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Abstract

Essays on Social Networks Analytics in Customer Relationship Management

Panteleimon M. Loupos

The dissertation consists of three separate essays that lie at the interface of social

network analytics and Customer Relationship Management (CRM). Essay 1 and Essay 2

cover completed research, while the research covered in Essay 3 is at a more preliminary

stage.

Essay 1: Starting Cold: The Power of Social Networks in Predicting Non-

Contractual Customer Behavior

In this work, we provide an integrated framework for marketing managers on how to

appropriately measure and manage customer behavior in a non-contractual setting in the

presence of social network data. Customer behavior is directly tied to customer lifetime

value (CLV) and customer equity (CE). Predicting customer behavior and their spending

patterns, and consequently CLV, in such settings is a very challenging problem due to the

absence of a formal declaration of termination of the customer-firm relationship. This

implies that inactivity does not necessarily signal the end of the relationship, as a user may

temporarily become dormant, and return at a later point in time. Distinguishing between
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dormant and churned consumers is a hurdle for marketeers who need to allocate their

limited resources in a way that increases the overall value of a business’s customer base.

Another important implication of non-contractual relationships is evident in customer-

based corporate valuations (CBCV). Performing a CBCV requires knowing ahead of time

how long a customer will remain with the firm, which inevitably makes non-contractual

businesses prone to misvaluations. Therefore, any improvement in the ability to predict

behavior in non-contractual settings is highly valuable. In this work, we study the extent

to which knowledge of a customer’s social network can enhance the accuracy of forecasting

their behavior in terms of future: (1) activity, (2) transaction levels and (3) membership to

the group of best customers. We conduct a dynamic analysis on a sample of approximately

one million users from the most popular peer-to-peer (P2P) payment application, Venmo.

Our models produce high quality forecasts and demonstrate that social networks lead to a

significant boost in predictive performance primarily during the first month of a customer’s

lifetime, thus providing a remedy to the “cold-start” problem. Finally, we characterize

significant structural differences with regard to network centrality, density and connectivity

between the top 10% and bottom 90% of users immediately after joining the service. We

discuss how these structural dissimilarities provide a path towards proactive marketing

and improved customer acquisition efforts.

Essay 2: Finding Strong Ties in a Facebook Haystack: A Multilayer Social

Network Approach

In this work, we investigate the question of identifying the strong ties of an individual

by just inspecting the person’s underlying social network structure. Strong ties have

been documented to play an influential role in people’s decision making process across
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various settings. From our decision to donate goods to our decision to turn up and vote

at the elections, strong ties are the ones who exert the greatest influence on us as they

convey greater trust. The digital age has re-emphasized the importance and complexity

of this task, as more and more companies have now access to online friendship data of

their customers. We use and extend the "social bow tie" framework introduced in Mattie

et al. (2017) and apply it to a unique dataset from Venmo, the most popular P2P mobile

payment application, to expand our knowledge on tie strength prediction. Our dataset

is unique because it combines two different but overlapping social networks. On the one

hand, we have the Venmo social graph, which comprises of all friend relationships of users

that signed up with Facebook (FB). On the other hand, we have the Venmo transactional

graph which reflects offline transactions among users. By following the money trail, we

are able to differentiate with whom a user is really closely connected to among his FB

friends, and we study the extent to which knowledge of a customer’s egocentric FB social

network can enhance the accuracy of forecasting whether two individuals: (1) will transact

at least once, (2) whether this transaction will be reciprocated and (3) their total number

of transactions. Our models produce high quality forecasts for the tasks of predicting

the formation of a financial relationship and its reciprocity, yielding final Accuracy scores

in the range of 43%-90% and Area Under the Precision-Recall Curve (AUPRC) values

in the range of 85%-98%, depending on the exact problem formulation. For the task of

predicting the total number of transactions between a pair of users, we get a Mean Square

Error (MSE) in the range of 7.38-25.48 and an R
2 in the range of 0.24-0.58. The most

informative predictors are found to be the overlap of friends between two individuals, and

the clustering coefficient of their non-overlapping friends. These findings are consistent with
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1) Granovetter’s hypothesis: the stronger the tie between any two individuals, the higher

the fraction of friends they share in common, and 2) Bott’s hypothesis: the higher the

degree of clustering in an individual’s network the less likely to form a tie with somebody

outside the group.

Essay 3: Venmo for Change: The Effect of Digital Donations on Customer

Engagement

In today’s competitive and connected environment, organizations are investing in

corporate social responsibility (CSR) activities to differentiate themselves and create a

meaningful engagement with their customers. Digital platforms have reemphasized this

need by introducing new forms of donating mechanisms that use social cues to inform the

users about a fundraising event. Research has documented the benefits of CSR activities to

organizations in terms of enhanced consumer perceptions of the company, but there is little

empirical evidence on the effect of digital platform donations on customer engagement as

this is expressed by any potential interaction two existing users might have on the platform.

In this work, we propose a setting to empirically explore this question. Specifically, we use

data from charitable fundraising events in Venmo to investigate whether two users that

have contributed to the same charity event and have not previously transacted up to that

point in time are more likely to transact after the charity event. Our charitable events

are created by exogenous random shocks (e.g., physical catastrophes), which allow us to

causally identify the effect of donations on customer engagement. We seek to test whether

donating to a common cause increases the likelihood of forming a relationship between

two users and whether this likelihood is a decreasing function of the shortest path distance

between the two users.
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CHAPTER 1

Introduction

"From all the mysteries of the universe, people are the hardest for me to fathom."

- Albert Einstein

1.1. History and Motivation

Social networks and human behavior have long fascinated social scientists and lay

people alike. Some of the ideas of network analysis date back to the ancient Greeks. Plato

(“similarity begets friendship”) and Aristotle ("people love those who are like themselves”)

were the first to write about homophily — our tendency to associate with similar people.

But it was not until the early 1930s that the first systematic approach in social network

analysis occurred. It started with Jacob Moreno and Helen Jennings who developed

sociometry, and continued by bright scholars in the fields of psychology and anthropology

(for an exciting overview see Freeman (2004)). Nevertheless, a rigorous mathematical

approach began in 1951 by Solomonoff and Rapoport (1951), who introduced the notion

of a random graph. Further advances followed by Erdos and Renyi (1959-1968), who are

considered to be the fathers of modern graph theory and random graphs.

As with all models, random graphs are just an abstraction of reality, and as such

represent humans as mere dots on a plane. This simplification posed several limitations in

studying and analyzing real world social networks which exhibit a much richer structure.
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Moreover, collecting data on real world networks was extremely challenging, and unavoid-

ably social networks research reached a plateau. The advent of the World Wide Web in

1999, and all the social media applications and digital platforms that followed, came to

change all this, and marked the beginning of a new era of research in the field. Access to

larger networks datasets resulted in a rapid growth in networks research allowing us to

study social networks much more quantitatively.

This explosion of big data occurred not only in the field of social networks, but across

many industries. According to IBM1 we create 2.5 quintillion bytes of data every day.

More interestingly, 90% of all data generated and collected by 2013 was created between

2011 and 2013. But simply storing and crunching vast stores of data adds no particular

value, and thus the field of data analytics (also termed "Data Science") emerged to make

sense of this data. In the following section, I provide a brief data analytics framework and

try to connect each type of data analytics with their corresponding stream of research in

social networks. Hopefully, this will give the reader a more thorough understanding of

the chapters of this dissertation, and, more specific, in which type of data analytics each

chapter belongs to.

1.2. Data Analytics and Social Networks

Data analytics can broadly be categorized into three types: 1) Exploratory Analytics,

2) Predictive Analytics, and 3) Causal Analytics.

Exploratory Analytics: Exploratory analytics refers to the process of summarizing

data through descriptive statistics, often over time and/or by segments of interest.

1https://www-01.ibm.com/software/sg/data/bigdata/
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The first wave of research in the field of social networks immediately after the availability

of large real world network data belonged to this type of analytics. Social scientists,

especially in the fields of physics and computer science, empirically documented for the

first time the properties of real word networks and made clear that graph theory models

did not fit the observations. Therefore, they proposed new mechanisms that could explain

the observed properties. However, the main criticism of this stream of research is that

there could be more than one potential mechanisms that can give rise to the same observed

behavior, and for this reason this stream of research is now considered obsolete.

Predictive Analytics: Predictive analytics is the use of data, statistical algorithms

and machine learning techniques to identify the likelihood of future outcomes based on

historical data.

The second major wave of research in the field of social networks falls into this category,

and it is still very active today. Although predictive analytics do not provide a causal

explanation why a predicted outcome will occur, they are still of great importance to

academics and industry practitioners as they provide useful insights in their decision making

process. In Chapter 2, we will see how social networks can help improve predictions about

a customer’s behavior in a non-contractual business setting. In Chapter 3, we will see how

the structure of a person’s egocentric network neighborhood on Facebook can be leveraged

to identify the person’s most important ties in the offline world.

Causal Analytics: Causal analytics is the use of observational data, or of newly

created data through experimentation to determine whether and how an action of interest

causes a change in the outcome you are predicting.
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Causal inference in social networks is an emerging and very challenging line of research.

The difficulty arises from the fact that the notion of causality is not clearly defined in

social networks. A social network system is usually comprised of various subsystems that

can vary across time and space. Some or all of these subsystems are by construction

endogenous, but that does not mean that they are not causal (for an excellent overview of

the topic see Fafchamps (2015)). Moreover, these subsystems are interconnected rather

than independent, and thus, pinpointing a causal effect to a specific subsystem is extremely

challenging or in most cases futile as it is the interaction of these subsystems that cause

the outcome. In Chapter 4, we discuss an ongoing work that uses an event study regression

method to infer causality from observational social network data. Specifically, we examine

whether digital donations to fund raising events (e.g., due to physical catastrophes) posted

in Venmo’s public news feed drive up customer engagement.

1.3. Social Network Analytics and Customer Relationship Management

Customer Relationship Management (CRM) refers to processes, strategies and tech-

nologies that organizations use to manage and analyze customer data and interactions

throughout the customer life-cycle with the goal of maximizing the customer value to the

organization. It comprises of four dimensions, namely customer retention, acquisition,

identification, and development (Ngai et al., 2009).

Marketing is one of the fields that has greatly benefited from the explosion of big

data. This massive expansion in the breadth of individual-level ultra-fined customer data

has allowed the implementation of a long existed marketing concept, that of customer

centricity. Customer centricity can be applied in all dimensions of CRM, and it refers
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to the ability of understanding customers at a granular level, assessing their profitability,

and aligning a firm’s objectives with the needs of its best customers. The most important

metrics of customer centricity are customer equity (CE) (Blattberg, 2001; Rust et al., 2015)

and customer lifetime value (CLV) (Gupta et al., 2004). Predicting these two metrics alone

allows firms to determine who are their valuable customers and to focus their resources on

building a successful long term customer-firm relationship with them.

Although the aforementioned metrics have been proved to be very effective in settings

where the decision to engage with a firm is purely individual, they don’t capture the full

story in settings where consumers exert influence and/or are being influenced to/by their

social network. In such settings, it is imperative that the CLV of every individual must be

complemented by her/his network or social lifetime value. For example, a customer might

have a low CLV, but a high social value. Under the traditional customer centric model,

this customer would not be worth investing resources on. This can in turn jeopardize the

defection status of her/his social connections that are influenced by her/his decision to

churn.

Most of the marketing applications of social network analysis have been focused on

customer acquisition (Hill et al., 2006), but there is now an emerging body of research that

investigates the effects of social connectivity on retention (Nitzan and Libai, 2011; Ascarza

et al., 2017). The ultimate motivation of this thesis is to show that the incorporation of

ultra fine-grained social network data can lead to a more integrated CRM framework.
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1.4. Venmo Overview

All chapters of this dissertation use data from Venmo, a P2P mobile payment service

owned by PayPal. In order to avoid repetition, a Venmo overview is provided here, along

with its most interesting macroscopic statistical properties.

Venmo belongs to a broader set of P2P mobile payment applications (e.g., Square Cash,

Zelle, Google Wallet, etc.) that are disrupting the traditional payment methods landscape.

P2P payment services allow users to use their smart-phone to send and receive money

instantaneously. What makes Venmo really unique though and has given it a competitive

edge is its social nature, which has succeeded transforming financial transactions into a

sharing experience. Upon logging into the application, users gain access to a Facebook-like

news feed, which is composed of public transactions. The individual who initiates the

transaction is required to accompany the post with a description of what the money was

used for, while the dollar amount is left out for privacy reasons. Other users may ”like” or

comment on the transactions that appear on their news feed. Although the public news

feed is entirely open to any Venmo customer, users may opt to hide their transactions by

adjusting their privacy settings. However, according to Dan Schulman, CEO of PayPal,

"90% of transactions are shared"2. It is interesting to note that in contrast to other types

of online social network ties (e.g., Facebook friendships), Venmo transactions reflect the

activities of an offline network. Typical use cases for Venmo include splitting a restaurant

bill (see “Actor 5 paid Actor 6” in Figure 1.1b), or paying rent or utilities (see “Actor 7

charged Actor 8” in Figure 1.1b). Venmo also offers a “charge” feature to its users, which

merely serves as a reminder for payments.

2http://fortune.com/2017/11/17/dan-schulman-paypal-venmo/
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(a) (b)

Figure 1.1. Venmo’s interface: Sub-figure (a) shows the tab for sending or request-
ing money, whereas sub-figure (b) shows the public news feed (user names have
been anonymized for privacy reasons).

1.4.1. Data Collection and Pre-Processing

We used a snowball sampling approach3 for data collection, which was implement in two

stages. During the first stage, we programed a Python script to fetch public user profiles

from Venmo’s website (www.venmo.com), which displays public transactions from its news

feed in real-time. Each publicly available transaction contains the following information:

the unique user ID of the sender and the receiver, a timestamp, and the message associated

with the transaction, as specified by the sender. Additionally, for each user we obtained

the date they joined Venmo, as well as whether they signed up with Facebook. By the end

3While snowball or chain referral sampling is typically used to study a very small subset of the population,
in our case it is used as a means to find as many users as possible in the Venmo community. Due to the
sheer size of our final sample, issues regarding the representativeness of the sample or sampling bias do
not affect our results.
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of the first stage, we collected an initial sample of 1.2 million users. In the second stage, we

programmed another Python script that requested a public user’s full transaction history

from the Venmo-Pay API (Kraft et al., 2014). After collecting the complete transaction

history of all users in our initial sample, we identified all individuals they transacted with,

thus augmenting our sample to over 2 million users. We repeated the second stage via

Venmo’s API for all newly identified users, in order to obtain their entire transaction

history as well. All the aforementioned information comprises our raw dataset. For each

chapter of this thesis, however, we have a different data pre-processing procedure in order

to create the variables of interest. Therefore, in each chapter a more detailed description of

our variables is provided. It is important to note that for all data pre-processing procedures

we use Hadoop, MapReduce and Spark (Zaharia et al., 2010). This allows us to process

and analyze our full dataset, and not to rely on traditional random sampling approaches.

1.4.2. Macroscopic Statistical Properties of Venmo

Venmo is the largest dataset of P2P financial activity ever to be analyzed. Its unique

aspect of reflecting offline financial shared activities among friends make its properties

documentation worth having. Therefore, a short overview of its key properties are

summarized in Table 1.1 and explained below (we refer the interested reader to (Loupos

and Nathan, 2018) for a complete overview of Venmo’s properties).

Property Observation
Degree Distribution Not a Power Law

Clustering Coefficient 0.2
Median Degrees of Separation 6

Table 1.1. Venmo’s statistical properties.
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Degree Distribution: The degree distribution of a network is one of its most im-

portant properties. It is a power law if the number of nodes Nd of degree d is given by

Nd / d
�� (� > 1) where � is called the power law degree exponent.

Various studies have documented that power law distributions are common across many

networks, such as citation networks (Redner, 1998), the Internet and the Web (Faloutsos

et al., 1999; Kleinberg et al., 1999; Broder et al., 2000; Barabási and Albert, 1999; Barabási

et al., 2000; Huberman and Adamic, 1999; Kumar et al., 1999), online social networks

(Mislove et al., 2007) and phone call graphs (Abello et al., 1998). However, a recent study

by Broido and Clauset (2018) investigated a thousand real world social networks and

found that most of them do not follow a power law distribution. This is also the case with

Venmo, demonstrating that real world networks exhibit a much richer structural diversity.

Clustering Coefficient: Clustering coefficient measures transitivity in social networks

and takes values in [0, 1] (Watts and Strogatz, 1998). In simple words, it measures the

extent to which an individual’s friends know each other, with a value of 1 meaning that all

of an individual’s friends know each other and a value of 0 meaning that no one knows each

other. It has been documented that clustering coefficient in real networks is significantly

higher than for random networks. Venmo’s clustering coefficient reaches 0.2 in steady state,

which is also common in online social networks. Its evolution, however, is different as it

undergoes two distinct phases: a sharp increase, followed by a plateau around 0.2. This is

in contrast with other networks, such as Google+, which shows three phases (decrease,

increase and decrease again) (Gong et al., 2012).

Degrees of Separation: Degrees of Separation refers to the longstanding hypothesis

that everyone in the world is connected by some short chain of acquaintances (also know
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as "small world" hypothesis). Venmo users are separated by a mean of 5.9 steps and a

median of 6 steps. Travers and Milgram in their monumental experiments claimed that the

degrees of separation across people are six (Milgram, 1967; Travers and Milgram, 1977).

We should point out here that their results correspond to the "algorithmic" version of the

small-world hypothesis which provides an upper bound on the average distance, whereas

our results correspond to the "topological" version. Goel et al. (2009) corrected for the

downward bias that existed in Milgram’s experiment and estimated the median shortest

path to be 7. In a recent study, Leskovec and Horvitz (2008) investigated the Microsoft

Messenger instant-messaging system, a communication graph of 180 million nodes and 1.3

billion edges. They found that users were separated by a mean of 6.6 steps and a median

of 7 steps. Later on, Backstrom et al. (2012) studied the Facebook social graph and found

that the average degrees of separation are 4.5, claiming that the world is even smaller

than we expected. Our results come to shed light to all these previous studies. On the

one hand, we see that social networks tend to deflate the degrees by which people are

separated. On the other hand, we find that the world is indeed smaller that we previously

believed. In fact, it is 6 degrees separated.
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CHAPTER 2

Starting Cold: The Power of Social Networks in Predicting

Non-Contractual Customer Behavior

Joint work with Alexandros Nathan and Moran Cerf

2.1. Introduction

Over the last decade, there has been a surge of services that connect people and

facilitate a wide range of interactions. Although this used to be primarily the case in

telecommunications settings, social platforms have become commonplace in a variety

of industries: online gaming (e.g., World of Warcraft), payment services (e.g., Google

Wallet, Venmo), messaging applications (e.g., WhatsApp, SnapChat), and sharing economy

services (e.g., Lyft or Uber, where riders split a fare). The majority of these services operate

under a non-contractual business model, which increases the complexity of predicting

future customer behavior, due to the inability of observing customer defection in real

time, coupled with highly irregular spending patterns both in terms of inter-purchase time

and amounts. The standard approach to making such predictions involves collecting data

on a user’s past behavior, and building statistical models to extrapolate a user’s actions

into the future. This framework relies on the assumption that past behavior is the best

predictor of future behavior. However, this method fails in the case of newly acquired

customers where past behavior is virtually non-existent. Drawing inferences about a user’s

future behavior in the absence of any historical data is known as the “cold-start” problem.
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The “cold-start” problem poses challenges to marketing managers and financial pro-

fessionals in a number of ways. First, businesses in today’s fast-paced environment need

to allocate their limited marketing resources immediately after a new customer has been

acquired. This inevitably implies that a large portion of the marketing budget may be

wasted on one-time customers, who have no intention to engage with the firm in the

long-term; it has been documented that 68% of newly acquired customers are non-profitable

(McCarthy and Fader, 2017). Second, it is common practice to value businesses using a

Customer-Based Corporate Valuation (CBCV) (McCarthy et al., 2017; McCarthy and

Fader, 2017). Performing a CBCV requires knowing ahead of time how long a customer

will remain with the firm, which consequently makes non-contractual businesses prone to

mis-valuations. Therefore, any improvement in the ability to predict customer behavior in

non-contractual settings is highly valuable.

In this work, we focus on utilizing social network information as a means to alleviating

the “cold-start” problem in non-contractual settings. Specifically, we leverage a customer’s

social network to investigate the following aspects of customer behavior: (1) distinguishing

between active versus inactive customers, (2) predicting future transaction volumes at the

individual level, and (3) identifying best future customers. To this end, we use data from

Venmo, the most popular peer-to-peer (P2P) mobile payment application. We analyze

over 100 million public transactions from approximately one million Venmo users, which

to the best of our knowledge is the first large-scale analysis of P2P financial transactions.

Our investigation is organized in three parts. First, we predict short and long-term

customer activity, where activity is defined as the act of using Venmo to send or receive

money. In particular, we build and evaluate several competing models with the ultimate
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goal of quantifying the benefit of incorporating social network metrics in predicting future

usage, as opposed to restricting the analysis to conventional user-based metrics. Our

results confirm previous studies claiming that recency and transaction frequency play a key

role in predicting customer activity (Coussement and De Bock, 2013). More importantly,

however, we find that user and social network attributes are complementary to each other

in the following manner: at the beginning of the customer lifecycle, social networks are

most indicative of future activity, but later on, it is past customer behavior that takes

over as the strongest predictor of future activity. Specifically, we find that social network

metrics provide a significant boost in predictive performance early on in a customer’s

lifetime - relative increase for the Area Under the Receiver Operating Characteristic Curve

(AUC) and top-decile Lift is in the range of 15%-28% and 28%-35% respectively, depending

on the size of the prediction horizon. In the later stages of a customer’s lifetime, user-based

attributes yield a relative increase of 1%-4% and 1%-10% in AUC and top-decile Lift,

respectively, compared to the network-based model.

Second, we address the tasks of predicting future transaction levels and identifying a

firm’s best customers. Due to the absence of dollar amounts for all transactions, a customer

is deemed best based on their transaction volume. Similar to the activity problem, we find

that social network attributes lead to a performance enhancement early on in a customer’s

lifetime; however, this effect persists into the later stages of the user lifecycle. During the

first month of a customer’s lifetime, models incorporating social network information yield

a relative increase of 13.0% in Mean Square Error (MSE) in the case of future transaction

levels. In the task of predicting future best customers the relative increase in AUC is
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in the range of 20.6% - 22.0% and in top-decile Lift it is in the range of 35.4% - 45.8%

depending on the exact definition of a top customer.

Finally, we study the structural network differences between the top 10% and bottom

90% of customers. The motivation for examining these structural dissimilarities is that

while transaction frequency and recency have consistently been identified as the best

predictors of customer behavior, they are not purely proactive metrics; for example, the

decline of a user’s transaction frequency is the outcome and not the cause of their decision

to stop using a service. We investigate the link between network centrality, connectivity,

density and future tier immediately upon acquiring a customer. We find that top customers

have a propensity to join dense and highly connected communities. This observation can

lend itself to the improvement of customer acquisition initiatives.

Our main contribution is a framework for incorporating social network information to

predict customer behavior. This approach is instrumental in overcoming the “cold-start”

problem, which has significant managerial applications for many companies. The remainder

of this chapter is organized as follows: the following section relates our work to the existing

literature; then, we provide an overview of our data and methods; next, we outline the

results of our analysis; and finally, we conclude with a summary of our findings and their

managerial implications.

2.2. Literature Review

Customer-firm relationships can be divided into two categories: contractual and non-

contractual (Schmittlein et al., 1987). One of the fundamental differences is that in

contractual settings, customer defection can be observed in real-time as a customer opts to
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terminate a service by not paying the subscription fee. In non-contractual settings, however,

customer inactivity does not necessarily imply defection. The inability to directly observe

the end of the customer-firm relationship makes the task of calculating Customer Lifetime

Value (CLV) or retention challenging. Over the years, researchers have developed two

main approaches for modeling customer behavior in non-contractual settings: parametric

probability models and machine learning models.

Probability models assume that customer behavior follows a specific parametric distri-

bution. The assumed distribution is imposed on an individual-level, and is then aggregated

across heterogeneous individuals to obtain the parameters of the joint distribution via

maximum likelihood estimation. Some of the most popular parametric probability models

include the Negative Binomial Distribution (NDB) model (Ehrenberg, 1959; Morrison and

Schmittlein, 1988), the Pareto/NDB model (Morrison and Schmittlein, 1988; Schmittlein

et al., 1987; Jerath et al., 2011) and its beta-geometric (BG)/NBD extension (Fader

et al., 2005; Fader and Hardie, 2009). Although there exist successful applications of

these models (Fader et al., 2010), they all impose strong distributional assumptions on a

customer’s behavior, which if not satisfied can create complications. For instance, it has

been documented that the Pareto/NBD model may produce unrealistic customer lifetime

estimates (Wübben and Wangenheim, 2008). Additionally, it is difficult to extend these

models to non-stationary regimes, and to incorporate time-dependent covariates apart from

recency and frequency. This stems from the difficulty of obtaining a closed-form to the

likelihood function, which forces one to rely on simulations. Finally, it has been shown that

simple, industry-specific heuristics for distinguishing between active and inactive customers
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often perform at least as well as complex models, thus not justifying the investment in

implementing such solutions in managerial practice (Wübben and Wangenheim, 2008).

These limitations have given rise to the application of machine learning methods to

modeling customer behavior, which can seamlessly incorporate a wide variety of covariates,

and capture non-linear relationships among them. Some notable works showing the

successful applicability of machine learning models in non-contractual settings include

European financial services (Larivière and Van den Poel, 2004), Google AdWords (Yoon

et al., 2010), e-commerce (Yu et al., 2011), Yahoo answers (Dror et al., 2012) and

telecommunications (Tamaddoni et al., 2015; Ahn et al., 2006). A comparison of parametric

probability models and machine learning methods in terms of churn predictions is provided

in (Tamaddoni et al., 2015). In order for the comparison to be fair and meaningful,

the authors use only the covariates (recency and frequency of purchases) that can be

incorporated in the Pareto/NBD model. Even in that case, machine learning methods

give superior results over the parametric probability models. In a recent paper, (Babkin

and Goldberg, 2017) develop an extension of the BG/NBD model, which is able to utilize

any kind of covariates, including time-dependent variables and monetary values from

transactions. They show that their model is superior to the traditional BG/NBD model,

but they do not compare it against any machine learning techniques. Such a task is beyond

the scope of our paper.

The recent rise of information technology and online social networks has allowed

marketing researchers and practitioners to investigate the effect of social influence on

consumer preferences and behavior. Network-based marketing has proven to be a very

effective tool in customer acquisition, especially in the area of new product adoption; for
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a concise review, see (Hill et al., 2006). Customer acquisition, however, is not the only

practice to benefit from the abundance of social network data. As noted in (Hill et al.,

2006; Bijmolt et al., 2010), customer churn can be contagious among groups of friends

and, hence, researchers have proposed several strategies to incorporate social network

information into their models.

The vast majority of this research has focused on contractual customer-firm relationships

within the telecommunications industry. The underlying social network of customers is

retrieved by analyzing phone call records and text messages, and the main finding of

this line of work is that “word-of-mouth” effects, wherein individuals who churn (do not

churn) can influence their friends to churn (not to churn), are present in the world of

telecommunications. More specifically, (Nitzan and Libai, 2011) and (Verbeke et al., 2014)

show that a customer is more likely to defect if their connections churn. (Haenlein, 2013)

demonstrates that although social influence plays a key role in customer defection, this

effect depends on the directionality of the communications between friends; individuals

who primarily receive phone calls from churners are at a higher risk of defecting. In a

related paper, (Haenlein, 2013; Ascarza et al., 2017) conduct a field experiment involving

nearly 6,000 customers of a mobile telecommunications provider and find that customers

are less likely to defect if their friends within the company continue to use the service.

Another interesting result concerning customer defection is its relationship with “social

embeddedness” (Haenlein, 2013; Ascarza et al., 2017; Benedek et al., 2014), wherein a high

degree of connectivity within the provider’s network is negatively correlated with churn.

Finally, (Richter et al., 2010; Moldovan et al., 2017) show that customers typically leave
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in groups, and identify leaders of dense social groups whose departure from the service

provider may lead to the entire group defecting.

Less work has been devoted to investigating social network effects in non-contractual

settings. One such paper is that of (Dasgupta et al., 2008), which focuses once again

on telecommunications networks but with an emphasis on pre-paid phones. The authors

model social influence as a diffusion process, and show improved churn predictions. It is

important to note that there exist some significant differences between social applications

like Venmo, and telecommunications services. First, payment and telecommunication

activities are quite different in nature, and therefore, it is likely that the respective social

networks of customers exhibit different network structures. Second, due to the prevalent

role of mobile phones in today’s world, it is possible that churn in a telecommunications

setting is equivalent to changing network providers. In Venmo, on the other hand, it

is not clear whether a permanently inactive customer has joined a competitor, or has

resorted to using other forms of payment (e.g., cash, credit cards). Finally, the notion

of “social embeddedness” defined in (Benedek et al., 2014), where customers can place

calls outside the network of their service provider, is unique to the telecommunications

industry. Services such as Venmo, or WhatsApp allow transactions or communications

only between users within the application, making it a more restrictive service compared

to telecommunications.

Our work is also related to the network formation literature. Specifically, the occurrence

of P2P transactions is essentially equivalent to the act of building and strengthening network

ties. On one hand, predicting customer activity is a variation of the link prediction problem

(Benedek et al., 2014; Liben-Nowell and Kleinberg, 2007). The main difference between the
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two problems is that in the link prediction setting the focus is not on forecasting whether

an existing tie will be strengthened, but rather on whether a tie between every pair of

nodes will be formed or not. On the other hand, our examination of the link between the

architecture of Venmo’s social network and customer behavior is closely connected with

recent studies on how network structures influence behavior and outcomes (Fafchamps

et al., 2010; Aral and Walker, 2014a); however, to the best of our knowledge, there has

been no previous work that investigates the link between behavior and network structures

in the context of customer activity and engagement.

Finally, the inclusion of social network information to solve the “cold-start” problem

has been studied in several other settings. In the case of recommender systems, (Jamali

and Ester, 2010, 2009; Bellaachia and Alathel, 2016; Liu et al., 2011) show that using

social network information can significantly improve recommendation accuracy, especially

when a user has just joined the service and has provided very little feedback about their

preferences. In the setting of research activity, (Ductor et al., 2014) examine how the

co-authorship network of an individual researcher can help predict their future research

output. The authors’ findings indicate that the predictive power of network information is

strongest for young researchers, who typically have a smaller number of publications in

comparison with more seasoned researchers.

The closest paper to our work is that of (Benoit and Van den Poel, 2012). The authors

investigate the relative importance of network metrics versus user metrics in a retail

banking setting, and find that social network attributes can indeed provide a boost in

predictive performance. However, this work has two important limitations: first, their

network data is limited to the relatives of each customer who are also members of the bank,
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and second, the authors use a static analysis to assess the importance of network-level

metrics in predicting customer activity. As we show empirically in our work, the predictive

power of network-based attributes is not fixed over time, and such metrics can be most

valuable in the beginning of a customer’s lifetime.

2.3. Data Overview and Methodology

2.3.1. Data

Our final sample exceeds 2 million users, but we restricted our analysis to 981,369 users for

whom we had the complete transaction history over 12 consecutive months. An overview

of our final dataset is shown in Table 2.1.

Dataset Overview
Sample size 981,369
Time frame January 2014 - June 2016
Lifetime analysis per customer 0 - 12 months
Calibration/Training sample size 686,952
Holdout/Testing sample size 294,408

Table 2.1. Descriptive statistics of final dataset.

2.3.2. Methodology

The unit of analysis in our work was an individual user. To evaluate the impact of social

network attributes on predictive accuracy over time, we treat time as a sequence of discrete

monthly intervals, and we use a design that groups customers by their “age” in Venmo

(we call this age “lifetime” herein). A lifetime of 0 indicates that a user has just joined

the service, and the termination point of our analysis is at lifetime 12 (months). We use
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this design because the effect of social network metrics on predictive performance may be

different for customers with different lifetimes.

During the data pre-processing step, we create a set of 32 variables/features, which

can be decomposed into two categories: user-specific (e.g., transaction frequency, early

Venmo adopter) and social network attributes (e.g., number of friends, pagerank). At

every discrete point in a user’s lifetime we update all user and network-level attributes to

reflect their most recent transactional behavior and make predictions about future usage;

the time period over which the variables are re-evaluated is called the feature evaluation

window. Some of our predictor variables remain static throughout a user’s lifetime, but

the vast majority of them evolve over time. Table A.1 in Appendix A.1 provides a detailed

description of all 32 variables and indicates each variable’s type. Depending on the task

at hand (forecasting activity, number of transactions and best customers), the prediction

window differs. Figure 2.1 demonstrates the prediction framework when the window is 30

days.

Feature evaluation window

Prediction window

Lifetime (Months)

0 1 2 3 4 5 6 7 8 9 10 11 12

...

Figure 2.1. Illustration of the feature evaluation and prediction windows at each
lifetime point of a user. In this example the prediction window is one month.
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The main modeling framework that has been used in previous studies (Wübben and

Wangenheim, 2008; Fader et al., 2005; Malthouse and Blattberg, 2005) is the following:

given three distinct, evenly spaced time points t0, t1, and t2, a statistical model is fit on the

calibration period [t0, t1] and the predictions are made on holdout data coming from the

time interval (t1, t2] . There are two main challenges to this design compared to the one

we follow in this chapter. First, it is not possible to examine the effect certain attributes

have on predictive accuracy at all points of a customer’s lifetime. Specifically, it is not

possible to assess the importance of different predictors for any time point within the

interval [t0, t1]. Second, it does not exploit the benefits of big data and new information

technologies, such as the ability to process the continuous inflow of data in real time

(Malthouse et al., 2013). That is, if new data has become available after t1 it is wise to

update any previous models to incorporate the latest information. This is particularly

fitting in fast-paced environments, such as mobile applications, where 80% of customers

churn within the first three months (Perro, 2016).

2.3.3. Modeling

We model three different but intertwined problems related to customer behavior in a

non-contractual setting, namely predicting customer activity, predicting future transaction

levels, and identifying the top 10% of customers at the end of the first year. Whereas the

dependent variable will differ in each problem, they all share the same underlying modeling

approach. In particular, in order to assess the relative importance of social network metrics

compared to user metrics, we estimate three competing models. Benchmark Model 1
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focuses on the predictive power of user-based variables xi,t, i.e.

Model 1: yi,t+w = F (xi,t),

where w corresponds to the length of the prediction window. User variables include

whether a user has signed up with Facebook, if they are an early adopter, the percent of

their Venmo transactions taking place at night, the percent of their Venmo transactions

taking place on weekends, and lastly, their transaction frequency. In Model 2, we examine

the predictive power of network variables zi,t, i.e.

Model 2: yi,t+w = F (zi,t).

Network variables include several variables that describe a user’s network centrality

(e.g., pagerank), density (e.g., triangle count) and connectivity (e.g., number of friends).

Finally, in Model 3 we explore whether the combination of user and network variables can

lead to higher quality forecasts compared to Models 1 and 2, i.e.

Model 3: yi,t+w = F (xi,t, zi,t).

In all three models we include time dummies to account for the month and year that a

user joined Venmo. We experiment with several functional forms of F (·). In particular, we

fit and compare linear and logistic regression models (including regularization techniques)

and random forests. In the case of linear and logistic regression models we also allow for

the possibility of time-varying coefficients. As noted by (Bijmolt et al., 2010; Ascarza

et al., 2018), while most models assume that customer behavior remains stable over a
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user’s lifetime, a more realistic approach should allow for time-varying coefficients, which

implies that the coefficient or weight of a covariate can vary over the lifetime of a customer.

Table 2.2 summarizes the prediction problems and functional forms we test. For more

details on the definition of each dependent variable see the corresponding subsection under

Empirical Results. Note that the model evaluation procedure outlined below is applicable

to all three predictive tasks we undertake.

Predictive Task Dependent Variable Type Functional Forms
Customer Activity Dichotomous Logistic, Lasso, Random Forests
Future Transaction Volume Continuous Linear Regression, Random Forests
Top 10% and 20% Customers Dichotomous Logistic, Lasso, Random Forests

Table 2.2. Description of predictive tasks, dependent variable types, and functional
forms.

2.3.4. Model evaluation

To evaluate our models, we split our data into two random, non-overlapping sets: the

calibration or training sample (686,952 users - 70%), and the holdout or testing sample

(294,408 users - 30%). Given that we make multiple predictions per customer at different

lifetime points, in order to obtain fair, out-of-sample estimates of predictive accuracy,

we ensure that all lifetime points of a customer belong to one of the two sets. For each

classification model we report the AUC score, which is a popular performance metric in the

machine learning literature, and top-decile Lift, which is a common metric in marketing.

For our linear regression model we use the evaluation scheme outlined in (Fader et al.,

2005), which focuses on the expected number of transactions, conditional on the number

of observed transactions. We also report the Mean Square Error (MSE) for the linear

regression model.
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2.4. Empirical Results

2.4.1. Predicting Customer Activity

The goal of this section is to address one of the fundamental questions in customer

relationship management: which customers will be active in the future? To answer this

question one needs to first define a measure of activity. Over the years researchers have

proposed a variety of metrics to capture customer activity, the simplest one being recency

(how long has it been since a customer last used a service?), which we also employ here.

To ensure the robustness of our results, we experiment with four thresholds for defining

customer activity: 30, 60, 90 and 120 days. To formalize this process, let yi,t 2 {0, 1} be a

dichotomous variable equal to 1 if individual i has not transacted at least once during the

activity window that ends at time t, and 0 otherwise. For example, if the activity window

is 30 days, c means that user i has not been active during the 9th month of their lifetime.

Note that we require the activity window to be the same as the predictive window. In

other words, if the activity window is equal to 30 days, all predictions at time t will be for

30 days into the future, i.e. time t+ 1.

We report the results of our three models in Figure 2.2. Note that across all these

models, all types of functional forms (variations of logistic regression and random forests)

achieve approximately the same predictive performance - see Table A.2 and Table A.3

in Appendix A.2. For this reason, we present the results obtained using a lasso logistic

regression model, which performs a variable selection procedure and sheds light into the

importance of the different features. We find that at lifetime 0, Model 1 performs almost

as poorly as a random guess (AUC of 53%, top-decile Lift of 1.13). Model 2 outperforms
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Figure 2.2. Classification results for predicting future customer activity by lifetime;
the predictive window is set to 30 days. The figure on the left depicts the AUC
score at each distinct time point, whereas in the figure on the right the lifetime
points are plotted against top-decile Lift.

Model 1 (AUC of 71%, top-decile Lift of 1.38), while Model 3 yields the best overall

performance (AUC of 71%, top-decile Lift of 1.41): a relative increase of 33.9% in AUC

and 24.8% in top-decile Lift compared to Model 1.

Our results indicate that social network metrics provide a significant boost in predictive

performance early on in a customer’s lifetime, and can play an instrumental role in

predicting customer activity in the absence of a user’s historical data. Immediately after

lifetime point 0, however, the effect of the social networks metrics tails off, and it is a

user’s past behavior that becomes most indicative of future activity. Consistent with prior

work, we find that transaction frequency and recency are the strongest predictors of future

customer activity (Coussement and De Bock, 2013). This finding is confirmed via the

lasso model, which in later stages of a user’s lifetime drops all variables but transaction

frequency and recency. As far as the time-varying coefficient approach is concerned, we

only observe a small improvement at lifetime 0 (relative increase in AUC of 6%, 6%
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and 7% for Models 1, 2 and 3 respectively), which goes away immediately after. Our

findings remain unchanged regardless of the size of the activity and prediction windows

(see Table A.4 and Table A.5 in Appendix A.2).

2.4.2. Predicting future transaction levels

While being able to accurately predict which customers will be active in the future is

valuable for a firm, it does not provide deep insights into customer profitability. For

example, a customer who transacts once per month and a customer who transacts ten

times per month are identical from an activity standpoint but are very different in terms

of profitability. To distinguish between such customers in a non-contractual setting, one

needs to model repeat purchases and generate forecasts of future transaction levels. In

this section we explore the extent to which social network attributes can yield improved

forecasts when predicting the total number of transactions completed by lifetime 12. That

is, the dependent variable for user i is

yi,12 = transactionCount12.

We again build three competing models and we follow the approach of (Fader et al.,

2005) to compare their performance. Simply put, we examine individual-level predictions

on the test set conditional on the number of observed transactions at a particular time

point. Figure 2.3 summarizes our results at four distinct lifetime points, namely 0, 3, 6

and 9.

All models provide excellent predictions of the expected number of transactions at all

lifetime points. Clearly, the closer the predictions get to lifetime 12, the more accurate
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Figure 2.3. Results on predicting the expected transaction levels at lifetime 12,
conditional on past number of transactions at lifetime points 0, 3, 6 and 9.

they become. We should note that Model 2 and Model 3 have a slight edge at all lifetime

points, and particularly at lifetime 0 (relative decrease of 13.0% in MSE for both models).

Table 2.3 summarizes the MSE of each model.

2.4.3. Identifying future best customers

In a truly customer centric setting, a firm should be able to identify the most profitable

customers, and invest disproportionate resources to keep them loyal and develop them.

The notion that not all customers should be treated equally relies on the fact that typically
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Lifetime MSE
Model 1 Model 2 Model 3

0 1699 1503 1503
1 1274 1197 1197
2 1040 995 995
3 863 815 815
4 708 662 662
5 558 520 520
6 423 395 395
7 311 291 291
8 218 203 203
9 141 131 131
10 75 69 69
11 27 65 65

Table 2.3. Mean Square Error (MSE) when predicting future transaction levels
via a linear regression model.

a small percentage of customers is responsible for generating the largest portion of revenues

and profits for a firm (Mulhern, 1999). For a customer to belong to the top 10% in

our dataset, they need to complete at least 90 transactions by lifetime 12. That is, the

dependent variable for user i is defined in the following manner:

yi =

8
>><

>>:

1 if transactionCount � 90

0 o.w.

We test our model when the best group is the top 20% of customers (at least 63

transactions) for robustness purposes (see Table A.6 in Appendix A.2). Figure 2.4

summarizes the effect of social metrics in determining Venmo’s best customers. The

previously observed theme of a performance improvement at lifetime 0 is seen here once

again for the top 10% (20%) of customers: the relative increase in AUC is 22.0% (20.6%),

and for top-decile Lift it is 45.8% (35.4%). Nevertheless, in contrast with the activity
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prediction problem, Model 2 can essentially achieve the same predictive power as Model

1, or even outperform it, in all lifetime points after 0. In other words, it is possible to

forecast a customer’s future tier by taking under consideration only the past behavior of

their friends. Note that while it is possible to predict the most elite group of customers

using the the linear regression model from the previous section, the logistic regression

model produces more accurate estimates (see Table A.7 in Appendix A.3). For this reason,

we only present the results obtained from the lasso logistic regression model.

Figure 2.4. Classification results for top 10% of customers by lifetime. The figure
on the left depicts the AUC score at each distinct time point, whereas in the figure
on the right the lifetime points are plotted against top-decile Lift.

2.4.4. Investigating network structural properties of best customers

Evaluating the structural network predictors of Venmo’s best customers is an intricate

task. Customer activity in the context of Venmo is precisely the act of building and

strengthening network ties. This implies that judging solely by the total number of

completed transactions, a customer who belongs to the top 10% is much more likely

to have higher degree, triangle count and pagerank compared to a user who belongs to
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the bottom 90%, especially in later lifetime points.To alleviate this issue, we focus our

attention on lifetime 0, when the number of transactions of the top 10% and the bottom

90% of customers is identical. Specifically, at lifetime 0, both user cohorts have a median

of 1 transaction. In this way, the network differences we identify between the two groups

of customers will provide insights about the communities that best customers typically

join.

2.4.5. Overview of structural network characteristics

The structural network characteristics of interest (see Table 2.4) can be further subdivided

into local and global metrics. This distinction emphasizes the fact that local metrics

are obtained by considering only a user’s first and second degree connections, whereas

global metrics reflect an individual’s position in the greater network, and take into account

the overall organization of ties. Since some of the structural metrics at hand have not

been studied in such a content before, they warrant a more detailed description which we

provide in Appendix A.4.

2.4.6. Top 10% versus the rest

To understand which are the most important predictors of the top customer tier, we

present the coefficients of a logistic regression model containing only the seven structural

network covariates in Table 2.5. While all variables turn out to be significant, due to the

large size of our data set, we are cautious with the use of statistical significance tests. As

explained in (Coe, 2002), the p-values associated with statistical significance tests depend

on two quantities: the magnitude of the effect and the size of the sample. Consequently,
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Measure Type Description

Triangle count Local Measures connectedness and density in a community. Provides
an absolute count of triadic relationships, in contrast with
cohesion, which is normalized.

Cohesion Local Measures the extent to which a user’s friends know each
other. Cohesion has been linked in the literature to
brokerage (Stovel and Shaw, 2012).

Mutual Friends of

Friends

Local Measures the extent to which a user’s friends share mutual
friends, even if they are not connected directly to each other.

Number of friends Local Number of first degree connections, irrespective of direction of
the link (i.e. does not account for who initiated the
transaction).

Outgoing

transaction

percentage

Local The percentage of outgoing transactions captures the
directionality of money transfers.

Friends average

number of friends

Local Average number of friends of all first degree connections.

Friends of friends

average number of

friends

Local Average number of friends of all second degree connections.

Giant component Global Indicator of whether a user belongs to the giant component.
Network theory suggests that most social networks contain
one large, connected component comprised by a significant
fraction of all nodes.

Pagerank Global Measures centrality in a directed network, and can be
interpreted as a metric of importance based on a node’s
connections.

Table 2.4. Description of structural network variables.

it is possible that a result is deemed significant entirely because of the large size of the

sample. To avoid such issues, we use Cohen’s effect size to quantify the mean difference

between the top 10% and bottom 90% of users. Cohen’s effect size is known to emphasize
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the size of the difference rather than conflating it with the size of the data sample (see

Appendix A.5 for details).

Metric Coefficient

Triangle count 0.04 ***
(0.003)

Cohesion 0.76 ***
(0.013)

Mutual Friends of Friends 1.32 ***
(0.036)

Number of friends 0.01 **
(0.006)

Outgoing transaction percentage 0.11 ***
(0.008)

Friends average number of friends 0.003 ***
(0.0003)

Friends of friends average number of friends 0.020 ***
(0.0005)

Giant component 0.19 ***
(0.013)

** p<.01
*** p<.001

Table 2.5. Coefficient for logistic regression model predicting the top 10% of
customers using only structural network variables.

We present our results in Table 2.6, which shows Cohen’s effect size for the mean

difference at lifetime 0 - the table also includes the mean and standard deviation of all

metrics for each group. We observe significant structural dissimilarities between the two

cohorts. In particular, it is clear that density (triangle count, cohesion, mutual friends of

friends) and centrality (pagerank, number of friends) measures are positively correlated

with the propensity of users to become top customers. Additionally, membership in the

giant component has a small but noticeable effect size, which can be attributed to the

general concept of connectivity. Giant component is a term that describes a frequently
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observed property of social networks: the vast majority of nodes belong to a single,

connected component, i.e. there is a path connecting any two nodes that belong to the

component (Easley and Kleinberg, 2010). The metric that particularly stands out in

our data is mutual friends of friends (MFF), since it hints that a customer’s tier can be

predicted by individuals who are two degrees apart.

Metric Lifetime = 0
Top 10% Bottom 90% Cohen’s

Triangle count 0.75 (4.22) 0.18 (0.97) 0.35**
Cohesion 0.24 (0.39) 0.10 (0.28) 0.49**
Mutual Friends of Friends 0.06 (0.14) 0.02 (0.09) 0.43**
Number of friends 1.28 (1.11) 1.13 (0.51) 0.25**
Outgoing transaction percentage 0.52 (0.48) 0.52 (0.49) 0
Friends average number of friends 9.36 (10.62) 7.87 (10.38) 0.14*
Friends of friends average number of friends 10.06 (7.98) 8.19 (7.69) 0.24**
Giant component 0.87 (0.33) 0.80 (0.40) 0.18*
Very small: *
Small: **

Table 2.6. Cohen’s effect size on group mean differences at lifetime 0. According
to (Cohen, 2013), a value of 0.01(*) is considered very small, a value of 0.2(**) is
regarded small, and a value of 0.5(***) or higher is medium.

2.5. Discussion

2.5.1. Summary of findings

Identifying a firm’s active/inactive customers and evaluating their profitability (in terms

of repeat transactions) at the individual level is a critical task in non-contractual settings.

Our work focuses on harnessing the power of social networks to improve the predictive

performance in all aforementioned tasks. We first evaluate the effect of social network

attributes when predicting future customer activity. Our results indicate that social

network attributes lead to a significant boost in performance early on in a customer’s
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lifecycle: relative increase in AUC is 24%-33.9% and for top-decile Lift is 23.9%-37.8%.

This enhancement in predictive power fades away in the subsequent months, and the

models containing user-based variables produce the best results. Furthermore, we reaffirm

findings from previous studies that show recency and transaction frequency to be the best

predictors of future customer activity.

In the second part, we focus on modeling repeat transactions and identifying Venmo’s

best customers, as expressed by the total number of completed transactions. Given that

typically a small number of customers are responsible for the largest proportion of revenue

and profits, it is imperative to determine which customers have the potential to reach the

best customer tier, and allocate disproportionate marketing resources towards them. We

find that our approach can accurately predict the future number of transactions of all

customers, and also identify the top 10% (20%) of customers. Once again, social network

attributes lead to improved forecasts at lifetime 0, especially in determining the future best

customers: relative increase in AUC is 22.0% (20.6%), and for top-decile Lift it is 45.8%

(35.4%) for top 10% (20%) of customers. Furthermore, contrary to the previous part,

models containing social network information either outperform or match the predictive

power of user-centered ones beyond lifetime 0.

In the final section, we characterize the differences of the top 10% and bottom 90% of

customers from a structural network perspective. We focus our attention on lifetime 0,

when the median number of transactions for each cohort is identical. We find evidence of

a strong, positive correlation between future customer tier and various individual-level

measures of centrality and density. The best customers tend to join communities that
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exhibit high density and connectivity, and the most important metrics turn out to be

cohesion and MFF.

2.5.2. Managerial Implications

In relation to the incorporation of social network attributes into our models, our thesis is

that while they improve the overall quality of the predictions, their power is most evident

in the beginning of a customer’s lifetime. Social networks can help overcome the “cold-start”

problem, where there is little to no information about a customer’s past behavior.

It has not escaped our notice that as a result, firms can save valuable time in the model

lifecycle process; they can start making reliable forecasts immediately upon acquiring a

customer instead of wasting time collecting sufficient amounts of data before undertaking

the task of predictive modeling. The solution we provide to the “cold-start” problem

significantly improves one’s ability to differentiate between one-time and best customers

from day one. This observation has two main implications. As far as allocating marketing

resources is concerned, firms can start investing into their customers immediately upon

acquiring them, while at the same time being more confident that they are not wasting

their resources on unprofitable individuals. Moreover, a company’s main source of revenue,

and therefore its overall valuation, typically relies on a relatively small number of highly

engaged customers (Fader, 2012). Our findings can enhance the ability of performing

CBCV for firms in two scenarios: when experiencing rapid growth of their user base, and

when customer lifecycles are very short.

Finally, our investigation of the structural properties of Venmo’s best customers reveals

that the future most engaged users tend to join communities that exhibit high density and
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connectedness. This clear correlation pattern can potentially be leveraged to increase the

effectiveness of customer acquisition efforts in at least two ways. First, a firm may identify

customers who belong to these communities and incentivize them to invite their friends

into the service. Second, if the firm has access to a user’s network of friends who have not

yet joined the service, it can determine whether it is worth targeting these friends directly.

2.6. Conclusions

In this chapter, we investigate customer behavior using a comprehensive dataset from

Venmo, consisting of the entire transaction history of approximately one million users. Our

work introduces a framework for incorporating social network information when predicting

customer behavior, and we demonstrate its ability to lead to improved forecasts, especially

during the beginning of a customer’s lifecycle.

There are three limitations to this research. First, our focus is on predicting customer

behavior, rather than providing a causal interpretation of the mechanisms behind various

types of behavior. Second, due to the social nature of applications like Venmo, where

customers can only use the service when their friends are using it as well, it is not clear

whether these findings will generalize to other non-contractual settings with different

formats (e.g., hybrid setting where customer can transact both directly with firm and

with friends). Finally, we determine the top 10% of customers on the basis of the number

of completed transactions, rather than the monetary value of the transactions. A minor

issue that we should also acknowledge is that we only analyze publicly available Venmo

transactions. While our analysis excludes private transactions, our results should not
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be affected by this as, according to the CEO of PayPal, 90% of transactions are shared

publicly.1

Although our work is by no means exhaustive, it highlights several future research

directions. It would be of great interest to examine the generalizability of our findings

to other non-contractual contexts, either in hybrid settings, where customers can use

the product or service either directly on their own or with their peers, or in traditional

non-contractual settings, when external social network data (e.g., Facebook friends and

interactions) is available. Finally, further research could shed light into the relationship

between best customers and their propensity to join highly connected communities. It is

unclear if these individuals become top customers as a result of their community’s activity,

or whether they serve as catalysts of high engagement.

1http://fortune.com/2017/11/17/dan-schulman-paypal-venmo/
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CHAPTER 3

Finding Strong Ties in a Facebook Haystack: A Multilayer Social

Network Approach

3.1. Introduction

As Aristotle famously noted almost twenty four hundred years ago, man is by nature a

social animal. Human sociability includes building and maintaining close relationships

with a few individuals (Mac Carron et al., 2016), as well as less intimate interactions with

a larger group of people (Dunbar, 1993). This spectrum of tie strength is crucial for several

decisions in our lives. Among others, strong ties have been shown to be responsible for

adopting a new product or service, while weaker ties foster the diffusion of information

(Granovetter, 1973; Centola and Macy, 2007; Hansen, 1999). Moreover, a recent study

by (Nathan et al., 2018) shows the existence of a strong positive correlation between tie

strength and customer engagement in social digital platforms. Therefore, it is clear that

predicting tie strength has several important applications in the fields of marketing and

targeted advertisement. This is especially true for marketeers in the digital age, as more

and more people use the “social login” feature (e.g., Facebook, Twitter, Gmail, Google+,

etc.) to sign up for a service or product. According to a survey report from Gigya 1, 88%

of U.S. consumers have used social login, mainly because of the convenience it offers to the

user of not having to fill in another registration form or remember another new username

1https://marketingland.com/gigya-survey-88-of-u-s-consumers-say-they-have-used-social-logins-134933
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and password. Facebook (FB) is the major player in the social authentication space; it

accounted for 62% of the overall market and an astounding 80% on mobile applications

in 20152. Social login allows companies to collect data not only on individual users, but

also on their online social networks by granting access to their friends list. This enables

marketeers to engage in a new form of advertising, namely social advertising, via social

media or in-house, personalized targeting.

Social advertising uses cues, such as likes from your peers, to influence your decision

to engage with a product or service. The social media ads industry accounted for $9.5

billion in revenue just in the first half of 2017, growing at an incredible rate of 37% from

20163. This heavy investment by companies is greatly justified by their effectiveness, which

several studies have documented (Tucker, 2016; Bakshy et al., 2012; Aral and Walker,

2014b). More important, this influence increases with tie strength. In other words, it is

more likely that a user will open a digital ad, if one of their strong ties have liked the ad

rather than a weak tie. However, measuring tie strength is a difficult and time-consuming

task. Therefore, social network scientists and companies alike would love to have access to

an easy to implement method through which they could simply inspect the underlying

network structure and be able to determine the strong ties of a user in advance.

In this work, we employ the "social bow tie" framework introduced in (Mattie et al.,

2017) and apply it to a unique dataset from Venmo, the most popular peer-to-peer (P2P)

mobile payment application, to expand our knowledge on tie strength prediction. Our

dataset is unique because it combines two different but overlapping social networks. On

2https://www.gigya.com/blog/the-landscape-of-customer-identity-facebook-slides-again/
3https://www.iab.com/wp-content/uploads/2017/12/IAB-Internet-Ad-Revenue-Report-Half-Year-2017-
REPORT.pdf
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the one hand, we have the Venmo social graph, which comprises of all friend relationships

of users that signed up with FB. On the other hand, we have the Venmo transaction graph

which reflects offline transactional activities among the users. By following the money trail,

we are able to determine to whom a person is really closely connected to and we study

the extent to which knowledge of a customer’s egocentric social network can enhance the

accuracy of forecasting whether two individuals: (1) will transact at least once, (2) if they

do transact, whether this transaction will be reciprocated and (3) their total number of

transactions.

We break down our investigation into two parts. In the first part, we study the above

questions at the time when a new user has just signed up in a service through FB and has

given access to his friend list. The only information we use to predict his strong ties is

the structure of his online egocentric social network. In the second part, we investigate

whether the addition of a user’s transactional egocentric social network improves our

forecasting accuracy. Our models produce high quality forecasts for the tasks of predicting

the formation of a financial relationship and its reciprocity, yielding final Accuracy scores

in the range of 43%-90% and Area Under the Precision-Recall Curve (AUPRC) values

in the range of 85%-98%, depending on the exact problem formulation. For the task of

predicting the total number of transactions between a pair of users, we get a Mean Square

Error (MSE) in the range of 7.38-25.48 and an R
2 in the range of 0.24-0.58.

The main contributions of our work are the following. First, we apply the social bow

tie framework on a multilayer social network and expand it to include several structural

network metrics that have not been investigated previously. Next, we exploit the above

multilayer nature to empirically document FB’s predictive power in inferring a user’s
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strong ties. We find the most informative predictors to be the overlap of friends between

two individuals, and the clustering coefficient of their non-overlapping friends. These

findings provide correlational evidence on the applicability of Granovetter’s and Bott’s

hypotheses on online social networks. Finally, we show how the information of the

underlying transactional social network can be used in conjunction with the online social

network information to improve the forecasting accuracy of tie strength prediction.

3.2. Related Literature

Granovetter was the first to make theoretical predictions regarding tie strength and

the factors that influence it in his seminal paper (Granovetter, 1977). However, due to

the absence of real world social network data, these predictions remained untested for

a long period of time. Onnela et al. (2007) conducted the first comprehensive study by

examining a who-talks-to-whom network generated by mobile phone users. They found

that strong ties are associated with densely connected network neighbourhoods, while

weak ties provide global connectivity at the network level; providing empirical evidence

in support of Granovetter’s hypothesis. Another more recent study with a who-talks-to

whom network showed that the use of transactional information, as expressed by frequency

of communication or phone call duration, can indeed be indicative of tie strength (Wiese

et al., 2014).

Online social networks gave rise to another stream of literature, where researchers

examined whether online social media increase the size of people’s personal networks and

whether they affect the structure of our social networks. In a blog-post by FB’s data

scientist team, Marlow et al. (2009) analyzed the friendship links and communication
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network of a random sample of users over the course of 30 days. Their main finding

was that FB enables people to keep passive engagement with their friends. Strong ties

maintain regular communication, while weak ties simply keep up with their network. In a

related paper, Huberman et al. (2008) investigated what proportion of a user’s followees

are actually close ties in Twitter. They define a user’s strong tie to be a person with whom

the user has posted at least two messages on his Twitter page, and find that only a few

followees are indeed close ties. More recently, Backstrom and Kleinberg (2014) used FB

data to investigate a particular category of strong ties, those of romantic partners. They

introduced a new structural network measure, dispersion, which measures the extent to

which two people’s mutual friends are not themselves well-connected, and showed it can

achieve highly accurate results in predicting this particular type of strong tie.

In a slightly different vein, Gilbert (2012); Pappalardo et al. (2012) explored whether

a tie strength model developed for one social medium adapts to another. Gilbert (2012)

focused on mapping the respective relational features of FB to Twitter, and found that his

FB tie strength model can generalize to Twitter. Pappalardo et al. (2012) collected friend-

ship links across the same 7500 individuals, in three online social networks (Foursquare,

Twitter and FB), and proposed a multidimensional definition of tie strength which captures

the existence of multiple online social links between two individuals. They found that the

more links two individuals share across the different social media, the stronger their tie.

Our work is also related to the link prediction literature (Benedek et al., 2014; Liben-

Nowell and Kleinberg, 2007; Lü and Zhou, 2011). However, our setting is different in the

sense that our focus is not on whether a tie between every pair of nodes will be formed or

not, but rather on whether an existing online social tie will also be formed in an offline
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setting. More so, what will that tie’s strength be? De Sá and Prudêncio (2011) used the

weights of current links of a co-authorship network to predict the links that will appear in

the future and found the predictive performance to be better than that without weights.

Kahanda and Neville (2009) used the transactional information among users, defined as

communication in FB messenger and file transfers, from the public Purdue FB network

to predict tie strength. The authors investigate the relative predictive importance of

attribute-based, topological, and transactional features and find the latter ones to be the

most informative.

The closest papers to our work are Lewis et al. (2008); Gilbert and Karahalios (2009);

Mattie et al. (2017). Lewis et al. (2008) collected FB data from college students when

FB was still at its infancy, and tried to infer how many of their FB friends are actually

close friends in real life. To proxy who is socially close, they used the photographs

that users posted on their FB page. If one user tags another in a photograph, they are

considered to be close ties. They found that users had on average 6.6 close friends out of

their approximately 145 online connections. Gilbert and Karahalios (2009) recruited 35

students in the lab and asked them to rate the strength of their FB friendships, as well

as answer a different set of questions yielding more than 70 variables. Their predictive

model performed quite well in distinguishing between strong and weak ties. However,

both of the aforementioned works have important limitations on their definition of close

ties. On the one hand, the picture method may represent an overly strict criterion for

defining a close tie as people can be close friends but not post pictures together. On the

other hand, survey created metrics are usually biased due to cognitive constraints. Most

important, both of these approaches require time and effort to be collected. Last, Mattie
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et al. (2017) introduced the social bow tie framework to study tie strength. They tested

their framework in two distinct offline social networks: a collection of 75 rural villages in

India and a who-talks-to-whom network generated by a European mobile service provider.

They find that bow tie metrics are highly predictive of tie strength, and that the more the

social circles of two individuals overlap, the stronger their tie. In this work, we enrich the

social bow tie framework with several other structural network metrics and apply it to an

online-offline setting.

3.3. Data and Methods

3.3.1. Data Description

We collected and analyzed data from Venmo, the most popular P2P mobile payment

service. For the purposes of this work, we consider Venmo to be a multilayer network.

The first layer consists of Venmo’s social graph. When a new user signs up in Venmo,

he is given the option to allow access to his friend list either through his FB account

or through his mobile contact list. We used a two-step snowball sampling approach to

collect this data (Goodman, 1961). During the first step, we collected the friend lists of

127,218 users that signed up through FB in the period of January 2014 to May 2015. In

the second step, we collected the friend lists of the friends of the aforementioned users.

This resulted in a social graph of 1,655,348 users. The second layer consists of Venmo’s

transactional graph. Venmo allows users to easily transfer money electronically with their

friends for offline shared social activities. We collected the full transactional history of the

aforementioned 127,218 users. This allows us to infer with whom of their online friends

they have transacted with, and at what intensity. A Venmo user that signs up with FB
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has on average 94.5 friends that are also users of Venmo, and transacts on average with

11.2 users in a period of one year. Figure 3.1 shows the egocentric social network of a

sampled Facebook user. The picture in the left shows the set of all declared friendships in

this user’s profile that are also using Venmo, while the picture on the right shows with

whom the user had a financial transaction. An overview of our final dataset is shown in

Table 3.1.

Figure 3.1. Egocentric social network of a sampled Venmo user that signed up
through Facebook. The figure on the left depicts the set of all declared friendships
in this user’s profile that are also using Venmo, whereas the figure on the right
depicts with whom the user had a financial transaction.

Dataset overview

Time Frame (in months) 12
Total Number of Users that Signed Up with FB 127,218
Average Number of Friends of a User who Signed Up with FB 94.5 (87.2)
Average Number of Distinct people a user has transacted with 11.2 (9.2)

Table 3.1. Summary statistics. Standard deviation is shown in parentheses.

We should mention here some caveats of our data set. First, we have no access to

geolocation. Since Venmo reflects offline social interactions, most of which take place
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in the same geographic venue, it is likely that access to geolocation would increase the

predictive accuracy of our results, as previous research has documented (Kylasa et al.,

2015). However, geolocation is a node attribute and not a structural one, and therefore, it

is out of the scope of our investigation. Second, we might lose some of the social graph

information, because some of a user’s friends have not signed up through FB or have not

given access to their contact list. Another possibility is that they have decided to make

their profile private. This missing information can bias the computation of the structural

network metrics of a user’s egocentric network. However, this is not a limitation in the

way we collected the data, rather it is the status-quo of what every service with social

login feature is facing.

3.3.2. Methodology

We define the tie strength prediction problem as follows. Let G be a multilayer network

graph, consisting of V nodes and M layers, each one representing a different type of

relation. The structure of G can be fully described by the set of adjacency matrices

G ⌘ A = {A[1]
, ..., A

[M ]},

where A
[k] = {a[k]ij }, with a

[k]
ij = 1 if there is a link between i and j, and 0 otherwise.

When the links among nodes are weighted, G can be described by a set of weighted

adjacency matrices

W = {W [1]
, ...,W

[M ]},

where W
[k] = {w[k]

ij } and w
[k]
ij is the weight of the link between i and j.
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In our case, we have M = 2 layers. The first layer represents the online friendships

between pairs of users, and it is undirected and unweighted. The second layer represents

the financial transactions between pairs of users, and it is directed and weighted. The link

weights correspond to the total number of transactions two users have shared in one year’s

time.

Our first goal is to learn a predictive model that given the adjacency matrix A
[1]

will predict A
[2] and W

[2]. Our second goal is to investigate whether snapshots of the

transactional network at different time points, A[2]
t and W

[2]
t , can increase the predictive

accuracy of A
[2] and W

[2], respectively. In words, we address a set of three different

but interrelated research questions: (1) Will two individuals transact at least once? (2)

Will that transaction going to be reciprocated? and (3) What is the total number of

transactions these two individuals will share in one year’s period. The first two are

classification problems, while the third is a regression one.

For our second goal, we examine two snapshots. The first snapshot is taken at month

1, where 28.4% of the transactional relationships have been formed. The second is taken at

month 5, where almost 50% of the transactional relationships have been formed. Figure B.1

in Appendix B.2 depicts the cumulative distribution function of forming a new financial

relationship with a distinct user.

To answer all the above questions, we use the social bow tie framework introduced in

Mattie et al. (2017). For each pair of individuals, say i and j, social bow tie framework

partitions their network of friends into three disjoint sets, namely i’s friends, j’s friends,

and the friends they share in common. The structure of social bow tie captures two

hypotheses: 1) Granovetter’s: the stronger the tie between any two individuals, the higher
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the fraction of friends they share in common (Granovetter, 1973), and 2) Bott’s: the

higher the degree of clustering in an individual’s network the less likely to form a tie with

somebody outside the group (Bott and Spillius, 2014). We enrich the bow tie framework by

incorporating several other structural metrics that have not been studied before. Table B.1

in Appendix B.1 provides a detailed description of all the structural network variables.

3.3.3. Measuring Tie Strength

Granovetter suggested that tie strength between a pair of individuals should be measured

along four dimensions: 1) amount of time spent together, 2) the level of intimacy, 3)

emotional intensity and 4) reciprocity of interactions. Further research has expanded these

dimensions to include social distance (Lin et al., 1981), emotional support (Wellman and

Wortley, 1990), and network structural factors (Burt, 2009).

Measuring tie strength in practice, though, is a challenging task. Most studies have

used proxies that focused on the frequency of interactions (Gilbert et al., 2008; Bond et al.,

2012; Mattie et al., 2017). Other proxies include the social context of the relationship of

two individuals (e.g. whether they attended the same college, share common hometown or

institutional affiliations) and their common interests (e.g. FB pages likes) (Aral and Walker,

2014a). Most of these proxies, however, focused on data from online social networks. Last,

some studies have used surveys to ask individuals about their relationships category and

their perceived intimacy (Marsden and Campbell, 1984; Brown and Reingen, 1987; Frenzen

and Davis, 1990; Gilbert and Karahalios, 2009). These survey proxies though cannot scale

up to large systems and are subject to perception bias.
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In this work, we use the financial transactions in Venmo to define tie strength. Our

measurement is by construction very robust, as it reflects offline shared social experiences.

In other words, a pair of individuals need to be in the same physical location and share

the same experience to exchange money in Venmo. Therefore, looking at the transaction

history between two individuals captures the amount of time they spent together and the

level of their intimacy.

3.3.4. Predictive Framework

To evaluate our models, we split our data into two random, non-overlapping sets: the

training set (89,053 users - 70%), and the testing set (38,165 users - 30%). As mentioned

before, our dataset is highly imbalanced. To account for this imbalance, we try several dif-

ferent methods, namely Undersampling, Oversampling, SMOTE and ROSE. Furthermore,

we perform 10-fold cross validation for all models to establish their predictive accuracy.

For each classification problem, we report the Accuracy and AUPRC, which is a popular

performance metric in the machine learning literature for imbalanced problems (Saito and

Rehmsmeier, 2015). For our regression problem, we report the Mean Square Error (MSE).

3.4. Results

3.4.1. Forming a Transactional Relationship

We start off our investigation by examining the one time formation of transactional links.

That is given a user that singed up through FB and has given access to his friend list,

with whom of his online friends will transact at least once within one year in Venmo. We

report our results in Figure 3.2.
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Figure 3.2. Classification results for predicting future formation of transactional
relationships among pair of users. The figure on the left depicts the Accuracy
score, whereas the figure on the right depicts the AUCPR score.

Note that all types of machine learning models (variations of logistic regression and

random forests) and sampling methodologies achieve approximately the same predictive

performance - see Table B.2 and Table B.3 in Appendix B.3. Therefore, we present the

results obtained using an oversampling technique and a lasso logistic regression model,

which performs a variable selection procedure and sheds light into the importance of the

different features.

We find that even at lifetime 0, with the only available information being the online

social network of a user, our machine learning models achieve an Accuracy of 43% and

an AUCPR score of 85%. The most informative predictors are found to be the overlap

of friends between two individuals, and the clustering coefficient of their non-overlapping

friends. Moreover, at lifetimes 1 and 5, when we take into account the information from

the underlying transactional graph this predictive accuracy is increased significantly. More

specific, at lifetime 1, Accuracy is increased to 72% and AUCPR to 95%, while at lifetime

5, Accuracy goes up to to 88% and AUCPR to 98%. These results indicate that knowing
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part of your transactional relationships can lead to a significant improvement in predicting

the rest of your transactional relationships. Again, the most informative predictors are

found to be the overlap of friends between two individuals, and the clustering coefficient of

their non-overlapping friends, but this time these metrics correspond to the transactional

graph.

3.4.2. Reciprocity of Transactional Relationships

We continue our investigation by examining the act of reciprocating a transactional

relationship. As explained earlier, reciprocity is an important dimension of tie strength.

Dyadic relationships that are reciprocated are signals of trust and social capital. We report

our results in Figure 3.3.

Surprisingly, our predictive performance is better than the one for forming a trans-

actional relationship. At lifetime 0, our machine learning models achieve an Accuracy

of 45% and an AUCPR score of 86%. Moreover, at lifetime 1, Accuracy is increased to

76% and AUCPR to 97%, while at lifetime 5, Accuracy goes up to 90% and AUCPR to

98%. At lifetime 0, the most informative predictors are found to be the overlap of friends

between two individuals, and the clustering coefficient of their non-overlapping friends.

However, at lifetime 1 and 5, the most informative predictor is the overlap of friends

between two individuals. One possible explanation for this observation, is that the more

common friends a dyadic relationship has transacted with, the more likely that they will

all go out as a group and financial trust among the group’s people is established.
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Figure 3.3. Classification results for predicting reciprocity of transactional rela-
tionships among pairs of users. The figure on the left depicts the Accuracy score,
whereas the figure on the right depicts the AUCPR score.

3.4.3. Intensity of Financial Interactions

A final aspect we investigate is the intensity of financial interactions between two individuals,

which is the main dimension of a strong tie in a P2P financial setting. We report our

results in Figure 3.4.
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Figure 3.4. Results on predicting the expected number of financial interactions
between two individuals at lifetime points 0, 1, and 5.

Our predictive results are quite impressive given the difficult nature of this question.

At lifetime 0, we get an MSE of 25.48 and an R
2 of 0.24. At lifetime 1, the MSE and R

2

are improved to 18.20 and 0.33, respectively. Finally, at lifetime 5, we get an MSE of 7.38

and an R
2 of 0.58. Again, the most informative predictors in all lifetimes are found to

be the overlap of friends between two individuals, and the clustering coefficient of their

non-overlapping friends.

3.5. Discussion

Strong ties have been documented to play an influential role in people’s decision making

across various settings. From our decision to donate goods (Carman, 2003; Leider et al.,

2009) to our decision to turn up and vote at the elections (Huckfeldt, 1984; Nickerson,
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2008), strong ties are the ones who exert the greatest influence on us as they convey greater

trust (Coleman, 1988).

The digital age has re-emphasized the importance and complexity of predicting an

individual’s strong ties, as more and more companies now have access to online friendship

data of their customers. There has been a great deal of debate recently about the role

of FB in influencing decision making in people’s lives. According to a FB case study,

Republican governor, Rick Scott, used FB ads campaigns to create a "22% increase in

Hispanic support", "a deciding factor" in his re-election 4. However, FB does not make

its raw data public, and even if it did, answering questions such as, "Did FB’s social

digital ads swing the US elections?" is an extremely hard, if not impossible task. In this

work, we exploit the multilayer nature of Venmo data to offer the first comprehensive

answer regarding FB’s power in predicting the strong ties of an individual. Our results

provide evidence that such a task is feasible under the right methodology. We find that

one is able to predict tie strength by just inspecting the underlying structure of a person’s

egocentric online network. Moreover, this predictive accuracy can be enhanced if one uses

information from the underlying transactional network. In our case, this transactional

network is expressed by financial transactions, but we conjecture that similar results will

hold true in other transactional networks, such as call-logs and instant messaging.

We should point out that our study focused entirely on predictive analytics, and

although we provide correlational evidence on the applicability of Granovetter’s and Bott’s

hypotheses on online social networks, this by no means constitutes a causal explanation of

why this is the case. As such, this study opens up new avenues for further research. First,

4https://www.facebook.com/business/success/rick-scott-for-florida
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it would be of great interest to perform a matching strategy not only on the observed user

characteristics, but also on the calculated network characteristics. For example, we could

create two "artificial" control and treatment groups, where all network characteristics are

similar but cohesion. This way we can treat cohesion as a treatment and check if we can

provide causal evidence for Granovetter’s hypothesis. Finally, further research in the form

of field experiments is required to determine the effectiveness of our predictions in real-

world settings. These types of experiments will enable governments and corporations to

better understand the power of online social networks in propagating real-world behaviors

and economic outcomes.
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CHAPTER 4

Venmo for Change: The Effect of Digital Donations on Customer

Engagement

Joint work with Marcel Fafchamps

4.1. Introduction

In today’s competitive and connected environment, organizations are investing in

corporate social responsibility (CSR) activities to differentiate themselves and create

a meaningful engagement with their customers (Morrison and Crane, 2007; Devinney

et al., 2012; Muller, 2006). CSR initiatives include but are not limited to environmental

responsibility awareness campaigns and donations to philanthropic causes. With regards

to the latter initiatives, organizations donate every year millions of dollars to causes that

align with their core values and brand image. For example, Walmart donates food and

fresh produce to the anti-hunger charity Feeding America, while Wells Fargo donated 25

million dollars in 2015 to the nonprofit NeighborWorks to support financial education and

down payments on homes 1.

On top of the traditional donating methods, digital platforms have significantly de-

creased the barriers of making a donation by lowering the required effort and reducing

transactional costs (Huck and Rasul, 2010). A Facebook (FB) user, for example, can now

view the donations his/her favorite companies are making, increasing this way visibility

1http://fortune.com/2016/06/22/fortune-500-most-charitable-companies/
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and brand image awareness. What is more, digital platforms have introduced a new form of

a donating mechanism that uses social cues to inform the users about a fundraising event.

In other words, a user can view that his/her connections have donated to a particular

cause and potentially be influenced to engage with the cause, as well. This new form

of donating is especially evident on FB, which allows its users to raise money for 501c3

nonprofits and gives them the option to create fundraisers for personal needs since 2016 2.

Research has documented the benefits of CSR activities to organizations in terms of

enhanced consumer perceptions of the company (Drumwright, 1996; Brown and Dacin,

1997; Sen and Bhattacharya, 2001), but there is little empirical evidence on the effect of

digital platform donations on user engagement. For the purposes of this study, we define

customer engagement on social digital platforms to be any interaction two existing users

might have on the platform. Going back to the previous FB example, it might be the case

that a user who donated to a cause observed one of his high school connections, who is not

yet friends on FB with him, to have also donated to the same cause. Immediately after the

donation, they become friends on FB and they start interacting though instant messaging,

increasing this way their engagement with the FB platform. In this work, we propose

a setting to empirically explore this question. Specifically, we use data from charitable

fundraising events in Venmo to investigate whether two users that have contributed to the

same charity event and have not previously transacted up to that point in time are more

likely to transact after the charity event. Our charitable events are created by exogenous

random shocks (e.g., physical catastrophes), which allow us to causally identify the effect

of donations on customer engagement.

2https://techcrunch.com/2017/11/28/the-gates-foundation-is-matching-2m-in-donations-on-facebook-
for-givingtuesday/
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We seek to test the following hypotheses:

H1 Donating to a common cause increases the likelihood of forming a relationship

between two users.

H2 This likelihood is a decreasing function of the shortest path distance between the

two users.

4.2. Related Literature

Prior studies have documented that customers tend to empathize with organizations

with which they share common traits (Bhattacharya et al., 1995; Ashforth, 1998; Elsbach,

1998; Sen and Bhattacharya, 2001). Organizational commitment to social issues enhances

customer perceptions, which in turn increases customer loyalty to the organization (O’Brien

et al., 2015; Brown and Dacin, 1997; Aguinis and Glavas, 2012; Becker-Olsen et al., 2006;

Maignan and Ferrell, 2004; Arora and Henderson, 2007). As a result, organizations are

now treating CSR as a strategic marketing tool to maximize their customer value (Knox

and Maklan, 2004).

Particular importance is placed in using CSR activities on the development of customer

engagement. This is greatly justified by the ever-increasing emergence of digital platforms

which have introduced new mechanisms for organizations to facilitate: dialogue and

community engagement (Guo and Saxton, 2014; Curtis et al., 2010; Auger, 2013), advocacy

purposes (Bortree and Seltzer, 2009; Briones et al., 2011) and financial mobilization

(Greenberg and MacAulay, 2009). Waters (2010); Kanter and Fine (2010); LaCasse

et al. (2010) provide qualitative evidence that nonprofit organizations use social media to

streamline their management functions and engage with current and potential stakeholders,
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clients and donors through the sharing of real-time information. In one of the few studies

that have empirically examined donations in social networking sites, Saxton and Wang

(2014) used data from FB causes to investigate the nature and determinants of charitable

giving in those settings. They find that online donations are not driven by the same

factors as in offline settings, and that a social network effect model takes over traditional

economic explanations.

There is also some notable work that use field experiments to investigate the various

aspects motivating donations. In offline settings, Karlan and List (2007) conducted a

natural field experiment to test the effectiveness of matching funds strategy on charitable

giving, and find it to increase both the revenue per solicitation and the response rate.

In a similar vein, Huck and Rasul (2010) find that straight linear matching schemes

raise the total donations received including the match value, but partially crowd out the

actual donations given excluding the match. Meier (2007) adds to these observations

that a matching strategy increases contributions to a public good. However, in the long

run, the willingness to contribute may be undermined. In online settings, Castillo et al.

(2014) investigated the costs and benefits of peer-to-peer fundraising through online social

networks. They find that asking friends to donate generates new donations, and that

charities should target incentives to those who have the smallest cost to fund raise online.

Smith et al. (2015) examined the underlying peer effects in charitable giving and find that

an increase of past donations increases future giving.

The closest papers to this work are (O’Brien et al., 2015; Lichtenstein et al., 2004).

O’Brien et al. (2015) empirically studied the role of CSR activities on customer loyalty.

They find that CSR efforts can indeed increase customer loyalty, and they are more
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effective when the charity causes are aligned to the core business values. Lichtenstein

et al. (2004) find that CSR activities have both corporate benefits (e.g., more favorable

corporate evaluations, increased purchase behavior, etc.) and social benefits in the form

of consumer donations to corporate-supported non-profits. Moreover, CSR initiatives

increase consumers’ identification with the corporation.

4.3. Research Setting and Data

In this section, we present the research setting and data for testing our hypotheses.

Our research setting is Venmo, the most popular Peer-to-Peer (P2P) mobile payment

application among millenials. Venmo allows users to easily transfer money to one another

for shared social activities like paying for food or utility bills. Venmo users have the ability

to view their connections’ financial transactions on a FB-like news feed. Although Venmo

was designed for P2P transfers among individuals, its ease of use and popularity makes

it ideal for fundraising charity events. Therefore, many non-profit organizations (e.g.,

Planned Parenthood, the Red Cross) created a Venmo account to raise money for various

causes. We focus our attention to charity events that are created by exogenous random

shocks, e.g., physical catastrophes. For example, Possible Health is a non-governmental

organization that delivers health care through public-private partnership agreements

with the Government of Nepal. During the Nepal Earthquake in April 2015 (also knows

as Gorkha earthquake), Possible Health collected donations from thousands of Venmo

users (see figure 4.1 for illustration). We should note here that while a Venmo account

corresponds to a single non-profit organization, the same account can collect donations for

multiple charity events. We have collected data for a total of 28 such events.
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Figure 4.1. Donations collected by Possible Health for the Gorkha earthquake in 2015.

4.4. Proposed Research Design

4.4.1. Unit of Analysis

The unit of analysis is a pair of users. We want to test whether user j is more likely to

transact with user i in period t+1, if j and i had not transacted up to period t, and either

j or i or both contributed to a fundraising event at time t.

4.4.2. Identification Strategy and Econometric Specification

We employ an event study methodology based on regression estimation for our identification.

We provide here a brief overview of the general setup (for a concise overview of the
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traditional event study analysis see MacKinlay (1997); Binder (1985); Fama et al. (1969)).

The first step is to define the event of interest and the event window over which the

dependent variable of interest will be examined. In our case, the events of interest are

fundraising events and we set the time window to be one month (a Venmo user transacts

on average twice a month, so we believe that this is a reasonable time window. However,

we will also test other values for robustness purposes). The next step is to define our

dependent variable of interest. In our case, it is Yi,j,t+w. It is equal to 1, when a user i

has made a financial transaction with user j at time t+ w; otherwise, it is equal to 0. We

denote by t the time of the event and by w the event window that we allow the users to

start transacting because of the event. The last step is to select the set of pairs to be

included to the study. Although our social network is comprised of around 1 million nodes,

we exploit Apache Spark and pooled regression to run it over the whole network. This is

crucial for our analysis as we avoid biases caused by sampling techniques (we discuss later

these potential biases). We can write our regression as:
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Yi,j,t+w =
NX

n=1

��n1{w = �n}+
NX

n=1

�↵n1{w = +n}

+
NX

n=1

���n1{w = �n}Eventi,j +
NX

n=1

�↵↵n1{w = +n}Eventi,j

+
4+X

n=1

�1n1{Distancei,j,t+w = n}+
4+X

n=1

�11n1{Distancei,j,t+w = n}Eventi,j

+ �2NooneContributedi,j,t

+ �3BothContributedi,j,t + �4OneContributedi,j,t

+ �5FriendsBeforeEventi,j,t� + �55FriendsBeforeEventi,j,t�Eventi,j

(4.1)

This is an event regression, so we need N observations before and N observations after

the event. The coefficients of the 2N time dummies (one for each period before and each

period after the event) give the reduced-form effect of the event on the average Y. Our

regressors of interest are:

1) NooneContributedi,j,t: This dummy will be 1, if neither i nor j contributed to the

event.

2) BothContributedi,j,t: This dummy will be 1, if both i and j contributed to the

event.

3) OneContributedi,j,t: This dummy will be 1, if either i or j contributed to the event.

By definition of an event, all these variables will always be equal to 0 at times from

t�w up to t� 1. Moreover, we are only interested in their lagged effect on our dependent

variable. Our explanatory variables are:
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1) Distancei,j,t+w: the shortest path distance between nodes i and j at time t + w.

Since it is computationally expensive to exactly determine the shortest path in large

graphs, we make an approximation and compute only the following distances: 1, 2, 3 and

greater or equal to 4. Note here that we take the indicator function inside our regression

equation. This in turn makes all of our variables binary, which allows us to speed up the

computations considerably.

2) FriendsBeforeEventi,j,t� : This dummy will be 1, if i and j have transacted at

least once before the event.

The dependent variable might have a slight upwards trend, i.e. conditional on not having

transacted before, two arbitrary individuals have a positive probability of transacting.

This is different from standard event studies where the dependent variable can either go

up or down, e.g., financial stocks. We, therefore, need to net out this trend from our

estimation. To do this, we need a way of estimating what this "background" Yi,j,t+w would

be without the event. There are two types of observations that can be used as controls: (1)

individuals who do not contribute to an event; and (2) individuals without an event. To

model this, we use the event dummy Eventi,j , where Eventi,j = 1, if the i, j observations

correspond to an event, and 0 if the i, j observations correspond to a non-event, i.e., are a

sequence of 2N+1 weeks without any event. The purpose of using these observations is

to estimate "background" coefficients for all relevant regressors, so as to ensure that we

estimate our coefficients of interest net of this background correlation.
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4.5. Concluding Remarks

Digital platforms are reshaping the way organizations and individuals donate to

philanthropic causes. In this work, we ask how this increased visibility of fundraising

charity events affects customer engagement. To answer this question, we propose the

use of an event study design to causally identify the effect of individual donations on

customer engagement. We hypothesize that donating to a common cause will increase

the likelihood of forming a relationship between two users. Furthermore, we conjecture

that this likelihood is a decreasing function of the shortest path distance between the

two users. Our findings will have significant managerial implications with regards to

customer engagement marketing. For example, FB partnered with the Bill & Melinda

Gates Foundation and matched $2M of donations to fundraisers held on FB by nonprofits.

If our hypotheses are true, and donations do indeed increase customer engagement, then

other companies might want to follow FB’s paradigm.
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APPENDIX A

Chapter 2 Supporting Material

A.1. Variable Description

Variable Type Dynamic Variable Name Description

User

No

facebookSignIn Binary variable indicating is user signed up through Facebook.

earlyAdopter Binary variable indicating early adoption of Venmo.

month Month that a user created Venmo account.

year Year that a user created Venmo account.

Yes

daysFromLastTransaction Days since last transaction. This feature is used to create the labels/dependent variable.

nightAverage Percent of transactions taking place at night (6:00pm - 4:00am)

weekendAverage Percent of transactions taking place on weekends.

transactionFrequency Number of transactions divided by the number of days in specified time interval.

Social Network Yes

chargeCount Number of “charge” transactions.

payCount Number of “pay” transactions.

numberOfFriends Number of distinct people a user has transacted with.

isEmoji Percent of transactions that contain at least one emoji in their description.

numberOfPeopleBrought Number of users who transacted with this customer for the first time.

outgoingTransactionPctg Percentage of outgoing transactions, i.e. user of interest was the initiator of transaction.

pageRank User’s pagerank in the network.

isGiant Binary variable indicating membership to the giant component.

triangleCount Number of triangles in user’s local network.

cohesion Measure of the degree to which a user’s friends know each other.

mutualFriendsOfFriends Measure of the degree to which a user’s friends have mutual friends.

friendAvgTransactionFreq Average transaction frequency of a user’s friends.

friendSDTransactionFreq Standard deviation of transaction frequency of a user’s friends.

friendAvgTransFreqLagged One month lagged average transaction frequency of a user’s friends.

friendAvgIsEmoji Average percent of a user’s friends transactions containing at least one emoji in description.

friendSDIsEmoji Standard deviation of the percent of a user’s friends transactions containing at least one emoji in description.

friendAvgNumFriends Average number of individuals who have transacted with a user’s friends.

friendSDNumFriends Standard deviation of the number of individuals who have transacted with a user’s friends.

friendOfFriendAvgTransFreq Average transaction frequency of user’s friends of friends.

friendOfFriendSDTransFreq Standard deviation of transaction frequency of a user’s friends of friends.

friendOfFriendAvgTransFreqLagged One month lagged average transaction frequency of a user’s friends of friends.

friendOfFriendAvgIsEmoji Average percent of a user’s friends of friends transactions containing at least one emoji in description.

friendOfFriendSDIsEmoji Standard deviation of the percent of a user’s friends of friends transactions containing at least one emoji in description.

friendOfFriendAvgNumFriends Average number of individuals who have transacted with a user’s friends of friends.

friendOfFriendSDNumFriends Standard deviation of the number of individuals who have transacted with a user’s friends of friends.

Table A.1. Variable Description
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A.2. Robustness Checks

A.2.1. Comparison of alternative functional forms for predicting customer ac-

tivity

Lifetime Model 1 Model 2 Model 3
Logistic Lasso RF Logistic Lasso RF Logistic Lasso RF

0 0.53 0.53 0.51 0.71 0.71 0.72 0.71 0.71 0.72
1 0.73 0.73 0.72 0.72 0.72 0.72 0.73 0.73 0.72
2 0.77 0.77 0.76 0.76 0.76 0.73 0.77 0.77 0.76
3 0.79 0.79 0.78 0.77 0.77 0.75 0.79 0.79 0.78
4 0.80 0.80 0.79 0.77 0.77 0.75 0.80 0.80 0.79
5 0.81 0.81 0.80 0.79 0.79 0.76 0.81 0.81 0.80
6 0.82 0.82 0.80 0.79 0.79 0.76 0.82 0.82 0.80
7 0.82 0.82 0.80 0.80 0.80 0.79 0.82 0.82 0.80
8 0.82 0.83 0.80 0.80 0.80 0.79 0.82 0.83 0.80
9 0.82 0.83 0.80 0.80 0.80 0.79 0.83 0.83 0.80
10 0.83 0.84 0.80 0.80 0.80 0.79 0.83 0.84 0.80
11 0.83 0.84 0.81 0.81 0.81 0.79 0.83 0.84 0.81
Table A.2. AUC Score for alternative functional forms. Note that since our
analysis time frame ends after one year, it is not possible to make forecasts when
the current lifetime point plus the predictive window extends beyond 12 months.
(RF stands for Random Forests).
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Lifetime Model 1 Model 2 Model 3
Logistic Lasso RF Logistic Lasso RF Logistic Lasso RF

0 1.12 1.12 1.10 1.38 1.38 1.54 1.40 1.41 1.54
1 1.57 1.56 1.55 1.55 1.55 1.55 1.59 1.59 1.57
2 1.79 1.79 1.79 1.77 1.78 1.80 1.80 1.80 1.80
3 1.94 1.94 1.92 1.91 1.92 1.93 1.94 1.94 1.93
4 2.10 2.11 2.09 2.05 2.06 2.09 2.10 2.11 2.11
5 2.32 2.32 2.29 2.23 2.24 2.28 2.32 2.32 2.31
6 2.49 2.49 2.47 2.37 2.37 2.40 2.49 2.49 2.47
7 2.61 2.61 2.59 2.49 2.49 2.50 2.61 2.61 2.59
8 2.73 2.73 2.71 2.59 2.59 2.59 2.74 2.73 2.72
9 2.89 2.88 2.86 2.68 2.68 2.70 2.89 2.88 2.86
10 3.03 3.03 3.00 2.79 2.79 2.83 3.03 3.03 3.00
11 3.22 3.22 3.19 2.93 2.93 2.96 3.22 3.22 3.19
Table A.3. Top 10% decile Lift for alternative functional forms. Note that since
our analysis time frame ends after one year, it is not possible to make forecasts
when the current lifetime point plus the predictive window extends beyond 12
months. (RF stands for Random Forests).

A.2.2. Alternative predictive windows for customer activity

We experiment with predictive windows of size 60, 90 and 120 days. We report the AUC

and top decile Lift below. Our results remain unchanged.

Lifetime 60 days 90 days 120 days
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

0 0.53 0.68 0.68 0.53 0.67 0.68 0.54 0.67 0.67
1 0.73 0.72 0.73 0.73 0.72 0.73 0.73 0.73 0.74
2 0.77 0.76 0.78 0.78 0.76 0.78 0.78 0.77 0.79
3 0.79 0.77 0.79 0.80 0.78 0.80 0.81 0.79 0.81
4 0.81 0.79 0.81 0.82 0.80 0.82 0.83 0.81 0.83
5 0.82 0.80 0.83 0.83 0.81 0.84 0.84 0.82 0.84
6 0.84 0.81 0.84 0.85 0.82 0.85 0.85 0.83 0.86
7 0.84 0.82 0.84 0.85 0.83 0.86 0.86 0.83 0.86
8 0.85 0.82 0.85 0.86 0.83 0.86 0.87 0.84 0.87
9 0.85 0.83 0.85 0.87 0.84 0.87 - - -
10 0.86 0.83 0.86 - - - - - -

Table A.4. AUC Score for alternative predictive windows of length 60, 90 and
120 days. Note that since our analysis time frame ends after one year, it is not
possible to make forecasts when the current lifetime point plus the predictive
window extends beyond 12 months.
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Lifetime 60 days 90 days 120 days
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

0 1.15 1.45 1.50 1.17 1.54 1.60 1.19 1.62 1.66
1 1.76 1.78 1.83 1.90 1.94 2.00 2.04 2.12 2.14
2 2.11 2.13 2.15 2.35 2.40 2.43 2.54 2.63 2.70
3 2.40 2.38 2.42 2.76 2.73 2.81 3.03 3.00 3.12
4 2.71 2.63 2.72 3.16 3.04 3.18 3.48 3.36 3.51
5 3.04 2.89 3.04 3.51 3.37 3.53 3.89 3.73 3.91
6 3.27 3.11 3.28 3.83 3.63 3.84 4.27 4.03 4.28
7 3.48 3.27 3.48 4.13 3.85 4.13 4.64 4.27 4.64
8 3.72 3.44 3.73 4.41 4.04 4.42 4.93 4.47 4.94
9 3.93 3.58 3.93 4.67 4.19 4.67 - - -
10 4.19 3.77 4.19 - - - - - -

Table A.5. Top 10% decile Lift for alternative predictive windows of length 60, 90
and 120 days. Note that since our analysis time frame ends after one year, it is
not possible to make forecasts when the current lifetime point plus the predictive
window extends beyond 12 months.

A.2.3. Predicting the future top 20% of customers

In addition to predicting the top 10% of customers, we also test our models in the task of

predicting the future 20% of customers. We report the AUC and top decile Lift below.

Once again, our results remain unchanged.

Lifetime AUC Lift
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

0 0.58 0.70 0.70 1.61 2.18 2.18
1 0.76 0.79 0.79 3.11 3.19 3.19
2 0.82 0.83 0.83 3.59 3.66 3.66
3 0.85 0.87 0.87 3.93 3.99 3.99
4 0.88 0.90 0.90 4.22 4.26 4.26
5 0.91 0.92 0.92 4.46 4.50 4.50
6 0.94 0.94 0.94 4.69 4.70 4.70
7 0.96 0.96 0.96 4.84 4.85 4.85
8 0.97 0.97 0.97 4.94 4.94 4.94
9 0.98 0.98 0.98 4.97 4.97 4.97
10 0.99 0.99 0.99 4.97 4.97 4.97
11 0.99 0.99 0.99 4.97 4.97 4.97

Table A.6. Classification results for top 20% of customers by lifetime. The left
three columns show the AUC score for the three competing models, whereas the
rightmost columns illustrate top decile lift for the same three models.
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A.3. Comparison of logistic and linear regression in predicting best

customers

We provide a comparison between a logistic regression model and a linear regression

when predicting the future top 10% customers of a firm. A customer will belong to the

top 10% if he completes at least 90 transactions by the end of their first year with Venmo.

Given that the dependent variable for each model is of different nature (dichotomous

versus continuous), we select an evaluation metric that can be computed in both cases,

namely the F1-score. The F1-score is the harmonic mean of precision and recall, and it

is widely used in the machine learning literature. Our results indicate that the logistic

regression model performs best, and especially from lifetime 0 up until lifetime 5.

Lifetime Logistic Regression F1-Score Linear Regression F1-Score
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

0 0.20 0.29 0.29 0.01 0.03 0.03
1 0.41 0.42 0.42 0.25 0.29 0.28
2 0.48 0.49 0.49 0.39 0.42 0.42
3 0.54 0.55 0.55 0.49 0.50 0.50
4 0.60 0.60 0.60 0.56 0.57 0.57
5 0.65 0.66 0.66 0.63 0.64 0.64
6 0.70 0.71 0.71 0.69 0.70 0.69
7 0.75 0.75 0.75 0.74 0.75 0.75
8 0.79 0.80 0.80 0.79 0.79 0.79
9 0.84 0.84 0.84 0.83 0.84 0.84
10 0.88 0.89 0.89 0.88 0.88 0.88
11 0.94 0.94 0.94 0.93 0.93 0.93

Table A.7. F1-score when predicting the future top 10% of customers. On the left
we provide the results of the logistic regression model, and on the right the results
of the linear regression model.
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A.4. Cohesion, triangle count and mutual friends of friends

We begin with a more rigorous definition of cohesion, and explain in more detail its

relationship to triangle counts. Let Gt(Vt, Et) be a dynamic social network, where Vt is

the set of nodes, and Et is the set of edges at time t. For any actor u 2 Vt at time t,

let Fu,t denote the set of all his connections (friends), i.e. all v for which (u, v) 2 Et.

Further, let FFu,t denote the set of all the connections of actor’s u friends at time t, i.e.

FFu,t =
[

v2Fu,t

Fv,t\{u}. It is important to exclude actor u from all FFv,t, where v 2 Fu,t,

since u will always be in that set by default.

Cohesion The cohesion metric of user u at time t is given by

cohesionu,t =
|FFu,t \ Fu,t|

|Fu,t|
.

Cohesion can take values between 0 and 1, with 1 implying that user u and his friends

form a rather dense graph; however, this does not mean that the graph must be complete.

A graph is complete if there is an edge connecting any pair of vertices. Consider the

network in Figure A.1c. This graph would be complete with the addition of edges (E,C)

and (B,D), and yet, cohesion is equal to 1. Cohesion is closely related to triangle count,

but it is normalized by a user’s number of friends. In the network on the left, the cohesion

of user A is 0, since none of her friends is connected to each other. In Figure A.1c, user A

has cohesion equal to 1 and triangle count equal to 4, but this is an absolute count and

does not adjust for the node’s degree.
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Another metric we elaborate on is the Mutual Friends of Friends (MFF). One limitation

of the cohesion metric is that it does not capture the extent to which a user’s friends have

mutual connections, even if they are not connected to each other. To account for such ties,

we need to look beyond the first degree connections. Given our network notation, MFF is

defined as follows:

Mutual Friends of Friends (MFF) The MFF metric of user u at time t is given by

mutualFriendsOfFriendsu,t =

�����
[

v,w2Fu,t
v 6=w

(Fv,t \ Fw,t)\{u}

�����

|FFu,t|
.
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Figure A.1. Similarities and differences between cohesion, triangle count and MFF.
(a) exhibits a star formation, and all three metrics for actor A are equal to 0. (b)
actor’s A cohesion and triangle count is equal to 0, but MFF metric is equal to 1:
although C and E do not directly know each other, they share 2 mutual friends.
(c) actor’s A cohesion is equal to 1, triangle count is equal to 4, and MFF remains
1.
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A.5. Cohen‘s effect size

We provide here the formula for calculating Cohen’s effect size. Given two groups of

size n1 and n2, let M1, M2 and SD1, SD2 denote their respective means and standard

deviations. Further, let the pooled standard deviation of the two groups be denoted by:

SDp =

s
(n1�1)SD2

1 + (n2 � 1)SD2
2

n1 � n2 � 2

Then, Cohen’s effect size is given by:

C =
M1 �M2

SDp



102

APPENDIX B

Chapter 3 Supporting Material

B.1. Variable Description

Variable Name Graph Description
Number of Online Friends of Actor i S Number of distinct friends user i had when he signed up through FB.
Number of Online Friends of Actor j S Number of distinct friends user j had when he signed up through FB.
Number of Common Friends of i and j S&T Number of distinct friends users i and j have in common.
Unweighted Edge Overlap between i and j S&T The proportion of friends shared between i and j.
Common Clustering Coefficient S&T Measure of the degree to which the common friends of i and j know each other.
Non-common Clustering Coefficient S&T Measure of the degree to which the non-common friends of i and j know each other.
Common Friends’ Average Number of Friends. S&T Average number of friends which the common friends of i and j have.
Non-common Friends’ Average Number of Friends. S&T Average number of friends which the non-common friends of i and j have.
Number of Friends of Actor i T Number of distinct friends user i has transacted with.
Number of Friends of Actor j T Number of distinct friends user j has transacted with.
Online-Offline Edge Overlap between of i and j T The proportion of online common friends users i and j has transacted with so far.
IFB S Dummy variable indicating whether both i and j signed up through FB.

Table B.1. Variable Description. "S" stands for Social and "T" for Transactional.



103

B.2. Number of distinct friends a user has transacted with over his lifetime.

Figure B.1. Cumulative distribution function of making new financial distinct
friendships. Lifetime is measured in months.
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B.3. Robustness Checks

B.3.1. Comparison of alternative machine learning models and re-sampling

techniques

Forming a Transactional Relationship

Lifetime = 0 Machine Learning Model

Re-sampling Technique RF Logistic Lasso

Undersampling 0.43 0.43 0.43

Oversampling 0.42 0.43 0.43

SMOTE 0.41 0.41 0.42

ROSE 0.41 0.41 0.41
Table B.2. Accuracy Score for alternative machine learning models and re-sampling
techniques.

Forming a Transactional Relationship

Lifetime = 0 Machine Learning Model

Re-sampling Technique RF Logistic Lasso

Undersampling 0.85 0.85 0.85

Oversampling 0.84 0.84 0.84

SMOTE 0.84 0.84 0.84

ROSE 0.83 0.83 0.84
Table B.3. AUCPR Score for alternative machine learning models and re-sampling
techniques.
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Reciprocity

Lifetime = 0 Machine Learning Model

Re-sampling Technique RF Logistic Lasso

Undersampling 0.45 0.44 0.45

Oversampling 0.44 0.44 0.45

SMOTE 0.45 0.44 0.44

ROSE 0.44 0.44 0.45
Table B.4. Accuracy Score for alternative machine learning models and re-sampling
techniques.

Reciprocity

Lifetime = 0 Machine Learning Model

Re-sampling Technique RF Logistic Lasso

Undersampling 0.86 0.86 0.87

Oversampling 0.85 0.84 0.86

SMOTE 0.85 0.84 0.86

ROSE 0.84 0.84 0.86
Table B.5. AUCPR Score for alternative machine learning models and re-sampling
techniques.


