing mental models with

implementation patterns important to production environments (e.g. caching queries to

speed up query results or abstracting authentication to support proprietary and social

logins). Though Isopleth was designed for beginning developers struggling to fill their

172

gaps in knowledge, experts appreciated the efficiency of Isopleth’s scaffolds, entry cues,

and filtering in streamlining their searches for functionality. Isopleth’s study participants

described the decompositional graphing of function invocations as a streamlined way to

work through code constructs, where each node is like a simple “to do” in working toward

an understanding how the application works.

Much future work remains beyond Isopleth in advancing mixed-initiative sensemaking

scaffolds in RALE. Quintonna et al provide rich guidelines for scaffolding sensemaking in

software inquiry [62], and the current body of work provides a platform to apply these

strategies. The following itemization characterizes how new strategies can be applied

given the current platform:

∙ Embed Expert Guidance: Users in Isopleth’s evaluation desired to know more

about the design patterns they discovered, such as why one pattern was chosen

over another. Future tools can incorporate expert commentary on professional

design decisions surfaced by existing tools.

∙ Provide Structure for Complex Tasks and Functionality: Existing tools provide

a limited set of techniques to enable source exploration and scaffold sensemak-

ing. For more complex learning tasks, future tools could incorporate additional

structures and scaffolds to guide users on a particular learning path, such as sand-

boxing part of an application and having users incrementally recreate a feature

in order to gain authentic practice.

∙ Facilitate Navigation Among Tools: Many tools exist in source code exploration

and tutorial-generation, yet without guidance, users are generally unaware of

the pros and cons of using different tools. Future work could incorporate a

173

survey of this body of work, conducting studies on many of the tools lacking

evaluation to determine their effectiveness in scaffolding sensemaking, enabling

code comprehension, and overcoming learning barriers.

∙ Facilitate Ongoing Articulation and Reflection: The current suite of tools elicits

concepts from professional code and provides basic learning scaffolds but lacks

ongoing reflection (other than repeat use of the tools). Quintonna states that

learners often do not know to articulate their ideas, or they need help to do so

productively [62]. Future tools could provide mechanisms for learners to record

their findings for review, reuse, and practice in other domains.

6.2.4. Scale Continuously without Burdens of Authorship or Maintenance

With millions of active learners looking to the web for online learning along with the

fast pace of innovation in web programming, teachers and content authors meet only a

small portion of the ever-expanding demand for learning materials. The primary goal of

RALE is to transform inspiring professional websites into opportunities for learning with

no dependencies on authoring. Developers often turn to the web to forage for designs, web

features, interactive techniques, and performance optimizations they wish to learn how

to create [9]. With limited articles and tutorials keeping up with the pace of innovation,

users turn to Q&A networks, chat rooms, web tutorials, and MOOCs. Social platforms

like Q&A and chat rooms have social norms; they can seem abrasive to newcomers who

aren’t familiar with the correct terms in which to ask their question [53]. Web tutorials are

limited and can grow outdated or even contradict one another in terms of best practices

or design patterns to use (e.g. do or don’t lazy-load content). After completing MOOCs,

174

significant gaps in knowledge can remain when trying to transition from the pre-authored

material to new project scenarios. Therefore, a central claim of RALE is that it must

scale continuously across its medium without burdens of authorship (i.e. manual creation

of learning materials) or maintenance (i.e. manual support for unwinding technological

features into learning content).

Unravel, Telescope, and Isopleth were designed with the goal to scale to the domain

of professional websites on the open web, which enables both authentic learning and

the continuous creation of learning materials. Prior tools either required users to perform

technical workarounds to gain full access to web code [48, 2, 59] or only provided views of

DOM-querying JavaScript [13, 14, 16]. To support authentic learning, systems should (1)

surface the rich details from professional websites that are missing from training examples

while (2) providing users with opportunities to think in multiple modes of the discipline

(i.e. software engineering), and (3) embed programming concepts and implementation

techniques that are used by professionals when creating scaffolds for users to explore.

To avoid additional barriers to learning, these systems should not require users to have

knowledge of advanced inspection techniques to surface learning materials or scaffolds.

Unravel, Telescope, and Isopleth are each deployed via one-click workflows when users

encounter professional websites of interest. Learning materials are surfaced for them, and

scaffolds are created automatically. Each of these tools currently supports discovery on

the web and will continue to support future discovery.

175

6.3. Broader Applications of RALE

6.3.1. RALE in Software

Beyond learning from source code in professional websites, broader applications exist for

RALE in other programming disciplines. The central design claims of RALE described

in this thesis generalize to other venues of professional source code for future develop-

ment of RALE tools. By extending the instrumentation and graph analysis techniques

in Theseus [48], Telescope, and Isopleth, mixed-initiative sensemaking scaffolds could be

created across many languages such as Java, Python, and C++. In each new application

of RALE it is important to understand common barriers users face when learning from

professional source code and surface which techniques or patterns they seek to under-

stand. For example, in a Java web REST API, it would not make sense to surface facets

in a call graph about mouse, keyboard, and DOM-modifying code. It would be more ap-

propriate to surface API endpoints and the relevant operations on web API request (e.g.

scaffold the user through discovering Java controllers, services, and repository accessors).

By extending RALE to new programming disciplines, new opportunities are introduced

to draw parallels and distinctions among patterns in multiple technologies.

Design Techniques from Unravel, Telescope, and Isopleth have broader potential in

other programming disciplines. Unravel demonstrated techniques to surface relevance

in code by bubbling invocation counts and UI changes, with links into code inspection.

Telescope provided a composite of a minimal set of code comprised of invocation counts,

runtime timestamps, and library filtering with interactive visual lines to UI code. Iso-

pleth provided mixed-initiative sensemaking scaffolds on function invocations linked by

176

direct and indirect calls. Similar programming techniques are present in a wide array of

programming languages, and with more languages adopting functional design and lambda

expressions, the need for visualizing and learning from complex construct relationships

is increasing. Ko et al’s learning barriers exist in many languages [45], calling for new

solutions to guide incoming learners. Potential drawbacks to applying RALE techniques

in other disciplines stem from the availability of source code. Proprietary packaging or

compilers could make RALE generation difficult. While the source code of many profes-

sional software products may not be available, large public open source repositories such

as Github can serve as a rich repository of open source code. It is common to find many

of the same professionals who have developed proprietary technology developing open

source and publishing on a company-sponsored public repository (e.g. Adobe, Google,

Microsoft, Amazon).

6.3.2. Learning Technique Trade-offs

Broader applications for RALE have learning tradeoffs when compared to existing learn-

ing techniques in each domain. 1-on-1 tutoring, mentoring, or formal courses are excellent

ways to prepare for professional work, however the supply of tutors and mentors is not

scalable and formal courses are not accessible to many. Further, the learning resources

provided are finite and thus not fully comprehensive across a domain of potential pro-

fessional applications. RALE can be helpful in scaling authentic learning beyond the

current learning system’s limitations. However, while RALE relieves limitations in au-

thoring, there is currently no supported technique to inform users that materials generated

from professional products might be either outdated, invalid, or contain bad practices.

177

Even though code may be developed by professionals, it may not always meet high stan-

dards in software engineering. Authored tutorials, guides, books, and lectures often have

indicators as to their timely relevance, such as publication date, community comments,

software versions, and compatibility. These indicators may be unavailable through the

RALE technique of automating learning materials. A potential solution for this is to incor-

porate communities of learners to discuss and reflect upon design patterns or techniques

they have discovered using RALE. Communities for discussing techniques and patterns

already exist in different domains 1 2, thus there exists a potential to leverage communal

knowledge to overcome risks in RALE quality.

6.3.3. RALE in Other Disciplines

Even more broadly speaking, it is not understood yet which claims in RALE are gener-

alizable to other knowledge domains, such as art or physics. For example, by surfacing

techniques used to create a professional painting and scaffolding learning about the pur-

pose and usage pattern of said techniques, an aspiring artist could bridge gaps in their

knowledge of the discipline. Professionally developed products or deliverables capture and

inspire learner interest and promote new opportunities for a RALE to enable authentic

learning. Given new techniques to access the underlying constructs that formulated a

product, or access the intentions and purposes for which specific techniques were used

(e.g. in art), a RALE could be envisioned that operates on data about the underly-

ing constructs or techniques by lowering learning barriers, scaffolding sensemaking, and

continuously scaling to new products in the domain. Beyond professionally developed

1Stack Overflow Documentation https://stackoverflow.com/tour/documentation
2Gitter: Developer Chat per Open Source Repository https://gitter.im/

https://stackoverflow.com/tour/documentation
https://gitter.im/

178

products, objects and interactions in nature raise interesting questions for what RALE

could enable. Stemming from the central claims of RALE, a RALE could be envisioned

for learning why an object occurs and behaves the way it does in nature — given some

techniques to expose physical data (e.g. sensors). For example, as an apple falls from a

tree, a RALE in nature could surface information about the underlying physical laws and

variable states of mass, gravity, friction, and momentum while minimizing learning barri-

ers, scaffolding sensemaking, and scaling continuously across multiple examples of falling

objects and gravity. While many questions remain for extending RALE to other disci-

plines, its central claims can be revisited to conceptualize basic frameworks for guiding

learners in new applications and domains.

179

CHAPTER 7

Conclusion

This thesis introduces Readily Available Learning Experiences (RALE) for profes-

sional web applications. Its goal is to help inexperienced learners who wish to become

professional contributors but lack the means necessary to advance beyond their gaps

in knowledge. The central claims of RALE are (1) surfacing hidden design patterns,

code constructs, and relationships (both direct and indirect) from professional websites,

(2) minimizing learning barriers while supporting personalized exploration of unfamiliar

website code, (3) scaffolding mixed-initiative sensemaking to help users walk through un-

familiar complexities, and (4) scaling the conversion of examples into learning resources

without additional authorship or maintenance. To conclude, this chapter will summarize

the main contributions and discuss future directions of research.

7.1. Summary of Contributions

The systems and corresponding studies in this thesis more broadly contribute tech-

niques to support reverse engineering, create low-barrier learning materials, and scaffold

users into opportunistic sensemaking processes.

∙ Unravel: Reverse Engineering: Unravel’s conceptual contribution is the idea

of tracing, identifying, and organizing the most relevant functionality to help

users find interaction code quickly in complex professional website code. Un-

ravel’s technical contribution is a lightweight API harness technique designed

180

to capture specific source code traces to an API. Unravel’s evaluation measures

the effectiveness of its reverse engineering techniques on novice and professional

programmers.

∙ Telescope: Creating Low-Barrier Learning Materials: Telescope’s con-

ceptual contribution is the idea of helping users understand complex website

code by generating low-barrier learning materials from features of interest. Tele-

scope’s technical contributions are the Wisat architecture and Sleight-of-Hand

technique; they enable the capturing of comprehensive runtime JavaScript traces

on public websites. Telescope’s evaluation measures its performance, effects, and

limitations of generating low-barrier learning materials on professional websites.

∙ Isopleth: Scaffolding Sensemaking: Isopleth’s conceptual contribution is the

idea of scaffolding sensemaking of complex professional code by surfacing hidden

relationships between code constructs and providing a mixed-initiative process

to interactively explore, label, and identify system components and how they

relate. Isopleth’s technical contribution is a Serialized Deanonymization (SD)

technique that places unique identifiers in all functions in a web application’s

JavaScript source to trace how functions are bound, passed, returned, and invoked

asynchronously. Isopleth’s case study measures its capabilities in making sense of

concepts in a website, and its user study measures its effectiveness in sensemaking

and mental model formation.

181

7.2. Future Directions

Research in designing, developing, and evaluating RALE has just begun. With a

continuum of curious builders and tinkerers, there are many potential venues for RALE

to grow in its application space. This section addresses the next logical direction for

RALE to continue in the context of professional web applications.

7.2.1. Learning Communities

Based on the techniques from Telescope and Isopleth (Chapters 4 and 5), professional

website UI features now have a potential be transformed into portable and indexable

learning-examples for users to share and build upon. Shareable real-world examples could

provide the basic blocks to build learning communities, as they are inherently relevant

and meaningful to learners eager to gain professional experience.

Creating a UI interaction implementation library could help developers with varied ex-

perience levels discover techniques used on the web. Junior web developers struggle with

creating UI interactions, and experienced web developers have difficulty keeping up with

the latest techniques. For example, a user might search for an autocomplete implementa-

tion and have the option to compare source code underlying well designed interfaces from

Google, Twitter, and Facebook. Further, indexed UI traces from telescope code could be

used in-context within IDE’s through technologies like Codeletes and BluePrint [58, 8].

With labeling and UI metadata, learning material output could be indexed for mining UI

behaviors, or the combination of user-prompted interaction and underlying source code

traces. Output from this mining could be used to elicit implementation patterns or best

practices across websites.

182

7.2.2. Developer Tooling

The output of the systems in this thesis could be integrated into research tools with

similar learning goals. This integration could create new opportunities to receive help

while developing software [22, 8], provide micro explanations of code constructs [33],

or train classifiers in context-based variable naming and unminification [63]. Enhancing

Telescope to support webstrates would allow bidirectional modification of a website UI,

giving users the opportunity to “sandbox” their UI discovery with a real website [42]. To

maintain the consistent goals of RALE, subsequent research should continue to construct

effective technical solutions that are well-grounded in the learning sciences.

7.2.3. Learning Pathways

While this thesis has addressed the extraction, creation, and design of learning materials

for making sense of professional websites, much work remains in guiding the growth of a

learner during their transition from learner to professional contributor. For example, it

is unknown how to create guides for learning in RALE, such as a curriculum-design or

learning goals. Providing users with learning pathways could give them clear direction

of how to achieve specific learning goals with the materials they have from RALE. Help-

ing users reach learning milestones or achievements could provide them with newfound

confidence in their abilities to professionally develop software.

Learning to code should be more accessible to everyone. With platforms and tech-

niques that enable Readily Available Learning Experiences in professional websites, I aim

to continue lowering the barriers to learning in Computer Science.

183

References

[1] Beth Adelson and Elliot Soloway. The role of domain expenence in software design.
IEEE Transactions on Software Engineering, (11):1351–1360, 1985.

[2] Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. Under-
standing javascript event-based interactions. In Proceedings of the 36th International
Conference on Software Engineering, pages 367–377. ACM, 2014.

[3] Susan A Ambrose, Michael W Bridges, Michele DiPietro, Marsha C Lovett, and
Marie K Norman. How learning works: Seven research-based principles for smart
teaching. John Wiley & Sons, 2010.

[4] Jake Archibald. Deep dive into the murky waters of script loading, 2013. Available
at http://www.html5rocks.com/en/tutorials/speed/script-loading/.

[5] John J Barton and Jan Odvarko. Dynamic and graphical web page breakpoints. In
Proceedings of the 19th international conference on World wide web, pages 81–90.
ACM, 2010.

[6] Michael Bolin. Closure: The Definitive Guide. " O’Reilly Media, Inc.", 2010.

[7] Bower.io. Bower javascript library install statistics., 2015. Available at http://
bower.io/stats.

[8] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. Example-
centric programming: integrating web search into the development environment. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 513–522. ACM, 2010.

[9] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klem-
mer. Two studies of opportunistic programming: interleaving web foraging, learning,
and writing code. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1589–1598. ACM, 2009.

[10] John D Bransford, Ann L Brown, and Rodney R Cocking. How people learn, 2000.

http://www.html5rocks.com/en/tutorials/speed/script-loading/
http://bower.io/stats
http://bower.io/stats

184

[11] Simon Breslav, Azam Khan, and Kasper Hornbæk. Mimic: visual analytics of online
micro-interactions. In Proceedings of the 2014 International Working Conference on
Advanced Visual Interfaces, pages 245–252. ACM, 2014.

[12] Ruven Brooks. Towards a theory of the comprehension of computer programs. Inter-
national journal of man-machine studies, 18(6):543–554, 1983.

[13] Brian Burg, Richard Bailey, Andrew J Ko, and Michael D Ernst. Interactive
record/replay for web application debugging. In Proceedings of the 26th annual ACM
symposium on User interface software and technology, pages 473–484. ACM, 2013.

[14] Brian Burg, Andrew J Ko, and Michael D Ernst. Explaining visual changes in web
interfaces. In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology, pages 259–268. ACM, 2015.

[15] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. An evaluation of the
google chrome extension security architecture. In Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12), pages 97–111, 2012.

[16] Kerry Shih-Ping Chang and Brad A Myers. Webcrystal: understanding and reusing
examples in web authoring. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 3205–3214. ACM, 2012.

[17] William G Chase and Herbert A Simon. Perception in chess. Cognitive psychology,
4(1):55–81, 1973.

[18] Michelene TH Chi, Paul J Feltovich, and Robert Glaser. Categorization and represen-
tation of physics problems by experts and novices. Cognitive science, 5(2):121–152,
1981.

[19] Adriaan D De Groot. Thought and choice in chess, volume 4. Walter de Gruyter
GmbH & Co KG, 1978.

[20] Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. Gliimpse: Animating from
markup code to rendered documents and vice versa. In Proceedings of the 24th annual
ACM symposium on User interface software and technology, pages 257–262. ACM,
2011.

[21] James R Eagan, Michel Beaudouin-Lafon, and Wendy E Mackay. Cracking the cocoa
nut: user interface programming at runtime. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, pages 225–234. ACM, 2011.

185

[22] Ethan Fast and Michael S Bernstein. Meta: Enabling programming languages to
learn from the crowd. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology, pages 259–270. ACM, 2016.

[23] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Effi-
cient construction of approximate call graphs for javascript ide services. In Proceed-
ings of the 2013 International Conference on Software Engineering, pages 752–761.
IEEE Press, 2013.

[24] Elena L Glassman, Lyla Fischer, Jeremy Scott, and Robert C Miller. Foobaz: Vari-
able name feedback for student code at scale. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology, pages 609–617. ACM, 2015.

[25] Google. Dev tools tips and tricks, 2016. Available at https://developer.chrome.
com/devtools/docs/tips-and-tricks.

[26] Google. Inspect and edit pages and styles, 2016. Available at https://developers.
google.com/web/tools/chrome-devtools/iterate/inspect-styles/.

[27] Google. Chrome rendering and profiler tools, 2017. Available at https://
developers.google.com/web/tools/chrome-devtools/rendering-tools/.

[28] Google. Enabling the async callstack, 2017. Available at https://developers.
google.com/web/tools/chrome-devtools/javascript/step-code#enable_the_
async_call_stack.

[29] Paul Gross and Caitlin Kelleher. Non-programmers identifying functionality in un-
familiar code: strategies and barriers. Journal of Visual Languages & Computing,
21(5):263–276, 2010.

[30] Paul Gross, Jennifer Yang, and Caitlin Kelleher. Dinah: An interface to assist non-
programmers with selecting program code causing graphical output. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 3397–3400.
ACM, 2011.

[31] Salvatore Guarnieri and V Benjamin Livshits. Gatekeeper: Mostly static enforcement
of security and reliability policies for javascript code. In USENIX Security Sympo-
sium, volume 10, pages 78–85, 2009.

[32] Philip J Guo. Online python tutor: embeddable web-based program visualization
for cs education. In Proceeding of the 44th ACM technical symposium on Computer
science education, pages 579–584. ACM, 2013.

https://developer.chrome.com/devtools/docs/tips-and-tricks
https://developer.chrome.com/devtools/docs/tips-and-tricks
https://developers.google.com/web/tools/chrome-devtools/iterate/inspect-styles/
https://developers.google.com/web/tools/chrome-devtools/iterate/inspect-styles/
https://developers.google.com/web/tools/chrome-devtools/rendering-tools/
https://developers.google.com/web/tools/chrome-devtools/rendering-tools/
https://developers.google.com/web/tools/chrome-devtools/javascript/step-code#enable_the_async_call_stack
https://developers.google.com/web/tools/chrome-devtools/javascript/step-code#enable_the_async_call_stack
https://developers.google.com/web/tools/chrome-devtools/javascript/step-code#enable_the_async_call_stack

186

[33] Andrew Head, Codanda Appachu, Marti A Hearst, and Bjorn Hartmann. Tutorons:
Generating context-relevant, on-demand explanations and demonstrations of online
code. In Visual Languages and Human-Centric Computing (VL/HCC), 2015 IEEE
Symposium on, pages 3–12. IEEE, 2015.

[34] Joshua Hibschman and Haoqi Zhang. Unravel: Rapid web application reverse engi-
neering via interaction recording, source tracing, and library detection. In Proceedings
of the 28th Annual ACM Symposium on User Interface Software & Technology, pages
270–279. ACM, 2015.

[35] Joshua Hibschman and Haoqi Zhang. Telescope: Fine-tuned discovery of interactive
web ui feature implementation. In Proceedings of the 29th Annual Symposium on
User Interface Software and Technology, pages 233–245. ACM, 2016.

[36] Ariya Hidayat. Detecting JavaScript Libraries and Versions. don’t code today what
you can’t debug tomorrow., 2015. Available at http://ariya.ofilabs.com/2013/
07/detecting-js-libraries-versions.html.

[37] Eric Horvitz. Principles of mixed-initiative user interfaces. In Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, pages 159–166. ACM,
1999.

[38] Mozilla Jan Honza Odvarko. Firebug breakpoints feature, 2016. Available at https:
//getfirebug.com/doc/breakpoints/demo.html#dom.

[39] Dongseok Jang and Kwang-Moo Choe. Points-to analysis for javascript. In Proceed-
ings of the 2009 ACM symposium on Applied Computing, pages 1930–1937. ACM,
2009.

[40] jQuery. Current active browser support, 2017. Available at https://jquery.com/
browser-support/.

[41] Google Kayce Basques. Pause your code with breakpoints, 2016. Available
at https://developers.google.com/web/tools/chrome-devtools/javascript/
breakpoints.

[42] Clemens N Klokmose, James R Eagan, Siemen Baader, Wendy Mackay, and Michel
Beaudouin-Lafon. Webstrates: Shareable dynamic media. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology, pages 280–290.
ACM, 2015.

http://ariya.ofilabs.com/2013/07/detecting-js-libraries-versions.html
http://ariya.ofilabs.com/2013/07/detecting-js-libraries-versions.html
https://getfirebug.com/doc/breakpoints/demo.html#dom
https://getfirebug.com/doc/breakpoints/demo.html#dom
https://jquery.com/browser-support/
https://jquery.com/browser-support/
https://developers.google.com/web/tools/chrome-devtools/javascript/breakpoints
https://developers.google.com/web/tools/chrome-devtools/javascript/breakpoints

187

[43] Andrew J Ko and Brad A Myers. Designing the whyline: a debugging interface for
asking questions about program behavior. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 151–158. ACM, 2004.

[44] Andrew J Ko and Brad A Myers. Extracting and answering why and why not ques-
tions about java program output. ACM Transactions on Software Engineering and
Methodology (TOSEM), 20(2):4, 2010.

[45] Andrew Jensen Ko, Brad A Myers, and Htet Htet Aung. Six learning barriers in end-
user programming systems. In Visual Languages and Human Centric Computing,
2004 IEEE Symposium on, pages 199–206. IEEE, 2004.

[46] Michael J Lee and Andrew J Ko. Personifying programming tool feedback improves
novice programmers’ learning. In Proceedings of the seventh international workshop
on Computing education research, pages 109–116. ACM, 2011.

[47] Raimondas Lencevicius, Urs Hölzle, and Ambuj K Singh. Query-based debugging of
object-oriented programs. In ACM SIGPLAN Notices, volume 32, pages 304–317.
ACM, 1997.

[48] Tom Lieber, Joel R Brandt, and Rob C Miller. Addressing misconceptions about
code with always-on programming visualizations. In Proceedings of the 32nd annual
ACM conference on Human factors in computing systems, pages 2481–2490. ACM,
2014.

[49] Einar Lielmanis. Beautify-web/js-beautify, 2015. Available at https://github.com/
beautify-web/js-beautify.

[50] Sarah Lim. Ply: Visual regression pruning for web design source inspection. In Pro-
ceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Com-
puting Systems, pages 130–135. ACM, 2017.

[51] Marcia C Linn. Designing computer learning environments for engineering and com-
puter science: The scaffolded knowledge integration framework. Journal of Science
Education and technology, 4(2):103–126, 1995.

[52] Marcia C Linn and Michael J Clancy. The case for case studies of programming
problems. Communications of the ACM, 35(3):121–132, 1992.

[53] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hart-
mann. Design lessons from the fastest q&a site in the west. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 2857–2866. ACM,
2011.

https://github.com/beautify-web/js-beautify
https://github.com/beautify-web/js-beautify

188

[54] Josip Maras, Jan Carlson, and Ivica Crnkovi. Extracting client-side web application
code. In Proceedings of the 21st international conference on World Wide Web, pages
819–828. ACM, 2012.

[55] Josip Maras, Maja Stula, Jan Carlson, and Ivica Crnkovic. Identifying code of indi-
vidual features in client-side web applications. Software Engineering, IEEE Transac-
tions on, 39(12):1680–1697, 2013.

[56] Tanya J McGill and Simone E Volet. A conceptual framework for analyzing stu-
dents’ knowledge of programming. Journal of research on Computing in Education,
29(3):276–297, 1997.

[57] Mozilla. Mozilla remote debugging protocol, 2016. Available at https://wiki.
mozilla.org/Remote_Debugging_Protocol.

[58] Stephen Oney and Joel Brandt. Codelets: linking interactive documentation and
example code in the editor. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2697–2706. ACM, 2012.

[59] Stephen Oney and Brad Myers. Firecrystal: Understanding interactive behaviors
in dynamic web pages. In Visual Languages and Human-Centric Computing, 2009.
VL/HCC 2009. IEEE Symposium on, pages 105–108. IEEE, 2009.

[60] Nancy Pennington. Stimulus structures and mental representations in expert com-
prehension of computer programs. Cognitive psychology, 19(3):295–341, 1987.

[61] Peter Pirolli. Effects of examples and their explanations in a lesson n recursion: A
production system analysis. Cognition and Instruction, 8(3):207–259, 1991.

[62] Chris Quintana, Brian J Reiser, Elizabeth A Davis, Joseph Krajcik, Eric Fretz,
Ravit Golan Duncan, Eleni Kyza, Daniel Edelson, and Elliot Soloway. A scaffolding
design framework for software to support science inquiry. The journal of the learning
sciences, 13(3):337–386, 2004.

[63] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties
from big code. In ACM SIGPLAN Notices, volume 50, pages 111–124. ACM, 2015.

[64] Yasutaka Sakamoto, Shinsuke Matsumoto, Seiki Tokunaga, Sachio Saiki, and
Masahide Nakamura. Empirical study on effects of script minification and http
compression for traffic reduction. In Digital Information, Networking, and Wireless
Communications (DINWC), 2015 Third International Conference on, pages 127–132.
IEEE, 2015.

https://wiki.mozilla.org/Remote_Debugging_Protocol
https://wiki.mozilla.org/Remote_Debugging_Protocol

189

[65] R Keith Sawyer. The Cambridge handbook of the learning sciences. Cambridge Uni-
versity Press, 2005.

[66] David Williamson Shaffer and Mitchel Resnick. " thick" authenticity: New media
and authentic learning. Journal of interactive learning research, 10(2):195–215, 1999.

[67] Remy Sharp. Js bin collaborative javascript debugging, 2016. Available at https:
//jsbin.com/about.

[68] Ben Shneiderman and Richard Mayer. Syntactic/semantic interactions in program-
mer behavior: A model and experimental results. International Journal of Parallel
Programming, 8(3):219–238, 1979.

[69] Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge. IEEE
Transactions on software engineering, (5):595–609, 1984.

[70] Steve Souders. High-performance web sites. Communications of the ACM, 51(12):36–
41, 2008.

[71] Margaret-Anne Storey. Theories, tools and research methods in program comprehen-
sion: past, present and future. Software Quality Journal, 14(3):187–208, 2006.

[72] Bipin Upadhyaya, Foutse Khomh, and Ying Zou. Extracting restful services from
web applications. In SOCA, pages 1–4, 2012.

[73] Bret Victor. Learnable programming., 2012. Available at http://worrydream.com/
LearnableProgramming/.

[74] Andrew Walenstein. Observing and measuring cognitive support: Steps toward sys-
tematic tool evaluation and engineering. In Program Comprehension, 2003. 11th
IEEE International Workshop on, pages 185–194. IEEE, 2003.

[75] Karl E Weick. Sensemaking in organizations, volume 3. Sage, 1995.

[76] Mark Weiser and Joan Shertz. Programming problem representation in novice and
expert programmers. International Journal of Man-Machine Studies, 19(4):391–398,
1983.

[77] Mike West. An introduction to content security policy, 2012. Available at http:
//www.html5rocks.com/en/tutorials/security/content-security-policy/.

[78] Sam Wineburg. Reading abraham lincoln: An expert/expert study in the interpre-
tation of historical texts. Cognitive Science, 22(3):319–346, 1998.

https://jsbin.com/about
https://jsbin.com/about
http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

190

[79] Samuel S Wineburg. Historical problem solving: A study of the cognitive processes
used in the evaluation of documentary and pictorial evidence. Journal of Educational
Psychology, 83(1):73, 1991.

191

APPENDIX A

Supplemental Figures

Figure A.1. “Compiling”, XKCD, by Randall Munroe. xkcd.com/303

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Figures
	Chapter 1. Introduction
	1.1. Readily Available Learning Experiences
	1.2. Contributions: Three Systems Toward RALE
	1.3. Thesis Overview

	Chapter 2. Related Work
	2.1. Surfacing Information from Code
	2.2. Minimizing Learning Barriers
	2.3. Scaffolding Mixed-Initiative Sensemaking
	2.4. Scaling Learning Resources

	Chapter 3. Unravel: Rapid Web Application Reverse Engineering
	3.1. Motivation and Contributions
	3.2. Unravel
	3.3. Organizing and Tracing Relevant Source Code
	3.4. Implementation
	3.5. Unravel User Study
	3.6. Study Results
	3.7. Limitations
	3.8. Conclusion

	Chapter 4. Telescope: Fine-Tuned Discovery of Web Feature Source Code
	4.1. Motivation and Contributions
	4.2. Telescope
	4.3. Implementation
	4.4. Case Study
	4.5. Exploratory User Study
	4.6. Limitations
	4.7. Conclusion

	Chapter 5. Isopleth: Mixed-Initiative Sensemaking in Web Application Code
	5.1. Motivations and Contribution
	5.2. Isopleth
	5.3. Techniques for Discovering Hidden Links and Surfacing Facets
	5.4. Implementation
	5.5. Case Study
	5.6. Isopleth User Study Design
	5.7. Isopleth User Study Results
	5.8. Technical Limitations
	5.9. Conclusion

	Chapter 6. Discussion
	6.1. Applications of Unravel, Telescope, and Isopleth
	6.2. RALE: Design Claims and Evidence
	6.3. Broader Applications of RALE

	Chapter 7. Conclusion
	7.1. Summary of Contributions
	7.2. Future Directions

	References
	Appendix A. Supplemental Figures

